

DATE RECEIVED

REPORT ON DIAMOND DRILLING ON THE PM-8, IMC-1 AND IMC-3 MINERAL CLAIMS MOUNT POLLEY PROPERTY, LIKELY, BC CARIBOO MINING DIVISION N.T.S. 093 A/12E, 52° 30'N , 121° 35'W

TABLE OF CONTENTS

SUMMARY	1
1.0 INTRODUCTION	2
2.0 LOCATION	2
3.0 HISTORY	2
4.0 LAND STATUS	3
5.0 GEOLOGY	4
5.1 Regional	4
5.2 Deposit	5
6.0 ROCK CHEMISTRY	7
7.0 ALTERATION	7
8.0 MINERALIZATION	8
9.0 1996 EXPLORATION PROGRAM	9
9.1 Road Zone	9
9.2 Northwest Zone	11
9.3 S Zone	12
10.0 CONCLUSIONS AND RECOMMENDATIONS	14
11.0 PROPOSED PROGRAM	14
12.0 STATEMENT OF COSTS	16
13.0 CERTIFICATE OF QUALIFICATIONS	17
14.0 REFERENCES	18
TABLES	
Table I. Significant Drill Intersections - Road Zone	10
Table II. Significant Drill Intersections - Northwest Zone	13
Table III. Significant Drill Intersections - S Zone	13
APPENDICES	

APPENDIX I - Borehole Logs APPENDIX II - Analytical Data

.

FIGURES

Fig. 1 Fig. 2	Property Location Property Map	After page After page	2 3
Fig. 3	Surface Geology	After page	4
Fig. 4	Drillhole Location Map	Back pocket	
Fig. 5	Section 5200N - Road Zone	Back pocket	
Fig. 6	Section 5020N - Road Zone	Back pocket	
Fig. 7.	Section 4260N - Northwest Zone	Back pocket	
Fig. 8	Section 4015N - Northwest Zone	Back pocket	
Fig. 9	Section 4300N - Northwest Zone	Back pocket	
Fig. 10	Section 4120N - S Zone	Back pocket	

SUMMARY

The Mount Polley porphyry gold-copper deposit occurs in a multiple alkalic intrusive complex within the Quesnellia terrane, an allochton of dominantly Upper Triassic to Lower Jurassic mafic to intermediate volcanics and comagmatic intrusives that lies along the western margin of the Omineca Belt. The deposit is hosted by intrusion and hydrothermal breccias developed near the top of the complex or in the remnants of volcanics. The host breccias are composed of fragments of syenodiorite, monzonite porphyry and minor volcaniclastics cemented by a late monzonite porphyry intrusive phase. The zones of significant mineralization - Central Zone and West Zone, have been defined by closely spaced drilling. The principal hypogene minerals, auriferous chalcopyrite, magnetite and minor bornite, occur as stockworks and disseminations within the core of the hydrothermal system marked by pervasive potassic and calc-potassic alteration, which is in turn surrounded by propylitic pyrite-epidote alteration. Although sections of the uppermost parts of the deposit are strongly oxidized, there is no evidence of supergene copper enrichment.

Exploration on the property during the 1996 field season consisted of a short program totalling 992m. of diamond drilling completed in seven holes. The program, executed between June 3 and June 30, tested satellite porphyry systems in three mineralized zones adjacent to the main area of interest and provided additional information on the level of oxidation and gold values, but its size was insufficient to fully evaluate the economic potential of the zones.

The 1996 exploration results are encouraging and justify the continuation of work in the Road Zone, Northwest Zone and S Zone, with an objective to systematically evaluate economic potential of the satellite porphyry systems. A two-phase, \$250,000 exploration program, consisting of 20km. of detailed induced polarization and magnetometer surveys and 1,800m. of diamond drilling is proposed for the 1997 field season. The proposed program will involve geological, geophysical and diamond drilling crews and will require two months for completion.

1.0 INTRODUCTION

The Mount Polley porphyry gold-copper deposit is one of several alkalic porphyry deposits in British Columbia. The porphyry system is associated with a sub-volcanic intrusive complex and related volcanics of Lower Jurassic age. The project is presently in development stage with an 18,000 tonne per day mine and mill complex scheduled for completion in the fall of 1997.

In the summer of 1996, Mount Polley Mining Corporation, the operator of the project, carried out a small exploration program with an objective to initially test three satellite porphyry systems to the main porphyry system. Exploration drilling was conducted in the Road Zone, Northwest Zone and S Zone. This report presents the results and geological interpretation of the program and an overview of exploration potential of the areas tested.

2.0 LOCATION

The Mount Polley deposit is located in south-central British Columbia (52°30'N, 121°35'W), 56 kilometres northeast of Williams Lake, west of Quesnel Lake and eight kilometres southwest of the village of Likely. The property is accessible from Highway 97 at 150 Mile House via 76 km of paved road and 12 km. of forestry road (Fig. 1). The topography of the area is characterized by moderate hills with recently clear-cut and partially forested landscape. The highest topographic point is Mount Polley with an elevation of 1265m. above the sea level.

3.0 HISTORY

The Mount Polley deposit is located in a historic placer mining district which at the end of last century experienced the famous Cariboo gold rush. In 1964, the federal-provincial airborne magnetic surveys indicated a prominent geophysical anomaly on Mount Polley and subsequent prospecting led to discovery of copper mineralization. In the period between 1966 and 1987, Cariboo Bell Copper Mines, Highland Crow Resources, Teck Corporation, E & B Exploration Inc., Mascot Gold Mines and Corona Corporation conducted a series of exploration programs including prospecting, trenching, geochemical and geophysical surveying and completed 290 drill holes totalling 33,736m. of percussion, rotary and diamond drilling. Between 1988 and 1990, Imperial Metals Corporation completed an extensive exploration and evaluation program of the Mount Polley deposit. The exploration program included 238 NQ

diamond drill holes totalling 27,566m. and six bulk samples (130 tonnes) from surface trenches for pilot plant metallurgical testing. In 1990, following the completion of an ore reserve calculation, metallurgical testing, geotechnical study and an environmental impact assessment study, a feasibility study for 13,700 tonnes of ore per day open pit mine and mill was completed by Wright Engineers Limited. In 1994, Gibraltar Mines Ltd. evaluated property under an option agreement with Imperial Metals and carried out 1,216m. of diamond drilling in seven holes.

The 1995 exploration program consisted of three parts: a) drilling of five large diameter holes for metallurgical testing b) exploration drilling and c) soil geochemical survey. A total of sixteen diamond and seven reverse circulation holes (3,448m.) were drilled and 6.175km. of soil geochemical survey completed.

Exploration drilling continued during the 1996 field season by testing three mineralized zones indicated by previous drilling. Seven holes totalling 992m. were completed between June 3 and June 30.

A total of 570 exploration holes (68, 933m.) were drilled on the Mount Polley property over a thirty year period.

4.0 LAND STATUS

The property is owned by Mount Polley Holding Company Limited, c/o #420 - 355 Burrard Street, Vancouver, BC, V6C 2G8 and operated by Mount Polley Mining Corporation for the joint venture partners - Imperial Metals Corporation (55%) and Sumitomo Corporation (45%). The Mount Polley property presently covers an area of approximately 8,575 ha. and consists of 21 mineral claims, one fractional claim and one mining lease (Fig. 2). The IMC-1 mineral claim covering an area of 483.16 ha. was legally surveyed and brought under mining lease for a period of 30 years. The following is a list of claims in good standing , with their names, tenure numbers, number of units and expiring dates:

<u>Claim Name</u>	<u>Tenure #</u>	<u>Units</u>	Expiring Date
CB 1	204470	20	2001/05/04
CB 4	204471	8	1997/05/04
CB 5	204472	20	2001/05/04
CB 8	204473	8	2002/05/04
CB 9	204474	20	2001/05/04
CB 16	204475	20	2001/05/04
CB 19	204476	20	2002/05/04
CB 20	204477	20	2003/05/04
PM-3	206448	20	2002/09/17
PM- 4	206449	20	2001/09/14
PM- 5	206450	20	2001/09/29
PM- 6	206451	20	2002/09/29
PM- 7	206452	12	2002/09/29
PM- 8	206453	20	2001/09/17
PM- 9	206798	6	2002/02/23
PM-10	206799	6	2002/02/23
PM-11	206800	15	2002/02/23
PM-12	206801	15	2002/02/21
PM-13	207244	12	2001/09/26
IMC-2	340018	15	2001/09/21
IMC-3	340019	5	2001/09/22
IMC-4 Fr.	340020	1	2002/09/22
Mining Lease	345731	483.16 ha	2026/08/13

5.0 <u>GEOLOGY</u>

.

5.1 Regional

The Mount Polley deposit is located in the Central Quesnel Belt, a portion of the Quesnel terrane of the Canadian Cordillera that lies on the western margin of the Omineca Belt. The Quesnel terrane is predominantly an allochton, which during Upper Triassic and Lower Jurassic

time consisted of a volcanic island arc located to the west of the Mesozoic North American craton. It was accreted to the Omineca Belt to the east during the Lower Jurassic.

5.2 Deposit

In the central part of the Quesnel Belt, between Polley Lake and Bootjack Lake, on the slopes of Mount Polley and Bootjack Mountain, an intermediate to alkalic intrusive complex is exposed. The complex consists of **Polley stock** and **Bootjack stock**. The stocks represent alkalic subvolcanic intrusions of similar age but exhibit contrasting lithology and texture.

Polley stock of syenodiorite, monzonite porphyry and lesser pyroxenite composition forms the hills between Bootjack Lake and Polley Lake and hosts the Mount Polley deposit.

Bootjack stock is heterogeneous in composition and varies lithologically from west to east from pseudolucite syenite porphyry to crowded orbicular syenite porphyry to granophyric nepheline syenite.

The deposit is located on the western slope of Mount Polley, east of Bootjack Lake (Figures 2 and 3). The following is a brief description of major lithological units recognized in the course of surface mapping and drilling on the property as well as description of copper-gold porphyry mineralization and associated alteration patterns.

Syenodiorite is an older phase of the Polley stock and represents predominant lithology in the area between the Bootjack and Polley lakes. Syenodiorite is microgranular to porphyritic, light to dark grey and contains up to 70 percent subhedral prismatic plagioclase grains, interstitial secondary K-feldspar and varying amounts of biotite, green clinopyroxene and finely disseminated magnetite. Within the mineral deposit, the syenodiorite has been pervasively affected by K-feldspar alteration that locally reaches 25 percent of the total mineral components. Syenodiorite is cut by amphibole-diopside-magnetite veinlets with pink potassium feldspar envelopes and by intrusion breccia in which diorite clasts represent the main constituent.

Monzonite porphyry is a younger massive intrusive phase in the upper part of the Polley stock that forms the matrix to locally extensive intrusion and hydrothermal breccias. The unit is a buff-to-pink, sub-porphyritic-to-porphyritic, leucocratic, with up to 40 percent subparallel prismatic plagioclase and minor clinopyroxene phenocrysts set in a microgranular anhedral aggregate composed of up to 50 percent K-feldspar, minor clinopyroxene and hornblende, and trace amounts of biotite, apatite, magnetite and sphene. Compared to syenodiorite, the monzonite porphyry contains less plagioclase, more secondary K-feldspar, and has a lower

colour index. K-feldspar occurs predominately in the matrix, but also as occasional phenocrysts and rims on plagioclase phenocrysts. The rock contains small vesicular fillings of a carbonate, prehnite and a strongly pleochroic mineral interpreted as pumpellyite.

Intrusion and hydrothermal breccias host almost all economic gold-copper mineralization in the deposit outlined to-date. A second breccia zone composed of a K-feldspar phyric monzonite matrix with syenodiorite, monzonite and pyroxenite clasts is located at the top of Mount Polley, but is void of mineralization (Hodgson et al., 1976). The breccias contain mainly fragments of syenodiorite, monzonite porphyry and lapilli tuff cemented by a pink monzonite porphyry phase. The breccias are both clast and matrix supported. In the southern part of the Central Zone, breccia cement is often magnetite rich and carries an above average gold concentrations. Breccia clasts are subangular-to-rounded and average about 3 to 12 cm. in size, although syenodiorite blocks up to 30m. have been observed locally. Due to the wide range of the size of the breccia fragments, the contact with syenodiorite or monzonite porphyry can be sharp or gradational.

Pyroxenite and gabbro were encountered only in drill holes at the east shore of Bootjack Lake. The size and shape of this unit has been interpreted from ground magnetometer survey.

Post-mineral intrusions of augite porphyry, andesitic feldspar porphyry, minette, monzonite porphyry and sanidine monzonite porphyry cross-cut mineralized zones.

Augite porphyry, andesitic feldspar porphyry and minette dykes occur as a northerly striking and east dipping swarm throughout the deposit. They are unaltered, crosscut all intrusive phases east of Bootjack stock except pyroxenite and gabbro to which they are probably related. On surface, dykes are continuous along strike and have an average thickness of 4 metres. They occupy a zone approximately 900 metres wide and appear to preferentially cut the intrusion breccia rather than massive diorite (Hodgson et al., 1976).

Monzonite porphyry dykes have up to 60% plagioclase and a composition otherwise similar to the monzonite porphyry phase of the stock. Although very common in and adjacent to

the intrusion breccia, only few have dimensions large enough to be shown on detailed geologic maps.

Quartz monzonite porphyry dykes, mapped only within the Bootjack stock are probably related to a quartz monzonite intrusion of possible Cretaceous age that outcrops at Gavin Lake, 10 km southwest of the deposit.

Sanidine monzonite dykes contain large tabular sanidine phenocrysts up to 2cm. in length together with phenocrysts of plagioclase, augite and apatite set in a matrix of K-feldspar and plagioclase, with accessory biotite, aegirine-augite, magnetite and quartz. These dykes occur in the upper part of the Polley stock and as matrix to the intrusion breccia at the top of Mount Polley (Hodgson et al., 1976).

6.0 ROCK CHEMISTRY

The volcanic and intrusive rocks at Mount Polley display alkaline chemistry and mineralogy, with general lack of free quartz and abundant feldspathoids. The whole rock analyses of volcanics and intrusive phases of the complex revealed nearly identical petrochemistry. The alkali versus silica plot confirms that the majority of samples are alkaline in composition, with only few samples in the subalkaline field. The later samples probably contain silica introduced in the latest stages of copper-gold mineralization process.

7.0 <u>ALTERATION</u>

Recent geological studies of Mount Polley deposit (Fraser, 1993 and 1994) have resulted in a re-interpretation of the rock alteration patterns. Two distinct alteration assemblages have been defined: a copper-gold bearing potassic and calc-potassic alteration core that is centred on the intrusive and hydrothermal breccias and a peripheral propylitic zone with low metal concentrations. Post-mineral crosscutting veinlets of prehnite and fibrous, often radial zeolites associated with calcite are present in both alteration zones. These are most abundant in the vicinity of the intrusion and hydrothermal breccias.

8.0 MINERALIZATION

Detailed drilling of the Mount Polley property to-date has outlined two principal zones of significant gold-copper mineralization known as the **Central Zone** and the **West Zone**. The two zones are separated by a north-south striking fault.

The Central Zone is a tabular body of mineralized intrusion and hydrothermal breccia with a northerly strike and moderate eastward dip. The zone is explored 1100m. along strike and 200 to 450m. in width.

The West Zone is a subvertical body of northwesterly trending mineralized breccias 500m long and 300m wide.

Gold and copper values exhibit close spatial relationships with each other and with hydrothermal and intrusion breccias. **Primary minerals** in the deposit include magnetite (7%), chalcopyrite (1-3%), minor pyrite (less than 1%), traces of bornite and native gold. They occur as disseminations and blebs and as fracture and cavity fillings. The most common vein assemblage consists of chalcopyrite, magnetite and diopside with or without pyrite. Chalcopyrite also occurs as fine grained disseminations in the matrix of hydrothermal breccia and rarely as breccia cement. Bornite is rare, and is found in chalcopyrite-rich areas. Gold is in form of minute inclusions (5-40 microns) of native gold in chalcopyrite and its distribution is not affected by the degree of copper oxidation.

Supergene minerals include malachite, amorphous chrysocolla, native copper, cuprite, digenite and covellite. SEM EDX analyses of flotation products by Cytec Research & Development (Coe, 1996), confirmed that copper, in varying amounts, was present in solution in the goethite. As mentioned earlier, supergene minerals do not form an enriched zone. They generally concentrate at or near the present day surface, but can be found at depth of drilling as a result of circulation of oxidizing waters along the post-mineral faults and fractures. The supergene copper minerals contain 25 percent of total copper in the deposit. The intensity of oxidation is the highest in the southern part of the Central Zone and the lowest in the northern part of the orebody.

• A pyrite halo consisting of up to 6 percent pyrite and minor chalcopyrite and measuring 4,500 m. in length and up to 1,000 m. in width is formed east of and structurally above the mineralized intrusion and hydrothermal breccias.

9.0 1996 EXPLORATION PROGRAM

The objective of a short exploration drilling program was to test three satellite porphyry systems to the main system which hosts the bulk of known mineralization. The program was designed by the author following an assessment of the results of previous drilling and exploration potential in the areas recommended for further work. The program, executed between June 3 and June 30, consisted of exploration drilling in three selected zones using wireline diamond drilling system recovering NQ size core. Drilling was performed by Baupre Drilling Ltd. from Princeton operating two ten hour shifts per day seven days per week. A total of 992m. of NQ drilling was completed in seven holes at Road Zone, Northwest Zone and S Zone. A total of 614 core samples collected at 1.52m. intervals were analyzed for 30 elements by the ICP method. Copper was determined by ICP using aqua regia digestion. Gold was analyzed by fire geochemical methods and atomic absorption finish from 30 gram sample. In addition, 53 samples of significant mineralization grading more than 0.20% Cu were analyzed for non-sulphide copper. Non-sulphide copper was determined by ICP analysis using sulphuric acid leach. Analytical services of Acme Labs Ltd. of Vancouver were used for sample analyses.

Appendices of the report contain borehole logs, analytical data and procedures used for element determination. Drillhole collar locations are shown on the 1:5,000 map, Figure 4. Drill sections showing lithology and 10m. composite assays are contained in the pocket at the end of the report.

9.1 <u>Road Zone</u>

Three holes drilled at -45° at an azimuth of 090° totalling 483.11m. were completed in the Road Zone, located 1.2 km. north of the Bell Pit, with an objective to expand mineralized intersections encountered in holes MP-72, 95-7 and 95-8.

<u>Hole 96-1</u> was collared approximately 100m. north of hole 95-7and drilled to test an IP anomaly that contained significant gold mineralization. The hole intersected monzonite porphyry intrusive phase with seven narrow intersections of intrusion breccia. A single gold intersection grading 2.347g/t over 1.52m. hosted by intrusion breccia rich in magnetite and containing 10-15% of disseminated pyrite appears to be on strike with a high grade gold intersection in hole 95-7. The lithology of the host rocks in the two holes are considerably different and mineralization appears to be controlled by a strong structural feature. A strong postmineral fault zone containing propylitically altered fragments of monzonite porphyry was drilled from 54.56m to 55.47m. The effect of this faulting on the mineralized zone is not known due to limited drilling information.

<u>Hole 96-2</u> was drilled as part of a three hole fence to the south of the hole 95-7. The predominant lithology in the hole was older syenodiorite phase with a single intersection of intrusion breccia and minor younger monzonite porphyry phase. The best intersection in the hole, hosted by syenodiorite, yielded 18.29m. grading 0.197% Cu and 0.107 g/t Au. Mineralization occurs as disseminations and hairline chalcopyrite veinlets with very low level of oxidation of the primary copper minerals.

<u>Hole 96-3</u> was drilled to close the gap between holes 95-2 and 95-8. Mineralization encountered in the hole is in form of fine grained disseminations and veinlets of fresh chalcopyrite and pyrite hosted by sygnodiorite or sheared monzonite porphyry phase.

Table I is a summary of drill intersections with copper and gold values in the Road Zone.

<u>Table I.</u>

Hole #	From (m)	To (m)	Width (m)	Cu (%)	Au (g/t)
96-1	167.64	169.16	1.52	0.076	2.347
96-2	131.06	149.35	18.29	0.197	0.107
96-3	64.01	74.68	10.67	0.233	0.106
96-3	83.82	99.06	15.24	0.221	0.174

Hole #	From (m)	To (m)	Width (m)	Cu (%)	Au (g/t)
96-3	111.25	117.35	6.10	0.120	0.021
MP-71	3.05	18.29	15.24	.244	0.310
MP-72	3.05	16.76	13.71	.300	0.250
95-7	5.49	12.80	7.31	0.471	0.117
95-7	50.29	60.96	10.67	0.273	0.054
95-7	109.73	132.59	22.86	0.245	0.176
95-7	170.69	187.45	16.76	0.345	3.204
95-8	32.00	41.15	9.15	0.176	0.069
95-8	144.78	152.40	7.62	0.323	0.137
95-8	156.97	166.12	9.15	0.513	0.371
95-8	185.93	196.60	10.67	0.240	0.034
95-10	137.16	153.92	16.76	0.132	0.044

The Road Zone remains an outstanding exploration target to be further evaluated by closer spaced holes and a detailed induced polarization survey. The area with exploration potential lies to the west from the showing, where drilling in 1989 encountered near-surface mineralization and to the north, toward the Lloyd 2 discovery by Big Valley Resources. The hole MP-71, located 350m. southwest from the Road Showing intersected 0.24% Cu and 0.31g/t Au over 15.24m., from 3.05 to 18.29m. The west part of the zone is characterized by weak geochemical soil anomalies and has not been covered by geophysical surveys or drilling.

9.2 Northwest Zone

The Northwest Zone is an area with a centre located 800m. northwest of the Springer Pit, where previous exploration indicated significant drill intersections. The zone was tested by three vertical holes totalling 369.72m. (Fig. 4). The main objectives of the program was to expand

the mineralized zone outlined by previous drilling and to provide information on gold and copper oxide that were not available in the old drilling.

<u>Hole 96-4</u> was collared approximately 100m. northeast from the previously drilled hole R-10 which intersected 36.58m of shallow mineralization grading 0.470% Cu and 0.069g/t Au. Predominant lithology in the hole 96-4 was younger monzonitic phase of the intrusion, with minor intrusion breccia, syenodiorite and mafic dykes. Shallow, weakly oxidized mineralization intersected in the hole is hosted by syenodiorite and occurs as chlorite filled fractures with blebs of chalcopyrite and trace amount of disseminated pyrite.

<u>Hole 96-5</u> was drilled approximately 100m. southeast from hole R-9 which intersected 42.67m. of shallow mineralization grading 0.374% Cu and 0.101 g/t Au. The objective of the hole 96-5 was to expand the strike length of the mineralization outlined by previous drilling. The 48.77m. section of intrusion breccia drilled in the upermost part of the hole is interpreted as the northwest continuation of the Springer Pit breccia. The reminder of the hole went through alternating sections of syenodiorite and monzonite porphyry. The best intersection was 12.19m. grading 0.165% Cu and 0.187g/t Au, hosted by intrusion breccia. The breccia unit exhibits local propylitic alteration and shearing, with disseminated pyrite, chlorite and clay mineral assemblage.

<u>Hole 96-6</u> was a step-out hole drilled approximately 90m. northeast from hole 96-4 in an attempt to expand the width of mineralization. The lithology in the hole was younger monzonite porphyry phase of the intrusion and augite porphyry dyke, with minor intrusion breccia indicated by fragments of syenodiorite encountered from 60.96 to 64.77m. The best mineralized intersection was 7.62m. grading 0.185% Cu and 0.058g/t Au, hosted by monzonite porphyry phase. The mineralization is in form of disseminated chalcopyrite with associated magnetite with local chalcopyrite concentrations reaching 10-15%.

The significant intersections in the zone are listed in Table II.

<u>Table II.</u>

Hole #	From (m)	To (m)	Width (m)	Cu (%)	Au (g/t)
96-4	7.62	16.76	9.14	0.334	0.037
96-4	103.63	121.92	18.29	0.120	0.025
96-5	36.58	48.77	12.19	0.165	0.187
96-6	62.48	70.10	7.62	0.185	0.058
PS-64	39.62	64.01	24.39	0.210	N/A
PS-65	4.27	12.19	7.92	0.180	N/A
PS-68	45.72	64.01	18.29	0.201	N/A
R-9	12.19	54.86	42.67	0.374	0.101
R-10	0.00	36.58	36.58	0.470	0.069
R-31	45.72	60.96	15.24	0.171	0.062

9.3<u>S Zone</u>

The S Zone is a narrow northwesterly striking band of mineralization indicated over a strike length of 200m. A single inclined hole, 96-7, was drilled 138.68m. @ -45° at an azimuth of 270° at the southern extremity of the mineralized zone in an attempt to extend its strike length. Post-mineral monzonite porphyry intrusive phase and two sections of intrusion breccia were predominant lithologies encountered in the hole. No significant intersections were encountered at this locality. Table III shows significant drill intersection in the S Zone.

Hole #	From (m)	To (m)	Width (m)	Cu (%)	Au (g/t)
S-224	3.66	40.23	36.57	0.376	N/A
S-225	2.44	72.54	70.10	0.285	N/A
S-227	46.94	74.37	27.43	0.317	N/A
S-228	6.10	18.29	12.19	0.215	N/A
S-228	118.87	140.21	21.34	0.236	N/A

10.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the 1996 exploration program on the Mount Polley property, the following conclusions and recommendations are made:

1. The Road Zone returned interesting results that justify further evaluation by a systematic geophysical coverage and drill testing. As a first step in the evaluation, a detailed induced polarization survey to be used as a guide for target selection is recommended. The induced polarization coverage will be effective in the area due to thin overburden cover.

2. The Northwest Zone currently contains significant geological resource at shallow depth that requires further systematic evaluation with an objective to delineate additional tonnage suitable for short term mine development plans. The area is underlain by intrusive phases and ore hosting breccias that lie on strike with the Springer Pit. Mineralized outcrops with values in grab samples up to 0.51 g/t Au and 0.43% Cu have been encountered by geological mapping and rock sampling between the pit and the zone. The evaluation of the area with an initial detailed induced polarization coverage followed by drilling of selected targets is recommended.

3. The exploration and evaluation of the S Zone and other outstanding targets on the property using similar approach in an effort to expand the existing geological resource base is also justified.

11.0 PROPOSED PROGRAM

A two phase, \$250,000 exploration program for the 1997 field season is proposed on the Mount Polley property. Phase I will consist of detailed (50m.x25m.) induced polarization and - magnetometer ground coverage. Phase II will drill test selected targets outlined by detailed geophysical surveys. The following is a cost estimate of the program:

<u>Phase I</u>

Detailed Geophysical Surveys	
Road Zone - 10 km.	25,000
Northwest Zone - 6 km.	15,000
S Zone	10,000
Subtotal:	\$ <u>50,000</u>

<u>Phase II</u>

<u>Grand Total:</u>	\$250,000
<u>Subtotal</u> :	\$ <u>200,000</u>
S Zone - 200m.	24,000
Northwest Zone - 600m.	66,000
Road Zone - 1, 000m.	110,000
Diamond Drilling	

The program will involve geological, geophysical and diamond drill crews and will require two months for completion.

Rad. Ferae -Rad Pesalj, P.Eng.

November 6, 1996

12.0 STATEMENT OF COSTS

<u>Personnel</u> : R.Pesalj, June 3-30		
28 days @ \$450/day		12,600
R. Ney, June 8-29		4 400
22days (1) \$200/day		4,400
Accommodation and Subsistence:		
50 man days @ \$65/day		3,250
Drilling:		
992 m. @ \$ 54.99/m.		54,553
Truck Rental		
28 days @ \$60/day		1,680
<u>Field Supplies:</u> (gas_sample bags_flagging_etc)		2 000
(Eus, sample bags, hagging, e.t.e.)		2,000
Shipping Charges:		1,000
Analytical Work:		
740 samples @ \$16.86/sample		12,476
(30 elem. ICP + Au by fire geochem.)		
Drillhole Survey		2 600
Dimole Bartey.		2,000
Report Preparation:		4,500
	<u>TOTAL</u> :	\$99,059

. 13.0 <u>CERTIFICATE OF QUALIFICATIONS</u>

I, Rad Pesalj, do hereby certify that:

I am a Geological Engineer residing at 18192 Claytonwood Crescent, Surrey, BC., V3S 8G8.

I am a graduate in Geological Engineering of The University of Belgrade, Yugoslavia (1963) and have practised within my profession in mineral exploration in Europe, Canada and the United States since graduation.

I am a Fellow of the Society of Economic Geologists Inc. and The Association of Professional Engineers and Geoscientists of British Columbia.

The opinions, conclusions and recommendations contained herein are based on a review of available technical reports, field results and my personal knowledge of the Mount Polley property.

I have no interest in the Mount Polley property or shares or securities of Imperial Metals Corporation or Sumitomo Corporation or associated companies.

Rad. Fesae -Rad Pesalj, P. Eng.

November 6, 1996

14.0 <u>REFERENCES</u>

Bailey, D.G. (1990): Geology of the Central Quesnel Belt, British Columbia (Parts of NTS 93A, 93B, 93G and 93H), BC Ministry of Mines and Petroleum Resources, Open File 1990-31.

Coe, J.E. (1996): Copper Oxide Occurrences in a Feed Sample from Mount Polley Mine, British Columbia; unpublished report by Cytec Research & Development.

Fraser, T. M. (1993): Geology, Alteration and Petrography of the Mount Polley Cu-Au Deposit, Mineral Deposit Research Unit, Annual Technical Report - Year 2, M.Sc. Thesis, University of British Columbia.

Fraser, T.M. (1994): Hydrothermal Breccias and Associated Alteration of the Mount Polley Copper-Gold Deposit (93A/12), Geological Fieldwork 1993, BC Ministry of Mines and Petroleum Resources, Paper 1994-1, pages 259-267.

Harris, J.F. (1989): Petrographic Study of Mineralized Samples from the Mount Polley Property, Harris Exploration Services; unpublished report, 14 pages.

Harris, J.F. (1991): A Microscopic Study of Metallurgical Test Products from the Mount Polley Project, Harris Exploration Services; unpublished report, 12 pages.

Hodgson C.J., Bailes, R.J. and Verzosa R.S. (1976): Cariboo-Bell, in Porphyry Deposits of the Canadian Cordillera, Sutherland Brown, A., (Editor), Canadian Institute of Mining and Metallurgy, Special Volume 15, 510 pages.

Loring R.B., (1994): Geologic Evaluation of the Mount Polley Copper-Gold System; unpublished report for Gibraltar Mines Ltd.

McNaughton, K. (1990): Diamond Drilling Report, Mount Polley Project; unpublished report for Imperial Metals Corporation.

Nikic Z.T., Pesalj R. and Gorc D. (1992): Mount Polley Project, Imperial Metals Corporation; unpublished report, 11 pages.

Pesalj, R. (1995): Report on Diamond Drilling on the Mount Polley Property, Likely, BC, Cariboo Mining Division. Assessment File #

Wright Engineers Limited (1990): Mount Polley Project, Williams Lake, BC, Feasibility Study; Wright Engineers Limited, unpublished report, Volumes 1-5.

APPENDIX I Borehole logs

1

.

`

DRILL R	ECORD		IMPERIAL METALS COF	RPORAT	ION							
PROPER HOLE N COMME COMPLE OBJECT	ITY: // 0 0.: 5 NCED: - ETED: - IVE:	UNT) 96-1 5UN 12 7UN 16	COLLEY LOCATION: ROAD ZONE CORRECT DI LOC.: 2355.40 E / 5196.00 N TRUE BRG: TRUE BRG: SURVEY AT: 1996 ELEV.: 1057.56 m. SURVEY AT: % RECOVER 1996 CORE SIZE: NG % RECOVER LENGTH:	P: - 45 09 265; Y: 582	0° (582 ' ? FT.		PAGE: LOGGE DATE: CORE S UNUSU	D BY:	R. P. S.A. IVN 17, 14 AT SIT	LJ 996 E	•	
From	То	C. 1	Duradatia	C	From	То	Lath	Rea		Anal	/sla	
F		SYD	Description	No.		F 001	Lgm.	Aec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
0. C	12.5	99	and for day	67001	12	15	3	100	112		3.17	3
				02	15	20	5	p.	114		2.94	6
12.0	48. E	31	Monzonile poply =1,	03	20	25	l,		132		3.05	7
			mich, norphypitic michasine phase, very	04	25	30		p	139		2.98	6
			tine oracided mik, x-shar nich around.	C5	30	35	<i></i>		207		2.61	zo
			mais mink elongated feldspar phones	06	35	40		<i>µ</i> ×	304		3.00	/z
			1-5 mm. tono: disseminated pyrite 21%	07	40	45	"	μ	233		3.27	10
			non-magnetic.	08	45	50	u	, n	494		4.26	32
			ť							¥		
48.5	79.0	31	monzenite hors have # 1.									
			mink and great timilar to be imit afore	09	50	55	"		441		5.24	41
			but with and indeaging matic constituents.	10	55	60	"	14	530		5.10	54
			matic with chloribled, taken oursioned	11	60	65	11	Ψ	734		4.64	115
			while analy colorie remters, dissuminated	12	65	70	в	"	352		4.83	17
			myrite 1-2% locally, moderately magnetic, mi-	13	70	75	μ.	,,	290		4.58	11
			nor and some in pintely 2 de25° TCA. At 76.5-79.0								à	
			fault zone, crushed monzonile, highly chlorific									
			gauge								-	
79.0	123.0	31	Monzonie hoting #1.	14	75	80	"	"	236		4.62	16
			mink, as above lat 12.0' From 91.5 - 98.0 highly	15	80	85	"	"	161		4.75	5
			practured. blocky core, mumerous mills of gitte	16	85	90	li I		167		5.19	8
stwp60.laintin	timperint palley) de	iii.15i										

MOUNT POLLEY PROPERTY 96-1 Page 2 of 8

*

From	То	Cub	Desciption	Carrala	From To	1 and			Analy	/sls		
F	DOL	Бүр	Description	No.	F	961	Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au
			calate no resible subschides not magnetic;	67017	90	95	5	100	144	1	4.79	Ĭ.
			mucross chloring filled fractures, have grains	18	95	100	ji	ħ	2//		4,43	15
			A chaliopyrite in highly pactured zones!	19	100	105	IJ	*	243		5.22	ZC
				20	105	110	"	"	193		3.80	8
				21	110	115		u	180		4.15	.8
				ZZ	115	120	"	9	195		4.13	zc
				23	120	125	, ,,		3730	190	6.88	413
123,0	135.0	10	Inhusion breccia,	24	125	130	17	<i>n</i>	2388	300	6.30	23.
<u> </u>			pink and dark grey, fragments of pink	25	130	135	ч		655		5.07	38
			monzonite porphyry # 1 in a highly chilo-									
			ritised matic kich matrix, notnisitle									
			sulphides, slightly magnetic									
												<u> </u>
155.7	179.0	31	Mournie archinging = 1,	26	135	140	Jr	"	346		3.00	15
			mule, very fine grained K-spar rich matrix,	27	140	145	n	"	316		2.08	5
			theres of while plagicale 1-2 mm. accross	28	145	150	м	U	317		z.09	8
			accasional while guer's vimbels in inequar	29	150	155	~	p	265		Z.35	14
			fashion, no visible sulpinides, slightly magnetic,	30	155	160	ر.	v	270		2.24	· · 11
				31	160	165	J.	ŋ	308		2.29	10
				32	165	170	и	,	168		2.01	3
				33	170	175	"	,,	264		1.87	16
				•34	175	180	,	Ţ,	378		2.86	25

ſ

MOUNT POLLEY PROPERTY

Page 3 of 8

From To Feet			Description		From To				Anal	ysis		
F F	oot	Syb	Description	Sample No.	Fe	et	Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	А
179.0	192.0	98	Fault France,	67035	180	185	5	100%	153	4	2,86	
			Examinated pleasted moneanite porphyses									
			in highly chloridie marix; makix foliated,									
			toliation lalong the core; no visible sulphidy,									
			not magnetic, where contact & 45° TCA.									
			l'									
182.0	192.5	31	Monzonik porphypy #1.	36	185	190	"	"	880		2,3Z	36
			mink, fine grained K-spar rich matrix,	37	190	195			1842	180	4.20	110
			while plagioclase whenos 22 mm. accross.									
			pactured, chlorite filled pactures, occa-									
			sional guarta veniles									
			<i>A</i>									
192.5	231.0	10	Inhusion filcia,									
			prink fragment of montonic cemented	38	195	200	M	"	1690	180	4.20	103
			by highly chloritised orushed moneomic por-	39	200	205	л	n	539		4.24	3z
			phyry (#11 disseminated pyrite breaky to 15%	40	Z05	210	"	"	482		3.35	ze
			nort-magnetic	41	210	215	11	"	709		3.86	50
				42	215	220	-	,1	280		4,73	17
				43	220	225	"	"	442		5,33	31
				44	225	230	<i>n</i>	"	//87		4.56	66
231.0	0475	31	Montprile to think +1	45	230	235	н	'n	527		3.89	29
	<u>x11.2</u>	57	printe, vori fine agained K- char rich	. 46	235	740			0.7(7 76	10

10/pc#07/drill.11d

Page 7 of 8

*

From	То	C	Duracitius		From	To			1	Analy	ysis	
	501	SYD	Description	No.	Fe	501	Lgin.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	A PF
			groundmass, while slightly chloridised phenos	67047	240	2.45	5	100%	286	1	3.67	15
			chlorite filled fractives and joints	48	245	250		,,	284		4.31	16
247.5	255.0	10	Inhusion freccia,	49	250	255	,,	n	229		4.36	13
			mink and grey, fragments of shloritised									
			syenodiorile in fink, menzamilie matrix.									
			non-magnetic, no visible sulphides, occa-									
			sional white quarts calcite remile's 2 30-70 TCA.									
			~									
255.0	332,2	31	monzonite porphyny = 1.	50	255	260	н	h	255		3,32	19
			mink and grey, locally chloritic groundmass	51	260	265	n	"	290		4.27	19
			feldspar pheno's 1-5 mm long, minor while	52	265	270	"	"	385		4.85	46
			quark- calcile veinlets; any sections slightly	53	270	275	"	"	76Z		3.60	62
			magnetic, no sulphides tisitic except isola-	54	275	280		"	641		3.46	35
			ted chalcopyrite grains in highly chloritised	55	280	285	1.	"	1074		3.05	59
			sections	56	285	290	n	, ,,	732		3,47	56
				57	290	295	ų	y	1348		3.9z	94
				58	295	300	н	,	1142		3.00	91
				59	300	305	"	יי	84z		Z.90	62
				60	305	310	11	el	511		5.03	35
				61	310	315	<i>1</i> ′	r	452		5.57	21
				62	315	320	u	u.	326		3.48	14
				. 63	320	325	V.	ц	270		4.51	11

MOUNT POLLEY PROPERTY

Page 5 of ${\mathcal S}$

۲

From	To		Description	Currela	From	To	Lath	Rec		Analy	isis .	
	60I	SYD	Description	No.		61	Lgm.	Noc.	Total Cu ppm	Oxide Cu ppm	Fe %	Au
				67064	32.5	330	5	100%	3/9	1	3.20	6
332.2	351.0	10	Inhusion freccia,									
			very and mink autobeccia, chloritised	65	330	335	u	"	333		4.61	15
			pagments of montonic porphyry remen-	66	335	340	11	4	376		5.26	33
			ted by highly chloritic groundhass of	67	340	345	"	11	516		4.72	37
			norphyry, no visible Sulphides, weakly	68	345	350	*	п	483		6.31	53
			magnetic.									
351.0	568.0	31	Monzonite porphyry =1,	69	350	355	11	и	339		5.51	16
			mink, fine grained K-spar rich ground-	70	355	360	, p	μ	399		4.97	55
			mass, while plagioclase phenos 1-2 mm.	71	560	365	n		260		3.02	18
			accross, occasional while quarte rembers	72	365	370	ıı	21	430		4.65	40
			+2 mm. accross no visible sulphides,									
			slightly magnetic. From 355.5 to 358.0 auto-									
			broccided, this kly chloritised sector				 					
			1 0									
368.0	379.3	10	Inhusion breccia,	73	370	375			676	•	6.75	43
			an autotreccia consisting of mik frag-	74	375	380	n		391		4.78	29
			ments of monitonile remented by dark									1 · · ·
			green, chloritic crushed monzohik, rare									
			pyrile, slightly magnetic.									- · · .

.

MOUNT POLLEY PROPERTY 96-1 Page 6 of 8

٠

From To Feet				From To				Analysis				
Feet		SYD	Description	No.	Fo	ot	Lgth.	Hec.	Total Cu ppm	Oxlde Cu ppm	Fo %	Au ppb
379.3 3	96.5	31	Monzonile porphyry = 1.	67075	380	385	5-	100 %	397	1	z 93	14
			brick red, very fine mained groundmans,	76	385	390	.,	u.	403		z.85	43
			K-spar rich, while plagioclase whenos,	77	390	395	v		495		3.35	97
			rare while quarter venilets, no visible sul-									
			phide, weakly magnetic.									
												· .
396.5 4:	34.5	10	Intrusion beccaia,	78	395	400	n	~	784		4.72	43
			grey-green and pink, fragments of syeno-	79	400	405		,,	608		5.22	19
			dionile commented by white mon xomilie	80	405	410		~	826		5.18	38
			phase; the mild would be an to be cara hed	81	410	415		r	794		4.5)	75
			and altered symodionite; pagment founda-	82	415	420	"	,,	88Z		5.72	91
			ries not sharp, no visible sulphides, meat-	83	420	425	p	n	508		4.83	39
			by magnetic, have chalcopyrike locally, i.e.	84	425	430	,,	1,	3/1	· ·	5.79	20
			\$ 419'.	85	430	435	"		1860		12,31	54
434.5 5	01.0	31	Monzonik porphyra #1,	86	435	440	"	4	190		3.60	6
			prink, medium glained K-spar rich ground.	87	440	445	"	"	197		4.59	13
			mass, mink plagioclase phenos 1-15 mm. long,	88	445	450	"	"	190		4.72	9
			disservinated pyrite 5%, neakly magnetic,	89	450	455	"	"	Z05		4.51	ï4
		_	nore calcile and Itz+ calcile temle's 2 45° TCA.	90	455	460	"	,	225		3,68	27
			From 475' to 501.0 pyrite content decreases	91	460	465	.,	h	212		4.64	12
			to 1-2%, nore disseminated appains; mo-	9z	465	470	v	"	123		3.50	6
			derately fractured core; tractures chlorite	. 93	470	475		•	/31		3.34	3

a. w.p.BOJeintinutingenial.polley/drill.tbl

,

MOUNT POLLEY PROPERTY

Page 7 of 8

.

From To	Sub	Description	Sampla	From	То	Lath	Bec		Analy	ysis	
FOOL	340	Description	No.	, ro	o.	Lgui.		Total Cu ppm	Oxide Cu ppm	Fe %	Au
		filled.	67094	475	480	ol	100%	192	1	z.62	·. 5
			95	480	485		'n	241		3.92	8
			96	485	490	ţ	n	Z 8 7		3.99	7z
			97	490	495	н		288		2.93	12
			98	495	500	14	w	327		5.15	12
501.0 553.0	10	Infusion precia,	99	500	505	11	n	446		5.05	40
		grey and pink, pagments of grey sycuodio-	67100	505	510	17	,1	449		5.71	22
		rile and pink monzonite porphyny #1 ce-	01	510	515		и	354		7.44	90
		marted by dark green, highly chloritic	02	515	520			314		9,39	Zq
		matrix, moderately to highly magnetic,	03	520	525	17	и	284		11.78	43
		dissominated myrite 1-3%, have specks	04	525	530	н		408		8.14	96
		of chalcopyrite while calcile verifield a	05	530	535	13	л	385		5.52	97
		45°-80° TCA; from 510-533' freeciation and frag-	06	535	540	h	n	339		5.35	45
		mentation more intense, also K-span inde	07	540	545	11	"	328		6.07	22
ļ		alundant in clash. From 533.0' symodionite	08	545	550	"	"	1868	70	12.69	99
		clast predominant, calcite very	09	530	555	,,	"	758		10:64	234
		rare. From 549:0 to 553.0' magnetik rich de-									
		ton, disseminated pupite 10-15%.									
553.0 582.0	31	Monzonite port-hipi #1.	10	555	560	ч	11	323		5.32	5;
		prink, very line rained K- apar rich)/	560	565	n	,,	357		8.09	4.
		groundmans, infile " Magicalase phones 1-2 nin	, 12	565	570	٣	r.	200	<u> </u>	2.76	16

atwardOtheristinalisysarial and and state

,

MOUNT POLLEY PROPERTY 96-1 Page 2 of 8

.

From To				From To Lgth.		Lath	0		Analy	ysis .	
Feet	SYD	Description	No.			Lgin,	Nec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au
		From 573.0-582.0' highly hactured. Alocky core,	67113	570	575	5	100%	308	1	5.48	34
		hactures chlorice filled minor dimensiona-	67114	575	582	7	<i>יו</i>	334		5.79	32
		led pyrite + magnetite in fractures; occasional									
		calcie filled fractures at low angle to core									
		a xis.									
		E.O.H.									
		Acid Tests:									
		Depth: Red: Corrected									
		265' -50°00' - 43° 45'									
		581' - 50°00' - 43° 45'									
											•
								ŀ			1
											:
											1 A

s:\ve00\lenstinslimparishpalay\drill.thd

.

DRILL R	ECORD		IMPERIAL METALS COF	RPORAT	ION									
PROPER HOLE N COMME COMPLI OBJECT	TY: Mou 0.: 9 NCED: 5 ETED: 34 IVE: 10	UNT 1 6-2 UN16. IN18,	POLLEY LOCATION: ROAD ZONE CORRECT DI LOC.: 2324.80 E / 5020,21 N TRUE BRG: 1996 ELEV.: 1090.67 m. SURVEY AT: 1996 CORE SIZE: NQ % RECOVER LENGTH: LENGTH: LENGTH:	P: - 45° 090 255 Y: 5007	, 500'		PAGE: 1 02 7 LOGGED BY: R. PESALJ DATE: JUN 18, 1996 CORE STORED: AT SITE UNUSUAL FEAT.:							
From	То	Cut	Description	Sample	From	То	Lath	Rec		Analy	/sls			
F		Description 0.0 99 Overheiden		No.			Lyth.	noc.	Total Cu ppm	Oxide Cy ppm	Fe %	Au ppb		
0.0	20.0	99	Open her hers											
. 20.0	25.0	21	Symodiorite,	67115	20	25	5	100%	371		5.46	18		
			arey and pink, equiproximilar, consists of											
			and demohuroxene? and light oncy and hink											
			feldshar crains: he muit is precided and											
			hactured. Elseky core; moderately magnetic,											
			no visible sulphides.					ļ						
25.0	105.0	31	Monzonie porphyry # 1	16	25	30	π	"	3z o		3.24	5		
			mink, fine granied K-spar rich groundmass,	17	30	35	~	, ,	365		3.09	12		
			while Alagiodase phenos 1-2 mm, sut by	18	35	40		,,	198		2.96	6		
ļ			while callie veinters at ineqular fashion:	19	40	45	,	,1	189		3.09	3		
			pactures limenite roated; upper contact	20	45	50	"	,,	202		2.92	8		
			a 45°: minor pink feldspar phenos 1-5	21	50	55	"	"	178		2.84	5		
			mm. long, meally maquetic, no chalcopyrite	22	55	60	11	"	171		3.0Z	2		
			nisible, but rate disterningted pyrite	23	60	65	h		151		2.98	3		
			grains locally occur. From 98.5 Lo 99.5'	24	65	70	<i></i>	,,	162		2.91	3		
			fragment of grey sychodiorite with integritar	25	70	75		P	169		2.68	3		
			ion tacks. (1	26	75	80	. v		154		2.31	2		
				27	90	85	р. -	"	159		2.57	12		
L	1	<u> </u>		28	- 85	90	"	"	101		2.61	14		

a.twp80.kristinskimperistpalley\dit.tbl

.

MOUNT POLLEY PROPERTY %6-2 Page 2 of 7

From To Feet		Cub	Description	Sampla	From To De Feet	Lgth.	Rec	Analysis				
	50[SYD	Description	No.	ļ		Lgin.	nec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au PP
				67129	90	95	5	100%	771	ł	2.62	37
				30	95	100	11		Z&4		3.07	z
				31	iou	105			128		z.14	3
105.0	114.0	21	Eneradionile,									
			dark may, equipromular, and by munerous	22	105	110	v		1076		5.08	37
			quartz veinlets at low angles to core axis;	33	110	1:5	۴	11	1370		7,95	6
			Trace pupite, not maametic; contacts with									
			monzemile souphyry "iregular.									
			1 () J									
114.0	138.0	31	Monzonite perplaying #1,	34	115	120		r*	954		z.16	12
			sink, line rained, K-shar rich ground.	35	120	125		:	177		2.19	2
			mass, mink deldspar shends 1-2 min. long	26	125	13.0		¥1	344		Z.98	2:
			recasional michusions of symodionite 1- 20 cm.	37	130	135	×1	ц	107		2.99	5
			accress: weakly maanetic, disseminated invite									
			۲ \°/.									
												<u> </u>
138.0	148.0	21	Syonedienile,									
			arcy. Equipromular, and by while maile	38.	کی	140	r	'n	164		3.68	17
			winders at immenter to the only Contacts	39	140	145			546		4.44	Z.5
			with momente storshing inopular, have	40	145	150	15	11	1873	90	4.27	136
			disseminated write, moderately magnetic.									

atmp00Jeiet instingerintpolleyt dill, thi

ſ

MOUNT POLLEY PROPERTY 96-2 Page 3 of 7

*

From To				From	To	l			Anal	ysis	
Foot	Syb	Description	Sample No.	Fe	ot	Lgth.	HeC.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
148.0 246.5	31		27:41	ΞO	15 <u>5</u>	No.	100%	339	ł	z. 33	
		mink, K-spar rich aroundmans, while	11 7	15	160		ь	.508		4.76	54
		placedase planes -2 mm accoss wear	43	15 5	165	۰r	,	121		z.19	23
		and the minerals locally out by while mark	44	165	170	.,		143		2.21	21
		minutes a 30-45° + CA. have discontinuated	Цз	170	175			183		2.17	8
		marile non-magnetic, while market calcide	46	175	180	11		89		1.91	z
		winders 2 30-60"-CA: hachines filled with	±7	180	185	,,		96		z.07	< 2
		tale + calcite some companie coaled	48	185	190	р	11	204		2.12	10
		hactures. This 230.0' to 246.5 highly fractured,	49	40	195			158		2.09	< 2
		blocky wie.	50	45	200			174		2.19	< 2
			51	200	205	.,		154		z.50	6
			52	205	210	"	п	163		2.23	7
			53	ZID	215	.,	"	107		z.33	9
			54	215	220		1,	109		2.11	4
			55	220	225			135		2.25	11
			56	225	230		15	127		2.44	42
			57	230	235			142		2.45	2
			58	275	240		14	110		2.75	6
			59	240	245 1	,,		144		z.36	ż
											:
											1 A.

· * *
MOUNT POLLEY PROPERTY $26 \cdot 2$ Page 4 of 7

From To	Syb Description S		From	То				Analy	ysis -		
Feet	Бүр		No.	Fe	90[Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
246.5 253.0	10	Tabaries Maria	67.60	245	223	5	12.7.24	77 (3.93	36
		my with whe mixed which of mon-	61	250	255	••	.,	1797	80	4.21	74
		same har trans + 1 and revensationing in									
		the block of the many that a plantice more									
		inix; dimensional and verified allopy-							_		
		rite 21% - really marminule existing									
		with hereafty and accounted in more									
		start share and along that have very									
		sharp but incardar contacts with mon-									
		tomite.									
253. (300.2	21	Syenodionite,	62	255	260	н		593		3.81	36
		gray and print compramilar, and by	63	260	265	+7		1190		5.15	65
		while quarte services, alundand ustacine	64	265	270	n		377		5.11	71
		chidate alteration at make about and	65	270	275	п	v	486		5.35	14
		about has his discontracted pyrite arth,	66	275	280	n	ej	559		5.39	19
		trace chaleshopide meanly meanchic. From	67	280	285	п	.,	. 845		5.06	46
		276.5 to 277.5' Frecin will such dirrie dash	68	285	290	ji	ų	77 <u>2</u>		4.86	40
		and wold, hunding martix, upper some	69	290	295	м	×	427		4.86	10
		inch a where it was applied a 30°.	70	295	300	<u>n</u>	,	354		5.29	19

11

MOUNT POLLEY PROPERTY 96-2 Page 5 of 7

*

From	То				From	То	1 - 1	Dee		Analy	ysla	
Fe	oet	бур	Description	No.		961	Lgtn.	Nec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
300.0	342 5	31	Land Ko-charge #1,	67171	200	30 <i>5</i>	5	1000	745		3.34	28
			bick red grandman &- shar with white	72	305	310			466		3,26	18
			contrology a first at a cut by dark	73	310	3.5			368		2,84	zz
			ellouise deliver white and while merge	74	315	320			393		2.98	15
			content and the mail is becally sheared,	75	320	325			377		z.93	3
			fale on shear stands common, have amount	76	325	33.0	v	-	404		2.91	5
			of difference of a write, weakly maametic.	77	330	335			504		3.51	10
				78	ಪ್ರ	340	.,	u	3z6		2.50	28
				79	340	345			226		Z.40	z
344.2	544.2 370.1	21	Saverandianile,	80	345	350	р	a	467		5.19	40
			or we green, contor approximately energy	\$1	350	355	P	P	424		4.91	22
			and and of forces chloritised matic minerals	52	355	360	, p	,	1153		4,49	62
			and mink fildspar; lower contact with	53	360	365	P.		831		z,99	30
			nerroratile here herey sharp a set after on-	54	365	370			669		4,63	40
			tac à co; have l'inite in ablatile hich sain-									
			lies while prover calcily mill a incontar									
			Jashin, moderation magnetic.									
		-	/ /									
370,1	398.5	31	Dienzanie Konstanter #1	5,5	370	375	ы		257		2.74	10
			at above 2 series From 373.5 Lo 378.0 menodiorie	96	375	380	v	~	389		3.65	16
			inclusion, also from 382.0 Lo 386.5' - avenuationing	\$ 77	38.0	38.5	- 11	4	1365		4,24	76
			abeliand of while preside - pricike beintedy	. 5%	355	370			766		3.37	50

MOUNT POLLEY PROPERTY %6-2 Page & of 7

*

From To Feet	Cut	Description		From	To		Due		Analy	sis '		
Fe	961	590		No.		861	Lgin.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
	472.2	21	Summer Connector	67159	590	345	Ε	in a l	433		2.72	12
			have been und prive some some are could	20	295	455	.,		699		3.24	Z.8
			amount of the block and seen the	91	475	405	ν.		57/		4.99	40
			while models in house the to anne	52	405	410		· ·	921		5.41	55
			contracts optimic vehicles as non wide, made-	03	410	115	v		815		4.85	52
			Sately magnetic, trace decominated rythe	94	415	420		,,	474		5.20	27
			Firm HS2.0'- 433.0' a zone with magnetite + chal-	05	420	425	-	11	802		6.1Z	57
			orburile reliable's and dessentionations - 24 1-3%.	96	425	430		,.	367		5.39	25
			For 444.0' to 455' dykelets of monitorie por.	97	430	#35	н		4286	130	6.39	254
			physic 1-2 tect wide.	95	435	440			1017	40	5.22	59
			99	420	445	-		2975	90	5.11	143	
				67200	445	450		- 17	1160	10	6.05	83
				01	450	455	P.	·	3864	120	5.79	209
				02	455	460	**	,,	926	40	5.10	45
				<i>c3</i>	460	465		4	1817	90	5.40	120
				04	465	470	<i>n</i>		614	60	4.12	31
472.8	480.0	31	Monzonile porthery	15	470	475	*1	,,	2578	250	4.99	114
112.0	780.00		highly sheard. Exclude out the white and	06	475	480	h		1/ 94	740	<u></u> н. т.	56
			mine backs to assing to 25' anide to saint 2 50-50'					·	1687	270		
			2 are aris									
				,								

1

MOUNT POLLEY PROPERTY . $\ensuremath{\ens$

.

From	То		Duraitie		From	То				Anal	ysis	
i Fe	100	Syb	Description	No.	F	et	Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
480.0	505.0	31	Manzonia hoch energe = 1.	67207	480	485	ε	100%	1580	110	7.14	91
			time and take man chloritic sections	0.8	485	490			1129	. 60	4.95	73
			and another silled winter hours out mink	09	490	495		٣	568		3.3Z	36
			K-shar rich droundmass, while Magicalase	672 10	495	500		15	841		3.16	109
			hissons. From 490.5' mink northyry with									
			minor quarte reinlet, at inequilar tashim									
			and dark green chloritized.									
			E. O. H.									
			Acid Tests:									
			Senth Red Corrected									
			$255' - 50^{\circ}c0' - 42^{\circ}45'$									
			499' - 48° 30' - 41° 15'									
								1				
				1								
				1								

DRILL	RECORD		IMPERIAL METALS CO	RPORAT	ION							
PROPER HOLE N COMME COMPL OBJECT	ATY: 70 10.: 96 ENCED: 34 ETED: 30 TIVE:	UNT 1 - 3 IN 18, N 20,	\mathcal{POLLEN} LOCATION: \mathcal{ROAD} $ZONE$ CORRECTLOC.: $24/3.67 \le 15023.93 \ N$ TRUE BRG1996ELEV.: $1074.46 \ m$,SURVEY A1996CORE SIZE: NQ % RECOVELENGTH:LENGTH:	DIP: - 45° 090° T: 255 RY: 503	, 495' FT.		PAGE: LOGGE DATE: CORE S UNUSU	/ 14 7 D BY: R J STORED: AL FEAT.:	PESAL UN 21. 4 AT SITE	5 796 2	•	
From	То	C.L	Desetation		From	To				Analy	ysis	
		SYD	Description	No.	F		Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
0.0	35.0	99	Deer burd en									
35.0	59.0	21	Sweno diori-e.	67211	35	40	5	8.E./o	139		4.54	<u>د ک</u>
			gray-gran, highly fractured blocky core; couris	/z_	40	45	v	95%	139		4.68	42
			I teldspattic groundman and dk green chlori	- 13	45	50	6	a	129		4.87	<2
			fixed grains of matic mindrals; list's on	14	50	55	u	n	148		5.0Z	42
			pacture Hance, lincomie throughout the	15	55	60	л	100%	197		5.11	8
			section; no visible sulphides, moderatchy mag.									
			netic.		·			<u> </u>				
						<u> </u>		ļ				
59.0	106.0	10	Inhusion freccia,	16	60	65	"	"	890		6.32	36
			mink montonice perphyry = 1 matrix and	/7	65	70	"	"	352		5.74	17
			synchorite clasts, minor while guarte vein-	18	70	75	-	"	344		5.76	18
			lets recasional calcile remitely, no sisible	17	75	80	,	и	277	·	4.93	14
ļ			chalcopyrile; dissenimated pyrile <1% mo-	20	80	85	"	*	573		7.05	Z 8
			derately magnetic. From 76.0 to 78.2' an in-	21	85	90		"			5.41	53
			chision of mink montonile sorphyry # 1, with	22	90	95	u	"	1508	240	4.01	116
			1% disseminated syrite. From 90.0' to 106.0' in Lange-	23	95	100	*	"	687		3.16	19
			by bleached and kaplinised, soft; tower con-	24	100	155	,,	"	1373		3.34	18
			tail irregular at 85° to core axis.	25	10,5	110		"	653		5.49	100
	ļ					 						
106.0	108.0	31	Monzonie przybyry #1									
	<u> </u>		hink, minor while prosta venlets.				l	l				l

.

 \sim

MOUNT POLLEY PROPERTY 96-3 Page 2 of 7

•

From	To			From	То				Analy	ysis :	
Fool	Бүр	Description	No.	Fe	et .	Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
108.0. 29.1	0 21	Symodicaile.	67226	110	115	5	100%	4.84	4	3.83	27
		equipranular earral amount of pink feld.	17	115	120	,,		212		5,74	17
		that and meter matic spains cut by	28	20	125	"		ZIG		5.02	1
		while quarter veriles, sachures chlorite	29	25	130	*1	31	2.80		4.63	22
		Lilet moderately magnetic, have disc-									
		minaled syrile; highing chlorice allered									
		madics. 11									
128.0 144.	0 31	Monzonile porthing # 1,	30	130	/35	н	н	461		4.20	27
		brick red, K- sher rich groundmans, while	31	135	140		"	939		4.69	27
		plagiodase phenos 1-2 min accross no visible	32	NO	145	'n	"	620		2.82	17
		ch, have disservinated pyrile, non-mag-									
		metic: this while smark remite's crossautting									
		the mit, minor caloite reintes.									
											L
144.0 203.	5 21	Sy encliquite	33	145	150		4	1899		5.72	84
		sink feldshar grains and gran, when ised	34	150	155	"	· .	803		5,54	108
		matic grains comigranular moderally	35	155	160	μ	F	ччգ		3.23	14
		magnichic, hate diss. pyrile, minor checile	36	160	165	,		406		5.58	25
		reinker; upper contant 2 90° inegular. From	37	165	170	L.	,	509		5.42	14
ļ		158.0 to 162.0 montanite workinging 21 inclusion,	38	170	175	a	r	420		4.68	15
		also from 175.0 to 176.5; minor dist. pyrie in	39	175	19.0	4	ĸ	1677		4.77	28
		chlorite reintects.	. 40	180	185	9	и	987		5.71	Цí

wwp00.leistinaterpariat.polley/drill.tbl

MOUNT POLLEY PROPERTY 46-3 Page 3 of 7

•

From	То		Desciption	Comple	From	То	Lath	Pag		Analy	ysis .	
	ot .	SYD	Description	No.			Lyn.	1.00.	Total Cu ppm	Oxide Cu ppm	Fo %	Au
				67241	185	190	. 5	100%	1613	1	7.13	3:
				42	190	195		ν	1753		6.85	13.
				43	195	200	в	"	1057		5.98	5(
				44	200	205			708		5.46	69
203.5	217.5	31	Monzonite porphyras #1.	45	z 05	210	p	"	536		3.37	3 i
			brick red, K-spar rich groundmass, while									
			reagioclase phenos 1-2 mm accross, while									
			calcile remilets and chlorice filled hactures									
			throughout the unit; upper contant sharp									
			a go" lower contact hereiated over 144.									
									<u> </u>			
212.5	235.0	21	Symodionile,	46	210	215	μ	<i>u</i>	2380	80	6.08	126
			Anik and grey equigramular, and by while	47	215	220	,,	н	3714	100	7.51	155
			gnartz and calcite veniles. Al upper contact	48	220	225	,	"	2594	70	2.21	160
			remiles and disseminations of chalcopyrite over	49	225	230	11	11	893	20	5.35	45
			1 fl; at 215.5' similed of chalensoymite	50	230	235		"	1534	50	5.35	102
235.0	255.0	31	Monemile porkingen #1,	51	235	240	11	"	2341	70	4.42	71
			as above 2 203.5 but becciaed and	52	240	245	"		2859	100	3.59	66
			highly trachered. From 235 to 245 minut	53	245	250	N		1009		2.40	38
			chalcophynice seen on char hores.	54	250	255	h	IJ	452		3.71	5:
						<u> </u>						

a:\...p00Jeintineting-methpolley/drill.thl

MOUNT POLLEY PROPERTY 96-3 Page 4 of 7

.

From To				From	То	Lath	Pre		Anal	ysis .	
Feet	SYD	Description	No.		901	Lgth,	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppl
255.0 276.0	21	Excutionity.	67255	255	260	5	100%	874	1	5.48	35
		mik and dark green, equiprometar, highly	56	260	265			1417		4.58	6.
		chlori-ized, dimenumated pyrite and children	57	265	270			997		6.26	65
		Lyrice on hachive plants, sulphides blac	58	270	275			862		6.87	30
		21%, moderatily magnetic; upper contact									
		shark a 85° tea!									
276.0 297.0	21	Syensdiorik,	59	275	280	4	11	2450	190	4.78	68
		light grey and beige, Aleached kaplinised,	60	280	285	,		602		4.67	46
		have disserving Let sprite and shaleopyrite,	61	285	290			1196		3.95	8
		non-magnetic reasional guarte venilets	6Z	290	295	"		1015		5.10	90
		2 30° Lea.	63	295	300	11	v	1461		6.16	25
297.0 351.0	21	Symodiprile,	64	300	305			1997	80	5.66	160
		as above a 255.0, practiced core, blocky. From	65	305	310	r	, ,,,	7173	250	6.30	38
		318.5' to 320.1' dyke of monzonile porphyry #1;	66	310	315	"	N	1861	80	5.95	33
		from 320.' less fractured, massive monzonile,	67	315	320	"	"	2728	140	4.54	22
		no sisible substrides, meakly magnetic.	68	320	325	۲/		161Z	120	5.60	93
			69	325	330	11	"	60Z	1	5.25	20
			70	33 C	335		,	788		5.28	27
			7/	335	340	11	•	489		6.39	21
			72	340	345	r .	,	794		4.94	23
			. 73	345	35.0	"		1225		5.52	36

FT ET L

MOUNT POLLEY PROPERTY

	Page	50	F 7
--	------	----	-----

*

From	To	Sub	Description	Samata	From	To	Lath	Pee		Analy	ysis _	· ·
		340	Description	No.		30(Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au pp!
351.0	386.5	31	Monzonite hardharty #1.	67274	350	355	5	100%	921	ł	3.73	اریا
			brick red, K-char rich matrix, while	75	355	360	11		534		z.56	١
			plagicclass nieros kaplinised, 1-2 mm.	76	360	365	u.	• 1	975		2.89	ک
			accross, cut by numerous while quartz and	77	365	370	n	*	1494		2.56	٢;
			calcite venilets and hair line this green	78	370	375	,,,	п	1355		3.17	26
			abbrile filled pactures have discontinued	79	375	380	yr	"	691		3.49	10
			hypite, mon-magnetic From 368 to 381.5' highly	80	380	385	л		1270		3.77	z
			the tweed, shearded how hing my, green chloritic									
			join's throughout									
386.5	401.0	21	Symodionik,	81	385	390		л	824		8.43	ZŞ
			dark green, highly chloritised, equigramme lar	82	- 390	395	×	, ,	617		6.62	22
			equal amount of matic and till de par mi-	83	395	400	, n		904		7. ZG	ZZ
			merals, moderablely magnetic, minor disse.									
			minaled synile /									
401.0	444.8	21	Syenodiorite,	84	400	405	~		1156		7.66	20
			mik and arcen, highly chloritised, out	85	405	410	щ	"	1365		5.33	80
			by numerous chlorice filled pactures	86	410	415	.,,	.,	541		5.28	
			and joints sainly soft, pleashed; mode-	87	415	420	ų	4	226		4,43	7
			rately magnetic. From 414.5' to 431 Lault	88	1 4 <u>2</u> 0	425	ч	.1	464		4.09	.7
			some, lowshed workhyin and Lault goinge,	89	22.5	470	μ	¥	639		4.93	89
			shear running along the core. From 431' to	. 90	450	435	"	,r	542		4.90	10;
a function of the state of the		-										

,

MOUNT POLLEY PROPERTY 96-3 Page 6 of 7

*

From To		Syb Description 5		From	То	Lat			Analy	ysis	
Feet	Бүр	Description	No.		961	Lgin.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppt
		444.8' bleached 'soo timised section.	67291	435	9440	5	100%	330	1	4.57	30
		· · · · · · · · · · · · · · · · · · ·	02	440	445			:691		8.05	29
4-4,8 448.3	10	Manuelle bucca.									
		prevand sides, decaded and is of monitories	93	445	450	"		2034	210	14.42	270
		The phony summed by black magnetice man									
		Lick! breccia it class supported and contains									
		inequilar magnetile rein prattern; blebs and	-								
		venilets of chalopyrile within magnetice sho-									
		radically rocus magnetile intend 45%, chal.									
		apprile 1.5-2%.									
448.3 457.0	21	Syenodiorite,	94	450	455	-	"	893		6.00	34
		light aren and beige, kaptimized, bleached.									
		alt by this calcite and minior over to									
		minile's at inequilar pattern, non-magnetic.									
									·		
457.0 474.0	21	Syendiorike									
		dark men, highly thereised section, moderate	95	455	460	11	,,	510		5.15	15
		discontrated magnetile, totally handhile.	96	460	465	ر,	,,	847		8.53	· . Z4
		K-spar alteration along partices.	97	465	470	ņ	,1	799		8.96	zé
			98	470	475	, ر	,,	302		7.49	24

a/wep80Neistinetimperial@calley\drill.tbd

MOUNT POLLEY PROPERTY 96-3 Page 7 of 7

٠

From To				From	То				Analy	sis	
Feet	Syb	Description	No.	Fe	et	Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
474.0 503.0	21	Sy enodic nite.	67299	-175	49.0	- h a	100%	44 q	4	6.09	z.
		that may and time ticashed, captinized.	67300	480	485	ч	11	907		5.47	37
		part alignite titled reinles and calcule	01	485	490	.,	F	819		4.89	zg
		ven les no visible sulphides, non mag-	62	-90	495	p		1188		5.15	22
		metic: hereasing promittine alteration theme	03	405	500	P		757		5.18	25
		about the section, "minor hematic rem-	67304	500	503	3	''	345		5.79	61
		let from 492.0 - 500.0' have discominated									
		myrile. From 500. 0 to 503.0' highly chloridised									
		usehow.									
		<i>≡.0. μ</i> .									
		Loid Tests:									
		Denth: Red: Corrected:									
		255' - 51°00' - 43°45'									
		495' -50°30' -43° 15'									
											1
											1

a/wp00.leistindimperialpolley/drill.tbl

DRILL R	ECORD		IMPERIAL METALS CO	RPORAT	ION							
PROPER HOLE N COMME COMPLI OBJECT	NTY: 100.000 0.1 200 NCED: 200 ETED: 200 IVE: 200	2N7 2 86-4 1UN 22 1UN 22	PCLLEYLOCATION:MCRTHWESTZONECORRECT DLOC.:853.45 E / 4262.41 NTRUE BRG:1996ELEV.:1048.08 m,SURVEY AT1996CORE SIZE:NG% RECOVERLENGTH:	IP: - 90° : Y: 400 F7:			PAGE: LOGGE DATE: CORE S UNUSU) 7 5 D BY: STORED: AL FEAT.:	R. PESR. JUN 22, AT SITE	2J 7996 5	•	
From	То	Cub	Develotion	Gample	From	То	1	Pag		Anal	ysis	
F	561	Syb	Description	No.			Lgun.	Nec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
0.0	22.0	99	Over hurden									
77 0	29.5	21	Successite	67305	2.2	25	3	100%	412		6.64	
			aley equipromular matics highly chlorised.	06	25	30	5	f 	2790	300	6.51	45
			recasional while hairline benilles of querte.									
			chlorite tilled hacheres with plets of chalio-									
			syrile crosscutting the mil; moderately to									
			highly magnetic, chalcopyrie 1%, have		<u> </u>							
ļ			dits entired syrile.									
			//////					ļ				
29.5	59.5	31	monzanite portany #1,	07	30	35		"	3216	410	3.88	30
			brick red porphyry, K-spar rich ground-	08	35	40	p	,,	3127	260	4.94	24
			mosts and while heagicolase whenos; at by	09	40	45		μ	2104	130	5.20	1
			chlorie filled pactures carrying chal copyrile;	10	45	50	17	0	6282	130	4.15	63
			minor younger while calcie vembetts zross-	. 11	50	55			2513	1820	5.22	34
			cutling shlohite + chalcopyrie set, minor blebs	12	55	60	"	''	505		6.75	15
			and dimensionations of chalcopyrik; several									
			symedicrite inclusion's; challoppile 21%, meakly									
			magnetic		 							
59.5	76.3	34	Highte horthurs dyke,									
			dark green, highly chloritised, phines of	13 14	60	65		,	2517	280	4.20	29
	<u> </u>	I	Jauge m prie guiner en ou se ground mais	/7	L. 42	1. 70	L	1	705	l <u></u>	1.05	17

MOUNT POLLEY PROPERTY ?3-4 Page 2 of 5

٠

From	То				From	То	l - ah			Analy	ysis .	
	oot	бүр	Description	Sample No.		oot	Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
				67315	70	75	5	100%	424	1	7.21	13
76.3	98.3	31	Toborzonik morthappen #1,	16	75	80	P		413		4.26	10
			trick red, K-shar rich groundmass, while	17	80	85		"	479		3.50	4
			plagiodase wheno's dick the kaolinized, 1-2	18	85	90			1328		3.65	<u> </u>
			min accross trachined in pregular pattern.	19	90	95	**	"	897		3.89	5
			pactures guar a and calcite filled, moderately	zo	95	100	4	1,	497		4,27	4
			magnetic, have disseminated pyrite.									,
98.3	113.5	42	Felsie dyke,	Z /	100	105	"	"	103		5.74	< 2
			very fine granned monzomitic groundmass	22	105	110	"	"	94		5.79	< 2
			phenos of while and pink feldspar; grey and	23	110	115	"	"	224		4.95	2
	<u>.</u>		prink, magnetie.									
113.5	200.5	31	Manzonie porphyry # 1,	24	115	120		**	480		3.33	4Z
			as above @ 76.3" while calcile and prava	25	120	125	"	11	291		3.07	22
			remitely the orginant meather magnetic, no mi-	26	125	130	57	,,	291		3,49	2
			sible sulphides. From 195.5' to 196.0' felsie	27	130	135	P	, n	204		3.33	5
			porphyry dyke upper contact sharp a 45° tower	28	135	140	n	x	225		3.21	22
			contact a 70°. Lower contact lault with	29	140	145	+	μ	344		3.28	42
			crucied montanile and mathine arige well	30	145	150	5	<u>بر</u>	593		3.22	22
			3 leed; quarter Leveling in he sould zone	31	150	155	٢	F	543		3,5Z	4
			weinders D 40 for (.32	155	160	4	*	1477		4.85	11

a.wp80.leintintingeristpolleg\&2,tbl

,

MOUNT POLLEY PROPERTY 96-4 Page 3 of 5

*

From To	C +	Deve detter	Comple	From	To	Lath	Rec		Analy	sis	
1001	Бүр	Description	No.		01	Lgin.	Nec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au
			67333	160	165	5	100%	1115	}	5.01	9
			34	165	170	11	u	1034		4.44	10
			35	170	175	"		375		4.44	11
			36	175	180	"	"	331		4.55	5
			37	180	185	"	11	284		4.58	6
			38	185	190	"	"	129		4.55	42
			39	190	195	"	"	493		3.82	9
			40	195	200	"		89		4.34	5
200.5 252.0	10	In Jusion precia	41	200	205	"	80%	807		3.73	43
		prink monxomilic mariex, class of grey	42	205	210	n	100%	956		3.96	12
		sienectionile 2-5 an accross; succea matrix	43	210	215	p	^	1325		4.16	רו '
		supported, and by white calcile verifets a	44	215	220	n	μ	877		3.97	12
		45.60° lea, montrous havidine frax mes mile	45	220	225	ņ	.,.	681		4.09	6
		K- apar aliered walls, have disseminated	46	225	230			647		4.73	13
		pyrile, moderately magnetic.	47	230	235	н		934		4.51	71
			48	235	240	ņ	ν	177		4.16	- 42
			49	240	245	h	"	341		4.Z.G	5
			50	245	250	- 11		972		4.98	10
											2
252.0 359.5	31	Monzonia portagene 21	51	250	255	بر	b	338		5,38	9
		time and areig K-spar rich matrix,	52	255	260	11	11	237		4.95	4
		phenes of pladioclass and makers, weakly	· 53	260	265	بر	. 7	457		4.35	4

MOUNT POLLEY PROPERTY 96-4 Page 4 of 5

From To Feet Sy	Ct.	Dessister		From	То	Lash	Dec		Analy	/sis	
Feet	Бур	Description	Sample No.	Fe	et	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
		magnetic, no resille sulphides; recasional	67354	265	270	5	100%	28g		4.16	3
		inclusions of grey symodiorife throughout	55	270	275		11	477		4.34	Ч.
		the mit. At 309/-310' shear zone - crucked	56	275	280	,,	,	350		4.94	42
		haquen's of montomite northypy, minor	57	280	285		.,	208		4.32	6
	ļ	fault gouge. At 319.5' magnetile vein with	58	285	290	.,	.,	461		4.13	6
		minor chalcopyrite 2 30° tea; munerous	59	290	295	"	'n	322		4.17	42
		calcile verilets crosscutting the unit. slightly	60	295	300	"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	444		4.31	7
		bleached in the areas of higher weinted!	61	300	305	~	,,	411		4.13	4
		concentration.	62	305	310	"	"	564		4.46	6
			63	3/0	3/5		n	1077		4.50	12
			64	3/5	320	"	,4	1097		7.27	11
			65	320	325		4	1339		4.79	26
			66	325	330	<i></i>	"	883		5.11	8
			67	330	335	л		808		5.74	ک
			68	335	340	, f	n	907		7.56	8
			69	340	345	.,		1119		4.41	13
	<u> </u>		70	345	350	.,	,	1173		5.31	22
			71	350	355		.,	948		4.61	18
			72	355	36 0			1257		4.79	Z 3
59.5 400.0	21	Symodiciile,	73	365	362	n.		1383		7.14	50
		glay, mostly felderatic medium arguined	74	365	370			737		6,83	17
		splandmass, while plagis clase phienes 1-2 man	. 75	370	375	,,		855		5.58	zs

-p00leistinalisperialpolicylahil.tbl

$\underset{\mathscr{P} \mathscr{C}}{\mathsf{MOUNT}} \underset{\mathsf{POLLEY}}{\mathsf{PROPERTY}}$

Page 5 of 5

×

om To Feet	То				From	То		0		Analy	/sis	
Feet		Syb	Description	Sample No.	Fe	sot	Lgth.	Kec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
			From 373.0' Lo 380.0' ho fassic alteration pervasive,	67376	375	380	5	100%	1522	12.0	4.92	30
			mink sychodiorite cut by munerous reinlets	77	380	385	,,	11	1544	zo	4.28	32
			of guerts and calcite.	78	385	390	,,	н	426		3.87	7
				79	390	395	"	"	1557	100	6.87	zq
				67380	395	400		. a	1829	40	6.70	38
			E. O. H.			ļ		ļ				
			Acid Test									
			Sentl Red Corrected									
			400' -83°00' -89°00'									
												;
	_											
	_									<u>.</u>		
	_											
	_											
	_											
		·										
	_				ļ							
				,								

SOlicietineLingerintpolley\drill.tbf

r - r - r - r

	ECORD		IMPERIAL METALS CO	RPORAT	ION							
PROPER HOLE N COMME COMPL	ату: <i>Мо</i> ю.: 96- Enced: Ј Eted: Ј ГIVE:	NT P -5 UN 22 UN 24	OLLEY LOCATION: NORTH WEST ZONE CORRECT I LOC.: /033,88 E/4017,/9N TRUE BRG: P. /996 ELEV.: /083,07 m. SURVEY A P. /996 CORE SIZE: NQ % RECOVE	DIP: - 90° T: 406 RY: 406 F	, Т.		PAGE: LOGGEI DATE: CORE S UNUSU	ا مرح D BY: R JC TORED: AL FEAT.:	PESALJ IN 22, I AT SITE	996	•	
From	То		Deve latter	Grant	From	То	Lath	Dee		Analy	/als	
F	oot	Б үр	Description	No.	Fe	,	Lgm,		Total Cu ppm	Oxide Cy ppm	Fo %	Au ppb
0.0	52.0	99	Overland on									
38.0	152.0	10	Intrusion dreccia	67381	38	45	7	100%	214		3.77	42
			grey dash of symmethous commend by	82	45	50	5	,1	156		3.52	4Z
			"pune montonitic matrix; how 38.0 to	83	50	55	h	,,,	26Z		3.94	7
			53.0' Aleached, teldenar mainix' hackinised,	84	55	60	π	,	232		3,83	5
			from 53.0' chlorik al hat on dominant, har in.	85	60	65		п	223		3.04	3
			Carly along pactures. From 132.5' to 134.0' proken	86	65	70	n	, r	293		3,84	4
			core, shear zone, also from 136.0 to 139.5',	87	70	75		pt	163		4.20	2
			weakly magnetic, have disseminated syrile.	88	75	80			-634		4.34	25
				89	80	85	11		295		3.17	5
				90	85	90	н	p	494		4.41	14
				91	90	95	"	۲	645		5.13	18
				92	95	100	μ	*	552		3.78	8
				93	100	105	,1	11	324		3.37	42
				94	105	110	n	"	258		4.62	42
				95	110	115	11	"	186		4.51	11
				96	115	120	"	"	285		4.67	5
				97	120	125	,1	, , , , , , , , , , , , , , , , , , ,	1769	970	4.41	66
				98	125	130	р	.,	1322		4.37	38
				99	130	135	"	"	959		3.91	184
	L			67400	135	140	"	н	1674		3.65	763
				01	140	145	11	r	713		3.98	38

.

1

MOUNT POLLEY PROPERTY 96 - 5 Page 2 of 5

From	То				From	То				Analy	/sis	
F	eet	Syb	Description	No.	Fe	et	Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
				67402	145	150	5	100%	946		5.08	31
152,0	160.0	10	Intrastina burraia,	03	150	155		•,	3763	2390	5.28	297
			a afore with malachie stain on pac-	04	155	160	,,		2076	1390	4.69	80
			tures proten core, shear zome.					`	[
160.0	202.0	31	Monzonie hosphyry #1,	05	160	165	"	"	92Z		3.50	22
			kink, K-shar rich groundmass, while	06	165	170	"	,,	118		2.03	<u>'</u> 4
			plagio clase thereos, slightly chloritized,	07	170	175	"	,1	231		3.52	<u> </u>
[broken core, shear some imoderatche mag-	08	175	180	,	"	390		3.27	8
			metic.	09	180	185	11	"	175		3.48	3
				10	185	190	~		93		2.56	<2
				Л	190	195	η	,,	22		1.81	3
				1Z	195	200	"	,,	23		1.99	<2
202.0	2/8.0	21	Sy enodiori e	13	200	205	ч	н	152		5.47	7
			grey- green, klobstathic groundmass, angile)4	205	210	,	"	144		6.04	3_
			and Alaquedase themos 1-2 mm. accross,	15	210	215	"	×	163		6.29	8
			slightly pleached along practures, occasi-	16	215	220	μ	p	291		5.01	11
			onal K-spar allergion pacture on -									
			holled; no disseminated subpinder mi-									
			sible, moderately magnetic									
				,								

a/web0/leistinkimperia/polley/drill.tbl

MOUNT POLLEY PROPERTY 96-5 Page 3 of 5

From	То				From	То	Lath	Bee		Analy	ysis	
	oot	Бүр	Description	No.		561	Lgin.	Nec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
218.0	314.5	31	Monzonie Amphyry = 1	67417	==0	225	5	100%	136		3.89	ч
			wink and lich - orden. bleached, autobre-	18	225	230	ji	. 1	102		4.09	z
			-cocaled, and by grey mark reince's	19	230	235	n	*1	147		2.05	5
			1-2 mine. accress, alundan- chido-le al-le-	Zo	235	240	н	н	216		3.44	8
			ration Thromation - rare chlorite filled	21	240	245	,	н	518		3.53	33
			venilets 2 70° tea, weakly magnetic, race	ZZ	245	250	15	n	161		3,42	8
			dissenimated suprite grains.	23	250	255	а		162		3.91	3
				24	255	260	ν	ŋ	307		4.61	12
				:5	2.60	265		L1	206		5.02	N
				26	265	270	U	н	164		5.06	z
				27	270	275		e ¹	145		5.58	< Z
				28	275	280	n	"	117		5.19	3
				29	280	285	*1	a	315		6.03	3
				30	285	290	b	17	1209		5.27	- 11
				31	290	295	,,		762		5,30	6
				32	295	300		"	935		5,23	دک
				33	300	305	11	ņ	400		5.30	<2
				34	305	310	ų	n	510		4.44	3
				35	310	315	11	L.	982		3.95	42
314,5	330.0	21	Sovene dierike,									
			grey, pophyrilic, grey feldshathic groundnass.	36	315	32.0	14	17	1371		4.79	14
			habile reladio dase themes 1-3 more accross	• 37	32.0	325	, r	"	1968	110	4.62	11

atmp60\lointinelimperistpolley\dril.tbl

MOUNT POLLEY PROPERTY 96-5 Page 4 of 5

From	To				From	То				Analy	sis	
F	eet	Syb	Description	Sample No.	Fe	et .	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
			dissominated minie breally to 5%, magnetic;	67438	325	330	5	100*/	1092		4.63	14
			mana day's break about willed has well.									
330.0	345.0	10	Intrusion beccein,	39	330	335		Į1	664		5.37	10
			grey and dark arey, traaments of sycundionite	40	335	340	п	11	343		5,40	8
			in a matrix consisting of crusted symodi-	41	340	345	h.	"	133		4.77	18
			wite and magnetite; disservinated syrite									
			2%. Light magnetic lover contact shark									
			2 40° 12a 1									
345.0	396.4	31	nenzonie hozvinny #1	42	345	350	r!		124		5.01	Ig
			mink and grey, breatly preciated; from	43	350	355	11		571		5.48	16
			344. 0' to 350. 0' Alcached, enidole nich section;	44	355	360	,	v	1120		4.47	44
			at 361.1' fracture filled with chrysocolla,	45	360	365	н	r'	1925	630	4.77	60
				46	365	370	11	d.	ราจ		5.80	13
				47	370	375	1!	0	641		5.12	16
				48	375	380	1		958		3,13	29
				49	380	385	ц	1	154		4.23	7
				50	385	390	1	~	1250		3.08	Zg
				51	390	395	Ŀ,	.e	118		4.77	6
				1								
396.4	406.0	21	Syeno diorile.	52	395	400	η	.,	946		4.46	9
			akey, norphyridic, teldspathic opsurverses, where	67.453	400	406	6	,	1099		4.76	20

•

MOUNT POLLEY PROPERTY ?6-5 Page 5 of 5

From To				From	То	1 - + >	Pee		Analy	ysis	
Feet	Syb	Description	Sampie No.	Fe		Lgth.	HeC.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
		of while placesters 1-3 mine long, nore while									
		such sincles, discominated myrice beally									
		1-2% magniche, recajional dais anser chlorite									
	1	remilled at 45° - 85° - ca.									
	1	E. O. H.									
	1										
		Acid Tests:									
		Derth Red Corrected:									
		÷06' - 82° c0' - 89° cC'									
			1								
											1
	1										
	1										
											1

atmp60.leintinelimperial.polley/dell.tbl

DRILL P	ECORD	IMPERIAL METALS CORPORATION UNT PCLLEY LOCATION: NOR THWEST ZONE CORRECT DIP: -90° PAGE: / of Y R PESALJ D6-6 LOC.: 405.53E/4650.35N TAUE BAG: UOGGED BY: R PESALJ DVN 25.1996 CORE SIZE: NQ 989.22 m, SURVEY AT: 407 DATE: JUN 26,1996 Syb Description Sample No, From To Peet No, Total Cu Oxide Cu Ppm / Ppm / % Ppm / % Page Syb Description Sample No, From To Peet No, Total Cu Ppm / Ppm / % Page 99 Overhunder International internatinternation international international international int											
PROPER HOLE N COMMI COMPL OBJECT	ATY: MO IO.: E ENCED: J ETED: J FIVE:	UNT) 6-6 run 2 UN 2	POLLEYLOCATION:NORTHWESTZONECORRECT DLOC.:405.53E / 4650.35NTRUE BRG:41, 1996ELEV.:989.22 m,SURVEY AT5, 1996CORE SIZE:NQ% RECOVERLENGTH:44	IP: - 90° : 407 ['] IY: 07 FT.	s		PAGE: LOGGE DATE: CORE S UNUSU	/ ~ 4 D BY: TORED: AL FEAT.:	R. PESA JUN 26, AT SITE	LJ 1996			
From	To				From	To				Analy	/sie		
F	ect	Syb	Description	No,	Fe		Lgin.	Rec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb	
9.0	41.0	99	Overturden										
	263.5	31	Microsofte horalizy = 1.	67454	41	45	4	60°%	311		4.40	15	
			mile, K-sear sich medium grained mound -	55	45	50	5	100%	402		4.39	16	
			mass, while plagioclase pricings 1-2 mini ground-	56	50	55	"		287		4.36	13	
			mass chloritzed; recasional while quarte rem.	57	55	60	p.		445		5 32	22	
			lets 2 45°-60° tea, rare discontinuated pyrite,	58	60	65	P.	71	388		5.11	23	
			mederately magnetic. From 113.0' to 124.0' quer a	59	65	70			608.		4,42	33	
			reining stronger, hend 2 45 lea medominant;	60	70	75	Ð	4	375-		4.83	22	
	ļ		potassic allocation succeed along practures; at	61	75	80	e	Je	852		5.15	56	
			177.0- 177.5' milence querte reining will herran	62	80	85	17	, 17	963		4.45	37	
			the stain, harticularly along hactures. From	63	85	90	11		446_		5.01	13	
			200.0 to 212.5' momental inclusion of gray per	64	90	95			599		4.64	28	
			enodionite 1-5 cm. accross. From 227.0' to 227.5'	65	95	100	,1		582		4.70	29	
			dissemimated chalcopyrite in dark gray, magne-	66	100	105	"		628_		4.48	24	
			the rich suction - chalcopying 11-15%;	67	105	110	<i>v</i>		805		4.35	68	
				69	110	115	31		741		4.61	31	
				6.4	115	12.0	:1	11	935		4.65	62	
				70	120	125	. 1)	'''	707		4.53	38	
				71	125	130	ч		692		4.56	18	
				72	130	135	P.	<i></i>	144		5.22	< 2	
				73	135	140	0	, ,	126		5,33	7	
			<u> </u>	74	140	145		4	120	l	5.28	7	

MOUNT POLLEY PROPERTY 96-6 Page 2 of 4

From To				From	То				Analy	sis	
Feet	Syb	Description	Sample No.	Fe	et	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
			67475	'45	150	5	100%	135		5.34	4
			76	150	155	n.	10	724		4.70	27
			77	155	160	ť	U	969		4.51	35
			7۶	160	165	14	9	1102		4.50	17
			79	165	170	d	ą	1139		4.80	15
			80	170	175	ľ		1022		5,48	40
			81	175	180		μ	944		4.95	71
		·	8.Z	180	185	н	, n	1176		4.61	Z3
			83	185	190	rt	"	313		4.34	10
			84	190	195	,	"	510		4.17	12
			85	195	200	27	11	547		5.05	20
			86	200	205	r.	ų	723		4.58	12
			87	205	210	11	,,	1543		4.86	45
			88	210	215	, 1	"	2255	50	4.38	58
			89	2/5	220		,	1129		6.34	56
			90	220	225	6	r	1709	30	4.88	41
			91	225	230	H		2611	70	5.28	40
			92	230	235	<i>¥</i>		936		5.10	29
			43	235	240	*	17	576		4.79	רו
			94	240	245	ų	11	588		4.47	18
			95	245	250	h	11	845		4.74	19
			96	250	255	r		601		4,35	20
			. 97	255	260	et	п	488		5.19	14

a:\wp80\lefetine\imperial.polley\drill.tbl

MOUNT POLLEY PROPERTY

Page 3 of 4

.

From	То	Cub	Description	Sample	From	То	Lath	Bac		Anal	/sis	
	901	SYD	Description	No.		bet	Lgui.	nec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
				67498	260	265	5	100%	409		5.45	11
		_										
263.5	218.3	34	augite perphysiq duice	09	: As	210			88		4.9.1	42
			dark oven this its chiestie medium rained	67500	275	275	+1	'n	62		4.83	٢٢.
			ground dimass. the hereby of augile 0.5-1 mm.	01	275	280		"	214		4.46	5
			lecross mucrous as pentility smill have									
			have and join's upper contact sheared,									
			alse how 270.0 -0 577.5.									
218.5	407.0	31	Monzonie porphyty #1	02	280	285	, ,	14	720		6.74	28
			mink, K-shar rich sine is medium grained	03	285	290	17	,,	1077		6.54	74
			proundmass, while plagisclass and matic	04	290	205			486		4.11	14
			grains 1-2 mm. accross moderately out	05	395	300	"	<i>p</i>	471	<u>.</u>	5.08	16
			thy while main reince's at 285.0 10 289.0'	06	300	305		,,	686		4.93	ZG
			magnetile reinles 2 30-40 tea: recassional	07	305	310	"	p	752		4.42	19
			sectors 2-5 cm wide with disconsidered	08	310	315	'n	р	648		4.36	19
			thatschiftife + magnetike.	09	3/5	320		n	741		4,76	15
				10	32 0	325	μ		649		4.13	21
		_		U.	325	330	.,	P	497		4.19	14
				12	330	335	н	,1	581		3.98	25
				13	335	340	×	P	515		3.99	11
				14	उप0	345	17	11	965		5.69	70
				. 15	345	350	þ	J'	766		8.06	93

activepOCNorietineNirrepartial/pallay/drill,tbl

 Σ

MOUNT POLLEY PROPERTY

From	То	C .1	Dentitien		From	To		0		Analy	/sis	
	66t	Бүр	Description	No.	Fe	iet	Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
				67516	350	355	5	100%	705		4.14	57
				17	355	360		,,	635		4.08	30
				18	360	365		μ	758		3,94	56
				Iq	365	370	.,	10	821		4.09	3Z
				20	370	375			692		4.29	30
				=1	375	380		đ	657		6.42	26
				22	380	ేశివ	12	"	809		4.46	zo
				23	385	390		,,	600		4.15	25
				24	390	395	e	er	578		4,25	28
				25	395	400		н	213		5.0Z	н
				67526	400	U07	7	п	501		4.75	22
			E. O. H.									
			Frid Tush:									
			Such: Red: Conceled									
			407' - 89°00' - 89° CO'							· ·		
		-										

atup00.leistinatinperiatpolisytail.tbl

i fi

DRILL	RECORD		IMPERIAL METALS COP	RPORAT	ION							
PROPE HOLE I COMM COMPL OBJEC	RTY: MO NO.: ENCED: ETED: TIVE:	U/YT 96-7 געא 2 אעד	POLLEYLOCATION: $5 - ZCNE$ CORRECT DILOC.: $1854.04E/4123.24N$ TRUE BRG:5, 1996ELEV.: $160.35m$.SURVEY AT:7, 1996CORE SIZE:NG% RECOVERLENGTH:	P: - 45° 270 Y: 455	5 5 5 FT.		PAGE: LOGGEI DATE: CORE S UNUSU	1 of 5 D BY: TORED: AL FEAT.:	R. PESA JUN 28, AT SIT	125 1996 E	×	
From	То			Gamela	From	То	Lath	Peo		Analy	/sis	
,	199	SYD	Description	No.			Lyin,		Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
0.0	15.0	99	<u>Ciscilian den</u>									
15 0	120.5	31	100 - control - destruction - at d	67527	15	20	5	100%	٦٤		Z.86	< Z
	128.5		the second se	= 6	2.0	75			12.11		3.00	5
			mark interior ~ placedase and archin-	29	25	30	1.		143		Z.93	5
			hole 1-2 mm long highly pactured	30	30	35	J		134		3.03	5
			broken core, shear zone; minor while	31	35	40	n		154		2.87	6
			quarte ventets: neakly magnetic. For	32	40	45		и	197		2.97	11
			100.0' core not proken, proment pactures	33	45	50		'n	218		3.01	15
			a 70° - ca.	34	50	55	Ħ	,,	134		Z.88	28
				35	55	60	"	"	177		2.99	24
				36	60	65	u	μ	273		3.16	31
				37	65	70	"	11	236		2.87	16
<u> </u>				38	70	75	"	"	292		3.05	15
				39	75	80	11	, v	295		2.82	10
		ļ		40	80	85	W	ı/	172		3.08	2
<u> </u>				-11	85	90	- 4	<i>u</i>	181		2.76	5
				42	90	95	"	80%	197		2.90	4
		ļ		43	95	100	11	100%	274		3.00	7
1		<u> </u>		44	100	105	р.	"	347		2.80	18
				45	105	110	ti .	it i	168		Z.83	3
	_			46	110	115	"	<i>n</i> ²	170		2.88	4
L]	47	115	120	U	"	275		3,11	4

;

:\wp80\\ristindimperistpolley\dil.tbl

MOUNT POLLEY PROPERTY

Page 2 of 5

From	То		Duratista	Caral	From	То	Lath	Pee		Analy	sis	
. Fo	bet	бур	Description	No.	Fo	ot	Lgin.	NOC.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
				67549	120	125	5	100%	342		3.17	zq
				49	125	130	.,	.,	332		3.65	24
128.5	196.0	10	Theurin Lucia,	50	/3 n	/35		.,	451		5.22	51
			oney and hous, tragments of print man-	51	135	140		,1	220		5.03	25
			Zodie horkhurs = I and againstickie's mon-	±2	140	145	,	r	432		5.22	23
			zonik which " hudomin met: how 134.0' is	53	145	150	μ	P	415		4.80	31
			137.7' augite how hyry duke, chill margin at	54	150	155	יד	p.	403		4.69	25
			upper contact zo on wide: contacts shark	55	155	160	"	<i>v</i>	370		4.54	26
			D'sc-90° Lea: no nigible sub-hides, making	56	160	165	r	1/	380		4.22	35
			maggittic.	57	165	170	,,	70%	399		4.41	27
				58	170	175)/	100%	401		4.38	37
				59	175	180	ť	"	514		3.80	52
				60	180	185	"	ĸ	402		4,29	38
				61	185	190	"	"	412		4.41	32
				6Z	190	195	"	н	411		4.46	47
196.0	207.5	34	Augite porphyry dyke.	63	195	200	- 1	11	Z17		5.02	6
			dark green, chloritic groundmass augite phenos	64	200	205	n		113		5.18	42
			1-2 min accross. sheared, blocky rore, mo-	65	205	210	"	μ	251		4.84	37
			derately magnetic.									
			/ /					ļ				

natimperial polley tahil, thi

MOUNT POLLEY PROPERTY %-7 Page 3 of 5

From	Го			From	Τo				Analy	/818	
Feet	Syb	Description	No.		561	Lgth.	Kec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
207.5 Z14.0	0 10	Inhusion dreecia.	67566	Z10	=15	5	100%	430		4.50	38
		as above at said upper contact with dyke									
		sharp a go Loa									
214.0 400.7	31	Monzonile post here #1.	67	2/5	220	v	v	417		Z.84	40
		brick red, K-shar rich makix while	68	220	225	'n	u.	263		2.75	19
		plagicclase and orcen matic phenos 1-2	69	225	230	,	n	329		Z.80	24
		mm. accross: occasional while quartz	70	230	235	IJ	, H	244		2.75	16
		venilets a 60-80° tea; no visible sulphides.	71	235	240	ч	4	275		2.78	24
		weakly magnetic, rare inclusions of grey	72	240	245	,	н	315		2.81	Z3
		syendiorile. From 362.0' Lo 373.0' magnetile	73	245	250	n		409		Z.92	41
		venilely 5-10 mm wide cross cutting porphyry	74	250	255		p	377		2,81	29
		a 20-40° Ica.	75	255	260	v	т	310		Z.80	15
			76	260	265	v	u	350		3.00	27
			77	265	270	13	и	432		2.76	81
			78	270	275	لر	n	528		2.81	113
			79	275	280	я	v	476		z.81	24
			80	280	21:5	J	h	1032		2.71	329
			81	285	290	, p	٣	782		2.55	272
			82	290	295	н	W	877		2.46	230
			83	295	300	η	h	398		z.69	58
			84	300	305		н	448		2.76	51
			· 85	305	310	17	n	514		2.72	48

a:web0/leistinalimperia/polley/dril.th/

MOUNT POLLEY PROPERTY

From To		Decidition	Gunda	From	То		Dee		Anal	ysis	
Feet	Syb	Description	No.	Fe	σt	Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
			67586	310	315	5	100%	425		2.99	49
			87	315	320			zzq		2.83	13
			88	32.0	325			225		2.68	8
			89	325	330			361		3.51	13
			90	330	335	11		270		2.77	21
			91	335	340		u	Z62		2.82	15
			92	340	345		"	314		3.57	26
			93	345	350		"	224		3.16	<2
			94	350	355	v	h	207		2.79	10
			95	355	360	Ir	u	172		3.01	8
			96	360	365	"		338		5.67	16
			97	365	370	"	17	220		4.60	18
			98	370	375	п	И	465		3.36	28
			99	375	380	a	a	208		2.68	8
			67600	380	385	U.	H	346		3.02	Z8
			01	385	390	n	'n	345		2.97	20
			02	390	345	i ii		Z99		3,15	13
			03	395	400	· · · ·	"	293		3.11	18
400.7 432.5	10	In husion breecia.									
		pink and grave clark of symodiorile in	04	400	405	"	"	571		3.22	81
		monzonite Korphyry#3 mahix; Accecia	05	405	410	"	"	596		3.51	105
		matrix supported, but by this while quarte	. 06	410	415	n		485		3,82	92

MOUNT POLLEY PROPERTY 96-7 Page 5 of 5

From To		Description		From	То				Analy	rsis	
Feel	SYD	Description	No.	Fe	iet	Lgm.	Rec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
		verifiele no suittle suittetes, mederately	67607	415	420	5	100%	533		3.67	IZq
		maanelie.	08	420	425	,,	,,	422		3,14	71
			09	425	430	.,	12	302		3,67	39
432.5 455.0	31	Menzonie hochain #3,						·			
		mink. K-spar rich medium grained ground.	10	430	435	n	"	247		2.76	24
		mass, sanidine whenos 1-3 cm. long; the	,,,	435	440	"	بر	146		2,56	19
		unit is cut by white sucre results at	12	440	445	"		108		2.63	8
		low angles it were asis; occasional small	13	445	450	×	"	147		2.73	9
		clash log symodionite 1-2 cm. access	67614	450	455	п	ŗ	97		Z, 89	7
		/ / E, O. H.									
		Acid Tests:									
		Depth Red Corrected									
		225.0' - 50°00' - 42° 45'									
		$445.0 - 50^{\circ}00^{\prime} - 42^{\circ}45^{\prime}$									
			,								

a:\vp80\loistine\imperialpolley\drill.tbl

APPENDIX II Analytical Data

.

CME ILY		LL		ATO		LI			E		CI	NC	Γ.	•	ου	<i>r</i>	C		1R6		PF) غ دد	604	1253	-3,1	R	AY (604)	253	-171	.6
					_				GE	осн	EMI	CAL	AN	ALY	SIS	CE	RTI	FIC	ATE		"	~ ~	• • • •		D -					44	
		Mou	nt	<u> Po 1</u>	ley	Ml	700	<u>q C</u> - 81	<u>orp</u> 5 W.	<u>. P</u> Hastin	ROJ ngs Si	<u>ECT</u>	ancou	Ver B	C V6C	<u>LLE</u> 184	Y M Subr	<u>INF</u> nitte	⊴ r edby:	Rad (<i>#</i> Pesalj	96- i	233	1 	Pa	ge .	L				
SAMPLE#	Мо ррп	Cu Ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	v Meqe	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	В ррт	Al X	Na X	<u>لا</u> ، ۲	W / ppm	Au** ppb
A 67001 A 67002 A 67003 A 67004 A 67005	3 4 4 3 4	112 114 132 139 207	13 17 13 14 13	65 59 59 73 73	<.3 <.3 <.3 <.3 <.3	2 4 2 3 2	8 8 9 8	1359 1300 1223 1176 1014	3.17 2.94 3.05 2.98 2.61	27 18 28 23 22	<5 <5 6 <5 6	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	< < < < < < < < < < < < < < < <> <> <> <	92 92 77 73 67	<.2 <.2 <.2 <.2 <.2	<2 <2 2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	153 143 134 138 109	2.08 2.66 2.62 2.14 1.47	.072 .071 .072 .079 .068	12 14 13 16 17	1 4 5 4 4	.97 .87 .89 .89 .74	95 75 52 62 78	.17 .18 .18 .09 .04	23 1 24 1 29 1 21 1 23	.60 .33 .24 .20 .97	.05 .05 .04 .04 .04	.18 .18 .23 .21 .19	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 6 7 6 20
A 67006 A 67007 A 67008 A 67009 A 67010	6 6 8 5	304 233 494 441 530	14 10 8 7 9	89 104 113 119 117	<.3 <.3 <.3 <.3 <.3	4 2 3 2 3	11 10 15 18 17	1245 1470 2083 2377 2284	3.00 3.27 4.26 5.24 5.38	17 14 16 24 27	6 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	75 109 140 268 242	.2 .5 <.2 <.2 <.2	<2 <2 <2 2 2 2 2	2 <2 2 2 2 2 2 2 2	129 140 186 233 252	1.87 2.15 4.47 4.18 4.10	.073 .085 .143 .190 .206	21 21 22 22 25	5 6 4 3	.81 1.05 1.55 2.32 2.14	92 120 78 95 112	.02 .05 .11 .13 .20	29 1 18 1 27 1 36 3 38 4	.04 .12 .82 .70 .30	.04 .03 .05 .43 .67	.19 .19 .16 .11 .12	< < < < < < < < < < < < < < < < < < < <	12 10 32 41 54
RE A 67010 RRE A 67010 A 67011 A 67012 A 67013	$ \begin{array}{c} 67009 \\ 1 67010 \\ \hline 67010 \\ \hline 67010 \\ \hline 5 506 \\ R \\ 441 \\ 7 \\ 119 \\ (.3 \\ 2 \\ 117 \\ (.3 \\ 3 \\ 17 \\ 2284 \\ 5.38 \\ 27 \\ (.5 \\ 2.4 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $																														
A 67014 A 67015 A 67016 A 67017 A 67018	20 4 9 6 7	236 161 167 144 211	64 10 12 14 17	108 97 121 83 72	.5 <.3 <.3 <.3 <.3	163 10 10 10 5	26 17 19 22 19	1617 1881 1927 1088 1307	4.62 4.75 5.19 4.79 4.43	52 21 33 31 26	ব্য ব্য ব্য ব্য ব্য	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	98 93 88 79 102	.6 <.2 <.2 <.2 <.2	4 2 3 2 2	◇ ◇ ◇ ◇ ◇ ◇	124 184 177 141 149	6.69 4.67 3.54 4.25 5.36	.131 .166 .173 .172 .169	14 14 13 13 18	105 4 6 3 6	.98 1.00 1.08 .36 .75	51 95 143 56 62	.03 .01 .01 .01 .01	22 1 28 31 17 37 1	.41 .63 .71 .98 .15	.02 .03 .03 .04 .03	.18 .17 .19 .15 .20	< < < < < < < < < < < < < < < < < < < <	16 5 8 16 15
A 67019 A 67020 RE A 67020 RRE A 67020 A 67021	7 5 4 5	243 193 199 196 180	15 8 10 8 8	111 66 67 68 76	<.3 <.3 <.3 <.3 <.3	14 4 4 4	25 16 16 16 16	1483 1767 1802 1806 1800	5.22 3.80 3.86 3.89 4.15	28 22 22 23 18	ৎ ৩ ৩ ৩ ৩	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	106 108 110 110 110	<.2 .2 .2 .2 .2	3 <2 <2 2 2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	196 153 156 157 145	2.87 6.49 6.56 6.58 5.87	.186 .175 .175 .175 .174 .180	16 14 14 15	5 4 6 3 10	1.72 .72 .73 .73 1.18	111 131 134 133 310	.02 .02 .02 .02 .02	16 39 41 39 40	.54 .21 .23 .23	.03 .02 .02 .02 .02	.18 .25 .25 .25 .27	<2 <2 <2 <2 <2 <2 <2	20 10 7 8 8
A 67022 A 67023 A 67024 A 67025 A 67026	5 8 6 7 5	195 3730 2388 655 346	9 25 18 11 8	92 258 185 165 85	<.3 1.0 .6 <.3 <.3	3 7 5 4 3	16 26 25 20 10	1942 2236 2256 2365 1357	4.13 6.88 6.30 5.07 3.00	37 58 117 49 30	ও ও ও ও ও ও	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	95 95 92 137 75	.3 2.6 1.0 .7 .3	2 4 7 2 2	<2 14 7 2 <2	125 296 277 214 120	5.20 4.53 4.13 4.87 2.93	.163 .220 .217 .185 .068	14 23 31 29 14	2 3 3 8	1.60 1.55 1.33 1.44 .84	59 61 60 96 135	.01 .02 .03 .02 .01	29 12 14 18 12	.67 .15 .27 .53 .64	.02 .03 .03 .03 .03	.20 .15 .13 .14 .14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20 413 235 38 15
A 67027 A 67028 A 67029 A 67030 A 67031	3 6 19 13 12	316 317 265 270 308	<3 6 30 32 22	52 69 109 58 73	<.3 <.3 <.3 <.3 <.3	4 4 10 4 7	5 7 8 7 7	757 920 1527 526 709	2.08 2.09 2.35 2.24 2.29	10 43 84 115 119	<5 <5 <5 5 5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	39 39 51 31 35	.2 .7 1.3 .3 .7	<2 3 8 6 2	<2 < <2 < <2 < <2 < <2 < 2 </</td <td>77 71 54 37 42</td> <td>2.30 2.76 5.39 1.62 2.23</td> <td>.025 .029 .024 .022 .022</td> <td>6 5 4 2 5</td> <td>5 5 6 3 5</td> <td>.69 .41 .46 .42 .65</td> <td>69 89 93 63 53</td> <td><.01 <.01 <.01 <.01 <.01</td> <td>7 7 8 8 8</td> <td>.43 .44 .37 .30 .26</td> <td>.03 .03 .02 .02 .03</td> <td>.12 .12 .11 .12 .12</td> <td>~ ~ ~ ~ ~ ~ ~ ~ ~</td> <td>5 8 14 11 10</td>	77 71 54 37 42	2.30 2.76 5.39 1.62 2.23	.025 .029 .024 .022 .022	6 5 4 2 5	5 5 6 3 5	.69 .41 .46 .42 .65	69 89 93 63 53	<.01 <.01 <.01 <.01 <.01	7 7 8 8 8	.43 .44 .37 .30 .26	.03 .03 .02 .02 .03	.12 .12 .11 .12 .12	~ ~ ~ ~ ~ ~ ~ ~ ~	5 8 14 11 10
A 67032 STANDARD C2/AU-R	2 20	168 58	6 38	43 131	<.3 5.9	3 71	6 36	647 1154	2.01 3.88	24 41	8 19	<2 7	<2 35	33 51	.2 19.6	<2 16	<2 17	65 69	1.62 .53	.031 .088	8 39	11 60	.42 1.01	101 188	<.01 .07	6 31	.29 1.99	.05 .06	.12 .14	2 12	3 496
		ICP - THIS ASSAY - SAM Sampl	.500 LEACH RECO PLE T es be	GRAM IS P MMEND YPE: ginni	ARTIA ED FO CORE ng (R	LE IS L FOR R ROCI AI	DIGE MN F K AND U** A e Ren	STED E SR CORE NALYS	WITH CA P SIS BY SIS BY	3ML 3 LA CR LES I FA/1 RE' a	-1-2 MG B F CU I CP FR re Re	HCL-H A TI PB ZN OM 30 ject	NO3-H B W A AS > GM S Rerun	20 AT ND LI 1%, AMPLE	95 D MITED AG >	EG. C FOR 30 PP	FOR NAK M&A		HOUR A AL. 1000 P	ND IS	DILU	TED T	0 10	ML WI	TH WA	TER.					
DATE RECE	IVEI): J	UN 19	1996	5 D2	ATE 1	REPO	ORT	MAIL	ED:	Yn	مد ځ	98 4	76	SIC	GNED	BY.	.:	1		D.TO	re, c	LEON	G, J.	WANG;	CERTI	FIED	в.С.	ASSA	YERS	
										Ć	/									1											

Mount Polley Mining Corp. PROJECT MOUNT POLLEY MINE FILE # 96-2331 Page 2

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	٩n	Fe	As	U	Au	Th	Sr	Cď	Sb	Bi	٧	Ca	P	La	Cr Mg	Ba	Ti	B	AL	Na	ĸ	¥	Au**
A 67033 A 67034 A 67035 A 67036 A 67037	24 81 15 18 14	264 378 153 880 1842	13 25 17 16 17	59 98 105 79 127	<.3 .5 <.3 .4 .9	ppm 10 96 83 10 6	7 16 14 10 18	568 2021 1814 1142 2057	1.87 2.86 2.86 2.32 4.20	94 86 72 113 35	<pre>ppm <5 <5 <5 <5 <5 <5 <5</pre>	<pre></pre>	<pre></pre>	ppm 33 83 84 51 123	.4 .3 .5 .5 .9	2 2 3 2 2 2	<pre></pre>	51 75 83 68 171	2.00 . 9.33 . 7.69 . 2.74 . 4.47 .	024 059 066 026 139	6 9 10 8 24	5 .57 54 1.77 69 2.08 7 .96 6 1.38	83 92 36 84 72	<.01 <.01 <.01 <.01 <.01 .03	8 5 6 5 12	.25 .46 .51 .32 1.00	.03 .02 .02 .03 .04	.12 .08 .07 .12 .13	<pre>>ppn <2 <2 <2 <2 <2 <2 <2 <2 <2</pre>	16 25 10 36 110
A 67038 A 67039 A 67040 A 67041 A 67042	3 3 1 2 1	1690 539 482 709 280	24 31 7 7 7	140 132 69 85 103	.6 .4 <.3 <.3 <.3	3 4 3 4 4	17 16 12 13 17	2036 1633 1202 1530 1635	4.20 4.24 3.35 3.86 4.73	31 46 16 22 20	ৎ ১ ১ ৩ ৩ ৩	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2 <2	135 93 146 147 171	.7 .5 <.2 <.2 <.2	<u>w</u> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<2 <2 <2 <2 <2 <2	156 101 137 177 192	4.67 . 3.57 . 3.86 . 4.30 . 4.21 .	115 103 099 117 145	20 12 15 15 15	4 1.15 1 .89 4 .76 6 1.30 6 1.58	66 26 68 58 87	.02 <.01 .02 .07 .08	26 21 18 34 29	.99 .65 1.27 1.76 2.05	.03 .03 .12 .12 .31	.20 .24 .19 .17 .19	< < < < < < < < < < < < < < < < <> <> <>	105 32 26 50 17
A 67043 A 67044 RE A 67044 RRE A 67044 A 67045	1 3 1 2 3	442 1187 1204 1173 537	15 9 8 9 7	122 112 112 109 85	<.3 .3 .3 .3 <.3	5 3 3 3 4	18 17 17 16 13	1720 1835 1846 1804 1583	5.33 4.56 4.57 4.45 3.89	33 36 38 36 40	ৎ ১ ৩ ৩ ৩ ৩	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	90 98 98 97 112	<.2 <.2 <.2 <.2 <.2 .3	22223	<2 2 3 2 3 2 3	240 202 203 198 135	3.09 . 3.43 . 3.44 . 3.37 . 3.87 .	172 129 130 128 114	19 25 25 25 17	6 1.72 5 1.42 6 1.42 7 1.39 2 1.16	48 79 80 81 78	.04 .03 .03 .03 <.01	18 12 14 17 20	1.57 1.41 1.41 1.39 .66	.05 .04 .04 .04 .03	.18 .18 .18 .18 .21	<2 <2 <2 <2 <2 <2 <2 <2	31 66 66 64 29
A 67046 A 67047 A 67048 A 67049 A 67050	3 5 4 4 6	236 286 284 229 255	18 27 19 18 18	75 83 93 68 51	<.3 <.3 <.3 <.3 <.3	3 3 3 3 4	12 12 13 14 11	1482 1344 1513 1323 941	3.36 3.67 4.31 4.36 3.32	19 15 15 18 18	ৎ ও ও ও	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	111 176 213 201 125	.2 .2 <.2 <.2 <.2	᠔᠔᠉᠈᠔	2 3 2 2 2 2	122 153 207 190 103	3.70 . 4.19 . 4.25 . 4.16 . 2.78 .	.099 .103 .127 .137 .137	15 16 16 15 15	4 1.11 7 .96 5 1.24 6 1.46 5 .95	95 110 72 87 45	<.01 .03 .09 .09 .01	24 26 20 22 20	.56 1.19 2.00 2.37 1.19	.03 .03 .04 .09 .03	.23 .22 .16 .14 .20	<2 <2 <2 <2 <2 <2 <2 <2 <2	18 15 16 13 19
A 67051 A 67052 A 67053 A 67054 RE A 67054	4 7 3 7 6	290 385 762 641 632	13 28 15 11 9	72 109 72 55 55	<.3 <.3 <.3 <.3 <.3	4 5 3 3 3	15 16 12 11 11	1444 1627 1407 1153 1158	4.27 4.85 3.60 3.46 3.46	18 15 13 14 13	<5 <5 <5 5 5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	123 95 139 126 127	.2 <.2 <.2 <.2 <.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 2 <2 <2 <2 <2	161 201 147 145 145	3.75 . 3.46 . 2.93 . 2.23 . 2.24 .	133 148 096 086	17 18 17 18 18	4 1.51 11 1.57 4 1.21 4 1.06 2 1.06	56 45 63 73 72	.01 .02 .01 .02 .02	18 18 17 14 14	1.61 1.58 1.55 1.69 1.69	.03 .04 .10 .34 .35	.19 .20 .19 .19 .19	<2 <2 <2 <2 <2 <2	19 46 62 35 40
RRE A 67054 A 67055 A 67056 A 67057 A 67058	9 8 5 1 2	655 1074 732 1398 1142	11 14 25 8 5	57 57 148 93 61	<.3 .4 .5 .5	3 2 3 2 4	11 9 10 14 9	1191 1076 1487 1877 1268	3.57 3.05 3.47 3.92 3.00	15 14 12 17 7	<5 8 6 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<> <> <> <> <> <> <> <> <> <> <> <> <> <	130 111 137 259 137	<.2 <.2 .5 <.2 <.2	<> <> <> <> <> <> <> <> <> <> <> <> <> <	<2 2 2 3 2	150 135 155 185 138	2.31 . 1.78 . 2.44 . 3.39 . 1.93 .	089 073 085 118 062	18 20 20 19 14	5 1.05 5 .78 3 1.04 5 1.80 4 .96	74 106 113 209 133	.02 .03 .06 .09 .06	16 10 11 21 9	1.74 1.58 2.26 3.53 2.09	.36 .35 .92 1.38 .84	.19 .19 .16 .11 .12	<2 <2 <2 <2 <2 <2 <2	34 59 56 94 91
A 67059 A 67060 A 67061 A 67062 A 67063	3 10 <1 4 5	842 511 452 326 270	19 59 29 19 39	79 203 147 87 155	.4 .3 <.3 <.3	2 4 3 6 4	8 14 16 11 12	1274 1781 2492 1485 1876	2.90 5.03 5.57 3.48 4.51	5 16 13 18 21	ৎ ৎ জ জ জ	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	98 65 89 60 104	<.2 .9 <.2 <.2 .3	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 2 3 <2 <2	119 238 271 154 201	2.59 . 2.56 . 2.81 . 2.05 . 2.27 .	.055 .138 .111 .071 .104	18 24 20 15 14	5 .61 3 .94 5 1.49 7 1.05 10 1.25	83 44 56 59 45	.01 .03 .10 .08 .11	8 6 9 7 10	1.05 1.24 1.71 1.09 1.85	.10 .04 .11 .04 .41	.19 .18 .18 .19 .16	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	62 35 21 14 11
A 67064 A 67065 Standard C2/AU-R	2 2 19	319 333 61	27 28 40	105 182 132	<.3 <.3 6.1	3 3 71	9 14 37	1393 2045 1170	3.20 4.61 3.95	9 10 43	<5 <5 25	<2 <2 8	<2 <2 35	205 229 52	.3 .6 20.3	<2 2 17	<2 <2 15	153 234 70	2.95 . 4.52 . .55 .	.075 .124 .091	14 17 39	3 1.06 4 1.42 61 1.02	81 101 180	.09 .12 .07	13 13 33	2.08 2.58 2.01	.42 .81 .06	.10 .14 .14	<2 <2 13	6 15 483

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Mount Polley Mining Corporation PROJECT MOUNT POLLEY MINE FILE # 96-2331 Page 3

HONE HONE FITCHE															_								-								
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm p	Mn pm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	AL %	Na %	К %.	₩. ppm	Au** ppb
A 67066 A 67067 A 67068 A 67069 A 67070	5 5 6 1 4	376 516 483 339 399	35 14 24 17 36	200 137 206 119 204	<.3 <.3 <.3 <.3 .3	4 3 4 3 4	17 22 15 19 20 24 14 17 14 20	07 98 95 38 21	5.26 4.72 6.31 5.51 4.97	10 11 16 11 11	<5 5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	463 555 610 239 185	.9 .3 .5 <.2 .7	2 <2 2 3 2	<2 <2 2 2 2	256 230 312 289 253	5.13 4.18 6.40 3.66 4.17	.171 .162 .210 .090 .130	21 20 26 16 20	10 3 <1 2 <1	1.66 1.47 1.86 .98 1.17	293 174 211 59 51	.11 .10 .12 .09 .09	56 19 9 <3 6	4.02 4.37 4.10 1.37 1.44	1.82 1.90 .87 .06 .05	.08 .07 .08 .11 .14	<2 <2 <2 <2 <2 <2	33 37 53 16 55
A 67071 A 67072 A 67073 A 67074 A 67074	4 5 13 5 3	260 430 676 391 397	22 13 23 22 16	112 124 210 167 111	<.3 .3 <.3 <.3 .3	2 4 3 2	8 11 15 20 23 29 17 25 8 12	06 59 48 23 38	3.02 4.65 6.75 4.78 2.93	5 9 9 13 6	<5 <5 <5 5 7	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	84 482 245 790 86	.6 .2 .4 .6 .4	<2 2 4 3 <2	<2 <2 2 <2 2	168 227 318 212 128	2.96 5.14 5.98 6.79 2.72	.073 .136 .192 .148 .060	17 22 27 23 15	5 <1 <1 5 4	.63 1.44 2.30 1.72 .79	77 144 64 303 55	.01 .05 .07 .07	4 <3 <4 4	.84 1.62 2.21 2.34 .86	.03 .03 .02 .29 .03	. 18 . 15 . 15 . 13 . 15	<2 <2 <2 <2 <2 <2	18 40 43 29 14
A 67076 A 67077 A 67078 A 67079 A 67080	7 3 3 3 6	403 495 784 608 826	9 19 15 9 15	89 111 102 109 127	.3 .4 <.3 <.3	4 2 3 2 3	8 11 11 14 16 22 18 22 18 24	60 94 36 86 18	2.85 3.35 4.72 5.22 5.18	4 7 9 16 14	7 5 5 5 5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	61 153 349 544 390	.5 1.2 .2 <.2 <.2	<2 2 5 <2	<2 <2 2 2 3	121 146 221 245 242	3.22 3.90 5.84 6.42 6.15	.059 .076 .145 .202 .192	18 19 21 21 23	5 4 <1 <1 <1	.72 .97 1.61 1.91 1.74	36 62 74 121 101	.02 .04 .08 .12 .11	<3 <3 14 12 14	.81 1.32 2.33 3.18 3.69	.03 .16 .16 .44 1.35	.14 .14 .13 .11 .10	<2 <2 <2 <2 <2 <2 <2	43 97 43 19 38
RE A 67080 RRE A 67080 A 67081 A 67082 A 67083	6 4 3 3 3	833 861 794 882 508	15 15 12 10 25	130 130 104 177 154	<.3 <.3 <.3 <.3 <.3	3 3 3 4 3	19 24 19 24 16 22 19 24 19 24	27 83 07 73 63	5.18 5.30 4.51 5.72 4.83	17 17 14 10 10	ও ও ও ও ও ও	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	389 397 242 771 943	<.2 <.2 <.2 .3 .2	<2 3 2 4 2	2 2 2 2 2 4	242 246 214 272 230	6.20 6.31 6.39 6.22 6.01	. 195 . 197 . 142 . 170 . 165	23 23 22 23 24	<1 <1 3 <1 4	1.75 1.79 1.53 1.76 1.64	101 103 46 83 93	.11 .11 .13 .09 .10	12 14 4 6 9	3.72 3.80 1.65 2.63 2.63	1.35 1.39 .05 .34 .23	. 10 . 10 . 13 . 10 . 10	<2 <2 <2 <2 <2 <2	41 40 75 91 39
A 67084 A 67085 A 67086 A 67087 A 67088	4 5 2 13 6	311 1860 190 197 190	23 34 24 16 12	154 241 86 80 75	<.3 .3 <.3 <.3 <.3	4 6 3 3 4	19 27 35 33 10 11 13 16 12 14	28 39 1 39 11 90	5.79 2.31 3.60 4.59 4.72	12 46 8 16 13	ৎ ১ ১ ১ ১ ১ ১ ১ ১	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	779 884 837 603 334	.2 .6 .3 <.2 <.2	3 7 2 3 2	<2 5 2 <2 2	281 667 192 243 255	5.99 7.04 3.69 5.02 4.67	.181 .491 .102 .118 .109	26 60 14 17 15	1 <1 3 1 3	1.89 1.63 .93 1.07 .99	95 84 78 64 54	.10 .11 .11 .13 .13	5 6 12 7 <3	2.50 2.13 1.91 1.53 1.19	.19 .07 .07 .05 .03	.11 .12 .19 .18 .18	<2 <2 <2 2 2	20 54 6 13 9
A 67089 A 67090 RE A 67090 RRE A 67090 A 67091	25 5 5 6 3	205 225 221 219 212	13 14 13 16 20	61 60 59 58 84	<.3 <.3 <.3 <.3 <.3	3 4 3 3 3	13 13 11 12 11 12 11 12 10 12 13 16	72 57 37 14 30	4.51 3.68 3.61 3.54 4.64	21 18 17 18 21	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	173 141 140 139 132	<.2 <.2 <.2 <.2 <.2	3 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	220 175 172 170 221	4.62 3.99 3.91 3.84 5.19	.136 .104 .101 .099 .141	17 13 14 13 14	1 2 3 4	.99 .96 .93 .92 1.46	40 45 46 47 47	.13 .13 .13 .13 .13	7 5 4 3 4	1.38 1.37 1.35 1.34 1.53	.05 .06 .06 .06 .04	.21 .22 .22 .22 .22	<2 <2 <2 <2 <2 <2	14 27 32 32 12
A 67092 A 67093 A 67094 A 67095 A 67096	5 2 5 5 4	123 131 192 241 287	23 23 27 33 26	153 127 117 137 157	<.3 <.3 <.3 .4 1.3	4 3 4 2 4	11 11 10 12 8 9 10 12 13 19	50 25 90 67 88	3.50 3.34 2.62 3.92 3.99	11 10 8 13 16	ও ও ও ও ও ও	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	86 114 71 62 105	.8 .6 .8 1.4 .9	<2 <2 <2 <2 <2 2	<2 <2 <2 <2 <2 2	151 159 122 203 182	3.86 4.04 2.26 2.67 4.52	.100 .097 .056 .094 .099	15 15 15 17 22	4 2 7 5 3	.94 .97 .61 .82 1.25	43 50 81 56 72	.04 .05 .04 .09 .04	4 3 3 3 5	1.15 1.16 .78 .91 1.28	.04 .04 .04 .04 .04	.24 .21 .17 .15 .17	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	6 3 5 8 72
A 67097 A 67098 Standard C2/AU~R	2 1 19	288 327 62	23 16 45	112 155 138	.9 <.3 6.1	3 5 74	10 13 16 22 38 12	91 01 18	2.93 5.15 4.11	11 14 43	6 <5 21	<2 <2 8	<2 <2 36	109 312 54	.7 <.2 20.7	<2 4 16	<2 <2 18	141 281 75	3.06 4.52 .58	.072 .138 .095	19 18 40	3 3 61	.89 1.77 1.07	101 94 185	.07 .12 .07	<3 87 28	1.05 2.51 2.12	.02 .20 .07	.18 .13 .15	<2 <2 12	12 12 457

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

•

. ..

AC	A ANALYTICAL

Mount Polley Mining Corporation PROJECT MOUNT POLLEY MINE FILE # 96-2331 Page 4

ťł

ACRE ANALYTICAL																													
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe X	As	U maa	Au	Th	Sr	b0 mag	Sb	Bi	V	Ca %	P %	La ppm	Cr Mg ppm %	Ba	Ti %	BAL ppm %	Na %	K X	W • ppm	Au** ppb
A 67099 A 67100 A 67101 A 67102 A 67103	6 8 19 11 27	446 449 359 314 284	14 12 86 39 61	149 151 274 244 289	1.4 .9 1.9 2.2 2.7	4 3 6 5 6	16 2 18 2 21 2 25 3 29 3	2227 2433 2600 3559 3501	5.05 5.71 7.44 9.39 11.78	12 16 60 38 53	<5 <5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2	986 1927 170 230 210	<.2 <.2 1.1 .2 .3	2 3 4 6 8	<2 2 2 2 2 2 2 2 2 2 2 2 2	245 287 385 527 660	4.06 5.85 5.08 5.36 5.20	. 151 .201 .186 .253 .377	21 23 25 27 36	5 1.54 2 1.73 5 1.55 3 1.98 <1 1.39	120 101 60 49 48	.12 .11 .11 .10 .09	112 2.55 33 3.48 <3 1.60 <3 2.92 5 2.02	.36 .62 .10 .80 .27	- 12 - 09 - 14 - 10 - 13	<2 <2 <2 <2 <2 <2 <2	40 22 90 29 43
A 67104 A 67105 A 67106 A 67107 A 67108	17 5 6 107	408 385 339 328 1868	43 38 22 13 54	285 152 112 124 173	2.4 2.5 2.1 1.2 1.9	45436	22 2 19 2 17 2 21 3 34 3	2840 2401 2385 3336 3655	8.14 5.52 5.35 6.07 12.69	43 27 9 28 67	<5 <5 <5 <5 <5	< < < < < < < < < < < < < < < < < <> </td <td><2 <2 <2 <2 <2 <2</td> <td>121 153 977 2245 748</td> <td>1.1 .6 .2 <.2 <.2</td> <td>6 3 2 2 11</td> <td><2 3 <2 <2 <2 <2</td> <td>419 242 260 272 673</td> <td>4.44 5.44 5.61 5.64 6.34</td> <td>.231 .169 .159 .214 .473</td> <td>31 24 15 25 53</td> <td>3 1.37 5 1.72 5 1.99 <1 2.50 2 2.04</td> <td>42 49 112 52 42</td> <td>.02 .04 .12 .13 .08</td> <td>3 1.81 6 1.79 5 2.40 9 4.50 <3 2.65</td> <td>.04 .05 .13 .96 .29</td> <td>.18 .20 .17 .11 .11</td> <td><2 <2 <</td> <td>96 97 45 22 99</td>	<2 <2 <2 <2 <2 <2	121 153 977 2245 748	1.1 .6 .2 <.2 <.2	6 3 2 2 11	<2 3 <2 <2 <2 <2	419 242 260 272 673	4.44 5.44 5.61 5.64 6.34	.231 .169 .159 .214 .473	31 24 15 25 53	3 1.37 5 1.72 5 1.99 <1 2.50 2 2.04	42 49 112 52 42	.02 .04 .12 .13 .08	3 1.81 6 1.79 5 2.40 9 4.50 <3 2.65	.04 .05 .13 .96 .29	.18 .20 .17 .11 .11	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	96 97 45 22 99
A 67109 A 67110 RE A 67110 RRE A 67110 A 67111	302 9 8 9 10	758 323 335 325 357	238 25 26 25 31	165 135 138 135 207	2.4 .6 .6 .7 1.2	63 344	31 2 16 2 16 2 16 2 22 2	2421 2088 2173 2080 2784	10.64 5.32 5.51 5.30 8.09	112 15 16 15 26	<5 <5 <5 <5 <5	< < < < < < < < < < < < < < <> <> <><><><	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	104 112 116 114 112	.3 .2 .2 <.2 .5	10 2 4 <2 5	3 <2 <2 <2 <2 <2	542 282 292 283 441	4.40 4.54 4.68 4.50 5.18	.274 .156 .160 .157 .198	36 25 25 25 29	3 .92 6 1.16 3 1.21 6 1.16 1 1.46	38 61 64 71 57	.02 .02 .02 .02 .02	<3 1.31 <3 1.23 <3 1.28 <3 1.27 <3 1.64	.05 .04 .04 .04 .04	- 14 - 17 - 18 - 19 - 17	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2347 58 52 58 46
A 67112 A 67113 A 67114 A 67115 A 67116	7 7 6 1 2	200 308 334 371 320	23 47 29 8 9	125 196 166 129 105	.6 .7 .6 <.3 <.3	5 3 5 3 5	7 1 14 1 14 1 21 1 10 1	1017 1707 1817 1871 1204	2.76 5.48 5.79 5.46 3.24	16 28 25 7 9	<5 <5 <5 <5 <5	<> <> <> <> <> <> <> <> <> <> <> <> <> <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	67 92 480 272 211	.6 .9 .6 .2 .2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2	141 297 312 249 151	2.78 4.01 3.18 4.30 2.88	.051 .097 .111 .207 .082	18 21 18 17 14	6 .42 6 .78 2 .85 3 1.87 6 1.01	77 65 96 54 175	.01 .02 .11 .15 .13	5 .81 <3 1.13 <3 1.11 16 2.62 139 2.46	.05 .04 .05 .51 .88	.20 .16 .17 .16 .17	5 6 6 6 6 6 6 6 6 6 6 6	16 34 32 18 5
A 67117 A 67118 A 67119 A 67120 RE A 67120	<1 1 3 2	365 198 189 202 196	11 10 14 11 10	82 74 96 120 119	<.3 <.3 <.3 <.3 <.3	2424	10 1 9 1 10 1 10 1 9 1	1191 1115 1263 1250 1210	3.09 2.96 3.09 2.92 2.83	11 7 6 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2	216 228 195 97 94	<.2 <.2 <.2 .4 .4	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2 2 2 2	141 135 141 117 115	3.80 4.52 4.35 5.00 4.86	.080 .076 .081 .073 .072	14 13 15 19 19	5 .91 2 .86 3 .86 4 .65 3 .64	59 47 46 45 44	. 12 . 12 . 12 . 04 . 04	62 1.69 17 1.59 12 1.47 8 .96 8 .95	.26 .18 .11 .04 .04	. 15 . 13 . 14 . 24 . 24	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 6 3 8 8
RRE A 67120 A 67121 A 67122 A 67123 A 67123 A 67124	2 1 <1 2 4	205 178 171 151 162	11 8 12 7 12	120 67 79 81 86	<.3 <.3 <.3 <.3 <.3	2 3 2 3 1	10 1 9 1 9 1 9 1	1263 1181 1199 1127 1091	2.90 2.84 3.02 2.98 2.91	5 7 8 6 5	<5 <5 <5 <5 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2	98 116 184 314 424	.6 2.> 2.> 2.> 2.>	<2 <2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	118 118 137 132 133	5.16 3.87 4.09 3.66 3.05	.080 .071 .073 .076 .073	20 15 14 14 13	6 .65 3 .87 4 .95 3 .97 3 1.23	42 48 102 139 198	.04 .07 .09 .06 .08	8 .96 9 1.58 21 2.12 12 2.08 13 2.12	.04 .17 .25 .37 .21	.23 .17 .15 .14 .12	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5 5 2 3 3
A 67125 A 67126 A 67127 A 67128 A 67128	2 3 10 27 9	169 154 159 101 177	6 10 12 11 13	64 65 52 67 111	<.3 <.3 <.3 <.3 <.3	3 2 4 2 4	8 1 8 1 8 8 9 1	1043 1256 968 987 1230	2.68 2.31 2.57 2.61 2.62	6 2 13 12 7	7 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2	429 93 81 85 95	<.2 <.2 <.2 .2	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2	118 91 76 75 101	3.40 4.44 4.01 4.02 4.18	.069 .062 .066 .064 .063	14 20 24 19 19	12 .80 4 .47 2 .41 2 .40 5 .66	428 63 100 86 80	.05 .01 <.01 <.01 .05	14 1.78 9 .79 9 .94 9 .98 11 .93	.23 .03 .03 .03 .03	- 18 - 25 - 29 - 27 - 24	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 2 12 14 32
A 67130 Standard C2/AU-R	3 21	284 60	25 38	96 137	.3 6.1	2 72	11 1 38 1	1323 1172	3.07 3.92	5 41	<5 22	<2 7	<2 34	98 51	2. 21.1	2 15	<2 17	137 71	4.18	.082 .093	15 39	3.99 611.08	69 189	.12 .07	6 1.09 26 2.07	.06 .07	. 22 . 14	<2 13	22 477

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACML ALY	1	LI	2	AT(S	L			? E	<u> </u>	STI]	ST.		COU		BC	1	11		:	E(f	5	53	-	3	F	504	;	-17	
A A									GE	осн	EMI	CAL	AN	ALY	SIS	CE	RTI	FIC	CATE	;									1	A /	•
TT	М	loun	t P	011	ey	Min	ing	<u>C</u>	orpo	rat	ion	PR		CT	MOU	<u>NT</u> 184	POL	LEY	<u>(</u> F	ile	# esali	96-2	47	9	Pa	ge	1		4	כז	Ĉ
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th	Sr ppm	Çd ppm	Sb ppm	Bi ppm	۷ mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	τί %	B ppm	Al %	Na %	К %	ppm	Au**
A 67131 A 67132 A 67133 A 67133 A 67134 A 67135	3 3 174 11 5	128 1076 1370 954 177	22 10 59 19 6	95 168 305 95 71	.3 .5 1.1 .7 <.3	5 3 11 3 4	7 22 33 6 7	1017 2425 2330 884 937	2.14 5.08 7.95 2.16 2.19	5 2 148 103 4	<5 <5 18 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	88 161 123 70 80	.6 1.1 1.4 .6 .4	<2 <2 115 53 3	<2 3 4 <2 <2	100 225 396 74 97	3.72 7.60 7.67 3.65 3.07	.054 .115 .105 .054 .057	15 24 23 15 16	3 21 32 2 3	.56 .97 .37 .59 .48	130 125 99 82 95	.04 .07 .01 <.01	9 15 18 13 10	.69 1.89 3.15 1.07 .79	.03 .05 .02 .02 .02	.20 .17 .15 .22 .23	<2 <2 3 <2 <2	3 32 60 12 2
A 67136 A 67137 A 67138 A 67139 A 67140	2 2 3 2 2	344 107 164 546 1873	3 6 11 10 11	98 79 92 120 133	<.3 .3 .3 .3 .8	4 5 5 6	12 9 13 16 14	1288 1008 1243 1823 1679	2.98 2.99 3.68 4.44 4.27	3 6 7 5 7	<5 <5 6 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	85 82 94 143 157	.3 2.2 2.> 2.> 2.>	<2 <2 <2 <2 <2 <2	<2 2 3 <2 <2	133 109 151 207 200	5.30 4.96 5.57 7.15 4.37	.088 .098 .119 .133 .138	17 18 21 19 18	3 5 5 4 1 2 1	.80 .80 .14 .38 .13	69 67 70 78 143	.02 .01 .05 .15 .14	9 14 17 14 17	.97 1.19 1.50 1.61 2.73	.02 .02 .02 .09 .60	.20 .23 .20 .17 .13	<2 <2 <2 <2 <2 <2 <2	22 5 12 25 136
RE A 67140 RRE A 67140 A 67141 A 67142 A 67143	2 1 2 12 128	1843 1901 339 508 151	14 17 6 10 11	131 135 60 131 67	.9 .8 <.3 .4 .5	5 7 2 7 2	15 12 5 19 7	1663 1710 939 2066 894	4.21 4.34 2.33 4.76 2.19	6 5 7 9	5 <5 5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	156 159 69 102 72	.3 .5 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	198 204 113 222 90	4.32 4.41 2.82 5.52 4.30	. 140 . 140 . 057 . 139 . 065	19 19 15 24 18	2 1. 2 1. 3 . 4 1. 3 .	. 12 . 15 . 52 . 63 . 43	139 141 75 67 45	.14 .14 .04 .03	15 15 11 19 12	2.74 2.81 .73 1.75 .80	.59 .62 .04 .04 .03	.12 .13 .17 .22 .20	<2 <2 <2 <2 <2 <2 <2	131 110 46 54 23
A 67144 A 67145 A 67146 A 67147 A 67148	3 2 2 2 1	143 183 89 96 204	5 8 <3 <3 8	78 78 65 72 68	<.3 .3 <.3 <.3 <.3	2 1 3 1 3	7 6 5 6 6	1024 863 1016 1120 1429	2.21 2.17 1.91 2.07 2.12	3 6 7 2 2		<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	81 73 66 93 100	<.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	97 92 86 99 106	3.59 3.68 3.82 4.49 4.21	.066 .069 .065 .069 .066	18 18 17 18 18	3 3 3 3 3	.33 .36 .44 .37 .64	89 - 67 - 58 - 114 - 130 -	<.01 <.01 <.01 <.01 <.01	11 11 9 8 5	.63 .52 .50 .62 .59	.02 .03 .03 .02 .02	.19 .19 .18 .17 .14	<2 <2 <2 <2 <2 <2 <2 <2	21 8 2 <2 10
A 67149 A 67150 RE A 67150 RRE A 67150 A 67151	1 2 2 2 1	158 174 170 169 154	5 97 79	70 78 76 78 89	<.3 <.3 <.3 <.3 <.3	2 3 1 2	5 6 7 7	1434 991 975 977 1141	2.09 2.19 2.15 2.14 2.50	2 2 2 2 2 2 2		<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2	128 176 174 175 175	<.2 <.2 .3 .3 <.2	<2 <2 <2 <2 <2 <2 <2	2 <2 <2 ~2 ~2 ~2 ~2	103 109 107 106 116	4.42 3.71 3.64 3.62 3.71	.066 .066 .065 .067 .062	19 16 16 16 15	3 2 2 3 3	.40 .37 .37 .37 .50	137 668 665 670 169	.01 .02 .02 .02 .02	5 11 10 9 12	.70 .88 .87 .89 1.26	.02 .02 .01 .02 .02	.16 .15 .15 .15 .16	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <6
A 67152 A 67153 A 67154 A 67155 A 67155	2 2 3 4 3	163 107 109 135 127	6 3 7 9	75 82 84 89 100	<.3 <.3 <.3 <.3 <.3	3 2 2 2 3	6 6 7 7	1082 1142 1172 1028 1259	2.23 2.33 2.11 2.25 2.44	<2 3 5 2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	129 147 111 106 147	.4 <.2 .4 .4	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	105 105 102 101 112	4.33 4.15 4.88 3.94 3.39	.064 .064 .068 .067 .065	17 17 19 17 15	3 3 2 3 3 3	.50 .58 .48 .52 .89	94 66 69 67 267	<.01 <.01 <.01 <.01 <.01	10 12 9 7 12	1.09 1.13 .86 1.03 1.26	.02 .02 .01 .02 .02	.17 .16 .15 .15 .15	<2 <2 <2 <2 <2 <2	7 9 4 11 <2
A 67157 A 67158 A 67159 A 67160 A 67161	2 2 4 7	142 110 144 771 1797	10 12 8 14 16	95 95 81 125 148	<.3 <.3 <.3 .7 .9	2 4 2 4 3	10 9 6 16 16	1225 1397 1022 1445 1670	2.45 2.75 2.36 3.93 4.21	7 9 5 27 32	র্ জ জ জ জ জ	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	199 134 70 104 113	.2 <.2 <.2 .3 .6	2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2	118 130 113 199 203	3.99 3.29 3.11 6.35 4.76	.073 .080 .064 .130 .129	16 16 17 17 18	3 1. 5 . 2 1. 3 1.	.86 .17 .69 .38 .59	1552 61 73 30 34	.04 .05 .02 .21 .19	10 10 6 8 9	1.28 1.45 .90 1.41 1.72	.02 .02 .03 .04 .03	.15 .16 .16 .06 .07	<2 <2 <2 3 4	2 6 2 36 74
A 67162 STANDARD C2/AU-R	11 20	593 63	63 41	176 138	.6 6.0	5 72	14 36	1677 1158	3.81 3.82	24 40	<5 23	<2 8	<2 33	109 54	.7 19.5	<2 16	4 20	177 71	4.45 .52	.144 .085	21 40	31. 63.	36 97	53 202	.10 .08	12 33	1.40 2.01	.03 .06	.18 .15	<2 14	36 489
DATE RECE	ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE. Samples beginning 'RE' are Reguns and 'RRE' are Reject Reguns. DATE RECEIVED: HUN 25 1996 DATE REPORT MATLED: A A A A A A A A A A A A A A A A A A A																														
										(1.	-						1											

Page 2

SAMPLE#	Mo	Cu ppm	Pb ppm	Zn	Ag ppm	Ni ppm	Со ррл	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К • %	W / ppm	Au** ppb
A 67163 A 67164 A 67165 A 67166 A 67167	5 5 6 5 3	1190 377 486 559 845	24 18 25 17 13	175 127 144 134 135	.5 .3 <.3 <.3 <.3	1 3 2 4 3	17 18 18 19 17	2221 2259 2394 2123 2021	5.15 5.11 5.35 5.39 5.06	19 17 12 28 23	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	129 153 176 178 319	1.0 1.0 .7 .6 1.3	2 2 2 <2 <2 <2	<2 4 9 <2 4	254 261 263 289 252	4.92 5.67 5.66 7.37 5.30	.212 .185 .184 .165 .179	28 20 18 17 21	3 3 3 2 2 2	1.97 2.19 2.66 1.99 1.92	68 84 68 75 128	.08 .19 .20 .22 .21	10 13 12 17 28	1.78 1.91 2.57 2.97 3.51	.03 .03 .02 .03 .45	. 18 . 16 . 14 . 13 . 14	<2 <2 <2 <2 <2 <2 <2	65 17 14 19 46
A 67168 A 67169 A 67170 A 67171 A 67172	4 3 3 8 4	772 427 354 745 466	12 15 9 21 17	131 144 158 86 84	<.3 <.3 <.3 .3 .4	3 3 4 2 4	16 17 17 8 8	1812 1677 2083 1472 1354	4.86 4.86 5.29 3.34 3.26	17 11 21 17 12	<5 <5 <5 <5 <5	< 2 2 2 2 2 2 2 2 2 2 2 2	<2 <2 <2 <2 <2 <2 <2	392 357 225 100 111	.2 1.0 .9 .2	<2 <2 <2 <2 <2 <2	<2 <2 3 4 3	248 246 275 180 166	5.65 4.70 5.57 3.03 3.05	.181 .184 .184 .136 .091	19 18 19 18 14	2 2 2 4 4	1.84 1.59 1.80 1.00 1.01	155 280 87 81 94	. 19 . 20 . 20 . 14 . 17	39 22 18 6 11	5.44 5.47 2.44 1.08	.52 1.16 .14 .05 .04	. 13 . 16 . 13 . 14 . 17	<2 <2 <2 <2 <2 <2 <2 <2 <2	40 10 19 28 18
A 67173 A 67174 RE A 67174 RRE A 67174 A 67175	4 5 5 4	368 393 414 396 377	18 17 18 15 16	79 75 78 75 88	.4 <.3 .3 .3 <.3	2 3 4 3 <1	7 7 8 7 8	1306 1268 1317 1270 1289	2.84 2.98 3.08 2.98 2.93	18 11 12 12 12	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	86 133 138 133 156	.3 .4 <.2 .6 .3	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 3 2 2	178 151 156 151 153	3.98 3.35 3.48 3.34 3.40	.076 .081 .086 .082 .082	13 14 15 14 13	4 4 5 4 5	1.07 .99 1.02 .99 1.02	54 96 100 100 113	. 13 . 13 . 14 . 13 . 13	7 9 9 11 9	.81 .44 .50 .46 1.57	.03 .03 .03 .03 .03	.11 .14 .14 .13 .13	2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	22 15 10 10 3
A 67176 A 67177 A 67178 A 67179 A 67180	5 3 5 2 4	404 504 326 226 467	18 16 20 13 17	107 137 176 106 117	.3 <.3 .6 .3 <.3	2 2 2 <1 2	6 10 7 4 15	1256 1388 933 953 1939	2.91 3.51 2.50 2.40 5.19	10 3 12 11 14	১ ১ ১ ১ ১ ১ ১ ১ ১	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	178 160 84 140 1041	.6 .2 1.2 .3 .2	<2 <2 <2 <2 <2 <2	<2 4 <2 <2 <2	145 166 107 120 262	3.23 3.51 2.57 2.70 6.55	.077 .109 .046 .048 .164	13 17 12 11 18	4 4 5 4 3	1.07 1.19 .70 .60 1.75	102 65 36 67 126	.13 .08 .10 .13 .17	9 7 5 7 14	1.56 1.30 .85 1.31 5.41	.03 .03 .05 .05 .83	.14 .13 .11 .13 .12	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	5 10 28 2 40
A 67181 A 67182 A 67183 A 67184 RE A 67184	4 3 4 4	424 1153 831 669 653	18 17 20 26 22	116 148 123 139 132	<.3 .4 .4 .3 <.3	<1 1 4 4	15 14 13 13	1475 1764 1061 1413 1330	4.91 4.99 2.99 4.63 4.36	9 7 <2 <2 <2	১ ১ ১ ১ ১ ১ ১	< 2 2 2 2 2 2 2 2 2	<> <> <> <> <> <> <> <> <> <> <> <> <> <	543 836 316 525 503	.5 .5 .8 .9 .4	<2 <2 <2 <2 <2 <2 <2	<2 6 2 <2 <2	253 262 155 231 219	4.64 5.74 3.85 4.85 4.58	. 186 . 170 . 091 . 181 . 174	18 20 14 17 17	3 2 3 2 2	1.18 1.35 .70 .94 .88	146 101 86 150 142	.20 .15 .12 .19 .19	22 3 19 3 19 2 20 4 21 4	.85 .29 .32 .48 .30	1.26 .73 .77 1.93 1.86	.15 .13 .12 .14 .13	<2 <2 <2 <2 <2 <2 <2 <2	22 62 30 40 25
RRE A 67184 A 67185 A 67186 A 67187 A 67188	4 3 3 4	628 257 389 1365 766	25 27 16 24 27	133 111 112 156 141	.3 <.3 <.3 .6 .4	2 1 3 2 5	12 7 11 13 10	1306 984 1208 1368 1168	4.30 2.74 3.65 4.24 3.37	<2 3 6 <2 8	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2	495 345 300 591 508	.5 .4 .2 .6	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 2 2 2 2	217 159 193 218 171	4.46 2.85 3.54 4.12 3.51	.173 .088 .143 .158 .118	16 12 16 16 16	2 3 4 4 4	.86 .56 .75 .91 .68	143 80 117 172 146	.18 .15 .17 .18 .15	19 4 16 2 17 2 14 2 12 2	.19 .51 .98 .17 .82	1.84 1.12 1.25 1.31 1.25	.13 .12 .14 .14 .14	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2	44 10 16 76 50
A 67189 A 67190 A 67191 A 67192 A 67193	3 4 3 4 4	433 699 571 921 815	17 17 22 20 46	117 151 217 164 185	.4 .5 <.3 <.3 .8	2 6 2 4 2	8 10 15 16 15	1118 1100 1412 1559 1371	2.72 3.24 4.99 5.41 4.85	7 4 2 <2 4	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	424 364 488 536 528	.5 .6 1.2 .8 1.3	<2 <2 <2 <2 <2 <2	<2 2 <2 <2 <2 <2	139 171 257 283 251	3.23 2.94 3.64 4.21 3.61	.080 .119 .204 .188 .198	16 16 18 18 17	5 4 2 4	.60 .63 1.08 1.03 .95	111 128 128 82 99	.12 .15 .20 .19 .21	12 1 16 2 14 4 19 4 17 4	.93 .74 .26 .02 .35	.54 1.20 2.13 1.77 1.98	.12 .15 .17 .14 .16	<2 <2 <2 <2 <2 <2 <2	12 28 40 55 52
A 67194 A 67195 STANDARD C2/AU-R	4 6 21	474 802 66	61 93 41	255 490 144	.3 1.0 6.4	3 4 75	17 19 37	1680 2498 1215	5.20 6.12 4.00	<2 13 39	<5 <5 18	<2 <2 9	<2 <2 35	501 220 57	1.1 2.4 20.5	<2 <2 17	<2 2 19	266 321 74	4.06 4.98 .55	.207 .202 .090	18 23 42	3 2 65	1.34 2.01 1.01	107 72 215	.20 .21 .09	19 4 11 2 32 2	.29 .97 .10	1.86 .68 .07	.15 .11 .15	<2 <2 14	27 57 473

ACHE ANALYTICAL

Mount Polley Mining Corporation PROJECT MOUNT POLLEY FILE # 96-2479

Page 3

ACHE ANALYTICAL																														CHE ANALI	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	۲ ۲ %	W ppm	Au** ppb
A 67196 A 67197 A 67198 A 67198 A 67199 A 67200	5 7 4 3 7	367 4286 1017 2975 1160	57 45 20 69 603	405 547 237 434 2242	.3 2.9 .4 1.4 1.9	3 2 5 4 5	18 22 14 13 18	2066 2219 1536 1656 2349	5.39 6.39 5.22 5.11 6.05	9 8 3 <2 11	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 3 2 3	281 469 412 469 425	2.1 2.9 1.4 2.7 15.5	<2 <2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	277 318 267 258 311	5.57 5.61 4.45 4.23 5.25	.205 .232 .211 .175 .208	17 27 19 17 22	2 1 2 1 2 1 3 1 2 1	.75 .53 .04 .14 .75	96 106 110 95 78	.22 .19 .21 .18 .17	15 16 20 15 16	3.06 3.33 4.32 3.85 3.84	.77 1.07 2.00 1.58 1.34	.14 .13 .15 .15 .12	3 4 <2 3 13	25 254 59 143 83
A 67201 A 67202 A 67203 A 67204 A 67204 A 67205	4 5 5 3 4	3864 926 1817 614 2578	111 51 50 14 42	1139 418 406 356 333	2.7 .4 1.1 .4 1.1	4 2 1 2 2	16 15 16 13 16	1788 1780 1846 1558 2332	5.79 5.10 5.40 4.12 4.99	7 <2 9 13	ৎ ৎ ৎ ৎ ৎ	<2 <2 <2 <2 <2 <2 <2	2 2 2 3	334 379 344 367 542	6.5 1.9 2.6 1.5 1.6	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 5	292 247 254 193 228	3.90 4.30 4.67 5.18 8.30	.086 .192 .193 .152 .157	17 19 20 19 24	4 1 1 1 1 1 2 2 1	.03 .41 .39 .93 .17	62 75 62 54 128	. 10 . 15 . 13 . 10 . 06	6 11 15 11 10	2.13 4.22 4.34 2.69 2.41	.66 2.12 2.23 .96 .70	.11 .12 .12 .12 .12	6422 222	209 45 120 31 114
A 67206 A 67207 A 67208 A 67209 A 67210	35 5 4 3 4	1689 1580 1129 588 841	19 16 62 19 12	270 224 405 288 221	.8 .5 .6 .3 .4	3 3 2 <1 3	16 20 13 9 7	2445 1829 1857 1446 1242	4.71 7.14 4.95 3.32 3.16	96 7 5 11 13	ৎ ৎ ৎ হ ৎ হ হ	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 3 2 <2	291 430 1161 526 962	1.0 .8 1.8 1.5 1.1	< < < < < < < < < < < < < < < < < < < <	2 3 3 <2 2	204 352 255 173 169	9.47 4.58 4.99 3.51 3.03	. 143 . 185 . 147 . 090 . 085	23 21 19 13 13	1 2 2 1 3 1 4 1 3	.07 .24 .35 .13 .99	98 70 96 60 85	.01 .15 .14 .12 .11	6 14 9 7 11	.84 4.18 3.44 1.96 2.00	.03 2.03 1.30 .27 .16	.08 .13 .10 .11 .13	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	59 91 73 36 109
RE A 67210 RRE A 67210 A 67211 A 67212 A 67213	4 4 1 1	849 813 139 139 129	10 14 5 3	225 213 81 78 78	.4 .5 <.3 <.3 <.3	4 3 36 44 42	7 8 17 19 19	1240 1217 951 926 1028	3.17 3.09 4.54 4.68 4.87	10 9 13 11 10		<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2 2 2 2	963 936 178 155 125	1.1 1.0 .3 <.2 <.2	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 5 2 5 2 2 5 2	169 165 177 183 187	3.03 2.95 3.38 2.91 3.86	.087 .084 .136 .138 .135	13 13 7 7 8	3 92 2 94 2 94 2	.99 .97 .19 .35	84 80 66 60 51	.12 .11 .21 .20 .17	9 7 27 20 21	2.00 1.95 3.28 3.33 3.25	. 16 . 15 . 99 . 91 . 42	.13 .13 .08 .09 .11	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	101 100 <2 <2 <2
A 67214 A 67215 A 67216 A 67217 A 67218	1 1 4 5 4	148 197 890 352 344	<3 10 20 10 15	85 93 135 130 119	<.3 <.3 <.3 <.3	42 30 5 2 2	21 18 23 18 20	876 1348 2218 1637 2029	5.02 5.11 6.32 5.47 5.76	<2 14 87 33 41	<5 <5 <5 <5 <5	< < < < < < < < < < < < < < < < <> <> <>	<2 2 2 3	294 296 229 311 527	.4 .3 .7 .2	<2 <2 <2 <2 <2 <2 <2 <2	2 4 6 2 2	184 194 268 251 261	2.64 5.08 6.39 4.11 6.62	.149 .153 .189 .170 .175	8 11 19 16 18	90 2 53 1 4 2 3 1 2 1	.20 .75 .41 .76 .92	80 87 59 49 88	. 13 . 09 . 04 . 16 . 14	15 18 14 9 12	3.39 3.10 2.95 4.37 3.23	.99 .63 .12 2.15 .60	.12 .15 .16 .14 .15	<>> <> <> <> <> <> <> <> <> <> <> <> <>	<2 8 36 17 18
A 67219 A 67220 RE A 67220 RRE A 67220 A 67221	5 4 4 6	277 573 553 542 777	21 13 7 10 12	161 168 161 156 202	<.3 <.3 <.3 <.3	4 3 5 2 2	16 25 20 22 19	1498 1944 1836 1788 1559	4.93 7.05 6.65 6.47 5.41	33 65 56 58 40	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 3 3 3	402 574 547 534 306	<.2 .7 .4 .2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 3 5 4 5	232 294 280 272 276	5.15 6.38 6.05 5.90 6.12	. 154 . 196 . 191 . 189 . 173	18 25 24 23 25	4 1 2 1 1 1 1 1 3	.29 .72 .63 .58 .98	112 68 63 65 48	.13 .18 .17 .17 .08	9 11 16 13 11	2.75 3.61 3.40 3.28 1.87	.75 .72 .68 .65 .21	.26 .31 .29 .29 .26	< < < < < < < < < < < < < < < <> </td <td>14 28 30 32 53</td>	14 28 30 32 53
A 67222 A 67223 A 67224 A 67225 A 67226	5 4 4 5	1508 687 1373 653 484	12 3 4 <3 8	96 66 67 131 117	.5 <.3 <.3 <.3	4 3 5 2	15 10 6 15 13	1855 1514 1481 1614 1293	4.01 3.16 3.34 5.49 3.83	28 11 17 <2 5	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	4 3 2 2	508 469 550 304 410	.4 <.2 <.2 .7	2 <2 <2 <2 <2 <2 <2	5 3 4 4 2	235 206 270 266 202	10.34 8.31 8.85 4.58 6.02	.210 .187 .249 .170 .136	26 19 23 16 19	2 2 1 1 1 2	.63 .49 .29 .45 .62	115 79 56 72 45	.01 .01 .01 .16 .06	10 12 7 8 6	1.34 1.17 1.31 5.39 2.11	.06 .02 .01 3.18 .77	.16 .19 .17 .12 .12	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	116 19 18 100 27
A 67227 A 67228 Standard C2/AU-R	4 3 21	212 219 58	3 <3 35	115 109 143	<.3 <.3 6.3	2 3 75	15 16 36	1503 1393 1186	5.47 5.02 3.94	<2 3 39	<5 <5 17	<2 <2 8	2 2 34	368 410 54	<.2 .2 19.6	<2 <2 17	<2 4 21	270 248 72	4.25 4.75 .53	.171 .177 .093	15 16 41	21 11 651	.47 .19 .00	81 126 210	- 16 - 13 - 09	9 13 30	5.38 4.28 2.05	3.18 2.44 .06	.11 .17 .15	<2 <2 14	17 11 480

ACME AMALYTICAL

Mount Polley Mining Corporation PROJECT MOUNT POLLEY FILE # 96-2479

ACHE ANALYTIC

Page 4

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe %	As	U	Au	Th	Sr	Cd ppm	Sb	Bi	V	Ca %	P %	La DOM	Cr Mg pom %	Ba	Ti %	B	Al %	Na %	K • %	W mag	Au**
A 67229 A 67230 A 67231 A 67232 A 67232 A 67233	6 4 3 4 4	280 461 939 620 1899	4 <3 <3 7 16	101 119 150 87 192	<.3 <.3 <.3 .3 .3 .4	2 6 7 3 3	16 14 14 12 19	1910 2181 1940 1344 2174	4.63 4.20 4.69 2.82 5.72	10 6 8 4	<5 <5 <5 <5 5 5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	383 358 347 238 507	<.2 <.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <3	231 208 226 140 277	5.75 6.69 5.38 5.61 5.87	.149 .131 .137 .087 .176	21 25 22 22 25	3 1.63 4 1.49 3 1.76 4 .85 3 2.02	84 38 130 167 81	.10 .03 .08 .01 .15	8 2 7 2 6 2 8 1 15 3	2.78 2.12 2.65 .20 3.95	.92 .43 .80 .21 1.76	.14 .09 .12 .15 .15	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	22 27 27 17 84
A 67234 A 67235 A 67236 A 67237 A 67238	3 3 4 3 3	803 449 406 509 420	<3 3 <3 17 4	155 77 121 153 125	<.3 <.3 <.3 <.3 <.3	5 5 4 3 6	18 8 16 18 15	2118 1461 2010 1615 1499	5.54 3.23 5.58 5.42 4.68	8 5 6 10 5	6 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	601 609 617 491 435	.6 <.2 .3 .4 <.2	< 2 2 2 2 2 2 2 2 2	2 <2 <2 <2 <2 <2 <2	275 171 290 268 231	5.71 4.14 5.44 4.42 4.08	. 186 . 080 . 182 . 185 . 162	32 18 20 18 17	3 1.86 4 1.14 2 1.75 3 1.48 2 1.30	74 88 113 110 105	.14 .05 .16 .19 .19	11 5 7 2 13 4 12 5 10 5	.08 .79 .82 .64 .56	2.65 1.26 2.46 3.11 3.23	.13 .09 .12 .14 .12	<2 <2 2 2 2	108 14 25 14 15
RE A 67238 RRE A 67238 A 67239 A 67240 A 67241	2 3 4 3 3	429 422 1677 987 1613	4 <3 5 <3 9	128 126 162 161 211	<.3 <.3 .5 <.3 .4	2 4 2 5	14 15 16 17 25	1528 1501 1688 2158 2366	4.79 4.67 4.77 5.71 7.13	3 <2 4 8 20	<5 <5 6 8	~~ ~~ ~~ ~~ ~~	<2 <2 <2 <2 <2 <2 <2	442 435 432 562 647	<.2 <.2 <.2 .6 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 <2 <2 <2 <2	235 230 243 287 371	4.14 4.05 4.22 5.10 4.82	. 168 . 165 . 155 . 184 . 243	17 17 17 22 34	1 1.33 2 1.30 4 1.39 2 1.64 2 1.70	107 109 115 111 84	.19 .18 .17 .17 .18	11 5 12 5 6 4 16 5 14 5	.68 .57 .75 .54 .32	3.28 3.25 2.75 3.09 2.73	.12 .12 .14 .13 .11	2 2 2 2 2 2 2	14 13 28 44 33
A 67242 A 67243 A 67244 A 67245 A 67245 A 67246	4 3 4 3 6	1753 1057 708 536 2380	8 <3 25 14 43	232 175 230 120 503	.7 <.3 <.3 <.3 1.5	6 4 5 3 5	22 19 18 7 21	2611 2357 2405 1525 1961	6.85 5.98 5.46 3.37 6.08	15 4 11 6 12	6 5 5 6 5	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	< < < < < < < < < < < < < < < < < < <	649 581 466 367 222	.2 <.2 .5 <.2 4.1	<2 <2 3 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	366 312 287 181 328	5.64 5.76 5.61 3.35 6.81	.220 .179 .150 .081 .147	27 24 18 18 25	2 1.87 3 1.69 3 1.81 4 .97 2 1.57	86 81 84 83 35	.17 .17 .18 .03 .01	11 4 15 5 8 3 5 1 5 2	.85 .45 .71 .60 .57	2.32 2.84 1.79 .36 .04	.11 .12 .13 .13 .09	<2 <2 2 3	130 56 69 31 126
A 67247 A 67248 A 67249 A 67250 RE A 67250	6 5 4 6 6	3714 2594 893 1534 1551	19 8 6 5 <3	334 174 119 119 118	1.0 .6 <.3 .3 .3	5 <1 4 5 4	30 20 21 20 19	2563 2096 2062 1868 1848	7.51 5.51 5.35 5.35 5.28	22 12 6 7 4	7 6 <5 <5	~? ~? ~? ~?	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	395 505 574 548 545	2.5 .5 .7 <.2 <.2	<2 <2 <2 <2 <2 <2 <2	3 <2 3 <2 <2	445 270 228 247 244	7.75 5.47 6.48 5.14 5.07	.212 .174 .161 .178 .173	26 24 21 20 20	2 1.99 3 1.94 2 2.18 2 2.25 2 2.23	95 74 61 83 83	.11 .14 .06 .10 .10	16 3 13 3 11 3 13 3 8 3	.33 .54 .05 .88 .87	.66 1.47 .77 1.47 1.48	.20 .16 .25 .16 .15	3 <2 <2 <2 <2 <2 <2	158 169 48 102 109
RRE A 67250 A 67251 A 67252 A 67253 A 67253 A 67254	6 8 17 20 6	1547 2341 2859 1009 452	3 <3 10 9 14	117 148 158 103 116	.3 .6 1.3 .7 <.3	6 5 1 6	18 18 14 8 9	1841 1 1902 4 1600 1 1189 1 1387 1	5.29 4.42 3.59 2.40 3.71	5 9 19 8 8	<5 5 6 5 5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2	542 304 295 254 457	<.2 <.2 .4 .3 <.2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	245 205 157 110 183	5.05 6.22 5.32 3.76 3.12	. 171 . 168 . 140 . 071 . 083	19 25 29 25 21	3 2.22 6 1.55 4 .87 5 .37 4 .73	79 37 31 74 111	.10 .01 .01 .01 .01	63 81 51 <3 61	.84 .64 .14 .64 .29	1.46 .06 .04 .03 .12	.15 .15 .14 .14 .13	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	103 71 66 38 53
A 67255 A 67256 A 67257 A 67258 A 67258 A 67259	6 7 6 9 8	874 1417 997 862 2450	15 7 29 21 12	154 143 175 184 112	.4 .4 .3 <.3 .7	2 2 3 4 <1	15 15 20 21 14	1848 1 1616 4 1904 6 1717 6 1645 4	5.48 4.58 6.26 6.87 4.78	8 3 11 9 12	6 6 5 5 6	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	688 486 866 654 1210	.4 .6 .4 .2 .6	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 5	245 220 281 282 230	5.64 5.52 5.93 4.81 9.59	. 149 . 159 . 193 . 189 . 214	20 19 20 22 28	3 1.33 3 .98 1 1.73 2 1.69 2 .70	54 93 53 306 53	.05 .09 .12 .15 .01	8 3 10 3 10 4 14 5 7 1	.33 .97 .09 .27 .80	1.32 2.08 1.53 2.57 .07	.12 .16 .10 .10 .09	<2 <2 3 <2 <2	35 64 65 30 68
A 67260 A 67261 Standard C2/AU-R	7 7 20	602 1196 60	22 17 35	135 91 146	<.3 .5 6.3	3 1 75	14 11 35	2397 1971 2 1185 4	4.67 3.95 4.05	17 19 41	7 5 20	<2 <2 9	<2 <2 35	448 440 54	.6 2.> 20.6	<2 <2 16	<2 <2 21	222 227 73	10.51 8.98 .53	.212 .215 .091	26 24 41	1 .62 1 .45 68 1.02	44 43 204	.01 <.01 .09	11 1 7 26 2	.05 .84 2.09	.04 .02 .07	.17 .15 .15	<2 <2 15	46 81 472

Mount Polley Mining Corporation PROJECT MOUNT POLLEY FILE # 96-2479

Page 5

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	S۲	Cd	Sb	Bi V	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	κ	W	Au**	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm ppm	%	%	ppm	ppm	%	ppm	۳ %	pm	%	%	%	ppm	þþþ	
A 67262 A 67263 A 67264 A 67265 A 67265 A 67266	44444	1015 1461 1997 7173 1861	12 19 18 30 17	166 188 174 288 168	.5 .8 1.1 3.0 .8	3 3 3 6 3	16 20 18 26 17	2294 2053 2058 2282 2199	5.10 6.16 5.66 6.30 5.95	11 <2 9 8 2	5 <5 5 6 5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	2 2 2 2 2	525 609 427 299 481	.5 1.2 .6 1.8 .5	<2 <2 <2 <2 <2 <2 <2 <2	7 230 7 259 2 263 <2 317 2 296	9.26 7.29 6.41 5.32 5.89	.207 .206 .205 .195 .160	27 25 24 29 23	1 1 1 2 1 1 1 3 1	.74 1.35 1.67 1.68 1.74	95 . 368 . 93 . 94 . 117 .	.01 .07 .12 .08 .09	14 15 16 12 12	1.00 3.23 4.17 3.13 3.16	.03 1.33 2.11 1.38 1.18	.21 .20 .13 .13 .13	<2 3 2 3 2 3 2 3 2	90 252 169 389 330	
A 67267 A 67268 A 67269 A 67270 A 67271	8 3 2 2 4	2728 1612 602 788 489	22 39 20 15 19	170 267 163 145 163	1.5 1.4 .4 .6 .3	4 3 2 1	17 22 17 18 20	1664 2666 1738 2480 1970	4.54 5.60 5.25 5.28 6.39	12 13 4 18 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2	472 481 582 719 689	.6 1.4 1.0 <.2 .2	<2 <2 <2 <2 <2 <2 <2 <2	6 199 10 237 4 237 5 247 <2 316	5.55 8.06 4.88 7.46 4.91	. 128 . 191 . 165 . 153 . 203	23 25 17 18 19	5 2 2 1 3	1.06 1.43 1.37 1.87 1.59	43 . 67 . 84 . 58 . 141 .	03 01 12 12 17	14 10 18 20 17	1.54 1.51 4.27 2.83 3.86	.03 .05 2.27 .64 1.56	.16 .20 .15 .14 .18	<2 2 3 3 3	220 93 29 27 21	
A 67272 A 67273 A 67274 RE A 67274 RRE A 67274	2 3 4 4 4	794 1225 921 925 888	10 11 12 15 11	112 94 102 104 99	.4 .8 .6 .7 .6	2 5 2 5 2 5 2	17 18 15 15 15	1566 1868 1505 1527 1466	4.94 5.52 3.73 3.78 3.61	8 7 15 13 15	7 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2 2	495 693 471 475 457	<.2 <.2 <.2 <.2 <.3	<2 <2 <2 <2 <2 <2 <2 <2	<2 253 6 241 4 173 4 175 3 167	4.28 6.05 5.78 5.88 5.68	. 184 . 186 . 143 . 145 . 141	18 22 22 23 22	3 1 1 5 6 5	1.36 1.34 .81 .83 .79	107 . 95 . 41 . 45 . 39 .	18 14 01 01	15 13 4 8 9	3.79 4.07 1.25 1.25 1.20	1.79 1.96 .05 .04 .04	.16 .13 .15 .15 .15	3 4 2 2 2 2	23 36 39 28 32	
A 67275 A 67276 A 67277 A 67278 A 67278 A 67279	4 3 4 3 3	534 975 1494 1335 691	13 10 14 22 11	63 48 65 197 156	.4 .6 1.4 1.2 .7	1 2 <1 4	9 9 11 11	1413 1423 1268 1330 1526	2.56 2.89 2.56 3.17 3.49	12 8 21 15 12	<5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	241 335 462 442 601	<.2 <.2 .9 .9	<2 <2 <2 <2 <2 <2 <2 <2	2 126 4 88 4 92 6 109 4 139	6.45 5.96 5.26 4.97 5.65	.101 .092 .107 .102 .094	19 19 19 21 18	6 3 3 9	.54 .44 .31 .45 .91	23<. 36<. 69<. 73<. 60	01 01 01 01 01	8 5 10 13	.55 .60 .65 .91 1.47	.03 .02 .02 .03 .03	. 13 . 14 . 15 . 15 . 14	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	19 21 28 26 10	
A 67280 A 67281 A 67282 A 67283 A 67283 A 67284	3 4 3 5 6	1270 824 617 904 1156	7 25 50 21 27	129 246 306 248 303	.9 .6 .9 .8 .8	4 2 5 4 5	13 24 20 21 23	1657 2691 2759 2869 2865	3.77 8.43 6.62 7.29 7.66	13 31 16 17 17	<5 5 5 10 7	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2 4 2 3 3	438 446 1114 1221 617	.7 .9 1.6 1.3 .9	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 169 8 544 5 279 8 337 3 384	6.09 8.23 7.47 6.92 7.68	.130 .359 .218 .263 .229	20 43 29 33 35	11 7 1 2 2	.72 1.19 1.95 2.07 1.72	41 . 56 . 54 . 60 . 68 .	01 02 08 10	9 13 13 12 9	1.12 1.70 3.33 3.52 2.19	.03 .04 .52 .42 .03	. 16 . 14 . 13 . 13 . 12	3 3 3 2	20 28 22 22 20	
A 67285 A 67286 RE A 67286 RRE A 67286 A 67287	5 3 2 3 3	1365 541 519 501 226	21 11 14 8 17	188 173 166 160 274	1.0 .3 .3 .4 <.3	5 3 2 3	17 15 14 12 11	2209 2126 2035 1960 2405	5.33 5.28 5.07 4.90 4.43	10 15 14 14 7	5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 2 2 2 2 2	629 622 600 580 603	.4 .7 .5 .6	<2 <2 <2 <2 <2 <2	7 263 4 266 5 255 <2 248 <2 200	9.13 8.35 8.11 7.85 9.68	.240 .198 .191 .183 .150	31 26 25 24 26	1 3 2 2 3	.88 .79 .76 .73 .59	73 57<, 50<, 49<, 35<,	01 01 01 01 01	12 17 13 14 10	1.48 1.04 1.01 1.00 .98	.02 .02 .03 .02 .02	.21 .22 .22 .22 .22	2 <2 <2 <2 <2 <2 <2	89 18 26 22 7	
A 67288 A 67289 A 67290 A 67291 A 67292	2 3 3 3 3	464 639 542 330 1691	11 12 5 3 4	144 155 155 191 453	.3 <.3 <.3 <.3 .8	2 4 3 2 4	11 17 17 17 20	2547 1951 1692 2628 2370	4.09 4.93 4.90 4.57 8.05	10 8 12 10 19	<5 5 6 5 5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 2 2 4	619 604 472 308 441	<.2 <.2 .3 .9	<2 <2 <2 <2 <2 <2 <2	5 164 3 193 4 221 4 196 9 406	10.10 7.56 5.41 7.87 6.17	. 174 . 221 . 233 . 181 . 322	26 28 26 22 40	3 1 2 1	.55 .45 .93 1.74 .93	34<. 26 47 45 34	01 01 01 01	8 8 13 11 19	.93 1.25 1.16 .75 .95	.02 .02 .02 .03 .03	. 19 . 16 . 19 . 18 . 21	<2 3 2 2 4	7 88 103 30 292	
A 67293 A 67294 Standard C2/AU-R	4 2 20	2034 893 62	7 15 36	636 217 148	.8 .5 6.5	7 4 76	30 17 35	3510 2617 1203	14.42 6.00 4.01	34 8 40	<5 <5 20	<2 <2 8	8 2 35	375 430 56	3.2 .9 20.2	<2 <2 17	16 920 7 278 21 74	7.31 8.55 .57	.573 .188 .090	80 25 42	1 · 5 · 68 ·	1.21 1.21 1.02	41 . 77 . 207 .	03 02 09	20 15 27	1.03 .87 2.07	.06 .02 .06	. 18 . 23 . 15	6 <2 12	276 34 470	

ALA ACHE ANALYTICAL

Mount Polley Mining Corporation PROJECT MOUNT POLLEY FILE # 96-2479

Page 6

ACAL ANALITICAL																															
SAMPLE#	Mo	Cu	РЬ	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	В	Al	Na	κ	W	Au**
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	• %	ppm	ppb
	_				-	-					-		-		-		_		~ ~~	207								4			
A 67295	3	510	14	141	<.5		16	2227	5.15	4	(<2	<2	698	-5	<2	2	257	7.88	.203	25	21	. 19	136	.05	15	2.71	1.25	. 19	2	15
A 67296	4	847	9	190	.3	<1	27	2722	8.53	16	10	<2	2	649	1.3	<2	2	434	6.14	.343	52	11	.51	56	.10	11	3.94	1.86	.11	2	24
A 67297	3	799	9	192	<.3	1	26	2974	8.96	18	8	<2	2	1072	.9	<2	2	463	8.23	.301	51	1 1	.69	92	.06	10	3.43	1.01	.10	2	26
A 67298	3	302	10	202	<.3	<1	24	2491	7.49	10	8	<2	<2	1360	1.2	<2	<2	320	8.26	.209	27	21	.49	324	.05	8	2.98	.06	.20	2	24
A 67299	5	449	14	157	.4	3	20	2650	6.09	28	<5	<2	2	429	.4	<2	2	234	8.76	.213	23	1 1	.64	65 ·	<.01	13	.99	.04	.21	<2	29
A 67300	6	907	18	147	.7	1	18	2200	5.47	29	<5	<2	2	483	.4	<2	2	211	7.29	.236	23	1 1	.83	64	<.01	13	.85	.03	.26	2	37
A 67301	3	819	6	139	.4	ź	16	2227	4.89	11	<5	<2	<2	358	<.2	<2	3	208	7.22	.162	20	2 1	.92	186	<.01	9	.63	.03	.16	<2	29
A 67302	2	1188	8	118	.5	2	16	2396	5.15	9	6	<2	<2	352	<.2	<2	<2	216	7.07	. 192	27	1 1	.63	328	<.01	8	.54	.03	.13	2	222
RE A 67302	3	1157	5	115	.5	2	17	2320	4.98	5	6	<2	<2	343	<.2	<2	3	210	6.90	.191	26	1 1	.57	344	<.01	6	.54	.02	. 13	<2	160
RRE A 67302	2	1157	3	115	.3	1	16	2341	5.02	6	<5	<2	<2	344	<.2	<2	<2	212	6.92	.188	26	21	.58	360	<.01	5	.54	.02	. 13	<2	173
A 67303	3	757	15	138	.4	1	18	2436	5.18	21	<5	<2	<2	338	.3	<2	<2	228	7.29	. 186	23	1 1	.59	136	<.01	10	.71	.03	. 15	2	254
A 67304	2	345	12	118	<.3	<1	21	2192	5.79	2	5	<2	<2	826	<.2	<2	<2	272	7.75	.177	21	3 1	.75	554	.04	12	2.77	.66	. 18	ž	69
STANDARD C2/AU-R	20	58	42	144	6.4	72	35	1191	3.91	41	21	7	35	53	19.9	16	23	71	.54	.090	41	66 1	.01	209	.08	27	2.02	.06	.14	16	473

ACN NAL	AL -	JR	AT	ACK NAL DRAT2S J														A 194	:	ONE	(604	253 ن	-71	58	FZY	(604	1253	-171	6	
£ £				Mo	unt	Pc 700	116 - 81	GE 9 <u>M</u> 5 W.	OCH [ini Hastin	EMI ng St	CAL Cor	AN por	ALY ati	SIS on c v6c	CE Fi 184	RTI le Sub	FI(# 9	CATE 96-2 ed by:	2495 R. P	; esalj	Pag	re 1								
SAMPLE#	Mo Cu pprn pprn	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppn	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	ß ppm	Al %	Na %	• K %	W / ppm	hu** ppb
A 67305 A 67306 A 67307 A 67308 A 67308 A 67309	6 413 7 2790 6 3216 8 3127 8 2104	27 16 8 6 8	345 290 181 260 262	.5 .9 .9 1.0 .9	8 7 4 5 4	25 24 15 20 20	1412 1671 1417 1625 1473	6.64 6.51 3.88 4.94 5.20	53 37 13 13 20	<5 <5 7 6	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 3 2 4 2	236 158 155 152 300	1.8 1.8 .7 1.0 .7	<2 <2 <2 <2 <2 <2	<2 <2 <2 4 <2	277 252 115 132 183	3.90 5.89 3.58 3.99 4.35	.194 .169 .074 .097 .146	10 10 10 13 11	8 7 6 6	.89 1.21 .69 .74 .76	117 71 67 142 122	.23 .21 .14 .12 .18	37 22 114 24 19	4.67 4.06 2.20 2.66 3.89	1.93 .87 .66 .94 1.79	.21 .15 .16 .15 .18	2 <2 <2 2 2	45 45 30 29 21
A 67310 A 67311 A 67312 A 67313 A 67314	9 6282 2 2513 7 505 8 2517 7 463	5 10 10 5 4	132 153 227 156 278	1.5 1.3 <.3 1.3 .3	7 3 13 4 11	22 20 28 21 30	1238 1560 1419 1457 1657	4.15 5.22 6.75 4.20 7.05	15 21 18 22 27	<5 5 <5 10 <5	<2 <2 <2 <2 <2 <2 <2	2 4 2 2 4	360 183 139 132 95	<.2 <.2 .6 .3	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 7 10 <2 2	131 180 283 139 303	3.67 5.95 4.24 5.64 5.06	.104 .118 .181 .125 .190	11 12 10 13 9	5 8 20 5 14	.79 1.11 1.46 1.06 1.83	72 66 134 74 106	.15 .14 .27 .15 .29	18 15 33 20 25	2.63 2.90 4.17 2.55 3.26	.74 .10 1.38 .54 .06	.16 .13 .21 .13 .23	< < < < < < < < < < < < < < < <> <> <> <	63 34 15 29 17
A 67315 A 67316 RE A 67316 RRE A 67316 A 67317	9 424 8 411 8 412 8 402 5 479	9 10 10 11 9	294 165 165 161 155	<.3 .3 <.3 <.3 <.3	10 5 4 2 2	27 14 15 14 12	1713 1238 1244 1216 1142	7.21 4.26 4.25 4.18 3.50	45 7 10 10 4	6 <5 5 5 5	<2 <2 <2 <2 <2 <2 <2 <2 <2	3 <2 2 2 2 2 2	95 135 136 132 352	.8 .4 .3 .4 .4	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 3 <2 5	303 160 161 155 106	6.97 4.22 4.24 4.13 3.08	.207 .115 .115 .115 .114 .079	11 8 8 8 7	11 6 7 6 3	1.58 .79 .79 .77 .60	49 110 115 109 153	.16 .17 .18 .17 .14	42 12 14 13 10	4.29 2.47 2.49 2.43 2.68	.13 .53 .53 .52 .94	.12 .14 .14 .14 .11	~2 ~2 ~2 ~2 ~2 ~2	13 10 8 6 4
A 67318 A 67319 A 67320 A 67321 A 67322	4 1328 4 897 5 497 2 103 3 94	7 8 15 3 6	213 170 131 87 67	.4 .5 .4 <.3 <.3	4 3 3 4 3	16 16 17 20 21	1248 1518 1334 1086 1050	3.65 3.89 4.27 5.74 5.79	12 13 12 7 15	<5 7 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 2 2 2 2	165 146 260 836 925	.7 .7 .2 <.2 <.2	2 <2 <2 <2 <2 <2 <2 <2 <2	2 <2 6 <2 <2	110 120 130 186 190	3.38 4.35 3.93 4.69 4.29	.081 .084 .085 .105 .110	8 9 7 5 5	5 7 5 3 5	.73 .86 1.04 1.59 1.54	88 62 54 40 54	.12 .15 .17 .22 .21	13 16 18 18 18	1.88 2.01 2.30 3.67 3.77	.17 .08 .12 .34 .42	.13 .12 .10 .05 .06	<? <? <? <? <?</td <td>13 5 4 <2 <2</td>	13 5 4 <2 <2
A 67323 A 67324 A 67325 A 67326 RE A 67326	3 224 6 480 5 291 6 291 6 301	<3 19 4 7 3	100 167 120 119 123	.4 .3 <.3 <.3 <.3	1 4 1 2 2	17 11 9 10 10	1525 1565 1247 1406 1445	4.95 3.33 3.07 3.49 3.56	25 20 <2 8 10	<5 <5 5 6 <5	<2 <2 <2 <2 <2 <2 <2	4 2 2 2 2 2 2	357 256 253 284 294	.3 .5 .4 <.2 <.2	2 2 2 2 2 2 2 2 2 2 2 2 2	5 2 2 2 2 3	158 102 90 104 101	4.97 4.52 4.89 3.07 3.16	.092 .074 .059 .077 .076	6 8 8 7	5 4 4 5 3	1.38 .73 .54 .61 .62	41 146 87 107 111	.21 .11 .10 .11 .11	17 12 8 12 10	2.74 2.28 2.87 2.71 2.78	.15 .51 1.59 1.24 1.28	.08 .10 .08 .09 .09	~? ~? ~? ?	2 <2 <2 2 2 2
RRE A 67326 A 67327 A 67328 A 67329 A 67330	6 285 5 204 6 225 7 344 9 593	8 3 6 19 10	122 117 187 147 142	.3 .3 <.3 <.3 .5	1 2 6 2	10 10 9 10 10	1377 1342 1363 1322 1349	3.41 3.33 3.21 3.28 3.22	8 10 5 11 6	5 5 5 5 5 5	<2 <2 <2 <2 <2 <2 <2	3 3 2 3 2	279 324 247 246 225	.2 .2 .5 .4	~2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 6 <2 <2 <2	94 104 102 99 95	3.01 3.30 3.01 3.32 3.30	.074 .077 .081 .078 .074	8 8 9 9	3 6 5 5 6	.59 .68 .56 .56 .69	103 116 87 76 63	.10 .12 .11 .11 .15	10 29 24 16 11	2.67 2.67 2.91 2.60 1.90	1.22 .98 1.32 .75 .42	.09 .09 .08 .10 .14	< < < < < < < < < < < < < < < < < < < <	<2 5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
A 67331 A 67332 A 67333 A 67334 A 67335	10 543 11 1477 10 1115 9 1034 10 375	10 28 31 32 41	156 482 386 340 414	.5 .8 .9 1.0 .6	3 1 4 2 2	10 17 16 13 12	1331 1889 1772 1413 1425	3.52 4.85 5.01 4.44 4.44	4 15 20 21 19	<5 8 9 7 <5	<2 <2 <2 <2 <2 <2 <2	<2 2 3 2 2 2	187 129 128 139 317	.3 1.8 1.2 1.0 1.4	<2 <2 <2 <2 <2 <2 <2 <2	4 3 4 <2 <2	102 135 139 135 137	3.50 4.47 4.76 3.43 2.98	.072 .099 .111 .119 .117	9 9 9 8	6 5 8 5 5	.61 .84 .89 .57 .69	50 43 43 67 82	.15 .17 .17 .16 .18	27 140 253 120 20	2.44 2.93 3.48 4.27 3.81	.67 .99 1.48 2.28 1.84	.13 .14 .13 .13 .12	<2 3 2 2 2 2 2	4 11 9 10 11
A 67336 STANDARD C2/AU-R	8 331 20 57	47 36	418 138	.7 6.3	2 71	14 35	1398 1134	4.55 3.78	14 42	<5 18	<2 7	2 36	445 51	1.7 20.3	<2 19	<2 21	144 67	3.21	.121 .093	9 38	7 63	.78 .98	77 193	.21 .08	18 30	3.89 1.91	1.62 .06	.11 .14	3 12	5 480
DATE RECE	ICP THIS ASSA) - SAN <u>Samp</u> IVED:	JUN 2) GRAM { IS P DMMEND [YPE: eginni 7 1996	ARTIA ED FO CORE ng (R	LE IS L FOR R ROCI <u>AI</u> E' ar	DIGE MN F K AND U** / e_Ref REP(STED E SR CORE NALYS TURS &	WITH CA P SAMP SIS BY and 'F MAII	3ML 3 LA CR LES I FA/I RE' a	-1-2 MG B F CU I CP FRI Te Re	HCL-H A TI PB ZN OM 30 ject	NO3-H B W A AS > GM S <u>Rerun</u>	120 AT IND L1 1%, AMPLE 15. 76	95 D MITED AG >	EG. C FOR 30 PP	FOR NAK M&A BY		HOUR AL. 1000	ано 15 РРВ	.D.TO	TED T	10 10	ML WI	TH WA	CERT	IFIED	в.с.	ASSA	YERS	
· · · · · · · · · · · · · · · · · · ·										<u> </u>									1											

•

Mount Polley Mining Corporation FILE # 96-2495

SAMPI F#	Mo	Cu	Pb		Aa	Ni	Co	Mn	Fe	As		Au	Th	S٢	Cd	Sb	Bi	v	Ca	P	La	Cr	Ma	Ba	Ti	B	AL	Na	ĸ	¥	Au**
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ррп	%	%	• %	ppm	ppb
A 67337 A 67338 A 67339 A 67340 A 67341	6 5 9 5 769	284 129 493 89 807	25 9 14 <3 251	230 233 308 168 108	.7 .4 .6 .3 1.0	4 4 2 1 4	13 12 11 15 16	1237 1150 1253 1388 1506	4.58 4.55 3.82 4.34 3.73	19 15 19 20 49	<5 <5 <5 <5 6	<2 <2 <2 <2 <2	2 <2 <2 2 4	499 488 328 299 216	.8 .6 1.0 .3 <.2	<2 <2 2 4 134	<2 3 <2 <2 7	155 156 125 128 83	2.92 2.66 2.67 3.59 12.22	.125 .127 .097 .088 .061	9 9 8 7 11	6 7 4 3 2	.76 .73 .79 1.16 .42	91 89 128 70 63	.26 .26 .21 .14 <.01	14 12 8 6 8	3.89 3.91 3.14 2.62 .86	1.71 1.92 1.59 .80 .04	.15 .13 .12 .12 .22	< < < < < < < < < < < < < < < <> <> </td <td>6 <2 9 5 43</td>	6 <2 9 5 43
A 67342 A 67343 A 67344 A 67345 A 67346	19 10 8 11 6	956 1325 877 681 647	14 25 15 12 11	166 252 203 157 182	.5 .6 .4 <.3 .6	<1 2 3 1	14 14 13 14 15	1476 1475 1292 1167 1287	3.96 4.16 3.97 4.09 4.73	18 3 10 10 14	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2 2	127 94 192 247 235	.7 1.0 .8 .3 .4	33 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 5	133 158 165 172 189	6.34 5.58 3.42 3.17 3.97	.110 .111 .125 .128 .116	13 12 9 10 9	2 3 4 3 2	.77 1.07 1.05 .85 .93	119 73 108 148 87	.05 .12 .18 .18 .19	10 5 6 9 9	1.22 1.81 3.55 4.01 3.58	.16 .47 1.82 1.93 1.44	.33 .25 .18 .17 .16	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	12 17 12 6 13
A 67347 A 67348 A 67349 A 67350 RE A 67350	8 3 19 6	934 177 341 972 978	11 5 5 13 10	138 89 101 149 151	.4 <.3 <.3 .4 .7	2 2 <1 2	14 12 13 15 16	1255 1070 1262 1488 1497	4.51 4.16 4.29 4.98 5.01	18 10 10 9 8	<5 10 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 2 2 2 2	189 244 188 175 176	<.2 <.2 <.2 .4 .5	39 3 19 <2 2	<2 <2 <2 2 2 2	168 170 168 188 186	4.44 2.96 3.83 3.83 3.83	. 134 . 134 . 124 . 125 . 128	11 10 10 9 10	3 3 3 5	.74 .72 .85 1.02 1.02	92 123 96 84 83	.14 .19 .16 .18 .18	9 9 8 11 10	2.93 3.80 3.15 4.08 4.10	1.52 2.07 1.69 2.19 2.21	.22 .19 .22 .18 .17	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	17 <2 5 10 13
RRE A 67350 A 67351 A 67352 A 67353 A 67353 A 67354	6 4 3 6 4	993 338 237 457 288	16 5 9 13 14	151 123 85 140 159	.5 .3 .7 .3	<1 5 1 3 2	15 19 17 14 14	1519 1182 1202 1057 1159	5.08 5.38 4.95 4.35 4.16	8 15 11 16 15	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 3 <2	178 259 182 305 324	.3 <.2 <.2 .4 .2	<2 <2 <2 <2 <2 <2 <2	<2 3 2 4 2	193 195 184 181 182	3.89 4.70 4.46 2.83 2.99	.129 .109 .114 .137 .136	10 6 7 9 9	5 4 3 2 2	1.04 1.53 1.42 .76 .86	87 56 65 118 121	. 19 .22 .21 . 19 . 18	10 15 14 8 14	4.15 3.54 3.55 4.48 3.98	2.23 .80 .84 2.55 2.02	.18 .11 .11 .17 .16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10 9 4 3
A 67355 A 67356 A 67357 A 67358 A 67358 A 67359	4 4 5 6 5	477 350 508 461 322	<3 5 <3 27 15	114 85 125 197 138	<.3 <.3 .4 .3 .6	3 1 5 3 6	14 13 13 14 13	1187 1098 949 914 965	4.34 4.94 4.32 4.13 4.17	11 11 14 13 9	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	د 2 3 2 3 2 3	229 333 365 395 285	<.2 <.2 .3 .8	<2 <2 <2 <2 <2 <2 <2 <3	<2 <2 <2 <2 <2 <2 <2 <2	186 196 182 176 177	3.02 2.97 3.23 2.87 2.79	.135 .139 .132 .139 .139 .136	9 9 11 10 10	1 3 2 1 4	.84 .60 .57 .50 .55	124 135 142 162 147	.18 .18 .20 .20 .20	17 104 42 29 21	4.02 4.40 4.11 4.26 3.96	1.96 2.65 1.97 2.25 1.97	.13 .18 .17 .17 .18	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 <2 6 6 <2
A 67360 RE A 67360 RRE A 67360 A 67361 A 67362	5 5 3 6	444 436 442 411 564	21 14 18 8 8	201 197 202 116 148	.4 .5 .3 <.3 .4	2 1 1 2 1	13 14 13 12 13	998 983 998 970 1010	4.31 4.28 4.33 4.13 4.46	9 14 13 13 55	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 3	244 241 244 454 398	.6 .4 .5 .4	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2 2	181 179 179 166 167	2.87 2.83 2.86 3.52 4.89	. 143 . 139 . 138 . 124 . 104	9 9 8 9	2 3 2 3 3	.62 .61 .62 .76 .81	140 137 141 110 73	. 19 . 19 . 19 . 17 . 13	19 20 21 11 9	4.45 4.39 4.46 3.47 2.82	2.35 2.33 2.38 1.22 .72	. 16 . 16 . 16 . 16 . 15	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	7 4 7 4 6
A 67363 A 67364 A 67365 A 67366 A 67366 A 67367	7 6 6 5	1077 1097 1339 883 808	7 3 6 9 7	179 208 294 158 191	.6 <.3 <.3 .3 .3	1 2 3 2 4	14 19 15 15 16	1383 1345 1225 1116 1351	4.50 7.27 4.79 5.11 5.74	69 66 31 20 16	6 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 2 2 2 2 2 2 2	87 134 121 229 185	.4 <.2 1.0 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 5 2 4	161 219 168 181 192	6.99 4.40 3.32 3.68 4.64	.114 .108 .125 .130 .130	11 8 9 9 10	3 1 3 2 2	1.36 .99 1.03 .81 .79	36 50 57 65 65	. 12 . 14 . 15 . 16 . 15	7 8 12 13 14	1.77 3.33 3.85 3.75 3.51	.05 1.25 1.55 1.49 1.40	. 13 . 12 . 13 . 14 . 13	2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	12 11 26 8 2
A 67368 A 67369 Standard C2/AU-R	6 7 20	907 1119 57	19 24 35	263 266 139	<.3 .6 6.5	3 3 76	20 13 38	1449 1119 1132	7.56 4.41 3.84	8 16 40	<5 <5 18	<2 <2 9	<2 <2 37	247 250 52	.3 1.0 20.8	<2 3 18	2 <2 20	207 180 72	4.23 2.93 .54	.128 .138 .098	9 10 39	<1 2 64	.97 .65 1.00	49 78 203	.12 .19 .09	16 17 30	3.77 4.00 1.94	1.14 1.83 .06	.12 .15 .14	<2 <2 13	8 13 483

AA

Mount Polley Mining Corporation FILE # 96-2495

Page 3

Hore Here -																															
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Nī ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К • %	W ppm	4u** ppb
A 67370 A 67371 A 67372 A 67373 A 67374	5 7 5 5 3	1173 948 1257 1383 737	13 20 8 <3 <3	220 308 241 111 119	.5 .4 .5 <.3 <.3	2 2 3 7 8	18 17 18 29 29	1300 1122 1321 1267 1386	5.31 4.61 4.79 7.14 6.83	24 20 16 16 11	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 2 <2 2	112 144 215 138 123	.3 .6 .3 <.2 <.2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	213 189 186 240 232	5.53 3.95 3.89 2.87 2.80	.113 .127 .125 .113 .108	10 9 10 5 5	7 5 7 19 17	.76 .67 .79 1.09 1.28	56 76 92 230 277	.17 .16 .16 .22 .24	17 15 34 125 37	2.97 3.17 3.65 4.18 4.10	.53 .96 1.50 2.01 1.86	.10 .13 .14 .27 .30	2 2 2 <2 <2 <2	22 18 23 50 17
A 67375 A 67376 A 67377 A 67378 A 67379	2 4 5 4	855 1522 1544 426 1557	8 14 11 18 13	128 159 165 158 161	.3 .6 .7 <.3 .7	6 2 3 2 4	25 18 16 16 22	1700 1186 1021 944 1349	5.58 4.92 4.28 3.87 6.87	9 13 18 16 14	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 <2 2 <2 4	111 112 165 202 161	<.2 .2 .2 .2 <.2	4 2 2 2 2 2 2	<2 <2 <2 <2 <2 <2	202 171 172 170 240	6.46 3.92 3.51 2.70 3.43	.095 .120 .127 .131 .201	8 9 9 9 14	14 5 6 8	1.49 .93 .64 .49 .76	158 47 82 97 74	.14 .11 .16 .19 .16	10 15 25 40 20	2.36 2.97 3.48 3.24 3.68	.12 .60 1.16 1.46 1.73	.22 .12 .13 .15 .13	<2 <2 <2 <2 <2 <2	25 30 32 7 29
A 67380 RE A 67380 RRE A 67380 A 67381 A 67382	5 6 5 4 2	1829 1828 1778 214 156	35 26 37 5 5	408 403 386 132 134	1.0 1.0 .8 <.3 <.3	5 5 5 4 4	30 29 28 12 10	1625 1624 1546 658 739	6.70 6.69 6.43 3.77 3.52	32 29 24 8 6	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 <2 ~2 <2 <2	148 152 147 345 322	8. 8. 6. 2.> 2.>	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	281 279 274 169 146	4.22 4.25 4.03 2.74 2.19	.184 .185 .178 .098 .089	11 11 10 5 5	11 11 11 10 9	1.16 1.16 1.11 .49 .40	87 88 85 330 255	.22 .22 .22 .14 .13	18 17 17 13 10	3.94 3.98 3.80 4.05 2.37	1.28 1.30 1.24 1.87 .75	.15 .15 .15 .14 .11	4 2 <2 <2	38 39 36 <2 <2
A 67383 A 67384 A 67385 A 67386 A 67387	3 2 4 2 3	262 232 223 293 163	16 7 10 3 20	180 137 127 152 178	<.3 <.3 <.3 <.3 <.3	4 3 3 5	12 12 10 12 12	755 645 605 762 768	3.94 3.83 3.04 3.84 4.20	8 6 7 7 10	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	408 427 313 217 93	<.2 <.2 <.2 <.2 <.2	2 2 2 2 2 2 2	< < < < < < < < < < < < < < < < < < </td <td>195 151 126 150 152</td> <td>3.26 2.69 2.54 2.30 2.58</td> <td>.101 .092 .090 .087 .097</td> <td>6 5 5 4 5</td> <td>11 9 9 10 12</td> <td>.59 .44 .46 .50 .57</td> <td>330 164 240 241 354</td> <td>. 16 . 15 . 16 . 14 . 14</td> <td>14 11 9 11 13</td> <td>3.43 3.29 3.25 2.47 2.38</td> <td>1.15 1.48 1.32 .72 .56</td> <td>.14 .13 .15 .11 .11</td> <td><2 <2 <2 <2 <2 <2</td> <td>7 5 3 4 2</td>	195 151 126 150 152	3.26 2.69 2.54 2.30 2.58	.101 .092 .090 .087 .097	6 5 5 4 5	11 9 9 10 12	.59 .44 .46 .50 .57	330 164 240 241 354	. 16 . 15 . 16 . 14 . 14	14 11 9 11 13	3.43 3.29 3.25 2.47 2.38	1.15 1.48 1.32 .72 .56	.14 .13 .15 .11 .11	<2 <2 <2 <2 <2 <2	7 5 3 4 2
A 67388 A 67389 A 67390 RE A 67390 RRE A 67390	2 3 2 2 2	634 295 494 510 506	3 6 5 3 <3	87 121 180 185 183	<.3 <.3 <.3 <.3 <.3	11 9 5 4 3	17 11 13 14 14	872 733 932 960 964	4.34 3.17 4.41 4.52 4.54	5 8 5 6 5	ৎ ৎ ৎ ৎ হ ৎ হ	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	101 94 86 88 88	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 4 <2 <2 <2 <2	152 117 154 159 159	2.84 2.47 2.42 2.50 2.50	.096 .090 .094 .097 .097	4 5 6 6	14 11 10 9 11	1.00 .68 .58 .60 .60	242 293 232 242 237	. 15 . 14 . 12 . 12 . 13	13 13 12 12 13	2.04 1.85 1.80 1.85 1.85	.23 .22 .19 .20 .19	.08 .09 .07 .07 .08	<2 <2 <2 <2 <2 <2	25 5 14 14 12
A 67391 A 67392 A 67393 A 67394 A 67395	2 2 1 1 2	645 552 324 258 186	4 7 8 9	200 188 105 172 150	<.3 .3 .3 <.3 <.3	6 5 4 2 3	15 16 12 14 13	1016 700 810 914 750	5.13 3.78 3.37 4.62 4.51	4 5 11 11	ৎ ৎ জ ৩ ৩ ৩ ৩	<2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2	55 45 40 70 107	<.2 .3 .2 .2 <.2	2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	160 110 111 203 196	2.24 3.38 2.94 4.53 3.98	.094 .082 .083 .098 .096	5 5 6 5	10 10 11 7 10	.64 .67 .75 1.09 1.01	97 71 55 113 219	.15 .13 .14 .16 .16	11 15 15 15	1.57 2.43 2.15 2.82 3.07	.08 .08 .07 .07 .44	.08 .06 .08 .12 .16	<2 <2 <2 <2 <2 <2	18 8 <2 <2 11
A 67396 A 67397 A 67398 A 67399 A 67400	1 2 4 1 3	285 1769 1322 959 1674	<3 11 4 <3 6	161 173 166 139 135	<.3 .5 .5 <.3 .7	5 2 5 4 5	13 19 16 11 12	651 933 1054 1149 1111	4.67 4.41 4.37 3.91 3.65	11 12 8 10 11	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	89 239 202 113 173	<.2 .3 .2 <.2	2 <2 <2 <2 <2 <2	4 <2 <2 <2 <2 <2	207 182 161 115 106	4.57 3.78 3.29 2.86 2.97	.096 .102 .101 .079 .084	5 5 4 6	9 9 10 8 10	1.15 1.05 .72 .63 .57	79 272 200 119 208	.17 .16 .14 .12 .11	19 14 10 11 11	2.98 3.23 2.98 1.82 2.69	.08 .44 .69 .06 .47	.15 .15 .11 .10 .09	<2 <2 <2 <2 <2 <2	5 66 38 184 763
A 67401 A 67402 Standard C2/AU-R	2 3 20	713 946 55	<3 7 34	144 212 136	.3 <.3 6.3	3 3 71	15 22 37	1219 1186 1166	3.98 5.08 3.81	12 16 44	<5 <5 17	<2 <2 8	2 2 34	514 419 52	<.2 .7 20.6	<2 <2 16	<2 2 17	142 187 68	4.22 3.87 .55	.088 .096 .094	5 4 38	9 8 64	.97 1.11 .99	336 335 197	.15 .22 .08	11 11 30	3.34 4.17 1.91	.56 1.46 .06	. 12 . 19 . 14	<2 <2 13	38 31 466

Mount Polley Mining Corporation FILE # 96-2495

ACHE ANAL TTICAL

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	⊤i %	B ppm	Al %	Na %	. К . %	W. ppm	Au**
A 67403 A 67404 A 67405 A 67406 A 67407	4 1 3 5	3763 2076 922 118 231	<3 <3 9 12 9	253 243 142 70 94	2.8 1.3 .7 <.3 .6	4 6 9 58 4	23 23 18 10 11	1189 1296 1145 782 1103	5.28 4.69 3.50 2.03 3.52	15 7 4 2 6	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 2 2 <2	493 375 226 85 77	1.0 1.0 .6 <.2 .5	<2 <2 <2 <2 <2 <2	<2 <2 <2 4 2	164 166 100 61 79	3.66 4.31 3.60 4.97 3.86	.100 .098 .094 .044 .062	4 5 16 7	2 5 11 71 5	1.15 1.36 1.05 1.02 .66	499 461 288 246 311	.20 .22 .16 .01 .12	31 11 5 <3 5	3.69 3.25 1.77 1.02 1.00	.78 .14 .16 .08 .08	. 17 . 19 . 18 . 05 . 06	2 <2 2 <2 2	297 80 22 4 11
A 67408 A 67409 A 67410 A 67411 A 67412	2 2 1 1	390 175 93 22 23	4 9 12 20 20	201 185 113 56 67	.7 .5 <.3 <.3 <.3	4 48 75 90	11 11 10 9 10	1478 1696 842 347 401	3.27 3.48 2.56 1.81 1.99	7 11 2 2 2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 2 3 3	76 105 72 47 43	.7 .7 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	11 4 3 3 <2	93 118 83 51 53	3.30 3.62 3.62 1.83 2.14	.080 .083 .066 .055 .060	5 6 14 18 19	5 6 59 105 115	.95 1.08 1.37 1.80 1.86	323 281 223 259 128	.16 .16 .09 .08 .03	7 9 4 4 <3	1.92 1.72 1.15 1.07 1.15	.08 .08 .08 .10 .09	.08 .11 .09 .07 .07	<2 <2 <2 2 2 2	8 3 <2 3 <2
A 67413 A 67414 RÉ A 67414 RRÉ A 67414 A 67415	1 1 <1 1 <1	152 144 144 147 163	8 <3 <3 <3 <3	77 74 74 77 83	.6 .5 .6 .5	23 8 7 7 5	21 21 21 22 23	897 720 732 730 868	5.47 6.04 6.03 6.21 6.29	6 2 3 5 <2	<5 <5 <5 5 5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 2 2 2	124 247 249 254 241	.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2	4 6 2 2 2 2	218 241 245 248 260	4.87 3.53 3.52 3.65 3.55	.089 .109 .108 .110 .109	9 6 6 6	32 5 5 5 7	1.40 1.21 1.22 1.24 1.27	337 160 161 166 299	.26 .28 .28 .27 .31	16 18 16 21 17	2.92 3.13 3.12 3.20 3.10	.21 .26 .26 .27 .22	.16 .17 .18 .18 .23	<2 <2 <2 <2 <2 <2 <2	7 3 <2 4 8
A 67416 A 67417 A 67418 A 67419 A 67420	1 2 3 3 3	291 136 102 147 216	5 6 <3 7 9	95 106 145 102 145	.5 .5 .5 .5	5 8 3 4 4	16 11 11 6 11	703 635 747 632 893	5.01 3.89 4.09 2.05 3.44	4 3 <2 3	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 2 <2 <2 <2	364 255 161 360 155	<.2 .2 .3 .3	<2 <2 <2 3 <2	3 ~2 ~2 ~2 ~2 ~2	195 131 147 77 124	3.14 2.58 2.46 3.25 3.89	.097 .095 .090 .095 .095	6 6 6 5	5 5 5 3	.77 .43 .32 .44 .50	382 191 163 196 308	.24 .16 .16 .14 .17	14 12 10 28 18	3.07 3.56 3.77 3.29 3.38	.49 1.61 1.99 .99 .80	.21 .12 .11 .12 .12	~? ~? ~? ~?	11 4 2 5 8
A 67421 A 67422 A 67423 A 67424 A 67425	3 2 3 5 4	518 161 162 307 206	5 4 6 <3 3	129 124 138 163 160	.8 .4 .8 .6	6 4 5 5 6	13 12 16 18 20	1085 927 963 1000 1014	3.53 3.42 3.91 4.61 5.02	4 4 <2 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 2 2 2	94 79 183 324 271	.3 .3 .2 .3 <.2	<2 <2 <2 <2 <2 <2	<2 <2 4 3 <2	109 108 169 152 166	4.29 3.81 3.73 3.37 3.13	.087 .074 .132 .124 .109	5 5 7 7 7	5 7 6 5 4	.62 .56 .62 .36 .38	197 177 223 85 129	.17 .15 .18 .18 .18	20 20 20 17 16	2.93 2.54 3.05 5.44 4.52	.21 .14 .70 3.00 2.33	.12 .13 .10 .11 .10	<2 2 <2 2 2 2	33 8 3 12 11
A 67426 RE A 67426 RRE A 67426 A 67427 A 67428	6 6 6 5	164 159 162 145 117	10 6 8 <3 9	178 173 174 188 168	.3 .4 .3 .5 .3	5 5 7 10 7	16 16 13 10	1009 969 997 1013 916	5.06 4.89 4.98 5.58 5.19	3 4 2 2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 2 2	163 158 161 186 357	.3 .3 .3 <.2 .3	<2 <2 <2 2 2 2	4 <2 <2 2 3	148 142 144 153 163	2.65 2.55 2.65 2.62 3.14	.101 .100 .100 .106 .119	7 6 7 6 7	2 3 4 5 5	.36 .35 .36 .55 .53	112 107 110 132 131	.22 .21 .22 .25 .21	11 13 10 19 30	4.64 4.50 4.60 4.64 5.03	2.66 2.58 2.60 2.60 2.61	.15 .15 .16 .19 .19	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 3 <2 3
A 67429 A 67430 A 67431 A 67432 A 67433	4 4 8 9 10	315 1209 762 935 400	4 <3 5 5	195 197 143 114 128	.6 1.2 1.0 .4 .5	5 2 6 8 11	14 22 27 20 18	1282 917 1074 528 637	6.03 5.27 5.30 5.23 5.30	6 3 2 3 2	<5 <5 <5 <5 5	<2 <2 <2 <2 <2 <2	<2 <2 2 <2 <2 <2	353 325 589 169 215	.4 .8 .7 .4 .3	<2 <2 <2 <2 <2 <2 <2	4 <2 <2 <2 2	189 136 131 112 121	4.34 3.88 6.96 2.43 2.81	.121 .116 .094 .120 .106	7 7 10 6 6	2 <1 3 5 7	.53 .67 .78 .67 .74	88 84 140 121 139	.16 .17 .20 .26 .25	18 21 46 13 10	4.76 4.75 6.01 4.18 4.18	2.26 2.00 2.32 2.10 1.94	. 14 . 14 . 13 . 29 . 26	<2 <2 3 <2 <2	3 11 6 <2 <2
A 67434 Standard C2/AU-R	7 21	510 64	8 42	137 148	.8 7.1	10 77	27 37	879 1272	4.44 4.29	3 42	<5 23	<2 8	<2 40	132 58	.3 23.2	<2 19	<2 21	107 78	2.35	.088	6 44	5 66	.65 1.05	99 203	.23 .10	10 31	2.97	1.17	.25 .17	<2 15	3 482

Mount Polley Mining Corporation FILE # 96-2495

												· · · · · · · · · · · · ·																				
SAMPLE#		Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bî	V	Ca	P	La	Cr	Mg	8a	Tí	B	Al	Na	κ	W /	Au**
	P	pm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	•ppm	ppb
A 67435		9	282	11	139	<.3	6	18	556 3	5.95	<2	<5	<2	<2	119	.5	<2	<2	119	1.79 .0	095	6	- 5	.47	66	.17	63	.79	2.50	.21	3	<2
A 67436		11	1371	15	137	<.3	8	45	597 4	.79	2	<5	<2	<2	178	.6	<2	7	126	2.69.1	106	7	5	.60	89	.23	93	.59	1.45	.23	2	14
RE A 674	36	11	1434	9	142	<.3	10	47	628 5	5.04	3	6	<2	<2	185	.9	<2	<2	131	2.83.1	110	7	5	.63	87	.24	63	.78	1.52	.24	2	17

GEOCHEMICAL ANALYSIS CERTIFICATE

Mount Polley Mining Corporation PROJECT MOUNT POLLEY File # 96-2590 Page 1 700 - 815 W. Hastings St., Vancouver BC V6C 184

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr Mg ppm አ	Ba ppm	Ti %	B ppm	Al %	Na %	۲ ۲	ر w ppn	vu** ppb
A 67437 A 67438 A 67439 A 67440 A 67441	7 8 4 5 4	1968 1092 664 343 133	5 10 7 6 10	126 131 112 162 139	.4 .3 <.3 <.3 <.3	10 7 8 7 8	57 30 23 15 16	503 4 493 4 545 5 666 5 792 4	.62 .63 .37 .40 .77	<2 <2 3 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2	269 200 317 601 165	.8 .5 .4 .2	<2 4 3 <2 2	2 ~2 ~2 ~2 ~2 ~2 ~2	98 121 137 160 127	1.90 2.06 2.39 2.39 2.83	.113 .108 .111 .104 .108	6 7 6 5 7	6 .89 7 .75 6 .80 6 .83 6 1.01	125 142 132 140 137	.27 .26 .27 .26 .24	9 11 12 11 10	3.50 3.54 3.64 4.05 3.05	1.70 1.85 1.57 1.63 .89	.38 .30 .28 .23 .17	<2 <2 <2 <2 <2	11 14 10 8 18
A 67442 A 67443 A 67444 A 67445 A 67446	<1 4 7 2 <1	124 571 1150 1925 519	8 4 8 3 4	180 198 213 218 178	<.3 <.3 .5 .7 <.3	4 10 7 6 8	15 19 15 20 23	1436 5 936 5 807 4 792 4 789 5	.01 .48 .47 .77 .80	2 <2 <2 <2 <2 3	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	81 344 318 167 65	.4 .7 .4 .5 .4	<2 <2 3 3 <2	<2 <2 <2 <2 <2 <2 <2 <2	192 173 140 153 175	4.51 2.59 1.79 2.77 2.93	.112 .110 .116 .109 .123	7 6 6 7	7 1.45 8 1.10 5 .78 6 .98 6 1.49	61 148 88 84 91	.24 .28 .24 .22 .31	14 20 10 10 12	2.94 4.29 4.29 2.91 2.65	.06 1.77 2.35 .73 .16	.09 .21 .23 .14 .18	<2 <2 <2 <2 <2 <2	18 16 44 60 13
A 67447 RE A 67447 RRE A 67447 A 67448 A 67449	<1 <1 <1 2 8	641 653 676 958 154	9 6 9 11 6	229 240 250 210 175	<.3 <.3 .3 .3 <.3	9 10 10 5 4	23 24 26 21 7	1094 5 1146 5 1186 5 1243 3 1303 4	.12 .33 .58 .13 .23	4 <2 6 6 2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	88 92 96 54 150	<.2 <.2 <.2 .4 <.2	3 3 2 2 2 2	<2 <2 <2 <2 <2 <2	187 194 204 91 188	2.83 2.96 3.10 3.30 2.94	.114 .120 .124 .083 .099	6 7 6 6	12 1.46 13 1.52 13 1.59 6 .77 6 .50	93 99 102 75 105	.27 .28 .29 .15 .14	13 13 14 8 10	2.70 2.81 2.95 1.97 2.82	.13 .14 .15 .07 .92	.20 .21 .22 .09 .07	<2 <2 <2 <2 <2 <2	16 16 14 29 7
A 67450 A 67451 A 67452 A 67453 A 67453	11 8 13 6 1	1250 118 946 1099 311	14 <3 3 6 5	193 175 147 168 205	.8 <.3 .3 .4 <.3	6 5 4 5 5	25 8 22 18 14	1304 3 973 4 590 4 678 4 1141 4	.08 .77 .46 .76 .40	5 <2 <2 3 7	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	63 224 229 299 244	8. 2.> 2.> 5.	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	88 152 123 139 169	3.08 2.69 2.42 3.03 3.26	.081 .127 .136 .130 .105	6 8 10 10 8	8 .61 4 .54 4 .52 4 .66 3 1.27	40 56 68 51 69	.15 .20 .21 .21 .18	10 9 11 13 10	1.72 3.81 4.04 3.31 2.68	.06 1.84 1.82 1.12 .63	.11 .11 .13 .15 .14	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	28 6 9 20 15
A 67455 A 67456 A 67457 RE A 67457 RRE A 67457	3 2 1 1 1	402 287 445 452 436	8 8 6 <3	219 223 249 254 246	<.3 <.3 <.3 <.3 <.3	4 4 4 4 3	12 14 16 16 16	1166 4 1142 4 1252 5 1276 5 1241 5	.39 .36 .32 .39 .24	4 4 7 6 5	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	97 147 145 146 141	.3 .4 .2 .2	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	168 165 186 188 183	3.38 2.68 2.18 2.22 2.17	.099 .111 .117 .117 .117 .115	7 7 9 9	3 1.17 3 1.23 3 1.11 4 1.12 3 1.10	38 47 52 52 50	.16 .12 .13 .13 .13	10 11 11 11 11	2.87 3.44 3.19 3.24 3.16	.76 .75 .91 .93 .89	.11 .09 .11 .11 .11	<2 <2 <2 <2 <2 <2	16 13 22 28 26
A 67458 A 67459 A 67460 A 67461 A 67462	1 4 5 2 4	388 608 375 852 963	<3 8 <3 7 5	231 187 177 157 203	<.3 <.3 <.3 <.3 .3	3 3 2 5 2	16 12 13 15 13	1287 5 957 4 1029 4 1111 5 1091 4	.11 .42 .83 .15 .45	8 5 <2 6 3	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	261 418 231 172 267	.7 .2 .4 .2 .7	<2 <2 <2 <2 <2 <2 <2 <2 <2 <3	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	183 175 166 182 169	2.91 2.34 2.88 3.81 4.59	. 125 . 128 . 122 . 107 . 104	10 11 10 9 9	2 1.21 2 .78 2 .97 3 1.20 2 1.32	57 150 62 77 219	.12 .13 .12 .17 .14	12 11 12 12 12	3.60 4.27 4.34 2.96 3.81	.83 1.54 1.74 .89 1.06	.10 .13 .11 .12 .11	<2 <2 <2 <2 <2 <2	23 33 22 56 37
A 67463 A 67464 A 67465 A 67466 A 67467	8 5 7 7 9	446 599 582 628 805	6 <3 <3 <3 5	197 166 172 174 209	<.3 <.3 .3 <.3 .3	4 2 3 2 5	14 13 12 12 12	1091 5 1036 4 1052 4 932 4 1000 4	.01 .64 .70 .48 .35	10 2 4 <2 <2	ৎ ৎ ও ৎ জ	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	425 352 274 394 307	.4 .3 .4 <.2 .3	2 <2 <2 <2 <2 <2	<2 4 <2 <2 <2	194 181 184 179 178	3.14 3.33 3.21 3.06 3.31	. 127 . 123 . 124 . 129 . 130	10 11 11 10 11	3 1.08 2 .88 3 .84 1 .50 2 .84	60 51 51 51 50	.13 .16 .15 .14 .15	13 12 13 15 13	4.23 4.15 4.11 4.88 3.96	1.69 1.88 2.05 2.52 1.86	. 15 . 13 . 12 . 12 . 13	<2 <2 <2 <2 <2 <2	13 28 29 24 68
A 67468 Standard C2/AU-R	2 21	741 61	4 39	118 144	.3 6.7	3 75	14 37	1088 4 1194 3	.61 .95	3 45	<5 23	<2 9	<2 37	90 54	<.2 20.3	<2 16	<2 20	182 75	3.70 .55	.120 .101	11 43	3 1.13 67 1.05	45 210	.16 .08	11 31	1.99 1.99	.64 .07	. 16 . 14	<2 16	31 465

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: CORE AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 3 1996 DATE REPORT MAILED: July 9/96

<u>___</u>*___

Mount Polley Mining Corporation PROJECT MOUNT POLLEY FILE # 96-2590

Page 2

SAMPLE#	Мо ррпі	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	۷ mqq	Ca %	P %	La ppm	Cr Mg ppm %	Ba ppm	Ťi %	B ppm	Al %	Na %	K ۰%	W / ppm	\u** ppb
A 67469 A 67470 A 67471 A 67472 A 67473	8 7 9 3 2	935 707 692 144 126	9 12 5 6 <3	191 223 148 87 72	.5 .3 <.3 <.3 <.3	5 2 4 3 3	14 14 15 17 18	1281 1308 1153 1245 1207	4.65 4.53 4.56 5.22 5.33	36 12 12 10 5	<5 <5 <5 <5	<> <> <> <> <> <> <> <> <> <> <> <> <> <	2 2 2 2 2 2 2	82 90 101 158 92	.5 .3 .2 .2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	189 193 194 202 206	5.01 4.37 3.80 4.69 4.32	.115 .128 .119 .115 .119	11 11 9 7 7	4 1.29 3 1.32 2 1.20 3 1.27 4 1.42	47 56 74 84 55	. 19 . 17 . 19 . 25 . 24	14 2 14 2 14 2 19 3 24 3	2.35 2.14 2.48 3.19 3.23	.06 .18 .59 .47 .15	. 16 . 16 . 13 . 13 . 14	<2 <2 2 <2 <2 <2	62 38 18 <2 7
A 67474 A 67475 RE A 67475 RRE A 67475 A 67476	2 2 3 8	120 135 130 139 724	<3 5 <3 <3 5	65 59 61 61 145	<.3 <.3 <.3 <.3 .4	3 4 2 4 2	17 18 18 18 16	1083 1197 1186 1217 1178	5.28 5.34 5.43 5.55 4.70	8 4 4 7	<5 <5 <5 <5	<>> <> <> <> <> <> <> <> <> <> <> <> <>	<2 <2 <2 <2 <2 <2	144 64 65 66 185	<.2 .2 <.2 .2 .2	<2 <2 <2 3 <2	<2 <2 <2 2 2 2	205 205 208 214 186	4.46 5.00 5.08 5.13 4.05	.117 .115 .118 .120 .122	7 7 7 9	3 1.36 3 1.54 3 1.56 3 1.59 2 1.01	50 128 126 131 62	.23 .23 .23 .24 .17	21 27 27 27 29 19	3.19 3.27 3.31 3.37 2.64	.21 .08 .08 .07 .25	.13 .10 .11 .10 .13	<2 <2 <2 2 2 <2	7 4 3 4 27
A 67477 A 67478 A 67479 A 67480 A 67481	11 11 10 10 11	969 1102 1139 1022 944	6 5 3 5 3	153 163 183 181 155	.3 .4 .3 .4 .4	2 6 2 6 2	14 13 14 18 16	1135 1246 1325 1713 1635	4.51 4.50 4.80 5.48 4.95	<2 3 3 11 9	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 2 <2 <2 2 2	408 297 371 147 153	.2 .4 .5 .6 .3	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	192 187 202 202 202	3.82 3.61 3.57 4.67 5.16	.122 .130 .143 .135 .121	10 11 12 11 11	3 .68 4 .74 3 .74 4 1.08 3 1.40	66 53 57 49 27	. 16 . 17 . 17 . 16 . 19	15 15 16 17 12	3.32 3.30 3.93 2.43 2.55	1.36 1.41 1.75 .29 .09	.13 .13 .12 .15 .09	<2 <2 <2 <2 <2 <3	35 17 15 40 71
A 67482 A 67483 A 67484 A 67485 A 67485 A 67486	8 5 7 8 10	1176 313 510 547 723	11 9 8 4 5	191 187 165 193 199	.3 <.3 <.3 <.3 <.3	5 3 5 3 3	15 11 11 15 14	1213 1061 1052 1387 1193	4.61 4.34 4.17 5.05 4.58	9 8 4 6 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2	236 256 175 228 309	.4 <.2 <.2 .3	<2 2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	194 196 190 194 199	3.23 3.07 3.12 3.83 3.20	.132 .134 .135 .131 .135	11 11 11 12 11	4 .76 2 .64 3 .60 3 .74 3 .54	54 82 70 60 83	.17 .20 .19 .18 .17	15 3 15 3 15 3 16 3 14 4	3.03 3.44 3.38 3.30 4.38	1.16 1.35 1.64 1.36 2.11	.11 .13 .14 .12 .12	<2 <2 <2 <2 <2 <2	23 10 12 20 12
A 67487 A 67488 RE A 67488 RRE A 67488 A 67489	8 8 8 7	1543 2255 2179 2108 1129	7 7 5 8 5	192 224 217 211 257	.5 .7 .6 .4	4 5 5 3	15 16 16 16 19	1201 1236 1207 1168 1525	4.86 4.38 4.26 4.15 6.34	3 12 11 7 9	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2	360 175 169 162 173	.6 .6 .4 .8	<2 5 <2 2 <2	<2 <2 <2 <2 <2 <2 <2	193 182 177 173 208	3.69 4.12 4.03 3.86 4.51	.118 .137 .133 .130 .121	12 13 13 12 11	4 .64 4 .79 3 .76 4 .74 3 .79	77 57 54 52 42	.17 .19 .18 .17 .15	17 18 18 17 17 19	4.22 3.60 3.50 3.36 3.18	1.81 1.20 1.16 1.12 .75	.13 .13 .13 .13 .09	<2 <2 <2 <2 <2 <2	45 58 57 56 56
A 67490 A 67491 A 67492 A 67493 A 67493	7 6 6 7	1709 2611 936 576 588	9 5 4 3 5	417 404 646 444 325	.5 .8 .3 <.3 .3	5 4 5 4 4	13 15 15 13 12	1260 1057 1225 1016 1046	4.88 5.28 5.10 4.79 4.47	7 2 6 2 4	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 2 2 2 2	150 205 213 198 298	1.2 1.2 2.1 1.3 .6	<2 <2 <2 3 <2	<2 <2 <2 <2 <2 <2 <2	202 193 192 203 190	3.41 2.73 3.23 2.54 3.30	.140 .133 .137 .140 .142	12 11 11 10 11	3 .68 3 .50 4 .72 3 .64 4 .58	78 68 52 63 60	.22 .19 .19 .21 .19	15 12 16 13 14	2.92 3.82 3.73 4.53 4.27	.76 1.91 1.62 2.39 1.84	. 14 . 15 . 12 . 15 . 13	<2 <2 2 <2 <2 <2	41 90 29 17 18
A 67495 A 67496 A 67497 A 67498 A 67498	4 5 3 1	845 601 488 409 88	7 14 5 <3 <3	255 219 195 195 62	.3 .3 .3 <.3 <.3	3 5 3 167 595	13 11 14 24 46	1244 1096 1204 1230 1035	4.74 4.35 5.19 5.45 4.94	10 9 7 8	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 2 2 3	137 183 235 163 292	.3 .5 <.2 .3 .3	<2 <2 <2 <2 <2 2	<2 <2 <2 <2 <2 <2	211 193 206 195 155	3.79 3.24 3.60 3.32 1.91	. 133 . 130 . 136 . 135 . 149	12 11 10 11 10	3 .87 4 .59 2 .69 32 2.98 122 8.82	50 61 65 218 458	.23 .21 .21 .22 .30	18 2 18 2 21 2 60 2 76 3	2.98 3.27 2.71 3.03 3.26	.75 1.27 .50 .57 .10	.13 .14 .12 .21 .51	<2 <2 <2 <2 <2 <2	19 20 14 11 <2
A 67500 A 67501 Standard C2/Au-R	2 2 22	62 214 64	<3 <3 39	59 90 146	<.3 <.3 6.5	620 343 77	45 31 37	978 909 1239	4.83 4.46 4.00	2 2 39	<5 <5 23	<2 <2 9	3 2 38	290 134 55	<.2 .2 20.7	<2 <2 19	<2 <2 18	141 151 77	1.83 2.53 .55	. 134 . 137 . 102	9 10 40	127 9.29 68 5.44 68 1.07	408 316 200	.28 .24 .09	18 3 15 2 30 2	3.21 2.85 2.04	.08 .13 .07	.42 .33 .15	<2 <2 16	<2 5 464

Page 3

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	2n ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B	Al %	Na %	K . %	W / ppm	lu** ppb
A 67502 A 67503 A 67504 RE A 67504 RRE A 67504	3 6 8 8 8	720 1077 486 504 506	4 3 7 6 4	251 117 146 151 150	<.3 .3 <.3 <.3 <.3	15 7 1 3 3	20 18 12 12 12	1216 1238 1090 1118 1117	6.74 6.54 4.11 4.23 4.23	11 11 8 8 8	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 2 2 2 2	100 109 159 164 163	.3 <.2 <.2 <.2 <.2	<2 3 <2 2 2 2	<2 <2 <2 <2 <2 <2 <2	246 186 163 169 168	4.23 4.26 3.75 3.82 3.85	.115 .094 .109 .112 .113	11 10 10 11 11	64322	1.35 1.08 .82 .84 .84	60 50 73 75 73	.18 .17 .17 .17 .17	18 22 20 21 20	2.22 2.11 2.27 2.29 2.31	.08 .08 .25 .26 .26	. 14 . 16 . 14 . 14 . 13	<2 <2 <2 <2 <2 <2 <2 <2	28 74 14 16 12
A 67505 A 67506 A 67507 A 67508 A 67509	11 7 8 10 5	471 686 752 648 741	6 5 8 9 4	215 266 221 249 176	<.3 .3 <.3 <.3 <.3	3 1 2 3	14 15 12 12 12	1201 1093 1076 938 1046	5.08 4.93 4.42 4.36 4.76	2 2 <2 <2 8	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 2 2 2	120 151 187 229 226	<.2 .6 .2 .5	<2 <2 <2 <2 <2 <3	<2 <2 <2 <2 <2 <2 <2	197 195 190 187 202	3.35 4.11 3.42 3.37 3.90	. 137 . 124 . 141 . 136 . 147	13 12 12 12 14	3 1 3 2 3	.74 .76 .75 .57 .64	72 60 55 47 55	.19 .19 .17 .17 .17	17 15 16 17 19	3.16 2.52 3.37 3.55 3.10	1.17 .37 1.29 1.51 .82	.11 .09 .09 .09 .10	<2 <2 <2 <2 <2 <2	16 26 19 19 15
A 67510 A 67511 A 67512 A 67513 A 67514	7 8 9 5 7	699 497 581 515 965	7 7 8 8	202 191 161 143 192	<.3 <.3 <.3 <.3 <.3	1 2 2 2 2	12 12 12 11 17	951 878 932 909 1099	4.13 4.19 3.98 3.99 5.69	5 3 6 4 7	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2	371 330 553 440 257	.3 .2 .3 <.2 <.2	< < < < < < < < < < < < < < < < < <> <> <> <> <> <> <> <> <> <> <> <> <> <> <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	188 185 180 185 219	3.54 3.60 4.05 4.18 4.05	.138 .132 .130 .113 .128	13 12 12 10 11	2 3 2 3 3 3	.57 .72 .72 .69 .72	60 64 70 67 49	.17 .16 .15 .17 .15	17 16 18 14 15	3.40 3.52 3.64 3.01 3.33	1.22 1.12 .97 .50 .89	.10 .10 .10 .11 .09	< 2 2 2 2 2 2 2 2 2	21 14 25 11 70
A 67515 A 67516 A 67517 A 67518 A 67519	6 8 10 9 6	766 705 635 758 821	<3 9 8 11 9	225 185 183 208 216	.4 <.3 .3 .3	6 2 3 2 2	24 14 13 13 13	1542 1068 996 947 1080	8.06 4.14 4.08 3.94 4.09	2 10 10 12 10	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2	146 238 176 229 205	.3 <.2 .4 .4	<> 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	<2 <2 <2 <2 <2 <2 <2	273 180 177 176 181	4.21 4.12 3.69 3.60 4.47	.166 .185 .231 .150 .122	14 14 16 13 11	2 2 3 2 3	.92 .75 .70 .78 .97	40 51 42 61 272	. 15 . 15 . 16 . 15 . 16	15 16 19 20 25	2.93 3.08 3.12 3.11 3.29	.60 1.08 1.27 1.10 .66	.08 .10 .12 .11 .11	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	93 57 30 56 32
RE A 67519 RRE A 67519 A 67520 A 67521 A 67522	6 6 8 8 8	838 829 692 657 809	8 7 9 4 10	225 221 249 266 986	.3 .3 <.3 .4 <.3	3 2 3 2 2	14 14 15 23 18	1110 1100 1172 1313 1005	4.23 4.16 4.29 6.42 4.46	14 15 13 12 15	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2	214 211 244 197 184	.6 .7 .7 .4 3.6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 <2 <2 <2 <2	188 185 178 252 205	4.65 4.58 4.65 3.48 2.93	.127 .125 .131 .129 .138	12 11 12 13 13	3 2 3 2 2 2	1.00 .99 .98 .78 .61	287 281 63 46 52	.16 .16 .17 .18 .19	26 24 25 20 18	3.38 3.32 3.35 3.52 3.32	.67 .67 .99 1.53 1.27	. 12 . 11 . 11 . 10 . 13	<2 <2 <2 <2 5	26 31 30 26 20
A 67523 A 67524 A 67525 A 67526 A 67526 A 67527	29 9 9 9 1	600 578 213 501 38	18 5 7 <3	359 256 229 218 33	.3 <.3 <.3 <.3 <.3	2 3 1 3 1	16 18 15 13 6	1354 1548 1402 1296 523	4.15 4.25 5.02 4.75 2.86	24 14 26 27 7	13 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2	156 114 136 157 56	.7 .7 .2 .5 <.2	45 11 <2 <2 <2	<2 <2 <2 <2 <2 <2	178 167 170 177 115	5.04 6.37 3.85 3.90 1.55	.136 .113 .128 .138 .075	13 12 12 12 6	3 2 2 2 5	.96 1.24 1.01 .80 .44	38 57 36 54 208	.17 .19 .16 .17 .10	16 16 25 24 8	2.90 1.61 2.64 2.78 1.27	.75 .05 .59 .64 .13	. 12 . 25 . 09 . 10 . 14	<2 <2 4 <2 2	25 28 11 22 <2
A 67528 A 67529 A 67530 A 67531 A 67532	2 1 3 1 3	124 143 134 154 197	3 4 4 3 4	45 53 60 45 40	<.3 <.3 <.3 <.3 <.3	42424	7 7 7 6	497 718 721 557 562	3.00 2.93 3.03 2.87 2.97	3 5 3 4 4	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	53 43 41 32 36	<.2 <.2 <.2 <.2 <.2	<>> <> <> <> <> <> <> <> <> <> <> <> <>	<2 <2 <2 <2 <2 <2 <2	122 116 117 114 118	1.47 1.37 1.40 1.12 1.34	.087 .083 .077 .093 .082	6 6 6 6	5 5 4 5	.42 .48 .46 .34 .39	281 216 282 1422 329	.09 .09 .09 .08 .09	7 6 5 5 6	1.41 1.21 1.22 1.07 1.24	.20 .10 .11 .11 .14	. 16 . 12 . 14 . 13 . 17	<2 2 <2 <2 2 2	5 5 6 11
A 67533 A 67534 Standard C2/AU-R	1 2 21	218 134 57	3 4 38	48 50 137	<.3 <.3 6.2	2 4 70	7 7 35	688 644 1138	3.01 2.88 3.75	5 2 40	<5 <5 23	<2 <2 8	<2 <2 36	49 50 52	<.2 .2 19.4	<2 <2 19	2 <2 19	121 116 71	1.63 2.57 .53	.084 .067 .096	6 6 40	5 5 64	.68 .59 .99	427 243 208	.09 .08 .08	4 4 29	1.37 1.17 1.88	.09 .08 .06	.13 .12 .14	<2 <2 14	15 28 475

<u>ks</u>

ACHE ANALYTICAL

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	ti %	BAL ppm %	Na %	K 、%	W ppm	Au** ppb
A 67535 A 67536 A 67537 A 67538 A 67538 A 67539	1 2 1 2 1	177 273 236 292 295	5 <3 3 <3 <3	47 56 39 35 36	<.3 <.3 <.3 <.3 <.3	4 4 2 5 1	7 8 7 6 7	672 825 621 434 622	2.99 3.16 2.87 3.05 2.82	3 2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	37 44 65 64 45	<.2 .3 <.2 <.2 <.2 <.2	2 2 <2 3 2	<2 <2 <2 <2 <2 <2	120 115 109 119 109	2.66 3.23 2.10 .96 1.41	.065 .059 .063 .079 .069	7 8 6 7 7	9 4 5 4	.66 .75 .48 .28 .28	129 138 971 1240 459	.10 .09 .07 .09 .07	6 1.28 6 1.34 5 1.53 6 1.78 4 1.38	.05 .05 .27 .74 .33	.11 .09 .09 .10 .09	2 <2 <2 <2 <2 <2	24 31 16 15 10
A 67540 A 67541 RE A 67541 RRE A 67541 A 67542	1 1 1 2 1	172 181 174 182 197	4 6 7 <3 3	38 39 37 40 37	<.3 <.3 <.3 <.3 <.3	3 3 3 2 1	7 6 6 7	766 545 531 549 594	3.08 2.76 2.72 2.75 2.90	<2 2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	31 44 43 45 56	<.2 <.2 <.2 <.2 <.2	<2 4 3 <2 <2	<2 <2 <2 <2 <2	117 108 106 108 112	1.18 .90 .88 .91 1.25	.078 .065 .063 .068 .074	7 6 6 8	4 5 4 4 4	.39 .38 .37 .38 .49	292 722 694 720 578	.06 .09 .09 .10 .09	5 1.32 5 1.32 5 1.29 4 1.32 5 1.34	.12 .28 .27 .28 .11	.10 .10 .11 .11 .09	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	2 5 6 5 4
A 67543 A 67544 A 67545 A 67546 A 67547	2 1 2 1 2	274 347 168 170 275	3 <3 3 5 3	46 51 34 33 51	<.3 <.3 <.3 <.3 <.3	3 2 4 2 3	6 7 6 7 8	674 768 586 626 910	3.00 2.80 2.83 2.88 3.11	2 <2 <2 <2 <2 2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	52 58 55 55 62	<.2 <.2 <.2 .2	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	118 110 115 118 120	1.29 2.63 1.95 1.58 1.61	.081 .067 .073 .070 .076	8 7 8 7 7	4 4 4 5 4	.51 .60 .41 .39 .69	336 216 461 554 441	.08 .09 .10 .11 .11	5 1.29 7 1.49 8 1.41 7 1.40 5 1.50	. 10 . 06 . 17 . 22 . 07	.11 .08 .14 .14 .14	<2 <2 <2 2 2 2	7 18 3 4 4
A 67548 A 67549 A 67550 A 67551 A 67552	1 1 1 1	342 332 451 220 432	7 <3 6 8 8	77 67 143 122 139	<.3 <.3 <.3 <.3 <.3	1 4 10 32 3	9 10 19 22 16	987 1040 1452 1338 1587	3.17 3.65 5.22 5.03 5.22	8 10 26 23 17	ৎ ৎ জ ৎ জ	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	55 95 74 49 79	.5 .4 .4 <.2 .4	3 <2 <2 3 <2	<2 <2 <2 <2 <2 <2 <2	123 148 203 202 205	2.54 2.77 3.83 3.09 4.53	.069 .081 .107 .106 .116	8 7 8 6 9	5 5 24 76 5	.76 .77 1.46 1.80 1.56	333 417 644 190 181	.12 .15 .21 .20 .21	7 1.82 9 1.97 13 2.55 12 2.30 12 2.80	.06 .11 .10 .05 .06	.09 .14 .11 .09 .09	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	29 24 51 25 23
A 67553 A 67554 RE A 67554 RRE A 67554 A 67555	2 6 6 <1	415 403 410 401 370	9 11 12 11 6	128 143 144 139 130	<.3 .5 .7 .6 <.3	4 2 3 4 2	14 14 14 13 14	1431 1611 1647 1600 1572	4.80 4.69 4.77 4.65 4.54	26 17 21 16 13	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	61 57 58 56 55	.5 .2 .2 .4 <.2	4 <2 3 <2 <2	<2 <2 <2 <2 <2 <2	196 186 188 183 176	3.62 3.47 3.55 3.46 4.39	.107 .105 .107 .104 .094	8 8 9 8	5 5 5 5 4	1.42 1.41 1.42 1.40 1.46	169 61 60 57 180	.19 .20 .21 .20 .18	12 2.49 12 2.30 12 2.34 11 2.27 7 2.32	.07 .08 .08 .07 .05	.09 .09 .10 .09 .08	<2 2 2 <2 <2 <2 <2 <2 <2 <2	31 25 26 28 26
A 67556 A 67557 A 67558 A 67559 A 67560	1 1 1 1	380 399 401 514 402	9 8 13 6 3	118 139 154 132 178	.3 .3 .4 <.3 .5	3 1 4 1 3	13 13 12 13 12	1352 1470 1426 1791 1454	4.22 4.41 4.38 3.80 4.29	9 13 13 10 16	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	93 102 78 77 77	.4 .2 .3 <.2 .4	2 4 <2 <2 <2	<2 <2 <2 <2 <2 <2	171 178 183 159 176	4.12 3.56 2.89 3.74 4.48	.095 .101 .104 .067 .096	9 8 6 8	4 4 3 4 3	1.34 1.34 1.19 1.19 1.19	1355 1164 1422 391 157	.21 .19 .19 .16 .17	10 2.74 12 2.45 9 2.17 7 1.91 15 2.64	.06 .08 .13 .04 .06	.10 .10 .11 .10 .10	2 2 2 2 2 2 2	35 27 37 52 38
A 67561 A 67562 A 67563 A 67564 A 67565	2 13 1 <1 1	412 411 217 113 251	8 9 22 <3 14	250 287 242 146 175	.5 1.0 <.3 <.3 <.3	<1 3 52 69 44	13 13 24 28 22	1761 1867 1344 1059 1357	4.41 4.46 5.02 5.18 4.84	18 17 6 5 12	\$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	73 76 73 66 78	.4 .7 .5 <.2 .2	3 <2 2 <2 <2 <2	<2 <2 <2 <2 <2 <2	178 177 199 199 190	3.74 3.61 2.24 2.61 2.40	.102 .106 .106 .090 .102	8 9 6 4 6	4 3 153 207 126	1.16 1.14 1.97 2.73 1.98	255 151 195 166 213	.19 .23 .21 .18 .22	11 2.35 15 2.58 11 1.95 10 2.00 12 1.92	.11 .18 .22 .03 .06	.08 .11 .09 .07 .10	<2 4 <2 <2 <2 <2	32 47 6 <2 37
A 67566 A 67567 STANDARD C2/AU-R	2 2 21	430 417 59	5 5 37	139 86 139	<.3 <.3 6.3	5 1 70	13 8 35	1598 1046 1149	4.50 2.84 3.82	19 12 40	<5 <5 24	<2 <2 9	<2 <2 37	72 63 53	<.2 <.2 20.0	<2 2 17	<2 <2 20	179 114 74	2.85 1.97 .52	.096 .067 .096	8 7 42	8 4 66	1.14 .54 1.00	490 664 212	.23 .13 .09	11 2.21 8 1.47 30 1.99	. 16 . 14 . 06	.13 .13 .15	<2 <2 16	38 40 506

ACHE ANALYTICAL

SAMPLE#	Mo ppm	Cu ppn	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к 、%	¥ ppm	Au** ppb
A 67568 A 67569 A 67570 A 67571 A 67572	2 2 2 1 2	263 329 244 275 315	<3 11 5 <3 4	65 74 44 52 102	<.3 <.3 <.3 <.3 <.3	2 <1 4 1 3	8 8 7 7 7	888 952 781 835 840	2.75 2.80 2.75 2.78 2.81	9 5 7 5 7	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	84 38 84 78 79	.4 <.2 <.2 <.2	3 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	110 115 115 112 114	2.77 1.96 1.69 2.28 2.09	.063 .068 .067 .065 .067	7 7 7 7 7	44454	.62 .63 .49 .54 .46	767 263 361 459 503	.11 .12 .12 .12 .12	6 1. 7 1. 6 1. 6 1. 8 1.	.42 .36 .52 .62 .41	.06 .08 .29 .21 .12	.09 .11 .12 .12 .11	<2 <2 <2 <2 <2 <2 <2	19 24 16 24 23
A 67573 A 67574 A 67575 A 67576 A 67577	2 2 1 2 2	409 377 310 350 432	5 5 4 4	64 63 88 92 120	<.3 <.3 <.3 <.3 <.3	1 3 1 3 1	8 7 7 8 7	906 885 935 1072 1043	2.92 2.81 2.80 3.00 2.76	5 6 12 <2 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	36 35 48 37 37	<.2 .2 <.2 <.2 <.2	2 3 <2 2 2	<2 <2 <2 <2 <2 <2	116 111 108 116 107	2.13 2.26 2.19 2.48 1.56	.062 .062 .074 .063 .064	6 6 7 6 7	4 4 5 5 5	.55 .51 .53 .67 .64	226 149 244 180 293	.10 .10 .11 .12 .13	7 1. 7 1. 5 1. 8 1. 5 1.	.29 .27 .21 .60 .17	.06 .06 .06 .06 .06	.10 .10 .10 .10 .10	<2 <2 <2 <2 <2 <2 <2	41 29 15 27 81
RE A 67577 RRE A 67577 A 67578 A 67579 A 67580	2 3 1 3 1	467 457 528 476 1032	9 5 3 3 5	130 127 58 50 68	<.3 <.3 <.3 <.3 .5	3 2 <1 3 2	8 8 7 6 5	1131 1118 886 630 635	2.98 2.94 2.81 2.81 2.71	6 5 2 2 2 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2	39 39 81 64 67	.4 <.2 <.2 <.2 .3	2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	117 115 116 115 115	1.69 1.70 2.27 1.68 1.38	.066 .067 .061 .067 .068	7 6 6 6	6 6 4 5 5	.69 .68 .56 .36 .35	316 306 1159 499 880	.13 .13 .11 .11 .11	5 1. 6 1. 5 1. 6 1. 5 1.	.26 .26 .50 .37 .22	.06 .07 .10 .23 .19	.11 .12 .10 .11 .12	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	90 92 113 24 329
A 67581 A 67582 A 67583 A 67584 A 67585	2 2 1 3	782 877 398 448 514	5 4 6 4 6	102 76 73 88 72	<.3 <.3 <.3 <.3 <.3	2 1 3 1 3	5 5 6 5	710 756 637 748 743	2.55 2.46 2.69 2.76 2.72	<2 <2 3 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	79 65 92 102 89	<.2 .2 <.2 .4 <.2	<2 <2 <2 2 2 2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	103 98 110 113 103	1.40 1.54 2.04 2.36 1.13	.066 .065 .068 .062 .060	6 6 6 5	45454	.41 .41 .44 .52 .32	1008 513 674 616 453	.11 .11 .10 .12 .11	5 1. 4 1. 6 1. 5 1. 3 1.	.22 .21 .32 .25 .41	.15 .15 .11 .11 .46	.12 .13 .12 .10 .09	<2 <2 <2 <2 <2 <2 <2 <2	272 230 58 51 48
A 67586 A 67587 RE A 67587 RRE A 67587 A 67588	2 2 2 3 3	425 229 225 235 225	4 5 3 3 3	81 99 95 102 56	.3 <.3 <.3 <.3 <.3	1 3 3 4	6 6 6 5	801 748 739 778 686	2.99 2.83 2.80 2.91 2.68	2 <2 <2 2 2 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	50 99 98 102 134	.2 <.2 <.2 .2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	111 115 113 118 110	1.25 1.71 1.67 1.77 1.29	.068 .071 .067 .070 .068	6 7 6 7 7	5 6 6 5	.37 .30 .29 .31 .21	493 647 634 673 582	.11 .12 .11 .12 .12	4 1. 8 1. 9 1. 9 1. 10 1.	.29 .36 .33 .42 .36	.28 .28 .28 .30 .37	.10 .14 .14 .15 .11	<2 <2 <2 <2 <2 <2 <2 <2 <2	49 13 11 9 8
A 67589 A 67590 A 67591 A 67592 A 67593	2 2 1 2 1	361 270 262 314 224	6 5 4 5	81 146 88 64 60	<.3 <.3 <.3 <.3 <.3	1 3 2 4 1	8 6 7 7	951 669 633 875 780	3.51 2.77 2.82 3.57 3.16	3 3 2 2 2 2 2	<5 <5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2	73 68 86 32 57	.2 <.2 <.2 <.2 <.2	<2 <2 3 <2 <2 <2	<2 <2 <2 2 2 2	129 109 109 127 119	1.49 1.82 1.33 1.88 1.88	.073 .064 .068 .058 .065	7 6 6 6	5 5 4 4 4	.40 .42 .39 .56 .49	500 476 844 155 312	.14 .11 .11 .13 .11	7 1. 5 1. 5 1. 5 1. 3 1.	.42 .32 .29 .12 .15	.32 .14 .20 .06 .09	.12 .13 .11 .09 .10	2 <2 <2 <2 <2 <2 <2 <2 <2	13 21 15 26 <2
A 67594 A 67595 A 67596 A 67597 A 67598	2 1 3 1 3	207 172 338 220 465	5 6 9 5 3	44 48 71 86 72	<.3 <.3 <.3 <.3 .3	4 <1 4 2 4	6 6 10 9 6	736 659 883 980 783	2.79 3.01 5.67 4.60 3.36	<2 2 2 4 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2	67 49 45 51 54	<.2 <.2 .2 .4 <.2	2 <2 <2 2 2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	111 113 189 158 124	2.00 1.61 1.33 1.61 1.00	.072 .067 .053 .057 .066	6 5 5 6	45645	.50 .51 .40 .45 .28	437 319 483 224 394	.11 .13 .15 .14 .13	6 1. 4 1. 5 1. 5 1. 4 1.	.35 .12 .10 .14 .16	. 12 .09 . 18 . 13 .33	.09 .09 .10 .10 .12	<2 2 2 2 2 2 2 2 2 2 2	10 8 16 18 28
A 67599 A 67600 STANDARD C2/AU-R	2 4 20	208 346 59	7 6 40	64 55 143	<.3 <.3 6.1	2 5 73	4 6 36	620 843 1162	2.68 3.02 3.81	<2 <2 40	<5 <5 19	<2 <2 8	<2 <2 37	110 53 53	.2 2.> 19.8	3 <2 17	<2 2 20	111 118 73	.97 1.14 .53	.070 .070 .095	7 6 42	6 5 67	.16 .27 1.02	355 304 209	.12 .13 .08	81. 51. 271.	.61 .17 .98	.79 .32 .06	.09 .13 .15	<2 <2 14	8 28 490

ACHE ANALYTICAL

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bî	۷	Ca	P	La	Cr	Mg	Ba	Τî	В	AL	Na	K	W	Au**
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	~~~~	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ppm	ppm	~ ~	ppm	~ ~	ppm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. %	pm	ppp
A 67601	3	345	3	58	<.3	2	6	1020	2.97	<2	<5	<2	<2	39	.2	<2	<2	114	1.61	.061	6	6	.35	900	. 13	6 1	.28	.26	.18	2	20
RE A 67601	4	350	6	60	<.3	4	6	1042	3.04	4	<5	<2	<2	36	.3	2	<2	118	1.66	.063	6	6	.36	892	.13	6 1	.23	.23	. 14	<2	15
RRF A 67601	4	354	5	60	<.3	4	6	1060	3.04	3	<5	<2	<2	42	<.2	3	<2	117	1.67	.062	6	7	.36	898	.13	7 1	.35	.27	.20	2	17
A 67602	1	299	- Ā	67	<.3	1	6	990	3.15	<2	<5	<2	<2	59	<.2	<2	<2	122	1.76	.061	5	4	.40	715	11	6	.99	.09	- 09	<2	13
A 67603	2	203	4	102	< 3	3	7	1385	3 11	2	<5	~ ~ ~	<2	47	< 2	7	<2	105	1 68	055	6	ż	55	406	11	<u> </u>	02	08	10	<2	18
A 07005		2/3	-	ICE	·	-	r	1505	2.11	-			·Ľ		116	-	-6	105	1.00		Ŭ	-		400	• • •						10
A 67604	4	571	5	98	.4	2	8	1263	3.22	6	<5	<2	<2	34	.3	<2	<2	134	2.62	.070	5	5	.49	190	. 17	98	. 84	.06	.09	<2	81
A 67605	6	596	6	90	.5	5	8	788	3.51	4	<5	<2	<2	50	.3	<2	<2	152	1.84	.092	6	4	.56	380	.19	37 1	. 19	.15	.14	<2	105
A 67606	5	485	Ā	73	5	3	10	629	3.82	5	<5	<2	<2	55	3	2	<2	162	1.72	093	6	6	58	200	.18	9 1	37	23	15	<2	92
A 67607	3	533	12	67	3	5		503	3 67	7	<5	<2	<2	46	< 2	~2	<2	148	1 00	081	7	Ā	52	287	15	6 1	22	00	10	0	120
A 47409	1	1.22	8	77	- 3	5	8	577	3 1/	4	-5	~2	~2	16	7	~2	-2	130	3 07	240	Å	7	- 40	374	13	8 1	40	05	08	~2	71
A 07000	1	422			·	£	U	211	J - 14		.,	1	16	40		<u>۰</u> ۲	12	100	5.07	.005	Ŭ	-	.00	510		01	.00			12	• •
A 67609	1	302	6	99	<.3	4	10	687	3.67	8	<5	<2	<2	45	.3	2	<2	154	2.36	. 085	6	4	.70	517	. 15	71	.44	.07	.09	<2	39
A 67610	2	247	5	67	< 3	2	6	646	2 76	6	<5	<2	2	30	<.2	3	<2	112	1.19	.062	6	5	.38	220	.13	6	.86	.09	.10	ž	24
A 67611	1	146	11	58	~ 3	2	Ā	677	2 56	<2°	<5	<2	-2	45	< 2	-2	-2	108	2 16	054	6	Å	43	250	12	5 1	05	06	07	-2	10
A 67612		108	~	153	2.2	2	7	707	2 63	~ ~ ~	-5	-2	~2	7.1	··	~2	-2	110	1 48	054	7	7	50	328	12	- K 1	11	07	.00	-2	.,, R
A 07012		1/7	2	/15		-	<u>'</u>	050	2.05	10		-2		77		1	2	110	2.40	.050	<u>'</u>	7		205	45	01	47	.07	.07	-2	Š
A OTOIS	'	147		412	د.>	2	- 1	030	2.13	10	0	<2	<2	21	1.4	2	<2	118	2.19	.000	ŕ	0	.04	205	• 15	01.	. 12	.00	.09	~2	Y
A 67614	2	97	4	306	< 3	4	8	926	2 80	11	<5	<2	~2	70	8	~2	~2	124	2 02	060	7	5	70	225	16	81	21	07	10	~?	7
STANDARD CZ/ALL-R	2	40	4	1/3	4.7	71	24	1208	3 70		12	2	74	52	10 /	17	10	72	57	.000	. 1	45	1 00	202	08	221	07	04	17	1/	1.84
J JIANUARU GZ/AU-R	1 61	30	40	143	0.2		30	1200	2.17	40	10	Ģ	20	24	17.4	11	17	12		.075	41		1.00	202	.00	20 1	. 73	.00		(9	400

ACML ANALY L Land ATC 3 L'... ___ E. ___;TIN ST. 7000 BC 1R 13-3 Ρ :(60 F7 ··· 04)/ 1711 ASSAY CERTIFICATE Mount Polley Mining Corporation PROJECT MOUNT POLLEY MINE File # 96-2331R 700 - 815 W. Hastings St., Vancouver BC V6C 184 SAMPLE# Cu ٠ .019 A 67023 , A 67024 .030 A 67037 .018 A 67038 .018 A 67108 .007 .40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATURE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS. - SAMPLE TYPE: CORE PULP DATE RECEIVED: JUL 18 1996 DATE REPORT MAILED: July 24/96 SIGNED BY D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ACME ANALY LICAL	LATO	L1
------------------	------	----

TIN T. JOUV IC

1RC

E.

ASSAY CERTIFICATE

Mount Polley Mining Corporation PROJECT MOUNT POLLEY File # 96-2479R

SAMPLE#	Cu %	
A 67140 A 67161 A 67197 A 67198 A 67199	.009 .008 .013 .004 .009	
A 67200 A 67201 A 67202 A 67203 A 67203 A 67204	.001 .012 .004 .009 .006	
A 67205 A 67206 A 67207 A 67208 A 67222	.025 .024 .011 .006 .024	•
A 67246 A 67247 A 67248 A 67248 A 67249 A 67250	.008 .010 .007 .002 .005	
A 67251 A 67252 A 67259 A 67264 A 67265	.007 .010 .019 .008 .025	
A 67266 A 67267 A 67268 A 67293	.008 .014 .012 .021	

.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATURE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS. - SAMPLE TYPE: CORE PULP

DATE RECEIVED: JUL 18 1996 DATE REPORT MAILED: Anly 24/96 SIGNED BY D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

ACK - NALY TOAL TOORATOTTES IND 052 F WASTINGE ST WENCOUVER BC VEA 196 PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE

Mount Polley Mining Corporation File # 96-2495R

700 - 815 W. Hastings St., Vancouver BC V6C 1B4

SAMPLE#	Cu %	•
A 67306 A 67307 A 67308 A 67309 A 67309 A 67310	.030 .041 .026 .013 .013	· ·
A 67311 A 67313 A 67376 A 67377 A 67379	.182 .028 .012 .002 .010	
A 67380 A 67397 A 67403 A 67404	.004 .097 .239 .139	

.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATURE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS.

ACM MALYMICAL INPORATIONS IT

"2 E "STINCE ST. UNNCOMMED BC VAA 194

PHONE (404) 253-3158 Fax (604) 253-1716

ASSAY CERTIFICATE

AA

Mount Polley Mining Corporation PROJECT MOUNT POLLEY File # 96-2590R

700 - 815 W. Hastings St., Vancouver BC V6C 1B4

SAMPLE#	Cu %	 	•	
A 67437 A 67445 A 67488 A 67490 A 67491	.011 .063 .005 .003 .007			

.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATURE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS. - SAMPLE TYPE: CORE PULP

	Noust Delles Vising Come		
	MOUNT FOILEY MINING COPPOR 700 - 815 W. Hastings St.	<u>ation</u> File # 96-2495K , Vancouver BC V6C 1B4	
	SAMPLE#	Cu %	•
	A 67306 A 67307 A 67308 A 67309 A 67310	.030 .041 .026 .013 .013	i i i i i i i i i i i i i i i i i i i
	A 67311 A 67313 A 67376 A 67377 A 67379	.182 .028 .012 .002 .010	
	A 67380 A 67397 A 67403 A 67404	.004 .097 .239 .139	
	.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATI	URE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS.	
	.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATI - SAMPLE TYPE: CORE PULP	URE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS. $\bigcap f$	
DATE RECEIVED: JUL 18 199	.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATI - SAMPLE TYPE: CORE PULP 6 DATE REPORT MAILED: July 25/96	SIGNED BY	EONG, J.WANG; CERTIFIED B.C. ASSAYERS
DATE RECEIVED: JUL 18 199	.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATI - SAMPLE TYPE: CORE PULP 6 DATE REPORT MAILED: July 25/96	URE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS. SIGNED BY	EONG, J.WANG; CERTIFIED B.C. ASSAYERS
DATE RECEIVED: JUL 18 199	.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATI - SAMPLE TYPE: CORE PULP 6 DATE REPORT MAILED: July 25/96	URE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS. SIGNED BY	EONG, J.WANG; CERTIFIED B.C. ASSAYERS
DATE RECEIVED: JUL 18 199	.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATI - SAMPLE TYPE: CORE PULP 6 DATE REPORT MAILED: July 25/96	URE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS. SIGNED BY	EONG, J.WANG; CERTIFIED B.C. ASSAYERS
DATE RECEIVED: JUL 18 199	.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATI - SAMPLE TYPE: CORE PULP 6 DATE REPORT MAILED: July 25/96	URE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS. SIGNED BY	EONG, J.WANG; CERTIFIED B.C. ASSAYERS
DATE RECEIVED: JUL 18 199	.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATI - SAMPLE TYPE: CORE PULP 6 DATE REPORT MAILED: John 25/96	URE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS. SIGNED BY	EONG, J.WANG; CERTIFIED B.C. ASSAYERS
DATE RECEIVED: JUL 18 199	.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATI - SAMPLE TYPE: CORE PULP 6 DATE REPORT MAILED: John 25/96	URE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS. SIGNED BY	EONG, J.WANG; CERTIFIED B.C. ASSAYERS
DATE RECEIVED: JUL 18 199	.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATI - SAMPLE TYPE: CORE PULP 6 DATE REPORT MAILED: John 25/96	URE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS. SIGNED BY	EONG, J.WANG; CERTIFIED B.C. ASSAYERS
DATE RECEIVED: JUL 18 199	.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATI - SAMPLE TYPE: CORE PULP 6 DATE REPORT MAILED: John 25/96	URE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS.	EONG, J.WANG; CERTIFIED B.C. ASSAYERS
DATE RECEIVED: JUL 18 199	.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATI - SAMPLE TYPE: CORE PULP 5 DATE REPORT MAILED: July 25/96	URE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS.	EONG, J.WANG; CERTIFIED B.C. ASSAYERS
DATE RECEIVED: JUL 18 199	.40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATI - SAMPLE TYPE: CORE PULP 5 DATE REPORT MAILED: July 25/96	URE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS.	EONG, J.WANG; CERTIFIED B.C. ASSAYERS

.

•

COU BC IR F"""E(60" 253-3159 FAY/604)253-1716 ACM ALY ЛI VATC SL : E. STIF ST. ASSAY CERTIFICATE Mount Polley Mining Corporation PROJECT MOUNT POLLEY File # 96-2590R 700 - 815 W. Hastings St., Vancouver BC V6C 184 SAMPLE# Cu % .011 .063 .005 ÷ A 67437 A 67445 A 67488 A 67490 .003 A 67491 .007 .40 GM SAMPLE IN 50 ML 3% H2SO3 AT ROOM TEMPERATURE FOR 1 HOUR WITH SHAKING, ICP ANALYSIS. - SAMPLE TYPE: CORE PULP DATE REPORT MAILED: (My 26 96 DATE RECEIVED: JUL 18 1996 SIGNED BY. .

(