PROSPECTING REPORT

on the

LORING 3 CLAIM

Omineca Mining Division British Columbia

North Latitude: 56° 32' West Longitude: 127° 05' NTS Mapsheet: 93L/11

10NZ4 1537 Gold Commissioner's O VANCE

Prepared for

HERA RESOURCES INC.

P.O. Box 11611 Suite 350 - 650 West Georgia Street Vancouver, B.C. V6B 4N9 (OWNER and OPERATOR)

Prepared by

Mike Tiedje, B.Sc. (Geology) Bernard Dewonck, P. Geo.

Coast Mountain Geological Ltd. P.O. Box 11604 Suite 1680 - 650 West Georgia Street Vancouver, B.C. V6B 4N9

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

December 31, 1996

TABLE OF CONTENTS

•

1.0	INTR	ODUCTION	1
	1.1 1.2 1.3	Location and Access Physiography and Climate Claim Information	1 1 1
2.0	HIST	ORY AND PREVIOUS WORK	2
3.0	GEO	LOGY	2
4.0	GEO	CHEMISTRY	3
5.0	CON	CLUSIONS AND RECOMMENDATIONS	4
6.0	REFE	RENCES	5
		LIST OF TABLES	
TABL	.E 1	Claim Information	2
		LIST OF FIGURES	
			Following Page
Figur Figur Figur Figur	e 1 e 2 e 3 e 4	Property Location Map Claim Map Sample Locations Sample Results (Cu, Ag, Au)	1 2 back pocket back pocket
		LIST OF APPENDICES	

Statements of Qualifications
Rock Sample Descriptions
Analytical Results and Procedures
Statement of Expenditures

<u>page</u>

1.0 INTRODUCTION

Coast Mountain Geological Ltd. conducted a reconnaissance prospecting program on the Loring 1-3 claims from September 15 to 28, 1996 during which time 128 grab rock samples were collected and submitted for analysis. A three person crew consisting of one geologist and two prospectors accessed the property by helicopter from Smithers, 38km to the north, on a daily basis.

The work described in this report is being filed for assessment on the Loring 3 claim only, however details of the entire work program are included for the sake of continuity and completeness. The Loring 3 claim was grouped with Loring 1 and 2 by Notice to Group No. 3093903, recorded September 12, 1996, and the field work was completed during the period of September 15 to September 28, 1996. Of the 128 samples collected, 72 were taken on the Loring 3 claim itself.

1.1 Location and Access

The property is located 38 kilometres south of Smithers, B.C., on NTS Mapsheet 93L/11 (see Figure 1). or 19 kilometres south of Telkwa, in the northeastern part of the Telkwa Range (Latitude 54⁰30'N, Longitude 127⁰05'W). At present the property is readily accessible by helicopter only, from Smithers, however there is a network of roads extending south from Telkwa. During the time of the field work, access by road was possible to a point approximately 7 kilometres north of the northern boundary of the Loring 3 claim.

1.2 Physiography and Climate

The claim area features rugged topography, with elevations within the Loring 3 claim ranging from 1220m to 2100m above sea level. Most of the claim area is above tree line except for the lower reaches of the creek valley. This creek is known locally as Loring Creek, a north-flowing tributary of Webster Creek. Outcrop is extensive along ridges and creeks, however steep talus and cliffs preclude ready access to exposures on the slopes in between. Snow cover is extensive from October to June.

1.3 Claim Information

The subject claims are situated within the Omineca Mining Division (see Figure 2). Records of the Ministry of Employment and Investment indicate that the Loring 1 and 2 claims are owned by Angel Jade Mines Ltd. and the Loring 3 by Hera Resources Inc. Pertinent claim information is summarized in Table 1.

Table 1: Claim Information

<u>Claim Name</u>	<u>Tenure No.</u>	No. of Units	Expiry Date*
Loring 1	340229	20	September 19,1998
Loring 2	340230	20	September 19,1998
Loring 3	341395	20	October 28, 1998*

* pending acceptance of this report

2.0 HISTORY AND PREVIOUS WORK

Activity in the claim area dates back to 1901 when work on mineral showings by prospectors was first documented. B.C. Ministry of Mines annual reports record work until 1907 and again in 1915. Falconbridge Nickel Mines Limited conducted geological, geochemical and geophysical surveys, as well as limited diamond drilling, in 1968 in the area of the Loring 1 and 2 claims. In 1973 Maharaja Minerals Ltd. carried out geological surveys on claims that include the area covered by the Loring 3 claim. Since that time numerous programs have been conducted on claims in the immediate vicinity of and/or inclusive of the present claims, the most recently recorded being geological and geochemical surveys of the Rainbow claims by Skeena Resources Limited and Leeward Capital Corp. in 1991.

3.0 <u>GEOLOGY</u>

The Loring 3 claim area is underlain in general by the Lower Jurassic Telkwa Formation of the Hazelton Group, which is intruded locally by dykes and stocks of the Bulkley Intrusions. The Telkwa Formation consists of andesite, dacite, rhyolite and basalt flows and pyroclastics with local occurrences of marine sedimentary rocks. Reference to mapping done by Falconbridge in 1968 indicates that limestone structurally overlies andesites and rhyodacites, and that this assemblage is intruded by granodiorite and porphyritic quartz monzonite dykes.

The majority of rocks sampled in the 1996 program were rhyodacites or green andesite flows. The rhyodacite was commonly thin bedded but was very difficult to observe in outcrop due to the fine grained texture of the rock. Granodiorite dykes cross-cut all rock types at an 80° orientation.

Mineralization is common within the rhyodacite, where intersected by granodiorite dykes, in the form of pyrite, chalcopyrite, and malachite staining with associated epidote and minor chlorite. The mineralization often appears to occur within discrete horizons of rock. These horizons can be followed for hundreds of metres along the face of an outcrop and be up to 1 metre thick. They are repeated in the stratigraphy, separated by barren layers of rhyodacite. Within these horizons, lens-shaped zones delineated the mineralization occurring in quartz

veins and veinlets, and disseminated within stockworks. These horizons are possibly related to specific flows within the volcanic stratigraphy.

Limestone was observed in contact with an andesite flow and crosscut by a granodiorite dyke, immediately north of the claim boundary between the Loring 2 and Loring 3 claims. Some quartz and calcite veins with minor sulphides were noted but low values were obtained from samples of this material.

4.0 GEOCHEMISTRY

The program conducted by Coast Mountain Geological Ltd. consisted of the collection of 128 samples for analysis for 31 elements by ICP methods plus analysis for gold by atomic absorption methods. Samples which recorded copper values >10,000 ppm were retested by atomic absorption methods. Certificates of analysis and analytical procedures appear in Appendix II. Sample locations are plotted on Figure 3 while their results for copper, silver and gold appear on Figure 4.

A total of 24 samples produced copper values >10,000 ppm, ranging from 1.070% (#96MT28) to 6.510% (#96MT27), both on the Loring 3 claim. These grab samples are from mineralized rhyodacite horizons adjacent to a granodiorite dyke. An additional 33 samples returned values between 1000 and 10,000 ppm copper. These 57 samples have numerous anomalous silver values associated with them, ranging as high as 144.3 ppm (#96MT27). Gold values are much more sporadic, reaching a high of 1035 ppb in sample #96MT42 (near the boundary between the Loring 1 and 2 claims), however it is apparent from the results in general that precious metals are associated primarily with the copper mineralization. Elevated lead and zinc values do not show any marked affinity however arsenic values appear to be mutually exclusive with copper.

5.0 CONCLUSIONS AND RECOMMENDATIONS

A prospecting program consisting of the collection of 128 grab rock samples produced several anomalous results in copper, gold and/or silver from mineralization principally located within rhyodacitic flows where intersected by granodiorite dykes. This minerlization occurs within the volcanic stratigraphy, in repeated discrete horizons that extend laterally for several hundred metres and can be up to 1 metre thick. These horizons are possibly related to specific flows within the stratigraphy.

Work to date has ranged from prospecting to diamond drilling and has included geophysical surveys in certain areas. A thorough compilation of previous work, both within the present claim boundaries and in the immediate vicinity, is necessary to consolidate data and observations. This would facilitate interpretation of the geological framework of these mineral occurrences, planning of future exploration and would minimize unnecessary duplication of surveys and exploration techniques.

Respectfully submitted,

Tiedie, B.Sc. (Geology)

Bernal EJEWYONNSK Geo. SCIE

6:0 <u>REFERENCES</u>

B.C. Minister of Mines Annual Reports, 1901-1903, 1905, 1907, 1915, 1968.

- Bridge, David J., November, 1996; Prospecting Report on the Loring 1 and Loring 2 Claims, Omineca Mining Division, British Columbia (report submitted for assessment)
- Brown, D.E., 1968; Geological Report on the Old Tom, Crater, Webster, Dominion, Lava, Marmot and Dome Claims (BCMEMPR Assessment Report #1810)
- Jamieson, M.D., 1991; Geological and Geochemical Sampling Report on the Rainbow Claims, Omineca Mining Division, (BCMEMPR Assessment Report #21765)
- Tipper, H.W. and Richards, T.A., 1976; Jurassic Stratigraphy and History of North-central British Columbia, Geological Survey of Canada Bulletin 270.

APPENDIX I

•. ,

STATEMENTS OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, MICHAEL TIEDGE, do hereby certify that:

- 1. I am a geologist residing at 102 10012 3rd Street, Dawson Creek, B.C., V1G 4L5, retained by Coast Mountain Geological Ltd. for the purposes of conducting the work described herein.
- 2. I obtained a Bachelor of Science degree in geology from the University of Alberta in 1996.
- 3. I have been practicing my profession as a geologist, on a seasonal basis for two years prior to graduation, and on a contract basis since graduation.
- 5. I consent to the use of this report by Hera Resources Inc. to meet the assessment filing requirements of the Loring 3 claim described herein.
- 6. I do not own, either directly or indirectly, any interest in Hera Resources Inc., nor do I expect to receive any.

DATED AT DAWSON CREEK, B.C., THIS 10 DAY OF January, 1997.

Michael Tiedge, B.Sc. (Geology)

STATEMENT OF QUALIFICATIONS

I, BERNARD DEWONCK, do hereby certify that:

- 1. I am a consulting geologist residing at 11931 Dunford Road, Richmond, B.C., V7E 3M6, retained by Coast Mountain Geological Ltd. for the purposes of providing administrative services and preparing this report for the work described herein.
- 2. I obtained a Bachelor of Science degree in geology from the University of British Columbia in 1974.
- 3. I am a Registered Professional Geologist, in good standing, in the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. I have been practising my profession as a geologist, on a seasonal basis from graduation to 1977, on a permanent basis from 1977 to 1991 and since July, 1996.
- 5. I consent to the use of this report by Hera Resources Inc,to meet the assessment filing requirements of the Loring 3 claim described herein.
- I do not own, either directly or indirectly, any interest in Hera Resources Inc., nor do I expect to receive any.

DATED AT VANCOUVER, B.C., THIS ____ DAY OF _____, 1997.

Bernárd Geo. Devoracky

APPENDIX II

ROCK SAMPLE DESCRIPTIONS

.

ROCK SAMPLES - FIELD DESCRIPTIONS Prior Dall

SAMPLE NO.	DESCRIPTIONS
BD-109	malachite staining 1.5 m area, some chalcopyrite and pyrite, a bit of calcite, quartz and magnetite, carbonate precipitation forming on wall along fractures, some bands of epidote, minor azurite, outcrop is andesitic with some vesicular sections, magnetics are affecting compass, 220°/02°NW.
BD-110	approximately 40 m south of #109 in the same epidote band, quartz crystals in a disorderly band with some chalcopyrite, malachite and magnetite.
BD-111	same showing as #110, but more magnetite in this level of vein, the vein is flat laying and looks like bedding from a distance, it's about 0.8 m wide and a few other are stacked above and below for a zone of approximately 4 - 5 m high.
BD-112	proximal float with malachite, azurite, chalcopyrite, pyrite, magnetite and epidote.
BD-113	proximal float, sub angular, rusty and silicious, pyrite, chalcopyrite and magnetite
BD-114	in outcrop above #113, old sample site #30263 and 30262, outcrop is loose and fractured, has malachite stain in a flat laying bank which is quite magnetic for approximately 8 m in height.
BD-115	very silicious float in talus chute, has pyrite, chalcopyrite, malachite and magnetite.
BD-116	silicious dark andesite has chalcopyrite and malachite, pyrite rust, chlorite and epidote alteration, carbonate precipitation on face of outcrop coming through fractures along with the malachite and pyrite rust.
BD-117	approximately 8 m upslope from #116, felsic stringer with chalcopyrite, malachite and magnetite, between 116 and 117 is more of the same felsic stringer dyke up to 0.6 m wide with chunks of chalcopyrite and some pyrite rust.
BD-118	sub-angular float, probably from a pod, somewhat silicious and very pyritic, talus has lots of pyrite.
BD-119	malachite stain in pods on wall of outcrop, has chalcopyrite, pyrite, magnetic calcite and quartz, some epidote in fractures as well as some carbonate.
BD-120	4 m up slope from #119, limonite and malachite with some pyrite, magnetite and chalcopyrite coming out of fractures and traveling up the outcrop.
BD-121	chloritic section of gossan that has some chalcopyrite and malachite, there is a wire cable anchored to the outcrop just under this location.
BD-122	malachite and carbonate precipitation on outcrop wall coming out of fractures has chlorite and epidote alteration, chalcopyrite and some magnetite.

ROCK SAMPLES - FIELD DESCRIPTIONS him Dal

SAMPLE NO.	DESCRIPTION		
BD-123	10cm calcite vein with malachite, chalcopyrite, chlorite, epidote and some magnetite, 202°/0°, lots of		
	stringers swarming on outcrop.		
BD-124	large 30 cm X 1 m piece of quartz and jasper, not sure if it's in place.		
BD-125	small felsic outcrop, the pyrite has weathered out leaving holes and some rust, some clay argillic		
DD 400	alteration, precciation and sinca in mining, strike 270, up 12 5.		
BD-126	sub-angular proximal float, carbonate altered breccia with some calcite crystals, no visible sulphides.		
BD-127	calcite vein 10 cm, in sheared and chlorite altered andesite, no visible sulphides but some magnetics, 250°/02°S.		
BD-128	in talus next to #127, maroon lapilli tuff with some calcite, malachite and either tetrahedrite or		
	chalcocite, looks like it comes from out of the wall above #127, there area couple of other calcite		
	veins in the 4 m shear zone near #127.		
BD-129	limey conglomerate has some blebs of pyrite and is slightly magnetic in places, it comes from a boulder talus below outcrop of the same rock, bedding is graded and flat laying, it looks like lapilli		
	tuff in places.		
BD-130	fossiliferous limestone with some pyrite in blebs and cubes, some rust, angular proximal float.		
BD-131	rusty carbonate altered breccia, no visible sulphides, near a small intrusive dyke and petrified wood float.		
BD-132	5 m from #131, silicified wood has small pyrite and rusty carbonate, it is just laying on the surface.		
BD-133	proximal float, carbonate altered with chalcopyrite, some quartz and calcite, probably from a vein		
	close by, there is some silicitied float just up slope which has drusy quartz in a couple of plases but no visible sulphides.		
BD-134	angular shale float below gossan has some quartz magnetite stringers and quartz pyrite stringer as		
	well as some molybdenum, the shale outcrop is 3 m upslope.		
BD-135	float for the rusty granodiorite talus below outcrop of some, has some molybdenum in quartz		
	stringers and disseminated pyrite and chalcopyrite in matrix.		

Brio. Dell

SAMPLE NO.	DESCRIPTION
BD-136	3 m above #135, small 10 cm felsic dyke/vein cutting through granodiorite outcrop has some molybdenum, pyrite, chalcopyrite and malachite, strike 075°, dip 15°SE, the gd outcrop has disseminated pyrite and chalcopyrite in the matrix, 5 m north along base of outcrop is a 4 m wide felsic dyke with the same mineralization.
BD-137	high grade sample of copper carbonate oozing out of the shear breccia above old adit, the adit goes in only approximately 3 m.
BD-138	yellow carbonate in cracks and on wall above #137, maybe powelite
BD-139	grab sample of outcrop at adit opening, looks like a chlorite altered andesite with pyrite blebs.
BD-140	pyritic outcrop of a dark rhyodacite grading to a gossan.
BD-141	float from talus below gossan has some pyrite
BD-142	andesite dacite near small lake, has some magnetite, chalcopyrite, malachite and a yellow brown mineral maybe garnet or sphalerite, in a small excavated pit of a small pod, there is also some quartz crystals and epidote.
BD-143	sample site #30276R small adit above road, pyrite, chalcopyrite, malachite, epidote and chlorite alteration, yellow and white carbonate on walls as well as some magnetite.

SAMPLE NO.	DESCRIPTION
96MT01	- gossan outcrop (~ 2m width, length)
	- samples from outcrops but may lack gossan, pyrite visible on outcrop
	-rhyodacite matrix
96MT02	- gossan outcrop (~ 2m width, 5m length)
	- samples from outcrops but no sulphides visible
	- rhyodacite matrix
96MT03	- some gossan on outcrop
{	- rhyodacite matrix
0014704	
961/11/04	- no sample for assay
OGMT05	floet comple
90101105	- Iloat sample
	- very gossan her
96MT06	- float sample
	- picked up right beside MT05
96MT07	- no sample for assay
	- a few sulphides
	- rhyodacite matrix with flow structures
96MT08	- gossan outcrop, 15 - 20% pyrite
	- alteration present in sample
	- rhyodacite matrix
96MT09	- some visible sulphides
	- some flow structures present in the rhyodacite rock
	- may have some epidote alteration
96MT10	 rhyodacite outcrop samples right beside granodiorite dykes
	- loaded with malachite and sulphides
96MT11	rhyodacite outcrop with sulphide rich veins throughout
	- possible signs of epidote alteration

ROCK SAMPLES - FIELD DESCRIPTIONS

٠

SAMPLE NO.	DESCRIPTION
96MT12	- rhyodacite outcrop that may have some alteration
96MT13	- rhyodacite outcrop below andesite
	- gossan is found below the contact, malachite and abundant sulphides (5 - 10%)
1	- less sulphides found in andesite
	- this sample site is near another one of those granodiorite dykes
	- undulating contact
96MT14	- continuation of gossan zone from MT13
	- contact not nearly as prominent
	- rich in sulphides (5-10%)
	- some alteration
96MT15	- rhyodacite outcrop, sparse sulphides (~1%)
	- jasper and calcite veining in places
	- may have some chloritic alteration
96MT16	- rhyodacite outcrop, sparse sulphides (~1%)
96MT17	- rhyodacite outcrop with more calcite and jasper veining
	- some sulphides (~2-5%) in the rusty zone
	- may have some alteration
96MT18	- rhyodacite outcrop, no visible sulphides
96MT19	- rhyodacite outcrop, some sulphides (~2%)
	- may have some altering
96MT20	- very sulphide rich vein ~ 10 cm thick
	- extremely altered with micaeous looking sulphides
	- andesite flow host rock
96MT21	- large gossan zone, sulphide rich veins
	- hosted by andesite
96MT22	- andesite outcrop, minor gossan and possible alteration
	- no visible sulphides
96MT23	- no gossan or visible sulphides
1	- rhyodacite host rock

SAMPLE NO.	DESCRIPTION	
96MT24	- rhyodacite host rock	
	- very gossan outcrop, 2 cm thick veins full of pyrite and calcite	
96MT25	- rhyodacite host rock	
	- some sulphides (~2%)	
96MT26	- rhyodacite with altered (green) phenocrysts (could just be biotite)	
	- minor visible sulphides and possible flow banding	
96MT27	- significant zone of malachite and sulphides	
	 hosted by rhyodacite and related directly to the granodiorite dyke 	
	- appears to be three individual layers that exhibit malachite staining, all about 1 m thick and run the	
	length of the outcrop (~ 150 m long)	
96MT28	- this outcrop site is on the opposite side of creek	
	- the malachite and sulphides are not nearly as obvious on this side of the creek but are present	
96MT29	- some visible malachite and sulphides	
	- hosted by rhyodacite and malachite and sulphides are in veins, not beds like at MT27	
	- lots of work done here by others	
96MT30	- hosted by rhyodacite	
001/T0/	- the lowest bed of malachite staining and sulphides visible	
96MT31	- rhyodacite host rock	
0.01 1700	- gossan outcrop with modest amount of sulphides (~2%)	
96MT32	- small gossan zone hosted by rhyodacite	
	- trace amounts of sulphides (~1%)	
0014702	- malachite staining above outcrop ~ 10 metres	
90101133	- malachite and abundant sulphides just lie at M27 to M30	
	- adjacent to the granodionte dyke running through the area	
	- magnetite crystals abundant drill core wing about	
06MT34	- comple of the granodiorite duke	
90W134	- sample of the granoulonite dyke	
	- sharse sulfulues	

SAMPLE NO.	DESCRIPTION	
96MT35	- red tuff hosted rock	
l	- calcite veining	
96MT36	- boundary between limestone and andesite	
	 quartz and calcite veins with minor amounts of malachite 	
	- no visible sulphides, epidote alteration apparent	
96MT37	 similar to MT37 only thicker veining of quartz and calcite 	
1	 surrounding the quartz and calcite veining is a toothed aureole about 1 cm thick 	
	 no visible sulphides but minor amount of malachite 	
	- some epidote alteration	
96MT38	- a nearly horizontal bed running approximately 15 m and about 0.5 m thick	
	- epidote alteration 9 minor)	
	- malachite staining	
	- weakly magnetic	
	- abundant sulphides (~ 10%)	
96MT39	- no visible sulphides	
	- appearance of jasper in places	
	- epidote alteration	
	- rhyodacite hosted	
96MT40	- very gossan zone	
	- some epidote alteration visible	
	- weakly magnetic	
	- very sulphide rich (>20%) and malachite visible	
	- 1 m wide by 5 m + long, rhyodacite hosted vein	
96MT41	- very gossan rich outcrop, 15% sulphides in veins	
	- malachite staining and epidote alteration visible	
	- rhyodacite hosted	

٠

SAMPLE NO.	DESCRIPTION
96MT42	- very sulphide rich gossan (~10 - 15%)
	- 2-3 m thick with very prominent malachite staining
	- epidote alteration
	- chalcopyrite, pyrite, magnetic
96MT43	- this site is between the two granodiorite dykes running northeast, southwest
	- very epidote altered, 5-10% sulphides
	- weakly magnetic, no visible malachite
96MT44	- laterally extensive zone 10-20 m and about 1-2 m thick
	- epidote alteration, strongly magnetic
	- malachite staining
	- chalcopyrite, pyrite present
96MT45	- epidote altered
	- magnetic, chalcopyrite and pyrite present
	- malachite staining very strong
	- 5-10% sulphides
96MT46	- malachite stained
	- epidote altered
	- 10-15% sulphides in some cases
	- magnetic, chalcopyrite and pyrite present
96MT47	- some epidote alteration
	- may have some sulphides
	- maybe sphalerite
96MT48	- epidote alteration
	- 5-10% sulphides, chalcopyrite and pyrite visible
	- malachite
	- malachite staining
l	- rhyodacite hosted

ROCK SAMPLES - FIELD DESCRIPTIONS

٠

96MT49	 very gossan rich 15-20% sulphides malachite staining and epidote alteration chalcopyrite and pyrite present magnetic, 1 m X 3 m in length
96MT50	 gossan zone about 1 m wide by 2 m long slightly magnetic some epidote alteration lots of magnetite and quartz most of the sulphides appear to have been eroded out

SC-01-96	- outcrop of gossan 1.5 - 2m wide; iron staining
	- light grey, fine grained, weathered to gossan
	- low chalcopyrite and pyrite mineralization
	- slightly magnetic
	-contacts with grey rhyodacite foliation trending 240°
SC-02-96	- outcrop on the top of the cliff, 2m wide iron staining
	- grey, fine grained dark gossan low sulphides mineralization
	- slightly magnetic
	- contact with grey rhyodacite trending 60°
SC-03-96	- grab sample - float from talus under the cliff
	- grey fine grained rock with fine sulphide mineralization and malachite or chrysocolla staining
	- slightly magnetic
SC-04-96	- float from talus under the cliff, 40 m south from #2
	- grey to light brown to gossan, fine grained rock with chalcopyrite, malachite and chrysocolla stain
	- slightly magnetic
SC-05-96	- float from talus under the cliff 15 m, 300° from #4
	- grey to dark grey fine grained rock
	- chalcopyrite, malachite stain, turquoise, slightly magnetic
SC-06-96	- float from talus under cliff 20 m, 290° from #5
	- dark grey, fine grained rock with sulphide mineralization, malachite, copper oxides, magnetic
SC-07-96	- outcrop 15 m northeast from #6
	- grey, fine grained rock fractured in two perpendicular directions
	- sulphide, malachite, copper oxides
	- contact with dark grey to black rhyodacite, flat bedding
SC-08-96	- outcrop in foliation and trending 74°, is dark grey rhyodacite with weathered gossan with grey fine
	grained structure with sulphide mineralization
	- magnetic

mennight.

SAMPLE NO.	DESCRIPTION
SC-09-96	- outcrop
	- grey fine grained rock with sulphide mineralization
	- slightly magnetic
	- contacts grey and green fine grained rhyodacite
SC-10-96	- float from talus under cliff
	- light green-grey fine grained rock with calcite and (barite)?
SC-11-96	- outcrop in gulley
	- grey fine grained with quartz 'eyes' low sulphide
	- slightly magnetic
	- contact with light green foliation trending 315° northwest (rhyodacite?)
SC-12-96	- outcrop
	- grey fine grained rock with calcite (barite?)
	- slightly magnetic 20 cm width
00.40.00	- contact is light green fine grained rhyodacite trending west
SC-13-96	- 40 - 50 cm gossan formation is dipping in black fine grained rhyodacite
	- fine grained black and green rock with magnetite bands
00.44.00	- magnetic
50-14-96	- Toat from talus
00.45.00	- light green line grained rock, leidspar, chalcopyrite and pyrite
50-15-96	- float from talus light green fine grained fock with iron staining on surface, sulphide
0.0 40 00	- magnetic
50-16-96	- outcrop in gossan dark to iron staining
	- gossan fine grained with sulphide, malachite
SC 17 06	- chrysocolla staining
30-17-90	- outcrop on top of the clini
	- light green line grained fock with epidote alteration and chalcopyrite mineralization
SC 18 06	float from tolun
30-10-90	- noat from talus
	- white to light grey line graned lock with calcile and (barile?) filleralization

no mg un <.___

SAMPLE NO.	DESCRIPTION
SC-19-96	- 150 m north from #19 float from talus
	- light green fine grained rock with chalcopyrite and pyrite mineralization
SC-20-96	- 4-5 m outcrop
	- gossan light green fine grained rock with chalcopyrite, pyrite, magnetic
	- contact light green rhyodacite
SC-21-96	- float from talus
	- light grey fine grained rock with chalcopyrite, magnetic
SC-22-96	- outcrop from side of creek gulley
	- black light grey fine grained rock with sulphide, malachite, turquoise and white calcite veins, are
	flanging in talus
SC-23-96	- outcrop from side of creek gulley
	- light grey fine gained rock with sulphide, slightly magnetic
00.04.00	- contact light grey rhyodacite
SC-24-96	- OUTCROP from top of creek guiley
SC 25.06	- light grey line grained rock with quartz and sulphide, slightly magnetic
30-20-90	- outcrop weathered myouache
SC-26-96	- gossall with calcite and Jasper venning, chalcopyrite, pyrite, malachite, turquoise magnetic
30-20-30	- outcop
	- grey line grained fock with sulpride
	- contact green andesite
SC-27-96	- dossan outcrop iron staining
00	- gossan with altered epidote, sulphide, (guartz?); magnetic
	- contact grey andesite
SC-28-96	- outcrop
	- light grey calcite with (barite?)
	- contact green andesite with hornblende phenocrysts

ano m

SAMPLE NO.	DESCRIPTION
SC-29-96	- outcrop
	- black with one white foliation fine grained rock magnetic
	- contact dark grey rhyodacite
SC-30-96	- Samples 30, 31, 32, 33, 34: NOT FOR ASSAY
	- igneous-volcanic rock from dyke and contact
SC-35-96	- outcrop - rock chip samples (40 cm)
	- weathered conglomerate light brown with green agglomerates fragments with malachite stain
	- slightly magnetic
	- contact limestone
SC-36-96	- outcrop
	- weathered gossan with pyrite and chalcopyrite
	- slightly magnetic
00.07.00	- contact light green andesite
SC-37-96	- OUTCROP - FOCK CRIP Sample (50 CM)
	- similar to 30 with malachite
SC 28 06	
30-30-90	cossan fine grained with same quartz and enidote alteration with sulphide
	- glightly magnetic
	- contact arev rhvodacite
SC-39-96	
00-00-00	- gossan (iron staining) with pyrite, chalcopyrite, malachite, slightly magnetic
	- contact light grev rhvodacite with some guartz
SC-40-96	- outcrop
	- light green fine grained rock with guartz veining rhyodacite is contact to weathered gossan with
	sulphide and malachite, chrysocolla staining; magnetic

10 migun

SAMPLE NO.	DESCRIPTION
SC-41-96	- weathered outcrop
	- light green, fine grained rock with calcite and quartz crystals and magnetite and sulphides; slightly
	magnetic
	- contact grey grey weathered rock
SC-42-96	- float from top of ridge
	- weathered gossan rich sulphide veins (2-3 cm); magnetic
SC-43-96	- outcrop
	- gossan rich sulphide; slightly magnetic
	- contact light green andesite
SC-44-96	- outcrop
	- gossan with malachite, chrysocolla staining sulphide (rich)
	- contact green andesite
SC-45-96	- outcrop - rock chip sample
	- gossan fine grained with epidote and sulphide; slightly magnetic
	- contact grey rhyodacite with pink feldspar
SC-46-96	- outcrop on contact with dyke
	- light green fine grained gossan with sulphide
SC-47-96	- float from talus
	- gossan light grey, fine grained rock with sulphides
SC-48-96	- float from talus
	- grey fine grained rock with epidote, malachite, chalcopyrite and pyrite
SC-49-96	- outcrop rock chip samples (0.5 m) on top gossan fine grained black with magnetite; slightly
	magnetic
	- contact grey andesite
SC-50-96	- outcrop rock chip sample (0.4 m)
	- gossan fine grained with epidote, malachite, turquoise and sulphide
	- contact grey rhyodacite with calcite

10 mgin

APPENDIX III

•

CERTIFICATES OF ANALYSIS AND PROCEDURES

COMP: HERA RESOUR	RCES									MIN-	EN	LAB	s -	2	ICP	RF	POP	T										FILE	5 NO	: 65-01	84-RJ1+	2
PROJ: LORING									1	1282 SH	ERBR	DOKE SI	r., v	ANCO	JVER,	B.C	. v5x	468												DATE:	96/10/0	8 ç
ATTN: Bill Howe										TEL:	(604	327-34	36	FAX	:(604	327	-3423												*	* (ACT:F31) <u>'</u>
SAMPLE NUMBER	AG PPN	AL X	AS PPM	BA PPH	BE PPM	B1 PPM	CA X	CD PPN	CO PPN F	CR	CU PP H	FE X	GA PPN	× X	LT PPM	MG X	MN PPN	NO PPM	NA X	н1 РРИ	P PPN	Р8 РР И	SB PPM	SN PPH	SR PPM	тн Рр н	TI L X PPI	s I PF	V M P	W ZN PH JPPN	Au-wet PPB	
BD 109 96 BD 110 96 BD 111 96 BD 112 96 BD 113 96	18.9 .1 33.3 7.8	-62 -04 -03 -91 -04	1 1 1 1	7 2 1 2 1	.1 .1 .1 .1	246 1 405 1	2.45 .38 1.07 .95 .09	.1 .1 .1 .1	10 27 26 19 54	44 5 58 1 30 56 > 10 71	817 564 99 000 849	4.07 >15.00 >15.00 10.24 >15.00	1	.02 .01 .01 .01 .01	1 1 5 1	.19 .10 .05 .75 .05	1022 1265 1605 1068 236	10 38 35 60 25	.01 .01 .01 .01 .01	15 46 33 32	390 310 80 1540 140	213 1 1 1 1	11 1 20 1	4 23 21 11 13	1 1 1 1	1 1 1 1	.11 .01 .01 .07 .01	1189. 441. 368. 102. 189.	7 1 3 8 5	20 20 1 17 1 29 1 254 1 6	110 5 15 240 50	T OCCT
BD 314 96 BD 115 96 BO 116 96 BD 117 96 BD 117 96 BD 118 96	.9 34.0 46.1 49.7	.13 .01 1.86 .82 .50	1 1 1 1	1 36 128 39	.1 .1 .1 .1	74 94 216 159 1	.23 .26 .88 .67 .34	.1 .1 .1 .1 .1	34 161 32 28 126	37 1 87 5 48 >10 42 >10 43	696 243 000 000 101	>15.00 6.97 4.99 4.97 >15.00	1 1 1 1 1	-01 -01 -25 -10 -40	1 16 5 3	.21 .02 1.54 .66 .40	368 243 2159 897 241	35 14 25 15 34	.01 .01 .01 .01 .04	52 24 32 19 42	180 70 1230 1210 360	1 43 1 1	2 3 13 10 1	20 6 5 20	1 19 9 1	1 1 1 1	.01 .01 .12 .14 .09	390. 34. 106. 48. 58.	7 7 1 2 4	1 13 2 29 1 153 1 63 1 1	25 100 245 10 40	0.02
80 119 96 80 120 96 80 121 96 80 122 96 80 123 96	34.7 90,0 17.2 13.1 3.6	.79 1.10 3.05 2.20 .53	1 1 1 156	44 93 69 75 10	.1 .1 .1 .1	234 390 67 167 18	1.84 .70 1.49 3.92 >15.00	.1 .1 .1 .1	92 52 17 15 6	53 >10 98 >10 32 5 52 >10 12	000 000 742 000 721	7.76 10.22 7.69 5.55 .92	1 1 1 7 1	.13 .16 .17 .15 .16	8 7 26 19 3	-29 .50 2.27 1.36 .43	1554 2428 4272 3466 3497	22 44 24 17 6	.02 .01 .01 .01 .01	25 34 41 29 16	420 470 950 1100 310	44 468 191 54 22	21 27 9 18 10	9 11 10 7 2	10 3 19 35 1	1 1 1 1	.02 1 .03 1 .02 1 .06 1 .04 1	6. 8. 106. 61. 35.	0 3 6 8 6	1 68 1 142 1 223 1 191 1 43	370 465 155 105 20	
BD 124 96 BD 125 96 BD 126 96 BD 127 96 BD 128	.1 3.0 .9 1.2 15.4	.11 .20 .13 1.55 .88	1 125 278 161 36	201 79 346 31 1034	.1 .1 .1 .1	1 1 1 95	.11 .57 >15.00 13.45 3.24	.1 .1 .1 .1	4 1 23 16 7	49 53 18 77 55 6	42 27 8 44 893	1.58 2.52 4.39 2.52 2.19	1 1 1 1	.03 .22 .06 .03 .07	1 1 20 11	.06 .02 6.08 1.95 .85	730 76 3314 884 1036	5 33 8 10 8	.01 .14 .02 .03 .03	10 4 60 45 14	10 10 10 200 800	31 31 1 1	13115	12843	5 9 181 1 34	1 . 1 . 1 . 1 .	.01 1 .01 1 .01 1 .08 1 .02 1	16. 2. 54. 100. 48.	1 8 4 5 4	8 73 1 7 1 456 1 27 1 38	5 5 5 10	712
00 129 96 80 130 96 80 131 96 80 132 96 80 133 96	.9 1.0 .1 9.9	1.61 1.59 .51 .23 .14	1 35 2779 18 1	54 148 98 53 47	.1 .1 .1 .1 .1	2 1 1 136	12.37 7.77 .31 .09 5.13	.1 .1 .1 .1	12 8 2 8	39 32 56 96 86 9	56 51 40 22 055	3.32 2.88 6.18 1.82 2.16	1 1 1 1	.02 .07 .09 .02 .07	17 25 4 1	.80 .96 .06 .02 .05	3911 1946 209 180 1975	12 12 252 50 17	.05 .02 .02 .01 .02	28 19 15 6 13	620 1320 210 80 400	6 167 1 27	10 6 26 2 21	54523	1 33 2 1 13	1. 1. 1. 1.	10 1 01 1 01 1 01 1 01 1	65. 48. 14. 2. 4.	7 1 3 8 8	1 45 1 67 1 270 4 26 5 593	5 5 5 5 5	I-EN LAB
BD 134 96 BD 135 96 BD 136 96 BD 137 96 BD 138 96	1_1 _9 _1 2.3 1.0	2.58 1.22 .25 3.62 .58	1 94 1 125 1	373 38 92 55 12	.1 .1 .1 3.9 .1	4 11 229 14	.70 .64 .44 .21 10.07	-1 -1 -1 -1	28 7 3 18 5	22 96 10 68 50 > 10 66 14	596 043 210 000 402	7.47 2.44 .76 2.12 2.93	1 1 1 1	1.75 .09 .15 .16 .11	13 10 1 1 6	2.77 1.28 .03 .04 .13	1239 455 217 6701 578	242 441 63 401 50	.05 .03 .02 .02 .02 .19	29 27 3 28 9	830 630 140 920 260	1 2 111 11	1 1 138 138	11 4 1 4	7 18 4 17 68	1. 1. 1. 1.	.30 1 .01 1 .01 1 .01 1 .01 1 .01 1	300. 43. 1. 3. 5.	47556	1 72 3 39 3 5 3 134 1 21	10 5 20 5	ហ
BD 139 96 BD 140 96 BD 141 96 BD 142 96 BD 143 96	.1 .1 8.4 3.8	.62 .34 .33 1.32 2.20	1 1 1 1	23 21 22 21 30	.1 .1 .1 .1	13 1 97 70	.44 .25 .15 2.65 2.06	.1 .1 .1 .1	8 4 11 70 112 1	76 14 85 57 89 58 16 59	481 85 138 8 31 921	3.13 3.61 13.88 3.76 7.29	1 1 1 1	.15 .07 .07 .01 .03	4 1 5 20	.24 .10 .09 .78 2.00	1037 214 155 3329 2123	58 9 22 12 108	.03 .05 .04 .01 .14	12 8 24 40 77	690 620 300 740 650	1 1 1 7	14 1 9 2	4 13 6 11	4 1 54 56	1 - 1 - 1 - 1 - 1 -	01 1 01 1 02 1 18 1 14 1	9. 14. 42. 79. 86.	9 8 2 1 6	2 59 3 6 1 1 4 470 1 80	5 5 40 45	
96 MT 07 96 MT 02 96 MT 03 96 MT 03 96 NT 05 96 MT 06	.7 .9 1.0 1.9 3.3	1.34 1.36 1.98 .89 .46	1 47 69 1 1	33 28 25 5 4	.1 .1 .1 .1	1 4 3 1	1.10 1.26 _93 _83 _44	.1 -1 .1 -1 .1	20 14 18 32 192 1	49 35 51 95 23	70 57 62 141 302	3.94 2.35 3.87 7.85 9.68	1111	.21 .24 .26 .01 .01	9 7 11 2 3	1.09 .99 1.92 .36 .32	805 749 1221 377 319	11 9 12 15 21	.11 .10 .05 .01 .03	20 17 27 42 20	830 850 770 740 100	1 1 32 1	12151	5 4 6 9 10	28 39 29 14 11	1 . 1 . 1 . 1 .	15 1 17 1 19 1 15 1 07 1	113. 74. 123. 55. 28.	5 4 7 5 8	1 62 1 53 1 80 1 219 1 28	5 5 10 35	
96 NT 08 96 MT 09 96 NT 10 96 MT 11 96 MT 12	.1 .7 28.8 1.0 5.0	.30 2.14 4.03 4.59 .84	1 70 70 296 28	3 19 12 88 4	-1 -1 -1 -1	1 4 177 1 27	.90 2.06 3.95 1.93 1.43	.1 .1 .1 .1	14 5 42 22 8	42 95 87 > 100 08 2 54 10	152 85 000 202 040	9.05 1.24 7.51 3.57 1.27	1 1 1 1	.01 .03 .13 .88 .01	1 28 21 2	.08 .54 4.15 3.74 .32	351 817 5380 684 465	54 11 24 17 5	.01 .20 .07 .27 .03	20 12 158 94 15	700 680 5770 550 730	1 1 1 31	3 13 12 1 6	10 2 14 7 2	12 106 60 177 65	1 . 1 . 1 . 1 .	08 1 09 1 03 1 11 1 13 1	129 21 153 99 31	57575	9 97 7 48 1 285 1 60 2 112	5 5 310 5 5	604
96 NT 13 96 NT 14 96 NT 15	44.1 2.5 .4	1.60 .28 .56	1 1 1	6 3 96	.1 .1 .1	168 60 1	2.56 2.12 6.16	.1 2 .1 _1	217 36 5 6	46 68 48 7 69	330 . 249 25	10.85 7.42 3.53	1 1 1	.08 .01 .19	16 1 4	1.70 .10 .15	2209 883 1630	27 31 8	.01 .01 .01	60 20 13	630 420 110	85 1 33	426	14 9 4	12 1 19	1 . 1 . 1 .	09 1 04 1 02 1	90_6 54.9 27_0	5 2 1	1 183 1 229 3 121	860 60 5	327 342
																																ω Fi
																																9.02

DCT-08-1996 13:02

MIN-EN LAES

604 327 3423

COMP: HERA RESOURCES

PROJ: LORING

MIN-EN LABS - ICP REPORT

FILE NO: 65-0184-RJ3+4

COMP: HERA RESOL	JRCES								MIN-E	N LA	ABS		TC	PR	EPOI	CT.										FILE	NO:	65-01	84-RJ34	4 0 0
PROJ: LORING									8282 SHER	BROOKE	ST.,	VANC	OUVE	R, B.	C. V5X	(4E8											•	ATE:	96/10/0	N C
ATTN: BILL Howe									1111:(0	04)321	- 3430	FA.	X:(0)	04352				41.5		00	<u>cn</u>	CH.	<u> </u>	U T1				741	AUTIPOT	า ผู่
NUMBER	AG A PPM	X PPM	рън Вър	P P P P P P P P P P P P P P P P P P P	PPM	X	PPM A	PPH P	PN PPH		2 LA 2 PPH	X	PPH	X	PPM	PPH	× 1	PPH	PPN	PPNF	PM P	PM P	PN PF	H X	PPH	PPM	PPN	PPM	PPB	1 2
96 MT 16 96 MT 17 96 MT 18 96 MT 18 96 MT 19 96 MT 20	.2 2.0 .3 .3 .4 1.5 .7 .9 1.5 .6	8 1 6 1 7 57 6 1 3 1	64 91 64 180 37	.1 .1 .1 .1	1 1 1 1	3.00 .04 2.82 .98 2.31	-1 -1 -1 -1	15 2 18 22 57	24 22 91 19 26 14 63 14 46 3 7	5.4 1.4 4.6 4.1 4.9	1 1 9 1 6 1 4 1 2 1	.14 .13 .13 .06 .20	12 1 19 6 2	1.44 .02 2.15 .59 .15	2175 62 1689 1525 1758	16 6 14 11 12	.03 .06 .03 .03 .03	23 4 23 17 17	2260 110 1320 780 600	14 9 1 1 12	6 4 1 6 10	71655	36 9 72 15 10	1 .03 1 .02 1 .06 1 .15 1 .05	1 1 1 1	37.4 2.7 63.7 76.9 36.2	1 4 1 2 8	269 17 147 195 3840	5 5 5 265	.996 13
96 MT 21 96 MT 22 96 MT 23 96 MT 23 96 MT 24 96 MT 25	.6 1.7 .5 2.2 .3 .6 .9 5.0 .5 2.2	7 1 3 2 5 9 5 111 9 59	32 298 91 52 31	.1 .1 .1 .1 .1	1 1 7 6	.67 .99 .38 3.26 1.10	.1 .1 .1 .1	26 27 4 14 1 10	43 14 18 16 60 5 44 219 76 168	5.5 6.0 1.7 3.4 2.7	9 1 2 1 4 1 9 1 3 1	.34 .07 .27 .65 .27	15 36 5 6 11	1.24 2.44 .30 1.28 1.02	2147 1757 518 236 362	15 17 6 16 12	.03 .03 .02 .54 .17	23 23 6 38 14	820 850 260 610 250	1 1 1 6 1	5 1 4 31 11	7 9 2 5 3 4	11 22 7 16 33	1 .16 1 .04 1 .05 1 .10 1 .06	1	87.1 136.0 7.2 98.0 42.1	1 1 7 3	244 284 65 25 42	35 5 5 5 5	8:03
96 MT 26 96 MT 27 96 MT 28 96 MT 28 96 MT 29 96 MT 30	1.4 1.9 144.3 1.5 33.8 2.4 66.1 .7 26.8 .9	5 84 8 1 6 64 2 1 8 1	33 44 37 180 16	.1 .1 .1 .1 .1	4 849 145 172 102	2.55 2.59 4.02 1.51 3.64	.1 .1 .1 .1	13 30 21 23 12	58 112 47 >10000 29 >10000 51 8526 30 6826	2.2 7.6 4.7 8.9 3.0	9 1 5 1 1 1 1 1 7 1	.47 .07 .09 .01 .01	8 10 23 1 2	.96 1.36 2.12 .11 .61	1163 2773 4261 442 1972	10 22 20 26 10	.10 .01 .02 .01 .01	15 49 36 25 17	760 1810 1 950 640 970	42 28 29 64 2	9 55 12 14 11	4 12 7 10 4	38 32 32 14 28	1 .12 1 .22 1 .10 1 .20 1 .08	1 1 1 1	44.5 87.5 59.9 76.0 13.1	2 1 1 1	118 469 302 43 91	5 180 55 85 115	
96 NT 31 96 NT 32 96 NT 33 96 NT 33 96 NT 34 96 NT 35	12.1 3.8 1.1 .6 23.7 1.6 .3 .2 .7 .2	3 1 3 21 3 1 1 1 1 1	130 48 71 292 153	.1 .1 .1 .1	117 6 192 1	.81 1.15 2.14 .09 5.02	.1 .1 .1 .1 .1	36 4 3 27 7 2	19 8870 78 371 48 > 10000 64 112 74 45	8-92 1-22 5-22 1-03 1.0	2 1 2 1 1 1 9 1 1 1	1.95 .16 .11 .16 .15	29 4 16 1 1	3.34 ,27 1.11 .02 .02	1407 560 2150 588 1071	35 5 15 4 3	.09 .04 .01 .01 .03	95 8 30 5 7	1070 190 550 1 90 130	1 4 28 7 14	14 4 16 3 4	13 2 7 1	24 9 28 5 38	1 .26 1 .04 1 .02 5 .01 1 .01	1 1 1 1	183.6 4.9 20.8 1.7 4.0	11 5 1 2 3	126 548 117 24 44	75 5 130 5 5	-NIM
96 M1 36 96 M1 37 96 M1 37 96 M1 38 96 M1 39 96 M1 40	1.0 1.1 .8 .5 4.7 2.0 1.5 1.2 29.8 .9	2 108 6 39 4 26 4 37 5 1	17 74 22 7 10	.1 .1 .1 .1	3 1 42 9 515	5.88 15.00 1.66 5.97 .62	.1 .1 .1 .1	17 1 13 1 12 8 81	96 19 20 22 51 2666 96 52 59 >10000	2.4 3.19 3.42 2.45 >15.00	1 1 2 1 5 1 5 1	.01 .01 .12 .01 .03	15 10 8 2 5	1.11 .61 1.24 .68 .72	1533 3385 1046 914 437	9 10 12 8 34	.02 .02 .04 .01 .01	62 56 18 31 40	520 510 1180 710 2110	1 1 1 1	1 8 7 33	4 5 3 22	29 1 91 32 1	1 _12 1 _06 1 _15 1 _18 1 _02	1 1 1 1	99.9 134.6 26.2 55.1 71.5	9 7 1 5 1	45 35 77 18 395	5 20 5 930	EN LABS
96 MT 41 96 MT 42 96 MT 43 96 MT 44 96 MT 44	5_8 _4 28.0 _8 _3 1.1 18.8 1_1 13.0 _5	4 1 3 1 9 1 6 1 9 1	7 15 8 22 4	.1 .1 .1 .1	54 286 1 300 189	2.00 1.99 3.16 1.02 1.49	-1 1 -1 -1 -1 1 -1 1 -1 1	92 47 20 1 40 36	58 5030 50 >10000 04 510 50 >10000 72 >10000	11_04 10_89 7.27 9.85 8.82	1 7 1 7 1 7 1 7 1	.02 .03 .01 .15 .01	2 7 10 8 2	.43 .43 1.21 .85 .46	862 886 1315 903 1023	100 1470 28 169 28	.02 .02 .01 .02 .01	54 62 52 39 74	690 3120 700 820 740	1 1 1 1	5 22 1 20 13	13 13 10 13	1 31 16 13	1 .06 1 .04 1 .06 1 .07 1 .05	1 1 1 1	42.4 120.8 79.0 43.2 47.5	1 1 1	29 263 30 60 156	135 1035 15 675 210	
96 HT 46 96 HT 47 96 HT 48 96 HT 48 96 HT 49 96 NT 50	21.4 1.5 1.5 1.4 5.0 1.3 9.7 1.3 1.2 .1	3 1 2 47 7 1 7 1 7 1	15 15 12 14 3	.1 .1 .1 .1 .1	218 27 21 157 1	1_47 7,48 7.38 1.73 .48	.1 .1 .1 3 .1	61 29 46 99 27 12	54 >10000 51 957 59 2583 56 >10000 20 403	14.03 4.12 9.25 11.64 14.62		.03 .01 .03 .02 .05	9 6 7 11 1	1.43 1.34 1.04 1.41 .05	2135 5294 4625 1962 275	30 14 24 196 87	.02 .01 .01 .01 .01	42 63 96 82 25	600 680 470 1140 190	1 1 1 1	21 4 8 9	18 7 13 15	1 16 12 1	1 .02 1 .08 1 .06 1 .03 1 .04	1 1 1 1	38.2 42.4 50.6 37.1 35.9	131	97 1975 320 107 7	320 15 60 235 90	
SC 01 96 SC 02 96 SC 03 96 SC 04 96 SC 05 96	.7 .5 .5 1.5 36.7 .7 88.3 .6 48.5 1.1	3 1 0 1 8 1 1 1 8 1	5 18 7 6 7	.1 .1 .1 .1 .1 .1	16 2 587 080 783	.08 1.01 1.69 .30 2.46	.1 .1 .1 .1 .1	6 10 19 1 16 0 45 1 24 1	50 318 51 291 57 >10000 57 >10000 79 >10000	4.03 5.68 5.53 13.33 7.08	5 1 5 1 5 1 5 1	.03 .11 .02 .02 .02	3 14 5 4 8	.45 .50 .86 .71 1.44	252 292 1289 815 2568	11 13 15 26 19	.01 .12 .01 .01 1 .01	16 19 75 141 91	130 1350 1090 1720 1 1190	11 1 41 28 54	8 9 32 56 42	4 8 8 2	1 17 15 1 5	1 .02 1 .12 1 .05 1 .02 1 .02	1 1 1 1	34.7 122.7 43.4 57.0 39.3	46 1 1 1	19 29 57 53 100	5 190 255 370	
SC 06 96 SC 07 96 SC 08 96 SC 09 96 SC 10 96	68.0 .7 25.0 .4 .8 1.8 1.9 1.1 1.5 1.0	1 1 5 1 5 1 5 1 9 183	10 3 31 44 20	.1 .1 .1 .1	829 170 12 14 5 >	.33 2.28 1.01 .97 15.00	.1 .1 .1	20 8 18 6 25 5 15 4 10 1	30 >10000 55 >10000 51 415 59 56 59 53	8.63 8.86 4.16 3.00 1.88		.03 .01 .09 .04 .30	4 2 10 5 8	.80 .53 .92 .33 .99	1001 2210 433 272 3346	19 17 12 8 9	.01 .01 .05 .08 .01	99 32 16 11 20	1410 960 210 760 310	59 13 1 1	51 1 9 8 8	2 2 4 4	1 1 32 19 1	.02 .01 .05 .15 .05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41.1 129.4 58.0 54.8 80.0	1 1 2 1	70 54 27 17 91	270 210 15 10 10	604 3
SC 11 96 SC 12 96 SC 13 96	.1 2.4 1.8 1.4 .1 2.6	5 36 5 50 5 1	19 9 14	.1 .1 .1	1 3 1	.62 7.44 2.05	-1 -1 -1	30 4 13 4 27 4	0 .70 6 360 7 31	6.59 3.28 8.46	1	.39 .05 .19	20 11 22	3,18 1,14 1,97	1509 3128 5032	17 11 23	.03 .01 .01	33 25 42	550 560 680	1 1 1	1 1 6 1	0 5 2	11 1 9	.08 .05 .02	1 1 1	192.1 91.4 107.5	1 2 1	142 792 260	5 20 120	27 3423
																														P.03

COMP: HERA RESOU PROJ: LORING ATTN: BILL Howe	RCES									M 821	IN-E 32 SHER JEL:(6	N L) BROOKE 04)327	ABS 5 st. 7-343	, VAN	IC IVUOD AX:XA	CP) ER, 8 604)3	REP(.c. v 27-34	ORT 5x 41 2 3	E 8									F	LE NO	DATE:	84-RJS 96/10/ ACI:F3	• 02:00 1)
SANPLE NUMBER	AG PPN	AL X	AS PPM	BA PPH	BE PPM	B1 PPH	CA X	C PP	D CO	CR PPH	CU PPM	1	E G X PP	AK HX	LI PPM	MG	KN PPH	MO PPM	NA X	NI PPN	P PPM	PB PPH	S8 PPN	SN PP H I	SR PPN P	TH I PM	1 U X PPM	I PP	/ W PPH	ZN PPN	Au-wet PPB	1-30
SC 14 96 SC 15 96 SC 16 96 SC 17 96 SC 18 96	8.2 1 .9 1 3.6 5.5 3 .2	.25 .19 .63 .07 .04	221 1 9 1 5	7 29 36 35 4470	.1 .1 .1 .1	20 1 23 16 1	4.98 .73 .35 .35 .09	>100.	0 72 1 51 1 78 1 104 1 2	35 50 85 254 14	199 56 1585 3282 15	2.8 5.2 1.7 12.1	32 22 73 16 18	1 .01 1 .32 1 .06 1 .88 1 .02	7 9 4 27 1	1_20 _87 _29 3.66 _02	4203 1059 884 1846 55	23 13 7 68 1	.01 .03 .02 .02 .01	31 20 13 100 3	620 1520 220 400 70	156 1 10 1 1	13 4 6 1 1	8 5 17 1 2	37 4 7 6 301	1 .0 1 .1 1 _0 1 _1 1 _0	19 1 15 1 12 1 13 1 11 2	82.3 24.2 12.9 149.2	173 1 5 1 1	>10000 260 350 151 18	5 45 35 5	996 13
SC 19 96 SC 20 96 SC 21 96 SC 22 96 SC 23 96	.7 1 .1 2 1.6 7.8 2 51.7	.96 .75 .73 .09 .92	84 1 1 98 1	388 382 69 138 38	.1 .1 .1 .1	1 1 40 220	1.06 .69 .71 .67 .61	•	1 28 1 39 1 34 1 31 1 170	67 44 65 63 48	52 12 104 2691 >10000	5.2 6.4 7.4 3.6 12.0	23 19 11 66	1 .20 1 .22 1 .03 1 .58 1 .08	10 22 5 21 7	1.88 2.10 .49 1.82 .86	1906 3723 641 1858 711	16 19 16 51 50	.01 .03 .04 .04 .01	29 38 21 36 40	590 920 1510 650 990	1 1 14 14	2 3 3 4 14	8 10 9 6 14	25 23 3 24 8	1 .1 1 .0 1 .1 1 .0	3 1 17 1 10 1 19 1 16 1	106.2 114.1 20.0 66.2 43.6		156 293 62 165 79	5 5 10 525	100
SC 24 96 SC 25 96 SC 26 96 SC 27 96 SC 28 96	18.5 1 4.3 2 .1 .5 .2 1	-87 -57 -45 -39 -85	77 1 86 21 74	33 81 61 89 72	.1	150 13 1 1	2.09 1.42 .81 1.34 6.58	•	1 39 1 60 4 20	138 57 71 96 48	6593 2474 53 32 22	4.1 9.7 2.9 1.7 4.8	175	1 .14 1 .69 1 .11 1 .10 1 .05	13 18 3 2 20	1.41 1.96 .22 .20 1.96	2278 912 651 1005 2142	17 609 11 6 16	.01 .15 .03 .04 .03	67 40 12 12 28	580 2260 280 150 640	48 1 12 10 1	14 6 3 4 1	6 13 4 3 7	25 35 2 8 1	1 .1 1 .1 1 .0 1 .0 1 .0	2 1 0 1 1 1 1 1 1 1	65.5 59.1 5.0 2.9 194.8	35 1 1 3 1	112 102 38 187 140	75 30 5 5 5	
SC 29 96 SC 35 96 SC 36 96 SC 37 96 SC 38 96	.4 1 .1 1 11.4 2.0 .1 1	.30 .02 .91 .50 .23	19 1 1 1 1	56 180 99 152 73	.1 .1 .1 .1	1 166 40 2	2.03 .83 .23 .47 .28		16 9 20 11 8	42 26 80 50 30	14 19 1264 1015 195	4,9 3,5 12,7 10,0 6,9	764	1 .04 1 .24 1 .13 1 .09 1 .13	14 15 3 3 6	1.58 .99 .50 .25 .97	1755 911 314 536 479	14 11 23 18 16	.04 .02 .01 .01 .02	24 17 33 23 20	1800 740 560 1570 610	1 1 1 1	1 1 6 4 2	7 5 14 12 9	19 9 1 1	1 .0 1 .0 1 .0 1 .0 1 .0	6 1 2 1 1 1 1 1 1 1	78.8 48.6 78.5 34.0 16.4	1 1 1	161 119 17 16 27	5 5 125 20 5	-NIM
SC 39 96 SC 40 96 SC 41 96 SC 42 96 SC 43 96	62.1 15.2 1 2.6 1 2.3 2 2.4 1	.99 .24 .23 .10 .04	1 67 1	16 15 22 28 15	-1 .1 .1 .1 .1	737 172 45 1	1.99 1.00 4.01 .64 .70	.1 .1 .1	57 49 16 53 22	41 69 68 35 44	> 10000 9680 2959 863 449	10.9 8.3 4.2 >15.0 9.1	7 1 2 1 5 1 0 1 4 1	.01 .04 .01 .01 .01	11 10 16 10 4	.79 .69 1.52 .67 .42	2895 1711 3465 1345 1001	24 19 18 44 18	.01 .01 .01 .01	39 74 48 55 22	1260 960 690 2890 1320	21 1 1 1	45 13 2 19 7	15 11 7 22 11	1 1 14 1 2	1 .0 1 .0 1 .0 1 .0 1 .0	4 1 2 1 7 1 9 1 6 1	15.9 42.9 51.6 192.2 41.3	1 1 1 1	757 251 58 42 62	645 185 30 · 25 15	-EN LABS
SC 44 96 SC 45 96 SC 46 96 SC 46 96 SC 47 96 SC 48 96	7.6 1 .6 6.8 .2 1 7.5 1	.97 .41 .45 .01 .18	1 1 1 1	30 72 60 110 17	.1 .1 .1 .1	52 24 187 1 67	4.58 .76 2.04 .76 1.61	.1 .1 .1 .7	21 17 85 34 74	33 18 22 19 59	3516 42 2169 162 3414	8.2 6.2 >15.0 3.6 13.8	6 1 2 1 0 1 4 1 3 1	.07 .14 .02 .34 .01	16 1 5 7	1.34 .02 .25 .36 1.19	2554 129 1656 1486 2709	22 32 44 10 26	.01 .02 .01 .01	35 11 40 13 139	2960 1060 930 1350 500	1 24 1 2	9 5 11 7 8	12 7 26 4 19	30 15 1 7 1	1 .0 1 .1 1 .0 1 .0 1 .0	3 1 1 1 8 1 1 1 5 1	131.5 8.3 47.1 15.6 54.6	1 1 1 4 7	233 6 1 2737 7134	55 55 125 25 85	
SC 49 96 SC 50 96	.1 1 11.7	.96 .65	¶ 1	36 7	.1 .1	1 26	4.06 2.01	.1	33 513	68 71	40 3535	14.0 12.2	2 1	.01 .01	18 2	1.72	4060 1520	54 220	.01 .01	79 113	350 490	1 1	10 5	19 15	1 1	1.0	5 1	71.0 54.9	1	173 69	10 210	
																																604 3
																· <u> </u>																27 3423
												<u>, , , , , , , , , , , , , , , , , , , </u>																				P.04

604 327 3423 P.06

VANCOUVER OFFICE: \$282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

Company: HERA RESOURCES Project: LORING Attn: Bill Howe

We hereby certify the following Geochemical Analysis of 24 ROCK samples submitted SEP-26-96 by Bill Howe.

Sample	2	Cu		
Number	:	¥		
SC 14	96			
SC 15	96			
SC 16	96			
SC 17	96			
SC 18	96			
SC 19	96			
SC 20	96			
SC 21	96			
SC 22	96			
SC 23	96	2.360		
SC 24	96			
SC 25	96			
SC 26	96			·
SC 27	96			
SC 28	96			
SC 29	96			
SC 35	96		•	
SC 36	96			· ·
SC 37	96			
SC 38	96			
SC 39	96	4.600 /		
SC 40	96	·		
SC 41	96			
SC 42	96	•		

Certified by

MIN-EN LABORATORIES

6S-0184-RG5

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (504) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

Company: HERA RESOURCES Project: LORING Attn: Bill Howe

We hereby certify the following Geochemical Analysis of 24 ROCK samples submitted SEP-26-96 by Bill Howe.

Sample			Cu	
Number			8	
96 MT	40	3	.610 /	
96 MT	41			
96 MT	42	2	.150	
96 MT	43			
96 MT	44	2	.110/	
96 MT	45	1	.430 -	
96 MT	46	1	.800 -	
96 MT	47			
96 MT	48			
96 MT	49	1	.390-	
96 MT	50			,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SC 01	96			
SC 02	96		,	
SC 03	96	3	. 890	
SC 04	96	7	.460	
SC 05	96	4	.940/	
SC 06	96	5	.080	
SC 07	96	l	.230 🗸	
SC 08	96			
SC 09	96			
SC 10	96			
SC 11	96			
SC 12	96			
SC' 13	96			

Certified by

MIN-EN LABORATORIES

6S-0184-RG4

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

MINERAL ENVIRONMENTS LABORATORIES DIVISION OF ASSAYERS CORP.) SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + CEOCHEMISTS

Geochemical Analysis Certificate

``

Company: HERA RESOURCES Project: LORING Attn: Bill Howe

We hereby certify the following Geochemical Analysis of 24 ROCK samples submitted SEP-26-96 by Bill Howe.

Sample	Cu
Number	8
96 MT 16	
96 MT 17	
96 MT 18	
96 MT 19	
96 MT 20	
96 MT 21	
96 MT 22	
96 MT 23	
96 MT 24	
96 MT 25	
96 MT 26	
96 MT 27	6.510
96 MT 28	1.070/
96 MT 29	
96 MT 30	
96 MT 31	
96 MT 32	
96 MT 33	1.350
96 MT 34	
96 MT 35	
96 MT 36	
96 MT 37	
96 MT 38	
96 MT 39	

Certified by

MIN-EN LABORATORIES

6S-0184-RG3

604 327 3423 P.03

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER. B.C., CANADA V5X 453 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

Company: HERA RESOURCES Project: LORING Attn: Bill Howe

We hereby certify the following Geochemical Analysis of 24 ROCK samples submitted SEP-26-96 by Bill Howe.

Sample	2		Cu	
Number			\$	
BD 133	9 9	6		
BD 134	9	6		
BD 139	5 9	6		
BD 136	5 9	6	/	
BD 137	7 9	6	1.640 /	
BD 138	39	6		
BD 135	9	6		
BD 140	9 (6		
BD 141	9	б		
BD 142	2 9	6		
BD 143	39	6		
96 MT	01			
96 MT	02			
96 MT	03			
96 MT	05			
96 MT	06			
96 MT	80			
96 MT	09			
96 MT	10		1.410	
96 MT	11			
96 MT	12			
96 MT	13			
96 MT	14	4		
96 MT	15	;		

Certified by

MIN-EN LABORATORIES

6S-0184-RG2

Date: OCT-09-96

• • •

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 468 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

MINERAL •ENVIRONMENTS LABORATORIES LOIVISION OF ASSAYERS CORP.) SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS •ASSAYERS • ANALYSTS • CEOCHEMISTS

Geochemical Analysis Certificate

Company: HERA RESOURCES Project: LORING Attn: Bill Howe

_

We hereby certify the following Geochemical Analysis of 24 ROCK samples submitted SEP-26-96 by Bill Howe.

Sample	Cu
Number	₹.
BD 109 96	
BD 110 96	
BD 111 96	
BD 112 96	2.290
BD 113 96	
BD 114 96	
BD 115 96	
BD 116 96	1.630/
BD 117 96	1.170
BD 118 96	
ED 119 96	2.100-
BD 120 96	2.190/
BD 121 96	,
BD 122 96	1.210
BD 123 96	
BD 124 96	
BD 125 96	
BD 126 96	
BD 127 96	
BD 128	·
BD 129 96	
BD 130 96	
BD 131 96	
BD 132 96	

Centified by

MIN-EN LABORATORIES

6S-0184-RG1

JAN-20-1997 13:57

MIN-EN LABS

604 327 3423 P.03

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA VSX 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR SAMPLE PREPARATION

a.) The soil and stream sediment samples are dried at 60 Celsius. The sample is then screened by 80 mesh sieve to obtain the -80 mesh fraction for analysis.

b.) The rock and core samples are dried at 60 Celsius and when dry are crushed in a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to -1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 gram sub-sample. This sub-sample is then pulverized on a ring pulverizer to 95% minus 150 mesh rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored. JAN-20-1997 13:57

MIN-EN LABS

604 327 3423 P.04

VANCOUVER OFFICE; 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA VSX 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: <u>PROCEDURE FOR TRACE ELEMENT ICP</u> Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sn, Sr, Th, Ti, U, W, Zn

0.50 grams fo the sample pulp is digested for 2 hours with an 1:3:4 HNO₃:HCl:H₂O mixture. After cooling, the sample is diluted to standard volume.

The solutions are analysed by computer operated Jarrell Ash 9000, Jarrell Ash 975 or Jobin Yvon 38, Inductively Coupled Plasma Spectrophotometers.

JAN-20-1997 13:57

MIN-EN LABS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

PROCEDURE FOR AU GEOCHEM FIRE ASSAY

Samples are dried @ 65 C and when dry the Rock & Core samples are crushed on a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to 1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 gram sub-sample. This sub-sample is then pulverized on a ring pulverizer to 95% - 150 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

Soil and stream sediment samples are screened to - 80 mesh for analysis.

The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved with aqua regia solution, diluted to volume and mixed.

These resulting solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 2 standard deviations of its known or the whole set is re-assayed.

10% of all assay per page are rechecked, then reported in PPB. The detection limit is 1 PPB.

APPENDIX IV

•

STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURES LORING 1-3 GROUP

<u>Personnel:</u>

Chris Basil, Project Coordinator		
0.5 days @ \$350/day	\$	175.00
Mike Tiedge, Project Geologist		
10 days @ \$265/day		2,650.00
Stan Carnogursky, Prospector		
11 days @ \$225/day		2,475.00
Brian Dahl, Prospector (subcontracted)		
9 days @ \$325/day		2,925.00
	\$	8,225.00
Expenditures:		
Mob/demob	\$	1,364.97*
Food		684.33*
Survey Materials		231.34*
Radio Rental (3 handhelds and chargers)		222.30*
Accommodation (Capri Hotel)		1,474.00*
10% Administration on *\$3,976.94		397.69
Helicopter (Highland Helicopters)		5,375.60
Assays (MinEn Laboratories)		2,496.80
Report		2,400.00
	\$	14,647.03
Subtotal	\$	22,872.03
7% GST	<u>\$</u>	1,601.04
TOTAL LORING GROUP EXPENDITURES	\$	24,473.07
(Expenditures incurred on Loring 3 (56%)	\$	13,704.92
AMOUNT APPLIED TO ASSESSMENT	\$	4,000.00

