GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

> DATE RECEIVED JAN 2 0 1997

GEOLOGICAL and GEOCHEMICAL **REPORT**

ON THE

ROCKET #1 CLAIM GROUP

Record Numbers 341427 & 341428 JAN - \$ 1037 , 1 Gold Commissioner's Office VANCOUVER, B.C.

CAMBRIA ICEFIELD AREA SKEENA MINING DIVISION **BRITISH COLUMBIA**

N.T.S.: 103 P/12

LATITUDE: 55 DEGREES 39 MINUTES NORTH LONGITUDE: 129 DEGREES 45 MINUTES WEST

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

for

CAMNOR RESOURCES LTD.

by

ANDREW L. WILKINS P.Geo.

November, 1996

SUMMARY

The Rocket #1 Claim Group is located 35 kilometers southeast of Stewart, British Columbia. The claim group consist of 36 units and is owned by Camnor Resources Ltd.

The Rocket #1 Claim Group occurs on the boundary of the "Golden Triangle" of northwestern B.C. The area is host to several operating mines including the Snip, Silbak/Premier and Eskay Creek mines. Many significant discoveries occur close to the claims. Royal Oaks' Red Mountain deposit occurs 36 kilometers to the north, Camnor Resources' Willoughby deposit occurs 37 kilometers to the north-northeast. Teuton Resources and Minvita Enterprises' Cone Mountain deposit occurs 17 kilometers to the north and the old Dolly Varden and Torbrit silver mines occurs 16 kilometers to the east-northeast.

The property is underlain by granodiorite and diorite belonging to the Coast Plutonic Complex.

Eight man days were spent on the property stream sediment silt sampling, prospecting, geological mapping and rock sampling. Gossanous zones within the diorite ran up to 83.6 ppm silver.

Due to the lack of prospective geology, no further work is recommended on the property except for prospecting in the lower reaches of the property.

j

TABLE OF CONTENTS

1.	INTDO	DUCTIC		Page #
	1.1 1.2 1.3	LOCAT CLIMA	TION & ACCESS TE, TOPOGRAPHY & VEGETATION STATUS	1 1 1
	1.4	REGIO PROPI	NAL EXPLORATION HISTORY ERTY EXPLORATION HISTORY VORK PROGRAM	1 3 3
			VORKEROGRAM	3
2.	GEOLO 2.1 2.2	REGIO	NAL GEOLOGY ERTY GEOLOGY	3 3
3.	3.1 3.2	SAMPI STREA	RY DUCTION LE PREPARATION & ANALYTICAL PROCEDURE AM SEDIMENT SILT GEOCHEMISTRY BATION, MINERALIZATION & ROCK GEOCHEMISTRY	4 4 4 5
4.	CONC	LUSION	S & RECOMMENDATIONS	5
5.	REFER	RENCES	3	6
6.	STATE	MENT (OF EXPENDITURES	7
7.	STATE	MENT (OF QUALIFICATIONS	8
APPEN			ROCK SAMPLE DESCRIPTIONS ANALYTICAL RESULTS	9 10
LIST C	F FIGUR FIGUR FIGUR FIGUR FIGUR	E 1: E 2: E 3:	PROPERTY LOCATION MAP CLAIM MAP PROPERTY GEOLOGY SAMPLE LOCATION MAP	
LIST C	TABLE	1: 2:	CLAIM STATUS TABLE OF FORMATIONS THRESHOLD VALUES FOR ANOMALOUS STREAM SAMPLES	1 3 5

1.0 INTRODUCTION

1.1 LOCATION AND ACCESS

The Rocket #1 Claim Group is located 35 kilometers southeast of Stewart, B.C. in the Skeena Mining Division south of the Cambria Icefield. The property is centered at 55 degrees 39 minutes north latitude and 129 degrees 45 minutes west longitude (NTS: 103P/12). The north end of Hastings Arm lies 3 kilometers to the southwest. Access to the property is by helicopter.

1.2 CLIMATE, TOPOGRAPHY AND VEGETATION

The climate in the vicinity of the Rocket #1 Claim Group is typical of the Coast Range Mountains. Temperatures are moderate due to the proximity of the Pacific ocean and range from a minimum of -25 degrees Celsius in the winter time to a maximum of 25 degrees in the summer. Precipitation is heavy (300 centimeters annually) with most of it falling as snow in the winter and rain or snow in the summer. The exploration season lasts from June to late September.

The topography of the property is rugged and steep with precipitous slopes leading away from the Kshwan River at 120 meters (400 feet) to high mountain ridges topping out at an elevation of 1,490 meters (4,900 feet).

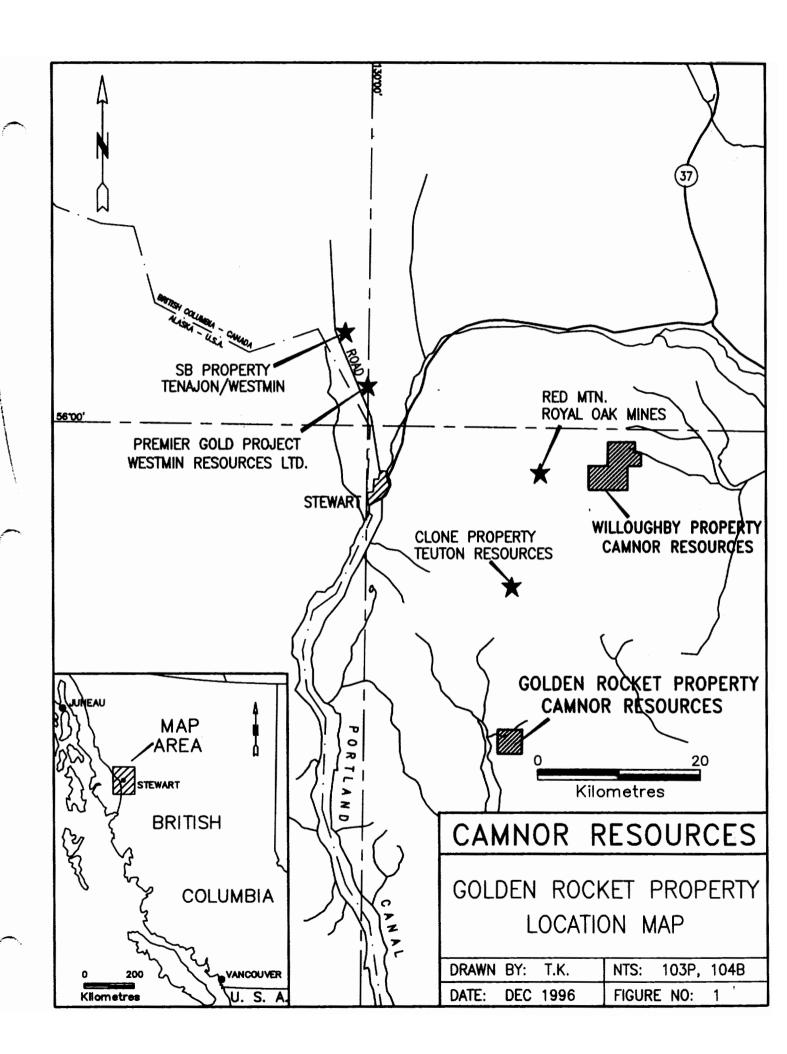
Above 1000 meters, the vegetation is typical of the subalpine consisting of alpine heather and stunted alpine spruce and fir. Below 1000 meters the vegetation is very thick and consists of slide alder, devils club, blueberry bushes, spruce, fir, hemlock and cedar forests.

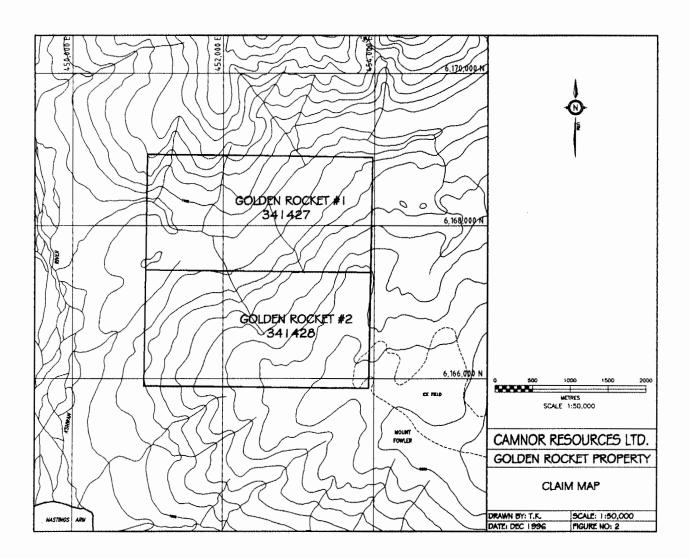
1.3 CLAIM STATISTICS

The Rocket #1 Claim Group is located within the Skeena Mining Division and staked under the provisions of the British Columbian Mineral Tenure Act. The claims cover approximately 900 hectares and are listed in table 1 below.

TABLE 1: CLAIM STATUS

Claim Name	Record Number	Renewal Period*	Total # of Units
Golden Rocket #1	341427	11-Oct-976	18
Golden Rocket #2	341428	11-Oct-9 %	18


^{*} pending acceptance of this report.


The claims are owned by Camnor Resources Ltd. of Vancouver, BC.

1.4 REGIONAL EXPLORATION HISTORY

The Rocket #1 Claim Group is surrounded by many past mining producers and promising exploration prospects.

Exploration in the Kitsault River area 16 kilometers to the east-northeast started in the early 1900's with the discovery of silver - lead - zinc stratabound volcanogenic deposits. In 1919, a

railway was built from Alice Arm up the Valley to the Dolly Varden deposit. Between 1919 and 1921, 33,434 tonnes of ore was mined producing 42,500,000 grams (1,300,000 ounces) of silver, 3,200,000 kilograms of copper and 15,400,000 kilograms of lead. Little exploration was done between 1930 and 1946. In 1946, a road was built from Alice Arm up the Kitsault Valley. A new mill was constructed and production started in 1949. Between 1949 and 1959, 1,251,339 tonnes of ore were mined from the Torbrit deposit producing 579,400,000 grams (18,600,000 ounces) of silver and 5,000,000 kilograms (11,000,000 pounds) of lead. Reported reserves from more recent work on the Dolly Varden, Northstar, Torbrit, and Wolf deposits are 1,300,000 tonnes of ore with 441,600,000 grams (14,200,000 ounces) of contained silver (Devlin, 1987).

The Hidden Creek mine lies 23 kilometers to the south on Observatory Inlet. It was a major copper producer between 1914 and 1936 and is a stratabound massive sulphide deposit. 21,725,524 tonnes of copper ore were produced from the Number 1 to 6 ore bodies. The average grade was 1.4 percent copper, 0.17 grams per tonne gold and 9.5 grams per tonne silver. Measured recoverable reserves of 1,996,000 tonnes grading 0.9 per cent copper remain in the Number 1 to 8 orebodies. Open pit reserves for the quartz vein stockwork are defined as 45,400,000 tonnes grading 0.6 per cent copper (BC Minfile No. 103P 021).

The Georgia River property occurs 25 kilometers to the northwest of the claims. Mineralization occurs in quartz veins. In 1937, 454 tonnes of ore were mined, producing 10,233 grams of gold, 12,752 grams of silver and 3,312 kilograms of lead. Recent underground exploration and diamond drilling on the Southwest vein has resulted in indicated reserves of 291,239 tonnes grading 28.76 grams per tonne gold and 22.48 grams per tonne silver. The Bullion vein has unclassified reserves of 5,619 tonnes grading 4.18 grams per tonne gold and 10.28 grams per tonne silver (BC Minfile No. 103O 013).

Seventeen kilometers to the northwest is the recent gold - cobalt discovery on the Clone property on the south margin of the Cambria Icefield. In the fall of 1995, Teuton Resources Corporation and Minvita Enterprises Ltd. reported trenching results up to 123.09 grams per tonne (3.59 ounces per ton) gold over 5.5 meters (Teuton - Minvita Company news release, October 4, 1995) and drill results of up to 63.43 grams per tonne (1.85 ounces per ton) gold over 8.0 meters (Teuton - Minvita Company news release, January 11,1996). The 1996 field season has recorded results of up to 86.37 grams per tonne (2.519 ounces per ton) gold and 0.738 per cent cobalt over 2.3 meters in trenches (Teuton - Minvita Company news release, September 20, 1996) and up to 44.33 grams per tonne (1.293 ounces per ton) gold over 2.7 meters and 8.23 grams per tonne (0.240 ounces per ton) gold and 0.131 per cent cobalt over 6.0 meters (Teuton - Minvita Company news release, October 4, 1996). Mineralization is controlled by a major structure that has been traced over a strike length of 1.5 (Teuton - Minvita Company news release, August 29, 1996).

Royal Oak's Red Mountain gold deposit is located 36 kilometers to the north. Reserves to date are around 1,000, 000 ounces of gold. Other significant deposits in the area include Camnor Resources Ltd.'s Willoughby gold property 37 kilometers to the north-northeast. Mineralization at both Red Mountain and Willoughby is structurally controlled and spatially related to Goldslide Jurassic Intrusions.

Molybdenum mineralization associated with Eocene intrusions were discovered in 1965. The Lime Creek deposit is located 32 kilometers to the southeast of the claims, 5 kilometers east of Alice Arm. Between 1967 and 1972, a total of 9,329,669 tonnes grading 0.112 per cent molybdenum were mined. During 1981 and 1982, 1,069,548 tonnes of stockpiled ore grading 0.076 per cent molybdenum were milled (BC Minfile No. 103P 120). The Ajax deposit is located 24 kilometers to the east-southeast of the claims on Mount McGuire, and has a drill defined reserve of 1,143,000,000 tonnes grading 0.09 per cent molybdenum (Dawson & Aldrick, 1986) making it the largest undeveloped reserve of molybdenum in British Columbia.

1.5 PROPERTY EXPLORATION HISTORY

The only known exploration on the property was stream sediment silt sampling of one of the creeks draining the property by the Geological Survey of Canada during their regional stream sediment survey conducted in 1978. The creek was anomalous in gold (73 ppb).

1.6 1995 WORK PROGRAM

Exploration consisted of helicopter stream sediment silt sampling, followed by prospecting, rough geological mapping and rock sampling of anomalies. Andrew Wilkins, Krista Nelson, Marislav K and Tim Kerby did all the work on the claims. Eight man days were spent on the property. A total of 18 stream sediment silt samples and 13 rock samples were collected. The focus of the work was to evaluate the potential for gold deposits similar to that of the Clone and Red Mountain deposits to the north.

2. GEOLOGY

2.1 REGIONAL GEOLOGY

The most recent regional mapping in the area was completed by the Geological Survey of Canada during the summer of 1993 and 1994 (Greig et al 1994). This mapping is well to the north of the property. Mapping to the east was completed by the Ministry of Energy, Mines and Petroleum Resources in 1986 (Alldrick et al 1986). The only mapping that covers the property was performed by the Ministry of Energy, Mines and Petroleum Resources in 1986, (Grove, 1986).

The property lies on the contact between the Stewart Complex in the Intermontane Belt and the Coast Plutonic Complex. The Stewart Complex is composed of a broad belt of island arc volcanics and related intrusions trending north northeastward for 150 kilometers from Anyox in the south to the Iskut River in the north (Grove, 1986). The volcanics are part of the Hazelton Group and are Jurassic in age. The Stewart Complex hosts several mines including Homestake's Eskay Creek deposit and Snip deposit and Westmin's Silbak-Premier deposit. The rocks are highly prospective with numerous mineralized showings and prospects, including Royal Oak's Red Mountain deposit, Camnor's Willoughby Nunatak deposit, Newhawk's Sulphurets deposit, Teuton and Minvita's Clone deposit and the old Dolly Varden and Torbrit Mines. The Tertiary Coast Plutonic Complex consists of large batholiths of predominately quartz monzonite and granodiorite that form the core of the Coast Range Mountains up and down the coast of British Columbia and the Alaskan Panhandle. The Complex includes roof pendants of the older crustal rocks.

2.2 PROPERTY GEOLOGY

The property geology is presented in Figure 3.

The majority of outcrop on the property consists of medium to coarse grained granodiorite to diorite belonging to the Coast Mountain Plutonic Complex.

TABLE 2: TABLE OF FORMATIONS

QUATERNARY
PLEISTOCENE AND RECENT

Qal Glacial drift and alluvium.

Unconformity

HAZELTON GROUP LOWER JURASSIC

Jc .. dark gray argillite and siltstone, hornfelsed.

Intrusive Contact

COAST MOUNTAIN PLUTONIC COMPLEX LOWER JURASSIC TO TERTIARY

JCM .. medium to coarse grained, equilgranular, granodiorite or diorite.

3. GEOCHEMISTRY

3.1 INTRODUCTION

Stream sediment silt samples were collected from most of the small creeks draining the property. Rock samples were collected from any interesting alteration or mineralization. A total of 18 stream sediment silt samples and 13 rock samples were collected.

Sample locations are presented in Figure 4. Rock sample descriptions are presented in Appendix 1. Geochemical analysis are presented in Appendix 2.

3.2 SAMPLE PREPARATION AND ANALYTICAL PROCEDURE

Rock samples were collected in plastic bags and sent to the Westmin Assay lab in Stewart, B.C. Samples were then crushed down to 3/16 of an inch, and then a 1/2 pound of the sample is pulverized to minus 100 mesh. Gold was analyzed from a 10 gram fraction by the conventional Atomic Absorption (AA) technique. The pulps were then sent to Chemex Labs in North Vancouver. Silt samples were collected in plastic bags and sent to Chemex Labs in North Vancouver. At Chemex, silt samples were oven dried at approximately 60 degrees Celsius and sieved to minus 80 mesh. A 0.5 gram sample of the minus 80 fraction of all samples was digested in hot, dilute aqua regia in a boiling water bath and then diluted to 10 millilitres with distilled water. Samples were analysed for a group of 32 elements using the Induced Coupled Plasma (ICP) technique. In addition, gold was analysed from a 10 gram fraction by the conventional Atomic Absorption (AA) technique. Any rock samples greater than 100 ppm silver and/or 10,000 ppm copper, lead, zinc and/or arsenic were assayed for the respective element by conventional assay techniques.

3.3 STREAM SEDIMENT SILT GEOCHEMISTRY

Stream sediment geochemistry results were compared with the results from the Regional Geochemistry Survey conducted in 1978 by the British Columbia Geological Survey. Samples greater than the 95th percentile were considered anomalous for gold, silver, copper, lead, zinc and arsenic. Anomalous thresholds are outlined in the following table.

TABLE 3: THRESHOLD VALUES FOR ANOMALOUS STREAM SAMPLES

Element	Anomalous Values
Gold	≥ 29 ppb
Silver	≥ 0.5 ppm
Copper	≥ 91 ppm
Lead	≥ 23 ppm
Zinc	≥ 221 ppm
Molybdenum	≥ 5
Arsenic	≥ 67 ppm

The Rocket Property was staked around a creek that assayed 73 ppb gold from the Geological Survey of Canada's regional stream sediment survey conducted in 1978. None of the stream sediment silt samples taken upstream of this sample ran in gold. The only other gold anomaly (50 ppb) came from a creek in the northern portion of the property. This creek also ran in lead (54 ppm). The property contains scattered silver (up to 1.8 ppm), lead (up to 36 ppm) and molybdenum (up to 11 ppm) anomalies.

3.4 ALTERATION, MINERALIZATION AND ROCK GEOCHEMISTRY

Small gossanous zones exist in the southeastern portion of the claims. These zones consist of fractured hornblende-biotite diorite. Epidote + sericite alteration is common. Numerous rock samples were taken from these zones. Samples ran up to 0.45 grams per tonne (0.013 ounces per ton) gold, 83.6 ppm silver, 6160 ppm copper and 3330 ppm zinc.

4. CONCLUSIONS AND RECOMMENDATIONS

The Rocket #1 Claim Group is underlain by mostly intrusives of the Coast Plutonic Complex. The highly prospective Hazelton Group volcanics and sediments do not occur on the property. Gossanous zones within the diorite have been found with anomalous values in silver (83.6 ppm), copper (6160 ppm) and zinc (3330 ppm). Alteration in these zones consist of epidote + sericite + pyrite.

Because of the lack of encouraging geology, no more work is warranted except for more prospecting in the lower elevations of the property.

5. REFERENCES

- Alldrick, D.J., Dawson, G.L., Bosher, J.A. and Webster, I.C.L.., 1986. **Geology of the Kitsault River Area (NTS 103P).** British Columbia Ministry of Energy, Mines and Petroleum Resources, Open File Map 1986/2.
- Black, J.M., 1951. **Geology and Mineral Occurrences of the Upper Kitsault Valley.** British Columbia Ministry of Energy, Mines and Petroleum Resources Annual Report, 1951, p A76 A83
- Blackwell, J.D., 1986a. Geology and Geochemistry of Sault 1, 3, 4, 5, 7 and 8 Mineral Claims. Assessment Report, Cominco Ltd., 1986.
- Blackwell, J.D., 1986b. Geology, Geochemistry and Geophysics of Sault 1, 3, 4, and 5
 Mineral Claims. Assessment Report, Cominco Ltd., 1986.
- Campbell, F.A., 1959. The Geology of the Torbrit Silver Mine. Economic Geology, v. 54, p. 1461 -1495, 1959.
- Dawson, G.L., and Alldrick, D.J., 1986. **Geology and Mineral Deposits of the Kitsault Valley.** (103P/11, 12), British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1986-1, p. 327 -330.
- Devlin, B.D., and Godwin, C.I., 1986a. **Geology of the Dolly Varden camp, Alice Arm Area.** (103P/11, 12), British ColumbiaMinistry of Energy, Mines and Petroleum Resources, Paper 1986-1, p. 327 330.
- Devlin, B.D., 1987. **Geology and Genesis of the Dolly Varden Silver Camp, Alice Arm Area.** Unpublished M.Sc. Thesis, University of British Columbia, 1987.
- Cremonese, D., 1982. Geochemical and Prospecting Work on the Hanna 1 and 2 Claims. Assessment Report, Bosc Resources, 1982.
- Greig, C.U., Anderson, R.G., Daubeny, P.H., Bull, K.F., and Hinderman, T.K., 1994. **Geology of the Cambria Icefield: Regional Setting for the Red Mountain Gold Deposit,**Northwestern British Columbia; in Current Research 1994-A; Geological Survey of Canada, p. 45 to 56, 1994.
- Greig, C.U., Anderson, R.G., Daubeny, P.H. and Bull, K.F., 1994. **Geology of the Cambria**Icefield Area: Stewart (103P/13), Bear River (104A/4), and parts of Meziadin Lake
 (104A/3) and Paw Lake (103P/14), Northwestern British Columbia; Geological Survey of Canada, Open File 2931, 1994.
- Grove, E.W., 1986. **Geology and Mineral Deposits of the Unik Salmon River Anyox Area**; Bulletin 63, British Columbia Ministry of Energy, Mines and Petroleum Resources, 1986.
- Geological Survey of Canada, 1978. **Regional Stream Sediment and Water Accelerated Geochemical Survey, B.C.,** NTS 103P and Part of 103O, RGS-2-1978.

6. STATEMENT OF EXPENDITURES

Salaries		
Project Geologist	2 days @ \$375.00 per day	\$750.00
Geologist	2 days @ \$275.00 per day	\$550.00
Prospectors	4 days @ \$225.00 per day	\$900.00
Helicopter	2.6 hours @ \$750.00 per hour	\$1,950.00
Geochemistry		
	16 samples @ \$15.35 per sample	\$245.60
	13 samples @ \$16.00 per sample	\$208.00
Room and Board	7 days @ \$80.00 per day	\$700.00
Truck Rental	2 days @ 80.00 per day	\$160.00
Report / Drafting	2 days @ 50.00 pci day	\$1,000.00
,		
SubTotal		\$6,463.60
Management Fees (10%)		\$646.36
Total		\$7,109.96

7. STATEMENT OF QUALIFICATIONS

- I, Andrew L. Wilkins, of PO Box 629, Pemberton, BC, certify that:
- 1) I am a graduate of the University of British Columbia with a Bachelor of Science degree in the Geological Sciences (1981).
- 2) I have been engaged in the mining exploration industry in British Columbia and the Yukon since 1978.
- 3) I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4) I performed most of the work on the Rocket #1 Claim Group in the summer of 1996.

5) I am the author of this report.

Dated this fifteent day of December, 1996.

Andrew L. Wilkins P.Geo.

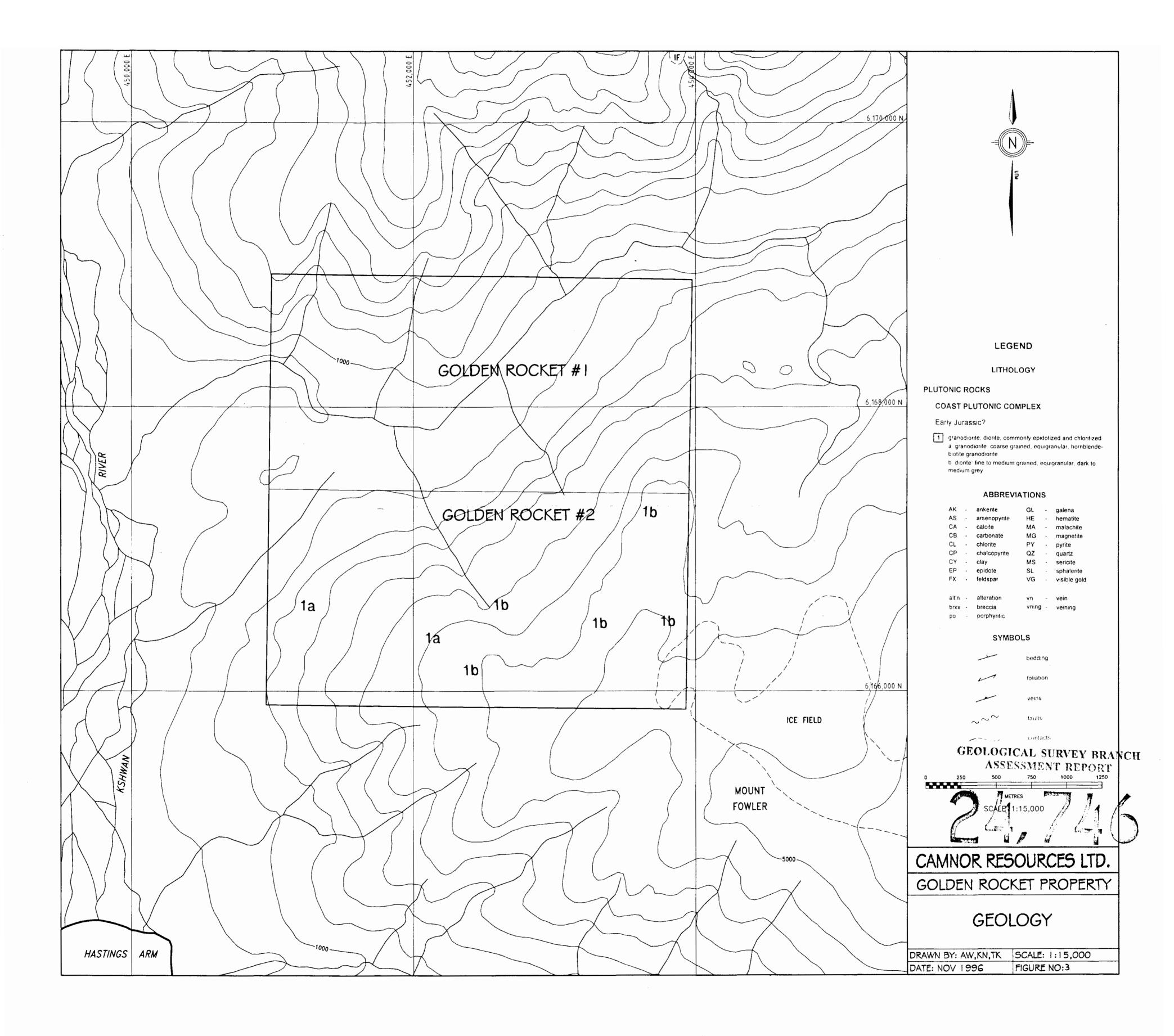
APPENDIX 1: ROCK SAMPLE DESCRIPTIONS

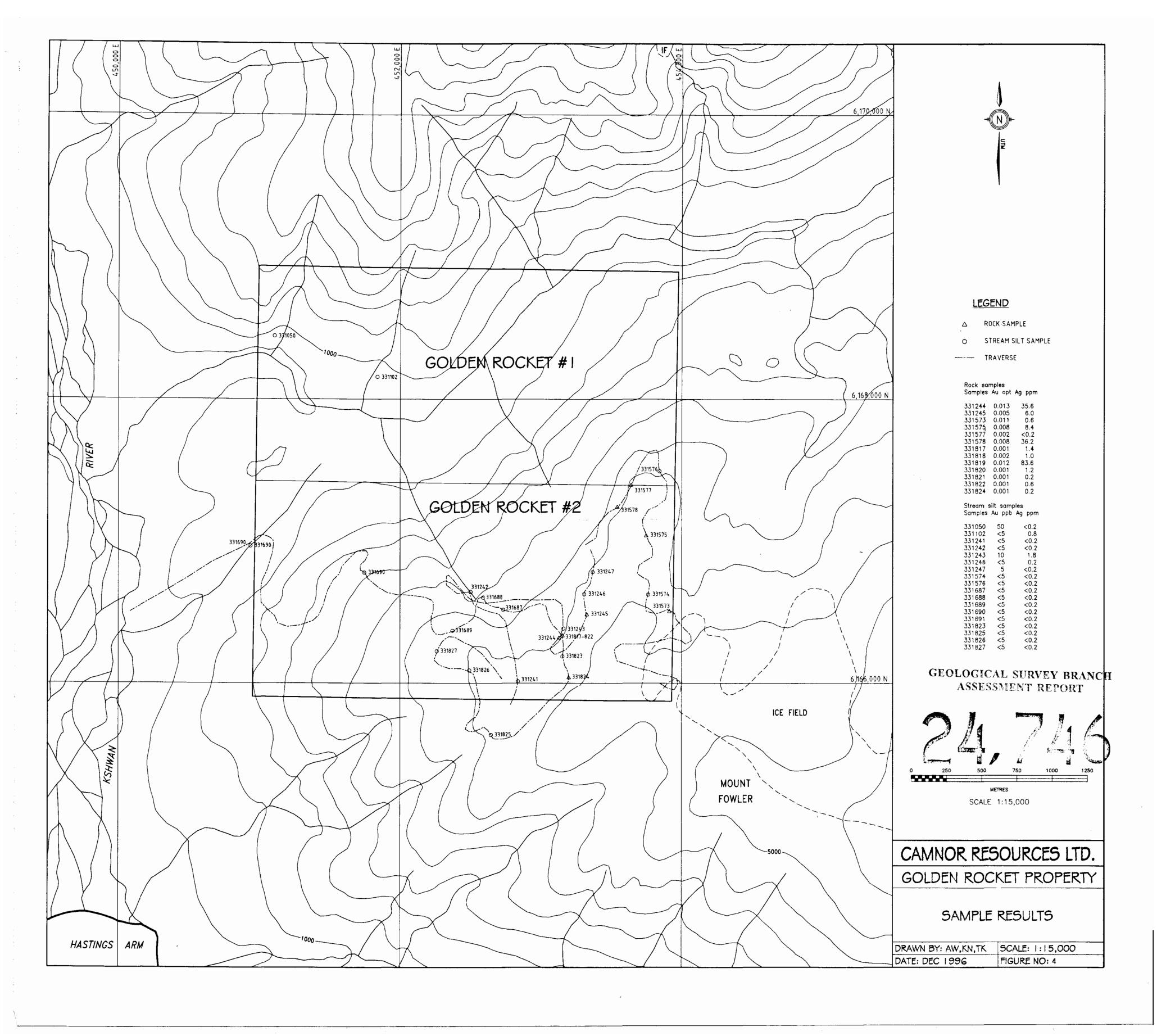
Camnor Resources Ltd.
Rock Sample Descriptions - Golden Rocket Property

Date	Sample No.	Sample Type	Sampler	Eastings	Northings	Rock Type	Alteration	Mineralization	Sample Description	Au g/ton opt	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm
July 30	331244	grab	KN	453130	6166321	hbl-bio diorite	epidote + pyrite + sericite	10% blebs and disseminations of pyrite	brownish orange to deep purple gossanous. Blebs and disseminations of pyrite and epidote along sericitic fractures of a dark grey hbl-bio diorite	0.45 0.013		6160	26	816	4
July 30	331245	grab	KN	453327	6166486	hbl-blo diorite	epidate + pyrite	10% blebs and disseminations of pyrite	brownish orange to deep purple gossanous. Blebs and disseminations of pyrite and epidote along sericitic fractures of a dark grey hbl-bio diorite	0.17 0.005	6.0	571	54	3330	4
July 30	331573	grab	TK	453913	6166508	diorite	pyrite + minor epidote	5% disseminated pyrite	dark brown orange gossanous, medium grained, medium grey, equigranular diorite	0.38 0.011		81	2	64	<2
July 30	331575	grab	TK	453748	6167040	diorite	pyrite + minor epidote	5% blebs and disseminations of pyrite	medium brown orange gossanous, medium grained, medium grey, equigranular diorite	0.27 0.008	- 1	5310	6	656	4
July 30	331577	grab	TK	453641	6167397	diorite	quartz vein + pyrite + minor chlorite	<5% disseminated pyrite	medium orange gossanous, quartz vein from a medium grained, medium grey, diorite	0.07 0.002		46		22	
July 30	331578	grab	TK	453542	6167246	higly altered vein	sericite + limonite	?	dark brownish orange gossanous, limonite, sericite altered with some boxwork texture	0.27 0.008	36.2	309		318	388
Sept. 30	331817	1.15m chip	KN	453154	6166336	hbl-bio diorite	epidote + pyrite + sericite	10% blebs and disseminations of pyrite	brownish orange iron and purple manganese stained, dark grey hbl-bio diorite. Pyrite and epidote along sericitic fractures.	0.03 0.001	1.4	30	38	86	2
Sept. 30	331818	1.0m chip	KN	453154	6166336	hbl-bio diorite	epidote + pyrite + sericite	10% blebs and disseminations of pyrite	brownish orange iron and purple manganese stained, dark grey hbl-bio diorite. Pyrite and epidote along sericitic fractures.	0.07 0.002	1.0	51	16	138	2
Sept. 30	331819	1.2m chip	KN	453154	6166336	hbi-bio diorite	pyrite	5% pyrite blebs + minor silvery fine grained mineral	intense orange iron and purple manganese stained, dark grey, fine to medium grained hbl-bio diorite	0.41 0.012	83.6	3970	520	1725	2
Sept. 30	331820	0.9m chip	KN	453154	6166336	hbl-bio diorite	pyrite	minor fine grained disseminated pyrite	tan weathering with minor orange iron and purple manganese stains, fine to medium grained, dark grey hbl-bio diorite	0.03 0.001	1.2	95	20	166	
Sept. 30	331821	1.2m chip	KN	453154	6166336	hbì-bio diorite	pyrite + epidote	5% pyrite blebs	orange iron and purple manganese stained dark grey diorite with epidote veins	0.03 0.001	0.2	20	8	56	2
Sept. 30	331822	0.8m chip	KN	453154	6166336	hbl-bio diorite	pyrite + epidote	5% pyrite blebs	orange iron and purple manganese stained dark grey diorite with epidote veins	0.03 0.001		16	8	54	<2
Sept. 30	331824	grab	KN	453199	6166043	hbl-bio diorite	pyrite + sericite	5% medium to fine pyrite crystals and blebs + minor fine grained silvery min.	orange iron and purple manganese stained dark grey diorite with sericite veins	0.03 0.001	0.2	9	4	56	2

APPENDIX 2: ANALYTICAL RESULTS

Silt Samples*


	998	983	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2150	2130	2131	2132	2151	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149
SAMPLE	Au	Au ppb	Ag	Äl	As	Ba	Ве	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	TI	U	V	W	Zn
NUMBER	oz/T	FA+AA	ppm	%	ppm	ppm	ppm	ppm	<u>%</u>	ppm	ppm	ppm	ppm	<u>%</u>		ppm	_%_	ppm	_%_	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm		ppm
331050	0.001	50	<.2	2.37	<2	130	<.5	_ 2	0.88	0.5	12	12	25	3.88	10	<1	0.45	<10	1.46	990	4	<.01	6	1370	54	<2	4	64	0.17	<10	<10	86	<10	120
331102	N/A	<5	0.8	2.06	<2	120	<.5	6	0.87	0.5	12	49	32	3.77	<10	<1	0.20	10	1.44	935	2	0.01	18	1280	14	2	5	73	0.17	<10	<10	74	<10	112
331241	N/A	<5	<.2	2.15	18	80	<.5	<2	0.27	<.5	14	34	43	4.04	<10	<1	0.12	<10	1.06	1050	7	<.01	32	910	22	<2	6	35	0.07	<10	<10	81	<10	102
331242	N/A	<5	<.2	2.32	20	100	<.5	<2	0.17	0.5	19	41	52	4.14	<10	<1	0.10	<10	1.13	1970	3	<.01	44	1030	20	2	6	13	0.04	<10	<10	71	<10	122
331243	N/A	10	1.8	3.20	18	180	<.5	<2	0.32	<.5	8	16	83	3.54	<10	<1	0.44	<10	1.27	545	5	0.01	13	1130	24	2	7	32	0.14	<10	<10	81	<10	82
331246	N/A	<5	0.2	3.00	14	120	<.5	<2	0.29	<.5	15	20	56	4.05	<10	<1	0.27	<10	1.23	1245	11	<.01	17	1180	36	<2	7	31	0.13	<10	10	101	<10	104
331247	N/A	5	<.2	2.51	20	110	0.5	<2	0.13	0.5	17	39	64	4.04	<10	<1	0.15	<10	1.09	1365	3	<.01	53	1000	24	2	7	11	0.06	<10	<10	71	<10	144
331574	N/A	<5	<.2	3.21	2	40	0.5	<2	1.80	<.5	11	12	23	3.19	10	<1	0.13	10	0.79	760	<1	0.01	10	1250	18	2_	4	207	0.12	<10	<10	68	<10	68
331576	N/A	<5	<.2	3.63	20	140	0.5	<2	0.79	<.5	22	36	39	4.44	<10	<1	0.24	<10	1.25	1845	<1	<.01	32	1180	20	10	6	75	0.10	<10	<10	99	<10	106
331687	N/A	<5	<.2	2.60	18	90	<.5	<2	0.26	<.5	19	52	40	4.67	<10	<1	0.13	<10	1.41	1630	4	0.01	45	890	16	<2	6	17	0.06	<10	<10	92	<10	114
331688	N/A	<5	<.2	2.29	12	100	<.5	<2	0.38	<.5	15	41	35	4.20	<10	<1	0.15	<10	1.35	1135	3	0.01	37	980	14	<2	6	26	0.07	<10	<10	78	<10	102
331689	N/A	<5	<.2	2.66	18	90	<.5	<2	0.50	<.5	16	46	39	4.51	<10	<1	0.15	<10	1.37	1250	3	0.01	43	1020	14	<2	6		0.07	<10	<10	85	<10	106
331690	N/A	<5	<.2	1.92	14	50	<.5	<2	0.12	<.5	7	27	19	3.54	<10	<1	0.12	<10	0.83	525	1	<.01	19	440	16	<2	3	10	0.07	<10	<10	79	<10	52
331691	N/A	<5	<.2	2.79	16	80	0.5	<2	0.52	0.5	19	26	26	3.97	<10	<1	0.14	<10	0.80	1850	11	0.01	24	780	22	<2	4	36	0.10	<10	<10	76	<10	150
331823	N/A	<5	<.2	2.83	6	150	<.5	<2	1.19	<.5	12	18	26	4.06	<10	<1	0.43	10	1.11	920	3	0.05	18	1430	8	<2	5	147	0.17	<10	<10	92	<10	90
331825	N/A	<5	<.2	2.12	4	40	<.5	<2	0.97	<.5	10	16	19	2.94	<10	<1	0.12	<10	0.76	805	1	0.01	15	940	10	<2	3		0.07	<10	<10	54	<10	72
331826	N/A	<5	<.2	2.48	16	70	<.5	<2	0.14	<.5	13	46	38	4.76	<10	<1	0.10		1.24	995	1	<.01	37	820	16	<2	5	<u> </u>	0.04	<10	<10	94	<10	80
331827	N/A	<5	<.2	2.61	24	100	<.5	<2	0.18	<.5	17	52	46	5.39	<10	<1	0.13	<10	1.36	1355	3	0.01	48	960	30	<2	6	12	0.04	<10	<10	94	10	110


^{*}All assays from Chemex

Rock Samples*

		2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2150	2130	2131	2132	2151	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149
SAMPLE	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co	Сг	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	TI	U	V	W	Zn
NUMBER	oz/T	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	<u>%</u>		ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	<u>%</u>	ppm	ppm	ppm	ppm	ppm
331244	0.013	35.6	2.8	4	10	<.5	14	0.83	34	37	42	6160	9.9	<10	<1	0.71	<10	1.08	600	11	0.11	6	840	26	<2	6	85	0.12	<10	<10	90	<10	816
331245	0.005	6	4.35	4	20	0.5	6	2.31	29	15	66	571	7.53	<10	<1	0.71	<10	0.65	485	16	0.22	3	850	54	<2	6	64	0.12	<10	<10	75	<10	3330
331573	0.011	0.6	3.02	<2	70	<.5	<2	0.44	<.5	61	72	81	7.26	10	<1	1.25	<10	1.61	1045	4	0.07	4	890	2	<2	12	34	0.22	<10	<10	162	<10	64
331575	0.008	8.4	2.96	4	40	<.5	<2	0.58	13.5	108	198	5310	10.4	10	1	0.43	<10	1.45	1095	56	0.03	5	470	6	<2	10	78	0.13	<10	<10	119	<10	656
331577	0.002	<.2	0.46	<2	1490	<.5	<2	0.08	<.5	2	235	46	2.64	<10	<1	0.11	<10	0.24	180	5	<.01	4	280	4	<2	3	128	0.02	<10	<10	25	<10	22
331578	0.008	36.2	1.64	388	10	<.5	234	0.17	1.5	12	78	309	10.85	<10	<1	0.92	<10	0.76	745	24	<.01	3	970	306	<2	4	6	0.16	<10	<10	63	<10	318
331817	0.001	1.4	2.66	2	30	<.5	<2	0.77	<.5	30	73	30	7.62	10	<1	0.93	<10	1.22	470	6	0.11	4	1010	38	<2	9	138	0.17	<10	<10	116	<10	86
331818	0.002	1	3.7	2	110	<.5	2	0.46	<.5	10	64	51	6.63	10	<1	1.78	<10	1.77	1050	4	0.06	3	1020	16	<2	11	28	0.24	<10	<10	121	<10	138
331819	0.012	83.6	3.05	2	40	<.5	130	0.49	25	35	52	3970	7.06	10	<1	1.3	<10	1.21	845	46	0.04	2	890	520	<2	8	19	0.19	<10	<10	104	<10	1725
331820	0.001	1.2	2.86	<2	520	<.5	<2	0.63	0.5	11	129	95	5.23	<10	<1	1.36	<10	1.51	745	1	0.12	4	1020	20	<2	11	66	0.23	<10	<10	129	<10	166
331821	0.001	0.2	2.36	2	370	<.5	<2	0.66	<.5	15	111	20	4.3	<10	<1	1.22	<10	1.59	590	1	0.05	4	1130	8	<2	9	63	0.22	<10	<10	109	<10	56
331822	0.001	0.6	2.47	<2	80	<.5	<2	0.59	<.5	28	119	16	5.83	<10	<1	1.1	<10	1.35	525	4	0.08	4	950	8	<2	10	43	0.19	<10	<10	111	<10	54
331824	0.001	0.2	2.96	2	80	<.5	<2	1.01	<.5	23	167	9	4.38	<10	<1	1.14	<10	1.39	880	3	0.12	4	870	4	<2	9	137	0.18	<10	<10	105	<10	56

^{*}All assays from Chemex except Au from Westmin

