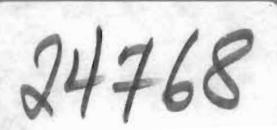
ASSESSMENT REPORT

OF

1996 SUMMER AND FALL DRILL PROGRAMS

R.BELL PROPERTY


(for filling on the Pac 96, Glenside 96 and Summit 96 Groups)

NTS 82E/2 E

Lat: 49° 07' 00"N Long: 118° 31' 12"W

Kettle River Resources Ltd. Box 130, 330 Copper St. Greenwood, B.C. VUH 1J0

Linda Caron, P. Eng. January, 1997

ASSESSMENT REPORT

on

1996 SUMMER AND FALL DRILL PROGRAMS

R.BELL PROPERTY

(for filing on the Pac 96, Glenside 96 and Summit 96 Groups)

NTS 82E/2 E

Lat: 49° 07' 00"N Long: 118° 31' 12"W

Kettle River Resources Ltd. Box 130, 330 Copper St. Greenwood, B.C. V0H 1J0

Linda Caron, P. Eng. January, 1997

TABLE OF CONTENTS

			Page
1.0	SUMMA	ARY	1
2.0	INTROE	DUCTION	2
	2.2 Pro 2.3 Hist	cation, Access and Terrain perty and Ownership tory mmary of Current Work Program	2 2 4 5
3.0	GEOLO	GY AND STRUCTURE	6
4.0	DRILLIN	NG	7
5.0	CONCL	USIONS AND RECOMMENDATIONS	10
6.0	REFER	ENCES	11
		LIST OF FIGURES	
Figure	1 - Locat	ion Map	Page aft p. 2
Figure	2 - Claim	п Мар	aft p. 2
Figure	3 - Drill H	Hole Location Map	aft p. 7
		LIST OF APPENDICES	
APPEN	NDIX 1	Diamond Drill Logs	
APPEN	NDIX 2	Analytical Results	
APPEN	NDIX 3	Cost Statement	
APPE	NDIX 4	Statement of Qualifications	

1.0 SUMMARY

The R.Bell property (Crown Grant L.1506) is located in Southern B.C., about 11 kilometres west of Greenwood. The property is underlain by rocks of the Triassic Brooklyn Formation, located in the uppermost thrust slice in the Greenwood Camp and is part of the B.C. Basin, which hosts the thickest sequence of Brooklyn rocks exposed in the area. Detailed property scale mapping and sampling of surface and underground exposures on the R.Bell property was done during 1996 by Kettle River Resources.

Copper skarn-type mineralization, which has been the target of historic work on the property occurs within epidotized and pyritic Brooklyn volcanic rocks and in massive epidote-garnet skarn near the contact with (underlying) Brooklyn limestone. To a lesser extent, skarn type mineralization occurs within the limestone. A number of low angle Tertiary dykes are seen cutting the older rocks. Copper mineralization is controlled by a major structure, striking approximately north-south and dipping moderate to steeply east. Anomalous gold, silver and zinc accompany the copper mineralization, Massive magnetite/manganese skarn also occurs, without significant base or precious metal values.

Follow-up to anomalous gold soil values adjacent to known skarn mineralization resulted in the discovery of a new limestone hosted gold zone, about 75 metres north of the main copper skarn workings. High grade gold occurs as irregular patches and discontinuous veins, in a zone of silicified limestone, about 10 metres wide. The average grade across the zone is 0.287 oz/t, with areas within this larger zone grading in excess of 3 oz/t Au. There are no other elements anomalous within the gold zone. On a small scale, controls to mineralization are difficult to determine - in some cases the steep north-south bedding has controlled emplacement of silica-gold rich fluids, other places low angle cross-cutting faults appear to be important. The overall controls to the mineralized zone are equally unclear.

Elsewhere on the property, a number of steep, north-trending structures cut Brooklyn limestone. Silicification, brecciation, pyrite mineralization and anomalous gold values on surface are associated with several of these structures. In other cases, the limestone is cherty and more susceptible to shattering and crackling where cut by these structures with little introduction of silica.

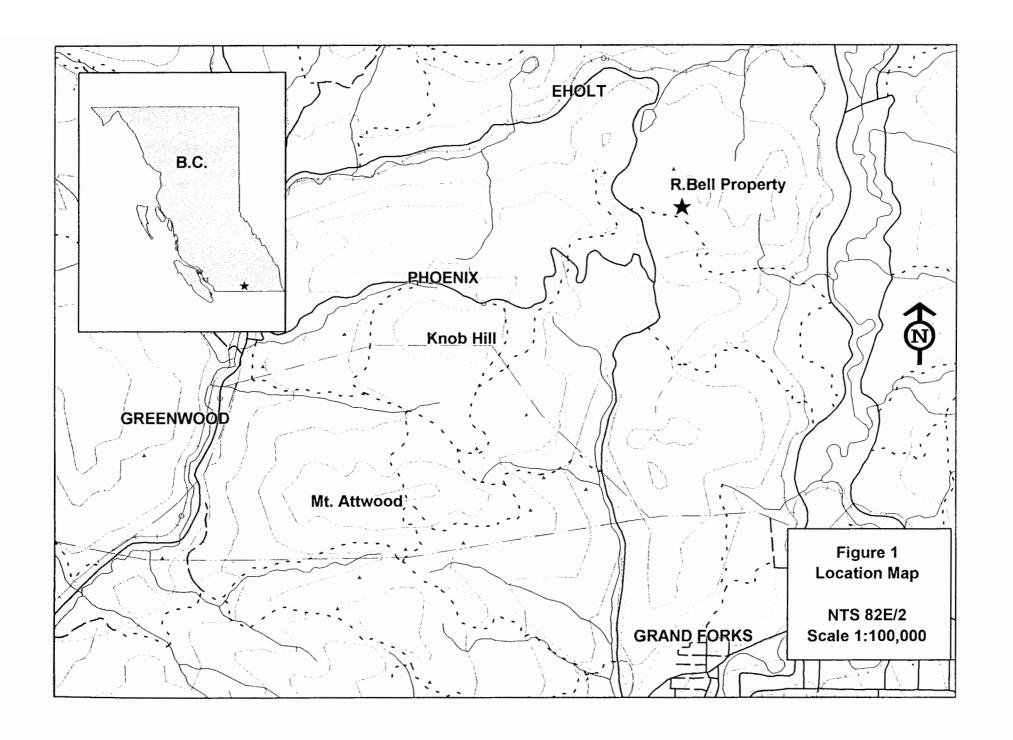
A 3,534 foot, 14 hole drill program was completed in July, August and September of 1996, to test the gold zone, and the three nearby silicified zones, as described in this report. In the vicinity of the gold zone, alteration and mineralization in the drill holes appears to be strongly associated with low angle Tertiary dyking. The dykes often appear to act as dams below which fluids have pooled, however these zones of silicification, brecciation and pyrite flooding are rarely elevated in gold. The highest value returned from one such zone was 802 ppb from Hole 96K-9. There was no visual or geochemical evidence that the zone trenched on surface had been intersected in any of the drill holes, nor are the controls or attitude of this zone apparent. No strongly anomalous results were obtained from the other zones tested by drilling, and it appears that, in some cases, crackling and brecciation is a result of structures cutting brittle cherty limestone and that the amount of introduced silica is minimal. In other cases, introduced silica is apparent, however there are no associated precious metal values.

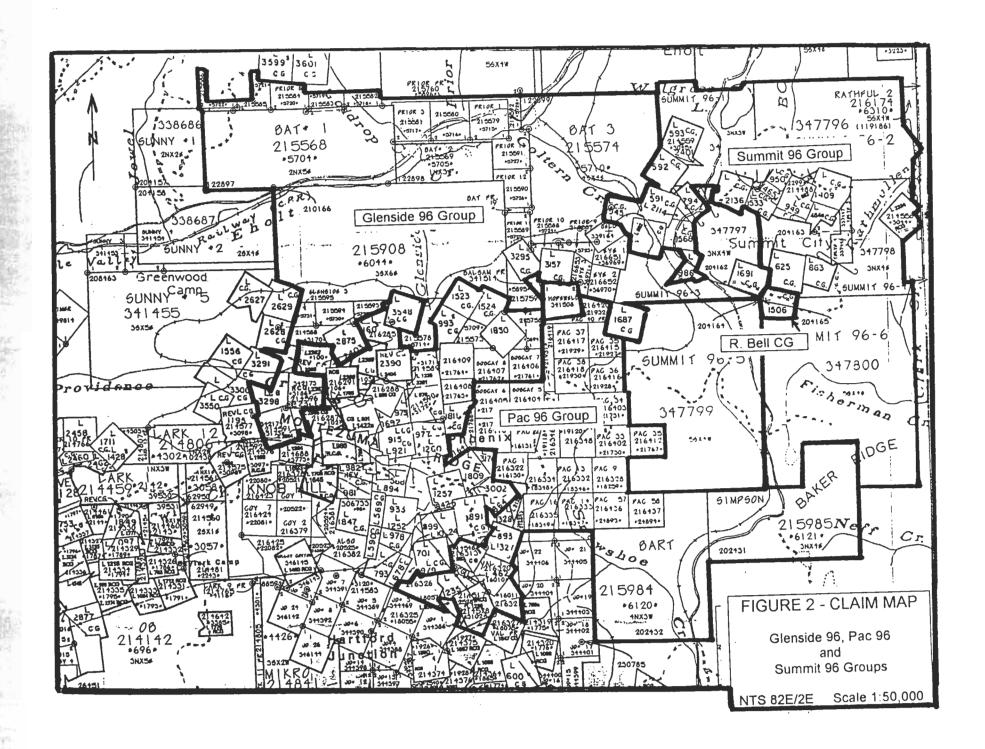
Further detailed surface work is recommended in the vicinity of the trenched gold zone, especially very detailed structural mapping to attempt to define the ore controls prior to any further attempt to test the downwards extension of the zone.

2.0 INTRODUCTION

2.1 Location, Access and Terrain

Work described in this report was done on the R.Bell Crown Grant (L 1506), located about 11 kilometres east of Greenwood, as shown on Figure 1. The claim is situated about 0.5 km east of Highway 3 and 2 km south of Wilgress Lake, on a moderate, open southwest facing slope immediately east of Fisherman Creek. There is excellent access to the property via an old mining and logging road leaving Highway 3 in a large pullout, about 2.5 km south of Wilgress Lake.


The R. Bell property is situated at an elevation of about 1000 metres. The property is, for the most part, an open grassy slope with minimal trees or brush. Except during very dry summers, water is available for drilling from Fisherman Creek.


2.2 Property and Ownership

For the purposes of filing assessment work, the R. Bell claim has been grouped three ways and a portion of the total work filed onto each group. The three groups are described below and shown on Figure 2. A single report has been prepared to describe the work program. All claims are owned 100% by Kettle River Resources Ltd and are part of a larger land package in the Phoenix - Eholt area.

Glenside 96 Group

CLAIM NAME	TENURE #	TYPE	UNITS	EXPIRY
DENVER	CG2875	CG	1	
DEXTER FR	CG3298	CG	1	
ERWIN	CG1691	CG	<u> </u>	
PILOT	CG3297	CG	1	
R. BELL	CG1506	CG	[1	
BULLION FR.	214589	LOCATED	1	23/08/2003
CRACKER JACK 1 FR	214591	LOCATED	1	23/08/2003
EYE 1 FR	216651	LOCATED	1	28/01/2003
EYE 2 FR	216652	LOCATED	1	28/01/2003
EYE 3 FR	216653	LOCATED	1	28/01/2003
PIPE 5 FR	214588	LOCATED	1	23/08/2003
BAT #1	215568	LOCATED	10	19/03/2004
BAT #2	215569	LOCATED	3	23/03/2004
BAT #3	215574	LOCATED	16	23/03/2004
PRIOR #1	215579	LOCATED	1	22/03/2004
PRIOR #2	215580	LOCATED	1	22/03/2004
PRIOR #3	215581	LOCATED	1	22/03/2004
PRIOR #4	215582	LOCATED	1	22/03/2004
PRIOR #5	215583	LOCATED	1	22/03/2004
PRIOR #6	215584	LOCATED	1	22/03/2004
PRIOR #7	215585	LOCATED	1	22/03/2004
PRIOR #8	215586	LOCATED]1	22/03/2004
PRI0R #9	215587	LOCATED	1	23/03/2004
PRIOR 10	215588	LOCATED	1	23/03/2004
PRIOR 11	215589	LOCATED	1	23/03/2004
PRIOR 12	215590	LOCATED	1	23/03/2004
PRIOR 13	215591	LOCATED	1	23/03/2004
PRIOR 14	215592	LOCATED	1	23/03/2004
GLENSIDE 1	215593	LOCATED	1	28/03/2003
GLENSIDE 2	215594	LOCATED	1	28/03/2003

Glenside 96 Group, cont...

CLAIM NAME	TENURE #	TYPE	UNITS	EXPIRY
GLENSIDE 3	215595	LOCATED	1	28/03/2003
GLENSIDE FR	215578	LOCATED	1	28/03/2003
GLENSIDE 2 FR	215573	LOCATED	1	28/03/2002
COLTHERN FR	215759	LOCATED	1	20/06/2003
PRIOR FR.	215760	LOCATED	1	08/06/2004
BAT FRACTION	215909	LOCATED	1	27/08/2004
BAT 4	215908	LOCATED	18	27/08/2004
BELL	339164	LOCATED	1	10/08/2004
HOPEWELL	341508	LOCATED	1	02/11/2003
BALSAM FR.	341514	LOCATED	1	02/11/2003
LITTLE BURNE	342173	LOCATED	1	16/11/2004
LEWELLAH	342174	LOCATED	1	16/11/2004
SUMMIT 96-3	347797	LOCATED	12	05/07/2003

Pac 96 Group

CLAIM NAME	TENURE #	TYPE	UNITS	EXPIRY
R. BELL	CG1506	CG	1	
BANK OF ENGLAND	CG1235	CG	1	
FAIRPLAY FR.	CG1328	CG		
YELLOW JACKET	CG1327	CG	1	
BOBCAT #5	216404	LOCATED	1	07/07/2003
BOBCAT #6	216405	LOCATED	1	07/07/2003
BOBCAT #11 FR.	216410	LOCATED	1	07/07/2003
BOBCAT #12 FR	216411	LOCATED	1	07/07/2003
BOBCAT NO 1	216346	LOCATED	1	13/06/2003
BOBCAT NO 2	216347	LOCATED	1	13/06/2003
BOBCAT NO 3	216348	LOCATED	1	13/06/2003
BOBCAT NO 4	216349	LOCATED	1	13/06/2003
PAC 13	216332	LOCATED	1	08/09/2003
PAC 14	216333	LOCATED	1	08/09/2003
PAC 15	216334	LOCATED	1	08/09/2003
PAC 16	216335	LOCATED	1	08/09/2003
PAC 35	216415	LOCATED	1	12/08/2002
PAC 36	216416	LOCATED	1	12/08/2002
PAC 37	216417	LOCATED	1	12/08/2002
PAC 38	216418	LOCATED	1	12/08/2002
PAC 39 FR	216419	LOCATED	1	12/08/2002
PAC 40 FR	216420	LOCATED	1	12/08/2002
PAC #1	216322	LOCATED	1	03/04/2003
PAC #2	216323	LOCATED	1	03/04/2003
PAC #33 FR	216402	LOCATED	1	25/06/2003
PAC #34 FR	216403	LOCATED	1	25/06/2003
PAC #35	216412	LOCATED	1	07/07/2003
PAC #57	216436	LOCATED	1	19/12/2003
PAC #58	216437	LOCATED	1	19/12/2003
PAC #60	216643	LOCATED	1	20/06/2003
PAC NO 9 FR	216328	LOCATED	1 1	21/06/2003
RAWHIDE FR.	216313	LOCATED]1	12/06/2003
VAL #1	216320	LOCATED	1	20/02/2003
VAL #2 FR	216321	LOCATED	1	20/02/2003
VAL #3 FR	216327	LOCATED	1	01/12/2003
VAL 4 FR	214578	LOCATED	1	18/06/2003
WENDY N0 15 FR	216326	LOCATED	1	26/10/2001
BART	215984	LOCATED	12	13/12/2003

Pac 96 Group, Cont...

CLAIM NAME	TENURE #	TYPE	UNITS	EXPIRY
SIMPSON	215985	LOCATED	12	10/12/2003
HOPEWELL	341508	LOCATED	1	02/11/2003
BALSAM FR.	341514	LOCATED	1	02/11/2003
SUMMIT 96-5	347799	LOCATED	20	05/07/2003

Summit 96 Group

CLAIM NAME	TENURE #	TYPE	UNITS	EXPIRY
CORDICK	CG625	CG	1	
DUPLICATE	CG863	CG	1	
R. BELL	CG1506	CG	1	
DAISY FR	214488	REV CG	1	26/06/2003
ELMER NO 2	214558	REV CG	1	05/04/2003
JUMBO FR.	214559	REV CG	1	05/04/2003
SUMMIT 96-1	347795	LOCATED	9	09/07/2003
SUMMIT 96-2	347796	LOCATED	15	09/07/2003
SUMMIT 96-3	347797	LOCATED	12	05/07/2003
SUMMIT 96-4	347798	LOCATED	12	04/07/2003
SUMMIT 96-5	347799	LOCATED	20	05/07/2003
SUMMIT 96-6	347800	LOCATED	20	05/07/2003

^{*} Expiry dates listed are after filing this report.

2.3 History

The R. Bell crown grant is situated immediately north of the historic Summit City at the headwaters of Fisherman Creek, and is part of the Summit Camp. A considerable amount of work, directed at copper skam-type mineralization, has been done in the camp and on the property, as summarized below. Other more regional studies of geology and mineralization relevant to the R.Bell area are Reisbakken (1970), Peatfield (1978), Seraphim (1956) and Fyles (1990).

1896 - a 100 foot deep shaft was dug on the R.Bell (Minister of Mines Annual Report, 1896 p.578)

1897 - considerable work is reported for the R.Bell, including a 70 foot deep main shaft, a 30 foot shaft and 16 foot cross-cut and a small open cut. The main ledge is said to run north-south, dipping E 60°, consisting of chalcopyrite, pyrite and sphalerite in a dark green volcanic, with some silver and gold values. Massive magnetite is also reported and reference is made to nearby limestone and dyking (Minister of Mines Annual Report, 1897 p.594).

1900 - 200 feet of drifting and sinking done (Minister of Mines Annual Report, 1900 p.870)

1901 - the R.Bell is listed as one of the more important mines in the Grand Forks Mining Division, with approximately 480 tons of ore shipped. Development to date is recorded as 400 feet of sinking and 600 feet of cross-cutting and drifting (Minister of Mines Annual Report, 1901 p.1051,1052,1064)

1902 - 560 tons shipped (Minister of Mines Annual Report, 1905 p.183).

1902 - 1957 - there is no written record of work in this period, although the property was apparently still actively worked during this period.

- 1957 the property was examined, sampled and described in some detail by Carswell (1957), as part of a M.Sc. dissertation on the Summit Camp.
- 1966 a limited ground mag survey was done by Bornite Mines Ltd. (Weymark, 1966)
- 1983 soil sampling and ground mag and VLF was done by Kettle River Resources over the R. Bell crown grant as part of a larger exploration program on the Bluebell property. A good gold anomaly was discovered which was not followed up (Kyba and Daughtry, 1984).
- 1991 minor mapping and rock sampling was done on the R. Bell by Canamax as part of their larger exploration program on the Bluebell property, under option from Kettle River Resources (Hitchins, 1991).
- 1996 Kettle River Resources Ltd. did follow-up soil sampling and detailed geological mapping and rock sampling. A high grade gold zone was found in silicified limestone adjacent to the skarn mineralization which had been the focus of previous exploration. The gold zone was exposed by trenching. The drill program described in this report was then completed.

2.4 Summary of Current Work Program

Fourteen NQ diamond drill holes were drilled from July 17 to September 24, 1996, for a total of 3,534 feet. Drilling was done under contract by Bergeron Drilling of Greenwood, B.C.. Core was logged and sawn for sampling at Kettle River's core facility at Boundary Falls. Logging and sampling was done by L. Caron and core sawing by N. Braam and D. Pazdzierski. Program supervision and drill hole lay-out was done by G. Stewart. A total of 265 core samples were collected and sent to Min-En Labs in Vancouver for preparation and 30 element ICP plus Au analysis.

3.0 GEOLOGY AND STUCTURE

The Greenwood area has been mapped on a regional basis by Fyles (1990), and prior to this, by Little (1983) and Church (1986). Fyles' mapping shows the pre-Tertiary rocks form a series of thrust slices, which lie above a basement high grade metamorphic complex. A total of at least five thrust slices are recognised, all dipping gently to the north, and marked in many places by bodies of serpentine. Fyles' interprets these serpentinite bodies as representing part of a disrupted ophiolite suite, belonging to the Knob Hill Group of late Paleozoic age. Commonly, these serpentinite bodies have undergone Fecarbonate alteration to listwanite, as a result of the thrusting event.

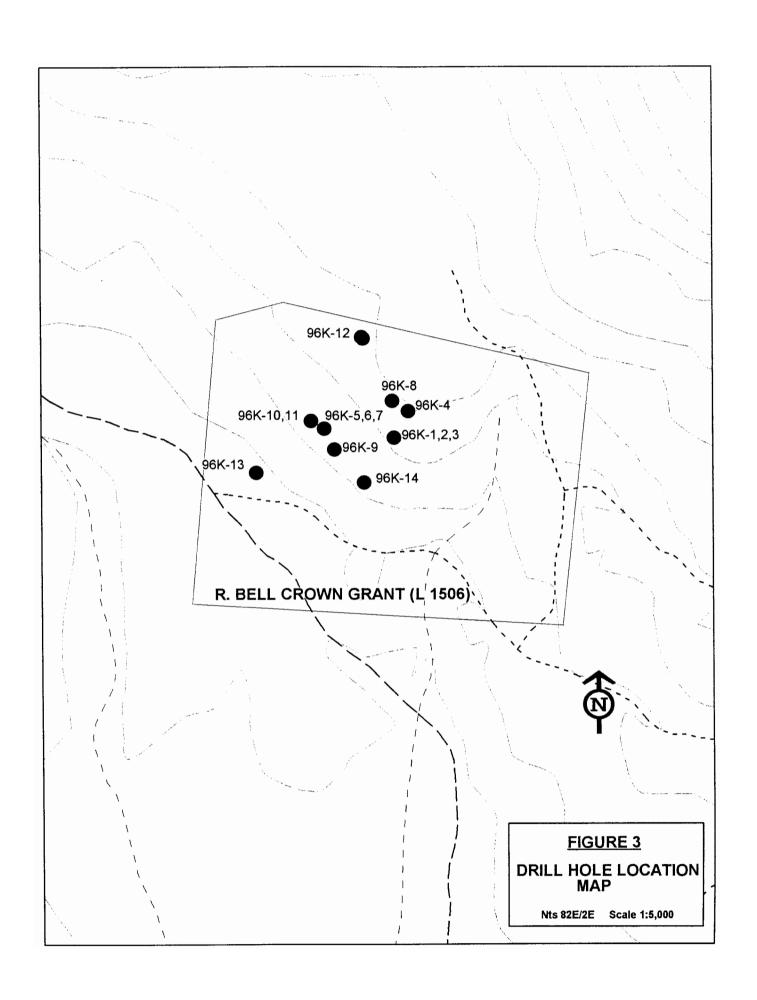
The oldest rocks in the camp belong to the late Paleozic Knob Hill Group of dominantly volcanic affinity, and consist mainly of chert, greenstone and related intrusives, and serpentine. Overlying these rocks are sediments and volcanics (largely argillite, siltstone, limestone and andesite) of the late Paleozic Attwood Group. In many cases evidence for thrusting is seen by the older Knob Hill Group rocks resting over the younger Attwood Group rocks. Rocks of the Knob Hill and Attwood Groups are unconformably overlain by the Triassic Brooklyn Formation, represented largely by limestone, clastic sediments and pyroclastics. The historically important skarn deposits in the Greenwood area (i.e. Phoenix, Oro Denoro, Motherlode-Greyhound) area hosted within the Triassic rocks.

Three separate intrusive events are known regionally to cut the above sequence, the probable Jurassic aged Lexington porphyry, the Cretaceous Nelson intrusives, and the Eocene Coryell pulaskite dykes and stocks. Tertiary sediments and volcanics unconformably overly the older rocks with the distribution of these Tertiary rocks largely controlled by series of north-south trending faults which form The Toroda Creek graben in the western portion of the map area, and the Republic graben in the east.

The R. Bell property is underlain by rocks of the Triassic Brooklyn Formation, located in the uppermost thrust slice in the Greenwood Camp, in what is referred to as the B.C. Basin. The B.C. Basin hosts the thickest sequence of Brooklyn rocks exposed in the Greenwood area. A number of significant mineral occurrences are located within the basin, and have historically been categorised as the Summit Camp. The mineral occurrences include true copper skarn type deposits, such as the Oro Denoro, which have strong structural controls and cross-cut stratigraphy, as well as more controversial deposits such as the Emma and B.C. Mine. Here massive sulfides (with high precious metal content) are stratabound and have many similarities to massive sulfide type deposits. This model is supported by stratabound zinc type mineralization at the Cyclops and Rathmullen showings, as well as mineralization at the Lancashire Lass and possibly Bluebell showings. The deposits may also, however, be skarn related.

Detailed property scale mapping and sampling of surface and underground exposures on the R.Bell property was done during 1996 by Kettle River Resources. Copper skarn-type mineralization, which has been the target of historic work on the property occurs within epidotized and pyritic Brooklyn volcanic rocks and in massive epidote-garnet skarn near the contact with (underlying) Brooklyn limestone. To a lesser extent, skarn type mineralization occurs within the limestone. A number of low angle Tertiary dykes are seen cutting the older rocks. Copper mineralization is controlled by a major structure, striking approximately north-south and dipping moderate to steeply east. Anomalous gold, silver and zinc accompany the copper mineralization, Massive magnetite/manganese skarn also occurs, without significant base or precious metal values.

Follow-up to anomalous gold soil values adjacent to known skarn mineralization resulted in the discovery of a new limestone hosted gold zone, about 75 metres north of the main copper skarn workings. High grade gold occurs as irregular patches and discontinuous veins, in a zone of silicified limestone, about 10 metres wide. The average grade across the zone is 0.287 oz/t, with areas within this larger zone grading in excess of 3 oz/t Au. There are no other elements anomalous within the gold zone. On a small scale, controls to mineralization are difficult to determine - in some cases the steep north-south bedding has controlled emplacement of silica-gold rich fluids, other places low angle cross-cutting faults appear to be important. The overall controls to the mineralized zone are equally unclear.


Elsewhere on the property, a number of steep, north-trending structures cut Brooklyn limestone. Silicification, brecciation, pyrite mineralization and anomalous gold values are associated with several of these structures. In other cases, the limestone is cherty and more susceptible to shattering and crackling where cut by these structures, however there is little introduced silica.

4.0 DRILLING

Fourteen holes were drilled during July, August and September, 1996 as described below. Drill hole locations are plotted on Figure 3 and logs are included in Appendix 1. Analytical results for core samples are contained in Appendix 2. A total of 3,534 feet were drilled, and 265 samples submitted for 30 element ICP plus 30 gram, Fire Geochem - AA Finish gold analysis. Drill hole specifications and coordinates are tabulated below.

Drill Hole	UTM Co-ordinates	Azimuth	Dip	Depth (feet)
96K-01	5,441,983.42 N 388,595.8 E	275°	-46.5°	212'
96K-02	5,441,983.53 N 388,597.35 E	275°	-65°	255'
96K-03	5,441,983.32 N 388,598.03 E	275°	-76.5°	572'
96K-04	5,442,013.9 N 388,615.51 E	269°	-66.5°	332'
96K-05	5,441,988.56 N 388,506.3 E	097°	-40°	276'
96K-06	5,441,988.71 N 388,504.77 E	097°	-65°	112'
96K-07	5,441,988.86 N 388,503.59 E	n/a	-90°	133'
96K-08	5,442,027.14 N 388,595.42 E	165°	-45°	137'
96K-09	5,441,965.66 N 388,518.22 E	147°	-43°	280'
96K-10	5,442,000.14 N 388,491.00 E	322°	-45°	170'
96K-11	5,441,999.56 N 388,491.78 E	322°	-65°	239'
96K-12	5,442,109.33 N 388,558.05 E	289°	-45°	246'
96K-13	5,441,934.2 N 388,416.82 E	278°	-45°	220'
96K-14	5,441,921.64 N 388,559.34 E	009°	-40°	350'

Holes 96K-1, -2, and -3 were collared about 25 metres east of the gold zone exposed by trenching on surface, and drilled beneath the zone to test it at depth. All three holes intersected massive, fine grained, well bedded limestone, with minor interbedded limey fragmental beds which typically have 60% angular clasts of dominantly limestone in a limey matrix. These fragmental beds are commonly weakly skarned. Locally there are zones, within both the limestone and fragmental, of massive magnetite +/- epidote +/- hematite +/- chlorite skarn. The older rocks are cut by late, unaltered Tertiary dykes. Two different dyke types occur, as elsewhere in the camp, a grey medium grained feldspar porphyritic dyke (the "pulaskite" unit), and a later, fine to medium grained, pink, glomeroporphyritic syenite dyke with characteristic brown muddy chill zones. Hole 96K-3 bottomed in a thick zone of medium to coarse grained Tertiary feldspar porphyritic intrusive, cut by numerous later pink syenite dykes. Zones of silicification, crackling, brecciation and pyrite flooding commonly occur in the limestone adjacent to dyke contacts, however none of these zones were anomalous in gold, or in any other element. There was no visible indication that the gold zone exposed on surface had been

intersected in any of the three drill holes, nor was there any geochemical expression of this zone in Holes 96K-1, -2 or -3.

Hole 96K-4 was drilled to test the northern strike extension of the gold zone and was collared about 30 metres north of the first three holes, again drilling to the west. Again the typical sequence of massive, well bedded limestone and minor limey fragmental, cut by two types of Tertiary dykes was encountered. As above, the limestone may be stressed, silicified, brecciated and flooded with pyrite adjacent to dykes but again, these zones show no elevated base or precious metal values. Again there was no evidence of the gold zone in Hole 96K-4.

Holes 96K-5, -6, and -7 were collared about 70 metres west of the gold zone and drilled towards the east, in the same section as 96K-1, -2, and -3, in order to "scissor" the zone. The typical limestone and limey fragmental sequence, cut by two types of Tertiary dyke, and altered and mineralized near dyke contacts, occurs in the holes. Local gritty interbeds in the limestone are common. A section through these six holes exemplifies the low angle of emplacement of the Tertiary dykes, and suggests an east-west striking, shallow north dipping control to mineralization. Again, no elevated values occur in these holes.

Hole 96K-8 was drilled to test the possibility of a shallow northerly plunging trend to the gold zone. It was collared about 50 metres north of the gold trench, and drilled towards the south, but was again unsuccessful in intersecting zones of visually or geochemically similar to that seen on surface.

Hole 96K-9 was designed to test the down slope gold-in-soil anomaly south of the trenched zone, to test the possibility that the anomaly was not due entirely to down slope movement. The hole was set up west of the anomaly, drilling towards the southeast. The typical limestone - Tertiary dyke sequence was intersected. The limestone, which may locally be cherty, shows minor crackling and stress zones, and minor pyrite-magnetite-skarn development associated with late stage dyking. Two samples of anomalous gold (802 and 244 ppb) were returned from zones of silicified and brecciated limestone with pyrite and minor magnetite associated with emplacement of a feldspar porphyry dyke.

Holes 96K-10 and -11 tested a zone of silicification, brecciation and pyrite mineralization with weakly anomalous gold geochemistry from soil and rock sampling, which is exposed on surface about 100 metres west of the trenched gold zone. Well bedded, fine grained limestone and cherty limestone cut by several feldspar porphyry dykes was encountered. A strong silicified, vuggy, brecciated, epithermal zone was intersected from 74 - 102' in Hole 96K-10, and a major fault zone from 148 - 158', however none of these zones, nor any samples from Hole 96K-11, were significantly anomalous in gold or any other elements.

Hole 96K-12 tested a similar siliceous breccia zone, exposed on surface about 130 metres northeast of the zone tested by Holes 96K-10 and -11. This zone appears to be a result of structure cutting a cherty, more brittle section within the limestone, without significant introduction of silica. Typical massive, well bedded limestone was intersected, with a gradational change to black, strongly banded argillaceous limestone at depth and to the west. There were no anomalous results from this hole.

Hole 96K-13 tested the Sleeper Zone, a silicified, vuggy, epithermal vein/structure hosted in limestone and exposed in outcrop along the upper main access road, just east of the fork in the road, as well as testing a high Ag soil anomaly just east of the Sleeper zone. The Sleeper zone was intersected at 189.5' in the hole, where it measured 6.5' in width. The zone was similar to that seen on surface -vuggy, with intense silicification and brecciation, and minor disseminated pyrite, but was not anomalous in precious or base metals. No other zones of interest were intersected in the hole, which drilled through the typical limestone, grit and fragmental units, with an increasing number of tuffaceous volcanic interbeds.

Finally, Hole 96K-14 was drilled to test for a possible south plunge to the trenched gold zone, collaring about 60 metres south of the zone and drilling shallowly to the north, into the hill (essentially parallel to the R.Bell skarn zone, and about 30 metres west of it). Limestone was typical to that seen in other holes, with an increased amount of skarnification. A number of stringers and zones of massive and banded pyrite-magnetite-chlorite-calcite skarn were intersected, with only weakly elevated gold (to 113 ppb) from the skarn zones. There was no evidence of the gold zone in this hole.

In summary, 14 holes were drilled to test the limestone hosted R.Bell gold zone, and three structurally controlled zones of silicification exposed on surface nearby. In the vicinity of the gold zone, alteration and mineralization in the drill holes appears to be strongly associated with low angle Tertiary dyking. These dykes often appear to act as dams below which fluids have pooled, however these silicified, brecciated and pyrite flooded zones are rarely elevated in gold. The highest value returned from one such zone was 802 ppb from Hole 96K-9. There was no visual or geochemical evidence that the zone trenched on surface had been intersected in any of the drill holes, nor are the controls or attitude of this zone apparent. No strongly anomalous results were obtained from the other zones tested by drilling, and it appears that, in some cases, crackling and brecciation is a result of structures cutting brittle cherty limestone and that the amount of introduced silica is minimal. In other cases, introduced silica is apparent, however there are no associated precious metal values.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Results from drilling of the high grade gold zone exposed on surface by trenching, as well as three nearby silicified structures also in Brooklyn limestone, were very disappointing. No highly elevated gold values were obtained from any of the nine drill holes which tested the gold zone, nor from four holes testing silicified structures exposed nearby on surface. Only one significantly anomalous gold value was returned from the program, 802 ppb Au, from Hole 96K-9 which tested the gold-in-soil anomaly down slope from the trenched zone.

Surface mapping and sampling in the vicinity of the gold zone failed to define overall controls to the mineralized zone. Further surface work is recommended in this area, especially very detailed structural mapping to attempt to define these ore controls prior to any further attempt to test the downwards extension of the zone.

6.0 REFERENCES

Carswell, H.T., 1957.

The Geology and Ore Deposits of the Summit Camp, Boundary District, British Columbia, M.Sc. thesis, University of British Columbia.

Church, B.N., 1986.

Geology and Mineralization in the Mount Attwood - Phoenix Area, Greenwood, B.C., BC MEMPR Paper 1986-2.

Fyles, J.T., 1990.

Geology of the Greenwood - Grand Forks Area, British Columbia, NTS 82E/1,2. BC MEMPR Open File 1990-25.

Hitchins, A., 1991.

1990 - 1991 Exploration Summary Report on the Bluebell Property, by Canamax Resources Inc. KRR private company report #686.

Kyba, B. and K. Daughtry, 1984.

Report on the 1983 Exploration Program, Bluebell Joint Venture, April 1984. KRR private company report #145.

Little, H.W., 1983.

Geology of the Greenwood Map area, British Columbia, GSC Paper 79-29.

Peatfield, G.R.P., 1978.

Geologic History and Metallogeny of the Boundary District, Southern British Columbia and Northern Washington, PhD thesis, Queen's University.

Reisbakken, A., 1970.

Detailed Geological Mapping and Interpretation of the Grand Forks-Eholt Area, Boundary District, British Columbia, M.Sc. thesis, University of British Columbia.

Seraphim, R., 1956.

Geology and Copper Deposits of the Boundary District, British Columbia. CIMM vol LJX, pp684-695.

Weymark, W., 1966.

A Preliminary Report on the Magnetic Investigation of the Cordick and R.Bell Mineral Claims, for Bornite Ridge Mines Ltd. KRR private company report #573.

APPENDIX 1 DIAMOND DRILL LOGS

Purpose: R.Bell - Summit Gold Zone - to test zone below Discovery outcrop and Trench 1

Northing: 5,441,983.42 UTM Northing
Easting: 388,595.8 UTM Easting
Azimuth: 275°
Dip: -46.5° (no dip test)
Depth: 212'

Drilled July 17-18, 1996
Drilled by: Bergeron Drilling
Logged by: L. Caron
Core stored at Boundary Falls.

Inte	rval	Rock type	Description			Sai	mple		
From	То			Alteration	Mineralization	Number	From	To	Interval
L							(feet)	(feet)	(feet)
0	16'	Overburden							
16	95'	Fng, massive	<u>16 - 72'</u>		Tr py.				
		Limestone	Fng grey-buff lst, mod hard but can scratch, massive, gen not good bedding, strong fizz.			127801	16	20	4
			16 - 30' greyish colour, bx'd, cut by numerous hairline clear qtz + black chl+py +/- qtz vnlts and vns to 0.5 cm. Minor narrow sealed bx zones. Dom trend of vning/fracturing/bx zones is 50° to C/A. Local perv pinkish colour. Minor rust on fracs.	16 - 30' bx'd, numerous hairline qtz and py/chl vnlts, 30/ft, x-cutting	@ 22' tr red min with py	127802	20	30	10
			30 - 58' Grey fing lst, not bx as above and with lesser hairline qtz	30 - 95' Minor qtz and	-	127803	30	40	10
			and py/chl vnlts. Minor carb and rust on fracs.	py/chl vnlts		127804	40	50	10
			 @ 55' bedding @ 30° to C/A @ 58' 4" orange brown sandy gouge zone 58 - 64' Massive fine buff lst as above 			127805	50	60	10
			64 - 72' Whitish, pale pink, weak-mod cherty lst. Harder than above with minor rusty fracs, minor py, rare vugs. Dom rusty fracs @ 45° to C/A.		64 - 72' 1-2% py, clotty, grainy	127806	60	70	10
			72 - 95' Fng grey lst, well bedded, banded gen @ 30-45° to		@, 72' tr red	27807	70	80	10
			C/A. Strong fizz.		min as @ 22'	127808	80	90	10

						127809	90	95	5
95	116	FP dyke	Pinkish grey, med grained Tertiary FP dyke. 10 % phenos plag, minor Kspar phenos, 5% mafic phenos alt'd to chl, sub-euhedral phenos avg 1-2 mm in fng pinkish Kspar rich mtrx.			127810	95	105	10
			@ 95' Upper contact @ 85° to C/A. 95 - 105' broken, shattered with rusty fracs, weak perv clay/chl, mod carb on fracs.						
			@ 116' Lower contact @ 40-450 to C/A.						
116	212'	Fng, massive well bedded	Pale grey massive fing lst, strong fizz throughout. Locally well bedded. Minor clear qtz vnlts and hairline py/chl vnlts,	Local weak-mod calcsilicate alt'n.	Tr py in black hairline vnlts	127811	116	125	9
		Limestone	gen cut bedding, vnlts 60° to C/A. Local weak-mod calcsilicate alt'n.	calesificate aft n.	with chl	127812	125	135	10
			116 - 157'			127813	135	145	10
			Hairline black vnlts, avg 15-20/ft.			127814	145	157	12
			@ 118' strong bedding @ 30° to C/A, coarser gritty bands show calcsilicate alt'n.						
			157 - 161.5'						
			broken, rusty and yellow/Mn stained fracs, locally vuggy with calcite druse.			127815	157	161.5	4.5
			167, 212			127816	161.5	170	8.5
			157 - 212' Hairline black vnlts avg 5/ft.			127817	170	180	10
			@ 165' bedding @ 15° to C/A			127818	180	190	10
			@ 195' 1.5 cm white- rusty bleached alt'n selvege to frac @ 50° to C/A.			127819	190	200	10
			212' End of Hole			127820	200	212	12

Purpose: R.Bell - Summit Gold Zone - to test zone below Discovery outcrop and Trench 1 in

same section as 96K-1

Northing: 5,441,983.53 UTM Northing
Easting: 388,597.35 UTM Easting
Azimuth: 275°
Dip: -65° (no dip test)
Depth: 255'

Drilled July 18-19, 1996
Drilled by: Bergeron Drilling
Logged by: L. Caron
Core stored at Boundary Falls.

Inte	rval	Rock type	Description			Sa	mple		
From	То			Alteration	Mineralization	Number	From (feet)	To (feet)	Interval (feet)
0	8.5'	Overburden							
8.5	98'	Limestone and	Pale grey massive limestone, fng, stressed and weakly crackled looking. Local well developed bedding and calc	weak calc silicate alt'n	Tr py.	127821	8.5	20	11.5
		interbedded lst agglom.	silicate alteration. Interbedded greenish coarse limestone fragmental (1st agglom unit) with 60% angular clast, dom			127822	20	30	10
			lst, some chert, minor jasper in green fng skarned mtrx. Minor clear qtz vnlts and hairline black py/chl vnlts, as in			127823	30	40	10
			96K-1, avg 5/ft.			127824	40	51	11
			@ 29' bedding @ 40° to C/A						
			36 - 42' lst agglom bed						
			48.5 - 50' 1st agglom bed						
			51 - 53' Yellowish colour, crackled, hard, silic'd	51 - 53' silic'd, rusty		127825	51	53	2
			@ 54' narrow vuggy bx zone, lst frags, py mushy mtrx @ low core angle, about 10° to C/A.	, , , , ,		127851	53	58	5
			@ 55' good bedding @ 70° to C/A.			127852	58	59.5	1.5
	1			<u>58 - 59.5'</u>		127853	59.5	62	2.5
		1	58 - 59.5' Perv pale orange-rust colour, hard. Silic'd,	silic'd, rusty		127854	62	72	10
	1		crackled. Zone @ 50° to C/A.			127855	72	82	10
						127856	82	92	10

			Ten 01 51 7 . 1 1 1 0 000 . 001	T		105055			
			83 - 91.5' Lst agglom bed @ 30° to C/A.			127857	92	98	6
98	130.5	FP dyke	as in 96K-1 95'-116'. Pinkish grey, med grained Tertiary						
			FP dyke. 10 % phenos plag, minor Kspar phenos, 5% mafic						
			phenos alt'd to chl, sub-euhedral phenos avg 1-2 mm in fng						
		ļ	pinkish Kspar rich mtrx.						
		*							
			@ 98' Upper contact @ 60° to C/A.						
			1						
			@ 130.5' 3 cm gougy zone @ lower contact, dark grey-						
		1	green, 50° to C/A.						
130.5	255'	Fng, well	Fng pale grey lst as above but lacking lst agglom interbeds.	Weak-mod	Trpy				
		bedded	Well dev bedding with weak-mod calc silicate development	calcsilicate alt'n.					ĺ
		Limestone	gives coarser beds pref greener look. Hard, locally cherty	Caroninate are in		127858	130.5	137	6.5
		Zimestone	lst, strong fizz. Minor black chl +/- py vnlts, dom @ 45°,			12.050	150.5	•37	0.5
			also xcutting bedding.			127859	137	142	5
		1	130.5 - 137' Vuggy, bx'd and silic'd, grey colour with	130.5 - 137		127037	137	172	
			strong coarse white cc zones as irreg patches and vns to 1	vuggy, strong cc		127860	142	152	10
			cm @ 40° to C/A. Minor rusty fracs.	alt'n, bx'd and		12/800	142	132	10
			cili (d) 40 to C/A. Withor rusty tracs.	silic'd.		127861	152	161	9
	İ		127 1427	sinc'a.		12/801	152	101	9
			137 - 142' strong black chl/py vnlts, 30° to C/A.	1		127072	161	166	_ ا
			@ 142' good bedding @ 50° to C/A.			127862	161	166	5
	1	İ	144 444 P			10000	166		_
	l		161 - 166' Perv pale orange colour, also orange alt'n	<u>161 - 166'</u>		127863	166	171	5
	1	1	selveges to rusty carb fracs, silic'd. Rusty fracs, Vuggy	vuggy, rusty					
			with cc druse and coarse cc vns to 2 cm @ 50 - 60° to C/A.	carb fracs,		127864	171	176	5
	1		Strong xcutting hairline carb and qtz and py/chl vnlts.	silic'd					
			Dom frac trend @ 50° to C/A.			127865	176	179.5	3.5
			176 - 179.5 v broken interval but fairly good recov. Vuggy,	<u> 176 - 179.5</u>		127866	179.5	185	5.5
	1		bx'd, some cc druse, mod rusty fracs.	vuggy, bx'd.		127867	185	190	5
	ŀ								
			179.5 - 195 broken core, rusty fracs, local vuggy zones, cc			127868	190	195	5
	1		druse.						
			@ 195' 4 cm coarse white carb vn @ 70° to C/A.			127869	195	202	7
	İ								
			195 - 255' Pale grey - pale grey green. Massive fng well			127870	202	212	10
			bedded calc silicate alt'd lst. Mm scale bedding @ 40° to			127871	212	222	10
			C/A.			127872	222	232	10
	1		@ 243' v minor vuggy zone, no rust, not broken.			127873	232	242	10
	}					127874	242	255	12
	1		255' End of Hole					1	
	1		255' End of Hole						Ĺ

Purpose: R.Bell - Summit Gold Zone - to test zone below Discovery outcrop and Trench 1 and in same section as 96K-1 and -2

Northing: 5,441,983.32 UTM Northing
Easting: 388,598.03 UTM Easting
Azimuth: 275°
Dip: -76° 30' (no dip test)
Depth: 572'

Drilled July 20-21, 1996
Drilled by: Bergeron Drilling
Logged by: L. Caron
Core stored at Boundary Falls.

Inte	rval	Rock type	Description	Sample	İ					
From	То				Alteration	Mineralization	Number	From (feet)	To (feet)	Interval (feet)
0	7'	Overburden								
7	51'	Limestone		pale grey lst, well bedded. Weak-mod calc- d. Weakly stressed and crackled. Hard,	Weak-mod calc- silicate alt'n.	Tr py, diss & with chl in	127876	7	12	5
			1	od hairline chl/py vnlts.		vnlts.	127877	12	22	10
				ng @ 70° to C/A			127878	22	32	10
	@ 40' bedding @ 45° to C/A 40 - 44' strong xcutting chl/py fracs/vnlts, 30/ft. @ 43' bedding @ 85° to C/A 50.5 - 51' Lst agglomerate bed.						127879	32	42	10
							127880	42	51	9
51	57	Epidote - Hematite Skarn (Volcanic? agglomerate)	Fine grained, grained volc? visible), stron	dark green, rare frags of chert +? in fine-med Xtalline mtrx (rare rem euhedral fsp xtals gly alt'd to epidote-carbonate. Weak-mod em frac coating + zone of perv hem alt'n @	Strong epidote - hematite skarn.	Тг ру	127881	51	57	6
			Lower contac	t @ 50° to C/A.						
57	62.5	Limestone agglomerate	chert clasts, 5 subround-ang mtrx. Minor	ed 1st fragmental unit, 50% 1st clasts, 20% 1st fine grained dark grey volc? clasts, gular, <0.5 cm to > 4 cm in size, in fine limey late carb vns. Weak alignment of g @ 80° to C/A.			127882	57	62.5	5.5

	I		Lower contact @ 50-60° to C/A.						
62.5	90	Limestone + minor interbedded	Fng grey massive lst, pale pinkish tinge - weak calc-silicate alt'n. Weakly stressed and crackled. Med hard, strong fizz. Minor interbeds to 1.5' wide of lst agglom and weak ep/hem			127883	62.5	72	7.5
		lst agglom	lst agglom as above. Minor chl/py hairline fracs/vnlts.			127884	72	82	10
			77-79.5' lst agglom bed @ 45° to C/A. Epidotized / hematitic alt'd mtrx.			127885	82	90	8
			85 - 87' Ist agglom, bed @ 45° to C/A. mod chl/hem alt'n.						
			88 - 88.5' lst agglom, stongly hem alt'd mtrx.						
90	136	FP dyke	Sharp upper contact @ 85° to C/A.						
			Massive dark grey fng dyke, faint pink tinge. 2? Fsp + mafic phyric in Kspar rich mtrx, as in 96K-1 and -2. Local weak bleaching. Gen fresh looking. Minor carb on fracs.			127886	133.5	136	2.5
			133.5 - 136 broken zone, minor py, weak chl alt'n, contains xenoliths of lst.						
			@ 136' irreg lower contact @ 50° to C/A.						
136	257.5	Limestone and interbedded	136 - 150' Fng massive, weak calc-silicate banded lst with interbedded lst agglom, as in 62.5 - 90'	Weak-mod calc- silicate alt'n.	Tr py.	127887	136	141.5	5.5
		Lst agglom	136 - 137.5 lst agglom bed @ 45° to C/A	136 - 146'	<u>136 - 146'</u>	127888	141.5	150	8.5
			140 - 141	weak rusty fracs, minor vuggy, mod carb filled	Minor py.	127889	150	160	10
			150 - 170' Fng massive, pale grey with pinkish tinge, calc- silicate banded lst. Minor chl/py vnlts/fracs.	fracs, weakly bx.		127890	160	170	10
						127891	170	175.5	5.5
			@ 161' strong bedding/banding @ 30° to C/A. @ 164' strong bedding/banding @ 40° to C/A. @ 168' strong bedding/banding @ 40° to C/A.			127892	175.5	182	6.5
			@ 100 Strong beatting banding @ 40 to CA.			127893	182	192	10
			170 - 175.5' Mod silic'd, bx'd, vuggy, rusty and carb filled fracs. Fracturing within interval dom @ 60° to C/A.	170 - 175.5' Mod silic'n &	170 - 175.5' Minor py.	127894	192	202	10

in an

			Trend of zone appears to be this also.	bx'n, vuggy,		127895	202	212	10
			175.5 - 257.5' Massive fng pale grey with pinkish tinge,	rusty & carb filled fracs.		127896	212	222	10
			weak-mod calc-silicate banded lst as above. Hard. Minor	filled fracs.		12/090	212	222	10
			chl/py vnlts.			127897	222	232	10
									••
1			@ 187' bedding @ 0° to C/A.			127898	232	242	10
1			190.5 - 192 bx'd, 50% lst clasts, ang, <1 cm, with	<u>190.5 - 192'</u>	<u>190.5 - 192'</u>	127899	242	252	10
			silic'd py mtrx, 10 cm wide zone? @ 20° to C/A.	bx'd, silic'd - py	5%? py in				
			0.000 1 100 0.000 0.000	mtrx.	mtrx	127900	252	257.5	5.5
1 1			@ 210' bedding @ 100 to C/A.						
			@ 219' bedding @ 400 to C/A. @ 240' bedding @ 850 to C/A.						
			@ 247', 250' bedding @ 300 to C/A.						
1			W 247 , 250 bedding W 500 to C/A.						
1			253 - 253.3' bx'd, lst clasts in fine v black py mtrx						
			(sim to Thim bx). Zone @ 80° to C/A.						
1									
			<u>254 - 254.5</u> crackled lst.						
257.5	268	Late pink	Upper contact @ 70° to C/A.						
	Ì	syenite dyke	109/ lane (va. 4- 1) bits 6 barrants and						
			10% large (up to 1 cm) white fsp phenocrysts and glomerocrysts, may have resorbed cores, + minor mafic						
			phenos in fine-med grained xtalline Kspar rich pink mtrx.						
	[Massive, fresh, late dyke.						
	i		,					l	
			Lower contact @ 70° to C/A.						
268	364.5	Limestone	Fng, pale grey with faint pink tinge. Massive to weakly	Weak-mod caic-	Tr py.	128851	268	277	9
			banded, weak calc-silicate alt'd lst as in 170-257.5'. Minor	silicate alt'n.					
			chl/py fracs/vntls.						
			275 279	225 2201	275 2701	100055	277		
		1	275 - 278'	<u>275 - 278'</u>	275 - 278'	128852	277	287	10
			5% mag+py as stingers and bands to 1" wide @ 45°	mag-py skarn as stingers and	5% mag+py in skarny bands	128853	287	297	10
			@ 300' weak bedding/fracture trend @ 70° to C/A.	bands	and stringers	128854	297	307	10
			South Southing Hacture delid to 10 C/A.	Vanda	und sumgers	128855	307	317	10
			@ 317' 1.5" py-ep-hem skarn band @ 80° to C/A.	@ 317' py-ep-		128856	317	327	10
		i	.,	hem skarn		128857	327	337	10
1									

		1	**************************************	r					
			333 - 335' dark grey, py rich skarny bed @ 35° to C/A.	<u>333 - 335'</u>	<u>333 - 335'</u>	128858	337	347	10
			Weak chl-ep, strong banding with irreg dark black py rich	Chl-ep-py skarn	10-15% py as	128859	347	357	10
			bands & pale grey limey bands. Late xcutting carb.	1	fine dark py in	128860	357	364.5	7.5
					mtrx and				
	l				coarse yellow				
				l	dissem py.				
364.5	375	Late pink	Upper contact @ 55° to C/A.						
		syenite dyke			1				
	1		As in 257.5 - 268' with strong 1-2' wide muddy brown, fine					1 1	
		ĺ	grained fsp porphyritic chilled margins and coarser grained	1					
			core with coarse pink mtrx with fsp phenos.	ļ					
			Lower contact @ 80° to C/A.						
375	380	Limestone	Grey-green fng v. weak calc-silicate alt'd lst, massive, mod	V. weak calc-	Tr py.				
			soft, minor chl-py fracts dom @ 800 to C/A cut also	silicate alt'n	.,	128861	375	380	5
			xcutting.						
				1					
380	397	Late pink	Irreg upper contact @ about 70° to C/A.			-			
		syenite dyke							
		-5	Massive fresh late syenite dyke as in 257.5 - 268' and 364 -						
	i		375', with muddy 1-2' wide chill zones @ contacts as in	i				1	
	ļ		364 - 375'.	1					
		1							
	ļ		Lower contact @, 75° to C/A.						
397	448	Limestone	Pale grey, locally with pale green or pinkish tinge, massive,	Mod-strong calc-	Tr py.				
			mod-strongly banded, mod calc-silicate alt'd with minor py-	silicate alt'n.	""	128862	397	407	10
	1	1	chl fracs and alt'n on dirty bed within lst.						
	1					128863	407	417	10
			@ 406' v strong bedding/banding @ 25° to C/A.					1	
			@ 411' v strong bedding/banding @ 80° to C/A.			128864	417	427	10
	Į.		@ 412' v strong bedding/banding @ 45° to C/A.						
			@ 420' v strong bedding/banding @ 60° to C/A.			128865	427	437	10
	1	-	@ 437' v strong bedding/banding @ 75° to C/A.			120005		,	10
			le to the state of			128866	437	448	11
ļ	1	i	@ 444' 2" crack, lost circulation			120000	15,	7.0	**
	1		447 - 448' crackled, healed.		į				
			Tit 1.5 Tacklon, nonco.						
			1	1	1	1		L	

.

448	505	Med-coarse grained FP	Upper contact @ 70° to C/A.			
		intrusive	Chilled near upper contact, resembles grey-pinkish FP dykes, becomes coarser grained, equigranular intrusive texture away from upper contact. Looks dioritic in composition.			
			Grading from 25% euhedral white fsp, weakly aligned @ 55° to C/A, 5% partly resorbed mafic (px?) phenos in finer 2 fsp? matrix near upper contact, to more equigranular intrusive looking in core zone (458-498').			
			498 - 505' finer grained again, not chilled against syenite dyke but get sense that getting close to base of FP unit.			
505	544	Late pink syenite dyke	Upper contact @ 70° to C/A. Typical syenite dyke as in 257.5 - 268', etc. Cuts FP intrusive. Narrow chill zones at contacts.			
	1		Lower contact @ 45° to C/A.	i		
544	558	Med-coarse grained FP intrusive	As in 498 - 505'. Massive, fine-med grained, dark grey. Finer grained than in core of FP intrusive (458 - 498'), sense getting near lower contact of this unit. Minor bleaching against contacts with syenite dykes above and below.			
558	572	Late pink syenite dyke	Typical coarse pink syenite dyke as in 257.5 - 268', etc. Chilled muddy zone, about 3' wide near upper contact. Upper contact @ 40° to C/A.			
			@ 572' EOH in coarse pink syenite			

R.Bell - Summit Gold Zone - to test northern extension of zone below upper blast trench, drilled same orientation as Holes 96K-1, 2, 3

Northing:

5,442,013.9 UTM Northing 388,615.51 UTM Easting 269° -66.5° (no dip test) 332'

Easting: Azimuth:

Dip:

Depth:

Drilled July 22, 1996
Drilled by: Bergeron Drilling
Logged by: L. Caron
Core stored at Boundary Falls.

Inte	rval	Rock type	Description			Sa	mple		
From (feet)	To (feet)			Alteration	Mineralization	Sample Number	From (feet)	To (feet)	Interval (feet)
0	7	Overburden					1		
7	63.5	Limestone	Fng massive, pale grey with pink or greenish tinge, local mod-strong banding, weak-mod calc-silicate alt'n. Mod hard, strong fizz. Minor chl-py hairline fracs. 0 - 40' Minor rusty fracs. 21' strong banding @ 40° to C/A. 22- 30' crackled, stressed with 25/ft xcutting chl-py fracs. 45 - 55' avg 15/ft chl-py fracs, dom @ 60° to C/A. @ 47' strong banding/bedding @ 45° to C/A. @ 56' strong banding/bedding @ 45° to C/A. 61 - 62.5' lst agglom as below, v. low core angles (ie. This is start of bed @ 63.5')	Weak-mod calc- silicate alt'n.	Tr py.	128901 128902 128903 128904 128905 128906	7 17 27 37 47 57	17 27 37 47 57 63.5	10 10 10 10 10 10 6.5
63.5	74	Limestone agglomerate	Upper contact @ 10° to C/A. Coarse mtrx supported 1st breccia unit with 50% clasts (85% 1st, up to 8 cm, 10% chert, avg 0.5 cm, + inor fng volc?) in green fng xtalline?/grainy fsp-qtz rich mtrx. Lower contact @ 70° to C/A.		Tr py in mtrx.	128907	63.5	74	10.5

74	227	Limestone	Fng massive, pale grey, weak-mod calc-silicate alt'd	Weak - mod	Tr py.				
			limestone as in 7 - 63.5'. Mod hard, strong fizz, minor chl-	calc-silicate		128908	74	82	10
			py fracs.	alt'n.					
						128909	82	92	10
			116 - 120' stressed, crackled looking			120010	92	102	10
			120, 120, wind for lat 8 along supported by a relative	@ 133.5'		128910	92	102	10
			120 - 139' mixed fng lst & clast supported lst agglom (or bx'd healed lst??). Some evidence of late bx (ie. 133.5' rusty	narrow flt zone		128911	102	112	10
			bx structure @ 20° to C/A and strong rusty fracs from 130 -	@, 200 to C/A.		120711	102	1112	10
1			137'), but some of bx texture may be primary.	@ 200 to C// t.		128912	112	122	10
	1		157 y, out some of ox texture may be primary.			124712			
1			@ 180' strong banding @ 80° to C/A.			128913	122	132	10
	ļ					128914	132	142	10
1	1		185 - 186' narrow dark grey-black chilled FP dyke @ 70° to			128915	142	152	10
1			C/A.			128916	152	162	10
						128917	162	172	10
			186 - 194' mod stressed and crackled with about 30/ft chl-py			128918	172	182	10
			fracs.			128919 128920	182	192 202	10 10
			@ 191' strong bedding @ 60° to C/A		-	128920	192	202	10
			(a) 191 Strong bedding (a) 60 to C/A			128921	202	212	10
			@ 198' strong bedding/banding @ 80° to C/A.			120,21	202		1.0
		İ	170 Strong bedding stateling (a) 50 to 671.			128922	212	217	5
			217 - 220' stressed, bx'd, fine pyritic mtrx, silic'd + carb	217 - 220'	217 - 220'	128923	217	222	5
			flood zones. Broken.	bx'd, silic'd,	5% fine py	128924	222	227	5
	1			carb flood zones					
		1	@ 221' strong bedding @ 50° to C/A.						1
							 	 	
227	259	FP dyke	Upper contact broken.		ļ	128925	227	232	5
	1		The included the Control of the Cont			128923	227	232)
			Typical massive grey FP dyke, 2 fsp + mafic phyric.						
			227 - 232' broken, vuggy, carb alt'd near upper contact.		İ				
			<u>227 232</u> violen, vaggy, and an a near apper contact.						
			Lower contact @, 45° to C/A.						
259	298.5	Limestone	As in 74 - 227'. Massive grey banded calc-silicate alt'd.	weak-mod calc-	Tr py.				
			Local narrow gritty interbeds. Minor chl-py fracs.	silicate alt'n.		128976	259	267	8
									1
			@ 261' strong bedding @ 50° to C/A.			128977	267	277	10
			Q 2(4) - t b-14: Q (68 t- C/4			128978	277	287	10
	1		@ 264' strong bedding @ 65° to C/A			1289/8	1 211	201	L 10

			@ 280' strong bedding @ 30° to C/A 284 - 286' stressed, crackled		128979	287	298.5	11.5
			289.5 - 291' dark green fng FP dyke @ 50° to C/A.					
298.5	310.5	Late pink syenite dyke	Upper contact @ 70° to C/A. Typical glomerocrystic syenite dyke with coarse pink core and chilled muddy contact zones.					
310.5	332	Limestone	Lower contact @ 45° to C/A. Fng, grey massive mottled and banded 1st as in 259 - 298.5'. Rare minor v. narrow vuggy zones.		128980	310.5	322	11.5
·			313 - 320' v. contorted banding. @ 332' EOH.		128981	322	332	10

R.Bell - Summit Gold Zone - to test in same section as Holes 96K-1,2,3 from SW on Trench

to scissor under Discovery trench 1 area.

Northing: 5,441,988.56 UTM Northing
Easting: 388,506.3 UTM Easting
Azimuth: 097°
Dip: -40° (no dip test)
Depth: 276'

Drilled July 23-24, 1996 Drilled by: Bergeron Drilling Logged by: L. Caron Core stored at Boundary Falls.

Inte	rval	Rock type	Description			Sa	mple		
From (feet)	To (feet)		-	Alteration	Mineralization	Sample Number	From (feet)	To (feet)	Interval (feet)
0	6	Overburden							
6	29	FP dyke	Med-dark grey, fng FP dyke, rare xenoliths, local weak bleach zones and rusty fracs + minor carb on fracs. Weak white clay as partial alt'n of phenos. Lower contact @ 55° to C/A.						
29	50.5	Limestone	Fng, buff-grey lst, locally weak-mod banded and calc-silicate alt'd. Minor yellow-rust coatings on fracs. Mod hard. Strong fizz. Mod-strongly fractured. Locally stressed and crackled, minor chl-py vnlts. @ 30.5 2" grey pyritic gouge @ 34.5' 2" coarse white cc vn @ 37' banding @ 50° to C/A @ 41' banding @ 50° to C/A 42 - 47.5' stressed, crackled, vuggy zone, silic'd or cherty, minor py diss & vnlts, fine cc + qtz? druse.	Weak calc-silicate alt'n 42 - 47.5' silic'd, vuggy, crackled.	Тг ру.	128982 128983 128984 128985 128986	29 34 39 42 47.5	34 39 42 47.5 50.5	5 5 3 5.5 3
50.5	56.5	Late chilled syenite dyke	Broken, irreg upper contact Grey chilled syenite dyke - no pink core but typical glomerocrystic fsp texture + mafic phenos as in other holes and lower in this one. V narrow bleach zones @ contacts. Lower contact @ 65° to C/A.	C. acricu.		128987	50.5	56.5	6

56.5	117.5		Typical massive fng grey weak calc-silicate banded lst with	Weak calc-	Tr py.	128988	56.5	66	9.5
			minor chl-py fracs/vnlts. Mod hard, strong fizz.	silicate alt'n		128989	66	67	11
	1					128990	67	67.3	0.3
I			66 - 67' stressed and crackled. Str chl-py hairline fracs			128991	67.3	79	11.7
			and vnlts, dom @ 70° to C/A, avg 20/ft. Cherty or v weak			128992	79	89	10
Į	1		silic.			128993	89	99	10
i				<u>67 - 67.3'</u>		128994	99	109	10
			67 - 67.3' cherty or silic'd bx zone, 1" perv rust on frac @	silic'd? bx'd		128995	109	117.5	8.5
			70° @ 67.3'						
			@ 75' banding/bedding @ 45° to C/A						
			@ 85' banding/bedding @ 40° to C/A				1		
			@ 104' banding/bedding @ 60° to C/A						
117.5	121.5	FP dyke	Upper contact @ 70° to C/A						
							1	ŀ	
			Typical dark grey, fng, chilled FP dyke. Minor late carb						
			121.0 - 121.3' brown bleached zone]	1	
1		[1					
			Lower contact @ 65° to C/A.				<u> </u>		
121.5	256.5	Limestone	Fng massive pale-med grey, weak-mod calc-silicate alt'd,	121 - 215'	Tr py.	128996	121.5	129	7.5
	ĺ		mod-strongly banded lst as in 56.5 - 117.5'. Minor chl-py	weak-mod calc-		128997	129	139	10
			vnlts. Hard, strong fizz.	silicate alt'n		128998	139	149	10
		İ				128999	149	159	10
			@ 146' strong banding/bedding @ 70° to C/A.			129000	159	169	10
	1	1	0.000			129001	169 179	179	10 10
		ŀ	@ 188' strong banding/bedding @ 55° to C/A.	İ		129002		189	
			205 2142 standard and amplified with another 11 and 15		i	129003	189 199	199 209	10 10
			205 - 214' stressed and crackled with greater chl-py vnlts,			129004 129005	209	219	10
			avg 25-30/ft.			129005	219	219	10
			216 256 5' mottled grow let with only y mines cale silicate	215 256 5		129006	229	239	10
			215 - 256.5' mottled grey lst with only v minor calc-silicate alt'n. Local minor gritty interbeds ie. 237' @ 50° to C/A.	215 - 256.5 only v minor		129007	239	249	10
			ant ii. Local numor gritty interocus ie. 237 @ 50° to C/A.	calc-silicate alt'n		129008	249	256.5	7.5
256.5	265.5	Late pink	Upper contact @ 60° to C/A.	caic-sincate all II		123003	247	230.5	1.5
236.3	203.3	syenite dyke	Opper contact (a) 60° to C/A.						
		sycinc uyke	Massive fresh late pink syenite dyke with typical pink						
			glomerocrystic core and finer brown muddy glomerocrystic						
			chilled zones near contacts.						
			Dillo nom contacts.						
			Lower contact @ 85° to C/A.						
1	I		Dones commercia de la corr.	1	1		1 .	1	1

		I						
265.5	276	Limestone	Massive grey fng lst as in 215 - 256.5'	 Tr py.				
1					129010	265.5	276	10.5
	1		265.5 - 269' crackled and stressed adj to dyke with chl/py					
			hairline fracs avg 25-30/ft.					
			@ 276' EOH					

R.Bell - Summit Gold Zone - to test in same section as Hole 96K-5

Northing: Easting:

5,441,988.71 UTM Northing 388,504.77 UTM Easting 097° -65° (no dip test) 112'

Azimuth:

Dip: Depth:

Drilled July 25, 1996
Drilled by: Bergeron Drilling
Logged by: L. Caron
Core stored at Boundary Falls.

Inte	rval	Rock type	Description			Sa	mple		
From (feet)	To (feet)			Alteration	Mineralization	Sample Number	From (feet)	To (feet)	Interval (feet)
0	7	Overburden							
7	27	FP dyke	7 - 22' Pale grey-green, mod soft alt'd fsp+mafic phyric dyke, prob typical FP but weakly bleached and clay-chl alt'd. Mod-strong rusty fracs, minor late carb vnlts & fracs. 22 - 27' Dark grey fng chilled FP dyke with weakly aligned fine fsps @ 60° to C/A. Lower contact @ 60° to C/A.						
27	34	Limestone agglom/bx unit	Fragmental unit, clasts angular to subround, <1cm to >5 cm of 1st, bleached argillic volc? intrusive?, minor chert, in xtalline or gritty fine mtrx. 27 - 32' Mtrx supported, 50% clasts, diss py in mtrx, gen 2-	Py flood in mtrx.	2-3% diss py in mtrx. 28.5 - 30.5 15% fine py	129011	27	32	5
			3% but locally up to 15% fine py flooding in mtrx ie. 28.5 - 30.5'. 32 - 34' Clast supported fragmental. 2-3% py in mtrx. Weak fracturing & carb vning @ 45° to C/A.		flooding in mtrx.	129012	32	34	2
34	72	Limestone	Fng massive pale grey, mod banded lst, weak calc-silicate alt'n, local coarse gritty interbeds. Minor chl-py fracs. Hard, strong fizz. 35 - 39' crackled, stressed, chl/py fracs 15/ft.	Weak calc- silicate alt'n	Tr. py	129013	34	42	8

			@ 42' bedding @ 45° to C/A	 	129014	42	52	10
					129015	52	62	10
			@ 46' strong bedding @ 40° to C/A.		129016	62	72	10
			47 - 72' weak-mod rusty fracs.					
			@ 57' minor vuggy carb zone					
			@ 62' bedding @ 60° to C/A					
			65 - 67' minor vuggy carb zone					
			70.5 - 72' broken, stressed zone.					
72	77	Late syenite dyke	Broken upper contact @ 90°? to C/A	 Tr py.				
		uyac	Fine-med grained, grey, mafic + fsp porphyritic in pinkish					
	1		grey fsp (Kspar + plag) rich mtrx with 10% fine mafics. No					
			good pink core as in typical larger syenite dykes.			ļ		
1			,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1			
			Lower contact broken.					
77	112	Intermixed	Intermixed fine grey lst, gritty sandy beds and lst fragmental					
	İ	Limestone,	unit. Local bx zones. Gritty beds have 2-3% diss py.		129017	77	83	6
1	ı	grit and lst						
ł	1	fragmental	77 - 80' Fng grey massive lst.					
			80 - 83' Grey-green grainy grit bed - beach sand? Mod fizz	80 - 83' Minor diss py.	129018	83	85.5	2.5
			81 - 83' bx'd, broken, carb alt'n.	willion diss py.				
			83 - 85.5' Lst fragmental, bx'd strong carb alt'd.		129019	85.5	90	4.5
			85.5 - 90' Grey green massive fine-med grained grit bed as	<u>85.5 - 90'</u>				
			in 80 - 83'. Mod fizz. Qtz& fsp grains, < 1mm, + 5-10%	2% diss py.				
			subround pebbles avg 0.5 cm.		129020	90	92	2
			90 - 92' Mottled dark grey-green bx'd lst fragmental unit as in 105-107' @ 80° to C/A.					
					129021	92	100	8
1	1					ł		

92 - 97' Med grey-green, grainy bed with 5% subround frags, avg 1 cm, mod fizz. Beach sand? As in 80-83', 85.5-90'.	92 - 97' Minor diss py	129022	100	105	5
97 - 105' Fng grey massive weak-mod banded lst with gritty interbeds 99 - 99.3' med-coarse grained qtz rich grit beds @	<u>99 - 99.3'</u>	129023	105	107	2
15° 100 - 100.5' to C/A. Mod fizz 105 - 107' Mottled looking, dark grey-green bx'd	100 - 100.5' 2-3% diss py.	129024	107	112	5
fragmental interbed as in 90-92'. Lower contact @ 80° to C/A. 107 - 112' Fng grey-green banded lst.					
@ 112' EOH					

Hole 96K-7

R.Bell - Summit Gold Zone - to test in same section as Hole 96K-5,6

Northing: 5,441,988.86 UTM Northing
Easting: 388,503.59 UTM Easting
Azimuth: n/a

Dip:

-90° (no dip test)

Depth:

Drilled July 26, 1996
Drilled by: Bergeron Drilling
Logged by: L. Caron
Core stored at Boundary Falls.

Inte	rval	Rock type	Description			Sa	mple		
From	To			Alteration	Mineralization	Sample	From	To	Interval
(feet)	(feet)					Number	(feet)	(feet)	(feet)
0	7	Overburden							
7	29.5	FP dyke	7 - 16' Pale-med grey-green, bleached zones brownish grey along fracs, fsp + mafic porphyritic, rare xenoliths.	Mod carb alt'n.					
			16 - 23' Grey-brown, broken, alt'd zone. Strong rusty fracs. Dom frac trend 45° to C/A. Fault zone.	16 - 23' Fault zone @ 45°? to C/A.	16 - 23' Minor py.	129026	16	23	7
			23 - 29.5' Dark grey-green, fng chilled. Lower contact @ 70° to C/A.	Weak perv clay alt'n.					
29.5	101.5	Interbedded	29.5 - 34.5' Lst, fine-med grained, pale grey, massive,						
		Limestone,	weakly bedded @ 45° to C/A. Locally gritty with fine frags.			<u>-</u>			_
1		Lst	Typical green mottled zone adj to dyke. Strong fizz.			129027	29.5	34.5	5
		fragmental							_
		and Limey	@ 34.5' contact @ 70° to C/A.			129028	34.5	40.5	6
		grit	34.5 - 40.5' Green Ist agglom, mottled looking, 60% irreg			129029	40.5	51	10.5
			frags, gen of grey fng lst & green coarse xtalline limey fragmental + ? with grey limey mtrx. Collapse bx with sandy influx mtrx?		1	129030	51	59	8
			@ 40.5' contact @ 60° to C/A.			129031	59	68.5	9.5
			40.5 - 51' Green-grey, med-coarsely xtalline lst with 20- 30% fine frags (lst + chert + jasper? +) Massive, not			129032	68.5	78	9.5
	<u> </u>		bedded.			129033	78	88	10

			51 - 68.5' Grey green lst agglom + minor interbedded coarse xtalline limey fragmental as in 34.5 - 40.5' 68.5 - 101.5' Pale grey, massive fine packed lst fragmental with 60-70% lst frags in coarse xtalline limey mtrx, minor interbedded fng grey massive lst @ 70° to C/A.			129034	88	101.5	13.5
101.5	108	Older chl alt'd mafic phyric dyke	Med grained, med grey-green, massive intrusive looking, mod chl alt'd, 10% chl alt'd mafic phenos? Or poss xenoliths, avg 3-4 mm in fsp rich mtrx. Pre-Tert dyke or flow?	Mod chl alt'n		129035	101.5	108	6.5
108	133	Interbedded Limestone and Lst fragmental	108 - 118' Pale grey massive fine packed lst fragmental as in 68.5 - 101.5' 118 - 119.5' Dark grey green lsp fragmental bed? @ 50° to C/A with 50-60% grey fing lst frags, ang, weakly aligned along bedding? With fine py flood in mtrx + coarse euhedral py rimming frags + in mtrx. 119.5 - 131.5' Pale grey, massive fing lst, weak calc-silicate alt'n, weak bedding @ 45° to C/A. 131.5 - 133' Dark grey-green lst fragmental as in 118-119.5 with 2-55 py, fine grained, in mtrx & coarse euhedral py rimming clasts & in mtrx.	118 - 119.5' fine py flood in mtrx 131.5 - 133' fine py flood in mtrx	118 - 119.5' 2 - 5% py in mtrx and rimming frags 131.5 - 133' 2 - 5% py in mtrx and rimming frags	129036 129037 129038 129039 129040	108 118 119.5 125 131.5	118 119.5 125 131.5 133	10 1.5 5.5 6.5 1.5

Hole 96K-8

R.Bell - Summit Gold Zone - to test possibility of shallow N dip to gold zone in Discovery Trench

Northing:

5,442,027.14 UTM Northing 388,595.42 UTM Easting 165° -45° (no dip test) 137'

Easting: Azimuth:

Dip: Depth:

Drilled July 27, 1996
Drilled by: Bergeron Drilling
Logged by: L. Caron
Core stored at Boundary Falls.

			@ 28.5', 29.5' 2" orange Fe-carb? Flood zone @ 50° to C/A.			129045	30	36.5	6.5
			30 - 36.5' as in 20 - 25', stressed, crackled, perv Fe-	<u>30 - 46'</u>		129043	30	30.3	6.5
			carb?, cherty or weak-mod silic'n?	perv Fe-carb, cherty or weak-		129046	36.5	40.5	4
			36.5 - 40.5' v broken, v. rusty, stressed and crackled, pale buff-orange colour as in 30 - 36.5' with vuggy rusty bx zone 1-2" wide @ 05° to C/A., lst frags & carb mtrx . perv Fecarb alt'n, weak silic?	mod silic		129047	40.5	45	4.5
			40.5 - 46' stressed, crackled, perv Fe-carb, cherty or weak silic? As in 20 - 25', 30 - 36.5'. Mod rusty fracs.			129048	45	50	5
			@ 43-44; 1-2" bx zone @ 05° to C/A, prob same zone as in 36.5 - 40.5'			129049	50	55	5
į			46 - 65.5' Fng massive grey lst, locally buff-pale orange, v weak perv Fe carb alt'n. Mod rusty fracs. Local minor bx			129050	55	60	5
			zones. Mod chl-py fracs, dom @ 90° & 45° to C/A. 50 - 51' black carb-chl + py vnlts/bx infilling @ 0° to			128826	60	68.5	8.5
			C/A, 1-2" wide zone.						
			65.5 - 68' mottled, stressed, crackled lst adj to dyke. Str py- chl xcutting vnlts.						
68.5	72	Chilled svenite dyke	Muddy grey, fsp + mafic phyric, glomerocrysts of fsp, rare lst xenoliths in fng mtrx. Looks like chilled syenite dyke.						
72	137	Limestone	Grey lng lst as above but less fractured and stressed, unait'd. Minor py-chl vnlts. Weak-mod well developed bedding.		Tr. py.	128827 128828	72 80	80 90	8 10
			80 - 87' weakly stressed and crackled. Minor rusty fracs and perv orange Fe-carb? zones to 0.5" wide along fracs.			128829 128830	90 100	100 110	10 10
			@ 82' bedding @ 0-10° to C/A @ 89' bedding @ 0-5° to C/A			128831 128832 128833	110 120 130	120 130 137	10 10 7
			@ 113' bedding @ 0° to C/A @ 125' bedding @ 50° to C/A @ 134' bedding @ 45° to C/A @ 137' EOH			120033	130	13/	

Hole: 96K-9

Purpose: To test the downslope Au soil geochem anomaly, below Au zone.

Northing: 5,441,965.66 UTM Northing Easting: 388,518.22 UTM Easting Azimuth: 147° Dip: -43°

Depth: 280 feet

Drilled August 23-24, 1996 Drilled by: Bergeron Drilling Logged by: Linda Caron
Core stored: Boundary Falls core shack

COLC 31	OLCU . DO	undary Falls core	Stiden					
Inte	rval	Rock type					Sample	
From	То		Description	Alteration	Mineralization	Number	From	To
(feet)	(feet)						(feet)	(feet)
0	7'	Overburden						
7	280'	Limestone	Massive fine grained, pale grey limestone. Well bedded, gen @ 45° to C/A. Mod hard, strong fizz. Minor black chl +/- py & chl rich inerbeds to 1 cm wide, + coarse py. @ 12', 20', 50' good bedding @ 45° to C/A 57.5 - 67' FP dyke. Fng, dark grey-green fsp porph dyke. Fresh, massive. Minor chill, bleach adj to xenolith. Upper contact @ 50° to C/A. Narrow carb vn @ contact. 57.5 - 59.5 lst xenolith, ½ of core. Lower contact @ 80° to C/A. 67 - 72.5' Dark - pale grey stress zone below dyke. Mottled looking, crackled. Up to 15% py, coarse, euhedral - subhedral, dissem + minor mag. Silic'd, chalc qtz vning + carb vning.	67.5 - 68.5 Mod silic'n + narrow irreg and frac controlled @ 30°, white chalced qtz vning, to 1 cm, but discontinuous. 68.5 - 70.0' crackled 70 - 72.5' Silic'd + irreg and frac controlled chalc qtz vning as above, on fracs @ 5° and 30° to C/A, plus locally to up 25% qtz bx frags to 0.5 cm.	67.5 - 68.5' 15% coarse diss py Minor mag - blebs and diss 68.5 - 70' 3-5% diss py Minor mag - blebs and diss 70 - 72.5' 15% coarse diss py	128801 128802 128803	67 68.5 70	68.5 70 72.5

		Y				
	72.5 - 80'	<u>72.5 - 80'</u>		128804	72.5	80
	Weak - mod crackling and local silic/bx zones ie. 75 - 76.5'	weak-mod crackling and weak				
		local silic (cherty?) bx zones		l .		1
. 1	80 - 87'	ie. 75 - 76.5'		ł	i	1
	V. weak crackling and local v. weak silic/cherty lst + local 2-5% py in dark grey-green chl	1		128805	80	87
	rich bands, gen @ 45° to C/A.		05 07	120003	80	0'
1 1		İ	<u>85 - 87'</u>	l		1
	85 - 87' 5% mag as blebs and irreg bands to 0.5"	1	5% mag		İ	
	95 - 102' minor py+mag+chl bands to 2", dom @45° to C/A	95 - 102'	95 - 102'	1		
	93-102 inthor py+mag+chi bands to 2, doin @45 to C/A					İ
1 1	0.000	minor py-mag-chl skarny	minor py+mag+chl			
1 1	@ 113' bedding @ 30°	bands	bands to 2"			
	100 1001	105 160		1		1
	<u>125 - 150'</u>	<u>125 - 150'</u>			i	1
	Weak calc-silicate alt'n, pale lilac green colour, weak-mod banding with local pale green	weak calc silicate alt'n				1
1 1	weak epidote layers.			ŀ		1
	@ 137' bedding @ 45°			•	1	
				Ì		1
1 1	@ 165' bedding @ 60°			1	1	
	@ 168' bedding @ 30°		į			
	@ 195' bedding @ 20°			ļ	ŀ	1
	(a) 195 Octobring (a) 20					
	210.5 - 213'					
					1	
	FP dyke. Massive fresh fng, dark grey-green feldspar porph dyke. Sharp contacts, narrow				1	1
	chill zones. Lower contact @ 45°.	1				
	200 2001	222 2201			1	
	222 - 229'	222 - 229'		1	i	1
	Mod calc silicate alt'd lst, strong pale green-purple banded appearance with mm to cm scale	mod calc silicate alt'n	1			
	banding @ 20° to C/A.	İ				
		1				
	<u>229 - 237'</u>					
	Syenite dyke. Fresh, massive, grey-brown to pale pink, glomerocrystic typical syenite dyke					
	with sharp contacts and grey chill margins.				1	
	Upper contact @ 45°					
	Lower contact @ 50°					
				1		
	@ 255' bedding @ 45°					
	@ 278' bedding @ 50°					
	280' EOH.					

Hole:

96K-10

Purpose: To test Gerry's middle silic'd zone.

Northing: 5,442,000.14 UTM Northing
Easting 388,491.00 UTM Easting
Azimuth: 322°

-45° Dip: Depth: 170 feet

Drilled August 26-27, 1996
Drilled by: Bergeron Drilling
Logged by: Linda Caron
Core stored Boundary Falls core shack

Inte	erval	Rock type					Sample	
From	To		Description	Alteration	Mineralization	Number	From (feet)	To (feet)
(feet)	(feet)	Overburden			 		(leet)	(ICCL)
7	170'	Limestone	Massive, pale grey fing lst. Local well developed bedding. Mod carb vning + chl +/- py bands and fracs. 7 - 23' broken, rusty fracs. Minor clear qtz vnlts. 20 - 21' Pale grey green fine-med grained xtal tuff? @ 45°. 35 - 37'	35 - 37'	Tr py	128806 128807 128808	7 15 25	15 25 35
			Well banded, pale green, weak-mod calc silicate alt'n, mm scale grey gritty interbeds. Banding @ 45° to C/A. 37 - 38.5' Pale grey, lst/grit bed, qtz & lime frags and grains in limey mtrx. Bed @ 50° to C/A. @ 41' good bedding @ 45° to C/A	weak-mod calc silicate alt'n		128810	40	50
			53 - 55.5' Ist grit bed as is 37 - 38.5'	67 - 72.5' weak calc silcate alt'n		128812	60 70	70 74

74 - 102'	74 - 102'				
Silic'd, vuggy, epithermal zone as detailed below:	Silic'd, epithermal zone as detailed		128814	74	80
74 - 80' Pale buff-grey colour, crackled, weak silic'd/cherty lst, locally vuggy.			128815	80	84
80 - 88' Grey-whitish, mottled, hard, silic'd or cherty? lst, still fizzes but can't scratch.			128816	84	88
Mod chl-py fracs, minor carb vning.			128817	88	91.8
88 - 91.8' Grey mottled lst with carb vning.					
91.8 - 96' Intense silic, grey-tan vuggy silica flood zone, 10% fine white qtz bx frags. Local strong chalced qtz banding.			128818	91.8	96
96 - 99' Grey banded 1st, strong bedding @ 45° to C/A. @ 98' 6 cm silica flood/bx zone with ang white qtz frags to 0.5 cm in grey py rich fng			128819	96	99
silica mtrx. @ 98.5' 5 cm intense silica flood zone					
99 - 100.5' Two 0.5' grey-tan, vuggy, intense silica flood zones as in 91.8-96 and 101.2-102, with pale grey-tan str silic'd lst between. Zones @ 50° to C/A.			128820	99	100.5
100.5 - 101.2' Massive mottled grey mod silic or cherty lst.			128821	100.5	101.2
101.2 - 102' Intense silic grey vuggy silica flood zone @ 65° to C/A. 10% v fine bx frags of qtz in fine chalc qtz mtrx as in 91.8 - 96'			128822	101.2	102
102 - 106' Pale green, massive well banded lst. Patchy hard cherty zones. Good bedding @ 50° to C/A.			128823	102	106
106 - 111.5' Mottled grey lst with minor patchy hard cherty (silic'd?) zones and locally up to 5% greypinkish ang qtz frags to > 2cm.			128824	106	111.5
111.5 - 118.5' Interbedded grey-green, fng, well bedded mudstn and grit (with mm scale banding) with white-grey massive lst. Soft.		111.5 - 118.5' Minor py	128825	111.5	118.5
@113' bedding @ 70° @116' bedding @ 5°					

118.5 - 170' Mottled grey massive poorly bedded cherty lst. V hard with patchy soft area. Strong fizz. Minor rounded qtz frags/grains to 0.5 cm. Weak bedding @ 45° to C/A. 148 - 158' Fault Zone v. broken, rusty fracs, broken cherty lst, local coarse carb vnlts. @ 170' EOH	128476 128477 128478	118.5 130 130 144 140 14:	10
--	----------------------------	---------------------------------	----

Hole: 96K-11

Purpose: To test Gerry's middle py zone under Hole 96K-10, deeper in same section.

Northing: 5,441,999.56 UTM Northing
Easting: 388,491.78 UTM Easting
Azimuth: 322°
Dip: -65°
Depth: 239'

Drilled August 28 - 30/96
Drilled by: Bergeron Drilling
Logged by: Linda Caron
Core stored: Boundary Falls core shack

rval	Rock type						
To (feet)		Description	Alteration	Mineralization	Number	From (feet)	To (feet)
8'	Overburden						
43.5'	Limestone	Fng massive pale to dark grey lst, local well developed bedding @ 30-45° to C/A. V. weak local calc-silicate banding. Minor qtz vnlts + minor coarse xtalline carb vns to 1 cm. Patchy cherty zones - hard but scratchable. 36 - 43.5' Pale buff colour, bleached looking, patchy cherty zones, weakly crackled.	Local v weak calc silicate banding	Tr diss py and py/chl on fracs	128482 128483 128484 128485	8 12 22 32	12 22 32 43.5
89'	FP dyke	Fresh, massive fng porph, med grey FP dyke. Locally broken but unaltered. Minor late white carb vnlts. @ 43.5 sharp contact @ 30° to C/A @ 89' O.5' gougy/crushed and broken lower contact zone @ 90° to C/A.					
106'	Limestone	Pale-med grey massive lst, poorly developed bedding. Minor narrow bx and crackle zones. Weak patchy cherty zones, gen easy to scratch. Minor coarse xtalline carb vns. 103 - 106' Bx'd, strong carb vning, 10% grey, irreg to circular silica? fossils? qtz grains??? Looks lithologic, not replacement.			128486 128487 128488 128489	89 94 99 103	94 99 103 106
137'	FP dyke	Fresh massive med grey porph dyke as in 43.5 - 89'					
150.5	Lst and Limey bx and volc	Grey fng lst with ninterbedded greenish grey fng volc? (strong bedding @ 40° to C/A) and with limey bx unit (lst mtrx with 10% chl alt'd volc frags to 4 cm but gen < 1 cm). Local cherty lst (or poss silic?). 137 - 141' Lst and interbedded volc 141 - 147' Limey bx 147 - 150.5' Lst and interbedded volc. Str cherty component to lst (or poss silic?), about			128490 128491 128492	137 141 147	141 147 150.5
	To (feet) 8' 43.5' 106'	To (feet) 8' Overburden 43.5' Limestone 89' FP dyke 106' Limestone 137' FP dyke 150.5 Lst and Limey bx and	To (feet) 8' Overburden 43.5' Limestone Fing massive pale to dark grey lst, local well developed bedding @ 30-45° to C/A. V. weak local calc-silicate banding. Minor qtz vnlts + minor coarse xtalline carb vns to 1 cm. Patchy cherty zones - hard but scratchable. 36 - 43.5' Pale buff colour, bleached looking, patchy cherty zones, weakly crackled. Fresh, massive fing porph, med grey FP dyke. Locally broken but unaltered. Minor late white carb vnlts. @ 43.5 sharp contact @ 30° to C/A @ 89' O.5' gougy/crushed and broken lower contact zone @ 90° to C/A. 106' Limestone Pale-med grey massive lst, poorly developed bedding. Minor narrow bx and crackle zones. Weak patchy cherty zones, gen easy to scratch. Minor coarse xtalline carb vns. 103 - 106' Bx'd, strong carb vning, 10% grey, irreg to circular silica? fossils? qtz grains??? Looks lithologic, not replacement. 137' FP dyke Fresh massive med grey porph dyke as in 43.5 - 89' 150.5 Lst and Limey bx and volc Grey fing lst with ninterbedded greenish grey fing volc? (strong bedding @ 40° to C/A) and with limey bx unit (1st mtrx with 10% chl alt'd volc frags to 4 cm but gen < 1 cm). Local cherty lst (or poss silic?). 137 - 141' Lst and interbedded volc 141 - 147' Limey bx	To (feet) Description Alteration	Description Description Alteration Mineralization	To (feet) Control (To (feet) 8' Overburden Fing massive pale to dark grey lst, local well developed bedding @ 30-45° to C/A. V. weak local calc-silicate banding. Minor qtz vnlts + minor coarse xtalline carb vns to 1 cm. 89' FP dyke Fresh, massive fing porph, med grey FP dyke. Locally broken but unaltered. Minor late white carb vnlts. @ 43.5 Sharp contact @ 30° to C/A @ 89' O.5' gougy/crushed and broken lower contact zone @ 90° to C/A. Limestone Pale-med grey massive lst, poorly developed bedding. Minor narrow bx and crackle zones. Weak patchy cherty zones, gen easy to scratch. Minor coarse xtalline carb vns. 106' Limestone Pale-med grey massive lst, poorly developed bedding. Minor narrow bx and crackle zones. Weak patchy cherty zones, gen easy to scratch. Minor coarse xtalline carb vns. 103 - 106' Bx'd, strong carb vning, 10% grey, irreg to circular silica? fossils? qtz grains??? Looks lithologic, not replacement. 150.5 Lst and Limey bx and volc 137' FP dyke Fresh massive med grey porph dyke as in 43.5 - 89' 150.5 Lst and Limey bx and volc 137-141' Lst and interbedded volc 141-147' Limey bx 137-141' Lst and interbedded volc 141-147' Limey bx 147-150.5' Lst and interbedded volc. Str cherty component to lst (or poss silic?), about

150.5	160'	FP dyke	Med grey porph FP dyke as above. Gen fresh, massive, but 150 - 153' 5% vugs, bx'd @ 150.5' upper contact broken but about 90° to C/A @ 160' sharp lower contact @ 65° to C/A		128493	150.5	154
160	237'	Limestone	Massive pale-med grey lst and patchy cherty lst, strong bedding and fine interbedded qtz grain gritty bands, give patchy differential hardness. Bedding @ 45° to C/A. Local irreg to subround grey qtz inclusions/fossils??? as above. 222 - 239' Patchy cherty lst. Well bedded @ 30-40°. Minor local narrow bx zones with fine limey clasts in py mtrx. @ 239' EOH	Minor py with chl on fracs 222 - 239' Narrow bx zones with pyritic mtrx	128494 128495 128496	222 232	232 239

Hole:

96K-12

Purpose: To test under Gerry's upper zone.

Northing: 5,442,109.33 UTM Northing
Easting: 388,416.82 UTM Easting
Azimuth: 289°
Dip: -45°

246' Depth:

Drilled Sept 14 - 15, 1996
Drilled by: Bergeron Drilling
Logged by: Linda Caron
Core stored: Boundary Falls core shack

Core si								
	erval	Rock type					Sample	
From	To		Description	Alteration	Mineralization	Number	From	To
(feet)	(feet)					-	(feet)	(feet)
0	8'	Overburden						
8	120'	Limestone	Pale grey, massive, mod well bedded lst, mm to 10 cm darker grey gritty interbeds. Minor carb vning, v minor chl+py on fracs.		Tr py			
			8 - 30' Bleached, tan-buff colour, stressed and crackled, local narrow dry bx zones. Minor yellow coating on fracs.	8 - 30' stressed, crackled		128497 128498	8 20	20 30
			@ 50' str bedding @ 35° to C/A @ 70' str bedding @ 40° to C/A					
			100 - 101.5' and 104 - 105.5' Stressed and crackled. Strong carb vns and flooding	100 - 101.5' and 104 - 105.5' stressed and crackled, strong		128499	100	110
			112 - 112.5' bleached yellow-grey zone	carb vns and flooding		128500	110	120
			115 - 120' Gradational change to argillaceous 1st below. Gradual darkening in colour and increase in dark/light contrasting banding.					
120	246'	Black Argillaceous Limestone	Black argillaceous limestone, strong bedding, soft, strong fizz. Local strong contrasting banding appearance with dark argillaceous/light gritty bands, mm-cm scale. Minor black graphite on fracs. @ 120' strong bedding @ 40°	120 - 188' strong carb on fracs and irreg patches and vnlts	Minor diss py and py vnits. >> fine py in darker bands, << in grey gritty bands	128226	120	130

	124 - 130' v low angle crackle zone, runs approx down axis of core? Bedding variable in this zone 0 - 45° to C/A. 156.6 - 165' >>py, v fine muddy py in darker bands + fine py laminae along beds 158' str bedding @ 45° @ 164' str bedding @ 10° 188' grad get > pale grey gritty beds < black argillaceous beds, overall rx is slightly paler, less contrasting bands than above. 192' str bedding @ 30° 193 - 195.5' Dark grey-black, silic'd, bx'd and healed, weakly vuggy zone. Darkness makes texts difficult to see. Broken upper contact. Sharp lower contact @ 35°. 202' str bedding @ 20° 207.5' 5 cm silic bx zone as in 193 - 195.5' @ 25-30° to C/A. 210' str bedding @ 25° @ 230' continued grad increase in gritty component. Now rx is pale-med grey, well bedded gritty lst with minor dark argillaceous bands. 240' str bedding @ 40° @ 246' EOH	188 - 246' mod carb on fracs and irreg patches and vnlts	156.5 - 165' 3-5% v fine py, diss and fine py laminae along beds	128227 128228 128229 128230 128231 128232 128233	156.5 165 175 185 193 195.5 205	165 175 185 193 195.5 205 215
--	---	--	--	--	---	---

Hole: 96K-13

Purpose: To test under the Sleeper vn

Northing: 5,441,934.2 UTM Northing
Easting: 388,416.82 UTM Easting
Azimuth: 278°
Dip: -45°

Depth: 220'

Drilled September 16-18, 1996
Drilled by: Bergeron Drilling
Logged by: Linda Caron
Core stored: Boundary Falls core shack

Inte		Rock type					Sample	
From	To		Description	Alteration	Mineralization	Number	From	To
(feet)	(feet)						(feet)	(feet)
0	7'	Overburden						
7	123'	Limestone (and interbedded tuff and bx)	Gen massive to well bedded grey- v. pale green, fng lst, with interbedded fine grey gritty lst beds and pale to dark green, chloritic fng limey volc? or tuff? and thicker beds (to 2') plus clasts of dark green, fine-med grained, fine fragmental/tuffaceous pyritic volcanic. Also minor limey bx interbeds with dom lst clasts in green limey volc? mtrx, range from v coarse with dom lst clasts to v fine with dom pyritic volc and rare chert clasts. V minor cherty beds.		v minor py, diss and as stringers, dom in silty or tuff beds.			
			@36' 3" zone of fine muddy py flooding, in fng bed par to bedding in lst. 75° to C/A. @50' bedding @70°		@36' 3" zone of 10% fine py flooding			
			67 - 69' Dark green, med grained chloritic volc or xtal tuff? 30% 1mm ang fsp, chl alt'd, in fine chl alt'd mtrx with 5% diss py. 50° to C/A.		67 - 69' 5% fine diss py			
			86 - 86.5' Dark chl volc or tuff as in 67 - 69', with 5-10% py and weak perv silic'n.	86 - 86.5' weak perv silic	86 - 86.5' 5-10% fine diss py			
			100 - 115' Pale green, well bedded, finely laminated 1st and coarser gritty limey beds (with 1-2% py diss and par to bedding) Bedding dom 75-85° to C/A.					
123	144.5	Epidote- Chlorite alt'd dyke or porph volc??	Grey-green alt'd porph dyke? or volc. 2-5%, <1mm epid alt'd fsp xtals, 2-5% 1-2 mm dark coarse chl alt'd mafic phenos and glomerocrysts in fine grained pale br-green mtrx. Mod hardness, minor carb on fracs.	perv epidote - chl alt'n	minor diss py	128234	123	134 144.5

144.5	220'	Limestone and limey bx	Grey bedded lst, limey grit and limestone bx, sim to 7-123' but with <lst and=""> bx. Bedding dom @45° to C/A.</lst>		minor py			
			185 - 186' carb vning + rusty fracs in fine limey bx			128236	180	189.5
			189.5 - 196' Sleeper Vn Intense silic'd, bx'd, vuggy. Minor v fine diss py.	189.5 - 196' intensely silic'd, bx		128237	189.5	196
			197 - 197.5 Int silie'd (v poor recov), sim to Sleeper zone above	197 - 197.5' int silic'd		128238	196	200
			209 - 210' mod silic'd, sim to 189.5 - 196'	209 - 210' mod silic'd		128239	200	210

Hole: 96K-14

Purpose: To test under the high grade Au zone in trench for a south plunging zone.

Northing: 5,441,921.64 UTM Northing Easting: 388,559.34 UTM Easting Azimuth: 009°

Dip: Depth: -40° 350'

Drilled Sept 19-23, 1996
Drilled by: Bergeron Drilling
Logged by: Linda Caron
Core stored: Boundary Falls core shack

erval	Rock type				Ì	Sample	
To		Description	Alteration	Mineralization	Number	From	To
(feet)						(feet)	(feet)
8'	Overburden						
253'	Limestone	Massive, pale grey fing lst, local v weak bedding @ v low core angles. Drilling parallel to strike of bedding, v steep bedding as seen on surface. Minor coarser gritty beds. Minor chl+py+magnetite on fracs, esp in darker grey gritty beds. 100 - 190' core very broken 160 - 206' Limestone with minor local calc silicate skarning and minor chl+py+calcite+magnetite and massive magnetite skarn beds and stringers as detailed below. 161 - 161.5' Banded py-mag-chl + calcite skarn @ 45° to C/A. Minor pale pink-green calc silicate alt'n of lst adj to skarny bed. 180 - 181' & 182 - 183' & 183 - 184' & 203 - 206'	160 - 206' local py-mag-chl-cc skarn as detailed	minor py	128246 128247 128240 128241 128242	161 180 182 183 203	161.5 181 183 184 206
		Massive and stringers of mag (may be banded with py) + py + chl, up to 6" thickness, dom @ 45° to C/A. 235 - 240' weak calc silicate banding	235 - 240' weak calc silicate banding			ī	
266'	Syenite dyke	Pale pink, med grained fsp glomeroporphyritic syenite dyke with muddy grey chilled margings. Sharp upper and lower contacts @ 60° to C/A.					
350'	Limestone	Massive pale grey lst as above, with low ang bedding (drilling par to strike, steep dip). Weak local calc-silicate alt'n. V minor py-mag-cc-chl skarny beds and minor chl + py on fracs.	Weak local calc silicate alt'n. V minor py-mag-chl-cc skarn ie.294-295'		128243	292	298
	To (feet) 8' 253'	To (feet) 8' Overburden 253' Limestone 266' Syenite dyke	To (feet) 8' Overburden 253' Limestone Massive, pale grey fing lst, local v weak bedding @ v low core angles. Drilling parallel to strike of bedding, v steep bedding as seen on surface. Minor coarser gritty beds. Minor chl+py+magnetite on fracs, esp in darker grey gritty beds. 100 - 190' core very broken 160 - 206' Limestone with minor local calc silicate skarning and minor chl+py+calcite+magnetite and massive magnetite skarn beds and stringers as detailed below. 161 - 161.5' Banded py-mag-chl + calcite skarn @ 45° to C/A. Minor pale pink-green calc silicate alt'n of lst adj to skarny bed. 180 - 181' & 182 - 183' & 183 - 184' & 203 - 206' Massive and stringers of mag (may be banded with py) + py + chl, up to 6" thickness, dom @ 45° to C/A. 235 - 240' weak calc silicate banding Pale pink, med grained fsp glomeroporphyritic syenite dyke with muddy grey chilled margings. Sharp upper and lower contacts @ 60° to C/A. 350' Limestone Massive pale grey lst as above, with low ang bedding (drilling par to strike, steep dip). Weak local calc-silicate alt'n. V minor py-mag-cc-chl skarny beds and minor chl + py on	To (feet) 8' Overburden 253' Limestone Massive, pale grey fing lst, local v weak bedding @ v low core angles. Drilling parallel to strike of bedding, v steep bedding as seen on surface. Minor coarser gritty beds. Minor chl+py+magnetite on fracs, esp in darker grey gritty beds. 100 - 190' core very broken 160 - 206' Limestone with minor local calc silicate skarning and minor chl+py+calcite+magnetite and massive magnetite skarn beds and stringers as detailed below. 161 - 161.5' Banded py-mag-chl + calcite skarn @ 45° to C/A. Minor pale pink-green calc silicate alt'n of lst adj to skarny bed. 180 - 181' & 182 - 183' & 183 - 184' & 203 - 206' Massive and stringers of mag (may be banded with py) + py + chl, up to 6" thickness, dom @ 45° to C/A. 235 - 240' weak calc silicate banding 266' Syenite dyke Pale pink, med grained fsp glomeroporphyritic syenite dyke with muddy grey chilled margings. Sharp upper and lower contacts @ 60° to C/A. 350' Limestone Massive pale grey lst as above, with low ang bedding (drilling par to strike, steep dip). Weak local calc-silicate alt'n. V minor py-mag-co-chl skarny beds and minor chl + py on V minor py-mag-chl-cc skarn	To (feet) 8' Overburden 253' Limestone Massive, pale grey fing lst, local v weak bedding @ v low core angles. Drilling parallel to strike of bedding, v steep bedding as seen on surface. Minor coarser gritty beds. Minor chl+py+magnetite on fracs, esp in darker grey gritty beds. 100 - 190' core very broken 160 - 206' Limestone with minor local cale silicate skarning and minor chl+py+calcite+magnetite and massive magnetite skarn beds and stringers as detailed below. 161 - 161.5' Banded py-mag-chl + calcite skarn @ 45° to C/A. Minor pale pink-green cale silicate alt' n of lst adj to skarny bed. 180 - 181' & 182 - 183' & 183 - 184' & 203 - 206' Massive and stringers of mag (may be banded with py) + py + chl, up to 6" thickness, dom @ 45° to C/A. 235 - 240' weak cale silicate banding 266' Syenite dyke Pale pink, med grained fsp glomeroporphyritic syenite dyke with muddy grey chilled margings. Sharp upper and lower contacts @ 60° to C/A. Massive pale grey Ist as above, with low ang bedding (drilling par to strike, steep dip). Weak local cale silicate alt' n. V minor py-mag-co-chl skarny beds and minor chl + py on Messive pale grey Ist as above, with low ang bedding (drilling par to strike, steep dip). V minor py-mag-chl-cc skarn V minor py-mag-ch-l-cc skarn V minor py-mag-ch-l-cc skarn	To (feet) 8' Overburden 253' Limestone Massive, pale grey fng lst, local v weak bedding @ v low core angles. Drilling parallel to strike of bedding, v steep bedding as seen on surface. Minor coarser gritty beds. Minor chl+py+magnetite on fracs, esp in darker grey gritty beds. 100 - 190' core very broken 160 - 206' Limestone with minor local calc silicate skarning and minor chl+py+calcite+magnetite and massive magnetite skarn beds and stringers as detailed below. 161 - 161.5' Banded py-mag-chl + calcite skarn @ 45° to C/A. Minor pale pink-green calc silicate alt'n of lst adj to skarny bed. 180 - 181' & 182 - 183' & 183 - 184' & 203 - 206' Massive and stringers of mag (may be banded with py) + py + chl, up to 6" thickness, dom @ 45° to C/A. 235 - 240' weak calc silicate banding 266' Syenite dyke Pale pink, med grained fsp glomeroporphyritic syenite dyke with muddy grey chilled margings. Sharp upper and lower contacts @ 60° to C/A. Massive pale grey lst as above, with low ang bedding (drilling par to strike, steep dip). Weak local calc-silicate alt'n. V minor py-mag-cch-l-cc skarn 128243	To (feet) 8' Overburden 253' Limestone Massive, pale grey fing lst, local v weak bedding @ v low core angles. Drilling parallel to strike of bedding, v steep bedding as seen on surface. Minor coarser gritty beds. Minor chl+py+magnetite on fraces, esp in darker grey gritty beds. 100 - 190' core very broken 160 - 206' Limestone with minor local calc silicate skarning and minor chl+py+calcite+magnetite and massive magnetite skarn beds and stringers as detailed below. 161 - 161.5' Banded py-mag-chl + calcite skarn @ 45° to C/A. Minor pale pink-green calc silicate alt'n of lst adj to skarny bed. 182-181' & 182 - 183' & 183 - 184' & 203 - 206' Massive and stringers of mag (may be banded with py) + py + chl, up to 6" thickness, dom @ 45° to C/A. 235 - 240' weak calc silicate banding 266' Syenite dyke Pale pink, med grained fsp glomeroporphyritic syenite dyke with muddy grey chilled margings. Sharp upper and lower contacts @ 60° to C/A. Massive pale grey fing lst, local v weak bedding @ v low core angles. Drilling parallel to minor py minor py-mag-ch-l-c skarn of the pink green local py-mag-chl-c skarn as detailed 128240

	325 - 350' mod py-mag-chl stringers @ 20-40° to C/A	325 - 350' mod py-mag-chl stingers	128245 345	350
	@350' EOH			

APPENDIX 2 ANALYTICAL RESULTS

PROJ: R.BELL

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

96 K-1

FILE NO: 6V-0418-RJ1 DATE: 96/07/25

KUJ: K.BELL TTN: LINDA CAI	RON									7EL:(-		-	3.C. V 327-34		:8					101		'	*	rock (ATE:	96/07/ Act:F:
SAMPLE	AG	AL	AS	ВА	BE	BI CA	CD	co	CR	cu			K	LI				NA	NI	P	PB	ŞB	SN S	R T	H TI				u-fir
IUMBER 127801 127802 127803 127804 127808	3.1 3.1 3.3 3.3 3.5	.34 .40 .25 .31	AS PPM 189 194 202 212 236	8A PPM 48 42 43 43 38	BE PPM .2 .2 .2 .2 .2 .2	7 >15.00 7 >15.00 8 >15.00 6 >15.00 9 >15.00	.1 .1	5 5 4 5 4	PPM 16 14 14 14 12	PPM 14 17 14 20 7	.65 .81 .53 .63	GA PPM 20 18 25 23 27	.06 .05 .06 .07	PPM 11 12 9 9	.42 .48 .38 .45	MN PPM 512 564 413 375 936	MO PPM 10 10 9 9	.01 .01 .01 .01	18 19 14 15 9	880 670 890 720 650	12	8 8 9 8 11	SN SPM PP 1 212 1 198 1 229 1 246 1 269	0 4 7	1 .01 1 .01 1 .01 1 .01	PPM PPM 1 17.5 1 17.6 1 17.3 1 17.3 1 14.2	1 PPM F	40 50	PI
27809 27810 27811 27812 27813	1.8 2.0 3.2 3.1 3.4	.21 1.32 .20 .20	212 45 175 174 198	41 63 37 50 154	.3 .6 .2 .2	9 >15.00 1 7.93 8 >15.00 7 >15.00 8 >15.00	.1 .1 .1 .1	5 7 4 5 4	15 21 14 13 13	19 6 16 12 9	.52 2.05 .56 .64 .43	24 1 24 21 27	.04 .14 .05 .05	6 15 4 5 3	.32 .94 .30 .36	954 547 544 558 604	9 11 9 10 10	.01 .01 .01 .01	14 11 13 16 12	920 1360 670 750 940	61 9 25 14 21	11 2 9 8 10	1 1516 1 646 1 216 1 2206 1 238	6 6	1 .01 1 .01 1 .01 1 .01 1 .01 1 .01	1 16.8 1 25.1 1 16.8 1 16.2 1 17.7	3 2 1 3 2 2 2 2	24 48 33 39 20	
27814 27816 27817 27818 27819	3.9 2.4 4.0 3.7 3.4	.12 .09 .06 .16 .18	210 218 185 182 183	51 47 56 58 38	.2 .2 .1 .2	9 >15.00 12 >15.00 11 >15.00 9 >15.00 9 >15.00	.1	4 4 3 3 4	13 13 12 13 14	15 8 5 8 9	.49 .41 .31 .44	22 25 31 27 25	.03 .02 .02 .03 .05	3 4 3 5 8	.28 .25 .20 .28 .33	1301 1240 742 535 505	10 8 7 7 8	.01 .01 .01 .01	13 11 8 12 11	640 560 400 570 660	30 24 23 17 16	12 12 12 10 9	1 261 1 283 1 348 1 297 1 274	2 1 5 1 6 1	1 .01 1 .01 1 .01 1 .01 1 .01	1 16.7 1 12.3 1 9.1 1 10.3 1 10.7	2 3 2 2 2	30 30 10 24 17	
127820	3.6	.12	182	44	.2	9 >15.00	.1	4	13	14	.42	27	.04	5	.28	613	8	.01	11	530	18	10	1 341	3 1	.01	1 10.5	2	14	
				-																									
		•																											
			4,4,4					-																	-			_	
											etasetalista, mitalia																		
							J.,															_				***************************************	,	•	
												,						·	····									-	
														-											····				
	-	_																										-	

PROJ: R.BELL

ATTN: LINDA CARON

MIN-EN LABS — ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

96K-1

FILE NO: 6V-0417-RJ1 DATE: 96/07/23

* rock • (ACT:F31)

TEL:(604)327-3436 FAX:(604)327-3423

SAMPLE NUMBER	AG PPM	%	AS PPM	BA PPM	BE PPM	BI PPM	CA %	PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	LI PPM	MG %	PPM	MO PPM	NA %	NI PPM	PPM	PPM	SB PPM F	PPM	PPM	TH PPM	TI % F	U PPM P	V PM P	W Z	'N Au 'M	ı-fire PPI
127805 127806 127807 127815	.1 .1 .1	.23 .09 .22 .08	222 261 223 276	44 43 40 59	.2 .3 .2	6 2 10 2 8 2 10 2	15.00 15.00 15.00 15.00	.1 .1 .1 .1	3	14 10 12 10	15 6 12 5	.57 .31 .54 .29	15 20 6 20	.03 .02 .05 .03	7 5 8 5	.31 .21 .35 .20	464 648 1008 859	8 6 8 5	.01 .01 .01	15 7 13 9	970 480 670 540	28 24 18 21	6 8 6 9	1 1 1 1	1583 1952 1252 1 79 5	1 1 1	.01	1 19 1 10 1 13 1 11	2 8	3 4 3 1 3 2 4	n	(
													<u>-</u>																			
													· · · · · ·																_			T
						····									···															-		e [†] ended state and the
						-									м									·—-								
		· · - · · - · · ·						······································			···																					
																		.														
						-	-									-		,											_		<u>.</u>	
		-						, <u>.</u>				_																				

PROJ: R.BELL

ATTN: LINDA CARON

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

96K-Z

FILE NO: 6V-0421-RJ1 DATE: 96/07/23

TEL: (604)327-3436	FAX: (604)327-3423

SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	B I PPM	(Ά % Ρ	CD PM		CR PPM	CU PPM	FE %	GA PPM	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM F	SB PPM P	SN PM P	SR T	H T	I U % PPM	V PP M	PPM	ZN AL PPM	J-fire PPB	\rfloor
127825 127852 127858 127862 127865	.1 .3 2.4 .1 1.8	.37 .26 .39 .22	257 248 159 196 179	32 38 33 33 34	.3 .4 .3 .4	9 7 9	>15.0 >15.0 >15.0 >15.0 >15.0)0)0)0)0)0	.1 .1 .1 .1	3 4 3 4	20 20 28 16 19	19 12 18 15 14	.54 .59 .83 .53	10 14 4 22 16	.04 .04 .05 .05	15 11 14 7 10	.47 .41 .34 .21 .31	700 581 985 400 490	7 7 8 6 6	.01 .01 .01 .01	12 13 19 13 17	730 550 900 740 830	12 14 12 15 11	14 9 7 9 8	1 110 1 13 1 10 1 11 1 12	61 39 30 18 72	1 .0 1 .0 1 .0 1 .0	1 1 1 1 1 1 1 1	17.3 15.7 16.5 11.5 16.4	3 3 3 3	31 36 40 23 28	3 12 2 5	
										-																							
																												,			J. S.	- ingeneral and a second	
						1																	-					-				-	
							<u>-</u>			. ,									<u></u>														
																· · · · · · ·						<u></u>	****										
											··												.,,,										1
																			<u>.</u>													:	
							. ,																					· · · · · · · · · · · · · · · · · · ·					
															······							· · · · · · · · · · · · · · · · · · ·	<u>.</u>							_		· · · · ·	
															. <u> </u>			•							-,					-		·	
															,																		

PROJ: R.BELL

ATTN: LINDA CARON

MIN-EN LABS --- ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

96K-Z

FILE NO: 6V-0422-RJ1 DATE: 96/07/26

SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI CA PPM %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	L I PPM	MG %	MN PPM	MO PPM	NA %	NI PPM		PB PPM	SB PPM I		SR PPM P	TH TI	I L		W Z		-fire PPB
127821 127822 127823 127824 127851	3.4 2.8 2.8 2.7 2.6	.23 .21 .80 .39	190 212 210 198 219	27 23 26 20 101	.3 .5 .3	8 >15.00 8 >15.00 6 >15.00 7 >15.00 6 >15.00	.1 .1 .1	4 4 7 4 5	17 16 27 18 19	15 12 15 12 14	.56 .51 1.07 .64 .68	23 31 9 27 24	.03 .03 .05 .03	9 7 22 12 12	.34 .34 .91 .46 .60	572 511 792 662 610	7 7 10 8 9	.01 .01 .01 .01	15 11 24 16 16	960 710 970 750 680	21 19 1 11 8	10 10 6 10 8	1 23		1 .01 1 .01 1 .01 1 .01 1 .01	1 1 1 1		2 6 3 26 2 6	51 57 57 50	2 4 4 8 3
127853 127854 127855 127856 127857	2.7 2.9 2.7 2.5 2.6	.36 .26 .29 .42 .26	211 205 181 168 171	46 43 122 49 109	.3 .2 .2 .3	7 >15.00 7 >15.00 8 >15.00 7 >15.00 5 >15.00	.1 .1 .1 .1	5 4 5 6 5	20 17 17 21 15	14 10 24 21 12	.69 .59 .77 .90 .88	25 29 21 19 25	.04 .04 .05 .07	9 8 8 12 6	.52 .44	789 662 1343 963 736	9 9 10 8 8	.01 .01 .01 .01	17 15 20 19 14	820 720 940 650 520	13 20 46 12 17	9 10 10 8 8	1 22 1 22 1 17 1 14 1 18	461	1 .01 1 .01 1 .01 1 .01	1 1 1 1 1 1	17.2 17.1 17.5 14.3 13.4	2 2 2 2 3 8 2 3 8 2 3 8	6 8 0 11 19	2 5 7 5 6
127859 127860 127861 127863 127864	2.9 2.8 2.9 2.9 2.7	.37 .24 .19 .11 .22	159 163 162 175 168	52 42 40 31 26	.4 .3 .3 .3	5 >15.00 7 >15.00 9 >15.00 8 >15.00 7 >15.00	.1 .1 .1 .1	5 5 4 5 4	19 15 16 14 16	32 14 11 11 15	.86 .67 .56 .50	26 30 27 33 27	.07 .04 .04 .03 .03	10 7 5 4 7	.39 .33 .26 .25 .33	642 697 596 300 382	12 8 7 6 7	.01 .01 .01 .01	19 17 14 11 15	1410 730 950 710 740	15 18 20 21 15	10 10 11 11 11	1 20 1 24 1 30	729 093 475 058 424	1 .01 1 .01 1 .01 1 .01 1 .01	1 1 1 1 1 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 8 8 8 2 3	6 8 15 7 5
127866 127867 127868 127869 127870	2.6 2.6 2.7 2.9 2.7	.39 .30 .26 .21 .15	129 164 168 174 168	39 43 29 38 41	.4 .4 .3 .3	6 >15.00 9 >15.00 11 >15.00 11 >15.00 9 >15.00	.1 .1 .1 .1	5 5 5 5 4	19 18 17 15 14	12 12 14 12 12	.80 .65 .56 .53 .47	24 25 29 32 27	.05 .05 .04 .04	13 9 8 8 7	.39 .36 .35 .33	404 978 748 573 415	7 7 8 8 9	.01 .01 .01 .01		1510 1020 790 730 610	15 21 19 18 16	9 10 10 11 11	1 20 1 20	006 089 090 489 156	1 .01 1 .01 1 .01 1 .01 1 .01	1 1 1 1 1 1		2 7	7 8 8 5 2	6 4 3 4 3
127871 127872 127873 127874	3.0 3.1 3.2 3.2	.13 .23 .09 .12	173 161 166 183	83 65 45 44	.3 .2 .2	11 >15.00 8 >15.00 12 >15.00 12 >15.00	.1 .1 .1	4 5 4 4	14 16 13 14	11 13 6 7	.49 .62 .38 .44	30 27 23 25	.04 .05 .02 .02	7 8 6 6	.33 .44 .25 .28	822 597 1775 1598	13 11 7 7	.01 .01 .01	14 19 12 13	910 900 530 500	23 16 26 27	11 9 12 12	1 25	191 596 161 218	1 .01 1 .01 1 .01 1 .01	1 1	17.0 19.3 11.8 10.5	2 3	1 3 1 2	2 3 8 6
																								-						
			. , ,																											
																														
							,														-,- ··-									

PROJ: R.BELL

ATTN: LINDA CARON

MIN-EN LABS — ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 96K-3

FILE NO: 6V-0439-RJ1+2 DATE: 96/07/31

The second secon

SAMPLE NUMBER	AG PPM	AL %	AS	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	LI PPM	MG %	MN PPM	MO PPM	NA N % PP		P I		SB SI		TH T	ſĮ L % PPM	V PPM	W PP M		u-fire PPB
127876 127877 127878 127879 127880	2.5 2.6 2.6 2.7 2.7	.33 .38 .44 .36 .52	320 312 330 326 343	24 23 33 36 39	.2 .3 .3	4 >1 4 >1 5 >1 6 >1 4 >1	5.00	.1 .1 .1 .1	4 4 4 5	17 18 18 16 21	19 12 17 15 23	.64 .70 .74 .60 .89	18 17 13 17 13	.05 .04 .05 .05 .06	10 10 12 11 14	.35 .42 .48 .39 .57	532 461 582 494 541	9 . 8 . 9 .	01 1 01 1 01 1 01 1 01 2	7 76 5 75 5 90 1 89	50 50 00 20	12 9 9 5	7 6 7 6	1 1636 1 1704 1 1942 1 2032 1 1994	1 .0 1 .0 1 .0 1 .0	01 1 01 1 01 1	12.5 13.1 16.1 16.0 20.9	1 3 3 3 3	38 43 46 37 49	1 6 2 4
127881 127882 127883 127884 127885	2.5 2.6 2.5 2.8 2.6	2.25 .80 .37 .70 .49	149 268 305 256 283	496 31 71 51 44	.8 .3 .2 .4	1 3 >1 5 >1 3 >1 3 >1	5.00	.1 .1 .1 .1	27 8 5 30 6	32 32 19 21 18	47 14 37	4.25 1.65 .79 1.77 1.07	1 1 10 1 11	.08 .06 .08 .06	21 8 13 8	2.17 .75 .35 .63 .47	1657 1240 896 1254 888	12 . 9 . 14 .	01 2 01 2 01 2 01 1 01 1	2 57 0 114 9 71 7 66	0 0 10 30	1 2 13 60 12	1 7 6 7	613 696 1 1212 1 1760 1 1801	1 .0 1 .0 1 .0 1 .0	01 1 01 1 01 1 01 1	132.3 23.4 16.7 33.8 20.7	1 2 2 3 3	82 44 25 40 52	10 6 5 5
127886 127887 127888 127889 127890	2.4 2.6 2.6 2.6 2.5	1.61 .46 .46 .56 .41	139 273 268 248 295	94 45 37 43 53	1.1 .4 .4 .6	1 >1: 3 >1: 4 >1: 3 >1: 4 >1:	5.00 5.00 5.00	.1 .1 .1 .1	24 6 6 6 5	22 26 24 21 15	23 26	4.41 1.20 1.01 1.15 .87	1 6 12 10 15	.14 .06 .06 .08 .07	24 12 12 11 9	1.41 .38 .33 .45 .42	1502 1250 786 469 479	11 . 9 . 12 .	01 2 01 2 01 2 01 2 01 2	7 71 3 102 7 171	10 7 20 7	34 14 10 8 4	1 7 7 6 6 6	3 1554 I 1184 I 923 I 1768 I 2010	1 .0 1 .0 1 .0 1 .0)1 1)1 1)1 1	60.9 17.9 15.3 22.4 14.1	1 3 3 3 3	80 25 31 43 34	8 4 12 9 1
127891 127892 127893 127894 127895	2.4 2.7 2.5 2.8 2.5	.40 .35 .31 .25	279 322 308 314 291	35 37 39 25 42	.7 .4 .3 .3	6 >15 6 >15 5 >15 6 >15 3 >15	5.00 5.00 5.00	.1 .1 .1	4 4 4 5	18 17 17 15 22	22 11 9 10 14	.79 .73 .69 .67 .87	10 18 16 17 14	.05 .05 .05 .04 .06	8 8 9 7 10	.34 .34 .35 .33 .47	1030 633 636 833 391	8 · 9 · 8 ·	01 1: 01 1: 01 1: 01 1: 01 2:	5 88 5 76 5 57	30 7 50 7	13 15 13 14 8	7 6 8 1 8 1 6 1	1 1446 1 1735 1 1819 1 1769 1 1606	1 .0 1 .0 1 .0 1 .0)1 1)1 1)1 1	14.2 12.7 12.7 11.8 17.2	3 3 3 3	27 35 34 27 44	2 1 1 1 4
127896 127897 127898 127899 127900	2.9 2.9 3.3 1.6 3.4	.32 .30 .21 .17 .35	342 314 346 345 265	42 44 73 89 109	.3 .2 .3	5 >19	5.00	.1 .1 .1 .1	4 4 4 6	16 19 15 13 18	13 10 9 7	.76 .69 .65 .54	18 17 9 14	.05 .05 .04 .05 .07	7 7 6 5 10	.41 .36 .33 .33 .49	558 839 1675 1252 2895	9.	01 15 01 16 01 16 01 17 01 20	5 106 5 63 2 58	0 1 0 1 0 1		7 1 8 1 8 1 7 1	2227 2474 2413 2689 2380	1 .0 1 .0 1 .0 1 .0)1 1)1 1)1 1	14.5 15.3 16.1 16.8 38.5	3 4 3 2 3	36 24 20 19 42	1 12 12 1 2
128851 128852 128853 128854 128855	4.7 2.9 2.3 1.6 3.4	.13 .10 .06 .13	311 406 417 395 377	102 51 39 40 58	.3 .3 .3 .3	8 >15 12 >15 12 >15 12 >15 11 >15	5.00 5.00 5.00	.1 .1 .1	4 4 3 4 4	13 13 12 13 14	5 19 6 10 5	1.36 .52 .38 .60 .86	1 1 17 1	.03 .02 .02 .03 .03	5 4 5 6	.31 .27 .24 .27 .33	7009 3045 1846 3307 3637	10 . 8 . 10 .	01 22 01 13 01 13 01 13	70 55 61	0 2	28 1 25 1 33 1	0 1 1 1 1 1 0 1	3337 2927 2895 2175 2902	1 .0 1 .0 1 .0 1 .0)1 1)1 1)1 1	20.3 14.6 11.7 13.8 13.8	4 2 2 2 2	14 13 10 12 11	9 8 1 15 8
128856 128857 128858 128859 128860	3.4 1.8 3.6 1.7	.11 .25 .05 .05	385 206 409 413 460	55 155 141 97 78	.3 .2 .2 .2	12 >15 10 >15 12 >15 12 >15 13 >15	5.00 5.00 5.00	.1 .1 .1 .1	3 8 3 3 3	13 17 11 11 13	23 3 4 5 7	.53 3.76 .34 .31 .29	8 1 21 28 31	.03 .02 .03 .02 .04	5 8 5 4 5	.27 .55 .24 .24 .32	2407 >10000 1453 863 667	6 . 7 . 7 .	01 44 01 9 01 8	44 48 53 53	0 10 0 2 0 1	31 1 05 21 1 16 1 18 1	7 3 0 1 1 1	3197 2396 3590 3724 2802	1 .0 1 .0 1 .0 1 .0	11 1 11 1 11 1 11 1	11.8 18.8 9.7 10.2 12.5	2 3 2 2 2 2	14 46 8 7 11	1 4 1 5
128861 128862 128863 128864 128865	4.2 3.7 3.9 1.7 2.2	.24 .11 .17 .11	405 418 432 424 439	153 56 57 58 44	.4 .3 .2 .3	14 >15 11 >15 10 >15 11 >15 13 >15	5.00 5.00 5.00	.1 .1 .1 .1	4 4 4	27 14 16 13 14	11 9 7 8	.41 .41 .48 .39 .43	27 29 29 28 32	.04 .03 .04 .03 .04	8 7 5 6	.27 .28 .38 .33	510 554 370 473 513	8 . 8 . 9 . 8 .	01 1	84 79 77 68	0 1 0 1 0 1	12 1 11 1 15 14 1	0 1 0 1 0 1 9 1 1 1	3446 3719 3997 3310 3490	1 .0 1 .0 1 .0 1 .0	1 1 1 1 1 1 1 1	43.0 14.3 17.9 14.3 15.4	6 2 2 2 2	18 11 14 14 16	2 1 1 6 1
128866	3.6	. 26	395	49	.2	11 >15	5.00	.1	4	17	13	.48	27	.06	8	.35	422	10 .	01 12	? 73	0 1	15 1	0 1	3391	1 .0	1 1	23.9	2	25	1

PROJ: R.BELL

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

96K-4

FILE NO: 6V-0442-RJ1+2 DATE: 96/08/01

THE STATE OF THE S

ATTN: LINDA CA	RON									020	TEL: (604)3	27-34	36	FAX:(604)3	27-34	23	•					16 X	- ~	<i>†</i>	*	rock	* (ACT: F31
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	L I PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM F		R T	н ті м %		W PPM		u-fire PPB
128901 128902 128903 128904 128905	2.4 2.5 2.6 2.6 2.5	.35 .33 .50 .32 .29	109 125 128 120 118	153 125 46 76 59	.3 .3 .3 .3	3 >1 3 >1 3 >1 5 >1 4 >1	5.00 5.00 5.00	.1 .1 .1 .1	4 4 4 3	18 19 22 15 17	18 14 24 21 15	.73 .67 .80 .66 .59	15 15 2 17 18	.07 .05 .07 .05 .04	9 12 11 9	.41 .45 .60 .42 .37	199 314 562 261 255	8 7 10 8 7	.01 .01 .01 .01	15 14 20 15 12	890 890 1050 720 950	9 8 5 10 11	7 6 5 7 7	1 266 1 219 1 185 1 222 1 283	2 6	1 .01 1 .01 1 .01 1 .01 1 .01	1 15.2 1 16.0 1 17.6 1 14.4 1 15.1	3	41 36 59 38 39	17 7 2 6 1
128906 128907 128908 128909 128910	2.5 2.1 2.3 2.6 2.4	.31 .96 .33 .21 .23	126 105 133 140 118	45 44 38 34 47	.4 .3 .3 .3	3 >1 1 >1 5 >1 5 >1 5 >1	5.00 5.00 5.00	.1 .1 .1 .1	4 7 3 3 3	15 25 14 14 10	23 20 9 10 9	.74 1.57 .65 .48 .43	15 1 12 24 20	.05 .08 .06 .03	10 21 10 8 7	.39 .96 .42 .31	519 702 562 301 254	9 13 9 8 6	.01 .01 .01 .01	16 28 14 10 8	930 1170 770 730 690	11 1 12 13 11	6 5 7 8 7	1 280 1 156 1 215 1 278 1 263	0 9 11	1 .01 1 .01 1 .01 1 .01 1 .01	1 15.4 1 22.7 1 18.4 1 17.8 1 12.7	1 3 2	43 107 37 25 25	6 1 1 2 5
128911 128912 128913 128914 128915	2.3 2.4 2.3 2.8 2.5	.22 .33 .43 .54 .30	126 132 119 121 135	30 80 54 48 40	.3 .4 .5	5 >1 5 >1 6 >1 6 >1 5 >1	5.00 5.00 5.00	.1 .1 .1 .1	3 4 5 3	14 15 18 32 16	13 16 13 59 15	.48 .63 .77 1.02 .60	20 16 12 1 15	.04 .06 .07 .06	8 11 9 14 10	.34 .44 .43 .52 .38	233 334 500 1010 6 64	8 9 8 9 7	.01 .01 .01 .01		810 810 1130 1110 780	11 10 18 24 19	7 7 7 8 8	1 224 1 236 1 222 1 191 1 240	3 3 3	1 .01 1 .01 1 .01 1 .01 1 .01	1 19.1 1 22.0 1 19.8 1 18.0 1 15.8	3 3 4	24 30 39 45 26	1 4 2 4 2
128916 128917 128918 128919 128920	2.4 2.6 2.5 2.4 2.3	.37 .31 .36 .53	106 136 116 115 98	34 31 35 47 32	.4	5 >1 6 >1 4 >1 3 >1 4 >1	5.00 5.00 5.00	.1 .1 .1	4 3 4 4 4	18 16 15 16 15	17 15 16 15 13	.69 .56 .68 .96	12 16 7 3 12	.04 .04 .05 .07	12 9 8 13 10	.39 .37 .37 .55 .38	596 505 988 728 578	8 6 9 10 7	.01 .01 .01 .01	16 15 16 16 15	960 820 810 1050 820	17 18 44 24 14	8 8 7 6 7	1 199 1 186 1 158 1 161 1 203	8 0 6	1 .01 1 .01 1 .01 1 .01 1 .01	1 18.3 1 14.8 1 13.8 1 16.3 1 13.2	3 3 3	38 34 32 42 35	1 3 8 16 6
128921 128922 128923 128924 128925	2.4 2.1 2.1 2.4 1.0	.40 .31 .26 .29	119 102 112 103 10	37 39 40 57 68	.5 .4 .4 .4	3 >1 4 >1 5 >1 3 >1	5.00 5.00	.1 .1 .1	4 3 3 4 8	16 14 12 15 27	16 9 11 16 11 2	.71 .59 .55 .72	13 9 10 10	.06 .06 .05 .07	9 7 7 5 19	.43 .33 .27 .33 1.08	526 846 916 930 503	9 7 7 9 14	.01 .01 .01 .01	15 16 12 13 11	860 870 740 960 1630	11 15 17 13 74	7 7 7 7	1 197 1 161 1 177 1 223 1 45	6 5 9	1 .01 1 .01 1 .01 1 .01 1 .01	1 15.8 1 12.9 1 11.8 1 16.6 1 27.5	2 1 3	39 34 24 28 65	2 22 1 3 2
128976 128977 128978 128979 128980	2.0 2.4 2.6 2.4 2.6	.30 .18 .21 .43 .11	118 120 115 105 126	80 40 43 437 59	.2 .3 .3	4 >1! 5 >1: 4 >1: 2 >1: 6 >1:	5.00 5.00 5.00	.1 .1 .1 .1	3 3 4 5 3	15 13 13 14 11	10 12 13 10 6	.67 .44 .62 .91 .35	8 20 11 11 26	.06 .05 .05 .07	6 6 7 4	.42 .35 .37 .48 .24	890 383 981 625 530	10 8 9 10 7	.01 .01 .01 .01	15 11 15 13 7	940 670 670 830 470	17 11 16 9 17	6 7 7 7 8	1 239 1 280 1 246 1 262 1 343	6 6 9	1 .01 1 .01 1 .01 1 .01 1 .01	1 17.2 1 14.3 1 18.8 1 20.5 1 9.7	1 2 3	30 33 34 33 11	2 5 10 9
128981	2.4	.31	128	62	.3	5 >15	5.00	.1	4	16	8	.66	17	.09	7	.40	592	8	.01	15	620	12	7	1 284	8	1 .01	1 15.6	2	18	2
	7																													

MIN-EN LABS - ICP REPORT

FILE NO: 6V-0450-RJ1+2

OJ: R.BELL TN: LINDA CA	ARON			. 10							32 SHER TEL:(6			•		•	3.C. V ! 327-34		8					96 Y	۲ -	5		* r	DATI	E: 96/08/
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM		CA %	CD PPM	CO PPM	CR	CU PPM	FE	GA PPM	K %	L I PPM	MG	MN	MO PPM	NA %	NI PPM			SB PPM P	SN		TH TI	I U % PPM	V		N Au-fire
28982 28983 28984 28985 28986	2.4 3.2 3.2 3.3 3.2	.25 .15 .06 .13 .16	150 155	95 19 16 22 34	.4	2 > 6 > 8 >	>15.00 >15.00 >15.00 >15.00 >15.00	.1 .1 .1	4 3 3 3 3	18 13 10 14	17 1 10 8 12		1 19 29 24 23	.04 .04 .03 .03	9 5 4 6 6		1520 863 497 586	13 7 7 7 7	.01 .01 .01 .01	16 11 7 9 8	600 550 350 540 480	14 25 19 17 24	2 9 10	1 23 1 24 1 30 1 27 1 30	93 34 57 08	1 .01 1 .01 1 .01 1 .01 1 .01	1 1 1 1 1 1	16.0 12.2 9.3 12.5 12.6	2 1	19 1 11 4 9 1 12 1 11 2
28987 28988 28989 28990 28991	1.2 3.8 4.7 4.1 3.5	1.02 .11 .22 .18 .06	1 143 152 125 168	33 75 181 81 81 56	.7 .3 .3 .3	8 > 6 > 8 >	2.24 >15.00 >15.00 >15.00 >15.00	.1 .1 .1	6 3 6 4 3	22 13 16 12 11	9_	.54	1 1 1 1 22	.10 .04 .02 .06 .03	14 5 9 5 4	.30 .73 .25 .31	711 2243 4759 2622 829	13 8 14 9 8	.04 .01 .01 .01	12 24	1020 600 490 610 500	11 28 24 32 18	3 11 6 11 9	1 25 1 25 1 22 1 18 1 25	90 1 9	1 .01 1 .01 1 .01 1 .01 1 .01	1 1 1 1 1 1	23.8 12.3 24.2 14.8 10.9	1 5: 2 1: 3 30 2 1:	3 50 1 2 1 9
28992 28993 28994 28995 28996	7.2 4.5 4.2 4.1 4.2	.11 .17 .11 .10 .19	182 177 173 182 171	53 166 61 43 57	.3 .2 .2 .2	8 > 9 > 8 >	>15.00 >15.00 >15.00 >15.00 >15.00	.1 .1 .1	4 3 3 3 3	12 14 13 13 14	5 7 6	.41 .57 .57 .34 .49	28 12 17 29 1	.04 .05 .03 .03	6 7 7 6 6	.43 .34 .29	486 1308 1326 756 2479	9 9 8 8 7	.01 .01 .01 .01	12 12 12 10 12	510 610 710 640 640	17 21 17		1 34: 1 25: 1 30: 1 34: 1 23:	45 52 93	1 .01 1 .01 1 .01 1 .01 1 .01	1 1 1 1 1 1	12.9 13.3 14.3 12.3 14.1	2 59 1 14 2 17 2 9 2 10	9 4 1 9
28997 28998 28999 29000 29001	5.1 3.9 4.9 4.0 3.6	.10 .05 .15 .05	173 176 149 168 141	71 80 119 58 47	.2 .2 .2 .2	9 > 10 > 10 >	>15.00 >15.00 >15.00 >15.00 >15.00	.1 .1 .1	3 3 3 4	12 12 15 11 13	6 12 5	.42 .40 .95 .32 .96	6 1 1 16 1	.03 .02 .03 .02	6 5 8 5 6	.25 .37 .24 .29	2320 3173 4139 1699 3946	8 7 9 8 9	.01 .01 .01 .01	12 11 18 10 18	650 620 750 570 560	28 28 22	12 12 11 12 12	1 300 1 336 1 269 1 33 1 32	69 51 18	1 .01 1 .01 1 .01 1 .01 1 .01	1 1 1 1 1 1	13.0 12.6 16.4 10.1 13.3	4 14	8
29002 29003 29004 29005 29006	3.9 4.0 4.8 4.1 2.3	.13 .10 .09 .12	164 173 154 174 127	49 52 60 73 71	.3 .2 .3 .3	8 > 8 >	>15.00 >15.00 >15.00 >15.00 >15.00	.1 .1 .1	4 4 3 3 2	13 14 13 12 10	15 6	.11 .58 .43 .46 .34	1 1 3 6 10	.02 .03 .03 .03	6 6 3 6 4	.32 .27 .31	4672 2978 2187 2268 1269	10 9 8 9 6	.01 .01 .01 .01	18 13 12 10 7	500 750 760 640 490	3 1 28	13 12 10 11 6	1 300 1 270 1 260 1 260 1 300	07 17 22	1 .01 1 .01 1 .01 1 .01 1 .01	1 1	13.3 15.0 13.2 14.0 8.9	4 17 2 14 2 9 2 29 2 6	9
29007 29008 29009 29010	2.9 2.7 3.7 3.2	.06 .07 .15 .09	130 117 123 122	39 46 34 40	.2 .2 .4 .4	6 > 7 > 6 >	>15.00 >15.00 >15.00 >15.00	.1 .1	3 3 3 3	10 11 15 13	6 10	.38 .38 .53 .46	11 10 4 1	.02 .02 .03 .03	4 4 6 5	.24 .32	1333 1339 1777 3002	7 7 8 8	.01 .01 .01 .01	9 13	570 700 750 840	19 20 26 35	7 7 8 9	1 300 1 293 1 268 1 323	33 81	1 .01 1 .01 1 .01 1 .01	1 1	10.0 12.4 14.9 11.6		
										-																				

PROJ: R.BELL

ATTN: Linda Caron

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

96K-6

FILE NO: 6V-0455-RJ1 DATE: 96/08/07

* rock * (ACT:F31)

TEL:(604)327-3436 FAX:(604)327-3423

SAMPLE AG AL AS BA SE SI CA CD CD CR CV FE GA K LI MG MM NO MA NI P PB SS SN SS TH II U V V LZ N M PP PP PP PP PP PP PP PP PP PP PP PP P	IN. LIIIda Ca	at OII											.00475	יבו אי	30	1 44. (00	4 <i>)</i> 3 <i>E</i> 1 3	723										•	UCK	٠,	
129011 2.3 .89 45 95 .1 1 8.72 .1 21 19 81 2.95 1 .14 15 1.09 1461 19 .01 35 870 30 1 1 694 1 .01 1 15.5 1 100 129013 .1 .16 77 19 .1 10 >15.00 .1 3 10 7 .47 8 .03 7 .34 699 5 .01 11 500 1 .01 1 10.1 1 10.1 1 10.1 10 1 .01 1 .02 1 .03 1 .04 .01 1 .05 .01 .03 .02 .03 .03 .04 .06 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .02 .02 .03			AL %	AS PPM									FE %	GA PPM			MG MN % PPM	MO PPM	NA %												J-fi P
129016	129011 129012 129013 129014	3.2	.89 1.35 .16 .09	45 85 77	56 19 14	.1	1 10 >1 12 >1	7.81 15.00 15.00	.1 .1 .1	19 3 3	23 10 10	122 7 10	2.95 2.58 .47 .39	1 1 8	.11	20 1. 7	09 1461 43 1469 34 699	19	.01 .01 .01 .01	37 11 10	720 500 520	25 14 11	6	1 1	422 130 561	1 .01 1 .01 1 .01 1 .01	1 1 1	15.5 25.5 10.1 9.7	1 10 1 12 3 1 3	0 1 1 8	
29021 2.2 1.12 122 58 .1	129016 129017 129018 129019	2.3	.09	77 76 99 67	15 28 61 44	.1 .1 .1	12 >1	15.00 15.00 9.36	.1 .1 .1	3 10 18 15	10 13	6 18 45 23	.39 1.26 2.02 1.77	11	.02 .05 .10	5 . 12 . 26 1. 22 1.	24 722 71 1446 37 1184 12 1169	5 7 9	.01 .01 .01	11 22 37 33	480 470 590 610	30 44 1 39	7 3 1	1 1	760 174 492 713	1 .01 1 .01 1 .01 1 .01	1 1 1	10.1 12.5 16.8 11.3	3 1 1 3 1 6	0 3 2	
	129021 129022 129023	2.2 .1 2.3	1.12 .28 .73	122 80 92	58 55 91	.1 .1	1 7 9 > 1 3 > 1	14.27 15.00 15.00	:1	7 4 4	16 12 16	9	.82 .96	1	.03 .08	29 1. 9 . 14 .	32 1354 50 2476 86 1441	7 8	.01	18	520 910	1	5 1	1	811 844	1 .01	1	10.8 16.5	1 5 2 2 1 2	1 1 6	
										•																					
																															_
																															-
											• • • • • • • • • • • • • • • • • • • •																				_
																															_

PROJ: R.BELL

ATTN: Linda Caron

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

96K-7

FILE NO: 6V-0456-RJ1 DATE: 96/08/07

ATTN: ETHUA CO	31 011											00475	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30		(004)	JC1 J7	23											1 00	`	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	L I PPM		MN PPM	MO PPM	NA %	N I PPM	PPM	PPM	SB PPM I		SR PPM		T1 % P	U PM PF			Au-fir Pr
129026 129027 129028 129029	.6 1 .1 1.1 1 1.3 2	.34 1.50 2.04	65 83 107 129 79	139 60 134 79	.1	1 9 ; 1 1	2.35 15.00 8.44 9.72	.1 .1 .1	8 4 5 12 20	9 12 32 22 23	21 17 48	2.27 .58 1.76 2.55 2.39	1 1 1	.20 .04 .13 .08	48	.86 .48 1.39 2.28 1.40	419 1637 843 1127	9 6 8 10 10	.02 .01 .01 .01	12 15 32 36	1520 480 850 1360 640	10 20 1 1	1 6 1 1	1 1 1 2	306 397 435 590 528	1 1	.01 .01 .01 .01	1 14. 1 13. 1 22. 1 31. 1 15.	8 9	1 46 3 23 1 86 1 121 1 68	
129030 129031 129032 129033 129034	2.3 1 2.4 1 .1 5.3	66	106 106 84 77 50	107 106 19 26 32 38	.1	1 7 10 10	8.85 8.94 15.00 15.00	.1 .1 .1 .1 .1	13 3 4 3	21 15 11 13 7	28 15 43 5	2.41 .46 .52 .47	1 1 3 1	.15 .03 .04	33 16 7 6	1.91 .95 .56	2146 654 671 1196	10 5 6 5	.01 .01 .01	39 13 11 11	830 490 650 580	1 1 92 9	1 1 4 4	2 1 1	551 488 490 526	1 1 1	.01 .01 .01	1 21. 1 14. 1 9. 1 10.	8 4 5 4	1 115 2 27 2 43 3 12	. 1
129035 129036 129037 129038 129039	1.4 .1 .1	.09 .40 .07	71 48 70 69	12 29 35 43 54	.1 .1 .1 .2	1 : 8 : 10 :	2.69 15.00 15.00 15.00	.1 .1 .1	6 2 6 3 7	10 17 10 9	4 141 5 5	.27 2.52 .51 .41	4 1 1 1	.18 .02 .02 .04 .04	3 6 3 3	.60 .47 .44	1041 6282 1530 1137	10 4 12 5 4 13	.03 .01 .01 .01 .01	13 8 36 14 12	440 900 970	15 46 7 6	7 2 2 4	1 1	194 465 557 1023 1100 1245	1 1 1	.01 .01 .01 .01 .01	1 9. 1 7. 1 28. 1 11. 1 9. 1 38.	8 6 3 0	1 55 3 11 1 18 2 8 3 8 1 37	1
129040	1.7 1	1.01	83	54	!_	1 ?	15.00	.1				2.80	1_	.04	34	1.15	2002		.01	30	760		¹		1243		.01	1 30.	<u> </u>	1 37	
											-								,										<u></u>	-	
																															=
			· · -		-																					·					
																		***************************************													· · · · ·
																												- , ,,			
								-» -												·····											· .
											···																				*
												-																		4.4.	

PROJ: R.BELL ATTN: LINDA CARON

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

96 K-9

DATE: 96/08/30

FILE NO: 6V-0605-RJ1

-9 * rock * (ACT:F31)

AL AS BA BE BI % PPM PPM PPM PPM FE GA % PPM CD CO CR CU K LI MG MN MO NA NI P PB SB SN SR TH TI U V W ZN Au-fire SAMPLE CA % PPM PPM PPM PPM % PPM NUMBER PPM 39 18 28 20 23 802 74 29 244 11 27 12 19 7 1.16 >10000 325 .01 196 700 173 18 1.2 8.35 .1 291 >15.00 9 601 128801 1 440 1 15 4 13 1 37 1 120 1 35 95 375 34 7.20 36 13.29 15 1.92 .1 .33 7.20 3 .56 >10000 33 .01 113 360 132 12 4 1067 4 .75 >10000 97 .01 102 410 78 18 6 882 1 23.2 1 >15.00 .01 1 .01 128802 -1 1 12.39 128803 1 .01 1 .01 9.0 .45 .3 .55 8 .41 >10000 9 .01 51 820 58 12 1 2158 1 33.5 3 >15.00 1 .01 1 .01 128804 128805 259 1 >15.00 10 84 5.41 16 .61 >10000 30 .01 88 740 122 13 4 1732 1 .01 1 38.4 .01

PROJ: R.BELL

ATTN: LINDA CARON

MIN-EN LABS --- ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

96K-10

FILE NO: 6V-0615-RJ1 DATE: 96/09/16

* CORE * (ACT:F31)

III. LINDA CA													J21 J-			(004).														UKE	`	ACIE
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	B I PPM	CA	CD			CU	FE %	GA PPM	K %	L1 PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	PPM	PPM	SB PPM	SN PPM	SR PPM	TH	Ti %	U PPM	V PPM	PPM I	ZN A	Nu-fir PP
128806 128807 128808 128809 128810	2.9 2.3 2.9 5.3 3.1	.22 .14 .24 .24 .16	100 88 89 90 85	48 21 30 27 31	.1 .1 .1 .1	1 4 5	>15.00 >15.00 >15.00 >15.00 >15.00	.3 1 .1 1 .1	2	16 15 15 15	8 6 7 7 6	.64 .33 .55 .55	1 5 1 1	.04 .03 .04 .03	5 3 7 8 5	.64 .37 .51	1505 896 1682 1631 1295	6 4 7 5	.01 .01 .01 .01	19 12 17 16 15	470 520 490 730 680	22 16	4 6 6 7 6	1 1 1	1122 1527 2006 1925 2012	1 1 1	.01 .01 .01 .01	1 1 1	16.5 12.7 16.3 13.5 15.1	1	16 13 22 22 21	2
128811 128812 128813 128824 128825	3.3 3.2 2.7 2.2 1.6	.21 .15 .10 .17	87 87 78 90 43	31 23 27 15 86	.1	4 5 3 5	>15.00 >15.00 >15.00 >15.00 >15.00	8.4 8.9 1.6	3 2 2 3		7 8 7 5 4	.43 .34 .24 .37	3 3 1 2	.02 .02 .02 .02	7 5 2 6 12	.49 .42 .25 .41	933 1014 1685 1304 937	6 5 4 5 6	.01 .01 .01 .01	14 12 13 13 29	620 520 470 550 1190	6 21 28 14	5 6 7 7 2	1	1518 1856 1526 1032 582	1 1 1	.01 .01 .01 .01	1 1 1	19.9 18.1 13.5 13.1 29.2	1 2 2 2	20 57 50 18 37	
28476 28477 28478 28479 28480	2.5 4.4 2.4 2.3 2.4	.21 .22 .26 .27 .13	78 65 104 52 68	37 18 31 30 35	.2 .2 .1 .1	5 3 5 2	>15.00 >15.00 >15.00 >15.00 >15.00	3.4 6.1 1.9	2 3 4	23 23 18	7 7 6 7	.40 .41 .54 .68	1 1 1	.02 .02 .03 .04	6 7 11 7 6	.33 .38 .54 .32	979 1511 1459 1284 1946	4 6 6 5 4	.01 .01 .01 .01	15 16 20 21 16	720 540 570 710 450	13 15 16 8 17	6 6 5 6	1	984 729 1136 499 841	1 1 1	.01 .01 .01 .01	1 1 1	17.3 17.1 20.9 20.2 17.2	2 2 1	80 43 47 46 23	
128481		.19	51	30	.1	1	>15.00				4	.40	1	.02	8	.33	1192	3	.01	16	770	6	3	1	796		.01		18.3		19	
																							-								;	
							·																							<i>y. n.</i> ,v	,	North (
																			-													
																		· · · · · -				_							-			
																-											•					
				•																												

PROJ: R.BELL

MIN-EN LABS — ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

ATTN: LINDA CARON

TEL:(604)327-3436 FAX:(604)327-3423

96K-10

FILE NO: 6V-0606-RJ1 DATE: 96/08/30

* CORE * (ACT:F31)

TIN: LINUX CA													721 - 34		17///	(004).									• • , .					(ACT:
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PP M	K %	L I PPM	MG %	MN PPM	MO PPM	NA %	NI F	PB PPM	SB PPM I	SN S	SR TI	IT H % M	U PPM	V PPM I	W Z	N HO	Au-fir
128814 128815 128816 128817 128818	2.5 2.4 2.9 16.3 1.5	.21 .10 .09 .15	99 107 105 113 29	169 49 30 42 84	.2 .3 .5		.00 .00 .00 .00	.1 .1 .1 .1	3 2 2 3 2	18 11 11 17 84	5 3 6 19 6	.51 .27 .25 .29	1 1 2 1	.02 .02 .02 .02	5 3 3 5 5	.34 .30 .26 .34	2825 1911 1579 1641 310	5 4 4 21	.01	21 620 13 350 13 360 15 470 12 420	23 23 17 59 4	7 8 7 8 1	1 113 1 151 1 178 1 183 1 19	35 1 19 1 39 1		1 1	20.5 13.3 11.4 18.9 15.0	2 2 3 2 3 6 2 6	0 40 2 15 5 25 0 65 7 25	
128819 128820 128821 128822 128823	2.2 1.3 2.4 1.6 2.5	.26 .17 .06 .14	101 36 93 29 104	40 27 19 48 28	.1 .2 .2 .1	1 >15 1 7 3 >15 1 6 1 >15	.00 .74 .00	.1 .6 .1	2 1 2 1 3	31 68 16 79 24	3 3 7 4	.47 .31 .22 .40	1 1 7 1	.03	7 5 4 5 8	.42 .20 .22	1005 491 922 450 1090	4	.01 .01 .01 .01	20 640 10 370 10 260 10 370 18 490	6 1 12 6 5	4 2 6 2 4	1 107 1 32 1 121 1 23 1 92	70		1 1	20.9 12.3 9.0 8.7 25.6	2 1 4 1 2 1 4 2 2 4	4 35 9 25 3 30 3 35 3 35	2 1 1 2 2
																,														
		-		·																										
																					•									1. 8-15.1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
								-																						
									-	-					-															
																														i ja
																					1,000									11.5
						-																								

PROJ: R.BELL

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

ATTN: LINDA CARON TEL:(604)327-3

TEL:(604)327-3436 FAX:(604)327-3423

96K-1

DATE: 96/09/20

FILE NO: 6V-0645-RJ1

_	1	ı			, -,	~,,	_
K	-)		*	*	(ACT	:F3	11)

SAMPLE NUMBER 128482 128483 128484 128485 128486 128487 128488 128489 128490 128491 128492 128493 128494	AG AI PPM 3 .1 .12 .4 .00 .5 .1 .11 .1 .11 .1 .13 .1 .6 .23 .1 .8 .5; 2.7 1.22 .1 .2 1.36 .5 1.54 1.2 .20 1.2 .00	12 90 08 91 11 105 11 97 12 91 23 81 09 104 32 96 57 77 22 167	22 22 22 21 22 21 21 21 32 56 32 756	.1 .2 .1 .2 .2 .3 .2 .1 .3	4 >15.0 5 >15.0 6 >15.0 6 >15.0 4 >15.0 7 >15.0 4 >15.0 1 14.4 1 >15.0	00 .1 00 1.6 00 .1 40 .1	3222	16 14 12 9 15 22 12 23 24	8 6 13 7 5 8 3 5 8 27	FE % .32 .30 .28 .32 .28 .50 .22 .56 .99 1.27 1.71 2.91 .90 .37 .37	1 2 3 1 1 7 1 7	.01	4 3 4 3 3 5 3 7 9	.27 3.31 3.30 3.28 3.24 3.27 4.49 9.61	1193 881 1065 1437 1072	4 4 4 4 6 19 14 42 11 10	.01 .01 .01 .01 .01 .01 .01	11 11 12 13 10 15 10 15 19 26	350 410 640 370 510 680 300 530 680 460	15 65 34 17 20 15 34 5	SB PPM P 5 4 5 6 6 6 5 7 5 3 1 1 1 6	1 2 1 8 1 10 1 5 1 9 1 10 1 10 1 11 1 11	210 817 076 502 978 066 018 065 123 946 254	TH TI PM 2 1 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .01 1 .01		1 PPM 10.8 10.3 10.9 8.7 13.4 16.0 11.4 14.8 20.6 33.0 28.2 30.0	PPM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PPM 25	Au-fire PPB 25 4 5 21 7 15 7 14 22 82 19 37 16 53 13	大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大
128495	1.2 .07	7 72 1 88	16 18	:1	1 >15.0	0 .6	2 2	24 15	6 6	.37	1	.01	2 3	.32	769	6	.01	12 13	560 460	7	1624	1 9 1 12)74 220	1 .01	1	11.4	1	24 19	\$3 13	
																	A													
																							,							100 mm

MIN-EN LABS — ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

PROJ: R.BELL ATTN- LINDA CARON

96K-12

DATE: 96/10/15

FILE NO: 6V-0826-RJ1

ATTN: LINDA	CAKUN										IEL:(004)3	21-34	30	rax:(004)3	21-34	23						107	' '					(AC	1:131)
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	B I PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	L I PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB S	N SF	TH PPM	TI % P	U PM P	V PM P	W Z	N Au-	fire PPB
128226 128227 128228 128229 128230	2.4 2.4 2.3 2.2 2.1	.09 .14 .09 .13 .14	203 185 196 190 197	20 25 21 38 20	.2 .1 .2 .2	6	>15.00 >15.00 >15.00 >15.00 >15.00	.1 .1 .1 .1	3 4 3 3 3	10 12 10 11 11	11 19 10 10	.46 .68 .39 .41 .40	12 11 12 11 11	.03 .04 .03 .04	2 3 2 4 5	.21 .26 .22 .24 .29	222 257 240 264 224	7 11 5 5 14	.01 .01 .01 .01	14 16 11 12 12	530 550 470 490 500	15 17 16 13 14	8 9 8 8 7	1 2763 1 2950 1 3037 1 2693 1 2966	1 1 1 1 1 1 1	.01 .01 .01 .01	1 11 1 9 1 10	7.7	1 3	4 6 4 9 2	5 6 2 7 3
128231 128232 128233 128497 128498	2.3 2.3 2.4 2.0 1.9	.29 .15 .16 .11	138 183 193 203 193	19 24 28 24 35	.5 .3 .3 .2	5 5 7	>15.00 >15.00 >15.00 >15.00 >15.00	.1 .1 .1 1.1 1.3	3 3 2 2	51 11 16 10 12	9 8 9 8 8	.54 .40 .44 .27 .30	3 10 11 13 12	.03 .06 .06 .03 .04	7 7 6 4 5	.32 .29 .29 .24 .26	290 242 214 250 182	96 9 7 3	.01 .01 .01 .01	16 11 12 9 9	440 570 530 380 420	7 11 11 13 11	5 8 8 8 7	1 1582 1 2675 1 2762 1 2446 1 2680	1	.01 .01 .01 .01	1 14 1 11 1 10 1 9 1 11	.1 .7 .8		1 2 6	4 2 5 1 4
128499 128500	2.2	.23	211 246	21 26	.1		>15.00 >15.00	:1	3	12 11	11 16	.52 .50	10	.03	6 7	.36 .39	212 178	7 8	.01 .01	13 14	700 490	6	6 7	1 2362 1 2715		.01 .01	1 14 1 12		1 2		3 () 3 ()

PROJ: R.BELL

ATTN: LINDA CARON

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

96K-13, -14

FILE NO: 6V-0863-RJ1 DATE: 96/10/23

-13, -14 * * (ACT:F31)

182334	SAMPLE	AG	AL	AS	BA	BE	BI	CA	CD	CO	CR	CU	FF	GA	K	LI	MG	MN	MO	NA	NI	P	PB :	SB S	N SR	TH	TI	U	v 1	J 7N	Aurfice	٦
192539 1.7 .15 124 49 .1 5 > 15 .00 .1 2 17 43 7.45 8 .02 2 .22 .23 .23 .83 11 .00 11 450 11 41 160 1 .00 11 13.7 1 22 .5 1 124 125 .1 1 .1 15.20 .1 11 12 24 15 .7 7 1 .07 11 15 .00 .1 12 .22 .1 15 .00 .1 12 .22 .1 15 .00 .1 12 .22 .1 15 .20 .1 12 .20 .20 .20 .1 12 .20 .20 .20 .1 12 .20 .20 .20 .1 12 .20 .20 .20 .1 12 .20 .20 .20 .20 .20 .20 .20 .20 .20 .2	NUMBER	PPM	%	PPM	PP M	PPM	PPM	CA %	PPM	PP M	PPM	PPM	FE %	PPM	%	PPM	%	PPM	PPM	% F	PPM	PPM F	PM P	PM PP	M PPM	PPM	% P	PM PP	M PPI	1 PPM	PPB	4
192535 1.7 .15 124 49 .1 5 > 15 .00 .1 2 17 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25	128235	4.6	2.28	3/8 441	23	.1	1 1	6.44 2.19	-1	25	162	31 2	2.78	1	.13	63	3.69	486 615	11	.07	82 88	540 580		1	5 358 5 161	1	.12	1 60.	0 '	222		
128243	128237	1.7	.23	28 126	46	.1	5 >1	4.75 5.00	:	1	48 30	9	.41	•	.03	3	.16	137 232	5	.01	11	470 570		1	1 125 1 613	1	٠01	1 12.	6 2	2 46	6	
128244 2.7 :11 199 53 :1 7 7:15:00 :1 4 11 6 1.02 1 :01 22 427 6 -01 25 420 30 8 2 3174 1.01 122.1 1 16 6 12245 3.5 :20 200 78 :1 5 75:500 :1 4 13 6 5.05 1 :06 4 :27 2077 6 :01 25 420 30 8 2 2452 1.01 127.2 120 9 120.2 120.2 1 180 :1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	128239	1.7	.14	124	9	.1	5 >1	5.00	.1	2	17	43	.44		.02	2	. 22	328	11	.01	11	450	11	4	1 505	1	.01	1 13.	7 '	25	. 5	1
128244 2.7 :11 199 53 :1 7 7:15:00 :1 4 11 6 1.02 1 :01 22 (275 6 .01 25 420 30 8 2 3174 1.01 122.1 1 16 6 12245 3.5 :20 200 78 :1 5 7:15:00 :1 4 13 5 .075 1 .06 4 :27 2077 6 .01 25 420 30 8 2 2452 1.01 127.2 120 9 120:45 2 .24 27 2 1 118 :1 1 > 15:00 :1 10 21 13 6 .34 1 .05 12 :73 2/302 19 :01 53 680 32 8 10 1137 1 .01 157.3 1 38 8 7 128247 1.3 54 1 155 :1 1 > 15:00 :1 10 20 9 5 .44 1 .07 17 .52 > 10000 20 .01 70 840 58 10 11 1465 1 .01 168.1 1 125 7	128241	.1	.44	1	265 286	.1	1 >1	5.00	. j	12 11	24 27	18 7	7.79	į	.07	13	.56	>10000 >10000	38 34	.01 .01 1	98 108	520 1 630 1	102 <i>1</i>	14 1	4 1067 3 1213	1	.01	1 52.	6	78	113 34	
	128243	4.0	.20		-49 -53	.1	8 >1:	5.00		4		19 1	.20		.02		.34	6402	<u> </u>	.01	31 25	430	38		3 1919	1	.01	1 18.	6 1			
	1 128245	3.5	.20 .72	200	78 118	.1	5 >15	5.00	.i	4	13 21	13 6	.75	1	-06	12	.27 .73	2097 7302	6 19	.01	24 1 53	240 680	19 32	6 8	2 2452 0 1137	1	.01	1 27.	2 1	20	9	
	128247	1.3	.54	1	155	.1	1 >1!	5.00	.1	10	20	9 5	-94	1	.07	17	.62	>10000	20	.01	70	840	58 '	10 1	1 1465	1	.01	1 68.	1 1	125	7	
		_																													1.342.753	
																															50	1
			· · · - <u>-</u> · · ·																												- 1	1
																																1
																_																1
																		/														
																																20.00
									. <u>—</u>																							
																														,	4.6	1000
																														nd :		100000
																															A TOP A SE	2017
																															•	4
																														,::		200
																															10 10 10 10 10 10 10 10 10 10 10 10 10 1	A. 1 3.0
															,								,									1
																															-17	Section 1
1 N5/3 1 A																																10.000

APPENDIX 3 COST STATEMENT

COST STATEMENT

LABOU	IR G. Stewart L. Caron D. Pazdzierski N. Braam	15 days @ \$450/day 30 days @ \$200/day 10 days @ \$100/day 10 days @ \$100/day			6,750.00 6,000.00 1,000.00 <u>1,000.00</u> 14,750.00
DRILLII	NG Bergeron Diamond Dri 3543 feet @ \$14.00/ft reclamation, site prep,	_			19,602.00 5,902.92 55,504.92
ANALY		ver - 30 element ICP plus Au 21.00 (including shipping)			<u>5,565.00</u> 5,565.00
SUPPL	IES AND TRANSPORT Saw blades General field supplies Vehicle rental 40 day Fuel	(bags, etc)			1,000.00 380.00 2,000.00 220.00 3,600.00
OFFIC	E EXPENSES Phone, fax Drafting and office sup Misc.	pplies		\$ 	65.00 120.00 30.00 215.00
			TOTAL:	\$7	9,634.00

APPENDIX 4 STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Linda J. Caron, certify that:

- 1. I am an exploration geologist residing at Bubar Road (RR #2), Rock Creek, B.C.
- I obtained a B.A.Sc. in Geological Engineering (Honours) in the Mineral Exploration Option, from 2. the University of British Columbia (1985).
- I graduated with an M.Sc. in Geology and Geophysics from the University of Calgary (1988). 3.
- I have practised my profession since 1987 and have worked in the mineral exploration industry 4. since 1980.
- I am a member in good standing with the Association of Professional 5. Engineers and Geoscientists of B.C. with professional engineer status.
- I am employed by Kettle River Resources Ltd. as an exploration geologist. 6.

Linda Caron. P. Eng

Jan 20/97
Date