1996 ASSESSMENT REPORT

RACINE PROPERTY (TP CLAIM)

DIAMOND DRILLING AND LITHOGEOCHEMICAL ROCK SAMPLING PROGRAM

ATLIN MINING DIVISION NTS 104M/10E LATITUDE 59°41' N, LONGITUDE 134°41' W

> CLAIM OWNER WESTMIN RESOURCES LIMITED

> OPERATOR WESTMIN RESOURCES LIMITED

> > **REPORT BY**

STEPHEN M. ROWINS, Ph.D., F.G.A.C. PAUL G. LHOTKA, Ph.D., P.Geo. WESTMIN RESOURCES LIMITED

FILMED

DECEMBER 10, 1996

CEOLAGICAL SUBVES BRANUU ASSESMIENT REPORT

RPT/96-006

TABLE OF CONTENTS

		Page
1.0	SUMMARY	1
2.0	INTRODUCTION2.1Location and Access2.2Physiography and Vegetation2.3Mineral Claims and Tenure2.4Previous Work2.51996 Work Program	2 2 2 4 5
3.0	REGIONAL GEOLOGY	5
4.0	 PROPERTY GEOLOGY 4.1 Geology of the Boundary Range Metamorphics 4.2 Geology of the Teepee Peak Volcanics 4.3 Intrusive Rocks 4.3.1 Hornblendite 4.3.2 Teepee Peak Stock 4.3.3 Granitoid dykes and Sills 4.3.4 Intermediate and Mafic Dykes 4.4 Structure 4.5 Alteration and Mineralization 4.5.1 Magnetite Skarn 4.5.2 Clinopyroxene Skarn 4.5.3 Calcsilicate-calcite Skarn 4.5.4 Amphibole Skarn 	9 9 11 12 12 12 13 13 14 14 15 15
5.0	DIAMOND DRILLING 5.1 Drillhole RC-96-01 5.2 Drillhole RC-96-02 5.3 Drillhole RC-96-03 5.4 Drillhole RC-96-04 5.5 Drillhole RC-96-05 5.6 Drillhole RC-96-06	16 16 17 18 18 19 19
6.0	LITHOGEOCHEMICAL SAMPLING PROGRAM	20
7.0	CONCLUSIONS AND RECOMMENDATIONS	20
8.0	REFERENCES	22
9.0	STATEMENT OF EXPENDITURES	23

10.0 STATEMENT OF QUALIFICATIONS

26

.

LIST OF APPENDICES

Appendix

Α	Diamond Drillhole Logs	A1
В	Petrographic and Mineralogic Report	B1
С	Geochemical Results, Core Samples	C1
D	Rock Sample Descriptions	D1
Е	Geochemical Results, Rock Samples	E1

LIST OF FIGURES

Figure		Page
1	Location and Claim Map, Racine Property	3
2	Regional Geology, Racine Property	6
3	Property Geology and Diamond Drillhole Location	<i>l</i> ap 10
4	Cross Section, Drillholes RC-96-01 and RC-96-02	(Back Pocket)
5	Cross Section, Drillholes RC-96-03 and RC-96-04	(Back Pocket)
6	Cross Section, Drillholes RC-96-05 and RC-96-06	(Back Pocket)
7	Location Map of Rock Samples	(Back Pocket)
8	Rock Sampling Results on the TP claim - Au	(Back Pocket)
9	Rock Sampling Results on the TP claim - As	(Back Pocket)
10	Rock Sampling Results on the TP claim - Co	(Back Pocket)
11	Rock Sampling Results on the TP claim - Cu	(Back Pocket)

LIST OF TABLES

Table		Page
1	Racine Property Claims	4
2	Drill Core Assay Results for Magnetite Skarn from RC-96-02	17

1.0 SUMMARY

The 1996 exploration program was designed to investigate the potential for an economic gold-cobalt skarn deposit on the Racine property in northwestern B.C.. Diamond drilling, lithogeochemical sampling, and petrographic examinations were performed.

The 150 m long by 15 m wide, N-trending, semi-conformable skarn mineralization at the Main Showing on the TP claim does not have significant down-dip extensions. Drillholes oriented to intersect the E-dipping semi-comformable skarn mineralization along the entire length of the showing failed to delineate significant zones of gold-cobalt mineralization. Detailed core logging revealed that extensive faulting subsequent to skarn formation has largely removed the skarn at depth. Quartz and quartz-feldspar porphyries along with lesser quartz±chlorite±biotite-amphibole schist occur in place of skarn in the drillholes.

The development of skarn is closely related to the emplacement of guartz and guartz-feldspar porphyries. Significant endoskarn is developed at the contacts between the larger dykes/sills and the schists. The guartz and guartz-feldspar porphyries are commonly intensely altered, especially at the surface. This alteration caused previous workers to misidentify the true proportions of quartz and feldspar phenocrysts, and resulted in the conclusion that guartz and guartzfeldspar porphyries were unrelated magmatic events. Textural and temporal relationships in drillcore, however, revealed that these porphyries are actually members of a compositional continuum, likely related to an evolving magma chamber at depth. The degree of alteration and deformation is largely related to the distance from faults and breccias in the Main Showing area. Close to the faulted magnetite and clinopyroxene skarns, porphyries are very strongly altered and only the glassy grey "quartz eye" phenocrysts are apparent in the friable chalky-white rock. Feldspar phenocrysts have been obliterated by argillic, and to a lesser degree, silicic alteration. Moving away from the faults, the porphyries can be quite fresh with the tabular feldspar phenocrysts readily visible.

The twelve lithogeochemical samples collected over the TP claim failed to show significant gold enrichment. Other metal abundances were generally low.

Further work on the Main Showing is not recommended. The skarn mineralization is extensively faulted and there seems little chance of solving the stuctural controls over the mineralization without further drilling and oriented drill core. Furthermore, surface exposures of skarn and faults in the Main Showing underestimate the true degree of deformation and faulting associated with this prospect as determined from drill core.

2.0 INTRODUCTION

2.1 Location and Access

The Racine property is located in the Atlin Mining District approximately 55 km west of Atlin, British Columbia, on NTS map sheet 104M/10E at 59° 41' N latitude, 134° 41' W longitude. The property consists of six mineral claims - TP, RACE 1, RACE 2, RACE 3, RACE 4, and RACE 5, although work was only carried out on the TP claim (Fig. 1). This claim lies on the southwest face of Teepee Peak, approximately 20 km east of Fraser, British Columbia. Fraser is on Highway 2, which links Whitehorse, Yukon Territory, to the deep water port of Skagway, Alaska.

Access to the property is by helicopter from Altin. The camp and diamond drill were trucked from Whitehorse to a sand and gravel pit on the east side of Highway 2, about 20 km north of Fraser. It was from this location that camp and diamond drill mobilization and demobilization occurred.

2.2 Physiography and Vegetation

The region is mountainous with peaks ranging up to 2,300 m. Separating these peaks are broad U-shaped glacial valleys with valley floors at elevations of 650 m above sea level (a.s.l.). At higher elevations, winter snow may persist until early July. This past summer, snow flurries occurred on July 4 and a covering of snow remained over the drill sites for the duration of the work program.

The property is situated on very steep terrain which slopes southwestwards towards Teepee Creek. This creek lies at the bottom of a 2 km wide valley. Treeline varies from 1000 to 1400 m elevation. Above treeline elevation, vegetation is light and consists of alpine mosses, grasses, and small patches of buckbrush. In general, ground surface above treeline is dominated by exposed bedrock and talus.

2.3 Mineral Claims and Tenure

The Racine Property consists of six contiguous mineral claims (104 claim units). The location of the claims is shown on Figure 1, and pertinent details are listed in Table 1. All claims are owned and operated by Westmin Resources Limited, and are the subject of an option agreement with White Hawk Ventures Inc..

		TABLE 1				
RACINE PROPERTY CLAIMS						
Claim Name	Tenure No.	No. of Units	Record Date	Expiry Date*		
TP	339511	20	1995/08/25	1996/08/25		
RACE 1	342652	20	1996/02/14	1997/02/14		
RACE 2	343653	20	1996/02/14	1997/02/14		
RACE 3	343654	8	1996/02/14	1997/02/14		
RACE 4	343655	16	1996/02/15	1997/02/15		
RACE 5	343656	20	1996/02/15	1997/02/15		
* Expiry dates do not reflect filing of the current assessment work.						

2.4 Previous Work

The earliest exploration on the Racine property region dates back to the 1890's when prospectors travelling to the Klondike and Atlin goldfields prospected en route. The abandoned settlement of Teepee, just south of the property, was on the overland link between Atlin to the east and the Chilkoot trail and White Pass railroad to the west. None of the early work, however, was documented in assessment records or Ministry of Mines Reports.

Gold-cobalt skarn mineralization was discovered on the southwest face of Teepee Peak in 1982 by exploration geologists working for Trigg, Wollett Consulting Ltd. on behalf of Texaco Canada Resources Ltd. (Lhotka and Olsen, 1982). An exploration program on the TP mineral claim in 1983 by Trigg, Wollett Consulting Ltd. for Texaco focused on two occurrences termed the "Main Showing" and the "Camp Showing" (Assessment Report 11,300). Work performed included geological mapping, trenching, sampling and ground geophysical surveys (magnetometer and VLF-EM). The company kept the claims in good standing but failed to continue work in this area until 1988, when Durfeld Geological Management Ltd. undertook geological, geochemical, and geophysical studies for the Main Showing on behalf of Cyprus Gold Canada. which had optioned the property under a joint venture agreement (Assessment Report 18,766). Cyprus Gold Canada underwent a name change in 1991 to Cyprus Canada Inc., and subsequently sold 100% ownership of the TP mineral claim to Hemlo Gold Mines Inc. in June, 1993. In November, 1993. Hemlo Gold Mines sold the TP claim ownership back to Cyprus Canada Inc., which held the claim until forfeiture in August, 1995. Westmin Resources Limited re-staked the TP mineral claim in November, 1995, and staked five new adjoining claims (RACE 1 to 5) in February, 1996.

2.5 1996 Work Program

In 1996, Westmin Resources Limited completed a program of diamond drilling and lithogeochemical sampling on the TP claim. The diamond drilling was concentrated on a 15 m wide by 200 m long, NNW-trending zone of semiconformable gold-cobalt skarn mineralization termed the Main Showing. A total of 694 m (2276 ft) was drilled in six holes over three drill sites. Sections of drill core showing alteration and mineralization were submitted for fire assay and multi-element analysis to Chemex Laboratories Ltd. in North Vancouver, British Columbia. Lithogeochemical prospecting resulted in the collection of twelve rock grab samples for fire assay and multi-element analysis.

3.0 REGIONAL GEOLOGY

The regional geology of the Racine Property has been described by Mihalynuk (1989) and Mihalynuk et al. (1989). The TP and RACE 1-5 claims lie within the NW-trending belt of pre-Permian rocks termed the "Boundary Ranges Metamorphics" (Fig. 2). These are the oldest exposed rocks in the region and are composed mainly of schists with lesser marble, quartzite, and orthogneiss. Multiple episodes of veining and faulting imply a long and variable metamorphic and deformational history.

Intruding the Boundary Ranges Metamorphics is a tabular, NW-trending body of hornblendite dated at 187 Ma (K/Ar on hornblende; M. Mihalynuk, pers. comm., 1996). The hornblendite crops out at two distinct locations: (1) southeast of the TP claim and, (2) northwest of the TP claim (Fig. 2). The smaller occurrence northwest of the claim is likely the northwesterly extension of the main body.

The "Teepee Peak volcanics", dated at 54 to 56 Ma (U-Pb on zircon; M. Mihalynuk, pers. comm., 1996), is 1500 to 2000 m thick and crops out only at higher elevations on Teepee Peak. These rocks unconformably overlie the older metamorphic rocks and may mask the controlling structure of mineralization (Lhotka and Olsen, 1983). The base of the volcanics is a sharp angular unconformity. Mihalynuk et al. (1989) have divided the volcanics into four units: (1) a lowermost basal breccia/conglomerate, (2) a rhyolite flow, (3) a hornblende-feldspar-porphyry breccia and (4) a heterolithic lapilli-tuff.

Early and late Cretaceous granitoids of the Coast Crystalline Plutonic Complex crop out about 4 km southwest of the TP claim (Fig. 2). The late Cretaceous granite is more extensively exposed and surrounds the earlier foliated granodiorite.

LEGEND FOR FIGURE 2

INTRUSIVE ROCKS

LATE CRETACEOUS TO TERTIARY

TEEPEE PEAK STOCK

GRANODIORITE TO TONALITE, MEDIUM-GRAINED, BIOTITE 10%, HORNBLENDE 15%, QUARTZ 30-60%, ALTERED PLAGNOCLASE 40 %, K-FELDSPAR 5%; 20cm CHILLED EASTERN CONTACT, PYROPHYLLITE AND MOLYBDENITE (2%) VEINED

LATE CRETACEOUS

LATE CRETACEOUS GRANITE

lKg

PINK, NON-FOLIATED, MEDIUM TO COARSE-GRAINED; 1-5% K-FELDSPAR MEGACRYSTS UP TO 5cm LONG; TOTAL K-FELDSPAR 40-45%, PERTHITIC, ZONED; PLAGIOCLASE 10-15%, <6mm; INTERSTITIAL QUARTZ 40%; BIOTTTE FINE TO MEDIUM-GRAINED EUHEDRAL BOOKLETS, 2-3%; ROUNDED TO BLOCKY WEATHERING; RESISTANT.

PROBABLE LATE JURASSIC TO EARLY CRETACEOUS

HORNBLENDITE

BLACK, VERY COARSE HORNBLENDE (95%) TO MEDIUM-GRAINED HORNBLENDE DIORITE; MAY INCLUDE "DIORITIZED" HOST ROCK VEINED BY EPIDOTE AND FELDSPAR; RESISTANT, BLACK WEATHERING

LAYERED ROCKS

TERTIARY

TEEPEE PEAK VOLCANICS

(UNDNIDED AS MV)

M₩	HETEROLITHIC LAPILLI TUFF: BLACK, VITROPHYRIC, CRYSTAL AND HETEROLITHIC LAPILLI TUFF; VARIABLE PROPORTIONS OF GREEN, BROWN AND GREY, SPARSELY FELDSPAR-PHYRIC TO APHANITIC VOLCANICLASTS IN A DARK, VITRIC MATRIX DISPLAYING EUTANTIC TEXTURE; EUHEDRAL, FRAGMENTED PLAGKCLASE UP TO 15%: WEATHERS TAN, DEO OP MAPOON
	HORNBLENDE-FELDSPAR PORPHYRY BRECCIA: DARK GREV GREEN TO PROWN BLACK
Mvn	MONOLITHOLOGIC, INDURATED, INTERBEDS OF COARSE ASH AND LAPILLI TUFFITES, BLOCKY
	_
Mvr	RHYOLITE FLOWS, DOMES AND PYROCLASTIC BRECCIAS: APPROX. 500m THICK, VARIABLE; STRATIGRAPHICALLY EQUIVALENT TO UNIT MM: PINK GREY AND WHITE BANDED SPHERU II ITIC
	FLOWS INTERLAYERED WITH PYROCLASTIC BRECCIAS OF THE SAME SPARSELY FELDSPAR-PHYRIC ROCK TOGETHER WITH INTERMEDIATE FRAGMENTS AND ASH-SUBVY CANVC ON ATTUISNES FORMA
	CONTINUUM WITH THE EXTRUSIVE ROCKS
Mys	BASAL BRECCIA/CONGLOMERATE: AT CONTACT WITH PPM AND AS DYKE-LIKE BODIES; ANGULAR TO,
	PHYRIC RHYOLITE FRAGMENTS > INTERMEDIATE VOLCANIC FRAGMENTS

LEGEND FOR FIGURE 2 CONTINUED

PROTEROZOIC TO PALEOZOIC?

BOUNDARY RANGES METAMORPHICS

(UNDMIDED AS PPM; OTHER THAN THE METAINTRUSIVE ROCKS, NO RELATIVE AGE IS IMPLIED BY THE POSITION OF METAMORPHIC LITHOLOGIES)

PPM	tı .	META-I	NTRUŜNES
PP		Mia	HALE MOUNTAIN HORNBLENDE-BIOTITE GRANODIORITE: LIGHT GREEN-GREY, FELDSPAR PORPHYROBLASTIC, STRONGLY FOLIATED; ALTERED, CHLORITE (12%) AND EPIDOTE (2%) PROBABLE MINIMUM AGE IS LATE TRIASSIC.
	PP	Мів	BIGHORN GRANITE: WHITE, MEDIUM-GRAINED, MODERATE TO STRONG FOLIATION, FELDSPAR 40%, QUARTZ 50%, COMBINED MUSCOVITE, CHLORITE, BIOTITE 6-7%; WHITE TO PINK WEATHERING, ROUNDED RESISTANT OUTCROPS.
PPN	l a ,	CHLOI COMB UNIT P OUTLI	RITE-ACTINOLITE SCHISTS: GREEN AND WHITE BANDED PLAGIOCLASE AND QUARTZ 50+% INED; MINOR BIOTITE, RARE GARNET (ABUNDANCE OF BIOTITE LAYERS INCREASE TOWARDS IPMB); CHLORITE FINE GRAINED; ACTINOLITE DARK GREEN, ACICULAR, 1-30mm, COMMONLY NE A DISTINCT LINEATION, <chlorite abundance.<="" in="" th=""></chlorite>
PPN	Ь	BIOTIT NORM SPARS BIOTIT	'E-PLAGIOCLASE-QUARTZ SCHISTS: RUSTY, WELL FOLIATED, MEDIUM TO FINE GRAINED, ALLY BIOTITE < PLAGIOCLASE < QUARTZ; BIOTITE LAYERS < 10cm THICK ARE COMMON; E GARNET PORPHYROBLASTS, 1-30mm; MUSCOVITE AND ACTINOLITE MAY BE SUBEQUAL TO E IN CONFINED LAYERS; DARK GREY, COMPACT, SLABBY WEATHERING.
РРм	1+ b	INTER	LAYERED PPMs AND PPMs IN VARIABLE, BUT GENERALLY SUBEQUAL ABUNDANCES
PP	Ac	CHLO PLAGA DEVEL RECES	RITE SCHISTS: DARK GREEN, GRADE FROM CHLORITE TO CHLORITE > QUARTZ > OCLASE; TYPICALLY FINE-GRAINED, RARE PORPHYROBLASTS UP TO 2cm DIAMETER; WELL- OPED CRENULATIONS AND HIGHLY STRAINED ZONES COMMON; ACCESSORY PYRITE; RUBBLY, SSNE.
PP	Ag	GRAP AND M OUAR	HITIC SCHISTS AND PHYLLITES: SILVER WITH BLACK FOLIA; POORLY DEVELOPED GRAPHITE NUSCOVITE(?); MAY GRADE INTO PPMA; COMMONLY HOSTS CALCAREOUS INTERLAYERS; TZ, CHLORITE AND FELDSPAR CONTENTS VARIABLE; RUBBLY TO BLOCKY OUTCROPS.
PPN	Am	MARB	ILE: CARBONATE,LAYERS UP TO 200m THICK, MEDIUM-GRAINED; RESISTANT, YELLOW, ORANGE AN-WEATHERING
PPI	Mp	PYRO CHLO	XENE-PLAGIOCLASE SCHISTS: DARK GREEN; PYROXENES 1-50%, 0.5-1cm, WITHIN A MATRIX OF RITE, ACTINOLITE AND PLAGIOCLASE
PPI	Mq] IMPUI PPmb;	RE META-QUARTZITES: QUARTZ-RICH BIOTITE SCHISTS TEXTURALLY INDISTINGUISHABLE FROM TYPICALLY < 10% BIOTITE AND <20% FELDSPARS.
PPI	Ma	MUSC MAY C MOST	COVITE SCHISTS: SILVER TO GREY-BROWN; MAINLY FINE TO MEDIUM-GRAINED MUSCOVITE; CONTAIN A SIGNIFICANT AMOUNT OF CHLORITE AND/OR BIOTITE AND MINOR INTERLAYERS OF TO THER METAMORPHIC LITHOLOGIES OF SEDIMENTARY ORIGIN; RUSTY, RECESSIVE HERING

The Teepee Peak Stock, a small granitic plug approximately 2.5 km in diameter, is exposed 750 m northeast of the TP claim. It has been dated at 54 to 56 Ma (M. Mihalynuk, pers. comm., 1996), the same age as the Teepee Peak volcanics, which suggests that these rocks are comagmatic. Pyrophyllite-molybdenite veins occur at the southeastern margin of the stock (Mihalynuk et al., 1989).

Northwest-trending, late Cretaceous pyroxenite dykes crop out about 1 km southwest of the TP claim, where they crosscut the Boundary Ranges Metamorphics. These dykes range from 5 to 25 m in thickness and are composed of medium-grained pyroxene, with lesser magnetite and rare phlogopite. Their age is uncertain, but they crosscut the thermal aureole of the hornblendite, implying that they are younger than 187 Ma.

Lhotka and Olsen (1983) report that mineralization at the TP claim may be related to a NW-striking structure which they called the Teepee fault. The surface expression of this fault cuts the pre-Permian Boundary Ranges Metamorphics both to the southeast and to the northwest of the Main Showing. Lhotka and Olsen (1983) note that two en echelon fracture zones related to this fault crosscut magnetite and calcsilicate-calcite skarns and show sinistral motion.

4.0 PROPERTY GEOLOGY

Previous assessment reports by Lhotka and Olsen (Assessment Report 11,300) and Durfeld (Assessment Report 18,766) provide the most comprehensive overviews of the main geologic features associated with gold-cobalt mineralization on the TP claim. Studies by Mountjoy (1988), Ettlinger and Ray (1989), and Mihalynuk et al. (1989a) also provide some useful information.

4.1 Geology of the Boundary Ranges Metamorphics (PPMa and PPMm)

Mihalynuk and Rouse (1988) termed low-grade metamorphic rocks in the Tutshi Lake area, previously called Yukon Group (Christie, 1957), the "Boundary Ranges Metamorphics". Evidence exists for a variety of protoliths in this suite of rocks. These include quartzose, pelitic, carbonaceous, and calcareous marine sediments and tuffaceous strata, plus ultramafic, gabbroic, dioritic, granodioritic, and granitic intrusions.

Medium-green to yellowish brown, chlorite-actinolite schists and biotiteplagioclase-quartz schists are the most abundant rock-types on the property (Fig. 3). The exact name applied to the schists can change over several metres since the proportions of chlorite, biotite, amphibole, quartz, and plagioclase vary according to the sedimentary precursor. Other common minerals in these schists include muscovite/sericite, epidote, magnetite, and garnet.

[.]

Minor marble forms whitish grey, discontinuous beds ranging from 2 to 10 m in thickness. The fabric is granoblastic in more coarse-grained varieties, with grain size approaching 1 mm in diameter. Other marble beds, however, are fine- to medium-grained and weather to a distinctive yellowish-brown colour. Regardless of whether coarse- or fine-grained, marble is notably "pure" outside the vicinity of the Main Showing, leaving little chance for the development of calc-silicate skarn assemblages (i.e., there is a lack of chemical reactants).

Thin (< 1 m wide) quartz veins and boudins are common, and typically oriented within the plane of foliation. Sulphides are rarely associated with the veins. More commonly, pyrite and pyrrhotite form discrete clots or thin (< 1 cm wide) veins and veinlets oriented within the plane of foliation. Other vein-types encountered include calcite, ankerite-dolomite, and limonite (after pyrite-pyrrhotite) varieties.

Foliation, defined by metamorphic layering, and presumably bedding, measured on both the surface and in drill core, indicate that the Boundary Ranges schists dip moderately to the east at the Main Showing. Lower down the slope, however, a reversal in dip direction occurs.

4.2 Geology of the Teepee Peak Volcanics (Mv)

The late Tertiary volcanic succession at Teepee Peak was originally mapped as "Mesozoic Volcanics of Uncertain Age" by Christie (1957). Lhotka and Olsen (1983) included them with the Upper Triassic Stuhini Group. More recently, Mihalynuk et al. (1989) mapped them as a distinct unit, much younger and considerably more felsic than the Stuhini Group. The absence of conglomerates and augite porphyries, so common in the Stuhini Group, also helps to distinguish this unit in the field.

The TP volcanic suite occurs in the central part of the TP claim area (Fig. 2) and comprises the top of some drillholes (Fig. 3 and Appendix A). The lower basal contact with the Boundary Ranges Metamorphics, immediately east of the Main Showing, is a sharp angular unconformity. It is marked by felsic to intermediate tuffs and porphyritic flows containing a variety of clasts derived from the underlying Boundary Ranges Metamorphics. The lower contact also shows evidence of faulting in the form of tuff breccias. The unconformity generally strikes to the northwest and dips shallowly to the northeast. However, northeast of the Main Showing, the trace of the unconformity turns sharply uphill to the east and then turns back sharply to the northwest. Lhotka and Olsen (1983) note that the change in the trace of the unconformity at this locale is spatially coincident with the assumed trace of the Teepee fault.

Outcrop and fresh rock specimens from drill core at the Main Showing reveal the dominant rock-types to be fine-grained, crystal-lithic felsic lapilli-tuff and porphyritic felsic flows. Flows contain white, euhedral, 1-7 mm long feldspar

phenocrysts (1 to 7 vol.% of the rock) and show cross-twinning, glomerocrystic habit, and varying degrees of alteration to yellow sericite and epidote. Dark greenish black, euhedral, 1-3 mm long phenocrysts of biotite and amphibole may comprise up to 7 vol.% of the rocks. In both tuffs and flows, angular, heterolithic clasts (2 mm to 6 cm in diameter) are common. Types of clasts include, (1) dark green amphibole schist with yellowish white sericite-chlorite reaction rims, (2) fine- to very fine-grained black biotite schist and/or mafic dykes, (3) greyish white albite-scapolite-quartz altered fragments (endoskarn?), (4) fine-grained, massive, pale grey quartz vein fragments, (5) medium-grained, greenish white fragments of quartz-feldspar-pyroxene (granodiorite?), and (6) red hematized chlorite-amphibole schist. Most lithic clasts have reaction rims consisting of thin (1-3 mm wide) yellowish white bands of feldspar. Rock colour varies according to rock type. The groundmass, characteristically light grey to dark grey-green, is peppered with small white feldspars and black mafic phenocrysts, and larger dark green-brown clasts. Foliation, where well developed, is defined by dark brown biotite-rich bands alternating with medium-green amphibole/chlorite-rich bands.

4.3 Intrusive Rocks

4.3.1 Hornblendite (JKh)

Black hornblendite intrudes the Boundary Ranges Metamorphics in the western part of the TP claim (Fig. 2). It does not crop out near the Main Showing. Mihalynuk et al. (1989) report that large alteration haloes are associated with the hornblendite. In some cases, rocks up to 1 km away from the main NW-trending body have been affected. They also note that hornfelsing may result in "dioritized" host-rock, where feldspar and chlorite clots produce a medium- to fine-grained igneous texture. At other localities, an increase in the amount of primary plagioclase (up to about 50 vol.% of the rock) transforms the "hornblendite" into a meladiorite sensu stricto.

4.3.2 Teepee Peak Stock (KTTP)

The western part of this semi-circular pluton crops out on the eastern margin of the TP claim (Fig. 2). It is separated from the Main Showing to the west, by a high, NW-trending spine of rock. The stock is a pale pink, medium-grained granodiorite to tonalite. It consists of quartz (30-60 vol.%), plagioclase (35-40 vol.%), K-feldspar (5-10 vol.%), hornblende (0-15 vol.%), biotite (5-10 vol.%), and muscovite (5 vol.%).

4.3.3 Granitoid Dykes and Sills

The two most common varieties of felsic dykes and sills encountered in the vicinity of the Main Showing are, (1) Quartz-feldspar porphyry dykes and, (2)

Quartz porphyry dykes. Detailed core logging showed that these two dyke compositions are gradational into one another. They are members of a compositional continuum which ranges from feldspar porphyries to quartz porphyries. In both drill core and on surface, they display mutually cross-cutting relationships indicating their coeval nature in addition to their cogeneity. Previous workers have tended to distinguish the altered and deformed quartz porphyries in direct spatial association with the gold-cobalt skarn (QP on Fig. 3), from those lower down on the mountain side, which are more feldspar-rich and less altered in general (Da on Fig. 3). Although this compositional distinction still may be valid, no inference should be made regarding different origins for the dykes. Significantly, temporal relationships in drill core provide clear evidence that some of the dykes are associated with the formation of calcsilicate (calcite-albite-scapolite-diopside) endoskarn. The porphyries relationships to the magnetite skarn is less certain.

Some of the more altered dykes contain several volume percent disseminated pyrite and pyrrhotite. Small sulphide-filled fractures are also present in the porphyries.

4.3.4. Intermediate and Mafic Dykes

Fine- to very fine-grained, green dykes of probable intermediate composition (Dc on Fig. 3) were mapped near the Main Showing by Lhotka and Olsen (1983). They were not identified in any of the drill core, however. Fine to very fine-grained mafic dyke were present, however, in several drillholes. These dykes appear to consist primarily of a fine grained mafic phase with lesser feldspar and magnetite. The latter is deduced on the basis of the high magnetism of the dykes. In one dyke, small white phenocrysts (1 mm wide) of plagioclase were present.

4.4 Structure

Gold and cobalt mineralization at the Main Showing is spatially related to two NW-trending fracture zones adjacent to the contact between a quartz-feldspar porphyry sill, a calc-silicate skarn, and a schist (Fig. 3). Since most of the Main Showing was covered by snow throughout the summer drill program, surficial geological mapping was not possible. According to previous work (Lhotka and Olsen, 1983), however, the northern zone dips approximately 70° east and displays only very minor sinistral motion. The sense of motion on the southern zone is unknown, although it dips approximately 45° east (Lhotka and Olsen, 1983).

Results from the diamond drilling program (Section 5.0) indicate that substantial fault displacement has occurred at the Main Showing. This is evidenced by the absence of mineralized skarn in the drill core (e.g., Figs. 4, 5, 6).

4.5 Alteration and Mineralization

The Main Showing is a semi-concordant skarn- and porphyry-hosted magnetitecobalt-gold-bearing deposit, approximately 200 m long by 15 m wide. The dominant types of skarn identified are (1) magnetite skarn, (2) calcsilicatecalcite skarn, (3) clinopyroxene±garnet±epidote±calcite skarn and, (4) amphibole skarn. There are a whole variety of skarn sub-types and a complete gradation between the four skarns exists (see Appendix A for the various permutations identified in the drill logs). On surface, the semi-concordant skarn dips moderately (~45°) to the east, largely mimicking the stratigraphy. Brief descriptions of the salient features of the four types of skarn are given below. Detailed petrographic and mineralogic descriptions of selected samples of magnetite, clinopyroxene, and amphibole skarn are also listed in Appendix B. Ettlinger and Ray (1989) have carried out microprobe studies of some garnets and pyroxenes from the clinopyroxene skarn.

4.5.1 Magnetite Skarn

Massive magnetite skarn is composed typically of >80 vol.% dark grey to black magnetite, with lesser garnet (euhedral, wine-red), calcite (anhedral infill, white), chlorite (anhedral, light-medium green), diopside (subhedral, light green) amphibole (subhedral, medium-green), and epidote (anhedral, lime green). The massive texture may give way in places to a weakly banded one, defined by pale green bands (0.5-2 cm wide) of chlorite, amphibole, and calcite. Silvery pink cobaltite and silvery white arsenopyrite may form semi-massive bands in intimate association with light green patches of intergrown diopside and amphibole. In weathered samples, purple erythrite bloom (after cobaltite) on limonite-stained fracture surfaces is common. In drill core, distinction between the two silvery minerals is difficult because arsenopyrite does not exhibit the euhedral crystal terminations so typical of this mineral in other mineral deposittypes (i.e., Archean Lode-gold systems). Pyrite, pyrrhotite, and chalcopyrite are rare. As the proportion of magnetite diminishes, magnetite skarn grades into either a clinopyroxene or, more rarely, an amphibole skarn. In places, magnetite appears to have been replaced by clinopyroxene. If this relationship is correct, then magnetite skarn is a temporally early metasomatic event.

4.5.2 Clinopyroxene Skarn

Fine-grained diopsidic clinopyroxene is the major constituent of this skarn. It is associated most commonly with calcite, garnet, epidote, albite, scapolite, amphibole, magnetite, pyrite, pyrrhotite, cobaltite, and arsenopyrite. The variability of mineral proportions over the scale of several metres precludes any precise definition of mineral proportions - any of the gangue minerals mentioned above may dominate a particular area of outcrop or section of drill core

(Appendix A). Consequently, the colour and texture (banded or layered versus massive) of clinopyroxene skarn can change dramatically.

In general, Clinopyroxene skarn is fine-grained and light green. Thin (2-5 mm wide) veinlets of dark to medium-green amphibole±sulphides/arsenides and creamy white calcite veins (up to 10 cm wide) characteristically cut this skarn. Pyrite, pyrrhotite, cobaltite, arsenopyrite, and chalcopyrite are intimately associated with clinopyroxene. Purple erythrite, the alteration product of Cobearing arsenides, can be used to distinguish cobaltite from arsenopyrite.

Detailed petrographic studies of clinopyroxene skarn (Appendix B) indicate that the main Co- and Bi-bearing phases are cobaltite and bismuthinite, respectively. Both are hosts for native gold. The bismuthinite is commonly associated with late amphibole veins/veinlets which cut earlier formed grains of cobaltite and diopside. Also, native bismuth is commonly associated with blebs of gold in cobaltite. Other less common minerals identified by X-ray diffraction include Bitellurides and talc.

4.5.3 Calcsilicate-calcite Skarn

This skarn is really only abundant downslope (west) of the Main Showing near the large, N-striking quartz-feldspar porphyry sill (e.g., Fig. 3). It is rarely encountered in drill core. Where calcite becomes dominant, this skarn is, in fact, an impure marble. Where clinopyroxene becomes the dominant mineral in the calcsilicate-calcite skarn, it becomes a clinopyroxene skarn.

Calcsilicate-calcite skarn is a striking-looking rock with coarse-grained (typically < 5 mm diameter) garnet, calcite, and diopside dominating the mineral assemblage. Actinolitic amphibole may be locally significant. Overall texture is granoblastic to porphyroblastic. Wine-red garnets (1 mm up to 1 cm in diameter) occur as fractured aggregates containing inclusions of diopside, actinolite, and calcite. Medium-green diopside occurs as either subidioblastic or idioblastic grains forming monomineralic aggregates several millimetres in diameter. White to pale grey calcite, with or without dolomite, characteristically occurs as equidimensional interlocking grains forming a granoblastic framework. As with the clinopyroxene skarn, late-forming veins of calcite may cut calcsilicate-calcite skarn.

4.5.4 Amphibole skarn

Fine-grained, medium-green actinolitic amphibole is the major constituent of this skarn. Pyrite, pyrrhotite, chalcopyrite (rare), arsenopyrite, and cobaltite are locally important metallic minerals. The Amphibole skarn generally post-dates clinopyroxene skarn. Most commonly, veins (<1 mm to 30 cm wide) and irregularly-shaped patches of amphibole plus associated metallic minerals,

replace light green clinopyroxene in the clinopyroxene skarn. Detailed petrography (Appendix B) shows that bismuthinite commonly accompanies cobaltite along the margins of amphibole veins.

Amphibole skarn can be difficult to distinguish from the chloritized amphibole schist of the Boundary Ranges Metamorphics. In general, however, amphibole skarn is coarser grained, fresher, and has a slight bluish tinge which reflects the actinolitic composition of it's constituent amphibole. Amphibole skarn would be classified as the "retrograde" or "hydrous" skarn according to Einaudi et al. (1982) and Meinert's (1989) nomenclature. Along with clinopyroxene skarn, it is responsible for most of the gold and cobalt mineralization at the Main Showing.

5.0 DIAMOND DRILLING

A total of 694 m (2276 ft) of diamond drilling was performed in six holes from June 19 to July 23, 1996, at the Racine Property. The drilling was done under contract by E. Caron Diamond Drilling Ltd., 7 Roundel Road, Whitehorse, Yukon Territory. A Boyle Brothers BBS-15 diamond drill was used to obtain NQ size core. Water required for the drilling was pumped (three-stage) from a stream approximately 500 m below the drill sites. One hundred and fifty-six core samples were analyzed for gold, silver, cobalt, copper, lead, and zinc in addition to other elements. All of the analyses were performed by Chemex labs Ltd., 212 Brooksbank Avenue, North Vancouver, British Columbia. Drillhole logs are included as Appendix A and analytical results are included in Appendix C. Geotechnical logs of core recovery are on file at the offices of Westmin Resources Limited, Vancouver, British Columbia. All core is secured and stored on the Racine Property at the old camp site.

Vancouver Petrographics made thin sections of eight drill core samples, and polished thin sections of 10 drill core samples. These sections were used to aid in the identification of fine-grained minerals in drill core.

5.1 Drillhole RC-96-01

Hole RC-96-01 was drilled vertically for 109.4 m to test the projected down-dip extension of the east-dipping (approximately 45°), semi-conformable skarn mineralization exposed at the surface (Figs. 3, 4). The hole failed to intersect any significant precious or base metal mineralization. Most of the core consists of porphyry and chlorite-biotite-actinolite schists interlayered with thin beds of marble. Barren quartz veins oriented in the plane of foliation cut the schist in the upper sections of the hole. Magnetite skarn was intersected at several locations (44.95-47.5 m; 57.0-58.0 m; and 89.6-91.0 m), but gave gold assays below detection limits (<0.03 g/t Au) and contained only mildy elevated cobalt concentrations (10 ppb or less). The development of fine-grained epidote-albite endoskarn (91.0-91.45 m) at the contact between magnetite skarn and underlying quartz-feldspar porphyry is good evidence that this porphyry is involved in the skarnification process.

Faults are abundant in the deeper sections of the hole at lithologic contacts. This feature explains the break in the down-dip projection of the mineralized surface skarn.

5.2 Drillhole RC-96-02

This hole was also drilled to test the projected down-dip extension of the eastdipping, semi-conformable skarn exposed at the surface (Figs. 3, 4). The hole is 70.1 m long, and was drilled at -60° in a southwest orientation (254°) from the same collar location as hole RC-96-01. RC-96-02 tests the intervening ground between the sloping surface and RC-96-01 (i.e., Fig. 4). Similar to RC-96-01, this hole consists mainly of porphyry and chlorite-biotite-amphibole schist with numerous faults and breccias. However, unlike RC-96-01, significant intervals of massive to semi-massive magnetite±arsenopyrite mineralization and diopsidegarnet-amphibole skarn are present. Assays for the magnetite±arsenopyrite mineralization, however, show only low gold, silver, cobalt, and copper abundances (Table 2).

TABLE 2					
DRILL CORE ASSAY RESULTS FOR MAGNETITE SKARN FROM RC-96-02					
Interval (m)	Sample No.	Au (g/t)	Ag (ppm)	Co (ppm)	Cu (ppm)
44.1-45.1	138570	<0.03	1	20	<10
45.1-46.15	138571	0.31	6	120	<10
46.15-47.55	138572	<0.03	5	30	<10
57.75-59.0	138575	0.03	1	10	<10
59.0-60.0	138576	<0.03	2	10	<10
60.0-61.0	138577	0.93	47	1580	10
61.0-62.35	138578	0.31	10	220	<10
64.7 <i>-</i> 65.7	138579	0.82	3	370	<10
Note: The entire set of assay data for these intervals is given in Appendix C					

The epidote-albite-scapolite endoskarn developed at the contact between magnetite skarn and quartz-feldspar porphyry in RC-96-01, is also developed in this hole over a 4 m wide interval from 62.4 to 66.8 m. This endoskarn shows intimate spatial association with magnetite skarn suggesting a genetic link. As shown on Figure 4, correlation of the surface skarn mineralization with that in the drillholes is uncertain owing to post-mineralization faulting.

5.3 Drillhole RC-96-03

Hole RC-96-03 was drilled approximately 45 m north of holes RC-96-01 and RC-96-02. Its purpose was to test the down-dip extension of more northerly outcropping skarn (Figs. 3, 5). The hole was drilled 105.2 m at an inclination of -60° and at an azimuth of 269°.

The hole was collared in crystal-lithic felsic lapilli-tuff of the Teepee Peak Volcanics, but quickly passed into variably skarnified quartz±chlorite±amphibolebiotite schists and porphyry. A 10 m wide intersection of semi-massive magnetite skarn occurred between 70.0 and 79.75 m but did not contain any gold or cobalt mineralization. Quartz veins were typically barren as were all the skarns. Faults in the upper and middle sections of the hole are likely responsible for the lack of correlation between skarns at the surface with those in the drillhole (Fig. 5).

5.4 Drillhole RC-96-04

This vertical hole is 128.3 m long and was drilled from the same collar location as RC-96-03. The hole tested the down-dip extension of the mineralized surface skarn behind RC-96-03 (Fig. 5). Like RC-96-03, the hole was disappointing in that it failed to intersect significant gold and cobalt mineralization. The top 4 m of core consisted of highly altered crystal-lithic felsic lapilli-tuff (Teepee Peak Volcanics). The rest of the hole comprises porphyry and quartz+amphibolebiotite schists with minor skarn. Schists and skarn dominate the upper half of the hole and, in places, are strongly veined by quartz (Fig. 5). The lower half of the hole is dominated by faulted porphyry. The porphyry in this hole varies strongly in its intensity of alteration. Remnant textures and the gradual change in the intensity of alteration of the porphyry down drillhole shows that the high-level "quartz porphyry dykes and sills" (unit QP on Figure 3) are simply altered equivalents of the quartz-feldspar porphyry dykes and sills (unit Da on Figure 3). There are quartz porphyries sensu stricto but, by-in-large, the alteration, especially that at the surface, masks the presence of the feldspar phenocrysts. Most dykes display sub-equal proportions of quartz (1-5% vol.%) and feldspar (1-4% vol.%) phenocrysts. All porphyries are likely genetically related to the same evolving magma chamber (at depth), with cross-cutting relationships observed at the Main Showing (Lhotka and Olsen, 1983) reflecting local temporal variations in magma discharge. Compositional differences simply reflect changes in the chemistry of the melt and its water content, parameters that will change throghout magma crystallization (i.e., Cox et al., 1986). The degree of alteration is directly related to whether the porphyry is adjacent to a post-mineralization fault or breccia zone. At such locales, metasomatic fluids are able to pervasively flood and alter porphyry. The development of endoskarn in this drillhole attests to the relationship between calcsilicate-calcite and clinopyroxene skarn formation and the quartz-feldspar porphyries.

5.5 Drillhole RC-96-05

Hole RC-96-05 was drilled approximately 85 m north of RC-96-04 and RC-96-03 (Fig. 3). Its purpose was to test the northern exposure of the Main Showing where the widest expanse of magnetite skarn occurs. The hole was drilled 152.4 m at an inclination of -60° and at an orientation of 248°.

The hole was collared in crystal-lithic felsic lapilli-tuff, but below 19.3 m. consisted of guartz- and chlorite-biotite-amphibole schist and guartz-feldspar porphyry (Fig. 6). Gold-cobalt mineralization and magnetite skarn were absent. Some biotite-amphibole skarn and calcite-garnet-diopside skarn was encountered in the middle of the hole at 66.9-68.4 m and 76.3-79.8 m. respectively. Between 122.0 and 126.0 m, albite-scapolite-diopside endoskarn was developed in quartz-feldspar porphyry. Lesser amphibole skarn was also encountered in this interval. Like the endoskarn in other drillholes, especially RC-96-04. this endoskarn is evidence that clinopyroxene, amphibole, and calcsilicate-calcite skarns are related to the intrusion of the quartz-feldspar porphyries. The deep porphyry intersected at the bottom of the drillhole between 135.5 to 152.4 m contained numerous fine-grained diorite and melagranitoid xenoliths (Appendix A). Their presence suggests that porphyry magma rose through 187 Ma hornblende-diorite at depth. There are also cognate xenoliths of quartz-feldspar porphyry. These are typically fine-grained and dark grey with small whitish feldspar phenocrysts and black mafic phenocrysts. The presence of cognate xenoliths is evidence for multi-phase igneous activity at the Main Showing. The various porphyries can be considered members of a cogenetic magma series.

Barren quartz veins are common in drill core. Neither breccias nor the massive magnetite skarn on the surface reproduced down-dip in the drillhole (Fig. 6).

5.6 Drillhole RC-96-06

This hole is 139.0 m long and was drilled southwest at 248° from the same collar location as RC-96-05 (Fig. 3). The hole tested the down-dip extension of the surface mineralization behind RC-96-05 (Fig. 6). Like RC-96-05, the hole was disappointing in that it failed to intersect significant gold and cobalt mineralization. The top 25 m of the hole consisted of highly altered crystal-lithic felsic lapilli-tuff which passed through to 55 m of quartz-amphibole-biotite schists overprinted by a variety of skarns, the most common being amphibole skarn (Fig. 6). Barren to weakly mineralized quartz veins, oriented in the plane of foliation, commonly cut the schists and skarns. The bottom 60 m of the hole consists of fine-grained quartz-feldspar porphyry. Much of this bottom porphyry is notable for the amount of disseminated pyrite/pyrrhotite and stringer sulphide mineralization that it contains. It resembles porphyry copper-style mineralization,

although assay results indicate that copper, gold, and cobalt abundances are low (Appendix C).

The lithologies encountered in this drillhole cannot be correlated with up-dip lithologies in either RC-96-05 or on the surface (Fig. 6). Clearly, faulting after skarn formation has modified the shape of the original zone of mineralization.

In summary, rock units logged in all six drillholes show that the semiconformable skarn mineralization mapped on the surface does not extend downdip to any appreciable degree. A series of post-mineralization faults has displaced much of the mineralization in the Main Showing. Detailed core logging indicates that the quartz and quartz-feldspar porphyries are members of a compositional continuum that produced significant clinopyroxene, calcsilicatecalcite and amphibole skarn. The relationship with the magnetite skarn is more ambiguous as textural relationships in core from RC-96-02 show diopside and amphibole replacing magnetite in massive magnetite skarn (60-62.25 m).

6.0 LITHOGEOCHEMICAL SAMPLING PROGRAM

Twelve rock grab samples were collected from the TP claim and analyzed for gold, silver, cobalt, copper, lead, zinc, and a host of other elements. Although elevated elemental abundances were noted in several samples, none were deemed particularly encouraging. The location of the samples is shown on Figure 7 and abundances of gold, arsenic, cobalt, and copper are plotted on Figures 8, 9, 10, and 11, respectively. Brief descriptions of the samples are given in Appendix D. The complete set of analytical data are presented in Appendix E.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The 150 m long by 15 m wide, N-trending, semi-conformable skarn mineralization exposed at the Main Showing on the TP claim does not have significant down-dip extensions. Drillholes oriented to intersect the E-dipping semi-comformable skarn mineraliation along the length of the showing failed to delineate significant zones of gold-cobalt mineralization. Core logging showed that extensive faulting subsequent to skarn formation largely removed the skarn. Instead, drillholes are largely comprised of quartz and quartz-feldspar porphyry, with lesser quartz±chlorite±biotite-amphibole schist. The development of skarn appears to be closely related to the emplacement of quartz and quartz-feldspar porphyries. Significant endoskarn is present at the contacts between the larger dykes/sills and the schists. The quartz and quartz-feldspar porphyries are commonly intensely altered, which caused previous workers to misclassify them as being unrelated. Textural and temporal relatinships in drillcore, however, revealed that these porphyries are all members of a compositional continuum, most likely related to an evolving magma chamber at depth. The degree of

alteration and deformation can be related to the distance from faults and breccias in the Main Showing area. Close to the faulted magnetite and clinopyroxene skarns, porphyries are very strongly altered and only the glassy grey "quartz eye" phenocrysts are visible in the friable chalky-white rock: feldspar phenocrysts have been obliterated by argillic alteration. Further away from the faults, however, the porphyries may be quite fresh with tabular feldspar phenocrysts readily observable.

Lithogeochemical samples collected over the TP claim failed to show significant gold enrichment. Other metal abundances were generally low.

Further work on the Main Showing is not recommended. The skarn mineralization is extensively faulted and there seems little chance of solving the stuctural controls over the mineralization without further drilling and oriented drill core. Furthermore, surface exposures of skarn and faults in the Main Showing underestimate the true degree of deformation and faulting associated with this prospect as determined from drill core.

8.0 REFERENCES

- Christie, R.L., 1957. Bennett, British Columbia. Geological Survey of Canada, Map 19-1957 with discriptive notes.
- Cox, K.G., Bell, J.D., and Pankhurst, R.J., 1979. *The Interpretation of Igneous Rocks*. Unwin Hyman, London, U.K., 450 p.
- Durfeld, R.M., 1989. Report on the Teepee Property, Atlin Mining Division, British Columbia. Unpublished B.C.M.E.M.P.R. Assessment Report 18,766 by Cyprus Gold (Canada) Limited.
- Einaudi, M.T., Meinert, L.D., and Newberry, R.J., 1983. Skarn Deposits. Economic Geology 75th Anniversary Volume, p. 317-391.
- Ettlinger, A.D. and Ray, G.E., 1989. Precious metal enriched skarns in British Columbia: An overview and geological study. B.C.M.E.M.P.R. Paper 1989-3, p. 20-40.
- Lhotka, P.G. and Olsen, R.A., 1982. Exploration 1982 Volcanogenic copper and gold deposits, Carcross region, Atlin Mining Division, British Columbia. Unpublished report by Trigg, Woollett Consulting Ltd. for Texaco Canada Resources Ltd.
- Lhotka, P.G. and Olsen, R.A., 1983. TP Mineral Claim, Atlin Mining Division, British Columbia. Unpublished B.C.M.E.M.P.R. Assessment Report 11,300 by Trigg, Woollett Consulting Ltd. for Texaco Canada Resources Ltd.
- Meinert, L.D., 1989. Gold Skarn Deposits. Economic Geology Monograph 6, p. 537-552.
- Mihalynuk, M., 1989. Geology and Geochemistry of the Warm Creek (East Half) Map Area and Fantail Lake (West Half) Map Area. B.C.M.E.M.P.R. Open File 1989-13
- Mihalynuk, M.G., Currie, L.D. and Arksey, R.L.,1989. The Geology of the Tagish Lake Area (Fantail Lake and Warm Creek; 104M/9W and 10E). B.C.M.E.M.P.R. Geological Fieldwork 1988, Paper 1989-1, p. 293-310.
- Mountjoy, K., 1988. TP: Main Showing. Exploration in British Columbia (GEM Series), p. B159-B162.

9.0 STATEMENT OF EXPENDITURES

Racine Property Exploration Program Expenditures, March, 1996 to November, 1996

Diamond Drilling: E. Caron Diamond Drilling	
Direct costs, 694 m thin wall NQ, mob-demob, etc	\$ 94,078
Drill Pad Construction: Bear Mountain Enterprises	
Labour, blasting, lumber supplies, etc	\$ 12,581
Helicopter: Discovery Helicopters	
Drill moves/mob-demob, camp mob-demob, set-outs for mapping, camp re-supply	\$ 85,389
Camp Construction and Expenses:	
Labour, tent floors, water- & propane-lines, hardware, etc	\$ 11,593
Geophysical Contractors: RGI & Woods Geophysical Consulting Ltd.	
Remote sensing, aeromagnetic re-interpretation	\$ 6,813
Geological Consultants: Leslie Investments Ltd.	
Mineralogic and Petrographic study	\$ 3,897
Materials and Supplies:	
Groceries, sample bags, field gear, propane, showers, etc	\$ 25,824
Equipment Rentals:	
5 Hp water pump, 1000 ft water hose, survey transit, truck, satellite phone, two-way radios	\$ 9,247
Equipment Repairs/Maintenance:	
Generators, chain saws, fax box	\$ 725
Camp Fuel:	

٠

Diesel & gas	\$ 1422			
Trucking/Shipping/Handling:				
Camp gear mob-demob Vancouver to Whitehorse (return), core samples to Chemex Labs Ltd. in Vancouver	\$5,757			
Assays/Geochemical Analysis: Chemex Labs Ltd.	·			
Drill core (Low-S assay), 119 samples @ \$15.53/sample Drill core (High-S assay), 27 samples @ \$23.95/sample Drill core (High-Cu assay), 1 sample @ \$7.80/sample Rock geochemistry, 12 samples @ 15.53/sample	\$1,848 \$ 647 \$ 7.8 \$ 186			
Travel Costs to Racine Camp:				
Air Travel, motel accomodations, meals	\$ 6,895			
Vehicle Costs:				
Vehicle rental, 6 days @ \$45/day Gas (6 days)	\$ 270 \$ 49			
Telephone/FAX Communications:				
Northwestel/Infosat telecommunications charges	\$ 6,309			
Miscellaneous Expenses:				
Delivery, courier Office supplies Printing, reproductions, field mylars Maps, reports, photocopying	\$ 200 \$ 76 \$ 410 \$ 1,128			
Drafting:				
In-house, base map preparation, map layouts Drafting supplies	\$ 900 \$ 66			
Salary Breakdown:				
Pre-field: hiring, drill bids, logistics, maps				
Stephen Rowins, project geologist, 23 days @ \$317/day	\$ 7,291			

Paul Lhotka, project geologist, 15 days @ \$340/day	\$ 5,100
Dan Brotea, geologist, 5 days @ \$230/day	\$ 1,150

Drill and Field Program (June 3 to July 28, 1996):

Stephen Rowins, project geologist, 56 days @ \$317/day	\$ 17,752
Paul Lhotka, project geologist, 6 days @ \$340/day	\$ 2,040
Adrian Brotea, geologist, 35 days @ \$230/day	\$ 8,050
Geoffrey Bradshaw, geologist, 5 days @ \$185/day	\$ 925
Larry Poznikoff, junior geologist, 47 days @ \$156/day	\$7,332
Alexander Paramonoff, surveyor/assistant, 56 days @ \$210/day	y <mark>\$ 11,76</mark> 0
Dawn Thompson, cook/medic, 56 days @ \$231/day	\$ 12,936

Post-field: report, data compilation, drafting, reclamation

- Stephen Rowins, project geologist, 21 days @ \$317/day \$6,657
 - Total Salaries \$80,993

Total Expenditures, Exploration Program, Racine Property \$ 370,852

10.0 STATEMENT OF QUALIFICATIONS

I, Stephen M. Rowins, of the Municipality of Burnaby, in the Province of British Columbia, hereby certify that:

- I am a Fellow (registration # F6362) of the Geological Association of Canada, residing at 4640 Bond Street, Burnaby, Burnaby, British Columbia, V5H 1G8, with a business address at #904-1055 Dunsmuir Street, P.O. Box 49066, The Bentall Centre, Vancouver, British Columbia, V7X 1C4.
- 2. I graduated with a B.Sc. (Honours) in Geology from Queen's University, Kingston, Ontario in 1987, a M.Sc. in Geology from the University of Ottawa, Ottawa, Ontario in 1990, and a Ph.D. in Geology from the University of Western Australia, Perth, Australia in 1994.
- 3. I have practised my profession continuously for ten years working in Canada and Australia.
- 4. I directly performed or supervised the work which is described in this report.
- 5. I have no direct financial interest in this property; however, I do own shares and have stock options in Westmin Resources Limited.

day of DEMEMBER, 1996 at Vancouver, British DATED this Columbia. OCIATION S.M. HOWINS F 6362 FELLOW

Stephen M. Rowins, Ph.D., F.G.A.C.

10.0 STATEMENT OF QUALIFICATIONS

I, Paul G. Lhotka, of 254 East 18th Street, North Vancouver, British Columbia, V7L 2X6, hereby certify that:

- 1. I hold a B.Sc. in Geology obtained from the University of Manitoba in 1981, and a Ph.D. in Geology obtained from the University of Alberta in 1988.
- 2. I am registered as a professional geologist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 3. I am a member of the Canadian Institute of Mining, Metallurgy and Petroleum and an associate of the Geological Association of Canada.
- 4. I have practised my profession continuously for seventeen years working in Canada.
- 5. I have no direct financial interest in this property; however, I do own shares and have stock options in Westmin Resources Limited.

DATED this <u>Jok</u> day of <u>December</u>, 1996 at Vancouver, British Columbia.

Paul G. Lhotka, Ph.D., P.Geo.

APPENDIX A

DIAMOND DRILL LOGS

. .

Abbreviations Used in Drill logs

Brecc.	breccia
Fol	foliation
Mod	moderate
Str	strong
Wk	weak
Sul	sulphide
Mass	massive
Tr	trace
Ar	argillic alteration
Skn	skarn
Na	sodic alteration
Alt'n	alteration
Struc	structure
Weat	weathering
Min'l	mineralization
DGACSKN	diopside-garnet-amphibole-calcite skarn
DGAME	diopside-garnet-amphibole-magnetite-epidote
CALGMG	calcite-garnet-magnetite
DGAM	diopside-garnet-amphibole-magnetite
ALSCP	albite-scapolite

Mineral Abbreviations

Mus	muscovite
Ser	sericite
CI	chlorite
Bi	biotite
Ep	epidote
Di	diopside
Gar	garnet
Qz	quartz
Ca	calcite
Car	carbonate
Lim	limonite
Mag	magnetite
Hem	hematite
Amp	amphibole
Eryth	erythrite
Fe	iron
Mał	malachite
Ab	albite
Ро	pyrrhotite
Ру	pyrite
Ga	galena
Со	cobaltite
Сру	chalcopyrite
Aspy	arsenopyrite
Au	gold
Scp	scapolite
Non	nontronite
WESTMIN RESOURCES LIMITED - DRILL LOG SUMMARY

PROJECT: RACINE (BRITISH COLUMBIA)	DATE STARTED: JUNE 21, 1996
HOLE NO.: RC-96-01	DATE COMPLETED: JUNE 26, 1996
LOCATION: UTM - 6616579 N, 518349 E LOCAL - 15008 N, 5046 E	GROUND ELEVATION: 1873 m
LOGGED BY: STEPHEN ROWINS	AZIMUTH: N/A
DATE: JUNE 23, 1996 and onwards	INCLINATION: -90° (vertical) at collar
CONTRACTOR: E. CARON DIAMOND DRILLING, WHITEHORSE, YUKON TERRITORY	TOTAL LENGTH: 109.4 m (359 ft)
CORE SIZE: NQ	CORE RECOVERY: VERY GOOD
DIP TESTS: NONE	COMMENTS: First hole of the program. Drilled off the most southerly drill pad to intersect the down-dip extension of the surface skarn.

•

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
0.00	12.00	FINE GRAINED MEDIUM GREEN CHLORITE-AMPHIBOLE SCHIST Moderately chloritized, silicified, & carbonatized schist. Strongly foliated with core axis-foliation angle of 30-40 deg. Foliation defined by 1-30 mm wide bands of chlorite. Up to 1 m thick veins of qz+/-car occur sporadically. Non-magnetic. 4.50-5.15 BRECCIATED QUARTZ VEIN Greyish white vein with numerous cross-cutting fractures filled with medium green chlorite/amphibole(?). Non-magnetic. Barren of sulphides 5.35-5.75 BRECCIATED QUARTZ VEIN Irregular form with boudinage structure. Surrounding schist is biotite-rich and highly strained, with <1 to 10 mm wide bands of chlorite	CL/QZ/C AR/	STR FOL	MOD	WK SUL	QZ
		7.00-9.00 FINE GRAINED CHLORITE BIOTITE SCHIST Numerous 1-2 mm wide quartz/Fe-oxide veinlets in cross-cutting arrays. Limonitic staining prominent. Minor pyrite					
12.00	13.25	VERY FINE GRAINED BUCK WHITE QUARTZ VEIN Vein with 0.5-8 mm chlorite- & epidote-filled microfractures oriented parallel to the foliation in the schist. Minor milk white albite (?), sericite, biotite, & sulphides (now largely converted to Fe-oxides) also associated with chlorite in fractures.1-20 mm wide slivers of wallrock schist incorporated into vein margins.	CL/QZ/C AR/	MASS		WK SUL	QZ
13.25	13.90	FINE GRAINED APPLE GREEN EPIDOTE-CHLORITE-AMPHIBOLE SCHIST Mottled apple to medium green with abundant buck white quartz veins/veinlets. Some skarning. Zones of reddish orange to deep purple staining associated with silvery mineral (hematite?). Fe-oxide replacement of hypogene sulphides. Non-magnetic. 13.80-13.95 VERY FINE GRAINED CHLORITE BIOTITE SCHIST Grey black contact aureole ?	EP/QZ/C L	MASS to WK FOL	WK	MOD SUL	
13.90	17.00	FINE GRAINED MEDIUM GREEN CHLORITE-AMPHIBOLE SCHIST Moderately chloritized, silicified, & carbonatized schist with significant biotite. Yellowish-white patches of albite associated with amphibole (weak skarn development). Strongly foliated with core axis-foliation angle of 30-40 deg. Foliation defined by 1-8 mm wide bands of chlorite. Non-magnetic. 14.40-14.60 GREY WHITE ALBITE SCAPOLITE ALTERATION Breccia zone with rounded, 1-2 cm long, fragments of albite/scapolite/sericite schist and grey quartz. Pseudo matrix of black biotite. All fragments display throughgoing fractures filled by green chlorite/amphibole.	CL/QZ/C AR/	MASS to WK FOL	WK	WK	

Page 2 6110	
From	То

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
17.00	18.00	FINE GRAINED LIGHT BROWN	CL/QZ/C	FOL	STR	WK	
		CHLORITE-AMPHIBOLE SCHIST	AR/			SUL?	
		Strongly epidotized, light brown schist in contact with					
		quartz porphyry. Apple green epidote weathers to buff				-	
		brown. Core consists of 1-10 cm long fragments.		1			1
		Strongly silicified. Non-magnetic.					
18.00	24.20	FINE GRAINED GREY WHITE QUARTZ PORPHYRY	AR/QZ/F	FRIABLE	WK/S	WK	
		Porphyritic quartz granite (?) ranging from intensely	E/CAR	то	TR	SUL?	
		silicified to strongly argillized and ferrunginized.		MASS			
		Argillized sections are very soft and friable.					
[]		Pyrrhotte/pyrite (<2% of rock) occurs as]
		disseminations (cubes 1-2 mm across) and in thin					
		fractures (<1 mm) along with amphibole, chlorite &					
	2	re-oxides to form a cross-cutting network of fractures			1		
		(sunger zones). Pynie commonly oxidized to					
		green enidote/sericite/pontronite, and black					
		manuanese dendrites are common in fractures and on					
		fractured surfaces. Weakly magnetic in places (Po)					
		18.33-22.00 ARGILLIZED QUARTZ PORPHYRY					
		Soft, friable, fragments (1-20 cm long) of grey					
		white porphyry					
24.20	25.80	FINE GRAINED GREEN BROWN	AR/QZ/F	STR FOL	MOD	WK	QZ
		CHLORITE-AMPHIBOLE SCHIST	E/CAR	& BROK			
		Strongly foliated dark green-yellow brown schist. Core		EN COR			
		is broken & stained with limonite. Zone of contact					
		metamorphism. Sulphide mineralization weak.					
25.80	40.00	FINE GRAINED GREY WHITE QUARTZ PORPHYRY	QZ\EP\A	STR FOL	WK/S	WK/MO	
		Fine grained, porphyritic, quartz granitoid ranging from	R\FE	& BROK	TR	D	
		Intensely silicified to strongly argillized and		EN COR			
		terrunginized. Aphantic groundmass encloses 3-5%					
		1 2% foldenes phonoenets (rele white 2.2 mm					
		diameter) Argillized sections are you set and frights					
		Pyrhotite & pyrite (<2% of rock) occurs as					
		disseminations (cubes 1-2 mm across) and in thin			1		
		fractures (<1 mm) along with amphibole, chlorite &					
		Fe-oxides to form a cross-cutting network of fractures					
	2	(stringer zones). Pyrite commonly oxidized to					
		yellow/brown/black limonite. White calcite, apple					
		green epidote/sericite/nontronite & black manganese					
		dendrites are common in fractures and on fractured					
		surfaces. Lower contact with schist is ~15 deg to core			İ i		
		axis (TCA) with slight chilling (?) over last 1.5 m.					
40.00	10.00	Weakly magnetic in places (Po).					
40.00	43.60	FINE GRAINED DARK GREY-BLACK BIOTITE	FE/QZ/C	STR FOL	MOD	STR PY	
i		AMPHIBULE SCHIST	L/CAR	& BROK			
		outingly Ibilated (35-45 deg. ICA) & contact		EN COR			
		Foliation defined by <1 mm wide bands of biotite					l
		alternating with similar sized bands of guarter P					
		amphibole Brown-vellow limonitic staining reflects the					
		high pyrite content (up to 2% in some sections). Pyrite					
		occurs as <1 mm to 5 mm wide clote & veinlete					
		Non-magnetic					
			L				

	Page 3 6110		
[From	То	Geological L
			40.10-40.40 FINE GRAINED CH BIOTITE SCHIST Light lime green zone contain alteration 43.30-43.60 FINE GRAINED BIO AMPHIBOLE SCHIST Rubble zone (1-4 cm long fra
	43.60	44.80	FINE GRAINED LIME GREEN E BIOTITE SCHIST Intense alteration (skarnification) biotite schist by epidote & lesser cm wide bands of medium green biotite/quartz.
	44.80	44.95	BLEACHED WHITE CLAYEY C/ 1-3 cm wide pebbles of argillized chlorite-amphibole schist. This is reaming.
	44.95	47.50	FINE GRAINED LIGHT BROWN MAGNETITE-GARNET-DIOPSII Variably textured magnetite-diop skarn. Lighter tan brown/pale gring garnet-diopside skarn. Darker gri & amphibole-rich. Commonly, gring brecciated, with dark green chlo

F	Ta	Contaniant Log	AL T'NI	STRUC	NEAT	MINT	
From	10	Geological Log		SIRUC			
		40.10-40.40 FINE GRAINED CHLORITE					
		BIOTITE SCHIST					
		Light lime green zone containing irregular chlorite					
		43.30-43.00 FINE GRAINED DIVITIE					
		Rubble zone (1_4 cm long fragments)	1				
43.60	44.80	FINE GRAINED LIME GREEN EPIDOTE CHI ORITE	EP/CL/O	MASS	WK		
40.00	44.00	BIOTITE SCHIST	z	TO		Í	
		Intense alteration (skarnification) of chlorite-quartz-		BANDED			
		biotite schist by epidote & lesser quartz. Relict 2-10					
		cm wide bands of medium green chlorite and grey					
		biotite/quartz.					
44.80	44.95	BLEACHED WHITE CLAYEY CAVE					
		1-3 cm wide pebbles of argillized quartz porphyry and					
		chlorite-amphibole schist. This is cave in the hole after					
	17.50	reaming.		0510		070	
44.95	47.50	FINE GRAINED LIGHT BROWN/BLACK	MAG	SEMI		SIR	
1		MAGNETTIE-GARNET-DIOPSIDE-AMPH SKARN	SKARN	MASS			
		ekam Lighter tan brown/pale groon patches are the				ULſ	
		arnet dionside skarn. Darker green zones are chlorite					
		& amphibole-rich Commonly garnet is fractured and					
		brecciated with dark green chlorite (?) & black]				
		magnetite forming the cement. Magnetite skarns					
	}	replaces the calc-silicates. Some zones ranging up to					
		40 cm in length contain semi-massive magnetite.					
1		Sulphides are rare, & calcite is a minor phase,					
		typically filling thin fractures in the garnet-diopside					
		skarn					
47.50	53.70	FINE GRAINED DARK GREY-BLACK	CL/FE/Q	STR FOL	WK/M	WK	QZ
	-	CHLORITE-BIO ITTE-AMPHIBOLE SCHIST				SUL	
		Very strongly tollated schist (40-45 deg. TCA)					CAL
		buck white quarts voine (4 cm across) plus augon (up					
		to 10 mm across) Non-magnetic & only weakly					
		carbonatized					
		52.00-52.80 FINE GRAINED	t				
		BIOTITE-QUARTZ-AMPHIBOLE SCHIST					
		Very strong banding (alternating, 1-3 mm wide,					
		quartz & biotite/amphibole) with numerous S-folds.					
		53.10-53.40 FINE GRAINED					
		BIOTITE-QUARTZ-AMPHIBOLE SCHIST					
		Highly contorted banding & brecciation of					ļ
F0 70		biotite-quartz schist	DOADOK	-			1 07
53.70	62.40	DI FINE GRAINED MEDIUM GREEN	DGACSK	MASS	VVK	MAG	
		SKARN					CAI
	}	Zone of well developed light to medium green		1			
		diopside-epidote- garnet-actinolite-calcite skarn with					-
		0.5 to 1 m sections of significant magnetite					1
		mineralization. Overprints chloritized amphibole schist.					
		Thin 1-5 mm wide, dark green amphibole veinlets					
		(mineralized?) cross-cut diopside-garnet-actinolite				•	
		skarn. Thin (<3 mm wide) veinlets of white calcite also				·	

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
		cut skarn. Both veinlet-types strike in the same					
		direction as the foliation in the host schist (40 deg	ľ				
		ICA). Garnet is commonly fractured and elongated in					
1 1		the plane of foliation. I nese features suggest that the					
		skam is later than the deformation responsible for the		i i			
		development of scrist, but younger than that which					
		aligned the cross-cutling amphibole & calcile vehicles.					
		prospect scale faulting/deformation ime green			1		
		epidote commonly overprints skarn, probably					
		synchronous with late calcite veining (propylitic					
		alteration).					
		57.70-58.00 FINE GRAINED			1		
1 [DIOPSIDE-GARNET-MAGNETITE SKARN					
1		Zone of abundant magnetite					
		59.00-60.00 FINE GRAINED					
		DIOPSIDE-GARNET-AMPHIBOLE SKARN					
		Zone of numerous, thin (1-3 mm wide), white					
		61.90-62.40 FINE GRAINED			l l l l l l l l l l l l l l l l l l l		
		DIOPSIDE-GARNET-AMPR-WAGNETTE SKARN					
62.40	62 90	FINE GRAINED LIGHT GREV MARRI E		STR FOL	WK	MAG	CAR/A
02.40	02.00	Banded, marbled limestone with 1 mm wide veinlets of	MP/DI	UNICIOE			MP/H
		white calcite, green amphibole/chlorite, & purple-red					EM?
		hematite? Banding (2 mm to 5 cm wide) occurs at					/ERYT
		45-55 deg TCA. Veinlets occur in random orientations,					н
62.90	64.30	COARSE GRAINED MEDIUM BROWN MARBLE	FE/CAR/	MASS &	STR	MOD?	CAR/A
		Striking-looking rock with brown limonite &	QZ	BRECC		SUL	MP/H
		limonite-stained calcite crystals ranging up to 6 cm in					EM?
		length. Euhedral quartz crystals up to 3 cm in length.					/ERYT
1		Specular hematite common. In places, minor					н
		Drecciation has occurred and marbled limestone is					
		PEOPVSTALLIZED EALILT Note the deformation of					
		lower contact					
64.30	69.50	FINE GRAINED LIGHT GREY MARBLE	CL/AMP/	MASS &	WK	MOD?	CAR
		Marbled limestone with patches of green	QZ/FE	BREC?		SUL	
		chlorite/amphibole alteration. Creamy brown dolomitic					
		fragments (?) are replaced by irregularl zones of pale					}
		grey calcite+/-chlorite+/-amphibole. Slight brecciation					
		of dolomite occurs. Cross-cutting, dark brown, hairline					
		fractures filled with carbonate (random orientation). 1-7					
		mm wide calcite veinlets less common. Some 10-20					
		cm long intervals contain up to 10% magnetite. Pyrite					l .
		a pyrmome are rare. Lower contact is faulted at ~45	1				
60.50	71.20	EINE CRAINED MEDILIM CREEN	CLICARI	MASS 8	MOD		07
09.50	/1.20	CHLORITE-BIOTITE-AMPHIBOLE SCHIST		RDEC2		VVI.	
		Moderately chloritized silicified & carbonatized schist		DICLO			
		with significant biotite. Very strongly foliated with core]		
		axis-foliation angle of 40-45 deg. Foliation defined by 1					
		mm wide bands of alternating dark brown biotite and	1			· ·	
		medium green chlorite/carbonate. Prominent		1		ŀ	

WESTMIN DRILL LOG

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
		crenulation cleavage (cm scale). Core is broken. Lower					
74.00	70.00	contact is faulted at 62 deg. TCA.					
/1.20	/3.80	VERY FINE GRAINED CREAM WHITE MARBLE	CL/FE	MASS		WK	CAL/D
		Marbled limestone with patches of green				. PY/PO	OL
		chionie/amphibole alteration. Creamy brown dolomite					
		calcite+/-chlorite+/-amphibole. Cross cutting					
		grev-white hairline fractures filled with					
		carbonate/pvrite/pvrrhotite (random orientation), 1-7					
		mm wide calcite/pyrite veinlets less common. Not as		n 1			
		strongly Fe-stained as preceeding limestone interval.					
73.80	76.50	FINE GRAINED MEDIUM GREEN	CL/CAR/	STR FOL	WK	WK	CAR/
		CHLORITE-BIOTITE-AMPHIBOLE SCHIST	QZ			PY/PO	QZ
		Moderately chloritized, silicified, & carbonatized schist					
		with significant biotite. Very strongly foliated with core					
		axis-foliation angle of 40-45 deg. Foliation defined by 1					
		mm wide bands of alternating dark brown blottle &					
		crepulation cleavage (cm scale). Core in broken in					
		some intervals					
		74.60-75.50 FINE GRAINED					
		CHLORITE-BIOTITE-AMPHIBOLE SCHIST					
		Very strongly foliated & crenulated schist with					
		yellow-brown limonite staining after pyrite &					
		pyrrhotite. Rock has a tiger-striped appearance.					
70.50		Broken core					
/6.50	77.30	VERY FINE GRAINED CREAM WHITE MARBLE	CL/QZ/A	FOL TO	WK	WK	CL-
		wide) of green chlorite/omnhibele attoration. Bending at	MP	MASS		PY/PO	AMP
		40-50 deg TCA Cross-cutting randomly oriented					
		grev-black, hairline fractures filled with carbonate &					
		Fe-oxides (after pyrite & pyrrhotite common). Top					
		contact is faulted at ~45 deg. TCA. Angular breccia					
		fragments (1-2 cm wide) in 15 cm wide fault zone.					
77.30	79.60	FINE GRAINED MEDIUM GREY	CL/NA/Q	STR FOL	MOD	MOD	QZ/CA
		CHLORITE-BIOTITE-AMPHIBOLE SCHIST	Z/CAR			PY/PO	R
		Moderately chloritized, silicified, & carbonatized schist				& MAL	
		with significant sulphide & magnetite. Some parts have					
		(reibeckite?) Strongly foliated with core axis foliation					
		angle of 40-45 deg. Limonitic staining is well developed					
		and associated with green malachite. Core weakly					
		magnetic & broken in some intervals.		1			
		77.70-77.90 MEDIUM GREY QUARTZ VEIN					
		20 cm wide vein cutting schist at 70 deg TCA.					
		Highly fractured. Dark green to black hairline					
		fractures are pervasive & filled with					
70.00	00.00	magnetite/chlorite/amphibole/sulphide (?).					
79.60	82.00	FINE GRAINED LIGHT GREY MARBLE	CL/NA/Q	BANDED		WK	MAG-
		Silicilied & marbled limestone. Incipient skarnification	Z/CAR	TO		PY/PO	CAR-
		associated with intensely inactured zones - grading to		BRECC		& MAG	CHL
		wide) of green chlorite/amphihole/epidote/spricite (2)					
		alteration. Weak banding at 40-50 deg TCA.					

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
		Cross-cutting, randomly oriented, grey-black, hairline fractures filled with magnetite/carbonate/Fe-oxides (after pyrite & pyrrhotite common). Magnetite needles oriented perpendicular to vein margins indicating extensional fractures. Both top and bottom contacts are minor faults with argillic alteration & traces of malachite. Top fault is at ~55 deg. TCA. Bottom fault					
82.00	84.90	FINE GRAINED MEDIUM GREEN CHLORITE-QUARTZ-AMPHIBOLE SCHIST Strongly silicified & chloritized schist. Patches of pale yellow-green are the most intensely silicified parts. Strongly foliated with core axis-foliation angle of 40-45 deg. Limonitic staining is well developed and associated with green malachite (Cu-hydroxide). Core weakly magnetic & broken in some intervals.	CL/QZ/C AR	STR FOL	WK	WK Py/po & Mal	QZ
84.90	87.10	FINE GRAINED DARK BROWN QUARTZ-AMPHIBOLE-BIOTITE SCHIST Strongly foliated schist with dark brown biotite-rich bands (1-3 mm wide) oriented 35 deg TCA. Minor folding. Buck white quartz fragments are commonly stretched and aligned in the plane of foliaton. Suggests brecciation of quartz vein during deformation of schist. Non-magnetic and little sulphide.	QZ/FE	STR FOL	WK	WK	QZ
87.10	89.60	FINE GRAINED LIGHT GREY MARBLE Silicified & marbled limestone. Incipient skarnification associated with intense fracturing - grading to a jigsaw breccia. Irregular bands or domains (1-20 mm wide) of green chlorite/amphibole/epidote/sericite (?) alteration. Weak banding at 40-50 deg TCA. Cross-cutting, randomly oriented, grey-black, hairline fractures filled with magnetite/carbonate/Fe-oxides (after pyrite & pyrrhotite common. Magnetite needles oriented perpendicular to vein margins indicating extensional fractures.	QZ/CL/F E/CAR	MASS TO BRECC		WK PY/PO & MAG	MAG- CAR
89.60	91.00	MASSIVE GREY BLACK MAGNETITE SKARN Semi-massive magnetite skarn over carbonatized chlorite amphibole schist. White calcite with limonite staining fills interstices between magnetite grains and occurs as hairline fractures in random orientation. In intervals where magnetite is weakly developed, chloritized schist is highly foliated (30-40 deg TCA) and shows green malachite staining. Sulphides are rare.	MAG- CAR SKAR	SEMI- MASS		MAG/C O?/AU?	
91.00	91.45	FINE GRAINED PALE PINK-GREEN EPIDOTE ALBITE ENDOSKARN Contact zone (endoskarn) between magnetite skarn & fresh quartz-feldspar porphyry. Very strongly silicified with minor carbonate, chlorite, & sericite/epidote. Pale, pinkish white patches are probably lightly hematized albite-scapolite. Pinkish-grey patches are silicified & hematized porphyry. Similar to endoskarn in RC-96-02 at 62.4-63.7 m & 65.53-66.95 m. Rapid transition.	QZ/CL/S ER/EP	MASS			

WESTMIN DRILL LOG

RC-96-01

•

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
91.45	109.40	FINE TO MEDIUM GRAINED LIGHT GREY-GREEN	SER/CA	WK FOL		VERY	CAR
		Fresh, texturally homogeneous, quartz-feldspar granite	RCDQ	(7)		SUL	
		porphyry with fine-grained, grey-green groundmass (mainly feldspars) & medium-grained plagioclase (eubedral, white, 1-7 mm long laths), guartz (eubedral)	-				
		glassy-grey, 1-5 mm diameter crystals), & biotite/amphibole (euhedral, black-green, 1-5 mm long					
		rock, mafics ~3-5%, & quartz <1%. Feldspars are in various stages of breakdown to sericite & saussurite.					
		Many feldspar phenocrysts are compositionally zoned. Thin (1-3 mm wide) veinlets of carbonate throughout					
		manganese dendrites & lime green nontronite/chlorite clay on some exposed fracture surfaces. Top contact					
		is gradational with epidote-albite endoskarn. Unlike quartz porphyries up section, there is no disseminated					
		Limonitic staining rare. Appears to unmetamorphosed & undeformed.					

*** END OF HOLE *** 109.40

WESTMIN RESOURCES LIMITED - DRILL LOG SUMMARY

PROJECT: RACINE (BRITISH COLUMBIA)	DATE STARTED: JUNE 27, 1996
HOLE NO.: RC-96-02	DATE COMPLETED: JULY 1, 1996
LOCATION: UTM - 6616578 N, 518348 E LOCAL - 15008 N, 5044 E	GROUND ELEVATION: 1872 m
LOGGED BY: STEPHEN ROWINS	AZIMUTH: 254°
DATE: JUNE 28, 1996 onwards	INCLINATION: -60° at collar
CONTRACTOR: E. CARON DIAMOND DRILLING, WHITEHORSE, YUKON TERRITORY	TOTAL LENGTH: 70.1 m (230 ft)
CORE SIZE: NQ	CORE RECOVERY: VERY GOOD
DIP TESTS: NONE	COMMENTS : Second hole of the program. Drilled off the most southerly drill pad to intersect the down-dip extension of the surface skarn.

. .

From	To	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
0.00	7.62		01/07/0				
0.00	7.02			SIRFOL	MOD		QZ
		Moderately chloritized, silicified & carbonatized cohist	AR			PU/PT	
		Strongly foliated with core axis foliation angle of 20.40					
		deg although foliation is convoluted in places					
		Foliation defined by thin mafic-rich bands (typically 1-					
		5 mm wide) alternating with guartz-rich ones. Green	1			:	
		chlorite/amphibole alteration replaces biotite schist					
		(e.g., 0.3-0.6 m). Thin guartz veins (up to 15 cm wide)					
		& stretched boudins aligned in the plane of foliation.					
		Dark brown intervals dominated by biotite. Pyrrhotite					
		commonly forms thin lenses (1-3 mm wide) elongated					
		in the plane of foliated. Limonitic staining especially					
		common in broken sections of core.					
		4.40-4.50 BUCK WHITE QUARTZ VEIN					
		Recrystallized vein with numerous fractures filled					
		TCA) Irregular margina					
		Core has a net-veined appearance Black-brown					
		biotite schist is veined & altered by an					
		anastomosing array of pale green					
		chlorite/amphibole?/quartz. Some alteration					
		domains show preferential orientation with foliation.					
7.62	25.60	FINE GRAINED GREY WHITE QUARTZ PORPHYRY	QZ/FE/C	MASS	WK/M	WK/MO	PO/PY
		Homogeneous, porphyritic, quartz granite. Highly	AR/AR		OD	D PO/P	
		silicitied & recystallized with local argillization &				Y	
		Courses discominations (subset 1.2 mm servers) & in					
		thin cross-cutting fractures (<1 mm) along with					
		magnetite(?) and green matic minerals, probably					
		amphibole & chlorite. Forms a weak stringer sulphide					
		zone. Pyrite commonly oxidized to vellow/brown/black					
		limonite. Black manganese dendrites and vellowish		2			
		green sericite/nontronite/calcite common on fracture					
		surfaces					
		8.90-9.10 VERY FINE GRAINED MAFIC DYKE					
1		Black, weakly magnetic matic dyke consisting of					
		Intrudes quartz porphypy in some orientation on					
		the foliation in schist (i.e. 40 deg TCA)					
25.60	26.30	GRANULAR LIGHT BROWN	FP/AR/C	FRIARIE	STR		
		EPIDOTE-BIOTITE-AMPHIBOLE SCHIST		& BROK			
		Contact zone between porphyritic quartz granite and	_	EN COR			
		biotite-amphibole schist. Original fabric of schist					
		almost completely replaced by lime green epidote and					
20.00	20.40	clays. Punky texture.					
26.30	39.10		CL/AM/E	STR FOL	WK/M		CAR
		AMPHIBOLE SKARN	P/CAR		OD		
		Strongly chloritized amphibalitized anidatized					
		carbonatized & silicified schist and skarp. Complex					
		sequence of alteration events resulting in intervals of					
		massive epidote-amphibole-calcite+/-garnet+/-					

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
I							
		magnetite skarn. Skarn is best developed in schist,					
		he steeper (60 deg TCA) than up section. Bluich					
		amphibole alteration (reibeckitic?) is modium grained					
		and associated with lime green enidete. These zones					
		are friable and punky. Some bluish green amphibole					
1	1	bands (1-3 cm wide) are breccia zones, cementing					
		angular, buck white quartz fragments (2-10 mm long)					
		Pale grey-green alteration zones are					
	j	chlorite/quartz-rich. White calcite fills interstices	1				
		between amphibole grains and in thin fractures (1-3	1				
		mm wide) along with yellow-brown limonite. Strongly					
		magnetic in places (i.e., 38.8 m). Sulphides are rare.					
:		32.00-33.00 FINE GRAINED					
		EPIDOTE-CALCITE-AMPHIBOLE SKARN					
		minterval of lime green to dark green					
		epidote-amphibole skarn with interstitial calcite					
		35 95 37 00 EINE ODAINED					
	ľ						
		SKARN					
		Pale pink to light green epidote- & garnet-rich					
		skarn replaced by dark green amphibole. Thin (<1					
		mm wide) fractures filled with same late					
		overprinting green-black amphibole. No sulphides					
		visible.					
		37.80-39.00 FINE GRAINED					
		EPIDOTE-MAGNETITE-AMPHIBOLE SKARN					
]	Lime green patches of epidote in a dark green					
		black amphibole-magnetite skarn. Some thin					
		fractures (<5 mm wide) are filled with white calcite,					
		(i.e. Extension of functions)					
30.10	44.10		01 00 7 14			10.00	
33.10	++.10			SIRFOL	VVK		
		0.5-5 mm wide black-brown biotite bands alternating	D/UAR				
		with grey white quartz-albite-carbonate hands imparts				AOPT	
		a tiger-striped appearance to the schist. Top contact					
		with biotite-amphibole schist at 39.1 m is 75 deg TCA.					
		Bottom contact with magnetite skarn is 70 deg TCA.					
		Foliation is highly convoluted, although a general 45-55					
		deg angle with core-axis is present. Abundant quartz					
		boudins (1-3 cm long) commonly elongated in the					
		plane of foliation. Green amphibole-rich zones appear					
		to replace whitish-yellow albite/scapolite(?) alteration.					
44.10	A7 55	MASSIVE DARK CREV MACHETITE OKARN	045/01/	141.00			
-+-+.10	+1.00	Fine grained grey-black magnetite comprises90%		MASS.	WK	WK	CAR?
		of rock: the remainder is 20% garnet (subodral vino				PU/PY/	
		red), calcite (anhedral infill: white) chlorite (anhedral)				ASPT	
		light green), amphibole (sub-euhedral, medium green)		DANDED			F
		& epidote (anhedral; lime green). Massive texture gives					
		way to weakly banded one defined by pale green					
		bands of chlorite/amphibole/calcite. No cobaltite. Verv					
		weak sulphide mineralization.					

WESTMIN DRILL LOG

RC-96-02

•

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
47.55	49.70	FINE GRAINED MEDIUM GREEN DIOPSIDE-GARNET-AMPH-MAG-EPIDOTE SKARN Pale green zones with pink patches are diopside-garnet-magnetite skarn. Replaces foliated (50 deg. TCA) chlorite-amphibole schist. Granular, lime green epidote replaces diopside & garnet. Subsequently, the epidotized diopside-garnet-magnetite skarn is replaced by bluish actinolitic (?) amphibole. Thin (<1-5 mm wide), white calcite veinlets are oriented parallel to the plane of foliation (e.g., 50 deg TCA) & cut all lithologies. Some	DGAME SKARN	MASS	WEAT	MIN'L WK PO/PY & MAG	CAL/Q Z/AMP
		 calcite veinlets contain dark green amphibole needles, a silvery mineral (bismuthinite/cobaltite?), and reddish crystals of hematite. Irregular calcite patches (1-3 mm wide) are surrounded by fine-grained garnet crystals in the garnet-rich skarn. Patches (up to 7 mm wide) of black magnetite are preferentially associated with bluish amphibole. Weak pyrite & pyrrhotite mineralization. 48.50-49.10 COARSE GRAINED QUARTZ-CALCITE-LIMONITE FAULT INFILL Fault zone in which coarse grained quartz (euhedral, pale grey-green, up to 3 cm long) and calcite (euhedral, pale coffee brown, up to 2 cm long) grew in open spaces. Fault later sealed by yellow-brown limonite. SEE INTERVAL BELOW FOR MORE INFORMATION. 					
49.70	55.60	COARSE GRAINED YELLOW BROWN QUARTZ-CALCITE-LIMONITE FAULT INFILL Fault zone in which coarse grained quartz (euhedral, pale grey-green, up to 5 cm long) and calcite (euhedral, pale coffee brown, up to 6 cm long) grew in open spaces. Fault later sealed by yellow-brown limonite. Top contact of fault at 55 deg TCA) & has euhedrally terminated quartz crystals (1 cm long) pointing inwards at 90 deg to fault contact. Botton fault contact (65 deg TCA) has been reactivated - 20 cm wide basal section hosts rounded fragments (3-20 mm across) of quartz-calcite in a foliated (65 deg TCA) fine grained limonite matrix. Thin (1-3 mm wide) calcite veins cross-cut all fabrics/structures. Bright green malachite on fractured core surfaces. CORRELATES WITH QUARTZ-CALCITE-LIMONITE FAULT IN RC-96-01 at 62.9-64.30 m ??	FE/MAL	FAULT INFILL/G OUGE	STR	MOD SUPER GENE CU	
55.60	57.75	FINE TO MEDIUM GRAINED LIGHT GREY GREEN MARBLE Mottled grey green marble with pink-brown patches of euhedral garnet (2-6 mm across) and green chlorite/amphibole. Minor magnetite. Yellow-green nontronite clay and black manganese dendrites on fractured surfaces.	CALGMG SKARN	MASS	WK	WK PO	CAL

Page 4	
6110	

.

F	rom	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
	57.75	60.00	FINE GRAINED MEDIUM GREEN DIOPSIDE-GARNET-AMPH-MAGNETITE SKARN Dark green chlorite-amphibole schist largely replaced by pale grey marble & medium green to pink-brown diopside-garnet- amphibole-magnetite skarn. Minor epidote replacement of skarn. Late calcite veinlets cut all lithologies at random orientation.	DGAM SKARN	MASS	WK	WK SULP ?	CAL
	60.00	62.25	FINE GRAINED DARK GREY GREEN MAGNETITE SKARN Magnetite skarn with ~50-60% fine grained magnetite (dark grey, massive), ~20% disseminated & patchy calcite (light grey, granular), & 10-15% patchy diopside/actinolitc amphibole (pale green, fine grained, anhedral) which replaces (?) magnetite. Bright grey-white coloured mineral is likely arsenopyrite & is associated with pale green diopside/amphibole patches. No erythrite bloom on limonite-stained fracture surfaces - therefore, no cobaltite.	MAG/AS PY SKN	SEMI MASS.	WK	ASPY	
	62.25	63.70	FINE GRAINED LIGHT GREEN QUARTZ FELDSPAR PORPHYRY Intensely altered quartz feldspar granite porphyry. Top contact with magnetite skarn is 60 deg. TCA. Milky white feldspar phenocryts (1-6 mm long, euhedral) are sericitized/silicified & account for ~ 2-5% of rock. Mafic phenocrysts are smaller (1-2 mm) & account for 1-2% of rock. Patches of massive, texturally destructive lime green epidote-altered porphyry. Light grey bleach zones surround thin (<1 mm wide) quartz-calcite veinlets. Non-magnetic. No disseminated sulphides	QZ/EP/C AL	MASS TO WK FOL	WK		CAR
	63.70	64.95	FINE GRAINED PINKISH GREY GREEN EPIDOTE-ALBITE-AMPHIBOLE ENDOSKARN Highly epidotized, silicified, & albitized quartz-feldspar porphyry (endoskarn) similar to that down hole at 66.2-66.8 m. Pale pinkisk white patches are probably lightly hematized albite-scapolite. Lime green patches are epidote. Pinkish-grey patches are silicified & hematized porphyry. Minor medium/dark green chlorite-amphibole alteration zones & veinlets. Non-magnetic. No sulphides	EP/QZ/A B/SCP	MASS	WK		CL- AMP/ CAL
	64.95	65.53	FINE GRAINED DARK GREEN-BLACK MAGNETITE SKARN Magnetite skarn with ~50-60% fine grained magnetite (dark grey, massive), 10-15% patchy diopside/actinolitc amphibole (pale green, fine grained, anhedral), which appears to replace magnetite, & 10-20% bright grey-white arsenopyrite which is associated with pale green diopside/amphibole patches. No erythrite bloom on weathered, limonite-stained fracture surfaces - therefore no cobaltite. Core is broken with ~60% recovery. Very similar to magnetite skarn at 60.0-62.25 m.	MAG/AS PY SK	SEMI- MASSIVE	WK/M OD	ASPY	CL- AMP

•

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
65.53	66.95	FINE GRAINED PINKISH GREY GREEN EPIDOTE ALBITE ENDOSKARN Highly epidotized, silicified, & albitized quartz feldspar porphyry (endoskarn). Similar to up-section endoskarn at 62.4-63.7 m. Pale, pinkish white patches are probably lightly hematized albite-scapolite. Lime green patches are epidote. Pinkish-grey patches are silicified & hematized porphyry. At the bottom of the interval (66.6-66.8 m), remnant, euhedral feldspar phenocrysts are pinkish green-white, the result of alteration to epidote, sericite, & albite with subsequent hematite staining. Minor breccia zone (dark green-black) with significant magnetite at 65.6-65.8 m. Thin (<2 mm wide), calcite veinlets tend to be oriented at 45 deg TCA. No sulphides.	EP/AB/S CP/QZ	MASS	WK		CAL
66.95	70.10	VERY FINE GRAINED LIGHT GREY GREEN FELDSPAR PORPHYRY Euhedral, white-green feldspar phenocrysts (typically 2-6 mm long laths) comprise ~10-15% of rock. Sub to euhedral, dark green to black phenocrysts of biotite & amphibole are smaller (1-3 mm wide) & comprise ~2-5% of the rock. Groundmass is very fine grained feldspar/quartz/mafics. Some feldspar laths are completely altered to yellow sericite and green chlorite, the latter mineral occuring as a rimming phase. Both cognate & exotic xenoliths/xenocrysts (up to 2 cm across) of darker green rocks/minerals are present & typically strongly altered. Two populations of feldspar phenocrysts may exist - some are totally altered to sericite/chlorite whereas others, located several mm's away, are fresh. Small black magnetite phenocrysts form <1% of rock. Pyrite replaces the core of some mafic phenocrysts. Hairline fractures with random orientations, filled with calcite/chlorite+/-magnetite, crosscut all other features. Although mapped as an intrusive porphyry, this core does have a vague volcanic-extrusive look to it.	SER/EP/ CAR	MASS	WK	WK PY/PO	CL- MAG & CAL

*** END OF HOLE *** 70.10

WESTMIN RESOURCES LIMITED - DRILL LOG SUMMARY

PROJECT: RACINE (BRITISH COLUMBIA)	DATE STARTED: JULY 3, 1996
HOLE NO.: RC-96-03	DATE COMPLETED: JULY 6, 1996
LOCATION: UTM - 6616691 N, 518385 E LOCAL - 15110 N, 5105 E	GROUND ELEVATION: 1877 m
LOGGED BY: LARRY POZNIKOFF STEPHEN ROWINS	AZIMUTH: 269°
DATE: JULY 4, 1996 onwards	INCLINATION: -60° at collar
CONTRACTOR: E. CARON DIAMOND DRILLING, WHITEHORSE, YUKON TERRITORY	TOTAL LENGTH: 105.2 m (345 ft)
CORE SIZE: NQ	CORE RECOVERY: VERY GOOD
DIP TESTS: NONE	COMMENTS : Third hole of the program. Drilled off the second drill pad to intersect the down-dip extension of the surface skarn.

٠

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
0.00	0.20	FINE GRAINED LIGHT GREEN CRYSTAL-LITHIC FELSIC LAPILLI TUFF Volcaniclastic rock with abundant feldspar phenocrysts (white, euhedral, 1 - 5 mm long, 3 - 7% of rock), amphibole & biotite phenocrysts (greenish-black, euhedral, <1-3 mm wide, 1-5% of rock) & lithic fragments. Many feldspars are altered to green epidote/chlorite and yellow sericite. Lithic compositions are variable. Fragments range in size from 1 mm to 3 cm in diameter & include (a) angular, pale greenish pink, albite-scapolite-quartz endoskarn (at 0.12 m), (b) angular, pale green chlorite-amphibole schist, (c) angular dark brown	CL/QZ/C AR	MASS TO FOL	WK	WK SUL	CAR
0.20	9.64	Chlorite-amphibole-biotite schist. FINE GRAINED MEDIUM GREEN CHLORITE-BIOTITE-AMPHIBOLE SCHIST Moderately chloritized, silicified, & carbonatized schist. Foliated at 47 deg. TCA. Defined by quartz-rich bands & net-vein zones parallel to sub-parallel to foliation. Weakly magnetic pyrrhotite & pyrite are disseminated throughout the schist. Hairline fractures filled with carbonate and limonite cross-cut the foliation. 0.80-1.15 MEDIUM GREEN CAVE Cave fragments (1 to 4 cm long) consisting of chlorite-biotite-amphibole schist. 1.90-2.55 MEDIUM GREEN CHLORITE BIOTITE AMPHIBOLE SKARN Zone of skarn containing lenses of pyrite (<1 mm to 1.3 cm in length) in association with patches of chlorite-biotite-amphibole schist. 2.55-3.35 BUCK WHITE QUARTZ FELDSPAR PORPHYRY Highly fractured, silicified and ferrunginized quartz vein. Upper and lower contacts with schist (defined by minor faulting(?) and breccia fragments) are 70 deg. TCA. Manganese oxide dendrites and sericite occur on fractured surfaces. Pyrite has been oxidized to yellow/brown/black limonite. 3.35-4.13 MEDIUM GREEN CHLORITE BIOTITE AMPHIBOLE SKARN Amphibole Skarn over schist. Carbonatized with little or no foliation. Limonite staining occurs around carbonate/sulphide veinlets. 4.25-4.75 MEDIUM GREEN CAVE 50 cm long zone of cave fragments	CHL/QZ/ CAR	FOL	WK	WK	CAR/L
9.64	11.55	FINE GRAINED BUCK WHITE QUARTZ VEIN Highly fractured, silicified and ferrunginized. Upper and lower contacts with schist have bands of limonite along contacts, which are 70 deg. TCA. Manganese oxide dendrites and sericite on fractured surfaces. Pyrite/pyrrhotite is weakly disseminated & oxidized to black limonite.	QZ/CAR	WK FOL/BRO KEN	WK/M OD	WK SUL	CAR

WESTMIN DRILL LOG

RC-96-03

+

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
11.55	27.30	FINE GRAINED DARK BLUE-GREEN	CHL/QZ/	STR FOL	WK		QZ/CA
		CHLORITE-AMPHIBOLE-BIOTITE SCHIST	CAR			SUL	R/AM
		Strong foliation at 72 deg. TCA defined by 1 to 3 mm					P
		wide guartz- & amphibole-rich bands. Quartz boudins					
		(<2 cm wide) are aligned in the plane of foliation.					
		14.20-14.70 YELLOW BROWN					
		CHLORITE-AMPHIBOLE-BIOTITE SCHIST					
		50 cm zone of fractured core and rubble					
		14.95-16.15 LIGHT GREEN AMPHIBOLE					
		DIOPSIDE SKARN					
		Strongly silicified, weakly foliated (78 deg, TCA)					1
		skarn over schist. Near upper contact with schist					
		there is a 15 cm wide zone of brecciated pale grav					
		albite-scapolite alteration with medium-green					
		amphibole infilling of fractures. Bands of black					
		biotite/magnetite(?) exibit weak magnetism in this					
		breccia zone.					
		17.00-19.10 MEDIUM GREEN					
		DIOPSIDE-AMPHIBOLE SKARN					
		Brecciated upper and lower contacts (68 deg.					
[]		TCA) (20 cm wide). Albite-scapolite alteration,					
		plus amphibole & carbonate infilling distinguishes					
		schist from skarn. Skarn is moderately foliated.					
		Banding parallels the contact. Minor pyrrhotite					
		veins and late cross-cutting limonite veinlets.					
1		19.40-20.40 MEDIUM GREEN					
		DIOPSIDE-AMPHIBOLE SKARN					
		Weak foliation at 20 to 30 deg. TCA defined by					
		bands of dark-green amphibole alternating with					
		pale-green diopside. Light apple-green					
		epidote/diopside alteration surrounds fractures in					
		amphibole (replacing?). Veinlets of pyrrhotite &			. ·		
		pyrite are partially to completely oxidized to		1			
		orange/brown limonite.		Į			
i –		22.12-22.50 BRECCIATED, YELLOW-BROWN					
		QUARTZ VEIN					
		Zone of intense quartz veining in			1		
		chlorite-biotite-amphibole schist. Vein contact	1				
		approximately 57 deg. TCA.	1				
27.30	36.20	FINE GRAINED LIGHT PINK AND GREEN	QZ/CAR/	WK FOL) `WK	I WK	CAR/A
		EPIDO E-AMPHIBOLE-DIOPSIDE-GARNET-SKARN	EP				MP
	1	Pink garnet-rich skarn, medium green diopside-rich					
		skarn & dark green amphibole-rich skarn dominate this					
		Interval. Abundant silica, carbonate & chloritie]
		atteration. Less than 1 to 10 mm wide patches of light					
		green epidote alteration in the garnet skarn.			l	l	
		Carbonate veinlets (0.5 to 2 mm wide) common.					
		Correlates with skarn in KC-96-04 at 36-41.5 m.					
		DODDUVDV					
							-
		Silicitied & ilmonite-stained porphyry dyke (30 cm				Ì	
		wide) cutting diopside-amphibole skarn. Upper and					
1		i lower contacts are /5 ded, ICA.			1		

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
36.20	53.20	FINE GRAINED BUCK WHITE QUARTZ PORPHYRY Silicified, carbonatized & limonitized porphyry		WK FOL	WK	WK	FE/CA
		Yellow/brown limonite & black manganese oxide			STR	UUL	
		veinlets. Core is fractured.					
		46.30-46.90 DARK BROWN BIOTITE					
		60 cm wide enclave? in quartz-feldspar porphyry.					i
		Foliation in schist is 49 deg. TCA, sub-parallel to the porphyry/schist contact at 40 deg. TCA, 5 cm					
		wide zones of yellow/gray limonite-albite-scapolite					
		alteration at the schist/porphyry contact.					
50.00		Zone of argillized & fractured porphyry core.					
53.20	68.55	QUARTZ-AMPHIBOLE-BIOTITE SCHIST	CAR/QZ	STR FOL	WK TO	ASPY	CAR/L
		Strong foliation (80 deg. TCA) to convoluted banding			MOD		
		and boudinization (80 deg. TCA). Veinlets and disseminations of arsenopyrite & pyrite. White soft					
	-	flaky carbonate & talc on fractured surfaces (55.25 m).					
		53.50-54.40 MEDIUM GREEN QUARTZ-AMPHIBOLE-BIOTITE SCHIST					
		Zone of fractured core.					
		54.40-54.60 MEDIUM GREEN CAVE					
		68.43-68.55 MEDIUM GREEN					
-		QUARTZ-AMPHIBOLE-BIOTITE SCHIST					
68.55	70.00	FINE GRAINED MEDIUM GREEN	CAR/QZ	FOI	Ŵĸ	WK	CAR/A
		AMPHIBOLE-DIOPSIDE-ALBITE-SCAPOLITE SKARN		102		PY/PO	MP
		Chlorite, carbonate, & albite-scapolite common					
		convoluted banding, with incipient net-vein texture.					
		Cross-cutting veinlets of carbonate/epidote, &					
		amphibole. Pink bands (70.25 to 70.35 m) likely due to					
70.00	79.75	FINE GRAINED BLACK MAGNETITE SKARN	CAP				CAR
		Remnant foliation is visible. Magnetite bands (1 to 3		MASS	VVIX	SUL	
		cm wide) separated by < 1 cm wide zone of white					
		calcite parallel to foliation in schist above (50 to 55					
		deg. ICA). Coarse-grained calcite crystals may show					
		mineralization.					
		70.50-70.70 MEDIUM GREEN CAVE					
		Cave fragments (2 to 4 cm) of					
		diopside-magnetite-amphibole skarn.			1		
		SKARN OVER BIOTITE-AMPHIROLE SCHIST					
		Weakly developed magnetite skarn over a					
		chloritized biotite-amphibole schist.					
		76.20-77.50 FINE GRAINED CALCITE VEIN					
		strong follation defined by pale gray quartz- & dark					
		gray carbonate veinlets. S-folds throughout					
		interval.					

- c	ι,	je	-+	
31	1	0		

RC-96-03

•

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
		 78.50-79.25 FINE GRAINED AMPHIBOLE-DIOPSIDE-ALBITE-SCAPOLITE SKARN Abundant chlorite, carbonate, & albite-scapolite alteration. Strongly foliated to convoluted banding (50 - 60 deg. TCA). Cross-cutting veinlets of carbonate/epidote, & amphibole. Pink banding due to ankerite, rhodochrosite or possibly hematite. 79.25-80.20 LIGHT GREEN CHLORITE-QUARTZ-BIOTITE-AMPHIBOLE SCHIST/SKARN Pale gray/pink albite-scapolite skarn replacing chloritized and silicified schist. Pink mineral (?) ankerite or hematite staining. 					
79.75	92.85	FINE GRAINED LIGHT GREEN QUARTZ DIOPSIDE AMPHIBOLE SCHIST Strong foliation & widely spaced quartz boudins (1 to 3 cm wide) oriented 50 deg. TCA. Carbonates, epidote, & limonite on fractured surfaces & in veinlets that cross-cut schist.	CL/CA R/FE	STR FOL	WK	WK SUL	EP/FE /CAR
92.85	105.20	FINE GRAINED MEDIUM GREEN QUARTZ FELDSPAR PORPHYRY Chloritized and silicified porphyry with phenocrysts of (a) 1 to 3 mm long laths of dark green amphibole and/or biotite, (b) white, euhedral, randomly oriented, 1 to 5 mm long laths of feldspar with rare glomerocrystic habit, and (c) rare, glassy gray, 1 to 3 mm wide, euhedral phenocrysts of quartz. Cross-cutting, yellow-brown carbonate and limonite veinlets oriented at 70 deg. TCA. Rare, 5 mm to 2 cm wide enclaves of dark green amphibole schist. Fractures at 36 deg. TCA in porphyry are infilled by dark green amphibole & chlorite.	CL/SER /CAR	WK FOL TO MASS	WK	WK SUL	CAR/S ER

*** END OF HOLE *** 105.20

Page 4 6

WESTMIN RESOURCES LIMITED - DRILL LOG SUMMARY

PROJECT: RACINE (BRITISH COLUMBIA)	DATE STARTED: JULY 7, 1996
HOLE NO.: RC-96-04	DATE COMPLETED: JULY 11, 1996
LOCATION: UTM - 6616691 N, 518385 E LOCAL - 15110 N, 5105 E	GROUND ELEVATION: 1877 m
LOGGED BY: STEPHEN ROWINS	AZIMUTH: N/A
DATE: JULY 8, 1996 onwards	INCLINATION: -90° (vertical) at collar
CONTRACTOR: E. CARON DIAMOND DRILLING, WHITEHORSE, YUKON TERRITORY	TOTAL LENGTH: 128.3 m (421 ft)
CORE SIZE: NQ	CORE RECOVERY: VERY GOOD
DIP TESTS: NONE	COMMENTS : Fouth hole of the program. Drilled off the second drill pad to intersect the down-dip extension of the surface skarn.

WESTMIN DRILL LOG

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
0.00	3.80	FINE GRAINED MEDIUM GREEN CRYSTAL-LITHIC FELSIC LAPILLI TUFF Intensely to weakly altered & deformed volcaniclastic rock with fresh feldspar phenocrysts (white, euhedral, 1-7 mm long laths, 2-7% of rock). Feldspars may show cross-twinning. Mafic phenocrysts not present unlike DDH's RC-96-03, -05, & -06. Possibly destroyed via intense chloritization, amphibolitization, & carbonatization. Angular, heterolithic, clasts (2 mm to 8 cm diameter) include, (1) dark green amphibole schist with yellowish-white sericite/chlorite reaction rims, (2) small (2-6 mm diameter) mafic clasts (biotite schist?), (3) greyish-white albite-scapolite-quartz clasts (endoskarn?), (4) whitish-grey felsic clasts (quartz vein?), (5) quartz-feldspar-cpx? (diorite?). Overall rock colour is one of a light grey groundmass with small white feldspars & numerous, larger, dark green brown clasts. Foliation is generally irregular, but locally strong (~45 deg. TCA) - defined by alternating dark brown biotite-rich & green amphibole/chlorite-rich	CL/EP/Q Z/AB	MASS TO SHEARE D	WK	WK PO & PY	
		bands (e.g., 3.2 m). Strong post-depositional					
3.80	4.00	FINE GRAINED MEDIUM GREY QUARTZ PORPHYRY Silicified porphyry dyke intruding at contact between overlying volcanics and schist. Upper contact ~63 deg. TCA. Lower contact ~60 deg. TCA. Abundant yellow-brown limonite veinlets (after pyrrhotite/pyrite?)	QZ/FE	MASS	MOD	W K PO/PY '	LIM
4.00	5.16	FINE GRAINED DARK GREEN BROWN CHLORITE-QUARTZ-AMPHIBOLE-BIOTITE SCHIST Weakly magnetic schist with foliation at 65-75 deg. TCA. The green brown schist is partially replaced by bluish green amphibole skarn & lesser grey quartz. Minor lime to pale green epidote/chlorite alteration. Thin calcite veinlets (<1 mm wide, random orientation) partly altered to yellow limonite. Lower contact with quartz porphyry at 60 deg. TCA is faulted. Twenty cm wide zone contains small (2 mm to 2 cm wide), medium grey fragments of porphyry.	EP/CL/A M/CAL	STR FOL	WK	WK Po/Py	CAL/LI M
5.16	6.40	FINE GRAINED GREY WHITE QUARTZ FELDSPAR PORPHYRY High-level quartz porphyry sill/dyke (with minor feldspar phenocrysts), identical to that mapped in other DDH's. Intensely silicified & argillized, with numerous small fractures filled with white-green clays (chlorite/nontronite) and black manganese oxide. Strong limonite staining on broken core. Lower contact with schist is sheared (~52 deg. TCA) and ferrunginized.	QZ/AR/F E	MASS & RUBBLE D	MOD	WK SULP?	LIM
6.40	14.90	FINE GRAINED DARK GREEN BROWN CHLORITE-QUARTZ-AMPHIBOLE-BIOTITE SCHIST Weakly magnetic schist with foliation at a high angle TCA (~60-70 deg.). Brown biotite-rich bands (2-10 mm wide) alternate with green chlorite/amphibole-rich	CL/AM/Q Z/CA	STR FOL TO MSS	WK	SKARN & WK PO/PY	LIM/C AL

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
		ones. Dark brown biotite-rich schist is partially replaced by bluish green amphibole skarn & lesser grey quartz/albite? along fractures. Minor lime to pale green epidote/chlorite alteration. Thin calcite veinlets (1-2 mm wide, at angle to fol.) partly altered to yellow limonite. 1-3 cm wide, pale grey-green quartz-chlorite veins (in plane of fol.) with surrounding green-grey alteration halos common (e.g., 10.6 m). Rare lenses (1-3 mm wide) of pyrrhotite/pyrite parallel to foliation. 9.50-10.40 DARK BROWN QUARTZ-BIOTITE SCHIST Strongly foliated schist (60 deg. TCA) with brown biotite-rich bands (~1mm wide) alternating with whitish grey quartz-rich bands. Whitish specks (1mm across) are elongated in the plane of foliation and may be original feldspar phenocrysts/porphyroblasts. 11.80-12.00 BLUISH GREEN AMPHIBOLE SKARN Fracture-controlled skarning of quartz-biotite schist. Minor grey quartz (+/- albite) associated with skarn. 12.20-12.40 YELLOWISH GREY QUARTZ VEIN Ferrunginized and highly fractured quartz vein. 12.50-13.40 MEDIUM GREEN CHLORITE-QUARTZ-AMPHIBOLE-BIOTITE SCHIST Foliated schist with abundant pale green bands (1-3 cm wide) of actinolite/chlorite/diopside?					
14.90	17.40	FINE GRAINED GREY WHITE QUARTZ FELDSPAR PORPHYRY Ferrunginized & silicified porphyry in which the whitish outline of feldspar phenocrysts (1-3 mm long, euhedral, 1-3% of rock) are visible, in addition to grey quartz eye phenocrysts (1-4 mm wide, euhedral, 2-5% of rock). Limonite and pyrrhotite/pyrite in fractures. Some disseminated pyrrhotite/pyrite grains too. Black manganese dendrites on fresh fracture surfaces. Excellent example of an altered, high-level porphyry containing sub-equal proportions of feldspar & quartz phenocryts. ALL PORPHYRIES ARE JUST COMPOSITIONAL VARIANTS WITH THE INTENSITY OF ALTERATION RELATED TO PROXIMITY TO FAULTS & SKARN FLUID PATHWAYS. Both upper & lower contacts are rubble zones. 15.54-15.64 CAVE PEBBLES Cave pebbles	FE/QZ/A R/CAR	MASS	WK/M OD	WK Po/Py	LIM
17.40	35.10	FINE GRAINED MEDIUM GREEN BROWN CHLORITE-QUARTZ-AMPHIBOLE-BIOTITE SCHIST Weakly magnetic schist with foliation at a steep angle TCA (~60-70 deg.). Brown biotite-rich bands (2-10 mm wide) alternate with green chlorite/amphibole-rich ones. Dark brown biotite-rich schist is partially replaced by bluish green amphibole skarn & lesser	CL/QZ/A M/CAR	STR FOL TO MASS	WK	SKARN & PO LENSE S	CAL/LI M

WESTMIN DRILL LOG

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
		grey quartz/albite? along fractures. Minor lime to pale green epidote/chlorite alteration. Thin calcite veinlets (1-2 mm wide, at angle to fol.) partly altered to yellow limonite. 1-3 cm wide, pale grey-green quartz-chlorite veins (in plane of fol.) with surrounding green-grey alteration halos common (e.g., 10.6 m). Lenses (1-8 mm wide) of pyrrhotite/pyrite rimmed by green amphibole setvages are oriented in the plane of foliation. 17.90-18.10 GREY WHITE QUARTZ VEIN Ferrunginized vein with yellow limonite staining & limonite-filled fractures. Partly brecciated. 18 10-18 45 MEDILIM GREEN AMPHIBOLE					
		SKARN Zone of fracture-controlled amphibole-quartz (albite?) skarn. Replacing brown, biotite-rich schist. 23.20-24.00 FINE GRAINED QUARTZ-AMPHIBOLE-SERICITE ALTERATION					
		Zone of fractured core with abundant grey-white quartz, green amphibole/chlorite, & yellow sericite alteration 24.20-24.70 MEDIUM GREY QUARTZ VEIN Intensely carbonatized, silicified, chloritized, &					
05.40		sericitized. Vein(s) has been shear faulted. Abundant yellow-brown limonite staining. Fractures in quartz filled with chlorite/limonite. Minor pyrrhotite. Upper contact is 63 deg. TCA. Lower contact rubbled.					
35.10	36.00	FINE GRAINED MEDIUM GREEN AMPHIBOLE SKARN Largely fracture-controlled amphibole skarn replacement of dark brown biotite-rich schist. Pale green chlorite/actinolite/cpx? patches and associated grey-white alteration (albite/quartz/scapolite?) tend to follow original schist foliation (42 deg. TCA). Minor yellow sericite. Foliation contorted around 20 cm wide quartz vein at 35.2 m. Tiny specks of sulphide in core. Non-magnetic	CL/QZ/A B/SER	WK FOL	WK	WK SULH	QZ
36.00	41.50	FINE TO MEDIUM GRAINED PINKISH BROWN EPIDOTE-DIOPSIDE-GARNET SKARN Skarn comprised mainly pink garnet & calcite, with minor intervals of lime to forest green diopside/epidote skarn. Thin quartz veins (2 mm - 1 cm wide) are commonly associated with limonitized pyrite (white-yellow), chalcopyrite (brass yellow), & dark green amphibole. Yellow sericite commonly associated with zones of diopside/epidote skarn. Upper contact with skarnified schist is ~25 deg. TCA.	QZ/SER/ AM/FE	MASS	WK	WK PY, CPY, PO	QZ & AMP
41.50	49.07	FINE GRAINED LIGHT TO MEDIUM GREEN AMPHIBOLE SKARN Pale olive-green diopside-amphibole skarn & associated alteration minerals chlorite (pale green), quartz (grey), albite/scapolite? (yellowish-white), enidote (lime green) & sericite (yellow) Similar to	CL/EP/A B/QZ	CONTOR TED BANDIN G	WK	WK SULP	QZ & CAL

WESTMIN DRILL LOG

•

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
		amphibole skarn at 35.1-36 m. Complex sequence of progressive alteration events over a dark brown, biotite-rich schist. Some skarning tends to follow the original schist foliation (~30 to 40 deg. TCA), although in many places, the foliation and skarn banding is highly contorted (some S-folds). Late, white calcite veins cross-cut all lithologies at a very shallow angle TCA (< 10 deg.). Some thin quartz vein and boudins. Non-magnetic & very weak sulphide mineralization. 44.50-46.10 BLEACHED WHITE QUARTZ VEIN Intensely argillized rock surrounds an irrgularly-shaped quartz vein. Abundant carbonatization. Cave rubble suspected in this					
49.07	59.80	Zone. FINE GRAINED MEDIUM GREY QUARTZ FELDSPAR PORPHYRY Strongly ferrunginized, silicified, & argillized porphyry with sub-equal proportions of white feldspar phenocrysts (1-5 mm long laths, euhedral, 1-5% of rock) & grey quartz eye phenocrysts (1-4 mm wide, euhedral, 2-5% of rock). Limonite & pyrrhotite/pyrite occur in thin fractures (< 2 mm wide) & as small disseminations (grains <2 mm). Limonite staining is pervasive & especially well-developed around limonite veinlets (1-4 cm wide alteration halo). Yellow-green sericite/nontronite/chlorite clays & black manganese dendrites common on fresh fracture surfaces. Some sections of porphyry are strongly fractured (argillic alteration more intense). This porphyry is very similar to, but slightly less altered than, the quartz-feldspar porphyry at 14.9 to 17.4 m. 51.25-51.70 FINE GRAINED BLACK MAFIC DYKE Mafic dyke intruding porphyry. Upper contact at ~45 deg. TCA; lower contact ~30 deg. TCA. Contact chill zone or reaction rim not visible. Small white laths & equant crystal are likely feldspar phenocryts. Groundmass is very fine grained and black. Strongly Strongly fine	QZ/AR/F E/CAR	MASS	WK/M OD	WK PO/PY	LIM
59.80	64.31	FINE GRAINED DARK GREY GREEN CHLORITE-QUARTZ-BIOTITE-AMPHIBOLE SCHIST Strongly foliated schist typical of that occurring up section. Steep angle of foliation (~70-80 deg? TCA). Numerous buck white quartz veins (0.5-15 cm wide) at a high angle TCA (55-85 deg). Many quartz veins have fractures filled with variably limonitized sulphides & green chlorite (often at the vein/schist contact). Late, creamy white to yellow-brown calcite/limonite veinlets (1-3 mm wide) cut the schist at 66-75 deg. TCA. Some sections of core are strongly fragmented. The lower 1 m of core is a rubble zone with intense ferrunginization & carbonatization - likely a shallowly dipping fault.	QZ/FE/C AR	STR FOL	WK TO STR	WK Po/Py	QZ/CA L/LIM

64.31 79.25 FINE GRAINED BLEACHED WHITE QUARTZ FELDSPAR PORPHYRY Strongly silicified, ferrunginzed, & argilized porphyry. Similar to the high-level dytessilis in other DDHs. Whitish feldgaar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Privholite & pyrite occur as small disseminations (grains - 2mm wide) and in thin fractures with yellow-brown limonte. Limonet staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). Caldtelfulnonthe vening NOT found in this section unlike porphyry below. Core structure ranges from massive to ruble, with fracture surfaces stained with yellow limonite and black manganese dendrites. QZ/FE/A INTRUSI RCAR WOD WK 79.25 79.60 FINE GRAINED LIGHT GREY GREEN QUARTZ FELDSPAR PORPHYRY INTRUSIVE CONTACT?? between strongly slicitied, ferrunginased, & argilized quartz-feldspar porphyry below. Contact is fairy sharp at -30 de, parti- ferstorial contact is mary bar at -30 de, parti- grey green quartz-feldspar porphyry magma. The altered oprighry reflects an one hydrous mell with more intense autometasomatism. Altered porphyry. Natematively, it may be an alteration front (chemical contact) marks the initin levagons 5-7% of rock) in fine-grained matrix. Privhotte & prine occur as small dissentions (grains - 2:mm wide) and in thin fractures with yellow-brown limonite cocur as mild dissentions (grains - 2:mm wide) and in thin fractures with yellow-brown limonite from the altered oprigry. Glassy grey quartz phenocrysts acticut anterion hole in the fasher porphryry are preserved & comprise 2.4% of the rock. Fractured cale suffaceds are stained with yellow fimorite and black manganese dendrites. Green thorine & acticat alteration holed in the grey green pophryry eff phenocrysts acticut and prean prine withe feldspar pheno	From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
64.31 79.25 FINE GRAINED BLEACHED WHITE QUARTZ FELDSPAR PORPHYRY Strongly silicified, ferrunginized, & argilized porphyry, Smilar to the high-level dytessilis in other DDH's. Whitish ledspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quarz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite occur as small disseminations (grains - 2 mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide) alteration halo). Calcite/immete availate. A manganese dendrifies. MOD WK PO LIM 79.25 79.60 FINE GRAINED LIGHT GREY GREEN QUARTZ FELDSPAR PORPHYRY UNTRUSINE CONTACT?? between strongly silicified, ferrunginized, & argillized quarz-fieldspar porphyry below. Contact is fairly sharp at -30 deg. TCA. There is no breciation or fault to gue, it may be an aiteration front (chemical contact) marking the limit of Si-& Fe-tch fluid infittration to the higher sections of porphyry. Atternatively, it may be an intrusive contact between two batches of cocy and glassy-grey quarz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrrhotite & gyrite occur as small disseminations (grains - 2 mm wide) and in thin fractures with yellow. Throng the first cock in mine-grained matrix. Pyrrhotite & gyrite occur as small disseminations (grains - 2 mm wide) and in thin fractures with yellow. Throntiste & gyrite occur as small disseminations (grains - 2 mm wide) and in thin fractures with yellow. Throntiste & gyrite occur as small disseminations (grains - 2 mm wide) and in thin fractures with yellow phone porphyry. Amphibole phenocrysts in the fresher porphyry are preserved. & corphize 2 4 % of the rock. Fractured core surfaces are stained with yellow immonte and black manganese dendrifts. Green othohorite & calcite alteration noted in th								
FELDSPAR PORPHYRY R STR & PY Strongly skindler, terrunginized, & argilized porphyry, Similar to the high-level dytes/sills in other DDHs. R STR & PY Whitsin fetdspar phenocrysts (1.4 mm ofig, eucledral, 5-7% of rock) and glassy-grey quartz phenocrysts (14 mm diameter, eucledral hexagons 5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2.5 cm wide alteration halo). Catchaffmontie vering NOT found in this section unlike porphyry below. Core structure ranges from massive to tuble, with fracture surfaces stained with yellow limonite and black manganese dendrifted. QZ/FE/A INTRUSI MOD WK CAL 78-25 79.60 FINE GRAINED LIGHT GREY GREEN QUARTZ FELDSPAR PORPHYRY NTRUSIVE CONTACT?? between strongly slicified, ferrunginized, & argilized quartz-feldspar porphyry below. Contact is fairly sharp at -30 deg. TCA. There is no trecciation or fault gouge. It may be an alteration front (chemical contact) fairly sharp at -30 deg. TCA. There is no trecciation or fault gouge. It may be an alteration front (sharp arpharpy) reflects a more hydrous mell with more intense autometasomatism. Altered porphyry was white feldspar phenocrysts (1.4 mm long, eundral). 57% of rock) and glassy-grey quartz phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm -1.7 cm) than in the altered porphyry, Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphbole phenocrysts in the fresher porphyry are preserved & corryls 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendiftes. Green chotorite & calcita alteration	64.31	79.25	FINE GRAINED BLEACHED WHITE QUARTZ	FE/QZ/A	MASS	MOD/	WK PO	LIM
Strongly silicified, ferrunginized, & argillized porphyry. Similar to the high-level dykessitis in other DDHs. Whitish fieldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) in fine-grained matix. Pyrholite & pyrite occur as small disseminations (grains < 2mm wde) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wde) atteration halo). Calcidatimonite vening NOT found in this section unlike porphyry below. Core structure ranges from massive to rubble, with fracture surfaces stained with yellow limonite and black manganese dendrifes.			FELDSPAR PORPHYRY	R		STR	& PY	
Similar to the high-level dykes/sills in other DDHs. Whitsin fickspar phenocrysts (1 - 4 mm long, eucledral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, eucledraf hexagons 5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite occur as small disseminations (grains - 2 mm wide) and in thin fractures with yellow-brown limonite. Limonde staining intense adjacent to limonite fractures (2-5 cm wide) alteration halo). Calcide/limonite vaning NOT found in this section unlike porphyry below. Core structure ranges from massive to rubble, with fracture surfaces stained with yellow limonite and black manganese dendritized. & arg/litzed quartz-feldspar porphyry & TFLDSBAP PORPHYRY FLDSBAP PORPHYRY NITRUSIVE CONTACT?? between strongly slicified, ferrung/nized. & arg/litzed quartz-feldspar porphyry below. Contact is fairly sharp at -30 de, TCA. There is no breccitation or fault gouge. It may be an alteration front (chemical contact) in marking the limit of Si- & Fe-tch fluid infitzation into the higher sections of porphyry. Atternatively, it may be an alteration front (chemical contact) is marking the limit of Si- & Fe-tch fluid infitzation into the higher sections of porphyry has white feldspar phenocrysts (1-4 mm long), eucledral. 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm dimeter, eucledral hexagons S-7% of rock) in fine-grained matrix. Pyrhotite & pyrite occur as small disseminations (grains - 2 murke) and in thin fractures with yellow-brow nimonite. Limonite staining lintense adjacent limonate fractures (2-5 cm wide alteration nalo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & cormysis 2-4% of the rock. Fractured core surfaces are statined with yellow limonite and black mangan			Strongly silicified, ferrunginized, & argillized porphyry.					
VMinish feldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts in the frequency statistic occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonate, Limonate statining intense adjacent to limonate fractures (2-5 cm wide alteration halo). Calcifol/limonate vening NOT found in this section unlike porphyry below. Core structure ranges from massive to rubble, with fractures surfaces stained with yellow vitinonite and black manganese dendrites. OZ/FE/A INTRUSI MOD WK CAL 79.25 79.60 FINE GRAINED LIGHT GREY GREEN QUARTZ FELDSPAR PORPHYRY OZ/FE/A INTRUSI MOD WK CAL 101.01 Feldspar porter quartz-feldspar porphyry & fresher, medium grey green quartz-feldspar porphyry below. Contact is fairly sharp at -30 deg. TCA. There is no breciation or fluid ogue. It may be an alteration front (chemical contact) marking the limit of Si. & Fe-rich fluid infittration into the higher sections of porphyry. Alternatively, it may be an intrusive contact between two batches of cogenetic grante porphyry magma. The altered porphyry reflects amore hydrous mell with more intense autometasomatism. Altered poncytys to 1.4 mm liong, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm than in the altered oprophyry. Glassy grey quartz phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm than in the altered oprophyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are presence 4 compties 2-4% of the rock. Fractured core surfaces are stateed with yellow limonti			Similar to the high-level dykes/sills in other DDH's.					
 S-/% of rock) ang glassy-grey quartz phenocrysts (1-4 mm diameter, cuhedral hexagons 5/% of rock) in fine-grained matrix. Pyrhotite & pyrite occur as small disseminations (grains <2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide) atteration halo). Calcite/limonite veining NOT found in this section unlike porphyry below. Core structure ranges from massive to rubble, with fracture surfaces stained with yellow limonite and black manganese dendrites. 79.25 79.60 [FINE GRAINED LIGHT GREY GREEN QUARTZ FELDSPAR PORPHYRY (INTRUSIVE CONTACT??) between strongly silicified, ferrunginzed, & angilted quartz-feldspar porphyry & R/CAR VE CONTAC for the fracture surfaces and the first of the strong the sectors of porphyry. Alternatively, it may be an alteration front (chemical contact) marking the limit of 5- & Fe-rich fluid infiltration into the higher sectors of porphyry. Alternatively, it may be an intrusve contact between two batches of cogenetic grainte porphyry magma. The altered porphyry reflects a more hydrous melt with more intense autometasomatism. Altered porphyry hes white feldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) an glassy-grey quartz phenocrysts in the fresher gray-gree no porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm (than in the altered porphyry 2.5% of the fresh gray-gree no porphyry are more abundant (5-10% of forck) & larger (1 mm - 1.7 cm (than in the altered porphyry 3.5% of the fresh gray-gree no porphyry are more abundant (5-10% of forck) & larger (1 mm - 1.7 cm (than in the altered porphyry 1.5% of the fresh gray-gree no porphyry are more abundant (5-10% of forck) & larger (1 mm - 1.7 cm (than in the altered porphyry 3.5% of the fresh gray-gree no porphyry are more abundant (5-10% of forck) & larger (1 mm - 1.7 cm (than in the altered porphyry 3.5% of the fresh gray phenocrysts in the fresher porphyry are preserved & comprise 2.4% of the rock. Frac			Whitish feldspar phenocrysts (1-4 mm long, euhedral,					
79.25 79.60 File Granie Matik. Pytholite & pyth			5-/% of rock) and glassy-grey quartz phenocrysts (1-4					
101-91ained: matub. Pyrnoue & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). Calditelimonite veining NOT found in this section unlike porphyry below. Core structure ranges from massive to rubble, with fracture surfaces stained with yellow limonite and black manganese dendrites. QZ/FE/A INTRUSI MOD WK CAL 79.25 79.60 FINE GRAINED LIGHT GREY GREEN QUARTZ FELDSPAR PORPHYRY QZ/FE/A INTRUSI MOD WK CAL 101.07 Fine GRAINED LIGHT GREY GREEN QUARTZ FELDSPAR PORPHYRY R/CAR VE SULP? 101.07 FINE GRAINED LIGHT GREY GREEN QUARTZ FELDSPAR PORPHYRY R/CAR VE SULP? 101.07 Introduced to and in this sections of porphyry. Alternatively, it may be an alteration if fort (chemical contact) marking the limit of Si & Fe-rich fluid infiltration into the higher sections of porphyry has white feldspar phenocrysts (1 4 mm long, eutherla). 5.7% of rock) and glassy-grey quartz phenocrysts in the resider grained matrix. Pyrnotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2.5 cm wide alteration halo). White feldspar phenocrysts in the resider grey prephyry are more abundant (5-10% of rock) & larger (1 mm -1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts in the resider green prophyry are more abundant (5-10% of rock) & larger (1 mm -1.7 cm) than in the alteration noted in the zone (0.5			mm diameter, euneoral nexagons 5-7% of rock) in					
79.25 7960 File GZ/FE/A INTRUSI MOD WK CAL 79.25 7960 FINE GRAINED LIGHT GREY GREEN QUARTZ QZ/FE/A INTRUSI MOD WK CAL 79.25 7960 FINE GRAINED LIGHT GREY GREEN QUARTZ QZ/FE/A INTRUSI MOD WK CAL 78.25 7960 FINE GRAINED LIGHT GREY GREEN QUARTZ QZ/FE/A INTRUSI MOD WK CAL 78.25 7960 FINE GRAINED LIGHT GREY GREEN QUARTZ QZ/FE/A INTRUSI MOD WK CAL 78.26 FINE GRAINED LIGHT GREY GREEN QUARTZ RCAR VE CONTAC SULP? 78.60 FINE GRAINED LIGHT GREY GREEN QUARTZ RCAR VE CONTAC T 78.61 Fernot fluxi diright green quartz-feldspar porphyry below. Contact is fairly sharp at -30 deg. TCA. There SULP? SULP? 79.61 FINE GRAINED at the higher sections of porphyry. Attematively, it may be an ilteration for			line-grained matrix. Pyrnotite & pyrne occur as small					
79.25 79.06 The Rail North Control in Monte : Calcures (2-5 cm wide alteration halo). Calcite/ilmonite veining NOT found in this section unlike porphyry below. Core structure ranges from massive to rubble, with fracture surfaces stained with yellow limonite and black manganese dendrites. NOT Found in the subscript of the s			fractures with vellow brown limenite. Limenite staining					
79.25 79.60 FINE GRAINED LIGHT GREY GREEN QUARTZ ranges from massive to rubble, with fracture surfaces stained with yellow limonite and black manganese dendriftes. QZ/FE/A INTRUSI RCAR MOD V/K CAL 79.25 79.60 FINE GRAINED LIGHT GREY GREEN QUARTZ returns and the state of the state state of the state of the state of the state of the stat			intense adjacent to limonite fractures (2.5 cm wide					
79.25 79.60 FRANED LIGHT GREY GREEN QUARTZ ranges from massive to rubble, with fracture surfaces stained with yellow limonite and black manganess dendrites. QZ/FE/A. INTRUSI MOD WK CAL 79.25 79.60 FINE GRAINED LIGHT GREY GREEN QUARTZ FELDSPAR PORPHYRY INTRUSIVE CONTACT?? between strongly slicitfied, ferrunginized, & argilized quartz-feldspar porphyry & tresher, medium grey-green quartz-feldspar porphyry below. Contact is fairly sharp at -30 deg. TCA. There is no brecciation or fault gouge. It may be an alteration from (chemical contact) marking the limit of Si- & Fe-rich fluid infitration into the higher sections of porphyry. Alternatively, it may be an intrusive contact between two batches of cogenetic grante porphyry magma. The altered porphyry reflects a more hydrous melf with more intense autometasomatism. Altered porphyry has white feldspar phenocrysts (1-4 mm long, suhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, cuhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrthotte & pyrite occur as small disseminations (grains < 2 mm wide) and in thin fractures with yellow-brown limonite . Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & diarget (1 mm -1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlotte & calcide alteration noted in the zone (0.5 m) surrounding the contact. QZ/FE/A RCAL MASS WKM WK CAL/LI PO/PY <t< td=""><td></td><td></td><td>alteration halo). Calcite/limonite veining NOT found in</td><td></td><td></td><td></td><td></td><td></td></t<>			alteration halo). Calcite/limonite veining NOT found in					
79.25 79.00 FiNE GRAINED LIGHT GREY GREEN QUARTZ edendrites. QZ/FE/A RCAR INTRUSI RCAR MOD WK CAL 79.25 79.00 FINE GRAINED LIGHT GREY GREEN QUARTZ FELDSPAR PORPHYRY QZ/FE/A RCAR INTRUSI RCAR MOD WK CAL 79.26 79.00 FINE GRAINED LIGHT GREY GREEN QUARTZ FELDSPAR PORPHYRY QZ/FE/A RCAR INTRUSI RCAR WE CONTAC SULP? 79.26 Toreciation or fault gouge. It may be an alteration front (chemical contact) marking the limit of Si-& Fe-rich fluid initiration into the higher sections of porphyry. Alternatively, It may be an alteration front (chemical contact) marking the limit of Si-& Fe-rich fluid initiration into the higher sections of porphyry. Alternatively, It may be an alteration front (chemical contact) marking the limit of Si-& Fe-rich fluid initiration into the higher sections of porphyry. Alternatively, It may be an alteration melt with more intense autometasomatism. Altered porphyry has white feldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) an fine-grained matik. Pyrrhotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown imonite. Limonite staining intense adjacemt Inimonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher gray-green porphyry are more abundant (5-10% of rock) & larger (1 mm -1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts accur for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry. Amphibole phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green phenocrysts (1 mm -1.7 cm) than in the altere			this section unlike porphyry below. Core structure					
79.25 79.60 File GRAINED LIGHT GREY GREEN QUARTZ GEZ/FE/A QZ/FE/A INTRUSI R/CAR MOD WK CAL 79.25 79.60 File GRAINED LIGHT GREY GREEN QUARTZ FELDSPAR PORPHYRY QZ/FE/A INTRUSI R/CAR MOD WK CAL 101 00 Fer.tolspar PORPHYRY GZ/FE/A INTRUSI R/CAR WE SULP? 101 100 101 100 101 100 101 100 <td></td> <td></td> <td>ranges from massive to rubble, with fracture surfaces</td> <td></td> <td></td> <td></td> <td></td> <td></td>			ranges from massive to rubble, with fracture surfaces					
dendrites. dendrites. 79.25 79.60 FINE GRAINED LIGHT GREY GREEN QUARTZ FELDSPAR PORPHYRY INTRUSIVE CONTACT?? between strongly silicified. ferrunginized. & argilized quartz-feldspar porphyry & fresher, medium grey-green quartz-feldspar porphyry below. Contact is fairly sharp at ~30 deg. TCA. There is no breciation or fault gouge. It may be an alteration front (chemical contact) marking the limit of SI- & Fe-rich fluid infittration into the higher sections of porphyry. Alternatively, it may be an intrusive contact between two batches of cogenetic grante porphyry magma. The altered porphyry reflects a more hydrous melt with more intense autometasomatism. Altered porphyry has white feldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts in the fresher grey green porphyry are more abundant (5-10% of rock). A larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts in the fresher grey free of the fresh porphyry. Amphibole phenocrysts in the fresh porphyry. appreved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrite. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. QZ/FE/A R/CAL MASS WKM WK CAL/LI PO/PY 79.60 101.00 FINE GRAINED MEDUM GREEN GREY QUARTZ Plainy fresh grante porphyry with large white feldspar phenocrysts (1 de mand, 5-2% of rock) in fine-grained matrix. Dark green amphibole phenocrysts QZ/FE/A R/CAL MASS WKM WK CAL/LI PO/PY			stained with vellow limonite and black manganese					
79.25 79.60 FINE GRAINED LIGHT GREY GREEN QUARTZ FELDSPAR PORPHYRY QZ/FE/A INTRUSI R/CAR MOD WK CAL FELDSPAR PORPHYRY INTRUSIVE CONTACT?? between strongly silicified, ferrunginized, & argilized quartz-feldspar porphyry & fresher, medium grey-green quartz-feldspar porphyry & below. Contact is fairly sharp at ~30 deg. TCA. There is no brecciation or fault gouge. It may be an alteration front (chemical contact) marking the limit of SI- & Fe-rich fluid infitration into the higher sections of porphyry. Alternatively, it may be an intrusive contact between two batches of cogenetic granite porphyry magma. The altered porphyry reflects a more hydrous melt with more intense autometasomatism. Altered porphyry has white feldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrhottle & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. MASS WK/M WK CAL/LI N/CL 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark			dendrites.		1			:
FELDSPAR PORPHYRY R/CAR VE SULP? INTRUSIVE CONTACT?? between strongly silicitied, ferrunginized, & argilized quartz-feldspar porphyry & tresher, medium grey-green quartz-feldspar porphyry & tresher, medium grey-green quartz-feldspar porphyry & below. Contact is fairly sharp at ~30 deg. TCA. There is no brecciation or fault gouge. It may be an alteration front (chemical contact) marking the limit of Si- & Fe-rich fluid infiltration into the higher sections of porphyry. Alternatively, it may be an intrusive contact between two batches of cogenetic grantle porphyry magma. The altered porphyry reflects a more hydrous melt with more intense autometasomatism. Altered porphyry has white feldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matix. Pyrhotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. MASS WKM WK CALJ.I 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh grantle porphyry with large white feldspar phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matix. Dark green amphibole phenocrysts commite 2.2% (the nork) the prevents to the motores MASS WKM WK CALJ.I	79.25	79.60	FINE GRAINED LIGHT GREY GREEN QUARTZ	QZ/FE/A	INTRUSI	MOD	WK	CAL
INTRUSIVE CONTACT?? between strongly silicified, ferrunginized, & argillized quartz-feldspar porphyry & fresher, medium grey-green quartz-feldspar porphyry & below. Contact is fairly sharp at ~30 deg. TCA. There is no brecciation or fault gouge. It may be an alteration front (chemical contact) marking the limit of Si- & Fe-rich fluid infiltration into the higher sections of porphyry. Alternatively, it may be an intrusive contact between two batches of cogenetic granite porphyry magma. The altered porphyry reflects a more hydrous melt with more intense autometasomatism. Altered porphyry has white feldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite occur as small disseminations (grains < zmm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black. 79.60 101.00 FINE GRAINED MEDIDUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euledral, 5-10% of rock) and glassy-grey quartz phenocrysts (1 4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts commite 2.2 (4 the rock hereat matrix matrix phenocrysts commite 2.2 (4 the rock hereat matrix matrix per hereat matrix bark green amphibole phenocrysts			FELDSPAR PORPHYRY	R/CAR	VE		SULP?	
ferrunginized, & argilized quartz-feldspar porphyry & fresher, medium grey-green quartz-feldspar porphyry below. Contact is fairly sharp at ~30 deg. TCA. There is no brecciation or fault gouge. It may be an alteration front (chemical contact) marking the limit of Si- & Fe-rich fluid infiltration into the higher sections of porphyry. Alternatively, it may be an intrusive contact between two batches of cogenetic granite porphyry magma. The altered porphyry reflects a more hydrous melt with more intense autometasomatism. Altered porphyry has white feldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjocent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & largre (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. QZ/FE/A mASS WKM Wk CAL/LI R/CAL 79.80 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ Fell_DSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 m - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrx. Dark green amphibole phenocrysts commice 2.4 (6 the rock bernetive to rock) in fine-grained matrx. Dark green amphibole phenocrysts QZ/FE/A MASS WKM Wk CAL/LI			INTRUSIVE CONTACT?? between strongly silicified,		CONTAC			
Tresher, medium grey-green quartz-feldspar porphyry below. Contact is fairly sharp at ~30 deg. TCA. There is no brecciation or fault gouge. It may be an alteration front (chemical contact) marking the limit of SI- & Fe-rich fluid infittration into the higher sections of porphry. Alternatively, it may be an intrusive contact between two batches of cogenetic granite porphyry magma. The altered porphyry reflects a more hydrous melt with more intense autometasomatism. Altered porphyry has white feldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black magnanese dendities. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact.			ferrunginized, & argillized quartz-feldspar porphyry &		T			
 below. Contact is fairly sharp at ~30 deg. TCA. There is no brecciation or fault gouge. It may be an alteration front (chemical contact) marking the limit of Si-& Fe-rich fluid infiltration into the higher sections of porphyry. Alternatively, it may be an intrusive contact between two batches of cogenetic granite porphyry magma. The altered porphyry reflects a more hydrous melt with more intense autometasomatism. Altered porphyry has white feldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered opothyry. Glassy grey quartz phenocrysts cocunt for only 2-5% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ R/CAL OD PO/PY MCL Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts comming 2.4% of the rock 			fresher, medium grey-green quartz-feldspar porphyry					
 Is no Directiation or fault gouge. It may be an alteration front (chemical contact) marking the limit of Si-& Fe-rich fluid infiltration into the higher sections of porphry. Alternatively, it may be an intrusive contact between two batches of cogenetic granite porphyry magma. The altered porphyry reflects a more hydrous melt with more intense autometasomatism. Altered porphyry has white feldspar phenocrysts (1-4 mm liong, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrthotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyr. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ R/CAL OD PO/PY M/CL Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (4 cmm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts 			below. Contact is fairly sharp at ~30 deg. TCA. There					
 Fe-rich fluid infiftration into the higher sectors of porphyry. Alternatively, it may be an intrusive contact between two batches of cogenetic granite porphyry magma. The altered porphyry reflects a more hydrous melt with more intense autometasomatism. Altered porphyry has white feldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-gra			is no precciation or fault gouge. It may be an alteration					
 Porterin tudu initiation into the fingher sections of porphyry. Alternatively, it may be an intrusive contact between two batches of cogenetic granite porphyry magma. The altered porphyry reflects a more hydrous melt with more intense autometasomatism. Altered porphyry has white feldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & fracture 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresher porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ Pienocrysts (1 mm -1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1 - 4 mm diameter, euhedral thexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts 			For rich fluid infiltration into the higher postions of					
 Portury: Alternative of an industry bound by the an industry of an i			perphysy Alternatively, it may be an intrusive contact					
magma. The altered porphyry reflects a more hydrous melt with more intense autometasomatism. Altered porphyry has white feldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts comprise 2.4% of the rocky in fine-grained matrix. Dark green amphibole phenocrysts comprise 2.4% of the rocky in			between two batches of codenetic granite porphypy			·		
 mell with more intense autometasomatism. Altered porphyry has white feldspar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Classy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts commrise 2-4% of the rock berther & mit for a match for a staine or on the fine grained matrix. 			magma. The altered porphyry reflects a more hydrous					
79.60 101.00 File Spar phenocrysts (1-4 mm long, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matix. Pyrrhotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. MASS WK/M WK CAL/LI PO/PY 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts comprise 2.4% of the rock (1 mm diameter, euhedral hexagons 2-5% of rock) in OD PO/PY M/CL			melt with more intense autometasomatism. Altered					
iong, euhedral, 5-7% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts MASS WK/M WK CAL/LI M/CL			porphyry has white feldspar phenocrysts (1-4 mm					
 phenocrysts (1-4 mm diameter, euhedral hexagons 5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dentites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts comprise 2.4% of the rock in fine-grained matrix. Dark green amphibole phenocrysts 			long, euhedral, 5-7% of rock) and glassy-grey quartz					
 5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite adlack manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts 			phenocrysts (1-4 mm diameter, euhedral hexagons		ĺ			
occur as small disseminations (grains < 2mm wide) and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. MASS WK/M WK CAL/LI PO/PY 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts comprise 2.4% of the proche of phenocrysts MASS WK/M WK			5-7% of rock) in fine-grained matrix. Pyrrhotite & pyrite					
 and in thin fractures with yellow-brown limonite. Limonite staining intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ PEIDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts 			occur as small disseminations (grains < 2mm wide)					
 Immonite stanning intense adjacent to limonite fractures (2-5 cm wide alteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts comprise 2.4% of the rock. 			and in thin fractures with yellow-brown limonite.					
 (2-5 cm wide atteration halo). White feldspar phenocrysts in the fresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts 			Limonite staining intense adjacent to limonite fractures					
 Pinehocrysts in the tresher grey-green porphyry are more abundant (5-10% of rock) & larger (1 mm - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts comprise 2-4% of the rock in the zone (0.5 m) surrounding the contact. 			(2-5 cm wide alteration halo). White teldspar					
 There abdition that (S-10% of tock) & flager (T-fm1 - 1.7 cm) than in the altered porphyry. Glassy grey quartz phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts 			more abundant (5, 10% of rock) & larger (1, mm, 1, 7					
 Any that in the altered polyhyly. Glassy grey quart2 phenocrysts account for only 2-5% of the fresh porphyry. Amphibole phenocrysts in the fresher porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts 			(more abundant (5-10% of fock) & larger (1 mm - 1.7					
 Proceeding of the rest of the			phenocrysts account for only 2-5% of the fresh			ŀ		
porphyry are preserved & comprise 2-4% of the rock. Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ QZ/FE/A MASS WK/M WK CAL/LI FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts			porphyry, Amphibole phenocrysts in the fresher					
Fractured core surfaces are stained with yellow limonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. Green 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY QZ/FE/A R/CAL MASS WK/M WK CAL/LI M/CL Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts MASS WK/M WK			porphyry are preserved & comprise 2-4% of the rock		1			
Immonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. Immonite and black manganese dendrites. Green chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts MASS WK/M WK			Fractured core surfaces are stained with vellow					
chlorite & calcite alteration noted in the zone (0.5 m) surrounding the contact. 22/FE/A MASS WK/M WK 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ QZ/FE/A MASS WK/M WK CAL/LI FELDSPAR PORPHYRY R/CAL OD PO/PY M/CL Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts H H H H			limonite and black manganese dendrites. Green	1				
surrounding the contact. 79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ QZ/FE/A MASS WK/M WK CAL/LI FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts MASS WK/M WK CAL/LI MASS WK/M WK CAL/LI OD PO/PY M/CL			chlorite & calcite alteration noted in the zone (0.5 m)					
79.60 101.00 FINE GRAINED MEDIUM GREEN GREY QUARTZ QZ/FE/A MASS WK/M WK CAL/LI FELDSPAR PORPHYRY Fairly fresh granite porphyry with large white feldspar PO/PY M/CL OD PO/PY M/CL Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in Image: State of the rock Image: State of the ro			surrounding the contact.					
FELDSPAR PORPHYRY R/CAL OD PO/PY M/CL Fairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts OD PO/PY M/CL	79.60	101.00	FINE GRAINED MEDIUM GREEN GREY QUARTZ	QZ/FE/A	MASS	WK/M	WK	CAL/LI
Pairly fresh granite porphyry with large white feldspar phenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts			FELDSPAR PORPHYRY	R/CAL		OD	PO/PY	M/CL
prenocrysts (1 mm - 1.7 cm long, euhedral, 5-10% of rock) and glassy-grey quartz phenocrysts (1-4 mm diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts			rainy tresh granite porphyry with large white feldspar					
diameter, euhedral hexagons 2-5% of rock) in fine-grained matrix. Dark green amphibole phenocrysts			prienocrysts (1 mm - 1./ cm long, euhedral, 5-10% of					
fine-grained matrix. Dark green amphibole phenocrysts			diameter, subodral bevages 2 5% of solid			1		
comprise 2.4% of the rock. Digradite 8 minute accurate			fine-grained matrix. Dark groop amphibola share-			1		
			comprise 2-4% of the rock. Pyrrhotite & pyrite occur				•	

WESTMIN DRILL LOG

RC-96-04

•

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
		as small disseminations (grains < 2mm wide) and in					
		thin fractures with yellow-brown limonite. Limonite					
		staining intense adjacent to limonite fractures (1-3 cm					
		wide alteration halo). Fractured core surfaces are					
		commonly stained with yellow limonite and black					
		nanganese dendrites. High angle calcile veins with					
		10 cm from veins)			1		
		80 57-81 00 FAULTED QUARTZ FELDSPAR					
		PORPHYRY					
		Intensely ferrunginized & carbonatized porphyry					
		(feldspar phenocrysts still visible). Brecciated					
		porphyry fragments are elongated & cemented in a					
	1	matrix of yellow-brown limonite/calcite. This is a					
		minor FAULT.					
		81.50-81.80 FAULTED QUARTZ FELDSPAR				:	
		PORPHYRY			1		
		Intensely terrunginized & carbonatized porphyry					
	1	Dreccia (reidspar phenocrysts still visible).					
]	a matrix of vellow-brown limonito/colcite. This is a					
		minor FALIET					
		86.15-86.35 FAULTED QUARTZ FELDSPAR					
		PORPHYRY					
		Minor fault with both upper & lower contacts at					
		~50 deg. TCA. Intensely ferrunginized &					
		carbonatized porphyry fragments are elongated &					
		cemented in a matrix of yellow-brown			1		
		limonite/calcite.This alteration appears to overprint					
		earlier, 1 cm wide, white calcite/chlorite veins. 88.					
		50-88.60 LIGHT GREY GREEN XENOLITHS					
		Zone in the quarz-teldspar porphyry which					
		contains 5 mm to 1.5 cm wide xenolitins					
		LIMONITE-CARBONATE AI TERATION ZONE					
		Highly carbonatized and limonitized zone in the					
		middle of porphyry. It does not show evidence of					
		faulting. May be a fluid pathway.					
101.00	102.41	ORANGE-BROWN BROKEN CORE FAULT	CAR/FE/	SHEARE	STR	Mal	
		Intensely ferrunginized & carbonatized core (broken	QZ/SE	D			
-		fragments). Highly sheared FAULT ZONE.					
		Silicification, sencitization, argillization are also					
		prominent. Black maganese dendrites & green					
102.41	104.00		SKADN	MAGG	18/14	10.02	
102.41	104.00	AMPHIBOLE-GARNET-DIOPSIDE-CALCITE SKARN	SNAKIN	MASS	VVI		
		Skarn comprises mainly pinkish calcite with minor				SULP?	
		intervals of pale to medium green dionside/amphibole					
		skarn. Pinkish-red garnet is minor. Yellow sericite					
		associated with zones of diopside/amphibole skarn.					
	1	Upper contact with porphyry is rubbled; lower contact			}		
		with porphyry is ~50 deg. TCA.					

Page	7	
6110		

•

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
104.00	105.15	FINE GRAINED FAULT QUARTZ FELDSPAR PORPHYRY Intensely carbonatized & ferrunginized porphyry (broken core). Highly sheared FAULT ZONE (at 20 deg. TCA) adjacent to skarn. Minor cross-cutting, white calcite veinlets (< 5 mm wide). Lower contact with less ferrunginized porphyry is 78 deg. TCA. Here, thinly banded, calcite-rich & limonite-rich layers (1-2 mm wide) give the rock a striped appearance.	CAR/LIM	SHEARE D FAULT	STR	WK	CALCI
105.15	125.00	FINE GRAINED YELLOWISH GREY QUARTZ FELDSPAR PORPHYRY Intensely carbonatized, silicified & limonitized porphyry. Similar to porphyry up section at 14.9 - 17.4 m. Abundant yellowish-brown-black limonite veinlets (after sulphides) & black mangnese oxides. Pyrrhotite & pyrite are widely disseminated in porphyry & are commonly limonitized. White calcite veinlets cut at a low angle TCA. Although much of the porphyry is bleached white from argillic alteration, remnant phenocrysts of whitish feldspar (1-5 mm long, 3-7% of rock) and glassy-grey quartz (1-5 mm wide, 2-5% of rock) are visible. Except for the intensity of carbonic & argillic alteration, this rock is very similar to the fresher grey-green porphyry above (79.6-101.0 m).	CAR/AR/ QZ/FE	MASS TO FRIABLE	MOD/ STR	WK PO & PY	CAL/LI M
125.00	125.50	FINE GRAINED GREEN GREY QUARTZ FELDSPAR PORPHYRY Intensely carbonatized & chloritized porphyry with a greenish tinge to it. Abundant thin (< 2 mm wide), white calcite veinlets.	CAL/CHL /QZ	MASS	STR	WK	CAL
125.50	128.30	FINE GRAINED CREAM WHITE QUARTZ FELDSPAR PORPHYRY Porphyry with a pink tinge to it (hematite staining?) & greenish black specks (1-3 mm across) of chlorite/limonite/pyrrhotite/pyrite. Rock has a brecciated appearance, but the angularity of the porphyry fragments? (homolithic frags.) suggests this may be an incipient chemical breccia. Initially, intense argillic alteration along a cross-cutting array of fractures, separated the porphyry into zones of weakly & strongly argillized rock. Later silicification stopped the brecciation process.	QZ/HEM/ CL/FE	MASS BRECCI A?	MOD/ STR	WK SULP	ARGIL LIC?

*** END OF HOLE *** 128.30

WESTMIN RESOURCES LIMITED - DRILL LOG SUMMARY

PROJECT: RACINE (BRITISH COLUMBIA)	DATE STARTED: JULY 12, 1996
HOLE NO.: RC-96-05	DATE COMPLETED: JULY 18, 1996
LOCATION: UTM - 6616711 N, 518394 E LOCAL - 15127 N, 5117 E	GROUND ELEVATION: 1876 m
LOGGED BY: STEPHEN ROWINS	AZIMUTH: 248°
DATE: JULY 14, 1996 onwards	INCLINATION: -60° at collar
CONTRACTOR: E. CARON DIAMOND DRILLING, WHITEHORSE, YUKON TERRITORY	TOTAL LENGTH: 152.4 m (500 ft)
CORE SIZE: NQ	CORE RECOVERY: VERY GOOD
DIP TESTS: NONE	COMMENTS : Fifth hole of the program. Drilled off the third, most northerly drill pad, to intersect the down-dip extension of the surface skarn.

RC-96-05

•

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
0.00	19.30	FINE GRAINED MEDIUM GREEN CRYSTAL-LITHIC	CL/EP/Q	MASS?	WK	WK PO	
		FELSIC LAPILLI TUFF	Z			& PY	
		phenocrists (white subsdral 1.5 mm long 2.7% of					
		rock) amphibolo/biotito phonocrate (accorish block					
		but commonly altered to chlorite, subsdral 0.5.3 mm					
		wide 1-3% of rock) & lithic fragments (clasts) Many					
		feldspars are altered to green epidote/chlorite & vellow					
		sericite. Lithics range from ~ 5 mm up to 5 cm in					
		diameter (average 1-2 cm diameter) & include, (a)					
		angular, pale greenish pink,					
		ałbite-scapolite-quartz-chlorite endoskarn (e.g., 11.45					
		m), (b) angular, dark green, chlorite-amphibole schist,					
		(c) angular, dark brown, chlorite-amphibole -biotite					
		schist, (d) pale grey quartz vein fragments, & (e)					
		(1.4 mm wide) longer of pertially evidence script. I him					
		(1-4 min wide) lenses of parually oxidized pyrite &					
		surfaces.					
		15.30-15.90 FINE GRAINED CRYSTAL-LITHIC					
		FELSIC LAPILLI TUFF BRECCIA					
		Yellowish brown, limonite stained, volcaniclastic					
		breccia. Bleached white fragments (5 mm to 5 cm)					
		with zones of intense, pale green-yellow					
		sericite/chlorite/epidote/quartz alteration are					
		cemented in a brown limonite & calcite matrix.					
		Some relict white feldspar phenocrysts in					
		Black mangapasa dendritas common. Caro is cott					
		& friable in zones of intense aroillic/nontronitic					
		alteration. Lower fault contact with Teenee Peak					
		volcanics at 15.9 m is 70 deg. TCA.					
19.30	21.00	FINE GRAINED YELLOW BROWN TO CREAM	QZ/AR/F	BROKEN	STR		
		WHITE CHLORITE-AMPHIBOLE SCHIST	E	CORE			
		Intensely silicified, ferrunginized & bleached rock.					
		Precursor lithology difficult to ascertain - may be					
		quartz porphyry, volcaniclastics, possibly schist.					
		Appears to be a faulted contact zone between					
		20 27-20 37 m					
21.00	22.30	FINE GRAINED MEDIUM GREEN			MAK		
		CHLORITE-AMPHIBOLE SCHIST	Z/SCP	STR FOL	VVI.	SUI	
		Weakly to strongly foliated schist with foliation at a		UNITOE	[UUL	
		steep angle TCA. Foliation in some places highly			1		
		contorted. Pinkish grey-white patches of				:	
		albite/quartz/scapolite.					
22.30	24.35	FINE GRAINED GREY WHITE QUARTZ PORPHYRY	AR/QZ/F	MASS	STR		
		Silicined and bleached quartz+/-feldspar granite	E	TO			
		alteration Abundant valious brown liments at a statistic		FRIABLE			
		Black mangapese dendrites and groop slown					
		(Sericite/nontronite/chlorite) common on fracture					
		surfaces.					

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
24.35	36.45	FINE GRAINED GREEN BROWN CHLORITE-QUARTZ-BIOTITE-AMPHIBOLE SCHIST Strongly foliated schist (55-65 deg. TCA) with brown, biotite-rich bands (1-4 mm wide) alternating with green amphibole-rich bands. Irregular zones of pinkish grey albite/scapolite alteration. Upper contact with quartz porphyry is 70 deg. TCA. Lower contact with quartz porphyry is 75 deg. TCA. Buck white quartz veins at 29.4 & 30.5 m. White, 1 cm wide calcite vein at 36.1 m, surrounded by a 2 cm wide alteration selvedge of brown (Fe-stained) calcite/dolomite. 29.40-29.55 BUCK WHITE QUARTZ VEIN Barren of sulphides. Upper contact with schist is at 65 deg. TCA. Lower contact with schist is 65 deg. TCA. 30.50-30.80 BUCK WHITE QUARTZ VEIN Barren of sulphides. Upper contact with schist is 65 deg. TCA.	CL/QZ/A B/SCP	STR FOL	WK	WK PO/PY	CAR
36.45	47.40	FINE GRAINED BLEACHED WHITE QUARTZ FELDSPAR PORPHYRY Intensely argillized porphyry. Total destruction of original rock fabric has made the identification of original quartz & feldspar phenocrysts impossible. May be either quartz porphyry or quartz-feldspar prophyry. Black manganese dendrites and green-yellow nontronite/chlorite clays cover fractured surfaces.	AR/CL/N ON/SE	FRIABLE & CLAYE Y	VERY STR	WK SUL	
47.40	55.85	FINE GRAINED GREY WHITE QUARTZ FELDSPAR PORPHYRY Gradational change over several metres from intensely argillized porphyry to intensely silicified quartz-feldspar porphyry such as seen at the bottoms of RC-96-01 & 02. Glassy grey, hexagonal quartz eye phenocrysts are 1-2 mm across & 1-3% of the rock. White feldspar phenocrysts are 1-4 mm long laths & 4-8% of the rock. Pyrrhotite & pyrite occur as small disseminations (grains <2 mm) & in thin fractures with limonite. Lower contact with schist is at 80 deg. TCA. This quartz-feldspar porphyry is clearly related to the more argillized porphyry up section. Therefore the silicified/argillized quartz prophyries in all DDH's are likely slight compositional variants of the fresh quartz-feldspar porphyry unit.	AR/QZ/C L/FE	MASS	WK/M OD	WK PO/PY	
55.85	56.80	FINE GRAINED DARK GREEN CHLORITE-AMPHIBOLE-BIOTITE SCHIST Strongly foliated schist (~65 deg. TCA) with numerous quartz boudins & veins oriented in the plane of foliation. Dark brown sections are biotite-rich. Dark green sections are amphibole/chlorite-rich. Significant (1-2%?) pyrrhotite occurs as both disseminations & in hairline fractures commonly oriented parallel to the foliation. Syn-deformational mineralization? Lower contact with quartz-feldspar porphyry is at ~47 deg. TCA.	CL/QZ	STR FOL	WK	WKMO D PO & PY	QZ

RC-96-05

•

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
56.80	66.90	FINE GRAINED GREY WHITE QUARTZ FELDSPAR PORPHYRY Intensely silicified quartz-feldspar porphyry such as up-section at 47.4-55.85 m. Glassy grey, hexagonal quartz eye phenocrysts are 1-2 mm across & 1-3% of the rock. White feldspar phenocrysts are 1-4 mm long laths & 4-8% of the rock. Pyrrhotite & pyrite occur as small disseminations (grains <2 mm) & in thin fractures with limonite. Limonite staining is pervasive & especially well-developed around limonite veinlets (1-4 cm wide alteration halo). Black manganese dendrites are common and form a peripheral band (1-5 mm) adjacent to the limonite alteration haloes surrounding limonite veinlets. Irregular lower contact with skarnified schist at 66.9 m is 45 deg. TCA. This quartz-feldspar porphyry is clearly related to the more argillized porphyries up section.	QZ/FE/A R/CL	MASS	WK/M OD	WK PO & PY	LIM
66.90	68.40	FINE GRAINED MEDIUM GREEN CHLORITE BIOTITE AMPHIBOLE SKARN Foliated schist (~45 deg. TCA) with sections of massive, pale green to whitish grey, diopside-amphibole-quartz-calcite skarn. Pyrrhotite strongly associated with (1) dark brown biotite-rich intervals, & (2) in thin (1-4 cm wide) quartz veins oriented at 45 deg TCA (same as schist fol.). Lower contact with quartz-feldspar porphyry (55 deg. TCA) is partly faulted/brecciated. Angular, 1-5 mm wide fragments of porphyry are cemented in a siliceous matrix in the contact zone. 67.14-67.20 BUCK WHITE QUARTZ VEIN Vein cuts at ~45 deg. TCA. Fractures filled with pyrrhotite. 67.26-67.35 FINE GRAINED DIOPSIDE-AMPHIBOLE-CALCITE-QUARTZ SKARN Massive, texturally-destructive zone of skarn with abundant pyrrhotite	DI+AMP SKARN	FOL TO MASS	WK	WK/MO D	QZ
68.40	76.30	FINE GRAINED GREY WHITE QUARTZ FELDSPAR PORPHYRY Intensely silicified quartz-feldspar porphyry. Glassy grey, hexagonal quartz eye phenocrysts are 1-2 mm across & 1-3% of the rock. White feldspar phenocrysts are 1-4 mm long laths & 4-8% of the rock. Pyrrhotite & pyrite occur as small disseminations (grains <2 mm) & in thin fractures with limonite. Limonite staining is pervasive & especially well-developed around limonite veinlets (1-4 cm wide alteration halo). Black manganese dendrites are common. This quartz-feldspar porphyry is clearly related to the more argillized porphyries up section.	QZ/AR/F E/CL	MASS	WK/M OD	WK PO & PY	LIM

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
76.30	79.76	FINE GRAINED PALE PINK-GREEN EPIDOTE-CALCITE-GARNET-DIOPSIDE SKARN Pale greenish-pink skarn in contact with quartz-feldspar porphyry at 25 deg. TCA (upper contact). Non-magnetic	SKARN	MASS	WK	WK PY/Po	
79.76	81.20	FINE GRAINED MEDIUM GREEN CHLORITE-BIOTITE-AMPHIBOLE SCHIST Strongly foliated schist (~65 deg. TCA) with weak diopside-garnet-calcite skarn development. Pale greyish-green albite-scapolite patches associated with skarn. 1-4 mm wide lenses of pyrrhotite in dark brown biotite-rich bands in schist & are oriented with the plane of foliation. Thin (<1 mm wide) veinlets of calcite/chlorite in schist. Lower contact with porphyry is very sharp (but not faulted) & at 68 deg TCA.	WK SKARN	FOL TO MASS	WK	WK/MO D SUL	CAR/ CL
81.20	84.40	FINE GRAINED GREY WHITE QUARTZ FELDSPAR PORPHYRY Intensely silicified & ferrunginized quartz-feldspar porphyry. Glassy grey, hexagonal quartz eye phenocrysts are 1-2 mm across & 1-3% of the rock. White feldspar phenocrysts are 1-4 mm long laths & 4-8% of the rock. Odd cauliflower texture exhibited by of some feldspars (?) when veiwed with hand-lens. Possibly scapolite alteration. Pyrrhotite & pyrite occur as small disseminations (grains <2 mm) & in thin fractures with limonite. Limonite staining is pervasive & especially well-developed around limonite veinlets (1-4 cm wide alteration halo). Black manganese dendrites & greenish nontronite/chlorite clays are common. This quartz-feldspar porphyry is clearly related to the porphyries up section. 83.00-84.40 ARGILLIZED QUARTZ FELDSPAR PORPHYRY Intensely argillized section of porphyry	QZ/AR/F E/CL	MASS	WK/M OD	WK PO/PY	
84.40	88.85	FINE GRAINED GREYISH GREEN-BROWN CHLORITE-QUARTZ-BIOTITE-AMPHIBOLE SCHIST Quartz-veined, strongly foliated (variable 60-80 deg. TCA) schist with alternating biotite-rich & chlorite/amphibole/quartz-rich bands. Abundant pyrrhotite (2-5%) is aligned at ~80 deg TCA as thin lenses (1-3 mm wide) within the biotite-rich bands. Quartz veins (5 mm-20 cm wide) in schist are generally oriented at ~60 deg. TCA. Biotite appears to replace the green chlorite/amphibole/quartz bands (e.g., 84.95 m where biotite bands wrap around fragments of amphibole schist - potassic alteration?). Upper contact with quartz-feldspar porphyry is 55 deg. TCA. Lower contact with quartz-feldspar porphyry is 70 deg. TCA. 84.95-85.00 FINE GRAINED CHLORITE-QUARTZ-BIOTITE-AMPHIBOLE SCHIST Biotite foliation wraps around fragmented schist 85.20-85.28 BUCK WHITE QUARTZ VEIN	CL/QZ	STR FOL	WK	WK PO	QZ

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
		Fractures in vein filled with pyrrhotite. 87.00-87.18 BUCK WHITE QUARTZ VEIN Fractures in vein filled with black limonite & pyrrhotite. Whitish fragments in vein are albite (?) or just another generation of quartz. 87.80-88.00 BUCK WHITE QUARTZ VEIN Fractures in vein filled with pyrrhotite.					
88.85	92.35	FINE GRAINED GREY WHITE QUARTZ FELDSPAR PORPHYRY Intensely silicified & ferrunginized quartz-feldspar porphyry. Glassy grey, hexagonal quartz eye phenocrysts are 1-2 mm across & 1-3% of the rock. White feldspar phenocrysts are 1-4 mm long laths & 4-8% of the rock. Possibly albite-scapolite alteration. Pyrrhotite & pyrite occur as small disseminations (grains <2 mm) & in thin fractures with limonite. Limonite staining is pervasive & especially well-developed around limonite veinlets (1-4 cm wide alteration halo). Black manganese dendrites & greenish nontronite/chlorite clays are common. This quartz-feldspar porphyry is clearly related to the porphyries up section. Lower contact with schist is 80-90 deg. TCA.	QZ/AR/F E/SCP	MASS	WK/M OD	WK PO/PY	
92.35	94.20	FINE GRAINED LIGHT GREY-GREEN CHLORITE-QUARTZ-BIOTITE-AMPHIBOLE SCHIST Quartz-veined, strongly foliated (80-90 deg. TCA) schist with alternating dark brown biotite-rich & green amphibole-rich bands (1-4 mm in thickness). Green chlorite preferentially associated with biotite. Abundant pyrrhotite (1-3%) is aligned at ~80 deg TCA as thin lenses (1-3 mm wide) within the biotite-rich bands. Quartz veins (5 mm-2 cm wide) & boudins (<1 cm wide) in the schist are generally oriented in the plane of foliation. Bluish-green amphibole skarn overprints foliated biotite-amphibole schist. Lower contact with quartz-feldspar porphyry is 60 deg. TCA. 92.60-93.00 MEDIUM GREEN AMPHIBOLE SKARN Texturally-destructive amphibole skarn replacing biotite-amphibole schist.	CL/QZ	FOL TO MASS	WK	WK PO/PY	QZ
94.20	99.75	FINE GRAINED GREY WHITE QUARTZ FELDSPAR PORPHYRY Intensely silicified & ferrunginized quartz-feldspar porphyry. Glassy grey, hexagonal quartz eye phenocrysts are 1-2 mm across & 1-3% of the rock. White feldspar phenocrysts are 1-4 mm long laths & 4-8% of the rock. Partly altered to green-yellow epidote-sericite. Pyrrhotite & pyrite occur as small disseminations (grains <2 mm) after mafic phenocrysts & in thin fractures with limonite. Limonite staining is pervasive & especially well-developed around limonite veinlets (1-4 cm wide alteration halo). Black manganese dendrites & greenish nontronite/chlorite clays are common. Lower contact with schist is at 65 deg. TCA.	QZ/AR/F E/CAR	MASS	WK/M OD	WK PO/PY	

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
99.75	111.00	FINE GRAINED MEDIUM GREEN GREY CHLORITE-BIOTITE-AMPHIBOLE SCHIST Strongly foliated schist (55 deg. TCA) with abundant high angle, buck white quartz-albite-sulphide veins (5 mm- 3 cm wide). Foliation is highly contorted around some quartz veins (S-folded), but is generally defined by very thin (<1 mm wide) dark mafic bands alternating with light grey quartz-rich bands. Pyrrhotite & pyrite associated with green chlorite which overprints the schist along thin (1-2 mm wide) fractures. Disseminated magnetite in schist. Some sections are very weakly carbonated. Lower contact with quartz-feldspar porphyry at 55 deg. TCA.	CL/QZ/F E/CAR	STR FOL	WK	WK PO/PY	QZ & CAR
111.00	114.85	FINE GRAINED GREY WHITE QUARTZ FELDSPAR PORPHYRY Intensely silicified & ferrunginized quartz-feldspar porphyry. Glassy grey, hexagonal quartz eye phenocrysts are 1-2 mm across & 1-3% of the rock. White feldspar phenocrysts are 1-4 mm long laths & 4-8% of the rock. Partly altered to green-yellow epidote-sericite. Pyrrhotite & pyrite occur as small disseminations (grains <2 mm) after mafic phenocrysts & in thin fractures with limonite. Limonite staining is pervasive & especially well-developed around limonite veinlets (1-4 cm wide alteration halo). Black manganese dendrites & greenish nontronite/chlorite clays are common.	QZ/AR/F E/CAR	MASS	WK/M OD	WK PO/PY	
114.85	124.80	FINE GRAINED MEDIUM GREEN CHLORITE-QUARTZ-BIOTITE-AMPHIBOLE SCHIST Strongly foliated (~70 deg TCA) schist with skarn replacement. Pyrrhotite abundant in dark brown biotite-rich bands. Some zones of strongly contorted foliation with parasitic Z-folds (118.2 m). Thin quartz veins (5 mm- 15 cm) with white-grey albite & minor pyrrhotite/pyrite oriented in the plane of foliation. 121.00-121.45 DARK BROWN CHLORITE-QUARTZ-AMPHIBOLE-BIOTITE SCHIST Abundant pyrrhotite in foliated biotite-rich bands. 121.45-122.00 LIGHT GREENISH PINK EPIDOTE-QUARTZ-ALBITE-SCAPOLITE-DIOP SKARN Fine-grained skarn with hematized(?) albite-scapolite. Z-folds defined by pale green chlorite-diopside skarn bands (1-2 mm wide) interlayered with hematized albite-scapolite. Minor calcite 122.65-122.90 LIGHT GREENISH PINK EPIDOTE-QUARTZ-ALBITE-SCAPOLITE-DIOP SKARN Fine-grained skarn with hematized(?) albite-scapolite. Z-folds defined by pale green chlorite-diopside skarn bands (1-2 mm wide) interlayered with hematized albite-scapolite. Minor calcite 122.65-122.90 LIGHT GREENISH PINK EPIDOTE-QUARTZ-ALBITE-SCAPOLITE-DIOP SKARN Fine-grained skarn with hematized(?) albite-scapolite. Pale green chlorite-diopside skarn bands (1-2 mm wide) interlayered with hematized albite-scapolite. Pale green chlorite-diopside skarn bands (1-2 mm wide) interlayered with hematized albite-scapolite. Minor calcite	SKARN	STR FOL TO MASS	WK	WK/MO D PO/P Y	QZ/CA R

RC-96-05

•

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
		123.00-123.70 BLUISH GREEN AMPHIBOLE SKARN Abundant bluish-green amphibole skarn replacing greenish brown amphibole-biotite schist					
124.80	126.00	FINE GRAINED LIGHT GREEN GREY DIOPSIDE-ALBITE-SCAPOLITE-EPIDOTE-AMPHIBOL E ENDOSKARN Endoskarn developed over quartz-feldspar porphyry. Very Silicified. The skarn is formed in the 1 m transition zone from schist to porphyry. Only minor sulphide/limonite. Good evidence that DIOPSIDE-ALBITE-SCAPOLITE-EPIDOTE-AMPHIBOL E SKARNS IN OTHER DRILLHOLES ARE RELATED TO INTRUSION OF QUARTZ-FELDSPAR PORPHYRY. THESE SKARNS AT LEAST, ARE CLEARLY FORMED BY THE INTERACTION BETWEEN PORPHYRY AND COUNTRY ROCK (i.e., See RC-96-04).	SKARN	MASS	WK	WK SULP	
126.00	135.50	FINE GRAINED LIGHT GREY QUARTZ FELDSPAR PORPHYRY Silicified porphyry with feldspars altered to yellow sericite & green epidote/chlorite. Strongly fractured & slightly deformed. Fractures filled with green chlorite. Abundant black manganese dendrites & hematitic staining. Black magnetite veinlet (6 mm wide) at 131.85 m	QZ/CL/F E	MASS TO WK FOL?	WK/M OD	WK SULP	CL & MAG
135.50	152.40	FINE GRAINED MEDIUM GREEN QUARTZ FELDSPAR PORPHYRY Gradational contact. Change in porphyry appearance from fairly silicified to fresh & undeformed. White feldspar phenocrysts (1-6 mm long) comprise 5-15% of rock. Green-black mafic phenocrysts (0.5-3 mm long) are ~2-7%. Numerous fine-grained diorite (?) & melagranitoid xenoliths. Suggests porphyry magma rose through 187 Ma diorite-hornblendite at depth. Some cognate xenoliths too. Xenoliths vary from <1 cm up to 10 cm in diameter (probably larger, but core diameter limits size estimates). Cognate xenoliths are typically fine grained, dark grey, with whitish feldspar phenocrysts & black mafics (biotite/amphibole). Cognate xenoliths usually only show minor reaction rims. Very little veining in porphyry except for thin (1 mm wide) calcite veinlets. Non-magnetic. Very few quartz phenocrysts here, unlike porphyries higher up. However, spatial/compositional relationships in the drillcore demonstrate that all these porphyries are part of the same magma series.	CL/QZ	MASS	WK		

*** END OF HOLE *** 152.40

WESTMIN RESOURCES LIMITED - DRILL LOG SUMMARY

PROJECT: RACINE (BRITISH COLUMBIA)	DATE STARTED: JULY 18, 1996
HOLE NO.: RC-96-06	DATE COMPLETED: JULY 22, 1996
LOCATION: UTM - 6616711 N, 518394 E LOCAL - 15127 N, 5117 E	GROUND ELEVATION: 1877 m
LOGGED BY: STEPHEN ROWINS	AZIMUTH: 248°
DATE: JULY 20, 1996 onwards	INCLINATION: -85° at collar
CONTRACTOR: E. CARON DIAMOND DRILLING, WHITEHORSE, YUKON TERRITORY	TOTAL LENGTH: 139 m (456 ft)
CORE SIZE: NQ	CORE RECOVERY: VERY GOOD
DIP TESTS: NONE	COMMENTS: Final hole of the program. Drilled off the third, most northerly drill pad, to intersect the down-dip extension of the surface skam.

.
Page 1 6110

WESTMIN DRILL LOG

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
0.00	25.15	FINE GRAINED MEDIUM GREEN GREY	CL/CAR/	MAS TO	WK	TR SUL	
		CRYSTAL-LITHIC FELSIC LAPILLI TUFF	EP/SE	CONTOR			
		Intensely to weakly altered & deformed volcaniclastic		-IED FOL			
		1-7 mm long laths 2.7% of rock) & amphibolo/biotite					
		phenocrysts (dark green-black, euhedral, 1-3 mm long					i
		1-7% of rock). Feldspars may show cross-twinning.					
		glomerocrystic habit & varying degrees of alteration to					1
		yellow epidote/sericite. Angular, heterolithic, clasts (2		;			
		mm to 6 cm diameter) include, (1) dark green					
		amphibole schist with yellowish-white sericite/chlorite					
		reaction rims, (2) black mafic clasts (mafic					
		dyke/biotite schist?), (3) greyish-white					
		abite-scapolite-quartz clasts (endoskam?), (4)			1		
		greenish-white quartz-feldspar-cov? (granodiorite?)					
		Thin (1-3 mm wide reaction rims) surround some					
		clasts, particularly, the black mafic clasts. Overall					
		rock colour is one of a dark grey-green groundmass					
		with small white feldspars & black mafic phenocrysts,					
		plus numerous, larger, dark green-brown clasts. A					
		generalized tohation is absent.					
		VELLOW BROWN CRYSTAL LITHIC EELSIC					
		APILITUFF					
		Limonitized Teepee volcanics with white-vellow					
		calcite/limonite veins at 55 deg. TCA. Core is					
		commonly rubbled. Fracture surfaces show black					
		manganese dendrites & yellow-brown limonite					
		staining.					
		18.60-20.00 MEDIUM GREEN CRYSTAL-LITHIC					
		FELSIC LAPILLI I UFF			1		
		veips (<1 cm wide) at ~20 deg. TCA					
		20.00-25 15 RUSTY RED CRYSTAL -I ITHIC					
1		FELSIC LAPILLI TUFF					
		Extensively rubbled Teepee volcanics with intense,					
		rusty red, limonite/hematite staining. Whitish					
		calcite/quartz alteration, & greenish					
		chlorite/argillite clays are abundant. This is the					
		faulted unconformity between the overlying Teepee					
		Metamorphics Chlorite-quartz-biotite-amphibole					
		schist, Unconformity also present in DDH's					
	2 -	RC-96-03, -04, & -05.					
25.15	63.40	FINE GRAINED MEDIUM GREEN	QZ/CL/F	STR FOL	WK	WK	QZ/LI
		CHLORITE-QUARTZ-AMPHIBOLE-BIOTITE SCHIST	E/CAR	TO	то	PO/PY/	M/CAL
		Strongly foliated schist (70-75 deg. TCA) overprinted		BRECC.	STR	CPY/MA	/ CL-
		by a wide variety of alteration/skarn events. Identical to]	L	AMP
		scrist in DDH's RC-96-04 & -05. Foliation typically			1		
		3 mm wide) alternating with dark groop					
		chlorite/amphibole bands in silicified sections of core					
		(e.g., 26.8-27.9 m). In other places, thin (<1 to 3 mm					
		wide) brown-black biotite-rich bands alternate with					

Page 2 6110

WESTMIN DRILL LOG

RC-96-06

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
					[
		bluish-green amphibole bands. These foliated bands					
	ĺ	essentially amphibole skarn Small (1 mm wide)					
		deformed, white crystals(?) in some biotite-rich schist					
		may be original feldspar/quartz(?)					
		phenocrysts/porphyroblasts. Many sections show					
		intense silicification with numerous pale grey quartz					
	i i	wide; normally barren). Whitish calcite and					
]		yellow-brown limonite are abundant in both thin					1
		veinlets (<2 mm wide) & as diffuse alteration patches.					
1	-	Non-magnetic. Minor sulphide (mainly in limonitized					
		28.55-28.75 YELLOWISH GREY OUARTZ VEIN					
		Yellow-brown limonite fills fractures in broken					1
		quartz vein. Abundant yellowish green					
		sericite/chlorite alteration. Upper contact with					
		29 72-30 00 GREY OLIARTZ VEIN					
ł		Fractured guartz vein with fracture-filling brown					}
		limonite. White, albitic plagioclase & green				-	
		chlorite in some thin fractures & irregular patches.					}
		Upper contact is rubble. Lower contact 56 deg,					
		32 00-36.50 GREEN BROWN					
		CHLORITE-QUARTZ-AMPHIBOLE-BIOTITE					
		SCHIST					
		Strongly foliated schist (35 deg. TCA) defined by				ł	
		nale grey-green guartz bands (1-5 mm wide) and					ł
		34.5 m is a very ferrunginized & deformed section					
		of core - possibly a minor fault. Green malachite &					
		limonite on fracture surfaces					
		36.85-37.00 LIME GREEN EPIDOTE CHLORITE					
		15 cm wide band of lime green epidote/amphibole					
		alteration over schist. Some pyrrhotite & pyrite					
		associated (especially in fractures).					1
		37.00-38.00 BLUISH GREEN AMPHIBOLE			ļ	ļ	
		Amphibole skarn with whitish quartz/albite					ł
		replacing chlorite-quartz-amphibole-biotite schist.					
		Amphibole & thin bands of whitish quartz/albite					
		tend to follow foliation in the schist (~40 deg.					
		39.85-40.50 GREVISH BROWN ALTERATION					
		Zone of intense brown calcite/limonite veining &					
		alteration. Veins at ~40 deg. TCA (same					
		orientation as foliation in schist). Minor			1	l	Į
		chlorite/argillite alteration & incipient jigsaw		1			
		41.46-43.60 GREENISH GREY-YELLOW					
		CHLORITE-QUARTZ-AMPHIBOLE-BIOTITE					
		SCHIST					

Page 3 6110

WESTMIN DRILL LOG

RC-96-06

.

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS	
		Zone of strong yellow-brown limonite/carbonate veining/alteration over greenish grey schist. Highly strained & foliated (40-50 deg. TCA). The limonite/carbonate veins (1-8 mm wide) have up to 15 cm wide yellow-brown alteration haloes & are oriented in the plane of foliation. 47.00-47.60 BUCK WHITE QUARTZ VEIN Quartz vein with green amphibole alteration in greenish-brown schist. Minor chlorite infills fractures. 49.50-52.00 MOTTLED WHITE-GREEN AMPHIBOLE SKARN Chlorite amphibole skarn (medium green, & associated albite/quartz alteration (grey-white), replacing dark brown biotite-rich schist. Skarn is intensely altered by yellow-brown calcite/limonite veining. Minor sulphide in limonite fractures. Late calcite (whitish) are in random orientation. Minor epidote. 58.60-60.90 QUARTZ VEIN CHLORITE- QUARTZ-AMPHIBOLE-BIOTITE SCHIST Zone of intense quartz veining (1-25 cm wide veins) & associated minor amphibole skarn in foliated schist (~45 deg. TCA). Minor pyrrhotite/pyrite fill fractures in veins. Dark green chlorite/amphibole also fill fractures.						
63.40	67.40	FINE GRAINED TAN-BROWN GREEN DIOPSIDE-AMPHIBOLE SKARN Intensely ferrunginized, chloritized, silicified & carbonatized(?) diopside-amphibole skarn. The dark green patches are amphibole, with the paler green patches likely chloritized & sericitized diopside. The ferrunginization of the rock is so intense that it is unclear whether garnet and/or magnetite were originally present in the skarn. Magnetite has completely gone to limonite/hematite, & the yellow-brown Fe-staining masks the pinkish colour of typical garnet. The 5 mm to 1 cm diameter, yellowish-green euhedral crystals at 63.7 to 64.2 m may be epidotized/sericitized/limonitzed garnets. Thin (1-3 mm wide), cream-brown veins at very shallow angles TCA are guartz/limonite	FE/QZ/S ER/CL	STR FOL TO BRECC.	STR	STR SUL?	QZ/LI M/CA R?	
67.40	70.00	FINE GRAINED LIGHT TO MEDIUM GREEN EPIDOTE-ALBITE-AMPHIBOLE SKARN Chloritized, sericitized, silicified, & carbonitized (diopside?) amphibole skarn over chlorite-quartz-amphibole-biotite schist. Much less ferrunginized than the preceding skarn interval. Pale grey patches of quartz-albite-scapolite alteration. Thin calcite veinlets (whitish-brown, 1-2 mm wide) cut at a low angle TCA. Foliation in schist at 65 deg. TCA. Weakly disseminated pyrite/pyrrhotite mineralization in skarnified schist.	SKARN	MASS TO FOL	WK	STR SUL?	CAR	

WESTMIN DRILL LOG

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
70.00	72.85	FINE GRAINED DARK GREEN BROWN CHLORITE-QUARTZ-AMPHIBOLE-BIOTITE SCHIST Typical schist with dark brown, biotite-rich bands alternating with green chlorite/amphibole/quartz bands (1-6 mm wide). Foliation at 53 deg. TCA. Buck white quartz veins (5 mm - 3 cm wide; 50 deg. TCA) are commonly boudinaged & fractured. Near quartz veins, foliation is contorted.	CL/QZ/	MOD FOL	WK	WK PO/PY	CAR & QZ
72.85	75.40	FINE GRAINED GREEN BROWN AMPHIBOLE SKARN Dark brown, strongly foliated (55-65 deg. TCA), biotite-rich schist partially replaced along foliation planes, & along fractures, by medium green quartz-albite-amphibole (?) skarn. Minor lime green epidote, yellow sericite, & white calcite alteration associated with skarn. Weak yellow-brown limonite staining after pyrite/pyrrhotite.	CL/QZ/A B/SCP	FOL. SKARN	WK	WK PO/PY	QZ/A MP/C AL
75.40	81.40	FINE GRAINED GREEN BROWN CHLORITE-QUARTZ-AMPHIBOLE-BIOTITE SCHIST/SKARN Strongly foliated (45-65 deg. TCA), schist partially replaced along foliation planes & fractures by medium green quartz-albite-amphibole skarn. Classic fracture-controlled skarn. Substantial sulphides (pyrrhotite mainly) are found with the amphibole skarn, & oriented in the plane of foliation in biotite-rich schist (e.g., 79-80 m). Minor lime green epidote, yellow sericite, & white calcite alteration associated with skarn. Weak yellow-brown limonite staining after pyrite/pyrrhotite. In sections of core that are skarn-free, the well-foliated biotite-amphibole bands in the schist are evident. Buck white quartz veins are common and show both boudinage (e.g., 76.4m) & faulting (e.g., 78.8 m). 77.05-77.40 YELLOWISH GREY QUARTZ VEIN Quartz vein with fractures filled with green chlorite & white albite(?). Minor limonite. Upper contact with schist ~80 deg. TCA. Lower contact with schist~75 deg. TCA.	CL/QZ/C AR/AB	FOL TO MASS	WK	WK /MOD PO/PY	QZ/A MP/C AL
81.40	139.00	FINE GRAINED GREY QUARTZ FELDSPAR PORPHYRY Weakly to moderately silicified, argillized, & limonitized porphyry. Upper contact with skarnified schist is sharp, at 53 deg. TCA. Similar to porphyry at the base of other DDH's. Pyrrhotite, pyrite, & lesser chalcopyrite and arsenopyrite are widely disseminated in porphyry (as 1-2 mm wide grains/clots) and in thin (0.5-3 mm wide) veinlets. They may show preferred orientation at 55 deg. TCA. More commonly, they are randomly oriented & form small stockwork-stringer zones. Brown limonite veinlets (after sulphides) plus surroundng alteration haloes (1-10 cm wide), & black mangnese oxides are common - similar to other porphyries (e.g., RC-96-05; 105.15 to 125 m). Rare, white calcite veinlets cut at a low angle TCA.	QZ/FE/A R/CAR	MASS	WK/M OD	MOD PO/PY/ CPY/AS PY	CAR & QZ

Dage	5
6110	

WESTMIN DRILL LOG

RC-96-06	5
----------	---

•

From	То	Geological Log	ALT'N	STRUC	WEAT	MIN'L	VEINS
		Phenocrysts of whitish feldspar (1-5 mm long, 3-7% of rock), blackish biotite/amphibole? (1-3 mm long, 1% of rock), & glassy-grey quartz eyes (1-5 mm wide, 2-5% of rock) are visible. The proportion of quartz & feldspar phenocrysts can varying significantly over several metres. This PORPHYRY IS NOTABLE FOR ITS AMOUNT OF DISSEMINATED SULPHIDE AND STRINGER SULPHIDE MINERALIZATION. SIMILAR TO PORPHYRY COPPER-STYLE OF MINERALIZATION.					

*** END OF HOLE *** 139.00

Pa	Q	je	\$
61	1	n	

APPENDIX B

PETROGRAPHIC AND MINERALOGIC REPORT

•

MINERALOGY OF SAMPLES FROM THE TP SKARN, ATLIN AREA, B.C.

Prepared for: WESTMIN RESOURCES LIMITED Vancouver, B.C.

April 1996

.

Leslie Investments Ltd. Research and Consulting Division 316 Rosehill Wynd Tsawwassen, B.C. V4M 3L9 Ph: (604)948-1368 Fax: (604)948-1369 email: jlj@wimsey.com

MINERALOGY OF SAMPLES FROM THE TP SKARN, ATLIN AREA, B.C.

EXECUTIVE SUMMARY

Mineralogical study of four samples from the TP claim, a Co-Au skarn prospect near Atlin, B.C., showed that they consist predominantly of diopside with generally minor, variable amounts of amphibole, chlorite, and magnetite \pm mica \pm talc. The principal sulfide mineral is cobaltite (Co,Fe)AsS, which occurs as relatively coarse grains (up to 1 mm along on edge) and as aggregates that are predominantly aligned along inconspicuous fractures bordered by "bleached" margins purged of host-rock disseminated magnetite. Crystallization of cobaltite was followed by fracturing and the formation of hairline-width veinlets of amphibole that are bordered by well-defined margins of bismuthinite (Bi₂S₃). Minute blebs of pyrrhotite and chalcopyrite are present in trace amounts as inclusions in cobaltite in all samples, and small amounts of arsenopyrite, pyrite, and a Bi telluride occur in individual samples. Numerous blebs of native bismuth, and numerous small blebs (all <15 µm) of native gold are common as inclusions within cobaltite, and both the bismuth and gold are restricted exclusively to this type of association. The relatively coarse grain size of cobaltite and the apparent confinement of native gold to occurrences within cobaltite indicate that high recoveries of Co and Au would be expected in a sulfide flotation concentrate.

INTRODUCTION

Four hand samples from the TP skarn, a Co-Au prospect at Teepee Peak, 50 km west of Atlin, B.C., were received from P. Lhotka in November 1995. The request was for reconnaissance petrographic work on the samples in reflected and transmitted light. The focus of the study was to be the determination of the mineral forms of Co and Au, if present, and characterization of the different types of skarn represented by the four samples.

To achieve the objectives the samples were examined megascopically and then were cut with a diamond saw to select sulfide-rich areas for microscopic examination. Five polished thin sections and three polished sections were prepared from opaque-rich areas; the off-cuts were crushed and the powders were used to obtain bulk mineral compositions by X-ray diffractometry. The sections were examined by optical microscopy, and sulfides in two of the sections were qualitatively checked by scanning electron microscopy with energy-dispersion capabilities. Individual sulfide minerals were identified by the Debye-Scherrer X-ray method, using mounts prepared while viewing the selected areas by optical microscopy.

The four as-received samples had been labeled with the prefix TP and the individual designations TR-1, TR-1 area, and TR-4 (two samples). The first two samples, and one of the TR-4 samples, were redesignated TP-1, TP-1A, and TP-4, respectively; the other TR-4 sample, which apparently had been selected because of its high magnetite content, was relabeled as TP-4M.

RESULTS

Sample TP-1

Megascopic

The smallest of the four samples, TP-1 prior to cutting was approximately 7 cm long and 2 cm thick; width at one end was 5 cm, tapering to 2 cm at the other. Maximum dimensions were at the weathered surface, which in part had black irregular patches and poorly developed dendrites of (apparently) Mn oxide. The fresh rock is pale, slightly greenish grey, and fine-grained. Sulfides are evident in multiple, hairline-wide fractures that are mainly discontinuous, but with a few extending the length of the sample. Sulfides also are evident as irregular patches

2

and wisps, the largest roughly 2×7 mm. The cut surfaces of the sample show that the black patches and wisps are not a surface phenomenon; these extend throughout the rock, and black zones also form the margins of the hairline veinlets.

Microscopic and XRD

The rock consists largely of fine-grained, anhedral diopside. Average grain size is about 100 μ m, and a few subhedral prisms up to 500 μ m in length are present. The texture is uneven, somewhat mottled (Fig. 1), with coarser aggregates surrounded by finer grained and more turbid masses. The texture in part results from turbidity related to microfractures, but the main cause is that the coarser grains of diopside have a weakly radial arrangement, and these coarser groups are surrounded by fine-grained, anhedral diopside. Amphibole and traces of chlorite occur interstitially to the pyroxene, and account for most of the megascopic black patches. As well, however, a few disseminated aggregates of ilmenite, up to 0.5 mm across, are scattered in the host groundmass. The ilmenite varies from fresh to replaced extensively by rutile and titanite

Figure 1. Transmitted-light overview of TP-1 (width of field 7.8 mm), showing a somewhat mottled texture of groundmass diopside, with slight greenish colour (especially upper left) reflecting the presence of amphibole. Large opaque grains are mainly ilmenite (see Fig. 2); small opaque peppering is mainly a spurious effect from polishing.

Figure 2. Reflected-light photo of TP-1, showing details of large opaque grains illustrated in Figure 1. The composite grains consist largely of ilmenite, titanite (grey, tn), and rutile (ru, white) in a dark grey groundmass of diopside. Fracture at left contains mainly epoxy, but black margins are erythrite. Width of field 2.0 mm.

(Fig. 2). The chlorite and ilmenite are too sparse to be detected in the bulk-sample X-ray diffractogram (Fig. 3).

The groundmass contains a few grains and ragged-edged aggregates of cobalitie (ideally CoAsS), with the aggregates up to 3-4 mm in diameter. The cobalite occurs sporadically as patches in some parts of the matrix, but most grains seem to be related to fractures, though not as a discrete, fracture-filling constituent. Rather, the alignment of cobalite grains into "trains" indicates a structural control even though, in some instances, no discrete fracturing is evident microscopically. In some cases the cobalite trains are aligned with the "main" set of fractures, and some trains are partly incorporated within the fractures. This main set consists of sub-parallel veinlets, all of which are ≤ 1 mm in width, and some of which bifurcate. The veinlets consist of amphibole and well-defined margins of bismuthinite Bi₂S₃ (Fig. 4). Despite their narrowness, the veinlets are megascopically conspicuous because they appear, on planar surfaces, as black lines on a pale greenish background. The veinlets post-date the crystallization of the cobalitie, as is

Figure 3. X-ray diffractogram of whole-rock sample of TP-1. Main peaks are attributable to diopside; other peaks are am amphibole, and er erythrite. Not detectable: chlorite, mica, talc.

Figure 4. Transmitted-light photo of TP-1, showing veinlets of amphibole (green) with well-defined margins of bismuthinite (opaque); groundmass is diopside. Width of field is 7.8 mm.

evident from the partial penetration or deflection of the veinlets around the cobaltite aggregates (Fig. 5), and from the crosscutting relationships between cobaltite and bismuthinite (Fig. 6). Bismuthinite is closely restricted to these veinlets and to occurrences within cobaltite. Native bismuth and lesser amounts of native gold, as well as a minute bleb or two of almost submicroscopic pyrrhotite and chalcopyrite, occur exclusively within the cobaltite. The maximum size of the grains of native bismuth, which is relatively common, is about 30 μ m across. The grains occur either in direct contact with bismuthinite, or as composite grains with bismuthinite in cobaltite. The maximum size of native of native gold is about 15 μ m in diameter, but several grains, mostly <5 μ m, were observed in the two sections available for TP-1. Other than being restricted to within cobaltite, the associations of the gold grains seem to be non-specific: the mineral occurs in contact with cobaltite alone, with composite grains of cobaltite and silicates, and with various combinations of bismuth–bismuthinite–cobaltite.

The sample contains at least four sets of fractures. The "main" or amphibole–bismuthinite set post-dates crystallization of cobaltite. Some of the trains of cobaltite do not have an observed fracture control, and yet none of these trains are aligned with the bismuthinite–amphibole veinlets, thus suggesting that cobaltite may not have crystallized at the onset of the stresses that produced the bismuthinite-bearing fractures. Nevertheless, the intimate relationships between amphibole and diopside, between amphibole and bismuthinite, and between bismuth and cobaltite suggest that all had a close genetic relationship to skarn formation. Additional minor fractures post-date the amphibole–bismuthinite veinlets, and a subsequent set of more conspicuous fractures also was formed. The last set was at least in part calcite-bearing, and is now the site for prominent veinlets of erythrite (Fig. 7).

TP Skarn

Figure 5. Reflected-light photo (top), showing aggregates of cobaltite (white) in a groundmass of diopside. Veinlets at upper left and bottom right are amphibole with fine-grained bismuthinite (white) margins. Bottom photo is the same area, shown in combined transmitted and reflected light. Note the deflection of the amphibole – bismuthinite veinlet at lower left, and partial penetration of cobaltite at right. Width of field 7.8 mm.

Figure 6. Reflected-light photos of native gold in cobaltite in TP-1. Upper photo shows three grains of gold (arrows) within cobaltite (central grain is about $5 \times 25 \ \mu m$); adjoining grey mineral at centre and bottom right is bismuthinite, slightly pinkish mineral is native bismuth (bi), and black veinlets are oxidation (weathering) effects. Lower photo shows three grains of native gold (largest grain is $8 \times 12 \ \mu m$), numerous inclusions of native bismuth, and veinlets of bismuthinite at lower left and right. Width of field 0.5 mm.

Figure 7. Amphibole-bismuthinite veinlets crosscut by late-stage veinlet that was probably calcite-bearing, and is now crythrite-bearing (pink). Transmitted light, crossed polarizers; width of field 7.8 mm.

Sample TP-1A

Megascopic

The sample was $7 \times 4 \times 4.5$ cm, with most sides planar. Two weathered surfaces, and especially the parallel, fractured underside, were coated extensively with erythrite. Sparser, but still prominent erythrite was present on all other surfaces and in hairline fractures both parallel and at ~30° to the underside. Sparse goethite-like alteration was associated with two porous, sulfide-bearing, elongate patches, seemingly fracture-controlled.

The host rock is pale greenish grey, fine-grained, and is not uniform. Dark grey to black patches and wisps of silicate minerals are irregularly distributed: portions of the rock lack black minerals, whereas in other portions the light and dark portions are intermixed, typically with diffuse boundaries, thus giving the rock an overall medium to dark grey color.

Microscopic and XRD

The polished thin section of the sample shows it to consist largely of prismatic grains of diopside, with minor interstitial amphibole (Fig. 8) and traces of chlorite either associated with

TP Skarn

Figure 8. Overview of TP-1A in transmitted light, showing prismatic diopside and dark green interstitial amphibole. Upper photo with plain light, and lower photo with crossed nicols. Width of field 7.8 mm.

the amphibole or isolated in interstices. Some of the pyroxene is in poorly developed radial groups, but this texture and the resultant mottling are less pronounced, on a microscopic scale, than in sample TP-1. The content of opaque minerals, including magnetite or ilmenite, is negligible; the dark colours evident megascopically result mainly from variations in the content of amphibole/chlorite. The section is cut by several parallel to sub-parallel veinlets, but none contains sulfides, and no sulfides are present elsewhere in the section.

A polished section prepared from a sulfide-rich portion of the hand specimen is similar to TP-1 in that the sulfides reside within a megascopically black, amphibole-rich area. The main opaque minerals are cobaltite and bismuthinite. The two largest grains of cobaltite in the section are shown in Figure 9, but it is evident from pseudomorphic outlines that at least ten similar grains occurred in this area prior to oxidation. The pseudomorphs consist partly of erythrite, but brownish to yellowish alteration products are also present; an X-ray mount prepared from one of the yellowish pseudomorphs gave an unidentifiable pattern, possibly in part that of a mixture of erythrite and parasymplesite $Fe_3(AsO_3)_2 \cdot 8H_2O$.

Bismuthinite, also partly replaced by oxidation products, occurs as disseminated grains

Figure 9. Reflected-light overview of cobaltite-rich area in TP-1A. Large cobaltite grains (white) show various degrees of replacement, to complete pseudomorphism (black grains at extreme right). Fine-grained associated sulfide is predominantly bismuthinite (see Fig. 10).

TP Skarn

Figure 10. Reflected-light photo of two large cobaltite grains (at extreme top left and far right, extensively replaced). Grains between cobaltite are bismuthinite (many grains partly replaced at edges, and many complete pseudomorphs) accompanied by slightly whiter and more resistant grains of bismuth telluride (arrows). Sample TP-1A; width of field 2.0 mm.

peripheral to the cobaltite (Fig. 9). A few grains (most of which are shown in Fig. 10) of a slightly yellowish, strongly anisotropic bismuth telluride (Appendix I, II) are associated with the bismuthinite, and also occur as minute inclusions in cobaltite. The weathered grains show well the effect of differential alteration, with the telluride mineral distinctly more resistant to replacement than bismuthinite, and with native gold residual in cobaltite (Fig. 11).

The X-ray diffractogram of a bulk sample of TR-1A is shown in Figure 12. Aside from major clinopyroxene (diopside) and amphibole, other detectable minerals are chlorite, talc, erythrite, and cobaltite. Talc was not observed microscopically in the section available.

Figure 11. Reflected-light photograph of sample TP-1A, showing residual cobaltite (white) in originally large grains that have weathered to partial pseudomorphs. Arrow at left points to a grain of residual native gold. Width of field is 2.0 mm.

Figure 12. X-ray diffractogram of sample TP-1A. Main peaks are attributable to diopside; other peaks are ch chlorite, te tale, am amphibole, er erythrite, co cobaltite.

Sample TP-4

Megascopic

The as-received sample was triangular in outline, roughly $8 \times 10 \times 10$ cm, and about 5 cm thick. All faces were smooth to variably rough, showing obvious fracture control. All surfaces were partly coated with abundant erythrite. Sulfides occurred in elongate, fracture-controlled patches whose widths were in millimetres, and lengths up to 3 cm. The cut surfaces also show sulfide (cobaltite) aggregates up to 4 mm across. A few isolated grains of cobaltite occur in the matrix, but most seem to be in trains. The bulk of the rock varies from pale grey to pale green portions in a mottled to breccia-like association. The pale grey portion resembles fragments supported in a lighter-colour and more greenish matrix. The fragments are rarely sharply defined or angular, and on most cut surfaces the texture is more layered than fragmental. Most, but not all, of the sulfides are associated with amphibole-rich areas.

Microscopic and XRD

Sample TP-4 is similar to the preceding ones in that it consists largely of diopside, with minor amphibole and lesser amounts of chlorite. The X-ray diffractogram (Fig. 13) also shows

Figure 13. X-ray diffractogram of whole-rock sample of TP-4. Main peaks are attributable to diopside; other peaks are ch chlorite, am amphibole, er erythrite, co cobaltite.

TP Skarn

Figure 14. Overview of TP-4, width of field 7.8 mm. Upper photo in plain light shows groundmass diopside with interstitial amphibole and chlorite (green). Lower photo with crossed nicols.

detectable cobaltite and erythrite, whereas talc is absent.

The texture of TP-4 in thin section is similar to that of TR-1A, *i.e.*, diopside shows a weak trend to development of radiating aggregates (Fig. 14), but the texture is not as well-formed as in TR-1A. Amphibole and chlorite are typically interstitial. Some of the amphibole shows

simple, binary zoning in which a green core is surrounded by a much paler rim of similar width. Chlorite is commonly among the interstices of amphibole, thus indicating that the crystallization of silicates followed a path of increasing hydration, *i.e.*, diopside \rightarrow amphibole \rightarrow chlorite.

The coarse opaque grains that are visible megascopically are cobaltite, and finer grained sulfides are almost wholly bismuthinite (Fig. 15). The close association between amphibole and bismuthinite was noted for veinlets in TP-1: in TP-4 the association is equally intimate, but the amphibole occurs in irregular patches outlined by well-defined margins of bismuthinte (Figs. 16, 17). Bismuthinite also occurs with chlorite, which has a deep green colour and is unusual in that it is present in relatively large patches, a feature not seen in the TP-1 samples. The patches consist of laths and sheaves, and some of these aggregates are more than 3 mm in diameter.

Within the cobaltite are a few small inclusions of arsenopyrite, and arsenopyrite also occurs sparingly at the margins of cobaltite grains (Fig. 18). Both cobaltite and arsenopyrite are locally rimmed and penetrated by bismuthinite. Blebs of native bismuth and small blebs of gold occur in the cobaltite; the maximum size of the five grains observed in the section is about 5×15

Figure 15. Sample TP-4 in reflected light, showing a train of relatively coarse grains of cobaltite at far left; smaller white grains throughout the remainder of the photo are bismuthinite. Same photo in transmitted light is shown in Figure 16. Width of field is 7.8 mm.

TP Skarn

Figure 16. Same area of TP-4 as in Figure 15. Top photo is with combined transmitted and reflected light, showing relatively coarse cobaltite at left, and greenish, amphibole-rich areas surrounded and outlined by opaque bismuthinite. Bottom photo is same area, but with transmitted light.

Figure 17. Similar to Figure 16. Large opaque grain at extreme left is cobaltite, and adjoining greenish area is amphibole and chlorite rimmed by bismuthinite (opaque); matrix is diopside. Bottom photo, taken with nicols crossed, shows the prismatic habit of the matrix diopside; large, somewhat ovoid inclusion of finer grained mineral at upper left is also diopside (D), as was confirmed by an X-ray pattern.

 μ m (Fig. 19). A few minute inclusions of chalcopyrite, pyrrhotite, and bismuth telluride are present within cobaltite.

Numerous small grains of magnetite are disseminated in the host rock, but have been purged in a selvage zone bordering the sulfide veinlets (Fig. 20). The purged zones are up to 1 cm wide, and correspond to megascopically "bleached" selvages. That the selvages are related to cobaltite deposition is evident in a section cut from another part of the rock. In this section the cobaltite occurs in two well-defined trains of grains at right angles to one another. The grains are numerous and up to 1 mm across, and aggregates are up to 1×3 mm. The selvages show no distinct textural changes in the elinopyroxene, and the only mineralogical changes are the absence of magnetite and a slight increase in chlorite near the cobaltite trains. The chlorite, however, is mainly interstitial to pyroxene rather than being in contact with cobaltite or showing a direct spatial relationship to it. These observations indicate that the purging of magnetite and the resultant selvages are related to the crystallization of cobaltite rather than the later development of the amphibole–bismuthinite veinlets. The Fe released by the dissolution of

Figure 18. Sample TP-4 in reflected light, showing two large grains of cobaltite separated by ragged, spongy arsenopyrite (asp), with both minerals rimmed or veined by bismuthinite (grey). Width of field is 2.0 mm.

Figure 19 (top). Reflected-light photo of TP-4. Main mineral (white) is cobaltite, and grey mineral is bismuthinite (centre). Composite grain at left shows native gold adjoining chalcopyrite (above) and bismuth telluride (left), all partly surrounded by bismuthinite. Width of field is 0.5 mm.

Figure 20 (bottom). Cobaltite grains (white) in a magnetite-free matrix of diopside. Right side shows numerous disseminated grains of magnetite (grey) that occur only in the non-mineralized part of the host rock. Field width 7.8 mm.

magnetite clearly did not move outward, into the host rock (Fig. 20); thus, Fe either was removed from the system or, more likely, was incorporated in chlorite or cobaltite, or both. An energydispersion analysis of the cobaltite confirmed that it is Fe-bearing, though the amount of Fe is small. The cobaltite also contains a small amount of Sb (only a minute fraction of that of As), and Ni content is negligible.

Sample TP-4M

Megascopic

Unlike the preceding three samples, all of which are variably light grey to light greenish, and all of which are leucocratic, sample TP-4M is black, with all surfaces iron-stained. The sample was only $7 \times 7 \times 3$ cm prior to cutting, but its heft suggested the presence of abundant minerals of high specific gravity. The sample proved to be strongly hand-magnetic.

One of the cut surfaces of the sample shows about 30% magnetite, much of it occurring at one side of the sample as massive magnetite. The remainder of the magnetite mainly forms a matrix for white, breccia-like fragments. The largest fragment is about 1.5×2 cm, and most are about half this size. Another cut surface shows a contorted, rather than brecciated, heterogeneous distribution of magnetite and the white silicate (diopside), with one area rich in chlorite. Disseminated cobaltite and pyrite are spatially associated with the magnetite and chlorite rather than diopside. The largest sulfide aggregate is about 2×4 mm.

Microscopic and XRD

A polished thin section cut from the magnetite-rich zone shows an elongate curved lens of massive magnetite about 3 mm wide and 3 cm long. Abundant magnetite is also disseminated through most, but not all, of the section. The massive zone of magnetite is partly rimmed by cobaltite and lesser amounts of pyrite, both of which also occur as anhedral grains and aggregates in other parts of the section.

The host rock on the concave side of the magnetite lens consists of randomly oriented clinopyroxene (diopside) subhedral prisms up to 1 mm long, and averaging about 0.4 mm. Laths and sprays of biotite and chlorite occur interstitially, and increase in abundance toward the lens. The mica is extensively chloritized, and few grains are deeply colored; most grains are pale

21

Figure 21. Sample TP-4M, showing a portion of a magnetite lens (black) overlain on left by a fine-grained brownish layer of mica and chlorite, which is succeeded by diopside (top left). Note the absence of mica at the opposite (bottom right) contact of the magnetite. Transmitted light, crossed nicols (lighting at above-normal intensity). Width of field is 7.8 mm.

brown, pale green, or colourless, thus resembling muscovite. The opaque minerals consists of anhedral grains and aggregates of magnetite, minor anhedral aggregates of fine-grained pyrite, a few disseminated grains of fine-grained (<200 μ m) cobaltite, and traces of pyrrhotite and chalcopyrite. Some of the pyrite is fracture-related, but no alteration selvages adjoin the pyrite, and the fractures along continuity are tight and barren.

The convex side of the magnetite lens consists of mica laths and chlorite in a zone about 2.5 mm wide (Fig. 21); this is overlain by a pyroxene zone, about 3 mm wide, which is almost free of mica and magnetite, and which is succeeded by another mica-chlorite-magnetite zone. Pyrite and cobalitie occur abundantly, especially in proximity to magnetite. Chalcopyrite occurs in grains up to 70 μ m; although more abundant and coarser than in other samples, both chalcopyrite and pyrrhotite are not more than trace constituents. Bismuthinite occurs sparingly, and native bismuth and gold, although present, are less abundant than in the TP-1 samples; thus, much of the cobaltite is relatively inclusion-free. The crystallization sequence is magnetite \rightarrow cobaltite \rightarrow pyrite \rightarrow bismuthinite (youngest). Traces of covellite are present as a secondary

Figure 22. X-ray diffractogram of whole-rock sample of TP-4M. Main peaks are attributable to diopside; other peaks are ch chlorite, mi mica, am amphibole, mag magnetite.

mineral derived from the weathering of chalcopyrite. The X-ray diffractogram (Fig. 22) shows that clinopyroxene, chlorite, mica, and magnetite are the principal minerals; cobaltite is detectable, and a trace of amphibole is present.

SUMMARY AND CONCLUSIONS

The four grab samples, although showing some variation in mineralogy, are similar in that the principal host rock is diopside skarn, and the principal sulfide minerals are cobaltite – bismuthinite – native bismuth – native gold. The samples thus are not representative of the TP skarn, for which Ettlinger and Ray (1989) reported facies consisting of magnetite – calcite – garnet – amphibole; calc-silicate skarn with garnet – epidote – calcite; marble-rich skarn; and amphibole-rich skarn that hosts most of the fracture-controlled mineralization. No garnet, epidote, or carbonates were observed in the samples studied here. Ettlinger and Ray (1989) also reported that a sulfide-rich grab sample from pyroxene – cobaltite skarn assayed 4.2 g/t Au, 33 g/t Ag, 0.15% Pb, 1.7% Co, 2.3% As, and 0.32% Bi. Ettlinger and Ray did not report the

presence of bismuthinite, which is by far the most abundant source of Bi in the samples examined here; on the other hand, none of the examined samples has a mineralogy that would account for the assay values of Pb and Ag. Ettlinger and Ray reported that galena occurs in the skarn, and presumably this mineral accounts for at least a portion of the assay Pb.

The two metals of principal concern from an economic viewpoint are Co and Au. The mineralogical study has shown that the only primary Co mineral is cobaltite, and all of it occurs as relatively coarse grains that should be readily amenable to separation and flotation. Arsenopyrite is a potential Co carrier, but the mineral occurs sparingly in the samples available, and all is either relatively coarse-grained or occurs as inclusions encapsulated within cobaltite.

Numerous grains of native gold were observed in the samples. All are small (<15 μ m), but all occur within cobaltite. Numerous grains of native bismuth are present, and they too are confined within cobaltite. Ettlinger and Ray (1989), however, reported that not all native bismuth is enclosed by cobaltite, and this is a potentially important observation in that possibly all of the native gold is likewise not enclosed within cobaltite. Nevertheless, the current indications are that a cobaltite concentrate should also contain most, if not all, of the gold.

REFERENCE

ETTLINGER, A.D. and RAY, G.E. (1989): TP claims. In Precious Metal Enriched Skarns in British Columbia: An Overview and Geological Study. British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch Paper 1989-3, p. 40.

•

APPENDIX I

Debye-Scherrer X-ray Mounts

Number	Comments
95-096	Attempt to identify or confirm presence of Mn oxides on weathered surface. Coatings are minute, and most of the black areas are silicates. XRD = diopside.
95-097	Mount prepared from pseudomorph after cobaltite. XRD pattern is that of a mixture, but strongest lines are appropriate for parasymplesite and erythrite.
95-098	Mount prepared from erythrite-bearing hairline fracture in hand specimen TP-1. Similar veinlets in thin section contain only erythrite; other minerals in the veinlets either were not present or were plucked during section preparation. XRD of a veinlet core: calcite + quartz
95-09 9	White core material in fracture in TP-1, as for 95-098. XRD = calcite + quartz.
96-007	Bismuth sulfide. XRD = bismuthinite
96-019	Fine-grained diopside, in TP-4, appearing as the ovoid at upper left of Figure 17. $XRD = diopside$.
96-020	Silicate border adjoining cobaltite grain in section TP-4. Appears opaque in transmitted light, but probably an anomalous optical effect. XRD = diopside.
96- 021	Arsenopyrite (?) adjacent to cobaltite; almost identical in occurrence to that shown in Figure 18. XRD = arsenopyrite.
96-028	Rutile(?) in composite grain illustrated in Figure 2. XRD = rutile + titanite.
96-029	Ilmenite(?) grain in TP-1. Homogeneous and unaltered. XRD = ilmenite.
96-030	Soft, yellowish, anisotropic Bi telluride associated with bismuthinite in TP-1A (Fig. 10). XRD = Bi telluride group, trigonal type. See Appendix II.

APPENDIX II

Energy-dispersion spectra of cobaltite (top) and unidentified Bi telluride or telluride-sulfide (bottom).

APPENDIX C

GEOCHEMICAL RESULTS, CORE SAMPLES

٠

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN: STEVE ROWINS

A9624668	ANALYTICAL PROCEDURES										
D.	CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT					
in Vancouver, BC.	983	34	Au ppb: Fuse 30 g sample	FA-AAS	5	10000					
JUL-96.	2118	34	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200					
	2119	34	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00					
	2120	34	As ppm: 32 element, soil & rock	ICP-AES	2	10000					
	2121	34	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000					
	2122	34	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0					
	2123	34	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000					
}	2124	34	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00					
	2125	34	Cd ppm: 32 element, soil & rock	ICP-ABS	0.5	100.0					
	2126	34	Co ppm: 32 element, soil & rock	ICP-AES	1	10000					
	2127	34	Cr ppm: 32 element, soil & rock	ICP-ARS	1	10000					
	2128	34	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000					
RECORDICTION	2150	34	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00					
DESCRIPTION	2130	34	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000					
	2131	34	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000					
	2132	34	K %: 32 element, soll & rock	ICP-ARS	0.01	10.00					
o approx 150 mesh	2151	34	La ppm: 32 element, soll & rock	ICP-ARS	10	10000					
ind split	2134	34	Mg %: 32 element, soll & rock	ICP-AKS	0.01	15.00					
tire reject	4135	34	Mn ppm: 32 element, soll & rock	ICP-AKS	5	10000					
stion charge	2130	34	Mo ppm: 32 element, soll & rock	ICP-AKS	1	10000					
	2137	34	Na %: 34 element, soll & rock	ICP-AES	0.01	5.00					
	2138	34	Ni ppm: 32 element, soli & rock	ICP-ARS	1	10000					
	2139	34	P ppm: 32 element, soll & rock	ICP-ARS	10	10000					
	2140	34	PD ppm: 32 element, soll & rock	ICP-AES	2	10000					
	2141	34	SD ppm: 32 element, soll & rock	ICP-AES	2	10000					
	2142	34	SC ppm: 32 elements, soll & rock	ICP-AES	1	10000					
	2143	34	Sr ppm: 32 element, soll & rock	ICP-AKS	1	10000					
	2144	34	TI 5: 32 element, soll & rock	ICP-AES	0.01	5.00					
	2145	34	Ti ppm: 32 element, soli & rock	ICP-ARS	10	10000					
	2147	34	U ppm: 32 element, soll & rock	ICP-AKS	10	10000					
	2147	24	V ppm: 32 element, soll & rock	ICP-AES	10	10000					
suitable for	2140	34	W ppm: 32 element, soll & rock	ICP-ARS	10	10000					
ock samples.	4145	34	An ppm: 32 element, soll & fock	ICP-ARS	*	10000					
c-aqua regia											
te are: Al,											
Na, Sr, Tí,											
		F									
	L										

(GP R) - WESTMIN RESOURCES LTI

CERTIFICATE

Project: RACINE 6110 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 25-JUL-96.

SAMPLE PREPARATION							
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION					
205 226 3202 229	34 34 34 34	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge					

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: A1, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W. A9624668

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS

Page per :1-A Total s :1 Certificate Date: 25-JUL-96 Invoice No. :19624668 P.O. Number : Account GPR

			_								CERTIFICATE OF ANALYSIS				A9624668						
SAMPLE	PR CO	ep De	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga S ppm	Hg ppm	K %	La ppm	. Mg	Mn ppm
138501 138502 138503 138504 138505	205 205 205 205 205	226 226 226 226 226 226	< 5 < 5 < 5 < 5 < 5	0.2 0.2 < 0.2 < 0.2 < 0.2	3.08 2.44 1.06 1.65 2.78	20 2 8 2 2	50 700 90 60 200	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	2.53 0.33 0.48 0.71 1.52	1.0 < 0.5 0.5 < 0.5 < 0.5	6 1 1 3 4	151 69 104 69 63	4 8 3 4 12	2.10 2.96 2.41 2.81 1.29	< 10 < 10 < 10 < 10 < 10	2 1 < 1 1 1	0.09 1.38 0.40 0.10 0.43	< 10 < 10 < 10 < 10 < 10	1.12 1.30 0.26 0.81 0.56	600 455 485 695 195
138506 138507 138508 138509 138510	205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5</pre>	0.2 0.2 < 0.2 0.2 < 0.2 < 0.2	0.61 0.32 0.16 0.05 0.64	6 < 2 < 2 < 2 4	10 10 10 < 10 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	8.54 >15.00 1.31 >15.00 0.32	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 1 75 < 1 6	42 7 203 < 1 98	24 4 < 1 < 1 33	1.37 0.75 5.82 0.11 1.96	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1	0.04 0.05 0.04 < 0.01 0.33	< 10 < 10 < 10 < 10 < 10	0.29 0.45 14.80 9.53 0.29	500 555 990 80 150
138511 138512 138513 138514 138515	205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	1.36 2.31 0.44 0.39 0.05	2 2 8 2 < 2	130 710 150 110 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.93 1.01 0.17 0.09 0.69	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 11 5 < 1 45	23 48 85 69 177	64 20 37 29 < 1	3.22 3.00 0.93 0.78 3.38	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.48 1.03 0.11 0.13 < 0.01	< 10 < 10 < 10 10 < 10	0.72 1.30 0.05 0.04 12.20	255 395 170 35 505
138516 138517 138518 138519 138520	205 205 205 205 205	226 226 226 226 226 226	4150 < 5 < 5 < 5 < 5	41.0 0.2 0.6 < 0.2 < 0.2	0.06 0.04 0.08 2.28 0.98	1780 < 2 18 8 98	10 < 10 70 30 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 2 2 < 2	0.01 0.15 2.40 1.65 0.46	< 0.5 < 0.5 < 0.5 0.5 < 0.5	13 77 52 4 3	254 449 151 33 80	31 < 1 < 1 < 1 8	1.62 4.32 4.61 0.51 2.19	< 10 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 1	0.04 < 0.01 0.06 0.03 0.31	< 10 < 10 < 10 < 10 < 10 10	0.05 >15.00 11.60 0.36 0.27	25 800 770 190 240
138521 138522 138523 138524 138525	205 205 205 205 	226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 NotRcd</pre>	1.6 < 0.2 < 0.2 < 0.2 NotRcd	0.10 0.27 0.56 0.40 NotRcd	22 < 2 < 2 2 NotRcd	20 30 130 90 NotRcđ	< 0.5 < 0.5 < 0.5 < 0.5 NotRed	< 2 < 2 < 2 < 2 NotRcd	2.44 3.31 0.09 0.06 NotRcd	< 0.5 < 0.5 < 0.5 < 0.5 NotRcd	59 < 1 2 < 1 NotRed	76 154 62 58 NotRcd	5 < 1 2 3 NotRcd	5.00 0.62 1.09 0.49 NotRcđ	< 10 < 10 < 10 < 10 < 10 NotRed	< 1 < 1 < 1 < 1 NotRcd	0.06 0.06 0.15 0.15 NotRcd	< 10 < 10 < 10 < 10 < 10 NotRcd	13.90 0.18 0.17 0.05 NotRcd	730 385 160 115 NotRcd
138526 138527 138528 138530 138531	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.2 < 0.2 0.2 < 0.2 < 0.2	4.59 5.21 1.56 4.20 0.35	8 34 8 12 12	200 520 60 190 10	< 0.5 < 0.5 < 0.5 0.5 0.5	<pre>< 2 < 2</pre>	1.11 1.73 0.32 2.08 0.14	< 0.5 < 0.5 0.5 0.5 < 0.5	20 16 11 17 1	47 47 190 55 92	76 68 17 13 18	4.09 3.58 2.30 4.42 0.63	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 1 2 1	0.45 1.67 0.19 0.91 0.13	< 10 < 10 < 10 < 10 < 10 10	2.89 2.14 0.73 1.58 0.05	295 380 330 855 100
138532 138533 138536 138537 138540	205 205 205 205 205 205	226 226 226 226 226 226	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 0.2 0.2	0.32 0.46 4.33 1.27 0.43	20 10 58 16 46	< 10 < 10 430 < 10 10	< 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.23 0.09 0.48 6.24 >15.00	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 22 22 1 5	74 84 49 25 51	17 31 41 < 1 4	0.63 0.70 5.68 1.92 1.08	< 10 < 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.14 0.14 1.23 < 0.01 0.08	10 10 < 10 < 10 < 10	0.04 0.08 2.63 0.82 9.20	150 100 735 2380 1005
•																					

CERTIFICATION: StartBuchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada V7J 2C1

PHONE: 604-984-0221 FAX: 604-984-0218

 WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS

			_									CE	RTIF	ICATE	OF /	ANAL	YSIS	A9624668
SAMPLE	PRI	EP DE	Mo Ingq) 1	Na %	Ni ppm	q mqq	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W ppm	Zn ppm	
38501	205	226	< 1	0.	. 65	19	830	80	< 2	10	132	0.16	< 10	< 10	92	< 10	196	
8502	205	226	1	. 0	.10	1	1070	10	< 2	11	38	0.16	< 10	< 10	55	< 10	58	
8503	205	226	3	0	. 11	2	220	16	6	7	19	0.08	< 10	< 10	13	< 10	BO	
8504 8505	205 205	226	< 1 < 1	0.	.08 .39	6 20	790 740	8 16	< 2	4	19 163	0.13 0.14	< 10 < 10	< 10 < 10	54 57	< 10 < 10	58 44	
8506	205	226		0	05	2	350	2	2		76	0.01	< 10	< 10	15	< 10	16	
8507	205	226	< 1	0.	01	< 1	40	6	6	2	276 4	0.01	< 10	< 10	5	< 10	8	
8508	205	226	< 1	< 0.	01	885	70	6	2	6	108 <	0.01	10	< 10	< 1	< 10	< 2	
3509	205	226	< 1	< 0.	01	< 1	40	10	< 2	< 1	128 <	0.01	10	< 10	< 1	< 10	< 2	
510	205	226	5	0.	10	3	250	18	< 2	3	16	0.08	< 10	10	17	< 10	34	
511	205	226	3	0.	12	1	1620	12	< 2	5	38	0.18	< 10	< 10	85	< 10	20	
512	205	226	< 1	ο.	18	2	1120	6	< 2	3	68	0.14	10	< 10	75	< 10	60	
513	205	226	6	ο.	12	4	100	26	< 2	< 1	23	0.02	< 10	< 10	1	< 10	48	
514	205	226	4	0.	11	1	50	10	< 2	1	10	0.04	< 10	< 10	1	< 10	6	
515	205	226	< 1	< 0.	01	565	30	2	< 2	2	107 <	0.01	10	< 10	< 1	< 10	< 2	
516	205	226	1	< 0.	01	65	20	8	48	< 1	3 <	0.01	< 10	< 10	4	< 10	20	
517	205	226	< 1	< 0.	01	1195	60	2	< 2	1	4 <	0.01	10	< 10	< 1	< 10	< 2	
518	205	226	< 1	< 0.	01	751	70	6	6	7	222 <	0.01	10	10	1	< 10	8	
519	205	226	< 1	0.	47	13	600	48	< 2	1	221	0.18	< 10	< 10	23	< 10	112	
520	205	226	3	0.	11	2	200	30	< 2	5	17	0.05	< 10	< 10	18	< 10	56	
521	205	226	< 1	< 0.	01	771	60	8	2	7	195 <	0.01	10	< 10	< 1	< 10	< 2	
3522	205	226	< 1	< 0.	01	4	70	2	< 2	< 1	32 <	0.01	< 10	< 10	1	< 10	8	
523	205	226	< 1	٥.	08	5	130	10	< 2	< 1	7	0.03	< 10	< 10	3	< 10	28	
524	205	226	< 1	0.	10	1	80	10	2	< 1	4 <	0.01	< 10	< 10	< 1	< 10	20	
525			NotRed	NotR	cd N	otRed N	otRcd N	otRed N	otRed I	NotRed N	otRed N	otRcd 1	NotRed 1	NotRed N	lotRcd M	NotRed N	btRcd	
526	205	226	< 1	0.	28	16	640	10	< 2	11	86	0.06	10	< 10	158	< 10	40	
527	205	226	< 1	0.	31	13	560	10	< 2	13	109	0.11	10	< 10	143	< 10	52	
548	205	220	3	0.	27	10	70	14	< 2	4	18	0.03	< 10	< 10	65	< 10	44	
531	205	226	< 1 1	0.	10	15	10	∡5 10	< 2	< 1	144	0.13	< 10	< 10	147	< 10	14	
		•••	-		10			10		••		0.01	- 10	· · · · · · · · · · · · · · · · · · ·	-	< 10		
532	205	226	3	0.	11	1	10	16	< 2	< 1	5	0.01	< 10	< 10	< 1	< 10	. 20	
533	205	226	< 1	0.	11	2	20	14	2	1	1 <	0.01	< 10	< 10	1	< 10	16	
537	205	224	1	<u>،</u>	01	15	410	14	< X 2 2	48	52	0.15	< 10	< 10	201	< 10	62 5 <i>6</i>	
540	205	226	21	< 0.	01	45	80	50	6	< 1	146 -	0.01	20	< 10	20	< 10	28	
										• •	140 (. 10	•	~ 10		
•																		
	- I																	• • • •
																		11. 1.8.00
															C	ERTIFIC	ATION:	NOW I Smarker

Г

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN: STEVE ROWINS

C	ERTIF	ICATE	A9624669			ANALYTICAL	PROCEDURES	S	
GPR) - \ Project: P.O. # :	WESTMIN RACINI	RESOURCES LTC E 6110).	CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
amples his re	les submitted to our lab i report was printed on 25- SAMPLE PREPAR		in Vancouver, BC. -JUL-96.	953 1263 4031 4032 4033 4034 4035 4036 4037	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Au g/tonne: RUSH, 1 assay ton Ag ppm: high grade 24 element Al %: A22 ICP package Ba ppm: A22 ICP package Be ppm: A22 ICP package Bi ppm: A22 ICP package Ca %: A22 ICP package Cd ppm: A22 ICP package Co ppm: A22 ICP package	FA-AAS AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.03 0.5 100 10 20 0.05 10	150.00 200 30.0 50000 10000 50000 30000 10000
258 295 3202	SAM NUMBER SAMPLES 8 8 8 8	RUSH Assay r: RUSH crush an Rock - save Assay HF ICP	DESCRIPTION Assay ring approx 150 mesh crush and split (0-3 Kg) - save entire reject y HF ICP digestion charge	4038 4039 4040 4041 4042 4043 4044 4045 4045 4046 4045 4047	8 8 8 8 8 8 8 8 8 8 8 8 8	Cr ppm: A22 ICP package Cu ppm: A22 ICP package Fe %: A22 ICP package K %: A22 ICP package Mg %: A22 ICP package Mn ppm: A22 ICP package Mo ppm: A22 ICP package Na %: A22 ICP package Ni ppm: A22 ICP package Pb %: high grade 24 element Sr ppm: A22 ICP package	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES AAS ICP-AES	10 10 0.05 0.1 0.05 10 0.05 10 0.001 10	100000 100000 30.0 20.0 30.0 100000 100000 20.0 100000 10.00 10.00
		-		4048 4049 4050	8 8	Ti %: A22 ICP package V ppm: A22 ICP package Zn ppm: A22 ICP package	ICP-ARS ICP-ARS ICP-ARS	0.05 10 20	20.0 50000 100000
	4 <u>t</u>		<u> </u>						

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS Page er : 1-A Total F. s : 1 Certificate Date: 25-JUL-96 Invoice No. : 19624669 P.O. Number : Account : GP R

							CERTIFICATE OF ANALYSIS A9624669									
SAMPLE	P	REP ODE	Au g/t RUSH	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
138529 138534 138535 138538 138538 138539	258 258 258 258 258 258	295 295 295 295 295 295	< 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	4.70 5.80 5.55 2.25 1.35	< 100 < 100 < 100 < 100 < 100 < 100	< 10 < 10 < 10 < 10 < 10 < 10	< 20 < 20 < 20 < 20 < 20 < 20	5.80 13.20 15.85 15.15 14.00	< 10 < 10 < 10 < 10 < 10 < 10	100 10 10 10 10	160 70 60 90 200	130 < 10 < 10 < 10 < 10 < 10	10.85 19.30 12.60 11.75 8.35	0.3 0.5 0.2 < 0.1 < 0.1	0.85 1.10 1.35 3.80 0.95
138539 138541 138542 138543	258 258 258	295 295 295 295	< 0.03 < 0.03 < 0.03 < 0.03	< 1.0 < 1.0 < 1.0 < 1.0	1.00 6.10 1.70	< 100 < 100 600 100	< 10 < 10 < 10	20 20 < 20	21.3 4.95 2.05	< 10 < 10 < 10	< 10 30 10	170 970 160	10 < 10 < 10	1.65 6.60 >30.0	0.3 2.5 0.5	9.00 10.95 6.70
•																

tart Bickler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

WESTMIN RESOURCES LTD. ò: ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS

Page er 1-B Total es 1 Certificate Date: 25-JUL-96 Invoice No. : 19624669 P.O. Number GPR Account

								CERTI	FICATE	OF AN	ALYSIS	 A96246	59	1
SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	Pb % AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	Zn ppm (ICP)				
138529 138534 138535 138535 138538 138539	258 295 258 295 258 295 258 295 258 295 258 295	1920 4980 4060 9080 8310	< 10 < 10 < 10 < 10 < 10 < 10	0.20 0.35 0.25 0.05 < 0.05	20 10 10 10 50	0.019 0.018 0.019 0.019 0.018	350 70 80 80 60	0.15 0.30 0.25 0.15 0.05	130 120 100 50 30	140 180 180 380 100				
138541 138542 138543	258 295 258 295 258 295	1070 1830 1720	< 10 < 10 < 10	< 0.05 0.20 < 0.05	60 390 70	0.018 0.017 0.018	260 90 20	< 0.05 0.35 0.05	40 170 30	60 320 160				
•														4

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,	North Vancouver
British Columbia, Canada	V7J 2C1
PHONE: 604-984-0221 F	AX: 604-984-0218

CERTIFICATE

A9623626

(GP R) - WESTMIN RESOURCES LTD.

Project: RACINE 6110 P.Ó. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 21-JUL-96.

SAMPLE PREPARATION														
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION												
205 226 3202 229	20 20 20 20	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock – save entire reject ICP – AQ Digestion charge												

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN:STEVE ROWINS

		METHOD	LIMIT	LIMIT
20	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
20	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
20	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
20	As ppm: 32 element, soil & rock	ICP-AES	2	10000
20	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
20	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
20	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
20	Ca %: 32 element, soll & rock	ICP-AES	0.01	100 0
20	Cd ppm: 32 element, soll & rock	ICP-AES	0.5	100.0
20	Co ppm: 32 element, soll & rock	ICP-AES	1	10000
20	Cr ppm: 32 element, soll & rock	ICP-AES	1	10000
20	Cu ppm: 32 element, soll & rock	ICP-ALS	0 01	15 00
20	Te 3: 32 element, soll & rock	TCD_AES	10	10000
20	Wa ppm: 32 element, soil & rock	ICP-AES	1	10000
20	K & 32 element soil & rock	TCP-AES	0.01	10.00
20	La pom: 32 element, soil & tock	TCP-AES	10	10000
20	Ma %: 32 element, soil & rock	ICP-AES	0.01	15.00
20	Mn ppm: 32 element. soil & rock	ICP-AES	5	10000
20	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
20	Na %: 32 element, soil & rock	ICP-AES	0.01	5,00
20	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
20	P ppm: 32 element, soil & rock	ICP-AES	10	10000
20	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
20	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
20	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
20	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
20	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
20	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
20	U ppm: 32 element, soil & rock	ICP-AES	10	10000
20	V ppm: 32 element, soll & rock	ICP-AES	10	10000
20	W ppm: 32 element, soil & rock	TCD-AES	10	10000
	20 20 20 20 20 20 20 20 20 20 20 20 20 2	<pre>20 Al %: 32 element, soil & rock 20 As ppm: 32 element, soil & rock 20 Ba ppm: 32 element, soil & rock 20 Be ppm: 32 element, soil & rock 20 Bi ppm: 32 element, soil & rock 20 Ca %: 32 element, soil & rock 20 Cd ppm: 32 element, soil & rock 20 Cd ppm: 32 element, soil & rock 20 Cr ppm: 32 element, soil & rock 20 Cr ppm: 32 element, soil & rock 20 Cu ppm: 32 element, soil & rock 20 Ga ppm: 32 element, soil & rock 20 Ga ppm: 32 element, soil & rock 20 Ga ppm: 32 element, soil & rock 20 Hg ppm: 32 element, soil & rock 20 Hg ppm: 32 element, soil & rock 20 Hg ppm: 32 element, soil & rock 20 Mg %: 32 element, soil & rock 20 Mg %: 32 element, soil & rock 20 Mg %: 32 element, soil & rock 20 Mn ppm: 32 element, soil & rock 20 Mn ppm: 32 element, soil & rock 20 Ni ppm: 32 element, soil & rock 20 Ni ppm: 32 element, soil & rock 20 Sc ppm: 32 element, soil & rock 20 Ti %: 32 element, soil & rock 20 Ti %: 32 element, soil & rock 20 Ti %: 32 element, soil & rock 20 Ti ppm: 32 element, soil & rock 20 Npm: 32 element, soil & rock</pre>	20Al %: 32 element, soil & rockICP-AES20As ppm: 32 element, soil & rockICP-AES20Ba ppm: 32 element, soil & rockICP-AES20Be ppm: 32 element, soil & rockICP-AES20Bi ppm: 32 element, soil & rockICP-AES20Ca %: 32 element, soil & rockICP-AES20Ca %: 32 element, soil & rockICP-AES20Ca %: 32 element, soil & rockICP-AES20Cd ppm: 32 element, soil & rockICP-AES20Cc ppm: 32 element, soil & rockICP-AES20Cu ppm: 32 element, soil & rockICP-AES20Cu ppm: 32 element, soil & rockICP-AES20Cu ppm: 32 element, soil & rockICP-AES20Ga ppm: 32 element, soil & rockICP-AES20Hg ppm: 32 element, soil & rockICP-AES20Hg ppm: 32 element, soil & rockICP-AES20Mg %: 32 element, soil & rockICP-AES20Mg %: 32 element, soil & rockICP-AES20Mg %: 32 element, soil & rockICP-AES20Mg ppm: 32 element, soil & rockICP-AES20Ni ppm: 32 element, soil & rockICP-AES20P ppm: 32 element, soil & rockICP-AES20P ppm: 32 element, soil & rockICP-AES20Sc ppm: 32 element, soil & rockICP-AES <t< td=""><td>20Al %: 32 element, soil & rockICP-AES0.0120As ppm: 32 element, soil & rockICP-AES220Ba ppm: 32 element, soil & rockICP-AES1020Be ppm: 32 element, soil & rockICP-AES0.520Ca %: 32 element, soil & rockICP-AES0.0120Cd ppm: 32 element, soil & rockICP-AES0.0120Cd ppm: 32 element, soil & rockICP-AES0.0120Cd ppm: 32 element, soil & rockICP-AES120Ca %: 32 element, soil & rockICP-AES120Cr ppm: 32 element, soil & rockICP-AES120Cr ppm: 32 element, soil & rockICP-AES120Cu ppm: 32 element, soil & rockICP-AES120Fe %: 32 element, soil & rockICP-AES1020Ga ppm: 32 element, soil & rockICP-AES1020Hg ppm: 32 element, soil & rockICP-AES1020Mg %: 32 element, soil & rockICP-AES0.0120Mg %: 32 element, soil & rockICP-AES120Mo ppm: 32 element, soil & rockICP-AES120Mo ppm: 32 element, soil & rockICP-AES120Mi ppm: 32 element, soil & rockICP-AES120Mo ppm: 32 element, soil & rockICP-AES120Mo ppm: 32 element, soil & rockICP-AES120Pppm: 32 element, soil & rockICP-AES120Sc ppm: 32 element, soil & rock</td></t<>	20Al %: 32 element, soil & rockICP-AES0.0120As ppm: 32 element, soil & rockICP-AES220Ba ppm: 32 element, soil & rockICP-AES1020Be ppm: 32 element, soil & rockICP-AES0.520Ca %: 32 element, soil & rockICP-AES0.0120Cd ppm: 32 element, soil & rockICP-AES0.0120Cd ppm: 32 element, soil & rockICP-AES0.0120Cd ppm: 32 element, soil & rockICP-AES120Ca %: 32 element, soil & rockICP-AES120Cr ppm: 32 element, soil & rockICP-AES120Cr ppm: 32 element, soil & rockICP-AES120Cu ppm: 32 element, soil & rockICP-AES120Fe %: 32 element, soil & rockICP-AES1020Ga ppm: 32 element, soil & rockICP-AES1020Hg ppm: 32 element, soil & rockICP-AES1020Mg %: 32 element, soil & rockICP-AES0.0120Mg %: 32 element, soil & rockICP-AES120Mo ppm: 32 element, soil & rockICP-AES120Mo ppm: 32 element, soil & rockICP-AES120Mi ppm: 32 element, soil & rockICP-AES120Mo ppm: 32 element, soil & rockICP-AES120Mo ppm: 32 element, soil & rockICP-AES120Pppm: 32 element, soil & rockICP-AES120Sc ppm: 32 element, soil & rock

Page Jer :1-A Total E. Jus :1 Certificate Date: 21-JUL-96 Invoice No. : 19623626 P.O. Number : Account :GP R

.

HartBuchler

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : RACINE 6110 Comments: ATTN:STEVE ROWINS

		_			_					CE	RTIF	CATE	OF A	ANAL	YSIS	/	19623	626		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag pp n	Al %	As ppm	Ba pp m	Be ppm	Bi ppm	Ca %	Cđ ppm	Co pp m	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K S	La ppm	Mg %	Mn ppm
138544 138545 138546 138547 138547 138548	205 226 205 226 205 226 205 226 205 226 205 226	10 < 5 < 5 < 5 < 5	0.4 < 0.2 0.4 < 0.2 < 0.2	1.30 0.85 0.56 3.83 0.68	100 24 172 < 2 6	<pre>< 10 10 10 430 50</pre>	1.0 0.5 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	>15.00 >15.00 >15.00 0.69 0.96	2.0 2.0 1.5 0.5 < 0.5	37 1 2 8 1	422 46 61 49 49	1 < 1 155 15 1	3.35 0.90 1.22 2.90 1.05	<pre>< 10 < 10 < 10 < 10 10 < 10 < 10</pre>	<pre>< 1 <</pre>	(0.01 0.03 0.07 1.57 0.10	< 10 < 10 < 10 10 10	1.84 7.60 9.40 2.55 0.38	2300 930 755 390 275
L38549 L38550 L38551 L38552 L38557	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	0.17 2.27 2.20 1.18 0.05	<pre>< 2 < 2 < 2 < 2 < 2 < 2 28</pre>	40 140 60 150 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	<pre> < 2 < 3 </pre>	0.11 2.31 1.41 1.42 >15.00	< 0.5 0.5 0.5 < 0.5 2.0	3 13 14 6 < 1	210 95 126 62 6	7 3 14 41 < 1	0.62 3.96 3.17 2.98 0.47	<pre>< 10 10 10 10 10 < 10</pre>	<pre>< 1 < 1</pre>	0.09 0.13 0.07 0.41 0.01	<pre>< 10 10 < 10 < 10 20 < 10</pre>	0.07 2.05 1.88 0.55 10.55	180 655 525 480 210
138558 138559 138560 138561 138562	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.26 0.43 0.02 0.36 0.18	10 6 8 66 10	30 50 < 10 10 < 10	0.5 0.5 0.5 < 0.5 < 0.5	4 2 2 2 (2 (2	>15.00 7.62 >15.00 0.50 0.18	2.5 1.0 2.5 < 0.5 < 0.5	<pre>< 1 16 < 1 3 < 1</pre>	14 28 7 87 75	3 51 < 1 8 6	0.57 3.83 0.21 0.57 0.33	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.05 0.27 0.01 0.12 0.09	<pre>< 10 < 10 < 10 < 10 10 10</pre>	0.51 2.73 0.39 0.06 0.02	115 815 95 120 70
38563 38564 38565 38566 38566 38567	205 226 205 226 205 226 205 226 205 226 205 226	<pre></pre>	< 0.2 0.2 < 0.2 2.2 0.8	0.26 0.87 2.53 3.37 1.74	46 50 88 2290 60	10 40 50 40 50	< 0.5 1.0 < 0.5 0.5 < 0.5	<pre> < 2 < 2 < 2</pre>	0.59 3.76 3.59 4.61 4.49	< 0.5 < 0.5 0.5 < 0.5 < 0.5 0.5	4 2 18 74 32	128 38 145 49 33	16 < 1 3 < 1 < 1	0.47 1.45 4.05 2.45 4.29	<pre>< 10 < 10 < 10 10 < 10 < 10 < 10</pre>	<pre>< 1 < 1</pre>	0.11 0.26 0.25 0.14 0.31	10 10 < 10 < 10 < 10 < 10	0.05 0.18 0.84 0.46 0.37	190 950 1925 1140 1665

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

CEDTICICATE OF ANALVEIS

Project : RACINE 6110 Comments: ATTN:STEVE ROWINS

Page per :1-B Total Fuges :1 Certificate Date: 21-JUL-96 Invoice No. : 19623626 P.O. Number : GPR Account

Ja. 2. B. A.L.

10603696

											UE		CAIL			313	A3023020	
SAMPLE	PRÉP CODE	Mo ppn) 1	Na %	Ni PPm	P ppm	Ър ш	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U PPm	V ppm	W Ppm	Zn ppm		
138544 138545 138546 138547 138548	205 226 205 226 205 226 205 226 205 226 205 226	<pre></pre>	<pre>< 0 < 0 < 0 < 0 < 0 < 0 < 0 </pre>	.01 .01 .01 .12 .08	202 16 29 4 3	440 190 110 270 520	94 24 12 2 22	<pre>< 2 < 2 6 < 2 < 2 < 2 < 2 < 2 < 2</pre>	3 2 < 1 12 4	215 161 < 168 149 29	0.03 0.01 0.01 0.11 0.13	<pre>< 10 10 < 10 < 10 < 10 < 10 < 10</pre>	10 10 < 10 < 10 < 10	25 23 14 41 18	< 10 < 10 < 10 < 10 < 10 < 10	108 42 62 28 44		
138549 138550 138551 138552 138557	205 226 205 226 205 226 205 226 205 226 205 226	<pre></pre>	<pre> < 0 0 0 0 </pre>	.01 .09 .03 .04 .01	4 33 23 3 6	160 2220 850 450 40	<pre> < 2 2 8 4 32 </pre>	<pre>< 2 < 2</pre>	< 1 5 5 4 < 1	3 < 55 60 21 243 <	0.01 0.21 0.12 0.04 0.01	<pre>< 10 < 10</pre>	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10 10</pre>	4 93 63 22 5	<pre>< 10 < 10</pre>	6 52 70 48 14		
138558 138559 138560 138561 138562	205 226 205 226 205 226 205 226 205 226 205 226	<pre></pre>	<pre> < 0</pre>	.01 .02 .01 .07 .05	4 35 3 1 1	200 960 90 10 10	12 6 12 14 12	<pre>< 2 < 2</pre>	<pre>< 1 6 < 1 1 < 1 </pre>	275 < 182 < 241 < 10 4	0.01 0.01 0.01 0.02 0.01	< 10 < 10 10 < 10 < 10	30 < 10 30 < 10 < 10	6 27 1 4 < 1	< 10 < 10 < 10 < 10 < 10 < 10	20 64 6 18 8		
138563 138564 138565 138566 138566 138567	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 1 < 1	0 0 0 0	.05 .01 .09 .24 .15	20 12 76 37 42	10 40 360 380 250	16 6 22 102 26	<pre>< 2 2 < 2 < 2 < 2 < 2 < 2 < 2</pre>	< 1 < 1 6 4 4	9 < 26 < 70 195 42	0.01 0.01 0.14 0.07 0.07	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	1 3 52 47 40	< 10 < 10 < 10 < 10 < 10 < 10	32 26 88 68 84		
•																		

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

WESTMIN RESOURCES LTD. **o**: ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN: STEVE ROWINS

A9623652	ANALYTICAL PROCEDURES										
TD.	CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD		Upper Limit					
b in Vancouver, BC. 12-JUL-96.	953 1263 4031 4032 4033 4034 4035		Au g/tonne: RUSH, 1 assay ton Ag ppm: high grade 24 element Al %: A22 ICP package Ba ppm: A22 ICP package Be ppm: A22 ICP package Bi ppm: A22 ICP package Ca %: A22 ICP package Ca %: A22 ICP package	FA-AAS AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.03 0.5 100 10 20 0.05	150.00 200 30.0 50000 10000 50000 30000 10000					
ARATION	4037	4	Co ppm: A22 ICP package	ICP-AES	10	100000					
DESCRIPTION	4038 4039 4040 4041 4042 4043	444	Cr ppm: A22 ICP package Cu ppm: A22 ICP package Fe %: A22 ICP package K %: A22 ICP package Mg %: A22 ICP package Mn ppm: A22 ICP package	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	10 10 0.05 0.1 0.05 10	100000 100000 30.0 20.0 30.0 100000					
ring approx 150 mesh and split (0-3 Kg) entire reject P digestion charge	4044 4045 4046 4075 4047 4048	4 4 4 4 4	Mo ppm: A22 ICP package Na %: A22 ICP package Ni ppm: A22 ICP package Pb %: high grade 24 element Sr ppm: A22 ICP package Ti %: A22 ICP package	ICP-AES ICP-AES ICP-AES AAS ICP-AES ICP-AES	10 0.05 10 0.001 10 0.05	100000 20.0 100000 10.00 100000 20.0					
	4049 4050	4	V ppm: A22 ICP package Zn ppm: A22 ICP package	ICP- AES ICP- AES	10 20	50000 100000					

(GP R) - WESTMIN RESOURCES

CERTIFICATE

Project: P.O. # : RACINE 6110

Samples submitted to our 1 This report was printed on

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
258 295 3202 290	4	RUSH Assay ring approx 150 mesh RUSH crush and split (0-3 Kg) Rock - save entire reject Assay HF ICP digestion charge

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS Page er :1-A Total Pages :1 Certificate Date: 12-JUL-96 Invoice No. :19623652 P.O. Number : Account :GP R

							CERTIFICATE OF ANALYSIS A9623652											
SAMPLE	PI	REP DDE	Au g/t RUSH	Ag ppm AAS	A1 % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)		
138553 138554 138555 138556	258 258 258 258	295 295 295 295	< 0.03 < 0.03 < 0.03 < 0.03	< 0.5 1.0 2.0 1.0	8.75 8.40 9.30 8.60	400 300 400 400	< 10 < 10 < 10 < 10	< 20 < 20 < 20 < 20	5.70 4.95 6.40 6.65	< 10 < 10 < 10 < 10	30 30 30 10	120 110 100 70	130 90 200 10	7.50 6.05 6.55 5.65	1.5 1.4 1.4 1.1	3.35 3.40 3.45 2.65		
•																		

CERTIFICATION: Sant Buchler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS

Page: or:1-B Total F. :1 Certificate Date:12-JUL-96 Invoice No.:19623652 P.O. Number: GPR Account

									CERTIF	ICATE	OF AN	ALYSIS	A	\962365	52	
SAMPLE	P C	REP ODE	Mn ppm (ICP)	Moppm (ICP)	Na % (ICP)	Ni ppm (ICP)	Pb % AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	Zn ppm (ICP)					
138553 138554 138555 138556	258 258 258 258	295 295 295 295	1860 1230 1390 2230	< 10 < 10 < 10 < 10	2.75 2.20 2.45 3.10	40 30 40 30	0.006 0.006 0.005 0.005	310 360 450 410	0.40 0.45 0.50 0.45	220 250 270 190	160 100 100 140					
							- - - -									
•											CER	TIFICATIO	N: 4	a.J.l	Zichs	ler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

5: WESTMIN RESOURCES LTD, ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN:STEVE ROWINS

		A9023024			ANALYTICAL P	NUCEDURES		
WESTM RAC	IN RESOURCES LTD.		CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
					2		F	10000
s submi	tted to our lab i	n Vancouver, BC.	983		Au ppp: ruse 30 g sample	FA-AAS		10000
port w	as printed on 21-	JUL-96.	2118	2	Ag ppm: 32 element, soll & rock	ICP-ALS	0.2	15 00
	-		2119	2	AI 3: 32 element, soll & rock	ICP-ALS	0.01	10000
			2120	2	As ppm: 32 element, soll & rock	ICP-AES	10	10000
			2121	5	Ba ppm: 32 element, soll & rock	ICP-ALS	10	10000
			2122	5	Be ppm: 32 element, soll & rock	ICP-AES	0.5	100.0
			2123	5	B1 ppm: 32 element, soll & rock	ICP-AES	2	10000
			2124	5	Ca %: 32 element, soll & rock	ICP-AES	0.01	15.00
SAL			2125	5	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
			2126	5	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
			2127	5	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
			2128	5	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
NUMBE	R		2150	5	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
SAMPLE	ES	DESCRIPTION	2130	5	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
			2131	5	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
			2132	5	K %: 32 element, soil & rock	ICP-AES	0.01	10,00
5	Geochem ring	o approx 150 mesh	2151	5	La ppm: 32 element, soil & rock	ICP-AES	10	10000
5	0-3 Kg crush a	nd split	2134	5	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
5	Rock - save en	tire reject	2135	5	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
Š	ICP - AO Dige	tion charge	2136	5	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
		cici ciuigo	2137	5	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
			2138	5	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
			2139	5	P ppm: 32 element, soil & rock	ICP-AES	10	10000
			2140	5	Pb ppm: 32 element. soil & rock	ICP-AES	2	10000
			2141	5	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
			2142	5	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
			2143	5	Sr ppm: 32 element, soil & rock	TCP-AES	ī	10000
1			2144	5	Ti 2. 12 element, soil & rock	TCP-AFS	0 01	5.00
			2145	5	TI ppm: 32 element soil t rock	TCP-AFS	10	10000
			2145	, ,	I ppm: 32 element, soil & rock	TCP-AFS	10	10000
1			2140	5	V ppm: 32 element, soil & rock	ICP-AES	1	10000
-	. .		2147	5	W ppm: 32 element, soil & lock	ICF-AES	10	10000
element	ICP package is	suitable for	2140	5	w ppu: 52 element, soll & fock	ICP-AES	10	10000
metals	in soil and r	ock samples.	2143	5	Zu pput 52 erement, sorr & rock	ICF-RED	2	10000
s for	which the nitri	c-aqua regia						
on is p	possibly incomple	te are: Al,						
Ca, Cr	c, Ga, K, La, Mg,	Na, Sr, Ti,		1				
				1				
				1				
•				1				

(GP R) - WESTMIN RESO

RACINE 6110 Project: P.Ó. # :

Samples submitted to This report was prin

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	5 5 5 5	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge
* NOTE	1:	

The 32 element ICP pa trace metals in s Elements for which digestion is possibly Ba, Be, Ca, Cr, Ga, T1, W.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN:STEVE ROWINS

											CE	RTIFI	CATE	OF /	NAL	SIS		49623	624		
SAMPLE	PRI	EP DE	Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi P pm	Ca %	Cd ppm	Co ppm	Cr pp n	Cu ppm	Fe %	Ga PPm	Hg p pm	K %	La p pm	Mg %	Mn ppm
138568 138569 138573 138574 138580	205 205 205 205 205 205	226 226 226 226 226 226	10 15 5 < 5 < 5	0.4 0.2 0.6 2.4 < 0.2	3.13 3.19 0.14 0.47 1.11	30 3140 100 570 12	30 110 < 10 30 60	0.5 0.5 0.5 0.5 < 0.5	2 < 2 2 2 < 2	6.99 2.13 >15.00 5.61 1.86	2.0 < 0.5 3.0 2.0 0.5	10 40 10 13 3	59 43 44 136 64	< 1 8 2 1 < 1	11.35 1.99 3.91 6.10 2.07	10 10 < 10 < 10 < 10 10	<pre>< 1 < 1</pre>	0.25 0.31 0.03 0.07 0.10	< 10 < 10 < 10 < 10 < 10 10	0.80 0.79 0.24 0.48 0.74	2920 375 5830 4390 680
		-																			
•																					

CERTIFICATION:

Hant Buchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

J: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN:STEVE ROWINS

Page = = = :1-B Total Payus = :1 Certificate Date: 21-JUL-96 Invoice No. : 19623624 P.O. Number : GP R Account

											CERTIFICATE OF ANAL						SIS	A9623624	
SAMPLE	PR CO	EP DE	M PP	0	Na %	Ni ppm	P Ppm	РР Рр ш	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	n D D D D	V ppm	W mqq	Zn ppm		
138568 138569 138573 138574 138580	205 205 205 205 205 205	226 226 226 226 226 226	< < <	1 1 3 < 1 < 1	0.13 0.34 0.01 0.01 0.07	17 29 28 47 4	410 380 110 220 650	24 14 20 32 12	< 2 < 2 < 2 4 < 2	7 8 1 3 7	85 185 118 45 55	0.13 0.11 0.01 0.01 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 20 < 10 < 10	66 82 9 20 36	< 10 < 10 < 10 < 10 < 10 < 10	208 96 110 164 72		
•																			
															c	ERTIFIC		Hand Pour le	J

Analytical Chemists * Geochemists * Registered Assayers North Vancouver 212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN:STEVE ROWINS

ANALYTICAL PROCEDURES A9623625 DETECTION UPPER CHEMEX NUMBER METHOD LIMIT LIMIT CODE SAMPLES DESCRIPTION 0.03 150.00 953 8 Au g/tonne: RUSH, 1 assay ton FA-AAS 1263 8 Ag ppm: high grade 24 element λλs 0.5 200 0.05 4031 8 A1 %: A22 ICP package ICP-AES 30.0 50000 4032 8 Ba ppm: A22 ICP package ICP-AES 100 10000 4033 8 Be ppm: A22 ICP package ICP-AES 10 20 50000 4034 Bi ppm: A22 ICP package ICP-AES 8 30000 ICP-AES 0.05 4035 8 Ca %: A22 ICP package 10000 ICP-AES 10 4036 8 Cd ppm: A22 ICP package ICP-AES 10 100000 4037 8 Co ppm: A22 ICP package ICP-AES 10 100000 4038 8 Cr ppm: A22 ICP package Cu ppm: A22 ICP package ICP-AES 10 100000 4039 8 Fe %: A22 ICP package ICP-AES 0.05 30.0 4040 8 K %: A22 ICP package ICP-AES 0.1 20.0 4041 8 ICP-AES 0.05 30.0 4042 Mg %: A22 ICP package 8 ICP-AES 10 100000 4043 8 Mn ppm: A22 ICP package 100000 Mo ppm: A22 ICP package ICP-AES 10 4044 8 0.05 20.0 4045 Na %: A22 ICP package ICP-AES 8 100000 10 4046 8 Ni ppm: A22 ICP package ICP-NES 0.001 10.00 4075 8 Pb %: high grade 24 element AAS ICP-AES 10 100000 4047 8 Sr ppm: A22 ICP package ICP-AES 0.05 20.0 4048 8 Ti %: A22 ICP package ICP-AES 10 50000 4049 8 V ppm: A22 ICP package 20 100000 ICP-AES 4050 R Zn ppm: A22 ICP package

A9623625

(GP R) - WESTMIN RESOURCES LTD.

CERTIFICATE

Project: RACINE 6110 P.Ó. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 12-JUL-96.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
258 295 3202 290	8 8 8 8	RUSH Assay ring approx 150 mesh RUSH crush and split (0-3 Kg) Rock - save entire reject Assay HF ICP digestion charge

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN:STEVE ROWINS Page er :1-A Total ۲هنان عن :1 Certificate Date: 12-JUL-96 Invoice No. : 19623625 P.O. Number : Account :GP R

								CERTIFICATE OF ANALYSIS A9623625								
SAMPLE	P	rep ode	Au g/t RUSH	Ag ppm AAS	Al % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
138570 138571 138572 138575 138575 138576	258 258 258 258 258 258	295 295 295 295 295 295	< 0.03 0.31 0.03 0.03 < 0.03	1.0 6.0 5.0 1.0 2.0	1.25 0.80 1.70 1.05 1.20	< 100 < 100 < 100 < 100 < 100 < 100	< 10 < 10 < 10 < 10 < 10 < 10	< 20 120 20 < 20 < 20	3.60 10.75 10.10 15.60 13.45	< 10 < 10 < 10 < 10 < 10	20 120 30 10 10	80 80 310 80 150	< 10 < 10 < 10 < 10 < 10 < 10	>30.0 29.9 >30.0 11.50 11.80	< 0.1 < 0.1 < 0.1 0.1 0.2	1.30 3.75 2.05 2.45 2.85
138576 138577 138578 138579	258 258 258	295 295 295 295	0.93 0.31 0.82	47.0	1.20 1.50 1.90 4.90	< 100 < 100 < 100 100	< 10 < 10 < 10	2700 340 500	5.00 11.25 6.05	< 10 < 10 < 10	1580 220 370	100 220 200	10 < 10 < 10	>30.0 24.6 20.0	0.2 0.3 0.9	4.50 5.40 4.70

CERTIFICATION: Start Buchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN:STEVE ROWINS Page er :1-B Total F. Js :1 Certificate Date: 12-JUL-96 Invoice No. :19623625 P.O. Number : Account :GP R

									CERTI	FICATE	OF AN	ALYSIS	/	962362	25	
SAMPLE	P) C(REP ODE	Mn ppm (ICP)	Moppm (ICP)	Na % (ICP)	Ni ppm (ICP)	Pb % AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	Zn ppm (ICP)					
138570 138571 138572 138575 138575 138576	258 258 258 258 258 258	295 295 295 295 295 295	2820 5340 5150 9160 10550	<pre> < 10 /pre>	0.05 0.05 0.10 0.05 0.10	10 80 90 40 30	0.008 0.019 0.022 0.012 0.008	40 30 50 90 80	< 0.05 < 0.05 0.05 0.05 0.05	10 30 40 30 30	160 220 180 520 480					
138577 138578 138579	258 258 258	295 295 295	1700 3010 1660	< 10 < 10 < 10	0.05 0.05 0.40	120 120 90	0.144 0.053 0.015	30 90 170	0.05 0.05 0.30	40 60 130	100 220 180					
•																

CERTIFICATION: Struty Bichler

.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A9624467

(GP R) - WESTMIN RESOURCES LTD.

Project: RACINE #6110 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 25-JUL-96.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	18 18 18 18	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN:STEVE ROWINS

	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
983	18	Au ppb: Fuse 30 g sample	гл-лля	5	10000
2118	18	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
2119	18	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	18	As ppm: 32 element, soil & rock	ICP-AES	2	10000
2121	18	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	18	Be ppm: 32 element, Soil & rock	ICP-AKS	0.5	100.0
2123	10	Si ppm: 32 element, soil & rock	ICP-AKS	0.01	10000
2125	18	Cd rows, 32 element, soil & rock	TCP-NEG	0.01	100 0
2126	18	Co ppm: 32 element, soil & rock	ICP-ARS	0.5	100.0
2127	18	Cr ppm: 32 element, soil & rock	ICP-AES	i	10000
2128	18	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
2150	18	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
2130	18	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	18	Ng ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	18	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151	18	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	18	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135	18	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
4130	18	Mo ppm: 32 element, soil & rock	ICP-AES		10000
2120	10	Na 51 34 Glement, Soll & Fock	ICP-AES ICP-BES	0.01	10000
2130	18	D prome 32 element, soil & rock	TCP-NEQ	10	10000
2140	18	Ph nom: 32 element, soil & rock	ICP-ARS	2	10000
2141	18	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	18	Sc ppm: 32 elements, soil & rock	ICP-AES	ī	10000
2143	18	Sr ppm: 32 element, soil & rock	ICP-AES	ī	10000
2144	18	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
2145	18	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	18	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	18	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	18	W ppm: 32 element, soil & rock	ICP-AES	10	10000

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE #6110 Comments: ATTN:STEVE ROWINS Page er :1-A Total F. عن s :1 Certificate Date: 25-JUL-96 Invoice No. : 19624467 P.O. Number : Account : GP R

										CERTIFICATE OF ANALY					YSIS		A962 4	467			
SAMPLE	PREP CODE	Au p FA-	ppb AA	Ag ppm	A1 %	As ppm	Ba ppm	Ве ррш	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
138581 138582 138583 138583 138584 138585	205 22 205 22 205 22 205 22 205 22	26 26 16 16	< 5 < 5 < 5 < 5 < 5	0.2 1.2 < 0.2 < 0.2 < 0.2 < 0.2	6.71 0.42 0.63 2.85 5.45	36 2 4 < 2 160	260 20 60 260 100	1.0 < 0.5 < 0.5 < 0.5 1.0	< 2 < 2 < 2 < 2 < 2 < 2	2.90 0.31 0.14 1.74 3.14	1.0 < 0.5 < 0.5 0.5 0.5	21 7 4 18 13	110 71 74 41 72	8 125 21 37 46	4.88 1.79 2.02 5.30 3.19	< 10 < 10 < 10 20 10	< 1 < 1 < 1 < 1 < 1	0.41 0.05 0.10 1.43 0.51	< 10 < 10 20 10 < 10	6.59 0.22 0.17 1.35 0.77	730 140 180 625 420
138586 138587 138587 138588 138589 138590	205 22 205 22 205 22 205 22 205 22 205 22	16 16 16	5 5 5 5 5 5	< 0.2 0.2 0.2 0.2 1.6	1.57 3.20 6.13 7.00 2.08	40 264 50 < 2 8	270 200 480 580 20	0.5 0.5 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 2	>15.00 1.03 2.10 2.43 9.72	2.5 0.5 1.0 1.0	5 15 19 23 4	45 75 113 70 59	5 76 75 88 224	0.43 5.05 5.55 5.24 8.46	< 10 10 20 10 10	< 1 < 1 < 1 < 1 1 1	0.70 1.24 1.73 1.81 0.20	< 10 10 < 10 < 10 < 10 < 10	9.38 0.87 1.37 3.26 0.23	130 560 420 320 3450
138591 138592 138593 138601 138602	205 22 205 22 205 22 205 22 205 22 205 22	6 4 6 4 6 4 6 4	5 5 5 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	4.60 0.35 4.77 3.30 0.91	20 22 6 12 < 2	280 10 540 130 60	0.5 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	3.01 0.18 0.96 1.79 0.82	1.5 < 0.5 0.5 0.5 < 0.5	12 2 24 18 4	39 57 165 70 70	25 29 42 6 6	6.41 0.73 5.09 4.20 2.40	10 < 10 10 10 10	< 1 < 1 < 1 1 < 1	1.49 0.11 1.19 0.38 0.21	< 10 20 < 10 < 10 30	1.64 0.05 3.15 1.94 0.46	1565 160 525 470 530
138603 138604 138605	205 22 205 22 205 22	6	55:5	0.6 0.6 1.0	0.07	886	< 10 60 300	< 0.5 < 0.5 < 0.5	2 6 < 2	8.65 2.12 0.13	1.0 4.5 < 0.5	1 14 3	84 113 109	12 40 60	1.13 4.29 2.85	< 10 < 10 < 10	< 1 < 1 < 1 < 1	0.03 0.21 0.12	< 10 < 10 < 10	4.15 0.54 0.02	480 1730 120
														C	CERTIFIC		140	J.L.	zec	hler	`

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE; 604-984-0221 FAX: 604-984-0218 .'o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE #6110 Comments: ATTN:STEVE ROWINS Page er: 1-B Total Pages :1 Certificate Date: 25-JUL-96 Invoice No. : 19624467 P.O. Number : Account : GP R

										CE	RTIF	CATE	OF A			A9624467	
SAMPLE	PREP CODE	Мо ррд	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U mqq	V ppm	W ppm	Zn ppm		
138581 138582 138583 138584 138584 138585	205 226 205 226 205 226 205 226 205 226 205 226	4 2 4 1 < 1	0.08 0.06 0.26 0.43	53 3 1 3 10	1140 70 210 1690 370	4 10 20 8 14	< 2 < 2 < 2 < 2 < 2	10 2 4 10 10	276 10 6 106 195	0.22 0.10 0.07 0.51 0.16	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	136 7 6 183 139	< 10 < 10 < 10 < 10 < 10 < 10	98 16 16 72 78		
138586 138587 138588 138588 138589 138590	205 226 205 226 205 226 205 226 205 226 205 226	< 1 2 1 < 1 < 1	< 0.01 0.15 0.39 0.47 0.09	20 19 44 22 6	860 270 680 610 360	20 18 8 2 18	2 < 2 < 2 < 2 < 2 < 2 < 2	7 15 19 18 6	461 52 176 170 17	0.11 0.10 0.14 0.14 0.04	< 10 < 10 < 10 < 10 < 10 < 10	30 < 10 < 10 < 10 < 10 10	43 100 140 214 107	< 10 < 10 < 10 < 10 < 10 < 10	8 140 68 52 42		
138591 138592 138593 138601 138602	205 226 205 226 205 226 205 226 205 226 205 226	1 1 < 1 < 1 < 1	0.17 0.06 0.17 0.31 0.08	23 1 73 21 3	230 50 340 900 410	6 24 8 4 14	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	12 < 1 22 13 5	114 8 88 153 35	0.09 0.01 0.12 0.12 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	96 4 149 133 28	< 10 < 10 < 10 < 10 < 10 < 10	266 46 62 52 58		
138603 138604 138605	205 226 205 226 205 226	< 1 . 2 3	< 0.01 0.03 0.12	3 5 1	50 540 360	8 48 60	2 < 2 < 2	< 1 1 1	260 < 54 < 27 <	0.01 0.01 0.01	< 10 < 10 < 10	< 10 < 10 < 10	11 14 17	< 10 < 10 < 10	18 478 12		
•																	

Г

CERTIFICATION:_

Ja J. Buchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN: STEVE ROWINS

	CERTIF	ICATE A9624211			ANALYIICAL	PROCEDURE	5
(GP R) - Project: P.O. # :	WESTMIN RACIN	RESOURCES LTD. E 6110	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	
Sample: This re	s submitt eport was	ed to our lab in Vancouver, BC. printed on 17-JUL-96.	953 1263 4031 4032 4033 4034 4035	7 7 7 7 7 7 7 7	Au g/tonne: RUSH, 1 assay ton Ag ppm: high grade 24 element Al %: A22 ICP package Ba ppm: A22 ICP package Be ppm: A22 ICP package Bi ppm: A22 ICP package Ca %: A22 ICP package Cd ppm: A22 ICP package	FA-AAS AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.03 0.5 0.05 100 10 20 0.05 10
	SAM	PLE PREPARATION	4037	7	Co ppm: A22 ICP package Cr ppm: A22 ICP package	ICP-AES ICP-AES	10 10
CHEMEX CODE 258 295 3202 290	NUMBER SAMPLES 7 7 7 7 7 7	DESCRIPTION RUSH Assay ring approx 150 mesh RUSH crush and split (0-3 Kg) Rock - save entire reject Assay HF ICP digestion charge	4039 4040 4041 4042 4043 4044 4045 4045 4045 4046 4075 4047	7 7 7 7 7 7 7 7 7 7 7	Cu ppm: A22 ICP package Fe %: A22 ICP package K %: A22 ICP package Mg %: A22 ICP package Mn ppm: A22 ICP package Mn ppm: A22 ICP package Na %: A22 ICP package Ni ppm: A22 ICP package Pb %: high grade 24 element Sr ppm: A22 ICP package	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES AAS ICP-AES	10 0.05 0.1 0.05 10 10 0.05 10 0.001 10 0.05
-			4049 4050	7 7	V ppm: A22 ICP package Zn ppm: A22 ICP package	ICP-AES ICP-AES	10 20
	·						

A9624211

UPPER

LIMIT

150.00

200

30.0

50000 10000

50000

30000

10000 100000

100000

100000

30.0 20.0

30.0

20.0

10.00 100000

20.0 50000

100000

100000

100000

V7J 2C1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver PHONE: 604-984-0221 FAX: 604-984-0218 o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

CERTIFICATION:

Page: ∋r :1-A Total F. ___ :1 Certificate Date: 17-JUL-96 Invoice No. : 19624211 P.O. Number : Account :GP R

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS

							CERTIFICATE OF ANALYSIS A9624211									
SAMPLE	P	REP ODE	Au g/t RUSH	Ag ppm AAS	A1 % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
138594 138595 138596 138597 138598	258 258 258 258 258 258	295 295 295 295 295 295	< 0.03 < 0.03 < 0.03 < 0.03 < 0.03	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	4.75 1.60 1.25 2.10 1.00	700 100 < 100 300 < 100	< 10 < 10 < 10 < 10 < 10 < 10	40 20 < 20 20 < 20	4.55 3.05 0.75 4.20 2.65	< 10 < 10 < 10 < 10 < 10 < 10	50 20 10 30 40	1210 430 60 150 190	10 < 10 < 10 < 10 < 10 < 10	20.7 >30.0 >30.0 >30.0 >30.0	3.3 1.2 0.3 0.8 0.4	8.75 3.60 2.55 3.05 2.35
138598 138599 138600	258	295 295 295	< 0.03 < 0.03 < 0.03	< 1.0 < 1.0 < 1.0	1.00	100	< 10 < 10 < 10	< 20 < 20 20	2.80	< 10 < 10 < 10	10 30	50 210	< 10 < 10	>30.0 >30.0	0.7	2.25
													(7	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 io: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS Page per :1-B Total Farges :1 Certificate Date: 17-JUL-96 Invoice No. :19624211 P.O. Number : Account :GP R

									CERTI	ICATE	OF AN/	ALYSIS	ļ	\96242 1	11	
SAMPLE	P) Ci	REP	Min ppm (ICP)	Moppm (ICP)	Na % (ICP)	Ni ppm (ICP)	Pb % AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	Zn ppm (ICP)					
138594 138595 138596 138597 138597 138598	258 258 258 258 258 258	295 295 295 295 295 295	1730 1530 1540 1760 1320	< 10 < 10 < 10 < 10 < 10 < 10	0.25 0.05 < 0.05 0.05 < 0.05 < 0.05	400 140 10 50 90	0.002 < 0.001 < 0.001 < 0.001 < 0.001	40 10 < 10 50 < 10	0.20 0.05 0.05 0.10 0.05	130 60 40 50 40	740 420 220 200 140					
138599 138600	258 258	295 295	1380 1820	< 10 < 10	0.05	10 110	< 0.001 < 0.001	10 150	0.05 0.20	40 110	260 300					
														4	, /	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

A9624790

.'o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments:

CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION	UPPEF LIMIT
983	13	Au ppb: Fuse 30 g sample	гл-ллс	5	10000
2118	13	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
2119	13	A1 %: 32 element, soil & rock	ICP-ARS	0.01	15.00
2120	13	As ppm: 32 element, soil & rock	ICP-AES	2	10000
2121	13	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	13	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	13	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	13	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	13	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2126	13	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	13	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	13	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
2150	13	Fe %: 32 element, soll & rock	ICP-AKS	0.01	10000
2130	13	Ga ppm: 32 element, soll & rock	ICP-AKS	10	10000
2131	13	Hg ppm: 32 element, soll & rock	ICP-AKS		10 00
2132	13	K %: 32 element, BOIL & FOCK	ICP-AES	10	10000
2121	13	La ppm: 32 element, soll & rock	ICP-AES	0 01	15 00
2134	13	Mg %: 34 element, soll & rock	TCD-ARS	0.01	10000
2126	13	No prome 32 element, soil & rock	TCD-JRS	1	10000
2137	13	No k: 32 element, soil & rock	TCD-ARS	0.01	5.00
2139	13	Ni mome 32 alement, soil & rock	TCP-ARS	1	10000
2139	13	P nom: 32 element, soil & rock	ICP-ARS	10	10000
2140	13	Ph nom: 32 element, soil & rock	ICP-ARS	2	10000
2141	13	sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	13	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143	13	Sr prm: 32 element, soil & rock	ICP-AES	1	10000
2144	13	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
2145	13	Ti ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	13	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	13	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	13	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	13	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

CERTIFICATE

(GP R) - WESTMIN RESOURCES LTD.

Project: RACINE 6110 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 28-JUL-96.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	13 13 13 13	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock – save entire reject ICP – AQ Digestion charge
* NOTE	1:	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

•: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4 Page er :1-A Total F مريحs :1 Certificate Date: 28-JUL-96 Invoice No. : 19624790 P.O. Number : Account : GP R

Project : Comments: RACINE 6110

											CE	RTIFI	CATE	OF	ANAL	rsis		49624	790		
SAMPLE	PRI COI	ep De	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
138606 138607 138608 138609 138610	205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 < 0.2 0.4 0.4 0.2	4.52 0.25 4.40 2.03 1.25	66 44 1770 32 176	140 10 340 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 2 2	2.63 0.03 2.01 12.25 14.40	0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	13 3 23 < 1 < 1	63 143 62 85 88	109 17 57 20 < 1	3.07 0.56 3.92 9.15 11.90	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 1	0.51 0.12 0.50 0.05 0.03	< 10 10 < 10 < 10 < 10 < 10	0.67 0.03 1.86 0.13 0.09	435 45 290 3100 2430
138611 138612 138613 138614 138615	205 205 205 205 205 205	226 226 226 226 226 226	< 5 < 5 < 5 < 5 < 5 < 5	0.2 < 0.2 < 0.2 0.2 0.2 0.2	1.53 1.99 0.35 2.64 1.48	38 36 34 476 138	< 10 < 10 10 110 60	< 0.5 < 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	13.80 6.53 0.13 0.66 0.60	0.5 < 0.5 < 0.5 < 0.5 1.0	< 1 6 1 26 15	81 43 85 48 61	< 1 3 15 116 30	10.60 3.44 0.68 5.89 3.82	< 10 < 10 < 10 < 10 < 10 < 10	< 1 3 < 1 < 1 < 1	0.03 0.04 0.13 0.40 0.32	< 10 < 10 10 < 10 < 10	0.07 0.50 0.04 1.11 0.32	2220 1260 90 575 350
138616 138617 138618	205 205 205	226	< 5 5 < 5 5 <	< 0.2 < 0.2 < 0.2	0.31 1.61 0.98	20 30 4B	< 10 60 180	< 0.5 0.5 1.0	< 2 < 2 < 2 < 2 < 2	0.13 4.36 8.22	< 0.5 < 0.5 < 0.5	1 9 7	117 73 29	14 < 1 < 1	0.81 3.73 3.22	< 10 < 10 < 10	< 1 < 1 < 1	0.11 0.30 0.29	10 10 < 10	0.05	95 780 2860
															FRTIFIC		19	ant	Pr	Ale	~

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

 WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments:

										CERTIFICATE OF ANA				NAL	YSIS	A9624790		
SAMPLE	PRE	P	Мо ррт	Na %	Ni ppm	P ppm	Pb ppm	SD ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm		
138606 138607 138608 138609 138610	205 205 205 205 205 205	226 226 226 226 226 226	1 5 < 1 < 1 < 1	0.52 0.07 0.48 0.02 0.01	15 1 16 2 1	720 10 620 230 380	42 18 16 38 42	< 2 < 2 4 4 6	9 < 1 8 5 3	164 3 < 144 22 10	0.13 0.01 0.06 0.03 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	84 1 115 57 26	< 10 < 10 < 10 < 10 < 10 < 10	74 26 56 34 16		
138611 138612 138613 138614 138615	205 205 205 205 205 205	226 226 226 226 226 226	< 1 < 1 1 < 1 < 1	0.01 0.01 0.06 0.04 0.04	1 13 1 18 14	190 410 10 100 60	20 10 14 12 50	4 6 < 2 4 2	3 6 < 1 8 6	16 99 5 < 30 15 <	0.01 0.13 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	31 59 1 51 26	< 10 < 10 < 10 < 10 < 10 < 10	38 106 20 62 186		
138616 138617 138618	205 2	226		0.08 0.04 0.01	1 22 14	10 930 960	16 10 8	< 2 < 2 2	1 9 9	5 < 62 65 <	0.01 0.01 0.01	< 10 < 10 < 10	< 10 < 10 < 10	1 38 18	< 10 < 10 < 10	24 32 48		
	L																Jan Sichler]

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A9626290

(GP R) - WESTMIN RESOURCES LTD.

Project: RACINE 6110 P.O. # : 6110

Samples submitted to our lab in Vancouver, BC. This report was printed on 9-AUG-96.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	15 15 15 15	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge
NOTE	1.	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN: STEVE ROWINS

			HOCEDURES)	
HEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPEF LIMIT
983 2118	15 15	Au ppb: Fuse 30 g sample Ag prm: 32 element, soil & rock	FA-AAS Icp-ars	5 0.2	10000 200
2119	15	A1 %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	15	As ppm: 32 element, soil & rock	ICP-AES	2	10000
2121	15	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	15	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	15	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	15	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	15	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2126	15	Co ppm: 32 element, soll & rock	ICP-ARS	1	10000
2127	15	Cr ppm: 32 element, soll & rock	ICP-AKS	1	10000
2126	15	Cu ppm: 32 element, soil & rock	ICP-AES	0 01	15 00
2130	15	Ga ppmy 32 element, soil & rock	ICP-AES	10	10000
2131	15	Ha prome 32 element, soil & rock	ICP-ARS	1	10000
2132	15	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151	15	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	15	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135	15	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	15	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
2137	15	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
2138	15	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
2139	15	P ppm: 32 element, soll & rock	ICP-AKS	10	10000
2141	15	PD ppm: 32 element, soil & rock	ICP-ABS	4	10000
2142	15	Sc ppm: 32 elements, soil & rock	TCD-125	4 1	10000
2143		ST prom: 32 element, soil & rock	ICP-ARS	1	10000
2144	15	Ti %: 32 element, soil & rock	ICP-ARS	0.01	5.00
2145	15	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	15	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	15	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	15	W ppm: 32 element, soil & rock	ICP-AES	10	10000
41 4 7	13	Zn ppm: 52 slamant, soll z lock	ICF-ABB	•	10000
	ł				

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

CERTIFICATE OF ANALYSIS

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS Page ər :1-A Total F. :1 Certificate Date: 09-AUG-96 Invoice No. : 19626290 P.O. Number :6110 Account :GP R

A9626290

Start Buchler

CERTIFICATION:_

* PLEASE NOTE

	_																				
SAMPLE	PR CO	EP DE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	. Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
138619 138620 138621 138622 138622	205 205 205 205 205	226 226 226 226 226	145 < 5 < 5 < 5 < 5	197.0 0.2 2.2 2.2 0.2	0.18 2.87 0.69 3.26 1.49	1065 < 2 32 4 14	< 10 140 10 20 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Intf* < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	11.10 1.94 5.08 10.60 >15.00	>100.0 < 0.5 15.5 0.5 < 0.5	36 20 7 4 3	40 30 24 75 78	10000 195 137 1 1	7.49 3.76 >15.00 7.39 8.26	< 10 < 10 10 < 10 < 10	< 1 < < 1 < 1 < < 1 < < 1 <	0.01 0.67 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	0.22 1.03 0.10 1.32 0.44	1835 235 2070 6090 3060
138624 138625 138626 138627 138628	205 205 205 205 205	226 226 226 226 226 226	< 5 < 5 25 35 5	< 0.2 < 0.2 0.6 1.0 < 0.2	0.39 0.30 5.78 2.34 3.92	12 8 66 52 50	10 10 610 20 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2 2 < 2	2.96 0.55 1.81 8.41 4.09	< 0.5 < 0.5 0.5 3.5 < 0.5	4 < 1 16 19 12	115 84 54 104 25	1 8 98 < 1 < 1	2.35 0.44 4.81 3.17 1.47	< 10 < 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.11 2.49 0.04 0.08	20 10 < 10 < 10 < 10	0.55 0.05 2.63 0.79 1.06	1250 165 880 4320 775
138629 138630 138631 138632 138633	205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 75</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.32 1.06 5.48 0.34 5.34	< 2 24 76 24 258	140 150 270 10 250	< 0.5 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.16 1.43 2.35 0.26 2.39	< 0.5 1.0 1.0 < 0.5 0.5	7 6 13 1 27	53 39 79 83 121	< 1 9 20 6 109	3.69 2.00 4.51 0.44 4.35	10 < 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.83 0.22 1.34 0.12 1.46	10 30 < 10 30 < 10	1.01 0.23 1.07 0.06 1.57	610 665 735 90 425
			<u> </u>					+				<u></u>									
•																					

* INTERFERENCE: Cu on Bi and P

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

CERTIFICATE OF ANALYSIS

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS Page эг :1-В Total F 3 1 Certificate Date: 09-AUG-96 Invoice No. : 19626290 P.O. Number :6110 Account : GP R

A9626290

* PLEASE NOTE

SAMPLE	PREI	P	Mo ppm)	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U mqq	V ppma	W ppm	Zn ppm	
138619 138620 138621 138622 138622 138623	205 205 205 205 205 205	226 226 226 226 226 226	< 1 < 1 < 1 < 1 < 1 < 1	0 < 0 < 0 < 0	.01 .31 .01 .01 .01	397 9 25 5 11	Intf* 1220 < 10 490 160	3550 10 130 146 12	< 2 2 < 2 < 2 < 2 < 2	< 1 8 < 1 6 1	74 < 115 42 68 91	0.01 0.15 0.03 0.09 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	10 133 30 34 35	Intf* < 10 < 10 < 10 < 10 10	5270 46 696 180 76	
138624 138625 138626 138627 138628	205 2 205 2 205 2 205 2 205 2	226 126 126 126 126	< 1 1 < 1 < 1 < 1	< 0 0 < 0	.01 .10 .30 .01 .42	5 1 14 24 11	20 10 550 1170 1240	< 2 16 6 80 26	< 2 < 2 2 < 2 < 2 < 2 < 2	1 < 1 18 4 3	66 < 9 < 285 75 276	0.01 0.01 0.24 0.11 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	3 < 1 161 37 48	< 10 < 10 < 10 < 10 < 10 < 10	18 22 108 246 64	
138629 138630 138631 138632 138633	205 2 205 2 205 2 205 2 205 2	226 226 226 226 226 226	< 1 3 1 4	0	.16 .03 .30 .07 .22	5 3 25 3 69	1070 400 180 30 660	22 38 14 6 4	< 2 < 2 2 < 2 < 2 < 2	6 3 14 < 1 13	57 16 < 137 8 < 142	0.25 0.01 0.16 0.01 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	78 4 96 1 94	< 10 < 10 < 10 < 10 < 10 < 10	102 94 192 10 92	
																<u></u>		
		:																
•																		•
															c	ERTIFIC	ATION:	Harri Pourla.

Anatytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 3: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

A9627786

Comments: ATTN: STEVE ROWINS

c	ERTIF	ICATE	A9627786				ANALYTICAL	PROCEDURES	6	
(GPR) - 1 Project:	WESTMIN RACIN	RESOURCES LTD. E 6110		CHEMEX	NUMBER SAMPLES		DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
Samples This re	submitt port was	ed to our lab in printed on 13-A	UG-96.	301	1	Cu %: Conc.	Nitric-HCL đig'n	AAS	0.01	100.0
	SAM	PLE PREPAR	ATION							ĺ
CHEMEX CODE	NUMBER SAMPLES	[DESCRIPTION							
244	1	Pulp; prev. pre	epared at Chemex							
	[]]						
	•									

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 i'o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS

						CERTIFIC	ATE OF A	A96	A9627786			
SAMPLE	PREP CODE		Cu %									
138619	244		2.54									
					1							
							-					
						6						
							Ē					
		-										
•										1-7	Δ	
							c	ERTIFICATION	1: Saic	1/ein	ad-	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A9626289

(GP R) - WESTMIN RESOURCES LTD.

Project: RACINE 6110 P.O. #: 6110

Samples submitted to our lab in Vancouver, BC. This report was printed on 11-AUG-96.

	SAMPLE PREPARATION													
CHEMEX	NUMBER SAMPLES	DESCRIPTION												
205 226 3202 229	20 20 20 20	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge												
* NOTE	1.													

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN: STEVE ROWINS

	ANALYTICAL P	ROCEDURE	S	
CHEMEX NUMB CODE SAMP	ER ES DESCRIPTION	METHOD		UPPER LIMIT
983 20 2118 20 2119 20 2121 20 2122 20 2123 20 2124 20 2125 20 2126 20 2127 20 2128 20 2130 20 2131 20 2135 20 2136 20 2137 20 2138 20 2140 20 2143 20 2144 20 2145 20 2144 20 2143 20 2144 20 2145 20 2144 20 2145 20 2146 20 2147 20 2148 20 2149 20	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Ca ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Fe %: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock	FA-AAS ICP-AES	5 0.2 0.01 2 10 0.5 2 0.01 0.5 1 1 1 0.01 10 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0 2 2 2 1 1 0.01 10 2 2 2 1 1 0.01 10 0.5 1 1 10 0.5 1 1 10 0.5 1 1 10 0.5 1 1 10 0.5 1 1 10 0.5 1 1 10 0.5 1 1 10 0.5 1 1 10 0.5 1 1 10 0.5 1 1 10 0.5 1 1 0.5 1 1 0.0 1 0.5 1 1 0.0 1 10 0.0 1 10 0 2 2 2 1 1 10 0 0 1 10 0 0 1 10 0 0 1 10 0 0 1 10 0 1 10 0 0 1 10 0 0 1 10 0 0 1 10 0 1 10 0 0 1 10 0 1 10 10	$10000 \\ 200 \\ 15.00 \\ 10000 $

3: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4 Page er :1-A Total F. .: 1 Certificate Date: 11-AUG-96 Invoice No. : 19626289 P.O. Number : 6110 Account : GP R

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS

		•								CERTIFICATE OF ANALYSIS						/	49626			
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Al %	As p pm	Ba ppm	Be ppm	Bi ppm	Ca ۴	Cd pp n	Co ppm	Cr ppm	Cu ppm	Fe %	Ga p pm	Hg pp n	K %	La pp m	Mg %	Mn ppm
38634 38635 38636 38637 38637 38638	205 226 205 226 205 226 205 226 205 226 205 226	<pre></pre>	< 0.2 < 0.2 0.2 0.2 < 0.2 < 0.2	3.16 1.45 2.04 3.60 1.98	238 16 16 114 2	30 < 10 < 10 180 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> < 2 /pre>	2.29 2.62 5.69 1.69 0.75	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	23 3 4 16 4	202 48 73 244 61	2 2 4 100 32	0.92 1.83 2.77 1.94 1.85	<pre>< 10 < 10</pre>	<pre>< 1 < 1 1 1 < 1 < 1</pre>	0.43 0.01 0.01 0.94 0.55	<pre>< 10 < 10</pre>	0.93 0.15 0.21 1.24 0.69	160 855 2290 265 235
38639 38640 38641 38642 38643	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>	< 0.2 0.6 < 0.2 < 0.2 < 0.2 < 0.2	1.68 1.41 5.78 1.41 3.10	2 4 < 2 < 2 6	200 100 240 70 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.77 0.73 2.70 0.55 4.62	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 1.0	14 6 16 3 8	50 59 35 32 22	104 82 142 22 26	3.32 1.27 2.40 1.28 3.54	<pre>< 10 < 10 10 < 10 < 10 < 10 < 10</pre>	<pre>< 1 < 1 1 < 1 < 1 < 1 < 1 < 1</pre>	0.59 0.26 0.69 0.55 0.19	< 10 < 10 < 10 < 10 < 10 < 10	0.92 0.79 0.75 0.62 0.29	205 180 80 295 65
38644 38645 38646 38647 38648	205 226 205 226 205 226 205 226 205 226 205 226	<pre></pre>	< 0.2 0.2 < 0.2 < 0.2 < 0.2 0.6	3.43 2.57 1.00 1.49 2.83	<pre>< 2 < 2</pre>	230 460 90 190 200	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> < 2 /pre>	1.35 0.74 0.21 1.12 0.53	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 34 2 13 13	49 289 33 148 23	86 310 10 36 445	3.26 3.61 1.38 1.75 4.03	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	1.06 1.29 0.28 0.46 1.04	<pre>< 10 < 10 < 10 10 < 10 < 10 < 10</pre>	1.05 2.48 0.35 0.88 1.61	200 270 205 200 570
38649 38650 38651 38652 38653	205 226 205 226 205 226 205 226 205 226 205 226	<pre></pre>	< 0.2 0.2 0.2 0.8 < 0.2	1.06 1.76 1.56 0.61 0.75	<pre> < 2 44 12 14 6220 </pre>	10 < 10 140 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	1.20 7.47 1.21 2.70 2.74	< 0.5 < 0.5 < 0.5 12.0 3.0	5 12 22 3 64	46 65 38 15 20	22 8 198 19 3	1.34 4.51 3.18 15.00 1.97	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.01 0.01 0.40 0.01 0.01	<pre>< 10 < 10</pre>	0.14 0.15 0.81 0.10 0.48	220 3850 305 1770 960
•																				

CERTIFICATION: SouthBuchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

WESTMIN RESOURCES LTD. **o**: ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS

Page er :1-B Total Payes :1 Certificate Date: 11-AUG-96 Invoice No. : 19626289 P.O. Number :6110 Account :GP R

		CERTIFICATE OF ANALYSIS							SIS	A9626289										
SAMPLE	PREP CODE		Mo ppm		Na %	Ni PP n	P Teqq	, 	Ър п	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V PP n	W PPm	Zn ppm		
138634 138635 138636 138637 138638	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26	2 < 1 < 1 3 1		0.17 0.01 0.01 0.25 0.19	219 10 20 131 5	1820 390 330 1090 650		2 6 6 14 < 2	<pre> < 2 < 2 2 < /pre>	3 4 7 6 3	126 62 26 127 61	0.06 0.11 0.11 0.10 0.09	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	25 33 57 57 31	< 10 < 10 < 10 < 10 < 10 < 10	26 20 12 52 26		
138639 138640 138641 138642 138643	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 4</pre>).17).10).65 0.11 0.26	16 20 16 3 6	770 520 1320 350 530		<pre> < 2 12 < 2 2 2 </pre>	<pre>< 2 < 2</pre>	8 3 7 2 3	47 59 353 25 174	0.11 0.08 0.06 0.05 0.09	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	120 31 133 17 25	<pre>< 10 < 10</pre>	40 50 38 34 58		
138644 138645 138646 138647 138648	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26 26	<pre>< 1 < 1 3 < 1 < 1 < 1 < 1 < 1</pre>).31).09).08).07).07	13 147 2 33 11	680 850 160 870 620		2 2 2 2 2 2 2	<pre> < 2 /pre>	6 5 3 6 13	90 21 18 76 40	0.15 0.16 0.04 0.14 0.21	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	81 76 6 54 151	<pre>< 10 < 10</pre>	24 36 14 28 52		
138649 138650 138651 138652 138653	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26 26	<pre>< 1 < 1</pre>	< (< (< ().01).01).07).07).01).01	3 15 10 16 28	280 290 1790 < 10 570		10 10 4 54 2	<pre>< 2 < 2</pre>	1 3 6 < 1 4	103 12 72 22 45	0.09 0.04 0.16 0.02 0.07	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	17 20 83 23 19	< 10 < 10 < 10 < 10 < 10 < 10	14 36 30 656 30		
•																				

CERTIFICATION:

taille elle

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN: STEVE ROWINS

	ANALYTICAL PROCEDURES												
S LTD.		NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit							
1-h in Verseurer DO	983	15	Au ppb: Fuse 30 g sample	PA-AAS	5	10000							
and in vancouver, sc.	2118	15	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200							
JII 3-A00-30.	2119	15	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00							
	2120	15	As ppm: 32 element, soil & rock	ICP-AES	2	10000							
	2121	15	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000							
	2122	15	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0							
	2123	15	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000							
	2124	15 j	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00							
	2125	15	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0							
	2126	15	Co ppm: 32 element, soil & rock	ICP-AES	1	10000							
·····	2127	15	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000							
	2128	15	Cu ppm: 32 element, soil & rock	ICP-ABS	1	10000							
	2150	15	Fe %: 32 element, soil & rock	ICP-ABS	0.01	15.00							
DESCRIPTION	2130	15	Ga ppm: 32 element, soil & rock	ICP-ARS	10	10000							
	2131	15	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000							
· · · · · · · · · · · · · · · · · · ·	2132	15	K %: 32 element, soil & rock	ICP-AES	0.01	10.00							
ing to approx 150 mesh	2151	15	La ppm: 32 element, soil & rock	ICP-AES	10	10000							
ush and split	2134	15	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00							
ve entire reject	2135	15	Mn ppm: 32 element, soil & rock	ICP- AES	5	10000							
Digestion charge	2136	15	Mo ppm: 32 element, soil & rock	ICP- AES	1	10000							
	2137	15	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00							
	2138	15	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000							
	2139	15	P ppm: 32 element, soil & rock	ICP-AES	10	10000							
	2140	15	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000							
	2141	15	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000							
	2142	15	Sc ppm: 32 elements, soil & rock	ICP-ARS	1	10000							
	2143	15	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000							
1	2144	15	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00							
	2145	15	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000							
	2146	15	U ppm: 32 element, soil & rock	ICP-ABS	10	10000							
	2147	15	V ppm: 32 element, soil & rock	ICP-ARS	1	10000							
is suitable for	2148	15	W ppm: 32 element, soil & rock	ICP-ABS	10	10000							
hd rock samples. hitric-aqua regia mplete are: Al, Mg, Na, Sr, Ti,	2149	15	Zn ppm: 32 element, soil & rock	ICP -AES	2	10000							
e is suitable for nd rock samples. nitric-aqua regia omplete are: Al, , Mg, Na, Sr, Ti,	2148 2149	15 15	W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-AES ICP-AES	10 2								

(GP R) - WESTMIN RESOURC

CERTIFICATE

Project: P.O. # : RACINE 6110 6110

Samples submitted to our This report was printed

SAMPLE PREPARATION											
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION									
205 226 3202 229	15 15 15 15	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge									
- 170 (1717)	1.										

The 32 element ICP package trace metals in soil Elements for which the digestion is possibly in Ba, Be, Ca, Cr, Ga, K, L T1, W.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

5: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS Page i er :1-A Total Fagures :1 Certificate Date: 09-AUG-96 Invoice No. :19626278 P.O. Number :6110 Account :GP R

											CERTIFICATE OF ANALYSIS						A9626278				
SAMPLE	PR CO	ep De	Ац ррb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
138654 138655 138656 138657 138658	205 205 205 205 205	226 226 226 226 226 226	<pre></pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.66 3.47 2.19 5.15 0.42	20 14 < 2 112 8	150 190 80 350 < 10	< 0.5 0.5 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.37 0.20 0.19 1.32 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 23 9 30 < 1	80 38 39 302 84	116 45 30 30 3	5.13 5.49 2.96 4.67 0.94	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.61 0.75 0.41 0.80 0.13	< 10 < 10 < 10 < 10 < 10 10	0.90 0.85 0.76 2.61 0.05	225 280 220 515 120
138660 138661 138662 138663 138664	205 205 205 205 205	226 226 226 226 226 226	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.70 3.98 5.05 0.79 4.76	24 54 238 22 78	80 390 160 20 270	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	6.84 0.94 3.89 1.81 0.71	1.5 < 0.5 2.0 0.5 0.5	6 20 23 2 21	144 230 294 61 226	< 1 70 38 < 1 38	3.15 3.69 2.69 0.97 5.31	< 10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.44 1.39 0.85 0.05 1.59	< 10 < 10 < 10 10 < 10	0.75 2.33 1.59 0.20 1.44	1175 245 465 640 305
138665 138666 138667 138668 138669	205 205 205 205 205 205	226 226 226 226 226 226	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.72 0.16 0.73 0.81 6.20	16 8 4 2 < 2	10 30 50 80 910	0.5 3.0 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.91 0.67 1.44 0.64 1.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 3 22	33 43 48 60 65	< 1 24 < 1 5 11	0.37 0.47 0.77 2.26 5.95	< 10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.01 0.05 0.25 1.50	10 30 10 20 < 10	0.07 0.01 0.32 0.37 2.42	200 120 395 460 780
	Í																				
•		ľ																			

CERTIFICATION: Htr. + Buchles

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS
 P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC
 V7X 1C4

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS Page f Pr : 1-B Total F. 1 Certificate Date: 09-AUG-96 Invoice No. : 19626278 P.O. Number : 6110 Account : GP R

											CE	RTIF		OF A	NAL	(SIS	A9626278	
SAMPLE	PR CO	EP DE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	n D	V ppm	W mqq	Zn ppm		
138654	205	226	10	0.09	20	200	2	< 2	7	31	0.06	< 10	< 10	62	< 10	38		
138655	205	226		0.07	17	110		< 2	10	23	0.08	< 10	< 10	37	< 10	44 34		
138657	205	226	1	0.22	174	460	6	₹ 2	15	121	0.03	< 10	< 10	159	< 10	62		
138658	205	226	2	0.09	2	10	14	< 2	1	3	0.01	< 10	< 10	< 1	< 10	26		
138660	205	226	< 1	0.14	32	500	26	< 2	6	78	0.11	< 10	< 10	71	< 10	90		
138661	205	226	6	0.15	78	620	2	< 2	11	83	0.10	< 10	< 10	177	< 10	46		
138662	205	226	1	0.30	109	1260	56	< 2	8	105	0.07	< 10	< 10	96	< 10	158		
138664	205	226	< 1	0.13	17	510	2	4	18	77	0.09	< 10	< 10	142	< 10	46		
138665	205	226	< 1	0.17	1	330	8	< 2	1	44	0.08	< 10	< 10	9	< 10	30		
138666	205	226	1	0.08	1	60	24	< 2	< 1	27	0.04	< 10	< 10	3	< 10	22		
138667	205	226	1	0.13	2	570	22	< 2	2	33	0.14	< 10	< 10	17	< 10	48		
138668	205	220		0.09	15	300	14	< 2	23	124	0.15	< 10	< 10	195	< 10	56		
•																		

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

»: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN: STEVE ROWINS CC:STEVE SUTHERLAND

A9626707

CERTIFICATE

A9626707

(GP R) - WESTMIN RESOURCES LTD.

Project: RACINE 6110 P.O. #: 6110

Samples submitted to our lab in Vancouver, BC. This report was printed on 13-AUG-96.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	13 13 13 13	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock – save entire reject ICP – AQ Digestion charge

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

ANALYTICAL PROCEDURES

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	Upper Limit
OFFEMEX CODE 983 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2130 2131 2132 2131 2132 2131 2132 2131 2132 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149	NOMBER SAMPLES 13 13 13 13 13 13 13 13 13 13 13 13 13	DESCRIPTION Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cf ppm: 32 element, soil & rock Cf ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock	METHOD FA-AAS ICP-AES	DETECTION LIMIT	LIMIT 10000 200 15.00 100000 10000

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Jo: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

_

Page per :1-A Total + ges :1 Certificate Date: 13-AUG-96 Invoice No. : 19626707 P.O. Number :6110 Account :GP R

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS CC:STEVE SUTHERLAND

CERTIFICATION:

		_	-								CE		CAIE	OF A	NAL	rsis	/	49626	0/0/		
SAMPLE	PR CO	EP DE	Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba pp m	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu pp n	Fe %	Ga PP m	Hg ppm	K %	La ppm	Mg %	Mn ppm
138669 138670 138671 138672 138673	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5</pre>	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.37 2.21 1.87 2.58 3.22	2 28 32 30 120	80 160 110 100 320	< 0.5 0.5 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.83 0.58 0.85 0.95 2.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 14 5 10 11	66 35 52 113 110	27 2 4 48 26	2.37 3.42 2.89 2.39 4.66	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.27 0.32 0.50 0.46 0.56	10 20 10 < 10 10	0.68 0.87 0.69 1.09 1.77	485 680 550 285 545
138674 138675 138676 138677 138678	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5</pre>	< 0.2 < 0.2 1.0 0.2 0.2	3.49 2.30 3.05 4.28 5.24	44 20 34 12 34	290 260 50 100 110	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	<pre></pre>	2.63 1.06 2.35 2.77 3.70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 9 32 20 18	36 81 55 41 97	60 10 175 81 50	4.91 1.82 3.30 2.51 1.96	<pre>< 10 < 10</pre>	< 1 < 1 < 1 1 < 1	0.36 0.55 0.13 0.13 0.29	< 10 < 10 < 10 < 10 < 10 < 10	1.56 0.95 0.44 0.65 0.67	900 205 530 445 350
138679 138680 138681	205 205 205	226 226 226	<pre>< 5 < 5 < 5</pre>	0.6 < 0.2 < 0.2	5.76 4.82 6.79	30 28 12	150 190 840	< 0.5 < 0.5 0.5	< 2 < 2 < 2	3.92 3.76 2.30	< 0.5 < 0.5 < 0.5	13 12 15	73 79 52	97 55 31	1.99 2.60 4.41	< 10 < 10 10	< 1 < 1 < 1	0.35 0.59 1.70	< 10 < 10 < 10	0.53 0.71 2.07	315 535 335
•																					

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Page er :1-B Total F. ...s :1 Certificate Date: 13-AUG-96 Invoice No. : 19626707 P.O. Number : 6110 Account : GP R

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS CC:STEVE SUTHERLAND

SANFLE PEEP No Na Ni P Ppb Sb Sc St Ti Ti U V M Zn 138650 205 226 (1 0.10 4 630 16 2 4 39 0.15 (10 (10 10 52 10						~							RTIF	CATE	OF A	NALY		A9626707
13660 205 226 (-1 0 10 4 660 16 2 4 19 0.15 (-10 41 20 226 1 0.01 5 100 10 11 (-10 41 (-10 41 (-10 41 (-10 74 13671 205 226 1 0.01 5 700 10 (-10 10 (-10 74 (-10 74 13672 205 226 1 0.05 39 500 22 10 10 55 0.05 (-10 (-10 74 (-10 72 13674 205 226 1 0.15 79 960 8 2 12 10 10 41 (-10 72 13677 205 226 1 0.15 10 10 10 10 124 (-10 72 13677 205 226 1 0.55	SAMPLE	PR CO	EP DE	Мо ррва	Na %	Ni ppm	P PPm	Pb ppm	Sb ppm	Sc ppm	Sr pp m	Ti %	T1 ppm	U PPm	V pp m	W Ppm	Zn pp n	
13670 200 226 1 0.04 3 1050 10 C 2 7 92 0.01 C 10 C 10 14 C 10 64 74 136717 205 226 1 0.11 5 730 10 C 2 5 0.03 C 10 C 10 64 C 10 72 136717 205 226 1 0.15 7 990 8 2 12 176 0.04 C 10 61 C 10 72 13674 205 226 1 0.15 7 990 8 2 17 74 0.04 C 10 C 10 72 1 13677 205 226 1 0.15 7 990 8 2 17 174 0.04 C 10 124 C 10 72 1 13 134 131 134 134 121 110 124 10 124 10 12 10 124 10 12 10 12 10 12 10	138669	205	226	< 1	0.10	4	690	16	2	4	39	0.15	< 10	< 10	42	< 10	90	
13672 205 226 1 0.14 8 440 16 105 0.08 < 10 10 50 10 10 50 13673 205 226 1 0.15 7 950 22 10 10 55 0.08 <	L38670 138671	205	226		0.04	3	1050	10 14	< 2 < 2	7	95 42	0.03	< 10 < 10	< 10	31 41	< 10	68 74	
138673 205 226 1 0.05 39 520 22 10 10 55 0.03 < 10 < 10 61 < 10 72 138674 205 226 1 0.15 7 950 6 2 12 178 0.04 < 10	138672	205	226	ĩ	0.14	8	440	16	< 2	8	105	0.08	< 10	< 10	89	< 10	90	
138674 205 226 1 0.15 7 990 8 2 12 178 0.04 10 124 10 124 10 124 10 124 10 157 (10 44 10 136 10 12 128 10 11 161 11 161 11 161 11 161 11 161 11 161 11 <th11< th=""> 11 11</th11<>	138673	205	226	1	0.05	39	520	22	10	10	55	0.03	< 10	< 10	61	< 1.0	72	
13957 205 255 1 0.12 23 930 10 2 13 161 0.13 10 10 145 10 145 10 10 145 10 10 145 10 10 126 10 10 126 10 126 10 126 10 126 10 126 10 126 10 126 10 10 126 10 126 10 126 10 126 10 10 126 10 10 126 10 10 126 10 10 126 10 10 116 10 <td>138674</td> <td>205</td> <td>226</td> <td>1</td> <td>0.15</td> <td>7</td> <td>990</td> <td>8</td> <td>2</td> <td>12</td> <td>178</td> <td>0.04</td> <td>(10</td> <td>< 10</td> <td>124</td> <td>< 10</td> <td>72</td> <td></td>	138674	205	226	1	0.15	7	990	8	2	12	178	0.04	(10	< 10	124	< 10	72	
138677 205 226 1 0.30 16 810 24 2 11 721 0.10 124 <10 72 138678 205 226 1 0.56 40 690 14 4 8 233 0.14 <10	138676	205	226	1	0.15	23	830	16	4	13	161	0.18	< 10	< 10	145	< 10	54	
13678 205 226 1 0.56 40 690 14 4 8 233 0.14 10 92 10 62 13679 205 226 1 0.59 18 580 4 2 10 240 0.14 10 10 52 10 52 26 10 52 20 10 40 0.14 10 10 52 10 52 10 52 10 52 10 52 10 52 10 52 10 52 10 52 10 52 10 52 10 52 10 10 121 <10	138677	205	226	1	0.30	16	810	24	2	11	721	0.19	< 10	< 10	124	< 10	72	
138670 205 226 1 0.59 18 580 4 2 10 240 0.14 <10	138678	205	226	1	0.56	40	690	14	4	8	233	0.14	< 10	< 10	92	< 1.0	62	
	138679	205	226	1	0.59	18	580	4	2	10	240	0.14	< 10	< 10	118	< 1.0	52	
	138680	205	226	2	0.36	27	480	2	2	8 15	251	0.14	< 10	< 10	121		40	

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN: STEVE ROWINS

o: WESTMIN RESOURCES LTD.

A9626709			ANALYTICAL P	ROCEDURES	3	
	CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	Upper Limit
	983	13	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
COUVER, BC.	2118	13	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
	2119	13	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
	2120	13	As ppm: 32 element, soil & rock	ICP-AES	2	10000
	2121	13	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
	2122	13	Be pum: 32 element, soil & rock	ICP-ABS	0.5	100.0
	2123	13	Bi nom: 32 element, soil & rock	ICP-ARS	2	10000
	2124	13	Ca %: 32 element, soil & rock	ICP-ARS	0.01	15.00
	2125	13	Cd num: 32 element, soil & rock	TCP-NES	0.5	100.0
DN I	2126	12	Comment soil & rock	TCD-ARG	1	10000
	2127	13	Cr mm. 32 element soil & rock	TCD-ARG	1	10000
	2120	13	Cu ppm: 32 element, soil & rock	ICF-ABS	1	10000
	2128	13	Cupper 32 element, soll a rock	ICP-RES	0 01	15 00
IDTION	2120	13	Fe A: 32 element, soll a fock	ICP-AES	0.01	10000
IP HON	2130	13	Ga pran: 32 element, soll & rock	ICP-AES	10	10000
	2131	13	Hg ppm: 32 element, soll & rock	ICP-AES	1	10000
	2132	13	K %: 32 element, soil & rock	ICP-ARS	0.01	10.00
cox 150 mesh	2151	13	La ppm: 32 element, soil & rock	ICP-AES	10	10000
lit	2134	13	Mg %: 32 element, soil & rock	ICP-ABS	0.01	15.00
reject	2135	13	Mn ppm: 32 element, soil & rock	ICP-ABS	5	10000
charge	2136	13	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
	2137	13	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
le l	2138	13	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
	2139	13	P ppm: 32 element, soil & rock	ICP-AES	10	10000
	2140	13	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
	2141	13	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
	2142	13	Sc prm: 32 elements, soil & rock	ICP-AES	ī	10000
	2142	13	Sr ypm: 32 element, soil & rock	TCD-NES	1	10000
1	2144	13	Ti k: 32 element, soil & rock	TCD-NES	0.01	5.00
	2145	12	Ti mm. 32 element soil & rock	TCD-3PG	10	10000
	2145	13	H nome 22 alement soil & rock	TCD-170	10	10000
	2147	13	V ppm: 32 element, soll & rock	TOD NEC	10	10000
	414/	13	V ppm: 32 element, soll & rock	ICF-ABO	10	10000
le for	4148	13	W ppm: 32 element, soll & rock	ICP-ABS	TÖ	10000
mples.	2149	13	Zn ppm: 32 element, soll & rock	ICP-AES	4	10000
regia						
: Ā1,						
r. Ti.						
-,,						
		ļ				
	1					

(GP R) - WESTMIN RESOURCES LTD.

CERTIFICATE

Project: RACINE 6110 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 13-AUG-96.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	13 13 13 13	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge
t NOTP		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Ba, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W. A9626709

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS Page er :1-A Total Payes :1 Certificate Date: 13-AUG-96 Invoice No. :19626709 P.O. Number : Account :GP R

: * *

•

. .

								<u>, </u>			CE	RTIFI	CATE	OF /		/SIS	/	A9626	709		
SAMPLE	PR CO	ep De	Ац ррb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
138682 138683 138684 138685 138685 138686	205 205 205 205 205	226 226 226 226 226 226	20 75 5 10 35	< 0.2 < 0.2 0.2 < 0.2 < 0.2	0.67 0.73 1.13 3.95 2.30	158 190 108 62 42	10 < 10 20 240 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 2	11.90 12.80 11.90 3.75 4.61	< 0.5 < 0.5 < 0.5 1.5 < 0.5	29 20 21 12 15	92 63 90 257 53	243 84 188 54 140	14.50 14.85 13.55 3.75 3.11	< 10 < 10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.05 0.11 0.65 0.17	< 10 < 10 < 10 < 10 < 10 < 10	0.08 0.09 0.12 1.31 0.40	1955 2260 2610 1235 1180
138687 138688 138689 138690 138691	205 205 205 205 205	226 226 226 226 226 226	10 15 20 20 5	0.2 < 0.2 0.2 < 0.2 < 0.2 0.2	4.89 4.97 3.27 5.33 3.60	68 40 86 50 42	440 230 180 410 280	< 0.5 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.77 3.54 3.30 2.64 2.06	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	19 13 12 10 11	109 40 150 49 130	43 43 44 43 144	4.10 2.20 2.46 2.70 2.81	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	1.57 0.82 0.60 1.15 0.75	< 10 < 10 < 10 < 10 < 10 < 10	2.33 0.88 0.84 1.20 1.03	430 540 820 415 480
138692 138693 138694	205 205 205	226 226 226	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2	0.34 0.30 0.32	14 2 10	40 10 < 10	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.15 0.21 0.20	< 0.5 < 0.5 < 0.5	1 < 1 < 1	101 120 113	31 3 5	1.20 0.68 0.79	< 10 < 10 < 10	< 1 < 1 < 1	0.10 0.13 0.13	20 10 10	0.06 0.06 0.05	100 130 85
•																					

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS Page per :1-B Total Hages :1 Certificate Date: 13-AUG-96 Invoice No. : 19626709 P.O. Number : Account :GP R

SAMPLE CC 138682 205 138683 205 138684 205	PREF CODE 05 2 05 2 05 2	26	Mo ppm < 1 <	Na %	Ni ppm	P	Pb	<i>.</i>									
138682 205 138683 205 138684 205	05 2 05 2 05 2 05 2	26	< 1 <			ppm	ppm	sd ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U PQM	V Ppm	W ppm	Zn ppm	
138685 205 138686 205	05 4	26	< 1 < < 1 1 6	0.01 0.01 0.09 0.07	9 8 56 15	200 190 400 500 360	16 12 10 12 26	4 2 4 6 2	2 3 8 4	6 < 5 < 11 144 110	0.01 0.01 0.12 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 10 10 < 10 < 10	37 56 42 85 48	< 10 < 10 < 10 < 10 < 10	28 26 36 344 46	
138687 205 138688 205 138689 205 138690 205 138691 205	05 2 05 2 05 2 05 2 05 2	26 26 26 26 26	2 1 2 4 7	0.09 0.22 0.12 0.28 0.21	120 13 43 19 41	310 520 810 550 500	< 2 8 20 6 14	2 < 2 2 2 2	12 7 5 8 8	116 194 110 219 158	0.08 0.11 0.08 0.14 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	97 83 58 90 79	< 10 < 10 < 10 < 10 < 10 < 10	72 60 110 114 94	
138692 205 138693 205 138694 205	05 2 2 0 5 2 2	26 26 26	3 1 3	0.07 0.08 0.07	2111	60 20 10	10 10 8	< 2 < 2 < 2	1 < 1 1	6 5 5	0.01 0.02 0.01	< 10 < 10 < 10	< 10 < 10 < 10	2 1 < 1	< 10 < 10 < 10	22 16 14	

CERTIFICATION:

•

APPENDIX D

ROCK SAMPLE DESCRIPTIONS

•

	· · · · · · · · · · · · · · · · · · ·	A	PPENDIX D: R	OCK SAMPLE DESCRIPTIONS
SAMPLE #	UTM N	UTME	ELEVATION (m)	DESCRIPTION
138512	6616111	517675	1380	Foliated, medium-grained, dark green meladiorite with disseminated pyrite and pyrrhotite.
138519	6615571	517575	1270	Dark green mafic schist in contact with granitic dyke. Abundant silicification, argillization and carbonatization.
138509	6615470	517914	1200	Marble with epidote alteration and strong jointing. Neglegible sulphide minerals.
138502	6615220	518040	1350	Mafic schist in contact with marbled limestone.
138619	6616510	518232	1795	Marble skarn with arsenopyrite, chalcopyrite, pyrite, azurite, and malachite.
138620	6616508	518253	1730	Altered schist with minor pyrite and chalcopyrite.
138621	6616509	518350		Teepee Peak - lower down on mountain. Garnet-calcite-magnetite skarn.
138622	6616737	518533	1792	Teepee Peak - lower down on mountain. Chlorite-amphibole schist hosting garnet-magnetite skarn.
138650	6616553	518211	1770	Teepee Peak. Garnet-diopside-calcite-epidote skarn.
138651	6616523	518225	1760	Teepee Peak. Amphibolitized, fine-grained diorite with minor pyrite (limonite) and epidote.
138652	6616490	518240		Teepee Peak. Garnet-magnetite-calcite skarn.
138653	6616520	518200	1755	Teepee Peak. Silicified diopside-garnet-calcite-amphibole skarn with 1-2 vol.% pyrite & arsenopyrite?

APPENDIX E

GEOCHEMICAL RESULTS, ROCK SAMPLES

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers North Vancouver

212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN: STEVE ROWINS

IFICATE	A9624668			ANALYTICAL F	PROCEDURES	6	
IN RESOURCES LTD		CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION	UPPER Limit
tted to our lab : as printed on 25	in Vancouver, BC. -JUL-96.	983 2118 2119 2120 2121 2122 2123 2123	34 34 34 34 34 34 34 34 34	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock	FA-AAS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS	5 0.2 0.01 2 10 0.5 2 0.01	10000 200 15.00 10000 100.0 100.0 10000
MPLE PREPA	RATION	2125	34	Cd ppm: 32 element, soil & rock	ICP-ARS	0.5	100.0
ER ES	DESCRIPTION	2127 2127 2128 2150 2130 2131	34 34 34 34 34 34	Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil @ rock	ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS	1 1 0.01 10 1	10000 10000 15.00 10000 10000
Geochem ring 0-3 Kg crush Rock - save e ICP - AQ Dige	to approx 150 mesh and split ntire reject stion charge	2132 2151 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2143 2145	34 34 34 34 34 34 34 34 34 34 34 34 34	K %: 32 element, soil @ rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mo ppm: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock Pb ppm: 32 element, soil & rock Pb ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti %: 32 element, soil & rock Ti ppm: 32 element, soil & rock	ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS	0.01 10 0.01 5 1 0.01 1 10 2 2 1 1 0.01 10	10.00 10000 15.00 10000 5.00 10000 10000 10000 10000 10000 10000 5.00 10000
ICP package is in soil and r which the nitri cossibly incomple , Ga, K, La, Mg,	suitable for ock samples. c-aqua regia te are: Al, Na, Sr, Ti,	2146 2147 2148 2149	34 34 34 34	U ppm: 32 element, soil & rock V ppm: 32 element, soil & rock W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-ARS ICP-ARS ICP-ARS ICP-ARS	10 1 10 2	10000 10000 10000 10000
	IN RESOURCES LTD INE 6110 tted to our lab i as printed on 25 MPLE PREPA Geochem ring 0-3 Kg crush Rock - save e ICP - AQ Dige t ICP package is in soil and r which the nitri possibly incomple r, Ga, K, La, Mg,	IN RESOURCES LTD. INE 6110 Atted to our lab in Vancouver, BC. The printed on 25-JUL-96. MPLE PREPARATION The presence of the second secon	IN RESOURCES LTD. INE 6110 tted to our lab in Vancouver, BC. mas printed on 25-JUL-96. MPLE PREPARATION ES DESCRIPTION Ceochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge t ICP package is suitable for in soil and rock samples. which the nitric-aqua regia possibly incomplete are: Al, t, Ga, K, La, Mg, Na, Sr, Ti, CODE 983 2130 2131 CHEMEX CODE 983 2132 2132 2132 2132 2134 2135 2136 2137 2138 2136 2137 2138 2144 2145 2146 2149	IN RESOURCES LTD. INE 6110 tted to our lab in Vancouver, BC. Tas printed on 25-JUL-96. MPLE PREPARATION ER ES DESCRIPTION Cochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge t ICP package is suitable for in soil and rock samples. which the nitric-aqua regia possibly incomplete are: Al, r, Ga, K, La, Mg, Na, Sr, Ti, CHEMEX NUMBER CODE SAMPLES NUMBER CODE SAMPLES PRIMA 2119 2119 2120 2120 2120 2121 34 2122 34 2122 34 2123 34 2131 34 2131 34 2132 34 2131 34 2132 34 2134 34 2135 34 2137 34 2136 34 2137 34 2137 34 2138 34 2140 34 2140 34 2140 34 2140 34 2141 34 2140 34 2149 34	IN RESOURCES LTD. INE 6110 tted to our lab in Vencouver, BC. as printed on 25-JUL-96. MPLE PREPARATION BESCRIPTION B	IN RESOURCES LTD. INE 6110 tted to our lab in Vancouver, BC. we printed on 25-JUL-36. MPLE PREPARATION	IN RESOURCES LTD. INE 6110 tted to our lab in Vancouver, BC. as printed on 25-JUL-96. MPLE PREPARATION MPLE PREPARATION

A9624668

	C An	atytical Che 212 Brook British Co PHONE: 0	mists * Ge ksbank A Jumbia, (604-984-	ochemists ve., Canada 0221 FA	Abs Register North Va	SL red Assay Incouver V7J 2C1 984-0218	td.		io: Proje Com	WESTM ATTN: S P.O. BO VANCO V7X 1C4 ect : ments:	IN RESC TEVE R X 49066, JVER, B I RACINE ATTN: S	OURCES OWINS THE BE C 6110 FEVE RC	LTD. INTALL	CENTRE	:			Pag Total , Certifica Invoice P.O. Nu Account	ber :: . ges :: tte Date:2 No. : 1 mber : t :(I-A 25-JUL-96 9624668 ≩P R
,					<u> </u>					CE	RTIFI	CATE	OF A	ANAL	YSIS		A9624	668		
SAMPLE	PREP CODE	Ац ррђ ГА+АА	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg P pm	K %	La ppm	Mg %	Mn ppm
138502	205 226	< 5	0.2	2.44	2	700	< 0.5	< 2	0.33	< 0.5	1	69	8	2.96	< 10	1	1.38	< 10	1.30	455
138509	205 226	< 5	0.2	0.05	< 2	< 10	< 0.5	< 2 >	15.00	< 0.5	< 1	< 1	< 1	0.11	< 10	< 1	< 0.01	< 10	9,53	80
138512	205 226	< 5	< 0.2	2.31	2	710	< 0.5	< 2	1.01	< 0.5	11	48	20	3.00	< 10	< 1	1.03	< 10	1.30	395
j138519	205 226	< 5	< 0.2	2.28	8	30	< 0.5	2	1.65	0.5	4	33	< 1	0.51	< 10	1	0.03	< 10	0.36	190

CERTIFICATION: Hart Bickler

	Ana	her Aylical Che 212 Brool British Co PHONE: (mists * Ge ksbank At Jumbia, C 604-984-0	ochemists ve., Canada 0221 FA	Abs Register North Va X: 604-9	BL ed Assay ncouver V7J 2C1 84-0218	td.		To: Proje Com	WESTM ATTN: P.O. BO VANCO V7X 10 act : ments:	AIN RES STEVE F DX 49066 DUVER, F 4 RACINE ATTN: S	OURCES ROWINS 6, THE BI BC E 6110 STEVE RO	ELTD. ENTALL OWINS	CENTRE		Page Number Total Pages Certificate Date: Invoice No. P.O. Number Account	1-B 1 25-JUL-96 I 9624668 GP R
										CE	RTIF	ICATE	OF	ANAL	YSIS	A9624668	
SAMPLE	PREP CODE	Мо ррш	Na %	Ni ppm	p ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	n mdd	V ppm	W ppm	2n ppm		
138502	205 226	1	0.10	1	1070	10	< 2	11	38	0.16	< 10	< 10	55	< 10	58		1
138509	205 226	< 1 -	< 0.01	< 1	40	10	< 2	۲ ۱	128	< 0.01	10	< 10	< 1	< 10	< 2		
138512	205 226	< 1	0.18	2	1120	6	< 2	3	68	0.14	10	< 10	75	< 10	60		
138519	205 226	< 1	0.47	13	600	48	< 2	1	221	0.18	< 10	< 10	23	< 10	112		
																	l
•						<u> </u>											

CERTIFICATION: Jail Profiler

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers 212 Brooksbank Ave.. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

.o: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN: STEVE ROWINS

C	CERTIFICATE A9626290					ANALYTICAL F	PROCEDURE	S	
GPR) - Project:	WESTMIN RACINI	RESOURCES LT E 6110	D.	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION	upper Limit
amples his re	submitt	ed to our lab printed on	in Vancouver, BC. 9-AUG-96.	983 2118 2119 2120 2121 2122 2123 2124	15 15 15 15 15 15 15	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock Ba ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock	FA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 0.2 0.01 2 10 0.5 2 0.01	10000 200 15.00 10000 10000 100.0 10000 15.00
	SAM	PLE PREPA	RATION	2125	15	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
205 225 3202 229	NUMBER SAMPLES 15 15 15 15	Geochem ring 0-3 Kg crush Rock - save ICP - AQ Dig	DESCRIPTION to approx 150 mesh and split entire reject estion charge	2127 2128 2150 2130 2131 2132 2151 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144	15 15 15 15 15 15 15 15 15 15 15 15 15 1	Cr ppm: 32 element, soll & rock Cu ppm: 32 element, soll & rock Ga ppm: 32 element, soll & rock Ga ppm: 32 element, soll & rock Hg ppm: 32 element, soll & rock La ppm: 32 element, soll & rock Mg %: 32 element, soll & rock Mg %: 32 element, soll & rock Mn ppm: 32 element, soll & rock Na %: 32 element, soll & rock Na %: 32 element, soll & rock Ni ppm: 32 element, soll & rock Pipm: 32 element, soll & rock Pipm: 32 element, soll & rock Sc ppm: 32 element, soll & rock Sc ppm: 32 element, soll & rock Sc ppm: 32 element, soll & rock Sr ppm: 32 element, soll & rock Ti %: 32 element, soll & rock Ti %: 32 element, soll & rock	ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS	1 0.01 10 1 0.01 10 0.01 1 0.01 1 10 2 2 1 1 0.01 10 10 10 10 10 10 10 10 10	10000 10000 15.00 10000 10.00 10.00 10000
NOTE 32 e ice m iments jestio Be, W.	1: lement I etals i for wh n is pos Ca, Cr,	CP package is n soil and n ich the nitr sibly incomple Ga, K, La, Mg,	suitable for rock samples. ic-aqua regia ete are: Al, Na, Sr, Ti,	2146 2147 2148 2149	15 15 15 15	U ppm: 32 element, soil & rock V ppm: 32 element, soil & rock W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES	10 1 10 2	10000 10000 10000 10000

A9626290

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave. North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4 Pa: mber :1-A Tot_e ges :1 Certificate Date: 09-AUG-96 Invoice No. :19626290 P.O. Number :6110 Account :GP R

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS

*PLEASE NOT	**PLEASE NOTE											CERTIFICATE OF ANALYSIS A9						9626290			
SAMPLE	PREP CODE	ли ppb Ра+ла	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	
138619 138620 138621 138622	205 226 205 226 205 226 205 226 205 226	145 < 5 < 5 < 5	197.0 0.2 2.2 2.2	0.18 2.87 0.69 3.26	1065 < 2 32 4	< 10 140 10 20	< 0.5 < 0.5 < 0.5 < 0.5	Intf* < 2 < 2 < 2 < 2 < 2	11.10 1.94 5.08 10.60	>100.0 < 0.5 15.5 0.5	36 20 7 4	40 30 24 75	>10000 195 137 1	7.49 3.76 >15.00 7.39	< 10 < 10 10 < 10	< 1 < 1 < 1 < 1	< 0.01 0.67 < 0.01 0.01	< 10 < 10 < 10 < 10 < 10	0.22 1.03 0.10 1.32	1835 235 2070 6090	

* INTERFERENCE: Cu on Bi and P

CERTIFICATION:_

tant Buchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 U: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS Page 9r :1-B Total F 3 :1 Certificate Date: 09-AUG-96 Invoice No. : 19626290 P.O. Number : 6110 Account : GP R

* PLEASE NOT	E									CE	A9626290					
SAMPLE	PREP CODE	No Mo	Na %	Ni ppm	b b đđ	Pb p pm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V PPM	W ppm	Zn ppm	
138619 138620 138621 138622	205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1	0.01 0.31 < 0.01 < 0.01	397 9 25 5	Intf* 1220 < 10 490	3550 10 130 146	< 2 2 < 2 < 2	< 1 8 < 1 6	74 < 115 42 68	0.01 0.15 0.03 0.09	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	10 133 30 34	Intf* < 10 < 10 < 10 < 10	5270 46 696 180	

* INTERFERENCE: Cu on Bi and P

CERTIFICATION:

Jar. Prodite

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

10: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Comments: ATTN: STEVE ROWINS

С	ERTIF	ICATE	A9626289			ANALYTICAL F	5		
GPR) - V Project: P.O. # :	VESTMIN RACINI 6110	RESOURCES LT E 6110	D.	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD		Upper Limit
amples his rep	submitt port was	ed to our lab printed on l	in Vancouver, BC. 1-AUG-96.	983 2116 2119 2120 2121 2122 2123	20 20 20 20 20 20 20	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock	FA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 0.2 0.01 2 10 0.5 2	10000 200 15.00 10000 10000 100.0 10000
	SAM	PLE PREPA	RATION	2124 2125 2126	20	Ca %: 32 element, soll & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES	0.5	10.00 100.0 10000
205 226 3202 229	NUMBER SAMPLES 20 20 20 20	Geochem ring 0-3 Kg crush Rock – save ICP – AQ Dig	DESCRIPTION to approx 150 mesh and split entire reject estion charge	2127 2128 2150 2130 2131 2132 2151 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144	20 20 20 20 20 20 20 20 20 20 20 20 20 2	Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock So ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock	ICP-AES ICP-AES	1 1 0.01 10 1 0.01 10 0.01 5 1 0.01 1 10 2 2 1 1 0.01 10 10 0.01 0.01 10 0.01 0.00	$10000 \\ 10000 \\ 15.00 \\ 10000 \\ 10000 \\ 10.00 \\ 15.00 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 5.00 \\ 10000 \\ 5.00 \\ 10000 \\ 5.00 \\ 10000 \end{bmatrix}$
NOTE e 32 e ace m ements gestion , Be, (, W.	lement I etals i for wh n is pos Ca, Cr,	CP package is n soil and ich the nitr sibly incompl Ga, K, La, Mg	suitable for rock samples. ic-aqua regia ete are: Al, , Na, Sr, Ti,	2146 2147 2148 2149	20 20 20 20	U ppm: 32 element, soil & rock V ppm: 32 element, soil & rock W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES	10 1 10 2	10000 10000 10000 10000

A9626289

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

IO: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

CERTIFICATION:

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS

Page ber : 1-A Certificate Date: 11-AUG-96 Invoice No. : 19626289 P.O. Number :6110 Account GP R

										CE	RTIF	CATE	OF A	NALY	SIS	A9	9626	289		
SAMPLE	PREP	Au ppb	Ag	A1	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn
	CODE	Fa+ aa	p pm	%	p pm	p pm	ppm	P pn	१	PP n	ppm	p p	ppm	%	ppm	pp∎	Ł	ppm	%	PPm

138650 138651 138652	205 205 205	226		5 0.2 5 0.2 5 0.8	1.76 1.56 0.61	44 12 14	< 10 140 < 10	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	7.47 1.21 2.70	< 0.5 < 0.5 12.0	12 22 3	65 38 15	8 4.51 198 3.18 19 >15.00	< 10 < 10 < 10	< 1 0.01 < 1 0.40 < 1 0.01	< 10 < 10 < 10	0.15 0.81 0,10	3850 305 1770
138053	205	226	/5		0.75	6220	< 10 	< 0.5		2.74	3.0	64 ~	20	3 1.97	< 10 	< 1 < 0.01	< 10 	U.48	960
																			ĺ
•											·						•		
														CERTIFIC		Jart	Sul	hler	_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD. ATTN: STEVE ROWINS P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4 Page ber :1-B Total Pages :1 Certificate Date: 11-AUG-96 Invoice No. : 19626289 P.O. Number :6110 Account : GP R

1

Project : RACINE 6110 Comments: ATTN: STEVE ROWINS

A9626289 **CERTIFICATE OF ANALYSIS** PREP Mo Na Ni P Pb Sb Sc Sr Тİ Тl U ۷ W Zn SAMPLE CODE ٩ pp∎ ppm ppm ppm ₽₽∎ ppn ppa 8 ppn pp∎ ppm ppm ppm

138650 138651 138652 138653	205 205 205 205	226 226 226 226		(0. 0. (0. (0.	01 07 01 01	15 10 16 28	290 1790 < 10 570	10 4 54 2	<pre>< 2 < 2 < 2 < 2 < 2 < 2 < 2</pre>	3 6 < 1 4	12 72 22 45	0.04 0.16 0.02 0.07	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	20 83 23 19	< 10 < 10 < 10 < 10 < 10	36 30 656 30		
									_										
																			ŀ
			 				· — ••								CI	ERTIFICA		da Sauchte	•

.

						_
m		Γ		GEOLO AS		
n				SESSMI		
וד				ENT RE		
רד		•		Y BKAD PORT		
n					Ĉ	
TI		LITHOI S Sk QP QFP	<u>OGY</u> Schist Skarn Marble Quartz gran Quartz felds	ite porphyry		
LL.		LT	porphyry Crystal—lithia	: felsic lapilli	-tuff	
ELE 4 m	VATION A.S.L.	MINER C B A D G G	ALOGICAL PF Chlorite Biotite Amphibole Diopside Garnet Epidote	<u>REFIXES</u>	CLATIC	
TI		Ap Q Ab Ca	Magnetite Arsenopyrite Quartz Albite Calcite	S.H. F	OWIN 362	of CHURCH
n			DLS Fault Breccia Quartz vein Quartz vein Dyke	(mappable w	ocion idth)	DWS P
TÌ		Note:	Maximum of mineralogica to describe	three prefixes use ithologies.	ed	
n			minerals in a names arrar increasing a more abund closer to th than a less mineral.	iged in order mounts, i.e. ant mineral f e root name abundant	of a alls	
n						
~		1	Westmin Re	sources Limi	ited	
n		Work By S. ROWNS Date Drafted Nov. 8, 1996 Drafted By J.M. Klein Date Revised	RACI DRI DDH a RI	IE PROJECT LL SECTION >96-01, RC-96-02		
Υ		Revised By				
		N.I.S. Number XXXX File Name DRILLSEC	5 0 HHHHHH SCALE	5 10 1 : 50 0	+igure 4	
						-

2

					GE		
)m				A	or octo		
)m				EMENT	AL SUR		
)m				REPOR	VEY BR		
)m				T	ANCH		
)m							
)m		LITHOI S Sk Ma QP	E CF E 1 <u>OGY</u> Schist Skarn Marble Quartz granite porp Quartz granite porp	hyry			
)m		LT	porphyry Crystal—lithic felsic	lapilli-	-tuff		
)m)m	ELEVATION A.S.L.	MINER C B A D G E S S M A P Q A D	ALOGICAL PREFIXES Chlorite Biotite Amphibole Diopside Garnet Epidote Albite & Scapolite Magnetite Arsenopyrite Quartz Albite	Star Star	ASSO M. R F 6	MATTON CA: CALLER DWINS	
)m			Calcite Calcite DLS Fault Breccia Quartz vein Quartz vein (mappo Dvke	able w	FEL VatoL idth)	OW Love and	1
)m		Note:	Maximum of three mineralogical prefixe to describe litholog Minerals in compos	es use ies. ite roc	ed ck		
)m			names arranged in increasing amounts, more abundant mir closer to the root than a less abundo mineral.	order , i.e. neral finame ant	of a alls		
)m							
)m		Work By S. ROWNS Date Drafted Nov. 8, 1996 Drafted By LM. Klein Date Revised	Westmin Resource RACINE PROJ DRILL SECTION DDH's RC-98-03, RC	s Limi ECT -96-04	ited		
)m		Revised By N.T.S. Number XXXX File Name DRILLSEC	LOOKING NW 5 0 5 UUUUUUU SCALE 1 : 500	10	Figure 5		

.

	F		4	.	
m			ASSE	0100103	
m			SSMEN	NL SI	
m			T REPOI	RVEY B	
m			RT	RANCH	
m					
m	LITHOL S S Sk S Ma M QP (QFP (CGY Schist Skarn Marble Quartz granite por Quartz feldspar gr	rphyry ranite		
m	F LT (oorphyry Crystal—lithic felsio	c lapilli-	-tuff	
ELEVATION A.S.L. m	MINERA C C B E A A D C G C E E As A M N Ap A	ALOGICAL PREFIXES Chlorite Biotite Amphibole Diopside Garnet Epidote Albite & Scapolite Magnetite Arsenopyrite	S CONCERNING		OWINS 362
m	Ab A Ca C <u>SYMBO</u>	Auartz Albite Calcite <u>PLS</u> Fault		FEI	OW OWNER
m	Note: M	Breccia Quartz vein Quartz vein (mapp Dyke Maximum of three	oable wi	dth)	
m	n t n ir n c t n	nineralogical prefi to describe litholo dinerals in compo- names arranged in ncreasing amount nore abundant m closer to the root than a less abund nineral.	xes use gies. site roc n order s, i.e. o ineral fo name dant	d of ills	
m					
m	Work By S. ROWINS Date Dratted Nov. 8, 1996 Dratted By J.M. Rein Date Revised	Westmin Resourc RACINE PRO DRILL SECTI DDH7: RC-96-05, R LOOKING N	es Limit NECT C-96-06	ed	
m	Revised By N.T.S. Number XXXX File Name DRILLSEC	5 0 5 1111111111111111111111111111111111	10 00	Figure 6	

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

