

Assessment Report October 1995- October 1996 for Diamond Drilling, Geochemistry and Geophysics on the

HEARNE HILL PROPERTY

OMINECA MINING DIVISION BABINE LAKE AREA, B.C.

NTS 93-M-1W

Latitude 55°11'N

VOLUME 1 (OF 4)

Longitude 126°16'W

Claims Involved

Hearne 1, Hearne 3, Hearne 4, Hearne 8, Hearne 9, BB 1 (Group HH 1) Hearne 1, Hearne 5, BB 2, BB 3, BB 4, Hearne 10, Hearne 11 (Group HH 2) Hearne 1, Hearne 5, Hearne 7, Cub 200, Cub 300, Hearne 12, Hearne 13 (Group HH 3) Hearne 1, Hearne 2, Hearne 6, Cub 100 (Group HH 4) Hearne 2, Hearne 7, Cub 200, Copper 100, Copper 200 (Group HH 4) Hearne 2, Hearne 7, Cub 200, Copper 100, Copper 200 (Group HH 5)

Owner - Operator

BOOKER GOLD EXPLORATIONS LIMITED 10th Floor - 609 West Hastings St. Vancouver, B.C. V6B 4W4

by

J. Paul Stevenson CEO, Executive Director Gordon Weary, M.Sc. Project Geologist

January 03, 1997 Re-submitted May 13, 1997

TABLE OF CONTENTS

VOLUME 1: REPORT AND MAPS

1.	SUMMARY AND CONCLUSIONS	4		
	1.1 Summary of Work Done	5		
	1.2 Recommendations and Cost Estimates	5		
2.	INTRODUCTION			
3.	PROPERTY LOCATION AND ACCESS	8		
4.	EXPLORATION HISTORY	13		
5.	REGIONAL GEOLOGY	16		
6.	PROPERTY GEOLOGY	17		
	6.1 Geological Setting	17		
	6.2 Porphyry Mineralization	17		
	6.3 Breccia Mineralization	19		
7.	EXPLORATION PROGRAMMES	21		
	7.1 Geochemistry and Surficial Geology	21		
	7.2 Geophysics	22		
	7.3 Diamond Drilling	22		
8.	ITEMIZED COST STATEMENT	23		
9.	REFERENCES AND BIBLIOGRAPHY	25		
10.	Certificates	27		

LIST OF FIGURES

Figure 1:	Location and Access		9
Figure 2:	Claim Map		10
Figure 3:	Topography		12
Figure 4:	Geology of Ore Zone		18
Map 1:	1:10 000 Base Map / Claim Outline	(In Pocket)	
Map 2:	1:1000 Drill Plan Map	(In Pocket)	
Map 3:	Apparent Chargeability (I.P.) Survey Plan - Level One	(In Pocket)	
Map 4:	Apparent Resisitivity Survey Plan	(In Pocket)	

APPENDICES

APPENDIX A:	GEOCHEMISTRY	28
	References Guide to Sample Attributes	29
	Property Scale Geochemical Sample Attributes	30
	Property Scale Geochemical Results	41
	Property Scale Sample Locations	52
	Property Scale Cu (ppm) Contour Map	53
	Detailed Scale Geochemical Sample Attributes	54
	Detailed Scale Geochemical Results	58

Page

	Detailed Scale Sample Locations Detailed Scale Cu (ppm) Contour Map	Page 62 63
APPENDIX B:	DRILLING	64
	Drill Hole Azimuth, Dip Length and Assay Summary	65

VOLUME 2: DRILL HOLE LOGS (DDH 96-16 - DDH 96-33) INCLUDING ASSAYS VOLUME 3: DRILL HOLE LOGS (DDH 96-34 - DDH 96-52) INCLUDING ASSAYS VOLUME 4: DRILL HOLE LOGS (DDH 96-53 - DDH 96-72) INCLUDING ASSAYS

1. <u>SUMMARY AND CONCLUSIONS</u>

- 1. The Hearne Hill claims of Booker Gold Explorations Limited are situated 65 km northeast of Smithers, in the Babine Lake district of British Columbia.
- 2. The property is underlain by volcanic rocks belonging to the middle Jurassic Hazelton group, which consists principally of water lain grey lapilli crystal tuffs and grey andesites, with some associated sedimentary rocks. The volcanic sequence has been intruded by a dyke swarm of Biotite Feldspar Porphyry (BFP) bodies which belong to the Tertiary (Eocene) Babine Igneous Intrusive Suite.
- 3. Copper and gold mineral deposits in the Babine Lake district are associated with the BFP intrusions.
- 4. At the Hearne Hill property there are two types of copper molybdenum gold silver deposits, as follows:
 - a. a stock work porphyry-copper of the general Babine type;
 - b. breccia bodies containing enriched copper-gold mineralization (known as the Chapman and Peter Bland zones) situated within a high grade core zone of the porphyry deposit.
- 5. In the BFP intrusives and surrounding Hazleton volcanic country rock, chalcopyrite, pyrite and molybdenite occur as fracture fillings, as disseminations and within stockwork quartz veinlets. The host rocks contain biotite and quartz - sericite alteration. Alteration zoning from fresh unaltered porphyry through propylytic, phyllic and potassic is present within the porphyry.
- 6. The breccia bodies are situated within and adjacent to the porphyry -copper stockwork. The Chapman and Peter Bland zones are separated by approximately 300 m, have a N 10-30E strike, and appear to dip steeply (70-80°) to the east. The breccias consist of angular clasts up to several tens of centimetres size of BFP and Hazelton volcanics. Open space in the breccia prior to mineralization is estimated at 5 to 20% of rock volume. Chalcopyrite, pyrite and lesser chalcocite were deposited in the space between the angular clasts.
- 7. Drilling of the Chapman breccia by Noranda (1989, 1990) intersected 22.9 m of 2.75% Cu, but Noranda concluded that the breccia was cut-out at 70 to 80 metres depth by an intrusion of bleached massive quartz-biotite-feldspar-porphyry.
- Subsequent drilling of the breccia by David Chapman (1991) indicated that the area of mineralized breccia was more extensive than that indicated by the Noranda drilling. Of the 7 holes drilled by Chapman all intersected mineralized breccia, however only one hole was assayed. This hole contained a 50 m section of 2.3% Cu, and several 3 m sections with 0.4 2.0 g/t Au, including one section with 14 g/t Au.
- 9. Booker Gold's approach to exploration on Hearne Hill, since its acquisition in 1993, has been to explore for further breccia zones and associated high grade mineralization. Expansion of the high grade core of the deposit and surrounding porphyry stockwork

could make the difference between an eventual producing mine and a marginal grade Babine porphyry deposit.

- Booker Gold's 1994 and 1995 diamond drilling programmes led to the discovery of the Peter Bland zone, a second breccia body of high grade copper-gold-silver mineralization. The Peter Bland zone is situated 300 m northeast of areas investigated by previous exploration programmes.
- 11. In 1996 Booker Gold was successful in extending the high grade core of the Hearne Hill deposit and locating additional mineralized occurrences. Trenching of a till geochemical anomaly 50 100 m west of the Bland zone revealed over 40 m of mineralized (>1.0% Cu) breccia. Subsequent drilling proved that this breccia occurrence was in fact part of the Bland zone and extended the zone to the southwest. Similar copper-gold geochemical anomalies remain to be investigated 100m 300m west of the Bland zone. Till and colluvial samples in this area assay over 4000 ppm copper, and 900 ppb gold. Drilling of initial geophysical targets suggests that chargeability highs resistivity lows along northeast trending structures near the Bland zone are areas that contain abundant chalcopyrite. Chargeability highs to the south may result from a pyritic halo as drilling encountered mostly abundant pyrite with minor chalcopyrite. Results from the geochemical and geophysical surveys and drilling suggest that further high-grade mineralization may exist both northeast and southwest of the Bland and Chapman zones.
- 12. A further programme of trenching and drilling is required to define the size and extent of known breccia zones, and explore new geochemical and geophysical targets. An additional major programme of grid drilling would be necessary to define the size and grade of the extended porphyry stockwork deposit.

1.1 SUMMARY OF WORK DONE

Geochemical Surveys - Both property scale and follow-up detailed scale geochemical surveys were completed. The property scale survey totalled 406 samples obtained at a density of 1 sample per 100 square metres. For the detailed scale survey, 153 samples were obtained at a scale of 1 sample per 25 square metres.

Geophysical Survey - A total of 33 kilometres of Induced Polarization (I.P.) lines were surveyed.

Diamond Drilling - 58 NQ diamond drill holes were drilled between October 1995 and October 1996, for a total of 14,684 metres of drilling.

1.2 RECOMMENDATIONS AND COST ESTIMATES

The 1996 geochemical and geophysical surveys provided adequate coverage to the north, south and west. Expanding the grid to the east is recommended in order to define the eastern extent of the geophysical and geochemical anomalies.

To complement the geochemical and geophysical IP surveys, a geophysical magnetic and VLF survey should be implemented. As magnetite is virtually absent from the copper-gold enriched breccia zones, magnetic lows may outline potential occurrences.

Trenching 50 - 300 m west of the Bland zone followed by drilling should be conducted to define the source of the large geochemical anomalies in this area. Drilling should continue along regularly spaced intervals southwest of the Bland zone to determine if the Bland and Chapman zones are connected at depth.

Exploration for further high grade mineralized occurrences should begin with trenching and drilling of geophysical and geochemical targets that are northeast of the Bland zone and southwest of the Chapman zone.

Cost estimates are as follows:

Phase 1

Geophysical and geochemical programs	\$200,000
Trenching and road construction	\$300,000
Drilling (10 000 m, NQ)	\$1,900,000

\$2,400,000

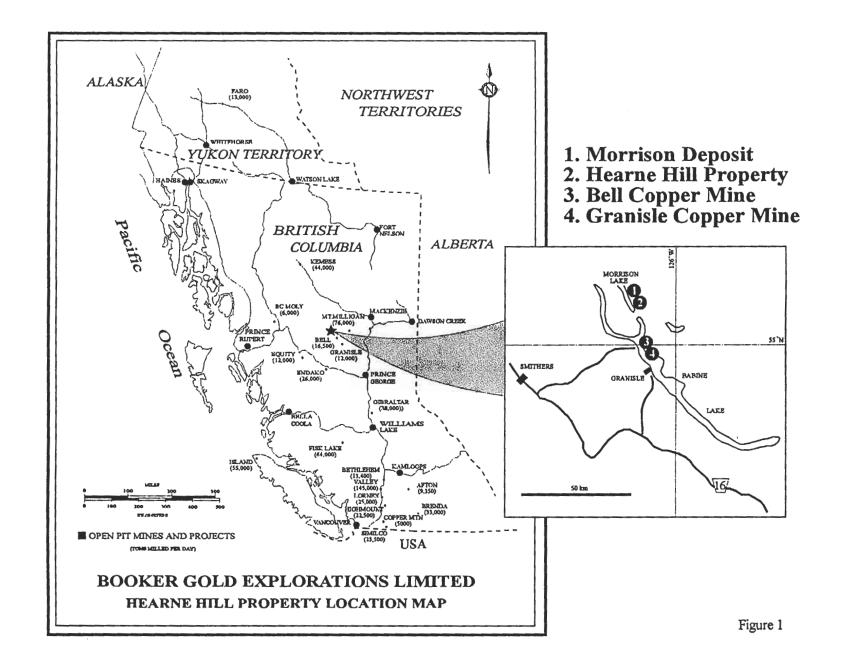
Phase 2

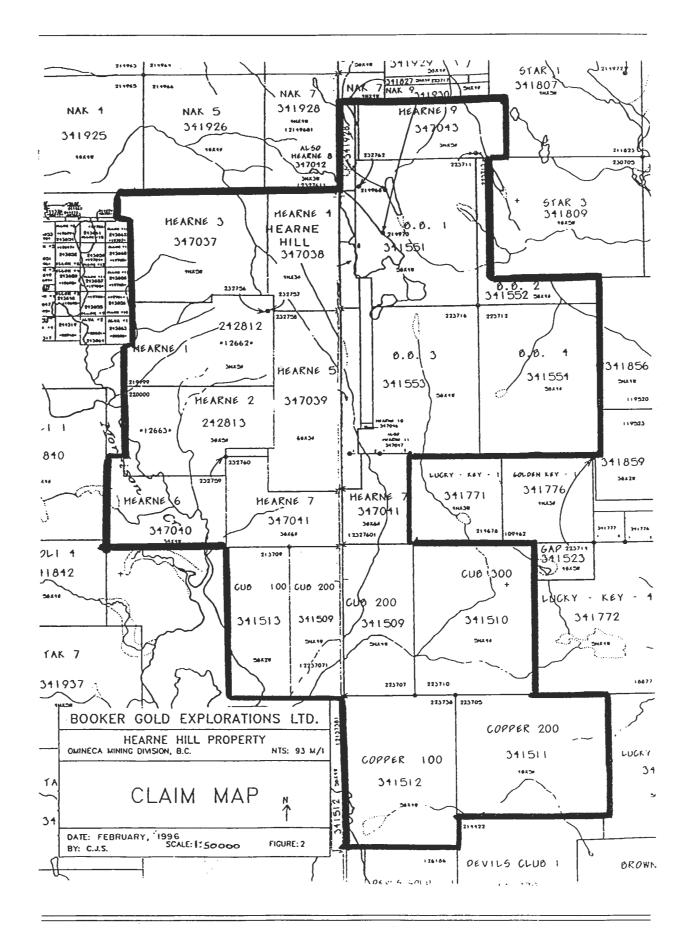
If Phase 1 is successful in extending the high-grade core and defining further mineralized occurrences, the surrounding copper-porphyry stockwork deposit will need to be defined by extensive grid drilling leading to a recalculation of tonnage and grade. A decision could then be made whether to proceed to a feasibility study of the deposit.

Drilling (15 000 m, NQ)	\$2,900,000
TOTAL: Phase 1 and Phase 2	\$5,400,000

2. INTRODUCTION

Diamond drilling and exploration between October 1995 and October 1996 successfully extended the high grade core of the Hearne Hill copper-gold porphyry deposit and identified new enriched occurrences. In addition to drilling, exploration included extensive geochemical and geophysical surveys. Drilling of initial geophysical I.P. chargeability and resisitivity targets suggests that sulphide mineralization extends along a northeast trend with a partial pyrite halo surrounding a chalcopyrite enriched core. Results from the till geochemical sampling survey revealed strong copper and gold anomalies in the area of the high grade core (Chapman and Peter Bland zones) with separate anomalies to the west that may represent parallel structures bearing enriched copper, silver and gold.

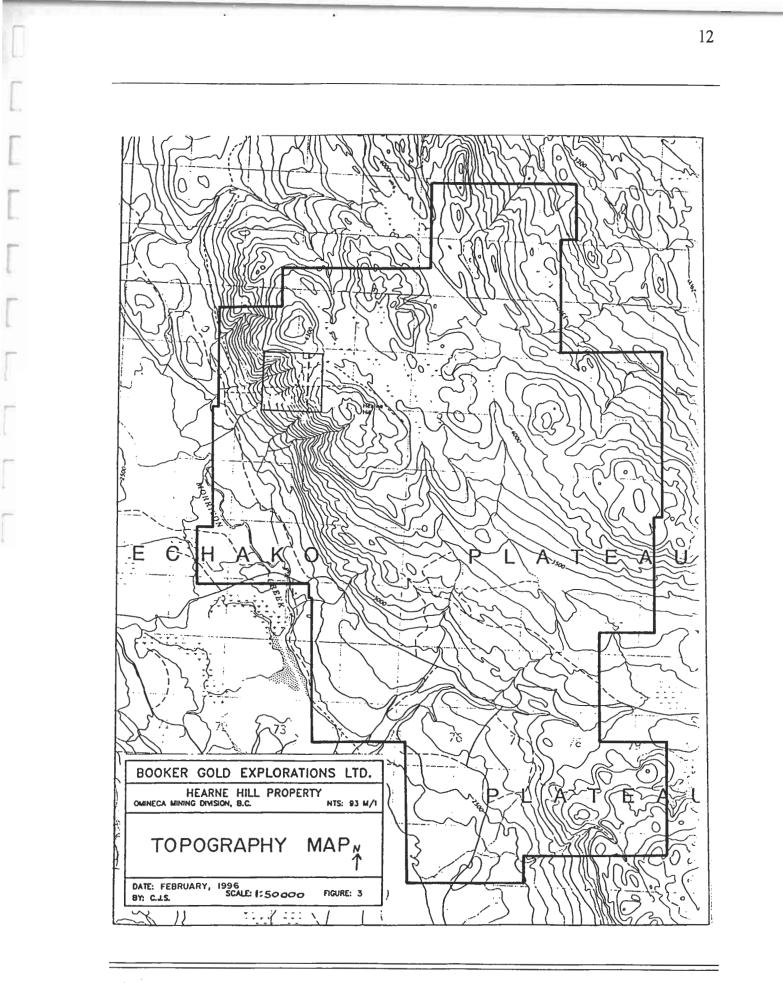

3. PROPERTY, LOCATION AND ACCESS


The Hearne Hill Property is situated as follows (Figure 1):						
Latitude 55⁰ 11'N	Longitude 126 [°] 16'W	Average Elevation 3600 ft. (1100 m)	NTS 93-M-1W			
55 IIIN	120 10 44	5000 II. (1100 III)	93-1v1-1 vv			

The property consists of the following claims (Figure 2):

Claim	Tenure No.	Units	Expire Date (All claims expire in 1999)
CUB 200	341509	20	October 13
Copper 100	341512	20	October 13
Copper 200	341511	20	October 13
Hearne 1	242812	15	October 7
Hearne 2	242813	15	October 7
Hearne 3	347037	20	June 20
Hearne 4	347038	12	June 20
Hearne 5	347039	18	June 18
Hearne 6	347040	12	June 20
Hearne 7	347041	18	June 20
Hearne 8	347042	9	June 19
Hearne 9	347043	15	June 19
Hearne 10	347046	1	June 20
Hearne 11	347047	1	June 20
Hearne 12	348735	1	July 25
Hearne 13	348736	1	July 25
CUB 100	341513	10	October 13
BB 1	341551	20	October 19
BB 2	341552	20	October 24
BB 3	341553	20	October 19
BB 4	341554	20	October 24
CUB 300	341510	20	October 13

The property, consisting of 308 metric claim units, surrounds Hearne Hill, approximately 65 km northeast of Smithers in central British Columbia.



Access to the property is by a series of main haulage logging roads. The major access route is from Smithers to Topley Landing, then by Northwood barge across Babine Lake and via the Jinx and Hagan Forest Service roads to within 4 km of the property. A four-wheel drive exploration road to the property intersects the Hagan road at kilometre 40, 21 km north of the Bell Mine site.

[

The property varies in elevation from a low of 734 m. (2405 ft.) on Morrison Creek on the west side to a high point of 1350 m. (4430 ft.) on Hearne Hill. Hearne Hill forms part of a ridge trending southeast caused by block faulting in the area. The western slope of Hearne Hill is quite steep and is drained by several small creeks westward into Morrison Lake (Figure 3). A 1:10,000 Base Map / Claim Outline Map is included in the back pocket.

4. <u>EXPLORATION HISTORY</u>

The Babine Lake area has been actively explored since the 1920s. In the 1950s and 1960s, British Columbia experienced an exploration boom for porphyry-copper deposits. The Babine Lake area was intensely explored by programmes of prospecting, geophysics and geochemistry which resulted in the discovery of many porphyry-copper deposits, two of which - Granisle and Bell - were subsequently placed into production. The Granisle Mine, was discovered by Granby (later Zapata-Granby, and eventually sold to Noranda as part of Bell Copper Division) and started production in 1955 at 5000 TPD. Before closure in 1982, production was at 14,000 TPD. The Bell Mine of Noranda Minerals was commissioned between 1972 and 1992. Production began at 10,000 TPD and was increased to 17,000 TPD by 1980.

Granisle and Bell produced 130 m. tonnes with average recovered grades of 0.40% Cu, 0.15 g/t Au and 0.75 g/t Ag (Carter *et al.*, 1995).

Copper mineralization on Hearne Hill was first discovered by Trojan Consolidated Mines and Buttle Lake Mining in 1967. Trenching of magnetic and geochemical highs unveiled mineralized boulders of volcanic breccia near the present day location of diamond drill hole #96-60.

The property was optioned by Texas Gulf Sulphur Company whose exploration programmes included induced polarization (I.P.), magnetometer and diamond drilling (12 holes totalling approx. 6,000 ft. (1942 m.) in 1968. The drill programme indicated presence of a Babine style porphyry-copper deposit on the Hearne Hill property, similar to the Bell and Granisle deposits. Texas Gulf calculated the overall grade of the porphyry deposit at 0.2% copper, however drilling apparently failed to intersect the mineralized breccia.

In 1968 the property was optioned by Canadian Superior Exploration, who completed geological mapping, induced polarization, magnetometer and geochemical sampling surveys, followed by some preliminary diamond drilling (Kahlert and Fawley 1968). Canadian Superior followed this with a programme of percussion drilling in 1969 (Kahlert 1969).

The property then lay dormant until 1989 when it was acquired by Dave Chapman. Chapman rekindled interest in the property by carrying out a limited programme of trenching on the old showings with a skidder mounted backhoe.

In July 1989 Noranda Minerals and Bell Mine (a Noranda Mines subsidiary) optioned the property. A diamond drillhole program consisting of 6 holes totalling 1537 ft. (468 m.) was established in order to determine whether the mineralization in the volcanic breccia exposed at surface had any vertical continuity and to establish the attitude of the mineralization.

As reported by Ogryzlo (January 1991) 4 holes intersected the mineralization. Hole H89-1 was lost in mineralization at 270 ft. (82 m.) when the rods stuck in a mud seam. The last core run was recovered which assayed 3.32% copper. Significant intersections from the 1989 drilling programme are summarised as follows:

Hole Number	From feet (me	tres)	To feet (me	tres)	Width feet (m	etres)	% Cu
H89-1	190.0 227.5	(57.9) (69.3)	227.5 270.0	(69.3) (82.3)	37.5 42.5	(11.4) (12.9)	1.34 3.61
H89-2	45.0 65.0 85.0	(13.7) (19.8) (25.9)	65.0 85.0 130.0	(19.8) (25.9) (39.6)	20.0 20.0 45.0	(6.1) (6.1) (13.7)	1,84 2.68 1.10
H89-3	60.0	(18.3)	77.5	(23.6)	17.5	(5.1)	2.11
H89-4	97.5	(29.7)	160.0	(48.8)	62.5	(19.1)	0.78

Summary of Results - 1989 Programme

The drilling established that the overall trend of the breccia deposit is N10E to N20E with 70- 80° dip to the east.

In 1990 Noranda drilled a further 5 NQ size holes, totalling 2,807 ft. (856 m) in order to test the vertical extent of the mineralized breccia.

As reported by Ogryzlo (January 1991) hole H90-3 was the only hole to intersect the full width of the breccia. Mineralization was intersected over a width of 80 ft. (24.4 m) with an average grade of 0.67% Cu, 0.05% Mo and 0.16 g/t Au. Holes H90-1 and H90-5 also intersected sections of the mineralized breccia. Much of the target area, however, was largely occupied by post-mineral intrusions of biotite-feldspar-porphyry (BFP) including a massive unit of bleached white BFP, similar to the post-mineral quartz-feldspar-porphyry (QFP) body that has replaced approximately 1/3 of the Bell ore body. Holes H90-2 and H90-4 also intersected post-mineral intrusions. Significant intersections from the 1990 drill programme are summarised as follows:

Summary of Results - 1990 Programme

Hole Number	From feet (metres)	To feet (metres)	Width feet (metres)	% Cu
H90-1 (includes)	340.0(103.6)372.5(113.5)	400.0 (121.9) 395.0 (120.4)	60.0(18.3)17.5(5.3)	0.39 0.59
H90-2	380.0 (115.8)	691.0 (210.6)	311.0 (94.7)	0.18
H90-3 (includes)	80.0 (24.4) 305.0 (93.0)	390.0(118.9)385.0(117.3)	310.0 (94.5) 80.0 (24.4)	0.31 0.67
H90-4	110.0 (33.5)	465.0 (141.7)	355.0 (108.2)	0.22
H90-5 (includes)	Weakly mineralized over minor breccia		557.0 (169.8) 5.0 (1.5)	0.11 0.56

In 1991, David Chapman drilled 7 diamond holes, totalling approximately 550 metres in the breccia zone. All holes intersected intensely mineralized volcanic breccia but only hole 91-2 was assayed. It intersected 50.0 metres assaying 2.3% Cu. This included one 10 foot section which assayed 14 g/t gold.

Booker Gold optioned the property in late 1992, in order to explore for other breccia bodies. Booker Gold's initial exploration involved trenching and percussion drilling, followed in 1994, 1995 and 1996 by diamond drilling programmes. Extensive geochemical and geophysical surveys were carried out in 1995 and 1996.

5. <u>REGIONAL GEOLOGY</u>

The Hearne Hill area is situated on the northern edge of the Skeena Arch in a region which is underlain by volcanic and epiblastic rocks ranging in age from lower Jurassic (Telkwa) formation to lower Cretaceous (Skeena) group. This sequence of rocks has been cut by a northwest trending series of faults that have created a long linear sequence of horsts and grabens. The rocks have been intruded by a variety of intermediate to felsic stocks, plugs and dikes of Eocene age (Richards 1990).

During the Tertiary-Eocene period BFP plugs and stocks of the Babine igneous suite were emplaced along major faults in a continental magmatic arc. Two ore bodies (Bell and Granisle) and numerous sub-economic deposits occur as porphyry-copper deposits which are temporally and spatially associated with the Babine igneous suite intrusions (Carson and Jambour 1973). The Babine igneous suite is a high potassium, calcalkaline suite which shows some trace elements normally associated with alkaline porphyry copper deposits rather than calcalkaline.

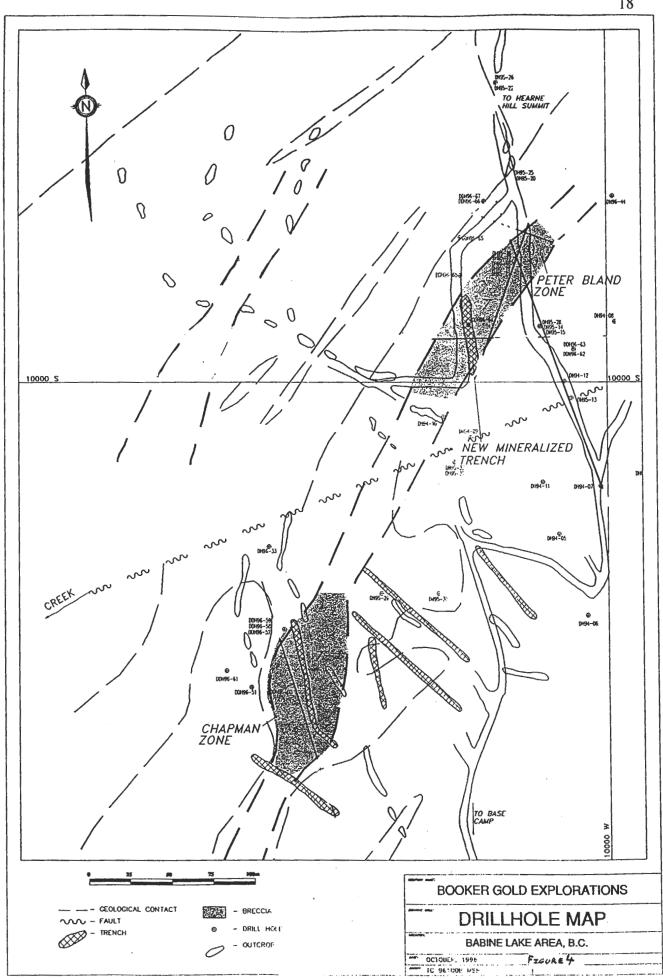
The regional geology for the Babine Lake area will be updated and modified, when results are released from recent mapping by the British Columbia Geological Survey

6. PROPERTY GEOLOGY, MINERALIZATION AND ALTERATION

The following description of geological setting, mineralization and alteration is based on Ogryzlo (1991). A simplified geological map covering the area of the Chapman and Bland zones is presented in Figure 4.

6.1 <u>Geological Setting</u>:

Hearne Hill is underlain by volcanic rocks of the lower to middle Jurassic Hazelton Group (Richards, 1990). The volcanic rocks on the property belong to the submarine Kotsine facies of the Sinemurian Telkwa formation (Tipper and Richards, 1976). The volcanic rocks are characterised by waterlain grey lapilli-crystal tuffs and grey andesite.


These rocks have been intruded by porphyritic rocks of the 50 my Eocene Babine igneous suite. Mapping by Booker Gold shows that the Eocene biotite-feldspar porphyry intrusives are in the form of a series of northeasterly trending dykes. The intrusives are of diorite or quartz diorite composition. There is no well defined intrusive centre of the BFP similar to the centres noted at the Bell Mine (Carson et al 1976) and at the Morrison deposit (Carson and Jambour, 1976). Porphyry copper related mineralization consists primarily of disseminated chalcopyrite with minor chalcocite and bornite filling fractures. A distinctive phase of the BFP intrusions appears to be either very late or post mineral in age. The rock is a massive white BFP with intense sericite-pyrite alteration. Plagioclase is soft, white, and completely altered to sericite. Biotite is bleached pale brown to white and is sericitized as well. The massive unbroken structures suggest that the rock was emplaced after the structural events that are evident in most of the other units observed. The rock is similar in appearance to the quartz BFP post mineral phase that occupies the southeastern portion of the Bell ore body, but lacks the quartz phenocrysts.

Ogryzlo (1990) concluded that the intrusions on Hearne Hill are multiphase, with more than one intermineral or post mineral intrusion of BFP.

6.2 Porphyry Copper Mineralization

Chalcopyrite, bornite and molybdenite occur as fracture fillings and disseminations in the biotite feldspar porphyry and the adjacent volcanics. This mineralization is due to a large porphyry copper system of the Cu-Mo type.

Many of the biotite feldspar porphyry units are intermineral or post mineral in age. The erratic nature of the copper distribution is caused by these late stage intrusions. The volcanic rocks, in contrast with late stage BFP, are invariably higher in grade. The volcanics (Hazelton, i.e. Jurassic) were deposited long before any mineralizing event, and have been subjected to all stages of mineralization. When the distribution of copper in the volcanics alone is examined, it appears that grades are increasing to the south and west of the Chapman breccia zone.

6.3 Breccia Mineralization

At present, there are two known bodies of mineralized breccia. The southern body (the Chapman zone) has been known for several years and was extensively studied by Ogryzlo. The northern body (the Peter Bland zone) was found by Booker Gold during the 1995 drill programme. Results from the 1996 exploration programme extended the Bland zone to the south and identified two additional mineralized breccia occurrences to the west of the Bland zone.

The Chapman and Peter Bland breccia zones are elongated along a principal N10-20E striking fracture system. These are dilational zones of brecciation which are surrounded by areas of fracturing which carry high grade mineralization. Booker Gold's 1996 drilling has shown that these high grade areas extend to considerable depths (in excess of 500 m).

This principal N10-20E striking fracture system has been traced for up to 200 metres to the north east of the Peter Bland zone and a similar distance south west of the Chapman zone but in these areas the shallow drilling to date has encountered mostly pyrite within the breccias. There are indications that the mineralization may contain more copper and associated gold and silver values at depth.

The Chapman breccia zone is ovoid in plan, with a length of 68 m and a width of 26 m. It strikes N10-20E, dips steeply east with a southeast plunge. Clasts are angular, with the brecciated rocks having the texture of cemented rubble or talus.

The porosity of the breccia before sulphide and carbonate cementation would have been close to the theoretical maximum of around 25%. Chalcopyrite, pyrite and marcasite fill angular interstices between the breccia clasts with later cementation provided by calcite, dolomite and minor chalcedony. Porosity remains between 5% and 8%. There is little evidence of milling or attrition of clasts. Rock flour is present between clasts but is a minor constituent.

Fluids associated with the breccia mineralization were dilute epithermal chloride brines. In the breccia, fluid inclusions that are trapped in the dolomite cement homogenize at a mean temperature of 172.5°C (in a range of between 83°C and 240°C) with salinities ranging from 2% to 10% NaCl equivalent (Ogryzlo et al 1995).

Gold is enriched in the breccia pipe relative to the stockwork mineralization and averages 0.8 g/t. However, higher values (14 g/t over 3 m) have been obtained. Such values are rare in the stockwork deposits of the Babine region and indicate that suitable conditions for an epithermal precious metal deposit may be present.

The breccia clasts are lithologically identical to the enclosing wallrocks, making the breccia virtually monolithologic. Heterolithic breccia was observed in Noranda holes H90-3 and H90-1. Sericitized and bleached biotite feldspar porphyry clasts with grey andesite and tuffaceous felsic clasts form the bulk of the Chapman breccia zone. Many

clasts reveal pre-breccia mineralization consisting of sulphide and quartz sulphide veinlets.

The breccias in the Peter Bland zone are also related to a N10-20E striking principal fracture system which dips steeply to the east. As in the Chapman zone, high grade copper gold silver mineralization occurs infilling what were originally voids between the breccia clasts, but areas of high grade fracture filling mineralization also occur in altered BFP and Hazelton volcanic country rocks in close proximity to the breccia zones.

As a result of the 1996 drilling programme the Chapman and Peter Bland breccia zones have been shown to be elliptical (in plan) dilational zones centred and elongated along a principal fracture system which strikes N10 - 20E and dips steeply (approximately 80°) east.

The breccia zones appear to have gradational contacts with their host rocks, ie. the brecciation grades into strongly fractured host rock on both foot and hanging wall sides of each of the Chapman and Peter Bland zones. These areas of intense fracturing contain high grade copper and gold values similar to those in the breccia zones themselves which gradually diminish over a distance of 10-20 m laterally away from each breccia zone. The width of the enriched core of the Hearne Hill porphyry system (fractured country rock - breccia - fractured country rock) averages approximately 50 m at surface and appears to widen at depth.

Booker Gold's drill programmes have concentrated on finding more high grade breccia and associated high grade fracturing, thus holes have not been drilled on a regular grid pattern. However, sufficient drilling has been done to date to enable an estimate of the dimensions of the enriched core with a strike length of approximately (500 m), an average width (from sections and surface expression) of 50 m and a depth in excess of 300 m.

7. EXPLORATION PROGRAMMES

7.1 Geochemistry and Surficial Geology

A surficial geochemical programme was established during the summer of 1996 in order to obtain regional geochemical coverage of the property and locate drill targets. A thorough understanding of surficial geology is necessary to accurately interpret geochemical anomalies on the steep glaciated terrain of Hearne Hill. To minimize the error associated with post-glacial hydromorphic effects in b-soil horizons, and to better identify the surficial overburden, deep samples were obtained from the c-horizon at an average depth of 1 m below the surface (Weary *et al.*, 1997). Terrain morphology of the sample location and sedimentological characteristics of the sample medium were used to identify each sample site as either a blanket (> 1 m thick) or veneer (< 1 m thick) of basal till, remobilised till or colluvium. Basal till consists of sand, silt and clay, transported and deposited directly from glacier ice. Ice flow on the Hearne Hill property during the glacial maximum was towards the south - southeast (150-160°). Colluvium appears as weathered, broken up bedrock transported down slope. The slope gradient is between 10 and 25 degrees, toward the west - southwest (250-260°).

At each site deep C-horizon samples were obtained by shovel and placed in three Kraft sample bags to dry. Samples were sent to ACME laboratories in Vancouver to be split and sieved for thirty-two element ICP (plus gold) analysis of the -230 mesh fraction. Geochemical results for each sample and sample attributes are presented in Appendix A.

A total of 406 C-horizon soil samples were collected at 100 m intervals between property grid 8500s - 9500w and 12000s - 11000w. Results from this property scale sampling programme indicate very significant copper-gold mineralization near the centre of the grid. To more accurately define the trend of these anomalies, an additional 153 samples were obtained at 25 m spacings between 9800s - 10000w and 10200s - 10400w. Results at this sample density produced areas with copper-gold concentrations 50-100 times greater than background levels. Samples obtained within the detailed grid were identified predominantly as veneers of colluvium or remobilised basal till. The sediment in these samples is likely sourced from areas a short distance up-slope and up-ice of the sample locations. Property scale and detailed scale contour maps for Cu concentrations are included in Appendix A.

Elevated copper concentrations, up to 5937 ppm, occur between 9950s - 10100w and 10000s - 10150w and between 9900s - 10200w and 10050s - 10350w. Road construction and trenching up-slope of this first area of geochemical anomalies uncovered approximately 40 m of intensely mineralized volcanic breccia that assayed over 1% Cu and 1g/t Au. Subsequent diamond drill holes in this area (96-64 to 96-70) have all produced excellent results.

The second and much larger area of high copper concentrations also has coincident anomalies for Au, As, Mo, and K. Limited trenching to the north of this area uncovered mineralized BFP that assayed between 0.6 and 0.8% Cu. Future drilling and trenching is planned for this area.

7.2 Geophysics

In 1996, Geotronics Inc. surveyed 33 km's of IP lines on the Hearne Hill property. The lines extended and expanded the original kilometre square grid to the north, west and south. Plan maps of the apparent chargeability (I.P.) and apparent resisitivity are included in the back pocket (Map 3 and Map 4). Instrumentation included a IRIS (BRGM) IP-6 receiver and a PHOENIX MODEL IPT-1, 2.5 kWatt Transmitter/Generator. The I.P. survey parameters included a time domain survey mode, a dipole-dipole array, a dipole length of 30 m, a dipole separation of n=1 to n=6, a delay time of 240 milliseconds, an integration time of 1600 milliseconds, and a 8 second square wave charge cycle.

The geophysical survey indicates a strong northeast trend in the chargeability consistent with the strike direction of local faults in the area. The Bland zone is located over a chargeability high - resistivity low. Drilling of a large chargeability high - resistivity low target to the south revealed massive pyrite. Interpretation of the geophysics suggests that the northeast oriented chargeability highs both to the south and north of the Bland zone reflect a pyrite halo surrounding the porphyry system. Chargeability highs located along strike of the Chapman - Bland zones and within the pyrite halo may represent areas of enriched chalcopyrite mineralization.

7.3 Diamond Drilling

Drilling from October 1995 to October 1996, resulted in a total of 58 diamond drill holes numbered DDH 96-16 - DDH 96-72. Splits from the logged core are stored on the property at the Booker Gold Field Camp. Detailed logs and assay certificates for these holes are included in Volumes 2 - 4. Drill hole locations are plotted on a 1:1000 scale (Map 2 in back pocket). Co-ordinates, azimuth, dip length and assays are summarised for the above drill holes in Appendix B.

Drilling was successful in extending the high grade core of the Hearne Hill deposit and locating additional mineralized occurrences. Drilling 250 metres northeast of the Chapman zone resulted in the discovery of a chalcopyrite cemented breccia, now known as the Peter Bland zone. Subsequent drilling southwest of the Bland zone revealed that high-grade mineralization extends over a strikelength of 100 metres.

Drilling outside of the high grade zones revealed that chalcopyrite mineralization is replaced by pyrite over distances approximately 100 metres northwest and southeast of the Chapman and Bland zones. Chalcopyrite mineralization appears to continue along a dilational northeast strike parallel to the Chapman and Bland zones. Further drilling in this direction is required to determine the extent of mineralization on the property.

8. ITEMIZED COST STATEMENT

.

~

Personnel			
Consulting Engineer	34.00	days	11,871.00
Expeditor	277.00	days	37,850.00
Expediting Services	69.00	hours	3,435.00
Geologists	452.26	days	123,378.90
C C	440.00	hours	22,900.00
Field Assistants/Supervisor	134.50	days	27,950.00
Field Assistants	412.50	days	64,364.00
Coresplitters	181.50	days	17,850.00
GPS Survey Crew	138.50	hours	11,319.00
Linecutters	58.00	days	8,695.00
Field Crew	564.00	hours	30,430.00
Camp Cook	248.00	days	53,936.00
Assistant Cook	35.50	days	5,481.00
Camp Maintenance	17.00	days	3,200.00
Building core racks	6.00	days	750.00
Payroll benefit cost			6,563.65
Workers Compensation cost		-	13,387.06
Equipment Truck rental	257.50	days	15,588.62
	30.00	hours	1,800.00
Truck Purchase			1,000.00
Fuel & maintenance costs			64,060.88
Transport of equipment & camp			15,849.87
Rescue Van & Boat rental	107.00	days	4,520.00
Snowplowing	1.50	hours	127.50
Bobcat rental	29,75	hours	3,181.25
Grader rental	34.50	hours	4,060.93
Loader rental	5.00	hours	460.00
Hoe rental	91.50	hours	10,697.50
Lowbed rental	16.50	hours	1,360.00
Snowmobiles rental	34.00	days	6,644.70
Survey Equip-rental	4.00	days	160.50
GPS receiver-rental	10.00	days	1,016.50
Chainsaws-rental	34,00	days	340.00
Chainsaw			629.16
Coresplitters			321.00
Camp Appliances-rental	8.00	months	7,276.00
Copier-rental	5.00	months	1,191.66
Core Storage-rental	2.00	months	1,400.00
	15.00	days	660.00
Radio rentals-max 3 sets	29.00	months	2,005.18

144,351.25

443,360.61

Room & Board Camp food & supplies Camp Construction Roadbuilding SatPhone Diesel Generator	699.00	mandays	38,786.00 77,331.15 182,371.84 10,764.16 6,823.90 8,000.00	324,077.05
etc. IP/Resistivity Survey Radar Survey			56,961.97 22,000.00	78,961.97
Diamond Drilling	41,733.00	feet	1,023,548.37	1,023,548.37
Analysis of samples Petrographic analysis & report Storage of samples @ lab	5,977.00 4.00	samples samples	128,885.87 477.00 745.00	130,107.87
sbursements				
Airfares to property Travel expenses Helicopter	32.00 43.90	fares	12,802.74 15,419.77 30,279.90	
Food & Accommodation			16,938.87	75,441.28
oms Drafting & map reproduction Field Supplies Telecommunications Freight Typing service Inspection & license fees		-	24,262.89 16,081.29 12,879.05 1,858.97 206.38 423.00	55,711.58
	Room & Board Camp food & supplies Camp Construction Roadbuilding SatPhone Diesel Generator etc. IP/Resistivity Survey Radar Survey Diamond Drilling Diamond Drilling Analysis of samples Petrographic analysis & report Storage of samples @ lab sbursements Airfares to property Travel expenses Helicopter Food & Accommodation Field Supplies Telecommunications Freight Typing service	Room & Board699.00Camp food & suppliesCamp ConstructionRoadbuildingSatPhoneDiesel Generatoretc.IP/Resistivity SurveyRadar SurveyDiamond Drilling41,733.00Analysis of samples5,977.00Petrographic analysis & report5,977.00Storage of samples @ lab32.00Sursements32.00Airfares to property32.00Travel expenses43.90Helicopter43.90Food & Accommodation43.90Sing SurgerFreightTrating & map reproductionField SuppliesTelecommunicationsFreightTyping service	Room & Board699.00mandaysCamp food & suppliesCamp ConstructionRoadbuildingSatPhoneDiesel GeneratorEtc.IP/Resistivity SurveyRadar SurveyDiamond Drilling41,733.00feetAnalysis of samples5,977.00samplesPetrographic analysis & report4.00samplesStorage of samples @ lab32.00faresTravel expenses43.90hoursHelicopter43.90hoursFood & AccommodationFreightTyping serviceService	Room & Board699.00mandays38,786.00Camp food & supplies77,331.15Camp Construction182,371.84Roadbuilding10,764.16SatPhone6,823.90Diesel Generator8,000.00etc.10/764.16IP/Resistivity Survey56,961.97Radar Survey22,000.00Diamond Drilling41,733.00feetAnalysis of samples5,977.00samplesPetrographic analysis & report4.00samplesSbursements128,885.87Airfares to property32.00faresTravel expenses15,419.77Helicopter43.90hoursPod & Accommodation16,938.87msDrafting & map reproduction24,262.89Field Supplies16,081.29Telecommunications12,879.05Freight1,858.97Typing service206.38

TOTAL COSTS

2,275,559.98

REFERENCES AND BIBLIOGRAPHY

- Carson, D.J.T. and Jambour, J.L. Mineralogy, Zonal Relationships and Economic Significance of Hydrothermal Alteration at Porphyry Copper Deposits, Babine Lake Area, B.C., C.I.M. Bulletin, February 1974.
- Carson, D.J.T., Jambour, J.L., Ogryzlo, P.L., and Richards, T. (1976). Bell Copper: Geology, Geochemistry and Genesis of a Supergene-Enriched Biotitized Porphyry copper Deposit with a Superimposed Phyllic Zone in Porphyry Deposits of the Canadian Cordillera. Canadian Institute of Mining and Metallurgy Special Volume 15.
- Carson, D.J.T. and Jambour, J.L. (1976). Morrison: Geology and Evolution of a Bisected Annular Porphyry Copper Deposit in Porphyry Deposits of the Canadian Cordillera. Canadian Institute of Mining and Metallurgy Special Volume 15.
- Carter, N.C., Dirom, G.E., and Ogryzlo, P.L. (1995) Porphyry copper-gold deposits, Babine Lake area, west-central B.C., Paper 13 in Porphyry Deposits of the Northwestern Cordillera of North America, CIM Special Volume 46.
- Dirom, G.E., Dittrick, M.P., McArthur, D.R., Ogryzlo, P.L., Pardade, A.J., and Stothart, P.G. (1995). Bell and Granilse porphyry copper-gold mines, Babine region, west-central B.C., Paper 14 in Porphyry Deposits of the Northwestern Cordillera of North America, CIM Special Volume 46.
- Dirom, G.A. (1967). Geochemical and Magnetometer Report [K] Group of Mineral Claims Morrison Lake. British Columbia Ministry of Mines Assessment Report 1102.
- Huntley, D.H., Levson, V.M. and Weary, G.W. 1996, Surficial Geology and Quaternary Sratigraphy of the Old Fort Mountain Area (93-M-1) B.C. BCMEMPR Open File 1996-09 (1:50,000 map).
- Kahlert, B.H., and Fawley, A.P., 1968, Report on geological, geophysical and geochemical surveys and preliminary diamond drilling on the Trobuttle Mines Limited property, Morrison Lake.
 B.C. Min. of Energy, Mines and Petroleum Resources, Assessment Report 1854, 11 pp. plus appendices.
- Kahlert, B.H., 1969, Morrison Lake area drilling results: Map prepared for Canadian Superior Exploration Ltd.
- Kirkham, R.V. (1971). Intermineral intrusions and their bearing on the origin of porphyry copper and molybdenum deposits. Economic Geology Volume 66, pp. 1244-1249.
- Newell, J.M., 1968, 1967 exploration report, Hearne Hill properties, Omineca Mining Division, B.C.: Report for Texas Gulf Sulphur Co.
- Ogryzlo, P.L., 1991, 1990 diamond drilling program of the Hearne Hill breccia pipe: Report for Noranda Minerals Inc., 13 pp. plus appendices.

- Ogryzlo, P.L., 1990, Geochemical and diamond drilling assessment of the Hearne Hill breccia pipe: Report for Noranda Minerals Inc., 17 pp. plus appendices.
- Ogryzlo, P.L., 15 January 1993. Letter to Chapman and Bland and Summary for talk at Cordilleran Round Up (Jan. 1993).
- Ogryzlo, P.L., Dirom, G.E. and Stothart, P.G., Morrison-Hearne Hill Copper Gold deposit, Babine Region West Central B.C. in Porphyry Deposits of the N.W. Cordillera Special Volume 46 C.I.M.M. 1995.
- Richards, T.A., 1990, Geology of Hazelton map area (93M): Geological Survey of Canada, OF 2322 map, two sheets.
- Sampson, C.J., 1993 (a), Report on Geology, Exploration Results and Potential of the Hearne Hill Property, 20 February 1993, for Booker Gold Explorations Ltd.
- Sampson, C.J., 1993 (b), Report on 1993 Exploration Programmes and potential Hearne Hill Property, 20 November 1993 for Booker Gold Explorations Ltd.
- Sampson, C.J., 1996, Report on 1994, 1995 Exploration Programmes, 28 February 1996 for Booker Gold Explorations Ltd.
- Sampson, C.J. and Weary G.W., 1997, Highlights of 1996 Exploration Programmes, January 1996 for Booker Gold Explorations Ltd.
- Smith, H., 1991, Diamond drill core log of hole 91-2: Log for David Chapman, 4 pp.
- Stumpf A.J., Huntley D.H., and Levson, V.M. 1996, Babine Porphyry Belt Project: Detailed Drift Exploration Studies in the Old Fort Mountain (93-M-1) and Fulton Lake Map areas B.C. BCMEMPR Geological Fieldwork 1995 Paper 1996-1.
- Tipper, H.W., and Richards, T.A., 1976, Jurassic stratigraphy and history of north-central British Columbia: Geological Survey of Canada, Bull. 270, 73 pp.
- Weary, G.F., Levson, V.L., and Broster, B.E. 1997, Till Geochemistry of the Chedakuz Creek Map Area (93 F/7), British Columbia, BCMEMPR Open File 1997-11.

CERTIFICATE OF QUALIFICATIONS

I, Gordon F. Weary, of 449 East 18th St., Vancouver, B.C. V7L 2Y1, hereby certify that:

- 1. I am a graduate (1996) of the University of New Brunswick, with a Master of Science degree in Geology. My thesis focussed on mineral exploration using till geochemistry. I am also a graduate (1994) of McGill University, with a Bachelor of Science degree in Geology.
- 2. I am enrolled as a GIT with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 3. I have been involved in the mineral exploration industry in central British Columbia for the past three years.
- 4. I have acted as full time project geologist for Booker Gold Explorations Ltd. since May 1996. Since that time I supervised all aspects of the Hearne Hill exploration programmes including the diamond drill hole program and geochemical sampling program.
- 5. The present report is based on work done on the Hearne Hill property between October 1995 and October 1996.

Vancouver, B.C. May 1997 Gordon F. Weary, M.Sc. Project Geologist

APPENDIX A

Property Scale Geochemical Results and Sample Attributes

Property Scale Cu (ppm) Contour Map

.

Detailed Scale Geochemical Results and Sample Attributes

Detailed Scale Cu (ppm) Contour Map

Sample	Sample number
South	Property Grid Southing Coordinate
West	Property Grid Westing Coordinate
Map Unit	Surficial geology map unit
_	Mb - Till blanket
	Mv - Till veneer
	Mf - Flow till
	Mbr - Remobilised till blanket
	R - Bedrock
	Cv - Colluvial veneer
	Ov - Organic veneer
	Fg - Glaciofluvial sediments
	Lg - Glaciolacustrine sediments
	s ~ sandy
	g - gravelly
	x/y - Unit x is more abundant than unit
	x:y - Unit x occurs with unit y
Depth	Depth to sample from surface
Bedrock	Type of bedrock at sample location

Reference Guide to Till Geochemical Sample Locations and Attributes

Sample	West	South	Map Unit	Map Unit	Depth	Bedrock
				c2 horizon	cm	
	_					
10	-10500	-11200	Mbr	Mb	50	
20	-10500	-11300	Cv	Cb:Mb	60	
30	-10500	-11400	Cv	Mbr	60	
40	-10500	-11500	Cb	Mb:Cb	180	
50	-10500	-11600	Lg	Mbr:Lg	50	
60	-10500	-11700	Lg//Mb	Lg//Mb	60	
70	-10500	-11100	Mb	Mb	70	
80	-10600	-11100	0	Lg	50	
90	-10600	-11200	Lg	Mb	60	
100	-10600	-11300	Fg	Fg	60	
110	-10600	-11400	Fg	Fg	50	
120	-10600	-11600	Fg//Lg	Fg//Lg	40	
130	-10600	-11700	Cv	Fg	50	
140	-10600	-11800	Lg	Lg	40	
150	-10500	-11800	Fg	Fg	50	
160		-11100		Mbr	50	
170	-10400	-11200	Fg	Fg	40	
180	-10400	-11300	Cv	Mb	60	
190		-11400		Mbr	50	
200		-11500		Mbr	40	
210	-10400	-11600	Cb	Mb	50	
220		-11700		Lg	40	
230		-11800		Mbr	60	
240		-10550		Μv	200	BFP
250		-10450		Mb	150	
260		-10600		Mf	180	
270		-10720		Mb	210	
280		-10800		Mb	300	
290		-10950		Mb	170	
300		-10900		Mbr	300	
310		-10650		Mb		Alt. BFP
320		-10500		Mb		Alt. BFP
330		-10450		Mb	170	
340		-10300		Mb	150	
350		-9650		Mb		Min. Breccia
360	-10075	-9725	Cv	Mν	150	Weathered BFP
380		-10000		Mv/Cv		Min. Andesite
390		-10075		Cv:Mv	200	Min. Andesite
400	-10025	-10175	Cv	Mb	160	Min. Andesite
440		-10475		Mb	120	
450	-9900	-9700	Cv	Μv		wea. BFP
						N

Sample	West	South	Map Unit	Map Unit	Depth	Bedrock
			c1 horizon	c2 horizon	cm	
490	-10300	-11050	Cv	Mb	70	
500	-10200	-11100	Cv	Mb	50	
510	-10200	-11200	Cv	Mb	100	
520		-11350		Mb	130	
530	-11000	-9900	Cv	Fg	220	
540	-10900	-10100	Fg	Fg	500	
550	-10900	-10200	Lg	Lg	60	
560	-10900	-10300	0	Lg	60	
570	-10900	-10400	Lg	Lg	70	
580	-10900	-10500	Cv	Mbr//Fg	100	
590	-10900	-10600	Cv	Mbr	80	
600	-10900	-10550	Mb//Lg	Mb//Lg	100	
610	-10900	-10700	Mbr	Mbr	80	
620	-10900	-10900	Lg:Mbr	Lg:Mbr	60	
630		-10800		Mbr	70	
640		-11100		Lg	70	
650	-10900	-11000	Lg	Lg	60	
660	-11000	-11200	Lg	Lg	45	
670	-11000	-11300	Lg	Lg	40	
680	-11000	-11400	Cv	Lg/Mb		
690	-11000	-11500	Lg	Lg	80	
700	-11000	-11600	Lg	Lg	80	
710	-11000	-11700	Lg	Lg	60	
720	-11000	-11800	Lg	Lg	100	
730	-11000	-11900	Lg	Lg	60	
740	-10300	-10800	Cv	Mbr	100	
750	-11000	-11100	Lg	Lg	60	
760	-10300	-11100	Cv	Mbr//Fg	80	
770	-10800	-11100	Cv	Mb	70	
780		-11200		Mb	100	
790	-10800	-11200	Mbr	Mbr	70	
810	-10800	-11300	Mbr	Mbr	70	
820	-10300	-11400	Mb	Mb	80	
830		-11400		Lg	65	
840	-10300	-11500	Mb	Mb	100	
850	-10800	-11500	Lg	Lg	70	
860	-10300	-11600	Mb	Mb	90	
870	-10800	-11600	Lg	Lg	60	
880	-10300	-11700	Mb	Mb	50	
890	-10800	-11700	Mbr	Mbr		
900	-10300	-11800	Mb	Mb	110	
910		-11800		Lg		
920	-10300	-11900	Fg:Mbr/Lg		100	
930		-11900	the second s	Lg	70	
940	-10300	-12000	Mb/Lg	Mb/Lg	100	
950		-12000		Lg	60	
960		-11200		Lg	80	

Property Scale C-Horizon Till Geochemical Sample Locations and Attributes

.

Sample	West	South	Map Unit	Man Unit	Depth	Bedrock
oumpic	11001	oodun		c2 horizon	cm	
			OT HOILEON	OL HOHLOH		
970	-10900	-11300	10	Lg	70	
980		-11400		Lg	60	
990		-11500		Lg	40	
1000		-11600		Lg	70	
1010		-11700		Lg	80	
1020		-11800		Lg	50	
1020		-11900		Lg		
1030		-12000		Lg	60	
1040	-10500			R		
1050	-10600		Cb//Mv	Cb//Mv	80	
1070	-10600			Cv	80	
1080	-10600			Mv	70	
1090	-10600			Mb	110	
1100		-10000		Mbr	60	
1110		-10100		Mb	90	
		-10200		Mb	150	Wea.BFP
1120		-10200		Mb	90	
1130		-10300		Cb//Mb		Min > 29/ on andosito
1140					200	Min.>2%cp andesite UnMin.&wea.siltstone
1150		-10500		R Mbr	90	Unwin.awea.sitstone
1160					90	
1170		-10700		Mbr		
1180		-10800		Mbr:Fg	80 90	
1190		-10900		Lg:Mb	90	
1200		-11000		Lg	75	
1210		-11100		Mb		
1220		-11200		Mbr	110	
1230		-11300		Mbr:Lg	90	
1240		-11400		Mbr:Lg	70	
1250		-11500		Mbr:Lg		
1260			Lg//Mbr	Lg//Mbr	100	· · · · · · · · · · · · · · · · · · ·
1270		-11700		Lg	90	
1280		-11800		Lg	60	
		-11900		Lg	70	
1300		-12000		Lg	70	
1310		-12000		Lg	70	
1320		-11900		Lg	60	
1330		-11900		Mb	80	
1340		-12000		Mb	80	
1350		-11400		Cb	70	
1360	1	-11500		Mb	70	
1370		-11600		Lg	70	
1380		-11700		Mb	90	
1390		-11900		Mb:Lg	100	
1400		-12000		Lg	70	
1410		-11800		Mb	90	
1420		-10525		Cv//Mb	100	
1430		-10600		Mb	100	
1440	-10100	-10700	Cv	Mbr	70	

Sample	West	South	Map Unit	Map Unit	Depth	Bedrock
			c1 horizon	c2 horizon	cm	
1450	-10100	-10800	Cv	Mbr		Mafic fine-grained siltstone
1460	-10100	-10900	Cv	Mb/Lg	90	
1470	-10100	-11000		Mbr	110	
1480		-11100		Mb	100	
1490	-10100	-11200	0	Mb	80	
1500			Mb:Lg//Fg	Mb:Lg//Fg	100	
1510	-10500			Mv	40	
1520	-10500		M∨	Mv	80	
1530	-10500			Cv	30	Diorite
1540	-10500		Mb/v?	Mb/v?	70	
1550	-10500			R	15	
1560	-10500			Mb	80	
1570	-10500			Mb	100	
1580	-10000			R		
1590	-10000			R	40	Grey Andesite
1600	-10000			R	50	Grey Andesite
1610	-10000			R	50	Grey Andesite
1620	-10000			Mvr	70	
1630	-10000			Mbr	80	
1640	-10700			R	10	Andesite
1650	-10700			Mvr	70	Andesite
1660	-10700			Fg	90	
1670	-10700			Mvr	70	Andesite
1680	-10700			Fg	90	
1690		-10025		Mb	90	
1700		-10000		Mb	90	
1710		-10100		Fg	100	
1720		-10100		Mb	90	
1730		-10200		Mbr	70	
1740		-10200		Cv//Mb	120	
1750		-10300		Mbr	110	
1760		-10300		Mbr	100	
		-10400		Lg	100	
1780		-10400		Cv/Mb	80	
1790		-11425		Mb	100	
1800		-10500		Mb	80	
1810		-11500		Mb	90	
1820		-10700		Lg	60	
1830		-10600		Mbr	70	
1840		-10600		Mbr	80	
1850		-10500		Mb	70	
1860		-10700		Mbr	90	
1870		-10800		Mbr	100	
1880		-10900		Mb	100	Diorite with pyrite
1890		-11000		Mb	70	
1900		-10600		Mb	60	BFP-biotite&pyrite
1910		-10700		Mbr	90	
1920		-10800		Mbr	80	
1020	10000	-10000				

Property Scale C-Horizon Till Geochemical Sample Locations and Attributes

Sample	West	South	Map Unit	Map Unit	Depth	Bedrock
				c2 horizon	cm	
1930	-10700	-10800	Mb:Lg	Mb:Lg	80	
		-10900		Mbr	90	· · · · · ·
		-11000		Mbr	100	
		-11000		Cb	90	
		-10900		Mb	80	
		-10900		Cb:Mb	90	
		-11000		Mbr	80	
	-10400			R	70	Diorite
	-10400			Mb	90	
2020	-10400	-8700	Cv	Cv	90	
	-10400		Cv	Mb		Sulphide min. in andesite
2040	-10400	-8900	Cv	Mb	60	
	-10400			Mb	90	
	-10400			R	20	Diorite
	-10400			Mb		
	-10400	-9300	R	R		Diorite
the second se	-10500	-9200		Mb	90	
	-10500	-9300	R	R		Coarse grained diorite
	-10500	-9400	R	R	10	Coarse grained diorite
	-10500	-9500	Cv	Mbr	120	Coarse grained diorite
	-10500	-9600	Mbr	Mbr	110	
2140	-10500	-9700	Mbr	Mbr		
2150	-10500	-9800	Fg	Fg	80	
2160	-10500	-9900	Mb	Mb	110	
2170	-10500	-10000	Fg	Fg	90	
2180	-10500	-10100	Mb	Mb	80	
2190	-11000	-9500	Cv	R		
2200	-11000	-9625	Cv	R		Andesite
2210	-11000	-10000	Fg//Mbr	Fg//Mbr	60	
2220	-11000	-9700	Cv	Mv:Cv	70	Andesite&Diorite
2230	-11000	-10200	Lg	Lg		· ·
2240	-11000	-9800	Cv	Cv:Mb		Fine grained mafic
2250	-11000	-10400	Mb//Fg	Mb//Fg	90	
		-10100		Fg//Mbr	100	
2270	-11000	-10600	Cv	Mb:Fg	100	
2280	-11000	-10300	Lg	Mb/Lg	100	
2290	-11000	-10800	Fg	Fg	60	
		-10500		Mbr//Fg	100	
			Lg//Mbr	Lg//Mbr	100	
		-10700		Mbr	100	
2330	-11000	-11000	Lg///Mb	Lg///Mb	100	
2340	-10250	-10500	Cv/Mv	Mb	200	
2350	-10200	-10600	Cv/Mv	Mb	70	
		-10700		Mb	80	
2370	-10400	-10700	Cv	Mbr/Fg	80	
		-10800		Mbr	90	
		-8600		Mb	80	
		-8700		Mbr	70	

Sample	West	South	Map Unit	Map Unit	Depth	Bedrock
				c2 horizon	cm	
2410	-10300	-8800	Cv	R	60	
2420	-10300			Mbr	70	
2430	-10000	-8900		Mb	80	
2440	-10300	-9000		R		Rhyolite
2450	-10300	-9100	R	R	15	Med.grained diorite
2460	-10300	-9200	Cv	Mb	60	
2470	-10300	-9300	R	R	7	
2480	-10300	-9400	Mb	Mb	70	
2490	-10300	-9500	Cv	R	50	
2500	-10400	-9400		R	50	Wea. diorite
2510	-10400	-9500		R		Wea, diorite
2520	-10200	-8500		Mb	60	
2530	-10100			R	40	Fine grained andesite
2540	-10200			Cv:Mb	70	
2550	-10100			R	60	Fine grained andesite
2560	-10200	-8700		Mb	80	
2570	-10100	-8700		R	70	
2580	-10200	-8800		Mb	80	
2590	-10100	-8800		R	15	
2600	-10200	-8900		Mb	70	
2610	-10100	-8900		R	30	
2620	-10200	-9000		Mbr	70	
2630	-10100	-9000		Mb	60	·
2640	-10200	-9100		Mb		
2650	-10100	-9100		Mb		· · · · · · · · · · · · · · · · · · ·
2660	-10200			R		
2670	-10100			Mbr	90	Andesite or myolite
	-10200 -10100			R	50	
2690	-10200			R	50	
		-9400		K		
2710 2720	-10100	-9400		Mbr		
2720	-10200					
2730	-10000			R Mb	70	
2740	-10000			R	10	Green andesite
2760	-10000			Mb	90	
2770	-9900			Mb	100	
2780	-10000			Fg	100	
2790	-9900			Mbr	70	
2800	-9900			Mb		
2810	-9900			Mb	80	
2820	-9900			R	65	
2830	-9800	-9500		Mbr		Fine grained matrix
2840	-9800		Mbr:Cv	Mb	90	a the Brannow monthly
2850	-9800	-9300		Mb	70	
2860	-9800			R	····	······································
2870	-9800			R	55	
2880	-9800			R		
						/

Property Scale C-Horizon Till Geochemical Sample Locations and Attributes

Sample	West	South	Map Unit	Map Unit	Depth	Bedrock
			c1 horizon		cm	
2890	-9900	-9000	R	R		
2900	-9900		R	R		
2910	-9900	-9200	Mb	Mb	70	
2920	-9900	-9300	Mbr	Mbr	70	
2930	-9900	-9400	Mbr	Mbr	70	
2940	-9900	-9500	Cv	R		
2950	-9900	-9600	R	R		
2960	-9800	-8900	R	R		
2970	-9500	-9700	Cv	Mvr	70	
2980	-9800		Cv	R	15	
2990	-9500		Õ	Mb	80	
3000	-9800		Μv	R	60	Fine grained mafic
3010		-10300		Mb	75	
3020	-9800			Mb	80	
3030		-10500		Mbr	80	
3040	-9800			Mb	110	
3050			Cv//Mvr	Cv//Mvr	80	
3060	-9700	-8500	Cv	R	25	Andesite
3070		-10300		Mb	90	
3080	-9700	-8600	Mv	R		Fine grained mafic
3090		-10100	Cv	Cv	50	
3100	-9700	_		R	60	Andesite
3110	-9700			Mb	70	
3120	-9700	-8800	Cv	R	25	Fine grained diorite
3130	-9700		Mvr	Mb	80	
3140	-9700	-8900	R	R	10	
3150	-9700	-9500	Mb	Mb	70	
3160	-9600	-9500	Mv	R	70	
3170	-9700	-9400	M∨r	Mvr	40	
3180	-9600	-9400	R	R	15	Andesite
3190	-9700			Mbr	50	
3200	-9700	-9100		R	60	
3210	-9700		Cv//Mvr	Cv//Mvr	60	
3220	-9600			Mbr	70	
3230	-9700			R		
3240	-9600			Mb//Lg	70	
3250	-9600			Cv	90	
3260	-9600			R	40	
3270	-9600			R	20	
3280	-9600			R	20	Fine grained andesite
3290	-9600			Mb	60	
3300	-9600			Mbr	80	
3310	-9600			R	20	
3320	-10300			Mb	80	
3330	-10300			Cb	60	
3340	-10300			Mbr	90	
3350	-10300			Mbr	90	

Sample	West	South	Map Unit	Map Unit	Depth	Bedrock
				c2 horizon	cm	
			01 110112011			
3370	-10200	-10000	Cv	Mbr	150	
3380		-10075		Mf	300	
3390		-10225		R	150	
3400		-10200		Cb/Mbr	70	
3410		-10100		Mb	75	
3420		-10000		Cb	60	
3430		-10450		Mb:Mbr	80	
3480	-10600	-8500	Cv//Mvr	R	110	Andesite
3490	-10600			Cb	80	
3500	-10600			Mbr	90	
3510	-10600			R	70	
3520	-10600	-9000		Mb	85	
3530	-10600	-9100		Mb	70	
3540	-10600	-9200	Cb//Mbr	Cb//Mbr	70	
3550	-10600	-9300	Cb	Cb	65	
3560	-10200	-9600	Mbr	Mbr	120	
3570	-10200	-9700	Mbr	Mbr	70	
3580	-10200	-9800	Mbr	Mbr	110	
3590	-11000	-9400	Cv	R	70	Wea. Med-grained diorite
3600	-11000	-9300	Cv	R	70	Diorite with quartz, hematite
3610	-11000	-9200	Cv	Cv	70	
3620	-11000	-9100	Mbr	Mbr	80	
3630	-11000	-9000	Mbr	Mbr	100	
3640	-11000			R	20	Coarse grained andesite with hematite
3650	-11000	-8800	Cv	Mb	100	
3660	-11000	-8700	Mb	Mb	70	
3670	-11000	-8600		Mb	70	
3680	-11000	-8500	Fg//Mb	Fg//Mb	140	
3700	-10400			Mbr/Fg	90	
3710	-10400			Mbr	80	
3720	-10400			Mbr	80	
3730	-10400	-9900	Cv/Mbr	Mbr	80	
3770	-10400			Mb	70	
3780	-10400			Mbr	120	
3790	-10400			Mbr	80	
3800	-10500			Mbr	80	
3810	-10500			Mb	80	
3820	-10500			Mbr:Cb	70	
3830	-10900			Mbr		
3840	-10900	-9900	Mbr	Mbr	100	

Sample	West	South	Map Unit	Map Unit	Depth	Bedrock
			c1 horizon		cm	
3850	-10900	-9800	R	R	15	
3860	-10900	-9700		R	10	
3870	-10900	-9600		R	<u> </u>	
3880	-10900	-9500		R	70	
3890	-10900	-9400		R	40	
3900	-10900	-9300		R		
3910	-10900	-9200		R	10	
3920	-10900	-9100		Mbr/Mb	90	
3930	-10900	-9000		R	40	Andesite
3940	-10900	-8900		Cv	40	
3950	-10900	-8800		Cv	40	
3960	-10900	-8700		Mb	80	
3970	-10900	-8600		Mb	50	
3980	-10900	-8500		Mb	70	
3990	-10200	-9900		R	90	Wea. BFP
4000		-10400		МЬ	1	
4010		-10300		Mbr	100	· · · · · · · · · · · · · · · · · · ·
4020			Mbr//Mb	Mbr//Mb	70	
4030	-10800	-9900		Mbr	90	
4040	-10800		Cv//Mvr	Cv//Mvr	70	
4050	-10800	-9700		R	<u> </u>	Diorite
4060	-10800	-9600		Mbr	70	
4070	-10800	-9500		R	<u> </u>	Diorite
4080	-10800	-9400		R	<u> </u>	Diorite
4090	-10800	-9300		R		
4100	-10800	-9200		R		
4110	-10800	-9100		R	<u> </u>	
4120	-10800		Cv/Mvr	R		
4130	-10800	-8900		R		
4140	-10800	-8800		Mb	70	
4150	-10800	-8700		Mbr	80	
4160	-10100	-9600		Mb/Mbr	100	
4170	-10000			Mbr	70	······································
4180	-10100			Mbr	80	
4190	-10000			Mbr	80	······································
4200	-10100			Mb	75	
4210	-10000			Mb		
4220		-10000		Cb	60	
4230			Cv//Mvr	R	70	Andesite with py & cp
4240		-10100		Fg	60	nacono mul p) a op
4250		-10300		Mbr	80	
4260		-10200		Mb	100	
4270		-10400		Mbr	85	
4280		-10300		Mv	40	
4290	-9500			Mb	80	
4290	-9500			Mb	90	
4310	-9500			Mb	70	······
4320	-9500			Mb	100	
4320	-3500	-0000			100	

Property Scale C-Horizon Till Geochemical Sample Locations and Attributes

Sample	West	South	Map Unit	Map Unit	Depth	Bedrock
<u> </u>				c2 horizon	cm	
			or nongon			
4330	-9525	-8900	Cv	Mb	100	
4340	-9500		Mbr//Fg	Mbr//Fg	80	
4350	-9500			Mb	80	
4360	-9500			Mb	100	
4370	-9500			Mb	90	
4380	-9500			Mb	70	
					<u> </u>	
4540	-10000	-9900	Cb	Cb	110	· · · · · · · · · · · · · · · · · · ·
4560	-9800	-10500	Cb	Cb	55	Diorite
4580	-9800	-10400	Cv	Mbr	70	
1000						
4600	-9800	-10300	Cv	R	40	Coarse grained andesite
					<u> </u>	
4620	-9800	-10200	Cv	Mbr	70	
4640	-9800	-10100	Cv	R	30	Andesite
4660	-9800	-10000	Mb	Mb	60	
1000						
4680	-9800	-9900	Mbr//Cb	Mbr//Cb	70	
1000						
4700	-9800	-9800	Mb	Mb	75	
4710		-10150		Mbr	90	
4720	-9800			Mbr	75	
4740	-9800	-9600	Mb	Mb	80	
4830	-9900	-10200	Cv//Mbr	Cv//Mbr	70	
4840		-10100		Cb	50	
4850		-10000		R	50	
4860		-9900		Mbr/Cb	70	
4870		-9800		Mb	80	
4880		-9600		Mb	90	
4890		-9800		Mb	70	
4900		-10000		Mb	70	
4910	1000	-10200		Mb	90	
4920		-10200		Cb	60	
4930			Cv//Mbr	Cv//Mbr	85	
4940		-10400		R		Andesite w/ py
4950		-10300		Cv/R		Andesite w/ py& sulphides
4000	-0000	10000		<u> </u>		
5000	-10700	-9400	Cv	Cv/R	50	Fine grained diorite
	-10700			Cb	60	
5020	-10700			Cb	50	
5020	-10/00	-9200	<u></u>	<u> </u>	00	

Property Scale C-Horizon Till Geochemical Sample Locations and Attributes

Sample	West	South	Map Unit	Map Unit	Depth	Bedrock
			c1 horizon	c2 horizon	cm	
5030	-10700	-9100	Cv	Mbr	60	
5040	-10700	-9000	Cv	Mbr/R	40	
5050	-10700	-8900	Cv	Mb	70	
5060	-10700	-8800	Mb	Mb	90	
5070	-10800	-8600	Cv	Mb	70	-
5080	-10800	-8500	Mbr		60	
5090	-10700	-8500	Cv	Mb	80	
5100	-10700	-8600	Cv	Cv/R		Weathered on fracture surfaces
5110	-10700	-8700	Cv	Mbr		
				l	ļ	
Total Sai	mples O	btained:	406			

Sample	Мо	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	в	AI	Na	K	W	Au*
	ppm		ppm	_	ppm	ppm					ppm	ppm	ppm	ppm		ppm		%	%		ppm		ppm	_	ppm	1%	%	%	ppm	ppb
	rr	F.F	FF	E.C.I.	FE	FF	PP	PP		PP	PP				<u> </u>	FFIL					<u> </u>		PP.III			1				
10	1	73	17	112	0.3	48	18	841	4.14	40	< 5	2	32	< .2	< 2	< 2	65	0.45	0.044	14	35	0.58	224	0.02	3	1.72	0.01	01	<2	5
20	2		15		<.3	41	18	_	5.19	_	< 5	2			< 2	<2	95		0.041	10			177	0.06		_	0.01		<2	139
30	2		11		0.4	45			5.52		< 5	2				2	107	0.67	0.094	12	72	1.11	294	0.06		2.49	0.02	0.13		13
40	2		20			40			4.33		< 5	2				< 2	65	0.43	0.07	15	28		_	_	_		0.01	0.08		10
50	1	60	12	_	<.3	32			4.2	_	< 5	2				< 2	73		0.058	10	32	0.56	_	0.04	3	-	0.01	0.07	_	5
60	1	51	11	_	<.3	29		732	4	_	< 5	2			_	2	67	0.42	0.093	9		_		_	_		0.01	0.06		
70	1	82	16			28			4.94		< 5	< 2	58		<2	2	78		0.095		38	_	_	0.03	_	_	0.02	_	<2	5
80	1		9			35		_	3.91		< 5	<2	73			< 2	72	1.65	0.091	16				0.02		_	_	0.08		11
90	2		15		_	40			5.25		< 5	2				<2	94	0.47	0.059	_	70		_		_		0.01	0.14	_	11
100	3	_	20	_	-	37		_	5.89		< 5	2			< 2	<2	109	0.38	0.049	8	61	0.99		0.07	3		0.01	0.12	_	109
110	2		11			41	21	1262	5.26		< 5	2				<2	94	0.45	0.137	10	_	0.97	278			2.07	0.01	0.11		20
120	3		13		0.4	35		_	5.2		< 5	< 2	50		< 2	<2	91	1.02	0.082	12		0.91	335			2.07	0.02	0.09	_	17
130	2		9		<.3	38			3.63		< 5	2				<2	64	0.41	0.053	13			_			1.5		0.06	_	12
140	1	44	7	_	<.3	27		_	3.3	_	< 5	2			< 2	<2	54	0.32	0.035	11	25	0.65	181	0.05		1.2	0.01	0.06		8
150	2		25		0.6	53			5.72		< 5	2			<2	<2	88	0.32	0.058	33	25	_	717	0.05		3.48	0.01	0.08		5
160	2	62	11	_	_	32			4.47		< 5	2			<2	2	75		0.050	9	_	0.61	322	0.01		_	0.02	0.08		96
170	2		12		<.3	31		_	5.37		< 5	2			<2	< 2	93	0.49	0.158	9		_				2.26	0.01	_	<2	10
180	2		9	_	<.3	31		509	3.68	_	< 5	2		<.2		<2	63	0.38	0.045	10						1.7	0.01	0.07	-	3
190	1	39	10		<.3	29		526	3.78		< 5	< 2		< .2		<2	64	0.21	0.025	8						1.46	_	0.06		12
200	2		17	_	<.3	33		_	3.97		< 5	< 2		<.2		<2	67	0.34	0.039					_	_	1.49	0.01	0.07	_	6
210	1		11			40	_		4.33		< 5	2				<2	85	0.48	0.047	10			221	0.08	_		0.01	0.13		10
220	1	62	11		<.3	33		630	4.06		< 5	2			< 2	<2	67	0.59	0.041	12		0.55		_		1.93	0.02	0.09		4
230	1	65	12	_	0.3	34			3.95		< 5	2				<2	67	0.5	0.048	13		0.55	_			-	0.01	0.08		2
240	2		42		<.3	49		_	6.18		< 5	3			< 2	<2	84	0.48	0.061	16		_			· · · · ·	2.01	0.02	0.12	_	6
250	2		16			42			5.34		< 5	2		0.3	2	_	87	0.63	0.07	17	40		265			2.11	0.02	0.12		16
260	2	266	19	_	<.3	46			5.89		< 5	3			< 2	< 2	91	0.55	0.081	17	52			0.06			0.02	0.11	_	28
270	2		16			36			4.76		< 5	3			3	_	72	0.43	0.075	13	30					1.58	0.01	0.07		11
280	2	65	16	137	<.3	41	26		4.58	17	< 5	2	47	0.5	2	<2	80	1.31	0.074	11	34	_		0.06		-	0.02	0.08		6
290	2	150	13	121	<.3	53	25	1778	5.37	24	< 5	2	38	<.2	< 2	<2	93	0.8	0.071	12	56		301	0.04		2.22	0.02	0.13	<2	19
300	2	119	13		_	32			4.99	30	< 5	2				<2	77	2.14	0.073	11	31	0.67		0.06	< 3	1.47	0.03	0.08		8
310	2	110	16	133	< .3	41	25	1698	5.54	45	< 5	2	49	0.2		<2	82	0.58	0.066	18	36	0.73	251	0.05	3	1.86	0.02	0.12	<2	16
320	2	113	12	138	<.3	39			5.49	42	< 5	2		<.2	4	< 2	90	0.55	0.069	16		_	312	0.04			0.02	0.11		45
330	3	137	10	141	< .3	41	20	1294	5.83	35	< 5	2	72	< .2	< 2	< 2	99	0.59	0.063	14	51	1.07	218	0.05	3	2.39	0.02	0.15	< 2	9
340	12	230	12	138	< .3	104	30	1575	8.34	22	< 5	2			< 2	2	137	0.87	0.067	11	256	2.33	464	0.12	< 3	2.8	0.05	0.49	< 2	40
350	1	136	24	126	< .3	33	30	1633	6.17	86	< 5	2	36	0.4	< 2	< 2	106	0.53	0.07	25	34	1.02	221	0.08	< 3	2.01	0.02	0.08	< 2	86
360	1	52	14	92	0.3	29	14	904	4.1	18	5	2	38	0.2	3	2	76	0.32	0.03	17	27	0.57	225	0.05	3	1.68	0.01	0.06	2	5
380	2	133	18	127	< .3	44	20	1282	5.2	27	< 5	2	42	0.2	3	<2	91	0,66	0.067	19	53	1.02	325	0.07	3	2.23	0.02	0.09	< 2	6
390	3	_	16	96	< .3	37	21	998	5.44	33	< 5	2	1	< .2	< 2	< 2	77	0.35	0.058	16	42	0.7	232	0.08	< 3	1.5	0.02	0.09	< 2	10
400	2	109	9	105	< .3	31	15	952	4.37	22	< 5	2	32	< .2	< 2	< 2	81	0.33	0.034	14	36	0.76	228	0.06	< 3	1.8	0.02	0.07	< 2	5
								•																						
440	5		22		1	54	31	2252	6.53		< 5	2			4	2	106		0.074	14	69		569	0.06	< 3	2.81	0.04	0.17	< 2	27
450	2	78	10	115	0.3	31	16	516	4.74	29	< 5	< 2	19	0.2	< 2	< 2	82	0.24	0.056	7	32	0.73	146	0.05	< 3	2.94	0.02	0.06	< 2	11

Sample	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	٧	Ca	Ρ	La	Cr	Mg	Ba	Ti	В	AI	Na	K	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
				<u> </u>	T							T																		
490	3	118	19	115	< .3	38	17	1079	5.13	45	< 5	< 2	43	0.2	<2	<2	86	0.82	0.061	14	47	0.8	346	0.05	3	2.47	0.03	0.16	<2	19
500	4	99	12	88	< .3	28	20	1094	5.11	23	< 5	2	41	< .2	2	< 2	82	0.68	0.068	15	43	0.77	275	0.07	< 3	2.27	0.02	0.15		11
510	1	105	14	178	< .3	60	18	1069	5,39	34	< 5	2	52	0.5	2	3	94	0.94	0.056	12	83	1.37	316	0.08	4	2.98	0.07	0.19		5
520	2	102	16	145	<.3	38	16	926	5.13	36	< 5	2	37	0.3	2	2	88	0.53	0.051	14	42	0.85	254	0.05	5		0.02	0.14		7
530	. 1	76	15	135	0.4	36	26	3067	5.25	38	< 5	2	53	0.8	2	<2	86	1.21	0.077	19	35	0.76		0.07	6	1.96	0.03	0.15	_	3
540	2	57	14	100	<.3	28	15	904	4.16	34	< 5	2	37	< .2	3	3	73	0.38	0.053	10	29	0.57	270	0.07	< 3	1.96	0.02		<2	5
550	2	46	12	95	< .3	29	12	698	4.03	23	< 5	< 2	75	<.2	< 2	<2	70	0.47	0.034	11	31	0.53	161	0.06	3	1.81	0.02	0.08	<2	3
560	2	68	9	129	<.3	32	11	960	3.58	20	5	< 2	105	0.3		< 2	61	0.69	0.062	15	31	0.56	190	0.05	< 3	1.84	0.03	0.09		5
570	2	73	13	99	<.3	32	12	626	3.92	38	< 5	2	80	<.2	2	<2	69	0.55	0.051	13	33	0.58	193	0.05	3	1.99	0.02	0.12		2
580	2	99	14	132	<.3	34	16	786	4.14	30	< 5	< 2	37	<.2	4	<2	73	0.37	0.095	10	44	0.68	234	0.1	< 3	1.73	0.02	0.12	< 2	11
590	1	53	8	88	< .3	25	11	465	3.29	23	< 5	< 2	27	< .2	< 2	<2	60	0.36	0.033	8	27	0.45	192	0.08	< 3	1.53	0.02	0.08	<2	8
600	2	148	21	168	0.4	45	19	1062	4.8	83	< 5	2	54	0.5	3	2	78	0.71	0.064	14	47	0.68	318	0.04	4	2.24	0.03	0.15	<2	39
610	2	68	10	108	< .3	40	15	710	4.2	27	< 5	<2	29	< .2	<2	< 2	77	0.4	0.039	7	51	0.81	216	0.1	< 3	2	0.02	0.1	< 2	5
620	1		20	119	0.4	37	15	722	4.26	89	8	< 2	66	0.2	2	<2	70	0.68	0.06	14	34	0.59	171	0.03	5	1.93	0.02	0.12	<2	25
630	2		16		< .3	26	12		3.78		< 5	< 2	58			< 2	64	0.58		12	31	0.5	167	0.05	3	1.57	0.02	0.08		4
640	1	77	12		< .3	27	12	_	3.31	38	7	< 2	_			< 2	56	0.44		11	21	0.44	191	0.05		1.48	0.02	0.08		7
650	2		18			30	13		3.6		< 5	< 2		< .2	<2	<2	62	0.34	0.046	12	_24	0.45		0.06			0.01	0.08		10
660	<1	89	10		<.3	36	10		3.07		< 5	<2	35			2	55	0.56		13	34	0.45	284	0.03	3		0.02	0.09		14
670	<1	33	7		<.3	35	13		3.27	_	< 5	< 2	_	<.2	_	<2	56	0.29		9	27	0.55		0.05	_	1.73	0.01	0.09		4
680	1	_	13		<.3	34	13		3.5	_	< 5	2		< .2	< 2	< 2	58	0.32		11	27	0.43	166		_	1.33	0.01	0.08		16
690	1 2		14		<.3	31	14		4.16		< 5	< 2		< .2	< 2	< 2	69	0.36		13	25	0.41	199	_	_	1.43	0.02	0.06		10
700	- 2	26	12		<.3	37	12 11		3.85		< 5 < 5	<2	_	< .2	_	< 2	66	0.23		8	24	0.4		0.05	_	1.6	0.01	0.06		13
720	<1	37	8	_	< .3	27	9	_	3.11 3.06	_	< 5	×2		< <u>2</u>		<2	54 52	0.28	0.038	9	23	0.46	183	0.06	3		0.01	0.08		3
720	<1	47	5		<.3	28	9		2.87		< 5	<2	_	<.2		<2	51	0.20	0.042	11	23	0.39	234	0.05		1.63	0.01	0.09		
740	2		66	_		38	17		4.54	154	_	<2	33			<2	73	0.32	_	10	30	0.51	144		1 2 3	1.56	0.01	_	<2	
750	3		16			62	17		5.81	14	7	<2	34			<2	135	0.78		20	153	0.32	207	0.01	6	_	0.02	0.12		2
760	2		16	_	<.3	28	16		4.61		< 5	<2	28		2		80	0.45	-	11	35	0.63		0.08		1.8	0.02	_	< 2	5
770	1		15		<.3	25	10		3.13	_	< 5	<2		<.2		< 2	56	0.29		10	24	0.44	187	0.07		1.37	0.01	0.06		6
780	1	107	12		<.3	31	11		3.78		< 5	<2	54			<2	63	0.73		14	33	0.6	244	0.04	3		0.02	0.11	_	5
790	1	76	12		<.3	29	12	and the second division of the second divisio	3.57		< 5	<2	23			<2	64	0.29		11	26		241	0.05	3		0.01	0.08		35
810	<1	100	21	179	0.7	35	12	757	3.69	55	6	2	30	0.7	<2	<2	65	0.48	0.055	15	38	0.41	332	0.04	3	2.17	0.02	0.1	<2	8
820	2	73	20	95	< .3	32	16	742	4.41	40	< 5	2	30	0.5	< 2	2	75	0.39	0.046	13	30	0.59	159	0.07	4	1.73	0.02	0.09	<2	7
830	2		11	_	< .3	36	12	510	3.97	_	< 5	< 2	40	0.3	< 2	< 2	72	0.56	0.037	13	37	0.69	351	0.04	3	2.38	0.02	0.13	<2	5
840	<1	83	17	101	0.3	37	15	721	4.25		< 5	<2	45	0.5	< 2	2	73	0.65	0.055	13	31	0.7	244	0.04	4	2.09	0.02	0.11	<2	10
850	2	97	14	_	<.3	28	11	474	3.73	16	< 5	<2	45	0.6	3	< 2	68	0.8	0.032	11	36	0.58	206	0.05	3	1.95	0.02	0.1	<2	12
860	< 1	70	17		< .3	36	18	_	4.18	34		< 2	38	0.4	2	2	73	0.46	0.04	13	33	0.65	216	0.05	4	1.99	0.02	0.11		5
870	<1	25	11		< .3	31	10		3.09	12	_	< 2	33	< .2	<2	2	55	0.31	0.044	10	26	0.51	162	0.06		1.57	0.01	0.1	<2	5
880	2	56	15		<.3	35	15		3.88		< 5	2	27		<2	2	69	0,4	0.026	10	34	0.51	254	0.05	5		0.02	_		32
890	3	79	16		<.3	36	13		3.74	_	< 5	< 2	26	0.3		< 2	64	0.26	0.064	9	25	0.45		0.06		1.58	0.01	0.07	_	3
900	2	63	14		< .3	30	15		3.77		< 5	< 2	41	0.3		< 2	66	0.4	0.053	13	26	0.56	183	0.06	3	1.66	0.02	0.09		20
910	1	25	7	_	<.3	29	10		2.95	11		<2	_	< .2	2	2	52	0.31	0.06	10	23	0.44	170	0.05		1.51	0.01	0.09	_	3
920	1	64	17		<.3	30	13		3.84		< 5	<2	41	0.3		< 2	67	0.42		15	26	0.51	208	0.05	_	1.59	0.02	0.07		7
930	1	28	7		<.3	26	10		2.91	13		< 2		< .2		< 2	52	0.29	0.03	9	25	0.45	_	0.06		1.38	0.01	0.07	_	6
940	2	75	18	_	<.3	37	17		4.1		< 5	< 2	50	0.6		2	68	0.64	0.081	13	31	0.51	237	0.04	-	1.71	0.02	_		9
950	<1	24	7	_	< .3	26	9		2.84	12		< 2	_	< .2	2	3	49	0.33	0.047	9	20	0.41	134	0.06		1.34	0.02			5
960	2	61	12	80	< .3	31	10	423	3.62	26	< 5	< 2	38	0.3	4	3	65	0.46	0.025	10	28	0.55	273	0.05	< 3	1.9	0.02	0.11	<2	4

Sample	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	в	AI	Na	K	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
		<u> </u>	<u> </u>	<u> </u>																										
970	1	43	12	95	< .3	31	14	541	3.71	17	5	< 2	42	0.4	4	< 2	67	0.74	0.035	9	35	0.63	302	0.03	3	2.27	0.02	0.13	< 2	6
980	1	29	6	90	< .3	29	9	327	3.04	9	6	< 2	29	< .2	< 2	< 2	53	0.25	0.036	8	24	0.56	150	0.04	< 3	1.74	0.01	0.1	< 2	3
990	1	32	9	85	< .3	36	12	522	3.33	12	8	< 2	37	0.2	2	< 2	57	0.26	0.023	9	32	0.56	177	0.04	3	1.77	0.01	0.1	< 2	3
1000	<1	39	9	79	< .3	34	11	479	3.07	20	< 5	< 2	33	< .2	2	< 2	53	0.27	0.036	9	24	0.49	173	0.05	< 3	1.56	0.02	0.09	< 2	1
1010	1	28	10	72	< .3	37	10	326	3.21	10	< 5	< 2	51	< .2	2	2	56	0.4	0.033	10	29	0.56	234	0.04	3	1.94	0.02	0.12	< 2	3
1020	< 1	23	5	66	< .3	33	9	332	2.82	10	< 5	< 2	36	< .2	< 2	< 2	48	0.28	0.037	9	25	0.47	171	0.05	< 3	1.48	0.01	0.09	_	2
1030	< 1	33	8	46	< .3	22	7	277	2.51	11	< 5	< 2	33		< 2	< 2	44	0.26	0.031	8	22	0.39	148		< 3	1.28	0.02	0.06	_	2
1040	1	51	14	104	< .3	38	14	564	4.72	23	< 5	< 2	45	0.5	3	2	83	0.38	0.035	8	43	0.84	307	0.01	4	3.22	0.02	0.2	< 2	2
1050																									L					
1060	1	45	17		< .3	36			4.19		< 5	< 2	41	0.6		<2	78		0.058	8	39	0.66	416	_	4	3.14	0.02	0.09		1
1070	4	_	22		< .3	14		_	9.24		< 5	3	93	1		< 2	49		0.142	38		1.08	510			3.75	0.03	0.26	_	12
1080	2	38	12	92	< .3	27	_		_	23		<2	34	0.3		< 2	74	_	0.032	8		0.56	241	0.06		2.24	0.02	0.07		2
1090	1		12				15		4.11	23		< 2	48		2	2	73		0.069			0.66	273			2.04	0.03	0.12		5
1100	2		8	_	< .3	25			3.63	23	_	< 2	24		2	2	60		0.031	7	26	0.46	153			1.69	0.01	0.06		8
1110	3	_	12		<.3	23			3.73	_	< 5	2		< .2	<2	< 2	61	0.28	0.036	11	25	0.45	161	0.08		1.32	0.01	0.08		
1120	14		18		< .3	27	17		5.7	_	< 5	<2		< .2		< 2	70					0.51	258			1.79	0.02	0.1		13
1130	3		17	_	< .3	26			4.03		< 5	< 2	_	< .2	<2	< 2	70		0.058	14	31	0.57	181		< 3	1.61	0.02	0.1	_	16
1140	10	508	12	111	< .3	36	21	796	5.46	45	< 5	< 2	44	0.2	2	3	82	0.53	0.095	14	79	1.08	421	0.12	4	2.01	0.02	0.23	<2	43
1150		L			<u> </u>		<u> </u>				<u> </u>	<u> </u>		<u> </u>	 	<u> </u>						L	477		-	1.0	- 0.00	0.00	- 0	
1160	2		14		< .3	28			4.01		< 5	< 2		< .2	4	3	73		0.044	14	30	0.5				1.43	0.02	0.09		19
1170	1		10		< .3	23			3.21	24	_	< 2			< 2	< 2	57		0.037	9		0.41	126	_			0.01			
1180	1	1	17		< .3	32			4.94	35	_	2		< .2		< 2	87	0.6		19		0.78	203		_	2.09	0.03	0.11	_	20
1190	2	_	15	_	_		_		5.23		< 5	< 2	63		< 2	< 2	85					0.69	205			2.12		0.11		14
1200	1		15						5.11		< 5	< 2	78	< <u>1</u>	_	< 2	86 60		0.075	16		0.81	246				0.02	0.12	_	3
1210	1	49		_	< .3	28	_	_	3.24	29	< 5	<2	33		< 2	<2	93					0.40	275	_			0.03	0.14	_	1
1220	<1	96 50			< .3	49		_	5.11	33				< .2	< 2	<2	60			8		0.43	_	0.00	5		0.03	0.08		2
1230	1				< .3	25				25			32			<2	72			11	39	0.43	140				0.01	0.09	_	11
1240	2		_		<.3	28			3.99		< 5	< 2	40			<2	72					0.6					0.02	_	<2	7
1250	2		11		< .3					_	< 5	<2	60	_	< 2	<2	75					0.74		_			0.02	0.09	_	6
1260 1270		97	13		<.3	34		_		18	_	< 2		< .2	<2	2	63					0.57	302		_	2.18	0.01	0.13	_	33
1270	<1	30			<.3	34		_		10	_			< .2		< 2	53					0.49					0.01	0.08	_	1
1280	3		10		<.3	37			_	26	_				< 2	2 2	66	_	_			0.45	_		_	_	0.02		<2	11
1290	2		13		<.3	54			4.91		< 5			<.2	<2	<2	82					0.75		_	-	3.46	0.02	_		8
1300	1	_	_		<.3	30					< 5	< 2		<.2	< 2	<2	49				_	0.42				1.43	0.01	0.07		1
1320	1		_	_	<.3	35					< 5	2		< .2		<2	57		_	9		0.48				1.58	_	0.07	_	2
1330	1		11		<.3	28					< 5	< 2		<.2	< 2	<2	58					_		_		1.32		0.06		22
1340	1		-		<.3	31	12	_			< 5	<2	33		<2	< 2	58			11		0.45	_	_		1.33	0.01	0.07	_	9
1350	2			_	<.3	27					< 5	<2		< .2	2	2	68				_	0.54				1.42	0.02			22
1360	1		16	_	<.3	36			_		< 5	1 2	35			2	72					_				1.98		0.11		26
1370	1				<.3	30				·	< 5	< 2		< .2	< 2	2	63			10						1.44		0.06		2
1380	1			_	<.3	27					< 5	<2		<.2	<2	< 2	53	_								1.39		0.06	_	2
1390	1			_	<.3	31		_			< 5	< 2	49			< 2	65			_		_		_		1.9				3
1400	1				<.3	25					< 5	<2		<.2	<2	< 2	58		0.03				_			1.39		0.07	_	4
1410	1	_	_		<.3	30	_		_		< 5	< 2		<.2	< 2	< 2	60		0.043	11	27	0.47				1.37	0.01	0.06	_	3
1420	3		27		<.3	21					< 5	<2		<.2	5	2	83		_	12		_		_		1.42		0.17	_	63
1430	1			_		27		_		_	< 5	<2		< .2	< 2	2	74			10						1.44	0.01	0.08		9
1440	3				<.3	21	_				< 5	<2		< .2	< 2	< 2	80			11	_	0.65	_	_		1.63	_		_	4
1440					6.1	1 4			4.01		1	1.4			1 · · ·			0.00	0.000	1		0.00		0.00	_				_	

Sample	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	v	Ca	Ρ	La	Cr	Mg	Ba	Ti	В	A	Na	ĸ	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
1450	2	85	16	90	< .3	31	18	893	4.62	25	< 5	2	26	< .2	< 2	< 2	83	0.41	0.044	9	34	0.64	189	0.06	< 3	1.74	0.01	0.11		32
1460	2	91	9	128	< .3	39	23	1160	5.73	25	< 5	2	34	< .2	< 2	< 2	91	0.67	0.054	20	43	0.81	230	0.06	< 3	2.06	0.02	0.09	< 2	65
1470	2	120	12	90	< .3	24	16	994	4.54	14	< 5	2	27	< .2	< 2	2	79	0.43	0.041	15	33	0.63	179	0.09	< 3	1.42	0.02	0.1	<2	45
1480	2	108	14	124	< .3	42	20	1221	5.35	25	< 5	2	37	0.2	<2	<2	102	0.68	0.047	16	50	1.06	309	0.05	< 3	2.28	0.02	0.11	< 2	20
1490	1	71	14	122	0,4	24	12	1431	4	14	< 5	< 2	36	< .2	2	<2	66	0.95	0.063	10	35	0.7	362	0.04	< 3	1.77	0.02	0.08	<2	8
1500	1	100	15	178	0.3	34	19	1564	4.39	19	< 5	< 2	30	0.2	< 2	<2	83	0.65	0.038	12	42	0.83	306	0.05	< 3	1.95	0.02	0.08	< 2	6
1510	2	162	12	120	< .3	31	14	715	4.17	10	< 5	< 2	21	< .2	< 2	<2	84	0.4	0.025	12	37	0.72	200	0.03	< 3	2.47	0.01	0.06	< 2	2
1520	1		14	95	< .3	27	13	802	3.89		< 5	< 2		< .2	< 2	2	74	0.51	0.033	15	34	0.78	164	0.05	< 3	2.04	0.01	0.06		2
1530	2	105	9			26	61	1602	7.22		< 5	2		< ,2	<2	2	74	0.23	0.056	13	30	0.51	202	0.01		2.8	0.01	0.09		1
1540	1	36	9	76	< .3	20	12	772	3.33	11	< 5	< 2	36	0.2	< 2	< 2	64	0.51	0.035	11	25	0.57	137	0.08	< 3	1.74	0.02	0,06	2	2
1550																														
1560	9		8		< .3	22	- 14		3.4		< 5	< 2		< .2	< 2	2	68	-	0.031	10	_	0.59			_	1.79	_	0.04		2
1570	31	220	14	99	< .3	28	12	785	3.65	12	7	2	38	< 2	<2	< 2	74	0.71	0.044	35	31	0.67	317	0.03	< 3	2.11	0.01	0,06	<2	15
1580																														
1590	2		13		< .3	33					< 5	2		<.2	3	2	83	_	0.046	7	45					4.94	0.01	0.03	_	4
1600	1	34	13		< .3	37	13		4.32		< 5	2		< .2	<2	< 2	81			8				0.02	_	4.27	0.01	0.05		2
1610	<1	27	4	131	_	28	_		4.29		< 5	< 2	_	< .2	< 2	<2	86		0.052	8	35	0.69			_	2.32	0.01	0.06		2
1620	1	35	15	114	< .3	30	18	1211	3.99		< 5	< 2		< .2	<2	2	74			11		0.56				1.85	0.01	0.06		2
1630	2	84	16	110	< .3	30	18	1187	4.8	28	< 5	< 2	29	< .2	2	2	79	0.35	0.049	11	35	0.75	168	0.04	< 3	2.38	0.01	0.05	< 2	3
1640				1									L													1			<u> </u>	
1650	1	47	10	137	< .3	34	16	599			< 5	< 2		< .2	< 2	<2	84	_	0.07	9		_	305	_		3.01		0.07	_	6
1660	1	46	12	97	< .3	28	16	976	3.8	19	< 5	2	29	< .2	< 2	< 2	71	0.37	0.05		28	0.5				1.9	0.01	0.06		5
1670	1		11	151	< .3	28	18	1217	4.33	18	< 5	< 2	37	< .2	_	< 2	86			11	33			0.04		2.74	0.01	0.07	2	· ·
1680	1	40	24	244	0.3	31	17	1000	4.03	29	5		32	0.4	2	2	77	_	0.058	9	31	0.6		0.05			0.01	0.08		
1690	1		15							31	5		60		2	2	97				40				6		0.02	0.12		
1700	1		13					_	3.79	22	5				2	2	_				30		207	0.07	6		0.02	0.08		_
1710	1		14		-			_		22	5		_	0.2	2	2						0.45		0.06		1.41	0.01	0.07	2	
1720	1		13	_					3.87	20	5			0.2	2	2				8		0.49		0.06	_		0.01	0.06	_	
1730	1		27		_		43	_	4.13	53	5			0.3	2	2	_	_					155				0.01	0.09	_	_
1740	2	_	10		_	_	14	_	4.51	19	5			0.2	2	2					_	0.86		0.1	4		0.02	0.14		_
1750	1		17	_	_		_			39	5	_	71	0.2	2	2	77			16				0.05			0.02	0.1	2	
1760	1		41						3.89	30	5			0.2	2			_		9	29		157	0.08	4		0.01	0.08		
1770	4		19					_		21	5			0.2		_					38	_	_		4	1.62	0.02	0.09		
1780	3		17		_					22	5		117	0.2	2	2	87				81	1.02			4	2.04	0.03	0.1	2	-
1790	1		12	_					4.78	29	5			0.2	_	2		_			39			0.05			0.02	0.1		
1800	2		19	_	_	_			_	28	5		56	_		2	74	_		_	50	_		_		1.83	0.02	0.1	2	
1810	1	_	21		<.3	38			4.61		< 5	< 2	42		< 2	<2	77	_			35					1.9	0.02		< 2	20
1820	2	_	8	_	< .3	25	_		3.43	_	< 5	<2		< .2	<2	<2	52			8	23	0.43		0.03		1.41	0.01	0.08	_	3
1830	2	_	40			57	18				< 5	< 2	77	_	< 2	<2	72				35			0.03	_	1.91	0.02	0.07	_	46
1840	3		17		< .3	41		_			< 5	<2		< 2		<2	84		0.064		37	0.89	_	0.03		2.17	0.02	0.12		3
1850	5	_	13			43	_				< 5	<2	116	_		< 2	81			17	72	0.88				2.28	0.02	0.09	_	46
1860	2	_	12	_	<.3	28	_				< 5	< 2	65	_		<2	61				41	0.59		0.03		1.53		0.07		17
1870	1	_	12		<.3	25		_			< 5	< 2		< .2	< 2	< 2	55				26	0.39	_			1.25	0.02	0.05		3
1880	1		14	_	<.3	25	_				< 5	< 2	64		< 2	<2	54	_		9	23	0.41	176			1.45	0.01	0.06		4
1890	1		16		< .3	31	12			_	< 5	<2	32			2	64	_		_		0.54		0.05		1.53	0.01	0.06	_	62
1900	2	_	61	-	<.3	50		_	_		< 5	<2	78		-	2	69					0.49				1.85	_	0.14		12
1910	1		17		<.3	27				_	< 5	<2	28		_	2	70	_		10		0.52	182	0.05		1.48	0.01	0.09		32
1920	2	63	10	89	< .3	26	13	565	3.81	24	< 5	< 2	23	< .2	2	< 2	67	0.34	0.034	7	27	0.5	202	0.06	< 3	1.63	0.01	0.06	< 2	2

Sample	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca	Ρ	La	Cr	Mg	Ba	Ti	8	AI	Na	ĸ	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
1930	1		10	_	< .3	31	11	685	3.97		< 5	< 2		< .2	< 2	<2	65	0.68	0.044	13	31	0.46	256	0.02	< 3	1.91	0.01	0.09	<2	3
1940	1		13		< .3	28	11		3.49		< 5	< 2		< .2	< 2	3	60	0.35	0.045	10	23	0.38	194	0.05	< 3	1.39	0.01	0.05	<2	3
1950	1		7	_	< .3	28	9		3.11		< 5	<2		< .2		< 2	52	0.29		6	22	0.37	213	0.03		1.52	0.01	0.08	_	<1
1960	2		18	-	< .3	35	18		5.52		< 5	< 2	60	0.3		<2	93	0.59		19	38	0.77	278			2.01	0.02	0.09		20
1970	1	39	12	_	< .3	22	12		3.31		< 5	< 2	76	_	<2	2	59	0.49		7	26	0.53		0.06	_	1.37	0.01	_	<2	4
1980	2		38		_	32	19		5.42		< 5	< 2	64		<2	<2	92	0.7	_	15	37	0.77		0.04		1.86		0.1		28
1990	2		11		< .3	28	12		4.05		< 5	<2	23		<2	< 2	72	0.4		9	30	0.54		0.06		1.62		0.08	_	3
2000	1	_	12		< .3	37	15		4.38		< 5	< 2	30	_	< 2	< 2	87	0.74	_		42	0.99	_	0.02	-	3.08		0.07		
2010			11		<.3	25 24	13 15		4.21	_	< 5	<2	24	_	< 2	3	78	0.55		11	33	0.87				2.2		0.07		3
2020	1		10		< .3	24	13		4.48		< 5	<2		0.2			81	0.5	_	14	31	0.86	_	0.06	_	2.13		0.05		<1
2030	3		12		<.3	22	14		4.07	_	< 5	<2	_	<.2	< 2	<2	77	0.4			28 28	0.74	165 151	_	_	1.74	0.01	0.05	_	25
2050	3		11	_	<.3	23	11		3.58		< 5	<2		< 2	_	<2	65	0.32		9	26	0.63		0.04		1.94		0.04		<1
2060			<u> </u>		s	- 22		034	3,56	10	- 3	<u> </u>	- 31	•.2			05	0.30	0.040	°	20	0.05	140	0.03	-3	1,84	0.01	0.04	~2	<u></u>
2070	25	43	12	116	<.3	24	11	494	3.63	16	< 5	<2	24	< .2		3	75	0.36	0.034	8	28	0.65	215	0.03	< 3	2.3	0.01	0.05	< 2	-1
2080							<u> </u>		- 0.00			-		-		<u> </u>		0.00	0.004	<u> </u>		0.00		0.00			0.01	- 0.00	-	
2090	62	60	15	108	<.3	28	15	947	3.95	22	< 5	<2	34	< 2	<2	<2	75	0.46	0.049	11	31	0.65	245	0.02	< 3	2.55	0.01	0.06	< 2	3
2100				1						-					<u> </u>															
2110				1												1							1							
2120	4	40	8	74	< .3	27	12		3.54	18	< 5	< 2	22	< .2	2	2	61	0.18	0.028	8	26	0.44	146			1.9	0.01	0.06	<2	2
2130	5		25	152	< .3	26	13	567	5.07	16	< 5	< 2	42	<.2	2	2	72	0.25	0.051	9	26	0.57	258	0.05	< 3	2.21	0.01	0.13	<2	3
2140	1		15	_	< .3	31	20		4.86	_	< 5	<2	43		<2	2	84	0.61	_	21	32	0.65		0.04	_	2.09	_	0.11	_	2
2150	4		14		<.3	33	18		4.4		< 5	<2	116		< 2	2	_	0.63	_	10	32	0.69	_	_	_	2.17	_	0.09		2
2160	2		8		< .3	26	11		3.61	_	< 5	2	_	< .2	<2	2	65	0.29		7	27	0.49				1.74	_	0.05		3
2170	4	_	_		<.3	29	16		4.6	_	< 5	< 2		< .2	_	<2	73	0.44	_	16	31	0.62	_		_	1.63	_	0.09		5
2180	5		_		<.3	25	12		3.62		< 5	< 2		< .2	_	< 2	62	0.32		8	25	0.47	161	0.06	_	1.25		0.07		2
2190	1	26		161	< .3	22	12	1185	4.7	25	< 5	< 2	18	< .2	<2	< 2	87	0.42	0.03	8	30	0.57	308	0.04	3	1.81	0.01	0.08	<2	50
2200 2210	<1	27	13	000	<.3	28	14	1422	4.21	- 25	< 5	<2	28	- 0.4	<2	< 2	78	0.47	0.487			OFF	400	0.05			0.01	0.08	- 0	
2220	1	_	- 9	_	<.3	20	19		5.1	_	< 5	2	_	< .2	_	3		0.43		8 12	28 33	0.55		0.05		2.14		0.08		
2230	1		12		<.3	35	15		3.97		< 5	<2	62	0.6	_	< 2	69	0.39		_	31	0.73					0.01	0.08	_	15
2240	1		< 3	_	<.3	39	64		10.11	_	< 5	<2	95	0.5	5		209	0.97		68	44	2.23	_			4.11		0.00		14
2250	i	_	9	_	<.3	20	11	_	3.5		< 5	2		< .2	2	_	63	0.4		11	23	0.41	165	0.07	3		_	0.07	_	7
2260	1		11	_	<.3	27	13		4.53	_	< 5	2		< 2		< 2	82	0.35	_		30	0.59		0.06		1.83		0.08	_	3
2270	1		18	_	<.3	38	16		4.12	_	< 5	2	_	< 2	_	<2	65	0.48	-	16	31	0.46		0.04			0.01	0.07		8
2280	1		9	_	<.3	27	12		3.7	_	< 5	< 2	66	0.2	_	<2	64	0.56		17	29	0.49		0.04				0.06	_	7
2290	4	_	20		<.3	37	20		4.81		< 5	<2	51	0.5	5		76	0.68		12	40	0.77	_	0.08				0.12		34
2300	1	50	12	86	< .3	30	10	435	3.37	40	< 5	2	29	<.2	<2	< 2	57	0.31		9	23	0.37		0.05	_	1.3		0.07		3
2310	1	43	7	96	< .3	31	9	319	3.24	18	< 5	2			2	<2	51	0.47		10	26	0.41	177	0.02	< 3	1.55		0.06	_	2
2320	1	209	10	104	< .3	37	14	766	4.29	21	< 5	2	44	0.3	2	<2	91	0.57	0.048	12	67	1.32	229	0.15	< 3	1.96	0.02	0.16	< 2	16
2330	< 1	33	6		< .3	33	11		3.04		< 5	<2	29	0.2	<2	2	51	0.34		9	26	0.44		0.03		1.54	0.01	0.08	< 2	1
2340	2	_	20	_	< .3	59	43		7.52		< 5	2		<.2	4	3	123	0.54	0.099	18	82	1.31	495	0.07	< 3	2.62	0.03	0.18	_	27
2350	1		11		< .3	28	15		4.93	_	< 5	<2		< .2	_	< 2	89	0.45		9	42	0.71				1.58		0.07		5
2360	1	_	37			32	17		5.17		< 5	2	_	< .2		< 2	80	0.36		11	35	0.59	_	0.07		1.51	0.02	0.11		10
2370	1	_	15		< .3	34	12		3.7		< 5	2		< .2		<2	64	0.38		9	27	0.44	_	0.07	3			0.09		4
2380	1		14	_	<.3	33	14		3.8		< 5	< 2	37	0.2	2	3	66	0.42	_	8	32	0.54	186	0.05	3	1.52	0.01	0.1		2
2390	1	37	10		_	35	15		4.29		< 5	< 2	23		< 2	2	87	0.57		9	41	0.98	344	0.03	4	2.63	_	0.07		2
2400	<1	25	10	142	< .3	26	11	484	4.71	_ 27	< 5	< 2	19	< .2	< 2	< 2	84	0.18	0,137	7	33	0.56	335	0.04	< 3	2.4	0.01	0.05	< 2	1

Sample	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	в	AI	Na	к	W	Au*
	ppm				-	ppm	ppm	ppm		ppm	ppm	ppm	ppm		ppm	ppm	ppm	%	%			%		%			%	%		ppb
		pu_		1		1	1				<u> </u>	1 m								FF			er							
2410	2	95	10	194	<.3	32	18	588	6.51	19	< 5	2	17	0.2	3	7	106	0.2	0.068	7	43	0.79	234	0.04	< 3	3.03	0.01	0.08	< 2	<1
2420	1	_	11		-	26		848	4.32		< 5	< 2	23			< 2	76	0.3		9	31	0.76		0.04	3	2.34	0.01	0.05		1
2430	1		9		<.3	16				_	< 5	<2		< .2		<2	74			7	28	0.38		0.02		2.58	0.01	0.04	_	
2440					0	- 10		1.30	5.54				<u> '`</u>	2				0.05	0.035		20	0.50	100	0.02		2.50	0.01	0.04		
2440																														
2450	11	111	8	133		30	10	426	4.38		< 5		1 40		10	-		0.04	0.044			0.70	445				0.04	0.00	-	
2400		<u> </u>		133	< .3	30	10	420	4.30	23	< 0	2	10	< .2	<2	<2	80	0.21	0.044	7	34	0.79	115	0.03	3	2.9	0.01	0.06	< 2	
			- 10				40	004				10		-		-			0.005				107			4 70				
2480	3		12		< .3	25			3.66		< 5	< 2		<.2	< 2	<2	66			11	27	0.51		0.04	3		0.01	0.06		2
2490	5		35	_	0.3	20			8.3		< 5	5	_					0.54			23	0.91		0.03		3.07	0.01	0.11	_	19
2500	1	44	11	136	< .3	29	15	1073	4.48	21	< 5	< 2	39	< .2	<2	<2	75	0.4	0.081	19	31	0.69	305	0.02	< 3	2.71	0.01	0.12	2	2
2510						<u> </u>								<u> </u>	L															4
2520	1	35	8	_	< .3	36					< 5	<2		< .2	<2	<2	94	0.29		8		1.15		0.04		3.16	_	0.05		2
2530	<1	20	10			22			5.36	-	< 5	<2		<.2	4	3	151	0.13		6		0.87		0.05		2.53	0.01	0.06		1
2540	<1	42	8	_		37	13	_			< 5	< 2		<.2	<2	<2	91	0.45		14		0.95		0.02		3.48	0.01	0.06		<1
2550	<1	46	6		_	41	18				< 5	2	_	<.2	<2	<2	109	0.22		8	55	1.27	_	0.05		3.73	0.01	0.06		4
2560	1	29	10	_	_	29	_	_			< 5	<2		<.2	<2	< 2	75	0.33		8	37	0.88	_	0.03		2.39	0.01	0.06		1
2570	< 1	40	13	_		32			3.87		< 5	< 2	28		< 2	2	72	0.48		13	34	0.73		0.03			0.01	0.06		2
2580	1	28	10	100	<.3	30	16	1089	3.97	19	< 5	< 2	25	<.2	2	<2	84	0.42	0.041	8	38	0.94	185	0.04	3	2.42	0.01	0.05	<2	2
2590							1																							
2600	1	61	6	160	< ,3	35	12	511	4.33	16	< 5	< 2	21	< .2	3	< 2	77	0.25	0.046	11	40	0.86	216	0.02	3	3.28	0.01	0.05	<2	2
2610																														
2620	1	65	9	141	< .3	27	10	443	4.66	21	< 5	< 2	16	< .2	<2	< 2	89	0.17	0.068	7	34	0.74	162	0.02	3	3.02	0.01	0.06	< 2	1
2630	1	36	10	131	< .3	31	11	419	4.49	17	< 5	<2	16	< .2	2	< 2	83	0.14	0.053	8	38	0.73	165	0.02	3	3.29	0.01	0.05	<2	1
2640	3	48	11	126	< ,3	36	13	496	4.73		< 5	2	22	< .2	<2	< 2	89	0.19	0.03	8	38	0.79	181	0.02	3	3.31	0.01	0.06	<2	2
2650	1	35	9	118	< .3	28	11	472	4.11	18	< 5	< 2	19	< 2	2	< 2	85	0.21	0.046	8	34	0.7	177	0.02	3	2.83	0.01	0.05	< 2	2
2660																														
2670	1	43	11	118	< ,3	34	16	777	4.32	27	< 5	< 2	23	< .2	< 2	2	81	0.36	0.043	11	35	0,69	249	0.02	3	2.96	0.01	0.05	< 2	34
2680																														
2690	3	58	16	185	< .3	27	14	1157	5.45	29	< 5	< 2	21	<.2	2	< 2	78	0.36	0.053	15	32	0.72	265	0.02	3	2.87	0.01	0.07	< 2	3
2700																														
2710	1	45	9	169	<.3	33	22	1683	4.92	29	< 5	<2	33	< .2	<2	<2	85	0.5	0.072	16	39	0.74	287	0.02	3	3.1	0.01	0.07	< 2	2
2720	2	72	14	122	< .3	30	14	1148	4.86	25	< 5	<2	35	<.2	<2	2	80	0.54	0.077	13	32	0.88	298	0.04	3	2.45	0.01	0.06	<2	16
2730														· · · ·	1															
2740	1	33	7	108	< .3	27	10	514	4.07	14	< 5	<2	19	< .2	<2	<2	92	0.16	0.035	9	37	0.79	291	0.02	3	2.71	0.01	0.06	< 2	2
2750	· · · ·										-			<u> </u>		<u> </u>									<u> </u>					
2760	1	35	5	82	<.3	32	12	395	3.64	15	< 5	<2	23	< 2	< 2	< 2	68	0.2	0.058	10	34	0.66	174	0.02	3	2.94	0.01	0.04	<2	2
2770	1		9		_	38			4.42	19		2	_	< 2	<2	<2	86		_	8	40	0.77		0.02			0.01	0.05		2
2780	1		10		<.3	33					< 5	< 2	26		<2	<2	85			8	_	0.64		0.03			0.01	0.04		1
2790	2		66		0.3	32					< 5	2			<2	<2	88			8	40			0.03			0.01	0.04	_	2
2800	1	21			< .3	24	_	270			< 5	<2		< .2	<2	<2	57	0.10		10		0.52	_	0.03			0.01	0.04		2
2810	1	53	16	_		38			4.47		< 5	2	_		3		91	0.34		10	43	0.52		0.02		3.14	0.01	0.04	_	
2810	1	_	9		1.3	30	11	457	5.77	_	< 5	2				<2	89			17	75	0.85		0.03			0.01	0.00	_	- î
2820	2		13			31					< 5	< 2		< .2		<2	74			7	32						0.01			
											_					× 4						0.68		0.04		2.37		0.05	-	· · ·
2840	1		11	_		32			4.28	29		<2	31		<2	2	76	0.29		15		0.69		0.03			0.01	0.06		3
2850	1	25	8	100	< .3	27	10	373	4.45	28	< 5	< 2	18	0.2	2	<2	85	0.14	0.024	7	33	0.6	147	0.04	3	2.3	0.01	0.04	< 2	
2860			40	-				10.15				1			-	<u> </u>							-						-	
2870	1	46	12	124	< .3	29	12	1045	4.11	14	< 5	< 2	27	< .2	< 2	3	81	0.38	0.048	13	38	0.83	342	0.02	4	3.08	0.01	0.05	< 2	2
2880						I	L					L	L		L		L		I	L	L				1			I		

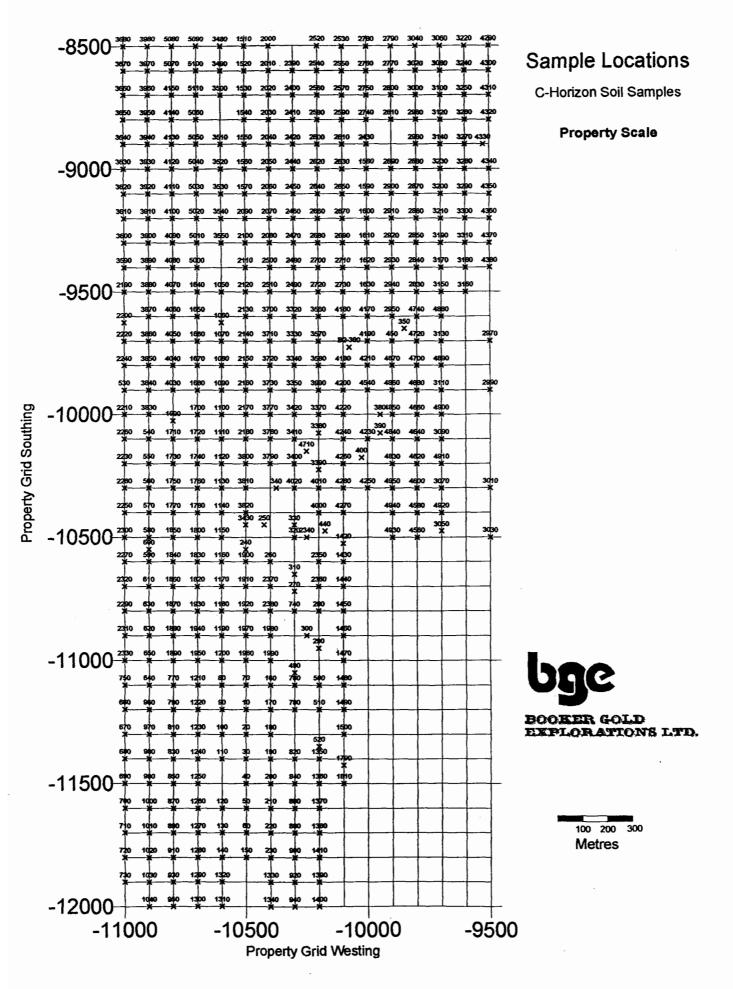
Sample	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	υ	Th	Sr	Cd	Sb	Bi	V	Ca	Ρ	La	Cr	Mg	Ba	Ti	_				W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
			1	1	<u> </u>	<u> </u>	<u> </u>	· · · ·				<u> </u>	· · · ·																	
2890						-																								
2900																														
2910	2	31	11	148	0.3	27	10	399	4.35	21	< 5	< 2	25	<.2	< 2	< 2	101	0.29	0.051	12	34	0.64	292	0.03	4	2.92	0.01	0.05	<2	1
	<1	32			<.3	28		390	3.87	_	< 5	< 2	21	<.2	5	<2	66	0.14	0.044	8	33	0.64	182	0.03	< 3	3.24	0.01	0.05	< 2	2
2930	2	36	11	98	<.3	30	14	511	3.92	28	< 5	<2	25	<.2	2	< 2	63	0.22	0.093	8	35	0.57	212	0.03	3	2.83	0.01	0.06	< 2	19
2940												<u> </u>																		
2950					<u> </u>		<u> </u>																							
2960			1	1																										
	<1	71	10	124	<.3	27	12	383	5.66	39	< 5	< 2	13	< .2	< 2	< 2	91	0.09	0.058	7	41	0.69	129	0.03	< 3	4.51	0.01	0.07	< 2	3
2980						1																								
2990	2	59	14	120	<.3	25	16	1110	5.03	163	6	< 2	24	< .2	< 2	< 2	87	0.47	0.039	9	40	0.79	179	0.05	< 3	2.06	0.02	0.06	< 2	38
3000	1	25	14	120	<.3	23	11	493	4.99	22	< 5	< 2	25	<.2	< 2	<2	104	0.56	0.059	8	40	0.67	264	0.02	< 3	3.31	0.02	0.07	< 2	1
3010	2				< .3	30		790	5.65	46	< 5	< 2	18	< .2	< 2	2	103	0.21	0.048	9	40	1.04	177	0.04	< 3	3.51	0.02	0.06		4
3020	2		17	123	0.5	33	21	2195	10.98	17	< 5	<2	20	< .2	2	< 2	164	0.53	0.081	19	51	0.65	568	0.01	< 3	3.69	0.01	0.09	_	<1
3030	<1	39	13	97	< .3	26	13	566	3.82	27	< 5	< 2	28	< .2	< 2	< 2	68	0.25	0.041	10	30	0.67	202	0.03	< 3	2.5	0.01	0.06	_	1
3040	2	121	15	156	< .3	34	21	2015	4.66	17	< 5	< 2	30	< .2	<2	< 2	88	0.91	0.078	16	58	1.02			_	2.66	_		_	3
3050	4	160	15	94	< .3	69	20	512	8.03	94	< 5	< 2	15	< .2	< 2	< 2	107	0.18	0.038	8	202	2.15	118	0.08	< 3	3.9	0.02	0.16	<2	28
3060																														
3070	2	151	47	301	0.4	45	25	1194	6.77	83	5	< 2	26	0.2	< 2	< 2	96	0.32	0.074	15	77	1.21	244	_		3.29		0.11		26
3080	< 1	276	10	201	< .3	23	10	384	3.11		< 5	< 2	16	0.6	< 2	< 2	75			_						2.89		0.05		1
3090	3	41	18	124	0.3	16	5 14	423	6.3	51	< 5	< 2	16	< .2	2	2	82	0.09				0.43			_	2.64		0.06		2
3100	2	87	14	158	0.5	26					< 5	< 2	24		< 2	< 2	93					0.6			_	3.06	0.01	0.07		1
3110	1	64	16	126	< .3	46	19	1017	4.42	28	< 5	< 2	30	< .2	< 2	< 2	80	0.48	0.038	12	53	0.88	325	0.03	< 3	2.73	0.02	0.07	<2	7
3120																														
3130	2	56	5 17	139	< .3	36	5 22	1233	4.94	33	< 5	< 2	24	< .2	< 2	< 2	93	0.23	0.052	11	43	0.99	212	0.05	3	3.13	0.02	0.08	< 2	72
3140																		L											\vdash	
3150	1	29	8		< .3	25		802	3.74		< 5	< 2		< .2		< 2	70	_	-	8				_	-	2.16		0.06		1
3160	1	45	5 14	143	< .3	32		_			< 5	< 2		< .2	< 2	< 2	92	_	_	7	48	_			_	2.87			< 2	6
3170	2	32	2 13	143	< .3	23	12	484	4.89	27	< 5	< 2	11	< .2	< 2	< 2	98	0.07	0.099	6	41	0.68	104	0.03	< 3	3.13	0.01	0.06	< 2	11
3180											L														L			$\frac{1}{1}$	<u> </u>	<u> </u>
3190	< 1	37			_	_	_				< 5	3		< .2	< 2	< 2	70			_	35		_			3.81	0.01	0.05		
3200	< 1	20		68	< .3	21	9	393				< 2		< .2	< 2	< 2	57			_					< 3	2.59	_		< 2	1
3210	1				< .3	26	_				< 5	2		< .2	< 2	< 2	80	_			_				< 3	3.87	0.01		< 2	2
3220	2	45	5 15	151	< .3	38	3 19	918	4.56	22	< 5	< 2	31	< .2	< 2	< 2	87	0.27	0.06	11	47	0.7	286	0.03	< 3	3.46	0.02	0.04	<2	1
3230																									<u> </u>					<u> </u>
3240	1		_			-					< 5	< 2	33		< 2	< 2	86					0.88	_		_	2.39				3
3250	1	163	3 17	168	2.4	1 32	2 16	1645	5.56	18	< 5	<2	28	0.6	< 2	< 2	70	1.25	0.124	27	44	0.54	376	0,02	< 3	5.04	0.01	0.05	< 2	2
3260									1				-					L				ļ					L	<u> </u>	<u> </u>	
3270												L	1			ļ	L	ļ		I		ļ			L		L			
3280																							-							<u>+</u>
3290	2				< .3	25	_				_	< 2	_	< .2		2		_		_						2.37				1
3300	2	37	/ 13	188	< .3	29) 13	668	3.92	20	10	< 2	31	0.5	< 2	< 2	76	0.51	0.044	12	34	0.61	216	0.03	< 3	2.59	0.02	0.06	5<2	2
3310												1								-						1			1	<u> </u>
3320	3				< .3	28					< 5	<2		< .2	< 2	< 2	75								< 3	1.95			<2	2
3330	48				_			_	_	_	_	< 2	49	_	< 2	< 2	101				_	_			< 3	3.66		_	<2	17
3340	3				< .3	27	_	_				< 2	57		< 2	< 2	66								< 3	1.58			<2	1
3350	18	1400) 18	3 171	< .3	63	3 25	336	5.5	10	< 5	4	29	< .2	3	3	127	0.3	0.064	11	84	1.76	177	0.28	< 3	2.68	0.02	0.29	2	28

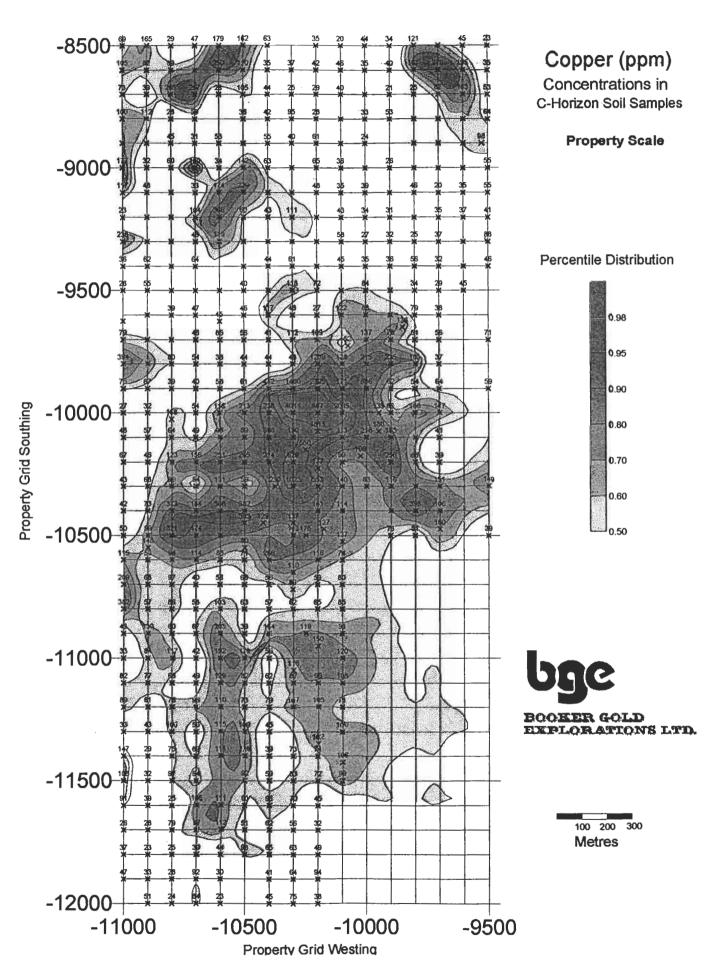
٠,

3380 1	om p	ppm	ppm										Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	В	AI I	Na	ĸ	W	Au*
3380 1			CP	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	*	ppm	%	%	%	ppm	ppb
3380 1																													,	
	10	867	21	289	< .3	81	21	874	6.71	17	< 5	5	74	< .2	7	< 2	154	0.46	0.08	25	126	2.92	454	0.53	< 3	2.55	0.02	1.04	<2	34
2200	11	1811	26	155	<.3	59	20	929	6.05	54	7	4	68	< .2	< 2	2	110	0.62	0.092	20	90	1.71	488	0.27	< 3	1.77	0.03	0.3	<2	51
3390	3	177	10	106	< .3	38	11	764	4.38	22	< 5	2	35	< 2	<2	< 2	81	0.33	0.033	17	66	1.14	263	0.12	< 3	2.09	0.01	0.13	<2	12
3400 1	10	626	14	105	0.3	37	14	732	4.24	22	< 5	<2	45	< .2	4	< 2	72	0.33	0.053	11	36	0.71	200	0.09	< 3	2.1	0.01	0.07	<2	10
3410	4	190	12	103	<.3	32	13	716	3.64	17	< 5	<2	82	0.2	< 2	< 2	66	0.59	0.045	12	34	0.75	252	0.05	< 3	1.98	0.02	0.1	<2	2
3420 2	26	4011	24	242	1	34	18	436	8.21	48	< 5	4	74	0.3	< 2	2	122	0.23	0.137	17	28	0.71	225	0.05	< 3	2.84	0.01	0.06	<2	978
3430 1	10	593	< 3	159	0.7	58	25	1166	5.95	42	< 5	< 2	62	< .2	< 2	< 2	96	0.82	0.083	15	137	1.53	272	0.14	3	2.48	0.04	0.23	<2	48
3480	1	179	8	192	1.6	33	20	1572	6.86	17	< 5	<2	23	0.2	<2	2	75	0.54	0.037	20	31	0.72	273	0.02	3	2.92	0.01	0.08	<2	4
3490	6	250	15	269	0.8	17	16	892	8.17	15	< 5	< 2	11	< .2	2	14	74	0.19	0.082	8	24	0.44	105	0.02	< 3	2.76	0.01	0.06	< 2	1
3500	1	26	3	114	< .3	14	11	440	4.08	10	< 5	< 2	21	0.3	< 2	< 2	75	0.42	0.035	5	21	0.43	153	0.05	< 3	1.86	0.01	0.07	< 2	<1
3510	8	53	5	460	< .3	24	12	418	3.86	17	< 5	< 2	23		< 2	2	71	0.22	0.027	9	23	0.61	173	0.03	< 3	2.14	0.01	0.04	< 2	<1
3520	4	- 34	5		< ,3	24	13	575	3.37	22		< 2			< 2	< 2	66	0.36	0.011	9	24	0.54	165	0.05	< 3	1.65	0.01	0.04	<2	<1
	18	174	7	308	0.5	28	14	778	3.64	18		<2	36			< 2	65	0.6	0.044	23	26	0.64	251	0.04	3	2.08	0.01	0.06	<2	1
	30	366	< 3	385	0.4	40	30	1424	5.16	19	_	< 2		< .2	< 2	3	89	0.35	0.068	16	39	0.75	319	0.01	< 3	4.13	0.01	0.08	<2	2
3550	8	119	9	172	0.5	23	37	2678	7.57	22	< 5	< 2	17	< .2	< 2	< 2	85	0.36	0.168	19	29	0.6	217	0.03	< 3	3.49	0.01	0.11	<2	<1
3560	3	27	< 3	96		27	14	682	3.97	20	_	< 2		< .2	< 2	< 2	68	0.27	0.046	8	27	0.46		0.05			0.01	0.05		3
3570	7	109	8	98	0.3	22	18	464	6.44	28	_	2		< .2	< 2	< 2	104	0.37	0.048	19	31	0.7	255	0.07	< 3	1.98	0.01	0.1	<2	13
	31	1209	21	188		40	27	1014	6.28	31		4	36		_	< 2	107	0.36	0.093	24	47	0.78	192	0.11	_	1.76		0.14		139
3590	_1	36	11		< .3	28	15	1670	4.88	12	_	<2	26			< 2	74	0.76		13	41	0.5		0.03	_	2.5	0.01	0.13		3
3600	2	238	12		< .3	17	12	2320	8.4	134	_	< 2	20		2	5	66	0.57	0.042	16	31	0.37	381	0.01	_	2.16		0.08		308
3610	1	23	11		< .3	16	14	2425	4.53		< 5	< 2	26		< 2	2	68	0.71	0.055	17	33	0.29		0.02	_	2.68	0.01	0.07		3
3620	1	117	13	159	1	26	21	1128	6.62	16		<2		<.2	< 2	3	91	0.39		15	40	0.66	550			3.55	0.02	0.07	_	3
3630	2	177		333	< .3	28	20	603	4.56	23	< 5	< 2	22	0.4	< 2	< 2	82	0.2	0.026	8	28	0.65	270	0.05	< 3	2.25	0.02	0.05	< 2	1
3640	_	400	44	400			45	700	4	- 10		-			- 0			0.44	0.014	- 10				0.00	-	1.00	0.00			
3650	2	100 73	11		<.3	25 39	15 20	780	4.77	10		<2 <2	41		_	< 2	66			10	26	0.51	157	0.03		1.83		0.1		3
3670	2	105	30		<.3	39	20	1261 1465	4.71	15		<2	41	_	< 2	<2	86		0.067	14	51	0.93		0.04	_	2.39	0.03	0.12	_	<u></u>
3680	4	69	23		< .3 < .3	31	20		5.47 5.87	35 14		<2	30		<2	<2 <2	83 91	2.5	0.055	11 26	44 57	0.73	390 339	0.03		1.94	0.03	0.1		2
3000	-+		23	115	.3	31	20	1040	5.07	- 14	<u> </u>	~2	30	0.2	~2	~2	- 91	0.04	0.072	20	- 5/	1.31	339	0.07	× 3	2.40	0.02	0,15	~2	⊢1
3700	3	117	10	112	< 3	28	20	1068	5.73	15	< 5	-	R.A	< .2	< 2	< 2	90	0.57	0.08	40	30	0.88	250	0.06	123	2.15	0.01	0.15	< 2	12
3710	-1	41	9	_	<.3	33	13	603	3.73	23	_	< 2		_	_	<2	68		0.026		29	0.60	154	0.06	_	1.71	0.01	0.07		2
	2	44	9	_	<.3	30	12	567	3.9	25		<2	_	<.2		<2	73		0.020	6	28	0.6	_	0.06	_	2.01	0.01	0.07		2
3730	- 9	442	9	147	0.3	35	12	403	4.41	18		2	24		< 2	<2	85		0.099	10	36	0.81	166	0.09	_	2.46		0.08	_	
															-				0.000			0.01		0.00			0.01	0.00	-	⊢-'
	-+																													<u> </u>
	-+																													<u>├──</u>
3770	5	238	10	89	<.3	34	15	826	4.05	24	< 5	2	73	<.2	4	< 2	77	0.43	0.044	13	36	0.75	234	0,1	< 3	1.74	0.01	0.1	<2	30
	5	686	24		< .3	46	20	1087	5.06	35	_	3		< .2		< 2	92		0.08	20	52	1.25	_	0.18		2.01	0.02	0.18		26
	3	214	14		<.3	34	18	1049	4.88	29	_	<2	75	0.3		< 2	88		0.066	8	46	0.71	303			2.24	0.01	0.1		60
3800	8	265	57	180		36	21	2513	4.53	42		2	85	0.6		<2	76		0.072	13	35	0.63		0.06		1.61	0.02	0.1		7
3810	4	59	7	106	< .3	26	11	641	3.75	19	< 5	< 2	99	< .2	< 2	< 2	65	0.69	0.045	8	29	0.57	189	0.05		1.82	0.02	0.08		2
3820	5	382	9	133	< .3	65	17	818	5.28	21	< 5	<2	52	< .2	< 2	< 2	109	0.67	0.053	11	158	1.8	281	0.16	< 3	2.59	0.04	0.22		41
3830	1	32	7	95	< .3	29	13	586	3.94	19	< 5	< 2	31	< .2	< 2	< 2	74	0.26	0.036	9	29	0.6	256	0.06	< 3	2.02	0.02	0.07	<2	5
3840	1	67	9	83	< .3	23	15	669	3.69	26	< 5	< 2	45	< .2	< 2	< 2	81	0.39	0.035	8	30	0.82	172	0.08	< 3	1.59	0.02	0.06	<2	8

Sample	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	в	A	Na	К	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
					1.								1																	
3850																			1											
3860						1						1																		
3870																														
3880	2	55	6	103	<.3	20	14	880	4.11	16	< 5	< 2	18	< .2	< 2	<2	69	0,3	0.027	10	24	0.45	179	0.04	< 3	1.71	0.01	0.05	< 2	4
3890	3	62	10	279	< .3	23	20	2505	6.4	10	< 5	< 2	17	< .2	< 2	2	76	0.46	0.103	29	37	0.64	303	0.04	< 3	3.66	0.01	0.09	< 2	2
3900																														
3910																														
3920	1		10		< .3	25			3.91		< 5	< 2		< .2	< 2	< 2	71	0.3	0.031	10	26	0.53	203	0.03	< 3	1.96		0.05	< 2	2
3930	2	32	7	342	< .3	18	11	1064	3.45	9	< 5	< 2	23	0.8	< 2	<2	65	0.38	0.031	8	29	0.52	326	0.03	< 3	1.66	0.01	0.04	< 2	2
3940																														
3950	5		15		0.3				6.3	_	< 5	< 2	23	2.1	< 2	< 2	70	0.36	0.065	6	23	0.36	201	0.04	< 3	1.8	0.01	0.08	< 2	1
3960	<1	39	12	98	< .3	25		757	3.73		< 5	< 2	32	< .2	< 2	< 2	71	0.38	0.024	10	29	0.65	163	0.05	< 3	1.75	0.03	0.06	< 2	3
3970	1		9	103	< .3	30	_		3.96		< 5	< 2	43	< .2	< 2	< 2	72	0.8	0.051	16	40	0.75	284	0.04	< 3	2.01	0.02	0.1	<2	< 1
3980	2		13	154	0.9	58	24	2565	5.56	15	< 5	< 2	50	0.5	< 2	< 2	88	1.37	0.068	54	64	1.04	605	0.01	< 3	3.69	0.02	0.13	< 2	<1
3990	17		30			_	_	_	6.17		< 5	< 2	90		< 2	3	99	_	0.067	21	43		_			2.4	0.03	0.16		38
4000	4	141	15	_	< .3	34			5.97	_	< 5	< 2		< .2	< 2	< 2	87	0,6		17	37	0.77	201	0.04		2.09	0.03	0.12		8
4010	14		13	123	< .3	23	27	738	7.52	75	< 5	< 2		< .2		< 2	70	0.28	0.084	12	36	0.62	155	0.06	< 3	1.66	0.03	0.14		100
4020	16	1023	3			53	46	1148	9.12	< 2	< 5	< 2		< .2	3	<2	76	1.04	0.214	20	92	2	293	0.19	< 3	2.27	0.02	0.3	<2	130
4030	1	39	7	96	_		_		3.75		5		35		2	3	71	0.35		10	_	_	207	0.07	3	_	0.02	0.06	_	_
4040	2	80	22	200	0.4	20	9	568	9.08	31	5	2	19	0.2	2	2	104	0.18	0.081	13	62	0.94	313	0.13	3	3.16	0.02	0.23	2	4
4050																														
4060	1	39	9	90	0.3	25	9	336	4.05	5	5	2	23	0.2	2	2	79	0.24	0.034	8	29	0.48	218	0.05	3	2.36	0.01	0.05	2	1
4070																-									I					
4080	Ļ	L	ļ	<u> </u>		ļ			<u> </u>	L	<u> </u>	<u> </u>	<u> </u>			L					<u> </u>	<u> </u>			<u> </u>				L	
4090	<u> </u>				<u> </u>	<u> </u>		ļ	L			ļ			<u> </u>										I					
4100				I				I	ļ					<u> </u>		<u> </u>			<u> </u>											
4110				475	-				1 100				+						-	<u> </u>					<u> </u>		0.04			
4120	2			175	_	_			4.89	8	5				2	2	96		0.054	9	40				3		0.01	0.07	2	
4130	5		5						6.2	2	5	_	_		2	5		0.13			20		_		3		0.01	0.04	2	_
4140 4150	3 21		6	_	_			_	3.87	11	5	_			2	2		0.23		7	28			0.03	3	_	0.01	0.05	2	
4150	3	_	13		_			_	_	15	5				2	5	_	_	_	10	29		222	_		_	_	0.07		
4170	4	_	12		0.3	_			5.66 4.62	9		_		0.2	2	3				13	37			0.06			0.01	0.07	2	_
4170	10		10			_	_		4.83	16	5	_			2	6		0.28	0.074			_	_		5		0.01	0.08	2	_
4190	9		15						8.21	13	5				2	2				15	33				3	_	0.02	0.08	2	
4200	2		12			-				4	5				2	2					33			_	3		0.01	0.08	2	_
4210	17		11		0.3		_		4.65	6	5				2	2					34						0.01	0.11	2	
4220	12	_	21	279	_	_	_	_	6.52	28	5				2	5		0.42		_	28			_	3		0.02	0.07	2	
4230	6		11	_		_			5.42	16	5				2		83				41	0.83			_	_	0.01	0.07	2	
4240	3		9		_		_		4.73	_	5			_	2	2	74	_	0.065	· · · ·		0.76		_			0.01	0.12	2	
4250	3		6	_	_	-					5				2	5	70						_		-			_	_	
4250	2		16		_		_		0.04		5			_	2	2	_	0.26		8		_		0.06			0.02	0.1	2	
4200	4			_				_			5	_					_	_			40	_	_		3		_		2	
	4		16		_	_				31	5			0.8	2	2	80	_	0.172		30				_		0.01	0.13		
4280	4	140	12	_	0.3	_	_	_	4.35	_					2	2	77	0.28		9	32				_		0.02	0.06	2	_
4290	1			195			_		4.38	2	5			0.6	2	2	82	0.16		9	31	0.26			3		0.01	0.06	2	_
4300	1		10		_				3.75	2	5	_		_	2	2	67	0.37	0.033	14	33		277	0.04	3		0.01	0.06	2	
4310	1		9						4.24	4	5	_			2	2	81	0.4	0.065	16	44		_	0.04	3		0.01	0.08	2	
4320	1	64	10	100	0.3	35	13	766	3.97	12	5	2	28	0.2	2	2	78	0.32	0.047	12	43	0.83	227	0.06	3	2.66	0.01	0.05	2	<u> </u>

Sample	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	υ	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	в	A	Na	K	W	Au*
		ppm			ppm		ppm	_	%		-	ppm			ppm		-	%	%					%	ppm			%		ppb
		1	1	P.P	C C C	TT.		PP-			F F	The second second	Pro-	C C	<u>.</u>	F E	<u></u>			E.E.	PP				PPIN				PP	
4330	1	98	12	155	0.3	24	13	1434	4.9	15	5	2	32	0.2	2	2	79	0.41	0.041	23	40	0.93	191	0.08	3	1.85	0.02	0.06	2	5
4340	1	_	_	_		39	_		4.58		5	_		0.9	2	2	83		0.08	14	_	0.62	242		3		0.02	0.06	2	
4350	1	55	10		0.6	23			4.67	26	5	_		0.8	2		65		0.104	21	35	0.64	138	0.04	3		0.02	0.06	2	_
4360	1	41	7	94	0.3	22	10	799	4.23	4	5			0.2	2		75					_						0.08	2	
4370	2	88	11	162	0.5	30	16	1337	5.6	30	5	2	22	0.2	2	2	106	0.39	0.062	13	46	0.91	143	0.08	3	2.4	0.02	0.06	2	48
4380	1	46	3	119	0.3	28	6	719	3.22	5	5	2	25	0.2	2	2	66	0.43	0.048	11	32	0.54	209	0.03	3	2.66	0.01	0.06	2	
4540	23	886	54	279	0.6	24	54	3267	13.89	159	< 5	< 2	31	1.6	< 2	< 2	53	0.43	0.159	25	27	0.49	832	0.04	< 3	2.27	0.01	0.13	< 2	64
4560	2	51	8	172	< .3	34	33	806	7.97	26	< 5	2	21	0.8	2	7	167	0.53	0.055	7	67	1.61	229	0.1	3	3.06	0.01	0.11	< 2	6
4580	2	398	10	85	< .3	23	20	548	7.33	37	< 5	2	22	0.6	< 2	3	148	0.47	0.055	5	60	1.41	185	0.09	< 3	2.19	0.01	0.05	< 2	10
																												·		
4600		L		L																										
4000				1 10 1	-					-		<u> </u>					105			-		-							_	<u> </u>
4620	2	88	15	134	< .3	44	23	438	6.09	32	< 5	2	22	0.2	2	5	103	0.17	0.058	5	82	0.88	186	0.05	3	2.9	0.01	0.08	<2	3
4640	<u> </u>								<u> </u>			<u> </u>	<u> </u>					<u> </u>												<u> </u>
4040																									<u> </u>					
4660	2	168	16	134	<.3	38	35	1291	8.68	62	< 5	3	41	0.6	< 2	6	135	0.41	0.107	22	110	1.08	226	0.03	3	2.19	0.03	01	< 2	10
4000				1.04				1201	0.00					0.0			135	0.41	0.107		- 110	1.00	220	0.03		2.18	0.03	0.1	~ 2	⊢
4680	1	54	10	131	<.3	30	19	455	5.82	36	< 5	2	13	< .2	< 2	5	103	0.14	0.075	7	41	0.72	143	0.05	<3	2.84	0.01	0.04	< 2	
	<u> </u>		1	1					- 0.02									0.14	0.070			0.12	140	0.00		2.04	0.01	0.04	-	
4700	1	189	18	138	<.3	35	20	1035	5.05	32	< 5	2	22	0.3	< 2	4	105	0.27	0.044	9	39	0.86	165	0.05	< 3	2.8	0.01	0.06	< 2	6
4710	8	550	14	_	<.3	29	13	501	4.48		< 5	3		<.2	<2	5	81	0.22		10		0.86	152	_		1.82	0.01	0.06		17
4720	2	51	18	133	<.3	34	21	754	5.23	31	< 5	2	20	0.3	3	5	90			_						3.23	0.01	0.05		5
4740	1	79	13	138	0.3	38	18	906	4.87	27	< 5	2	21	0.3	< 2	5	97	0.37	0.043	9	56	1.12	175	0.05	< 3	2.39	0.01	0.06	< 2	4
4830	7				< ,3	34			5.85		< 5	< 2	27			<2	82			9			192			2.54	0.02	0.06	_	12
4840	3			_	< .3	29		_			< 5	< 2	51		_	< 2	67		0.288	17		0.32	734		_	1.82	0.01	0.13	_	7
4850	5					25		_			< 5	< 2	42			< 2	90			11	28		303	0.04		2.21	0.15			25
4860	3		14		<.3	54			6.27		< 5	< 2	22			< 2	106			8			217	0.03		3.92	0.01	0.06		4
4870	6		12			29	30		8.28		< 5	2	20		<2	3	112			_		0.62	220			2.64	0.02	0.07		17
4880	1		7		<.3	31	15		3.96		< 5	< 2	20	_	< 2	< 2	72			8		0.57	169	0.05		2.49	0.01	0.05	_	2
4890	1				< .3	34			5.06		< 5	< 2	21	_	< 2	< 2	98			12	34	0.8	190			2.66	0.01	0.06		3
4900	1	_				30	_	_	4.99		< 5	<2	23			< 2	100			17	34	0.7	179			1.82	0.02	0.05	_	4
4910 4920	1	_	11	_	<.3 <.3	30			4.27 6.36		< 5 < 5	<2	27	_		<2 <2	80	0.29	0.04	9 11	33 75	0.65	206			2.3	0.01	0.06		<1
4920	2		_			48			4.65		< 5	< 2	33	_		< 2	80					_	231	0.04		3.03	0.01	0.08		8
4930		- 10	20	119	< .3	32	19	020	4.05	21	- 3	14	33	0.7	1	*4	80	0.49	0.051	8	32	0.59	197	0.07	× 3	1.68	0.02	0.06	1	94
4940	1	116	< 3	114	<.3	70	21	1285	7.36	10	< 5	<2	71	0.5	< 2	< 2	147	0.78	0.057	5	239	3.14	219	0,16	13	3.67	0.03	0.31	12	10
4350	-	110	- 3		5	- 10	- 41	1200	1.30	10				0,5		~4	14/	0.78	0.057		239	3,14	419	0.10		3.07	0.03	0.31	- 2	V
			+																											├
5000	2	64	11	125	<.3	24	12	1470	5.44	31	< 5	< 2	23	02	< 2	3	65	0.74	0.115	33	24	0.48	289	0.02		2.89	0.01	0.08	× 2	
5010	2	_	_		<.3	18	_	_	4.88		<5	<2	18	0.2	_	<2	72			34		0.48	209	0.02	3	2.09	0.01	0.08		<1
5020	4		_		<.3	38	_		5.05		< 5	2	_			<2	86			11	39					3.96	0.01	0.07		1
3020		1.104	1 10	1 100	5			003	3.05	1 (9	- 3	<u> </u>	10	0.2	- 2	- 4	00	0.12	0.074		39	0.54	£49	0.02	- 3	5.90	0.01	0.09	- 4	


•


50

.

Property Scale C- Horizon Till Geochemistry

Sample	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	TI	В	Al	Na	ĸ	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
5030	2	33	8	106	< .3	26	10	414	3.69	22	< 5	< 2	29	< .2	< 2	< 2	74	0.24	0.052	8	28	0.52	226	0.03	< 3	2.1	0.01	0.04	< 2	<1
5040	6	180	11	985	0.4	32	14	1131	3.99	16	< 5	2	44	3.4	3	< 2	81	0.88	0.064	47	35	0.6	362	0.01	< 3	3.51	0.01	0.08	< 2	2
5050	10	31	7	167	< .3	26	9	308	3.63	17	< 5	< 2	18	0.3	< 2	< 2	74	0.13	0.025	7	28	0.53	192	0.04	< 3	2.02	0.01	0.03	< 2	1
5060	2	59	12	111	< .3	29	16	1101	4.93	15	< 5	2	27	0.2	< 2	2	108	0.32	0.046	8	36	1.05	144	0.11	3	3.18	0.01	0.06	< 2	<1
5070	1	89	8	83	< .3	26	10	507	3.42	22	< 5	< 2	25	< .2	<2	< 2	65	0.31	0.033	12	26	0.5	143	0.05	3	1.69	0.02	0.04	< 2	1
5080	1	29	8	80	< ,3	26	10	452	3.41	22	< 5	< 2	27	< .2	< 2	< 2	65	0.26	0.028	9	26	0.47	204	0.05	< 3	1.75	0.02	0.04	< 2	1
5090	1	47	12	210	< .3	30	13	1041	4.23	21	< 5	< 2	27	0.8	< 2	< 2	85	0.33	0.083	13	34	0.53	245	0.03	3	2.4	0.01	0.06	< 2	<1
5100																														
5110	8	257	19	136	0.4	24	16	1100	5.91	21	< 5	< 2	23	0.5	2	5	72	0.35	0.045	10	28	0.55	252	0.04	3	2.09	0.01	0.1	< 2	2

Γ

Sample	Westing	Southing	Map Unit	Map Unit	Depth	Bedrock
			c1 horiz.	c2 horiz.	cm	
370	-10050	-9850	Cv	Mv		Weathered BFP
380	-9950			Mv/Cv		Min. Andesite
400	-10025			Mb	160	Min. Andesite
410	-10275		Cv//Mb	Cv//Mb	150	Min. BFP
420	-10175	-10125	Fg//Mbr	Fg//Mbr	300	Min. BFP
430	-10150	-10225	Cv	Μv	120	BFP in breccia zone
460	-10050	-10000	Cv	Mv	120	Wea. BFP
470	-10080	-10100	Cv	Mb	200	
3340	-10300			Mbr	90	
3350	-10300			Mbr	90	
3360	-10250			Cb	70	
3370	-10200			Mbr	150	
3380	-10200			Mf	300	
3390	-10200			R	150	
3400	-10300			Cb/Mbr	70	
3410	-10300			Mb	75	
3420	-10300	-10000		Cb	60	
3580	-10200			Mbr	110	
3720	-10400			Mbr	80	
3730	-10400		Cv/Mbr	Mbr	80	
3740	-10350			Mbr	70	
3750	-10350			Mbr	70	
3760	-10350			Mb	60	
3770	-10400	-10000		Mb	70	
3780	-10400			Mbr	120	
3790	-10400			Mbr	80	
3990	-10200			R	90	Wea,BFP
4180	-10100			Mbr	80	
4200	-10100			Mb	75	
4210	-10000			Mb		
4220	-10100			Cb	60	
4230	-10000		Cv//Mvr	R	70	Andesite with py & cp
4240	-10100			Fg	60	
4260	-10100			Mb	100	
4390	-10300			Cb	70	
4400	-10300			Mbr	100	
4410	-10275		Cb//Mbr	Cb//Mbr	80	
4420	-10250			Cb:Mb	100	
4430	-10150		_	Mb	130	
4440	-10150			Mb	200	
4450	-10150		Cb//Mbr	Cb//Mbr	80	
4460	-10150			Mb	80	dark grey andesite
4470	-10200			Mb	80	
4480	-10250		Cv/O	Mb	80	
4490	-10250			Cb:Mbr	80	
4500	-10300			Cb:Mbr	90	mineralized BFP
4510	-10350			Mb	90	
4520	-10250	-9900	Cv	Mbr	80	

Detailed Scale C-Horizon Soil Sample Locations and Attributes

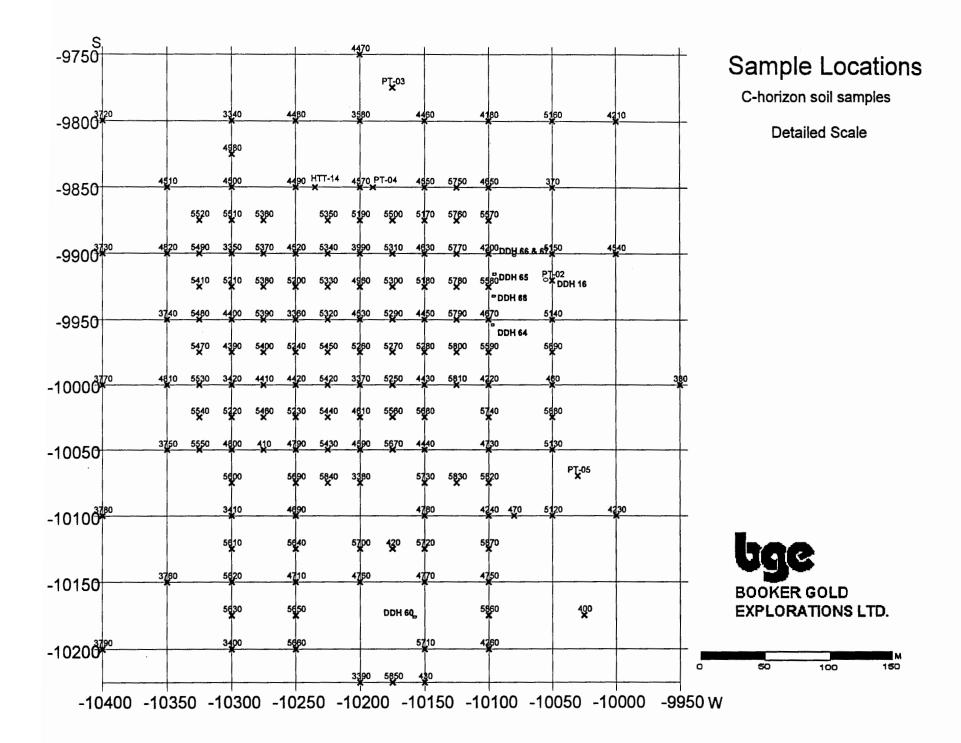
Sample	Westing	Southing	Map Unit	Map Unit	Depth	Bedrock
			c1 horiz.	c2 horiz.	cm	
4530	-10200	-9950	Cv	Mb	60	mineralized BFP w/ cp,py,malachite
4540	-10000	-9900		Cb	110	
4550	-10150	-9850	Mbr	Mbr	100	
4570	-10200	-9850	Mb	Mb	120	
4590	-10200	-10050	Mbr:Mf	Mbr:Mf	130	
4610	-10200	-10025	Cv	Mbr:Fg	130	
4630	-10150	-9900	Cv	Mbr:Cb	80	
4650	-10100	-9850		Mb	80	
4670	-10100	-9950		Mbr	80	
4690	-10250	-10100		Mbr/Fg	150	
4710	-10250	-10150		Mbr	90	
4730	-10100	-10050		Mbr	110	
4750	-10100	-10150		Mbr:Fg		
4760	-10200	-10150		Mbr	70	BFP w/ malachite
4770	-10150		Cv//Mbr	Mbr	90	
4780	-10150	-10100		Mbr	90	
4790	-10250	-10050		Mbr	200	
4800	-10300	-10050		Mbr	100	
4810	-10350	-10000		Mb	80	
4820	-10350		Mbr//Cb	Mbr//Cb	100	
4960	-10200	-9925		Mv/R		BFPw/py,bn, cp, mal,on fractures surfaces(min
4980	-10300	-9825		Mb	100	
5120	-10050	-10100		Mbr	100	
5130	-10050	-10050		Mb/R		BFPw/massive Feox on fracture surfaces, min.s
5140	-10050	-9950		Mbr	70	
5150	-10050	-9900		Mb/R	70	Weathered BFP
5160	-10050	-9800		Mb	80	
5170	-10150	-9875		Mbr	90	
5180	-10150	-9925		Mbr	80	
5190	-10200	-9875		Mbr	70	
5200	-10250	-9925		Cb	110	
5210	-10300	-9925		Mbr		
5220	-10300	-10025		Cb	150	
5230	-10250	-10025		Mbr	120	
5240	-10250	-9975		Cv	70	
5250	-10000	-10175		Mbr/R		BFP fresh Feox
5260	-10200		Fg/Mbr	Fg/Mbr	90	
5270	-10175	-9975		Mb		BFP
5280	-10150	-9975		Mbr	110	
5290	-10175		Mbr/Fg	Mbr/Fg	70	
5300	-10175			Mbr	80	
5310	-10125	-9900		Mvr/R		Intensely Feox BFP,w.
5320	-10225	-9950		Cv/R		BFP
5330	-10225	-9925		Mbr	70	
5340	-10225	-9900		Cb	100	
5350	-10225	-9875		Mbr	80	
5360	-10275	-9875		Mbr	70	
5370	-10275	-9900	MDr	Mbr	100	BFP

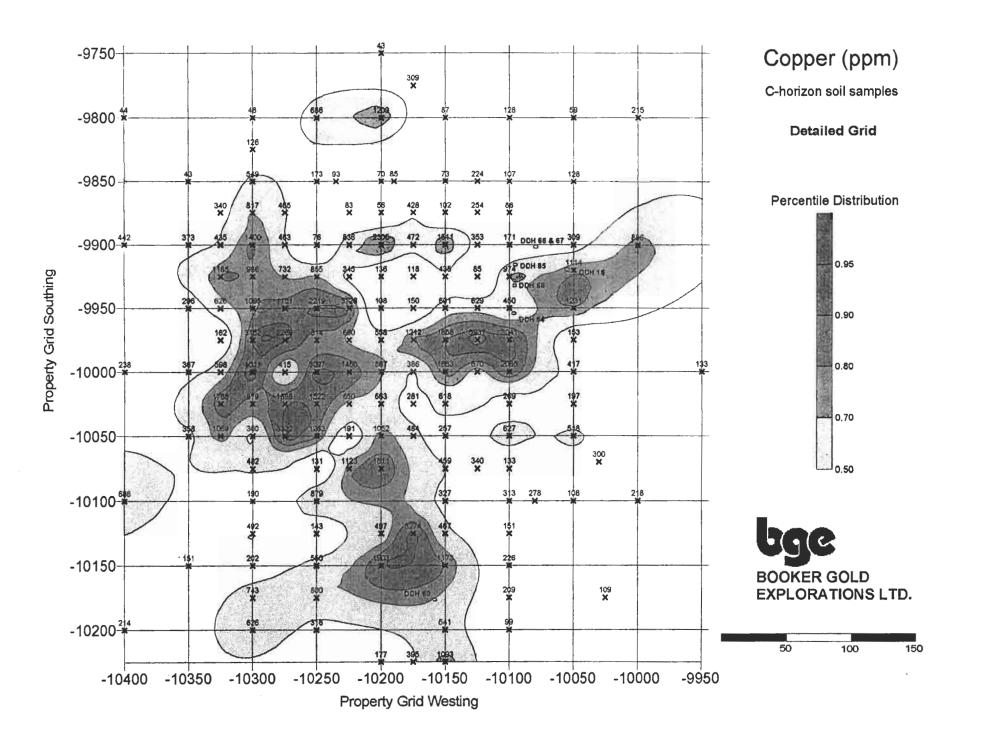
Detailed Scale C-Horizon Soil Sample Locations and Attributes

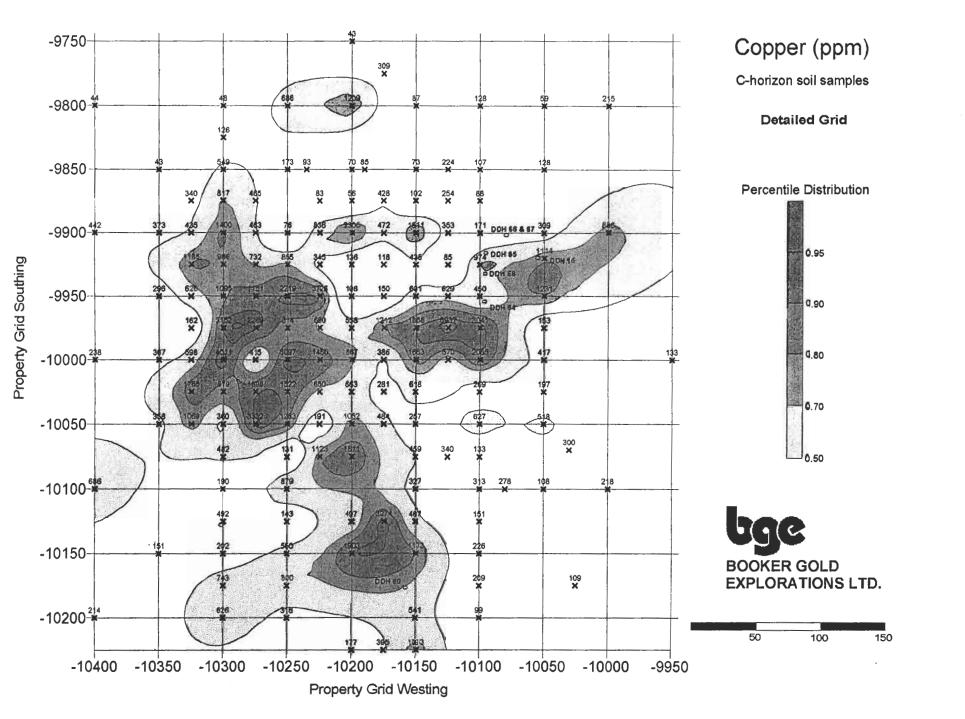
Carriela	Manting	Couthing	Man Hait	Map Unit	Depth	Redrock
Sample	Westing	Southing		c2 horiz.		
			c1 horiz.	cz nonz.	cm	· · · · · · · · · · · · · · · · · · ·
	40075	-9925	<u></u>	Mbr	80	
5380	-10275			Mbr	70	
5390	-10275	-9950 -9975		Mbr	70	
5400	-10275					BFP ?
5410	-10325	-9925		Cv Cb/R		BFP
5420	-10225	-10000		Mbr	80	
5430	-10225	-10050 -10025		Mbr	90	
5440	-10225	-10025		Čv	70	
5450	-10225			Cv/R		BFPw/mal,cp.
5460	-10275				90 50	
5470	-10325			Mbr		
5480	-10325	-9950		Mbr	60 70	
5490	-10325			Mbr		
5500	-10175	-9875		Mbr	100	
5510	-10300			Mbr/R		BFP,cp.
5520	-10325	-9875		Mbr/R		BFP
5530	-10325			Mbr	70	
5540	-10325			Cv	60	
5550	-10325			Mbr	70	
5560	-10175			Mbr		BFP ?
5570	-10100			Mb	70	
5580	-10100	-9925		Mb	60	
5590	-10100			Mb	70	
5600	-10300			Mbr	60	
5610	-10300			Cv	60	
5620	-10300	-10150		Cv	60	
5630	-10300	-10175		Mbr	70	
5640	-10250	-10125		Cb	100	
5650	-10250	-10175		Cv	_60	
5660	-10250	-10200		Mbr	70	
5670	-10175			Mb	70	
5680	-10150			Mb	50	
5690	-10250			Mb	70	
5700	-10200			Cv/R	_50	BFP
5710	-10150			Mbr		
5720	-10150			Mbr/R		BFP
5730	-10150			Mbr	70	
5740	-10100			Cb	120	
5750	-10125			Mbr	50	
5760	-10125			Mbr	50	BFP ?
5770	-10125	-9900	Cv	Mbr		
5780	-10125	-9925	Mb	Cb	70	
5790	-10125		Cb	Cb	70	
5800	-10125	-9975	Cb	Cb	110	
5810	-10125			Mb	60	
5820	-10100			Mb	70	
5830	-10125			Mb	70	
5840	-10125			Mb	60	
5850	-10175		1	Cb	90	

56

.

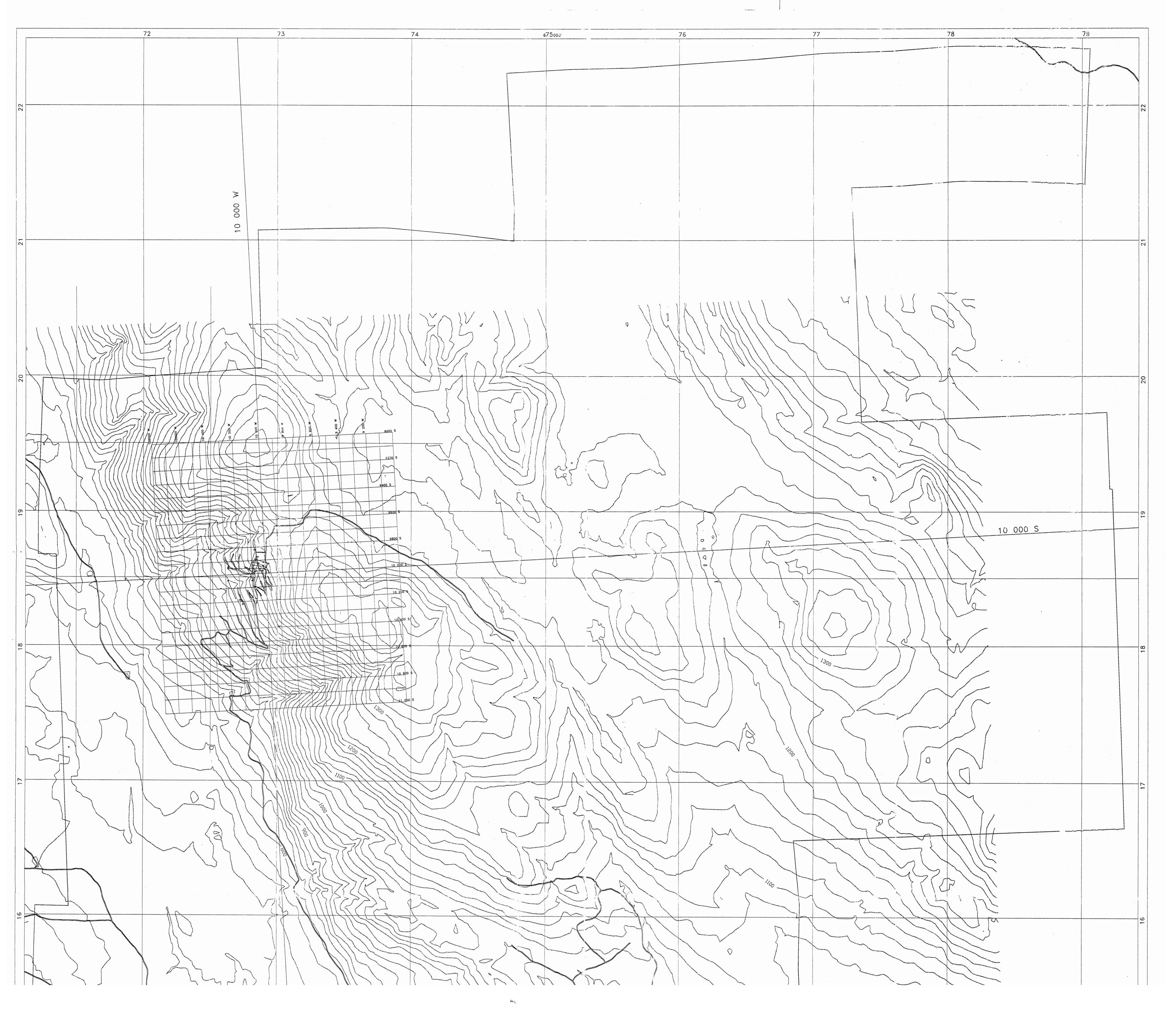

Sample	Westing	Southing	Map Unit	Map Unit	Depth	Bedrock
			c1 horiz.	c2 horiz.	cm	
5860	-10100	-10175	Cv	Mb	100	
5870	-10100	-10125	Cv	Mbr	60	
5880	-10050	-10025	Mbr	Mbr	80	
5890	-10050	-9975	Mbr	Mbr	50	
PT-02	-10050	-9920	Mv	Mv	80	Breccia (4771 ppm)
PT-03	-10175	-9775	Mf:Fg	Cb/R	70	BFP (94ppm)
PT-04	-10190	-9850	Mb	Mb	100	BFP(3300 ppm)
PT-05	-10030	-10070	Cb:Mbr	Mb	150	BFP
HTT-14	-10235	-9850	Mb	Mb	200	BFP (2000ppm)
Total Sam	ples Obtai	ined: 153				

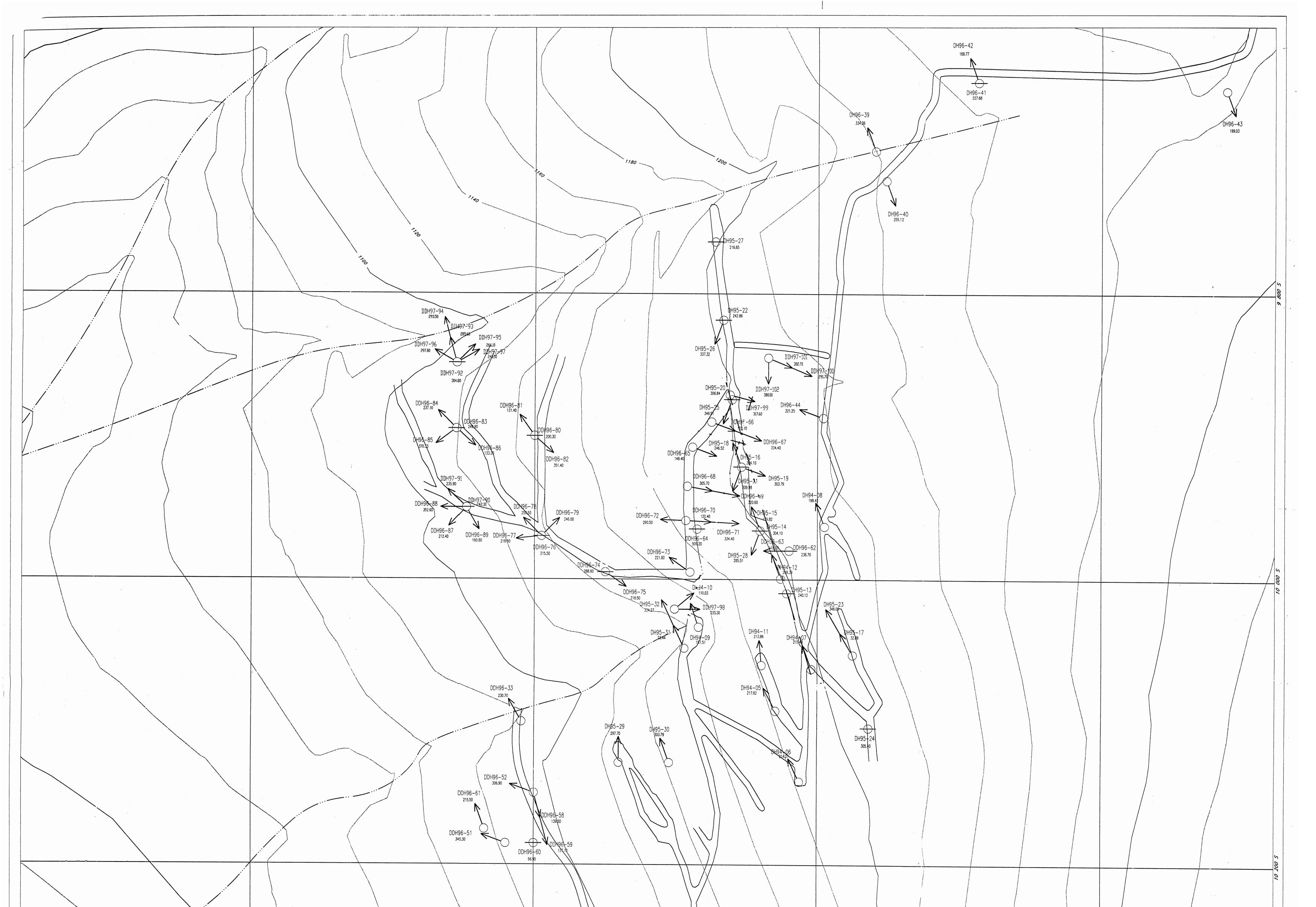

Sample	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	ፐክ	Sr	Cd	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ba	Ti	В	Ā	Na	К	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
							1.1																							
370	3	128	16	98	0.3	27	11	703	4.04	20	5	2	38	0.2	2	2	72	0.33	0.03	17	26	0.63	289	0.05	3	1.72	0.01	0.07	2	8
380	2	133	18_	127	0,3	44	20	1282	5.2	27	5	2	42	0,2	3	2	91	0.66	0.067	19	53	1.02	325	0.07	3	2.23	0.02	0.09	2	6
400	2	109	9	105	0.3	31	15	952	4.37	22	5	2	32	0.2	2	2	81	0.33	0.034	14	36	0.76	228	0.06	3	1.8	0.02	0.07	2	5
410	13	3332	32	151	0.5	75	30	700	5.49	34	5	5	165	0.2	4	15	100	0.67	0.089	24	57	0.95	243	0.11	3	1.98	0.02	0.19	2	190
420	10	3274	22	152	0.3	37	27	1217	6.72	38	5	3	87	0.2	7	15	75	0.73	0.119	16	58	1.74	1265	0.3	3	2.49	0.03	0.48	2	111
430	22	1093	12	149	0,3	61	26	1207	7.63	24	5	3	76	0,2	4	5	98	0.46	0.115	18	121	1.98	479	0.22	3	2.83	0.04	0.5	2	36
460	4	417	20	105	0.3	25	20	944	4.86	38	5	2	37	0.2	2	2	77	0.42	0.05	23	30	0.67	222	0.08	3	1.87	0.02	0.09	2	48
470	7	278	28	123	0.3	57	30	2172	7.28	40	5	2	58	0.3	2	2	104	0.6	0.085	24	103	1.13	410	0.09	3	2.57	0.03	0.21	2	43
3340	3	48	13	92	0.3	27	13	788	3.56	16	5	2	57	0.2	2	2	66	0.57	0.055	11	32	0.63	216	0.05	3	1.58	0.02	0.09	2	1
3350	18	1400	18	171	0.3	63	25	336	5.5	10	5	4	29	0.2	3	3	127	0.3	0.064	11	84	1.76	177	0.28	3	2.68	0.02	0.29	2	28
3360	26	2219	17	172	0.3	51	20	402	6.03	19	8	2	30	0.2	2	3	140	0.27	0.084	13	64	1.06	169	0.15	3	2.58	0.02	0.14	2	218
3370	10	867	21	289	0.3	81	21	874	6.71	17	5_	5	74	0.2	7	2	154	0.46	0.08	25	126	2.92	454	0.53	3	2.55	0.02	1.04	2	34
3380	11	1811	26	155	0.3	59	20	929	6.05	54	7	4	68	0.2	2	2	110	0.62	0.092	20	90	1.71	488	0.27	3	1.77	0.03	0.3	2	51
3390	3	177	10	106	0.3	38	11	764	4.38	22	5	2	35	0.2	2	2	81	0.33	0.033	17	66	1.14	263	0.12	3	2.09	0.01	0.13	2	12
3400	10	626	14	105	0.3	37	14	732	4.24	22	5	2	45	0.2	4	2	72	0.33	0.053	11	36	0.71	200	0.09	3	2.1	0.01	0.07	2	10
3410	4	190	12	103	0.3	32	13	716	3.64	17	5_	2	82	0.2	2	2	66	0.59	0.045	12	34	0.75	252	0.05	3	1.98	0.02	0.1	2	2
3420	26	4011	24	242	1	34	18	436	8.21	48	5	4	74	0.3	2	2	122	0.23	0.137	17	28	0.71	225	0.05	3	2.84	0.01	0.06		978
3580	31	1209	21	188	0.4	40	27	1014	6.28	31	5	4	36	0.2	2	2	107	0.36	0.093	24	47	0.78	192	0.11	3	1.76	0.01	0.14	2	139
3720	2	44	9	92	0.3	30	12	567	3.9	25	5	2	47	0.2	2	2	73	0.45	0.047	6	28	0.6	137	0.06	3	2.01	0.01	0.07	2	2
3730	9	442	9	147	0.3	35	12	403	4.41	18	5	2	24	0.2	2	2	85	0.22	0.099	10	36	0.81	166	0.09	3	2.46	0.01	0.08	2	7
3740	4	296	21	138	0.3	31	11	507	3.78	29	5	2	37	0.2	4	2	66	0.25	0.024	1	28	0.54	216	0.06	3	1.98	0.01	0.05	2	7
3750	5	358	46	116	0.5	32	12	461	4.26	51	5	2	110	0.2	6	2	76	0.21	0.03	8	32 33	0.51	294	0.06	3	1.65	0.01	0.07	2	73
3760 3770	2	151 238	12	100 89	0.3	32 34	16 15	1094 826	4.2	30 24	5 5	2	47 73	0.2	2	2	73	0.49	0.043	12 13	35	0.74	234 234	0.06	3	1.90	0.02	0.15	2	8
3780	5	686	10 24	116	0.3	46	20	1087	5.06	35	5	3	98	0.2	3	2	92	0.63	0.044	20	52	1.25	266	0.18	3	2.01	0.02	0.18	2	26
3790	3	214	14	129	0.3	34	18	1049	4.88	29	5	2	75	0.3	2	2	88	0.63	0.066	8	46	0.71	303	0.07	3	2.24	0.02	0.10	2	60
3990	17	2305	30	417	0.4	41	23	1295	6.17	51	5	2	90	0.5	2	3	99	0.71	0.067	21	43	1.06	206	0.05	3	2.4	0.03	0.16	2	38
4180	10	128	10	103	0.3	24	12	687	4.83	16	5	2	29	0.2	2	6	87	0.22	0.031	15	33	0.73	168	0.08	5	1.87	0.02	0.08	2	5
4200	2	171	12	99	0.3	28	8	442	4.61	4	5	2	37	0.2	2	2	86	0.29	0.039	10	33	0.74	234	0.09	3	2.2	0.01	0.11	2	3
4210	17	215	11	151	0.3	28	14	871	4.65	6	5	2	40	0.2	2	2	88	0.42	0.032	18	34	0.82	288	0.06	3	2.19	0.02	0.07	2	3
4220	12	2085	21	279	0.6	24	13	544	6.52	28	5	2	22	0.2	2	5	73	0.16	0.15	16	28	0.83	320	0.14	3	2.95	0.01	0.07	2	127
4230	6	218	11	138	0.3	29	16	771	5.42	16	5	2	39	0.2	2	4	83	0.28	0.065	7	41	0.76	175	0.06	3	2.51	0.01	0.1	2	8
4240	3	313	9	100	0.3	29	12	603	4.73	18	5	2	29	0.2	2	2	74	0.31	0.059	10	31	0.9	218	0.12	3	2.47	0.01	0.12	2	5
4260	2	99	16	141	0.3	54	24	2159	5	24	5	2	56	0.7	2	2	87	0.59	0.078	14	40	0.85	338	0.05	3	2.42	0.03	0.16	2	3
4390	72	3152	14	219	0.7	40	4	255	10.16	2	5	5	40	0.2	2	4	143	0.25	0.107	12	35	1.19	248	0.18	3	2.53	0.01	0.17	2	930
4400	5	1095	11	94	0.3	30	9	482	4.43	13	5	2	36	0.2	2	2	79	0.22	0.04	9	36	0.69	181	0.09	3	2.42	0.01	0.06	2	45
4410	5	415	13	147	0.3	42	12	407	4.56	61	5	2	42	0.2	2	2	88	0.21	0.02	8	39	0.65	253	0.08	3	2.52	0.01	0.06	2	12
4420	6	3097	21	212	0,5	65	13	782	5.87	46	5	6	177	0.4	2	6	125	0.73	0.084	34	69	1.34	339	0.22	3	2.41	0.01	0.27	2	76
4430	6	1653	14	135	0.3	32	11	1284	4.77	33	5	2	42	0.4	2	2	81	0.51	0.057	14	34	0.76	253	0.09	5	1.76	0.02	0.1	2	20
4440	11	257	14	189	0.3	31	19	1583	6.08	15	5	3	50	1.3	2	4	84	0.82	0.08	20	29	0.85	366	0.07	3	2.28	0.04	0.16	2	11
4450	7	601	10	141	0.3	40	17	420	5.47	65	5	2	57	0.8	2	2	82	0.45	0.062	9	34	0.52	291	0.06	3	2.4	0.01	0.09	2	38
4460	2	87	10	112	0.3	30	17	1032	4.87	26	5	2	36	0.2	2	2	92	0.52	0.035	14	37	0.85	245	0.04	3	2.19	0.02	0.08	2	14
4470	2	43	11	79	0,3	24	14	868	3.38	21	5	2	30	0.2	2	2	66	0.43	0.031	9	25	0.56	134	0.06	3	1.32	0.01	0.09	2	4


Sample	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La_	Cr	Mg	Ba	٦T	В	Al	Na	к	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	_%	ppm	ppm	%	ppm	<u>%</u>	ppm	%	%	%	ppm	ppb
																				L				<u> </u>						h
4480	16	686	13	174	0.7	39	21	1596	5.5	19	5	_2	190	0.2	2	2	86	0.84	0.094	32	47	0.94	531	0.02	3	2.79	0.02	0.13	2	75
4490	10	173	11	108	0.3	42	17	613	4.57	19	5	2	44	0.2	2	2	92	0.44	0.054	9	54	1.14	332	0.13	3	2.32	0.01	0.2	2	4
4500	16	549	12	233	0.3	32	15	895	4.65	58	5	2	63	0.2	2	2	74	0.43	0.05	14	28	0.55	188	0.03	3	2.24	0.01	0.09	2	12
4510	3	43	11	80	0.3	24	11	623	3.49	18	5	2	34	0.2	2	2	70	0.27	0.018	6	26	0.63	134	0.06	3	1.38	0.02	0.07	2	13
4520	3	76	8	79	0.3	24	10	405	3.42	19	5	2	28	0.2	2	2	63	0.28	0.035	6	25	0.5	172	0.04	3	1.64	0.01	0.05	2	7
4530	3	108	14	96	0.3	26	13	726	3.63	38	5	2	39	0.2	2	2	66	0.39	0.021	10	34	0.54	299	0.05	3	1.47	0.02	0.06	2	5
4540	23	886	54	279	0.6	24	54	3267	13.89	159	5	2	31	1.6	2	2	53	0.43	0,159	25	27	0.49	832	0.04	3	2.27	0.01	0.13	2	64
4550	4	73	10	87	0.3	25	15	516	4.68	27	5	2	25	0.6	2	2	76	0.21	0.032	8	30	0.54	178	0.06	3	1.67	0.01	0.04	2	6
4570	2	70	10	83	0.3	23	10	437	3.52	19	5	2	26	0.2	2	3	66	0.26	0,041	9	28	0.51	140	0.05	3	1.54	0.01	0.04		19
4590	5	1052	24	113	0.4	37	20	887	4.57	33	5	3	39	0.2	2	2	81	0.42	0.051	12	44	1.08	238	0.12	3	1.95	0.01	0.1	2	46
4610	4	663	26	100	0.3	29	11	618	3.78	30	5	2	66	0.2	2	2	69	0.42	0.053	14	33	0.64	222	0.09	3	2.78	0.01	0.08	2	15
4630	23	1511	20	226	0.3	47	29	2066	5.23	34	5	2	53	0,7	2	3	93	0,4	0.079	11	38	0.74	283	0.04	3		0.01	0.08	2	5
4650	3	107	14	94	0.3	30	15	557	4.28	20	5	2	23	0.2	2	2	79	0.2	0.04	7	33	0.66	166	0.06	3	2.32	0.01	0.05	2	4
4670	2	450	14	97	0.3	25	11	368	3.74	20	5	3	24	0.2	2	2	68	0.18	0.023	9	27	0.47	217	0.04	3	1.81	0.03	0.18	2	100
4690	12	879	62	169	0.3	37	18	847	5.86	29	5	2	37	0.5	2 <2	2	79	0.27	0.082	13	45	0,9	259	0.12	<3	1.82	0.03	0.06	<2	17
4710	8	550	14	99	< .3	29	13	501	4.48	23	< 5	3	26	<.2		3	81	0.22			38	1.07	152 155	0.05	3	2.09	0.01	0.14	2	37
4730	4	627	14	108	0.3	34	17	493	4.65	15	5	2	21 35	0.2	2	3	100	0.19	0.05	10 6	57	1.17	229	0.08	3	2.63	0.01	0.1	2	12
4750	4	226	22	125	0.3	42	23	876	5.35	41	5	2	41	0.3	2	2	100	0.53	0.083	15	71	1.91	530	0.08	3	2.19	0.01	0.45	2	34
4760	23	1903	18	172	0.3	43	18	460	5.58	14	5	2	27	0.3	2	6	141	0.55	0.039	7	300	4.66	643	0.38	3	3.48	0.02	1.11	2	14
4770	3	1173	3	88	0.3	117	24	327	6.58	30	5	2	30	0.2	2	2	82	0.3	0.04	8	44	0.9	220	0.12	3	2.07	0.01	0.09	2	6
4780	63	327 1263	16 13	99	0.3	42 68	17 25	479 833	<u>4.47</u> 5.21	27 24	6	5	171	0.2	2	2	106	0.76	0.145	20	80	1.55	1116	0.23	3	1.58	0.02	0.38	2	75
4790	8			122			_	556		35	5	2	41	0.2	2	2	80	0.27	0.033	8	35	0.73	223	0.08	3	2.04		0.05	2	98
4800	5	360 367	15	125	0.3	31	14	647	<u>4.47</u> 5.71	37	5	2	69	0.2	2	2	83	0.31	0.037	15	32	0.52	245	0.06	3	1.48	0.01	0.07	2	121
4810	6		17		0.3	34 35	19	455		20	5	2	36	0.5	2	3	83	0.28	0.04	8	40	1.04	149	0.14	3	2.01	0.01	0.1	2	7
4820	10	373	18	92	0.3	26	14	520	4.3	34	< 5	<2	41	0.4	<2	<2	69	0.32	0.039	9	28	0.52	170	0.06	<3	1.57	0.01	0.07	<2	5
4960	6	136 126	21 13	120	<.3	39	19	1021	4.97	24	<5	<2	61	0.5	<2	<2	100	0.65	0.05	16	46	0.94	328	0.06	<3	2.4	0.02	0.1	<2	4
4960 5120	3	108	15	105	<.3	31	15	884	4.44	31	< 5	<2	32	<.2	<2	<2	79	0.39	0.065	9	33	0.6	181	0.06	<3	2.08	0.01	0.07	<2	3
5120	<u> </u>	518	21	116	0.4	27	17	1120	5.85	83	<5	2	33	0.4	3	<2	86	0.46	0.081	25	33	0.53	157	0.06	3	1.52		0.07	<2	30
5140	4	1231	27	165	0,3	33	36	1890	8.22	63	<5	3	43	0.9	<2	<2	103	0.66	0.09	33	33	0.9	459	0.08	3	2.54	0.02	0.14	<2	18
5140	4	309	11	95	<.3	31	18	463	4.1	18	<5	<2	19	<,2	<2	<2	82	0,18	0.045	8	34	0.7	143	0.06	<3	2.3	0.01	0.04	<2	4
5160		59	12	151	<.3	34	15	783	4.78	20	<5	< 2	26	0.2	<2	2	84	0.29	0.063	11	34	0.72	158	0.06	4	2.57	0,01	0.05	<2	3
5170	7	102	16	214	0.3	45	24	1667	5.58	38	<5	2	44	0.7	<2	<2	104	0.39	0.083	10	41	0.74	339	0.04	3	3.92		0.07	<2	2
5180	6	435	19	107	0.3	34	15	419	4.74	22	<5	2	54	<.2	<2	<2	90	0.26	0.041	10	32	0.56	207	0.05	3	2.16	0.01	0.04	<2	
5190	3	56	9	95	<.3		11	472	3.62	20	<5	<2	33	< 2	<2	<2	67	0.25	0.048	8	27	0.48	213	0.04	<3	2.14		0.03	<2	2
5200	22	855	15	410	0.4	38	13	339	4.81	11	<5	3	29	0.6	<2	<2	118	0.25	0.061	9	62	0.92	193	0.18	3	2.59	0.01	0.06	<2	24
5210	21	986	46	245	0.7	36	14	653	6.16	111	<5	3	42	0.4	5	<2	86	0.21	0.049	12	35	0.59	319	0.07	<3	1.88	0.01	0.08	<2	89
5220	16	879	46	258	0.3	36	13	691	5.63	87	<5	2	38	0.5	6	<2	86	0.21	0.048	12	35	0.59	305	0.06	3	1.95	_	0.07	<2	63
5230	5	1522	8	87	<.3	63	13	299	4.82	12	5	7	126	<.2	<2	<2	113	0.75	0.158	32	101	1.88	855	0.27	3	1.67	0.01	0.29	<2	74
5240	7	814	28	424	0.5	31	12	325	5.1	34	< 5	2	65	0.6	<2	<2	114	0.17	0.063	12	34	0.68	260	0.11	3	2.98	0.01	0.06	<2	35
5250	4	386	15	101	<.3	35	11	409	4.38	31	<5	3	39	< 2	3	<2	93	0.28	0.032	18	46	0.92	278	0.14	5	1.9	0.01	0.06	<2	12
5260	8	558	3	107	<.3	83	21	295	7.18	9	<5	6	164	0.3	<2	<2	148	0.47	0.052	10	113	3.52	386	0.62	4	3.07	0.02	0.93	<2	7
5270	5	1212	15	120	<.3	35	13	901	3.99	29	<5	3	85	<.2	<2	<2	76	0.53	0.063	16	32	0.6	289	0.07	4	1.59	0.01	0.08	<2	19
5210	5	1212	13	120	1 × .3	1 33	1 13	1 301	3,33	2.0	1 - 0			2				0.00	0.000			0.0		0.07			,		<u> </u>	

Sample	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	Äs	U	Th	Sr	Cd	Sb	Bi	V	Ca	Ρ	La	Cr	Mg	Ba	τī	В	AI	Na	к	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
																														<u> </u>
5280	4	1858	19	118	0.3	41	11	539	4.11	30	< 5	3	40	0.6	3	4	76	0.46	0.052	18	41	0.73	203	0.08	5	1.81	0.01	0.08	<2	19
5290	3	150	18	130	0.3	31	14	642	4.1	30	< 5	2	52	0.2	< 2	<2	79	0.34	0.036	9	30	0.56	226	0.07	4	1.95	0.01	0.08	<2	9
5300	4	118	17	105	< ,3	24	12	625	4.01	20	<5	3	36	< .2	< 2	< 2	89	0.43	0.041	12	28	0.76	239	0.11	4	1.69	0.02	0.09	<2	3
5310	12	472	29	187	< .3	37	15	473	4.43	32	< 5	2	32	0.2	2	_2	84	0.27	0.031	9	31	0.57	222	0.05	3	2.12	0.01	0.05	<2	7
5320	28	3726	16	213	<.3	82	18	345	6.57	9	< 5	7	81	1	<2	< 2	144	0.46	0.109	23	88	2.82	270	0.52	< 3	3.53	0.01	0.49	<2	50
5330	9	345	29	159	0.3	39	14	633	4.47	31	< 5	4	52	0.3	<2	< 2	89	0.43	0.038	10	37	0.7	259	0.05	< 3	2.38	0.01	0.06	<2	61
5340	34	836	37	244	0.7	45	19	2428	6.63	22	< 5	3	40	0.5	2	< 2	146	0.33	0.087	15	59	0.43	305	0.06	< 3	2.53	0.01	0.09	<2	47
5350	4	83	20	127	<.3	34	16	790	4.26	29	< 5	2	42	0.3	<2	2	80	0.33	0.047	11	33	0.61	311	0.04	< 3	2.36	0.01	0.05	<2	8
5360	13	465	12	129	<.3	37	14	592	4.23	16	< 5	3	48	< .2	<2	< 2	91	0.38	0.041	16	39	0.77	252	0.1	< 3	2	0.01	0.08	<2	6
5370	6	463	12	140	<.3	43	17	550	4.61	20	< 5	3	48	0.2	<2	< 2	104	0.25	0.051	9	50	1.14	194	0.13	< 3	2.57	0.01	0.07	<2	24
5380	7	732	22	148	0.4	35	14	474	4.55	38	<5	3	32	0.2	3	< 2	87	0.19	0,041	11	36	0.62	271	0.05	< 3	2.43	0.01	0.05	<2	59
5390	14	1151	19	166	0.5	62	19	296	7.43	9	< 5	4	56	0.3	< 2	< 2	156	0,36	0.085	10	99	2.34	161	0.31	< 3	3.08	0.01	0.17	<2	443
5400	9	2269	19	160	0.5	70	18	259	7.16	5	< 5	8	43	0.8	< 2	< 2	169	0.32	0.114	20	112	3.09	324	0.6	< 3	3.56	0.02	0.73	<2	102
5410	14	1185	20	307	0.4	32	12	968	4.83	41	< 5	4	47	0.5	<2	< 2	95	0.28	0.035	18	30	0.54	271	0.05	< 3	2.29	0.01	0.09	<2	49
5420	11	1450	32	266	0.7	54	27	768	8.15	88	< 5	6	64	0.6	<2	< 2	110	0.38	0.084	18	69	1.19	324	0.21	< 3	2.53	0.01	0.15	<2	79
5430	3	191	16	105	<.3	27	12	682	3.82	25	< 5	2	56	< .2	< 2	< 2	71	0,39	0.037	8	_28	0.54	137	0.07	< 3	1.52	0.01	0.08	<2	22
5440	8	650	17	136	0.5	49	17	590	5.2	33	5	4	67	< .2	3	<2	100	0.33	0.036	12	57	1.13	206	0.16	< 3	2.17	0.01	0.1	<2	61
5450	11	660	23	279	0.3	56	16	455	6.11	83	< 5	4	42	< .2	4	2	116	0.25	0.036	12	47	1.1	306	0.19	< 3	2.56	0.01	0.08	<2	14
5460	11	1898	13	108	< .3	60	17	426	5.46	62	< 5	6	86	0.2	< 2	<2	114	0,5	0.066	17	63	1.31	247	0.2	< 3	2.12	0.01	0.13	<2	82
5470	7	162	15	94	<.3	31	12	529	4.04	18	7	2	35	< .2	< 2	2	76	0.24	0.029	8	31	0.54	390	0.06	< 3	1.84	0.01	0.05	<2	11
5480	15	626	169	753	0,8	41	11	1003	5.03	47	< 5	3	37	1.3	3	<2	88	0.25	0.029	12	30	0.48	286	0.03	< 3	2.15	0.01	0.05	<2	11
5490	10	435	15	109	< ,3	43	15	404	4.58	20	< 5	3	36	< .2	< 2	< 2	96	0.28	0.041	11	45	0.96	223	0.13	< 3	2.55	0.01	0.09	<2	8
5500	11	428	24	128	< .3	33	20	1256	5.3	91	< 5	3	57	0.4	< 2	<2	90	0.44	0.068	21	33	0.64	283	0.05	< 3	2.09	0.01	0.06	<2	60
5510	32	817	13	143	0,6	55	17	429	5.77	11	< 5	6	70	0.5	< 2	< 2	124	0.62	0.095	29	67	1.56	516	0.25	< 3	1.97	0.01	0.45	< 2	66
5520	14	340	11	117	<.3	59	23	412	5.48	15	< 5	3	38	0.3	< 2	<2	130	0.31	0.056	13	79	1.42	241	0.2	< 3	2.63	0.01	0.18	<2	28
5530	29	598	16	99	< .3	39	16	468	7.43	24	< 5	3	62	0.3	< 2	< 2	93	0.21	0.039	10	43	0.65	221	0.06	< 3	2.16	0.01	0.05	< 2	117
5540	19	1765	33	280	0.6	27	16	615	6.16	50	< 5	2	74	0.6	10	<2	70	0.41	0.135	13	25	0.97	485	0.14	< 3	2.58	0.01	0.13	< 2	146
5550	9	1069	64	244	0.4	31	12	405	4.96	50	< 5	_3	51	0.7	4	<2	78	0.24	0.045	12	41	0.96	303	0.1	< 3	2.43	0.01	0.08	< 2	70
5560	3	281	12	86	0.3	31	10	390	3.84	17	< 5	2	34	< .2	< 2	< 2	74	0.25	0.03	8	35	0.65	170	0.09	< 3	1.73	0.01	0.06	< 2	8
5570	4	88	11	70	< .3	20	8	287	3.39	14	< 5	2	29	< .2	< 2	< 2	65	0.18	0.024	6	23	0.4	133	0.04	< 3	1.55	0.01	0.03	<2	3
5580	3	974	_14_	105	0.5	30	10	467	3.93	26	< 5	_2	25	< .2	2	< 2	70	0.21	0.045	8	26	0.43	159	0.05	< 3	1.94	0.01	0.05	< 2	48
5590	5	3041	21	119	0.4	27	12	561	4.01	28	< 5	2	37	0.3	3	< 2	64	0.42	0.087	23	27	0.56	177	0.07	< 3	1.54	0.01	0.06	< 2	98
5600	3	482	12	98	< .3	26	10	483	3.88	26	< 5	2	67	< .2	< 2	< 2	64	0.32	0.04	9	27	0.56	182	0.08	< 3	1.55	0.01	0.08	< 2	57
5610	7	492	16	108	0.4	30	14	836	4.05	19	< 5	3	106	0.4	< 2	< 2	69	0.54	0.045	14	34	0.8	220	0.08	< 3	1.87	0.01	0.09	< 2	24
5620	5	202	13	111	0.3	32	12	513	4.64	28	< 5	< 2	46	< .2	< 2	< 2	79	0.23	0.042	8	35	0.58	307	0.06	< 3	1.99	0.01	0.05	< 2	12
5630	7	743	16	146	0.3	53	15	427	4.68	13	< 5	3	54	0.2	< 2	< 2	99	0.28	0.034	9	65	1.25	195	0.2	< 3	2.21	0.01	0.13	< 2	32
5640	5	143	16	97	<.3	23	11	503	4.27	26	< 5	2	27	< .2	< 2	< 2	70	0,29	0.047	8	29	0.57	146	0.06	< 3	1.71	0.01	0.05	< 2	4
5650	12	800	9	133	<.3	24	15	422	4.71	17	< 5	2	41	0.4	3	< 2	58	0.32	0.065	9	24	1.68	163	0.28	< 3	2.71	0.01	0.23	< 2	15
5660	7	316	10	82	<.3	28	9	363	3.92	25	< 5	2	26	< .2	<2	<2	70	0.17	0.027	7	29	0.5	137	0.06	< 3	1.76	0.01	0.04	< 2	36
5670	4	484	16	100	<.3	30	11	539	4.05	17	<5	2	36	0.2	<2	< 2	66	0.36	0.049	15	34	0.75	167	0.09	< 3	1.53	0.01	0.07	< 2	26
5680	9	618	25	98	< .3	29	15	712	4.34	46	< 5	2	40	< .2	<2	< 2	69	0.47	0.058	14	35	0.66	238	0.08	3	1.61	0.01	0.07	<2	10
5690	3	131	11	103	<.3	29	12	943	3.87	19	< 5	<2	55	< .2	2	< 2	75	0.44	0.036	9	29	0.75	209	0.07	3	1.66	0.01	0.07	< 2	7
5700	9	497	19	120	< ,3	27	12	975	4.35	43	< 5	< 2	38	< .2	4	< 2	71	0.39	0.055	13	32	0.6	279	0.07	< 3	1.53	0.01	0.06	<2	21

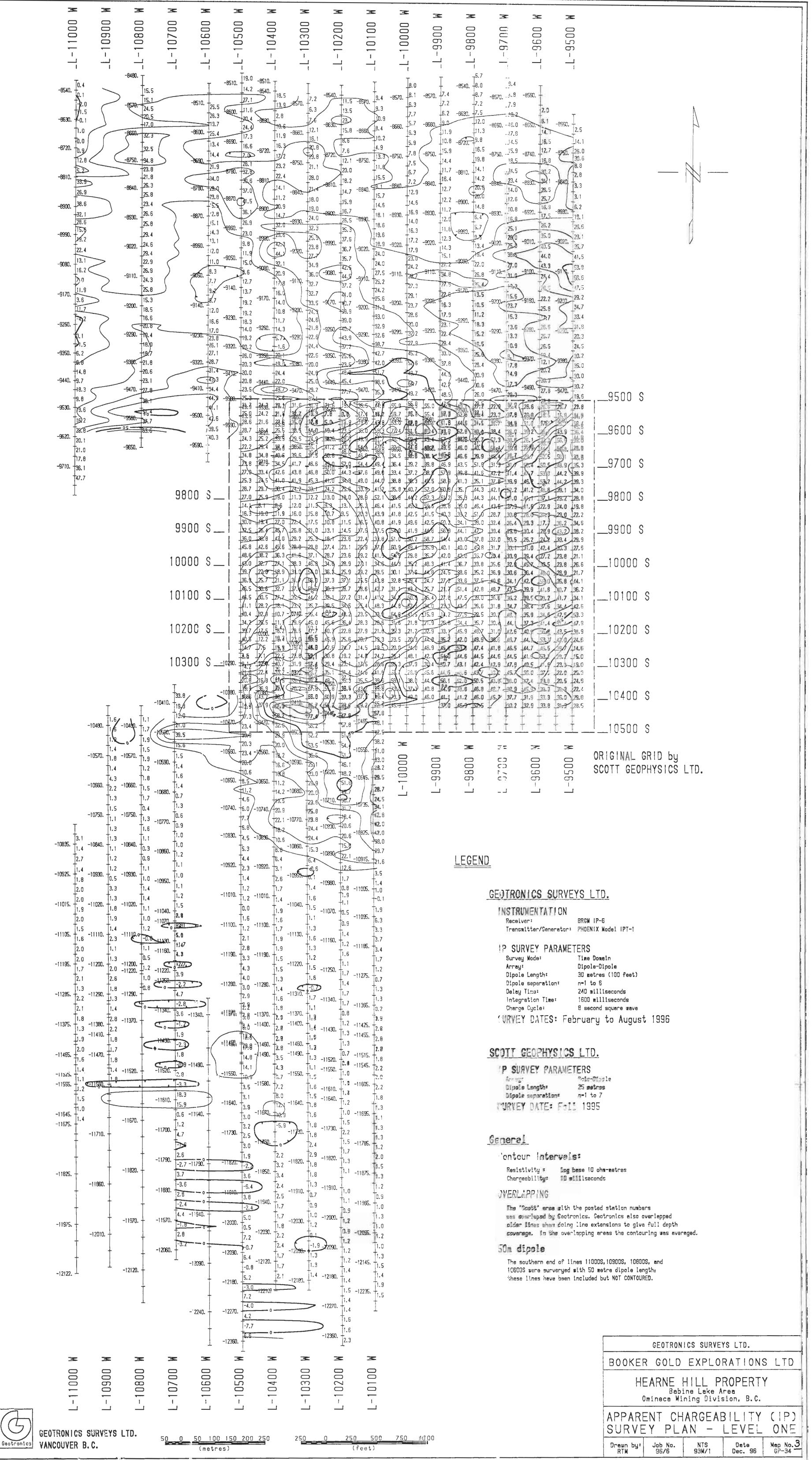
Sample	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ba	Π	B	A	Na	ĸ	W	Au*
	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
5710	12	541	12	81	<.3	29	12	485	4.28	14	<5	<2	38	< .2	2	<2	76	0.28	0.037	9	40	0.86	186	0.12	< 3	1.9	0.01	0.13	<2	15
5720	3	467	12	100	< .3	37	16	652	4.91	24	< 5	2	38	< .2	3	< 2	97	0.51	0.055	12	57	1.36	241	0.2	< 3	2.38	0.01	0.11	<2	31
5730	6	459	11	126	<.3	34	14	649	5,31	15	< 5	2	23	0.2	2	<2	80	0.25	0.044	19	59	1.38	164	0.2	<3	1.9	0.01	0.08	<2	23
5740	3	269	11	90	<.3	22	12	863	3.68	17	< 5	2	33	< .2	<2	<2	62	0.43	0.064	12	24	0.51	215	0.07	<3	1.28	0.01	0.04	<2	7
5750	8	224	7	118	< ,3	33	18	658	5.14	14	< 5	< 2	24	<.2	<2	<2	101	0.23	0.054	6	37	0.82	167	0.05	< 3	3.47	0.01	0.05	<2	19
5760	5	254	11	192	< .3	29	14	405	4,36	22	< 5	< 2	20	<.2	2	<2	76	0.16	0.053	7	29	0.54	211	0.04	3	2.55	0.01	0.04	<2	16
5770	11	353	14	124	<.3	28	12	366	4.66	33	< 5	<2	15	< .2	<2	< 2	81	0.12	0.051	8	28	0.59	167	0,04	3	2.55	0.01	0.03	<2	10
5780	4	85	8	90	< .3	25	9	300	3.84	20	<5	< 2	21	<.2	3	<2	67	0.23	0.029	6	24	0.44	161	0.04	<3	1.68	0.01	0.03	<2	9
5790	16	629	12	141	< .3	35	11	554	4.24	24	< 5	< 2	26	<.2	2	<2	74	0.26	0.038	8	28	0.52	274	0.05	< 3	1.9	0.01	0.05	<2	12
5800	8	5937	23	<u>22</u> 8	0.3	38	19	902	5.43	40	< 5	<2	45	0.8	2	<2	90	0.72	0.103	24	42	1.07	227	0.06	< 3	2.19	0.02	0.09	< 2	42
5810	4	570	17	104	< .3	29	13	542	4.46	18	< 5	2	30	0.3	2	<2	70	0.32	0.056	16	38	0.72	228	0.1	< 3	1.49	0.01	0.08	< 2	36
5820	5	133	15	112	< .3	19	13	722	4.19	15	< 5	< 2	25	0.2	<2	<2	70	0.31	0.043	9	24_	0.59	126	0.07	<3	1.78	0.01	0.06	< 2	6
5830	7	340	13	101	<.3	28	12	482	4.68	21	< 5	2	20	< .2	3	< 2	75	0.21	0.043	9	35	0.69	133	0.08	< 3	1.97	0.01	0.05	< 2	44
5840	17	1123	18	151	< .3	49	18	833	5.83	27	< 5	3	63	0.5	5	<2	106	0.59	0.087	19	75	1.7	184	0.27	3	2	0.02	0.23	< 2	57
5850	39	395	7	122	0.3	37	21	660	10.84	6	< 5	2	160	< .2	< 2	< 2	62	0.36	0.202	21	71	1.37	207	0.11	< 3	2.03	0.07	0.53	< 2	25
5860	7	209	14	114	< .3	33	17	1255	4.85	26	< 5	2	54	< .2	2	< 2	81	0.52	0.066	17	38	0.74	203	0.06	< 3	1.9	0.01	0.1	< 2	9
5870	2	151	13	78	<.3	24	10	548	3.72	19	< 5	< 2	29	< .2	<2	<2	65	0.3	0.033	8	27	0.5	117	0.07	3	1.46	0.01	0.04	< 2	16
5880	4	197	16	90	< .3	27	19	1050	4.57	28	< 5	< 2	31	< .2	<2	2	74	0.41	0.068	9	32	0.61	145	0.06	< 3	1.83	0.01	0.06	< 2	17
5890	3	153	12	138	< .3	30	12	670	4.31	22	< 5	< 2	24	< .2	< 2	<2	75	0.37	0.048	8	34	0.62	233	0.05	< 3	1.79	0.01	0.04	< 2	5
PT-02	5	1114	23	141	<.3	38	38	1468	5.44	43	< 5	3	33	0.4	<2	2	97	0.43	0.087	23	42	0.77	260	0.06	3	2.3	0.01	0.08	< 2	9
PT-03	8	309	19	141	< .3	31	24	1292	5.44	27	< 5	4	37	< .2	<2	<2	88	0.42	0.069	22	35	0.74	227	0.07	5	2.17	0.01	0.1	< 2	25
PT-04	4	85	16	138	0.4	44	17	1102	5.12	27	< 5	3	56	0.2	< 2	3	98	0.72	0.059	18	46	1.02	349	0.04	4	2.69	0.02	0.11	< 2	3
PT-05	4	300	18	148	< .3	46	22	1544	5.58	39	< 5	3	45	0.3	2	<2	97	0.62	0.077	23	46	0.88	349	0.06	4	2.58	0.02	0.12	< 2	9
HTT-14	3	93	13	78	0.3	24	11	547	3.86	19	< 5	2	26	< .2	< 2	< 2	73	0.32	0.041	8	28	0,54	119	0.07	< 3	1.53	0.01	0.06	< 2	51

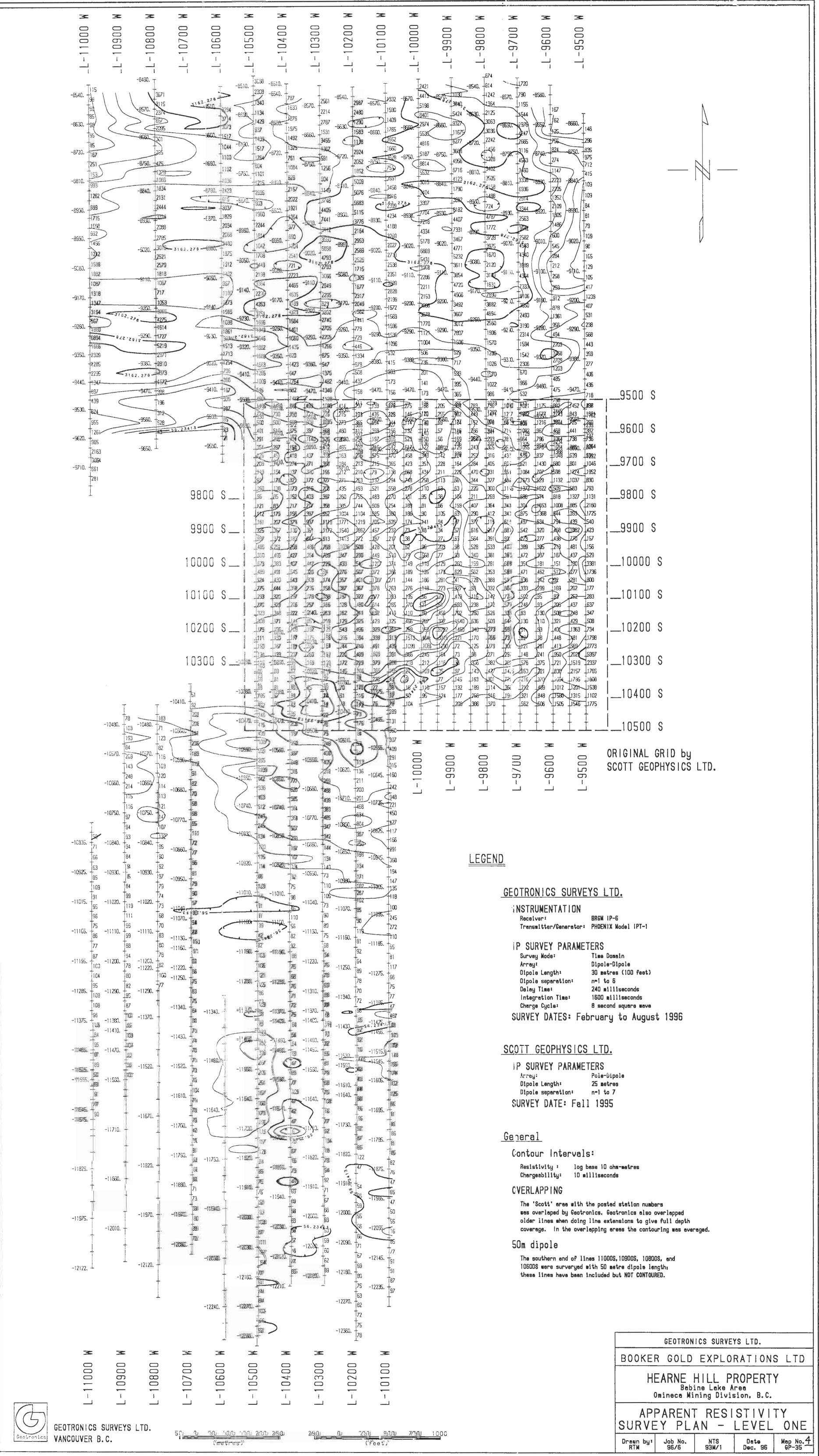

APPENDIX B


Drill Hole Azimuth, Dip Length and Assay Summary

Drill Hole	Coordi	nates	Collar	Azimuth	Dip	Hole			lotable I	ntercept	s	
	West	South	Elevation		Angle	Length	Interv	al(m)	Len	gth	Cu	Au
	(m)	(m)	(m)	(deg.)	(deg.)	(m)	From	То	(m)	(ft)	(%)	(g/t)
DDH 95-16	10054	9921	1195		-90	304.2	0.	304.2	304.2	998	0.75	0.32
							0.	156.4	156.4	513	1.03	0.43
							0.	61.	61.	200	1.35	0.54
							101.5	132.	30.5	100	1.93	0.82
							303.9	304.2	0.3	1	0.73	0.23
DDH 95-17	10054	9921	1195	340	-60	32.9						
DDH 95-18	10054	9921	1195	340	-70	304.2	0.	304.2	304.2	998	0.20	0.06
DDH 95-19	10054	9921	1195	110	-60	304.2						
DDH 95-20	10061	9874	1201		-90	274.3	0.	274.3	274.3	900	0.18	0.09
DDH 95-21	10054	9921	1195	200	-70	304.2			20.4	67	0.70	0.32
									15.2	50	0.58	0.18
									39.6	130	0.58	0.25
									13.7	45	0.41	0.16
									9.1	30	0.69	0.28
									6.1	20	0.47	0.24
DDH 95-22	10067	9818			-90	242.9						
DDH 95-23	9975	10053	1202	330	-60	348.1			209.1	686	0.45	0.18
									152.1	499	0.60	0.20
									22.9	75	0.91	0.15
									8.2	27	2.15	0.61
									<u>12.2</u>	40	0.93	0.31
DDH 95-24	9964	10104	1197		-90	305.4						
	40004	0074	1004	000	C 0	240.0	0	240.0	240.2	1116	0.05	0.40
DDH 95-25	10061	9874	1201	200	-60	349.3	υ.	349.3	349.3 26.8	1146	0.25 0.56	0.10
										88 75	0.36	0,19 0.22
									22.9	75	0.41	0.22
DDH 95-26	10067	9818	1204	200	-60	337.4	122.5	144.8	22.3	73	0.37	0.38
DDH 95-20	10007	9010	1204	200	-00	337.4	122.5	124.1	1.5		0.57	0.19
							136.2	137.8		5	0.68	0.20
							130.2	140.8	1.5 1.5	5 5	0.55	0.25
							247.5		19.8	65	0.29	0.16
							264.6	266.1	1.5	5	0.79	0.48
							280.1 280.1	303.3	23.2	76	0.35	0.21
	10072	0764	1202			246 7	280.1	281.6 216.7	1.5	<u> </u>	0.48	0.34
DDH 95-27	10073	9764			-90 -60	216.7	6.7		213.1	699		
DDH 95-28	10041	9966		200		285.6			278.9	915	0.18	
DDH 95-29	10140	10129		0		297.8	3.7	297.8	297.8	977	0.27	
DDH 95-30	10104	10187		340		303.9	3.7	303.9	300.2	985	0.23	
DDH 95-31	10094	10048	1145	335	60	23.5						

Drill Hole	Coordi	nates	Collar	Azimuth	Dip	Hole		N	lotable I	ntercept	s	
}	West	South	Elevation		Angle	Length	Interv	al(m)	Len	gth	Cu	Au
	(m)	(m)	(m)	(deg.)	(deg.)	(m)	From	To	(m)	(ft)	(%)	(g/t)_
DDH 95-32	10094	10048	1145	335	-70	467.9	3.7	467.9	464.2	1523	0.21	
							102.7	104.2	1.5	5	0.48	
							124.1	128.6	4.5	15	0.54	
							125.6	127.1	1.5	5	0.72	
							159.1	160.6	1.5	5	0.41	
							167.6	171.3	3.7	12	0.54	
							196.	197.2	1.2	4	0.49	
							206.4	210.9	4.6	15	0.51	
							206.4	207.9	1.5	5	0.62	
								215.5	3.	10	0.53	
DDH 96-33	10209	10100	1084	330	-60	370.3	242.	244.9	2.9	10	0.40	
DDH 96-34	10305	10410		90		318.2						
DDH 96-35	10375	10300		180		307.8				<u> </u>		. <u> </u>
DDH 96-36	10250	10300		10		322.2	10.4	275.2	264.9	869	0.25	
DDI100-00	10200				•••		157.6	160.6	3.	10	0.42	
							163.7	172.6	9.	29	0.53	
DDH 96-37	10250	10300		180	-55	349.	10.7	50.9	40.2	132	0.19	
DD11 90-57	10200	10000		100	-00	040.	44.8	47.9	3.	10	0.41	
DDH 96-38	10200	10400		270	-55	276.5					0.41	
DDH 96-39	9952	9721	- <u>.</u>	340		334.4					- <u> </u>	
DDH 96-40	9952	9721		160		255.1						
DDH 96-41	9887	9652	<u> </u>		-90	227.7		· · · · ·			<u> </u>	· <u> </u>
DDH 96-42	9887	9652		340	-55	169.8	69.2	81.4	12.2	40	0.23	
DDH 96-43	9712	9658		160		199.	00.2	01.4			0.20	
DDH 96-44	9996	9887		290		321.3	296.3	297.8	1.5	5	0.79	
DDH 96-44	10297	10460		270		419.7	230.0	231.0	1.5		0.75	· · · · ·
DDH 96-46	10297	10500		290		212.4		,			<u> </u>	
DDH 96-47	10300	10548		290		175.9					· —, · · — ·	<u> </u>
DDH 96-47	10295	10650		290		159.1						
DDH 96-48	10295	10600		290		213.4					·	
			<u> </u>	290		197.2						
DDH 96-50	10430	10600					5 2	255.4	240.0	820	0.20	0.07
DDH 96-51	10220	10185		290	-75	345.3		255.1		820	0.20	0.07
								218.5	3.1	10	0.46	0.15
	10000	10150	· <u> </u>		-70	206.0		325.2 102.7	3.	<u> 10 </u> 310	0.47	0.15
DDH 96-52	10200	10150		290		306.9	0.2	102.7	94.5	310	0.20	0.08
DDH 96-53	10510	10495		310		320.6						
DDH 96-54	10440	10950		290		56.3				. <u> </u>	- <u>-</u>	
DDH 96-55	10900	11560			-90	133.5	·	<u> </u>				
DDH 96-56	10950	11225			-90	164.	400	000.0	440.0			0.00
DDH 96-57	10375	10300		360	-50	306.3	185.	303.9	118.9	390	0.23	0.09
001100 70	40000	40450				400.0	206.3	209.4	3.1	10	0.90	0.39
DDH 96-58	10200	10150		165	-70	139.6	5.5	32.9	27.4	90	0.23	0.07
		46.65				407.4	57.3	118.3	61.	200	0.24	0.06
DDH 96-59	10200	10150		165	-57	127.1	63.	93.5	30.5	100	0.68	0.12
							63.	72.2	9.2	30	1.95	0.27
					··		<u>63.</u>	69.1	<u> </u>	20	2.51	0.28


Drill Hole				Hole Notable Intercepts					ts			
	West	South	Elevation		Angle	Length	Interv	al(m)	Len	gth	Cu	Au
l	(m)	(m)	(m)	(deg.)	(deg.)	(m)	From	То	(m)	(ft)	(%)	(g/t)
DDH 96-60	10200	10185			-90	96.9	4.	84.7	80.7	265	0.97	0.22
							4.	60.3	56 .3	185	3.16	0.30
							5.4	20.7	15.3	50	1.59	0.28
							26.8	29.8	3.	10	1.44	0.40
							32.9	35.9	3.	10	1.72	0.25
							54.2	60.3	6.1	20	2.77	1.15
				•			69.4	75.5	6.1	20	0.44	0.07
DDH 96-61	10235	10175		340	~50	215.5						
DDH 96-62	10020	9980			-90	238.7			3.	10	1.40	0.87
							133.5	142.6	9.1	30	0.80	0.51
							115.	148.7	33.5	110	0.48	0.24
DDH 96-63	10020	9980		270	-59	118.9	26.5	38.7	12.2	40	0.40	
DDH 96-64	10085	9965		0	-90	506.	3.	6.1	3.	10	1.10	0.30
							168.2	370.9	167.6	550	0.38	0.15
							3.	506.	503.	1650	0.28	0.11
DDH 96-65	10085	9912		110	-75	320.			3.	10	4.70	0.98
							139.3	236.2	97.5	320	0.87	0.21
							21.	236.2	216.4	710	0.62	0.16
							4.2	320.6	317.	1040	0.50	0.13
DDH 96-66	10075	9885		110	-50	103.6			3.	10	1.20	0.50
							29.5	66.1	24.4	80	0.75	0.21
DDH 96-67	10075	9885		110	-75	335.3			3.	10	5.40	3.00
							121.	127.1	6.1	20	5.40	1.60
							99.7	133.2	30.5	100	3.10	1.00
							96.6	261.2	164.6	540	1.40	0.46
							4.6	300.8	295.7	970	0.81	0.28
DDH 96-68	10092	9935		100	-75	362.7	105.8	108.8	3.	10	3.00	0.80
,							71.6	108.8	36.6	120	1.10	0.31
								_	246.9	810	0.60	0.15
DDH 96-69	10092	9935		100	-48	149.4			3.	10	2.40	1.40
							55.8	75.3	_18.3	60	0.60	
DDH 96-70	10095	9965		95	-48	120.4	23.5	26.5	3.	10	1.10	3,30
<u> </u>							57.	75.3	18.3	60	0.43	
DDH 96-71	10095	9965		95	-75	335.3	206.3	209.4	3.	10	4.30	1.80
DD11-00-71	10030	3303		93	-15	555.5	194.2	209.4	3. 15.2	50		1.00
					2			209.4			3.30	
									128.	420	0.98	0.30
DDH 96-72	10095	9960	u.	272	-60	250 F	0.	246.9	246.9	810	0.74	0.20
DDU 90-12	10095		Total Drill			350.5			3.	10	0.50	0.40
						14684.2						
			Average h	iole length	-	253.2						


DDH96-57 306.30	DH96-36			
	322.17			
₩ DH96-35	V DH96−37			

*

Resistivity =	log bese 10 ohm-metres
Chargeability:	10 milliseconds

GEOTRONICS SURVEYS LTD.							
BOOKER GOLD EXPLORATIONS LTD							
HEARNE HILL PROPERTY Babine Lake Area Omineca Mining Division, B.C.							
APPARENT CHARGEABILITY (IP) Survey plan - Level one							
Drewn by: Job No. RTM 96/6	NTS 93M/1	Date Dec. 96	Mep No.3 GP-34				

GEOTRONICS SURVEYS LTD.								
BOOKER GOLD EXPLORATIONS LTD								
HEARNE HILL PROPERTY Babine Lake Area Omineca Mining Division, B.C.								
APPARENT RESISTIVITY SURVEY PLAN - LEVEL ONE								
Drawn by: RTM	Job No. 96/6	NTS 93m/1	Date Dec. 95	Mep No. 4 6P-35				