

[

ſ

1

GEOLOGICAL	SUR	VEY	BRANCH
ASSESSM	ENT	REP	ORTS

DATE RECEIVED

REPORT COVERING

the

1996 DRILLING PROGRAM

on the

WINDY 1-5 CLAIMS CARIBOO MINING DIVISION

NTS 93-J-13W

Lat. 54° 57' N Long. 123° 50' W

by

U. Mowat, P.Geo.

for

Columbia Gold Mines Ltd. GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

1.0	Introduction	Page 1
2.0	Location and Access	Page 1
3.0	Claim Data	Page 1
4.0	History	Page 3
5.0	Regional Geology	Page 5
6.0	Property Geology	Page 6
7.0	Mineralization	Page 7
8.0	Drill Program	Page 7
	8.1 DDH 96-1 8.2 DDH 96-2 8.3 DDH 96-3 8.4 DDH 96-3A 8.5 DDH 96-4 8.6 DDH 96-5 8.7 DDH 96-6 8.8 DDH 96-7 8.9 DDH 96-8	Page 8 Page 8 Page 9 Page 9 Page 9 Page 10 Page 10 Page 10 Page 11
9.0	Conclusions	Page 11
10.0	Recommendations	Page 11
11.0	References	Page 13
12.0	Statement of Expenditures	Page 14
13.0 Appendix	Statement of Qualifications	Page 17

Appendix II - Analytical Results

_

•

FIGURES

•

Figure 1 -	Location Map	Page 2
Figure 2 -	Claim Map	Page 4
Figure 3 -	Drill Hole Location MapIn	Pocket

1.0 INTRODUCTION

A drilling program was performed on the Windy Property from September 24 to November 1, 1996. The program, which consisted of eight NQ diamond drill holes totaling 545.65 metres, tested four ground magnetic anomalies outlined by previous work done by Placer Dome Inc. Previous exploration located massive sulphides which were extremely magnetic from the magnetite and pyrrhotite content. Soil sampling strongly suggested that the magnetic anomalies were the source of anomalous gold, copper and arsenic in soils.

Core was obtained from four holes and sludges were collected from the remaining four. All core and sludges were analyzed for 30 elements by ICP and for gold by fire assaying techniques.

The core is stored at the campsite on the property (see Figure 3 for location of core storage).

2.0 LOCATION AND ACCESS

The Windy Property is located at 65 km NNE of Fort St. James on map sheet 93-J-13W at coordinates 54° 57' N and 123° 50'W. The Mt. Milligan porphyry copper-gold deposit is located 28 km to the northwest. The Windy Property lies within the Cariboo Mining Division.

The property is accessible from Fort St. James via the North Road to 50 km, then by the Germansen-Cripple Forestry Service Road to 21.5 km, and then by the 600 Road for another 4.5 km (see Figure 1 - Location Map).

3.0 CLAIM DATA

CLAIM NAME	NO. OF UNITS	RECORD NO.	EXPIRY DATE
Windy 1	20	204938	May 16, 2003
Windy 2	20	204941	June 3, 2003
Windy 3	12	205226	July 9, 2003
Windy 4	9	205227	July 9, 2003
Windy 5	9	205225	July 9, 2003
Windy 10	1	206202	June 25, 1997
Windy 11	1	206203	June 25, 1997
Windy 12	1	206204	June 25, 1997
Windy 13	1	206205	June 25, 1997
Windy 14	1	206206	June 25, 1997
Windy 15	1	206207	June 25, 1997

Windy 16	1	206208	June 25, 1997
Windy 17	1	206245	July 4, 1997
Windy 18	1	206246	July 4, 1997
Windy 19FR	1	206247	July 4, 1997

The Windy Property consists of 80 units. Columbia Gold Mines Ltd. has entered into an option agreement with R. Haslinger and A. Halleran whereby Columbia Gold Mines can earn 100% interest in the Windy Property by making staged payments. A NSR is retained by Haslinger and Halleran.

4.0 HISTORY

The early exploration history of the Salmon Lake region is not known but placer gold was reported to have been discovered on the Salmon River on what would be the southern portion of the Windy Property. Old pits and an old log cabin would give credence to the reported activity.

In 1985, Richard Haslinger located some Au-Pd bearing chalcopyrite showings on the Windy Property. The property was examined by a variety of companies and in October 1985 Brinco conducted a soil sampling program over a small part of the property. Two hundred thirty-six soil samples and 10 rock samples were collected and analyzed for Cu, Pb and Au. Total cost of the program was \$7,911.25.

In August 1986, Placer Dome Inc. optioned the Windy Property and from September 1986 to September 1990 performed the following exploration programs to test the Windy Property for its porphyry copper potential.

- 1986 21 km of magnetic-VLF EM surveys
 560 soils analyzed for Au, Cu, Pb, Zn, Mo, As, and Sb
 26 rocks
 expenditure \$33,840.00
- 1987 6.8 km of recce IP
 - 2.5 km of magnetic-VLF EM surveys
 - 5 trenches (426 metres)
 - 63 soils
 - 37 rocks
 - expenditure \$34,883.00
- 1988 24.6 km of IP surveys
 - 557 soils analyzed for Au, Cu, Ag, and As
 - 13 rocks
 - expenditure \$72,431.00

1989

1990

- 86.7 km of magnetic-VLF EM surveys
- 50.5 km of IP surveys
- 9 NQ diamond drill holes (1,495 metres)
- 3,533 soils analyzed for Cu, Au, and As
- 1,336 rocks
- expenditure \$692,924.52

1.8 km of magnetic-VLF EM surveys

- 6 trenches (260 metres)
- 17 test pits
- 295 soils
- 488 rocks
- 6 NQ diamond drill holes (684 metres)
- expenditure \$156,406.00

During late 1990 massive sulphide boulders were discovered by Placer Dome Inc. Selected samples of the massive sulphides returned values as high as 32.15 g/t Au, 35.3 g/t Ag, and 1.8% Cu. The main discovery area was 25 metres wide and 55 metres long. Massive sulphide boulders were discovered as far away as 900 metres to the north of the main discovery area.

1991

24 percussion drill holes performed by Big Bar Gold Corporation who was earning an interest in the Windy Property from Placer Dome Inc.

The total expenditures for the past exploration programs is in excess of \$998,395.

In August 1995 Columbia Gold Mines Ltd. optioned the Windy Property from Haslinger and Halleran.

5.0 REGIONAL GEOLOGY

The Windy Property is located within the Quesnel Trough which is underlain by Upper Triassic and/or Lower Jurassic Takla Group andesitic and basaltic flows, tuffs and breccias. The Takla Group has been intruded by comagmatic frequently zoned alkaline plutons ranging from diorite, syenogabbro to syenite.

To the east of the Windy Property lies the Wolverine Complex which is composed of granitoid gneiss, micaceous garnetiferous chloritic schists, pegmatite and small bodies of granodiorite. Minor feldspathized quartzites are also present. The Wolverine Complex is cut by Paleocene? to Miocene rhyolites and dacites which form dykes. The Wolverine Complex is believed to be metamorphosed and granitized Lower Cambrian and/or Later Cariboo Group. The metamorphism and granitization is possibly as late as Mesozoic age.

6.0 PROPERTY GEOLOGY

The Windy Property is underlain by a dioritic stock which has intruded Takla Group augite porphyry andesitic flows and pyroclastics. The extensive overburden on the property precludes any detailed analyses of the geology of the property. Most lithologic knowledge comes from a few trenches, test pits and drill core.

Previous work by Placer Dome Inc. describes the rock types as follows:

- 1. Andesitic Flows and Pyroclastics: medium to dark green to greyish-green, fine to medium grained with the andesitic flows being porphyritic. Hornblende phenocrysts are commonly sheared and foliated. The alteration is predominantly chloritic with epidote being common. Individual rock types identified within this group include hornblende porphyritic flows, agglomerates, crystal tuffs and ash tuffs.
- 2. Dioritic Intrusions: light grey to greyish-green, fine to coarse grained, occasionally porphyritic with hornblende (up to 6 mm) and/or plagioclase (up to 3 mm). Textural and compositional variations are gradational. Alteration is primarily propylitic with pervasive and/or vein controlled chlorite, epidote ± sericite ± silica ± hematite. The diorite hosts broad zones of pyrite (1 to 3% but occasionally up to 10%) and occasional chalcopyrite blebs within quartz-carbonate veins. Local intense shear zones contain increased quartz veining and sulphides. Three distinct phases have been mapped including porphyritic diorite, coarse grained diorite and fine to medium grained diorite.
- 3. Granodiorite / Quartz Monzonite Dykes: light grey, fine to medium grained, massive and equigranular. The dykes range from 1 to 2 metres in width and are composed of 40 to 50% subhedral plagioclase, 30 to 40% anhedral K-feldspar, 15 to 20% quartz grains, 10% biotite and chlorite. The dykes are relatively unaltered and contain 1 to 2% disseminated pyrite.

In addition to the above described lithologies, the 1996 drilling encountered very fine grained to aphanitic dykes of andesitic to basaltic nature.

An examination of the matrix of the massive sulphide boulders showed that it contains a considerable amount of biotite as a felted mass. The presence of the biotite, the extremely coarse grained euhedral pyrite cubes (3 cm) plus the remobilized appearance of some of the massive sulphide bands strongly suggests that the host rock, which is now a hornfels, may have been argillaceous in nature. Similar biotite-rich fragments were noted in drill hole 96-8 which suggests that the massive sulphide is either a contact feature or it is within another lithological unit, not yet seen in outcrop. The massive sulphide area is believed to be a hornfelsed argillite located at the contact or as a roof pendant within the diorite stock.

All rock types have been weakly to extensively altered by propyllitic alteration which consists of chlorite \pm epidote with lesser amounts of carbonate, hematite, quartz and sericite. The dominant alteration is pervasive with lesser amounts being fracture controlled.

The predominant attitude for shearing noted by the Placer Dome work is 060 to 075 degrees. The intense foliation and schistosity of the diorites encountered in the 1996 drilling testify to intense structural activity.

7.0 MINERALIZATION

Mineralization in the diorites on the Windy Property consists of pyrite and chalcopyrite. Pyrite is the dominant sulphide and as noted in the 1996 drill core it is generally disseminated as euhedral grains and rarely on fractures. Occasionally it occurs as massive 2 cm clots within carbonate veins. Chalcopyrite is minor, usually disseminated or occasionally within carbonate-quartz veinlets.

Mineralization in the massive sulphide area consists of chalcopyrite, pyrrhotite, arsenopyrite, pyrite and sphalerite. The pyrrhotite is generally massive and the other sulphides are coarse grained with pyrite cubes reaching 3 cm.

8.0 DRILL PROGRAM

The drilling program consisted of 8 NQ diamond drill holes totaling 545.65 metres. Core recovery was poor with only 4 holes recovering any core. The other holes encountered drilling conditions which did not enable any core recovery. Sludge samples were collected from these holes at semi-regular intervals of 3.05 to 6.1 metres. Both core samples and sludge samples were analyzed for 30 elements by ICP and for gold by fire assay techniques.

The purpose of the 1996 drill program was to test 4 ground magnetic anomalies which had been outlined by the previous Placer Dome work. The magnetic anomalies were considered to be of significance since the majority of the massive sulphide boulders uncovered by Placer Dome were highly magnetic. In addition, the soil geochemistry also completed earlier by Placer Dome proved to be largely glacially transported with the plumes pointing to the ground magnetic anomalies as being the source.

The following section summarizes the relevant drill hole data of the eight 1996 drill holes.

8.1 DDH 96-1

- Purpose: To test a ground magnetic anomaly of 100 nT which has a soil geochemical plume of As and Au (465 ppb).
- Results: The hole encountered foliated fine grained diorite which was generally non-magnetic at the top of the hole. The diorite was weakly altered by chlorite, epidote and carbonate. Sulphides consist of up to 5% euhedral pyrite with minor clots and disseminations of chalcopyrite. At 55.21 metres the diorite graded between mylonite and intensely sheared diorite, the shearing being so intense that it appears like bedding.

The diorite is anomalous in Au (max. value 0.26 g/T), anomalous in As (243 ppm) and anomalous in Cu (max. value 4393 ppm).

There is no explanation for the magnetic anomaly, the low As geochem plume or the lack of Cu in the geochem plume.

8.2 DDH 96-2

Coord:	12200N / 89+60E
Azimuth:	090°
Dip:	-45°
Depth:	89.67 metres

- Purpose: To test a ground magnetic anomaly of 80 to 100 nT with a strong As and Au (440 ppb) soil geochem plume.
- Results: The hole encountered augite porphyry volcanics with red hematite on fractures which was only weakly magnetic. Sulphides consist of pyrite and pyrrhotite. At 71.37 metres a moderately magnetic diorite was encountered.

There are no gold values in the volcanics but the diorite is weakly anomalous. The entire hole is anomalous in As (294 ppm) and weakly anomalous in Cu (294 ppm).

8.3 DDH 96-3

Coord:	11000 N / 89+20E
Azimuth:	090°
Dip:	-45°
Depth:	27.45 metres

Purpose: To test a ground magnetic anomaly of 60 to 80 nT and a very strong Au (1420ppb) in soil plume. It is believed that this hole is in extremely decomposed bedrock quite possibly a major fault zone. The hole was abandoned and no core was recovered.

8.4 DDH 96-3A

11000 N / 89+20E
-90°
33.55 metres

- Purpose: Drilled on the same set up as 96-3.
- Results: No core was recovered from this hole. It is believed that this hole is in very decomposed bedrock quite possibly a fault zone. Examination of sludge samples showed schistose chips and angular, fresh, euhedral pyrite. Cobbles collected at the top of the hole while running casing are extremely altered, only weakly magnetic augite porphyry.

The cobbles and the sludge samples do not explain the ground magnetic anomaly nor the high gold in the soils.

8.5 DDH 96-4

Coord:	11200 N / 88+62E
Azimuth:	090°
Dip:	-45°
Depth:	39.65 metres

- Purpose: To test a ground magnetic anomaly of 60 to 100 nT with a strong Au (1675 ppb) in soil plume.
- Results: The hole encountered similar conditions as drill holes 3 and 3A. Core was not recovered but sludge samples were collected. The sludge chips indicate that the bedrock is schist and augite porphyry. The sludges are moderately magnetic. No metal values of any significance were encountered in this hole.

8.6 DDH 96-5

Coord:	10000N / 91+20E
Azimuth:	090°
Dip:	-45°
Depth:	88.45 metres

- Purpose: To test a ground magnetic anomaly of 60 to 100 nT with a weak As-Au soil geochem plume.
- Results: The hole encountered very decomposed bedrock therefore no core was recovered. Sludge samples are composed of weakly to strongly magnetic black hornfels? with a trace of oxidized pyrite, malachite and arsenopyrite. No significant arsenic or gold values were obtained from the sludge samples.

8.7 DDH 96-6

Coord:	10170N / 88+00E
Azimuth:	360°
Dip:	-45°
Depth:	30.5 metres

- Purpose: To test beneath gold-bearing massive sulphide in a biotite hornfels exposed in trench 90-5.
- Results: The hole reached 30.5 metres and was abandoned due to severe caving. No significant values were encountered in the sludge samples.
- 8.8 DDH 96-7

10400N / 86+60E
360°
-45°
61.92 metres

- Purpose: To test a gold-bearing massive sulphide in a biotite hornfels exposed in trench 90-5.
- Results: The hole encountered diorite with minor silicified zones and mylonite. Sulphides are dominantly disseminated pyrite with a trace of chalcopyrite and molybdenite. The hole is weakly anomalous in gold and copper. No massive sulphide was encountered except for a 15 cm band of semi-massive pyrite. It is

believed that the massive sulphide in the trench is a roof pendant or possibly a fault emplaced wedge on top of the diorite.

8.9 DDH 96-8

Coord:	10400N / 86+60E
Azimuth:	090°
Dip:	-45°
Depth:	97.6 metres

- Purpose: To test a ground magnetic anomaly with Au-As soil geochem plumes.
- Results: The hole encountered diorite with anomalous copper and arsenic values. The only gold value of some significance was 1.53 metres of 0.33 g/t Au. The hole encountered fragments of biotite hornfels which forms the matrix of the massive sulphides.

9.0 CONCLUSIONS

The 1996 drilling program conducted by Columbia Gold Mines did not intersect massive sulphide mineralization. Further, the 1996 drilling also did not explain the source of the magnetic anomalies. Drill core and sludge samples were distinctly non-magnetic. The following explanations for lack of mineralization in the drill holes are:

- 1. The magnetic anomalies are caused by magnetic boulders in the overburden, or;
- 2. The magnetic lithology and/or massive sulphide horizon is sub-paralleling the angle of the diamond drill holes. This may be the case as the fracture patterns in several of the holes where core was available are parallel to the core axis.

10.0 RECOMMENDATIONS

If the magnetic anomalies are induced by magnetic boulders in the overburden, some experimentation with a Beep Mat is suggested especially in the areas where there is good soil geochemical plumes originating from the magnetic areas outlined by the previous exploration.

Several of the magnetic anomalies, particularly in the area of the massive sulphide occurrences, should be tested by drilling. In addition, several gold soil geochemical plumes, particularly down ice from the presently outlined plumes, should be re-sampled for both fine and coarse gold. The work by Placer Dome has indicated that much of the

gold in soil is coarse in nature. Gold panned by R. Haslinger has yielded up to 200 flakes from one sample.

A recommended program should also indicate 20 kilometres of IP chargeability geophysical surveys with a contingent 1,000 metres of diamond drilling for an anticipated cost of \$220,000.

Respectfully Submitted,

Unsula mowal A

Ursula G. Mowat, P. Geo

11.0 REFERENCES

- Armstrong, J.D., H.W. Tipper, J.W. Hoadley (1961): Geology of McLeod Lake, G.S.C. Map 1204A.
- Candy, Clifford E. (1991): Report on a Transient Electromagnetometer, VLF-EM and Magnetometer Survey, Windy Project., Placer Dome Inc.

Cannon, R.W. (1988): Geophysical Survey Reports on the Windy 1-5 Claims.

- Cannon, R.W. (1989): Geophysical Survey Reports on the Windy 1-18, 19 Fr. Claims.
- Deschenes, Marc (1991): Property Assessment Report for the 1990 Work Program on the Windy Property., Placer Dome Inc.
- Frostad, Scott (1989): Geological, Geochemical and Diamond Drilling Report on the Windy 1-27 Claims., Placer Dome Inc.
- Hewton, R.S. (1985): Results of an Examination of the Windy Property, BC, Brinco Mining Limited.
- Nelson, Joanne, Kim Bellefontaine, Kim Green and Mary Maclean (1990): Regional Geological Mapping Near the Mount Milligan Copper-Gold Deposit (93K/16, 93N/1)., in Geological Fieldwork 1990, British Columbia Geological Survey Branch Paper 1991-1.
- Pentland, W., R.W. Cannon and I. Thompson (1986): A Geological, Geophysical and Geochemical Report on the Windy 1-5 Claims., Placer Development Ltd.
- Price, S. (1987): A Geochemical, Geophysical and Trenching Report on the Windy 1-5 Claims., Placer Dome Inc.
- Price, S. (1988): Geochemical and Geological Report on the Windy 1-5 Claims., Placer Dome Inc.

12.0 STATEMENT OF EXPENDITURES

•

.

1.	ANALYSES	
	53 sample prep @ \$4.25 / sample	\$225.25
	53 assays for Au @ \$6.97 / sample	\$369.41
	53 ICP for 31 elements @ \$6.00 / sample	\$318.00
	GST @ 7%	\$63.89
	TOTAL	\$976.55
2.	DRILLING	
	1650' @ \$18.70 / foot	\$30,855.00
	170' @ \$20.00 / foot	\$3,400.00
	90' @ \$21.60 / foot	\$1,944.00
	405.5 man/machine hours @ \$34.00 / hour	\$13,787.00
	Cat - 73.5 hours @ \$90.00 / hour	\$6,615.00
	Materials	\$6,497.25
	GST @ 7%	\$4,285.98
	TOTAL	\$67,384.23
3.	CAMP RENTAL	
	191 man days @ \$30.00 / man day	\$5,730.00
	Generator - 37 days @ \$30.00 / day	\$1,110.00
	GST @ 7%	\$478.00
	TOTAL	\$7,318.88
4.	WAGES	
	1 man for 39 days @ \$240.00 / day	\$9.360.00
	1 man for 6 days @ \$210.00 / day	\$1,260.00
	1 man for 24 days @ \$156.00 / day	\$3,744.00
	1 man for 27 days @ \$156.00 / day	\$4,212.00
	1 man for 6 days @ \$210.00 / day	\$1,260.00
	1 man for 12 days @ \$210.00 / day	\$2,100.00
	1 man for 39 days @ \$400.00 / day	\$15,600.00
	20% on wages	\$4,417.20
	TOTAL	\$26,453.20

5. FREIGHT

-

	3 hours @ \$45.00 / hour	\$135.00
	21 hours @ \$65.00 / hour	\$1,365.00
	4 hours @ \$55.00 / hour	\$220.00
	GST @ 7%	\$120.40
	TOTAL	\$1,840.40
	212 miles @ \$3.19 / mile	\$676.28
	4.5 hours @ \$65.00 / hour	\$292.50
	GST @ 7%	\$67.82
	TOTAL	\$1,036.60
6.	HELICOPTER	
	6.2 hours @ \$850.00 / hour	\$5,270.00
	837 litres @ \$0.65 / litre	\$544.06
	GST @ 7%	\$406.98
	TOTAL	\$6,221.04
7.	GROCERIES	\$3,667.35
8.	TRUCK RENTAL	
	one 4x4 for 37 days @ \$75.00 / day	\$2,775.00
	one 4x4 for 10 days @ \$75.00 / day	\$750.00
	GST @ 7%	\$246.75
	TOTAL	\$3,771.75
9.	FUEL	\$169.72
10.	EQUIPMENT STORAGE	\$300.00
11.	REPORT WRITING, DRAFTING, ETC	\$5,661.30
τοτα		\$124 841 64

ADDITIONAL EXPENDITURES*

τοτρ	AL EXPENDITURES	\$4,212.21
4.	Accommodation 2 rooms @ \$54.05 / room 2 rooms @ \$59.80 / room 1 room @ \$50.60	\$108.10 \$119.60 \$50.60
3.	Meals	\$527.98
2.	Diesel, propane, gas	\$2,205.93
1.	3 days of cutting examination @ \$400.00 / day	\$1,200.00

* These expenditures were incurred from September 23,1996 to November 1, 1996 and were not previously declared.

13.0 STATEMENT OF QUALIFICATIONS

- 1. I am a graduate of the University of British Columbia having graduated in 1969 with a Bachelor of Science in Geology.
- 2. I have practiced by profession since 1969 in mineral exploration, oil and gas exploration and coal exploration.
- 3. I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. I hold an indirect interest in the Windy Property.

mowat P.Seo Ursula G. Mowat

Dated this 17th day of Dicember, 1996, at Vancouver, BC.

PROPERTY WINDY

1

HOLE No. _____

	DIP TEST An	gle			
Footage	ootage Reading				
-					

Hole No.96-1Sheet No.LSectionDDate BegunOCT 10/96Date FinishedOCT 11/96Date LoggedDCT 11/96

Lat. 11800 N
Dep. 90+20E
Bearing 090°/-45°
Elev. Collar

Total Depth 76.9 m	
Logged By UGM	
Claim WINDY 2	
Core Size NQ	

DEF FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Aught	As ppm	
0	9.15		CASING						.0		
9.15	18.15		DIORITE? med. grey, f.g. intensely	65401	9.15	15.25	6.1	396	.04	83	
			scricitized & weakly foliated by	65402	15.25	18.15	2.9	459	.05	82	
ļ			green chlorite + minor black magnetite								
ļ			streaks; foliation 30° + 40° to CA.								
			magnetism sporadic ranging from non								<u></u> ,
			to moderate; very broken with bands of								
			gouge : 5% diss'd pyr frequently as								
			cuhedral x1s + b. cpy; white carb.								
			volts at 20° + 40° to CA								
			- 16.17 1 cm wide massive pyr vnit								
			at 30° to CA								
18.15	21.2		SHEAR ZONE, med. greenish grey clay	65403	18.15	21.Z	3.05	357	.06	67	
			with 3% pyr diss'd throughout.								
			sporadically magnetic; upper contact								
			70° to CA; lower contact 90°? to CA								
			-								

		PF	OPE	RTY	W11	VDY				HOLE No	96-	/		
Ĺ				EST										
╞	Foo	tage	Rea	Ang Iding	gle Corrected	Hole No	Lat				Total Depti	h		
F						Section	Dep				Logged By			
F	-					Date Begun	Bearing				Claim	·····		<u> </u>
F						Date Finished	_ Elev. Colla	ı r	· · · · · · · · · ·		Core Size.			
						Date Logged				·····				
DE FROM	РТН ТО	RECOVE	RY			DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au alt	As	
<u>z/.2</u>	35.08		3	DIOR	ITE as	9.15-18.15 but slightly more	65404	21.2	24,2	3.0	313	.03	83	
. <u></u>			c	hlor	itic:	very broken, minor	65405	<u>24. z</u>	27.3	3.1	928	.08	63	
				inci	picnt e	pi near top . weakly	65406	27.3	30,35	3.05	719	.07	61	
				olia	ted at	30° × 65° to CA. fine black	65407	30.35	33.4	3.05	732	.09	13	
			/	<u>Glia</u>	tion do	minantly biotite with	65408	33.4	35.08	1.68	1723	- 18	1	
			2	nino	or magn	etite dominantly non -								
				nagr	retic .	rare white carb. vnlt +								
			5	ucre	osic gtz	- volt at 45° + 70° to CA								
				31.9	92 lig.	ht grey 6 cm sil'd zone								
					(ch	ert?) at 70° to CA with 5%								,
					dis	s'd pyr								
			-	33,0	09 1.5	cm gtz vn It at 70° to CA								
					we	th Icm clots of cpy		-						
35.08	54.6		∠	OR	TE me	d grey, f.g. strongly	65409	35.08	38.13	3.05	751	•07	86	·····
			_ 5	eric	itized	very broken . Similar to	65410	38.13	41.18	3.05	2063	.14	76	
			9	.15-	18.15 6	ut foliation weak to non-	65411	41.18	44.23	3.05	1017	.04	74	
			e	xist	ent at	60° to CA, more bleached	65412	44.23	47.28	3.05	4393	.z6	1	
			i	n af	spearan	ce + less chloritic fairly	15413	47.28	50.33	3.05	2254	.12	106	
			n	nagn	etic o	.5-1% diss'd pyr	65414	50.33	53.38	3.05	1025	.05	112	
			c	frequ	vently	x lline) + cpy, red hematite	65415	53.38	54.6	1.22	651	. 03	67	

NEVILLE CROSBY IND-TELEPHONE: USE-4343

	DII	PTEST								•
Fo	otag e	Angle Reading Corre	Hole No. <u>96 - 1</u> Sheet No. <u>3</u> Section Date Begun Date Finished Date Logged	Lat Dep Bearing Elev. Collo	ar			Total Depti Logged By Claim Core Size	h	
DEPTH ROM TO	RECOVER	r	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Aught	As ppm
5.08 54.6 (cont'a)		stain 0 vn/ts 00 - 39.09	n fracts, minor white carb cc. vuggy with carb x/s 10 cm sil'd zone with 3 %							
		- 39.65	diss'd pyr + tr. cpy at 30° to CA pyr content 5%							
		- 44. 23	to 54.6 0.5-1% cpy; dominant sulphide							
4.6 55.21		SHEAR Z Small r unknowr	ONE grey clay with some ock frags: upper contact o, lower contact 30° to CA	65416	54.6	55.21	0.61	479	.02	72
.24 59.48		DIORITE sheared	?, pale greenish grey very 9.15-18.15; shearing so intense	65417 65418	55.2/ 58.26	58.26 59.48	3.05 1.22	643 1231	.04 .09	7 <u>8</u> 44
		fracturin to CA); m white he	ig looks like bedding (30 to 40° rod. magnetic : foliated by nirline carb yn/ts parallel to							

NEVILLE CROSBY IND.

		DIP	TEST									
	Foot		An Reading	gle Corrected	Hole No. <u>96-1</u> Sheet No. <u>4</u> Section Date Begun Date Finished Date Logged	Lat Dep Bearing Elev. Collo	Lat Total Depth Dep Logged By Bearing Claim Elev. Collar Core Size					
E P 1 M	гн то	RECOVERY			DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au 91t	As ppm
86	5.27		SCHIS	ST, chlori	tic same as 55.21 - 59.48;	65419	59.48	62.53	3.05	316	.03	141
-			med. hair	grey gre line carl	en, platy with numerous o vnits. tr-1% diss'd pyr	65420	62.53	65.27	2.74	260	.04	178
			pseu	do beddu	ing (folication) at 40-50° t	<u></u>						
╀			CA									
2	10,3		SCHIS	57, QS Q	bove but platy fracturing	65421	65.27	68.32	3.05	527	.06	160
╞			gone	; weak	foliation at 30-40 to CA.	65422	6 8 .32	70.3	1.98	338	.05	184
			- 67.	1 60 67.7	; tr diss'd pyr 1 gouge zone; upper conto	et						
Ţ				45° 1	to CA, lower contact 25° to	CA		· · · · · · · · · · · · · · · · · · ·				
7	0.9/		MONZ	ONITE?	sil'd intrusive? pale gre	4 65423	70.3	70.91	0.61	627	.07	111
			with	outlines	of matic chloritized							
+			mine	rals T/or	- 5% magnetite; 1% vfq							
+-			pyr o sil'd	ussid Th	contact 50° to cA. lower							
			conto	act 40°	to CA							
╞												
1												

		PRC	PERTY					HOLE No	96	/	· .	
	Foo	DIP TEST Angle Footage Reading Corrected		Hole No. <u>96-1</u> Sheet No. <u>5</u> Section Date Begun Date Finished Date Logged	Lat _ Dep _ Bearing _ Elev. Collo	Jr						
DE FROM	PTH TO	RECOVER	1	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	As ppm	
70.91	7 <u>3</u> .2		MYLONITE de foliated at 6	ark black grey slightly 5° to CA with white hairline	65424	70.91	73.2.	2.29	172	.01	243	
			carb vnlts; =	same as 65.27 - 70.3 ?? , red								
			hematite sta magnetic in	ain on fracts, weakly cipient cpi, 1% vfg diss'd								
			pyr; tr cpy;	grades into strongly								
			foliated at	35° to CA epidotized mylonite								
			parallel to for	liation. carb units occ.								
			Vuggy with c	arb X/s	· · · · · · · · · · · · · · · · · · ·							
7 <u>3.2</u>	76.86		MYLONITE da	rk greenish black foliated	65425	7 3 .2.	76.25	3.05	326	.05	173	
			at 55-60 to 0	CA; black colouration occ.	65426	76.25	76.86	0.6/	139	.01	261	
			from magneti	te (sporadically weakly								
			white carb /	aminations, also white carb								
			+/- gtz vnits	as at 73.81; to diss'd pyr								
			often as euhe	edral x/s, occ coarse clot of								
			cpy in carb	inits as at 73.81; tr. red								
			nematite on 7	tracts near top.								

NEVILLE CROSBY IND TELEPHONE: USE-4343

PROPERTY WINDY

1

HOLE No. 96-2

	An	gle
Footage	Reading	Corrected

 Hole No.
 96-2
 Sheet No.
 La

 Section
 De

 Date Begun
 0CT
 11/96
 Be

 Date Finished
 0CT
 13/96
 Ele

 Date Logged
 0CT
 13-16/96
 Ele

Lat 12200N
Dep. 89+60E
Bearing090°/-45°
Elev. Collar

Total Depth	89.67	m
Logged By.	UGM	
Claim	WINDY	2
Core Size_	NG	

DE I FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	As	
0	9.15		CASING					,,	0	,,	
9.15	14.34		AUGITE PORPHYRY dark greenish black	65427	9.15	12,2	3.05	114	.01	175	
			aug. phenos 1/2 - 1 cm in pale green grey	65428	12.2	14,34	2.14	120	.01	187	
			matrix; and becomes increasingly				·····				
			sericitized towards 14.34, matrix with								
			incipient epi cut by red hern t/- mag t/-								
			white carb volts at 15-30° to CA (av.								
			20°); red hem on fracts; tr pyr until								
			14.34 then to po; sulphides diss'd x								
			sub to euhedral; po conc'd in alt'd								
			aug. pheno cores; only weakly magnetic.								
			moderately broken								
			/								
14.34	17.39		DYKE pale grey matrix with 2 mm laths	65429	14.34	17.39	3.05	273	- 01	68	
			of white sericitized sub to enhedral feld								
			x1s. vfg black phenos of biot? aug?. tr								
			pyr + po diss'd throughout ; po conc'd								
			near or in black phenos. weakly magnetic.								
			red hem on fracts; white carb vults at								
			16.45 at 30° to CA; predominant fracts								
			0° to CA; upper contact 80° to CA; lower								

		PR	OPERTY	·····				HOLE No	96-	2	• .	
	Foo	DIP TEST Angle Footage Reading Corrected		Hole No. <u>96-2</u> Sheet No. <u>2</u> Section Date Begun Date Finished Date Logged	Lat Dep Bearing Elev. Colld 	ır						
DE FROM	РТН TO	RECOVE	Y	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	As ppm	
14,34	17.39		contact 55	? to CA		ļ						
(con	t'a)		- 15.25 2.	5 cm clot of epi with po								
17.39	20,74		AUGITE PORPI	YYRY dark green black aug.	65430	17.39	20.74	3.35	141	.01	187	
			phenos (av 1	2 cm) in light greenish grey							-	
			matrix; as	9.15-14.34 but finer grained								
			phenos; very	broken. predominant fracts						-		
			70° to CA; 1	% diss'd po + lesser pyr; po								
		- 	conc'd in m	afic phenos + occ. as massive								
			po veinlets a	as at 19.03 at 20° to CA; pyr								
			sub to enhe	draf + dominantly in matrix								
			minor white	c crratic carb t/- mag t/-								
			hem patches	. red hem on fracts. upper								
			contact wea	kly bleached, lower contact								
			gradationa	to below								
			0									
20,74	25.93		SHEAR ZONE	dark to med. grey aphanitic	65431	20,74	23.79	3.05	69	.01	215	
			generally wi	th rare patch showing aug.	65432	23.79	<u>z5.93</u>	2.14	105	.01	232	
			porphyry tex	t; upper contact 40° to CA;								
			lower contai	ct foliated at 40° to CA;								
			gouger but.	not very broken. white carb								

NEVILLE CROSBY IND TELEPHONE: USE-4343

Ę		DIP TEST Angle Dotage Reading Corrected											
-	Foo	tage	Ar	I Corrected	Hale No 96-2 Sheet No 3	l at				Total Dept	h	-	
þ					Section	Dep				Logged By	/		
Ŀ					Date Begun	Bearing_	1 <i>11</i>			Claim	· · · · · · · · · · · · · · · · · · ·		<u> </u>
E					Date Finished	Elev. Coll	ar			Core Size			
L				L]	Date Logged								
DEI	PTH TO	RECOVER	r		DESCRIPTION	SAMPLE No	FROM	то	WIDTH OF SAMPLE	Cu ppm	Aught	As ppm	
2074	25.93		pate	ches + br	oken carb. vnlts as frags					//		//	
(con	t'a)		throe	ughout; 1	% diss'd euhedral pyr. tr						ļ		
			PO ¥	cpy: gen	erally non-magnetic, minor	-		ļ					
			red .	hem on fr	acts incipient epi patches	5							
			- 24.	25 1 cm	cpy bleb in white carb								
				vnlt	at 50° to CA		ļ						
							ļ						
5.93	31.42		AUGI	TE PORPH	1YRY, as 9.15-14.34 but with	6 65433	25.93	<u> 28.98</u>	3.05	128	.01	188	
			pron	ounced p	serv. epi in matrix and	65434	28.98	31.42	z.44	130	.01	195	
			carb	Vn/ts; 2	8.06 minor white carb volt	s							
			at 8	o to CA	+ white carb frags in								
			904	gey zone	; 28.37 white carb frags						L		
			with	black c	hlorite in gouge zone;								
			Sect	ion broke	n with red hemon fracts.								
			1%	our + po;	pyr diss'd in matrix ; po						<u> </u>		
			conc	'd in au	9. phenos + occ as fract	-					ļ		
			filli	ngs: gen	erally non-magnetic;								
			pate	hes of w	eak magnetism asso'd with								
			po				L						
			- 26.	84 12.50	m zone, black aphanitic								
				mod.	magnetic as 20.74-25.92								

TELEPHONE: USE-4343

		PRC	PERTY	(//	VDY				HOLE No	96 -	2	• ,	
F		DIP TEST Angle Footage Reading Corrected										•	
ł	Foo	tage	Reading	Corrected	Hole No. <u>96 - 2</u> Sheet No. <u>4</u>	Lat				Total Depti	٦		
F					Section	_ Dep				Logged By			
ļ					Date Begun	_ Bearing_				Claim			<u>•</u> •.
þ					Date Finished	Elev. Colla	ır			Core Size			
L					Date Logged	-							
DE FROM	РТН ТО	RECOVER	r		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	As ppm	
31.42	33.86		SHE	AR ZONE	- med. grey, bleached-looking	65435	31.42	33.86	2.44	61	.01	234	
			gene	erally ap	chanitic with occ. black								
			stre	tched (aug pheno visible. foliation								
			35°	to CA; r	numerous white earb +/- gtz								<u></u>
			vnlt	's with	black chl. clots at 35° + 15°								
			to cr	9 occ. 6	roken + irreg from shearing.								
			uppe	er conta	ct 80°? to CA; lower contact				······				
			45° 1	to CA									4, s. p
			- 32.	94 1.5	em clot of pyr in carb-gtz								
				Vnl	't								
<u>33,86</u>	40.26		AUG	TE PORF	244RY - as 9.15 - 14.34. c.g. but	65436	<u>33,86</u>	40.Z6	6.4	264	.01	155	
			with	irreg p	satches of yellow green								
			epid	btized c	arb; virtually no carb vnlts;								
			red	hem on	fracts; generally non-								
			mag	netic;	1% diss'd pyr + po ; pyr								
			Sub	to cube	dral, very broken, predomin-								
			ant	Fracture	ng 50° to CA								
			-39.	65 10 0	em black appanitic (mylonite?)								
				ma	quetite zone with c.g. pyr up								
				to	4 mm : 5% diss'd pyr. white.								

NEVILLE CROSBY IND-TELEPHONE: USE-4343

		PRO	PERTY	/ <i>N</i>	' ⊉ Y					HOLE No	96	2	.	
DIP 1 Footage Re DEPTH RECOVERY		TEST Ang Reading	TEST Angle eading Corrected Hole No. 96 - 2 Section Date Begun Date Logged DESCRIPTION)r			Total Depti Logged By Claim Core Size_	1	· · · ·		
DE FROM	РТН	RECOVERY			DESCRIPTION	· · · · · ·	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu	Au g/t	AS	
13,86 (Com	40.26 t'd)		hair - 39.1	line car 65 1 c 0° car	b vnlts n wide massive to CA with min b + a 1cm clo	or epi + t of cpy					<i>,,</i>			
6. <i>26</i>	44.18		SHEA aphar visib	R ZONE - nitic wi	med grey ger th some aug ph by irreq white	nera/ly cnos still carb vnlts	65437	40.26	41-18	0.92	62	.01	294	
			× 6/a 10% e Sulpi	uhedral hide com	<u>kly magnetic m</u> <u>diss'd pyr; ge</u> tent tr-1%; k	nylonite with neral both contacts								
			grad hon-	magneti	c									
(). /8	59.78		AUGA 12-1	TE PORP	+ biot ? (hexag	onal shape)	63 438 65 43 9	44.23	47.2 <u>3</u> 47.2 <u>8</u>	3.05	60	.07	159 160	
			pheno Slight	s in lig tly epide	tized , red hem	atrix; matrix on fracts;	65440 65441	47.28 50,33	50,33 53,38	3.05 3.05	158 267	.01	132_ 186	
			mino 0.5-1	r white	carb vnlts at	- 30° to CA; sub to	<u>65442</u> 65443	53,38 56,73	56.73 59.78	3,35 3,05	<u>3//</u> 233	.02 .02	204 139	
			euheo	Iral: ge	nerally non-ma	gnetic								

	PROPERTY WINDY						HOLE No	<u>96-2</u>		— · .		
ſ		DIF	PTEST]							÷.	
ł	Foo	taae	Angle Reading Corrected	Hole No. 96-2 Sheet No. 6	Lat				Total Dept	h		
ļ				Section	Dep				Logged By			
ļ				Date Begun	Bearing							<u> </u>
ļ				Date Finished	Elev. Colla	ır			Core Size.			
L		I		J Date Logged	-							
DE	PTH TO	RECOVERY	·	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu	Au g/t	AS	
H.18	59.78		-44.53 she	ar zone blackish matrix with					,,	0		
(con	t'd		irr	eg epidetized patches & white								
			Ca	-b frags : slightly magnetic								
			-46.97 to	47.28 slightly bx'd aug IT								ļ
			w.	ith 10% pyr tr po, epidote								ļ
	ļ		pe	tches								
			-46.77 to 5	0.94 pyr dominantly fract-								
			<u>co</u>	strolled + occ. replacing ang								
			ph	enos								
			-50,02 to 50	.63 f.g. aug IT; aug phenos					·		ļ	
			4	mm av								
			-53.38 fra	cture zone with massive pyr								
			-54.9 m	inor gouge								
			- 45.14 to 5	t.9 matrix pale greenish grey.							ļ	
			C/	loritized ; no epi								
			-54.9 to 59	78 matrix weakly epidotized								
			<u>+</u>	also frags (up to Zem) + as								
			ir	reg patches of epi/carb								
			-57,95 to 58	3.26 f.g. aug T dyke? as at								
			50	.02 to 30.63 lower contact								
			90	ugey at 30° to CA								

NEVILLE CROSBY IND-TELEPHONE: USE-4343

		PR	OPERT	Y	<i>ΙΔΥ</i>				HOLE No	96-	2		
	DIP TEST Angle Footage Reading Corrected		Corrected	Hole No. <u>96 - 2</u> Sheet No. <u>7</u> Section Date Begun Date Finished Date Logged	Lat Dep Bearing Elev. Coll	ar			Total Depth Logged By Claim Core Size				
DE I FROM	РТН ТО	RECOVER	17		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cuppm	Aught	As ppm	
41.18	59.78		-58.	26 to 59	7.78 5% pyr as pheno replac	2-				<u> </u>	<i>v</i>	• •	
(con	t'a)			ment	t + dominantly in fracts								
59.78	66.19		SHE	PR ZONE -	pale greenish grey aphanit	ic 65444	59.78	62.83	3.05	191	.02	130	
				with	occ. band of black appanit	ic 65445	62.83	66.19	3,36	168	.01	84	
				¥ pa	tches with visible and phone	os.							
				high	ly sericitic, very weak chi.								
				sligt	stly magnetic. upper contact	4							
				50° £	OCA. lower contact 55° to CA	₹.							
				shea	ring at 70 to CA minor whit	e							
				Carb	volts generally irreg & patch	4							
				OCC.	gouge zones at 70° to CA.								
				brok	cn. 3% diss'd pur ac euhedr	a/							
6.19	68.93		AUG	ITE PORP	HYRY BRECCIA generally green	sh 65446	66.19	68.93	2.74	7/	.01	257	
				grey	frags of varying size in reddi	54							
				black	hem-mas groundmass, occ								
				blac	kish green aug pheno still								
				Visib	le more solid aug IT cut by								
				red -	black hem-map lined fracts	×							
				VnHs	more solid Dieces have								

NEVILLE CROSBY IND. TELEPHONE: USE-4343

		PRO	PERTY	- WIN	DY				HOLE No	_96-2	2	• _	
[DI	PTEST									•.	
F	Foo	tage	An Reading	igle Corrected	Hole No. 96-2 Sheet No. 8	Lat				Total Deot	h		
ļ					Section Shot No	Dep				Logged By	/		
					Date Begun	Bearing_			·····	Claim			• ·
					Date Finished	Elev. Coll	ar		_	Core Size			
ι		L		L.,	Date Logged								
DE FROM	PTH TO	RECOVER	Y		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	As ppm	
66.19	68.93		dist	inct blac	kish green aug/biot pheno					/ ·	<i>•</i>		
(cor	t'a)		out/u	ines & p	sale yellow green carb-epi								
			repla	aced fela	1; cut by irreg white carb								
			Vnin	g genero	ally at 35° to CA: 1% pyr								
			dom	inantly	diss'd but occ. on hairline								
			fract	ls /									
			-65.	BB 5	em red carb vnit								
68.93	71.37		SHEA	RED MON	IZONITE? pale grey; upper	65447	68.93	7/,37	2.44	260	.06	74	
			Conta	act 45 .	to CA. lower contact 450? +			·					
			grad	lational.	slight foliation at 50 to CA.								
			red A	hem on fr	acts . 1% diss'd pyr. minor								
			whit	e carb v	in Hs at 55° to CA, weak to	ļ							
			mod.	magnet	Sm								
										·····	ļ		
71,37	89.67		DIDR	ITE? 55	% matics replaced by magt-	65448	71.37	74.42	3.05	191	.04	137	
			ch1,	45% fe/a	replaced by sericite-epi	65449	74.42	77.47	3.05	116	.05	186	
			(pale	yellow 9	reen). 10% mag. occ epi-rich	65450	77.47	80.52	3.05	133	.02	150	
			Carb	Volt or	patch , weak carb uning	65451	80.52	83.57	3.05	177	.03	777	
			pred	lominant	by at yo to CA; red hem on	65452	<i>83,5</i> 7	86.6Z	3.05	294	.04	190	
		u	Fract	s mod.	epi on fracts + perv. in feld.	65453	86.6Z	89.67	з.05	183	.01	240	

NEVILLE CROSBY IND

	PROPERTYY					HOLE No							
[DIP TEST												
[Angle Footage Reading Corrected		ngle	94-3 9					_				
ł			Corrected	Hole No Sheet No	Lot				Total Depth				
ļ				Section	Dep				Logged By			<u> </u>	
ł					Date Begun	Bearing				Claim			<u> </u>
ł					Date Finished	_ Elev. Collo	Ir			Core Size.			
					Date Logged								
DE FROM	РТН ТО	RECOVER	Y		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	ai ppm	Au g/t	As ppm	
71.37	\$9.67	,	Wea	k ch/ in	matics to diss'd pur feld					,,	0		
(con	('a)		as /	aths 4	mm long (synvo/canic?)								
			beco	ming m	ore amorphic at 82.35; mod.								
	ļ		mag	<u>netic;</u> n	nod. broken								
	- 71.37 to 73			37 to 7	.2 feld pale grey composed. rt - mag								
				of s									
			- 82	.96 to 8	3.57 black chi/magshear								
				Zone	e at 10° to CA								
					•								
				·····									
			_										
			_										

PROPERTY W/NDY

1

HOLE No. 96-34

	An	gle
Footage	Reading	Corrected

Hole No. <u>96-3A</u> Sheet No. <u>1</u> Section <u>D</u> Date Begun <u>OCT 14/96</u> B Date Finished <u>OCT 14/96</u> E Date Logged <u>OCT 18/96</u>

Lat _ 11000 N
$Ben 89 \neq 20E$
Bearing 70
Elev. Collar

Total Depth	33.55 1	2
Logged By_	UGM	
Claim	WINDY 2	•
Core Size	NO / SIU	dge

DE	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au 9/t	As ppm	
0	12.2.		AUGITE PORPHYRY - pebbles collected from	65454	0	/2,2	12.2	72	.oz	1	
			running casing; dominantly light grey to								
			light greenish grey with rare f.g. black								
·			aug? pheno . Weakly magnetic ; no visible				<u></u>				
			sulphides: 10 cm white git piece + also								
			Jouge								
	33.55		Sludge - med brown sandy with mag +	65455		33.55		70	.17	1	
			gtz grain; tr vfg pyr; dominant grains								
			white to pale grey sil'd schist with								
			dark grey micaceous slicks. occ.								
			limonitic, also black hornfels? buff								
			disintegrated feld with much extremely	· · · · · · · · · · · · · · · · · · ·							
			fine sericite								
				·							

NEVILLE CROSBY IND

		PR	OPERTY	WINDY	HOLE No							
	DIP TEST Footage Reading		IP TEST Angle Reading Correcte	EST Angle iding Corrected Hole No. 96-4 Section Date Begun OCT Date Finished OCT Date Logged Nov 8		Lat. <u>//200 N</u> Dep. <u>88 + 62 E</u> Bearing <u>090°/-45°</u> Elev. Collar				39.65 m UGM WINDY Z Sludge		· · · · ·
DEPTI ROM T	РТН ТО	RECOVER	DESCRIPTION		SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	AS	
0	12.2		Light yell schist g	low brown; even mix of gtz tz frags black hornfels ?. occ	65456	0	<u>12. 2</u>	12.2	109	.03	1	
			oxidized of ser +	pyr cube, mag + coarse flakes phlogopite; extremely fine								
			silvery m	etallic in schist; minor gold								
			balls; mod	d. magnetic								
2.2	18,3		Light yelle	ou brown; frags as above .	65457	12.2.	18,3	6.1	108	.04	/	
			minor rust	t on frags; mod. magnetic								
8.3	24.4		Light yello	w brown; equal amounts of	65458	<i>18.</i> 3	24.4	6.1	78	. 03	/9	
			grey sil'd ang pyr.	?? black magnetite, tr fresh mod. magnetic								
	24.4		Light gre	y. as above but with vellow	65459		24,4		116	.01	25	
			green epic	brief frags also. 0.5% pyr;				· · · · · · · · · · · · · · · · · · ·				
			1 Tray OF	any por	· · · · · · · · · · · · · · · · · · ·							

NEVILLE CROSBY IND-TELEPHONE: USE 4343
		PR	OPERTY	WINDY	DY					HOLE No						
	DIP TEST Angle Footage Reading Corrected			cted Hold Sector Date Date Date	Hole No. <u>96 – 4</u> Sheet No. <u>2</u> Section Date Begun Date Finished Date Logged		ar			Total Depti Logged By Claim Core Size_		<u> </u>				
DE FROM	РТН ТО	RECOVER	Y	DESC	RIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu	Aught	AS ppm				
<u>z4;4</u>	30.5		Light ge black s	How grey ; ; ;	white gtz with ite gtz, black	65460	24,4	<u>30.5</u>	6.1	112_	. 01	49				
			hornfels mad ma	?, trc.g.	pyr, c.g. sericite	2										
30.5	39,65		Light ye	llowgrey;	black grey sil'd?	? 65461	30,5	39.65	9.15	100	.0/					
			rusty of	z white g	tz 1% ang c.g p	yr										
				<i>)</i> ,												
					·											
																
					· · · · · · · · · · · ·											

TELEPHONE: USE-4343

	Pi	ROPERTYWINDY	— HOLE No. 96-5								
	Footag e	DIP TEST Angle Reading Corrected Hole No. 96-5 Section Date Begun OCT Date Finished OCT Date Logged Nov	Lat Dep Bearing Elev. Collo	000 9/ + - 090 ar	0 N 20 E 0/-	/ -45°	Total Depth <u>88.45 m</u> Logged By <u>UGM</u> Claim <u>WINDY</u> Core Size <u>Sludge</u>				
DEPT	H RECOVE	TRY DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu	Au 9/t	As		
12.2 18	9.3	Light yellow grey; dark greyish black ang hornfels, white gtz + minor schist	65463	12.2	18,3	6.1	68	.01	/		
-		tr. malachite, rounded asp frag, very oxidized pyr; weakly magnetic									
18.3 24	<u>+.</u>	Light yellow grey; black hornfels, pale grey sil'd ?? white gtz, red/purple	65464	18.3	24.4	6.1	63	.01	/		
		veakly magnetic									
4.4 30	.5	Light yellow grey, as above but with Oxidized sulphide; moderately magnetic (Black return)	65465	24.4	30.5	6.1	63	.02	16		
0.5 33.	.55	Dark yellow grey; dominantly pale grey to dark grey sil'd ?? minor chi'd diorite	65466	30.5	33.55	3.05	59	.02	//		
		Fare purple jasper. 0.5% oxidized sulphide fraq; tr fresh pyr, white gtz; moderately magnetic; (Black return)									

NEVILLE CROSBY IND. TFI FPHONE: USE-4343

		PF	OPERTY	WINDY		HOLE No96-5							
F			DIP TEST									•	
ŀ	Foo	otage	Reading Corr	ected Hole No. 96	<u>-5</u> Sheet No. <u>2</u>	Lat		<u></u>		Total Depti	n		
ļ				Section		Dep				Logged By			<u>.</u>
ŀ			·····	Date Begun		. Bearing				Claim	· · · · ·		→ .
ł				Date Finished. Date Logged		Elev. Collo)r			Core Size.			
DE FROM	РТН ТО	RECOVE	RY	DESCRIPTION	·····	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Aug/t	As PPM	
33 .55	36.6		Med grey	1; dominantly pale	green grey	65467	33,55	36.6	3.05	64	.0/	1	
			sil'd 77	with much limonia	te on frags .								
			white to	stransparent gtz;	mod magnetic								
			(Black r	eturn)	/								
~ /	2.1									3./			
36.6	37.65		Med grey	; t.g. equigranula	r sand as above.	65468	36.6	39.65	3.05	54	-0/		
			magnetic	c, (Black return)	r cpy; s(rongry								
				·						 _			
<u>39.65</u>	42.7		Med grey	1; as above , vfg so	ulphide in sild?	65469	39.65	42.7	3.05	60	.01	5	
			mod may	gnetic; (Black ret	urn)								
42.7	<i>45.75</i>		Med yell	ow grey. as 39.65-	42.7. strongly	65470	42.7	45.75	3.05	62	.02	1	
			magneti	c; (Black return	ends)								
4576	//0.0		Madanal	have as above	hut a main		110.20	40.0	200	7//	01		
10.75	70.0		amount	of oxidized Sulphi	ide strangly	63411	40.15	70.0	3.03	17	.07		
			magnetic		, congry								
			/	····									
<u>48.8</u>	5/.85		Med yellu	w grey; as 45,75-9	48.8. very	65472	48.8	51.85	3.05	69	.03	_/	
			strongly	magnetic	. ,								

TELEPHONE: USE-4343

F		ווס	P TEST	ale	_							
	Footage Reading Corrected		Corrected	Hole No. <u>96-5</u> Sheet No. <u>3</u> Section Date Begun Date Finished Date Logged	B Lat Dep Bearing Elev. Collo	ar			Total Depth Logged By. Claim Core Size			
OEP OM	т н то	RECOVER	r		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	AS PPM
95	54,9		Med Oxid Very	yellow gro ized Sul strong/	cy : buff kaol'd feld ; red phide , black hornfels + mo y magnetic	65473 9;	51,85	54.9	3.05	74	.02	/
9	57. <i>95</i>		Dark + vfg stror	krown g g feld . la ngly mag	ercy; dominantly buff kad esser oxidized material; ver netic	'd 65474 Y	54.9	57.95	3.05	8/	.05	/
75	61.0		Med magn	brown; c etic	25 54.9- 57.95 ; Very strong	14 65475	57.95	61.0	3.05	105	-03	/
06	4.05		Light	t yellow gly magn	brown, as 54.9-57.95, very netic	65476	61.0	64.05	3.05	100	.20	/
5	;7. /		Light vfg c	grey yel, tiss'd su	low brown, as 54.9-57.95 bu uphide, weakly magnetic	t 65477	64,05	67.	3.05	74	.0/	/
/7	10.15		Light Vfg 5	yellow e ulphide	brown, as 54.9-57.95 but w + large scricite flakes,	vith 65478	67.1	70.15	3.05	/02.	.03	/

NEVILLE CROSBY IND

F		DIP	TEST										
	Foo	Angle Footage Reading Corrected		le Corrected	Hole No. <u>96-5</u> Sheet No. <u>4</u> Section Date Begun Date Finished Date Logged	Lat Dep Bearing Elev. Colla 			Total Depth Logged By Claim Core Size				
DEF	тн то	RECOVERY			DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	AS ppm	
.15	73.2		Med	<u>grey brou</u> 29 magne	un; as 67.1-70.15; very	65479	70.15	73.Z.	3.05	101	.05	//	
<u>. z</u>	76.25	-	Med schis	red brow tose ??	ngrey; pale green grey white gtz + 40% limonite	65480	73.2	76.25	3.05	90	.03	/	
			frags tr fre	occ with sh pyr +	h vfg sulphide black hornfels cpy.very strong magnetism	}		:					
,25	79.3		Med r stron	<u>ed brown</u> g magnet	grey; as 73.2-76.25, very	65481	76.25	79.3	3.05	117	.05	/	
2.3	82.35		Light Strong	red brou z magneti	on; as 73.2-76.25; very ism	65482	79.3	82.35	3.05	117	·02	/	
,35	<i>85.</i> 4		As 79	7,3 - 82.35		65483	82.35	85 .4	3,05	125	.03		
.4	88.45		Light big so	red brow ericite f	wn; as 73.2-76.25 but with Vakes; very strong magnetism	654 8 4	85.4	88.45	3,05	105	.04	/	
			 		· · · · · · · · · · · · · · · · · · ·								

NEVILLE CROSBY IND. TELEDHONE HIRE 4042

PROPERTY WINDY

1

HOLE No. 96-6

	Angle							
Footage	Reading	Corrected						

 Hole No. ______
 96 - 6
 Sheet No. ______
 1

 Section _______
 0
 7
 18/96
 1

 Date Begun ______
 0
 7
 18/96
 1

 Date Finished ______
 0
 7
 19/96
 1

 Date Logged ______
 Nov 12/96
 1
 1

_	Lat. 10170 N
	Den 88+00E
-	Baaring 360°/-45°
-	Bedring
-	Elev. Collar

Total Depth_	30.5 m	•
Logged By_	UGM	
Claim	WINDY 1	
Core Size	Sludge	

DE FROM	ртн то	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	AS	
12.2	15.25		Brown grey very granular sale greengrey	65486	12.Z	15.25	3.05	210	.01	1	
			to grey sil'd ?? black hornfels, ang. white								
			glz, green chi'd dior. with black biofite								
			* white feld, strongly magnetic								
15.25	Æ.3		Med grey: dominantly buff Kao'd feld	65487	15.25	<u>18.3</u>	3,05	50	.01	/	
			with some frags as above pink ?? tr.epi.								
			weakly magnetic								
			• •								
18.3	21.35		Med grey. as 15.25-18.3. non-magnetic	6548B	18.3	21.35	3.05	50	.02	1	
21,35	24.4		Med grey. as 12.2-15.25 but with buff	65489	21.35	24.4	3.05	51	.0/	1	
			kao'd feld; non-magnetic								
24.4	27.45		Light yellow grey as 12.2-15.25. weakly	65490	24.4	27.4S	3.05	50	.02	/	
			magnetic								
			-								
27.45	30,5		Dark brown grey: as 12.2-15.25 but	65491	27.45	30.5	3.05	59	.01	1	
			finer grained, weakly magnetic								
			. , , ,								

HOLE No. 96-7 PROPERTY WINDY DIP TEST Angle Hole No.96-7Sheet No./Lat.10400 NTotal Depth61.92 mSectionDep.86+60ELogged ByUGMDate BegunOCT 22/96Bearing360°/-45°ClaimWINDY 2 Readina Corrected Footage Date Finished OCT ZZ/96 Elev. Collar Core Size NQ Date Logged_OCT 25/96 Cu Au AS DEPTH SAMPLE No FROM TO OF SAMPLE POM WIDTH RECOVERY DESCRIPTION FROM TO 9/t ppm 0 5.49 CASING DIORITE - C.g. dark green grey, weakly 65492 5.49 8.54 3.05 214 5,49 .03 1 11.9 foliated at 35° to CA, 60% weakly ser'd 65493 8.54 11.9 3.36 169 .03 13 feld to ! biot t/- mag; mod. carbt/- gtz vning at 30-40° to CA , 1% diss'd pyr, tropy & tr po conc'd in matic areas minor epi on fracts + as f.g. clots; black chl. on fracts: slightly magnetic -7.63 dyke, darkgrey, f.g; contacts 45° to CA - 9.15 fragment vfg, black chloritic - 10,37 carb valt with massive pyr clot at 50° to CA -10.68 2 2.5 cm gtz vn1ts X-cutting cach other at 60° + 25° to CA. 25° unit has massive pyr clots -10.93 2.5 cm gtz volts with massive pyr clots

TELEPHONE: USE-4343

Г			DTEST									
	Foo		Angle Reading Corrected	Hole No. <u>96 – 7</u> Sheet No. <u>2</u> Section Date Begun Date Finished Date Logged	Lat Dep Bearing Elev. Collo)r			Total Depti Logged By Claim Core Size		-	
DE P FROM	тн то	RECOVER	1	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Aught	As ppm	
11.9	22,27		DIORITE - C.g.	nonfoliated as 5.49-11.9.	65494	11.9	14,95	3.05	2/2	.02	86	
			carb/gtz vnin	g weak generally hairline	65495	14.95	18.0	3.05	269	.05	17	
			-12.51 2.50	m yellow green epi-carb	65496	18.D	21.05	3.05	339	.03	50	<u> </u>
			vnlt	at 10° to CA with red hem.	65497	21.05	22,27	1.22	87	.02	18	
			ont	racts		ļ						
			-15.71 15 CM	n band of 50% semi-massive								
			pyra	at 45° to CA		 						
			-21.35 + 22.1	1 minor palegrey zones of								
			blea	ching: intrusive texture		i						
			6=00	ming vague from silica/ser								
			alter	ation								
				·								
22,27	25.93		DIORITE - V.O	alt'd, upper ctc 65° to CA. lower	65498	22.27	25,32	3.05	412	.05	56	
			contact 65° to	CA: pale grey aphanitic,	65499	25,32	25 <i>.</i> 93	0.61	875	.05	3	
			intensely car	b'd; bleached with rare								
			patch of intr	usive lext. cut by numerous								
			gtz or carb ?	1-gtz units generally at 70°								
			+ 50 to CA . i.	ntense black chl on fracts + as								
			clots in gtz vr	Its, occ clot of massive pyr								
		·	in gtz vn/ts.	generally 1% diss'd pyr, tr								
			cou troli?	+ silvery vto metallic, non-mo								

TELEPHONE USE-43-13

		PRO	PERTY	<u> </u>	VDY				HOLE No	96-7	,		
Г		DIF	TEST										d.
F	Foo		An	gle Corrected	Hale N 96-7 Sheet N. 3	Lat				Total Denti			· .
			Reduing	Corrected	Section	Dep,				Logged By.			
ļ					Date Begun	_ Bearing				Claim	 ,		
ļ					Date Finished	_ Elev. Collo)r			Core Size_			
L		I		L	Date Logged	-							
DE FROM	РТН ТО	RECOVERY	,		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	As ppm	
25,93	28.98		DIDR	1TE - We	akly foliated as 5-49-11.9.	65500	25.93	28.98	3,05	708	.12	1	
			folia	tion 50°	to CA. strong irreg white								
			carb	patches	5								
-				/								1	
2 8 ,98	45.75		DIORI	TE- V. a	It'd as 22.27 - 25.93. vague	65651	28.98	32.03	3.05	1219	.09	/	
			remn	ant pate	thes of matics as faint green	65652	32.03	35,08	3.05	975	.10	26	
			chlor	itic area	as. intense ser/carb? alteration	65653	35.08	38./3	3.05	708	.05	66	
			stron	g gtz r	gtz/carb vning at 30° 75° v	65654	38.13	41.18	3,05	204	.05	25	
			irreg	. 3% pc	yr tropy + tr moly diss'd +	65655	41.18	44.23	3.05	78Z	.08	25	
			along	selvage	s of vnits	65656	44,23	45.75	1.52	612	.05	54	
		<u> </u>	- 38.	43 to 39.1	65 intense 9tz + etz/carb								
				Veini	ing at 70° + 80° to CA. Very								
			1	broke					<u> </u>			<u> </u>	
		, ·	- 47	44 45 7	5 dias darker in colour from				,				
		,	1 121	maa	+ chl very proken + gouged								
			1		, very construction								
45.75	46.97		SILICI	FIED ZOI	NE - med grey aphanitic. Cut	65657	45.75	46.97	1.22	325	. 03	80	
			by w.	hite hai	rline carb volts with no								
			prefe	rred orie	entation + irreg, carb on fracts.								
			disco	ntinuous	s irreq white gtz units + dart								
			green	black c	h/ as fract coatings . 1% diss'd								
NEVI		BY IND.	-	to Cou									

TÉLÉPHÔNE: USE-4343

pyr tropy

1

PROPERTY					/DY		HOLE No							
F		DI	PTEST											
ŀ	Foo	tage	Reading	Corrected	Hole No. $96 - 7$ Sheet No. 4	Lat			·	Total Dept	h		· .	
F					Section	Dep				Logged By		<u> </u>	·	
Ę					Date Begun	_ Bearing_			· .	Claim			 • ``.	
E					Date Finished	_ Elev. Collo	ır			Core Size.	_			
Ĺ				LJ	Date Logged	-								
DE FROM	РТН ТО	RECOVER	r		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	As ppm		
46.97	47.73		DIOR	ME - V.	alt'd as 28.98 - 45.75	65658	46.97	47.73	0.76	387	.04	46		
2773	40 6		MVIC	NUTE ? 6	lack to arean black lacks like	15159	(17 73	40 6	0 77		07	39		
71.15	70.5		am	L + Orad	rack to green prace , rooks rook	62637	41.15	70.5	0.77	176	.02			
,			ury e	and grad	es crito acor. eccher Side;						<u> </u>			
			uppe	F CTC 65	, Jower Cie Bo to CH. has								"	
			2 m	n white	carb: dots minor white									
			irreg	<u>. Carb v</u>	n/ts: 1% diss d pyr; mod.									
			mag	netic										
48.5	50,48		DIOR	17E - V. a.	the as 28.98-45.75 with occ.	65660	48.S	50,48	1.98	86.	.02	74		
			sil'd	zone as	45.75 - 46.97				·····	······································				
50.48	56 43		MYLO	NITE? OS	47.73 - 48.5 foliated by white	65661	50 48	53.38	2,90	155	. 02	1		
	20.70		bairl	ine carh	valts + black streaks at 10° to	65667	53 38	5/ 43	3.05	141	.01	1		
			CA.	o% pyr g	Iominantly on fracts (appears	6-002	50.20		2.05					
			like	marcasite	e) + also as enhedral xls. very									
			broke	n; lacks	fissile fracturing of shale									
56.43	58.87		DIOR	ITE-alt	dark grey mottled with	65663	56.43	58.87	2.44	599	• 07	50	<u>_</u>	
			whit	e f.g. 2-	4 mm specks : 1% diss'd pyr +									
			cpy:	weakly	magnetic . very broken . blue .									

TELEPHONE: USE-4343

	DIP	TEST									
Foo	ptage	Angle Reading Corrected	Hole No. <u>96 – 7</u> Sheet No. <u>5</u> Section Date Begun Date Finished Date Logged	Lat Dep Bearing Elev. Colla 	ır			Total Depti Logged By Claim Core Size_	h		· .
PTH TO	RECOVERY	•	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au 9/t	As Ppm	
58,87		chl. on fract	S								
+'a)		- 57.95 to 58	.87 gougey with white								
		broke	n carb frags								
			/								
61.92		DIORITE - 50%	. yellow green epidotized feld	65664	58,87	61.92	3.05	263	.02	108	
		occas 5mm	long laths 50% chi/mag								
		replaced man	fics ; cut by white hairline								
		carb vnits (mod) with no preferred								
		orientation.	3% diss'd pyr, tr cpy;								
ļ		frags up to	7 cm replaced by epilyellow								
		green) or ch	1/mag (black). to red hem								
		on fracts . m	od, magnetic						-		
		· · · · · ·	,								Ĺ
											
ļ											ļ
									· · ·		

P	PR	DPERTY	<i>DY</i>				HOLE No.	96-8	? 			
	Foc	Di Diage	P TEST Angle Reading Corrected	Hole No. <u>96–8</u> Sheet No. <u>/</u> Section Date Begun <u>OCT 22/96</u> Date Finished <u>OCT 23/96</u> Date Logged <u>OCT 26/96</u>	Lat/ Dep Bearing Elev. Collo	040 86 + 070	00 N 60 L ^*/-	<u>e</u> 45°	Total Depti Logged By Claim Core Size-	97. 46. W/N. NG	<u>6 m</u> M DY Z	•
DE FROM	PTH TO	RECOVER	Y	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au git	As ppm	
0 4.58	4.58 5.03		CASING QUARTZ VEIN	- blotchy white gtz vn with	65665	4.58	5.03	0.45	14	.01	3/	
			numerous pai	tches of black chi t/- mag; grey alt'd appanitic								
			intrusive?;	tr pyr								
6.03	6.1		MYLONITE ?	black weakly foliated by	65666	5.03	6.1	1.07	35	.02	/	
			stretched wh	ite carb spots; weakly								
			magnetic; no	o visible sulphides								
6 • 1	7. <u>32</u>		ALTERED DIOR	TE? med grey textureless	65667	6.1	<i>7.3</i> 2	1.22	140	.02	з	
			white hairli	ne carb vnlts (mod), tr								
			diss'd pyr									
7. <u>32</u>	9.9/		ALTERED DIOR	TE, med grey with relict	65668	7.32	9.91	2.59	295	.03	_/	
			carb vnHs a	t 7.78 + 8.24 at 50° + 30°						``````````````````````````````````````		
			diss'd pyr. t	r cpy . irreg carb patches &			· · ·					

NEVILLE CROSBY IND TELEPHONE: LISE-4343

vnits; weakly magnetic

1

Г		DI	PTEST	-									
	Foo	tage	An Reading	gle Corrected	Hole No. <u>96 – 8</u> Sheet No. <u>2</u> Section Date Begun Date Finished Date Logged	Lat Dep Bearing Elev. Collo	ar			Total Depti Logged By Claim Core Size	h		
DEP	тн то	RECOVER	Y	·····	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cuppm	Aught	AS ppm	
7.9/	17.69		ALTE	RED DIO	RITE, med grey weakly	65669	9.91	12.96	3.05	341	.03	25	
			folia	ted ger	nerally massive dense,	65670	12.96	16.01	3.05	159	.02	1	
			Stree	rked by	black chl 7/- mag at 65° to	65671	16.01	17.69	1.68	104	.01	53	
			pyr	mainly	conc'd in black chi butalso	,							
			diss	'd									
			- 10.	98 1.5	cm glob of pyr in carb vnlt		L						
			-11.	59 da	rt grey fig frag 5 cm long + a	2							
				/cn	glob of cpy in carb vn/t								
			-74,	75 2.5 to	CA; cut by white carb vn It								
				at	10° to CA								
7.69	22,27		ALTE	RED DIO	RITE - as at 7,32-9.91. mod	65672	17.69	20.74	3.05	265	.03	53	
			carb	weak	gtz vnlts at 55° to CA	65673	20.14	22.27	1.53	601	.04	4	
			- 17.	69 Very	irreg pinkish gtz untt at	-							
				550	to CA								
									l				

NEVILLE CROSBY IND.

r			D TEOT									•	÷.
	Foo	btage	Angle Reading Correcte	d Hole No. <u>96-8</u> Section Date Begun Date Finished Date Logged	_ Sheet No	Lat Dep Bearing Elev. Colla	ır			Total Dept Logged By Claim Core Size.	h		
DE FROM	PTH TO	RECOVER	r	DESCRIPTION		SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	As ppm	
22.27	22,72		QUARTZ Z	ONE- at 55°? 60°? to	o CA; white	65674	22.27	<u> 22,72</u>	0.45	434	.06	113	
			gtz mott/e patches x	ed by black to green minor white carb	black chl								
22,72	24,86		ALTERED D	IORITE as at 7.32-9	.91 but	65675	22,72	24.86	2-14	560	.04	112	
			feld textur	e vague to non-exist	ant; mod				: ; ;				
		- 	- 22,72 1	g at 0°, 10°, 30° + 60° cm pyr clot	to CA								
24.86	26.69		MYLONITE	black spotted by Im	mwhite	65676	24.86	26.69	/.83	250	.01	71	
			dots of real	eubedral (4mm) put	s at 10° to								
			- 25.32 1	compreyish pink q	tz vn/t								
			-26.23 to 2	26,69 gouge, green	sh black								
26.69	35,0B		ALTERED D	IORITE, m.g. mottled	dark grey	65677	26.69	29,74	3.05	255	.07	124	
			(chloritic)	* light grey (relict ;	feld). broken	65678	29.74	32.79	3.05	113	.04	90	
			+ gougey;	dark grey areas re	lict matics	65679	32.79	35.08	2,29	661	•07	95	
			now black	ch17-mag. 3% cu.	hedral pyr						· · · · · · · · · · · · · · · · · · ·		
			55° to CA.	weakly magnetic	- marg ut				· · · · · · · · · · · · · · · · · · ·				

NEVILLE CROSBY IND-TELEPHONE: USE-4343

	PROPERTY DIP TEST		NDY				HOLE No	96 -	8	•			
Г		DIF	TEST										
F	.		Ar	ngle	96-8								
Ł	<u> </u>	orage	Reading	Corrected	Hole No	Lat				locard B	'n		
ŀ					Date Begun	Bearing				Ciaim			
F					Date Finished	Elev. Colli	ar.			Core Size			
[Date Logged	_							
DE FROM	РТН ТО	RECOVERY	'		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu	Au g/t	As pem	
26.69	35.08		- 30.	5 5 cm	gtz vnit at 55° to CA. no					, , , , , , , , , , , , , , , , , , ,	0		
(con	+1a)			Visi	ble sulphides . black chl patches								
C			- 30.	81 dio	rite text. f.g. highly alt'd by								
				Ser	rcite								
			- 31,2	-6 15	em zone of black chi + bx'd								
				carl	6 frags								
			- 31.7	12 15	emzone of black chi + bx'd								
				Car	b frags								the month of a
35.08	<i>35,5</i> 3		Dyke	dark	olive green generally anhanitic	65680	35.08	35.53	0.45	106	.01	67	
			with	OCC PO	le vellow green Imm epidotized	,							
			f. Id	+ Vaque	black biot? outlines, cut bu								
			whit	c carb	volts at 45° to CA, minor								
			Pole	green =	pi-carb fracts. strong off								
			tro	Ur. wea	kly magnetic contacts of						1		
			550	+ ca	-y may								
·· ·· ·													
35.53	37.06		ALTE	RED DIOR	PITE c.g. mottled as at 26.69-35.00	65681	35.53	37.06	1.53	149	-04	78	
			mod.	magneti	- minor irreg, discontinuous								
			hairl	ine Carb	Vning with no preferred								
			ories	station;	1% diss'd pyr. pinkish relicts								

NEVILLE CROSBY IND. TELEPHONE: USE-4343

		PR	OPERTY	W/	NDY				HOLE No	96-B	•	— ·	•
	Foo	Ditage	IP TEST Angle Reading Co	orrected	Hole No. <u>96–8</u> Sheet No. <u>5</u> Section Date Begun Date Finished Date Logged	Lat _ Dep _ Bearing _ Elev. Colld				Total Depti Logged By Claim Core Size_	l		
DE FRON	PTH	RECOVER	Y		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	As ppm	
35.53	37.06		of biot	; vf9	clots + streaks of epi (tr);			-			-		
(Con	t'a)		black	chl on	, fracts								
37.06	38.13		Dyke a	is at .	35.08-35.53 · upper ctc	65682	37.06	38. ₁ 3	1.07	145	.01	101	
			strong	epi v	eg + highly epidotized. + ch/ throughout. to hairline							-	
			carb Vi	ning.	tr pyr: yellow green 2 mm								
		-	epidoti	zed f	eld + 2-4 mm clots of chi/								
			mag in	dark	green matrix , mod magnetic								
· ·		- 	lower a	cte 70	to CA + epidotized								
38.13	40.11		ALTERE	DDIOR	ITE, C, q as at 35.53- 37.06;	65683	38.13	40.11	1.98	351	.02	100	
			weak e	pi vn	Its, weak green chl units at								
			10 to 0	CA; W	eak carb. Vn/ts								
			- 39.19	5 m/	n clot of cpy in chi Vnit								
40.11	4.48		DYKE a	s at 3	5.08-35.53 . upper ctc 45° to CA	65684	40.11	41.48	1.37	217	. 05	79	
			+ grado	ational	1. lower cte 90° to CA. both								
			highly e	epidoti	ized, minor patches of c.g.								
			mottled	intru.	sive (frags?); mod epit/-carb								<u>.</u>
			hairline	vnits	. strong perr. cpi. weak carb								

TELEPHONE: USE-4343

vning + random 'orientation

F		DI	PTEST										
	F00		An Reading	gie Corrected	Hole No. <u>96-8</u> Sheet No. <u>6</u> Section Date Begun Date Finished Date Logged	Lat Dep Bearing Elev. Collo				Total Depth Logged By. Claim Core Size_	L		
DEP 10M	TH TO	RECOVER	r		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	As ppm	
.48	42,5S		<u>ALTE</u>	<u>RED DIOR</u> 4 4 m.	ITE c.q as at 35.53-37.06 m white carb vnlt at 45° to	65685	41.4 8	42,55	1.07	466	.24	98	
				CA v	with epi-pyr selvage (1cm)								
.55	48.6Z		DYKE	e as at	35.08-35.53; upper ctc 50° to CI	9 65686	42.55	43.62	1.07	133	.01	91	
			lower whit	e carb	to CA + slightly foliated with smears, mod. magnetic								
			-42.	7 <u>5 cm</u> as ai	apophyses of c.g. alt'd dior t 35.53-37.06								
.62 (45,75		ALTE	RED DIOR	PITE, f.g. med grey spotted	65687	43.6Z	45.75	2.13	169	.02	33	
			with	black re hairlin	lict phenos of chi /mag. mino								
			to de	iss'd pyr	, mod. magnetic	;							
.75	¥6.2/		MYLO	NITE 6	lack slightly foliated with	65688	45.75	46,2	0.45	137	.01	1	
			white	hairli	ne carb vnits at 80° to CA;								
-+			upper tr di	- ctc 45	<u>·· / lower contact 90° to CA.</u>								
-+			form	ss a pyr	· mou mugneree								

TELEPHONE USE-4343

		PRO	PERTY	<u>VDY</u>				HOLE No	96-1	8	— .	
F		DI	P TEST									
t	Foo	tage	Reading Corrected	Hole No	Lat			· · · · · · · · ·	Total Dept	h		· .
ŀ				Section	_ Dep				Logged By	/		
ļ				Date Begun	Bearing				Claim			<u> </u> • ¹ .
ļ				Date Finished	Elev. Collo	ar			Core Size			
L				Date Logged	-							
DE FROM	РТН ТО	RECOVER	Y	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	As ppm	
46.21	48.19		DIORITE f.q.	25 43,62 - 45,75 with minor	65689	46.2	48.19	1.99	315	.01	48	
			c.q. dior as a	t 35.53-37.06 mod irreg								
			carb vning	. ,								
			· · · · · ·									
48.19	57.04		VERY ALTERE	DIORITE, fig as at 43.62-45.75	65690	48.19	51.24	3.05	169	-01	35	-
			black matics	are green, chi'd ; very ser'd .	65691	51.24	54.29	3.05	299	.03	239	
			feld white 2	mm dots of carb . mod	65692	54.29	57.04	2.75	184	.02	98	
			carb vning at	35° × 10° to CA								
			-48.19 annea	led bx zone buff, ser'd with						<u> </u>		
			greend	ch1 + white carb filling								
			tensia	on gashes								
			-48.8 chi'd	matics disappear . only white								
			relict	feld visible								
			-52.61 7.5 cr	n grey gtz vnit at 40° to CA								
			-52.76 to 53.07	relict feld in fig diorite							ļ	
			betwee	en 2 vertical fracts stretched							 	
		· · · ·	+ folio	ated at 90° to CA								
_			- 53.78 to 54.14	pale grey sil'd zone with								
			Vague	greyish ser'd 2 mm feld, green								
			black	ch1-lined fracts minor carb								
			voing	at 90° + 30° to CA								

TELEPHONE: USE-4343

		PRO	PERTY	WI	<i>₩Ъ</i> У				HOLE No.	96 -	8	•	:
Ľ		DIP	TEST										
F			An	gle	9/-9 ··· 8					.			· .
┝	Foo	otage i	Reading	Corrected	Hole No Sheet No	Lat			······	lotal Dept	n		
F					Section	Dep		. <u></u>		Logged By	·		<u> </u>
Ę					Date Begun	Bearing_				Claim			<u> </u>
┟					Date Finished	Elev. Colle	or	···· · ····		Core Size.		<u></u>	
				•	Date Logged								
DE I OM	РТН ТО	RECOVERY			DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au 9/t	As ppm	
19	57.04		-54.2	9 mod	ch/ on fracts x in all					//	, , , , , , , , , , , , , , , , , , ,		<u>_</u>
m	(a)			direc	tions (shatter zone?)								
							ļ					ļ	<u> </u>
04	64.05		DIORI	TE C.q.	med grey with feld. texture	65693	57.04	60.09	3.05	244	.02	58	
•			Visit	le, cut	by weak hairline carb vning	65694	60.09	63.14	3.05	255	.03	62	_
			at 3:	5° to 40°	to CA + black ch1-lined fract.	5 65695	63.14	64.05	0.91	376	.02	89	
			black	k phenos	also visible - dominantly may	2				ļ			_
			- 58.	26 to 63.4	44 dark semi-ovoid frags up	,	<u> </u>						<u> </u>
				to 7.	5 cm of felted biot + feld		ļ			<u> </u>			<u> </u>
			- 62.2	22 2.5	cm gtz valt at 70° to CA		ļ						<u> </u>
			-62.3	7 1.5	cm gtz vnit at 70° to CA	_				ļ			<u> </u>
			-62.6	8 2.5	en gtz vnit at 70° to CA								<u> </u>
			-63.4	4 to 64.0	05 light grey bleached ser'a	,							ļ
				¥ 51	I'd; matics vague . minor								
			 	gast	carb vning. tr pyr								<u> </u>
			<u> </u>		·								<u> </u>
05	66.8		DIORI	TE, C.g. a	5 57.04-64.05 but dark grey *	65696	64.05	66.8	2.75	364	.04	66	
			freshe	r looking	, dark frags still present;								
			mino	r carb v	nits with bleaching at variab	e	 						
			angles	s, mod	magnetic. 1% pyr dominantly		 						
			La B	n et e	-								1

NEVILLE CROSBY IND. TELEPHONE: USE-4343

	DIP TEST	NINDY				HOLE No	96 - 6	7					
[DI	P TEST										
f	For	tage	A	ngle	444 N 96-8 Short N 9	1.01				Total Dant			•
ł			Reading	Corrected	Section	Den				ionand By	·		
ł					Date Begun	Bearina				Claim			4
ł					Date Finished	_ Elev. Collo)r			Core Size.			
Ĺ					Date Logged	_							
DE FROM	РТН ТО	RECOVER	Y		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	As ppm	
46.8	70.46		D10	RITE C.q.	as 64.05-66.8 but yellow green	65697	66.8	69.85	3.05	265	·02	1	
			grey	from epi	replacing feld as clots	65698	69.85	70.46	0.61	299	.03	29	
			repla	icing fre	195 + as hairline volts . dark								
			gree	n chl-fi	Iled tension gashes at 10° to CA								
			mine	or red he	m on fracts; 1% diss'd pyr								
			- 69.	<u>39 Z (</u>	icm clots of cpy in carb/chl								
				gash	· · · · ·								
70.46	73.51		DIOR	1TE, C.g. Q	s at 64.05-66.8	65699	70.46	73,51	3.05	145	.04	46	
			- 71.6	18 to 71.98	black mylonite with carb								
				yn Its	at Bo to CA + carb/chi/gtz								
				band	at base at 70° to CA								
73.51	75.18		DIOR	ITE C.q. 0	as 66.8 - 70.46 but epi not as	65700	73.51	75.18	1.67	124	.03	46	
			pron	ounced :	fracturing epi vnits chi vnits								
			a/1 a	t 10° to	CA: mod magnetic								
					. ,								
75,1B	79.45		DYKE	as at 35	.08-35.53 but matics + feld	65701	75.18	78,23	3.05	127	.02	70	
			more	propound	and , olive green matrix black	65702	78.23	79.45	1.22	122	.01	58	
			mati	cphenos.	upper ctc 55°, lower ctc 75° to								
			CA.	weak car	braits mostly hairline often.								

TELEPHONE: USE-4343

		PRO		NDY				HOLE N.	8	···		
F		DIP	TEST Angle								•	
ļ	Foo	otage	Reading Corrected	Hole No. <u>96-8</u> Sheet No. <u>10</u>	Lat				Total Dept	h		-
Ŀ				Section	Dep				Logged By	·		-
ł				Date Begun	_ Bearing_				Claim			•
ŀ				Date Finished	_ Elev. Collo	or	<u> </u>		Core Size.			-
•				Date Logged	-							
DE F ROM	РТН ТО	RECOVERY		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu ppm	Au g/t	As ppm	
75.18	79.45		with yellow	green epi'd selvage, tr vfg						ľ	ļ	
(con	ta)		sulphide. n	on-magnetic					-			
	9101		Diagite in	and amount the black birt + /	16703	70.16	87 6	200	/32	03		
17.45	87.74		mag phenos	(40%) × 60% arey feld, mod	65704	82.5	84.94	2.44	297	.05	<u>20</u> 98	
			magnetic: m	inor irreg carb volts , tr diss'd					<i>_</i>			
			pyr but conc	'd in mafics, minor red hem								
			on fracts mi	por epi vning + replacement of							ļ[
			feld from BI	.44-83.57								<u> </u>
			-79.91 15 cm	n f.g. dyke with vfg matics +		ļ						
			feld	visible; intensely epidotized						ļ		
			-81.74 intr	isive texture becomes vaguer.								
			000	black frag								
			-82.96 to 83.8	3 green vertical ch - filled								
			tens	sion gashes								
84.94	AG II		DIDRITE fo	05 44 19-57.04, pale are in miti's	65705	8494	86.16	1.22	98	.03	41	
	001/3		with 2mm	buff ser'd feld relicts, minor			00.10					
			matic relicts	black + composed of mag, tr								
			incipient epi	1% diss'd pyr							-	
			- 85.25 00/0	carb volt in section at 80° to CA								

		PRC	PERTY WA	<i>N⊉</i> Y				HOLE No	96-8	9	<u> </u>	
	Foo	DII Diage	P TEST Angle Reading Corrected	Hole No. <u>96 – 8</u> Sheet No. <u>//</u> Section	Lat				Total Dept Locaed By	h		
				Date Begun Date Finished Date Logged	Bearing Elev. Colle	or			Claim Core Size			
DE FROM	РТН ТО	RECOVER	/	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Cu	Au g/t	As ppm	
86.16	86 .93		DIORITE, C.g. 0	as at 79.45-84.94	65706	86-16	86.93	0.77	62	.02	34	
86.93	87,84		SILICIFIED ZON buff, Ser'd m	NE, palegrey with vague pafics? + dark grey patches	65707	86.93	87.84	0.91	125	.02	28	
			(matics?), 19. lined hairlin	diss'd pyr x on black chl- fracts. weakly magnetic.								
			tr moly ?; vag	que frag outlines present								
			- 88.76 /\$ 0	ngtz vn at 80° to CN								
<u>87,8</u> 4	88.45		DIORITE, C.g	as 79.45-84.94	65708	87.84	88.45	0.61	252	.06	73	
88.K	8 9.98		SILICIFIED 201	1E as at 86.93-87.84	65709	88.45	<i>8</i> 9.98	1.53	20B	.33	49	
<i>8</i> 9.98	96.99		DIORITE, C.q	as 79.45 - 84.94	65710	<i>8</i> 9.98	93.03	3.05	84	.02	76	
				·	657//	93.03	96.08	3.05	423	.09	45	
96.99	97.6		DIORITE, f.g.	<u>as 48.19-57.04</u>	65712. 65713	96.08 96.99	96.99 97.6	0.9/ 0.6/	109 128	.03 .05	66 53	

OCT-29-1996 15:05

MIN-EN LABS

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Assay Certificate

Company: COLUMBIA GOLD MINES LTD Project: WINDY Aun: Wayne Roberts

We hereby certify the following Assay of 24 CORE samples submitted OCT-1'i-96 by U. Mowat.

Sample Au-fire Number g/tonne .04 0-65401 0-65402 .05 0-65403 .06 0-65404 .03 0-65405 .08 0-65406 .07 0-65407 .09 0-65408 .18 0-65409 .07 0-65410 .14 0-65411 .04 0-65412 .26 0-65413 .12 0-65414 .05 0-65415 .03 0-65416 .02 0-65417 .04 0-65418 .09 0-65419 .03 .04 0-65420 0-65421 .06 0-65422 .05 0-65423 .07 0-65424 .01

Certified by

the

604 327 3423 F.02

VANCOUVER OFFICE: 8282 SHERBROOKE STALET VANCOUVER, B.C., CAN IDA V5X 4EB TELEPHONE (604) 327-3 136 FAX (604) 327-3423

SMITHERS LAB: 5176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

DDH 96-1

Date: OCT-29-96

6S-0232-RA1

- DCT-29-1996 15:05

MIN-EN LABS

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

Assay Certificate

604 327 3423 P.03

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA VSX 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2ND TELEPHONE (604) 847-3004 FAX (604) 847-3005

6S-0232-RA2

Date: OCT-29-96

Company: COLUMBIA GOLD MINES LTD Project: WINDY Attn: Wayne Roberts

We hereby certify the following Assay of 16 CORE samples submitted OCT-17-96 by U. Mowat.

Sample Number	Au-fire g/tonne		
0-65425	.05	עעע	94-1
0-65426	.01	DDH	
0-65427	.01		
0-65428	.01		
0-65429	.01		
0-65430	01		
0-65431	.01		8/ 2
0-65432	.01	DDH	76-2
0-65433	.01		
0-65434	.01		
0-65435	.01		
0-65436	.01		
0-65437	.01		
0-65438	- O1		
0-65439	.01		
0-65440	.01		

Certified by

Ate

MIN-EN LABS

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Assay Certificate

604 327 3423 P.05

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

6S-0237-RA1

Date: OCT-29-96

Company:COLUMBIA GOLD MINES LTDProject:WINDYAttn:Wayne Roberts

We hereby certify the following Assay of 13 ROCK samples submitted OCT-21-96 by U. Mowat.

Sample Number	Au-fire g/tonne	
0-65441	.01	
0-65442	. 02	>> 11 94-2
0-65443	. 02	DDH 10 Z
0-65444	.02	
0-65445	.01	
0-65446	.01	, , , , , , , , , , , , , , , , , , ,
0-65447	.06	
0-65448	.04	
0-65449	.05	
0-65450	. 02	
0-65451	.03	
0-65452	. 04	
0-65453	.01	

Certified by

REAL PLAN 1

0.257

122

COMP: COLUMBIA	GOLD M	INES	LTD							M	EN-I	I MB	LABS		- I(CP 1	REPO	ORT									F	ILE N	D: 65	-0232	-RJ1+2
PROJ: WINDY										828	2 SHE	RBROO	KE ST.	, VA	NCOUV	ER, 9	.c. v	5X 4E	8										DAT	E: 96	/10/29
ATTN: Wayne Ro	oberts										TEL:C	604)3	27-343	56	FAX:(604 33	27-34	23											* *	(AC	T:F31)
SANPLE	AG	AL	AS	BA	85	81	CA	CD	CO	CR	CU	fE	GA	K	LI	MG	MN	HD	NA	NI	P	PB	\$8	SM	SR	TH	TI	U	y	W	ZN

5424 5425 5426 5427 5428 5429 5429 5430
A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2.60 9 3.99 0 2.15 0 2.03 8 .88 1 2.07 4 2.49 9 2.59
173 261 175 187 68 187 215 232
129 58 71 66 44 62 64 99
6.85 6.19 2.54 2.98 2.94 2.87 7.66 6.47
33 29 27 26 30 23 30
220 94 80 10 110
0 1 6 1 8 1 6 2 1 1 6 1
39 5.0 14 3.4 20 3.3 73 2.2 41 3.4 69 3.4
200
6 2 6 1 1 2
26 5.03 25 2.73 26 2.64 11 1.05 25 2.61 25 3.25 28 3.62
1051 539 538 235 459 799 698
15 11 11 12 12
.02 .02 .02 .02 .02
66 50 489 54 49 66
950 1180 1160 1630 1390 990 990
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1
10 6 4 6 7
196 192 229 174 258 273 311
1 1 1 1 1 1
.08 .12 .10 .06 .12 .11
167.3 94.0 87.4 47.0 89.2 108.9 120.9
1 2 1 2 1 1 1 2 1 1 1 2 1 2 1 2

· DCT-29-1996 15:06

604 327 3423

SANPLE NUMBER D-65441 D-65442 V 0-65443 I 0-65444 V	AG AL PPH X .7 1.31 .6 1.52 .6 1.40 .5 2.75	AS PPN 186 204 139 130	BA PPN 36 48 43 46	BE PPM .1 .1	B1 CA PPN X 1 3.03 1 1.81 1 2.31 1 6.59	CD PPN .1 .1 .1	CO PPH 39 43 31 43	CR PPN 182 95 84 129	CU PPW 267 311 233 191	FE X 2.31 3.01 2.65 4.74	G/ PPt	.47 .51 .39 .45	L1 PP1 11	1.9 2.1 7 1.9 7 3.3	G MN X PPH 5 319 9 284 8 292 8 616	но Рри 8 10 8 14	NA 2.02 .02 .02	NI PPM 66 55 38 54	PPH 1140 1250 1260 950	PB PPM 1 1	SB PPH 1 1 1	SN PPN 4 5 5 10	SR PPH 172 209 259 281	TH PPM 1 1	11 2 .06 .07 .07 .03	Ц РРИ 1 1	V PPM 38.3 70.0 69.4 139.3	W PPN 3 1	ZN PPN 16 16 15 23
0-65445 0-65446 0-65447 0-65448 0-65459 0-65450 0-65451 0-65452 0-65452	.6 3.04 .6 1.69 .6 1.53 .7 2.44 .8 2.38 .6 2.27 .9 2.60 1.0 2.49	84 257 74 137 186 150 177 190	83 74 122 406 533 529 719 883 741	.1	1 8.33 1 4.94 1 4.67 1 3.94 1 3.17 1 3.40 1 2.54		34 22522526 27 201	120 148 19 41 35 43 108 88	168 71 260 191 116 133 177 294	3.64 3.94 15 15 15 15 15 15 15 15 15 15 15 15 15		.21 .42 1.04 1.18 .98 1.25 1.09	21222		0 887 2 990 6 1148 7 1083 9 925 0 930 4 852	10 9 14 12 11 13	.02 .02 .02 .02 .03 .02	53 24 34 37 35 71	910 1660 1760 1660 1820 1820	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	757777777	250 703 407 417 392 321 237 270	1	.04 .01 .03 .08 .11 .11 .13 .13		139.1 117.8 63.3 146.6 158.9 156.3 156.6 139.9	11111	33 26 42 52 64 57 59 60
											-																		
																											· .		

NOV-14-1996 16:22

MIN-EN LABS

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAVERS + ANALYSTS + GEOCHEMISTS

Assay Certificate

604 327 3423 P.05

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

6S-0265-RA4

Date: NOV-13-96

Company: COLUMBIA GOLD Project: WINDY Attn: WAYNE ROBERTS

We hereby certify the following Assay of 30 SLUDGE samples submitted NOV-05-96 by U. Mowat.

Sample	Au-fire	96-3	
Number	g/tonne		
65454	.02	+7	
65455	.17	V	
65456	.03	1 94-4	
65457	.04	10	
65458	. 03		
65459	.01		
65460	.01		
65461	.01	$\overline{\mathbf{v}}$	
65462	.01	1 96-5	
65463	.01		
65464	.01		
65465	.02		
65466	. 02		
65467	.01		
65468	.01		
65469	.01		
65470	.02	r.	
65471	.01		
65472	. 03		
65473	.02		
5547A	^		
65475	.03		
65475	.03		
63470	.20	V	
UU3//	.01	-	

Certified by	Adre

MINERAL

ENVIRONMENTS LABORATORIES

MIN-EN LABS

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

604 327 3423

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA VSX 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

COLUMBIA GOLD Company: WINDY Project: WAYNE ROBERTS Attn:

We hereby certify the following Assay of 14 SLUDGE samples submitted NOV-05-96 by U. Mowat.

Sample Number	Au-fire g/tonne	96-5
65478	, 03	
65479	.05	
65480	. 03	
65481	.05	
65482	. 02	
65483	.03	47
65484	.04	\heartsuit
65486	.01	94-6
65487	.01	(*)
65488	. 02	
65489	.01	
65490	, 02	+17
65491	.01	

Certified by

MIN-EN LABORATORIES

P.06

Date: NOV-13-96

NOV-14-1996 16:21

MIN-EN LABS

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . CEOCHEMISTS

P.02 604 327 3423

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

6S-0265-RA1 Date: NOV-13-96

COLUMBIA GOLD Company: WINDY Project: WAYNE ROBERTS Aun:

We hereby certify the following Assay of 30 CORE samples submitted NOV-05-96 by U. Mowat.

IRONMENTS

Sample	Au-fire	Day 1116 91-7
Number	g/tonne	VILIC HOLE TO
65492	.03	
65493	. 03	
65494	. 02	
65495	.05	· · ·
65496	.03	
65497	. 02	
65498	.05	
65499	.06	TT
65500	.12	
65651	. 09	46-7
65652	.10	
65653	.05	
65654	.05	
65655	.08	
65656	.05	
65657	. 03	
65658	. 04	
65659	. 02	
65660	.02	
65661	.02	
65662	.01	
65663	.07	
65664	. 02	
65665	.01	96-8 '

MIN-EN LABS

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + CEOCHEMISTS

Assay Certificate

Company:	COLUMBIA GOLD
Project:	WINDY
Ann:	WAYNE ROBERTS

We hereby certify the following Assay of 30 CORE samples submitted NOV-05-96 by U. Mowat.

Sample Number	Au-fire g/tonne	96-8
65566		
65667	- 02	
65668	. 03	
65669	. 03	
65670	. 02	
65671	.01	
65672	.03	
65673	. 04	
65674	.06	
65675	- 04	
65676	.01	
65677	.07	
65678	. 04	
65679	.07	
65680	.01	
65681	.04	
65682	.01	
65683	. 02	
65684	. 05	
65685	.24	
65686	.01	
65687	.02	CT
65688	.01	\vee
65689	.01	

Her Certified by

MIN-EN LABORATORIES

604 327 3423 P.03

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2ND TELEPHONE (604) 847-3004 FAX (604) 847-3005

6S-0265-RA2

Date: NOV-13-96

MIN-EN LABS

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Assay Certificate

Company:	COLUMBIA GOLD
Project:	WINDY
Am:	WAYNE ROBERTS

We hereby certify the following Assay of 30 CORE samples submitted NOV-05-96 by U. Mowat.

Sample Number	Au-fire g/tonne	96-8	
65690	.01		
65691	. 03		
65692	. 02		
65693	. 02		`
65694	.03		
65695	.02		
65696	. 04		
65697	. 02		
65698	. 03		
65699	.04		
65700	.03		
65701	. 02		
65702	.01		
65703	.03		
65704	.05		
65705	. 03		
65706	. 02		
65707	. 02		
65708	.06		
65709	.33		
65710	. 02		
65711	.09		
65712	.03		
65713	.05		

VANCOUVER OFFICE: B282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Certified by

MIN-EN LABORATORIES

6S-0265-RA3

Date: NOV-13-96

FILE NO: 68-0265-RJ3+4 ._ MIN-EN LABS - TCP REPORT COMP: COLUMNIA GOLD DATE: 96/11/13 台 PROJ: UINOY 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 (ACT:F31) ATTN: WAYNE ROBERTS TEL: (604)327-3436 FAX: (604)327-3423 * * 14-1996 TI X HA % PB TH U v υ AL CD 0 CR MG MH N1 Ρ SR SN SR ZN SAMPLE AS RA BF 81 CA a FF GA KX 11 MO AG PPN ž ž ž PPM PPN PPN NUMBER PPM PPN PPH PPH PPN PPN PPN PPN PPH PPN PPN PPN PPN PPM PPM PPN PPN PPH PPH PPN 1.34 1.21 1.51 1.42 1.53 .02 .03 .03 .04 .03 4.54 4.04 3.36 65690 -62 35 10 27 169 2.26 .30 659 R 26 1180 35 .01 15.1 20 77757 33544 .57 239 98 58 62 14357 .40 .54 .34 .32 378 366 322 391 299 184 2.32 549 632 715 774 25 1150 30 1170 .01 126 10 9 10 9 14 22 17 65691 11 12.4 1 4555 -1 1 .1 12 14 12 65692 106 i 21.9 4 .1 1 3.60 3.00 30 1140 30 1130 95 244 19.9 65693 .1 1 1 16: 22 65694 .ŏi 23.1 1 1 3.52 3 3.36 1 1.69 3 1.61 2 2.95 4 1.62 11 1.61 8 1.12 10 1.13 10 1.30 376 364 265 299 145 2.88 3.05 2.60 2.31 2.70 .39 1.04 .41 .64 1.09 757 729 440 425 704 .03.03 350 234 101 100 257 1120 21 65695 65696 65697 .7 .53 1.22 1.11 89 66 81 188 79 445267 26 31 26 26 28 .02 1 31.7 .1 131512115 8101180 554 N 10 58.0 1.0 4 1200 21 21 33 .07 59.6 .6 .1 29 175 44.9 45 .08 65698 1.18 65699 .9 1.36 1280 10 1 50.6 .1 1 1 1 46 70 58 28 98 1324271214 7 1.06 14 2.02 16 2.35 7 .99 9 1.24 .05 .03 .03 .05 .05 124 127 122 132 297 2.09 3.08 3.62 2.21 2.33 -46 1.42 1.83 613 802 844 446 584 1180 1530 1560 1140 1230 233 110 107 129 156 65700 W 140 233 333 257292429 .09 51.1 32 1.11 111 3 2,39 599571 811380 .8 -1 456 .13 65701 1 1.98 1.69 1.70 1.74 1.97 69.3 58 .9 1 1.0 87.0 65 126 -1 1.06 124 .58 657030 44 .09 32 39 Ť. R. .11 1 58.0 65704 ×. Í 1 -1 3 1.33 3 1.37 3 1.31 4 1.46 11 1.29 54963360 262528308 23 23 31 29 .54 .56 .61 .92 1.35 120 99 138 124 237 98 62 125 252 208 2.48 2.52 2.56 2.77 2.67 .40 .42 .36 .70 .92 772 1120 1120 1120 1120 422 415 510 427 132 65705 ± 65706 A 65707 A 65708 A 5.05.8 4328739 3.54 3.36 3.57 3.30 23.3 .0400500 45 .02 .1 1213131314 899990 1 44 ŝ MIN-EN .06 1 46.2 1 2.13 1130 285 į, .09 331 65709 1 1 1.0 -1 -1 1 29 1130 28 1140 29 1110 29 1170 29 1170 25 1030 322 189 146 161 81 84 423 109 128 2.65 2.97 2.64 2.55 2.45 .46 1.01 .93 .60 .15 1.38 1.22 1.37 1.38 872 563 815 830 498 000000 .6 .75 .9 1.40 .9 1.14 76565 455 140 403 3.48 1.84 3.65 7693597 41085 9101311 554 .02 19.5 40 49 38 65710 .1 .1 12 16 14 13 12 .10 55.1 43.2 65711 65712 -1 LABS 3.65 304 26.5 65713 65454 3A .04 29 .4 1.29 72 ō .98 78 8 70 109 108 78 116 3.23 3.23 3.48 2.99 3.00 .28 .24 .28 .23 .23 8 .95 10 1.00 9 1.02 8 .94 10 1.15 811 682 738 561 590 22828 42231222 147 125 145 112 119 61 60 .04 1420 1180 1250 1240 59557927 10 10 11 9 10 5 65655 .29 2 17 1 46.3 63 50 52 42 44 .3 1.62 .2 1.71 .4 1.38 .4 1.45 15161314 65456 5545 X 65457 ± 65458 ± 65459 Å 1.04 80.0 69.3 71.3 101 98 4 .09 .1 -1 .08 .08 19 25 1 2 1 1170 103 1 1 10 36 30 45 9 38 124 116 164 144 132 112 100 3.18 3.04 3.55 3.53 3.45 .25.24 11 1.33 9 1.19 620 552 753 725 744 .04.06.05 1.97 80 59 43 65460A ON 1.60 49 1515181716 11 1200 Š 111 .08 1 71.5 .4 .1 .5 1.43 66.4 94.1 94.1 88.4 1130 1090 1090 1090 139 86 89 78 .07 39 72 58 55 65461 2.61 12 1.27 13 1.32 12 1.23 106 68 63 88 68 67 13 65462 555 1.87 ii 33 1.41 1 .10 65463 -7 65464 1 .09 13 1.33 12 1.32 12 1.32 12 1.32 12 1.32 12 1.32 11 1.16 3.57 3.41 3.52 2.60 3.38 .15.14 663 623 644 449 663 .06 383736238 .5 1.85 .5 1.77 .5 1.81 .5 1.81 .5 1.12 1.28 1.41 1.45 1.72 1160 1140 1120 65465 S 65466 - 9 124 124 125 16151611 10769279 1395338 21 87 .11 1 95.3 53 11 11 8 12 555 16 .1 51 49 37 56 86 1 .11 1 91.2 1 94.2 91 80 .12 223 1 65468 0 78 880 1050 ž .09 3 1 ž **91** 65469 .9 1.67 5 1.57 .1 1 5 .11 1 90.8 101 6671 7272 .14 .134 11 1.11 13 1.22 13 1.25 11 1.17 12 1.24 666 789 772 997 1159 .06.05 37 1050 48 1080 102 1070 71 980 61 1000 3.58 65470 X 65471 A 65472 A .7 1.62 129 169 153 .1.1.1 1 1.55 15 16 16 17 18 627497481 1329250 3 5 89 92 87 84 93 .11 1 89.1 5 92 .1 .8 1.69 .7 1.74 .4 1.67 .2 1.66 1 2.12 4.56 6.04 6.97 ź 3 .13 .11 1 96.4 6 161 604 1 94 126 236 Ż 14 .1 1 1 65473 A 162 1 1.78 .10 1 80.4 8 Ó 1 1Ō ĭ 1 6 .1 2.34 .1 1.89 .2 1.38 1 2.21 1 1.95 1 1.82 155 185 59 105 100 74 10.99 .29 15 1.48 12 1.16 10 1.06 :11 1 90.2 2424 1726 29 31 17 .09 79 96 55 900 12 12 3 109 65475 249 -1 15 16 1 163 376 1 67 175 65476 1 1 203 5.29 1 926 1080 1 8 94 1 .09 1 69.2 124 65477 1 ι.,

327 3423

σ 88

CNP: COLUMBIA Roj: WINDY TIN: WAYNE RO	GOLD BERTS									8	MIN 282 S 7EL	- EN HERBRO	LAE OKE S 327-3	3 5 17., V/ 1436	— I ANCOU FAX:	CP VER, 1 (604)	REP(1.C. V 327-34	ORT 5x 4e 23	8					۰.				FILE NO: DAT * *	65-02 E: 96 (AC
SANPLE NUMBER 65478 65479 65480 65480 55480 55482 65483 65483 65483 65485 65487 65489 65489 65489 65489 65491 6549	AG PPM -3 -5 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	AL * .62 .64 .64 .96 .78 .83 .88 .94 .38 .62 .60 .62 .72	АS рри 1 1 1 1 1 1 1 1 1 1 1 1 1	ВА ррни 130 153 137 185 137 236 178 183 127 136 120 113 120	BE PPN -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	BI PPW 1 1 1 1 1 1 1 1 1 1 1 1 1	CA 2 1.42 1.81 1.74 1.85 1.96 1.71 1.31 1.24 1.51 1.62 1.64 1.27 1.36	CD PPM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	CO PPH 20 21 20 27 28 31 27 19 13 14 14 14	С РРИ 77 137 87 179 113 203 108 78 52 83 67 101 61	CU PPN 102 101 117 125 105 210 50 50 51 50 59	FE 5.45 6.72 5.63 10.71 10.56 >15.00 11.11 4.15 2.86 3.00 3.22 3.42		K 18 -23 -17 -28 -23 -28 -22 -15 -15 -15 -15 -15 -15 -15 -15	LI PPM 14 12 12 12 12 12 12 12 12 12 12 12 12 12	NG 2 1.27 1.22 1.24 1.25 1.33 1.09 1.30 1.24 1.10 1.08 1.10 1.20	HW PPM 916 1024 885 1440 1430 2072 1558 723 585 613 612 557 588	HO PPH 21 25 24 37 31 45 29 18 10 12 14 12 17	NA X .03 .05 .04 .09 .05 .07 .04 .06 .07 .06	N1 PPH 57 79 69 101 95 108 79 54 34 32 47 34 72	PPM 1130 1110 1070 990 950 770 940 1070 1040 1070 1040 1070 1040 1090	PB PPN 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SB PPM 1 1 5 6 4 4 4 4 4 1 1 1 1 1	SN PPM 9 10 9 15 15 22 16 5 5 5 5 6	SR PPH 78 105 98 119 108 105 85 74 79 96 106 87 80	TH PPN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 x .08 .09 .11 .11 .11 .09 .12 .09 .11 .11 .10 .11	U V PPN PPN 1 71.6 1 73.6 1 78.6 1 87.2 1 86.0 1 87.2 1 86.0 1 87.2 1 88.5 1 88.5	W PPM 1 6 3 4 1 1 1 1 1 1 2 1 3 10
																								. <u></u>					
														,															
	·																<u></u>												
																										_			

1 (and

100

0.0

WINDY	BERTS				• .					82	B2 SHE	ERBRO (604)	OKE ST., V 327-3436	ANCOUVE FAX: (6	R, 8.0	• V	5X 4E	8										DATE • *	: 96/ (ACT	11/1 :F3
MPLE MBER	AG	AL X	AS	BA	BE	B1 PPH	CA	CD PPM	CO PPH	CR	CU PPH	FE %	GA K PPN X	L1 PPM	NG V	H M I	NO PPN	NA X	N I PPN	P PPN	PB PPN	SB PPH	SN PPM	SR PPH	TH PPN	TI X	PPN	PPH 1	N PPN	ZN PPW
92 93 194 195	557.00	1.41 1.28 1.33 1.50 1.52	1 13 86 17 50	203 410 119 157 191		12232	.48 .86 .25 .35		10 10 12 12 11	36 45 44 56 38	214 2 169 2 212 2 269 3 339 1	2.39 2.22 2.36 2.81 2.52	1 1.10 1 .92 1 .99 1 1.14 1 1.17	11 1. 9 1. 11 1. 13 1. 11 1.	19 39 15 39 27 43 25 49	33945	9 8 10 10 9	.03 .03 .04 .05	19 20 21 23 22	1040 1050 1090 1060 1110	1 1 1	11121	44454	117 134 126 102 163	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.09 .06 .08 .10 .10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41.6 36.0 47.9 42.3 46.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19 18 30 45 40
97 98 99 00 51 N	.5 .6 1.1 .9 1.1	1.60 1.14 1.49 1.03 .70	18 56 3	167 103 98 109 104		12000	.16 .94 .81 .24 .43		121 1321	55 53 44 36	87 412 875 708 1219	2.86 2.53 3.03 2.48 2.48	1 1.11 1 .66 1 .61 1 .73 1 .47	13 1. 9 1. 13 1. 8 1. 5 1.	44 44 44 44 44 44 44 44 44 44 44 44 44	18670	98987	.03 .03 .03 .03	27 23 24 19	1100 1090 1010 1050 1010	1	11111	55544	218 278 319 254 264	1	.11 .05 .04 .08	1	45.0 34.2 44.7 36.3 24.5	1	76 59 67 37 42
52 I 53 9 555 56	1.5 1.0 .8 1.0 1.0	.88 1.23 .77 .78 1.36	26 66 25 25 54	205 114 107 115 130		83 33 17 83 82	.66		1460112	53754327	975 708 204 782 612	3.17 3.38 2.32 2.20 2.49	1 .56	61	47 60 84 63 96 75 .06 63	59747	9 10 8 8 9	.03 .03 .02 .04 .04	29 43 21 18 20	1130 1200 1020 1060 1060	1 17 17	1 1 1 1	56444	293 262 496 250 229	1	.04 .06 .03 .04 .08	1	29.6 38.8 20.9 20.2 36.5	1 1 1 1	58 69 67 69 78
57 58 59 50 50 50 50	.080.57	1.14 1.14 3.27 1.50 2.35	80 46 38 74	58 69 129 134 249		135433	.73 .84 .38 .08 .23		912611	59 35 75 52 15	325 387 146 86 155	1.75	1 .34 1 .48 1 1.24 1 .61 1 .79	10 1 10 1 20 3 9 1 10 2	19 57 16 84 49 11 50 5 09 10	21079	7810915	.07 .03 .03 .03	23 18 36 27 21	980 950 1450 1080 2150		11112	3 4 10 4 8	231 381 219 183 138		.02 .04 .12 .05 .16		40.4 36.5 149.7 49.7 87.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 43 83 34 73
622 A 633 A 644 565 566	.7 .8 .6 .1	2.10 2.62 1.93 .53 4.83	1 50 108 31 1	224 195 195 364		1211	.34 .68 .20 .65		21 20 18 31	16 93 120 214 202	141 599 263 14 35	4.65 3.87 3.04 1.06 6.84	1 1.70 1 1.65 1 1.03 1 .23 1 4.39	17 1 21 2 13 2 38 5	94 110 67 90 11 60 39 30 08 12	36024	15 12 19	.03 .03 .03 .03 .02	21 55 55 14 66	2090 1370 1370 290 1480	1	211111111111111111111111111111111111111	9 8 5 2 12	138 180 209 149 314		-15 -11 -08 -02 -20	1	92.5 100.6 78.1 13.3 182.4	1 1 10 1	64 47 <u>33</u> 19 133
667 668 669 670 671	.6 .7 .8 .8	1.27 .98 1.30 1.23 1.38	3 1 25 1 53	167 88 178 178 178		12321	.88 .30 2.87 2.91 2.92	.1.1.1.1.1.1	1315129	87 32 57 40 57	140 295 341 159 104	2.94 2.24 2.79 2.34 2.48	1 1.00 1 .69 1 1.03 1 .99 1 1.09	8 1 12 1 12 1	07 6 94 3 14 3 06 4	36589	10 7 10 8 9	.04 .03 .04 .03 .04	24 19 21 19 20	1070 1080 1060 1090 1080	1 1 1 1	1 1 2 1 2	54544	255 170 155 144 163	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-06 -06 -09 -09 -10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	57.8 37.1 42.7 34.9 38.5	1	23 31 37 24 27
672 8 - 96 673 - 96 676 676	1.0 .9 1.1 1.2	1.18 .86 .65 1.09 1.87	53 4 113 112 71	210 305 277 123 161		14121	.98 .28 .61 .41	.1	141397722	4295330	265 601 434 560 250	2.55 2.55 1.90 2.65 3.97	.80 .63 .45 .71	8 1 4 1 9 1 12 2	23 50 29 4 35 7 57 5 57 10	75945	9 8 7 9 12	.03 .05 .02 .03 .01	22 22 28 31	1050 1020 560 1240 1470	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 4 5 8	294 258 580 348 564	1 1 1 1	.07 .04 .01 .05 .15	1 1 1 1	36.0 29.6 16.9 38.4 70.0	1 1 1 1	32 31 41 53 72
677 678 679 680 681	.99.298	1.63	124 90 95 67 78	104 106 110 210 124		1010	4.51 5.29 5.78 2.00 4.45		12 14 16 23 14	38557973	255 113 661 106 149	2.66	1 1.27 1 1.25 1 1.09 1 2.31 1 1.00	8 1 12 1 11 1 23 2 10 1	.71 6 .55 7 .46 5 .72 6	211834	10 10 14 10	.03 .02 .03 .03 .05	2122 62833	1390 1410 1310 2000 1180	1111	11162	55595	261 293 133 114 124	1 9 1 1	.08 .08 .07 .16 .08		74.0 57.5 52.1 85.3 50.6	1 1 1	29 44 26 71 25
682 683 684 685 686	1.0 1.0 1.0	2.70 1.40 2.30 1.47 2.60	101 100 79 98 91	228 83 157 113 178		1314	1.93 3.96 2.34 3.45 3.58		26 13 21 65 25	54 67 42 70 56	145 351 217 466 133	3.98 2.70 3.94 3.37 4.32	1 2.24 1 .80 1 1.89 1 1.17 1 2.19	21 2 12 1 21 2 12 1 24 2	.85 8 .40 6 .21 9 .26 6 .64 11	73 20 11 13 17	13 11 16 12 15	.02 .04 .03 .04 .03	33 30 8 32 32 8 32 8 32 8	1650 1200 1700 1190 1670	1 1 1 1	21233	8 5 8 6 9	116 109 94 98 133	11111	-17 -08 -16 -10 -15	1	93.1 71.5 79.5 50.0 104.3	1 1 1	64 27 72 31 67
687 688 689	.9 1.0 1.0	1.34 1.59 1.48	33 1 48	180 159 142	1	3	4.45 3.31 4.07	.1 .1 .1	14 19 15	61 17 69	169 137 315	2.60 3.87 2.80	1 1.06	11 1	11 6 19 6 40 6	19	9 11 10	.03 .02 .03	30 19 30	1290 2290 1390	1 1	2 4 1	4 6 5	227 193 277	1	.10 .16 .09	1 1 1	41.8 57.3 47.5	1	29 50 34
																			-											

604 327 3423

