

ASSESSMENT REPORT ON GEOCHEMICAL WORK ON THE FOLLOWING CLAIMS

> CY1 215279 CY2 215280 CY3 215285 CY4 215286

EVENT #'S 3094958

WORK PERMIT Mx-1-500

Located

19 KM SOUTHEAST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

55 degrees 45 minutes latitude 129 degrees 47 minutes longitude

N.T.S. 103P/13W

PROJECT PERIOD: July 1 - November 6, 1996

ON BEHALF OF LEVELLAND ENERGY AND RESOURCES LTD. DELTA, B.C.

REPORT BY

E. R. Kruchkowski 23 Templeside Bay NE Calgary, Alberta T1Y 3L6

GEOLOGICAL SURVEY BRANCH Date: May 30, 1997 ASSESSMENT REPORT

TABLE OF CONTENTS

and distant of the

(_____)

Summer of the

Common of T

รี. มีมาณาสถาวรีเอสถางเสีย

a and a second second

Gondand

na shika na kana ka

and pleasant and a second

Contractor and an Article

ana ang kana ang kana sa kana s

niho.nin ninanti

الدەتىلەت تىمەتىلەر 19

generation L

	Page
SUMMARY	1
INTRODUCTION	2
Location and Access	2
Physiography and Topography	2 2 3 3
Personnel and Operations	3
Property Ownership	3
Previous Work	4
GEOLOGICAL SURVEY	- 4
Regional Geology	4
Local Geology	6
Mineralization	. 6
GEOCHEMICAL SURVEYS	
Introduction	7
Field Procedure and Laboratory Technique	7
Statistical Treatment	8
Anomalous Results	8
CONCLUSIONS	8
RECOMMENDATIONS	9
REFERENCES	10
STATEMENT OF EXPENSES	- 11
STATEMENT OF CEPTIFICATE	12

LIST OF FIGURES

After Page

Figure 1	Location Map	After Page 2
Figure 2	Claim Map 1:50,000	After Page 3
Figure 3	Regional Geology (After Grove)	After Page 5
Figure 4	Property Geology (G.S.C. Open File 2931)	After Page 5
Figure 5	1996 Rock Geochemical Sampling	In Back Pocket
-	CY1 and CY2 Claim	
Figure 6	1996 Rock Geochemical Sampling	In Back Pocket
-	CY3 and CY4 Claim	

the part of the second s

in a line a la desta

Continuer internal

LIST OF APPENDICES

APPENDIX I	Sample Description with Indicated Anomalous Values for
	Au, Ag, As, Cu and Co

APPENDIX II Geochemical Analysis Results for the Geochemical Program

SUMMARY

The CY property, owned by Levelland Resources and Energy Ltd. is located about 19 kilometers southeast of Stewart, British Columbia in the Skeena Mining Division. The property covers an area of Hazelton pyroclastic volcanic rocks in contact with a variety of intrusive plutons associated with the main Coast Range Batholith.

The property lies within a belt of Jurassic volcanic rocks extending from the Kitsault area, south of Stewart, to north of the Stikine River. This belt is host to numerous gold deposits, in a variety of geological settings, including the producing Snip, Eskay Creek and Premier-Big Missouri properties. Reserves have been reported from a number of other properties including Red Mountain, the Brucejack Lake area and Georgia River. In addition, numerous gold-silver showings have been reported by exploration companies along this belt of rocks. At least three porphyry type deposits with either Cu-Mo, Cu-Mo-Au or Cu-Au mineralization are also present. Of particular interest is the Red Mountain gold deposit hosted in a hornblende porphyry (Goldslide Intrusive) in association with massive pyrite and zinc and molybdenum mineralization, approximately 15 km to the north. The property is immediately adjacent to the recently discovered Clone gold-cobalt mineralization located in northwest trending shears.

During the period July to November, 1996, a program consisting of reconnaissance geochemical rock sampling in conjunction with prospecting was conducted on the CY claims.

A total of 534 rock samples (517 grab and 17 chips) were collected in the surveys and analyzed for metal content with ICP analysis (29 element package) and gold determinations using atomic absorption methods performed on 313 samples. The remainder of the samples (221 in total) were analyzed for gold and silver using fire assay methods. Any anomalous gold and silver (greater than 1000 ppb for the gold and 30 ppm for the silver) in the ICP analysis were assayed.

Mineralization was generally located along zones of shearing associated with strong chlorite alteration. Pyrite plus or minus arsenopyrite plus or minus chalcopyrite occur within shears with a predominant direction at approximately 320 degrees. Sparse galena and sphalerite occur within rusty intrusive dykes.

Results of the rock geochemical program indicate highly anomalous gold, silver, copper, arsenic, lead, zinc and cobalt values throughout the CY claim areas. Values as high as 8.57 opt Au, 96.38 opt Ag, 31.51% Cu, 1980 ppm As, 277 ppm Co, 2.06% Pb and 2.66% Zn were obtained from different zones within the explored areas.

The presence of significant gold values associated with cobalt and arsenic mineralization is similar to that for the adjacent Clone gold-cobalt discovery. Further work is recommended in order to define the widths and lengths of the gold bearing systems. This work should include further geochemistry, trenching and geological mapping.

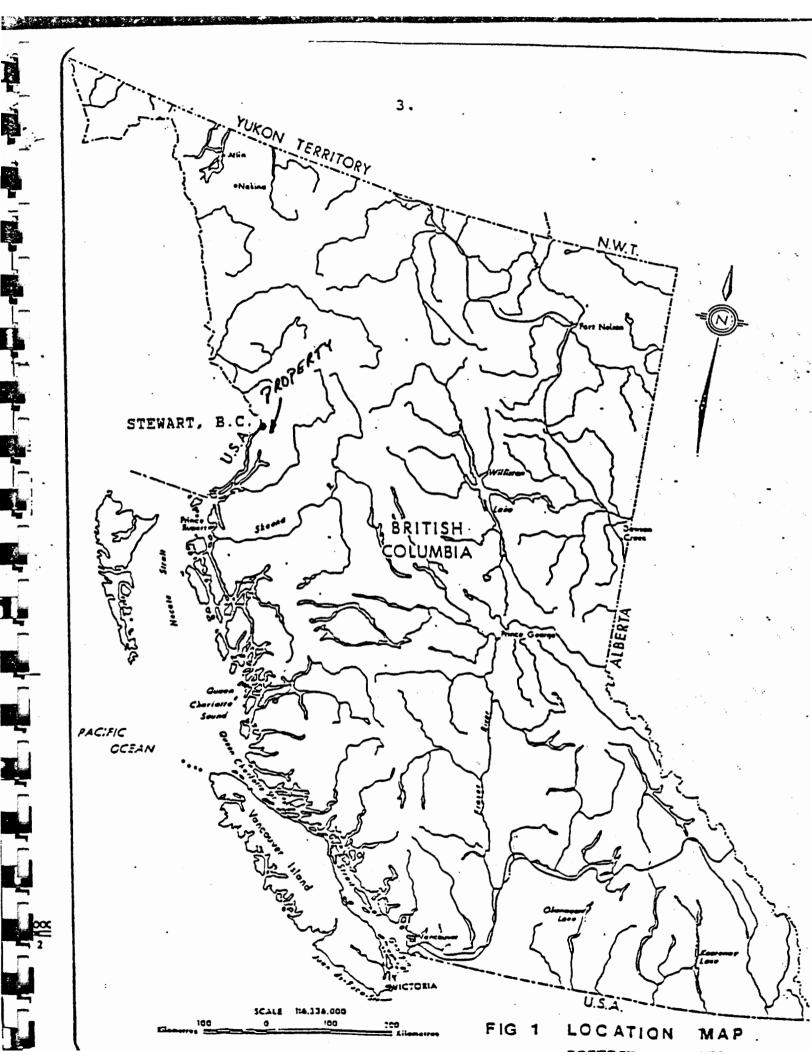
INTRODUCTION

An exploration program designed to test the gold potential of the CY claims was conducted during the period July to November 1996. This report is based on geochemical samples obtained during 1996 by Levelland Resources and Energy Ltd. The work was conducted by Heather Wilkie, geological engineer and Ted Gustavson, prospector.

All rock geochemical and assay samples were analyzed by Echo-Tech Laboratories in Kamloops, B.C. with sample preparation completed at Stewart, B.C. Vancouver Island Helicopters provided a Bell 206, Bell 205, and Hughes 500 D in order to provide access, fly in supplies or transport personnel to the more inaccessible areas of the claim blocks.

The report was prepared on data supplied by Levelland Resource and Energy Ltd. and from data accumulated by the author for other surveys in the general area.

Location and Access


The claims in the property are contiguous and are located about 19 kilometers southeast of Stewart, British Columbia. The claim area is approximately 55 degrees 45 minutes latitude and 129 degrees 47 minutes longitude on NTS sheet 103P/13W.

Access to the property at the present time is by helicopter from Stewart. Nearest road to the area is a non-maintained logging road running east along the south side of the Marmot River to a point about 9 km northwest of the property. Total length of the road from tidewater to its termination point is approximately 4 km.

Physiography and Topography

The CY property claims are situated southeast of Treble Mountain at the head of Sutton and Kshwan Glacier. The main area of interest is at the contact of the Coast Range Mountains with the south edge of the Cambrian Icefield. The topography is typical of the Coast Range with steep precipitous slopes formed by retreating glaciers. Elevation vary on the property with the lowest being 240 m ASL on the CY2 claims and the highest being 1830 m ASL on the CY4 claim.

Except for the portions of the claims covered by permanent snow or ice, most of the upper ground is outcrop or talus cover with little vegetation. Just above the glaciers,

thick morainal debris obscures the underlying geology. Maximum rock exposure occurs in early October when most of the annual snowfall has melted. The surface exploration is restricted to late summer and early fall. Most of the nunatak can be traversed safely on foot although local areas contain occasional bluffs.

Small patches of tag spruce are present along the lower slopes of the nunatak, particularly the south facing edge. Alpine grasses, heather and arctic willows grow in patches along the talus, moraine and outcrops.

Personnel and Operations

Personnel involved in the program are listed below:

Heather Wilkie, geological engineer	July to November 1996
Ted Gustavson, prospector	July to November 1996

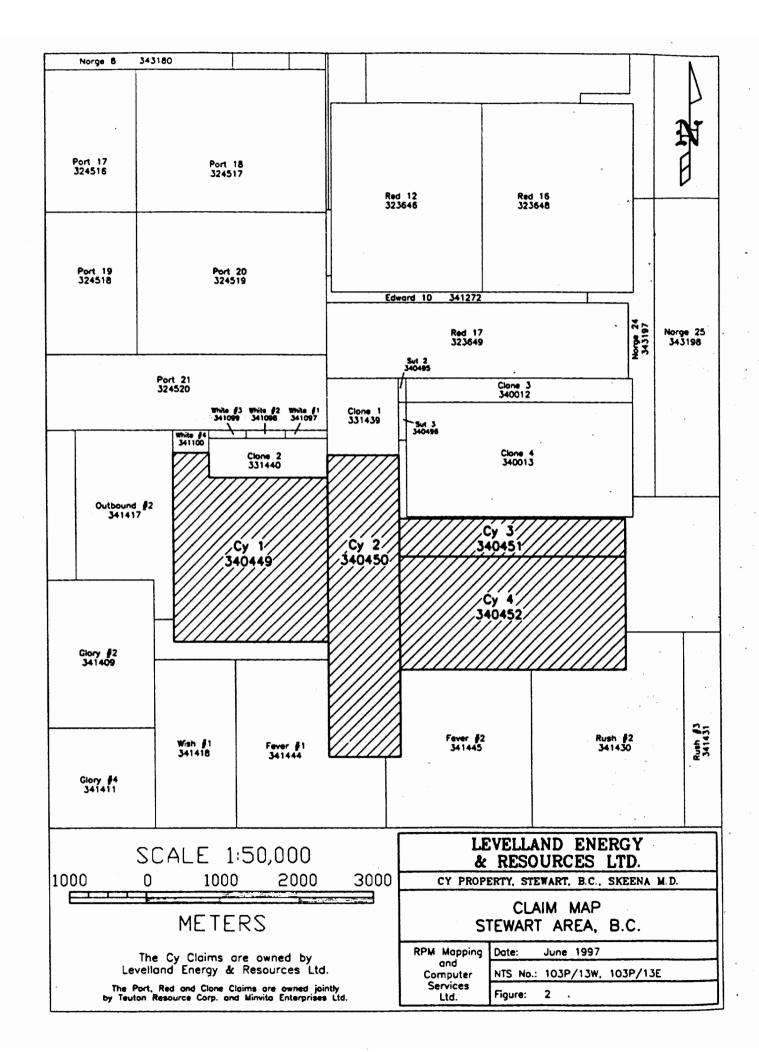
Personnel in the program mobilized to the Stewart area via vehicle from Vancouver, B.C. Casual laborers were hired in Stewart on a "as need" basis and were used during the construction of the exploration camp.

All camp and equipment was slung to the property utilizing a Vancouver Island Helicopter Bell 206 or 205 and/or Hughes 500 D stationed at Stewart.

All personnel involved in the program were accommodated in a exploration camp located on the CY1 claim. While in Stewart, crews were accommodated in a local hotel.

Supplies and materials for the job were purchased in Stewart and ferried in via helicopter.

Property Ownership


The property consists of 60 units in 4 separate but contiguous modified grid claims. Relevant claim information is summarized below:

NAME	TENURE	# OF UNITS	EXPIRY DATE
CY1	340449	20	-10/02/96
CY2	340450	16	10/02/96
CY3	340451	6	10/02/96
CY4	340452	18	10/02/96

Claim locations are shown on Fig. 2 after government N.T.S. maps. The claims are owned by Levelland Energy and Resources Ltd. of Delta, British Columbia.

3

ns el

The author did not examine the claim posts and cannot verify the quality and accuracy of the staking. The exact location of these claims would be subject to further surveys.

Previous Work

This section on previous work is excerpted from a report by Wilkie as follows:

Exploration in the Stewart area was first recorded in 1898 and has had a familiar boombust pattern ever since. Several discoveries have attributed to Stewarts' diverse history. By 1910, Stewart and its' neighbor Hyder, Alaska, had a booming population of approximately 10,000. In 1918, the Premier gold-silver mine renewed interest in exploration in the area of Stewart.

In the vicinity of our properties, a number of prospects were worked on in the late 1920's through the early 1930's. These prospects were based out of the Marmot River drainage. They included the Prosperity-Porter Idaho, Marmot Metals and North Fork Basin Properties, and the Ficklin-Harder gold prospects.

The discovery of the Granduc copper mine kept Stewarts' reputation as a mining town alive. However, lackluster precious metal prices precluded most gold and silver exploration from 1940 to 1979. A boom hit once again when gold and silver prices soared in the early 1980's. Exploration was kept up in the general area of Stewart due to such discoveries as the Snip and Eskay Creek Mines. Investments decreased when companies were unable to discover anything resembling these mines.

In total, more than 600 mineral deposits have been discovered in the Stewart area. At leas 70 of which have shown some production. The recent discovery of the Clone and Red Mountain claims have rekindled exploration near Stewart. Several companies such as Aquaterre Mineral Development, Camnor/Golden Giant, KRL Resources/Prime Equities, Navarre, Oracle and Levelland Energy and Resources Ltd. are presently exploring in the Stewart area.

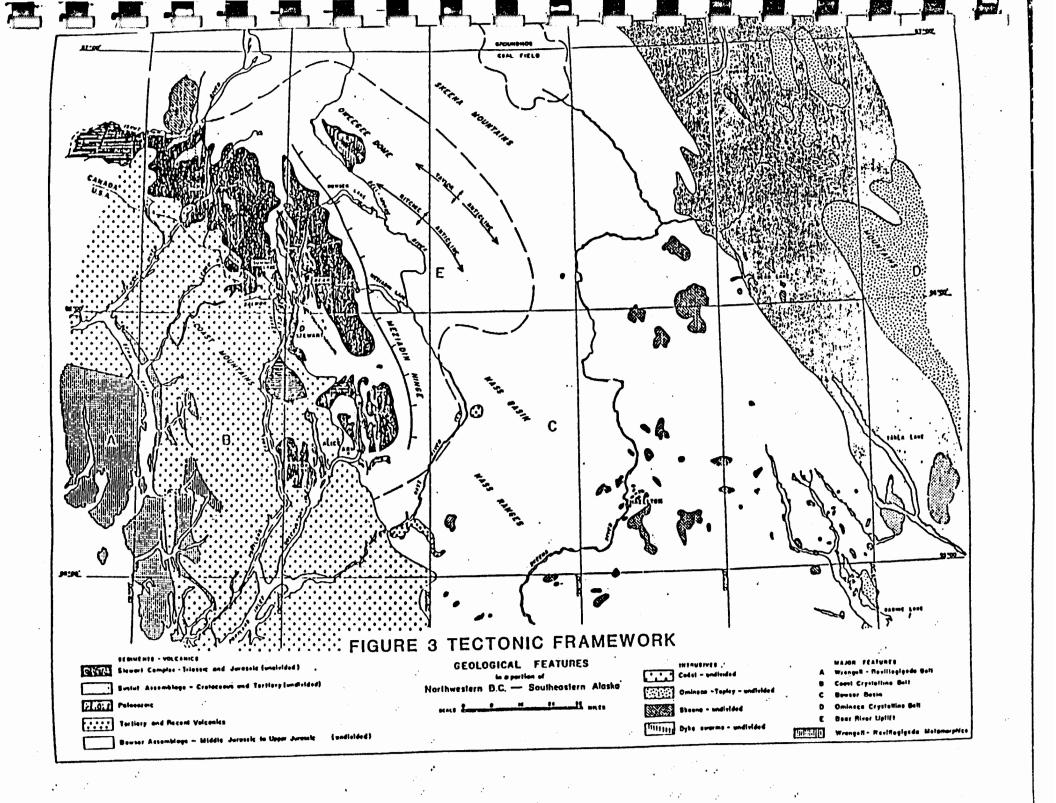
GEOLOGICAL SURVEYS

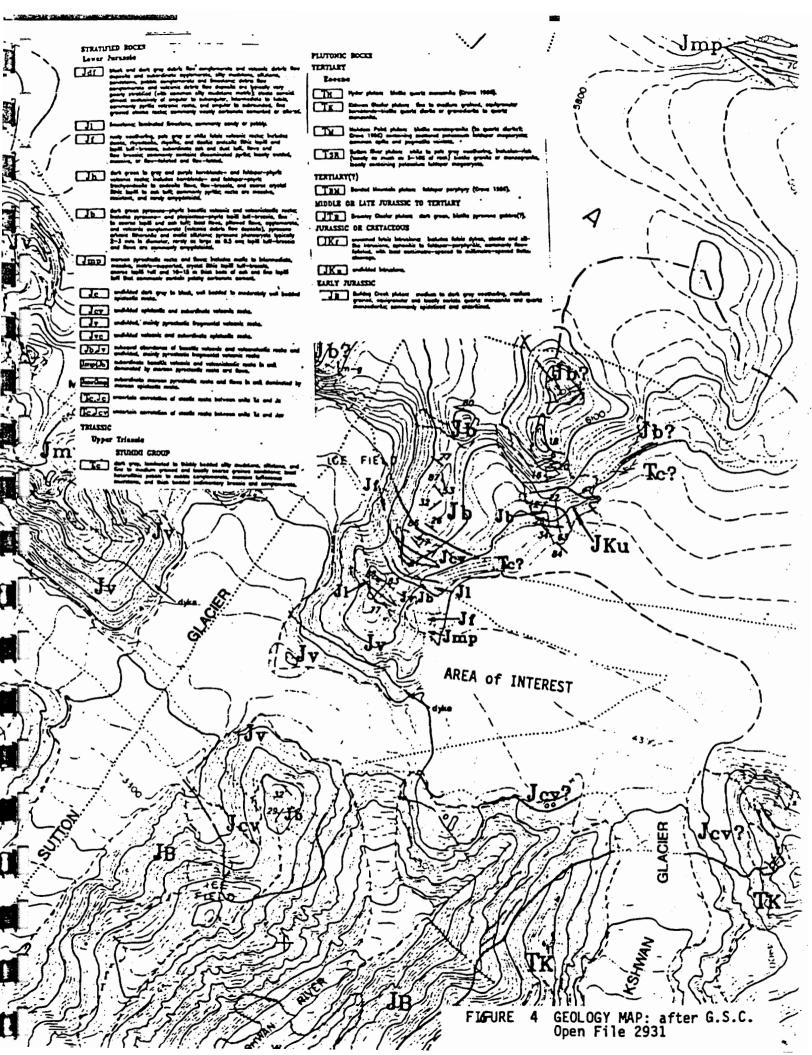
Regional Geology

The Clone property lies in the Stewart area, east of the Coast Crystalline Complex and within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic Stuhini Group, Hazelton Group and Bowser Lake Group that have been intruded by plugs of both Cenozoic and Mesozoic age.

According to C.F. Greig, in G.S.C. Open File 2931, portions of the general Stewart area as well as the northern portion of the property are underlain by Triassic age Stuhini Group. The Stuhini Group rocks are either underlying or in fault contact with the Hazelton Group. These Triassic age rocks consist of dark grey, laminated to thickly bedded silty mudstone, and fine to medium grained and locally coarse grained sandstone. Local heterolitic pebble to cobble conglomerate, massive tuffaceous mudstone and thick bedded sedimentary breccia and conglomerate also form part of the Stuhini Group. Figure 3 shows the geology of the Stewart area as depicted by Greig.

At the base of the Hazelton Group is the lower Lower Jurassic Marine (submergent) and non-marine (emergent) volcaniclastic Unuk River Formation. This is overlain at steep discordant angles by a second, lithologically similar, middle Lower Jurassic volcanic cycle (Betty Creek Formation), in turn overlain by an upper Lower Jurassic tuff horizon (Mt. Dilworth Formation). Middle Jurassic non-marine sediments with minor volcanics of the Salmon River Formation unconformable overlie the above sequence.


The lower Lower Jurassic Unuk River Formation forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, volcanic conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.


In the property are, the Unuk River Formation is unconformably overlain by middle Lower Jurassic rocks from the Betty Creek Formation. The Betty Creek Formation is another cycle of troughfilling sub-marine pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, with self-erosional conglomerate, sandstone and siltstone and minor crystal and lithic tuffs, chert, limestone and lava.

The upper Lower Jurassic Mt. Dilworth Formation consists of a thin sequence varying from black carbonaceous tuffs to siliceous massive tuffs and felsic ash flows. Minor sediments and limestone are present in the sequence. Locally pyritic varieties form strong gossans.

The Middle Jurassic Salmon River Formation is a late to post volcanic episode of banded, predominantly dark colored siltstone, greywacke, sandstone, intercalated calcarenite rocks minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows.

Overlying the above sequences are the Upper Jurassic Bowser Lake Group rocks. These rocks mark the western edge of the Bowser Basin and are also located as remnants on mountain tops in the Stewart area. These rocks consist of dark grey to black clastic rocks including silty mudstone and thick beds of massive, dark green to dark grey, fine to medium grained arkosic litharenite.

According to E.W. Grove, the majority of the rock from the Hazelton Group were derived from the erosion of andesitic volcanoes subsequently deposited as overlapping lenticular beds varying laterally in grain size from breccia to siltstone.

D. Aldrick's work to the north of Stewart has shown several volcanic centers in the surveyed area. Lower Jurassic volcanic centers in the Unuk River Formation are located in the Big Missouri Premier area and in the Brucejack Lake area. Volcanic centers within the Lower Jurassic Betty Creek Formation are in the Mitchell Glacier and Knipple Glacier areas.

There are various intrusives in the area. The granodiorites of the Coast Plutonic Complex largely engulf the Mesozoic volcanic terrain to the west. East of these (in the property area), smaller intrusive plugs range from quartz monzonite to granite to highly felsic. Some are likely related to the late phase offshoots of the Coast plutonism, other are synvolcanic and tertiary. Double plunging, northwesterly - trending synclinal folds of the Salmon River and underlying Betty Creek Formations dominate the structural setting of the area. These folds are locally disrupted by small east-overthrusts on strikes parallel to the major fold axis, cross-axis steep wrench faults which locally turn beds, selective tectonization of tuff units and major northwest faults which turn beds. Figure 4 shows the regional geology of the Stewart area (Grove 1982).

Local Geology

Mapping by Greig has shown that the CY claims are underlain by Jurassic volcanic rocks intruded by the Early Jurassic Bulldog intrusion. The CY 1 and 2 claims are underlain by undivided, mainly pyroclastic fragmental rocks in contact with dark green to grey and purple hornblende and feldspar phyric rocks to the south. The pyrite unit is generally massive, resistant and rarely amydaloidal. In most localities the rock unit appeared to be a dark green pyroxene basalt (Heather Wilkie observations).

South of the phyric unit is undivided volcanic and subordinate epiclastic rocks. The volcanic rocks appear to be strongly chloritized with local strong patchy epidote. The Bulldog intrusion is a medium to dark grey, medium grained, equigranular quartz monzonite; commonly epidotized and chloritized.

Mineralization

Mineralization on the property appears to be related to zones of shearing and/or the emplacement of intrusive dykes. Just to the southwest of the CY claims, the Bulldog intrusion has been responsible for the formation of large zones of pyrrhotite/minor chalcopyrite mineralizationj. Within the claim areas, pyrite plus or minus arsenopyrite plus or minus chalcopyrite occur within shears with a predominant direction at approximately 320 degrees. Sparse galena and sphalerite occur within rusty intrusive dykes in the corner of the CY claim northwest.

GEOCHEMISTRY

Introduction

Reconnaissance rock geochemical samples were taken from zones of interest, including gossaned areas, mineralized shear zones as well as mineralized intrusive rocks on the CY 1-4 claims. Sample location maps are shown in figure 5 and 6 in relation to the claim lines, prepared at a scale of 1:5000. Ice field boundaries have been taken from government topographic maps, however these are often inaccurate: pronounced ablation in Stewart during the past years have exposed much new rock outcrop and reduced the size of snow and icefields considerably. Altogether 534 rock samples were taken: 517 grab and 17 chip samples. Locations for the samples were fixed in the field by reference to a base map prepared from a topographic map.

Field Procedure and Laboratory Technique

Rock samples were taken in the field with a prospector's pick and collected in standard plastic sample bag. Grab samples were taken to ascertain character of mineralization at any specific locality. These samples consisted generally of three to ten representative pieces with total sample weight ranging between 0.5 to 2.0 kgs. Chip samples were taken across the strike of mineralized structures and generally weighed about 1.0 to 2.0 kgs. Interval samples from chip lines were carefully taken to ensure a balanced weighting of sub-samples along the interval length; all at 1 m lengths. Complete descriptions of the rock samples, in terms of type, noted mineralization and relationship to nearby features are located in Appendix I. In addition, any determined anomalous values are noted along with descriptions.

All rock samples were analyzed at the Echo-Tech facilities in Kamloops, British Columbia, British Columbia. Rock samples were first crushed to minus 10 mesh using jaw and cone crushers. Then 250 grams of the minus 10 mesh material was pulverized to minus 140 mesh using a ring pulverizer. For the gold analysis a 10.0 gram portion of the minus 140 mesh material was used. After concentrating the gold through standard fire assay methods, the resulting bead was then dissolved in aqua regia for 2 hrs. at 95 degrees Celsius. The resulting solution was then analyzed by atomic absorption. The analytical results were then compared to prepared standards for the determination of the absolute amounts. For the determination of the remaining trace and major elements Inductively Coupled Argon Plasma (ICP) was used. In this procedure a 1.00 gram portion of the minus 140 mesh material is digested with aqua regia for 2 hours at 95 degrees Celsius and made up to a volume of 20 mls prior to the actual analysis in the plasma. Again the absolute amounts were determined by comparing the analytical results to those of prepared standards. Samples LVL CY 1 1-313 were analyzed using ICP methods while samples LVL CY 1 313-480, LVL CY 2 1-40, LVL CY 3 1-10 and LVL CY 4 1-9 were assayed for gold and silver.

Specific samples were subjected to further analysis where the Au, Ag, As, Cu, Zn and Pb values obtained exceeded certain threshold levels (greater than 1000 ppb for Au, greater than 30 ppm for Ag and greater than 10,000 ppm for the next metals). High golds were fire-assayed using conventional methods followed by parting and weighing of beads. Wet chemistry methods and AA were used for follow-up analysis of base metals and silver (where values were too high for quantitative measurement by ICP).

Analyses results for the geochemical program are located in Appendix II.

Statistical Treatment

A cumulative frequency plot to determine background and threshold values (greater than threshold is considered anomalous) was not conducted for the results. Generally, gold values greater than 100 ppb gold, silver values greater than 3.6 ppm, arsenic values greater than 120 ppm, copper values greater than 240 ppm and cobalt values greater than 100 ppm, may be considered anomalous in the Stewart area based on previous surveys. Figures 6-9 show the location plots for all sampling conducted with the values for Au, Ag, As and Cu listed in a table for the appropriate samples in any of the individual diagrams.

Anomalous Zones

The geochemical program indicated a strong correlation between gold, arsenic, copper and occasionally cobalt values. The highly chloritized shear zones carrying sulfides show anomalous metal values. Highest metal values obtained were up to 0.621 opt Au, 96.38 opt Ag, 3.51% copper, 1980 ppm arsenic, 277 ppm cobalt, 2.06% lead and 2.66% zinc.

Sparse galena and sphalerite along the rusty intrusive yielded values ranging from 4.12 to 8.57 opt silver.

CONCLUSIONS

- 1. The property which lies within a belt of Jurassic volcanic rocks extending from the Kitsault area, south of Stewart, to north of the Stikine River is host to numerous gold deposits.
- 2. During the period July to November 1996, an exploration program consisting of reconnaissance geochemical sampling was conducted on the CY claims.
- 3. A total of 534 rock samples (517 grab and 17 chip samples) were collected on this property.

- 4. Mineralization in the form of pyrite plus/minus chalcopyrite and plus/minus arsenopyrite along shear zones within the claim area. Sparse galena and sphalerite are located within rusty intrusives on the CY1 claim.
- 5. Results of the rock geochemical program indicate highly anomalous gold, silver, copper, arsenic and cobalt values throughout the CY claim areas. Values as high as 0.621 opt Au, 96.38 opt Ag, 3.51% Cu, 1980 ppm As, 277 ppm Co, 2.06% Pb and 2.66% Zn were obtained from different zones within the explored areas.
- 6. The presence of anomalously gold mineralized shear systems across significant widths provides an excellent exploration target, especially in close proximity to the Clone property.
- 7. An exploration program consisting of trenching and geochemical surveys is recommended.

RECOMMENDATIONS

The recommended program is outlined as follows:

- 1. Trenching should be completed to test along all identified gold-bearing structures.
- 2. Geochemical Sampling further rock geochemistry is recommended to test other areas of the property.
- 3. Geological Mapping mapping at a scale of 1:250 over the gold-bearing shear zones on the CY claims.
- 4. Establishment of a permanent grid using metal plates attached to the outcrop or wooden plates in overburden or snow covered areas. An extended wire picket would be placed in such a manner that the attached plate would keep it in place.

ç

9

REFERENCES

- 1. ALLDRICK, D.J., (1984); "Geological Setting of the Precious Metal Deposits in the Stewart Area", Paper 84-1, Geological Fieldwork 1983, B.C.M.E.M.P.R.
- 2. ALLRICK, D.J., (1985); "Stratigraphy and Petrology of the Stewart Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
- 3. GREIG, C.J., ET AL (1984); "Geology of the Cambria Icefields: Regional Setting for Red Mountain Gold Deposit, Northwestern British Columbia", p.45, Current Research 1994-a, Cordillera and Pacific Margin, Geological Survey of Canada.
- 4. GREIG, C.J., ET AL (1994); "Geology of the Cambria Icefield: Stewart, Bear River, and parts of Meziadin Lake and Paw Lake Map areas, Northwestern British Columbia" Geological Survey of Canada, Open File 2931.
- 5. GROVE, E.W. (1971): Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- 6. GROVE, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 7. GROVE, E.W. (1987): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area, Bulletin 63, B.C.M.E.M.P.R.
- 8. WILKIE, HEATHER (1996): Fieldnotes and maps regarding work done on CY1-CY4.
- 9. WILKIE, HEATHER (1996): Assessment Report
- WOJDAK, PAUL (1995): Northwestern District of Mineral Exploration Review 1994, information Circular 1996-6, Ministry of Energy, Mines and Petroleum Resources, Mineral Resources Division.

STATEMENT OF EXPENDITURES

Field Personnel-Period June to November 1996 Heather Wilkie, Geological Engineer	*
62 days @ \$225/day	\$13,950.00
36 days @\$150/day	5,400.00
Ted Gustavson, Prospector	
66 days @ \$175/day	11,550.00
WIC, UIC, CPP on labour (\$30,900)	5,315.37
HelicopterVancouver Island Helicopters	
11.8 hours Hughes 500 D @ \$750/hr	
5.1 hours Bell 206 B @ \$715/hr	14,591.10
	1,,0,71,10
Camp and Field Supplies	9,866.33
Hotel and Meals	2,925.39
Commission	2,820,27
Communications	2,839.27
Expediting	1,428.00
Exponenting	1,120.00
Truck Rental and Expenses	3,029.03
Groceries	2,632.31
Access Costs, Free Test Labe/Dispace Labe	
Assays CostsEco-Tech Labs/Pioneer Labs Au Geochem + 30 elements ICP + rock sample prep	
Au Geochem + 30 elements fCr + fock sample prep 309 @ 19/sple	5,871.00
226 @ 17.75/sple	3,993.75
Au assay: 10 @ 9.50/sple	95.00
Ag assay: 9 @ 4.00/sple	36.00
Pb assay: 2 @ 7.50/sple	15.00
Zn assay: 2 @ 7.50/sple	15.00
Freight on Samples	288.73
	A
DraughtingRPM Computers	500.00
Secretarial/Work Processing	200.00
Copies, reports, jackets, data entry, etc.	200.00
Total -	- \$83,841.28

Second and second in the second se and the second se and the formants n Sinising and Sin Completeriorum and the name with provide n Alexandra and A a state and the second Sala - Salatangan B to all cardin ma and the second s individuates in appr

CERTIFICATE

I, Edward R. Kruchkowski, geologist, residing at 23 Templeside Bay, N.E., in the City of Calgary, in the Province of Alberta, hereby certify that:

- 1. I received a Bachelor of Science degree in Geology from the University of Alberta in 1972.
- 2. I have been practicing my profession continuously since graduation.
- 3. I am a member of the Association of Professional Engineers, Geologists, and Geophysicists of Alberta.
- 4. I am a consulting geologist working on behalf of Levelland Energy Resources Ltd.
- 5. This report is based on review of reports, documents, maps and other technical data on the property area provided by Levelland and on my experience and knowledge of the general area obtained during programs in 1974-1996 for other companies.
- 6. I authorize Levelland Energy Resources Ltd. to use information in this report or portions of it in any brochures, promotional material or company reports.

~ 2 v/ Date:

E.R. Kruchkowski, B.Sc.	
	. •

APPENDIX I

SAMPLE DESCRIPTIONS WITH INDICATED ANOMALOUS VALUES FOR AU, AG, AS, CU and Co SAMPLES LVL-CY1 - 1-313 ANALYZED by ICP SAMPLES LVL - CY1 - 314-480, LVL - CY2 -1-40 SAMPLES LVL - CY3 - 1-10 and LVL - CY4 - 1-9 ANALYZED by ASSAY

ŕ

CY1 SAMPLES

LVL - CY1 - 001	Grab. Dark blue-green pyroxene basalt, disseminated pyrite and chalcopyrite, microveins of calcite, weathers rusty.	
LVL - CY1 - 002	Grab. Taken from dyke stril grained, calcite and plagiocl	king at 150 degrees, rusty red and fine ase evident.
LVL - CY1 - 003	Grab. Dark blue-green pyro weathers rusty.	xene basalt, hematite alteration,
LVL - CY1 - 004	Grab. Same as # 001.	
LVL - CY1 - 005	Grab. Very rusty intrusive d	lyke, calcite microveins, minor pyrite.
•	Au - 10 ppb As - <5 ppm	Ag - 4.12 opt Cu - 47 ppm
LVL - CY1 - 006	Grab. Very rusty intrusive c minor sphalerite.	lyke, galena in calcite microveins,
	Au - 65 ppb As - < 5 ppm	Ag - 8.57 opt Cu - 191 ppm
LVL - CY1 - 007	Grab. Dark blue-green pyro	oxene basalt, weathers rusty.
	Au - 750 ppb As - < 5 ppm	Ag - 7.6 ppm Cu - 285 ppm
LVL - CY1 - 008	Grab. Dark blue-green pyro chalcopyrite, arsenopyrite, r	oxene basalt, disseminated pyrite, usty weathering.
	Au - 290 ppb As - 85 ppm Co - 186 ppm	Ag - 11.4 ppm Cu - 1522 ppm
LVL - CY1 - 009	Grab. Same as # 008.	۰ ۲
	Au - 5 ppb As - 130 ppm	Ag - 0.2 ppm Cu - 150 ppm
LVL - CY1 - 010	Grab. Same as # 008.	

an a sur gita accession

- LVL CY1 011 Grab. Dark blue-green pyroxene basalt with hematite alteration LVL - CY1 - 012 Grab. Same as # 008. Grab. Same as # 008. LVL - CY1 - 013 LVL - CY1 - 014 Grab. Same as # 008. Au - 65 ppb Ag - 2.4 ppm As - 110 ppm Cu - 1450 ppm LVL - CY1 - 015 Grab. Same as # 008. LVL - CY1 - 016 Grab. Same as # 008. LVL - CY1 - 017 Grab. Same as # 008. Grab. Same as # 008. LVL - CY1 - 018 LVL - CY1 - 019 Grab. Dark blue-green pyroxene basalt with trace amounts of sulfides. LVL - CY1 - 020 Grab. Dark blue-green pyroxene basalt, rusty weathering. LVL - CY1 - 021 Grab. Dark blue-green pyroxene basalt, epidotized quartz veins. LVL - CY1 - 022 Grab. Same as # 020. LVL - CY1 - 023 Grab. Same as # 008 LVL - CY1 - 024 Grab. Dark blue-green pyroxene basalt, abundant quartz, weathers rusty. LVL - CY1 - 025 Grab. Dark blue-green pyroxene basalt, epidotized quartz, calcite, and trace sulfides disseminated throughout sample. LVL - CY1 - 026 Grab. Same as # 008. " Ag - 6.0 ppm Au - 70 ppb Cu - 690 ppm As - 55 ppm LVL - CY1 - 027 Grab. Dark blue-green pyroxene basalt, quartz, calcite, and trace sulfides disseminated throughout sample.
 - 14

LVL - CY1 - 028	Grab. Dark blue-green pyroxene basalt, hematite alteration.
LVL - CY1 - 029	Grab. Same as # 028.
LVL - CY1 - 030	Grab. Dark blue-green pyroxene basalt, microveins of epidotized quartz, minor sulfides.
LVL - CY1 - 031	Grab. Dark blue-green pyroxene basalt, minor sulfides, rusty weathering.
LVL - CY1 - 032	Grab. Dark blue-green pyroxene basalt, abundant calcite and quartz, trace amounts of sulfides.
LVL - CY1 - 033	Grab. Dark blue-green pyroxene basalt, rusty weathering.
LVL - CY1 - 034	Grab. Dark blue-green pyroxene basalt; abundant quartz.
LVL - CY1 - 035	Grab. Porphyritic pyroxene granite, quartz, feldspar and calcite.
LVL - CY1 - 036	Grab. Same as # 035.
LVL - CY1 - 037	Grab. Fine grained dark blue micro-granite, rusty weathering.
LVL - CY1 - 038	Grab. Dark blue-green pyroxene basalt, minor quartz, rusty weathering.
LVL - CY1 - 039	Grab. Same as # 038.
LVL - CY1 - 040	Grab. Coarse grained green and purple quartz pyroxene monzonite.
LVL - CY1 - 041	Grab. Same as # 038.
LVL - CY1 - 042	Grab. Dark blue-green pyroxene basalt, minor chloritized quartz.
LVL - CY1 - 043	Grab. Coarse grained quartz monzonite.
LVL - CY1 - 045	Grab. Coarse grained chloritized quartz monzonite, rusty weathering.
LVL - CY1 - 046	Grab. Same as # 045.
LVL - CY1 - 047	Grab. Same as # 045.
I VI - CV1 - 048	Grab Same as # 040

.

- LVL CY1 049 Grab. Same as # 040.
- LVL CY1 050 Grab. Same as # 040.
- LVL CY1 051 Grab. Same as # 040.
- LVL CY1 052 Grab. Same as # 040.
- LVL CY1 053 Grab. Same as # 045.
- LVL CY1 054 Grab. Same as # 045.
- LVL CY1 055 Grab. Same as # 040.
- LVL CY1 056 Grab. Dark blue-green pyroxene basalt, minor quartz.
- LVL CY1 057 Grab. Dark blue-green pyroxene basalt, minor sulfides.
- LVL CY1 058 Grab. Dark blue-green pyroxene basalt, rusty weathering.
- LVL CY1 059 Grab. Dark blue-green pyroxene basalt, quartz microveins rusty weathering.
- LVL CY1 060 Grab. Same as # 058.
- LVL CY1 061 Grab. Same as # 058.
- LVL CY1 062 Grab. Same as # 058.
- LVL CY1 063 Grab. Same as # 058.
- LVL CY1 064 Grab. Same as # 058.
- LVL CY1 065 Grab. Dark blue-green pyroxene basalt, minor chloritized quartz.

- LVL CY1 066 Grab. Same as # 065.
- LVL CY1 067 Grab. Same as # 058.
- LVL CY1 068 Grab. Same as # 058.
- LVL CY1 069 Grab. Same as # 058.

LVL - CY1 - 070	Grab. Dark blue-green pyroxene basalt, altered hematite, rusty weathering.	
	Au - 5 ppb Ag - 2.2 ppm As - 40 ppm Cu - 680 ppm	
LVL - CY1 - 071	Grab. Same as # 070.	
LVL - CY1 - 072	Grab. Same as # 070.	
LVL - CY1 - 073	Grab. Same as # 070.	
LVL - CY1 - 074	Grab. Same as # 070.	
LVL - CY1 - 075	Grab. Dark blue-green pyroxene basalt, minor sulfides.	
LVL - CY1 - 076	Grab. Dark blue-green pyroxene basalt, altered hematite, rusty weathering, minor sulfides.	
LVL - CY1 - 077	Grab. Same as # 059.	
LVL - CY1 - 078	Grab. Same as # 058.	
LVL - CY1 - 079	Grab. Same as # 058.	
LVL - CY1 - 080	Grab. Same as # 008.	
LVL - CY1 - 081	Grab. Same as # 008.	
LVL - CY1 - 082	Grab. Same as # 058.	
LVL - CY1 - 083	Grab. Same as # 075.	
LVL - CY1 - 084	Grab. Same as # 008.	
LVL - CY1 - 085	Grab. Same as # 008.	
LVL - CY1 - 086	Grab. Dark blue-green pyroxene basalt, disseminated pyrite.	
LVL - CY1 - 087	Grab. Same as # 057.	
LVL - CY1 - 088	Grab. Same as # 008.	
	Au - 5 ppbAg - 6.2 ppmAs - 25 ppmCu - 1410 ppm	

		1
LVL - CY1 - 089	Grab. Same as # 057.	
LVL - CY1 - 090	Grab. Same as # 058.	
	Au - 280 ppb As - 165 ppm	Ag - 13.6 ppm Cu - 965 ppm
LVL - CY1 - 091	Grab. Same as # 058.	
	Au - 0.035 opt As - <5 ppm	Ag - 0.8 ppm Cu - 272 ppm
LVL - CY1 - 092	Grab. Same as # 057.	
	Au - 60 ppb As - 10 ppm	Ag - 1.4 ppm Cu - 447 ppm
LVL - CY1 - 093	Grab. Dark blue-green py	roxene basalt, malachite.
	Au - 95 ppb As - 10 ppm	Ag - 4.8 ррт Cu - 1914 ррт
LVL - CY1 - 094	Grab. Dark blue-green py	roxene basalt.
LVL - CY1 - 095	Grab. Dark blue-green py	vroxene basalt.
LVL - CY1 - 096	Grab. Same as # 057.	
	Au - 60 ppb As - δ10 ppm	Ag - 4.2 ppm Cu - 384 ppm
LVL - CY1 - 097	Grab. Same as # 057.	
LVL - CY1 - 098	Grab. Same as # 057.	
LVL - CY1 - 099	Grab. Same as # 095.	
LVL - CY1 - 100	Grab. Dark blue-green py sulfides.	vroxene basalt, abundant quartz veins,
LVL - CY1 - 101	Grab. Same as #007.	
LVL - CY1 - 102	Grab. Dark blue-green py present.	vroxene basalt, chloritized quartz, galena

LVL - CY1 - 103	Grab. Dark blue-green pyroxene basalt, hematite alteration, trace sulfides, weathers rusty.	
LVL - CY1 - 104	Grab. Dark blue-green pyroxene basalt, chloritized quartz, trace sulfides, weathers rusty.	
LVL - CY1 - 105	Grab. Same as #007.	
LVL - CY1 - 106	Grab. Same as #007.	
LVL - CY1 - 107	Grab. Same as #007.	
LVL - CY1 - 108	Grab. Same as #007.	
LVL - CY1 - 109	Grab. Same as #007.	
LVL - CY1 - 110	Grab. Same as #104.	
LVL - CY1 - 111	Grab. Dark blue-green pyroxene basalt, trace sulfides, weathers rusty.	
LVL - CY1 - 112	Grab. Same as #111.	
LVL - CY1 - 113	Grab. Same as #111.	
LVL - CY1 - 114	Grab. Same as #111.	
LVL - CY1 - 115	Grab. Same as #111.	
LVL - CY1 - 116	Grab. Same as #007.	
	Au - 5 ppbAg - 12.8 ppmAs - 15 ppmCu - 128 ppm	
LVL - CY1 - 117	Grab. Same as #007.	
LVL - CY1 - 118	Grab. Same as #007.	
LVL - CY1 - 119	Grab. Same as #111.	
	Au - 10 ppbAg - 1.6 ppmAs - 20 ppmCu - 398 ppm	

-

19

•

LVL - CY1 - 120	Grab. Dark blue-green pyro disseminated throughout.	xene basalt, pyrite and chalcopyrite
LVL - CY1 - 121	Grab. Same as #120.	· · ·
LVL - CY1 - 122	Grab. Same as #111.	*
LVL - CY1 - 123	Grab. Dark blue-green pyro rusty.	oxene basalt, abundant sulfides, very
	Au - 10 ppb As - 680 ppm	Ag - 1.4 ppm Cu - 394 ppm
LVL - CY1 - 124	Grab. Same as #123.	
LVL - CY1 - 125	Grab. Same as #123.	• • • • • • • • •
LVL - CY1 - 126	Grab. Same as #123.	
LVL - CY1 - 127	Grab. Same as #123.	
LVL - CY1 - 128	Grab. Dark blue-green pyrc chalcopyrite, rusty weatheri	exene basalt, massive pyrite and ng.
LVL - CY1 - 129	Grab. Same as #128.	
	Au - 10 ppb As - 15 ppm	Ag - 6.4 ppm Cu - 364 ppm
LVL - CY1 - 130	Grab. Same as #128.	
LVL - CY1 - 131	Grab. Same as #123.	• • •
LVL - CY1 - 132	Grab. Same as #123.	
LVL - CY1 - 133	Grab. Same as #128.	· · · · ·
LVL - CY1 - 134	Grab. Same as #128.	· · ·
LVL - CY1 - 135	Grab. Dark blue-green pyro (phologopite), minor sulfide	oxene basalt, chlorite mica in calcite es, quartz, weathered rusty.
	Au - 5 ppb As - 140 ppm	Ag - 5.6 ppm Cu - 334 ppm

LVL - CY1 - 136	Grab. Dark blue-green pyroxene basalt, chalcocite, major sulfides, weathered rusty.	
	Au - 5 ppb As - 370 ppm	Ag - <0.2 ppm Cu - 73 ppm
LVL - CY1 - 137	Grab. Same as #123.	
LVL - CY1 - 138	Grab. Same as #123.	
LVL - CY1 - 139	Grab. Dark blue-green pyro quartz.	oxene basalt, layered with epidotized
LVL - CY1 - 140	Grab. Same as #111.	
	Au - 5 ppb As - 615 ppm	Ag - 2.4 ppm Cu - 51 ppm
LVL - CY1 - 142		# deg., 11.8 m long, 0.2-1.0 m wide, on surface, major sulfides throughout.
	Au - 1.634 opt As - 65 ppm	Ag - 19.55 opt Cu - >10,000 ppm
LVL - CY1 - 143	Grab. Same as #008.	
	Au - 320 ppb As - 1520 ppm Co - 267 ppm	Ag - 21.8 ppm Cu - 1418 ppm
LVL - CY1 - 144	Grab. Same as #008.	
	Au - 95 ppb As - 445 ppm Co - 109 ppm	Ag - 17.8 ppm Cu - 684 ppm
LVL - CY1 - 145	Grab. Dark blue-green pyroxene basalt, abundant quartz, minor sulfides, weathered rusty.	
	Au - 10 ppb As - 150 ppm	Ag - 7.0 ppm Cu - 682 ppm
LVL - CY1 - 146	Grab. Same as #128.	
	Au - 5 ppb	Ag - 1.8 ppm

	As - 325 ppm	Cu - 459 ppm
LVL - CY1 - 147	Grab. Same as #145.	
LVL - CY1 - 148	Grab. Same as #145.	\$
	Au - 20 ppb As - 185 ppm	Ag - 5.2 ppm Cu - 456 ppm
LVL - CY1 - 149	Grab. Dark blue-green pyro minor pyrite and chalcopyri	oxene basalt, massive arsenopyrite, te.
	Au - 5 ppb As - 60 ppm	Ag - 1.4 ppm Cu - 378 ppm
LVL - CY1 - 150	Grab. Same as #149.	
	Au - 5 ppb As - 60 ppm	Ag - 3.0 ppm Cu - 1242 ppm
LVL - CY1 - 151	Grab. Same as #149.	
LVL - CY1 - 152	Grab. Same as #019.	
LVL - CY1 - 153	Grab. Same as #123.	
LVL - CY1 - 154	Grab. Dark blue-green pyrc	oxene basalt.
LVL - CY1 - 155	Grab. Same as #111.	
LVL - CY1 - 156	Grab. Dark blue-green pyro microveins, hematite alterat	oxene basalt, numerous calcite tion, weathers rusty.
LVL - CY1 - 157	Grab. Dark blue-green pyro sulfides.	oxene basalt, abundant quartz, minor
LVL - CY1 - 158	Grab. Same as #111.	
LVL - CY1 - 159	Grab. Dark blue-green pyro arsenopyrite and chalcopyri	oxenc basalt, major pyrite, minor te, hematite altered.
LVL - CY1 - 160	Grab. Dark blue-green pyro arsenopyrite, minor pyrite.	oxene basalt, abundant quartz and

LVL - CY1 - 161	Grab. Same as #034.	
LVL - CY1 - 162	Grab. Dark blue-green pyro disseminated throughout, we	
LVL - CY1 - 163	Grab. Same as #070.	4
	Au - 5 ppb As - 190 ppm	Ag - 0.8 ppm Cu - 55 ppm
LVL - CY1 - 164	Grab. Same as #034.	
	Au - 5 ppb As - 40 ppm	Ag - 9.2 ppm Cu - 90 ppm
LVL - CY1 - 165	Grab. Dark blue-green pyro minor sulfides.	oxene basalt, abundant quartz,
	Au - 5 ppb As - 1235 ppm	Ag - 2.4 ppm Cu - 13 ppm
LVL - CY1 - 166	•	t 170 degrees, 30 m long, 5 m wide, us, very rusty, dark black weathering,
	Au - 70 ppb As - 1530 ppm	Ag - 96.38 opt Cu - 1.48%
LVL - CY1 - 167	Grab. Same as #166.	
	Au - 5 ppb As - 725 ppm	Ag - 3.39 opt Cu - 292 ppm
LVL - CY1 - 168	Grab. Same as #166.	
	Au - 5 ppb As - 1780 ppm	Ag - 6.6 ppm Cu - 26 ppm
LVL - CY1 - 169	Grab. Same as #166.	1
	Au - 10 ppb As - 200 ppm	Ag - 8.28 opt Cu - 545 ppm
LVL - CY1 - 170	Grab. Dark blue-green pyrc	oxene basalt.

.

LVL - CY1 - 171	Grab. Same as #165.	
	Au - 5 ppb As - 335 ppm	Ag - 8.8 ppm Cu - 72 ppm
LVL - CY1 - 172	Grab. Same as #165.	
LVL - CY1 - 173	• • • •	oxene basalt, abundant disseminated oughout, very rusty weathering.
	Au - 5 ppb As - 1115 ppm	Ag - 7.0 ppm Cu - 24 ppm
LVL - CY1 - 174	Grab. Dark blue-green pyre	oxene basalt, rusty weathering.
LVL - CY1 - 175	Grab. Same as #162.	· · · · ·
LVL - CY1 - 176	Grab. Same as #111.	· ·
LVL - CY1 - 177	Grab. Same as #162.	
LVL - CY1 - 178	Grab. Same as #162.	
LVL - CY1 - 179	Grab. Same as #123.	
LVL - CY1 - 180	Grab. Same as #123.	
LVL - CY1 - 181	Grab. Same as #123.	
LVL - CY1 - 182	Grab. Same as #020.	
LVL - CY1 - 183	Grab. Same as #020.	
LVL - CY1 - 184	Grab. Dark blue-green pyr pyrite visible in and on out	oxene basalt, abundant disseminated crop.
	Au - 115 ppb As - <5 ppm	Ag - 1.4 ppm Cu - 1530 ppm
LVL - CY1 - 185		s at 144 deg., 15 m long, 3 m wide, dant pyrite and arsenopyrite with minor

haran tanan tan

-

ha na mana ang

den server

here a server

to a state of the state of the

	Au - 0.029 optAg - 21.4 ppmAs - 25 ppmCu - 5601 ppm
LVL - CY1 - 186	Grab. Same as #185.
	Au - 0.047 optAg - 29.0 ppmAs - <5 ppmCu - 3.51%Co - 121 ppm
LVL - CY1 - 188	Grab. Same as #165.
LVL - CY1 - 189	Grab. Dark blue-green pyroxene basalt, abundant chalcocite, rusty.
LVL - CY1 - 190	Grab. Dark blue-green pyroxene basalt, minor sulfides, hematite altered, weathers rusty.
LVL - CY1 - 191	Grab. Dark blue-green pyroxene basalt, chloritized quartz.
LVL - CY1 - 192	Grab. Dark blue-green pyroxene basalt, abundant quartz, minor sulfides.
LVL - CY1 - 193	Grab. Dark blue-green pyroxene basalt, weathers rusty.
LVL - CY1 - 194	Grab. Same as #193.
LVL - CY1 - 195	Grab. Same as #193.
LVL - CY1 - 196	Grab. Dark blue-green pyroxene basalt, abundant quartz, rusty weathering.
LVL - CYI - 197	Grab. Same as #193.
LVL - CY1 - 198	Grab. Same as #193.
LVL - CY1 - 199	Grab. Same as #193.
LVL - CY1 - 200	Grab. Dark blue-green pyroxene basalt, abundant quartz, trace pyrite.
	Au - 0.034 optAg - 29.6 ppmAs - 10 ppmCu - 86 ppm

LVL - CY1 - 201	Grab. Same as #111.	
LVL - CY1 - 202	Grab. Dark blue-green pyroxene basalt, abundant quartz.	
LVL - CY1 - 203	Grab. Dark blue-green pyroxene basalt, abundant quartz, disseminated pyrite and chalcopyrite throughout, malachite on surface.	
	Au - 5 ppbAg - 16.6 ppmAs - 10 ppmCu - 5646 ppm	
LVL - CY1 - 204	Coarse grained green and purple quartz pyroxene monzonite.	
LVL - CY1 - 205	Grab. Dark blue-green pyroxene basalt.	
LVL - CY1 - 206	Grab. Dark blue-green pyroxene basalt.	
	Au - 140 ppbAg - 0.4 ppmAs - <5 ppm	
LVL - CY1 - 207	Grab. Dark blue-green pyroxene basalt.	
LVL - CY1 - 208	Grab. Dark blue-green pyroxene basalt, strikes at 130 deg., dips at 60 deg., minor pyrite disseminated throughout.	
LVL - CY1 - 209	Grab. Dark blue-green pyroxene basalt, minor pyrite disseminated throughout.	
LVL - CY1 - 210	Grab. Dark blue-green pyroxene basalt, minor pyrite disseminated throughout, trace amounts of galena.	
LVL - CY1 - 211	Grab. Dark blue-green pyroxene basalt, pyrite and chalcopyrite disseminated throughout, weathers rusty.	
LVL - CY1 - 212	Grab. Dark blue-green pyroxene basalt, minor pyrite disseminated throughout, rusty weathering.	
LVL - CY1 - 213	Grab. Light grey argillite.	
LVL - CY1 - 214	Grab. Dark blue-green pyroxene basalt, minor pyrite disseminated throughout, rusty weathering.	
LVL - CY1 - 215	Grab. Same as #211.	

	Au - 145 ppbAg - 2.6 ppmAs - 65 ppmCu - 394 ppm
LVL - CYI - 216	Grab. Dark blue-green pyroxene basalt, chloritized quartz, minor sulfides.
LVL - CY1 - 217	Grab. Dark blue-green pyroxene basalt.
LVL - CY1 - 218	Grab. Dark blue-green pyroxene basalt, major sulfides, rusty weathering.
LVL - CY1 - 219	Grab. Same as #218.
LVL - CY1 - 220	Grab. Same as #218.
	Au - 30 ppb Ag - 3.6 ppm As - <5 ppm Cu - 503 ppm
LVL - CY1 - 221	Grab. Light grey-green pyroxene basalt.
LVL - CY1 - 222	Grab. Dark blue-green pyroxene basalt, trace sulfides.
LVL - CY1 - 223	Grab. Same as #211.
LVL - CY1 - 224	Grab. Dark blue-green pyroxene basalt.
LVL - CY1 - 225	Grab. Same as #222.
LVL - CY1 - 226	Grab. Dark blue-green pyroxene basalt, hematite altered.
	Au - 5 ppbAg - 4.4 ppmAs - 645 ppmCu - 100 ppm
LVL - CY1 - 227	Grab. Dark blue-green pyroxene basalt, rusty weathering.
LVL - CY1 - 228	Grab. Dark blue-green pyroxene basalt, abundant quartz, rusty weathering.
LVL - CY1 - 229	Grab. Dark blue-green pyroxene basalt, abundant phologopite, rusty weathering.
	Au - 20 ppb Ag - 0.6 ppm As - <5 ppm

And the second

• • • • • •

i. iv

. .

: á,

27

s..

LVL - CY1 - 230	Grab. Dark blue-green pyroxene basalt, abundant sulfides, rusty weathering.
LVL - CY1 - 232	Coarse grained green and purple quartz pyroxene monzonite, rusty weathering.
LVL-CY1-233	Grab. Same as #232.
LVL - CY1 - 234	Grab. Same as #232.
LVL - CY1 - 235	Grab. Same as #232.
LVL CY1 236	Grab. Same as #232.
LVL - CY1 - 237	Grab. Same as #232.
LVL - CY1 - 238	Grab. Dark blue-green pyroxene basalt, abundant pyrite, rusty weathering.
LVL - CY1 - 239	Grab. Dark blue-green pyroxene basalt, abundant pyrite and galena.
LVL - CY1 - 240	Grab. Same as #238.
LVL - CY1 - 241	Grab. Dark blue-green pyroxene basalt, abundant pyrite, chalcopyrite and arsenopyrite disseminated throughout sample.
	Au - 10 ppb Ag - 2.2 ppm As - 10 ppm Cu - 1202 ppm Co - 140 ppm Cu - 1202 ppm
LVL - CY1 - 242	Grab. Dark green pyroxene basalt.
LVL - CY1 - 243	Grab. Dark blue-green pyroxene basalt, trace pyrite disseminated throughout.
LVL - CY1 - 244	Grab. Dark blue-green pyroxene basalt.
LVL - CY1 - 245	Grab. Dark blue-green pyroxene basalt.
LVL - CY1 - 246	Grab. Same as #238.
LVL - CY1 - 247	Grab. Same as #238.

. . . .

_

Contraction and

A state of the

. . .

LVL - CY1 - 248	Grab. Dark blue-green pyroxene basalt, chloritized quartz, rusty weathering.
LVL - CY1 - 249	Grab. Epidotized quartz marble, rusty on surface.
LVL - CY1 - 250	Grab. Small shear, strikes at 38 deg., 0.10 m wide, 20 m long, very rusted, very siliceous, pyrite disseminated throughout sample.
	Au - 0.056 opt Ag - 1.8 ppm As - 260 ppm Cu - 83 ppm Co - 225 ppm Cu - 83 ppm
LVL - CY1 - 251	Grab. Small shear, strikes at 50 deg., 10 m long, 0.3 m wide, very rusted, very siliceous, pyrite disseminated throughout sample.
	Au - 0.428 optAg - 7.6 ppmAs - 170 ppmCu - 1127 ppmCo - 274 ppm
LVL - CY1 - 252	Grab. Same as #232.
LVL - CY1 - 253	Grab. Same as #232.
LVL - CY1 - 254	Grab. Dark blue-green pyroxene basalt, hematite altered, weathers rusty.
LVL - CY1 - 255	Grab. Dark blue-green pyroxene basalt, abundant quartz and chloritized quartz.
LVL - CY1 - 256	Grab. Dark blue-green pyroxene basalt layered with calcite and surrounded by coarse grained green and purple quartz pyroxene monzonite.
LVL - CY1 - 257	Grab. Dark blue-green pyroxene basalt, altered hematite and rusty.
LVL - CY1 - 258	Grab. Same as #257.
LVL - CY1 - 260	Grab. Dark blue-green pyroxene basalt with chloritized quartz.
LVL - CY1 - 261	Grab. Dark blue-green pyroxene basalt, rusty weathering.
LVL - CY1 - 262	Grab. Dark blue-green pyroxene basalt, trace sulfides and rusty weathering.

· - -

¥

LVL - CY1 - 263	Grab. Dark blue-green pyroxene b	asalt, trace pyrite disseminated.
		- 1.0 ppm - 1197 ppm
LVL - CY1 - 264 disseminated	Grab. Dark blue-green pyroxene b	asalt, trace sulfides
	throughout.	
LVL - CY1 - 265	Grab. Dark blue-green pyroxene b weathers rusty.	asalt, chalcocite throughout,
		- 17.2 ppm - 2.30%
LVL - CY1 - 266	Grab. Dark blue-green pyroxene b chalcopyrite disseminated through	
		- 17.2 ppm - 2.30%
LVL - CY1 - 267	Grab. Dark blue-green pyroxene b	asalt.
LVL - CY1 - 268	Grab. Dark blue-green pyroxene b	asalt, abundant quartz.
LVL - CY1 - 269	Grab. Dark blue-green pyroxene t quartz.	asalt, abundant chloritized
LVL - CY1 - 270	Grab. Same as #269.	
LVL - CY1 - 271	Grab. Same as #269.	
		- 7.4 ppm - 3195 ppm
LVL - CY1 - 272	Grab. Dark blue-green pyroxene b	pasalt.
LVL - CY1 - 273	Grab. Same as #269.	A
LVL - CY1 - 274	Grab. Same as #269.	
LVL - CY1 - 275	Grab. Dark blue-green pyroxene b grained green and purple quartz py	

.

Au - 240 ppb	Ag - 1.41 opt
As - 60 ppm	Cu - 52 ppm

- LVL CY1 276 Grab. Same as #275.
- LVL CY1 277 Grab. Intrusive dyke, light grey fine grained hornblende granite, strikes at 292 deg.
- LVL CY1 278 Grab. Same as #272.

LVL - CY1 - 279 Grab. Light blue to white fine grained matrix with 3 mm pyroxene crystals.

- LVL CY1 280 Grab. Same as #269.
- LVL CY1 281 Grab. Dark blue-green pyroxene basalt on contact of coarse grained green and purple quartz pyroxene monzonite, abundant quartz, pyrite and chalcopyrite disseminated throughout the sample.
- LVL CY1 282 Grab. Dark blue-green pyroxene basalt, abundant chloritized quartz, trace amounts of sulfides.
- LVL CY1 283 Grab. Shear. Strikes at 115 deg., 10 m long, 0.3 m wide, rusty.

 Au
 0.076 opt
 Ag
 28 ppm

 As
 25 ppm
 Cu
 9722 ppm

LVL - CY1 - 284 Grab. Dark blue-green pyroxene basalt, abundant quartz.

LVL - CY1 - 285 Grab. Shear. Strikes at 115 deg., 10 m long, 0.3 m wide, rusty, pyrite disseminated throughout.

Au	-	0.171 opt	Ag -	3.2 ppm
As	-	75 ppm	Cu -	30 ppm
Co	-	111 ppm		

LVL - CY1 - 286 Grab. Dark blue-green pyroxene basalt, minor sulfides, hematite altered, weathers rusty.

Au - 170 ppb	Ag - 1.04 opt
As - 15 ppm	Cu - 5864 ppm
Co - 161 ppm	

LVL - CY1 - 287	Grab. Same as #269.
LVL - CY1 - 288	Grab. Dark blue-green pyroxene basalt.
LVL - CY1 - 289	Grab. Dark blue-green pyroxene basalt, abundant quartz, pyrite disseminated throughout.
LVL - CY1 - 290	Grab. Dark blue-green pyroxene basalt that weathers grey.
LVL - CY1 - 291	Grab. Same as #286.
	Au - 5 ppb Ag - 1.2 ppm As - 45 ppm Cu - 461 ppm
LVL - CY1 - 292	Grab. Dark blue-green pyroxene basalt, pyrite disseminated throughout, rusty weathering.
LVL - CY1 - 293	Grab. Same as #292.
LVL - CY1 - 294	Grab. Dark blue-green pyroxene basalt, rusty weathering.
LVL - CY1 - 295	Grab. Dark blue-green pyroxene basalt, minor sulfides, weathers rusty.
LVL - CY1 - 296	Grab. Same as #292.
LVL - CY1 - 297	Grab. Same as #295.
	Au - 345 ppbAg - 1.6 ppmAs - 365 ppmCu - 298 ppm
LVL - CY1 - 298	Grab. Dark blue-green pyroxene basalt, minor sulfides, hematite altered, weathers rusty.
LVL - CY1 - 299	Grab. Light green basalt with rusty weathering.
	Au - 60 ppbAg - 3.8 ppmAs - 215 ppmCu - 448 ppm
LVL - CY1 - 300	Grab. Same as #292.
LVL - CY1 - 301	Grab. Same as #292.

LVL - CY1 - 302 Grab. Same as #292. LVL - CY1 - 303 Grab. Same as #295. LVL - CY1 - 304 Grab. Same as #286. LVL - CY1 - 305 Grab. Same as #294. Grab. Same as #294. LVL - CY1 - 306 LVL - CY1 - 307 Grab. Same as #294. LVL - CY1 - 308 Grab. Dark blue-green pyroxene basalt, pyrite and arsenopyrite disseminated throughout. Au - 0.043 opt Ag - 0.34 opt LVL - CY1 - 309 Grab. Same as #294. LVL - CY1 - 310 Grab. Same as #284. LVL - CY1 - 311 Grab. Same as #294. LVL - CY1 - 312 Grab. Same as #294. LVL - CY1 - 313 Grab. Same as #294. LVL - CY1 - 314 Grab. Same as #308. Ag - 0.30 opt Au - 0.046 opt LVL - CY1 - 315 Grab. Dark blue-green pyroxene basalt, pyrite and chalcopyrite disseminated throughout, rusty weathering. LVL - CY1 - 316 Grab. Shear. Strikes at 280 degree, 5 m long, 0.3 m wide, rusty. LVL - CY1 - 317 Grab. Shear. Strikes at 180 degree, 10 m long, 0.1 m wide, rusty. Grab. Shear. Strikes at 210 degree, 10 m long, 1.0 m wide, rusty. LVL - CY1 - 318 Au - 0.055 opt LVL - CY1 - 319 Grab. Shear. Strikes at 032 degree, 20 m long, 1.5 m wide, rusty, trace sulfides.

Grab. Shear. Strikes at 030 degree, 20 m long, 0.2 m wide, rusty.
Grab. Shear. Strikes at 040 degree, 20 m long, 1.0 m wide, rusty.
Grab. Shear. Strikes at 206 degree, 20 m long, 0.2-0.5 m wide, rusty, trace sulfides.
Grab. Shear. Strikes at 180 degree, 20 m long, 0.3 m wide, rusty.
Grab. Shear. Strikes at 280 degree, 20 m long, 0.5 m wide, rusty, siliceous.
Grab. Shear.
Grab. Shear. Very rusted, abundant quartz and calcite.
Grab. Shear. Strikes at 000 degree, 20 m long, 10 m wide, rusty, trace sulfides, chloritized quartz, siliceous, basalt beneath
Grab. Shear. Strikes at 140 degree, 15 m long, 0.1-1 m wide, rusty, trace amounts of galena, pyrite and chalcopyrite throughout sample.
Grab. Intersection of shears. Shear # 1 strikes at 214 degree, 30 m long, 0.1 m wide. Shear # 2 strikes at 180 degree, length undetermined, width 0.1 m. Pyrite and chalcopyrite in both shears.
Grab. Shear. Strikes at 186 degree, 10 m long, 0.1 m wide, rusty, , siliceous.
Grab. Shear. Strikes at 196 degree, 30 m long, 1.0 m wide, chloritized quartz.
Grab. Shear. Strikes at 026 degree, 30 m long, 0.3 m wide, chloritized quartz, rusted.
Grab. Shear. Strikes at 208 degree, 50 m long, 1.0 m wide, chloritized quartz, rusted.
Grab. Shear. Strikes at 032 degree, 30 m long, 0.4 m wide, rusty, siliceous, minor sulfides present.
Grab. Shear.

LVL - CY1 - 336	Grab. Shear. Strikes at 012 degree, 20 m long, 0.6 m wide, rusty, siliceous, minor sulfides present.
LVL - CY1 - 337	Grab. Shear.
LVL - CY1 - 338	Grab. Dark blue-green pyroxene basalt, pyrite and chalcopyrite disseminated throughout, rusty weathering.
LVL - CY1 - 339	Grab. Large rusty zone with lots of sulfide stringers.
LVL - CY1 - 340	Grab. Shear. Abundant quartz, very broken up rock.
LVL - CY1 - 341	Grab. Shear. Strikes at 140 degree, 5 m long, 1.0 m wide, rusty, siliceous.
LVL - CY1 - 342	Grab. Shear.
LVL - CY1 - 343	Grab. Shear. Same as # 342 up strike 1 m.
LVL - CY1 - 344	Grab. Shear. Same as # 342 up strike 1 m.
	Ag - 45.36 opt
LVL - CY1 - 345	Grab. Shear. Same as # 342 up strike 1 m.
	Au - 0.621opt Ag - 32.78 opt
LVL - CY1 - 346	Grab. Shear. Same as # 342 up strike 1 m.
	Ag - 10.19 opt
LVL - CY1 - 347	Grab. Shear. Same as # 342 up strike 1 m.
LVL - CY1 - 348	Grab. Shear. Strikes at 148 degree, 16 m long, varying widths from 0.1-2.5 m wide, very siliceous, rusty weathering, and trace amounts of malachite.
LVL - CY1 - 349	Grab. Shear. Same as # 348 up strike 2.8 m.
LVL - CY1 - 350	Grab. Shear. Same as # 348 up strike 4.3 m.
LVL - CY1 - 351	Grab. Shear. Same as # 348 up strike 4.1 m.
LVL - CY1 - 352	Grab. Shear. Same as # 348 up strike 3.5 m.

-

1

•

Second Second

and the second s

- LVL CY1 353 Grab. Shear. Strikes at 178 degree, 44.7 m long, varying widths from 1-5 m wide, very siliceous with rusty weathering, LVL - CY1 - 354 Grab. Shear. Same as # 353 up strike 6 m. LVL - CY1 - 355 Grab. Shear. Same as # 353 up strike 7 m. Grab. Shear. Same as # 353 up strike 3 m. LVL - CY1 - 356 LVL - CY1 - 357 Grab. Shear. Same as # 353 up strike 10.5 m. LVL - CY1 - 358 Grab. Shear. Same as # 353 up strike 7 m. LVL - CY1 - 359 Grab. Shear. Same as # 353 up strike 5 m. LVL - CY1 - 360 Grab. Shear. Strikes at 158 degree, 7 m long, 0.5-1 m wide, rusty, siliceous. LVL - CY1 - 361 Grab. Shear. LVL - CY1 - 362 Grab. Shear. Chloritized quartz and very rusted. LVL - CY1 - 363 Grab. Very rusted with lots of quartz, pyrite and chalcopyrite, appears to be a shear. Ag - 45.36 opt LVL - CY1 - 364 Grab. Same as # 363. LVL - CY1 - 365 Grab. Shear. Strikes at 103 degree, 15 m long, 0.2 m wide, rusty, siliceous. LVL - CY1 - 366 Grab. Shear. Strikes at 116 degree, 20 m long, 1-3 m wide, rusty, siliceous. LVL - CY1 - 367 Grab. Shear. Rusted with hematite alteration. Au - 0.032 opt Ag - 49.58 opt LVL - CY1 - 368 Grab. Shear. Strikes at 126 degree, 10 m long, 0.2-0.5 m wide, rusty, siliceous, hematite altered. LVL - CY1 - 369 Grab. Same as # 363, 5 m up shear.
 - 36

LVL - CY1 - 370	Grab. Shear. Strikes at 120 degree, 10 m long, 0.2-0.5 m wide, rusty, siliceous, minor sulfides present.
LVL - CY1 - 371	Grab. Shear. Strikes at 120 degree, 10 m long, 1 m wide, rusty, siliceous.
LVL - CY1 - 372	Grab. Shear. Strikes at 120 degree, 20 m long, 0.5 m wide, rusty, siliceous, minor sulfides present.
LVL - CY1 - 373	Grab. Shear. Strikes at 010 degree, 4 m long, 2 m wide, rusty, siliceous, minor sulfides present.
LVL - CY1 - 374	Grab. Shear. Strikes at 132 degree, 15 m long, 0.2 m wide, rusty, siliceous, minor pyrite and arsenopyrite present.
LVL - CY1 - 375	Grab. Shear. Strikes at 346 degree, 10 m long, 0.2 m wide, rusty, siliceous.
LVL - CY1 - 376	Grab. Shear. Strikes at 320 degree, 30 m long, 0.5 m wide, rusty, siliceous, cobalt bloom present.
LVL - CY1 - 377	Grab. Same shear as # 376, sampled 5 m up shear.
LVL - CY1 - 378	Grab. Same shear as # 376, sampled 5 m up shear.
LVL - CY1 - 379	Grab. Shear. Strikes at 120 deg., 30 m long, 2.0 m wide, rusty, siliceous.
LVL - CY1 - 380	Grab. Intersection of shears. Shear #1 strikes at 118 deg., 20 m long, 1.0 m wide. Shear #2 strikes at 158 deg., 20 m long, 1.0 m wide. Very siliceous and rusted.
LVL - CY1 - 381	Grab. Shear. Rusted with hematite alteration and siliceous.
LVL - CY1 - 382	Grab. Shear. Strikes at 122 deg., 50 m long, 5.0 m wide, rusty, siliceous.
LVL - CY1 - 383	Grab. Same shear as #382, sampled 30 m up shear.
LVL - CY1 - 384	Grab. Dark blue-green pyroxene basalt, pyrite and chalcopyrite, disseminated throughout, rusty weathering.
LVL - CY1 - 385	Grab. Same as #384.
LVL - CY1 - 386	Grab. Shear. Strikes at 150 deg., 10 m long, 0.5 m wide, rusty,

siliceous.

LVL - CY1 - 387	Grab. Shear. Abundant silicates, weathers white.
LVL - CY1 - 388	Grab. Same as #384.
LVL - CY1 - 389	Grab. Same as #384.
LVL - CY1 - 391	Grab. Shear. Strikes at 330 deg., 30 m long, 0.5 m wide, rusty, siliceous.
LVL - CY1 - 392	Grab. Shear. Strikes at 326 deg., 30 m long, 1.0 m wide, rusty, siliceous.
LVL - CY1 - 393	Grab. Shear. Strikes at 206 deg., 25 m long, 1.0 m wide, rusty, siliceous.
LVL - CY1 - 394	Grab. Shear. Strikes at 170 deg., 25 m long, 0.5 m wide, rusty, siliceous.
LVL - CY1 - 395	Grab. Shear. Strikes at 176 deg., 10 m long, 0.5 m wide, rusty, siliceous, minor sulfides disseminated throughout.
LVL - CY1 - 396	Grab. Shear. Strikes at 190 deg., 20 m long, 0.5 m wide, rusty, siliceous, minor sulfides disseminated throughout.
LVL - CY1 - 397	Grab. Shear. Strikes at 340 deg., 40 m long, 0.2 m wide, rusty, siliceous.
LVL - CY1 - 398	Grab. Shear. Strikes at 294 deg., 5 m long, 0.5 m wide, rusty, siliceous.
LVL - CY1 - 399	Grab. Shear. Rusted with silicates.
LVL - CY1 - 400	Grab. Same as #399.
LVL - CY1 - 401	Grab. Shear. Rusted, siliceous, pyrite disseminated throughout.
LVL - CY1 - 402	Grab. Shear. Same as #399.
LVL - CY1 - 403	Grab. Shear. Same as #399.
LVL - CY1 - 404	Grab. Shear. Same as #399. Strikes at 010 deg.
LVL - CY1 - 405	Grab. Shear. Rusted, siliceous, sulfides disseminated throughout.

- LVL CY1 406 Grab. Shear. Same as #399.
- LVL CY1 407 Grab. Shear. Same as #401.
- LVL CY1 408 Grab. Shear. Same as #399. Strikes at 350 deg.
- LVL CY1 409 Grab. Shear. Same as #399. Strikes at 110 deg.
- LVL CY1 410 Grab. Siliceous breccia.
- LVL CY1 411 Grab. Shear. Same as #399.
- LVL CY1 412 Grab. Shear. Same as #399. Strikes at 180 deg.
- LVL CY1 413 Grab. Shear. Same as #401. Strikes at 220 deg.
- LVL CY1 414 Grab. Shear. Strikes at 126 deg., 10 m long, 0.5 m wide, rusty, siliceous.
- LVL CY1 415 Grab. Shear. Same as #399.
- LVL CY1 416 Grab. Shear. Strikes at 166 deg., 10 m long, 0.5 m wide, rusty, epidotized silicates.
- LVL CY1 417 Grab. Dark black dyke striking at 138 deg., very siliceous.
- LVL CY1 418 Grab. Shear. Same as #399. Strikes at 340 deg.

Au - 0.044 opt Ag - 1.69 opt

- LVL CY1 419 Grab. Light to dark grey fine grained epiclastic volcanic interbedded with white argillite, with rusty weathering.
- LVL CY1 420 Grab. Same as #419.
- LVL CY1 421 Grab. Shear. Same as #399.
- LVL CY1 422 Grab. Shear. Same as #399.
- LVL CY1 423 Grab. Shear. Same as #399.
- LVL CY1 424 Grab. Shear. Strikes t 350 deg., 0.5 m long, 0.2 m wide, rusty, siliceous.

- LVL CÝ1 425 Grab. Shear. Same as #401.
- LVL CY1 426 Grab. Shear. Same as #401.
- LVL CY1 427 Grab. Shear. Same as #401.
- LVL CY1 428 Grab. Shear. Same as #401.
- LVL CY1 429 Grab. Shear. Same as #405.
- LVL CY1 430 Grab. Shear. Same as #405.
- LVL CY1 431 Grab. Shear. Same as #405.
- LVL CY1 432 Grab. Shear. Same as #405.
- LVL CY1 433 Grab. Shear. Same as #405.
- LVL CY1 434 Grab. Shear. Same as #405.
- LVL CY1 435 Grab. Shear. Dark blue-green pyroxene basalt, pyrite and chalcopyrite disseminated throughout, rusty weathering.
- LVL CY1 436 Grab. Shear. Strikes at 006 deg., 15 m long, 0.2 m wide, rusty, siliceous, minor sulfides disseminated throughout.
- LVL CY1 437 Grab. Shear. Same as #399.
- LVL CY1 438 Grab. Shear. Same as #405.
- LVL CY1 439 Grab. Shear. Same as #405.
- LVL CY1 440 Grab. Shear that is rusted with minor sulfides disseminated throughout.
- LVL CY1 442 Grab. Shear. Strikes at 200 deg., rusty and siliceous, with minor sulfides.
- LVL CY1 443 Grab. Shear. Strikes at 220 deg., rusty and siliceous, with minor sulfides.
- LVL CY1 444 Grab. Shear. Same as #405.
- LVL CY1 445 Grab. Shear. Strikes 180 deg., rusty and siliceous, with minor sulfides.

LVL - CY1 - 446	Grab. Shear. Strikes at 110 deg., 10 m long, 5.0 m wide, rusty, siliceous, malachite on surface, major sulfides throughout.
	Au - 0.281 opt Ag - 34.85 opt
LVL - CY1 - 447	Grab. Shear. Strikes at 150 deg., 15 m long, 5.0 m wide, rusty, siliceous, malachite on surface, major sulfides throughout.
LVL - CY1 - 448	Grab. Shear. Strikes at 150 deg., rusty and siliceous, with minor sulfides.
LVL - CY1 - 449	Grab. Shear.
LVL - CY1 - 450	Grab. Shear. Strikes at 134 deg., 20 m long, 0.2 m wide, rusty, siliceous, malachite on surface, major sulfides throughout.
LVL - CY1 - 451	Grab. Shear. Strikes at 120 deg., 15 m long, 0.5 m wide, rusty, siliceous, malachite on surface, minor sulfides disseminated throughout.
LVL - CY1 - 452	Grab. Shear. Strikes at 122 deg., 30 m long, 0.2 m wide, rusty, siliceous.
LVL - CY1 - 453	Grab. Shcar. Strikes at 140 deg., 20 m long, 0.15-0.2 m wide, rusty, siliceous.
LVL - CY1 - 454	Grab. Shear. Strikes at 140 deg., disseminated pyrite and chalcopyrite throughout siliceous shear.
LVL - CY1 - 455	Grab. Shear.
LVL - CY1 - 456	Grab. Shear. Strikes at 180 deg., 0.5 m long, rusty, siliceous, minor sulfides throughout.
LVL - CY1 - 457	Grab. Shear. Same as #399.
LVL - CY1 - 458	Grab. Shear. Strikes at 100 deg., 15 m long, 0.3 m wide, rusty, siliceous, minor pyrite and chalcopyrite disseminated throughout.
LVL - CY1 - 459	Grab. Shear. Strikes at 196 deg., 25 m long, 0.5 m wide, rusty, siliceous.
LVL - CY1 - 460	Grab. Shear. Same as #401. Strikes at 126 deg.

- LVL CY1 461 Grab. Shear. Same as #401. Strikes at 346 deg. LVL - CY1 - 462 Grab. Shear. Same as #399. Strikes at 230 deg. LVL - CY1 - 463 Grab. Shear. Same as #405. Strikes at 130 deg. LVL - CY1 - 464 Grab. Shear. Dark blue-green pyroxene basalt, pyrite and chalcopyrite disseminated throughout, rusty weathering. LVL - CY1 - 465 Grab. Shear. Strikes at 290 deg., 5 m long, 0.2 m wide, rusty, siliceous, minor sulfides disseminated throughout. Ag - 2.20 opt Grab. Shear. Same as #465. LVL - CY1 - 466 Ag - 13.34 opt LVL - CY1 - 467 Grab. Shear. Strikes at 340 deg., 20 m long, 0.2 m wide, rusty, siliceous, minor sulfides disseminated throughout. LVL - CY1 - 468 Grab. Shear. Same as #399. Strikes at 270 deg. Grab. Shear. Same as #399. LVL - CY1 - 469 LVL - CY1 - 470 Grab. Shear. Same as #399. LVL - CY1 - 471 Grab. Shear. Strikes at 120 deg., 25 m long, 0.2-0.5 m wide, rusty, siliceous, minor sulfides disseminated throughout. Grab. Shear. Strikes at 130 deg., rusty, siliceous, minor sulfides LVL - CY1 - 472 disseminated throughout. LVL - CY1 - 473 Grab. Shear. Strikes at 004 deg., 25 m long, 1.0 m wide, rusty, siliceous. Grab. Shear. Same as #405. LVL - CY1 - 474 LVL - CY1 - 475 Grab. Shear. Strikes at 310 deg., 40 m long, 0.2 m wide, rusty, siliceous, minor sulfides disseminated throughout. Grab. Shear. Same as #405. LVL - CY1 - 476
 - LVL CY1 477 Grab. Shear. Strikes at 166 deg., 8 m long, 0.5 m wide,

rusty, siliceous.

LVL - CY1 - 480	Grab. Shear. Strikes at 106 deg., 15 m long, 0.2-0.5 m wide, rusty, siliceous, pyrite disseminated throughout.
LVL - CY1 - 4 7 9	Grab. Shear. Same as #405.
LVL - CY1 - 478	Grab. Shear. Same as #405.

CY2 Samples:

- LVL CY2 001 Grab. Shear. Very rusted with chloritized quartz.
- LVL CY2 002 Grab. Shear. Very rusted with abundant chalcopyrite and pyrite, hematite altered.
- LVL CY2 003 Grab. Same as #001.
- LVL CY2 004 Grab. Same as #001.
- LVL CY2 005 Grab. Same as #001.
- LVL CY2 006 Grab. Shear. Dark grey with abundant silicates.
- LVL CY2 007 Grab. Same as #001.
- LVL CY2 008 Grab. Shear. Very rusted with abundant chalcopyrite and arsenopyrite.
- LVL CY2 009 Grab. Shear. Very rusted with abundant pyrite and arsenopyrite, chloritized silicates.
- LVL CY2 010 Grab. Same as #008.
- LVL CY2 012 Grab. Aphanitic light gray volcanic with sulfides disseminated throughout.
- LVL CY2 013 Grab. Shear. Very rusted with abundant pyrite and chloritized silicates.
- LVL CY2 014 Grab. Shear. Very rusted with abundant sulfides disseminated throughout.

LVL - CY2 - 015	Grab. Shear. Sulfides and olivine disseminated throughout sample.
LVL - CY2 - 016	Grab. Shear. Very rusted with abundant chalcopyrite, pyrite, and arsenopyrite disseminated throughout.
LVL - CY2 - 017	Grab. Same as #001.
LVL - CY2 - 018	Grab. Shear. Strikes at 224 deg., 140 m long, 0.5 m wide, rusty, siliceous, chloritized, abundant pyrite and arsenopyrite disseminated throughout.
LVL - CY2 - 019	Grab. Shear. Strikes at 034 deg., 20 m long, 0.2 m wide, rusty, siliceous, abundant chloritized quartz.
LVL - CY2 - 020	Grab. Same as #018.
LVL - CY2 - 021	Grab. Same as #018.
LVL - CY2 - 022	Grab. Shear. Very rusted and epidotized, with abundant pyroxene.
LVL - CY2 - 023	Grab. Strikes at 034 deg., 10 m long, 0.2 m wide, rusty, siliceous, abundant chloritized quartz and pyrite disseminated throughout shear.
LVL - CY2 - 024	Grab. Shear. Rusty, siliceous, abundant chloritzed quartz and pyrite throughout shear.
LVL - CY2 - 025	Grab. Dark blue-green pyroxene basalt, pyrite disseminated throughout, siliceous, rusty weathering.
LVL - CY2 - 026	Grab. Same as #025.
LVL - CY2 - 027	Grab. Shear. Rusty, siliceous, abundant chloritzed quartz and pyrite throughout shear.
LVL - CY2 - 028	Grab. Dark blue-green pyroxene basalt, trace pyrite disseminated throughout, siliceous, rusty weathering.
LVL - CY2 - 029	Grab. Shear. Strikes at 180 deg., 30 m long, 0.2 m wide, rusty, siliceous, abundant chloritized quartz and minor sulfides disseminated throughout shear.
LVL - CY2 - 030	Grab. Shear. Rusty and chloritized silicates, minor diopside.

; •----

LVL - CY2 - 031	Grab. Shear. Strikes at 330 deg., 10 m long, 0.5-3 m wide, rusty, siliceous, sphalerite disseminated throughout.
LVL - CY2 - 032	Grab. Shear. Strikes at 040 deg., 20 m long, 3.0 m wide, rusty, chloritized silicates.
LVL - CY2 - 033	Grab. Shear. Rusty and chloritized silicated, minor diopside.
LVL - CY2 - 034	Grab. Shear. Rusty and epidotized silicates, trace amounts of pyrite.
LVL - CY2 - 035	Grab. Same as #034.
LVL - CY2 - 036	Grab. Same as #034.
LVL - CY2 - 037	Grab. Same as #034.
LVL - CY2 - 038	Grab. Same as #034. Strikes at 176 deg.
LVL - CY2 - 039	Grab. Same as #034. Strikes at 157 deg.
LVL - CY2 - 040	Grab. Same as #034. Strikes at 340 deg.
CY3 Samples:	
LVL - CY3 - 001	Grab. Fine grained light gray epiclastic volcanic with sulfide disseminated throughout, weathers rusty.
LVL - CY3 - 002	Grab. Fine grained light yellow gray black banded epiclastic

- volcanic with trace sulfide disseminated throughout, weathers rusty.
- LVL CY3 003 Grab. Fine grained light gray banded epiclastic volcanic with trace sulfide disseminated throughout, weathers rusty.
- LVL CY3 004 Grab. Fine grained dark black banded epiclastic volcanic with trace sulfide disseminated throughout, weathers rusty.
- LVL CY3 005 Grab. Fine grained light gray banded epiclastic volcanic with sulfide disseminated throughout, chloritized and weathers rusty.
- LVL CY3 006 Grab. Fine grained dark black banded epiclastic volcanic, weathers rusty.

LVL - CY3 - 007	Grab. Same as #003.
LVL - CY3 - 008	Grab. Shear. Strikes at 250 deg., 20 m long, 0.5 m wide, rusty, siliceous, chalcopyrite and arsenopyrite disseminated throughout.
LVL - CY3 - 009	Grab. Shear. Trace amounts of sulfides present.
LVL - CY3 - 010	Grab. Shear. Very rusted and chloritized.
CY4 Samples:	
LVL - CY4 - 001	Grab. Shear that strikes at 354 deg.
LVL - CY4- 002	Grab. Shear that strikes at 358 deg.
LVL - CY4 - 005	Grab. Dark gray epiclastic volcanic with rusty weathering.
LVL - CY4 - 006	Grab. Dark gray epiclastic volcanic with rusty weathering, and pyrite disseminated throughout.
LVL - CY4 - 007	Grab. Dark gray epiclastic volcanic with rusty weathering, and pyrite, arsenopyrite and chalcopyrite disseminated throughout.
LVL - CY4 - 008	Grab. Same as #006.
LVL - CY3 - 009	Grab. Shear with pyrite disseminated throughout.

աններու ե**ն**

.

Constraints of the

Alexandra contractor

and the second

in a second s

and the second second

Sandin C.

innerenter 1

.

APPENDIX II

and states of

In the set of the set of the set

handard ar and

Constraint of the second

a constraint in the second

GEOCHEMICAL ANALYSIS RESULTS -FOR THE GEOCHEMICAL PROGRAM

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

and the optimum

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY AS 96-5140

6. · ·		-		18 AN -					
A CONTRACT OF)					15	-Aug-96
of the state of th		NTION: DO	N COATES			· .			· · ·
ine mid ages - s with		samples red le type: ROC							•
ha dik tahu di sina di	SHIP	ECT: #NON /ENT: # 1 les submitte	E GIVEN d by: NOT INDI	CATED					•
all such that is not a	ET #.	Tag #		Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Pb (%)	Zn (%)
	5	C41-005			•	141.4	4.12	*	-
in the second second second	6	C41-006			•	293.8	8.57	2.06	2.66
L 6.3	89	C41-091		,1.19	0.035	-			-
. –	140	C41-142		56.02	1.634	670.4	19.55	•	••••••
entirique lizense de	QC/D/	ATA:							
A A A A A A A A A A A A A A A A A A A	Stand	ard:							•

, 15-Aug-96

1000

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 674

Phone: 604-573-5700 Fax: : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AS 96-5140

Antonia Constraint Constraint Constraints

LEVELLAND 530 CHESTER RD DELTA, BC V3M 5U5

¢۲.

ATTENTION: DON COATES

No. of samples received: 151 Sample type: ROCK PROJECT: #NONE GIVEN SHIPMENT: # 1 1. Samples submitted by: NOT INDICATED

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bł	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	РЪ	SÞ	Sn	Sr	TI %	U	V	W	Y	Zn
1	C41-001	205	8.2	4.17	190	70	ৎ	1.37	<1	183	24	1972	>10	<10	3.54	1698	14	0.04	91	1670	12	\$	20	28	0.11	<10	214	<10	<1	. 150
2	C41-002	5	<0.2	2.82	ৰ	70	15	2.45	<1	33	22	38	6.32	<10	2.16	1272	<1	0.16	11	2260	2	4	<20	143	0.59	<10	153	<10	18	68
3	C41-003	5	1.2	3.33	10	80	<5	1.88	1	38	53	277	7.87	<10	3.10	2068	3	0.04	25	2100	20	4	<20	54	0.11	<10	137	<10	<1	205
· 4	C41-004	5	⊲0.2	2.02	5	35	4	3.28	<1	19	38	97	3.95	<10	1.98	1069	<1	0.04	18	1930	12	-5	<20	70	0.13	<10	122	<10	5	. 73
5	C41-005	10	>30	0.89	15	225	٩	1.44	81	12	94	47	1.73	<10	0.42	772	4	⊲0.01	13	840	2522	10	<20	18	0.08	<10	26	<10	<1	6498
6	C41-006	65	>30	0.57	4	300	<5	3.98	340	13	128	191	1.50	<10	0.34	827	<1	⊲0.01	<1	<10	>10000	<5	<20	252	0.05	<10	18	<10	<1	>10000
7	C41-007	750	7.6	2.88	-	695	<	1.70	26	· <1	19	285	>10	<10		2012	- 39	0.07	52	<10	110	225	<20	351	0.05	<10	98	<10	<1	311
8 -	C41-008	290	11.4	2.10	85	- 75		1.27	1	188	80	1522	>10	<10		1751			. 60	80	50	<	20	16	0.03	<10	49	<10	<1	107
9	C41-009	5		1.84	130	90	<	1.90	<1	17	67	150	3.59	<10		829	<1	0.10	34	2490	34	<5	<20	125	0.11	<10	105	<10	.4	98
10	C41-010	5	0.2	2.59	ব	110	4	1.53	<1	26	90	159	6.04	<10	1.76	1183	2	0.04	24	2420	24	<5	<20	52	0.13	<10	121	<10	3	ື 133
11	C41-011	5	<0.2	3.18	15	90	4	1.88	<1	31	79	181	6.53	<10	2.85	1542	<1	0.03	26	2460	34	<5	<20	40	0.13	<10	163	<10	. 3	204
12	C41-012	15		2.56	20	85	ð	2.41	3	29	. 78	133	5.65	<10		1519	4	0.02	25	2090	24	4	~20	42	0.13	<10	162	<10		315
13	C41-013	5		3.84	15	55	-5	4.80	<1	29	77	95	7.21	<10		2073		0.02	26		18	. 4	20	122	0.03	<10	208	<10		191
14	C41-014	65	24	1.95	110	50	4	0.94	4	70	78	1450	>10	<10		1110	. 9	0.02			28		20	27	0.09	<10	148	<10	ं त	104
15	C41-015	45	02	1.88	30	35	š	1.78	٩	22	- 64	70	3.68			929		0.04		1530	18	ંહે	20	. 114	0.12	<10	95	<10	· · ·	83
				X 8		· · ·	- T				•••								· -											
16	C41-018	5	0.4	2.77	20	55	4	4.04	<1	- 24	77	123	5.14	<10	3.08	1904	. <1	0.03	22	1900	54	4	<20	49	0.13	<10	138	<10	2	153
17	C41-017	5	⊲02	2.17	10	70	4	2.32	· 1	20	66	72	4.18	<10		1077	<1		20	2310	30	4	<20	54	0.15	<10	142	<10	. 5	.244
18	C41-018	5	⊲0.2	2.27	<5	80	5	1.13	3	17	29	47	4.99	<10		1312	<1	0.03	. 7	1710	54	<	<20	36	0.12	<10	80	<10	2	411
19	C41-019	5	0.4	2.97	20	35	<5	1.48	<1	34	63	205	5.73	<10		1294	2	0.04	28	2290	12	<5	<20	64	0.09	<10	121	<10	<1	100
20	C41-020	5	⊲0.2	2.10	`~5	40	<5	1.38	1	22	57	. 86	3.99	<10	2,12	1128	<1	0.04	20	2030	56	<5	<20	- 48	0.16	<10	126	<10	5	181
• •		•	• •			-					_					•									•				_	•
21	C41-021	5	0.8	2.89	25	40	<5	5.99	<1	29	77	108	4.62	<10		1373	<1	0.03	23		172	<5	<20	151	0.13	<10	117	<10	2	114
22	C41-022	5	0.4	3.81	10	70	<5	5.04	1	41	78	225	7.32	<10		2423	2	0.04	27		16	<	<20	88	0,11	<10	147	<10	<1	153
23	C41-023	、5	⊲0.2	3.18	<5	55	4	1.62	1	32	95	110	6.43	<10			<1	0.03	33		18	<5	<20	38	0.15	<10	161	<10	1	168
24	C41-024		<0.2	2.91	<5	50	<5	2.69	<1	24	75	54	5.40	<10		1421	<1	0.04	24		14	<5	<20	45		<10	149	<10	3	128
25	C41-025	5	<0.2	3.03	<5	75	<5	2.32	<1	28	83	90	5.41	<10 P#	3.58 ge 1	1424	<1	0.04	30	2280	22	<5	<20	51	0.17	<10	171	<10	9	132

ICP CERTIFICATE OF ANALYSIS AS 96-5140

Garrier Agreened

1 1 1

1 1

LEVELLAND

and the

No. of Concession, Name

LEVELLAND 530 CHESTER RD

ICP CERTIFICATE OF ANALYSIS AS 96-5140

formand forgering for the second for

ECO-TECH LABORATORIES LTD.

3.

29 C41-029 5 0.2 2.21 5 80 <5 0.95 <1 18 60 55 4.13 <10 1.68 1230 <1 0.09 11 1540 32 <5 <20 77 0.14 <10 97 <10 2 98			Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	81	Ca %	Cď	Co	Cr	Cu	Fe %	L	Mg %	Ma	Mo	Na %	NI	P	РЬ	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			26	C41-026	70	6.0	3.25	55	45	<5	0.75	<1	64	47	690	>10	<10	2.94	1275	5	<0.01	31	2140	20	<5	20	40	0.12	<10	119	<10	<1	129
28 C41028 5 6 20 21 5 8 0 1 20 1 1 100 20 24 75 33 518 40 120 41 65 62 22 15 80 45 0.65 41 160 25 42 45 0.05 41 160 22 45 60 7 10 24 65 32 41 32 44 324 44 324 44 324 46 324 46 41 100 54 42 65 42 77 11 32 44 466 40 104 143 100 14 150 12 45 144 466 10 104 1004 10 46 45 42 40 1004 1004 1004 1004 1004 1004 1004 1004 1004 1004 1004 1004 1004 100 <	::U e s	in .	27	C41-027	5	⊲02	2.91	<5	60			<1	28	65	54	5.30	<10	3.27	1533	<1	0.03	27	2470	14	<5	-			<10			5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			28	C41-028	5	⊲0.2	2.68	<5	80	5	1.20	<1	24	76	38	5.18	<10	2.97	1747	<1	0.04	20	2540	14	<5	<20	50	0.18	<10	183		6	146
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		•	29	C41-029	5	0.2	2.21	5	60	<5	0.95	<1	18	60	55	4.13	<10	1.68	1230	<1	0.09	11	1540	32	<5	<20	77	0.14	<10	97	<10	2	98
$ \begin{array}{c} c \\ c$	1.	C	30	C41-030	5	⊲1	1.30	<5	50	<5		<1	13	28	48	3.28	<10	1.05	699	<1	0.05	4	1760	28	<5	<20	46	0.09	<10	63	<10	3	- 61
$ \begin{array}{c} c \\ c$	-									-	••••=																					•	••
$ \begin{array}{c} c \\ c$	z		31	C41-031	• 5	0.6	1.75	15	50	<5	2.57	2	37	34	341	4.93	<10	1.47	1654	2	0.04	14	1540	22	<5	<20	35	0.08	<10	119	<10	2	135
$ \begin{array}{c} 33 \\ C 41-033 \\ C 41-034 \\ C 4 \\ 34 \\ C 41-035 \\ C 4 \\ 35 \\ C 41-035 \\ C 4 \\ 5 \\ C 4 \\$	•		32	C41-032	5	0.6		10	60			-	30	39	259	4.66	<10	2.02	1406	<1	0.03	16	1700									3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C.	33	C41-033	5	⊲0.2	1.84	<5	65	4		<1	13	28	57	4.20	<10	1.64	1393	2	0.04	3	1580	48	<5		27					1	
$ \begin{array}{c} C_{C}}}}}}}}}$			34	C41-034				<5	80	-		1	32	80	138	6.58	<10			<1	0.03				-							5	
$ \begin{array}{c} C4 \\ C4 $		C4	35	C41-035	5			4	120	-		<1			4																	1	
C4 37 C41.037 5 422 46 118 41 24 501 400 223 124 41 000 23 126 41600 6 45 200 110 23 126 110 23 126 110 22 110 110 24 501 4100 23 11500 8 -5 220 110 110 226 110 256 65 500 110 226 110 256 65 500 100 110 226 41 110 256 100 100 110 226 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 <th< td=""><td></td><td>Č4</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td>• • •</td><td></td><td></td><td>•</td><td></td><td>-</td><td>•</td><td></td><td>•••</td><td></td><td></td><td>•••</td><td></td><td>•</td><td></td></th<>		Č4						-				•							• • •			•		-	•		•••			•••		•	
C4 37 C41.037 5 422 46 118 41 24 501 400 223 124 41 000 23 126 41600 6 45 200 110 23 126 110 23 126 110 22 110 110 24 501 4100 23 11500 8 -5 220 110 110 226 110 256 65 500 110 226 110 256 65 500 100 110 226 41 110 256 100 100 110 226 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 <th< td=""><td></td><td>CA</td><td>36</td><td>C41-038</td><td></td><td>⊲0.2</td><td>2.12</td><td>4</td><td>165</td><td>5</td><td>1.31</td><td><1</td><td>17</td><td>52</td><td>4</td><td>4.60</td><td><10</td><td>1.95</td><td>1094</td><td>1</td><td>0.04</td><td>2</td><td>1380</td><td>6</td><td><5</td><td>20</td><td>31</td><td>0 12</td><td><10</td><td>98</td><td><10</td><td>2</td><td></td></th<>		CA	36	C41-038		⊲0.2	2.12	4	165	5	1.31	<1	17	52	4	4.60	<10	1.95	1094	1	0.04	2	1380	6	<5	20	31	0 12	<10	98	<10	2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	÷	CA	37	C41-037	5	⊲0.2		<5	125	-		<1	18	41			<10							6	-							3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			38	C41-038	6	⊲02			-	10		-		45										Ř	-							ž	
$ \begin{array}{c} C4 & 40 C41-040 & 5 <02 200 <5 100 100 200 <1 17 50 7 4.73 <10 1.57 1017 <1 0.04 3 1430 4 <5 <20 34 0.12 <10 88 <10 22 34 117 50 7 4.73 <10 1.57 1017 <1 0.04 3 1430 4 <5 <20 34 0.12 <10 88 <10 22 34 $11 2$																								6	-							2	
$\begin{array}{c} C4 \\ C4 \\ C4 \\ 41 \\ C41 C41 C41 C41 \\ 5 \\ 42 \\ C41 242 \\ 5 \\ 42 \\ C41 242 \\ 5 \\ 42 \\ C41 243 \\ 5 \\ 42 \\ 241 243 \\ 5 \\ 42 \\ 241 243 \\ 5 \\ 42 \\ 241 243 \\ 5 \\ 42 \\ 241 243 \\ 5 \\ 42 \\ 241 243 \\ 5 \\ 42 \\ 241 243 \\ 5 \\ 42 \\ 241 243 \\ 5 \\ 42 \\ 241 243 \\ 5 \\ 42 \\ 241 243 \\ 5 \\ 42 \\ 241 243 \\ 5 \\ 42 \\ 241 243 \\ 5 \\ 42 \\ 241 243 \\ 5 \\ 42 \\ 241 243 \\ 5 \\ 41 \\ 241 243 \\ 5 \\ 41 \\ 241 243 \\ 5 \\ 41 \\ 241 243 \\ 5 \\ 41 \\ 241 243 \\ 5 \\ 41 \\ 241 \\ 41 \\ 51 \\ 241 243 \\ 5 \\$		C4	40					-							_							-		-	-							2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L I	C4						-																•					-10			-	34
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					-			-				•		-								-		10	<5	<20	8	0.08	<10	55	<10	<1	42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					5					-			-	48	3									6	<5	<20			<10	27	<10	· 2 ·	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ē . (C4*	43		5					10		<1		67	11	5.48	<10			1 , 4 ,	0.01	- 4	1530	8	<5	<20	13	0.10	<10	75	<10	3	35
$\begin{array}{c} C41\\ C41\\ C41\\ 48\\ C41-048\\ C41-048\\ 5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$								- 5		10		<1	19	68	33	5.73	<10			<1	≪0.01	5	1220	8	<5	<20	6	0.13	<10	39	<10	8	42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	45	C41-045	5	⊲2	1.89	<5	315	5	1.70	<1	14	57	10	4.71	<10	1.31	1435	2	0.02	3	1430	8	<5	<20	24	0.10	<10	Π	<10	3	37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		• • •	48	C41-046	10	<07	1 98	-5	140	10	1 27	~1	18	50		4 87	<10	154	1040	-	000		1460		-5	-20	20	0.10	-10	80			**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								-				•																•				2 .	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												-		•																	• •		
C41 50 C41-050 5 5 135 10 0.59 <1 18 51 7 5.39 <10 2.25 1233 <11 0.03 3 1460 8 <5 <20 28 0.13 <10 93 <10 1 53 C41 51 C41-051 5 <0.2								7		-		-																			_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i c	41			-					-					•									· · •								3	
C41 51 C41-051 5 C0.2 2.08 <5 130 5 0.54 <1 17 58 3 4.81 <10 1.92 1074 1 0.02 5 1470 8 <5 <20 24 0.12 <10 8 <5 <20 24 0.12 <10 8 <5 <20 24 0.12 <10 8 <5 <20 24 0.12 <10 8 <5 <20 24 0.12 <10 8 <5 <20 24 0.12 <10 8 <5 <20 24 0.12 <10 10.02 3 1500 4 <5 <20 24 0.02 3 1500 4 <5 <20 24 0.02 3 1500 4 10 102 101 102 101 102 3 10 0.02 3 1420 8 <5 <20 32 0.10 102 101 102 101 102 101 102 101 102 10 102<				011.000	3			. T	100		0.00				•	0.00	-10			<u></u>	0.05		1400	- 0	. ••	~20	20	0.13	10	83	<10		- 33
C41- 53 52 C41-052 5 -0.2 1.73 -5 190 5 3.59 <1 15 48 19 4.52 <10 1.31 1421 1 0.02 3 1500 4 <5 <20 42 0.09 <10 72 <10 4 29 C41- 53 C41-053 10 -0.2 2.01 <5 135 5 0.59 <1 17 57 8 4.91 <10 1.70 1024 2 0.04 3 1420 8 <5 <20 32 0.10 <10 102 <10 102 <10 1024 2 0.04 3 1420 8 <5 <20 32 0.10 <10 102 <10 3 48 54 C41-055 5 <0.2 2.11 <5 0.67 <1 17 48 7 4.75 <10 2.00 1492 2 0.02 3 1421 1 0.02 3 48 <133 48 <10 150 <th< td=""><td></td><td></td><td>51</td><td>C41-051</td><td></td><td>⊲12</td><td>2.08</td><td>-5</td><td>130</td><td>5</td><td>0.54</td><td><1</td><td>17</td><td>58</td><td>3</td><td>4 81</td><td><10¹</td><td>1 02</td><td>1074</td><td> .</td><td>0.02</td><td></td><td>1470</td><td></td><td></td><td>~~ ·</td><td></td><td></td><td>-10</td><td></td><td></td><td></td><td></td></th<>			51	C41-051		⊲12	2.08	-5	130	5	0.54	<1	17	58	3	4 81	<10 ¹	1 02	1074	.	0.02		1470			~~ ·			-10				
C41: 53 C41-053 10 40.2 2.01 45 135 5 0.59 <1 17 57 8 4.91 <10 1.70 1024 2 0.04 3 1420 8 <5 <20 32 0.10 100 100 3 48 54 C41-054 5 <0.2												-																				. 2 -	
54 C41-054 5 c0.2 2.11 <5					10			-																	-	-							
55 C41-055 5 -0.2 2,11 -5 1.80 -1 17 50 3 4.87 -10 1.69 1492 2 0.02 6 1510 8 <5	Ť							-		7																							
56 C41-056 5								-						-	•										-				-				
57 C41-057 5 -0.2 2.00 5 55 <5		•	33	•	9		4 11	2	190	5	1.00	<1	"	. 50	3	9.07	<10	1.09	1482	2	0.02	6	1510	8	<9	<20 .	30	0.09	<10	72	<10	3.	• 63
57 C41-057 5 <0.2					5	⊲0.2	2.32	<5	55	5	2.53	<1	16	39	28	4.77	<10	2.17	1473	2	0.02	5	1790	16	<5	<20	37	0.04	<10	95	<10	5	90
58 C41-058 10 <0.2 2.69 10 50 <5 1.68 <1 22 42 97 4.64 <10 2.31 1014 <1 0.07 19 2270 18 <5 <20 52 0.14 <10 155 <10 5 112 59 C41-059 5 <0.2 3.92 5 95 15 4.44 1 42 70 8 8.24 <10 3.90 1812 3 0.03 27 2490 18 <5 <20 124 0.07 <10 265 <10 3 240	•		57	C41-057	5	⊲0.2	2.00	5	55	<5	1.18	<1	28	56	103	4.46	<10	1.90	732	. <1	0.04	23	2490	10	<5	<20	42	0.19	<10	156		6	
59 C41-059 5 <0.2 3.92 5 95 15 4.44 1 42 70 8 8.24 <10 3.90 1812 3 0.03 27 2490 18 <5 <20 124 0.07 <10 265 <10 3 240			58	C41-058	10	<0.2	2.69	10	50	<5	1.68	<1	22	42	97	4.84	<10	2.31	1014	<1	0.07	19	2270	18	<5	<20	52					5	
			59	C41-059	5	<0.2	3.92	. 5	95	15	4.44	1	42	70	8	8.24	<10	3.90	1812													3	
	2		60	C41-060	5	⊲0.2	2.43	5	75	<5		<1	26	49	92	4.55	<10			<1					-							4	

Page 2

ICP CERTIFICATE OF ANALYSIS AS 96-5140

.

ZVELLAND

and the second second

- ANDER

いたたち

ECO-TECH LABORATORIES LTD.

1

1

61 C41-061 5 02 20 20 47 20 47 47 100 118 22 110 28 45 200 101 410 11 41 30 66 217 100 33 130 100 22 478 488 410 335 120 100 20 45 450 60 100 41 40 31 4100 32 220 23 45 60 101 41 100 45 46	Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Ŝn	Sr	ті %	U	v	. W	Y	Zn
35 CH 033 5 -02 245 -0 545 14 0.03 18 170 10 -6 -50 65 0.00 +10 165 64 CH 0465 5 -0.2 1.83 -5 5 1.14 1 20 20 38 4.69 +10 4.002 10 55 -00 4.002 10 55 -00 -10 21 11 +10 5 145 66 CH 0666 5 -0.2 2.20 -5 5 2.31 1 22 57 94 5.4 +10 0.04 4 160 30 16 +10 174 +10 6 20 160 140.03 6 50 41 45 40 167 410 157 100 41 133 40 107 40 31 100 41 100 41 100 41 100 41 45 40	61	C41-061	5	<0.2	2.05	25	50	<5	1.19	<1	32	45	229	4.78	<10	1.87	652	<1	0.04	22	2110	28	<5	<20	51	0.19	<10	161	<10	5	95
ex cx1.064 s x x z<	62	C41-062	5	<0.2	3.31	<5	60	<5	2.71	<1	30	66	118	6.23	<10	3.75	1621	<1	0.03	25	2390	20	<5	<20	59	0.18	<10	217	<10 `	4.5]	81
65 C41-065 5 -02 1.83 -5 1.4 1 20 20 38 4.89 40 41 400 32 -5 20 38 0.18 -10 131 <10 5 145 66 C41-068 5 -02.2 c45 55 6 6 10 11 10 6 6 10 10 11 410 7 10 2 <th2< th=""> 2 2</th2<>	63	C41-063	5	<0.2	4.59	<5	60	10	3.63	1	30	52	47	8.88	<10	5.07	3451	- 4	0.03	18	1570	10	<5	<20	55	0.08	<10	166	<10	<1	196
66 C41-066 5 0.2 2.82 45 5.0 -1.73 1 2.5 77 94 5.24 <10 2.82 18.42 <1 0.03 2.4 2.020 18 -5.4 -0.03 6 156 C41-087 5 -0.2 2.23 -5.5 5 2.33 2 17 28 20 466 <10 141 -1 0.03 6 158 24 5.60 5 2.33 2 17 28 20 466 <10 141 -10 20.02 24 20.01 110 0.06 110 0.06 110 0.06 110 0.06 110 0.06 110 0.06 110 0.06 110 0.06 110 0.06 110 0.06 110 0.06 110 0.06 110 0.06 110 0.06 110 0.06 110 0.06 110 0.06 110 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	64	C41-064	5	0.4	3.18	<5	210	<5	2.40	2	23	22	109	6.80	<10	2.94	1790	- 4	0.02	10	1930	46	<5	<20	64	0.02	<10	152	<10	2	150
67 C41-087 6 -02 2.02 -8 5 2.03 2 7 28 20 4.66 0.01 6 1800 44 -4 -5 -00 10 000 -00 10 -00 7 151 66 C41.068 5 -02 1.30 -5 5 1.15 25 18 3.46 <10 1.52 100 3 152 130 -4 5 -00 3 120 30 0.02 24 230 0.01 21 100 -4 128 100 -4 128 100 -4 128 100 -4 128 100 -4 128 100 -4 128 100 -4 128 100 -4 188 100 24 400 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 40 40 40	65	C41-065	5	<0.2	1.63	<5	45	5	1.14	1	20	20	38	4.99	<10	1.48	910	<1	0.04	4	1490	32	<5	<20	38	0.18	<10	131	<10	5	145
67 C41-087 6 -02 2.02 -s 5 5 2.03 2 7 28 20 4.66 0.03 6 1880 44 -s -s 16 0.09 0	66	C41-066	5	<0.2	2.62	-5	50	<5	173	1	25	57	94	5.24	<10	2 82	1842	<1	0.03	24	2020	18	<5	<20	53	0.16	<10	174	<10	6	208
68 C41-068 5 -02 22 -2 23 -5 20 10 128 -41 16 66 C41-068 5 -22 23.0 10 -55 25 15 -51 15 25 18 345 50 15 25 18 345 50 15 25 18 345 50 15 25 18 345 50 30.06 21 1660 14 45 -20 30 0.16 40 95 0.11 22 27 660 91 233 14 20 22 75 13 10 23 14 10 233 14 10 233 14 10 24 12 45 20 30 0.11 45 23 10 10 24 103 10 22 23 10 10 24 100 21 45 20 30 0.16 10 10								-		2								-												-	
69 C41-069 5 -02 180 -55 5 115 -15 27 680 8.15 <10 3.44 1752 3 0.06 21 1800 14 <5 <20 34 0.16 <100 24 102 <100 21 21 100 113 100 113 100 113 100 114 100 100 12 100 12 100 12 100 100 101 <th< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>* ·</td><td></td><td>117</td><td></td><td></td><td></td></th<>			-					-										-		-						* ·		117			
70 C41-070 5 2.2 3.4 40 55 5 1.3 <1 52 70 6.60 9.15 <10 3.44 1752 3 0.06 21 1800 14 <5 <20 30 0.12 <10 128 <10 <1 126 71 C41-071 5 -02 3.88 5 60 5 1.52 1 32 62 60 <10 3.14 <10 41 0.04 19 200 24 40 <10 10 45 100 41 100 41 100 42 100 41 0.04 100 45 20 60 61 41 22 41 100 41 100 22 45 20 35 0.13 41 41 100 23 2100 14 45 20 35 100 41 100 210 210 210 210 210 210 210 210 210 210 210 210 210 210<			-			-		-															_		• •						
72 C41-072 6 0.2 2.95 10 70 $< \frac{1}{5}$ 12 29 60 242 60.3 <10 2.81 144 <1 0.04 12 25 0.05 0.10 100 45 1.86 41 27 52 86 51.5 10 2.84 1300 <1 0.04 20 2130 12 <5 20 38 0.21 <10 193 <10 8 55 10 0.54 100 3.54 1070 <10 0.04 20 2130 12 <5 < 20 38 0.1 <10 185 <10 5 15 13 58 43 54 20 13 0.04 22 1800 22 25 20 14 45 0.04 22 140 6 <5 20 14 45 14 21 33 20 371 <10 24 45 200 22 25 0.16 40 165 41 23 20 133 10 114								-		•								3					<5				<10	128	<10	. <1	126
72 C41-072 6 0.2 2.95 10 70 < 5 1.20 60 242 60.3 <0 2.81 140.4 10 0.44 12 70 24 < 5 20 37 0.17 <10 199 <10 4 189 73 C41-074 10 <02 3.11 6 65 5 1.20 5.8 61 0.01 2.91 12 <5 20 38 0.17 <10 198 <10 185 <10 5 5 1.20 5 85 <10 2.81 800 <1 0.04 2.20 180 2.2 2.0 8 0.04 2.20 180 2.2 2.0 8 0.04 2.20 180 2.2 2.0 8 0.04 2.2 2.0 14 4.8 1 2.1 3 3 4.8 2.42 1 0.04 2.2 2.00 2.3 1.3 1.4 4.8 1.25 1.11 4.8 1.25 1.11 4.8 4.1 2.12 <td>71</td> <td>C41-071</td> <td>5</td> <td>⊲0.2</td> <td>3.88</td> <td>5</td> <td>60</td> <td>5</td> <td>3.05</td> <td>1</td> <td>32</td> <td>82</td> <td>75</td> <td>6.66</td> <td><10</td> <td>4.37</td> <td>1309</td> <td>· <1</td> <td>0.03</td> <td>26</td> <td>2330</td> <td>6</td> <td><5</td> <td><20</td> <td>75</td> <td>0.13</td> <td><10</td> <td>268</td> <td><10</td> <td>7</td> <td>113</td>	71	C41-071	5	⊲0.2	3.88	5	60	5	3.05	1	32	82	75	6.66	<10	4.37	1309	· <1	0.03	26	2330	6	<5	<20	75	0.13	<10	268	<10	7	113
73 C41-073 5 0.0 10 0.0 4 100 4 100 4 100 4 100 4 100 4 100 4 100 4 100 4 100 4 100 4 100 4 64 126 5.80 <10 3.54 100 4 003 25 2100 8 <5 <20 36 0.17 <10 100 4 85 75 C41-075 5 0.02 2.75 5 1.80 5 1.80 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 18 <10 101 <11 13 50 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td></t<>			-							•								-				-	-							4	
74 C41-074 10 -022 3.11 5 65 < 5 120 < 1 24 64 126 5.89 < 10 0.32 25 2100 8 < 5 < 20 98 0.17 < 10 198 < 10 48 85 75 C41-075 5 < 022 2.75 5 55 < 5 1.86 < 1 21 $(10)8 (10)8 (22) (10)4 22 < 5 20 84 0.16 (10)14 (10) 3 46 76 C41-076 5 < 022 1.16 < 5 54 121 33 20 3.73 < 10 125 1371 < 14 123 222 < 20 100 42 220 100 42 220 100 45 < 20 110 100 110 110 110 110 110 110 110 110 110 110 110 110 110 110 $			5					-		-			_					<1					<5		38		<10			8	
75 C41.075 5 -0.2 2.75 10 55 <5 1.86 <1 2.4 64 105 4.86 <10 2.83 890 <1 0.04 20 1980 22 <5 <20 4.3 0.18 <10 185 <10 3 56 <12 <13 58 4.3 5.42 <10 1.08 <21 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 $11 <11 111<$								-															-				<10			-	
76 C41-076 5 C02 1.87 5 50 5 1.79 <1 13 58 43 5.42 <10 1.08 723 <1 0.04 14 2120 6 <5 <20 B4 0.16 <10 104 <10 3 46 77 C41-077 5 <02 1.53 <5 50 <5 1.25 <1 12 33 20 3.73 <10 1.25 1371 <1 0.04 3 1560 20 2.57 20 1.65 <1 13 58 <10 1.25 1371 <1 0.04 3 1560 20 <5 <20 2.17 15 0.05 1.88 10 1.25 1371 <1 0.04 3 1560 20 2.57 20 151 0.12 <10 1.38 59 22 2.27 10 0.5 1.58 <1 20 4.57 <10 2.38 2300 <1 0.10 23 1730 2 <5 20 <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td>-</td><td></td><td>-</td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6</td><td></td></t<>				_		-		-		•																				6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•		2.10						- 1					2.00			0.01			_				••				-	•••
78 C41-078 5 -0.2 1.83 <5 80 <5 1.25 <1 1.2 33 20 3.73 <10 1.25 1371 <1 0.04 3 1560 20 <5 <20 38 0.12 <10 105 <10 5 54 80 C41-081 5 0.2 2.52 2.55 110 5 8.73 <1 21 37 106 4.57 <10 2.38 2930 <1 0.10 23 1730 2 <5 <20 151 0.12 <10 138 <10 5 54 80 C41-081 5 0.2 2.45 5 110 5 1.58 <1 20 45 71 4.58 <10 1.67 10.85 <1 0.06 22 1990 10 <5 <20 40 41 168 54 20 10.85 <1 0.05 20 43 21 0.16 10 122 <10 12 <10 12 <10	76	C41-076	5	<0.2	1.87	5	50	5	1.79	<1	13	58	43	5.42	<10	1.08	723	· <1	0.04	. 14	2120	6	<5	<20	84	0.16	<10	104	<10	3 -	46
79 C41-079 5 0.2 2.17 15 300 <5 1.98 <1 13 59 82 2.22 <10 0.63 588 <1 0.24 20 2370 26 <5 <20 110 118 <100 55 54 80 C41-081 5 0.22 2.52 215 110 5 8.73 <1 21 377 <100 4.57 <10 2.38 2300 <2 <5 <20 110 118 <10 5 66 811 81 C41-083 5 <0.2 2.45 5 110 5 1.58 <1 20 45 71 4.58 <0 1.87 1005 22 1990 10 28 <5 <20 49 0.16 101 12 <10 18 <10 5 54 10 12 10 10 12 12 25 <20 10 101 </td <td>77</td> <td>C41-077</td> <td>5</td> <td><0.2</td> <td>2.50</td> <td>5</td> <td>45</td> <td><5</td> <td>1.94</td> <td><1</td> <td>21</td> <td>73</td> <td>114</td> <td>4.81</td> <td><10</td> <td>2.09</td> <td>1158</td> <td>8</td> <td>0.04</td> <td>22</td> <td>2290</td> <td>14</td> <td><5</td> <td><20</td> <td>52</td> <td>0.16</td> <td><10</td> <td>145</td> <td><10 🖞</td> <td>41</td> <td>92</td>	77	C41-077	5	<0.2	2.50	5	45	<5	1.94	<1	21	73	114	4.81	<10	2.09	1158	8	0.04	22	2290	14	<5	<20	52	0.16	<10	145	<10 🖞	4 1	92
80 C41.081 5 0.2 2.62 25 115 5 8.73 <1 21 37 106 4.57 <10 2.38 2930 <1 0.10 23 1730 2 <5 <20 119 0.13 <10 138 <10 6 81 81 C41.083 5 <0.2	78	C41-078	5	<0.2	1.63	` <5 ∖	80	<5	1.25	<1	12	33	20	3.73	<10	1.25	. 1371 🤉	ं <1	0.04	· 3	1560	20	<5	<20	36	0.12	<10	105	<10	. 3	88
81 C41-083 5 < 0.2 2.45 5 110 5 1.58 <1 20 45 71 4.58 <10 1.87 1085 <1 0.06 19 1940 26 <5 <20 49 0.16 <10 142 <10 5 106 5 < 0.02 2.38 10 55 <5 1.10 <1 38 <10 2.29 964 <1 0.05 22 1960 10 <5 <20 43 <10 5 89 < 0.02 2.190 10 <5 <20 43 <10 1.78 <10.23 <10 <5 <20 43 <10 <23 <10 < 0.23 <10 <5 <20 43 <10 <21 <5 <10.0 <22 <10 <10 <23 <10 <10 <177 <5 <10 <240 <1343 <1 0.04 28 1970 12 <5 <20 5 <10 <10 <10 <10 <10 <10 <t< td=""><td>79</td><td>C41-079</td><td>5</td><td><0.2</td><td>2.17</td><td>· 15</td><td>300</td><td><5</td><td>1.96</td><td><1</td><td>13</td><td>59</td><td>82</td><td>2.22</td><td><10</td><td>0.63</td><td>588</td><td>`_<1</td><td>0.24</td><td>20</td><td>2370</td><td>26</td><td><5</td><td><20</td><td>151</td><td>0.12</td><td><10</td><td>118</td><td><10</td><td>-</td><td></td></t<>	79	C41-079	5	<0.2	2.17	· 15	300	<5	1.96	<1	13	59	82	2.22	<10	0.63	588	`_<1	0.24	20	2370	26	<5	<20	151	0.12	<10	118	<10	-	
82 C41-084 5 -0.2 2.38 10 55 <5	80	C41-081	5	0.2	2.52	25	115	5	8.73	<1	21	37	106	4.57	<10	2.38	2930	<1	0.10	23	1730	2	. <5	<20	119	0.13	<10	138	<10	6	81
83 C41-085 5 < 0.2 1.92 10 40 < 5 0.90 < 1 23 42 65 4.20 < 10 1.78 733 < 1 0.05 20 1830 8 < 5 < 20 47 0.19 < 10 127 < 10 7 79 84 C41-086 5 < 0.2 2.49 10 90 < 5 2.02 < 1 31 57 177 5.15 < 10 2.40 1343 < 1 0.04 28 1970 12 < 5 < 20 41 10 20 37 3.92 < 10 1.48 2424 2 0.02 2 10 22 < 5 20 41 10 10 10 410 141 7 0.05 33 1640 12 < 5 < 20 45 0.13 < 10 246 < 10 < 17 27 322 > 10 270 325 33 1640 <	81	C41-083	5	<0.2	2.45	5	110	5	1.58	<1	20	45	71	4.58	<10	1.87	1085	<1	0.06	19	1940	26	<5	<20	49	0.16	<10	142	<10	5	106
B4 C41-088 5 C0.2 2.49 10 90 <5 2.02 <1 31 67 177 5.15 <10 2.40 1343 <1 0.04 28 1970 12 <5 <20 54 0.19 <10 188 <10 6 84 85 C41-087 5 0.0 2.14 <5 40 <5 9.91 <1 10 20 37 3.92 <10 1.48 2424 2 0.02 2 10 22 <5 <20 64 0.19 <10 54 <10 4 66 86 C41-088 5 6.2 5.02 25 90 <5 1.13 1 82 40 1410 >10 <10 4.47 3144 7 0.05 33 1640 12 <5 <20 45 0.13 <10 248 <10 <11 177 50 965 >10 <10 2.02 14 1840 8 <5 20 35 0.10 <11 </td <td>82</td> <td>C41-084</td> <td>5</td> <td><0.2</td> <td>2.38</td> <td>10</td> <td>55</td> <td><5[`]</td> <td>1.10</td> <td><1</td> <td>36</td> <td>44</td> <td>158</td> <td>5.29</td> <td><10</td> <td>2.29</td> <td>964</td> <td><1</td> <td>0.05</td> <td>22</td> <td>1980</td> <td>10</td> <td><5</td> <td><20</td> <td>43</td> <td>0.23</td> <td><10</td> <td>180</td> <td><10</td> <td>5</td> <td>89</td>	82	C41-084	5	<0.2	2.38	10	55	<5 [`]	1.10	<1	36	44	158	5.29	<10	2.29	964	<1	0.05	22	1980	10	<5	<20	43	0.23	<10	180	<10	5	89
85 C41-087 5 0.6 2.14 <5 40 <5 9.91 <1 10 20 37 3.92 <10 1.48 2424 2 0.02 2 101 22 <5 <20 90 0.05 <10 54 <10 4 66 86 C41-088 5 6.2 5.02 25 90 <5	83	C41-085	- 5	<0.2	1.92	- 10	- 40	<5	0.90	<1	23	42	65	4.20	<10	1.78	733	: <1	0.05	20	1830	8	<5	<20	47	0.19	<10	127	<10	7	79
88 C41-088 5 6.2 5.02 25 90 <5 1.13 1 82 40 1410 >10 <10 4.47 3144 7 0.05 33 1640 12 <5 <20 45 0.13 <10 <10 <10 <10 <10 2.70 3245 7 0.02 14 1840 8 <5 2.0 35 0.13 <10 <10 <10 2.70 3245 7 0.02 14 1840 8 <5 2.0 35 0.10 <10 <10 <10 2.70 3245 7 0.02 14 1840 8 <5 2.0 43 0.11 <10 <11 157 88 C41-090 280 13.8 3.92 165 80 <5 1.31 <1 20 85 272 9.02 <10 1.68 832 7 0.01 14 1670 <2 <5 <20 43 0.11 <10 183 <10 <1 77 <10 21	84	C41-088	5	<0.2	2,49	10	90	<5	2.02	<1	31	57	177	5.15	<10	2.40	1343	: < 1	0.04	. 26	1970	12	<5	<20	. 54	0.19	<10	188	<10	5	84
87 C41-089 5 0.4 3.94 5 85 <5	85	C41-087	5	0.6	2.14	<5	40	<5	9.91	· <1	10	20	37	3.92	<10	1.48	2424	, 2	0.02	2	1010	22	<5	<20	90	0.05	<10	· 54	<10	4	66
88 C41-090 280 13.8 3.92 165 80 <5	86	C41-088	5	6.2	5.02	25	90	<5	1.13	1	82	40	1410	>10	<10	4.47	3144	7	0. 05	33	1640	12	<5	<20	45	0.13	<10	246	<10	<1 ¹	172
89 C41-091 >1000 0.8 2.44 <5	87	C41-089	5	0.4	3.94	5	85	<5	2.65	2	30	57	322	>10	<10	2.70	3245	ີ 7	0.02	14	1840	8	<5	20	35	0.10	<10	129	<10	<1	157
90 C41-692 60 1.4 2.31 10 20 <5 1.65 1 25 88 447 5.63 <10 1.71 1126 4 0.04 21 1790 4 <5 <20 57 0.11 <10 142 <10 1 72 91 C41-093 95 4.8 2.56 10 20 <5 1.62 2 33 79 1914 6.30 <10 1.88 914 123 0.03 44 1980 8 <5 <20 57 0.11 <10 142 <10 1 72 91 C41-093 95 4.8 2.56 10 20 <5 1.62 2 33 79 1914 8.30 <10 1.88 914 123 0.03 44 1980 8 <5 <20 10 10 142 <10 <1 203 92 C41-094 5 0.6 3.21 10 70 <5 6.03 7 28 54 86<	88	C41-090	280	13.6	3.92	165	80	<5	1.58	<1	77	50	965	>10	<10	3.10	2284	8	0.06	35	1530	: 16	<5	20	43	0.11	<10	183	<10	. <1 -	100
91 C41-093 95 4.8 2.56 10 20 <5 1.62 2 33 79 1914 6.30 <10 1.88 914 123 0.03 44 1980 8 <5 <20 105 0.10 <10 151 <10 <1 203 92 C41-094 5 0.6 3.21 10 70 <5 6.03 7 28 54 86 6.08 <10 3.24 2686 <1 0.03 23 1890 54 <5 <20 85 0.18 <10 198 <10 62 276	89	C41-091	>1000	0.8	2.44	<5	30	<5	1.31	<1	20	85	272	9.02	<10	1.66	832	7	0.01	14	1670	<2	<5	<20	60	0.09	<10	178	<10	<1 ·	78
92 C41-094 5 0.6 3.21 10 70 <5	90	C41-092	60	1.4	2.31	10	20	<5	1.65	1	25	88	447	5.63	<10	1.71	1126	4	0.04	21	1790	4	<5	<20	57	0.11	<10	142	<10	1	• 72
92 C41-094 5 0.6 3.21 10 70 <5	91	C41-093	95	4,8	2.56	10	20	<5	1.62	2	33	. 79	1914	8.30	<10	1.88	914	123	0.03	44	1980	8	<5	<20	105	0.10	<10	151	<10	<1	203
93 C41-095 5 0.4 1.53 <5 85 <5 3.52 <1 14 19 45 3.75 <10 0.90 1542 4 0.03 6 1610 8 <5 <20 66 0.02 <10 42 <10 4 67 94 C41-096 60 4.2 3.90 610 65 <5 1.87 <1 51 53 384 >10 <10 3.78 2345 9 0.02 29 1840 146 <5 <20 42 0.14 <10 246 <10 <1 410								<5		7	28	54	86	6.08	<10	3.24	2686	<1	0.03	23	1890	54	<5	<20	85	0.18	<10	198	<10	6	276
94 C41-096 60 4.2 3.90 610 65 <5 1.87 <1 51 53 384 >10 <10 3.78 2345 9 0.02 29 1840 146 <5 <20 42 0.14 <10 246 <10 <1 410			5				• -	-		<1	14	19	45		<10	0.90	1542	4	0.03	6	1610		<5	<20	66	0.02	<10	42	<10	4	67
			60															9	0.02	29		146	<5	<20	42	0.14	<10	246	<10	<1	410
			5					-												_			-			0.18				5	141

Page 3

1

,

VELLAND

allest the second s

Friend Friend Friend Control C

ICP CERTIFICATE OF ANALYSIS AS 98-5140

ECO-TECH LABORATORIES LTD.

[....]

a analysis

a in a

111

1

1

																														• *
. Et #,	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Nł	P	РЬ	Sb	Sn	Sr	TI %	U	V	W	Y	Zn
96	C41-098	5	<0.2	2.77	15	45	<5	2.17	<1	26	57	106	5.45	<10	3.03	1365	<1	0.05		1950	14	<5	<20	56	0.18	<10	188	<10	•7	147
97	C41-099	5	<0.2	2.68	20	70	<5	2.19	1	23	68	202	5.23	<10	2.65	1177	<1	0.06	25	2590	26	<5	<20	54	0.15	<10	172	<10	5	114
98	C41-100	5	<0.2	2.66	10	45	<5	1.26	<1	29	58	80	5.39	<10	2.67	996	<1	0.03	22	1890	12	<5	<20	43	0.25	<10	166	<10	5	76
99	C41-101	5	<0.2	2.41	<5	110	. 15	1.94	<1	23	36	5	6.93	<10	2.06	1481	1	0.05	2	1500	4	<5	<20	37	0.18	<10	144	<10	1	80
100	C41-102	5	<0.2	2.18	<5	55	10	1.50	` <1	20	36	5	5.18	<10	1.83	1213	<1	0.03	2	1520	6	<5	<20	97	0.18	<10	90	<10	3	80
101	C41-103	5	<0.2	1.84	<5	120	5	2.61	<1	20	31	34	6.85	<10	1.15	1352	2	0.03	3	1520	18	<5	20	25	0.15	<10	90	<10	3	56
102	C41-104	5	<0.2	2.23	<5	135	5	3.88	<1	21	26	81	5.97	<10	1.42	1683	<1	0.02	2	1530	8	<5	<20	- 54	0.14	<10	74	<10	6	61
103	C41-105	5	<0.2	1.94	<5	150	<5	3.80	<1	19	44	80	5.60	<10	1.32	1494	3	0.05	- 4	1580	6	<5	<20	83	0.08	<10	63	<10	5	82
104	C41-106	5	<0.2	2.88	<5	65	<5	3.58	<1	31	18	165	6.53	<10	2.25	1850	2	0.04	10	2070	4	<5	<20	106	0.11	<10	101	<10	· <1	85
105	C41-107	5	<0.2	2.46	<5	135	10	3.34	<1	30	13	3	7.97	<10	1.90	1407	3	0.10	3	1970	<2	<5	20	107	0.13	<10	144	<10	2	81
106	C41-108	5	<0.2	1.87	<5	· 105	5	1.71	<1	18	44	21	5.02	<10	1.42	1138	<1	0.09	3	1340	8	<5	<20	56	0.16	<10	108	<10	3	69
107	C41-109	5		1.48	<5	210	10	0.68	<1	- 14	28	2	4.88	<10	0.56	386	<1	<0.01	2	1730	` 4	<5	20	7	0.21	<10	70	<10	4	33
108	C41-110	5	<0.2	2.34	· <5	70	10	1.95	<1	22	47	3	5.60	<10	2.01	1450	<1	0.05	3	1550	8	<5	<20	77	0.19	<10	91	<10	3	80
109	C41-111	5	0.6		<5	185	<5	0.86	<1	27	18	139	5.57	<10	1.83	1970	2	0.01	11	1300	60	<5	<20	15	0.12	<10	47	<10	6	127
110	C41-112	5	0.2	2.09	_ <5	200	<5	0.66	<1	19	31	47	5.12	<10	1.45	1088	5	0.03	6	1810	8	<5	<20	25	<0.01	<10	67	<10	1	82
111	C41-113	5	<0.2	1.67	<5	190	10	3.22	<1	22	19	3	6.63	<10	1.28	1353	2	0.04	2	- 1940	2	<5	20	42	0.13	<10	96	<10	3	82
112	C41-114	5		2.20	<5	870	10	3.62	<1	21	25	5	5.83	<10	1.47	1338	<1	0.09	2	1260	4	<5	<20	99	0.18	<10	99	<10	5	55
113	C41-115	5	<0.2	3.14	≤_ <5	150	<5	0.80	<1	26	73	72	8.81	<10	1.96	2084	6	0.01	73	1600	12	<5	<20	13	0.17	<10	72	<10	4	122
114	C41-116	. 5	12.8	. 3.14	15	135	<5	1.47	6	17	13	128	6.44	<10	2.40	1874	् <1	0.03	3	1480	84	<5	<20	23	0.16	<10	66	<10	2	445
115	C41-117	5	<0.2	2.59	<	180	10	0.86	<1	22	13	48	5.61	<10	1.54	1538	<1	0.03	· 5	1900	16	<5	<20	22	0.20	<10	66	<10	4	123
116	C41-118	. 5	1.8	2.80	95	140	<5	0.98	3	30	121	349	5.57	<10	2.18	1829	1	0.02	127	1280	44	<5	<20	10	0.15	<10	63	<10	7	232
117	C41-119	10	1.6	3.02	· 20	35	<5	1,47	<1	28	78	398	6.42	<10	2.75	1494	2	0.05	45	2030	12	<5	<20	. 71	0.09	<10	147	<10	<1	115
118	C41-120	15	<0.2	2.14	55	60	<5	0.94	<1	40	60	305	6.07	<10	2.30	850	6	0.04	22	2440	18	<5	<20	36	0.23	<10	166	<10	5	63
119	C41-121	. 5	<0.2	2.67	20	. 45	<5	1.05	<1	31	57	128	5.43	<10	2.75	918	<1	0.03	25	1860	18	<5	<20	62	0.21	<10	157	<10	5 -	116
120	C41-122	5	1.0	4.30	30	65	<5	1.48	<1	32	113	89	8.55	<10	4.37	2550	. 3	0.03	25	2050	12	<5	<20	57	0.09	<10	231	<10	<1	170
121	C41-123	10	1.4	3.13	680	55	<5	2.52	<1	32	89	394	8.38	<10	3.46	1653	17	0.01	33	1490	48	<5	<20	40	0.09	<10	204	<10	3	151
122	C41-124	5	<0.2	2.51	10	35	<5	1.30	<1	28	46	134	4.82	<10	2.41	832	<1	0.06	22	2330	18	<5	<20	66	0.18	<10	161	<10	5.	66
123	C41-125	5	1.0	2.89	80	115	<5	1.86	<1	21	55	236	>10	<10	2.06	1427	3	0.11	- 7	2160	14	<5	20	86	0.19	<10	140	<10	<1	122
124	C41-126	5	0.6	3.36	25	35	<5	2.74	5	27	49	223	5.94	<10	3.63	1519	<1	0.05	21	2290	36	<5	<20	53	0.19	<10	263	<10	7	221
125	C41-127	5	1.0	2.62	25	40	<5	1.16	2	28	44	155	5.97	<10	2.92	1384	<1	0.04	21	2050	86	<5	<20	43	0.18	<10	168	<10	4.	207
126	C41-128	10	1.2	4.10	15	65	<5	0.79	<1	39	50	264	>10	<10	4.13	1755	5	0.03	16	2040	18	<5	<20	41	0.17	<10	242	<10	<1	125
127	C41-129	10	0.4	3.20	15	45	<5	1.52	1	39	96	364	7.36	<10	3.42	1109	5	0.05	41	3460	12	<5	<20	74	0.16	<10	160	<10	5	107
128	C41-130	5	<0.2	2.27	15	70	<5	1.02	<1	26	70	114	5.05	<10	2,26	1084	<1	0.04	23	2590	12	<5	<20	35	0.18	<10	163	<10	6	134
129	C41-131	5	2.0	2.65	40	65	<5	9.58	1	21	20	93	6.21	<10	1.45	4017	1	0.01	9	1280	22	<5	20	110	0.13	<10	53	<10 .	4	110
130	C41-132	5	0.6	3.04	20	60	<5	2.09	2	34	76	86	6.06	<10	3.19	1265	<1	0.06	32	2800	36	<5	<20	47	0.20	<10	162	<10	6	130

Page 4

-cVELLAND

er:

•

1

aptivate T

Alter Harris & an

100

Ł

€ 7

7

11. 2

ICP CERTIFICATE OF ANALYSIS AS 98-5140

- 41-1427 - 12

1

1000

012.04

1000

لمشرعه

ECO-TECH LABORATORIES LTD.

1

3

a contraction of the second

1

1

1

1

.

1

1

)

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	РЪ	Sb	Sn	Sr	TI %	U	<u>v</u>	W	Y	Zn
131	C41-133	5	0.4	1.10	30	45	<5	0.71	<1	12	26	50	2.80		0.90	457		0.05	2	1840	18	<5	<20	33	0.11	<10		<10		1. 34
132	C41-134	5	0.4	1.03	15	40	<5	0.78	<1	17	38	30	3.33	<10	0.78	433	2	0.05	3	1830	24	<5	<20	37	0.12	<10	48	<10	5	43
133	C41-135	5	5.6	0.93	140	35	<5	1.20	<1	12	145	334	4.62	<10	0.70	431	6	0.04	12	3940	46	<5	<20	31	0.09	<10	52	<10	- 4	37
134	C41-136	5	<0.2	1.67	370	55	`<5	1.15	. <1	14	50	73	3.30	<10	1.21	560	2	0.11	6	2070	16	<5	<20	64	0.11	<10	67	<10	5	55
135	C41-137	5	<0.2	1.62	75	50	<5	0.85	<1	13	52	39	3.74	<10	1.43	701	_ <1	0.08	. 3	1740	18	4	<20	43	0.15	<10	66	<10	6	61
136	C41-138	5	<0.2	2.91	20	185	<5	1.19	<1	28	64	75	5.86	<10	2.85	1282	<1	0.06	27	2370	12	<5	<20	58	0.20	<10	186	<10	7	168
137	C41-139	5	<0.2	2.54	15	35	5	1.92	2	28	116	35	4.58	<10	2.53	1068	: <1	0.03	33	2230	22	<5	<20	118	0.21	<10	123	<10	7	151
- 138	C41-14Ò	5	2.4	3.00	615	95	<5	3.47	11	14	49	51	6.31	<10	1.68	2422	6	<0.01	5	1240	48	<5	<20	32	0.07	<10	39	<10	<1	826
139	C41-141	/ 5	, 3.8	4.45	30	125	5	1.51	26	26	34	81	/ >10	<10	2.68	2679	- 5	⊲0.01	3	1570	110	<5	20	22	0.11	<10	58	<10	<1	1114
140	C41-142	>1000	√ >30	3.19	65	110	<5	1.94	18	34	92	>10000	6.17	<10	3.15	1569	2	0.02	22	1800	88	5	<20	38	0.12	<10	100	<10	<1	1327
141	C41-143	320	21.8	1.65	1520	75	<5	1.30	<1	267	54	1418	>10	<10	1.22	677	21	<0.01	156	5680	28	<5	20	27	0.06	30	48	<10	<1	101
142	C41-144	95	17.8	1.69	445	65	<5	0.74	<1	109	62	684	>10	<10	1.23	789	7	0.05	120	510	20	<5	20	19	0.24	<10	136	<10	<1	75
143	C41-145	10	7.0	3.21	150	100	<5	3.91	<1	85	60	682	9.67	<10	3.10	1991	. 6	0.02	59	1840	18	<5	20	69	0.16	<10	138	<10	<1	140
144	C41-146	5	1.8	3.09	325	85	<5	1.41	<1	60	57	459	8.69	<10	2.57	1606	2	0.06	54	1600	44 -	<5	<20	99	0.21	<10	117	<10	<1	147
145	C41-147	5	0.2	2.54	30	215	5	2.54	<1	18	61	46	4.48	<10	2.93	1689	<1	0.03	18	2070	22	<5	<20	41	0.19	<10	151	<10	6	145
146	C41-148	20	5.2	2.53	185	75	<5	0.93	<1	48	46	456	9.49	<10	2.60	1295	8	0.01	42	2030	20	<5	20	32	0.13	<10	103	<10	<1	. 104
147	C41-149	- 5	1.4	2.90	60	80	<5	1.25	· <1	48	43	378	7.08	<10	2.16	1321	. 3	0.07	34	2120	12	<5	<20	52	0.16	<10	117	<10	<1	89
148	C41-150	5	· 3.0	2.28	60	°: 70	<5	1.10	1	95	- 74	1242	9.73	<10	1.97	1355	3	0.04	94	2150	10	<5	20	40	0.22	<10	120	<10	1	164
i 149	C41-151	5	1.0	1.65	30	75	<5	1.35	<1	36	33	321	5.60	<10	1.71	1007	3	0.02	7	1230	18	<5	<20	18	0.08	<10	47	<10	<1	95
150	C41-152	5	<0.2	2.70	45	125	5	2.06	<1	24	79	73	5.57	<10	2.77	1453	<1	0.03	27	2550	12	<5	<20	55	0.20	<10	159	<10	7	199
151	C41-153	5	0.2	1.92	20	100	<5	1.20	<1	27	67	241	4.70	<10	1.60	812	· <1	0.05	_ 24	2510	10	<5	<20	58	0.23	<10	148	<10	6	104
								· .							· • •	÷	÷												· · ·	·

Page 5

LEVI	ELLAND				•						1		RTIFICA	TE OF	ANAL	YSIS A	S 96-5	5140					1	ECO-T		BORA	TORIE	S LTD.		
Et 4	l. Tag #	Au(ppt) A	g Al	% A	s Ba	9 8	i Ca%	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	РЬ	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
	DATA:														•														N R	Y
1		21	0 6.	4 4.3	3 20	0 75	5 <	5 1.42	`<1	189	34	1799	>10	<10	3.64	1807	15	0.04	97	1720	14	<5	20	30	0.11	<10	231	<10	<1	160
36	C41-036	}	5 <0.	2 2.1	9 <	5 165	5 1(1.32	<1	17	52	- 4	5.00	<10	1.99	1126	<1	0.05	- 4	1440	8	<5	<20	31	0.13	<10	102	<10	2	47
, 71	C41-071	l *	5 <0.	2 4.0)3 <	570) <	5 3.11	2	34	86	77	6.95	<10	4.48	1358	<1	0.03	28	2470	6	<5	<20	78	0.14	<10	275	<10	6	123
106			50.						<1	18	50	22	5.03	<10	1.42		⊂ <1	0.08		1390	6	<5	<20	55	0.15	<10	107	<10	3	73
141	C41-143) 39	0 22	0 1.7	73 158	0 78	5 <	5 1.27	<1	273	50	1486	>10	<10	1.28	708	_ 20	<0.01	163	5570	28	<5	20	26	0.06	30	51	<10	<1	96
_			ļ.														•		1.14								•			
Repe					***	- ·	18		-4					-40		4075			-	4.000						-40		-40		450
1		. –		2 4.1 4 2.5						184 26	24 89	1942 153	>10	<10 <10		1679	13	0.03		1720 2470	16 28	<5 <5	20 <20	27 51	0.10 0.12	<10 <10	210 118	<10 <10	<1 - 3	153 142
10 19	C41-010		50. 50.		1				-	20 33	61	200	6.05 5.71	<10	1.72 2.52		2	0.04		2340	14	<u>৩</u>	<20 <20	51 59	0.12	<10	118	<10	-3 -<1	192
36	C41-038		5 -0. 5							17	53	200	4.88	<10		1109	1	0.04		1420	8	~> <5	<20	32	0.08	<10	100	<10	- 1 - 1	46
· 45	C41-045		5 40					5 1.70		14	58	10		<10		1425	2			1420	8	<5	<20	24	0.10	<10	π	<10		38
				_ 1.0	· ·	5 505	· ·	, 1.70	-	14		10	4.00	10	1.51	172.0	· •	0.02		1420	•		-20	24.	0.10	-10		10	•	
54	C41-054	Ļ	5 <0.	2 2.1	1 <	5 85	; <	5 0.69	<1	17	48	7	4.76	<10	1.98	1041	· <1	0.02	3	1480	8	<5	<20	26	0.10	<10	82	<10	<1	45
71	C41-071		5 <0.	2.3.6	8 <	5.60) <	5 3.04	<1	32	82	74	6.68	<10	4.38	1310	<1	0.03	27	2310	6	<5	<20	74	0.12	<10	265	<10	6	115
80	C41-081		5 .<0.	2 24	18 1	5 110) े् ∢	5 8.57	i <1	21	36	106	4.50	<10	2.35	2889	 <1	0.10	22	1720	- 2	<5	<20	116	0.13	<10	134	<10	6.	79
. 89	C41-091	>100	D . O.	6、2.3	J7 <	5 25	্ব	5 1.25	2	19	84	263	8.90	<10	1.63	817	7	. 0.01	i 14	1690	- '4 -	<5	<20	55	0.08	<10	173	<10	<1	80
. 106				2 1.8		- :,	•			i 19	47	22	5.08	<10	1.42	1147	<1	0.09	÷ 4	1340	- 4	<5	<20	- 59	0.17	<10	111	<10	- 3 -	70
115	C41-117		5 ⊲ 0.	2 2.6	× 0	5 175	ঃ ব	5 0.88	<1	22	13	49	5.64	<10	1.54	1 526	<1	0.03	4	1950	18	<5	<20	22	0.19	<10	66	<10	. 4	124
124	C41-128	L. C.	50.	6 3.3	3 2	0 35	;	5 2.74	5	27	50	221	5.97	<10	3.60	152 2	. <1	0.04	22	2310	40	<5	<20	53	0.19	<10	261	<10	7.	228
141	C41-143	30	5 22.	8 1.7	1 163	5 75	s <	5 -1.34	<1	277	57	1437	>10	<10	1.26	704	22	<0.01	.165	5940	30	`<5	. 20	27	0.06	20	50	<10	` ≪1 , .	90
	÷.,				-					•		* * *								2 - 1				1 e .						() (영화 () (주요)
Stan							4		1														• 's	1 - C		•		• •	4	<u> </u>
GEO				4 ु 1.7						20	64	83	4.36	<10	0.98	737	ં <1.		22	800	26	<	<20	68	0.11	<10	78	<10	3.	71
GEO		14		2 1.8		1.1				20	66	85	4.41	<10	1.01	754	· · · · ·	0.02	20	720	24	<5	<20	62	0.12	<10	82 ;	<10	43	69
GEO		14			· · · · · ·		- Ca T		<1	21	69	85	4.02	<10	1.04	759	_ <1	0.02	22	790	. 20	<5	<20	60	0.14	<10	86	<10	5. 4 .	<u>, 70</u>
GEO		14	1 4 4 U U	4 / 1.8	· · · ·					21	69	89	4.10	<10	1.06	771	<1	0.02	24	710	22	<5	<20		: 0.13	<10	86	<10	4 -	<u>ି</u> ର 70
GEO	96	1.00	- 1,		· · ·	170) _ <	5 1.99	<1	21	69	89	4.06	<10	1.06	773	্ৰ	0.02	20	810	22	<5	<20	69	0.14	<10	87	<10	. 1 .	71
		1914 - C			4		1		•						•						•			:-						<u>.</u>
																				-				.`	÷ 1	•		1.1		140
							· ·		•											r.										
																		·											۰.	
				14 - 14 																				AL	~~	0				
				•																			-	ELO-T	ECH LA	BORA	TORIE	S LTD.	•	

8-10-100 8-10-100

٠

die statut

€ 1

EDO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

1

•

]

}

df/5140a/5140b XLS/96kmisc#6

а,

[.....]

a

a Ber antia

.

² − ²

.

.

and the second se

Page 6

ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING 1.1

ECO-TECH KAM.

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 8T4 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY AK 96-5182

2604 573 4557

LEVELLAND **530 CHESTER ROAD** DELTA, BC V3M 5U8

ATTENTION: DON COATES

LABORATORIES

No. of samples received: 158 Sample type: ROCK PROJECT #: CY CLAIMS SHIPMENT #: 2 Samples submitted by: HEATHER WILKIE

08:39

TD

5.3

A STREET	ET #.	Tag #	Au (g/t)	Au Ag Ag Cu (oz/t) (g/t) (oz/t) (%)	
-	13	LVLCYI166		- 3305.0 96.38 1.48	-
	14	LVLCYI167	-	- 116.2 3.39 -	
≩u rt	16	LVLCYI169	• • • •	- 284.0 8.28 -	
-	32	LVLCYI185	1.01	0.029 -	
- Card	33	LVLCYI186	1.60	0.047 - 3.51	
8 10 44	47	LVLCY1200	1.15	0.034	
_	96	LVLCYI250	1.92	0.056 -	
	97	LVLCYI251	14.66	0.428	
w . 1	112	LVLCY1266	6.22	0.181 - 2.30	
_	121	LVLCY1276	•	- 48.2 1.41 -	
Γ	129	LVLCYI283	2.62	0.076 -	
ļ ₩re	131	LVLCY1285	5.88	0.171 -	
	132	LVLCY1286		- 35.8 -	

QC DATA:

MPI-a

1,98

68.0

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

1.44

ASSAYING

GEOCHEMISTRY

29-Aug-96

XLS/96kmisc#7

26 Aug-96

7

ICP CERTIFICATE OF ANALYSIS AS 96-5182

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

LEVELLAND 530 CHESIER ROAD DELTA, BC V3M 5U8

τĽ

ATTENTION: DON COATES

No. of samples received: 158 Sample type: ROCK PROJECT #: CY CLAIMS SHIPMENT #: 2 Samples submitted by: HEATHER WILKIE Ł

Values in ppm unless otherwise reported

	Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	N	P	Pb	Sb	Sn	Şr	Ti %	U	٧	W	Y	Zn
	1	LVLCYI154	5	<0.2	1.57	<5	105	5	0.61	<1	12	50	33	3.20	<10	1.29	1026	<1	0.06	3	1290	18	<5	<20	38	0.15	<10	81	<10	3	107
	2	LVLCY1155	5	<0.2	1.98	25	50	<5	1.14	ব	26	64	112	4.21	<10	1.69	1039	. <1	0.05	20	1910	8	<5	<20	54	0.32	<10	160	<10	6	103
	3	LVLCYI156	5	<0.2	2.52	15	40	<5	1.19	<1	34	63	237	5.80	<10	2.24	1324	<1		28	2360	12	<5	<20	39	0.30	<10	177	<10	6	124
	4	LVLCYI157	5	<0.2	2.41	· <5	70 -	<5	1.18	<1	22	44	72	4.74	<10	2.11	923	<1		20	2000	18 -	.<5	<20	55	0.24	<10	183	<10	6	92
	5	LVLCY1158	5	<0.2	2.47	<5	80	<5	1.55	<1	25	49	105	4.96	<10	2.37	1110	. <1	0.04	21	1860	12	<5	<20	49	0.25	<10	191	<10	6	85
	6	LVLCY1159	5	<0.2	2.26	80	ç 65	<5	1.22	4	26	81	135	5.22	<10	1.99		<u>/</u> _1			1910	28	<5	<20	58	0.25	<10	174	<10	4.	125
	7	LVLCY1160	10	<0.2	4.13	. 15	. 75	5	2.39	2	29	88	61	7.04	<10	4.64	1813	ં 1	0.02	· 25	2120	102	<5	<20	45	0.16	<10	163	<10	3	286
	8	LVLCYI161	5	⊲0.2	1.43	.,⊬ 10	55	Š 5	0.59	<1	10	27	ija 19	3.26	<10	1.00	674	ं <1	0.05	.: 3	1070	16	` <5 .	<29	31	0.20	<10	60	<10	4 :	63
	9	LVLCY1162	5	1.2	1.88	20	90	<5	0.26	3	14	34	- 131	4.67	<10	1.30	947	6	0.03	3	990	34	<5	<20	15	0.02	<10	71	<10	<1	1177
	10	LVLCY1163	5	0.8	1.77	190	105	_<5	1.34	<1	13	39	55	5.12	<10	1.03	1105	6	⊲0.01	3	990 .	46	<5	<0	22	<0.01	<10	35	<10	1	267
:	11	LVLCY1164	5	9.2	1.93	40	150	<5	4.01	<1	22	27	90	4,42	<10	0.67	1512	9	<0.01	12	1660	10	. <5	<20	46	<0.01	<10	29	<10	4	37
· . ·	12	LVLCYI155	5	2.4	1.79	1235	430	10	· >10	<1	11	24	13	9.57	<10	2.88	7979	ී 8	<0.01	4	350	<2	<5	<20	461	0.02	<10	41	<10	<1	50
	13 👘	LVLCY/166	70	>30	1.21	1530	135	<5	>10	72	21	26	10000	7.35	<10	1.87	6987	5	⊲0.01	8	<10	8	2725	<20	355	J.02	<10	33	<10	3 🖓	1222
. •	14	LVLCYI167	5	>30	0.78	725	55	<5	1.68	<1	11	108	292	5.91	<10	0.24	1189	10	<0.01	7	480	166	55	<20	. 32	<0.01	<10	16	<10	<1	323
	15 -	LVLCYI168	5	6.6	1.85	1780	90	10	3.02	<1	14 1	78	26	7.68	<10	0.88	2196	10	⊲0.01	8	630	100	15	<20	38	0.01	<10	35	<10	4	166
	· ·	1.VLCY/169	10	>30	1.66	200	85	<5	0.58	•	20	98	545	6.90	<10	1.04	1768	9	<0.01	12	650	44	195	<20	45	<0.01	~10	37	<10	15	593
		LVLCYH70	. 10	2.2	2.74	10	105	.<5	3.43	۰ 1	27	73	88	5.34	<10		1622	े <1		21	1950	20	<5	<20	62	0.25	<10	207	<10	· · .*.	
		LVLCYI171	5	8.8		335	155	-	0.71	<1	18	64	72	>10	<10				<0.03	12		86	<5	<20	121	0.02	<10	45	<10		
		LVLCYI172	. 5	4.4	2.03	10	250	<5	2.67	<1	13	24	145	3.92	<10		1611	2			1280	10	5	<20	40	0.02	<10	97	<10	÷ .	103
			1		1.73		120	-	0.35	<1	16	45	24	>10		0.86		÷	<0.03 €	5		52	<5	.20	6	0.02	<10	29	<10		
4	20	LVLCYI173	1	, 1.0 ,	1.73	1115	120	20	0.33	-1	10	40	24	210	10	0.00	1241	20	-0.01		550	52	-5	~20	v	0.02	~10	69	<10		
2	21	LVLCY1174	5	3.2	2.08	95	140	<5	>10	<1	26 [·]	34	204	4.75	<10	1.42	3439	i - 4	< 0.01	25	1850	8 /	<5	<20	213	0.02	<10	61	<10	4	53
2	22	LVLCYI175	. 5	0.2	. 3.09	<5	85	<5	4.37	1	29	82	154	6.27	<10	3.05	2487	<1	0.02	22	2260	14	<5	<20	60	0.23	<10	228	<10	6	178
<u>'</u>	23	LVLCYI176	5	0.6	2.16	<5	405	<5	5.54	<1	15	26	84	4.45	<10	1.40	1524	<1	0.02	4	1080	18	<5	<20	95	0.08	<10	87	<10	3	97
2	24	LVLCYI177	5	<0.2	2.26	20	100	<5	1.98	<1	21	54	120	5.16	<10	2.12	1342	<1	0.10	23	2370	12	<\$	<20	62	0.19	<10	155	<10	5	128
2	25	LVLCYI178	5	2.2	1,46	10	75	10	0.42	<1	14	35	27	4.48 P	<10 age 1	0.79	680	ˈ<1	⊲0.01	4	1290	48	<5	<20	9	0.13	<10	23	<10	4	60

1

ICP CERTIFICATE OF ANALYSIS AS 96-5182

122

LEVELLAND

ECO-TECH LABORATORIES LTD.

•

·]

EL #	Tag #	Au(ppb)	Ag	AI %	As	Ba	81	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na	% Ni	P	Fb	S1	Sa	- Sr Ti	%	U	Ŷ	w	Y	Zn
26	LVLCY1179	10	<0.2	2.17	40	95	<5	1.06	<1	25	71	107	5.71	<10	2.13	738	<1 0.0	5 23	2250	8	<5	<20	38 0	.29	<10	203	<10	. 5	80
27	LVLCY1180	5	<0.2	1.76	20	255	5	1.21	<1	22	66	95	4.37	<10	1.35	615	<1 0.0	7 20	2390	8	<5	<20	49 0	23	<10	134	<10	2	59
28	LVLCY1181	5	<0.2	1.77	25	85	10	0.84	<1	14	65	67	4.73	<10	1.51	444	<1 0.0	H 9	2030	12	<5	<20	36 0	29	<10	183	<10`	-4	52
29	LVLCY1182	5	<0.2	2.08	<5	245	5	2.07	<1	16	52	22	3.79	<10	1.26	1168	<1 0.0	H 5	1210	8	<5	<20	110 0.	.17	<10	61	<10	4	75
30	LVLCYI183	5	<0.2	2.16	· <5	125	5	2.15	<1	11	43	7	3.81	<10	1.37	1205	<1 0.0	93	1330	8	<5	<20	73 0.	.15	<10	80	<10	6	70
31	LVLCY1184	115	1.4	2.19	<5	135	<5	1.77	<1	20	40	1530	4.72	<1Û	1.60	1275	15 0.0	5 6	1160	8	~5	-70	49 0.	.19	<10	93	<10	3	70
32	LVLCY1185	>10001			25	65	_	1.59	13	35		(60)	6.81		1.73		175 0.0			200	<5	<20			<10	110	<10	-	1418
33	LVLCYI186	>1000			∵ ⊲ 5	45	<5	0.91	3	121		>10000	>10	<10	0.69	722	31 0.0			<2	<5	<20	53 <0.		<10	67		<1	142
34	LVLCYI187			4.85	4	85	5	2.90	<1	25	52	80	6.51	<10	2.19		2 0.1		1960	6	<5	<20			<10	204	<10	<1	104
35	LVLCYH88	-		2,75	<5	210	5	1.99	<1	25	27	97	7.66		1.46	1499	5 <0.0		160	4	<5	<20			<10	102		<1	61
	2.2011100						. •		•			•									-	۲.					1		
.36	LVLCY1189	5	<0.2	2.37	<5	130	· 10	3.35	<1	24	29	12	5.15	<10	1.85	1279	<1 0.0	6 11	1630	· 4 -	<5	<20	54 0.	.14	<10	98	<10	3	69
37	LVLCY1190	5	<0.2	2.89	4	105	10	1.01	<1	28	15	5	7.00	<10	2.71	1226	<1 0.0	4 6	1730	4	` < 5	<20	36 0.	.18	<10	122	<10	3	58
38	LVLCYH31	5	<0.2	2.41	<5	120	10	0.69	<1	18	53	- 4	5.89	<10	1.56	941	2 < 0.0	1 5	1190	. 6	<5	<20	13 0.	.14 -	<10	59	<10	<1	55
39	LVLCY1192	5	<0.2	2.09	<5	75	5	0.72	<1	20	27	8	5,81	<10	1.87	997	<1 0.0	4 4	1490	6	<5	<20	38 O.	15 .	<10	141	<10	2	55
40	LVLCY1193	5	<0.2	1.66	<5	120	<5	0.28	<1	15	83	14	4,57	<10	1.24	1145	5 <0.0	1 4	930	8	.<5	<20	70.	.05 •	<10	57	<10	2	39
41	LVLCY1194	5	<0,2	2.00	<5	110	10	1.69	<1	17	55	· 4	4.44	<10	1.78	1083	<1 0.0	42	1210	6	<5	<20	38 0 .	18 4	<10	95	<10	4	45
42	LVLCYI195	5	<0.2	2.42	<5	205	10	1.40	<1	17	41	- 4	5.72		1 39		3 ⊲0.0	1 : 2		6	<5	<20	15 0.	09	<10	44	<10	2	. 46
43	LVLCY1196	. 5	<0.2	1.99	ି 🐔	135	. 10	0.56	<1	18	62	45	5.19	<10	1.35	1197	2 0.0	3 3	1190	8	<5	<20	20 0.		<10	76	<10	3	53
44	LVLCYI197	. 5	<0.2	0.95	<5	100	<5	0.24	<1	. 14	114	5	3.23	<10	0.31		4 <0.0		880	6	. <5	<20	4° 0.		<10	21	<10	1	12
45	LVLCY1198	. 5	<0.2	2.23	<	160	- 10	0.52	<1	18	36	4	5.71	<10	1.38	1076	3 ⊲0.0	1 2	1790	6	<5	<20	6 0.	09	<10	51	<10	<1	69
46	LVLCY1199	5	<02	2.22	4	105	10	0.62	<1	19	60	8	5.01	<10	1.82	1171	<1 0.0	4	1210	6	<5	<20	42 0.	17	<10	93	<10	2	52
47	LVLCY1200	>1000			10	115	145	0.09	<1	13	174	86	1.87	<10		533	8 <0.0		150	38	<5	<20	1 0.		<10	6	<10	<1	6
45	LVLCYI201	. 5		2.08	<5	125	-	1.90	<1	17	52	75	4.81	<10	1.66	1238	<1 0.0		1190	6	<5	<20	33 0.	13	<10	77	<10	4	58
49	LVLCY1202	. 5	0.4			165	10	4.07	<1	15	56	4	5.78	<10	1.08	2995	ť ⊲J.U		1320	4	~5	<20	41 -0.	C1 ·	<10	15	-10	1	48
50	LVLCY1203	5	16.6			30	<5	1.30	<1	45	104	(5646)	5.08	<10	0.24	1348	12 <0.0	1 6	350	16	\$	<20	22 <0.	01 .	<10	13	<10	<1	15
				•,					,			50	•													•			
51	LVLCYI204	5	⊲0.2	1.66	<5	200	5	3.02	<1	13	62	16	4.08	<10	1.20	1205	2 0.0	2 3	1180	4	<5	<20	58 0.	08	<10	59	<10	6	41
52	LVLCY1205	. 5	0.2	2.10	<5	155	10	0.49	<1	18	71	9	5.62	<10	1.36	1208	6 0.0	1 🔆 4	1280	8	<5	<20	15 0.	02 •	<10	65	<10	3	57
53	LVLCYI206	140	0.4	2.46	<5	105	<5	1.83	<1	21	44	164	4.65	<10	1.42	1395	<1 <0.0	1 23	2590	8	<5	<20	28 0.	10 •	<10	68	<10	6	62
54	LVLCYI207	5	0.6	2.48	25	35	<5	1.45	<1	18	74	235	7.49	<10	1.40	1024	4 <0.0	1. 16	1970	20	<5	<20	131 0.	13 4	<10	123	<10	<1	65
55	LVLCYI208	5	<0.2	2.30	10	08, 1	<5	1.50	<1	26	68	107	4.45	<10	1.61	952	<1 0.0	7 25	2040	16	<5	<20	81 0.	26 •	<10 ·	173	<10	5	199
			·			· •	•	÷.,							-						·			۰.			1		. ·
56	LVLCY1209	10	<0.2	2.33	· <5	40	<5	1.00	<1	27	63	174	4.96	<10	1.98	887	<1 0.0	3 17	1340	16	<5	<20	53 O.	37	<10	202	<10	2	108
57	LVLCY1210	5	<0.2	2.60	<5	70	10	1.68	<1	23	81	42	5.70	<10	2.83	1767	<1 0.0	4 22	2170	8	<5	<20	39 0 .:	24	<10	198	<10	5	97
58	LVLCY1211	10	<0.2	1.69	25	55	15	0.63	<1	14	58	39	4.36	<10	1.22	659	<1 0.0	5 10	1310	8	<5	<20	35 0.	20 <	<10	113	<10	2	45
59	LVLCY1212	35	0.6	2.69	40	60	<5	2.00	<1	18	62	276	4.77	<10	1.75	1661	<1 0.0	5 23	2160	24	<5	<20	73 0.	18 •	¢10	138	<10	5	290
60	LVLCY1213	5	0.2	3.70	5	95	10	4.24	1	27	78	57	6.78	<10	3 16	2515	2 0.0	2 28	2250	22	<5	<20	134 0.	08 <	<10	210	<10	5	280

Page 2

.

LEVELLAND

A Contraction of the second

.

9

ICP CERTIFICATE OF ANALYSIS AS 96-5182

ECO-TECH LABORATORIES LTD.

)

9 m 1 -

C:	7. Tag#	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cď	Co	Cr	Cu	Fe %	La	Mg %	Mn	Ma	Na %	N	F	Fb	Sb	Sn	Sr	Ti %	υ	v	w	Y	Zn
61	LVLCY1214	5	<0.2	2.57	<5	40	10	3.23	<1	22	64	53	5.70	<10	2.30	1628	<1	0.04	12	1810	14	<5	<20	46	0.14	<10	187	<10	2	78
62	LVILCY1215	145	2.6	2.23	65	65	<5	0.68	<1	35	64	394	9.37	<10	1.84	1250	2	0.03	22	2100	42	<5	<20	- 41	0 25	<10	153	<10	<1	114
63	LVLCY1216	5	≪0.2	2.61	<5	50	5	1.22	<1	25	65	20	4.81	<10	2.52	1075	<1	0.04	28	2320	14	<5	<20	41	0.28	<10	154	<10	<u>``</u> .7	147
64	LVLCY1217	5	<0.2	2.23	5	60	<5	0.84	2	27	63	69	5.07	<10	2.11	1137	<1	0.04	13	1970	16	<5	<20	42	0.12	<10	149	<10	1	155
65	LVLCY1218	5	0.8	1.05	10	45	<5	0.78	<1	14	46	192	4.22	<10	0 60	529	1	0.02	8	1120	22	<5	<20	17	0.11	<10	79	<10	1	33
66	LVLCYi219	5	0.4	1.15	<5	75	<5		<1	14	51	114	3.40	<10	0.72	573	2	0.05	4	1450	22	<5	<20	6 0	0.13	<10	85	<10	4	72
67	LVLCY1220	30	3.6	1.00	<5	45	<5	2.04	<1	8	20	503	8.34	10	0.73	462	. 8	0.02	3	6580	4	<5	<20	34	0.05	0</td <td>67</td> <td><10</td> <td>12</td> <td>24</td>	67	<10	12	24
68	LVLCY1221	5	2.0	3.79	. <5	45	<5	1.88	12	35 ·	50	224	7.52	<10	2.72	2120	2	<0.01	32	2380	150	<5	<20	30	0.13	<10	117	<10	2	809
69	LVLCY1222	5	1.4	3.69	<5	95	<5	4.25	1	30	63	. 99	8.78	<10	1.87	2806	<1	0.01	26	2170	24	<5	<20	42	0,18	<10	180	<10	2	176
70	LVLCY1223	5	<0.2	4.36	10	95	15	1,49	<1	25	59	31	>10	<10	3.04	2052	1	⊲0.01	22	2470	12	<5	<20	23	0.23	<10	216	<10	2	110
71	LVLCYI224	5		1.40	45	100	-	0.66	<1	10	43	21	2.96	<10				0.15	-	1500	8	<5	<20	70	0.09	<10	45	<10	2	28
72	LVLCY1225	5		2.35	<5	60		1.65	<1	20	63	55	4.08	<10	2.26	1326	<1		23		10	<5	<20	38	0.16	<10	140	<10	4	. 90
73	LVLCY1225	5	4.4		645	115		2.14	<1	26	72	100	4.74	<10	0.60			<0.01	21		34	<5	<20	20	0.09	<10	46	<10	3	6 1
74	LVLC:Y1227	5	<0.2	1.54	. 5	80	5	0.52	<1	7	40	37	3.68	<10	1.04	610	<1	0.06		1210	12	<5	<20	44	0.16	<10	100	<10	3	50
75	LVLCY1228	5	⊲0.2	3.18	20	70	<5	2.13	<1	31	80	275	8_26	<10	3.96	1395	<1	0.08	25	2330	14	<5	<20	50	0.19	<10	246	<10	3	154
76	LVLCY1229	20	0.6	5.27	<5	60	<5	0.81	1	37	58	951	≻10	<10	3.53	1702	<u>ं</u> 1	0.01	36	2270	4	<5	<20	16	0.40	<10	408	<10	<1	110
77	LVLCYI230	5	⊲∪2	1.89	15	110	<5	0.51	<1	16	55	31	4.68	<10		603			. 8		16	<5	<20	45		<10	95	<10	-	40
78	LVLCYI231	5	. 2.4	2.51	45	: 70	· 10	0.44	<1	18	28	75	8.66	<10	1.11	943	3	0.02	6	1680	156	<5	<20	18		<10	74	<10		87
79	LVLCY1233	5	⊲0.2	2.33	<5	165	5	1.91	<1	13	60	5	3.53	<10	1.71	759	· <1	0.09	2	1160	8	5	<20	78	0.09	<10	49		<1	35
80	LVLCY1234	5	<0.2	1,74	<5	175	• 5	0.45	<1	16	50	11	4.04	<10	1.03	820	`<1	0.01	5	1240	4	<5	<20	6	0.10	<10	45	<10	2	36
81	LVLCYI235	5	a 1 2	1.84	<5	110	5	0.44	<1	15	37	7	4.53	<10	1 32	1191	· ~1	0.03		1200	6	<5	<20		0.11	<10	73	<10	2	59
82	LVLCY1236	5	<0.2		<5	100	<5	0.52	<1	15	45	10	4.30	<10	1.37	1265	<1		. 4		4	<5	<20	17	0.10	<10	87	<10	2	54
03	LVLCY1237	. 5	<0.2		-	. 80	5	0.71	<1	21	18	. 2	5.29			1472			-	1700	8	\$	<20	51	0.11	<10	81	• -	<1	77
84	LVLCY1238	5	<0.2			155	10	0.34	<1	27	37	26	7.69	<10		1427				1090	Ğ	5	<20	7	0.04	<10	62		<1	56
85	LVLCY1239	5	⊲0.2		<5	105	10	1.96	· <1	20	44	16	8.54			1370		0.08		1930	حّ	<5	<20	30	0.09	<10	218	<10		48
						۰.													:					50		~10	210	-10		. 40
86	LVLCY1240			1.23	<5	145	<5	0.63	. <1	11	16		2.98		0.49			<0.01	8	1720	- 4	<5	<20	4	0.13	<10	31	<10	1 4 : †	24
87	LVLCY1241	- 10	2.2		10	140	<5	0.26	<1	140	36	1202	>10	<10	0.79	737	11	<0.01	3	630	· 4	<5	<20	3	0.07	10	45	<10	1	37
88	LVLCY1242	5	<0.2	1.97	<5	80	. <5	0.75	<1	16	26	7		<10			 1	0.07	. 2	1460	4	<5	<20	71	0.07	<10	34	<10	<1 ⊡	38
69	LVLCY1243	- 5	<0.2		<5	240	10	1.79	. <1	17	19	16	5.84		1.21	1609	<u>;</u> <1		3	1700	6	<5	<20	69	0.13	<10	123	<10	<1.	55
90	LVLCY1244	5	06	2.20	15	95	<5	1.39	_<1	20	25	183	3,71	<10	1,08	668	. <u><</u> 1	0.10	. 9	1560	42	<5	<20	58	0.10	<10	76	<10	2	115
91	LVLCY1245	5	<0.2	3.51	<5	405	<5	1.36	<1	18	43	73	4.89	<10	1.52	1159	• <1	0.19	13	1370	8	<5	<20	118	0.18	<10	125	<10	3	- 68
92	LVLCY1246	5	⊲0.2	1.47	<5	90	<5	0.80	<1	11	32	109	3.65	<10	0.81	607	2	0.09		1190	6	<5	<20	29	0.10	<10	64	<10	1.	47
93	LVI.CYI247		<0.2		15	120	<5	2.08	<1	21	15	87	4.53	<10	1.09	878	3			1680	8	<5	<20	114	0.12	<10	74	<10	2	72
94	LVI.CY1248	5	<0.2	1.87	<5	265	5	1.19	<1	15	49	13	4.39	<10		2254	1	0.03	- 4		4	<5	<20	22	0.08	<10	62	<10	2	43
95	LVLCYI249	10	<0.2		5	<5	<5	1.38	<1	4	95	3	0.90		0.02	182	<1	<0.01	2		6	<5	<20	238	0.11	<10	18	<10	1	2
	4																													

Page 3

ICP CERTIFICATE OF ANALYSIS AS 98-5182

~~]

1

7

E

, . .

and the second second

٣

LEVELLAND

- 1

ECO TEAD AVS.

C604 373 1337

90:6P

96 62 04

for the second

ļ

ECO-TECH LABORATORIES LTD.

1

)

· E	t #. Tag #	Au(ppb) A	g Al%	As	Ba	Bi Ca	%	Cel Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	2 6	35	Sn	5;	ті %	U	Ý	w	¥	7n
96	LVLCY1250	>1000 / 1.	8 2.42	260	130	30 0.	.08	<1 225	44	83	>10	<10	0 82	1179	67	<0.01	2	320	18	<5	<20	4	0.03	<10	58	<10	<1	71
97	LVLCY1251	>1000 1 7.9	6 1.64	170	170	<5 0.	.12	<1 274	47	1127	>10	<10	0 49	683	64	<0.01	7	160	96	<5	<20	6	0.02	<10	28	`<10	<1.	57
98	LVLCYI252	75 <0 .3	2 1.81	- <5	110	53.	.51	<1 15	32	9	4.39	<10	1.31	1077	2	0.04	2	1210	4	<5	<20	75	0.08	<10	83	<10	<1	35
99	LVLCYI253	5 <0.	2 1.27	<5	245	5 1.	.55	<1 8	47	8	2.56	<10	0 62	141G	1	<0.01	3	1270	6	<5	<20	20	0.03	<10	24	<10	2	23
10	0 LVLCY1254	5 <0.	2 2.74	25	475	10 · 0.	63	<1 20	25	2	6.97	<10	1.32	1568	4	<0.01	3	1290	6	<5	<20	11	0.05	<10	39	<10	<1	38
	•																											
10	1 LVLCY1255	5 <0.3	2 1.27	<5	180	<5 1.	29	<1 8	44	9	2.54	<10	0.59	1264	1	~0.01	3	1150	4	~5	<20	15	0.02	<10	19	<10	5	22
10	2 LVLCY1255	5 0.2	2 1.53	<5	175	<5 6.	.34	<1 11	51	126	3.33	<10	0.97	2068	2	<0.01	3	1030	<2	<5	<20	87	0.04	<10	35	<10	5	33
10	LVLCY/257	5 0.0	6 2.74	<5	1315	10 >	10 .	<1 . 15	53	14	5.33	<10	1.36	6453	- 4	< 0.01	- 4	590	4	<5	<20	72	0.04	<10	40	<10	6	49
104	4 LVLCY1258	5 <0.3	2 1.96	<5	330	10 1.	57	<1 18	41	8	4.92	<10	1.18	1708	2	0.02	10	1400	4	<5	<20	27	0.07	<10	53	<10	2	47
10	5 I.VLCYI259	5 <0.	2 1.10	<5	610	<5 1.	96 .	<1 10	49	8	2 50	<10	0.44	1527	<1	<0.01	12	1210	6	<5	<20	27	0.05	<10	21	<10	4	22
															$\frac{1}{2}$. t	*							
106	5 LVLCYI260	5 <0.3	2 2.10	<5	285	10 1.	43 ·	<1 12	47	7	4.14	<10	· 1.26	1111	2	⊲0.01	3	1230	6	<5	<20	17	0.06	<10	41	<10	<1	39
107	7 LVLCY1261	5 <0.2	2 1.74	<5	300	<5 2.	55 ·	<1 B	- 44	· 4	3.06	<10	0.68	1794	. 1	<0.01	3	1400	4	<5	<20	26	0.05	<10	28	<10	3	28
108		5 ⊲0.3	2 1.00	<5	215	<5 3.	01 ·	<16	18	1	2.98	<10	0.41	1127	્ર <1	⊲0.01	3	1550	2	<5	<20	33	0.07	<10	26	<10	3	14
109	LVLCYI263	135 1.0	D 3.81	<5	110	<5 2	25	1 39	8	1 197	>10	<10	2.83	2189	10	0.06	- 4	1580	6	<5	<20	48	0.06	<10	175	<10	<1	114
110) LVLCY1264	5 <0.2	2 3.00	<5	115	10 4.	13 -	c1 22	- 4	10	5.86	<10	1.87	1766	1	0.02	2	1640	6	<5	<20	43	0.08	<10	53	<10	2	65
111		130 1.0		<5	90	<5 2.		<1 25	14		>10	<10	0.20	1213	. 15	0.04	9	870	4	<5	<20	7	0.02	<13	33	<10	<1	41
112		>1000/ 17.2		55	. 35	<5 1.4		1 04		(10000)		<10	043	754	18			1100	2	<5	<20	9	0.02	<10	32	<10	<1	150
113			2 1.99	i 10	110	<5 0.3		c 1 19	32	126	4.13	<10		1212		<0.01		1200	14	<5	<20	9	0.11	<10	31	<10	3	45
114			2 2.14	`° <5	105	5 0.		-1 17	24	37	4.50	<10		1067	_<1				8	<5	<20	41	0.16	<10	99	<10	3	66
115	5 LVLCY1269	, 5 ⊲0.2	2 1.38	<5	120	· <5 0.	61 -	et 11	12	24	2.75	<10	0.61	721	1	<0.01	23	1020	14	<5	<20	8	0.06	<10	22	<10	6	36
							~~										_		-	_								
116		5 <0.2	7	4	160	5 1.		1 15	19	23	5.19		1.11		1			1210	6	<5	<20	25	0.09	<10	76	<10	-	50
117		70 7.4		<5	40	. <5 1.3		2 69	14	3195	7.40	<10		1456	1.1.1	0.01		1240	<2	<5	<20	16	0.02	<10	44	<10	-	91
110			3 1.95	ঁ	.80	10 >		2 10	- 11	16	6.66		1.98		s,	<0.01	· 3	220	<2.	<5	<20	264	0.02	<10	47	<10	2	56
119			2 1.68	<5	260	<5 3.		1 11	28	21	4.02	<10				<0.01		1210	4	~5	-20	20	0.05	<10	41		<1	43
120	LVLCY1274	10 <0.2	2.17	\$	420	5 2.0	03 4	:1 13	38	38	3.94	<10	1.29	2021	. .	<0.01	3.	1200	. 6	<5	<20	28	0.06	<10	37	<10	3	40
	LVLCY1275	240 - 220			. 240	£0 0.4		4 400			~10	-10	4 40	4604		-0.04		400			-00				~			
121		240 >30		60	210 260	50 0.1 5 1.2		1 190 1 15	81		>10		1.46			<0.01		190	32	<5	<20		0.04	<10	58		<1	63
122		5 <0.2	2.57	<5 4	200 90	5 1.2 <5 1.0		1 15 1 13	55 60		5.51	<10	1.41 1.23	157 3 638	-	0.02		1290	8	<5	<20	14		<10	57		<1	68
123				<5					34		3.65	<10		1506				1170	6	<5	<20		0.10	<10	69		<1	59
124 125		10 <0.2 5 <0.2		<5	220 · . 190	10 1.2		1 21 1 13	45		5.77 3.85	<10	1.54	923	-	<0.01		1220	8	<5	<20		0.09	<10	66	<10		60
125	EVECTI2/9	5 <0 ?	2.03	<5 .	190	10 0.6		1 13	40	.5	3.05	<10	1,15	923	<1	0.04	4	1170	10	<5	<20	32	0,10	<10	42	<10	<1	43
126	LVLCYI280	5 0.2	1.66	<5	170	<5 0.7	70 <	1 13	69	6	3.78	<10	0.77	1017		<0.01		1320	8	<5	<20	10	0.02	- 10		-10	· ·	
120		30 0.2		<5	60	15 0.1			63	16	>10		3.10			<0.01 <0.01	5 1	380	, 4				0.03	<10	41		.2	52
127	LVLCY1282		1.77	<5	195	<5 0.4		1 14	67		3.86			1251		<0.01	-			<5	<20	1	0.03	<10	85	-	<1	162
120	LVLCY1283	>1000/28.0		25	195	<5 0.0		1 93	66	(9772)	>10	<10	0.43	633		<0.01	3	1310 390	6 8	<5 <5	<20	-	0.04	<10	27	<10	1	41
130		•	1.97	<5	250	<5 0.9			56		3.72		1.22	942		0.01	-	1330	6		<20 <20	26	0.02	<10	34		<1	42
130	LVLUTI204	10 40.2	1.97	- 3	200	-0 0.8			50	29	3.12	10	1.22	372	3	0.01	3	1330	0	<5	~20	17	0.06	<10	34	<10	3	46

Page 4

LEVELLAND

<u>в</u>ль. с.

7

(and the second second

12

ECU-TECH KAN.

2801 373 1357

10:80

96 02-50

١.

and the second sec

Mars - Pro

• 1

ICP CERTIFICATE OF ANALYSIS AS 96-5182

an Manadalan

.

geriegan 4

]

ECO-TECH LABORATORIES LTD.

)

_	Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	ivin	Miu	Na %	M	ŗ	Pb	SÞ	\$n	Sr	TI %	U	v	w	¥	Zn
-	131	LVLCYI285	>1000	3.2	1.37	75	80	40	0.05	<1	111	98	30	>10	<10	0.55	485	44	< 0.01	2	<10	6	<5	<20	<1	0.01	10	29	<10	<1	43
	132	LVI.CYI286	170	>30	1.94	15	95	<5	0.22	1	161	74	5864	>10	<10	0.85	650	21	⊲0.01	2	730	· 2	<5	<20	6	0.07	<10	48	<10	.<1	101
	133	LVLCY1287	10	<0.2	2.05	<5	155	<5	0.66	<1	17	56	42	3.96	<10	1.45	741	<1	0.06	3	1190	6	<5	<20	30	0.12	<10	80	<10	1	31
	134	LVLCY1288	. 10	≪0.2	2.56	<	335	- 10	1,93	<1	20	17	7	5.81	<10	2.10	1126	2	0.06	2	1740	6	<5	<20	41	0.08	<10	83	<10	2	48
	135	LVLCY1289	5	- 1.4	2.66	<5	25	10	>10	3	29	35	61	9.86	<10	2.05	4519	8	<0.01	14	260	2	<5	<20	920	0.02	<10	66	<10	7	93
	136	LVLCY1290	. 5	<0.2	3.12	<5	185	5	2.67	<1	18	20	5	5.61	<10	1.70	1051	1	0.09	2	1740	10	<5	<20	58	0.12	<10	74	<10	2	63
	. 137	LVLCYI291	5	1.2	2.72	45	160	່ <5	0.56	<1	24	18	461	6.16	<10	1.63	662 ·	2	<0.01	8	1820	16	<	∕20	9	0.10	<10	46	<10	<1	50
	138	LVLCY1292	5	.⊲0.2	, 2.08	10	150	10	1.08	i <1	17	20	7	5.27	<10	1.32	830	2	0.09	3	1610	14	<5	<20	36	0.10	<10	58	<10	1	33
	139	LVLCY1293	5	₹0.2	2.08	35	145	· 5	0.75	<1	14	39	6	4.91	<10	1.13	761	3	0.05	. 4	1690	16	<5	<20	26	0.11	<10	43	<10	<1	38
	140	LVLCY1294	5	⊲0-2	1.96	<5	270	10	1.85	<1	16	19	6	5.59	<10	0.78	706	1	0.03	1.4	1690	8	<5 :	<20	19	0.09	<10	61	<10	<1	38
		•		·. ·	÷ .		1 G		2	•										1.1											
	141	LVLCY1295	5	(⊲0,2	1.69	<5	230	≓ <5	0.88	<1	11	28	36	2.41	<10	0.59	1091	_ <1	<0.01	' 3	1510	10	<5	<20	9	0.12	<10	27	<10	4	43
	142	LVLCY1296	5	. ⊲0.2	- 2.33	<5	80	10	. 1.37	<1	18	38	- 4	4,79	<10	2.01	1086	<1	0.05	6	1270	10	<5	<20	37	0.12	<10	104	<10	<1	58
	143	LVLCY:297	345	1.6	2.56	365	255	<	0.41	<1	52	61	298	8.09	<10	1.54	1213	.6	<0.01	. 28	820	16	<5	<20	8	0.05	<10	70	<10	<1	168
	144	LVLCY1298	5	⊲0.2	2.18	<5	140	10	1.05	<1	17	38	6	5.93	<10	1.73	975	<1	0.08	. 4	1430	6	<5	<20	38	0.14	<10	119	<10	<1	62
	145	LVLCY1299	60	3,8	0.83	215	115	-5	0.33	<1	20	43	448	5.16	<10	0.19	188	40	<0.01	5	1440	20	<5	<20	5	0.10	<10	20	<10	<1	19
					5	•											•														
	146	LVLCY1300	5	. <0.2	3.02	. 5	165	. 15	1.02	. <1	32	24	- 4	7.79	<10	2.62	1312	<1	0.04	5	1340	8	<5	<20	18	0.15	<10	151	<10	<1	. 175
•	147	LVI.CYI301	ୁଁ 5	<0.2	2.09	্ৰ ব্য	145	5	0.47	-1	15	16	25	4.03	<10	1.22	721	i - 1	<0.01 ₹	3	1880	10	<5	<20	7	0.04	<10	36	<10	3	53
	148	LVLCY1302	5	໌⊲0.2	2.71	<5	320	10	1.71	<1	21	13	22	5.43	<10	1.18	965	2	0.02	5	1630	8	<5	<20	21	0.07	<10	55	<10	<1	73
	149	LVLCYI303	5	<0.2	2.88	10	295	10	0.50	<1	15	13	5	6.09	<10	1.77	747	3	0.04	7	1990	16	<5	<20	21	0.10	<10	77	<10	<1	60
	150	LVLCYI304	5	0.2	2.41	ঁব	175	10	0.48	<1	23	20	9	5.40	<10	1.31	807	2	0.02	5	1500	18	<5	<20	16	0.07	<10	36	<10	<1	57
		-																													
	151	LVLCY1305	5	<0.2	1.72	<5	. 450	10	0.61	<1	19	17	з	4.96	<10	1.06	485	<1	0.04	- 4	1660	6	<5	<20	20	0.08	<10	55	<10	<1	50
	152	LVLCY1306	. 5	.⊲0.2	2.18	<5	180	10	0.43	<1	18	30	5	5.35	<10	1 56	1188	<1	0.03	5	1160	8	<5	<20	12	0.11	<10	68	<10	<1	65
	153	LVLCYI307	5 5	Í<02	3.67	<5	125	15	0.97	<1	31	17	6	6.59	<10	2.93	1736	<1	0.05	6	1780	10	<5	<20	106	0.14	<10	137	<10	<1	76
	154	LVLCYI309	5	<0.2	2.58	<5	345	10	3.00	<1	22	21	1	6.64	<10	1.73	1369	2	0.14	4	1660	S	-5	<20	100	0 11	<10	157	<10	<1	104
	155	LVLCY1310	5	<0.2	2.11	ं <5	175	5	2.34	∕ ~1	16	28	24	4.94	<10	1.55	1137	<1	0.08	2	1250	8	<5	<20	36	0.13	<10	94	<10	<1	60
									. •					1													-				
	156	LVLCYI311.	15	.⊲0.2	1.50	<5	475	<5	3.51	<1	16	52	117	3.45	<10	0.81	1130	8	<0.01	• 4	1530	6	<5	<20	62	0.09	<10	23	<10	3	45
	157	LVLCYI312	5	<0.2	2.28	185	90	<5	0.81	<1	14	68	262	4.78	<10	1.17	765	19	0.10	35	1420	16	<5	<20	43	0.09	<10	71	<10	<1	108
	158	LVLCYI313	5	.⊲0.2	3.00	. <5 .	110	15	2.27	<1	32	37	6	7.61	<10	2.91	1600	3	0.05	9	1200	8	<5	<20	29	0.12	<10	181	<10	<1	144
1	· .	1.00				·	1.15																				-		-		

Page 5

.

LEVELL	AND											ŀ	CP CEI	RTIFIC/	TE OF	ANAL	YSIS A	S 96-5	182							ECO-1	ECH L	ABORA	TORIE	S LTD			
Et #		Au(ppb)		Ag	AI %	As	Ba	E	BI Ca	%	Cd	Co	Cr	Cu	F0 %	Ĺa	My %	Mus	Hio	Na %	, MI	P	РЪ	<u>86</u>	Sn	Sr	TI %	U	V	W	۲	Zn	
QC DAT.	A :							<i></i>																									
Resplit																																	
R/S 1	LVLCY1154	5	<).2	1.57	5	105	<	5 0.	60	<1	13	51	33	3.22	<10	1.28	1025	<1	0.06	3	1310	18	<5	<20	38	0.14	<10	80	<10	. 3	107	
R/S 36	I.VLCYI159	5	<	.2	2.43	<5	130	1	5 3.	34	<1	24	32	13	5.15	<10	1.88	1303	<1	0.06	12	1630	6	<5	<20	52	0.16	<10	98	<10	4	71	
R/S 71	LVLCY1224	5	<).2	1.35	. 50	90	. <	5 0.	60	<1	10	40	21	2.56	<10	0.74	444	<1	0.12	5	1560	10	<5	<20	64		<10	44	<10	2	29	
R/S 106	LVLCY1260	5	<	.2	2.06	<5	270		5 1.4	45	<1	12	47	7	4.19	<10	1.27	1115		<0.01		1240	6	<5	<20	17		<10	40	<10	<1	39	
R/S 141	LVLCY1295	5	<	.2	1.64	<5	210	 	5 0.1	69 ·	<1	11	27	34	2.32	<10	0.56	1047	<1	<0.01		1480	6	<5	<20	9		<10	23	<10	4	41	
			÷.																			,								-			•
Repeat:			÷.,					2		÷_1							•		· *		1.1				-								·'.
1	LVLCY1154	5	<	2.	1.55	5	100	<	5 0.	60	<1	12	51	32	3.19	<10	1.28	1022	<1	0.06	2	1300	20	<5	<20	38	0.15	<10	80	<10	3	110	1
10	LVLCY1163	5	0	8.6	1.77	· 195	105	<	5 ; 1.:	33 🖓	<1	13	39	55	5.16	<10	1.04	1107	6	< 0.01	2	1000	46	<5	<20	22	⊲0.01	<10	35	<10	· 2	269	÷.,
19	LVLCY1172	5	4	.2	2.13	10	225	`<	5 2.(67 🗋	<1 .	14	24	139	3.92	<10	2.20	1605	2	0.05	2	1280	10	5	<20	40	0.07	<10	96	<10	5	104	$\sim 10^{-1}$
36	LVLCYI189	5	<	.2	2.31	<5	125	·- 1	5 3.3	30	<1	23	29	11	5.07	<10	1.80	1257	<1	0.05	11	1610	. 4	<5	<20	53	0.14	<10	96	<10	3	.69	
45	LVLCYI198	5	<	.2	2.21	<5	160	., 1	0 0.	51	<1	18	35	5	5.67	<10	1.37	1068	3	<0.01	2	1800	8	<5	<20	7	0.09	<10	50	<10	<1	68	
				,	•				1	<u>``</u>	114													. •									
54	LVLCYI207	5	́ С	.6	2.45	30	40	<			< 1	18	74	236	7.57	<10	1.40	1025	- 4	<0.01	15	2010	20	<5	<20	123	0.13	<10	122	<10	<1	66	
71	LVLCY1224	5			1.31	45	90		5 0.6	5 3 👾	<1	9	40	20	2.89	<10	0.75	445	. <1	0.13	. 4	1490	8	<5	<20	60	0.08	<10	46	<10	2	28	
80	1.VLCY1234	5			1.72	; <5	170		5 0./	• • •	<1	16	50	12	4.10	<10	1.05	905	<1	<0.01	5	1270	6	<5	<20	8	0.09	<10	44	<10	. 2 .	38	1.99
89	LVLCY1243	5		_	2.24	4	235	1			<1	18	19	17	5.83	<10	1.19	1600	<1	0.10		1690	4	<5	<20	64	0.12	<10	121	<10	<1	56 -	
106	LVLCY1260	10	<	2	2.14	<5	295		5 1.4	15	<1	12	49	7	4,18	<10	1.28	1120	<1	<0.01	3	1240	6	<5	<20	18	0.06	<10	42	<10	<1	38	
115	LVLCY1269	5	⊲	2	1.44	<5	125		5 0.6	52 [°]	<1	11	13	23	2.80	<10	0.62	738	<1	<0.01	24	1060	12	<5	<20	7	0.07	<10	22	<10	6	37	
124	LVLCY1278	10	<0	.2	3.14	<5	220	- 10	0 1.2	26	<1	21	33	6	5.72	<10	1 54	1503	3	<0.01	- 4	1240	6	<5	<20	15	0.09	<10	67	<10	2	59	
141	LVLCYI295	5	<0	.2	1.54	, <5	205	. <	5 0.6	38	<1	11	29	36	2.41	<10	0.57	1081	<1	<0.01	3	1520	8	<5	<20	8	0.12	<10	24	<10	4	43	
150	LVLCY1304	5		•	- '			·	-	•	•	-	-	-	-	•	-	-	-	•	•	•	-	•	-	-	-		-	-	-	-	
		· ·				•••	. ÷			• .										• ·													
Standard	:						1																										
GEO'96		145	1	.0	1.89	60	160	<	5 1.8	14	<1	19	65	83	4.18	<10	1.00	711	<1	0.02	22	720	20	<5	<20	69	0.13	<10	83	<10	6	68	
GEO'96		150			1.76	65	160	. <			<1	19	62	80	4.04	<10	0.97	699	<1	. 0.02	24	710	22	<5	<20	61	0.12	<10	78	<10	5	66	
GEO'96		140	1		1.68	70	155	<		-	<1	18	65	80	3.96	<10	0.94	688	<1	0.02	25	710	18	<5	<20	56	0.10	<10	74	<10	5	65	
GEO'96		145			1.70	60	150	<			<u><1</u>	18	59	79	4.01	<10	0.95	700	<1	0.01	25	720	20	<5	<20	53	0.10	<10	74	<10	5	67	
GEO'96		140	1	.0	1.62	70	150	<	5 1.9	90	<1	18	68	78	3.88	<10	1.02	678	<1	0.01	24	720	16	<5	<20	51	0.10	<10	72	<10	6	65	

df/5182/5182a X1 S/96Kmisc#6

.

and the second sec

[...]

annon sering re

EQO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Cortified Assayer pr

Page 6

	09/13/96 12:30 2604-5	73 4557 ECO-	TECH KAM.	. n¥⊒ VUI
	γ		ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY	1
	Frank		ENVIRONMENTAL TESTING	ì
	LABORATORIES LTD.	10041 E. Irans Canada Hw	ry., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-570(Fax (604) 573-4557	
and and a second	CERT	IFICATE OF ASSA	Y AS 96-5252	
and the second s	LEVELLAND 530 CHESTER ROAD DELTA, BC			•
din, soda, juda, sojjj	V3M 5U8	Post-it [™] Fax Note	e 7671E Date 07/3 # cf pages ► 6	
	No. of samples received: 30	To Leveli Co/Dept.	Co. 5252	
a sa a si in an a si in a sa a	Sample type: ROCK PROJECT #: CY CLAIMS CYI SHIPMENT #:3	Fax #	Phone #5253 Fax # 5254	•
	Samples submitted by: HEATHER V			
	ET #. Tag #	Au Au (g/t) (oz/t)	Ag Ag (g/t) (oz/t)	
der meinen mit	1 LVL-CYI-308 2 LVL-CYI-314	1.46 0.043 1.59 0.046	11.5 0.34 10.4 0.30	
L 11-2	3 LVL-CYI-315	<.03 , <.001	0.3 0.01	·
.	4 LVL-CYI-316	<.03 <.001	0.3 0.01	
an in the	5 LVL-CYI-317	0.04 0.001	0.1 0.01	
	6 LVL-CYI-318	0.05 0.001	0.3 0.01	
1. andre interior	7 LVL-CYI-319	1.88 0.055	0.1 0.01	. ·
terter to	8 LVL-CYI-320	0.03 0.001	0.2 0.01	
	9 LVL-CYI-321 10 LVL-CYI-322	0.03 0.001 <.03 <.001	0.2 0.01 0.3 0.01	
Constant of the second	10 LVL-CYI-322	0.49 0.014	0.3 0.01	
	12 LVL-CYI-324	0.03 0.001	0.2 0.01	
, ~	13 LVL-CYI-325	<.03 <.001	0.1 0.01	
A. Said- and City	14 LVL-CYI-326	<.03 <.001	0.3 0.01	
 k	15 LVL-CYI-327	<.03 <.001	0.2 0.01	
<u></u>	16 LVL-CYI-328	0.03 0.001	0.2 0.01	
ALC: NOTE: NO	17 LVL-CYI-329	<.03 <.001	0.3 0.01	
- Nervis	18 LVL-CYI-330	<.03 <.001	0.3 0.01	
	19 LVL-CYI-331	<.03 <.001	0.2 0.01	
in in the second	20 LVL-CYI-332 21 LVL-CYI-333	<.03 <.001 <.03 <.001	0.2 0.01 0.2 0.01	
	21 LVL-011-333		0.2 0.01	
	-		- Aught	•
in side		Fra	ank J. Pezzotti A.Sc.T /B.C.Certified Assayer	
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		the second of the second s	
			and the second second	

and kines

ECO-TECH KAM. 3604 573 4557 12:31

LEVELLAND AS 96-5252

6

13-Sep-96

-		Au	Au	Ag	Ag		•
ET #.	Contraction of the local division of the loc	(g/t)	(oz/t)	(g/t)	(oz/t)		
22	LVL-CYI-334	<.03	<.001	0.1	0.01	÷.	,,
- 23	LVL-CYI-335	<.03	<.001	0.2	0.01		
24	LVL-CYI-336		<.001	0.2	0.01	•	
25	LVL-CY1-337	<.03	<.001	0.3	0.01		
_ 26	LVL-CY1-338	<.03	<.001	0.3	0.01		
27	LVL-CYI-339	<.03	<.001	0.3	0.01	· · · · · · · · · · · · · · · · · · ·	•
- 28	LVL-CYI-340	<.03	<.001	0.2	0.01		
_ 29	LVL-CYI-341	<.03	<.001	10.2	0.30		
30	LVL-CYI-342	<.03	<.001	0.2	0.01		
QC/D	ATA:				•		
Resp			•	•	·		
Eren en e	LVL-CYI-308	1.41	0.041	10.8	0.32		
Repe	at:						
1	LVL-CYI-308	1.40	0.041	11.4	0.3 3		
10	LVL-CYI-322	<.03	<.001	-	-		
- 19	LVL-CYI-331	<.03	<.001	-	-		
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	•.						
	la cale						
-Stand			 3. 	004.0			
CPb-I			-	621.0	18.11		
Std-M		3.30	0.096	-	·	·	
						- -	
						2 .	
~					- Ch	Lyng P	1.1
Easter -				្រា	ECO-TECH L	ABORATOR	IES LTD.
- h s					Frank J. Pezz		
"XLS/9	6KMISC#8	· · · · · · · · · · · · · · · · · · ·		1	B.C. Certified	Assayer	
-				· •			
- 19 ⁻			ter son stilling in the	••			
-							
							• *
					¢.		
~							
, 							
					• •	•	
-				:			
-							
and a second			•				1
		ار با از می از این ا این این این این این این این این این این	-		۰. ۱۰۰۰ مکیو در ۱۰	1	·.
-			a second				
and the second sec							2

12:31

2604 573 4557

2003

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

13-Sep-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

ECO-TECH KAM.

CERTIFICATE OF ASSAY AS 96-5253

LEVELLAND 530 CHESTER ROAD SELTA, BC √3M 5U8

No. of samples received: 24 ample type: ROCK ROJECT #: CY CLAIMS CY 2+3 SHIPMENT #:4 Tamples submitted by: HEATHER WILKIE

Au Au Ag Ag (g/t) (oz/t)(g/t) (oz/t)Tag # 1 LVL-CY2-001 <.03 <.001 0.4 0.01 2 LVL-CY2-002 0.14 0.004 0.8 0.02 3 LVL-CY2-003 0.13 0.004 0.1 <0.01 LVL-CY2-004 <.03 <.001 0.2 0.01 4 5 LVL-CY2-005 <.03 <.001 0.3 0.01 6 <.03 LVL-CY2-006 <.001 1.1 0.03 7 0.22 0.006 4.9 0.14 LVL-CY2-007 1.4 8 0.12 LVL-CY2-008 0.003 0.04 9 LVL-CY2-009 <.03 <.001 2.0 0.06 10 LVL-CY2-010 <.03 <.001 1.5 0.04 11 LVL-CY2-012 <.03 <.001 0.4 0.01 12 LVL-CY2-013 <,03 <.001 1.8 0.05 3 LVL-CY2-014 <.03 <.001 0.2 0.01 14 LVL-CY2-015 <.03 <.001 1.4 0.04 <.001 45 LVL-CY3-001 <.03 2.5 0.07 <.001 6 LVL-CY3-002 <.03 4.0 0.12 17 LVL-CY3-003 0.07 0.002 2.5 0.07 0.20 18 LVL-CY3-004 `<.03 <.001 6.7 9 <.03 <.001 1.9 0.06 LVL-CY3-005 20 LVL-CY3-006 <.03 <.001 1.4 0.04 21 5.5 LVL-CY3-007 0.18 0.005 0.16

Frank J. Pezzott, A.Sc.T.B.C.Certified Assayer

12:32

÷

2

1<u>24</u> U U -4

LEVELLAND AS 96-5253

13-Sep-96

.

1.

ក្រុ ស្រុកស្រុកសម្តាំស្ត្រ ស្ត្រ	ET #.	Tag #		Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)		•
\sim	22	LVL-CY3-008		3.61	0.105	2.5	0.07		
	23	LVL-CY3-009		<.03	<.001	0.7	0.02		
	24	LVL-CY3-010		3.51	0.102	0.8	0.02		-
A			ار این میکند. میکند به میکند و میکند در میکند با میکند میکند میکند میکند میکند از میکند از میکند.					 	
tassia	QC/D/								- ·
	Resp								
<u> </u>	4	LVL-CY2-004		<.03	<.001	0.4	0.01		
inaniini uudi	Repe	at:			•			•	
~	1	LVL-CY2-001		<.03	<.001	0.6	0.02		
in the second	10	LVL-CY2-010		<.03	<.001	• .			
	19	LVL-CY3-005		<.03	<.001				•
Continue	Stand	lard:							
int.	CPb-I			•	-	622.0	18.14		
•	Std-M	l	· · · ·	3.22	0.094	•	-	1 a	

> . .

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.7. B.C. Certified Assayer

XLS/96KMISC#7

.

LTD.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY AS 96-5254

13-Sep-96

LEVELLAND 530 CHESTER ROAD DELTA, BC V3M 5U8

LABORATORIES

No. of samples received: 47 Sample type: ROCK PROJECT #: CY CLAIMS CYI SHIPMENT #:5

Samples submitted by: HEATHER WILKIE

ET #.	` Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	
	LVL-CYI-343	5.04	0.147	135.7	3.96	
2	LVL-CYI-344	0.14	0.004	1555.5	45.36 🗶	
3	LVL-CYI-345	21.28	0.621	1124.0	32.78	
- 4	LVL-CYI-346	0.03	0.001	349.4	10.19 /	-
5	LVL-CYI-347	0.03	0.001	88.5	2.58	
6	LVL-CYI-348	<.03	<.001	103.3	3.01	
– 7	LVL-CY1-349	<.03	<.001	1.9	0.06	
8	LVL-CYI-350	<.03	<.001	1.0	0.03	
9	LVL-CYI-351	<.03	<.001	9.7	0.28	
10	LVL-CYI-352	<.03	<.001	10.8	0.32	
i 11	LVL-CYI-353	<.03	<.001	9.9	0.29	
12	LVL-CYI-354	<.03	<.001	2.7	0.08	
13	LVL-CY1-355	- <.03	<.001	4.9	0.14	
14	LVL-CYI-356	<.03	<.001	5.7	0.17	
15	LVL-CYI-357	<.03	<.001	4.0	0.12	
16	LVL-CY1-358	<.03	<.001	133.7	3.90	
17	LVL-CYI-359	<,03	<,001	1.7	0.05	
- 🖾 18	LVL-CYI-360	0.10	0.003	51.1	1.49	
19	LVL-CYI-361	<.03	<.001	3.1	0.09	
20	LVL-CY1-362	<.03	<.001	98.9	2.88	·
21	LVL-CYI-363	(<.03	<.001	591.5	17.25	

Frank J. Pezzotti A.Sc.T. B.C.Certified Assayer

.

ECO-TECH KAM 8604 573 2604 573 4557

•

£12:31 12:33

:71 nn z 2006

LEVELLAND AS 96-5254

96

07

13-Sep-96

;

. •

•			Au	Au	Ag	Ag		•
	ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)		
	22	LVL-CYI-364	<.03	<.001	51.6	1.51		
-	23	LVL-CYI-365	<.03	<.001	85.6	2.50		
	- 24	LVL-CYI-366	<.03	<.001	1.6	0.05		
Watar	25	LVL-CYI-367-X	1.10	0.032	1700.0	49.58		•
, iki	26	LVL-CYI-368	<.03	<.001	12.5	0.37		
	_ 27	LVL-CYI-369	<.03	<.001	14.4	0.42		
Anitedian	28	LVL-CYI-370	<.03	<.001	69.5	2.03		
	- 29	LVL-CYI-371	. <.03	<.001	1.4	0.04		
	30	LVL-CYI-372	<.03	、 <.001	9.1	0.27	· ·	
H-Wash	31	LVL-CYI-373	<.03	<.001	1.4	0.04		
1	32	LVL-CYI-374	0.05	0.001	11.4	0.33	•	
	33	LVL-CYI-375	0.03	0.001	1.0	0.03		
insure and a second	34	LVL-CY1-376	<.03	<.001	2.4	0.07		
ing i	35	LVL-CYI-377	<.03	<.001	2.6	0.08	• •	
	36	LVL-CYI-378	0.09	0.003	2.8	0.08		
	37	LVL-CYI-379	<.03	<.001	1.4	0.04		
annað	38	LVL-CYI-380	<.03	<.001	1.7	0.05		
-	39	LVL-CYI-381	0.04	0.001	1.6	0.05		
1 1	- 40	LVL-CYI-382	<.03	<.001	4.6	0.13		
فينشده	41	LVL-CYI-383	0.03	0.001	3.1	0.09		
	42	LVL-CY1-384	0.07	0.002	4.4	0.13		
1 6	43	LVL-CYI-385	0.03	0.001	4.9	0.14		
ilene.	44	LVL-CYI-386	<.03	<.001	3.0	0.09		
	45	LVL-CYI-387	<.03	<.001	2.1	0.06		
	46	LVL-CYI-388	0.03	0.001	2.6	0.08		
наны	47	LVL-CYI-389	0.05	0.001	3.8	0.11		
L. %								
	- QC/D	ATA:						• .
wacipales	Resp				•			
کي ٿ	1	LVL-CYI-343	5.03	0.147	155.5	4.54		
	- 36	LVL-CYI-378	0.14	0.004	2.8	0.08	•	
	Repe							
L ii	1	LVL-CYI-343	4.88	0.142	139.1	4.06		
	- 10	LVL-CYI-352	<.03	<.001	-	J		
	19	LVL-CYI-361	<.03			-		
. I	36	LVL-CYI-378	0.09		-	-		
	_ 45	LVL-CYI-387	<.03		-	• •		
Alvanlar	38	LVL-CYI-380		-	2.2	0.06		
unad I	Stand							
	CPb-		· · · · · · · · · · · · · · · · · · ·	•	632.0	18.43		
	CPb-		-	-	627.0	18.29		1:
1	Std-N		3.29	0.096			/	
-	Std-N		3.32	0.097	· · ·		and the	• .
	7						1	
					·	-11	unte	
					•		12222	150170

BC LABORATORIES

ASSAYING GEOCHEMISTRY **ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING**

國002

001

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY AK 96-5301

LEVELLAND **530 CHESTER ROAD** DELTA, BC V3M 5U8

haman

hum

Comp.

L

27-Sep-96

•*		Post_it" Fax Note	7671E 000 T4	rages O
		"HEATTEP IN	ILKIE From CO-T	ECH
No. of samples received: 125		Co./Dept.	Co.	
Sample type: ROCK		Phone #	Phone #	
PROJECT #: NOT GIVEN		F1908 # .		
SHIPMENT #: NOT GIVEN	and the second	Fax#	Fax #	
Samples submitted by: HEATHE	ER WILKIE			

	·	Au	Au	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	
28	CY1 - 418	1.51	0.044	57.8	1.69	
56	CY1 - 446 ^{./}	9.62	0.281	1195.0	34.85	
75	CY1 - 465			75.4	2.20	
76	CY1 - 466		•	457.4	13.34	· · · · ·

QC/DATA: Standard: CPb-1

632.0 18.43

ECO-TECHLABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96Kmisc #8

2604 573 4557 ECO-TECH KAM.

12002

ASSAYING

GEOCHEMISTRY

ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

EDD · BCD LABORATORIES LTD.

16:47

• -

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS AS 96-5301

1.1

LEVELLAND 530 CHESTER ROAD DELTA, BC V3M 5U8

No. of samples received: 125 Sample type: ROCK PROJECT #: NOT GIVEN SHIPMENT #: NOT GIVEN Samples submitted by: HEATHER WILKIE

1			Au	Ag	۲.: ۲.:
	ET #.	Tag #	(ppb)	(ppm)	
	1	CY1- 391	.5	1.5	
	2	CY1- 392	. 10	1.2	
	3	CY1- 393	5	1.4	
-	4	CY1- 394	5	0.8	
	5	CY1- 395	10	1.4	
	6	CY1- 396	10	0.8	
• 2 .4	7	CY1- 397	5	1.2	
	8	CY1- 398	5	6.9	
	9	CY1- 399	5	2.9	
	10	CY1- 400	5.	0.8	
(-	11	CY1- 401	(85	2.4	
	12	CY1- 402	5	1.9	
L	13	CY1- 403	5	1.0	
. –	14	CY1- 404	5.	1.5	
human	15	CY1- 405	75	5.9	
-	16	CY1- 406	180	14.1	
.	17	CY1- 407	5	ં 1.3	
	18	CY1- 408	55	4.8	
	19	CY1- 409	5	3.1	
	20	CY1- 410	15	2.3	
f	21	CY1- 411	. 5	2.2	
- 4	22	CY1- 412	45	3.7	•
	23	CY1- 413	95	5.4	
.	24	CY1- 414	10.	1.6	• #

4-Oct-96

16:47

j

-

ς.

5

.

4-Oct-96

1

2604 573 4557 ECO-TECH KAM.

LEVELLAND AS 96-5301			
	at an interest of the second		
	Au		
ET #. Tag #	(ppb) (ppm)		
25 CY1- 415	10 1.5	· · · ·	
26 CY1- 416	80 1.8		
27 CY1- 417	5 1.6 >1000 >30×	•	
28 CY1- 418			
29 CY1- 419	10 1.9 5 1.7		
30 CY1- 420	15		
-31 CY1- 421	15 2.1		
32 CY1- 422	10 1.6		
33 CY1- 423	5 0.8		
-34 CY1- 424	10 1.4		
35 CY1- 425 36 CY1- 426	10 0.5		. :
	110 0.2		
	10 0.5		
38 CY1- 428 39 CY1- 429	5 0.6		
_40 CY1- 430	5 1.1		
40 CY1- 430	5 0.3		
42 CY1- 432	10 2.7		
_43 CY1- 433	10 0.3		
44 CY1- 434	20 2.9		
45 CY1- 435	40 1.5	4.14	
46 CY1- 436	15 0.5		
47 CY1- 437	5 1.1		
L 48 CY1- 438	5 1.3		
49 CY1- 439	5 1.9		
50 CY1- 440	20 2.4		
L 51 CY1- 441	5 1.8		
52 CY1- 442	5 12.4		
53 CY1- 443	10		
L 54 CY1- 444	10 4.0 5 0.4		
55 CY1- 445	5 0.4 >1000 >30×	2	
56 CY1- 446	50 8.8		
57 CY1- 447	35 5.4		
58 CY1- 448	15 3.0		
59 CY1- 449	140 14.2		
60 CY1- 450 61 CY1- 451	10 3.2		
	5 3.7		
62 CY1- 452 63 CY1- 453	5 0.5		
64 CY1- 455	.5 0.9		
- 65 CY1- 455	5 1.0		4.
66 CY1- 456	5 1.4		
67 CY1- 457	5 1.8		
- 68 CY1- 458	15 1.2	1	
69 CY1- 459	-5 0.7	المنظر في علم العام . معاد الم	
	· · ·		

J 16:48 2604 573 4557 ECO-TECH KAM.

÷

LEVELLAND AS 96-5301

5 -

a second		Au	Ag		• •
	ET #. Tag #	(ppb)	(ppm)		I
[]	70 CY1- 460	5	1.3		
in and	71 CY1- 461	5	1.0		
	72 CY1- 462	10	1.7	. •	
	73 CY1- 463	5	1.6		
	74 CY1- 464	5	5.4		
	75 CY1- 465	5	>30		•
	76 CY1- 466	10	>30		
	77 CY1- 467	5	3.9		. ,
	78 CY1- 468	5	4.2		
a ditional includes a distance and the second	79 CY1- 469	5	1.4		
alisea y	80 CY1- 470	5	1.6 8.4		
	81 CY1- 471	10	9.4		
	82 CY1- 472	110	2.3	. •	
	83 CY1- 473	5	2.3 1.9		
	84 CY1- 474	20 5	2.5	• .	
	85 CY1- 475	5			•
anioneniecien M	86 CY1- 476	5	1.1	· · ·	
	87 CY1- 477	5	4.5		
	88 CY1- 478	. б	1.1		
	89 CY1- 479	5	· · · ·		
	90 CY1- 480	5			
	91 CY1- 481	5			
L	92 CY1- 482 93 CY1- 483	. 150			
	93 CY1- 483 94 CY2- 016	5			
	95 CY2- 017				
L	96 CY2- 018	30		i	
_	97 CY2- 019				
	98 CY2- 020	10) 0.5		and the second secon
-	99 CY2- 021		; 1.1		
	100 CY2- 022		5 0.7		
E main	101 CY2- 023	10			
intibility of	102 CY2- 024		5 1.3	.	
	103 CY2- 025	and the second	5 0.8		
and the second	104 CY2- 026				
-	105 CY2- 027		5 0.5		
	106 CY2- 028	1			
	107 CY2- 029	6			
	108 CY2- 030		0 0.4		
	109 CY2- 031		5 0.8		
	110 CY2- 032		5 0.5		
taren eta a	111 <u>CY</u> 2- 033		5 0.4		
	112 CY2- 034	ان میکند. ۲۰ کامل و معلوم با در ور با مرکز از این از میکند. ۱۹۸۸ - محمد میکند انداز با از میکند.	5 0.1 5 1.0		
	113 CY2- 035		5 0.3		
1	114 CY2- 036		0 0.0		

001

4-Oct-96

16:48 2604 573 4557 ECO-TECH KAM

LEVELLAND AS 96-5301

1

l

L milite munit and

forthinitionpers,

ŝ

EVELLAND AS 96-9301		
	Au Ag	
ET #. Tag #	(ppb) (ppm)	
115 CY2- 037	5 0.2	· · .
116 CY2- 038	75 0.4 40 0.2	
117 CY2- 039	35 0.2	
118 CY2- 040	. 15 0.3	
119 CY4- 1	15 0.1	
120 CY4- 2	5	•
121 CY4- 5	5 1.5	
122 CY4- 6	5 0.9	
123 CY4- 7	5 2.1	
124 CY4- 8	10 1.6	
125 CY4- 9		
		1 4
QC DATA:		
Repeat:		
1 CY1- 391	5 1.5	
10 CY1- 400	5 1.0	
19 CY1- 409	- 3.2	
20 CY1- 410	5 -	
25 CY1- 415	5 -	
31 CY1- 421	- 20	•
36 CY1- 426	- 0.6	
40 CY1- 430	5 -	
45 CY1- 435	- 1.8	
50 CY1- 440	- 30	
54 CY1- 444	• 4.1	
55 CY1- 445	0	
61 CY1- 451	0 07	
63 CY1- 453		
70 CY1- 460	- 12	
71 CY1- 461	6	
77 CY1- 467	1.5	
80 CY1- 470 85 CY1- 475	Б -	
85 CY1- 475 89 CY1- 479	- 1.2	
91 CY1- 481		
98 CY2- 020	- 0.8	X
100 CY2- 022	5	
106 CY2- 028	- 0.6	
110 CY2- 032	- 5	
114 CY2- 036	0.2	
115 CY2- 037	- 5	
121 CY4- 5		
121 CY4- 5		

4-Oct-96

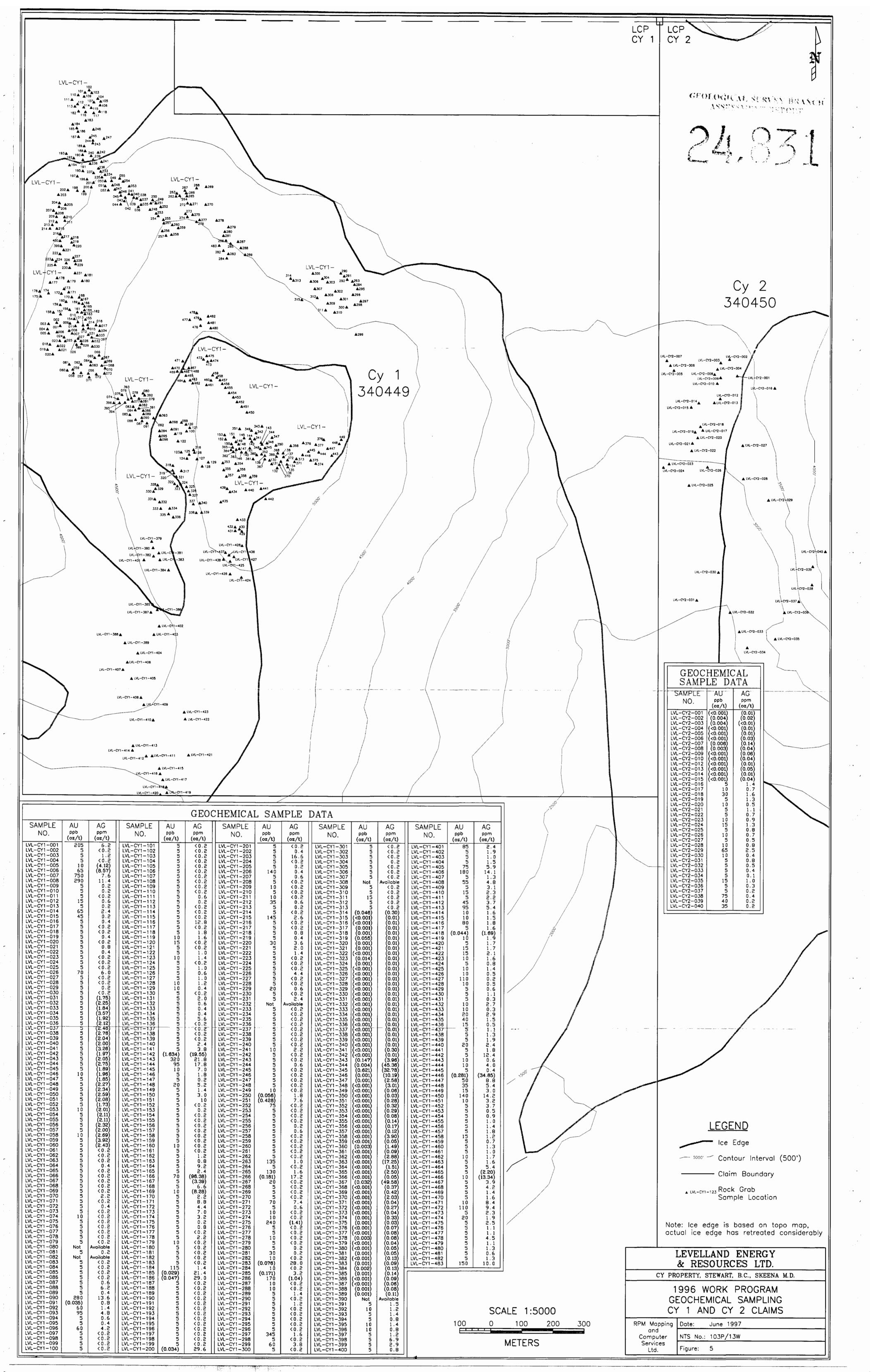
ANALYTICAL 4-Oct-96

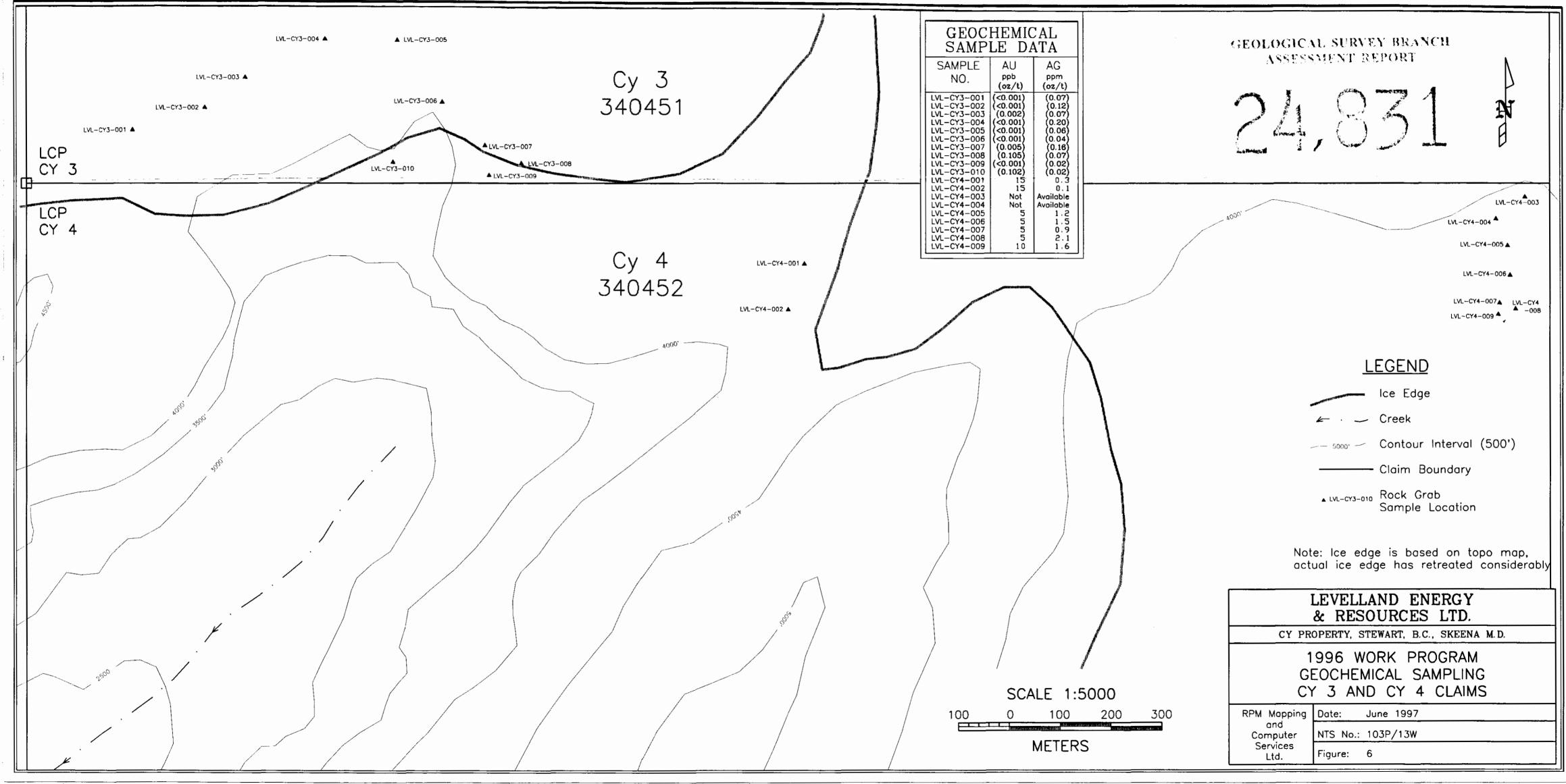
EVELLAND AS 96-5301

്ർ

16:49

		9
ET #. Tag #	(ppb) (ppn	ı) <u> </u>
Standard:		
GEO'96	145 1.	4
GEO'96	150 2.	0
GEO'96	150 1.	9
GEO'96	150 1.	9
GEO'96	150 1.	6


T60


21.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ECO-TECH K

XLS/96Kmisc#8

[•]