GEOCHEMICAL, GEOPHYSICAL AND DRILL REPORT

CARIBOO MINING DIVISION BRITISH COLUMBIA

> NTS 93A/6 52°28'N 120°28'W

IMPERIAL METALS CORPORATION (OWNER AND OPERATOR)

by

Dave Cole, B.Sc.

and

Steve Robertson, P.Geo.

March 4, 1997

TABLE OF CONTENTS

Summary	1
Introduction	2
Location and Access	2
Claim Information	2
History	3
Regional Geology	4
Property Geology	5
Mineralization	6
1996 Work Program	6
Results	7
Recommendations	9
References	11
List of Personnel.	12
Statement of Expenditures	13
Author Qualifications	14, 15
	,

Appendix A1997 Budget ProposalAppendix BDrill LogsAppendix CAssaysAppendix DInduced Polarization Survey Results
(Drawings 96399-01 - 96399-09)

Figure 1	Redgold Property Location Map
Figure 2	Redgold Property Claim Map
Figure 3	Redgold Geology Compilation Map
Figure 4	Redgold Property 1996 Exploration Map
Figure 5	Quarry Mineralized Zone Map

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

Page

365

SUMMARY

This report summarizes the work conducted on the Redgold Property, located near Horsefly, B.C., during the 1996 field season. The project was designed to check the nature and extent of a copper/gold showing in a small quarry.

The Redgold claim group encompasses the concentrically zoned Shiko Stock and surrounding sedimentary and volcanic units. The Shiko Stock grades from a diorite on the periphery to a more potassic rich monzonite at the center.

The surrounding volcanics exhibit moderate to strong propylitic alteration and lesser amounts of potassic alteration.

Chalcopyrite, bornite and native copper are present within the propylitically altered units. The sulphide bearing, propylitically altered units are manifested as a pyrite halo surrounding the Shiko Stock.

Geochemical work within the quarry area identified a northeast-southwest trending mineralized zone. Drilling intersected high grade mineralized sections containing bornite, chalcopyrite and visible gold. The 1996 geophysical work over the quarry and surrounding area places the showing just west of a strong chargeability anomaly with an associated moderate resistivity. The geophysical anomaly was not tested during the 1996 drilling project.

INTRODUCTION

This report summarizes the work performed on the Redgold project between May 12 and November 18, 1996.

LOCATION AND ACCESS

The claim group is located south of Quesnel Lake in gently rolling topography of the B.C. Cariboo.

The Redgold Project area is located approximately 20 kilometers north of Horsefly, B.C. and approximately 60 kilometers northeast of Williams Lake (figure 1). The quarry is accessed by the Mitchell Bay all weather gravel road north of Horsefly and by a 5 kilometer network of logging roads. Excellent access is provided throughout the claim group via a plethera of spur roads which run through-out the claims.

CLAIM INFORMATION

The Redgold Claim Group is located in the Cariboo Mining Division, and consists of Shik 1 - 7 and R.G. #1 (figure 2). The claims total 92 units over an area of approximately 2090 hectares. The claims are held by Imperial Metals Corporation in accordance to an option agreement between Imperial Metals, and J.W. Morton and R.M. Durfeld dated March 5, 1996.

CLAIM NAME	TENURE NO.	NO. OF UNITS	EXPIRY DATE
Shik 1	204603	16	May 31, 1998
Shik 2	204604	12	June 31, 1998
Shik 3	10313	16	Dec. 1, 1997
Shik 4	10314	12	Dec. 1, 1998
Shik 5	10315	15	Dec. 1, 1998
Shik 6	10316	20	Dec. 1, 1998
Shik 7	10317	18	Dec. 1, 1998
R.G. #1	325558	1	May 22, 1998

HISTORY

Interest in the area was sparked by the release of the aeromagnetic sheet #5239 G in 1968, which showed a prominent circular magnetic high in the center of the Redgold Property. Similar magnetic highs led to the discovery of the Mount Polley deposit (Cariboo Bell) owned by Imperial Metals Corporation and the Q.R. deposit owned by Kinross. (Morton et al., 1995)

Kerr Adison Mines and Dusty Mac Mines entered into a joint venture from 1969 to 1971 on the previously staked 'SL' claims. The three year program consisted of geochemical sampling, a 7 kilometer magnetometer survey, 26 kilometers of an Induced Polarization Survey and 500 meters of bulldozer trenching.(Goodall et al., 1992)

Fox Geological Consultants conducted exploration programs from 1972 to 1974 on behalf of the Cariboo Syndicate (Dome Mines and Newconex). The exploration programs included 16 kilometers of Magnetometer and Induced Polarization Surveys, geological mapping, bulldozer trenching and 7 short percussion holes totaling 280 meters. (Goodall et al., 1992)

The claims were sold to Terramar Resource Corporation who drilled 3 short diamond drill holes into the syenite stock. The company abandoned the eastern portion of the claim group in 1982, and the remainder of the claim group in 1989. (Goodall et al., 1992)

When Terramar Resource Corp. allowed the claims to lapse, J.W. Morton and R. Durfeld staked Shik 1 & 2 in 1982, and Shik 3 - 7 in 1989. (Goodall et al., 1992)

Phelps Dodge Corporation optioned the property in 1989 and continued work until 1992. Work completed on the property consisted of the installation of 66 kilometers of grid, geochemical sampling and mapping of the grid, a 37 kilometer Induced Polarization Survey and the completion of 17 diamond drill holes totaling 1997 meters targeted on a strong chargeability anomaly.

In 1993 a portion of the property was leased to Quarry Pacific Industries Ltd. which mined a portion of the syenite intrusion for industrial use. The operations exposed copper/gold mineralization consisting of malachite and azurite stained fracture faces with disseminated bornite and chalcopyrite.

This mineralized zone was the focus of the 1996 exploration program.

REGIONAL GEOLOGY

The Redgold Property is in the middle of a northwest trending belt of Mesozoic aged volcanic rocks called the Quesnel Terrane. The Quesnel Terrane, accreted to the Omineca Belt during the Lower Jurassic, originated as a volcanic island.

The central unit of the Quesnel Terrane is composed of a trachytic breccia which contains a linear sequence of dioritic intrusives which are believed to be comagmatic with the trachytic breccia and the mafic volcanics which flank it. The intrusive stocks range in composition from gabbro to syenite and are spatially associated with copper/gold porphyry deposits and porphyry related deposits such as the Mount Polley Mine and the QR deposit. (Morton et al., 1995)

The oldest rocks in the Quesnel Terrane are Triassic aged basaltic sandstone, conglomerate, minor volcanic breccia, limestone and argillite. The overlying rock unit, poorly represented on the Redgold Property, comprises much of the central volcanic belt consisting of up to 5000 meters of Jurassic aged mafic volcanic rocks of shoshonitic composition. The green and maroon autobreccias, pillow breccias, pillow lavas and massive flows are overlain by up to 300 meters of shelf-like limestone, calcareous argillite, siltstone, and calcite cemented basaltic tuff and breccia. The sediments are in turn overlain by up to 2500 meters of Jurassic aged massive volcanic flows and compact monolithologic breccias. (Goodall et al., 1992)

PROPERTY GEOLOGY

The Redgold Property is composed of five main lithological units; 1) the Shiko Stock (Cretaceous), 2) augite basalt (Triassic), 3) felsic breccia (Jurassic), 4) pelitic sediments (Jurassic) and 5) maroon basalt (Jurassic). See figure 3.

The claim group is centered around the concentrically zoned dioritic Shiko Stock which grades from an augite gabbro inwards to augite diorite, monzonite and syenite. The alkalic intrusive actively intruded the surrounding lithology, evidenced by the alteration found within the surrounding lithologies, proximal to the stock. (Fox P., 1991)

The augite basalt, presumed to be the extrusive equivalent of the Shiko Stock, is characterized by medium to fine grained, subhedral augite phenocrysts within a fine grained to massive groundmass. The groundmass and the augite phenocrysts exhibit weak to moderate retrograde chlorite alteration. Moderate propylitic alteration in the form of epidote, chlorite and calcite is often accompanied by fine grained, disseminated and fracture filled pyrite from 1% - 4%. The strongly altered basalts, proximal to the Shiko Stock, are accompanied by trace amounts of potassic alteration. Hornblende porphyry and gabbro dykes intrude the basalts.

The massive felsic tuff breccia lies stratigraphically above the augite basalt and is composed of massive felsic tuff and dioritic clasts mixed with augite basalt (Goodall et al., 1992). The felsic breccia exhibits propylitic alteration and trace potassic alteration both of which increase in intensity as the units' proximity to the stock increases. Pyrite content appears to increase as the propylitic alteration intensifies.

The alteration and pyrite within the augite basalt and felsic breccia forms an alteration halo extending from the northern portion of the stock around to the south eastern side of the stock. Weak copper/gold values were detected within the alteration halo during the 1990 drill program (Fox P., 1991).

Well bedded pelitic sediments are evident as moderately siliceous light-dark grey siltstone. Disseminated and fracture filled pyrite are found throughout the unit, which is periodically invaded by hornblende porphyry dykes.

The youngest unit on the property is represented by maroon basalts adjacent to the southern portion of the stock. The maroon basalts are in fault contact with the rest of the units comprising the Redgold Claim Group. The maroon basalts hold no apparent significance to the alteration or mineralization found on the property.

MINERALIZATION

Work programs in the past have been focused on the mineralization and alteration found within the pyrite halo. The intense propylitic alteration found in the form of epidote-chlorite-calcite alteration is accompanied by lesser amounts of potassic alteration. Potassic alteration appears to increase as the proximity to the Shiko Stock increases.

Mineralization occurs as disseminated and fracture filled pyrite, accompanied by disseminated chalcopyrite, malachite, azurite, bornite and native copper.

A mineralized intersection within the quarry area was discovered during drilling that contains an intercept with strong potassic alteration hosting bornite, chalcopyrite and visible gold.

1996 WORK PROGRAM

The objective of the 1996 work program was to determine the extent of the mineralization in the quarry. The work program was designed and implemented by S. Robertson and the author.

The 1996 work program was conducted in three phases. The first phase involved extensive channel sampling of the mineralized monzonite outcrop exposed during operations by Quarry Pacific. A grid was established over the outcrop and a rock saw was utilized to cut channels that were approximately 2" wide x 2" deep. Thirteen trenches were opened by an excavator as

extensions of the channel samples. The trenches were chip sampled and assayed in 1 to 3 meter intervals.

Significant copper and gold values resulted in a follow-up drill program which involved the drilling of four diamond drill holes for a total of 411.6 meters. All samples were shipped to Acme Analytical via greyhound from Williams Lake and were analyzed for 32 elements by ICP with additional analysis for gold using a wet geochemical method. The core is stored just south of the quarry in a small clearing used during splitting and logging of the core. Drill logs and assays are provided in Appendixes B and C respectively.

An Induced Polarization Survey conducted late in the season attempted to define the mineralization found in the quarry area. The survey was conducted over seven 1.25 kilometer lines spaced 100 meters apart with 50 meter dipoles. All work was conducted under permit PRG1996-1000926-7463.

Figure 4 shows the location of the 1996 drill holes and IP grid.

RESULTS

Channel Sampling Program

Samples from the original monzonite outcrop returned elevated values of both copper and gold when the samples were taken close to **the** contact between the monzonite and the diorite, present at the SW edge of the outcrop. Grab samples ran as high as 12.8 g/t gold and 1.6 % copper.

An excavator was utilized to establish 13 trenches. The excavator reached bedrock which was subsequently chip sampled. The chip sampling revealed a NE - SW trend in mineralization. Figure #5 shows the mineralized zones with grade ranges.

Drill Program

RG96-1

The diamond drill hole was collared in the quarry at an angle of -45° towards 266°. The hole's objective was to test the extension of surface mineralization in the west wall of the pit.

RG 96-2

This hole was designed to test the down dip extension of surface mineralization on the north side of the quarry. The hole was drilled towards 270° at -45°.

A strongly mineralized intersection from 7.5 meters to 18.9 meters contained bornite, chalcopyrite and visible gold. The intersection graded a weighted average of 0.44 % copper and 1.92 g/t gold.

RG96-3

Diamond drill hole RG96-3 was designed to test the western extent of the monzonite outcrop and of the mineralization. The hole was cored in bedrock at 4.3 meters dipping -045° towards 160°.

RG96-4

Diamond drill hole RG96-4 was designed to check the south-western extension of the monzonite outcrop. The hole was drilled due east (090°) at a 45° angle.

A highly altered section of core ran from 10.0 meters to 17.5 meters and had a weighted average of 0.31% copper.

Geophysical Program

A grid consisting of 7 lines, each with a length of 1.25 kilometers and a baseline measuring 600 meters covered the quarry area with the hopes of identifying the surface mineralization. The lines were joined to the ends of the southern most lines established in 1990 by Phelps Dodge.

The 1996 grid was compassed and flagged. The lines were subsequently cut to a 1 meter width with hip-chained stations every 50 meters.

A chargeability high with a porphyry style signature (Klit, D., 1996) was detected on the eastern end of the lines. The chargeability values within the high were as great as 53 milliseconds with back ground values to the north, west and south ranging from 3 to 10 milliseconds.

Both the resistivity and chargeability plots identified the contact between the hybrid unit (felsic breccia) and the monzonite.

The mineralization exposed at the quarry is located just beyond the western side of the chargeability anomaly.

RECOMMENDATIONS

Exploration Impetus

- The propylitic, potassic and pyrite alteration halo which surrounds the alkalic intrusive, suggests that future projects should be focused on a Mount Polley style copper-gold alkalic porphyry deposit rather than a QR style deposit.
- A 10-20 cm thick clay layer was identified during trenching which could result in the masking of geochemical signatures in areas of deep overburden. Penetration of the clay layer may result in the identification of previously hidden geochemical anomalies.
- 3. IP work delineated a chargeability anomaly which remains open to the west. The anomaly lies between two multi-phase intrusives and encompasses a surface bornite showing on it's southwestern border.

- 4. Sampling and drilling in 1996, within the quarry area, identified high grade copper and gold intersections that were as high as 0.44 % copper and 1.92 g/t gold over 11.4 meters.
- 5. The mineralized zone is within close proximity to the Mount Polley Mine site.

1997 Proposed Exploration Program

Phase 1

- extend 1996 grid 1.0 km to the west.
- map and sample grid biogeochemical sampling or augured soil samples
- IP survey on newly installed grid
- check extension of IP anomaly

Phase 2

- drill 3 holes into quarry area to extend surface copper-gold showings
- drill into IP anomaly to test for mineralization at depth

REFERENCES

- Durfeld, R. M. (1988), Geological Report on the Redgold Property. Durfeld Geological Management Company. Assessment Report #17,645.
- Fox, P. E. (1991), Drilling Report on the Shik 1 to 7 Claims-Redgold Prospect. Fox Geological Consultants Ltd. Fox Geological Consultants Ltd. Assessment Report #20,930.
- Goodall, G. N., Fox, P. E. (1992), Drilling Report on the Shik 1 to 7 Claims-Redgold Prospect. Fox Geological Consultants Ltd. Assessment Report #22,104.
- Klit, A. D. (1996), A Geophysical Report on an Induced Polarization Survey on the Mitchell Bay Property Near Horsefly, British Columbia. Lloyd Geophysics Inc. Company Report.
- Konst, R. A., Fox, P. E. (1990), Geochemical and Geological Report on the Shik and Redgold Claims. Fox Geological Consultants ltd. Assessment Report #19,803.
- Morton J.W., Durfeld R.M. (1995), Rock Sampling Report Shik Claims Cariboo Mining Division. Assessment Report #23,771.
- Shoemaker, S. J. (1984), Geochemical Report on the SL Claim Group. Terramar Resource Corporation. Assessment Report #12,694.

LIST OF PERSONNEL

<u>Man Days</u>

;

IMPERIAL METALS CORPORATION

1

ł

Π

 \bigcap

Steve Robertson	Project Geologist	34
David Cole	Project Geologist	68
Clay Craig	Geological Engineer	6
Richard Ney	Core Splitter	8

BEAUPRE DIAMOND DRILLING LTD.

Stan Beaupre	Driller		5
F. Petit	Driller	١	5
L. Graham	Helper		5
L. Fowler	Helper		5

DURFELD GEOLOGICAL MANAGEMENT LTD.

Rudi Durfeld	Consultant	1
Stephen Lehman	Line Cutter	12
Richard Pilley	Line Cutter	12

LLOYD GEOPHYSICS INC.

Dan Klit	Project Geophysicist	7
Bill Westerberg	Geophysical Technician	7
Mike Tourney	Geophysical Technician	7
Claude Bird	Assistant	7
Greg Homenborg	Assistant	7

STATEMENT OF EXPENDITURES

Daily Expenditures		
Accommodations	\$ 2,501.77	
Food	\$ 2,324.11	
Transportation		
Leased Vehicle	\$ 3,044.63	
Fuel	\$ 1,156.62	
Contractors		
Drilling	\$ 20,706.00	
Trenching	\$ 1,228.00	
Geophysics	\$ 15,851.82	
Line Cutting + GPS Work	\$ 10,083.41	
Assays	\$ 7,200.74	
General		
Supplies	\$ 3,287.74	
Communication	\$ 81.22	
Shipping	\$ 987.21	
Property Fees		
Option Payments	\$ 15,200.00	
Licensing Fees	\$ 1,210.00	
<u>Wages</u>		
Project Geologist	\$ 10,540.00	
Geologist/Project Geologist	\$ 11,560.00	
Engineer	\$ 1,125.00	
Assistant	\$ 1,600.00	
Report Writing	\$ 1,200.00	
Filing Fees	\$ 5,544.41	

;

.

Total

\$ 116,432.68

13

÷

STATEMENT OF QUALIFICATIONS

I, D.I.R. Cole of the City of Vancouver, B.C. certify the following:

- 1. I graduated from the University of British Columbia in 1996 with a B.Sc. in Geology.
- 2. I have worked in the Mining and Exploration Business since 1994.
- 3. I have worked full time for Imperial Metals Corp. on a contract basis since graduation.
- 4. I completed part of the work described and I am the author of this report.

Signed at Vancouver, British Columbia, this 3^{cd} day of March, 1997.

and let

D.I.R. Cole, B.Sc.

i

Stephen B. Robertson, P.Geo.

Statement of Qualifications

I, Stephen Robertson, of 1969 Lower Road, Roberts Creek, British Columbia, hereby certify that:

- I am a geologist, employed by Imperial Metals Corporation.
- I am a 1989 graduate of the University of Alberta in Edmonton, with a Bachelor of Science degree in geology.
- I have been employed in mining since 1988 and have continuously practiced my profession since 1989.
- I am a Professional Geoscientist, registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- I supervised or was involved in the planning of the programs described in this report.
- This report is based on the information gained during the 1996 field season and a review of private and public reports.
- This report may be used for development of the property or raising of funds, provided that no portion of it is used out of context, or in such a manner as to convey a meaning different from that set out in the whole.

Signed at Vancouver, British Columbia, this 3^{rd} day of March, 1997.

Stephen Robertson, P.Geo.

APPENDIX A

.

•

ł

Ì

i.

• !

;

1

ł

| | |

> . .

ł

.

.

. . .

Proposed Exploration Budget 1997

Redgold Property

Salaries	Project Coologist	20 dave @ \$167	¢	6 040 00
	Assistant	30 days @ \$167 30 days @ \$110	ې د	5,010.00
	, oolotant		•	0,000.00
Soil Surve	<i>y</i>			
	\$500/day for 8 days		\$	4,000.00
Grids				
	Cut Grid 8.75 km @	\$700/km	\$	6,125.00
	IP 8.75 km @ \$1300)/km	\$	11,375.00
Diamond I	Drill			
Diamone	1200' @ \$35/ft		\$	42.000.00
	Mob-Demob		\$	2,000.00
Accous				
Assays	200 core samples @	\$20/sample	S	4.000.00
	50 field samples @	\$20/sample	\$	1,000.00
	315 soil samples @	\$20/sample	\$	6,300.00
Petrograpi	hics 10 samples @ \$40/s	amnla	e	400.00
	To samples @ 940/3	ampic	Ŷ	400.00
Room and	Board			
	30 days @ \$65/day		\$	1,950.00
Vehicle Re	ental			
	30 days @ \$50/day		\$	1,500.00
	Fuel and Repair		\$	800.00
Equínment	t and Supplies		¢	600.00
сциртоп			ų.	000.00
Freight and	d Shipping		\$	600.00
Communic	otione		¢	200.00
Communic	auuris		Ð	200.00
Report Wr	iting		\$	1,200.00
Total Fun			<u> </u>	
i otal EXP	enultures		2	92,360.00
Filing Fees	s, 5% of Total Expend	litures	\$	4,618.00
			_	
Total			\$	96,978.00

ł

ł

APPENDIX B

.

;

ł

ľ

 \square

ł

i

ļ

÷

. r

,

.

IMPERIAL METALS CORPORATION RG96-1

PROPERTY: CLAIM NAME: ZONE: LOCATION: AZIMUTH: LENGTH: DIP:	Redgold Shik Quarry E 266 102.1 m -45	N	CASING: 3.0 metres CORE SIZE: NQ CORE STORAGE: Property DRILLING COMPANY: Beaupre Diamond Drilling STARTED: June 28, 1996 COMPLETED: June 29, 1996 OBJECTIVE: Test for extension of surface mineralization in west wall of pit LOGGED BY: S. Robertson	DATE LOGG ASSAYED B	ED: Y:	30-Jun-96 Acme			
From (m)	To (m)	Length (m)	Description	Sample #	From (m)	то (m)	Width (m)	Cu (ppm)	Au (ppb)
0.0	3.0	3.0	CASING						
3.0	56.5	53.5	MONZONITE Composition averages 60% K-spar, 20% quartz, 10% plag, 7% Augite, 2% magnetite, % muscouite. K-spar occurs as crystals up to 8mm long and as a flood in the groundmass. Quartz occurs as rounded crystals up to 2mm long and plagioclase as laths up to 4mm long. Augite observed in irregular crystals to 7mm, but most has been altered to chlorite and lesser epidote. Muscovite and magnetite average 1mm across.						
3.0	11.0	8.0	Monzonite Fresh - Zenolith of augite basalt (9.0cm long) at 5.3m. Zenolith rounded. Small 1mm fractures near parallel to Core Axis with minor quartz.						
11.0	11.6	0.6	Core becomes pinker as plag replaced by K-spar, but rock still very competent.	66351	11.0	11.6	0.6	53	10
11.6	12.9	1.3	Increase fracturing over this interval with healing of fracture with quartz - K-spar and K-spar flooding of surrounding rock.	66352	11.6	12.9	1.3	51	19
12.9	14.5	1.6	Fresh Monzonite.						
14.5	16.5	2.0	Monzonite - Increased fractures and K-spar flooding.	66353	14.5	16.5	2.0	85	10

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
			Core pieces average less than 10cm length.						
16.5	18.5	2.0	As above, but fracturing more.	66354	16.5	18.5	2.0	88	17
18.5	21.5	3.0	As above. 10cm long zone of strong K-spar flooding at 19.8 - 19.9m with many blebs (2-3mm) of chalcopyrite. and one clot 3.5 x1.2cm.	66355	18.5	21.5	3.0	523	17
21.5	24.5	3.0	Monzonite. Appears quite fresh, but has occasional irregular fractures at approximately 30 - 70 degrees to Core Axis with K-spar flooded envelopes up to 4mm wide carrying occasioanl blebs chalcopyrite.	66356	21.5	24.5	3.0	198	18
24.5	27.8	3.3	Monzonite - As above with less chalcopyrite.	66357	24.5	27.8	3.3	148	9
27.8	29.3	1.5	FAULTED MONZONITE Interval contains 4 parallel gouge zones at 55 degrees to Core Axis. Each gouge zone approximately 4cm wide. Monzonite in 1.5m wide fault zone is unrecognizable in most places. Network of K-spar filled fractures as well as 5% quartz - carbonate flooding. Only Trace chalcopyrite.	66358	27.8	29.3	1.5	233	18
29.3	32.3	3.0	MONZONITE Fresh with fractures (average 10 -15cm apart) with K-spar envelope and variable chalcopyrite. Fractures average 55 degree to Core Axis. Petrographic at 31.8 -31.9.	66359	29.3	32.3	3.0	231	18
32.3	35.0	2.7	Monzonite - as above.	66360	32.3	35.0	2.7	430	342
35.0	36.6	1.6	As above, but K-spar flooding increasing. Fracture frequency increases, but all are 60 degrees to Core Axis. Trace Chalcopyrite.	66361	35.0	36.6	1.6	347	43
36.6	39.1	2.5	Monzonite - Fresh Less K-spar flooding.	66362	36.6	39.1	2.5	1078	341
39.1	41.0	1.9	As above with increasing K-spar flooding, but still only Trace Cholcopyrite.	66363	39.1	41.0	1.9	198	262

·- --- -

U

J

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
41.0	42.0	1.0	Monzonite Interval has a fault zone approximately 50 degrees to Core Axis. Many fractures parallel. Dark chlorite flooding of much of the wall rock. some Vuggy quartz / carbonate. Hematite forming on magnetite.	66364	41.0	42.0	1.0	360	29
42.0	45.0	3.0	As above.	66365	42.0	45.0	3.0	179	66
45.0	47.6	2.6	As above, but decreasing chlorite and increasing K-spar content. Trace Chalcopyrite. Fault planes have decreased to 30 degrees to Core Axis.	66366	45.0	47.6	2.6	0	259
47.6	50.3	2.7	As above.	66367	47.6	50.3	2.7	182	81
50.3	53.0	2.7	Monzonite - As above.	66368	50.3	53.0	2.7	367	68
53.0	55.0	2.0	Monzonite.	66369	53.0	55.0	2.0	260	47
55.0	56.5	1.5	Monzonite Very strong K-spar. Approximately 1% diss Chalcopyrite. Chlorite envelopes around fractures (2mm). Bottom content at 45 degrees to Core Axis.	66370	55.0	56.5	1.5	946	104
56.5	62.2	5.7	XENOLITH OF AUGITE BASALT Top contact is 30 degrees to Core Axis; bottom is also 30 degrees. Contact is actually irregular, but faults exist at top and bottom of unit. Very strongly altered. Occasional patches of K-spar and epidote. Strong Pyrite with epidote. Graphitic from 56.5 -56.9m. Strong chlorite, carbonate, quartz flooding throughout.	66371 66372 66373	56.5 59.0 60.5	59.0 60.5 62.2	2.8 1.5 1.7	980 347 479	158 48 39
62.2	90.2	28.0	HYBRID UNIT Diorite xenoliths within a fine grained mafic groundmass.						

J

Page 3

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
62.2	64.2	2.0	Hybrid unit with a strong pink/white salt and pepper appearance. Distinct fabric at 90 degrees to Core Axis. Feldspar appears quite fresh. Increasing chlorite content. K-spar flooded.	66374	62.2	64.2	2.0	74	11
64.2	73.9	9.7	As above, but more chlorite. Decreasing K-spar toward end of interval. Patches of K-spar and epidote are obvious. Many xenoliths of Augite basalt ranging in size from 5cm to 50cm. Xenoliths quite angular and chlorite altered. Occasional patches of pyrite.	66375 66376 66377 66378	64.2 65.9 67.9 70.9	65.9 67.9 70.9 73.9	1.7 2.0 3.0 3.0	127 147 566 267	11 17 57 18

. . . .

•

-

-

-

. .

-

- -

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
73.9	90.2	16.3	HYBRID UNIT As above - Very betergeneous unit with many large xenoliths	66379	73.9	76.9	3.0	108	12
			Chaotic active texture. Start to see traces of chalcopyrite in last 1.5 E123m of interval.	66380	76.9	79.9	3.0	9 7	28
90.2	94.1	3.9	MONZONITE Frosh Monzonite duke at 70 degrees to Core Avia, but contact without impoules	66385	90.2	92.4	2.2	48	14
			Diorite xenolith at 92.4 to 92.8.	66386	92.4	94.1	1.7	116	14
94.1	102.1	8.0	HYBRID UNIT As in interval above Monzonite.	66387	94.1	96.6	2.5	185	15
			Up to 15% epidote in occasional patches up to 10cm long. 2-3% pyrite in patches. Strong chlorite alteration	66388	96.6	99.1	2.5	246	15
			102.1 EOH	66389	99.1	100.6	1.5	458	12
				66390	100.6	102.1	1.5	187	13

			IMPERIAL METALS CORPORATION								
PROPERTY: Redgold CLAIM NAME: Shik ZONE: Quarry LOCATION: E N AZIMUTH: 270 LENGTH: 99.1 m DIP: -45		Shik N D 1 5	RG-96-2 ING: 3.0 m E STORAGE: Property LING COMPANY: Beaupre Diamond Drilling RTED: June 29, 1996 IPLETED: June 30, 1996 ECTIVE: Test downdip extension of surface mineralization in cracker Quarry. GED BY: S. Robertson								
From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)		
0.0	3.0	3.0	CASING								
3.0	25.2	22.2	MONZONITE Fresh appearance but frequent areas of K-spar flooding along fractures Core is generally competent with pieces ranging from 8cm to 60cm long. Fracture fill material often has high bornite content and also chlorite, albite, calcite. Strongly magnetic.								
3.0	5.0	2.0	MONZONITE Near surface rock shows leaching by meteoric water.	66391	3.0	5.0	2.0	323	106		
5.0	8.5	3.5	MONZONITE Interval has 2-5cm wide fracture zones and many smaller fractures at approximately 40 degrees to Core Axis.	66392	5.0	7.5	2.5	94	7		
7.5	8.5	1.0	As above, but at 7.5m appearance of bornite and chalcopyrite and malachite along fractures and less as diss. Bornite much more abundant than chalcopyrite and where together, chalcopyrite surrounded by bornite. Malachite and hematite found along fractures with chlorite, albite, K-spar, calcite.	66393	7.5	8.5	1.0	6841	2057		
8.5	10.5	2.0	As above, but more broken and stonger copper mineralization.	66394	8.5	10.5	12.0	11632	6435		

Page 1

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	То (m)	Width (m)	Cu (ppm)	Au (ppb)
			Very poor recovery of broken rock at 10.0 - 10.5m. Most of sulfides along fractures, but some diss mineralization in K-spar flooded monzonite.						
10.5	11.6	1.1	MONZONITE Much more competent with less fracturing than previous interval. Occasional diss chalcopyrite.	66395	10.5	11.6	1.1	922	656
11.6	14.1	2.5	As above.	66396	11.6	14.1	2.5	817	365
14.1	16.1	2.0	As above, but with 6 hairline fractures at 60 degrees and 15 degrees to Core Axis with bornite and chalcopyrite.	66397	14.1	16.1	2.0	1295	429
16.1	18.1	2.0	As above with less sulphides. Fracture very well healed with Trace sulphides. Core very competent.	66398	16.1	18.1	2.0	811	294
18.1	18.6	0.5	As above.	66399	18.1	18.6	0.5	1138	404
18.6	18.9	0.3	Monzonite with a number of hairline fractures at 20 degrees - 50 degrees to Core Axis. Fracture filled with chlorite, bornite, chalcopyrite. Moderate K-spar flooding. Possible fleck of Visible Gold.	66400	18.6	18.9	0.3	41104	12068
18.9	19.4	0.5	As above, but only Trace sulphides. Strong K-spar flooding.	66401	18.9	19.4	0.5	2577	1213
19.4	20.5	1.1	Strength of K-spar flooding gradually decreases over interval.	66402	19.4	20.5	1.1	408	334
20.5	22.5	2.0	Fresh monzonite with Trace Chalcopyrite along hairline fracture.	66403	20.5	22.5	2.0	384	294
22.5	24.5	2.0	Fresh Monzonite. As last interval. Trace Chalcopyrite.	66404	22.5	24.5	2.0	390	135

Page 2

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	То (m)	Width (m)	Cu (ppm)	Au (ppb)
			No Bornite. Slightly more broken toward end of interval.						
24.5	25.2	0.7	As above, but more broken up. Bottom contact missing.	66405	24.5	25.2	0.7	256	119
25.2	30.6	5.4	HYBRID UNIT Top contact missing. Bottom contact near perpendicular to Core Axis. Rock is relatively fine grained (2-3mm) intrusive composed largely of plagioclase, quartz and amphibole. Smaller xenoliths (5-10cm) seen within diorite which may also be a xenolith. Moderate to intense flooding of K-spar (and albite in some areas). Occasional blebs of chalcopyrite. (Monzonite dyke 29.6-30.4).	66406 66407 66408 66409	25.2 26.2 28.2 29.6	26.2 28.2 29.6 30.6	1.0 2.0 1.4 1.0	175 65 756 195	9 112 51 21
30.6	57.2	26.6	MONZONITE Rock looks moderately cooked resulting in remobilization of K-spar.	66410	30.6	32.6	2.0	336	13
30.6	32.6	2.0	Trace Chalcopyrite.						
32.6	33.2	0.6	Intensely altered dionte xenolith from 32.6 to 33.2 m.	66411	32.6	33.2	0.6	597	162
33.2	35.7	2.5	3.0 cm gouge zone at 50 degrees to Core Axis at 34.2 m.	66412	33.2	35.7	2.5	200	26
35.7	38.2	2.5	MONZONITE Fresh - Rare sulphides - Only unusual feature in interval was a 1 cm gougy fault at 36.2 at 70 degrees to Core Axis.	66413	35.7	38.2	2.5	85	19
38.2	41.0	2.8	As above - Core very competent.	66414	38.2	41.0	2.8	76	14
41.0	44.0	3.0	As above.	66415	41.0	44.0	3.0	70	15
44.0	47.0	3.0	As above - Excellent dimension stone.	66416	44.0	47.0	3.0	79	37

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
			No Bornite. Slightly more broken toward end of interval.						
24.5	25.2	0.7	As above, but more broken up. Bottom contact missing.	66405	24.5	25.2	0.7	256	119
25.2	30.6	5.4	 HYBRID UNIT Top contact missing. Bottom contact near perpendicular to Core Axis. Rock is relatively fine grained (2-3mm) intrusive composed largely of plagioclase, quartz and amphibole. Smaller xenoliths (5-10cm) seen within diorite which may also be a xenolith. Moderate to intense flooding of K-spar (and albite in some areas). Occasional blebs of chalcopyrite. (Monzonite dyke 29.6-30.4). 	66406 66407 66408 66409	25.2 26.2 28.2 29.6	26.2 28.2 29.6 30.6	1.0 2.0 1.4 1.0	175 65 756 195	9 112 51 21
30.6	57.2	26.6	MONZONITE Rock looks moderately cooked resulting in remobilization of K-spar.	66410	30.6	32.6	2.0	336	13
30.6	32.6	2.0	Trace Chalcopyrite.						
32.6	33.2	0.6	Intensely altered diorite xenolith from 32.6 to 33.2 m.	66411	32.6	33.2	0.6	597	162
33.2	35.7	2.5	3.0 cm gouge zone at 50 degrees to Core Axis at 34.2 m.	66412	33.2	35.7	2.5	200	26
35.7	38.2	2.5	MONZONITE Fresh - Rare sulphides - Only unusual feature in interval was a 1 cm gougy fault at 36.2 at 70 degrees to Core Axis.	66413	35.7	38.2	2.5	85	19
38.2	41.0	2.8	As above - Core very competent.	66414	38.2	41.0	2.8	76	14
41.0	44.0	3.0	As above.	66415	41.0	44.0	3.0	70	15
44.0	47.0	3.0	As above - Excellent dimension stone.	66416	44.0	47.0	3.0	79	37

.

.

- - - -

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
47.0	49.5	2.5	Chemistry of rock changing slowly down hole. Monzonite graduates into a rock with K-spar phenocrysts and a green (albite?) groundmass. Still strongly magnetic.	66417	47.0	49.5	2.5	206	130
19.5	51.0	31.5	As above, but fades back into an all pink. Strongly K-spar flooded rock. Trace Chalcopyrite near end of interval.	66418	49.5	52.0	2.5	258	219
52.0	54.0	2.0	Rock becomes more broken with fractures at many angles to Core Axis. Fractures healed with quartz/carbonate or K-spar. Occasional blebs of Chalcopyrite	66419	52.0	54.0	2.0	103	25
54.0	56.8	2.8	Monzonite - as above.	66420	54.0	56.8	2.8	105	32
56.8	57.2	0.4	BLEACHED MONZONITE 40 cm interval has been intensely bleached and is crisscrossed by quartz stockwork. Zone appears to be K depleted.	66421	56.8	57.2	0.4	177	92
57.2	99.1	41.9	HYBRID UNIT Fine grained intrusive with generally weak and patches of strong potassic alteration.						
57.2	59.2	2.0	HYBRID UNIT Moderate to weak K-spar flooding. Hairline fracture close to parallel to Core Axis healed with quartz / carbonate. No sulphides.	66422	57.2	59.2	2.0	64	20
59.2	61.7	2.5	K-spar becomes stronger. Occasional chalcopyrite blebs in strongly flooded areas.	66423	59.2	61.7	2.5	129	32
61.7	64.2	2.5	Decrease in K-spar - As above.	66424	61.7	64.2	2.5	168	110
64.2	67.0	2.8	As above.	66425	64.2	67.0	2.8	602	193

.

Page 4

·

.....

-

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	То (m)	Width (m)	Cu (ppm)	Au (ppb)
67.0	67.7	0.7	Fault zone - Zone is 25% gouge. Trace sulphides (pyrite).	66426	67.0	67.7	0.7	123	6
67. 7	70.2	2.5	HYBRID UNIT With moderate K-spar flooding. Core fairly broken. Most pieces 10 cm or less.	66427	67.7	70.2	2.5	157	36
70.2	72.7	2.5	As above. Moderate flooding. Some healed hairline fractures near parallel to Core Axis with larger faults (1 cm wide) at 70 degrees to Core Axis. Diorite xenoliths are magnetic except in areas of strong K-spar flooding.	66428	70.2	72.7	2.5	173	17
72.7	75.2	2.5	As above.	66429	72.7	75.2	2.5	744	181
75.2	77.7	2.5	As above.	66430	75.2	77.7	2.5	253	64
77.7	80.2	2.5	As above. Start to see more chalcopyrite along fractures again. Associated with chlorite, quartz, carbonate.	66431	77.7	80.2	2.5	592	248
80.2	82.7	2.5	HYBRID UNIT Very competent rock. Very weak K-spar flooding with Trace chalcopyrite. Fresh mafics.	66432	80.2	82.7	2.5	554	81
82.7	85.2	2.5	As above.	66433	82.7	85.2	2.5	183	30
85.2	87.2	2.0	Hybrid unit - weak to moderate K-spar flooding with chalcopyrite approximately 1% in K-spar flooded fractures. K-spar flooding increases approximately 86.3 m.	66434	85.2	87.2	2.0	470	16
87.2	89.4	2.2	Hybrid unit - weak to moderated K-spar flooding with chalcopyrite approximately 1% concentrated in K-spar flooded fractures. Quartz - carbonate veins.	66435	87.2	89.4	2.2	585	113

- -

- -

From (m)	То (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
			Trace diss chalcopyrite. Quartz - carbonate veinlets with K-spar envelope - mafic xenolith at 87.2.						
89.4	91.5	2.1	Hybrid unit - same as above with local areas of moderate chlorite alteration. Changes to monzonite at 90.2.	66436	89.4	91.5	2.1	438	22
91.5	92.8	1.3	MONZONITE Medium grained to coarse grained. Trace diss chalcopyrite. Quartz - carbonate veins with K-spar envelope (10 -40cm).	66437	91.5	92.8	1.3	123	146
92.8	94.8	2.0	Monzonite with 1% diss chalcopyrite and trace bornite (surrounding chalcopyrite) hairline fracture subparallel to Core Axis.	66438	92.8	94.8	2.0	333	154
94.8	96.9	2.1	Monzonite Trace diss chalcopyrite and pyrite. 1 cm K-spar envelopes around veinlets. Very coarse grained k-spar near end of interval.	66439	94.8	96.9	2.1	203	56
96.9	99.1	2.2	Monzonite Trace chalcopyrite along K-spar healed microveinlets. Quartz veinlets 28 degrees to Core Axis.	66440	96.9	99.1	2.0	197	148

END OF HOLE

.

-

Page 6

IMPERIAL METALS CORPORATION DDH RG96-3

·· · · · · · · ·

Redgold Shik Quarry E 160 105.2 -45	N	CASING: 3.0 m CORE SIZE: NQ CORE STORAGE: Property DRILLING COMPANY: Beaupre Diamond Drilling STARTED: June 30, 1996 COMPLETED: July 1, 1996 OBJECTIVE: Test western extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole	DATE LOG ASSAYED	GED: BY:	3-Jul-96 Acme			
To (m)	Length (m)	Description	Sampte #	From (m)	То (m)	Width (m)	Cu (ppm)	Au (ppb)
		HYBRID UNIT Multiphase event whereby a plagioclase rich unit and an augite rich unit mixed to form a hybrid in which the intruding unit partially assimilated the intruded unit. Phenocryst sizes vary from very coarse grain - fine grain. Potassic, propylitic and chlorite alteration can be seen in both groundmass and phenocrysts. Trace pyrite and chalcopyrite are present. Some xenoliths are weakly to moderately magnetic.						
7.3	3.0	Hybrid unit Xenoliths are all partially assimilated. Most of interval is massive with a few medium grain subhedral plagioclase phenocrysts. One small xenolith approximately 9 cm with very coarse grained augite phenocrysts and coarse grained euhedral plagioclase phenocrysts followed by 6 cm section within moderate potassic alteration. Groundmass is moderately altered - chlorite , very weak potassic alteration and random quartz veinlets - fault breccia at 5.0 m.	66441	4.3	7.3	3.0	128	45
10.3	3.0	Hybrid unit - 7.4-7.6 m interval felsic xenolith with 1 very coarse grained white K-spar phenocryst with reaction rim -light blue - no other phenocrysts. Moderate potassic alteration. Xenoliths in rest of interval have been strongly assimilated.	66442	7.3	10.3	3.0	245	24
	Redgold Shik Quarry E 160 105.2 -45 To (m) 7.3	Redgold Shik Quarry E N 160 105.2 -45 To Length (m) (m) 7.3 3.0	Redgold CASING: 3.0 m Shik CORE SIZE: NQ Quarry CORE STORAGE: Property E N DRILLING COMPANY: Beaupre Diamond Drilling 160 STARTED: June 30, 1996 105.2 COMPLETED: July 1, 1996 -45 OBJECTIVE: Test western extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole Description To Length Description (m) (m) HYBRID UNIT Multiphase event whereby a plagioclase rich unit and an augite rich unit mixed to form a hybrid in which the intruding unit partially assimilated the intruded unit. Phenocryst sizes vary from very coarse grain - fine grain. Potassic, propylitic and chlorite alteration can be seen in both groundmass and phenocrysts. Trace prite and chalcopyrite are present. Some xenoliths are weakly to moderately magnetic. 7.3 3.0 Hybrid unit Xenoliths are all partially assimilated. Most of Interval Is massive with a few medium grain subhedral plagioclase phenocrysts. One small xenolith approximately 9 cm with very coarse grained augite phenocrysts and coarse grained euhedral plagioclase phenocrysts followed by 6 cm section within moderate potassic alteration. Groundmass is moderately altered - chlorite , very weak potassic alteration and random quartz veinlets - fault breccia at 5.0 m. 10.3	Redgold CASING: 3.0 m Shik CORE STORAGE: Property E N DRILLING COMPANY: Beaupre Diamond Drilling 160 STARTED: June 30, 1996 DATE LOG 105.2 :COMPLETED: July 1, 1996 ASSAYED -45 :DBJECTIVE: Test western extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole To Length Description Sample # HYBRID UNIT Multiphase event whereby a plagioclase rich unit and an augite rich unit mixed to "orm a hybrid in which the intruding unit partially assimilated the intruded unit. Phenocryst sizes vary from very coarse grain - fine grain. Potassic, propylitic and chlorite alteration can be seen in both groundmass and phenocrysts. Trace pyrite and chalcopyrite are present. Some xenoliths are weakly to moderately magnetic. 7.3 3.0 Hybrid unit Kenolith approximately 9 cm with very coarse grained augite phenocrysts. One small xenolith approximately 9 cm with very coarse grained augite phenocrysts and coarse grained euledral plagioclase phenocrysts followed by 6 cm section within moderate potassic alteration. Groundmass is moderately altered - chlorite , very weak potassic alteration and random quartz veinlets - fault breccia at 5.0 m. 66442 10.3 3.0 Hybrid unit -7.4-7.6 m interval felsic xenolith with 1 very coarse grained white K-spar phenocryst with reaction rim -light blue - no other phenocrysts. Moderate potassic alteration. Xenoliths in rest of interval have been strongly assimilated. 66442 <td>Redgold CASINC: 3.0 m Shik CORE STORAGE: Property E N DRILLING COMPANY: Beaupre Diamond Drilling 160 STARTED: June 30, 1996 105.2 COMPLETED: July 1, 1996 -45 OBJECTIVE: Test western extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole Sample To Length Description #YBRID UNIT Multiphase event whereby a plagloclase rich unit and an augite rich unit mixed to form a hybrid in which the intruding unit partially assimilated the intruded unit. Phenocryst sizes vary from very coarse grain - fine grain. Potassic, propylitic and chlorite alteration can be seen in both groundmass and phenocrysts. Trace pyrite and chalcopyrite are present. Some xenoliths are weakly to moderately magnetic. 7.3 3.0 Hybrid unit 66441 Xenoliths are all partially assimilated. Most of Interval is massive with a few medium grain subhedral plagioclase phenocrysts and coarse grained euledral plagloclase phenocrysts followed by 6 om section within moderate potassic alteration. Groundmass. is moderately altered - chlorite, very weak potassic alteration and random quartz veinets - fault breccia at 5.0 m. 10.3 3.0 Hybrid unit - 7.4-7.6 m interval felsic xenolith with 1 very coarse grained white K-s</td> <td>Redgold CASING: 3.0 m Shik CORE STORAGE: Property Quarry CORE STORAGE: Property E N DRILLING COMPANY: Beaupre Diamond Drilling 160 STARTED: Jule 30, 1986 105.2 COMPLETED: Juley 10, 1996 -45 OBJECTIVE: Test western extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole Sample From Yo To Length Description (m) (m) (m) HYBRID UNIT Multiphase event whereby a plagioclase rich unit and an augite rich unit mixed to form a hybrid in which the intruding unit paralisly assimilated the intruded unit. Phenocryst sizes vary from very coarse grain - fine grain. Potasic, propylitic and chlorite alteration can be seen in both groundmass and phenocrysts. Trace pyrite and chalcopyrite are present. Some xenoliths are weakly to moderately magnetic. 7.3 3.0 Hybrid unit Xenoliths are all partially assimilated. Most of Interval is massive with a few medium grain subhedral plagioclase phenocrysts. Oroundmass is moderately altered - chlorite , very weak potassic alteration and coarse grained euhedral plagioclase phenocrysts. Oroundmass is moderately altered - chlorite , very weak potassic alteration and random quartz</td> <td>Redgold CASING: 3.0 m Shik CORE STORAGE: Property Quarry CORE STORAGE: Property I60 STARTED: June 30, 1996 160 STARTED: June 30, 1996 165.2 :COMPLETED: July 1, 1996 -45 'OBJECTIVE: Test wester extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole To Length Description Multiphase event whereby a plagioclase rich unit and an augite rich unit mixed to 'or ma hydroit sizes vary from very coarse grain - fine grain. Potasic, propylitic and chlorite alteration can be seen in both groundmass and phenocrysts. Trace pyrite and chalcopyrite are present. Some xenoliths are weakly to moderately magnetic. 7.3 3.0 Hybrid unit Xenoliths are elepartially assimilated. Most of interval is massive with a few medium grain subhedral plaglodase phenocrysts. Tone small xenolith approximately 9 cm with very coarse grained augite phenocrysts and coarse grained euhedral plagloclase phenocrysts followed by 6 cm section within moderate polassic alteration. Groundmass is moderately altered - chlorite , very weak potassic alteration and random quartz veinlets - fault breccia at 5.0 m. 66442 7.3 10.3 3.0 10.3 3.0 Hybrid unit - 7.4-7.6 m interval felsic xenolith with 1 very coarse grained white K-spar phenocrysts. Moderate potassic alteration. Groundmass is moderately altered - chlorite , very weak potassic alteration and random quartz veinlets - fault breccia at 5.0 m. 66442 7.3<td>Redgold CASING: 3.0 m Shik CORE SIZE: NQ Quarry CORE STORAGE: Property E N 160 STARTED: June 30, 1996 152. :SOMPLETED: July 1, 1996 -5 :SOMPLETED: Strestere extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole DBJECTIVE: Test western extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole Sample To Length Description (m) (m) (m) HYBRID UNIT Multiphase event whereby a plagloclase rich unit and an augite rich unit mixed to come a hybrid in which the intruding unit partially assimilated the intruded unit. Phenocryst sizes vary from very coarse grain - fine grain. Potassic, propylitic and chlorite alteration can be seen in both groundmass and phenocrysts. Trace pyrite and chalcopyrite are present. Some xenoliths are weakly to moderately magnetic. 7.3 3.0 Hybrid unit 66441 4.3 7.3 3.0 128 Cons inducated the advectory and present with revolot and real partially assimilated. 66441 4.3 7.3 3.0 128 7.3 3.0 Hybrid unit. Form meand phenocrysts and</td></td>	Redgold CASINC: 3.0 m Shik CORE STORAGE: Property E N DRILLING COMPANY: Beaupre Diamond Drilling 160 STARTED: June 30, 1996 105.2 COMPLETED: July 1, 1996 -45 OBJECTIVE: Test western extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole Sample To Length Description #YBRID UNIT Multiphase event whereby a plagloclase rich unit and an augite rich unit mixed to form a hybrid in which the intruding unit partially assimilated the intruded unit. Phenocryst sizes vary from very coarse grain - fine grain. Potassic, propylitic and chlorite alteration can be seen in both groundmass and phenocrysts. Trace pyrite and chalcopyrite are present. Some xenoliths are weakly to moderately magnetic. 7.3 3.0 Hybrid unit 66441 Xenoliths are all partially assimilated. Most of Interval is massive with a few medium grain subhedral plagioclase phenocrysts and coarse grained euledral plagloclase phenocrysts followed by 6 om section within moderate potassic alteration. Groundmass. is moderately altered - chlorite, very weak potassic alteration and random quartz veinets - fault breccia at 5.0 m. 10.3 3.0 Hybrid unit - 7.4-7.6 m interval felsic xenolith with 1 very coarse grained white K-s	Redgold CASING: 3.0 m Shik CORE STORAGE: Property Quarry CORE STORAGE: Property E N DRILLING COMPANY: Beaupre Diamond Drilling 160 STARTED: Jule 30, 1986 105.2 COMPLETED: Juley 10, 1996 -45 OBJECTIVE: Test western extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole Sample From Yo To Length Description (m) (m) (m) HYBRID UNIT Multiphase event whereby a plagioclase rich unit and an augite rich unit mixed to form a hybrid in which the intruding unit paralisly assimilated the intruded unit. Phenocryst sizes vary from very coarse grain - fine grain. Potasic, propylitic and chlorite alteration can be seen in both groundmass and phenocrysts. Trace pyrite and chalcopyrite are present. Some xenoliths are weakly to moderately magnetic. 7.3 3.0 Hybrid unit Xenoliths are all partially assimilated. Most of Interval is massive with a few medium grain subhedral plagioclase phenocrysts. Oroundmass is moderately altered - chlorite , very weak potassic alteration and coarse grained euhedral plagioclase phenocrysts. Oroundmass is moderately altered - chlorite , very weak potassic alteration and random quartz	Redgold CASING: 3.0 m Shik CORE STORAGE: Property Quarry CORE STORAGE: Property I60 STARTED: June 30, 1996 160 STARTED: June 30, 1996 165.2 :COMPLETED: July 1, 1996 -45 'OBJECTIVE: Test wester extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole To Length Description Multiphase event whereby a plagioclase rich unit and an augite rich unit mixed to 'or ma hydroit sizes vary from very coarse grain - fine grain. Potasic, propylitic and chlorite alteration can be seen in both groundmass and phenocrysts. Trace pyrite and chalcopyrite are present. Some xenoliths are weakly to moderately magnetic. 7.3 3.0 Hybrid unit Xenoliths are elepartially assimilated. Most of interval is massive with a few medium grain subhedral plaglodase phenocrysts. Tone small xenolith approximately 9 cm with very coarse grained augite phenocrysts and coarse grained euhedral plagloclase phenocrysts followed by 6 cm section within moderate polassic alteration. Groundmass is moderately altered - chlorite , very weak potassic alteration and random quartz veinlets - fault breccia at 5.0 m. 66442 7.3 10.3 3.0 10.3 3.0 Hybrid unit - 7.4-7.6 m interval felsic xenolith with 1 very coarse grained white K-spar phenocrysts. Moderate potassic alteration. Groundmass is moderately altered - chlorite , very weak potassic alteration and random quartz veinlets - fault breccia at 5.0 m. 66442 7.3 <td>Redgold CASING: 3.0 m Shik CORE SIZE: NQ Quarry CORE STORAGE: Property E N 160 STARTED: June 30, 1996 152. :SOMPLETED: July 1, 1996 -5 :SOMPLETED: Strestere extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole DBJECTIVE: Test western extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole Sample To Length Description (m) (m) (m) HYBRID UNIT Multiphase event whereby a plagloclase rich unit and an augite rich unit mixed to come a hybrid in which the intruding unit partially assimilated the intruded unit. Phenocryst sizes vary from very coarse grain - fine grain. Potassic, propylitic and chlorite alteration can be seen in both groundmass and phenocrysts. Trace pyrite and chalcopyrite are present. Some xenoliths are weakly to moderately magnetic. 7.3 3.0 Hybrid unit 66441 4.3 7.3 3.0 128 Cons inducated the advectory and present with revolot and real partially assimilated. 66441 4.3 7.3 3.0 128 7.3 3.0 Hybrid unit. Form meand phenocrysts and</td>	Redgold CASING: 3.0 m Shik CORE SIZE: NQ Quarry CORE STORAGE: Property E N 160 STARTED: June 30, 1996 152. :SOMPLETED: July 1, 1996 -5 :SOMPLETED: Strestere extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole DBJECTIVE: Test western extension of monzonite outcrop and mineralization LOGGED BY: Dave Cole Sample To Length Description (m) (m) (m) HYBRID UNIT Multiphase event whereby a plagloclase rich unit and an augite rich unit mixed to come a hybrid in which the intruding unit partially assimilated the intruded unit. Phenocryst sizes vary from very coarse grain - fine grain. Potassic, propylitic and chlorite alteration can be seen in both groundmass and phenocrysts. Trace pyrite and chalcopyrite are present. Some xenoliths are weakly to moderately magnetic. 7.3 3.0 Hybrid unit 66441 4.3 7.3 3.0 128 Cons inducated the advectory and present with revolot and real partially assimilated. 66441 4.3 7.3 3.0 128 7.3 3.0 Hybrid unit. Form meand phenocrysts and

. -----

.....

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
			Plagioclase and augite phenocrysts found together approximately 10% augite and 20% plagioclase. Augites moderately to strongly altered. Chlorite. Groundmass strongly altered to chlorite. Weak potassic alteration and poddy zones of propylitic alteration. Trace diss pyrite - random quartz veinlets.						
10.3	13.3	3.0	 HYBRID UNIT Kenoliths' contacts better defined - augite phenocryst. Weakly to strongly altered chlorite - sub enhedral coarse grain to very coarse grain plagioclase phenocrysts - not altered, medium grain to coarse grain. Groundmass - moderately to strongly chlorite with very weak propylitic alteration and poddy propylitic alteration. Potassic - coarse grain K-spar veins 30-35 degrees to Core Axis - propylitic alteration associated with K-spar veins. Very coarse grain white K-spar phenocrysts in K-spar veins. Trace diss pyrite. 	66443	10.3	13.3	3.0	204	49
13.3	16.3	3.0	 Hybrid Unit - 2 types xenoliths (1) Coarse grained - chlorite altered augite phencrysts with medium grained to coarse grained plagioclase phenocryst unaltered - groundmass mainly chloritic with weak propylitic alteration and random quartz veinlets. Trace diss pyrite. (2) Felsic xenoliths with moderate potassic alteration. Very coarse grained augite phenocrysts - unaltered weakly siliceous - very few medium grain to fine grain plagioclase phenocrysts - augites cub - enhedral and ghostly moderate potassic alteration. 	66444	13.3	16.3	3.0	309	44
16.3	18.2	1.9	Hybrid Unit - xenoliths (1) of very coarse grain augite phenocrysts strongly altered - chlorite - subhedral with coarse grain subhedral plagioclase phenocrysts - groundmass mainly chlorite. (2) felsic xenoliths with coarse grained augite rich xenolith, strongly altered - chlorite and fine grain to coarse grained euhedral plagioclase xenoliths with siliceous, potassic and propylitic pods.	66445	16.3	18.2	1.9	235	50

• • • • • •

-

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
18.2	20.1	1.9	Hybrid Unit - maroon with very fine grain subhedral plagioclase and medium grain to very coarse grained subhedral augite phenocrysts - quartz veins 80 degrees to Core Axis - chlorite of fractured surfaces.	66446	18.2	20.1	1.9	232	20
20.1	23.1	3.0	Hybrid Unit - Contact with maroon xenolith is highly chloritized with 2% pyrite and trace chałcopyrite with coarse grain anhedral - ghost augites. Rest of interval xenolith boundaries are poorly defined. Coarse grain augite phenocryst - subhedral - moderately to strongly altered - chlorite plagioclase phenocrysts medium grain to coarse grain - enhedral - not altered. Groundmass varies from mainly chlorite to a mix of weak siliceous, weak potassic and weak propylitic and chlorite. Quartz veining stronger in dark green segments (Groundmass = chlorite)	66447	20.1	23.1	3.0	1690	1009
23.1	26.1	3.0	Same as above with some augites propylitically altered at core.	66448	23.1	26.1	3.0	309	110
26.1	29.1	3.0	Hybrid Unit - coarse grain enhedral plagloclase and augite with augite altered - chlorite - siliceous. Chloritic and weakly potassic groundmass. Very coarse grain augite and coarse grain plagioclase xenolith - less plagioclase - maroon in colour with chloritic groundmass. Potassic dyke 45 degrees to Core Axis with plagioclase medium grained subhedral phenocrysts.	66449	26.1	29.1	3.0	784	175
29.1	32.1	3.0	Hybrid Unit - Coarse grain augite phenocrysts strongly altered - chlorite and pyrite and (chalcopyrite?) Siliceous and chloritic groundmass. Coarse grained enhedral plagioclase phenocrysts. Quartz - K-spar veins proximal to xenoliths contacts. Weak potassic alteration and random quartz veins.	66450	29.1	32.1	3.0	1049	338
32.1	35.1	3.0	Same as above.	66451	32.1	35.1	3.0	481	199
35.1	36.3	1.2	Hybrid Unit - augite phenocryst almost completely altered - pyrite and chalcopyrite and chlorite. Plagioclase phenocryst sub-enhedral - coarse grained - unaltered.	66452	35.1	36.3	1.2	304	6 9

.

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
			Groundmass - siliceous and chlorite with pods of propylitic and potassic alteration.						
36.3	39.3	3.0	Hybrid Unit - augites hardly visible - groundmass mostly siliceous and chlorite. Coarse grained plagioclase phenocrysts decreasing in number (mainly just groundmass).	66453	36.3	39.3	3.0	1316	403
39.3	42.2	2.9	Hybrid Unit - approximately 17 poorly defined xenoliths. Xenoliths are much finer grained - augites altered - chlorite and pyrite. Plagioclase completely altered - (dark mineral) groundmass is chloritic and siliceous. Diss pyrite. Pyrite infilling vesicles. High density of quartz veinlets in darker green xenoliths. Weak propylitic alteration and potassic alteration associated with quartz veins.	66454	39.3	42.2	2.9	613	141
42.2	45.2	3.0	Hybrid Unit - Xenoliths much more siliceous. Fine to medium grained augites altered - chlorite and pyrite. Fine grained plagioclase in groundmass - mottled texture. Hardly any veining - 1 K-spar vein - 2 cm across 31 degrees to Core Axis with coarse grained subhedral plagioclase phenocrysts	66455	42.2	45.2	3.0	347	273
45.2	48.2	3.0	Same as above.	66456	45.2	48.2	3.0	365	116
48.2	51.2	3.0	Hybrid Unit - xenoliths with mottled texture - anhedral - subhedral fine to medium grained Augites altered - chlorite and fine grained plagioclase phenocrysts - siliceous and chlorite groundmass. Patchy propylitic alteration and potassic alteration - very weak and 2 cm wide quartz and potassic vein running 17 degrees to Core Axis.	66457	48.2	51.2	3.0	67	19
51.2	54.2	3.0	Same as before with pods of propylitic alteration. More prominent and quartz carbonate veining.	66458	51.2	54.2	3.0	83	36
54.2	57.2	3.0	Hybrid Unit - dark green mottled xenolith with anhedral fine grained to medium grained augite phenocrysts - no plagioclase except in groundmass highly quartz veined chlorite	66459	54.2	57.2	3.0	25	8

· · -·

. _ . _ . . .

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
			groundmass. Felsic xenolith - highly siliceous with weak potassic and propylitic alteration of groundmass and chlorite altered augite xenoliths. Fault related - 54.7 - 56.3 trace pyrite - argillic alteration.						
57.2	60.2	3.0	Hybrid Unit - siliceous xenoliths anhedral - ghostly augite phenocrysts. No plagioclase - chlorite rich groundmass. Dark green xenoliths - heavily chloritized groundmass. K-spar - silica vien cut by fracture - 34 degrees to Core Axis. Vein - 45 degrees to Core Axis. Offset approximately 4 cm. Trace diss pyrite.	66460	57.2	60.2	3.0	173	25
60.2	63.2	3.0	Hybrid Unit - dark green xenolith with chlorite rich groundmass. Medium grained chlorite altered augite phenocrysts and coarse grained non-altered euhedral plagioclase. 1 % diss pyrite. Felsic xenolith - siliceous groundmass with weak potassic alteration. Euhedral - coarse grain augite - some cores altered - pyrite euhedral non-altered plagioclase. Diss pyrite.	66461	60.2	63.2	3.0	274	13
63.2	66.2	3.0	Hybrid Unit - maroon xenoliths with very coarse grained augite with cores altered to pyrite and rims propylitically altered. Enechelon fractures displacing potassic vein approximately 2 cm. Fractures 44 degrees to Core Axis. Vein 75 degrees to Core Axis. Xenolith with higher chlorite groundmass - coarse grained augites weakly altered and medium grained plagioclase phenocrysts - diss pyrite. Argillically altered xenlith - no apparent phenocrysts. Random quartz veinlets - chlorite blobs.	66462	63.2	66.2	3.0	589	34
66.2	69.2	3.0	Hybrid Unit - dark green - chlorite groundmass with coarse grained augite and plagioclase phenocrysts. Augite weakly altered - chlorite local argillic alteration and siliceous segments.	66463	66.2	69.2	3.0	630	111

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
			Trace pyrite in cores of augite. Weak potassic alteration.						
69.2	72.2	3.0	Same as above with local propylitic alteration.	66464	69.2	72.2	3.0	185	40
72.2	75.2	3.0	Hybrid unit green with chlorite and chlorite rich ground mass. Xenoliths are poorly defined. Dark green chlorite rich xenoliths have very coarse grained augite and plagioclase phenocrysts while felsic non-siliceous xenoliths have few to no phenocrysts. Felsic phenocrysts have weak potassic and propylitic alteration. No sulphides.	66465	72.2	75.2	3.0	803	273
75.2	78.2	3.0	 Hybrid Unit - (1) xenoliths - dark green with coarse grained augites strongly altered to chlorite and coarse grained plagioclase phenocrysts - chlorite rich groundmass. (2) Siliceous xenoliths with weak potassic alteration and pods of propyliitic alteration. Some coarse to fine grained phenocrysts that have been mostly replaced or assimilated. (3) Argillically altered xenoliths with medium grained chlorite altered augites. No plagioclase and weak propylitic alteration. 	66466	75.2	78.2	3.0	349	92
78.2	81.2	3.0	Same as above and pyrite in augite cores within dark green xenoliths.	66467	78.2	81.2	3.0	433	334
81.2	84.2	3.0	Same as above - augite phenocrysts strongly altered - chlorite in dark green xenolith.	66468	81.2	84.2	3.0	253	426
84.2	87.2	3.0	Hybrid Unit - dark green very fine grained unit - chlorite rich groundmass fine grained augites altered - chlorite. Siliceous xenoliths with coarse grained augite phenocrysts altered - chlorite medium grained to fine grain plagioclase phenocrysts - weak to moderate potassic alteration and small pods of potassic alteration. Xenoliths moderately argillically altered.	66469	84.2	87.2	3.0	188	76
87.2	90.2	3.0	Hybrid Unit - dark green - groundmass = chlorite rich - augite phenocrysts completely altered - chlorite very fine grained plagioclase. Monzonite xenolith 30 cm across weak potassic alteration.	66470	87.2	90.2	3.0	385	25

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
			Xenolith - moderate argillic alteration with coarse grained augite phenocrysts. Near boundaries of contact.						
90.2	93.2	3.0	 Hybrid Unit - (1) Xenoliths - siliceous - all augite completely altered to chlorite weak poypylitic alteration - very fine grained - anhedral plagioclase in groundmass. Some goundmass chloritic. Weak potassic alteration. (2) Dark green xenoliths - chlorite rich groundmass - coarse grained- altered. Chlorite medium grained plagioclase unaltered - trace diss pyrite and chalcopyrite? Siliceous vein with potassic and propylitic alteration 75 degrees to Core Axis 4.5 cm. 	66471	90.2	93.2	3.0	167	14
93.2	9 6.2	3.0	Hybrid Unit - (1) Dark green - chlorite rich groundmass with quartz veinlet random through xenoliths - local propylitic alteration pods of fine to medium grained subhedral plagioclase phenocrysts - no sulphides.	66472	93.2	96.2	3.0	259	13
96.2	99.2	3.0	Same as above with fracture filled with fluid and healed with weak potassic alteration and propylitic alteration - portion of vein are siliceous. Fractures subparallel to Core Axis approximately 4-5 cm across Feldspars altered - clay.	66473	96.2	99.2	3.0	138	6.
99.2	102.2	3.0	Hybrid Unit - (1) Dark green - chlorite rich groundmass with random quartz veins Splochy propylitic alteration - K-spar veins - 30 degrees and 50 degrees to Core Axis. Fracture zone with weak potassic alteration. Augite and feldspars altered - clay - silica veinlets.	66474	99.2	102.2	3.0	22	4
102.2	105.2	3.0	Hybrid Unit - (1) First 50cm shot through with fluids leaving quartz veinlets and pods of propylitic and potassic alteration. Chlorite in groundmass - no plagioclase phenocrysts - augites altered - chlorite. Rest of interval = chlorite rich groundmass - augites altered - chlorite and unaltered medium grain to coarse grain plagioclase phenocrysts. Random quartz veinlets.	66475	102.2	105.2	3.0	167	12
			i						

- -

•---

-- - - -

.

.

Page 7

IMPERIAL METALS CORPORATION DDH RG 96 - 4 PROPERTY: Redgold CASING: 4 meters CLAIM NAME: Shik CORE SIZE: NO ZONE: **CORE STORAGE: Property** Quarry **DRILLING COMPANY: Beaupre Diamond Drilling** LOCATION: Ε N AZIMUTH: 90 STARTED: July 2, 1996 DATE LOGGED 4-Jul-96 LENGTH: 105.2 m COMPLETED: July 2, 1996 ASSAYED BY: Acme DIP: **OBJECTIVE: To test the western extent of the monzonite outcrop** -45 LOGGED BY: Dave Cole From То Length Description Sample From Width То Cu Au (m) (m) (m) (m) (m) (m) (ppm) (ppb) HYBRID UNIT (HU) Previously named felsic breccia by Peter Fox. Felsic xenolith / clasts composed of a diorite with augite phenocrysts which have been altered in varying degrees to chlorite. Plagioclase phenocrysts vary from fine grained to very coarse grained. Clasts are weakly to moderately magnetic. Clasts may be weakly potassically altered with weak albitization. Clasts in a fine grained chloritic groundmass. Clasts include augite basalt. 4.0 7.0 Hybrid Unit - Monzonite - medium grained anhedral plagioclase phenocrysts with moderate 3.0 66476 4.0 7.0 3.0 171 7 potassic alteration. 45% matics - moderately to strongly magnetic. Quartz veins 25 degrees to Core Axis. No sulphides. 7.0 Hybrid Unit - 2 clast types (1) same monzonite desc. above 10.0 3.0 66477 7.0 10.0 3.0 253 23 -(2) Fine grained black - weakly brecciated volcanic (basalt). End of interval has very coarse grained plagioclase phenocrysts. No sulphides. Possibly from assimilated xenolith - moderately magnetic.

. . . .

- -

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
10.0	12.5	3.0	Hybrid Unit - chlorite rich groundmass with magnetic phenocrysts with trace diss pyrite. Felsic clast - quartz rich with magnetite phenocrysts and weak potassic alteration. Malachite on fracture surface at end of interval - moderately magnetic.	66478	10.0	12.5	3.0	1786	165
12.5	14.5	2.0	Highly veined and chloritized with malachite on fracture surfaces. Trace diss pyrite and chalcopyrite/ Some pyrite in quartz veins - moderately magnetic - some local potassic alteration and alteration - clays.	66479	12.5	14.5	2.0	7990	1990
14.5	17.5	3.0	Hybrid Unit - Subrounded breccia - felsic clasts - moderately magnetic. Weak potassic and propylitic alteration. No sulfides. Plus felsic - siliceous clasts with moderately propylitic alteration and trace pyrite and chalcopyrite? Magnetic phenocrysts.	66480	14.5	17.5	3.0	1349	295
17.5	19.5	2.0	Hybrid Unit - Breccia - felsic - siliceous clasts with magnetic phenocrysts. Boundaries poorly defined. Very fine grained diss pyrite approximately 1 %. Some weak potassic alteration.	66481	17.5	19.5	2.0	558	51
19.5	22.5	3.0	BRECCIA With pods of propylitic alteration and highly chloritic areas. Moderately to highly magnetic. Magnetite veinlet in chloritic area 20 degrees to Core Axis. approximately 2mm wide.	66482	19.5	22.5	3.0	536	113
22.5	25.5	3.0	Breccia - predominantly mafic clasts with magnetite phenocrysts and diss pyrite and chalcopyrite? Very fine grained approximately 1%. Diorite - felsic clasts - small approximately 2cm average and subrounded quartz vein approximately 3 cm in diameter - subparallel to Core Axis 30 cm long. Trace diss pyrite throughout.	66483	22.5	25.5	3.0	373	81

.

From (m)	To (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
25.5	27.5	2.0	HYBRID UNIT Diorite / augite basalt mix. No visible plagioclase phenocrysts. Coarse grained augites - moderately magnetic. Plagioclase goundmass weakly siliceous. Pyrite and chałcopyrite pods approximately 1%. Well rounded felsic and mafic xenoliths - poddy propylitic alteration.	66484	25.5	27.5	2.0	400	41
27.5	29.5	2.0	Hybrid Unit - same as above - no albitization.	66485	27.5	29.5	2.0	469	65
29.5	32.3	2.8	Hybrid Unit - Fine grain section with weak potassic and propylitic alteration and moderate albitization throughout - moderately siliceous. Approximately 1 -2 % diss chalcopyrite - magnetite filling fractures.	66486	29.5	32.3	2.8	2768	1810
32.3	34.3	2.0	Hybrid Unit - mafic moderately magnetic - augites and chlorite. Plagioclase - fine grain in groundmass - chlorite rich groundmass - trace diss chalcopyrite. Moderately siliceous - trace hematite - bright red.	66487	32.3	34.3	2.0	236	52
34.3	36.3	2.0	Hybrid Unit - Fine grain mafic with coarse grain remnant augite phenocrysts and medium grain to fine grain plagioclase phenocrysts - diss chalcopyrite approximately 1 %. Interval of moderate albitization with quartz veins - 40 cm interval 35.1 -35.5	66488	34.3	36.3	2.0	604	31
34.4	36.3	2.0	Same as above with pod of weak potassic and albite alteration.	66489	34.3	36.3	2.0	321	17
36.3	38.3	2.0	Same as above.	66490	36.3	38.3	2.0	586	33
38.3	41.9	1.6	Same as above,	66491	38.3	41.9	1.6	736	61
41.9	43.9	2.0	HYBRID UNIT Augite basalt - coarse to medium grained sub-enhedral augites with 1 - 3 % pyrites and trace chalcopyrite? Very fine grain. Increased amount of sulfides in medium grain augite areas.	66 492	41.9	43.9	2.0	256	16

.

- -

1

the second s

- ----

From (m)	То (m)	Length (m)	Description	Sample #	From (m)	То (m)	Width (m)	Cu (ppm)	Au (ppb)
43.9	46.2	2.3	Same as above.	66493	43.9	46.2	2.3	499	28
46.2	48.2	2.0	Hybrid Unit - mafic with diorite groundmass - groundmass also partially chloritized. Plus very fine grained mafic with weak propylitic and albitization - trace diss pyrite and chalcopyrite?	66494	46.2	48.2	2.0	233	13
48.2	51.2	3.0	Hybrid Unit - dioritic groundmass with small (1 -2 cm), angular felsic and mafic clasts. Non magnetic. No sulfides. Local areas of potassic and propylitic alteration. Siliceous.	66495	48.2	51.2	3.0	27	86
51.2	53.7	1.5	Hybrid Unit - fine grained mafic with local potassic and propylitic alteration. No plagioclase or augite phenocrysts. Moderately magnetic. Silica vein with potassic alteration and mafic xenoliths within trace diss pyrite.	66496	51.2	53.7	1.5	164	46
53.7	54.5	1.8	Hybrid Unit - zone of heavily chloritic and argillically altered. Moderately magnetic. No sulfides. Augite phenocrysts. Magnetic.	66497	53.7	54.5	1.8	242	30
54.5	57.5	3.0	Hybrid Unit - Augite basalt with zone of chlorite and argillic alteration. Moderately magnetic. No sulfides. Groundmass altered chlorite.	66498	54.5	57.5	3.0	46	5
57.5	59.4	1.9	Hybrid Unit - Fine grained mafic unit with potassic, propylitic and siliceous veining - moderately magnetic - moderately siliceous.	66499	57.5	59.4	1.9	495	36
59.4	60.6	1.2	Hybrid Unit - Highly veined segment with quartz - calcite vein and moderately - potassic	66500	59.4	60.6	1.2	254	23

....

- --

From (m)	То (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
			and propylitic alteration of surrounding host rock. Dioritic host rock with chlorite rich groundmass. Coarse grained augites in host altered - chlorite.						
60.6	63.6	3.0	Hybrid Unit - Fine grain mafic with trace diss pyrite, moderately magnetic. Dioritic xenolith with propylitic alteration. Weak potassic alteration through mafic xenolith - chlorite rich groundmass.	66151	60.6	63.6	3.0	99	12
63.6	65.6	2.0	Same as above with felsic rounded xenolith - fine grained - diorite.	66152	63.6	65.6	2.0	253	76
65.6	67.3	1.7	Hybrid Unit - same fine grained mafic as described above with argillic alteration in 20cm interval. End of interval getting into coarse grained plagioclase and augite unit with chlorite rich groundmass.	66153	65.6	67.3	1.7	1120	118
67.3	73.3	6.0	Hybrid Unit - Unit similar to augite - plagioclase unit from DDH 96-3 very coarse grained enhedral augite and plagioclase phenocrysts in a chlorite rich groundmass - moderately magnetic.	66154	67.3	73.3	6.0	832	105
73.3	75.3	2.0	Hybrid Unit - dark black augite - plagioclase phenocryst - coarse grained mix with chlorite rich groundmass and weak serpentization - light green. 1 % diss pyrite and trace chalcopyrite - moderately magnetic.	66155	73.3	75.3	2.0	331	51
75.3	77.3	2.0	Same as above.	66156	75.3	77.3	2	474	16
77.3	80.3	3.0	Hybrid Unit - sub-anhedral, coarse grained plagioclase and augite phenocrysts - appears to be partially assimilated. Very fine grained chloritic rich groundmass with trace diss pyrite. Plagioclase phenocrysts show weak potassic alteration and pods of weak propylitic alteration.	66158	77.3	80.3	3.0	1243	135
80.3	83.3	3.0	Same as above.	66157	80.3	83.3	3.0	1006	104
83.3	84.3	1.0	Same as above with moderately propylitic alteration and slightly more siliceous.	66158	83.3	84.3	1.0	667	68

· · · —

. . . .

. .

• -- -

.

۰.

. . . .

From (m)	То (m)	Length (m)	Description	Sample #	From (m)	To (m)	Width (m)	Cu (ppm)	Au (ppb)
84.3	87.3	3.0	Hybrid Unit - sections of poorly defined coarse grained plagioclase and augite phenocrysts with chlorite rich groundmass to pods of dense coarse to medium grained - enhedral plagioclase phenocrysts with coarse grained to very coarse grained enhedral augite. Augite moderately altered chlorite. Quartz veinlets - whole interval moderately magnetic.	66159	84.3	87.3	3.0	639	56
87.3	90.0	2.7	Hybrid Unit - coarse grained subhedral augite phenocrysts in a chlorite and plagioclase rich groundmass. Plagioclase phenocrysts show potassic alteration and albitization. Pods of propylitic alteration. Weakly magnetic.	66160	87.3	90.0	2.7	1169	67
90.0	91.7	1.7	Same as above.	6 6161	90.0	91.7	1.7	391	64
91.7	93.7	2.0	Hybrid Unit - Fine grained with chlorite rich groundmass. Augite and plagioclase and phenocrysts very fine grained+E94. Magnetite veinlets - 40 -50 degrees to Core Axis.	66162	91.7	93.7	2.0	86	14
93.7	95.5	1.8	Same as above with pod of strong propylitic alteration.	66163	93.7	95.5	1.8	51	4
95.5	97.5	2.0	Hybrid Unit - Strong chlorite in groundmass with salt and pepper texture. Fine grain - anhedral augite and plagioclase phenocrysts. Weak potassic alteration and albitization of plagioclase phenocrysts. Weakly siliceous. Magnetite veinlets - trace diss pyrite.	66164	95.5	97.5	2.0	305	1.7
97.5	100.5	3.0	Same as above and K-spar veins with random orientation.	66165	97.5	100.5	3	152	8
100.5	103.2	2.7	Same as above and K-spark veins.	66166	100.5	103.2	2.7	174	16
103.2	105.2	2.0	Same as above with moderate K-spar alteration / flooding. END OF HOLE	66167	103.2	105.2	2	205	9

•

.

.....

APPENDIX C

-

į

ACNE ANALYTI	FICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716	
A A	GEOCHEMICAL ANALYSIS CERTIFICATE	
44	Imperial Metals Corporation PROJECT REDGOLD File # 96-2706 Page 1	
	420 - 355 Burrard St., Vancouver BC V6C 2G8 Submitted by: Steve Robertson	
SAMPLE#	No Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Tl Hg Au ⁴ SANPLE ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	
A 66151 A 66152	1 99 <3 18 <.3 30 5 332 2.17 <2 <5 <2 <2 628 <.2 <2 71 7.54 .157 5 56 .37 68 .06 9 6.19 .81 .05 3 <5 <1 12 12 <1 253 7 22 <.3 28 7 532 2.18 <2 <5 <2 <2 510 .4 <2 <2 66 7.78 .142 6 89 .45 65 .08 8 5.21 .55 .04 2 <5 <1 76 11	
A 66153	<1 1120 <3 24 .5 120 16 359 4.82 5 <5 <2 <2 613 <.2 <2 6 228 4.24 .188 5 404 1.01 394 .18 5 4.58 .54 .22 2 <5 <1 118 18	
A 66154 A 66155	1 852 5 51 .5 118 25 439 6.57 6 <5 <2 <2 595 .6 4 <2 535 5.50 .160 6 252 1.20 451 .22 5 5.81 .44 .25 <2 <5 <1 105 16 1 331 <3 46 <.3 261 32 583 5.11 3 <5 <2 <2 373 <.2 3 2 233 2.66 .170 5 534 3.77 1107 .27 3 4.02 .42 .95 <2 <5 1 51 13	
A 66156 A 66157	1 474 6 63 <.3 270 38 783 5.40 <2 <5 <2 <2 325 <.2 <2 219 2.54 .168 6 556 4.74 1115 .22 4 3.89 .34 .76 <2 <5 <1 16 13 <1006 5 36 .3 208 24 455 5.75 <2 <5 <2 <2 607 <.2 <2 <2 289 4.11 .199 5 457 1.21 286 .20 <3 3.88 .37 .21 <2 <5 <1 104 16	
A 66158	1 667 <3 53 <.3 150 18 535 4.32 6 <5 <2 <2 220 <.2 2 6 180 5.81 .184 4 495 1.55 40 .13 12 3.67 .05 .04 2 <5 <1 68 8 -1 430 5 31 4 3 92 9 475 2 75 3 45 42 20 4 2 2 5 124 4 22 173 9 284 84 195 11 8 5 04 54 09 2 45 3 56 18	
A 66160	2 1169 <3 44 .4 131 17 479 4.01 <2 <5 <2 <2 449 .4 <2 <2 179 6.68 .141 3 314 1.50 32 .15 17 4.50 .17 .07 <2 <5 <1 67 17	
RE A 66160 RRE A 66160 A 66161 A 66162	2 1079 <3 44 .3 134 17 474 3.93 3 <5 <2 <2 437 .3 <2 <2 176 6.64 .135 3 308 1.47 34 .15 13 4.42 .17 .06 <2 <5 <1 82 - 1 1069 <3 41 .4 129 16 449 3.70 2 <5 <2 <2 432 <.2 2 <2 165 6.37 .134 3 289 1.39 28 .15 13 4.27 .17 .06 2 <5 2 73 - 2 391 6 28 .5 89 14 410 3.14 <2 <5 <2 <2 325 .2 2 <2 127 6.73 .221 4 253 1.26 20 .10 20 4.06 .11 .05 3 <5 <1 64 14 <1 86 <3 54 <.3 108 30 539 7.33 4 <5 <2 <2 25 .2 <2 <2 388 2.43 .021 1 371 1.89 58 .35 <3 2.07 .02 .14 <2 <5 <1 14 14	
A 66163	<1 51 <3 81 .3 84 34 598 9.11 <2 <5 <2 <2 22 .6 4 <2 488 2.29 .033 2 203 1.93 46 .38 6 1.94 .02 .11 2 <5 <1 4 15	
A 66164 A 66165 A 66166 A 66167	<1 305 <3 85 .3 31 31 833 7.96 <2 <5 <2 <2 55 <.2 <2 <2 406 4.82 .151 7 65 2.20 62 .34 12 3.61 .02 .15 <2 <5 <1 17 12 1 152 9 77 <.3 18 20 688 5.78 <2 <5 <2 <2 59 .3 2 <2 270 3.70 .133 8 28 1.52 43 .31 8 2.83 .05 .20 2 <5 <1 8 17 1 174 <3 77 <.3 24 26 693 6.27 <2 <5 <2 <2 67 .3 <2 <2 317 3.74 .137 8 38 1.79 118 .34 7 3.03 .04 .33 <2 <5 <1 16 16 1 205 4 84 <3 26 22 700 6 30 42 <5 <2 <2 51 <2 <2 316 3.90 142 9 37 1.83 69 .33 10 3.09 04 .27 <2 <5 <1 9 15	
A 66168	<1 1243 3 31 .3 196 17 422 3.92 2 <5 <2 <2 343 <.2 <2 192 4.34 .224 5 519 1.23 157 .15 5 3.05 .19 .14 <2 <5 <1 135 16	
A 66448 A 66449 A 66450 RE A 66450 RRE A 66450	1 309 <3	
A 66451	1 481 3 46 <.3 103 10 666 2.66 <2 <5 <2 2 86 <.2 <2 <2 117 7.29 .191 9 193 1.13 46 .13 20 3.60 .05 .08 <2 <5 1 199 17	
A 66452 A 66453	$ \begin{bmatrix} 1 & 304 & 4 & 50 & <.5 & 94 & 12 & 609 & 2.57 & 5 & <5 & <2 & 2 & 105 & .9 & 2 & <2 & 112 & 7.57 & .211 & 8 & 201 & 1.04 & 25 & .12 & 24 & 5.86 & .04 & .05 & <2 & <5 & <1 & 69 & 11 \\ 1 & 1316 & 3 & 30 & .4 & 43 & 3 & 572 & 2.38 & <2 & <5 & <2 & 2222 & .3 & <2 & <2 & 124 & 7.86 & .176 & 8 & 147 & .54 & 34 & .12 & 18 & 3.45 & .11 & .05 & <2 & <5 & <1 & 403 & 19 \\ \end{bmatrix} $	
A 66454	<1 813 10 31 <.3 47 8 665 2.44 3 <5 <2 <2 160 <.2 <2 2 118 6.70 .169 8 130 .99 53 .15 16 3.40 .09 .09 <2 <5 <1 141 18	
A 66455	<1 347 <3 40 <.3 24 3 891 2.48 11 <5 <2 2 192 .8 <2 3 134 8.69 .176 8 134 .37 15 .16 20 3.44 .09 .03 3 <5 <1 273 18	
A 66456		
A 66458	1 87 4 24 (.3 25 5 5)4 1.06 4 (5) (2 (2 30) (.2 (2 2 7) 7.07 .211 5 67 .41 20 .07 10 5.01 .17 .06 (2 (5 (1 19 17 1 83 3 30 <.3 41 7 705 2.06 3 <5 <2 <2 237 .2 <2 <2 82 7.04 .164 5 121 .92 29 .09 18 4.02 .09 .06 2 <5 <1 36 17	
A 66459	<1 25 3 38 <.3 27 6 757 1.99 7 <5 <2 <2 68 .2 <2 95 8.51 .183 7 98 .53 6 .12 16 3.53 .02 .01 <2 <5 <1 8 15	
A 66460	<1 173 4 31 <.3 33 7 560 1.78 <2 <5 <2 <2 133 .4 <2. <2 64 6.39 .147 5 93 1.05 14 .09 13 3.37 .06 .05 <2 <5 <1 25 16	
A 66461 Standard C2/AU-R	7 274 <3	
	ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR NG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning (REY are Reruns and (RREY are Reject Reruns.)	
DATE RECEI	IVED: JUL 9 1996 DATE REPORT MAILED: Aug 17/94 SIGNED BY	

. .

££

Imperial Metals Corporation PROJECT REDGOLD FILE # 96-2706

ACRE ANAL VIJCAL																																		
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	S Cr	Mg	Ba	Ti	B	AL	Na	ĸ	W	τι	Hg	Au* :	SAMPLE
	ppm	ppm	ppm	ррп	ppm	ppm	ppm	ppm	*	i ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	7	ррп	n ppm	ž	ppm	X	ppa	x	*	X (ppm ;	ppm (ppn	ppb	lb
·	<u> </u>			<u> </u>							<u>.</u>					· · · · · ·																		
A 66462	5	589	6	38	<.3	130	31	472	3.08	<2	<5	<2	<2	72	.2	2	3	101	7.13	.133	6	5 184	1.20	33	.13	14	4.51	.03	.03	5	<5	<1	34	17
A 66463	2	630	<3	- 44	<.3	103	11	684	2.98	2	<5	<2	2	53	7	2	<2	125	7.46	. 157	8	3 201	1.13	19	-13	10	3.74	.03	.03	3	<u>ج</u>	<1	111	16
A 66464	1	185	3	58	<.3	96	- 11	795	2.99	2	<5	<2	2	88	-4	2	2	136	7.69	.198	9	234	1.28	25	. 14	18	3.96	.04	.03	3	~	1	40	19
A 66465	1	803	11	- 43	.4	45	- 4	895	2.63	i 3	্হ	<2	2	40	.7	<2	- 4	128	8.73	.184	9	9 140	.72	6	.14	15	3.56	.02	.01	<2	5	2	273	17
A 66466	1	349	10	47	<.3	38	7	1013	2.66	6 4	<5	<2	2	63	.8	<2	6	113	8.83	. 135	8	3 147	.80	12	. 15	13	3.51	.02	.02	2	<5	Z	92	16
	e 1	233	~3	60	~ 1	46	R	1160	3 03	< 2	<5	0	2	46	7	~2	2	124	0 21	168		3 134	77	18	13	0	3 56	02	02	<2	<5	<1	334	19
A 66/68		253		57	~ 3	40	7	1240	3.00		5	2	5	64		2	ŝ	121	8 41	140	, i	5 153	97	12	14	7	3.30	03	03	2	<5	<1	426	19
A 66/60	1	188	ő	1.6	~ 7	28	Ŕ	071	2 53	2	- 25	2	5	124	1 1	~~	2	1/10	8 74	160	5 7	7 105	76	26	11	16	3 02	-06	03	~	Ś	<1	76	17
A 66407		100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20		103	21	719	3 72			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	74		2	8	157	A 00	162	, , ,	7 744	1 52	72	16	15	2 20	At Na K W Ti Hg Au* SA X X ppn ppn ppm ppm ppb $3, 5, 1$.03 .03 5 5 <1		15				
A 66470		147	<u>,</u>			- 103	17	473	3.12			~2	~2		.7	2	2	1/1	7 / 2	144		7 191	1.5	08	15	15	4.20	.02	07	ī	-5	21	16	17
A 00471	'	101	ſ	22	×	01	13	975	2.63	• •		~4	~4	00		2	2	141	1.46	. 100	, ,	101	1.43	70	. 13	15	4.44		.07		~	~1	14	.,
A 66472	<1	259	8	45	<.3	84	13	607	3.19) 3	<5	<2	2	82	.7	<2	3	125	8.28	.175	5	5 216	1.59	7	.13	23	5.05	.03	.01	3	<5	<1	13	17
RF & 66472	<1	274	ō	46	<.3	86	17	624	3.27	2	<5	<2	2	83	.3	<2	3	127	8.45	.176	6	5 219	1.62	10	.13	16	5.16	.03	.01	5	<5	<1	15	•
DRF & 66472	d	262	6	46	< 3	87	14	604	3.11	7	5	$\overline{2}$	ā	79	.5	2	2	121	8.14	.174	ē	5 209	1.55	13	.13	22	4.96	.03	.01	4	5	<1	18	-
A 66473	1	138	š	42	< 3	66	. 0	939	3.86		<5	- 2	2	59	.7	2	- 2	157	9.98	148	7	7 196	1.04	8	. 16	13	4.32	.02	.01	ż	-5	<1	6	16
A 66476	1	22	- 6	56	<.3	46	. 8	880	3.35	4	<5	<2	Ž	91	1.0	<2	4	127	8.61	. 179	5 7	7 181	1.27	13	.13	14	4.46	.04	-02	<2	<5	<1	4	16
A ODTIT	•	~~	-				-						-				•				•				••••	•••				-	-		-	
A 66475	26	167	10	63	<.3	82	18	773	3.57	7	< S	<2	2	51	.7	<2	5	151	8.00	. 148	38	3 196	1.60	29	.17	16	4.59	.02	.05	<2	<5	<1	12	14
A 66476	1	171	9	77	<.3	27	20	709	5.81	6	<	<2	ž	69	<.2	3	Ŝ	279	3.45	. 149	2 10	0 45	1.78	70	.28	10	3.07	.05	.33	<2	Ś	<1	7	16
A 66477	1	253	3	90	<.3	28	19	968	6.32	5	<5	<2	<2	121	1.0	<2	<2	292	5.34	. 163	5 5	9 51	2.33	64	.29	13	4.38	.09	. 15	3	<5	1	23	17
A 66478	i	1786	- 11	79	.7	70	12	726	5.23	6	<\$	<2	<2	576	.5	<2	7	220	6.03	.088	3 3	3 184	1.67	25	.17	8	5.02	.23	.08	<2	<5	<1	165	13
A 66479	<1	7990	15	32	3.6	108	9	497	5.73		<5	3	<2	129	.3	<2	2	273	3.40	.056	5 2	2 354	1.28	32	.22	<3	2.68	.12	.08	<2	<5	<1	1990	11
							•				-	-	-			-	-				-									-	•	•		••
A 66480	1	1349	<3	26	.5	61	8	496	4.69) <2	<5	<2	<2	388	<.2	2	<2	207	6.37	.077	7 3	3 159	1.05	57	.15	- 4	4.68	. 19	.09	5	<5	<1	295	15
A 66481	<1	558	<3	37	<.3	62	15	503	4.40) 8	<5	<2	<2	· 176	1.1	<2	<2	164	6.30	.075	54	4 138	1.55	58	.15	6	5.12	.06	.10	<2	<5	<1	51	10
A 66482	<1	536	6	36	<.3	58	10	549	4.48	3 4	<5	<2	<2	158	<.2	3	5	163	6.23	.089	2 4	4 131	1.39	49	. 16	7	4.60	.04	.08	6	<5	<1	113	14
RE A 66482	1	537	5	- 38	<.3	53	12	551	4.54	2	<5	<2	<2	156	.2	<2	2	163	6.15	.083	54	4 132	1.39	48	. 15	9	4.57	.05	.08	<2	<5	<1	101	-
RRE A 66482	<1	591	5	- 38	<.3	62	12	563	4.69) 5	<5	· 2	<2	169	<.2	<2	3	171	6.21	.092	2 4	4 138	1.46	55	.17	9	4.68	.05	.10	<2	<5	1	70	•
A 66483	1	373	- 3	- 32	<.3	51	10	323	3.68	35	<5	<2	<2	212	.9	2	- 4	171	3.75	.078	34	4 136	1.13	105	. 15	8	3.68	.09	.20	2	<5	<1	81	13
A 66484	<1	400	7	37	' <. 3	67	14	- 479	4.84	i <2	<5	<2	<2	146	<.2	<2	- 4	208	4.16	.083	5 4	4 167	1.31	76	.20	ୖୖ	3.52	. 12	. 13	<2	<5	<1	41	17
A 66485	1	469	- 3	27	<.3	60	8	339	3.93	56	<5	<2	<2	229	.5	<2	2	188	3.27	.099	94	4 173	1.02	151	. 19	- 5	2.96	.21	.17	4	<5	<1	65	12
A 66486	1	2768	<3	- 22	.5	- 35	6	407	4.33	3 <2	<5	<2	<2	269	.9	<2	8	-114	4.74	. 128	34	4 10Z	1.12	11	.10	- 5	3.39	. 15	.02	7	<5	<1	1810	12
A 66487	1	236	10	36	<.3	50	13	387	4.54	<2	<5	<2	<2	285	.7	<2	<2	201	2.49	.083	5 3	3 131	1.53	91	. 18	4	2.97	.32	. 12	<2	<5	<1	52	13
			-	~										/ 00	,					000		,	(7	00	~~	.7	1 30		00	,	-			
A 66488	1	504	د	20	<.1	40	36	23/	3./Y	44))) ()	<2	~2	400		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>ې</u>	141	4.30	.095		2 72 2 16/	10.	00	.09	<3 27	4.20	-44	.08	4	<>	<1	51	12
A 66489]	321	ğ	- 25	<.1	60	21	22/	4.0/		< >	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	70/	5.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	¥,	192	01.Cl. ררים	.004	• 4	5 134 3 357	1.00	140	- 11	<) /*	4.33	.50	. 11	2	S	<1	11	15
A 66490		200	2	20	<	110	- 34	- 382	2./0		5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	1000	1.0	~~~	2	243	2.23	.015		<i>((</i>))	<u>כע.</u>	10/	- 14	~ ~ ~	1.01	.0/	.12	4	\sim	<1	کد	15
A 66491	1	756	2	55	<.3	64	17	524	5.13	s <2	<>>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1098	.8	4		255	5.55	.072		2 130	.12	104	-11	У 7	0.00	.13	.07	4	<>>	<1	61	11
A 66492	1	256	<3	62	<.3	- 49	- 51	621	7.55	> <2	<>	<2	<2	212	1.4	<2	8	202	4.05	.072		c 92	1.05	129	. 29	د	4.82	.42	.10	2	<5	1	16	12
A 664.07	1	400	5	62	< 1	64	52	461	6 88	3 4	<5	0	0	370	.8	0	6	231	3.07	.064		2 87	1.48	72	.17	<3	4,28	. 33	. 14	c 2	<5	د ا	28	15
A 664/94		233	~	10		27	13	145	1.00	2 <2	<5	2	<2	779	.2	2	0	54	5 20	.154		3 47		56	.03	8	5.94	.71	.04	~2	-5	- 21	17	14
STANDARD C2/AU-R	20	60	35	140	6.7	74	34	1202	3.00	42	21	B	35	54	19.4	16	21	74	-55	089	· 47	2 69	1.00	208	. 09	24	2.10	.07	. 15	11		2	517	14
JIMORAD CL/AU K	1.0							,									<u>.</u>			,									<u> </u>		<u> </u>	<u>د</u>		

Sample type: CORE, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns,

Page 2

44

]____

ACHE AMALTICAL			Iı	npe	ri	al	Me	tal	s C	or	por	at	io	a PF	OJE	СТ	RI	EDG	OLD	·]	FILI	€#	96	5-2	70	5				Paç	je	3		
SAMPLE#	No	Cu ppm	Pb ppn	Zn ppm	Ag ppm	Ni ppm	Co ppn	Mn ppa	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	ßi ppm	V ppm	Ca X	P X	La ppnin	Cr ppm	Hg X	Ba ppn	Ti X	8 ppm	Al X	Na X	K X	Pbu i	T L ppm	Hg ppm	Au* ppb	SAMPLE Lb
A 66495	1	27	3	18	<.3	14	5	380	1.58	<2	<5	<2	<2	1030	<.2	<2	<2	51	7.47	.129	5	57	.52	97	.05	8	6.33	.93	.04	<2	<5	<1	86	17
A 66496	1	164	<3	37	<.3	46	19	-465-	5.76	<2	<5	<2	<2	793	.2	<2	<2	236	5.96	.086	2	144	.77	124	.14	8	5.54	.63	.11	2	<5	<1	46	13
A 66497	2	242	ব	57	<.3	71	- 32	643	9.81	<2	<5	<2	<2	50	.2	11	<2	393	4.49	.052	1	153 1	.71	67	.29	6	3.10	.03	.13	<2	<5	1	30	5
A 66498	<1	- 46	-3	33	<.3	70	28	554	8.66	<2	<5	<2	<2	549	<.2	- 4	<2	346	4.15	.063	1	196 1	. 16	182	.24	<3	4.17	.35	.23	<2	<5	<1	- 5	18
A 66499	1	495	ও	22	<.3	79	19	436	5.68	3	<5	<2	<2	1050	-4	<2	<2	245	7.62<	.001	1	247	.86	102	. 13	6	6.82	.61	. 10	<2	5	1	36	15
A 66500	<1	254	3	13	<.3	50	13	296	3.78	<2	<5	<2	<2	698	.2	<2	2	150	5.90	.092	2	191	.56	95	.08	8	5.21	.57	.08	<2	<5	<1	23	18
CTANDADD C2/AU-D	1 20	55	37	125	6 0	60	35	1113	3 77	41	25	7	34	50	10.8	17	15	67	55	095	30	57 1	00	185	07	20	1 97	06	14	11	-5	2	561	-

Sample type: CORE.

━┫___) ━━┫__) ━━┫___ ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 GEOCHEMICAL ANALYSIS CERTIFICATE Imperial Metals Corporation PROJECT REDGOLD File # 96-2595 Page 1 420 - 355 Burrard St., Vancouver BC V6C 2GB Submitted by: Steve Robertson SAMPLE# Mo Cu Pb Zn Ag Ní Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Ng Ba Ti B Al Na K W TI Hg Au* SAMPLE ppm ppm ppm ppm ppm ppm ppm ppm % pom pom pom pom pom pom pom pom pom X X ppm ppm X ppm X ppm X X X ppm ppm ppb lЬ A 66351 53 8 25 <.3 5 329 2.87 <2 <5 <2 <2 41 <.2 2 3 137 1.62 .086 7 7 .51 42 .10 4 1.05 .07 .14 2 <5 1 10 5 2 3 A 66352 2 51 3 26 <.3 5 6 363 2.79 2 <5 <2 <2 44 <.2 <2 134 2.06 .078 7 6 .62 35 .12 3 1.36 .05 .12 <2 <5 2 19 10 A 66353 1 85 6 25 <.3 - 3 5 330 2.74 <2 <5 <2 <2 33 <.2 <2 <2 133 2.30 .078 7 5 .58 28 .10 <3 1.29 .05 .10 <2 <5 <1 26 10 5 319 2.78 <2 <5 <2 <2 46 <.2 3 4 129 1.89 .078 8 6 .49 35 .10 <3 1.04 .06 .11 2 <5 <1 19 A 66354 2 80 <3 25 <.3 4 17 A 66355 1 523 3 26 <.3 3 5 295 2.56 <2 <5 <2 <2 106 <.2 2 <2 120 1.67 .080 7 6 .40 48 .09 4 .87 .06 .12 2 <5 1 104 17 A 66356 6 296 2.82 <2 <5 <2 <2 70 <.2 <2 <2 129 1.66 .083 18 3 198 <3 25 <.3 7 8 7 .42 48 .10 4 .93 .07 .12 <2 <5 1 63 A 66357 2 148 <3 25 <.3 2 5 313 2.71 <2 <5 <2 2 33 <.2 <2 <2 125 1.69 .080 7 6 .43 30 .09 4 .85 .06 .11 <2 <5 9 1 25 A 66358 3 233 <3 24 .3 7 6 500 2.52 20 <5 <2 2 55 <.2 2 <2 121 3.09 .075 8 6 .65 39 .10 <3 1.30 .05 .10 <2 <5 2 40 18 A 66359 1 231 4 25 <.3 3 4 281 2.51 <2 <5 <2 2 51 .2 <2 <2 118 1.46 .075 7 5 .35 47 .09 4 .78 .07 .12 <2 <5 <1 31 18 A 66360 1 418 <3 27 <.3 - 3 6 283 2.85 3 <5 <2 <2 47 <.2 <2 <2 131 1.46 .083 7 6 .39 36 .08 5 1.01 .06 .10 2 <5 1 185 11 RE A 66360 1 430 5 289 2.85 2 <5 <2 <2 48 <.2 <2 4 132 1.46 .081 7 27 <.3 - 3 7 6 .39 36 .08 5 1.02 .06 .10 2 < 5 1 342 RRE A 66360 3 430 4 28 <.3 4 6 308 2.98 <2 <5 <2 <2 55 <.2 <2 2 137 1.55 .084 7 7 .40 40 .10 4 1.13 .09 .11 <2 <5 1 439 A 66361 1 347 4 28 <.3 6 364 2.95 4 <5 <2 <2 60 <.2 <2 <2 138 1.87 .085 6 .51 43 .10 6 1.24 .08 .12 <2 <5 <1 43 1 8 14 A 66362 1 1078 2 <5 <2 <2 39 <.2 <2 41 1.41 .081 7 27 .3 6 6 319 2.95 7 6 .43 39 .09 4 .96 .07 .13 2 <5 1 341 12 A 66363 5 28 <.3 5 <2 <2 46 .2 <2 <2 136 1.99 .079 3 198 9 7 425 2.99 2 7 6 .66 25 .09 4 1.28 .06 .11 <2 <5 <1 262 6 A 66364 5 28 <.3 6 570 2.59 <2 5 <2 <2 66 <.2 <2 <2 128 5.03 .071 1 300 - 4 7 5 .62 29 .09 <3 1.58 .05 .09 2 <5 16 2 29 <3 28 <.3 A 66365 3 179 9 5 418 2.88 <2 <5 <2 2 49 <.2 <2 132 2.66 .081 8 6 .44 31 .09 4 1.08 .07 .14 2 <5 1 66 16 A 66366 1 1207 <3 31 <.3 5 5 470 2.88 <2 <5 <2 2 40 .2 <2 <2 132 2.33 .080 8 7 .73 26 .11 3 1.42 .05 .10 2 <5 1 259 17 A 66367 1 182 <3 28 <.3 5 7 437 2.94 <2 <5 <2 <2 43 <.2 <2 <2 141 2.23 .078 8 6 .70 28 .12 5 1.39 .05 .09 2 <5 1 81 18 3 367 <3 27 <.3 6 387 2.89 <2 <5 <2 2 32 <.2 <2 <2 137 2.41 .079 A 66368 8 8 6 .66 28 .12 6 1.39 .06 .10 <2 <5 <1 68 12 A 66369 7 431 3.02 <2 <5 <2 2 52 .2 2 <2 134 2.29 .083 8 8 .67 42 .14 6 1.13 .07 .11 3 <5 1 260 <3 28 <.3 4 12 1 47 A 66370 2 946 <3 23 <.3 6 7 667 2.63 3 <5 <2 3 51 .3 <2 3 127 4.12 .069 8 9 .70 33 .14 <3 1.00 .05 .15 2 <5 1 104 16 RE A 66370 2 961 5 24 .3 5 5 671 2.64 <2 <5 <2 3 51 <.2 <2 <2 127 4.15 .070 8 10 .70 28 .14 <3 .97 .05 .14 3 <5 <1 114 -RRE A 66370 2 922 <3 22 .3 4 6 649 2.58 3 <5 <2 3 50 <.2 <2 <2 124 4.00 .069 8 9 .68 28 .13 5 .96 .05 .14 <2 <5 1 119 -A 66371 3 980 4 62 <.3 110 22 927 5.33 <2 <5 <2 <2 115 .3 2 3 212 6.71 .129 9 323 1.96 27 .21 16 4.42 .03 .06 <2 <5 10 5 158 A 66372 1 347 <3 56 <.3 107 26 1030 4.85 6 <5 <2 <2 78 <.2 2 3 202 6.68 .135 7 239 2.64 17 .28 17 4.46 .03 .06 3 <5 10 1 48 A 66373 2 479 5 76 <.3 83 33 991 4.65 7 <5 <2 <2 67 .2 <2 2 200 5.08 .139 7 138 2.23 33 .26 15 3.57 .03 .07 <2 <5 2 39 14 A 66374 1 74 3 58 <.3 11 16 769 4.44 <2 <5 <2 2 45 <.2 2 <2 197 5.15 .120 7 12 1.38 33 .23 9 3.40 .04 .11 <2 <5 1 11 13 A 66375 2 . 127 5 88 <.3 15 23 1051 5.96 4 <5 <2 2 69 .4 <2 <2 274 5.79 .152 8 10 1.83 54 .28 12 4.00 .04 .12 <2 <5 2 11 14 A 66376 1 147 <3 102 <.3 20 27 1098 7.04 5 <5 <2 <2 59 <.2 <2 <2 338 6.41 .164 8 25 2.22 91 .34 10 4.57 .03 .17 <2 <5 17 4 17 A 66377 3 566 3 82 <.3 74 31 1059 6.29 <2 <5 <2 <2 62 <.2 <2 5 294 7.78 .143 6 148 2.38 48 .30 8 5.26 .03 .08 <2 17 <5 1 57 7 129 1.89 110 .28 8 3.66 .03 .15 3 <5 A 66378 2 267 <3 63 <.3 63 22 853 4.55 8 <5 <2 <2 67 .5 <2 <2 199 5.67 .145 17 1 18 A 66379 1 108 <3 86 <.3 45 19 841 4.81 2 <5 <2 <2 238 <.2 2 3 236 6.20 .171 7 100 1.55 92 .21 7 4.09 .10 .12 <2 <5</p> 17 1 12 2 97 <3 56 <.3 61 10 828 2.96 A 66380 5 <5 <2 <2 242 .5 <2 128 7.31 .146 7 148 1.20 37 .13 13 4.27 .11 .05 <2 <5 1 28 18 A 66381 2 400 <3 63 <.3 95 20 875 3.16 5 <5 <2 <2 64 <.2 <2 <2 127 8.25 .146 7 168 1.30 18 .13 15 4.29 .03 .04 <2 <5 <1 43 18 A 66382 1 195 4 50 <.3 49 11 537 2.22 5 <5 <2 <2 393 .3 <2 <2 108 5.52 .172 7 116 .75 52 .11 9 3.43 .20 .06 2 <5 4 31 19 21 57 40 143 6.1 72 38 1189 3.90 38 25 8 36 53 19.1 17 23 72 .53 .088 39 63 .99 204 .08 26 2.04 .06 .15 14 <5 2 471 STANDARD C2/AU-R ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 KCL-HN03-H2G AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPN & AU > 1000 PPB - SAMPLE TYPE: CORE AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. Haly 11/96

DATE RECEIVED: JUL 4 1996 DATE REPORT MAILED:

Imperial Metals Corporation PROJECT REDGOLD FILE # 96-2595

Page 2

SAMPLE#	Mo	Ću DDM	Pb	2n DDM	Ag	Ni	Co	Ma	Fe X	As	U	Au	Th	Sr OOM	Cd	Sb	Bi	V	Ca ¥	P 2	La	Cr	Mg	Ba	Ti Y	B	AL	Na Y	K Y	W	TL	Hg	Au*	SAMPLE	
A 66383 A 66384 A 66385 A 66386 A 66386	1 1 2 1 2	151 615 48 116 185	15 5 4 <3	61 58 34 44 56	<.3 <.3 <.3 <.3 <.3 <.3	40 18 7 22 34	15 27 8 11 15	740 686 393 541 701	4.06 5.68 3.25 3.50 3.82	9 20 2 2 3	<5 <5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 <2 <2 2 2 2	228 181 49 137 257	.6 1.1 .3 .2 .8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	174 209 143 154 167	6.68 3.27 3.43 3.95 5.74	. 178 . 208 . 090 . 112 . 139	8 8 8 8 7	148 17 7 44 97	1.19 1.40 .55 .83 .86	80 183 39 41 91	.19 .34 .14 .17 .20	10 4 6 3 8 4 5 4 9 3	2.44 2.41 2.22 2.69 5.19	.14 .11 .05 .10 .15	.09 .39 .11 .10 .12	<2 <2 <2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 2 3 2 2	10 19 4 18 14	16 9 14 14	
A 66388 A 66389 A 66390 A 66391 A 66392	<1 2 1 2 1	246 458 187 323 94	<3 4 4 4 4	67 76 30 31 64	<.3 <.3 <.3 <.3 <.3	53 38 5 6 68	31 23 4 4 12	722 800 370 397 874	6.15 5.76 2.95 2.77 3.45	<2 3 <2 10 3	১ ১ ১ ১ ১ ১ ১	<2 <2 <2 <2 <2 <2 <2	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	110 245 62 80 89	.5 <.2 <.2 .2 .2 .5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 <2 4 <2 4 <2 4	289 285 143 130 167	3.59 5.39 1.45 1.91 8.36	. 148 . 181 . 083 . 078 . 150	6 7 8 7 8	75 77 6 6 174	1.99 1.61 .49 .48 1.09	264 215 32 39 31	.41 .29 .10 .09 .15	7 3 8 3 4 7 7 7 12 4	5.34 5.96 1.28 1.41 5.03	.07 .13 .07 .08 .04	.37 .22 .10 .10 .05	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ও ও ও ও ও ও ও ও ও ও	3 1 1 1 <1	12 100 53 106 7	15 12 13 14 14	
A 66393 A 66394 RE A 66394 RRE A 66394 A 66395	2 2 2 1	6841 9371 9636 11632 922	4 5 7 3	24 24 26 27 24	2.5 4.3 4.1 5.0 <.3	6 7 7 5 2	3 2 3 2 3	333 332 337 359 307	3.35 2.99 3.09 3.22 2.72	2 42 46 53 <2	ও ও ও ও ও	<2 3 3 3 <2	2 3 2 2 2 2	27 35 36 38 26	<.2 <.2 <.2 <.2 <.2 <.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 3 2 2 2 2	160 138 143 151 129	1.07 1.35 1.38 1.56 1.11	.071 .063 .066 .070 .074	6 6 6 6	8 5 6 7 7	.33 .48 .50 .53 .33	36 31 34 38 35	.10 .09 .10 .10 .11	3 4 3 7	.55 .82 .84 .92 .69	.06 .06 .06 .07 .06	.11 .10 .11 .11 .10	<2 <2 <2 2 2 2	<5 <5 <5 <5 <5	<1 2 1 1	2057 2376 3388 6435 656	7 9 - 7	, ,
A 66396 A 66397 A 66398 A 66402 A 66403	3 1 2 1 2	817 1295 811 408 384	<3 4 5 3 3	30 34 33 32 29	.4 .5 .3 <.3 <.3	4 4 3 2 4	4 5 4 3 4	347 373 388 394 367	2.82 3.01 2.90 2.84 2.97	5 2 7 3 4	<5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2 2 2 2 2 2 2 2 2 2	38 70 70 38 42	<.2 <.2 <.2 <.2 <.2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 4 ~2 3 2	131 140 132 130 139	1.41 1.37 1.58 1.45 1.53	.080 .086 .080 .077 .079	6 7 6 7 7	6 7 6 5 6	.35 .41 .37 .44 .42	40 41 47 27 41	.10 .09 .09 .09 .09	7 3 4 3 5	.96 .07 .15 .94 .05	.06 .08 .08 .06 .07	.11 .12 .12 .10 .12	<2 2 <2 <2 <2 <2	ৎ ১ ১ ১ ১ ১ ১	1 2 <1 <1 <1	365 429 294 334 294	12 14 15 10 15	
A 66404 A 66405 A 66406 A 66407 A 66408	1 4 2 4 2	390 256 175 65 756	6 3 3 3 5	25 24 37 49 59	<.3 <.3 <.3 <.3 <.3	3 6 3 6 3	4 5 7 11 14	347 410 713 1046 1293	2.95 2.78 2.11 3.28 3.66	<2 3 2 6 7	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22222	40 43 83 74 68	<.2 <.2 <.2 <.2 <.2 .4	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 4	141 150 122 211 224	1.75 2.01 2.76 3.43 4.09	.084 .071 .062 .141 .163	7 7 8 10 9	7 6 10 9 9	.53 .64 .91 1.44 1.59	47 38 34 27 49	.11 .10 .13 .14 .14	77333	1.03 1.13 1.73 1.79 1.72	.06 .05 .05 .06 .05	.13 .11 .16 .13 .14	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<5 <5 <5 <5	1 <1 2 <1 2	135 119 9 112 51	13 13 9 9	
A 66409 A 66410 RE A 66410 RRE A 66410 A 66411	3 8 7 6	195 335 322 336 597	<3 3 <3 <3 4	43 35 34 33 33	<.3 <.3 <.3 <.3 <.3	6 8 7 5 1	7 6 5 5 6	801 588 565 563 668	2.98 2.67 2.54 2.48 1.51	<2 <2 <2 2 8	ৎ ১ ১ ১ ১ ১ ১ ১	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ 2 \$ \$ \$ \$ \$ \$	50 45 44 42 63	<.2 <.2 <.2 <.2 <.2 <.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 3 2 2 2 2 2 2	172 150 142 142 70	2.15 2.09 1.95 1.96 2.36	.099 .082 .077 .077 .080	8 8 8 9	7 8 8 6 6	.99 .87 .83 .84 .94	44 59 61 54 34	.11 .11 .11 .11 .11	3 4 3 3 4	.96 .96 .93 .91 .90	.06 .07 .07 .06 .03	.11 .15 .14 .12 .17	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	1 1 1 2 1	21 20 13 13 162	10 10 - - 6) ;
A 66412 A 66413 A 66414 A 66415 A 66416	5 1 3 1 3	200 85 76 70 79	4 5 3 5	23 23 23 24 23	<.3 <.3 <.3 <.3 <.3	5 2 6 3 3	5 4 4 4	413 437 328 336 314	2.76 2.41 2.56 2.71 2.46	4 <2 <2 <2 <2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 2 2 2 2 2 2 2	50 51 81 65 33	<.2 <.2 <.2 .3 <.2	2 ~? ~? ~? ~?	2 2 2 3 2 3 2	143 120 118 130 116	1.87 2.60 1.66 1.36 1.38	.079 .076 .073 .073 .073	7 8 6 7 7	6 6 5 6 6	.65 .66 .54 .34 .39	43 29 40 38 33	.10 .11 .09 .09 .09	3 3 3 3 3 3 3 3 3	.07 .99 .79 .86 .99	.05 .05 .06 .06 .07	.12 .10 .11 .11 .11	<2 2 <2 2 2 2 2	<5 <5 <5 <5 <5	1 <1 1 1	26 19 14 15 37	15 17 17 18 19	•
A 66417 A 66418 Standard C2/AU-R	1 2 20	206 258 58	3 <3 40	21 23 143	<.3 <.3 6.1	<1 5 75	4 5 37	401 347 1196	2.51 2.78 3.97	<2 <2 38	<5 <5 21	<2 <2 8	2 2 36	68 38 54 2	<.2 .2 20.1	<2 <2 16	<2 <2 24	119 137 75	1.74 1.21 .55	.075 .085 .088	7 7 41	5 6 65	.47 .36 1.01	31 33 211	.08 .08 .09	3 2 <3 25 2	. 16 .71 2.10	.09 .06 .07	.10 .11 .15	2 2 13	<5 <5 <5	<1 1 2	130 219 469	17 17 -	

Sample type: CORE, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Imperial Metals Corporation PROJECT REDGOLD FILE # 96-2595

Page 3

ACHE AMALYTICAL																· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·		<u> </u>										
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	υ	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Ρ	La	Çr	Mg	Ba	Ti	B	AL	Na	ĸ	W	τl	Hg	Au* 3	SAMPLE	
	000	ppm	ppm	ppm	ppm	ppm p	niq	ppm	2	ppm	ppm ;	ppm (ypm	opm	ppm p	i mar	ppm	ppm	X	X	ppm (ppm	*	ppm	%	opm	×	<u>x</u>	X	obur k	ypan I	ppm	ppb		
		<u></u>			<u></u>	<u></u>	÷				_										-				-		/0	n 4	10	~2	~5	-1	25	12	
A 66419	2	103	<3	28	<.3	<1	5	458	2.60	2	<5	<2	2	56	<.2	<2	<2	128	2.31	.074	7	6	-52	29	.09	41	.40	.00	. 10	~	<5 25	21	22	14	
A 66420	1	105	5	30	<.3	2	5	362	2.82	< <u>2</u>	<5	<2	2	58	<.2	<2	<2	147	1.42	.080	7		.54	50	.10	21	. 10	.07	. 11	~2	5		24	5	
A 66421	2	177	4	28	<.3	2	7	558	3.14	<2	<5	<2	3	47	.2	<2	<2	176	9.82	.065	6	5	.92	15	.09	()	.01	.04	.05	~2	5		76	10	
A 66422	2	64	7	32	<.3	3	9	471	3.23	2	<5	<2	<2	136	.4	<2	<2	190	2.19	.096	6		.88	(9	. 14	22	.01	.09	. 10	~~	-		20	15	
A 66423	2	129	<3	28	<.3	3	5	566	2.60	3	<5	<2	<2	53	.3	<2	<2	162	1.90	.079	6	6	.54	52	.11	5	.92	.00	. 13	<2	0	1	32	17	
																_									~~		00		47	~2	~5	.4	110	14	
A 66424	4	168	<3	24	<.3	3	7	623	3.27	<2	<5	<2	2	44	<.2	<2	<2	191	2.53	.092	6	6	.68	41	.09	< <u>s</u>	.92	.04	. 13	~		21	107	17	
A 66425	4	602	- 4	26	<.3	2	6	745	3.02	<2	<5	<2	2	37	.3	<2	<2	178	3.44	.086			.69	32	.08	< <u>></u>	.00	.04	. 12	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			173	14	
A 66426	2	123	5	28	<.3	2	8 '	1117	2.68	- 5	<5	<2	2	152	-4	<2	<2	152	6.60	.081	7	4	.56	(2	.05	4	.97	.05	.23	~	3	1	74	10	
A 66427	3	157	5	24	<.3	2	4	680	2.09	3	<5	<2	2	73	.3	<2	<2	112	2.58	.062	6	2	-51	41	.09	ु	.86	.05	. 13	~~	<5 	51	17	10	
A 66428	3	173	3	28	<.3	1	6	742	2.96	<2	<5	<2	2	48	<.2	<2	<2	175	3.02	.084	6	7	.69	-54	.10	S	.94	.05	.12	4	< 5	S I	17	12	
																										-	-					-4	20	_	
RE A 66428	3	169	4	28	<.3	3	7	732	2.91	<2	<5	<2	<2	47	<.2	<2	<2	171	2.96	.081	6	6	.68	30	.10	<u>্</u> য	.91	.05	-11	~~	< <u>5</u>	N	20		
RRE A 66428	3	171	8	28	<.3	2	6	736	2.89	2	<5	<2	2	48	.2	2	<2	170	2.98	.083	6	1	.68	- 32	.10	S.	.90	.05	-11	~2	0		19	•	
A 66429	2	744	<3	23	<.3	5	8	820	3.09	<2	<5	<2	2	72	<.2	2	<2	163	3.79	.108	7	5	.79	41	.08	3	.99	.04	-15	~2	0	1	101		
A 66430	1	255	- 5	27	<.3	1	8	860	2.99	9	<5	<2	2	101	<.2	2	<2	169	5.23	- 104	6	5	.73	48	.09	्दा	.20	.04	.14	~~	<2	<1 	04	10	
A 66431	2	592	उ	32	<.3	3	8	850	3.63	<2	<5	<2	2	49	.2	<2	<2	193	3.01	.109	7	5	.97	28	.10	<3 1	.21	.04	.10	<2	0	1	248	10	
																						_									Æ	- 4	04	17	
A 66432	2	554	6	27	<.3	1	9	610	3.41	3	<5	<2	<2	43	.4	<2	<2	186	2.46	.122	6	5	.81	43	.10	_ 7]	.05	.05	+14	<2	< <u>></u>	<u> </u>	81	17	
A 66433	3	183	5	26	<.3	4	10	694	3.56	- 4	<5	<2	<2	56	.3	<2	<2	193	2.57	.108	6	5	.99	- 55	.12	<u>୍</u> ୟ 1	1.02	.05	- 10	~2	< <u>></u>		20	10	
A 66434	2	470	5	27	<.3	<1	9	664	3.48	3	<5	<2	<2	43	.3	<2	<2	193	2.30	.081	5	7	.87	48	.12	4	.82	.05	- 14	<2	<u></u>	1	10	11	
A 66435	2	585	5	26	<.3	3	8	740	3.17	<2	<5	<2	<2	49	<.2	<2	<2	176	3.00	.080	5	5	.79	45	.12	୍ଟ୍	. 22.	- US	. 10	~2	< <u>></u>		113	14	
A 66436	1	438	5	32	.3	3	10	905	3.42	<2	<5	<2	<2	56	.2	<2	<2	181	3.48	. 106	6	6	.99	35	.09	. د	1.28	.04	.18	<2	\$	1	22	14	
	-																						-			-		~	47				1/4	11	
A 66437	2	123	5	- 38	<.3	3	9	698	3.73	- 3	<5	<2	2	186	<.2	<2	2	199	2.75	.113	6	6	.94	100	.15	1	1.52	.00	. 13	~~	S		140	11	
A 66438	1	333	7	- 34	<.3	- 4	8	575	3.52	3	<5	<2	<2	210	<.2	< <u>2</u>	- 4	191	2.63	.107	′ <u>5</u>	6	.81	91	.12	8	1.58	.10	.12	<2	S	1	104	14	
RE A 66438	1	332	6	- 36	<.3	5	10	579	3.59	- 3	<5	<2	<2	213	.4	< <u>2</u>	<2	194	2.71	.110	5	6	.83	91	.12	- (1.60	.10	.15	<2	<>		109	-	
RRE A 66438	1	328	7	- 34	<.3	3	8	564	3.50	2	<5	<2	<2	209	.2	<2	<2	190	2.64	.109	5	6	.81	89	.12	<u> </u>	1.58	.10	. 12	~2	< <u>></u>		104	-	
A 66439	2	203	<3	32	<.3	5	8	591	3.42	<2	<5	<2	<2	81	<.2	< <u>2</u>	<2	187	2.55	.107	5	- 5	.88	68	.12	2	1.24	.05	- 15	<2	<>	<1	20	10	
	1																				_					-		0 F		- 2	-5	- 4	4/0	14	
A 66440	4	197	7	35	<.3	4	9	560	3.53	3	≪5	<2	<2	57	<.2	<2	<2	194	2.50	.108	5	6	.97	- 72	.15	5	1.44	.02	- 14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SO 100 -	51	140	10	•
A 66441	2	128	3	51	<.3	43	12	767	3.09	6	<5	<2	2	146	.6	<2	<2	127	6.22	.134	8	82	.72	81	.18	10.	3.20	.07	.21	<2	<>>	<1	42	47	,
A 66442	24	245	3	82	<.3	145	<u>2</u> 3	756	3.41	19	<5	<2	3	41	.6	<2	5	130	6.95	. 141	9	260	1.55	18	. 16	10 4	+.29	ڏ ل.	.05	<2	S	2	24	14	
A 66443	3	204	_ ⊲	70	<.3	107	19	798	2.93	23	<5	<2	- 4	50	.3	<2	<2	133	6.89	. 140	9	200	1.18	15	.15	<u> </u>	3.46	.03	.05	<2	\sim	<	49	10	l
A 66444	3	309	9	147	<.3	109	18	1154	3.17	<2	<5	<2	3	42	.8	<2	<2	143	7.56	. 143	58	175	1.21	6	. 15	1.	5.12	.03	.02	<2	<>	1	44	18	
	_																			- / -				-			7 60		07		-6				
A 66445	2	235	<3	86	<.3	105	16	1149	2.97	3	<5	<2	- 3	72	.4	<2	<2	133	7.42	. 160	9	205	1.43	9	. 14	10	2.2Y	.02	.02	<2	<) 	<1	20	18) 7
A 66446	4	232	<3	47	<.3	32	26	657	4.95	<2	<5	<2	<2	40	.6	<2	<2	220	3.69	.092	: 5	52	1.98	- 91	.40	8.	2.54	.04	.20	<2	<>	1	20	17	
A 66447	2	1690	3	66	.3	81	14	748	2.77	ˈ <2	<5	<2	- 3	44	.5	2	3	115	6.88	. 161	8	186	1.06	9	.12	14	3.56	.03	.02	<2	<5	1	1009	19	,
STANDARD C2/AU-R	20	58	39	141	6.0	73	36	1169	3.91	43	19	8	35	53	19.5	16	23	- 73	.53	.086	5 41	67	.99	208	.09	29	2.08	.06	. 15	11	<5	2	504	-	
	1				-									~~~~																					

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

TT ACHE ANALYTIKAL				I	mpe	ria	1 M	eta	ls	Cor	por	ati	on	PRO	JEC	T R	EDG	OLD	F	ILE	#	96-	259	5			P	age	4	-0		TICAL
SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N î ppm	Co ppm	Nn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al X	Na X	к Х	y Pbu	TL ppm	Hg ppm
A 66399	3	1138	3	31 42	.6	8	3	348	2.72	3	<5 <5	<2	<2	91 57	<.2	<2	<2	119	1.17	.072	6	48	.24	80 47	.08	3	.92	.12	.20	<2 2	<5	<1
A 66401 RE A 66401	3	2577 2527	8 5	30 31	.7	8 7	3	340 339	2.58	57 57	্য ব্য ব্য	<2 <2	2	37 37	د. 2. 2.>	<2 <2 <2	<2 <2	116 115	1.73	.072	6	34 35	.38	57 57	.09	4	.02 .96 .98	.10	.18	~2 ~2	<5 <5	<

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Assay in progress for Cur 1%.

Δ			ASSAY	CERTI	FICATE					ΔΔ
Imper	<u>ial Metals Co</u> 420 - 355 E	OTDOTA Burrard St.	tion PR	DJECT BC V6C 2	<u>REDGOLI</u> G8 Submit	D Fil ted by: S	Le # 96 teve Rober	5-2595 tson	Page 4	TT
	SAMPLE#	S.Wt gm	Au+100 mg	+100 gm	Au-100 opt	NAu mg	AvgAu opt	DupAu opt		
	A 66399 A 66400 A 66401	661 476 664	.006 1.088 .075	17.4 14.5 18.8	.013 .332 .037	<.01 .92 .05	.013 .388 .039	- .031		
-100 AU B - SAMPLE	Y FIRE ASSAY FROM 1 A TYPE: CORE	A.T. SAMPLE	E. DUPAU: AU	DUPLICAT	ED FROM -10	D MESH. +	100 ал - т 2	OTAL SAMPLE	FIRE ASSAY.	
DATE RECEIVED: JUL 4 1996	DATE REPORT M	AILED:	July 1	1/96 :	SIGNED B	. <u>.</u> .[·····	.TOYE, C.LEG	DNG, J.WANG; CERTI	FIED B.C. ASSAYERS
		C	/ /	/			1			
·										
•										

.

APPENDIX D

- .

. . . .
