GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORTS

JAN 2 0 1997

GEOLOGICAL and GEOCHEM CAL REPORT

ON THE

GLORY, SUTTON, OUTBOUND & GOLDEN WISH CLAIM GROUPS

Record Numbers 341408, 341409, 341410, 341411, 341412, 341413, 341414, 341415, 341416, 341417, 341418, 341419, 341420, 341421 & 341422

JAN - \$ 1937 MG

CAMBRIA ICEFIELD AREA SKEENA MINING DIVISION BRITISH COLUMBIA

N.T.S.: 103 P/12 & 13

Gold Commissioner's Office

VANCOUVER, B.C. LATITUDE: 55 DEGREES 45 MINUTES NORTH LONGITUDE: 129 DEGREES 50 MINUTES WEST

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

for

TENAJON RESOURCES CORPORATION

by

ANDREW L. WILKINS P.Geo.

November, 1996

SUMMARY

The Glory, Sutton, Outbound and Golden Wish Claim Groups are located 23 kilometers south-southeast of Stewart, British Columbia. The claim groups consist of 80 units, 54 units, 40 units and 98 units respectively for a total of 272 units and are owned by Tenajon Resources Corporation.

The Glory, Sutton, Outbound and Golden Wish Claim Groups occur on the boundary of the "Golden Triangle" of northwestern BC. The area is host to several operating mines including the Snip, Silbak/Premier and Eskay Creek mines. Many significant discoveries occur close to the claims. Royal Oaks' Red Mountain deposit occurs 25 kilometers to the north-northeast, Camnor Resources' Willoughby deposit occurs 29 kilometers to the northeast. Teuton Resources and Minvita Enterprises' Clone Mountain deposit occurs 7 kilometers to the northeast and the old Dolly Varden and Torbrit silver mines occurs 21 kilometers to the east.

The property is underlain by predominately Tertiary granodiorite intrusives belonging to the Coast Plutonic Complex.

Twenty five man days were spent on the property stream sediment silt sampling, prospecting, geological mapping and rock sampling. No significant showings were found on the property. Anomalous stream sediment silt samples do occur on the property but for the most part are believed to be coming from off the claims. The underlying geology is not very prospective.

No further work is recommended for the property.

TABLE OF CONTENTS

1.	INTRODUCTION	ON.	Page #
	1.1 LOCA	TION & ACCESS ATE, TOPOGRAPHY & VEGETATION	1
	1.3 CLAIM	I STATUS	1
	1.4 REGIO	DNAL EXPLORATION HISTORY	2
		ERTY EXPLORATION HISTORY WORK PROGRAM	2 3 3
2.	GEOLOGY		
		DNAL GEOLOGY ERTY GEOLOGY	3 4
3.	GEOCHEMIST	TDV	
J .		DUCTION	5
	3.2 SAMP	LE PREPARATION & ANALYTICAL PROCEDURE	5
	3.3 STREA	AM SEDIMENT SILT GEOCHEMISTRY	5
	3.4 ALTER	RATION, MINERALIZATION & ROCK GEOCHEMISTRY	6
4.	CONCLUSION	IS & RECOMMENDATIONS	6
5 .	REFERENCES	S	7
6.	STATEMENT	OF EXPENDITURES	8
7.	STATEMENT	OF QUALIFICATIONS	9
APPEI	NDIXES		
		ROCK SAMPLE DESCRIPTIONS	10
	APPENDIX 2:	ANALYTICAL RESULTS	11
LIST (OF FIGURES		
	FIGURE 1:	PROPERTY LOCATION MAP	
	FIGURE 2:	CLAIM MAP	
	FIGURE 3: FIGURE 4:	PROPERTY GEOLOGY SAMPLE LOCATION MAP	
	FIGURE 4.	SAMPLE LOCATION MAP	
LIST	OF TABLES		
		CLAIM STATUS	1
	TABLE 2:	TABLE OF FORMATIONS THESHOLD VALUES FOR ANOMALOUS STREAM SAMPLES	4

1.0 INTRODUCTION

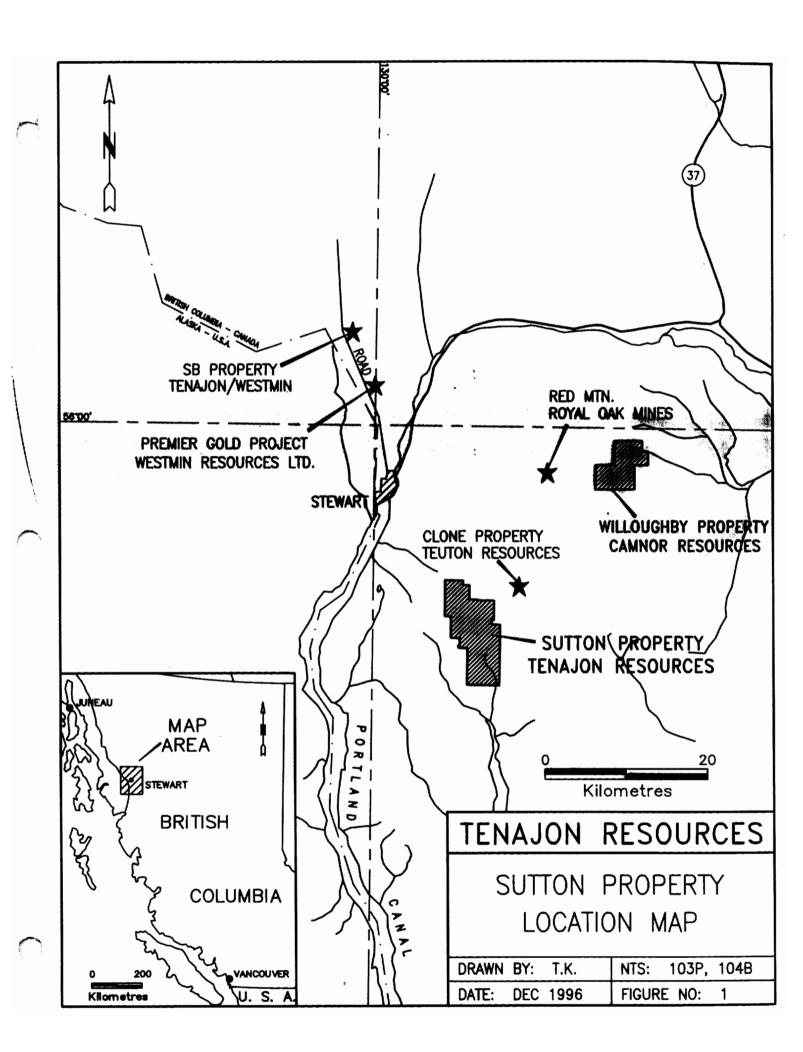
1.1 LOCATION AND ACCESS

The Glory, Sutton, Outbound and Golden Wish Claim Groups are located 23 kilometers south-southeast of Stewart, BC in the Skeena Mining Division on the south end of the Cambria Icefield. The property is centered at 55 degrees 45 minutes north latitude and 129 degrees 50 minutes west longitude (NTS: 103P/12 &13). The north end of Hastings Arm lies 13 kilometers to the south. Access to the property is by helicopter.

1.2 CLIMATE, TOPOGRAPHY AND VEGETATION

The climate in the vicinity of the Glory, Sutton, Outbound and Golden Wish Claim Groups is typical of the Coast Range Mountains. Temperatures are moderate due to the proximity of the Pacific ocean and range from a minimum of -25 degrees Celsius in the winter time to a maximum of 25 degrees in the summer. Precipitation is heavy (300 centimeters annually) with most of it falling as snow in the winter and rain or snow in the summer. The exploration season lasts from June to late September.

Thirty five percent of the property is covered with glacial ice. The topography of the property is rugged and steep with precipitous slopes leading away from the Kshwan River at 180 meters (600 feet) to high mountain ridges topping out at an elevation of 2,010 meters (6,600 feet).


Very little vegetation occurs above 1,800 meters on the property. Between 1,000 meters and 1,800 meters, the vegetation is typical of the subalpine consisting of alpine heather and stunted alpine spruce and fir. Below 1,000 meters the vegetation is very thick and consists of slide alder, devils club, blueberry bushes, spruce, fir, hemlock and cedar forests.

1.3 CLAIM STATISTICS

The Glory, Sutton, Outbound and Golden Wish Claim Groups are located within the Skeena Mining Division and staked under the provisions of the British Columbian Mineral Tenure Act. The claims cover approximately 6800 hectares and are listed in table 1 below.

TABLE 1: CLAIM STATUS

Claim Name	Record Number	Renewal Period*	Total # of Units
Glory #1	341408	14-Oct-97	20
Glory #2	341409	14-Oct-97	20
Glory #3	341410	14-Oct-97	20
Glory #4	341411	14-Oct-97	20
Sutton #1	341412	15-Oct-97	9
Sutton #2	341413	15-Oct-97	9
Sutton #3	341414	15-Oct-97	18
Sutton #4	341415	15-Oct-97	18
Outbound #1	341416	14-Oct-97	20
Outbound #2	341417	14-Oct-97	20
Wish #1	341418	16-Oct-97	18

-

Gold #1	341419	21-Oct-97	20
Gold #2	341420	21-Oct-97	20
Gold #3	341421	21-Oct-97	20
Gold #4	341422	21-Oct-97	20

pending acceptance of this report.

The claims are owned by Tenajon Resources Corporation of Vancouver, BC

1.4 REGIONAL EXPLORATION HISTORY

The Glory, Sutton, Outbound and Golden Wish Claims groups are surrounded by many past mining producers and promising exploration prospects.

Exploration in the Kitsault River area 21 kilometers to the east started in the early 1900's with the discovery of silver - lead - zinc stratabound volcanogenic deposits. In 1919, a railway was built from Alice Arm up the Valley to the Dolly Varden deposit. Between 1919 and 1921, 33,434 tonnes of ore was mined producing 42,500,000 grams (1,300,000 ounces) of silver, 3,200,000 kilograms of copper and 15,400,000 kilograms of lead. Little exploration was done between 1930 and 1946. In 1946, a road was built from Alice Arm up the Kitsault Valley. A new mill was constructed and production started in 1949. Between 1949 and 1959, 1,251,339 tonnes of ore were mined from the Torbrit deposit producing 579,400,000 grams (18,600,000 ounces) of silver and 5,000,000 kilograms (11,000,000 pounds) of lead. Reported reserves from more recent work on the Dolly Varden, Northstar, Torbrit, and Wolf deposits are 1,300,000 tonnes of ore with 441,600,000 grams (14,200,000 ounces) of contained silver (Devlin, 1987).

The Hidden Creek mine lies 35 kilometers to the south on Observatory Inlet. It was a major copper producer between 1914 and 1936 and is a stratabound massive sulphide deposit. 21,725,524 tonnes of copper ore were produced from the Number 1 to 6 ore bodies. The average grade was 1.4 percent copper, 0.17 grams per tonne gold and 9.5 grams per tonne silver. Measured recoverable reserves of 1,996,000 tonnes grading 0.9 per cent copper remain in the Number 1 to 8 orebodies. Open pit reserves for the quartz vein stockwork are defined as 45,400,000 tonnes grading 0.6 per cent copper (BC Minfile No. 103P 021).

The Georgia River property occurs 12 kilometers to the west of the claims. Mineralization occurs in quartz veins. In 1937, 454 tonnes of ore were mined, producing 10,233 grams of gold, 12,752 grams of silver and 3,312 kilograms of lead. Recent underground exploration and diamond drilling on the Southwest vein has resulted in indicated reserves of 291,239 tonnes grading 28.76 grams per tonne gold and 22.48 grams per tonne silver. The Bullion vein has unclassified reserves of 5,619 tonnes grading 4.18 grams per tonne gold and 10.28 grams per tonne silver (BC Minfile No. 103O 013).

Seven kilometers to the northeast is the recent gold - cobalt discovery on the Clone property on the south margin of the Cambria Icefield. In the fall of 1995, Teuton Resources Corporation and Minvita Enterprises Ltd. reported trenching results up to 123.09 grams per tonne (3.59 ounces per ton) gold over 5.5 meters (Teuton - Minvita Company news release, October 4, 1995) and drill results of up to 63.43 grams per tonne (1.85 ounces per ton) gold over 8.0 meters (Teuton - Minvita Company news release, January 11,1996). The 1996 field season has recorded results of up to 86.37 grams per tonne (2.519 ounces per ton) gold and 0.738 per cent cobalt over 2.3 meters in trenches (Teuton - Minvita Company news release, September 20, 1996) and up to 44.33 grams per tonne (1.293 ounces per ton) gold over 2.7 meters and 8.23 grams per tonne (0.240 ounces per ton) gold and 0.131 per cent cobalt over 6.0 meters (Teuton - Minvita Company

news release, October 4, 1996). Mineralization is controlled by a major structure that has been traced over a strike length of 1.5 (Teuton - Minvita Company news release, August 29, 1996).

Royal Oak's Red Mountain gold deposit is located 25 kilometers to the north-northeast. Reserves to date are around 1,000, 000 ounces of gold. Other significant deposits in the area include Camnor Resources Ltd.'s Willoughby gold property 29 kilometers to the northeast. Mineralization at both Red Mountain and Willoughby is structurally controlled and spatially related to Goldslide Jurassic Intrusions.

Molybdenum mineralization associated with Eocene intrusions were discovered in 1965. The Lime Creek deposit is located 45 kilometers to the southeast of the claims, 5 kilometers east of Alice Arm. Between 1967 and 1972, a total of 9,329,669 tonnes grading 0.112 per cent molybdenum were mined. During 1981 and 1982, 1,069,548 tonnes of stockpiled ore grading 0.076 per cent molybdenum were milled (BC Minfile No. 103P 120). The Ajax deposit is located 24 kilometers to the east-southeast of the claims on Mount McGuire, and has a drill defined reserve of 1,143,000,000 tonnes grading 0.09 per cent molybdenum (Dawson & Aldrick, 1986) making it the largest undeveloped reserve of molybdenum in British Columbia.

1.5 PROPERTY EXPLORATION HISTORY

In the fall of 1990, an exploration program was conducted on the southeast corner of the claims on what was then called the Ton 1 - 4 claims. A total of 40 stream sediment silt samples were collected and analyzed for gold, silver, copper, lead, zinc, arsenic, antimony, molybdenum and mercury. It was concluded that the property has a low potential of hosting an economic precious or base metal deposit. No further work was recommended on the claims.

1.6 1995 WORK PROGRAM

Exploration consisted of helicopter stream sediment silt sampling, followed by prospecting, rough geological mapping and rock sampling of anomalies. Andrew Wilkins, Krista Nelson, Marislav Kuras and Tim Kerby did all the work on the claims. Twenty-five man days were spent on the property. A total of 70 stream sediment silt samples and 30 rock samples were collected. The focus of the work was to evaluate the potential for gold deposits similar to that of the Clone and Red Mountain deposits to the north.

2. GEOLOGY

2.1 REGIONAL GEOLOGY

The most recent regional mapping in the area was completed by the Geological Survey of Canada during the summer of 1993 and 1994 (Greig et al 1994). This mapping covers the northern two thirds of the claims. Mapping to the east was completed by the Ministry of Energy, Mines and Petroleum Resources in 1986 (Alldrick et al 1986). Prior to this, mapping that covers the whole property was performed by the Ministry of Energy, Mines and Petroleum Resources in 1986, (Grove, 1986).

The property lies on the contact between the Stewart Complex in the Intermontane Belt and the Coast Plutonic Complex. The Stewart Complex is composed of a broad belt of island arc volcanics and related intrusions trending north northeastward for 150 kilometers from Anyox in the south to the Iskut River in the north (Grove, 1986). The volcanics are part of the Hazelton Group

and are Jurassic in age. The Stewart Complex hosts several mines including Homestake's Eskay Creek deposit and Snip deposit and Westmin's Silbak-Premier deposit. The rocks are highly prospective with numerous mineralized showings and prospects, including Royal Oak's Red Mountain deposit, Camnor's Willoughby Nunatak deposit, Newhawk's Sulphurets deposit, Teuton and Minvita's Clone deposit and the old Dolly Varden and Torbrit Mines. The Tertiary Coast Plutonic Complex consists of large batholiths of predominately quartz monzonite and granodiorite that form the core of the Coast Range Mountains up and down the coast of British Columbia and the Alaskan Panhandle. The Complex includes roof pendants of the older crustal rocks.

2.2 PROPERTY GEOLOGY

The property geology is presented in Figure 3.

Thirty-five percent of the property is covered with glacial ice. Fifty-five percent of the property consist of talus or outcrop. The remaining ten percent of the property is covered with overburden and thick vegetation.

The majority of outcrop on the property consists intrusive rocks belonging to the Coast Mountain Plutonic Complex. The Plutonic rocks have been divided into two units. The Bulldog Creek Pluton consists of medium to coarse grained granodiorite to diorite. The unit is commonly epidotized and chloritized. The Ishwan Glacier pluton is much fresher looking with little alteration. It consists of coarse grained, equilgranular hornblende - biotite granodiorite. This pluton outcrops predominately to the east of the property, however some quartz eye feldspar porphyry dyking was found on the property and may be part of the pluton.

Argillite and siltstone of the Lower Jurassic Hazelton Group occur on the northern boundary of the claims.

The geology is subdivided in the table of formations below, using a legend similar to Greig's (1994).

TABLE 2: TABLE OF FORMATIONS

QUATERNARY
PLEISTOCENE AND RECENT

Qal Glacial drift and alluvium.

Unconformity

HAZELTON GROUP LOWER JURASSIC

Jc .. dark gray argillite and siltstone, hornfelsed.

Intrusive Contact

COAST MOUNTAIN PLUTONIC COMPLEX LOWER JURASSIC

BULL DOG CREEK PLUTON

JBG .. medium to coarse grained, equilgranular, granodiorite or diorite, some porphyritic diorite, epidote and chlorite alteration and veining common.

EOCENE KSHWAN GLACIER PLUTON

TKG.. coarse grained, equilgranular, hornblende, biotite granodiorite.

3. GEOCHEMISTRY

3.1 INTRODUCTION

Stream sediment silt samples were collected from most of the small creeks draining the property. Rock samples were collected from any interesting alteration or mineralization. A total of 70 stream sediment silt samples and 30 rock samples were collected.

Sample locations are presented in Figure 4. Rock sample descriptions are presented in Appendix 1. Geochemical analysis are presented in Appendix 2.

3.2 SAMPLE PREPARATION AND ANALYTICAL PROCEDURE

Rock samples were collected in plastic bags and sent to the Westmin Assay lab in Stewart, BC Samples were then crushed down to 3/16 of an inch, and then a 1/2 pound of the sample is pulverized to minus 100 mesh. Gold was analyzed from a 10 gram fraction by the conventional Atomic Absorption (AA) technique. The pulps were then sent to Chemex Labs in North Vancouver. Silt samples were collected in plastic bags and sent to Chemex Labs in North Vancouver. At Chemex, silt samples were oven dried at approximately 60 degrees Celsius and sieved to minus 80 mesh. A 0.5 gram sample of the minus 80 fraction of all samples was digested in hot, dilute aqua regia in a boiling water bath and then diluted to 10 millilitres with distilled water. Samples were analysed for a group of 32 elements using the Induced Coupled Plasma (ICP) technique. In addition, gold was analysed from a 10 gram fraction by the conventional Atomic Absorption (AA) technique. Any rock samples greater than 100 ppm silver and/or 10,000 ppm copper, lead, zinc and/or arsenic were assayed for the respective element by conventional assay techniques.

3.3 STREAM SEDIMENT SILT GEOCHEMISTRY

Stream sediment geochemistry results were compared with the results from the Regional Geochemistry Survey conducted in 1978 by the British Columbia Geological Survey. Samples greater than the 95th percentile were considered anomalous for gold, silver, copper, lead, zinc, molybdenum, tungsten, uranium and arsenic. Anomalous thresholds are outlined in the following table.

Numerous creeks on the property are anomalous in various elements. The most significant cluster of anomalies occurs on the northeastern boundary of the property with stream sediment silts running up to 110 ppb gold, 6.0 ppm silver, 118 ppm copper, 294 ppm lead, 640 ppm zinc, 68 ppm arsenic and 30 ppm cobalt. Unfortunately, the source of the anomaly seems to be coming from Hazelton Group rocks located off the claims to the east.

The second most significant cluster of anomalies occurs on the northern boundary of the property with stream sediment silts running up to 75 ppb gold, 1.8 ppm silver, 970 ppm arsenic, 107 ppm copper, 15 ppm molybdenum and 254 ppm zinc. Again the source of the anomaly is believed to be Hazelton Group rocks that outcrop predominately off the claims.

TABLE 3: THRESHOLD VALUES FOR ANOMALOUS STREAM SEDIMENT SAMPLES

Element	Anomalous Values
Gold	≥ 29 ppb
Silver	≥ 0.5 ppm
Copper	≥ 91 ppm
Lead	≥ 23 ppm
Zinc	≥ 221 ppm
Molybdenum	≥ 5 ppm
Tungsten	≥ 11 ppm
Arsenic	≥ 67 ppm
Uranium	≥ 11 ppm

The third cluster of anomalies occurs in the southern portion of the property with stream sediment silts running up to 110 ppb gold, 0.6 ppm silver, 305 ppm copper, 35 ppm lead, 228 ppm zinc, 8 ppm molybdenum and 30 ppm uranium. The area is characterized by major north-northeast trending faults with chloritic alteration. Some fresh quartz eye feldspar porphyry was also found in this area.

Other scattered anomalies occur on the property with the most interesting being in the central west boundary area where values of up to 160 ppb gold are found in stream sediment silts.

3.4 ALTERATION, MINERALIZATION AND ROCK GEOCHEMISTRY

Epidote + chlorite veining is common on the property and is commonly associated with north-northeast trending structures. In the northeast corner of the claims, chlorite + epidote microveins in diorite with 15% disseminated pyrite ran 11.0 ppm silver and 1335 ppm copper.

In the southern portion of the claims, a major north-northeast trending structure forms a prominent lineament. Chlorite + epidote veining and brecciation is common in this structure. Assays of up to 0.55 grams per tonne (0.016 ounces per ton) gold and 13.6 ppm silver came from this structure.

A small quartz vein from the central western portion of the property assayed 1.15% copper and 24.2 ppm silver.

4. CONCLUSIONS AND RECOMMENDATIONS

The Glory, Sutton, Outbound and Golden Wish Claim Groups are underlain by mostly intrusives of the Coast Plutonic Complex. The highly prospective Hazelton Group volcanics and sediments were found only on the north end of the property. Most of the anomalous creeks on the property are draining Hazelton Group rocks which occur to the north of the claims. Other stream sediment silt anomalies do occur on the property, however the underlying geology is not very promising. No further work is recommended on the claims.

5. REFERENCES

- Alldrick, D.J., Dawson, G.L., Bosher, J.A. and Webster, I.C.L.., 1986. **Geology of the Kitsault River Area (NTS 103P).** British Columbia Ministry of Energy, Mines and Petroleum Resources, Open File Map 1986/2.
- Black, J.M., 1951. **Geology and Mineral Occurrences of the Upper Kitsault Valley.** British Columbia Ministry of Energy, Mines and Petroleum Resources Annual Report, 1951, p A76 A83
- Blackwell, J.D., 1986a. Geology and Geochemistry of Sault 1, 3, 4, 5, 7 and 8 Mineral Claims. Assessment Report, Cominco Ltd., 1986.
- Blackwell, J.D., 1986b. Geology, Geochemistry and Geophysics of Sault 1, 3, 4, and 5
 Mineral Claims. Assessment Report, Cominco Ltd., 1986.
- Boronowski, A., 1990. **Geological and Geochemical Report on the Ton 1 4 Claims, Kshwan River Property.** Assessment Report, Canadian Cariboo Resources Ltd., 1990.
- Campbell, F.A., 1959. **The Geology of the Torbrit Silver Mine.** Economic Geology, v. 54, p. 1461 -1495, 1959.
- Dawson, G.L., and Alldrick, D.J., 1986. **Geology and Mineral Deposits of the Kitsault Valley.** (103P/11, 12), British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1986-1, p. 327 -330.
- Devlin, B.D., and Godwin, C.I., 1986a. **Geology of the Dolly Varden camp, Alice Arm Area.** (103P/11, 12), British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1986-1, p. 327 330.
- Devlin, B.D., 1987. **Geology and Genesis of the Dolly Varden Silver Camp, Alice Arm Area.**Unpublished Thesis, University of British Columbia, 1987.
- Greig, C.U., Anderson, R.G., Daubeny, P.H., Bull, K.F., and Hinderman, T.K., 1994. **Geology of the Cambria Icefield: Regional Setting for the Red Mountain Gold Deposit,**Northwestern British Columbia; in Current Research 1994-A; Geological Survey of Canada, p. 45 to 56, 1994.
- Greig, C.U., Anderson, R.G., Daubeny, P.H. and Bull, K.F., 1994. **Geology of the Cambria Icefield Area: Stewart (103P/13), Bear River (104A/4), and parts of Meziadin Lake (104A/3) and Paw Lake (103P/14), Northwestern British Columbia**; Geological Survey of Canada, Open File 2931, 1994.
- Grove, E.W., 1986. **Geology and Mineral Deposits of the Unik Salmon River Anyox Area**; Bulletin 63, British Columbia Ministry of Energy, Mines and Petroleum Resources, 1986.
- Geological Survey of Canada, 1978. **Regional Stream Sediment and Water Accelerated Geochemical Survey, BC,** NTS 103P and Part of 103O, RGS-2-1978.

6. STATEMENT OF EXPENDITURES

Salaries			
Project Geologist	6	days @ \$375.00 per day	\$2,250.00
Geologist	6	days @ \$275.00 per day	\$1,650.00
Prospectors	13	days @ \$225.00 per day	\$2,925.00
Helicopter	12.6	hours @ \$750.00 per hour	\$9,450.00
Geochemistry			
·	70	samples @ \$15.30 per sample	\$1,071.00
	30	samples @ \$16.00 per sample	\$480.00
Room and Board	25	days @ \$80.00 per day	\$2,500.00
Truck Rental	۵	days @ 80.00 per day	\$720.00
Report	3	days @ 60.00 per day	\$720.00 \$2,500.00
Report			\$2,500.00
SubTotal			\$23,546.00
Management Fees (10%)			\$2,354.60
Total			\$25,900.60

7. STATEMENT OF QUALIFICATIONS

- I, Andrew L. Wilkins, of PO Box 629, Pemberton, BC, certify that:
- 1) I am a graduate of the University of British Columbia with a Bachelor of Science degree in the Geological Sciences (1981).
- 2) I have been engaged in the mining exploration industry in British Columbia and the Yukon since 1978.
- 3) I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4) I performed most of the work on the Glory, Sutton, Outbound and Golden Wish Claim Groups in the summer of 1996.

5) I am the author of this report.

Dated this fifteenth day of December, 1996.

Andrew L. Wilkins

P.Geo.

APPENDIX 1: ROCK SAMPLE DESCRIPTIONS

Tenajon Resources Rock Sample Descriptions - Sutton Property

Date	Sample No.	Sampler	Sample Type	Eastings	Northings	Rock Type	Alteration	Mineralization	Sample Description	Au g/ton opt	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm
July 23	331134	KN	grab	446671	6179941	hbl-bio granodiorite	strong epidote veining + pyrite+ minor quartz veining + minor sericite	5% pyrite blebs and coarse grains in veins, <1% malachite, sphalerite(?), silvery- black mineral	mod. orange sulfide stained hbl-bio grdr, epidote veins with lesser qtz veins, dark purple stains-some pyrite centres. 1 main quartz vein sampled (1-2cm) (132/52SW)	<0.01 <0.001	4.8	616	38	62	18
July 24	331142	TK	grab	445619	6180205					0.38 0.011	24.2	1.15%	98		
Sept. 3	331159	KN	grab	448719	6181062	hbl-bio granodiorite	strong pyrite + sericite + quartz	20% medium to coarse pyrite crystals + 1% malachite	bright brownish-orange iron stained, 25 cm thick fracture zone with some well formed quartz crystals up to 1 cm in a light gray, sericite-pyrite-quartz attered hbl-blo granodiorite	<0.01 <0.001	1.8	949	10	24	4
Sept. 3	331160	KN	grab	448597	6181209	hbl-bio granodiorite	strong pyrite + quartz	10% medium pyrite crystals and disseminations	bright brownish-orange iron stained 20cm thick fracture in a light gray hbl- bio granodiorite. Quartz veining with crystals up to 0.5cm.	<0.01 <0.001	0.2	9	6	24	<2
Sept. 3	331161	KN	grab	448682	6181526	bedded sittstone/ sandstone	quartz + pyrite	5-10% pyrite blebs, stringers and disseminations	bright brownish-orange iron stained and purple manganese stained, silicified & hornfelsed (?) bedded (264/48) sediments. Dark gray sittstone and buff gray fine grained sandstone bedded on mm to 20cm scale with massive beds of sittstone up to 2m thick	40.01 40.001	0.4	13	6	116	14
Sept. 3	331162	KN	grab	448618	6181810	bedded siltstone/ sandstone	quartz + pyrite	5-10% pyrite blebs, stringers and disseminations	bright brownish-orange iron stained and purple manganese stained, silicified & hornfelsed (?) bedded dark gray siltstone and buff gray sandstone	0.14 0.004		54	2	62	
Sept. 3	331163	KN	grab	448588	6181960					0.03 0.001	2.0	81	6	86	26
July 25	331205	KN	grab	445685	6178533	hbl-bio granodiorite	pyrite vein + epidote	1-3 cm pyrite vein	moderately orange sulfide stained hbl- blo granodiorite with a 1-3 cm pyrite vein with minor epidote	<0.01 <0.001	1.0	70	10		
July 25	331208		grab	445978	6178919	granodiorite	strong epidote + quartz + hematite	gray-black mineral, one patch of malachite, 5-10% hematite stained	moderately orange sulfide stained hbl- bio granodiorite with strong quartz + epidote veining. Hematite alteration blebs and along fractures common.	<0.01 <0.001	0.2	12	22	72	
Sept. 28	331539	KN	grab	445603	6185721	bedded siltstone/ sandstone	quartz + pyrite	minor fine disseminated pyrite + silvery mineral?	bright brownish-orange iron and purple manganese stained bedded (307/69) black siltstone/belge sandstone. Hornfelsed and silicified.	0.10 0.003		87	6	42	10

Sept. 28	331541	KN	grab	445508	6185615	bedded siltstone/ sandstone	quartz + pyrite	minor fine disseminated pyrite	bright brownish-orange iron and purple manganese stained bedded (332/62) black slitstone/belge sandstone. Hornfelsed and silicified.	0.03 0.001	1 1	121	4	122	6
Sept. 28	331544	KN	grab	445290	6185618	bedded siltstone/ sandstone	quartz + pyrite	minor fine disseminated pyrite + silvery mineral?	bright brownish-orange Iron and purple manganese stained bedded (332/62) black siltstone/beige sandstone. Hornfelsed and silicified. Small (<1cm) quartz veins with black mineral.	0.10 0.003		70	8	104	6
Sept. 28	331546	KN	grab	445167		altered hbl- bio granodiorite?	muscovite + pyrite + sericite	minor fine disseminated pyrite + silvery mineral?	purple manganese stained altered hbi- bio granodiorite? in bedded sediments. Mafics altered to muscovite; minor sericite patches.	0.14 0.004		57	6	64	4
Sept. 29	331547	KN	grab	444717	6181920	quartz vein in hbi-bio granodiorite	quartz + pyrite	2-3% medium pyrite crystals in selvages	mamillary and vuggy quartz vein, 5- 30cm wide and 20m long in hbl-blo granodiorite	0.07 0.002		20	20	66	22
July 25	331552	TK	grab	449099	6182160	argillite/tuff		pyrite in microveins and fractures	medium gray, fine grained tuff or argillite	<0.01 <0.001	0.8	223	20	74	10
July 25	331553	TK	grab	449108	6182152	argillite/tuff		pyrite in microveins and fractures	medium gray, fine grained tuff or argillite	<0.01 <0.001	0.6	162	42	60	16
July 25	331554	TK	grab	449107	6182136	argillite/tuff		pyrite in microveins and fractures	medium gray, fine grained tuff or argillite	<0.01 <0.001	1.2	228	16	62	32
July 25	331558	TK	grab	448696	6181661	argillite/tuff	•-	pyrite in microveins and fractures	medium gray, fine grained tuff or argillite	<0.01 <0.001	1.2	86	6	86	8
Sept. 3	331614	ALW	grab	449924	6181261	granodiorite/ diorite	pervasive epidote + chlorite	50% coarse to fine grained pyrite	small pod of massive pyrite along fracture	<0.01 <0.001	2.8	1070	36	26	1700
Sept. 3	331615	ALW	grab	449044	6182574	diorite	chlorite + epidote along fractures	15% disseminated pyrite	gossanous, 5 cm wide atteration zone in medium green, medium grained granodiorite	<0.01 <0.001	11.0	1335	16	108	84
Sept. 3	331616	ALW	grab	449023	6182549	hombiende quartz diorite	massive chlorite vein with quartz + calcite	minor specularite hematite	4 cm wide veln	<0.01 <0.001	0.2	35	6	122	<2
Sept. 3	331617	ALW	grab	449018	6182527	hornfelsed siltstone	chiorite + epidote in fractures	5% pyrite around fractures		<0.01 <0.001	1.2	148	14	72	24
Sept. 7	331619	ALW	grab	447887	6174870	granodiorite		3% disseminated blebs of pyrite	well fractured, granodiortie in fracture zone	0. 4 5 0.013	1.0	201	<2	56	10
Sept. 7	331620	ALW	grab	447914	6174876	granodiorite		5% fine grained disseminated pyrite	10 cm wide pyritic zone within fractured granodiorite	0.48 0.014	13.6	868	12	88	78
Sept. 7	331621	ALW	grab	447887	6174922	granodiorite	chlorite + epidote	5% fine grained disseminated pyrite	well fractured, wealdy brecciated granodiorite within major fault zone	0.41 0.012	0.4	106	<2	52	2
Sept. 7	331622		grab	447911	6174950	granodiorite	quartz (chalcedony) veining		5 mm veining in granodiorite	0.55 0.016	0.6	52	<2	56	<2
Sept. 7	331623	ALW	grab	447729	6175155	granodiorite	stockwork of chlorite + epidote veins	up to 10% blebs of fine to medium grained pyrite	gossanous, coarse grained, equilgranular granodiorite	0.45 0.013	<0.2	7	2	56	<2

)

•

)

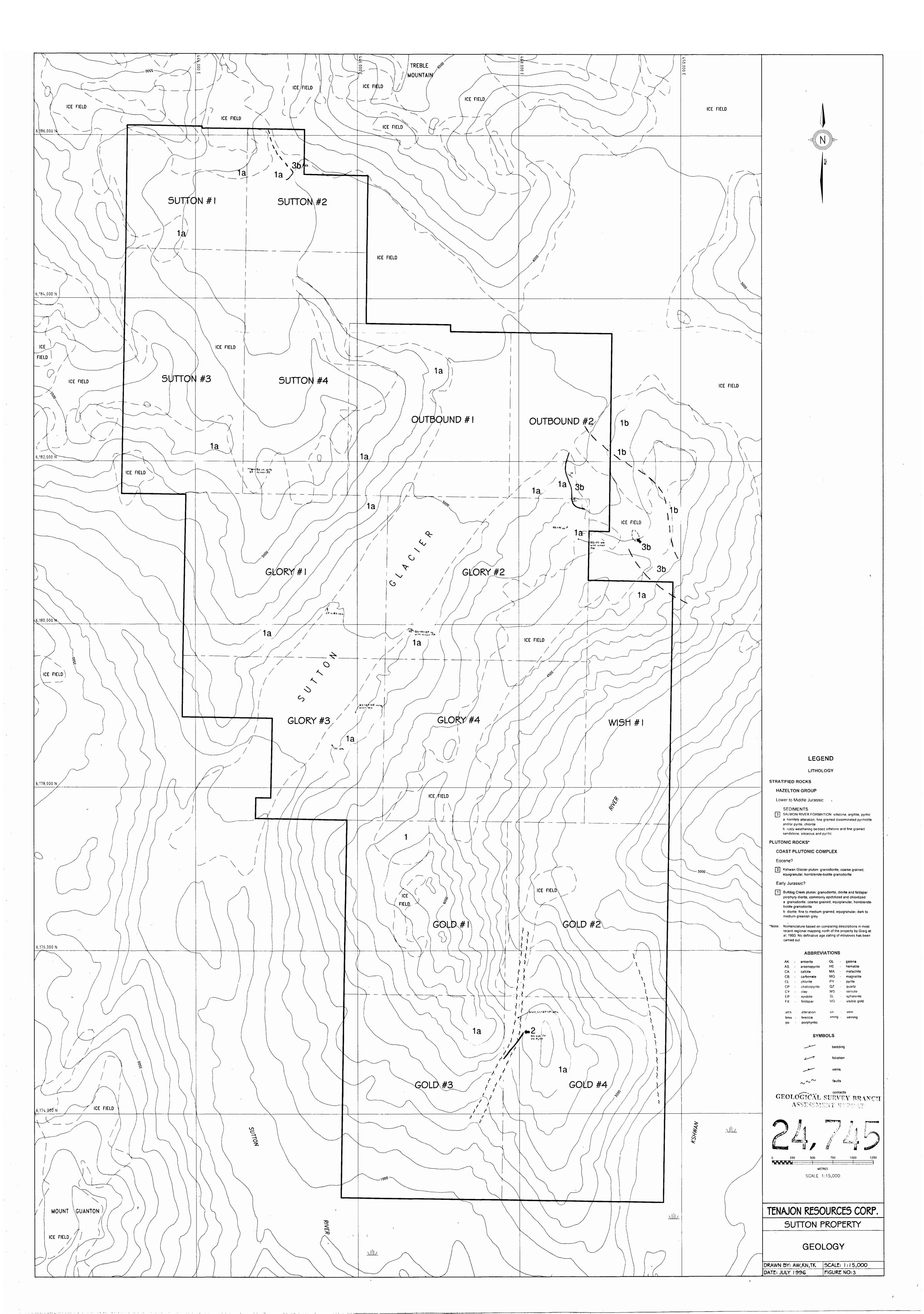
Sept. 7	331624	ALW	grab		6175132	•	stockwork of chlorite + epidote veins	1 '	gossanous, coarse grained, equilgranular granodiorite	0.48 0.014	1.0	53	2	38	<2
				447704				pyrite							
Sept. 7	331625	ALW	grab	447705	6175160	granodiorite	stockwork of chlorite	up to 10% blebs of	gossanous, coarse grained,	0.51	<0.2	4	2	42	<2
ł	1						+ epidote veins	fine to medium grained	equilgranular granodiorite	0.015	1	1	l		
	Ĺ							pyrite							
Sept. 7	331626	ALW	grab	447846	6174906	breccia	quartz + minor		light green to gray, slightly rounded	0.45	<0.2	2	2	10	<2
							chlorite matrix		fragments in a white siliceous matrix	0.013					

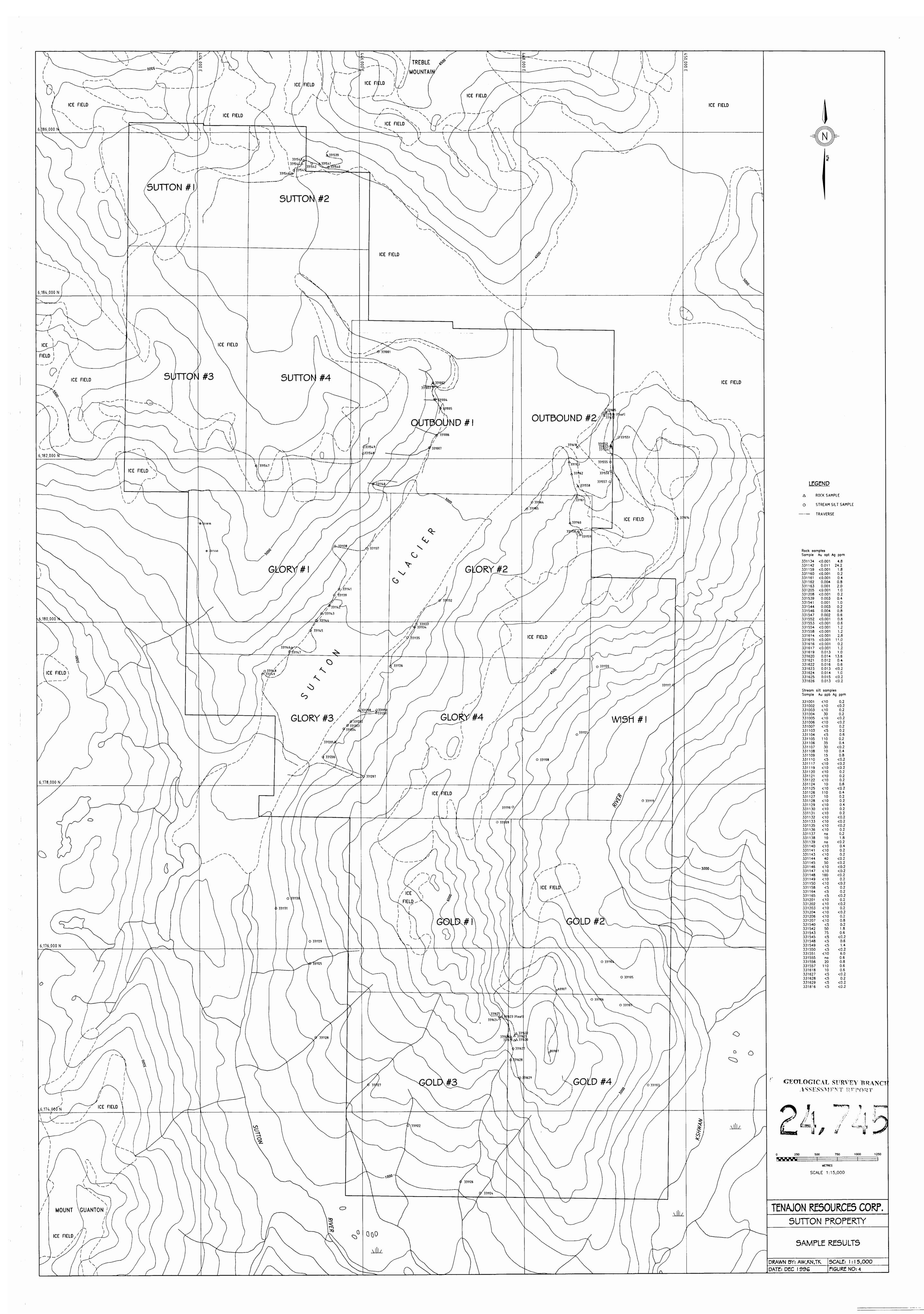
.

APPENDIX 2: ANALYTICAL RESULTS

Silt Samples*

	998	983	2118 2	2119	2120	2121	2122	2123	2124 21	25 2120	2127	2128	2150	2130	2131	2132	2151	2134	2135	2136 213	2138 2139	2140	2141	2142 2143	2144 2145	2146 2	2147 214	8 2149
SAMPLE	Au	Au ppb	Ag	Al	As	Ba	Be	Bi	Ca C	d Co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo Na	Ni P	Pb	Sb	Sc Sr	Ti Ti	U	V W	/ Zn
NUMBER	oz/T	FA+AA	ppm	%	ppm	ppm	ppm	ppm	% pp	m ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm %	ppm ppm	ppm	ppm	ppm ppm	% ppm	ppm s	opm ppr	m ppm
331001	<.001	<10	0.2	2.10	6	500	<.5	<2	1.10 2	2.5 12	2 7	35	4.12	<10	<1	0.10	10	1.5	1205	<1 <.0	6 1440	18	<2	4 99	0.08 <10	<10	67 <1	10 216
331002	<.001	<10	<.2	1.80	8	340	0.5	<2	0.35	:5 12	10	17	4.00	<10	<1	0.16	10	1.0	1550	1 <.0	9 1070	18	<2	4 28	0.01 <10	<10	60 <1	10 84
331003	<.001	<10	0.2	1.77	14	350	0.5	<2	0.54	:.5 1	7	12	3.64	<10	<1	0.18	10	1.0	1405	2 <.0	6 1010	18	<2	4 34	0.01 <10	<10	44 <1	10 80
331004	<.001	30		2.05	8	390	0.5	<2	0.48	.5 13	6	25	4.03	<10	<1	0.12	10	1.3	1270	1 <.0	6 1010	16	<2	4 85	0.05 <10	<10	59 <1	
331005	<.001	<10		2.85	6	420	0.5			.5 16				<10	<1	0.13	10	1.6		<1 <.0	11 1260	28	<2	6 200	0.07 <10		79 <1	
331006	<.001	<10	<.2	2.03	10	140	<.5	<2	0.55	.5 13	3 9	19	4.11	<10	<1	0.10	<10	1.3	1140	<1 <.0	6 1150	22	<2	4 34	0.08 <10	<10	85 <1	10 92
331007	<.001	<10		2.81	12	130	0.5	2	0.51 ().5 14	14	24	3.96	<10	1	0.08	10	1.3	1060	<1 <.0	11 1000	20	<2	5 44	0.08 <10	<10	83 <1	
331103	N/A	<5		2.97	12	210	<.5			.5 12			4.48	<10		0.72	<10	1.6	850	4 0.0		22	<2	9 44	0.25 <10		119 <1	
331104	N/A	<5		2.21	2	210	<.5			.5 10) 6			<10		0.53	<10	1.5	895	6 0.03		10	2	7 45	0.16 <10			0 112
331105	N/A	110		1.99	6	120	<.5).5 13			4.59	<10		0.30	<10	1.2	560	3 0.03		10	- 2	5 49	0.13 <10		106 <1	
331106	N/A	35		3.26	- 6	250	<.5			.5 16			4.88	<10		0.70	<10	1.8		8 0.0		28	<2	8 59	0.24 <10		130 <1	
331107	N/A	30		2.63		280	<.5			:.5 1:				<10		0.74	<10	1.6	900	4 0.02		12	2	8 61	0.22 <10		113 <1	
331108	N/A	10		2.11	2	70	<.5			0.5 13				<10		0.31	<10	1.3	815	2 0.0	3 1420	10	- 2	3 46	0.09 <10		60 <1	
331109	N/A	15		2.23	- 2	60	<.5			.5 12				<10		0.18	<10	1.5	905	2 <.0		24	<2	3 41	0.06 <10		58 <1	
331110	N/A	<5		2.02	2	100	<.5			.5 1				<10		0.38	<10	1.3	640	1 0.0		14	- \2	3 33	0.12 <10		67 <1	
331117	<.001	<10		2.77	- 2	160	<.5			.5 12				<10		0.47	<10	1.8	920	<1 <.0	5 1180	- 17	-\ <u>\^2</u>	6 55	0.12 <10		102 <1	
331119	<.001	<10	<.2		- 2	60	<.5			5.5				<10		0.21	<10	0.9	565	<1 0.0		6	-\2	4 57	0.10 <10		90 <1	
331120	<.001	<10	0.2		- 2	160	<.5			.5 14	<u> </u>			<10		0.52	10		1135	<1 0.0	3 1460	10	-2	6 87	0.12 <10		103 <1	
331121	<.001	<10	0.2		2	120	<.5			.5 12			4.07	<10		0.43	<10	1.6	790	<1 0.0		8		5 74	0.16 <10		86 <1	
331122	<.001	<10	0.2		-2	130	<.5			.5 12		36		<10		0.43	<10	1.4	950	1 <.0	4 1000	16	<2	4 76	0.18 <10		72 <1	
331124	<.001	10	0.6			200	<.5			.5 14			4.24	<10		0.33	10	1.7	835	2 0.0		36	<2	6 116	0.19 <10		88 <1	
331125	<.001	<10	<.2		- 2	90	<.5			.5 12			3.61	<10		0.16	<10	1.7	855	<1 0.0	6 1160	10	-2	3 70	0.12 <10		63 <1	
331126	0.003	110		2.39	<u> ~2</u>	130	<.5			.0 10				<10		0.16	<10	1.2	765	1 0.0	1 950	34	- 2	4 115	0.12 <10		69 <1	
331127	<.001	10		2.29	2	70	<.5			.5 1		40		<10		0.16	<10	1.5	840	1 <.0		10	<2	4 79	0.13 <10		69 <1	
331128	<.001	<10	0.2		2	160	<.5			0.5 12				<10		0.21	<10	1.6	735	<1 0.0	13 1010	10	<u></u>	4 104	0.13 <10		66 <1	
331129	<.001	<10	0.4		2	430	0.5	-2		.0 12			3.83	<10		0.35	10	1.8		11 <.0		56	-\ <u>^2</u>	4 63	0.13 <10		72 <1	
331130	<.001	<10	0.4		-2	70	<.5			.5 11		13		<10		0.11	<10	1.5	805	<1 <.0		8	~2	4 68	0.13 <10		64 <1	
331131	<.001	<10		2.07	<2	170	<.5			:5 10			3.35	<10		0.24	<10	1.7	770	<1 <.0		14	-\2	4 49	0.13 <10		69 <1	
331132	<.001	<10	<.2			40	<.5			.5 12		15		<10		0.10	<10	1.7	670	<1 <.0	3 1120	- 17	<2	3 37	0.12 <10		85 <1	
331133	<.001	<10	<.2		<2	70	<.5			.5 8		10		<10		0.06	10	1.1	480	<1 <.0	4 1250	- 5	- 2	3 36	0.08 <10		76 <1	
331135	<.001	<10	<.2		<2	60	<.5			.5 1				<10		0.07	10	1.5	685	<1 <.0		- 6	-2	4 38	0.12 <10		87 <1	
331136	<.001	<10	0.2		8	70	<.5			.5 13				<10		0.10	10	1.3	695	<1 0.0	11 1350	- 8	<2	5 49	0.12 <10		109 <1	
331137	not/ss	not/ss		2.29	8	270	0.5			.5 1				<10		0.10	<10	1.2	915	1 <.0	4 820	22	- 2		0.10 <10		70 <1	
331138	<.001	10033		2.17	- 2	810	<.5			0.5 12		27		<10		0.11	10	1.5	965	<1 <.0	4 1090	74	-2	4 91	0.12 <10		71 <1	
331139	not/ss	not/ss	<.2		-2	70	<.5			.5 10			3.53	<10		0.07	<10	1.3	665	<1 <.01		- 6	<2	4 47	0.12 <10		82 <1	
331140	<.001	<10		2.22	10	180	<.5	<2		0.5 13			4.19	<10		0.13	10	1.5	990	1 <.01	4 1210	12	~2	4 54	0.10 <10		81 <1	
331141	<.001	<10	0.2		2	140	<.5			.5 10				<10		0.10	10	1.4	750	<1 <.01	4 1250	8	<2	5 43	0.10 <10		91 <1	
331143	<.001	<10	0.2		- 2	90	<.5			.5 11				<10		0.08	10	1.4	835	8 <.01	4 1160	36	-\2	4 41	0.12 <10		90 <1	
331144	0.001	40		2.08		1290	<.5			.5 11		36		<10		0.12	10	1.5	980	<1 <.01	3 1170	- 50	- <u><2</u>	4 42	0.12 <10		77 <1	
331145	0.001	50	<.2		<2	50	<.5			.5 8		16		<10		0.08	10	1.2	615	<1 <.01	3 1080	2	2	3 33	0.10 <10		78 <1	
331146	<.001	<10		1.73	~2	100	<.5			.5 8				<10		0.12	10	1.0	640	1 <.01	3 1100	-4	-{2	3 38	0.09 <10		66 <1	
331146	<.001	<10		1.50	-\2	70	<.5			.5 8		14		<10		0.12	<10	1.2	595	<1 0.01	3 1160	6	<2	3 36	0.09 <10		79 <1	
		160		1.08	2	130	<.5			.5 6		16		<10		0.10	10	0.8	445	<1 <.01	2 990	- 0	<2				85 <1	
331148	0.005	<10		1.31	-2	170	<.5	- \2		.5			3.67	<10		0.15	<10	1.0	590	<1 <.01		8	<2	2 38 3 31			84 <1	
331149	<.001	<10			2	40	<.5			.5 9	_		3.64	<10		0.13	<10	1.1	460	<1 <.01	4 1160	- 4	<2					
331150				1.36						.5 11			3.21						665		1 1030	<u> </u>	_		0.09 <10			
331158	N/A	<5		1.57	<u>4</u>	60 70	<.5 <.5			.5 12			3.35	<10		0.08	<10 10	1.0	700	3 <.01 3 <.01	8 1330	14	<2 <2	3 24	0.07 <10		49 <1	
331164		<5		1.81														1.1	825					4 27	0.08 <10		63 <1	
331165	N/A	<5	<.2		6	140	<.5					41		<10		0.10	<10	1.3		3 0.01	7 1160	12	<2		0.09 <10		67 <1	
331201	<.001	<10	0.2		2	40	<.5			.5 10				<10		0.12	<10	1.4	555	<1 <.01	5 1120	10	<2		0.11 <10		69 <10	
331202	<.001	<10		1.54	<2	40	<.5			.5 8		15		<10		0.08	<10	1.2	525	<1 <.01	4 1240	6	<2	3 33	0.09 <10		71 <10	
331203	<.001	<10	0.2		<2	30	<.5			.5 9		16	3.21	<10		0.09	10	1.1	515	<1 <.01	3 1230	6	<2		0.09 <10		73 <10	
331204	<.001	<10	<.2		2	50	<.5			.5 10		16	3.45	<10		0.15	10	1.3	640	<1 <.01	4 1200	8	<2		0.10 <10		78 <10	
331206	<.001	<10	0.2		<2	110	<.5			.5 12		18		<10	<1		10	1.4	710	<1 <.01	3 1240	10	<2	4 57	0.11 <10		80 <10	
331207	<.001	<10		1.95	2	110	<.5			.0 12		72	3.85	<10		0.10	10	1.4	985	17 <.01	3 1360	94	<2		0.10 <10		76 <10	
331540	N/A	<5		2.02	86	60	<.5			.5 12		45		<10		0.12	10	1.4	865	15 0.01	15 1150	8	<2	5 25	0.09 <10		101 <10	
331542	N/A	50	1.8	2.07	976	100	<.5	<2	0.49 <	.5 17	37	107	4.41	<10	1_	0.08	<10	1.1 1	1245	6 <.01	47 890	118	<2	5 14	0.04 <10	<10	89 <10	0 254
+ A 11			Ob																									


^{*}All assays from Chemex


Silt Samples*

331543	N/A	75	0.6	1.83	240	110	<.5	<2	0.72	<.5	12	27	62	3.91	<10	<1	0.08	<10	1.2	755	3	0.01	31 950	12	<2	5	22	0.08	<10	<10	90	<10	114
331545	N/A	<5	<.2	1.32	10	50	<.5	<2	0.80	<.5	8	16	15	3.37	<10	<1	0.06	10	0.9	520	<1	0.02	5 1100	6	<2	3	34	0.07	<10	<10	95	<10	52
331548	N/A	<5	0.6	2.61	6	200	<.5	<2	0.66	<.5	12	10	28	3.96	<10	<1	0.44	10	1.5	1120	1	0.03	5 1060	20	<2	5	46	0.15	<10	<10	. 94	<10	128
331549	N/A	<5	1.4	2.20	<2	210	<.5	<2	0.62	0.5	11	11	27	3.65	<10	<1	0.30	10	1.2	1065	2	0.03	4 1150	26	<2	4	43	0.12	<10	10	85	<10	110
331550	N/A	<5	<.2	1.64	2	90	<.5	<2	0.56	<.5	10	10	23	3.46	<10	<1	0.23	10	1.2	615	1	0.01	2 1080	8	<2	4	43	0.09	<10	<10	74	<10	60
331551	<.001	<10	6.0	3.14	68	130	0.5	<2	0.56	3.0	30	30	118	4.82	<10	<1	0.17	<10	1.5	2250	1	<.01	26 1310	294	<2	9	43	0.11	<10	<10	117	<10	640
331555	not/ss	not/ss	0.6	2.43	26	70	0.5	2	0.58	0.5	26	36	82	4.14	<10	<1	0.18	<10	1.9	1070	1	<.01	22 900	50	<2	7	25	0.14	<10	<10	131	<10	162
331556	<.001	20	0.8	2.41	56	100	<.5	<2	0.65	0.5	19	44	99	4.29	<10	<1	0.07	<10	2.1	975	<1	<.01	22 1410	30	<2	8	34	0.11	<10	<10	127	<10	150
331557	0.003	110	0.6	2.17	58	70	0.5	<2	0.66	1.0	19	40	98	4.30	<10	<1	0.09	<10	1.8	845	1	<.01	23 1470	18	2	8	33	0.09	<10	<10	132	<10	126
331618	N/A	10	0.6	1.65	44	90	<.5	<2	0.59	0.5	12	20	70	3.23	<10	<1	0.11	<10	1.3	645	4	0.01	21 1070	14	<2	4	41	0.09	<10	<10	79	<10	112
331627	N/A	<5	<.2	3.20	2	80	0.5	<2	1.31	<.5	9	6	25	3.01	<10	<1	0.28	<10	1.2	530	<1	<.01	3 580	28	2	4	179	0.17	<10	<10	69	<10	56
331628	N/A	<5	0.2	4.13	4	130	0.5	<2	1.08	0.5	15	13	43	3.84	<10	<1	0.39	<10	1.7	945	1	<.01	7 1370	24	4	5	134	0.19	<10	10	92	<10	116
331629	N/A	<5	<.2	2.37	<2	130	<.5	<2	0.72	<.5	11	9	18	3.16	<10	<1	0.43	<10	1.4	710	<1	0.02	5 930	6	<2	5	79	0.16	<10	<10	73	<10	76
331816	N/A	<5	<.2	1.84	4	100	<.5	<2	0.62	<.5	10	13	13	3.06	<10	<1	0.31	<10	1.4	565	<1	0.01	5 1100	8	<2	3	60	0.11	<10	<10	60	<10	56

Rock Samples *

		2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2150	2130	2131	2132	2151	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149
SAMPLE	Au	Ag	Αl	As	Ва	Be	Bi	Ca	Çd	Co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Мо	Na	Ni	Ρ	Pb	Sb	Sc	Sr	Ti	TI	U	V	W	Zn
NUMBER	oz/T	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
331134	0.001	4.8	1.38	18	50	<.5	2	0.66	<.5	11	176	616	2.20	<10	<1	0.10	<10	0.93	505	14	0.02	4	390	38	<2	1	69	0.06	<10	<10	35	<10	62
331142	0.011	24.2	0.51	<2	10	<.5	Intf*	0.08	2.5	26	199	>10000	9.08	<10	<1	0.08	<10	0.28	215	33	0.01	5	Intf*	98	<2	1	3	<.01	<10	<10	28	<10	60
331142 - as	say	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.15%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
331159	0.001	1.8	0.77	4	80	<.5	<2	0.63	<.5	10	89	949	5.43	<10	<1	0.23	<10	0.23	315	16	<.01	2	670	10	<2	1	27	<.01	<10	<10	10	<10	24
331160	0.001	0.2	0.85	<2	50	<.5	<2	0.12	<.5	9	147	9	3.13	<10	<1	0.17	<10	0.39	225	9	0.01	4	520	6	<2	1	4	<.01	<10	<10	23	<10	24
331161	0.001	0.4	3.11	14	70	<.5	2	0.18	<.5	30	87	13	10.30	10	<1	0.13	<10	1.74	1605	13	<.01	2	530	6	2	4	7	<.01	<10	<10	59	<10	116
331162	0.004	8.0	1.69	6	20	<.5	<2	0.28	<.5	7	128	54	3.76	10	<1	0.01	<10	1.82	670	14	<.01	27	530	2	2	2	12	0.09	<10	<10	59	<10	62
331163	0.001	2.0	2.33	26	10	<.5	6	0.20	<.5	12	101	81	6.39	10	<1	0.04	<10	2.13	1165	6	<.01	28	380	6	2	4	13	0.12	<10	<10	62	<10	86
331205	0.001	1:0	1.42	8	40	<.5	<2	0.73	<,5	27	96	70	4.69	<10	<1	0.12	<10	0.94	325	4	0.04	21	700	10	<2	3	50	0.12	<10	<10	62	<10	72
331208	0.001	0.2	2.54	6	100	1.0	<2	0.59	<.5	10	39	12	3.41	<10	<1	0.71	10	1.02	490	<1	0.03	3	1070	22	2	4	26	<.01	<10	<10	50	<10	72
331539	0.003	0.4	1.30	10	40	<.5	<2	0.92	<.5	10	134	87	2.96	<10	<1	0.17	<10	1.07	265	26	0.02	28	1060	6	<2	4	16	0.17	<10	<10	127	<10	42
331541	0.001	1.0	1.15	6	50	<0.5	<2	0.96	<.5	16	209	121	2.58	<10	<1	0.11	<10	0.77	830	8	0.02	125	820	4	<2	7	21	0.11	<10	<10	96	<10	122
331544	0.003	0.2	2.10	6	30	<.5	<2	1.70	0.5	12	164	70	3.21	<10	<1	0.06	<10	1.13	320	8	0.01	20	910	8	<2	4	29	0.18	<10	<10	114	<10	104
331546	0.004	0.8	1.79	4	80	<.5	<2	1.49	<.5	16	81	57	3.59	<10	<1	0.22	<10	1.06	300	3	0.03	22	1170	6	<2	3	39	0.21	<10	<10	99	<10	64
331547	0.002	0.6	1.55	22	110	<.5	<2	0.34	<.5	8	170	20	3.42	<10	<1	0.28	<10	1.02	520	7	<0.01	4	650	20	<2	4	20	0.13	<10	<10	69	<10	66
331552	0.001	0.8	2.36	10	20	0.5	<2	2.20	0.5	20	131	223	3.87	<10	<1	0.08	<10	1.19	400	3	0.04	39	1900	20	<2	5	62	0.17	<10	<10	116	<10	74
331553	0.001	0.6	2.27	16	30	0.5	<2	1.86	<.5	15	138	162	3.63	<10	1	0.09	<10	1.18	360	3	0.05	28	2030	42	8	4	66	0.15	<10	<10	125	<10	60
331554	0.001	1.2	2.04	32	30	<.5	<2	0.80	<.5	31	115	228	7.18	<10	1	0.07	<10	1.74	565	13	0.01	40	1930	16	2	9	41	0.20	<10	<10	163	<10	62
331558	0.001	1.2	1.67	8	50	<.5	<2	0.86	<.5		119	86	2.97	<10	<1	0.13	<10	1.15	340	5	0.06	30	760	6	<2	3	46	0.13	<10	<10	76	<10	86
331614	0.001	2.8	0.37	1700	<10	<.5	12	0.06	<.5		57		>15.00	10	<1	0.03	<10	0.22	150	2	<.01	146	50	36	40	<1	8	<.01	<10	<10	9	<10	26
331615	0.001	11.0	3.64	84	<10	<.5	6	0.91	<,5	82	55	1335	13.25	10	<1	0.03	<10	2.98	1195	12	<.01	59	2660	16	6	2	93	0.22	<10	<10	128	<10	108
331616	0.001	0.2	4.03	<2	50	<.5	4	11.00	0.5		53	35	7.59	10	<1	<.01	<10	2.71	2810	1	<.01	4	90	6	4	3	1155	<.01	<10	<10	74	<10	122
331617	0.001	1.2	2.55	24	10	0.5	2	1.15	<.5		116	148	4.82	10	<1	0.04	<10	1.18	575	5	0.18	16	1230	14	4	3	135	0.15	<10	<10	104	<10	72
331619	0.013	1.0	3.06	10	180	<.5	<2	0.49	<.5	12	86	201	5.36	10	<1	1.64	<10	1.50	680	6	0.05	3	900	<2	<2	7	38	0.23	<10	<10	101	<10	56
331620	0.014	13.6	4.18	78	140	0.5	8	0.10	<.5		15	868	14.30	30	<1	0.64	<10	1.54	960	131	<.01	<1	950	12	2	4	19	0.13	<10	<10	95	<10	88
331621	0.012	0.4	2.47	2	50	0.5	4	0.91	<.5	10	66	106	3.96	10	<1	0.17	<10	1.06	590	4	0.01	2	810	<2	<2	5	117	0.20	<10	<10	107	<10	52
331622	0.016	0.6	2.19	<2	70	<.5	<2	1.18	<.5	8	146	52	2.90	10	<1	0.24	<10	1.18	680	6	<.01	3	670	<2	2	3	99	0.13	<10	<10	57	<10	56
331623	0.013	<.2	1.63	<2	130	<.5	2	0.44	<.5		139	7	3.82	10		0.32	<10	1.01	515	3	0.04	3	780	2	2	4	41	0.11	<10	<10	52	<10	56
331624	0.014		1.41	<2	100	<.5	<2	0.20	<.5	19	90	53	6.41	<10		0.16	<10	0.56	290	18	0.01	1	700	2	2	3	22	0.13	<10	<10	47	<10	38
331625	0.015	<.2		<2	150	<.5	2	0.37	<.5		90	4	4.04	10			<10	0.94	315	2	0.05	2	790	2	2	3	44	0.09	<10	<10	47	<10	42
331626	0.013	<.2	2.72	<2	10	<.5	<2	1.64	<.5	<1	58	2	0.35	<10	<1	0.08	<10	0.06	60	3	0.01	1	30	2	<2	<1	239	<.01	<10	<10	4	<10	10

