


GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

> DATE RECEIVED DEC 1 7 1996

Assessment Report On Geochemical Program Clone 1 .... 331439 [Part of the "Clone" property]

Statements Of Exploration #3092385 & #3095790

located 16 Km Southeast Of Stewart, British Columbia Skeena Mining Division

55 degrees 48 minutes latitude 129 degrees 47 minutes longitude

N.T.S. 103P/13W Project Period: June 10 to August 16, 1996

> On Behalf Of Teuton Resources Corp. Vancouver, B.C

FILMED

Report By E.R. Kruchkowski, B.Sc., P. Geol. November 27, 1996

GEOLOGICAL SURVEY BRANCH ASSESSMENT PEPORT



Assessment Report On Geochemical Program Clone 1 .... 331439 [ Part of the "Clone" property ]

Statements Of Exploration #3092385 & #3095790

located 16 Km Southeast Of Stewart, British Columbia Skeena Mining Division

55 degrees 48 minutes latitude 129 degrees 47 minutes longitude

N.T.S. 103P/13W Project Period: June 10 to August 16, 1996

> On Behalf Of Teuton Resources Corp. Vancouver, B.C

Report By E.R. Kruchkowski, B.Sc., P. Geol. November 27, 1996 REPORT ON CLONE 1 CLAIM STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION NTS 103P/13W LATITUDE 55 48' LONGITUDE 129 47'

by

E.R. Kruchkowski, B.Sc., P. Geol.

**Prepared for:** 

--

Teuton Resources Corp. 509 - 675 W. Hastings Vancouver, British Columbia V6B 1N2

27 November 1996

# TABLE OF CONTENTS

|                                 | Page   |
|---------------------------------|--------|
| SUMMARY                         | 1      |
| INTRODUCTION                    | 2      |
| Location and Access             | 2      |
| Physiography and Topography     | 3<br>3 |
| Personnel and Operations        |        |
| Property Ownership              | 4      |
| Previous Work                   | 4      |
| GEOLOGICAL SURVEY               | 7      |
| Regional Geology                | 7      |
| Local Geology                   | 9      |
| Mineralization                  | 10     |
| 1.) Hematite Bearing Gold Zones | 10     |
| 2.) Sulfide Bearing Gold Zones  | 11     |
| TRENCHING                       | 12     |
| CONCLUSIONS                     | 13     |
| RECOMMENDATIONS                 | 14     |
| REFERENCES                      | 15     |
| STATEMENT OF CERTIFICATE        | 16     |
| STATEMENT OF EXPENSES           | 17     |

## LIST OF FIGURES

# After Page

| Figure 1 | Location Map                      | After page 2   |
|----------|-----------------------------------|----------------|
| Figure 2 | Claim Map 1:50,000                | After page 4   |
| Figure 3 | Map Showing Location of Trenching | After page 12  |
| Figure 4 | Map Showing Sample Numbers        | In back pocket |
|          | Trenches 82 - 117                 |                |
| Figure 5 | Map Showing Sample Widths and Au  | In back pocket |
|          | and Co values                     |                |
|          | Trenches 82 - 117                 |                |

## LIST OF APPENDICES

| APPENDIX I  | Sample Description with Indicated Anomalous Values for<br>Au, Ag, As, Cu, Co |
|-------------|------------------------------------------------------------------------------|
| APPENDIX II | Geochemical Analysis Results for the Trenching                               |

## LIST OF TABLES

| : 12 |
|------|
| 12   |

ي م

.\*\*

Page 1

#### **SUMMARY**

The Clone property, owned by Teuton Resources Corp. and Minvita Enterprises Ltd is located about 16 kilometers southeast of Stewart, British Columbia in the Skeena Mining Division. The property covers an area of Hazelton pyroclastic volcanic rocks in contact with a variety of intrusive plutons associated with the main Coast Range Batholith.

The property lies within a belt of Jurassic volcanic rocks extending from the Kitsault area, south of Stewart, to north of the Stikine River. This belt is host to numerous gold deposits, in a variety of geological settings, including the producing Snip, Eskay Creek and Premier-Big Missouri properties. Reserves have been reported from a number of other properties including Red Mountain, the Brucejack Lake area and Georgia River. In addition numerous gold-silver showings have been reported by exploration companies along this belt of rocks. At least three porphyry type deposits with either Cu-Mo, Cu-Mo-Au or Cu-Au mineralization are also present. Of particular interest is the Red Mountain gold deposit hosted in a hornblende porphyry (Goldslide Intrusive) in association with massive pyrite and zinc and molybdenum mineralization, approximately 15 km to the north.

During the period June 10 to August 16, 1996, a program consisting of trenching was conducted on the Clone 1 claim. The trenching totaled 327.4 m in 36 separate excavations located over both sulfide and hematite bearing shear zones. The 1996 program was designed to expand and follow - up on 1995 trench results. A total of 234 chip samples were collected and analyzed for metal content by ICP analysis (29 element package) and for gold using atomic absorption methods. Any anomalous gold, silver, copper, arsenic and cobalt (greater than 1000 ppb, 30 ppm for the first two and greater than 10, 000 ppm for the copper and arsenic and greater than several hundred ppm for the cobalt were assayed.

Mineralization within the Clone 1 claim area consists of two different and distinct types. The mineralization is hosted by steeply dipping sub-parallel, en echelon, shear controlled veins and stockworks with a northwesterly trend. The first type of mineralization is dominated by pyrite plus/minus arsenopyrite within chloritic, schistose lapilli tuffs and the second by hematite veins with associated chlorite and calcite-quartz stockworks within broad zones of hematite-chlorite altered rocks. Specularite, chalcopyrite, magnetite and locally visible gold are associated with the hematite dominated mineralization. The sulfide dominated mineralization prevails in the southwestern portion of the trenched area with the structures being linear in nature and traced intermittently over distances up to 500 meters in length. The hematite dominated structures, which occur northeast of the sulfide bearing structures, have less defined walls but show good strike lengths as well. Work has indicated that the mineralized structures are found over an area at least 75 meters wide by 300 meters long in the surveyed area. A strong northeast trending structure appears to have offset the zones to the north while the southerly extensions are

---

, --

....

Page 2

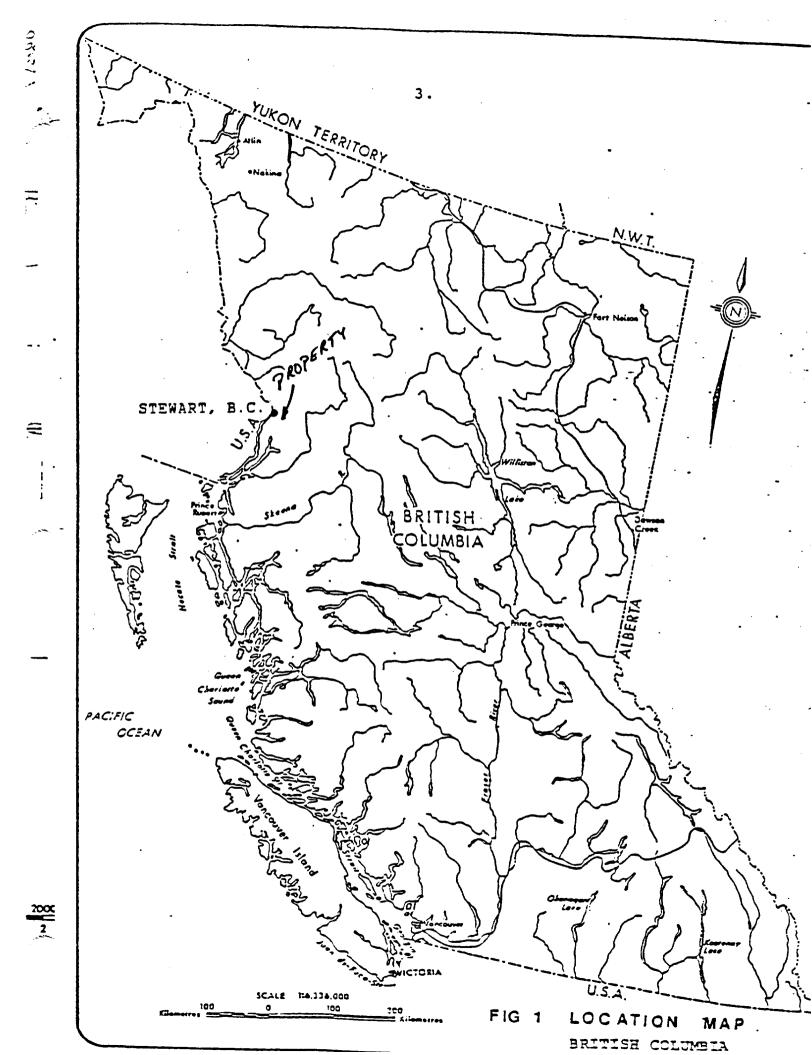
obscured by ice. Gold values are associated with high sulfide or hematite/sulfide bearing shear zones.

Results of the trenching indicated significant gold values over significant widths and lengths as well as outlining new zones. The best trench results in the sulfide zones were from Trench 95 and 99 which yielded 2.617 opt gold and 0.768 % cobalt across 2.2 meters and 0.703 opt gold and 0.073 % cobalt across 5.7 meters respectively. The best trench results in the hematite zones were from Trench 91 and 100 which yielded 0.966 opt gold across 0.75 meters and 2.328 opt gold across 1.0 meters respectively.

Further work consisting of trenching and diamond drilling is recommended to adequately evaluate the 1996 trench results

#### **INTRODUCTION**

A trenching program designed to test the gold potential of the Clone Property was conducted during the period June - August 1996. The work expanded on showings located and tested by trenching in 1995 as well as testing newly discovered zones.


Work was conducted by Teuton personnel accommodated in a permanent camp facility erected on the Clone 1 claim. All trenching was carried out by several blasters with trench sampling conducted by Alex Walus assisted by Dave Hick. Trench locations, co-ordination and overall supervision was provided by E.R. Kruchkowski under the direction of Dino Cremonese, President of Teuton Resources Corp.

All rock geochemical and assay samples were analyzed by Echo-Tech Laboratories in Kamploops, B.C. or by Pioneer Labs in Vancouver, B.C. Vancouver Island Helicopters provided a Bell 206 and/or Bell 205 as well as Hughes 500 D in order to provide access and fly in supplies.

#### Location and Access

The Clone 1 claim is located about 16 kilometers southeast of Stewart, British Columbia. The claim area is approximately 55 degrees 48 minutes latitude and 129 degrees 47 minutes longitude on NTS sheet 103P/13W.

Access to the claim at the present time is by helicopter from Stewart. Nearest road to the area is a non-maintained logging road running east along the south side of the Marmot River to a



Page 3

point about 9 km northwest of the property. Total length of the road from tidewater to its termination point is approximately 4 km.

#### **Physiography and Topography**

The Clone 1 Claim is situated southeast of Treble Mountain at the head of Sutton and Kshwan Glacier. The claim is part of a roughly 4 km square nunatak with much of the southern sections only recently exposed by rapidly retreating ice (the southern ice edge is up to 200 m further south in places than that depicted on government topographic and claim maps). Elevations vary from approximately 1,150 metros ASL on the icefield in the southern portion of the Port 21 claim to about 1,700 metros ASL on the height of land in the northern portion of the Port 20 claim. Except for the portions of the claims covered by permanent snow or ice, most of the upper ground is outcrop or talus cover with little vegetation. Just above the glaciers, thick morainal debris obscures the underlying geology. Small ponds occupy depressions in a relatively flat area along the south edge of the Port 21 claim. Maximum rock exposure occurs in early October when most of the annual snowfall has melted. The surface exploration is restricted to late summer and early fall. Most of the nunatak can be traversed safely on foot although local areas contain occasional bluffs.

Small patches of tag spruce are present along the lower slopes of the nunatak, particularly the south facing edge. Alpine grasses, heather and arctic willows grow in patches along the talus, moraine and outcrops.

#### **Personnel and Operations**

Personnel involved in the program are listed below:

| June 10 - August 16 1996 |
|--------------------------|
| June 10 - August 16 1996 |
|                          |

Personnel in the program mobilized to the Stewart area via vehicle or scheduled air flights ( Smithers or Terrace). Casual laborers were hired in Stewart on a "as need " basis and were used during the construction of the permanent camp.

### Page 4

All personnel involved in the program, while on site were accommodated in the exploration camp located on the Clone 1 claim. While in Stewart, crews were accommodated either in a local hotel or rented house, provided by Teuton.

Supplies and materials for the job were purchased in Stewart and ferried in via helicopter.

### Property Ownership

The claim consists of 4 units in a single modified grid claim. Relevant claim information is summarized below:

| Name             | Tenure                  | No. of Units              | Expiry Date                     |
|------------------|-------------------------|---------------------------|---------------------------------|
|                  |                         |                           |                                 |
| Clone 1          | 321440                  | -4                        | 05 October 1996                 |
| Claim location   | is illustrated on Figur | re 2, copied after availa | ble government NTS maps.        |
| Ownership is pro | esently divided equally | between Teuton Resource   | s Corp. (50 %) and Minvita      |
| Enterprises Ltd. | (50%) of Vancouver, Br  | itish Columbia. Teuton R  | lesources Corp. is the operator |
| of the project.  |                         |                           |                                 |

The author did not examine the claim posts and cannot verify the quality and accuracy of the staking. The exact location of these claims would be subject to further surveys.

### Previous Work

The section on previous work has been excerpted from an assessment report prepared by Dino Cremonese in 1994.

"Exploration for metals began in the Stewart region about 1898 after the discovery of mineralized float by a party of placer miners. Sites which could be easily reached from Stewart were the first to be explored among which was the lower Marmot River area. This early phase of exploration culminated in 1910 when both Stewart and the neighboring town of Hyder, Alaska boasted a population of around 10,000 people. Another boom period began in the early 1920's after the discovery of the very rich Premier gold-silver-lead-zinc mine in the Salmon River area, northwest of Stewart.

Although a number of gold and silver prospects were sporadically worked in the Marmot River region up to the early 1930's, only the Prosperity-Porter Idaho mine (at the head of Kate Ryan Creek, a tributary of the Marmot River) saw limited production. The prospect closest to the Port 20-21/Red 17 claims is the old Ficklin-Harder prospect located at the head of the Marmot River

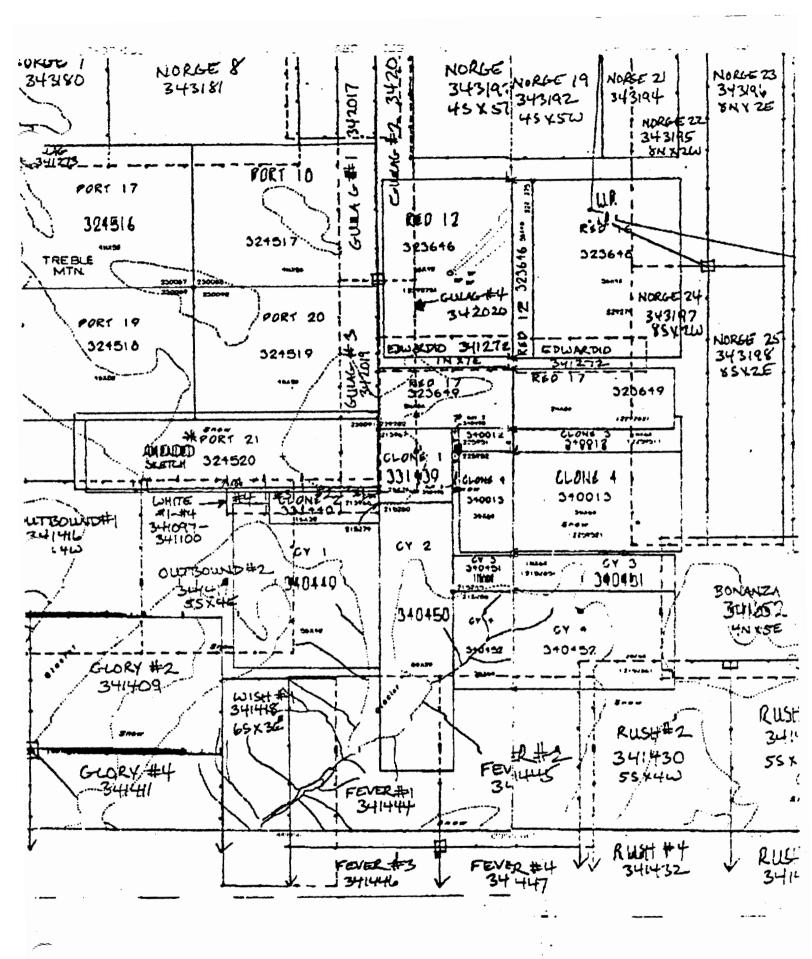



FIGURE 2 CLAIM LOCATION MAP

### Page 5

on the southern flank of Treble Mountain. It was explored by a few tunnels attempting to intersect high-grade quartz-sulfide mineralization intermittently exposed on surface. Also exploration activities by Teuton crews have located large open cuts across sulfide bearing quartz stockworks along the upper east slopes of Treble Mountain. At this time the area covered by the property was probably mostly under snow and ice and hence unavailable for exploration by the "old-timers".

From 1940 to 1979 there was little activity in the region due to lackluster precious metal prices. However when silver and gold prices skyrocketed in the early 1980's, many of the old properties were re-examined by both small and large exploration companies. Success by a number of exploration companies, particularly in the Unuk River has led to continued exploration in the general area. The relatively recent discovery and ongoing development of the promising intrusive-related gold deposits at Red Mountain (1,000,000 ounces gold), located approximately 16 km east of Stewart, has again rekindled interest in the surrounding area."

During July to October 1994, an exploration program conducted by Teuton on the area of the present Clone property, consisted of reconnaissance geochemical rock and silt sampling in conjunction with prospecting and reconnaissance geological mapping.

Geological observations noted during sampling indicated that the property is underlain by a sequence of augite porphyry basalts, maroon clastic volcanics and argillites intruded by dykes of granodiorite and hornblende porphyry. These dykes which strike in a northwesterly direction vary from 2-10 metros in width.

Mineralization in the form of pyrite, plus/minus chalcopyrite, plus/minus magnetite and plus/minus molybdenite was observed in four different geological settings of potential economic significance.

Results of the geochemical program indicated highly anomalous gold, silver, copper, arsenic, molybdenum, tungsten, bismuth and cobalt values widespread throughout the area explored. Values as high as 1.786 opt Au, 8.32 opt Ag, 9.51% Cu, 0.75% As, 0.686% Mo, 0.144% W, greater than 1% Bi and 0.29% Co were obtained from different zones within a square kilometer of partially explored ground. Several anomalous lead and zinc values associated with pyrite bearing float rocks were located in an area of northerly trending shears.

During the period July to December 1995, Teuton conducted a follow - up program consisting of reconnaissance geochemical rock sampling, trenching and geological mapping on the port 21 claim. This work led to the discovery of high grade gold values in parallel shears on the adjoining Clone 1 claim. In the period September to December 1995, work on the new

### Page 6

discovery consisted of reconnaissance geochemical rock sampling, geological mapping, trenching, VLF and magnetometer surveys, diamond drilling and petrographic studies.

A total of 604 rock samples (218 grab and chip samples as well as 386 trench samples) were collected in the surveys and analyzed for metal content by ICP analysis (29 element package) and for gold using automatic absorption methods.

Results of the geochemical program indicate highly anomalous gold, silver, copper, arsenic and cobalt values throughout the Port 20, 21, and Clone 1 claim areas. Values as high as 8.66 opt Au, 15.71 opt Ag, 11.5 % Cu, 15.75 % As and 0.98 % Co were obtained from different zones within the explored areas.

A total of 50.63 meters of trenching was completed in 13 trenches in the South Grid area. Results of the trenching indicated significant gold veins (0.1 - 0.2 opt) over widths of 2 meters with locally higher grade zones across 1-2 meters. The best trench result in the above area included 1.6 meters of 1.433 opt Au (trench 13).

A total of 463.2 meters of trenching was completed in 81 trenches in the North Grid area. Results of the trenching indicated significant gold values over significant widths and lengths. The best trench result was from Trench 4 which yielded 3.59 opt gold across 5.5 meters. Based on the trench results in conjunction with the geological mapping, four main gold bearing structures were outlined as follows:

| <u>Structure</u> | <b>Mineralization Type</b> | <u>Width</u> (m) | Length(m) | Grade(opt Au) |
|------------------|----------------------------|------------------|-----------|---------------|
| S-1              | Sulfide                    | 3.0              | 100       | 0.74          |
| S-2A             | Sulfide/minor hematite     | 2.3              | 365       | 0.71          |
| <b>H-1</b>       | Hematite                   | 5.2              | 191       | 0.74          |
| H-2              | Hematite                   | 1.5              | 18        | 2.62          |

In addition, trenching and geochemical sampling indicated an increase in cobalt values in the southeast portion of the above zones tested. Highest cobalt value in a trench was 0.71 % across 1.5 meters in trench 9, the most southerly trench.

A magnetometer and VLF EM survey were conducted over a portion of the established North Grid area. The contoured magnetic date shows a definite northeasterly orientation coincident with the general geological trend. One significant magnetite mineralization present within the zone. A second anomaly is along the eastern edge of the survey area and is entirely underlain by ice. The plotted VLF EM data shows a general high coinciding with the general geology in the survey area.

Page 7

A total of 1070.16 meters of drilling was completed in 13 drill holes located from a single pad east of trench 47. The holes tested a 40 meter strike length of the H-1 structure along four different azimuths.

The most significant intersections were returned from the two southeastern drill sections which tested the downdip extent of mineralization exposed in trenches 4 (5.5 meters of 3.5 opt gold), 14 (3.11 meters of 3.77 opt gold) and 15 (7.5 meters of 0.76 opt gold). Hole 95-8 intersected 1.7 meters true width grading 1.67 opt gold at a drilled depth of 14 meters (beneath trench 4) while hole 95-10 (beneath trench 14) intersected 4.21 meters true width grading 1.85 opt gold at a 15 meter depth.

#### **GEOLOGICAL SURVEYS**

#### **Regional Geology**

The Clone 1 claim lies in the Stewart area, east of the Coast Crystalline Complex and within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic Stuhini Group, Hazelton Group and Bowser Lake Group that have been intruded by plugs of both Cenozoic and Mesozoic age.

According to C.F. Greig, in G.S.C. Open File 2931, portions of the general Stewart area as well as to the north of the claim are underlain by Triassic age Stuhini Group. The Stuhini Group rocks are either underlying or in fault contact with the Hazelton Group. These Triassic age rocks consist of dark grey, laminated to thickly bedded silty mudstone, and fine to medium grained and locally coarse grained sandstone. Local heterolitic pebble to cobble conglomerate, massive tuffaceous mudstone and thick bedded sedimentary breccia and conglomerate also form part of the Stuhini Group.

At the base of the Hazelton Group is the lower Lower Jurassic Marine (submergent) and nonmarine (emergent) volcaniclastic Unuk River Formation. This is overlain at steep discordant angles by a second, lithologically similar, middle Lower Jurassic volcanic cycle (Betty Creek Formation), in turn overlain by an upper Lower Jurassic tuff horizon (Mt. Dilworth Formation). Middle Jurassic non-marine sediments with minor volcanics of the Salmon River Formation unconformably overlie the above sequence.

The lower Lower Jurassic Unuk River Formation forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic

#### Page 8

breccia, volcanic conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.

In the property area, the Unuk River Formation is unconformably overlain by middle Lower Jurassic rocks from the Betty Creek Formation. The Betty Creek Formation is another cycle of troughfilling sub-marine pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, with self erosional conglomerate, sandstone and siltstone and minor crystal and lithic tuffs, chert, limestone and lava.

The upper Lower Jurassic Mt. Dilworth Formation consists of a thin sequence varying from black carbonaceous tuffs to siliceous massive tuffs and felsic ash flows. Minor sediments and limestone are present in the sequence. Locally pyritic varieties form strong gossans.

The Middle Jurassic Salmon River Formation is a late to post volcanic episode of banded, predominantly dark colored siltstone, greywacke, sandstone, intercalated calcarenite rocks minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows.

Overlying the above sequences are the Upper Jurassic Bowser Lake Group rocks. These rocks mark the western edge of the Bowser Basin and are also located as remnants on mountain tops in the Stewart area. These rocks consist of dark grey to black clastic rocks including silty mudstone and thick beds of massive, dark green to dark grey, fine to medium grained arkosic litharenite.

According to E.W. Grove, the majority of the rocks from the Hazelton Group were derived from the erosion of andesitic volcanoes subsequently deposited as overlapping lenticular beds varying laterally in grain size from breccia to siltstone.

D. Aldrick's work to the north of Stewart has shown several volcanic centers in the surveyed area. Lower Jurassic volcanic centers in the Unuk River Formation are located in the Big Missouri Premier area and in the Brucejack Lake area. Volcanic centers within the Lower Jurassic Betty Creek Formation are in the Mitchell Glacier and Knipple Glacier areas.

There are various intrusives in the area. The granodiorites of the Coast Plutonic Complex largely engulf the Mesozoic volcanic terrain to the west. East of these (in the property area), smaller intrusive plugs range from quartz monzonite to granite to highly felsic. Some are likely related to the late phase offshoots of the Coast plutonism, other are synvolcanic and tertiary. Double plunging, northwesterly - trending synclinal folds of the Salmon River and underlying Betty Creek Formations dominate the structural setting of the area. These folds are locally disrupted by small east-overthrusts on strikes parallel to the major fold axis, cross-axis steep

Page 9

wrench faults which locally turn beds, selective tectonization of tuff units and major northwest faults which turn beds. Figure 3 shows the regional geology of the Stewart area (Grove 1982).

#### Local Geology

The Clone 1 claim is underlain by undivided, mainly pyroclastic fragmental volcanic rocks assemblage in contact with a subequal abundance of basaltic volcanic and volcanoclastic rocks and undivided, mainly pyroclastic fragmental volcanic rocks.

Wedges of undivided maroon to green feldspathic pyroclastic and epiclastic rocks associated with felsic volcanic rocks are present topographically above the two assemblages. Preliminary mapping by A. Walus (results of the 1995 mapping have been filed with the EMPR) indicated a northwest trending assemblage of andesitic pyroclastic and volcaniclastic rocks intruded by rocks that are andesitic in composition. A total of four separate shear zones coincident with the geological trend were indicated in the mapping and trenching program conducted. Mapping has indicated that the hematite rich-sulfide poor shear zones occupy the northeastern portion of the grid area while sulfide rich-hematite poor zones are present to the southwest of the above zones. The area mapped to the northeast of the zones is occupied by hematite cemented volcanic breccia composed primarily of angular andesite and occasionally dacite and diorite fragments reaching up to 1 m in diameter. They are set in lapilli-tuff matrix cemented by hematite. Mapping has indicated that hematite content decreases to the NE of the above unit. The rock becomes a mixed hematite cemented to a non-hematitic green colored volcanic andesite breccia along the extreme NE edge of the grid.

Southwest of the hematite cemented, volcanic andesite breccia, a major intrusion, andesitic in composition is present. It is conformable with the above hematite rich volcanic. Further to the SW, andesite lapilli tuff and limonitic argillite/siltstone to mud supported lapilli-stone are intruded by andesites which form bodies with irregular diffused and difficult to discern borders. In the northwest portion of the mapped area, andesite intrusions were noted.

Andesite composition ranges from hornblende +/- biotite to feldspar porphyritic with minor occurrences of augite porphyritic and aphanitic andesites. Groundmass in the porphyritic varieties is aphanitic and to a lesser extent fine grained.

The area hosting the gold bearing mineralization on the Clone 1 claim is underlain by a weak cataclasite - mylonite zone which features both ductile and brittle styles of deformation. The former is best developed in argillite/siltstone which exhibits fairly good foliation. In other, more stress resistant lithological units, it is expressed by the stretching of some fragments and locally by weak foliation. The latter style is expressed in the form of intensive fracturing with

#### Page 10

local zones of shearing and brecciation. The dominating fracture system in the area has an orientation of 320 degrees with moderate dips to the NE or SW.

Along the west edge of the explored area, a major northwest trending fault zone is present. The fault which strikes approximately 320 degrees is conformable with the general trend for the Stewart area. The zone is generally 4-10 metros wide with an apparent vertical dip. It is represented by strong gouge zones 0.5 m in width within rusty, sheared, graphitic argillite... Locally strong, but generally barren quartz veins, stockworks and stringers form up to 30% of the rock usually associated with graphitic, pyritic argillite forming selvages to the quartz. The zones can be traced across the entire nunatak underlying the Clone 1 claim.

Both pre and post mineralization faults are present in the gold bearing area on the Clone 1 claim. A very strong northeast trending fracture system that is post mineralization was noted on the claim. In addition, northwest trending fractures with very shallow dips (almost flat lying) to the NE have been noted in several areas, particularly in the 1995 trenching.

## **Mineralization**

The gold bearing shears on the Clone 1 claim consists of two main types based on sulfide and hematite content. All zones strike northwesterly; approximately at 320 degrees, coincident with the overall shear trend in the Stewart area.

## 1. Hematite Bearing Gold Zones

To date, two main hematite- gold bearing zones have been identified on the Clone 1 claim, within larger hematite-chlorite alteration zones up to 30 meters in width. The alteration zones are very distinct as they are mottled a dark green-red with veins, "wispy" stringers, veinlets, micro-veinlets and interstitial blebs of hematite, particularly on fresh surfaces. These alteration zones weather a distinct white to pinkish color with the massive to semi-massive hematite veins occurring with distinct black to dark red colored surfaces. The hematite bearing alteration zones do not appear to have distinct contacts with the adjoining rocks; hematite content decreases gradually into the wall areas. Gold mineralization appears to be directly related to the presence of massive hematite veins and/or in close proximity within the wall areas to these veins. Individual massive to semi-massive hematite veins are present in widths up to 1 m and can be traced for strike lengths of several hundred meters. Locally several veins can form zones up to 7 metros in width.

The hematite bearing zones are cut by 2-10 mm wide veinlets containing quartz, calcite, dark green chlorite and occasionally flaky specularite. One set of these veinlets with greater lateral

## Page 11

continuity is orientated parallel to the zone with vertical to very steep NE or SW dips. Another set of shorter less continuous veinlets cut the zone at a direction roughly perpendicular to its strike with shallow dips to the NW or SE.

Chalcopyrite is commonly associated with the gold bearing zones; particularly in area of massive hematite veins. Locally minor amounts of secondary copper minerals are present which include malachite, chrysocola(?) and rare native copper. Specularite commonly occurs along vuggy veinlets and usually exhibits magnetism. Abundant specularite veins is present locally. It can form veins up to 2 cm wide and comprise up to 10% of the rock. Native gold was noted in trenches 4 and 15 generally as very fine grained flakes interstitial to the specularite or as grains along quartz veinlets. High gold values were obtained from every trench along the H-1 structure that contained specularite veinlets. Abundant erytherite stain is present in trench 81 (1995) as well as trench 82 (1996) and was also noted in minor amounts in 1995 trenches 9 and 69.

The main hematite-gold zone (H-1) has been traced over a strike length of at least 500 m. Width of the H-1 zone based solely on massive hematite veins and gold content ranges from 1.5 up to 7.5 m.

Locally, strongly pyritic, chloritic-sericitic schistose andesite forms the west wall to the H-1 zone. This is the case in trench 90 where a 2.5 m section of pyritic schist forms the west wall to the above zone. Coarse pyrite occurs as veinlets and blebs in amounts from 7-10 % of the wall area. Native copper was noted in the pyritic schist along the west side of the trench.

The H-3 zone which occurs southeast and parallel to the H-1 zone, has been traced by four trenches over a length of 50 meters. At the south end in trench 117, and in trench 16 at the north end, good gold values as associated with very narrow massive hematite stringers from 1 cm up to 1 m. A very strong quartz-calcite-chlorite stockwork forms up to 15 % of the rock on either side of the massive hematite within strongly hematite altered breccia. The zone has not been fully traced as the hematite stringer zone appears to be offset by northeasterly trending breaks. To the south, the zone is obscured by ice.

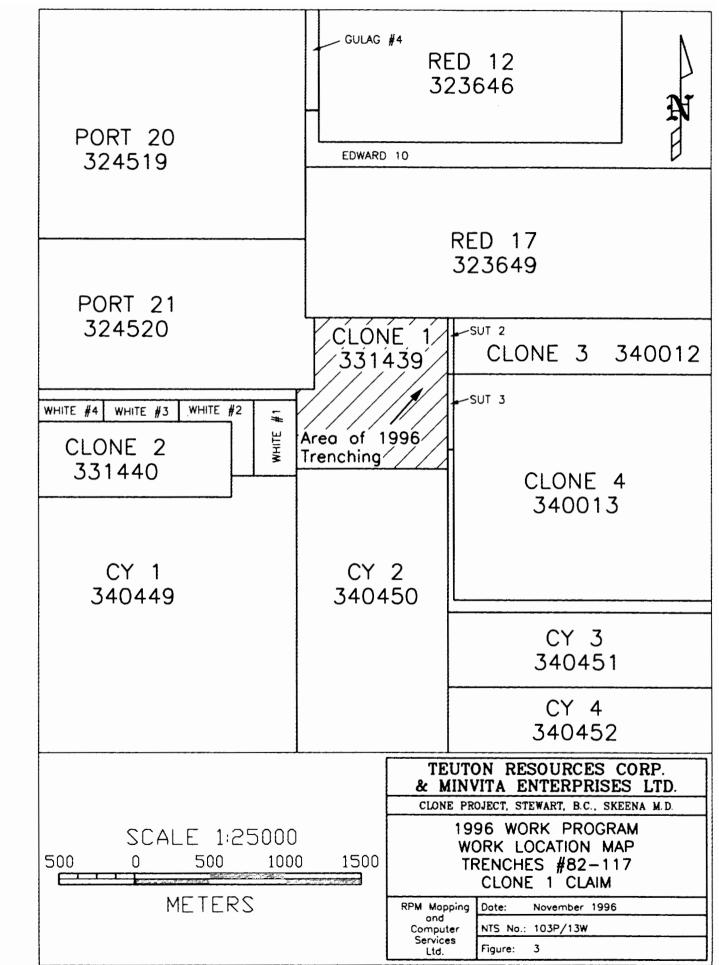
## 2. Sulfide Bearing Gold Zones

The second zone identified; the S-1 consists of sub-parallel, en echelon sulfide bearing shears. The rocks, hosting the mineralization, consist of green, chloritic, schistose tuffs with semimassive to massive sulfide zones. Individual zones may be 50 meters in length and locally up to 4 meters in width. Generally, the zones are 1-2 meters in width with approximately 20-80 % pyrite and lesser arsenopyrite. Minor malachite stain is associated with the S-1 zone. This zone

#### Page 12

has been traced along 100 meters of strike length. It is difficult to trace as the zones appear to occupy topographic depressions and therefore are covered by overburden.

Numerous sulfide rich zones are indicated in the western portion of the trenched area. These appear to be either splays from the main S - 1 zone or may be extensions of the main zone. Trenches 93 and 95 extended the strike length of mineralization tested in trench 1 (1995). Trenches 86 to 87, 94 to 99 and 102 tested possible splays to the S - 1 structure.


#### Trenching

In the period June 10 to August 16 1996, trenching was conducted on the Clone 1 claim (see figure 3). The trenches were excavated using a rock drill, explosives and hand tools. Location of the trenches was based primarily on sulfide or hematite content.

A total of 324.7 meters of trenching was completed in 36 trenches over at least 4 different structures along a length of approximately 300 meters within the Clone 1 claim (see figure 4). Results of the trenching indicate significant gold values over significant widths and lengths in all tested zones (see figure 4 and 5). The significant results for each trench (>0.03 opt Au) are tabulated below and any values greater than 0.1 opt are in bold as follows:

| Trench No. | Zone Type | Width (m) | Gold (opt) | Cobalt (%) |
|------------|-----------|-----------|------------|------------|
|            |           |           |            |            |
| 82         | H-type    | 10        | 0.064      | 0.041      |
| 83         | H-type    | 0.8       | 0.081      | 0.031      |
| 84         | H-type    | 2.4       | 0.043      |            |
| 85         | H-type    | 0.6       | 0.037      |            |
| 86         | S-type    | 0.7       | 0.494      | 0.42       |
| 91         | H-type    | 1.3       | 0.037      | 0.026      |
|            | H-type    | 0.75      | 0.966      |            |
| 92         | H-type    | 2.9       | 0.100      |            |
| 93         | S-type    | 3.0       | 0.501      | 0.034      |
| 94         | S-type    | 1.4       | 0.141      |            |
| 95         | S-type    | 2.2       | 2.617      | 0.768      |
| 97         | S-type    | 1.8       | 0.167      | 0.019      |
| 98         | S-type    | 1.5       | 0.036      |            |
|            | S-type    | 1.0       | 0.078      | 0.05       |
| 99         | S-type    | 5.7       | 0.703      | 0.073      |
| 100        | H-type    | 1.0       | 2.328      |            |

#### Table : Compiled 1996 Trench Results



/•.

| Teuton Resources Corp.<br>Skeena Mining Division<br>Stewart, British Columbia<br><u>Report on Clone 1 Claim</u> |        |     |       | Page 13 |
|-----------------------------------------------------------------------------------------------------------------|--------|-----|-------|---------|
| 101                                                                                                             | H-type | 1.2 | 0.045 |         |
| 103                                                                                                             | H-type | 1.9 | 0.075 | 0.147   |
| 105                                                                                                             | H-type | 1.5 | 0.03  |         |
| 105                                                                                                             | H-type | 1.5 | 0.102 |         |
| 110                                                                                                             | H-type | 3.0 | 0.05  |         |
| 113                                                                                                             | H-type | 2.6 | 0.061 |         |
| 114                                                                                                             | H-type | 1.4 | 0.046 |         |
|                                                                                                                 | H-type | 2.7 | 0.115 |         |
| 117                                                                                                             | H-type | 6.0 | 0.121 |         |
|                                                                                                                 | H-type | 1.5 | 0.106 |         |

Trench 82 tested an area southeast of Trench 81 of abundant erytherite in dark chloritic volcanic rock. Both Trench 82 and 83 indicate the presence of appreciable cobalt in the area of 1995 Trench 81.

Trench 85 tested the southeast extension of the H-2 zone outlined in the 1995 trenching program.

Trenching along strike south of Trench 1 indicates the extension of high gold-cobalt values outlined in the 1995 work.

Trenches 100-101m 114 and 117 tested a new zone called H-3. This work indicated high values up to 2.328 opt gold occurs 1 meter. Trenches 105-113 tested a wide area of strongly magnetic, chlorite altered rocks southwest of Trench 81. Generally low gold-cobalt values were obtained from sampling in this area.

#### **CONCLUSIONS**

. .

- 1. The property which lies within a belt of Jurassic volcanic rocks extending from the Kitsault area, south of Stewart, to north of the Stikine River is host to numerous gold deposits.
- 2. Mineralization within the Clone 1 area consists of two different and distinct types. The mineralization is hosted in steeply dipping sub-parallel en echelon, shear controlled veins and stockwork with a northwesterly trend. The first type of mineralization is dominated by pyrite plus/minus arsenopyrite and the second by hematite with associated chlorite and calcite-quartz stockworks. Specularite, chalcopyrite, magnetite and locally visible gold are associated with the hematite dominated mineralization. The sulfide dominated mineralization prevails in the southwestern portion of the grid area with the structures being linear in nature and traced over distances up to 500 meters in length.

#### Page 14

The hematite dominated structures have less defined walls but show good strike lengths as well. Work has indicated that the mineralized structures are found over an area at least 75 meters wide by 500 meters long. A strong northeast trending structure appears to have offset the zones to the north while the southerly extensions are obscured by ice.

- 3. During the period June 10 to August 16 1996, an exploration program consisting of trenching was conducted on the Clone 1 claim. This program was carried out in order to evaluate and expand on gold mineralization located during the 1995 program.
- 4. A total of 324.7 meters of trenching was completed in 36 trenches in the claim area. A total of 234 samples were collected and analyzed for metal content by ICP analysis and Atomic Absorption methods.
- 5. Results of the trenching indicated significant gold values over significant widths and lengths in all tested zones as well as outlining new zones. The best trench results in the sulfide zones were from trench 95 and 99 which yielded 2.617 opt gold and 0.768 % cobalt across 2.2 meters and 0.703 opt gold and 0.073 % cobalt across 5.7 meters respectively. The best trench results in the hematite zones were from trench 91 and 100 which yielded 0.966 opt gold across 0.75 meters and 2.328 opt gold across 1.0 meters respectively.
- 6. The presence of a large gold mineralized shear system over a great strike length and across significant widths provides an excellent exploration target. Drilling should be conducted in order to more adequately evaluate the gold bearing systems.

#### **RECOMMENDATIONS**

1--

Diamond drilling in the area of trenches 93 to 95 and trenches 100 and 117 is recommended. Drilling should be in a fan array to test for down - dip extensions of the surface mineralization.

#### Page 15

#### REFERENCES

. .

ر مد ر

~~

- 1. ALLDRICK, D.J. (1984); "Geological Setting of the Precious Metals Deposits in the Stewart Area", Paper 84-1, Geological Fieldwork 1983, B.C.M.E.M.P.R.
- 2. ALLDRICK, D.J. (1985); "Stratigraphy and Petrology of the Steward Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
- 3. CREMONESE, D. (1995), "Assessment Report on Geochemical Work on the Red 17, Port 21 Claims".
- 4. GREIG, C.J., ET AL (1994); "Geology of the Cambria Icefield: Regional Setting for Red Mountain Gold Deport, Northwestern British Columbia", p. 45, Current Research 1994-A, Cordillera and Pacific Margin, Geological Survey of Canada.
- 5. GROVE, E.W. (1971); Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- 6. GROVE, E.W. (1982); "Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 7. GROVE, E.W. (1987); Geology and Mineral Deposits of the Unuk, River-Salmon, River-Anyox, Bulletin 63, B.C.M.E.M.P.R.
- 8. KONKIN, K.J. AND KRUCHKOWSKI, E.R. (1988); Drill Report- Georgia River Project (Private Report)
- 9. KRUCHKOWSKI, E.R. (1994); Report on Clone Property.
- 10. KRUCHKOWSKI, E. R. (1996); Report on the Clone Property
- 10. WALUS, A; KRUCHKOWSKI, E.R., KONKIN, K.; Fieldnotes and Maps Regarding 1994 Exploration on the Red 1-3 Claims.
- 11. WALUS, A; KRUCHKOWSKI, E. R., Fieldnotes and Maps Regarding 1995 Exploration on the Clone Property.

#### Page 16

## **CERTIFICATE**

I, Edward R. Kruchkowski, geologist, residing at 23 Templeside Bay, N.E., in the City of Calgary, in the Province of Alberta, hereby certify that:

- 1. I received a Bachelor of Science degree in Geology from the University of Alberta in 1972.
- 2. I have been practicing my profession continuously since graduation.
- 3. I am a member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 4. I am a consulting geologist working on behalf of Teuton Resources Corp.
- 5. This report is based on a review of reports, documents, maps and other technical data on the property area and on my experience and knowledge of the area obtained during programs in 1974 1996 and work done by myself on the property during 1994,1995 and 1996.
- 6. I authorize Teuton Resources Corp. to use information in this report or portions of it in any brochures, promotional material or company reports.

Nov 28

E.R. Kruchkowski, B.

. - .

Page 17

# Statement of Expenditures

| Field PersonnelPeriod July 16 to Dec. 31, 1995: |       |
|-------------------------------------------------|-------|
| E.R. Kruchkowski, Geologist                     |       |
| 10 days @ \$300/day                             | 3,000 |
| A. Walus, Geologist                             |       |
| 10 days @ \$225/day                             | 2,250 |
| A. Raven, Prospector                            |       |
| 5 days @ \$250/day                              | 1,250 |
| C. Kruchkowski, blaster                         |       |
| 10 days @ \$160/day                             | 1,600 |
| B. Kirby, blaster                               |       |
| 10 days @ \$ 150/day                            | 1,500 |
| Sherri Chandler (Drill Camp cook)               | 1,000 |
| Miscellaneous day labour                        | 1,000 |
| HelicopterVancouver Island Helicopters          |       |
| Allocate 3.5 hrs @ \$799.80/hr.                 | 2,799 |
| Supplies:camp lumber, fuel, explosives, etc     | 1,830 |
| Food and accommodation 50 man-days @ \$50/day   | 2,500 |
| Equipment rental/misc.                          | 760   |
| Mob/demob crew (home base to Stewart, return    | 920   |
| Workers' Compensation \$11,600 @ 0.591          | 1,194 |
| Assays costsEco-Tech Labs/Pioneer Labs          |       |
| Au geochem + 30 elem. ICP + rock sample prep    |       |
| 234@ \$17.92/sample                             | 4,193 |
| Au assay: 45@ \$9.74/sample                     | 438   |
| Ag assay: 4 @ \$4.28/sample                     | 17    |
| As assay: 6 @ \$13.37/sample                    | 80    |
| Co assay: 13 @ \$9.63/sample                    | 125   |
|                                                 |       |

| Teuton Resources Corp.                    |                         |                   |                        |
|-------------------------------------------|-------------------------|-------------------|------------------------|
| Skeena Mining Division                    |                         |                   |                        |
| Stewart, British Columbia                 |                         |                   |                        |
| Report on Clone 1 Claim                   |                         |                   | Page 18                |
| Report Costs                              |                         |                   |                        |
| Report and Map preparation                | , compilation and resea | ırch              |                        |
| E. Kruchkowski, P.Ge                      | - <u>-</u>              |                   | 1,200                  |
| Draughting-RPM Computers 8 hrs @ \$30/hr. |                         |                   | 240                    |
| Secretarial/word processing               |                         |                   |                        |
| Copies, reports, jackets, dat             |                         |                   | 100                    |
|                                           |                         | TOTAL             | \$28,146               |
| Allocation:                               |                         |                   |                        |
| Statement of Exploration                  | #3092385                |                   | \$15,000               |
| -                                         | #3095790                |                   | \$ 3,900               |
|                                           | *Please apply unall     | ocated balance of | of \$28,146 - \$18,900 |
| \$9,246 to PAC account of Teuton F        |                         |                   | , ,                    |
| •                                         | •                       |                   |                        |

=

. - -

## APPENDIX I

SAMPLE DESCRIPTIONS WITH INDICATED ANOMALOUS VALUES FOR AU, AG, AS, CU

. - -

- A96 1 Trench 82 1.5 m chip. Rock of andesitic composition strongly altered to K-feldspar? Chlorite, carbonate, sericite, trace pyrite.
- A96 2 Trench 82 1.5 m chip. Same as above.

| Au | - | 5 ppb   | Ag | - | < .2 ppm |
|----|---|---------|----|---|----------|
| As | - | 235 ppm | Cu | - | 78 ppm   |

A96 - 3 Trench 82 - 1.5 m chip. Same as above.

| Au | - | 75 ppb  | Ag | - | < .2 ppm |
|----|---|---------|----|---|----------|
| As | - | 125 ppm | Cu | - | 41 ppm   |

A96 - 4 Trench 82 - 1.5 m chip. Same as above.

| Au   | <ul> <li>0.031 opt</li> </ul> | Ag | - | 0.6 ppm |
|------|-------------------------------|----|---|---------|
| As   | - 370 ppm <sup>-</sup>        | Cu | - | 525 ppm |
| [ Co | - 0.049 % ]                   |    |   |         |

A96 - 5 Trench 82 - 1.1 m chip. Same as above.

| Au  | - | 205 ppb  | Ag | - | 0.4 ppm |
|-----|---|----------|----|---|---------|
| As  | - | 235 ppm  | Cu | - | 373 ppm |
| [Co | - | 0.033 %] |    |   |         |

A96 - 6 Trench 82 - 1.1 m chip. Same as above.

| Au - 200 ppb   | Ag - 0.2 ppm |
|----------------|--------------|
| As - 210 ppm   | Cu - 274 ppm |
| [Co - 0.030 %] |              |

A96 - 7 Trench 82 - 1.5 m chip. The zone - andesitic rock strongly altered to K-feldspar? Chlorite, sericite, carbonate, locally minor hematite and quartz. Locally up to 5 % specularite and magnetite, 3 % pyrite, minor tetrahedrite?, chalcopyrite, erythrite, trace malachite. Locally, also limonite and wad. The zone represents cotocloside zone. Orientation 310 / very steep NE.

| Au - 0.174 opt | Ag - 0.6 ppm |
|----------------|--------------|
| As - 450 ppm   | Cu - 520 ppm |
| [Co - 0.074 %] |              |

- A96 8 Trench 82 1.1 m chip. Same as A96 7.
  - Au 0.160 opt Ag 1.2 ppm

| As - 615 ppm    | Cu - | 1014 ppm |
|-----------------|------|----------|
| [Co - 0.064 %]] |      |          |

A96 - 9 Trench 82 - 1.2 m chip. Same as above.

| Au - 0.088 opt | Ag - 1.6 | ppm |
|----------------|----------|-----|
| As - 705 ppm   | Cu - 280 | ррт |
| [Co - 0.074 %] |          |     |

A96 - 10 Trench 82 - 1.5 m chip. Same as above.

| Au | - | 0.036 opt | Ag | - | <.2 ppm |
|----|---|-----------|----|---|---------|
| As | - | 85 ppm    | Cu | - | 373 ppm |

A96 - 11 Trench 82 - 1.5 m chip. Same as above.

A96 - 12 Trench 82 - 1.7 m chip. Same as above.

A96 - 27 Trench 83 - 1.0 m chip. Andesite moderately altered to chlorite, sericite, carbonate, K-feldspar?, locally some hematite and minor limonite. Trace pyrite.

| Au | - | 50 ppb | Ag | - | 2.0 ppm |
|----|---|--------|----|---|---------|
| As | - | 5 ppm  | Cu | - | 826 ppm |

A96 - 28 Trench 83 - 1.2 m chip. The zone - rock completely altered to K-feldspar, chlorite and hematite. Minor limonite and malachite and wad. Rock is weakly mepuetic. There are some vugs. Trace pyrite.

| Au | - | 920 ppb | Ag | - | 1.0 ppm |
|----|---|---------|----|---|---------|
| As | - | 105 ppm | Cu | - | 435 ppm |

A96 - 29 Trench 83 - 0.8 m chip. Same as A96 - 28.

| Au -   | 0.031 opt | Ag | - | 14.6 ppm |
|--------|-----------|----|---|----------|
| As -   | 385 ppm   | Cu | - | 6381 ppm |
| [ Co - | 0.030 %]  |    |   |          |

A96 - 30 Trench 83 - 1.4 m chip. Same as A96 - 27.

| Au | - | 45 ppb | Ag | - | 0.6 ppm |
|----|---|--------|----|---|---------|
| As | - | 20 ppm | Cu | - | 364 ррт |

A96 - 31 Trench 83 - 0.6 m chip. Same as A96 - 27 and 30, more limonite (mostly on fractures) and minor wad. Minor pyrite.

- A96 32 Trench 83 0.8 m chip. Same as A96 27 and 30.
- A96 33 Trench 84 1.2 m chip. Andesitic rocks moderately altered to chlorite, sericite, carbonates, K-feldspar? Traces pyrite.
- A96 34 Trench 84 1.2 m chip. The zone rock strongly altered to K-feldspar, chlorite, sericite, and subordinate amounts of hematite. Locally rock weakly magnetic. Sporadically trace pyrite and malachite.

| Au - | 0.047 opt | Ag | - | 0.8 ppm |
|------|-----------|----|---|---------|
| As - | 15 ppm    | Cu | - | 108 ppm |

A96 - 35 Trench 84 - 1.2 m chip. Same as A96 - 34.

| Au - 0.041 opt | Ag | - | 1.0 ppm |
|----------------|----|---|---------|
| As - 80 ppm    | Cu | - | 335 ppm |

A96 - 36 Trench 84 - 1.5 m chip. Same as A96 - 33.

| Au | - | 180 ppb | Ag | - | <.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 20 ppm  | Cu | - | 58 ppm  |

A96 - 37 Trench 84 - 2.0 m chip. Same as A96 - 33.

| Au | - | 105 ppb | Ag | - | <.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 5 ppm   | Cu | - | 10 ppm  |

A96 - 62 Trench 85 - 1.3 m chip. Andesite completely altered to K-feldspar, chlorite, calcite and hematite. Minor irregular calcite-quartz-chlorite veining.

| Au | - | 0.044 opt | Ag | - | 0.6 ppm |
|----|---|-----------|----|---|---------|
| As | - | 25 ppm    | Cu | - | 84 ppm  |

- A96 63 Trench 85 1.5 m chip. Same as A96 62.
- A96 64 Trench 85 0.6 m chip. Same as above.

| Au | - | 0.037 opt | Ag | - | 0.2 ppm |
|----|---|-----------|----|---|---------|
| As | - | 5 ppm     | Cu | - | 39 ppm  |

A96 - 65 Trench 85 - 1.7 m chip. Same as above.

 Au
 130 ppb
 Ag
 0.2 ppm

 As
 10 ppm
 Cu
 22 ppm

- A96 102 Trench 86 0.7 m chip. Andesite tuff completely calcite-sericite lesser chlorite altered rock with minor pyrite.
- A96 103 Trench 86 0.8 m chip. Same as A96 102, some limonite. 2 % pyrite, trace arsenopyrite.

| Au | - | 320 ppb | Ag | - | <.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 575 ppm | Cu | - | 441 ppm |

A96 - 104 Trench 86 - 0.7 m chip. Interval completely calcite-sericite lesser chlorite altered with 20 % arsenopyrite, 10 % pyrite and heavy limonite.

| Au - 0.494 opt | Ag - 2.8 ppm |
|----------------|--------------|
| As - 6.10 %    | Cu - 983 ppm |
| [Co - 0.420 %] |              |

A96 - 105 Trench 86 - 1.5 m chip. Andesite tuff completely calcite-sericite lesser chlorite altered rock with minor pyrite.

| Au | - | 120 ppb | Ag | - | <.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 515 ppm | Cu | - | 38 ppm  |

A96 - 106 Trench 86 - 1.5 m chip. Same as above A96 - 105.

| Au | - | 255 ррЪ | Ag | - | <.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 200 ppm | Cu | - | 141 ppm |

- A96 107 Trench 86 1.3 m chip. Same as above.
- A96 108 Trench 87 1.5 m chip. Andesite tuff very strongly sericite-carbonate lesser chlorite altered with average 1 % pyrite.

| Au | - | 70 ppb  | Ag | - | <.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 120 ррт | Cu | - | 222 ppm |

A96 - 109 Trench 87 - 1.5 m chip. Same as A96 - 108.

| Au | - | 110 ppb | Ag | - | <.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 165 ppm | Cu | - | 433 ppm |

- A96 110 Trench 87 1.5 m chip. Same as A96 108.
- A96 111 Trench 87 1.5 m chip. Same as above, average pyrite content 5 %.

**Au - 540 ppb** Ag - <.2 ppm

|           |                                                                    | o                                                                                                     |
|-----------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|           | As - 110 ppm                                                       | Cu - 257 ppm                                                                                          |
| A96 - 112 | Trench 87 - 1.5 m chip. Andes<br>chlorite altered with average 1   | ite tuff very strongly sericite-carbonate lesser<br>% pyrite.                                         |
| A96 - 113 | Trench 87 - 1.8 m chip. Same                                       | as A96 - 112.                                                                                         |
|           | <b>Au - 120 ppb</b><br>As - 65 ppm                                 | Ag - <.2 ppm<br>Cu - 24 ppm                                                                           |
| A96 - 114 | Trench 88 - 1.0 m chip. Andes<br>sericite, hematite altered rocks. | site very strongly K-feldspar, chlorite, carbonate,                                                   |
| A96 - 115 | -                                                                  | ite completely K-feldspar, chlorite, hematite,<br>chite with chrysocole stain. The whole interval A96 |
|           | Au - 120 ppm                                                       | Ag - <.2 ppm                                                                                          |
|           | As - 15 ppm                                                        | Cu - 197 ppm                                                                                          |
| A96 - 116 | Trench 88 - 1.5 m chip. Same                                       | as above A96 - 115.                                                                                   |
|           |                                                                    | Ag - 0.6 ppm                                                                                          |
|           | As - 35 ppm                                                        | Cu - 876 ppm                                                                                          |
| A96 - 117 | Trench 88 - 1.5 m chip. Same                                       | as A96 - 114.                                                                                         |
| A96 - 118 | Trench 88 - 0.8 m chip. Same                                       | as A96 - 114.                                                                                         |
|           | Au - 50 ppb                                                        | Ag - <.2 ppm                                                                                          |
|           | As - 40 ppm                                                        | Cu - 456 ppm                                                                                          |
| A96 - 119 |                                                                    | site very strongly K-feldspar, chlorite lesser hematite, cally trace pyrite and malachite.            |
|           | Au - 235 ppb                                                       | Ag - <.2 ppm                                                                                          |
|           | As - 5 ppm                                                         | Cu - 76 ppm                                                                                           |
| A96 - 120 | Trench 89 - 1.5 m chip. Same                                       | as A96 - 119.                                                                                         |
|           | Au - 20 ppm                                                        | Ag - 0.4 ppm                                                                                          |
|           | ••                                                                 | Cu - 186 ppm                                                                                          |
|           | [ Co - 0.02 % ]                                                    |                                                                                                       |

A96 - 121 Trench 89 - 1.5 m chip. Same as A96 - 119.

----

- -

|           | Au       - 35 ppb       Ag       - <.2 opt         As       - < 5 ppm       Cu       - 303 ppm                                                                               |    |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| A96 - 122 | Trench 89 - 1.5 m chip. Same as A96 - 119.                                                                                                                                   |    |
| A96 - 123 | Trench 89 - 1.5 m chip. Same as A96 - 119.                                                                                                                                   |    |
| A96 - 124 | Trench 89 - 1.5 m chip. Same as A96 - 119.                                                                                                                                   |    |
| A96 - 125 | Trench 89 - 1.5 m chip. Same as A96 - 119.                                                                                                                                   |    |
|           | Au-220 ppbAg2 ppmAs-30 ppmCu-135 ppm                                                                                                                                         |    |
| A96 - 126 | Trench 89 - 1.3 m chip. Same as A96 - 119.                                                                                                                                   |    |
| A96 - 127 | Trench 90 - 1.0 m chip. Andesite completely altered to sericite, carbonates, chlorite, K-feldspar. Average 2 % chalcopyrite, minor pyrite and grey sulfide. Trace covellite? | S. |
|           | Au-10 ppbAg-5.2 ppmAs-75 ppmCu-5692 ppm                                                                                                                                      |    |
| A96 - 128 | Trench 90 - 1.1 m chip. Andesite completely altered to sericite, carbonates, chlorite, K-feldspar. Trace pyrite, chalcopyrite and malachite.                                 |    |
|           | Au - 30 ppb       Ag - <.2 ppm         As - 50 ppm       Cu - 334 ppm                                                                                                        |    |
| A96 - 129 | Trench 90 - 1.5 m chip. Andesite completely altered to K-feldspar, chlorite, carbonates and hematite.                                                                        |    |
|           | Au - 35 ppb       Ag - <.2 ppm         As - 30 ppm       Cu - 293 ppm                                                                                                        |    |
| A96 - 130 | Trench 90 - 1.5 m chip. Same as above A96 - 129.                                                                                                                             |    |
|           | Au       - 130 ppb       Ag       - <.2 ppm                                                                                                                                  |    |
| A96 - 131 | Trench 90 - 1.3 m chip. Andesite very strongly altered to K-feldspar, chlorite. carbonate, sericite, hematite. Trace pyrite and malachite.                                   | 7  |

Au - 150 ppb Ag - <.2 ppm

. . .

.--

As - 25 ppm Cu - 37 ppm

A96 - 142 Trench 91 - 1.3 m chip. Andesite very strongly sericite-chlorite altered with limonite and manganese on fractures.

| Au | - | 255 ppb | Ag | - | 0.8 ppm |
|----|---|---------|----|---|---------|
| As | - | 220 ppm | Cu | - | 416 ppm |

A96 - 143 Trench 91 - 1.4 m chip. Same as above A96 - 142.

A96 - 144 Trench 91 - 0.75 m chip. Interval completely replaced by hematite (often as specalarite) and magnetite. Minor malachite stain.

| Au | <ul> <li>0.966 opt</li> </ul> | Ag - | 15.2 ppm |
|----|-------------------------------|------|----------|
| As | - 370 ppm                     | Cu - | 845 ppm  |

A96 - 145 Trench 91 - 1.9 m chip. Andesite very strongly sericite-carbonate-chlorite altered. Some limonite and manganese along fractures.

| Au | - | 280 ppb | Ag | - | 0.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 40 ppm  | Cu | - | 137 ppm |

A96 - 146 Trench 91 - 1.4 m chip. Same as A96 - 142.

| Au | - | 155 ppb | Ag | - | <.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 105 ppm | Cu | - | 134 ppm |

A96 - 147 Trench 91 - 1.3 m chip. Andesite very strongly sericite-chlorite altered. Locally up to 5 % pyrite. Abundant limonite and manganese - mostly along fractures.

| Au  | - | 0.037 opt | Ag | - | 0.6 ppm |
|-----|---|-----------|----|---|---------|
| As  | - | 715 ppm   | Cu | - | 410 ppm |
| [Co | - | 0.026 %]  |    |   |         |

- A96 148 Trench 91 0.9 m chip. Same as A96 145.
- A96 149 Trench 91 1.3 m chip. Same as A96 146.
- A96 150 1.5 m chip. Same as A96 147.

| Au | - | 100 ppb | Ag | - | <.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 40 ppm  | Cu | - | 36 ppm  |

A96 - 151 Trench 91 - 1.4 m chip. Same as A96 - 147.

| Au | - | 430 ppb | Ag | - | <.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 155 ррт | Cu | - | 153 ppm |

A96 - 152 Trench 91 - 1.6 m chip. Same as A96 - 147.

| Au | - | 130 ppb | Ag | - | <.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 135 ppm | Cu | - | 373 ррт |

- A96 153 Trench 91 1.5 m chip. Same as A96 147.
- A96 154 Trench 92 1.3 m chip. Andesite completely sericite-carbonate-chlorite altered. Frequent limonite and manganese on fractures. Occasionally 2-3 % pyrite.

| Au | - | 150 ppb | Ag | - | 0.8 ppm         |
|----|---|---------|----|---|-----------------|
| As | - | 275 ppm | Cu | - | <b>8</b> 66 ppm |

A96 - 155 Trench 92 - 1.5 m chip. Interval of sheared andesite completely replaced by sericite and green black chlorite with up to 5 % pyrite and 3 % chalcopyrite. Free of native copper and covellite. Abundant limonite and lesser manganese. Texture - vuggy.

| Au | - | 0.140 opt | Ag | - | 6.0 ppm  |
|----|---|-----------|----|---|----------|
| As | - | 2025 ррт  | Cu | - | 5196 ppm |

A96 - 156 Trench 92 - 1.4 m chip. Same as A96 - 154.

| Au | ~ | 0.056 opt | Ag | - | 2.2 ppm  |
|----|---|-----------|----|---|----------|
| As | - | 260 ррт   | Cu | - | 1257 ppm |

A96 - 157 Trench 92 - 1.4 m chip. Same as A96 - 154.

| Au | - | 685 ppb | Ag | - | 0.6 ppm |
|----|---|---------|----|---|---------|
| As | - | 270 ррт | Cu | - | 426 ppm |

A96 - 158 Trench 93 - 1.5 m chip. Andesitic rocks very strongly sericite-carbonate-chlorite altered with average 7 % pyrite as irregular patches and veinlets 0.2 - 2.0 cm wide. Also locally up to 40 % arsenopyrite.

| Au  | - | 0.948 opt | Ag | - | 16.0 ppm |
|-----|---|-----------|----|---|----------|
| As  | - | 1.05 %    | Cu | - | 1144 ppm |
| [Co | - | 0.069 %]  |    |   |          |

A96 - 159 Trench 93 - 1.5 m chip. Andesitic rocks very strongly sericite-carbonate-chlorite altered with average 3 % pyrite as irregular patches and veinlets up to 2.0 cm wide.

Au - 0.055 opt Ag - 2.4 ppm

As - 245 ppm Cu - 506 ppm

A96 - 160 Trench 93 - 1.2 m chip. Same as above A96 - 159.

| Au | - | 165 ppb | Ag | - | <.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 100 ppm | Cu | - | 182 ppm |

A96 - 161 Trench 94 - 1.8 m chip. Andesitic rocks very strongly sericite altered with strong manganese and carbonaceous (?) substance throughout the rock giving it black color. Some limonite, minor pyrite.

| Au | - | 105 ppb | Ag | - | 0.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 745 ppm | Cu | - | 133 ppm |

- A96 162 Trench 94 1.5 m chip. Same as above A96 161.
- A96 163 Trench 94 1.5 m chip. Same as above A96 161.
- A96 164 Trench 94 1.4 m chip. Andesitic rocks completely sericite-carbonate altered. Average 1 % pyrite, sporadically up to 1 % arsenopyrite. Some limonite.

| Au | - | 0.141 opt | Ag | - | 1.2 ppm |
|----|---|-----------|----|---|---------|
| As | - | 1535 ppm  | Cu | - | 224 ppm |

- A96 165 Trench 95 1.8 m chip. Completely calcite, lesser sericite altered rock. Trace pyrite.
- A96 166 Trench 95 1.4 m chip. Interval completely sericite-chlorite altered with average 20 % pyrite and 20 % arsenopyrite. Locally up to 80 % pyrite and arsenopyrite. Abundant limonite.

| Au  | - | 3.914 opt | Ag | - | 3.021 opt |
|-----|---|-----------|----|---|-----------|
| As  | - | 21.83 %   | Cu | - | 2423 ppm  |
| [Co | - | 1.16 %]   |    |   |           |

A96 - 167 Trench 95 - 0.9 m chip. Andesitic rock very strongly sericite chlorite altered with average 5 % pyrite and minor arsenopyrite.

| Au  | - | 0.349 opt | Ag | - | 7.6 ррт |
|-----|---|-----------|----|---|---------|
| As  | - | 1.33 %    | Cu | - | 952 ppm |
| [Co | - | 0.082 %]  |    |   |         |

A96 - 168 Trench 96 - 1.4 m chip. Andesitic rocks very strongly altered to sericitecarbonates-calcite. Minor pyrite.

| Au | - | 630 ppb  | Ag | - | <.2 ppm |
|----|---|----------|----|---|---------|
| As | - | 1005 ppm | Cu | - | 362 ppm |

A96 - 169 Trench 96 - 1.5 m chip. Shear zone within very strongly sericite-carbonateschlorite altered andesitic rocks. Average pyrite content 3 %, it occurs mostly as veinlets 1-5 mm wide along shearing. Shearing orientation 266 / moderately NE.

| Au - | • 445 ppb | Ag - | 1.0 ppm |
|------|-----------|------|---------|
| As - | 395 ppm   | Cu - | 933 ppm |

A96 - 170 Trench 96 - 1.0 m chip. Same as A96 - 168.

| Au | - | 255 ppb | Ag | - | <.2 ppm |
|----|---|---------|----|---|---------|
| As | - | 195 ppm | Cu | - | 209 ppm |

A96 - 184 Trench 97 - 1.1 m chip. Andesitic rock strongly altered to sericite-chlorite and carbonates. Minor pyrite (< 1 %). Abundant limonite and some wad.

| Au | - | 0.208 opt | Ag | - | 2.6 ppm |
|----|---|-----------|----|---|---------|
| As | - | 1611 ppm  | Cu | - | 274 ррт |
| Co | - | 192 ppm   |    |   |         |

A96 - 185 Trench 97 - 0.7 m chip. Same as above, only minor limonite and wad.

| Au - 0.102 opt | Ag - 1.2 ppm |
|----------------|--------------|
| As - 8262 ppm  | Cu - 150 ppm |
| Со - 190 ррт   |              |

A96 - 186 Trench 98 - 1.0 m chip. Andesitic rocks very strongly sericite-carbonates-chlorite altered. Pyrite < 1 %. At interval A96 - 187, 3 cm wide band of pyrite. Frequent limonite, lesser wad mostly on fractures. Rocks densely fractured.

| Au | - | 0.078 opt | Ag | - | 1 ppm   |
|----|---|-----------|----|---|---------|
| As | - | 7619 ppm  | Cu | - | 145 ppm |
| Co | - | 512 ppm   |    |   |         |

A96 - 187 Trench 98 - 1.5 m chip. Same as A96 - 186.

| Au | - | 325 ppb  | Ag | - | 2.2 ppm |
|----|---|----------|----|---|---------|
| As | - | 2823 ррт | Cu | - | 164 ppm |

A96 - 188 Trench 98 - 1.5 m chip. Same as A96 - 186.

| Au | - | 0.036 opt | Ag | - | 2.1 ppm |
|----|---|-----------|----|---|---------|
| As | - | 1600 ppm  | Cu | - | 266 ррт |

### Co - 101 ppm

A96 - 189 Trench 99 - 1.2 m chip. Andesitic vodes very strongly sericite-carbonates-chlorite altered with average 2 % pyrite and locally minor arsenopyrite (< 1 %). Some limonite and wad on fractures.

| Au - 0.117 opt | Ag - 1.9 ppm |
|----------------|--------------|
| As - 23021 ppm | Си - 479 ррт |
| Co - 1277 ppm  |              |

A96 - 190 Trench 99 - 1.5 m chip. Same as A96 - 189.

| Au | - | 0.037 opt | Ag | - | 2 ppm   |
|----|---|-----------|----|---|---------|
| As | - | 3196 ppm  | Cu | - | 450 ppm |
| Co | - | 246 ррт   |    |   |         |

A96 - 191 Trench 99 - 1.5 m chip. Same as A96 - 189.

| Au | - | 2.276 opt | Ag | - | 26.7 ppm |
|----|---|-----------|----|---|----------|
| As | - | 1.23 %    | Cu | - | 291 ррт  |
| Co | - | 1009 ppm  |    |   |          |

A96 - 192 Trench 99 - 1.5 m chip. Same as A96 - 189.

| Au - 0.265 opt | Ag - 6ppm    |
|----------------|--------------|
| As - 7629 ppm  | Cu - 370 ppm |
| Со - 682 ррт   |              |

A96 - 193 Trench 100 - 1.0 m chip. Andesite completely K-feldspar lesser chlorite and hematite altered.

| Au | - | 2.328 opt | Ag | - | 9 ppm   |
|----|---|-----------|----|---|---------|
| As | - | 338 ррт   | Cu | - | 165 ppm |

A96 - 194 Trench 100 - 1.0 m chip. Same as above. The interval contains 40 cm section of completely K-feldspar, hematite lesser quartz altered rock.

| Au | - | 740 opt | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | - | 33 ppm  | Cu | - | 103 ppm |

A96 - 195 Trench 101 - 1.2 m chip. Andesite completely K-feldspar lesser chlorite and hematite altered. Locally hematite rich veins of up to 20 cm wide. Orientated 310 / very steep SW.

Au - 0.045 opt Ag - 0.5 ppm

|           | As - 51 ppm                                             | Cu - 62 ppm                                                                                                                                                                |
|-----------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A96 - 196 | Trench 101 - 1.2 m chip.                                | Same as A96 - 195.                                                                                                                                                         |
|           | <b>Au - 440 opt</b><br>As - 74 ppm                      | Ag - 0.3 ppm<br>Cu - 47 ppm                                                                                                                                                |
| A96 - 197 | Trench 101 - 1.0 m chip.                                | Same as A96 - 195.                                                                                                                                                         |
|           | <b>Au - 175 ppb</b><br>As - 37 ppm                      | Ag - 0.3 ppm<br>Cu - 24 ppm                                                                                                                                                |
| A96 - 198 | -                                                       | Andesitic rocks very strongly sericite-carbonate-chlorite<br>e content 1 %, locally up to 5 %.                                                                             |
| A96 - 199 | Trench 102 - 1.2 m chip.                                | Same as above A96 - 198.                                                                                                                                                   |
| A96 - 200 | Ag - 65 ppb<br>As - 154 ppm<br>Trench 102 - 1.5 m chip. | Cu - 199 ppm                                                                                                                                                               |
| A96 - 201 | Trench 102 - 1.3 m chip.                                | Same as A96 - 198.                                                                                                                                                         |
|           | Au - 35 ppb<br>As - 139 ppm                             |                                                                                                                                                                            |
| A96 - 202 | lesser sericite and carbon                              | Interval completely replaced by black green chlorite<br>ates. Average pyrite content 5 % locally up to 10 %.<br>aces, the interval composed entirely of sericite-limonite. |
|           | Au - 480 ppb<br>As - 372 ppm<br>Co - 196 ppm            | Ag - 3 ppm<br>Cu - 861 ppm                                                                                                                                                 |
| A96 - 203 | Trench 102 - 1.5 m chip.                                | Same as A96 - 198.                                                                                                                                                         |
|           | <b>Au - 180 ppb</b><br>As - 83 ppm                      | Ag - 0.3 ppm<br>Cu - 194 ppm                                                                                                                                               |
| A96 - 204 | Trench 102 - 1.5 m chip.                                | Same as A96 - 198.                                                                                                                                                         |
| A96 - 205 | Au - 70 ppb<br>As - 139 ppm<br>Trench 102 - 2.0 m chip. | Ag - 0.3 ppm<br>Cu - 161 ppm<br>Same as A96 - 198.                                                                                                                         |

. - -

...

| Au | - | 120 ppb | Ag | - | 0.8 ppm |
|----|---|---------|----|---|---------|
| As | - | 183 ррт | Cu | - | 298 ррт |

A96 - 206 1.2 m chip across shear zone within andesite partly replaced by carbonates with average 1-2 % chalcopyrite and pyrite. Frequent malachite-chrysocole stain. Shear zone is 0.7 - 1.2 m wide striking 105 / v., and can be traced for about 30 m.

| Au | - | 5520 ppb | Ag | - | 33.9 ррт |
|----|---|----------|----|---|----------|
| As | - | 89 ppm   | Cu | - | 71 ppm   |

A96 - 207 Grab from quartz lens with 5 % pyrite. It is 5 m long and up to 1.5 m wide. It joins at oblique angle the main shear zone from which sample A96 - 206 was taken.

| Au | - | 505 ppb | Ag | - | 2.1 ppm |
|----|---|---------|----|---|---------|
| As | - | 525 ppm | Cu | - | 643 ppm |
| Co | - | 135 ррт |    |   |         |

A96 - 208 0.3 m chip across quartz-sericite-pyrite replaced shear zone. Pyrite content 3 %. Zone orientation 27 deg. / steep W. Can be traced for 20 m.

| Au | - | 210 ppb | Ag | - | 2.5 ppm |
|----|---|---------|----|---|---------|
| As | - | 18 ppm  | Cu | - | 97 ppm  |
| Co | - | 17 ppm  |    |   |         |

A96 - 209 Trench 103 - 0.9 m chip. Andesitic rock very strongly sericite-carbonate-chlorite altered. Average 0.5 % pyrite, locally minor chalcopyrite and malachite stain, trace arsenopyrite. Minor limonite and wad on fractures. At interval A96 - 216 trace erytryhite. In places, minor carbonate veining.

| Au | - | 0.059 opt | Ag | - | 1.1 ppm  |
|----|---|-----------|----|---|----------|
| As | - | 5424 ppm  | Cu | - | 1655 ppm |
| Co | - | 1054 ppm  |    |   |          |

A96 - 210 Trench 103 - 1.0 m chip. Andesite reeks very strongly sericite-chlorite altered with average 7 % pyrite and minor arsenopyrite and chalcopyrite, also malachite stain limonite on fractures. Interval contains 10 cm wide vein of massive pyrite with lesser arsenopyrite.

| Au - 0.09 opt | Ag - 2.3 ppm  |
|---------------|---------------|
| As - 1.97 %   | Cu - 2078 ppm |
| Со - 1983 ррт |               |

A96 - 211 Trench 103 - 1.3 m chip. Same as above.

Au - 480 opt Ag - 0.6ppm

As - 464 ppm Cu - 483 ppm

A96 - 212 Trench 103 - 1.4 m chip. Same as above.

| Au - 47 ppb  | Ag - 0.4 ppm |
|--------------|--------------|
| As - 103 ppm | Cu - 394 ppm |
| Со - 38 ррт  |              |

A96 - 213 Trench 103 - 1.4 m chip. Same as above.

| Au | - | 320 ppb | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | - | 156 ppm | Cu | - | 375 ppm |

A96 - 214 Trench 103 - 1.4 m chip. Same as above.

A96 - 215 Trench 103 - 1.4 m chip. Same as above.

| Au | - | 150 ppb | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | - | 41 ppm  | Cu | - | 116 ppm |

A96 - 216 Trench 103 - 1.5 m chip. Same as above.

| Au | - | 145 ppb | Ag | - | 0.8 ppm |
|----|---|---------|----|---|---------|
| As | - | 263 ррт | Cu | - | 367 ppm |
| Co | - | 121 ppm |    |   |         |

A96 - 217 Trench 103 - 1.5 m chip. Same as above.

| Au | - | 105 ppb | Ag | - | l ppm   |
|----|---|---------|----|---|---------|
| As | - | 111 ppm | Cu | - | 696 ppm |

A96 - 218 Trench 103 - 1.5 m chip. Same as above.

| Au | - | 60 ppb   | Ag | - | 4.9 ррт  |
|----|---|----------|----|---|----------|
| As | - | 1158 ppm | Cu | - | 2399 ppm |
| Co | - | 169 ррт  |    |   |          |

A96 - 219 Trench 103 - 1.0 m chip. Same as above.

| Au | - | 135 ppb | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | - | 46 ppm  | Cu | - | 62 ppm  |

A96 - 220 Trench 104 - 1.5 m chip. Andesitic reeks very strongly K-feldspar-chlorite-sericite altered. Minor pyrite, minor limonite and wad on fractures.

| Au - 240 ppb | Ag - 0.3 ppm |
|--------------|--------------|
| As - 279 ppm | Cu - 144 ppm |
| Co - 481 ppm |              |

A96 - 221 Trench 104 - 1.5 m chip. Same as A96 - 220.

| Au - | 75 ppb  | Ag | - | 0.4 ppm |
|------|---------|----|---|---------|
| As - | 106 ppm | Cu | - | 252 ppm |

A96 - 222 Trench 104 - 1.5 m chip. Andesitic reeks very strongly K-feldspar-chlorite-sericite altered. Average 1 % pyrite and trace arsenopyrite. Some limonite out wad on fractures.

| Au | - | 105 ppb | Ag | - | 0.7 ppm |
|----|---|---------|----|---|---------|
| As | - | 77 ppm  | Cu | - | 421 ppm |

A96 - 223 Trench 104 - 2.0 m chip. Same as A96 - 222.

| Au | - | 110 ppb | Ag | - | 0.6 ppm |
|----|---|---------|----|---|---------|
| As | - | 49 ppm  | Cu | - | 268 ppm |

A96 - 224 Trench 105 - 1.5 m chip. Andesitic rocks very strongly altered to sericitecarbonate-chlorite. Average 1 % pyrite.

| Au | - | 0.102 opt | Ag | - | 0.7 ppm |
|----|---|-----------|----|---|---------|
| As | - | 123 ppm   | Cu | - | 56 ppm  |

A96 - 225 Trench 105 - 1.2 m chip. The same as A96 - 224. 20 cm section rich in hematite with some magnetite.

| Au - | 820 ppb | Ag - | 1.5 ppm |
|------|---------|------|---------|
| As - | 31 ppm  | Cu - | 873 ppm |

----

 A96 - 226 Trench 105 - 1.5 m chip. Andesite rocks very strongly sericite-carbonate-chlorite-K-feldspar? altered. In places, subordinate amounts of disseminated hematite. Minor pyrite and malachite-azurite (mostly on fractures). Trace chalcopyrite. Sporadically also minor magnetite.

| Au | - | 270 ррb | Ag | - | 0.6 ppm |
|----|---|---------|----|---|---------|
| As | - | 54 ppm  | Cu | - | 119 ppm |

A96 - 227 Trench 105 - 1.5 m chip. Same as A96 - 226.

| Au | - | 205 ppb | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | - | 45 ppm  | Cu | - | 284 ppm |

A96 - 228 Trench 105 - 1.5 m chip. Same as above, 30 cm section rich in hematite with quartz and some magnetite.

| Au | - | 760 ppb | Ag | - | 3.5 ppm  |
|----|---|---------|----|---|----------|
| As | - | 188 ppm | Cu | - | 1834 ppm |

A96 - 229 Trench 105 - 1.5 m chip. Same as above, 20 cm hematite rich section with quartz and magnetite.

| Au | - | 0.030 opt | Ag | - | 0.7 ppm |
|----|---|-----------|----|---|---------|
| As | - | 90 ppm    | Cu | - | 692 ppm |

A96 - 230 Trench 105 - 1.5 m chip. Same as above.

| Au | - | 60 ppb | Ag | - | 0.3 ppm |
|----|---|--------|----|---|---------|
| As | - | 20 ppm | Cu | - | 269 ppm |

A96 - 231 Trench 105 - 1.5 m chip. Same as above.

| Au | - 110 opt | Ag - | 0.9 ppm  |
|----|-----------|------|----------|
| As | - 33 ppm  | Cu - | 1050 ppm |

A96 - 232 Trench 105 - 1.5 m chip. Same as above.

| Au | - | 890 opt | Ag | - | 0.3 ррт |
|----|---|---------|----|---|---------|
| As | - | 29 ppm  | Cu | - | 174 ppm |

A96 - 233 Trench 105 - 1.5 m chip. Same as above.

A96 - 234 Trench 105 - 1.5 m chip. Same as above.

| Au | - | 130 ppb | Ag | - | 1 ppm    |
|----|---|---------|----|---|----------|
| As | - | 160 ppm | Cu | - | 1148 ppm |
| Co | • | 8 ppm   |    |   |          |

A96 - 235 Trench 105 - 1.6 m chip. Same as above.

| Au | - | 750 ppb | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | - | 120 ppm | Cu | - | 170 ppm |

- Co 29 ppm
- A96 236 Trench 106 1.5 m chip. Andesitic rocks very strongly altered to K-feldsparsericite-chlorite-carbonates. Locally minor hematite - disseminated and on fractures. Minor pyrite, locally minor limonite and malachite. Ezanite on fractures, trace chalcopyrite.

| Au - 145 ppb | Ag | - | 0.3 ppm |
|--------------|----|---|---------|
| As - 14 ppm  | Cu |   | 243 ppm |

A96 - 237 Trench 106 - 1.5 m chip. Same as above sample, A96 - 236.

A96 - 238 Trench 106 - 1.5 m chip. Same as above.

| Au - 340 ppb | Ag - 0.4 ppm |
|--------------|--------------|
| As - 51 ppm  | Cu - 347 ppm |

A96 - 239 Trench 106 - 1.5 m chip. Same as above.

| Au | - | 380 ppb | Ag - | • | 0.3 ppm |
|----|---|---------|------|---|---------|
| As | - | 171 ppm | Cu - | - | 110 ppm |

A96 - 240 Trench 106 - 1.5 m chip. Same as above.

| Au | - | 115 ppb | Ag | - | 3.6 ррт  |
|----|---|---------|----|---|----------|
| As | - | 105 ppm | Cu | - | 2418 ppm |

A96 - 241 Trench 106 - 1.5 m chip. Same as above.

| Au | - | 255 ppb | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | - | 40 ppm  | Cu | - | 186 ppm |

A96 - 242 Trench 106 - 1.8 m chip. Same as above.

| Au - 390 ppb | Ag - 0.3 ppm |
|--------------|--------------|
| As - 31 ppm  | Cu - 55 ppm  |

A96 - 243 Trench 107 - 1.5 m chip. Andesite rocks very strongly calcite-chlorite-K-feldspar altered with subordinate amounts of sericite and disseminated hematite. In places minor specularite and magnetite, trace pyrite. There is some limonite and wad on fractures along with minor molybdenite.

| Au | - | 90 ppb | Ag | - | 0.3 ppm |
|----|---|--------|----|---|---------|
| As | - | 33 ppm | Cu | - | 515 ppm |

| A96 - 244 | Trench 107 - 1.5 m chip.                               | Same as above sample, A96 - 243.                                                                                |
|-----------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|           | <b>Au - 145 ppb</b><br>As - 28 ppm                     | Ад - 3.6 ppm<br>Си - 1275 ppm                                                                                   |
| A96 - 245 | Trench 107 - 1.5 m chip.                               | Same as above.                                                                                                  |
|           | <b>Au - 180 ppb</b><br>As - 34 ppm                     | Ag - 0.3 ppm<br>Cu - 145 ppm                                                                                    |
| A96 - 246 | Trench 107 - 1.5 m chip.                               | Same as above.                                                                                                  |
|           | <b>Au - 690 ppb</b><br>As - 56 ppm                     | Ag - 0.3 ppm<br>Cu - 82 ppm                                                                                     |
| A96 - 247 | Trench 107 - 1.5 m chip.                               | Same as above.                                                                                                  |
| A96 - 248 | Trench 107 - 1.5 m chip.                               | Same as above.                                                                                                  |
|           | Au - 90 ppb<br>As - 60 ppm                             | Ag - 0.7 ppm<br>Cu - 472 ppm                                                                                    |
| A96 - 249 | Trench 107 - 1.5 m chip.                               | Same as above.                                                                                                  |
|           | Au - 65 ppb<br>As - 21 ppm                             | Ag - 0.7 ppm<br>Cu - 387 ppm                                                                                    |
| A96 - 250 | Trench 107 - 1.5 m chip.                               | Same as above.                                                                                                  |
|           | Au - 38 ppb<br>As - 9 ppm                              | Ag - 0.4 ppm<br>Cu - 315 ppm                                                                                    |
| A96 - 251 | Trench 107 - 2.0 m chip.                               | Same as above.                                                                                                  |
|           | Au - 9 ppb<br>As - 34 ppm                              | Ag - 0.6 ppm<br>Cu - 515 ppm                                                                                    |
| A96 - 252 | Trench 108 - 1.5 m chip.<br>feldspar altered with subc | Andesitic rocks very strongly chloritic-carbonate-K-<br>ordinate amounts of sericite and disseminated hematite. |
| A96 - 253 | Trench 108 - 1.5 m chip.                               | Same as above sample, A96 - 252.                                                                                |
| A96 - 254 | Trench 108 - 1.5 m chip.                               | Same as above.                                                                                                  |

A96 - 255 Trench 108 - 1.5 m chip. Same as above.

| Au - | 430 ppb | Ag · | - 0.3 ppm |
|------|---------|------|-----------|
| As - | 28 ppm  | Cu · | - 75 ppm  |

A96 - 256 Trench 108 - 1.5 m chip. Same as above.

A96 - 257 Trench 108 - 1.5 m chip. Andesitic rocks very strongly K-feldspar-chloritehematite altered. Minor specularite and magnetite. In one spot minor chalcopyrite and malachite.

| Au | - | 960 ppb | Ag | - | 0.4 ppm |
|----|---|---------|----|---|---------|
| As | - | 77 ppm  | Cu | - | 281 ppm |

A96 - 258 Trench 108 - 1.5 m chip. Same as sample A96 - 252.

| Au - | 565 ppb | Ag | - | 0.3 ppm |
|------|---------|----|---|---------|
| As - | 71 ppm  | Cu | - | 76 ppm  |
| Co - | 122 ppm |    |   |         |

A96 - 259 Trench 108 - 1.5 m chip. Same as above.

| Au | - | 520 ppb | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | - | 63 ppm  | Cu | - | 57 ppm  |

A96 - 260 Trench 108 - 1.5 m chip. Same as above.

| Au | • | 385 ppb | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | - | 67 ppm  | Cu | - | 64 ppm  |

A96 - 261 Trench 108 - 1.5 m chip. Same as above.

| Au | - | 320 ppb | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | - | 27 ppm  | Cu | - | 238 ppm |

A96 - 262 Trench 108 - 1.5 m chip. Same as above.

| Au - 45 ppb | Ag - | 1.9 ppm  |
|-------------|------|----------|
| As - 50 ppm | Cu - | 1757 ppm |

A96 - 263 Trench 108 - 1.3 m chip. Same as above.

| Au | - | 46 ppb | Ag | - | 3.4 ppm  |
|----|---|--------|----|---|----------|
| As | - | 76 ppm | Cu | - | 1747 ppm |

| A96 - 264 | feldspar-calcite with lesses         | Andesitic rocks very strongly altered to chlorite-K-<br>r sericite and minor disseminated hematite. Locally pyrite<br>264 contains average 3 % pyrite. |
|-----------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                      | Ag - 1.1 ppm<br>Cu - 111 ppm                                                                                                                           |
| A96 - 265 | Trench 109 - 1.5 m chip.             | Same as above sample, A96 - 264.                                                                                                                       |
|           |                                      | Ag - 1 ppm<br>Cu - 516 ppm                                                                                                                             |
| A96 - 266 | Trench 109 - 1.5 m chip.             | Same as above.                                                                                                                                         |
|           | Au - 49 ppb<br>As - 95 ppm           | Ag - 0.5 ppm<br>Cu - 313 ppm                                                                                                                           |
| A96 - 267 | Trench 109 - 1.9 m chip.             | Same as above.                                                                                                                                         |
|           | Au - 95 ppb<br>As - 70 ppm           | Ag - 0.4 ppm<br>Cu - 266 ppm                                                                                                                           |
| A96 - 268 | •                                    | Andesite rocks very strongly chlorite-K-feldspar-calcite<br>mounts of sericite and locally disseminated hematite and<br>and malachite stain.           |
|           | <b>Au - 0.036 opt</b><br>As - 57 ppm |                                                                                                                                                        |
| A96 - 269 | Trench 110 - 1.5 m chip.             | Same as above sample, A96 - 268.                                                                                                                       |
|           | Au - 0.064 opt<br>As - 77 ppm        | Ag - 1.1 ppm<br>Cu - 373 ppm                                                                                                                           |
| A96 - 270 | Trench 110 - 1.5 m chip.             | Same as above.                                                                                                                                         |
| A96 - 271 | Trench 110 - 1.5 m chip.             | Same as above.                                                                                                                                         |
|           | Au - 160 ppb<br>As - 154 ppm         | Ag - 0.9 ppm<br>Cu - 551 ppm                                                                                                                           |
| A96 - 272 | Trench 110 - 1.5 m chip.             | Same as above.                                                                                                                                         |
| A96 - 273 | Trench 110 - 1.5 m chip.             | Same as above.                                                                                                                                         |

A96 - 274 Trench 110 - 1.5 m chip. Same as above.

| Au | - | 49 ppb | Ag | - | 0.3 ppm |
|----|---|--------|----|---|---------|
| As | - | 64 ppm | Cu | - | 274 ppm |

A96 - 275 Trench 110 - 1.2 m chip. Same as above.

| Au – 120 opt | Ag - 0.5 ppm |
|--------------|--------------|
| As - 55 ppm  | Си - 439 ррт |

A96 - 276 Trench 110 - 1.1 m chip. Same as above.

| Au | - | 75 ppb | Ag | - | 0.3 ppm |
|----|---|--------|----|---|---------|
| As | - | 52 ppm | Cu | - | 495 ppm |

- A96 277 Trench 111 1.5 m chip. Andesitic rocks very strongly altered to chlorite-Kfeldspar with local minor disseminated hematite. In many places fine disseminated specularite and magnetite of up to 5 %. There are a few small replacements up to 7 cm wide of quartz-hematite-magnetite. Trace chalcopyrite and malachite.
- A96 278 Trench 111 1.5 m chip. Same as above sample, A96 277.

| Au | - | 90 ppb | Ag | - | 0.7 ppm |
|----|---|--------|----|---|---------|
| As | - | 35 ppm | Cu | - | 717 ppm |

### A96 - 279 Trench 111 - 1.5 m chip. Same as above.

| Au | - | 95 ppb | Ag | - | 0.3 ppm |
|----|---|--------|----|---|---------|
| As | - | 29 ppm | Cu | - | 266 ррт |

A96 - 280 Trench 111 - 1.5 m chip. Same as above.

| Au - 115 ppb | Ag - 0.8 ppm |
|--------------|--------------|
| As - 59 ppm  | Cu - 531 ppm |

A96 - 281 Trench 111 - 1.5 m chip. Same as above.

| Au | - | 640 ppb | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | - | 35 ppm  | Cu | - | 248 ppm |

A96 - 282 Trench 111 - 1.5 m chip. Same as above.

| Au | - | 180 ppb | Ag | - | 1.1 ppm |
|----|---|---------|----|---|---------|
| As | - | 132 ppm | Cu | - | 173 ppm |

A96 - 283 Trench 111 - 1.5 m chip. Andesitic rock very strongly altered to chlorite-Kfeldspar-calcite-sericite.

| Au | - | 105 ppb | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | • | 32 ppm  | Cu | - | 134 ppm |

- A96 284 Trench 111 1.2 m chip. Same as the above sample, A96 283.
- A96 285 Trench 112 1.5 m chip. Andesitic rocks very strongly altered to chlorite-calcite-K-feldspar-sericite. Occasionally minor pyrite.
- A96 286 Trench 112 1.5 m chip. Same as the sample above, A96 285.

A96 - 287 Trench 112 - 1.5 m chip. Same as above.

- A96 288 Trench 112 1.5 m chip. Same as above.
- A96 289 Trench 112 1.5 m chip. Same as above.

|           | Au - 41 ppb              | Ag - 0.3 ppm   |
|-----------|--------------------------|----------------|
|           | As - 18 ppm              | Cu - 308 ppm   |
| A96 - 290 | Trench 112 - 1.6 m chip. | Same as above. |

A96 - 291 Trench 113 - 1.5 m chip. Samples are of andesitic rocks very strongly altered to chlorite-K-feldspar-calcite with subordinate amounts of sericite and locally hematite which occurs as disseminations and on fractures. Minor pyrite. Interval with minor chalcopyrite and malachite.

| Au | - | 160 ppb | Ag | - | 2 ppm    |
|----|---|---------|----|---|----------|
| As | - | 17 ppm  | Cu | - | 3192 ppm |

A96 - 292 Trench 113 - 1.5 m chip. Same as the above sample, A96 - 291.

| Au | - | 50 ppb | Ag | - | 0.4 ppm |
|----|---|--------|----|---|---------|
| As | - | 20 ppm | Cu | - | 578 ppm |

. . . . . . .

A96 - 293 Trench 113 - 1.5 m chip. Same as above. 20 cm hematite rich section with some magnetite.

| Au | - | <b>43</b> 0 ppb | Ag | - | 0.3 ppm |
|----|---|-----------------|----|---|---------|
| As | - | 65 ppm          | Cu | - | 325 ppm |

A96 - 294 Trench 113 - 1.5 m chip. Same as above.

Au - 510 ppb Ag - 0.4 ppm

|           | As - 37 ppm                            | Cu - 217 ppm                                                                             |
|-----------|----------------------------------------|------------------------------------------------------------------------------------------|
| A96 - 295 | Trench 113 - 1.5 m chip.               | Same as above. 20 cm section with 5 % pyrite.                                            |
|           | Au - 45 ppb<br>As - 57 ppm             |                                                                                          |
|           |                                        |                                                                                          |
| A96 - 296 | Trench 113 - 1.5 m chip.               | Same as above.                                                                           |
|           | <b>Au - 190 ppb</b><br>As - 64 ppm     | •                                                                                        |
| A96 - 297 | Trench 113 - 1.5 m chip.               | Same as above.                                                                           |
|           | Au - 470 ppb                           | • •                                                                                      |
|           | As - 73 ppm<br>Co - 116 ppm            | Cu - 216 ppm                                                                             |
| A96 - 298 | Trench 113 - 1.5 m chip.<br>magnetite. | Same as above. 50 cm interval rich in hematite and some                                  |
|           | Au - 0.057 opt                         | Ag = 0.6  ppm                                                                            |
|           | As - 202 ppm                           |                                                                                          |
| A96 - 299 | Trench 113 - 1.5 m chip.               | Same as above.                                                                           |
|           | Au - 0.067 opt                         | • • • • • • • • • • • • • • • • • • • •                                                  |
|           | As - 167 ppm                           | Cu - 40 ppm                                                                              |
| A96 - 300 | Trench 113 - 1.5 m chip.               | Same as above.                                                                           |
|           | Au - 75 ppb                            |                                                                                          |
|           | As - 125 ppm<br>Co - 117 ppm           | Cu - 41 ppm                                                                              |
| A96 - 301 | Trench 113 - 1.5 m chip.               | Same as above.                                                                           |
| A96 - 302 | Trench 113 - 1.5 m chip.               | Same as above.                                                                           |
| A96 - 303 | Trench 113 - 1.5 m chip.               | Same as above.                                                                           |
| A96 - 304 | Trench 113 - 1.5 m chip.               | Same as above.                                                                           |
| A96 - 305 | -                                      | Andesite strongly altered to sericite-K-feldspar (?)-<br>rite on fractures and limonite. |

| Au | - | 0.049 opt | Ag | - | 0.7 ppm |
|----|---|-----------|----|---|---------|
| As | - | 21 ppm    | Cu | - | 48 ppm  |

A96 - 306 Trench 114 - 1.4 m chip. Andesite strongly altered to chlorite-K-feldspar-calcite with lesser disseminated hematite.

| Au | - 0.179 opt | Ag | - | 1.4 ppm |
|----|-------------|----|---|---------|
| As | - 77 ppm    | Cu | - | 101 ppm |
| Co | - 294 ppm   |    |   |         |

A96 - 307 Trench 114 - 1.2 m chip. Andesite strongly altered to chlorite-sericite-calcite.

| Au | - | 305 ppb | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | - | 34 ppm  | Cu | - | 23 ppm  |
| Co | - | 190 ppm |    |   |         |

A96 - 308 Trench 114 - 1.4 m chip. Andesite very strongly altered to chlorite-K-feldsparhematite. There are several narrow veinlets of black green chlorite, specularite and quartz.

| Au | - | 0.046 opt | Ag | - | 1.4 ppm |
|----|---|-----------|----|---|---------|
| As | - | 45 ppm    | Cu | - | 87 ppm  |

A96 - 309 Trench 114 - 1.1 m chip. Same as the above sample, A96 - 306.

| Au | - | 105 ppb | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | - | 16 ppm  | Cu | - | 15 ppm  |

A96 - 310 Trench 115 - 1.5 m chip. Andesite strongly altered to chlorite-K-feldspar (?) with lesser sericite and hematite. Minor pyrite.

| Au | - | 32 ppb  | Ag | - | 0.3 ppm |
|----|---|---------|----|---|---------|
| As | - | 121 ppm | Cu | - | 247 ppm |

- A96 311 Trench 115 1.5 m chip. Same as the above sample, A96 310.
- A96 312 Trench 115 1.5 m chip. Same as above.
- A96 313 Trench 115 1.5 m chip. Same as above.

| Au | - | 125 ppb | Ag | - | 0.3 ppm  |
|----|---|---------|----|---|----------|
| As | - | 88 ppm  | Cu | - | 1359 ppm |

A96 - 314 Trench 115 - 2.0 m chip. Same as above.

- A96 315 Trench 116 2.0 m chip. Hornblende porphyritic andesite strongly altered to chlorite-K-feldspar (?)-calcite-sericite with subordinate amounts of disseminated hematite. Locally minor pyrite.
- A96 316 Trench 116 1.5 m chip. Same as the above sample, A96 315.
- A96 317 Trench 116 1.5 m chip. Same as above.
- A96 318 Trench 116 1.5 m chip. Same as above.
- A96 319 Trench 116 1.5 m chip. Same as above.
- A96 320 Trench 116 1.5 m chip. Same as above.
- A96 321 Trench 116 1.7 m chip. Same as above.
- A96 322 Trench 117 1.5 m chip. Andesite strongly altered to chlorite-calcite-K-feldsparsericite with lesser disseminated hematite. Trace tenentite and malachite. Sparse, thin veinlets of quartz, chlorite and specularite.

| Au | <ul> <li>0.10 opt</li> </ul> | Ag | - | 0.3 ppm |
|----|------------------------------|----|---|---------|
| As | - 9 ppm                      | Cu | - | 21 ppm  |

- A96 323 Trench 117 1.5 m chip. Same as the above sample, A96 322.
- A96 323 Trench 117 1.5 m chip. Same as above.
- A96 324 Trench 117 1.5 m chip. Same as above.
- A96 325 Trench 117 1.5 m chip. Same as above.
- A96 326 Trench 117 1.5 m chip. Same as above.

| Au | - | 0.097 opt | Ag | - | 0.3 ppm |
|----|---|-----------|----|---|---------|
| As | - | 14 ppm    | Cu | - | 28 ppm  |

A96 - 327 Trench 117 - 1.5 m chip. Andesite very strongly altered to chlorite-K-feldsparcalcite-sericite-hematite. There are veinlets of specularite, quartz and chlorite. Specularite veinlets are up to 1 cm wide and are magnetic (magnetite). There is minor malachite stain and trace tenantite (?).

| Au | - | 0.051 opt | Ag | - | 0.4 ppm |
|----|---|-----------|----|---|---------|
| As | - | 17 ppm    | Cu | - | 53 ppm  |

A96 - 328 Trench 117 - 1.5 m chip. Same as the above sample, A96 - 327.

| Au | - | 0.081 opt | Ag | - | 0.6 ppm |
|----|---|-----------|----|---|---------|
| As | - | 51 ppm    | Cu | - | 83 ppm  |

A96 - 329 Trench 117 - 1.5 m chip. Same as above.

| Au | -0.258 opt | Ag | - | 0.8 ppm |
|----|------------|----|---|---------|
| As | - 77 ppm   | Cu | - | 217 ppm |
| Co | - 105 ppm  |    |   |         |

A96 - 330 Trench 117 - 1.5 m chip. Same as the above sample, A96 - 322.

A96 - 331 Trench 117 - 1.5 m chip. Same as above.

| Au | - | 1 <b>80</b> ppb | Ag | - | 0.3 ppm |
|----|---|-----------------|----|---|---------|
| As | - | 11 ppm          | Cu | - | 51 ppm  |

A96 - 332 Trench 117 - 1.9 m chip. Same as the above.

## APPENDIX II

GEOCHEMICAL ANALYSIS RESULTS FOR THE TRENCHING PROGRAM

## **CERTIFICATE OF ASSAY AK 96-5031**

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

### **ATTENTION: DINO CREMONESE**

No. of samples received: 12 Sample type: Rock PROJECT #: Clone SHIPMENT #: 1 Samples submitted by: E. Kruchkowski

|       |         | Co    | Au    | Au     |  |
|-------|---------|-------|-------|--------|--|
| ET #. | Tag #   | (%)   | (g/t) | (oz/t) |  |
| 4     | A-96-4  | 0.049 | 1.07  | 0.031  |  |
| ~ 5   | A-96-5  | 0.033 | -     | -      |  |
| 6     | A-96-6  | 0.030 | -     | -      |  |
| 7     | A-96-7  | 0.074 | 5.97  | 0.174  |  |
| 8     | A-96-8  | 0.064 | 5.50  | 0.160  |  |
| 9     | A-96-9  | 0.074 | 3.03  | 0.088  |  |
| 10    | A-96-10 | •     | 1.22  | 0.036  |  |

## QC DATA:

Standard: SU-1a

0.042

XLS/96TEUTON#1

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

22-Jul-96

02-Jul-96

#### ECO-TECH LABORATORIES LTD.

#### 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax 604-573-4557 ICP CERTIFICATE OF ANALYSIS AS 96-5031

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOLIVER, B.C. V6C 1N2

#### ATTENTION: DINO CREMONESE

No. of samples received: 12 Sample type: Rock PROJECT #: Clone SHIPMENT #: 1 Samples submitted by: E. Kruchkowski

| E | it #.              | Tag #   | Au(ppb) | Ag  | AI % | As  | Ba  | Bi | Ca % | Cđ | Co  | Cr | Cu   | Fe % | La  | Mg % | Mn          | Mo | Na % | Ni | P    | РЪ | Sb | Sn  | Sr | Ti % | U   | v   | w   | Y  | Zn  |
|---|--------------------|---------|---------|-----|------|-----|-----|----|------|----|-----|----|------|------|-----|------|-------------|----|------|----|------|----|----|-----|----|------|-----|-----|-----|----|-----|
|   | 1                  | A-96-1  | 5       | < 2 | 2.24 | 115 | 120 | <5 | 1.47 | <1 | 12  | 21 | 61   | 4.44 | <10 | 1.64 | 711         | 2  | 0.04 | 3  | 1850 | <2 | <5 | <20 | 31 | 0.03 | <10 | 73  | <10 | 2  | 52  |
|   | 2                  | A-96-2  | 5       | <.2 | 2.44 | 235 | 125 | <5 | 0.78 | <1 | 175 | 30 | 78   | 4.28 | <10 | 1.50 | 649         | 3  | 0.04 | 3  | 1940 | <2 | <5 | <20 | 19 | 0.02 | <10 | 55  | <10 | 1  | 52  |
|   | 3                  | A-96-3  | 75      | <.2 | 2.57 | 125 | 145 | <5 | 1.05 | <1 | 117 | 23 | 41   | 4.17 | <10 | 1.62 | 668         | 2  | 0.03 | 2  | 1870 | <2 | <5 | <20 | 21 | 0.03 | <10 | 49  | <10 | 2  | 62  |
|   | 4                  | A-96-4  | >1000   | 0.6 | 1.99 | 370 | 215 | <5 | 1.33 | 2  | 458 | 38 | 525  | 4.70 | <10 | 1.25 | 793         | 4  | 0 02 | 3  | 1710 | <2 | <5 | <20 | 30 | 0.04 | <10 | 56  | <10 | <1 | 139 |
| 1 | 5                  | A-96-5  | 205     | 0.4 | 1.97 | 235 | 190 | <5 | 1.58 | <1 | 299 | 25 | 373  | 3.57 | <10 | 1.33 | 960         | 2  | <.01 | 2  | 1810 | <2 | 10 | <20 | 31 | 0.03 | <10 | 46  | <10 | 3  | 137 |
|   | 6                  | A-96-6  | 200     | 0.2 | 1.81 | 210 | 135 | <5 | 2.34 | <1 | 282 | 19 | 274  | 3.43 | <10 | 1.17 | 901         | 2  | < 01 | 2  | 1830 | <2 | <5 | <20 | 43 | 0.03 | <10 | 41  | <10 | 2  | 101 |
|   | 7                  | A-96-7  | >1000   | 0.6 | 1.23 | 450 | 125 | <5 | 0.80 | <1 | 674 | 25 | 520  | 7.44 | <10 | 0.77 | 575         | 6  | <.01 | 2  | 1060 | <2 | <5 | 20  | 19 | 0.06 | <10 | 75  | <10 | <1 | 89  |
|   | 8                  | A-96-8  | >1000   | 1.2 | 1.32 | 615 | 465 | <5 | 0.82 | <1 | 584 | 33 | 1014 | 7.38 | <10 | 0.85 | 540         | 7  | < 01 | 4  | 1570 | 2  | <5 | 20  | 23 | 0.04 | <10 | 74  | <10 | <1 | 98  |
| 1 | 9                  | A-96-9  | >1000   | 16  | 3.37 | 705 | 135 | <5 | 1.06 | <1 | 667 | 29 | 280  | 8.96 | <10 | 2.34 | 1139        | 7  | 0.01 | 6  | 1830 | <2 | <5 | <20 | 24 | 0.01 | <10 | 144 | <10 | <1 | 193 |
| 1 | 0                  | A-96-10 | >1000   | < 2 | 1.77 | 85  | 160 | <5 | 1.00 | <1 | 95  | 30 | 373  | 5.55 | <10 | 1.15 | 709         | 4  | 0.02 | 3  | 1670 | 10 | <5 | <20 | 22 | 0.03 | <10 | 83  | <10 | <1 | 71  |
| 1 | 1                  | A-96-11 | 5       | <.2 | 3 11 | 50  | 125 | <5 | 0.65 | <1 | 51  | 19 | 183  | 7.03 | <10 | 2.49 | 992         | З  | 0.04 | 12 | 1890 | <2 | <5 | <20 | 13 | 0.06 | <10 | 141 | <10 | <1 | 59  |
| 1 | 12                 | A-96-12 | 5       | <.2 | 1,69 | 5   | 85  | <5 | 0.66 | <1 | 15  | 19 | 44   | 3.45 | <10 | 1.15 | 6 <b>90</b> | 2  | 0.05 | 4  | 1960 | <2 | <5 | <20 | 13 | 0.02 | <10 | 59  | <10 | 2  | 39  |
|   | /DA1               |         | -       |     |      |     |     |    |      |    |     |    |      |      |     |      |             |    |      |    |      |    |    |     |    |      |     |     |     |    |     |
|   |                    | A-96-1  | 5       | <.2 | 2.29 | 120 | 125 | <5 | 1.57 | <1 | 12  | 28 | 61   | 4.45 | <10 | 1.65 | 738         | 2  | 0.05 | 3  | 1860 | <2 | <5 | <20 | 33 | 0.04 | <10 | 76  | <10 | 2  | 51  |
|   | peat:<br>1         | A-96-1  | -       | <.2 | 2.24 | 115 | 120 | <5 | 1.47 | <1 | 13  | 21 | 61   | 4.46 | <10 | 1.65 | 711         | 2  | 0.04 | 2  | 1860 | <2 | <5 | <20 | 31 | 0.04 | <10 | 74  | <10 | 2  | 52  |
|   | <b>nda</b><br>O'96 |         | 150     | 1.2 | 1 85 | 65  | 160 | <5 | 1.80 | <1 | 19  | 65 | 82   | 4.21 | <10 | 1.00 | 717         | <1 | 0.02 | 20 | 740  | 18 | <5 | <20 | 62 | 0.12 | <10 | 81  | <10 | 4  | 66  |

df/521R XLS/96Teuton ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamkoops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# CERTIFICATE OF ASSAY AS 96-5051au

## TEUTON RESOURCES CORPORATION

509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

### ATTENTION: DINO CREMONESE

No. of samples received: 50 Sample type: Rock PROJECT #: Clone SHIPMENT #: None given Samples submitted by: Alex Walus

| Post-It" Fax Note 7671E | Date NOV26 pages /                             |
|-------------------------|------------------------------------------------|
| TO ED Bors Kowski       | From                                           |
| Co./Dept                | Co. Requested Assay                            |
| Phone #                 | Co. Requested Assay<br>Phone on # 33 Job 505 - |
| Fax #                   | Fax#                                           |

| _ |       |          | A    | i Au    | I |
|---|-------|----------|------|---------|---|
|   | ET #. | Tag #    | (g/t | ) (oz/t |   |
|   | 33    | A96 - 29 | 2.79 | 0.081   | , |

### QC/DATA:

| Repeat:<br>33 | -<br>A96 - 29 | 2.84 | 0.083 |
|---------------|---------------|------|-------|
|               |               |      |       |
| Standard:     |               |      |       |

STD-M

XLS/96Teuton

1.50 0.044

ECO-TECHLEABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

26-Nov-96

# **CERTIFICATE OF ASSAY AS 96-5051**

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

### ATTENTION: DINO CREMONESE

No. of samples received: 50 Sample type: Rock PROJECT #: Clone SHIPMENT #: None given Samples submitted by: Alex Walus

|   |       |           | Au    | Au     | As    |  |
|---|-------|-----------|-------|--------|-------|--|
|   | ET #. | Tag #     | (g/t) | (oz/t) | (%)   |  |
| ~ | 11    | D96 - 011 | 3.70  | 0.108  | •     |  |
|   | 12    | D96 - 012 | 24.60 | 0.717  | 28.88 |  |
|   | 38    | A96 - 034 | 1.61  | 0.047  | -     |  |
|   | 39    | A96 - 035 | 1.40  | 0.041  | -     |  |
|   | 47    | A96 - 043 | 4.30  | 0.125  | -     |  |

| -  | - | 1.98 |
|----|---|------|
| 17 | - | -    |
|    |   |      |

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/95Teuton

11-Jul-96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B C V2C 6T4

**TEUTON RESOURCES CORPORATION** 

Phone 604-573-5700 Fax 604-573-4557 ICP CERTIFICATE OF ANALYSIS AS96-5051

TEUTON RESOURCES CORPORATION 509-675 W HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

No. of samples received, 50 Sample type: Rock PROJECT #: Clone SHIPMENT #: None given Samples submitted by. Alex Walus

| Et | #. Tag #  | Au(ppb) | Ag   | AI % | As    | Ba  | Bi | Ca %  | Cd | Co   | Cr  | Cu   | Fe %  | La  | Mg % | Mn   | Mo  | Na % | Ni | P    | Pb  | Sb | Sn  | Sr  | Ti % | U   | v   | W    | Y  | Zn  |
|----|-----------|---------|------|------|-------|-----|----|-------|----|------|-----|------|-------|-----|------|------|-----|------|----|------|-----|----|-----|-----|------|-----|-----|------|----|-----|
| 1  | D96 - 001 | 15      | 17 4 | 2.32 | <5    | 40  | <5 | 1.22  | <1 | 30   | 130 | 171  | 6.08  | <10 | 2.15 | 478  | 8   | 0.04 | 32 | 2240 | 10  | <5 | <20 | 43  | 0.14 | <10 | 187 | <10  | 2  | 44  |
| 2  | D96 - 002 | 15      | 6.6  | 1.94 | <5    | 35  | <5 | 1.55  | 1  | 28   | 44  | 240  | 4.65  | <10 | 1.58 | 650  | 9   | 0.03 | 18 | 2930 | 2   | 10 | <20 | 31  | 0.12 | <10 | 136 | <10  | 3  | 45  |
| 3  | D96 - 003 | 10      | 5.0  | 1.21 | 10    | 75  | <5 | 1.23  | <1 | 18   | 203 | 129  | 4,15  | <10 | 0.98 | 1081 | 11  | < 01 | 23 | 720  | 6   | <5 | <20 | 12  | < 01 | <10 | 51  | <10  | 2  | 39  |
| 4  | D96 - 004 | 25      | 3.0  | 1.99 | <5    | 40  | <5 | 1.22  | <1 | 51   | 105 | 380  | 9.34  | <10 | 1.82 | 525  | 8   | 0.03 | 46 | 1820 | 16  | <5 | <20 | 24  | 0.09 | <10 | 143 | < 10 | <1 | 33  |
| 5  | D96 - 005 | 25      | 6.2  | 2.01 | 5     | 30  | <5 | 2.08  | <1 | 20   | 61  | 243  | 8.35  | <10 | 0.78 | 688  | 7   | 0.08 | 32 | 1440 | 16  | <5 | 20  | 68  | 0.06 | <10 | 53  | <10  | <1 | 120 |
| 6  | D96 - 006 | 10      | 12   | 1.51 | 10    | 55  | <5 | 1.70  | <1 | 19   | 73  | 98   | 2.94  | <10 | 0.98 | 628  | 1   | 0.03 | 15 | 1520 | <2  | <5 | <20 | 75  | 0.07 | <10 | 71  | <10  | 2  | 32  |
| 7  | D96 - 007 | 5       | 24   | 1.92 | <5    | 30  | <5 | 2.80  | <1 | 32   | 113 | 127  | 6.12  | <10 | 1.60 | 745  | 3   | 0.03 | 32 | 2560 | 26  | <5 | <20 | 42  | 0.09 | <10 | 115 | <10  | <1 | 45  |
| 8  | D96 - 008 | 40      | 1.8  | 0.80 | <5    | 25  | 10 | 11.20 | <1 | 22   | 81  | 18   | 9,13  | <10 | 1.19 | 2497 | 18  | <.01 | 16 | 220  | 20  | <5 | 40  | 228 | < 01 | <10 | 31  | <10  | <1 | 50  |
| 9  | D96 - 009 | 140     | 1.0  | 1.73 | 45    | 85  | 10 | 0.38  | <1 | 60   | 150 | 18   | 8.38  | <10 | 1.36 | 637  | 19  | < 01 | 19 | 910  | 44  | <5 | <20 | 19  | 0.10 | <10 | 135 | <10  | <1 | 41  |
| 10 | D96 - 010 | 15      | 1.4  | 1.32 | 5     | 145 | <5 | 0.18  | <1 | 39   | 147 | 16   | 4.51  | <10 | 1.06 | 654  | 5   | <.01 | 14 | 330  | 8   | <5 | <20 | 6   | 0.02 | <10 | 61  | <10  | <1 | 31  |
| 11 | D96 - 011 | >1000   | 28.2 | 1.98 | 30    | 70  | <5 | 0.85  | <1 | 41   | 83  | 7591 | 9.14  | <10 | 1.47 | 1126 | 381 | < 01 | 47 | 1770 | 8   | <5 | <20 | 10  | 0.07 | <10 | 119 | <10  | <1 | 37  |
| 12 | D96 - 012 | >1000   | 7.4  | 071  | 10000 | 55  | <5 | 0.18  | <1 | 5632 | 29  | 906  | > 15  | <10 | 0.50 | 156  | 98  | <.01 | 4  | 410  | 34  | 50 | 80  | 123 | <.01 | 70  | 79  | <10  | <1 | 18  |
| 13 | D96 - 013 | 250     | 0.8  | 1.39 | 995   | 40  | <5 | 0.92  | <1 | 64   | 13  | 476  | 9.11  | <10 | 0.89 | 307  | 21  | 0.01 | 2  | 4020 | 8   | <5 | 20  | 12  | 0.04 | <10 | 31  | <10  | <1 | 29  |
| 14 | D96 ~ 014 | 90      | 2.4  | 2.01 | 325   | 30  | 10 | 0.38  | 3  | 27   | 26  | 81   | 7.82  | <10 | 1.26 | 446  | 10  | <.01 | 8  | 1730 | 134 | <5 | 40  | 3   | <.01 | 30  | 52  | <10  | <1 | 82  |
| 15 | D96 - 015 | 85      | 1.8  | 1.79 | 120   | 50  | <5 | 0.56  | <1 | 12   | 60  | 49   | 6.09  | <10 | 1.26 | 364  | 6   | <.01 | 11 | 2050 | 28  | <5 | <20 | 9   | <.01 | <10 | 42  | <10  | <1 | 132 |
| 16 | D96 - 016 | 120     | 42   | 1.66 | 285   | 60  | <5 | 2.09  | <1 | 15   | 43  | 166  | 5.35  | <10 | 0.80 | 691  | 5   | <.01 | 27 | 2800 | 6   | <5 | <20 | 21  | <.01 | <10 | 41  | <10  | <1 | 59  |
| 17 | A96 - 13  | 55      | 20   | 2.05 | 140   | 40  | <5 | 1.98  | <1 | 36   | 78  | 126  | 6.25  | <10 | 1.25 | 515  | 5   | 0.05 | 28 | 2550 | 22  | <5 | <20 | 70  | 0.11 | <10 | 107 | <10  | 3  | 62  |
| 18 | A96 - 14  | 30      | 18   | 1 82 | 40    | 40  | <5 | 1.21  | <1 | 23   | 103 | 100  | 5.27  | <10 | 1.70 | 526  | 5   | 0.04 | 23 | 2820 | 24  | <5 | <20 | 42  | 0.16 | <10 | 148 | <10  | 4  | 60  |
| 19 | A96 - 15  | 35      | 02   | 2.49 | 25    | 110 | <5 | 1.37  | <1 | 34   | 110 | 109  | 6 36  | <10 | 2.27 | 594  | <1  | 0.07 | 38 | 3180 | 50  | <5 | <20 | 74  | 0.25 | <10 | 209 | <10  | 5  | 97  |
| 20 | A96 - 16  | 25      | 0.2  | 1.61 | 45    | 35  | <5 | 1.67  | <1 | 33   | 103 | 136  | 4.38  | <10 | 0.88 | 328  | 4   | 0.03 | 41 | 2070 | 12  | <5 | <20 | 38  | 0.10 | <10 | 97  | <10  | 1  | 33  |
| 21 | A96 - 17  | 15      | 0.4  | 2.09 | 5     | 45  | <5 | 5.77  | <1 | 37   | 69  | 9    | 6.89  | <10 | 1.44 | 3015 | 6   | <.01 | 33 | 2510 | <2  | <5 | <20 | 91  | <.01 | <10 | 67  | <10  | 3  | 25  |
| 22 | A96 - 18  | 10      | < 2  | 2.48 | <5    | 125 | 5  | 0.48  | <1 | 19   | 81  | 21   | 5.70  | <10 | 1.67 | 1255 | 7   | <.01 | 4  | 1370 | 4   | <5 | <20 | 11  | < 01 | <10 | 63  | <10  | <1 | 71  |
| 23 | A96 - 19  | 10      | 1.4  | 0.61 | 55    | 55  | <5 | 9.69  | <1 | 28   | 46  | 10   | 6.89  | <10 | 0.83 | 3076 | 8   | < 01 | 35 | 2320 | 8   | <5 | 20  | 169 | < 01 | <10 | 21  | <10  | 4  | 14  |
| 24 | A96 - 20  | 10      | 0.6  | 4.31 | 15    | 65  | 10 | > 15  | 2  | 24   | 38  | 5    | 11.60 | <10 | 4.45 | 5510 | 16  | <.01 | 7  | 610  | <2  | 15 | 40  | 203 | 0.01 | <10 | 83  | <10  | 3  | 73  |
| 25 | A96 - 21  | 25      | 1.0  | 1.53 | 10    | 35  | <5 | 2.78  | <1 | 44   | 104 | 164  | 8.56  | <10 | 0.84 | 548  | 7   | 0.02 | 44 | 2400 | 38  | <5 | 20  | 25  | 0.07 | <10 | 82  | <10  | <1 | 76  |
| 26 | A96 - 22  | 25      | 1.6  | 2.16 | <5    | 45  | <5 | 2.31  | 1  | 88   | 58  | 274  | 11.20 | <10 | 0.41 | 481  | 8   | 0.13 | 60 | 2130 | 22  | <5 | 40  | 112 | 0.07 | <10 | 52  | <10  | <1 | 49  |
| 27 | A96 - 23  | 25      | 1.4  | 1.73 | <5    | 40  | <5 | 2.54  | <1 | 58   | 48  | 341  | 9.04  | <10 | 0.70 | 453  | 7   | 0.03 | 39 | 3230 | 22  | <5 | 20  | 23  | 0.08 | <10 | 103 | <10  | <1 | 67  |
| 28 | A96 - 24  | 25      | 1.0  | 0.43 | 20    | 50  | <5 | 0.35  | <1 | 16   | 96  | 8    | 3.19  | <10 | 0.08 | 605  | 29  | <.01 | 5  | 1250 | 12  | <5 | <20 | 6   | 0.02 | <10 | 10  | < 10 | 3  | 9   |
| 29 | A96 - 25  | 10      | < 2  | 2 56 | 10    | 40  | <5 | 2.04  | <1 | 30   | 79  | 123  | 5.47  | <10 | 1.87 | 699  | 3   | 0.02 | 28 | 2200 | 14  | <5 | <20 | 23  | 0.09 | <10 | 130 | <10  | <1 | 62  |

ICP CERTIFICATE OF ANALYSIS AS96-5051

| ECO-TECH | LABORAT | ORIES LTD. |  |
|----------|---------|------------|--|
|----------|---------|------------|--|

| Et i | . Tag #  | Ац(ррb) | Ag   | Af % | As  | Ba  | 81 | Ca %  | Cd | Co  | Cr  | Cu   | Fe %  | La  | Mg % | Mn   | Mo | Na % | NI | P    | Pb | Sb | \$n | Sr  | TI % | U   | v   | w    | Y  | Zn  |
|------|----------|---------|------|------|-----|-----|----|-------|----|-----|-----|------|-------|-----|------|------|----|------|----|------|----|----|-----|-----|------|-----|-----|------|----|-----|
| 30   | A96 - 26 | 10      | < 2  | 1.74 | 10  | 110 | <5 | 1.88  | 1  | 26  | 83  | 90   | 3.82  | <10 | 0.97 | 576  | 3  | 0.07 | 38 | 2480 | 12 | <5 | <20 | 87  | 0.07 | <10 | 90  | <10  | 3  | 120 |
| 31   | A96 - 27 | 50      | 2.0  | 1.15 | 5   | 185 | <5 | 4.86  | 2  | 18  | 21  | 826  | 4.52  | <10 | 0.83 | 1006 | 2  | <.01 | 3  | 2100 | 8  | <5 | <20 | 59  | 0.04 | <10 | 62  | <10  | <1 | 217 |
| 32   | A96 - 28 | 920     | 1.0  | 2 58 | 105 | 170 | <5 | 1.42  | 2  | 152 | 30  | 435  | 10.50 | <10 | 1.93 | 1411 | 8  | <.01 | 14 | 2190 | 12 | <5 | 20  | 23  | 0.06 | <10 | 98  | <10  | <1 | 647 |
| 33   | A96 - 29 | >1000   | 14.6 | 1.55 | 385 | 255 | <5 | 0.48  | <1 | 306 | 21  | 6381 | 12.30 | <10 | 1.07 | 1035 | 9  | < 01 | 5  | 1550 | 16 | <5 | 40  | 11  | 0.04 | <10 | 104 | <10  | <1 | 321 |
| 34   | A96 - 30 | 45      | 0.6  | 1.53 | 20  | 75  | <5 | 3.88  | <1 | 21  | 21  | 364  | 3.58  | <10 | 1.08 | 1020 | 4  | 0.02 | 4  | 2220 | 8  | <5 | <20 | 49  | 0.03 | <10 | 40  | < 10 | 3  | 88  |
| 35   | A96 - 31 | 50      | <.2  | 1.33 | 30  | 80  | <5 | 0.66  | <1 | 15  | 19  | 65   | 4.06  | <10 | 0.69 | 512  | 4  | 0.02 | 4  | 2270 | 10 | <5 | <20 | 10  | 0.02 | <10 | 35  | <10  | <1 | 71  |
| 36   | A96 - 32 | 25      | 0.4  | 1.65 | 35  | 105 | <5 | 0.94  | <1 | 15  | 29  | 68   | 4.87  | <10 | 1.05 | 849  | 7  | 0.03 | 4  | 2170 | 18 | <5 | <20 | 17  | 0.03 | <10 | 82  | <10  | 2  | 55  |
| 37   | A96 - 33 | 10      | < 2  | 4 48 | 10  | 65  | <5 | 5.34  | <1 | 40  | 40  | 102  | 10.30 | <10 | 4.55 | 2051 | 6  | 0.02 | 16 | 2500 | 6  | <5 | <20 | 86  | 0.05 | <10 | 234 | <10  | <1 | 160 |
| 38   | A96 - 34 | >1000   | 0.8  | 1.98 | 15  | 150 | <5 | 2.22  | <1 | 62  | 27  | 108  | 5.73  | <10 | 1.55 | 1466 | 4  | <.01 | 6  | 2190 | 8  | <5 | <20 | 31  | 0.04 | <10 | 74  | <10  | 2  | 145 |
| 39   | A96 - 35 | >1000   | 1.0  | 1.74 | 80  | 210 | <5 | 2.15  | <1 | 114 | 20  | 335  | 7.37  | <10 | 1.33 | 1132 | 5  | <.01 | 2  | 1910 | 18 | <5 | 20  | 33  | 0.03 | <10 | 60  | <10  | <1 | 254 |
| 40   | A96 - 36 | 180     | <.2  | 1.66 | 20  | 100 | <5 | 2.26  | <1 | 40  | 11  | 58   | 3.45  | <10 | 1.34 | 797  | 2  | <.01 | 3  | 2170 | 8  | <5 | <20 | 30  | 0.02 | <10 | 35  | <10  | 3  | 101 |
| 41   | A96 - 37 | 105     | < 2  | 1.36 | 5   | 105 | <5 | 4.57  | <1 | 19  | 13  | 10   | 3.11  | <10 | 1.07 | 881  | <1 | <.01 | 4  | 2130 | 6  | <5 | <20 | 65  | 0.04 | <10 | 31  | <10  | 3  | 59  |
| 42   | A96 - 38 | 35      | 3.6  | 2.61 | <5  | 25  | <5 | 13.40 | <1 | 19  | 74  | 1035 | 8.04  | <10 | 2.08 | 5125 | 5  | <.01 | 10 | 720  | <2 | <5 | 20  | 146 | 0.06 | <10 | 99  | <10  | <1 | 56  |
| 43   | A96 - 39 | 240     | 7.4  | 0.72 | 15  | 25  | <5 | 7.51  | <1 | 40  | 107 | 4528 | 4.56  | <10 | 0.34 | 2120 | 6  | <.01 | 10 | 460  | 2  | <5 | <20 | 46  | 0.02 | <10 | 26  | <10  | 1  | 16  |
|      |          |         |      |      |     |     |    |       |    |     |     |      |       | Pa  | 1    |      |    |      |    |      |    |    |     |     |      |     |     |      |    |     |

| 44<br>45<br>46<br>47<br>48<br>49<br>50         | A96 - 40<br>A96 - 41<br>A96 - 42<br>A96 - 43<br>A96 - 44<br>A96 - 45<br>A96 - 46 | 5<br>20<br>350<br>>1000<br>100<br>55<br>25 | 34<br>98<br>20<br>134<br>26<br><2<br>1.2 | 0 78<br>1 31<br>0 10<br>0 38<br>1 82<br>2 09<br>2 34 | <5<br>35<br>25<br>70<br>150<br><5 | 410<br>80<br>75<br>65<br>100<br>80<br>75 | <5<br><5<br><5<br><5<br><5<br><5<br><5<br><5 | 0 74<br>0 26<br>0 07<br>4.37<br>3.28<br>3.20<br>1.86 | <1<br><1<br><1<br>1<br><1<br>3 | 13<br>15<br>8<br>48<br>28<br>43<br>20 | 118<br>108<br>170<br>127<br>27<br>108<br>57 | 336<br>6216<br>129<br>1559<br>145<br>144<br>78 | 2.66<br>5.32<br>2.03<br>4.68<br>7.84<br>6.09<br>7.31 | <10<br><10<br><10<br><10<br><10<br><10<br><10 | 0.60<br>1.36<br>0.02<br>0.16<br>1.26<br>1.05<br>1.99 | 568<br>764<br>192<br>905<br>1454<br>897<br>3503 | 9<br>11           | < 01<br>< 01<br>< 01         | 10<br>11<br>12<br>12<br>7<br>31<br>33 | 490<br>800<br>210<br>580<br>1680<br>2390<br>1200 | 6<br>6<br>14<br>4<br>48<br>10<br>20 | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | <20<br>- 20<br>20<br>20<br>20<br><20<br><20 | 18<br>3<br>32<br>54<br>58<br>20 | 0 04<br>0 03<br>< 01<br>0 04<br>< 01<br>0 01<br>0 03 | <10<br><10<br><10<br><10<br><10<br><10<br><10 | 27<br>48<br>11<br>27<br>52<br>64<br>52 | <10<br><10<br><10<br><10<br><10<br><10<br><10 | 2<br>~1<br><1<br><1<br><1<br>1<br>3 | 23<br>25<br>10<br>13<br>143<br>70<br>210 |
|------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------------------|-----------------------------------|------------------------------------------|----------------------------------------------|------------------------------------------------------|--------------------------------|---------------------------------------|---------------------------------------------|------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|-------------------------------------------------|-------------------|------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------------|--------------------------------------------------------------------|---------------------------------------------|---------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------------------|-------------------------------------|------------------------------------------|
| <b>QC/D/</b><br><b>Respli</b><br>R/S1<br>R/S36 | it:                                                                              | 15<br>20                                   | 18.6<br>< 2                              | 2.19<br>1.59                                         | 5<br>30                           | 50<br>95                                 | <5<br><5                                     | 1.30<br>0.89                                         | <1<br><1                       | 33<br>14                              | 145<br>21                                   | 160<br>64                                      | 6.67<br>4.73                                         | <10<br><10                                    | 2.02<br>1.02                                         | 503<br>809                                      | 8<br>7            | 0.04<br>0.03                 | 39<br>4                               | 2320<br>2190                                     | 12<br>16                            | <5<br><5                                                           | <20<br><20                                  | 40<br>13                        | 0.17<br>0.03                                         | <10<br><10                                    | 192<br>78                              | <10<br><10                                    | 2<br>1                              | 46<br>54                                 |
| <b>Repea</b><br>1<br>10<br>19<br>36            | nt:<br>D96 - 001<br>D96 - 010<br>A96 - 15<br>A96 - 32                            | 30<br>15<br>10<br>20                       | 17.2<br>14<br>04<br>04                   | 2.31<br>1.34<br>2.51<br>1.64                         | 10<br>10<br>25<br>35              | 45<br>150<br>105<br>100                  | <5<br><5<br><5<br><5                         | 1.32<br>0.19<br>1.46<br>0.92                         | <1<br><1<br><1<br><1           | 32<br>39<br>35<br>15                  | 143<br>150<br>111<br>29                     | 156<br>15<br>107<br>68                         | 6.55<br>4.57<br>6.51<br>4.79                         | <10<br><10<br><10<br><10                      | 2.07<br>1.07<br>2.24<br>1.02                         | 508<br>661<br>602<br>834                        | 8<br>6<br><1<br>7 | 0.04<br><.01<br>0.07<br>0.03 | 36<br>14<br>38<br>3                   | 360                                              | 18<br>6<br>56<br>16                 | <5<br><5<br><5<br><5                                               | <20<br><20<br><20<br><20                    | 41<br>4<br>75<br>15             | 0.17<br>0.02<br>0.26<br>0. <b>04</b>                 | <10<br><10<br><10<br><10                      | 193<br>62<br>211<br>81                 | <10<br><10<br><10<br><10                      | 2<br><1<br>6<br>2                   | 42<br>32<br>104<br>55                    |
| Stand<br>GEO'9<br>GEO'9                        | 6                                                                                | 140<br>135                                 | 1.0                                      | 1.72                                                 | 55<br>-                           | 155                                      | <5<br>-                                      | 1.99                                                 | <1<br>-                        | 21                                    | 67                                          | 76                                             | 4.06                                                 | <10                                           | 0.92                                                 | 783<br>-                                        | 1                 | 0.01                         | 20                                    | 710                                              | 20                                  | <5                                                                 | <20                                         | 56<br>-                         | 0.10<br>-                                            | <10<br>-                                      | 78<br>-                                | <10<br>-                                      | 4                                   | 72                                       |

df/5047x XLS/96Teuton

1

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

# **CERTIFICATE OF ASSAY AS 96-5051**

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

### ATTENTION: DINO CREMONESE

No. of samples received: 50 Sample type: Rock PROJECT #: Clone SHIPMENT #: None given Samples submitted by: Alex Walus

|       |           | Со    |   |
|-------|-----------|-------|---|
| ET #. | Tag #     | (%)   |   |
| 12    | D96 - 012 | 0.610 | - |
| 33    | A96 - 29  | 0.031 |   |

### QC/DATA:

| Standard: |  |
|-----------|--|
| SU-1a     |  |

0.041

XLS/96Teuton#1

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

22-Jul-96

## **CERTIFICATE OF ASSAY AS 96-5063**

**Teuton Resources Corp.** 509-675 W. Hastings Vancouver, B.C. V6C 1N2

### Attention: Dino Cremonese

No. of samples received: 46 Sample type: Rock PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Teuton

|       |         | Au    | Au     | Ag    | Ag     | Cu   | As   |  |
|-------|---------|-------|--------|-------|--------|------|------|--|
| ET #. | Tag #   | (g/t) | (oz/t) | (g/t) | (oz/t) | (%)  | (%)  |  |
| 19    | D96-035 | 2.23  | 0.065  | -     | -      | -    | -    |  |
| 21    | D96-037 | 3.58  | 0.104  | 39.0  | 1.14   | 1.59 | 2.48 |  |
| 31    | A96-56  | 6.18  | 0.180  | 56.4  | 1.65   | 3.09 | 9.12 |  |
| 34    | A96-59  | 2.70  | 0.079  | -     | -      | -    | -    |  |
| 37    | A96-62  | 1.50  | 0.044  | -     | -      | -    | -    |  |
| 39    | A96-64  | 1.27  | 0.037  | -     | -      | -    | -    |  |

## Q/C Data:

### Standard:

| MPla  | -    | -     | -     | -     | 1.46 |
|-------|------|-------|-------|-------|------|
| CPb-1 | -    | -     | 628.0 | 18.31 | -    |
| Std-M | 2.85 | 0.083 | -     | -     | -    |

3/96kmisc

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

11-Jul-96

| 37<br>38<br>39<br>40                                        | A96- 62<br>A96- 63<br>A96- 64<br>A96- 65                       | >1000<br>80<br>>1000<br>130          | 06<br><2<br>02<br>02                   | 1.29<br>0.95<br>2.56<br>1.52                 | 25<br>10<br>5<br>10                    | 280<br>150<br>145<br>105           | <5<br><5<br>20<br>5           | 1.27<br>2.41<br>1.17<br>2.59                 | 2<br>1<br>1<br><1             | 26<br>10<br>56<br>20             | 52<br>40<br>23<br>22                | 47<br>39 1                 | 5 32<br>3.22<br>12.60<br>4.70                 | 10<br><10<br><10<br><10                | 0.87<br>0.49<br>1.67<br>0.89                 | 1059<br>829<br>2287<br>1222                | 3<br><1<br>7<br><1               | < 01<br>< 01<br><.01<br>0.01                 | 5<br>3<br>2<br>3                | 1740<br>1930<br>1690<br>1950               | 26<br>14<br>16<br>6              | <5<br><5<br><5<br><5             | <20<br><20<br><20<br><20               | 37<br>48<br>24<br>41            | 0.09<br>0.09<br>0.09<br>0.09<br>0.09         | <10<br><10<br><10<br><10               | 97<br>62<br>114<br>65                | <10<br><10<br><10<br><10               | 3<br><b>4</b><br><1<br>2 | 311<br>143<br>257<br>177          |
|-------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------|------------------------------------|-------------------------------|----------------------------------------------|-------------------------------|----------------------------------|-------------------------------------|----------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------------------|---------------------------------|--------------------------------------------|----------------------------------|----------------------------------|----------------------------------------|---------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|--------------------------|-----------------------------------|
| 41<br>42<br>43<br>44<br>45<br>46                            | A96- 66<br>A96- 67<br>A96- 68<br>A96- 69<br>A96- 70<br>A96- 71 | 25<br>10<br>10<br>15<br>10<br>15     | <.2<br><.2<br><.2<br><.2<br><.2<br><.2 | 1.13<br>3.34<br>2.68<br>1.71<br>3.69<br>3.02 | <5<br><5<br><5<br><5<br><5<br><5<br><5 | 15<br>65<br>40<br>65<br>50<br>50   | <5<br><5<br><5<br>5<br>5<br>5 | 0.27<br>2.32<br>2.22<br>1.51<br>1.05<br>5.24 | <1<br><1<br><1<br>9<br>1<br>2 | 12<br>38<br>33<br>54<br>38<br>33 | 105<br>12<br>36<br>76<br>21<br>11   | 180<br>281<br>228 1<br>136 | 3.03<br>8.57<br>7.15<br>13.80<br>7.49<br>7.38 | <10<br><10<br><10<br><10<br><10<br><10 | 0.89<br>2.36<br>1.71<br>0.40<br>3.92<br>3.63 | 402<br>1291<br>1015<br>2181<br>955<br>1767 | <1<br>3<br><1<br>8<br><1<br>2    | 0.04<br>0.02<br>0.04<br><.01<br>0.03<br>0.03 | 17<br>8<br>9<br>14<br>4<br>3    | 450<br>2310<br>2080<br>860<br>2290<br>2250 | <2<br><2<br><2<br>24<br><2<br><2 | <5<br><5<br><5<br><5<br><5<br><5 | <20<br><20<br><20<br>20<br><20<br><20  | 8<br>55<br>47<br>16<br>24<br>83 | 0.13<br>0.18<br>0.27<br>0.18<br>0.36<br>0.27 | <10<br><10<br><10<br><10<br><10<br><10 | 82<br>273<br>319<br>58<br>347<br>207 | <10<br><10<br><10<br><10<br><10<br><10 | 4<br>5<br><1<br>9<br>11  | 23<br>69<br>71<br>615<br>63<br>83 |
| <b>QC/DATA</b><br><b>Resplit:</b><br>RS/1<br>RS/36          | :<br>D96- 017<br>A96- 61                                       | 5<br>740                             | <.2<br>3.0                             | 1.78<br>0.94                                 | <5<br>110                              | 115<br>40                          | <5<br><5                      | 1. <b>44</b><br>0.13                         | <1<br><1                      | 16<br>47                         | 101<br>181                          |                            | 4.15<br>4.61                                  | <10<br><10                             | 1.77<br>0.46                                 | 640<br>368                                 | <1<br>20                         | 0.02<br><.01                                 | 34<br>17                        | 1130<br>580                                | 4                                | <5<br><5                         | <20<br><20                             | 62<br>4                         | 0.16<br><.01                                 | <10<br><10                             | 69<br>27                             | <10<br><10                             | 9<br><1                  | 107<br>13                         |
| Repeat:<br>1<br>10<br>19<br>36<br>45<br>Standard:<br>GEO'96 | D96- 017<br>D96- 026<br>D96- 035<br>A96- 61<br>A96- 70         | <5<br><5<br>>1000<br>700<br>-<br>140 | 0.2<br><.2<br>2.0<br>3.0<br><.2<br>1.2 | 1 80<br>3.02<br>0.54<br>0.91<br>3.70<br>2.00 | <5<br><5<br>610<br>100<br><5<br>60     | 110<br>70<br>50<br>40<br>45<br>165 | <5<br>5<br><5<br>5<br>10      | 1.47<br>1.72<br>0.15<br>0.13<br>1.05<br>2.05 | <1<br><1<br><1<br><1<br><1    | 16<br>39<br>45<br>46<br>38<br>21 | 101<br>48<br>114<br>168<br>21<br>73 | 114<br>165 1<br>62<br>138  | 4.23<br>7.04<br>10.70<br>4.37<br>7.42<br>4.02 | <10<br><10<br><10<br><10<br><10        | 1.79<br>2.99<br>0.19<br>0.44<br>3.94         | 646<br>856<br>128<br>366<br>950<br>781     | <1<br><1<br>32<br>20<br><1<br><1 | 0.02<br>0.04<br><.01<br><.01<br>0.03<br>0.02 | 33<br>20<br>23<br>13<br>5<br>20 | 1140<br>1600<br>540<br>590<br>2280<br>710  | 6<br><2<br>10<br>4<br><2<br>20   | <5<br><5<br><5<br><5<br><5<br><5 | <20<br><20<br><20<br><20<br><20<br><20 | 56<br>52<br>5<br>3<br>24<br>71  | 0.17<br>0.34<br><.01<br><.01<br>0.36<br>0.16 | <10<br><10<br>10<br><10<br><10         | 70<br>258<br>24<br>25<br>348<br>80   | <10<br><10<br><10<br><10<br><10<br><10 | 8<br><1<br><1<br>9<br>5  | 110<br>63<br>10<br>13<br>62<br>76 |

df/5063r XLS/95Teuton ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

11-Jul-96

#### ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway

KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax 604-573-4557 ICP CERTIFICATE OF ANALYSIS - AS 96-5063

#### TEUTON RESOURCES CORPORATION

509-675 W HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

Sample received in Kamloops, July 1996 PROJECT #: None Given SHIPMENT #: 3 P.O.#: Samples submitted by: Teuton

| Et #.  | Tag #     | Au(ppb)    | Ag    | AI %    | As     | Ba  | Bi | Ca %  | Cd | Co    | Cr     | Cu     | Fe %  | La      | Mg %    | Mn   | Mo | Na % | Ni | P    | Pb | Sb | Sn  | Sr  | Ti %   | U   | v     | w     | Y    | Zn  |
|--------|-----------|------------|-------|---------|--------|-----|----|-------|----|-------|--------|--------|-------|---------|---------|------|----|------|----|------|----|----|-----|-----|--------|-----|-------|-------|------|-----|
| 1      | D96- 017  | <5         | <.2   | 1.79    | <5     | 110 | <5 | 1.44  | <1 | 16    | 98     | 60     | 4.16  | <10     | 1.80    | 639  | <1 | 0.02 | 33 | 1120 | 6  | <5 | <20 | 57  | 0.15   | <10 | 69    | <10   | 8    | 106 |
| 2      | D96-018   | <5         | <.2   | 0.86    | <5     | <5  | <5 | 5.58  | <1 | 4     | 173    | 4      | 0.96  | <10     | 0.27    | 982  | 2  | 0.01 | 8  | 340  | 2  | <5 | <20 | 194 | 0.05   | <10 | 30    | <10   | 2    | 27  |
| 3      | D96-019   | <5         | 0.2   | 0.77    | <5     | <5  | <5 | > 15  | <1 | 10    | 206    | 34     | 1.12  | <10     | 1.14    | 954  | <1 | <.01 | 75 | 140  | <2 | 10 | <20 | 579 | 0.03   | <10 | 32    | <10   | <1   | 9   |
| 4      | D96- 020  | <5         | <.2   | 4.17    | <5     | 45  | 5  | 3.26  | 1  | 41    | 179    | 140    | 7.83  | <10     | 4.16    | 1210 | <1 | 0.04 | 94 | 1830 | <2 | <5 | <20 | 79  | 0.23   | <10 | 239   | <10   | 4    | 66  |
| 5      | D96- 021  | <5         | <.2   | 1.99    | <5     | 65  | 10 | 1.39  | 1  | 20    | 162    | 47     | 4.57  | <10     | 2.33    | 681  | <1 | 0.03 | 56 | 1510 | 6  | <5 | <20 | 52  | 0.34   | <10 | 192   | <10   | 15   | 176 |
| 6      | D96- 022  | <5         | <.2   | 1.88    | <5     | 85  | 5  | 1.07  | 1  | 16    | 149    | 66     | 4.83  | <10     | 1.83    | 672  | 3  | 0.04 | 38 | 1300 | 10 | <5 | <20 | 42  |        | <10 | 166   | <10   | 10   | 161 |
| 7      | D96- 023  | <5         | <.2   | 2.62    | <5     | 50  | 10 | 3.97  | <1 | 35    | 80     | 83     | 6.86  | <10     | 2.44    | 1158 | <1 | 0.04 | 25 | 2020 | <2 | <5 | <20 | 104 | 0.35   | <10 | 234   | <10   | 8    | 62  |
| 8      | D96- 024  | <5         | 0.4   | 1.72    | <5     | 85  | <5 | 0.21  | <1 | 11    | 78     | 58     | 4.09  | <10     | 1.42    | 262  | 7  | 0.02 | 35 | 1080 | 8  | <5 | <20 | 15  | <.01   | <10 | 60    | <10   | 2    | 86  |
| 9      | D96- 025  | <5         | <.2   | 3.03    | <5     | 105 | <5 | 4.43  | 1  | 31    | 83     | 102    | 7.76  | <10     | 3.04    | 1197 | 5  | 0.04 | 31 | 2300 | <2 | <5 | <20 | 124 | 0.02   | <10 | 268   | <10   | 3    | 95  |
| 10     | D96- 026  | <5         | <.2   | 3.01    | <5     | 70  | 10 | 1.70  | <1 | 39    | 48     | 114    | 7.13  | <10     | 2.99    | 858  | <1 | 0.04 | 20 | 1610 | <2 | <5 | <20 | 52  | 0.32   | <10 | 256   | <10   | 7    | 65  |
| 11     | D96- 027  | <5         | <.2   | 3.11    | <5     | 45  | 5  | 1.92  | <1 | 32    | 37     | 113    | 7.71  | <10     | 2.73    | 1150 | <1 | 0.07 | 18 | 1490 | <2 | <5 | <20 | 76  | 0.27   | <10 | 247   | <10   | 6    | 68  |
| 12     | D96- 028  | <5         | <.2   | 5.02    | <5     | 100 | 20 | 5.49  | 2  | 56    | 88     | 71     | 14.30 | <10     | 5.14    | 1578 | <1 | 0.01 | 23 | 1670 | <2 | <5 | <20 | 154 | 0.46   | <10 | 636   | <10   | 6    | 117 |
| 13     | D96- 029  | 15         | <.2   | 1.83    | <5     | 40  | <5 | 2.55  | 1  | 35    | 67     | 189    | 4.68  | <10     | 0.54    | 375  | 12 | 0.03 | 33 | 2000 | 4  | <5 | <20 | 36  | 0.16   | <10 | 89    | <10   | 5    | 27  |
| 14     | D96-030   | 210        | 0.8   | 5.09    | 8660   | 70  | 5  | 0.42  | <1 | 33    | 241    | 273    | > 15  | <10     | 2.71    | 1002 | 35 | < 01 | 25 | 1630 | <2 | <5 | <20 | 8   | 0.07   | <10 | 183   | <10   | <1   | 45  |
| 15     | D96- 031  | 20         | 2.8   | 3.29    | 80     | 65  | <5 | 0.76  | 1  | 98    | 102    | 471    | > 15  | <10     | 2.07    | 1178 | 25 | <.01 | 53 | 1810 | 10 | <5 | <20 | 12  | 0.16   | <10 | 145   | <10   | <1   | 41  |
| 16     | D96- 032  | 60         | 1.6   | 4.03    | 285    | 45  | <5 | 0.49  | <1 | 24    | 164    | 1177   | 10.90 | <10     | 3.12    | 1165 | 9  | <.01 | 15 | 1140 | 4  | <5 | <20 | 7   | 0.03   | <10 | 139   | <10   | <1   | 46  |
| 17     | D96- 033  | 60         | < 2   | 3.22    | 40     | 50  | <5 | 2.92  | <1 | 64    | 157    | 422    | 10.70 | <10     | 1.88    | 641  | 14 | 0.02 | 62 | 2370 | 24 | <5 | <20 | 20  | 0.23   | <10 | 181   | <10   | 1    | 51  |
| 18     | D96- 034  | 40         | 0.4   | 2.30    | 40     | 50  | <5 | 4.17  | <1 | 54    | 71     | 277    | 7.35  | <10     | 0.66    | 489  | 7  | 0 01 | 63 | 2190 | 20 | <5 | <20 | 42  | 0.11   | <10 | 54    | <10   | 1    | 39  |
| 19     | D96-035   | >1000      | 2.0   | 0.52    | 605    | 40  | 10 | 0.14  | <1 | 44    | 108    | 170    | 10.30 | <10     | 0.19    | 124  | 30 | < 01 | 18 | 580  | 12 | <5 | <20 | З   | <.01   | 20  | 23    | <10   | <1   | 10  |
| 20     | D96- 036  | 630        | 1.4   | 0.14    | 535    | 45  | 10 | 0.02  | <1 | 29    | 138    | 68     | 12.80 | <10     | <.01    | 21   | 23 | < 01 | 20 | <10  | 4  | <5 | <20 | 2   | <.01   | 20  | 6     | <10   | <1   | 7   |
| 21     | D96- 037  | >1000      | >30   | 1.65    | >10000 | 90  | <5 | 0.04  | <1 | 276   | 62     | >10000 | > 15  | <10     | 1.02    | 395  | 25 | <.01 | 34 | <10  | 22 | <5 | <20 | 3   | 0.02   | 40  | 114   | <10   | <1   | 57  |
| 22     | A96-47    | 20         | 0.6   | 0.96    | 75     | 25  | <5 | 10.10 | 1  | 17    | 143    | 101    | 2.97  | <10     | 0.93    | 1543 | 6  | 0.02 | 43 | 630  | 20 | <5 | <20 | 338 | 0.05   | <10 | 141   | <10   | 11   | 149 |
| 23     | A96-48    | 5          | <.2   | 1.70    | 65     | 45  | <5 | 6.12  | <1 | 25    | 98     | 103    | 4.99  | <10     | 1 45    | 1059 | <1 | 0.07 | 35 | 1760 | 2  | <5 | <20 | 133 | 0.16   | <10 | 150   | <10   | 4    | 38  |
| 24     | A96-49    | <5         | <.2   | 1.69    | 5      | 70  | <5 | 1.88  | 1  | 28    | 80     | 145    | 5.74  | <10     | 1.57    | 814  | 7  | 0.04 | 23 | 2150 | 8  | <5 | <20 | 55  | 0.31   | <10 | 199   | <10   | 11   | 45  |
| 25     | A96- 50   | <5         | 0.6   | 1.51    | <5     | 90  | <5 | 0.41  | 1  | 16    | 81     | 65     | 3.53  | <10     | 1.67    | 613  | <1 | 0.01 | 34 | 980  | 12 | 15 | <20 | 29  | 0.15   | <10 | 51    | <10   | 7    | 101 |
| TEUTON | RESOURCES | CORPORATIO | ON AS | 96-506: | 3      |     |    |       | 1  | CP CE | RTIFIC | ATE OF | ANALY | SIS - A | S 96-50 | 63   |    |      |    |      |    |    |     |     | ECO-TE |     | BORAT | ORIES | LTD. |     |
|        |           |            |       |         |        |     |    |       |    |       |        |        |       |         |         |      |    |      |    |      |    |    |     |     |        |     |       |       |      |     |
| Et #.  | Tag #     | Au(ppb)    | Ag    | AI %    | As     | Ba  | Bi | Ca %  | Cd | Co    | Cr     | Cu     | Fe %  | La      | Mg %    | Mn   | Mo | Na % | Ni | P    | Pb | Sb | Sn  | Sr  | TI %   | U   | V     | w     | Y    | Zn  |

| Et #. | Tag #    | Au(ppb) | Ag  | AI % | As     | Ba  | Bi | Ca % | Cd | Co  | Cr  | Cu Fe    | % La   | Mg % | Mn   | Mo | Na % | Ni | ٩      | Pb | SD | Sn  | 5r | TI % | U   | V   | W   | Y  | Zn |
|-------|----------|---------|-----|------|--------|-----|----|------|----|-----|-----|----------|--------|------|------|----|------|----|--------|----|----|-----|----|------|-----|-----|-----|----|----|
| 26    | A96- 51  | <5      | < 2 | 0.75 | <5     | 55  | <5 | 1.10 | <1 | 11  | 97  | 32 2.9   | 93 <10 | 0.54 | 341  | <1 | 0 04 | 10 | 650    | 18 | <5 | <20 | 33 | 0.20 | <10 | 48  | <10 | 12 | 63 |
| 27    | A96-52   | 5       | < 2 | 4.22 | <5     | 60  | <5 | 4.70 | 2  | 40  | 101 | 299 9.3  | 31 <10 | 2.49 | 759  | 2  | 0.02 | 38 | 2140   | 10 | <5 | <20 | 44 | 0.33 | <10 | 242 | <10 | <1 | 37 |
| 28    | A96- 53  | 5       | <.2 | 3.62 | <5     | 50  | 10 | 1.23 | <1 | 37  | 55  | 77 7.4   | 40 <10 | 4.08 | 1099 | <1 | 0.07 | 25 | 1670   | <2 | <5 | <20 | 66 | 0.31 | <10 | 292 | <10 | 8  | 81 |
| 29    | A96- 54  | <5      | <.2 | 3.23 | <5     | 85  | <5 | 2.12 | <1 | 39  | 33  | 104 7.1  | 76 <10 | 2.55 | 808  | <1 | 0.07 | 24 | 1590   | 2  | <5 | <20 | 97 | 0.31 | <10 | 267 | <10 | 3  | 71 |
| 30    | A96-55   | 10      | <.2 | 2.10 | <5     | 105 | <5 | 1.04 | 1  | 26  | 41  | 75 7.3   | 26 <10 | 2.24 | 929  | <1 | 0.03 | 7  | 2030   | 6  | <5 | <20 | 34 | 0.39 | <10 | 299 | <10 | 7  | 60 |
|       |          |         |     |      |        |     |    |      |    |     |     |          |        |      |      |    |      |    |        |    |    |     |    |      |     |     |     |    |    |
| 31    | A96- 56  | >1000   | >30 | 0.35 | >10000 | 105 | <5 | 0.03 | <1 | 324 | 34  | >10000 > | 15 <10 | 0.01 | 25   | 32 | < 01 | 21 | >10000 | <2 | <5 | 80  | 17 | <.01 | 30  | 44  | <10 | <1 | 99 |
| 32    | A96-57   | 20      | 0.2 | 4.78 | 170    | 65  | 15 | 0.48 | <1 | 45  | 99  | 70 11.9  | 90 <10 | 3.74 | 2543 | 7  | <.01 | 23 | 1810   | <2 | <5 | <20 | 11 | 0.05 | <10 | 173 | <10 | <1 | 53 |
| 33    | A96-58   | 85      | 0.4 | 0.09 | 495    | 30  | <5 | 0.01 | <1 | 10  | 194 | 109 4.1  | 57 <10 | < 01 | 63   | 11 | < 01 | 6  | 170    | <2 | <5 | <20 | 2  | < 01 | <10 | 9   | <10 | <1 | 3  |
| 34    | A96 - 59 | >1000   | 84  | 1 04 | 1080   | 45  | <5 | 0 06 | <1 | 43  | 159 | 984 11.  | 70 <10 | 0 75 | 469  | 15 | < 01 | 11 | <10    | 4  | <5 | <20 | 2  | < 01 | 10  | 61  | <10 | <1 | 35 |
| 35    | A96-60   | 260     | 0.4 | 0.35 | 340    | 45  | 10 | 0.04 | <1 | 48  | 165 | 38 7.9   | 99 <10 | 0.16 | 257  | 16 | <.01 | 9  | 130    | <2 | <5 | <20 | 5  | <.01 | <10 | 16  | <10 | <1 | 7  |
|       |          |         |     |      |        |     |    |      |    |     |     |          |        |      |      |    |      |    |        |    |    |     |    |      |     |     |     |    |    |
| 36    | A96-61   | 700     | 2.8 | 0.91 | 105    | 40  | <5 | 0.13 | <1 | 46  | 169 | 63 4.3   | 38 <10 | 0.44 | 369  | 20 | <.01 | 14 | 590    | 4  | <5 | <20 | 4  | <.01 | <10 | 25  | <10 | <1 | 13 |
|       |          |         |     |      |        |     |    |      |    |     |     |          | Page 1 |      |      |    |      |    |        |    |    |     |    |      |     |     |     |    |    |

#### Values in ppm unless otherwise reported

# CERTIFICATE OF ASSAY AS 96-5072

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

### ATTENTION: DINO CREMONESE

No. of samples received: 73 PROJECT #: Clone SHIPMENT #: None given Samples submitted by: Not indicated

|        |          | Au    | Au     | As   | Co    |
|--------|----------|-------|--------|------|-------|
| ET #.  | Tag #    | (g/t) | (oz/t) | (%)  | (%)   |
| 12     | D-96-049 | 3.91  | 0.114  |      |       |
| - 13   | D-96-050 | 19.09 | 0.557  | -    | -     |
| 14     | D-96-051 | 12.71 | 0.371  | -    | -     |
| 15     | D-96-052 | 21.84 | 0.637  | -    | -     |
| 16     | D-96-053 | 13.69 | 0.399  | -    | -     |
| 17     | D-96-054 | 12.38 | 0.361  | -    | -     |
| 18     | D-96-055 | 16.63 | 0.485  | -    | -     |
| 19     | D-96-056 | 1.69  | 0.049  |      |       |
| 20     | D-96-057 | 28.60 | 0.834  | -    | -     |
| 21     | D-96-058 | 9.99  | 0.291  | -    | -     |
| 22     | D-96-059 | 6.22  | 0.181  | -    | -     |
| 23     | D-96-060 | 7.10  | 0.207  | -    | -     |
| 27     | D-96-064 | 1.72  | 0.050  | 1.14 | -     |
| 53     | D-96-093 | 1.75  | 0.051  | 2.88 | -     |
| 64     | D-96-104 | 16.95 | 0.494  | 6.10 | 0.420 |
| QC/DA  | TA:      |       |        |      |       |
| Standa | rd:      |       |        |      |       |
| STD-M  |          | 3.26  | 0.095  | -    | -     |
| CD-1   |          | -     | -      | 0.66 | -     |
| Sula   |          | -     | -      | -    | 0.041 |

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

KLS/96Teuton

22-Jul-96

22-Jul-96

### ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway KAMLOOPS, B C. V2C 6T4

Phone: 604-573-5700 Fax: : 604-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS - AS-5072

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B C.

V6C 1N2

#### ATTENTION: DINO CREMONESE

No. of samples received; 73 PROJECT #: Clone SHIPMENT #.None given Samples submitted by: Not indicated

| Et # | Tag #    | Au(ppb) | Ag    | AI % | As   | Ba  | Bi | Ca % | Cd | Co  | Cr  | Cu              | Fe % | La  | Mg %  | Mn   | Мо | Na %   | Ni | Р    | РЬ  | Sb | Sn  | Sr  | Ti %  | U   | v   | w    | Y  | Zn  |
|------|----------|---------|-------|------|------|-----|----|------|----|-----|-----|-----------------|------|-----|-------|------|----|--------|----|------|-----|----|-----|-----|-------|-----|-----|------|----|-----|
| 1    | D-96-038 | 5       | <0.2  | 1.44 | <5   | 20  | <5 | 1.73 | <1 | 21  | 118 | 54              | 2.32 | <10 | 0.91  | 530  | <1 | 0.03   | 9  | 1760 | 20  | <5 | <20 | 22  | 0.19  | <10 | 101 | <10  | 5  | 28  |
| 2    | D-96-039 | 5       | <0 2  | 1.22 | <5   | 30  | <5 | 3.37 | <1 | 13  | 104 | 8               | 3.30 | <10 | 0.66  | 913  | 2  | 0.03   | 9  | 860  | <2  | <5 | <20 | 77  | 0.06  | <10 | 129 | <10  | <1 | 23  |
| 3    | D-96-040 | 5       | <0.2  | 0.56 | <5   | 10  | <5 | 1.65 | <1 | 7   | 123 | 11              | 1.43 | <10 | 0.48  | 348  | 2  | <0.01  | 5  | 410  | <2  | <5 | <20 | 30  | 0.04  | <10 | 50  | <10  | <1 | 12  |
| 4    | D-96-041 | 5       | <0.2  | 3.32 | <5   | 60  | 5  | 0.59 | 2  | 31  | 23  | 83              | 8.86 | <10 | 3.70  | 1524 | 2  | 0.02   | 11 | 2160 | <2  | <5 | <20 | 14  | 0,16  | <10 | 336 | <10  | <1 | 61  |
| 5    | D-96-042 | 5       | <0.2  | 3.32 | <5   | 40  | <5 | 1.08 | 15 | 45  | 25  | 154             | >10  | <10 | 3.25  | 1562 | 3  | 0.02   | 12 | 2040 | 2   | <5 | <20 | 22  | 0.21  | <10 | 296 | <10  | <1 | 975 |
| ~    | 0 00 040 |         | .0.2  | ~ ~  | .5   | 25  |    | 4.05 |    | 40  | ~ ~ |                 |      |     |       |      |    |        |    |      |     | _  |     |     |       |     |     |      |    |     |
| 5    | D-96-043 | _       | < 0.2 |      | <5   | 35  | <5 |      | 1  | 49  | 31  | 209             | 8.32 | <10 |       | 1224 | <1 | 0.00   | 13 |      | <2  | <5 | <20 | 21  | 0.25  | <10 | 275 | <10  | 4  | 91  |
|      | D-96-044 | 5       | <0.2  | 1.50 | <5   | 35  | <5 | 0.91 | 5  | 31  | 23  | 138             | 6.67 | <10 | 1.33  | 589  | 2  |        | 8  | 2230 | 74  | <5 | <20 | 14  | 0.20  | <10 | 229 | <10  | 3  | 212 |
| 8    | D-96-045 | 190     | 3.0   | 0.21 | 445  | 50  | <5 | 2.82 | <1 | 64  | 97  | 61              | 7.45 | <10 | 0.69  | 1059 |    | < 0.01 | 14 | 590  | 36  | <5 | <20 |     | <0.01 | <10 | 14  | <10  | <1 | 23  |
| 9    | D-96-046 | 135     | 4.8   |      | 270  | 60  | <5 | 0.90 | <1 | 103 | 62  | 691             | >10  | <10 | 1.37  | 464  |    | <0.01  | 52 | 70   | 46  | <5 | <20 | 9   | 0.02  | 30  | 114 | <10  | <1 | 26  |
| 10   | D-96-047 | 690     | 11.4  | 0.71 | 1525 | 50  | 5  | 1.06 | <1 | 85  | 31  | 86              | >10  | <10 | 0.30  | 451  | 16 | <0.01  | 59 | 620  | 106 | <5 | <20 | 13  | <0.01 | 20  | 28  | <10  | <1 | 41  |
| 11   | D-96-048 | 795     | 9.8   | 1.00 | 1725 | 50  | 15 | 1.01 | <1 | 82  | 57  | 44              | >10  | <10 | 0.39  | 479  | 16 | <0.01  | 64 | 490  | 112 | <5 | <20 | 11  | <0.01 | 20  | 28  | < 10 | <1 | 22  |
| 12   | D-96-049 | >1000   | 2.8   | 0.48 |      | 45  | 15 | 1.03 | <1 | 127 | 75  | 182             | >10  | <10 | 0.20  | 216  |    | <0.01  | 8  | 220  | 6   | <5 | <20 |     | <0.01 | 10  | 20  | <10  | <1 | 16  |
| 13   | D-96-050 | >1000   | 3.4   | 0.10 |      | 40  | <5 | 0.06 | <1 | 61  | 88  | 274             | >10  |     | <0.01 | 60   |    | <0.01  | 5  | <10  | 12  | <5 | <20 |     | <0.01 | 30  | 3   | <10  | <1 | 15  |
| 14   | D-96-051 | >1000   | 24    | 0.39 | 1930 | 50  | <5 | 0.63 | <1 | 89  | 66  | 296             | >10  | <10 |       | 205  |    | <0.01  | 4  | <10  | 6   | <5 | <20 |     | <0.01 | 20  | 7   | <10  | <1 | 14  |
| 15   | D-96-052 | >1000   | 8.6   |      |      | 45  | <5 | 3.34 | <1 | 80  | 71  | 1949            | >10  | <10 |       | 511  |    | <0.01  | 6  | <10  | 16  | <5 | <20 |     | <0.01 | <10 | 5   | <10  | <1 | 12  |
|      |          |         |       |      |      |     | -  |      |    |     | • • |                 |      |     |       | •••• |    | 0.01   | Ŭ  |      |     |    | -10 | 00  | -0.01 |     |     |      |    | 12  |
| 16   | D-96-053 | >1000   | 3.0   | 0.08 | 1925 | 40  | <5 | 0.32 | <1 | 76  | 70  | 361             | >10  | <10 | <0.01 | 68   | 15 | <0.01  | 4  | <10  | 10  | <5 | <20 | 4   | <0.01 | 30  | 2   | <10  | <1 | 9   |
| 17   | D-96-054 | >1000   | 5.0   | 0.73 | 1660 | 45  | <5 | >10  | <1 | 88  | 51  | 1478            | >10  | <10 | 0.49  | 2202 | 15 | <0.01  | 16 | <10  | 18  | <5 | <20 | 158 | <0.01 | <10 | 11  | <10  | <1 | 24  |
| 18   | D-96-055 | >1000   | 4.2   | 0.33 | 2495 | 115 | <5 | 0.35 | <1 | 53  | 55  | 483             | >10  | <10 | <0.01 | 189  | 78 | < 0.01 | 11 | 750  | 6   | <5 | <20 | 8   | <0.01 | 40  | 19  | <10  | <1 | 31  |
| 19   | D-96-056 | >1000   | 8.4   | 0.84 | 1640 | 50  | 40 | 0.49 | <1 | 86  | 43  | 89              | >10  | <10 | 0.20  | 316  | 20 | < 0.01 | 77 | 570  | 74  | <5 | <20 | 7   | <0.01 | 20  | 18  | <10  | <1 | 18  |
| 20   | D-96-057 | >1000   | 16.0  | 0 06 | 1465 | 45  | <5 | 0.04 | <1 | 96  | 70  | 1792            | >10  | <10 | <0.01 | 4    | 25 | <0.01  | 9  | <10  | 12  | <5 | <20 | 1   | <0.01 | 30  | 3   | <10  | <1 | 14  |
|      |          |         |       |      |      |     |    |      |    |     |     |                 |      |     |       |      |    |        |    |      |     |    |     |     |       |     |     |      |    |     |
| 21   | D-96-058 | >1000   | 5.4   | 0.63 | 600  | 50  | <5 |      | <1 | 46  | 94  | 1831            | >10  | <10 |       | 456  |    | <0.01  | 33 | 2050 | 4   | <5 | <20 | 45  | <0.01 | <10 | 25  | <10  | <1 | 16  |
| 22   | D-96-059 | >1000   | 4.4   | 0.53 | 1840 | 45  |    |      | <1 | 18  | 85  | 234             | >10  | <10 | 0.17  | 113  |    | <0.01  | 36 | 380  | 16  | <5 | <20 | 4   | <0.01 | 20  | 21  | <10  | <1 | 18  |
| 23   | D-96-060 | >1000   | 7.0   | 0.10 | 1170 | 40  | <5 | 0.02 | <1 | 29  | 82  | 464             | >10  |     | <0.01 | 6    | 17 | <0.01  | 8  | <10  | 2   | <5 | <20 |     | <0.01 | 20  | 3   | <10  | <1 | 12  |
| 24   | D-96-061 | 585     | 1.2   | 1.43 | 75   | 45  | <5 | 1.40 | <1 | 58  | 91  | 182             | >10  | <10 | 0.86  | 539  | 7  | 0.03   | 52 | 2490 | 34  | <5 | <20 | 27  | 0.10  | <10 | 84  | <10  | <1 | 40  |
| 25   | D-96-062 | 145     | 0.6   | 1.66 | 5    | 55  | <5 | 2.60 | <1 | 49  | 72  | 16 <del>9</del> | 7.64 | <10 | 0.71  | 419  | 5  | 0.02   | 46 | 2650 | 48  | <5 | <20 | 16  | 0.12  | <10 | 76  | <10  | <1 | 61  |
|      |          |         |       |      |      |     |    |      |    |     |     |                 |      |     |       |      |    |        |    |      |     |    |     |     |       |     |     |      |    |     |

**TEUTON RESOURCES CORPORATION** 

ICP CERTIFICATE OF ANALYSIS - AS-5072

| Et #. | Tag 🛎    | Au(ppb) | Ag   | Ał % | As    | Ba | Bł | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn          | Mo | Na %  | Ni | P    | Pb  | Sb | Sn  | Sr  | Ti %  | U   | v   | w   | Y  | Zn  |
|-------|----------|---------|------|------|-------|----|----|------|----|----|-----|------|------|-----|------|-------------|----|-------|----|------|-----|----|-----|-----|-------|-----|-----|-----|----|-----|
| 26    | D-96-063 | 95      | <0.2 | 1.95 | 30    | 35 | <5 | 2.42 | <1 | 39 | 107 | 123  | 9.87 | <10 | 2.00 | 638         | 5  | 0.02  | 32 | 2160 | 44  | <5 | <20 | 27  | 0.19  | <10 | 249 | <10 | <1 | 84  |
| 27    | D-96-064 | >1000   | 4.8  | 0.29 | 10000 | 40 | <5 | 1.11 | <1 | 48 | 96  | 295  | >10  | <10 | 0.08 | 308         | 18 | <0.01 | 14 | 320  | 376 | <5 | <20 | 41  | <0.01 | <10 | 12  | <10 | <1 | 21  |
| 28    | D-96-065 | 195     | 0.2  | 1.62 | 230   | 50 | <5 | 0.52 | <1 | 81 | 42  | 238  | >10  | <10 | 0.98 | 569         | 30 | 0.02  | 43 | 1420 | 16  | <5 | <20 | 21  | 0.09  | <10 | 104 | <10 | <1 | 36  |
| 29    | D-96-066 | 405     | 8.0  | 0.61 | 185   | 40 | <5 | 0.34 | <1 | 17 | 89  | 239  | >10  | <10 | 0.31 | 267         | 15 | <0.01 | 14 | 550  | 96  | <5 | <20 | 5   | <0.01 | <10 | 14  | <10 | <1 | 137 |
| 30    | D-96-067 | 225     | 5.8  | 2.81 | 650   | 55 | <5 | 0.77 | <1 | 32 | 130 | 5825 | 8.80 | <10 | 1.98 | 1542        | 8  | <0.01 | 39 | 2630 | 12  | <5 | <20 | 15  | 0.01  | <10 | 138 | <10 | <1 | 89  |
|       |          |         |      |      |       |    |    |      |    |    |     |      |      |     |      |             |    |       |    |      |     |    |     |     |       |     |     |     |    |     |
| 31    | D-96-068 | 165     | 06   | 0.43 | 605   | 20 | <5 | 5.16 | <1 | 30 | 94  | 186  | 5.27 | <10 | 0.30 | 874         | 4  | <0.01 | 15 | 890  | 10  | <5 | <20 | 45  | 0.06  | <10 | 22  | <10 | <1 | 16  |
| 32    | D-96-072 | 10      | 0.8  | 1.87 | 15    | 25 | <5 | 3.22 | <1 | 38 | 51  | 115  | 7.59 | <10 | 0.77 | 414         | 5  | 0.14  | 39 | 2130 | 30  | <5 | <20 | 109 | 0.09  | <10 | 59  | <10 | <1 | 36  |
| 33    | D-96-073 | 25      | 08   | 1.42 | 15    | 40 | <5 | 2.22 | <1 | 86 | 93  | 334  | >10  | <10 | 0.95 | 496         | 9  | 0.01  | 83 | 2120 | 40  | <5 | <20 | 24  | 0.09  | <10 | 104 | <10 | <1 | 40  |
| 34    | D-96-074 | 15      | 0.4  | 2.54 | 10    | 25 | <5 | 3.14 | <1 | 26 | 34  | 124  | 6.20 | <10 | 0.54 | 429         | 3  | 0.17  | 23 | 3610 | 28  | <5 | <20 | 175 | 0.09  | <10 | 56  | <10 | 2  | 43  |
| 35    | D-96-075 | 5       | <0.2 | 1.25 | <5    | 30 | <5 | 2.15 | <1 | 38 | 92  | 87   | 6.19 | <10 | 0.75 | 400         | 2  | 0.02  | 37 | 2290 | 20  | <5 | <20 | 27  | 0.17  | <10 | 89  | <10 | 2  | 41  |
|       |          |         |      |      |       |    |    |      |    |    |     |      |      |     |      |             |    |       |    |      |     |    |     |     |       |     |     |     |    |     |
| 36    | D-96-076 | 20      | 0.4  | 2.64 | 5     | 35 | <5 | 1.94 | <1 | 48 | 79  | 263  | 7.66 | <10 | 1.45 | 67 <b>3</b> | 2  | 0.21  | 39 | 1490 | 8   | <5 | <20 | 155 | 0.20  | <10 | 102 | <10 | <1 | 29  |
| 37    | D-96-077 | 155     | <0.2 | 1.51 | 45    | 30 | <5 | 1.66 | <1 | 35 | 77  | 115  | 6.15 | <10 | 1.25 | 382         | 6  | 0.04  | 34 | 1780 | 8   | <5 | <20 | 34  | 0.22  | <10 | 130 | <10 | 3  | 28  |
|       |          |         |      |      |       |    |    |      |    |    |     |      |      |     | Page | 91          |    |       |    |      |     |    |     |     |       |     |     |     |    |     |

|             | 38           | D-96-078   | 75    |      | 1 98 | 15    | 25 | <5 | 2 18 | <1 | 31  | 90  | 121 | 6.33 | <10 | 1 52 | 516  | 3  | 0 03  | 30 | 1780 | 10 | <5 | <20 | 30  | 0 22  | <10          | 149 | <10  | 2  | <b>4</b> 8 |
|-------------|--------------|------------|-------|------|------|-------|----|----|------|----|-----|-----|-----|------|-----|------|------|----|-------|----|------|----|----|-----|-----|-------|--------------|-----|------|----|------------|
|             | .353         | O 96 079   | 10    | -02  | 1 97 | ~5    | 30 | ·5 | 179  | <1 | 35  | 55  | 164 | 6 87 | <10 | 1 57 | 541  | 1  | 0.09  | 24 | 2780 | 6  | ~5 | <20 | 77  | 0 19  | - 10         | 158 | < 10 | 4  | 48         |
|             | 40           | D-96 080   | 25    | <0.2 | 1 65 | <5    | 45 | <5 | 1.18 | <1 | 48  | 82  | 256 | 8.79 | <10 | 1.42 | 525  | 2  | 0 07  | 39 | 2080 | 4  | <5 | <20 | 53  | 0.21  | <10          | 137 | <10  | 1  | 27         |
|             |              |            |       |      |      |       |    |    |      |    |     |     |     |      |     |      |      |    |       |    |      |    |    |     |     |       |              |     |      |    |            |
|             | 41           | D-96-081   | 10    | <0.2 | 2 18 | 25    | 35 | <5 | 1.90 | <1 | 36  | 59  | 191 | 6.78 | <10 | 1.98 | 675  | 11 | 0 05  | 23 | 2690 | 6  | <5 | <20 | 61  | 0.20  | <10          | 177 | <10  | 4  | 40         |
|             | 42           | D-96-082   | 5     | <0 2 | 1 63 | <5    | 35 | <5 | 2.39 | <1 | 33  | 58  | 121 | 5.55 | <10 | 1.65 | 503  | <1 | 0.04  | 24 | 2710 | 6  | <5 | <20 | 60  | 0 22  | <10          | 165 | <10  | 4  | 39         |
|             | 43           | D-96-083   | 10    | <0 2 | 1 77 | <5    | 30 | <5 | 2.04 | <1 | 37  | 74  | 176 | 5.76 | <10 | 1.39 | 447  | 12 | 0.08  | 33 | 2360 | 4  | <5 | <20 | 80  | 0.22  | <10          | 132 | <10  | 3  | 30         |
|             | 44           | D-96-084   | 15    | <0.2 |      | <5    | 30 | <5 | 2.00 | <1 | 47  | 97  | 170 | 8.12 | <10 | 1.25 | 549  | 5  | 0.07  | 64 | 2760 | 2  | <5 | <20 | 63  | 0.17  | <10          | 125 | <10  | <1 | 45         |
|             | 45           | D-96-085   |       | <02  | 2.34 | <5    | 40 | <5 | 2.21 | 2  | 38  | 74  | 138 | 7.12 | <10 | 0.95 | 442  | 2  | 0.19  | 51 | 2760 | 10 | <5 | <20 | 142 | 0.16  | <10          | 88  | <10  | 1  | 90         |
|             | 40           | D-30-003 🛲 | 1 1   | -02  | 2.54 | -0    | 40 | -0 | 2.21 | -  | 50  | , , | 150 | 1.12 | ~10 | 0.35 | 442  | -  | 0.15  | 51 | 2700 | 10 |    | ~20 | 142 | 0.10  | - 10         | 00  | -10  | •  | 30         |
|             | 46           | D-96-086 🛰 | Λ.    | <0 2 | 2.06 | -5    | 40 | <5 | 2.55 | <1 | 37  | 121 | 122 | 6.00 | <10 | 1.31 | 349  | -1 | 0.03  | 53 | 2700 | 6  | <5 | <20 | 32  | 0.22  | <10          | 127 | <10  | 3  | 32         |
|             | 46           |            |       |      |      | <5    |    |    |      |    |     |     | 133 |      |     |      |      | <1 |       |    |      | -  |    | _   |     |       |              |     |      | 3  |            |
|             | 47           | D-96-087   | 5     | <0 2 | 1 20 | 20    | 30 | <5 | 2.83 | <1 | 26  | 56  | 120 | 4.99 | <10 | 0.64 | 434  | 3  | 0 03  | 23 | 1890 | 8  | <5 | <20 | 62  | 0.14  | <10          | 116 | <10  | 4  | 28         |
|             | 48           | D-96-088   | 5     | <0.2 |      | <5    | 30 | <5 | 1.74 | <1 | 24  | 42  | 101 | 4.95 | <10 | 0.77 | 348  | 2  | 0.04  | 20 | 1970 | 12 | <5 | <20 | 49  | 0.15  | < <b>1</b> 0 | 97  | <10  | 3  | 27         |
|             | 49           | D-96-089   | 5     | <0 2 | 2,70 | 30    | 25 | <5 | 2.38 | <1 | 36  | 71  | 119 | 4.97 | <10 | 0.82 | 343  | 20 | 0 26  | 40 | 1850 | 26 | <5 | <20 | 197 | 0.18  | <10          | 78  | <10  | 2  | 30         |
|             | 50           | D-96-090   | 5     | <0.2 | 2.45 | 35    | 35 | <5 | 1.98 | <1 | 38  | 137 | 122 | 5.55 | <10 | 1 55 | 447  | <1 | 0.13  | 51 | 1840 | 8  | <5 | <20 | 96  | 0.22  | <10          | 142 | <10  | <1 | 42         |
|             |              |            |       |      |      |       |    |    |      |    |     |     |     |      |     |      |      |    |       |    |      |    |    |     |     |       |              |     |      |    |            |
|             | 51           | D-96-091   | 5     | <0 2 | 2 13 | 10    | 25 | <5 | 3.14 | <1 | 29  | 54  | 161 | 4.98 | <10 | 0.59 | 321  | 3  | 0 02  | 21 | 1940 | 24 | <5 | <20 | 27  | 0.14  | <10          | 77  | <10  | 2  | 34         |
|             | 52           | D-96-092   | 5     | <0.2 | 2.63 | 80    | 65 | <5 | 4.88 | <1 | 25  | 134 | 118 | 5.92 | <10 | 2.42 | 1056 | 4  | 0.02  | 34 | 1680 | 18 | <5 | <20 | 269 | 0.06  | <10          | 210 | <10  | 3  | 91         |
|             | <b>10</b> 52 | D-96-093   | >1000 | <0.2 |      | 10000 | 40 | 10 | 2.29 | <1 | 153 | 103 | 29  | 4.68 | <10 | 0.19 | 439  | 5  | <0.01 | 45 | 300  | Å  | 30 | <20 | 38  | <0.01 | <10          | 21  | <10  | <1 | 11         |
|             |              |            |       |      |      |       |    | <5 | 3.00 | <1 | 20  | 42  | 66  | 5.52 | <10 | 2.69 | 995  |    | 0.03  | 6  | 1310 | ~  | <5 | <20 | 21  | 0.27  | <10          | 166 | <10  | 7  | 70         |
|             | <b>b</b> 54  | D-96-094   | 5     | <0.2 | 3.95 | 190   | 35 |    |      |    |     |     |     |      |     |      |      | <1 |       |    |      | <2 |    | _   |     |       |              |     |      |    |            |
|             | • 55         | D-96-095   | 5     | <0.2 | 2 78 | 95    | 55 | <5 | 2.74 | <1 | 30  | 57  | 140 | 4.94 | <10 | 0.47 | 339  | 2  | 0.19  | 29 | 2140 | <2 | <5 | <20 | 113 | 0.13  | <10          | 61  | <10  | 2  | 30         |
| _ Q,0       | •            |            |       |      |      |       |    |    |      |    |     | _   |     |      |     |      | _    |    |       |    |      |    | _  |     |     |       |              |     |      | _  |            |
| N           |              | D-96-096   | 5     | 0.2  | 1.52 | 25    | 40 | <5 | 2.05 | <1 | 39  | 78  | 180 | 6.01 | <10 | 0.61 | 254  | 1  | 0.13  | 42 | 1970 | 8  | <5 | <20 | 79  | 0.16  | <10          | 102 | <10  | 3  | 40         |
| <i>\\</i> . | 57           | D-96-097   | 5     | 1.0  | 2.13 | 40    | 35 | <5 | 2.35 | <1 | 29  | 42  | 171 | 6.57 | <10 | 1.00 | 755  | 2  | 0.04  | 21 | 1650 | <2 | <5 | <20 | 38  | 0.12  | <10          | 113 | <10  | <1 | 80         |
| N           | 58           | D-96-098   | 5     | <0.2 | 1.59 | 20    | 30 | <5 | 1.68 | <1 | 26  | 45  | 149 | 5.29 | <10 | 1.03 | 388  | 7  | 0.03  | 22 | 1840 | 4  | <5 | <20 | 31  | 0.16  | <10          | 134 | <10  | 2  | 29         |
| 1,          | 59           | D-96-099 单 | 230   | 1.0  | 0.70 | 3535  | <5 | <5 | >10  | <1 | 21  | 50  | 99  | 4.25 | <10 | 0.91 | 4405 | 4  | <0.01 | 4  | 130  | <2 | <5 | <20 | 419 | 0.02  | <10          | 28  | <10  | 4  | 9          |
|             | 60           | D-96-100   | 20    | 0.6  | 0.43 | 625   | 45 | <5 | >10  | <1 | 12  | 84  | 365 | 6.29 | <10 | 0.44 | 2461 | 8  | <0.01 | 6  | 200  | <2 | <5 | <20 | 169 | <0.01 | <10          | 19  | <10  | <1 | 11         |
|             |              |            |       |      |      |       |    | -  | . –  |    | -   |     |     | -    |     |      |      |    |       | _  |      |    |    |     |     |       |              |     |      |    |            |
|             |              |            |       |      |      |       |    |    |      |    |     |     |     |      |     |      |      |    |       |    |      |    |    |     |     |       |              |     |      |    |            |

TEUTON RESOURCES CORPORATION

#### ICP CERTIFICATE OF ANALYSIS - AS-5072

| Et#.             | Tag #                | Au(ppb) | Ag   | AI % | As       | Ba       | Bi       | Ca % | Cd | Co   | Cr  | Cu  | Fe % | La  | Mg % | Mn   | Мо  | Na %  | Ni | P    | РЬ  | Sb | Sn  | Sr       | Ti %   | บ   | v   | w   | Y  | Zn |
|------------------|----------------------|---------|------|------|----------|----------|----------|------|----|------|-----|-----|------|-----|------|------|-----|-------|----|------|-----|----|-----|----------|--------|-----|-----|-----|----|----|
| 61               | D-96-101             | 5       | <0.2 | 2 04 | 20       | 40       | <5       | 2.49 | <1 | 33   | 116 | 129 | 5.28 | <10 | 1.28 | 360  | <1  | 0.05  | 44 | 2580 | <2  | <5 | <20 | 74       | 0.24   | <10 | 159 | <10 | 5  | 36 |
| 62               | D-96-102             | 5       | <0.2 | 5.67 | 25       | 40       | 5        | 2.87 | <1 | 26   | 20  | 75  | >10  | <10 | 5.15 | 1113 | 7   | 0.01  | 14 | 1970 | <2  | <5 | <20 | 71       | 0.04   | <10 | 363 | <10 | <1 | 57 |
| 63               | D-96-103             | 320     | <0.2 | 4 37 | 575      | 50       | <5       | 1.77 | <1 | 119  | 39  | 441 | >10  | <10 | 3.98 | 1150 | 16  | <0 01 | 7  | 1620 | <2  | <5 | <20 | 39       | 0.03   | <10 | 316 | <10 | <1 | 50 |
| 64               | D-96-104             | >1000   | 2.8  | 4 34 | 10000    | 70       | <5       | 0.37 | <1 | 3451 | 31  | 983 | >10  | <10 | 3.89 | 887  | 134 | <0.01 | 4  | 940  | 4   | <5 | <20 | 62       | 0.03   | <10 | 238 | <10 | <1 | 48 |
| 65               | D-96-105             | 120     | <0.2 | 4 58 | 515      | 40       | <5       | 3.22 | <1 | 78   | 15  | 38  | 7.83 | <10 | 4.54 | 970  | 5   | 0.02  | 13 | 2020 | <2  | <5 | <20 | 88       | 0.04   | <10 | 321 | <10 | 1  | 49 |
| 66               | D-96-106             | 255     | <0.2 |      | 200      | 45       | <5       | 3.85 | <1 | 168  | 35  | 141 | 9.35 | <10 | 5.63 | 1145 | 4   |       | 16 | 1830 | <2  | <5 | <20 | 90       | 0.11   | <10 | 337 | <10 | 2  | 46 |
| 67               | D-96-107             | 5       | <0.2 | 4.28 | 40       | 30       | <5       | 5.65 | <1 | 32   | 13  | 160 | 7.79 | <10 | 4.28 | 1048 | 2   | 0.02  | 12 |      | <2  | <5 | <20 | 135      | 0.16   | <10 | 275 | <10 | 4  | 40 |
| 68               | D-96-108             | 70      | <0.2 | 3 20 | 120      | 50       | <5       | 3.98 | <1 | 37   | 25  | 222 | 7.30 | <10 | 2.90 | 1014 | <1  | 0.02  | 7  | 2490 | <2  | <5 | <20 | 73       | 0.25   | <10 | 288 | <10 | 4  | 47 |
| 69               | D-96-109             | 110     | <0.2 | 3.85 | 165      | 55       | <5       | 2.24 | <1 | 38   | 16  | 433 | 8.88 | <10 | 3.78 | 1119 | 2   | 0.03  | 8  | 2440 | <2  | <5 | <20 | 47       | 0.24   | <10 | 324 | <10 | 2  | 49 |
| 70               | D-96-110             | 65      | <0.2 | 4.31 | 55       | 50       | <5       | 3.11 | <1 | 33   | 48  | 144 | 8.89 | <10 | 4.29 | 1336 | <1  | 0.04  | 15 | 2180 | <2  | <5 | <20 | 55       | 0.27   | <10 | 302 | <10 | 1  | 55 |
| 71               | D-96-111             | 540     | <0.2 | 3.96 | 110      | 40       | <5       | 2.72 | <1 | 42   | 23  | 257 | 9.06 | <10 | 3.88 | 1239 | 5   | 0.03  | 14 | 2280 | <2  | <5 | <20 | 51       | 0.21   | <10 | 287 | <10 | <1 | 49 |
| 72               | D-96-112             | 40      | <0.2 | 4.38 | 90       | 65       | <5       | 1.45 | <1 | 35   | 19  | 164 | 9.47 | <10 | 4 19 | 1409 | 2   | 0.03  | 12 | 2390 | <2  | <5 | <20 | 38       | 0.24   | <10 | 316 | <10 | <1 | 56 |
| 73               | D-96-113             | 120     | <0.2 | 4.27 | 175      | 70       | <5       | 2.01 | <1 | 39   | 21  | 268 | 9.91 | <10 | 3.99 | 1254 | 5   | 0.04  | 11 | 2300 | <2  | <5 | <20 | 46       | 0.24   | <10 | 353 | <10 | <1 | 46 |
|                  | -                    |         |      |      |          |          |          |      |    |      |     |     |      |     |      |      |     |       |    |      |     |    |     |          |        |     |     |     |    |    |
| QC/DA<br>Resplit |                      |         |      |      |          |          |          |      |    |      |     |     |      |     |      |      |     |       |    |      |     |    |     |          |        |     |     |     |    |    |
| R/S 1            | D-96-038             |         | <0 2 | 1.33 | <5       | 20       | <5       | 1.88 | <1 | 25   | 106 | 47  | 2 56 | <10 | 0.83 | 566  | <1  | 0 02  | 11 | 1820 | 18  | <5 | <20 | 19       | 0.22   | <10 | 101 | <10 | 4  | 32 |
|                  | D-96-076             |         | 02   | 2.64 | 10       | 35       | <5       | 1.88 | <1 | 51   | 72  | 271 | 7.91 | <10 | 1.41 | 656  | 3   | 0.22  | 42 | 1460 | 4   | <5 | <20 | 158      | 0.18   | <10 | 96  | <10 | <1 | 27 |
| _                |                      |         | •    |      |          |          |          |      |    |      |     |     |      |     |      |      |     |       |    |      |     |    |     |          |        |     |     |     |    |    |
| Repeat           | D-96-038             | 5       | <0.2 | 1.42 | <5       | 20       | <5       | 1.77 | <1 | 22   | 117 | 53  | 2.34 | <10 | 0.89 | 533  | <1  | 0.03  | 9  | 1760 | 16  | <5 | <20 | 22       | 0.20   | <10 | 101 | <10 | 5  | 24 |
| 10               | D-96-038             | 700     | 11.6 | 0.68 | 1640     | 20<br>50 | 15       | 1.17 | <1 | 95   | 32  | 78  | >10  | <10 | 0.23 | 470  |     | <0.01 | 63 | 730  | 120 | <5 | <20 |          | < 0.01 | 20  | 27  | <10 | <1 | 52 |
| 10               | D-96-047<br>D-96-056 | >1000   | 8.4  | 0.87 | 1640     | 50       | 40       | 0.49 | <1 | 87   | 43  | 92  | >10  | <10 | 0.21 | 316  |     | <0.01 | 76 | 590  | 70  | <5 | <20 |          | < 0.01 | 20  | 18  | <10 | <1 | 17 |
| 19               | D-96-036             |         | 0.4  | 2.67 |          | 35       |          | 1.98 | <1 | 46   | 80  | 260 | 7.41 | <10 | 1.46 | 681  | 13  | 0.21  | 36 | 1510 | 8   | <5 | <20 | ,<br>157 | 0.20   | <10 | 104 | <10 | 1  | 30 |
| 36<br>45         | D-96-076<br>D-96-085 | 20<br>5 | <02  | 2.87 | 10<br><5 | 35       | <5<br><5 | 2.01 | <1 | 32   | 68  | 149 | 7.07 | <10 | 0.99 | 411  | 2   | 0 22  | 42 | 2620 | 8   | <5 | <20 | 150      | 0.15   | <10 | 87  | <10 | 2  | 70 |
| 40               | D-96-085<br>D-96-094 | 5       | <0.2 | 2.39 | 190      | 35       | <5<br><5 | 3 16 | <1 | 22   | 44  | 63  | 5.82 | <10 | 2.65 | 1036 | <1  | 0.03  | 5  | 1420 | <2  | <5 | <20 | 21       | 0.28   | <10 | 168 | <10 | 7  | 79 |
| 61               | D-96-094<br>D-96-101 | . 5     | -0.2 | 3.93 | 130      | 55       | -0       | 310  |    | 44   |     | 55  | 0.02 |     | 2.00 | ,000 |     | 0.00  |    |      |     |    |     |          |        |     |     |     |    | -  |
| 01               | D-30-101             | 5       | -    | •    | •        | •        | •        | -    | -  | -    | •   | •   |      | •   |      |      |     | -     |    | -    | -   |    |     |          |        |     |     |     |    |    |
|                  |                      |         |      |      |          |          |          |      |    |      |     |     |      |     |      |      |     |       |    |      |     |    |     |          |        |     |     |     |    |    |

Pane 2

#### 22-Jul-96

#### ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway KAMLOOPS, B C V2C 6T4

Phone 604-573-5700 Fax 604-573-4557

#### Values in ppm unless otherwise reported

**TEUTON RESOURCES CORPORATION** 

ICP CERTIFICATE OF ANALYSIS AS 96-5079

TEUTON RESOURCES CORPORATION

509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

#### ATTENTION: DINO CREMONESE

No of samples received: 58 PROJECT #: Clone SHIPMENT #: 7 Samples submitted by: A. Raven

| Et | #. Tag # | Au(ppb) | Ag   | AI % | As    | Ba  | Bi | Ca % | Cď | Co  | Cr | Cu    | Fe %         | La  | Mg % | Mn   | Mo  | Na %  | Ni | P    | Pb   | Sb              | Sn  | Sr  | Ti % | U            | v   | w            | Y  | Zn  |
|----|----------|---------|------|------|-------|-----|----|------|----|-----|----|-------|--------------|-----|------|------|-----|-------|----|------|------|-----------------|-----|-----|------|--------------|-----|--------------|----|-----|
| 1  | A-96-114 | 30      | <0.2 | 2.41 | 10    | 80  | 5  | 1.77 | <1 | 18  | 35 | 66    | 5.69         | <10 | 1.83 | 976  | <1  | 0.02  | 7  | 2110 | 6    | <5              | <20 | 33  | 0.14 | <10          | 79  | <10          | 3  | 53  |
| 2  | A-96-115 | 120     | <0.2 |      | 15    | 75  | <5 | 2.01 | 1  | 25  | 28 | 197   | 6. <b>64</b> | <10 | 1.84 | 994  | <1  | 0.02  | 8  | 2180 | 6    | <5              | <20 | 31  | 0.14 | <10          | 100 | <10          | 2  | 44  |
| 3  | A-96-116 | 10      | 0.6  | 2.45 | 35    | 90  | <5 | 2.01 | 2  | 186 | 22 | 876   | 7.12         | <10 | 1.98 | 1083 | <1  | 0.01  | 9  |      | 8    | <5              | <20 | 41  | 0.15 | <10          | 113 | <10          | 1  | 119 |
| 4  | A-96-117 | 65      | <0 2 | 1.89 | 10    | 130 | <5 | 1.63 | <1 | 20  | 23 | 73    | 4.41         | <10 | 1.35 | 664  | 1   | 0 02  | 3  | 1870 | 4    | <5              | <20 | 77  | 0.09 | <10          | 63  | <10          | 2  | 41  |
| 5  | A-96-118 | 50      | <0.2 | 2.41 | 40    | 130 | <5 | 2.33 | 3  | 130 | 29 | 456   | 7.56         | <10 | 1.93 | 886  | 2   | 0.02  | 9  | 2140 | 24   | <5              | <20 | 43  | 0.15 | <10          | 146 | <10          | 2  | 71  |
| 6  | A-96-119 | 235     | <0.2 |      | 5     | 120 | <5 | 1.21 | 1  | 13  | 31 | 76    | 3.27         | <10 | 0.97 | 571  | <1  |       |    | 1880 | 8    | <5              | <20 | 99  | 0.11 | <10          | 51  | <10          | 3  | 31  |
| 7  | A-96-120 | 50      | 0.4  | 1.63 | 30    | 90  | <5 | 1.84 | <1 | 214 | 30 | 186   | 4.13         | <10 | 1.27 | 757  | 2   |       | 4  | 1800 | 6    | <5              | <20 | 33  | 0 07 | <10          | 69  | <10          | 3  | 148 |
| 8  | A-96-121 | 35      | <0.2 | 1 95 | <5    | 90  | <5 | 1.01 | 2  | 78  | 24 | 303   | 4,49         | <10 | 1.41 | 787  | <1  | 0 02  | 3  | 1900 | 6    | <5              | <20 | 19  | 0.10 | < <b>1</b> 0 | 70  | <10          | 3  | 68  |
| 9  | A-96-122 | 80      | <0.2 | 3.84 | 15    | 85  | <5 | 2.19 | 1  | 65  | 26 | 154   | >10          | <10 | 3.42 | 1561 | 3   |       | 18 | 2260 | 6    | <5              | <20 | 39  | 0 17 | <10          | 198 | <10          | <1 | 98  |
| 10 | A-96-123 | 50      | <0.2 | 2.42 | <5    | 70  | <5 | 4,17 | 2  | 32  | 26 | 200   | 6.86         | <10 | 2.11 | 1094 | <1  | 0.02  | 10 | 1980 | 4    | <5              | <20 | 62  | 0,18 | <10          | 140 | <10          | 3  | 45  |
| 11 | A-96-124 | 15      | <0 2 | 1.75 | 15    | 120 | <5 | 2.37 | 1  | 88  | 28 | 127   | 5.78         | <10 | 1.26 | 736  | 1   | 0.03  | 8  | 1960 | 10   | <5              | <20 | 52  | 0.12 | <10          | 111 | <10          | 1  | 64  |
| 12 | A-96-125 | 220     | <0.2 | 1.82 | 30    | 90  | <5 | 4.25 | 2  | 77  | 28 | 135   | 4.50         | <10 | 1.27 | 914  | <1  |       | 5  |      | 10   | <5              | <20 | 62  | 0.12 | <10          | 93  | <10          | 2  | 61  |
| 13 | A-96-126 | 75      | <0 2 |      | <5    | 80  | <5 | 3.61 | 1  | 26  | 24 | 102   | 4.41         | <10 | 1.16 | 845  | 2   | 0.03  | 5  | 2030 | 8    | <5              | <20 | 62  | 0.10 | <10          | 81  | <10          | 1  | 39  |
| 14 | A-96-127 | 10      | 52   | 1.97 | 75    | 70  | <5 | 0.56 | 8  | 34  | 31 | 5692  | 4.81         | <10 | 1.39 | 582  | 382 | 0.02  | 6  |      | 6190 | <5              | <20 | 11  | 0.03 | <10          | 80  | < <b>1</b> 0 | <1 | 73  |
| 15 | A-96-128 | 30      | <0.2 | 2.36 | 50    | 95  | <5 | 0.61 | <1 | 65  | 21 | 334   | 4.29         | <10 | 1.65 | 771  | 4   | 0.02  | 4  | 2050 | 54   | <5              | <20 | 16  | 0.04 | <10          | 60  | <10          | 2  | 124 |
| 16 | A-96-129 | 35      | <0.2 | 2.32 | 30    | 90  | <5 | 0.62 | <1 | 59  | 26 | 293   | 4.06         | <10 | 1.61 | 732  | 2   | 0.02  | 4  | 2080 | 30   | <sup>`</sup> <5 | <20 | 11  | 0.04 | <10          | 59  | <10          | 2  | 118 |
| 17 | A-96-130 | 310     | <0.2 | 2.16 | 5     | 115 | <5 | 1.07 | 1  | 22  | 18 | 50    | 5.34         | <10 | 1.56 | 921  | 3   | <0.01 | 4  | 1950 | 16   | <5              | <20 | 22  | 0.07 | < <b>1</b> 0 | 65  | <10          | 2  | 235 |
| 18 | A-96-131 | 150     | <0.2 | 1.77 | 25    | 100 | 5  | 1.50 | <1 | 83  | 29 | 37    | 5.26         | <10 | 1.34 | 893  | 2   | <0.01 | 2  | 1900 | 10   | <5              | <20 | 31  | 0.08 | <10          | 93  | <10          | <1 | 135 |
| 19 | A-96-132 | 90      | <0.2 | 1 79 | 70    | 100 | <5 | 0.82 | <1 | 74  | 28 | 96    | 4.27         | <10 | 1 28 | 780  | 4   |       | 5  | 1830 | 22   | <5              | <20 | 17  | 0.06 | <10          | 68  | <10          | 3  | 78  |
| 20 | A-96-133 | 45      | <0.2 | 1.99 | 60    | 90  | <5 | 1 07 | <1 | 65  | 40 | 107   | 4.30         | <10 | 1.41 | 765  | 2   | 0.03  | 7  | 1840 | 20   | <5              | <20 | 34  | 0.10 | <10          | 84  | <10          | 3  | 74  |
| 21 | A-96-134 | 20      | >30  |      | 10000 | 50  | <5 | 2.31 | <1 | 41  | 58 | 10000 | 9.47         | <10 | 0.92 | 500  | 5   |       | 20 |      | 14   | 185             | <20 | 55  | 0.10 | <10          | 82  | <10          | <1 | 52  |
| 22 | A-96-135 | 505     | >30  | 2.32 | 9170  | 50  | <5 | 2.29 | <1 | 45  | 85 | 6738  | 7.80         | <10 | 1.55 | 629  | 3   | 0.07  | 31 | 1470 | 12   | 95              | <20 | 102 | 0.17 | < <b>1</b> 0 | 126 | <10          | <1 | 73  |
| 23 | A-96-136 | 465     | <0.2 | 2.55 | 95    | 105 | <5 | 1.66 | <1 | 17  | 55 | 198   | 5.22         | <10 | 2.07 | 548  | <1  | 0.08  | 5  |      | 8    | <5              | <20 | 76  | 0.35 | <10          | 219 | <10          | 6  | 29  |
| 24 | A-96-137 | 30      | <0.2 | 2.46 | 35    | 30  | <5 | 2.12 | <1 | 33  | 58 | 185   | 5.23         | <10 | 1.82 | 436  | <1  |       | 23 | 2390 | 12   | <5              | <20 | 41  | 0.19 | <10          | 155 | <10          | 3  | 25  |
| 25 | A-96-138 | 200     | 0.8  | 0.69 | 20    | <5  | <5 | >10  | <1 | 5   | 8  | 28    | 1.18         | 10  | 0.71 | 4072 | <1  | <0.01 | 2  | 270  | <2   | 10              | <20 | 432 | 0.03 | <10          | 30  | <10          | 11 | 11  |

#### ECO-TECH LABORATORIES LTD.

| Et #. | Tag #    | Au(ppb) | Ag   | A! % | As  | Ba  | Bi | Ca % | Cd | Co  | Cr  | Cu  | Fe % | La  | Mg % | Mn   | Mo | Na %   | Ni | P    | Pb   | Sb | Sn  | Sr  | Ti %  | U   | v   | W   | Y  | Zn  |
|-------|----------|---------|------|------|-----|-----|----|------|----|-----|-----|-----|------|-----|------|------|----|--------|----|------|------|----|-----|-----|-------|-----|-----|-----|----|-----|
| 26    | A-96-139 | 290     | 0.8  | 1.64 | 35  | 20  | <5 | >10  | <1 | 12  | 18  | 31  | 3.04 | 10  | 1.65 | 4120 | <1 | < 0.01 | 4  | 610  | <2   | 15 | <20 | 409 | 0.06  | <10 | 48  | <10 | 7  | 19  |
| 27    | A-96-140 | 60      | <0.2 | 2.97 | 65  | 35  | 5  | 1.03 | <1 | 42  | 87  | 83  | 8 62 | <10 | 3.01 | 1346 | 5  | 0.03   | 20 | 1870 | 26   | <5 | <20 | 18  | 0.13  | <10 | 256 | <10 | <1 | 47  |
| 28    | A-96-141 | 5       | 1.4  | 0.66 | <5  | 20  | <5 | 0.32 | <1 | 8   | 172 | 128 | 1.45 | <10 | 0.55 | 268  | 3  | <0.01  | 4  | 370  | 2088 | <5 | <20 | 8   | 0.02  | <10 | 26  | <10 | <1 | 23  |
| 29    | A-96-142 | 255     | 0.8  | 2.48 | 220 | 90  | <5 | 0.45 | <1 | 28  | 35  | 416 | 4.99 | <10 | 1.69 | 934  | 3  | 0 01   | 4  | 1910 | 18   | <5 | <20 | 9   | 0.02  | <10 | 81  | <10 | 2  | 188 |
| 30    | A-96-143 | 40      | 4.8  | 0.77 | 45  | 55  | <5 | 0.39 | 1  | 15  | 141 | 56  | 4.57 | <10 | 0.25 | 102  | 61 | <0.01  | 77 | 1850 | 60   | 15 | <20 | 13  | <0.01 | <10 | 160 | <10 | 2  | 233 |
|       |          |         |      |      |     |     |    |      |    |     |     |     |      |     |      |      |    |        |    |      |      |    |     |     |       |     |     |     |    |     |
| 31    | A-96-144 | >1000   | 15.2 | 1.24 | 370 | 135 | <5 | 0.16 | <1 | 140 | 42  | 845 | >10  | <10 | 0.86 | 649  | 35 | <0.01  | 8  | 130  | 18   | <5 | <20 | 7   | 0.03  | 50  | 111 | <10 | <1 | 318 |
| 32    | A-96-145 | 280     | 0.2  | 2.09 | 40  | 75  | <5 | 0.88 | <1 | 23  | 36  | 137 | 4.75 | <10 | 1.54 | 763  | 5  | 0 02   | 3  | 1920 | 10   | <5 | <20 | 15  | 0.03  | <10 | 73  | <10 | 1  | 179 |
| 33    | A-96-146 | 155     | <0.2 | 2.08 | 105 | 70  | <5 | 0.34 | <1 | 110 | 42  | 134 | 4.68 | <10 | 1.41 | 958  | 3  | 0.01   | 4  | 1270 | 10   | <5 | <20 | 6   | 0.04  | <10 | 71  | <10 | 4  | 183 |
| 34    | A-96-147 | >1000   | 0.6  | 4.21 | 715 | 80  | <5 | 0.48 | <1 | 270 | 51  | 410 | >10  | <10 | 3.28 | 1121 | 6  | <0 01  | 11 | 1660 | 16   | <5 | <20 | 8   | 0.11  | <10 | 181 | <10 | <1 | 231 |
| 35    | A-96-148 | 80      | <0.2 | 4.05 | 110 | 90  | <5 | 0.54 | 2  | 43  | 19  | 184 | 8.78 | <10 | 3.24 | 1033 | 7  | 0.01   | 14 | 2280 | 12   | <5 | <20 | 12  | 0.02  | <10 | 170 | <10 | <1 | 133 |
|       |          |         |      |      |     |     |    |      |    |     |     |     |      |     |      |      |    |        |    |      |      |    |     |     |       |     |     |     |    |     |
| 36    | A-96-149 | 25      | <0.2 | 2.17 | 40  | 80  | <5 | 1.01 | <1 | 20  | 17  | 40  | 4.37 | <10 | 1.60 | 680  | 2  | 0.03   | 3  | 1860 | 4    | <5 | <20 | 18  | 0.03  | <10 | 71  | <10 | 1  | 53  |
| 37    | A-96-150 | 100     | <0.2 | 1.74 | 40  | 65  | <5 | 2.44 | <1 | 36  | 25  | 36  | 4.00 | <10 | 1.35 | 586  | 1  | 0.03   | 3  | 1920 | 6    | <5 | <20 | 41  | 0.06  | <10 | 83  | <10 | 4  | 48  |
|       |          |         |      |      |     |     |    |      |    |     |     |     |      |     | Page | e 1  |    |        |    |      |      |    |     |     |       |     |     |     |    |     |

ICP CERTIFICATE OF ANALYSIS AS 96-5079

# **CERTIFICATE OF ASSAY AS 96-5079**

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

## ATTENTION: DINO CREMONESE

No. of samples received: 57 PROJECT #: Clone SHIPMENT #: 7 Samples submitted by: A. Raven

|        |        |          | Au     | Au     | Ag    | Ag     | As    | Cu   | Co    |
|--------|--------|----------|--------|--------|-------|--------|-------|------|-------|
|        | ET #.  | Tag #    | (g/t)  | (oz/t) | (g/t) | (oz/t) | (%)   | (%)  | (%)   |
|        | 7      | A-96-120 | -      | -      | •     | -      | -     | +    | 0.020 |
| يتعجين | 21     | A-96-134 | -      | -      | 73.4  | 2.141  | 1.61  | 0.96 | -     |
|        | 22     | A-96-135 | -      | -      | 38.5  | 1.123  | -     | -    | -     |
|        | 31     | A-96-144 | 33.11  | 0.966  | -     | -      | -     | -    | -     |
|        | 34     | A-96-147 | 1.26   | 0.037  | -     | -      | -     | -    | 0.026 |
|        | 42     | A-96-155 | 4.80   | 0.140  | -     | -      | -     | -    | -     |
|        | 43     | A-96-156 | 1.91   | 0.056  | -     | -      | -     | -    | -     |
|        | 45     | A-96-158 | 32.52  | 0.948  | -     | -      | 1.05  | -    | 0.069 |
|        | 46     | A-96-159 | 1.87   | 0.055  | -     | -      | -     | -    | -     |
|        | 51     | A-96-164 | 4.82   | 0.141  | -     | -      | -     |      | -     |
|        | 53     | A-96-166 | 134.22 | 3.914  | 103.6 | 3.021  | 21.83 | -    | 1.16  |
|        | 54     | A-96-167 | 11.96  | 0.349  | -     | -      | 1.33  | -    | 0.082 |
|        | QC/DA  | TA:      |        |        |       |        |       |      |       |
|        | Standa | ard:     |        |        |       |        |       |      |       |
|        | CPb-1  |          | -      | -      | 632.0 | 18.431 | -     | -    | •     |
|        | CD-1   |          | -      | -      | -     | -      | 0.66  | -    | -     |
|        | Sula   |          | -      | -      | -     | -      | -     | 0.96 | 0.041 |

XLS/96Teuton#2

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

22-Jul-96

| 38<br>39<br>40             | A-96-151<br>A-96-152<br>A-96-153                         |                                       | <02<br><02<br><02                 |                                      | 155<br>135<br>70                     | 95<br>85<br>70               | <5<br><5<br><5             | 1.95<br>2.86<br>3.07                 | <1<br><1<br><1               | 156<br>123<br>30                | <b>4</b> 0<br>21<br>20     | 153<br>373<br>183                  | 9.40<br>>10<br>7.14                 | <10<br><10<br><10               | 3.53<br>3.40<br>2.42                 | 1652                                | 2<br>3<br>2        | 0.02<br>0 02<br>0.03                              |                  | 2180<br>2210<br>2570                 | <2<br>4<br>12                 | <5<br><5<br><5              | <20<br><20<br><20                      | 35<br>50<br>54             | 0.22<br>0.24<br>0.19                  | <10<br><10<br><10                      | 190<br>226<br>178              | <10<br><10<br><10                      | 3<br><1<br>4              | 88<br>87<br>65                  |
|----------------------------|----------------------------------------------------------|---------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|------------------------------|----------------------------|--------------------------------------|------------------------------|---------------------------------|----------------------------|------------------------------------|-------------------------------------|---------------------------------|--------------------------------------|-------------------------------------|--------------------|---------------------------------------------------|------------------|--------------------------------------|-------------------------------|-----------------------------|----------------------------------------|----------------------------|---------------------------------------|----------------------------------------|--------------------------------|----------------------------------------|---------------------------|---------------------------------|
| 41<br>42<br>43<br>44<br>45 | A-96-154<br>A-96-155<br>A-96-156<br>A-96-157<br>A-96-158 | 150<br>>1000<br>>1000<br>685<br>>1000 | 0.8<br>6.0<br>2.2<br>0.6<br>16.0  | 2.06<br>3.70<br>2.53<br>2.83         | 275<br>2025<br>260<br>270<br>10000   | 90<br>85<br>100<br>105<br>55 |                            | 1.07<br>0.37<br>0.46<br>0.52<br>2.67 | <1<br><1<br>3<br><1<br><1    | 58<br>82<br>61<br>88<br>661     | 19<br>36<br>28<br>22       | 866<br>5196<br>1257<br>426<br>1144 | 5.10<br>>10<br>6.85<br>6.62         | <10<br><10<br><10<br><10        | 1.21<br>2 38<br>1.78<br>2.05<br>2.41 | 816<br>1490<br>1564<br>1049         | 5<br>25<br>11<br>7 | 0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01 | 4<br>3<br>4<br>5 | 1750<br>1410<br>1670<br>1810<br>1500 | 8<br>4<br>4<br>6<br>276       | <5<br><5<br><5<br><5<br><5  | <20<br><20<br><20<br><20<br><20<br><20 |                            | 0.02<br>0.01<br>0.02<br>0.06<br>0.04  | <10<br><10<br><10<br><10<br><10<br><10 | 60<br>125<br>68<br>87<br>190   | <10<br><10<br><10<br><10<br><10<br><10 | <1<br><1<br>1<br><1<br><1 | 183<br>436<br>321<br>176<br>857 |
| 46<br>47<br>48<br>49<br>50 | A-96-159<br>A-96-160<br>A-96-161<br>A-96-162<br>A-96-163 | >1000<br>165<br>105<br>55<br>40       | 2.4<br><0.2<br>0.2<br>0.4<br><0.2 | 3 58<br>3 78<br>2 76<br>3 25<br>3 82 | 245<br>100<br>745<br>85<br>100       | 45<br>35<br>70<br>55<br>75   | <5<br><5<br><5<br><5<br><5 | 4.97<br>5.13<br>0.91<br>3.57<br>0.87 | 1<br><1<br><1<br>1<br><1     | 30<br>20<br>29<br>31<br>33      | 21<br>23<br>13<br>14<br>13 | 506<br>182<br>133<br>147<br>166    | >10<br>8.80<br>5.94<br>6.52<br>7.78 | <10<br><10<br><10<br><10<br><10 | 3.31<br>1.54<br>1.95                 | 1284<br>1356<br>974<br>1495<br>1293 | 3                  |                                                   | 7<br>6           | 2490<br>2710<br>2220<br>2910<br>3250 | 90<br>22<br>64<br>98<br>12    | <5<br><5<br><5<br><5<br><5  | <20<br><20<br><20<br><20<br><20        | 72<br>78<br>27<br>80<br>36 | 0.12<br>0.17<br>0.09<br>0.11<br>0.10  | <10<br><10<br><10<br><10<br><10        | 264<br>287<br>76<br>100<br>109 | <10<br><10<br><10<br><10<br><10        | <1<br>2<br>4<br>5         | 220<br>85<br>191<br>194<br>96   |
| 51<br>52<br>53<br>54<br>55 | A-96-164<br>A-96-165<br>A-96-166<br>A-96-167<br>A-96-168 | >1000<br>95<br>>1000<br>>1000<br>630  |                                   | 4.29<br>0.88<br>5.18                 | 1535<br>70<br>10000<br>10000<br>1005 | 50<br>35<br>60<br>60<br>60   | <5<br><5<br><5<br><5<br><5 | 1.48<br>4.13<br>0.09<br>0.53<br>3.62 | <1<br><1<br><1 1<br><1<br><1 | 171<br>55<br>10000<br>800<br>97 | 21<br>30<br><1<br>21<br>32 | 224<br>172<br>2423<br>952<br>362   | 6.94<br>8.43<br>>10<br>>10<br>>10   | <10<br><10<br><10<br><10<br><10 | 0.36<br>3.28                         | 1410<br>192<br>1089                 | 7<br>216<br>66     | 0.02<br>0.02<br><0.01<br><0.01<br>0.02            | 9<br><1<br>3     | 1120<br>2720<br><10<br>2070<br>2240  | 26<br>12<br>3176<br>242<br>28 | <5<br><5<br>135<br><5<br><5 | <20<br><20<br><20<br><20<br><20        | 20<br>72<br>11<br>9<br>75  | 0.10<br>0.19<br><0.01<br>0.06<br>0.19 | <10<br><10<br>50<br><10<br><10         | 83<br>293<br>40<br>311<br>323  | <10<br><10<br><10<br><10<br><10        | <1<br>3<br><1<br><1<br><1 | 54<br>143<br>3363<br>304<br>82  |
| 56<br>57<br>58             | A-96-169<br>A-96-170                                     | 445<br>255<br>-                       |                                   |                                      | 395<br>195<br>10000                  | 55<br>45<br>60               | <5                         | 2.45<br>2.50<br>0.54                 | <1<br><1<br><1               | 80<br>49<br>797                 | 30<br>16<br>22             | 933<br>209<br>931                  | >10<br>>10<br>>10                   | <10<br><10<br><10               |                                      |                                     | 3                  | <0.01<br>0.02<br><0.01                            | 15               | 2010<br>2100<br>2140                 | 32<br>16<br>246               | <5<br><5<br><5              | <20<br><20<br><20                      | 38<br>45<br>8              | 0.14<br>0.20<br>0.06                  | <10<br><10<br><10                      | 256<br>301<br>312              | <10<br><10<br><10                      | <1<br><1<br><1            | 118<br>169<br>305               |

| TEUT           | ON RESOU   | ΓΑ:     |      |      |       |     |    |      |    |     |    |      |      |     |      |             |     |       |    |      |     |    | I   | ECO-T | ECH L/ | BORAT | ORIE | S LTD. |    |     |
|----------------|------------|---------|------|------|-------|-----|----|------|----|-----|----|------|------|-----|------|-------------|-----|-------|----|------|-----|----|-----|-------|--------|-------|------|--------|----|-----|
| Et #           | . Tag #    | Au(ppb) | Ag   | AI % | As    | Ba  | Bi | Ca % | Cd | Co  | Cr | Cu   | Fe % | La  | Mg % | Mn          | Mo  | Na %  | Ni | P    | Pb  | Sb | Sn  | Sr    | TI %   | U     | v    | w      | Y  | Zn  |
| QC/D/<br>Respl |            | ia.     |      |      |       |     |    |      |    |     |    |      |      |     |      |             |     |       |    |      |     |    |     |       |        |       |      |        |    |     |
|                |            | 40      | <0.2 | 2.49 | 10    | 90  | <5 | 1 88 | 1  | 19  | 39 | 68   | 6.03 | <10 | 1.88 | 1009        | <1  | 0.02  | 7  | 2230 | 8   | <5 | <20 | 35    | 0.16   | <10   | 85   | <10    | 3  | 52  |
| R/S 36         | 5 A-96-149 | 30      | <0.2 | 2.25 | 45    | 85  | <5 | 1.09 | <1 | 20  | 27 | 40   | 4.54 | <10 | 1.63 | 692         | 2   | 0.03  | 3  | 1950 | 6   | <5 | <20 | 20    | 0.04   | <10   | 75   | <10    | 2  | 57  |
| Repea          | t;         |         |      |      |       |     |    |      |    |     |    |      |      |     |      |             |     |       |    |      |     |    |     |       |        |       |      |        |    |     |
| 1              | A-96-114   | 30      | <0.2 | 2.38 | 15    | 80  | <5 | 1.77 | 1  | 18  | 35 | 64   | 5.66 | <10 | 1.83 | 972         | <1  | 0.02  | 7  | 2120 | 8   | <5 | <20 | 32    | 0.14   | <10   | 78   | <10    | 3  | 54  |
| 10             | A-96-123   | 35      | <0.2 | 2.39 | 5     | 65  | <5 | 4.14 | 2  | 32  | 26 | 201  | 6.85 | <10 | 2.13 | 1091        | <1  | 0.02  |    | 2020 | 6   | <5 | <20 | 60    | 0.17   | <10   | 138  | <10    | 2  | 45  |
| 19             | A-96-132   | 100     | <0 2 | 1.81 | 75    | 105 | <5 | 0.84 | <1 | 77  | 32 | 97   | 4.42 | <10 | 1.30 | 801         | 2   | 0.01  | 5  | 1930 | 26  | <5 | <20 | 18    | 0.06   | <10   | 69   | <10    | 3  | 82  |
| 36             | A-96-149   | 35      | <0.2 | 2.16 | 35    | 80  | <5 | 1.02 | <1 | 20  | 17 | 39   | 4.37 | <10 | 1.58 | 677         | 3   | 0.03  | 4  | 1900 | 6   | <5 | <20 | 18    | 0.04   | <10   | 71   | <10    | 1  | 54  |
| 45             | A-96-158   | >1000   | 15.0 | 3.66 | 10000 | 65  | <5 | 2.71 | <1 | 676 | 27 | 1145 | >10  | <10 | 2.40 | 94 <b>4</b> | 363 | <0.01 | 6  | 1530 | 284 | <5 | <20 | 44    | 0.05   | <10   | 192  | <10    | <1 | 877 |
| Stand          | ard:       |         |      |      |       |     |    |      |    |     |    |      |      |     |      |             |     |       |    |      |     |    |     |       |        |       |      |        |    |     |
| GEO'9          | 6          | 150     | 1.2  | 1.80 | 65    | 170 | <5 | 2.07 | <1 | 21  | 72 | 83   | 4.02 | <10 | 1 08 | 769         | <1  | 0 02  | 20 | 780  | 22  | <5 | <20 | 60    | 0.15   | <10   | 91   | <10    | 4  | 75  |
| GEO'9          | 6          | 150     | 1.2  | 2.00 | 65    | 165 | <5 | 1.96 | <1 | 20  | 70 | 86   | 4.04 | <10 | 1.07 | 762         | <1  | 0.02  | 22 | 780  | 18  | <5 | <20 | 67    | 0.14   | <10   | 89   | <10    | 3  | 69  |

df/5079ar/5079r XLS/96Teuton ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A Sc.T. B.C. Certified Assayer PIONEER LABORATORIES INC.

5-730 EATON WAY NEW WESTNINSTER, BC CANADA V3N 6J9

TELEPHONE (604) 522-3830

FROM

••

Pioneer

P34

TEUTON RESOURCES CORP. Project: Clone Sample Type: Rocks GEOCHEKICAL ANALYSIS CERTIPICATE Multi-element ICP Analysis - .500 gran sample is digested with 3 ml of aqua regia, diluted to 10 ml with water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Ng, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. \*Au Analysis- 10 gram sample is digested with aqua regia, MI8K extracted, graphite

furnace AA finished to 1 ppb detection.

Analyst \_\_\_\_\_ Report Ho. 9621793 Date: August 17, 1996

|                 |     |       |               |             |       |        |             |      |       |       |     |             | _   |     |              |     |     |      |               |       |             |     |      |     |     |     |      |     |      |      |            |
|-----------------|-----|-------|---------------|-------------|-------|--------|-------------|------|-------|-------|-----|-------------|-----|-----|--------------|-----|-----|------|---------------|-------|-------------|-----|------|-----|-----|-----|------|-----|------|------|------------|
| ELEMENT         | Na  | Cu    | Pb            | Zn          | Ag    | WS.    | Co          | Mn   | Fe    | As    | U   | ÅU          | Th  | Sr  | ¢d           | Sb  | Bi  | ¥    | Ca            | P     | Le          | Cr  | Ħg   | Be  | Tſ  | L   | AL   | Na  | K    | ¥    | Au         |
| SAMPLE          | ppn | (ppm) | p <b>pe</b> n | ppn         | ppn   | (dbiu) | ppm         | ppm  | x     | ppm   | ppe | <b>pp</b> m | ppa | ppn | <b>ppm</b>   | ppn | ppm | ppni | X             | X     | <b>ppin</b> | ppn | *    | ppa | *   | ppm | x    | X   | x    | ppre | ppb        |
| 096 085         | 1   | 226   | 3             | 43          | .3    | 27     | 44          | 398  | 5.00  | 17    | 5   | ND          | 2   | 32  | .2           | 2   | 2   | 122  | 1.56          | .095  | 3           | 29  | 1.39 | 38  | .11 | 7   | 2.27 | .05 | .13  | 2    | 27         |
| 096 086         | 3   | 6     | 3             | 19          | .3    | 1      | 2           | 61   | 3.80  | 9     | 5   | ND          | 13  | 12  | .2           | 2   | 2   | 9    | .06           | .030  | 8           | 30  | .15  | 150 | -04 | 3   | .47  | .05 | . 16 | 2    | 13         |
| 096 087         | 1   | 51    | 6             | 39          | .4    | 9      | 23          | 2030 | 5.70  | 15    | 5   | ND.         | 2   | 129 | .2           | 2   | 2   | 73   | 6.76          | .101  | 5           | 10  | 1.86 | 27  | .01 | 4   | 1.12 | .02 | .20  | 2    | 11         |
| D96 088         | 1   | 1413  | 58            | 3537        | 8.0   | 220    | 67          | 3421 | 22.85 | 672   | 5   | KD          | 3   | 348 | 44.5         | Z   | 2   | 52   | 1 <b>0.69</b> | . 009 | - 4         | 28  | 1.49 | 12  | .01 | 3   | 1.18 | .01 | .03  | 2    | 42         |
| 096 089         | 1   | 460   | 150           | 476         | 11.1  | 57     | 118         | 528  | 26.57 | 2107  | 5   | ND          | 3   | 3   | .6           | 11  | 6   | 142  | .07           | .016  | 2           | 39  | 2.41 | 1   | -01 | 7   | 2.09 | .01 | .02  | 2    | 105        |
| o96 090         | 1   | 2012  | 179           | 2140        | \$1.1 | 79     | 289         | 1812 | 32.10 | 719   | 5   | ND          | 3   | 30  | <b>23</b> .2 | 2   | 2   | 53   | 2.00          | ,011  | 3           | 16  | 1.72 | 9   | .01 | 3   | 1.56 | .01 | .04  | 2    | <b>Z</b> 4 |
| 096 091         | 1   | 2520  | 92            | 355         | 14.6  | 99     | 94          | 233  | 20.89 | 627   | 5   | XD          | 3   | 143 | 4.9          | 16  | 8   | 140  | 10.22         | .016  | 3           | 39  | 2.59 | 15  | .01 | 3   | 1.93 | .01 | .40  | 2    | 37         |
| 096 092         | 1   | 1965  | 64            | 136         | 23.2  | 511    | 664         | 567  | 34.42 | 58245 | 5   | ND          | 3   | 9   | .2           | 185 | 112 | 56   | -49           | .011  | 2           | 33  | .71  | 7   | .01 | 6   | .77  | .01 | .11  | 2    | 120        |
| 096 093         | 1   | 999   | 3             | 159         | .9    | 37     | 146         | 1485 | 33.85 | 2721  | 5   | ND          | 4   | 88  | 4.3          | 2   | 9   | 75   | 6.24          | .001  | 6           | 5   | 1.36 | 1   | .01 | 3   | 1.25 | .01 | .01  | 2    | 37         |
| 096 094         | 1   | 398   | 79            | 66          | 7.3   | 37     | 45          | 3673 | 13.69 | 600   | 5   | ND          | 2   | 291 | 1.2          | 52  | 2   | 33   | 11.79         | .014  | 4           | 33  | 1.75 | 28  | .01 | 3   | .70  | .01 | .04  | 2    | 33         |
| 096 <b>095</b>  | 1   | 2203  | 18            | 56          | 12.5  | 24     | 50          | 1298 | 28.37 | 938   | 5   | ND          | 3   | 86  | 1.4          | z   | 2   | 105  | 4.82          | .037  | 4           | 53  | 1.27 | 10  | .03 | 4   | 1.26 | .01 | .22  | 13   | 24         |
| 096 <b>096</b>  | 1   | 736   | 206           | 130         | 15.8  | 19     | <b>Z1</b> 2 | 3539 | 28.25 | 20640 | 5   | ND          | 3   | 154 | 1.3          | 78  | 28  | 106  | 4.52          | .019  | 2           | 42  | 2.13 | 16  | .01 | 6   | 1.61 | .01 | .30  | 2    | 140        |
| 96 097          | 3   | 10    | 6             | 38          | .3    | 11     | 16          | 1007 | 2.59  | 20    | 5   | ND          | 2   | 32  | .2           | 2   | 2   | 51   | 2.94          | .054  | 5           | 77  | .93  | 54  | .01 | 5   | 1,30 | .01 | .17  | 2    | 6          |
| 096 098         | 3   | 30    | 12            | 78          | .3    | 12     | 13          | 1759 | 5.14  | 36    | 5   | ND          | 2   | Z35 | .8           | 2   |     |      | 10.28         | .014  | 5           | 88  | 2.45 | 11  | .01 | 3   | .49  | .01 | .04  | 2    | 8          |
| 096 <b>099</b>  | 1   | 152   | 2350          | 3641        | 10.6  | 1      | 16          | 8155 | 15.95 | 1734  | 5   | ND          | 2   | 374 | 38.7         | 33  | 2   | 19   | 13.07         | .005  | 3           | 21  | 2.71 | 1   | .01 | 3   | .50  | .01 | .06  | 2    | 275        |
| 096 100         | 1   | 494   | 823           | 194         | 59.3  | 4      | 86          | 7332 | 14.64 | 4143  | 5   | ND          | 2   | 268 | 1.9          | 271 | Z   | 19   | 12.21         | .006  | 3           | 27  | 3.64 | 13  | .01 | 3   | .32  | .01 | .05  | 2    | 340        |
| D96 101         | 4   | 9     | 43            | 1 <b>97</b> | 1.7   | 3      | 13          | 3125 | 2.94  | 392   | 5   | NÐ          | 2   | 522 | 2.3          | 21  | 8   | 24   | 15.12         | .009  | 3           | 96  | 1.39 | 1   | .01 | 3   | .33  | .01 | .02  | 2    | 31         |
| 096 102         | 1   | 451   | 633           | 49924       | 48.1  | 391    | 021         | 4222 | 24.75 | 20675 | 5   | ND          | 2   | 62  | 640.5        | 401 | 189 | 11   | 3,65          | .001  | 2           | 37  | 1.51 | 1   | .01 | 4   | . 16 | .01 | .04  | 2    | 620        |
| D96 103         | 1   | 192   | 665           | 35720       | Z7.0  | 20     | 29          | 5504 | 16.16 | 1806  | 5   | ND          | 2   | 153 | 510.6        | 210 | 4   | 31   | 6.66          | .042  | 3           | 38  | 2.12 | 29  | .01 | 3   | .43  | .01 | . 12 | 2    | 280        |
| 096 104         | 1   | 459   | 29            | 154         | 2.4   | 8      | 36          | 1645 | 46.17 | 330   | 5   | NÐ          | 5   | 37  | .2           | 2   | 2   | 6    | 1.48          | .001  | 2           | 18  | .22  | 5   | .01 | 3   | .13  | .01 | .02  | 2    | 95         |
| 096 105         | 1   | 272   | 158           | 121         | 5.1   | 2      | 67          | 4715 | 24.27 | 3915  | 5   | NB          | 2   | 155 | .4           | 31  | 3   | 21   | 6.17          | .005  | 2           | 23  | 2.10 | 4   | .01 | 3   | .51  | .01 | .05  | 2    | 190        |
| D <b>96 106</b> | 1   | 109   | 37            | 56          | 1.8   | 8      | 20          | 7137 | 16.76 | 440   | 5   | ND          | 2   | 260 | 1.7          | 15  | 2   | 115  | 9.85          | .077  | 7           | 40  | 2.57 | 40  | .05 | 3   | 1.61 | .01 | .57  | 2    | 38         |
| D <b>96 107</b> | 1   | 150   | 45            | 94          | 2.5   | 14     | 12          | 1153 | 14,46 | 653   | 5   | ND          | 2   | 146 | .2           | 27  | 2   | 170  | 1.89          | .168  | 7           | 49  | 1.54 | 31  | .01 | 5   | 1.62 | .01 | .52  | 2    | 23         |
| 096 108         | 1   | 173   | 6             | 78          | .3    | 18     | 31          | 512  | 6.12  | 16    | 5   | ND          | 2   | 35  | .2           | 2   | 2   | 186  | 1.77          | . 165 | 7           | 52  | 1.69 | 51  | .27 | 3   | 2.61 | ,04 | .81  | 2    | 12         |
| 496 171         | 1   | 135   | 16            | 125         | .3    | 22     | 31          | 706  | 5.71  | 21    | 5   | ND          | 2   | 21  | .3           | 2   | 2   | 167  | 1.80          | .112  | 2           | 18  | 1.65 | 29  | .13 | 9   | 2.86 | .06 | .10  | 2    | 90         |
| 172             | 1   | 161   | 263           | 349         | 22.1  | 10     | 8           | 841  | 10.06 | 75    | 5   | ND          | 2   | 19  | .4           | 33  | 2 . | 155  | .21           | .112  | 4           | 16  | 2.15 | 35  | .01 | 3   | 3.12 | .01 | .20  | Z    | 12         |
| 496 173         | 1   | 106   | 3             | 67          |       | 9      | 9           | 2458 |       | 2     | 5   | ND          | Z   | 85  | .2           | 2   | _   | 34   | 2.68          | .146  | 7           |     | 3.86 | 15  | .03 | 3   | 4.21 | .02 | .04  | 2    | 195        |
| 496 174         | 1   | 20    | 10            | 32          | .4    | 2      | 14          | 2228 | 4,50  | 12    | 5   | ND          | 2   | 255 | .2           | 2   | 2   | 43   | 6.62          | .107  | 11          | 6   | 1.99 | 89  | .01 | 3   | 1.16 | .01 | .34  | 2    | 12         |
| 175             | 1   | 15    | 5             | 37          | .3    | 1      | 8           |      |       | 29    | 5   | ND          | 2   | 57  | .2           | 2   |     |      |               | .090  | 10          | 10  | 1.02 | 98  | .01 | 3   | 2.16 | .01 | .22  | Z    | 15         |
| 176             | 1   | 79    | 10            | 72          | .3    | 11     | 19          | 1939 |       | 173   | S   | 10          | 2   | 347 | .9           | 13  |     |      | 10.55         | .090  | 6           |     | 3.26 | 342 | .04 |     | 1.53 | .01 | .56  | Z    | 33         |

| ELEMENT         | Mo          | Cu         | Pb       | Zn  | Ag       | Ni Co        | ¥n.        | Fe    | As        | IJ     | Au -       | Th   | 57         | Cd          | Sb          | Bí  | ¥   | Ca   | ₽     | La  | Cr  | Ng   | 84         | Tİ   | 8    | AL           |            | ĸ          | ¥   | Au         | חר         |
|-----------------|-------------|------------|----------|-----|----------|--------------|------------|-------|-----------|--------|------------|------|------------|-------------|-------------|-----|-----|------|-------|-----|-----|------|------------|------|------|--------------|------------|------------|-----|------------|------------|
| SANPLE          | pp <b>n</b> | ppm        | ppn      | ppn | opm      | ppin ppin    | ppm        | x     | ppm ;     | pipm k | pon i      | more | <b>ppn</b> | pp <b>m</b> | p <b>pm</b> | pen | ppn | x    | X     | ppm | ppe | X    | ppm        | *    | pina | x            | x          | x          | ppn | ppb        | ROM        |
| A96-283         | 2           | 134        | 16       | 123 | .3       | 5 36         | 1124       | 4.01  | 32        | 5      | ND         | 2    | 36         | .2          | 2           | z   | 61  | 1_11 | .134  | 4   | 7   | 1.73 | 206        | .02  | 3    | <b>z.</b> 25 | .01        | .30        | Z   | 105        |            |
| A96-284         | 2           | 175        | 13       | 112 | .3       | 6 19         | 920        | 4.05  | 23        | 5      |            | 2    | 26         | .2          | 2           | 2   | 65  | .96  | . 146 | 6   | 11  | 1.68 | 123        | .03  | 3    | 2.30         | .02        | .39        | z   | 36         |            |
| A96-285         | 1           | 146        | 14       | 90  | .3       | 39           | 1096       | 2.14  | 2         | ŝ      | 10         | _    | 110        | .5          | 2           | 2   |     | 2.86 | .118  | 5   | 38  |      | 1405       | .04  | 3    | 1.37         | .01        | .45        | 2   | 18         | Pio        |
| A96-286         | , 1         | 184        | 19       | 63  | .3       | 3 10         | 656        | 3.29  | 13        | 5      | ND         | 2    | 47         | .5          | z           | 2   |     | .86  | .131  | 6   | 30  |      | 1170       | .03  | 3    |              | .01        | .44        | ž   | 15         | ž          |
| A96-287         | 1           | 88         | ä        | 82  | .3       | 3 21         | 1097       | 1.72  | 9         | Ś      | ND         | 2    | 79         | .5          | 3           | 2   | 25  | 4.02 | .116  | 6   | 10  | .75  | 331        | .03  | 4    | 1.50         | .01        | .47        | 2   | 8          | Ř          |
| A40.501         | •           |            |          |     |          | J 2,         | 1071       |       | ,         | -      |            | 4    |            | •••         |             | •   | 0   | 4.46 |       | Ŭ   | 10  |      |            |      | -    | 1.50         |            |            | •   | Ŭ          | ŕ          |
| A96-288         | 1           | 67         | 9        | 64  | .3       | 3 33         | 1271       | 1.88  | 23        | 5      | MD         | 2    | 62         | .6          | 3           | 2   | 26  | 2.97 | . 132 | 9   | 8   | .47  | 254        | .03  | 3    | 1.34         | -01        | .53        | 2   | 20         | <u>ب</u> ه |
| A96-289         | 1           | 306        | 8        | 64  | .3       | 3 16         | 912        | 2.25  | 18        | 5      | XD .       | 2    | 27         | .7          | 2           | Z   | 30  | 1.09 | . 145 | 6   | 10  | .60  | 260        | .04  | 3    | 1.42         | .01        | .57        | 2   | 41         | ğ          |
| A96-290         | 5           | 85         | 7        | 74  | .3       | 4 16         | 848        | 3.62  | 28        | 5      | 10         | 2    | 29         | .2          | 2           | 2   | 51  | 1,19 | . 135 | 5   | 10  | 1.67 | 122        | .02  | 3    | Z.09         | .02        | .35        | 2   | 41         | <u>ب</u> و |
| A96-291         | 3           | 3192       | 8        | 110 | 2.0      | 3 13         | 709        | 3.60  | 17        | 5      | ud -       | 2    | 24         | .2          | 4           | 5   | 27  | .72  | . 142 | - 4 | 19  | .68  | 508        | . 03 | 3    | 1.48         | .01        | .40        | Z   | 160        | ğ          |
| A96-292         | 2           | 578        | 9        | 104 | .4       | 224          | 685        | 3.10  | 20        | 5      | Ð          | 2    | 37         | .9          | 4           | 2   | 28  | 1.42 | . 134 | 6   | 15  | .44  | 515        | . 03 | 3    | 1.20         | .01        | .47        | Z   | 50         | ē          |
|                 | ,           | 736        |          | 477 |          | - 10         | (0)        | 43 /7 | <b>/E</b> | F      |            | •    | <b>/</b> 0 |             |             | •   | 45  |      | 007   |     | 7/  | 72   | 4443       | -    |      | 01           | ~          | .42        | \$  | 430        | en<br>en   |
| A96-293         | 4           | 325        | 46       | 122 | .3       | 2 28         |            | 12.43 | 65<br>77  | -      |            | 2    | 49         | .4          | 22          | 2   | 65  | .79  | .097  | 67  | 34  |      | 1112       | .05  | 5    | .91          | _01<br>_01 | .~~<br>.38 | •   | 430<br>510 | Inc        |
| A96-294         | 3           | 217        | 36       | 163 | .4       | 4 43         | 1423       | 6.36  | 37        |        | ND         | 2    | 61         | .7          | 4           | 14  | 51  | 1.90 | .097  | •   | 28  | .83  | <b>691</b> | .04  | 3    | 1.55         |            |            | 3   |            | •          |
| A96-295         | 3           | 301        | 67       | 134 | .6       | 3 72         | 1223       | 3.24  | 57        | -      | ND         | 2    | 40         | 2.6         | 3           | 2   | 30  | 1.14 | . 135 | 12  | 2   | ,63  | 204        | .03  | 3    | 1.38         | .01        | .50        | 2   | 45         |            |
| A96-296         | 3           | 126        | 109      | 199 | .4       | 5 88         | 1257       |       | - 64      |        | ND .       | 2    | 16         | .2          | 2           | 2   | 50  | .44  | . 127 | 10  | 3   | 1.16 | 95         | .04  |      | 1.93         | .01        | .42        | 2   | 190        |            |
| A96-297         | 1           | 216        | 3        | 167 | .3       | 5 116        | 1205       | 3.72  | 73        | 5      | ND         | 2    | 6B         | .6          | 2           | 2   | 39  | 2.58 | .110  | 9   | 22  | .70  | 821        | .03  | 3    | 1.51         | -01        | .41        | 2   | 470        |            |
| A96-298         | TR-113_ 10  | 18         | 40       | 82  | .6       | 2 77         | 366        | 13.82 | 202       | 5      | ND.        | z    | 18         | .2          | 12          | 5   | 124 | .30  | .110  | 24  | 14  | .23  | 420        | .04  | 3    | .93          | .01        | .40        | 7   | 1950       | ₽          |
| A96-299         | 113 - 13    | 40         | 65       | 99  | 1.2      | 2 68         | 505        | 12.08 | 167       | 5      | 50         | 2    | 27         | .2          | 14          | 4   | 109 | .33  | . 108 | 46  | 22  | .21  | 823        | .04  | 3    | .84          | .01        | .39        | 6   | 2320       | ĝ          |
| A96-300         | 3           | 181        | 9        | 152 | .4       | 3 22         | 1304       | 4.11  | 10        | 5      | ND.        | 2    | 50         | .2          | 4           | 2   | 31  | 2.50 | . 125 | 6   | 1   | -98  | 140        | .03  | 3    | 1.74         | . 01       | .38        | 2   | 65         | m          |
| A96-301         | 1           | 153        | 10       | 56  | .3       | 3 13         | 1206       | 2.21  | 6         | 5      | <b>S</b> D | 2    | 94         | .6          | 2           | 2   | 21  | 4.07 | . 126 | 6   | 16  | .67  | 608        | . 03 | 3    | 1,25         | . 01       | .36        | 2   | ъ          | g          |
| A96-302         | 1           | 73         | 18       | 85  | .3       | 3 13         | 1301       | 3.02  | 5         | 5      | RD.        | 2    | 123        | .3          | 5           | 2   | 26  | 2.90 | . 138 | 6   | 60  | .87  | 2429       | .03  | 3    | 1.51         | .01        | .39        | 2   | ð          | •          |
| 404 807         | 4           | <b>6</b> 4 | 21       | 74  | 7        | 4 17         | 901        | 2 41  | 5         | 5      | ND         | 3    | 33         | .2          | 4           | 2   | 24  | 1.36 | . 106 | 8   | 15  | .98  | 167        | .05  | Ŧ    | 1.55         | .01        | .39        | Z   | 12         | <br>m      |
| A96-303         | 1           | 96<br>92   | 21<br>10 | 82  | .3<br>.3 | 6 12<br>3 13 | 891<br>967 | 2.61  | 5         | -      | NED-       | z    | 55<br>52   | .z<br>.2    | 5           | 2   | 26  | 2.09 | . 148 | 7   | 17  | .87  | 373        | .03  |      | 1.65         | .01        | .57        | 2   | 20         | 604<br>4   |
| A96-304         |             |            | -        |     |          |              | •          | 2.48  | 6         | _      |            |      |            |             | -           | _   |     |      |       |     | 8   |      | 68         | .05  |      | 1.88         | .03        | .27        | 2   | 1680       | сл<br>U    |
| A96-305         |             | <b>68</b>  | 11       | 88  | .7       | 5 49         |            | 3.88  | 21        | 5      | ND .       | 2    | 24         | .2          | 4           | 2   | 64  | .43  | . 152 | 2   | -   | 1.24 |            |      |      |              |            |            | 2   |            | Ň          |
| A96-306         | 114 - 1     | 101        | 21       | 168 | 1.4      | 11 294       |            | 6.94  | 77        | 5      | 5          | 2    | 19         | .2          | 9           |     | 136 | .82  | .131  | 6   | 18  | 1.35 | 74         | .06  | 3    | 1.67         | . 02       | . 19       | -   | 6150       |            |
| <b>896-3</b> 07 | 1           | 23         | 16       | 235 | .3       | 6 190        | 1042       | 3.13  | 34        | 5      | ND)        | 2    | 15         | .7          | 4           | 2   | Π   | .58  | . 155 | 6   | 13  | 1.38 | 84         | .04  | 3    | 1.67         | . 03       | . 17       | 2   | 305        | 8954       |
| A96-308         | 114 _ 2     | 87         | 45       | 267 | 1.4      | 5 95         | 1143       | 7.70  | 45        | 5      | RD.        | 2    | 14         | 2.6         | 14          | 7   | 150 | .46  | . 121 | 5   | 24  | .63  | 81         | .04  | 3    | 1.04         | .01        | .24        | 2   | 1580       | 4          |
| A96-309         | 1           | 15         | 17       | 407 | .3       | 6 45         | 1077       | 3,90  | 16        | 5      | 10         | 2    | 22         | 3.0         | 5           | 2   | 77  | .68  | . 163 | 7   | 16  | .77  | 95         | .06  | 3    | 1.21         | . 02       | .24        | 2   | 105        |            |
| A96-310         | 1           | 247        | 34       | 57  | .3       | 1 5          | 131        | 7.29  | 121       | 5      | <b>KD</b>  | 2    | 15         | .2          | 13          | 2   | 56  | .42  | . 157 | 4   | 5   | .07  | 122        | .07  | 3    | .64          | .01        | .41        | 2   | 32         |            |
| A96-311         | 2           | 52         | 32       | 174 | .3       | 3 17         | 261        | 6.85  | 90        | 5      | ₩D         | 2    | 17         | .2          | 11          | 2   | 60  | .43  | , 157 | 3   | 7   | .30  | 203        | .07  | 3    | . 89         | . 01       | .43        | 2   | 14         |            |
| A96-312         | 2           | 221        | 31       | 26  | .3       | 2 10         | 194        | 6.83  | 91        | 5      | NO         | z    | 19         | .2          | 8           | 2   | 63  | .42  | . 159 | 3   | 9   | .22  | 249        | .07  | 3    | .91          | . 01       | .41        | 2   | 45         |            |
|                 | _           |            |          |     |          |              |            |       |           | _      |            |      |            | _           |             | -   |     |      |       | _   | -   |      |            | • •  | -    |              |            |            |     |            | ₽          |
| A96-313         | 2           |            | 29       | 10  | .3       | 2 11         |            | 6.15  | 88        | -      | ND         | S    | 16         | .2          | 8           | 2   | 51  | .44  | . 162 | 3   | 3   | .11  | 175        | .07  | 3    | .88          | .01        | .46        | 2   | 125        | é          |
| A96-314         | 1           | 97         | 14       | 29  | .3       | 25           | 487        | 6.22  | 71        |        | ND         | . 2  | 22         | -2          | 6           | 2   | 51  | .55  | . 162 | 3   | 13  | .67  | 280        | .07  | 3    | 1.34         | .01        | .42        | ì   | 30         | 4          |
| A96-315         | 1           | 80         | 9        | 60  | .3       | 3 11         | 589        | 2.77  | 12        |        | ND         | Z    | 44         | .3          | 5           | Z   | 44  | 2.14 | .141  | 4   | 15  | 1.28 | 303        | .05  | 3    | 1.55         | .01        | .32        |     | 9          | 19         |
| A96-316         | 1           | 69         | 7        | 71  | .3       | 3 17         | 641        | 2.78  | 6         | -      | ND         | 2    | 31         | .2          | 5           | 2   | 42  | 1.55 | .152  | 4   | 7   | 1.41 | 102        | .06  |      | 1.64         | .01        | .34        | i   | 16         | 19         |
| A96-317         | 1           | 106        | 8        | 72  | .3       | 3 16         | 703        | 3.17  | 10        | 5      | ND         | 2    | 27         | .3          | 6           | 2   | 42  | 1.40 | . 156 | 5   | 6   | 1.35 | 97         | .04  | 5    | 1.73         | .42        | .44        | 6   | 24         | 366        |
|                 |             |            |          |     |          |              |            |       |           |        |            |      |            |             |             |     |     |      |       |     |     |      |            |      |      |              |            |            |     |            | H          |

)

11:15AM P30 PAGE 3

| ELENENT<br>SANPLE  |       | No  |            | Pb       | Zn         | Ag<br>ppm | i i<br>Pom J | Co       | Mn         | fe<br>V      | ÂB       | U           | Au         | Th     | Sr         | Cd          | Sb      | Bi  | ¥     | Ca<br>Y | P     | La  | Cr         | Mg   | 84       | Tł         |      | AL           | Na<br>T    | r<br>X     | ¥<br>ppa | Au<br>ppb | 7      |
|--------------------|-------|-----|------------|----------|------------|-----------|--------------|----------|------------|--------------|----------|-------------|------------|--------|------------|-------------|---------|-----|-------|---------|-------|-----|------------|------|----------|------------|------|--------------|------------|------------|----------|-----------|--------|
|                    |       | ••  | • •        | ••       | ••         | 2) frame  | phu i        | ppen     | ppm        | •            | ppa      | pp:         | ppm        | ppn    | ppn        | <b>b</b> be | hha     | ppn | 1 ppm | -       | *     | ppm | <b>Pps</b> | X    | ppn.     |            | (and | *            | *          | •          | hbe      |           | ROM    |
| A96 212            |       | 17  |            | S        | 184        | .4        |              | 38       | 1917       |              | 103      | 5           | NO-        | 2      | 48         | <b>Z.</b> 1 | 2       | -   | 287   | 2.71    | . 149 | 8   | 33         | 4.30 | 53       | .21        | 3    | 4.43         | .02        | .12        | 2        | 47        | ••     |
| A96 213            |       | 10  |            | 10       | 131<br>107 | .3        | 9            | 80       | 1512       | 6.74         | 156      | 5           |            | Z      | 29         | .7          | 2       | 2   |       | 1.48    | . 126 | 10  | 24         | Z.94 | 110      | .16        | 3    | 3.21         | .01        | .13        | 3        | 320       | ק      |
| A96 214<br>A96 215 |       | 2   |            | 13<br>10 | 103<br>116 | .3<br>.3  | 4            | 15<br>14 | 940<br>674 | 4.38         | 53<br>41 | 5           | WD-        | 2<br>2 | 26         | .2          | 2       | 4   |       | 1.13    | .115  |     | 16         | 1.95 | 51       | .05        | 3    |              | .03        | .13        | 2        | 26<br>150 | 9      |
| A96 215            |       | 9   |            | 10       | 141        | .s<br>.5  | 11           |          | -882       | 3.86<br>4.95 | 263      | 5           | KD-<br>KD- | 2      | 42<br>24   | .2<br>.2    | 2       | Z   |       | 1.46    | .128  | 9   | 10<br>8    | 1.71 | 36<br>43 | _01<br>_01 | 3    | 1.95<br>2.31 | .03<br>.01 | .15<br>.14 | 2<br>2   | 145       | een    |
|                    |       |     |            |          |            |           | •            |          | -          | 4.73         | 200      |             |            |        | <b>64</b>  | •€          | •       | •   | 100   | .72     | . 197 | Y   | 9          | C.40 |          | ••1        | 3    | <b>E</b> .JI |            |            | •        |           | י<br>ר |
| A96 217            |       | 3   |            | 8        | 111        | 1.0       | 5            |          |            | 4.55         | 111      | 5           | RQ.        | 3      | 34         | .3          | 2       | Z   | 95    | 1.31    | .091  | 14  | 13         | 1.81 | 42       | .01        | 3    | 2.11         | .01        | .13        | 2        | 105       | ar     |
| A96 218            |       | 12  |            | 11       | 127        | 4.9       | 4 1          |          | 750        | 4.75         | 1158     | 5           | RD-        | 2      | 26         | 2.8         | 4       | 2   | 84    | .89     | -110  | 11  | 13         | 1.72 | 44       | .01        | 3    | 2.00         | .02        | . 16       | 2        | 60        | ğ      |
| A96 219            |       | 3   |            | 3        | 65         | .3        | _            | 14       | 737        | 3.65         | 46       | 5           | ND.        | 2      | 90         | .2          | 2       | 2   |       | 3.19    | _117  | 7   | 16         | 1.81 | 26       | .04        | 3    | 2.11         | .03        | . 18       | 2        | 135       | rato   |
| A96 220            |       | 1   | 144<br>252 | 3<br>5   | 111        | .3        | 10 4         |          | 1214       | 5.39         | 279      | 5           | 1D         | 2      | 17         | .2          | Z       |     | 129   | .77     | - 149 | 11  | 15         | 2.52 | 67       | .02        |      | 2.89         | .01        | .27        | 2        | 240       | Y      |
| A96 221            |       | •   | 636        | ,        | 95         | .4        | 17           | 52       | 1454       | 7.73         | 106      | 5           | 10         | 2      | 23         | .2          | Z       | 2   | 245   | .82     | . 163 | 9   | 28         | 3.51 | 67       | .05        | 3    | 3.50         | . 03       | .11        | 2        | 75        | E S    |
| A96 222            |       | 7   | 421        | 13       | 76         | .7        | 14           | 49       | 900        | 7.97         | 77       | 5           | ND.        | 2      | 껑          | .2          | Z       | 2   | 168   | 1.09    | .176  | 7   | 20         | 1.79 | 41       | .04        | 3    | 2.31         | .03        | . 16       | 2        | 105       | -      |
| A96 223            | ra ·  | 5   | 268        | 7        | 71         | .6        | 10           | 30       | 843        | 6.06         | 49       | 5           | ND         | 2      | 21         | .2          | 2       | 2   | 157   | 1.03    | .187  | 8   | 19         | 1.63 | 45       | .02        | 3    | 2.18         | .04        | .16        | 2        | 110       | 5      |
| A96 224            | 105 - | - 4 | 56         | 22       | 150        | .7        | 8            | 8        | 1478       | 4.13         | 123      | 5           | 3          | 2      | 79         | 1.3         | 2       | 3   | -84   | 4.66    | .093  | 6   | 17         | 2.27 | 41       | .07        | 3    | 2.60         | .02        | .21        |          | 3520      | •      |
| A96 225            |       | 15  | 873        | 47       | 142        | 1.5       |              | 28       | 1216       | 4.20         | 31       | 5           | 90         | 2      | 54         | 8.          | 4       | 2   | 53    | 3.32    | -092  | 9   | 7          | 1.48 | 133      | -07        | 3    | 2.07         | .01        | .35        | 2        | 820       |        |
| A96 226            |       | 1   | 119        | 3        | 154        | .6        | 14           | 26       | 1623       | 5.81         | 54       | 5           | ١D         | 2      | 32         | .2          | 7       | 2   | 77    | 1.54    | -126  | 8   | 16         | 1.44 | 68       | .07        | 3    | 2.20         | .01        | ,40        | 2        | 270       |        |
| A96 227            |       | 2   | 264        | 10       | 64         | .3        | 3            | 24       | 505        | 4.93         | 45       | 5           | HD)        | 2      | 45         | .2          | 5       | Z   | 56    | 1.46    | .127  | 8   | 7          | .47  | 134      | .06        | 3    | 1.04         | .01        | .43        | 3        | 205       | Ţ      |
| A96 228            |       | 6   | 1834       | 34       | 74         | 3.5       | 2            | 94       | 522        | 4.36         | 188      | 5           | HD.        | z      | 27         | .2          | 5       | 3   | 59    | .90     | -118  | 6   | 13         | .72  | 304      | .03        | 10   | 1.41         | .01        | .50        | 2        | 760       | F      |
| A96 229            | 105 - | . 7 | 692        | 29       | 80         | .7        | 4            | 6        | 500        | 9.55         | 90       | 5           | <b>80</b>  | 2      | 20         | .2          | 9       | 4   | 74    | .67     | . 129 | 9   | 7          | .44  | 290      | .06        | 6    | 1.26         | .01        | .53        | 5        | 1040      | Ťi –   |
| A96 230            |       | 1   | 269        | 5        | 115        | .3        | 5            | 8        | 706        | 4.00         | 20       | 5           | RD.        | 2      | <b>Z</b> 3 | .2          | 2       | Z   | 46    | .91     | .144  | 7   | 6          | .90  | 278      | .05        | 3    | 1,81         | .01        | .59        | 2        | 60        | Z      |
| A96 Z31            |       | 1   | 1050       | 8        | 72         | .9        | 2            | 8        | 718        | 3.24         | 33       | 5           | #D         | Z      | 34         | .7          | 4       | Z   | 22    | 1.48    | - 135 | 7   | - 4        | .70  | 282      | .04        | 3    | 1.52         | .01        | .60        | S        | 110       | •      |
| A96 232            |       | 1   | 174        | 10       | 168        | .3        | 5            | 10       | 880        | 4.48         | 29       | 5           | ŧD         | 2      | 39         | .5          | 6       | z   | 48    | 1.58    | . 131 | 7   | 15         | .82  | 164      | .05        | 3    | 1.53         | .01        | .48        | 2        | 890       | <br>თ  |
| A96 233            |       | 1   | 119        | 11       | 114        | .3        | -            |          | 1190       | 3.80         | 35       | 5           | RD-        | 2      | 14         | .7          | Z       | 2   |       | .60     | .142  | 10  | 4          | 1.05 | 168      | .04        | 5    | 1.95         | .01        | .55        | Z        | 95        | Q<br>4 |
| A96 234            |       | 1   | 1148       | 20       | 89         | 1.0       | 4            | 8        | 1332       | 5.34         | 160      | 5           | KD         | 2      | 15         | 1.8         | 12      | Z   | 58    | .57     | .127  | 10  | 5          | ,26  | 141      | .06        | 4    | .85          | .01        | .41        | 2        | 130       | S      |
| A96 235            |       | 1   | 170        | 33       | 216        | .3        | 12           | 29       | 926        | 6.20         | 120      | 5           | KD         | 2      | 13         | .3          | 4       | Z   |       | .42     | , 134 | 8   | 18         | 1.38 | 199      | .11        | 6    | 1.95         | .01        | .42        | Z        | 750       | N      |
| A96 236            |       | 1   | 243        | 10       | 80         | .3        | 3            | 22       | \$85       | 2.79         | 14       | 5           | ND-        | 2      | 79         | .5          | 3       | 2   | 29    | 3.91    | . 130 | 7   | 3          | .92  | 254      | .03        | 5    | 1,83         | .01        | .58        | 2        | 145       | 895    |
| A96 237            |       | 1   | 152        | 23       | 94         | .3        | 5            | 13       | 865        | 2.92         | 31       | 5           | HD.        | 2      | 34         | .4          | 2       | 2   | 29    | 1.50    | . 138 | 8   | 3          | .76  | 287      | -03        | 5    | 1.72         | .01        | .57        | 2        | 65        | 4      |
| A96 238            |       | 1   | 347        | 19       | 132        | .4        | _            | 10       | 1038       | 3.28         | 51       | 5           | ID.        | 2      | 25         | 3.8         | 3       | Z   |       | 1.22    | .135  | 10  | 3          | .53  | 206      | .03        | 3    |              | .01        | .52        | 2        | 340       |        |
| A96 239            |       | 4   | 110        | 22       | 98         | .3        | 3            | 4        | 701        | 5.43         | 171      | 5           | ND         | 2      | 19         | .2          | 12      | Z   |       | .69     | .118  | 9   | 5          | .33  | 140      | .04        | 3    |              | .01        | .44        | z        | 380       |        |
| A96 240            |       | 2   | 2418       | 5        | 159        | 3.6       | 3            | 7        | 917        | 3.93         | 105      | 5           | HD-        | 2      | 17         | 3.2         | 22      | Z   |       | .72     | .143  | 7   | 5          | .70  | 160      | .04        | 5    | 1.52         | .01        | .55        | 2        | 115       |        |
| A96 241            |       | 1   | 186        | 4        | 77         | .3        | 4            | 9        | 903        | 3,15         | 40       | 5           | ND         | 2      | 55         | .5          | 4       | 2   | 39    | 2.54    | .132  | 8   | 4          | .82  | 180      | -06        | 6    | 1.45         | .01        | .49        | 2        | 255       |        |
| 106 3/2            |       |     | 55         | •        |            |           | 7            | -        |            | / 20         |          |             |            | -      | 78         | •           |         | •   | E 4   | • •     |       | 40  | -          |      |          |            | -    |              | -          | 17         | ,        | 200       | 6 nH   |
| A96 242            |       | 1   | 33         | 16       | 88         | .3        | 3            | 7        | 817        | 4,30         | 31       | 5           | ND         | 2      | 38         | .2          | 5       | 2   | 21    | 1.14    | .133  | 10  | 5          | .40  | 893      | -07        | 3    | 1_04         | .01        | .47        | 2        | 390       | ė      |
|                    |       |     |            |          |            | For       | · •          |          | 9 m /      |              |          | + <b>h</b>  | an         | 10     | 00         | 0 -         | <b></b> | 24  |       | . 44    | gest  | ior | - i.       |      | ~i       | rað        |      |              |            |            |          |           | H      |
|                    |       |     |            |          |            |           |              |          |            | data         |          | <b>L</b> 11 | an         | τU     | ,00        | 0 PF        | 111 9   | a   | 330   | x ux    | yest  | 101 | . т.       | 16   | Jur      | r eu       |      |              |            |            |          |           | 9<br>1 |
|                    |       |     |            |          |            |           |              |          |            |              |          |             | _          |        |            |             |         |     |       |         |       |     |            |      |          |            |      |              |            |            | PA       | æ 3       | 9661   |
|                    |       |     |            |          |            |           | -            | -        |            |              | than     | 13          | 5 E        | pm     | , a        | бsау        | di di   | ge  | est:  | ion     | is r  | equ | ir         | ed f | or       |            |      |              |            |            |          |           |        |
|                    |       |     |            |          |            | COI       | rec          | t.       | data       | 1.           |          |             |            |        |            |             |         |     |       |         |       |     |            |      |          |            |      |              |            |            |          |           | 11     |

996 11:18AM P36

| ELENENT             | Ma      |        | РЪ  | Zn  | Ag    | Nf  | Ce            | Mn   | Fe    | As             | U    | Au  | Th  | Sr        | Cđ         | SD.          | <b>B</b> f | -     | Ca   | P           | La             | Cr         | Mg   | 8a             | Ti   | 8           | AL   | Na   | ĸ    | u    | Au    | FR          |
|---------------------|---------|--------|-----|-----|-------|-----|---------------|------|-------|----------------|------|-----|-----|-----------|------------|--------------|------------|-------|------|-------------|----------------|------------|------|----------------|------|-------------|------|------|------|------|-------|-------------|
| SAMPLE              | ppr     | i ppra | ppm | bbw | -ppin | ppn | <b>H</b> daan | ppa  | X     | <b>ppe</b> r : | Hbai | ppa | ppe | (ppm)     | <u>ppa</u> | <b>b</b> tau | ppe        | i bbu | 2    | *           | ppm            | <b>bbu</b> | X    | ppm            | X    | P <b>MN</b> | x    | X    | x    | ppin | ppb   | ROM         |
| A96-318             | 1       | 99     | 13  | 122 | .3    | 3   | 10            | 555  | 3.22  | - 11           | 5    | ND  | 2   | 18        | .2         | 5            | Z          |       | .92  | . 153       | 4              | 5          | 1.20 | 143            | .05  | 4           |      | .01  | .42  | 2    | 23    | ••          |
| A96-319             | 1       | 52     | 14  | 128 | .3    | 3   | 12            | 679  | 4.83  | 18             | 5    | ND  | 2   | 25        | .2         | 5            | 2          |       | 1.14 | . 148       | 6              | 5          | 1.30 | 96             | .05  | 3           |      | .01  | .32  | 2    | 65    | J           |
| A96-320             | . 1     | 126    | 17  | 69  | .3    | 3   | 8             | 617  |       | 17             | 5    | ND  | 2   | 28        | .2         | 6            | 2          |       | 1.15 | -154        | 4              |            | 1.29 | 132            | .05  |             | 1.79 | .01  | .33  | 2    | 25    | ĝ           |
|                     | TA 1    | 159    | 110 | 72  | .3    | 3   | 13            | 555  | 5.31  | 10             | 5    | ND  | 2   | 56        | 19.8       | 2            | 2          |       | .44  | -149        | 6              |            | 1.09 |                | .06  | 3           |      | .01  | .30  | 2    | 37    | ñ           |
| A96-322             | 117 - 1 | 21     | 17  | 250 | .3    | - 4 | 44            | 1211 | 3,67  | 9              | 5    | 3   | 2   | 39        | .2         | 4            | 2          | : 70  | 1.92 | .147        | 8              | 10         | 1.19 | 89             | -04  | 3           | 1.51 | .02  | .25  | 2    | 3650  | 7           |
| A96-323             | 1       | 19     | 12  | 137 | .3    | 3   | 26            | 974  | 3.07  | 9              | 5    | ND  | 2   | 34        | .2         | 5            | 3          | 60    | 1,98 | .149        | 6              | 10         | .97  | 80             | .06  | 3           | 1.29 | .02  | .25  | 2    | 90    | a           |
| A96-324             | 1       | 16     | 14  | 119 | .3    | - 4 | 15            | 986  | 2.71  | 9              | 5    | ND  | 2   | 58        | .4         | - 4          | 2          | 52    | 3.39 | .137        | 6              | 12         | .80  | 117            | .06  | 3           | 1.01 | .02  | .22  | 2    | 19    | ğ           |
| A96-325             | 1       | 19     | 11  | 98  | .3    | 3   | 10            | 797  | 3.00  | 13             | 5    | ND  | 2   | 39        | .4         | 5            | 2          | 52    | 1.42 | <b>_162</b> | 6              | 13         | .67  | 86             | .06  | 3           | 1.11 | -02  | .30  | 2    | 10    | ú<br>t      |
| <del>896-</del> 326 | 117 1   | 26     | 12  | 130 | .3    | - 4 | 37            | 948  | 2.67  | 14             | 5    | 3   | 2   | 40        | .6         | - 4          | 2          |       | 1.32 | .150        | 5              | 20         | .75  | 100            | . 05 | 3           | 1.12 | .01  | .28  | 2    | 3350  | 9           |
| <del>896</del> -327 | 117 2   | 53     | 15  | 193 | .4    | 5   | 59            | 1040 | 5.78  | 17             | 5    | ND  | 2   | 13        | .2         | 4            | 2          | 102   | .47  | .142        | 12             | 23         | 1.05 | 84             | .04  | 3           | 1.41 | .01  | .17  | 2    | 1760  | i.          |
| A96-328             | 117 - 3 | 83     | 29  | 142 | .6    | 4   | 45            | 666  | 5.51  | 51             | 5    | ND  | 2   | 16        | .2         | 5            | 7          | 97    | .29  | .144        | 19             | 22         | .73  | 141            | .02  | 3           | 1.24 | .01  | . 18 | 2    | 2780  | 8           |
| A96-329             | ·#* 1   | 217    | 19  | 141 | .5    | S   | 105           | 721  | 6,90  | 45             | 5    | 7   | 2   | 15        | .3         | 7            | 10         | 113   | .48  | .147        | 8              | <b>Z</b> 7 | .76  | 77             | .05  | 3           | 1.17 | .01  | .22  | 2    | 8850  | 2           |
| A96-330             | 1       | 66     | 10  | 131 | .3    | 4   | \$2           | 904  | 3.27  | 12             | 5    | ND  | 2   | 38        | .3         | 4            | 2          | 51    | .77  | .166        | 5              | 10         | 95   | 136            | .07  | 3           | 1.46 | .02  | .33  | Z    | 30    | •           |
| A96-331             | 1       | 51     | 7   | 145 | .3    | 4   | 17            | 1025 | 4.20  | 11             | 5    | ND  | Z   | 27        | .2         | 2            | 2          | 67    | .80  | .163        | 4              | 13         | 1.34 | 115            | .07  | 3           | 1.70 | . 02 | .34  | 2    | 180   |             |
| A96-332             | 2       | 98     | 27  | 82  | .3    | 4   | 15            | 512  | 3.20  | 29             | 5    | KD  | 2   | 78        | .8         | 4            | 2          | 65    | 1.08 | .152        | 9              | 24         | .44  | 82             | .07  | 3           | .78  | .01  | . 19 | 2    | 49    |             |
| AR96-01             | 6       | 173    | 48  | 503 | 1.8   | 5   | 9             | 207  | 3.83  | 229            | 5    | ND  | 2   | 15        | 9.7        | 4            | 2          | 59    | . 13 | .064        | 1              | 88         | .43  | 25             | .01  | 3           | 1.29 | .01  | .28  | 5    | 160   | ₽           |
| AR96-02             | 6       | 118    | 10  | 79  | .3    | 7   | 7             | 340  | 1,38  | 22             | 5    | KD  | Z   | 42        | .5         | 2            | 2          | 9     | 1.36 | -010        | 1              | 120        | .07  | 70             | .01  | 3           | .27  | .01  | .08  | З    | 38    | ġ           |
| HN96-005            | 6       | 7490   | 3   | 80  | 7.0   | 217 | 30            | 463  | 3.85  | 9              | S    | ND  | Z   | 20        | .2         | 2            | 8          | 79    | .86  | .072        | 3              | 306        | 3.30 | 91             | .13  | 3           | 2.21 | .02  | .35  | 4    | 2480  | m           |
| HN96-006            | 2       | 37     | 3   | 21  | .3    | 4   | 11            | 1347 | 5.36  | 8              | 5    | ND  | Z   | 6         | .2         | 2            | 2          | 37    | .46  | .137        | 4              | 14         | 1.58 | 130            | .04  | 3           | 2.46 | .01  | .31  | 2    | 40    | 8           |
| HN96-007            | 3       | 156    | 3   | 14  | .4    | 4   | 8             | 342  | 5.35  | 12             | 5    | ND  | Z   | <b>93</b> | .2         | 2            | 2          | 62    | 1.53 | .099        | 3              | 40         | .42  | 17             | .28  | 3           | 1.25 | .03  | .02  | 2    | 28    | •           |
| M96-008             | 3       | 82     | 3   | 54  | .3    | 5   | 18            | 908  | 5.31  | 3              | 5    | ND  | 2   | 49        | -5         | 2            | 2          | 91    | .%   | .118        | 3              | 22         | .97  | 63             | .25  | 3           | 1.44 | .07  | .10  | 2    | 34    | ድ           |
| NH 96-009           | 2       | 50     | 3   | 96  | .3    | 4   | 21            | 1328 | 6.63  | 3              | 5    | ND  | Z   | 50        | .2         | 2            | 2          | 129   | 1.02 | .098        | <sup>•</sup> 5 | 12         | 2.69 | 49             | .21  | 3           | 3.03 | .11  | .06  | 2    | 23    | 684         |
| NH96-010            | 1       | 8      | 4   | 54  | .3    | 4   | 79            | 933  | 11.41 | 2              | 5    | ND  | 2   | 6         | .2         | 2            | 2          | 50    | .37  | .102        | 1              | 11         | 2.56 | 16             | .10  | 3           | 3.00 | .01  | .12  | 5    | 28    | ប្ត         |
| NH96-011            | 2       | 8      | 3   | 22  | .3    | 4   | 15            | 656  | 5.69  | Z              | 5    | ND  | 2   | 9         | .2         | 2            | 2          | 32    | .60  | .107        | 2              | 12         | 1.34 | 19             | _07  | 3           | 1.86 | .02  | .39  | 2    | 18    | R           |
| NK96-012            | 2       | 8      | 3   | 160 | .3    | 7   | 30            | 3096 | 18.07 | 40             | 5    | ND  | 2   | 5         | .2         | 2            | 2          | 219   | .36  | .135        | 1              | 5          | 4.85 | 65             | .05  | 3           | 7.49 | .01  | . 16 | 2    | 25    | <b>5</b> 68 |
| MK96-013            | 12      | 38     | 34  | 26  | 1.7   | 4   | 60            | 436  | 9.43  | 24             | 5    | ND  | 2   | 5         | .2         | 4            | 10         | 32    | .13  | .067        | Z              | 6          | .87  | 11             | .01  | 3           | 1.54 | .01  | .25  | 2    | 64    | 4           |
| NN96-014            | - 5     | 296    | 3   | 55  | 9.3   | 7   | 94            | 2067 | 6.60  | 39             | 5    | 10  | 2   | 171       | .9         | 4            | 2          | 30    | 4.65 | .002        | 4              | 55         | .96  | 35             | .01  | 3           | 1.14 | .01  | .06  | 2    | 10920 |             |
| MN96-015            | 1       | 22     | 16  | 9   | .7    | 11  | 30            | 418  | 4.99  | 52             | 5    | ND  | Z   | 9         | .2         | 2            | 2          | 31    | .29  | .065        | 3              | 15         | .32  | 42             | . 18 | 7           | 1.07 | .01  | .36  | 2    | 56    |             |
| MK96-016            | 11      | 1494   | 3   | 9   | 2.2   | 5   | <del>99</del> | 1894 | 3.62  | 52             | 5    | ND  | Z   | 17        | .3         | 2            | 3          | 11    | 1.75 | -001        | 4              | 124        | . 16 | 50             | .01  | 3           | .43  | .01  | . 10 | 2    | 120   |             |
| NN96-017            | 6       | 40780  | 4   | 10  | 19.7  | 5   | 30            | 483  | 9.54  | 14             | 5    | 8   | 2   | 4         | .2         | 7            | 16         | 9     | -18  | .006        | 2              | 57         | .12  | 15             | .01  | 3           | .30  | .01  | .12  | 2    | 8890  | -           |
| NN96-018            | - 13    | 16630  | 4   | 26  | 11.2  | 4   | 13            | 675  | 6.17  | 26             | 5    | 9   | 3   | 4         | .z         | 2            | 8          | 21    | .17  | .054        | 5              | 57         | .43  | 5 <del>9</del> | .02  | 3           | 1.36 | .01  | .22  | 2    | 10820 | E E         |
| NN96-019            | 3       | 2689   | 5   | 60  | 2.4   | 55  | 37            | 1137 | 7.75  | 26             | 5    | ND  | 2   | 36        | .6         | 2            | 2          | 178   | 2.78 | . 144       | 5              | 49         | 2.05 | 22             | .08  | 3           | 2.46 | .02  | .07  | 2    | 180   | •           |
| NN96-020            | 3       | 373    | 11  | 60  | 2.4   | 3   | 20            | 696  | 7.60  | 40             | 5    | ND  | 2   | 44        | .3         | 2            | 2          | 39    | .89  | .065        | 3              | 66         | .70  | 23             | .09  | 3           | 1.91 | .11  | . 10 | 2    | 62    | 19          |
| MN96-021            | 1       | 54     | 7   | 20  | .3    | 5   | 16            | 545  | 3.53  | 31             | 5    | ND  | 2   | 10        | .2         | 2            | 2          | 43    | .47  | .102        | 3              | <b>Z</b> 3 | .55  | 48             | .09  | 3           | .78  | -04  | .21  | 2    | 16    | 10          |
| MN96-022            | 22      | 31     | 13  | 67  | 2.9   | 5   | 74            | 1005 | 8.42  | 14             | 5    | ND  | 2   | 4         | -4         | 5            | 2          | 30    | .09  | .056        | 2              | 38         | .69  | 38             | .02  | 3           | 1.16 | .01  | .21  | 2    | 43    | <u> 9</u> 6 |

11:15AM P31

PAGE 4

| ELENEN  | r     | Ni<br>PP      |                    |          | Zn<br>ppm  | Ag<br>p.pm | NI Co<br>ppcn ppca | No.<br>Ppa  |              | As           | U      | ALL<br>P. PRI | Th     | Sr<br>ppm | Cd<br>ppn  | Sb<br>April | 81<br>0070 | v          | Ca<br>X | P            | La<br>ppm | Cr<br>ppm | Ng<br>X      | B.a<br>ppm | Ti<br>X r  | 8   | AL<br>X      | Ka<br>X    | K<br>1     | W<br>Span | Au<br>ppb    | FR              |
|---------|-------|---------------|--------------------|----------|------------|------------|--------------------|-------------|--------------|--------------|--------|---------------|--------|-----------|------------|-------------|------------|------------|---------|--------------|-----------|-----------|--------------|------------|------------|-----|--------------|------------|------------|-----------|--------------|-----------------|
|         | -     | •             |                    |          |            | • •        |                    | -           |              |              |        |               |        |           |            | -           |            |            |         |              | _         |           |              |            |            |     |              |            |            |           |              | Rom             |
| A96 17  |       |               | 1 15<br>1 16       | 3        | 39<br>33   | .3         | 15 61<br>5 14      |             | 21.13        |              | 5      | ND<br>ND      | 3      | 8<br>313  | .2         | 2           | 2          |            | .14     | .058         | 2         | 64        | 2.60         | 13         | .01        |     | 3.52         | .01        | _10        | 2<br>2    | 50<br>620    | ••              |
| A96 17  |       | ,             | 1 150              | 3        | 23<br>27   | <br>.3     | 22 23              | 4095<br>776 |              | 115<br>2     | 5      | ND<br>ND      | 2<br>2 | 22        | 1.3<br>.2  | 2           | 2          | _          | 20.48   | .019<br>.127 | 5<br>2    | 13<br>44  | 3.48<br>2.16 | 46<br>37   | .01<br>.17 | 3   | 2.40         | .01<br>.07 | .02<br>.09 | 2         | 15           | פי              |
| A96 18  |       |               | 2 3                | 3        | 11         | .3         | 4 2                | 504         | .95          | 13           | 5      | ND            | 2      | 325       | .2         | 1           | 2          |            | 2.44    | .009         | 1         | 33        | .16          | 7          | • • •      |     | 1.13         | .01        | .02        | 2         | 16           | Ş               |
| A96 18  |       |               | 2 109              | 13       | 65         | .6         | 25 24              | 552         |              | 22           | S      | ND            | 2      | 132       | .2         | 5           | 2          |            | 1.55    | .133         | 3         | 103       | 2.05         | 130        | .17        |     | 2.72         | .26        | .50        | 2         | 31           |                 |
|         |       | •             |                    |          | •••        |            |                    |             |              |              | •      |               | •      |           |            | •           | -          |            |         | 1.23         | •         |           |              |            |            |     |              |            |            |           |              | ,<br>L          |
| A96 18  |       | 1             | • •                | 3        | 12         | .3         | 8 2                | 475         | .48          | 24           | 5      | ND            | 2      | 353       | -2         | 2           | 2          |            | 8.45    | .016         | 1         | 36        | .31          | 1          |            | 106 | .36          | .01        | .01        | 2         | 160          | abo             |
| A96 18  |       |               |                    | 3        | 8          | .3         | 4 1                | 76          | .43          | 5            | 5      | ND            | 2      | 11        | -2         | 2           | 2          | -          | .10     | .023         | 1         | 145       | .02          | 20         | .01        | 3   | _11          | .03        | .03        | 2         | 6            | ora             |
| A96 18  |       |               |                    | 56       | 132        | 2.6        | 8 192              | 913         | 5.56         |              | 2      | 1             | 2      | 7         | -2         | 1           | 3          | 70         | .40     | .110         | 7         | 14        | 1.66         | 64         | ,04        |     | 2.31         |            | .27        |           | 7150<br>3520 | តី              |
| A96 18  |       |               | 2 150<br>Jul - 145 | 31<br>7  | 138<br>116 | 1.2        | 10 190<br>18 512   | 999<br>1016 | 5.69<br>5.60 | 8262<br>7619 | 5      | 3             | 2<br>2 | 24<br>12  | .4<br>.2   | 3           | 2          | 122<br>163 | 1.16    | .111         | 8         |           | 2.08<br>2.06 | 66<br>84   | .02<br>.05 |     | 2.62<br>2.84 |            | .18<br>.16 |           | 2680         | T.              |
| A70 10  |       | 0.0010        |                    |          |            |            |                    | 1014        |              | 1017         |        |               | •      | 16        | •4         | 1           | •          | 100        | .47     |              | •         | -         | E. 40        |            |            | •   |              | ••••       | • •        |           |              | ເພ<br>ເ         |
| A96 18  |       | 11            |                    | 2        | 53         | 2.2        | 12 56              | 774         |              | 2523         | 5      | ND            | 2      | 8         | -2         | 4           | 2          |            | .41     | .123         | 7         | 24        | 1.63         | 45         | .07        | -   | 2.42         |            | .16        | 2         |              | ī               |
| A96 18  | •     | - 9           |                    | 21       | 136        | 2.1        | 11 101             |             | 5.14         |              | 5      | ND            | 2      | 26        | -3         | 2           | 2          |            | 1,57    | .127         | 7         |           | 1.75         | 52         | ,07        |     |              |            | .32        |           | 1220         | ō               |
| A96 18  |       |               |                    | 24       | 87         | 1.9        | 101277             |             | 8.84         |              | 10     | 3             | 2      | 22        | -2         | 12          | 7          |            | .99     | .094         | 4         |           | 2,21         | 41         | .05        |     | 2.66         | .01        |            |           | 4030         |                 |
| A96 191 | • •   |               |                    | 22       | 96         | 2.D        | 13 246             |             | 8.56         |              | 5      | ND            | 2      | 21        | .2         | 3           |            |            | 1.07    | .101         | 5         |           | 2.28         | 43         | .05        |     | 2.71         |            | .12        |           | 1260         |                 |
| A96 191 | 11    | <b>HE.</b> 71 | 3 291              | 129      | 488        | 26.7       | 71009              | 1407        | 1.02         | 12343        | 9      | 78            | 2      | 25        | 4.4        | 10          | 2          | 135        | 1.43    | .113         | 6         | 24        | 1.91         | 58         | ,02        | 3   | 2.79         | .01        | • 17       | 2 (       | 78020        |                 |
| A96 192 | 1 49- | 27            | 370                | 118      | 671        | 6.0        | 8 682              | 1489        | 8,30         | 7629         | 5      | 5             | 2      | z         | 9.9        | 6           | 3          | 145        | 1.39    | .114         | 8         | 26        | 2.51         | 53         | .04        | 3   | 3.28         | .01        | .22        | 2         | 9070         | ₽               |
| A96 193 | in.   |               | 165                | 71       | 53         | 9.0        | 1 66               | 468         | 20.08        | 338          | 5      | 60            | 3      | 17        | .2         | 29          | 136        | 284        | .38     | .088         | 6         | ZS        | .14          | 147        | .09        | 3   | .64          | .01        | .36        | 13 7      | 79800        | <u>2</u>        |
| A96 19  |       | 1             | 103                | 18       | 430        | .3         | 5 91               |             | 3.36         | 33           | 5      | ND.           | 2      | 39        | <b>.</b> 6 | 4           | 2          | 69         | 1.14    | . 156        | 7         | 11        | .80          | 151        | .09        | 3   | 1.33         | .02        | .35        | 2         | 740          | m<br>           |
| A96 195 |       | - 1           | 62                 | 26       | 140        | 5،         | 3 21               | 692         | 5.33         | 51           | 5      | ND            | 2      | 40        | -2         | 10          | 19         | 82         | 1.70    | . 135        | 7         | 20        | .41          | 145        | .10        | 3   | .85          | .01        | .39        | 2         |              | 5               |
| A96 196 | 5     | 1             | 47                 | 44       | 228        | .3         | 1 50               | 1693        | 8.41         | 74           | 5      | ND            | 2      | 34        | -2         | 8           | 10         | 83         | 1.68    | .125         | 6         | 8         | 1.08         | 140        | .05        | 8   | 1.73         | .01        | .43        | 3         | 440          | ••              |
| A96 191 | •     | 1             | 24                 | 26       | 48         | .3         | 12                 | 1044        | 3.28         | 37           | 5      | MD            | 2      | 42        | .5         | 8           | Z          | 46         | 1.95    | . 141        | 5         | 5         | .21          | 132        | .09        | 4   | .93          | .01        | .49        | 2         | 175          | ወ               |
| A96 198 | 3     | 6             | 49                 | 23       | 157        | .3         | 10 19              | 2803        | 6.49         | 35           | 5      | KD            | 2      | 184       | 1.5        | 2           | 2          | 200        | 12.64   | . 126        | 10        | <b>Z1</b> | 4.16         | 17         | .04        | 3   | 3.96         | .01        | .09        | 2         | 90           | 2               |
| A96 199 |       | 4             | 199                | 9        | 89         | .7         | 5 44               | 1565        | 7.15         | 1 <b>54</b>  | 5      | Ð             | 2      | 83        | 3          | 2           | 4          | 210        | 5.30    | . 174        | 8         | 9         | 3.64         | 34         | .06        | 3   | 3.79         | .02        | .10        | 2         | 65           | 522             |
| A96 200 | )     | 7             | 150                | 3        | 95         | .3         | 12 21              | 1563        | 7.70         | 47           | 5      | ND            | 2      | 95        | .5         | 2           | 4          | 319        | 5.46    | .179         | 9         | 28        | 4.24         | 23         | .19        | 3   | 4.18         | .02        | .06        | 2         | 47           |                 |
| A96 201 | l     | 3             | 134                | 3        | 104        | .3         | Z3 40              | 1807        | 8.77         | 139          | 5      | ND            | 2      | 142       | 1.1        | 2           | 2          | 325        | 7.96    | .120         | 6         | 69        | 5.94         | 21         | -21        | 3   | 5.21         | .01        | .22        | 2         | 35           | g               |
| A96 202 | •     | 61            | 561                | 51       | 81         | 3.0        | 90 196             | 1620        | 17.05        | 372          | 5      | ND            | 2      | 45        | 4.0        | 2           | 6          | 304        | 2.30    | .111         | 5         | ഒ         | 5.30         | 18         | .20        | 3   | 4.72         | .01        | .23        | 2         | 480          | 4               |
| A96 203 | -     | 21            |                    | 3        | 107        | .3         | 13 33              | 1673        |              | 83           | 5      | XD            | 2      | 59        | .4         | 2           | -          |            | 3.08    | .165         | 8         |           | 4.89         | 39         | .16        | _   | 4.64         |            | .15        | 2         | 180          |                 |
| 196 206 |       | 1             |                    | 3        | 93         | .3         | 6 26               | 1185        | 7.37         | 139          | 5      | ND            | 2      | 27        | .2         | 2           | _          |            | 1.15    | .197         | 11        |           | 3.75         | 59         | .10        | _   | 4.05         | .02        | .16        | Z         | 70           |                 |
| A96 205 |       | 4             |                    | 4        | 85         | .8         | 2 35               | 828         | 7.60         | 183          | 5      | ND            | 2      | 15        | .2         | 2           | _          | 209        | .73     | .236         | 8         |           | 2.95         | 34         | .10        | 3   | 3.33         | .01        | .32        | 2         | 120          |                 |
| A96 206 |       | - , 50        | 19473              | 3        | 109        | 33.9       |                    | 1604        |              | 89           | 5      | 4             | 2      | 19        | .4         | 2           |            |            | 1.62    | .068         | 8         |           | 2.54         | 49         | .02        | 3   | 3.35         | .01        | .18        | 2         | 5250         |                 |
|         |       |               |                    | 40       | 45         |            | 65 135             |             | 15.97        | 525          | E      | -             | 2      | 5         | .2         | 3           | 78         | 86         | .06     | .053         | 2         | 45        | .36          | 21         | .01        | 4   | .85          | .01        | 14         | 2         | 505          | 6n <del>U</del> |
| A96 207 |       | 111           | 97                 | 40<br>67 | 15<br>15   | 2.1<br>2.5 | 1 17               |             |              | 525<br>18    | 5<br>5 | ND            | 2      | 2<br>5    |            | 9           | 28<br>77   |            | .05     | .045         |           |           | .35          |            |            |     | .81          |            | .31        |           | 210          | ė               |
| A96 201 |       |               |                    | 7        |            | 1.1        | 21054              |             |              |              | ę      | 80            | 1      | 20        | 4.4        | 2           |            |            | 1.03    | .100         |           |           | 2.03         |            | .02        |     |              | .01        |            |           | 2030         | 13              |
| A96 210 |       |               | 2078               |          | 150        | 2.3        | 81983              |             | 11.13        |              | 5      | 3             | 3      | 9         | 6.7        | 20          |            |            | .36     |              |           |           | 2.04         |            | .01        |     |              | .01        |            |           | 3360         | 4               |
| A96 211 |       |               | 483                |          |            | .6         | 2 96               |             | 4.95         |              | 5      | -             | 3      |           | 7.0        | 2           | 2          | 134        | 2.10    | .098         |           |           |              | 42         |            |     | 2.11         |            |            |           | 480          | 396             |
|         |       | -             |                    |          |            |            |                    | 217         |              |              |        |               |        |           |            | -           | -          |            |         |              |           |           |              |            |            |     |              |            |            |           |              |                 |
|         |       |               | •                  |          |            |            |                    |             |              |              |        |               |        |           |            |             |            |            |         |              |           |           |              |            |            |     |              |            |            |           |              | 11:             |
|         |       |               |                    |          |            |            |                    |             |              |              |        |               |        |           |            |             |            |            |         |              |           |           |              |            |            |     |              |            |            |           |              | 11:17AM         |
|         |       |               |                    |          |            |            |                    |             |              |              |        |               |        |           |            |             |            |            |         |              |           |           |              |            |            |     |              |            |            | **        | ¥ 2          | Ð               |
|         |       |               |                    |          |            |            |                    |             |              |              |        |               |        |           | 1          |             |            |            |         |              |           |           |              |            |            |     |              |            | )          |           |              | P3S             |
|         |       | )             |                    |          |            |            |                    |             |              |              |        |               |        |           | )          |             |            |            |         |              |           |           |              |            |            |     |              |            |            |           |              | ы               |
|         |       | 1             |                    |          |            |            |                    |             |              |              |        |               |        |           |            |             |            |            |         |              |           |           |              |            |            |     |              |            |            |           |              |                 |

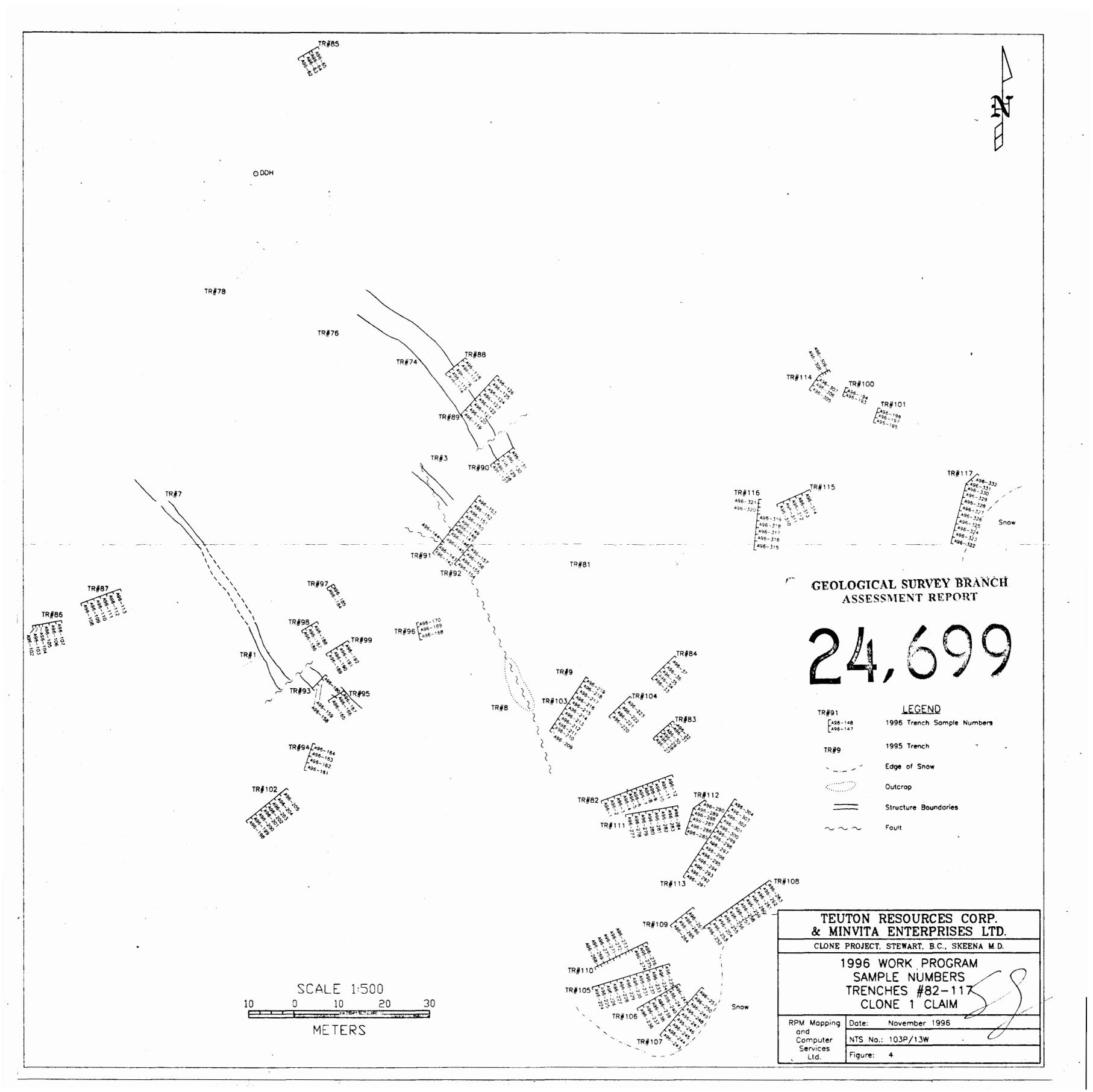
?

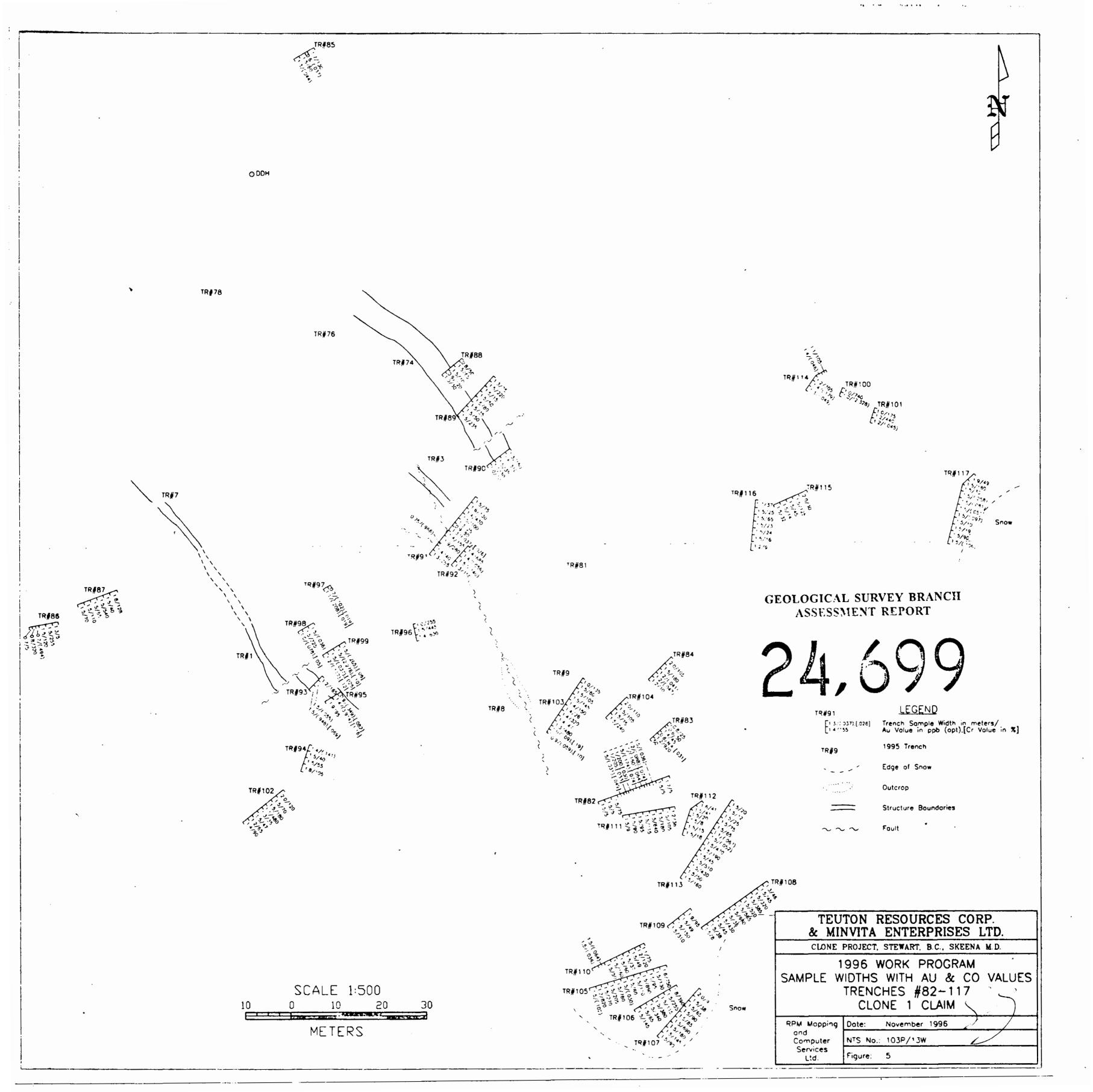
| ELENENT<br>SAMPLE | Ho<br>ppm | Cu   | Pb<br>ppe | 2n<br>ppn | Ag<br>ppm | Ri<br>ppm | Co  | Nn<br>ppe  | F•<br>X | As<br>ppn | U   | A4       | Th | Se-<br>ppm | Col<br>ppm | sb<br>ppm | 81<br>007 | V   | Ca<br>X | P<br>X       | La<br>ppn | Cr<br>ppn | Ng<br>X | Ba<br>ppo | T1<br>X | 8.<br>pmn | Al<br>Z | ¥=<br>% | K<br>X | u<br>ppm | Au<br>ppb | FR          |
|-------------------|-----------|------|-----------|-----------|-----------|-----------|-----|------------|---------|-----------|-----|----------|----|------------|------------|-----------|-----------|-----|---------|--------------|-----------|-----------|---------|-----------|---------|-----------|---------|---------|--------|----------|-----------|-------------|
|                   |           |      |           | ••        | •••       |           |     | •••        |         |           | • • |          |    | ••         |            | •••       | •••       |     |         |              |           |           |         |           |         |           |         |         |        |          |           | Ξ           |
| A96-248           | 5         | 472  | 21<br>7   | 122       | .7        | 4         | 17  | 698<br>277 | 8.12    | 60<br>24  | 5   | ND       | 2  | 12         | .2         | 11        | 2         | 69  | .41     | . 128        | 8         | 8         | .51     | 140       | .05     | 4         | 1.07    | -01     | .42    | 4        | 90        |             |
| A96-249           | 1         | 387  | 3         | 86        | .7        | -         | 14  | 953        | 5.17    | 21<br>9   | 5   | NO       | 2  | 36         | .2         |           | 2         |     | 1.85    | . 131        | •         | 5         | 1.16    | 140       | .05     | 3         | 1.68    | .01     | .45    | 2        | 65<br>38  | P           |
| A96-250           | 1         | 315  | _         | 97        | .4        | 21        | 36  | 1779       | 8.14    |           | 5   | ND       | 2  | 112        | .2         | 5         |           | 242 | 5.48    | . 148        |           | 57        | 4.39    | 78        | . 18    | 3         | 3.74    | .01     | .37    | 2        |           | 3           |
| A96-251           | 1         | 515  | 4         | 82        | .5        | 18        | 45  | 1639       | 9.15    | 34        | 5   | ND       | 2  | 48         | .2         | 9         |           | 239 | 2.25    | .195         | 8         | 36        | 4.28    | 138       | .17     | 3         | 3,73    | .01     | .27    | 2        | 9         | R           |
| A96-252           | 3         | 127  | 46        | 104       | .6        | 9         | 21  | 1083       | 7.60    | 113       | 5   | ND       | 2  | 22         | .2         | •         | 2         | 95  | .92     | .139         | 5         | 13        | 2.71    | 32        | .03     | 3         | 2.84    | .01     | .22    | 2        | 8         | 7           |
| A96-253           | 1         | 128  | 16        | 56        | .3        | 9         | 26  | 693        | 5.59    | 15        | 5   | ND       | 2  | 19         | .2         | 4         | 2         | 84  | .82     | .162         | 7         | 10        | 1.61    | 120       | .07     | 3         | 2.02    | .02     | .34    | 2        | 38        | al          |
| A96-254           | 1         | 76   | 6         | 74        | .3        | 4         | 23  | 534        | 3.38    | 24        | 5   | ND       | 2  | 17         | .2         | 3         | 2         | 40  | .59     | .148         | 6         | - 4       | 1.34    | 156       | .04     | 3         | 1.65    | .02     | .42    | 2        | 45        | ğ           |
| A96-255           | 3         | 75   | 13        | 99        | .3        | 4         | 21  | 825        | 4.34    | 28        | 5   | ND       | 2  | ð          | .2         | 5         | 2         | 45  | .95     | .136         | 6         | 13        | .81     | 267       | .03     | 3         | 1.42    | .01     | .39    | 2        | 430       | ณ์          |
| A96-256           | · 1       | 193  | 12        | 54        | .3        | 3         | 14  | 559        | 4.06    | 21        | 5   | ND       | 2  | 22         | .2         | 7         | 2         | 41  | .81     | .146         | 8         | - 4       | .46     | 185       | .04     | 3         | 1.12    | .01     | .48    | 2        | 36        | ğ           |
| A96-257           | 2         | 281  | 34        | 103       | .4        | 3         | 79  | 619        | 5.80    | 77        | 5   | HD       | 2  | 30         | .2         | 8         | 2         | 41  | .68     | .126         | 6         | 24        | .28     | 595       | .04     | 3         | . 92    | .61     | .45    | 3        | 960       | ñ           |
| A96-258           | 3         | 76   | 42        | 147       | .3        | 2         | 122 | 606        | 4.78    | 71        | 5   | ND.      | ,  | 22         | .3         | 4         | 2         | 39  | .71     | .139         | 5         | 14        | .27     | 328       | .05     | 3         | .91     | .01     | .43    | 3        | 565       | S           |
| A96-259           | 3         | 57   | <b>61</b> | 155       | .3        | 2         | 91  | 483        | 6.63    | 63        | 5   | ND       | 2  | 18         | .2         | 9         | 2         | 40  | .63     | .169         | 5         | 15        | .23     | 449       | .06     | 3         | .86     | .01     | .46    | 2        | 520       | ۲ <u></u>   |
| A96-260           | 4         | 64   | 93        | 120       | .3        | 2         | 33  | 516        | 6,31    | 67        | 5   | ND       | 2  | 50         | 2.2        | 7         | 2         | 44  | 1.10    | .114         | 5         | 29        | .12     | 791       | .04     | 3         | .68     | .01     | .40    | s        | 385       | \$          |
| A96-261           | 2         | 238  | 31        | ស         | .3        | 2         | 22  | 578        | 3.56    | 27        | 5   | ND       | 2  | 20         | .2         | .3        | 2         |     | .70     | .144         | 5         | 16        | .3      | 289       | .03     | 3         | .98     | .01     | .44    | 2        | 320       |             |
| A96-26Z           | 1         | 1757 | 6         | 99        | 1.9       | 3         | 15  | 584        | 3.14    | 50        | 5   | ND       | 2  | 40         | .4         |           | 2         | 39  | 1.43    | .152         | 6         | 4         | .46     | 216       | .03     | 3         | 1.15    | .02     | .46    | 2        | 45        |             |
|                   | -         |      | •         |           |           | _         |     |            |         |           | _   |          | -  |            |            |           | _         |     |         |              |           |           |         |           |         | _         |         |         |        |          |           | -           |
| A96-263           | -         | 1747 | 7         | 100       | 3.4       | 3         | 13  | 951        |         | 76        | 5   | ND       | 2  | 64         | 1.1        | 15        | 2         |     | 2.47    | . 138        | 8         | 11        | .35     | 268       | .03     | 3         | 1.10    | .02     | .46    | 2        | 46        | PHO         |
| A96-264           | 3         | 111  | 18        | 128       | 1.1       | 14        | 29  | 745        | 7.46    | 186       | 5   | NÐ       | 2  | 14         | .2         | 2         | 2         | 103 | .48     | .163         | 5         | 19        | 2.60    | 79        | .07     | 3         | 3.08    | .02     | .23    | 2        | 310       | Ă           |
| A96-265           | 1         | 516  | 11        | 89        | 1.0       | 5         | 22  | 813        | 4.93    | 22        | 5   | ND       | 2  | 26         | .3         | 2         | 2         |     | 1.51    | .131         | 7         | 8         | 1.18    | 205       | . 03    | 3         | 1.92    | .01     | .38    | 2        | 150       | ~           |
| A96-266           | 3         | 313  | 16        | 121       | .5        | 18        | 33  | 1855       |         | 95        | 5   | ND       | 2  | 26         | .4         | 2         | _         | 135 | 1.05    | .179         | 9         | 45        | 3.35    | 340       | .07     | 3         | 3.82    | .01     | .28    | 2        | 49        | ģ           |
| A96-267           | 2 1       | 266  | 12        | 106       | .4        | 4         | 16  | 709        | 3.77    | 70        | 5   | ND       | 2  | 16         | .2         | 2         | 2         | 39  | .47     | . 148        | 5         | 13        | 1.31    | 480       | .01     | 3         | 2.22    | .01     | .49    | 2        | 95        | ••          |
| A96-268 110       |           | 84   | 29        | 103       | 8.        | 12        | 21  | 1237       | 4.32    | 57        | 5   | ND       | 2  | 62         | .2         | 2         | 2         | 131 | 3.62    | .111         | 6         | 28        | 2.31    | 65        | .06     | 3         | 2.49    | .03     | .18    | 2        | 1230      | ŋ           |
| A96-269 //C       |           | 373  | 84        | 170       | 1.1       | · 12      | 32  | 1713       | 8.42    | 77        | 5   | ND       | 2  | 31         | .3         | 9         | 2         | 104 | 1.39    | . 129        | 10        | 12        | 2.43    | 190       | .08     | 3         | 2.95    | .01     | .34    | 2        | 2195      | 4           |
| A96-270           | 1         | 108  | 8         | 121       | .3        | 18        | 23  | 1306       | 7.52    | 61        | 5   | ND       | 2  | 28         | .2         | 4         | 2         | 125 | 1.11    | . 171        | 11        | 24        | 1.95    | 138       | .09     | 3         | 2.71    | .02     | .37    | 2        | 50        | ប្ដ         |
| A96-271           | 3         | 551  | 9         | 134       | .9        | 12        | 36  | 1231       | 6.94    | 154       | 5   | ND       | 2  | 23         | .2         | 5         | 2         | 113 | .86     | . 158        | 9         | 18        | 2.00    | 143       | .07     | 3         | 2.76    | .01     | .31    | 2        | 160       | Ŋ           |
| A96-272           | 2         | 231  | 10        | 108       | .5        | 7         | 24  | 1099       | 5.57    | 46        | 5   | ND       | 2  | 23         | .2         | 2         | 2         | 67  | .99     | . 154        | 5         | 12        | 2.01    | 310       | .06     | 3         | 2.85    | -01     | .46    | 2        | 60        | 995<br>1995 |
| A96-273           | 1         | 142  | 25        | 68        | .3        | 4         | 11  | 607        | 3.09    | 26        | 5   | ND       | 2  | 15         | 1.0        | 2         | 2         | 35  | .70     | . 150        | 6         | z         | .93     | 167       | .02     | 3         | 1.83    | .01     | .50    | Z        | 37        | 2           |
| A96-273           | 1         | 274  | 7         | 82        | .3        | 5         | 16  | 963        | 4.63    | 64        | 5   | ND       | 2  | Z2         | 1.0        | 2         | 2         | 54  | .70     | .143         |           | 6         | 1.62    | 183       | .02     | 3         | 2.46    | .02     | .46    | 2        | 49        |             |
| A96-275           | 2         | 439  |           | 62<br>58  | <br>.4    | 3         | 21  |            | 3.05    | 55        | 5   | ND<br>ND | 2  | 35         | 1.0<br>.9  | 10        | 2         | 34  | 1.88    | . 145        | 7         | 9         | .B1     | 286       | .04     | 3         | 1.69    | .02     | .60    | 2        | 120       |             |
| A96-275           | 2         | 495  | 3         | 83        | .4        | 4         | 28  |            | 3.04    | 52        | 5   | ND       | 2  | 16         | .6         | 5         | 2         | 32  | .67     | .138         | 7         | 3         | .56     | 152       | .04     | 3         | 1.77    | .01     | .62    | 2        | 75        |             |
| A96-277           | 2         | 40   | 3         | 59        | .3        | 3         | 13  | 818        | 2.61    | 7         | 5   | ND       | 2  | 65         | .2         | 2         | 2         | 41  | 3.06    | .128         | 6         | 4         | 1.32    | 135       | .02     | 3         | 2.02    | .01     | .49    | 2        |           |             |
| A70-217           | •         |      |           | 39        | · •       | 2         | 13  | 919        | 2.01    |           | 1   |          | 2  |            | ••         | -         | -         | •1  | 4.00    |              | •         | -         | 1       |           |         | -         |         |         |        | •        | •         | ₽           |
| A96-278           | 1         | 717  | 3         | 100       | .7        | 3         | 30  | 941        | 3.63    | 35        | 5   | ND       | 2  | 85         | 1.4        | 3         | 2         | 52  | 3.39    | .111         | 6         | 29        | .91     | 1135      | .02     | 3         | 1.79    | .01     | .56    | 2        | 90        | ė           |
| A96-279           | 1         | 266  | 3         | 105       | .3        | 3         | 16  | 648        | 3.86    | 29        | 5   | ND       | 2  | 38         | .2         | 2         | 2         | 52  | 1_87    | .131         | 4         | 3         | .75     | 144       | .03     | 3         | 1.64    | .01     | .61    | 2        | 95        | <u> </u>    |
| A96-280           | 1         | 531  | 5         | 121       | 8,        | 4         | 71  | 924        | 3.98    | 59        | 5   | ND       | 2  | 62         | 2.0        | 4         | 2         | 42  | 3.06    | <b>.1</b> 14 | 6         | 5         | .61     | 146       | .04     | 3         | 1.33    | .01     | .48    | 2        | 115       | 19          |
| A96-281           | 1         | 248  | 5         | 134       | .3        | 3         | 42  | 857        | 3.86    | 35        | 5   | ND       | 2  | 29         | .6         | 2         | 2         | 31  | 1.36    | -123         | 4         | 6         | .80     | 116       | .03     | 3         | 1.49    | .01     | .42    | 2        | 640       | 15          |
| A96-282           | 1         | 173  | 16        | 111       | 1.1       | 4         | 50  | 982        | 4.50    | 132       | 5   | ND       | 2  | 56         | .2         | 4         | 2         | 52  | 1.37    | .124         | 7         | 6         | 1.25    | 63        | .02     | 3         | 1.85    | .01     | .35    | 2        | 180       | 396         |
|                   |           |      |           |           |           |           |     |            |         |           |     |          |    |            |            |           |           |     |         |              |           |           |         |           |         |           |         |         |        |          |           |             |

11:14AM P29

PASE 2

| PIONEER LA                                            |    | 5-730 BATON WAY NEW WESTMINSTER, BC CANADA V3N 6J9 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |           |            |         |           |   |    |           |           | TELEPHONE (604) 522-1 830 |           |                 |         |      |           |    |         |           |         |        |             |         |              |           |      |
|-------------------------------------------------------|----|----------------------------------------------------|-----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|------------|---------|-----------|---|----|-----------|-----------|---------------------------|-----------|-----------------|---------|------|-----------|----|---------|-----------|---------|--------|-------------|---------|--------------|-----------|------|
| <b>TEUTON RES</b><br>Project: Clana<br>Sample Type: F | 9  | s coi                                              | æ.        |            | G B O C H B M I C A L A N A L Y S I S C E R T I F I C A T B<br>Hulti-element ICP Analysis500 gram sample is digested with 3 ml of aque regia, Analyst<br>diluted to 10 ml with water. This leach is partial for Nn, Fe, Ca, P, La, Cr, Ng, Report No. 9621838<br>Ba, Ti, B, W and limited for Na, K and AL. Detection Limit for Au is 3 ppn. Date: August 17, 1996<br>*Au Analysis- 10 gram sample is digested with aque regia, M18K extracted, graphite<br>furnace AA finished to 1 ppb detection. |    |           |            |         |           |   |    |           |           |                           |           |                 |         |      |           |    |         |           |         |        |             |         |              |           |      |
| ELEMENT<br>SANPLE                                     | No | Cu                                                 | Pb<br>ppn | Zn<br>pps  | Ag<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ní | Со<br>ррл | Hn<br>ppin | Fe<br>X | As<br>ppm | U |    | Th<br>ppa | Sr<br>ppm | Cd<br>ppn                 | Sb<br>ppa | sî V<br>ppu ppa | Ca<br>X |      | La<br>ppn | Cr | Hg<br>X | Ba<br>ppn | Ti<br>X | 8<br>8 | AL<br>X     | Na<br>X | K<br>X       | ai<br>ppn | Auf  |
| 96-156                                                | 84 | 59                                                 | 25        | 35         | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27 | 17        | 79         | 6.06    | 18        | 5 | ND | z         | 21        | .2                        | 2         | 2 24            | .11     | .022 | 6         | 80 | .13     | 13        | .01     | 3      | .46         | .06     | . <b>2</b> 7 | 2         | 14   |
| 96-157                                                | Z  | 161                                                | 5         | 51         | .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8  | 20        | 760        | 5.97    | 2         | 5 | KD | 2         | 34        | .2                        | Z         | 2 230           | 1.59    | .144 | 4         | 25 | 2.12    | 19        | .23     | 16     | Z. 16       | .05     | . 96         | 2         | 14   |
| 96-158                                                | 2  | 193                                                | 24        | 38         | .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 | 42        | 387        | 9.38    | 8         | 5 | ND | 2         | 28        | .2                        | 2         | 2 53            | .53     | .145 | 4         | 17 | 1.33    | 18        | .01     | 3      | 1.90        | .02     | .39          | 2         | - 34 |
| 96-159                                                | 3  | 113                                                | 15        | 29         | .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3  | 14        | 319        | 7.19    | - 4       | 5 | ND | 2         | 24        | .2                        | 2         | 2 124           | .42     | -162 | 3         | 18 | 1.11    | 36        | .12     | - 4    | 1.43        | .07     | .29          | 2         | 14   |
| H96-035                                               | 2  | 154                                                | 3         | 31         | .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6  | 19        | 680        | 6,73    | 17        | 5 | ND | 2         | 46        | .2                        | 4         | 2 209           | 2.06    | .172 | 5         | 16 | 2.24    | 25        | .8      | 3      | <b>2.06</b> | .05     | .13          | 2         | 2    |
| IN96-036                                              | 3  | 14                                                 | 3         | 28         | .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7  | 14        | 1701       | 3.92    | 2         | 5 | NÐ | 2         | 871       | .2                        | 2         | 2 130           | 11.02   | .001 | 3         | 66 | 1.56    | 21        | .01     | 3      | 1.84        | .01     | .02          | 2         | 1    |
| u196-037                                              | 15 | 155                                                | 30        | 78         | .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14 | 30        | 478        | 6.72    | 11        | 5 | ND | 2         | 32        | .5                        | 5         | 2 127           | 1.35    | .151 | 3         | 15 | .93     | 30        | . 19    | 3      | 1.16        | .04     | .26          | 2         | 17   |
| 10196-038                                             | 2  | 8                                                  | 3         | <b>Z</b> 2 | .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8  | 19        | 2684       | 5.74    | 2         | 5 | NÐ | 2         | 469       | .2                        | 2         | 2 16            | 18.60   | .001 | 2         | 58 | 3.66    | 36        | .01     | 3      | .21         | .01     | .06          | 2         | 12   |


: 604 522 8954


►AGE 1

٠

| ELEMENT<br>SAMPLE |                 | Мо<br>ррп   | Cu<br>Ippna | РЬ<br>рра | Zn.<br>ppn | Ag<br>ppm | Nî<br>Şem | Co-<br>ppm | Kin<br>ppm |       | As<br>ppm | U<br>ppn | Au<br>nqq | Th<br>ppn | Sr<br>ppm | Cd<br>ppm | Sb<br>ppm | 86<br>ppm p | V           | Ca<br>X |       | La<br>ppn | Cr<br>ppm | Ka<br>X | 8a<br>ppm | Ti<br>X | 8<br>parant | AL<br>X | Na<br>X | K<br>X | ы<br>ррв | Au<br>ppb | FROM  |
|-------------------|-----------------|-------------|-------------|-----------|------------|-----------|-----------|------------|------------|-------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-------------|-------------|---------|-------|-----------|-----------|---------|-----------|---------|-------------|---------|---------|--------|----------|-----------|-------|
| 1196-023          |                 | 6           | 26          | 3         | 9          | .3        | 4         | 30         | 438        | 3.57  | 22        | 5        | ND        | 2         | 6         | .2        | 2         | 2           | 24          | .14     | .069  | 2         | <u>42</u> | .29     | 163       | .03     | 3           | -93     | .01     | .21    | 27       | 18        |       |
| <b>4496-024</b>   |                 | 16          | 1200        | 3         | 49         | .6        | 10        | 18         | 305        | 3.87  | 2         | 5        | ND        | 2         | 21        | .7        | 2         | 2 1         | 06          | 1.85    | .123  | 5         | 51        | .76     | 39        | , 09    | 3           | 2.06    | .05     | .17    | 2        | 49        | σ     |
| <b>4496-025</b>   |                 | 6           | 39          | 3         | 55         | .3        | - 3       | 61         | 1454       | 18.43 | 330       | 5        | ND        | 3         | 4         | .2        | 2         | 2           | 71          | .16     | .072  | 3         | 26        | 1.66    | 26        | .06     | 3           | 3.76    | .01     | .17    | 2        | 760       | õ     |
| <b>#196-026</b>   | 11 -            | - 5         | 29          | 3         | 75         | .3        | - 4       | 66         | 1845       | 14.39 | 358       | 5        | HD.       | 3         | - 4       | .2        | 2         | 2           | 76          | .18     | .074  | 7         | 33        | 2.17    | 32        | .01     | 3           | 4.14    | .01     | .15    | 2        | 1560      | ň     |
| <b>4196-027</b>   | 4.5             | 3           | 210         | 13        | 46         | .6        | 3         | 11         | 655        | 8.36  | 28        | 5        | ND .      | 6         | 5         | -4        | 2         | 2           | <b>91</b>   | .25     | .114  | 5         | 26        | 1.59    | 48        | .03     | 3           | 2_80    | .02     | . 22   | 2        | 50        | P     |
| <b>#196-028</b>   |                 | 3           | 327         | 3         | 29         | .4        | 13        | 19         | 942        | 4.69  | 15        | 5        | ND        | Z         | 18        | _3        | 2         | z           | 97          | .50     | .116  | 6         | 90        | .83     | 48        | .05     | 3           | 1.82    | .01     | .14    | 2        | 30        | Lat   |
| x8196-029         | ·               | . 9         | 7417        | 6         | 126        | 9.0       | 25        | 75         | 254        | 5.42  | 17        | 5        | 100       | 2         | 13        | 2.8       | Z         | 22          | 99          | .77     | .109  | 5         | 25        | .61     | 36        | .09     | 3           | 1.06    | .03     | .12    | 2        | 2050      | ğ     |
| 12196-030         |                 | 7           | 6056        | 3         | ð          | 7.4       | 10        | 12         | 563        | 3.01  | 35        | 5        | HD.       | 2         | 20        | .3        | 2         | 4           | 14          | 2.24    | .008  | 2         | 94        | .18     | 29        | .01     | 3           | .42     | .01     | . 98   | 2        | 160       | ú     |
| 1096-031          |                 | 3           | 3516        | 13        | 130        | 5.8       | 17        | 35         | 1046       | 4.72  | 27        | 5        | HD.       | 2         | 20        | 3.5       | 2         | 32          | 12          | 2.44    | . 155 | 9         | 41        | 2.15    | 40        | .10     | 3           | 2.16    | .01     | .08    | 2        | 120       | ġ     |
| 10196-032         |                 | 3           | 890         | 3         | 46         | 3.5       | 18        | 39         | 6101       | 4.74  | 67        | 5        | ND        | 2         | 252       | -8        | 5         | 2           | <b>65</b> ( | 24.01   | .001  | 12        | 50        | .94     | 19        | .01     | 3           | 1.42    | .01     | .09    | 2        | 160       | i e e |
| HH96-033          | ( <b>1996</b> ) | 1 <b>62</b> | 35298       | 1538      | 1449       | 50.8      | 73        | 101        | 688        | 15.76 | 192       | 5        | 12        | Z         | 24        | 83.2      | 26        | 2 Z         | 62          | 1.33    | .375  | 6         | 21        | 2.41    | 8         | .01     | 3           | 2.88    | .01     | .18    | 2        | 3560      | 5     |
| 10196-034         |                 | 47          | 950         | 71        | 106        | 4.8       | 144       | 131        | 595        | 18.69 | 42        | 5        | ND.       | 2         | 4         | -4        | 10        | 2 2         | 40          | .21     | .121  | 1         | 173       | 2.17    | 9         | .01     | 3           | 3.13    | .01     | .05    | 2        | 130       | 5.    |

PAGE 5



