PACIFIC GEOPHYSICAL LIMITED

Gold Commissioner's Office

DEC 0 6 1996

REPORT ON THE

CONTINUATION OF

INDUCED POLARIZATION AND RESISTIVITY SURVEYING

AND MAGNETIC SURVEYING

AS WELL AS

DOWNHOLE INDUCED POLARIZATION AND RESISTIVITY SURVEYING

ON THE

CARIBOO MINERAL PROPERTY

J1, STU1, NMG 25-31 CLAIMS

CARIBOO MINING DIVISION, BRITISH COLUMBIA

FOR

NOBLE METAL GROUP INC.

LATITUDE : 52 47' N LONGITUDE : 121 30' W

N.T.S. 93A/13E/14W

PROPERTY OWNER: NOBLE METAL GROUP INC. PROPERTY OPERATOR: NOBLE METAL GROUP INC.

FILMED

BY

PAUL A. CARTWRIGHT, P.Geo. GEOLOGICAL SURVEY BRANCH Geophysicist ASSESSMENT REPORT

DATED: NOVEMBER 996

SUMMARY

Induced Polarization(IP) and resistivity, and total field magnetic surveys have been continued on the Cariboo Mineral Property, Cariboo M.D., B.C., on behalf of Noble Metal Group Inc. In addition, one diamond drill hole was also surveyed using the downhole induced polarization and resistivity method. A number of anomalous IP Zones are outlined by the data recorded by the surface surveys, in some cases coincident with areas of interesting magnetic response. Analysis of both the surface and the downhole resistivity data, as well as the magnetic data points to the presence of a number of prospective faults and other structures, which could be related to interesting economic mineralization. Drilling is recommended to test the sources of many of the anomalous IP Zones, together with fault zones. Additional geophysical surveying has also been recommended to further outline faults using airborne EM and Magnetometer methods.

TABLE OF CONTENTS

PART	Α	REPORT	PAGE
	1.	Introduction	• 1
	2.	Instrument Specifications	• 2
	3.	Property Geology	. 2
	4.	Description of Claims	. 4
	5.	Presentation of Data	. 4
	6.	Discussion of Results	. 6
	7.	Conclusions and Recommendations	. 10
	8.	Personnel	. 12
	9.	Statement of Cost	. 13
	10.	Certificate : Paul A. Cartwright, P.Geo	. 14

PART B ILLUSTRATIONS

Location Map	• •	•	•	•	•	•••	•	•	•	•	•	•	٠	•	•	•	Fig.	1	
Claim Map .	• •	•	•	•	•	• •	•	•	٠	•	•	•	•	•	•	•	Fig.	2	
Geophysical	Comp	i l	at.	io	n N	1ap	•	•	•	•	•	•	•	•	•	•	Fig.	3	
IP N=1 Conto	ur ð	ιI	nt	er	pre	eta	ti	on	Ma	ър	•	•	•	•	•	•	Fig.	4	
Resistivity	N = 1	Co	nt	oui	r 8	i i	inte	erp	pre	eta	ıti	or	n M	lar		•	Fig.	5	
Magnetometer	Cor	nto	ur	&	Ir	nte	rp	ret	at	cic	n	Ma	р	•	•	•	Fig.	6	
IP/Resistivi	ty [DH	96	-1	Do	own	ho	le	Pr	of	il	.es		•	•	•	Fig.	7	
IP Pseudosec	tior	n D	ata	a I	210	ots			•	•	•		•	•	•		Dwg.1	ю.	1-5

•

Ņ

1. INTRODUCTION

The 1996 continuation of Induced Polarization (IP) and resistivity, and total field magnetic surveying, initially commenced in 1995, has been completed on the Cariboo Mineral Property on behalf of Noble Metal Group Inc. by Pacific Geophysical Ltd. The reader is referred to a Geophysical Report by this same author, dated September 29, 1995, for additional information concerning the 1995 work. A downhole IP/resistivity survey has also been completed during 1996 in DDH96-1.

The Cariboo Mineral Property is located approximately 21 kilometres north-northeast of the Community of Likely, British Columbia. Access to the property is via the Keithley Creek logging road from Likely.

The area has been sporadically explored for both lode and placer gold since the 1860's. Noble Metal Group Inc. is presently preparing a placer mine for production on a section of Keithley Creek, located immediately southwest of the present geophysical grid.

The objective of the present geophysical surveys was to test for the presence of metallic sulphide mineralization, possibly associated with economic gold values.

The 1996 geophysical field operations commenced on June 13, 1996, under the direction of Paul Cartwright, P. Geo., Senior Geophysicist, with the Phase 1 surface geophysical program being completed on July 2, 1996. The downhole program was carried out on July 10-11, 1996. A total of 16.5875 l.km. of IP and resistivity data, and 18.625 l.km. of magnetic data were acquired. In addition, 170 metres of diamond drill hole DDH 96-1 were measured using the IP/resistivity technique.

2. INSTRUMENT SPECIFICATIONS

An EDA Model IP-6 six channel time domain IP/resistivity receiver using "mode 3 (Td=80ms,M1-M10=4X80ms,3X160ms,3X320ms)", together with a Phoenix Model IPT-1 transmitter and 1.0 kw motorgenerator, that produced a two second on/two second off square wave signal of alternating polarity, were used to make all the IP and resistivity measurements. IP effects were recorded as chargeability in milliseconds while apparent resistivity values were normalized in units of ohm-meters. Dipole-dipole array was utilized to make all of the surface measurements, and, with several exceptions, used an interelectrode distance of 25 metres recording five separations at each station. Portions of Line 900N and 300N, as well as Lines 349N, 325N, and 275N were surveyed using 12.5 metre dipole lengths and 4 separations. The downhole IP/resistivity work used energizing circuits connected between the drill collar and points 200 metres to the NNW and ESE. A 5 metre potential dipole was utilized to measure voltages down the hole.

Total field ground magnetometer measurements were made using a GEM Systems Model GSM-19 magnetometer. An EDA Model PPM375 recording base station was used to correct the diurnal variations.

3. PROPERTY GEOLOGY

The following geological description has been provided by the

staff of Noble Metal Group Inc.;

" The Cariboo Mountain Belt has been subdivided into four distinct terranes, each one bounded by two major thrust faults. The Cariboo Gold Property is located within the Barkerville Terrane which is bounded to the east by the northeast dipping Pleasant Valley thrust and to the west by the southwest dipping Eureka thrust. The terrane is characterised by continental shelf clastics, carbonates and volcanics, more specifically grit with black quartz grains and black siltite. The rocks have been metamorphosed and vary from chlorite to sillimanite grade, although in the vicinity of the Cariboo Gold Property, the rocks are of chlorite grade. The Cariboo Gold Property is underlain by metasedimentary rocks of the Cariboo Group, principally the Snowshoe Formation; the rocks are considered to range in age from Hydrynian to Palaeozoic. The Snowshoe Formation is the youngest known of the Cariboo Group. The Formation is composed predominantly of clastic rocks with subsidiary limestone. Micaceous quartzites are the commonest type of arenaceous rock, while the argillaceous rocks are mostly phyllites with fine siltstones. The calcareous rocks of the Snowshoe Formation are important because of gold-bearing pyritic replacement of certain beds.

In the Cariboo area, gold mineralization occurs as follows:

1. As auriferous pyrite in quartz veins

2. As pyritic replacement ore in limestone

The Barkerville Terrane is cut by several generations of quartz veins the majority of which are barren. It is reported that

some mineralized veins carry up to 25% pyrite with up to 70 grammes per ton of gold (Aldrick 1983).

The replacement ore consists of massive pyrite lenses, with the finest sulphides containing the highest gold values. Structural control would appear to be important as the lenses are localized in the crests or troughs of the minor folds, in steeply dipping limbs of the main folds and in flat lying tabular lenses where the limestones have flattened (Aldrick). It has been suggested that the veins have developed outward from the replacement ore.

4. DESCRIPTION OF CLAIMS

The geophysical work took place on parts of the following claims:

<u>Claim Name</u>	<u>Units</u>	<u>Anniversary Date</u>	<u>Tenure No.</u>
J 1	20	Oct. 12, 2001	204123
STU 1	12	Aug. 17, 1998	204184
NMG 25	1	Aug. 08, 2001	320323
NMG 26	1	Aug. 08, 2001	320324
NMG 27	1	Aug. 08, 2001	320325
NMG 28	1	Aug. 08, 2001	320326
NMG 29	1	Aug. 09, 2001	32032 7
NMG 30	1	Aug. 09, 2001	320328
NMG 31	1	Aug. 09, 2001	320329

The mineral claims are located in the Cariboo Mining Division, Province of British Columbia.

5. PRESENTATION OF DATA

The 1995 as well as the 1996 IP and resistivity results are shown on the following data plots in pseudo-section format. Only the 1996 results are tabulated below.

Dwg. No.	Line	Electrode Int.	Reading Int.(outermost	electrodes
IP-1	1500N	25 metres	1460w-450w	
18	1400N	25 metres	1460W-800W	
17	1300N	25 metres	1460W-1375W	
	1200N	25 metres	1460W-0E	
IP-2	1100N	25 metres	1460W-125E	
"	1000N	25 metres	1600W-0E	
"	900N	25 metres	1600W-0E	
**	900N	12.5 metres	725 W-600W	
IP-3	800N	25 metres	1600W-0E	
"	700N	25 metres	1600W-50W	
"	500N	25 metres	0-800E	
	400N	25 metres	100E-700E	
IP-4	350N	25 metres	1600W-0E	
"	349N	12.5 metres	900w-750w	
"	325N	12.5 metres	875w-737.5w	
11	300N	12.5 metres	825W-700W	
	275N	12.5 metres	825W-700W	
n	300N	25 metres	1500W-1050W	
IP-5	200N	25 metres	1400w-950w	
н	100N	25 metres	1225w-700w	
"	0 N	25 metres	1250w-900w	

Where applicable, the 1995 data has been incorporated with the 1996 data on the following plan maps which are also included with this report:

Fig.No.6 - 1:5000 scale contoured, posted & interpreted magnetic plan map

Fig.No.7 - 1:1000 scale downhole IP/resistivity profiles, DDH96-1 The IP anomalies are indicated by bars in the manner shown on the Fig.No. 4 plan map legend, as well as on the pseudo-sections. These bars represent the surface projections of the anomalous responses interpreted from the transmitter and receiver electrode

5

)

locations when the anomalous values were measured, and should not be taken as representing the exact limits of the causative source(s).

6. DISCUSSION OF RESULTS

The is referred principally to Fig.No.3, reader the geophysical compilation plan map, which illustrates the combined induced polarization/resistivity/magnetic interpretations. While a number of zones of anomalous Induced Polarization (IP) effects are indicated in the data recorded on the Cariboo Mineral Property geophysical grid, of equal interest are the large number of crosscutting fault structures. These features, which are indicated primarily by the resistivity data, with support from the magnetics in some cases, could provide a means by which mineralization is emplaced. Many of the anomalous IP zones appear to be associated with fault structures of some kind. The IP zones are discussed in the following paragraphs.

<u>IP Zone A1,A2,A3,A4,A5</u> - These zones are clustered in the general area of the 1996 baseline, between Line 700N and Line 300N. At least two northwest trending faults are thought to bisect this region, sometimes offsetting the sources of the IP responses.

Zones A1 and A2 are narrow bodies giving rise to highly anomalous IP effects and very low resistivity values, while Zones A3 and A4 are caused by wider sources displaying the same highly anomalous IP readings, together with moderately low resistivity measurements. IP Zone A5, on the other hand, is best seen in the data recorded on Line 700N, between 900W and 825W, where moderately anomalous IP values are noted with only marginally lower than background resistivity measurements. From the above signatures, Zones A1 and A2 would be expected to be caused by the most concentrated metallic sulphides, while Zone A5 would be expected to be due to disseminated mineralization, with Zones A3 and A4 being classified between the others.

IP Zone A1 has been drill tested, with some heavy metallic sulphide sections being intersected in the core. It is not certain if the source of IP Zone A3 has been drill tested by the extension of one of the holes drilled to test Zone A1, because the drill hole in question passed below the range of the current IP and resistivity surveys. It would appear that the sources of all of the above zones should be buried less than 25 metres subsurface, however, it is difficult to judge the downward extent of any source.

IP Zone A3 is also coincident with considerably higher than normal magnetic values.

IP Zone B1.B2.B3.B4.B5 - A least five northwesterly striking faults are interpreted to cut obliquely across these northerly trending IP zones. In addition, a regional fault extends alongside or through all of the above mentioned IP Zones.

Many of these IP zones are accompanied by somewhat higher than background resistivity readings, which, together with moderately high, or better, amplitude IP effects, suggests that mainly

7

disseminated metallic mineralization, possibly hosted by quartz veins, are the source of these IP zones. However, the prominent low resistivity zone that marks the regional fault makes it impossible to estimate the true resistivities of some of the IP zones.

Zone B2 displays the highest magnitude IP values, together with some anomalously high magnetic readings. The source of Zone B5 has been tested by a single diamond drill hole, which reportedly encountered metallic sulphides. However, the westward drilling hole was terminated due to technical problems before intersecting the regional fault lying along the western flank of IP Zone B5.

In every case depths to the tops of the sources of the geophysical responses are indicated to be within 25 metres of the surface.

<u>IP Zone C1,C2</u> - Both of these zones are best outlined by data recorded by the 1995 survey on Line 0, with Zone C1 showing the higher IP values. IP Zone C1 has been tested with two drill holes which returned disseminated and stringered metallic sulphides.

A downhole IP/resistivity log was run on DDH96-1, located on Line 0, at Station 110W. The top 170 metres of hole were logged. Generally speaking, the IP results were initially high near the hole collar, decreased and then increased steadily as the hole deepened. Two separate transmitter circuits were employed, in order to ascertain the possible strike direction of mineralization detected around the hole. IP readings from both transmitters were roughly similar, and therefore did not provide a preferred direction of mineralization. The downhole resistivity results, on the other hand, do exhibit a distinct asymmetry, with the ESE transmitter giving rise to much lower values. It is probable that the ESE circuit is paralleling a northwest trending fault interpreted to strike along the western margin of Zone C1.

<u>IP Zone D1, D2, D3, D4, D5, D6, D7, D8, D9</u> - These IP zones form the highly anomalous core portions of what appears to be a larger zone of more moderate IP effects that extends across the northern and northeastern regions of the survey grid. Almost without exception, the highest magnitude IP readings are coincident with the lowest resistivity values. IP Zone D6 is the exception, with higher than normal resistivities coincident with the IP anomaly. There appears to be extensive faulting present, mainly striking northwest and northeast.

High magnitude magnetic readings are noted coincident with IP Zone D1, which has been drill tested, and it is the author's understanding that metallic sulphides were encountered.

IP Zone D9 is also coincident with elevated magnetic readings, and extends from the Noble Metal Group Inc.'s NMG 25 & 26 claims onto the adjacent DID #2 & #3 claims, which are not owned by Noble Metal Group Inc. at this time. The IP effects that make up this feature are among the highest recorded on the Cariboo Mineral Property grid.

Depths to the tops of the causative material of the above IP zones is less than 50 metres sub-surface.

<u>Weakly Anomalous IP Zones</u> - A number of weakly anomalous responses are indicated in the IP/resistivity data, but have not been assigned identifiers due to the low magnitudes and/or indefinite signatures of the zones. A possible exception is the weakly anomalous zone marked on Line 900N, in the vicinity of Stations 675W-650W. Here, a relatively narrow, weakly mineralized, and resistive source is detected. Such a pattern could be caused by a mineralized quartz vein, buried less than 10 metres deep. This zone is interpreted to also extend northward to the vicinity of Line 1000N Stations 750W-700W.

7. CONCLUSIONS AND RECOMMENDATIONS

The present interpretation of the Induced Polarization (IP) and resistivity surveying, and magnetic surveying carried out on the Cariboo Mineral Property shows a number of anomalous IP zones, which are intimately associated with a extensive network of fault structures. These faults include a major regional north-south structure that bisects the entire grid, as well as other lesser features that offset many of the IP zones. As the IP zones could be outlining gold bearing metallic mineralization emplaced by, or otherwise associated with, the faulting, it is recommended that all of the identified IP Zones be considered for drill testing, on the following priority basis:

<u>High Priority Targets</u>	(- IP	Zone A3	(near surface in	tercept)
	(- IP	Zone A5	(possible quartz	zone)
All zones recommmended	(- IP	Zone B2	(possible quartz	zone)
for drilling	(- IP	Zone B3	(possible quartz	zone)
	(- IP	Zone B4	(possible quartz	zone),
	(- IP	Zone D9	(v.anomalous IP,	mag.)

10

<u>Medium Priority Targets</u>	(- IP Zone A2
	(- IP Zone A4
	(- IP Zone Bl
Initially drill 4 zones,	(- IP Zone C2
then re-evaluate program	(- IP Zone D2
based on results	(- IP Zone D3
	(- IP Zone D4
	(- IP Zone D5
	(- IP Zone D6 (resistive source)
	(- IP Zone D7
	(- IP Zone D8
	<pre>(- Line 900, 675W-650W (resistive)</pre>

Low Priority Targets - All low magnitude IP anomalies Drilling is not recommended at the present time

<u>Previously Drilled Targets</u> - IP Zones A1, C1, D1, B5 should be evaluated in light of recent assays, drill logs, etc., to determine if additional drilling is warranted

<u>Recommendations For Other Work</u> - It appears that many of the fault structures in the region could be detected using resistivity, or conversely, conductivity techniques. Therefore, it is recommended that the entire property be surveyed by using an airborne electromagnetic/magnetic survey technique, in order to outline areas of intense faulting, and near-surface alteration.

Pacific Geoph vsical Ltd. Paul A. Cai twright, P.Geo. A. CARTWRICH

Dated: November 7, 1996

8. PERSONNEL

The personnel employed during the data acquisition and reporting stages of the Cariboo Mineral Property IP/resistivity, and magnetometer surveys are listed below.

<u>Address</u> Date Employed Occupation <u>Name</u> P.Cartwright Geophysicist 4508 W13th Ave., Vancouver Jun13-Jul2/96 Jul10-11/96 Aug16-17/96 Oct23-Nov7/96 D.Helliwell Geophysicist 4659 Simpson Ave., Vancouver Nov1-7/96 Geoph. Assis. Gen. Del. Port Hardy, B.C. Jun13-Jul2/96 S.Oakley M.Major Geoph. Assis. 425 E 11th Ave., Vancouver Jun13-Jul2/96 Jul10-11/96 Aug16-17/96 D.Martinson Geoph. Assis. Gen. Del. Ft.St.James, B.C. Jun13-Jul2/96

PACIFIC GEOPHYSICAL LTD. Paul A. wright, Ca P.Geo. A. CARTWRIGHT BRITISH

Dated: Nov. 7, 1996

Aug16-17/96

9. STATEMENT OF COST

Noble Metal Group Inc. J1, STU1, NMG25-31 Claims Cariboo M.D., B.C. NTS 93A/14W

1) IP/resistivity, magnetics

Data Acquisition Mob-demob

2) Downhole IP/resistivity

Data Acquisition Travel

Data processing, Interpretation, Reporting \$ 3300.00 & Consulting

> GST 7% \$ 33209.38 \$ 2324.66

Total

\$ 35534.04

\$ 24409.38

2500.00

2000.00

1000.00

Ś

\$

Ś

Pacific Geophysical Ltd. Paul A. Cartweig Geo.

Dated: Nov. 7, 1996

10. CERTIFICATE

I, Paul A. Cartwright, of the City of Vancouver, Province of British Columbia, do hereby certify:

- 1. I am a geophysicist residing at 4508 West 13th Avenue, Vancouver, British Columbia.
- 2. I am a graduate of the University of British Columbia, with a B.Sc. degree (1970).
- 3. I am a member of the Society of Exploration Geophysicists, and the European Society of Exploration Geophysicists.
- 4. I have been practising my profession for 26 years.
- 5. I am a Professional Geoscientist registered in the Province of British Columbia. I am a Professional Geophysicist licensed in the Province of Alberta.

Dated at Vancouver, British Columbia this 7th day of November, 1996.

<u>-0</u>.

													-						-	-	х.																			
_15+50 W	15+00 W	 1∳4+,50 ₩/	14+00 W	13+50 W	13+00	w 12+	50 W	12+00 W	11+50 W	11+00	W	10+50 W	10+00 W	9+50 W	9+00 W	8+5	50 W	8+00 W	7+50 W	7+00 W	6+50 1	N . 6+(00 W	5+50 W	5+00 W	4+50 W	4+00 W	3+50 W	3+00	w :	2+50 W	2+00 W	1+50 W	1+00 1	W 0+5	50 W		line	1200	N
634 67	6 730 748	811 738 	619 619	697 920	0 1031	1110 1191	1061 94	46 561	401 402	511 5	511 565	693	859 1032	1184 1110	10.36 9	17 971	860 652	2 560	633 740	786 82	15 874 0	518 962	1136 999	973	549 336	339 398	472 540	450 27	204	91 64	74	71 217	341 531	648 7	713 760	976 ((0hm-m)	LINC	1200	1 4
403 \ · 39 547	5 505 534 602 638	837 836	428 414	511 863 446 775	3 1192 1 1384 940~	1598 - 1280	1048 14	414 822 566	448 638	<u>892</u> - 4	479 <u>393</u> 573	704 739	1218 1681	· 2260 1847	1854 13	23 1524 ~ . 1064 1:20	1370 939 Na	575	611 808	783 63	A 565 3	196) 739 529 10	1226 <u>869</u>	1330	659 281 // 215 400	<u>226</u> 506	862 - 1136	1001 644	605		<u>26</u>	38 10.409	381 489	474 4	463493	904 n	=1	Dipole	-Dipole Ar	ray

	15+50 W		15 1 00 W	i i	H+50 ₩	14+0	0 W _	13+50	w	13+0	0 W .	12+	50 W	124	00 W	11+	50 W	, <u>11</u> ,	+00 W	1	10+50 W		10+00	W	9+	50 W		9+00 W		8+50 W	<u>.</u>	8+00 W	,	7+50 W	1	7+00	W	6+50	w	6+0	<u>.</u>	5+5	60 W	5	+00 W	-	4+50 W	4	4+00 W		3+50 W		3+00 W	2	+50 W	2+00	o w	1+50 \	l	1+(
filter	582 662	2 764	871	944	909	811	663	612	664	643	710	876	622	427	470	444	794	881	1275	1521	153	5 14	154	1807	1776	1363	1363	13 10	52 90	1 11	131	833 8	69 1	124 1	165 1	1181	1151	946	909	960	891	914	993	748	242	401	678	97	5 957	7 10	14 85	74	8 445	376	422	202	563	847	i97 80:	5
n≖1 4 n=2 n=3 n=4	404 <u>406</u> 533 762	6 490 860 2 773 820	714 714 926 947 1			697 1 593 673 0 766	438 572 715 831	410 . 603 . 723 615	712 612 510 505	604 624 578 614	637 68 650 111	528 9 80 1140 13 62	595 462 43	405 12 3 383 74 3	465 66 48 330 (22 43	311 699 61 60	1031 25 9 424 04 5	826 14 1227 01 1	369 1119 1382	1920 009 1725 965	1838 1641 1265 1349	8 100 1194 5 130 1319	1235 1235 206 2253	1423 2455 2182 198	1311 5 12 2150 8 22	947 232 1 1323 216 1	1384 1074 1084 1313 (4 . 73 1369 4 130 967	55 80 620 05 110 1628	21: 1151 12 543	927 54 516	173 9 676 128 8 757	74 12 1008 17 12 1044	254 11 1146 258 13	174 1 1348 306 1 1031	1093 1093 1000 746	1920 	1139 695 920 (1041	893 915 1003 1012	1005 975 902 684	812 676 724 978	867) 114 970 ,154	1125 12 15 1784 10 22	944 	73 - 92 - 239 417	224 298 295	449 675 438	141 1206 92 593	7 1050 1152 1111 806	0 12' 1067 8 10' · 1057	16 718 1034 - 10 132 1206	1002 590 715	540 540 368 389	490 322 429 528	1048 388 178 252	356 11 132 85 120	1258 896 1128	803 - 7 633 91; 9 906	39 103 779 12 784 889	103 1
n=5		100-	• 1025 Did Clain	1065 	815	\$29	866	. 700	609	569 /	1042	587	659	\$ 387	399		729	τ άε	► 1237 [°]	· 771 [°]	1397	ז' מי	257	1964	1959	2176	1136	6 114	48 71	á 52	24 :	96 BaseLine	01 1:	507 [°] — 14	KC3 \ 1	837	917	934 🗸	1066 /	767	943	1516 -	204	- 520 -	488	416	385	54	117	, 1 11	87 624	452	2 - 578	· 295	244	281	- 159	14 ~ 1	31 590	I
	15+50 W		15+00 W	 14	1+50 W	14+0	ow,	13+50	w	13+0	ow,	12+	50 W	124	00 W	11+	+50 W	, <u>11</u> -	+00 W	1	10+50 W		10+00	w .	9+	50 W	++	9+00 W		8+50 W	!	<u>क</u> 8+00 w		7+50 W	Y	7+00	W.,	6+50	W.	6+0	w.	5+5	io w	5	+00 W		4+50 W		4+00 W		3+50 W		3+00 W	2.	+50 W	2+00) W	1+50 V		11+(
filter	2.6 2.5	5 2.5	2.6	2.7	2.7	2.6	2.5	2.5	2.8	2.9	3	3.3	3.5	3.5	4.2	4.1	4.7	4.9	5.5	5.8	5.9	6.	5.2	6.7	6.9	6 .7	\$.5	5 6	.1 5	5 5	15	5 4	.7	L4 4	1.4	4.4	4.5	4.4	4.4	4.3	4.9	5.5	6.4	7.4	9.5	9.5	9.2	9	7.7	7.	6 8.8	12	18	28	31	38	36	33	32 29	
n=1 2 n=2 n=3 n=4 n=5	2.6 2 2.5 2.7	2.1 2.4 7 2.4 2.8 2.9	2.1 2.4 2.6 2.6 3.3	22 2.5 1 2.8 2.8 2.8	$24 \\ 27 \\ 27 \\ 3 \\ 31 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 2$	2.3 8 1.9 2.6 8 1.4	$\sum_{\substack{25\\23\\23}}^{22}$	2.1 2.2 3 2.7 3	333 2.9 2.5 (1.8) 2.7	3 29 22 25) ³ 2.8 2.8 4.1	3 - 8 32 32 7 32 33	2.7 3 2 2.9 7 4.6	24 3 3 3.7 5.5	2.9 4 3.1 3.8 6.1	1.8 5 1 2 5 2 5	3.6 12 3.4 19 5 7.1	3.4 3.4 4.9 - 5.8 - 7.9 -	3.9 3.9 5.2 6 7.3	4.2 5.1 5.3 5.9 - 8.1	3.7 4 5.4 7.1 8.5	42 42 5. 7.4 9.	9.4 9.7 9.1	3.7 6.6 8.3 8 8.2	4.4 7.7 7.3	4.4 8.1 6.5 7.5 8.1	3.8 5.6 7.4 7.5 8.7	5.7 5.7 7.3	3 3. 4.3 7 5. 0.2 1 8	5 5 4.5 5.6 3 6	5 4.9 k1 4.6 k8	3.9 3 4.2 4.8 4 5.6 5.2 6	2 3.8 9 4 5.7 .4	3 3 3.5 1.4 4 5.8 1.1 5	3.9 1.1 1.5	3.4 3.6 4.5 4.1	4 4.1 5.1 6	3.6 4.3 4.8 4.7 6	3.8 4 4.5 4.7 • 4.7	3.7 4.4 4.4 3.5 3.3	4.3 4.8 4.4 4.9 4.1	3.8 4.1 4.7 5.8	3.4 4.5 14	26 4 11 4 12	8 11 10 11 8.6	9 6.1 7.5	9.6 6.2 5.2 12	9.8 (11 10 11	- 3.8 8.1 8.5 12 13	4. 3.8 9.5 1	2 26 4 3 5.1 0 10	26 28 84 31	4.8 29 29 36	13 - 22 33 34 31	29 28 27 35	18 46 50 46 36 36	29.1 29 59 59 43	16 26 32 35 64	24 22 34 27 32 25 33 25	25 12
	15+ 50 W	1	15+00 W	1 	₩.50 ₩	1 4+ (юw.	13+50	w .	1 3 i 0	юw.	12+	50 W	. 12-	.00 W	. 114	+50 W	11	+00 W	. 1	10 1, 50 W		10+00	W	9+	⊧50 W		9+00 W		8+50 W	۷.	8400 W	1	7+50 W	۷.	7+00	W.	6+50	W	6+0	₩.	5+5	60 W	. 5	+00 W		4+50 W		4+00 W		3+50 W		3+00 W	. 2	+50 W	2+00	. .	1+50 \	v .	1+(
filter	5 3.9	9 3,4	1 3	2.9	3.1	3.2	3.9	4.1	4.2	4.5	4.4	5.4	6.5	8.5	9.2	§.2	7.1	6.1	5.2	4.5	4.1	1 4.	1.4	3.8	4.1	5.1	5.1	1 6	.1 6	5 6	5.1	6.5 5	.3	4.2 3	3.9	4.1	4.3	4.7	4.8	4.6	7.7	11	16	31	59	26	16	1	9.4	9.	.8 15	26	48	82	165	259	206	126	82 53	,
n=1 n=2 n=3 n=4 n=5	6.4 } 4.9 4.7 · 3.5	9 4.3 3.6 5 3.1 3.4 2.9	3.4 3.4 2.7 3.2 ·	2.7 2.7 2.5 2.6 	$ \begin{array}{c c} & 3.4 \\ 2.6 \\ 2.6 \\ 3.3 \\ 3.3 \\ \end{array} $	1 33 1 32 2 47	5 4.4 3.5 2.9 2.7	- 51 3.6 4.1 4.4 4.3	4.6 4.7 4.9 3.6 4.4	5 5 5 3.6 4.4	4.3 4. 4.3 3.9	57 - 1 4. (28 3 5.6	4.5 1 5 6.3 9 8 7 () 5.9 .7 9 9.7 .9 14	6.2 .3 7. 12 2 12 15	5.8 2 7.2 2 2 9	2.5 8 9.7	4.1 3.6 12 14	43 5.9	2.2 2.5 3.1 6.1 10	2 24 4.3 5.3 6.3	3. 3.5 5.6 4.	8.1 ~ 4 6.1 4 6.3	2.6 2.7 3.8 4.2	3.4 3.6 3.7	4.5 5 4.9 3.4 3.7	2.7 5.2 6.8 5.7 7.7	4.2 5. 7.5 7.5	5 4 5 52 4 5 9 1	3.9 7. 10 1	24 - 5.3 - 1.4 8.9 13	4 3 	3 3.6 9 5.5	2.4 2 3.1 (3.5 3 3.6 4.7 3	2.9 2.9 3.1 4.4 3.9	22 	2.1 4.2 6 6.5	- 3.2 - 4.8 - 5.2 - 4.5 - 6.4	4.3 4.4 4.6 4.5 4.4	3.7 4.9 5.1 4.3	6.1 4.3	3.8 3.8 3.8		128 3 4 4 4 24	109 116 43 27 18	31 40 24 21 18	2) 13 14 30		3.6 -7 7 7.6 15 18	3.6 9 9 8	5 3.6 3.9 2 3.1 4.2 4.2 16	26 26 11 13	70 89 70 75 61	25	12 75 157 107	51 41 589 400 127	462 404	20 11 138	33 - 21 43 30 - 41 28 39 - 42)21 (B

8+50 W	8+00 W	7+5	<u>0 W 7-</u>	+00 W	6+50 W	6+00 W	5+50 W	5+00 W	4+50 W	4+00 W	3+50 W	3+00 W	2+50 W	2+00 W	1+50 W	1+00 W
2 783 807	930 9	58 910	1364 1394	1100	1136 1142	1016 879	884 690	621 456	547 842	1071 993	853 960	1097 1349	1036 BI	1 841 927	507 542	679 74
4 869 907 1131 487 903 738 524	1045 11 1045 11 1133 8	46 992 795 943 60 855	2630 2456 3 1591 1 916 366	1074 050 11: 1302	1171 1616 78 1203 1253 / 882	- 1413 735 1069 802 638 1166	787 541 1145 783 1070 789	647 241 623 462 393 653	665 959 425 398 352 576	1147 1083 1493 - 1486 1756 1025	772 979 722 964 808 712	1072 1587 832 1541 1231 2018	983 11: 1911 606 1082 42	22 - 1030 - 1672 869 (1830 17 (1291 - 607 -	666 827 678 555 469 445	1378 143 690 807
503 (789 692 619 1080	1060 -	928 845 67 922	5 <u>692</u> 1 679 966	341 14 1520	18 969 (1167 777	429 905 943 827	973 631	490 5D4 615 401	521 <u>555</u> 770 640	650 1187 437 1169	1077 530 / 450 724	1006 <u>1650</u> 1286 869	1094 596 663 63	553 JB4 165 J64	476 421 573 368	372 348 203 24
	196 BaseLine															
8,50 W	10	715	AW 7	i con w	6150 W	6100 W	5.150 W	5100 W	4+50 W	4100 W	1150 W	3100 W	2150 W	2100 W	1150 W	1.00 W
6.8 6.8	6.6 6	3 6.2	8.1 55	5.5	5 4.8	4.8 4.6	4.5 4.9	5.3 5.9	7.8 11	11 11	8.5 9.4	8.5 8.6	9.3 1	1 13 15	18 21	22 24
$\begin{array}{c} 11 & 3.6 \\ -7.1 & 3.9 & 5.5 \\ 9.5 & 9.4 & 6.6 \\ 11 & 11 & 11 \end{array}$	38 7.1 7 89	4.5 5.7 7.1 4 - 7.6 7.8 4.8 1 6	6.3 5.8 4.8 4.2 4.7 4.7 4.7 5.8	4.5 6.1 6. 5.8 6. 6.7	3.4 4 -2 3.6 -5.5 3.8 -4 4.4 7.7 7.3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.5 10 4.4 12 10 11 11 8.5 8.8 8.5	12 10 13 11 12 12 9.7 12 10 11	4.6 7.7 12 7.2 13 7.3 11 13 10 16	$\begin{array}{c} 44 - 56 \\ 7.7 \\ 11 \\ 9.8 \\ 6.9 \\ 6.9 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ $	6.6 5. 6 / 5 / 11 7.5 / 11 9 / 11 13 / 11		9.2 12 12 17 19 23 22 24 25 20	15 20 23 21 22 29 21 30 30 26
8+50 W	8+00 W	7+5	10 W 7-	+00 W	6450 W	6+00 W	5+50 W	5+00 W	4+50 W	4+00 W	3+50 W	3+00 W	2+50 W	2+00 W	1+50 W	1+00 W
9.2 8.9	7.5 6	.7 6.8	5.4 45	5.1	4.5 4.5	5 5.5	5.4 7.9	9.3 13	16 16	12 13	12 11	9.2 7.9	16 2	2 26 31	45 47	49 44
$ \begin{array}{c} 3.6 \\ 8.3 \\ 7.9 \\ 11 \\ 9.7 \\ 16 \\ 12 \\ 9.8 \\ 10 \\ 10 \end{array} $	3.6 6.3 8 8 9	5 4.6 7.2 7.5 5 8.9 8.4 5.7 8 8.5	$\begin{array}{c} 24 \\ 45 \\ 45 \\ 46 \\ 68 \\ 69 \\ 69 \\ 69 \\ 69 \\ 61 \\ 61 \\ 61 \\ 61$	4.2 4.9 4. 4.5 4.3 4.	29 2.5 4 3 3 5 6.6 9.4	3.1 4.8 4 5.4 6.7 3.9 6.4 5.5 4.8 4.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.9 4.9 11 12 12 11 29	$ \begin{array}{c} 6.8 - 10 \\ 10 \\ 29 \\ 30 \\ 15 \\ 11 \\ 13 \\ 13 \\ 15 \\ 13 \\ 15 \\ 13 \\ 15 \\ 13 \\ 15 \\ 15 \\ 13 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$	8.6 7.3 6.7 11 15 10 23 5.6	-6 17 16 10 16 25 16 22	41 35 9.3 5.8 (9.1) 3.3 9.7 5 5.4 12	26 $1 = 16$ 20 13 13 13 13 13 13 14 13 14 13 14 13 14 14 14 14 14 14 14 14	42 11 94 18 8 49 28 94 18 8 49 28 94 19 94 18 94 18 18 18 18 18 18 18 18 18 18 18 18 18 1	14 14 1 18 30 52 40 52 46 57 44 55	11 33 36 57 146 11

.

00 W 0+50 W RESISTINTY	Line 1000 N
740 706 761 (Ohm-m)	
1436 1102 996 n=1	Dipole-Dipole Array
07 <u>802</u> 805 n=2	Dipole-Dipole Array
435 640 n=3	
46 308 n=4	
c=n c=1	
	a = 25 M
	plot point
	Logarithmic 1 1 5 2 3 5 7 5 10
00 W 0+50 W CHARGEABILITY	Contours 1, 1.0, 2, 0, 0, 7.0, 10,
24 26 22 ? (msec)	
20 20 18 n=1	INTERPRETATION
21 29 23 n=2	Strong increase in polarization
29 28 n=3	Moderate increase in polarization
27 n=4	
20 n-5	Weak increase in pokinzation
	Scale 1:2500
	2 <u>5 0 25 50 75 100 12</u> 5
	(metres)
00 W 0+50 W METAL FACTOR	
49 51 40 (ip/res * 1000)	NOBLE METAL GROUP INC.
14 18 18 n=1	INDUCED POLARIZATION SURVEY
36 36 29 n=2	Cariboo Gold Property
66 44 n=3	Cariboo M.D., British Colúmbia
114 n=5	Date: Jun/Jul 1996
	Interpretation by: PAC
	Pacific Geophysical
+00 W 0+50 W RESISTIVITY 537 459 472 (Ohm-m)	Line 900 N
504 627 529 n=2	Dipole-Dipole Array
324 492 n=3	a na a
106 270 n=4	
98 n=5	
	a = 25 M
	Logarithmic 1 1 5 0 7 5 7 5 10
	Contours 1, 1.5, 2, 3, 5, 7.5, 10,
18 18 16 (msec)	
- 35 84 / 183 n=1	INTERPRETATION
11 15 17 n=2	Strong increase in polarization
26 22 n=3	
28 27 n=4	Moderate increase in polarization
23 n=5	Eszszzz Weak increase in polarization
	Scale 1:2500 2 <u>5 0 25 50 75 100 12</u> 5 (metres)
400 W 0450 W METAL FACTOR	
(ip/res + 1000)	NUELL MEIAL GROUP NC.
29 = 13 / 15 n=1	
22 23 33 0=2	INDUCED POLARIZATION SURVEY
22 23 33 n=2 80 45 n=3	INDUCED POLARIZATION SURVEY Cariboo Gold Property
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	INDUCED POLARIZATION SURVEY Cariboo Gold Property Cariboo M.D., British Columbia
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	INDUCED POLARIZATION SURVEY Cariboo Gold Property Cariboo M.D., British Columbia Date: Jun/Jul 1996 Interpretation by: PAC

Pacific Geophysical

GEOLOGICAL SURVEY BRANCH

ASSESSMENT REPORT Line 800 N RESISTIVITY (Ohm-m) Dipole-Dipole Array n=2 na n=3 \square -0n=4 n=5 _____ o = 25 M Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10,... 0+50 W CHARGEABILITY INTERPRETATION n=2 Strong increase in polarization n=3 Second Moderate increase in polarization n≠4 n=5 Weak increase in polarization Scale 1:2500 25 50 75 100 125 (metres) NOBLE METAL GROUP NC. INDUCED POLARIZATION SURVEY n=2 Cariboo Gold Property Cariboo M.D., British Columbia n=3 n=4 Date: June 1996 n=5 Interpretation by: PAC Pacific Geophysical Line 700 N (Ohm-m) Dipole-Dipole Array n=2 a na a n=3 n=4 n=5 a = 25 M plot point Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10,... INTERPRETATION n=2 Strong increase in polarization n=3 Exception Moderate increase in polarization n=4 Weak increase in polarization Scale 1:2500 <u>25 50 75 100 12</u>5 (metres)

GEOLOGICAL SURVEY BRANCH

METAL FACTOR (ip/res * 1000) n=1 n=2 n=3 n=4 n=5 METAL GROUP NC. INDUCED POLARIZATION SURVEY Cariboo Gold Property Cariboo M.D., British Columbia Date: June 1996 Interpretation by: PAC Pacific Geophysical

Line 500 N RESISTIVITY (Ohm-m) Dipole--Dipole Array n=2 n≔3 n=4 n=5 a = 25 M Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10,... CHARGEABILITY INTERPRETATION n=1 n=2 Strong increase in polarization n=3 Moderate increase in polarization n=4 Weak increase in polarization Scale 1:2500 25 50 75 (metres) METAL FACTOR NOBLE METAL GROUP INC. 1592 (ip/res * 1000) INDUCED POLARIZATION SURVEY n=2 Cariboo Gold Property n=3 Cariboo M.D., British Columbia n≈4 Date:June 1996 n=5 Interpretation by: PAC Pacific Geophysical

50 E 6+00 E 6+50 E RESISTIVITY 1290 1286 1301 1227 1296 (Ohm-m)	Line 400 N
1001 1169 1217 976 1310 n=1	Dipole-Dipole Array
876 1237 1278 1446 1182 n=2	
1814 1174 1350 1504 n=3	
268 - 1568 1158 1345 n=4	
C=0 8011 2441 UH01	
	a = 25 M plot point
	Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10,
SUE 6400 E 6450 E CHARGEABILITY	
4 4.2 3.8 3.2 5.7 n=1	INTERPRETATION
4.7 4 4.4 &1 n=2	Strong increase in polarization
5.8 4.9 5 6.9 n=3	Moderate increases in polarization
.3 62 5.9 7.3 n=4	Moderate increase in polarization
7 8 7.3 7.7 n=5	Eszszzz Weak increase in polarization
	Scale 1:2500

2<u>5 0 25 50 75 100 125</u>

															1996 Su	urvey	/ 19	95 Surve	ey .																										
DECISTIVITY		14+50	w	14+00 W	13	5+50 W	13+0	o w	12+50	W	12+00₩	11+5	O W	11+00 W	. 1	10+50 W	10+0	. w oc	9+50 W		9+00 W	8+50	w.	8+00 W	7+5	o w .	7+00 W	. 6	+50 W	6+00 V	v	5+50 W	5+00 V		4+50 W	4+00 W		3+50 W	3+00 W		2+50 W	2+00 W	1-	+50 W	1+00 W
(Ohm-m)	filter	415	427 40	5 409	509	520	611	606	596 0	388 754	803	706	677	677 537	7 647,	136	580	370	514 4	80 579	539	461	339	474 379	191	520	615 694	570	526	452	120 375	231	329	35 878	1217	1515 146	62 1612	1777	1488 13	388 1369	1303	1397 135	J 1332	1256	104 119
	n=1	327	322 30	6 376	589	423	656	491	447 _ 5	578 568	1002 ر	862	. 844	734 . 450	· 122 ج/ 1	977	723 -	184	558 56	06 839	- 652	653	389	1044 700	10; 51	1223	, 943 1021	481	448	479	76 474	/// 102	240	97 1082	1547	1796 119	1475	2152	1721 16	902 1495	i 975	, 1089 98:	2 1304	1290	1000 125
	n=2	403	454	354	416	569 55	29 584	536	ś	856	831	503	817	576	³⁹⁴	1015 8	68 / 264	377	606	(+18)	, 86 4) 6	375 332	222	415	(16 - 12)	i 742 .	816	527	488 375	464	600	146	34) 303 (662	1197 152	2 1806	1208	2013 159	1 1 1433	1224	1254 110	15 1472	1176 1	496 1057	1189
	n=3		553 46	2 365	390	625	566	617	543	1017	792	484 -	708	669 / 54G	j 540	910	jsn	451	382 6	19 469	726	/ 305 C	187	256231	130	100	622 621	714	¥57	377 `5	210	225	- 208	43 831	1216	1542 182	20 1750	1612	1576 11	28 1154	1419	1555 149	1 1291	1207	225 86
	n=4		535	452	349	410 7	26 62	- 795	765 696	705	929 591	508 719 742 \	618 627 /	✓ 596 561 717	670 7 650	515 6	53 612 724	2 435 644	372 \ 409 30	623 531	417 3	275	504	A31 627	205 110	6 107 .	132 1 647	967 943	11 420	420	42 282	526	622 374	64 537	751	- 1178 204	2359) 15 1944	1364	1324 12	268 1226	1300 189 1782	3 1465 1712 16/	54 - 1277	1098	884 140
	n=5		50	-20	300	510	- 730	745		, , , , , , , , , , , , , , , , , , ,	353	742	/	551 717	, 0.5	200	124					270			e																				
												/	/											-	1996L																				
																	, ·							(2 A																				. '
																/									55																				
		14+50	Ψ.	14400 W	1.	3+50 W	13+0	XX W	12+50	W	12+00 W	11+5	0 W .	11+00 W		10+50 W	10+	00 W	9+50 W		9+00 W	8+50	o w	8+00 W	7+5	io w	7+00 W	6	H50 W	6H00 V	N	5+50 W	5+00 1	۱ <u> </u>	4+50 W	4+00 W		3+50 W	3+00 W	ļ	2+50 W	2+00 W	1.	+50 W	1+00 W
(msec)	filter	3	3.1 3.	.8 4.5	5.4	5.7	5.9	5.8	5.9	5.7 5.8	5.6	5.1	4.8	4.3 3.7	J 3.2	y 3.2	3	2.5	3 4	2 7.4	12	18	25	22 26	42	32	29 27	26	24	22	16 14	9.1	7.4	5.1 7	7.9	8.2 8.	2 7.5	7.7	7.8 7	7.9 6.6	6.6	6.4 6. 7	7 7.2	8.1	8.7 8.0
	n=1	2.8	21 1.	8 _ 21	3.9	- 2.7 -	- 3 -	- 2.8	2.8	21 28	2.9 _	2,8	3.6	3 2.7	, 28	3.7	2.9	23	2.8 .1	.7 2.5	1.7		16	1-13	51	7.6-	- 12 ,20	2	32	16	70 - 9.8	10	5.4	1.3 <u>4.8</u>	^{7.7}	8.9 9.2	2 5.9	5.9	6.6	1 4.2	3.9	12 3.7	1 4.6	6.5	126
	n=2	2.1	22	2.5	- 3.2	4.5 4		3.4	4.1	4	4.3	3.7 3.8	3.6	` ³ ×`	23	2.9	3.2 J.1	$2^{\prime} / (\widehat{1.2})$	23	1.6	1/1	12/23	27	18	4 46	23	- 20 /	34	25 23	21-	=")/	/" \	8 (3	-5	f.s a	8 9.2	68	- 7.3 6.4	87	6	5.4 - 4.1	8 4.7	5.6	6.0 7.7	8.9
	n=3		23 2	8 6	5-	5.7	6	5.5	4.7	6 5.9	5.8		4.5	4 / 3.4	25	2.5	2.5	_ وا	$\frac{12}{2}$	3 1.7	8.6	26	32	29 30	↓ ⁴⁰ ∫	⁵⁵ >	28 30	18	^	24	35		7.3	L4 - 6.9	8	7.5 - 7.1	9.3	6.4	8.8 7	73 72	5.9	7 6.5	7.5	8 87	9 9
	n=4		3 /	6.4 3 73	6.4	£77	12 - 71	10	8.2	8.4 9 10	1.0	7.5 5.4	5.4	519 AI	3.6 5 4.6	2.5	2.8 2.0	3 25	4.4 4	5 15	10/28	2/ · 34 36	2	10 13	\ [) ₃₉ (54 S	58 · 20	1 (7,7	<u>"``</u> `,'"	, x	23 26			14 12	5.5	7.5 7.1	8 8.3	11	8.1 8	7.3 1.4 8.3	9.7	9.1 · 1/	0 - 9.3	9.1	8.7 11
	n=5			-J /J	0.0	0.0	0.0	10	3.5	•	•	.2	/					-																											
												/																																	

,

. .

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Line 275 N Dipole-Dipole Array
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a = 12.5 M plot point Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10, INTERPRETATION Strong increase in polarization Moderate increase in polarization EXECUTE: Weak increase in polarization
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Scale 1:1250 25
=2 $=3$ $=4$ 213 115 116 57 112 4.7 3.6 $n=2$ 6.5 $n=3$ $n=4$ $n=4$	Cariboo Gold Property Cariboo M.D., British Columbi Date: June 1996 Interpretation by: PAC Pacific Geophysical

1+00 W 0+50 W RESISTIVITY 7 1044 1084 1041 (Ohm-m)	Line 350 N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dipole-Dipole Array a na a aa = 25 M plot point Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10, INTERPRETATION Strong increase in polarization Strong increase in polarization Scale 1:2500 25 0 25 50 75 100 125 (metres)
1+00 W 0+50 W METAL FACTOR 72 7.2 8.7 (ip/res + 1000)	NOBLE METAL GROUP INC.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	INDUCED POLARIZATION SURVEY Cariboo Gold Property Cariboo M.D., British Columbia
21 n=5	Date: June 1996 Interpretation by: PAC
	Pacific Geophysical

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

24,85

Line 300 N 0+50 W 0+00 0+50 E RESISTIVITY 94 1024 1128 805 814 582 519 (Ohm-m) 659 1226 666 1083 531 538 n=1 Dipole-Dipole Array `441 n=2 a na a n=3 n=4 n=5 a = 25 M Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10,... 0+50 W 0+00 0+50 E CHARGEABILITY 8.1 7.9 8.1 9.1 9.7 11 (mean) (msec) INTERPRETATION 7.9 n=1 n=2 Strong increase in polarization n=3 Moderate increase in polarization n=411 12 13 CZZZZZZZ Weak increase in polarization Scale 1:2500 0 35 50 75 100 135 25

.

	6	+50 W		6+00 W	5	5+50 W		5+00 W		4+50) W	4+	00 W	34	-50 W		+00 W	. 2+	50 W	2+(X0 W	1+5	o w	. 1+	00 W		50 W		0+00		RESISTIN
51 [']	582 520 1 520 670	697 558 702 675 649	616 664 778 909 798	655 1238 852 334	349 371 419 355 311	314 237 289 291	311 214 254 	51 50 233 28 387	2	637 430 647 833	625 637 68	1051 906 8 10 960 6 10	1059 709 69 69 1239 53 1	1224 1130 1130 1188 592 11	1275 1258 353 1 1377 244 1	1118 973 1155 1060	1206 1098 872 (1 920 1097 1	1223 - 780 1876 13 1322	1440 1852 17 18 1531 -	1613 2300 - 177 156 - 1368	1361 1523 5 14 1485 51 13	1177 1200 07 108 1229 39 104	1052 1323 923	1048 1683 049 - 9 049 - 9 049 - 9	863 998 07 806	800 642 722 8 730 730	795 504 76 1106	814 594 199 839	688 - 486 668 623	706 678 739	(Ohm- n=1 n=2 n=3
3	522	741	. 32	330	309	392	425	54	,	529	1110	1021	1367	1642	1208	1315	1238	1138	1251	1335	1288	1113	914	798	631	· 1225	931	877	10		n=5
+	64	+50 W	<u></u>	6+00 W	5	+50 W		5+00 W		4+50	w.,	4+	00 W	34	50 W	, 3	+00 W	2+	50 W	2+0	x w	1+5	0 W	1+	00 W		50 W	.	0+00		_CHARGEAL

	6+	50 W	6+(0 W	5+	150 ₩	5+0	0 W	4+5	OW .	4+00	W	3+5	ow	3+00	¥	2+50	W	ź+00	W	1+50	W	1+00	W	0+5) W (0+0	0	METAL FA	CTOR
14	15	15	19	20	26	27	26	17	12	7.9	6.2	5.9	5.5	5.4	5.8	5.5	5.8	4.4	3.9	4.5	5.6	72	8.3	10	11	11	11	13 1) (ip/res +	1000)
8	7.3	5.4	8.1	-31	"	32 -	25	11	5.6	4.7	4.4_	5.1 —	35	3.3	3.9	1	14 1	25	21	24	3.1	29	2.6	. 4.9	6.5	5.7	62/	14 1 8	3 n=1	
1	2	9.2	9	24		31 26	K)	1116	ر ا ور	6.3	5.9	6.3		5. <u>2</u>	6.8	(121)		2.3	2.8	3.	3 4.2	51	7.3	9.7	1 10		13	11	n=2	
17	12	13 Z	- 9.6	42	26	24	28	36		4.6	6.7	5.7	6.4	5.8	6.1	7	5.8	3.9	31	32	4.6	<i>67</i> /	12	10	12	11	14	13	n=3	
2		i	// «	2 33	í ,1	19 20	27	28		57	6.3	53	7	6.4	6.7	6.7	51	5.2	^ +	5.1	1 7.6	12	13	12	10	16	> 12		n=4	
17 \	23	16	51	32	21	20	24	20	24	6	5.7	5.9	5.3	6.9	6.7	6.9	6.1	6.7	63	6	84 /	12	12	16	/s /	19	13		n=5	

	line 200 N	
	Dipole-Dipole Array	
	a = 25	м
	Logarithmic Contourne 1, 1.5, 2, 3, 5, 7.5, 1	0,
	contours	
	INTERPRETATION	
	Strong increase in polarization	
	Weak increase in polarization	
	Scale 1:2500	
	25 <u>0</u> 2550751001 (metres)	25
)	NOBLE METAL GROUP INC.	
	Cariboo Gold Property	
	Date: June 1996	
	Interpretation by: PAC	
	Pacific Geophysical	
	Line 100 N	
	Dipole-Dipole Array	
	a na a	
	a = 25 M	
	plot point	
l	ogarithmic 1, 1.5, 2, 3, 5, 7.5, 10, Contours	
	Strong increase in colarization	
*****	Moderate increase in polarization	
644	🖾 Weak increase in polarization	
	Scale 1:2500	
2	<u> </u>	
	NOBLE METAL GROUP INC.	
IND	UCED POLARIZATION SURVEY	
Ca	Cariboo Gold Property riboo M.D., British Columbia	
Date: J	une 1996 nterpretation by: PAC	
	Pacific Geophysical	
Lir	e 0	
oole-D	na a	
0		
nlo	a = 25 M	
nic 1,	1.5, 2, 3, 5, 7.5, 10	
	ASSESSMEN	RVEY BRANCH I REPORT
INTERP	RETATION	
iong increas increase incre	ease in pokarization) [1]
eak increase	in polarization	591
Scale	1:2500	ノート
25 (m	<u>50 75 100 12</u> 5 etres)	
DOL A		
boo G	old Property British Columbia	
96		
Denic by	: PAC	
rucific (Jouphysical	