GEOLOGICAL SURVEY BRANCH ASSESSMENT REFORTS

Diversi nitro pu D

DEC 0 5 1265

GEOLOGY AND GRID SOIL GEOCHEMICAL SURVEY

REPORT ON

OF THE

BRECCIA GRID, BLUE SHEEP PROPERTY

LIARD MINING DIVISION

NTS 104I/16

Lat.: 58° 46' N. Long.: 128° 19' W.

Gold Commissioner's Office VANCOUVER, B.C.

BY

Uwe Schmidt, P.Geo.

FILMED

FOR

ATNA RESOURCES LTD.

CEOLOCICAL SUBVEY BRANCH November 8, 1996

TABLE OF CONTENTS

		Page	2
	SUMMARY	i	
1.	INTRODUCTION	. 1	
2.	PROPERTY, LOCATION AND ACCESS	. 1	
3.	PHYSIOGRAPHY	. 2	
4.	HISTORY	. 2	
5.	REGIONAL GEOLOGY	. 3	
6.	PROPERTY GEOLOGY	. 4	
7.	GEOCHEMISTRY	. 6	
8.	CONCLUSIONS	11	
9.	RECOMMENDATIONS	11	
10.	BIBLIOGRAPHY AND REFERENCES	. 12	
11.	STATEMENT OF EXPENDITURE	13	

Appendices

Appendix A	Certificates of Analysis
Appendix B	Statistics
Appendix C	Rock Sample Descriptions
Appendix D	Statement of Qualifications

List of Illustrations

Figure	Title	Scale	Following <u>Page</u>
1	Location	1:7,000,000	1
2	Claim Location	1:20,000	1
3	Geology	1:1,000	in pocket
4	Cu Geochemistry	1:4,000	10
5	Pb Geochemistry	1:4,000	10
6	Zn Geochemistry	1:4,000	10
7	Ag Geochemistry	1:4,000	10
8	As Geochemistry	1:4,000	10
9	Au Geochemistry	1:4,000	10
10	Sample Location	1:4,000	10

SUMMARY

Atna Resources Ltd. explored the Blue Sheep property 160 km south of Watson Lake, Yukon during the period from July 1 to 21, 1996. The Blue Sheep property is underlain by metasedimentary rocks of Upper Cambrian to Lower Ordovician Kechika Group, Lower Cambrian Atan Group and unmapped felsic intrusive rocks of possible Cretaceous age.

The 1996 grid soil sampling and mapping program outlined 5 geochemically anomalous areas within a hydrothermally altered breccia zone. Mineralization found to date does not explain the distribution of geochemical anomalies.

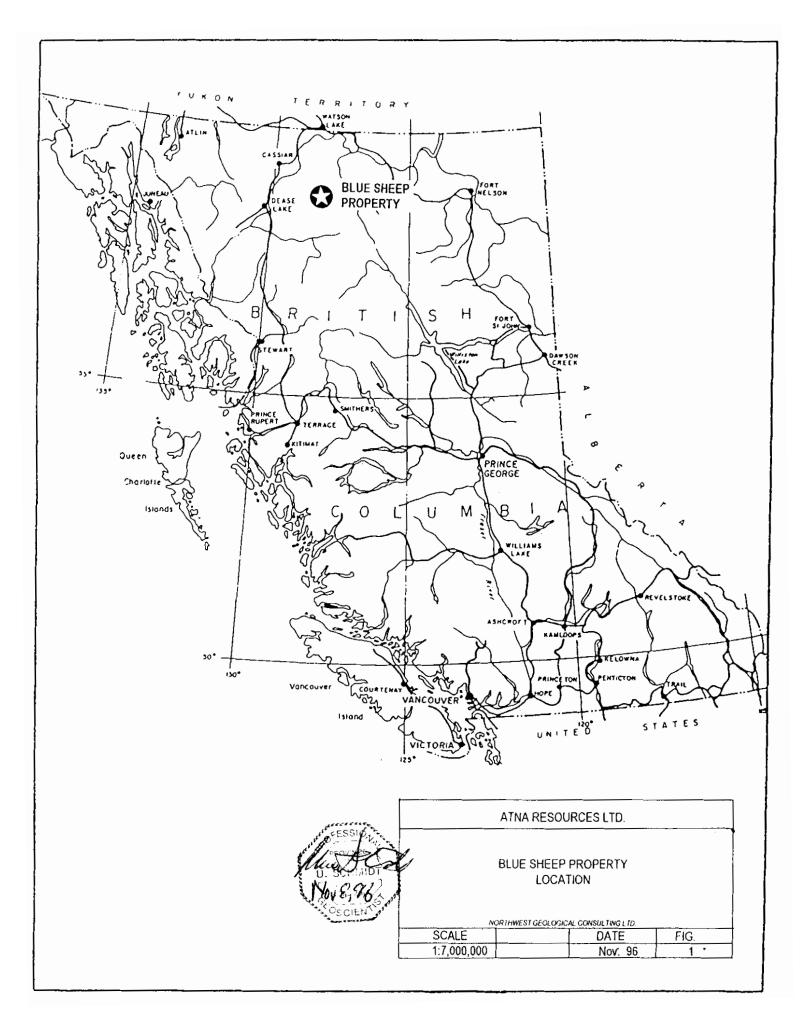
A small follow up program, to examine the feasibility of hand trenching the high silver anomalies, is recommended.

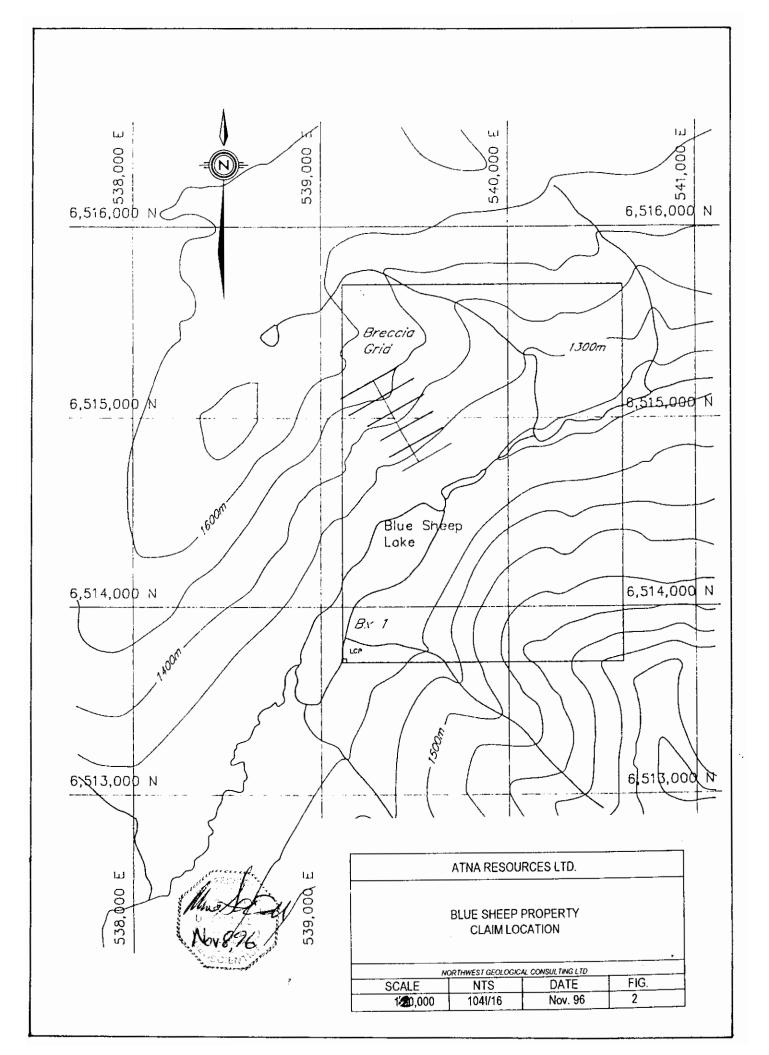
The statistical analysis and interpretation of the geochemical soil survey and mapping are emphasized in this report.

•

I. INTRODUCTION

During the period from July 1 to 21, 1996, Atna Resources Ltd. intermittently explored the Blue Sheep property in the Turnagain River area of north-central British Columbia. The 1996 program evaluated the base metal mineralization associated with hydrothermal brecciation occurring within the Upper Cambrian to Lower Ordovician Kechika Group at the north end of Blue Sheep Lake. Exploration included a grid soil geochemical survey, prospecting and mapping.


Work was carried out by the writer and one field assistant from a fly camp located on the northwest shore of Blue Sheep Lake. A total of 82 soil samples were collected along 2.2 km of line. The writer was contracted by Atna Resources to carry out and supervise field work. Field assistant Ron Beauchamp was employed by Atna Resources.


2. PROPERTY, LOCATION AND ACCESS

The Blue Sheep property consists of one 12 unit mineral claim covering an area of 300 hectares. The Bx 1 claim was staked in 1995 by Atna Resources to cover a known lead-zinc mineral occurrence which had previously received limited exploration. The property is located approximately 160 km, south of Watson Lake, Yukon and 110 km east of Dease Lake B.C. and is accessible from both locations by charter aircraft.

The claim is owned by Atna Resources and is located within the Liard Mining Division in NTS map area 104I/16. The coordinates of the approximate centre of the property are latitude 58° 46' N and longitude 128° 19' W.

Name	Tenure Number	Expiry Date
Bx 1	338875	August 13, 1996

3. PHYSIOGRAPHY

The property is located in rugged terrain along the eastern edge of the Stikine Ranges of the Cassiar Mountains. Blue Sheep Lake is situated at a divide between the Major Hart and Turnagain River systems. Elevations in the vicinity of the claim range from 1220 to 2100 metres. Work in 1996 was restricted to a steep south-facing slope, north of Blue Sheep Lake, with an elevation range of 1220 to 1600 metres.

Bedrock exposure in the area is variable, depending on slope and lithology. Although soil cover within the grid area is limited, bedrock is covered to a large extent by talus. Soil development is poor and consists primarily of talus fines mixed with organics.

Vegetation cover varies from dense mature coniferous forest in the valley of Blue Sheep Lake to alpine vegetation at the north end of the grid.

4. HISTORY

Previous claims in the area include the 24 Johnny claims, staked by C. J. Shandalla in 1971. These were explored by Caltor Syndicate in the same year. Work included grid magnetometer, EM 16 survey, prospecting and mapping on a Pb-Zn-Ag skarn showing located southeast of Blue Sheep Lake. The mineralization is associated with skarn development at a limestone felsic intrusive contact. The highest-grade lead mineralization of five samples from the showing assayed 14.6 opt Ag, 7.5 % Pb, 1.23% Cu and 0.26% Zn. The highest zinc mineralization assayed 4.32 % Zn, accompanied by 5.85 % Pb, 3.0opt Ag and 0.14% Cu. No further work was carried out and the claims were allowed to lapse.

In 1980 and 1981 Amax of Canada Limited staked five Sky claims totalling 67 units. An exploration program of soil, silt and rock geochemical sampling and mapping was carried

out in 1981, focussing on scheelite and molybdenite-bearing skarns located southeast of Blue Sheep Lake. The program outlined a 200 metre by 35 metre scheelite, molybdenite and powellite mineralized skarn zone developed in Atan Group carbonates intruded by a Cretaceous (?) quartz-feldspar porphyry stock. An average grade of 0.5 % WO3 plus MoS2 over 5m width was estimated for the skarn zone.

Amax also soil sampled the breccia zone north of Blue Sheep Lake where galena, sphalerite and pyrite mineralization was found in intensely altered "dolostone" fragments within the breccia. Highly anomalous Pb, Zn and Ag analyses were obtained in soils. It is this area which attracted Atna and resulted in the staking of the Bx 1 claim in 1995.

Atna Resources Ltd. explored the northeast corner of the Blue Sheep Property (Bx 1 claim) in 1996 by grid soil sampling, prospecting and mapping. Eighty-three grid soil samples were taken at a line spacing of 100 metres and sample interval of 25 metres. Thirteen rock samples were taken for whole rock geochemical analysis.

5. REGIONAL GEOLOGY

The geology of Cry Lake map area is divisible into six fault bounded terranes. The northeast corner of the map area, in the vicinity of the property, is underlain by the Ancestral North America Terrane which includes Late Proterozoic to Mississippian miogeoclinal sedimentary rocks intruded by Cretaceous granitic rocks. In the vicinity of Blue Sheep Lake, southerly dipping Lower Cambrian Atan Group carbonates and overlying Upper Cambrian to Lower Ordovician Kechika Group phyllites are intruded by an unmapped Cretaceous (?) quartz-feldspar porphyry stock.

6. PROPERTY GEOLOGY

The aim of this project was the evaluation of a hydrothermally altered breccia body at the north end of Blue Sheep Lake. This area was briefly described by Bentkowski and Hitchins in a 1981 assessment report. High soil geochemical analyses were reported for Pb, Zn and Ag along with a description of galena, sphalerite pyrite mineralization occurring in breccia fragments.

A soil geochemical grid established over the breccia zone provided the survey control for mapping. Although the grid area lies within an area of steep topography, outcrop is limited by recessive weathering bedrock and extensive talus cover.

The breccia body intrudes Upper Cambrian to Lower Ordovician Kechika Group phyllites and has a length of 330 metres and width of up to 140 metres. The long axis parallels the northwest strike of local lithologies which dip moderately northeastward. Locally, small scale, open folds were identified with horizontal fold axes trending northwest. Carbonate rocks of the underlying Rosella Formation of the Lower Cambrian Atan Group, crop out at lower elevations, south of the limits of mapping.

Contact relationships between the breccia and phyllite are poorly exposed because the breccia weathers recessively. The limits of the breccia zone are inferred by contact metamorphism in the host phyllite. Lithologies within the breccia zone were sub-divided into four mappable units, based on matrix colour, fragment lithology and alteration. Most of the breccia is intensely altered, ranging from a white, kaolinized varieties to pale green, chloritized (?) varieties. Fragments are generally small, and display a wide range of alteration and vary in texture from sub-angular to rounded. Fragments within polymictic breccias vary from unaltered to intensely altered. Phyllite fragments of the host Kechika Group show the least alteration. Carbonate-rich fragments are highly altered and difficult to interpret. Some fragments have a granular texture which could be interpreted as either

igneous or metasedimentary texture.

Four igneous units were mapped within the map area. Three of these units; aplite, feldsparquartz porphyry and amygdaloidal, calcareous dykes, may be related. Narrow aplite dykes and sills occur within the phyllite. A white kaolinized amygdaloidal unit occurs as a dyke (?) within the hornfelsed phyllite near the western breccia contact. Kaolinized feldsparquartz porphyry dykes cross-cut the breccia unit and Phyllite (?).

The fourth igneous map unit is a dark green, gabbroic lamprophyre which occurs as isolated outcrops within the breccia zone and as altered breccia fragments. Larger outcrops of this unit are pale orange brown on weathered surfaces and contain significant concentrations of iron carbonate. Altered fragments of the lamprophyre unit are dark red brown in colour and are mostly altered to carbonate. Some of these fragments are mineralized with galena, pyrite and sphalerite.

Most of the breccia varieties show no clear igneous textures but alteration of the breccia and hornfelsing of host rocks indicates that the breccia zone is primarily an igneous intrusive event. Previously reported lead-zinc-silver mineralization associate with feldspar-quartz porphyry intrusions south of Blue Sheep Lake, suggests that the breccia zone is associated with a felsic intrusion of possible Cretaceous age.

Mineralization

Mineralization found in the map area was restricted to galena, pyrite and sphalerite replacement of carbonate altered lamprophyre dykes. This style of mineralization was primarily found as talus fragments but also occurs as fragments within the breccia and in one location as a narrow discontinuous dyke within the breccia. The unit is distinctive when found in talus and approximately 10 % of the fragments are mineralized. Larger outcrops of unaltered to weakly carbonate altered varieties of this unit are not mineralized.

5

7. GEOCHEMISTRY

Grid soil sampling was carried out over a 20 hectare area in the northwest corner of the property. A total of 82 soil samples were collected during the 1996 program at a line spacing of 100 metres and sample interval of 25 metres. An additional 13 rock samples were collected for whole rock analyses.

Sample lines are marked with orange flagging tape and were established by slope-corrected compass and "hip-chain" surveys. Grid stations are identified by blue and orange flagging tape with grid coordinates and sample numbers marked on "Tivek" tags. Samples of B horizon soils were collected when possible, but because of poor soil development most samples consist of talus fines which in some areas are mixed with organics. Sample depths ranged from 20 to 40 cm.

Samples were analyzed by Acme Analytical Laboratories Ltd. of Vancouver, employing a standard 30 element Inductively Coupled Argon Plasma (ICP) package with gold analyzed by acid leach/AA from a 10 g sample. Certificates of analyses are appended to this report (Appendix A).

STATISTICAL METHOD

Analytical data were analyzed statistically using Probplot, a computer program designed to optimally fit multiple normal distributions to exploration geochemical data on probability plots (Stanley 1987). A statistical analysis of Cu, Pb, Zn, Ag, As and Au analytical data was carried out with the aid of histograms and cumulative probability plots generated by Probplot. During data analyses the data set was reduced by eliminating analyses which are at the analytical detection limit. Trial graph plots were modified by eliminating isolated high values until the best resolution of sub-populations in the data was obtained. The degree of data truncation varies with each element. Sub-population boundaries were visually estimated and modified until theoretical mixed population curves closely matched the real data points. Anomaly thresholds for each sub-population were then calculated by the Probplot program. Threshold values were chosen for each element by examining how the statistical parameters for each sub-population could be used to distinguish the sub-populations from each other. The statistical parameters that best represented these sub-population boundaries were assigned to up to six symbol classes for plotting. In most cases fewer than six symbol classes were used and the mean value, plus and minus two standard deviations of the highest sub-populations produced the best anomaly definition. Lower sub-populations were often eliminated because they represent background metal concentrations. Summary statistics, histograms, and probability plots produced by Probplot, are appended to this report (Appendix B).

Trial plots were generated within Autocad and final thresholds were selected by a visual assessment of anomaly definition and contrast with background values. Lower sub-population thresholds are often ignored on symbol plots because they represent background concentrations. The final plots classify the analytical data for each element into ranges of increasing concentration which are assigned symbols of increasing size. In all cases, log probability plots were used to determine thresholds. Analyses and anomaly interpretation for Cu, Pb, Zn, Ag, As, Au and soil sample locations are plotted at 1: 4000 scale on Fig. 4 to 10.

DISCUSSION OF RESULTS

Copper (Fig.4)

Copper concentrations range from 7 to 298 ppm. The data were truncated above 120 ppm before calculating thresholds but only one sample lies above this threshold. The log probability plot of the data was divided into three sub populations, with population breaks

selected at 35% and 90% of the data. An anomalous threshold of 63 ppm was selected, representing the mean plus two standard deviations of population 2. Symbol boundaries were chosen at 63, 81 and 100 ppm Cu. The highest threshold corresponds to the mean plus 2 standard deviations of population 3 and an intermediate threshold of 81 ppm is the mean of population 3.

Scaled symbol plots of the data at 1:4000 scale (Fig.4) outline isolated anomalous concentrations crossing the grid in a northwesterly direction.

Lead (Fig. 5)

A total of 80 analyses within the truncated range from 14 to 2802 ppm Pb were included in the data analysis. No analyses are below the detection limit of 4 ppm and one is above the maximum value of 3500 ppm. The data were sub-divided into 4 lognormal populations with population boundaries selected at 15%, 40% and 95% of the data. A concentration of 291 ppm Pb was chosen as the anomalous threshold. Scaled symbols were assigned thresholds of 291, 538, 1350 and 1957 ppm Pb, representing the mean plus two standard deviations of population 2, the mean of population 3, the mean plus two standard deviations of population 3 and the mean of population 4, respectively.

Anomalous lead concentrations trend northwesterly across the grid, terminating on line 50+00 N but extending south, 400 metres, to line 54+00 N.

Zinc (Fig. 6)

The zinc analytical data ranges from 78 to 4959 ppm. Seventy-nine analyses were included in a data set which was truncated at 2500 ppm. This excluded 3 samples from the data analysis. The data were divided into 3 sub-populations with boundaries selected at 7% and 80%. An anomaly threshold of 485 was selected. Scaled anomaly symbols were assigned thresholds of 485, 1398 and 2355 ppm. These thresholds correspond to the mean of population 2, the mean plus 2 standard deviations of population 2, and the mean plus two standard deviations of population 3, respectively.

Scaled symbol plots of zinc concentrations outline an area similar to the lead plots, with the anomaly ending at line 50+00 N and extending southward to line 45+00 N.

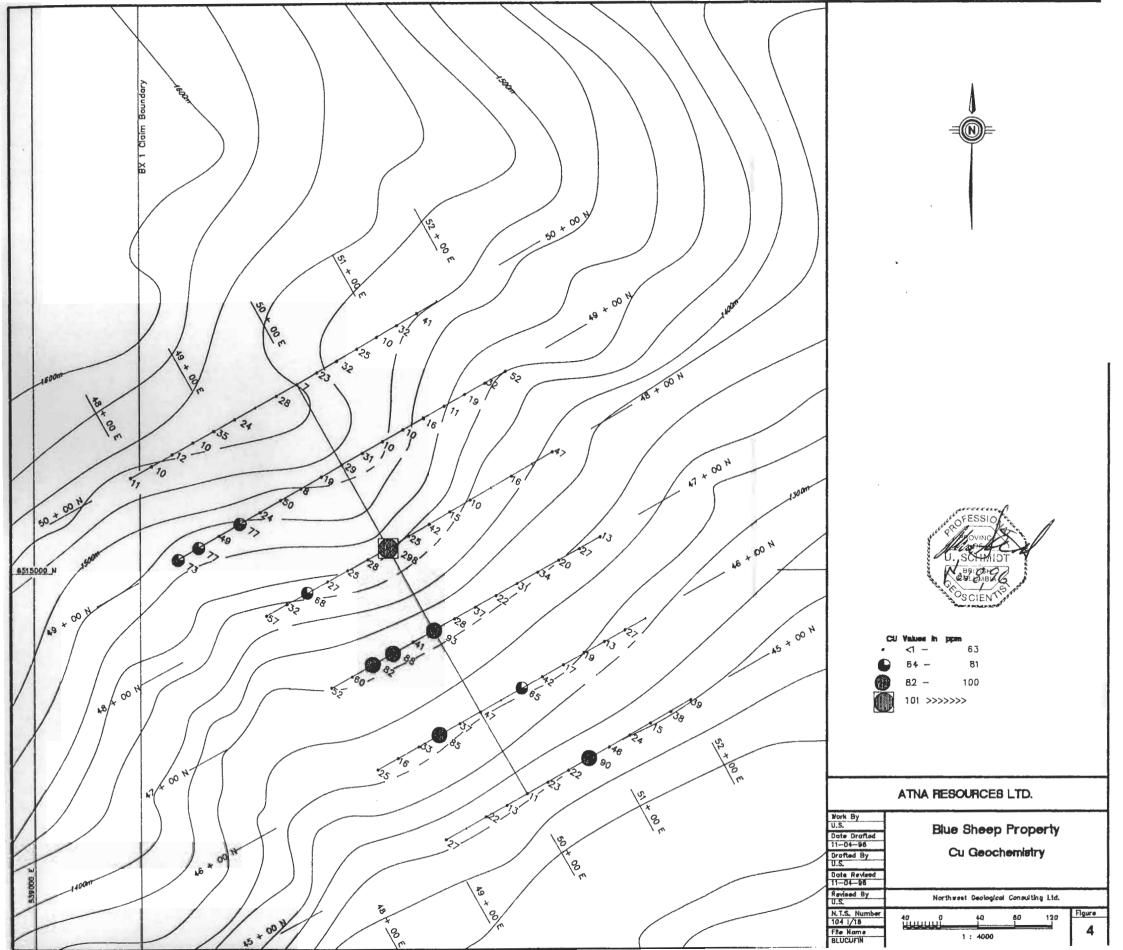
Silver (Fig.7)

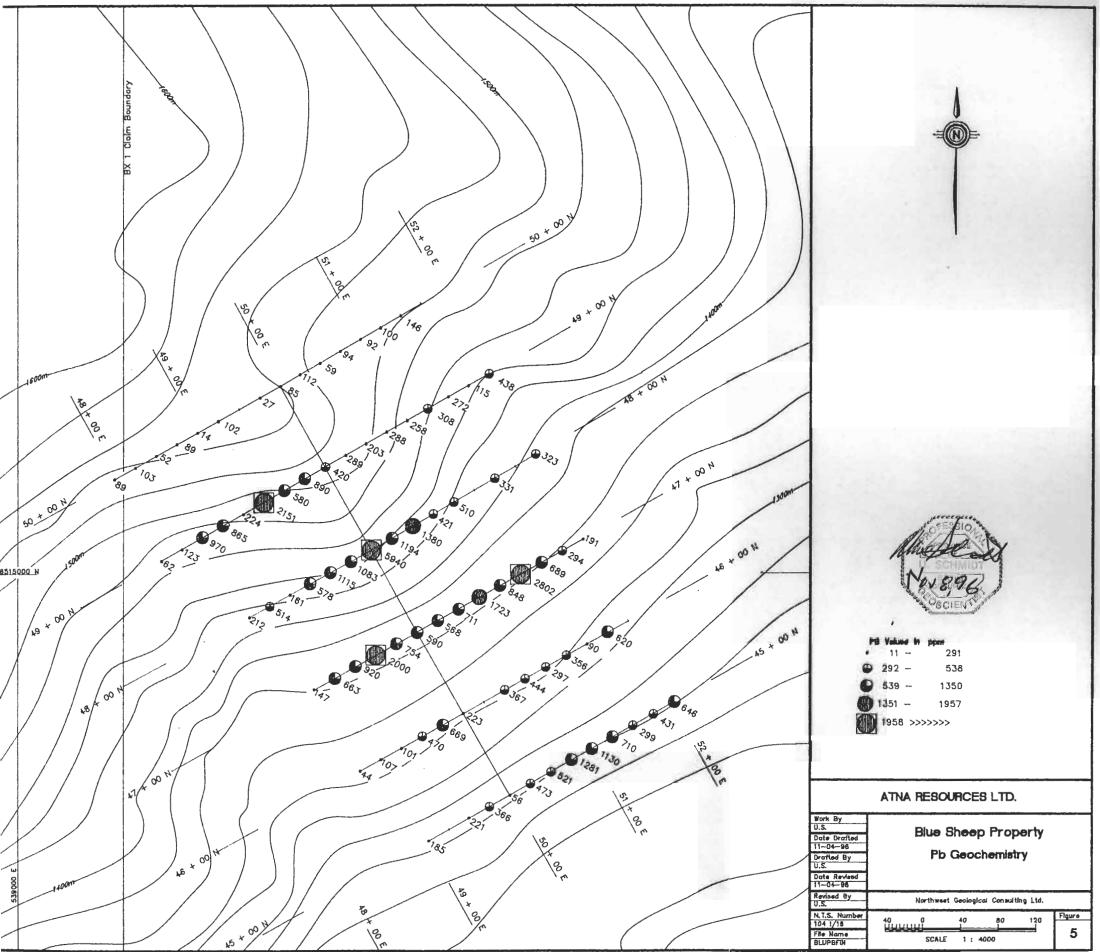
Silver concentrations range from a detection limit of 0.3 ppm to 23.1 ppm. The data were truncated at the detection limit and above 7.0 ppm before calculating thresholds. Sixty-five analyses lie within this range. The log probability plot of the data was divided into four sub populations, with population breaks selected at 25%, 55% and 95% of the data. An anomalous threshold of 0.8 ppm was selected and symbol boundaries were chosen at 0.8, 3.6 and 6.7 ppm Ag. This corresponds to the mean minus two standard deviations of population 3, the mean minus two standard deviations of population 4 respectively.

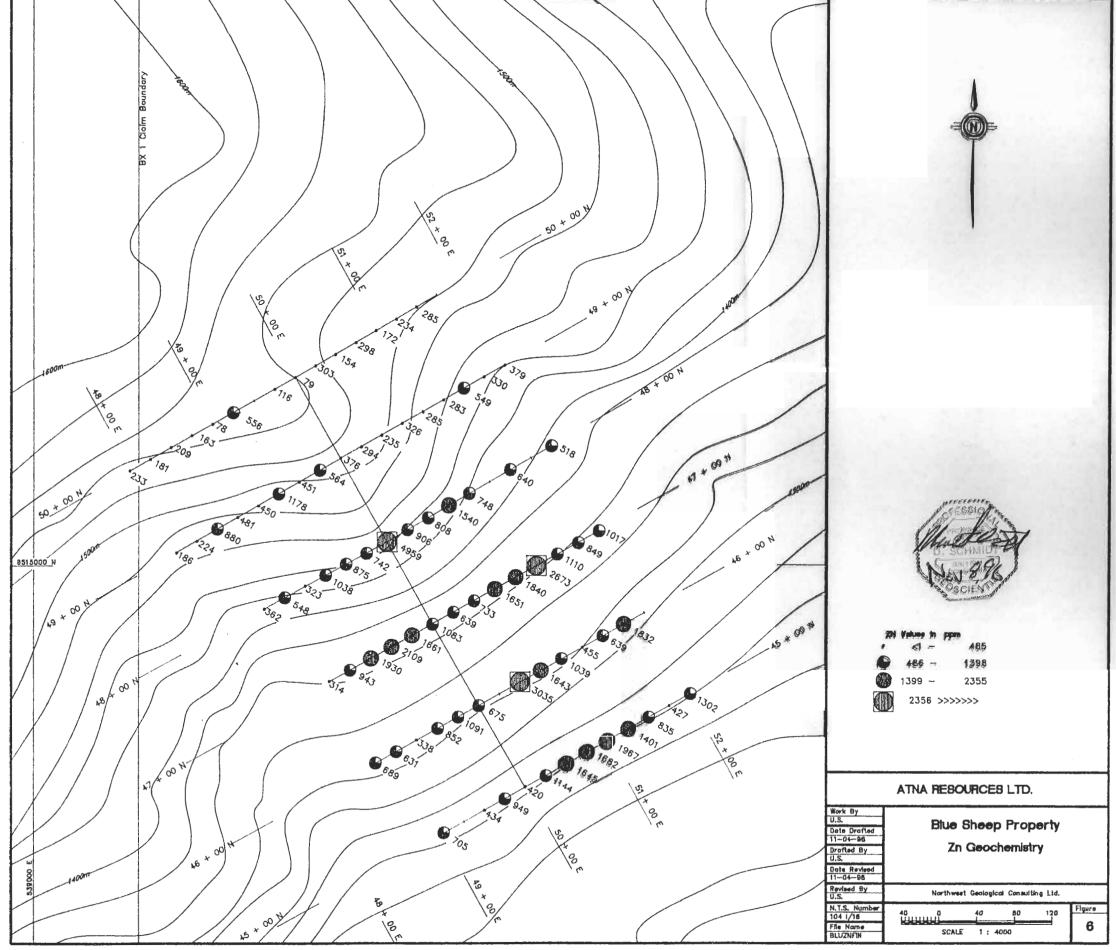
Scaled symbol plots of the data at 1:4000 scale (Fig.7) outline anomaly trends similar to Pb and Zn with the highest analyses showing a westward displacement compared to Pb and Zn.

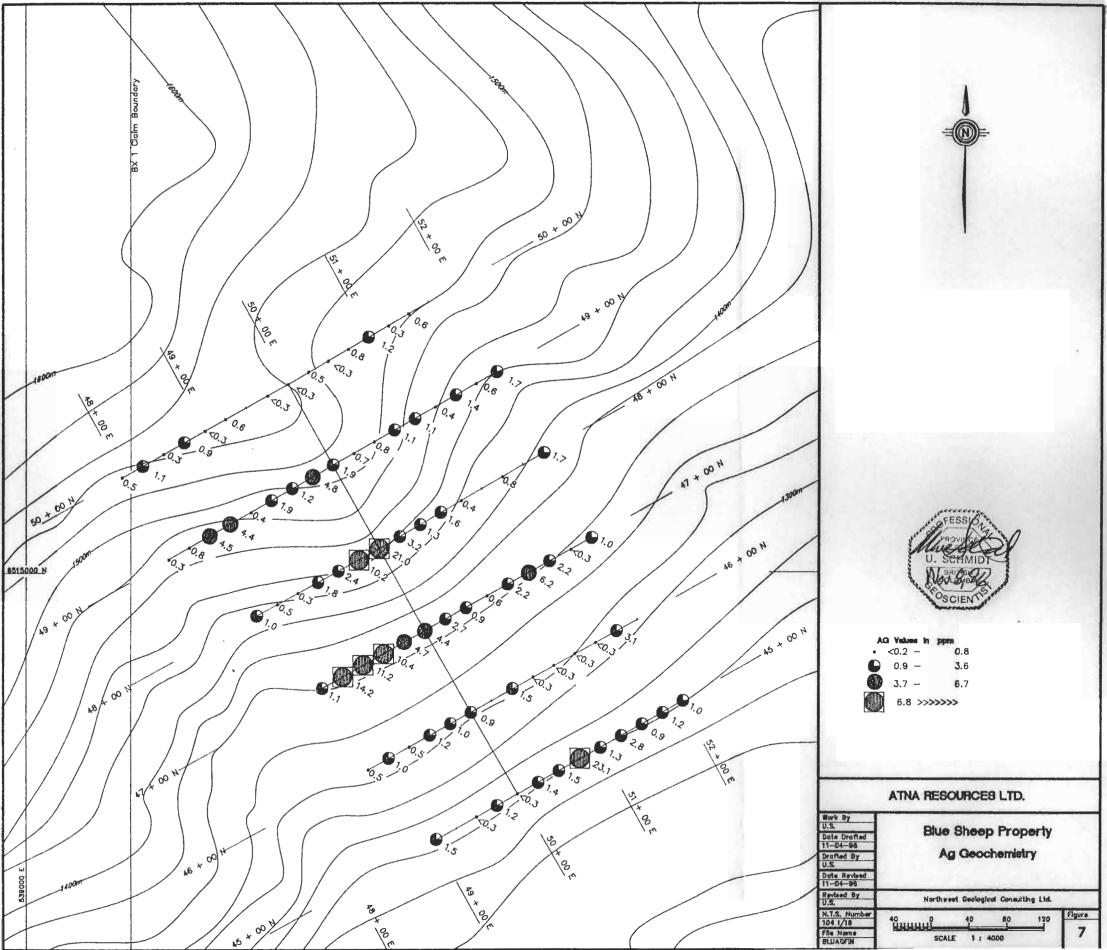
Arsenic (Fig. 8)

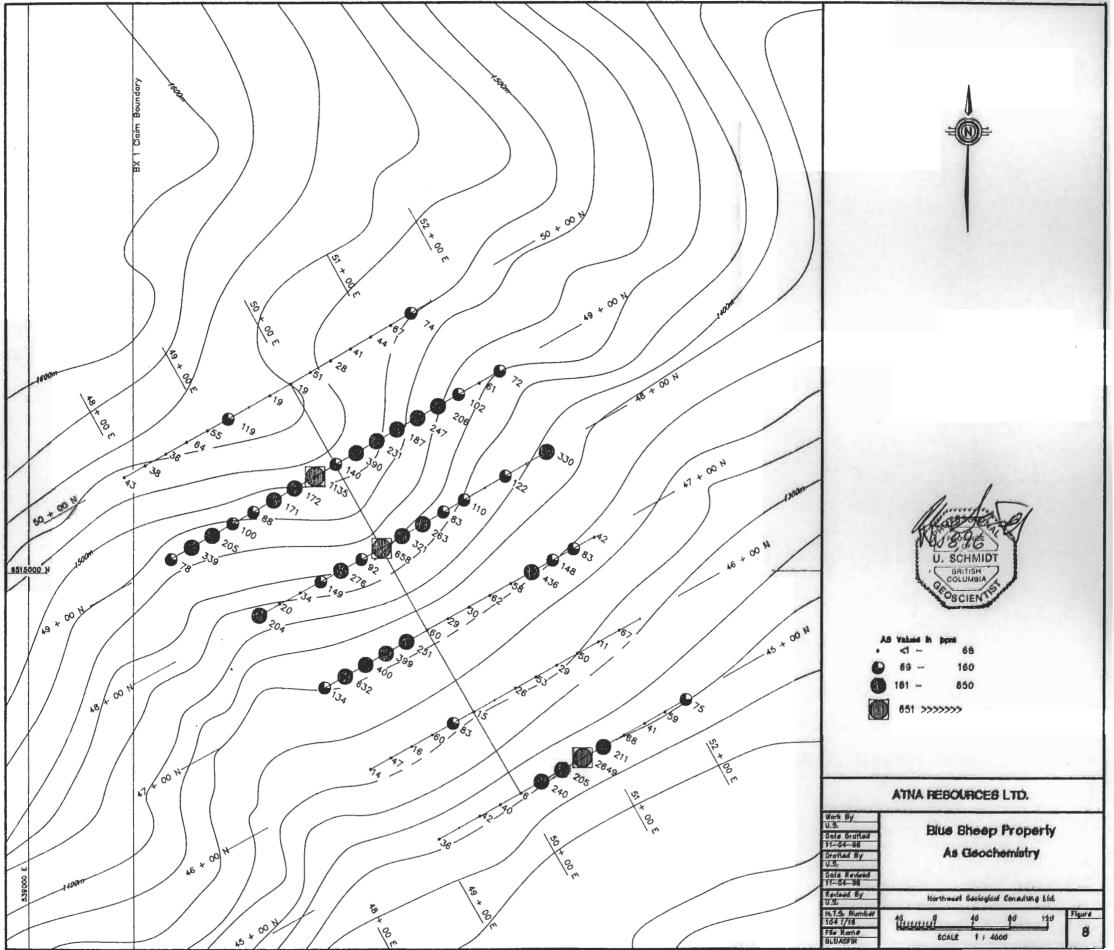
The arsenic analytical data ranges from 6 ppm to 2649 ppm. Eighty analyses were included in a data set which was truncated at 1000 ppm. Two samples exceeded this threshold and were excluded from the data analysis. The data were divided into 3 sub-populations with population boundaries at 55% and 80%. An anomaly threshold of 68 was selected. Scaled anomaly symbols were assigned thresholds of 68, 160 and 650 ppm. These thresholds correspond to the mean minus 2 standard deviations of population 2, the mean minus 2 standard deviations of population 3, and the mean plus two standard deviations of population 3, respectively.

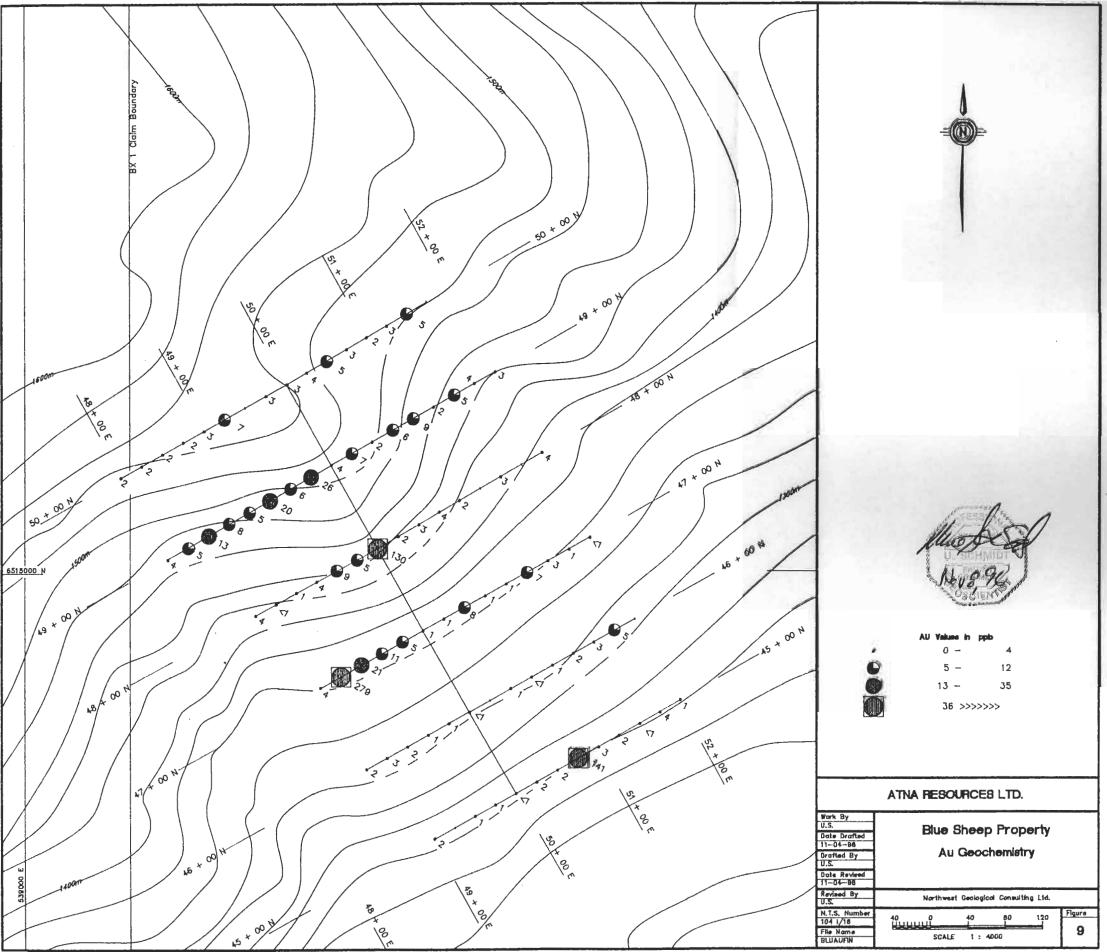

Scaled symbol plots of arsenic concentrations outline a broader anomaly in the centre of the grid and an isolated anomaly at the south end of the grid along line 45+00N.

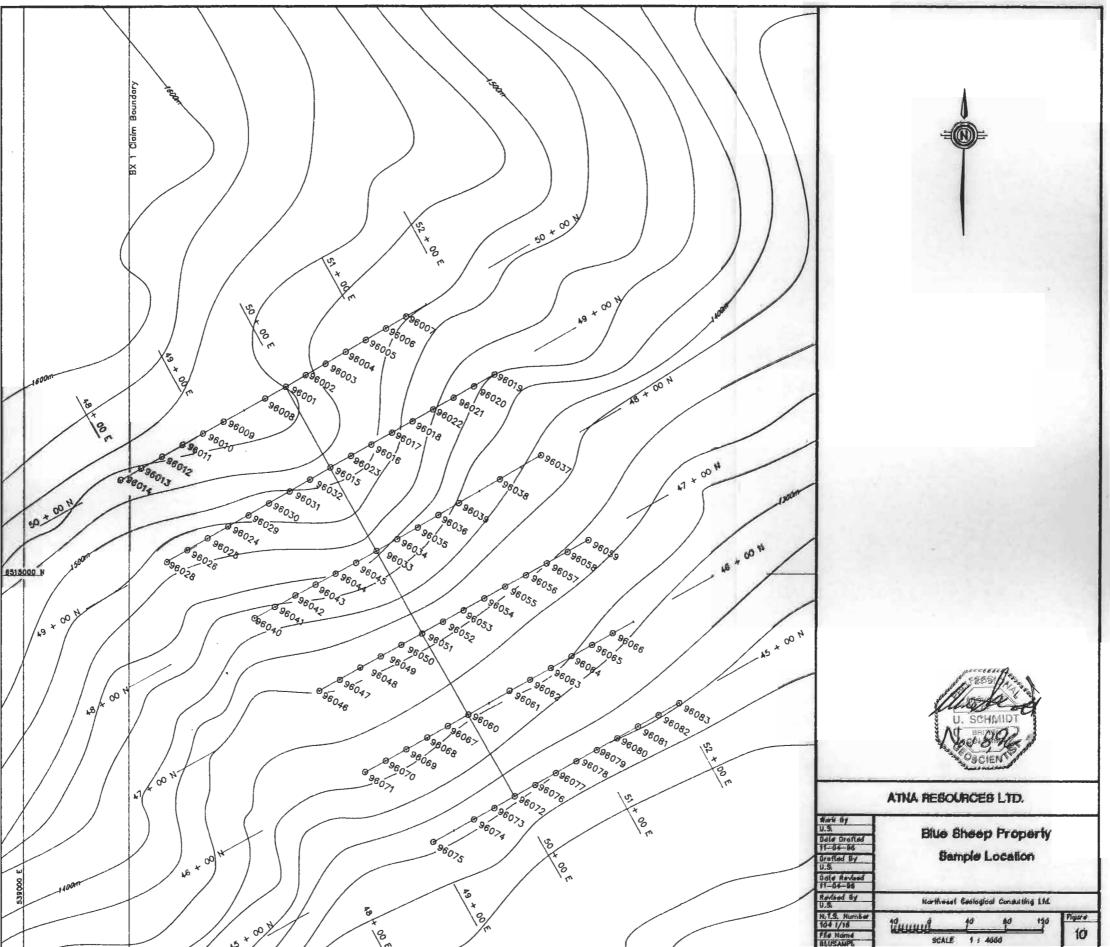

<u>Gold (Fig. 9)</u>


Gold concentrations range from a detection limit of 1 ppb to 279 ppb. The data were truncated at the detection limit and above 50 ppb before calculating thresholds. Seventy-three samples were included in the data analysis, excluding six samples below the detection limit and three above the upper limit. The log probability plot of the data was divided into three sub populations, with population breaks selected at 75% and 96% of the data. An anomalous threshold of 4 ppm was selected and symbol boundaries were chosen at 4, 12 and 35 ppb Au. This corresponds to the mean minus two standard deviations of population 2, the mean minus two standard deviations of population 3 respectively.


Scaled symbol plots of the data at 1:4000 scale (Fig.9) outline anomaly trends similar to As but there is also an overlap with the other 5 elements previously discussed.


Correlation coefficients were calculated for the above six elements and all had positive correlation coefficients with the other elements. The highest coefficients are those among Cu, Pb, Zn and Ag. Strong correlations are also evident among Ag, As and Au. This is evident when anomaly maps are overlain. The combination of all anomaly maps defines 5 metal source areas within the grid. These are centred at the following grid stations: 49+00N - 49+25E, 48+00N - 50+00E, 47+00N - 49+50E, 47+00N - 51+25E, 45+00N - 50+75E.





8. CONCLUSIONS

The 1996 grid soil sampling and mapping program outlined 5 geochemically anomalous areas within a hydrothermally altered breccia zone. Mineralization found to date is restricted to lead-zinc replacement mineralization within carbonate-altered basic igneous rock fragments. The mineralization seen to date does not explain the distribution or concentrations of geochemical anomalies. Mineralization within the breccia zone is likely related to felsic intrusions similar to the intrusions south of Blue Sheep Lake which are associated with base metal and tungsten-molybdenum skarns.

9. RECOMMENDATIONS

Although results from the geochemical survey are encouraging, the breccia zone is limited in size. In addition, poor exposure and extensive unstable talus slopes will make low cost follow up programs such as hand trenching impractical or impossible. For these reasons only a small follow up program, to examine the feasibility of hand trenching the high silver anomalies, is recommended at this stage.

10. BIBLIOGRAPHY AND REFERENCES

Bentkowski, W.H., Hitchins, A.C. (1981): Geological and Geochemical Assessment Report, Blue Sheep Lake Property, B.C. Assessment Report No. 9661

Gabrielse, H, (1994): Geology of Dease Lake (104J/E) and Cry Lake (104I) map areas, north-central B.C., G.S.C. Open File 2779

Ogilvy, A.C., Presunka, S. (1971): Geological Examination of Johnny 1- 24 Mineral Claims, B.C. Assessment Report No. 3539

Sinclair, A.J., (1976): Applications of Probability Graphs in Mineral Exploration; The Association of Exploration Geochemists, Special Volume No. 4

Stanley, C.R., (1987): Probplot; The Association of Exploration Geochemists, Special Volume No. 14

12. STATEMENT OF EXPENDITURE

I. Field Expenses

Labour U.Schmidt (Project Geologist) July 2, 3 ,11(1/2), 14-20, 1996 9 days @\$360/day. R.Beauchamp (Field Assistant) July 2, 3 ,11(1/2), 14-20, 1996 8 days @ \$177/day

									\$5,101.50
2) Consumables and Supplies	. ,								. \$573.35
3) Camp and Equipment Rental			 			 			. \$785.50
4) Transportation									
Truck Rental			 						. \$360.00
Ai Charter			 			 			\$3,145.32
5) Geochemical Analysis									
82 soils, 30 element ICP & Au analysis			 . ,			 			\$1,287.00
13 whole rock geochem									

II. OFFICE

Data compilation, Statistical Analysis, Plotting, Interpretation, Report Writing U Schmidt Nov 1 3-8 1996

U. Schmidt Nov. 1, 3-8, 1996	
7 days @\$360/day	\$2,520.00
Expenses	\$50.00

TOTAL \$13,822.67

05 101 50

Appendix A

CERTIFICATIONS OF ANALYSIS

Atna Resources Ltd. PROJECT BLUE SHEEP FILE # 96-3105

Page 2

ACHE ANALYTICAL																													.	40 M F	ANALYTICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe						Cd				Ca		La	Cr	Ma	Ba	Ti	В	AL	Na	ĸ	W A	u*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm ;	a mac	mac	ppm p	n ma	ppm	ppm	%		ppm						%				
RB-96-BS-001		7	85	79	<.3	9	1	125	2.30	19	<5	<2	3	7	.3	<2	3	50	.09	.067	30	28	.59	51	.10	<3	1.68<	.01	.05	<2	
RB-96-BS-002	2	23	112		.5			789		51	-	<2	-	15	.2			40	.23	.054	38	43	1.45	82	.09	<3	2.57	.01	.04	<2	4
RB-96-BS-003	1			154				744		28			4		.3				.38	.071	29	42	1.92	37	.02	<3	2.59	.01	.03	<2	5
RB-96-BS-004		25	94		.8			901		41		<2			.7	<2	<2	41	1.53	.128	37	42	1.14	118	.08	<3	2.50	.01	.07	<2	3
RB-96-BS-005	2	10	92	172	1.2	22	7	265	4.69	44	<5	<2	<2	7	<.2	<2	<2	41	.09	.048	35	39	1.49	73	.04	<3	2.60<	.01	.06	<2	2
R8-96-BS-006	2	32	100	234	.3	36	14	441	4.17	67	<5	<2	8	16	.2	<2	<2	29	.26	.052	45	32	1.84	99<	.01	<3	2.41<	.01	.08	<2	3
RB-96-BS-007	2	41	146	285	.6	43	15	535 4	4.23	74	<5	<2	10	17	.2	<2	<2	28	.27	.062	43	31	2.12	87	.01	<3	2.49	.01	.09	<2	5
R8-96-BS-008	1	28	27	116	<.3			632 3			<5		8	43	<.2	2	<2	39	.71	.083	34	30	2.15	52	.02	<3	2.29	.01	.03	<2	3
RB-96-BS-009	6	24	102	556	.6	28	8	825 3	3.96	119	<5	<2	5	11	1.1		2		.14	.059	38	30	1.17	79	.05	<3	1.91	.01	.06	<2	7
RB-96-BS-010	1	35	14	78	<.3			399								<2	<2	11	10.79	.041	28	18	1.08	17<	.01	<3	1.20<	.01	.03	<2	3
RB-96-BS-011	2	10	89	163	.9	22	5	547	4.48	64	<5	<2	2	42	<.2	<2	<2	48	.65	.084	28	32	.94	129	. 10	<3	2.25	.01	.06	<2	2
RB-96-BS-012	2	12	52	209	.3	23	8	255 3	3.92	36	<5	<2	6	11	<.2	3	<2	46	.18	.059	30	33	1.23	99	.05	<3	2.17<	.01	.06	<2	2
RB-96-BS-013	3	10	103	181	1.1	27	5	278	4.20	38	<5	<2	7	13	<.2	<2	<2	51	.22	.074	32	40	1.21	71	.12	<3	2.66	.01	.06	<2	2
RB-96-BS-014	2	11	89	233	.5	24	7	364 4	4.44						<.2					.039	30	37	1.14	82	.09	<3	2.43	.01	.06	<2	2
RB-96-BS-015	2	29	420	376	1.9	790	59 1	1938 !	5.64	140	<5	<2	6	15	1.6	4	<2	35	.20	.053	32	382	2.15	124	.03	<3	1.61<	.01	.11	<2	4
RB-96-BS-016	2	10	203	235	.8	684	46 4	4987	4.12	231	<5	<2	4	97	1.8		3	76	2.53	.030	19	581	6.16	103<	.01	3	2.09<	.01	.07	<2	2
RB-96-BS-017	3	10	288			617									2.3	<2	3	97	.54	.039	27	572	5.38	121<	.01	4	3.20	.01	.10	<2	6
RE RB-96-BS-017	2	10				643									2.3	<2	2	99	.55	.039	27	588	5.49	127<	.01	6	3.29<	.01	.10	<2	5
RB-96-BS-018	4		258	285	1.1	645	37 8	8487 3	3.59	247	<5	<2	6	24	1.6	<2	4	64	.61	.046	35	382	4.31	289<	.01	4	2.71<	.01	.12	<2	9
RB-96-BS-019	2	52	438	379	1.7	75	24	1821	3.82	72	<5	<2	3	27	6.3	5	2	30	.26	. 165	41	51	1.46	153	.01	<3	2.13<	.01	.08	<2	3
RB-96-85-020		_	115		.6					61					.8												2.57			<2	4
RB-96-BS-021	2	19	272	549		118																				<3	2.13<	.01	.09	<2	5
RB-96-BS-022	3	11	308	283	.4	330	36 5	5678 3	3.70	206	<5	<2	4	15	1.7	<2	5	76	.31	.054	22	369	4.21	164	.01		2.75<				2
RB-96-BS-023			289	294		820	71 7	7090 (6.01	390	<5	<2	5	53	1.3	<2	<2	92	.45	.086	33	715	4.38	236	.01	<3	2.94<	.01	.11	<2	7
RB-96-BS-024	10	77	865	481	4.4	65	26 1	1015	4.74	100	<5	<2	10 1	17	2.1	5	<2	33	4.28	.055	22	30	2.15	48	.01	<3	2.01<	.01	.07	<2	8
RB-96-BS-025				880	4.5					205		<2			3.8	4	<2	38	3.83	.061	30	25	2.17	44	.01	<3	1.93<	.01	.06	<2	13
RB-96-BS-026	2	77	123	224	.8	56	28	490 4	4.62	339	<5	<2	9 1	198	.6	<2	<2	21	8.04	.055	24	21	1.65	55	.01	<3	1.52<	.01	.05	<2	5
RB-96-BS-027 not received	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	•	-	-	•	-	-	-	•	-	-	•
RB-96-BS-028	3	73	62	186	.3	66	33	983	5.17			<2	9		.3	<2	<2	23	.28	.069	46	28	1.77	89	.01	<3	2.23<	.01	.05	<2	4
RB-96-85-029	2	24	224	450	.4	50	23	636	4.95	88	<5	<2	5	9	2.2	3	<2	29	.13	.047	35	33	1.64	87	.02	<3	2.52<	.01	.05	<2	5
RB-96-BS-030	11	50	2151	1178	1.9	61	23	1398	6.18	171	<5	<2	5	16	7.7	<2	<2	43	.27	.109	35	37	2.11	93	.01	<3	2.44<	.01	.08	<2	20
RB-96-BS-031	1		580			81													.14								.74<			_	
RB-96-BS-032						1525													1.10												
RB-96-BS-033																			2.34											2 1	
RB-96-BS-034																			.27											2	
STANDARD CZ/AU-S	20	57	40	144	6.3	75	35	1185	4.04	39	18	8	34	53	19.9	17	19	74	.53	. 102	40	65	1.02	216	.09	30	2.06	.07	. 15	11	46

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

٠

Atna Resources Ltd. PROJECT BLUE SHEEP FILE # 96-3105

Page 3

BURS SHALFIICH																									· · · · · · · · · · · · · · · · · · ·				Α(HE ANALT	TICAL
SAMPLE#	Мо ррт		Pb ppm	2n ppm			Co ppm			As ppm	U ppm			Sr ppm		Sb ppm	Bi ppm		Ca %	P %	La ppm		Mg %	Ba	⊺i %	B	Al %	Na %	K %	W PPM	Au* ppb
RB-96-BS-035 RB-96-BS-036 RB-96-BS-037 RB-96-BS-038 RB-96-BS-039	4 3 2 3 4	15 47 16	421 323 331	808 1540 518 640 748	1.6	309 47 48 37 32	11 17 6	4200 1886 1371 7354 5643	5.28 4.57 2.94	83 330 122	<5 5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 5 <2 <2	55 29 16	7.4 6.4 2.7 8.1 9.6		9 11 <2 3 <2	30 45 5	.62 .58 .47	.101 .119 .041 .095 .148	51 41 38 28 52	37 29 11	.69 .61 2.24 .14 .22	168 91 150	.05 .04 <.01	3 4 <3	1.47 2.34 .35	<.01 .01 .01 <.01 .01	.12 .12 .11	<2 <2 <2 <2 <2 <2 <2	3 4 4 3 2
RB-96-BS-040 RB-96-BS-041 RB-96-BS-042 RB-96-BS-043 RB-96-BS-044	3 5 30 5 17	32 68 27	514 161 578	362 548 323 1038 875	.5 .3 1.8	52 38 81 192 47	17 27 13	825 481 487 8555 6579	4.46	20 34 149	<5 <5 6 <5 <5	<2 <2 <2 <2 <2 <2 <2	6 7 6 4 9	20 18 49	2.5 2.7 1.2 16.2 5.9	<2 <2 <2 8 10	<2 <2 <2 2 10	24 56 8	.37 .30 1.02	.078 .047 .043 .106 .070	32 42 34 58 88	26 34 30	1.77 1.70 2.28 .34 .12	66 81 530		<3 <3 7	1.85 2.05 2.62 .77 .49	<.01 .01	.05 .05 .07 .14 .14	<2 <2 <2 <2 <2 <2 <2	4 <1 1 4 9
RB-96-85-045 RB-96-85-046 RB-96-85-047 RB-96-85-048 RB-96-85-049	9 4 1 4 7	52 60 82	147 663 920	742 314 943 1930 2109	1.1 14.2 11.2	47 46 46	19 22 26	3988 786 2036 2757 8645	4.33 5.02 6.96	632 400	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	14 5 10 4 3	41 95 28	5.5 2.3 4.7 16.3 21.0		18 <2 3 33 22	32 32	.88 6.67 .71	.060 .084 .033 .060 .119	89 35 27 28 65	25 31 27	.51 1.85 1.69 1.27 1.52	67 121 164	.01 .04 .03	4 <3 <3	1.68	.01 .01 .02 <.01 .01	.06 .42 .14	<2 <2 <2 <2 <2 <2	5 4 279 21 11
RB-96-BS-050 RB-96-BS-051 RB-96-BS-052 RE RB-96-BS-052 RB-96-BS-053	5 7 6 6	93 28 26	590 568 563	1661 1083 639 635 733	4.4	220 67 64	30 13 14	7675 4375 4275 4299 8369	7.48 8.65 8.60	251 60 29 30 30	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	6 9 5 5 2	49 26 26	19.0 8.6 4.9 4.1 14.2	_	<2 7 5 3	28 11 11	1.23 .31 .31	.110 .064 .113 .113 .142	63 41 98 98 40	84 34 34	.75 2.60 .39 .38 1.36	158 301 302	.06 .01 .01 .01 .02	<3 <3 <3	2.05 .76 .76	.02 .01 .01 <.01 <.01	.10 .11 .10	<2 <2 <2 <2 <2 <2	5 1 1 1 8
RB-96-BS-054 RB-96-BS-055 RB-96-BS-056 RB-96-BS-057 RB-96-BS-057 RB-96-BS-058	5 2 5 3 3	31 34 20	2802 689	1651 1840 2673 1110 849	6.2 2.2	68 42 39 61 32	11 12 10	4057 7489 6578 2527 2601	5.38 8.30 6.00	62 58 436 148 83	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	92 48 21	16.6 55.4 50.6 3.2 12.8	5	5 4 11 8 3	16 17 33	1.60 .87 .45	.210 .221 .230 .080 .080	38 43 43 38 30	42 18 18 32 35	.48 .28 .25 .73 .94	569 181 115	.01 .01 .01 .08 .06	3 <3 4	.88 .93	<.01 .01 .01 .02 .01	. 13 . 14	<2 <2 <2 <2 <2 <2	1 1 7 3 1
RB-96-BS-059 RB-96-BS-060 RB-96-BS-061 RB-96-BS-062 RB-96-BS-063	1 17 4 2 3	47 65 42	223 367 444	1017 675 3035 1643 1039	.9 1.5 <.3	27 45 53 54 37	6 27 16	665 644 5483 1643 1591	1.60 4.25 5.00	42 15 26 53 29	<5 <5 <5 <5 <5		3 <2 <2 5 3	49 43 41	5.1 19.6 90.5 18.9 6.4	<2 3 <2 <2 <2	<2	49 223 67 58 69	1.39 .87 .79	.326	26 12 22 24 23	18 42 63	.99 .27 1.14 2.51 1.18	85 269	.10 .01 .08 .12 .23	5 3 <3			.11	<2 <2 <2 <2 <2 <2	<1 <1 <1 <1 1 1
RB-96-BS-064 RB-96-BS-065 RB-96-BS-066 RB-96-BS-067 RB-96-BS-068	3 2 2 2 7	13 27 37	90 620 669	455 639 1832 1091 852	<.3 3.1 1.0	48 19 38 41 48	9 8 15	3351 1339 1518 2074 4425	3.96 4.27 4.66	50 11 67 83 60	<5 <5 <5 <5 <5	<2	<2 <2 <2 <2 <2 <2	16 39 19	11.1 7.8 32.5 8.6 28.6	<2 3		56 37	.37 .85 .68	.048 .053 .117 .057 .121	34 23 32 19 24	36 30 45	.49 .97 1.08 1.76 .77	132 146 86	.09	<3 4 <3	1.11 2.05 2.22 2.22 1.68	.01 .02 .01	.10 .08 .17	<2 <2 <2 <2 <2 <2	2 3 5 1 1
STANDARD C2/AU-S	20	59	37	135	6.3	74	36	1173	4.01	38	20	8	34	53	19.9	15	21	73	.52	.101	41	66	.99	210	.09	30	2.06	.07	. 15	11_	48

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

٠

Atna Resources Ltd. PROJECT BLUE SHEEP FILE # 96-3105

ACHI, MIALTIGAL																															ACME	ANALYTICAL
SAMPLE#		Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	S٢	Cd	Sb	Bi	۷	Ca	Р			Mg		Ti	B	AL	Na	К	Ψ.		بيو
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	76	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	obp	
RB-96-BS-069	1	33	101	338	5	38	12	763	3.57	16	<5	<2	5	39	1.3	<2	3	50	1.13	.057	18	51	3.13	82	15		4.53	05	34	2	 2	
RB-96-BS-070	2	16	107	631	1.0	30	12		3.68	47	<5	<2	ź	19	2.0	2	5	57		.057	19	47	1.95		.12	_			.12	~2	27	
RB-96-BS-071	1	25	44	689		35	14		3.69		<5	<2	2	58	4.5	<2	<2	61		.058	15	47		140		-	4.30	•••		<2	-	
RB-96-BS-072	1	11	56		•••		3	2156			<5	<2	5	12	2.1	2	<2			.017	10		2.20		.05	-	1.33			2		
RB-96-BS-073		13	366			48	13		5.30	40	<5	<2	8	10	2.3	<2	<2	78		.011	25		1.16			-	3.47			-	1	
	:											_	-													-				-		:
RB-96-BS-074	8	22	221	434	<.3	39	11	469	4.80	42	<5	<2	8	11	1.6	2	4	93	.39	.029	29	44	1.13	108	.11	<3	3.45	.02	.06	2	1	
RB-96-BS-075	2	27	185	705	1.5	53	11	631	4.70	36	<5	<2	6	28	2.2	<2	4	66	.91	.030	35	42	1.18	118	.21	<3	3.91	.03	.08	<2	2	
RE RB-96-BS-075	2	27	187	711	1.6	54	11	633	4.75	38	<5	<2	6	28	2.2	<2	<2	67	.92	.032	35	43	1.20	117	.21	5	3.93	.03	.08	2	1	
RB-96-BS-076	1	23	473	1144	1.4	31	9	2014	4.05	240	<5	<2	5	20	5.1	5	<2	42	3.95	.032	22	28	2.98	110	.08	<3	1.94	.01	.07	<2	2	
RB-96-BS-077	1	22	521	1645	1.5	32	8	2938	5.57	205	<5	<2	5	13	9.4	8	<2	60	1.79	.018	22	36	1.83	113	.12	<3	2.53	.02	.05	<2	2	
	1																															
RB-96-BS-078	2	90	12815	1682	23.1	10			2.72	2649	<5	<2	<2			1965	10	13	14.62		8		8.35				.53			<2	141	
RB-96-BS-079	: 1	46	1130	1967	1.3	45			5.72	211	<5	<2	7		11.1	27	<2	60		.026	24		1.72			-	2.71			<2	3	i
RB-96-BS-080	1	24	710	1401	2.8	38	•	2156		68	< S	<2	3	20	8.1	2	<2		4.38		27	37	3.57	170	.11	<3	2.65	.02	.06	9	2	
RB-96-BS-081	<1	15	299	835	.9	25		2021		41	<5	<2	<2	36	6.7	3	<2	25	12.35				7.42			-	1.21	.01	.04	<2	<1	
RB-96-BS-082	2	38	431	427	1.2	37	12	1289	4.07	59	<5	<2	8	21	2.4	4	2	47	2.13	.024	29	31	2.21	189	.07	<3	1.98	.03	.08	2	4	
														47				10	-							-			~7			
RB-96-BS-083		39		1302		44			6.26	75	<5	<2	_6		10.1	2	<2		.70		•		1.24			-	2.97					
STANDARD C2/AU-S	20	58	36	146	6.6	73	34	1176	3.95	38	23	8	34	>5	19.4	14	18		.52	. 102	41	63	.99	203	.08	26	2.07	.07	.15	11	42	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

852 E. HASTINGS ST. V COUVER BC V6A 1R6 PHONE(604)253-3

PHONE(604)253-3158 FAX(60 53-1716

WHOLE ROCK ICP ANALYSIS

Atna Resources Ltd. PROJECT BLUE SHEEP File # 96-3105 Page 1 1550 - 409 Granville St., Vancouver BC V6C 1T2 Submitted by: Uwe Schmidt

									2.0					······			:					na chonsais	 <i>i</i> ,
SAMPLE#	Si02	Al203	Fe203	MgO	CaO	Na20	K20	TiO2	P205	MnO	Cr203	Ba	Ni	Sг	Zr	Y	NÞ	Sc	LOI	SUM			
	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%			
		••••••••••								· ·	• • • • • • • • • • • • • • • • • • • •										-		
US-96-BS-001	57.49	12.80	1.04	3.97	6.67	.11	6.68	.16	<.01	.48	.013	1645	52	198	142	20	15	<10	10.8	100.55			
US-96-BS-002	64.70	15.36	3.55	1.55	2.96	.67	7.41	.63	.20	.05	.002	2672	39	411	239	21	15	<10	3.0	100.63			
US-96-BS-003	63.24	15.62	3.99	.91	2.61	. 13	8.50	.62	.20	.10	<.001	1965	<20	278	252	23	16	<10	3.6	99.93			
US-96-BS-004	71.31	14.27	.93	.46	1.40	.07	8.95	.21	.06	.05	.002	1924	26	300	293	20	15	<10	2.4	100.52			
US-96-BS-005	73.26	13.42	.65	.17	.58	.10	9.57	.11	.08	.03	.002	7090	24	135	99	18	10	<10	1.3	100.51			
US-96-BS-006	49.20	13.92	4.44	2.62	12.56	1.01	3,11	.54	.04	.06	.009	1290	39	212	101	16	<10	<10	12.9	100.68			
US-96-BS-007	71.66	14.04	1.88	.49	1.92	.07	6.07	.22	.05	.16	<.001	1042	22	114	204	20	14	<10	3.1	99.89			
US-96-BS-008	4.11	2.71	7.11	17.34	26.99	.04	.37	.02	.11	1.59	.274	62	1747	242	237	12	<10	<10	39.2	100.16			
US-96-BS-009	28.46	.43	6.99	36.10	.68	.04	<.04	.01	.09	.29	.294	15	1490	18	147	<10	<10	<10	27.2	100.82			
RE US-96-BS-009	28.35	.43	7.09	36.24	.68	.04	<.04	.01	.10	.29	. 295	16	1514	19	82	<10	<10	<10	27.1	100.85			
US-96-BS-010	55.80	12.50	1.08	4.58	7.43	.04	6.04	.17	.01	.56	.017	1503	75	202	146	Z1	16	<10	12.4	100.94			
US-96-BS-011	7.28	4.67	5.84	17.46	25.17	<.01	.30	.05	.04	1.17	.352	93	761	308	17	16	<10	10	36.8	99.29			
US-96-BS-012	5.93	3.70	6.07	16.67	26.53	<.01	.22	.04	.07	1.31	.269	135	911	265	132	13	<10	<10	38.4	99.40			
US-96-BS-013	11.68	1.62	4.13	16.20	25.74	.02	.24	.01	.06	2.01	.265	48	1188	316	22	<10	<10	<10	38.0	100.18			
STANDARD SO-15		12.84	7.17	7.31	5.77	2.55	1.77	1.61	2.58	1.31	1.053	2196	96	385	733	19	<10	10	5.9	100.00			

.200 GRAM SAMPLES ARE FUSED WITH 1.2 GRAM OF LIBO2 AND ARE DISSOLVED IN 100 MLS 5% HNO3. Ba IS SUM AS BASO4 AND OTHER METALS ARE SUM AS OXIDES. - SAMPLE TYPE: P1 ROCK P2 TO P4 SOIL <u>Samples beginning 'RE' are Refuns and 'RRE' are Reject Beruns.</u>

DATE RECEIVED: JUL 24 1996 DATE REPORT MAILED: Hng 5/96

ACME AN	- ''I	ICAI	LLA	BORA	TOR	IES	LTD.		852	2 E.	HAS	TING	3S S	т. –	י כי	OUVE	R B	c v	'6A 1R	6	J	PHONE	E(60	94)2	53-3	158	FA	X (6 (2!	53-1	716	
AA					Ati	na I	Resc	<u>urce</u> 1550 -	es :	Ltđ	• P	ROJ	ECT	BL	UE_	<u>SHE</u>	EP	Fi	ICATH le # ted by:	96			P	age	2 1					A	£	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	oJ inqq	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ⊅pm	Bi ppm	V mqq	Ca %	P %	La ppm	Сг ррп	Mg %	Ba ppm	Ti %	B	Al %	Na %	K %	W ppm	Au* ppb	<u>-</u> .
US-96-BS-012 US-96-BS-013	2		4643 2192			1049 1390	. –	11430 4 16921 2		133 365	<5 <5	<2 <2	<2 <2	254 299	49.7 2.6	2 41	4		20,94<. 20,00<.		22 7	1408 9 458 9			<.01 <.01	<3 <3	.89 .13	<.01 .01	.03 .03	<2 <2	1	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI 8 W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 TO P4 SOIL AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA 52NISHED.

DATE RECEIVED: JUL 24 1996 DATE REPORT MAILED: HN9 5/96

D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SIGNED BY.

Appendix B

STATISTICS

•

COPPER STATISTICS

•

Blue Sheep Property

Variable = Cu	Unit	=	ppm	N	-	81
Mean = 33.370 Std. Dev. = 21.684 CV % = 64.979		Ŧ	$7.000 \\ 93.000 \\ 1.149$	Quartile Median Quartile	=	27.000
% cum % cls int				bin size		
0.00 0.61 5.771						
2.47 3.05 8.229		**				
7.41 10.37 10.686		* * * * * *				
8.64 18.90 13.143		*****	* *			
2.47 21.34 15.600 4.94 26 22 18.057		* * * * * *				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		****				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		* * *				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		*****	***			
4.94 50.61 27.886		****				
4.94 55.49 30.343		****				
7.41 62.80 32.800		* * * * * *	¢			
3.70 66.46 35.257	*	* * *				
2.47 68.90 37.714	د	* *				
2.47 71.34 40.171	×	* *				
4.94 76.22 42.629	k	****				
$0.00 \ 76.22 \ 45.086$						
3.70 79.88 47.543	*	* * *				
1.23 81.10 50.000	*	k				
3.70 84.76 52.457	*	* * *				
0.00 84.76 54.914						
1.23 85.98 57.371	3	k				
0.0085.9859.829						
1.23 87.20 62.286	*	*				
0.00 87.20 64.743						
1.23 88.41 67.200		k				
1.23 89.63 69.657	3	k				
0.00 89.63 72.114	4	ł				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	F. Le	* * *				
$0.00 \ 93.29 \ 79.486$	4					
$0.00 \ 93.29 \ 79.480$ $0.00 \ 93.29 \ 81.943$						
1.23 94.51 84.400	ł	¢				
1.23 95.73 86.857	ä					
1.23 96.95 89.314	ł					
$1.23 \ 98.17 \ 91.771$	×	¢				
1.23 99.39 94.229	*	¢				
			 -	 		
	0		1	2	3	4

Blue Sheep Property

Variable = Cu	Unit	= ppm	N =	81
Mean = 1.43 Std. Dev. = 0.28 CV % = 19.49	00 Max	= 1.9685	t Quartile = Median = d Quartile =	$1.2239 \\ 1.4314 \\ 1.6154$
		Anti-Log Sto	-	
		# of bins = 36	X	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* * * * * * * * * * * * * *		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* * * * * * * * * * * * * * * * * * *	0 2	
	0	1	2 3	4

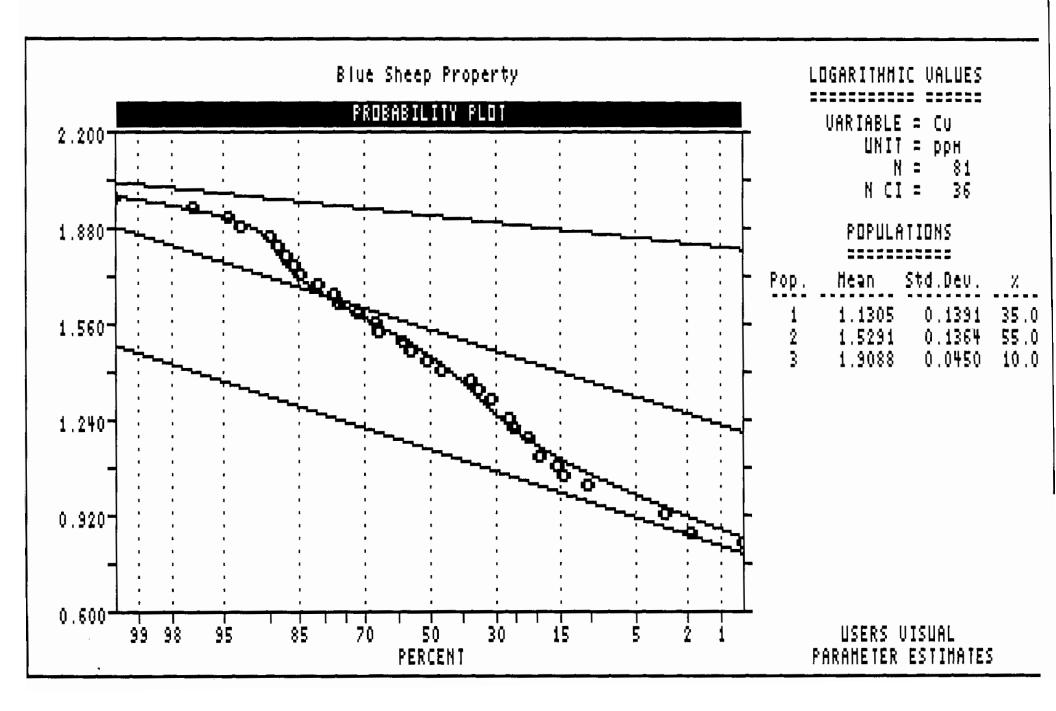
PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

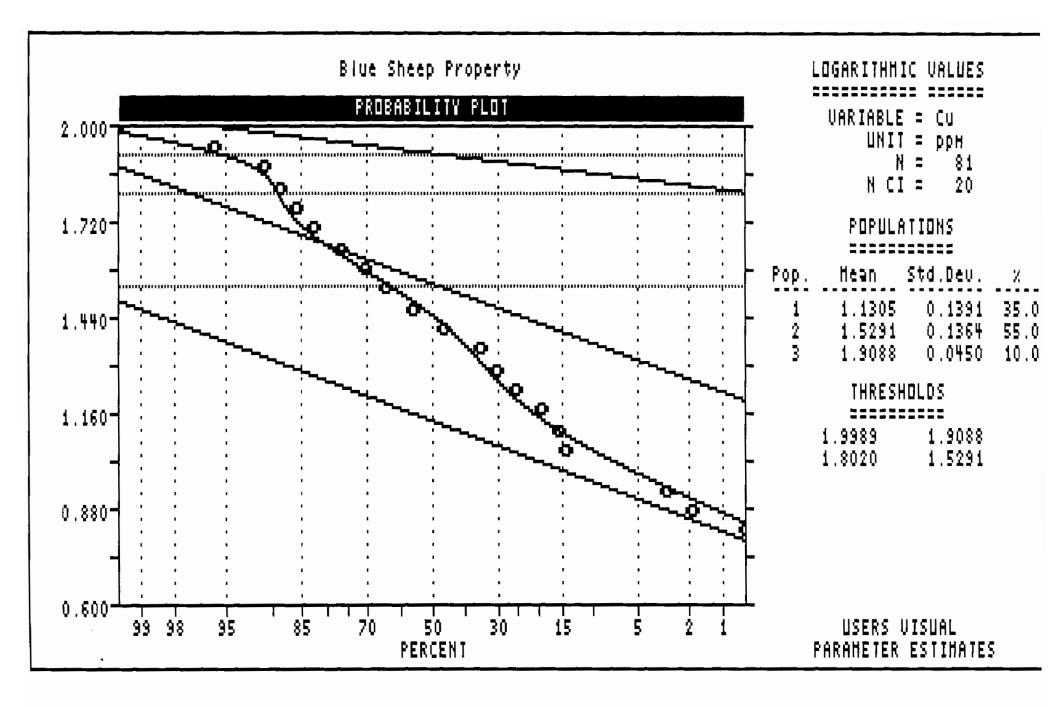
Data File Name = \ATNA\BLUSHEEP\GEOCHEM\BL96SOIL.DA

Variable = Cu Unit = ppm N = 81 N CI = 20 Transform = Logarithmic Number of Populations = 3 # of Missing Observations = 0. 0 Observations Were Below the Minimum Value of 0.0001 1 Observations Were Above the Maximum Value of 120.0000

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	13.504	-	9.802	35.00
		+	18.604	
2	33.814	-	24.698	55.00
		+	46.295	
3	81.060	-	73.073	10.00
		+	89.920	

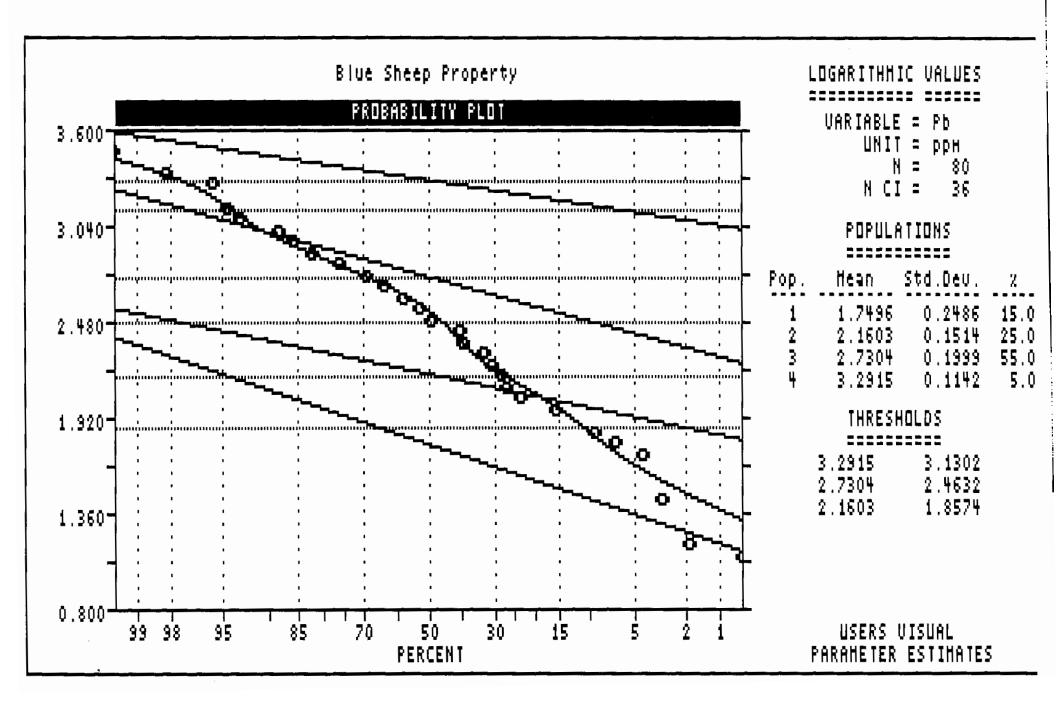

Default Thresholds.


Т

Standard Deviation Multiplier = 2.0

Pop.	Thresholds							
1 2 3	$7.115 \\ 18.040 \\ 65.873$	$25.631 \\ 63.382 \\ 99.747$						

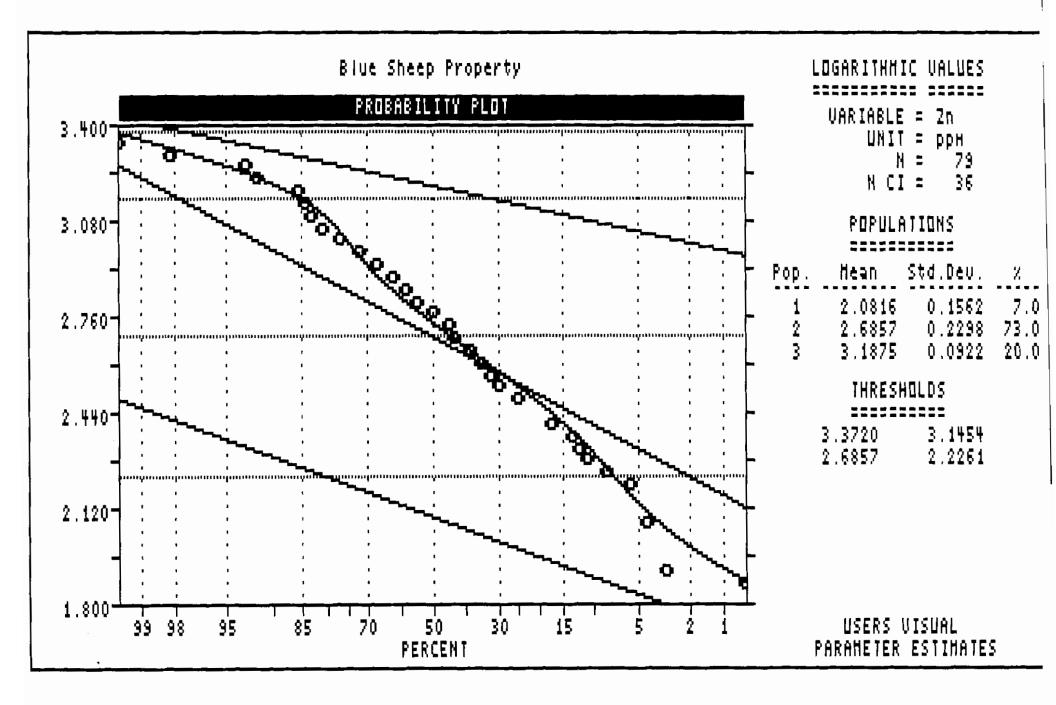
LEAD STATISTICS


,

Variable =	Pb	Unit	=	ppm		Ν	=	80
Mean = Std. Dev. = CV % =		Min Max Skewness	=			Quartile Median Quartile	=	331.000
==================	=======================================		= = = :				===	
% cum %	cls int	((#	of bins =	20 -	bin size	9 =	146.737)
$\begin{array}{ccc} 0.00 & 0.62 \\ 10.00 & 10.49 \end{array}$	-59.368 87.368			* * * * *				
28.75 38.89		k k	* * * :	********	*****	* * * * *		
16.25 54.94	380.842	*	***:	*******	¢			
12.50 67.28	527.579	*	* * * *	* * * * * * *				
	674.316	k	* * * :	* * * * *				
5.00 82.10	821.053	*	* * * :	*				
5.00 87.04	967.789	*	* * * :	*				
2.50 89.51	1114.526	*	* *					
3.75 93.21	1261.263	*	***					
1.25 94.44	1408.000	*	k					
0.00 94.44	1554.737							
0.00 94.44	1701.474							
1.25 95.68	1848.211	*	4					
0.00 95.68	1994.947							
1.25 96.91	2141.684	*	6					
$1.25 \ 98.15$	2288.421	*						
$0.00 \ 98.15$	2435.158							
$0.00 \ 98.15$	2581.895							
$0.00 \ 98.15$								
1.25 99.38	2875.368	*						
1.40 99.00	2010.000	4						
		0		1		2	3	4

Variable = Pb	Unit =	= ppm	N =	80
Mean = 2.477 Std. Dev. = 0.462 CV % = 18.674		= 3.4475	lst Quartile = Median = 3rd Quartile =	2.5198
		-	Std. Dev. : (-) (+)	870.469
	g cls int () - bin size =	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* *		
	0	1	2 3	<u>-</u> 4

ZINC STATISTICS


.

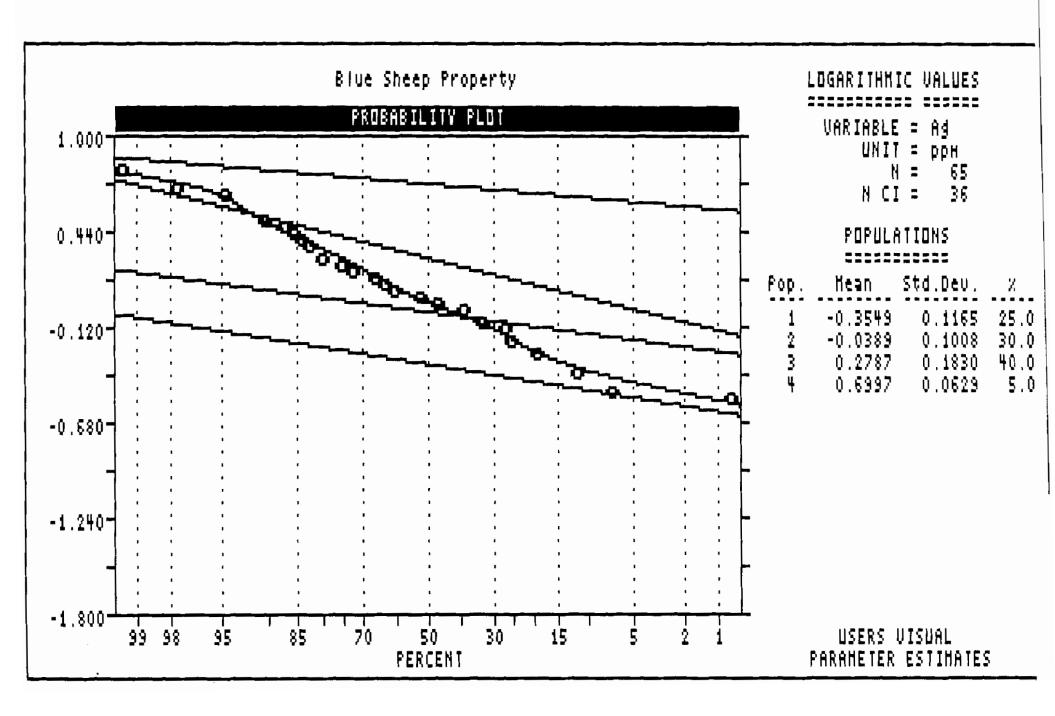
.

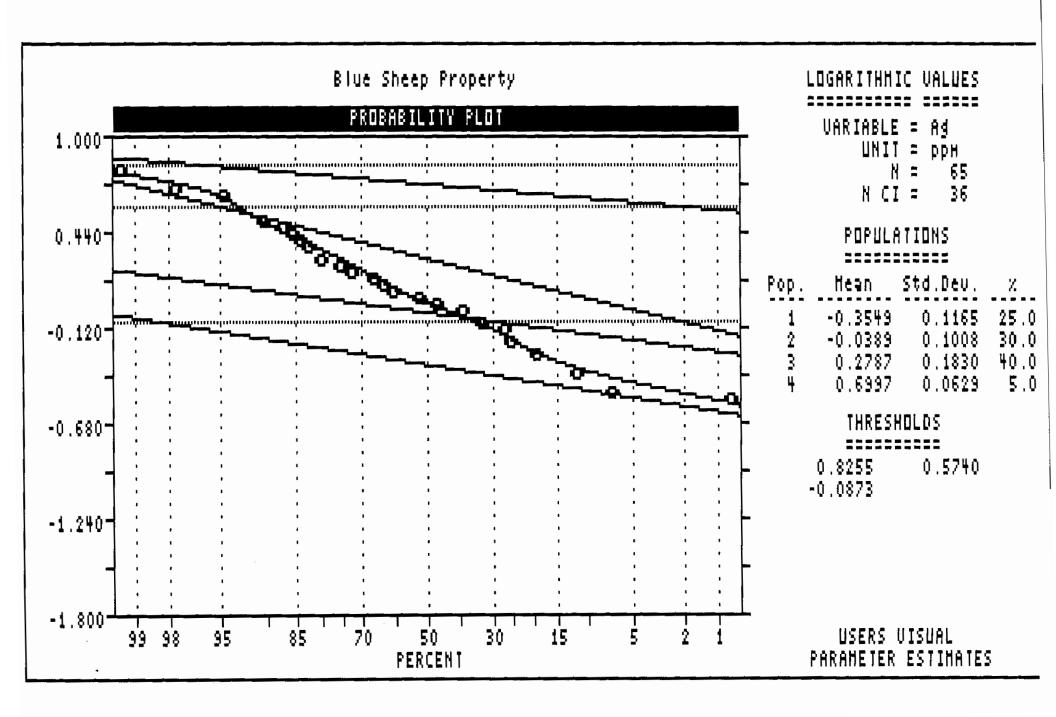
Variable =	Zn	Unit	=	ppm		N	=	79
Mean =	737.392	Min	=	78.000	1et	Quartile	-	305.750
Std. Dev. =		Max						597.500
		Skewness						1032.750
		Sitewitess		0.020	510	Qual titte		1002.700
s==============		=================	= = =		= = = = = = =	*==#==##=	= = =	
% Cum %	cls int	-	(#	of bins =	36 -	bin size	e =	58.029)
0.00 0.63	48.080	•						
2.53 3.13			* *					
3.80 6.87			***	:				
5.06 11.87			***					
5.06 16.87			***					
13.92 30.62				*****				
3.80 34.38			***					
7.59 41.87		×	***	* * *				
	513.214	k	k					
6.33 49.37		×	* * *	* *				
0.00 49.37								
	687.300	k	* * *	* *				
	745.329	k	**	*				
1.27 61.87	803.357	ł	4					
5.06 66.87		4	* * *	*				
	919.414	k	* * *					
2.53 73.12	977.443	*	*					
1.27 74.37		×	2					
5.06 79.37	1093.500	×	* * *	*				
2.53 81.87	1151.529	*	* *					
1.27 83.12	1209.557	*	5					
0.00 83.12	1267.586							
1.27 84.38	1325.614	*	:					
0.00 84.38	1383.643							
1.27 85.62	1441.671	*	:					
0.00 85.62	1499.700							
1.27 86.87	1557.729	*	:					
0.00 86.87								
5.06 91.87	1673.786	*	: * *	*				
1.27 93.12	1731.814	*	:					
0.00 93.12	1789.843							
2.53 95.62	1847.871	*	*					
0.00 95.62	1905.900							
1.27 96.88	1963.929	*						
1.27 98.12	2021.957	*	•					
0.00 98.12	2079.986	*						
1.27 99.37	2138.014	*						
		0		1		2	3	4
		0		-		-	U	•

Variable = Zn	l	Uni	t ≃	ppm		N =	79
Mean = Std. Dev. = CV % =		Min Max Skewness	k = 3	.8921 3.3241).3342	lst Quarti Medi 3rd Quarti	an =	2.7757
	_				Std. Dev.	(+)	1231.872
	antilog	cls int			5 - bin s		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81.762 89.839 98.714 108.466 119.181 130.954 143.891 158.106 173.725 190.887 209.744 230.464 253.231 278.247 305.734 335.937 369.124 405.588 445.656 489.681 538.055 591.209	2.0762 2.1171 2.1580 2.1989 2.2399 2.2808 2.3217 2.3626 2.4035 2.4444 2.4853 2.5263 2.5672 2.6081 2.6490 2.6899 2.7308 2.7717 2.8127					
	011.962 210.719	3.3036 3.3445	**** * 		· ·		
		()	1	2	3	4

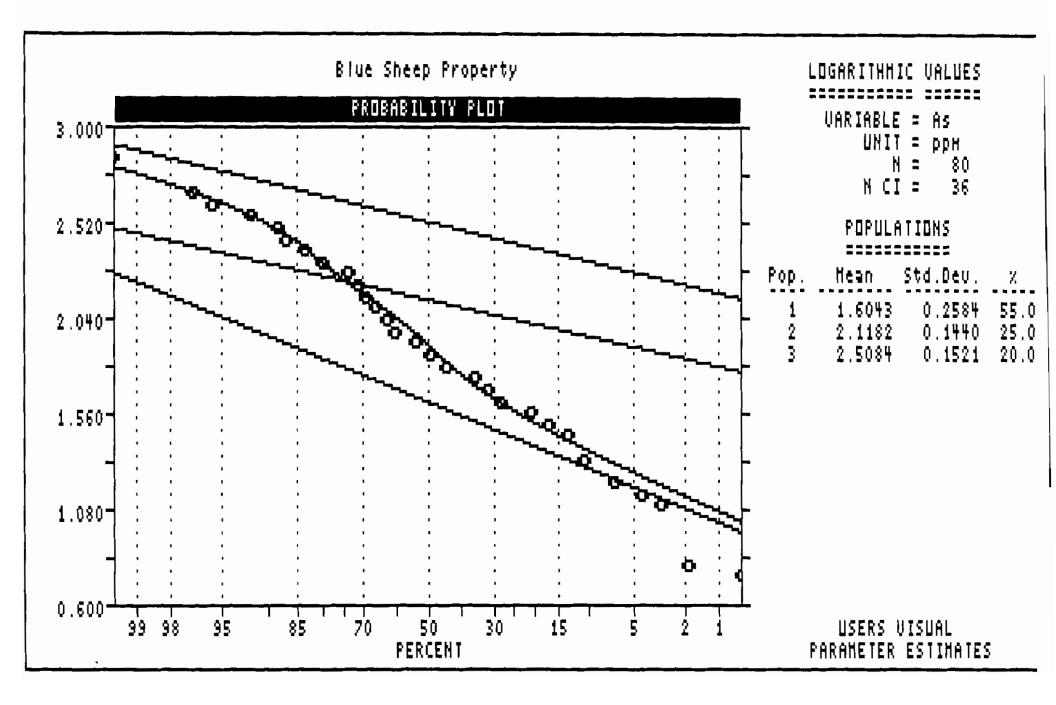
SILVER STATISTICS

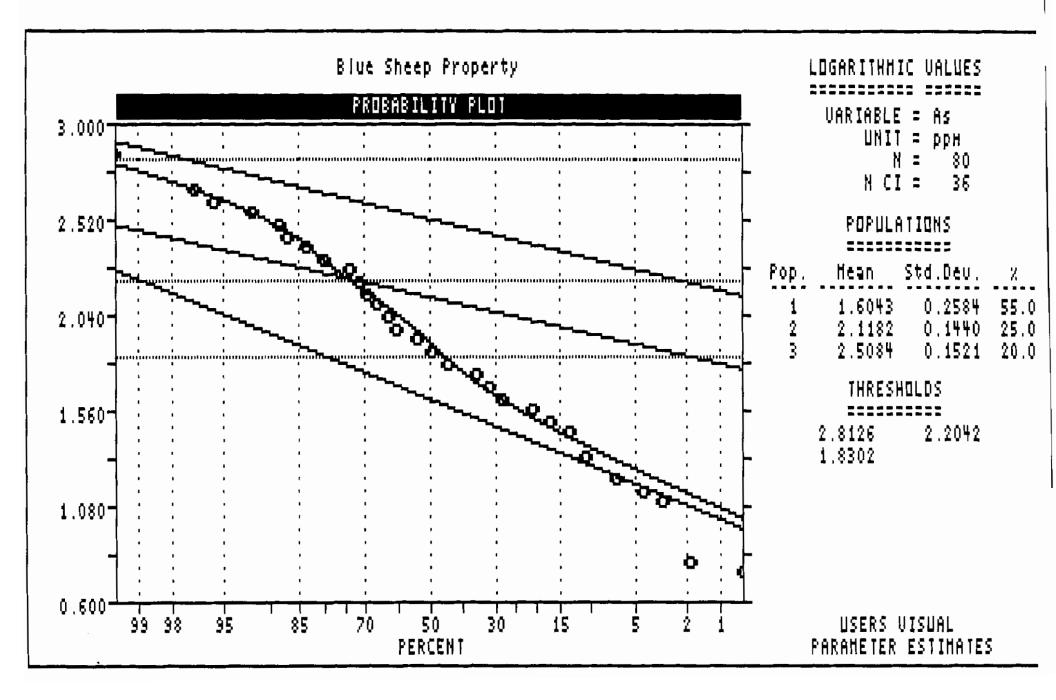
Variable =	Ag	Unit	-	ppm	N	=	65
Std. Dev. =	$1.512 \\ 1.275 \\ 84.296$	Max	=	6.200	Quartile Median Quartile	=	1.100
% cum %	cls int						
$\begin{array}{rrrr} 6.15 & 6.82 \\ 12.31 & 18.94 \end{array}$		נ ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה	- ************************************	* * * *			
$\begin{array}{cccc} 0.00 & 97.73 \\ 0.00 & 97.73 \\ 1.54 & 99.24 \end{array}$	5.947	я	k				
		0		1	 2	3	




٠

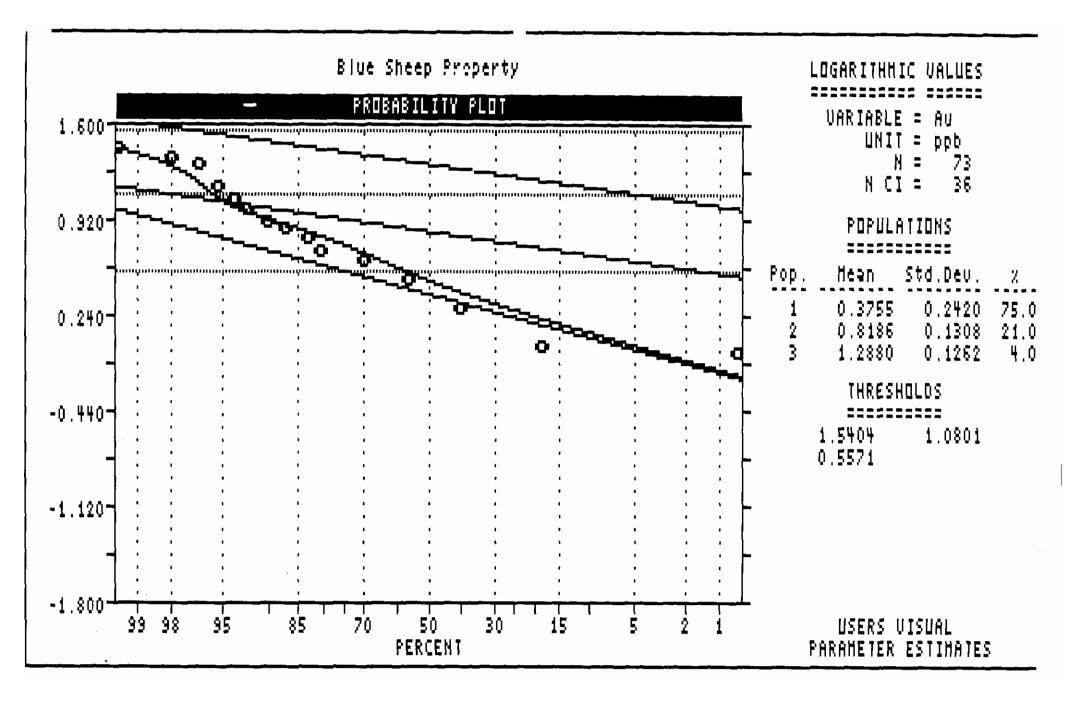
Variable = Ag	Unit =	ppm	N =	65
Mean = 0.057			t Quartile =	
Std. Dev. = 0.323		0.7924	Median =	
CV % = 567.071	1 Skewness =	0.2274 3rc	d Quartile =	0.2304
Anti-Log Mea	n = 1.140	Anti-Log Sto	1. Dev. : (-)	0.541
				2.403
	g cls int (#			
0.00 0.76 0.28				
6.15 6.82 0.31		*		
0.00 6.82 0.34				
0.00 6.82 0.37				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
7.69 18.94 0.52		* *		
$0.00 \ 18.94 \ 0.57$	0.2700			
6.15 25.00 0.62		*		
0.00 25.00 0.68	0.1000			
1.54 26.52 0.74				
6.15 32.58 0.81		*		
0.00 32.58 0.88				
6.15 38.64 0.96		*		
7.69 46.21 1.05		* *		
6.15 52.27 1.14		*		
7.69 59.85 1.25		* *		
3.08 62.88 1.36				
3.08 65.91 1.48	7 0.1723 **			
6.15 71.97 1.62	1 0.2099 ***	*		
3.08 75.00 1.76	8 0.2475 **			
4.62 79.55 1.92	8 0.2851 ***			
0.00 79.55 2.10				
3.08 82.58 2.29				
1.54 84.09 2.49				
1.54 85.61 2.72				
1.54 87.12 2.97				
3.08 90.15 3.24				
0.00 90.15 3.53				
$0.00 \ 90.15 \ 3.85$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
4.6294.704.583.0897.734.99	0.0000			
0.00 97.73 5.44				
$0.00\ 97.73$ 5.93				
$1.54 \ 99.24 \ 6.47$				
	0	1	2 3	4
	Ŭ			


ARSENIC STATISTICS


Variable = A	As	Unit	=	ppm		Ν	=	80
Std. Dev. =	130.087 134.632 103.493		=	$6.000 \\ 658.000 \\ 1.889$		Quartile Median Quartile	=	$42.000 \\ 74.000 \\ 204.000$
======================================	cls int		===== (# of	======================================	====== 20 -	bin size	==== 9 =	34.316)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.158 23.158 57.474 91.789 126.105 160.421 194.737 229.053 263.368 297.684 332.000 366.316 400.632 434.947 469.263 503.579 537.895 572.211 606.526 640.842 675.158	3		* * * * * * * * *		* * *		
		0		1		2	3	4

	Varia	able =	As	Uni	t =	ppm		N =	80
	Std. I	Dev. =	$1.9106 \\ 0.4346 \\ 22.7482$	Mi Ma Skewnes	n = x = s =	0.7782 2.8182 -0.0334	lst Quar Me 3rd Quar	dian =	1.6232 1.8692 2.3096
		Anti	i-Log Mean	= 81.4	00	Anti-Log	Std. Dev	. : (-) (+)	
	======	e=====================================	antilog	cls int	===== (# o	f bins = 2	======================================	======= size =	0.1074)
х. К.	$\begin{array}{c} 1.25\\ 0.00\\ 1.25\\ 1.25\\ 2.50\\ 3.75\\ 5.00\\ 6.25\\ 10.00\\ 12.50\\ 10.00\\ 8.75\\ 3.75\\ 5.00\\ 10.00\\ 7.50\\ 3.75\end{array}$	$\begin{array}{r} 43.83 \\ 53.70 \\ 62.35 \\ 66.05 \\ 70.99 \end{array}$	5.302 6.789 8.694 11.132 14.255 18.253 23.372 29.928 38.322 49.070 62.833 80.456 103.023 131.918 168.919 216.297 276.964 354.646 454.117	0.7245 0.8318 0.9392 1.0466 1.1540 1.2613 1.3687 1.4761 1.5834 1.6908 1.7982 1.9056 2.0129 2.1203 2.2277 2.3351 2.4424 2.5498 2.6572	* *************************************	* * * * * * * * * * * * * * *			
		96.91 99.38	581.487 744.581	2.7645 2.8719	**				
					0	1	2	3	4

GOLD STATISTICS



Variable = Au	Unit =	ppb		N =	76
Mean = 11.434 Std. Dev. = 37.868 CV % = 331.178	Min = Max = Skewness =	$1.000 \\ 279.000 \\ 5.638$	lst Quarti Medi 3rd Quarti	le = an = le =	$2.000 \\ 3.000 \\ 5.000$
% cum % cls int	======================================	of bins = 1	9 - bin s	====== ize =	=======================================
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	**** * * *		****	****	> 66
	0	1	2	3	4

Vari	able = A	\u	Uni	t =	ppb		N =	76
Std.	Dev. =	0.4787	Mi Ma Skewnes	x =	2.4456	1st Quart: Med: 3rd Quart:	ian =	0.4771
	Anti-	-Log Mean	= 3.6	64	Anti-Log	Std. Dev.		$\begin{array}{c}1.217\\11.032\end{array}$
s====	=======		==========	_ = = = = = =	============	=======================================		=======================================
%		0		•		9 - bin s		
	0 65	0.855	-0.0679					
		1.169	0.0679	****	* * * * * * * *			
			0.2038					
			0.3397	* * * * *	********	* *		
		2.989	0.4755					
28.95	66.88	4.087	0.6114	****	*******	* * * * * * * *		
10.53	77.27	5.588	0.7473	* * * * *	* * *			
6.58	83.77	7.641	0.8831	****				
		10.447	1.0190	* * * *				
		14.285	1.1549	* *				
	91.56	19.531	1.2907					
	95.45	26.706	1.4266	* * *				
	95.45	36.515	1.5625					
	95.45	49.927	1.6983					
	95.45	68.266	1.8342					
	95.45	93.340	1.9701					
		127.625	2.1059					
	98.05	174.503	2.2418	* *				
		238.600	2.3777	-				
1.32	99.35	326.240	2.5135	*				
			(0	1	2	3	4

DATA CORRELATION ANALYSIS

DATE : 11-05-96 TIME : 09:03:40

•

NORTHWEST GEOLOGICAL CONSULTING LTD.

BLUE SHEEP PROPERTY

NORMAL DATA CORRELATION ANALYSIS

BASED ON PEARSON CORRELATION MATRIX

using data for years >> 96, using all traverses

PRIMARY FIELDS

		$C\mathbf{u}$	Pb	Zn	Ag	As	Au
		Acme	Acme	Acme	Acme	Acme	Acme
	Cu	1.000					
	# SAMPLES	81					
	Pb	0.729	1.000				
	# SAMPLES	81	81				
	Zn	0.630	0,797	1.000			
	# SAMPLES	81	81	81			
	Ag	0.641	0.654	0.564	1.000		
	# SAMPLES	70	70	70	70		
	As	0.331	0.354	0.281	0.743	1.000	
1	# SAMPLES	81	81	81	70	81	
	-		-			_	
	Au	0.438	0.370	0.293	0.738	0.581	1.000
i	# SAMPLES	75	75	75	66	75	75
		-					

DATE : 11-05-96 TIME : 09:03:41

•

NORTHWEST GEOLOGICAL CONSULTING LTD.

BLUE SHEEP PROPERTY

LOG-TRANSFORMED DATA CORRELATION ANALYSIS

BASED ON PEARSON CORRELATION MATRIX

using data for years >> 96, using all traverses

PRIMARY FIELDS

		Cu	Pb	Zn	Ag	As	Au
#	Cu SAMPLES	Acme 1.000 81	Acme	Acme	Acme	Acme	Acme
#	Pb SAMPLES	$\substack{0.385\\81}$	$\begin{smallmatrix}1.000\\81\end{smallmatrix}$				
#	Zn SAMPLES	$\begin{smallmatrix}0.385\\81\end{smallmatrix}$	$\begin{array}{c} 0.792 \\ 81 \end{array}$	$\begin{array}{c} 1.000\\ 81 \end{array}$			
#	Ag SAMPLES	$\begin{array}{c} 0.229 \\ 70 \end{array}$	$\begin{array}{c} 0.341 \\ 70 \end{array}$	$\begin{array}{c} 0.199 \\ 70 \end{array}$	$\begin{array}{c}1.000\\70\end{array}$		
#	As SAMPLES	$\begin{array}{c} 0.333\\ 81 \end{array}$	0.593 81	0.326 81	0.357 70	$\begin{array}{c}1.000\\81\end{array}$	
#	Au SAMPLES	$\begin{array}{r} 0.241 \\ 75 \end{array}$	$\begin{array}{c} 0.206 \\ 75 \end{array}$	$\begin{array}{r} 0.082 \\ 75 \end{array}$	$\begin{array}{c} 0.579 \\ 66 \end{array}$	$\begin{array}{c} 0.499 \\ 75 \end{array}$	$1.000 \\ 75$

•

NORTHWEST GEOLOGICAL CONSULTING LTD.

BLUE SHEEP PROPERTY

NORMAL DATA CORRELATION ANALYSIS

PRIMARY FIELDS

SLOPE AND INTERCEPT PARAMETERS

Y-AX	(IS ==	> Cu	Pb	Zn	Ag	As	Au
		Acme	Acme	Acme	Acme	Acme	Acme
X-AXI							
		1.000					
B>	Cu	0.000					
M>	Pb	0.034	1.000				
B>	Pb	17.578	0.000				
M>	Zn	0.030	0.822	1.000			
B>	Zn	11.581	-121.224	0.000			
M>	Ag	5.987	128.422	111.366	1.000		
B>	Ag	22.672	281.911	583.472	0.000		
M>	As	0.037	0.855	0.658	0.009	1.000	
B>	As	30.153	415.696	720.213	0.890	0.000	
M>	Au	0.444	7.993	6.418	0.080	5.162	1.000
B>	Au	32.226	494.370	758.807	1.764	126.111	0.000

DATE : 11-05-96 TIME : 09:03:41

•

NORTHWEST GEOLOGICAL CONSULTING LTD.

BLUE SHEEP PROPERTY

LOG-TRANSFORMED DATA CORRELATION ANALYSIS

PRIMARY FIELDS

SLOPE AND INTERCEPT PARAMETERS

Y-AX	IS ==>	Cu	Pb	Zn	Ag	As	Au
		Acme	Acme	Acme	Acme	Acme	Acme
X-AXIS	S						
M>	Cu	0.000					
B>	Cu	1.000					
м.	DL	1 054	0 000				
M>		1.954	0.000				
B>	Pb	0.240	1.000				
	_						
M>	Zn	1.312	-0.929	0.000			
B>	Zn	0.316	1.046	1.000			
M>		3.272	5.657	6.301	0.000		
B- >	Ag	0.318	0.735	0.489	1.000		
M>	As	2.393	3.068	5.269	-0.629	0.000	
B>	As	0.210	0.599	0.250	0.210	1.000	
M>	Au	3.020	5.295	6.162	-0.323	3.742	0.000
B>	Au	0.251	0.363	0.155	0.507	0.638	1.000

Appendix C

ROCK SAMPLE DESCRIPTIONS

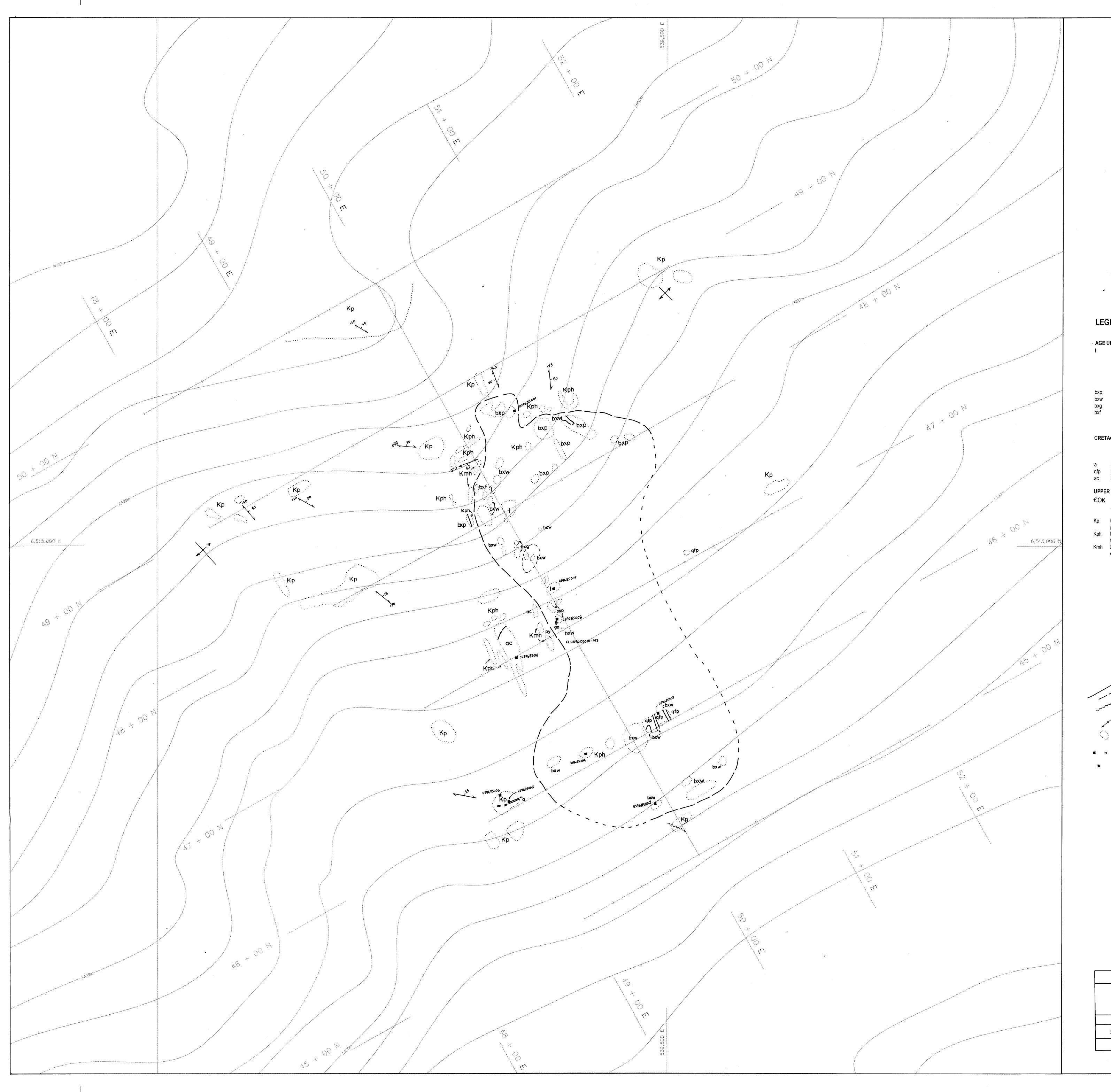
Blue Sheep Property Rock Sample Descriptions

Sample Number Description					
US96BS001	white, bleached rock (breccia?) with mariposite and trace galena				
US96BS002	pyrite and magnetite bearing, grey quartz porphyry fragments in polymictic breccia				
US96BS003	pale brown weathering, pale grey-green, pyritic, quartz-feldspar porphyry				
US96BS004	pale brown weathering, thinly laminated, siliceous hornfels (phyllite?)				
US96BS005	beige weathering, aplite				
US96BS006	grey phyllite taken as a comparison of the bleached hornfels				
US96BS007	white, amygdaloidal intrusive?, dyke?, a massive textured rock in outcrop, some amygdules are calcite filled, some fragments evident				
US96BS008	chocolate brown weathering fragment taken from polymictic breccia, appears to be an altered basic dyke fragment				
US96BS009	chocolate brown weathering, grey-green basic lamprophyre, weak alteration, magnetic				
US96BS010	white altered breccia made up primarily of matrix, mariposite in matrix				
US96BS011 to US96BS013 talus fragments					

Appendix D

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS


I, Uwe Schmidt, of 656 Foresthill Place, Port Moody, B.C. do hereby declare:

- (1) I am a consulting geologist and controlling shareholder of Northwest Geological Consulting Ltd.
- (2) I am a 1971 graduate of the University of British Columbia with a B.Sc. degree in Geology.
- (3) I am a member of The Association of Professional Engineers and Geoscientists of British Columbia and a Fellow of the Geological Association of Canada.
- (4) I have practised my profession continuously since graduation.
- (5) This report is based on work carried out by me or by workers under my supervision.

SIO RECVINCE U. SCHMIDT ਼ਿਸ਼ ਨਿੱਸ COLUMBIA SCIEN Uwe Schmidt, B. Sc., F Geo.

.

November 8, 1996 Port Moody, B.C.

LEGEND

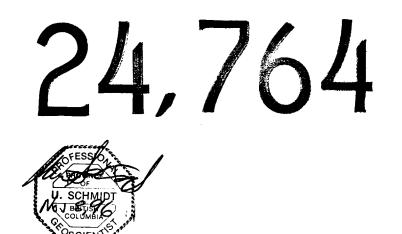
AGE UNKNOWN Gabbroic Lamprophyre dykes: red-brown weathering, magnetite bearing, dark green dykes and sills; also occurs as pale brown, carbonate altered fragments in Breccia unit Breccia bxp Delymictic Breccia: breccia with shale and phyllite fragments bxw D White Breccia: white (kaolinized?) matrix, +/- mariposite bxg Green Breccia: pale green (chloritic?) matrix bxf Flow-Banded Breccia: pale green matrix, flow-banded texture CRETACEOUS? Igneous Rocks aplite and porphyritic dykes and sills a Aplite: beige to pale brown weathering qfp Feldspar-Quartz Porphyry: kaolinized dykes and sills ac Amygdaloidal, Calcareous Intrusive: white, kaolinized? UPPER CAMBRIAN TO LOWER ORDOVICIAN €OK KECHIKA GROUP: argillaceous limestone, calcareous shale, limestone, shale Kp Departure Representation Phyllite: silver-grey phyllite with quartz-carbonate segregations parallel to foliation

- Kph Phyllitic Homfels: beige to pale brown weathering, thinly laminated, siliceous
 Kmh Massive Homfels: beige to pale brown weathering, pyritic, with fine grained, altered fragments?

Symbols

کہ

¥


- Geological Boundary: defined, inferred, assumed
- Fault: defined, inferred
- Foliation: vertical, inclined
- outcrop, sub-outcrop

rock sample location: bedrock, float (sample no.)

mineralized occurrence: py pyrite

gn galena

ATNA RESOURCES LTD. Blue Sheep Property GEOLOGY Northwest Geological Consulting Ltd. NTS Date Fig. Scale 1:1000 104 I/16 Nov. 96 3

