REPORT ON THE

1996 EXPLORATION PROGRAM

ON THE

NORTHSTAR PROPERTY,

OMINECA MINING DIVISION, BRITISH COLUMBIA

FOR EVEREST MINES AND MINERALS LTD.

SUB-RECORDER RECEIVED

NOV 1 8 1996

M.R. # \$.....

VANCOUVER, B.C.

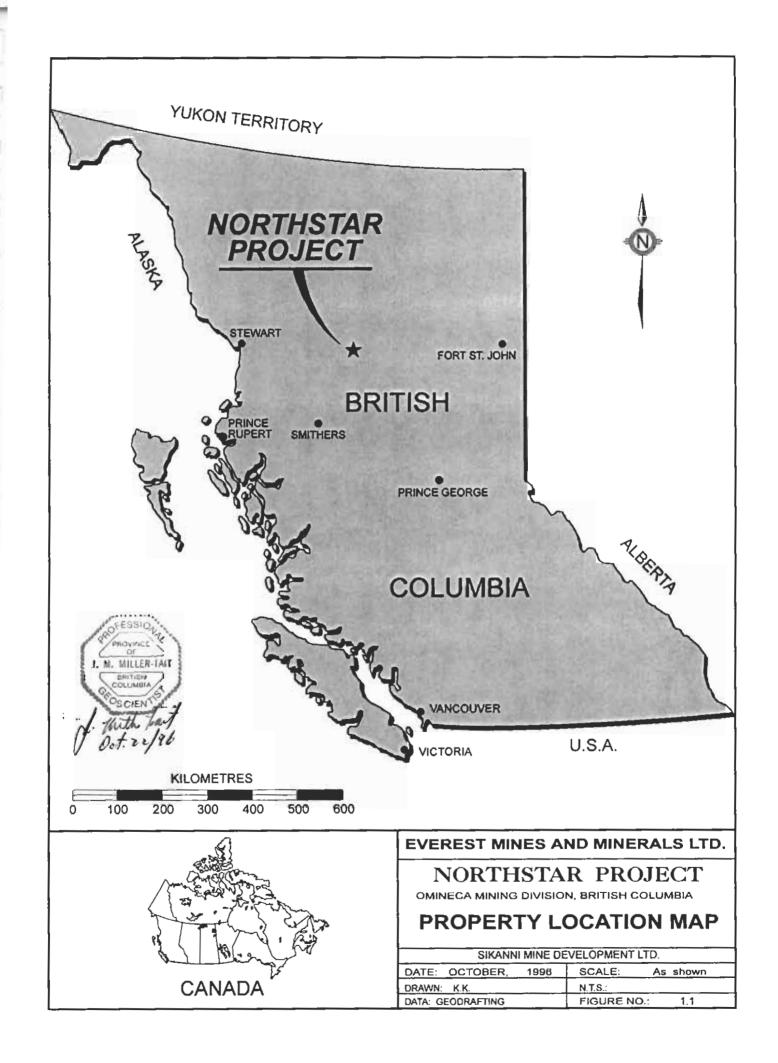
Vancouver, B.C. October 22,1996

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS	
	PAGE NUMBER
1.0 INTRODUCTION	1
2.0 LOCATION/ACCESS/TOPOGRAPHY	1
3.0 PROPERTY	3
4.0 HISTORY	4
5.0 REGIONAL GEOLOGY	5
6.0 PROPERTY GEOLOGY	6
7.0 STREAM SEDIMENT SAMPLING	8
8.0 ROCK SAMPLING RESULTS	9
9.0 CONCLUSIONS	11
10.0 RECOMMENDATIONS AND COST ESTIMATES	12
11.0 STATEMENT OF COSTS	13
CERTIFICATE OF QUALIFICATIONS	
REFERENCES	
APPENIDX A: ANALYTICAL PROCEDURES/ANAL	YTICAL RESULTS

FIGURES	AFTER PAGE	
1.1 NORTHSTAR PROPERTY LOCATION MAP	2	
2.1 TOPOGRAPHIC MAP	2	
3.1 CLAIM MAP	3	
5.1 REGIONAL GEOLOGY	5	
6.1 PROPERTY GEOLOGY	IN POCKET	
6.2 SCHEMATIC BLOCK DIAGRAM	7	
7.1 STREAM SEDIMENT SAMPLE LOCATIONS	8	
8.1 SHOWING A SAMPLE LOCATIONS AND GEOLOGY	9	
8.2 SHOWING B SAMPLE LOCATIONS AND GEOLOGY	IN POCKET	

1.0 INTRODUCTION

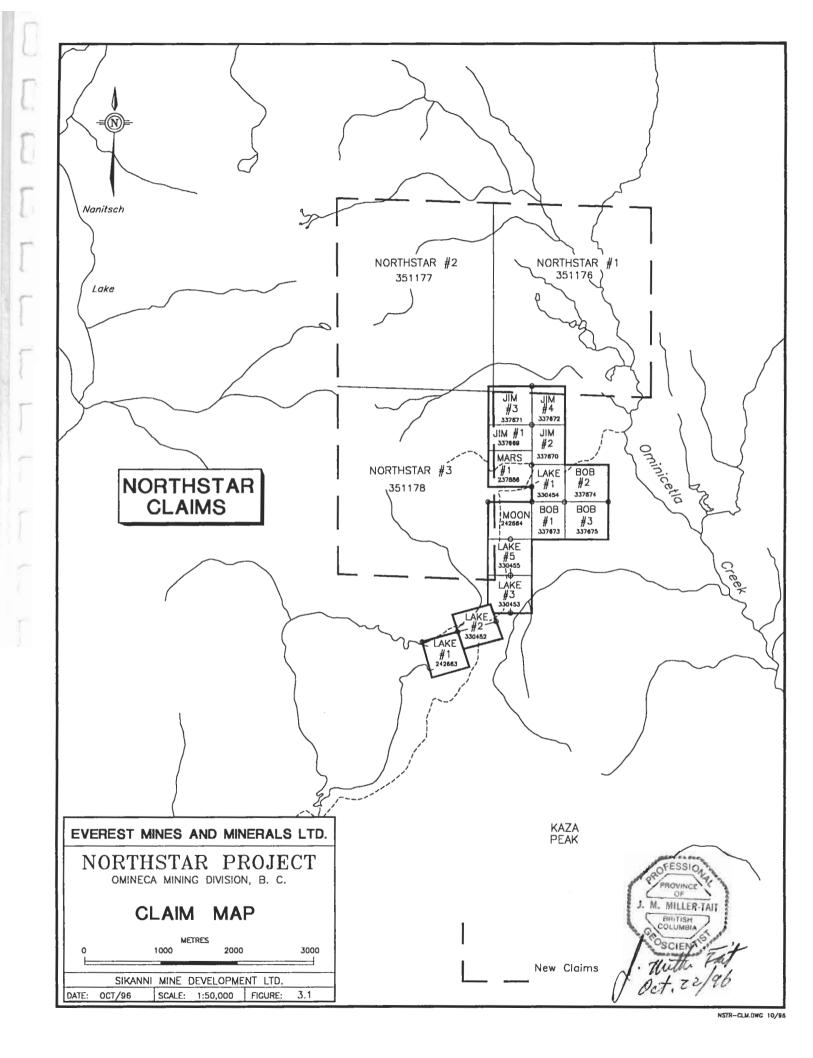

The Northstar property is located at the headwaters of Lion Creek in the Omineca Mining Division, British Columbia.

The property has been explored intermittently since copper mineralization was discovered upon it in the early 1960's. The property has been dormant since 1973 and much of the data from previous workers is incomplete. The property has been explored for base metal and copper content but negligible work has been spent on testing the precious metal values (Au & P.G.E.).

This report is to document the work program completed in September of 1996 consisting of additional claim staking, stream sediment sampling, and mapping / sampling of the known showings and a "new" vein.

2.0 LOCATION/ACCESS/TOPOGRAPHY

The Northstar property is located at about 56 degrees, 02 minutes north, 126 degrees, 16 minutes west, in the Cariboo Heart Range, approximately 30 kms. north of the north end of Takla Lake. That is, it is at the north of Kaza Lake, which is in the southeast corner of the McConnell Creek area, about 150 air kms north-northeast of Smithers. There is a cat road from Bulkley House at the north end of Takla Lake via Kaza property, south of Kaza Lake. There is a good logging road within approximately 10kms. to the Southwest.



Access by float fixed-wing plane or helicopter is convenient. The property surface which ranges in elevation from 1,200 meters to above timberline at 2,000 meters is densely forested and bedrock is largely concealed beneath a comparatively thin mantle of soil and unconsolidated glacial till.

3.0 PROPERTY DESCRIPTION

The Northstar property consists of 14, 2-post, and 3, 4-post metric claims located in the Omineca Mining Division, N.T.S. mapsheet no.'s 94D/1E,1W. The claim details are as follows:

Claim Name	Tenure Number	Expiry Date
Jim #1	337669	July 4, 1997
Jim #2	337670	July 4, 1997
Jim #3	337671	July 4, 1997
Jim #4	337672	July 4, 1997
Bob #1	337673	July 4, 1997
Bob #2	337674	July 4, 1997
Bob #3	337675	July 5, 1997
Lake	242663	August 25, 2001
Lake #2	330452	August 26, 1997
Lake #3	330453	August 26, 1997
Lake #4	330454	August 26, 1997
Lake #5	330455	August 27, 1997
Moon	242664	August 25, 1997
Mars	237886	October 14, 2000
Northstar #1	351176	September 18, 1997

4

Northstar #2	351177	September 17, 1997
Northstar #3	351178	September 17, 1997

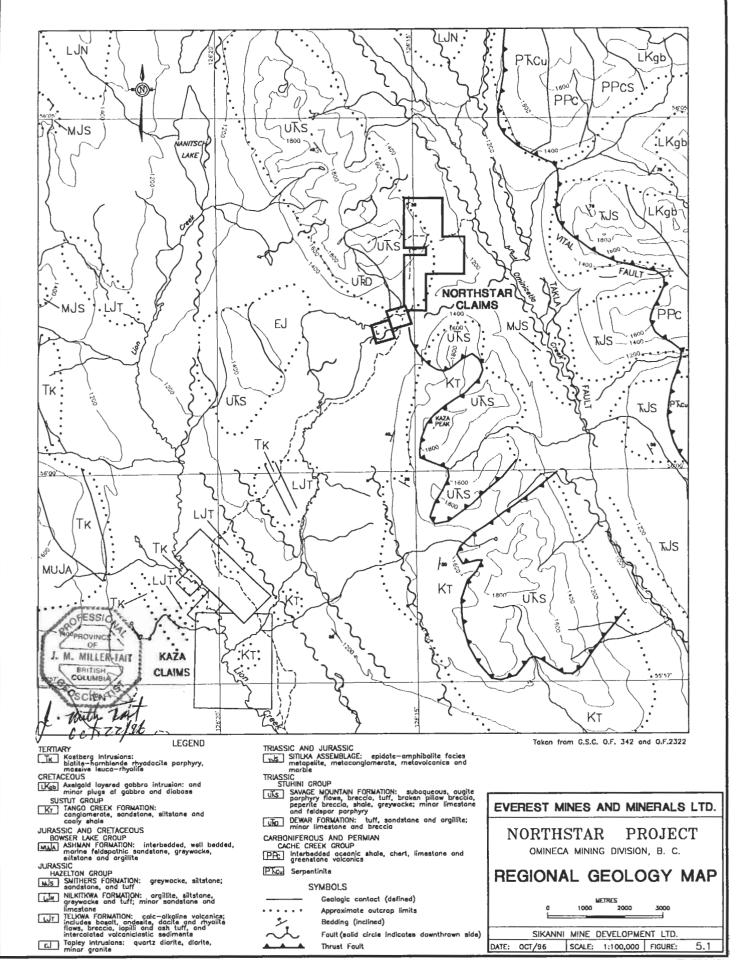
The claims are owned by Mr. R. M. Tait and have been optioned to Everest Mines and Minerals Ltd. under an agreement dated August 29, 1996. (Refer to Figure 3.1)

4.0 HISTORY

Mr. R.M. Tait, President of Northstar Copper Mines Ltd., first found the original showings in September of 1965, and staked the original claims. In 1966 preliminary geological mapping and some hand trenching in the vicinity of the main showing and further prospecting in the area was done. In 1967 a field geochemical laboratory for readily-extractable copper was established at a camp at the north end of Kaza Lake and systematic grid soil-sampling was carried out with geological mapping. Nine holes (AQ) of diamond drilling, totaling 2,091 feet, were finished in this season. In 1968 a tractor-trail from Bulkley House was built, about 30,000 feet of cat trenching was accomplished, 2,624 feet of diamond drilling was done in eleven holes (AQ), and about fifty shallow pits were blown. In 1969, 4,074 feet of diamond drilling (13 holes, AQ) were completed.

In 1973, Bethlehem Copper completed mapping, soil sampling, and drilled eight vertical holes with chips taken over 10 foot intervals to the east of the known showings. Values

of copper ranged from 54-610 ppm but no assays were taken for gold, a normal situation in 1973.


5.0 REGIONAL GEOLOGY

The Northstar property is located on the map sheet 94D/E, McConnell Creek map area. The property is located in the Intermontane Belt of the Canadian Cordillera and underlain by the Cache Creek terrane with the Quesnellia terrane to the east. Detailed geological setting of the area is described by C.S. Lord, 1948.

The Northstar property is underlain by the Upper Triassic Takla group. This group consists of the Savage Mountain Formation and the Dewar Formation. The Savage Mountain Formation consists of basic augite porphyry basalt flow, breccia, pillow breccia, tuff and interbedded bladed feldspar porphyry. The Dewar Formation consists of tuff, sandstone and argillite, and minor limestone and breccia.

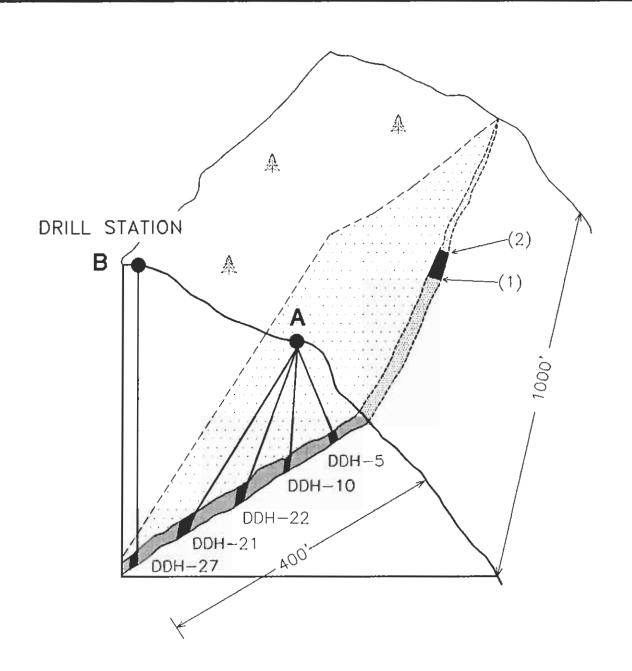
The Early Jurassic Hogem Batholith is located to the south-west of the Northstar property. It consists of foliated quartz monzodiorite.

Major faults located to the east are the Takla Fault, a high angle reverse fault, and the Pinchi Fault further to the east. Located to the west is a fault sub-parallel to the Takla Fault following the depression of Lion Creek and Nanitsch Lake. (Refer to Fig # 5.1)

6.0 PROPERTY GEOLOGY

(from Kikuchi, 1969)

"This area is mainly underlain by Jurassic volcanics and marine sediments. There is some diorite intrusive in the area. They consist of shale, siltstone, phyllite, sandstone, slate, agglomerate, limestone, tuff, tuff breccia, porphyritic basalt, porphyritic andesite, etc. (See pages 86-87, Annual Report 1967, by Dr. Sutherland-Brown for more detailed academic lithological explanations.)


The first found copper showing which has been called the "Main" showing (by Dr. White, 1966) or "A" showing (by Dr. Sutherland=Brown, 1967) is on the eastern slope of the mountain on the rim of a landslide scar around which exposure is good in contrast to the surrounding area. The rim consists of some alternate beds of limestone, agglomerate, shale, sandstone, siltstone, tuff, basalt, andesite, etc. They are usually fine-grained and clastic. The general strike and dip are north 60 degrees east and 45 - 60 degrees southeast respectively. Some faults which have their general strike and dip as north 70 degrees east and 70 degrees northwest cut the beds.

The copper bearing bed of the "Main" or "A" showing is composed of mainly clastic shale or tuff, the thickness of which is not yet known. The color is green, brown or red. Some green copper stain can be seen but bornite, chalcocite and chalcopyrite disseminated in the rock are too small to be seen by a hand lens.

Veinlets of calcite and limonite are common in the bed. There is epidote, but no magnetite nor pyrite.

There is a wide cat-strip at the "B" showing which is about 2,000 feet southeast of the Main showing above mentioned. The strip extends to the north up to the other chalcocite vein showing. At the southern place of the wide excavation, where the original "B" showing was seen and Dr. Sutherland-Brown reported (Annual Report, 1967), his sample of 20 feet cut as 1.98% Cu, there is a copper deposit exposure. Main rock of the exposure is clastic porphyritic andesite and some clasitic shale/tuff at the west side. The writer took a chip sample of 15 feet cut length with an assay result of 0.89% Cu. At the northern part of the excavation, there are some chalcocite parallel veins, NS-N15 degrees east of strike and vertical - 80 degrees east of dip in general, a half inch to three inches of width in general, in porphyritic andesite. The writer took a 20 foot wide cut across some parallel chalcocite veins and got 13.25% Cu. The relationship of these two types of deposit has not yet been seen.

The following Fig.# 6.2, a schematic block diagram of showing B from Northstar Copper Mines Ltd., is an illustrative diagram showing the intersections of DDH - 5, 10, 22, 21, and 27. It should be noted that this is not a true cross section as the holes are not all on section. Surface trench channel samples 1 and 2 are plotted as well. The block diagram indicates that the ore body is open down-dip and along strike with unknown values of gold.

Diamond Drill Samples

DDH-5 -
$$\frac{1.38\% \text{ Cu}}{44 \text{ ft.}}$$

DDH-10 -
$$\frac{1.68\% \text{ Cu}}{48 \text{ ft.}}$$

DDH-22 -
$$\frac{1.97\% \text{ Cu}}{16 \text{ ft. abandoned}}$$

$$DDH-21 - \frac{1.14\% Cu}{40 ft}$$

DDH-27
$$-\frac{2.79\% \text{ Cu}}{26 \text{ ft}}$$

Surface Channel Sample

- (1) $\frac{2.94\% \text{ Cu}}{26 \text{ ft.}}$
- (2) $\frac{13.25\% \text{ Cu}}{20 \text{ ft.}}$

From Northstor Copper Mines Ltd. (N.P.L.)

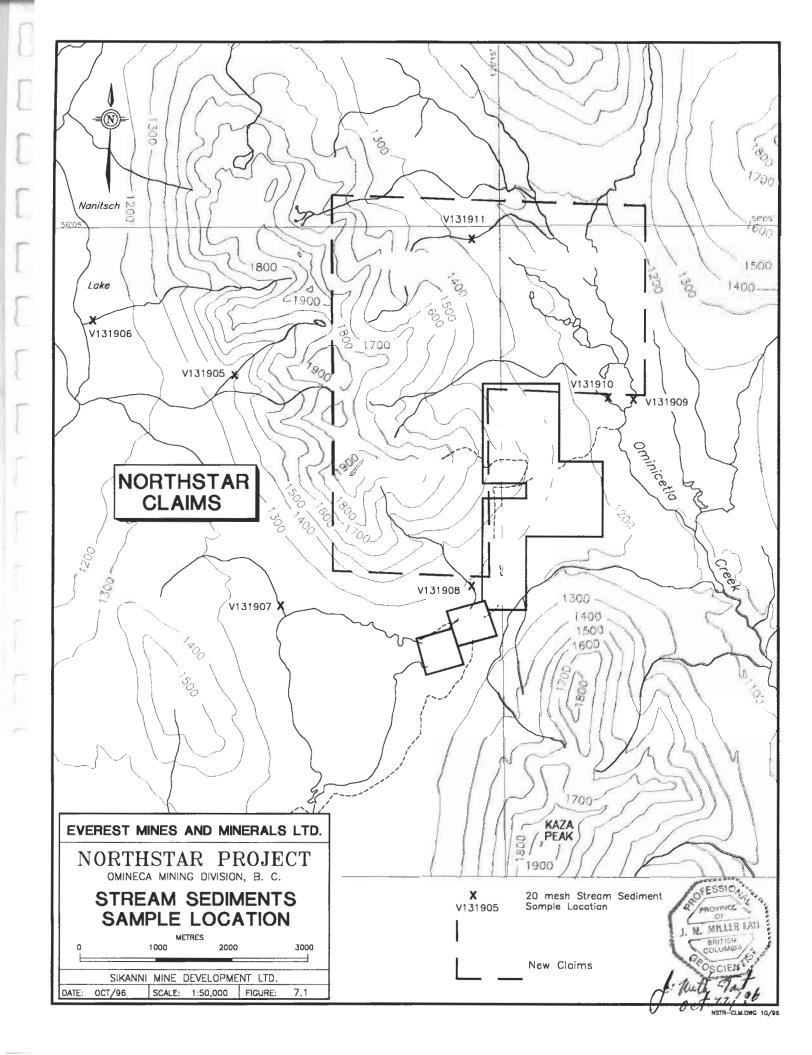
EVEREST MINES AND MINERALS LTD.

NORTHSTAR PROJECT

OMINECA MINING DIVISION, B. C.

SCHEMATIC BLOCK DIAGRAM OF THE "B" SHOWING

SIKANNI MINE DEVELOPMENT LTD.


DATE: OCT/96 FIGURE: 6.2

During the 1996 program a "new" vein was located south of the known showings. It is located on the south edge of the cat strip on showing "B", where a 10 meter bank caved exposing a malachite stained chalcocite, bornite, and covellite vein 0.75 meters in width. The vein is located in a 2 meter wide shear zone striking 160 degrees and dipping vertical. Detailed results are discussed under heading 8.0 Rock Sampling Results.

7.0 STREAM SEDIMENT SAMPLING

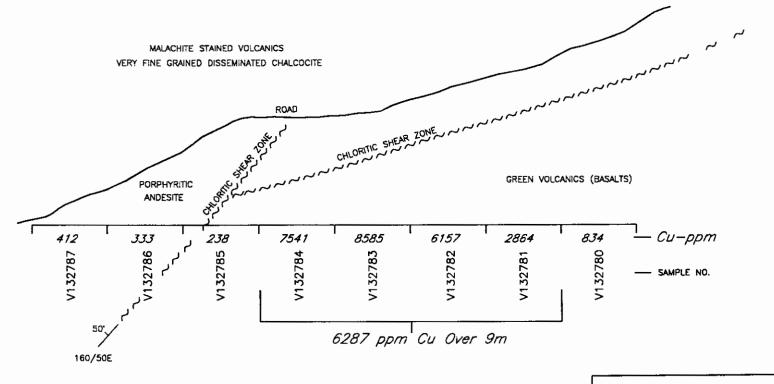
A program of regional stream sediment sampling was completed by sampling the creeks draining the mountain range in the vicinity of the known copper/silver showings (Refer to Fig. # 7.1 for sample location sites). There were a total of seven, 10 kg., -20 mesh samples collected. The samples were collected by shoveling stream sediment and gravel through a -20 mesh screen until a sample weighing approximately 10 kgs. was placed into a large plastic sample bag. The samples were then shipped to Bondar Clegg Inchcape Testing Services located in North Vancouver. (Refer to Appendix A for sample analytical procedure and results)

The seven stream sediment samples did not uncover any copper/silver anomalies even though the creeks within 1-1.5 kms. of the known showings were sampled. There was one gold anomaly, sample # T1 V131909, of 433 ppb located below the known workings on Ominecetla creek.

8.0 ROCK SAMPLING RESULTS

There were a total of 16 channel samples collected from the Northstar property. The samples were collected from three areas of past trenching completed during the late 60's. The three areas are Showing A, Showing B - zone 1, and Showing B - zone 2. The Showing B - zone 1 is located 100 meters south of Showing B - zone 2. All samples were collected by using a rock hammer to chip channel samples from the measured area. Samples, weighing approximately 4 kgs., were sent to Bondar Clegg Inchcape Testing Services of North Vancouver for analyses (Refer to Appendix A for analytical procedure and results).

Showing A consists of fine grained disseminated chalcocite hosted by malachite stained andesite. Channel sampling across the showing resulted in 6,287 ppm Cu over 8.0 meters. (Refer to Fig. # 8.1).


Showing B - zone 1 consists of copper/silver mineralization consisting of disseminated and stringers (<10 cms.) of chalcocite and bornite hosted by feldspar porphyry andesite.

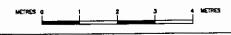
Channel sampling of the dynamite trenching completed in the early 70's resulted in the following assays:

Main trench: 2.8% Cu, 13.6 g/t Ag over 16.0 meters.

WEST

NORTHSTAR SHOWING

(View Looking South)



EVEREST MINES AND MINERALS LTD.

NORTHSTAR PROJECT

OMINECA MINING DIVISION, B. C.

SHOWING 'A'
DETAIL ASSAY &
GEOLOGY SECTION

SIKANNI MINE DEVELOPMENT LTD.

DATE: OCT/96 SCALE: 1:100 FIGURE: 8.1

Including:

4.0% Cu, 18.5 g/t Ag over 6.0 meters.

Side trench:

4.1 % Cu, 16.3 g/t Ag over 4.0 meters.

A "new" vein was discovered when mapping and sampling at showing B - zone 1 at the south end of the trenched area. A bank had caved exposing a massive chalcocite/bornite/covellite vein with malachite/azurite staining hosted by feldspar porphyry andesite. The vein, 0.75 meters in width, is in a 2.0 meter wide shear zone striking 160 degrees and dipping vertical. The following channel samples of this zone are as follows:

51.68% Cu, 279 g/t Ag over 1.0 meters.

20.60 % Cu, 124 g/t Ag over 2.0 meters.

Showing B - zone 2, located 100 meters to the north of zone 1, is comprised of three narrow (<30 cms.) chalcocite/bornite veins with malachite staining hosted by andesite feldspar porphyry andesite. The veins are sub-parallel striking north-south and dipping west from 50 to 80 degrees. Assays from channel sampling these veins are as follows:

8.4 % Cu, 50.4 g/t Ag over 2.0 meters.

11.8% Cu, 60.0 g/t Ag over 2.0 meters.

9.6% Cu, 55.0 g/t Ag over 1.0 meters.

7.7% Cu, 40.7 g/t Ag over 1.0 meters. (Refer to Fig.#8.2 for details).

9.0 CONCLUSIONS

There are three types of copper mineralization present on the Northstar property:

- 1. Disseminated copper in andesite.
- 2. Disseminated copper in porphyritic volcanics.
- 3. Chalcocite veining in porphyritic volcanics.

All three have high copper values, as documented by previous operators, (DDH #27 - 2.79%/26 feet and trench values 13.25% over 20 feet), and our 1996 program, but very little attention was spent on precious metal evaluation, as was the norm when gold was \$35/oz...

Trenching and drilling in the late 60's early 70's returned promising copper values. The drilling was completed in an erratic manner and correlation is difficult due to the missing data. The mineralized sections of core were removed entirely for assay and only barren wallrock remain.

The trenching and drilling has delineated the known zones to be striking north-south and dipping into the mountain at approximately 50 degrees to the west. Untested areas for exploration remain along strike and down dip on the known showings. Untested areas for exploration on the property remain to the north and west.

10.0 RECOMMMENDATIONS AND COST ESTIMATES

A two phased program is recommended to explore the Northstar property. The first phase will consist of soil geochemical suveying and induced polarization survey with complementary magnetic survey over the showings and geochemical anomalies. The second phase, contingent on the first phase results, will be a diamond drilling program. The following budget is an estimate of the cost to complete the first phase:

ITEM DESCRIPTION	COST ESTIMATE
Soil sample analyses (500 samples x \$12/sample)	\$6,000
Geophysical survey & Interpretation (15 kms. x \$2,000/km.)	30,000
Linecutting/Gridding	5,000
Geo-technicians (20 days @ \$200/day)	4,000
Geologist (30 days @ \$400/day)	12,000
Helicopter Support (25 hrs. x \$750/hr.)	18,750
Project Supervision and Consulting	3,000
Room and Board (60 days @ \$90/day)	5,400
Truck Rental and Fuel (4 weeks)	2,000
Freight/Insurance/Permits	1,000
Field Supplies	500
Report Compilation/Office	4,000
Contingency	8,350
TOTAL	\$100,000.00

11.0 STATEMENT OF COSTS

ITEM DESCRIPTION	COST
Helicopter Support	\$8,000
2 Geo-technicians (16 man x \$200/day)	3,200
Geologist (8 days x \$400/day)	3,200
Stream Sediment Sample Analyses (7 samples x \$25/sample)	175
Rock Sample Analyses (24 samples x \$25/sample)	600
Truck Rental and Fuel	1,500
Room and Board	2,500
Consulting	1,000
Report preparation and Drafting	4,000
Office Overhead	500
TOTAL	\$24,675.00

11.0 STATEMENT OF COSTS

TOTAL

COST
\$8,000
3,200
3,200
175
400
1,500
2,500
!,000
4,000
500

\$24,475.00

CERTIFICATE OF QUALIFICATIONS

I, Jim Miller-Tait, of 828 Whitchurch St., North Vancouver, British Columbia, V7L-2A4, do hereby certify that:

I hold a Bachelor of Sciences Degree in Geology (1986) from the University of British Columbia.

I am a registered Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.

I have been practicing my profession as a geologist since 1986.

I am a Consulting Geologist and President of Sikanni Mine Development Ltd., an independent firm specializing in mineral exploration and mine development.

This report is based upon the evaluation of the available data and supervision of the work completed.

I hereby give my permission to include this report, or the summary thereof, in any document to be filed with any appropriate regulatory authority.

Dated at Vancouver, British Columbia, this 22nd day of October, 1996.

Miller-Tait, P.Geo.

sikanni Mine Developmei

11.0 REFERENCES

- 1. White, Wm.H., P.Eng., Report of a Geochemical Survey of the Lake Group Omineca Mining Devision, July 20, 1967.
- 2. Sinclair, A.J., P.Eng., Report on the Fire Group of Claims, October 4, 1967.
- 3. White, Wm.H., P.Eng., Northstar Copper Mines Ltd. Progress Report #3 December 15, 1967.
- 4. White, Wm.H., P.Eng., NorthStar Copper Mines Ltd. Progress Report #4, September, 1968.
- White, Wm.H., P.Eng., Report of Current Mineral Exploration and Recommendations for Further Development of the Mining Properties of Northstar Copper Mines Ltd., October, 1968.
- 6. Kikuchi, Toru, P.Eng., Geological, Geochemical, Report Northstar Copper Mines Ltd., November 10, 1969.
- 7. Dean, P.M. and Davis, R.E.G., P.Eng., Geological, Geochemical, Geophysical Investigation on Kaza Copper Property, May, 1973.
- 8. Andersen, Erik, Northstar Project Report of Exploration Work on Mineral Claims, July 1973.
- 9. Nethery, R.J., P.Eng., Summary Geological and Geochemical Report on the property of Northstar Copper Mines Ltd., October, 1973.

APPENDIX A: ANALYTICAL PROCEDURE & ANALYTICAL RESULTS

Geochemical Lab Report

REPORT: V96-01612.0 (COMPLETE)

REFERENCE:

CLIENT: EVEREST MINES & MINERALS LTD.

SUBMITTED BY: J. MILLER-TAIN

PROJECT: NORTHSTAR/KAZA

DATE PRINTED: 14-OCT-96

Ε		NUMBER OF ANALYSES	LOWER DETECTION	EXTRACTION	METHOD	EL	EMENT		MBER ALYSE		EXTRACTION		METHOD	
1 AU	GOLD FIRE ASSAY	65	1 PPB	FIRE ASSAY	FIRE ASSAY-DCP	37 Ta	Tantalum		65	5 PPM	HF-HNO3-HC	OA-HCI	INDUC. COU	P PIAS
2 Au+	Grav. Gold Overlimi		0.17 PPM	FIRE ASSAY	FIRE ASSAY	38 Ti	Titanium		65	0.01 PCT	HF-HNO3-HC		INDUC. COU	
3 PT	PLATINUM	65	5 PPB	FIRE ASSAY	FIRE ASSAY-DCP	39 Zr	Zirconium		65	5 PPM	HF-HNO3-HC		INDUC. COU	
4 Ag	Silver	65	0.5 PPM	HF-HN03-HCL04-HCL	INDUC. COUP. PLASMA	3, 1,	ZII COIII GII		0,	2 1 1 11 11	111 111103 110	207 1102	1110001 0001	LILAG
5 AgOL	Silver, semiquant.	1	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
6 Cu		65	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	SAMPLE T	ADEC	NUMBER	SIZ	ZE FRACTIONS	NUMBER	SAMPLE	REPARATIONS	MI MDE
b cu	Copper	65	I FFM	HT-HNOO-HCLO4-HCL	INDUC. COOP. PLASMA	SAMPLE I		MONDER		• • • • • • • • • • • • • • • • • • • •				-
7 CUOL	Copper, semiquant	13	0.1 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	T STREA	M SED, SILT	12	1	-80	12		LIT & PULV.	
8 Pb	Lead	65	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	R ROCK	-	53	2	-150	53	DRY, SIE	VE -80	12
9 2n	Zinc	65	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA							OVERWE I	HT/KG	51
0 Mo	Molybdenum	65	1 PPM	HF-HN03-HCL04-HCL	INDUC. COUP. PLASMA									
1 Ni	Nickel	65	1 PPM	HF-HN03-HCL04-HCL	INDUC. COUP. PLASMA									
2 Co	Cobalt	65	1 PPM	HF-HNQ3-HCLO4-HCL	INDUC. COUP. PLASMA	REMARKS:								
	002011			,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Assay of hig	h Cu to fo	llow	on V96-01612.6				
3 Cd	Cadmium	65	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA		,							
4 Bi	Bismuth	65	5 PPM	HF-HNO3-HCLO4-HCL	INDUC, COUP, PLASMA									
5 As	Arsenic	65	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	REPORT O	OPIES TO: MR.	J. MILLER	-TA1	r	INVOICE	TO: P.O.	49057	
6 Sb	Antimony	65	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	ALI OIL E	125 751 1M1				21110122			
	ot Total Iron	65	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
8 Mn	Manganese	65	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
O PILI	riai igai lese	0,5	2 1111	III IIIIOO IICEOT IICE	INDOC. COOK I I ENGIN					•				
9 Te	Tellurium	65	25 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
0 Ba	Barium	65	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
1 Cr	Chrome	65	2 PPM	HF-HN03-HCL04-HCL	INDUC, COUP, PLASMA									
2 V	Vanadīum	65	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
3 Sn	Tin	65	20 PPM	HF-HN03-HCL04-HCL	INDUC. COUP. PLASMA									
4 W	Tungsten	65	20 PPM	HF-HNO3-HCLO4-HCL	INDUC, COUP, PLASMA									
5 La	Lanthanum	65	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
6 Al	Aluminum	65	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
7 Mg	Magnesium	65	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
8 Ca	Calcium	65	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
9 Na	Sodium	65	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
0 K	Potassium	65	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
1 Sr	Strontium	65	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
1 SF 2 Y	Yttrium	65	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
		65	10 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
3 Ga	Gallium		2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA									
4 Li	Lithium	65												
5 Nb	Niobium	65	5 PPM	HF-HN03-HCL04-HCL	INDUC. COUP. PLASMA									
6 Sc	Scandium	65	5 PPM	· HF-HN03-HCL04-HCL	INDUC. COUP. PLASMA									

Bondar CleggInchcape Testing Services

Geochemical Lab Report

CLIENT: EVEREST MINES & MINERALS LTD.

REPORT: V96-01612.0 (COMPLETE)

PROJECT: NORTHSTAR/KAZA

DATE PRINTED: 14-OCT-96

PAGE 1A

·			• • • • • • • • • • • • • • • • • • • •									•••••																								
SAMPLE	ELEMENT	AU	Au+	PT	Ag	AgOL Cu	CuOL	Pb Z	n Mo	Ni	. Co	Cd	Bi	As	Sb F	e Tot	Mn	Te	Ва	Cr	٧	Sn	W	La	A	i Mg	Ca	a N	a	K Sr	Υ	Ga	Li	Nb	Sc	Ta
NUMBER	UNITS	PPB	PPM	PPB	PPM	PPM PPM	PCT	PPM PPI	1 PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PC	-		r PC	T PC	T PPM	PPM	PPM				
					1.1.1														1:1.	:																
V131905		42		6	2.2	251		50 14	9	43	40	<1	8	41	<5	8.60	1989	<25	334	138	334	<20	<20	<5	7.9	6 3.64	3.2	2 1.9	5 1.4	5 232	17	18	26	<5	31	30
V131906		6		<5	2.0	166		51 130	10	43	27	<1	<5	44	<5	8.62	1357	.<25	593	201	324	<20	<20	<5	>10.0	0 3.13	3.2	4 3.0	1.8	1 336	19	18	36	<5	26	30
V131907		<1		<5	1.0	61	•	49 13	12	27	24	2	<5	44	7	6.41	2077	<25	523	73	211	<20	<20	<5	8.1	5 1.97	2.3	2.4	4 1.0	7 262	16	13	27	<5	19	22
V131908		4	Kal	5	2.0	164	2	53 130	9	43	28	<1	6	31	<5	7.63	1226	<25	397	174	282	<20	<20	<5	7.6	5 3.85	4.0	2 2.1	7 1.4	7 283	17	15	20	<5	30	28
V131909	Nov th Sto	√433		<5	2.1	209		53 18	7 7	143	12	<1	<5	21	<5	9.21	1735	<25	610	920	260	<20	<20	<5	7.0	1 3.37	2.7	2.0	2 1.4	9 209	18	. 12	21	<5	23	29
- 1	(EN.2.)								F.36				12013 1314						ATT.							14:						٠.				
V131910	Stream	√<1 :	a din vi	<5	1.4	256		59 17	5 10	27	20	<1	<5	44	5	7.86	1351	<25	493	90	279	.<20	<20	<5	9.7	9 2.29	2.8	2.2	2.6	0, 243	25	16	26	<5	23	27
V131911	Sedimon	⁵ 1		<5	1.5	148		47 13	5 12	29	20	<1	<5	43	<5	7.29	1225	<25	448	61	269	<20	<20	<5	8.8	2 1.74	1.98	3 2.3	1 1.6	1 288	20	15	25	<5	19	25
V131912)		97		<5	1.0	65		55 14	6	. 25	13	<1	<5	35	<5	5.77	1013	<25	589	74	205	<20	<20	10	7.0	4 1.29	1.2	2.2	2 1,3	4 259	20	- 14	29	<5	15	17
V131913	V	3		<5	1.6	72	:. :	43 130	7 (30	15	<1	< 5	29	<5	5.81	1100	<25	489	189	216	<20	<20	<5	6.2	0 1.81	2.09	2.2	1.0	7 292	17	12	19	<5	15	19
v131914	, Kaza (K)	144		<5	1.3	65	Į.	43 116	7	37	16	<1	<5	35	<5	6.01	1130	<25	560	175	192	<20	<20	<5	6.8	1 1.89	2.16	1.9	1.2	6 259	18	11	23	<5	18	14
V131915	steam	- 35		<5	1.0	70		49 12!	8 3	55	22	<1	6	31	<5	6.81	1109	<25	717	89	168	: :<20	<20	<5	6.4	3 1.23	1.27	7 1.4	3 1.1	8 175	17	13	24	<5	15	19
v131916	Sedimon	428		7	1.2	61		50 12	, 7	33	15	<1	<5	30	<5	6.02	986	<25	547	164	209	<20	<20	<5	6.2	8 1.46	1.7	1.9	2 1.1	8 247	15	12	22	<5	16	17
V131901 i		23		<5	15.6	>20000	3.9	43 10	5 5	<1	13	<1	88	21	<5	6.13	1345	<25	173	62	248	: <20	<20	<5		3 2.21									17	15
V131902		14		<5	16.9	>20000	4.2	39 100	, 6	<1	14	<1	100	23	<5	6.73	1264	<25	190	60	249	<20	<20	<5	7.9	2 2.33	3.27	3.2	1.2	4 203	15	13	21	<5	17	15
V131903	N.S.	52		<5	>200.0	279 >20000	>15.0	49 6	· <1	<1	<1	2	323	22	<5	3.25	453	<25	23	138	138	<20	<20	<5		5 1.37		-		- 1					7	18
{	•						1			:																* 1										
V131904		81		<5	124.2	>20000	>15.0	42 9	3 11	<1	17	3	187	36	6	6.17	1436	<25	150	102	294	<20	<20	<5	9.2	8 2.29	1.4	7 1.6	3 3.4	2 84	.16	16	18	< 5	20	30
v132751	\	40		27	3.1	1193		47 10	21	40	91	<1	<5	47	8 >	10.00	940	<25	280	145	270	<20	<20	<5	7.5	8 3.21	3.17	1.0	4 1.3	5 110	12	13	25	<5	28	62
V132752		130		6	2.6	884		72 400	23	33	69	4	<5	449	18 >	10.00	986	<25	344	219	191	<20	<20	<5	6.3	5 3.13	3.54	0.8	2 1.1	6 102	9	11	14	<5	29	58
V132753		66	iik:	< 5	1.6	523	:	45 270	14	19	42	2	<5	106	6 >	10.00	747	<25	307	232	92	<20	<20	<5	4.5	6 2.23	2.4	0.5	7 1.1	7 65	<5	<10	12	<5	16	34
V132754	1	74		<5	2.1	587		52 120	52	46	84	<1	8	143	13 >	10.00	696	<25	239	245	117	<20	<20	<5	5.7	4 2.02	1.4	7 0.8	3 1.5	7 63	6	- 11	13	<5	15	59
										:					Here.								440	. :		i i		i :	17.				::··.			
V132755	1	230		<5	3.5	952		51 116	22	12	38	<1	<5	190	10 >	10.00	509	<25	59	246	114	<20	<20	<5	4.1	7 1.45	1.2	0.2	0.6	1 20	<5	<10	12	<5	19	37
V132756	> K	79		<5	2.7	1020		51 12	23	22	98	<1	7	530	11 >	10.00	896	<25	216	259	119	<20	<20	<5	5.4	2 2.47	2.9	0.3	5 1.1	8 26	<5	<10	9	<5	17	82
V132757		716		5	11.7	5556		44 14	19	39	170	<1	8	85	10 >	10.00	761	<25	124	233	123	<20	<20	<5	5.4	0 2.03	1.3	2 0.4	4 0.8	3 30	6	<10	9	<5	19	71
V132758	1	104		<5	2.8	888		52 94	16	31	109	<1	<5	63	<5 >	10.00	910	<25	100	188	115	<20	<20	< 5	4.1	3 2.41	3.70	0.7	7 0.6	1 63	<5	<10	5	<5	15	67
V132759	ļ	384		6	4.8	2296		47 14	14	31	75	<1	<5	67	8 >	10.00	971	<25	124	297	173	<20	<20	<5	5.0	5 2.87	2.0	1.0.4	0.5	4 50	7	<10	12	<5	32	53
	1																																			
V132760	1	116		<5	2.2	1366		39 9	17	25	33	<1	<5	51	5 >	10.00	716	<25	355	141	117	<20	<20	<5	6.8	2 2.02	4.0	1.4	5 1.2	3 125	6	10	8	<5	13	29
V132761		521		5	8.4	5112	:	46 142	16	36	88	<1	<5	343	10 >	10.00	987	<25	273	311	151	<20	<20	<5	4.4	3 2.66	1.40	0.2	0.4	8 35	6	<10	12	<5	30	73
V132762	1	324		<5	3.7	1209		53 6	13	21	119	<1	10	122	13 >	10.00	363	<25	46	177	134	<20	<20	<5	2.7	2 1 48	0.8	0.0	2 0.2	3 21	<5	<10	14	<5	9	77
V132763	1	778		8	3.2	261		32 128	10	38	41	<1	<5	55	<5 >	10.00	1108	<25	.91	324	156	<20	<20	<5	4.3	8 3.90	2.9	0.4	1 0.2	7 66	6	<10	24	<5	30	46
V132764	/	1334	1.57	7	29.1	9969		45 240	14	42	118	<1	13	79	8 >	10.00	1160	<25	. 7	335	128	<20	<20	<5	3.1	3 3.06	3.2	0.0	0.2	3 21	6	<10	6	<5	31	78
						3 133			AAY.		10 100		- 13																							

CLIENT: EVEREST MINES & MINERALS LTD.

REPORT: V96-01612.0 (COMPLETE)

Geochemical	l
Lab	
Report	

PROJECT: NORTHSTAR/KAZA

DATE PRINTED: 14-OCT-96

PAGE 18

SAMPLE	ELEMENT	Τi	ζr
NUMBER	UNITS	PCT	PPM
V131905		0.61	44
V131906		0.76	
V131907		0.47	
V131908		0.59	
V131909		1.70	
V131910		0.68	
V131911		0.65	
V131912		0.57	
V131913		0.49	
V131914		0.50	60
V131915		0.41	
V131916		0.51	58
V131901		0.56	
V131902		0.57	52
v131903		0.21	17
V131904		0.58	
V132751		0.44	
V132752		0.38	Aug English
V132753		0.19	
V132754		0.26	37
V132755		ດ ວວ	22
V132756		0.22	30
V132757		0.22	
V132758		0.23	
V132759		0.38	44 (4.7)
1132137		0.50	
V132760		0.29	
V132761		0.32	
V132762		0.21	
V132763		0.29	23
V132764		0.26	20

Geochemical Lab Report

CLIENT: EVEREST MINES & MINERALS LTD.

REPORT: V96-01612.0 (COMPLETE)

PROJECT: NORTHSTAR/KAZA

DATE PRINTED: 14-OCT-96

PAGE 2A

SAMPLE	ELEMENT	AU Au	⊦ PT	Ag	AgOL Cu	CuOL	Pb	Zn	Мо	Ni	Со	Cd	Вī	As	Sb Fe	e Tot	Mn	Te	Ва	Cr	٧	Sn	W	La	Αl	Mg	Ca	Na	ĸ	Sr	Y G	a Li	Nb	\$c	Ta
NUMBER	UNITS	PPB PPI	4 PPB	PPM	PPM PPM	PCT	PPM I	PPM F	PPM F	PPM P	PM P	PPM I	PPM	PM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM P	PM P	PM	PCT	PCT	PCT	PCT	PCT	PPM	PPM PP	M PPM	PPM	PPM	PPM
V132765 🔪		357	<5	3.7	947		41	107	15	2/ 1	1E	_1	. د د	1/2	:18 >1	10 00	/.4E	-2E	7/1	127	170	-20 -	·20	√E	7 57	1 20	0.53	0.70	n 70		5 <1	n 11	٦E	12	40
V132766	i.	205	· · · · · · · · · · · · · · · · · · ·		669										: 10 /1 :12 >1														0.78		7 <1			. —	
	}		_		4, 4777		53				1111			:			1 7 1							-									-		
V132767		384	<5 -	134 777	1,117	:			17.		- T			:	20:>1									_							<5 <1	_	_	_	66
V132768	,	135	<5	1.00		:	11	- 4	1115		1.0		11.7		.11; >1																<5 <1			-	64
V132769	K	135	<5	3.8	1617		50	105	19	23	73	<1	11.	104	20 >1	10.00	471	<25	88	104	139	<20 <	20	<5	3.32	2.65	0.88	0.27	0.53	54	<5 <1	0 13	<5	8	58
ļ	- Milita								ė į					:			HH:	÷	100					· .											
V132770	- Nomitons.	8	<5	1.2	284		11.7.7	1111	11.5				115								1.5										13 1		-		14
V132771		357	<5	15.0	5604		42	335	10	18	76	5	10 2	256	11 >1	10.00	694	<25	90	93	115	<20 <	20	<5	2.46	1.95	0.70	0.02	0.22	15	<5 <1	0 12	<5	< 5	41
V132772		38	6	2.2	963		18	83	16	20	61	<1	<5 :	382	17 >1	10.00	1303	<25	116	228	138	<20 <	20	<5	4.28	2.90	6.58	0.42	1.00	54	8 1	1 16	<5	20	68
V132773		1675 0.97	7 <5	4.9	1881		13	83	30	17	89	<1	7 7	237	16 >1	10.00	407	<25	202	91	106	<20 <	20	<5	4.11	1.52	1.40	0.40	1.11	38	<5 <1	0 11	<5	9	68
V132774	\	808	<5	17.1	9466		19	172	13	3 1	03	<1	23 ′	124	11 >1	10.00	361	<25	<5	49	135	<20 <	20	<5	2.13	2.01	0.77	0.01	0.09	13	<5 <1	0 10	<5	7	92
J			H											:				:											: " :						
ار v132775		308	<5	5.7	2360		15	100	13	9	86	<1	9 '	119	15 >1	10.00	394	<25	52	61	89	<20 <	20	<5	2.51	1.68	0.31	0.17	0.42	24	<5 <1	0 9	<5	8	84
V132776 🧻		1623 4.69	<5	7.0	4577		5	130	21	15 1	26	<1	14	79	15 >1	10.00	604	<25	163	58	119	<20 <	20	<5	4.06	1.47	2.95	0.50	0.31	109	7 <1	0 10	<5	9	55
V132777	•/	3744 4.7	· <5	17.0	14569	÷	5 :	238	11	25 1	36	<1	45 '	117	15 >1	10.00	683	<25	29	82	95	<20 <	20	<5	3.13	1.22	3.46	0.26	0.16	- 53	<5 <1	0 11	<5	8	61
v132778	· K	4147 1.86	< 5	30.4	>20000	3.1	8 .	373	10	18 1	12	2	<5	34	10 >1	10.00	1043	<25	270	32	122	<20 <	20	<5	5.47	1.65	3.30	:0.33	1.02	76	8 1	1 16	<5	9	46
V132779		2433 3.70	11	11.7	9811		14	95	16	19 1	86	<1	24	68	17 >1	10.00	358	<25	43	57	90	<20 <	20	<5	1.36	0.52	0.80	<.01	0.26	19	<5 <1	0 3	<5	<5	106
								1		3												:			- Perell		in.								
V132780		21	<5	1.6	834		8	105	8	7	16	<1	<5	17	< 5	4.72	946	<25	265	: 28	194	<20 <	20	<5 >	10.00	1.89	2.55	2.57	1.19	379	.16 1	4 27	· <5	17	14
V132781		30	<5		n Bahti da		<2		6	10		<1	8	7																	8 1		_	9	15
V132782		23	<5	- 194 S. I. V. L. S			girig.	90	6	- 3	115.11	1		10	1 11	4.75											1.1		100			8 31		14	
V132783		259	<5		f - HEE, 147		<2	11.7	5	- 1	.00.0	- 1	1000		1 1 1																12 1				
V132784		20	<5			:	94.70	90	5	4	10.11			<5																	13 1	-			
V132704		20 5						,,,	#d	7 8		`		~		4.43	TOOL	`	.,_	. 7_		LU		٠,	0.00	2.00					. د.	J 3,			
V132785		2	<5	1.4	238			90	_	21	17	ا ور	٠.	<5	<5	4.90	nen	-25	0/		207	-20 -	20	: ح	0 /0	3 70	1 50	7 /7	0.57	701	15 1	E 25	5	17	10
V132785		2	<5	- 10 1 10 10 10	333	Ì	 -<2	'	917.3	22	7111				11	4.71															15 1				
1			- Z		. 4:55		1977		. : - : :				: -																					19	
V132787	\ <u>_</u>	2	<5	- 5 Mary 187 a	412		oda ji		1000	23		:				4.84									1.1.1.			1			17 1				
V132788	YN'S,	15	<5		>20000	8.4				<1		2	111.7			5.09	1.				100		1.1				141.4				10 1			12	
V132789	7017	23	<5	60.0	>20000	11.8	4	82	<]	<1	15	<1	56	<>>	<5	5.97	828	<25	2/0	: //	182	<20 <	20	< 5	8.49	1.57	2.30	.2.92	0.87	227	20 <1	U 14	· <5	21	24
1									M					:					1,600		4.1						11411							4	
V132790	1	50	<5	55.0	>20000	9.6	9	74	<1	<1	14	<1	69	7	_	4.24															.11 . 1		_		
V132791	1	106	<5	40.7	>20000	7.7	4	69	1	<1	9	<1	40	< 5	<5	5.35	776	<25	493	114	175	<20 <	20	<5	9.18	1.16	2.15	2.85	1.11	295	19 <1	0 12	<5	19	19
V132792	1	31	<5	19.6	>20000	4.4	5	83	1	<1	20	<1	54	<5	<5	6.27	1377	<25	257	69	239	<20 <	20	<5	9.11	2.37	2.38	3.24	1.00	235	18 1	2 20	<5	24	26
V132794	J	17	<5	16.1	>20000	3.3	<2	83	<1	3	21	<1	32	<5	<5	5.37	1396	<25	270	59	236	<20 <	20	< 5	5.74	1.94	3.55	3.55	0.81	254	10 1	2 17	<5	14	19
V132795 🗸		19	5	19.9	>20000	4.2	4	87	3	<1	18	<1	83	7	<5	7.45	1245	<25	250	69	234	<20 <	20	<5	9.83	2.21	1.91	3.16	1.27	198	15 1	2 21	<5	20	23

CLIENT: EVEREST MINES & MINERALS LTD.

REPORT: V96-01612.0 (COMPLETE)

Geochemical
Lab
Report

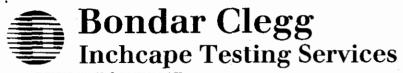
PROJECT: NORTHSTAR/KAZA

DATE PRINTED: 14-OCT-96

PAGE 2B

SAMPLE	ELEMENT	Τi	Zr
NUMBER	UNITS	₽CT	PPM
V132765		0.22	
V132766		0.30	
V132767		0.07	
V132768		0.14	22
v132769		0.21	19
V132770		0.26	35
V132771		0.07	14
V132772		0.24	24
V132773		0.20	30
V132774		0.08	16
V132775		0.11	16
V132776		0.21	25
V132777		0.22	25
V132778		0.27	26
V132779		0.05	8
V132780		0.43	
V132781		0.35	30
V132782			52
V132783		0.49	
V132784		0.46	42
V132785		0.48	
V132786			54
V132787		0.51	60
V132788			43
V132789		0.53	122
V132790		0.56	43
V132791			97
V132792			66
v132794		0.54	50
V132795		0.56	64

CLIENT: EVEREST MINES & MINERALS LTD. REPORT: V96-01612.0 (COMPLETE)


Geochennical Lab Report

PROJECT: NORTHSTAR/KAZA

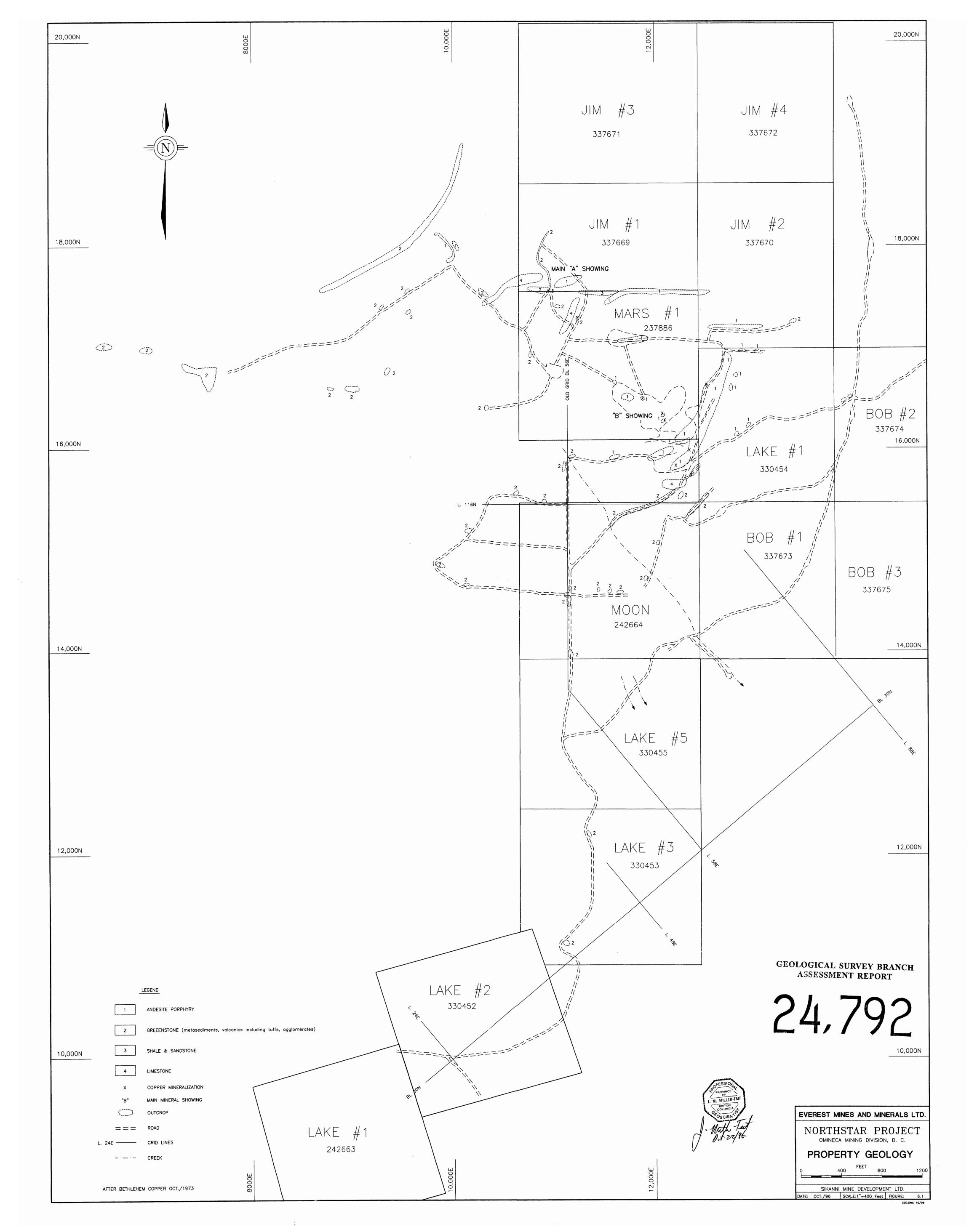
DATE PRINTED: 14-OCT-96

PAGE 3A

SAMPLE NUMBER	ELEMENT UNITS	AU PPB	Au+ PPM	PT PPB	Ag Ag		CuOL PCT	Pb PPM F										t l									Al PCT	•		Na PCT		Sr PPM					Sc PPM I	
V132796	7	3		<5	5.3	9438		<2	90	<1	14	17	<1	10	<5	<5	4.9	0 12	67 <	25 2	200	45 '	94	<20	<20.	< 5 ·	5.45	1.88	3.82	2.72	0.84	217	. 8	11	19	<5	12	15
V132797	luc	8		<5	5.3	8120		4	87	1	16	20	<1	- 8	<5	<5	5.2	3 11	71 <	25 2	253	41 '	189	<20	<20	<5	5.67	1.89	4.55	2.33	1.04	229	9	11	18	<5	12	19
v132798	アルバン	/ 7		<5	8.9	14782		<2	86	<1	10	20	<1	11	<5	<5	5.2	8 9	77 <	25 2	261	45	201	<20	<20	<5	5.06	1.89	3.24	2.44	1.23	205	7	<10	.17	<5	12	21
V132799		3		<5	2.4	2066		<2	84	<1	17	16	<1	<5	<5	<5	4.9	2 9	95 <	25 1	141	38 '	84	<20 ·	<20	<5	5.77	1.53	4.16	2.64	1.11	174	8	11	14	<5	12	14
V132800	ر.	14		<5	31.3	>20000	6.7	. 5	87	<1	<1	16	<1	<5	<5	<5	5.9	1 10	74 <	25 1	162	55 (189	<20	<20	<5	6.23	1.57	1.54	2.41	1.06	160	11	<10	14	<5	12	17

CLIENT: EVEREST MINES & MINERALS LTD.

REPORT: V96-01612.0 (COMPLETE)


Geochemical Lab Report

PROJECT: NORTHSTAR/KAZA

DATE PRINTED: 14-OCT-96

PAGE 3B

SAMPLE	ELEMENT	Tí	Zr
NUMBER	UNITS	PCT	PPM
V132796		0.44	42
V132797		0.45	43
V132798		0.43	41
V132799		0.44	39
V132800		0.51	39
			100

NORTHSTAR SHOWING B

ZONE #2

Purple / Green porphyritic andesite to minor calcite stringers

V132788

(2m/11.8%/60.0)

V132788

(2m/8.4%/50.4)

Chalcocite/bornite veining, pinching and swelling

V132790

(1m/9.6%/55.0)

V132791

(1m/7.7%/40.7)

Sample No.	Width metres	Cu ppm/%	Ag ppm
V132792*	2m	4.4%	19.6
V132794	2m	3.3%	16.1
V132795	2m	4.2%	19.9
V132796	2m	9438	5.3
V132797	2m	8120	5.3
V132798	2m	14782	8.9
V132799	2m	2066	2.4
V132800*	2m	6.7%	31.3
	16m	2.8%	13.6 g/t

GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORT

24,792


Chalcocite—Bornite Vein
(.75m) with Malachite/minor Azurite

160/vert?

V132800*

NORTHSTAR SHOWING B

ZONE #1

Porphyritic Andesite

Z Dozer Clearing

EVEREST MINES AND MINERALS LTD.

NORTHSTAR PROJECT

OMINECA MINING DIVISION, B. C.

SHOWING "B" DETAIL ASSAY & GEOLOGY MAP

METRES 5 0 10 20 30

SIKANNI MINE DEVELOPMENT LTD.

DATE: OCT/96 | SCALE: 1:1000 | FIGURE:

- SHOW DWG 10/29/96