


FINAL REPORT on the **EAGLE Project, B.C.** 16 December, 1996

GFOLOGICAL SHRVEY BRANCH ASSESSMENT REPORT

24,871 11F2

# FINAL REPORT

on the

# **EAGLE Project, British Columbia**

comprising the

**EAGLE 1-6 Claims** 

For

### Birch Mountain Resources Ltd.

Ву

Daniel A. Beauchamp, P.Geol.

Simon X. Fan

Brett G. Johnson

OWNER AND OPERATOR: Birch Mountain Res. Ltd.N.T.S.:93N/02PROVINCE:British ColumbiaLATITUDE:55°12' NLONGITUDE:124°52' WMINING DIVISION:OminecaDATE:December 16, 1996

#### **Executive Summary**

An exploration program was conducted by Birch Mountain Resources Ltd. on the EAGLE 1-6 claims, located about 110 km north of Fort St. James, B.C. from July to October, 1996. The property is accessible by road and boat, or by air.

The EAGLE claims are underlain by diorite and granodiorite of the Upper Triassic to Lower Jurassic Hogem Batholith. In the western part of the EAGLE 4 claim, the intrusive rocks are in contact with hornfelsed volcanic rocks of the Takla Group which are also of Upper Triassic to Lower Jurassic age.

The property was previously explored from about 1966 to 1991 and has been the object of several I.P. surveys, soil geochemical surveys and two phases of diamond drilling.

Three areas of mineralization have been identified along a northwest-trending shear zone, each about 1.5 km apart: the Vector, Mid and Nighthawk Zones, collectively referred to as the Main Zone. Mineralization consists of chalcopyrite, pyrite, malachite and minor azurite along fractures and shear zones. Some of this mineralization is accompanied by potassic and clay-sericite hydrothermal alteration.

In the southwest part of the claims, galena, sphalerite and chalcopyrite are present in fracture zones along the contact between the diorite and volcanic rocks in the Gibson Zone.

The 1996 program consisted of geological, geochemical, geophysical surveys. The geophysical conductors were tested by completing 1838.6m of diamond drilling in three fences of two holes each.

The geological investigations determined that three main structural elements are present on the property: a right-lateral shear pattern trending northwest and dipping steeply to the south was followed by an east-west left-lateral structure dipping about 70°S. Most recently, a weaker north-south right-lateral structure affected part of the property.

Soil sampling at 25m intervals was conducted along some of the new grid lines, mostly in the Nighthawk and Vector Zones. Geochemical analyses were conducted for gold, copper and 14 other elements. Only weak, isolated gold anomalies were identified during this survey.

Small grids of 3x3 or 5x5 sites were sampled at intervals of 25m over most of the gold anomalies identified by the previous operator. All of the new gold anomalies identified by these surveys are within the known zones of mineralization at the Main and Gibson Zones. None of the old gold anomalies outside of these zones of mineralization were confirmed.

Rock chip sampling in two sections for each of the Nighthawk Zone and the Vector Zone shows that copper mineralization is highly anomalous but variable both along and across the shear zones. The gold values usually correlate well with the copper, but are much more variable.

Results of a soil geochemical survey on the EAGLE 6 claim show that copper and arsenic anomalies are present in the southwest part of the claim, near the Nighthawk Zone. All of the values for gold were low.

The geophysical surveys consisted of Max-Min and magnetometer surveys over the Gibson, Vector, Mid and Nighthawk Zones. Many conductors striking northwest and east-west were identified over most of the surveyed areas. The steep dips to the southwest and south correlate well with the structural data identified in outcrops.

Two fences of two holes each were drilled in the Nighthawk Zone and one fence in the Vector Zone with azimuths of 042° and dips of -45° and -65°. Most of the holes intersected faults or shear zones dipping 75-88°W where geophysical conductors were expected. Claysericite and potassic hydrothermal alteration were identified along many of these fault zones. The potassic alteration appears to be more prevalent at depth, and the clay-sericite alteration zones are more common near surface.

Thin zones of gold and copper mineralization are associated with the weak sulphide enrichment identified mostly near shear zones. Below the 700m elevation level, the drill holes at the Vector Zone intersected wider zones of sulphide enrichment and sections containing up to about 1.1 g/t Au over 1.0m, 4.4 g/t Au over 0.8m, and 0.18% Cu over 1.1m. Because they were drilled at a higher elevation, the holes at the Nighthawk Zone may not have reached this area of increased sulphides. The zones of potassic alteration contain more than four times the copper and nearly twice the gold than the sections with chlorite or chlorite-epidote alteration.

The work conducted at the EAGLE property has shown that the diorite has been hydrothermally altered over a length of at least 2.5 km along a shear system striking northwest and this alteration zone may extend further to the southeast. The drilling program has revealed that the gold and copper mineralization appears to increase with depth. The mineralization has been remobilized along secondary fractures during subsequent structural events and may have been concentrated at surface as a result of the evaporation of the carbonate-rich hydrothermal fluids. This could account for the presence of malachite and azurite.

Because the surface showings are controlled by the fault zones which have remobilized the mineralization and have acted as conduits for some of the fluids, additional exploration should concentrate on identifying the zones of hydrothermal alteration and sulphide enrichment at depths of about 200m using geophysical surveys. These surveys should also be conducted in areas where faults are absent and surface expressions of the mineralization is consequently absent.

# TABLE OF CONTENTS

|        | pa                          | age        |
|--------|-----------------------------|------------|
| Execu  | utive Summary               | . i        |
| Table  | e of Contents               | iii        |
| List o | of Figures                  | vi         |
| List o | of Tables                   | xi         |
| List o | of Appendices               | xi         |
|        |                             |            |
| 1.     | Introduction                | 1          |
| 2.     | Property Description        | 1          |
| 3.     | Location                    | 4          |
| 4.     | Access                      | 4          |
| 5.     | Physiography and Climate    | 5          |
| 6.     | Previous Exploration        | 5          |
| 7.     | Work Conducted in 1996      | 7          |
| 8.     | Regional Geology            | 8          |
| 9.     | Local Geology               | 10         |
| 10.    | Structural Geology          | 11         |
|        | 10.1 Overview               | 1 <b>1</b> |
|        | 10.2 Fracture Orientations  | 11         |
|        | 10.3 Fracture Distributions | 15         |
|        | 10.4 Summary                | 19         |

| 11. | Mineralization                     |
|-----|------------------------------------|
|     | 11.1 Vector Zone 20                |
|     | 11.2 Nighthawk Zone 20             |
|     | 11.3 Mid Zone 21                   |
| 12. | Geophysical Surveys 22             |
| 13. | Geochemical Surveys 22             |
|     | 13.1 Introduction                  |
|     | 13.2 Infill Soil Sampling 23       |
|     | 13.3 Detailed Geochemical Sampling |
|     | 13.4 Chip Sampling 29              |
|     | 13.4.1 Nighthawk Zone              |
|     | 13.4.2 Vector Zone                 |
|     | 13.5 EAGLE 6 Claim Geochemistry    |
|     | 13.6 Rock Sampling 30              |
|     | 13.6.1 Gibson Zone                 |
|     | 13.6.2 Vector Zone                 |
|     | 13.6.3 Mid Zone 36                 |
|     | 13.6.4 Nighthawk Zone              |
|     | 13.6.5 EAGLE 6 Claim               |

| 14. | Diamond Drilling                |
|-----|---------------------------------|
|     | 14.1 Fence 1                    |
|     | 14.2 Fence 2                    |
|     | 14.3 Fence 3 41                 |
| 15. | Conclusions and Recommendations |
| 16. | References                      |

v

**A** 

| List of Figure | S                                                                                | page          |
|----------------|----------------------------------------------------------------------------------|---------------|
| Fig. 1.1       | Location Map                                                                     | 1:1,000,000 2 |
| Fig. 2.1       | Claim Map                                                                        | 1:50,000 3    |
| Fig. 10.1      | Rose Diagram of Fracture Orientation on the EAGLE Property                       | 12            |
| Fig. 10.2      | Stereonet Plot of Fracture Distribution on the EAGLE Property                    | 16            |
| Fig. 13.1      | Detailed Geochemical Program Sample Location Map                                 | 1:6000 pocket |
| Fig. 13.2      | Detailed Geochemical Program<br>Gold                                             | 1:6000 pocket |
| Fig. 13.3      | Detailed Geochemical Program<br>Copper                                           | 1:6000 pocket |
| Fig. 13.4      | Detailed Geochemical Program<br>Chip Sampling: Nighthawk Zone                    | 1:250         |
| Fig. 13.5A     | Detailed Geochemical Program<br>Chip Sampling: Vector Zone, Section A            | 1:100         |
| Fig. 13.5B     | Detailed Geochemical Program<br>Chip Sampling: Vector Zone, Section B            | 1:100         |
| Fig. 13.6      | Detailed Geochemical Program: EAGLE 6<br>Rock, Soil and Stream Sediment Sampling |               |
| Fig. 14.1      | Drilling Program<br>Location Map                                                 | 1:6000 pocket |
| Fig. 14.2      | Drilling Program: Sample Locations<br>Fence 1 Profile Map: EA-96-1 & EA-96-2     | 1:500 pocket  |
| Fig. 14.3      | Drilling Program: Gold and Copper<br>Fence 1 Profile Map: EA-96-1 & EA-96-2      | 1:500 pocket  |

| Fig. 14.4  | Drilling Program: Sample Locations<br>Fence 2 Profile Map: EA-96-3 & EA-96-4             | 1:500 pocket       |
|------------|------------------------------------------------------------------------------------------|--------------------|
| Fig. 14.5  | Drilling Program: Gold and Copper<br>Fence 2 Profile Map: EA-96-3 & EA-96-4              | 1:500 pocket       |
| Fig. 14.6  | Drilling Program: Sample Locations<br>Fence 3 Profile Map: EA-96-5 & EA-96-6             | 1:500 pocket       |
| Fig. 14.7  | Drilling Program: Gold and Copper<br>Fence 3 Profile Map: EA-96-5 & EA-96-6              | 1:500 pocket       |
| Fig. A.4.1 | Horizontal Loop Electromagnetic Survey<br>Max-Min Survey                                 | 1:20000 Appendix 4 |
| Fig. A.6.1 | Geochemistry Program<br>SM1483 : 65 ppb Au                                               | 1:500 Appendix 6   |
| Fig. A.6.2 | Geochemistry Program<br>SM1459 : 45 ppb Au<br>SM1468 : 35 ppb Au                         | 1:500 Appendix 6   |
| Fig. A.6.3 | Geochemistry Program SM1503 : 90 ppb Au                                                  | 1:500 Appendix 6   |
| Fig. A.6.4 | Geochemistry Program<br>SM1231 : 700 ppb Au<br>SM1248 : 510 ppb Au<br>SM1249 : 35 ppb Au | 1:500 Appendix 6   |
| Fig. A.6.5 | Geochemistry Program<br>SM1494 : 4700 ppb Au                                             | 1:500 Appendix 6   |
| Fig. A.6.6 | Geochemistry Program<br>SM1426 : 100 ppb Au                                              | 1:500 Appendix 6   |
| Fig. A.6.7 | Geochemistry Program<br>SM1742 : 30 ppb Au                                               | 1:500 Appendix 6   |
| Fig. A.6.8 | Geochemistry Program<br>SM1733 : 30 ppb Au                                               | 1:500 Appendix 6   |

| Fig. A.6.9  | Geochemistry Program SM1474 : 45 ppb Au      | 1:500 Appendix 6 |
|-------------|----------------------------------------------|------------------|
| Fig. A.6.10 | Geochemistry Program<br>SM1513 : 3100 ppb Au | 1:500 Appendix 6 |
| Fig. A.6.11 | Geochemistry Program SM1688 : 60 ppb Au      | 1:500 Appendix 6 |
| Fig. A.6.12 | Geochemistry Program<br>SM1450 : 45 ppb Au   | 1:500 Appendix 6 |
| Fig. A.6.13 | Geochemistry Program<br>SM1258 : 800 ppb Au  | 1:500 Appendix 6 |
| Fig. A.6.14 | Geochemistry Program<br>SM1664 : 120 ppb Au  | 1:500 Appendix 6 |
| Fig. A.6.15 | Geochemistry Program SM1806 : 100 ppb Au     | 1:500 Appendix 6 |
| Fig. A.6.16 | Geochemistry Program<br>SM1830 : 80 ppb Au   | 1:500 Appendix 6 |
| Fig. A.6.17 | Geochemistry Program SM1796 : 60 ppb Au      | 1:500 Appendix 6 |
| Fig. A.6.18 | Geochemistry Program<br>SM1787 : 30 ppb Au   | 1:500 Appendix 6 |
| Fig. A.6.19 | Geochemistry Program SM1333 : 130 ppb Au     | 1:500 Appendix 6 |
| Fig. A.6.20 | Geochemistry Program<br>SM1618 : 20 ppb Au   | 1:500 Appendix 6 |
| Fig. A.6.21 | Geochemistry Program SM1697 : 50 ppb Au      | 1:500 Appendix 6 |
| Fig. A.6.22 | Geochemistry Program<br>SM1308 : 170 ppb Au  | 1:500 Appendix 6 |

Ì۵

ø

**A** 

ø

گ

| Fig. A.6.23 | Geochemistry Program<br>SM1392 : 100 ppb Au<br>SM1416 : 30 ppb Au 1:500 Appendix 6 |
|-------------|------------------------------------------------------------------------------------|
| Fig. A.6.24 | Geochemistry Program<br>SM1706 : 50 ppb Au 1:500 Appendix 6                        |
| Fig. A.6.25 | Geochemistry Program<br>SM1724 : 35 ppb Au 1:500 Appendix 6                        |
| Fig. A.6.26 | Geochemistry Program<br>SM1715 : 40 ppb Au 1:500 Appendix 6                        |
| Fig. A.6.27 | Geochemistry Program<br>SM1627 : 30 ppb Au 1:500 Appendix 6                        |
| Fig. A.6.28 | Geochemistry Program<br>SM1636 : 80 ppb Au 1:500 Appendix 6                        |
| Fig. A.6.29 | Geochemistry Program<br>SM1769 : 50 ppb Au 1:500 Appendix 6                        |
| Fig. A.6.30 | Geochemistry Program<br>SM1760 : 50 ppb Au 1:500 Appendix 6                        |
| Fig. A.6.31 | Geochemistry Program<br>SM1751 : 90 ppb Au 1:500 Appendix 6                        |
| Fig. A.6.32 | Geochemistry Program<br>SM1609 : 60 ppb Au 1:500 Appendix 6                        |
| Fig. A.6.33 | Geochemistry Program<br>SM1283 : 1230 ppb Au 1:500 Appendix 6                      |
| Fig. A.6.34 | Geochemistry Program<br>SM1358 : 380 ppb Au 1:500 Appendix 6                       |
| Fig. A.6.35 | Geochemistry Program<br>SM1382 : 50 ppb Au 1:500 Appendix 6                        |
| Fig. A.6.36 | Geochemistry Program<br>SM1654 : 40 ppb Au 1:500 Appendix 6                        |

đ

1

ø

-

đ

| Fig. A.6.37 | Geochemistry Program SM1645 : 30 ppb Au                           | 1:500 Appendix 6 |
|-------------|-------------------------------------------------------------------|------------------|
| Fig. A.6.38 | Geochemistry Program<br>SM1181 : 215 ppb Au                       | 1:500 Appendix 6 |
| Fig. A.6.39 | Geochemistry Program<br>SM1778 : 30 ppb Au                        | 1:500 Appendix 6 |
| Fig. A.6.40 | Geochemistry Program<br>SM1537 : 45 ppb Au                        | 1:500 Appendix 6 |
| Fig. A.6.41 | Geochemistry Program<br>SM1546 : 70 ppb Au                        | 1:500 Appendix 6 |
| Fig. A.6.42 | Geochemistry Program<br>SM1207 : 35 ppb Au<br>SM1208 : 185 ppb Au | 1:500 Appendix 6 |
| Fig. A.6.43 | Geochemistry Program<br>SM1564 : 30 ppb Au                        | 1:500 Appendix 6 |
| Fig. A.6.44 | Geochemistry Program SM1555 : 40 ppb Au                           | 1:500 Appendix 6 |
| Fig. A.6.45 | Geochemistry Program SM1573 : 40 ppb Au                           | 1:500 Appendix 6 |
| Fig. A.6.46 | Geochemistry Program SM1600 : 30 ppb Au                           | 1:500 Appendix 6 |
| Fig. A.6.47 | Geochemistry Program<br>SM1591 : 30 ppb Au                        | 1:500 Appendix 6 |
| Fig. A.6.48 | Geochemistry Program<br>SM1582 : 45 ppb Au                        | 1:500 Appendix 6 |

| List of Table |
|---------------|
|---------------|

-- -- -

| Table 2.1  | Claim Status 4                               |
|------------|----------------------------------------------|
| Table 8.1  | Table of Formations    9                     |
| Table 13.1 | Geochemical Soil Sampling: Summary 25        |
| Table 13.2 | Geochemistry: Gibson Zone Rock Samples 34    |
| Table 13.3 | Geochemistry: Vector Zone Rock Samples 35    |
| Table 13.4 | Geochemistry: Mid Zone Rock Samples          |
| Table 13.5 | Geochemistry: Nighthawk Zone Rock Samples 37 |
| Table 13.6 | Geochemistry: EAGLE 6 Claim Rock Samples 38  |
| Table 14.1 | Diamond Drill Hole: Summary                  |

# List of Appendices

| Appendix 1 | Statements of Qualifications          |
|------------|---------------------------------------|
| Appendix 2 | Statement of Expenditures             |
| Appendix 3 | Results of Geochemical Analyses       |
| Appendix 4 | Geophysical Report                    |
| Appendix 5 | Petrographic Report                   |
| Appendix 6 | Geochemistry Program: Resampling Maps |
| Appendix 7 | Analytical Procedures                 |
| Appendix 8 | Drill Logs                            |

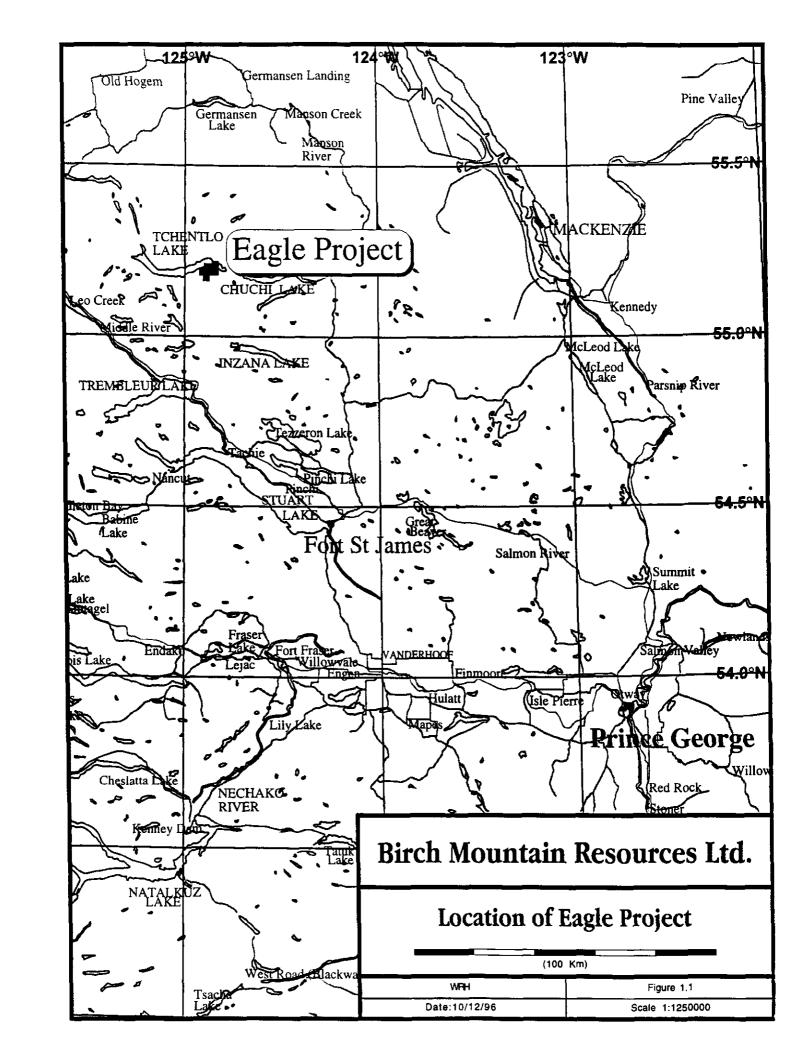
#### **1. INTRODUCTION**

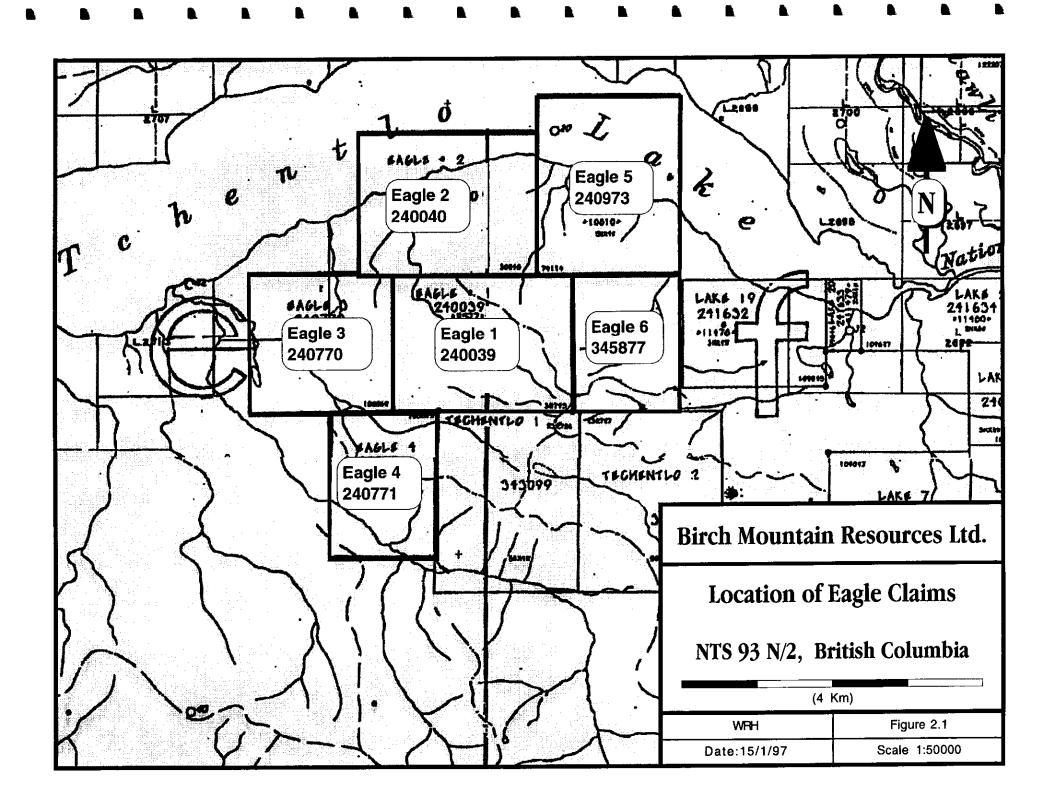
The purpose of this report is to describe the field activities conducted by Birch Mountain Resources Ltd. on the EAGLE property in north-central British Columbia during the 1996 field season (Fig. 1.1). The property consists of the EAGLE 1-6 claims and is located in the Omineca Mining Division, British Columbia.

The most common exploration target in this region has been copper-gold deposits associated with the alkalic porphyritic intrusions. One of the most significant discoveries in the region was the Mount Milligan porphyry copper-gold deposit, located about 50 km east of the EAGLE property. This deposit has been estimated to contain a mineral reserve of 400 million tonnes of 0.48 g/t Au and 0.2% Cu (DeLong et al., 1991). The deposit has also been reported to contain high-grade gold veins within shear zones which are peripheral to the porphyry copper-gold deposit.

Recent work on the EAGLE property was done in 1966 by West Coast Mining and Exploration Company. From the early 1970's to 1991, the property was intermittently explored by Noranda Exploration Company Ltd.

Birch Mountain Resources Ltd. optioned the property in 1996 from A.D. Halleran, and staked the EAGLE 6 claim. The company carried out an exploration program of line cutting, geological mapping, geophysical and geochemical surveys, and diamond drilling from July to October, 1996.


The 1996 field crew consisted of five geologists and assistants, D.A. Beauchamp, S.X. Fan, B.G. Johnson, E. Washburn, and S. Reimond, as well as a cook and a camp manager. The geophysical survey was done by Associated Mining Consultants Ltd. and Connors Drilling Ltd. was contracted to carry out the diamond drilling in early Fall.


This report is based on the writers' field work and the interpretation of geochemical results.

#### 2. PROPERTY DESCRIPTION

This report covers work conducted on several claims. The particulars of the claims are listed in Table 2.1 and shown in Fig. 2.1. The EAGLE 6 claim was staked by Birch Mountain Resources in May 1996.

1





| Claim   | No.   | Record | Expiry       | Owner                         |
|---------|-------|--------|--------------|-------------------------------|
| Name    | Units | No     | Date         |                               |
| EAGLE 1 | 20    | 240039 | 22 July 2001 | Birch Mountain Resources Ltd. |
| EAGLE 2 | 20    | 240040 | 22 July 2001 | Birch Mountain Resources Ltd. |
| EAGLE 3 | 16    | 240770 | 4 June 2001  | Birch Mountain Resources Ltd. |
| EAGLE 4 | 12    | 240771 | 4 June 2001  | Birch Mountain Resources Ltd. |
| EAGLE 5 | 20    | 240973 | 5 June 1998  | Birch Mountain Resources Ltd. |
| EAGLE 6 | 12    | 345877 | 15 May 1997  | Birch Mountain Resources Ltd. |

### Table 2.1: Claim Status

#### 3. LOCATION

The EAGLE property is located about 110 km north of Fort St. James and about 210 km northwest of Prince George, British Columbia. The geographic coordinates of the property are approximately 55°12' N latitude and 124°52' W longitude on NTS map sheet 93N/02.

#### 4. ACCESS

Access to the area is by road, rail or airline to Prince George. From there, a two-hour drive west is required to get to Fort St. James which offers many basic services such as food stores, fuel and lumber supplies, and small float-equipped aircraft charter companies.

Access to the property is by aircraft, or by road and boat. The Cessna or Beaver aircraft takes about 40 minutes to reach the property from the Stuart Lake base, located a few kilometres south of Fort St. James.

By road, the property is accessible from Fort St. James by a two-hour trip along good logging roads to Tchentlo Lodge at the west end of Tchentlo Lake. From there, a one-hour boat trip east for 23 km leads to the camp site on the south shore of the lake.

Bell 206 and Astar helicopters are based in Fort St. James, and also in MacKenzie which is about 30 to 40 minutes by air northeast of camp.

Transportation within the property was provided by two eight-wheel Argo ATVs. These vehicles were used along a dirt road which had last been used in 1991 by Noranda. The road provided good access to all of the areas of interest on the claims.

An all-weather logging road located about 15 km southwest of the property could be extended to the EAGLE property if required in the future.

4

#### 5. PHYSIOGRAPHY AND CLIMATE

The terrain is mountainous and elevations range from 870m to 1472m a.s.l. The slopes are generally intermediate to steep. The property slopes to the north and northwest from a high point at the south end of the claims.

The vegetation is represented by mature spruce, pine and fir in the lower areas. Scrub spruce, pine and slide alder become dominant in the upper areas of the hill. There are also a few swampy areas that contain lichen and Devil's Club.

A typical field season lasts from early June to late October, during which the weather is warm in daytime but cool at night. A publication from the Ministry of Forests described the weather in this area as being "unusually cool and moist" for this part of the country. The 1996 season proved this out, as we had few days considered hot, and at times, rain appeared to be never-ending.

#### 6. PREVIOUS EXPLORATION

In 1966, the West Coast Mining and Exploration Company completed an I.P. survey over the Nighthawk copper showings which delineated a steeply westward-dipping responsive body, with an estimated thickness of 30-60m (Stewart et al., 1989).

A second I.P. survey was carried out in 1967 to cover an expanded grid in the areas surrounding the Nighthawk showings. The survey outlined three primary anomalies, one of which is located over the Nighthawk Zone and was interpreted to be dipping steeply eastward.

In 1971, the Noranda Exploration Company Ltd. optioned the property and conducted EM, magnetometer, I.P. and geochemical surveys at about 300m line spacing and 30-60m sample spacing. Samples were assayed for copper only. The soil sampling and geophysical surveys outlined several anomalous areas, and small copper showings were associated with north-trending shear zones. Based on the drill core found on the property, approximately 915m of diamond drilling were completed around the Nighthawk showing in 1971 and 1974, however the drill logs are not available (Stewart et al., 1989).

In July 1988, A.D. Halleran staked the EAGLE 1 and EAGLE 2 claims on the basis of the area's known copper showings, aeromagnetic signature and similarity to the Mount Milligan property. Noranda optioned the EAGLE 1 and EAGLE 2 claims, and staked the EAGLE 3, 4 and 5 claims for A.D. Halleran as part of the option agreement.

Noranda conducted an exploration program on the property in 1989, including 56.6 km of line cutting, 34.7 km of magnetometer and 13.0 km of I.P. surveys. They also collected 1362 B horizon soil samples. The program identified three significant copper-gold

showings: the Nighthawk Zone, the Mid Zone, and the Vector Zone, collectively referred to as the Main Zone. All showings occur within highly potassic-chloritic-altered diorite/monzodiorite (Stewart et al., 1989).

In 1990, Noranda continued its exploration work on the property with more detailed geological, geochemical and I.P. surveys designed to evaluate the size, potential and precious metal content of the known mineralizing system (Stewart, 1991a). The surveys were carried out at 400m line spacing and 50m sample spacing to cover most of the EAGLE 1-5 claims.

The I.P. survey extended the 1989 anomalies from the Mid Zone to the Nighthawk Zone. The first phase of the 1990 geochemical survey outlined a highly anomalous zone to the west of the Eagle Grid in an area close to the contact zone between the Hogem Batholith and the Takla Group. The anomalous zone was followed up by staking the EAGLE 6 and EAGLE 7 claims to cover the Gibson Grid and the surrounding area. (Note: EAGLE 6 and EAGLE 7 claims lapsed in July 1991; the EAGLE 6 claim in this report covers an area to the east of the EAGLE 1 whereas the former EAGLE 6 was to the west of EAGLE 4 (Fig. 2.1) where the Gibson Zone is located.)

A hand trench about 2m long x 1m deep x 1m wide dug on the Gibson Grid led to the discovery of the Gibson Zone. The showing was then followed up by geochemical, geological and I.P. surveys. The 1990 project delineated several drill targets on both the Main Zone and the Gibson Zone and identified "the presence of a large Cu-Au bearing system with a very good tonnage potential on the Eagle Grid and a Pb-Ag-Au bearing system on the Gibson Grid that appears to be part of a peripheral vein system" (Stewart, 1991a).

In 1991, Noranda conducted diamond drilling to test several coincident magnetic, induced polarization (I.P.) and geochemical anomalies associated with known mineralization on both the Main Zone and the Gibson Zone. The program consisted of 1483.3m of diamond drilling in 17 holes, of which 9 holes (657.3m) were drilled to test the Gibson showing and strong multi-element soil geochemical and I.P. anomalies.

All the drill holes at the Gibson Zone intersected significant sections of intense claysericite-quartz alteration and mineralized volcanic rocks consisting of pyrite, galena and sphalerite (Stewart, 1991b).

The other eight holes were drilled on the Main Zone to test large, moderate to strong chargeability anomalies on the Nighthawk and Vector Zones (Stewart, 1991b). Four holes drilled on the Nighthawk and Vector Zones intersected significant copper-gold porphyry-style mineralization over moderate widths with visible chalcopyrite and bornite in sulphide stringers and disseminations. The other four holes drilled in the area near the Nighthawk Zone intersected intense magnetite-biotite-altered diorite with trace chalcopyrite, bornite and 1% pyrite, indicating that a strong component of the I.P. response was caused by the pervasive magnetite flooding.

The 1991 diamond drilling program concluded that a fairly large alteration and mineralizing system is present as a high-grade, multi-directional gold-silver-lead-zinc peripheral vein system on the Gibson Zone. The potential for a copper-gold hydothermal system is present on the Main Zone and requires follow-up work.

#### 7. WORK CONDUCTED DONE IN 1996

In 1996, Birch Mountain Resources Ltd. entered into an agreement with A.D. Halleran to further explore the property. A new claim, EAGLE 6, was staked to the east of EAGLE 1 in May 1996.

Initially, geological mapping, soil geochemical surveys, magnetometer and Max-Min surveys were carried out. The grid was set up using the Noranda base line, and new lines were cut.

Soil geochemical surveys were carried out over all the gold anomalies previously identified by Noranda on the Main and Gibson Zones. Sampling was conducted at 25m spacing in 3x3 or 5x5 mini-grids depending on the magnitude of the anomaly to be resampled.

Infill soil samples were also taken at 25m spacing on the Main Zone between the original Noranda grid lines. In addition, rock samples, chip samples and a few stream sediment samples were collected and submitted for analysis.

On the Main Zone, 44.15 km of lines were cut at 100m spacing, from a base line trending 312°. This grid was extended to the Gibson Zone where 8.2 km of lines were cut. A ground magnetometer survey and a horizontal loop (Max-Min) survey were conducted along these grids by geophysical contractors during July and August, 1996.

A prospecting and mapping program was conducted on the EAGLE 6 claim property in August 1996. Seventy-two B horizon soil samples, 36 rock samples and 7 stream samples were collected and sent to the lab for assaying of gold and a suite of 15 elements. The soil samples were collected along traverse lines at 250m spacing about 200m apart, and rock samples were taken from outcrops located along the traverses. All sample locations were marked with flagging tape and outcrops were mapped.

In early September 1996, 1838.6m of diamond drilling were completed in three fences of two holes each. Two holes were drilled on the Vector Zone and four holes were drilled on the Nighthawk Zone. A total of 321 split core samples was sent to the laboratory for gold and 15-element ICP (induced coupled plasma) analysis.

#### 8. REGIONAL GEOLOGY

The property is located within the Quesnel Trough, which is a large regional northwesttrending structure bounded on both sides by major strike-slip faults. The Quesnel Trough is a subdivision of the Intermontane Tectonic Belt, which is a sequence of sedimentary and volcanic rocks that can be traced southward to the United States.

The Pinchi Fault zone marks the southwest boundary of the Quesnel Trough, and separates the Permian Cache Creek Group on the southwest from the Upper Triassic-Lower Jurassic Takla Group and Hogem Batholith to the northeast.

The Manson Fault zone marks the northeastern boundary of the Quesnel Trough, and separates the Takla Group and the Hogem Batholith on the southwest from the older uplifted Wolverine Complex of Late Paleozoic age to the northeast (Garnett, 1978).

Block faulting and tilting are the dominant structural styles in and around the Quesnel Trough. Based on the presence of Triassic blueschists along the Pinchi Fault, a subduction zone may lie west of the Takla arc (Nelson et al., 1991). Folding of probable late Triassic to early Jurassic age is generally restricted to the eastern margin of the Trough near its boundary with the Omineca Crystalline Belt. Two discrete phases of coaxial folding are present in the region as shown by the presence of overturned beds in the hinges of large scale F2 upright folds, indicating tight, recumbent refolded F1 hinges.

Regionally, the area is underlain by Upper Triassic to Lower Cretaceous rocks of the Takla Group which have been intruded and hornfelsed by felsic to ultramafic stocks and batholiths of Upper Triassic to Lower Cretaceous age.

In their work about 50 km to the east of the EAGLE claims, Nelson et al. (1991) subdivided the Takla Group into four formations consisting mostly of siltstone, argillite and tuff with minor agglomerate and flows.

The intrusive rocks are mostly Omineca intrusions of granite, granodiorite, quartz diorite, diorite, syenite, gabbro and pyroxenite. The Hogem Batholith is the largest intrusive body of the Omineca intrusions, and is considered to be an intrusive equivalent of at least part of the Takla Group (Garnett, 1978).

Garnett (1978) divided the Hogem Batholith into three distinct phases (Table 8.1). Phase I, dated at 176-212 Ma, consists of the Hogem basic suite and the Hogem granodiorite, and represents the main intrusive event. Phase II, comprising Duckling Creek and Chuchi syenite bodies, is dated at 162-182 Ma. Although there is some age overlap, it is thought to be distinctly younger than Phase I on the basis of field observations. Phase III granite is dated at 108-126 Ma and occurs as relatively small isolated stocks. The Phase I Hogem granodiorite and the Phase III granite are interpreted to be calc-alkaline (sub-alkaline), while the Phase I basic suite is predominantly alkaline but near the alkaline/subalkaline boundary. The Phase II syenite is alkaline (Garnett, 1978).

Gold and copper-gold occurrences are spatially associated with the Phase II syenite and Phase I basic suite plutons and with Triassic-Jurassic volcanic rocks of the Takla Group. Copper-molybdenum occurrences are mainly associated with Phase III granitic bodies.

| Quaternary                         |                                  |                                                                             |  |  |
|------------------------------------|----------------------------------|-----------------------------------------------------------------------------|--|--|
| Qal                                | Glacial deposits                 | Unconsolidated gravel and till                                              |  |  |
| Lower Cretaceous                   |                                  |                                                                             |  |  |
| Phase III Southern Hogem Batholith |                                  |                                                                             |  |  |
| 9                                  |                                  | Leucrocratic granite, alaskite                                              |  |  |
|                                    | Lower Jurassic - Middle Jurassic |                                                                             |  |  |
| Phase II Southern Hogem Batholith  |                                  |                                                                             |  |  |
| 8                                  | Chuchi Syenite                   | Leucocratic syenite, quartz syenite                                         |  |  |
| 7                                  | Duckling Creek Syenite           | Leucocratic syenite                                                         |  |  |
| 6                                  | Complex                          | Foliated syenite                                                            |  |  |
| Upper Triassic to Lower Jurassic   |                                  |                                                                             |  |  |
| Phase I Southern Hogem Batholith   |                                  |                                                                             |  |  |
| 5                                  | Hogem Granodiorite               | Granodiorite, quartz monzonite, minor quartz<br>diorite, monzonite, granite |  |  |
| 4                                  |                                  | Monzonite and quartz monzonite                                              |  |  |
| 3                                  | Llogon Posic Suite               | Monzonite and quartz monzonite                                              |  |  |
| 2                                  | Hogem Basic Suite                | Nation Lakes plagioclase porphyry: monzonite and monzodiorite               |  |  |
| 1                                  |                                  | Diorite, minor gabbro, pyroxenite, hornblendite                             |  |  |

### Table 8.1: Table of Formations

(modified from Garnett, 1978)

9

ø

#### 9. LOCAL GEOLOGY

The EAGLE property is underlain mostly by rocks of the Hogem Batholith basic suite. The contact with the Takla Group volcanic rocks extends through the EAGLE 4 claim.

The dominant intrusive phase on the property is a medium-grey, equigranular, mediumgrained diorite, consisting of 70-80% plagioclase, 5-10% hornblende, 5-10% augite, 2-5% magnetite and 1-5% biotite, with minor or trace chlorite, epidote and actinolite.

Another less common phase is a light- to medium-grey, coarse- to medium-grained monzonite, consisting of 50-60% plagioclase, 5-20% K-feldspar, 5-10% hornblende, 5-10% augite, 2-5% magnetite and 1-5% biotite, with minor or trace chlorite, apatite, tourmaline and epidote. Rock sample R3032, from an outcrop near the Nighthawk Zone (Fig. 13.6), may originally have been a gabbro and that has since been affected by potassic metasomatism and other alterations (Skupinski, 1996).

The basic suite of diorite/monzonite grades into quartz diorite and granodiorite over a few tens of metres to the northeast part of the claims. This phase is light grey to creamy white and medium- to coarse-grained. It contains 50-60% plagioclase, 5-20% K-feldspar, 5-10% hornblende, 5-10% pyroxene, 5-10% quartz, 1-10% biotite and 1-5% magnetite, with minor or trace sphene, epidote and apatite.

Skupinski (1996) indicates that the composition and texture of mafic enclaves within sample R3037 show a strong resemblance to a gabbroic body (Appendix 5). He further suggests that the rock could be interpreted as a product of anatectic melting from gabbroic parent rocks.

Near the Mid Zone, an irregularly-shaped intrusive body of dark grey, coarse-grained gabbro contains 60-70% plagioclase, 20-30% pyroxene, 5-10% magnetite and 2-5% biotite, with minor hornblende, chlorite, epidote, hypersthene and actinolite. The gabbro (R0014) from a Mid Zone outcrop, may represent the original unaltered part of the pluton Skupinski (1996).

The contact zone between the Hogem Batholith and the Takla volcanic rocks is present in the northeast part of the Gibson Zone. The volcanic rocks are hornfelsed at the contact zone and generally contain 2-5% disseminated pyrite and trace chalcopyrite. The Hogem diorite near the contact is usually altered and contains minor or trace pyrite, chalcopyrite and malachite. Away from the contact, the volcanic rocks are generally light purple to mediumgrey fine-grained and hornfelsed. In some areas, remnant banding can be observed in the volcanics, indicating that the rocks may have been volcanic tuffs.

Sulphides observed on the property, especially in the Hogem diorite, are generally associated with potassic and chlorite alteration, and sometimes with epidote and carbonate

alterations as well. Iron-stained gossan trails, ranging from a few centimetres to a few tens of centimetres wide, are commonly seen in the Vector, Nighthawk and Mid Zones, and are generally associated with fractures.

#### **10. STRUCTURAL GEOLOGY**

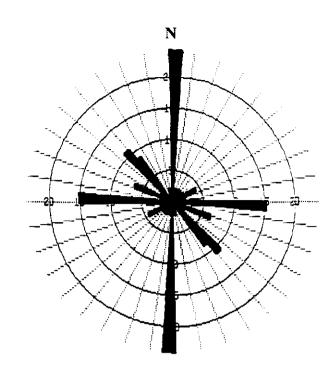
#### 10.1 Overview

The intrusive rocks of the Hogem Batholith on the Main Zone and the volcanic rocks of the Takla Group on the Gibson Zone are moderately fractured, with some intensive fracturing and shearing. Striations on slickensides, where observed, are generally subhorizontal or plunge moderately, suggesting a dominant strike-slip movement on the fractures and shear zones. Both brittle and ductile deformations were observed along most of the structures, indicating that a semi-brittle deformation regime had been reached in the area.

The structural mapping on the property identified three main fracture sets. The orientation of these fracture sets trends NW (about 320°), E-W (about 272°) and N-S (about 002°), with some less dominant fracture sets trending northeasterly to southeasterly.

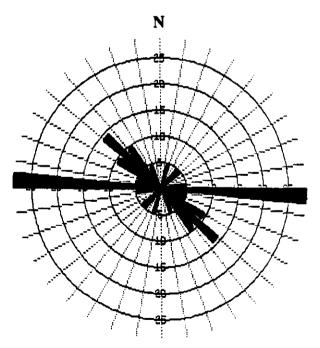
#### **10.2 Fracture Orientations**

About 300 fractures were observed and measured from outcrops throughout the property. Figure 10.1 shows the fracture orientation on the property and in the individual zones.


In the Vector Zone, 46 fractures were measured. The rose diagram indicates that the predominant set trends approximately N-S (about 002°), and two other main sets trend E-W (about 272°) and NW (about 318°).

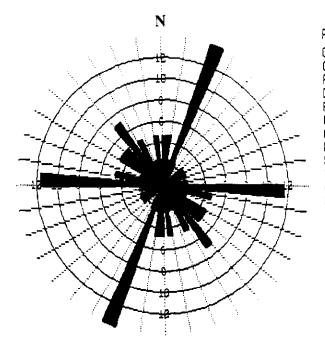
In the Nighthawk Zone, 21 fractures were observed and the predominant set trends approximately E-W (about 272°), with another main set trending NW (about 315°).

In the Mid Zone, 43 fractures were measured and the predominant set trends N-NE (about 022°). Two other main sets trend E-W (about 272°) and NW (about 322°).


At the Gibson Zone, 67 fractures were measured. The predominant set trends NW (about 320°) and a few other sets trend NE, E-W and SE.

At the EAGLE 6 claim, 77 fractures were measured. The rose diagram looks similar to that of the Gibson Zone, showing that the predominant set also trends NW (about 320°) with a few other sets trending E-W, NE and SE.




## FRACTURE ORIENTATION IN VECTOR

| Calculation Methoa  | Frequency      |
|---------------------|----------------|
| Class Interval      | 5 Degrees      |
| Filtering           | Deactivated    |
| Data Type           | Bidirectional  |
| Rotation Amount     | 0.0 Degrees    |
| Population          | 45             |
| Maximum Percentage  |                |
| Mean Percentage     | 4.9 Percent    |
| Steneerd Deviation  |                |
| Vector flean        | 319.81 Degrees |
| Confidence Intervai | 67.43 Degrees  |
| R-mag               | 0.17           |



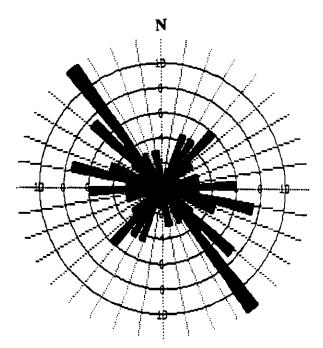
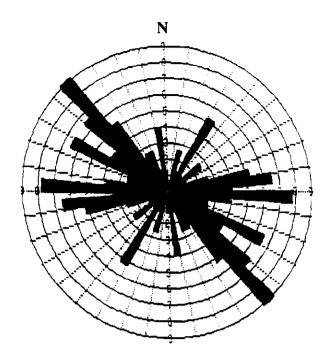

| Fracture Orientation | in Nighthawk   |
|----------------------|----------------|
| Calculation Method   | Frequency      |
| Class Interval       | 5 Degrees      |
| Filtering            | Deactivated    |
| Data Type            | Bidirectional  |
| Rotation Amount      | 0.0 Degrees    |
| Population           | 21             |
| Maximum Percentage   | 29.5 Percent   |
| Nean Percentage      | 8.3 Percent    |
| Standard Deviation   | 6.91 Percent   |
| Vector Mean          | 289.19 Degrees |
| Confidence Interval  | 31.52 Degraes  |
| R-mag                | 0.51           |

Figure 10-1, Rose Diagram of Fracture Orientation on Eagle Property and Its Subdivisions (continued......)



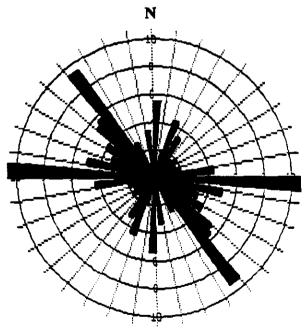
## FRACTURE ORIENTATION IN MID ZONE

| Calculation Method  | Frequency     |
|---------------------|---------------|
| Class Interval      |               |
| Filtering           | Deact:vated   |
| Data Type           | Bidirectional |
| Rotation Amount     |               |
| Population          | 43            |
| Maximum Percentage  | 19.0 Percent  |
| Меал Регселтаде     | 9.2 Percent   |
| Stanaard Deviation  |               |
| Vector Mean         |               |
| Confidence Intervol |               |
| R-mag               | 0.18          |




# FRACTURE ORIENTATION IN GIBSON

| Calculation Method                    | Frequency         |
|---------------------------------------|-------------------|
| Class Interval                        | Deactivated       |
| Data Type                             | Bidirectional     |
| Rotation Amount<br>Population         | U.U Degrees<br>67 |
| Maximum Percentage<br>Mean Percentage | 11.9 Percent      |
| Standard Deviation                    | 2.41 Percent      |
| Vector Mean<br>Confidence Interval    | 295.79 Degrees    |
| R-mag                                 | 0.20              |


Figure 10-1, Rose Diagram of Fracture Orientation on Eagle Property and Its Subdivisions (.....continued)

4



| FRACTURE ORIENTATION IN EAGLE | FRACTURE | ORIENTATION | IN. | EAGLE | 6 |
|-------------------------------|----------|-------------|-----|-------|---|
|-------------------------------|----------|-------------|-----|-------|---|

| Calcuiption Method  | Frequency               |
|---------------------|-------------------------|
| Class tervai        | D Degrees               |
| Filtering           | Deactivated             |
| Data Type           | Bidirectional           |
| Rotation Amount     | 0.0 Degree <del>s</del> |
| Population          | 7 <b>7</b>              |
| Haximum Fercentage  | 5.1 Percent             |
| Mean Percentage     | 3.6 Percent             |
| Stangerd Deviation  | 2.17 Percent            |
| Vector Mean         |                         |
| Confidence Interval | 24.24 Degrees           |
| R-mag               | 0.36                    |



# FRACTURE ORIENTATION ON EAGLE PROPERTY

| Calculation Method                   | Frequency      |
|--------------------------------------|----------------|
| Calculation Method<br>Class Interval | 5 Degrees      |
| Filtering                            | Deactivated    |
| Data Type                            | Bidirectional  |
| Rotation Amount                      | 0.0 Begrees    |
| Population                           | 300            |
| Moximum Percentage                   | 10.7 Percent   |
| Mean Percentage                      | 2.7 Percent    |
| Standard Deviation                   | 2.30 Percent   |
| Vector Mean                          | 297.50 Degrees |
| Confidence Interval                  | 19.62 Degrees  |
| R-mag                                |                |

Figure 10-1, Rose Diagram of Fracture Orientation on Eagle Property and Its Subdivisions (.....continued)

These fractures and all other readings from elsewhere on the property were plotted on a rose diagram. The two predominant sets trend E-W (about 272°) and NW (about 322°), while another set trends approximately N-S (about 002°).

#### **10.3 Fracture Distributions**

The advantage of a rose diagram is that one can easily visualize the structure orientations on the diagram. The disadvantages are that they do not show dip orientation and dip angle of the structures, and they also plot two different sets of structure with the same strike but opposite dip direction as one set. A stereonet plot has the advantage of showing both strike and dip orientations as well as the value of dip angles, however it is not as easy to visualize as a rose diagram.

Figure 10.2 shows the stereonet plot of fractures on the property and on individual zones. The stereonet plots use the same data as the rose diagrams. The plots display the poles to fracture planes on the lower hemisphere of the Schmidt equal area projection net.

On the Vector Zone stereonet, three clusters of poles are distinctive, and the centres of these clusters are  $002^{\circ}/24^{\circ}$ ,  $092^{\circ}/06^{\circ}$ , and  $048^{\circ}/18^{\circ}$ . These clusters represent fracture sets with average orientations of  $272^{\circ}/66^{\circ}$ S,  $002^{\circ}/84^{\circ}$ W and  $318^{\circ}/72^{\circ}$ SW, i.e. striking approximately E-W, N-S and NW. In the rose diagram, the N-S trend appears to be more important than the E-W trend, whereas the stereonet shows that the  $272^{\circ}/66^{\circ}$ S trend is actually stronger than the  $002^{\circ}/84^{\circ}$ W set. This is because the rose diagram combines another set of fractures having the same strike but opposite dip, i.e., striking N-S but dipping to the east, with the  $002^{\circ}/84^{\circ}$ W set.

At the Nighthawk Zone, two distinctive clusters of poles are clearly seen on the stereonet plot. They are oriented at about 002°/18° and 042°/18° on the stereonet, representing two dominant fracture sets with an average strike of 272°/72°S and 312°/72°SW, respectively, and they correlate well with the rose diagram.

At the Mid Zone, two distinctive clusters of poles are located at 228°/07° and 180°/04° on the stereonet, representing fracture sets with average orientations of 318°/83°NE and 270°/86°N, respectively. A NE-striking fracture set shows clearly on the rose diagram but is not obvious on the stereonet because of the rose diagram's combining effect.

At the Gibson Zone, two clusters of poles are distinctive. They are located at 045°/05° and 125°/12° on the stereonet, representing fracture sets with an average orientation of 315°/85°SW and 035°/78°NW, respectively. This corresponds well with the rose diagram which also shows a few more sets of fracture because of its combining effect.

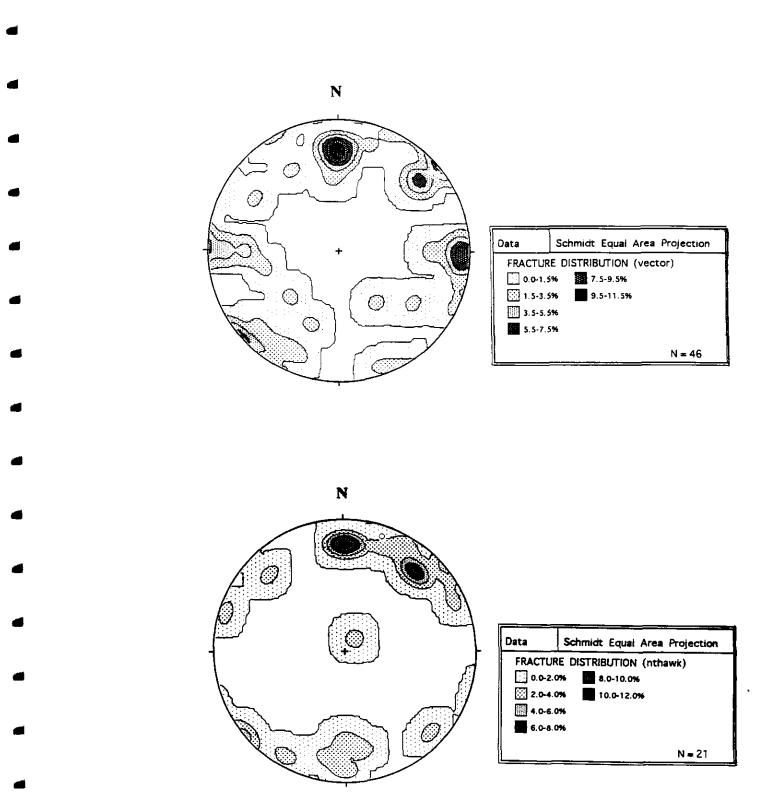
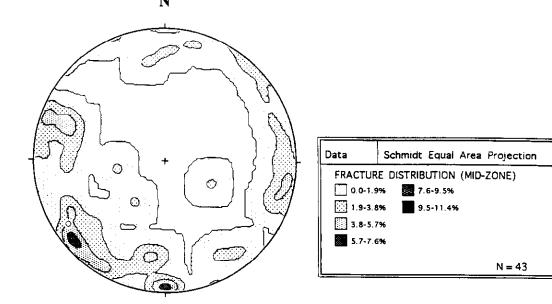




Figure 10-2, Stereonet Plot of Fracture Distribution on Eagle Property and Its Subdivisions (continued.....)



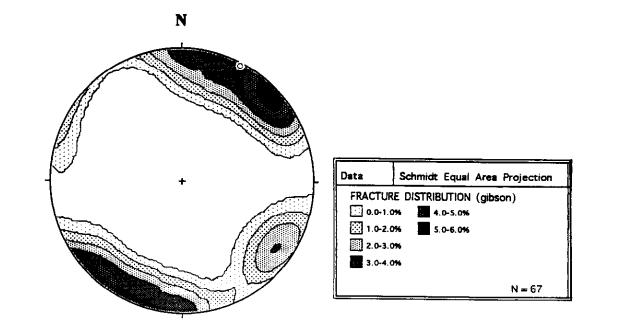



Figure 10-2, Stereonet Plot of Fracture Distribution on Eagle Property and Its Subdivisions (.....continued)

Ν

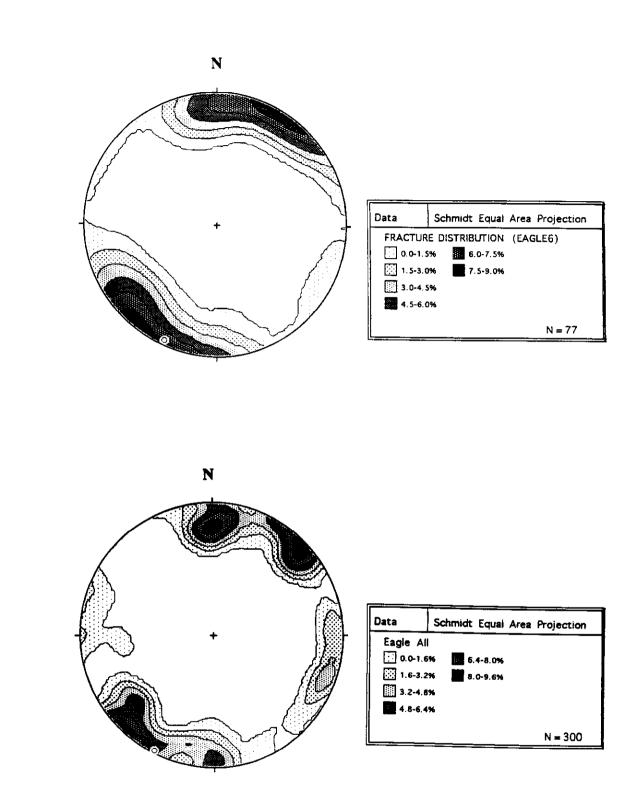



Figure 10-2, Stereonet Plot of Fracture Distribution on Eagle Property and Its Subdivisions (.....continued)

For the EAGLE 6 claim, the stereonet plot shows two predominant sets of fractures with almost the same strike, approximately 315°, with a steep dip at about 85°SW and 85°NE which appear clearly on the rose diagram as one set trending about 320°.

Two dominant clusters of poles are shown on the stereonet for the property as a whole, and are situated at about 360°/18° and 045°/05°, representing two distinct fracture sets with an average orientation of 270°/72°S and 315°/85°SW, respectively. In addition, the stereonet shows two sets of fractures almost parallel to the above fracture sets but dipping in the opposite directions, fractures which are dominant in the Mid Zone. Also shown on the stereonet is a less dominant cluster of poles, 110°/08°, representing a fracture set striking about 020° and dipping 82°NW.

#### 10.4 Summary

Fractures observed on the property are mostly high angle fractures, with dips ranging from 70° to 85° regardless of the strike. The two most dominant sets of fractures are:

- striking at about 320° and dipping at about 75°-85°SW, and
- striking at about 270° and dipping at about 70°S.

The NW-trending fracture set corresponds to the orientation of the Pinchi Fault zone which extends through the west part of Tchentlo Lake. The E-W-trending set corresponds to a major east-trending fault zone which cuts through Tchentlo Lake and shows left-lateral displacement of the intrusive units (Garnett, 1978).

On an outcrop near drill hole EA-91-06 in the Nighthawk Zone, an E-W-trending fracture cuts a NW-trending fracture, and shows sinistral offset of a few centimetres, similar to the major east-trending fault zone to the north. In addition to these two predominant fracture sets, other fractures developed unevenly from place to place and some of these became dominant in a particular locality, such as the N-S-trending fracture set in the Nighthawk Zone. Field observations indicate that the N-S-trending fractures developed later than the E-W- and NW-trending fractures. On one outcrop between Mid Zone and Nighthawk Zone, a N-S-trending fracture shows dextral offset of an E-W-trending fracture.

There are three dominant fracture sets observed on the property, trending NW, E-W and N-S. The NW and E-W trends are well-developed throughout the property and correspond to regional fault zones. The NW trend is the oldest, while the N-S trend is the youngest and is developed only locally. The E-W trend displays left-lateral displacement, and the N-S trend displays right-lateral displacement. Mineralization is closely related to all of these fracture sets.

Three dominant fracture sets are identified in the Vector Zone. The oldest fracture set, at about 320°/72°SW was cut by the fracture set at about 270°/66°S, and the youngest set, at about 002°/84°W crosscuts the above two. Some fractures, striking about 310°/70°NE,

are seen on a steep slope near drill hole EA-91-12. They appear to be younger fractures with a trend similar to that of the Pinchi Fault, because they crosscut an E-W trend and show sinistral displacement of a few centimetres. Strong to intense potassic and chloritic alterations are seen along most of the three dominant fracture sets. Epidote alteration and silicification were also noticed.

#### **11. MINERALIZATION**

#### 11.1 Vector Zone

The Vector Zone, located in the northern part of the Main Zone, is one of three areas which contain copper showings that can be traced in outcrop for up to 400m each. At the Vector Zone, alteration and mineralization are present on the southwest side of a small creek, near diamond drill hole EA-91-12. The creek trends 330° and may represent a fault zone striking parallel to the Pinchi Fault zone further west.

Mineralization is found along many of the fractures in the centre of the Vector Zone. The sulphide mineralization consists of pyrite and chalcopyrite blebs and stringers with disseminated pyrite and occasional malachite near the fractures. Away from the centre of the zone, sulphides are more common at the intersections between the three dominant fracture sets.

The mineralization is controlled by the NW-trending fractures, and has been remobilized by E-W-trending fractures and again by N-S-trending fractures. Table 13.3 presents the assay results of several grab rock samples taken from the Vector Zone and vicinity. The majority of these samples are diorite, but some of them are identified as syenite dyke (R3065), fault gouge in diorite (R3061) and brecciated diorite (R3060). In his examination of rock sample R3066, taken near R3065, Skupinski (1996) described the sample as an alkali-feldspar syenite, derived from the metasomatic alteration of a rock of unknown origin (Appendix 5).

Rocks in the Vector Zone commonly show strong to moderate magnetism and sulphide mineralization strongly associated with potassic alteration. Several large massive magnetite veins with sulphides crosscut the main mineralization trend.

#### 11.2 Nighthawk Zone

The Nighthawk Zone, located near the southern boundary of the Main Zone and close to the highest point of the property, is hosted by moderately to strongly fractured diorite. Two dominant fracture sets, with strikes of 312°/72°SW and 272°/72°S, were identified in the area and control the alteration and mineralization. Alterations are mainly potassic and

propylitic. Sulphide mineralization consists of pyrite and chalcopyrite stringers, disseminated pyrite and malachite along fracture surfaces.

Mineralization is commonly seen around the NW-trending and E-W-trending fractures in the centre of the Nighthawk Zone, and is generally seen near the intersections between these two dominant fracture sets away from the central part of the zone.

Several gossans ranging from several centimetres to several decimetres wide were identified along the E-W-trending fractures. Table 13.5 shows assay results of rock samples from the Nighthawk Zone and vicinity. Rock samples taken near the NW-trending or E-W-trending fracture planes generally yield high copper contents (up to 1% Cu) within the zone and sometimes in areas nearby (R3030 and R3031).

Sample R3030, taken from a gossan zone about 20 cm wide in an E-W-trending fracture, dipping 70°S about 400m north of the Nighthawk Zone, contains 1.6% Cu and 0.6 g/t Au. Sample R3031, taken from a brecciated zone striking 320° and dipping 70°SW about 50m northeast of R3030, contains 1.8% Cu and 0.8 g/t Au.

Taken along the same fracture, about 1m from R3031, sample R3032 was identified as monzonite, originally a gabbro which has undergone potassic metasomatism (Skupinski, 1996). The remaining rock samples in Table 13.5 were identified in the field as diorite or altered diorite.

Unlike the Vector Zone, N-S-trending fractures were poorly developed at the Nighthawk Zone.

#### 11.3 Mid Zone

The Mid Zone is located between the Vector and Nighthawk Zones. The Mid Zone is hosted by diorite near the contact with gabbro and is exposed mostly along the road.

The zone shows strong potassic and propylitic alteration, especially around fractures. Several gossans up to a few metres wide were seen along the NW- or E-W-trending fractures. Mineralization consists of pyrite and chalcopyrite stringers, commonly with disseminated pyrite. The best mineralization is generally seen in gossan zones. Table 13.4 displays the assay results of rock samples from the Mid Zone and nearby areas. Sample R17 was collected along a NW-trending, 20-cm gossan zone on the road cut, and yielded the best value (4 g/t Au) from intrusive rocks in the project area.

#### **12. GEOPHYSICAL SURVEYS**

Max-Min and magnetometer surveys were conducted over 52.35 km of grid that were cut during the 1996 summer field program. The procedures used and a detailed interpretation of the surveys are included in Appendix 4. A brief description of the results is summarized in this section of the report.

About twelve major conductors were identified over the property (Bowman, 1996). Most of these conductors strike west or northwest and dip  $60^{\circ}-90^{\circ}SW$ . In the Gibson Zone, conductor A-A' strikes northwest, dips  $70^{\circ}-90^{\circ}W$  and is thought to be caused by massive sulphide mineralization, principally pyrite since there is no magnetic high over the area (Fig. A.4.1). Conductor B-B' strikes nearly north-south, dips  $60^{\circ}-80^{\circ}W$  and may extend from line 12+00N to line 19+00N. At the Gibson Zone, the magnetic gradient decreases to the west as the thickness of the Takla Group rocks increases.

In the region between the Gibson Zone and the Main Zone, four conductors strike west and northwest for up to 900m, and may be caused, in part, by conductive overburden. Several of these conductors may extend 1 km north to line 34+00N, where additional conductors were identified by a single geophysical line. Conductors C-C' and E-E' show increased magnetic response relative to other areas.

In the southern part of the Main Zone, two 900m-long conductors, G-G' and H-H', are joined by a third strong conductor which extends for only about 300m. It is possible that the shorter conductor forms a southern extension to conductor G-G'. These conductors trend generally northwest and are thought to dip 80°-90°SW. The northern extensions of these conductors are untested because of a 600m or 1000m break in the survey.

In the northern part of the Main Zone, five major conductors striking generally eastwest appear to be cut by conductor J-J' which strikes northwest and veers north at about line 36+00N. Most of these dip 70°-90°SW except for conductor M-M' where no dip estimation was possible because of interference between the in-phase and quadrature responses.

#### **13. GEOCHEMICAL SURVEYS**

#### 13.1 Introduction

Several geochemical surveys were conducted on the EAGLE property. Infill soil sampling was carried out at 25m intervals on the new grid lines to augment the geochemical data obtained from the previous operator, east of the base line between lines 34+00N and 42+00N, and between lines 9+00N and 17+00N. Sampling was also conducted on line 34+00N west of the base line. Analytical procedures are described in Appendix 7.

Detailed geochemical soil sampling was also conducted on the gold anomalies in soil samples that had been identified by Noranda (Fig. 13.1). This sampling consisted of taking soil samples at 25m intervals on 3x3 or 5x5 mini-grids centred on the anomaly. The purpose of the resampling was to replicate the anomaly and to determine its areal extent.

Chip sampling was carried out at the Nighthawk and Vector Zones over some of the outcrops where high values for gold and copper had been obtained. The purpose was to assess the variability in the mineralization both along and across shear zones.

During the mapping of the EAGLE 6 claim, soil samples were collected at regular intervals and stream sediment samples were collected when encountered.

Selected rock samples were also collected over the property where mineralization, such as sulphides, was present.

#### 13.2 Infill Soil Sampling

In the Nighthawk Zone, five lines of soil sampling, 9+00N, 11+00N, 13+00N, 15+00N and 17+00N, were completed mostly east of the base line (Fig. 13.1). Background values for gold were returned for most of the samples. Only two values were marginally anomalous: 30 ppb Au on line 13+00N at 42+25E and 32 ppb Au on line 15+00N at 45+25E (Figs. 13.2 and 13.3).

In the Vector Zone, five lines were sampled at 200m intervals between lines  $32 \pm 00N$  and  $40 \pm 00N$ . Sample spacing was at 25m intervals. The gold values were fairly low, at 1-28 ppb, over most of the lines sampled. Four modest anomalies were identified: 30 ppb Au on line  $34 \pm 00N$  at  $44 \pm 50E$ ; 35 ppb Au on line  $34 \pm 00N$  at  $44 \pm 00E$ ; 48 ppb Au on line  $38 \pm 00N$  at  $44 \pm 00E$ ; and 45 ppb Au on line  $40 \pm 00N$  at  $47 \pm 50E$ . The samples on either side of these anomalies ranged from 3 to 12 ppb Au.

Line 34+00N was sampled between 20+00E and 40+00E, except for a few areas where a fairly wet swamp hindered the taking of samples. Only one sample was above the background values of 1-24 ppb Au. A value of 34 ppb Au was identified at station 27+75E, but values of 3 and 5 ppb were returned on either side of this weak anomaly.

A few samples containing up to 324.4 ppm Cu were identified along line 34 + 00N west of the base line. These copper anomalies appear to have a poor correlation with high values for zinc in the same samples. Many of the copper values may be of hydromorphic origin.

#### 13.3 Detailed Geochemical Sampling

Detailed follow-up geochemical sampling was conducted over 53 soil anomalies that had been reported by the previous operator on the property, Noranda Exploration (Fig 13.1). The sampling was done on 3x3 or 5x5 mini-grids at 25m intervals. A summary of the information on these samples is shown in Table 13.3 and the maps relating to these samples are presented in Appendix 6. The Noranda sample sites that were resampled are identified with the prefix SM.

Samples SM1483, SM1459, SM1468, SM1231, SM1248, SM1249, SM1494, SM1426, SM1503 and SM1742 are located in the Nighthawk Zone (Figs. A.6.1 to A.6.7). From the samples submitted, a few anomalous values were identified, but they were mostly of much lower values, such as the 4700 ppb Au which gave 47 ppb Au upon resampling.

Some of the gold anomalies are accompanied by high values of copper and arsenic, such as \$1490 (49 ppb Au) which contains 15,800 ppm Cu, and 120.9 ppm As (Fig. A.6.1), and \$1463 (52 ppb Au) with 1145 ppm Cu and 347.4 ppm As (Fig. A.6.2). When gold values are high, copper and arsenic values are usually elevated, but the reverse is not always true.

In other mini-grids surrounding the Nighthawk Zone, the resampling proved to be somewhat disappointing for gold. The samples taken northeast of the Nighthawk Zone gave background values for all elements (Figs. A.6.8, A.6.9).

| · · · ·                    |               |                |                              |                             | Samping, Sum         |                                                                                      |
|----------------------------|---------------|----------------|------------------------------|-----------------------------|----------------------|--------------------------------------------------------------------------------------|
| Sample<br>No.              | Figure<br>No. | Grid<br>Size   | Gold<br>Value                | Resample<br>Value           | Background<br>Values | Gold Values<br>>30 ppb                                                               |
| SM1483                     | A.6.1         | 3 x 3          | 65 ppb                       | 13 ppb                      | 1-14ppb              | S1490: 49 ppb<br>S1484: 80 ppb                                                       |
| SM1459<br>SM1468           | A.6.2         | 3 x 3<br>3 x 2 | 45 ppb<br>35 ppb             | i.s.<br>22 ppb              | 2-12 ppb<br>7-22 ppb | S1463: 52 ppb<br>S1471: 69 ppb                                                       |
| SM1503                     | A.6.3         | 3 x 3          | 90 ppb                       | 18 ppb                      | 7-18 ppb             |                                                                                      |
| SM1231<br>SM1248<br>SM1249 | A.6.4         | 5 x 5          | 700 ppb<br>510 ppb<br>35 ppb | 15 ppb<br>190 ppb<br>60 ppb | 3-30 ppb             | S1248: 190 ppb<br>S1249: 60 ppb                                                      |
| SM1494                     | A.6.5         | 4 x 3          | 4700 ppb                     | 47 ppb                      | 4-20 ppb             | S1491: 47 ppb                                                                        |
| SM1426                     | A.6.6         | 5 x 5          | 100 ppb                      | 11 ppb                      | 3-25 ppb             | S1437: 38 ppb                                                                        |
| SM1742                     | A.6.7         | 3 x 3          | 30 ppb                       | 2 ppb                       | 1-9 ppb              |                                                                                      |
| SM1733                     | A.6.8         | 3 x 3          | 30 ppb                       | 12 ppb                      | 2-13 ppb             |                                                                                      |
| SM1474                     | A.6.9         | 3 x 3          | 45 ppb                       | 7 ppb                       | 6-10 ppb             |                                                                                      |
| SM1513                     | A.6.10        | 5 x 5          | 3100 ppb                     | 14 ppb                      | 2-22 ppb             | S1515: 32 ppb                                                                        |
| SM1688                     | A.6.11        | 3 x 3          | 60 ppb                       | 1 ppb                       | 1 <b>-16</b> ppb     | S1693: 38 ppb                                                                        |
| SM1450                     | A.6.12        | 3 x 3          | 45 ppb                       | 20 ppb                      | 1-20 ppb             |                                                                                      |
| SM1258                     | A.6.13        | 5 x 5          | 800 ppb                      | 7 ppb                       | 1-14 ppb             |                                                                                      |
| SM1664                     | A.6.14        | 5 x 5          | 120 ppb                      | 6 քրե                       | 1-26 ppb             | S1685: 53 ppb                                                                        |
| SM1806                     | A.6.15        | 5 x 5          | 100 ppb                      | 220 ppb                     | 2-28 ppb             | S1804: 320 ppb<br>S1805: 40 ppb<br>S1806: 220 ppb<br>S1810: 100 ppb<br>S1822: 31 ppb |
| SM1830                     | A.6.16        | 3 x 3          | 80 ppb                       | 6 ppb                       | 1 <b>-16</b> ppb     |                                                                                      |
| SM1796                     | A.6.17        | 3 x 3          | 60 ppb                       | 96 ppb                      | 1-30 ppb             | S1797: 76 ppb<br>S1796: 96 ppb<br>S1799: 40 ppb                                      |
| SM1787                     | A.6.18        | 3 x 3          | 30 ppb                       | i.s.                        | 1-12 ppb             |                                                                                      |

 Table 13.1: Geochemical Soil Sampling: Summary

|               | Table         | 13.1: G      | eochemical S  | Soil Sampling:    | Summary (cont        | 'd)                                              |
|---------------|---------------|--------------|---------------|-------------------|----------------------|--------------------------------------------------|
| Sample<br>No. | Figure<br>No. | Grid<br>Size | Gold<br>Value | Resample<br>Value | Background<br>Values | Gold Values<br>> 30 ppb                          |
| SM1333        | A.6.19        | 5 x 5        | 130 ppb       | 5 ppb             | 1-27 ppb             | S1334: 38 ppb<br>S1355: 130 ppb                  |
| SM1618        | A.6.20        | 3 x 3        | 20 ppb        | 3 ppb             | 1-12 ppb             | S1623: 43 ppb                                    |
| SM1697        | A.6.21        | 3 x 3        | 50 ppb        | 16 ppb            | 1-16 ppb             |                                                  |
| SM1308        | A.6.22        | 5 x 5        | 170 ppb       | 10 ppb            | 1-22 ppb             | S1317: 43 ppb<br>S1325: 42 ppb                   |
| SM1392        | A.6.23        | 5 x 5        | 100 ppb       | 8 ppb             | 1-28 ppb             | S1398: 52 ppb<br>S1399: 34 ppb<br>S1411: 42 ppb  |
| SM1416        |               | 3 x 3        | 30 ppb        | 16 ppb            | 2-20 ppb             | 51411. 42 ppb                                    |
| SM1706        | A.6.24        | 3 x 3        | 50 ppb        | 10 ppb            | 7-17 ppb             |                                                  |
| SM1724        | A.6.25        | 3 x 3        | 35 ppb        | 37 ppb            | 1-29 ppb             | S1724: 37 ppb                                    |
| SM1715        | A.6.26        | 3 x 3        | 40 ppb        | 37 ppb            | 2-27 ppb             | S1715: 37 ppb                                    |
| SM1627        | A.6.27        | <u>3 x 3</u> | 30 ppb        | 20 ppb            | 4-20 ppb             |                                                  |
| SM1636        | A.6.28        | 3 x 3        | 80 ppb        | 68 ppb            | 2-20 ppb             | S1636: 68 ppb<br>S1638: 34 ppb                   |
| SM1769        | A.6.29        | 3 x 3        | 50 ppb        | 48 ppb            | 5-20 ppb             | S1769: 48 ppb<br>S1770: 52 ppb<br>S1772: 270 ppb |
| SM1760        | A.6.30        | 3 x 3        | 50 ppb        | 38 ppb            | 1-28 ppb             | S1760: 38 ppb                                    |
|               | 1             |              |               |                   |                      |                                                  |

3 x 3

3 x 3

5 x 5

5 x 5

3 x 3

3 x 3

3 x 3

5 x 5

90 ppb

60 ppb

1230 ppb

380 ppb

50 ppb

40 ppb

30 ppb

215 ppb

A.6.31

A.6.32

A.6.33

A.6.34

A.6.35

A.6.36

A.6.37

A.6.38

SM1751

SM1609

SM1283

SM1358

SM1382

SM1654

SM1645

SM1181

26

1 ppb

2 ppb

22 ppb

4 ppb

3 ppb

10 ppb

12 ppb

1000 ppb

1-18 ppb

1-22 ppb

1-23 ppb

2-28 ppb

2-15 ppb

1-19 ppb

1-18 ppb

3-24 ppb S1185:

S1368: 41 ppb

S1385: 37 ppb

S1660: 280 ppb

32 ppb

|                  | Table 13.1: Geochemical Soil Sampling: Summary (cont'd) |              |                   |                   |                      |                                                                  |  |  |  |  |  |
|------------------|---------------------------------------------------------|--------------|-------------------|-------------------|----------------------|------------------------------------------------------------------|--|--|--|--|--|
| Sample<br>No.    | Figure<br>No.                                           | Grid<br>Size | Gold<br>Value     | Resample<br>Value | Background<br>Values | Gold Values<br>>30 ppb                                           |  |  |  |  |  |
| SM1778           | A.6.39                                                  | 3 x 3        | 30 ppb            | 12 ppb            | 9-28 ppb             | S1779: 32 ppb<br>S1781: 40 ppb<br>S1782: 72 ppb<br>S1785: 72 ppb |  |  |  |  |  |
| SM1537           | A.6.40                                                  | 3 x 3        | 45 ppb            | 2 ppb             | 2-7 ppb              | S1536: 34 ppb                                                    |  |  |  |  |  |
| SM1546           | A.6.41                                                  | 3 x 3        | 70 ppb            | 2 ppb             | 1-16 ppb             |                                                                  |  |  |  |  |  |
| SM1208<br>SM1207 | A.6.42                                                  | 5 x 5        | 185 ppb<br>35 ppb | 8 ppb<br>8 ppb    | 2-13 ppb             | S1223: 37 ppb                                                    |  |  |  |  |  |
| SM1564           | A.6.43                                                  | 3 x 3        | 30 ppb            | 3 ppb             | 1-20 ppb             |                                                                  |  |  |  |  |  |
| SM1555           | A.6.44                                                  | 3 x 3        | 40 ppb            | 12 ppb            | 1-28 ppb             | S1561: 36 ppb                                                    |  |  |  |  |  |
| SM1573           | A.6.45                                                  | 3 x 3        | 40 ppb            | 7 ррb             | 1-7 ppb              | S1576: 57 ppb                                                    |  |  |  |  |  |
| SM1600           | A.6.46                                                  | 3 x 3        | 30 ppb            | 1 ppb             | 1-14 ppb             |                                                                  |  |  |  |  |  |
| SM1591           | A.6.47                                                  | 3 x 3        | 30 ppb            | 1 ppb             | 1-8 ppb              |                                                                  |  |  |  |  |  |
| SM1582           | A.6.48                                                  | 3 x 3        | 45 ppb            | 2 ppb             | 1-28 ppb             |                                                                  |  |  |  |  |  |

In the Gibson Zone, about 2.5 km west of the Nighthawk Zone, the resampling indicates high values of zinc. In the mini-grids over SM1513 (Fig. A.6.10) and SM1688 (Fig. A.6.11), six values of 209.5-1344.0 ppm Zn were recorded. On the SM1513 mini-grid, values of 100.6-412.5 ppm As were returned. The 32 ppb Au anomaly (\$1515) has a value of 236.6 ppm Zn and a moderately high background value of 72.6 ppm As.

In other mini-grids near the Gibson Zone, several gold, zinc and arsenic anomalies are present. On the SM1664 grid, values of up to 2990.0 ppm Zn (S1667) and 521.0 ppm As (\$1681) were returned from the laboratory, but neither of these elements were high at the 53 ppb Au anomaly (\$1685) (Fig. A.6.14). Several anomalies of gold, arsenic, zinc and lead are present on mini-grid SM1806 (Fig. A.6.15). The values are up to 7170.0 ppm Zn, 3680.0 ppm Pb, 839.3 ppm As and 220 ppb Au (S1806). The Gibson Zone is well identified as an east-west feature, since the geochemical anomalies extend to SM1796 (Fig. A.6.17), but not to the north or east of SM1787 (Fig. A.6.18) or SM1830 (Fig. A.6.16).

To the northwest of the Nighthawk Zone, resampling of SM1450 (Fig. A.6.12) and SM1258 (Fig. A.6.13) showed background values for all elements. North of the Nighthawk

Zone, SM1333 and SM1618 contain three gold anomalies, two of which are associated with high copper values: S1334 (Fig. A.6.19): 38 ppb Au, 361.6 ppm Cu; S1335 (Fig. A.6.19): 130 ppb Au, 1262.0 ppm Cu; and S1623 (Fig. A.6.20): 43 ppb Au, 58.0 ppm Cu.

The geochemical resampling program in the Mid Zone focused on 11 sites with 30 ppb Au or more. The results show several gold anomalies of 34-54 ppb Au, but mostly high values of copper, usually over 100 ppm and often in the range of 1000-4570 ppm Cu (Figs. A.6.21-A.6.30). On SM 1769, sample S1772 returned a value of 270 ppb Au and 181.0 ppm Cu; sample S1769, with 48 ppb Au and 350.5 ppm Cu; and sample S1770 contained 52 ppb Au and 238.8 ppm Cu (Fig. A.6.29).

The higher gold values are often associated with copper values of 162.4-657.8 ppm Cu, but the very high copper values have little gold associated with them, usually in the 10-16 ppb Au.

To the northeast of the Mid Zone, three anomalies were tested on a mini-grid: SM1751 (Fig. A.6.31), SM1609 (Fig. A.6.32) and SM1283 (Fig. A.6.33). The first two have only a few higher values of copper in the range of 135.9-485.7 ppm Cu, but the third anomaly contains mostly very low values of 7.3-31.9 ppm Cu with three values of 197.0-281.4 ppm Cu. All other elements have values in the background range.

To the southwest of the Mid Zone, four sites were resampled. The two westernmost are characterized by mostly low values for copper and gold. On mini-grid SM1358 (Fig. A.6.34), three samples contain 123.5-348.9 ppm Cu, one of which is associated with 45.0 ppm As (S1377). On the SM1382 grid (Fig. A.6.35), the one gold anomaly of 37 ppb Au contains only 11.9 ppm Cu (S1385).

The two sites closest to the Mid Zone, SM1654 (Fig. A.6.36) and SM1645 (Fig. A.6.37), show values of 101.0-790.0 ppm Cu in 10 of 18 samples taken. The anomaly of 280 ppb Au is associated with the sample containing 101.0 ppm Cu (S1660) (Fig. A.6.36).

On the Vector Zone, three sample sites were selected for resampling: SM1181, SM1537 and SM1778.

At SM1181 (Fig. A.6.38), the central part of the Vector Zone was sampled and values of up to 13,000 ppm Cu, 680 ppb Au (S1183), and 8230 ppm Cu, 1000 ppb Au (S1181) were identified along with other more modest anomalies of gold and copper.

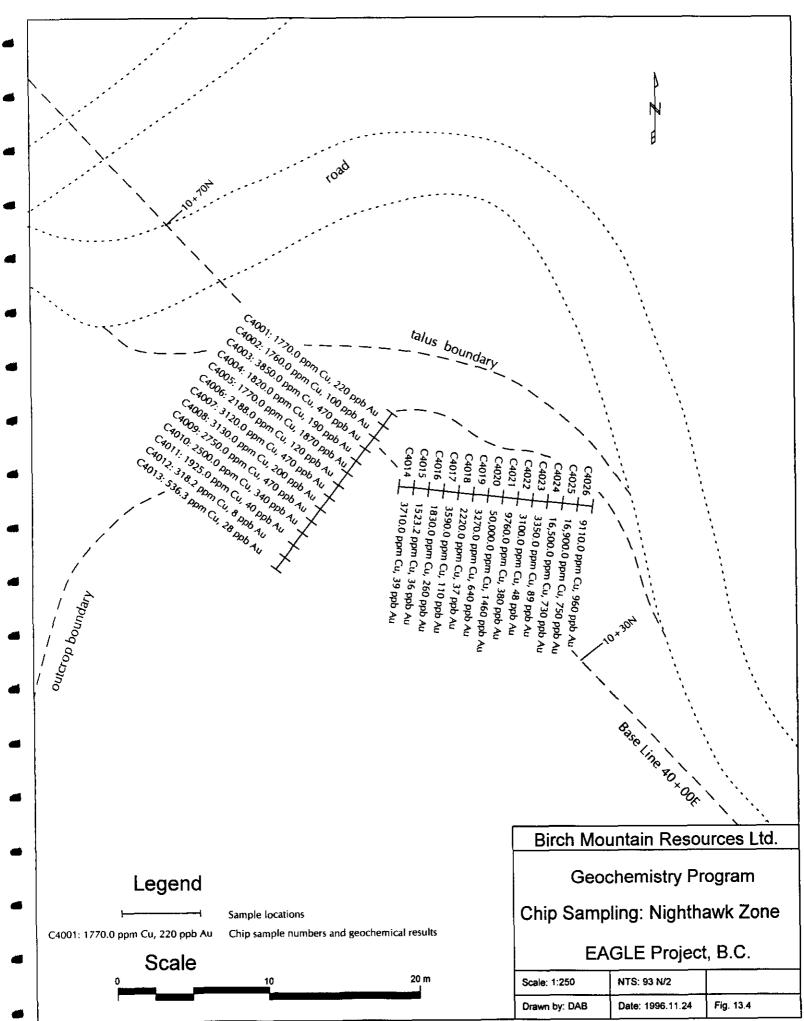
At site SM1778 (Fig. A.6.39), the position of the four gold anomalies of 72 ppb Au (S1785), 72 ppb Au (S1782), 40 ppb Au (S1781) and 32 ppb Au (S1779) suggests that, although we may be near a zone of anomalous gold, the zone of interest may be located to the northeast.

Only one weak gold anomaly (34 ppb Au, 7.3 ppm Cu, S1536) was identified on site SM1537 (Fig. A.6.40).

To the southwest of the Vector Zone, nine sites (SM1546, SM1208, SM1207, SM1564, SM1555, SM1573, SM1600, SM1591, SM1582) were resampled (Figs. A.6.41 to A.6.48). Nearly every value was uniformly low in both copper and gold. All values were from 2.1-79.0 ppm Cu except for two samples at 633.5 ppm Cu (S1563) and 334.3 ppm Cu (S1568) (Fig. A.6.43). Only two modest gold anomalies were identified: 37 ppb Au (S1223, Fig. A.6.42) and 36 ppb Au (S1561, Fig. A.6.44).

The detailed geochemistry has confirmed that gold and copper are anomalous in the Nighthawk, Mid and Vector Zones, and at the Gibson Zone as already identified. The geochemical anomalies present outside these areas are weak and of little interest.

#### 13.4 Chip Sampling


Chip sampling was carried out at the Nighthawk Zone and at the Vector Zone in areas where outcrops were present.

#### 13.4.1 Nighthawk Zone

At the Nighthawk Zone, 26 1m-long chip samples were taken along two channels. Thirteen samples were taken at a 60° angle across a shear zone which strikes about 090° (Fig. 13.4). The values for copper are all high at 1770-3850 ppm Cu (C4001-C4013) across the section except in the southern part of the channel where the values decrease to 318.2 and 536.3 ppm Cu.

The values for gold are 100-470 ppb Au except for the last three samples to the south (8-40 ppb Au). One value near the centre of the shear zone contains 1870 ppb Au. Two other elements show significant anomalies at the centre of the shear zone: 32.8-195.2 ppm W and up to 169.6 ppm As. Another high value for arsenic is located in the southernmost sample which contains 222.8 ppm As (C4013).

Thirteen additional samples were taken along the shear zone (C4014-C4026). These samples show similar variability in copper, but the values are higher at 1523.2-50,000.0 ppm Cu. Similarly, the values for gold range from 36 to 1460 ppb Au. There is good correlation between gold and copper. Anomalies for tungsten were not recorded in this series, but molybdenum values were unusually high at 10.4-142.5 ppm Mo over the samples C4019-C4026.



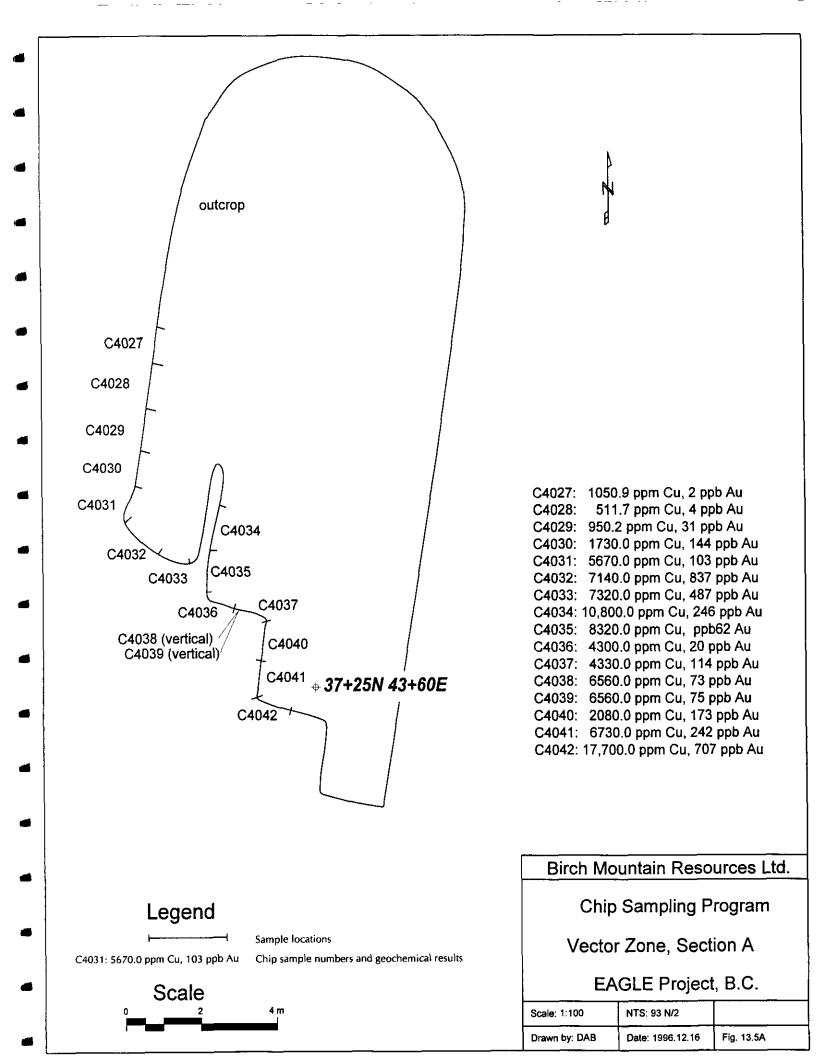
#### 13.4.2 Vector Zone

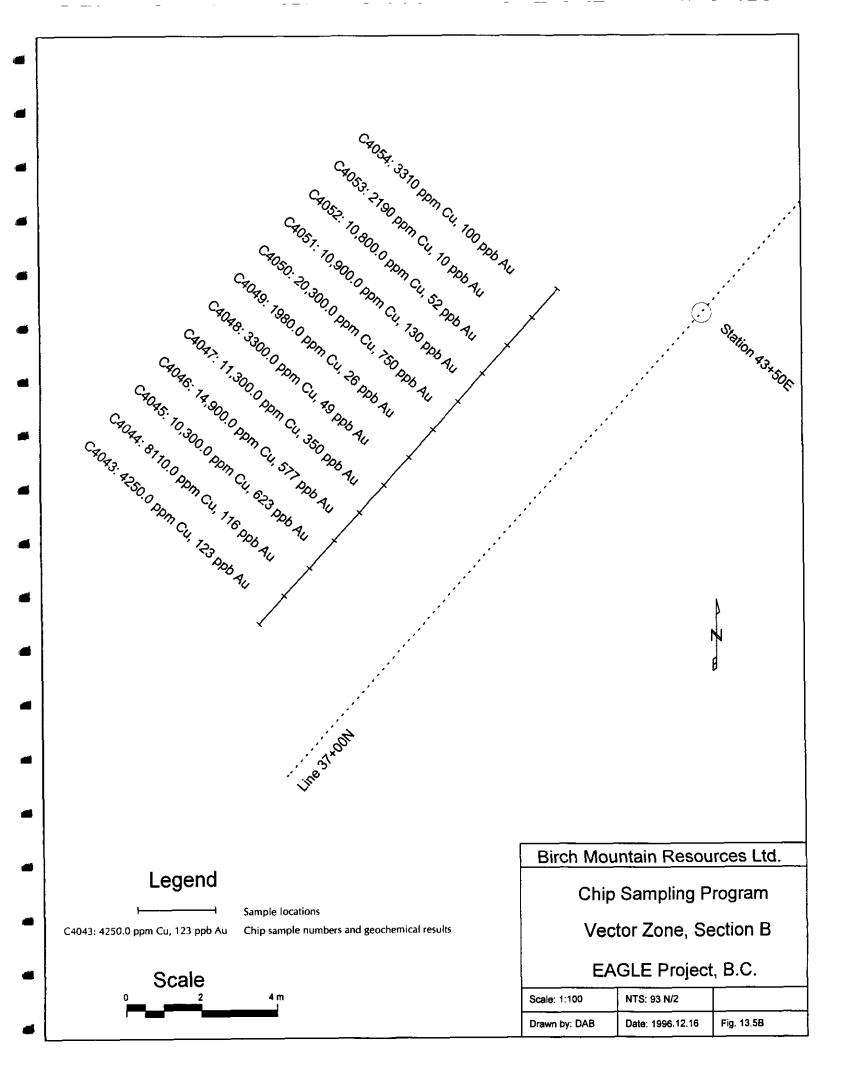
Sixteen samples were chipped from the face of a large outcrop of diorite which exhibits extensive potassic alteration, magnetite veining, malachite and minor azurite mineralization (Fig. 13.5A). Values of 511.7-10,800.0 ppm Cu and 2-837 ppb Au were recorded from the samples (C4027-C4042). Cobalt, molybdenum and arsenic were also high, reaching values of up to 367.5 ppm Co in C4032, and of 61.9 ppm Mo and 78.6 ppm As in C4033.

The other 12 samples from the Vector Zone (Fig. 13.5B) were taken along an apparent fracture plane which strikes about 360° and also contains magnetite veining and malachite. Values of 1980-20,300 ppm Cu and 26-623 ppb Au were obtained in the samples. Values of 281.7 ppm Zn and 210.2 ppm Co were also recorded in the samples.

#### 13.5 EAGLE 6 Claim Geochemistry

Prospecting and geochemical sampling of the EAGLE 6 claim were undertaken to extend the information base from areas to the west and northwest. Stream sediment, soil and rock samples were taken and submitted for analysis (Fig. 13.6).


Seven stream sediment samples were taken on the claim, but because of the coarsegrained nature of the material sampled, only one of these had a sufficient amount of sample to test for gold (T1021, 20 ppb Au). The values for copper are 144.4-451.2 ppm Cu while the other elements returned mostly background values.


The soil samples were taken at 200-250m intervals along the traverses. The 72 samples have values of 6.1-566.0 ppm Cu and 1-24 ppb Au. The two highest values of copper adjoin the EAGLE 1 claim to the west (S3004: 566.0 ppm Cu, 1 ppb Au) and those to the south (S3055: 509.4 ppm Cu, 12 ppb Au). All the other values are below 237 ppm Cu.

The two soil samples with arsenic anomalies of 42.2 ppm As (S3015) and 82.8 ppm As (S3016) are located in the southwestern part of the claim, near the base line and the Nighthawk Zone. Sample S3016 also has an anomaly of 25.1 ppm Mo.

#### 13.6 Rock Sampling

Rock samples were taken on all five areas of interest and sent for analysis. They include the Gibson Zone, Vector Zone, Mid Zone, Nighthawk Zone and the EAGLE 6 claim.





#### 13.6.1 Gibson Zone

Geochemical values for rocks taken at the Gibson Zone are summarized in Table 13.2 and the data is presented in detail in Appendix 3.

The results show that for the 18 samples, only two show very high values for gold. Sample R3033 was taken from a vein and contains about 1.5 g/t Au, 0.38% As, 425.0 ppm Sb, 0.11% Zn, 0.6% Pb and 511.3 ppm Cu. Similarly, sample R3074 contains 5.3 g/t Au, 4.61% As, 2670.0 ppm Sb, 0.02% Zn, 4.0% Pb and 528.0 ppm Cu.

Another sample contains 0.38% (3870 ppm) Cu and only slightly elevated values of cobalt and arsenic (R3034). All of the remaining 15 samples contain mostly background values for all elements except for copper which is slightly higher in a few samples. Gold content is 1-8 ppb Au.

| Location | Sample<br>No. | Cu<br>(ppm) | Pb<br>(ppm) | Zn<br>(ppm) | Co<br>(ppm) | Cd<br>(ppm)     | Ag<br>(ppm) | As<br>(ppm) | Sb<br>(ppm) | Au<br>(ppb) |
|----------|---------------|-------------|-------------|-------------|-------------|-----------------|-------------|-------------|-------------|-------------|
| GIBSON   | R 3033        | 511.3       | 6,550.0     | 1,109.9     | 3.8         | 53.5            | 9.9         | 3,823.1     | 425.0       | 1,487       |
| GIBSON   | R 3034        | 3,870.0     | 78.0        | 682.9       | 80.7        | 2.1             | 5.1         | 98.9        | 0.4         | 8           |
| GIBSON   | R 3035        | 93.1        | 19.5        | 125.2       | 18.4        | 0.3             | 0.4         | 12.0        | 0.2         | 1           |
| GIBSON   | R 3050        | 74.5        | 1.1         | 59.3        | 16.6        | 0.1             | 0.1         | 2.4         | 0.2         | 1           |
| GIBSON   | R 3051        | 92.4        | 1.0         | 55.5        | 23.7        | 0.1             | 0.1         | 7.1         | 0.2         | 1           |
| GIBSON   | R 3052        | 115.2       | 11.7        | 55.1        | 9.7         | 0.2             | 0.3         | 3.5         | 0.2         | 4           |
| GIBSON   | R 3053        | 81.1        | 2.0         | 14.9        | 9.4         | 0.1             | 0.1         | 12.7        | 0.2         | 2           |
| GIBSON   | R 3054        | 139.9       | 6.7         | 36.8        | 18.0        | 0.1             | 0.3         | 10.5        | 0.4         | 1           |
| GIBSON   | R 3055        | 149.7       | 4.6         | 31.8        | 17.7        | 0.1             | 0.2         | 5.3         | 0.2         | 1           |
| GIBSON   | R 3056        | 113.7       | 3.6         | 77.3        | 19.4        | 0.2             | 0.2         | 12.8        | 0.2         | 2           |
| GIBSON   | R 3057        | 91.9        | 2.2         | 60.7        | 14.4        | 0.3             | 0.1         | 19.0        | 0.3         | 2           |
| GIBSON   | R 3058        | 90.9        | 4.7         | 131.2       | 14.1        | 0.4             | 0.3         | 23.3        | 0.2         | 1           |
| GIBSON   | R 3074        | 528.0       | 40,400.0    | 201.8       | 0.4         | 179.5           | 10.1        | 46,100.0    | 2,670.0     | 5,250       |
| GIBSON   | R 3075        | 239.8       | 3.9         | 73.7        | 27.8        | 0.1             | 0.1         | 8.3         | 0.2         | 1           |
| GIBSON   | R 3076        | 90.0        | 25.1        | 111.6       | 13.3        | 0.3             | 0.1         | 6.2         | 0.2         | 5           |
| GIBSON   | R 3077        | 226.4       | 85.9        | 240.1       | 22.2        | 0. <del>9</del> | 0.4         | 9.2         | 0.3         | 3           |
| GIBSON   | R 3078        | 521.7       | 22.7        | 109.8       | 16.7        | 0.4             | 1.5         | 15.2        | 0.2         | 1           |
| GIBSON   | R 3079        | 177.2       | 2.4         | 44.3        | 14.2        | 0.1             | 0.2         | 6.3         | 0.2         | 3           |

Table 13.2: Geochemistry: Gibson Zone Rock Samples

#### 13.6.2 Vector Zone

Twenty-seven samples were submitted for analysis in the vicinity of the Vector Zone. The results are summarized in Table 13.3 and are shown in greater detail in Appendix 3.

Most of the samples in the Vector Zone contain high values of copper, in the range of 1671-24,500 ppm, and many of these contain 140-760 ppb Au. One sample with 16,400 ppm Cu reported 3280 ppb Au, 350.7 ppm Co and 69.7 ppm As (R3064). The correlation between copper and gold is often poor as shown in sample R3017 which contains 182.1 ppm Cu and 370 ppb Au, while R3020 contains 3090 ppm Cu and 11 ppb Au and R3029 contains 19,900 ppm Cu but only 12 ppb Au.

| Location       | Sample | Cu               | Pb           | Zn<br>(nom) | Co               | Mo<br>(ppm) | Ag<br>(opm) | As<br>(opm) | Au<br>(ppb) |
|----------------|--------|------------------|--------------|-------------|------------------|-------------|-------------|-------------|-------------|
|                | #      | (ppm)            | (ppm)        | (ppm)       | (ppm)            | (ppm)       | (ppm)       | (ppm)       | (ppb)       |
| VECTOR         | R 24   | 10,900.0         | 1 <b>1.9</b> | 189.8       | 56.0             | 15.7        | 3.5         | 14.8        | 650         |
| VECTOR         | R 25   | 5,350.0          | 4.3          | 73.0        | 19.5             | 54.0        | 3.1         | 32.9        | 490         |
| VECTOR         | R 3017 | 182.1            | 3.0          | 51.8        | 10.9             | 1.1         | 0.1         | 2.3         | 370         |
| VECTOR         | R 3018 | 3 <i>,</i> 860.0 | 4.8          | 90.7        | 517.9            | 9.4         | 3.5         | 67.5        | 400         |
| VECTOR         | R 3019 | 1,671.0          | 2.7          | 67.8        | 26.7             | 4.9         | 0.6         | 4.5         | 62          |
| VECTOR         | R 3020 | 3,090.0          | 4.2          | 97.1        | 17.8             | 9.6         | 5.4         | 14.0        | 11          |
| VECTOR         | R 3021 | 3,540.0          | 2.5          | 153.7       | 49.6             | 1.3         | 0.3         | 1.9         | 720         |
| VECTOR         | R 3022 | 2,320.0          | 2.7          | 58.9        | 16.0             | 5.0         | 2.0         | 5.3         | 66          |
| VECTOR         | R 3023 | 11,100.0         | 33.9         | 180.9       | 86.3             | 20.7        | 4.0         | 22.3        | 260         |
| VECTOR         | R 3024 | 4,280.0          | 4.3          | 107.8       | 55.7             | 10.5        | 3.4         | 180.0       | 20          |
| VECTOR         | R 3025 | 42.9             | 3.7          | 78.5        | 96.0             | 0.9         | 0.1         | 9.1         | 140         |
| VECTOR         | R 3026 | 393.1            | 4.7          | 47.0        | 19. <del>6</del> | 1.1         | 0.2         | 7. <b>9</b> | 230         |
| VECTOR         | R 3027 | 4,310.0          | 3.6          | 143.4       | 34.5             | 32.5        | 3.8         | 6.1         | 300         |
| VECTOR         | R 3028 | 9,260.0          | 3.2          | 190.8       | 47.1             | 19.3        | 5.1         | 8.4         | 10          |
| VECTOR         | R 3029 | 19,900.0         | 8.4          | 256.8       | 36.2             | 33.8        | 4.6         | 23.6        | 12          |
| VECTOR         | R 3059 | 95.0             | 2.4          | 28.4        | 17.0             | 1.3         | 0.2         | 2.3         | 3           |
| VECTOR         | R 3060 | 657.9            | 3.5          | 87.8        | 32.2             | 2.2         | 0.7         | 6.9         | 12          |
| VECTOR         | R 3061 | 1,950.0          | 4.2          | 99.8        | 27.7             | 2.9         | 1.3         | 3.6         | 12          |
| VECTOR         | R 3062 | 103.4            | 2.2          | 26.5        | 17.3             | 1.2         | 0.1         | 3.0         | 1           |
| VECTOR         | R 3064 | 16,400.0         | 13.0         | 157.8       | 350.7            | 78.3        | 9.6         | 69.7        | 3,280       |
| VECTOR         | R 3065 | 16,200.0         | 12.2         | 155.6       | 346.6            | 78.9        | 9.8         | 68.8        | 650         |
| VECTOR         | R 3067 | 12,300.0         | 11.2         | 205.6       | 167.5            | 18.7        | 5.7         | 214.0       | 44(         |
| VECTOR         | R 3069 | 4,740.0          | 10.6         | 167.2       | 47.0             | 4.6         | 2.8         | 47.1        | 200         |
| VECTOR         | R 3070 | 24,500.0         | 15.8         | 355.7       | 531.3            | 34.0        | 9.7         | 99.3        | 760         |
| OUTSIDE VECTOR | R 23   | 40.8             | 3.5          | 40.7        | 6.3              | 1.1         | 0.1         | 1.7         | (           |
| OUTSIDE VECTOR | R 1030 | 309.8            | 1.9          | 32.1        | 15.8             | 1.8         | 0.1         | 1.9         | (           |
| OUTSIDE VECTOR | R 3072 | 155.5            |              |             | 15.2             |             | 0.1         | 2.5         |             |

Table 13.3: Geochemistry: Vector Zone Rock Samples

Lead values are mostly low, but zinc and cobalt appear to show a direct correlation with copper values. Silver, molybdenum and arsenic show a similar but somewhat variable pattern.

#### 13.6.3 Mid Zone

Twenty rock samples were submitted from the Mid Zone area, between the Vector and the Nighthawk Zones. A summary of the results is shown in Table 13.4 and all results are shown in Appendix 3.

The results show that the rock samples contain values of up to 3.0% Cu (R21), and 1.3% Cu and 4.1 g/t Au (R17).

A weak correlation also exists between values of gold, lead, zinc, molybdenum, silver and arsenic with those of copper. Samples R3046 and R3047 which contain 0.1% Cu show no correlation with these other elements.

| Location         | Sample<br>No. | Cu<br>(ppm)       | Pb<br>(ppm) | Zn<br>(ppm) | Mo<br>(ppm) | Ag<br>(ppm) | As<br>(ppm) | Au<br>(ppb) |
|------------------|---------------|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| MID ZONE         | R 16          | 109.1             | 9.3         | 54.3        | 3.6         | 0.8         | 108.4       | 100         |
| MID ZONE         | R 17          | 12,800.0          | 37.8        | 94.2        | 4.8         | 5.0         | 254.4       | 4,060       |
| MID ZONE         | R 3004        | 3,060.0           | 4.5         | 38.7        | 3.5         | 1.5         | 9.8         | 68          |
| mid zone         | R 3063        | 209.6             | 1.5         | 63.0        | 1.4         | 0.3         | 2.6         | 27          |
| outside mid zone | R 1033        | 212.6             | 3.0         | 30.9        | 1.0         | 0.2         | 2.0         | 5           |
| outside mid zone | R 3038        | 9.9               | 3.5         | 21.7        | 0.5         | 0.1         | 1.5         | 1           |
| outside mid zone | R 3039        | 612.0             | 0.1         | 32.4        | 2.5         | 0.4         | 2.7         | 14          |
| outside mid zone | R 3040        | 1 <i>,</i> 010.0  | 0.1         | 38.0        | 2.9         | 0.3         | 3.1         | 40          |
| outside mid zone | R 3041        | 53.5              | 0.1         | 38.1        | 3.3         | 0.1         | 2.4         | 1           |
| outside mid zone | R 3042        | 77.6              | 1.7         | 35.7        | 1.0         | 0.1         | 3.1         | 6           |
| MID & NIGHTHAWK  | R 20          | 1 <b>6,0</b> 00.0 | 11.2        | 105.6       | 1.5         | 4.4         | 33.7        | 260         |
| MID & NIGHTHAWK  | R 21          | 30,200.0          | 9.4         | 164.7       | 38.4        | 4.2         | 6.5         | i.s.        |
| MID & NIGHTHAWK  | R 22          | 1,820.0           | 5.2         | 40.1        | 1.3         | 1.5         | 1.7         | 720         |
| MID & NIGHTHAWK  | R 1032        | 877.0             | 2.6         | 52.7        | 0.9         | 0.4         | 0.8         | 6           |
| MID & NIGHTHAWK  | R 3043        | 344.0             | 0.1         | 37.8        | 3.4         | 0.1         | 0.4         | 1           |
| MID & NIGHTHAWK  | R 3044        | 180.5             | 0.1         | 87.9        | 3.1         | 0.1         | 0.2         | 1           |
| MID & NIGHTHAWK  | R 3045        | 422.5             | 0.1         | 33.4        | 2.7         | 0.4         | 2.8         | 1           |
| MID & NIGHTHAWK  | R 3046        | 1,020.0           | 0.1         | 25.4        | 3.5         | 0.3         | 3.5         | 2           |
| MID & NIGHTHAWK  | R 3047        | 1,040.0           | 0.1         | 25.3        | 2.2         | 0.5         | 1.5         | 1           |
| MID & NIGHTHAWK  | R 3049        | 897.0             | 0.1         | 18.2        | 2.5         | 0.2         | 4.3         | 1           |

Table 13.4: Geochemistry: Mid Zone Rock Samples

#### 13.6.4 Nighthawk Zone

The geochemistry of the 18 rock samples taken at the Nighthawk Zone is summarized in Table 13.5. A high value of about 6.9% Cu and 2.6 g/t Au was returned in sample R19 (Appendix 3). Other samples within the group contain 1.6-2.2% Cu and 0.5-0.8 g/t Au (R18, R3011, R3030 and R3031). Other samples with high copper values have very low values for gold (R1031, R3005, R3007, R3008, R3009 and R3010). Values for arsenic, silver and molybdenum correlate well with the high copper values except for R3011, where there is no corresponding high arsenic.

| Location          | Sample<br># | Cu<br>(ppm) | Pb<br>(ppm) | Zn<br>(ppm) | Co<br>(ppm)   | Cd<br>(ppm) | Mo<br>(ppm) | Ag<br>(ppm)                                   | As<br>(ppm)  | Au<br>(ppb) |
|-------------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-----------------------------------------------|--------------|-------------|
| NIGHTHAWK         | <br>R 18    | 19,700.0    |             | 151.7       | 141.9         | <u></u>     | 45.9        | <u>, , , , , , , , , , , , , , , , , , , </u> | <u>160.6</u> | <u></u>     |
| NIGHTHAWK         | R 19        | 69,600.0    |             | 487.4       | 132.2         | 6.1         | 20.2        | 3.3                                           | 481.5        | 2,600       |
| NIGHTHAWK         | R 1031      | 1,830.0     | 1.7         | 35.7        | 22.0          | 0.1         | 1.4         | 0.7                                           | 5.5          | 28          |
| NIGHTHAWK         | R 3005      | 1,940.0     | 0.8         | 58.4        | 29.7          | 0.1         | 1.2         | 1.1                                           | 2.8          | 32          |
| NIGHTHAWK         | R 3006      | 237.2       | 1.1         | 28.0        | 19.4          | 0.1         | 1.2         | 0.1                                           | 3.9          |             |
| NIGHTHAWK         | R 3007      | 19,400.0    | 11.7        | 88.3        | 142.3         | 0.1         | 0.6         | 1.0                                           | 4.4          | 2           |
| NIGHTHAWK         | R 3008      | 1,560.0     | 1.7         | 22.9        | 15.2          | 0.1         | 0.8         | 0.1                                           | 2.4          |             |
| NIGHTHAWK         | R 3009      | 4,340.0     | 3.2         | 42.7        | 21.2          | 0.1         | 5.6         | 1.0                                           | 8.5          | 9           |
| NIGHTHAWK         | R 3010      | 12,700.0    | 5.4         | 154.1       | 33.8          | 0.7         | 2.6         | 3.6                                           | 22.5         | 12          |
| NIGHTHAWK         | R 3011      | 22,300.0    | 7.4         | 94.7        | 2 <b>9</b> .0 | 0.1         | 39.4        | 6.5                                           | 3.5          | 51          |
| OUTSIDE NIGHTHAWK | R 3012      | 662.0       | 0.5         | 46.9        | 23.2          | 0.1         | 2.2         | 0.3                                           | 3.4          | 2           |
| OUTSIDE NIGHTHAWK | R 3014      | 539.0       | 0.1         | 22.8        | 18.1          | 0.1         | 3.4         | 0.4                                           | 3.5          | 1           |
| OUTSIDE NIGHTHAWK | R 3015      | 521.0       | 0.1         | 22.2        | 22.5          | 0.1         | 3.9         | 0.3                                           | 2.0          | 1           |
| OUTSIDE NIGHTHAWK | R 3016      | 892.0       | 2.9         | 119.3       | 23.2          | 0.4         | 1.0         | 0.1                                           | 6.2          |             |
| OUTSIDE NIGHTHAWK | R 3030      | 15,900.0    | 10.0        | 186.1       | 68.4          | 0.7         | 5.4         | 9.1                                           | 89.8         | 62          |
| OUTSIDE NIGHTHAWK | R 3031      | 17,800.0    | 12.3        | 234.0       | 105.3         | 0.1         | 8.5         | 8.6                                           | 28.2         | 79          |
| OUTSIDE NIGHTHAWK | R 3073      | 123.7       | 3.0         | 42.1        | 16.4          | 0.1         | 1.4         | 0.2                                           | 4.9          |             |
| OUTSIDE NIGHTHAWK | R 3013      | 966.0       | 0.4         | 47.1        | 24.5          | 0.1         | 2.2         | 0.7                                           | 3.1          | 1           |

Table 13.5: Geochemistry: Nighthawk Zone Rock Samples

#### 13.6.5 EAGLE 6 Claim

The results of the 36 samples taken from the EAGLE 6 claim are summarized in Table 13.6 and the locations are plotted on Fig. 13.6. The data shows that four samples which contain 632.7-2760.0 ppm Cu are located in the southwestern part of the claim and probably represent the southeastern extension of the Nighthawk Zone (R3089, R3090, R3094, and R3107). These samples are the only ones which are accompanied by anomalous quantities of gold, arsenic, silver, molybdenum and cobalt.

|          | Table 13.6: | Geochei           | mistry: | EAGLE (           | <u>6 Claim</u>   | Rock Sa | Imples |        |       |
|----------|-------------|-------------------|---------|-------------------|------------------|---------|--------|--------|-------|
| Location | Sample      | Cu                | Pb      | Zn                | Со               | Мо      | Ag     | As     | Au    |
|          | <u>No.</u>  | (ppm)             | (ppm)   | (ppm)             | (ppm)            | (ppm)   | (ppm)  | _(ppm) | (ppb) |
| EAGLE 6  | R 3080      | 82.6              | 4.6     | 69.4              | 18.3             | 1.3     | 0.1    | 3.5    | 2     |
| EAGLE 6  | R 3081      | 77.4              | 1.9     | 55.8              | 13.8             | 0.7     | 0.1    | 1.8    | 3     |
| EAGLE 6  | R 3082      | 41.8              | 2.4     | 25.8              | 8.2              | 0.7     | 0.1    | 1.2    | 5     |
| EAGLE 6  | R 3083      | 16.4              | 1.5     | 23.0              | 4.6              | 0.6     | 0.1    | 1.1    | 1     |
| EAGLE 6  | R 3084      | 29.0              | 1.6     | 18.1              | 3.9              | 0.8     | 0.1    | 1.8    | 1     |
| EAGLE 6  | R 3085      | 68.7              | 3.5     | 43.4              | 13.3             | 1.4     | 0.1    | 2.9    | 7     |
| EAGLE 6  | R 3086      | 97.7              | 2.5     | 41.5              | 17.1             | 1.1     | 0.1    | 1.6    | e     |
| EAGLE 6  | R 3087      | 91.7              | 10.9    | 42.6              | 15.5             | 0.7     | 0.1    | 5.0    | f     |
| EAGLE 6  | R 3088      | 157.3             | 1.8     | 34.5              | 14.0             | 0.7     | 0.1    | 9.6    | 3     |
| EAGLE 6  | R 3089      | 632.7             | 3.2     | 21.7              | 4.8              | 0.9     | 0.5    | 2.1    | 57    |
| EAGLE 6  | R 3090      | 3,080.0           | 3.4     | 80.9              | 383.2            | 38.0    | 0.8    | 259.0  | 130   |
| EAGLE 6  | R 3091      | 92.2              | 3.1     | 51.7              | 12.1             | 1.1     | 0.1    | 5.2    | 1     |
| EAGLE 6  | R 3092      | 79.5              | 2.2     | 35.2              | 11.1             | 1.0     | 0.1    | 3.0    | -     |
| EAGLE 6  | R 3093      | 141.7             | 1.2     | 24.4              | 17. <del>9</del> | 2.0     | 0.2    | 2.6    | 16    |
| EAGLE 6  | R 3094      | 2,200.0           | 4.1     | 87.7              | 15.2             | 2.5     | 1.4    | 4.8    | 66    |
| EAGLE 6  | R 3095      | 161.0             | 3.3     | 2 <del>9</del> .7 | 14.6             | 1.3     | 0.1    | 1.7    |       |
| EAGLE 6  | R 3096      | 11.8              | 0.8     | 39.4              | 16.6             | 1.0     | 0.1    | 1.2    | 3     |
| EAGLE 6  | R 3097      | 2.8               | 0.9     | 18.7              | 5. <b>6</b>      | 1.2     | 0.1    | 1.0    |       |
| EAGLE 6  | R 3098      | 17.2              | 2.2     | 25.1              | 5.8              | 0.6     | 0.1    | 0.7    |       |
| EAGLE 6  | R 3099      | 56.7              | 3.5     | 40.4              | 9.0              | 0.8     | 0.1    | 2.2    |       |
| EAGLE 6  | R 3100      | 5 <del>9</del> .0 | 3.3     | 70.6              | 14.6             | 1.0     | 0.1    | 2.4    |       |
| EAGLE 6  | R 3101      | 121.2             | 3.6     | 35.9              | 8.2              | 0.8     | 0.1    | 2.1    | ł     |
| EAGLE 6  | R 3102      | 6.0               | 1.4     | 28.0              | 6.3              | 0.4     | 0.1    | 1.2    |       |
| EAGLE 6  | R 3103      | 280.0             | 5.2     | 27. <del>9</del>  | 11.5             | 1.0     | 0.1    | 2.1    | i     |
| EAGLE 6  | R 3104      | 68.3              | 3.3     | 39.1              | 14.3             | 0.9     | 0.1    | 1.9    |       |
| EAGLE 6  | R 3105      | 907.7             | 3.9     | 51.1              | 23.0             | 3.6     | 1.2    | 2.3    |       |
| EAGLE 6  | R 3106      | 154.3             | 4.1     | 57.7              | 14.5             | 0.8     | 0.1    | 0.9    |       |
| EAGLE 6  | R 3107      | 2,760.0           |         | 52.8              | 13.6             | 1.2     | 3.1    | 2.0    |       |
| EAGLE 6  | R 3108      | 339.5             | 6.4     |                   | 19.3             | 0.7     | 0.2    | 2.4    | 3     |
| EAGLE 6  | R 3109      | 292.4             |         |                   | 15.8             | 0.8     | 0.2    | 0.8    |       |
| EAGLE 6  | R 3110      | 10.6              |         |                   |                  |         |        | 3.5    |       |
| EAGLE 6  | R 3111      | 3.9               |         |                   |                  |         |        | 0.3    |       |
| EAGLE 6  | R 3112      | 11.0              |         |                   |                  |         |        |        |       |
| EAGLE 6  | R 3113      | 9.3               |         |                   |                  |         |        |        |       |
| EAGLE 6  | R 3114      | 97.8              |         |                   |                  |         |        |        |       |
| EAGLE 6  | R 3115      | 28.2              |         |                   |                  |         |        |        |       |

Table 13.6: Geochemistry: EAGLE 6 Claim Rock Samples

Three other samples show moderately elevated copper values: R3105 (907.7 ppm Cu), R3108 (339.5 ppm Cu) and R3109 (292.4 ppm Cu). Only R3105 contains slightly anomalous molybdenum (3.6 ppm) and silver (1.2 ppm). These samples are located in the southeastern part of the claim and contain no other high value for other elements. Samples near these, such as R3110, R3114 and R3115, contain background values for all elements.

#### **14. DIAMOND DRILLING**

The diamond drilling program was conducted from September 11 to October 5, 1996. The objective of the program was to test the geophysical conductors crossing the zones of surface mineralization. Three fences of two holes each were drilled along lines 36+00N, 12+00N and 11+00N for a total of 1838.6m (Table 14.1; Fig. 14.1).

| Fence | Drill Hole<br>No. | Northing | Easting  | Elevation | Az.  | Dip  | Total Depth |
|-------|-------------------|----------|----------|-----------|------|------|-------------|
| 1     | EA-96-1           | 36+00N   | 41 + 35E | 976m      | 042° | -45° | 294.74m     |
| 1     | EA-96-2           | 36+00N   | 41 + 35E | 976m      | 042° | -65° | 398.37m     |
| 2     | EA-96-3           | 12+00N   | 39+00E   | 1392m     | 042° | -45° | 300.84m     |
| 2     | EA-96-4           | 12+00N   | 39+00E   | 1392m     | 042° | -65° | 349.61m     |
| 3     | EA-96-5           | 11+00N   | 39+25E   | 1414m     | 042° | -45° | 197.21m     |
| 3     | EA-96-6           | 11+00N   | 39 + 25E | 1414m     | 042° | -65° | 297.79m     |

Table 14.1: Diamond Drill Hole Summary

#### 14.1 Fence 1

Fence 1 was drilled from the west to intersect three conductors: two minor conductors and conductor J-J' on line 36+00N (Fig. 14.2). The overburden is relatively flat along the cross-section, but the block between conductors J-J' and the one to the west appears to have been downdropped in comparison to areas to the northeast and southwest.

The geophysical response to the western conductor is somewhat weak, but within 2-3m of its projected intersection with EA-96-1, the core is brecciated and sheared and contains 10m of clay alteration (Appendix 8). Within the breccia, up to 2% sulphides are present and the analyses returned 2100 ppm Cu, 2.5 ppm Mo, 1.0 ppm Ag, 22 ppm As and 3.1 ppm Te, which are all anomalous values (D1004) (Fig. 14.3) (Appendix 3).

Where EA-96-2 intersects the conductor, the core is brecciated over a width of 10m and, although there were only limited sulphides, the core returned a value of 1050 ppm Cu, 2.0 ppm Ag, 178 ppm As and 1.5 ppm Te (D1066). Values for gold are 1-21 ppb in this zone. The conductor has an apparent dip of about 75° to the southwest.

The second minor conductor contains 8m of brecciation and clay alteration along EA-96-1. Along EA-96-2, the conductor shows a true width of 2-4m of clay alteration and breccia. As observed on the dip tests, the drill hole steepened considerably when it intersected the breccia and the drillers noticed that the rods were bending at about this point. The conductor has an apparent dip of about 88°SW at this location. Minor sulphides are present and geochemical values of up to 671 ppm Cu (D1090) are present, but gold is only 2-22 ppb in this section of the core.

Where it is intersected by EA-96-1, conductor J-J' shows a breccia with about 10m of clay alteration containing minor sulphides. Where EA-96-2 intersects the same conductor, it appears as a zone of shearing about 40m wide.

Along conductor J-J', the clay alteration zone is much narrower and potassic alteration is more prevalent at depth. Along EA-96-2, mafic dykes are sheared, contain more sulphides and return analyses of up to about 1.1 g/t and 4.4 g/t Au (D1186 and D1128, respectively). Other sections containing sulphides within this wide zone are 1350 ppm Cu (D1143), 1150 ppm Cu (D1178) and 1880 ppm Cu (D1179). This zone also contains some high values of arsenic and cobalt.

The section of core containing sulphides is much wider at the base of EA-96-2. At this location, the conductor J-J' has a dip of 75°SW, but it is possible that the conductor is steeper and that it extends past the end of EA-96-2.

Several other thin shear zones containing sulphides and mafic dykes are present along these drill holes. They are present on EA-96-1 at 145m and 205m and may represent shear zones that splay off the main structures, forming anastomosing structures that may not reach the surface. Alternatively, they may not contain enough conductive material to show up on this Max-Min geophysical survey. These contain up to 2950 ppm Cu and 123 ppb Au (D1020) in diorite containing three zones of sulphide-rich chlorite rock, and 1091 ppm Cu and 27 ppb Au (D1038) in fractured diorite which exhibits potassic, chlorite and epidote alteration.

#### 14.2 Fence 2

Fence 2 was drilled to the east to intersect two conductors including H-H' and one to the west. Because of deep overburden, the conductor to the west of conductor H-H' was not intersected where it was expected (Fig. 14.4). It is probable that this conductor is at a depth of 40m, where a fault was identified in the core of EA-96-4, directly below the trace of the

geophysical conductor. A fault zone is accompanied by chlorite and carbonate alteration, but sulphides are not present.

Conductor H-H' was probably not intersected by EA-91-6 and EA-91-7 which were drilled by Noranda at an azimuth of 222°. EA-91-6 was collared too far to the west and EA-91-7 did not go deep enough to intersect the conductor which dips to the west.

In EA-96-3, conductor H-H' was intersected at a depth of 168.2-172.1m where a zone of brecciation and fracturing were encountered. Background values of 89.7 ppm Cu and 6 ppb Au (D1214) were returned from the the core (Fig. 14.5).

In EA-96-4, conductor H-H' has two possible traces. One is at 205.45-211.20m, where fault gouge was intersected with minor sulphides and up to 910 ppm Cu and 13 ppb Au in nearby rocks (D1252). The conductor would then have a dip of about 65°W from EA-96-3 to EA-96-4.

Conductor H-H' may also have steepened and been intersected in EA-96-4 at about 295-305m, where fault gouge is present. In this case the conductor would have a dip of 90° and shows a better correlation with the geophysical interpretation for this conductor. Within 10m of the fault zone, values of 3930 and 5800 ppm Cu (D1258 and D1264, respectively) were recorded, along with up to 2040 ppm Pb and 4260 ppm Zn (D1257) a little further up the hole.

An additional sample showing high values in EA-96-3 is D1225 at 261.0-262.0m with 1570 ppm Cu and 426.3 ppm As. In EA-96-4, sample D1248 at 87.1-88.1m contains 1930 ppm Cu in epidotized and quartz-rich diorite. Sample D1268, near the bottom of the hole at 346.0-346.6m, contains 3690 ppm Cu in fine-grained potassic- and clay-altered diorite.

#### 14.3 Fence 3

Fence 3 was also drilled to intersect conductor H-H' (Fig. 14.6). At 110.5-152.5m in EA-96-5, a zone of highly sheared rock has a true width of 30-35m and is bounded by a fault zone at 149.4-152.5m. This section contained minor sulphides, and gave 31.3-565.0 ppm Cu and 2-13 ppb Au (Fig. 14.7).

In EA-96-6, the same zone narrows to about 25m true width and occurs at a depth of 200-235m along the hole. As with the zone above, it also contains a few zones of sulphides, all less than 1%. The maximum value is 839.0 ppm Cu (D1310), but gold values remain low, at 9-13 ppb Au. As identified, the conductor has a dip of about 86°W.

Only one other sample (D1300) shows anomalous values, at 8360 ppm Cu, 595 ppm Zn and 110 ppb Au from diorite with potassic alteration containing about 3% sulphides.

#### **15. CONCLUSIONS AND RECOMMENDATIONS**

Geological, geochemical and geophysical surveys conducted on the EAGLE 1-6 claims have shown that the Main Zone consists of surface copper and gold showings over a zone about 200m wide and 3000m long. These showings consist of chalcopyrite, malachite and azurite with geochemically high values of gold which have been emplaced along a shear and fracture zone which trends northwest and dips steeply to the southwest.

The Main Zone appears to extend to the southeast onto staked ground. The mineralization has been remobilized into subsequent fracture systems which strike east-west and north-south. Many geophysical conductors striking northwest and east-west have been identified throughout the property.

The chalcopyrite, galena and sphalerite mineralization at the Gibson Zone are the result of fluid injection in fractures created in the hornfelsed volcanic rocks at the contact with the diorite intrusion.

Six diamond drill holes at the Main Zone show that the diorite is hydrothermally altered along the steeply dipping shear zones and that this alteration changes from predominantly clay-sericite to potassic with depth. Thin zones of copper and gold enrichment are present in the core and the geochemical values appear to increase at lower elevations.

From the initial phase of exploration, work has been focused on the surface showings of copper and gold. This mineralization has been remobilized to surface along a shear zone, possibly much later than the initial phase of hydrothermal activity and mineralization. More extensive zones of mineralization could be present at depth, in other areas of the property where fracturing and faulting have not brought the mineralization to surface.

It is recommended that future exploration at the EAGLE Property concentrate on identifying zones of hydrothermal alteration at depths of about 200m by conducting I.P. and resistivity surveys along lines trending northeasterly over the full width of the property, starting at lower elevations near the lake.

#### **16. REFERENCES**

#### Bowman, M.

1996: Electromagnetic and Magnetometer Surveys, EAGLE Property, Fort St. James, B.C., 11p., unpublished report, Appendix 4 in this report.

DeLong, R.C., C.I. Godwin, M.W. Harris, N.M. Caira and C.M. Rebagliati

1991: Geology and alteration at the Mount Milligan gold-copper porphry deposit, Central British Columbia (93N/1E), B. C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1990, Paper 1991-1, pp.199-205.

#### Garnett, J.A.

1978: Geology and mineral occurrences of the Southern Hogem Batholith, B. C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 70, 75p.

Nelson, J., K. Bellefontaine, K. Green and M. MacLean

1991: Regional geological mapping near the Mount Mulligan copper-gold deposit, Geological Fieldwork 1990, Paper 1991-1, pp. 89-110.

#### Skupinski, Andrzej

1996: Petrography of the Samples: R-0014; R3032; R3037; R3066; for Birch Mountain Resources Ltd.; 8p., unpublished report, Appendix 5 in this report.

#### Stewart, F.

- 1991a: 1990 Year-end report of the work performed on the Eagle property, Omineca Mining Division, for Noranda Exploration Company, Limited; unpublished report.
- 1991b: 1991 Diamond drilling report on the Eagle property, Omineca Mining Division, for Noranda Exploration Company, Limited; unpublished report.

Stewart, F., G. Maxwell and L. Bradish

1989: Report of work for 1989 on the Eagle property, Omineca Mining Division, for Noranda Exploration Company, Limited; unpublished report.

Appendix 1

Statement of Qualifications

## **Statement of Qualifications**

- I, Daniel A. Beauchamp, undersigned, certify that:
  - 1. I am a graduate of the University of Ottawa, Ontario and of the University of Calgary, Alberta;
  - 2. I hold degrees of B.Sc. (Honours Geology) and of M.B.A.;
  - 3. I have been a member in good standing of The Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) since 1980 and am registered with them as a Professional Geologist;
  - 4. The work presented in this report is a fair and honest reflection of the geology of the areas described, and of their immediate surroundings;
  - 5. The data on which opinions expressed in this report are made derive from field work on this property and from the interpretation of field and laboratory data;
  - 6. I have no interest, direct or indirect, in this property, in Birch Mountain Resources Ltd. or in any of its subsidiaries.

Dated at Calgary, Alberta on this 16th day of December, 1996.



### Statement of Qualifications

- I, Simon X. (Ximo) Fan, hereby certify that:
- 1. I am a graduate of McMaster University, Canada, the Chinese Academy of Sciences, China and Beijing University, China.
- 2. I hold the degrees of:
   Ph.D. in Structural Geology (McMaster, 1995)
   M.Sc. in Regional Tectonics (The Chinese Academy of Sciences, 1986)
   B.Sc. in Geomechanics (Beijing, 1983)
- 3. I have practiced my profession as a geologist continuously since my graduation from Beijing University (1983) in mineral and petroleum exploration and geological research for the Institute of Geology and the Institute of Remote Sensing, The Chinese Academy of Sciences, McMaster University, and Imperial Oil Ltd.
- 4. I personally took part in the exploration work on the property and supervised the field operations.
- 5. This report is based on information and data collected from field work and laboratory analyses.
- 6. I currently do not hold stock in Birch Mountain Resources Ltd.

Dated at Calgary, Alberta on this 16th day of December, 1996.

Nim

Simon X. Fan

## **Statement of Qualifications**

I, Brett G. Johnson, residing at 7-1934 12th Avenue S.W., Calgary, Alberta, T3C 0R8 certify that:

- 1. I am a mineral exploration geologist currently working for Birch Mountain Resources Ltd. of Calgary, Alberta.
- 2. I am a graduate of the University of North Dakota (1996), Grand Forks, North Dakota, having received a B.Sc. degree in Environmental Geology and Technology.
- 3. I have personally worked on this property in the field and the office.
- 4. I currently do not hold stock in Birch Mountain Resources Ltd.

Dated at Calgary, Alberta on this 16th day of December, 1996.

Par DC

Brett G. Johnson

Appendix 2

- - - -

-

-

Statement of Expenditures

## Statement of Expenditures

| Wages                    |                        |                      |              |
|--------------------------|------------------------|----------------------|--------------|
| S. Fan                   |                        |                      |              |
| July 1-Aug 23            |                        |                      |              |
| Sept 10-30               | 75 days @ \$350        | \$26 <i>,</i> 250.00 |              |
| E. Washburn              |                        |                      |              |
| July 1-21, July 31-A     | ug 5                   |                      |              |
| Aug 22-23                | 29 days @ \$175        | \$5,075.00           |              |
| B. Johnson               |                        |                      |              |
| July 1-Aug 23            |                        |                      |              |
| Sept 10-30               | 80 days @ \$150        | \$12,000.00          |              |
| S. Reimond               |                        |                      |              |
| July 1-7, July 12-19     |                        |                      |              |
| July 12-Aug 5,           |                        |                      |              |
| Aug 22-23                | 33 days @ \$125        | \$4,125.00           |              |
| G. Mombourquette         |                        |                      |              |
| July 12-30               | 19 days @ \$175        | \$3,325.00           |              |
| D.A. Beauchamp           |                        |                      |              |
| July 1-7, 12-19, Jul     | •                      |                      |              |
| Aug 17-26., Sept 10      |                        |                      |              |
| Sept 30-Oct 5            | 49 days @ \$400        | <u>\$19,600.00</u>   |              |
| Sub-total Wages          |                        |                      | \$70,375.00  |
|                          |                        |                      |              |
| Geophysical Crew         |                        |                      |              |
| Associated Mining Con    |                        | AB                   |              |
| July 12-Aug 5; 2-3 pec   | ple                    |                      | \$30,533.13  |
|                          |                        |                      |              |
| Line cutting             |                        |                      |              |
| Hobson Contracting Ltc   |                        |                      | •••          |
| July 5-24, July 30-Aug 2 | 2; 4 people            |                      | \$31,618.50  |
| Drill Drad Dram anatica  |                        |                      |              |
| Drill Pad Preparation    |                        |                      |              |
| Hobson Contracting Ltc   | I., Smithers, B.C.     |                      | ***          |
| Aug 22-25; 4 people      |                        |                      | \$8,587.93   |
| Diamond Drilling         |                        |                      |              |
| Diamond Drilling         | amlaans B.C            |                      |              |
| Connors Drilling Ltd., k | •                      |                      | ¢154.000.44  |
| Sept 10-Oct 5; 4 people  | e, to <del>n</del> z m |                      | \$154,983.44 |
| Drill Pad Cleanup        |                        |                      |              |
| Nex Tech, Fort St.James  | B C                    |                      |              |
| October 7-9              | , D.C.                 |                      | ¢ 4 000 00   |
| October 7-9              |                        |                      | \$4,200.00   |

| Petrologic Study<br>Tatra Minerald                                | ogical, Calgary, AB                                                                                                                                                                               |                                                         | \$1,560.00  |  |  |  |  |  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------|--|--|--|--|--|
| •                                                                 | ortation<br>s Ltd., Fort St-James,<br>ma from July 1-Sept.                                                                                                                                        |                                                         |             |  |  |  |  |  |
| Glacier Air, Pr<br>Beaver, Septer                                 | rince George, B.C.<br>mber                                                                                                                                                                        | \$909.50                                                |             |  |  |  |  |  |
| Norhern Light<br>Cessna and Si<br>Sub-total Float                 | \$7,473.80                                                                                                                                                                                        |                                                         |             |  |  |  |  |  |
| •                                                                 | Boat Rental<br>Peter Koropatnisky, Chuchi Lodge, B.C.<br>July-September 3 months @ \$750/month                                                                                                    |                                                         |             |  |  |  |  |  |
| Helicopters<br>Pacific Wester<br>General suppo<br>Drilling Progra |                                                                                                                                                                                                   | ort St. James, B.C.<br>\$4,898.94<br><u>\$29,867.25</u> | \$34,766.19 |  |  |  |  |  |
| Room & Board                                                      | Room & Board drillers 4 @ 26 days<br>geophysical 2 @ 24 days<br>linecutters 4 @ 25 days<br>pad cutters 4 @ 4 days<br>cleanup crew 3 @ 3 days<br>geological <u>226 days</u><br>503 days @ \$40/day |                                                         |             |  |  |  |  |  |
| Trucks Rental<br>Bowmac Truck Re<br>2 trucks @ 80                 | \$8,000.00                                                                                                                                                                                        |                                                         |             |  |  |  |  |  |
| All-terrain Vehicle<br>Yamaha Suzuki So<br>2 @ \$2250/m           |                                                                                                                                                                                                   | \$15,750.00                                             |             |  |  |  |  |  |

e di la constante da la consta

1

| Soils                    | 1,176 @ \$19.91                    | \$23,414.16              |                    |
|--------------------------|------------------------------------|--------------------------|--------------------|
| Stream Sediments         | 10 @\$19.91                        | \$199.10                 |                    |
| Rocks                    | 500 @\$22.84                       | <u>\$11,420.00</u>       |                    |
| Sub-total Geochemi       | cal Analyses                       |                          | \$35,033.26        |
|                          |                                    |                          |                    |
| Report-writing<br>S. Fan | 12 days @ \$300                    | \$3,600.00               |                    |
| 1 0                      | 12 days @ \$300<br>12 days @ \$400 | \$3,600.00<br>\$4,800.00 |                    |
| S. Fan                   | • —                                |                          |                    |
| S. Fan<br>D. Beauchamp   | 12 days @ \$400<br>12 days @ \$175 | \$4,800.00               | <u>\$10,500.00</u> |

| Appendi | x 3 |
|---------|-----|
|---------|-----|

# **Results of Geochemical Analyses**

|     | k   | 8  |    |    | <b>L</b> | ۸. | <b>N</b> |    | Ł  | L |    | ٩  |    | ſ  |    | Ľ. | <b>▲</b> 1 | ٩ |
|-----|-----|----|----|----|----------|----|----------|----|----|---|----|----|----|----|----|----|------------|---|
| EAG | GLE | Cu | Ni | Pb | Zn       | Co | Cd       | Мо | Ag | w | As | Sb | Bi | Se | Те | Hg | Au, ppb    |   |

## **Geochemical Results**

#### Symbols

- insufficient sample for gold analysis insufficient sample for double check analysis of gold \*
- \*\*
- standard deviation s.d.
  - all values are in ppm unless otherwise indicated

#### Sample Prefix

- chip samples С
- drill core samples D
- rock samples R
- soil samples S
- soil samples subjected to additional sampling on mini-grid stream sediment samples SM
- Т

| <b>A A</b>       | <b>N</b>           | L                      |             | L              |                | A          | L             | L          | L          | A            | <b>A</b>   | <b>A</b>   | i          | <b>L</b> 1 |              |              | A A |
|------------------|--------------------|------------------------|-------------|----------------|----------------|------------|---------------|------------|------------|--------------|------------|------------|------------|------------|--------------|--------------|-----|
|                  |                    |                        |             |                |                |            |               |            |            |              |            |            |            |            |              |              |     |
| EAGLE            | Cu                 | Ni                     | Pb          | Zn             | Co             | Cd         | Mo            | Ag         | w          | As           | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb      |     |
| C 4001           | 1,770.0            | 3.6                    | 4.8         | 33.3           | 21.1           | 0.7        | 3.2           | 1.9        | 0.2        | 63.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 220          |     |
| C 4002           | 1,760.0            | 3.5                    | 4.9         | 29.6           | 13.7           | 0.2        | 4.4           | 1.5        | 0.2        | 18.1         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 100          |     |
| C 4003           | 3,850.0            | 4.2                    | 5.7         | 47.0           | 23.9           | 0.3        | 11.5          | 3.4        | 0.2        | 28.5         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 470          |     |
| C 4004           | 1,820.0            | 3.9                    | 4.3         | 47.5           | 19.4           | 0.1        | 1.6           | 2.3        | 3.0        | 14.3         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 190          |     |
| C 4005           | 1,770.0            | 3.8                    | 4.4         | 39.2           | 16.1           | 0.3        | 1.4           | 2.3        | 20.5       | 33.9         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1,870        |     |
| C 4006           | 2,188.0            | 3.4                    | 4.1         | 45.3           | 18.7           | 0.2        | 10.6          | 2.7        | 0.2        | 22.1         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 120          |     |
| C 4007           | 3,120.0            | 4.7                    | 5.1         | 48.8           | 27.4           | 1.7        | 5.0           | 2.5        | 195.2      | 169.6        | 1.0        | 0.2        | 0.5        | 0.2        | 0.03         | 470          |     |
| C 4008           | 3,130.0            | 4.7                    | 4.3         | 68.8           | 23.7           | 0.3        | 1.2           | 2.2        | 62.5       | 27.1         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 200          |     |
| C 4009           | 2,750.0            | 3.9                    | 3.5         | 56.3           | 22.7           | 0.9        | 3.1           | 3.4        | 32.8       | 87.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 470          |     |
| C 4010           | 2,500.0            | 3.9                    | 4.2         | 50.0           | 26.7           | 0.8        | 14.0          | 2.1        | 3.9        | 75.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 340          |     |
| C 4011           | 1,925.0            | 4.0                    | 4.2         | 39.7           | 21.9           | 0.2        | 3.1           | 1.0        | 0.2        | 20.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 40           |     |
| C 4012           | 318.2              | 4.4                    | 2.6         | 38.3           | 19.9           | 0.1        | 1.0           | 0.1        | 0.2        | 9.6          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8            |     |
| C 4013           | 536.3              | 3.7                    | 3.7         | 38.7           | 23.2           | 2.2        | 3.9           | 0.4        | 0.2        | 222.8        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 28           |     |
| C 4014           | 3,710.0            | 5.0                    | 3.8         | 52.0           | 24.5           | 0.1        | 1.1           | 0.3        | 0.2        | 7.2          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 39           |     |
| C 4015           | 1,523.2            | 4.0                    | 3.5         | 39.5           | 28.3           | 0.1        | 1.2           | 0.2        | 0.2        | 15.3         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 36           |     |
| C 4016           | 1,830.0            | 3.3                    | 4.3         | 33.6           | 13.0           | 0.2        | 2.5           | 3.2        | 0.2        | 18.5         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 260          |     |
| C 4017           | 3,590.0            | 3.6                    | 4.6         | 44.2           | 19.6           | 0.1        | 2.9           | 2.5        | 0.2        | 8.5          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 110          |     |
| C 4018<br>C 4019 | 2,220.0<br>3,270.0 | 4.8<br>2.4             | 3.6<br>6.2  | 55.1<br>35.3   | 28.4<br>15.3   | 0.1<br>0.2 | 4.1           | 1.0<br>3.8 | 0.2<br>0.2 | 5.6          | 0.2        | 0.2<br>0.2 | 0.2<br>0.4 | 0.2        | 0.03         | 37           |     |
| C 4019<br>C 4020 | 50,000.0           | 2. <del>4</del><br>8.6 | 13.7        | 155.7          | 117.9          | 0.2        | 142.5<br>35.1 | 4.5        | 0.2        | 21.1<br>46.6 | 0.2<br>0.2 | 0.2        | 2.8        | 0.2<br>0.2 | 0.03<br>0.03 | 640<br>1,460 |     |
| C 4020           | 9,760.0            | 3.0                    | 6.6         | 66.8           | 28.2           | 0.1        | 93.8          | 4.6        | 0.2        | 7.1          | 0.2        | 0.2        | 0.3        | 0.2        | 0.03         | 380          |     |
| C 4021           | 3,100.0            | 3.5                    | 4.0         | 43.5           | 20.2           | 0.1        | 10.4          | 0.9        | 0.2        | 3.0          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 48           |     |
| C 4023           | 3,350.0            | 3.5                    | 5.1         | 46.2           | 21.0           | 0.1        | 26.0          | 1.5        | 0.2        | 1.1          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 89           |     |
| C 4024           | 16,500.0           | 4.2                    | 11.4        | 82.4           | 35.8           | 0.1        | 42.4          | 2.0        | 0.2        | 9.3          | 0.2        | 0.2        | 0.7        | 0.2        | 0.03         | 730          |     |
| C 4025           | 16,900.0           | 3.9                    | 11.5        | 91.0           | 25.9           | 0.1        | 67.0          | 3.7        | 0.2        | 20.2         | 0.2        | 0.2        | 2.0        | 0.2        | 0.03         | 750          |     |
| C 4026           | 9,110.0            | 4.0                    | 9.1         | 69.6           | 35.4           | 0.1        | 27.9          | 3.3        | 0.2        | 10.2         | 0.2        | 0.2        | 3.0        | 0.2        | 0.03         | 960          |     |
| C 4027           | 1,050.9            | 4.8                    | 6.8         | 75.1           | 19.3           | 0.1        | 1.8           | 0.9        | 16.7       | 4.3          | 0.2        | 0.2        | 0.2        | 1.1        | 0.03         | 2            |     |
| C 4028           | 511.7              | 5.8                    | 6.3         | 67.7           | 13.3           | 0.1        | 8.7           | 0.5        | 0.2        | 2.7          | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 4            |     |
| C 4029           | 950.2              | 8.0                    | 5.5         | 79.2           | 20.7           | 0.1        | 6.4           | 0.7        | 0.2        | 3.3          | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 31           |     |
| C 4030           | 1,730.0            | 8.8                    | 5.3         | 61.4           | 26.6           | 0.1        | 3.0           | 1.0        | 0.2        | 5.3          | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 144          |     |
| C 4031           | 5,670.0            | 14.1                   | 7.7         | 97.9           | 93.6           | 0.1        | 3.3           | 2.4        | 0.2        | 11.6         | 0.2        | 0.2        | 0.2        | 1.3        | 0.03         | 103          |     |
| C 4032           | 7,140.0            | 28.7                   | 8.6         | 129.2          | 367.5          | 0.1        | 40.3          | 4.6        | 0.2        | 68.1         | 0.2        | 0.2        | 0.2        | 2.2        | 0.03         | 837          |     |
| C 4033           | 7,320.0            | 20.8                   | 9.4         | 103.5          | 187.4          | 0.1        | 61.9          | 6.2        | 0.2        | 78.6         | 0.2        | 0.2        | 0.2        | 2.5        | 0.03         | 487          |     |
| C 4034           | 10,800.0           | 13.8                   | 15.5        | 174.2          | 163.0          | 0.1        | 42.3          | 6.4        | 0.2        | 43.6         | 0.2        | 0.2        | 0.2        | 2.6        | 0.03         | 246          |     |
| C 4035           | 8,320.0            | 8.0                    | 7.7         | 163.5          | 89.9           | 0.3        | 41.8          | 2.9        | 0.2        | 6.3          | 0.2        | 0.2        | 0.2        | 1.7        | 0.03         | 62           |     |
| C 4036           | 4,300.0            | 10.1                   | 5.6         | 108.8          | 63.7           | 0.1        | 13.8          | 1.4        | 0.2        | 4.0          | 0.2        | 0.2        | 0.2        | 1.0        | 0.03         | 20           |     |
| C 4037           | 4,330.0            | 10.0                   | 6.9         | 130.4          | 49.0           | 0.2        | 26.0          | 3.1        | 0.2        | 16.3         | 0.2        | 0.2        | 0.2        | 1.1        | 0.03         | 114          |     |
| C 4038           | 6,560.0            | 8.2                    | 5.8         | 100.0          | 36.4           | 0.1        | 16.5          | 2.3        | 0.2        | 5.7          | 0.2        | 0.2        | 0.2        | 1.4        | 0.11         | 73           |     |
| C 4039           | 6,560.0            | 8.8                    | 7.3         | 106.4          | 75.8           | 0.1        | 31.3          | 2.3        | 0.2        | 9.1          | 0.2        | 0.2        | 0.2        | 1.2        | 0.03         | 75           |     |
| C 4040           | 2,080.0            | 8.9                    | 6.6         | 88.3           | 27.8           | 0.2        | 26.2          | 3.8        | 0.7        | 14.2         | 0.2        | 0.2        | 0.2        | 1.6        | 0.03         | 173          |     |
| C 4041<br>C 4042 | 6,730.0            | 10.4                   | 6.3         | 152.1          | 49.0           | 0.4        | 8.7           | 6.0        | 0.2        | 16.2         | 0.2        | 0.2        | 0.2        | 1.4        | 0.06         | 242          |     |
| C 4042<br>C 4043 | 17,700.0           | 19.7                   | 13.4        | 319.1          | 91.8<br>162.8  | 0.6        | 11.5          | 10.9       | 0.2        | 45.7         | 0.2        | 0.2        | 0.2        | 2.8        | 0.13         | 707          |     |
| C 4043           | 4,250.0<br>8,110.0 | 8.3<br>11.7            | 4.9<br>8.6  | 124.7<br>165.7 | 163.8<br>162.3 | 0.1        | 6.7           | 2.4        | 0.2<br>0.2 | 7.4<br>58.0  | 0.2<br>0.2 | 0.2<br>0.2 | 0.2        | 0.9        | 0.03         | 123          |     |
| C 4044<br>C 4045 | 10,300.0           | 9.5                    | 0.0<br>10.2 | 217.4          | 173.0          | 0.1<br>0.1 | 15.8<br>24.5  | 3.3<br>7.6 | 0.2        | 30.4         | 0.2        | 0.2        | 0.2<br>0.2 | 2.1<br>1.9 | 0.03<br>0.12 | 116<br>623   |     |
| C 4045           | 14,900.0           | 9.5<br>10.4            | 12.2        | 217.4          | 210.2          | 0.1        | 24.5          | 5.0        | 0.2        | 50.4<br>50.0 | 0.2        | 0.2        | 0.2        | 2.8        | 0.12         | 623<br>577   |     |
| C 4040           | 11,300.0           | 8.9                    | 9.3         | 179.7          | 81.6           | 0.3        | 16.0          | 3.7        | 0.2        | 17.0         | 0.2        | 0.2        | 0.2        | 0.6        | 0.03         | 350          |     |
| C 4048           | 3,300.0            | 10.1                   | 3.6         | 109.5          | 40.5           | 0.3        | 3.2           | 1.3        | 0.2        | 8.3          | 0.2        | 0.2        | 0.9        | 0.0        | 0.03         | 49           |     |
| C 4049           | 1,980.0            | 7.7                    | 2.5         | 88.4           | 32.0           | 0.1        | 5.2           | 1.5        | 0.2        | 5.0          | 0.2        | 0.2        | 0.3        | 0.5        | 0.03         | 49<br>26     |     |
| C 4050           | 20,300.0           | 19.1                   | 15.6        | 237.0          | 131.7          | 0.4        | 12.9          | 3.4        | 0.2        | 38.3         | 0.2        | 0.2        | 3.3        | 0.4        | 0.03         | 750          |     |
| C 4051           | 10,900.0           | 12.3                   | 6.0         | 236.8          | 61.0           | 0.4        | 42.7          | 4.6        | 0.2        | 8.0          | 0.2        | 0.2        | 1.3        | 0.2        | 0.03         | 130          |     |
| C 4052           | 10,800.0           | 13.4                   | 6.4         | 232.1          | 74.3           | 0.4        | 23.9          | 3.4        | 0.2        | 5.7          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 52           |     |
|                  |                    |                        |             |                |                |            |               |            |            |              | -          | -          | -          |            |              |              |     |

|                                                                                                                   |                                           |                           |                            | <b>A</b>                      |                                        |                                                           | 1                                                          |                                                                     |                                                                                         | <b>Å</b>                                                                                | 1                                                                                                                                                                                | i I                                                                                                    |                                                                                                                      |                                                                                                                                   | L                                                                                                                                            |                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------|----------------------------|-------------------------------|----------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| EAGLE                                                                                                             | Cu                                        | Ni                        | РЪ                         | Zn                            | Co                                     | Cd                                                        | Мо                                                         | Ag                                                                  | w                                                                                       | As                                                                                      | Sb                                                                                                                                                                               | Bi                                                                                                     | Se                                                                                                                   | Te                                                                                                                                | Hg                                                                                                                                           | Au, j                                                                                             |
| 2 4053                                                                                                            | 2,190.0                                   | 6.6                       | 2.2                        | 100.9                         | 30.0                                   | 0.2                                                       | 7.6                                                        | 1.4                                                                 | 0.2                                                                                     | 4.6                                                                                     | 0.2                                                                                                                                                                              | 0.2                                                                                                    | 0.2                                                                                                                  | 0.5                                                                                                                               | 0.03                                                                                                                                         |                                                                                                   |
| C 4054                                                                                                            | 3,310.0                                   | 8.2                       | 2.5                        | 70.0                          | 52.3                                   | 0.1                                                       | 12.1                                                       | 2.0                                                                 | 0.2                                                                                     | 13.4                                                                                    | 0.2                                                                                                                                                                              | 0.2                                                                                                    | 0.2                                                                                                                  | 0.2                                                                                                                               | 0.03                                                                                                                                         |                                                                                                   |
|                                                                                                                   | Cu                                        | Ni                        | РЬ                         | Zn                            | Co                                     | Cd                                                        | Мо                                                         | Ag                                                                  | w                                                                                       | As                                                                                      | Sb                                                                                                                                                                               | Bi                                                                                                     | Se                                                                                                                   | Te                                                                                                                                | Hg                                                                                                                                           | Au,                                                                                               |
| Chip Sample S                                                                                                     | Statistics:                               |                           |                            |                               |                                        |                                                           |                                                            |                                                                     |                                                                                         |                                                                                         |                                                                                                                                                                                  |                                                                                                        |                                                                                                                      |                                                                                                                                   |                                                                                                                                              |                                                                                                   |
| Count                                                                                                             |                                           | 54                        | 54                         | 54                            | 54                                     | 54                                                        | 54                                                         | 54                                                                  | 54                                                                                      | 54                                                                                      | 54                                                                                                                                                                               | 54                                                                                                     | 54                                                                                                                   | 54                                                                                                                                | 54                                                                                                                                           |                                                                                                   |
| Mean                                                                                                              | 6,401.7                                   | 7.8                       | 6.5                        | 100.0                         | 60.7                                   | 0.3                                                       | 19.5                                                       | 2.8                                                                 | 6.4                                                                                     | 28.7                                                                                    | 0.2                                                                                                                                                                              | 0.2                                                                                                    | 0.5                                                                                                                  | 0.7                                                                                                                               | 0.04                                                                                                                                         | 30                                                                                                |
| s.d.                                                                                                              | 7,690.0                                   | 5.2                       | 3.3                        | 68.3                          | 66.1                                   | 0.4                                                       | 25.3                                                       | 2.0                                                                 | 27.8                                                                                    | 39.6                                                                                    | 0.1                                                                                                                                                                              | 0.0                                                                                                    | 0.7                                                                                                                  | 0.8                                                                                                                               | 0.02                                                                                                                                         | 3                                                                                                 |
| Maximum                                                                                                           | 50.000.0                                  | 28.7                      | 15.6                       | 319.1                         | 367.5                                  | 2.2                                                       | 142.5                                                      | 10. <del>9</del>                                                    | 195.2                                                                                   | 222.8                                                                                   | 1.0                                                                                                                                                                              | 0.2                                                                                                    | 3.3                                                                                                                  | 2.8                                                                                                                               | 0.13                                                                                                                                         | 1,                                                                                                |
| Minimum                                                                                                           | ,                                         | 2.4                       | 2.2                        | 29.6                          | 13.0                                   | 0.1                                                       | 1.0                                                        | 0.1                                                                 | 0.2                                                                                     | 1.1                                                                                     | 0.2                                                                                                                                                                              | 0.2                                                                                                    | 0.2                                                                                                                  | 0.2                                                                                                                               | 0.03                                                                                                                                         |                                                                                                   |
| Printiculi                                                                                                        |                                           |                           |                            |                               |                                        |                                                           |                                                            |                                                                     |                                                                                         |                                                                                         |                                                                                                                                                                                  |                                                                                                        |                                                                                                                      |                                                                                                                                   |                                                                                                                                              |                                                                                                   |
| <b>/</b> ean + 2 s.d.                                                                                             | 2 <b>1,78</b> 1.7                         | 18.2<br>Chin Samol        | 13.0<br>es                 | 236.6                         | 192.9                                  | 1.0                                                       | 70.2                                                       | 6.8                                                                 | 61.9                                                                                    | 107.8                                                                                   | 0.4                                                                                                                                                                              | 0.2                                                                                                    | 1.9                                                                                                                  | 2.3                                                                                                                               | 0.08                                                                                                                                         | 1,0                                                                                               |
| <b>/</b> ean + 2 s.d.                                                                                             | 21,781.7<br>pefficients: C                | Chip Sampl                | es                         |                               |                                        |                                                           |                                                            |                                                                     |                                                                                         |                                                                                         | 0.4                                                                                                                                                                              | 0.2<br>Bi                                                                                              | 1.9<br>Se                                                                                                            | 2.3                                                                                                                               |                                                                                                                                              |                                                                                                   |
| flean + 2 s.d.<br>Correlation Co                                                                                  | 21,781.7<br>pefficients: C                | Chip Sampl<br>Ni          | es<br>Pb                   | Zn                            | Co                                     | Cd                                                        | Mo                                                         | Ag                                                                  | w                                                                                       | As                                                                                      | Sb                                                                                                                                                                               | Bi                                                                                                     | Se                                                                                                                   | Те                                                                                                                                | 0.08<br>Hg<br>0.173                                                                                                                          | Au                                                                                                |
| fean + 2 s.d.<br>Correlation Co<br>Cu                                                                             | 21,781.7<br>pefficients: C<br>Cu<br>1.000 | Chip Sampl<br>Ni<br>0.321 | es<br>Pb<br>0.751          | Zn<br>0.562                   | Co<br>0.379                            | Cd<br>(0.114)                                             | Mo<br>0.296                                                | Ag<br>0.493                                                         | W<br>(0.102)                                                                            | As<br>0.028                                                                             | Sb<br>(0.065)                                                                                                                                                                    | Bi<br>(0.000)                                                                                          |                                                                                                                      |                                                                                                                                   | Hg                                                                                                                                           | Au                                                                                                |
| flean + 2 s.d.<br>Correlation Co<br>Cu<br>Ni                                                                      | 21,781.7<br>pefficients: C<br>Cu<br>1.000 | Chip Sampl<br>Ni          | es<br>Pb<br>0.751<br>0.529 | Zn<br>0.562<br>0.677          | Co<br>0.379<br>0.811                   | Cd<br>(0.114)<br>(0.114)                                  | Mo<br>0.296<br>0.102                                       | Ag<br>0.493<br>0.543                                                | W<br>(0.102)<br>(0.138)                                                                 | As                                                                                      | Sb                                                                                                                                                                               | Bi                                                                                                     | Se<br>0.664                                                                                                          | Te<br>0.178                                                                                                                       | Hg<br>0.173                                                                                                                                  | Au                                                                                                |
| Mean + 2 s.d.<br>Correlation Co<br>Cu<br>Ni<br>Pb                                                                 | 21,781.7<br>pefficients: C<br>Cu<br>1.000 | Chip Sampl<br>Ni<br>0.321 | es<br>Pb<br>0.751          | Zn<br>0.562<br>0.677<br>0.681 | Co<br>0.379<br>0.811<br>0.560          | Cd<br>(0.114)<br>(0.114)<br>(0.142)                       | Mo<br>0.296<br>0.102<br>0.367                              | Ag<br>0.493<br>0.543<br>0.666                                       | W<br>(0.102)<br>(0.138)<br>(0.116)                                                      | As<br>0.028<br>0.081<br>0.065                                                           | Sb<br>(0.065)<br>(0.074)<br>(0.075)                                                                                                                                              | Bi<br>(0.000)<br>0.000                                                                                 | Se<br>0.664<br>0.115                                                                                                 | Te<br>0.178<br>0.693                                                                                                              | Hg<br>0.173<br>0.247                                                                                                                         | Au<br>0<br>0                                                                                      |
| Aean + 2 s.d.<br>Correlation Co<br>Cu<br>Ni<br>Pb<br>Zn                                                           | 21,781.7<br>pefficients: C<br>Cu<br>1.000 | Chip Sampl<br>Ni<br>0.321 | es<br>Pb<br>0.751<br>0.529 | Zn<br>0.562<br>0.677          | Co<br>0.379<br>0.811<br>0.560<br>0.595 | Cd<br>(0.114)<br>(0.114)<br>(0.142)<br>(0.073)            | Mo<br>0.296<br>0.102<br>0.367<br>0.119                     | Ag<br>0.493<br>0.543<br>0.666<br>0.694                              | W<br>(0.102)<br>(0.138)<br>(0.116)<br>(0.150)                                           | As<br>0.028<br>0.081                                                                    | Sb<br>(0.065)<br>(0.074)<br>(0.075)<br>(0.100)                                                                                                                                   | Bi<br>(0.000)<br>0.000<br>(0.000)<br>0.000                                                             | Se<br>0.664<br>0.115<br>0.523                                                                                        | Te<br>0.178<br>0.693<br>0.554                                                                                                     | Hg<br>0.173<br>0.247<br>0.260                                                                                                                | Au<br>0<br>0<br>0                                                                                 |
| Mean + 2 s.d.<br>Correlation Co<br>Cu<br>Ni<br>Pb<br>Zn<br>Co                                                     | 21,781.7<br>Defficients: C<br>Cu<br>1.000 | Chip Sampl<br>Ni<br>0.321 | es<br>Pb<br>0.751<br>0.529 | Zn<br>0.562<br>0.677<br>0.681 | Co<br>0.379<br>0.811<br>0.560          | Cd<br>(0.114)<br>(0.114)<br>(0.142)<br>(0.073)<br>(0.163) | Mo<br>0.296<br>0.102<br>0.367<br>0.119<br>0.191            | Ag<br>0.493<br>0.543<br>0.666<br>0.694<br>0.515                     | W<br>(0.102)<br>(0.138)<br>(0.116)                                                      | As<br>0.028<br>0.081<br>0.065<br>(0.036)                                                | Sb<br>(0.065)<br>(0.074)<br>(0.075)                                                                                                                                              | Bi<br>(0.000)<br>0.000<br>(0.000)                                                                      | Se<br>0.664<br>0.115<br>0.523<br>0.248                                                                               | Te<br>0.178<br>0.693<br>0.554<br>0.628                                                                                            | Hg<br>0.173<br>0.247<br>0.260<br>0.440                                                                                                       | Au,<br>0<br>0<br>0<br>0                                                                           |
| Aean + 2 s.d.<br>Correlation Co<br>Cu<br>Ni<br>Pb<br>Zn<br>Co<br>Cd                                               | 21,781.7<br>Defficients: C<br>Cu<br>1.000 | Chip Sampl<br>Ni<br>0.321 | es<br>Pb<br>0.751<br>0.529 | Zn<br>0.562<br>0.677<br>0.681 | Co<br>0.379<br>0.811<br>0.560<br>0.595 | Cd<br>(0.114)<br>(0.114)<br>(0.142)<br>(0.073)            | Mo<br>0.296<br>0.102<br>0.367<br>0.119                     | Ag<br>0.493<br>0.543<br>0.666<br>0.694                              | W<br>(0.102)<br>(0.138)<br>(0.116)<br>(0.150)<br>(0.120)                                | As<br>0.028<br>0.081<br>0.065<br>(0.036)<br>0.173                                       | Sb<br>(0.065)<br>(0.074)<br>(0.075)<br>(0.100)<br>(0.074)                                                                                                                        | Bi<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)                                                  | Se<br>0.664<br>0.115<br>0.523<br>0.248<br>0.080                                                                      | Te<br>0.178<br>0.693<br>0.554<br>0.628<br>0.715                                                                                   | Hg<br>0.173<br>0.247<br>0.260<br>0.440<br>0.146                                                                                              | Au,<br>0<br>0<br>0<br>0<br>0                                                                      |
| Aean + 2 s.d.<br>Correlation Co<br>Cu<br>Ni<br>Pb<br>Zn<br>Co<br>Cd<br>Mo                                         | 21,781.7<br>Defficients: C<br>Cu<br>1.000 | Chip Sampl<br>Ni<br>0.321 | es<br>Pb<br>0.751<br>0.529 | Zn<br>0.562<br>0.677<br>0.681 | Co<br>0.379<br>0.811<br>0.560<br>0.595 | Cd<br>(0.114)<br>(0.114)<br>(0.142)<br>(0.073)<br>(0.163) | Mo<br>0.296<br>0.102<br>0.367<br>0.119<br>0.191<br>(0.166) | Ag<br>0.493<br>0.543<br>0.666<br>0.694<br>0.515<br>(0.017)          | W<br>(0.102)<br>(0.138)<br>(0.116)<br>(0.150)<br>(0.120)<br>0.527                       | As<br>0.028<br>0.081<br>0.065<br>(0.036)<br>0.173<br>0.877                              | Sb<br>(0.065)<br>(0.074)<br>(0.075)<br>(0.100)<br>(0.074)<br>0.516                                                                                                               | Bi<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)<br>0.000                                         | Se<br>0.664<br>0.115<br>0.523<br>0.248<br>0.080<br>(0.028)                                                           | Te<br>0.178<br>0.693<br>0.554<br>0.628<br>0.715<br>(0.168)                                                                        | Hg<br>0.173<br>0.247<br>0.260<br>0.440<br>0.146<br>0.015                                                                                     | Au<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             |
| Aean + 2 s.d.<br>Correlation Co<br>Cu<br>Ni<br>Pb<br>Zn<br>Co<br>Cd<br>Mo<br>Ag                                   | 21,781.7<br>Defficients: C<br>Cu<br>1.000 | Chip Sampl<br>Ni<br>0.321 | es<br>Pb<br>0.751<br>0.529 | Zn<br>0.562<br>0.677<br>0.681 | Co<br>0.379<br>0.811<br>0.560<br>0.595 | Cd<br>(0.114)<br>(0.114)<br>(0.142)<br>(0.073)<br>(0.163) | Mo<br>0.296<br>0.102<br>0.367<br>0.119<br>0.191<br>(0.166) | Ag<br>0.493<br>0.543<br>0.666<br>0.694<br>0.515<br>(0.017)<br>0.384 | W<br>(0.102)<br>(0.138)<br>(0.116)<br>(0.150)<br>(0.120)<br>0.527<br>(0.138)            | As<br>0.028<br>0.081<br>0.065<br>(0.036)<br>0.173<br>0.877<br>(0.050)                   | Sb<br>(0.065)<br>(0.074)<br>(0.075)<br>(0.100)<br>(0.074)<br>0.516<br>(0.089)                                                                                                    | Bi<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>0.000                                | Se<br>0.664<br>0.115<br>0.523<br>0.248<br>0.080<br>(0.028)<br>0.187                                                  | Te<br>0.178<br>0.693<br>0.554<br>0.628<br>0.715<br>(0.168)<br>0.133                                                               | Hg<br>0.173<br>0.247<br>0.260<br>0.440<br>0.146<br>0.015<br>(0.032)                                                                          | Au<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   |
| Aean + 2 s.d.<br>Correlation Co<br>Cu<br>Ni<br>Pb<br>Zn<br>Co<br>Cd<br>Mo<br>Ag<br>W                              | 21,781.7<br>Defficients: C<br>Cu<br>1.000 | Chip Sampl<br>Ni<br>0.321 | es<br>Pb<br>0.751<br>0.529 | Zn<br>0.562<br>0.677<br>0.681 | Co<br>0.379<br>0.811<br>0.560<br>0.595 | Cd<br>(0.114)<br>(0.114)<br>(0.142)<br>(0.073)<br>(0.163) | Mo<br>0.296<br>0.102<br>0.367<br>0.119<br>0.191<br>(0.166) | Ag<br>0.493<br>0.543<br>0.666<br>0.694<br>0.515<br>(0.017)<br>0.384 | W<br>(0.102)<br>(0.138)<br>(0.116)<br>(0.150)<br>(0.120)<br>0.527<br>(0.138)<br>(0.042) | As<br>0.028<br>0.081<br>0.065<br>(0.036)<br>0.173<br>0.877<br>(0.050)<br>0.122          | Sb           (0.065)           (0.074)           (0.075)           (0.100)           (0.074)           0.516           (0.089)           (0.034)                                 | Bi<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>0.000<br>(0.000)                     | Se<br>0.664<br>0.115<br>0.523<br>0.248<br>0.080<br>(0.028)<br>0.187<br>0.140                                         | Te<br>0.178<br>0.693<br>0.554<br>0.628<br>0.715<br>(0.168)<br>0.133<br>0.635                                                      | Hg<br>0.173<br>0.247<br>0.260<br>0.440<br>0.146<br>0.015<br>(0.032)<br>0.571<br>(0.059)<br>(0.008)                                           | Au<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         |
| Mean + 2 s.d.<br>Correlation Co<br>Cu<br>Ni<br>Pb<br>Zn<br>Co<br>Cd<br>Cd<br>Mo<br>Ag<br>W<br>As                  | 21,781.7<br>pefficients: C<br>Cu<br>1.000 | Chip Sampl<br>Ni<br>0.321 | es<br>Pb<br>0.751<br>0.529 | Zn<br>0.562<br>0.677<br>0.681 | Co<br>0.379<br>0.811<br>0.560<br>0.595 | Cd<br>(0.114)<br>(0.114)<br>(0.142)<br>(0.073)<br>(0.163) | Mo<br>0.296<br>0.102<br>0.367<br>0.119<br>0.191<br>(0.166) | Ag<br>0.493<br>0.543<br>0.666<br>0.694<br>0.515<br>(0.017)<br>0.384 | W<br>(0.102)<br>(0.138)<br>(0.116)<br>(0.150)<br>(0.120)<br>0.527<br>(0.138)<br>(0.042) | As<br>0.028<br>0.081<br>0.065<br>(0.036)<br>0.173<br>0.877<br>(0.050)<br>0.122<br>0.491 | Sb           (0.065)           (0.074)           (0.075)           (0.100)           (0.074)           0.516           (0.089)           (0.034)           0.925                 | Bi<br>(0.000)<br>0.000<br>(0.000)<br>(0.000)<br>0.000<br>0.000<br>(0.000)<br>(0.000)<br>0.000          | Se<br>0.664<br>0.115<br>0.523<br>0.248<br>0.080<br>(0.028)<br>0.187<br>0.140<br>(0.026)<br>(0.004)<br>0.019          | Te<br>0.178<br>0.693<br>0.554<br>0.628<br>0.715<br>(0.168)<br>0.133<br>0.635<br>(0.139)<br>0.081<br>(0.101)                       | Hg<br>0.173<br>0.247<br>0.260<br>0.440<br>0.146<br>0.015<br>(0.032)<br>0.571<br>(0.059)<br>(0.008)<br>(0.041)                                | Au.<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         |
| Mean + 2 s.d.<br>Correlation Co<br>Cu<br>Ni<br>Pb<br>Zn<br>Co<br>Cd<br>Cd<br>Mo<br>Ag<br>W<br>As<br>Sb            | 21,781.7<br>pefficients: C<br>Cu<br>1.000 | Chip Sampl<br>Ni<br>0.321 | es<br>Pb<br>0.751<br>0.529 | Zn<br>0.562<br>0.677<br>0.681 | Co<br>0.379<br>0.811<br>0.560<br>0.595 | Cd<br>(0.114)<br>(0.114)<br>(0.142)<br>(0.073)<br>(0.163) | Mo<br>0.296<br>0.102<br>0.367<br>0.119<br>0.191<br>(0.166) | Ag<br>0.493<br>0.543<br>0.666<br>0.694<br>0.515<br>(0.017)<br>0.384 | W<br>(0.102)<br>(0.138)<br>(0.116)<br>(0.150)<br>(0.120)<br>0.527<br>(0.138)<br>(0.042) | As<br>0.028<br>0.081<br>0.065<br>(0.036)<br>0.173<br>0.877<br>(0.050)<br>0.122<br>0.491 | Sb           (0.065)           (0.074)           (0.075)           (0.100)           (0.074)           0.516           (0.089)           (0.034)           0.925           0.478 | Bi<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)          | Se<br>0.664<br>0.115<br>0.523<br>0.248<br>0.080<br>(0.028)<br>0.187<br>0.140<br>(0.026)<br>(0.004)<br>0.019<br>0.000 | Te<br>0.178<br>0.693<br>0.554<br>0.628<br>0.715<br>(0.168)<br>0.133<br>0.635<br>(0.139)<br>0.081<br>(0.101)<br>(0.000)            | Hg<br>0.173<br>0.247<br>0.260<br>0.440<br>0.146<br>0.015<br>(0.032)<br>0.571<br>(0.059)<br>(0.008)<br>(0.041)<br>(0.000)                     | Au.<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0          |
| Mean + 2 s.d.<br>Correlation Co<br>Cu<br>Ni<br>Pb<br>Zn<br>Co<br>Cd<br>Cd<br>Mo<br>Ag<br>W<br>As                  | 21,781.7<br>pefficients: C<br>Cu<br>1.000 | Chip Sampl<br>Ni<br>0.321 | es<br>Pb<br>0.751<br>0.529 | Zn<br>0.562<br>0.677<br>0.681 | Co<br>0.379<br>0.811<br>0.560<br>0.595 | Cd<br>(0.114)<br>(0.114)<br>(0.142)<br>(0.073)<br>(0.163) | Mo<br>0.296<br>0.102<br>0.367<br>0.119<br>0.191<br>(0.166) | Ag<br>0.493<br>0.543<br>0.666<br>0.694<br>0.515<br>(0.017)<br>0.384 | W<br>(0.102)<br>(0.138)<br>(0.116)<br>(0.150)<br>(0.120)<br>0.527<br>(0.138)<br>(0.042) | As<br>0.028<br>0.081<br>0.065<br>(0.036)<br>0.173<br>0.877<br>(0.050)<br>0.122<br>0.491 | Sb           (0.065)           (0.074)           (0.075)           (0.100)           (0.074)           0.516           (0.089)           (0.034)           0.925           0.478 | Bi<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)<br>0.000 | Se<br>0.664<br>0.115<br>0.523<br>0.248<br>0.080<br>(0.028)<br>0.187<br>0.140<br>(0.026)<br>(0.004)<br>0.019          | Te<br>0.178<br>0.693<br>0.554<br>0.628<br>0.715<br>(0.168)<br>0.133<br>0.635<br>(0.139)<br>0.081<br>(0.101)<br>(0.000)<br>(0.217) | Hg<br>0.173<br>0.247<br>0.260<br>0.440<br>0.146<br>0.015<br>(0.032)<br>0.571<br>(0.059)<br>(0.008)<br>(0.041)<br>(0.000)<br>(0.097)          | Au<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| Aean + 2 s.d.<br>Correlation Co<br>Cu<br>Ni<br>Pb<br>Zn<br>Co<br>Cd<br>Mo<br>Ag<br>W<br>W<br>As<br>Sb<br>Bi<br>Se | 21,781.7<br>pefficients: C<br>Cu<br>1.000 | Chip Sampl<br>Ni<br>0.321 | es<br>Pb<br>0.751<br>0.529 | Zn<br>0.562<br>0.677<br>0.681 | Co<br>0.379<br>0.811<br>0.560<br>0.595 | Cd<br>(0.114)<br>(0.114)<br>(0.142)<br>(0.073)<br>(0.163) | Mo<br>0.296<br>0.102<br>0.367<br>0.119<br>0.191<br>(0.166) | Ag<br>0.493<br>0.543<br>0.666<br>0.694<br>0.515<br>(0.017)<br>0.384 | W<br>(0.102)<br>(0.138)<br>(0.116)<br>(0.150)<br>(0.120)<br>0.527<br>(0.138)<br>(0.042) | As<br>0.028<br>0.081<br>0.065<br>(0.036)<br>0.173<br>0.877<br>(0.050)<br>0.122<br>0.491 | Sb           (0.065)           (0.074)           (0.075)           (0.100)           (0.074)           0.516           (0.089)           (0.034)           0.925           0.478 | Bi<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)<br>0.000 | Se<br>0.664<br>0.115<br>0.523<br>0.248<br>0.080<br>(0.028)<br>0.187<br>0.140<br>(0.026)<br>(0.004)<br>0.019<br>0.000 | Te<br>0.178<br>0.693<br>0.554<br>0.628<br>0.715<br>(0.168)<br>0.133<br>0.635<br>(0.139)<br>0.081<br>(0.101)<br>(0.000)            | Hg<br>0.173<br>0.247<br>0.260<br>0.440<br>0.146<br>0.015<br>(0.032)<br>0.571<br>(0.059)<br>(0.008)<br>(0.041)<br>(0.000)<br>(0.097)<br>0.437 | Au<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| Aean + 2 s.d.<br>Correlation Co<br>Cu<br>Ni<br>Pb<br>Zn<br>Co<br>Cd<br>Mo<br>Ag<br>W<br>As<br>Sb<br>Bi            | 21,781.7<br>Defficients: C<br>Cu<br>1.000 | Chip Sampl<br>Ni<br>0.321 | es<br>Pb<br>0.751<br>0.529 | Zn<br>0.562<br>0.677<br>0.681 | Co<br>0.379<br>0.811<br>0.560<br>0.595 | Cd<br>(0.114)<br>(0.114)<br>(0.142)<br>(0.073)<br>(0.163) | Mo<br>0.296<br>0.102<br>0.367<br>0.119<br>0.191<br>(0.166) | Ag<br>0.493<br>0.543<br>0.666<br>0.694<br>0.515<br>(0.017)<br>0.384 | W<br>(0.102)<br>(0.138)<br>(0.116)<br>(0.150)<br>(0.120)<br>0.527<br>(0.138)<br>(0.042) | As<br>0.028<br>0.081<br>0.065<br>(0.036)<br>0.173<br>0.877<br>(0.050)<br>0.122<br>0.491 | Sb           (0.065)           (0.074)           (0.075)           (0.100)           (0.074)           0.516           (0.089)           (0.034)           0.925           0.478 | Bi<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)<br>0.000<br>(0.000)<br>0.000 | Se<br>0.664<br>0.115<br>0.523<br>0.248<br>0.080<br>(0.028)<br>0.187<br>0.140<br>(0.026)<br>(0.004)<br>0.019<br>0.000 | Te<br>0.178<br>0.693<br>0.554<br>0.628<br>0.715<br>(0.168)<br>0.133<br>0.635<br>(0.139)<br>0.081<br>(0.101)<br>(0.000)<br>(0.217) | Hg<br>0.173<br>0.247<br>0.260<br>0.440<br>0.146<br>0.015<br>(0.032)<br>0.571<br>(0.059)<br>(0.008)<br>(0.041)<br>(0.000)<br>(0.097)          | Au<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

| EAGLE         Cu         Ni         Pb         Zn         Co         Cd         Mo         Ag         W         As         Sb         Bi         Sa         Te         Hg         Au, ppb           D1001         2400         5.2         9.8         82.1         2.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.4         0.2         0.8         0.03         8           D1001         82.7         3.5         0.8         68.7         1.0         1.0         1.0         0.2         1.4         0.2         0.4         0.2         1.8         0.03         8           D1004         2.100.0         4.4         2.04         2.1         1.0         0.2         2.2         0.2         0.4         0.2         1.1         0.03         1.3           D1007         127.5         3.5         3.5         55.0         2.3         0.1         1.1         0.2         2.4         0.2         0.5         0.2         1.1         0.03         1           D1007         127.5         3.4         0.1         1.3         0.1         0.2         0.2         0.5         0.2         1.1 </th <th><b>L</b></th> <th>•</th> <th><b>N</b></th> <th></th> <th>L</th> <th>•</th> <th>L.</th> <th>L</th> <th></th> <th></th> <th>R.</th> <th></th> <th><b>N</b></th> <th>1</th> <th>t.</th> <th></th> <th>•</th> <th>•</th>                                        | <b>L</b> | •                 | <b>N</b> |       | L       | •     | L.   | L   |     |     | R.   |     | <b>N</b> | 1   | t.  |      | •       | • |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|----------|-------|---------|-------|------|-----|-----|-----|------|-----|----------|-----|-----|------|---------|---|
| D1002         392.8         4.5         8.9         54.4         2.2         0.5         1.1         0.2         0.2         0.4         0.2         0.68         0.2         1.5         0.03         8           D1004         2.100.0         4.9         2.00.4         4.9         2.00.4         4.9         2.0.3         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4                                                                                                                                                                                                                                   | EAGLE    | Cu                | Ni       | Рb    | Zn      | Со    | Cd   | Мо  | Ag  | w   | As   | Sb  | Bi       | Se  | Те  | Hg   | Au, ppb |   |
| D1002         392.8         4.5         8.9         54.4         2.2         0.5         1.1         0.2         0.2         0.4         0.2         0.68         0.2         1.5         0.03         8           D1004         2.100.0         4.9         2.00.4         4.9         2.00.4         4.9         2.0.3         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4                                                                                                                                                                                                                                   | D 1001   | 240.0             | 5.2      | 9.8   | 82.1    | 22.0  | 0.2  | 1.3 | 0.4 | 0.2 | 0.2  | 0.2 | 0.5      | 0.2 | 0.5 | 0.03 | 15      |   |
| D         1003         607         3.3         508         1637         197         1.0         1.0         0.3         0.2         1.4         0.2         0.4         0.2         1.8         0.03         5           D         1004         2.00         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2                                                                                                                                                                                                                                           | Ð 1002   | 392.8             | 4.5      | 8.9   | 58.4    |       |      |     | 0.2 |     |      |     |          |     |     |      |         |   |
| D1005         1438         3.9         4.6         86.6         28.1         0.1         2.5         0.2         0.2         0.5         0.2         0.6         0.2         0.6         0.17         3           D1007         127.5         3.3         3.0         2.84         15.6         0.1         1.1         0.2         0.2         0.5         0.2         0.5         0.2         3.0         0.3         1.1         0.0         0.3         9           D1007         127.5         3.4         5.5         0.2         0.1         1.5         0.1         0.2         0.2         0.5         0.2         1.1         0.03         1         0.05         0.2         0.5         0.2         1.1         0.05         0.5         0.2         1.1         0.05         0.2         0.2         0.5         0.2         1.1         0.05         0.5         0.2         1.1         0.05         0.1         1.1         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.2         0.2         0.2         0.3         0.2                                                                                                                                                                                                                                                | D 1003   | 89.7              | 3.3      | 50.8  | 163.7   | 19.7  | 1.0  | 1.0 | 0.3 | 0.2 | 1.4  | 0.2 | 0.8      |     | 1.9 | 0.03 | 5       |   |
| D1006         357.0         3.3         3.0         288         15.6         0.1         1.2         0.2         0.2         0.2         0.2         0.2         0.4         1.1         0.5         0.03         9           D1008         26.5         3.7         3.2         66.2         2.3         0.1         1.5         0.1         0.2         2.4         0.2         0.5         0.2         1.7         0.40         7           D1008         25.5         6.2         6.0         0.2         1.1         0.0         1.1         0.2         0.2         0.4         0.2         1.4         0.03         1.1           D1101         14.52         3.4         2.8         4.25         1.6.0         0.1         1.4         0.4         0.2         0.2         0.4         0.2         0.5         0.2         0.1         0.2         0.4         0.2         0.5         0.2         0.1         0.2         0.4         0.2         0.2         0.4         0.2         0.2         0.4         0.2         0.2         0.03         0.2         1.4         0.2         0.2         0.2         0.03         0.2         0.2         0.2         0.03                                                                                                                                                                                                                                                     | D 1004   | 2,100.0           | 4.9      | 20.9  | 215.7   | 220.9 | 0.1  | 2.5 | 1.0 | 0.2 | 22.0 | 0.2 | 0.4      | 0.2 | 3.1 | 0.03 | 18      |   |
| D 1007         127.5         3.5         5.50         22.2         0.1         1.1         0.2         0.2         0.5         0.2         2.3         0.31         21           D 1009         28.3         3.7         1.8         75.5         14.8         0.1         1.3         0.1         0.2         7.4         0.2         0.5         0.2         1.1         0.03         1           D 1010         593.0         5.5         5.2         8.8         2.2         0.1         0.2         0.2         0.4         0.2         1.4         0.03         57           D 1011         145.2         3.4         2.9         4.2.5         1.6         0.0         1.4         0.3         0.2         4.2         0.2         0.5         0.2         0.4         0.03         7           D 1014         2.4.5         3.4         2.8         5.4         1.6         0.1         1.6         0.2         2.4         0.2         0.4         0.2         0.2         0.1         2.2         0.1         0.2         2.4         0.2         0.2         0.1         2.2         0.1         0.2         2.4         0.2         0.2         0.1         0.2                                                                                                                                                                                                                                                        | D 1005   | 143.8             | 3.9      | 4.6   | 86.6    | 28.1  | 0.1  | 2.5 | 0.2 | 0.2 | 3.9  | 0.2 | 0.6      | 0.2 | 0.6 | 0.17 | 3       |   |
| D 1008         285         3.7         3.2         88.2         20.2         0.1         1.5         0.1         0.2         0.2         0.5         0.2         1.7         0.40         7           D 1000         593.3         5.7         1.8         7.55         1.4         0.1         2.0         0.2         0.2         0.4         0.2         1.4         0.03         57           D 1011         107.7         3.9         8.8         113.7         36.0         0.1         1.2         0.4         0.2         2.4         0.2         0.8         0.22         1.1         0.03         57           D 1011         107.7         3.9         8.8         113.7         38.0         0.1         1.2         0.4         0.2         2.4         0.0         0.2         0.8         0.22         1.1         0.0         1.3         0.2         0.5         0.2         0.1         0.2         0.4         0.2         0.4         0.2         0.2         0.2         0.4         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2 <td>D 1006</td> <td>357.0</td> <td>3.3</td> <td>3.0</td> <td>29.8</td> <td>15.6</td> <td>0.1</td> <td>1.2</td> <td>0.2</td> <td>0.2</td> <td>5.2</td> <td>0.2</td> <td>0.4</td> <td>1.1</td> <td>0.5</td> <td>0.03</td> <td>9</td> <td></td> | D 1006   | 357.0             | 3.3      | 3.0   | 29.8    | 15.6  | 0.1  | 1.2 | 0.2 | 0.2 | 5.2  | 0.2 | 0.4      | 1.1 | 0.5 | 0.03 | 9       |   |
| D 1009         233         37         1.8         75.5         14.8         0.1         1.3         0.1         0.2         0.2         0.2         0.4         0.0         1           D 1010         1452         3.4         2.9         4.25         162         0.1         0.7         0.2         0.2         0.4         0.2         0.5         0.2         0.4         0.05         0.2         1.4         0.03         7           D 1012         107.7         3.9         8.8         113.7         38.0         0.1         1.4         0.3         0.2         0.5         0.2         0.8         0.2         0.6         0.2         0.3         0.2         0.5         0.2         0.3         0.2         0.3         0.2         0.3         0.2         0.3         0.2         0.3         0.2         0.3         0.2         0.3         0.2         0.3         0.2         0.3         0.2         0.3         0.2         0.3         0.2         0.3         0.2         0.3         0.2         0.2         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3                                                                                                                                                                                                                                                 | D 1007   | 127.5             | 3.5      | 3.5   | 55.0    | 23.2  | 0.1  | 1.1 | 0.2 | 0.2 | 8.5  | 0.2 | 0.5      | 0.2 | 2.3 | 0.31 | 21      |   |
| D 1010         653.0         5.6         6.2         8.0         2.2         0.1         2.0         0.3         0.2         4.4         0.2         1.4         0.03         57           D 1012         10.7.         3.9         8.8         113.7         38.0         0.1         1.2         0.4         0.2         0.6         0.2         0.8         0.22         1.1         0.06         57           D 1014         175.6         3.4         2.8         4.9         1.3         0.2         1.6         0.2         0.6         0.2         0.8         0.2         0.6         0.2         0.8         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.4         0.2         0.2         0.4         0.2         0.2         0.2         0.4         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2                                                                                                                                                                                                                                             | D 1008   | 26.5              | 3.7      | 3.2   | 86.2    | 29.2  | 0.1  | 1.5 | 0.1 | 0.2 | 7.4  | 0.2 | 0.5      | 0.2 | 1.7 | 0.40 | 7       |   |
| D 1011         1452         3.4         2.9         42.5         16.2         0.1         0.7         0.2         0.2         0.5         0.2         1.1         0.06         5           D 1013         175.6         3.4         2.8         54.9         13.2         0.1         1.4         0.3         0.2         0.5         0.2         0.9         0.03         7           D 1014         2.3.3         3.3         8.9         70.9         16.1         0.1         1.8         1.1         0.2         0.5         0.2         0.2         0.3         37           D 1015         337.0         3.3         8.9         70.9         16.1         0.1         1.5         0.2         2.7         0.2         0.5         0.2         0.2         0.3         1         1.5         0.2         0.2         0.2         0.3         1         0.2         0.5         0.2         0.2         0.2         0.3         1         0.2         0.6         0.2         1.4         0.2         0.2         0.3         1.4         0.2         0.2         0.3         0.3         1.5         0.2         0.2         0.2         0.6         0.2         0.2                                                                                                                                                                                                                                                        | D 1009   | 29.3              | 3.7      | 1.8   | 75.5    | 14.8  | 0.1  | 1.3 | 0.1 | 0.2 | 0.2  | 0.2 | 0.5      | 0.2 | 1.1 | 0.03 | 1       |   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D 1010   | 593.0             | 5.6      | 6.2   | 80.8    | 22.2  | 0.1  | 2.0 | 0.3 | 0.2 | 4.2  | 0.2 | 0.4      | 0.2 | 1.4 | 0.03 | 57      |   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D 1011   | 145.2             | 3.4      | 2.9   | 42.5    | 16.2  | 0.1  | 0.7 | 0.2 | 0.2 | 2.4  | 0.2 | 0.5      | 0.2 | 1.1 | 0.06 | 5       |   |
| D         D         D         1         P         5         562         160         0.4         1.8         1.1         0.2         16.2         0.4         0.2         0.2         0.3         37           D         1016         653         3.2         3.9         74.6         13.6         0.1         1.5         0.2         2.4         0.2         0.5         0.2         0.2         0.03         3           D         1016         653         3.2         2.5         61.6         1.1         1.2         0.2         0.6         0.2         1.4         0.2         0.03         3           D         1018         12.6         1.3         0.1         0.2         0.6         0.2         1.4         0.2         0.03         3           D         1020         2.850.0         4.0         1.8         61.6         0.1         0.2         1.3         0.2         1.6         0.2         0.2         0.03         3.4           D         1022         154.5         4.0         1.8         0.1         1.0         0.2         1.6         0.2         1.6         0.2         0.1         0.2         0.2         1.6<                                                                                                                                                                                                                                                                             | D 1012   | 107.7             | 3.9      | 8.8   | 113.7   | 38.0  | 0.1  | 1.2 | 0.4 | 0.2 | 8.9  | 0.2 | 0.6      | 0.2 | 0.8 | 0.22 | 1       |   |
| D 1015         337.0         3.3         8.9         70.9         16.1         0.1         1.6         0.3         0.2         2.7         0.2         0.5         0.2         0.1         3.0         0.12         5           D 1016         653         3.2         3.9         74.6         13.6         0.1         1.5         0.2         0.2         0.1         3.0         0.1         0.2         3.6         0.2         0.1         0.2         0.03         1.4           D 1017         111.8         3.3         2.5         61.6         16.0         0.1         3.0         0.1         0.2         2.7         0.2         3.2         0.2         0.3         0.03         4           D 1020         2.550.0         4.0         7.3         10.55         3.6         0.2         1.1         0.2         0.2         1.4         0.2         0.03         1.6           D 1021         154.4         3.7         7.6         1.8         0.1         1.4         0.2         2.8         0.2         0.1         0.05         5           D 1023         44.5         3.4         1.6         0.1         0.4         0.1         0.2         0.                                                                                                                                                                                                                                                           | D 1013   | 175.6             | 3.4      | 2.8   | 54.9    | 13.2  | 0.1  | 1.4 | 0.3 | 0.2 | 3.0  | 0.2 | 0.5      | 0.2 | 0.9 | 0.03 | 7       |   |
| D 1016         65.3         3.2         3.9         7.46         1.42         0.1         1.5         0.2         0.2         2.4         0.2         0.5         0.2         0.2         0.03         1           D 1017         111.8         3.3         2.8         43.3         14.2         0.1         1.3         0.1         0.2         0.6         0.2         1.4         0.2         0.2         0.03         5           D 1019         37.6         3.2         2.5         61.6         16.0         0.1         3.0         0.2         1.4         0.2         0.2         0.05         1.2           D 1020         2.890.0         4.0         7.3         105.5         3.6         1.4         0.1         1.2         0.1         0.2         2.9         0.2         0.1         0.05         1.3         0.1         0.2         1.3         0.2         1.4         0.2         2.9         0.2         0.4         0.05         5         0.02         1.4         0.2         2.9         0.2         0.7         0.07         5         0.2         1.4         0.2         1.6         0.05         1.2         0.0         0.3         2         1.4                                                                                                                                                                                                                                                | D 1014   | 243.0             | 3.1      | 19.5  | 56.2    | 16.0  | 0.4  | 1.8 | 1.1 | 0.2 | 16.2 | 0.2 | 0.4      | 0.2 | 0.2 | 0.03 | 37      |   |
| D 1017         111.8         3.3         2.8         43.3         14.2         0.1         1.2         0.1         0.2         3.6         0.8         1.5         0.2         0.2         0.10         3           D 1018         1267         3.1         0.6         2.25         61.6         16.0         0.1         3.0         0.1         0.2         2.7         0.2         3.2         0.2         0.3         0.03         4           D 1020         2550.0         4.0         7.3         105.5         396         0.2         13.6         0.2         0.2         0.2         0.16         0.2         0.03         6           D 1021         151.4         3.7         64.9         18.4         0.1         1.3         0.1         0.2         2.9         0.2         0.4         0.05         5           D 1023         41.5         3.4         1.7         64.9         18.4         0.1         0.4         0.1         0.2         2.1         0.2         0.2         0.4         0.05         5           D 1025         38.0         3.6         2.8         7.48         18.8         0.1         0.4         0.1         0.2                                                                                                                                                                                                                                                                    | D 1015   | 337.0             | 3.3      | 8.9   | 70.9    | 16.1  | 0.1  | 1.6 | 0.3 | 0.2 | 2.7  | 0.2 | 0.5      | 0.2 | 1.3 | 0.12 | 5       |   |
| D 1018         126.7         3.1         0.6         2.2.5         61.6         1.3         0.1         0.2         0.6         0.2         1.4         0.2         0.2         0.3         4           D 1020         2.9500         4.0         7.3         105.5         39.6         0.2         3.0         1.3         0.2         15.6         0.2         0.2         1.6         0.2         0.2         1.6         0.2         0.2         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.2         1.6         0.2         0.2         0.4         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.2         1.1         0.6         0.2         1.4         0.2         1.6         0.2         1.5         0.6         0.2         1.6         0.2                                                                                                                                                                                                                                      | D 1016   | 65.3              | 3.2      | 3.9   | 74.6    | 13.6  | 0.1  | 1.5 | 0.2 | 0.2 | 2.4  | 0.2 | 0.5      | 0.2 | 0.2 | 0.03 | 1       |   |
| D 1019         37.6         3.2         2.5         61.6         18.0         0.1         3.0         0.1         0.2         2.7         0.2         3.2         0.2         0.3         0.03         4           D 1020         151.4         3.7         3.0         54.5         18.7         0.1         2.2         116         0.2         0.2         0.2         1.6         0.2         0.2         0.3         6           D 1022         158.5         4.0         1.8         64.6         18.4         0.1         1.3         0.1         0.2         4.3         0.2         1.4         0.2         0.2         0.1         0.0         5           D 1024         60.5         3.3         3.5         76.6         18.6         0.2         2.1         0.2         2.6         0.2         0.7         0.07         5           D 1026         43.6         3.2         3.5         2.7         81.8         3.5         2.7         81.2         1.0         0.1         0.7         0.1         0.2         1.4         0.2         1.4         0.2         1.4         0.2         1.4         0.2         1.4         0.2         1.4         0.2                                                                                                                                                                                                                                                          | D 1017   | 111.8             | 3.3      | 2.8   | 43.3    | 14.2  | 0.1  | 1.2 | 0.1 | 0.2 | 3.6  | 0.8 | 1.5      | 0.2 | 0.2 | 0.10 | 3       |   |
| D         D         D         T         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N                                                                                                                                                                                                                                                                                                                              | D 1018   | 126.7             | 3.1      | 0.6   | 22.6    | 15.7  | 0.1  | 1.3 | 0.1 | 0.2 | 0.6  | 0.2 | 1.4      | 0.2 | 0.2 | 0.03 | 5       |   |
| D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D                                                                                                                                                                                                                                                                                                                              | D 1019   | 37.6              | 3.2      | 2.5   | 61.6    | 18.0  | 0.1  | 3.0 | 0.1 | 0.2 | 2.7  | 0.2 | 3.2      | 0.2 | 0.3 | 0.03 | 4       |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D 1020   | 2,950.0           | 4.0      | 7.3   | 105.5   | 39.6  | 0.2  | 3.0 | 1.3 | 0.2 | 13.6 | 0.2 | 0.2      | 0.2 | 1.5 | 0.05 | 123     |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D 1021   | 151.4             | 3.7      | 3.0   | 54.5    | 18.7  | 0.1  | 2.2 | 0.1 | 0.2 | 5.9  | 0.2 | 1.6      | 0.2 | 0.2 | 0.03 | 6       |   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D 1022   | 158.5             | 4.0      | 1.8   | 64.6    | 18.4  | 0.1  | 1.6 | 0.1 | 0.2 | 6.0  | 0.2 | 1.4      | 0.2 | 0.2 | 0.10 | 5       |   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 41.5              | 3.4      | 1.7   | 64.9    | 18.4  | 0.1  | 1.3 | 0.1 | 0.2 | 4.3  | 0.2 | 2.9      | 0.2 | 0.4 | 0.05 | 5       |   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D 1024   | 60.5              | 3.3      | 3.5   | 76.6    | 18.6  | 0.2  | 2.1 | 0.1 | 0.2 | 2.1  | 0.2 | 2.9      | 0.2 | 0.7 | 0.07 | 5       |   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   |          |       |         | 18.8  |      |     | 0.1 |     | 0.8  |     | 2.5      | 0.2 | 1.5 | 0.03 | 1       |   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 43.6              | 3.2      | 36.2  | 271.3   | 16.8  | 2.6  | 1.2 | 0.6 | 0.2 | 14.9 | 0.2 | 4.0      | 0.2 | 0.8 | 0.09 |         |   |
| D 1029       139.6       3.0       729.0       1,230.0       152       10.7       0.4       1.4       0.9       0.2       1.9       0.2       1.6       0.05       16         D 1030       86.0       2.9       292.7       620.0       14.4       4.9       1.4       0.9       0.2       6.9       0.2       3.3       0.2       1.3       0.03       8         D 1031       47.2       3.2       1.5       84.5       17.3       0.3       3.6       0.5       0.2       4.0       0.2       2.7       1.0       0.2       0.05       2         D 1033       82.5       3.6       3.1       43.3       17.3       0.1       1.1       0.3       0.2       2.8       0.2       2.5       0.2       0.03       5         D 1034       10.0       3.5       3.1       43.3       17.5       0.1       0.9       0.1       0.2       2.8       0.2       2.4       0.2       0.2       0.3       0.2       0.3       0.3       2.8         D 1035       63.6       3.0       12.1       108.0       17.9       0.6       1.4       1.1       0.2       2.6       0.2       3.3                                                                                                                                                                                                                                                                                                                                                      |          |                   | 3.5      |       |         | 19.0  | 0.1  | 0.7 | 0.1 | 0.2 | 2.1  | 0.2 | 1.8      |     | 1.0 | 0.03 | 5       |   |
| D 1030       86.0       2.9       292.7       620.0       1.4       4.9       1.4       0.9       0.2       6.9       0.2       3.3       0.2       1.3       0.03       8         D 1031       47.2       3.2       1.5       38.7       14.9       0.1       1.5       0.1       0.2       3.3       0.2       0.4       0.2       0.8       0.06       4         D 1032       69.1       3.2       5.5       64.5       17.3       0.1       1.1       0.3       0.2       2.8       0.2       2.5       0.2       0.03       5         D 1034       110.0       3.5       3.1       43.3       17.5       0.1       0.9       0.1       0.2       3.9       0.2       3.4       0.2       0.03       3         D 1035       63.6       3.0       12.1       10.80       0.1       2.6       0.2       2.4       0.0       2.44       0.2       0.3       0.07       6         D 1036       53.1       2.6       5.3       106.1       16.0       9       2.2       0.5       0.2       0.2       0.2       0.2       0.2       0.3       1       0.1       0.1       1.4 <td></td> <td></td> <td>3.3</td> <td>2.6</td> <td></td> <td></td> <td>0.1</td> <td></td> <td>0.1</td> <td>0.2</td> <td>0.6</td> <td></td> <td>1.7</td> <td>0.2</td> <td>1.0</td> <td>0.03</td> <td></td> <td></td>                                                                                                                                    |          |                   | 3.3      | 2.6   |         |       | 0.1  |     | 0.1 | 0.2 | 0.6  |     | 1.7      | 0.2 | 1.0 | 0.03 |         |   |
| D       1031       47.2       3.2       1.5       38.7       14.9       0.1       1.5       0.1       0.2       3.3       0.2       0.4       0.2       0.8       0.06       4         D       1032       69.1       3.2       5.5       64.5       17.3       0.3       3.6       0.5       0.2       4.0       0.2       2.7       1.0       0.2       0.05       2         D       1033       82.5       3.6       3.1       43.3       17.5       0.1       0.1       0.2       3.9       0.2       3.4       0.2       0.2       0.03       3         D       1035       63.6       3.0       12.1       108.0       17.9       0.6       1.4       1.1       0.2       2.6       0.2       3.4       0.2       0.2       0.3       0.07       6         D       1035       63.6       2.2       97.0       13.3       0.1       2.4       0.1       0.2       2.6       0.2       3.3       0.2       0.2       0.2       0.3       0.7       6         D       1037       185.6       3.6       2.2       97.0       13.3       0.1       2.4       0.1                                                                                                                                                                                                                                                                                                                                                                     |          | 139. <del>6</del> | 3.0      | 729.0 | 1,230.0 | 15.2  | 10.7 | 0.4 | 1.4 | 0.2 | 21.4 |     |          |     | 1.6 | 0.05 | 16      |   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   | 2.9      | 292.7 |         | 14.4  |      |     | 0.9 | 0.2 | 6.9  |     |          |     |     | 0.03 | 8       |   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 47.2              | 3.2      | 1.5   | 38.7    | 14.9  | 0.1  |     | 0.1 | 0.2 | 3.3  | 0.2 | 0.4      | 0.2 | 0.8 | 0.06 | •       |   |
| D 1034       110.0       3.5       3.1       43.3       17.5       0.1       0.9       0.1       0.2       3.9       0.2       3.4       0.2       0.2       0.03       3         D 1035       63.6       3.0       12.1       108.0       17.9       0.6       1.4       1.1       0.2       52.6       0.2       5.3       0.2       0.5       0.03       28         D 1035       63.6       3.2       97.0       13.3       0.1       2.6       0.2       4.4       0.2       0.3       0.7       6         D 1037       185.6       3.6       2.2       97.0       13.3       0.1       2.4       0.1       0.2       2.6       0.2       0.2       0.2       0.2       0.3       1         D 1038       1.091.0       3.8       6.4       100.1       16.4       0.9       2.2       0.5       0.2       4.9       0.2       0.2       0.2       0.03       1         D 1040       107.9       3.5       3.0       82.2       16.9       0.1       1.4       0.1       0.2       2.2       0.2       0.2       0.2       0.1       3         D 1041       563.0                                                                                                                                                                                                                                                                                                                                                               |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
| D 1035       63.6       3.0       12.1       108.0       17.9       0.6       1.4       1.1       0.2       52.6       0.2       5.3       0.2       0.5       0.03       28         D 1036       53.1       2.6       5.3       106.1       13.0       0.1       2.6       0.2       4.0       0.2       4.4       0.2       0.3       0.07       6         D 1037       185.6       3.6       2.2       97.0       13.3       0.1       2.4       0.1       0.2       2.6       0.2       3.3       0.2       0.2       0.03       17.9         D 1038       1.091.0       3.8       6.4       1001       16.4       0.9       2.2       0.5       0.2       4.9       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2      0.2       0.3       0.3 <td></td> <td>-</td> <td></td>                                                                                                                                                   |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      | -       |   |
| D 1036       53.1       2.6       5.3       106.1       13.0       0.1       2.6       0.2       0.2       4.0       0.2       4.4       0.2       0.3       0.07       6         D 1037       185.6       3.6       2.2       97.0       13.3       0.1       2.4       0.1       0.2       2.6       0.2       3.3       0.2       0.2       0.03       1         D 1038       1,091.0       3.8       6.4       100.1       16.4       0.9       2.2       0.5       0.2       4.9       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.1       1.5       0.1       0.2       0.2       2.6       0.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                        |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
| D 1037       185.6       3.6       2.2       97.0       13.3       0.1       2.4       0.1       0.2       2.6       0.2       3.3       0.2       0.2       0.03       1         D 1038       1,091.0       3.8       6.4       100.1       16.4       0.9       2.2       0.5       0.2       4.9       0.2       0.2       0.2       0.2       0.2       0.3       27         D 1039       86.5       3.1       2.0       59.5       13.6       0.1       1.7       0.1       0.2       2.7       0.2       0.0       0.2       0.2       0.3       6         D 1040       107.9       3.5       3.0       82.2       16.9       0.1       1.4       0.1       0.2       0.2       0.4       0.2       0.2       0.1       0.3       2       0.1       1.5       0.1       0.2       0.2       2.4       4       0.2       0.3       2       1.5       0.03       2       2       0.1       1.5       0.1       0.2       0.2       2.4       4.0       0.2       1.5       0.2       0.1       1.5       0.1       0.2       0.2       3.6       0.2       0.9       0.12       8<                                                                                                                                                                                                                                                                                                                                             |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
| D 1038       1,091.0       3.8       6.4       100.1       16.4       0.9       2.2       0.5       0.2       4.9       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.3       0.3       27         D 1041       563.0       3.7       3.1       110.7       20.1       0.1       1.1       0.2       0.2       0.2       2.6       0.2       0.2       0.1       1.5       0.1       0.2       0.2       3.6       0.2                                                                                                                                                                                                                                                                                                                             |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
| D 1039       86.5       3.1       2.0       59.5       13.6       0.1       1.7       0.1       0.2       2.7       0.2       2.0       0.2       0.2       0.03       6         D 1040       107.9       3.5       3.0       82.2       16.9       0.1       1.4       0.1       0.2       0.2       0.2       4.4       0.2       0.2       0.2       0.1       3         D 1041       563.0       3.7       3.1       110.7       20.1       0.1       2.1       0.2       0.2       4.4       0.2       1.5       0.2       1.5       0.03       2         D 1042       53.7       2.9       3.6       62.0       15.0       0.1       1.8       0.1       0.2       0.2       0.2       2.6       0.2       0.2       0.1       0.3         D 1043       121.9       2.8       2.4       55.5       15.0       0.1       1.5       0.1       0.2       8.3       0.2       3.6       0.2       0.7       0.03       1       1.0       0.4       0.2       8.3       0.2       3.6       0.2       0.1       1.5       0.1       0.2       3.6       0.2       0.1       0.2                                                                                                                                                                                                                                                                                                                                                   |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      | •       |   |
| D 1040       107.9       3.5       3.0       82.2       16.9       0.1       1.4       0.1       0.2       0.2       0.2       4.4       0.2       0.2       0.1       0.1       0.1       0.2       0.2       0.2       4.4       0.2       0.2       0.1       0.3         D 1041       563.0       3.7       3.1       110.7       20.1       0.1       2.1       0.2       0.2       4.4       0.2       1.5       0.2       1.5       0.03       2         D 1042       53.7       2.9       3.6       62.0       15.0       0.1       1.8       0.1       0.2       0.2       0.2       2.6       0.2       0.2       0.18       1         D 1043       121.9       2.8       2.4       55.5       15.0       0.1       1.9       0.4       0.2       8.3       0.2       3.5       0.2       0.9       0.12       8         D 1044       105.3       3.4       2.8       47.6       17.0       0.1       1.5       0.1       0.2       0.9       0.2       3.6       0.2       0.7       0.03       1         D 1045       170.1       2.6       7.2       61.0       15                                                                                                                                                                                                                                                                                                                                                    |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
| D 1041       563.0       3.7       3.1       110.7       20.1       0.1       2.1       0.2       0.2       4.4       0.2       1.5       0.2       1.5       0.03       2         D 1042       53.7       2.9       3.6       62.0       15.0       0.1       1.8       0.1       0.2       0.2       0.2       2.6       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.3       0.2       0.3       0.2       0.3       0.3       2       0.3       1       0.3       2       0.3       0.2       0.2       0.2       0.2       0.3       0.3       0.3       1       0.3       1       0.3       1       0.3       1       0.3       0.2       0.2       0.2       3.6       0.2       0.3       0.1       0.3       1       0.3       0.2       0.2       1.6       0.2       0.3       0.3       0.3       1       0.3       0.3       1       0.3 <th0.3< th="">       1.3       0.3</th0.3<>                                                                                                                                                                                                                                                                                                                             |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      | -       |   |
| D 104253.72.93.662.015.00.11.80.10.20.20.22.60.20.20.20.181D 1043121.92.82.455.515.00.11.90.40.28.30.23.50.20.90.128D 1044105.33.42.847.617.00.11.50.10.20.90.23.60.20.70.031D 1045170.12.67.261.015.40.21.70.60.22.90.23.30.20.80.071D 1046126.72.5842.01,870.014.714.50.90.90.216.60.24.00.23.00.0312D 104739.32.121.0125.211.20.71.30.90.210.10.25.40.20.30.036D 104870.32.37.1113.214.50.41.30.50.23.80.24.80.21.20.081D 104987.52.512.7105.215.20.41.91.00.216.60.22.70.22.00.108D 105071.32.9234.7144.320.22.22.12.80.2112.50.22.50.20.60.0373D 105177.02.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
| D 1043121.92.82.455.515.00.11.90.40.28.30.23.50.20.90.128D 1044105.33.42.847.617.00.11.50.10.20.90.23.60.20.70.031D 1045170.12.67.261.015.40.21.70.60.22.90.23.30.20.80.071D 1046126.72.5842.01,870.014.714.50.90.90.216.60.24.00.23.00.0312D 104739.32.121.0125.211.20.71.30.90.210.10.25.40.20.30.036D 104870.32.37.1113.214.50.41.30.50.23.80.24.80.21.20.081D 104987.52.512.7105.215.20.41.91.00.216.60.22.70.22.00.108D 105071.32.9234.7144.320.22.22.12.80.2112.50.22.50.20.60.0373D 105177.02.531.590.014.40.71.01.20.242.70.24.10.20.30.0524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
| D 1044105.33.42.847.617.00.11.50.10.20.90.23.60.20.70.031D 1045170.12.67.261.015.40.21.70.60.22.90.23.30.20.80.071D 1046126.72.5842.01,870.014.714.50.90.90.216.60.24.00.23.00.0312D 104739.32.121.0125.211.20.71.30.90.210.10.25.40.20.30.036D 104870.32.37.1113.214.50.41.30.50.23.80.24.80.21.20.081D 104987.52.512.7105.215.20.41.91.00.216.60.22.70.22.00.108D 105071.32.9234.7144.320.22.22.12.80.2112.50.22.50.20.60.0373D 105177.02.531.590.014.40.71.01.20.242.70.24.10.20.30.0524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
| D 1045170.12.67.261.015.40.21.70.60.22.90.23.30.20.80.071D 1046126.72.5842.01,870.014.714.50.90.90.216.60.24.00.23.00.0312D 104739.32.121.0125.211.20.71.30.90.210.10.25.40.20.30.036D 104870.32.37.1113.214.50.41.30.50.23.80.24.80.21.20.081D 104987.52.512.7105.215.20.41.91.00.216.60.22.70.22.00.108D 105071.32.9234.7144.320.22.22.12.80.2112.50.22.50.20.60.0373D 105177.02.531.590.014.40.71.01.20.242.70.24.10.20.30.0524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      | 8       |   |
| D 1046126.72.5842.01,870.014.714.50.90.90.216.60.24.00.23.00.0312D 104739.32.121.0125.211.20.71.30.90.210.10.25.40.20.30.036D 104870.32.37.1113.214.50.41.30.50.23.80.24.80.21.20.081D 104987.52.512.7105.215.20.41.91.00.216.60.22.70.22.00.108D 105071.32.9234.7144.320.22.22.12.80.2112.50.22.50.20.60.0373D 105177.02.531.590.014.40.71.01.20.242.70.24.10.20.30.0524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      | 1       |   |
| D 104739.32.121.0125.211.20.71.30.90.210.10.25.40.20.30.036D 104870.32.37.1113.214.50.41.30.50.23.80.24.80.21.20.081D 104987.52.512.7105.215.20.41.91.00.216.60.22.70.22.00.108D 105071.32.9234.7144.320.22.22.12.80.2112.50.22.50.20.60.0373D 105177.02.531.590.014.40.71.01.20.242.70.24.10.20.30.0524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
| D 104870.32.37.1113.214.50.41.30.50.23.80.24.80.21.20.081D 104987.52.512.7105.215.20.41.91.00.216.60.22.70.22.00.108D 105071.32.9234.7144.320.22.22.12.80.2112.50.22.50.20.60.0373D 105177.02.531.590.014.40.71.01.20.242.70.24.10.20.30.0524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
| D 104987.52.512.7105.215.20.41.91.00.216.60.22.70.22.00.108D 105071.32.9234.7144.320.22.22.12.80.2112.50.22.50.20.60.0373D 105177.02.531.590.014.40.71.01.20.242.70.24.10.20.30.0524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
| D 1050 71.3 2.9 234.7 144.3 20.2 2.2 2.1 2.8 0.2 112.5 0.2 2.5 0.2 0.6 0.03 73<br>D 1051 77.0 2.5 31.5 90.0 14.4 0.7 1.0 1.2 0.2 42.7 0.2 4.1 0.2 0.3 0.05 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
| D 1051 77.0 2.5 31.5 90.0 14.4 0.7 1.0 1.2 0.2 42.7 0.2 4.1 0.2 0.3 0.05 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
| טפאז 1.3 0.2 28.5 2.0 22.3 83.4 12.7 0.5 2.4 1.3 0.2 28.5 0.2 1.4 0.2 1.6 0.08 23 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                   |          |       |         |       |      |     |     |     |      |     |          |     |     |      |         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D 1052   | 189.6             | 2.0      | 22.3  | 83.4    | 12.7  | 0.5  | 2.4 | 1.3 | 0.2 | 28.5 | 0.2 | 1.4      | 0.2 | 1.6 | 0.08 | 23      |   |

|                  |                   |            | 6            |                | k            | L.         | N          | •          | L          | L            | k          | L          |            |            | <b>A</b>     |          | <b>h</b> |
|------------------|-------------------|------------|--------------|----------------|--------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|--------------|----------|----------|
|                  |                   |            |              |                |              |            |            |            |            |              |            |            |            |            |              |          |          |
| EAGLE            | Cu                | Ni         | Pb           | Zn             | Co           | Cd         | Мо         | Ag         | w          | As           | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb  |          |
| D 1053           | 179.1             | 1.7        | 23.4         | 79.5           | 9.5          | 0.5        | 2.0        | 0.9        | 0.2        | 9.9          | 0.2        | 2.2        | 0.2        | 1.3        | 0.03         | 7        |          |
| D 1054           | 119.1             | 2.7        | 21.4         | 97.1           | 14.7         | 0.8        | 2.2        | 1.4        | 0.2        | 28.8         | 0.2        | 3.7        | 0.2        | 0.9        | 0.06         | 24       |          |
| D 1055           | 101.4             | 3.5        | 2.3          | 139.0          | 20.6         | 0.2        | 1.8        | 0.6        | 0.2        | 4.7          | 0.2        | 3.3        | 0.2        | 1.1        | 0.09         | 7<br>7   |          |
| D 1056           | 110.0             | 3.3        | 1.7          | 102.9          | 18.8         | 0.2        | 0.8<br>1.5 | 0.7<br>0.8 | 0.2<br>0.2 | 3.0<br>19.7  | 0.2<br>0.2 | 3.3<br>3.2 | 0.2<br>0.2 | 0.7<br>1.2 | 0.08<br>0.03 | 10       |          |
| D 1057<br>D 1058 | 116.9<br>66.7     | 2.7<br>3.2 | 10.5<br>9.5  | 118.3<br>110.5 | 16.6<br>20.6 | 0.7<br>0.6 | 0.1        | 0.8        | 0.2        | 32.0         | 0.2        | 3.4        | 0.2        | 2.9        | 0.03         | 11       |          |
| D 1058           | 99.5              | 2.4        | 9.5<br>2.1   | 53.4           | 13.5         | 0.2        | 1.0        | 0.3        | 0.2        | 1.1          | 0.2        | 2.9        | 0.2        | 0.2        | 0.10         | 4        |          |
| D 1060           | 101.3             | 3.1        | 20.8         | 92.2           | 15.9         | 0.5        | 1.0        | 0.3        | 0.2        | 3.4          | 0.2        | 3.5        | 0.2        | 1.0        | 0.07         | 3        |          |
| D 1061           | 124.9             | 3.2        | 67.8         | 172.0          | 17.1         | 1.2        | 1.4        | 0.6        | 0.2        | 9.8          | 0.2        | 4.4        | 0.2        | 1.5        | 0.03         | 7        |          |
| D 1062           | 141.5             | 4.2        | 5.8          | 53.8           | 19.7         | 0.2        | 1.1        | 0.1        | 0.2        | 4.0          | 0.2        | 1.6        | 0.2        | 0.7        | 0.03         | 9        |          |
| D 1063           | 154.3             | 4.1        | 4.6          | 60.0           | 21.5         | 0.1        | 1.6        | 0.2        | 0.2        | 7.9          | 0.2        | 3.3        | 0.2        | 0.9        | 0.03         | 15       |          |
| D 1064           | 128.0             | 4.1        | 19.0         | 92.0           | 17.6         | 0.4        | 1.3        | 0.1        | 0.2        | 0.3          | 0.2        | 3.6        | 0.2        | 1.0        | 0.03         | 5        |          |
| D 1065           | 109.5             | 3.1        | 5.3          | 46.0           | 18.0         | 0.1        | 1.6        | 0.2        | 0.2        | 4.4          | 0.2        | 2.8        | 0.2        | 0.2        | 0.33         | 9        |          |
| D 1066           | 1,050.0           | 1.9        | 93.2         | 101.6          | 85.4         | 0.8        | 0.1        | 2.0        | 0.2<br>0.2 | 18.0<br>2.9  | 0.2<br>0.2 | 0.2<br>0.9 | 0.2<br>0.2 | 1.5<br>0.9 | 0.03<br>0.03 | 25<br>10 |          |
| D 1067           | 509.0<br>50.2     | 2.6<br>2.7 | 178.9<br>7.7 | 205.3<br>53.4  | 42.4<br>19.6 | 2.7<br>0.1 | 0.4<br>2.0 | 0.3<br>0.1 | 0.2        | 2.9<br>0.6   | 0.2        | 2.3        | 0.2        | 1.1        | 0.03         | 1        |          |
| D 1068<br>D 1069 | 30.2<br>37.5      | 3.1        | 9.9          | 100.2          | 25.8         | 0.1        | 1.5        | 0.1        | 0.2        | 10.3         | 0.2        | 3.7        | 0.2        | 1.6        | 0.03         | 4        |          |
| D 1009           | 67.8              | 2.1        | 6.9          | 78.4           | 11.3         | 0.7        | 1.3        | 0.7        | 0.2        | 22.5         | 0.2        | 4.9        | 0.2        | 1.3        | 0.03         | 11       |          |
| D 1071           | 46.3              | 2.9        | 43.4         | 76.7           | 20.7         | 1.8        | 1.8        | 1.8        | 0.2        | 181.1        | 0.2        | 4.8        | 0.2        | 1.5        | 0.03         | 95       |          |
| D 1072           | 75.6              | 2.0        | 6.3          | 90.2           | 34.3         | 0.6        | 0.8        | 0.7        | 0.2        | 28.7         | 0.2        | 5.2        | 0.2        | 1.1        | 0.03         | 7        |          |
| D 1073           | 67.5              | 3.1        | 5.8          | 77.6           | 18.5         | 0.1        | 0.4        | 0.4        | 0.2        | 3.5          | 0.2        | 3.7        | 0.2        | 1.2        | 0.03         | 8        |          |
| D 1074           | 50.5              | 3.0        | 4.7          | 136.5          | 22.9         | 0.3        | 1.4        | 0.1        | 0.2        | 3.2          | 0.2        | 4.8        | 0.2        | 0.5        | 0.03<br>0.03 | 2<br>5   |          |
| D 1075           | 39.8              | 3.9        | 3.9          | 70.1           | 15.6         | 0.2        | 1.7<br>1.0 | 0.1<br>0.1 | 0.2<br>0.2 | 3.8<br>2.9   | 0.2<br>0.2 | 1.7<br>1.9 | 0.2<br>0.2 | 0.8<br>0.2 | 0.03         | 8        |          |
| D 1076<br>D 1077 | 88.9<br>83.7      | 4.2<br>3.4 | 5.3<br>5.0   | 65.3<br>60.7   | 16.1<br>20.1 | 0.2<br>0.2 | 2.5        | 0.1        | 0.2        | 2.9          | 0.2        | 2.8        | 0.2        | 0.2        | 0.03         | 6        |          |
| D 1077           | 69.8              | 3.4        | 3.6          | 84.8           | 19.7         | 0.1        | 1.7        | 0.1        | 0.2        | 2.1          | 0.2        | 4.5        | 0.2        | 0.4        | 0.03         | 2        |          |
| D 1079           | 22.7              | 4.1        | 2.9          | 113.1          | 20.0         | 0.1        | 0.7        | 0.1        | 0.2        | 1.4          | 0.2        | 1.4        | 0.2        | 0.2        | 0.03         | 1        |          |
| D 1080           | 165.2             | 2.2        | 3.6          | 61.4           | 11.5         | 0.1        | 1.4        | 0.4        | 0.2        | 3.0          | 0.2        | 2.8        | 1.4        | 0.5        | 0.09         | 12       |          |
| D 1081           | 135.6             | 2.4        | 8.7          | 400.5          | 19.5         | 9.0        | 1.7        | 0.3        | 0.2        | 5.6          | 0.2        | 1.3        | 0.2        | 0.5        | 0.04         | 5        |          |
| D 1082           | 652.0             | 1.3        | 11.9         | 309.6          | 5.4          | 3.3        | 0.6        | 0.7        | 0.2        | 1.4          | 0.2        | 0.3        | 0.4        | 0.2        | 0.04<br>0.06 | 6<br>37  |          |
| D 1083           | 52.3              | 2.5        | 40.8         | 92.2           | 15.2         | 1.1        | 1.7<br>1.1 | 1.1<br>0.1 | 0.2<br>0.2 | 39.9<br>0.7  | 0.2<br>1.0 | 3.7<br>0.8 | 0.2<br>0.2 | 1.1<br>0.2 | 0.08         | 37<br>4  |          |
| D 1084           | 93.3<br>150.9     | 3.6<br>3.4 | 6.8<br>7.6   | 105.1<br>89.9  | 18.8<br>14.3 | 0.1<br>0.1 | 1.1        | 0.1        | 0.2        | 2.4          | 0.2        | 2.0        | 0.2        | 0.2        | 0.03         | 8        |          |
| D 1085<br>D 1086 | 664.0             | 3.4        | 55.4         | 169.9          | 19.6         | 1.0        | 2.8        | 0.9        | 0.2        | 4.9          | 0.2        | 4.9        | 0.2        | 0.2        | 0.07         | 19       |          |
| D 1000           | 349.6             | 3.5        | 7.1          | 121.9          | 16.2         | 0.2        | 3.1        | 0.4        | 0.2        | 2.1          | 0.2        | 1.8        | 0.2        | 0.3        | 0.03         | 8        |          |
| D 1088           | 176.9             | 3.3        | 6.4          | 142.4          | 17.4         | 0.1        | 2.8        | 0.1        | 0.2        | 2.2          | 0.2        | 2.6        | 0.2        | 0.3        | 0.03         | 2        |          |
| D 1089           | 135. <del>9</del> | 3.6        | 5.8          | 116.8          | 16.2         | 0.2        | 2.2        | 0.1        | 0.2        | 1.9          | 0.2        | 1.6        | 0.2        | 0.2        | 0.05         | 20       |          |
| D 1090           | 671.0             | 4.0        | 9.5          | 108.9          | 25.8         | 0.2        | 3.2        | 0.5        | 0.2        | 10.9         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 20       |          |
| D 1091           | 60.0              | 3.2        | 6.5          | 73.4           | 12.8         | 0.1        | 2.2        | 0.1        | 0.2        | 4.4          | 0.2        | 1.5        | 0.2        | 0.2        | 0.03<br>0.03 | 3        |          |
| D 1092           | 247.1             | 3.0        | 11.3         | 76.4           | 26.2         | 0.1        | 2.1<br>1.2 | 0.1<br>0.6 | 0.2<br>0.2 | 17.8<br>12.6 | 0.2<br>0.2 | 2.3<br>2.7 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03         | 22<br>11 |          |
| D 1093<br>D 1094 | 108.0             | 2.9<br>3.2 | 137.3<br>1.2 | 203.2<br>38.8  | 14.0<br>13.4 | 1.5<br>0.1 | 1.2        | 0.8        | 0.2        | 0.2          | 0.2        | 0.7        | 0.2        | 0.2        | 0.03         | 3        |          |
| D 1094<br>D 1095 | 91.8<br>70.3      | 3.2        | 4.2          | 49.3           | 13.4         | 0.1        | 0.1        | 0.1        | 0.2        | 3.0          | 0.2        | 2.1        | 0.2        | 0.2        | 0.03         | 1        |          |
| D 1095           | 115.0             | 3.2        | 2.4          | 48.2           | 16.6         | 0.1        | 0.1        | 0.1        | 0.2        | 2.6          | 0.2        | 1.7        | 1.0        | 0.2        | 0.03         | 4        |          |
| D 1097           | 145.9             | 3.7        | 2.9          | 67.1           | 16.5         | 0.1        | 0.6        | 0.3        | 0.2        | 0.3          | 0.2        | 3.1        | 0.2        | 0.2        | 0.03         | 45       |          |
| D 1098           | 177.1             | 2.9        | 2,320.0      | 107.8          | 15.7         | 0.8        | 2.0        | 2.1        | 0.2        | 37.7         | 0.2        | 3.1        | 0.2        | 1.0        | 0.03         | 25       |          |
| D 1099           | 92.7              | 2.6        | 5.7          | 86.2           | 15.2         | 0.4        | 1.5        | 0.5        | 0.2        | 1.4          | 0.2        | 4.1        | 0.2        | 0.8        | 0.03         | 1        |          |
| D 1100           | 337.8             | 2.7        | 163.8        | 74.1           | 18.0         | 0.5        | 1.7        | 2.4        | 0.2        | 57.7         | 0.2        | 2.8        | 0.2        | 0.3        | 0.03         | 49       |          |
| D 1101           | 129.6             | 3.2        | 10.0         | 76.6           | 16.5         | 0.1        | 0.5        | 0.3        | 0.2        | 2.4          | 0.4        | 2.1<br>2.9 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 6        |          |
| D 1102           | 75.4<br>81.2      | 3.2<br>8 1 | 2.5<br>2.2   | 61.3<br>48.1   | 16.9<br>16.0 | 0.1<br>0.1 | 0.9<br>2.0 | 0.1<br>0.1 | 0.2<br>0.2 | 3.3<br>1.7   | 0.2<br>0.2 | 2.9<br>2.5 | 0.2        | 0.2        | 0.03         | 1        |          |
| D 1103<br>D 1104 | 81.2<br>195.8     | 8.1<br>6.9 | 2.2<br>24.4  | 135.3          | 18.2         | 1.6        | 0.6        | 0.1        | 0.2        | 0.2          | 0.2        | 1.2        | 0.2        | 1.3        | 0.03         | 8        |          |

|         |         | L   |         |         | 8     |      | N    |     |     | •     | l   |      |     | <b>A</b> |      | <b>h</b> | 1 |
|---------|---------|-----|---------|---------|-------|------|------|-----|-----|-------|-----|------|-----|----------|------|----------|---|
| EAGLE   | Cu      | Ni  | Pb      | Zn      | Co    | Cd   | Мо   | Ag  | w   | As    | Sb  | Bi   | Se  | Te       | Hg   | Au, ppb  |   |
| D 1105  | 38.9    | 9.3 | 4.3     | 60.2    | 15.9  | 0.3  | 2.0  | 0.1 | 0.2 | 1.7   | 0.7 | 1.0  | 0.2 | 0.9      | 0.03 | 1        |   |
| D 1106  | 85.6    | 2.8 | 4.7     | 53.6    | 14.3  | 0.1  | 1.0  | 0.2 | 0.2 | 5.1   | 0.2 | 1.5  | 0.2 | 0.2      | 0.03 | 67       |   |
| D 1107  | 106.7   | 4.4 | 5.6     | 153.0   | 19.8  | 0.1  | 2.0  | 0.3 | 0.2 | 1.7   | 0.2 | 4.5  | 0.2 | 0.4      | 0.03 | 6        |   |
| D 1108  | 87.6    | 2.6 | 626.0   | 1,510.0 | 15.6  | 12.3 | 0.7  | 1.5 | 0.2 | 12.2  | 0.2 | 3.5  | 0.2 | 0.8      | 0.12 | 37       |   |
| D 1109  | 81.7    | 2.7 | 370.8   | 657.0   | 14.4  | 5.2  | 1.0  | 0.9 | 0.2 | 8.1   | 0.2 | 3.8  | 0.2 | 1.3      | 0.08 | 6        |   |
| D 1110  | 73.5    | 3.0 | 3.1     | 60.0    | 17.2  | 0.1  | 1.5  | 0.2 | 0.2 | 4.3   | 0.2 | 3.6  | 0.2 | 0.9      | 0.03 | 13       |   |
| D 1111  | 86.9    | 3.4 | 275.5   | 638.0   | 15.9  | 4.8  | 0.9  | 1.0 | 0.2 | 16.5  | 0.2 | 2.5  | 0.2 | 0.2      | 0.03 | 4        |   |
| D 1112  | 69.6    | 3.4 | 25.5    | 111.1   | 16.4  | 0.2  | 1.7  | 0.4 | 0.2 | 8.9   | 0.2 | 3.2  | 0.2 | 0.9      | 0.03 | 6        |   |
| D 1113  | 74.2    | 3.8 | 5.0     | 80.4    | 16.1  | 0.1  | 2.1  | 0.1 | 0.2 | 2.7   | 0.2 | 3.0  | 0.2 | 0.2      | 0.03 | 1        |   |
| D 1114  | 168.9   | 3.5 | 4.9     | 62.6    | 17.2  | 0.1  | 2.8  | 0.3 | 0.2 | 5.1   | 0.2 | 1.6  | 0.2 | 0.2      | 0.03 | 8        |   |
| D 1115  | 51.9    | 3.3 | 2.9     | 34.9    | 15.3  | 0.1  | 0.7  | 0.1 | 0.2 | 2.8   | 0.2 | 2.0  | 0.2 | 0.2      | 0.03 | 3        |   |
| D 1116  | 47.8    | 3.5 | 0.9     | 29.0    | 14.0  | 0.1  | 0.5  | 0.1 | 0.2 | 1.8   | 0.2 | 1.3  | 0.2 | 0.2      | 0.03 | 1        |   |
| D 1117  | 109.9   | 3.7 | 0.5     | 77.5    | 23.0  | 0.1  | 3.7  | 0.1 | 0.2 | 6.2   | 0.2 | 1.8  | 0.2 | 1.2      | 0.03 | 6        |   |
| D 1118  | 39.0    | 4.1 | 2.3     | 54.4    | 17.4  | 0.1  | 0.8  | 0.1 | 0.2 | 5.0   | 0.2 | 2.5  | 0.2 | 0.2      | 0.03 | 6        |   |
| D 1119  | 46.3    | 3.6 | 1.5     | 61.6    | 16.0  | 0.1  | 1.8  | 0.1 | 0.2 | 0.6   | 0.2 | 1.8  | 0.2 | 0.3      | 0.03 | 2        |   |
| D 1120  | 128.2   | 3.7 | 540.0   | 790.0   | 17.8  | 6.8  | 1.6  | 1.4 | 0.2 | 56.5  | 0.2 | 2.4  | 0.2 | 0.2      | 0.04 | 22       |   |
| D 1121  | 48.6    | 3.3 | 114.7   | 190.4   | 15.1  | 1.3  | 1.2  | 0.3 | 0.2 | 3.4   | 0.2 | 2.1  | 0.2 | 1.1      | 0.03 | 3        |   |
| D 1122  | 85.0    | 4.0 | 6.1     | 121.6   | 22.0  | 0.2  | 16.9 | 0.1 | 0.2 | 5.2   | 0.2 | 1.1  | 0.2 | 1.1      | 0.03 | 1        |   |
| D 1123  | 43.1    | 3.7 | 3.5     | 101.8   | 15.1  | 0.1  | 0.9  | 0.1 | 0.2 | 6.6   | 0.2 | 3.6  | 0.2 | 0.2      | 0.03 | 3        |   |
| D 1124  | 47.4    | 4.3 | 2.7     | 112.9   | 18.5  | 0.1  | 1.8  | 0.1 | 0.2 | 3.9   | 0.2 | 1.7  | 0.2 | 0.2      | 0.04 | 1        |   |
| D 1125  | 55.4    | 4.2 | 2.5     | 92.4    | 15.9  | 0.1  | 2.8  | 0.1 | 0.2 | 0.2   | 0.2 | 2.7  | 0.2 | 0.7      | 0.03 | 1        |   |
| D 1126  | 142.3   | 7.1 | 3.6     | 77.9    | 18.0  | 0.9  | 1.2  | 0.1 | 0.2 | 4.8   | 0.2 | 0.7  | 0.2 | 0.2      | 0.07 | 1        |   |
| D 1127  | 80.2    | 4.0 | 3.5     | 65.7    | 15.3  | 0.1  | 2.4  | 0.1 | 0.2 | 3.8   | 0.2 | 1.1  | 0.2 | 0.2      | 0.03 | 4        |   |
| D 1128  | 607.0   | 8.2 | 43.9    | 109.7   | 104.4 | 1.7  | 0.3  | 1.4 | 0.2 | 137.0 | 0.2 | 8.2  | 0.6 | 1.9      | 0.03 | 4,408    |   |
| D 1129  | 85.3    | 4.1 | 4.4     | 40.1    | 38.3  | 0.1  | 1.5  | 0.2 | 0.2 | 27.0  | 0.2 | 2.4  | 0.8 | 0.2      | 0.05 | 99       |   |
| D 1130  | 67.6    | 3.2 | 3.4     | 55.2    | 19.3  | 0.1  | 2.5  | 0.1 | 0.2 | 4.8   | 0.2 | 3.8  | 0.9 | 0.3      | 0.03 | 120      |   |
| D 1131  | 232.4   | 3.4 | 2.6     | 104.3   | 25.2  | 0.4  | 2.1  | 0.3 | 0.2 | 5.3   | 0.2 | 0.5  | 0.2 | 0.2      | 0.03 | 59       |   |
| D 1132  | 144.8   | 9.1 | 11.7    | 91.6    | 64.4  | 0.3  | 1.2  | 0.4 | 0.2 | 16.3  | 0.2 | 2.2  | 0.2 | 0.8      | 0.03 | 37       |   |
| D 1133  | 86.2    | 3.6 | 10.6    | 100.4   | 19.8  | 0.3  | 1.4  | 0.1 | 0.2 | 2.7   | 0.2 | 1.9  | 0.2 | 0.2      | 0.03 | 5        |   |
| D 1134  | 320.9   | 4.5 | 5.8     | 35.8    | 15.5  | 0.1  | 1.3  | 0.2 | 0.2 | 1.7   | 0.2 | 0.2  | 0.2 | 0.2      | 0.03 | 12       |   |
| D 1135  | 41.5    | 3.8 | 1.6     | 34.7    | 14.9  | 0.1  | 1.8  | 0.1 | 0.2 | 0.4   | 0.2 | 1.3  | 0.2 | 0.2      | 0.03 | 5        |   |
| D 1136  | 119.2   | 3.3 | 3.1     | 32.4    | 15.2  | 0.1  | 0.6  | 0.1 | 0.2 | 3.0   | 0.2 | 1.1  | 0.2 | 0.4      | 0.10 | 19       |   |
| D 1137  | 135.8   | 3.6 | 2.9     | 52.2    | 16.2  | 0.4  | 1.4  | 0.1 | 0.2 | 2.7   | 0.6 | 1.2  | 0.2 | 0.2      | 0.03 | 9        |   |
| D 1138  | 121.1   | 2.9 | 51.3    | 142.0   | 14.8  | 0.9  | 2.0  | 1.2 | 0.2 | 16.0  | 0.2 | 5.0  | 0.2 | 2.0      | 0.10 | 27       |   |
| D 1140A | 123.8   | 3.3 | 1,070.0 | 2,230.0 | 15.4  | 23.5 | 1.4  | 2.0 | 0.2 | 11.2  | 0.2 | 5.5  | 0.8 | 3.3      | 0.03 | 15       |   |
| D 1140B | 90.9    | 4.0 | 3.2     | 91.5    | 17.7  | 0.3  | 0.9  | 0.2 | 0.2 | 0.2   | 0.8 | 2.7  | 0.2 | 0.7      | 0.18 | 9        |   |
| D 1141  | 66.8    | 4.0 | 3.8     | 40.0    | 14.6  | 0.1  | 0.9  | 0.2 | 0.2 | 1.0   | 0.2 | 1.9  | 0.2 | 1.1      | 0.03 | 11       |   |
| D 1142  | 92.5    | 3.4 | 3.3     | 42.7    | 14.6  | 0.1  | 0.6  | 0.3 | 0.2 | 0.3   | 0.2 | 1.1  | 0.2 | 1.0      | 0.03 | 31       |   |
| D 1143  | 1,350.0 | 5.5 | 11.9    | 108.2   | 29.8  | 1.3  | 1.3  | 1.6 | 0.2 | 9.3   | 0.2 | 0.2  | 0.2 | 3.0      | 0.04 | 200      |   |
| D 1144  | 150.6   | 3.9 | 193.8   | 543.0   | 23.7  | 4.8  | 1.6  | 2.1 | 0.2 | 29.9  | 0.2 | 4.4  | 0.3 | 1.7      | 0.03 | 56       |   |
| D 1145  | 239.4   | 4.2 | 29.7    | 169.5   | 33.3  | 0.8  | 1.9  | 2.4 | 0.2 | 11.3  | 0.2 | 21.3 | 0.2 | 1.9      | 0.03 | 39       |   |
| D 1146  | 249.2   | 5.1 | 13.0    | 180.8   | 52.7  | 0.7  | 2.0  | 0.8 | 0.2 | 25.3  | 0.2 | 6.5  | 0.2 | 2.5      | 0.14 | 100      |   |
| D 1147  | 109.1   | 4.1 | 1.5     | 54.4    | 17.7  | 0.1  | 1.6  | 0.2 | 0.2 | 4.2   | 0.2 | 3.7  | 0.2 | 0.7      | 0.03 | 36       |   |
| D 1148  | 113.3   | 4.0 | 4.2     | 60.4    | 21.6  | 0.1  | 2.0  | 0.3 | 0.2 | 4.0   | 0.2 | 1.2  | 0.2 | 1.4      | 0.03 | 17       |   |
| D 1149  | 137.0   | 3.4 | 4.0     | 64.2    | 19.2  | 0.1  | 2.6  | 0.3 | 0.2 | 4.2   | 0.2 | 3.7  | 0.2 | 1.1      | 0.10 | 35       |   |
| D 1150  | 50.0    | 3.8 | 3.1     | 65.2    | 15.2  | 0.1  | 0.5  | 0.3 | 0.2 | 3.8   | 0.2 | 1.8  | 0.2 | 1.1      | 0.07 | 16       |   |
| D 1151  | 65.6    | 4.2 | 19.0    | 97.0    | 15.8  | 0.3  | 1.0  | 0.2 | 0.2 | 0.2   | 0.2 | 4.9  | 0.2 | 0.2      | 0.03 | 35       |   |
| D 1152  | 499.0   | 4.5 | 20.1    | 111.6   | 22.3  | 0.3  | 1.3  | 0.8 | 0.2 | 0.5   | 0.2 | 10.4 | 0.2 | 1.4      | 0.08 | 290      |   |
| D 1153  | 332.9   | 3.5 | 14.9    | 142.6   | 17.4  | 0.5  | 2.0  | 1.2 | 0.2 | 21.0  | 0.2 | 6.9  | 0.2 | 1.6      | 0.03 | 12       |   |
| D 1154  | 307.2   | 2.9 | 6.3     | 387.8   | 20.4  | 1.7  | 1.8  | 1.3 | 0.2 | 17.0  | 0.2 | 20.2 | 0.2 | 2.4      | 0.03 | 37       |   |
| D 1155  | 254.2   | 3.2 | 3.9     | 144.4   | 17.5  | 0.2  | 2.3  | 0.6 | 0.2 | 10.4  | 0.2 | 3.7  | 0.2 | 1.9      | 0.04 | 9        |   |
| D 1156  | 104.0   | 4.1 | 1.5     | 75.8    | 19.6  | 0.3  | 1.8  | 0.2 | 0.2 | 3.7   | 0.2 | 2.8  | 0.4 | 0.9      | 0.08 | 6        |   |

8 B

| h h              | L.             | ŧ          |             | L              |               | ۱.         | L          |            | N          |              | l          |             |            | 1          | •            | <b>N</b>   | N |
|------------------|----------------|------------|-------------|----------------|---------------|------------|------------|------------|------------|--------------|------------|-------------|------------|------------|--------------|------------|---|
|                  |                |            |             |                |               | _          |            |            |            |              |            |             |            | _          |              |            |   |
| EAGLE            | Cu             | Ni         | Pb          | Zn             | Co            | Cd         | Мо         | Ag         | W          | As           | Sb         | Bi          | Se         | Te         | Hg           | Au, ppb    |   |
| D 1157<br>D 1158 | 194.9<br>152.7 | 3.6<br>3.7 | 2.1<br>2.8  | 74.2<br>86.4   | 16.4<br>16.0  | 0.2<br>0.2 | 1.6<br>2.9 | 0.5<br>0.3 | 0.2<br>0.2 | 5.0<br>5.8   | 0.2<br>0.2 | 4.2<br>1.9  | 0.6<br>0.2 | 0.3<br>0.2 | 0.03<br>0.03 | 8<br>7     |   |
| D 1158           | 1,030.0        | 3.3        | 3.0         | 77.2           | 15.7          | 0.2        | 1.1        | 1.5        | 0.2        | 12.1         | 0.2        | 1.5         | 0.2        | 0.2        | 0.03         | 110        |   |
| D 1160           | 328.9          | 3.2        | 1.5         | 80.3           | 14.7          | 0.1        | 1.9        | 0.2        | 0.2        | 5.7          | 0.2        | 0.6         | 0.2        | 2.1        | 0.03         | 7          |   |
| D 1161           | 152.3          | 3.4        | 2.5         | 107.0          | 17.9          | 0.3        | 2.4        | 0.2        | 0.2        | 11.5         | 0.2        | 3.0         | 0.2        | 0.2        | 0.04         | 8          |   |
| D 1162           | 130.7          | 3.3        | 2.6         | 107.4          | 14.7          | 0.4        | 1.9        | 0.2        | 0.2        | 3.0          | 0.2        | 3.1         | 0.2        | 0.2        | 0.03         | 6          |   |
| D 1163           | 124.4          | 3.3        | 2.0         | 85.2           | 16.3          | 0.4        | 2.3        | 0.2        | 0.2        | 5.4          | 0.2        | 4.8         | 0.2        | 0.5        | 0.03         | 5          |   |
| D 1164<br>D 1165 | 277.5<br>219.3 | 4.8<br>3.4 | 4.4<br>1.8  | 80.7<br>131.2  | 29.0<br>14.6  | 0.5<br>0.3 | 2.1<br>0.8 | 0.6<br>0.4 | 0.2<br>0.2 | 33.4<br>7.3  | 0.2<br>0.2 | 8.9<br>1.3  | 0.2<br>0.2 | 0.9<br>0.9 | 0.03<br>0.19 | 8<br>11    |   |
| D 1166           | 343.4          | 3.4        | 3.7         | 63.1           | 16.4          | 0.3        | 1.3        | 0.4        | 0.2        | 11.3         | 0.2        | 4.5         | 0.2        | 0.2        | 0.03         | 5          |   |
| D 1167           | 81.9           | 3.7        | 2.1         | 62.1           | 11.9          | 0.1        | 1.7        | 0.2        | 0.2        | 2.9          | 0.2        | 1.7         | 0.2        | 0.2        | 0.13         | 3          |   |
| D 1168           | 111.0          | 2.6        | 1.3         | 53.3           | 14.1          | 0.1        | 1.8        | 0.2        | 0.2        | 6.0          | 0.2        | 1.3         | 0.2        | 0.2        | 0.07         | 6          |   |
| D 1169           | 264.3          | 2.2        | 0.8         | 56.5           | 11.2          | 0.4        | 2.0        | 0.3        | 8.6        | 5.7          | 0.2        | 2.4         | 0.2        | 0.2        | 0.03         | 5          |   |
| D 1170           | 196.6          | 3.1        | 2.9         | 51.5           | 11.8          | 0.3        | 1.2        | 0.6        | 0.2        | 9.6          | 0.2        | 4.6         | 0.2        | 0.2        | 0.14         | 8          |   |
| D 1171           | 301.9          | 3.5        | 2.5         | 51.2           | 14.9          | 0.3        | 0.1        | 0.2        | 0.2        | 2.6          | 0.2        | 2.1         | 0.7        | 0.5        | 0.11         | 7          |   |
| D 1172<br>D 1173 | 163.6<br>81.8  | 3.4<br>2.9 | 0.6<br>0.3  | 56.4<br>59.2   | 13.9<br>13.6  | 0.4<br>0.1 | 1.1<br>2.3 | 0.4<br>0.2 | 0.2<br>0.2 | 2.7<br>3.7   | 0.2<br>0.2 | 4.4<br>2.7  | 0.2<br>0.2 | 1.2<br>0.2 | 0.06<br>0.03 | 2<br>7     |   |
| D 1174           | 190.7          | 3.2        | 0.3         | 62.8           | 22.2          | 0.4        | 1.6        | 0.2        | 1.8        | 15.8         | 0.2        | 2.7         | 0.2        | 0.2        | 0.03         | 11         |   |
| D 1175           | 96.2           | 3.0        | 1.5         | 66.7           | 13.9          | 0.1        | 1.8        | 0.2        | 0.2        | 3.2          | 0.2        | 2.2         | 0.2        | 1.2        | 0.17         | 4          |   |
| D 1176           | 82.5           | 3.2        | 1.0         | 63.1           | 14.2          | 0.1        | 0.1        | 0.2        | 0.2        | 4.3          | 0.2        | 1.7         | 0.2        | 0.3        | 0.03         | 4          |   |
| D 1177           | 294.5          | 2.4        | 1.9         | 74.7           | 15.4          | 0.2        | 0.9        | 0.5        | 0.2        | 13.9         | 0.2        | 2.4         | 0.2        | 0.3        | 0.03         | 8          |   |
| D 1178           | 1,150.0        | 2.8        | 25.3        | 75.4           | 16.7          | 0.5        | 1.4        | 2.6        | 0.2        | 10.7         | 0.2        | 29.7        | 0.2        | 0.9        | 0.03         | 6          |   |
| D 1179           | 1,880.0        | 2.1        | 34.9        | 79.4           | 19.7          | 0.5<br>0.1 | 1.9        | 4.9        | 0.2<br>0.2 | 14.8<br>15.4 | 0.6<br>1.0 | 90.2<br>3.0 | 0.2<br>0.2 | 1.6<br>0.7 | 0.03<br>0.03 | 12<br>4    |   |
| D 1180<br>D 1181 | 106.0<br>349.0 | 2.8<br>4.0 | 1.1<br>2.1  | 94.9<br>105.0  | 23.9<br>21.1  | 0.1        | 1.8<br>1.6 | 0.3<br>0.5 | 0.2        | 9.7          | 0.2        | 1.8         | 0.2        | 1.2        | 0.03         | 9          |   |
| D 1182           | 770.0          | 1.9        | 27.3        | 116.3          | 24.5          | 0.4        | 2.3        | 2.5        | 0.2        | 12.2         | 0.2        | 5.7         | 0.2        | 2.0        | 0.03         | 10         |   |
| D 1183           | 329.6          | 4.1        | 46.8        | 297.2          | 81.9          | 1.2        | 2.0        | 2.2        | 0.2        | 72.9         | 0.8        | 156.9       | 0.2        | 1.6        | 0.03         | 24         |   |
| D 1184           | 269.3          | 2.7        | 1.4         | 279.3          | 26.1          | 1.1        | 1.6        | 0.3        | 0.2        | 12.1         | 0.2        | 2.0         | 0.2        | 0.4        | 0.03         | 9          |   |
| D 1185           | 390.7          | 2.3        | 0.4         | 141.7          | 33.0          | 0.3        | 3.3        | 0.5        | 0.2        | 17.3         | 0.2        | 3.6         | 0.2        | 1.5        | 0.03         | 53         |   |
| D 1186           | 607.0          | 11.8       | 15.7<br>2.4 | 106.7<br>126.7 | 220.6<br>15.7 | 1.4<br>0.3 | 6.4<br>2.9 | 2.8<br>0.2 | 0.2<br>0.2 | 298.7<br>2.8 | 0.5<br>0.2 | 2.8<br>2.6  | 0.2<br>0.2 | 3.7<br>0.2 | 0.03<br>0.03 | 1,090<br>5 |   |
| D 1187<br>D 1188 | 87.8<br>145.8  | 3.5<br>3.6 | 2.4         | 120.7          | 18.1          | 0.3        | 2.9        | 0.2        | 0.2        | 2.0<br>5.6   | 0.2        | 1.8         | 0.2        | 0.2        | 0.03         | 5          |   |
| D 1189           | 95.5           | 3.9        | 1.9         | 110.9          | 16.2          | 0.1        | 1.5        | 0.2        | 0.2        | 3.7          | 0.9        | 2.5         | 0.2        | 1.3        | 0.03         | 4          |   |
| D 1190           | 95.6           | 3.7        | 3.0         | 79.6           | 16.5          | 0.1        | 1.5        | 0.2        | 0.2        | 2.8          | 0.3        | 2.4         | 0.2        | 0.2        | 0.03         | 9          |   |
| D 1191           | 87.1           | 3.5        | 3.2         | 99.8           | 16.1          | 0.1        | 1.8        | 0.2        | 0.2        | 1.9          | 0.2        | 2.9         | 0.2        | 0.7        | 0.03         | 20         |   |
| D 1192           | 395.7          | 3.5        | 9.4         | 187.8          | 21.9          | 0.6        | 1.9        | 0.6        | 0.2        | 6.7          | 0.2        | 1.2         | 0.2        | 1.2        | 0.03         | 32         |   |
| D 1193           | 659.0          | 2.9        | 4.4         | 225.8<br>193.4 | 23.9<br>29.4  | 0.9<br>0.7 | 1.3<br>1.2 | 2.1<br>1.2 | 0.2<br>0.2 | 11.3<br>14.6 | 0.2<br>0.2 | 6.7<br>0.8  | 0.2<br>0.2 | 1.7<br>2.3 | 0.03<br>0.03 | 14<br>46   |   |
| D 1194<br>D 1195 | 714.0<br>394.9 | 3.0<br>3.9 | 1.1<br>1.5  | 57.3           | 29.4<br>12.9  | 0.7        | 1.2        | 0.3        | 0.2        | 2.3          | 0.2        | 0.8         | 0.2        | 1.1        | 0.03         | 40         |   |
| D 1196           | 135.0          | 3.7        | 27.7        | 153.7          | 16.3          | 0.7        | 0.2        | 0.2        | 0.2        | 2.3          | 0.2        | 3.3         | 0.2        | 0.8        | 0.03         | 5          |   |
| D 1197           | 38.8           | 1.3        | 38.8        | 259.5          | 11.5          | 4.0        | 0.6        | 0.2        | 0.2        | 3.0          | 0.2        | 7.6         | 0.2        | 1.9        | 0.03         | 4          |   |
| D 1198           | 204.9          | 3.7        | 1.4         | 39.8           | 18.6          | 0.1        | 0.9        | 0.2        | 0.2        | 2.6          | 0.2        | 1.5         | 0.2        | 0.8        | 0.03         | 8          |   |
| D 1199           | 88.7           | 2.6        | 2.3         | 24.7           | 15.1          | 0.1        | 0.5        | 0.2        | 0.2        | 13.8         | 0.2        | 1.4         | 0.2        | 0.2        | 0.03         | 7          |   |
| D 1200           | 137.3          | 2.7        | 3.4         | 35.7           | 10.7          | 0.1        | 1.0        | 0.2        | 0.2        | 4.0          | 0.4        | 0.5         | 0.2        | 0.7        | 0.03         | 5          |   |
| D 1201<br>D 1202 | 105.9<br>165.1 | 2.9<br>3.3 | 2.4<br>1.0  | 50.7<br>44.2   | 12.7<br>15.6  | 0.1<br>0.1 | 1.3<br>1.3 | 0.2<br>0.2 | 0.2<br>0.2 | 2.1<br>5.2   | 0.2<br>0.2 | 0.9<br>2.3  | 0.2<br>0.2 | 0.4<br>0.3 | 0.03<br>0.03 | 8          |   |
| D 1202<br>D 1203 | 817.0          | 3.3<br>3.4 | 1.8         | 21.4           | 13.7          | 0.1        | 0.9        | 0.2        | 0.2        | 3.0          | 0.2        | 0.2         | 0.2        | 0.3        | 0.03         | 16         |   |
| D 1204           | 153.3          | 2.9        | 0.4         | 37.2           | 14.3          | 0.1        | 1.2        | 0.2        | 0.2        | 0.2          | 0.2        | 0.8         | 0.2        | 0.7        | 0.03         | 3          |   |
| D 1205           | 116.3          | 3.8        | 2.8         | 33.0           | 13.3          | 0.1        | 0.9        | 0.2        | 0.2        | 1.4          | 0.2        | 1.3         | 0.2        | 0.2        | 0.03         | 12         |   |
| D 1206           | 133.8          | 2.8        | 0.3         | 25.1           | 14.4          | 0.1        | 0.7        | 0.2        | 0.2        | 0.5          | 0.2        | 0.2         | 0.2        | 0.2        | 0.03         | 3          |   |
| D 1207           | 82.2           | 25.6       | 2.1         | 44.4           | 17.0          | 0.1        | 0.7        | 0.2        | 0.2        | 1.7          | 0.3        | 1.1         | 0.2        | 0.4        | 0.03         | 4          |   |
| D 1208           | 73.9           | 3.3        | 5.4         | 103.6          | 14.5          | 0.1        | 1.3        | 0.2        | 0.2        | 0.2          | 0.2        | 3.9         | 0.2        | 0.4        | 0.03         | 8          |   |

| <b>L</b>         |                |            | ŧ.         | B.           | 8            | 8          | <b>b</b>   | 8          | R          | L.           |            |            | (          |            |              | <b>h</b> | 8 | 8 |
|------------------|----------------|------------|------------|--------------|--------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|--------------|----------|---|---|
|                  |                |            |            |              |              |            |            |            |            |              |            |            | _          | _          |              |          |   |   |
| EAGLE            | Cu             | Ni         | Pb         | Zn           | Co           | Cd         | Мо         | Ag         | W          | As           | Sb         | Bi         | Se         | Te         | Hg           | Au, ppb  |   |   |
| D 1209           | 128.8          | 2.9        | 0.8        | 26.3         | 13.0         | 0.1        | 0.9        | 0.2        | 0.2        | 2.7          | 0.6        | 0.4        | 0.2        | 0.2        | 0.03         | 11<br>4  |   |   |
| D 1210           | 132.5          | 2.8        | 3.0        | 29.9         | 12.2<br>15.4 | 0.1<br>0.2 | 1.3<br>1.0 | 0.2<br>0.2 | 0.2<br>0.2 | 20.2<br>0.3  | 0.2<br>0.2 | 0.6<br>2.0 | 0.2<br>0.2 | 0.4<br>0.6 | 0.03<br>0.03 | 4        |   |   |
| D 1211<br>D 1212 | 147.6<br>120.6 | 2.9<br>2.8 | 4.1<br>1.1 | 68.2<br>44.2 | 13.4         | 0.2        | 1.0        | 0.2        | 0.2        | 1.5          | 0.2        | 2.3        | 0.2        | 0.2        | 0.03         | 6        |   |   |
| D 1212           | 46.9           | 2.0        | 1.5        | 27.0         | 19.0         | 0.1        | 0.7        | 0.2        | 0.2        | 20.2         | 0.2        | 1.3        | 0.2        | 0.5        | 0.03         | 4        |   |   |
| D 1214           | 89.7           | 2.1        | 2.2        | 34.7         | 10.0         | 0.1        | 1.5        | 0.2        | 0.2        | 1.7          | 0.2        | 2.4        | 0.2        | 0.2        | 0.03         | 6        |   |   |
| D 1215           | 99.1           | 2.7        | 0.1        | 28.1         | 13.6         | 0.1        | 1.5        | 0.3        | 0.2        | 0.2          | 0.7        | 1.2        | 0.2        | 0.2        | 0.03         | 4        |   |   |
| D 1216           | 117.8          | 2.7        | 3.0        | 36.3         | 15.3         | 0.1        | 0.1        | 0.2        | 0.2        | 2.7          | 0.2        | 1.6        | 0.8        | 0.6        | 0.07         | 1        |   |   |
| D 1217           | 174.1          | 3.8        | 13.0       | 115.4        | 18.3         | 0.3        | 1.0        | 0.2        | 0.2        | 0.8          | 0.2        | 6.2        | 0.2        | 0.3        | 0.03         | 4        |   |   |
| D 1218           | 141.2          | 3.4        | 20.0       | 125.8        | 18.8         | 0.8        | 1.6        | 0.2        | 0.2        | 2.9          | 0.2        | 5.7        | 0.2        | 0.2        | 0.04         | 9        |   |   |
| D 1219           | 112.2          | 3.4        | 30.7       | 182.6        | 18.4         | 1.2        | 0.7        | 0.2        | 0.2        | 2.5          | 0.2        | 5.2        | 0.2        | 0.2        | 0.03         | 6        |   |   |
| D 1220           | 84.1           | 2.8        | 54.3       | 233.8        | 14.3         | 2.7        | 0.3        | 0.2        | 0.2        | 3.0          | 0.2        | 5.7        | 0.2        | 0.4        | 0.04         | 4        |   |   |
| D 1221           | 193.0          | 4.1        | 2.8        | 47.2         | 18.6         | 0.1        | 3.0        | 0.2        | 0.2        | 3.7          | 0.5<br>0.2 | 3.5<br>5.3 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.10 | 5        |   |   |
| D 1222           | 161.2          | 4.0        | 9.5        | 115.4        | 23.2<br>23.5 | 0.3<br>0.3 | 1.5<br>2.5 | 0.2<br>0.2 | 0.2<br>0.2 | 4.4<br>9.2   | 0.2        | 5.5<br>4.7 | 0.2        | 0.2        | 0.10         | 10       |   |   |
| D 1223<br>D 1224 | 120.7<br>165.0 | 4.5<br>4.0 | 2.2<br>1.3 | 68.0<br>47.6 | 23.5         | 0.5        | 1.6        | 0.2        | 0.2        | 1.5          | 2.4        | 1.5        | 0.2        | 0.2        | 0.07         | 3        |   |   |
| D 1224<br>D 1225 | 1,570.0        | 2.9        | 1.5        | 54.6         | 55.4         | 3.8        | 5.0        | 1.4        | 0.2        | 426.3        | 0.2        | 0.2        | 0.2        | 0.2        | 0.06         | 35       |   |   |
| D 1226           | 260.9          | 2.7        | 5.1        | 45.5         | 16.9         | 0.8        | 4.4        | 0.2        | 0.2        | 55.4         | 0.2        | 3.1        | 0.2        | 0.2        | 0.08         | 10       |   |   |
| D 1227           | 135.9          | 3.5        | 4.7        | 46.3         | 18.9         | 0.1        | 1.2        | 0.2        | 0.2        | 7.8          | 0.2        | 1.4        | 0.2        | 0.2        | 0.05         | 2        |   |   |
| D 1228           | 249.3          | 4.9        | 2.4        | 63.7         | 21.5         | 0.1        | 3.6        | 0.2        | 0.2        | 10.1         | 0.2        | 2.1        | 0.2        | 0.2        | 0.03         | 5        |   |   |
| D 1229           | 181.5          | 3.8        | 4.0        | 46.3         | 19.7         | 0.1        | 1.5        | 0.2        | 0.2        | 5.4          | 1.1        | 1.7        | 2.0        | 0.2        | 0.03         | 3        |   |   |
| D 1230           | 226.6          | 3.9        | 3.2        | 53.6         | 18.4         | 0.1        | 0.4        | 0.2        | 0.2        | 4.4          | 0.2        | 2.3        | 0.4        | 0.2        | 0.06         | 9        |   |   |
| D 1231           | 135.8          | 3.5        | 3.0        | 40.2         | 16.9         | 0.1        | 1.9        | 0.2        | 0.2        | 4.1          | 0.8        | 2.9        | 0.2        | 0.2        | 0.05         | 7        |   |   |
| D 1232           | 157.1          | 4.0        | 1.5        | 43.4         | 20.8         | 0.1        | 1.4        | 0.2        | 0.2<br>0.2 | 1.6<br>1.0   | 0.2<br>0.2 | 1.5<br>1.0 | 0.2<br>0.2 | 0.2<br>0.2 | 0.04<br>0.03 | 10<br>9  |   |   |
| D 1233           | 131.6<br>167.1 | 2.5<br>3.6 | 1.5<br>2.4 | 24.1<br>38.5 | 15.1<br>15.3 | 0.1<br>0.1 | 0.9<br>1.8 | 0.2<br>0.2 | 0.2        | 4.4          | 0.2        | 0.8        | 0.2        | 0.2        | 0.06         | 20       |   |   |
| D 1234<br>D 1235 | 172.0          | 3.3        | 2.4        | 37.9         | 14.8         | 0.1        | 0.4        | 0.2        | 0.2        | 3.6          | 0.6        | 1.0        | 0.2        | 0.2        | 0.08         | 7        |   |   |
| D 1236           | 106.2          | 2.6        | 0.9        | 34.6         | 14.2         | 0.1        | 1.2        | 0.2        | 0.2        | 2.1          | 0.2        | 1.5        | 0.2        | 0.2        | 0.05         | 17       |   |   |
| D 1237           | 127.2          | 3.2        | 1.5        | 39.2         | 19.4         | 0.1        | 1.4        | 0.2        | 0.2        | 1.8          | 0.2        | 2.0        | 0.2        | 0.2        | 0.03         | 20       |   |   |
| D 1238           | 102.8          | 2.4        | 0.6        | 30.3         | 13.3         | 0.1        | 1.2        | 0.2        | 0.2        | 0.9          | 0.7        | 2.1        | 0.2        | 0.2        | 0.03         | 14       |   |   |
| D 1239           | 145.8          | 2.3        | 1.0        | 25.4         | 12.2         | 0.1        | 0.7        | 0.2        | 0.2        | 2.3          | 0.2        | 0.5        | 0.7        | 0.2        | 0.03         | 15       |   |   |
| D 1240           | 121.1          | 2.6        | 0.2        | 39.1         | 15.1         | 0.1        | 1.5        | 0.2        | 0.2        | 1.0          | 0.2        | 1.2        | 0.2        | 0.2        | 0.03         | 14       |   |   |
| D 1241           | 87.1           | 2.9        | 0.8        | 28.5         | 13.0         | 0.1        | 1.3        | 0.2        | 0.2        | 1.9          | 0.2        | 2.4<br>0.6 | 0.2<br>0.3 | 0.2<br>0.2 | 0.03<br>0.03 | 9<br>8   |   |   |
| D 1242           | 75.6           | 2.6<br>3.6 | 1.7<br>1.3 | 25.4<br>60.9 | 11.6<br>16.7 | 0.1<br>0.1 | 1.4<br>1.2 | 0.2<br>0.2 | 0.2<br>0.2 | 2.5<br>2.3   | 0.3<br>0.2 | 1.5        | 0.3        | 0.2        | 0.03         | 5        |   |   |
| D 1243<br>D 1244 | 141.7<br>126.2 | 3.6        | 0.5        | 40.7         | 14.3         | 0.1        | 0.1        | 0.2        | 0.2        | 3.0          | 0.2        | 1.5        | 0.2        | 0.7        | 0.03         | 10       |   |   |
| D 1245           | 146.1          | 4.2        | 2.8        | 41.0         | 18.1         | 0.2        | 1.0        | 0.2        | 0.2        | 1.6          | 0.2        | 1.2        | 0.2        | 0.2        | 0.03         | 7        |   |   |
| D 1246           | 154.8          | 4.2        | 1.7        | 68.7         | 19.1         | 0.1        | 1.9        | 0.2        | 0.2        | 6.7          | 0.2        | 1.7        | 0.2        | 0.2        | 0.03         | 76       |   |   |
| D 1247           | 86.1           | 3.1        | 1.6        | 42.8         | 12.1         | 0.1        | 1.3        | 0.2        | 0.2        | 2.2          | 0.2        | 1.7        | 0.2        | 0.2        | 0.03         | 5        |   |   |
| D 1248           | 1,930.0        | 4.7        | 7.3        | 81.7         | 20.1         | 1.3        | 1.2        | 0.9        | 0.2        | 4.9          | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 11       |   |   |
| D 1249           | 15.7           | 1.4        | 4.6        | 17.6         | 10.6         | 0.3        | 1.3        | 0.2        | 0.2        | 39.7         | 0.2        | 1.0        | 0.2        | 0.2        | 0.03         | 16       |   |   |
| D 1250           | 94.6           | 2.7        | 1.2        | 73.1         | 15.4         | 0.2        | 3.3        | 0.2        | 0.2        | 1.3          | 0.2        | 2.5        | 0.2        | 0.2        | 0.03         | 5        |   |   |
| D 1251           | 107.1          | 2.9        | 6.7        | 73.5         | 14.5         | 0.3        | 0.8        | 0.3        | 0.2        | 4.3          | 0.2        | 3.8        | 0.2        | 0.2        | 0.03         | 10       |   |   |
| D 1252           | 910.0          | 3.2        | 3.8        | 42.3         | 14.7         | 0.1        | 1.1        | 0.4        | 0.2        | 4.6          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 13       |   |   |
| D 1253           | 177.6          | 3.6        | 26.9       | 135.3        | 18.7         | 1.3        | 3.2        | 0.3<br>0.2 | 0.2        | 12.4<br>25.2 | 0.2<br>0.2 | 4.5<br>2.4 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 20<br>16 |   |   |
| D 1254<br>D 1255 | 83.9<br>21.8   | 2.3<br>1.9 | 7.6<br>6.7 | 56.1<br>15.8 | 16.8<br>2.4  | 0.5<br>0.2 | 1.8<br>1.5 | 0.2        | 0.2<br>0.2 | 12.5         | 0.2        | 2.4<br>0.9 | 0.2        | 0.2        | 0.03         | 10       |   |   |
| D 1255<br>D 1256 | 198.5          | 2.6        | 1,110.0    | 4,260.0      | 2.4<br>16.4  | 49.5       | 1.2        | 2.8        | 0.2        | 24.3         | 0.2        | 2.3        | 0.2        | 2.7        | 0.03         | 78       |   |   |
| D 1257           | 339.7          | 3.4        | 2,040.0    | 4,170.0      | 17.0         | 46.2       | 1.7        | 3.1        | 0.2        | 19.2         | 0.6        | 2.0        | 0.2        | 2.8        | 0.04         | 32       |   |   |
| D 1258           | 3,930.0        | 3.6        | 105.0      | 282.0        | 16.9         | 2.9        | 0.9        | 1.9        | 0.2        | 5.7          | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 12       |   |   |
| D 1259           | 125.2          | 2.9        | 1.4        | 39.7         | 14.0         | 0.1        | 0.1        | 0.2        | 0.2        | 0.2          | 0.6        | 0.3        | 0.2        | 0.3        | 0.03         | 12       |   |   |
| D 1260           | 133.0          | 3.7        | 1.7        | 61.4         | 17.1         | 0.1        | 2.0        | 0.2        | 0.2        | 5.5          | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 16       |   |   |

| • <b>b b</b>       | 1             |            | ٩           |              |              | ۹.         |            | ٩          |            | L            |            | 1          | i I        |                 |              | <b>L</b> ( | k |
|--------------------|---------------|------------|-------------|--------------|--------------|------------|------------|------------|------------|--------------|------------|------------|------------|-----------------|--------------|------------|---|
| EAGLE              | Cu            | Ni         | Pb          | Zn           | Co           | Cd         | Мо         | Ag         | w          | As           | Sb         | Ві         | Se         | Te              | Hg           | Au, ppb    |   |
| D 1261             | 110.6         | 2.3        | 16.6        | 40.9         | 10.3         | 0.2        | 1.9        | 0.2        | 0.2        | 5.0          | 0.2        | 1.8        | 0.2        | 0.2             | 0.04         | 11         |   |
| D 1262             | 136.3         | 3.3        | 1.0         | 56.1         | 16.0         | 0.2        | 1.2        | 0.2        | 0.2        | 2.0          | 0.2        | 1.3        | 0.2        | 0.6             | 0.03         | 10         |   |
| D 1263             | 283.8         | 2.1        | 5.0         | 19.5         | 3.8          | 0.1        | 0.2        | 0.4        | 0.2        | 4.0          | 0.2        | 0.2        | 0.2        | 0.2             | 0.03         | 7          |   |
| D 1264             | 5,800.0       | 5.2        | 85.6        | 652.9        | 28.2         | 4.0        | 2.8        | 3.6        | 0.2        | 37.8         | 0.2        | 0.2        | 0.2        | 0.2             | 0.03         | 76         |   |
| D 1265             | 137.1         | 3.7        | 0.4         | 57.3         | 18.2         | 0.1        | 0.8        | 0.2        | 0.2        | 4.4          | 0.2        | 1.2        | 0.2        | 0.2             | 0.03         | 12         |   |
| D 1266             | 43.3          | 1.3        | 9.0         | 32.7         | 2.6          | 0.1        | 0.8        | 0.2        | 0.2        | 1.4          | 0.2        | 1.8        | 0.2        | 0.2             | 0.03         | 6          |   |
| D 1267             | 105.0         | 11.6       | 2.9         | 65.9         | 16.4         | 0.1        | 4.1        | 0.2        | 0.2        | 5.8          | 0.2        | 1.4        | 0.6        | 0.2             | 0.09         | 12         |   |
| D 1268             | 3,690.0       | 1.7        | 25.4        | 170.3        | 7.2          | 2.3        | 4.2        | 1.4        | 0.2        | 12.2         | 0.2        | 0.2        | 0.2        | 0.2             | 0.03         | 28         |   |
| D 1269             | 91.2          | 3.1        | 3.1         | 37.9         | 14.1         | 0.1        | 1.4        | 0.2        | 0.2        | 1.9          | 0.2        | 0.6        | 0.2        | 1.1             | 0.03         | 7          |   |
| D 1270             | 1,030.0       | 4.0        | 3.2         | 41.7         | 15.0         | 0.4        | 0.7        | 0.4        | 0.2        | 26. <b>6</b> | 0.2        | 0.2        | 0.2        | 0.2             | 0.03         | 13         |   |
| D 1271             | 306.2         | 4.2        | 1.6         | 44.0         | 34.6         | 0.7        | 1.9        | 0.4        | 0.2        | 70.8         | 0.2        | 1.7        | 0.2        | 0.6             | 0.03         | 13         |   |
| D 1272A            | 67.2          | 3.9        | 8.3         | 39.7         | 15.2         | 0.2        | 1.2        | 0.2        | 0.2        | 2.3          | 0.2        | 2.6        | 0.2        | 0.2             | 0.03         | 5          |   |
| D 1272B            | 75.8          | 4.1        | 3.4         | 37.2         | 26.4         | 0.2        | 2.1        | 0.2        | 0.2        | 23.7         | 0.2        | 1.8        | 0.2        | 0.6             | 0.03         | 4          |   |
| D 1273             | 144.3         | 4.9        | 2.8         | 55.2         | 19.3         | 0.1        | 1.2        | 0.2        | 0.2        | 8.6          | 1.3        | 0.8        | 0.2        | 0.4             | 0.03         | 8          |   |
| D 1274A<br>D 1274B | 147.2<br>29.6 | 3.7        | 14.4<br>3.2 | 118.0        | 14.8         | 1.0        | 0.5        | 0.2        | 0.2        | 2.6          | 0.2        | 5.6        | 0.2        | 1.4             | 0.03         | 3          |   |
| D 1274B            | 121.1         | 1.9<br>4.2 | 3.2<br>2.7  | 20.9<br>49.3 | 5.7          | 0.1        | 0.8        | 0.2        | 0.2        | 1.2          | 0.2        | 1.0        | 0.4        | 1.0             | 0.03         | 5          |   |
| D 1275             | 85.5          | 4.2<br>3.5 | 2.7         | 49.3<br>41.1 | 15.0<br>15.4 | 0.1<br>0.1 | 1.5<br>1.8 | 0.2<br>0.2 | 0.2<br>0.2 | 2.9<br>6.8   | 0.2<br>0.2 | 1.8        | 0.2        | 0.2             | 0.04         | 11         |   |
| D 1278             | 197.5         | 3.5<br>4.1 | 4.3         | 55.8         | 25.1         | 0.1        | 1.o<br>1.8 | 0.2        | 0.2        | 27.7         | 0.2        | 2.3<br>3.5 | 0.2        | 0.4             | 0.03         | 3          |   |
| D 1278             | 116.7         | 3.3        | 4.2         | 56.3         | 15.5         | 0.5        | 0.9        | 0.3        | 0.2        | 9.6          | 0.2        | 3.5<br>3.4 | 0.2<br>0.2 | 1.9<br>0.8      | 0.03<br>0.03 | 8<br>10    |   |
| D 1279             | 565.0         | 3.3        | 1.3         | 27.6         | 16.0         | 0.1        | 1.2        | 0.3        | 0.2        | 2.4          | 0.2        | 0.2        | 0.2        | 0.8             | 0.03         | 13         |   |
| D 1280             | 144.0         | 3.4        | 1.6         | 25.1         | 16.2         | 0.1        | 0.7        | 0.3        | 0.2        | 4.8          | 0.2        | 1.7        | 0.5        | 0.2             | 0.05         | 11         |   |
| D 1281             | 216.6         | 3.2        | 1.7         | 33.5         | 16.5         | 0.2        | 0.3        | 0.2        | 0.2        | 6.6          | 0.2        | 0.2        | 0.2        | 0.2             | 0.03         | 8          |   |
| D 1282             | 69.3          | 2.4        | 3.9         | 35.9         | 11.3         | 0.2        | 1.5        | 0.2        | 0.2        | 8.1          | 0.2        | 2.7        | 0.6        | 0.3             | 0.05         | 10         |   |
| D 1283             | 31.3          | 1.5        | 0.9         | 24.6         | 6.3          | 0.1        | 1.0        | 0.2        | 0.2        | 5.9          | 0.2        | 2.1        | 0.5        | 0.3             | 0.03         | 6          |   |
| D 1284             | 115.2         | 36.7       | 3.7         | 46.4         | 26.0         | 0.4        | 0.4        | 0.2        | 0.2        | 4.3          | 0.2        | 1.9        | 0.2        | 0.7             | 0.03         | 5          |   |
| D 1285             | 114.1         | 21.7       | 1.5         | 41.1         | 20.8         | 0.1        | 1.6        | 0.2        | 0.2        | 2.2          | 0.2        | 1.5        | 0.2        | 0.7             | 0.07         | 2          |   |
| D 1286             | 76.3          | 3.1        | 8.8         | 77.2         | 14.6         | 0.5        | 0.8        | 0.2        | 0.2        | 5.1          | 0.2        | 4.0        | 0.2        | 1.3             | 0.05         | 7          |   |
| D 1287             | 284.5         | 3.0        | 1.7         | 32.2         | 14.9         | 0.1        | 0.1        | 0.2        | 0.2        | 3.5          | 0.2        | 0.2        | 0.2        | 0.2             | 0.03         | 12         |   |
| D 1288             | 156.1         | 2.3        | 1.4         | 32.2         | 11.7         | 0.1        | 1.6        | 0.2        | 0.2        | 2.7          | 0.5        | 0.7        | 0.2        | 0.2             | 0.03         | 5          |   |
| D 1289             | 97.7          | 2.1        | 3.7         | 43.8         | 9.7          | 0.1        | 1.5        | 0.2        | 0.2        | 4.7          | 0.2        | 2.3        | 0.2        | 1.1             | 0.03         | 5          |   |
| D 1290             | 165.2         | 2.4        | 1,1         | 42.5         | 14.0         | 0.1        | 1.0        | 0.2        | 0.2        | 3.0          | 0.8        | 0.6        | 0.2        | 0.5             | 0.03         | 4          |   |
| D 1291             | 135.7         | 2.7        | 2.2         | 51.6         | 14.2         | 0.1        | 1.0        | 0.2        | 0.2        | 0.2          | 0.2        | 2.4        | 0.2        | 0.3             | 0.03         | 8          |   |
| D 1292             | 100.2         | 2.5        | 2.7         | 43.0         | 11.8         | 0.1        | 1.2        | 0.2        | 0.2        | 0.7          | 0.2        | 0.8        | 0.2        | 0.3             | 0.03         | 5          |   |
| D 1293             | 75.0          | 3.1        | 3.0         | 51.6         | 12.7         | 0.1        | 1.7        | 0.2        | 0.2        | 3.6          | 0.2        | 0.9        | 0.2        | 0.2             | 0.03         | 1          |   |
| D 1294             | 22.7          | 3.0        | 2.5         | 38.9         | 8.7          | 0.1        | 1.6        | 0.2        | 0.2        | 3.3          | 0.4        | 3.0        | 0.2        | 0.6             | 0.03         | 11         |   |
| D 1295             | 37.5          | 2.6        | 6.4         | 44.2         | 9.3          | 0.1        | 1.0        | 0.2        | 0.2        | 4.5          | 0.2        | 1.9        | 0.2        | 0.2             | 0.03         | 2          |   |
| D 1296             | 87.4          | 3.0        | 1.9         | 45.3         | 11.9         | 0.1        | 1.4        | 0.2        | 0.2        | 1.9          | 0.7        | 0.3        | 0.2        | 0.6             | 0.03         | 5          |   |
| D 1297             | 137.9         | 2.7        | 1.4         | 41.2         | 13.2         | 0.1        | 1.2        | 0.2        | 0.2        | 2.4          | 0.2        | 0.8        | 0.2        | 0.2             | 0.03         | 10         |   |
| D 1298             | 84.7          | 2.2        | 1.9         | 32.8         | 10.9         | 0.1        | 1.3        | 0.2        | 0.2        | 2.7          | 0.2        | 1.0        | 0.2        | 0.3             | 0.03         | 14         |   |
| D 1299             | 450.7         | 3.1        | 25.2        | 39.2         | 18.6         | 0.4        | 0.9        | 1.0        | 0.2        | 45.6         | 0.4        | 0.2        | 0.2        | 0.5             | 0.03         | 16         |   |
| D 1300             | 8,360.0       | 4.2        | 11.7        | 595.0        | 26.0         | 3.6        | 1.1        | 0.2        | 0.2        | 31.8         | 0.2        | 0.2        | 0.2        | 2.6             | 0.03         | 110        |   |
| D 1301             | 107.6         | 2.2        | 2.2         | 51.7         | 11.9         | 0.1        | 0.9        | 0.2        | 0.2        | 2.6          | 0.2        | 1.3        | 0.2        | 1.1             | 0.03         | 12         |   |
| D 1302<br>D 1303   | 85.2<br>122.6 | 2.2<br>2.0 | 4.5         | 83.0<br>82.2 | 14.2         | 0.1        | 1.4        | 0.2        | 0.2        | 0.2          | 0.5        | 1.5        | 0.2        | 1.8             | 0.03         | 10         |   |
| D 1303<br>D 1304   | 122.6         | 2.0<br>2.6 | 1.3<br>2.2  | 82.2<br>86.8 | 11.1<br>14.6 | 0.1<br>0.1 | 1.6        | 0.2        | 0.2        | 0.2          | 0.2        | 1.8        | 0.2        | 0.3             | 0.03         | 13         |   |
| D 1304<br>D 1305   | 79.5          | 2.0        | 2.2<br>5.5  | 66.1         | 13.8         | 0.1        | 1.5        | 0.2        | 0.2        | 0.4          | 0.2        | 2.0        | 0.2        | 0.6             | 0.03         | 12         |   |
| D 1305             | 79.5<br>35.1  | 3.3        | 5.5<br>7.1  | 40.8         | 12.6         |            | 1.3        | 0.2        | 0.2        | 3.2          | 0.2        | 3.4        | 0.2        | 1.0             | 0.03         | 9          |   |
| D 1308             | 148.9         | 3.5<br>2.1 | 1.0         | 40.8         | 12.0         | 0.1<br>0.1 | 1.0<br>0.5 | 0.2<br>0.2 | 0.2<br>0.2 | 1.6<br>0.4   | 0.2<br>0.2 | 2.1<br>0.7 | 0.2<br>0.2 | 0.6             | 0.03<br>0.03 | 9          |   |
| D 1307             | 140.9         | 2.1        | 1.1         | 20.0<br>49.0 | 13.1         | 0.1        | 0.5        | 0.2        | 0.2        | 2.1          | 0.2        | 0.7<br>1.3 | 0.2<br>0.2 | 0.2<br>0.4      |              | 9<br>11    |   |
| D 1309             | 121.1         | 2.8        | 1.0         | 60.0         | 14.6         | 0.1        | 2.0        | 0.2        | 0.2        | 3.8          | 0.2        | 1.3        | 0.2        | 0.4             | 0.03<br>0.03 | 9          |   |
| D 1310             | 839.0         | 4.0        | 1.8         | 51.8         | 15.3         | 0.1        | 1.3        | 0.4        | 0.2        | 9.0          | 0.2        | 0.6        | 0.3        | 0.2             | 0.03         | 11         |   |
|                    |               |            |             |              |              |            |            | ¥- T       |            |              |            | 0.0        |            | v. <del>4</del> | 0.00         |            |   |

.

| EAGLECuNiPbZnCoD 131153.32.82.944.714.0D 131292.92.62.451.913.9D 131362.52.31.754.416.3D 1314129.12.42.657.014.4D 131598.52.02.239.314.5D 131642.02.31.532.439.5D 1317143.82.32.325.811.9                                                                                                                                                                                                              | 0.1<br>0.2<br>0.1<br>1.5<br>0.1<br>0.1<br>0.1<br>0.1 | Mo<br>1.8<br>1.3<br>1.0<br>1.8<br>1.0<br>0.9<br>0.4<br>0.9<br>1.1<br>0.2 | Ag<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | W<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | As<br>11.6<br>5.4<br>7.2<br>12.6<br>6.9<br>228.7<br>2.3<br>3.1 | Sb<br>0.2<br>0.4<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | Bi<br>1.4<br>2.6<br>1.8<br>1.2<br>1.3<br>2.1<br>0.2 | Se<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2  | Te<br>0.8<br>0.2<br>0.3<br>0.2<br>0.2<br>0.5<br>0.4 | Hg<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03   | Au, ppb<br>10<br>11<br>12<br>13<br>9<br>18 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|--------------------------------------------|
| D 131153.32.82.944.714.0D 131292.92.62.451.913.9D 131362.52.31.754.416.3D 1314129.12.42.657.014.4D 131598.52.02.239.314.5D 131642.02.31.532.439.5                                                                                                                                                                                                                                                      | 0.2<br>0.1<br>0.2<br>0.1<br>1.5<br>0.1<br>0.1<br>0.1 | 1.8<br>1.3<br>1.0<br>1.8<br>1.0<br>0.9<br>0.4<br>0.9<br>1.1              | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2              | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2      | 11.6<br>5.4<br>7.2<br>12.6<br>6.9<br>228.7<br>2.3              | 0.2<br>0.2<br>0.4<br>0.2<br>0.2<br>0.2<br>0.2       | 1.4<br>2.6<br>1.8<br>1.2<br>1.3<br>2.1<br>0.2       | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 0.8<br>0.2<br>0.3<br>0.2<br>0.2<br>0.5              | 0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03 | 10<br>11<br>12<br>13<br>9<br>18            |
| D 1312         92.9         2.6         2.4         51.9         13.9           D 1313         62.5         2.3         1.7         54.4         16.3           D 1314         129.1         2.4         2.6         57.0         14.4           D 1315         98.5         2.0         2.2         39.3         14.5           D 1316         42.0         2.3         1.5         32.4         39.5 | 0.1<br>0.2<br>0.1<br>1.5<br>0.1<br>0.1<br>0.1<br>0.1 | 1.3<br>1.0<br>1.8<br>1.0<br>0.9<br>0.4<br>0.9<br>1.1                     | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                     | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2             | 5.4<br>7.2<br>12.6<br>6.9<br>228.7<br>2.3                      | 0.2<br>0.4<br>0.2<br>0.2<br>0.2<br>0.2              | 2.6<br>1.8<br>1.2<br>1.3<br>2.1<br>0.2              | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               | 0.2<br>0.3<br>0.2<br>0.2<br>0.5                     | 0.03<br>0.03<br>0.03<br>0.03<br>0.03                 | 11<br>12<br>13<br>9<br>18                  |
| D 131292.92.62.451.913.9D 131362.52.31.754.416.3D 1314129.12.42.657.014.4D 131598.52.02.239.314.5D 131642.02.31.532.439.5                                                                                                                                                                                                                                                                              | 0.1<br>0.2<br>0.1<br>1.5<br>0.1<br>0.1<br>0.1<br>0.1 | 1.0<br>1.8<br>1.0<br>0.9<br>0.4<br>0.9<br>1.1                            | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                            | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                    | 7.2<br>12.6<br>6.9<br>228.7<br>2.3                             | 0.4<br>0.2<br>0.2<br>0.2<br>0.2                     | 1.8<br>1.2<br>1.3<br>2.1<br>0.2                     | 0.2<br>0.2<br>0.2<br>0.2<br>0.2                      | 0.3<br>0.2<br>0.2<br>0.5                            | 0.03<br>0.03<br>0.03<br>0.03                         | 12<br>13<br>9<br>18                        |
| D 1314         129.1         2.4         2.6         57.0         14.4           D 1315         98.5         2.0         2.2         39.3         14.5           D 1315         98.5         2.0         2.2         39.3         14.5           D 1316         42.0         2.3         1.5         32.4         39.5                                                                                 | 0.2<br>0.1<br>1.5<br>0.1<br>0.1<br>0.1<br>0.1        | 1.8<br>1.0<br>0.9<br>0.4<br>0.9<br>1.1                                   | 0.2<br>0.2<br>0.2<br>0.2<br>0.2                                   | 0.2<br>0.2<br>0.2<br>0.2<br>0.2                           | 12.6<br>6.9<br>228.7<br>2.3                                    | 0.2<br>0.2<br>0.2<br>0.2                            | 1.2<br>1.3<br>2.1<br>0.2                            | 0.2<br>0.2<br>0.2<br>0.2                             | 0.2<br>0.2<br>0.5                                   | 0.03<br>0.03<br>0.03                                 | 13<br>9<br>18                              |
| D 1315 98.5 2.0 2.2 39.3 14.5<br>D 1316 42.0 2.3 1.5 32.4 39.5                                                                                                                                                                                                                                                                                                                                         | 0.1<br>1.5<br>0.1<br>0.1<br>0.1<br>0.1               | 1.0<br>0.9<br>0.4<br>0.9<br>1.1                                          | 0.2<br>0.2<br>0.2<br>0.2                                          | 0.2<br>0.2<br>0.2<br>0.2                                  | 6.9<br>228.7<br>2.3                                            | 0.2<br>0.2<br>0.2                                   | 1.3<br>2.1<br>0.2                                   | 0.2<br>0.2<br>0.2                                    | 0.2<br>0.5                                          | 0.03<br>0.03                                         | 9<br>18                                    |
| D 1316 42.0 2.3 1.5 32.4 39.5                                                                                                                                                                                                                                                                                                                                                                          | 1.5<br>0.1<br>0.1<br>0.1<br>0.1                      | 0.9<br>0.4<br>0.9<br>1.1                                                 | 0.2<br>0.2<br>0.2                                                 | 0.2<br>0.2<br>0.2                                         | 228.7<br>2.3                                                   | 0.2<br>0.2                                          | 2.1<br>0.2                                          | 0.2<br>0.2                                           | 0.5                                                 | 0.03                                                 | 18                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1<br>0.1<br>0.1<br>0.1                             | 0.4<br>0.9<br>1.1                                                        | 0.2<br>0.2                                                        | 0.2<br>0.2                                                | 2.3                                                            | 0.2                                                 | 0.2                                                 | 0.2                                                  |                                                     |                                                      |                                            |
| D 4947 1439 33 358 119                                                                                                                                                                                                                                                                                                                                                                                 | 0.1<br>0.1<br>0.1                                    | 0.9<br>1.1                                                               | 0.2                                                               | 0.2                                                       |                                                                |                                                     |                                                     |                                                      |                                                     |                                                      |                                            |
| D 317 143.6 2.3 2.3 23.0 11.9                                                                                                                                                                                                                                                                                                                                                                          | 0.1<br>0.1                                           | 1.1                                                                      |                                                                   |                                                           | 31                                                             | ~ ~ ~                                               |                                                     |                                                      |                                                     | 0.03                                                 | 9                                          |
| D 1318 74.6 2.3 4.2 47.2 11.1                                                                                                                                                                                                                                                                                                                                                                          | 0.1                                                  |                                                                          | 0.2                                                               |                                                           |                                                                | 0.2                                                 | 1.0                                                 | 0.2                                                  | 0.9                                                 | 0.03                                                 | 6                                          |
| D 1319 93.6 3.0 2.8 73.6 28.1                                                                                                                                                                                                                                                                                                                                                                          |                                                      | 0.2                                                                      |                                                                   | 0.2                                                       | 26.7                                                           | 0.2                                                 | 1.9                                                 | 0.2                                                  | 0.9                                                 | 0.03                                                 | 11                                         |
| D 1320 137.4 1.6 1.6 39.4 9.9                                                                                                                                                                                                                                                                                                                                                                          | 0.2                                                  |                                                                          | 0.2                                                               | 0.2                                                       | 2.5                                                            | 0.2                                                 | 1.0                                                 | 0.2                                                  | 1.3                                                 | 0.03                                                 | 23                                         |
| D 1321 123.4 3.0 6.6 36.9 5.9                                                                                                                                                                                                                                                                                                                                                                          |                                                      | 1.0                                                                      | 0.2                                                               | 0.2                                                       | 15.6                                                           | 0.2                                                 | 1.2                                                 | 0.2                                                  | 0.8                                                 | 0.03                                                 | 1                                          |
| Cu Ni Pb Zn Co                                                                                                                                                                                                                                                                                                                                                                                         | Cd                                                   | Мо                                                                       | Ag                                                                | w                                                         | As                                                             | Sb                                                  | Bi                                                  | Se                                                   | Te                                                  | Hg                                                   | Au, ppb                                    |
| Drill Core Statistics:                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                                          | ·                                                                 |                                                           |                                                                |                                                     |                                                     |                                                      |                                                     | -                                                    |                                            |
| Count 323 323 323 323 323                                                                                                                                                                                                                                                                                                                                                                              | 323                                                  | 323                                                                      | 323                                                               | 323                                                       | 323                                                            | 323                                                 | 323                                                 | 323                                                  | 323                                                 | 323                                                  | 323                                        |
| Mean 271.1 3.6 42.3 137.7 19.3                                                                                                                                                                                                                                                                                                                                                                         |                                                      | 1.5                                                                      | 0.5                                                               | 0.2                                                       | 12.2                                                           | 0.3                                                 | 3.2                                                 | 0.2                                                  | 0.7                                                 | 0.05                                                 | 31.9                                       |
| s.d. 689.0 2.7 206.9 383.6 18.6                                                                                                                                                                                                                                                                                                                                                                        | 4.2                                                  | 1.2                                                                      | 0.6                                                               | 0.5                                                       | 35.1                                                           | 0.2                                                 | 10.2                                                | 0.2                                                  | 0.7                                                 | 0.04                                                 | 252.5                                      |
| Maximum 8,360.0 36.7 2,320.0 4,260.0 220.9                                                                                                                                                                                                                                                                                                                                                             | 49.5                                                 | 16.9                                                                     | 4.9                                                               | 8.6                                                       | 426.3                                                          | 2.4                                                 | 156.9                                               | 2.0                                                  | 3.7                                                 | 0.40                                                 | 4,408                                      |
| Minimum 15.7 1.3 0.1 15.8 2.4                                                                                                                                                                                                                                                                                                                                                                          |                                                      | 0.1                                                                      | 0.1                                                               | 0.2                                                       | 0.2                                                            | 0.2                                                 | 0.2                                                 | 0.2                                                  | 0.2                                                 | 0.03                                                 | 1                                          |
| Mean + 2 s.d. 1,649.1 9.0 456.1 904.8 56.6                                                                                                                                                                                                                                                                                                                                                             | 9.4                                                  | 3.9                                                                      | 1.7                                                               | 1.2                                                       | 82.5                                                           | 0.6                                                 | 23.6                                                | 0.6                                                  | 2.0                                                 | 0.13                                                 | 536.8                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4                                                  | 0.0                                                                      | •.•                                                               | ••=                                                       | 02.0                                                           |                                                     |                                                     |                                                      |                                                     |                                                      |                                            |
| Corretation Coefficients: Drill Core Samples                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                                          |                                                                   | 14/                                                       |                                                                | 01                                                  | <u> </u>                                            | Se                                                   | Te                                                  | Hg                                                   | Au, ppb                                    |
| Cu Ni Pb Zn Co                                                                                                                                                                                                                                                                                                                                                                                         | Cd                                                   | Mo                                                                       | Ag                                                                | W (0.000)                                                 | As<br>0.138                                                    | Sb<br>(0.031)                                       | Bi<br>0.046                                         | (0.028)                                              | 0.174                                               | (0.063)                                              | 0.068                                      |
| Cu 1.000 0.024 0.004 0.091 0.194                                                                                                                                                                                                                                                                                                                                                                       |                                                      | 0.090                                                                    | 0.369 (0.021)                                                     | (0.002)                                                   | 0.138                                                          | 0.026                                               | (0.046                                              | (0.028)                                              | 0.174                                               | 0.007                                                | 0.008                                      |
| Ni 1.000 (0.037) (0.033) 0.212                                                                                                                                                                                                                                                                                                                                                                         |                                                      | 0.041                                                                    |                                                                   | (0.030)                                                   | 0.056                                                          | 0.028                                               | 0.013                                               | 0.017                                                | 0.307                                               | (0.023)                                              | 0.009                                      |
| Pb         1.000         0.742         (0.010           Zn         1.000         0.013                                                                                                                                                                                                                                                                                                                 |                                                      | (0.016)                                                                  | 0.444                                                             | (0.013)                                                   | 0.073                                                          | 0.014                                               | 0.033                                               | 0.017                                                | 0.307                                               | (0.010)                                              | 0.003                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      | 0.207                                                                    | 0.297                                                             | (0.022)                                                   | 0.486                                                          | 0.018                                               | 0.055                                               | 0.002                                                | 0.415                                               | 0.011                                                | 0.402                                      |
| Co 1.000                                                                                                                                                                                                                                                                                                                                                                                               | 1.000                                                | (0.019)                                                                  | 0.438                                                             | (0.002)                                                   | 0.093                                                          | 0.020                                               | 0.011                                               | 0.002                                                | 0.373                                               | (0.022)                                              | 0.026                                      |
| Mo                                                                                                                                                                                                                                                                                                                                                                                                     | 1.000                                                | 1.000                                                                    | 0.106                                                             | 0.023                                                     | 0.231                                                          | (0.004)                                             | 0.033                                               | (0.018)                                              | 0.062                                               | 0.000                                                | 0.003                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      | 1.000                                                                    | 1.000                                                             | (0.017)                                                   | 0.374                                                          | 0.017                                               | 0.400                                               | (0.025)                                              | 0.464                                               | (0.050)                                              | 0.167                                      |
| Ag                                                                                                                                                                                                                                                                                                                                                                                                     | -{{                                                  |                                                                          | 1.000                                                             | 1.000                                                     | (0.009)                                                        | (0.018)                                             | (0.005)                                             | (0.015)                                              | (0.048)                                             | (0.024)                                              | (0.007)                                    |
| As                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                          |                                                                   | 1.000                                                     | 1.000                                                          | 0.000                                               | 0.094                                               | (0.014)                                              | 0.196                                               | (0.025)                                              | 0.316                                      |
| Sb                                                                                                                                                                                                                                                                                                                                                                                                     | - <u> </u>                                           | +                                                                        |                                                                   |                                                           |                                                                | 1.000                                               | 0.156                                               | 0.096                                                | (0.039)                                             | (0.003)                                              | (0.006)                                    |
| Bi                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                          |                                                                   |                                                           |                                                                |                                                     | 1.000                                               | (0.018)                                              | 0.162                                               | (0.030)                                              | 0.030                                      |
| Se                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                          |                                                                   |                                                           |                                                                |                                                     |                                                     | 1.000                                                | (0.050)                                             | 0.011                                                | 0.115                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                                          |                                                                   |                                                           |                                                                |                                                     |                                                     |                                                      | 1.000                                               | 0.099                                                | 0.188                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                                          |                                                                   |                                                           |                                                                |                                                     |                                                     |                                                      |                                                     | 1.000                                                | (0.024)                                    |
| Au, ppb                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                                                  |                                                                          |                                                                   |                                                           |                                                                |                                                     | · 1                                                 |                                                      |                                                     |                                                      | 1.000                                      |

| <b>b b</b>       |                    |            |                 |                  |               |            |             |            |            |              |            | •          |            | L          | •            |           |    |
|------------------|--------------------|------------|-----------------|------------------|---------------|------------|-------------|------------|------------|--------------|------------|------------|------------|------------|--------------|-----------|----|
| EAGLE            | Cu                 | Ni         | РЬ              | Zn               | Co            | Cđ         | Мо          | Ag         | w          | As           | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb   |    |
| R 16             | 109.1              | 2.5        | 9.3             | 54.3             | 11.6          | 1.0        | 3.6         | 0.8        | 0.2        | 108.4        | 0.2        | 2.1        | 0.2        | 0.2        | 0.03         | 100       |    |
| R 17             | 12,800.0           | 14.7       | 37.8            | 94.2             | 72.4          | 2.4        | 4.8         | 5.0        | 0.2        | 254.4        | 0.2        | 0.2        | 0.8        | 2.7        | 0.03         | 4,060     |    |
| R 18             | 19,700.0           | 5.0        | 5.5             | 151.7            | 141.9         | 1.1        | 45.9        | 5.6        | 0.2        | 160.6        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 550       |    |
| R 19             | 69,600.0           | 6.6        | 15.7            | 487.4            | 132.2         | 6.1        | 20.2        | 3.3        | 0.2        | 481.5        | 0.2        | 0.2        | 3.6        | 0.2        | 0.03         | 2,600     |    |
| R 20             | 16,000.0           | 8.9        | 11.2            | 105.6            | 46.5          | 0.9        | 1.5         | 4.4        | 0.2        | 33.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03<br>0.03 | 260       | k. |
| R 21             | 30,200.0           | 5.4        | 9.4             | 164.7            | 8.2           | 0.6        | 38.4        | 4.2        | 0.2<br>0.2 | 6.5<br>1.7   | 0.4<br>0.2 | 0.5<br>0.2 | 0.5<br>0.2 | 0.4<br>0.2 | 0.03         | 720       |    |
| R 22             | 1,820.0            | 6.4        | 5.2<br>3.5      | 40.1<br>40.7     | 22.4<br>6.3   | 0.4<br>0.1 | 1.3<br>1.1  | 1.5<br>0.1 | 0.2        | 1.7          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6         |    |
| R 23<br>R 24     | 40.8<br>10,900.0   | 2.8<br>4.6 | 3.5<br>11.9     | 40.7             | 56.0          | 1.0        | 15.7        | 3.5        | 0.2        | 14.8         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 650       |    |
| R 25             | 5,350.0            | 2.9        | 4.3             | 73.0             | 19.5          | 0.5        | 54.0        | 3.1        | 0.2        | 32.9         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 490       |    |
| R 1030           | 309.8              | 3.5        | 1.9             | 32.1             | 15.8          | 0.1        | 1.8         | 0.1        | 5.4        | 1.9          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6         |    |
| R 1031           | 1,830.0            | 3.5        | 1.7             | 35.7             | 22.0          | 0.1        | 1.4         | 0.7        | 0.2        | 5.5          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 28        |    |
| R 1032           | 877.0              | 3.0        | 2.6             | 52.7             | 13.4          | 0.1        | 0.9         | 0.4        | 0.2        | 0.8          | 0.2        | 0.2        | 0.3        | 0.2        | 0.03         | 6         |    |
| R 1033           | 212.6              | 3.2        | 3.0             | 30.9             | 13.5          | 0.1        | 1.0         | 0.2        | 0.2        | 2.0          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 5         |    |
| R 1035           | 4,090.0            | 3.6        | 7.4             | 86.7             | 24.6          | 0.3        | 15.1        | 2.6        | 0.2        | 17.1         | 0.2        | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.5 | 0.03<br>0.03 | 220<br>4  |    |
| R 1037           | 144.2              | 3.7        | 2.4             | 35.0             | 13.6          | 0.2        | 0.4<br>2.4  | 0.1<br>0.3 | 0.2<br>0.2 | 32.8<br>2.4  | 0.2<br>1.2 | 0.2        | 0.2        | 0.5        | 0.03         | 5         |    |
| R 1038           | 342.6<br>39.0      | 6.6<br>8.7 | 0.1<br>5.3      | 43.9<br>151.4    | 27.4<br>1.8   | 0.1<br>4.4 | 38.9        | 0.5<br>1.6 | 0.2        | 15.8         | 0.7        | 0.2        | 24.1       | 1.2        | 0.03         | 5         |    |
| R 1039<br>R 3004 | 3,060.0            | 4.2        | 4.5             | 38.7             | 25.9          | 0.3        | 3.5         | 1.5        | 0.2        | 9.8          | 0.2        | 0.2        | 0.4        | 0.2        | 0.03         | 68        |    |
| R 3005           | 1,940.0            | 12.8       | 0.8             | 58.4             | 29.7          | 0.1        | 1.2         | 1.1        | 0.2        | 2.8          | 0.3        | 0.2        | 0.4        | 0.2        | 0.11         | 37        |    |
| R 3006           | 237.2              | 3.3        | 1.1             | 28.0             | 19.4          | 0.1        | 1.2         | 0.1        | 0.2        | 3.9          | 0.3        | 0.2        | 0.2        | 0.2        | 0.04         | 9         |    |
| R 3007           | 19,400.0           | 10.3       | 11.7            | 88.3             | 142.3         | 0.1        | 0.6         | 1.0        | 0.2        | 4.4          | 0.2        | 0.2        | 0.2        | 0.9        | 0.03         | 26        |    |
| R 3008           | 1,560.0            | 3.9        | 1.7             | 22.9             | 15.2          | 0.1        | 8.0         | 0.1        | 0.2        | 2.4          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 9         |    |
| R 3009           | 4,340.0            | 3.8        | 3.2             | 42.7             | 21.2          | 0.1        | 5.6         | 1.0        | 12.0       | 8.5          | 0.2        | 0.2<br>0.2 | 0.6<br>0.2 | 0.2<br>0.4 | 0.03<br>0.04 | 93<br>128 |    |
| R 3010           | 12,700.0           | 4.6        | 5.4             | 154.1            | 33.8          | 0.7<br>0.1 | 2.6<br>39.4 | 3.6<br>6.5 | 0.2<br>0.2 | 22.5<br>3.5  | 0.2<br>0.2 | 0.2        | 1.7        | 1.5        | 0.04         | 511       |    |
| R 3011           | 22,300.0           | 4.3<br>7.8 | 7.4<br>0.5      | 94.7<br>46.9     | 29.0<br>23.2  | 0.1        | 2.2         | 0.3        | 0.2        | 3.4          | 1.4        | 0.2        | 1.4        | 0.2        | 0.11         | 20        |    |
| R 3012<br>R 3013 | 662.0<br>966.0     | 7.8<br>9.8 | 0.5             | 40.9             | 23.2          | 0.1        | 2.2         | 0.7        | 0.2        | 3.1          | 2.1        | 0.2        | 1.7        | 0.2        | 0.11         | 14        |    |
| R 3014           | 539.0              | 7.0        | 0.1             | 22.8             | 18.1          | 0.1        | 3.4         | 0.4        | 0.2        | 3.5          | 3.3        | 0.9        | 3.6        | 0.2        | 0.13         | 16        |    |
| R 3015           | 521.0              | 16.8       | 0.1             | 22.2             | 22.5          | 0.1        | 3.9         | 0.3        | 0.2        | 2.0          | 2.7        | 0.2        | 1.7        | 0.2        | 0.17         | 12        |    |
| R 3016           | 892.0              | 5.0        | 2.9             | 119.3            | 23.2          | 0.4        | 1.0         | 0.1        | 0.2        | 6.2          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6         |    |
| R 3017           | 182.1              | 2.6        | 3.0             | 51.8             | 10.9          | 0.1        | 1.1         | 0.1        | 0.2        | 2.3          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 370       |    |
| R 3018           | 3,860.0            | 23.4       | 4.8             | 90.7             | 517.9         | 0.1        | 9.4         | 3.5        | 0.2        | 67.5         | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 400<br>62 |    |
| R 3019           | 1,671.0            | 8.8        | 2.7             | 67.8             | 26.7          | 0.1<br>0.3 | 4.9<br>9.6  | 0.6<br>5.4 | 0.2<br>0.2 | 4.5<br>14.0  | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 11        |    |
| R 3020           | 3,090.0<br>3,540.0 | 3.2<br>3.1 | 4.2<br>2.5      | 97.1<br>153.7    | 17.8<br>49.6  | 0.3        | 1.3         | 0.3        | 0.2        | 1.9          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 720       |    |
| R 3021<br>R 3022 | 2,320.0            | 3.1        | 2.5             | 58.9             | 16.0          | 0.1        | 5.0         | 2.0        | 0.2        | 5.3          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 66        |    |
| R 3023           | 11,100.0           | 19.8       | 33.9            | 180.9            | 86.3          | 0.5        | 20.7        | 4.0        | 0.2        | 22.3         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 260       |    |
| R 3024           | 4,280.0            | 3.9        | 4.3             | 107.8            | 55.7          | 1.5        | 10.5        | 3.4        | 0.2        | 180.0        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 20        |    |
| R 3025           | 42.9               | 4.3        | 3.7             | 78.5             | 96.0          | 0.1        | 0.9         | 0.1        | 0.2        | 9.1          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 140       |    |
| R 3026           | 393.1              | 2.4        | 4.7             | 47.0             | 19.6          | 0.1        | 1.1         | 0.2        | 0.2        | 7.9          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 230       |    |
| R 3027           | 4,310.0            | 6.2        | 3.6             | 143.4            | 34.5          | 0.2        | 32.5        | 3.8        | 0.2        | 6.1          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03<br>0.03 | 300<br>10 |    |
| R 3028           | 9,260.0            | 6.1        | 3.2             | 190.8            | 47.1          | 0.5        | 19.3        | 5.1        | 0.2        | 8.4          | 0.2        | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03         | 12        |    |
| R 3029           | 19,900.0           | 5.6        | 8.4             | 256.8            | 36.2          | 1.1<br>0.7 | 33.8<br>5.4 | 4.6<br>9.1 | 0.2<br>0.2 | 23.6<br>89.8 | 0.2<br>0.2 | 0.2        | 0.2        | 2.0        | 0.04         | 624       |    |
| R 3030           | 15,900.0           | 7.8        | 10.0            | 186.1<br>234.0   | 68.4<br>105.3 | 0.7        | 5.4<br>8.5  | 8.6        | 0.2        | 28.2         | 0.2        | 0.2        | 0.2        | 2.6        | 0.00         | 794       |    |
| R 3031<br>R 3033 | 17,800.0<br>511.3  | 8.0<br>2.8 | 12.3<br>6,550.0 | 234.0<br>1,109.9 | 3.8           | 53.5       | 2.2         | 9.9        | 0.2        | 3,823.1      | 425.0      | 0.2        | 0.2        | 1.5        | 0.10         | 1,487     |    |
| R 3033           | 3,870.0            | 15.2       | 0,330.0<br>78.0 | 682.9            | 80.7          | 2.1        | 2.9         | 5.1        | 0.2        | 98.9         | 0.4        | 0.2        | 0.2        | 0.2        | 0.28         | . 8       |    |
| R 3035           | 93.1               | 5.1        | 19.5            | 125.2            | 18.4          | 0.3        | 2.1         | 0.4        | 0.2        | 12.0         | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 1         |    |
| R 3038           | 9.9                | 2.9        | 3.5             | 21.7             | 5.5           | 0.1        | 0.5         | 0.1        | 0.2        | 1.5          | 0.2        | 0.2        | 0.2        | 0.9        | 0.03         | 1         |    |
| R 3039           | 612.0              | 6.0        | 0.1             | 32.4             | 18.6          | 0.1        | 2.5         | 0.4        | 0.2        | 2.7          | 0.6        | 0.2        | 0.2        | 0.2        | 0.03         | 14        |    |
| R 3040           | 1,010.0            | 5.4        | 0.1             | 38.0             | 33.1          | 0.1        | 2.9         | 0.3        | 0.2        | 3.1          | 0.9        | 0.2        | 0.2        | 0.2        | 0.04         | 40        |    |
|                  |                    |            |                 |                  |               |            |             |            |            |              |            |            |            |            |              |           |    |

| EAGLE            | Cu              | Ni         | Pb         | Zn           | Co           | Cd         | Мо         | Ag         | w          | As          | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb    |
|------------------|-----------------|------------|------------|--------------|--------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|--------------|------------|
| R 3041           | 53.5            | 8.4        | 0.1        | 38.1         | 21.1         | 0.1        | 3.3        | 0.1        | 0.2        | 2.4         | 0.9        | 2.5        | 0.2        | 0.2        | 0.03         | 1          |
| R 3042           | 77.6            | 4.2        | 1.7        | 35.7         | 16.2         | 0.1        | 1.0        | 0.1        | 0.2        | 3.1         | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 6          |
| R 3043           | 344.0           | 15.1       | 0.1        | 37.8         | 17.5         | 0.1        | 3.4        | 0.1        | 0.2        | 0.4         | 0.9        | 0.2        | 1.3        | 0.2        | 0.03         | 1          |
| R 3044           | 180.5           | 6.6        | 0.1        | 87.9         | 27.0         | 0.1        | 3.1        | 0.1        | 0.2        | 0.2         | 0.7        | 0.9        | 0.2        | 0.2        | 0.03         | 1          |
| R 3045           | 422.5           | 36.7       | 0.1        | 33.4         | 27.9         | 0.1        | 2.7        | 0.4        | 0.2        | 2.8         | 0.9        | 0.5        | 0.2        | 0.2        | 0.03         | 1          |
| R 3046           | 1,020.0         | 33.0       | 0.1        | 25.4         | 51.4         | 0.1        | 3.5        | 0.3        | 0.2        | 3.5         | 0.4        | 0.8        | 1.4        | 0.2        | 0.03         | 2          |
| R 3047           | 1,040.0         | 36.0       | 0.1        | 25.3         | 47.6         | 0.1        | 2.2        | 0.5        | 0.2        | 1.5         | 0.2        | 0.2        | 1.6        | 0.2        | 0.03         | 1          |
| R 3049           | 897.0           | 46.5       | 0.1        | 18.2         | 40.6         | 0.1        | 2.5        | 0.2        | 0.2        | 4.3         | 0.5        | 0.6        | 0.6        | 0.2        | 0.03         | 1          |
| R 3050           | 74.5            | 16.2       | 1.1        | 59.3         | 16.6         | 0.1        | 0.5        | 0.1        | 0.2        | 2.4         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |
| R 3051           | 92.4            | 50.7       | 1.0        | 55.5         | 23.7         | 0.1        | 0.9        | 0.1        | 0.2        | 7.1         | 0.2        | 1.3        | 0.4        | 0.2        | 0.06         | 1          |
| R 3052           | 115.2           | 13.9       | 11.7       | 55.1         | 9.7          | 0.2        | 0.7        | 0.3        | 0.2        | 3.5         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4          |
| R 3053           | 81.1            | 12.7       | 2.0        | 14.9         | 9.4          | 0.1        | 1.5        | 0.1        | 0.2        | 12.7        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2          |
| R 3054           | 139.9           | 29.3       | 6.7        | 36.8         | 18.0         | 0.1        | 2.5        | 0.3        | 5.7        | 10.5        | 0.4        | 0.2        | 2.4        | 0.9        | 0.04         | 1          |
| R 3055           | 149.7           | 27.7       | 4.6        | 31.8         | 17.7         | 0.1        | 10.4       | 0.2        | 1.8        | 5.3         | 0.2        | 0.2        | 1.7        | 0.8        | 0.03         | 1          |
| R 3056           | 113.7           | 28.9       | 3.6        | 77.3         | 19.4         | 0.2        | 1.1        | 0.2        | 0.2        | 12.8        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2          |
| R 3057           | 91.9            | 19.1       | 2.2        | 60.7         | 14.4         | 0.3        | 0.7        | 0.1        | 0.2        | 19.0        | 0.3        | 0.2        | 0.2        | 0.3        | 0.03         | 2          |
| R 3058<br>R 3059 | 90.9<br>95.0    | 25.9       | 4.7        | 131.2        | 14.1         | 0.4        | 1.6        | 0.3        | 0.2        | 23.3        | 0.2        | 0.2        | 0.5        | 0.6        | 0.03         | 1          |
| R 3060           | 657.9           | 5.6<br>4.6 | 2.4<br>3.5 | 28.4<br>87.8 | 17.0<br>32.2 | 0.1        | 1.3        | 0.2        | 0.2        | 2.3         | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 3          |
| R 3061           | 1,950.0         | 8.2        | 4.2        | 99.8         | 27.7         | 0.1        | 2.2        | 0.7        | 0.2        | 6.9         | 0.9        | 0.2        | 0.2        | 0.7        | 0.03         | 12         |
| R 3062           | 103.4           | 4.2        | 2.2        | 99.8<br>26.5 | 17.3         | 0.2<br>0.1 | 2.9<br>1.2 | 1.3        | 0.2        | 3.6         | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 12         |
| R 3063           | 209.6           | 13.1       | 1.5        | 63.0         | 31.0         | 0.1        | 1.4        | 0.1<br>0.3 | 0.2<br>0.2 | 3.0         | 0.2        | 0.2        | 0.2        | 0.6        | 0.03         | 1          |
| R 3064           | 16,400.0        | 20.1       | 13.0       | 157.8        | 350.7        | 0.1        | 78.3       | 9.6        | 0.2        | 2.6<br>69.7 | 0.2<br>0.2 | 0.2        | 0.2        | 0.2        | 0.03         | 27         |
| R 3065           | 16,200.0        | 20.1       | 12.2       | 155.6        | 346.6        | 0.1        | 78.9       | 9.8        | 0.2        | 68.8        | 0.2        | 0.2<br>0.2 | 0.2<br>0.2 | 5.7        | 0.03         | 3,280      |
| R 3067           | 12,300.0        | 7.8        | 11.2       | 205.6        | 167.5        | 1.2        | 18.7       | 5.7        | 0.2        | 214.0       | 0.2        | 0.2        | 0.2        | 5.9<br>5.1 | 0.04<br>0.03 | 650<br>440 |
| R 3069           | 4,740.0         | 8.0        | 10.6       | 167.2        | 47.0         | 0.7        | 4.6        | 2.8        | 0.2        | 47.1        | 0.4        | 0.2        | 0.2        | 3.2        | 0.03         | 200        |
| R 3070           | 24,500.0        | 30.4       | 15.8       | 355.7        | 531.3        | 0.1        | 34.0       | 9.7        | 0.2        | 99.3        | 0.2        | 0.2        | 1.1        | 3.6        | 0.03         | 760        |
| R 3072           | 155.5           | 3.0        | 2.2        | 21.3         | 15.2         | 0.1        | 0.8        | 0.1        | 0.2        | 2.5         | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 6          |
| R 3073           | 123.7           | 3.8        | 3.0        | 42.1         | 16.4         | 0.1        | 1.4        | 0.2        | 0.2        | 4,9         | 0.2        | 0.2        | 0.2        | 0.8        | 0.03         | ž          |
| R 3074           | 528.0           | 2.7        | 40,400.0   | 201.8        | 0.4          | 179.5      | 0.6        | 10.1       | 0.2        | 46,100.0    | 2,670.0    | 0.2        | 0.2        | 1.4        | 0.03         | 5,250      |
| R 3075           | 239.8           | 29.9       | 3.9        | 73.7         | 27.8         | 0.1        | 1.5        | 0.1        | 0.2        | 8.3         | 0.2        | 0.2        | 0.2        | 0.2        | 0.09         | -,1        |
| R 3076           | 90.0            | 14.6       | 25.1       | 111.6        | 13.3         | 0.3        | 0.9        | 0.1        | 0.2        | 6.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.06         | 5          |
| R 3077           | 226.4           | 12.0       | 85.9       | 240.1        | 22.2         | 0.9        | 2.3        | 0.4        | 0.2        | 9.2         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 3          |
| R 3078           | 521.7           | 47.1       | 22.7       | 109.8        | 16.7         | 0.4        | 2.8        | 1.5        | 0.2        | 15.2        | 0.2        | 0.2        | 0.7        | 0.2        | 0.03         | 1          |
| R 3079           | 177.2           | 18.3       | 2.4        | 44.3         | 14.2         | 0.1        | 1.2        | 0.2        | 0.2        | 6.3         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 3          |
| R 3080           | 82.6            | 4.2        | 4.6        | 69.4         | 18.3         | 0.1        | 1.3        | 0.1        | 0.2        | 3.5         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 3          |
| R 3081           | 77.4            | 3.7        | 1.9        | 55.8         | 13.8         | 0.1        | 0.7        | 0.1        | 0.2        | 1.8         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 3          |
| R 3082           | 41.8            | 4.2        | 2.4        | 25.8         | 8.2          | 0.1        | 0.7        | 0.1        | 0.2        | 1.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 5          |
| R 3083           | 16.4            | 2.6        | 1.5        | 23.0         | 4.6          | 0.1        | 0.6        | 0.1        | 0.2        | 1.1         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |
| R 3084           | 29.0            | 3.7        | 1.6        | 18.1         | 3.9          | 0.1        | 0.8        | 0.1        | 0.2        | 1.8         | 0.2        | 0.4        | 0.2        | 0.2        | 0.03         | 1          |
| R 3085           | 68.7            | 3.6        | 3.5        | 43.4         | 13.3         | 0.1        | 1.4        | 0.1        | 0.2        | 2.9         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 7          |
| R 3086           | 97.7            | 4.7        | 2.5        | 41.5         | 17.1         | 0.1        | 1.1        | 0.1        | 0.2        | 1.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6          |
| R 3087           | 91.7            | 3.3        | 10.9       | 42.6         | 15.5         | 0.1        | 0.7        | 0.1        | 0.2        | 5.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6          |
| R 3088<br>R 3089 | 157.3<br>632.7  | 3.6        | 1.8        | 34.5         | 14.0         | 0.1        | 0.7        | 0.1        | 0.2        | 9.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 3          |
| R 3090           |                 | 1.4        | 3.2        | 21.7         | 4.8          | 0.1        | 0.9        | 0.5        | 0.2        | 2.1         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 57         |
| R 3090<br>R 3091 | 3,080.0<br>92.2 | 3.9<br>2.6 | 3.4<br>3.1 | 80.9<br>51.7 | 383.2        | 0.1        | 38.0       | 0.8        | 0.2        | 259.0       | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 130        |
| R 3091<br>R 3092 | 92.2<br>79.5    | 3.1        | 3.1<br>2.2 | 51.7<br>35.2 | 12.1<br>11.1 | 0.1        | 1.1        | 0.1        | 0.2        | 5.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.04         | 1          |
| R 3093           | 141.7           | 6.4        | 2.2<br>1.2 | 24.4         | 17.9         | 0.1<br>0.1 | 1.0<br>2.0 | 0.1<br>0.2 | 0.2        | 3.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.06         | 1          |
| R 3094           | 2,200.0         | 6.2        | 4.1        | 87.7         | 17.5         | 0.1        | 2.0        | 1.4        | 0.2<br>0.2 | 2.6<br>4.8  | 0.2<br>0.2 | 0.3        | 0.2        | 0.2        | 0.03         | 16         |
| R 3095           | 161.0           | 4.3        | 3.3        | 29.7         | 14.6         | 0.1        | 1.3        | 0.1        | 0.2        | 4.0         | 0.2        | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.04<br>0.14 | 66<br>2    |
| R 3096           | 11.8            | 4.7        | 0.8        | 39.4         | 16.6         | 0.1        | 1.0        | 0.1        | 0.2        | 1.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.14         | 2<br>3     |
|                  |                 |            |            |              |              |            |            | <b>.</b>   | 0.2        | 1.5         | 0.2        | V.4        | 0.2        | 0.2        | 0.03         | 3          |

| EAGLE         Cu         Ni         Pp         Zn         Co         Cd         Mo         Ag         W         As         Sb         Bi         Se         Te         Hg         Au,ppb           R 3097         2.8         3.5         0.9         1157         5.5         0.1         0.2         0.1         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2                                                                                                                                                                                                                                                                                                           |                | •                       |          |                                                   | •       |       | 1     |       |       |                                       |          |         |     |      | •   | •       | 1       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|----------|---------------------------------------------------|---------|-------|-------|-------|-------|---------------------------------------|----------|---------|-----|------|-----|---------|---------|
| r 30e         17.2         2.7         2.2         2.8         0.1         5.8         0.1         3.7         0.7         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2 <th0.2< <="" th=""><th>EAGLE</th><th>Cu</th><th>Ni</th><th>Pb</th><th>Zn</th><th>Co</th><th>Cd</th><th>Мо</th><th>Ag</th><th>w</th><th>As</th><th>Sb</th><th>Bi</th><th>Se</th><th>Те</th><th>Hg</th><th>Au, ppb</th></th0.2<>                                                                    | EAGLE          | Cu                      | Ni       | Pb                                                | Zn      | Co    | Cd    | Мо    | Ag    | w                                     | As       | Sb      | Bi  | Se   | Те  | Hg      | Au, ppb |
| R 3069       17.2       2.7       2.2       2.51       5.8       0.1       0.6       0.1       3.7       0.7       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.3       0.3       0.3       0.3       0.3       0.3       0.3       0.3       0.3       0.3       0.3       0.3 <th0.3< th=""> <th1.3< th="">       0.3       <t< td=""><td>R 3097</td><td>2.8</td><td>3.5</td><td>0.9</td><td>18.7</td><td>5.6</td><td>0.1</td><td>1.2</td><td>0.1</td><td>0.2</td><td>1.0</td><td>0.2</td><td>0.2</td><td>0.2</td><td>0.2</td><td>0.03</td><td>1</td></t<></th1.3<></th0.3<>                                                                                                                          | R 3097         | 2.8                     | 3.5      | 0.9                                               | 18.7    | 5.6   | 0.1   | 1.2   | 0.1   | 0.2                                   | 1.0      | 0.2     | 0.2 | 0.2  | 0.2 | 0.03    | 1       |
| R3100       150.       46       33.3       706       14.6       0.1       10       0.1       0.2       2.4       0.2       0.0       0.2       0.0       0.2       0.0       0.2       0.0       0.2       0.0       0.2       0.0       0.2       0.0       0.2       0.0       0.2       0.0       0.2       0.0       0.2       0.2       0.2       0.2       0.2       0.2       0.0       0.2       0.0       0.2       0.2       0.2       0.2       0.2       0.0       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2 <th0.2< th="">       0.2       0.2       <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.1</td><td>0.6</td><td>0.1</td><td>3.7</td><td>0.7</td><td>0.2</td><td>0.2</td><td>0.2</td><td>0.3</td><td>0.06</td><td>2</td></th<></th0.2<>                                                                                                                                                              |                |                         |          |                                                   |         |       | 0.1   | 0.6   | 0.1   | 3.7                                   | 0.7      | 0.2     | 0.2 | 0.2  | 0.3 | 0.06    | 2       |
| 12101       1212       37       3.6       35.9       8.2       0.1       0.8       0.1       0.2       2.1       0.2       0.2       0.2       0.2       0.2       0.2       0.03       8         R3102       260.0       4.3       5.2       27.9       11.5       0.1       1.0       0.1       0.2       1.2       0.2       0.2       0.2       0.2       0.03       8         R3104       66.3       3.9       1.4.1       0.1       0.9       0.1       0.2       1.9       0.2       0.2       0.2       0.2       0.03       4         R3105       907.7       7.7       3.9       51.1       2.3       0.2       1.2       3.1       0.2       2.9       0.2       0.2       0.2       0.3       0.3       4         R3106       515.0       6.4       4.97       1.3       0.2       2.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0                                                                                                                                                                                                                                                                                                                                                                                                               | R 3099         | 56.7                    | 4.3      | 3.5                                               | 40.4    | 9.0   | 0.1   | 0.8   | 0.1   | 0.6                                   | 2.2      | 0.2     | 0.5 |      |     | 0.09    | 1       |
| R 3102         F 6         R 33         R 4         280         K 3         O.1         O.4         O.1         D.2         D.2         O.2                                                                                                                                                                                                                                                                                      | R 3100         |                         | 4.6      | 3.3                                               | 70.6    | 14.6  | 0.1   |       | +     |                                       |          |         |     |      |     |         | •       |
| 13:03         28:00         4:3         5:2         27:9         11.5         0.1         1.0         0.1         0.2         2.1         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2 <th0.2< th="">         0.2         0.2         0.</th0.2<>                                                                                                                                                                                                                                                                         | R 3101         |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         | 8       |
| B 3104       B 33       B 31       1 43       D 1       D 9       D 1       D 2       1 9       D 2       D 2       D 2       D 2       D 2       D 30       1 4         B 3105       5077       7 7       3 9       511       2 30       D 1       3 6       1 2       D 2       D 2       D 2       D 2       D 3       D 3       4 4         B 3105       339.5       15.0       6.4       497       19.3       D 1       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2       D 2 <thd 2<="" th=""> <thd 2<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></thd></thd>                                                                                                                                                                                                       |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         | 1       |
| Bit Side       907.7       7.7       3.9       51.1       23.0       0.1       3.6       1.2       0.2       2.3       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.5       0.3       0.3       0.3       0.3       0.1       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.5       0.3       1.3       1.3       1.3       1.3       1.5       1.9       0.1       0.3       0.1       0.2       0.3       0.1       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.3       3                                                                                                                                                                                                                                                                                                                                                                                         |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         | 8       |
| r3 ind       154 3       5.1       4.1       57.7       14.5       0.1       0.8       0.1       0.2       0.9       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.3       0.1       0.2       0.3       0.1       0.2       0.3       0.1       0.2       0.3       0.1       0.2       0.3       0.2       0.2       0.2       0.2       0.2       0.2                                                                                                                                                                                                                                                                                                                                                                                         |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         | 1       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         | -       |
| x 108         x 338         x 150         x 44         x 457         x 193         x 010         x 02         x 03         x 11           x 110         x 03         t 15         x 01         x 03         x 01         x 02         x 02         x 02         x 02         x 02         x 02         x 03         x 02         x 02         x 03         x 03         x 03         x 03         x 02         x 02         x 02         x 02         x 03                                                                                                                                                                                                                                                              |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         | -       |
| R 3106       292.4       8.7       3.9       31.4       15.8       0.1       0.8       0.2       0.2       0.2       0.2       0.6       0.03       3         R 3110       106       6.5       3.2       19       0.1       0.8       0.1       0.2       0.3       0.2       0.2       0.2       0.2       0.2       0.6       0.03       3         R 3113       9.3       4.2       2.0       34.7       6.6       0.1       0.5       0.1       0.2       0.6       0.2       0.2       0.2       0.5       0.03       3         R 3113       9.3       4.2       2.0       34.7       6.6       0.1       0.5       0.1       0.2       0.1       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.1       2.5       0.03       1         R 3115       9.3       4.2       2.6       3.0       18.4       1.0       0.8       0.1       0.2       1.3       0.2       0.2       0.2       0.2       0.1       2.5       0.3       0.3       0.3       0.3       0.3       0.3       0.3       0.3       0.3       0.3       0.3       0.                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         |         |
| R strio         Tio         B         S11         D8         O1         D8         O1         D2         3.5         D2         D2         D.5         D2         D.03         D1           R 3111         3.9         1.5         1.9         B.5         1.9         D1         D3         D1         D2         D3         D2         D3         D2         D3         D2         D03         D3         D2         D3         D2         D03         D2         D03         D2         D03         D3         D2         D3         D2         D3         D2         D3         D2         D3         D3         D2         D3         D3         D2         D3         D3         D2         D3         D3         D3         D3         D2         D3         D3         D2         D3         D3         D2         D3         D3         D3         D2         D3         D                                                                                                                                                                                                                                                                                                                                  |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         |         |
| R 3111       3.9       1.5       1.9       0.1       0.3       0.1       0.2       0.3       0.2       0.3       0.2       0.3       0.2       0.3       0.2       0.3       0.2       0.3       0.2       0.3       0.2       0.2       0.3       0.2       0.2       0.3       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.3       1.3       1.3       1.3       1.3       1.3       1.3       1.23       123       123       123       123       123       123       123       123       123 <th123< th="">       123       123       <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></th123<>                                                                                                                                                                                               |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         |         |
| R 3112         11.0         3.1         15         26.1         5.4         0.1         0.5         0.1         0.2         0.6         0.2         0.2         0.2         0.2         0.5         0.03         1           R 3113         9.3         4.2         2.0         34.7         6.6         0.1         0.5         0.1         0.2         1.1         0.2         0.2         0.5         0.03         1           R 3114         97.8         7.3         2.9         55.5         17.3         0.1         0.9         0.2         0.2         1.1         0.2         0.5         0.2         0.2         0.5         0.3         1           R 3115         2.62         2.6         3.0         18.4         5.1         0.1         0.8         0.1         0.2         1.3         0.2         0.5         0.2         0.2         0.03         1           Roks Statistics:         Count         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123 <td></td> <td>1</td>                                                                                                                                      |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         | 1       |
| R si1i3       9.3       4.2       2.0       54.7       6.6       0.1       0.5       0.1       0.2       1.1       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.2       0.3       1         Means 3607.5       9.5       367.9       89       1.2       1.2       1.2       1.23       123       123       123 <th123< th="">       123       123<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td></th123<>                                                                                                                                                                                                                  |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         | 3       |
| R sitia         97.8         7.3         2.9         55.5         17.3         0.1         0.9         0.2         0.2         2.7         0.2         0.8         0.2         0.2         0.12         2           R 3115         28.2         2.6         3.0         18.4         5.1         0.1         0.8         0.1         0.2         1.3         0.2         0.5         0.2         0.2         0.03         1           Cu         Ni<         Pb         Zn         Co         Cd         Mo         Ag         W         As         Sb         Bi         Se         Te         Hg         Au.ppb           Rocks Statistics:         Count         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123                                                                                                                                                                                                                                                                                                                      |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      | 0.5 | 0.03    | 1       |
| R 3115         28.2         2.6         3.0         18.4         5.1         0.1         0.8         0.1         0.2         1.3         0.2         0.5         0.2         0.2         0.03         1           Cu         Ni         Pb         Zn         Co         Cd         Mo         Ag         W         As         Sb         Bi         Se         Te         Hg         Au, ppb           Mean 3607.5         9.5         3.879         89.8         43.1         2.2         6.9         1.5         0.4         429.2         2.5         0.3         0.6         0.5         0.04         223.9           s.d.         8,467.2         9.9         3,669.9         128.4         85.4         16.8         13.9         2.5         1.3         4,149.4         242.4         0.3         2.2         1.0         0.04         718.0           Maximum 69,600.0         50.7         40,400.0         1,109.9         531.3         179.5         78.9         10.1         12.0         46,100.0         2,670.0         2.5         24.1         5.9         0.28         5,250           Mean + 2 s.d.         2.0         2.03         7,72.7         346.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.1</td><td>0.9</td><td>0.2</td><td>0.2</td><td>2.7</td><td>0.2</td><td>0.8</td><td>0.2</td><td></td><td>0.12</td><td>2</td></t<>                                                                                                       |                |                         |          |                                                   |         |       | 0.1   | 0.9   | 0.2   | 0.2                                   | 2.7      | 0.2     | 0.8 | 0.2  |     | 0.12    | 2       |
| Rocks Statistics:         Count         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123                                                                                                                                                                                                                                                                                      |                |                         | 2.6      | 3.0                                               |         | 5.1   | 0.1   | 0.8   | 0.1   | 0.2                                   | 1.3      | 0.2     | 0.5 | 0.2  | 0.2 | 0.03    | 1       |
| Count         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123 </td <td>Rocks Statisti</td> <td></td> <td>Ni</td> <td>Pb</td> <td>Zn</td> <td>Co</td> <td>Cd</td> <td>Мо</td> <td>Ag</td> <td>w</td> <td>As</td> <td>Sb</td> <td>Bi</td> <td>Se</td> <td>Те</td> <td>Hg</td> <td>Au, ppb</td>                                                         | Rocks Statisti |                         | Ni       | Pb                                                | Zn      | Co    | Cd    | Мо    | Ag    | w                                     | As       | Sb      | Bi  | Se   | Те  | Hg      | Au, ppb |
| Mean         3,607.5         9.5         387.9         89.8         43.1         2.2         6.9         1.5         0.4         429.2         25.5         0.3         0.6         0.5         0.04         223.9           Maximum         69,600.0         50.7         40,400.0         1,109.9         531.3         179.5         78.9         10.1         12.0         46,100.0         2,670.0         2.5         24.1         5.9         0.28         5,250           Mean + 2 s.d.         20,542.0         29.3         7,727.7         346.6         213.9         35.7         34.7         6.5         3.0         8,727.9         510.4         0.9         5.0         2.5         0.11         1,660.0           Correlation Coefficients: Rock Samples         2         7,727.7         346.6         213.9         35.7         34.7         6.5         3.0         8,727.9         510.4         0.9         5.0         2.5         0.11         1,660.0           Correlation Coefficients: Rock Samples         2         7         Co         Cd         Mo         Ag         W         As         Sb         Bi         Se         Te         Hg         Au,ppb           Cu         10000                                                                                                                                                                                                                                                                    |                |                         | 123      | 123                                               | 123     | 123   | 123   | 123   | 123   | 123                                   | 123      | 123     | 123 | 123  | 123 | 123     | 122     |
| s.d.       8,467.2       9.9       3,669.9       128.4       85.4       15.8       13.9       2.5       1.3       4,149.4       242.4       0.3       2.2       1.0       0.04       718.0         Maximum 69,600.0<br>Minimum 2.8       50.7       40,400.0       1,109.9       531.3       179.5       78.9       10.1       12.0       46,100.0       2,670.0       2.5       24.1       5.9       0.28       5,250         Mean + 2 s.d.       20,542.0       29.3       7,727.7       346.6       213.9       35.7       34.7       6.5       3.0       8,727.9       510.4       0.9       5.0       2.5       0.11       1,660.0         Correlation Coefficients: Rock Samples       T       Co       Co       Cd       Mo       Ag       W       As       Sb       Bi       Se       Te       Hg       Au, ppb         Cu       Ni       Pb       Zn       Co       Cd       Mo       Ag       W       As       Sb       Bi       Se       Te       Hg       Au, ppb         Cu       Ni       Pb       Zn       Co       Cd       Mo       Ag       V       As       Sb       Bi       Se       Te       Hg<                                                                                                                                                                                                                                                                                                                                                                       |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     | 0.04    | 223.9   |
| Minimum         2.8         1.4         0.1         8.5         0.4         0.1         0.3         0.1         0.2         0.2         0.2         0.2         0.2         0.2         0.3         1           Mean + 2 s.d. 20,542.0         29.3         7,727.7         346.6         213.9         35.7         34.7         6.5         3.0         8,727.9         510.4         0.9         5.0         2.5         0.11         1,660.0           Correlation Coefficients: Rock Samples           Cu         Ni         Pb         Zn         Co         Cd         Mo         Ag         W         As         Sb         Bi         Se         Te         Hg         Au, ppb           Cu         1.000         0.0711         0.408         (0.074)         0.552         (0.035)         (0.025)         (0.036)         0.064         0.138         0.061         (0.001)           Pb         1.000         0.021         0.249         (0.278)         0.074         0.049         0.0091         0.0671         (0.071)         0.132         0.064         0.138         0.061         (0.001)           Pb         1.000         0.234         0.228         0.625         (0.073)                                                                                                                                                                                                                                                                                        |                | •                       |          |                                                   |         |       |       |       |       | 1.3                                   |          |         | 0.3 | 2.2  | 1.0 | 0.04    | 718.0   |
| Minimum         2.8         1.4         0.1         8.5         0.4         0.1         0.3         0.1         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.03         1           Mean + 2 s.d. 20,542.0         29.3         7,727.7         346.6         213.9         35.7         34.7         6.5         3.0         8,727.9         510.4         0.9         5.0         2.5         0.11         1,660.0           Correlation Coefficients: Rock Samples         E         C         C         C         C         C         C         C         C         M         Au.ppb                                                                                                                                                                                                                                                                  | Maximum        | 69.600.0                | 50.7     | 40,400.0                                          | 1,109.9 | 531.3 | 179.5 | 78.9  | 10.1  | 12.0                                  | 46,100.0 | 2,670.0 | 2.5 | 24.1 | 5.9 | 0.28    | 5,250   |
| Correlation Coefficients: Rock Samples           Cu         Ni         Pb         Zn         Co         Cd         Mo         Ag         W         As         Sb         Bi         Se         Te         Hg         Au, ppb           Cu         1.000         0.012         (0.037)         0.410         0.408         (0.014)         0.512         0.556         (0.035)         (0.025)         (0.038)         (0.086)         0.065         0.337         (0.004)         0.432           Ni         1.000         (0.071)         0.021         0.249         (0.078)         0.074         0.049         0.009         (0.067)         (0.071)         0.132         0.064         0.138         0.061         (0.001)           Pb         1.000         0.195         (0.051)         0.991         (0.045)         0.355         (0.018)         0.997         1.000         (0.030)         (0.018)         0.993         (0.008)         0.655           Zn         1.000         0.234         0.299         0.228         0.625         (0.073)         0.143         0.191         (0.025)         0.551         (0.001)         0.266           Cd         1.000         0.037)         0.394         (0.023                                                                                                                                                                                                                                                              |                |                         | 1.4      | 0.1                                               | 8.5     | 0.4   | 0.1   | 0.3   | 0.1   | 0.2                                   | 0.2      | 0.2     | 0.2 | 0.2  | 0.2 | 0.03    | 1       |
| Cu         Ni         Pb         Zn         Co         Cd         Mo         Ag         W         As         Sb         Bi         Se         Te         Hg         Au, ppb           Cu         1.000         0.012         (0.037)         0.410         0.408         (0.014)         0.512         0.556         (0.035)         (0.025)         (0.038)         (0.086)         0.065         0.337         (0.004)         0.432           Ni         1.000         (0.071)         0.021         0.249         (0.078)         0.049         0.009         (0.067)         (0.071)         0.132         0.064         0.138         0.061         (0.001)           Pb         1.000         0.195         (0.051)         0.991         (0.045)         0.355         (0.018)         0.997         1.000         (0.025)         0.551         (0.001)         0.626           Zn         1.000         0.234         0.299         0.228         0.625         (0.073)         0.143         0.191         (0.025)         0.551         (0.001)         0.266           Cd         1.000         (0.037)         0.394         (0.022)         0.978         0.990         (0.033)         0.005         0.105 <td>Mean + 2 s.d.</td> <td>20,542.0</td> <td>29.3</td> <td>7,727.7</td> <td>346.6</td> <td>213.9</td> <td>35.7</td> <td>34.7</td> <td>6.5</td> <td>3.0</td> <td>8,727.9</td> <td>510.4</td> <td>0.9</td> <td>5.0</td> <td>2.5</td> <td>0.11</td> <td>1,660.0</td> | Mean + 2 s.d.  | 20,542.0                | 29.3     | 7,727.7                                           | 346.6   | 213.9 | 35.7  | 34.7  | 6.5   | 3.0                                   | 8,727.9  | 510.4   | 0.9 | 5.0  | 2.5 | 0.11    | 1,660.0 |
| Cu         1.000         0.012         (0.037)         0.410         0.408         (0.04)         0.512         0.556         (0.035)         (0.025)         (0.038)         (0.086)         0.065         0.337         (0.004)         0.432           Ni         1.000         (0.071)         0.021         0.249         (0.078)         0.074         0.049         0.009         (0.067)         (0.071)         0.132         0.064         0.138         0.061         (0.001)           Pb         1.000         0.195         (0.051)         0.991         (0.045)         0.355         (0.018)         0.997         1.000         (0.030)         (0.018)         0.093         (0.008)         0.655           Zn         1.000         0.234         0.299         0.228         0.625         (0.073)         0.143         0.191         (0.091)         0.062         0.272         0.363         0.353           Co         1.000         (0.052)         0.570         0.510         (0.023)         (0.025)         0.551         (0.001)         0.262           Cd         1.000         (0.037)         0.394         (0.022)         0.978         (0.058)         0.221         0.577         (0.083)         0.033                                                                                                                                                                                                                                             | Correlation Co |                         | Rock Sam |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         |         |
| Ni         1.000         (0.071)         0.021         0.249         (0.078)         0.074         0.049         0.009         (0.067)         (0.071)         0.132         0.064         0.138         0.061         (0.001)           Pb         1.000         0.195         (0.051)         0.991         (0.045)         0.355         (0.018)         0.997         1.000         (0.030)         (0.018)         0.093         (0.008)         0.655           Zn         1.000         0.234         0.299         0.228         0.625         (0.073)         0.143         0.191         (0.091)         0.062         0.272         0.363         0.353           Co         1.000         (0.052)         0.570         0.510         (0.053)         (0.025)         0.551         (0.001)         0.266           Cd         1.000         (0.037)         0.394         (0.022)         0.978         0.904         0.035         0.005         0.105         0.013         0.672           Mo         1.000         0.037)         0.394         (0.022)         0.978         0.9045         0.0058         0.221         0.577         (0.083)         0.037           Ag         1.000         0.0384 <t< td=""><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                           |                | 4                       |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         |         |
| mb         mb<         mb                                                                                                                                                                                                                                                                                                                                   |                |                         |          |                                                   |         |       |       |       | -     |                                       |          |         |     |      |     |         |         |
| Zn         1.000         0.234         0.299         0.228         0.625         (0.073)         0.143         0.191         (0.091)         0.062         0.272         0.363         0.353           Co         1.000         (0.052)         0.570         0.510         (0.053)         (0.042)         (0.076)         (0.025)         0.551         (0.001)         0.266           Cd         1.000         (0.037)         0.394         (0.022)         0.978         0.990         (0.033)         0.005         0.105         0.013         0.672           Mo         1.000         (0.037)         0.394         (0.022)         0.978         0.990         (0.033)         0.005         0.105         0.013         0.672           Mo         1.000         0.615         (0.038)         (0.045)         (0.068)         0.221         0.577         (0.083)         0.307           Ag         1.000         0.071)         0.339         0.353         (0.129)         0.009         0.668         0.169         0.614           W         1.000         1.000         (0.071)         0.339         0.353         (0.129)         0.009         0.668         0.169         0.614           W <td></td> <td></td> <td>1.000</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>                                                       |                |                         | 1.000    | · · · · · · · · · · · · · · · · · · ·             |         |       |       |       |       |                                       |          |         |     |      |     |         |         |
| Co         1.000         (0.052)         0.570         0.510         (0.053)         (0.042)         (0.076)         (0.025)         0.551         (0.001)         0.266           Cd         1.000         (0.037)         0.394         (0.022)         0.978         0.990         (0.033)         0.005         0.105         0.013         0.672           Mo         1.000         0.615         (0.038)         (0.045)         (0.068)         0.221         0.577         (0.083)         0.307           Ag         1.000         0.615         (0.038)         (0.045)         (0.068)         0.221         0.577         (0.083)         0.307           Ag         1.000         0.071         0.339         0.353         (0.048)         0.024         (0.030)         (0.045)           W         1.000         (0.071)         0.339         0.353         (0.048)         0.024         (0.030)         (0.045)           As         1.000         0.071         0.339         0.353         (0.048)         0.024         (0.030)         (0.045)           Sb         1.000         0.0297         (0.028)         (0.016)         0.091         (0.020)         0.654           Bi </td <td></td> <td><b>↓</b> − − − <b>↓</b></td> <td></td> <td>- 1.000</td> <td></td> <td>· · · ·</td> <td></td>                                                                 |                | <b>↓</b> − − − <b>↓</b> |          | - 1.000                                           |         |       |       |       |       |                                       |          |         |     |      |     | · · · · |         |
| Cd         1.000         (0.037)         0.394         (0.022)         0.978         0.990         (0.033)         0.005         0.105         0.013         0.672           Mo         1.000         0.615         (0.038)         (0.038)         (0.045)         (0.068)         0.221         0.577         (0.083)         0.307           Ag         1.000         0.615         (0.038)         (0.045)         (0.045)         0.009         0.668         0.169         0.614           W         1.000         (0.071)         0.339         0.353         (0.048)         0.024         (0.030)         (0.031)         (0.045)           As         1.000         (0.018)         (0.018)         (0.048)         0.024         (0.030)         (0.045)           As         1.000         0.997         (0.028)         (0.016)         0.091         (0.020)         0.655           Sb         1.000         (0.029)         (0.018)         0.092         (0.009)         0.654           Bi         1.000         0.0023         0.017         0.462         1.000         0.017         0.462           Hg         1.000         0.017         0.462         1.000         0.025)         1.0                                                                                                                                                                                                                                                                              |                |                         |          |                                                   | 1.000   |       |       |       |       |                                       |          |         |     |      |     |         |         |
| Mo         1.000         0.615         (0.038)         (0.045)         (0.068)         0.221         0.577         (0.083)         0.307           Ag         1.000         (0.071)         0.339         0.353         (0.129)         0.009         0.668         0.169         0.614           W         1.000         (0.071)         0.339         0.353         (0.129)         0.009         0.668         0.169         0.614           W         1.000         (0.071)         0.339         0.353         (0.048)         0.024         (0.030)         (0.045)           As         1.000         (0.018)         (0.048)         0.024         (0.030)         (0.045)           Sb         1.000         0.997         (0.028)         (0.016)         0.991         (0.020)         0.655           Sb         1.000         (0.029)         (0.018)         0.092         (0.009)         0.654           Bi         1.000         0.0083         (0.029)         0.0162         0.022         0.012           Te         1.000         0.062         0.022         0.012         0.012         0.012           Hg         1.000         0.017         0.462         1.000                                                                                                                                                                                                                                                                                                    |                |                         |          |                                                   |         | 1.000 |       |       |       |                                       |          |         |     |      |     |         |         |
| Ag         1.000         (0.071)         0.339         0.353         (0.129)         0.009         0.668         0.169         0.614           W         1.000         (0.071)         0.339         0.353         (0.129)         0.009         0.668         0.169         0.614           W         1.000         (0.018)         (0.048)         0.024         (0.030)         (0.031)         (0.045)           As         1.000         0.997         (0.028)         (0.016)         0.091         (0.020)         0.655           Sb         1.000         (0.029)         (0.018)         0.092         (0.009)         0.654           Bi         1.000         1.000         (0.029)         (0.018)         0.092         (0.079)           Se         1.000         0.062         0.022         0.012         0.012         0.012           Te         1.000         0.062         0.022         0.012         0.025         0.025           Hg         0         0         0         0         0.025         1.000         (0.025)                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                         |          | }                                                 |         |       | 1.000 | · · · |       |                                       |          |         |     |      |     |         |         |
| W         1.000         (0.018)         (0.048)         0.024         (0.030)         (0.045)           As         1.000         0.018)         (0.018)         (0.048)         0.024         (0.030)         (0.045)           As         1.000         0.997         (0.028)         (0.016)         0.091         (0.020)         0.655           Sb         1.000         (0.029)         (0.018)         0.092         (0.009)         0.654           Bi         1.000         0.0083         (0.099)         0.026         (0.079)           Se         1.000         0.0622         0.012         0.012         0.012           Te         1.000         1.000         0.017         0.462           Hg         1.000         0.017         0.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                         |          | <del>                                      </del> |         |       |       | 1.000 |       |                                       |          |         |     |      |     |         |         |
| As         1.000         0.997         (0.028)         (0.016)         0.091         (0.020)         0.655           Sb         1.000         (0.029)         (0.018)         0.092         (0.009)         0.654           Bi         1.000         (0.029)         (0.018)         0.092         (0.009)         0.654           Se         1.000         0.0083         (0.099)         0.026         (0.079)           Se         1.000         0.062         0.022         0.012           Te         1.000         1.000         0.017         0.462           Hg         1.000         1.000         0.025)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                         |          | l - · · i                                         |         |       |       |       | 1.000 | · · · · · · · · · · · · · · · · · · · |          |         |     |      |     |         |         |
| Sb         1.000         (0.029)         (0.018)         0.092         (0.009)         0.654           Bi         1.000         (0.008)         (0.099)         0.026         (0.079)           Se         1.000         0.062         0.022         0.012           Te         1.000         0.061         1.000         0.017         0.462           Hg         1.000         1.000         0.025)         1.000         0.025)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                         |          | <u> </u>                                          |         |       |       |       |       |                                       |          |         |     |      |     |         |         |
| Bi         1.000         (0.099)         0.026         (0.079)           Se         1.000         0.062         0.022         0.012           Te         1.000         0.017         0.462           Hg         1.000         0.025         1.000         (0.025)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                         |          | <u>├───</u>                                       |         |       |       |       |       |                                       |          |         |     |      |     |         |         |
| Se         1.000         0.062         0.022         0.012           Te         1.000         0.017         0.462           Hg         1.000         0.017         0.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         |         |
| Te         1.000         0.017         0.462           Hg         1.000         1.000         (0.025)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      | ( i |         |         |
| Hg 1.000 (0.025)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                         |          |                                                   |         | · • • |       |       |       |                                       |          |         |     |      |     |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     | 1.000   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Au, ppb        |                         |          |                                                   |         |       |       |       |       |                                       |          |         |     |      |     |         | 1.000   |

|                    |               |              |             | 8            | ٨           | L          |            |            |            |             |            | •          | . (        |            | •            | •       | 8 8 |
|--------------------|---------------|--------------|-------------|--------------|-------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|--------------|---------|-----|
| EAGLE              | Cu            | Ni           | РЪ          | Źn           | Co          | Cd         | Мо         | Ag         | w          | As          | Sb         | Bi         | Se         | Te         | Hg           | Au, ppb |     |
| S 197              | 150.7         | 38.6         | 4.5         | 59.8         | 13.8        | 0.2        | 2.0        | 0.1        | 0.2        | 4.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 230     |     |
| SM 1181            | 8,230.0       | 8.6          | 10.0        | 159.4        | 66.7        | 0.6        | 8.9        | 6.2        | 0.2        | 13.3        | 0.2        | 0.2        | 0.3        | 0.9        | 0.03         | 1,000   | **  |
| S 1182             | 760.0         | 15.3         | 4.9         | 37.0         | 5.5         | 0.8        | 2.5        | 0.9        | 0.2        | 1.8         | 0.2        | 0.2        | 1.1        | 1.0        | 0.03         |         | *   |
| S 1183             | 13,000.0      | 24.0         | 14.7        | 198.2        | 163.2       | 1.0        | 9.1        | 4.2        | 0.2        | 40.0        | 0.2        | 0.2        | 0.5        | 1.4        | 0.03         | 680     | **  |
| S 1184             | 163.2         | 13.0         | 4.7         | 34.5         | 4.4         | 0.1        | 1.2        | 0.2        | 0.2        | 4.7         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 14      |     |
| S 1185             | 260.0         | 12.3         | 7.3         | 295.2        | 35.2        | 5.0        | 1.3        | 1.1        | 0.2        | 1.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 32      |     |
| S 1186             | 970.0         | 42.1         | 6.3         | 120.6        | 15.3        | 1.7        | 1.5        | 0.8        | 0.2        | 7.6         | 0.2        | 0.2        | 0.5        | 0.2        | 0.03         | 24      |     |
| S 1187             | 2,500.0       | 38.4         | 5.5         | 46.9         | 7.7         | 0.7        | 1.3        | 0.7        | 0.2        | 5.5         | 0.2        | 0.2        | 1.3        | 0.8        | 0.03         |         | •   |
| S 1188<br>S 1189   | 1,100.0       | 9.7          | 2.5<br>12.6 | 23.7<br>85.1 | 0.8<br>27.4 | 0.4<br>0.3 | 3.0        | 0.8        | 0.2        | 1.3         | 0.2        | 0.2        | 0.6        | 0.8        | 0.03         | 00      | ••  |
| S 1199             | 343.3<br>73.4 | 20.0<br>18.1 | 5.7         | 72.6         | 8.8         | 0.3        | 2.1<br>1.4 | 1.1<br>0.3 | 0.2<br>0.2 | 19.4<br>8.8 | 0.6<br>0.8 | 0.2<br>0.2 | 0.3<br>0.2 | 0.2        | 0.03         | 86<br>7 |     |
| S 1190             | 168.6         | 10.1         | 6.4         | 38.5         | 7.4         | 0.5        | 3.3        | 0.5        | 0.2        | 9.0         | 0.8        | 0.2        | 0.2        | 0.2<br>0.3 | 0.03<br>0.03 |         | **  |
| S 1192             | 187.6         | 16.3         | 4.6         | 51.9         | 18.3        | 0.2        | 1.8        | 0.0        | 0.2        | 4.4         | 0.5        | 0.2        | 0.2        | 0.3        | 0.03         | 24      |     |
| S 1192             | 97.6          | 4.2          | 5.7         | 50.9         | 17.4        | 0.2        | 1.7        | 0.1        | 0.2        | 3.5         | 0.6        | 0.3        | 0.2        | 0.2        | 0.03         | 12      |     |
| S 1194             | 1,610.0       | 43.7         | 7.8         | 75.4         | 18.1        | 0.3        | 1.7        | 0.5        | 0.2        | 7.9         | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 12      |     |
| S 1195             | 46.5          | 4.0          | 5.0         | 108.6        | 17.5        | 0.3        | 1.1        | 0.1        | 0.2        | 1.7         | 0.2        | 0.4        | 0.2        | 0.2        | 0.03         | 7       |     |
| S 1196             | 75.7          | 20.8         | 6.6         | 46.7         | 11.1        | 0.2        | 1.3        | 0.2        | 0.2        | 5.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8       |     |
| S 1197             | 32.8          | 29.8         | 4.5         | 33.5         | 8.9         | 0.1        | 0.8        | 0.1        | 0.2        | 4.9         | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 7       |     |
| S 1198             | 17.0          | 24.5         | 4.1         | 38.5         | 5.6         | 0.1        | 0.8        | 0.1        | 0.2        | 4.4         | 0.5        | 0.2        | 0.2        | 0.3        | 0.03         | 4       |     |
| S 1199             | 14.5          | 15.7         | 3.3         | 33.9         | 4.5         | 0.2        | 0.8        | 0.1        | 0.2        | 4.0         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 3       |     |
| S 1200             | 99.2          | 23.2         | 3.4         | 40.2         | 6.7         | 0.1        | 0.8        | 0.2        | 0.2        | 3.6         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |     |
| S 1201             | 175.1         | 17.2         | 5.4         | 60.9         | 7.1         | 0.5        | 1.1        | 0.6        | 0.2        | 4.9         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |     |
| S 1202             | 1,590.0       | 50.7         | 6.4         | 85.6         | 14.7        | 0.7        | 1.7        | 0.7        | 0.2        | 10.6        | 0.2        | 0.2        | 0.6        | 0.2        | 0.03         | 8       |     |
| S 1203             | 50.6          | 15.0         | 6.3         | 54.1         | 7.1         | 0.4        | 1.3        | 0.5        | 0.2        | 4.4         | 0.6        | 0.2        | 0.2        | 0.2        | 0.03         | 15      |     |
| S 1204             | 7.0           | 10.7         | 4.2         | 20.6         | 2.7         | 0.1        | 0.7        | 0.2        | 0.2        | 1.5         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 10      |     |
| S 1205             | 83.2          | 19.2         | 7.2         | 65.1         | 12.8        | 0.3        | 1.5        | 0.1        | 0.2        | 20.7        | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 16      |     |
| S 1206             | 7.2           | 13.8         | 3.0         | 26.2         | 4.7         | 0.1        | 0.6        | 0.1        | 0.2        | 1.7         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 7       |     |
| SM 1207<br>SM 1208 | 11.3          | 22.3         | 3.3         | 31.7         | 4.4         | 0.1        | 0.7        | 0.1        | 0.2        | 3.6         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 8       |     |
| SM 1208<br>S 1209  | 16.7<br>11.6  | 20.8<br>18.8 | 6.8<br>3.0  | 51.8<br>32.6 | 18.9<br>4.6 | 0.2<br>0.1 | 1.4<br>0.8 | 0.3<br>0.1 | 0.2<br>0.2 | 5.9<br>3.0  | 0.6<br>0.4 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03         | 8<br>12 |     |
| S 1209             | 5.7           | 7.2          | 3.4         | 32.8<br>15.3 | 1.8         | 0.1        | 0.8        | 0.1        | 0.2        | 1.0         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03<br>0.03 | 9       |     |
| S 1210             | 5.5           | 9.9          | 4.7         | 20.5         | 2.3         | 0.2        | 0.5        | 0.1        | 0.2        | 2.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6       |     |
| S 1212             | 4.4           | 7.8          | 3.3         | 16.8         | 2.3         | 0.1        | 0.4        | 0.1        | 0.2        | 1.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8       |     |
| S 1213             | 6.4           | 11.0         | 3.4         | 23.3         | 2.7         | 0.1        | 0.7        | 0.1        | 0.2        | 2.6         | 0.3        | 0.2        | 0.4        | 0.2        | 0.03         | 8       |     |
| S 1214             | 18.6          | 25.7         | 7.6         | 52.2         | 27.0        | 0.1        | 1.4        | 0.5        | 0.2        | 5.0         | 0.5        | 0.3        | 0.2        | 0.2        | 0.03         | 7       |     |
| S 1215             | 6.8           | 11.4         | 3.4         | 21.8         | 3.2         | 0.1        | 0.6        | 0.1        | 0.2        | 1.4         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 12      |     |
| S 1216             | 2.1           | 3.9          | 2.8         | 8.8          | 1.0         | 0.1        | 0.2        | 0.1        | 0.2        | 1.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 9       |     |
| S 1217             | 13.9          | 22.7         | 3.1         | 33.1         | 5.1         | 0.1        | 0.8        | 0.1        | 0.2        | 3.4         | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 13      |     |
| S 1218             | 6.2           | 14.7         | 3.4         | 32.8         | 3.3         | 0.1        | 0.7        | 0.1        | 0.2        | 2.2         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 3       |     |
| S 1219             | 2.9           | 5.4          | 3,4         | 11.4         | 1.8         | 0.1        | 0.5        | 0.1        | 0.7        | 1.1         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 5       |     |
| S 1220             | 79.0          | 15.0         | 8.3         | 55.1         | 8.9         | 0.1        | 1.3        | 0.4        | 0.2        | 6.9         | 0.6        | 0.2        | 0.6        | 0.2        | 0.03         | 10      |     |
| S 1221             | 19.2          | 32.4         | 4.8         | 40.9         | 7.9         | 0.2        | 0.9        | 0.1        | 0.2        | 3.2         | 0.6        | 0.2        | 0.2        | 0.2        | 0.03         | 12      |     |
| S 1222             | 7.5           | 14.7         | 2.7         | 34.1         | 5.5         | 0.1        | 0.9        | 0.1        | 0.2        | 2.3         | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 11      |     |
| S 1223             | 4.3           | 6.3          | 2.9         | 12.8         | 1.6         | 0.1        | 0.4        | 0.1        | 0.2        | 0.7         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 37      |     |
| S 1224             | 9.4           | 15.0         | 2.8         | 32.2         | 3.9         | 0.1        | 0.7        | 0.1        | 0.2        | 1.5         | 0.7        | 0.2        | 0.2        | 0.2        | 0.03         | 2       |     |
| S 1225<br>S 1226   | 25.1          | 28.9         | 6.1<br>3 P  | 56.0<br>37.3 | 14.9        | 0.2        | 1.5        | 0.3        | 0.2        | 4.4         | 0.7        | 0.2        | 0.4        | 0.2        | 0.03         | 8       |     |
| \$ 1226<br>\$ 1227 | 12.2<br>20.9  | 19.8<br>26.1 | 3.8<br>6.2  | 37.3<br>44.4 | 5.6<br>8.3  | 0.1<br>0.2 | 0.8<br>0.8 | 0.1<br>0.1 | 0.2<br>0.2 | 3.3<br>4.2  | 0.4<br>0.3 | 0.2<br>0.2 | 0.2        | 0.2        | 0.03         | 5       |     |
| S 1228             | 18.2          | 20.1         | 4.2         | 46.2         | 6.7         | 0.2        | 0.9        | 0.1        | 0.2        | 4.2<br>3.5  | 0.3        | 0.2        | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 8<br>12 |     |
| S 1229             | 10.1          | 18.5         | 3.4         | 32.7         | 4.7         | 0.1        | 0.5        | 0.1        | 0.2        | 1.9         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 8       |     |
| S 1230             | 10.4          | 17.5         | 3.5         | 30.7         | 5.4         | 0.1        | 0.8        | 0.1        | 0.2        | 2.1         | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 9       |     |
| SM 1231            | 120.9         | 8.1          | 5.7         | 38.6         | 6.6         | 0.1        | 1.3        | 0.2        | 0.2        | 6.2         | 0.6        | 0.2        | 0.2        | 0.2        | 0.03         | 15      |     |
|                    |               |              |             |              |             |            |            |            |            |             |            |            | —          |            |              |         |     |

| <b>b b</b>        |                  |              |             | R.           |              |            |            | A          |            | ٠            | ٩          | •          |            | <b>N</b>   |              | L.      | <b>A A</b> |
|-------------------|------------------|--------------|-------------|--------------|--------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|--------------|---------|------------|
| EAGLE             | Cu               | Ni           | Pb          | Zn           | Co           | Cd         | Мо         | Ag         | w          | As           | Sb         | Ві         | Se         | Тe         | Hg           | Au, ppb |            |
| S 1232            | 65.7             | 11.5         | 10.6        | 32.3         | 6.4          | 0.2        | 1.3        | 0.3        | 0.2        | 5.2          | 0.8        | 0.2        | 0.2        | 0.2        | 0.03         | 8       |            |
| S 1233            | 1,100.0          | 22.2         | 6.6         | 73.2         | 19.6         | 1.0        | 2.9        | 0.7        | 0.2        | 103.2        | 0.5        | 0.2        | 0.3        | 0.2        | 0.03         | 28      |            |
| S 1234            | 1,930.0          | 19.7         | 10.5        | 63.9         | 34.0         | 0.8        | 3.6        | 0.5        | 0.2        | 84.1         | 0.3        | 0.2        | 0.4        | 0.2        | 0.03         | 30      |            |
| S 1235            | 355.9            | 7.2          | 13.0        | 29.6         | 6.1          | 0.2        | 3.4        | 0.9        | 0.2        | 22.4         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 23      |            |
| S 1236            | 276.8            | 14.1         | 28.4        | 44.0         | 8.2          | 0.2        | 1.6        | 0.1        | 0.2        | 7.1          | 1.1        | 0.2        | 0.7        | 0.2        | 0.03         | 15      |            |
| S 1237            | 57.6             | 10.6         | 5.4         | 35.8         | 6.7          | 0.2        | 1.9        | 0.2        | 0.2        | 4.6          | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 6       |            |
| S 1238            | 78.0             | 24.1         | 4.3         | 48.0         | 14.6         | 0.1        | 1.7        | 0.2        | 0.2        | 6.3          | 0.8        | 0.2        | 0.2        | 0.2        | 0.03         | 3       |            |
| S 1239            | 69.2             | 11.3         | 6.8         | 35.0         | 14.0         | 0.4        | 4.2        | 0.5        | 0.2        | 3.3          | 0.3        | 0.2        | 0.3        | 0.2        | 0.03         | 8       |            |
| S 1240            | 14.0             | 7.1          | 5.7         | 28.0         | 4.1          | 0.1        | 1.4        | 0.2        | 0.2        | 2.2          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 10      |            |
| S 1241            | 177.0            | 20.8         | 5.2         | 47.8         | 13.0         | 0.2        | 2.1        | 0.1        | 0.2        | 8.9          | 1.0        | 0.2        | 0.6        | 0.2        | 0.03         | 7       |            |
| S 1242<br>S 1243  | 940.0<br>1 120 0 | 19.7<br>21.1 | 5.4<br>11.5 | 57.2<br>55.4 | 13.2<br>20.7 | 0.3<br>0.9 | 4.4<br>3.3 | 0.3<br>0.5 | 0.2<br>0.2 | 26.5         | 1.2<br>0.7 | 0.2<br>0.2 | 0.6        | 0.2<br>0.2 | 0.03<br>0.03 | 22      |            |
| S 1243<br>S 1244  | 1,120.0<br>53.3  | 21.1<br>14.6 | 11.5<br>5.2 | 53.8         | 20.7         | 0.9        | 3.3<br>1.6 | 0.5        | 0.2        | 114.0<br>5.4 | 0.7        | 0.2        | 0.8<br>0.2 | 0.2        | 0.03         | 26<br>4 |            |
| S 1244            | 21.2             | 9.1          | 7.1         | 39.0         | 7.3          | 0.2        | 0.8        | 0.1        | 0.2        | 2.7          | 0.0        | 0.2        | 0.2        | 0.2        | 0.03         | 3       |            |
| S 1246            | 19.8             | 7.5          | 6.2         | 32.9         | 5.0          | 0.1        | 1.1        | 0.1        | 0.2        | 4.0          | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 8       |            |
| S 1247            | 74.5             | 3.7          | 3.9         | 29.4         | 9.8          | 0.1        | 0.9        | 0.1        | 0.2        | 6.5          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 9       |            |
| SM 1248           | 800.0            | 7.5          | 8.7         | 30.6         | 8.8          | 0.1        | 1.6        | 0.8        | 4.1        | 20.3         | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 190     |            |
| SM 1249           | 520.0            | 6.5          | 7.0         | 49.7         | 11.1         | 1.0        | 3.1        | 0.9        | 0.2        | 148.8        | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 60      |            |
| S 1250            | 39.9             | 7.6          | 6.8         | 27.5         | 3.7          | 0.3        | 1.3        | 0.3        | 0.2        | 5.7          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 24      |            |
| S 1251            | 1 <b>43.8</b>    | 25.9         | 5.5         | 52.6         | 13.8         | 0.3        | 3.4        | 0.2        | 0.2        | 18.4         | 0.9        | 0.2        | 0.2        | 0.2        | 0.03         | 16      |            |
| S 1252            | 44.5             | 9.4          | 6.9         | 30.0         | 4.6          | 0.1        | 1.5        | 0.1        | 0.2        | 5.1          | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 15      |            |
| S 1253            | 138.8            | 16.9         | 5.7         | 51.0         | 13.3         | 0.1        | 1.9        | 0.2        | 0.2        | 5.7          | 1.2        | 0.2        | 1.1        | 0.2        | 0.03         | 15      |            |
| S 1254            | 117.8            | 11.6         | 5.3         | 41.5         | 10.0         | 0.1        | 1.4        | 0.1        | 0.2        | 8.7          | 0.7        | 0.2        | 0.2        | 0.2        | 0.03         | 14      |            |
| S 1255            | 17.4             | 8.5          | 6.1         | 32.5         | 5.4          | 0.2        | 1.0        | 0.1        | 0.2        | 2.9          | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 7       |            |
| S 1256            | 49.7             | 22.1         | 6.5         | 52.2         | 8.0          | 0.2        | 1.1        | 0.2        | 0.2        | 5.6          | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 11      |            |
| S 1257<br>SM 1258 | 16.2<br>70.2     | 7.1<br>23.0  | 7.4<br>6.7  | 27.5<br>82.6 | 5.3<br>10.0  | 0.1<br>0.2 | 0.8<br>1.8 | 0.2<br>0.2 | 0.2<br>0.2 | 3.3<br>8.6   | 0.5<br>1.5 | 0.2<br>0.2 | 0.2<br>0.5 | 0.2<br>0.2 | 0.18<br>0.03 | 7<br>7  |            |
| S 1259            | 39.9             | 16.9         | 7.3         | 56.0         | 7.0          | 0.2        | 1.0        | 0.2        | 0.2        | 8.4          | 0.7        | 0.2        | 0.5        | 0.2        | 0.03         | 5       |            |
| S 1260            | 24.7             | 14.5         | 8.0         | 52.4         | 7.6          | 0.5        | 1.0        | 0.2        | 0.2        | 4.3          | 0.5        | 0.3        | 0.2        | 0.2        | 0.03         | 5       |            |
| S 1261            | 42.3             | 14.7         | 9.0         | 86.9         | 11.1         | 0.7        | 1.1        | 0.1        | 0.2        | 6.0          | 0.4        | 0.2        | 0.3        | 0.2        | 0.03         | 8       |            |
| S 1262            | 22.4             | 14.9         | 8.8         | 45.6         | 6.8          | 0.2        | 1.2        | 0.2        | 0.2        | 6.2          | 0.5        | 0.3        | 0.2        | 0.2        | 0.03         | 6       |            |
| S 1263            | 12.7             | 5.8          | 5.6         | 29.1         | 4.1          | 0.1        | 0.6        | 0.2        | 0.2        | 1.8          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 10      |            |
| S 1264            | 76.7             | 10.0         | 6.7         | 73.4         | 11.4         | 0.1        | 1.2        | 0.1        | 0.2        | 3.3          | 0.6        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |            |
| S 1265            | 51.7             | 3.9          | 3.4         | 40.7         | 10.0         | 0.1        | 0.8        | 0.1        | 0.2        | 0.9          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 11      |            |
| S 1266            | 59.1             | 2.5          | 4.0         | 20.1         | 6.7          | 0.1        | 0.6        | 0.1        | 0.2        | 0.7          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6       |            |
| S 1267            | 98.8             | 9.8          | 9.2         | 112.5        | 18.9         | 0.5        | 1.4        | 0.4        | 0.2        | 7.7          | 0.9        | 0.2        | 0.4        | 0.2        | 0.03         | 3       |            |
| S 1268            | 118.3            | 17.1         | 6.6         | 54.8         | 13.1         | 0.1        | 1.5        | 0.2        | 0.2        | 5.5          | 1.0        | 0.2        | 0.5        | 0.2        | 0.03         | 7       |            |
| S 1269            | 212.1            | 13.0         | 3.8         | 22.9         | 7.3          | 2.3        | 2.4        | 3.7        | 0.2        | 5.3          | 0.9        | 0.2        | 0.7        | 0.2        | 0.03         | 12      |            |
| S 1270            | 55.7             | 8.1          | 8.3         | 77.9         | 13.5         | 0.2        | 1.1        | 0.1        | 0.2        | 2.7          | 0.5        | 0.3        | 0.2        | 0.2        | 0.03         | 10      |            |
| S 1271<br>S 1272  | 16.5<br>26.7     | 8.5<br>13.3  | 9.5         | 46.7         | 4.8          | 0.4        | 0.9        | 0.1        | 0.2        | 3.0          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1       |            |
| S 1272<br>S 1273  | 25.7<br>10.5     | 13.3<br>7.7  | 7.3<br>10.7 | 70.9<br>33.8 | 7.0<br>3.6   | 0.2<br>0.1 | 0.8<br>0.8 | 0.1<br>0.1 | 0.2<br>0.2 | 3.9<br>3.7   | 0.4<br>0.3 | 0.2<br>0.3 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 5<br>11 |            |
| S 1275            | 20.3             | 10.9         | 7.1         | 33.8<br>37.1 | 5.0<br>6.1   | 0.1        | 0.a<br>1.0 | 0.1        | 0.2        | 3.7<br>4.6   | 0.3        | 0.3        | 0.2        | 0.2        | 0.03         | 12      |            |
| S 1274<br>S 1275  | 23.2             | 12.6         | 7.8         | 43.5         | 4.3          | 0.4        | 1.1        | 0.4        | 0.2        | 5.2          | 0.6        | 0.2        | 0.2        | 0.2        | 0.03         | 14      |            |
| S 1276            | 73.2             | 19.0         | 13.5        | 69.3         | 11.5         | 0.5        | 1.5        | 0.5        | 0.2        | 5.9          | 0.7        | 0.2        | 0.4        | 0.2        | 0.03         | 14      |            |
| S 1277            | 46.2             | 10.1         | 7.1         | 34.1         | 7.8          | 0.2        | 0.9        | 0.4        | 0.2        | 3.9          | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 7       |            |
| S 1278            | 45.4             | 13.7         | 7.3         | 51.8         | 6.9          | 0.3        | 1.1        | 0.3        | 0.2        | 5.4          | 0.6        | 0.2        | 0.2        | 0.2        | 0.05         | 1       |            |
| S 1279            | 30.3             | 13.4         | 7.1         | 55.0         | 6.4          | 0.2        | 1.0        | 0.2        | 0.2        | 4.9          | 0.9        | 0.2        | 0.2        | 0.2        | 0.03         | 6       |            |
| S 1280            | 82.9             | 16.0         | 4.9         | 35.2         | 6.7          | 1.2        | 1.2        | 0.7        | 0.2        | 4.2          | 0.5        | 0.7        | 0.6        | 0.2        | 0.03         | 10      |            |
| S 1281            | 87.1             | 10.8         | 7.7         | 57.1         | 5.5          | 0.3        | 1.8        | 0.5        | 0.2        | 4.1          | 0.7        | 0.2        | 0.2        | 0.2        | 0.03         | 6       |            |
| S 1282            | 7.3              | 5.5          | 6.8         | 33.5         | 2.0          | 0.2        | 0.8        | 0.1        | 0.2        | 2.6          | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |            |
| SM 1283           | 4.1              | 5.0          | 5.7         | 22.6         | 2.3          | 0.2        | 0.8        | 0.1        | 0.2        | 3.0          | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 22      |            |

| * *              | L                | 8            |             | <b>A</b>      | 1            | <b>N</b>   | L.         | 8          | Ł          | ٩           | <b>L</b>   | <b>A</b>   | 6          | ). I       | <b>L</b>     |          |  |
|------------------|------------------|--------------|-------------|---------------|--------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|--------------|----------|--|
| EAGLE            | Cu               | Ni           | Pb          | Zn            | Co           | Cd         | Мо         | Ag         | w          | As          | Sb         | Bi         | Se         | Te         | Hg           | Au, ppb  |  |
| S 1284           | 10.4             | 6.9          | 5.5         | 24.6          | 2.4          | 0.1        | 1.0        | 0.1        | 0.2        | 4.5         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 20       |  |
| S 1285           | 5.1              | 6.7          | 4.0         | 29.4          | 3.5          | 0.1        | 0.6        | 0.2        | 0.2        | 3.8         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 1        |  |
| S 1286           | 24.0             | 15.6         | 6.0         | 65.6          | 10.2         | 0.3        | 2.0        | 0.1        | 0.2        | 16.2        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 13       |  |
| S 1287           | 9.0              | 4.2          | 10.8        | 165.2         | 6.2          | 0.7        | 1.3        | 0.7        | 0.2        | 2.1         | 0.2        | 0.6        | 0.2        | 0.2        | 0.03         | 10       |  |
| S 1288           | 31.9             | 17.3         | 6.4         | 63.2          | 9.3          | 0.6        | 1.3        | 0.2        | 0.2        | 19.0        | 0.8        | 0.2        | 0.2        | 0.2        | 0.03         | 4        |  |
| S 1289           | 11.1<br>197.0    | 7.5          | 8.8         | 89.8          | 12.3         | 0.4        | 1.3        | 0.3        | 0.2        | 32.6        | 0.7        | 0.3        | 0.2        | 0.2        | 0.03         | 4        |  |
| S 1290<br>S 1291 |                  | 29.8         | 8.2         | 52.4<br>24.4  | 13.5<br>5.5  | 0.3<br>0.6 | 2.8        | 0.5        | 0.2        | 6.5<br>3.6  | 0.5        | 0.2        | 0.4        | 0.2        | 0.03<br>0.03 | 9<br>20  |  |
| S 1291           | 194.4<br>11.6    | 12.3<br>8.9  | 4.6<br>6.7  | 24.4<br>53.6  | 5.5<br>4.6   | 0.6        | 1.7<br>1.9 | 0.4<br>0.2 | 0.2<br>0.2 | 3.0<br>14.6 | 0.2<br>0.4 | 1.0<br>0.2 | 1.3<br>0.2 | 0.2<br>0.2 | 0.03         | 20<br>4  |  |
| S 1292           | 281.4            | 31.9         | 8.6         | 55.0          | 13.6         | 1.0        | 4.6        | 0.2        | 0.2        | 6.0         | 0.4        | 0.2        | 1.2        | 0.2        | 0.03         | 10       |  |
| S 1294           | 34.5             | 10.8         | 4.7         | 38.6          | 11.0         | 0.1        | 2.8        | 0.1        | 0.2        | 4.3         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 4        |  |
| S 1295           | 14.1             | 8.6          | 4.5         | 39.8          | 6.6          | 0.3        | 0.9        | 0.1        | 0.2        | 10.0        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4        |  |
| S 1296           | 8.9              | 8.8          | 6.3         | 69.0          | 4.7          | 0.3        | 1.5        | 0.3        | 0.2        | 8.5         | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 12       |  |
| S 1297           | 2.5              | 1.8          | 2.4         | 19.3          | 0.7          | 0.1        | 0.4        | 0.1        | 0.3        | 0.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8        |  |
| S 1298           | 4.5              | 4.2          | 4.4         | 29.5          | 2.2          | 0.2        | 0.6        | 0.1        | 0.2        | 2.1         | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 9        |  |
| S 1299           | 32.9             | 9.3          | 4.5         | 49.4          | 6.1          | 0.7        | 1.2        | 0.2        | 0.2        | 9.6         | 0.5        | 0.3        | 0.3        | 0.2        | 0.03         | 12       |  |
| S 1300           | 18.7             | 13.4         | 10.1        | 152.8         | 12.1         | 1.1        | 1.5        | 0.6        | 0.2        | 6.3         | 1.0        | 0.3        | 0.2        | 0.2        | 0.03         | 7        |  |
| S 1301           | 18.5             | 10.7         | 9.4         | 97.7          | 10.3         | 0.5        | 1.2        | 0.1        | 0.2        | 7.7         | 0.3        | 0.4        | 0.2        | 0.2        | 0.03         | 5        |  |
| S 1302           | 10.4             | 8.0          | 6.6         | 37.0          | 4.9          | 0.2        | 0.8        | 0.1        | 0.2        | 17.3        | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 5        |  |
| S 1303           | 9.9              | 10.5         | 4.6         | 51.3          | 6.6          | 0.2        | 0.9        | 0.1        | 0.2        | 8.3         | 0.6        | 0.3        | 0.2        | 0.2        | 0.03         | 5        |  |
| S 1304           | 2.9              | 2.8          | 4.9         | 36.3          | 2.4          | 0.1        | 0.5        | 0.1        | 0.2        | 1.2         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 23       |  |
| S 1305           | 18.1             | 13.8         | 6.4         | 63.7          | 8.7          | 0.4        | 1.2        | 0.3        | 0.2        | 9.3         | 0.9        | 0.2        | 0.2        | 0.2        | 0.03         | 4        |  |
| S 1306           | 60.6             | 4.9          | 5.5         | 75.4          | 10.5         | 0.3        | 3.7        | 0.2        | 0.3        | 3.4         | 0.8        | 1.0        | 0.2        | 0.2        | 0.03         | 10       |  |
| S 1307           | 49.0             | 5.7          | 6.2         | 62.9          | 13.4         | 0.2        | 1.7        | 0.3        | 0.2        | 2.6         | 0.5        | 0.2        | 0.3        | 0.2        | 0.03         | 9        |  |
| SM 1308          | 380.0            | 7.0          | 4.7         | 55.2          | 13.0         | 1.2        | 3.2        | 1.6        | 0.2        | 5.9         | 0.8        | 0.2        | 1.7        | 0.2        | 0.03         | 10       |  |
| S 1309           | 670.0<br>4 100 0 | 11.8         | 5.5         | 47.0          | 12.1<br>28.7 | 1.4<br>1.5 | 3.2        | 2.0        | 0.2        | 5.8         | 1.2        | 0.2        | 1.5        | 0.2        | 0.03         | 14       |  |
| S 1310<br>S 1311 | 4,100.0<br>510.0 | 18.2<br>12.1 | 8.2<br>6.9  | 115.3<br>34.2 | 20.7<br>10.8 | 1.5        | 4.9<br>3.1 | 1.5<br>1.2 | 0.2<br>0.2 | 8.4<br>8.5  | 1.8<br>0.9 | 0.2<br>0.2 | 1.3<br>0.9 | 0.2<br>0.2 | 0.03<br>0.03 | 13<br>4  |  |
| S 1312           | 13.3             | 5.9          | 6.5         | 29.6          | 3.4          | 0.1        | 0.8        | 0.2        | 0.2        | 2.4         | 0.5        | 0.2        | 0.9        | 0.2        | 0.03         |          |  |
| S 1313           | 18.2             | 12.1         | 4.3         | 34.7          | 4.6          | 0.1        | 0.9        | 0.1        | 0.2        | 3.7         | 0.5        | 0.3        | 0.2        | 0.3        | 0.03         | 4        |  |
| S 1314           | 36.4             | 15.1         | 4.1         | 47.5          | 11.9         | 0.2        | 1.0        | 0.2        | 0.2        | 5.3         | 0.6        | 0.4        | 0.5        | 0.3        | 0.03         | 5        |  |
| S 1315           | 67.6             | 14.9         | 4.2         | 77.2          | 13.2         | 0.2        | 1.4        | 0.4        | 0.2        | 5.8         | 1.0        | 0.5        | 0.6        | 0.2        | 0.04         | 3        |  |
| S 1316           | 6.0              | 6.3          | 5.4         | 20.9          | 2.9          | 0.1        | 0.5        | 0.1        | 0.2        | 2.0         | 0.4        | 0.2        | 0.2        | 0.3        | 0.03         | 1        |  |
| S 1317           | 16.2             | 12.2         | 4.2         | 38.6          | 4.4          | 0.2        | 0.8        | 0.2        | 0.2        | 3.8         | 0.5        | 0.3        | 0.2        | 0.3        | 0.03         | 43       |  |
| S 1318           | 57.8             | 34.2         | 4.4         | 69.1          | 10.8         | 0.3        | 2.5        | 0.1        | 0.2        | 11.5        | 0.8        | 0.6        | 0.3        | 0.2        | 0.03         | 4        |  |
| S 1319           | 21.6             | 10.3         | 4.2         | 24.3          | 5.5          | 0.2        | 1.6        | 0.2        | 0.2        | 4.1         | 0.3        | 0.3        | 0.2        | 0.2        | 0.03         | 8        |  |
| S 1320           | 147.9            | 7.4          | 5.5         | 12.8          | 4.5          | 1.0        | 3.5        | 0.9        | 0.2        | 4.2         | 1.0        | 0.5        | 0.7        | 0.2        | 0.03         | 18       |  |
| S 1321           | 25.0             | 10.2         | 4.5         | 36.2          | 7.2          | 0.1        | 1.4        | 0.1        | 0.2        | 5.1         | 0.7        | 0.5        | 0.2        | 0.3        | 0.03         | 7        |  |
| S 1322           | 2,580.0          | 7.1          | 8.6         | 27.5          | 11.9         | 0.5        | 5.3        | 0.6        | 0.4        | 10.0        | 1.3        | 0.2        | 0.2        | 0.2        | 0.03         | 16       |  |
| S 1323           | 79.2             | 5.7          | 5.8         | 56.1          | 15.5         | 0.3        | 2.1        | 0.3        | 0.2        | 4.0         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 16       |  |
| S 1324           | 84.7             | 7.9          | 3.8         | 68.0          | 18.2         | 0.1        | 2.2        | 0.1        | 0.2        | 2.7         | 0.9        | 0.8        | 0.4        | 0.2        | 0.03         | 22       |  |
| S 1325           | 162.4            | 5.3          | 13.8        | 31.5          | 27.5         | 0.5        | 3.9        | 0.7        | 1.6        | 6.1         | 0.3        | 0.4        | 0.2        | 0.2        | 0.03         | 42       |  |
| S 1326           | 63.1             | 5.7          | 7.4         | 63.2          | 19.1         | 0.1        | 1.2        | 0.6        | 0.2        | 1.7         | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 6        |  |
| S 1327           | 77.5             | 6.3          | 4.1         | 69.0          | 14.6         | 0.1        | 2.4<br>2.2 | 0.4        | 0.2        | 6.6         | 1.6        | 0.2        | 0.9        | 0.2        | 0.04         | 14       |  |
| S 1328<br>S 1329 | 140.0<br>3,080.0 | 7.2<br>8.6   | 6.5<br>7.8  | 42.8<br>83.4  | 9.9<br>30.0  | 0.3<br>1.9 | 2.2        | 0.2<br>2.4 | 0.2<br>0.2 | 3.4<br>4.3  | 0.2<br>1.3 | 0.2<br>0.2 | 0.2<br>0.8 | 0.2<br>0.2 | 0.03<br>0.05 | 12<br>14 |  |
| S 1329<br>S 1330 | 3,080.0          | 9.1          | 4.5         | 83.4<br>35.7  | 9.4          | 0.1        | 2.4        | 2.4        | 0.2        | 4.3<br>3.6  | 0.4        | 0.2        | 0.8        | 0.2        |              |          |  |
| S 1330           | 45.4             | 11.7         | 4.5<br>10.3 | 92.4          | 12.6         | 0.1        | 1.6        | 0.1        | 1.2        | 5.4         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03<br>0.03 | 4        |  |
| S 1331           | 40.1             | 12.6         | 8.8         | 92.4<br>65.9  | 13.7         | 0.1        | 1.4        | 0.5        | 0.2        | 5.4         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1        |  |
| SM 1333          | 69.4             | 10.0         | 9.2         | 103.4         | 16.4         | 0.1        | 1.7        | 0.6        | 0.2        | 6.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.00         | 5        |  |
| S 1334           | 361.6            | 8.3          | 9.8         | 69.5          | 14.3         | 0.3        | 3.0        | 0.6        | 0.2        | 13.2        | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 38       |  |
| S 1335           | 36.7             | 6.9          | 10.5        | 40.9          | 7.4          | 0.1        | 1.5        | 0.3        | 0.2        | 7.0         | 0.4        | 0.2        | 0.2        | 0.3        | 0.09         | 9        |  |
|                  |                  |              |             |               |              |            |            |            |            |             |            |            |            |            |              | -        |  |

. . .

|                  |                 | ٩            |              | ŝ.           | <b>A</b>     |            | <b>A</b>   |            | L          | 1           | <b>L</b>   | 8          |            |            |              | 8       | •   | • |
|------------------|-----------------|--------------|--------------|--------------|--------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|--------------|---------|-----|---|
| EAGLE            | Cu              | Ni           | Pb           | Zn           | Co           | Cd         | Мо         | Ag         | w          | As          | Sb         | Bi         | Se         | Te         | Hg           | Au, ppb |     |   |
| S 1336           | 43.0            | 8.3          | 11.0         | 51.5         | 10.4         | 0.2        | 3.4        | 0.4        | 0.2        | 5.6         | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |     |   |
| S 1337           | 47.0            | 10.9         | 10.9         | 74.4         | 12.9         | 0.3        | 1.1        | 0.5        | 0.2        | 4.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 5       |     |   |
| S 1338           | 36.8            | 11.1         | 9.2          | 55.5         | 9.6          | 0.3        | 1.9        | 0.3        | 0.2        | 6.8         | 0.6        | 0.2        | 0.2        | 0.3        | 0.03         | 4       |     |   |
| S 1339           | 338.9           | 18.0         | 6.4          | 44.2         | 12.6         | 0.3        | 6.3        | 0.5        | 0.2        | 4.7         | 0.2        | 0.2        | 1.1        | 0.2        | 0.03         | 4       |     |   |
| S 1340           | 38.6            | 9.9          | 9.0          | 38.5         | 6.9          | 0.2        | 1.2        | 0.2        | 0.2        | 5.0         | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 1       |     |   |
| S 1341           | 94.6            | 16.9         | 7.3          | 51.8         | 14.1         | 0.2        | 2.3        | 0.3        | 0.2        | 4.5<br>3.6  | 0.6<br>0.4 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.3 | 0.10<br>0.03 | 2<br>1  |     |   |
| S 1342           | 50.8            | 8.5          | 8.7<br>9.7   | 41.7<br>27.8 | 7.9<br>4.7   | 0.2<br>0.2 | 1.5<br>4.7 | 0.2<br>0.2 | 0.2<br>0.2 | 4.6         | 0.4        | 0.2        | 0.2        | 0.3        | 0.03         | 2       |     |   |
| S 1343<br>S 1344 | 27.4<br>175.2   | 5.2<br>12.6  | 9.7<br>8.8   | 72.3         | 15.9         | 0.2        | 2.2        | 0.2        | 0.2        | 4.0<br>8.5  | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 15      |     |   |
| S 1344<br>S 1345 | 88.1            | 5.4          | 10.0         | 32.4         | 7.3          | 0.1        | 1.5        | 0.2        | 0.2        | 7.6         | 0.2        | 0.2        | 0.2        | 0.6        | 0.03         | 14      |     |   |
| S 1346           | 44.3            | 4.9          | 10.2         | 21.5         | 4.7          | 0.1        | 1.8        | 0.3        | 0.2        | 1.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6       |     |   |
| S 1347           | 80.9            | 7.4          | 11.6         | 55.2         | 19.5         | 0.1        | 1.3        | 0.8        | 0.2        | 5.5         | 0.5        | 0.2        | 0.4        | 0.2        | 0.03         | 27      |     |   |
| S 1348           | 30.5            | 10.8         | 11.6         | 53.7         | 9.1          | 0.1        | 1.0        | 0.3        | 0.2        | 7.0         | 0.2        | 0.2        | 0.2        | 0.3        | 0.09         | 1       |     |   |
| S 1349           | 23.6            | 6.4          | 10.4         | 45.6         | 6.8          | 0.2        | 0.9        | 0.2        | 0.2        | 3.6         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 1       |     |   |
| S 1350           | 53.2            | 12.9         | 10.4         | 101.1        | 16.5         | 0.3        | 1.8        | 0.4        | 0.8        | 4.4         | 0.7        | 0.2        | 0.2        | 0.2        | 0.03         | 2       |     |   |
| S 1351           | 34.5            | 6.1          | 13.3         | 37.9         | 4.8          | 0.3        | 1.0        | 0.2        | 2.1        | 1.2         | 0.3        | 0.2        | 0.2        | 0.2        | 0.09         | 1       |     |   |
| S 1352           | 51.7            | 14.3         | 12.1         | 75.8         | 12.8         | 0.3        | 1.6        | 0.3        | 0.2        | 8.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.04         | 8       |     |   |
| S 1353           | 72.8            | 5.3          | 8.9          | 21.1         | 3.2          | 0.2        | 1.1        | 0.4        | 0.6        | 3.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 48<br>8 |     |   |
| S 1354           | 48.6            | 9.4          | 29.5         | 57.3         | 11.8         | 0.2        | 1.3        | 0.3<br>1.2 | 0.2<br>0.2 | 5.6<br>71.9 | 0.7<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 130     |     |   |
| S 1355<br>S 1356 | 1,262.0<br>53.0 | 6.0<br>20.7  | 13.8<br>13.9 | 54.5<br>30.3 | 126.8<br>3.5 | 0.3<br>0.6 | 6.0<br>1.1 | 0.6        | 0.2        | 3.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 150     | *   |   |
| S 1350<br>S 1357 | 14.4            | 12.4         | 9.3          | 50.5<br>50.4 | 4.5          | 0.3        | 1.1        | 0.3        | 0.2        | 8.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |     |   |
| SM 1358          | 7.3             | 4.5          | 6.4          | 15.6         | 1.4          | 0.0        | 0.6        | 0.0        | 0.2        | 1.9         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |     |   |
| S 1359           | 7.0             | 4.0          | 4.7          | 9.4          | 1.1          | 0.1        | 0.5        | 0.1        | 0.5        | 1.7         | 0.3        | 0.3        | 0.2        | 0.2        | 0.03         | 4       |     |   |
| S 1360           | 75.8            | 53.1         | 5.9          | 27.6         | 3.5          | 1.5        | 1.5        | 0.6        | 0.6        | 4.6         | 0.2        | 1.1        | 0.2        | 0.2        | 0.03         |         | *   |   |
| S 1361           | 8.1             | 6.0          | 6.2          | 26.6         | 2.2          | 0.1        | 0.6        | 0.1        | 0.2        | 3.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2       |     |   |
| S 1362           | 8.6             | 5.4          | 5.7          | 26.0         | 1.7          | 0.2        | 0.5        | 0.1        | 0.2        | 1.1         | 0.8        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |     |   |
| S 1363           | 8.5             | 3.6          | 6.5          | 19.4         | 1.1          | 0.1        | 0.4        | 0.1        | 0.2        | 0.9         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 12      |     |   |
| S 1364           | 7.1             | 3.9          | 6.2          | 21.4         | 1.2          | 0.1        | 0.4        | 0.1        | 0.2        | 0.6         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 6       |     |   |
| S 1365           | 6.4             | 4.3          | 5.2          | 13.0         | 1.2          | 0.1        | 0.3        | 0.1        | 0.2        | 1.4<br>0.5  | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 4       |     |   |
| S 1366           | 8.1             | 2.6<br>8.0   | 6.0<br>6.6   | 22.7<br>42.1 | 1.4<br>4.1   | 0.2<br>0.1 | 0.2<br>0.5 | 0.1<br>0.2 | 0.2<br>0.2 | 2.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 13      |     |   |
| S 1367<br>S 1368 | 11.7<br>9.3     | 9.0          | 6.2          | 33.0         | 2.6          | 0.2        | 0.8        | 0.2        | 0.2        | 3.3         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 41      |     |   |
| S 1369           | 8.4             | 13.0         | 3.8          | 27.9         | 3.7          | 0.1        | 0.8        | 0.1        | 4.0        | 4.6         | 1.0        | 0.2        | 0.2        | 0.4        | 0.13         | 6       |     |   |
| S 1370           | 7.9             | 9.3          | 4.3          | 23.3         | 2.5          | 0.1        | 0.6        | 0.1        | 1.8        | 4.0         | 0.7        | 0.2        | 0.2        | 0.2        | 0.08         | 5       |     |   |
| S 1371           | 71.0            | 23.2         | 5.4          | 5.0          | 0.7          | 0.9        | 1.5        | 0.5        | 4.2        | 3.2         | 0.6        | 1.9        | 2.1        | 0.4        | 0.03         |         | •   |   |
| S 1372           | 68.7            | 24.3         | 3.3          | 17.7         | 1.4          | 0.8        | 1.5        | 0.4        | 1.5        | 4.6         | 0.8        | 2.0        | 3.6        | 0.9        | 0.03         |         |     |   |
| S 1373           | 75.2            | 30.9         | 3.5          | 10.4         | 0.4          | 1.0        | 1.5        | 0.5        | 0.8        | 2.8         | 0.2        | 1.8        | 1.6        | 0.7        | 0.03         | 20      |     |   |
| S 1374           | 9.8             | 14.9         | 7.2          | 93.3         | 5.8          | 0.6        | 1.5        | 0.2        | 0.2        | 14.5        | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |     |   |
| S 1375           | 8.2             | 10.9         | 9.0          | 70.6         | 4.8          | 0.7        | 1.5        | 0.3        | 0.2        | 10.9        | 0.6        | 0.2        | 0.2        | 0.2        | 0.09         | 4       |     |   |
| S 1376           | 37.8            | 24.9         | 3.9          | 13.8         | 0.8          | 0.4        | 1.5        | 0.7        | 0.4        | 2.6         | 0.2        | 1.7        | 0.9        | 0.5        | 0.03         | 28      |     |   |
| S 1377           | 141.1           | 65.3         | 15.6         | 180.6        | 14.9         | 3.4        | 3.8        | 1.2        | 0.2        | 45.0        | 0.3        | 0.2        | 0.2        | 0.2        | 0.04<br>0.06 | 18      | *   |   |
| S 1378           | 348.9           | 79.1         | 9.1          | 81.7         | 7.7          | 1.4        | 2.3<br>3.0 | 1.1<br>0.6 | 0.2<br>0.2 | 31.2<br>6.3 | 1.6<br>0.2 | 0.9<br>1.7 | 3.0<br>3.8 | 0.2<br>0.7 | 0.08         | ,       |     |   |
| S 1379<br>S 1380 | 123.5<br>34.5   | 24.1<br>10.0 | 2.9<br>2.4   | 40.3<br>4.7  | 1.2<br>0.2   | 0.7<br>0.9 | 3.0<br>2.5 | 0.6        | 0.2        | 0.3<br>2.4  | 0.2        | 1.7        | 3.8<br>1.9 | 0.4        | 0.03         | ,       | •   |   |
| S 1380<br>S 1381 | 34.5<br>10.1    | 18.0         | 2.4<br>4.2   | 4.7<br>32.1  | 4.5          | 0.9        | 2.5        | 0.4        | 0.2        | 6.1         | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 7       |     |   |
| SM 1382          | 3.9             | 4.1          | 4.5          | 13.2         | 0.9          | 0.1        | 0.1        | 0.1        | 0.2        | 0.9         | 0.2        | 0.3        | 0.2        | 0.4        | 0.03         | 3       |     |   |
| S 1383           | 6.2             | 11.0         | 5.0          | 25.3         | 3.1          | 0.1        | 0.6        | 0.1        | 0.2        | 3.9         | 0.6        | 0.2        | 0.2        | 0.3        | 0.03         | 6       |     |   |
| S 1384           | 12.2            | 14.8         | 4.4          | 24.4         | 3.2          | 0.3        | 0.6        | 0.1        | 0.2        | 3.5         | 0.5        | 0.2        | 0.2        | 0.3        | 0.03         | 2       |     |   |
| S 1385           | 11.9            | 21.1         | 4.9          | 37.9         | 6.3          | 0.2        | 1.0        | 0.1        | 0.2        | 6.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 37 '    | r - |   |
| S 1386           | 9.8             | 14.6         | 4.4          | 33.0         | 7.3          | 0.3        | 0.9        | 0.3        | 0.2        | 4.6         | 0.4        | 0.2        | 0.2        | 0.3        | 0.03         | 15      |     |   |
| S 1387           | 13.0            | 15.4         | 5.4          | 51.3         | 4.8          | 0.2        | 1.1        | 0.3        | 0.2        | 7.9         | 0.9        | 0.2        | 0.2        | 0.2        | 0.08         | 8       |     |   |

|                   |                 | R.           | <b>N</b>    |               | R.           |            |            | L.         |            |              |                        | L          |            |            | <b>L</b>     |          | R. |  |
|-------------------|-----------------|--------------|-------------|---------------|--------------|------------|------------|------------|------------|--------------|------------------------|------------|------------|------------|--------------|----------|----|--|
| 54015             | <u> </u>        | • 1:         | Ot.         | 7.            | 6.           | 04         | 14-        | ۸          | w          | 4.5          | Sb                     | Bi         | Se         | Те         | Hg           | Au, ppb  |    |  |
| EAGLE             | Cu              | Ni           | Рb          | Zn            | Co           | Cd         | Мо         | Ag         | VV         | As           | 30                     | DI         | 56         | 1¢         | ng           | Au, ppo  |    |  |
| S 1388            | 5.3             | 9.1          | 5.0         | 24.8          | 2.3          | 0.1        | 0.9        | 0.1        | 4.1        | 4.8          | 0.9                    | 0.2        | 0.2        | 0.2        | 0.03         | 6        |    |  |
| S 1389            | 3.2             | 5.4          | 4.7         | 17.5          | 1.8          | 0.1        | 0.5        | 0.1        | 2.7        | 2.8          | 0.5<br>0.7             | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 15<br>13 |    |  |
| S 1390            | 307.5<br>396.3  | 12.9<br>9.5  | 6.0<br>4.8  | 101.9<br>68.6 | 24.3<br>15.8 | 0.2<br>0.3 | 2.8<br>3.0 | 0.6<br>1.0 | 0.2<br>0.2 | 5.3<br>2.2   | 1.6                    | 0.2        | 0.2        | 0.2        | 0.05         | 26       |    |  |
| S 1391<br>SM 1392 | 160.2           | 9.5          | 4.0         | 53.3          | 18.2         | 0.3        | 2.1        | 0.3        | 0.2        | 2.2          | 1.0                    | 0.2        | 0.2        | 0.2        | 0.07         | 8        |    |  |
| S 1393            | 365.5           | 13.7         | 7.2         | 65.2          | 24.4         | 0.4        | 1.9        | 1.0        | 0.2        | 4.7          | 0.2                    | 0.2        | 0.2        | 0.2        | 0.05         | 3        |    |  |
| S 1394            | 396.4           | 8.6          | 6.6         | 64.2          | 29.2         | 0.2        | 1.8        | 0.7        | 0.2        | 4.3          | 0.7                    | 0.2        | 0.6        | 0.2        | 0.03         | 8        |    |  |
| S 1395            | 404.4           | 9.8          | 10.6        | 80.3          | 32.6         | 0.4        | 1.2        | 0.7        | 0.2        | 4.0          | 0.2                    | 0.2        | 0.2        | 0.2        | 0.04         | 6        |    |  |
| S 1396            | 314.0           | 7.4          | 7.2         | 67.1          | 21.7         | 0.1        | 1.4        | 0.6        | 0.2        | 2.8          | 0.8                    | 0.2        | 0.2        | 0.2        | 0.05         | 8        |    |  |
| S 1397            | 177.8           | 6.9          | 7.7         | 53.0          | 16.8         | 0.3        | 1.2        | 0.5        | 0.2        | 0.7          | 0.2                    | 0.2        | 0.4        | 0.2        | 0.03         | 9        |    |  |
| S 1398            | 440.4           | 7.9          | 5.6         | 59.2          | 16.5         | 0.5        | 1.9        | 0.5        | 0.2        | 1.9          | 1.1                    | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 52<br>34 |    |  |
| S 1399            | 182.6           | 9.4          | 5.6         | 129.3         | 17.2<br>7.5  | 1.4<br>0.7 | 1.1<br>1.2 | 0.6<br>0.2 | 0.2<br>0.2 | 2.0<br>1.0   | 0.2<br>0.2             | 0.2        | 0.2        | 0.2        | 0.03         | 34       |    |  |
| S 1400<br>S 1401  | 36.8<br>1,722.0 | 6.9<br>9.4   | 6.6<br>5.7  | 45.5<br>115.1 | 22.0         | 1.6        | 2.1        | 0.2        | 0.2        | 4.1          | 0.2                    | 0.2        | 0.2        | 0.2        | 0.03         | 9        |    |  |
| S 1401            | 828.0           | 9.5          | 10.5        | 66.6          | 26.8         | 1.9        | 1.4        | 1.9        | 0.2        | 1.5          | 0.2                    | 0.2        | 0.5        | 0.2        | 0.03         | 2        |    |  |
| S 1403            | 1,711.0         | 10.7         | 5.7         | 39.5          | 38.8         | 0.2        | 2.0        | 1.7        | 0.2        | 2.7          | 0.9                    | 0.2        | 0.4        | 0.2        | 0.03         | 10       |    |  |
| S 1404            | 327.8           | 7.5          | 5.5         | 83.6          | 37.5         | 0.2        | 1.4        | 0.8        | 0.2        | 3.8          | 0.2                    | 0.2        | 0.2        | 0.2        | 0.03         | 1        |    |  |
| S 1405            | 619.1           | 15.9         | 11.6        | 73.1          | 40.1         | 1.9        | 2.2        | 2.0        | 0.2        | 3.5          | 0.4                    | 0.2        | 0.8        | 0.2        | 0.03         | 8        |    |  |
| S 1406            | 126.3           | 7.7          | 6.2         | 59.7          | 26.0         | 0.8        | 1.0        | 0.4        | 0.2        | 2.3          | 0.2                    | 0.2        | 0.2        | 0.2        | 0.03         | 2        |    |  |
| S 1407            | 90.4            | 5.1          | 5.4         | 33.0          | 6.8          | 0.4        | 0.8        | 0.3        | 5.3        | 1.4          | 0.6                    | 0.2        | 0.5<br>0.9 | 0.2<br>0.2 | 0.03<br>0.05 | 8<br>8   |    |  |
| S 1408            | 104.2           | 10.5         | 6.2<br>5.6  | 71.4<br>33.1  | 17.7<br>7.0  | 0.3<br>0.1 | 1.7<br>1.0 | 0.5<br>0.2 | 0.5<br>0.2 | 1.4<br>6.8   | 0. <del>9</del><br>0.7 | 0.2<br>0.2 | 0.9        | 0.2        | 0.03         | 4        |    |  |
| S 1409<br>S 1410  | 47.7<br>168.7   | 12.6<br>14.1 | 5.0<br>6.9  | 56.5          | 16.9         | 0.4        | 1.9        | 0.2        | 0.2        | 7.7          | 0.9                    | 0.2        | 0.6        | 0.2        | 0.03         | 28       |    |  |
| S 1410            | 196.9           | 10.7         | 14.0        | 59.3          | 13.1         | 1.0        | 1.3        | 0.5        | 2.6        | 2.4          | 0.2                    | 0.2        | 0.4        | 0.2        | 0.04         | 42       |    |  |
| S 1412            | 520.1           | 19.0         | 19.8        | 58.3          | 20.5         | 1.1        | 1.6        | 1.1        | 0.2        | 3.4          | 0.2                    | 0.2        | 0.2        | 0.2        | 0.05         | 14       |    |  |
| S 1413            | 3,222.0         | 8.4          | 7.8         | 45.6          | 12.7         | 1.6        | 1.3        | 1.8        | 0.2        | 3.0          | 0.2                    | 0.2        | 3.2        | 0.6        | 0.03         | 24       |    |  |
| S 1414            | 439.1           | 12.9         | 12.3        | 92.0          | 27.0         | 0.9        | 1.4        | 0.4        | 0.2        | 2.1          | 0.2                    | 0.2        | 0.2        | 0.4        | 0.06         | 14       |    |  |
| S 1415            | 17.5            | 6.9          | 6.1         | 28.4          | 5.1          | 0.1        | 1.1        | 0.1        | 0.2        | 1.5          | 0.2                    | 0.2        | 0.2        | 0.9        | 0.03         | 6        |    |  |
| SM 1416           | 92.9            | 14.8         | 8.6         | 62.1          | 10.9         | 0.3        | 1.6        | 0.3        | 0.2        | 8.2          | 0.3<br>0.3             | 0.2<br>0.2 | 0.2<br>0.2 | 0.9<br>0.2 | 0.03<br>0.03 | 16<br>4  |    |  |
| S 1417            | 269.6           | 14.5<br>12.0 | 6.6<br>5.2  | 79.3<br>77.7  | 17.7<br>23.1 | 0.3<br>0.2 | 1.8<br>2.5 | 0.6<br>0.6 | 0.2<br>0.2 | 2.2<br>3.6   | 0.3                    | 0.2        | 0.2        | 0.2        | 0.03         | 20       |    |  |
| S 1418<br>S 1419  | 183.8<br>96.5   | 12.0         | 13.1        | 78.0          | 28.0         | 0.2        | 1.9        | 0.4        | 0.2        | 3.6          | 1.3                    | 0.2        | 0.2        | 0.2        | 0.03         | 4        |    |  |
| S 1420            | 175.5           | 21.2         | 9.8         | 59.8          | 15.4         | 0.2        | 2.5        | 0.4        | 0.2        | 12.8         | 0.9                    | 0.2        | 0.2        | 0.2        | 0.03         | 6        |    |  |
| S 1421            | 58.3            | 17.4         | 7.2         | 48.9          | 7.8          | 0.3        | 1.2        | 0.1        | 0.2        | 4.6          | 0.2                    | 0.2        | 0.2        | 0.3        | 0.03         | 2        |    |  |
| S 1422            | 96.5            | 11.5         | 10.5        | 65.3          | 11.6         | 0.4        | 1.0        | 0.3        | 0.2        | 2.5          | 0.2                    | 0.2        | 0.2        | 0.2        | 0.03         | 12       |    |  |
| S 1423            | 385.0           | 10.6         | 6.0         | 107.4         | 33.9         | 0.2        | 2.2        | 1.1        | 0.2        | 2.3          | 0.2                    | 0.2        | 0.2        | 0.2        | 0.03         | 12       |    |  |
| S 1424            | 39.2            | 12.5         | 8.9         | 47.8          | 8.7          | 0.2        | 1.4        | 0.1        | 0.2<br>0.2 | 14.1         | 0.2<br>0.6             | 0.2<br>0.2 | 0.2<br>0.2 | 0.5<br>0.5 | 0.03<br>0.03 | 9<br>18  |    |  |
| S 1425            | 108.0<br>45.5   | 28.1<br>13.1 | 8.0<br>10.2 | 70.7<br>62.0  | 15.8<br>10.1 | 0.5<br>0.5 | 1.9<br>1.2 | 0.3<br>0.3 | 0.2        | 30.4<br>42.5 | 0.0                    | 0.2        | 0.2        | 0.5        | 0.03         | 11       |    |  |
| SM 1426<br>S 1427 | 45.5<br>76.8    | 20.4         | 8.7         | 70.9          | 10.1         | 0.3        | 2.0        | 0.3        | 0.2        | 22.4         | 1.3                    | 0.2        | 0.7        | 0.2        | 0.03         | 8        |    |  |
| S 1427            | 19.2            | 6.5          | 7.7         | 41.3          | 5.7          | 0.3        | 1.2        | 0.2        | 0.2        | 5.5          | 0.2                    | 0.2        | 0.2        | 1.0        | 0.03         | 10       |    |  |
| S 1429            | 339.0           | 15.9         | 13.8        | 119.4         | 32.1         | 3.0        | 4.2        | 2.9        | 0.2        | 230.1        | 0.2                    | 0.2        | 0.3        | 0.2        | 0.08         | 12       |    |  |
| S 1430B           | 38.9            | 15.2         | 7.7         | 48.6          | 8.8          | 0.4        | 1.7        | 0.2        | 0.2        | 18.2         | 0.7                    | 0.2        | 0.2        | 0.3        | 0.03         | 25       |    |  |
| S 1430A           | 42.4            | 15.7         | 7.4         | 50.5          | 9.1          | 0.4        | 1.9        | 0.2        | 0.2        | 20.5         | 0.6                    | 0.2        | 0.2        | 0.2        | 0.03         | 6        |    |  |
| S 1431            | 20.8            | 8.5          | 6.6         | 27.3          | 3.9          | 0.3        | 1.1        | 0.2        | 3.9        | 3.0          | 0.2                    | 0.2        | 0.5        | 0.3        | 0.04         | 4        |    |  |
| S 1432            | 26.3            | 14.2         | 7.5         | 40.9          | 6.5          | 0.2        | 1.2        | 0.2        | 0.5        | 8.1          | 0.2                    | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.04 | 7<br>24  |    |  |
| S 1433<br>S 1434  | 132.8<br>56.1   | 22.8<br>19.1 | 6.2<br>7.6  | 54.9<br>50.2  | 12.0<br>9.5  | 0.5<br>0.2 | 1.8<br>1.8 | 0.3<br>0.2 | 0.2<br>0.2 | 23.8<br>10.7 | 0.4<br>0.2             | 0.2        | 0.2        | 0.2        | 0.04         | 24<br>8  |    |  |
| S 1434<br>S 1435  | 31.2            | 19.1         | 9.1         | 50.2<br>42.0  | 9.5<br>7.0   | 0.2        | 1.0        | 0.2        | 0.2        | 8.5          | 0.2                    | 0.2        | 0.2        | 0.2        | 0.03         | 5        |    |  |
| S 1435            | 100.1           | 10.0         | 12.8        | 44.7          | 9.6          | 0.5        | 1.5        | 0.4        | 0.2        | 17.4         | 0.2                    | 0.2        | 0.5        | 0.3        | 0.03         | 16       |    |  |
| S 1437            | 202.0           | 16.1         | 12.5        | 99.9          | 32.2         | 0.8        | 1.7        | 0.7        | 1.0        | 55.1         | 0.2                    | 0.2        | 0.2        | 0.2        | 0.03         | 38       |    |  |
| S 1438            | 108.3           | 13.2         | 8.0         | 105.3         | 24.1         | 0.5        | 2.3        | 0.6        | 0.2        | 39.5         | 0.2                    | 0.2        | 0.2        | 0.2        | 0.03         | 6        |    |  |

| . K. K           | R             | 1            | R          | L            | 8            |            | <b>A</b>   |            |            | •            | <b>A</b>   | L          | •          | i.         | L            | <b>b</b> |  |
|------------------|---------------|--------------|------------|--------------|--------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|--------------|----------|--|
| EAGLE            | Cu            | Ni           | Pb         | Zn           | Co           | Cd         | Мо         | Ag         | w          | As           | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb  |  |
| S 1439           | 38.5          | 12.7         | 8.4        | 67.1         | 13.6         | 0.4        | 1.1        | 0.2        | 0.2        | 39.7         | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 11       |  |
| S 1440           | 87.6          | 15.6         | 14.6       | 63.8         | 10.6         | 0.5        | 1.9        | 0.4        | 0.2        | 41.4         | 0.7        | 0.2        | 0.2        | 0.2        | 0.03         | 8        |  |
| S 1441           | 282.6         | 24.8         | 9.5        | 65.0         | 31.0         | 0.7        | 1.8        | 0.4        | 0.2        | 95.8         | 1.2        | 0.2        | 0.2        | 0.2        | 0.03         | 16       |  |
| S 1442           | 111.1         | 25.6         | 8.2        | 84.0         | 29.7         | 0.4        | 1.5        | 0.4        | 0.2        | 61.5         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 7        |  |
| S 1443           | 16.2          | 7.0          | 8.4        | 37.9         | 8.2          | 0.2        | 0.8        | 0.2        | 0.2        | 2.6          | 0.2        | 0.2        | 0.4        | 1.0        | 0.03         | 6        |  |
| S 1444           | 31.6          | 14.4         | 5.8        | 48.7         | 9.8          | 0.3        | 2.6        | 0.2        | 0.2        | 35.1         | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 3        |  |
| S 1445           | 52.4          | 13.6         | 7.9        | 58.5         | 12.2         | 0.4        | 1.6        | 0.3        | 0.2        | 30.4         | 0.8        | 0.2        | 0.2        | 0.6        | 0.03         | 6        |  |
| S 1446           | 46.4          | 12.0         | 8.3        | 49.5<br>97.7 | 11.0         | 0.3<br>0.6 | 1.3        | 0.3        | 0.2        | 31.2         | 0.2<br>0.5 | 0.2        | 0.2        | 1.1        | 0.03<br>0.03 | 6<br>9   |  |
| S 1447<br>S 1448 | 165.2<br>22.1 | 22.8<br>42.2 | 8.4<br>7.6 | 107.8        | 21.3<br>17.5 | 0.8        | 2.1<br>1.4 | 0.6<br>0.3 | 0.2<br>0.2 | 37.6<br>8.2  | 0.5        | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.3 | 0.03         | 9<br>6   |  |
| S 1448<br>S 1449 | 53.1          | 42.2<br>8.1  | 8.4        | 62.7         | 11.5         | 0.2        | 1.4        | 0.3        | 0.2        | 3.7          | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 8        |  |
| SM 1450          | 137.0         | 14.9         | 6.5        | 58.3         | 18.8         | 0.2        | 2.3        | 0.4        | 0.5        | 9.1          | 0.2        | 0.2        | 0.2        | 0.2        | 0.04         | 20       |  |
| S 1451           | 20.6          | 11.9         | 6.6        | 41.5         | 6.7          | 0.2        | 1.8        | 0.4        | 0.6        | 3.6          | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 10 **    |  |
| S 1452           | 27.5          | 10.8         | 5.9        | 41.0         | 7.5          | 0.3        | 2.4        | 0.4        | 0.2        | 4.8          | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 16       |  |
| S 1453           | 41.2          | 12.3         | 6.6        | 75.0         | 11.7         | 0.3        | 1.9        | 0.3        | 0.2        | 7.2          | 0.2        | 0.2        | 1.0        | 0.4        | 0.03         | 7        |  |
| S 1454           | 31.8          | 6.7          | 8.6        | 42.5         | 7.8          | 0.1        | 1.6        | 0.2        | 0.2        | 6.1          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 17       |  |
| S 1455           | 40.8          | 9.3          | 7.4        | 50.6         | 12.1         | 0.2        | 1.5        | 0.4        | 0.2        | 6.8          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8        |  |
| S 1456           | 17.1          | 6.9          | 8.6        | 37.7         | 5.8          | 0.2        | 1.1        | 0.1        | 0.2        | 2.9          | 0.2        | 0.2        | 0.2        | 0.6        | 0.03         | 12       |  |
| S 1457           | 70.5          | 9.4          | 12.8       | 65.4         | 21.9         | 0.3        | 4.2        | 0.8        | 0.2        | 4.2          | 0.6        | 0.2        | 0.2        | 0.2        | 0.03         | 1        |  |
| S 1458           | 197.5         | 16.1         | 7.8        | 64.8         | 10.1         | 0.7        | 3.6        | 0.4        | 0.2        | 42.5         | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 2        |  |
| SM 1459          | 122.6         | 8.6          | 9.0        | 14.2         | 3.4          | 0.6        | 1.7        | 1.9        | 0.2        | 7.0          | 0.5        | 0.6        | 1.9        | 0.2        | 0.03         | *        |  |
| S 1460           | 446.5         | 9.4          | 5.3        | 14.5         | 15.6         | 0.9        | 8.1        | 1.8        | 0.2        | 78.6         | 1.7        | 0.2        | 4.9        | 0.2        | 0.03         | 40       |  |
| S 1461           | 78.9<br>37.2  | 21.3         | 6.3<br>5.9 | 54.5         | 12.1<br>9.1  | 0.5<br>0.2 | 2.0        | 0.3        | 0.2        | 38.3<br>8.2  | 0.2<br>0.3 | 0.2        | 0.2<br>0.2 | 0.3        | 0.03<br>0.03 | 12<br>11 |  |
| S 1462<br>S 1463 | 1,145.0       | 15.4<br>16.4 | 13.2       | 45.1<br>57.5 | 25.5         | 3.0        | 1.4<br>7.3 | 0.3<br>1.4 | 0.2<br>0.2 | o.∠<br>347.4 | 0.5        | 0.2<br>0.2 | 0.2<br>1.8 | 0.4<br>0.2 | 0.03         | 52       |  |
| S 1463           | 32.2          | 14.3         | 6.1        | 179.5        | 23.3<br>8.5  | 0.5        | 1.2        | 0.4        | 0.2        | 7.9          | 0.0        | 0.2        | 0.2        | 0.2        | 0.03         | 8        |  |
| S 1465           | 47.1          | 19.2         | 7.4        | 53.3         | 10.4         | 0.4        | 1.4        | 0.2        | 0.2        | 38.9         | 0.2        | 2.4        | 0.2        | 0.6        | 0.03         | 14       |  |
| S 1466           | 47.5          | 18.4         | 6.2        | 50.9         | 11.5         | 0.2        | 1.6        | 0.2        | 0.2        | 12.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 9        |  |
| S 1467           | 95.5          | 15.9         | 6.9        | 56.3         | 10.0         | 0.6        | 1.4        | 0.2        | 0.2        | 60.9         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 16       |  |
| SM 1468          | 77.8          | 14.6         | 8.1        | 72.8         | 17.1         | 0.7        | 1.9        | 0.3        | 0.2        | 43.9         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 22       |  |
| S 1469           | 34.2          | 28.0         | 6.6        | 100.8        | 17.2         | 0.4        | 1.6        | 0.3        | 2.5        | 7.8          | 0.6        | 0.7        | 0.6        | 0.5        | 0.03         | *        |  |
| S 1470           | 57.7          | 23.5         | 7.7        | 64.2         | 40.1         | 1.5        | 1.4        | 0.3        | 0.2        | 26.0         | 0.2        | 0.2        | 0.2        | 0.3        | 0.06         | 7        |  |
| S 1471           | 65.7          | 16.4         | 6.6        | 55.3         | 10.7         | 0.4        | 2.3        | 0.4        | 13.2       | 230.9        | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 69       |  |
| S 1472           | 40.7          | 15.1         | 8.7        | 50.7         | 16.9         | 0.3        | 1.7        | 0.3        | 1.8        | 15.1         | 0.6        | 0.2        | 0.2        | 1.7        | 0.10         | 9        |  |
| S 1473           | 61.5          | 25.8         | 7.2        | 69.3         | 9.4          | 0.2        | 2.5        | 0.3        | 0.2        | 14.8         | 0.2        | 0.2        | 0.2        | 2.2        | 0.07         | 9        |  |
| SM 1474          | 64.6          | 28.9         | 7.6        | 51.1         | 9.0          | 0.3        | 1.9        | 0.3        | 0.2        | 7.3          | 0.8        | 0.2        | 0.2        | 2.6        | 0.04         | 7        |  |
| S 1475           | 25.2<br>27.0  | 16.7<br>11.5 | 8.5        | 46.3<br>45.8 | 6.1<br>7.1   | 0.2<br>0.3 | 1.3<br>1.2 | 0.2<br>0.4 | 0.2<br>0.2 | 11.7<br>7.2  | 1.4<br>0.2 | 0.2        | 0.4<br>0.2 | 1.5<br>2.2 | 0.03<br>0.03 | 9<br>7   |  |
| S 1476<br>S 1477 | 27.0<br>80.7  | 11.5         | 9.5<br>9.9 | 45.8<br>55.4 | 13.1         | 0.3        | 1.Z<br>1.7 | 0.4        | 0.2        | 6.7          | 0.2        | 0.2<br>0.2 | 0.2        | 2.2        | 0.03         | 6        |  |
| S 1477<br>S 1478 | 24.8          | 7.7          | 9.9<br>9.0 | 42.9         | 6.5          | 0.2        | 2.0        | 0.4        | 0.2        | 10.4         | 0.2        | 0.2        | 0.2        | 2.0        | 0.03         | 10       |  |
| S 1470           | 54.5          | 18.3         | 7,4        | 56.9         | 9.8          | 0.3        | 2.7        | 0.2        | 0.2        | 4.3          | 0.3        | 0.2        | 0.2        | 2.6        | 0.03         | 9        |  |
| S 1480           | 35.6          | 14.9         | 10.9       | 48.6         | 6.6          | 0.3        | 2.8        | 0.2        | 0.2        | 9.2          | 0.4        | 0.2        | 0.2        | 2.1        | 0.03         | 9        |  |
| S 1481           | 161.2         | 23.6         | 13.8       | 85.9         | 20.3         | 1.4        | 8.6        | 1.6        | 0.2        | 7.5          | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 7        |  |
| S 1482           | 168.6         | 18.8         | 9.6        | 58.9         | 11.3         | 0.4        | 1.8        | 0.5        | 0.2        | 5.8          | 0.2        | 0.2        | 0.2        | 0.2        | 0.09         | 6        |  |
| SM 1483          | 563.0         | 9.2          | 8.3        | 71.8         | 13.6         | 0.5        | 4.3        | 1.2        | 0.2        | 48.4         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 13       |  |
| S 1484           | 43.9          | 16.3         | 10.1       | 43.8         | 7.1          | 0.2        | 1.5        | 0.2        | 0.2        | 54.2         | 0.3        | 0.2        | 0.2        | 0.2        | 0.04         | 80       |  |
| S 1485           | 18.2          | 7.7          | 6.7        | 33.3         | 3.6          | 0.1        | 0.6        | 0.1        | 0.2        | 7.5          | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 14       |  |
| S 1486           | 10.6          | 4.5          | 8.2        | 15.9         | 2.5          | 0.1        | 0.7        | 0.2        | 0.2        | 2.8          | 0.2        | 0.2        | 0.2        | 0.2        | 0.05         | 11       |  |
| S 1487           | 84.6          | 21.7         | 6.3        | 48.4         | 7.4          | 0.2        | 1.5        | 0.8        | 0.2        | 2.8          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 7        |  |
| S 1488           | 36.6          | 18.1         | 6.6        | 39.6         | 6.8          | 0.3        | 1.9        | 0.7        | 3.2        | 8.7          | 1.4        | 0.2        | 0.2        | 0.2        | 0.10         | 1        |  |
| S 1489           | 14.9          | 5.8          | 7.5        | 21.0         | 3.1          | 0.2        | 1.0        | 0.2        | 1.9        | 3.3          | 0.7        | 0.2        | 0.2        | 0.6        | 0.10         | 6        |  |
| S 1490           | 15,800.0      | 28.9         | 13.7       | 164.1        | 146.2        | 0.8        | 2.0        | 2.6        | 0.2        | 120.9        | 0.2        | 0.2        | 0.2        | 1.3        | 0.13         | 49       |  |

| EAGLE             | Cu            | Ni               | Pb           | Zn                        | Co          | Cd         | Мо         | Ag         | w          | As           | Sb         | Bi         | Se         | Te         | Hg           | Au, ppb |
|-------------------|---------------|------------------|--------------|---------------------------|-------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|--------------|---------|
| S 1491            | 238.8         | 25. <del>9</del> | 7.1          | 67.9                      | 18.5        | 0.7        | 3.2        | 0.2        | 4.1        | 59.4         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 47      |
| S 1492            | 41.5          | 15.4             | 8.4          | 38.3                      | 8.7         | 0.3        | 1.4        | 0.1        | 1.5        | 5.1          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 12      |
| S 1493            | 65.3          | 16.7             | 8.2          | 49.3                      | 10.3        | 0.7        | 1.9        | 0.2        | 0.2        | 31.0         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 9       |
| SM 1494           | 84.9          | 20.3             | 7.7          | 66.5                      | 14.7        | 0.6        | 4.2        | 0.1        | 0.2        | 47.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 7       |
| S 1495            | 276.5         | 25.0             | 6.3          | 35.9                      | 14.0        | 1.1        | 2.3        | 0.3        | 0.2        | 76.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 10      |
| S 1496            | 282.1         | 29.6             | 7.6          | 43.6                      | 15.9        | 0.5        | 2.1        | 0.2        | 0.2        | 33.6         | 0.9        | 0.2        | 0.2        | 0.2<br>0.2 | 0.03         | 17      |
| S 1497<br>S 1498  | 119.4<br>45.6 | 24.4<br>15.6     | 6.8<br>8.2   | 59.3<br>39.8              | 16.9<br>9.0 | 0.8<br>0.3 | 3.9<br>1.7 | 0.6<br>0.2 | 0.2<br>0.2 | 38.5<br>11.0 | 0.9<br>0.9 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2        | 0.03<br>0.03 | 8<br>4  |
| S 1498            | 107.2         | 23.4             | 7.6          | 59.8<br>57.9              | 9.0<br>23.7 | 1.3        | 1.7        | 0.2        | 0.2        | 120.9        | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 20      |
| S 1500            | 102.7         | 21.9             | 8.1          | 51.5                      | 16.3        | 1.1        | 2.7        | 0.2        | 0.2        | 60.5         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 9       |
| S 1501            | 234.7         | 21.3             | 7.5          | 66.0                      | 14.9        | 1.9        | 4.8        | 1.0        | 0.2        | 92.7         | 0.5        | 0.2        | 0.8        | 0.2        | 0.03         | 14      |
| S 1502            | 31.6          | 16.3             | 9.2          | 101.6                     | 16.3        | 1.6        | 1.8        | 0.1        | 0.2        | 4.4          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 14      |
| SM 1503           | 29.6          | 16.0             | 7.5          | 99.1                      | 17.2        | 0.4        | 1.2        | 0.1        | 0.2        | 3.5          | 0.7        | 0.2        | 0.2        | 0.2        | 0.03         | 18      |
| S 1504            | 30.0          | 11.8             | 8.7          | 44.3                      | 6.3         | 0.3        | 1.2        | 0.1        | 0.2        | 5.6          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 12      |
| S 1505            | 571.4         | 34.5             | 12.9         | 89.3                      | 25.9        | 1.6        | 2.6        | 1.7        | 0.2        | 7.4          | 1.4        | 0.2        | 0.9        | 0.2        | 0.03         | 13      |
| S 1506            | 53.0          | 15.7             | 8.5          | 46.1                      | 6.6         | 0.4        | 1.4        | 0.1        | 0.2        | 6.7          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 11      |
| S 1507            | 258.4         | 29.9             | 11.2         | 72.3                      | 20.2        | 0.3        | 1.9        | 0.3        | 0.2        | 6.1          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 10      |
| S 1508            | 29.4          | 19.3             | 7.8          | 165.4                     | 14.5        | 0.6        | 1.2        | 0.1        | 0.2        | 9.5          | 1.0        | 0.4        | 0.2        | 0.2        | 0.03         | 7       |
| S 1509            | 29.9          | 18.4             | 6.5          | 232.9                     | 23.5        | 0.6        | 1.7        | 0.1        | 0.2        | 13.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 11      |
| S 1510            | 29.2          | 23.9             | 7.4          | 67.3                      | 8.9         | 0.6        | 1.4        | 0.2        | 5.8        | 7.4          | 0.7        | 0.5        | 0.4        | 0.6        | 0.03         | ~ ^     |
| S 1511            | 35.1          | 20.1             | 39.9         | 187.3                     | 10.9        | 1.7        | 1.9        | 0.2        | 0.2        | 19.2         | 0.2        | 0.2        | 0.2<br>0.2 | 0.2<br>0.2 | 0.06<br>0.03 | 6<br>10 |
| S 1512<br>SM 1513 | 33.3<br>21.1  | 16.4<br>15.2     | 29.0<br>49.6 | 131.0<br>178.9            | 8.6<br>6.9  | 1.3<br>2.1 | 1.8<br>1.9 | 0.8<br>0.4 | 0.2<br>0.2 | 83.2<br>40.6 | 1.6<br>0.9 | 0.2<br>0.2 | 0.2        | 0.2        | 0.03         | 14      |
| S 1514            | 123.1         | 47.2             | 164.8        | 969.2                     | 24.1        | 29.7       | 4.2        | 8.2        | 0.2        | 68.9         | 1.5        | 0.2        | 0.2        | 0.2        | 0.03         | 7       |
| S 1515            | 34.5          | 25.5             | 51.8         | 236.6                     | 8.8         | 2.4        | 2.1        | 7.5        | 0.2        | 72.6         | 2.8        | 0.2        | 0.2        | 0.2        | 0.03         | 32      |
| S 1516            | 16.7          | 15.5             | 87.4         | 350.5                     | 7.9         | 6.0        | 1.5        | 1.4        | 0.2        | 56.5         | 1.5        | 0.2        | 0.2        | 0.2        | 0.03         | 2       |
| S 1517            | 54.5          | 27.9             | 75.9         | 516.8                     | 16.3        | 4.2        | 2.2        | 0.5        | 0.2        | 412.5        | 1.6        | 0.2        | 0.2        | 0.2        | 0.03         | 12      |
| S 1518            | 50.8          | 31.2             | 50.3         | 188.7                     | 12.8        | 1.4        | 2.0        | 0.5        | 0.2        | 235.4        | 2.7        | 0.2        | 0.2        | 0.2        | 0.03         | 5       |
| S 1519            | 34.8          | 19.0             | 36.7         | 141.1                     | 9.0         | 1.2        | 1.7        | 0.3        | 0.2        | 69.4         | 0.9        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |
| S 1520            | 29.7          | 21.7             | 133.0        | 231.1                     | 11.4        | 2.3        | 1.6        | 0.8        | 0.2        | 62.1         | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 2       |
| S 1521            | 68.4          | 27.8             | 40.3         | 209.5                     | 11.2        | 1.6        | 1.3        | 0.3        | 0.2        | 155.7        | 1.4        | 0.2        | 0.2        | 0.2        | 0.03         | 9       |
| S 1522            | 38.9          | 23.7             | 61.1         | 239.4                     | 10.3        | 1.9        | 1.6        | 0.9        | 0.2        | 80.0         | 1.0        | 0.2        | 0.2        | 0.2        | 0.03         | 5       |
| S 1523            | 30.7          | 15.2             | 164.7        | 323.4                     | 10.5        | 4.8        | 1.3        | 0.9        | 0.2        | 100.6        | 1.7        | 0.2        | 0.2        | 0.2        | 0.03         | 22      |
| S 1524            | 32.6          | 20.3             | 55.1         | 294.9                     | 13.9        | 2.4        | 1.1        | 0.5        | 0.2        | 330.8        | 1.6        | 0.2        | 0.2        | 0.2        | 0.03         | 13      |
| S 1525            | 73.0          | 36.2             | 26.9<br>27.4 | 152.0<br>85.9             | 15.8<br>5.3 | 1.1<br>1.0 | 1.9<br>0.7 | 0.3<br>0.1 | 0.2<br>0.2 | 54.4<br>60.9 | 0.9<br>2.0 | 0.3<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 3<br>4  |
| S 1526<br>S 1527  | 15.0<br>20.5  | 13.1<br>14.0     | 27.4<br>55.1 | 05. <del>9</del><br>173.4 | 5.5<br>12.4 | 1.6        | 1.0        | 1.1        | 0.2        | 36.6         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 12      |
| S 1528            | 78.1          | 28.4             | 31.9         | 168.1                     | 12.4        | 1.5        | 1.0        | 1.1        | 0.2        | 38.0         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 10      |
| S 1529            | 39.0          | 15.8             | 59.6         | 232.7                     | 14.2        | 4.6        | 2.4        | 0.8        | 2.5        | 54.6         | 0.9        | 0.5        | 0.2        | 0.2        | 0.06         | 8       |
| S 1530            | 56.5          | 24.8             | 49.4         | 755.7                     | 23.4        | 7.3        | 2.9        | 1.2        | 0.2        | 58.4         | 0.9        | 0.2        | 0.2        | 0.2        | 0.08         | 10      |
| S 1531            | 26.4          | 18.5             | 33.1         | 119.2                     | 12.3        | 1.2        | 1.4        | 0.2        | 0.2        | 42.0         | 0.4        | 0.5        | 0.2        | 0.2        | 0.03         | 3       |
| S 1532            | 647.5         | 55.5             | 41.7         | 159.9                     | 16.2        | 6.6        | 3.3        | 0.8        | 0.2        | 71.9         | 0.3        | 0.2        | 1.1        | 0.2        | 0.05         | 20      |
| S 1533            | 18.3          | 14.0             | 33.7         | 162.8                     | 9.0         | 1.7        | 1.1        | 0.8        | 0.2        | 59.0         | 0.4        | 0.6        | 0.2        | 0.2        | 0.04         | 6       |
| S 1534            | 29.5          | 16.4             | 44.5         | 131.9                     | 8.2         | 1.1        | 1.5        | 0.3        | 0.2        | 57.6         | 1.2        | 0.2        | 0.2        | 0.2        | 0.04         | 10      |
| S 1535            | 10.2          | 7.4              | 20.9         | 80.6                      | 3.5         | 1.4        | 0.7        | 0.1        | 0.2        | 7.9          | 0.7        | 0.2        | 0.2        | 0.2        | 0.03         | 10      |
| S 1536            | 7.3           | 8.8              | 3.8          | 18.9                      | 2.7         | 0.1        | 0.7        | 0.1        | 1.0        | 3.1          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 34      |
| SM 1537           | 16.9          | 35.8             | 5.1          | 47.8                      | 8.8         | 0.3        | 1.6        | 0.1        | 0.2        | 7.9          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2       |
| S 1538            | 6.6           | 8.3              | 4.2          | 20.0                      | 2.9         | 0.2        | 0.7        | 0.1        | 0.9        | 1.1          | 0.2        | 0.3        | 0.2        | 0.3        | 0.04         | 5       |
| S 1539            | 7.9           | 12.9             | 5.0          | 25.1                      | 3.5         | 0.3        | 0.7        | 0.1        | 1.0        | 2.8          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2       |
| S 1540            | 23.5          | 15.6             | 5.1          | 25.1                      | 3.8         | 0.2        | 0.8        | 0.1        | 0.2        | 3.2          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2       |
| S 1541            | 6.3           | 8.8              | 3.5          | 18.6                      | 2.4         | 0.2        | 0.6        | 0.1        | 0.4        | 1.8          | 0.2        | 0.3        | 0.2        | 0.3        | 0.03         | 4       |
| S 1542            | 7.8           | 8.9              | 4.4          | 19.4                      | 2.9         | 0.1        | 0.4        | 0.1        | 0.5        | 2.2          | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |

**h** 

. . . . . . . . . . . . .

| 8 R              | N             | N.          | L.         |              | ħ          | L          | <b>A</b>   | A          |            | A.          |            | L          | A          | [          |              | <b>A A</b> |
|------------------|---------------|-------------|------------|--------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|--------------|------------|
|                  |               |             |            |              |            |            |            |            |            |             |            |            |            |            |              |            |
| EAGLE            | Cu            | Ni          | Pb         | Zn           | Co         | Cd         | Мо         | Ag         | W          | As          | Sb         | Bi         | Se         | Te         | Hg           | Au, ppb    |
| S 1543           | 14.9          | 18.2        | 4.7        | 42.2         | 6.0        | 0.2        | 1.0        | 0.1        | 0.2        | 5.2         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 7          |
| S 1544           | 19.0          | 22.7        | 5.6        | 46.4         | 7.7        | 0.3        | 1.3        | 0.1        | 0.2        | 6.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2          |
| S 1545           | 49.5          | 55.1        | 9.3        | 91.2         | 16.2       | 0.3        | 2.0        | 0.1        | 0.2        | 7.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |
| SM 1546          | 7.2           | 4.6         | 7.0        | 31.2         | 3.0        | 0.3        | 0.4        | 0.9        | 0.5        | 0.3         | 0.2        | 0.6        | 0.2        | 0.2        | 0.04         | 2          |
| S 1547           | 47.4          | 33.7        | 6.6        | 53.1         | 8.1        | 0.3        | 1.8        | 0.1        | 0.2        | 9.0         | 0.7        | 0.3        | 0.2        | 0.2        | 0.03         | 3          |
| S 1548           | 12.8          | 12.4        | 6.8        | 38.9         | 4.3        | 0.3        | 1.5        | 0.1        | 6.7        | 7.0         | 0.5        | 0.7        | 0.4        | 0.6        | 0.03         |            |
| S 1549           | 17.4          | 19.2        | 8.9        | 65.8         | 6.7        | 0.5        | 1.6        | 0.1        | 2.6        | 5.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 3          |
| S 1550           | 84.4          | 34.8        | 10.7       | 141.2        | 13.5       | 0.6        | 1.2        | 0.1        | 0.2        | 13.9        | 0.2        | 0.3        | 0.2        | 0.2        | 0.03         | 6          |
| S 1551           | 14.2          | 25.6        | 4.1        | 46.6         | 8.3        | 0.2        | 0.9        | 0.1        | 0.9        | 10.6        | 0.6        | 0.2        | 0.2        | 0.2        | 0.03         | 2<br>3     |
| S 1552           | 82.9          | 39.3        | 7.5        | 50.8         | 13.6       | 0.6        | 1.0        | 0.1        | 0.2        | 3.5         | 0.9        | 0.2        | 0.2        | 0.2        | 0.03         | 3<br>16    |
| S 1553           | 30.9          | 23.0        | 11.3       | 125.2        | 12.0       | 0.9        | 1.9        | 0.3        | 0.2        | 8.1         | 0.2        | 0.2        | 0.5<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 10         |
| S 1554           | 78.9<br>59.5  | 12.2<br>6.1 | 3.3<br>4.0 | 16.0         | 7.1<br>3.1 | 0.4<br>0.5 | 1.0<br>0.6 | 1.0<br>0.3 | 1.5<br>1.4 | 20.7<br>2.4 | 0.2<br>0.2 | 0.2<br>1.3 | 2.0        | 0.2        | 0.03         | 12         |
| SM 1555          |               |             |            | 14.3<br>33.9 | 5.6        | 0.5        | 0.6        |            |            | 2.4<br>2.6  | 0.2        | 1.3        | 2.0        | 0.2        | 0.03         | 8          |
| S 1556<br>S 1557 | 11.8<br>15.0  | 3.7<br>18.7 | 6.6<br>5.7 | 41.8         | 5.8        | 0.2        | 1.8        | 0.1<br>0.1 | 0.4<br>0.2 | 1.2         | 0.2        | 0.2        | 0.2        | 0.9        | 0.03         | 4          |
| S 1557           | 7.3           | 7.2         | 4.8        | 22.7         | 2.3        | 0.2        | 0.4        | 0.1        | 0.2        | 4.1         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | q          |
| S 1559           | 15.9          | 14.0        | 9.4        | 27.7         | 5.5        | 0.2        | 0.4        | 0.1        | 0.8        | 2.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 5          |
| S 1555           | 28.8          | 19.6        | 4.2        | 41.0         | 6.3        | 0.2        | 1.2        | 0.1        | 0.4        | 2.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4          |
| S 1560           | 25.7          | 16.7        | 5.3        | 56.9         | 9.3        | 0.3        | 1.3        | 0.1        | 0.4        | 3.1         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 36         |
| S 1562           | 16.4          | 12.3        | 4.8        | 38.4         | 5.0        | 0.2        | 0.9        | 0.1        | 0.2        | 4.2         | 0.4        | 0.4        | 0.2        | 0.2        | 0.03         | 28         |
| S 1563           | 633.5         | 16.0        | 4.8        | 123.9        | 26.1       | 0.2        | 2.9        | 1.5        | 0.2        | 3.5         | 0.2        | 0.3        | 0.2        | 0.2        | 0.03         | 1          |
| SM 1564          | 41.8          | 10.9        | 7.2        | 114.7        | 21.8       | 0.7        | 1.3        | 0.1        | 0.2        | 7.4         | 1.0        | 0.2        | 0.3        | 0.2        | 0.05         | 3          |
| S 1565           | 87.4          | 66.1        | 9.6        | 109.0        | 15.2       | 1.8        | 2.1        | 0.6        | 0.2        | 3.3         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 18         |
| S 1566           | 64.5          | 33.0        | 9.9        | 49.6         | 28.8       | 1.6        | 3.8        | 1.1        | 0.4        | 4.5         | 0.4        | 0.3        | 0.3        | 0.2        | 0.03         | 20         |
| S 1567           | 124.4         | 38.6        | 3.4        | 59.5         | 5.0        | 2.4        | 1.8        | 0.8        | 5.6        | 2.9         | 0.2        | 1.2        | 1.3        | 0.2        | 0.03         | 4          |
| S 1568           | 334.3         | 9.1         | 5.7        | 149.9        | 23.2       | 0.2        | 1.8        | 0.7        | 0.2        | 3.2         | 0.2        | 0.2        | 0.2        | 0.2        | 12.17        | 1          |
| S 1569           | 18.6          | 4.1         | 9.1        | 45.4         | 3.6        | 0.5        | 0.8        | 0.1        | 0.2        | 1.3         | 0.4        | 0.2        | 0.2        | 0.4        | 0.20         | 2          |
| S 1570           | 30.1          | 45.6        | 5.7        | 100.3        | 21.4       | 0.5        | 1.7        | 0.3        | 0.2        | 8.8         | 0.2        | 0.2        | 0.2        | 0.2        | 0.14         | 1          |
| S 1571           | 8.4           | 14.9        | 4.5        | 46.4         | 5.6        | 0.4        | 0.7        | 0.1        | 0.2        | 3.5         | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 1          |
| S 1572           | 96.7          | 46.2        | 9.9        | 78.1         | 11.9       | 0.6        | 1.8        | 0.1        | 3.8        | 16.8        | 0.9        | 0.2        | 0.2        | 0.2        | 0.25         | 5          |
| SM 1573          | 8.9           | 10.7        | 5.4        | 32.6         | 3.3        | 0.2        | 1.2        | 0.1        | 2.4        | 6.4         | 1.2        | 0.2        | 0.2        | 0.5        | 0.23         | 7          |
| S 1574           | 10.9          | 4.2         | 5.7        | 27.8         | 3.3        | 0.3        | 1.4        | 0.1        | 1.0        | 1.9         | 0.4        | 0.2        | 0.2        | 0.2        | 0.06         | 1          |
| S 1575           | 13.8          | 11.5        | 12.7       | 56.3         | 4.6        | 0.2        | 1.3        | 0.1        | 0.2        | 7.1         | 0.5        | 0.2        | 0.2        | 0.4        | 0.10         | 1          |
| S 1576           | 6.5           | 6.7         | 7.6        | 32.7         | 2.7        | 0.2        | 1.0        | 0.1        | 0.3        | 3.2         | 0.7        | 0.2        | 0.2        | 0.3        | 0.10         | 57         |
| S 1577           | 36.4          | 13.3        | 11.2       | 88.1         | 6.6        | 1.6        | 1.5        | 0.4        | 0.2        | 8.7         | 0.2        | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.12<br>0.06 | 1<br>3     |
| S 1578           | 104.3<br>10.2 | 54.1        | 11.9       | 90.0         | 11.8       | 0.6<br>0.3 | 1.9<br>1.3 | 0.1<br>0.1 | 0.2<br>0.2 | 27.6<br>6.0 | 0.2<br>0.2 | 0.2        | 0.2        | 0.2        | 0.08         | 3<br>1     |
| S 1579<br>S 1580 | 13.6          | 6.8<br>6.8  | 8.8<br>6.4 | 35.3<br>40.7 | 3.7<br>5.3 | 0.3        | 1.3        | 0.1        | 0.2        | 2.9         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |
| S 1580           | 3.7           | 4.5         | 3.9        | 40.7         | 1.4        | 0.3        | 0.6        | 0.1        | 0.2        | 1.8         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |
| SM 1582          | 25.2          | 24.8        | 9.4        | 143.8        | 8.9        | 0.5        | 2.0        | 0.1        | 0.2        | 11.2        | 1.1        | 0.2        | 0.2        | 0.4        | 0.09         | 2          |
| S 1583           | 7.4           | 8.8         | 4.2        | 32.8         | 2.4        | 0.2        | 1.0        | 0.1        | 0.2        | 3.2         | 0.4        | 0.2        | 0.2        | 0.2        | 0.09         | 28         |
| S 1584           | 41.9          | 17.8        | 2.8        | 11.2         | 3.0        | 0.7        | 2.0        | 0.2        | 1.5        | 2.2         | 0.2        | 1.6        | 0.6        | 0.2        | 0.03         | *          |
| S 1585           | 55.1          | 35.9        | 4.3        | 29.6         | 4.9        | 0.8        | 1.0        | 0.3        | 0.2        | 3.6         | 0.2        | 0.5        | 0.2        | 0.2        | 0.03         | 1          |
| S 1586           | 39.9          | 21.8        | 4.0        | 25.4         | 5.5        | 0.4        | 1.5        | 0.1        | 0.2        | 2.9         | 0.2        | 0.4        | 0.5        | 0.2        | 0.03         | 1          |
| S 1587           | 6.6           | 6.5         | 8.9        | 50.3         | 3.3        | 0.4        | 0.9        | 0.1        | 0.2        | 1.7         | 0.5        | 0.2        | 0.2        | 0.5        | 0.03         | 4          |
| S 1588           | 18.6          | 30.7        | 7.8        | 66.5         | 7.7        | 0.4        | 1.1        | 0.1        | 0.2        | 11.9        | 0.5        | 0.2        | 0.2        | 0.6        | 0.03         | 1          |
| S 1589           | 34.7          | 22.1        | 15.4       | 135.4        | 12.2       | 0.6        | 1.8        | 0.1        | 0.2        | 8.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4          |
| S 1590           | 33.8          | 55.9        | 5.7        | 81.5         | 15.7       | 0.2        | 1.9        | 0.1        | 0.2        | 6.3         | 1.0        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |
| SM 1591          | 9.2           | 17.7        | 3.8        | 33.2         | 4.6        | 0.1        | 1.0        | 0.1        | 5.8        | 2.6         | 0.8        | 0.2        | 0.2        | 0.3        | 0.09         | 1          |
| S 1592           | 15.9          | 31.9        | 6.0        | 56.9         | 12.6       | 0.2        | 1.2        | 0.1        | 1.5        | 6.1         | 0.6        | 0.2        | 0.2        | 0.2        | 0.19         | 1          |
| S 1593           | 8.6           | 20.6        | 3.1        | 36.1         | 4.5        | 0.1        | 0.9        | 0.1        | 1.8        | 2.7         | 0.5        | 0.2        | 0.2        | 0.2        | 0.12         | 1          |
| S 1594           | 18.9          | 32.7        | 4.4        | 51.6         | 7.9        | 0.2        | 0.9        | 0.1        | 0.2        | 4.0         | 0.9        | 0.2        | 0.2        | 0.4        | 0.05         | 2          |

| <b>L</b>          |                  | R.           |              | L            | <b>A</b>      |            |             |            |            |             |            |            | •          |            | 1            | <b>R</b> |  |
|-------------------|------------------|--------------|--------------|--------------|---------------|------------|-------------|------------|------------|-------------|------------|------------|------------|------------|--------------|----------|--|
|                   |                  |              |              |              |               |            |             |            |            |             |            |            |            | -          |              |          |  |
| EAGLE             | Cu               | Ni           | Pb           | Zn           | Co            | Cd         | Мо          | Ag         | W          | As          | Sb         | Bi         | Se         | Te         | Hg           | Au, ppb  |  |
| S 1595            | 7.8              | 18.1         | 5.2          | 37.4         | 4.3           | 0.2        | 0.9         | 0.1        | 0.2        | 3.4         | 0.7        | 0.2        | 0.2        | 0.2        | 0.06         | 8        |  |
| S 1596            | 7.3              | 17.5         | 3.6          | 34.8         | 4.3           | 0.2        | 0.7         | 0.1        | 0.4<br>0.2 | 3.1<br>2.7  | 0.7<br>0.4 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 5<br>2   |  |
| S 1597            | 12.7<br>9.4      | 23.5<br>19.9 | 4.5<br>3.6   | 40.7<br>38.3 | 5.8<br>5.3    | 0.1<br>0.1 | 0.9<br>0.8  | 0.1<br>0.1 | 0.2        | 3.1         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 1        |  |
| S 1598<br>S 1599  | 9.4<br>22.8      | 19.9         | 9.0          | 38.3<br>70.0 | 10.3          | 0.1        | 0.6         | 0.1        | 0.2        | 1.3         | 0.3        | 0.2        | 0.2        | 0.6        | 0.04         | 14       |  |
| SM 1600           | 22.9             | 12.7         | 8.7          | 67.9         | 9.9           | 0.1        | 0.8         | 0.1        | 0.2        | 2.1         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1        |  |
| S 1601            | 46.8             | 19.8         | 17.9         | 126.7        | 12.8          | 0.4        | 2.3         | 0.1        | 0.2        | 8.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1        |  |
| S 1602            | 43.2             | 11.3         | 13.7         | 56.8         | 8.8           | 0.4        | 1.4         | 0.1        | 0.2        | 4.6         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 3        |  |
| S 1603            | 16.0             | 15.8         | 7.8          | 42.3         | 4.6           | 0.1        | 1.5         | 0.1        | 0.2        | 5.6         | 0.9        | 0.2        | 0.2        | 0.4        | 0.03         | 3        |  |
| S 1604            | 10.7             | 13.2         | 8.0          | 39.6         | 5.7           | 0.2        | 0.9         | 0.1        | 0.2        | 5.2         | 0.5        | 0.2        | 0.2        | 0.4        | 0.16         | 6        |  |
| S 1605            | 301.1            | 14.2         | 5.5          | 123.8        | 31.2          | 0.1        | 2.4         | 0.1        | 0.2<br>0.2 | 6.5<br>1.6  | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.4 | 0.03<br>0.03 | 2<br>3   |  |
| S 1606            | 31.9             | 6.3<br>4.9   | 10.5<br>9.7  | 68.2<br>57.3 | 11.1<br>9.7   | 0.2<br>0.4 | 1.0<br>0.9  | 1.1<br>0.3 | 0.2        | 2.8         | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 5        |  |
| S 1607<br>S 1608  | 60.0<br>70.0     | 4.9<br>7.1   | 5.0          | 39.9         | 8.3           | 0.4        | 2.7         | 0.5        | 0.2        | 4.8         | 0.3        | 0.2        | 0.2        | 0.2        | 0.06         | 22       |  |
| SM 1609           | 49.0             | 7.4          | 9.1          | 60.0         | 12.1          | 0.2        | 2.2         | 0.2        | 0.2        | 2.3         | 0.2        | 0.2        | 0.2        | 0.2        | 0.22         | 2        |  |
| S 1610            | 309.6            | 13.8         | 6.4          | 43.8         | 8.9           | 0.6        | 5.5         | 0.3        | 1.0        | 6.8         | 1.8        | 0.2        | 1.6        | 0.2        | 0.10         | 5        |  |
| S 1611            | 182.1            | 7.9          | 5.0          | 41.4         | 11.3          | 0.4        | 7. <b>2</b> | 0.5        | 0.2        | 4.3         | 0.4        | 0.2        | 1.0        | 0.2        | 0.05         | 6        |  |
| S 1612            | 9.7              | 3.9          | 4.5          | 38.2         | 5.0           | 0.1        | 1.4         | 0.1        | 0.2        | 1.3         | 0.2        | 0.2        | 0.2        | 0.2<br>0.6 | 0.03<br>0.03 | 1        |  |
| S 1613            | 11.4             | 4.0          | 5.7          | 45.0         | 7.8           | 0.2        | 1.9         | 0.1<br>0.2 | 0.2<br>0.2 | 3.3<br>5.1  | 0.5<br>0.4 | 0.2<br>0.2 | 0.2<br>0.8 | 0.8        | 0.03         | 1        |  |
| S 1614<br>S 1615  | 135.9<br>485.7   | 5.9<br>9.5   | 6.9<br>5.3   | 37.8<br>48.2 | 13.9<br>7.0   | 0.2<br>0.9 | 4.0<br>4.1  | 1.2        | 0.2        | 4.0         | 0.4        | 0.2        | 1.8        | 0.2        | 0.08         | 4        |  |
| S 1616            | 204.3            | 6.9          | 6.9          | 31.1         | 8.2           | 0.3        | 4.6         | 0.1        | 0.2        | 3.2         | 1.3        | 0.2        | 0.5        | 0.2        | 0.03         | 2        |  |
| S 1617            | 10.4             | 11.9         | 4.4          | 23.6         | 3.8           | 0.1        | 1.4         | 0.1        | 0.2        | 4.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1        |  |
| SM 1618           | 90.9             | 28.8         | 9.2          | 67.7         | 24.9          | 0.2        | 3.9         | 0.1        | 0.2        | 7.6         | 0.7        | 0.2        | 0.2        | 0.3        | 0.03         | 3        |  |
| S 1619            | 77.2             | 14.4         | 10.5         | 60.7         | 20.5          | 0.3        | 4.7         | 0.2        | 0.2        | 9.2         | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 12       |  |
| S 1620            | 3,650.0          | 15.5         | 9.5          | 37.3         | 78.6          | 1.4        | 5.3         | 2.7        | 0.2        | 5.3         | 0.2        | 0.2        | 2.4<br>0.5 | 0.2<br>0.3 | 0.07<br>0.05 | 6<br>2   |  |
| S 1621            | 1,001.7          | 40.0         | 15.3         | 108.4        | 81.8<br>6.2   | 1.3        | 9.2<br>1.5  | 1.2<br>0.1 | 0.2<br>0.2 | 6.3<br>7.1  | 0.2<br>0.3 | 0.2<br>0.2 | 0.5        | 0.3        | 0.03         | 5        |  |
| S 1622<br>S 1623  | 15.8<br>58.0     | 22.3<br>26.8 | 5.3<br>7.0   | 33.0<br>42.6 | 13.4          | 0.1<br>0.2 | 1.5         | 0.1        | 0.2        | 4.8         | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 43       |  |
| S 1623            | 20.1             | 18.5         | 4.7          | 37.9         | 7.5           | 0.1        | 1.4         | 0.1        | 0.2        | 4.6         | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 3        |  |
| S 1625            | 132.9            | 10.1         | 14.0         | 83.9         | 34.8          | 0.2        | 10.0        | 0.3        | 0.2        | 6.3         | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 10       |  |
| S 1626            | 28.1             | 4.5          | 6.2          | 47.6         | 10.2          | 0.1        | 1.3         | 0.1        | 0.2        | 1.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8        |  |
| SM 1627           | 245.8            | 13.0         | 16.0         | 114.9        | 99.4          | 0.3        | 3.3         | 0.4        | 0.2        | 2.7         | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 20       |  |
| S 1628            | 349.4            | 17.7         | 13.3         | 74.3         | 33.4          | 0.5        | 3.8         | 0.1        | 0.2<br>1.3 | 5.8<br>4.7  | 0.3<br>0.2 | 0.2<br>0.2 | 0.2<br>1.7 | 0.2<br>0.2 | 0.03<br>0.10 | 20<br>6  |  |
| S 1629<br>S 1630  | 1,330.2<br>753.3 | 20.7<br>22.5 | 20.4<br>21.5 | 45.5<br>83.2 | 132.1<br>43.6 | 1.7<br>1.1 | 8.4<br>8.4  | 1.5<br>0.5 | 0.2        | 6.2         | 0.2        | 0.2        | 1.1        | 0.2        | 0.12         | 14       |  |
| S 1630            | 10.5             | 1.6          | 8.3          | 15.3         | 1.6           | 0.1        | 0.5         | 0.1        | 2.0        | 0.6         | 0.2        | 0.2        | 0.4        | 0.3        | 0.06         | 14       |  |
| S 1632            | 19.3             | 6.7          | 7.2          | 49.2         | 10.4          | 0.3        | 1.9         | 0.1        | 0.2        | 2.9         | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 8        |  |
| S 1633            | 37.8             | 5.6          | 8.1          | 40.8         | 16.7          | 0.2        | 2.4         | 0.1        | 0.2        | 4.1         | 0.2        | 0.6        | 0.2        | 0.2        | 0.03         | 6        |  |
| S 1634            | 332.5            | 16.7         | 11.5         | 67.2         | 39.0          | 1.0        | 5.7         | 0.1        | 0.2        | 13.4        | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 4        |  |
| S 1635            | 261.1            | 8.3          | 6.1          | 87.6         | 21.1          | 0.1        | 2.6         | 0.3        | 0.2        | 13.8        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03<br>0.03 | 6<br>68  |  |
| SM 1636           | 345.8            | 6.6          | 11.5         | 63.0         | 16.7          | 0.3        | 4.8         | 0.4<br>0.4 | 0.2<br>0.2 | 10.1<br>8.0 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03         | 20       |  |
| S 1637<br>S 1638  | 121.2<br>541.0   | 4.6<br>10.7  | 10.8<br>14.2 | 54.4<br>91.0 | 13.0<br>17.6  | 0.3<br>1.0 | 2.3<br>2.9  | 0.4        | 0.2        | 18.9        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 34       |  |
| S 1639            | 1,610.0          | 7.5          | 23.3         | 99.4         | 34.0          | 0.5        | 6.3         | 0.4        | 0.2        | 46.9        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8        |  |
| S 1640            | 251.7            | 6.2          | 12.4         | 68.5         | 15.2          | 0.4        | 4.1         | 0.2        | 0.2        | 55.0        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 11       |  |
| S 1641            | 1,480.0          | 12.7         | 8.0          | 90.4         | 32.4          | 0.1        | 1.7         | 0.6        | 0.2        | 10.0        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6        |  |
| S 1642            | 133.1            | 5.2          | 8.2          | 71.5         | 11.7          | 0.3        | 3.2         | 0.1        | 0.2        | 5.3         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6        |  |
| S 1643            | 165.9            | 7.8          | 9.9          | 80.8         | 14.9          | 1.1        | 2.1         | 0.8        | 0.2        | 2.8         | 0.2        | 0.2        | 0.3        | 0.2        | 0.03         | 2        |  |
| S 1644            | 52.4             | 10.8         | 8.9          | 56.6         | 10.7          | 0.1        | 2.9         | 0.2<br>1.3 | 0.2<br>0.2 | 5.0<br>2.6  | 1.8<br>2.0 | 0.2<br>0.2 | 0.9<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 1<br>12  |  |
| SM 1645<br>S 1646 | 790.0<br>240.8   | 7.5<br>5.3   | 9.6<br>3.8   | 61.7<br>31.7 | 18.3<br>10.6  | 0.2<br>0.2 | 2.7<br>1.8  | 0.6        | 0.2        | 4.0         | 1.3        | 0.2        | 0.2        | 0.2        | 0.03         | 16       |  |
| 0 1040            | 240.0            | 5.5          | 5.0          | <b>U</b> 1.7 | 10.0          | V.L        | 1.0         | 0.0        |            |             |            |            |            |            |              |          |  |

| <b>b b</b>       | 1                         |              | A.           | A              | *            |            | <b>N</b>   |            | <b>A</b>   |               | Ł          | •          |            |            | Ì            | <u>k</u> k   |
|------------------|---------------------------|--------------|--------------|----------------|--------------|------------|------------|------------|------------|---------------|------------|------------|------------|------------|--------------|--------------|
|                  |                           |              |              |                |              |            |            |            |            |               |            |            |            |            |              |              |
| EAGLE            | Cu                        | Ni           | Pb           | Zn             | Co           | Cd         | Мо         | Ag         | w          | As            | Sb         | Bi         | Se         | Te         | Hg           | Au, ppb      |
| S 1647           | 337.1                     | 7.5          | 6.5          | 53.2           | 11.8         | 0.2        | 1.8        | 0.8        | 0.2        | 2.8           | 0.8        | 0.2        | 0.7        | 0.2        | 0.03         | 18           |
| S 1648           | 714.0                     | 9.1          | 5.2          | 53.7           | 16.3         | 0.3        | 4.0        | 2.2        | 0.2        | 4.6           | 3.4        | 0.2        | 2.4        | 0.2        | 0.03         | 9            |
| S 1649           | 174.1                     | 8.2          | 4.4          | 81.0           | 22.7         | 0.6        | 2.1<br>1.1 | 1.0<br>0.2 | 0.2<br>0.2 | 2.3<br>5.1    | 1.3<br>0.2 | 0.2<br>0.2 | 1.3<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 8<br>3       |
| S 1650<br>S 1651 | 20.8<br>85.0              | 36.0<br>10.1 | 3.8<br>3.5   | 40.6<br>53.8   | 8.5<br>13.1  | 0.3<br>0.1 | 3.7        | 0.2        | 0.2        | 5.8           | 3.2        | 0.2        | 1.5        | 0.2        | 0.03         | 12           |
| S 1652           | 527.0                     | 7.0          | 7.1          | 72.2           | 8.6          | 0.1        | 4.8        | 0.1        | 0.2        | 5.3           | 2.8        | 0.2        | 2.1        | 0.2        | 0.05         | 12           |
| S 1653           | 154.4                     | 11.6         | 32.7         | 109.0          | 13.2         | 0.5        | 3.2        | 0.4        | 0.2        | 33.6          | 1.4        | 0.2        | 0.2        | 0.2        | 0.03         | 16           |
| SM 1654          | 197.7                     | 14.3         | 4.6          | 62.4           | 11.0         | 0.1        | 1.9        | 0.8        | 0.2        | 6.0           | 0.8        | 0.2        | 0.2        | 0.2        | 0.03         | 10           |
| S 1655           | 9.0                       | 10.2         | 3.2          | 21.3           | 2.3          | 0.2        | 0.6        | 0.1        | 0.2        | 2.8           | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1            |
| S 1656           | 7.5                       | 11.0         | 2.8          | 23.2           | 3.2          | 0.2        | 0.6        | 0.1        | 0.2        | 2.6           | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 5            |
| S 1657           | 21.9                      | 23.8         | 3.9          | 43.5           | 5.5          | 0.2        | 1.2        | 0.1        | 0.2        | 4.8           | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 5            |
| S 1658           | 72.8                      | 50.6         | 9.1          | 80.6           | 9.2          | 0.4        | 1.7        | 0.6        | 0.2        | 24.6          | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 6            |
| S 1659           | 284.8                     | 8.3          | 5.5          | 77.4           | 19.3<br>13.8 | 0.1<br>0.6 | 2.2<br>1.3 | 0.1<br>0.4 | 0.2<br>0.2 | 3.5<br>1.6    | 0.7<br>0.4 | 0.2<br>0.2 | 0.5<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 19<br>280 ** |
| S 1660<br>S 1661 | 101.0<br>20. <del>5</del> | 8.1<br>9.9   | 6.8<br>5.2   | 261.6<br>10.0  | 13.8         | 0.6        | 0.5        | 0.4        | 0.2        | 1.0           | 0.4        | 0.2        | 1.2        | 0.2        | 0.03         | 200 *        |
| S 1662           | 26.5                      | 11.9         | 56.5         | 467.4          | 7.9          | 7.2        | 2.4        | 2.5        | 0.2        | 311.4         | 1.2        | 0.9        | 0.2        | 0.2        | 0.03         | 1            |
| S 1663           | 11.1                      | 9.8          | 64.0         | 229.0          | 4.7          | 2.8        | 0.9        | 1.3        | 0.2        | 60.9          | 0.2        | 0.5        | 0.2        | 0.2        | 0.03         | 3            |
| SM 1664          | 8.9                       | 10.8         | 23.7         | 52.0           | 2.7          | 1.2        | 1.2        | 0.3        | 0.2        | 29.8          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6            |
| \$ 1665          | 11.2                      | 12.9         | 16.4         | 79.1           | 3.8          | 1.1        | 1.3        | 0.3        | 0.2        | 23.6          | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 3            |
| S 1666           | 9.1                       | 8.2          | 8.7          | 41.4           | 2.7          | 0.5        | 1.2        | 0.2        | 0.2        | 14.1          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1            |
| S 1667           | 82.1                      | 44.3         | 18.3         | 2,990.0        | 10.8         | 32.5       | 1.3<br>1.9 | 2.7<br>1.2 | 4.3<br>0.2 | 100.4<br>25.1 | 1.2<br>0.3 | 0.5<br>0.2 | 0.6<br>0.2 | 0.3<br>0.2 | 0.03<br>0.03 | 8<br>9       |
| S 1668<br>S 1669 | 16.3<br>10.0              | 20.9<br>13.2 | 11.5<br>21.5 | 160.4<br>87.4  | 6.0<br>4.3   | 2.3<br>1.9 | 1.9        | 0.3        | 0.2        | 25.1          | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 5<br>7       |
| S 1670           | 36.1                      | 21.4         | 416.8        | 535.1          | 9.9          | 6.7        | 1.9        | 2.5        | 0.2        | 214.5         | 0.8        | 0.3        | 0.2        | 0.2        | 0.03         | 18           |
| S 1671           | 87.9                      | 26.2         | 25.2         | 1,340.0        | 21.9         | 7.9        | 2.9        | 0.4        | 0.2        | 401.5         | 0.2        | 0.8        | 0.2        | 0.2        | 0.03         | 16           |
| S 1672           | 44.4                      | 5.3          | 29.7         | 329.8          | 3.1          | 13.4       | 0.4        | 1.8        | 0.2        | 27.8          | 0.7        | 2.2        | 3.2        | 0.6        | 0.03         | 24           |
| S 1673           | 46.9                      | 40.2         | 45.9         | 486.0          | 10.4         | 27.5       | 2.4        | 3.9        | 1.4        | 81.1          | 0.6        | 1.0        | 1.8        | 0.4        | 0.03         | 22           |
| S 1674           | 11.9                      | 14.0         | 83.6         | 159.1          | 5.3          | 1.5        | 1.6        | 1.6        | 0.5        | 123.9         | 0.3        | 0.4        | 0.2        | 0.2        | 0.03         | 24           |
| S 1675           | 12.2                      | 16.6         | 31.9         | 123.5          | 7.5          | 1.7        | 1.6        | 0.9        | 0.2<br>0.2 | 38.4<br>16.9  | 0.2<br>0.2 | 0.3<br>0.3 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 20<br>5      |
| S 1676<br>S 1677 | 3.8<br>10.1               | 7.1<br>11.2  | 14.7<br>9.6  | 26.0<br>50.9   | 1.6<br>3.0   | 0.3<br>0.6 | 1.1<br>1.6 | 0.1<br>0.2 | 0.2        | 20.8          | 0.2        | 0.3        | 0.2        | 0.2        | 0.03         | 2            |
| S 1678           | 7.0                       | 11.5         | 29.5         | 38.4           | 2.7          | 0.8        | 0.7        | 0.4        | 0.2        | 14.9          | 0.2        | 0.2        | 0.2        | 0.2        | 0.05         | 1            |
| S 1679           | 14.0                      | 28.6         | 10.3         | 77.4           | 7.8          | 1.5        | 1.5        | 0.5        | 0.2        | 17.5          | 0.4        | 0.2        | 0.2        | 0.2        | 0.06         | 2            |
| S 1680           | 16.6                      | 18.4         | 24.5         | 190.5          | 8.8          | 2.0        | 1.7        | 0.2        | 0.2        | 105.1         | 0.6        | 0.2        | 1.2        | 0.2        | 0.03         | 4            |
| S 1681           | 29.6                      | 25.7         | 234.7        | 577.3          | 12.1         | 8.6        | 4.2        | 2.0        | 0.5        | 521.0         | 1.2        | 0.5        | 0.2        | 0.2        | 0.03         | 26           |
| S 1682           | 33.8                      | 27.0         | 34.0         | 245.0          | 8.1          | 2.4        | 2.7        | 0.6        | 0.2        | 134.0         | 0.4        | 0.3        | 0.2        | 0.2        | 0.03         | 1            |
| S 1683           | 23.2                      | 13.8         | 20.0         | 109.0<br>65.6  | 4.5<br>4.4   | 2.0<br>1.1 | 1.1<br>0.9 | 0.3<br>0.8 | 0.2<br>0.2 | 198.7<br>23.6 | 0.2<br>0.2 | 0.5<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.06 | 1            |
| S 1684<br>S 1685 | 10.6<br>16.4              | 11.3<br>18.7 | 20.1<br>12.0 | 108.2          | 8.3          | 1.2        | 1.5        | 0.2        | 0.2        | 19.7          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 53           |
| S 1686           | 38.9                      | 21.8         | 12.2         | 83.3           | 12.2         | 2.0        | 1.3        | 0.9        | 0.2        | 21.0          | 0.2        | 0.2        | 0.7        | 0.2        | 0.05         | 1            |
| S 1687           | 66.3                      | 22.8         | 36.8         | 144.9          | 12.7         | 0.9        | 2.2        | 0.4        | 0.2        | 79.8          | 0.6        | 0.2        | 0.2        | 0.2        | 0.03         | 4            |
| SM 1688          | 33.0                      | 6.8          | 29.3         | 112.0          | 6.1          | 2.6        | 1.6        | 0.5        | 0.2        | 32.2          | 0.6        | 0.3        | 1.8        | 0.2        | 0.06         | 1            |
| S 1689           | 48.9                      | 18.3         | 72.1         | 153.8          | 11.4         | 1.4        | 1.9        | 0.4        | 0.2        | 108.1         | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 2            |
| S 1690           | 56.6                      | 32.0         | 61.6         | 1,344.0        | 17.6         | 7.8        | 3.3        | 0.7        | 1.4        | 68.9          | 0.4        | 0.5        | 0.2        | 0.4        | 0.03         | 1            |
| S 1691           | 29.7                      | 14.1         | 27.4         | 88.1           | 5.9          | 1.1        | 1.1        | 0.5        | 0.2        | 38.4          | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.4 | 0.2<br>0.2 | 0.03<br>0.05 | 1 8          |
| S 1692<br>S 1693 | 37.3<br>144.3             | 12.4<br>25.6 | 63.2<br>44.7 | 181.4<br>249.1 | 6.3<br>22.8  | 2.3<br>1.5 | 1.7<br>2.9 | 0.3<br>0.6 | 0.6<br>0.2 | 66.7<br>131.5 | 0.2        | 0.2        | 0.4        | 0.2        | 0.05         | ۍ<br>۲       |
| S 1693<br>S 1694 | 41.2                      | 13.4         | 44.7<br>71.0 | 249.1<br>97.9  | 22.8<br>9.4  | 1.5        | 2.5        | 0.5        | 0.2        | 54.7          | 0.2        | 0.2        | 0.2        | 0.2        | 0.04         | 3            |
| S 1696           | 90.4                      | 31.9         | 9.8          | 60.9           | 12.9         | 0.5        | 2.6        | 0.2        | 0.2        | 8.4           | 0.2        | 0.3        | 0.2        | 0.2        | 0.14         | 6            |
| SM 1697          | 308.4                     | 11.1         | 7.8          | 65.2           | 19.6         | 0.2        | 1.2        | 0.6        | 0.2        | 1.7           | 0.5        | 0.2        | 0.2        | 0.2        | 0.04         | 16           |
| S 1698           | 279.4                     | 12.9         | 14.4         | 77.8           | 25.7         | 0.1        | 3.2        | 0.4        | 0.2        | 5.9           | 0.8        | 0.2        | 0.2        | 0.2        | 0.05         | 5            |
| S 1699           | 130.6                     | 16.4         | 8.4          | 64.7           | 16.1         | 0.1        | 2.6        | 0.2        | 0.2        | 6.8           | 0.5        | 0.5        | 0.2        | 0.2        | 0.08         | 3            |

| -                |                | -            | -          | -            |              | -          | -          |            |            | -          | -          | -          | -          | •          | -            | -        | - |
|------------------|----------------|--------------|------------|--------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|----------|---|
| EAGLE            | Cu             | Ni           | Pb         | Zn           | Co           | Cd         | Мо         | Ag         | w          | As         | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb  |   |
| S 1700           | 362.7          | 12.8         | 10.3       | 70.0         | 21.2         | 0.2        | 3.6        | 0.7        | 0.2        | 2.3        | 0.6        | 0.2        | 0.2        | 0.2        | 0.06         | 15       |   |
| S 1701           | 126.6          | 7.7          | 6.5        | 65.2         | 15.3         | 0.3        | 2.1        | 0.7        | 0.2        | 2.0        | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 10       |   |
| S 1702           | 131.2          | 6.0          | 7.1        | 55.5         | 17.0         | 0.3        | 0.6        | 0.5        | 0.2        | 1.0        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 10       |   |
| S 1703           | 298.6          | 7.0          | 26.3       | 88.7         | 23.4         | 0.4        | 1.9        | 0.6        | 0.2        | 2.8        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4        |   |
| S 1704           | 193.0          | 13.7         | 7.1        | 63.3         | 19.1         | 0.3        | 2.4        | 0.4        | 0.2        | 4.4        | 0.4        | 0.2        | 0.2        | 0.2        | 0.04         | 1        |   |
| S 1705           | 390.0          | 8.9          | 30.3       | 60.9         | 24.2         | 0.2        | 2.1        | 0.5        | 0.2        | 1.9        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 12       |   |
| SM 1706          | 21.9           | 6.9          | 3.2        | 14.7         | 3.3          | 0.1        | 1.0        | 0.1        | 0.2        | 2.2        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03<br>0.09 | 10<br>14 |   |
| S 1707           | 104.9          | 9.6          | 3.9        | 62.6         | 18.7         | 0.1        | 1.7        | 0.3        | 0.2        | 2.3        | 0.2        | 0.2        | 0.2<br>0.2 | 0.2<br>0.2 | 0.09         | 7        |   |
| S 1708           | 44.3           | 21.0         | 4.8        | 28.8         | 8.3          | 0.1        | 1.7        | 0.1        | 0.2        | 5.0        | 0.2        | 0.2<br>0.2 | 0.2        | 0.2        | 0.03         | 15       |   |
| S 1709           | 494.6          | 14.1         | 7.5        | 79.4         | 23.8         | 0.2        | 4.1        | 0.6<br>0.6 | 0.2<br>0.2 | 2.4<br>2.9 | 0.4<br>0.3 | 0.2        | 0.2        | 0.2        | 0.05         | 17       |   |
| S 1710           | 1,030.0        | 12.4         | 5.5        | 93.6<br>85.1 | 31.9<br>27.6 | 0.2<br>0.3 | 2.6<br>2.5 | 0.6        | 0.2        | 2.9        | 1.5        | 0.2        | 0.2        | 0.2        | 0.11         | 9        |   |
| S 1711           | 617.1<br>511.0 | 11.7         | 6.5<br>5.6 | 106.2        | 28.3         | 0.3        | 2.5<br>1.8 | 0.8        | 0.2        | 3.2        | 1.5        | 0.2        | 0.2        | 0.2        | 0.07         | 10       |   |
| S 1712<br>S 1713 | 511.0<br>129.5 | 11.0<br>9.8  | 6.1        | 69.6         | 23.2         | 0.2        | 1.0        | 1.2        | 0.2        | 2.0        | 1.6        | 0.2        | 0.2        | 0.4        | 0.16         | 16       |   |
| S 1713<br>S 1714 | 651.4          | 10.2         | 6.9        | 66.7         | 31.7         | 0.2        | 3.4        | 0.9        | 0.2        | 5.6        | 0.2        | 0.2        | 0.2        | 1.4        | 0.04         | 9        |   |
| SM 1715          | 657.8          | 8.5          | 10.6       | 59.1         | 12.5         | 0.6        | 2.8        | 0.9        | 0.2        | 6.3        | 0.2        | 0.2        | 0.2        | 1.0        | 0.03         | 37       |   |
| S 1716           | 2,190.0        | 22.2         | 12.2       | 85.0         | 23.9         | 1.8        | 2.3        | 2.2        | 0.2        | 5.0        | 0.2        | 0.2        | 0.2        | 0.6        | 0.13         | 6        |   |
| S 1717           | 524.5          | 11.4         | 6.4        | 97.1         | 31.6         | 0.5        | 3.1        | 0.7        | 0.2        | 7.9        | 0.6        | 0.2        | 0.2        | 1.0        | 0.03         | 12       |   |
| S 1718           | 434.1          | 13.0         | 7.4        | 182.1        | 36.5         | 1.1        | 1.9        | 1.7        | 0.2        | 4.1        | 0.2        | 0.2        | 0.2        | 0.6        | 0.03         | 7        |   |
| S 1719           | 413.4          | 7.4          | 8.1        | 72.5         | 22.2         | 0.3        | 7.1        | 0.7        | 0.2        | 10.6       | 0.2        | 0.2        | 0.2        | 1.3        | 0.04         | 27       |   |
| S 1720           | 544.7          | 9.9          | 4.2        | 86.2         | 27.9         | 0.4        | 3.3        | 1.1        | 0.2        | 4.6        | 2.6        | 0.2        | 0.6        | 0.2        | 0.03         | 5        |   |
| S 1721           | 525.0          | 14.1         | 5.9        | 76.1         | 29.1         | 0.7        | 1.8        | 1.2        | 0.2        | 3.6        | 0.2        | 0.2        | 0.2        | 0.9        | 0.05         | 2        |   |
| S 1722           | 636.0          | 11.3         | 10.4       | 70.6         | 16.9         | 1.9        | 2.3        | 1.6        | 0.2        | 4.9        | 0.2        | 0.2        | 0.6        | 0.2        | 0.06         | 8        |   |
| S 1723           | 595.6          | 12.7         | 5.7        | 66.3         | 29.1         | 0.3        | 2.2        | 0.8        | 0.2        | 3.6        | 1.0        | 0.2        | 0.2        | 0.2        | 0.04         | 7        |   |
| SM 1724          | 810.0          | 14.0         | 6.5        | 81.1         | 26.5         | 0.2        | 2.9        | 1.0        | 0.2        | 4.3        | 1.3        | 0.2        | 0.2        | 0.4        | 0.06         | 37       |   |
| S 1725           | 562.3          | 14.1         | 5.1        | 70.3         | 25.9         | 0.2        | 2.7        | 0.7        | 0.2        | 3.3        | 3.3        | 0.2        | 0.2        | 0.2<br>0.2 | 0.03<br>0.07 | 3<br>5   |   |
| S 1726           | 260.9          | 17.4         | 7.5        | 75.6         | 30.3         | 0.2        | 2.1        | 1.1        | 0.2        | 3.8        | 1.9        | 0.2<br>0.8 | 0.2<br>0.2 | 1.5        | 0.07         | 1        |   |
| S 1727           | 29.9           | 5.3          | 8.6        | 34.2         | 16.6         | 0.2        | 5.0        | 0.3<br>0.5 | 0.2<br>0.2 | 3.6<br>4.6 | 0.7<br>1.3 | 0.8        | 0.2        | 0.2        | 0.03         | 10       |   |
| S 1728           | 246.3<br>231.3 | 13.6         | 6.2<br>7.5 | 84.8<br>83.2 | 39.1<br>33.2 | 0.1<br>0.4 | 3.0<br>4.0 | 0.5        | 0.2        | 4.0        | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 8        |   |
| S 1729<br>S 1730 | 186.0          | 13.1<br>15.7 | 7.7        | 61.4         | 23.2         | 0.4        | 2.8        | 0.9        | 0.2        | 5.2        | 1.9        | 0.2        | 0.2        | 0.2        | 0.05         | 14       |   |
| S 1730<br>S 1731 | 396.0          | 23.1         | 9.5        | 57.1         | 22.4         | 0.2        | 2.6        | 0.5        | 0.2        | 7.7        | 2.2        | 0.2        | 0.6        | 0.2        | 0.03         | 29       |   |
| S 1732           | 43.7           | 8.6          | 9.0        | 46.7         | 8.6          | 0.4        | 1.7        | 0.3        | 0.2        | 9.5        | 0.7        | 0.2        | 0.2        | 1.4        | 0.03         | 13       |   |
| SM 1733          | 76.6           | 12.5         | 23.7       | 67.3         | 11.8         | 0.3        | 2.1        | 0.6        | 0.2        | 11.5       | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 12       |   |
| S 1734           | 17.7           | 7.3          | 34.3       | 54.7         | 5.5          | 0.4        | 2.8        | 0.3        | 0.2        | 6.6        | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 3        |   |
| S 1735           | 27.5           | 7.0          | 8.7        | 32.5         | 4.6          | 0.3        | 1.6        | 0.3        | 0.2        | 8.2        | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 2        |   |
| S 1736           | 57.1           | 10.8         | 13.9       | 61.6         | 9.6          | 0.7        | 1.9        | 0.9        | 0.2        | 25.2       | 0.7        | 0.2        | 0.2        | 0.9        | 0.03         | 8        |   |
| S 1737           | 12.8           | 6.3          | 5.8        | 16.3         | 2.4          | 0.5        | 0.5        | 0.2        | 0.2        | 2.2        | 1.1        | 0.2        | 0.2        | 0.9        | 0.03         | 3        |   |
| S 1738           | 18.8           | 5.7          | 14.3       | 37.7         | 4.9          | 0.4        | 1.3        | 0.3        | 0.2        | 11.8       | 0.4        | 0.2        | 0.2        | 0.6        | 0.03         | 4        |   |
| S 1739           | 71.7           | 14.2         | 11.7       | 92.3         | 15.8         | 0.4        | 2.1        | 0.7        | 0.2        | 10.6       | 0.2        | 0.6        | 0.2        | 0.7        | 0.03         | 7        |   |
| S 1740           | 133.0          | 11.9         | 12.2       | 102.7        | 11.0         | 0.8        | 16.0       | 0.5        | 0.2        | 9.6        | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 8        |   |
| S 1741           | 14.8           | 9.7          | 6.2        | 29.8         | 3.7          | 0.3        | 0.8        | 0.1        | 0.2        | 6.2        | 0.6        | 0.2        | 0.2        | 0.3        | 0.03         | 6        |   |
| SM 1742          | 13.0           | 9.8          | 7.2        | 30.2         | 5.3          | 0.2        | 0.7        | 0.1        | 0.2        | 4.7        | 0.2        | 0.2        | 0.2        | 0.3        | 0.03<br>0.03 | 2        |   |
| S 1743           | 12.7           | 8.0          | 6.9        | 20.1         | 3.0          | 0.1        | 0.6        | 0.1        | 0.2        | 2.9        | 0.9<br>0.9 | 0.2<br>0.2 | 0.2<br>0.2 | 0.4<br>0.2 | 0.03         | 4        |   |
| S 1744           | 74.7           | 16.3         | 9.5        | 31.1         | 6.0          | 0.6        | 1.2        | 0.7        | 0.2        | 2.7        |            | 0.2        | 0.2        | 0.2        | 0.03         | 4        |   |
| S 1745           | 53.0           | 7.5          | 9.4        | 48.7         | 5.6          | 0.4        | 1.2<br>3.0 | 0.3<br>1.9 | 0.2<br>0.2 | 6.1<br>5.0 | 0.5<br>0.4 | 0.2        | 1.8        | 0.2        | 0.03         | 6        |   |
| S 1746           | 229.9<br>31.1  | 21.2<br>17.6 | 9.1<br>8.5 | 59.8<br>57.0 | 14.9<br>8.2  | 0.5<br>0.3 | 3.0<br>1.6 | 0.3        | 0.2        | 9.2        | 0.4        | 0.4        | 0.2        | 0.2        | 0.03         | 9        |   |
| S 1747<br>S 1748 | 53.9           | 12.8         | 6.5<br>7.7 | 57.0<br>77.2 | 13.0         | 0.3        | 1.0        | 0.3        | 3.0        | 5.Z<br>6.4 | 1.4        | 0.4        | 0.2        | 0.2        | 0.06         | 2        |   |
| S 1748<br>S 1749 | 17.3           | 12.5         | 7.2        | 43.4         | 6.7          | 0.2        | 0.9        | 0.2        | 1.4        | 3.4        | 0.8        | 0.3        | 0.2        | 0.6        | 0.03         | 2        |   |
| S 1749<br>S 1750 | 16.7           | 9.0          | 5.3        | 31.8         | 5.2          | 0.3        | 1.1        | 0.3        | 0.8        | 4.7        | 0.8        | 0.2        | 0.2        | 0.8        | 0.03         | 3        |   |
| SM 1751          | 10.2           | 4.7          | 3.2        | 15.7         | 3.2          | 0.2        | 0.5        | 0.1        | 1.2        | 0.6        | 0.2        | 0.6        | 0.2        | 0.7        | 0.03         | 1        |   |
|                  |                |              |            |              | 5.           |            | 2.2        |            |            | . –        |            |            |            |            |              |          |   |

1

Ä

.

| <b>R R</b>       | L             |              |                 |               |              | Ł          | N.         |             |            | •            |            | A          | N          |            | l .          | <b>A A</b> |
|------------------|---------------|--------------|-----------------|---------------|--------------|------------|------------|-------------|------------|--------------|------------|------------|------------|------------|--------------|------------|
|                  |               |              |                 |               |              |            |            |             |            |              |            |            |            |            |              |            |
| EAGLE            | Cu            | Ni           | Pb              | Zn            | Co           | Cd         | Мо         | Ag          | w          | As           | Sb         | Bi         | Se         | Тe         | Hg           | Au, ppb    |
| S 1752           | 32.6          | 13.0         | 5.8             | 37.8          | 9.6          | 0.2        | 1.5        | 0.2         | 0.2        | 6.1          | 0.8        | 0.2        | 0.2        | 1.1        | 0.03         | 18         |
| S 1753           | 413.0         | 29.3         | 15.5            | 76.0          | 20.9         | 0.7        | 6.0        | 1.5         | 0.2        | 12.9         | 2.8        | 0.2        | 1.7        | 0.2        | 0.04         | 3<br>6     |
| S 1754           | 50.8          | 8.8          | 5.0             | 25.2          | 6.9          | 0.1        | 1.1        | 0.1<br>0.1  | 0.2<br>0.2 | 3.5<br>2.0   | 0.3<br>0.3 | 0.2<br>0.2 | 0.2<br>0.2 | 0.5<br>0.7 | 0.03<br>0.03 | 1          |
| S 1755<br>S 1756 | 72.5<br>17.5  | 5.5<br>10.2  | 9.5<br>6.4      | 21.5<br>32.8  | 8.9<br>6.0   | 0.1<br>0.1 | 1.3<br>1.4 | 0.1         | 0.2        | 2.0<br>5.5   | 0.5        | 0.2        | 0.2        | 0.6        | 0.03         | 1          |
| S 1750           | 72.2          | 10.2         | 6.8             | 45.8          | 12.4         | 0.5        | 1.6        | 0.8         | 0.2        | 3.6          | 0.3        | 0.4        | 0.2        | 0.6        | 0.03         | 3          |
| S 1758           | 476.2         | 24.6         | 12.6            | 69.1          | 44.5         | 1.0        | 4.1        | 1.4         | 0.2        | 5.2          | 2.3        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |
| S 1759           | 57.5          | 20.9         | 6.5             | 34.9          | 7.5          | 0.7        | 3.3        | 0.1         | 0.2        | 4.6          | 0.9        | 0.2        | 0.2        | 0.6        | 0.03         | 1          |
| SM 1760          | 148.8         | 12.0         | 28.4            | 87.0          | 10.1         | 1.5        | 15.0       | 0.7         | 0.2        | 118.5        | 0.2        | 0.8        | 0.2        | 0.9        | 0.03         | 38         |
| S 1761           | 4,570.0       | 53.6         | 14.0            | 128.9         | 40.2         | 4.1        | 5.7        | 2.2         | 0.2        | 10.4         | 1.0        | 0.2        | 0.2        | 0.2        | 0.07         | 1          |
| S 1762           | 1,450.0       | 44.2         | 16.1            | 73.4          | 25.3         | 1.1        | 4.7        | 0.8         | 0.2        | 12.9         | 0.2        | 0.2        | 0.2        | 0.8        | 0.07         | 21         |
| S 1763           | 64.0          | 18.8         | 5.0             | 33.1          | 8.0          | 0.4        | 3.4        | 0.1         | 0.2<br>0.2 | 6.8<br>9.0   | 0.4<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.6<br>0.4 | 0.03<br>0.03 | 28<br>13   |
| S 1764           | 294.9         | 33.3         | 10.8            | 71.7<br>70.4  | 15.1         | 0.7<br>0.5 | 5.4<br>1.7 | 0.3<br>0.3  | 0.2        | 9.0<br>3.8   | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 4          |
| S 1765<br>S 1766 | 42.6<br>139.1 | 7.0<br>8.1   | 9.6<br>12.1     | 70.4<br>56.9  | 12.1<br>12.0 | 0.5        | 4.3        | 0.3         | 0.2        | 6.7          | 0.3        | 0.3        | 0.2        | 0.8        | 0.03         | 1          |
| S 1760           | 12.6          | 7.6          | 7.1             | 50.0          | 7.0          | 0.3        | 2.2        | 0.3         | 3.1        | 3.1          | 0.7        | 0.6        | 0.2        | 0.2        | 0.03         | 1          |
| S 1768           | 12.4          | 11.5         | 3.7             | 21.3          | 3.3          | 0.2        | 0.9        | 0.1         | 2.7        | 3.0          | 0.7        | 0.2        | 0.2        | 0.3        | 0.03         | 4          |
| SM 1769          | 350.5         | 10.1         | 6. <del>9</del> | 73.0          | 17.3         | 0.4        | 4.3        | 0.6         | 0.2        | 5.5          | 1.0        | 0.2        | 0.2        | 0.2        | 0.03         | 48         |
| S 1770           | 238.8         | 12.9         | 8.8             | 86.9          | 21.8         | 0.4        | 5.1        | 0.5         | 0.2        | 7.0          | 0.7        | 0.2        | 0.2        | 0.2        | 0.03         | 52 *       |
| S 1771           | 850.0         | 9.2          | 8.4             | 68.7          | 12.7         | 1.4        | 3.2        | 1.6         | 0.2        | 2.6          | 0.2        | 0.2        | 0.6        | 0.4        | 0.03         | 20         |
| S 1772           | 181.0         | 6.9          | 5.9             | 76.0          | 12.9         | 1.0        | 4.2        | 0.8         | 0.2        | 6.9          | 0.6        | 0.2        | 0.2        | 0.7<br>0.2 | 0.03<br>0.03 | 270 *<br>6 |
| S 1773           | 620.4         | 35.9         | 10.8            | 84.5          | 24.7         | 1.6        | 4.0<br>2.3 | 0.5<br>0.4  | 0.2<br>0.2 | 6.9<br>6.3   | 0.9<br>1.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2        | 0.03         | 20         |
| S 1774<br>S 1775 | 158.3<br>39.3 | 18.7<br>17.8 | 6.1<br>5.4      | 46.1<br>38.2  | 9.9<br>5.9   | 0.3<br>0.2 | 2.3<br>1.6 | 0.4         | 0.2        | 5.5          | 1.2        | 0.2        | 0.2        | 0.2        | 0.03         | 5          |
| S 1776           | 126.7         | 11.3         | 9.1             | 37.6          | 10.1         | 0.2        | 3.7        | 0.4         | 0.2        | 8.5          | 1.1        | 0.2        | 0.2        | 0.6        | 0.03         | 7          |
| S 1777           | 54.7          | 4.6          | 7.3             | 48.2          | 11.8         | 0.3        | 0.8        | 0.2         | 0.2        | 2.6          | 0.8        | 0.2        | 0.2        | 0.2        | 0.03         | 9          |
| SM 1778          | 146.0         | 7.5          | 7.8             | 74.6          | 16.4         | 0.2        | 2.9        | 1.1         | 0.2        | 3.6          | 0.5        | 0.2        | 0.2        | 0.4        | 0.03         | 12         |
| S 1779           | 30.6          | 2.0          | 6.7             | 23.9          | 2.3          | 0.1        | 0.7        | 0.2         | 0.4        | 1.3          | 1.2        | 0.2        | 0.2        | 0.6        | 0.03         | 32         |
| S 1780           | 879.8         | 15.0         | 45.2            | 97.2          | 48.3         | 0.8        | 2.7        | 3.4         | 0.2        | 44.6         | 1.8        | 0.2        | 0.2<br>0.2 | 0.6<br>0.2 | 0.03<br>0.03 | 28<br>40   |
| S 1781           | 92.5          | 7.2          | 13.3            | 72.1<br>29.3  | 9.2<br>2.6   | 0.3<br>0.3 | 2.7<br>0.9 | 0.8<br>0.5  | 2.3<br>2.4 | 7.3<br>5.1   | 0.6<br>0.2 | 0.3<br>0.2 | 0.2        | 0.2        | 0.03         | 72         |
| S 1782<br>S 1783 | 24.3<br>30.3  | 2.4<br>4.2   | 12.0<br>6.4     | 29.3<br>64.3  | 13.0         | 0.3        | 1.2        | 0.5         | 0.2        | 3.5          | 0.2        | 0.2        | 0.2        | 0.8        | 0.03         | 12         |
| S 1785           | 55.0          | 5.0          | 10.9            | 68.1          | 7.3          | 0.2        | 1.7        | 1.0         | 0.2        | 4.2          | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 13         |
| S 1785           | 169.2         | 14.5         | 11.2            | 83.4          | 13.5         | 0.5        | 2.2        | 0.6         | 0.2        | 13.4         | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 72         |
| S 1786           | 10.4          | 13.6         | 19.8            | 75.8          | 4.5          | 0.8        | 1.1        | 0.3         | 0.2        | 39.0         | 0.3        | 0.2        | 0.9        | 0.6        | 0.03         | 1          |
| SM 1787          | 60.7          | 46.4         | 11.6            | 119.3         | 3.8          | 12.8       | 2.3        | 3.8         | 0.2        | 18.5         | 0.2        | 2.5        | 12.5       | 0.6        | 0.05         | *          |
| S 1788           | 42.7          | 11.5         | 22.2            | 107.9         | 5.2          | 1.4        | 3.2        | 0.4         | 0.2        | 21.4         | 0.2        | 0.2        | 0.2        | 1.0        | 0.04         | 12         |
| S 1789           | 72.4          | 45.6         | 16.4            | 137.4         | 13.6         | 1.3        | 1.5        | 0.6         | 0.2        | 37.0         | 0.2        | 0.2        | 0.2        | 0.7<br>0.8 | 0.03<br>0.03 | 6<br>2     |
| S 1790           | 11.8          | 29.0         | 14.5<br>15 5    | 93.7<br>52.9  | 7.4<br>4.5   | 0.7<br>0.7 | 1.6<br>1.3 | 0.4<br>0.2  | 0.2<br>0.2 | 27.8<br>26.0 | 1.3<br>0.7 | 0.3<br>0.2 | 0.2<br>0.3 | 0.5        | 0.03         | 1          |
| S 1791<br>S 1792 | 11.5<br>165.2 | 12.0<br>90.8 | 15.5<br>6.9     | 140.8         | 11.5         | 2.1        | 2.8        | 1.7         | 0.2        | 24.6         | 1.5        | 0.9        | 3.4        | 0.4        | 0.04         | 1          |
| S 1792           | 69.2          | 50.4         | 20.0            | 102.6         | 16.5         | 0.9        | 2.2        | 0.5         | 0.2        | 41.2         | 0.9        | 0.2        | 1.1        | 0.4        | 0.03         | 4          |
| S 1794           | 14.4          | 10.4         | 16.1            | 85.6          | 5.6          | 1.9        | 1.3        | 0.3         | 0.2        | 20.7         | 0.5        | 0.2        | 0.8        | 0.4        | 0.03         | 1          |
| S 1795           | 73.4          | 72.8         | 24.5            | 228.9         | 15.5         | 2.4        | 2.1        | 1.4         | 0.2        | 64.5         | 1.5        | 0.2        | 1.2        | 0.8        | 0.03         | 20         |
| SM 1796          | 335.5         | 97.5         | 282.8           | 674.1         | 52.3         | 11.1       | 4.9        | 7. <b>2</b> | 0.2        | 717.0        | 5.2        | 0.8        | 2.0        | 0.2        | 0.03         | 96         |
| S 1797           | 63.3          | 33.2         | 34.2            | 462.6         | 35.5         | 11.1       | 2.9        | 2.1         | 0.2        | 59.3         | 0.2        | 0.7        | 1.0        | 0.5        | 0.03         | 76         |
| S 1798           | 55.8          | 42.8         | 28.3            | 424.3         | 27.6         | 7.8        | 2.6        | 0.7         | 0.2        | 110.7        | 0.5        | 0.9        | 0.2        | 0.3        | 0.03         | 2          |
| S 1799           | 54.7          | 50.8         | 32.4            | 232.5         | 16.2         | 2.7        | 2.1        | 1.3<br>0.4  | 0.2<br>3.6 | 81.3<br>14.6 | 0.5<br>0.8 | 0.4<br>0.2 | 0.2<br>0.2 | 0.4<br>0.2 | 0.03<br>0.06 | 40<br>1    |
| S 1800<br>S 1801 | 25.6          | 31.2<br>74.0 | 9.3<br>28.8     | 89.9<br>335.9 | 8.7<br>17.2  | 0.9<br>4.0 | 1.7<br>2.1 | 0.4<br>1.9  | 0.2        | 94.2         | 3.0        | 0.2        | 0.2        | 0.2        | 0.03         | 30         |
| S 1801<br>S 1802 | 96.7<br>162.1 | 41.4         | 108.9           | 529.4         | 26.4         | 5.1        | 3.0        | 2.0         | 0.2        | 265.0        | 3.1        | 1.1        | 0.3        | 0.2        | 0.03         | 28         |
| S 1803           | 133.0         | 34.5         | 173.4           | 884.0         | 31.4         | 7.6        | 4.0        | 5.9         | 0.2        | 386.8        | 4.4        | 1.6        | 0.2        | 0.2        | 0.03         | 8          |

| R 8               | 1             | N                     |             | 1               |              |             | R.         |            |            | R.              |            |            |            |            |              | A A     |
|-------------------|---------------|-----------------------|-------------|-----------------|--------------|-------------|------------|------------|------------|-----------------|------------|------------|------------|------------|--------------|---------|
|                   |               |                       |             |                 |              |             |            |            |            |                 |            |            |            |            |              |         |
| EAGLE             | Cu            | Ni                    | Pb          | Zn              | Co           | Cd          | Мо         | Ag         | W          | As              | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb |
| S 1804            | 90.6          | 65.3                  | 109.9       | 441.4           | 23.3         | 7.3         | 3.3        | 2.9        | 0.2        | 861.2           | 3.6        | 0.7        | 0.6        | 0.4        | 0.03         | 320     |
| S 1805            | 61.4          | 32.3                  | 42.4        | 156.8           | 13.1         | 1.9         | 2.8        | 0.9        | 0.2        | 146.0           | 1.7        | 0.2        | 0.2        | 0.2        | 0.03         | 40      |
| SM 1806           | 932.8         | 62.0                  | 788.0       | 7,170.0         | 50.3         | 101.6       | 6.9        | 15.9       | 0.2        | 2,134.6         | 39.1       | 0.2        | 2.4        | 1.2        | 0.03         | 220 *   |
| S 1807            | 38.9          | 18.8                  | 33.5        | 213.6           | 6.9          | 2.7         | 3.5        | 1.3        | 0.2        | 66.8            | 1.9        | 0.7        | 0.2        | 0.2<br>0.5 | 0.03         | 2<br>6  |
| S 1808            | 112.3         | 40.6                  | 38.9        | 274.6           | 19.9         | 2.8         | 5.8        | 0.5        | 0.2        | 181.9           | 3.6        | 0.6<br>1.0 | 0.2<br>0.2 | 0.5<br>1.1 | 0.03<br>0.03 | 8       |
| S 1809            | 65.8          | 31.1                  | 111.6       | 2,070.0         | 24.2         | 10.5        | 3.7        | 1.1        | 0.2        | 257.5<br>839.3  | 4.3<br>8.7 | 0.2        | 1.3        | 1.1        | 0.03         | 100     |
| S 1810            | 537.6         | 46.8                  | 3,680.0     | 3,790.0         | 20.7<br>16.8 | 62.3<br>3.0 | 1.9<br>2.8 | 4.3<br>0.6 | 0.2<br>0.2 | 252.4           | 0.9        | 0.2        | 0.2        | 0.2        | 0.06         | 8       |
| S 1811            | 141.7         | 34.0                  | 25.3        | 328.8           | 42.3         | 15.8        | 2.0<br>5.7 | 2.3        | 0.2        | 515.9           | 2.7        | 0.2        | 0.2        | 0.3        | 0.07         | 28      |
| S 1812            | 463.7<br>10.4 | 105.0<br>16.4         | 71.1<br>7.4 | 3,010.0<br>63.6 | 42.5         | 1.0         | 1.7        | 0.1        | 0.2        | 19.4            | 0.3        | 0.2        | 0.2        | 0.4        | 0.03         | 3       |
| S 1813<br>S 1814  | 111.7         | 52.3                  | 14.7        | 136.2           | 13.0         | 3.3         | 2.2        | 0.6        | 0.2        | 58.4            | 0.7        | 0.3        | 0.3        | 0.2        | 0.03         | 6       |
| S 1815            | 41.5          | 23.5                  | 18.6        | 415.0           | 10.9         | 9.2         | 1.1        | 0.9        | 0.2        | 206.7           | 0.5        | 0.3        | 0.2        | 0.2        | 0.06         | 18      |
| S 1816            | 98.6          | 25.1                  | 11.5        | 419.1           | 11.2         | 5.2         | 5.6        | 0.4        | 0.2        | 115.7           | 0.9        | 0.6        | 0.2        | 0.2        | 0.04         | 14      |
| S 1817            | 66.4          | 16.3                  | 11.6        | 78.0            | 10.0         | 0.6         | 3.3        | 0.6        | 0.2        | 27.6            | 0.8        | 0.3        | 0.2        | 0.4        | 0.03         | 7       |
| S 1818            | 17.7          | 12.1                  | 28.7        | 207.6           | 3.8          | 2.1         | 2.1        | 0.1        | 0.2        | 41.4            | 0.8        | 0.2        | 0.2        | 0.6        | 0.03         | 4       |
| S 1819            | 78.0          | 40.4                  | 95.6        | 194.6           | 13.1         | 1.6         | 2.6        | 1.8        | 0.2        | 79.1            | 1.2        | 0.3        | 0.2        | 0.2        | 0.14         | 18      |
| S 1820            | 18.0          | 22.6                  | 24.8        | 151.5           | 8.6          | 1.4         | 4.0        | 4.0        | 8.3        | 82.0            | 0.2        | 0.5        | 0.2        | 0.2        | 0.12         | 9       |
| S 1821            | 12.5          | 11.6                  | 153.8       | 255.2           | 4.4          | 1.9         | 2.7        | 1.2        | 0.5        | 77.0            | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 40      |
| S 1822            | 421.4         | 88.0                  | 40.9        | 1,500.0         | 20.3         | 8.1         | 4.3        | 3.0        | 0.2        | 282.4           | 2.0        | 0.2        | 0.6        | 0.2        | 0.17         | 31      |
| S 1823            | 25.6          | 23.1                  | 23.1        | 162.6           | 9.9          | 1.8         | 2.1        | 0.5        | 0.2        | 42.2            | 0.5        | 0.2        | 0.2        | 0.2        | 0.05         | 2<br>5  |
| S 1824            | 24.1          | 22.6                  | 27.4        | 112.3           | 5.9          | 1.0         | 2.4        | 0.3        | 0.2        | 46.8            | 0.6        | 0.2        | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 5       |
| S 1825            | 64.8          | 41.9                  | 101.9       | 271.6           | 17.7         | 1.6         | 2.8        | 0.6        | 0.2        | 84.3<br>53.3    | 0.7<br>0.2 | 0.3<br>0.2 | 0.2        | 0.2        | 0.03         | 3       |
| S 1826            | 24.8          | 19.2                  | 23.0        | 198.9           | 6.1          | 1.4<br>4.0  | 2.3<br>2.6 | 0.3<br>0.8 | 0.2<br>0.2 | 126.1           | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | õ       |
| S 1827            | 26.0          | 19.3                  | 83.4        | 741.5<br>342.5  | 10.8<br>14.9 | 2.8         | 2.5        | 0.8        | 0.2        | 180.5           | 0.9        | 0.2        | 0.2        | 0.2        | 0.08         | 9       |
| S 1828            | 49.2          | 39.0<br>13 <i>.</i> 0 | 19.8<br>9.3 | 542.5           | 3.8          | 0.5         | 1.4        | 0.1        | 0.2        | 15.2            | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 3       |
| S 1829<br>SM 1830 | 9.5<br>8.4    | 11.6                  | 9.3<br>6.2  | 29.4            | 2.9          | 0.3         | 0.7        | 0.2        | 0.2        | 9.9             | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6       |
| S 1831            | 96.8          | 39.6                  | 9.4         | 90.9            | 8.5          | 1.3         | 1.7        | 0.3        | 1.0        | 15.7            | 0.2        | 0.2        | 0.2        | 0.2        | 0.04         | 16      |
| S 1832            | 60.8          | 38.4                  | 11.9        | 105.9           | 7.7          | 1.8         | 1.7        | 0.9        | 0.2        | 16.4            | 0.2        | 0.5        | 0.3        | 0.2        | 0.03         | *       |
| S 1833            | 18.0          | 24.0                  | 8.3         | 50.7            | 5.4          | 0.3         | 1.2        | 0.1        | 0.2        | 12.7            | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 7       |
| S 1834            | 13.3          | 13.4                  | 11.3        | 89.3            | 4.5          | 0.6         | 1.9        | 0.1        | 0.2        | 18.0            | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |
| S 1835            | 13.6          | 14.2                  | 6.3         | 37.5            | 3.5          | 0.3         | 1.2        | 0.1        | 0.2        | 11.4            | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2       |
| S 1836            | 28.4          | 31.5                  | 7.2         | 52.1            | 9.4          | 0.4         | 1.0        | 0.1        | 0.2        | 13.5            | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1       |
| S 1837            | 30.3          | 33.5                  | 6.5         | 59.8            | 8.8          | 0.4         | 1.0        | 0.1        | 0.2        | 13.8            | 0.2        | 0.2        | 0.2        | 0.2<br>0.3 | 0.03<br>0.03 | 1       |
| S 2309            | 12.3          | 10.5                  | 7.8         | 66.6            | 5.1          | 0.4         | 1.4        | 0.1        | 0.2<br>0.2 | 8.8<br>5.1      | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.3        | 0.03         | 8       |
| S 2310            | 6.6           | 7.3                   | 7.4         | 33.5            | 3.0          | 0.1         | 1.1<br>1.2 | 0.1<br>0.1 | 0.2        | 9.0             | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |
| S 2311            | 12.7          | 12.6                  | 8.3         | 70.9            | 4.3          | 0.3<br>0.3  | 1.2        | 0.3        | 0.2        | 9.0<br>14.8     | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 3       |
| S 2312            | 30.7<br>9.2   | 22.6<br>10.9          | 11.7<br>6.2 | 92.8<br>82.6    | 10.3<br>4.4  | 0.3         | 0.9        | 0.3        | 0.2        | 7.2             | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 1       |
| S 2313            | 9.2<br>7.9    | 13.4                  | 4.4         | 34.0            | 3.1          | 0.4         | 1.0        | 0.1        | 0.2        | 5.7             | 0.2        | 0.2        | 0.3        | 0.7        | 0.03         | 1       |
| S 2314<br>S 2315  | 37.3          | 42.5                  | 6.1         | 51.2            | 10.1         | 0.4         | 1.5        | 0.1        | 0.2        | 10.4            | 0.2        | 0.2        | 0.2        | 0.9        | 0.03         | 3       |
| \$ 2316           | 1.7           | 3.1                   | 4.1         | 14.5            | 0.9          | 0.1         | 0.2        | 0.1        | 0.5        | 1.3             | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 3       |
| S 2317            | 45.2          | 62.3                  | 6.9         | 69.2            | 12.2         | 0.5         | 1.7        | 0.4        | 0.2        | 12.4            | 0.2        | 0.2        | 0.2        | 1.0        | 0.03         | 2       |
| S 2318            | 19.6          | 33.8                  | 4.6         | 46.2            | 7.5          | 0.5         | 0.9        | 0.1        | 0.2        | 8.0             | 0.5        | 0.2        | 0.5        | 0.8        | 0.03         | 3       |
| S 2319            | 84.4          | 45.6                  | 8.1         | 62.4            | 10.1         | 1.5         | 1.3        | 1.0        | 0.2        | 12.9            | 0.2        | 0.3        | 0.3        | 0.8        | 0.03         | 1       |
| S 2320            | 78.3          | 22.7                  | 2.4         | 7.6             | 1.0          | 2.5         | 1.1        | 0.5        | 0.2        | 2. <del>9</del> | 0.2        | 1.6        | 3.8        | 0.6        | 0.03         | •       |
| S 2321            | 270.1         | 65.6                  | 5.9         | 9.7             | 2.3          | 1.8         | 1.4        | 1.2        | 0.2        | 5.7             | 2.2        | 1.6        | 6.9        | 0.2        | 0.03         | *       |
| S 2322            | 324.4         | 57.7                  | 9.6         | 23.6            | 3.1          | 1.0         | 1.0        | 1.4        | 0.2        | 13.4            | 1.8        | 0.4        | 5.7        | 0.6        | 0.03         | . •     |
| S 2323            | 293.3         | 81.6                  | 30.6        | 145.7           | 13.5         | 3.5         | 2.0        | 3.5        | 0.2        | 58.7            | 0.2        | 0.2        | 0.3        | 0.7        | 0.03         | 1       |
| S 2324            | 14.8          | 16.3                  | 6.2         | 108.4           | 6.2          | 0.8         | 1.7        | 0.6        | 0.2        | 16.9            | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 1       |
| S 2325            | 6.9           | 4.7                   | 3.4         | 19.1            | 1.0          | 1.1         | 0.6        | 0.3        | 0.2        | 3.2             | 0.2        | 0.2        | 0.3        | 0.2        | 0.03         | 1       |
| S 2326            | 202.3         | 93.6                  | 11.3        | 100.9           | 11.5         | 5.7         | 3.5        | 3.8        | 0.2        | 35.9            | 0.2        | 1.0        | 3.6        | 0.3        | 0.03         |         |

| R R              | a.           | •            | L.         | Ł            | Ł           | L          |            |            | ħ          |             | L          |            |            |            |              | 4       | A A |
|------------------|--------------|--------------|------------|--------------|-------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|--------------|---------|-----|
|                  |              |              |            |              |             |            |            |            |            |             |            |            |            |            |              |         |     |
| EAGLE            | Cu           | Ni           | Pb         | Zn           | Co          | Cd         | Мо         | Ag         | w          | As          | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb |     |
| S 2327           | 167.4        | 76.3         | 12.5       | 142.7        | 11.6        | 9.2        | 2.2        | 2.5        | 0.2        | 24.5        | 0.2        | 0.3        | 1.1        | 0.6        | 0.03         | 8       |     |
| S 2328           | 65.3         | 36.1         | 9.0        | 66.8         | 10.3        | 1.7        | 5.6        | 1.5        | 0.2        | 31.9        | 0.2        | 1.0        | 1.3        | 1.4        | 0.03         | 12      |     |
| S 2329           | 61.8         | 33.5         | 5.5        | 36.6         | 10.2        | 1.5        | 3.1        | 1.2        | 0.2        | 17.0        | 0.4        | 1.2<br>0.6 | 1.5<br>1.5 | 0.6<br>0.9 | 0.03<br>0.03 | 16      |     |
| S 2330           | 81.3         | 36.2         | 3.1        | 25.9         | 4.0         | 1.7        | 1.7        | 0.5<br>0.1 | 0.2<br>1.3 | 9.3<br>6.6  | 0.2<br>0.3 | 0.8        | 0.2        | 0.3        | 0.06         | 1       |     |
| S 2331           | 5.0          | 10.8         | 4.2<br>4.4 | 17.4<br>29.8 | 2.6<br>2.5  | 0.1<br>0.2 | 0.9<br>0.8 | 0.1        | 0.2        | 7.5         | 0.3        | 0.2        | 0.2        | 0.2        | 0.06         | i       |     |
| S 2332<br>S 2333 | 5.0<br>6.6   | 10.9<br>11.3 | 5.9        | 32.0         | 2.7         | 0.2        | 0.6        | 0.1        | 0.2        | 6.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.05         | 3       |     |
| S 2333           | 4.4          | 13.5         | 3.9        | 44.6         | 6.6         | 0.1        | 0.5        | 0.1        | 0.2        | 3.5         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 3       |     |
| S 2335           | 3.4          | 5.5          | 3.4        | 15.2         | 1.6         | 0.1        | 0.3        | 0.1        | 0.2        | 2.4         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6       |     |
| S 2336           | 3.6          | 5.6          | 3.4        | 15.3         | 1.6         | 0.1        | 0.4        | 0.1        | 0.2        | 2.3         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2       | :   |
| S 2337           | 7.0          | 11.3         | 4.5        | 34.5         | 3.9         | 0.2        | 0.7        | 0.1        | 0.2        | 4.6         | 0.2        | 0.2        | 0.2        | 0.5        | 0.04         | 1       |     |
| S 2338           | 40.0         | 44.5         | 5.3        | 64.5         | 10.6        | 0.5        | 1.5        | 0.3        | 0.2        | 5.5         | 0.2        | 0.3        | 0.2        | 0.2        | 0.05         | 1       |     |
| S 2339           | 8.2          | 11.5         | 3.6        | 30.1         | 3.6         | 0.1        | 0.5        | 0.1        | 0.2        | 2.4         | 0.2        | 0.2        | 0.2        | 0.2        | 0.04         | 3       |     |
| S 2340           | 39.7         | 5.2          | 8.3        | 82.6         | 6.1         | 0.4        | 1.0        | 0.3        | 0.2        | 2.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03<br>0.05 | 34<br>5 |     |
| S 2341           | 131.8        | 6.4          | 8.3        | 144.1        | 16.1        | 0.3        | 2.3        | 0.8        | 0.2        | 5.2<br>5.5  | 0.2        | 0.2<br>0.2 | 0.2<br>0.2 | 1.1<br>0.6 | 0.03         | 2       |     |
| S 2342           | 186.9        | 11.6         | 10.3       | 90.1         | 16.7        | 0.5        | 1.9<br>0.8 | 1.1<br>0.1 | 0.2<br>0.2 | 5.5<br>4.4  | 0.2<br>0.2 | 0.2        | 0.2        | 0.0        | 0.03         | 2       |     |
| S 2343           | 9.2          | 13.3<br>16.2 | 4.4        | 32.4<br>31.4 | 3.6<br>3.4  | 0.1<br>0.1 | 0.8        | 0.4        | 0.2        | 4.7         | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 6       |     |
| S 2344<br>S 2345 | 8.3<br>10.0  | 13.5         | 4.1<br>3.0 | 25.1         | 3.4         | 0.2        | 0.0        | 0.1        | 0.2        | 2.8         | 0.2        | 0.2        | 0.5        | 0.3        | 0.03         | 1       |     |
| S 2345           | 12.0         | 25.3         | 3.6        | 40.9         | 4.9         | 0.1        | 0.5        | 0.1        | 0.2        | 5.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1       |     |
| S 2347           | 14.0         | 21.1         | 4.7        | 38.7         | 4.4         | 0.2        | 1.1        | 0.1        | 0.2        | 6.3         | 0.3        | 0.2        | 0.5        | 0.2        | 0.03         | 1       |     |
| S 2348           | 11.8         | 15.3         | 5.8        | 48.1         | 4.1         | 0.4        | 1.1        | 0.1        | 0.2        | 8.9         | 0.2        | 0.2        | 0.2        | 0.6        | 0.03         | 1       |     |
| S 2349           | 9.9          | 12.5         | 7.2        | 43.3         | 4.0         | 0.3        | 1.2        | 0.1        | 0.2        | 6.4         | 0.2        | 0.2        | 0.3        | 0.4        | 0.03         | 4       |     |
| S 2350           | 7.3          | 11.7         | 4.9        | 29.8         | 3.3         | 0.2        | 0.8        | 0.1        | 1.8        | 3.1         | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 3       |     |
| S 2351           | 94.0         | 63.0         | 11.8       | 88.8         | 12.9        | 0.6        | 1.9        | 0.7        | 0.2        | 5.6         | 0.2        | 0.2        | 0.4        | 0.2        | 0.03         | 8       |     |
| S 2352           | 15.6         | 24.0         | 5.5        | 46.3         | 7.8         | 0.2        | 0.9        | 0.1        | 0.2        | 4.8         | 0.4        | 0.2        | 0.2        | 0.3        | 0.03<br>0.03 | 1       |     |
| S 2353           | 9.4          | 14.9         | 4.6        | 38.8         | 4.7         | 0.2        | 0.4        | 0.1        | 0.2        | 3.4<br>4.9  | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.4<br>0.5 | 0.03         | 4       | ł   |
| S 2354           | 9.5          | 9.6          | 4.7        | 33.3         | 2.9<br>27.6 | 0.5<br>1.7 | 0.8<br>2.8 | 0.1<br>1.2 | 0.2<br>0.2 | 4.9<br>8.1  | 0.2        | 0.2        | 1.6        | 0.4        | 0.03         | 4       |     |
| S 2355           | 58.5<br>86.4 | 21.7<br>78.2 | 4.1<br>7.9 | 28.4<br>73.3 | 17.2        | 2.4        | 4.2        | 1.2        | 0.2        | 12.7        | 0.2        | 0.7        | 1.4        | 0.2        | 0.03         | 12      |     |
| S 2356<br>S 2357 | 25.7         | 31.9         | 4.9        | 45.1         | 8.0         | 0.2        | 0.8        | 0.1        | 0.2        | 6.5         | 0.2        | 0.2        | 0.2        | 0.7        | 0.04         | 2       |     |
| S 2358           | 13.2         | 11.2         | 11.4       | 37.6         | 4.1         | 1.2        | 1.7        | 0.3        | 0.2        | 7.6         | 0.2        | 0.2        | 0.2        | 0.9        | 0.03         | 16      |     |
| S 2359           | 46.0         | 23.0         | 21.5       | 102.9        | 13.6        | 0.7        | 2.1        | 0.7        | 0.2        | 17.6        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1       |     |
| S 2360           | 4.3          | 10.1         | 4.3        | 22.1         | 2.4         | 0.3        | 0.5        | 0.1        | 0.2        | 3.2         | 0.3        | 0.2        | 0.4        | 0.5        | 0.03         | 2       |     |
| S 2361           | 20.3         | 54.4         | 4.5        | 65.1         | 11.8        | 0.4        | 1.2        | 0.1        | 0.2        | 9.6         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 1       |     |
| S 2362           | 3.4          | 6.8          | 5.2        | 20.5         | 1.7         | 0.3        | 0.7        | 0.1        | 0.2        | 3.1         | 0.2        | 0.2        | 0.2        | 0.6        | 0.03         | 1       |     |
| S 2363           | 38.6         | 21.8         | 8.2        | 53.7         | 7.3         | 3.1        | 1.3        | 0.4        | 0.2        | 8.3         | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 1       |     |
| S 2364           | 38.5         | 21.0         | 2.3        | 18.0         | 2.8         | 3.1        | 3.4        | 1.4        | 0.2        | 3.3<br>10.1 | 0.2<br>0.2 | 1.3<br>0.2 | 2.2<br>0.6 | 0.3<br>0.3 | 0.03<br>0.09 | 24      |     |
| S 2365           | 210.7        | 30.7         | 6.1        | 52.4         | 11.6        | 0.3<br>0.1 | 1.1<br>0.7 | 0.4<br>0.1 | 0.2<br>0.2 | 4.3         | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 1       |     |
| S 2366           | 10.4<br>8.7  | 17.7<br>15.4 | 4.2<br>3.5 | 29.2<br>37.5 | 3.9<br>4.5  | 0.1        | 0.7        | 0.1        | 0.2        | 4.9         | 0.2        | 0.2        | 0.2        | 0.6        | 0.08         | 1       |     |
| S 2367<br>S 2368 | 8.6          | 12.4         | 3.3        | 22.8         | 2.9         | 0.2        | 0.4        | 0.1        | 0.2        | 3.0         | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 1       |     |
| S 2369           | 8.7          | 15.4         | 3.2        | 27.4         | 3.8         | 0.1        | 0.8        | 0.1        | 1.6        | 1.9         | 0.4        | 0.2        | 0.2        | 0.3        | 0.04         | 1       |     |
| S 2370           | 7.1          | 14.4         | 3.3        | 25.5         | 3.4         | 0.1        | 0.7        | 0.1        | 0.2        | 2.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.05         | 1       |     |
| S 2371           | 1.9          | 3.7          | 3.1        | 10.0         | 1.2         | 0.1        | 0.3        | 0.1        | 0.7        | 0.3         | 0.2        | 0.2        | 0.2        | 0.4        | 0.04         | 5       |     |
| S 2372           | 11.4         | 19.0         | 3.6        | 28.7         | 4.4         | 0.1        | 0.7        | 0.1        | 0.2        | 3.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.04         | 4       |     |
| S 2373           | 4.6          | 7.9          | 3.7        | 16.0         | 2.1         | 0.1        | 0.4        | 0.1        | 0.2        | 2.3         | 0.2        | 0.2        | 0.2        | 0.2        | 0.06         | 2       |     |
| S 2374           | 8.9          | 15.1         | 3.4        | 22.2         | 3.1         | 0.1        | 0.8        | 0.1        | 0.2        | 3.4         | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 8       |     |
| S 2375           | 7.4          | 15.5         | 3.4        | 27.9         | 3.5         | 0.1        | 1.0        | 0.1        | 0.2        | 3.0         | 0.2        | 0.2        | 0.2        | 0.6        | 0.03         | 10<br>1 |     |
| S 2376           | 10.5         | 16.4         | 3.8        | 29.8         | 3.5         | 0.1        | 0.9        | 0.1        | 0.2        | 3.5         | 0.2        | 0.2<br>0.2 | 0.2<br>0.2 | 0.4<br>0.2 | 0.03<br>0.03 | 1       |     |
| S 2377           | 6.2          | 15.3         | 3.8        | 30.0<br>36.0 | 4.4<br>5.5  | 0.1<br>0.2 | 0.7<br>0.7 | 0.1        | 0.2<br>0.2 | 3.1<br>3.4  | 0.2<br>0.2 | 0.2<br>0.2 | 0.2        | 0.2        | 0.03         | 3       |     |
| S 2378           | 14.3         | 20.9         | 4.2        | .JO.U        | 0.0         | V.Z        | Ų.T        | 0.1        | 0.2        | J.4         | 0.2        | 0.2        | <b>Q.Z</b> | 0.0        | 5.00         | -       |     |

| EAGLE            | Си            | Ni           | Pb                     | Zn                       | Co          | Cd         | Мо         | Ag         | w          | As          | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb |
|------------------|---------------|--------------|------------------------|--------------------------|-------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|--------------|---------|
| S 2379           | 20.5          | 29.2         | 4.3                    | 42.7                     | 7.7         | 0.2        | 1.0        | 0.1        | 0.2        | 6.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2       |
| S 2380           | 16.1          | 23.0         | 4.0                    | 46.3                     | 7.3         | 0.3        | 0.7        | 0.1        | 0.2        | 4.3         | 0.3        | 0.2        | 0.2        | 0.5        | 0.03         | 2       |
| S 2381           | 151.6         | 45.8         | 5.1                    | <b>4</b> 9.9             | 11.7        | 0.3        | 1.0        | 0.3        | 0.2        | 8.4         | 0.2        | 0.2        | 0.9        | 0.5        | 0.08         | 16<br>4 |
| S 2382           | 12.7          | 4.0          | 0.8                    | 22.3                     | 0.5         | 0.4        | 3.0        | 0.1        | 0.2        | 2.2         | 0.2        | 1.2<br>1.9 | 2.0<br>4.4 | 0.4<br>0.3 | 0.03<br>0.03 | 4<br>*  |
| S 2383           | 91.5          | 35.7         | 2.6                    | 20.9                     | 3.5         | 1.0        | 1.3<br>2.3 | 0.4<br>0.2 | 0.2<br>0.2 | 4.2<br>8.7  | 0.2<br>0.2 | 0.2        | 0.3        | 0.3        | 0.03         | 1       |
| S 3001           | 98.0          | 22.1         | 5.6                    | 49.3<br>51.9             | 12.5<br>8.3 | 0.4<br>0.3 | 2.3<br>3.2 | 0.2        | 0.2        | 13.6        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |
| S 3002           | 47.8<br>27.7  | 13.0<br>5.9  | 6.4<br>8.9             | 51.9<br>66.4             | 8.8         | 0.3        | 1.7        | 0.2        | 0.2        | 4.8         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8       |
| S 3003<br>S 3004 | 566.0         | 17.7         | 8.0                    | 29.2                     | 19.5        | 0.7        | 7.0        | 0.6        | 0.2        | 7.1         | 0.2        | 0.2        | 0.4        | 0.2        | 0.03         | 1       |
| S 3004           | 17.5          | 7.6          | 6.3                    | 63.7                     | 5.5         | 0.8        | 1.0        | 0.1        | 0.2        | 2.8         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 7       |
| S 3006           | 23.3          | 4.7          | 8.1                    | 21.0                     | 4.7         | 0.1        | 1.4        | 0.1        | 0.2        | 5.7         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 16      |
| S 3007           | 15.7          | 7.7          | 5.6                    | 23.6                     | 4.1         | 0.1        | 0.7        | 0.1        | 0.2        | 2.3         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 12      |
| S 3008           | 76.0          | 7.3          | 6.7                    | 16.9                     | 3.2         | 1.2        | 2.2        | 0.1        | 0.2        | 1.8         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | *       |
| S 3009           | 123.6         | 20.3         | 6.1                    | 64.5                     | 9.1         | 0.4        | 1.9        | 0.2        | 0.2        | 5.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6       |
| S 3010           | 14.5          | 4.7          | 7.6                    | 32.7                     | 5.1         | 0.1        | 1.0        | 0.1        | 0.2        | 3.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 20      |
| S 3011           | 17.6          | 6.7          | 5.8                    | 33.7                     | 4.0         | 0.3        | 3.3        | 0.1        | 0.2        | 5.9         | 0.2        | 0.2        | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 12<br>8 |
| S 3012           | 66.4          | 14.4         | 7.8                    | 72.9                     | 12.8        | 0.2        | 1.7        | 0.5        | 0.2        | 9.8<br>7.9  | 0.7<br>0.5 | 0.2<br>0.2 | 0.2        | 0.2        | 0.03         | 3       |
| S 3013           | 43.9          | 9.0          | 6.6                    | 33.8                     | 6.1         | 0.2<br>0.3 | 1.4<br>1.3 | 0.2<br>0.8 | 1.4<br>0.2 | 10.1        | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 7       |
| S 3014           | 26.2          | 8.1          | 8.3                    | 52.7<br>61.2             | 5.8<br>9.6  | 0.5        | 2.8        | 0.8        | 0.2        | 42.2        | 0.6        | 0.2        | 0.2        | 0.2        | 0.04         | 6       |
| S 3015           | 98.7<br>182.9 | 18.2<br>18.4 | 7.7<br>8.9             | 51.0                     | 9.0<br>10.0 | 2.7        | 25.1       | 1.9        | 0.2        | 82.8        | 0.2        | 0.4        | 2.5        | 0.2        | 0.03         | 12      |
| S 3016<br>S 3017 | 126.5         | 16.4         | 7.7                    | 64.9                     | 10.0        | 0.2        | 2.0        | 0.1        | 0.2        | 22.5        | 0.8        | 0.2        | 0.2        | 0.2        | 0.06         | 7       |
| S 3017           | 104.2         | 23.6         | 6.6                    | 64.2                     | 15.8        | 0.2        | 1.6        | 0.3        | 0.2        | 11.8        | 0.7        | 0.2        | 0.2        | 0.2        | 0.08         | 9       |
| S 3019           | 98.8          | 29.7         | 6.9                    | 69.4                     | 10.3        | 0.2        | 2.2        | 0.3        | 0.2        | 14.2        | 1.2        | 0.2        | 0.2        | 0.2        | 0.11         | 7       |
| S 3020           | 32.1          | 8.6          | 5.7                    | 38.2                     | 5.0         | 0.3        | 1.2        | 0.4        | 0.2        | 5.9         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 10      |
| S 3021           | 60.2          | 12.4         | 6.3                    | 57.6                     | 10.0        | 0.4        | 2.6        | 0.3        | 0.2        | 8.1         | 0.2        | 0.2        | 0.2        | 0.2        | 0.06         | 7       |
| S 3022           | 45.9          | 12.4         | 8.2                    | 40.3                     | 7.0         | 0.3        | 1.8        | 0.2        | 0.2        | 7.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8       |
| S 3023           | 8.3           | 7.2          | 3.6                    | 18.0                     | 1.7         | 0.1        | 0.7        | 0.1        | 0.2        | 1.3         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03<br>0.04 | 6<br>16 |
| S 3024           | 236.8         | 23.9         | 5.3                    | 27.6                     | 10.1        | 1.5        | 2.6        | 0.6        | 0.2        | 5.4         | 0.2        | 0.5<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.04         | 2       |
| S 3025           | 2.3           | 1.3          | 2.8                    | 6.7                      | 3.7         | 0.1        | 0.6        | 0.1<br>0.7 | 0.2<br>0.2 | 0.6<br>6.7  | 0.2<br>0.8 | 0.2        | 0.2        | 0.2        | 0.03         | 6       |
| S 3026           | 233.9         | 36.8         | 10.7                   | 57.4                     | 18.0        | 0.9<br>0.3 | 2.2<br>0.3 | 0.7        | 0.2        | 0.7         | 0.8        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |
| S 3027           | 16.5          | 2.7<br>7.6   | 2.6<br>4.9             | 18. <del>9</del><br>35.5 | 1.1<br>5.2  | 0.3        | 1.2        | 0.1        | 0.2        | 2.8         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |
| S 3028<br>S 3029 | 32.3<br>30.0  | 11.7         | 4. <del>9</del><br>6.4 | 39.6                     | 6.3         | 0.2        | 1.3        | 0.1        | 0.2        | 5.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 11      |
| S 3029<br>S 3030 | 203.8         | 17.9         | 7.3                    | 42.5                     | 10.7        | 1.0        | 2.8        | 1.0        | 0.2        | 7.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |
| S 3031           | 123.0         | 17.3         | 7.6                    | 51.0                     | 19.0        | 0.5        | 2.5        | 0.4        | 0.2        | 10.8        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |
| S 3032           | 41.7          | 7.4          | 5.6                    | 28.0                     | 5.2         | 0.1        | 1.3        | 0.1        | 1.9        | 4.7         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |
| S 3033           | 40.0          | 12.2         | 6.7                    | 65.3                     | 9.4         | 0.1        | 1.4        | 0.1        | 0.2        | 8.1         | 0.3        | 0.2        | 0.2        | 0.2        | 0.04         | 3       |
| S 3034           | 55.5          | 13.7         | 11.1                   | 52.9                     | 7.0         | 0.3        | 1.9        | 0.6        | 0.2        | 26.9        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |
| S 3035           | 99.1          | 16.6         | 8.8                    | 59.8                     | 11.3        | 0.3        | 2.1        | 0.6        | 0.2        | 23.0        | 0.6        | 0.2        | 0.2        | 0.2        | 0.03         | 6<br>1  |
| S 3036           | 29.8          | 13.1         | 8.8                    | 51.1                     | 6.0         | 0.2        | 1.3        | 0.5        | 0.2        | 13.2        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | -       |
| S 3037           | 28.0          | 14.5         | 7.2                    | 44.3                     | 5.6         | 0.2        | 1.5        | 0.1<br>0.1 | 0.2<br>0.2 | 15.9<br>5.1 | 0.2<br>0.3 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 3<br>6  |
| S 3038           | 33.6          | 6.0          | 7.5                    | 31.7                     | 4.4         | 0.2<br>0.1 | 1.7<br>1.6 | 0.1        | 0.2        | 11.1        | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 8       |
| S 3039           | 70.4<br>16.7  | 13.8<br>6.2  | 6.4<br>6.1             | 51.4<br>28.8             | 8.9<br>4.0  | 0.1        | 1.6        | 0.3        | 0.2        | 4.3         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 8       |
| S 3040<br>S 3041 | 16.7<br>26.9  | 0.2<br>7.3   | 7.1                    | 20.0<br>66.9             | 4.0<br>7.9  | 0.1        | 2.1        | 0.3        | 0.2        | 4.4         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 11      |
| S 3041<br>S 3042 | 20.9<br>34.3  | 12.7         | 8.4                    | 59.6                     | 8.7         | 0.1        | 1.5        | 0.0        | 0.2        | 6.4         | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 7       |
| S 3042<br>S 3043 | 37.3          | 11.4         | 5.0                    | 39.3                     | 8.9         | 0.1        | 1.5        | 0.1        | 0.2        | 5.3         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 5       |
| S 3044           | 33.1          | 11.3         | 6.3                    | 104.9                    | 11.8        | 0.8        | 1.4        | 0.3        | 0.2        | 1.9         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 2       |
| S 3045           | 33.5          | 12.5         | 8.6                    | 102.9                    | 15.6        | 0.5        | 1.2        | 0.4        | 0.2        | 5.1         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 5       |
| S 3046           | 19.8          | 8.0          | 5.6                    | 46.1                     | 5.3         | 0.6        | 1.2        | 0.1        | 0.2        | 2.8         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 5       |
| S 3047           | 6.3           | 3.3          | 5.8                    | 17.5                     | 1.7         | 0.1        | 0.7        | 0.1        | 0.2        | 0.9         | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 3       |
|                  |               |              |                        |                          |             |            |            |            |            |             |            |            |            |            |              |         |

.

|   | •                | 8.            |              | <b>N</b>   |              | ۵          | •          |            |            |            |            | <b>A</b>   | L          | •          |            | ì            | <b>A</b> [ |  |
|---|------------------|---------------|--------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|------------|--|
| i | EAGLE            | Cu            | Ni           | Pb         | Zn           | Co         | Cd         | Мо         | Ag         | w          | As         | Sb         | Ві         | Se         | Te         | Hg           | Au, ppb    |  |
| 5 | S 3048           | 49.7          | 11.6         | 4.6        | 28.4         | 6.8        | 0.1        | 1.4        | 0.3        | 0.2        | 4.6        | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 2          |  |
|   | S 3049           | 9.9           | 4.3          | 5.5        | 28.0         | 3.7        | 0.1        | 0.9        | 0.2        | 0.2        | 2.2        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 5          |  |
|   | S 3050           | 168.2         | 21.3         | 8.6        | 61.0         | 17.3       | 0.5        | 4.0        | 0.5        | 0.2        | 10.6       | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6          |  |
|   | S 3051           | 30.3          | 8.4          | 5.8        | 40.0         | 6.9        | 0.1        | 1.6        | 0.1        | 0.9        | 5.4        | 0.4        | 0.2        | 0.2        | 0.2        | 0.08         | 5          |  |
|   | S 3052           | 30.5          | 10.6         | 8.5        | 45.6         | 7.6        | 0.1        | 1.3        | 0.2        | 0.2        | 5.0        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1<br>5     |  |
|   | S 3053           | 31.3          | 7.4          | 7.1        | 57.7         | 7.1        | 0.1        | 1.1        | 0.3        | 0.2        | 4.0        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03<br>0.08 | 5<br>1     |  |
|   | S 3054           | 39.9          | 8.1          | 18.1       | 48.0         | 9.9        | 0.2        | 1.3        | 0.1        | 0.2        | 11.5       | 0.4        | 0.2        | 0.2        | 0.2        |              | 12         |  |
|   | S 3055           | 509.4         | 19.9         | 12.2       | 67.5         | 25.5       | 0.8        | 3.7        | 0.5        | 0.2        | 15.7       | 0.2        | 0.2        | 0.2        | 0.2        | 0.08<br>0.03 | 8          |  |
|   | S 3056           | 120.7         | 21.0         | 7.7        | 68.2         | 15.0       | 0.4        | 1.8        | 0.3        | 0.2        | 14.2       | 0.7        | 0.2        | 0.2        | 0.2        |              | о<br>5     |  |
|   | S 3057           | 76.0          | 13.6         | 7.2        | 63.4         | 12.2       | 0.2        | 1.8        | 0.2        | 0.2        | 9.8        | 0.2        | 0.2        | 0.2        | 0.2        | 0.04         | 5<br>4     |  |
|   | S 3058           | 23.7          | 3.4          | 5.7        | 11.3         | 1.7        | 0.1        | 0.4        | 0.1        | 0.2        | 0.5        | 0.3        | 0.2        | 0.6        | 0.2        | 0.03         | 4          |  |
|   | S 3059           | 14.2          | 4.4          | 5.3        | 17.4         | 3.7        | 0.1        | 0.9        | 0.1        | 0.2        | 1.9        | 0.2        | 0.2        | 0.2        | 0.2        | 0.06         | ' <b>.</b> |  |
|   | S 3060           | 119.0         | 11.5         | 5.0        | 42.8         | 10.5       | 0.8        | 5.5        | 1.4        | 0.2        | 4.9        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | <u> </u>   |  |
|   | S 3061           | 52.1          | 17.4         | 5.3        | 47.6         | 6.8        | 0.2        | 1.9        | 0.1        | 0.2        | 8.7        | 1.0        | 0.2        | 0.2        | 0.2        | 0.09         | 6          |  |
|   | S 3062           | 31.2          | 10.7         | 5.2        | 33.9         | 5.1        | 0.1        | 1.3        | 0.1        | 1.3        | 4.4        | 0.7        | 0.2        | 0.2        | 0.2        | 0.03         | 3<br>4     |  |
|   | 5 3063           | 165.7         | 24.7         | 5.8        | 38.3         | 14.7       | 1.0        | 2.1        | 0.4        | 0.2        | 5.6        | 0.2        | 0.3        | 0.2        | 0.2        | 0.03         | •          |  |
|   | S 3064           | 152.2         | 24.8         | 11.8       | 54.7         | 17.7       | 0.4        | 2.3        | 0.5        | 0.2        | 12.8       | 0.9        | 0.2        | 0.5        | 0.2        | 0.03         | 8          |  |
|   | S 3065           | 44.0          | 5.2          | 8.6        | 47.5         | 6.7        | 0.1        | 1.0        | 0.1        | 0.2        | 1.2        | 0.5        | 0.2        | 0.5        | 0.2        | 0.04<br>0.03 | 1          |  |
|   | S 3066           | 41.0          | 11.2         | 4.8        | 34.7         | 5.7        | 0.2        | 1.3        | 0.1        | 0.2        | 5.4        | 0.7        | 0.2        | 0.2        | 0.2<br>0.2 | 0.03         | 24         |  |
|   | S 3067           | 6.1           | 3.2          | 4.3        | 21.7         | 2.8        | 0.1        | 0.5        | 0.1        | 0.2        | 1.4        | 0.4        | 0.2<br>0.2 | 0.3<br>0.2 | 0.2        | 0.03         | 24<br>4    |  |
|   | S 3068           | 77.8          | 18.1         | 7.6        | 63.8         | 9.4        | 0.1        | 2.7        | 0.1        | 0.2        | 7.6        | 0.5<br>0.2 | 0.2        | 0.2        | 0.2        | 0.03         | 5          |  |
|   | S 3069           | 31.5          | 8.5          | 6.7        | 32.3         | 4.6        | 0.2        | 0.8        | 0.1        | 0.2<br>0.2 | 1.4<br>6.8 | 1.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2          |  |
|   | 5 3070           | 124.7         | 12.8         | 5.4        | 37.2         | 9.3<br>8.3 | 0.3<br>0.2 | 2.6<br>1.1 | 0.3<br>0.1 | 0.2        | 3.1        | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 4          |  |
|   | S 3071           | 59.5<br>67.7  | 8.8          | 7.1<br>7.6 | 35.8<br>43.7 | 6.5        | 0.2        | 1.6        | 0.1        | 0.2        | 13.6       | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 4          |  |
|   | S 3072           | 67.7          | 14.0<br>36.0 | 7.5        | 43.7<br>63.8 | 7.3        | 0.4        | 3.9        | 0.3        | 0.2        | 9.4        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2          |  |
|   | S 3073           | 181.6<br>51.0 |              | 8.7        | 43.7         | 5.3        | 1.0        | 3.1        | 0.2        | 0.2        | 8.2        | 0.2        | 0.2        | 0.4        | 0.2        | 0.03         | 4          |  |
|   | S 3074<br>S 3075 | 32.5          | 21.4<br>23.4 | 9.5        | 199.7        | 9.8        | 1.4        | 3.1        | 1.2        | 0.2        | 32.9       | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |  |
|   | S 3075           | 23.9          | 17.9         | 5.4        | 41.4         | 4.1        | 0.3        | 1.9        | 0.1        | 0.2        | 11.5       | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |  |
|   | S 3070           | 114.1         | 39.5         | 7.3        | 57.1         | 7.7        | 0.5        | 3.1        | 0.2        | 0.2        | 26.0       | 1.1        | 0.2        | 0.2        | 0.2        | 0.03         | 8          |  |
|   | S 3078           | 15.9          | 11.7         | 7.2        | 70.6         | 7.1        | 0.5        | 2.1        | 0.1        | 0.2        | 12.0       | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |  |
|   | S 3079           | 47.0          | 17.8         | 7.7        | 100.0        | 10.6       | 0.5        | 3.7        | 0.3        | 0.2        | 18.4       | 0.2        | 0.2        | 0.2        | 0.2        | 0.08         | 3          |  |
|   | S 3080           | 79.2          | 15.6         | 13.4       | 115.0        | 20.0       | 3.1        | 4.5        | 0.4        | 0.2        | 14.1       | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |  |
|   | S 3081           | 175.7         | 23.1         | 21.7       | 280.6        | 21.4       | 1.3        | 4.4        | 0.4        | 0.2        | 23.7       | 0.5        | 0.2        | 0.4        | 0.2        | 0.03         | 4          |  |
|   | S 3082           | 294.4         | 31.5         | 16.3       | 155.0        | 28.2       | 3.6        | 16.7       | 1.6        | 0.2        | 13.2       | 0.2        | 0.2        | 1.4        | 0.2        | 0.13         | *          |  |
|   | S 3083           | 17.6          | 11.8         | 8.6        | 60.1         | 3.5        | 2.2        | 2.0        | 0.2        | 0.2        | 8.6        | 0.2        | 0.2        | 0.2        | 0.2        | 0.04         | 14         |  |
|   | S 3084           | 119.4         | 44.4         | 48.4       | 136.8        | 14.9       | 0.9        | 3.0        | 0.8        | 0.2        | 17.1       | 0.2        | 0.2        | 0.2        | 0.2        | 0.13         | 10         |  |
|   | S 3085           | 59.1          | 27.5         | 15.2       | 119.6        | 13.2       | 1.0        | 3.9        | 0.4        | 0.2        | 32.3       | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |  |
|   | S 3086           | 46.6          | 21.6         | 19.2       | 189.8        | 13.6       | 1.7        | 3.3        | 0.5        | 0.2        | 26.0       | 0.4        | 0.2        | 0.6        | 0.2        | 0.03         | 12         |  |
|   | S 3087           | 753.4         | 102.5        | 178.4      | 226.2        | 20.0       | 4.4        | 6.0        | 2.6        | 0.2        | 19.3       | 0.3        | 0.2        | 0.2        | 0.2        | 0.08         | 4          |  |
|   | S 3088           | 229.8         | 68.1         | 14.5       | 114.5        | 13.6       | 1.7        | 3.4        | 0.8        | 0.2        | 9.5        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2          |  |
|   | S 3089           | 16.3          | 20.7         | 2.8        | 29.0         | 5.2        | 0.1        | 1.1        | 0.1        | 0.2        | 2.3        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |  |
|   | S 3090           | 34.7          | 31.1         | 5.5        | 48.8         | 8.7        | 0.2        | 1.6        | 0.1        | 0.2        | 9.2        | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |  |
|   | S 3091           | 231.4         | 40.5         | 6.5        | 51.5         | 12.6       | 0.2        | 3.2        | 0.4        | 0.2        | 7.1        | 0.3        | 0.2        | 0.2        | 0.2        | 0.05         | 4          |  |
|   | S 3092           | 1,250.0       | 46.0         | 7.2        | 108.1        | 11.0       | 1.9        | 2.6        | 0.6        | 0.2        | 8.0        | 0.2        | 0.2        | 0.2        | 0.2        | 0.04         | 1          |  |
|   | S 3093           | 18.2          | 19.2         | 4.4        | 57.0         | 6.9        | 0.4        | 0.6        | 0.1        | 0.2        | 4.3        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1          |  |
| 9 | S 3094           | 5.9           | 13.4         | 3.3        | 28.4         | 3.4        | 0.1        | 0.5        | 0.1        | 0.2        | 3.3        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6          |  |
|   | S 3095           | 15.6          | 25.8         | 3.3        | 41.6         | 5.7        | 0.2        | 1.3        | 0.1        | 0.2        | 5.5        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 9          |  |
|   | S 3096           | 9.7           | 20.4         | 3.3        | 35.9         | 5.6        | 0.2        | 1.4        | 0.1        | 0.2        | 4.5        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4          |  |
|   | S 3097           | 9.1           | 18.1         | 3.0        | 31.6         | 4.6        | 0.1        | 0.7        | 0.1        | 0.2        | 3.6        | 0.5        | 0.2        | 0.2        | 0.2        | 0.04         | 2          |  |
|   | S 3098           | 4.2           | 8.7          | 2.4        | 14.0         | 1.9        | 0.1        | 0.7        | 0.1        | 0.2        | 1.8        | 0.2        | 0.2        | 0.6        | 0.2        | 0.03         | 4          |  |
| : | S 3099           | 8.1           | 16.6         | 2.9        | 36.7         | 5.6        | 0.1        | 1.3        | 0.1        | 0.2        | 2.5        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 7          |  |

|                  |               |              |            | _            | -           |            | _          |            | _          | -           | -          | _          | -          |            | -            |         | - |
|------------------|---------------|--------------|------------|--------------|-------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|--------------|---------|---|
|                  |               |              |            |              |             |            |            |            |            |             |            |            |            |            |              |         |   |
| EAGLE            | Cu            | Ni           | Pb         | Zn           | Co          | Cd         | Мо         | Ag         | w          | As          | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb |   |
|                  |               |              |            |              |             |            |            |            |            |             |            |            |            |            | _            |         |   |
| S 3100<br>S 3101 | 11.6<br>14.1  | 20.3<br>24.0 | 3.3<br>3.5 | 37.1<br>41.0 | 5.6<br>6.4  | 0.1<br>0.1 | 0.9<br>1.0 | 0.1<br>0.1 | 1.5<br>0.2 | 2.8<br>3.8  | 0.5<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.3<br>0.2 | 0.03<br>0.10 | 12<br>4 |   |
| S 3101           | 14.1          | 29.2         | 3.5        | 41.0         | 6.8         | 0.1        | 1.0        | 0.1        | 0.2        | 3.8<br>4.5  | 0.2        | 0.2        | 0.2        | 0.2        | 0.10         | 4<br>1  |   |
| S 3102           | 8.3           | 19.2         | 3.0        | 40.7         | 5.5         | 0.2        | 0.7        | 0.1        | 0.2        | 2.5         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1       |   |
| S 3104           | 7.7           | 14.3         | 2.9        | 32.3         | 4.0         | 0.1        | 0.7        | 0.1        | 0.2        | 1.9         | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 3       |   |
| S 3105           | 8.9           | 16.1         | 3.2        | 36.5         | 4.3         | 0.3        | 0.7        | 0.1        | 0.2        | 3.5         | 0.2        | 0.2        | 0.3        | 0.2        | 0.17         | 3<br>3  |   |
| S 3106           | 21.2          | 25.9         | 4.3        | 52.1         | 5.5         | 0.5        | 1.9        | 0.2        | 0.2        | 6.2         | 0.4        | 0.2        | 0.2        | 0.3        | 0.03         | 6       |   |
| S 3107           | 107.7         | 51.7         | 6.1        | 75.4         | 11.6        | 0.9        | 2.4        | 0.4        | 0.2        | 14.3        | 0.3        | 0.2        | 0.4        | 0.2        | 0.04         | 6       |   |
| S 3108           | 22.3          | 22.0         | 15.4       | 181.9        | 22.1        | 2.1        | 3.8        | 0.5        | 0.2        | 49.6        | 0.4        | 0.6        | 0.2        | 0.2        | 0.03         | 4       |   |
| S 3109           | 37.1          | 30.1         | 16.8       | 145.0        | 20.8        | 1.4        | 3.3        | 0.3        | 0.2        | 36.5        | 0.4        | 0.7        | 0.2        | 0.2        | 0.03         | 8       |   |
| S 3110           | 25.0          | 34.5         | 5.2        | 76.9         | 8.5         | 0.5        | 1.1        | 0.1        | 0.2        | 10.0        | 0.5        | 0.2        | 0.2        | 0.3        | 0.03         | 3       |   |
| S 3111           | 41.5          | 53.4         | 8.0        | 111.1        | 13.8        | 1.0        | 1.7        | 0.2        | 0.2        | 20.4        | 0.4        | 0.3        | 0.2        | 0.2        | 0.03         | 1       |   |
| S 3112           | 40.0          | 40.7         | 8.1        | 93.9         | 10.7        | 0.6        | 1.4        | 0.1        | 0.2        | 13.2        | 0.6        | 0.2        | 0.4        | 0.2        | 0.15         | 7       |   |
| S 3113           | 179.6         | 58.5         | 6.2        | 98.0         | 18.1        | 0.9        | 2.4        | 0.6        | 0.2        | 10.4        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1       |   |
| S 3114           | 448.9         | 42.8         | 4.6        | 55.0         | 13.4        | 0.2        | 1.6        | 0.2        | 0.2        | 10.4        | 0.2        | 0.2        | 0.2        | 0.2        | 0.19         | 2       |   |
| S 3115           | 82.7          | 27.0         | 7.1        | 62.7         | 7.4         | 0.5        | 2.1        | 0.1        | 0.2        | 14.4        | 0.6        | 0.2        | 0.2        | 0.2        | 0.03         | 5       |   |
| S 3116           | 83.7          | 19.8         | 3.7        | 28.2         | 5.4         | 0.9        | 1.2        | 0.3        | 0.2        | 6.8         | 0.2        | 0.8        | 1.3        | 0.2        | 0.03         | 4       |   |
| S 3117           | 41.3          | 27.4         | 3.1        | 54.7         | 7.0         | 0.6        | 1.0        | 0.3        | 0.2        | 6.2         | 0.2        | 1.2        | 0.6        | 0.3        | 0.03         | 8       |   |
| S 3118           | 4.6           | 7.9          | 3.0        | 16.5         | 1.6         | 0.1        | 0.4        | 0.1        | 0.2        | 1.9         | 0.3        | 0.2        | 0.2        | 0.3        | 0.03         | 1       |   |
| S 3119           | 9.3           | 23.7         | 2.7        | 47.0         | 5.8         | 0.2        | 1.0        | 0.1        | 1.6        | 4.5         | 0.2        | 0.2        | 0.2        | 0.2        | 0.15         | 2       |   |
| S 3120           | 149.4         | 27.8         | 1.7        | 29.7         | 2.5         | 0.4        | 2.5        | 0.4        | 1.7        | 3.5         | 0.2        | 1.1        | 1.0        | 0.2        | 0.03         | -       |   |
| S 3122           | 137.9         | 42.9         | 4.3        | 47.4         | 8.0         | 0.6        | 3.3        | 0.4        | 0.2        | 6.5         | 0.2        | 0.7        | 1.2        | 0.2        | 0.22         | 4       |   |
| S 3123<br>S 3124 | 39.7<br>40.1  | 32.6<br>35.5 | 5.6<br>4.1 | 54.8<br>50.9 | 9.1<br>8.3  | 0.5<br>0.6 | 2.2<br>1.8 | 0.1<br>0.2 | 0.2<br>0.2 | 8.4<br>5.2  | 0.2<br>0.2 | 0.3<br>0.7 | 0.2<br>0.2 | 0.2<br>0.2 | 0.15<br>0.14 | 1<br>2  |   |
| S 3124<br>S 3125 | 40.1<br>84.3  | 50.4         | 4.1        | 48.4         | 8.5         | 0.6        | 4.8        | 0.2        | 0.2        | 9.2         | 0.2        | 0.7        | 0.2        | 0.2        | 0.14         | 2       |   |
| S 3126           | 80.0          | 55.0         | 5.7        | 71.4         | 8.3         | 1.2        | 3.2        | 0.3        | 0.2        | 8.0         | 0.4        | 0.2        | 1.0        | 0.2        | 0.16         | 4       |   |
| S 3127           | 33.6          | 32.0         | 4.3        | 38.1         | 6.7         | 0.9        | 2.1        | 0.1        | 0.2        | 5.1         | 0.2        | 0.2        | 0.2        | 0.2        | 0.07         | 3       |   |
| S 3128           | 19.0          | 27.8         | 3.4        | 45.5         | 7.5         | 0.2        | 1.1        | 0.1        | 0.2        | 4.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.17         | 3       |   |
| S 3129           | 44.2          | 18.4         | 1.4        | 34.2         | 1.5         | 0.5        | 3.3        | 0.1        | 0.2        | 2.6         | 0.2        | 1.4        | 0.9        | 0.2        | 0.03         | *       |   |
| S 3130           | 55.9          | 34.4         | 5.5        | 55.9         | 10.5        | 0.8        | 2.7        | 0.3        | 0.2        | 8.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.06         | 10      |   |
| S 3131           | 43.0          | 32.1         | 4.8        | 57.1         | 9.6         | 0.6        | 2.4        | 0.2        | 0.2        | 7.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 10      |   |
| S 3132           | 66.0          | 51.0         | 3.7        | 60.4         | 7.9         | 0.6        | 3.2        | 0.5        | 0.2        | 8.9         | 0.2        | 0.6        | 0.2        | 0.2        | 0.03         | 12      |   |
| S 3133           | 60.6          | 54.9         | 4.7        | 65.1         | 10.8        | 0.7        | 2.4        | 0.7        | 0.2        | 9.5         | 0.2        | 0.3        | 1.2        | 0.2        | 0.03         | 12      |   |
| S 3134           | 25.3          | 27.7         | 3.6        | 44.1         | 6.9         | 0.2        | 1.1        | 0.2        | 0.2        | 3.9         | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 5       |   |
| S 3135           | 18.8          | 19.9         | 3.9        | 35.4         | 5.8         | 0.2        | 1.0        | 0.1        | 0.2        | 4.0         | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 10      |   |
| S 3136           | 68.3          | 35.4         | 5.6        | 48.2         | 9.8         | 0.3        | 1.2        | 0.1        | 0.2        | 9.6         | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 16      |   |
| S 3137           | 21.9          | 27.7         | 3.9        | 36.4         | 5.7         | 0.3        | 1.0        | 0.1        | 0.2        | 9.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8       |   |
| S 3138           | 67.3          | 30.6         | 4.4        | 42.9         | 8.1         | 0.1        | 1.1        | 0.3        | 0.2        | 7.9         | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 7       |   |
| S 3139           | 33.6          | 11.6         | 0.8        | 22.9         | 0.6         | 0.8        | 1.6        | 0.2        | 0.2        | 2.0         | 0.2        | 1.7        | 3.0        | 0.3        | 0.03         | 28      |   |
| S 3140           | 68.5          | 28.6         | 2.1        | 20.5         | 3.4         | 0.5        | 1.3        | 0.2        | 0.2        | 4.7         | 0.2        | 0.7        | 2.2        | 0.2        | 0.03         | 16      |   |
| S 3141           | 151.4         | 61.6         | 3.0        | 46.9         | 5.0         | 0.8        | 1.2        | 0.4        | 0.2        | 7.8         | 0.2        | 0.9        | 2.4        | 0.4        | 0.03         | 28      |   |
| S 3142<br>S 3143 | 248.0         | 55.6         | 5.2        | 58.1<br>56.6 | 12.3        | 0.4        | 1.5        | 0.3        | 0.2        | 10.6        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 12      |   |
| S 3143<br>S 3144 | 145.9<br>61.5 | 46.0<br>61.0 | 5.7<br>4.6 | 56.6<br>66.4 | 12.6<br>9.1 | 0.3<br>0.6 | 1.4<br>1.4 | 0.3<br>0.5 | 0.2<br>0.2 | 11.2<br>9.6 | 0.2        | 0.2<br>0.4 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 9<br>24 |   |
| S 3144           | 71.9          | 86.1         | 4.0<br>6.0 | 75.4         | 12.3        | 1.2        | 2.4        | 1.0        | 0.2        | 9.0<br>14.8 | 0.2<br>0.2 | 0.4        | 1.0        | 0.2        | 0.03         | 24      |   |
| S 3146           | 54.5          | 55.3         | 4.6        | 56.1         | 8.3         | 0.6        | 1.2        | 0.3        | 0.2        | 7.4         | 0.2        | 0.3        | 0.2        | 0.2        | 0.03         | 20      |   |
| S 3140           | 54.5<br>87.7  | 55.3<br>62.7 | 3.8        | 29.4         | 7.0         | 0.9        | 1.2        | 0.3        | 0.2        | 9.0         | 0.2        | 1.1        | 0.2<br>4.7 | 0.2        | 0.03         | 12      |   |
| S 3148           | 90.2          | 65.8         | 6.0        | 67.1         | 11.6        | 0.5        | 1.9        | 0.4        | 0.2        | 11.6        | 0.2        | 0.2        | 0.4        | 0.2        | 0.03         | 20      |   |
| S 3149           | 16.6          | 23.0         | 4.2        | 51.9         | 6.6         | 0.3        | 1.2        | 0.1        | 0.7        | 4.6         | 0.2        | 0.2        | 0.2        | 0.8        | 0.08         | 24      |   |
| S 3150           | 97.4          | 82.9         | 8.0        | 111.3        | 23.6        | 0.4        | 1.9        | 1.0        | 0.2        | 10.1        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8       |   |
| S 3151           | 17.3          | 17.9         | 4.5        | 50.8         | 6.1         | 0.3        | 1.0        | 0.1        | 0.2        | 3.7         | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 6       |   |
| S 3152           | 274.5         | 43.1         | 4.5        | 48.4         | 9.6         | 0.1        | 1.6        | 0.1        | 0.2        | 6.4         | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 8       |   |
|                  |               |              |            |              |             |            |            |            |            |             |            |            |            |            |              |         |   |

|                    | •             | 8            | R.           | L              |              | N.         |            |            | k          |              | L          |            | A          |            |              |         |  |
|--------------------|---------------|--------------|--------------|----------------|--------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|--------------|---------|--|
| EAGLE              | Cu            | Ni           | Pb           | Zn             | Co           | Cd         | Мо         | Ag         | w          | As           | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb |  |
| LAGLE              | Cu            |              | FV           | 211            | 00           | ou         |            |            |            |              |            |            |            |            | -            |         |  |
| S 3153             | 69.8          | 24.7         | 4.5          | 55.8           | 9.3          | 0.1        | 1.3        | 0.2        | 0.2        | 5.4          | 0.2        | 0.2        | 0.2        | 0.6        | 0.08         | 20<br>6 |  |
| S 3154             | 4.7           | 9.9          | 2.8          | 21.1           | 2.5          | 0.1        | 0.6        | 0.1        | 0.2        | 2.3<br>4.0   | 0.3<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.3<br>0.3 | 0.06<br>0.04 | 35      |  |
| S 3155             | 16.4          | 30.9         | 3.3          | 43.4           | 7.1<br>5.0   | 0.2<br>0.1 | 1.0<br>1.0 | 0.1<br>0.1 | 0.2<br>0.2 | 4.0<br>3.7   | 0.2        | 0.2        | 0.2        | 0.3        | 0.04         | 5       |  |
| S 3156<br>S 3157   | 12.1<br>192.5 | 21.6<br>7.8  | 3.4<br>7.8   | 31.9<br>81.9   | 30.0         | 0.1        | 1.0        | 0.1        | 0.2        | 18.4         | 0.4        | 0.2        | 0.2        | 0.5        | 0.05         | 30      |  |
| S 3157             | 152.5         | 3.4          | 7.2          | 48.9           | 3.8          | 0.3        | 1.1        | 0.2        | 0.2        | 1.7          | 0.2        | 0.2        | 0.2        | 0.6        | 0.03         | 12      |  |
| S 3159             | 216.6         | 140.3        | 10.7         | 267.4          | 22.6         | 2.3        | 3.4        | 1.3        | 0.2        | 21.8         | 0.2        | 0.2        | 0.2        | 0.2        | 0.14         | 12      |  |
| S 3160             | 11.0          | 11.2         | 4.9          | 45.6           | 4.1          | 0.2        | 0.9        | 0.1        | 0.2        | 3.2          | 0.2        | 0.2        | 0.2        | 0.7        | 0.05         | 7       |  |
| S 3161             | 6.8           | 10.6         | 4.8          | 35.0           | 3.2          | 0.1        | 0.9        | 0.1        | 0.2        | 3.0          | 0.2        | 0.2        | 0.2        | 0.2        | 0.07         | 3       |  |
| S 3162             | 36.6          | 27.4         | 4.0          | 48.5           | 7.9          | 0.1        | 1.7        | 0.1        | 0.2        | 6.1          | 0.7        | 0.2        | 0.2        | 0.2        | 0.06         | 5       |  |
| S 3163             | 6.8           | 14.0         | 3.7          | 26.2           | 3.7          | 0.1        | 0.6        | 0.1        | 0.2        | 2.6          | 0.2        | 0.2        | 0.2        | 0.4        | 0.04         | 5       |  |
| S 3164             | 6.1           | 12.8         | 2.8          | 22.8           | 3.3          | 0.1        | 0.4        | 0.1        | 0.2        | 2.2          | 0.7        | 0.2        | 0.2        | 0.2        | 0.03         | 7       |  |
| S 3165             | 10.4          | 18.5         | 3.1          | 34.0           | 5.0          | 0.1        | 0.7        | 0.1        | 0.2        | 2.4          | 0.2        | 0.2        | 0.2        | 0.3        | 0.11         | 11      |  |
| S 3166             | 4.0           | 8.3          | 3.1          | 17.5           | 2.2          | 0.1        | 0.5        | 0.1        | 0.2        | 1.7          | 0.4        | 0.2        | 0.2        | 0.5        | 0.08         | 5       |  |
| S 3167             | 12.5          | 25.1         | 3.0          | 35.8           | 5.8          | 0.1        | 0.7        | 0.1        | 0.2        | 3.6          | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 5       |  |
| S 3168             | 8.1           | 17.9         | 2.6          | 33.9           | 4.3          | 0.2        | 0.5        | 0.1        | 0.6        | 2.3          | 0.2        | 0.2        | 0.2        | 0.3<br>0.2 | 0.03<br>0.03 | 5<br>6  |  |
| S 3169             | 18.9          | 22.9         | 3.5          | 39.3           | 10.0         | 0.3        | 1.0        | 0.2        | 0.2        | 2.9<br>0.9   | 0.3<br>0.2 | 0.2<br>0.2 | 0.3<br>0.2 | 0.2        | 0.03         | 6       |  |
| S 3170             | 5.1           | 9.5          | 3.1<br>4.3   | 18.5<br>72.2   | 2.5<br>9.8   | 0.1<br>0.2 | 0.5<br>1.9 | 0.1<br>0.5 | 0.2<br>0.2 | 6.7          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8       |  |
| \$ 3171<br>\$ 3172 | 46.3<br>4.8   | 48.3<br>13.2 | 4.5<br>3.4   | 22.8           | 9.8<br>3.4   | 0.2        | 0.7        | 0.5        | 0.2        | 3.2          | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 3       |  |
| S 3172             | 4.0<br>14.6   | 16.0         | 4.3          | 48.2           | 4.8          | 0.1        | 0.9        | 0.1        | 0.2        | 4.2          | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 2       |  |
| S 3174             | 30.4          | 14.4         | 3.3          | 22.4           | 3.6          | 0.1        | 1.0        | 1.5        | 0.2        | 3.9          | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 11      |  |
| S 3175             | 13.9          | 21.3         | 4.1          | 28.6           | 6.0          | 0.1        | 0.8        | 0.1        | 0.2        | 4.6          | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 6       |  |
| S 3176             | 24.6          | 22.6         | 6.3          | 45.0           | 5.7          | 0.2        | 1.3        | 0.1        | 0.2        | 6.1          | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 6       |  |
| S 3177             | 29.9          | 24.6         | 8.4          | 106.8          | 9.1          | 2.2        | 1.5        | 0.4        | 0.2        | 13.8         | 0.2        | 0.2        | 0.2        | 0.5        | 0.04         | 6       |  |
| S 3178             | 34.0          | 35.6         | 7.1          | 101.3          | 10.2         | 0.4        | 1.5        | 0.2        | 0.2        | 11.7         | 0.2        | 0.2        | 0.2        | 0.2        | 0.05         | 7       |  |
| S 3179             | 19.9          | 27.1         | 7.1          | 104.8          | 6.8          | 0.3        | 1.2        | 0.1        | 0.2        | 8.9          | 0.4        | 0.2        | 0.2        | 0.3        | 0.03         | 7       |  |
| S 3180             | 20.1          | 17.1         | 7.9          | 55.1           | 5.7          | 0.3        | 0.9        | 0.1        | 0.2        | 7.4          | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 6       |  |
| S 3181             | 105.0         | 56.0         | 9.4          | 77.8           | 13.0         | 0.5        | 1.7        | 0.3        | 0.2        | 16.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 9       |  |
| S 3182             | 219.5         | 85.2         | 13.6         | 103.4          | 16.0         | 0.7        | 2.5        | 0.8        | 0.2        | 15.7         | 0.2        | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 6<br>16 |  |
| S 3183             | 63.4          | 43.5         | 21.3         | 125.5<br>142.6 | 17.7<br>15.2 | 0.9<br>0.6 | 2.0<br>1.6 | 0.6<br>0.3 | 0.2<br>0.2 | 26.6<br>8.7  | 0.2<br>0.2 | 0.2        | 0.2        | 0.2        | 0.03         | 5       |  |
| S 3184<br>S 3185   | 32.2<br>32.0  | 39.4<br>37.6 | 10.6<br>8.5  | 109.7          | 13.1         | 0.0        | 1.9        | 0.5        | 0.2        | 27.3         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |  |
| S 3185             | 38.6          | 29.7         | 15.5         | 130.2          | 11.2         | 0.7        | 3.4        | 0.5        | 0.2        | 31.7         | 0.2        | 0.2        | 0.2        | 0.4        | 0.05         | 6       |  |
| S 3187             | 108.4         | 25.0         | 6.3          | 49.8           | 8.4          | 0.2        | 3.1        | 0.2        | 0.2        | 18.2         | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 4       |  |
| S 3188             | 307.7         | 31.2         | 6.2          | 37.3           | 9.1          | 0.1        | 2.8        | 0.2        | 0.2        | 12.3         | 0.3        | 0.2        | 0.2        | 0.4        | 0.03         | 8       |  |
| S 3189             | 1,700.0       | 130.4        | 10.8         | 111.3          | 20.3         | 1.2        | 4.0        | 2.5        | 0.2        | 27.8         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 25      |  |
| S 3190             | 223.6         | 72.9         | 7.9          | 66.8           | 14.3         | 0.7        | 2.7        | 0.7        | 0.2        | 11.8         | 0.2        | 0.2        | 0.5        | 0.2        | 0.07         | 6       |  |
| S 3191             | 1,490.0       | 171.8        | 23.1         | 165.6          | 19.6         | 2.1        | 3.2        | 3.3        | 0.2        | 25.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 24      |  |
| S 3192             | 571.1         | 71.9         | 9.5          | 117.5          | 13.1         | 1.4        | 2.6        | 0.8        | 0.2        | 15.8         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 11      |  |
| S 3193             | 65.4          | 9.8          | 2.0          | 9.5            | 1.4          | 0.9        | 2.4        | 0.7        | 0.2        | 3.9          | 0.2        | 0.6        | 1.6        | 0.2        | 0.03         | 2       |  |
| S 3194             | 66.5          | 41.4         | 14.5         | 157.1          | 17.6         | 1.6        | 2.4        | 0.4        | 0.2        | 46.3         | 0.6        | 0.2        | 0.2        | 0.2        | 0.03         | 8       |  |
| S 3195             | 34.2          | 25.7         | 9.8          | 154.5          | 10.5         | 1.2        | 2.1        | 0.5        | 0.2        | 23.3         | 0.2        | 0.2        | 0.2<br>0.2 | 0.3        | 0.05<br>0.03 | 8<br>1  |  |
| S 3196<br>S 3197   | 79.0<br>251.4 | 52.0<br>58.9 | 25.2<br>15.6 | 301.8<br>135.8 | 25.6<br>15.4 | 1.8<br>1.8 | 5.3<br>3.5 | 0.9<br>1.1 | 0.2<br>0.2 | 32.8<br>30.4 | 0.3<br>0.2 | 0.2<br>0.2 | 0.2        | 0.2<br>0.2 | 0.03         | 10      |  |
| S 3197             | 201.4<br>91.0 | 40.1         | 13.0         | 135.8          | 10.4         | 1.6        | 3.0        | 0.8        | 0.2        | 23.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.07         | 6       |  |
| S 3199             | 602.9         | 115.1        | 15.0         | 133.2          | 12.9         | 3.3        | 5.4        | 1.8        | 0.2        | 39.9         | 0.2        | 0.2        | 1.6        | 0.2        | 0.05         | 13      |  |
| \$ 3200            | 32.7          | 24.9         | 11.1         | 164.1          | 11.1         | 1.1        | 1.8        | 0.4        | 0.2        | 20.1         | 0.2        | 0.2        | 0.2        | 0.6        | 0.12         | 6       |  |
| S 3201             | 240.0         | 35.6         | 6.9          | 31.7           | 6.9          | 1.7        | 4.1        | 1.2        | 0.2        | 13.4         | 0.2        | 0.2        | 2.3        | 0.2        | 0.03         | 8       |  |
| S 3202             | 35.2          | 29.9         | 5.2          | 42.4           | 8.1          | 1.1        | 2.2        | 0.2        | 0.2        | 5.6          | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 2       |  |
| S 3203             | 33.2          | 41.4         | 5.2          | 50.1           | 10.0         | 0.4        | 1.5        | 0.2        | 0.2        | 7.4          | 0.2        | 0.2        | 0.2        | 0.8        | 0.03         | 5       |  |
| S 3204             | 78.6          | 56. <b>8</b> | 19.8         | 125.1          | 10.1         | 1.2        | 2.1        | 0.4        | 0.2        | 8.8          | 0.2        | 0.2        | 0.4        | 0.4        | 0.03         | 4       |  |

|                  | 1              | L.            | •           |                | L.           | •           |             | •          |            |              |            | L.         |            | I          | L I          |         |  |
|------------------|----------------|---------------|-------------|----------------|--------------|-------------|-------------|------------|------------|--------------|------------|------------|------------|------------|--------------|---------|--|
|                  |                |               |             |                |              |             |             |            |            |              |            |            |            |            |              |         |  |
| EAGLE            | Cu             | Ni            | Pb          | Zn             | Co           | Cd          | Мо          | Ag         | w          | As           | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb |  |
| S 3205           | 280.6          | 98.5          | 102.7       | 178.4          | 11.0         | 8.0         | 2.3         | 1.6        | 0.2        | 13.1         | 0.2        | 0.2        | 1.2        | 1.0        | 0.03         | 1       |  |
| S 3206           | 12.8           | 21.1          | 3.9         | 39.2           | 5.1          | 0.3         | 1.0         | 0.1        | 0.2        | 3.8          | 0.2        | 0.2        | 0.2        | 0.9        | 0.03         | 4       |  |
| S 3207           | 2,580.0        | 103.3         | 20.6        | 362.3          | 23.2         | 38.0        | 5.8         | 3.6        | 0.2        | 17.2<br>11.3 | 0.3<br>0.2 | 0.2<br>0.2 | 1.1<br>0.2 | 0.9<br>0.6 | 0.09<br>0.03 | 4       |  |
| S 3208           | 532.3          | 79.5          | 69.3        | 429.2          | 14.7<br>12.0 | 10.1<br>1.4 | 2.5<br>3.0  | 1.6<br>0.6 | 0.2<br>0.2 | 11.3         | 0.2        | 0.2        | 0.2        | 0.6        | 0.03         | 9       |  |
| S 3209<br>S 3211 | 220.6<br>29.1  | 51.3<br>26.3  | 26.3<br>5.2 | 105.3<br>60.5  | 8.9          | 0.7         | 1.6         | 0.3        | 0.2        | 4.6          | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 5       |  |
| S 3212           | 50.2           | 20.0          | 8.4         | 112.6          | 7.2          | 1.0         | 1.1         | 1.0        | 0.2        | 3.1          | 0.2        | 0.2        | 0.3        | 0.9        | 0.03         | 8       |  |
| S 3213           | 15.5           | 30.7          | 4.2         | 39.3           | 6.3          | 0.1         | 1.2         | 0.1        | 0.2        | 5.5          | 0.2        | 0.2        | 0.2        | 0.9        | 0.03         | 3       |  |
| S 3214           | 14.4           | 30.0          | 4.1         | 37.7           | 6.9          | 0.1         | 1.1         | 0.1        | 0.2        | 5.0          | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 1       |  |
| S 3215           | 11.2           | 18.0          | 4.1         | 25.8           | 4.3          | 0.2         | 1.2         | 0.1        | 0.2        | 4.4          | 0.2        | 0.2        | 0.2        | 1.1        | 0.03         | 4       |  |
| S 3216           | 121.2          | 16.2          | 7.1         | 86.4           | 15.9         | 0.2         | 2.5         | 0.2        | 0.2        | 5.7          | 0.3        | 0.2        | 0.2        | 0.7        | 0.03         | 6       |  |
| S 3217           | 100.9          | 6.4           | 6.2         | 48.3           | 14.7         | 0.3         | 3.2         | 0.3        | 0.2        | 3.0          | 0.2        | 0.2        | 0.2        | 0.5        | 0.03<br>0.03 | 2<br>4  |  |
| S 3218           | 2,940.0        | 51.4          | 4.3         | 38.6           | 7.3          | 0.3         | 2.3<br>1.4  | 0.7<br>0.7 | 0.2<br>0.2 | 6.2<br>2.6   | 0.2<br>0.2 | 0.2<br>0.2 | 1.3<br>0.9 | 0.6<br>0.2 | 0.03         | 1       |  |
| S 3219<br>S 3220 | 91.9<br>80.1   | 6.3<br>17.9   | 7.5<br>6.6  | 60.6<br>23.2   | 7.8<br>3.5   | 0.6<br>0.7  | 3.3         | 0.7        | 0.2        | 5.5          | 0.2        | 0.2        | 0.2        | 0.8        | 0.03         | 2       |  |
| S 3220           | 30.5           | 4.1           | 5.4         | 37.8           | 4.5          | 0.4         | 0.8         | 0.1        | 0.2        | 0.2          | 0.2        | 0.2        | 0.2        | 0.8        | 0.08         | 10      |  |
| S 3222           | 65.4           | 2.4           | 6.8         | 34.4           | 2.5          | 0.3         | 1.1         | 0.4        | 0.2        | 0.3          | 0.2        | 0.2        | 0.2        | 0.2        | 0.04         | 14      |  |
| S 3223           | 5,550.0        | 107.8         | 11.9        | 124.4          | 156.4        | 0.1         | 3.5         | 2.7        | 0.2        | 19.9         | 0.4        | 0.2        | 0.2        | 0.2        | 0.04         | 24      |  |
| S 3224           | 129.4          | 6.8           | 7.4         | 74.9           | 21.7         | 0.1         | 1.9         | 0.5        | 0.2        | 16.1         | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 16      |  |
| S 3225           | 423.4          | 24.4          | 9.4         | 88.9           | 29.3         | 0.2         | 2.9         | 0.5        | 0.2        | 8.1          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03<br>0.03 | 10<br>5 |  |
| S 3226           | 583.9          | 22.2          | 6.6         | 135.2          | 37.5         | 0.1         | 1.7<br>2.1  | 0.4<br>0.7 | 0.2<br>0.2 | 2.7<br>10.7  | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.3<br>0.4 | 0.03         | J<br>*  |  |
| S 3227<br>S 3228 | 527.1<br>886.5 | 57.3<br>122.0 | 9.1<br>10.4 | 133.5<br>115.3 | 44.7<br>23.4 | 0.6<br>0.5  | 2.1         | 2.5        | 0.2        | 20.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.07         | 18      |  |
| S 3229           | 22.7           | 16.9          | 3.3         | 50.4           | 6.7          | 0.9         | 0.8         | 0.2        | 0.2        | 1.9          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |  |
| S 3230           | 87.0           | 32.4          | 5.7         | 51.5           | 10.1         | 0.1         | 1.6         | 0.1        | 0.2        | 9.8          | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 16      |  |
| S 3231           | 46.7           | 63.4          | 4.3         | 47.3           | 10.0         | 0.1         | 0.9         | 0.1        | 0.2        | 7.1          | 0.6        | 0.2        | 0.2        | 0.5        | 0.03         | 5       |  |
| S 3232           | 40.9           | 27.6          | 4.1         | 38.9           | 7.9          | 0.3         | 1.0         | 0.2        | 0.2        | 4.3          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 9       |  |
| S 3233           | 423.1          | 39.8          | 3.0         | 25.2           | 4.1          | 0.9         | 2.7         | 0.6        | 0.2        | 5.0          | 0.2        | 0.2        | 1.2        | 0.2        | 0.03<br>0.03 | 4       |  |
| S 3234           | 764.4          | 24.2          | 7.5         | 61.4           | 36.6<br>19.3 | 0.4<br>0.2  | 10.1<br>5.7 | 1.1<br>1.5 | 0.2<br>0.2 | 11.9<br>7.3  | 0.2<br>0.8 | 0.2<br>0.2 | 0.2<br>0.2 | 0.8<br>0.7 | 0.03         | 48      |  |
| S 3235<br>S 3236 | 316.5<br>169.9 | 10.0<br>6.4   | 11.4<br>7.7 | 122.8<br>68.5  | 19.5         | 0.2         | 3.0         | 1.5        | 0.2        | 3.4          | 0.2        | 0.2        | 0.2        | 0.2        | 0.07         | 8       |  |
| S 3237           | 109.9          | 12.3          | 4.2         | 26.6           | 3.5          | 0.2         | 0.9         | 0.1        | 1.9        | 2.9          | 0.2        | 0.2        | 0.2        | 0.9        | 0.05         | 2       |  |
| S 3238           | 198.4          | 89.3          | 6.7         | 91.9           | 18.1         | 0.6         | 3.3         | 1.8        | 0.2        | 11.4         | 0.3        | 0.2        | 0.3        | 0.4        | 0.03         | 1       |  |
| S 3239           | 5.8            | 13.0          | 3.5         | 26.3           | 4.1          | 0.2         | 0.6         | 0.1        | 0.2        | 2.0          | 0.4        | 0.2        | 0.3        | 1.0        | 0.05         | 1       |  |
| S 3240           | 5.5            | 12.8          | 3.6         | 19.4           | 3.4          | 0.1         | 0.5         | 0.1        | 0.2        | 3.7          | 0.2        | 0.2        | 0.2        | 0.8        | 0.06         | 3       |  |
| S 3241           | 6.4            | 13.8          | 3.6         | 20.2           | 3.2          | 0.1         | 0.7         | 0.1        | 0.2        | 3.4          | 0.2        | 0.2        | 0.2        | 0.7<br>0.6 | 0.03<br>0.03 | 1<br>28 |  |
| S 3242           | 16.2           | 21.1          | 4.3         | 34.1<br>66.1   | 7.1<br>10.1  | 0.1<br>0.5  | 1.0<br>1.3  | 0.1<br>0.4 | 0.2<br>0.2 | 4.8<br>7.2   | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>1.7 | 0.8        | 0.05         | 1       |  |
| S 3243<br>S 3244 | 126.9<br>36.4  | 44.1<br>28.6  | 5.2<br>6.2  | 48.5           | 12.5         | 0.3         | 1.3         | 0.3        | 0.2        | 5.8          | 0.2        | 0.3        | 0.2        | 0.8        | 0.06         | 3       |  |
| S 3245           | 29.7           | 19.7          | 5.4         | 36.9           | 9.4          | 0.2         | 1.1         | 0.1        | 0.2        | 4.8          | 0.2        | 0.2        | 0.2        | 0.8        | 0.08         | 9       |  |
| S 3246           | 34.0           | 25.2          | 4.0         | 38.1           | 8.4          | 0.1         | 1.0         | 0.4        | 0.2        | 5.7          | 0.5        | 0.2        | 0.2        | 0.5        | 0.07         | 4       |  |
| S 3247           | 25.8           | 20.0          | 6.1         | 52.9           | 7.7          | 0.2         | 1.4         | 0.5        | 0.2        | 6.7          | 0.7        | 0.2        | 0.2        | 0.7        | 0.07         | 5       |  |
| S 3248           | 4.5            | 9.6           | 3.0         | 15.3           | 2.6          | 0.1         | 0.6         | 0.2        | 0.2        | 1.6          | 0.4        | 0.2        | 0.2        | 0.7        | 0.03         | 1       |  |
| S 3249           | 27.6           | 16.4          | 6.3         | 68.8           | 9.6          | 0.1         | 1.4         | 0.5        | 0.2        | 4.4          | 0.8        | 0.4        | 0.4        | 0.6        | 0.09         | 4       |  |
| S 3250           | 40.9<br>75 5   | 22.9          | 6.0         | 65.8<br>71.7   | 9.0<br>10.6  | 0.1<br>0.2  | 1.5<br>2.4  | 0.2<br>0.3 | 0.2<br>0.2 | 6.9<br>10.1  | 0.3<br>0.8 | 0.2<br>0.2 | 0.2<br>0.2 | 0.5<br>0.8 | 0.04<br>0.03 | 4       |  |
| S 3251<br>S 3252 | 75.5<br>7.7    | 30.9<br>12.6  | 6.7<br>6.1  | 71.7<br>53.4   | 10.6<br>6.8  | 0.2         | 2.4<br>1.0  | 0.3        | 0.2        | 5.2          | 0.8        | 0.2        | 0.2        | 0.8        | 0.03         | 3       |  |
| \$ 3253          | 14.4           | 13.6          | 5.1         | 42.7           | 4.9          | 0.2         | 1.3         | 0.2        | 0.2        | 6.8          | 0.2        | 0.2        | 0.2        | 1.0        | 0.03         | 4       |  |
| S 3254           | 9.6            | 11.7          | 6.3         | 54.1           | 6.2          | 0.2         | 1.0         | 0.1        | 0.2        | 5.6          | 0.4        | 0.2        | 0.2        | 1.0        | 0.06         | 1       |  |
| S 3255           | 16.6           | 16.8          | 7.7         | 77.7           | 6.1          | 0.3         | 1.6         | 0.3        | 0.2        | 9.3          | 0.2        | 0.2        | 0.2        | 0.8        | 0.03         | 10      |  |
| S 3256           | 23.3           | 25.2          | 6.5         | 57.7           | 6.1          | 0.3         | 1.2         | 0.2        | 0.2        | 11.8         | 0.2        | 0.4        | 0.2        | 0.2        | 0.04         | 9       |  |
| S 3257           | 20.1           | 21.3          | 6.5         | 138.6          | 9.5          | 0.5         | 1.7         | 0.4        | 0.2        | 10.4         | 0.9        | 0.4        | 0.4        | 0.2        | 0.04         | 2       |  |

| <b>A B</b>       |                  | A            |             | L.            |             |            | R.         |                        |            |              |            |            | •          | . (        |              |          |  |
|------------------|------------------|--------------|-------------|---------------|-------------|------------|------------|------------------------|------------|--------------|------------|------------|------------|------------|--------------|----------|--|
|                  |                  |              |             |               |             |            |            |                        |            |              |            |            |            |            |              |          |  |
| EAGLE            | Cu               | Ni           | Pb          | Zn            | Co          | Cđ         | Мо         | Ag                     | W          | As           | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb  |  |
| S 3258           | 21.3             | 27.7         | 6.6         | 83.3          | 8.7         | 0.4        | 1.7        | 0.3                    | 0.2        | 16.1         | 0.9        | 0.2        | 0.2        | 0.5<br>0.4 | 0.03<br>0.04 | 14<br>1  |  |
| S 3259           | 8.8<br>4.9       | 12.5<br>7.8  | 6.4<br>5.9  | 51.7<br>33.5  | 4.9<br>2.5  | 0.2<br>0.3 | 1.0<br>0.6 | 0.1<br>0.1             | 0.2<br>0.7 | 5.8<br>3.2   | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.4        | 0.04         | 2        |  |
| S 3260<br>S 3261 | 4.9<br>16.0      | 15.8         | 6.4         | 82.9          | 5.8         | 0.6        | 1.6        | 0.7                    | 0.2        | 8.0          | 0.8        | 0.2        | 0.2        | 0.7        | 0.06         | 2        |  |
| S 3262           | 22.0             | 22.7         | 9.3         | 177.3         | 10.8        | 0.9        | 1.9        | 0.4                    | 0.2        | 10.3         | 0.4        | 0.2        | 0.6        | 1.0        | 0.03         | 4        |  |
| S 3263           | 1,780.0          | 119.5        | 12.9        | 270.2         | 21.3        | 3.4        | 3.9        | 1.3                    | 0.2        | 11.8         | 0.4        | 0.2        | 0.8        | 1.0        | 0.07         | 8        |  |
| S 3264           | 7.6              | 4.7          | 7.3         | 38.0          | 2.0         | 0.7        | 0.6        | 0.1                    | 0.2        | 1.1          | 0.2        | 0.2        | 0.2        | 0.8        | 0.09         | 1        |  |
| S 3265           | 111.4            | 12.6         | 5.8         | 139.1         | 5.2         | 1.0        | 1.2        | 0.5                    | 0.2        | 1.7          | 0.2        | 0.2        | 0.2<br>0.2 | 0.6<br>1.0 | 0.03<br>0.05 | 3<br>45  |  |
| S 3266           | 94.1             | 45.3         | 8.2         | 72.5          | 13.3        | 0.4        | 1.8<br>1.1 | 0.2<br>0.6             | 0.2<br>0.2 | 13.5<br>3.6  | 0.2<br>0.2 | 0.2<br>0.2 | 0.2        | 0.9        | 0.03         | 45       |  |
| S 3267<br>S 3268 | 157.8<br>191.0   | 17.5<br>46.9 | 4.8<br>6.8  | 37.0<br>76.1  | 5.1<br>11.4 | 1.8<br>0.6 | 1.6        | 0.0                    | 0.2        | 8.8          | 0.2        | 0.2        | 0.3        | 1.1        | 0.03         | 11       |  |
| S 3269           | 1,570.0          | 73.1         | 11.3        | 102.0         | 9.4         | 4.3        | 2.4        | 1.2                    | 0.2        | 8.1          | 0.2        | 0.2        | 0.3        | 0.9        | 0.03         | 12       |  |
| S 3270           | 156.0            | 57.2         | 6.2         | 72.5          | 13.3        | 0.4        | 1.8        | 0.4                    | 0.2        | 7.7          | 0.3        | 0.2        | 0.2        | 1.0        | 0.03         | 8        |  |
| S 3271           | 86.4             | 42.4         | 5.4         | 64.7          | 10.8        | 0.5        | 1.5        | 0.3                    | 0.2        | 6.9          | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 6        |  |
| S 3272           | 1,310.0          | 93.1         | 13.3        | 114.3         | 17.3        | 1.7        | 3.1        | 2.0                    | 0.2        | 18.0         | 0.2        | 0.2        | 0.2        | 0.5        | 0.04         | 16       |  |
| S 3273           | 890.0            | 60.7         | 8.4         | 63.6          | 11.9        | 1.1        | 2.3        | 1.5                    | 0.2        | 10.4         | 0.2        | 0.2        | 1.6        | 1.0        | 0.03         | 8        |  |
| S 3274           | 46.1             | 28.0         | 3.5         | 31.9          | 7.9         | 0.1        | 0.8        | 0.1                    | 0.2        | 4.6          | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.7<br>1.1 | 0.09<br>0.03 | 4<br>6   |  |
| S 3275           | 833.9            | 67.9<br>30.2 | 10.2<br>2.6 | 126.9<br>39.7 | 18.8<br>1.3 | 1.1<br>1.3 | 2.1<br>0.9 | 0.9<br>0.4             | 0.2<br>0.2 | 12.4<br>2.3  | 0.2        | 0.2        | 1.4        | 1.1        | 0.03         | 4        |  |
| S 3276<br>S 3277 | 1,960.0<br>156.7 | 45.9         | 7.4         | 110.1         | 11.7        | 1.4        | 1.3        | 0.9                    | 0.2        | 7.2          | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 6        |  |
| S 3278           | 33.0             | 26.2         | 10.6        | 207.1         | 12.7        | 0.7        | 1.4        | 0.4                    | 0.2        | 13.6         | 0.5        | 0.3        | 0.2        | 1.1        | 0.03         | 20       |  |
| S 3279           | 16.8             | 14.6         | 8.1         | 130.5         | 8.7         | 0.6        | 1.3        | 0.3                    | 0.2        | 5.0          | 0.3        | 0.2        | 0.2        | 0.5        | 0.11         | 1        |  |
| S 3280           | 75.1             | 37.4         | 7.6         | 123.4         | 9.9         | 0.5        | 2.0        | 0.3                    | 0.2        | 12.3         | 0.7        | 0.2        | 0.2        | 0.3        | 0.11         | 4        |  |
| S 3281           | 87.2             | 35.0         | 9.6         | 171.1         | 14.4        | 0.5        | 1.7        | 0.6                    | 0.2        | 11.3         | 0.2        | 0.2        | 0.2        | 0.5        | 0.08         | 4<br>5   |  |
| S 3282           | 112.1            | 41.5         | 9.4         | 161.0         | 15.1        | 0.5        | 1.6        | 0.3                    | 0.2<br>0.2 | 11.5<br>7.6  | 0.2<br>0.4 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.16 | 3        |  |
| S 3283           | 59.2<br>12.5     | 23.4<br>6.9  | 7.3<br>5.6  | 101.9<br>32.2 | 10.0<br>2.9 | 0.5<br>0.2 | 1.4<br>0.5 | 0. <del>5</del><br>0.1 | 0.2        | 2.8          | 0.4        | 0.2        | 0.2        | 0.2        | 0.03         | 1        |  |
| S 3284<br>S 3285 | 93.9             | 29.7         | 6.7         | 85.1          | 10.9        | 0.2        | 1.2        | 0.2                    | 0.2        | 9.0          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 9        |  |
| S 3286           | 58.7             | 21.6         | 6.3         | 60.4          | 9.9         | 0.4        | 1.0        | 0.3                    | 0.2        | 6.9          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1        |  |
| S 3287           | 28.9             | 17.5         | 6.5         | 61.5          | 6.6         | 0.3        | 0.8        | 0.2                    | 0.2        | 3.7          | 0.2        | 0.2        | 0.2        | 0.3        | 0.08         | 1        |  |
| S 3288           | 57.5             | 22.4         | 7.0         | 78.9          | 9.5         | 0.4        | 1.0        | 0.4                    | 0.2        | 6.4          | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 3        |  |
| S 3289           | 13.1             | 16.3         | 4.4         | 40.2          | 5.1         | 0.2        | 0.5        | 0.1                    | 0.2        | 3.7          | 0.5        | 0.2        | 0.2        | 0.5        | 0.03         | 2        |  |
| S 3290           | 65.7             | 62.4         | 10.7        | 198.0         | 14.4        | 2.9        | 2.2        | 1.5                    | 0.2<br>0.2 | 5.4<br>1.3   | 0.2<br>0.2 | 0.2<br>0.3 | 0.2<br>1.0 | 0.2<br>0.4 | 0.03<br>0.03 | 1        |  |
| S 3291<br>S 3292 | 13.2<br>42.1     | 3.2<br>9.9   | 1.9<br>3.4  | 21.9<br>9.6   | 0.6<br>1.1  | 0.8<br>1.3 | 1.3<br>1.1 | 0.3<br>0.6             | 0.2        | 1.5          | 0.2        | 1.2        | 2.7        | 0.4        | 0.03         | 1        |  |
| S 3292<br>S 3293 | 42.1<br>51.7     | 39.7         | 5.7         | 81.3          | 11.1        | 1.0        | 1.3        | 0.5                    | 0.2        | 7.1          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2        |  |
| S 3294           | 63.7             | 71.0         | 5.6         | 100.5         | 12.9        | 1.9        | 1.4        | 0.7                    | 0.2        | 7.7          | 0.2        | 0.2        | 0.2        | 0.2        | 0.06         | 1        |  |
| S 3295           | 43.6             | 77.7         | 3.5         | 51. <b>2</b>  | 5.5         | 2.3        | 1.8        | 0.4                    | 0.2        | 5.4          | 0.2        | 0.6        | 1.5        | 0.3        | 0.03         | 1        |  |
| S 3296           | 40.1             | 47.3         | 3.3         | 52.3          | 6.4         | 1.5        | 1.4        | 0.4                    | 0.2        | 5.8          | 0.2        | 0.6        | 1.1        | 0.2        | 0.03         | 2        |  |
| \$ 3297          | 336.8            | 8.9          | 3.9         | 10.6          | 7.1         | 1.4        | 4.6        | 2.2                    | 0.2        | 5.5          | 0.2        | 0.2        | 3.4<br>1.7 | 0.2<br>0.2 | 0.03<br>0.03 | 1        |  |
| S 3298           | 135.0            | 5.7          | 2.4<br>7.1  | 14.7<br>59.5  | 4.8<br>14.2 | 1.2<br>1.1 | 3.1<br>5.5 | 1.9<br>1.3             | 2.5<br>0.2 | 2.5<br>14.2  | 0.2<br>0.2 | 1.4<br>0.2 | 0.2        | 0.2        | 0.05         | 8        |  |
| S 3299<br>S 3300 | 246.3<br>65.8    | 20.1<br>10.4 | 8.7         | 59.5<br>59.5  | 14.2        | 0.7        | 5.5<br>4.4 | 0.8                    | 0.2        | 10.0         | 0.2        | 0.2        | 0.2        | 0.3        | 0.05         | 4        |  |
| S 3300           | 60.7             | 13.0         | 8.8         | 48.6          | 9.2         | 0.2        | 1.9        | 0.3                    | 0.2        | 10.2         | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 11       |  |
| S 3302           | 54.1             | 4.2          | 6.2         | 59.0          | 8.0         | 0.5        | 2.9        | 0.5                    | 0.2        | 9.6          | 0.2        | 0.5        | 0.2        | 0.2        | 0.03         | 1        |  |
| S 3303           | 30.4             | 8.9          | 7.6         | 39.4          | 6.4         | 0.2        | 1.7        | 0.2                    | 0.2        | 7.1          | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 1        |  |
| S 3304           | 85.3             | 12.2         | 8.4         | 60.9          | 18.8        | 0.4        | 5.8        | 0.5                    | 0.2        | 10.1         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 7        |  |
| S 3305           | 47.5             | 8.2          | 6.5         | 39.1          | 7.1         | 0.2        | 5.0        | 0.2                    | 0.2        | 10.0         | 0.2        | 0.2        | 0.2        | 0.3        | 0.06         | 12       |  |
| S 3306           | 390.3            | 15.2         | 7.4         | 45.4          | 13.1        | 0.2        | 6.6        | 0.4                    | 0.2<br>0.2 | 20.6<br>13.3 | 0.9<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.04<br>0.03 | 22<br>11 |  |
| S 3307<br>S 3308 | 155.8<br>38.2    | 8.5<br>4.0   | 5.7<br>5.7  | 33.6<br>34.4  | 6.2<br>6.0  | 0.2<br>0.2 | 2.0<br>0.8 | 0.5<br>0.2             | 0.2        | 9.0          | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 9        |  |
| S 3309           | 646.9            | 9.5          | 5.4         | 36.1          | 17.0        | 1.5        | 3.5        | 1.1                    | 0.2        | 84.3         | 0.2        | 0.2        | 1.4        | 0.2        | 0.03         | 6        |  |
| 0.0000           | 010.0            | 0.0          |             |               |             |            |            |                        |            |              | -          |            |            |            |              |          |  |

|                  |                | 1            | Ł                      |                       |              |            |            |            |            |                  |            |            |            |            | l            |          |
|------------------|----------------|--------------|------------------------|-----------------------|--------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|--------------|----------|
|                  |                |              |                        |                       |              |            |            |            |            |                  |            |            |            |            |              |          |
| EAGLE            | Cu             | Ni           | РЪ                     | Zn                    | Co           | Cd         | Мо         | Ag         | w          | As               | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb  |
| S 3310           | 282.3          | 3.1          | 2.7                    | 9.9                   | 10.9         | 1.4        | 2.0        | 1.3        | 0.2        | 27.4             | 0.2        | 0.6        | 1.1        | 0.2        | 0.03         | 1        |
| S 3311           | 406.8          | 3.4          | 4.5                    | 22.6                  | 18.1         | 1.8        | 2.5        | 1.2        | 0.2        | 71.1             | 0.2        | 0.2        | 1.1        | 0.2        | 0.03         | 1        |
| S 3312           | 71.8           | 10.6         | 6.9                    | 46.2                  | 7.4          | 0.4        | 2.3        | 0.5        | 0.2        | 32.0             | 0.3        | 0.2        | 0.2        | 0.9        | 0.05         | 7<br>2   |
| S 3313           | 46.8           | 8.4          | 5.3                    | 30.8                  | 5.2          | 0.3        | 1.0        | 0.3        | 0.2        | 8.3              | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.4 | 0.03<br>0.06 | 6        |
| S 3314           | 524.4          | 11.8         | 5.5                    | 51.9                  | 21.3         | 2.2<br>0.3 | 2.4<br>1.5 | 0.9<br>0.5 | 0.2<br>0.2 | 228.0<br>12.9    | 0.2        | 0.2        | 0.2        | 0.4        | 0.00         | 8        |
| S 3315           | 42.8<br>67.7   | 8.8<br>12.8  | 7.0<br>7.4             | 33 <i>.</i> 6<br>41.8 | 7.6<br>7.5   | 0.3        | 1.5        | 0.5        | 0.2        | 8.4              | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 2        |
| S 3316<br>S 3317 | 99.4           | 11.7         | 6.4                    | 35.9                  | 9.6          | 0.2        | 1.6        | 0.5        | 0.6        | 11.7             | 0.3        | 0.2        | 0.2        | 0.3        | 0.05         | 7        |
| S 3318           | 61.7           | 8.2          | 7.4                    | 28.5                  | 5.4          | 0.3        | 1.0        | 0.2        | 0.2        | 25.9             | 0.2        | 0.2        | 0.2        | 0.3        | 0.05         | 8        |
| S 3319           | 490.9          | 13.9         | 6.2                    | 62.5                  | 28.6         | 0.6        | 1.8        | 0.7        | 0.2        | 61.7             | 0.2        | 0.2        | 0.2        | 0.3        | 0.05         | 11       |
| S 3320           | 34.0           | 4.1          | 6.0                    | 25.7                  | 4.7          | 0.2        | 1.0        | 0.6        | 0.2        | 14.9             | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 5        |
| S 3321           | 46.7           | 6.0          | 6.0                    | 18.1                  | 2.2          | 0.1        | 0.9        | 0.4        | 0.2        | 8.2              | 0.5        | 0.2        | 0.2        | 0.2        | 0.07         | 12       |
| S 3322           | 29.9           | 8.9          | 6.6                    | 40.9                  | 7.1          | 0.1        | 1.3        | 0.2        | 0.2        | 5.4              | 0.5        | 0.2        | 0.2        | 0.6        | 0.03         | 3        |
| S 3323           | 26.2           | 12.8         | 5.8                    | 43.4                  | 5.6          | 0.3        | 1.1        | 0.2        | 0.2        | 6.8              | 0.2        | 0.2        | 0.2        | 0.4        | 0.05         | 4        |
| S 3324           | 224.1          | 7.8          | 8.1                    | 62.1                  | 9.0          | 0.7        | 3.5        | 0.2        | 0.2        | 53.4             | 0.2        | 0.2        | 0.2        | 0.6        | 0.03         | 6        |
| S 3325           | 5,620.0        | 6.3          | 7.2                    | 43.8                  | 53.4         | 0.6        | 19.0       | 1.4        | 0.2        | 4.6              | 0.2        | 0.2        | 3.4        | 0.4        | 0.03         | 16       |
| S 3326           | 90.5           | 9.7          | 7.3                    | 45.4                  | 9.2          | 0.3        | 3.0        | 0.3        | 0.2        | 11.2             | 0.2        | 0.2        | 0.2        | 0.3        | 0.03         | 7<br>6   |
| S 3327           | 57.9           | 16.6         | 9.6                    | 83.7                  | 9.9          | 0.5        | 1.8        | 0.4        | 0.2        | 11.0             | 0.4        | 0.2        | 0.2        | 0.2<br>0.2 | 0.03<br>0.03 | 8        |
| S 3328           | 37.1           | 13.3         | 9.3                    | 58.1                  | 7.9          | 0.4        | 1.8        | 0.3<br>0.2 | 0.2<br>0.2 | 5.5<br>10.1      | 0.3<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2        | 0.03         | 3        |
| S 3329           | 52.6           | 13.1         | 11.3                   | 69.3                  | 9.5<br>14.8  | 0.4<br>0.2 | 4.5<br>1.7 | 0.2        | 0.2        | 11.3             | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 10       |
| S 3330<br>S 3331 | 209.7<br>106.3 | 30.0<br>17.2 | 23.0<br>9.9            | 62.8<br>77.7          | 14.0         | 0.2        | 2.4        | 0.2        | 0.2        | 12.2             | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8        |
| S 3332           | 184.9          | 17.6         | 5.5<br>7.3             | 81.9                  | 23.2         | 0.4        | 1.6        | 0.4        | 0.2        | 17.6             | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 11       |
| S 3333           | 71.6           | 12.5         | 7.1                    | 144.1                 | 16.2         | 1.0        | 1.2        | 0.5        | 0.2        | 4.9              | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8        |
| S 3334           | 51.7           | 11.2         | 10.6                   | 77.3                  | 12.8         | 0.4        | 2.1        | 0.4        | 0.2        | 9.1              | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8        |
| S 3335           | 51.8           | 13.2         | 6.9                    | 85.3                  | 14.9         | 0.2        | 1.7        | 0.4        | 0.2        | 7.5              | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 8        |
| S 3336           | 107.0          | 13.7         | 9.0                    | 91.1                  | 12.7         | 0.3        | 1.8        | 0.3        | 0.2        | 10. <del>9</del> | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 9        |
| S 3337           | 118.5          | 17.0         | 7.4                    | 99.6                  | 16.6         | 0.2        | 1.3        | 0.4        | 0.2        | 15.7             | 0.5        | 0.2        | 0.2        | 0.3        | 0.11         | 10       |
| S 3338           | 32.0           | 6.2          | 6.9                    | 59.0                  | 12.5         | 0.2        | 1.1        | 0.6        | 0.2        | 6.9              | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 14       |
| S 3339           | 31.7           | 12.5         | 6.7                    | 47.0                  | 6.9          | 0.2        | 1.6        | 0.2        | 0.2        | 11.2             | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 14<br>12 |
| S 3340           | 76.0           | 17.4         | 7.4                    | 69.4                  | 9.3          | 0.3        | 1.7        | 0.3        | 0.2        | 22.8<br>83.2     | 0.2<br>0.7 | 0.2<br>0.2 | 0.8<br>0.2 | 0.2<br>0.2 | 0.03<br>0.03 | 11       |
| S 3341           | 110.2          | 24.6         | 7.3                    | 77.4                  | 17.7         | 0.6<br>0.6 | 2.0<br>2.6 | 0.6<br>0.4 | 0.2<br>0.2 | 03.∠<br>92.0     | 0.7        | 0.2        | 0.2        | 0.2        | 0.03         | 23       |
| S 3342           | 182.9          | 25.7<br>22.0 | 6.0<br>5.4             | 57.0<br>57.4          | 16.9<br>13.5 | 0.6        | 1.8        | 0.4        | 0.2        | 37.7             | 0.3        | 0.2        | 0.2        | 0.2        | 0.03         | 13       |
| S 3343<br>S 3344 | 146.5<br>24.5  | 12.3         | 5.4                    | 38.5                  | 6.9          | 0.4        | 1.5        | 0.3        | 0.2        | 7.1              | 0.2        | 0.2        | 0.2        | 0.6        | 0.03         | 4        |
| S 3345           | 257.4          | 25.2         | 7.8                    | 55.7                  | 15.5         | 0.5        | 2.6        | 0.3        | 0.2        | 60.3             | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 13       |
| S 3346           | 1,680.0        | 22.4         | 44.0                   | 60.5                  | 21.7         | 1.0        | 3.6        | 0.6        | 0.2        | 108.4            | 0.2        | 0.2        | 0.3        | 0.2        | 0.03         | 25       |
| S 3347           | 303.5          | 18.5         | 7.5                    | 55.9                  | 9.5          | 0.2        | 3.7        | 0.3        | 0.2        | 21.1             | 0.5        | 0.2        | 0.2        | 0.2        | 0.03         | 21       |
| S 3349           | 610.5          | 25.6         | 5.7                    | 61.2                  | 11.8         | 0.3        | 2.4        | 0.3        | 0.2        | 12.1             | 0.6        | 0.2        | 0.2        | 0.2        | 0.03         | 9        |
| S 3350           | 43.6           | 16.3         | 6.1                    | 45.1                  | 8.9          | 0.3        | 2.4        | 0.3        | 0.2        | 7.8              | 0.9        | 0.2        | 0.2        | 0.2        | 0.03         | 2        |
| S 3351           | 651.6          | 21.8         | 6.4                    | 54.0                  | 16.0         | 0.2        | 2.4        | 0.5        | 0.2        | 21.7             | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 58       |
| S 3352           | 62.6           | 16.1         | 6.7                    | 52.8                  | 18.0         | 0.3        | 3.9        | 0.4        | 0.2        | 5.2              | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 2        |
| S 3353           | 44.5           | 24.2         | 6.1                    | 55.1                  | 8.7          | 0.2        | 2.0        | 0.3        | 0.2        | 12.3             | 0.6        | 0.2        | 0.2        | 0.2        | 0.03         | 6        |
| S 3354           | 35.2           | 8.2          | 5.9                    | 29.3                  | 6.4          | 0.2        | 2.0        | 0.2        | 0.2        | 5.9              | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 7        |
| S 3355           | 513.5          | 5.8          | 2.2                    | 25.2                  | 3.3          | 1.3        | 3.1        | 0.8        | 0.2        | 4.6              | 0.2        | 0.2<br>0.2 | 2.4<br>0.2 | 0.2<br>0.3 | 0.03<br>0.03 | 1        |
| S 3356           | 11.3           | 4.5          | 7.2                    | 26.7                  | 3.5<br>3.4   | 0.1<br>0.1 | 2.7<br>2.3 | 0.1<br>0.3 | 0.2<br>0.2 | 3.7<br>4.1       | 0.2<br>0.5 | 0.2        | 0.2        | 0.3        | 0.03         | 10       |
| S 3357<br>S 3358 | 23.1<br>120.9  | 6.2<br>16.5  | 6.4<br>12.8            | 23.8<br>55.0          | 3.4<br>11.2  | 0.1        | 2.3<br>3.2 | 0.3<br>1.0 | 0.2        | 13.3             | 0.5        | 0.2        | 0.2        | 0.3        | 0.03         | 11       |
| S 3359           | 67.6           | 7.3          | 5.9                    | 39.9                  | 5.4          | 0.2        | 1.9        | 0.1        | 0.2        | 4.2              | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1        |
| S 3360           | 58.9           | 24.0         | 5. <del>5</del><br>7,4 | 59.6                  | 9.2          | 0.2        | 2.3        | 0.3        | 0.2        | 14.1             | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6        |
| S 3361           | 23.4           | 10.6         | 5.5                    | 32.5                  | 4.3          | 0.2        | 0.9        | 0.2        | 0.2        | 4.1              | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4        |
| S 3362           | 14.9           | 7.3          | 7.0                    | 30.9                  | 4.2          | 0.1        | 1.0        | 0.2        | 0.2        | 4.3              | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 1        |

| <b>h h</b>       |                | 8                        |             |                  |              | •          |            | 8          |            |             |            | L          |            | ħ          |              | A A     |
|------------------|----------------|--------------------------|-------------|------------------|--------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|--------------|---------|
|                  |                |                          |             |                  |              |            |            |            |            |             |            |            |            |            |              |         |
| EAGLE            | Cu             | Ni                       | Pb          | Zn               | Co           | Cd         | Мо         | Ag         | W          | As          | Sb         | Bi         | Se         | Те         | Hg           | Au, ppb |
| S 3363           | 47.7           | 13.5                     | 8.8         | 51.7             | 7.8          | 0.2        | 1.7        | 0.4        | 0.2        | 6.9         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6       |
| S 3364           | 26.1           | 8.2                      | 6.2         | 35.0             | 5.6          | 0.1        | 0.9        | 0.2        | 0.2        | 3.0         | 0.2        | 0.2        | 0.2        | 0.5        | 0.04         | 5       |
| S 3365           | 20.8           | 12.5                     | 7.4         | 40.6             | 6.3          | 0.1        | 1.0        | 0,1        | 0.2        | 5.6         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6       |
| S 3366           | 40.3           | 13.8                     | 8.4         | 40.7             | 7.7          | 0.1        | 1.3        | 0.2        | 0.2        | 5.5         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 4       |
| S 3367           | 110.3          | 27.5                     | 5.5         | 49.9             | 8.1          | 0.1        | 2.0        | 0.2        | 0.2        | 9.1         | 0.3        | 0.2        | 0.2        | 0.2<br>0.2 | 0.03<br>0.03 | 5<br>11 |
| S 3368           | 42.4           | 8.8                      | 8.9         | 18.2             | 3.6          | 0.1        | 0.8        | 0.1        | 0.2<br>0.2 | 1.5<br>6.6  | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2        | 0.03         | 4       |
| S 3369           | 27.2           | 11.3                     | 8.5         | 44.2             | 4.3<br>10.9  | 0.2<br>1.0 | 1.2<br>2.5 | 0.1<br>2.8 | 0.2        | 0.0<br>7.5  | 0.2        | 0.2        | 1.3        | 0.2        | 0.05         | 4       |
| S 3370           | 253.0<br>347.3 | 25.1<br>23.2             | 7.0<br>5.5  | 49.4<br>55.5     | 8.1          | 1.0        | 2.5        | 1.7        | 0.2        | 5.3         | 0.2        | 0.2        | 2.3        | 0.2        | 0.06         | 8       |
| S 3371<br>S 3372 | 136.9          | 26.0                     | 10.6        | 169.7            | 22.9         | 1.7        | 2.2        | 0.9        | 0.2        | 5.3         | 0.2        | 0.2        | 0.7        | 0.2        | 0.03         | 30      |
| S 3373           | 44.4           | 20.0                     | 6.2         | 74.4             | 12.4         | 0.3        | 1.4        | 0.1        | 0.2        | 5.9         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 9       |
| S 3374           | 9.1            | 7.7                      | 6.0         | 24.1             | 3.2          | 0.1        | 0.8        | 0.1        | 0.2        | 2.5         | 0.2        | 0.2        | 0.2        | 0.4        | 0.04         | 2       |
| S 3375           | 23.6           | 25.3                     | 5.9         | 54.5             | 7.0          | 0.2        | 1.6        | 0.2        | 0.2        | 16.2        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6       |
| S 3376           | 66.3           | 2.3                      | 2.9         | 7.2              | 1.7          | 0.3        | 2.3        | 0.1        | 0.2        | 7.4         | 0.2        | 0.6        | 0.9        | 0.5        | 0.03         | *       |
| S 3377           | 36.9           | 15.9                     | 6.1         | 40.1             | 7.5          | 0.2        | 1.4        | 0.3        | 0.2        | 7.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 9       |
| S 3378           | 28.4           | 19.8                     | 7.0         | 50.3             | 6.9          | 0.2        | 1.4        | 0.2        | 0.2        | 7.9         | 0.2        | 0.2        | 0.2        | 0.2        | 0.06         | 5       |
| S 3379           | 27.6           | 30.1                     | 5.4         | 50.2             | 6.0          | 0.2        | 1.4        | 0.2        | 0.2        | 9.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 1       |
| S 3380           | 173.0          | 30.4                     | 5.9         | 52.8             | 25.9         | 0.1        | 1.3        | 0.5        | 0.2        | 17.5        | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 11<br>6 |
| S 3381           | 11.0           | 10.2                     | 6.0         | 26.9             | 2.7          | 0.1        | 1.5        | 0.1        | 0.2<br>0.2 | 6.8<br>3.5  | 0.2<br>0.3 | 0.2<br>0.2 | 0.2<br>0.2 | 0.2<br>0.2 | 0.03<br>0.04 | 2       |
| S 3382           | 26.1           | 9.4                      | 6.4         | 30.3             | 4.4          | 0.2        | 1.0        | 0.1<br>0.5 | 0.2        | 10.2        | 0.3        | 0.2        | 0.2        | 0.2        | 0.04         | 6       |
| S 3383           | 304.4          | 41.8<br>52.3             | 8.3<br>9.0  | 64.4<br>72.5     | 16.6<br>13.1 | 0.5<br>0.9 | 1.9<br>1.6 | 0.5        | 0.2        | 9.7         | 0.2        | 0.2        | 1.2        | 0.2        | 0.03         | 1       |
| S 3384<br>S 3385 | 120.3<br>189.7 | 52.5<br>39.1             | 9.0<br>16.7 | 66.9             | 13.1         | 0.3        | 1.4        | 0.0        | 0.2        | 8.8         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 3       |
| S 3386           | 4,480.0        | 19.3                     | 9.8         | 82.4             | 28.9         | 1.0        | 1.5        | 1.8        | 0.2        | 8.4         | 0.2        | 0.2        | 2.4        | 0.2        | 0.11         | 16      |
| S 3387           | 164.2          | 11.7                     | 6.6         | 93.8             | 17.4         | 0.3        | 1.8        | 0.3        | 0.2        | 6.4         | 0.2        | 0.4        | 0.9        | 0.2        | 0.04         | 1       |
| S 3388           | 679.6          | 39.8                     | 11.1        | 92.6             | 24.1         | 0.5        | 2.2        | 0.6        | 0.2        | 11.4        | 0.2        | 0.2        | 0.7        | 0.2        | 0.03         | 1       |
| S 3389           | 28.7           | 6.7                      | 5.7         | 48.9             | 5.3          | 0.3        | 1.0        | 0.2        | 0.2        | 2.8         | 0.2        | 0.4        | 0.2        | 0.4        | 0.03         | *       |
| S 3390           | 22.5           | 6.8                      | 6.3         | 47.7             | 6.2          | 0.2        | 1.7        | 0.1        | 0.2        | 1.8         | 0.2        | 0.3        | 0.3        | 0.2        | 0.03         | 14      |
| S 3391           | 14.5           | 12.8                     | 5.9         | 27.9             | 3.5          | 0.1        | 1.6        | 0.1        | 0.2        | 9.9         | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 8       |
| S 3392           | 64.0           | 12.9                     | 8.1         | 75.9             | 12.3         | 0.2        | 3.0        | 0.5        | 0.2        | 9.8         | 0.4        | 0.3        | 0.2        | 0.8        | 0.03         | 36      |
| S 3393           | 50.8           | 7.9                      | 9.4         | 26.6             | 3.3          | 0.1        | 3.1        | 0.1        | 0.2        | 5.8         | 0.5<br>0.6 | 0.3        | 0.2        | 0.4<br>0.2 | 0.08<br>0.03 | 22<br>8 |
| S 3394           | 122.6          | 15.0                     | 15.4        | 60.2             | 11.1         | 0.1        | 1.9        | 0.6<br>0.3 | 0.2<br>0.2 | 5.6<br>10.1 | 0.8        | 0.2<br>0.4 | 0.2<br>0.2 | 0.2        | 0.05         | 6       |
| S 3395           | 83.8           | 19.5                     | 11.9        | 71.6<br>58.7     | 10.2<br>9.1  | 0.2<br>0.1 | 2.2<br>1.5 | 0.3        | 0.2        | 6.1         | 0.7        | 0.4        | 0.2        | 0.2        | 0.03         | 10      |
| S 3396<br>S 3397 | 39.3<br>77.9   | 13.1<br>18.0             | 7.5<br>9.1  | 78.3             | 14.6         | 0.1        | 2.0        | 0.1        | 0.2        | 7.6         | 0.2        | 0.4        | 0.2        | 0.2        | 0.10         | 9       |
| S 3398           | 81.1           | 12.0                     | 7.9         | 120.1            | 18.2         | 0.2        | 1.6        | 0.4        | 0.2        | 4.9         | 0.2        | 0.2        | 0.4        | 0.5        | 0.07         | 6       |
| S 3399           | 54.2           | 21.5                     | 6.9         | 83.4             | 8.9          | 0.3        | 2.6        | 0.4        | 0.2        | 12.0        | 0.7        | 0.5        | 0.2        | 0.4        | 0.03         | 4       |
| S 3400           | 26.1           | 9.2                      | 6.9         | 52.2             | 7.1          | 0.1        | 0.9        | 0.1        | 0.2        | 2.6         | 0.2        | 0.3        | 0.2        | 0.5        | 0.03         | 8       |
| S 3401           | 62.5           | 8.1                      | 7.1         | 55.8             | 9.7          | 0.2        | 3.3        | 0.3        | 0.2        | 4.0         | 0.2        | 0.2        | 0.2        | 0.4        | 0.03         | 8       |
| S 3402           | 40.8           | 14.1                     | 8.9         | 69. <del>9</del> | 10.1         | 0.4        | 1.2        | 0.3        | 0.2        | 6.4         | 0.2        | 0.5        | 1.3        | 0.6        | 0.03         | 6       |
| S 3403           | 117.4          | 22.4                     | 6.8         | 76.2             | 13.2         | 0.2        | 1.6        | 0.5        | 0.2        | 8.1         | 0.3        | 0.4        | 0.2        | 0.2        | 0.03         | 7       |
| S 3404           | 60.1           | 9.4                      | 8.8         | 59.1             | 7.4          | 0.2        | 2.0        | 0.4        | 0.2        | 5.7         | 0.2        | 1.0        | 0.4        | 0.5        | 0.03         | 5       |
| S 3405           | 265.8          | 15.3                     | 6.1         | 47.9             | 9.9          | 1.0        | 2.3        | 1.3        | 0.2        | 6.0         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 20      |
| S 3406           | 89.3           | 33.6                     | 7.1         | 88.2             | 14.8         | 0.3        | 1.4        | 0.4        | 0.2        | 9.2         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03<br>0.03 | 5       |
| S 3407           | 179.6          | 28.8                     | 7.2         | 106.3            | 10.5         | 0.4        | 1.6        | 0.4        | 0.2        | 30.2        | 0.2        | 0.3        | 0.2<br>0.5 | 0.2<br>0.4 | 0.03         | 2       |
| S 3408           | 348.4          | 31.7                     | 7.1         | 76.9<br>53.0     | 16.3         | 0.8<br>0 1 | 2.3        | 1.1        | 0.2<br>0.2 | 8.6<br>8.9  | 0.2<br>0.2 | 0.2<br>0.2 | 0.5        | 0.4        | 0.03         | 3<br>14 |
| S 3409           | 236.4<br>118.0 | 18.8<br>23. <del>9</del> | 6.3<br>7.3  | 53.0<br>50.7     | 12.5<br>8.1  | 0.1<br>0.1 | 1.2<br>1.6 | 0.2<br>0.2 | 0.2        | 9.0         | 0.2        | 0.2        | 0.2        | 0.5        | 0.03         | 4       |
| S 3410<br>S 3411 | 213.1          | 23. <del>9</del><br>24.8 | 6.7         | 68.0             | 11.6         | 0.1        | 1.0        | 0.2        | 0.2        | 7.1         | 0.2        | 0.2        | 0.2        | 0.2        | 0.03         | 6       |
| S 3411<br>S 3412 | 101.3          | 24.8<br>19.2             | 6.3         | 48.1             | 9.0          | 0.2        | 1.0        | 0.2        | 0.2        | 5.0         | 0.2        | 0.2        | 0.2        | 0.7        | 0.03         | 2       |
| S 3412           | 1,620.0        | 35.8                     | 9.3         | 72.4             | 15.4         | 1.6        | 1.6        | 1.3        | 0.2        | 10.1        | 0.2        | 0.2        | 1.0        | 0.3        | 0.03         | 1       |
| S 3414           | 229.8          | 34.6                     | 6.7         | 53.3             | 14.9         | 0.1        | 2.4        | 0.3        | 0.2        | 10.1        | 0.7        | 0.2        | 1.2        | 0.2        | 0.12         | 2       |

| <b>L L</b>      |          | 8     | A       |         |         |        | <b>A</b> |        |       |         | A     |       |       |       | 8     | <b>b b</b> | k |
|-----------------|----------|-------|---------|---------|---------|--------|----------|--------|-------|---------|-------|-------|-------|-------|-------|------------|---|
| EAGLE           | Cu       | Ní    | РЬ      | Zn      | Co      | Cd     | Мо       | Ag     | w     | As      | Sb    | Bi    | Se    | Те    | Hg    | Au, ppb    |   |
|                 | •••      |       |         |         |         |        |          | _      |       |         |       |       |       |       |       |            |   |
| S 3415          | 85.0     | 25.8  | 6.1     | 62.9    | 8.7     | 0.2    | 1.2      | 0.2    | 0.2   | 8.2     | 0.2   | 0.4   | 0.2   | 0.5   | 0.03  | 4          |   |
| S 3416          | 214.8    | 25.0  | 7.5     | 88.4    | 11.8    | 0.2    | 1.8      | 0.2    | 0.2   | 8.2     | 0.4   | 0.2   | 0.4   | 0.2   | 0.03  | 4          |   |
| S 3417          | 34.6     | 10.8  | 7.1     | 84.3    | 10.4    | 0.1    | 1.6      | 0.3    | 0.2   | 4.9     | 0.7   | 0.7   | 0.2   | 0.6   | 0.03  | 5          |   |
| S 3418          | 75.6     | 12.6  | 7.9     | 86.5    | 15.2    | 0.1    | 2.5      | 0.1    | 0.2   | 9.0     | 0.7   | 0.9   | 0.2   | 0.5   | 0.03  | 7          |   |
| S 3419          | 43.5     | 6.8   | 7.4     | 45.9    | 7.3     | 0.1    | 1.1      | 0.2    | 0.2   | 2.7     | 0.2   | 0.2   | 0.2   | 0.7   | 0.03  | 3          |   |
| S 3420          | 642.9    | 9.3   | 10.8    | 87.7    | 25.3    | 0.1    | 4.8      | 0.1    | 0.2   | 18.1    | 1.1   | 1.9   | 0.2   | 0.5   | 0.03  | 32         |   |
| S 3421          | 49.0     | 8.6   | 9.5     | 41.5    | 6.9     | 0.3    | 2.3      | 0.8    | 0.2   | 5.0     | 0.2   | 0.4   | 0.2   | 0.8   | 0.03  | 10         |   |
| S 3422          | 122.3    | 18.1  | 12.5    | 67.2    | 12.1    | 0.1    | 2.0      | 0.2    | 0.2   | 6.9     | 0.8   | 0.3   | 0.2   | 0.2   | 0.03  | 8          |   |
| S 3423          | 88.8     | 16.5  | 9.7     | 59.7    | 10.5    | 0.2    | 1.8      | 0.4    | 0.2   | 6.0     | 1.2   | 0.3   | 0.6   | 0.2   | 0.05  | 9          |   |
| S 3424          | 105.2    | 15.4  | 9.5     | 48.1    | 9.7     | 0.2    | 1.6      | 0.3    | 0.2   | 6.9     | 0.9   | 0.2   | 0.2   | 0.4   | 0.06  | 12         |   |
| S 3425          | 113.3    | 16.0  | 8.6     | 62.5    | 9.9     | 0.3    | 2.2      | 0.3    | 0.2   | 11.0    | 0.2   | 0.2   | 0.2   | 0.3   | 0.06  | 8          |   |
| S 3426          | 47.4     | 8.7   | 7.2     | 36.1    | 7.1     | 0.1    | 1.3      | 0.2    | 0.2   | 3.4     | 0.6   | 0.2   | 0.2   | 0.3   | 0.03  | 10         |   |
| S 3427          | 49.5     | 17.7  | 6.4     | 41.6    | 7.4     | 0.1    | 1.7      | 0.1    | 0.2   | 6.1     | 0.7   | 0.2   | 0.2   | 0.2   | 0.04  | 8          |   |
| S 3428          | 25.7     | 8.5   | 7.6     | 29.0    | 3.7     | 0.1    | 0.9      | 0.1    | 0.2   | 1.9     | 0.6   | 0.2   | 0.2   | 0.2   | 0.03  | 12         |   |
| S 3429          | 59.5     | 15.4  | 6.2     | 38.5    | 6.9     | 0.2    | 1.3      | 0.4    | 0.2   | 7.0     | 0.3   | 0.2   | 0.8   | 0.4   | 0.03  | 16         |   |
| S 3430          | 118.7    | 13.2  | 8.4     | 31.1    | 5.3     | 0.3    | 1.1      | 0.6    | 0.2   | 2.0     | 0.5   | 0.2   | 0.8   | 0.2   | 0.03  | 2          |   |
| S 3431          | 106.0    | 20.6  | 14.5    | 126.3   | 10.3    | 0.3    | 1.4      | 0.8    | 0.2   | 15.4    | 0.2   | 1.3   | 0.2   | 0.7   | 0.03  | 12         |   |
| S 3432          | 84.0     | 29.8  | 8.0     | 57.7    | 8.7     | 0.2    | 1.5      | 0.2    | 0.2   | 10.1    | 0.5   | 0.5   | 0.2   | 0.2   | 0.09  | 6          |   |
| S 3433          | 54.1     | 23.7  | 8.1     | 49.2    | 7.3     | 0.3    | - 1.5    | 0.4    | 0.2   | 8.8     | 0.2   | 0.5   | 0.2   | 0.7   | 0.08  | 3          |   |
| S 3434          | 88.7     | 19.6  | 6.5     | 43.5    | 7.4     | 0.1    | 1.4      | 0.3    | 0.2   | 9.1     | 1.0   | 0.2   | 0.2   | 0.2   | 0.04  | 4          |   |
| S 3435          | 170.3    | 25.8  | 5.1     | 69.2    | 24.9    | 0.5    | 1.4      | 0.4    | 0.2   | 78.2    | 0.8   | 0.2   | 0.2   | 0.2   | 0.05  | 4          |   |
| S 3436          | 207.2    | 28.8  | 12.5    | 78.6    | 10.7    | 0.2    | 2.0      | 0.5    | 0.2   | 12.5    | 1.6   | 0.4   | 0.2   | 0.2   | 0.10  | 12         |   |
| S 3437          | 169.0    | 20.9  | 8.5     | 72.6    | 11.2    | 0.1    | 1.4      | 0.4    | 0.2   | 5.3     | 0.2   | 0.3   | 0.2   | 0.2   | 0.03  | 10         |   |
| S 3438          | 167.3    | 25.5  | 6.6     | 55.5    | 8.6     | 0.1    | 1.4      | 0.4    | 0.2   | 5.8     | 0.5   | 0.2   | 0.2   | 0.2   | 0.11  | 8          |   |
| S 3439          | 93.1     | 24.3  | 8.3     | 66.2    | 7.6     | 0.2    | 1.3      | 0.3    | 0.2   | 7.1     | 1.2   | 0.2   | 0.2   | 0.2   | 0.03  | 4          |   |
| S 3440          | 95.8     | 35.0  | 6.9     | 67.1    | 9.0     | 0.2    | 1.5      | 0.4    | 0.2   | 10.4    | 1.1   | 0.2   | 0.5   | 0.2   | 0.08  | 6          |   |
| S 3441          | 202.0    | 47.7  | 7.1     | 77.0    | 11.3    | 0.2    | 1.6      | 0.4    | 0.2   | 10.0    | 1.0   | 0.2   | 0.2   | 0.2   | 0.03  | 2          |   |
| S 3442          | 398.2    | 30.0  | 7.2     | 69.0    | 13.8    | 0.5    | 1.3      | 0.8    | 0.2   | 6.3     | 0.2   | 0.2   | 1.0   | 0.2   | 0.03  | 6          |   |
| S 3443          | 40.2     | 29.5  | 6.7     | 60.2    | 7.7     | 0.3    | 1.2      | 0.3    | 0.2   | 12.8    | 0.5   | 0.5   | 0.2   | 0.6   | 0.03  | 2          |   |
| S 3444          | 25.1     | 23.5  | 6.8     | 46.4    | 5.8     | 0.2    | 0.9      | 0.2    | 0.2   | 10.1    | 0.7   | 0.2   | 0.2   | 0.6   | 0.06  | 6          |   |
| S 3445          | 44.9     | 23.9  | 5.7     | 48.0    | 6.5     | 0.3    | 1.4      | 0.4    | 0.2   | 7.7     | 0.2   | 0.5   | 0.2   | 0.2   | 0.07  | 4          |   |
| S 3446          | 70.0     | 33.8  | 6.1     | 60.4    | 10.3    | 0.2    | 1.5      | 0.2    | 0.2   | 9.2     | 0.6   | 0.2   | 0.7   | 0.2   | 0.03  | 6          |   |
| Soils           | Cu       | Ni    | Pb      | Zn      | Co      | Cd     | Мо       | Ag     | w     | As      | Sb    | Bi    | Se    | Те    | Hg    | Au, ppb    |   |
| Soils Statistic |          |       |         |         | 4 4 - 0 | 4 4 70 | 4 470    | 4 4 70 | 4 470 | 4 470   | 4 470 | 1,176 | 1,176 | 1,176 | 1,176 | 1,142      |   |
| Count           |          | 1,176 | 1,176   | 1,176   | 1,176   | 1,176  | 1,176    | 1,176  | 1,176 | 1,176   | 1,176 |       | •     | •     |       |            |   |
| Меал            |          | 20.5  | 15.3    | 92.5    | 11.6    | 1.0    | 2.0      | 0.5    | 0.3   | 22.3    | 0.5   | 0.3   | 0.4   | 0.3   | 0.05  | 12.1       |   |
| s.d.            | 781.9    | 18.0  | 111.6   | 288.2   | 12.5    | 4.1    | 1.7      | 0.8    | 0.7   | 85.9    | 1.3   | 0.3   | 0.7   | 0.3   | 0.35  | 41.2       |   |
| Maximum         | 15,800.0 | 171.8 | 3,680.0 | 7,170.0 | 163.2   | 101.6  | 25.1     | 15.9   | 13.2  | 2,134.6 | 39.1  | 2.5   | 12.5  | 2.6   | 12.17 | 1,000      |   |
| Minimum         |          | 1.3   | 0.8     | 4.7     | 0.2     | 0.1    | 0.1      | 0.1    | 0.2   | 0.2     | 0.2   | 0.2   | 0.2   | 0.2   | 0.03  | 1          |   |
| Mean + 2 s.d.   | 1,769.3  | 56.6  | 238.4   | 669.0   | 36.5    | 9.3    | 5.4      | 2.2    | 1.8   | 194.1   | 3.0   | 0.8   | 1.8   | 0.9   | 0.76  | 94.5       |   |

|     | •           |       | 8     | 1        |       |       |       | ٨     |       |         |       |       | <b>)</b> (   | L.    | •          | •       | •        |
|-----|-------------|-------|-------|----------|-------|-------|-------|-------|-------|---------|-------|-------|--------------|-------|------------|---------|----------|
| EA  | GLE         | Cu    | Ni    | РЬ       | Zn    | Co    | Cđ    | Мо    | Ag    | W       | As    | Sb    | Bi           | Se    | Te         | Hg      | Au, ppb  |
| Co  | relation Co |       |       |          |       |       |       |       |       |         |       |       | <b>D</b> : 1 |       | <u>т</u> - | Lie I   | (Au nob) |
|     |             | Cu    | Ni    | Pb       | Zn    | Co    | Cd    | Mo    | Ag    | W       | As    | Sb    | Bi           | Se    | Te         | Hg      | Au, ppb  |
|     | Cu          | 1.000 | 0.139 | 0.020    | 0.048 | 0.659 | 0.066 | 0.299 | 0.341 | (0.033) | 0.056 | 0.033 | (0.045)      | 0.116 | 0.144      | 0.011   | 0.491    |
|     | Ni          |       | 1.000 | 0.093    | 0.228 | 0.209 | 0.254 | 0.172 | 0.351 | (0.038) | 0.200 | 0.108 | 0.096        | 0.183 | 0.044      | (0.010) | <u> </u> |
|     | Pb          |       |       | 1.000    | 0.556 | 0.065 | 0.606 | 0.044 | 0.309 | (0.010) | 0.489 | 0.394 | 0.008        | 0.053 | 0.111      | (0.004) | 0.105    |
|     | Zn          |       |       |          | 1.000 | 0.180 | 0.892 | 0.147 | 0.613 | 0.028   | 0.823 | 0.797 | 0.056        | 0.070 | 0.109      | 0.007   | 0.168    |
|     | Co          |       |       |          |       | 1.000 | 0.141 | 0.429 | 0.402 | (0.055) | 0.189 | 0.141 | (0.067)      | 0.020 | 0.044      | 0.033   | 0.359    |
|     | Ĉd          |       |       |          |       |       | 1.000 | 0.160 | 0.696 | 0.028   | 0.774 | 0.769 | 0.112        | 0.197 | 0.130      | (0.005) | 0.157    |
|     | Mo          |       |       |          |       |       |       | 1.000 | 0.357 | (0.034) | 0.184 | 0.132 | 0.058        | 0.206 | 0.048      | 0.000   | 0.222    |
|     | Ag          |       |       |          |       |       |       | 1     | 1.000 | 0.018   | 0.628 | 0.611 | 0.144        | 0.304 | 0.095      | 0.008   | 0.366    |
|     | Ŵ           |       |       |          |       |       |       |       |       | 1.000   | 0.024 | 0.005 | 0.114        | 0.009 | (0.018)    | 0.003   | 0.036    |
|     | As          |       |       |          |       |       | - 1   |       |       |         | 1.000 | 0.815 | 0.077        | 0.089 | 0.068      | (0.007) | 0.230    |
|     | Sb          |       |       |          |       |       |       |       |       |         |       | 1.000 | 0.029        | 0,130 | 0.075      | (0.007) | 0.170    |
|     | Bi          |       |       |          |       |       |       |       |       |         |       |       | 1.000        | 0.538 | 0.070      | (0.013) | 0.019    |
| - H | Se          |       |       | <u> </u> |       |       |       | ł     |       |         |       |       |              | 1.000 | 0.045      | (0.009) | 0.041    |
|     |             |       |       |          |       |       |       |       |       |         |       |       |              | 1.000 | 1.000      | (0.015) |          |
|     | Te          |       |       |          | [     |       |       |       |       |         |       |       |              |       | 1.000      | 1.000   | (0.011)  |
|     | Hg          |       |       |          |       |       | ·     |       |       |         |       | · _   |              |       |            |         | 1.000    |
|     | Au, ppb     |       |       |          |       |       |       |       |       |         |       |       |              |       |            |         | 1.000    |

| <b>L</b>      |       | •    |          | 8           | 8           |            | <b>b</b>   | 1          |            | <b>C</b>     |     |     |     | 8   |      | <b>k k</b> |
|---------------|-------|------|----------|-------------|-------------|------------|------------|------------|------------|--------------|-----|-----|-----|-----|------|------------|
| EAGLE         | Си    | Ni   | Pb       | Zn          | Co          | Cd         | Мо         | Ag         | w          | As           | Sb  | Bi  | Se  | Те  | Hg   | Au, ppb    |
|               |       |      | <u> </u> | <b>60 0</b> | 45.0        |            | 1.6        | 0.3        | 0.2        | 8.2          | 0.5 | 0.2 | 0.2 | 0.2 | 0.04 | 1          |
| T 1014        | 165.0 | 36.0 | 6.5      | 60.3        | 15.2        | 0.4        | 1.6        |            | 0.2        |              | 0.5 | 0.2 | 0.2 | 0.2 | 0.04 | ' <u>.</u> |
| T 1015        | 54.8  | 44.1 | 21.8     | 110.1       | 12.1        | 1.0        | 1.1        | 0.4        | 0.2<br>0.2 | 35.9<br>39.9 | 0.2 | 0.2 | 0.2 | 0.2 | 0.03 | *          |
| T 1016        | 80.6  | 41.0 | 17.4     | 140.1       | 15.5        | 1.5        | 1.8<br>4.3 | 0.4<br>0.9 | 0.2        | 39.9<br>20.9 | 0.4 | 0.2 | 3.1 | 0.2 | 0.03 | *          |
| T 1017        | 199.7 | 12.3 | 4.6      | 63.2        | 13.7        | 1.4        | 4.3<br>2.1 | 0.9        | 0.2        | 20.9<br>11.8 | 0.2 | 0.2 | 1.3 | 0.2 | 0.03 | *          |
| T 1018        | 389.3 | 16.4 | 5.5      | 63.1        | 13.8<br>9.3 | 0.9<br>0.8 | 1.6        | 0.4        | 0.2        | 7.2          | 0.2 | 0.2 | 0.8 | 0.2 | 0.03 | *          |
| T 1019        | 217.2 | 11.9 | 4.3      | 47.5        |             | 0.8        | 3.8        | 0.4        | 0.2        | 33.9         | 0.2 | 0.3 | 0.8 | 0.2 | 0.03 | *          |
| T 1020        | 249.5 | 23.9 | 8.7      | 111.5       | 28.4        |            | 5.6<br>6.5 | 0.4<br>1.3 | 0.2        | 33.9<br>71.9 | 0.2 | 0.2 | 2.1 | 0.2 | 0.03 | 20         |
| T 1021        | 451.2 | 15.9 | 15.4     | 90.5        | 25.0        | 2.6        |            |            | 0.2        |              | 0.4 | 0.2 | 2.1 | 0.2 | 0.03 | 20 *       |
| T 1022        | 227.3 | 15.4 | 6.8      | 81.3        | 12.7        | 1.5        | 2.1        | 0.9        | 0.2        | 21.7<br>7.8  | 0.4 | 0.2 | 1.0 | 0.2 | 0.03 |            |
| T 1023        | 144.4 | 16.4 | 6.6      | 46.5        | 10.1        | 0.4        | 1.6        | 0.4        | 0.2        | 7.8          | 0.2 | 0.2 | 1.0 | 0.2 | 0.03 |            |
| Statistics:   | Cu    | Ni   | Pb       | Zn          | Co          | Cd         | Мо         | Ag         | w          | As           | Sb  | Bi  | Se  | Те  | Hg   | Au, ppb    |
| Count         | 10    | 10   | 10       | 10          | 10          | 10         | 10         | 10         | 10         | 10           | 10  | 10  | 10  | 10  | 10   | 2          |
| Mean          | 217.9 | 23.3 | 9.8      | 81.4        | 15.6        | 1.2        | 2.7        | 0.6        | 0.2        | 25.9         | 0.3 | 0.2 | 1.2 | 0.2 | 0.04 | 10.5       |
| s.d.          | 117.8 | 11.7 | 5.8      | 29.6        | 5.9         | 0.6        | 1.6        | 0.3        | 0.0        | 19.3         | 0.1 | 0.0 | 1.0 | 0.0 | 0.01 | 9.5        |
| Maximum       | 451.2 | 44.1 | 21.8     | 140.1       | 28.4        | 2.6        | 6.5        | 1.3        | 0.2        | 71.9         | 0.5 | 0.3 | 3.1 | 0.2 | 0.07 | 20         |
| Minimum       | 54.8  | 11.9 | 4.3      | 46.5        | 9.3         | 0.4        | 1.1        | 0.3        | 0.2        | 7.2          | 0.2 | 0.2 | 0.2 | 0.2 | 0.03 | 1          |
| Mean + 2 s.d. | 453.6 | 46.7 | 21.4     | 140.5       | 27.4        | 2.5        | 5.9        | 1.2        | 0.2        | 64.4         | 0.5 | 0.3 | 3.3 | 0.2 | 0.06 | 29.5       |

Appendix 4

-----

**Geophysical Report** 

## ELECTROMAGNETIC AND MAGNETOMETER SURVEYS

Eagle Property, Fort St. James, B.C.

Submitted to:

Birch Mountain Resources Ltd. Calgary, Alberta

Submitted by:

Associated Mining Consultants Ltd.





1401, 910 - 7 Avenue S.W.: Calgary, Aiberta, Canada, T2P 3N8 Tel: (403) 264-9496, Fax: (403) 269-7640

> File: 96PG76 September 18, 1996

BIRCH MOUNTAIN RESOURCES LTD. 3100, 205 Fifth Avenue S.W. Calgary, Alberta T2P 2V7

Attention: Val Pratico, P.Geol.

Dear Val

Associated Mining Consultants Ltd. (AMCL) is pleased to submit the following report entitled:

Electromagnetic and Magnetometer Surveys -Eagle Property, Fort St. James, B.C.

We would like to express our thanks to Birch Mountain Resources Ltd. for the opportunity to provide our services in relation to this project.

Yours truly ASSOCIATED MINING CONSULTANTS LTD.

Mark Bowman, P.Geoph. Senior Geophysicist

MB/mlh

## TABLE OF CONTENTS

Letter of Transmittal Table of Contents

| 1.0 | INTRODUCTION                                                                        | 1           |
|-----|-------------------------------------------------------------------------------------|-------------|
| 2.0 | GEOLOGY                                                                             | 2           |
| 3.0 | SURVEY GRID DESCRIPTION                                                             | 3           |
| 4.0 | METHOD<br>4.1 Horizontal Loop Electromagnetics (HLEM)<br>4.2 Total Field Magnetics  | 4<br>4<br>4 |
| 5.0 | RESULTS<br>5.1 Horizontal Loop Electromagnetics (HLEM)<br>5.2 Total Field Magnetics | 6<br>6<br>8 |
| 6.0 | CONCLUSIONS AND RECOMMENDATIONS                                                     | 10          |
| 7.0 | BIBLIOGRAPHY                                                                        | 11          |

| Electromagnetic and Magnetometer Surveys - Eagle Property, Fort St. James, B.C. | · 96PG76 |
|---------------------------------------------------------------------------------|----------|
| Birch Mountain Resources Ltd.                                                   | Page 1   |

## 1.0 INTRODUCTION

This report presents the results of a horizontal loop electromagnetic survey and total field magnetometer survey at the Birch Mountain Resources Ltd. Eagle Property bordering Tchentlo Lake, in the vicinity of Fort St. James, British Columbia. Performed between July 13 and August 5, 1996, the objective of the geophysical surveys was to detect and map the location of mineralised zones for correlation with base or precious metal exploration targets.

A Very Low Frequency (VLF) Electromagnetic survey was to be performed concurrently with the magnetometer survey. However, initial testing revealed that the resulting data would be of relatively poor quality and did not justify the additional acquisition time that would be required. In addition, the VLF data set would be essentially duplicated by results of the HLEM survey.

All work for this project was undertaken in accordance with Associated Mining Consultants Ltd.'s proposal dated June 12, 1996 (AMP 738).

| Electromagnetic and Magnetometer Surveys - Eagle Property, Fort St. James, B.C. | 96PG76 |
|---------------------------------------------------------------------------------|--------|
| Birch Mountain Resources Ltd.                                                   | Page 2 |

## 2.0 GEOLOGY

The area surrounding Fort St. James in central British Columbia lies within the interior physiographic system of the Canadian Cordillera. The sedimentary and volcanic strata range in age from late Proterozoic to Oligocene or younger. These strata provide evidence of several periods of crustal disturbance followed by uplift and erosion.

The Eagle property, located directly north of Tchentlo Lake, is dominated by the Omineca intrusions with wedges of the Takla group to the west, adjacent to the Pinchi Fault zone. The Omineca intrusions are numerous bodies of intrusive rocks, of Upper Jurassic or Lower Cretaceous age, that are exposed in the Omineca Mountains (Armstrong, 1965). The Pinchi Fault zone, developed in post-Paleocene time, is one of the major fault zones in the Rocky Mountain Trench. It stretches northwest from Fort St. James approximately two hundred kilometres towards the Yukon Territory.

The Takla group occupies wedges to the west of the Omineca intrusions at Tchentlo Lake. It consists of a conformable succession of interbedded volcanic and lesser sedimentary rocks ranging in age from Upper Triassic to Upper Jurassic. Along the northeast margin of the Pinchi Fault zone (close to the Eagle property), the Takla group is represented by Upper Triassic sedimentary rocks. These consist mainly of interbedded black argillites, brown siltstones, and shales which exhibit slaty cleavage and brittle, concentric folding close to the Pinchi fault trace. As well, andesitic tuffs and breccias occur along the western boundary near Tchentlo Lake.

Studies to determine local petrology are on-going. Results were not made available for inclusion in this report.

# 3.0 SURVEY GRID DESCRIPTION

The survey grid was established at the site by an independent line cutting and survey crew retained directly by Birch Mountain Resources Ltd.. Initially, two grids were established. The first, or main grid, consisted of a 4 kilometre baseline oriented at an azimuth of 325° along station 4000E. Five survey lines, oriented perpendicular to the baseline at 100 metre intervals, extended 400 metres west and 500 metres east of the baseline in the southern region of the grid area. In the northern region of the grid, five survey lines oriented perpendicular to the baseline extended up to 1100 metres east of the baseline.

The baseline of the second grid (Gibson Grid), located along station 1675E, was also oriented at an azimuth of 325°. Seven perpendicular survey lines, each 1000 metres in length, were centred at 100 metre intervals along the baseline.

Preliminary results of the geophysical surveys were made available to Birch Mountain Resources Ltd. personnel as the surveys progressed. Based on these data, the survey grids were expanded to define the extent of anomalous geophysical responses. Grid expansion included infill lines between those pre-existing at the northern and southern extent of the main grid, the extension of the main grid 300 metres to the north and 100 metres to the south, and five lines extending 2000 metres between the main grid and the Gibson Grid. In addition, Line 3500N was extended 2000 metres to the west of the baseline in the vicinity of a known geochemical anomaly.

# 4.0 METHOD

A brief review of the geophysical methods employed in this study are presented as follows:

# 4.1 Horizontal Loop Electromagnetics (HLEM)

The HLEM method induces eddy current flow in the subsurface by means of a time varying magnetic field imparted by a magnetic dipole transmitter. The eddy current flow, in turn, induces a secondary magnetic field which is sensed by a receiver dipole. The magnitude of the secondary field is largely dependent upon the electrical properties of the subsurface. Two perpendicular vector components of the secondary field (in-phase and quadrature components) are measured to determine the location and orientation of subsurface conductive features.

HLEM instrumentation design enables both variable transmitter-receiver coil spacing and operating frequencies, resulting in expandable exploration depths in addition to promoting optimal transmitterconductor coupling. The use of multiple operating frequencies may also result in higher resolution in complex conductive zones, aid interpretation within geologically noisy environments, and enable the determination of overburden resistivities.

The objective of the HLEM survey within the present study was to identify subsurface conductive zones indicative of local mineralisation. Known mineralisation associated with the target, including copper, galena, magnetite and pyrite, generally exhibits conductivities several orders of magnitude greater than the host rock, consisting largely of granite and granodiorite.

Four HLEM survey data sets, at operating frequencies of 1760, 3520, 7060, and 14080 Hz. were collected using the APEX MaxMin I-8 portable EM system. A transmitter-receiver coil spacing of 50 metres was maintained within those regions where evidence of mineralisation existed at surface. As conductor strength diminished away from these regions, the transmitter-receiver coil separation was expanded to 100 metres to increase exploration depth. For steeply dipping, highly conductive dike-like conductive zones, effective exploration depths are in the order of 0.7 times the transmitter-receiver coil separation distance.

HLEM data were acquired at 12.5 and 25 metre station intervals using the 50 and 100 metre transmitter-receiver separations respectively. Survey lines were oriented northeast-southwest and spaced 100 metres apart.

# 4.2 Total Field Magnetics

Variations within the earth's magnetic field, as measured by portable magnetometers, indicate localised variations of anomalous ferrimagnetic mineralisation. The geomagnetic field is comprised of three main parts:

- I) The earth's magnetic field. The origin of this field is apparently a system of electrical currents originating in the earth's fluid conductive core. The resulting magnetic field resembles that of a large bar magnet.
- ii) The external magnetic field originating in the outer atmosphere. This includes the eleven year cycle of sunspot activity, solar diurnal variations due to the action of the sun on ionospheric currents, lunar diurnal variations due to moon-ionosphere variations, magnetic storms usually associated with the aurora, and localised electrical storms.
- iii) Local magnetic anomalies resulting from the magnetic content of relatively near-surface rocks.

The objective of the total field magnetometer survey was to map variations in magnetic field associated with localised mineralisation. The magnetic susceptibility of magnetite is high, whereas the magnetic susceptibility of pyrite may be similar to that of granite.

Correlation of the magnetometer survey results with those of the HLEM survey generally enhances the evaluation of conductor type.

The total magnetic field intensity, as measured in the present study with the GEM Systems Inc. GSM-19 magnetometer system, is a scalar measurement, or simply the magnitude of the earth's field vector independent of direction. Units of measurement of the geomagnetic field are generally nanoTeslas (nT), where 1 nT is in the order of  $10^{-5}$  of the earth's main field. Resolution of the GSM-19 system is 0.01nT; accuracy is approximately 0.2 nT within the operating range.

Field measurements were acquired at 12.5 metre station intervals along lines spaced 100 metres apart, employing a magnetometer console configured as a field magnetometer. The effects of diurnal variations in the earth's magnetic field were removed from the field data by means of a base station magnetometer. The base station magnetometer was configured to collect magnetic field data at five second intervals over the duration of the survey at a stationary position in close proximity to the survey grid.

# 5.0 **RESULTS**

The results of the geological field study that was undertaken concurrently with the geophysical survey were not available prior to the preparation of this report. As such, minimal geological correlation is attempted here.

# 5.1 Horizontal Loop Electromagnetics (HLEM)

Upon review of the HLEM survey results, it was determined that the data were best represented by the 14080 Hz. and 3520 Hz. data sets. The respective HLEM in-phase and quadrature responses are presented as line profiles in Figures 1 and 2.

Due to the effects of current gathering, the amplitude of those conductors defined by the higher frequencies of operation are generally greater than those mapped with the lower operating frequencies. The attenuating effects of conductive overburden notwithstanding, the higher frequency results generally have a greater potential of identifying subsurface conductors. Consideration of multiple frequencies enables the identification of shallow anomalies which may mask conductors at depth.

Interpreted conductors are identified in Figures 1 and 2 and those of greatest magnitude and/or extent are labelled. The amplitude of the anomalous response is generally an indicator of the conductivity-thickness and/or depth of a subsurface conductor.

Within environments where sulphide mineralisation is of a porphyritic texture, reduced conductivityvolume products generally result in a dominant quadrature response over in-phase. In addition, variations in transmitter-receiver coil spacing, due predominantly to large topographical gradients and/or minor inaccuracies in surveyed station spacing, result in noise that is most apparent in the inphase response. In data where this noise is apparent, the quadrature response generally yields a more reliable indicator of subsurface anomalies. Due to the relatively rugged terrain traversed at the Eagle Property, and the expected porphoritic nature of the local mineralisation, the quadrature response is of greater significance within this study than the in-phase response.

The results indicate that most of the survey area is electrically active. The trend of the identified conductors is predominantly northwest-southeast (north-south relative to the grid orientation). This is consistent with preliminary geological studies completed by Birch Mountain Resources Ltd. to date. All subsequent trend descriptions are relative to grid orientation, assuming a north-south baseline.

Conductor A-A' extends from the northern to southern extent of the Gibson Grid. Both anomalous in-phase and quadrature response is evident over most of the conductor length, a possible indication of massive sulphide mineralisation. Dip is estimated at approximately 90° to 70° to the west. Evidence of previous drilling activity is apparent at locations along several of the survey lines

| Electromagnetic and Magnetometer Surveys - Eagle Property, Fort St. James, B.C. | 96PG76 |
|---------------------------------------------------------------------------------|--------|
| Birch Mountain Resources Ltd.                                                   | Page 7 |

intersecting Conductor A-A'.

Striking southwest to northeast, Conductor **B-B'** extends from Line 1200N to 1600N. Quadrature response is greater than in-phase response, possibly a result of a conductor of porphoritic texture. Dip is estimated to be 60° to 80° to the west. The anomaly at Station 2150N on Line 1900N may be a continuation of Conductor **B-B'**. This is unconfirmed due to the data gap resulting from the topographical barrier encountered along Line 1900N. This prevented the collection of continuous measurements along the survey line in this region.

Conductors C-C', D-D', E-E', F-F' and G-G' intersect the survey lines that connect the main grid to the Gibson Grid. There is some indication of Conductor G-G' extending south to Line 1000N. Quadrature response is significantly greater than that of in-phase within these conductor responses, suggesting conductors of porphoritic texture and/or the presence of conductive overburden. The variable response characteristics preclude valid dip angle estimation.

Anomaly **H-H'** strikes southwest-northeast from Line 900N to Line 1800N. Although compromised by interference of an adjacent conductor in the southern region, dip is estimated at 80° to 90° to the west. The conductor is coincident with a showing between lines 1000N and 1100N in which relatively high concentrations of magnetite were noted.

A weak to moderate conductor, I-I' extends between lines 2800N and 3400N. There is little evidence of corresponding in-phase response with the quadrature anomaly. Noise due to variable intercoil spacing resulting from traversing the rugged terrain in this region may have masked any valid in-phase response. Dip estimate, based on the response along Line 2400N only, is 60° to 70° to the west.

Conductors J-J', K-K' and L-L' are apparent within the resulting data acquired with the 50 metre transmitter-receiver coil separation configuration. This suggests that the top of the conductor occurs at a relatively shallow depth. The relatively noisy in-phase response may be attributed to variations in coil spacing resulting from the effects of rugged terrain. Dips are estimated at 70° to 90° to the west for Conductors J-J, and L-L', and approximately 90° for Conductor K-K'.

At the northern extent of the survey area, a relatively strong quadrature conductor M-M' strikes southeast-northwest between Lines 3900N and 4100N. The in-phase response has been corrupted by variable intercoil separation. No reasonable dip estimate can be derived from the data due to adjacent interference of the in-phase and quadrature response.

In addition to those conductors described above, several other anomalous responses are identified, each representing a conductor of limited apparent extent and magnitude. Those conductors identified towards the eastern regions of Line 3400N (Stations 2175E and 2225E) are likely an associated response to previously identified geochemical anomalies located immediately to the north. Anomalous in-phase and quadrature responses are also evident at Stations 3925N and 4200N along

the main grid baseline (4000E). Continuation of these features on adjacent east-west survey lines is not readily apparent.

# 5.2 Total Field Magnetics

Following the removal of diurnal variations from the acquired field measurements, data were interpolated onto a regular grid at 12.5 metre intervals using the minimum curvature technique described by Swain (1976) and Briggs (1974). The resulting data sets are presented as coloured contour maps in Figures 3 and 4, illustrating the lateral variations of magnetic response within the study area. Figure 3 illustrates lateral magnetic gradients over the entire area surveyed. Within the Gibson Grid, lateral variations of magnetic response were of a lower order of magnitude, and as such, a more appropriate contour interval was selected to illustrate the magnetic response of this area (Figure 4).

The most obvious feature apparent in Figure 3 is the region of relatively high magnetic response (greater than 58000 nT) bordered approximately by Lines 2200E, 4200E, 2400N and by the southern extent of the surveyed region. This area, likely extending to the north and south beyond the boundaries of the present survey grid, may define the occurrence of granodiorite. The magnetic susceptibility of granodiorite is significantly higher than that of granite. HLEM conductor **B-B'** is coincident with the edge of this region of anomalous magnetic response and may therefore define a region of contact.

Localised anomalous magnetic response is indicative of localised variations in ferrimagnetic mineralisation. The largest anomaly of this type is centred at Station 4100N on Line 1300N, extending north-northwest to Line 1800N. This magnetic high is coupled with an adjacent magnetic low along the west-southwest perimeter. HLEM Conductors G-G' and H-H' are coincident with the western and eastern boundaries of the magnetic anomaly respectively. Similarly, HLEM Conductor I-I' is coincident with a magnetic high along the northeastern boundary of the magnetic anomaly. The location of conductors within areas of magnetic anomalies may define the regions of highest concentrations of sulphide mineralisation. Of the mineralisation known to occur within the study region, coincident magnetic and HLEM anomalies are likely most indicative of magnetite and/or galena.

Increased magnetic responses are also coincident with HLEM Conductors C-C', E-E' and, to a lesser extent, J-J' and L-L'. However, magnetic variations evident east of the baseline between Lines 2700N to 3900N may be attributed at least in part to a reduced overburden thickness.

Coincident magnetic and HLEM anomalies evident between Stations 2200E and 2400E suggests an extension of the feature identified by geochemical anomalies directly to the north.

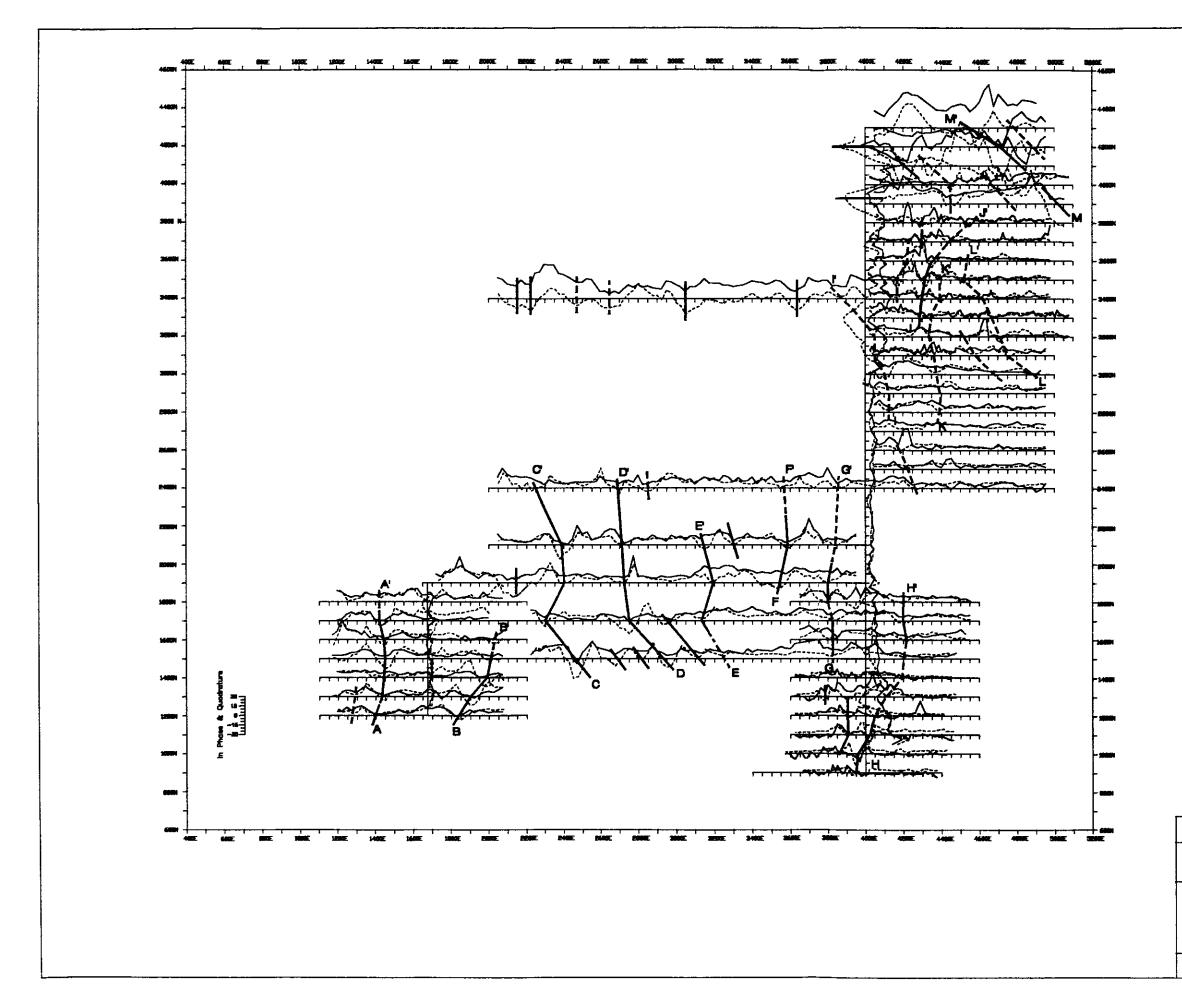
The region defined by the Gibson Grid is magnetically quiet by comparison. Greater detail of the magnetic signature within this region, shown in Figure 4, illustrates a steady decrease in magnetic

| Electromagnetic and Magnetometer Surveys - Eagle Property, Fort St. James, B.C. | 96PG76 |
|---------------------------------------------------------------------------------|--------|
| Birch Mountain Resources Ltd.                                                   | Page 9 |

response to the west-northwest, with the greatest response evident in the southeast corner of the grid. There is no apparent magnetic response coincident with HLEM Conductor A-A'. This suggests that the anomalous HLEM response may be due to pyrite mineralisation.

# 6.0 CONCLUSIONS AND RECOMMENDATIONS

The geophysical surveys performed on the Eagle Property have identified a number of subsurface electrical conductors and magnetic anomalies. These provide numerous isolated locations for ground follow-up.


Drillhole targets have been determined prior to completion of this report based, in part, on the preliminary results of the geophysical surveys made available to Birch Mountain personnel on site.

With those acquisition parameters employed during the survey, the conductors identified within this report are mapped to a maximum depth of approximately 70 metres. Although the features may extend to depths beyond this, initial drillhole investigations should be designed to intersect the identified conductors within the depth limits of the geophysical survey results.

Upon completion of the subsequent drilling program, further review of the geophysical survey results is recommended to fully integrate all available geological data.

## 7.0 **BIBLIOGRAPHY**

- ARMSTRONG, J.E., 1965. Fort St. James map area, Cassiar and Coast Districts, B.C. GSC Memoir 252. Crown Publication. Ottawa, Canada. pp.18-21, 51-55, 98-100.
- BRIGGS, I.C., 1974. Machine Contouring Using Minimum Curvature. Geophysics, Volume 39, No. 1. pp.39-48.
- GARNETT, J.A., November 1978. Geology and Mineral Occurrences of the Southern Hogem Batholith. Bulletin 70 Ministry of Mines and Petroleum Resources. Victoria, B.C.. pp.11-15, 23-25.
- SWAIN, C.J., 1976. A FORTRAN IV Program for Interpolating Irregularly Spaced Data Using the Difference Equations for Minimum Curvature. Computers & Geosciences, Volume 1. pp.231-240.



| A                                                                                                               |  |
|-----------------------------------------------------------------------------------------------------------------|--|
| 50m Transmitter-Receiver Specing                                                                                |  |
|                                                                                                                 |  |
|                                                                                                                 |  |
| Quadrature Response                                                                                             |  |
| 100m Transmitter-Receiver Specing                                                                               |  |
| In Phase Response                                                                                               |  |
|                                                                                                                 |  |
| Quadrature Response                                                                                             |  |
| Moderate to Strong<br>Conductor                                                                                 |  |
|                                                                                                                 |  |
| Weak to Moderate<br>Conductor                                                                                   |  |
|                                                                                                                 |  |
| BIRCH MOUNTAIN RESOURCES LTD.                                                                                   |  |
| EAGLE PROPERTY<br>BRITISH COLUMBIA                                                                              |  |
| HORIZONTAL LOOP ELECTROMAGNETIC SURVEY (MAX-MIN 1-8)<br>14080 Hz<br>Scale 1:20000<br>September, 1998 - Figure 1 |  |
| ASSOCIATED MINING CONSULTANTS LTD. PG78                                                                         |  |

| Appendix | 5 |  |
|----------|---|--|

# Petrographic Report

PETROGRAPHY OF THE SAMPLES: R-0014; R-3032; R-3037 and R-3036 BY '6 ANDRZEJ SKUPINSKI, Ph.D. TATRA MINERALOGICAL FOR BIRCH MOUNTAIN RESOURCES LTD.

> CALGARY, ALBERTA October 1996

# TABLE OF CONTENTS

۳Ì

| INTRODUCTION                |   |
|-----------------------------|---|
| Sample preparation          |   |
| SAMPLE R-0014               |   |
| Rock Name                   |   |
| Macroscopic Description     |   |
| Mineral Content             |   |
| Texture                     | , |
| Alterations                 |   |
| Comments                    | • |
| SAMPLE R-3032               | • |
| Rock Name                   | ŀ |
| Macroscopic Description     |   |
| Mineral Content             | ł |
| Texture                     |   |
| Alterations                 | i |
| Comments                    | , |
| SAMPLE R-3037               | ; |
| Rock Name                   |   |
| Macroscopic Description     | ŝ |
| Mineral Content             |   |
| Texture                     |   |
| Alterations                 |   |
| Comments                    | 7 |
| SAMPLE R-3066               |   |
| Rock Name                   |   |
| Macroscopic Description     |   |
| Mineral Content             | _ |
| Texture                     |   |
| Alterations                 |   |
| Comments                    | 3 |
| EXPLANATIONS TO PLATE       | 8 |
| ABBREVIATIONS USED ON PLATE | 8 |

ø

### **INTRODUCTION**

The four rock samples related to a gabbro massif were analysed in reflected and transmitted light by means of a Zeiss polarizing microscope. For determination of Pyroxene and Plagioclase also the Universal Stage method was used.

The analysed samples were generally barren in economic sulphides, so that ore minerals and their textures were described only incidentally. Per consequence, the present report is essentially limited to general petrographic descriptions. From only four samples, making broad conclusions concerning their petrogenesis was impossible. However, some limited comments on metasomatic evolution of the rocks are included.

The rocks were classified accordingly to the plutonic rocks nomenclature recommended by the IUGS and numbers corresponding to the classification diagram sectors follow the rock names. The rocks were classified according to their present mineralogical content. However, they result from a complex metasomatic evolution of other parent rocks which had different original mineralogy.

Sample preparation: Two polished thin sections were prepared from each sample. After a final grinding to the standard thickness of 25 microns, diamond paste of 1 micron on a Texmet polishing cloth was applied. The polishing was accomplished with a 0.3 micron  $Al_2O_3$  powder on the Texmet cloth and with a  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 0.05 micron powder on the Microcloth.

### SAMPLE R-0014

### Rock Name: Gabbro (10).

<u>Macroscopic Description</u>: The rock is phaneritic, holocrystalline, dark grey in colour. Coarsegrained Pyroxene, up to 1 cm in size, and fine-grained Plagioclase are the only minerals macroscopically discernible.

#### Mineral Content:

**Rock-forming:** 

**Opaques:** 

Augite (dominant) Plagioclase (83-96%An)(very common) Hornblende (minor) Chlorite (minor) Biotite (trace) Epidote (trace) Hypersthene (trace) Actinolite (trace) Magnetite (common)

Ilmenite (minor) Chalcopyrite (trace) **Texture:** Texture is coarse to medium-grained, anhedral to subhedral-granular. Pyroxene is commonly anhedral and coarse-grained, up to 12mm in size. It is intergrown with Plagioclase that is subhedral equigranular, and with a mean grain size of 1mm. Frequently, on borders with Plagioclase, Pyroxene is sieve-textured with inclusions of Plagioclase grains. Anhedral grains of **Magnetite**, up to 3 mm in size, are randomly included in Augite, Plagioclase or infill interstices. Magnetite is locally abundant, with common lamellar exsolutions of **Ilmenite**. Interstitial clusters of chloritized **Biotite** and **Chlorite**, accompanied by **Fe-Epidote**, and **Hornblende** occur randomly.

**Pyroxene** is an Augite displaying a very weak pleochroism ( $\gamma$  - light grey,  $\alpha$  - colourless) and  $z/\gamma = 35^{\circ}$ . Unfrequently, the grains of diopsidic Augite with a higher  $z/\gamma = 44^{\circ}$  is noticeable. Trace inclusions of olive-brown Hypersthene and secondary Hornblende occur in Augite grains.

**Plagioclase** is very calcic. The content of anorthite component varies from 83% (Bytownite) to 96% (Anorthite *sensu stricto*). The crystals with high anorthite content, more than 90%, are more common. Polysynthetic twinning according to albitic and periclinic laws are ubiquitous. Carlsbad type twinning is much less common in Plagioclase. Zonal textures have not been noticed.

Alterations: The intensity of mineral alterations is very moderate. The most common is initial saussuritization of Plagioclase. Uralitization of Pyroxene is uncommon. It is restricted to internal or marginal replacements by Amphibole.

**Comments:** Gabbro sample, most likely, represents the original unaltered part of the pluton.

### **SAMPLE R-3032**

**<u>Rock Name:</u>** Monzonite (8).

<u>Macroscopic Description</u>: Phaneritic coarse-grained rock with macroscopically discernible grey Feldspars and dark green Hornblende. Some Amphibole clusters are tectonically strained. Minor Chalcopyrite mineralization occurs in the deformed areas.

Mineral Content:

**Rock-forming:** Orthoclase (common) Plagioclase (common) Hornblende (common) Actinolitic hornblende (less common) Chlorite (minor) Apatite (accessory) Tourmaline (accessory) Epidote (trace) Biotite (trace) Quartz (local, minor) Ilmenite (minor) **Opaques:** Magnetite (common) Pyrite (minor) Chalcopyrite (minor) Goethite (minor)

### Texture:

The texture is coarse-grained crystalloblastic with poikiloblastic (sieve-textured) potash feldspars, up to 1cm in size. The narrow fractures filled with laminar clusters of fine-grained Actinolitic Hornblende (see Plate 1, Fig. C), occur in the rock. Chalcopyrite, and less common Pyrite mineralization is frequent within fractures. Both sulphides occur as postkinematic impregnation within Actinolitic Hornblende.

**Orthoclase**, dominant feldspar, shows a xenoblastic (anhedral) growth. The Orthoclase crystals, up to 5mm in size, are sutured in large blasts. They are crowded with cloudy very finegrained Sericite and Amphibole. Large grains of sericitized Plagioclase and Hornblende, up to 4mm in size are ubiquitous inclusions in Orthoclase. Orthoclase crystals are microperthitic, in other words contain oriented intra crystalline inclusions of Albite. In some crystals, vermiculic (pseudomyrmekitic) Quartz grains occur.

**Plagioclase** is totally altered and cannot be determined. However, alteration products: Sericite and Epidote suggest its original composition as abundant in anorthite. They are up to 4mm in length, and when included in Orthoclase (see Plate 1, Fig. D), show resorbed borders.

**Hornblende** is pseudomorphic after Pyroxene. It is randomly grown in clusters, up to 5mm in size. Local Biotitization is noticeable in Hornblende.

Actinolitic Hornblende occurs as deformed clusters in fractures. The forms of crystals differ from regular Hornblende by acicular or short prismatic shape. The clusters are commonly intergrown with fine-grained aggregatic Chlorite, secondary Quartz and sulphide minerals. Both, Quartz and sulphides form post kinematic impregnation of the Actinolitic Hornblende.

**Magnetite** is commonly associated with Hornblende. The grains, up to 1mm in size, are anhedral and show border alteration to **Goethite**.

Apatite is a common accessory mineral. The grains are up to 0.5mm in size.

**Tourmaline** grains, up to 0.4mm in size, are random inclusions in feldspars. Tourmaline displays an intensive pleochroism in blue and pinkish colours.

Alterations: The primary minerals of the rock were Pyroxene, calcic Plagioclase and Magnetite. Pyroxene is totally altered to Hornblende.

Plagioclase shows a very strong internal alteration that is of *saussuritic* type. The products of *saussuritization* are fine-grained Sericite and different minerals of the Epidote family. The alteration of both primary minerals is related to the potassic metasomatosis. In mineralogical sense, Plagioclase was replaced by Orthoclase (Orthoclase Feldspathization) and Pyroxene by Hornblende.

Magnetite, due to oxidation, is altered on borders to Goethite.

In some localities, due to boron-bearing gases activity, an initial *tourmalinization* is noticeable. Sulphide mineralization is recent in the rock. Its relation to fractures is obvious.

**<u>Comments</u>**: The rock, most likely, was originally a gabbro. Under influence of potassic metasomatosis, it was enriched in Orthoclase, and with accompanied alteration of Plagioclase converted to monzonite.

#### **SAMPLE R-3037**

**<u>Rock Name:</u>** Host rock: Quartz diorite (10\*).

Enclave: Hornblende pyroxenite.

**Macroscopic Description:** The rock is medium-grained, creamy-white in colour. Dark greenishgrey enclaves of mafic particles, up to 4cm in diameter, are included in the host rock.

**Mineral Content:** 

| Host rock: | Plagioclase (20-30% An) (dominant)             |
|------------|------------------------------------------------|
|            | Albite (>5% vol.)                              |
|            | Amphibole (common)                             |
|            | Quartz (5-10% vol.)                            |
|            | Sphene (accessory)                             |
|            | Epidote (accessory)                            |
|            | Apatite (accessory)                            |
|            | Clinozoisite (secondary infilling of fissures) |
| Enclave:   | Diopside (common)                              |
|            | Hornblende (common)                            |
|            | Magnetite (minor)                              |
|            | Plagioclase (minor)                            |

Sphene (accessory)

#### **Texture:**

(Host rock) The texture is equigranular, xenomorphic (anhedral) with the mean grain size of 1mm. The rock is cut by two systems of mutually perpendicular fissures, about 0.05mm in width. One system of fissures is filled with minerals of the Epidote group, most likely with Clinozoisite  $(2V\gamma \sim 25^\circ)$  (+ve). Another one is mostly filled with Prehnite.

**Plagioclase** is mostly anhedral, with the grain size ranging from 0.5 to 1mm. Larger grains of Plagioclase, up to 2 mm in size, occur randomly. They tend to subhedral tabular forms and are preferentially oriented. Due to *saussuritization*, Plagioclase is almost totally altered to Sericite and Epidote. Some less altered grains were determined as Oligoclase containing up to 30% An.

Anhedral grains of weakly pleochroic Hornblende and colourless Actinolite, up to 2mm in size, are ubiquitous in the rock. Quartz grains, up to 0.1mm in size, infill interstities between plagioclase.

(The enclave) Pyroxene and Hornblende are main constituents. They are generally anhedral with the grain size from 0.5 to 2mm. Pyroxene is Diopside with  $Z/\gamma=42^\circ$ . Hornblende is pseudomorphic after Pyroxene which remnants are ubiquitous inclusions in Amphibole. The grains of Diopside show alteration to Hornblende on borders and along crystallographic cleavage (see Plate 1, Fig. B). Magnetite is associated with Pyroxene and Amphibole. Sphene is a common accessory. Sericitized Plagioclase is uncommonly included in the border zone of the enclave.

Alterations:In Plagioclase:Saussuritic alteration with abundant Sericite and weak Epidote secretion.In Pyroxene:Ubiquitous alteration to Hornblende.In Hornblende:Local alteration to Actinolite.

**Comments:** The origin of the rock is uncertain. However, the composition and microscopic texture of mafic enclave suggest its strong affinity to the gabbro body. The rock can be hypothetically interpreted as a product of anatectic melting of gabbro parent rocks. Consequently, due to fusion of leucocratic components, the anatectic differentiation for Quartz dioritic *mobilizate* (host rock) and mafic *restite* (enclave) occurred.

### **SAMPLE R-3066**

**<u>Rock Name:</u>** Alkali-feldspar syenite (6) (see Comments).

Macroscopic Description: The massive phaneritic rock. The dark grey and pink Feldspars, Epidote and Amphibole are macroscopically discernible. The rock is cut by narrow fractures filled with secondary minerals: Epidote and Amphibole. Chalcopyrite randomly occurs in fractures.

| Mineral Content: | Albite (dominant)           |
|------------------|-----------------------------|
|                  | Actinolite (common)         |
|                  | Epidote (less common)       |
|                  | Magnetite (minor)           |
|                  | Calcite (minor)             |
|                  | Adularia (minor, local)     |
|                  | Apatite (accessory)         |
|                  | Quartz (trace)              |
|                  | Calcite (trace)             |
| <b>Opaques:</b>  | Magnetite (minor)           |
|                  | Chalcopyrite (minor, local) |

<u>**Texture:**</u> The rock is subhedral-granular in texture. Albite plagioclase, tabular in shape, is the dominant constituent. Plagioclase grains are intergrown together in the form of an interlocking mosaic. The size of individual crystals varies from 1 to 5 mm. A huge amount of fine-grained Sericite, Epidote and Chlorite is included in Albite.

Actinolitic hornblende, Chlorite and Fe-Epidote, are frequently clustered and intergrown with Plagioclase. Subhedral Magnetite grains, up to 0.5mm in size, are ubiquitous. Euhedral grains of Apatite, up to 0.3mm in length, occur in accessory amounts.

The rock is fractured. The fractures are abundant with secondary hydrothermal minerals: **Epidote**, **Chlorite**, **Adularia** and minor Calcite. Acicular **Actinolite** is also frequent. Close to the fractures, Plagioclase is frequently replaced by hydrothermal Adularia. **Chalcopyrite** mineralization is restricted to fractures and areas altered by Adularia. Chalcopyrite grains are sometimes surrounded by minor secondary Quartz.

Alterations:

In Plagioclase:

1. Albitization and related extensive saussuritization with secretion of Sericite and Epidote.

2. Fracture related alteration to Adularia.

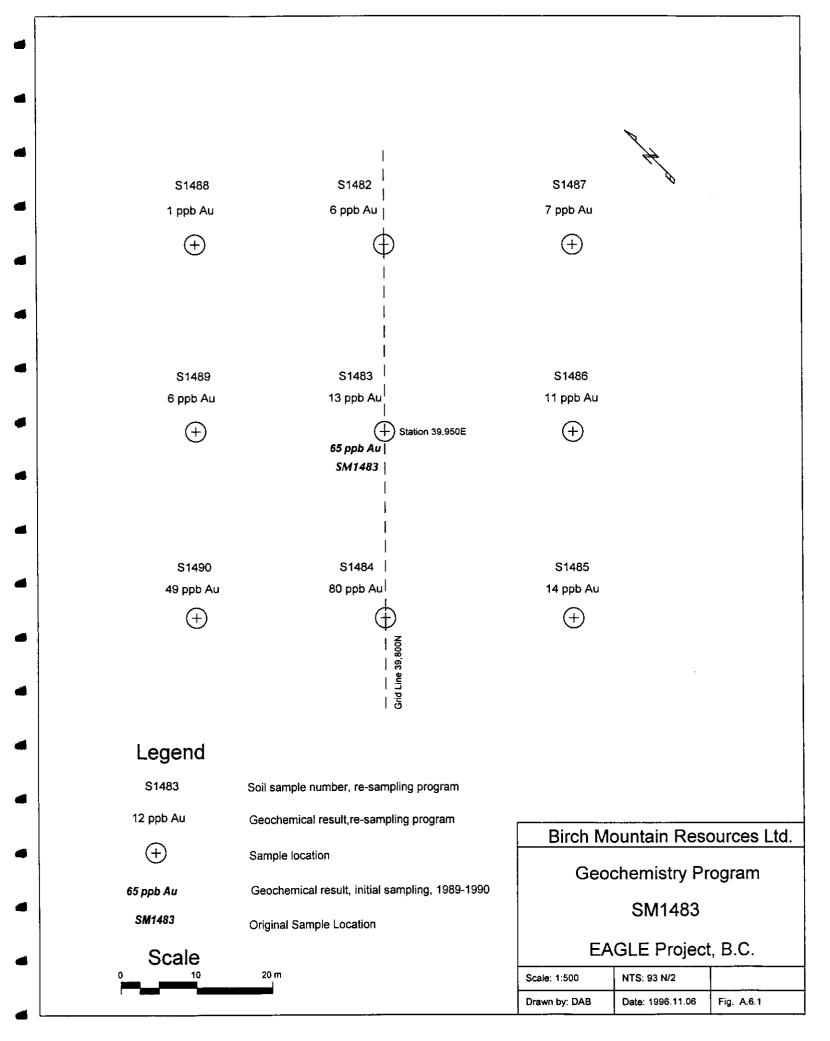
In Hornblende:

- 1. Extensive alteration to Chlorite.
- 2. Fracture related alteration to Actinolite.

**Comments:** The rock is a product of metasomatic alteration of the original rock of uncertain origin (however, gabbro is possible) under conditions of the Greenschist facies characterized by the mineral assemblage: Albite-Epidote-Chlorite-Actinolite. Due to sodic metasomatism, calcic Plagioclase was albitized. Liberated calcium entered in Actinolite and Epidote.

## **EXPLANATIONS TO PLATE**

Plate 1


- A. The texture of gabbro in #R-0014.
- B. Pyroxene grains altered to Hornblende in the Enclave of Pyroxenite in #R-3037.
- C. A cluster of Actinolitic Hornblende between grains of Orthoclase in #R-3032.
- D. Inclusions of strongly altered Plagioclase in xenoblastic Orthoclase in #R-33032.

## ABBREVIATIONS USED ON PLATE

- Ac Actinolitic Hornblende
- Hb Hornblende
- Or Orthoclase
- Pl Plagioclase
- Px Pyroxene

Appendix 6

**Geochemistry Program: Resampling Maps** 



S1464 S1465 S1466 8 ppb Au 14 ppb Au 9 ppb Au  $\oplus$  $\oplus$  $\oplus$ S1458 S1459 S1460 S1467 S1468 S1469 2 ppb Au i.s, i.s. 16 ppb Au 22 ppb Au i.s. --⊕ -⊕- $\oplus$  $\oplus$ — Line 40,000N 45 ppb Au 35 ppb Au SM1459 SM 1468 S1470 S1463 S1462 S1461 S1472 S1471 12 ppb Au 52 ppb Au 11 ppb Au 9 ppb Au 69 ppb Au 7 ppb Au  $\oplus$  $\oplus$  $\oplus$  $\oplus$  $\oplus$  $\oplus$ 

ł

1

F

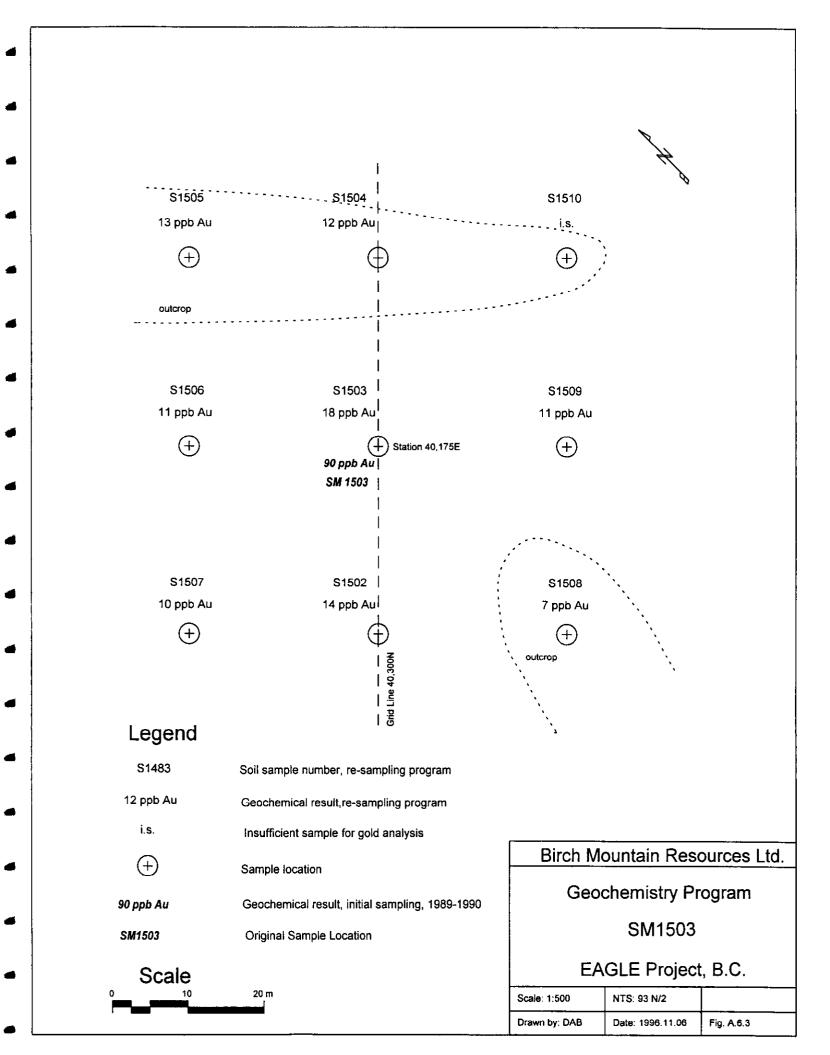
1

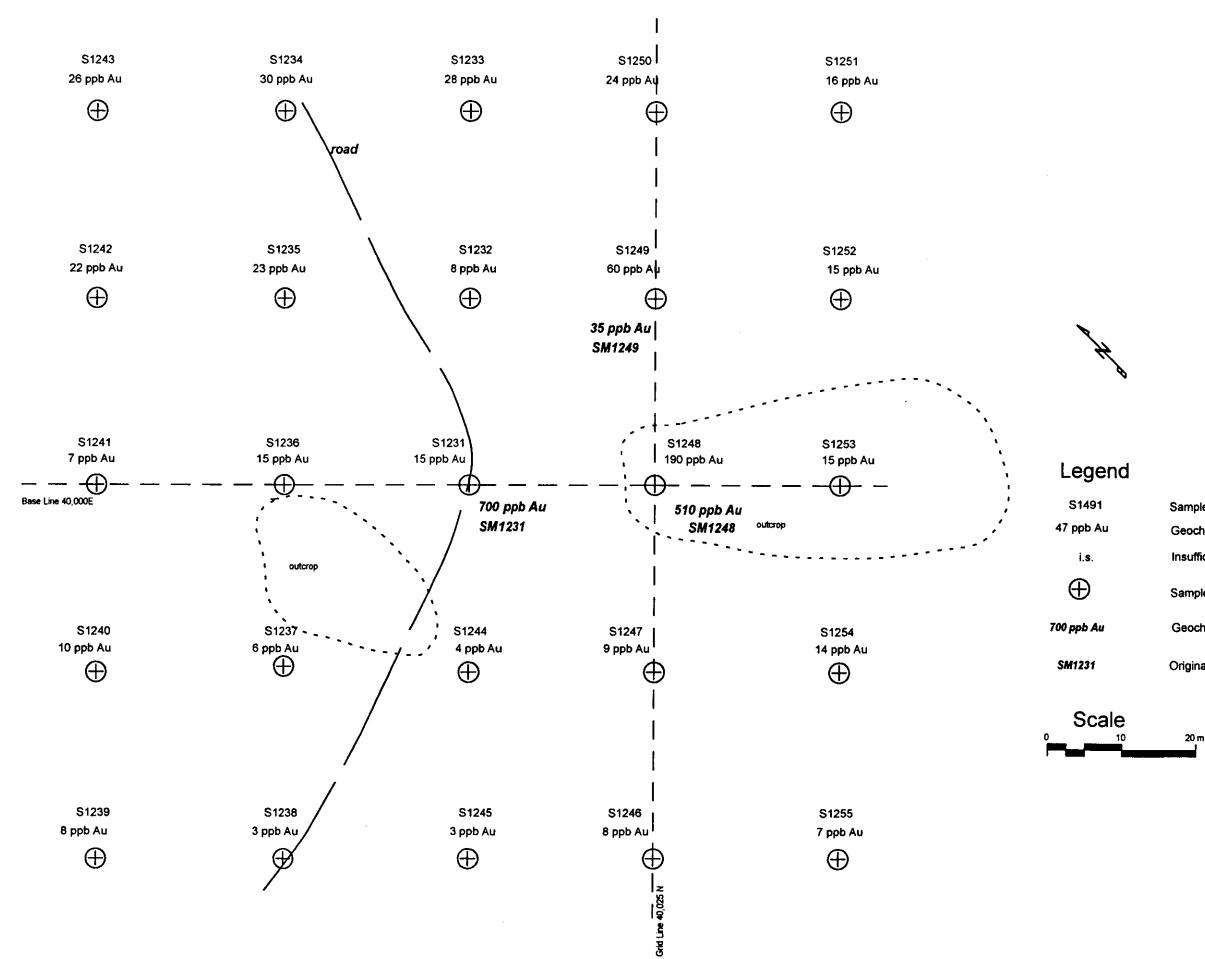
i.

ŀ

Legend S1491 Sample number, re-sampling program 47 ppb Au Geochemical result, re-sampling program i.s. Insufficient sample for gold analysis  $\oplus$ Sample location Geochemical result, initial sampling, 1989-1990 45 ppb Au SM1468 **Original Sample Location** Scale 20 m 10




| Birch | Mountain | Resources | Ltd. |
|-------|----------|-----------|------|
|       |          |           |      |
|       |          |           |      |


# Geochemistry Program

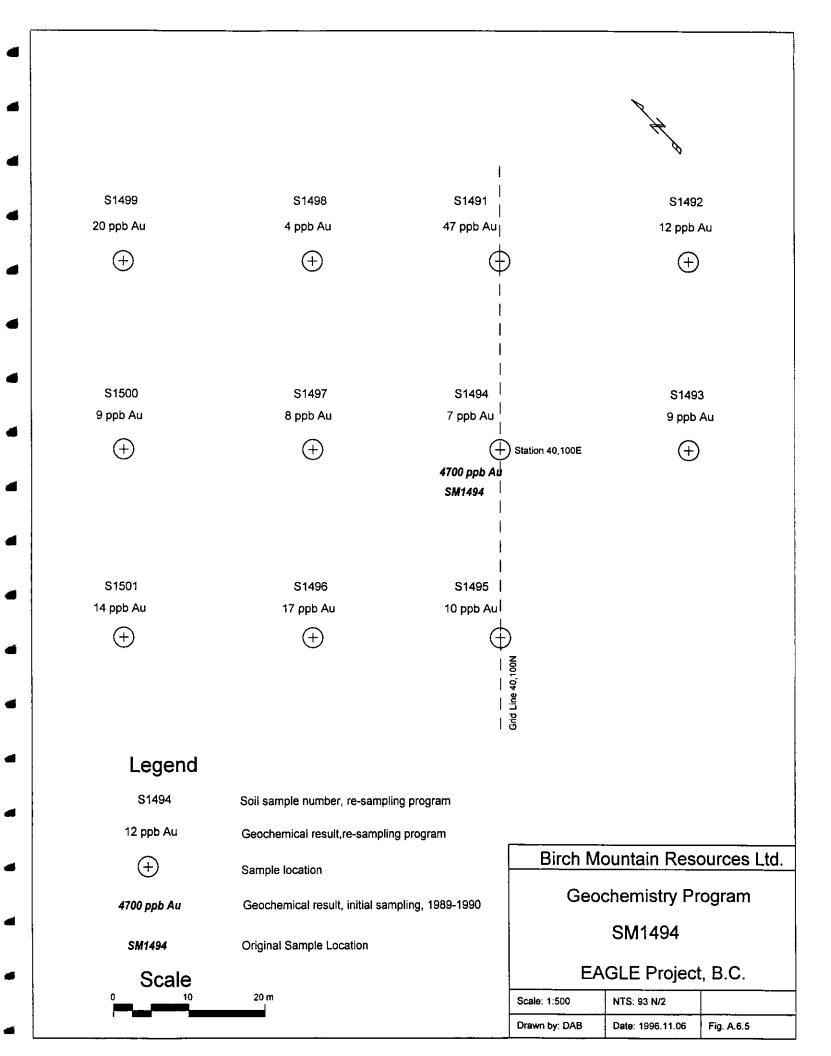
# SM 1459, SM1468

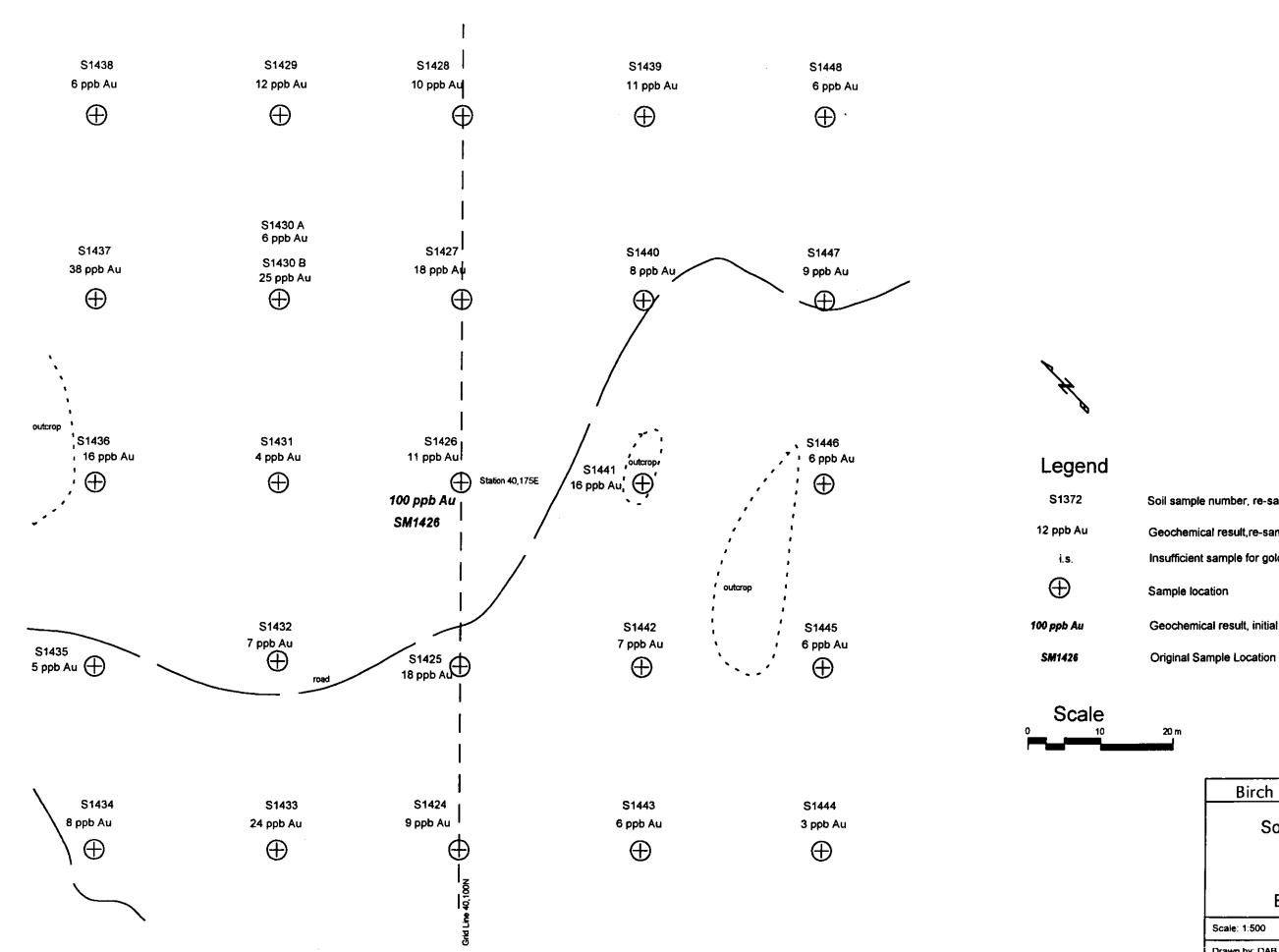
# EAGLE Project, B.C.

| Scale: 1:500  | NTS: 93 N/2      |            |
|---------------|------------------|------------|
| Drawn by: DAB | Date: 1996.11.05 | Fig. A.6.2 |



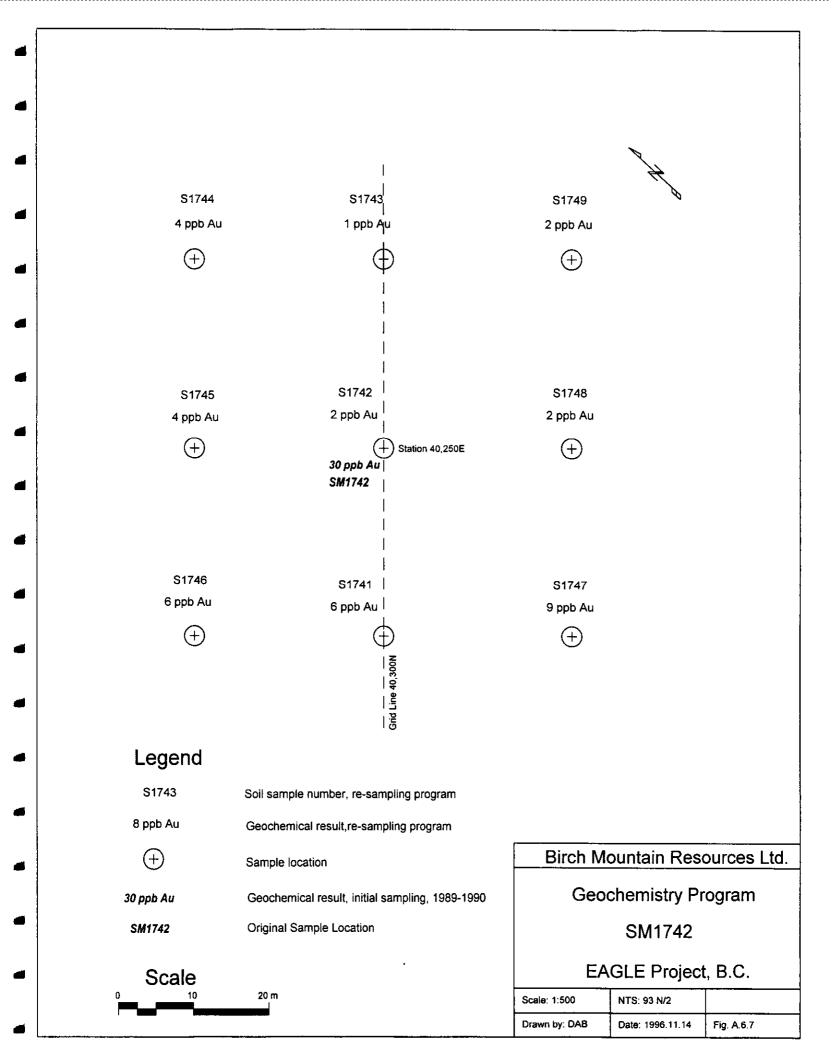


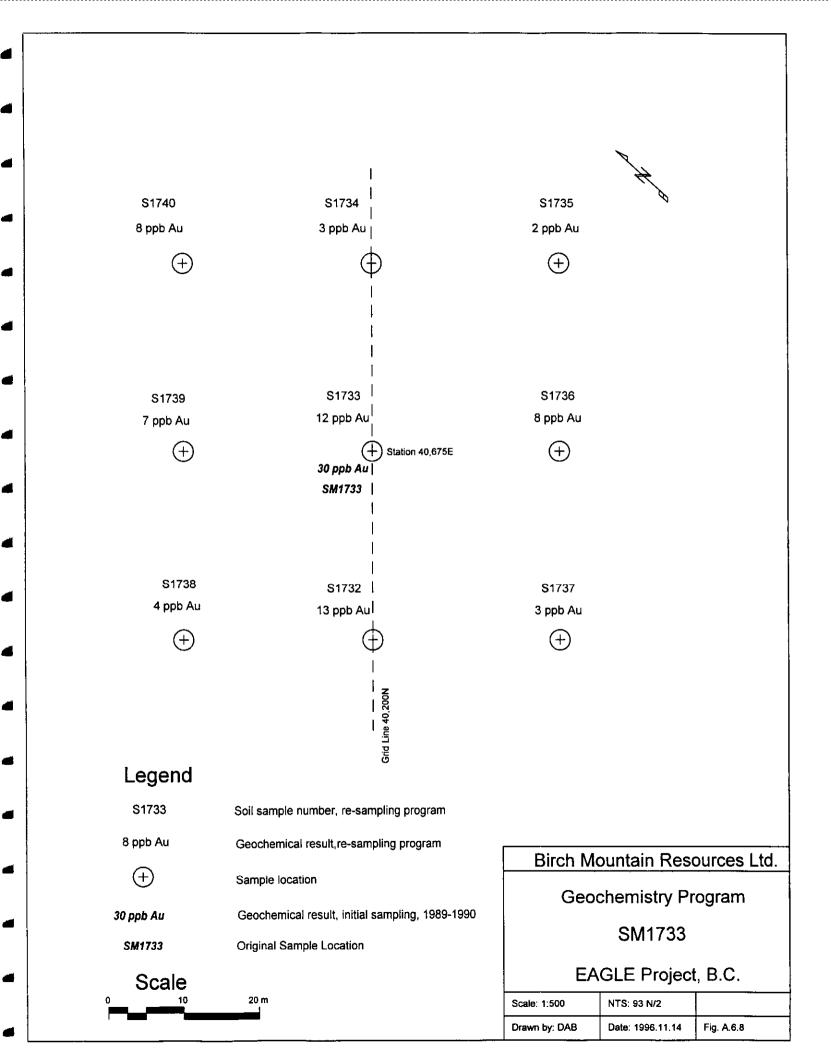

Sample number, re-sampling program Geochemical result, re-sampling program Insufficient sample for gold analysis

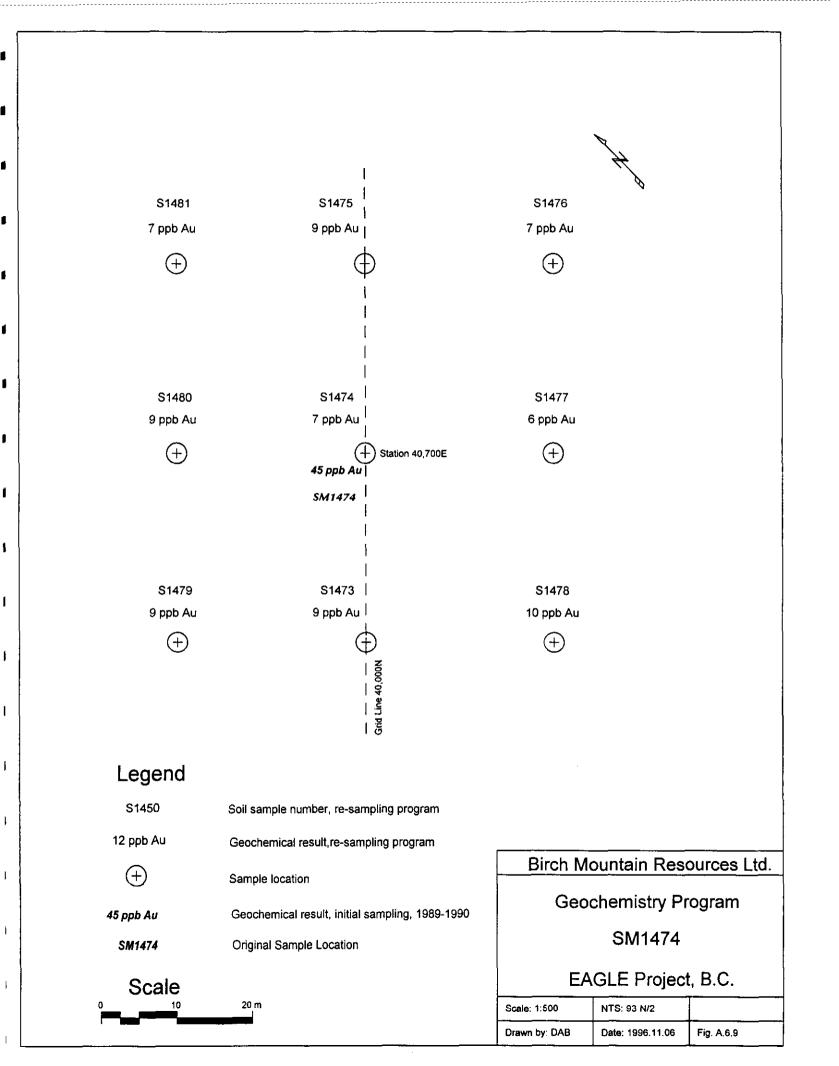

Sample location

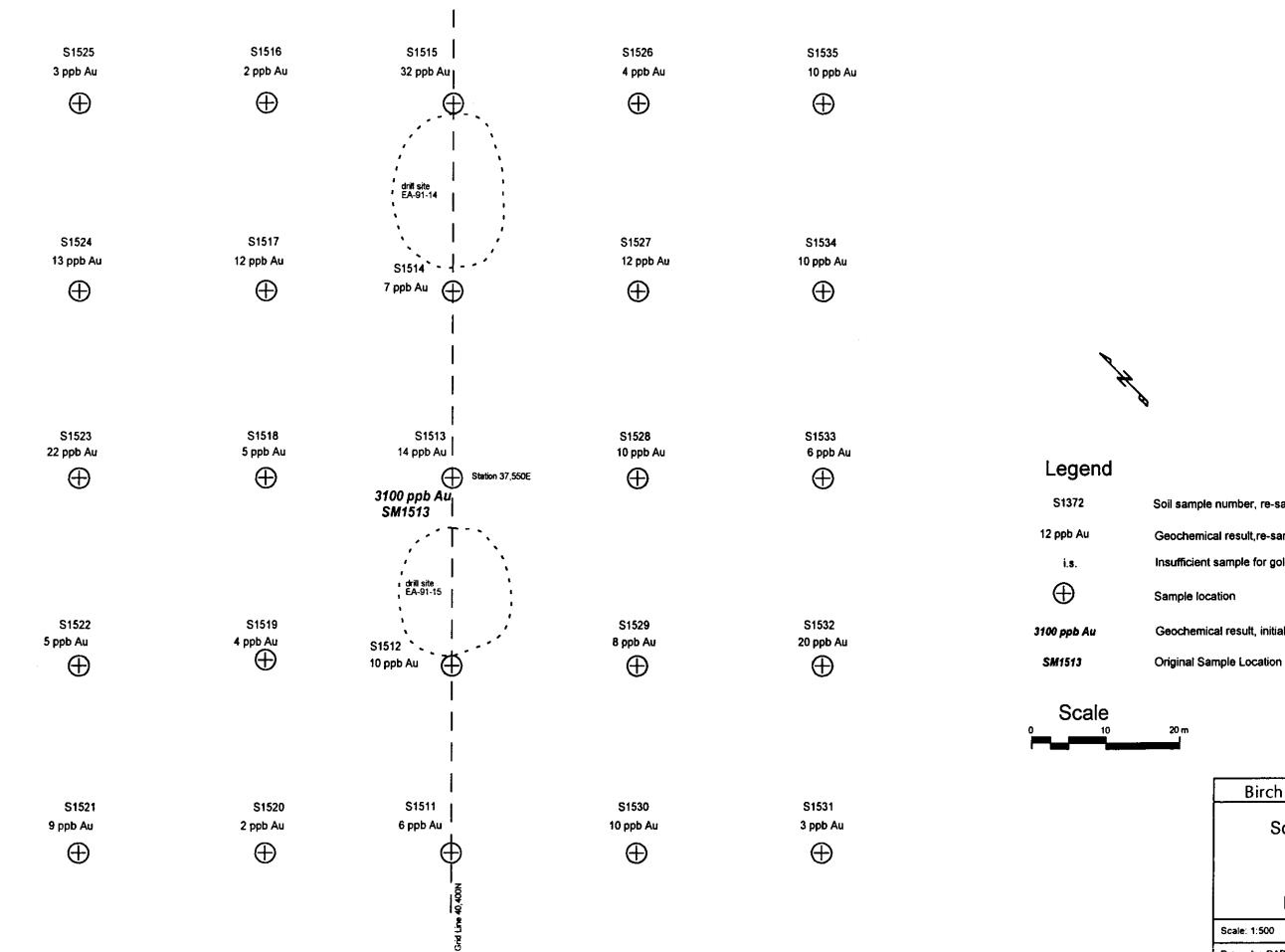
Geochemical result, initial sampling, 1989-1990

Original Sample Location


| Birch Mountain Resources Ltd. |                  |            |
|-------------------------------|------------------|------------|
| Geochemistry Program          |                  |            |
| SM1231, SM1248, SM1249        |                  |            |
| EAGLE Project, B.C.           |                  |            |
| Scale: 1:500                  | NTS: 93 N/2      |            |
| Drawn by: DAB                 | Date: 1996.11.05 | Fig. A.6.4 |



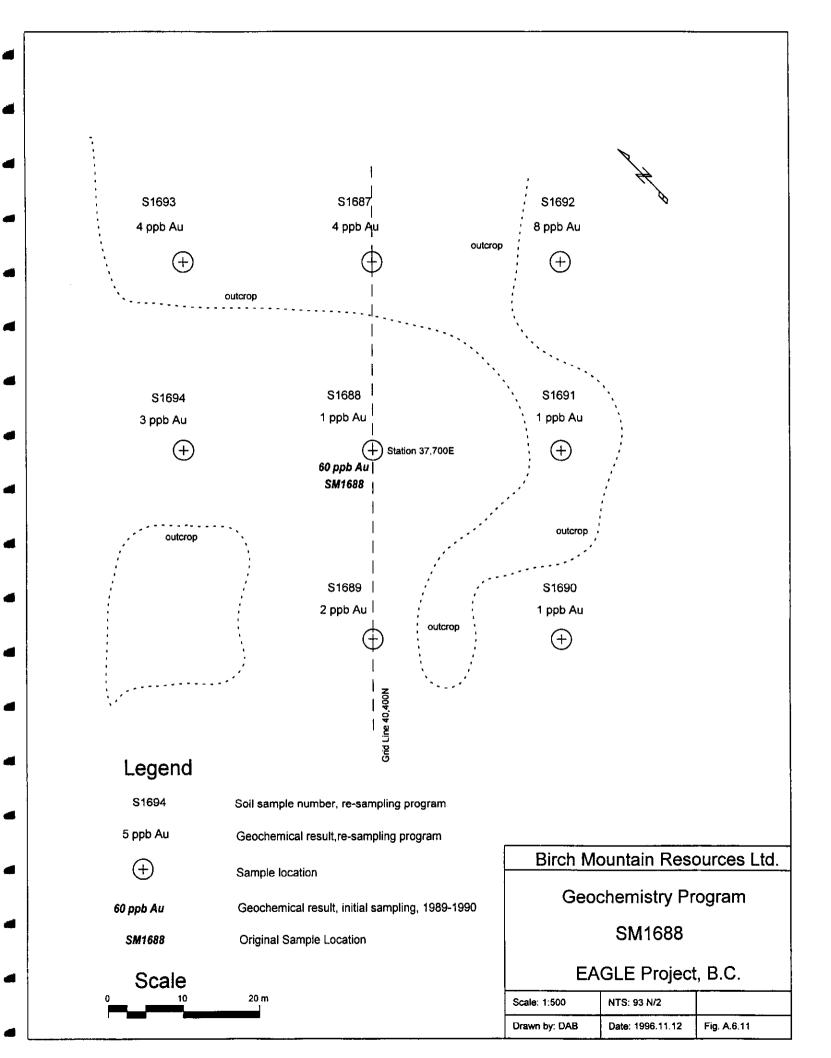



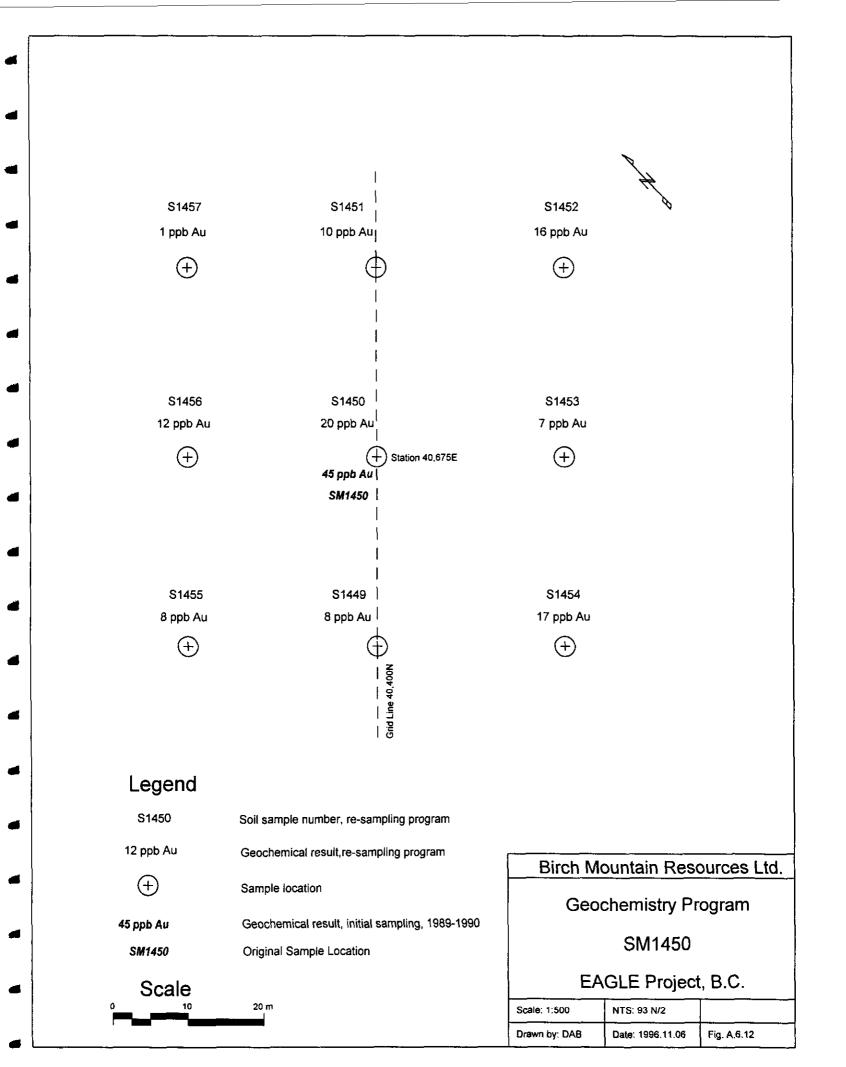


Soil sample number, re-sampling program Geochemical result, re-sampling program Insufficient sample for gold analysis Sample location Geochemical result, initial sampling, 1989-1990

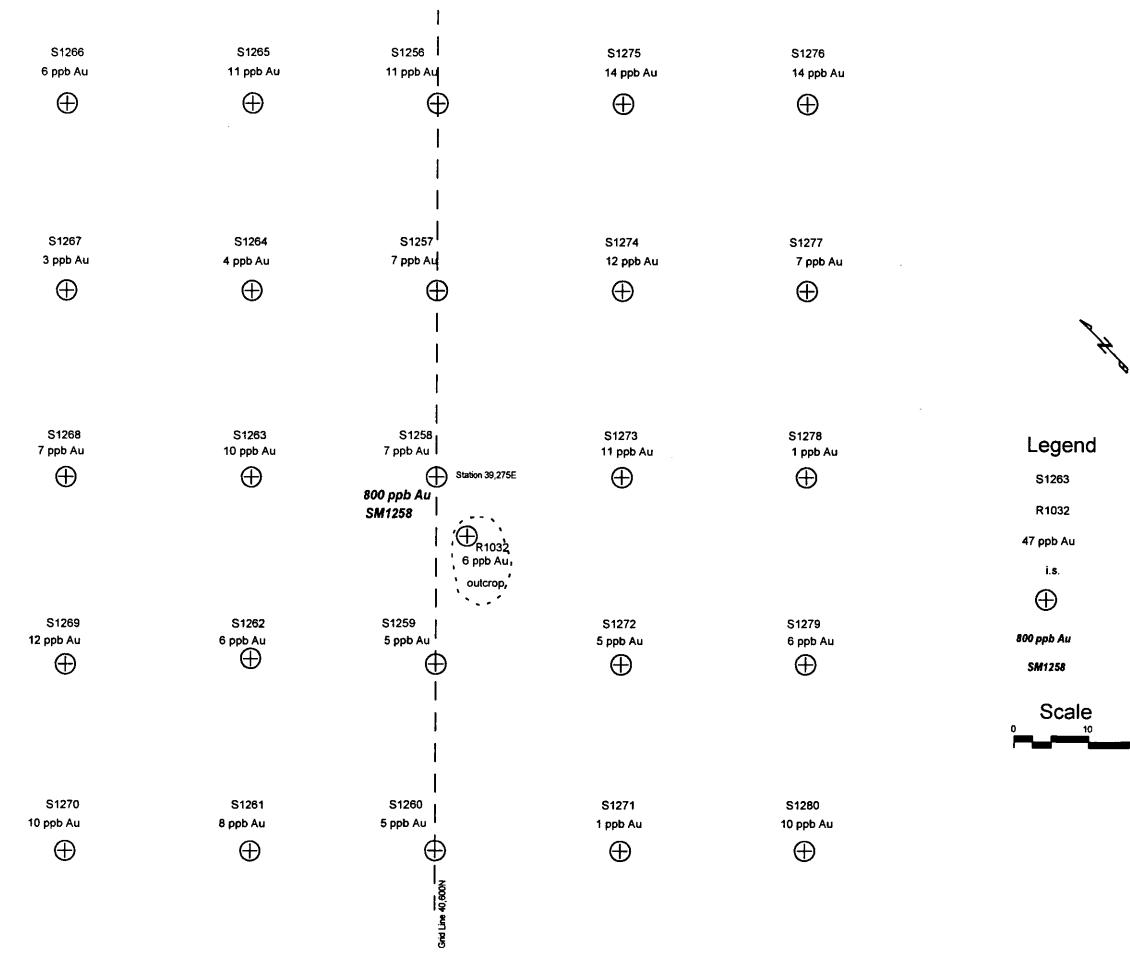
| Birch Mountain Resources Ltd. |                  |            |  |  |
|-------------------------------|------------------|------------|--|--|
| Soil Sampling Program         |                  |            |  |  |
| SM1426                        |                  |            |  |  |
| EAGLE Project, B.C.           |                  |            |  |  |
| Scale: 1:500                  | NTS: 93 N/2      |            |  |  |
| Drawn by: DAB                 | Date: 1996.11.06 | Fig. A.6.6 |  |  |
|                               |                  |            |  |  |









E

| Soil sample number, re-sampling program         |
|-------------------------------------------------|
| Geochemical result, re-sampling program         |
| Insufficient sample for gold analysis           |
| Sample location                                 |
| Geochemical result, initial sampling, 1989-1990 |
|                                                 |

| Birch N       | lountain Resc    | ources Ltd. |
|---------------|------------------|-------------|
| Soil          | Sampling Pro     | ogram       |
|               | SM1513           |             |
| EÆ            | AGLE Project     | , B.C.      |
| Scale: 1:500  | NTS: 93 N/2      |             |
| Drawn by: DAB | Date: 1996.11.06 | Fig. A.6.10 |







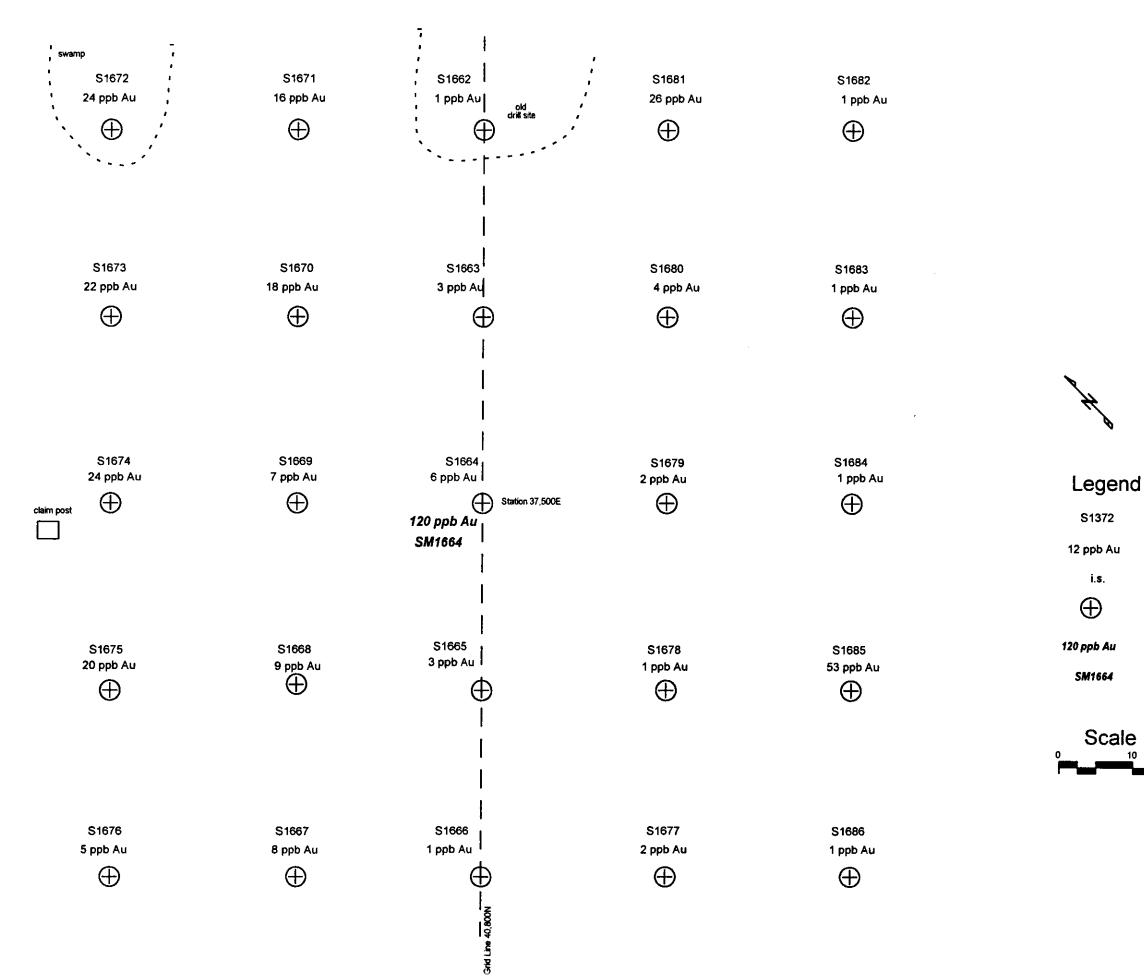
ł

1

1 }

i

1


k

Soil sample number, re-sampling program Rock sample number, re-sampling program Geochemical result, re-sampling program Insufficient sample for gold analysis Sample location Geochemical result, initial sampling, 1989-1990

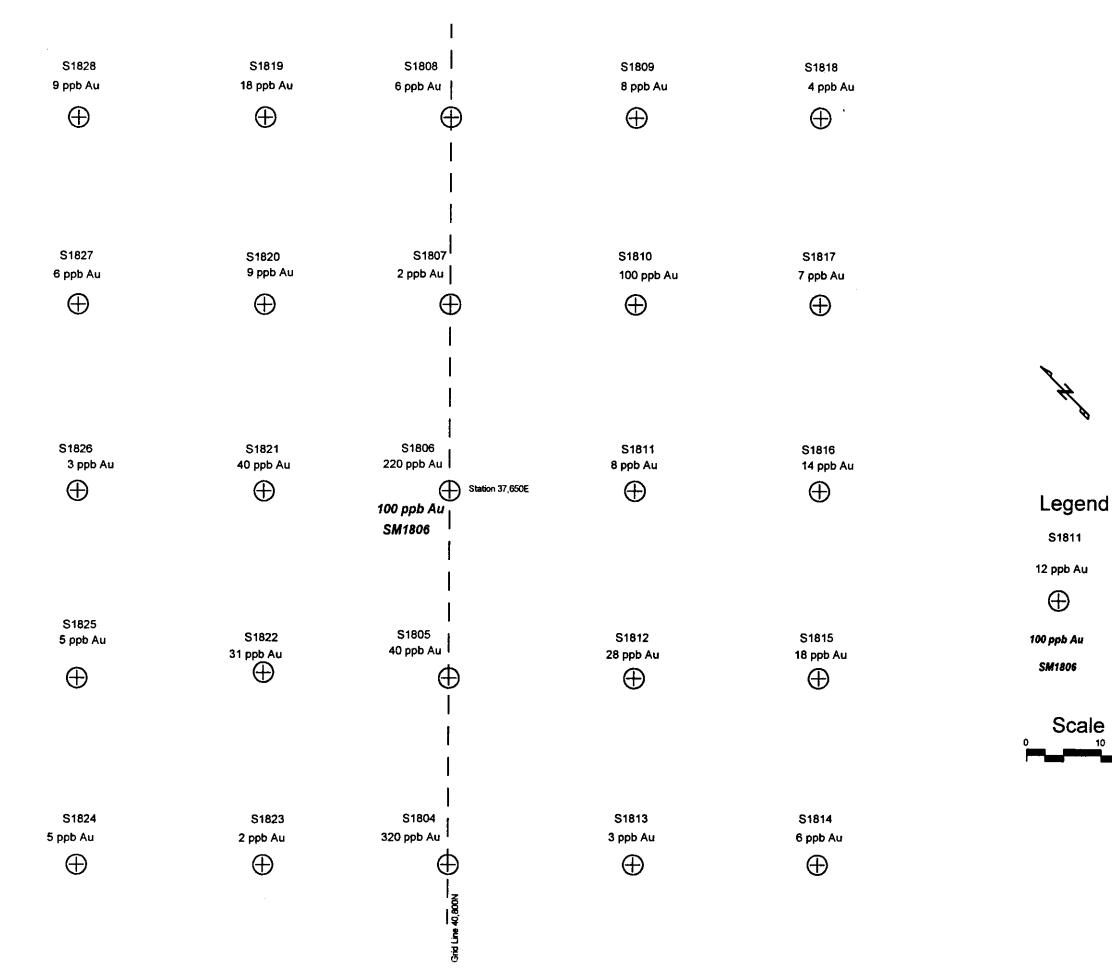
**Original Sample Location** 

20 m

| Birch Mountain Resources Ltd. |                                       |  |  |  |
|-------------------------------|---------------------------------------|--|--|--|
| Soil Sampling Program         |                                       |  |  |  |
| SM1258                        |                                       |  |  |  |
| EAGLE Project, B.C.           |                                       |  |  |  |
| NTS: 93 N/2                   |                                       |  |  |  |
| Date: 1996.11.05              | Fig. A.6.13                           |  |  |  |
|                               | Sampling Pro<br>SM1258<br>GLE Project |  |  |  |



ŧ.


÷.

Soil sample number, re-sampling program Geochemical result, re-sampling program Insufficient sample for gold analysis Sample location Geochemical result, initial sampling, 1989-1990

Original Sample Location

| е  |    |
|----|----|
| 10 | 20 |
|    |    |

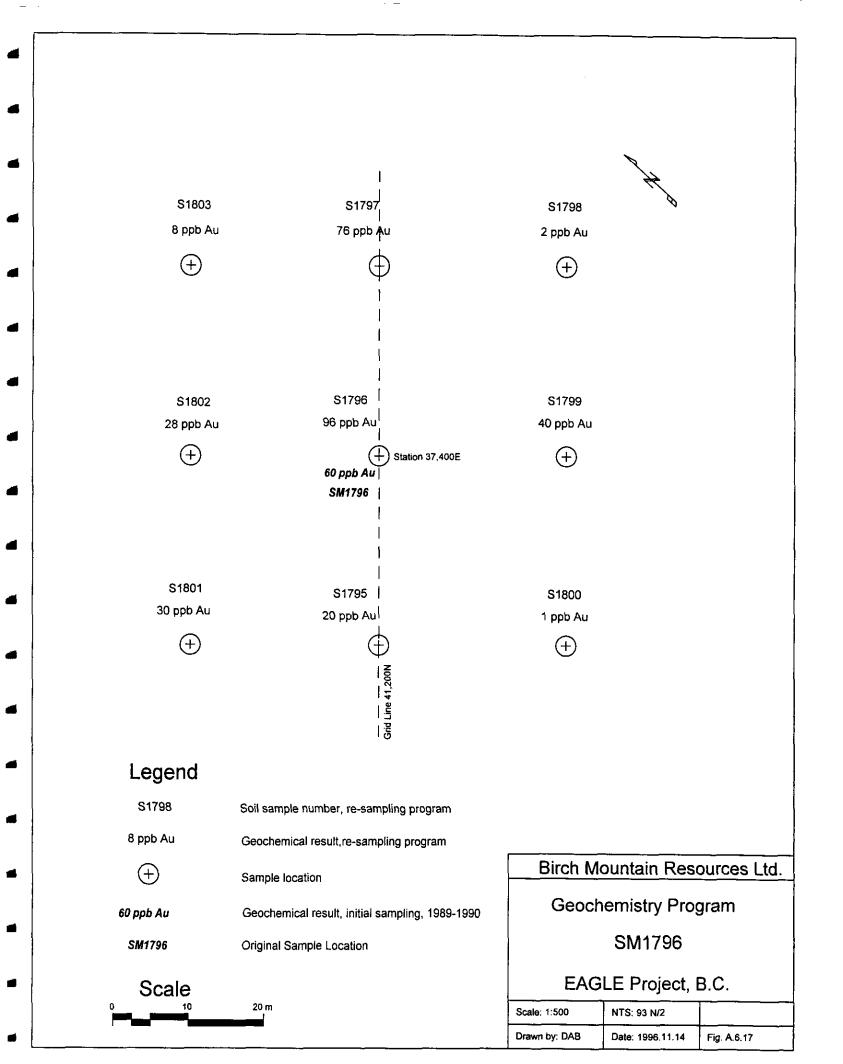
| Birch Mountain Resources Ltd. |                  |             |  |  |
|-------------------------------|------------------|-------------|--|--|
| Soil Sampling Program         |                  |             |  |  |
| SM1664                        |                  |             |  |  |
| EAGLE Project, B.C.           |                  |             |  |  |
| Scale: 1:500                  | NTS: 93 N/2      |             |  |  |
| Drawn by: DAB                 | Date: 1996.11.06 | Fig. A.6.14 |  |  |

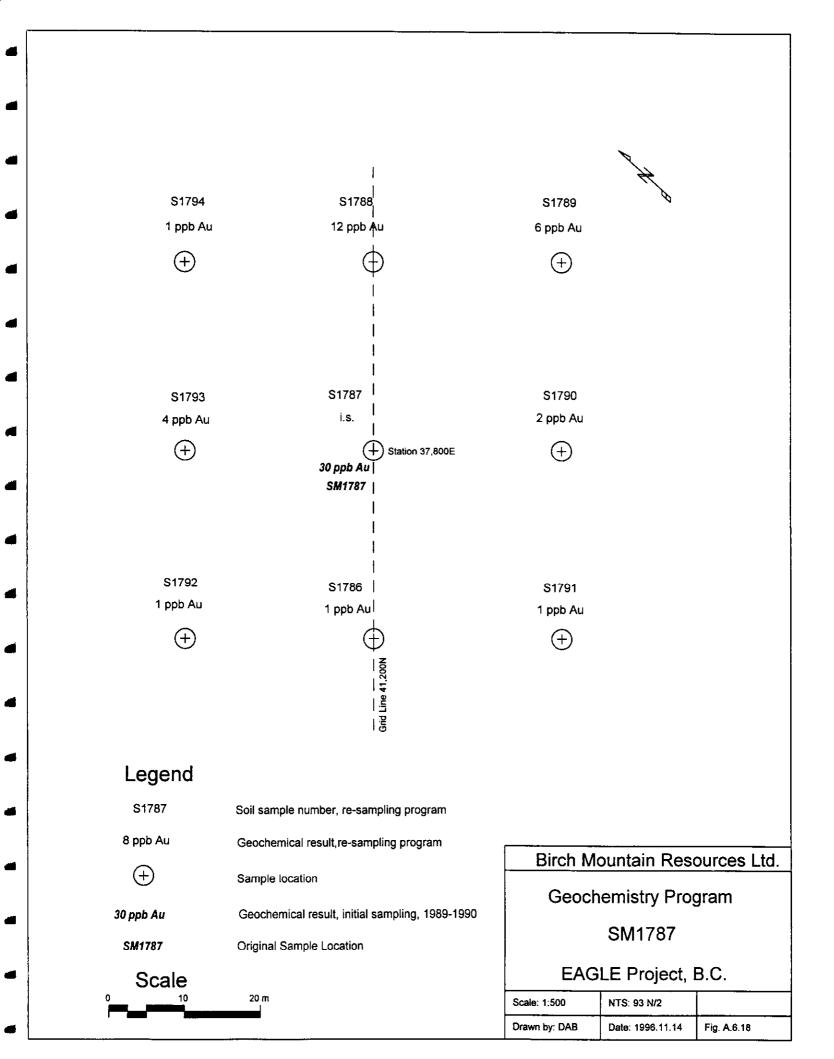


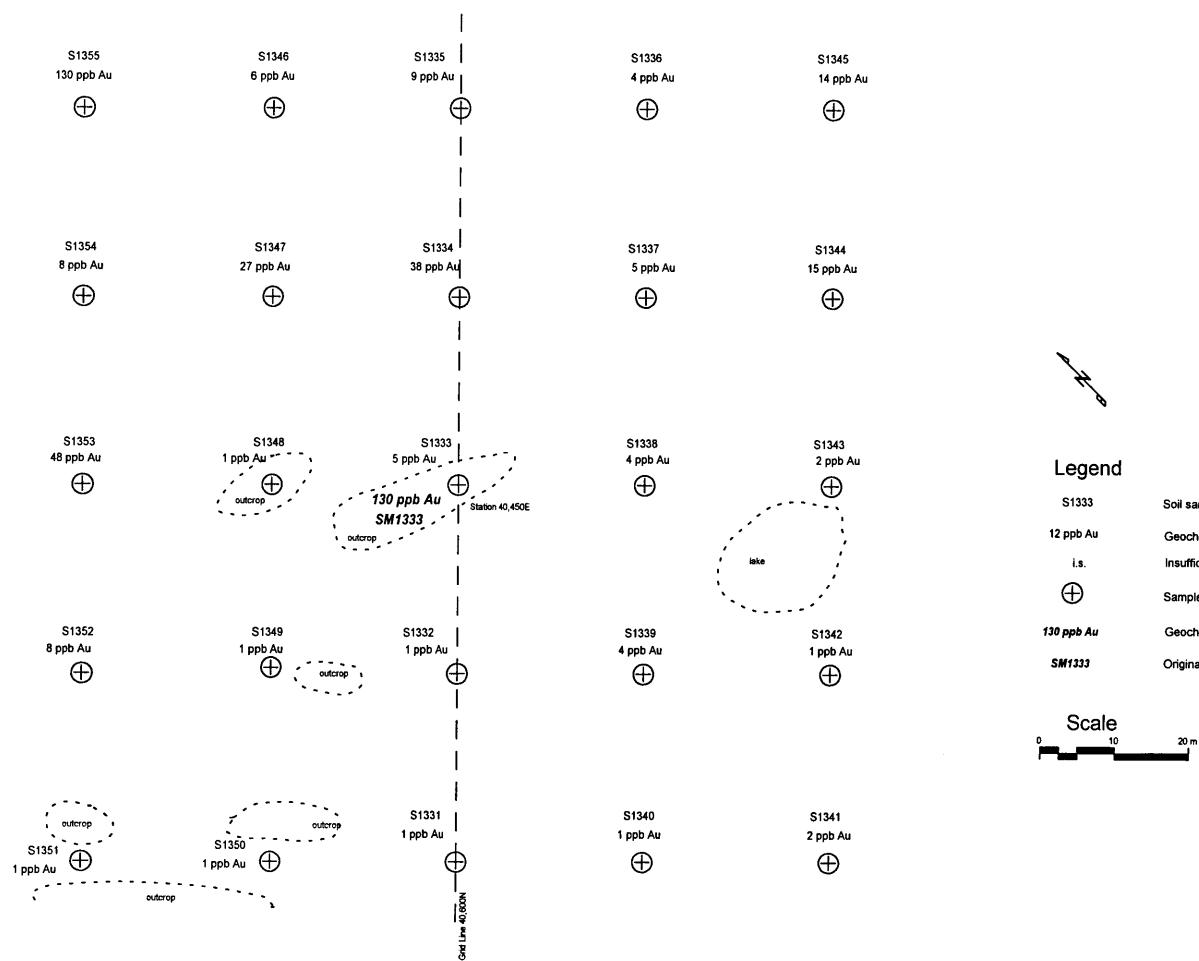
Soil sample number, re-sampling program

Geochemical result, re-sampling program

Sample location


Geochemical result, initial sampling, 1989-1990


Original Sample Location




| Birch Mountain Resources Ltd. |                                                      |  |  |  |
|-------------------------------|------------------------------------------------------|--|--|--|
| Geochemistry Program          |                                                      |  |  |  |
| SM1806                        |                                                      |  |  |  |
| EAGLE Project, B.C.           |                                                      |  |  |  |
| NTS: 93 N/2                   |                                                      |  |  |  |
| Date: 1996.11.14              | Fig. A.6 15                                          |  |  |  |
|                               | hemistry Pro<br>SM1806<br>LE Project,<br>NTS: 93 N/2 |  |  |  |









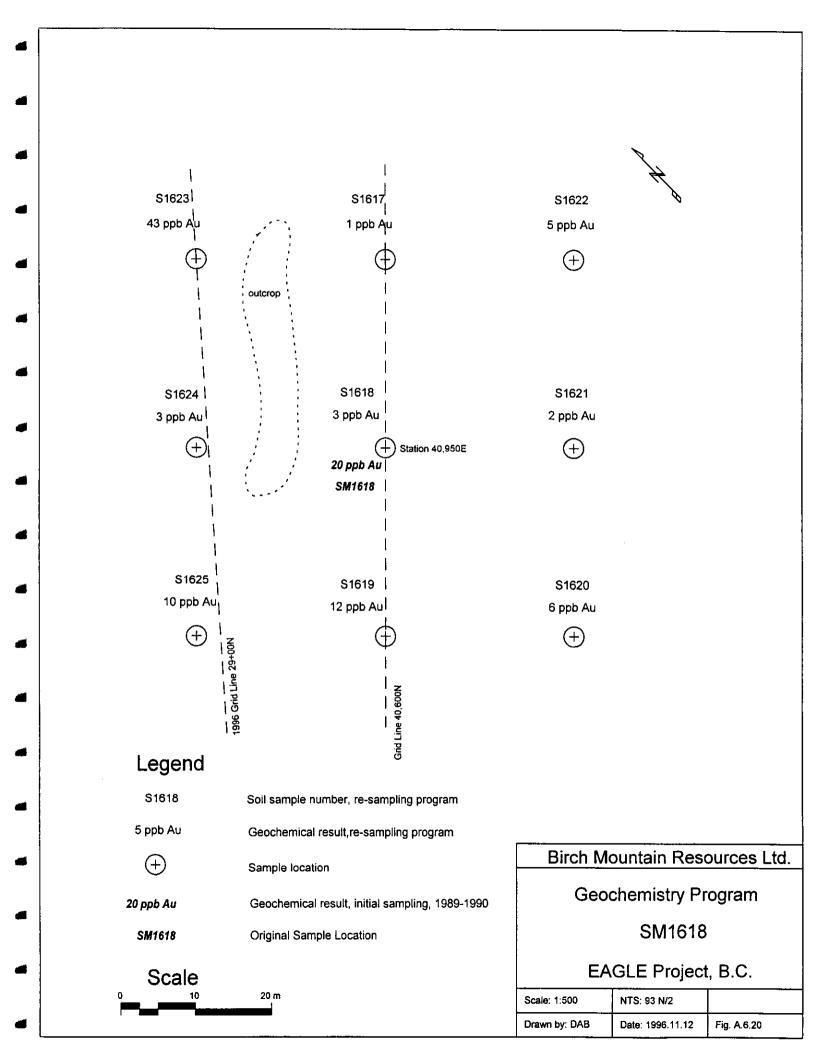
F

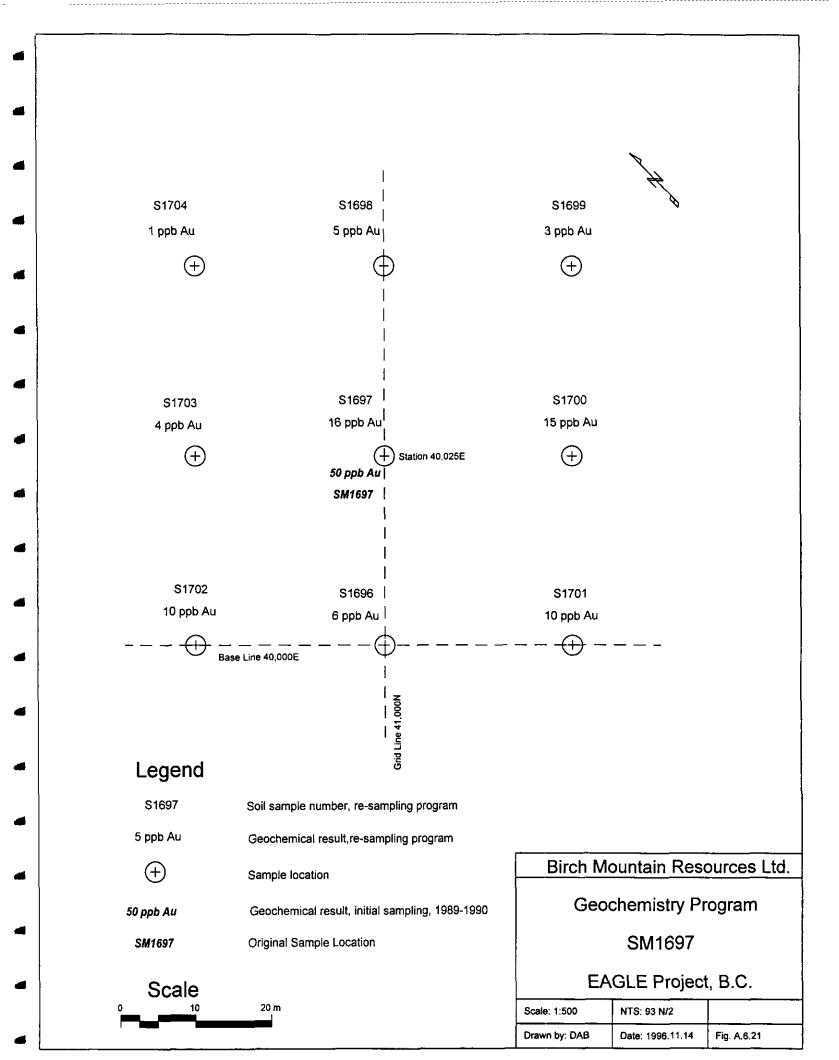
ł

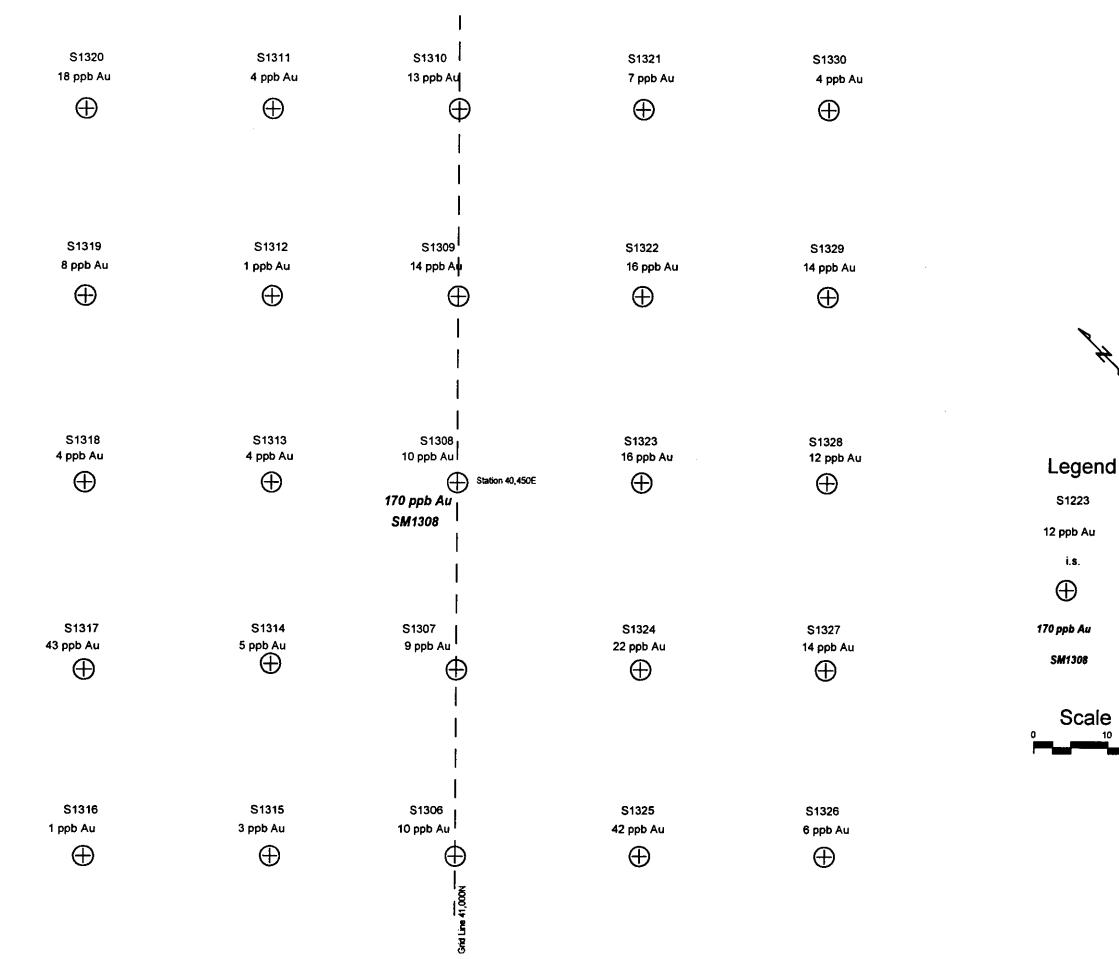
1

1

ř į.


I


l


1

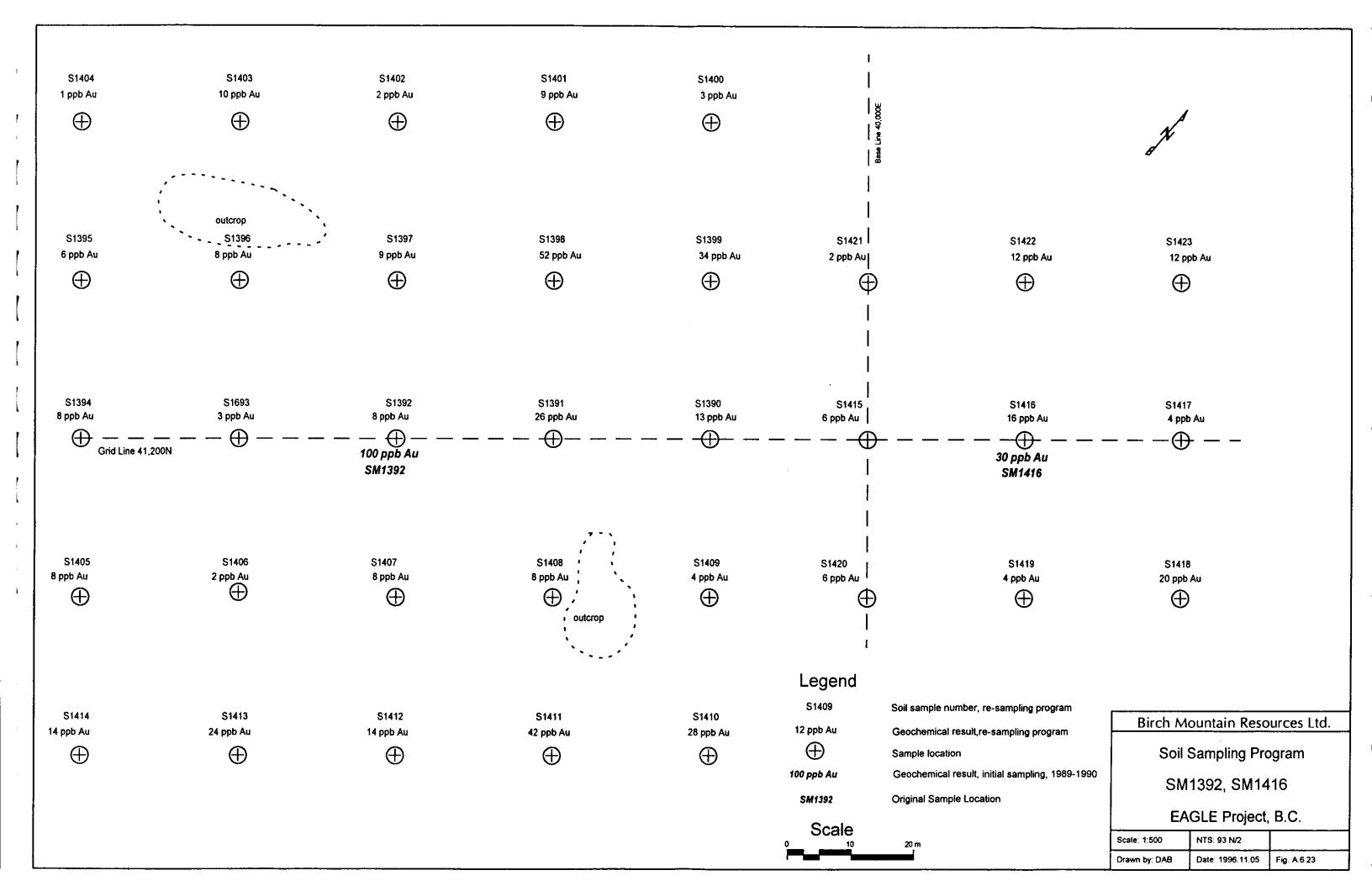
Soil sample number, re-sampling program Geochemical result, re-sampling program Insufficient sample for gold analysis Sample location Geochemical result, initial sampling, 1989-1990 Original Sample Location

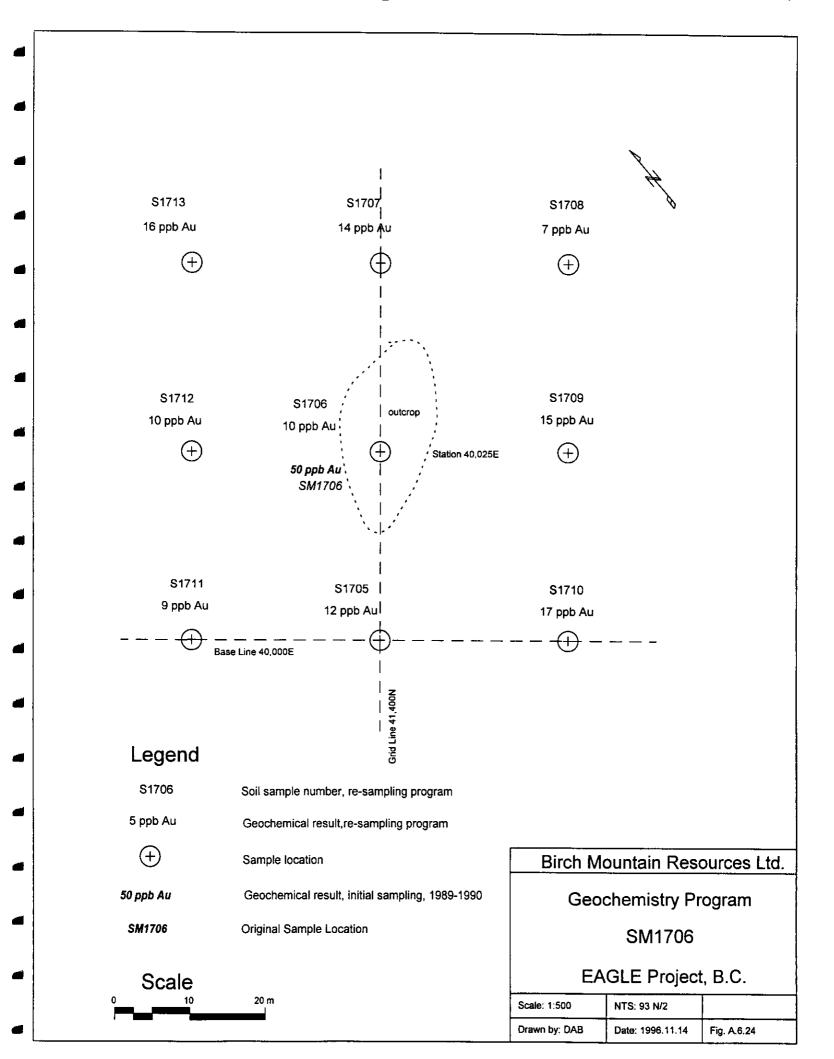
| Birch N                  | Iountain Resc    | ources Ltd. |  |
|--------------------------|------------------|-------------|--|
| Soil                     | Sampling Pro     | ogram       |  |
| SM1333                   |                  |             |  |
| EAGLE Project, B.C.      |                  |             |  |
| Scale: 1:500 NTS: 93 N/2 |                  |             |  |
| Drawn by: DAB            | Date: 1996.11.06 | Fig. A.6.19 |  |

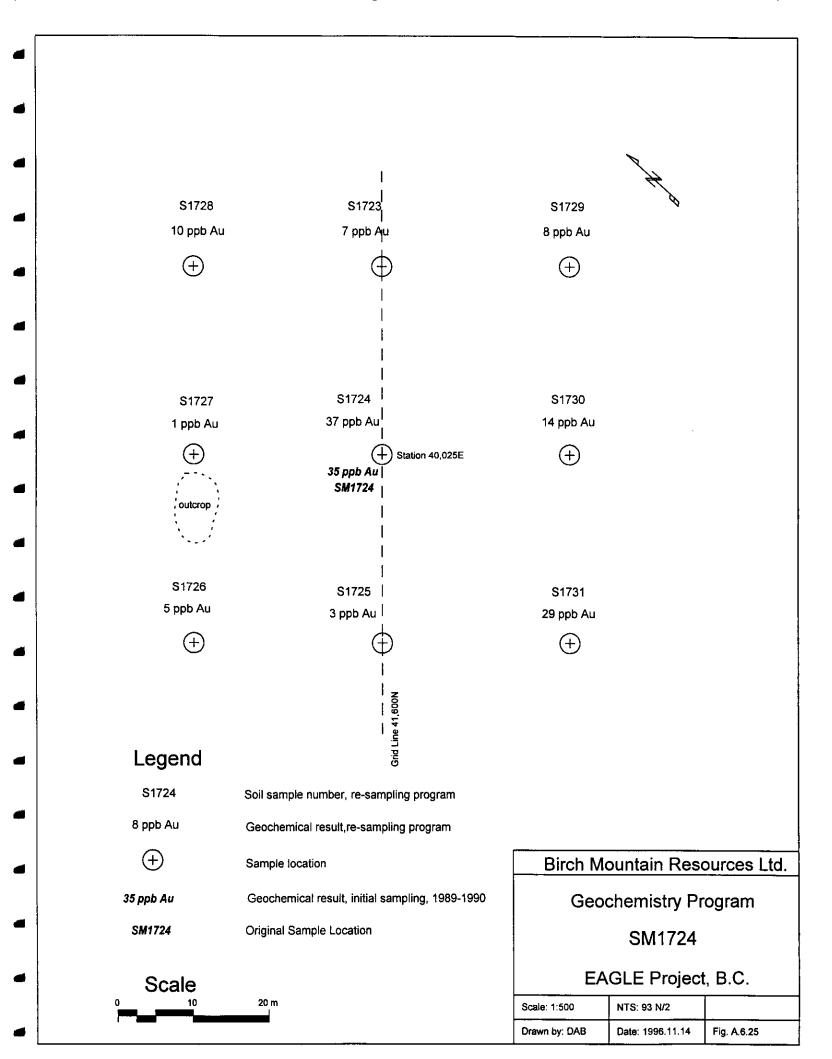


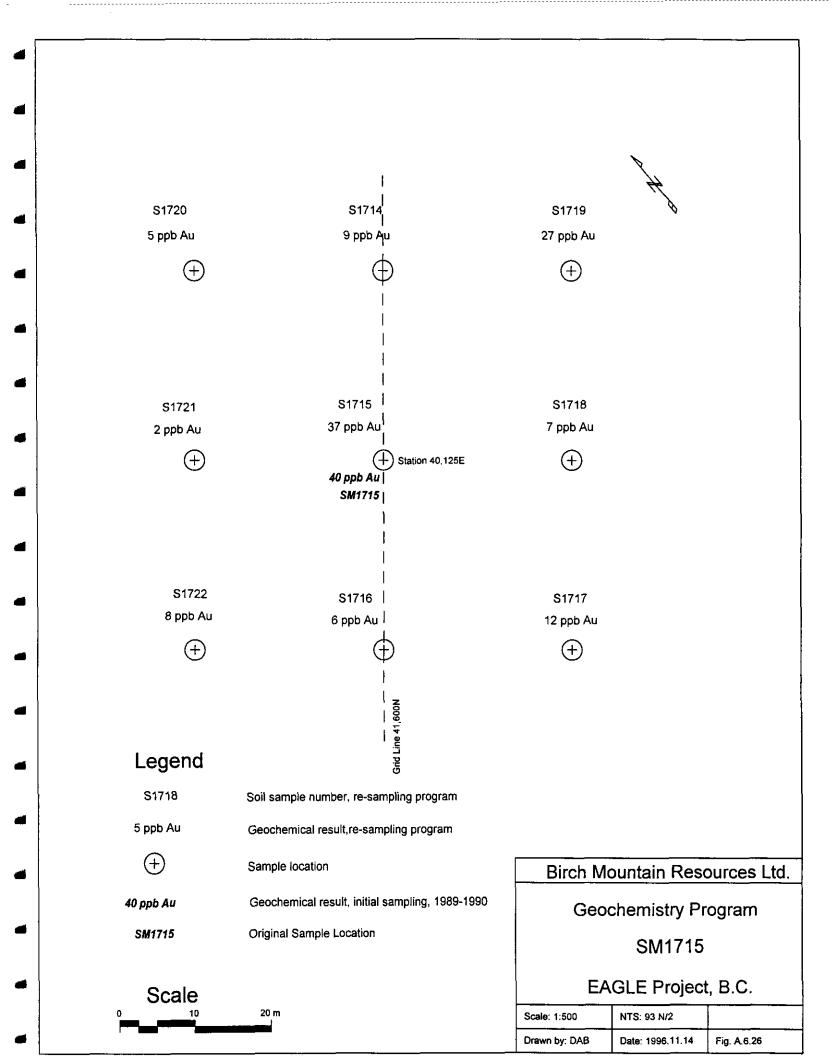


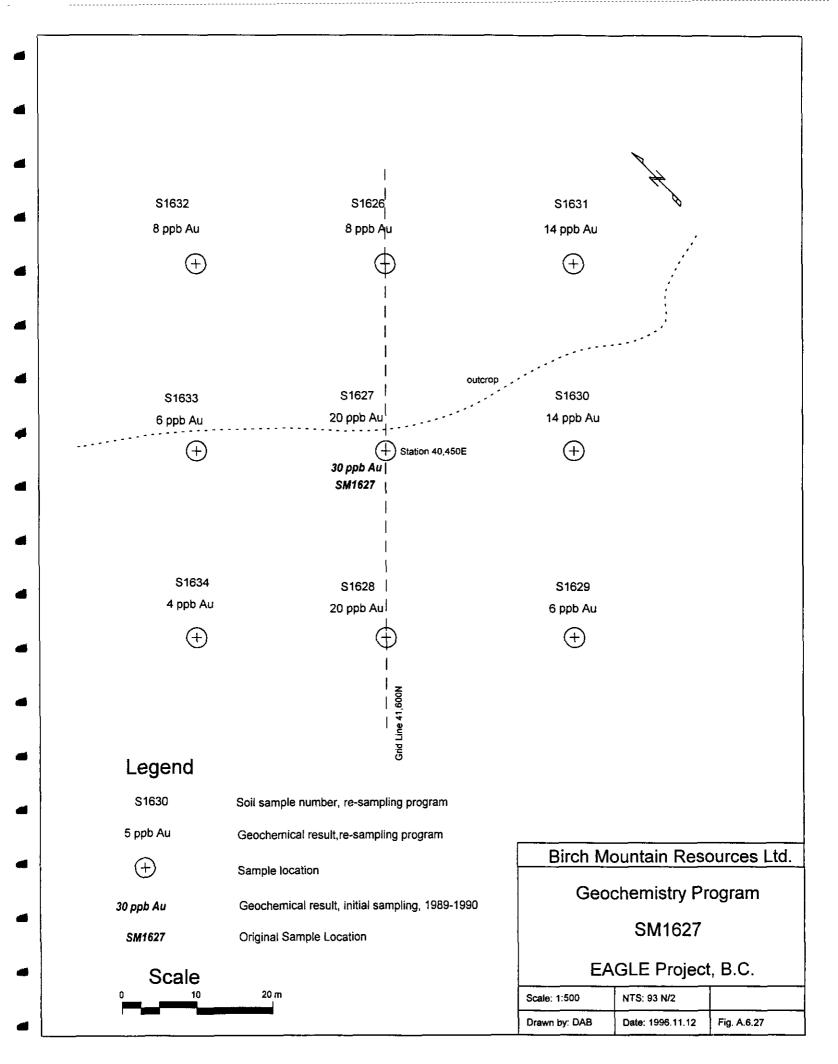


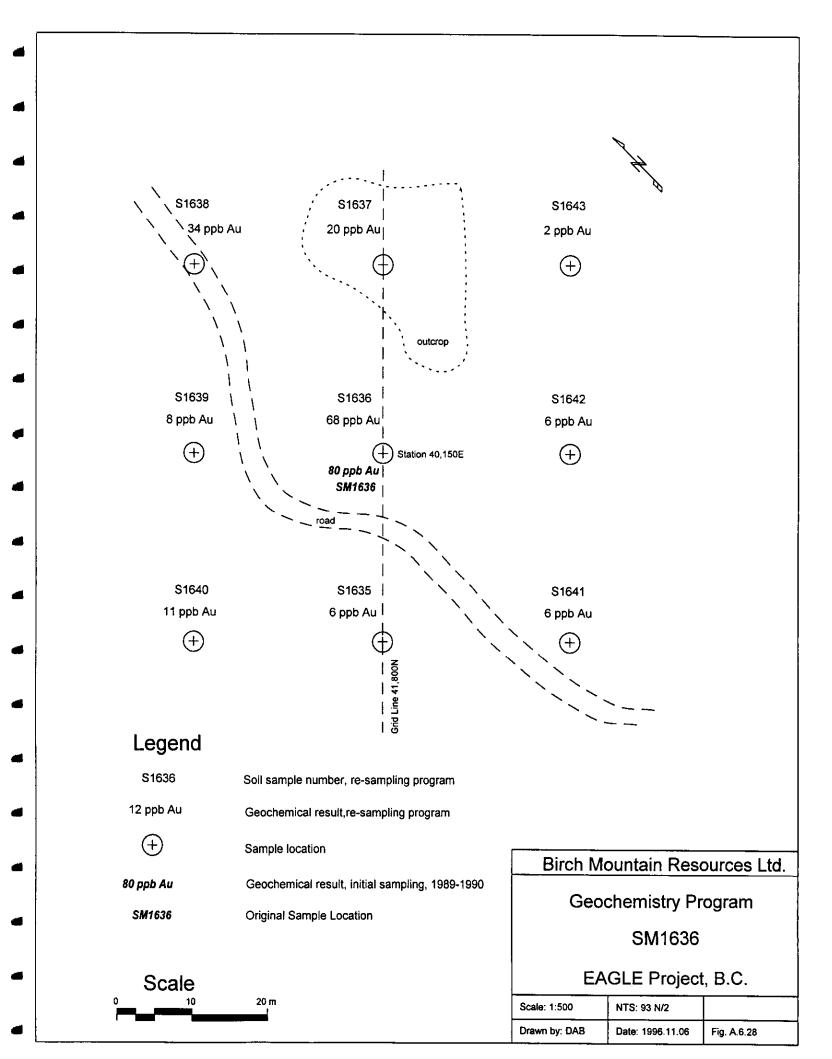

Soil sample number, re-sampling program Geochemical result,re-sampling program Insufficient sample for gold analysis Sample location Geochemical result, initial sampling, 1989-1990

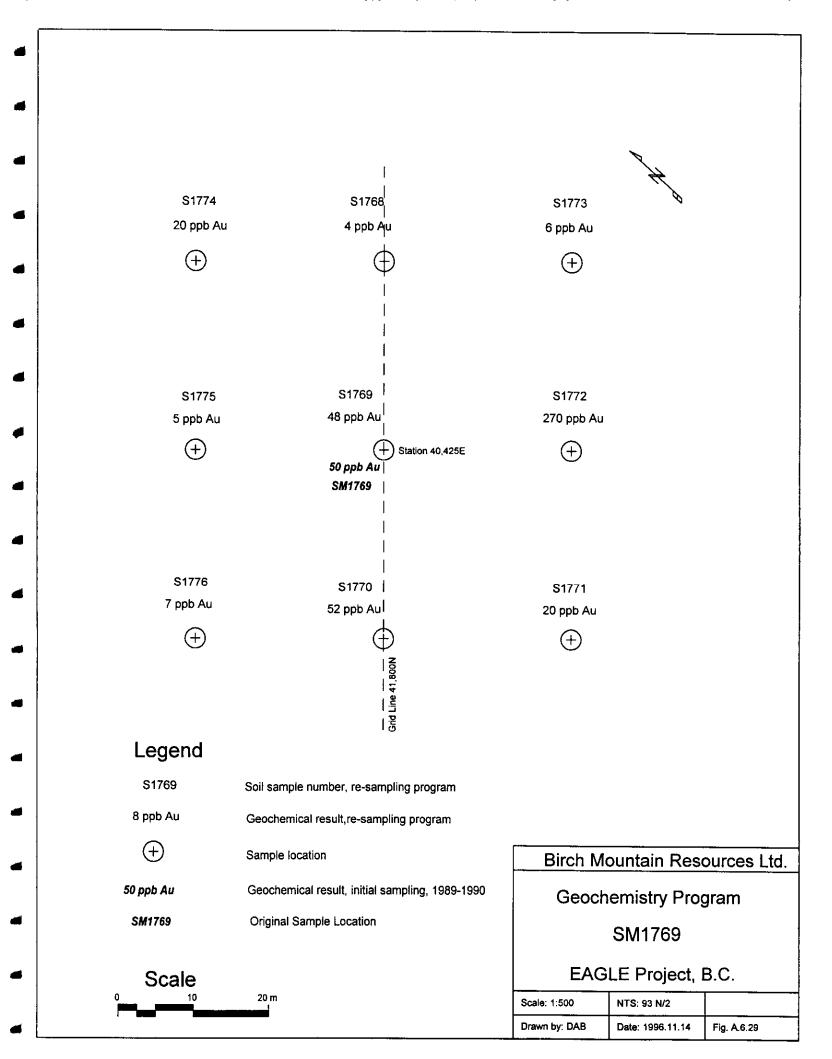

Original Sample Location

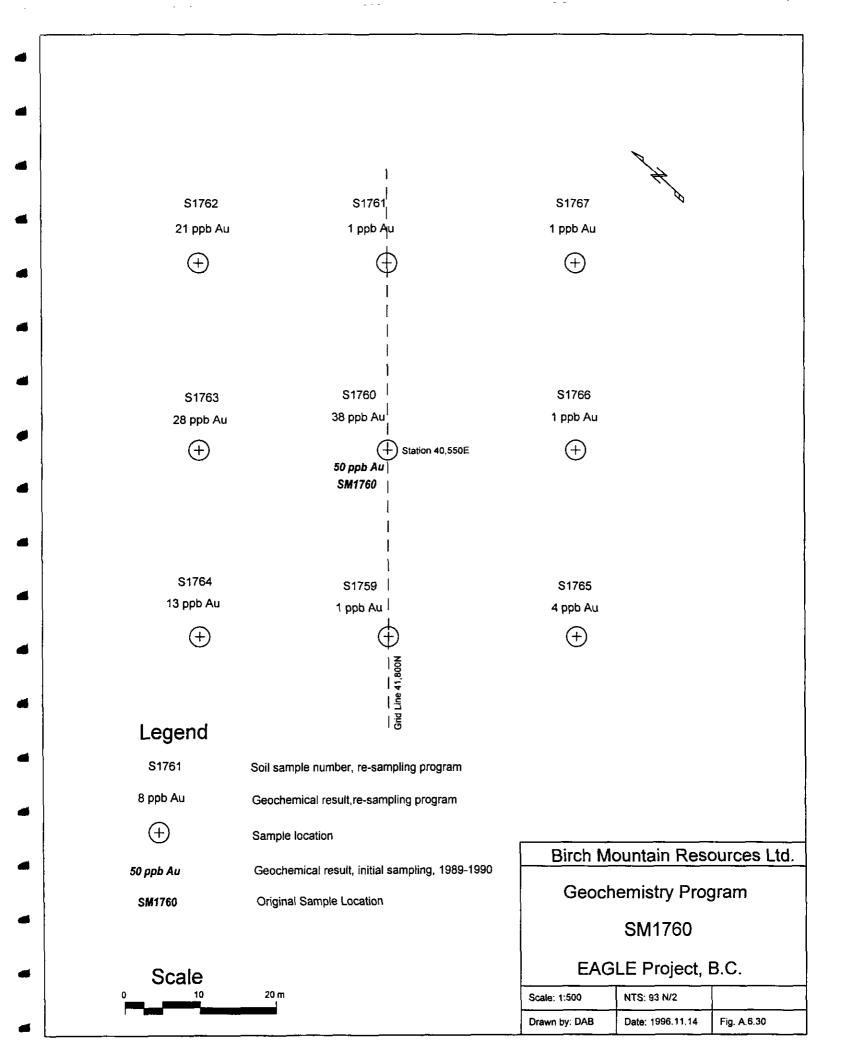

| 9 |  |  |
|---|--|--|
| 0 |  |  |
|   |  |  |


20 m

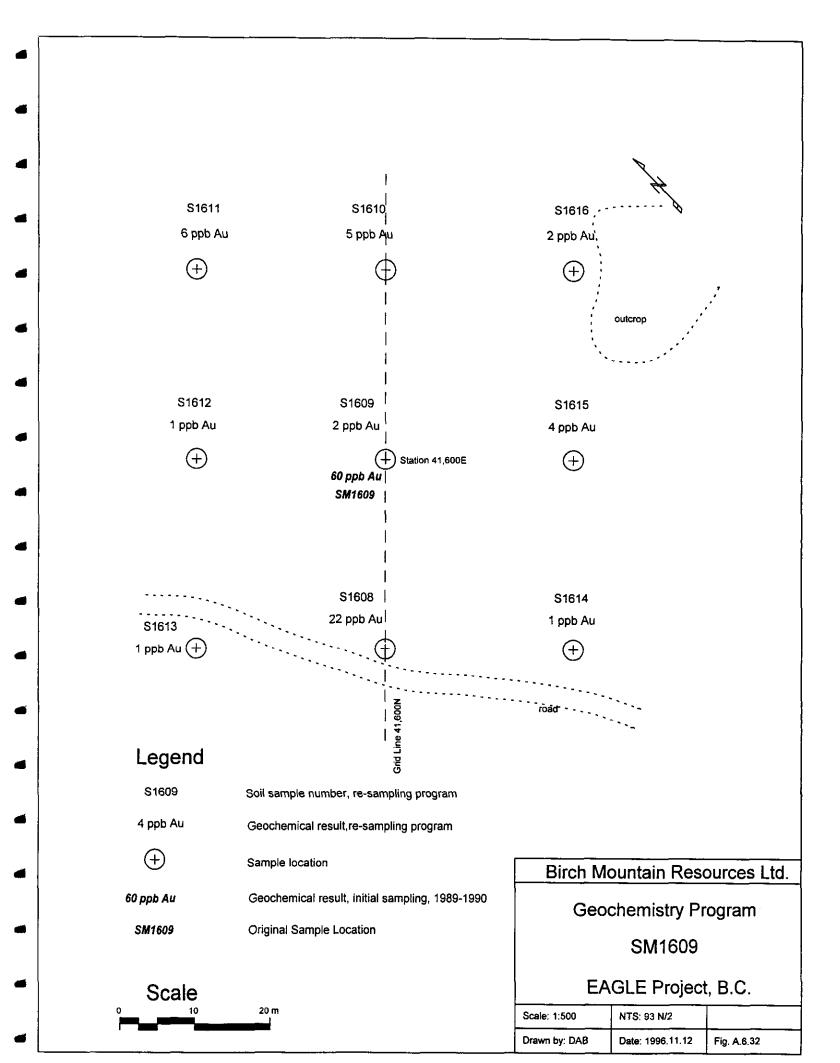

| Birch Mountain Resources Ltd. |                  |             |
|-------------------------------|------------------|-------------|
| Soil Sampling Program         |                  |             |
| SM1308                        |                  |             |
| EAGLE Project, B.C.           |                  |             |
| Scale: 1:500                  | NTS: 93 N/2      |             |
| <br>Drawn by: DAB             | Date: 1996.11.06 | Fig. A.6.22 |

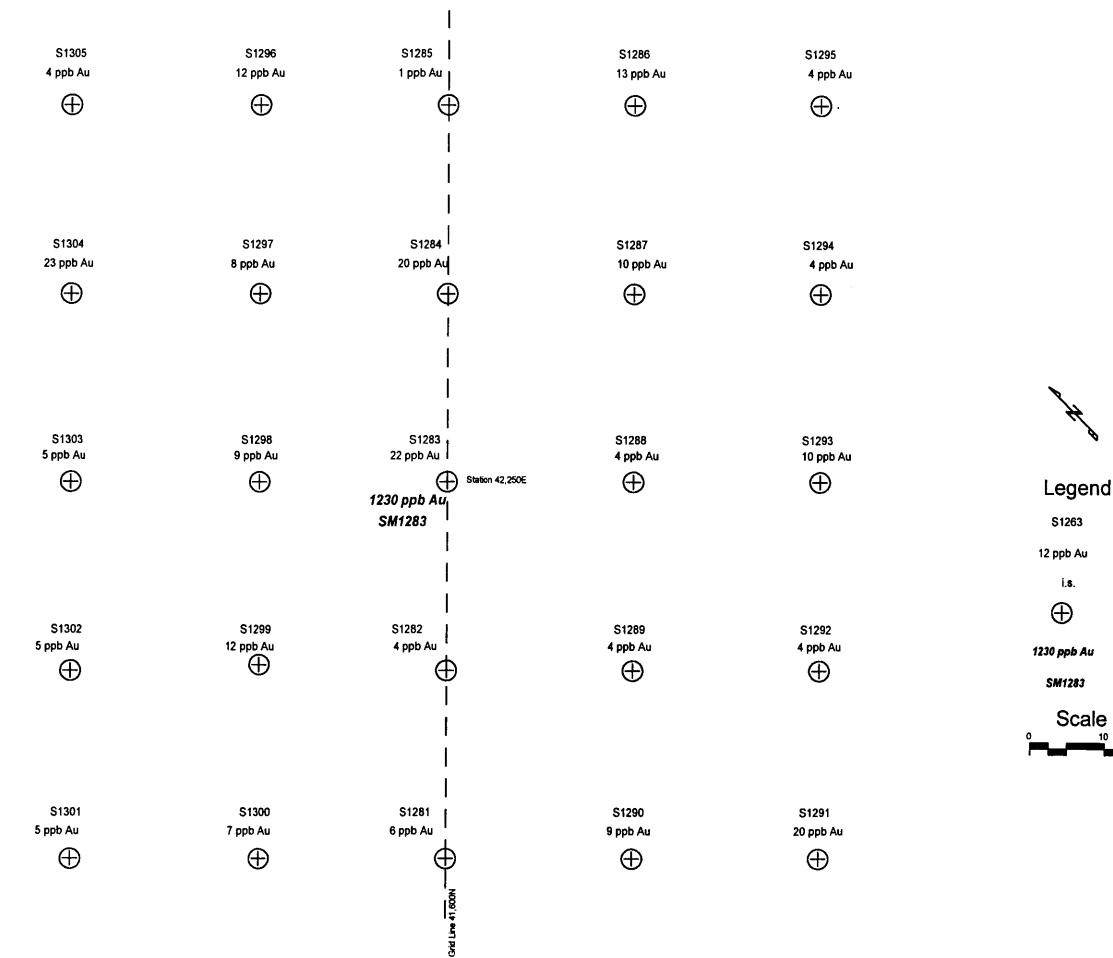















.

ľ

i.

F

F i

ļ

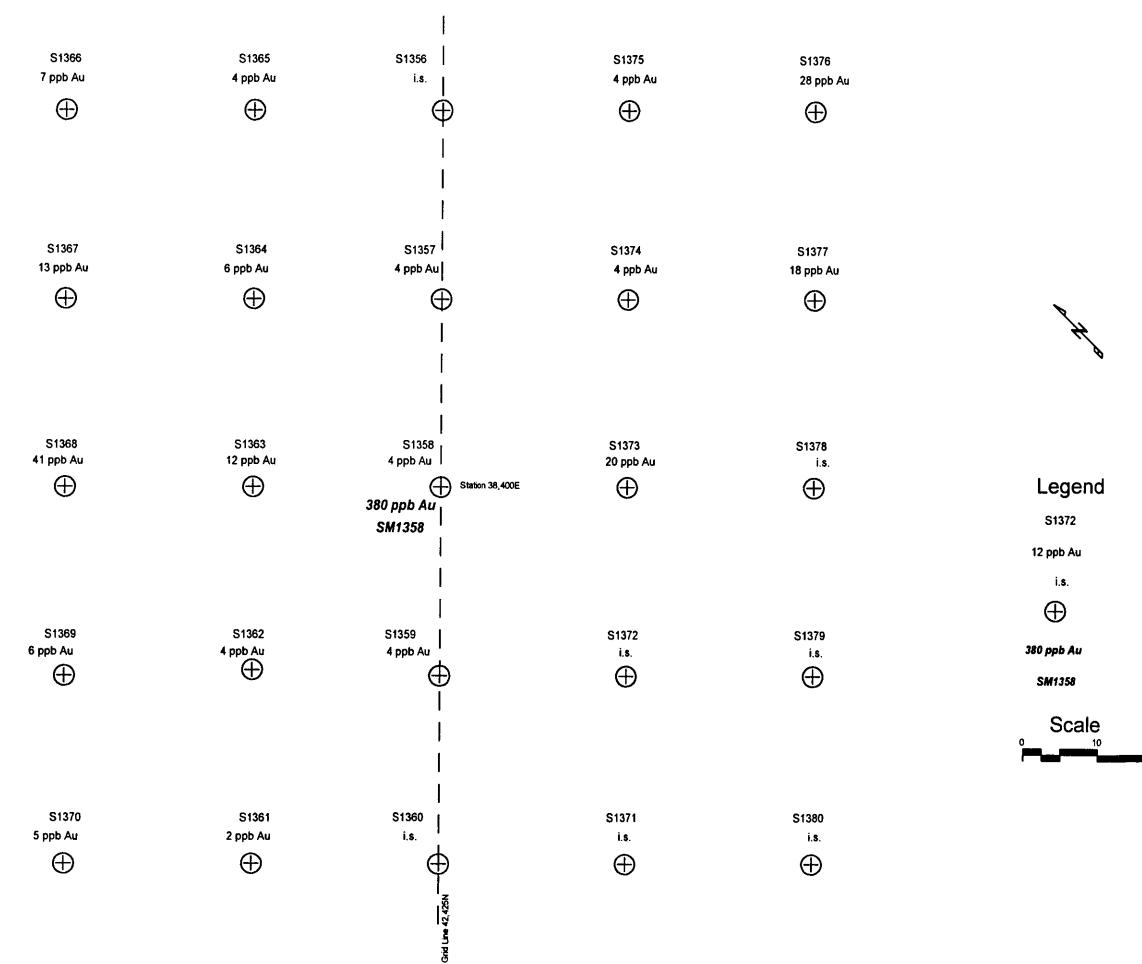
ļ

t

ł

I l

ĺ

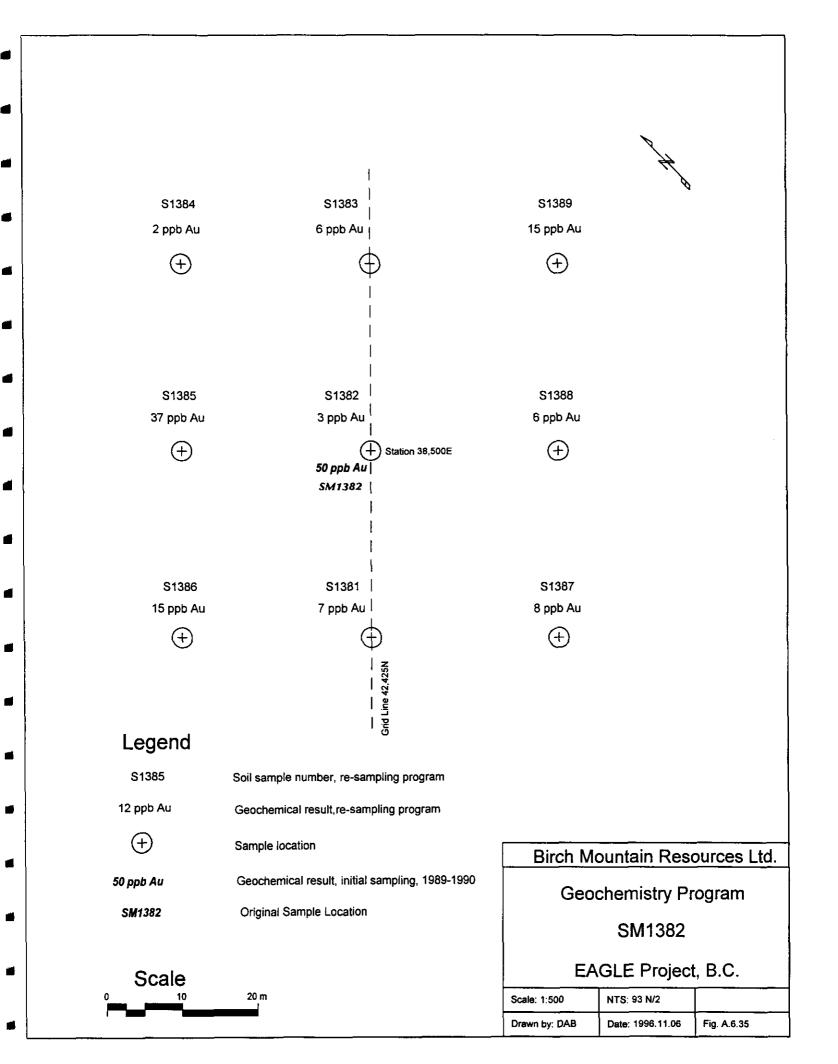

1

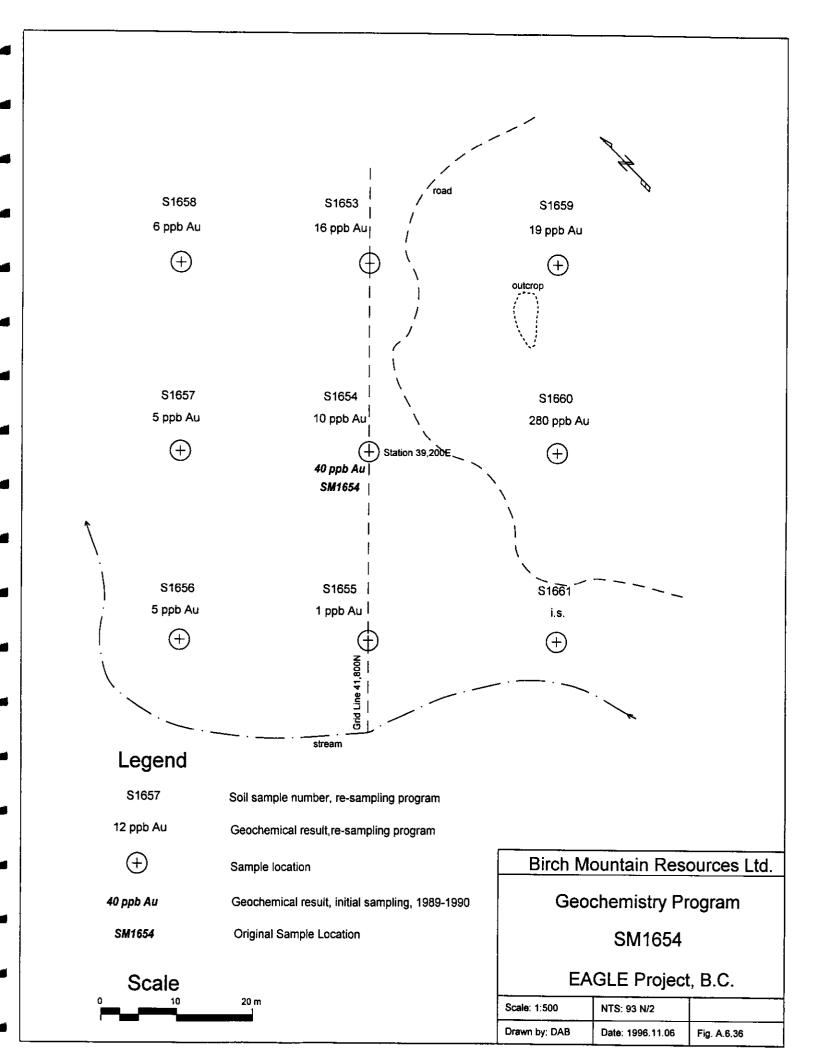
į,

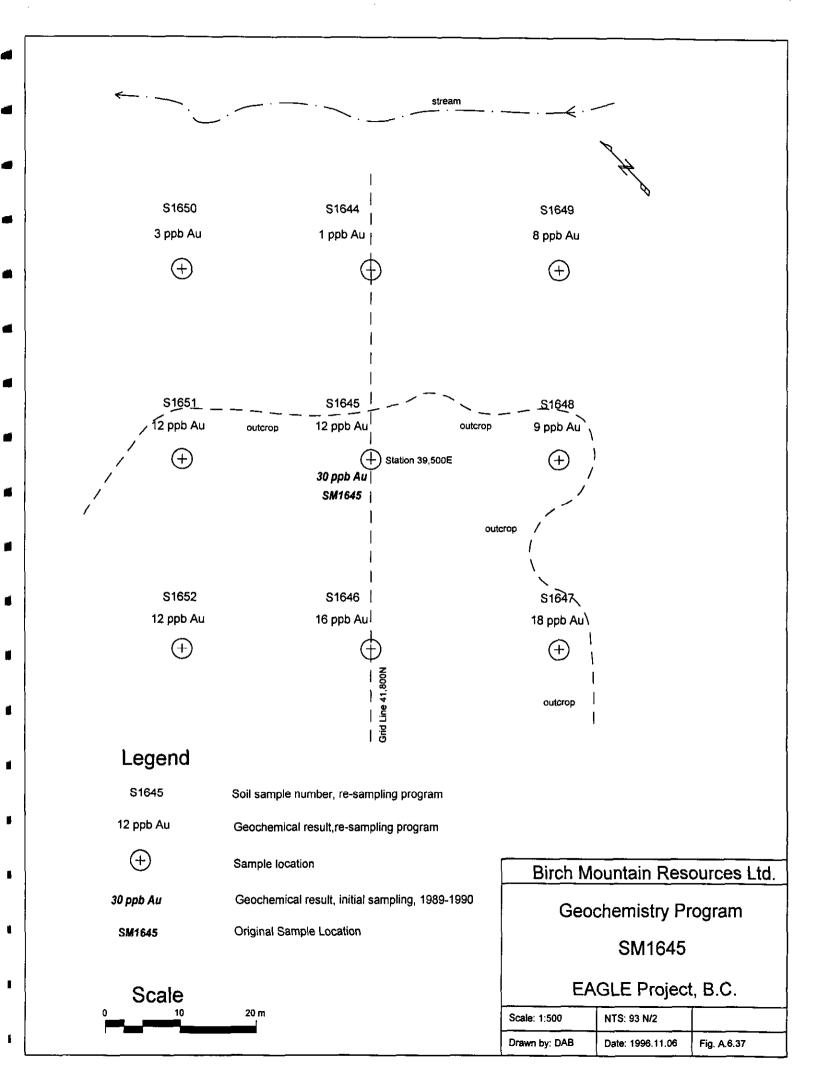
|     | Soil sample number, re-sampling program         |
|-----|-------------------------------------------------|
| i   | Geochemical result, re-sampling program         |
|     | Sample location                                 |
| เน  | Geochemical result, initial sampling, 1989-1990 |
|     | Original Sample Location                        |
| ale |                                                 |

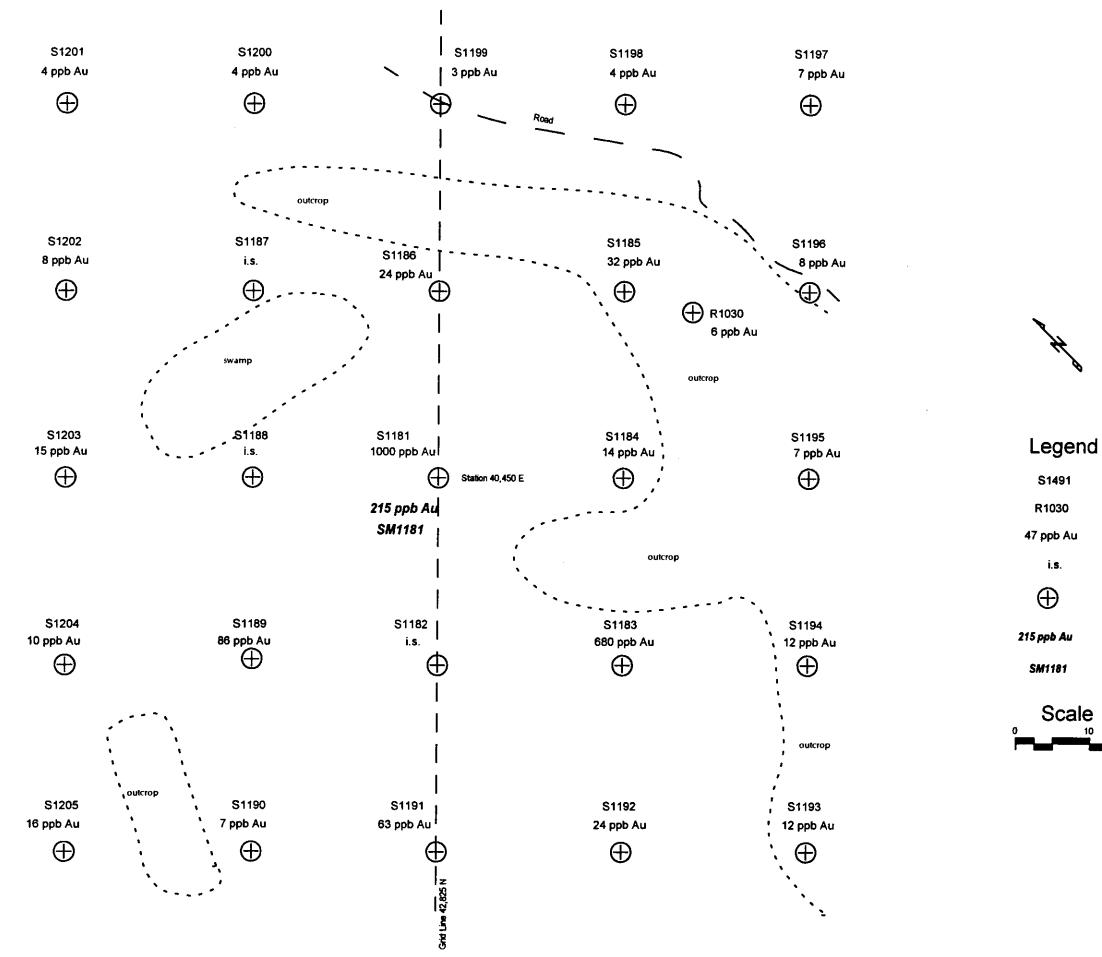
| 10 | 20 m |
|----|------|
|    |      |

| Birch Mountain Resources Ltd. |                                       |  |  |
|-------------------------------|---------------------------------------|--|--|
| Soil Sampling Program         |                                       |  |  |
| SM1283                        |                                       |  |  |
| EAGLE Project, B.C.           |                                       |  |  |
| NTS: 93 N/2                   |                                       |  |  |
| Date: 1996.11.05              | Fig. A.6.33                           |  |  |
|                               | Sampling Pro<br>SM1283<br>GLE Project |  |  |





ł


Soil sample number, re-sampling program Geochemical result, re-sampling program Insufficient sample for gold analysis Sample location Geochemical result, initial sampling, 1989-1990 Original Sample Location


20 m

| Birch M               | Birch Mountain Resources Ltd. |             |  |  |
|-----------------------|-------------------------------|-------------|--|--|
| Soil Sampling Program |                               |             |  |  |
| SM1358                |                               |             |  |  |
| EAGLE Project, B.C.   |                               |             |  |  |
| Scale: 1:500          | NTS: 93 N/2                   |             |  |  |
| Drawn by: DAB         | Date: 1996.11.06              | Fig. A.6.34 |  |  |

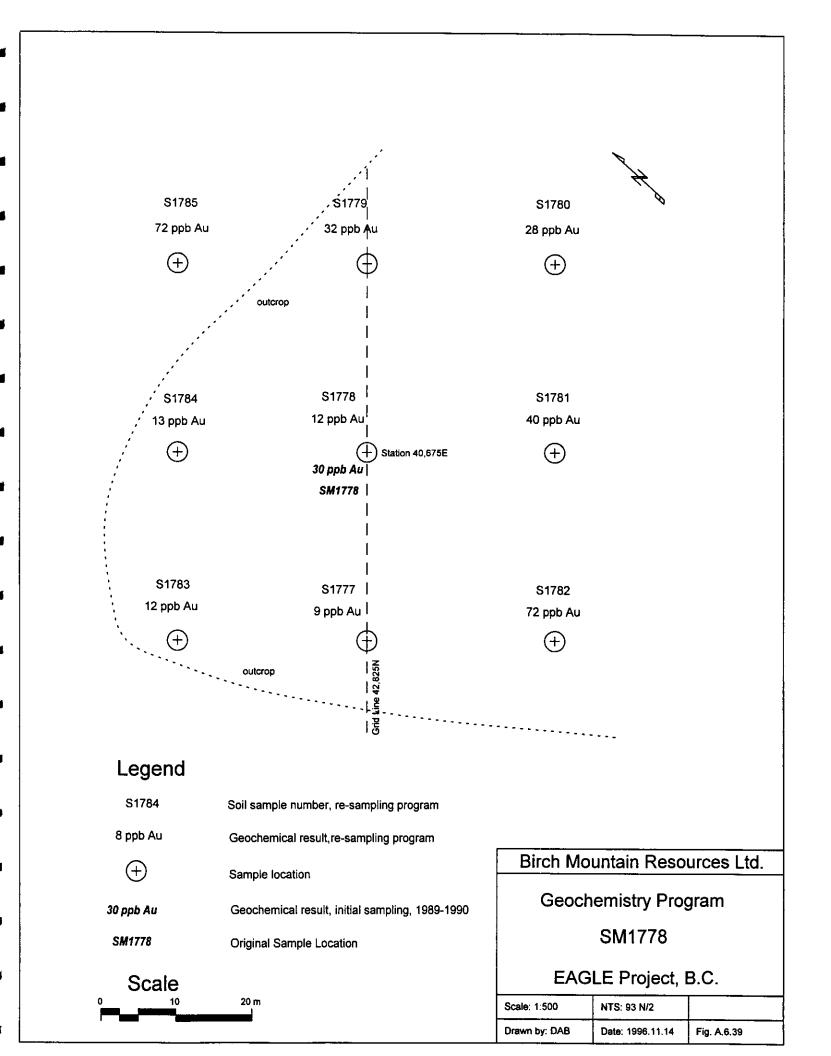


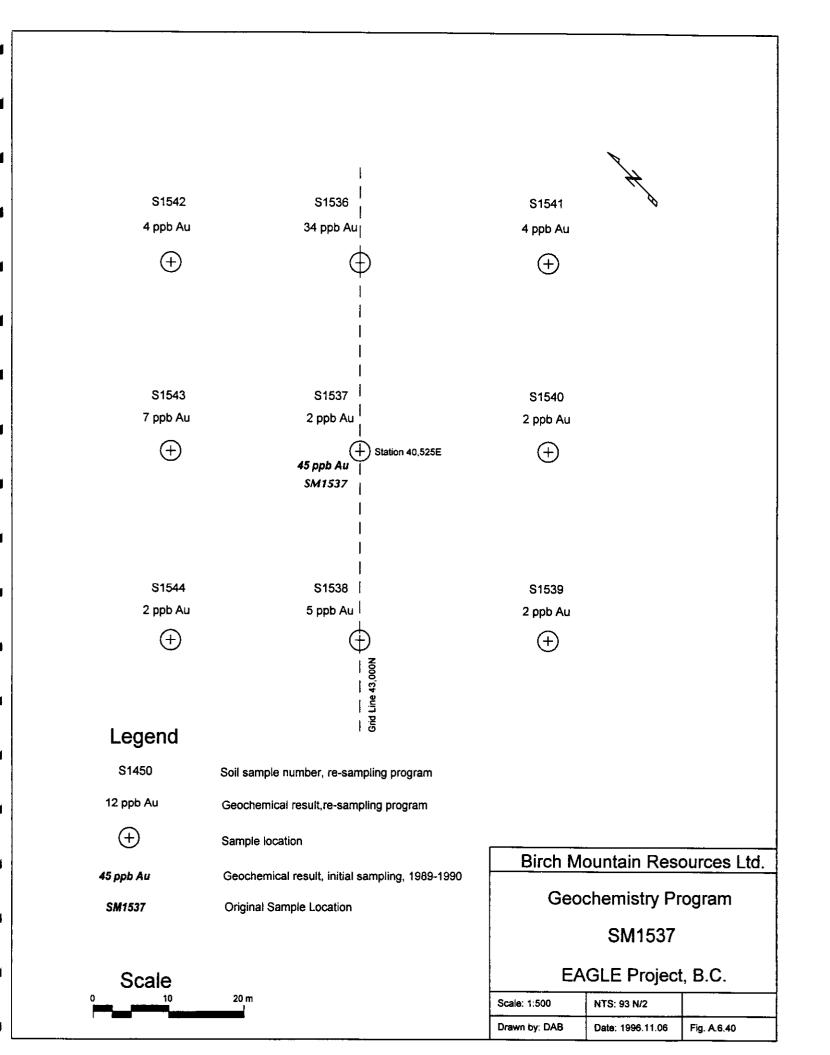


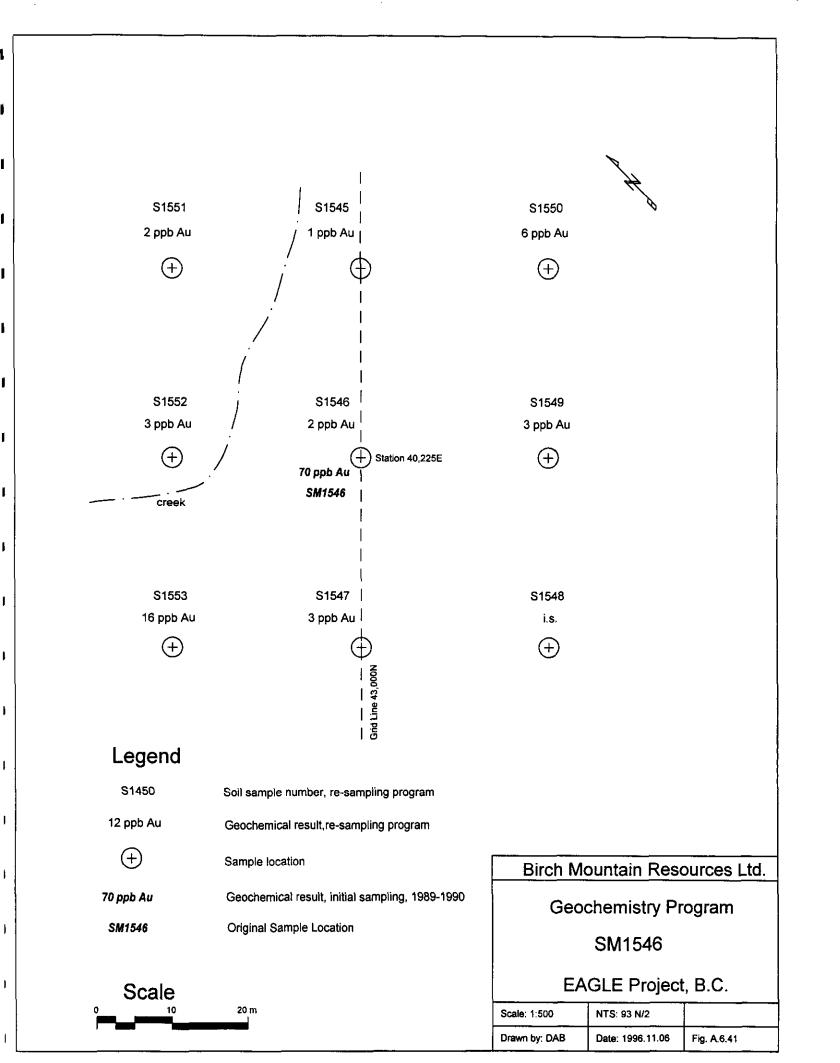


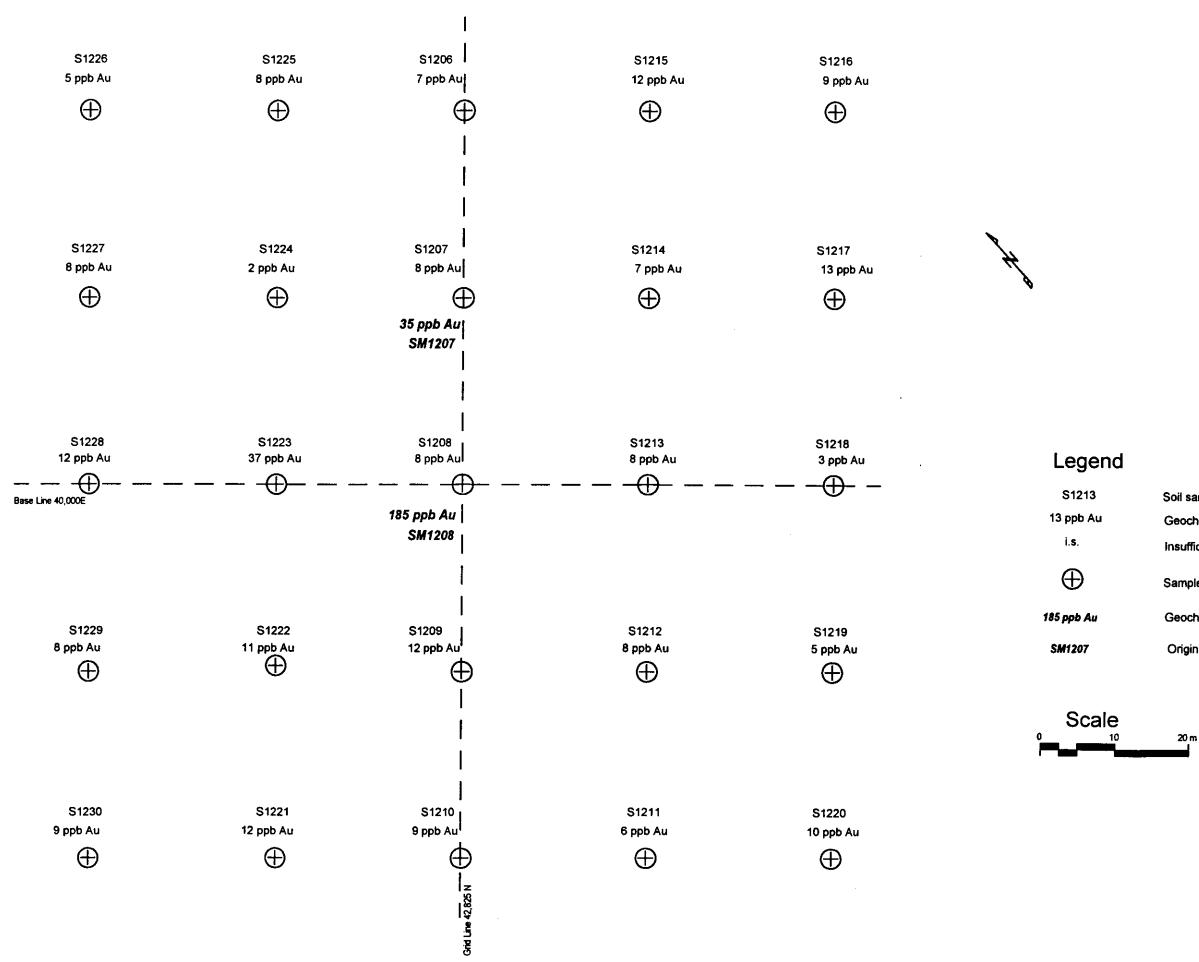


Soil sample number, re-sampling program Rock sample number, re-sampling program Geochemical result, re-sampling program Insufficient sample for gold analysis


Sample location


Geochemical result, initial sampling, 1989-1990


**Original Sample Location** 


20 m

| Birch N                   | Birch Mountain Resources Ltd. |             |  |
|---------------------------|-------------------------------|-------------|--|
| Soil S                    | Soil Sampling Program         |             |  |
|                           | SM1181                        |             |  |
| EA                        | EAGLE Project, B.C.           |             |  |
| Sca <del>le</del> : 1:500 | NTS: 93 N/2                   |             |  |
| Drawn by: DAB             | Date: 1996.11.05              | Fig. A.6.38 |  |



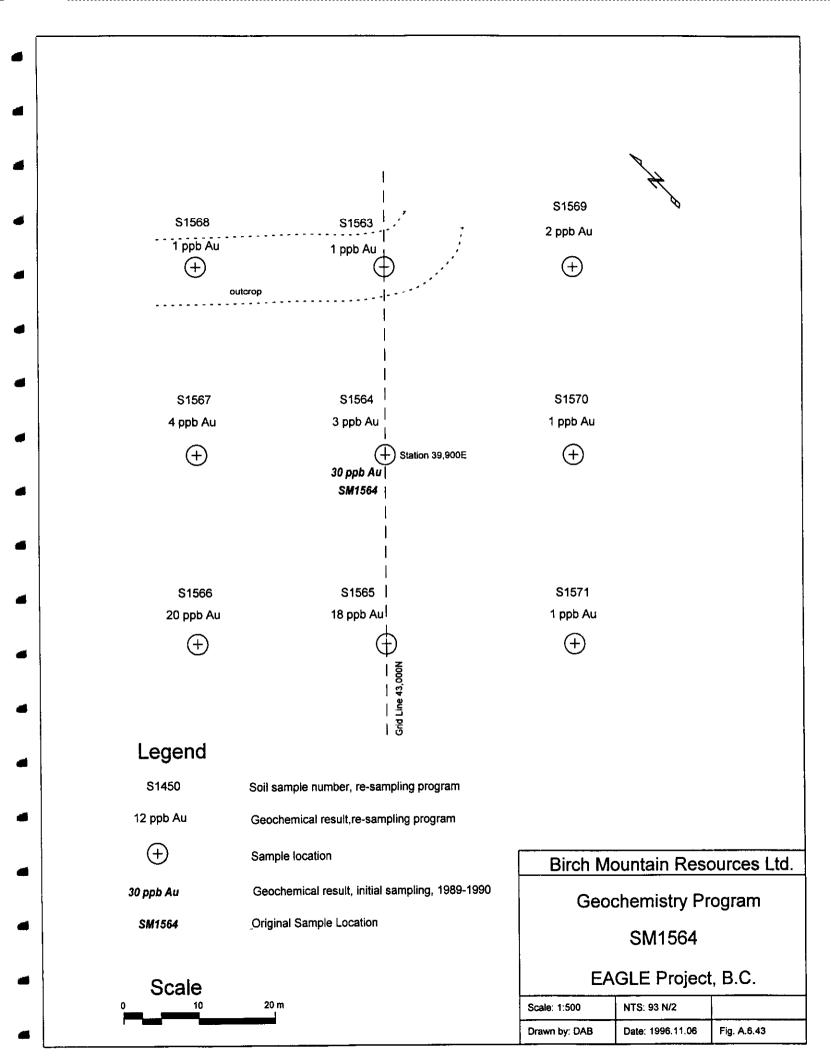


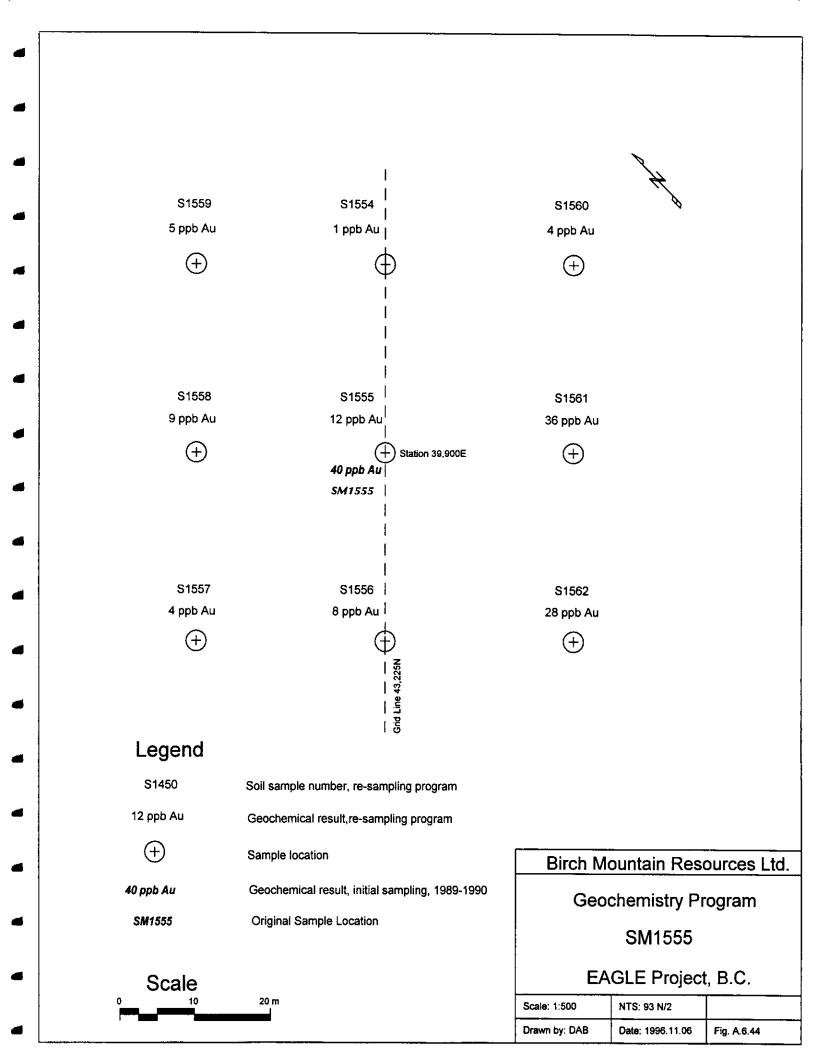


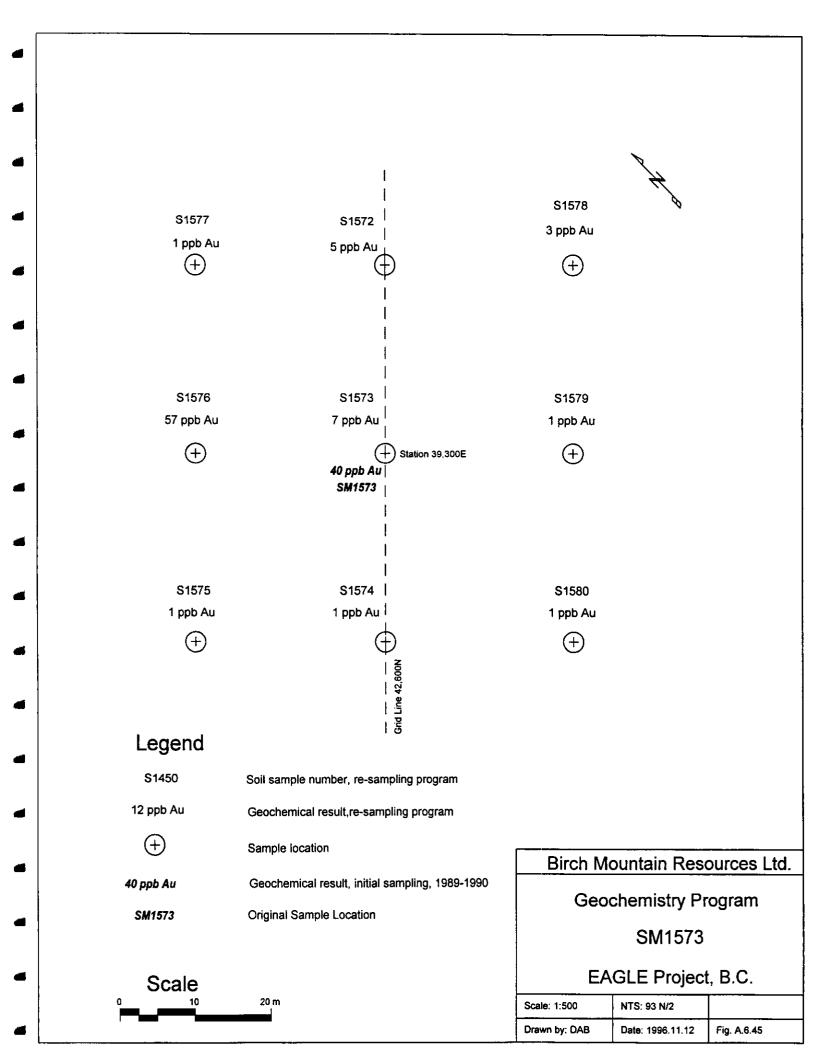


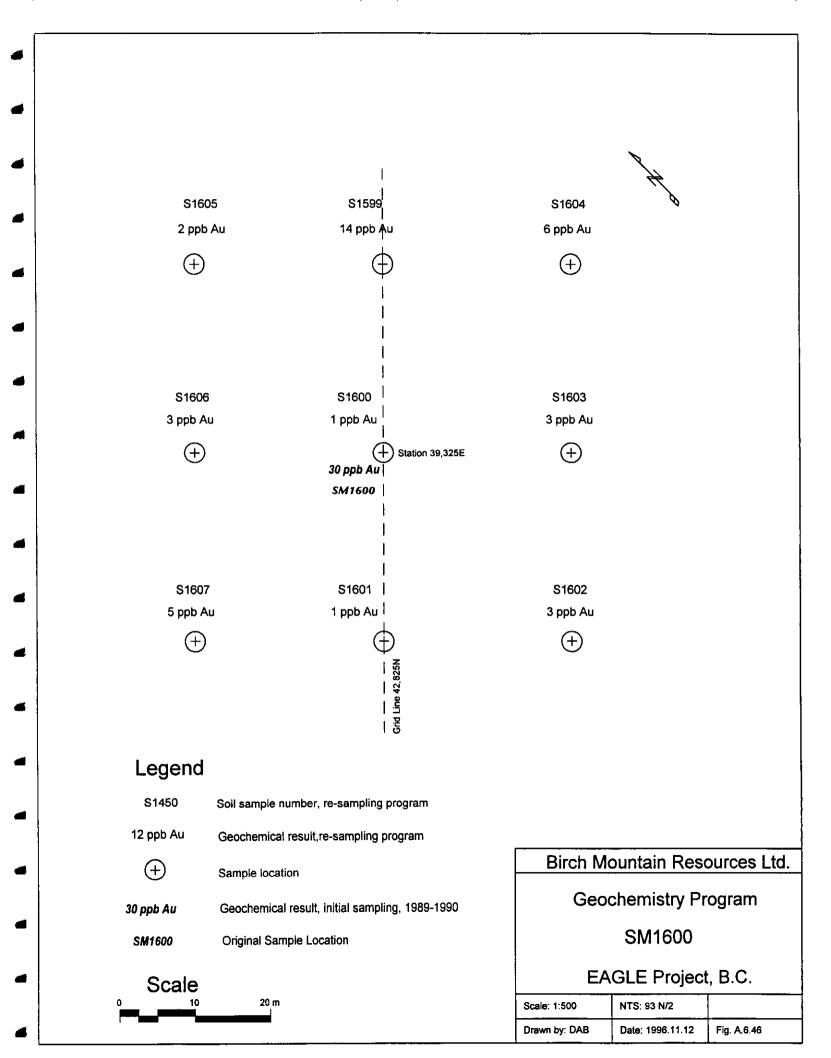
i

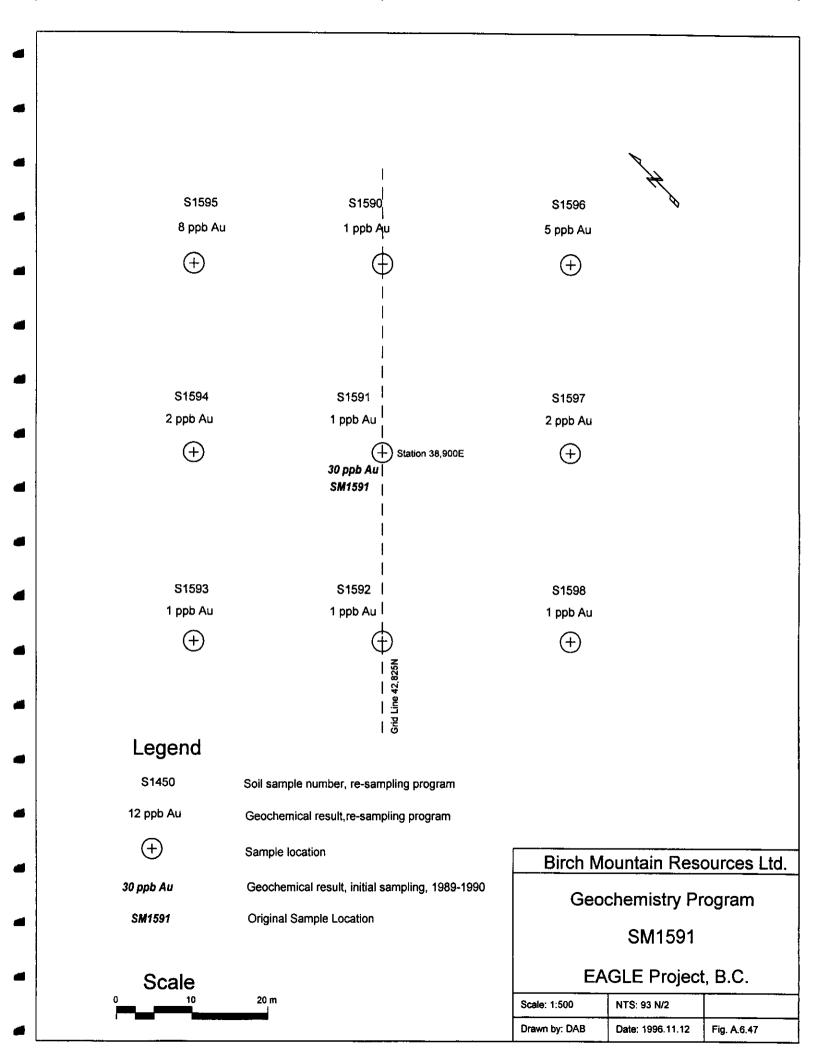
ł

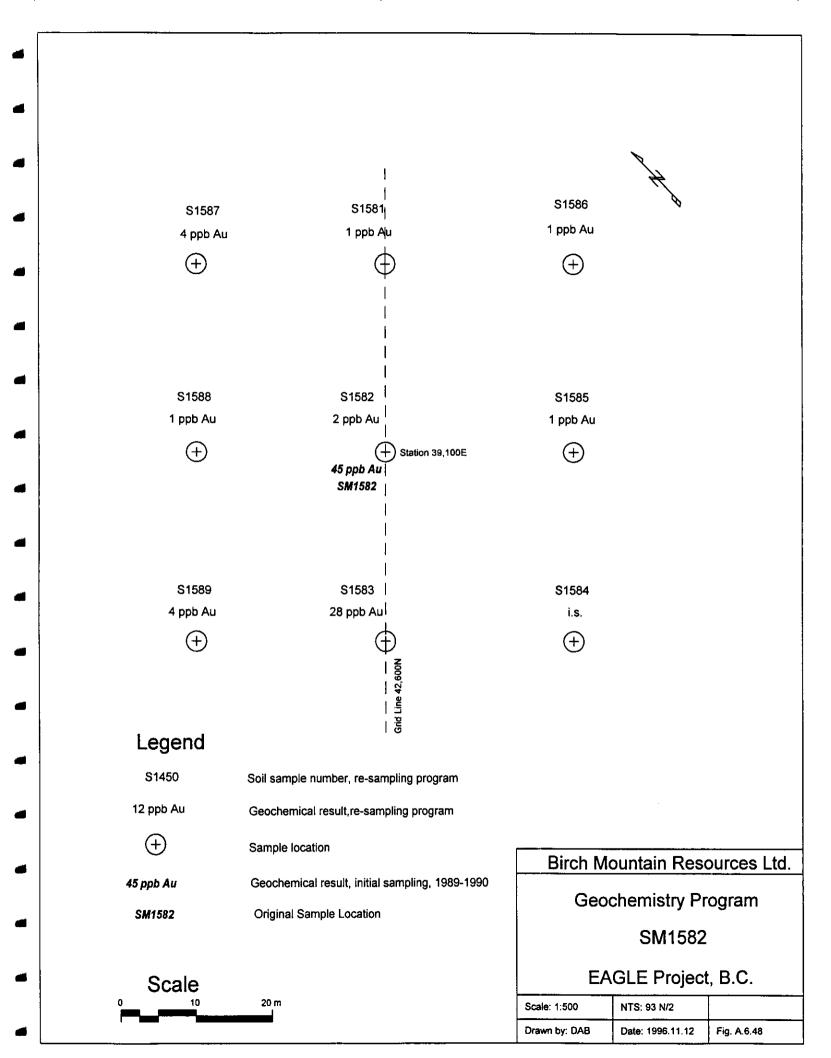

1


Soil sample number, re-sampling program Geochemical result, re-sampling program Insufficient sample for gold analysis Sample location


Geochemical result, initial sampling, 1989-1990


Original Sample Location


| Birch Mountain Resources Ltd. |                  |             |  |
|-------------------------------|------------------|-------------|--|
| Geochemistry Program          |                  |             |  |
| SM1207, SM1208                |                  |             |  |
| EAGLE Project, B.C.           |                  |             |  |
| Scale: 1:500                  | NTS: 93 N/2      |             |  |
| Drawn by: DAB                 | Date: 1996.11.05 | Fig. A.6.42 |  |














Appendix 7

**Analytical Procedures** 

10/25/96 09:23

SRC GEOCHEMISTRY

Saskatchewan Research Council 15 Innovation Blvd. Saskatoon, SK Canada S7N 2X8 Ph: 306-933-5400 Fax: 306-933-7896 Internet: http://www.src.sk.ca

| OCTOBER | 25, 1996 |
|---------|----------|
|         | · ·      |

technology is our business

TO: DON BEAUCHAMP BIRCH MOUNTAIN RESOURCES

FROM: AL HOLSTEN MANAGER, GEOCHEM LAB SASK. RESEARCH COUNCIL PH.: (306) 933-5426 FAX: (306) 933-5656

|            | - |
|------------|---|
| <b>N</b> 1 |   |
|            |   |
| <b>N</b>   |   |

Methods used on Birch Mountain soils and rocks

### Soil Method

- 1. Soils were dried at 100° C overnight.
- 2. Dried soils were screened at  $\pm 180$  microns.
- 3. A 1.00 gram subsample of the fines was digested in HNO3/HCl at 100°C for one hour.
- 4. The resulting solution was analyzed by axial ICP using a Perkin Elmer Optima 3000 DV. (See item 7 under ICP analysis in our fee schedule).
- 5. A 10.00 gram subsample of the fines was fire assayed using standard fire assaying procedures with an atomic absorption finish.

### Rock Method

- 1. Rocks were dried at 100°C overnight.
- 2. Rocks were initially crushed to approximately -1mm in a jaw crusher.
- 3. A 100 gram subsample of the crushed rock was obtained by splitting the sample using a ¼" riffler.
- 4. The 100 gram subsample was ground to approximately -200 mesh in a chrome steel grinding mill.
- 5. A 1.00 gram subsample of the rock pulp was digested in HNO3/HCl at 100°C for one hour.
- 6. The resulting solution was analyzed by axial ICP using a Perkin Elmer Optima 3000 DV. (See item 7 under ICP analysis in our fee schedule).
- 7. A 10.00 gram subsample of the fines was fire assayed using standard fire assaying procedures with an atomic absorption finish.

Please refer to the enclosed fee schedule for detection limits.

1996

## **ICP ANALYSIS**

ICP Gold Trace Exploration Package Aqua regia digestion

- all 15 elements: \$10.00 per sample (digestion included)

- GeoChem Au Fire Assay 10 g. subsample: \$7.50 extra

## **Detection Limit Table**

| AQUA | REGIA PAR | <u>etial i</u> | DIGESTION |
|------|-----------|----------------|-----------|
| As   | 0.2 ppm   | Pb             | 0.1 ppm   |
| Sb   | 0.2 ppm   | Zn             | 0.1 ppm   |
| Bi   | 0.2 ppm   | Co             | 0.1 ppm   |
| Se   | 0.2 ppm   | Cd             | 0.1 ppm   |
| Te   | 0.2 ppm   | Мо             | 0.1 ppm   |
| Hg   | 0.03 ppm  | Ag             | 0.1 ppm   |
| Cu   | 0.1 ppm   | w              | 0.2 ppm   |
| Ni   | 0.1 ppm   |                |           |

# AQUA REGIA PARTIAL DIGESTION

# PRECIOUS METALS ANALYSIS

Geochem Fire Assay - Au: \$7.50 per sample 15 g. subsample, Axial ICP finish

**Detection Limit** 

Au 0.5 ppb

đ

Appendix 8 **Drill Logs** 

### Diamond Drill Logs

Legend

| FromTo<br>Sample No.<br>Width | interval in metres<br>number of the sample submitted for analysis<br>width of interval |
|-------------------------------|----------------------------------------------------------------------------------------|
| Sulp                          | total sulphides in interval in percent                                                 |
| ру                            | pyrite content of the interval as a percent of total sulphides                         |
| ср                            | chalcopyrite content of the interval as a percent of total sulphides                   |
| gal                           | galena content of the interval as a percent of total sulphides                         |
| ро                            | pyrrhotite content of the interval as a percent of total sulphides                     |
| mag                           | magnetite content of the interval in percent                                           |
| qtz                           | percent of secondary (introduced) quartz in the interval                               |
| Lithology                     | rock type                                                                              |
| Colour                        | colour of core                                                                         |
| Size                          | grain size of rock                                                                     |
| Structure                     | structure in the interval e.g. shearing, fracture and brecciation                      |
| Alteration                    | hydrothermal alteration present in the interval                                        |
|                               | clay clay-sericite alteration                                                          |
|                               | kspar potassic alteration                                                              |
|                               | bio biotite alteration                                                                 |
|                               | chl chlorite alteration                                                                |
|                               | epi epidote alteration                                                                 |
| Comments                      | brief description of the interval                                                      |
|                               |                                                                                        |

## **Diamond Drill Log**

Drill Hole No: EA-96-01

Logged By: Simon X. Fan

**Date:** September 18-22, 1996

 Easting:
 41 + 34E
 Azimuth:
 042°

 Northing:
 36 + 00N
 Inclination:
 -45°

 Elevation:
 976m a.s.l.
 Total Depth:
 294.97m

 Core Size:
 NQ-2

#### Survey Type:

| depth   | az.  | dip  |
|---------|------|------|
| Collar: | 042° | -46° |
| 102.72m | 052° | -49° |
| 211.84m | 051° | -49° |
| 294.97m | 060° | -50° |

|             |           | <b>.</b>      |              | <b>.</b> |    |    | <b>—</b> — |    |     |     |                      |          |          |                       |                        |                                                                                                                                                                                                                                                         |
|-------------|-----------|---------------|--------------|----------|----|----|------------|----|-----|-----|----------------------|----------|----------|-----------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From<br>(m) | То<br>(т) | Sample<br>No. | Width<br>(m) | Sulp     | ру | ср | gaí        | ро | mag | qtz | Lithology            | Colour   | Size     | Structure             | Alteration             | Comments                                                                                                                                                                                                                                                |
|             |           |               |              | 1        |    | 1  |            |    |     |     |                      |          |          |                       |                        |                                                                                                                                                                                                                                                         |
| DDH: E/     | 4-96-01   | <u></u>       |              |          |    |    | <u> </u>   |    |     |     |                      |          |          |                       |                        |                                                                                                                                                                                                                                                         |
| 0.00        | 15.24     |               | 15.24        |          |    |    |            |    |     |     |                      |          |          |                       |                        | Casing                                                                                                                                                                                                                                                  |
| 15.24       | 16.24     | D-1001        | 1 .00        | <1       | 75 | 5  |            | 20 | 5   | 0   | diorite              | mid grey | mg       | fractured             | kspar,<br>epi          | Diorite with potassic-alteration, epidote banding of 3-10 mm at 45° to 70° ca. Hematite present near start of section, slightly broken. Thin banding of sulphides from 16.10 to 16.24m. Py, po, & cp appear in stringers. 15.24-17.37 lost core = 43cm. |
| 16.24       | 18.94     |               | 2.70         | 0        |    |    |            |    | 10  | 0   | diorite              | mid grey | mg       | fractured             | kspar,<br>epi          | Diorite with potassic alteration, epidote banding of 3-10 mm at 45° to 70° ca. Hematite present near start of section. slightly broken.                                                                                                                 |
| 18.94       | 19.68     |               | 0.74         | 0        |    |    |            |    | 5   | 1   | diorite              | lt grey  | mg       | fractured             | kspar,<br>clay         | Diorite with potassic and clay alterations.<br>Carbonate and quartz veinlets of 2-20 mm at <sup>-</sup> 45°<br>ca. Trace of hematite. 17.37-20.42m l.c. = 40 cm.                                                                                        |
| 19.68       | 20.48     |               | 0.80         | 0        |    |    |            |    | 5   | 0   | diorite              | mid grey | mg       | brecciated            | kspar,<br>epi          | Diorite with potassic and epidote alterations.<br>Carbonate veinlets of 2-10 mm at 45°-70° ca.                                                                                                                                                          |
| 20.48       | 22.48     |               | 2.00         | 0        |    |    |            |    | 5   | 2   | diorite              | lt grey  | mg       | brecciated            | kspar,<br>clay         | Diorite with potassic and clay alterations, Quartz-<br>carbonate veins of 2-20 m at 0-70° ca. 20.42-23.43<br>l.c. = 5cm.                                                                                                                                |
| 22.48       | 22.88     |               | 0.40         | 0        |    |    |            |    | 10  | 0   | diorite              | mid grey | mg       | highly<br>fractured   | kspar                  | Diorite with potassic alteration. Carbonate veinlets of 2-5mm of 45-90° ca.                                                                                                                                                                             |
| 22.88       | 23.10     |               | 0.22         | 0        |    |    |            |    | 0   | 0   | sye-<br>nite<br>dyke | ďk pínk  | fg       | highly<br>fractured   | ері                    | Syenite dyke with epidote and carbonate alterations.                                                                                                                                                                                                    |
| 23.10       | 24.30     |               | 1.20         | 0        |    |    |            |    | 5   | 2   | diorite              | lt grey  | mg       | fractured             | kspar,<br>epi,<br>clay | Diorite with potassic, epidote and clay alterations.<br>Quartz-carbonate veinlets of 2-20mm at 0-80°ca.<br>The carbonate veinlets crosscut quartz veinlets.                                                                                             |
| 24.30       | 29.80     |               | 5.50         | 0        |    |    |            |    | 5   | 1   | diorite              | mid grey | mg       | slightly<br>fractured |                        | Diorite with minor potassic and epidote alterations<br>Carbonate veinlets of 1-5mm at 45-90°ca. Quartz<br>also occurs in veinlets.                                                                                                                      |
| 29.80       | 32.61     |               | 2.81         | 0        |    |    |            |    | 5   | 1   | diorite              | mid grey | f-<br>mg | ductile<br>shear      |                        | Diorite with ductile shearing containing minor<br>epidote and potassic alterations. 1-5mm quartz<br>carbonate veinlets, and minor chlorite veining<br>Ductile shearing is at 30-45°ca.                                                                  |

I.

.

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру  | ср | gal | ро | mag | qtz | Lithology    | Colour                    | Size     | Structure              | Alteration   | Comments                                                                                                                                                                                                                                                                        |
|-------------|-----------|---------------|--------------|------|-----|----|-----|----|-----|-----|--------------|---------------------------|----------|------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32.61       | 33.61     | D-1002        | 1.00         | <1   | 100 |    |     |    | 5   | 1   | diorite      | greenish,<br>grey         | mg       | veining                |              | Diorite with intense ductile shearing containing<br>minor epidote and potassic alterations. 1-5mm<br>quartz carbonate veinlets, and chlorite veining<br>containing occasional py blebs. Ductile shearing is<br>at 30-45°ca.                                                     |
| 33.61       | 38.32     |               | 4.71         | 0    |     | 1  |     |    | 3   | 1   | diorite      | dk pink,<br>grey          | mg       | veining,<br>shearing   |              | Minor potassic, chlorite, and epidote alterations.<br>Quartz carbonate veining 1-2mm wide containing<br>a few highly chloritized shear zones up to 2 cm<br>thick.                                                                                                               |
| 38.32       | 47.10     |               | 8.78         | 0    |     |    |     |    | 2   | 3   | diorite      | lt grey                   | mg       | shearing               | clay         | Diorite with clay alteration and minor potassic<br>alteration. Chlorite alteration occurs mainly along<br>shear zones. Quartz carbonate veins up to 60mm,<br>at 40-90°. Chlorite alteration at 45° ca with two<br>fresh sections of 30 cm and 1.5m containing minor<br>epidote. |
| 47.10       | 48.28     |               | 1.18         | 0    |     |    |     |    | 0   | 3   | diorite      | grey,<br>green            | f-<br>mg | brecciated             |              | Brecciated diorite with clay alteration. A few quartz carbonate veins are also present.                                                                                                                                                                                         |
| 48.28       | 49.20     |               | 0.92         | 0    |     |    |     |    | 3.5 | 2   | diorite      | brown-<br>grey            | mg       | fractured              | kspar        | Diorite with moderate potassic alteration containing<br>a few chlorite seams 0.5-3mm wide. Quartz<br>carbonate veinlets 0.5-20mm. Quartz-chlorite<br>veining ~60°ca.                                                                                                            |
| 49.20       | 49.80     | D-1003        | 0.60         | 0    |     |    |     |    | 4   | 1   | diorite      | lt green                  | f-<br>mg |                        | chl          | Strongly chlorite-altered diorite, with chlorite veins<br>up to 5 mm and quartz carbonate veinlets up to 4<br>mm at 80°ca.                                                                                                                                                      |
| 49.80       | 50.90     | D-1004        | 1.10         | 2    | 90  | 10 |     |    | 10  | 1   | chl.<br>rock | dk green<br>& dk<br>brown | fg       | sheared,<br>brecciated |              | Sheared and brecciated chlorite rock containing<br>hematite along shear planes and 1-2mm quartz<br>carbonate veinlets.                                                                                                                                                          |
| 50.90       | 55.60     |               | 4.70         | 0    |     |    |     |    | 1   | 4   | diorite      | lt<br>brown-<br>green     | f-<br>mg | minor<br>shearing      | ciay,<br>chl | Diorite with clay, chlorite and minor potassic<br>alterations.Quartz carbonate veins up to 50 mm at<br>20-90°ca. Core contains a section of fresher diorite<br>with chlorite seams. Fresh section is about 2m in<br>length.                                                     |
| 55.60       | 56.80     |               | 1.20         | 0    |     |    |     |    | 5   | 1   | diorite      | brown-<br>dk grey         | mg       | fractured              |              | Moderately fresh diorite with minor potassic<br>alterations. A few quartz carbonate, hematite<br>veinlets at 30-45°ca. Veinlets are 1-5mm wide.                                                                                                                                 |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | po | mag | qtz | Lithology | Colour                    | Size     | Structure              | Alteration             | Comments                                                                                                                                                                                                                                            |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|---------------------------|----------|------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 56.80       | 57.80     | D-1005        | 1.00         | <1   | 95 | 5  |     |    | 4   | 1   | diorite   | dk grey<br>& green        | f-<br>mg | sheared                |                        | Diorite with epidote and minor potassic alterations.<br>Diorite contains a zone of about 20 cm of chlorite<br>rock with sulphides. A few quartz carbonate veins<br>1-5mm at 30-45°ca.                                                               |
| 57.80       | 66.67     |               | 8.07         | 0    |    |    |     |    | 5   | 2   | diorite   | mid grey                  | f-<br>mg | sheared                | ері                    | Diorite with epidote alteration and a little potassic<br>alteration. Chlorite alteration is mainly visible in<br>seams. Quartz carbonate veins of 2-20mm wide,<br>some with hematite, at 20-90°ca.                                                  |
| 66.67       | 67.67     | D-1006        | 1.00         | <1   | 95 | 5  |     |    | 5   | 1   | diorite   | mid-dk<br>grey            | mg       | fractured<br>slightly  |                        | Diorite with slight chlorite alteration. A few quartz<br>carbonate veinlets 1-3mm wide at angles from 10-<br>45°ca. There is a zone of 30 mm wide chlorite<br>rock containing sulphides.                                                            |
| 67.67       | 72.35     |               | 4.68         | 0    |    |    |     |    | 5   | 2   | diorite   | mid-dk<br>grey            | mg       | fractured              |                        | Diorite with slight potassic and clay alterations.<br>Quartz carbonate veinlets, with hematite, 2-10mm<br>wide at 20-80°ca. Chlorite alteration along fracture<br>planes.                                                                           |
| 72.35       | 74.65     |               | 2.30         | 0    |    |    |     |    | 4   | 1   | diorite   | dk grey<br>& green        | f-<br>mg | sheared,<br>brecciated | clay                   | Diorite with clay alteration and minor potassic and<br>chlorite alterations. Quartz carbonate veins<br>containing a lot of hematite 1-15 mm wide at<br>angles of 30-45°ca.                                                                          |
| 74.65       | 75.65     | D-1007        | 1.00         | <1   | 95 | 5  |     |    | 4   | 1   | diorite   | mid<br>brown              | f-<br>mg | fractured              | kspar,<br>clay         | Diorite with moderate potassic and clay alterations.<br>Contains a zone 10 cm long of chlorite rock with<br>sulphides. Quartz carbonate veinlets 1-4 mm wide<br>at angles of 20-50°ca.                                                              |
| 75.65       | 79.00     |               | 3.35         | 0    |    |    |     |    | 6   | 1   | diorite   | dk<br>brown               | f-<br>mg | fractured              | kspar,<br>chl,<br>clay | Diorite with potassic, chlorite, and clay alterations.<br>Quartz carbonate veins, some with hematite, 1-<br>10mm wide at 20-90°ca. A few epidote veinlets up<br>to 5mm wide at 80° ca. trace of sulphides. 75.29-<br>78.33 l.c. = 5cm               |
| 79.00       | 80.14     | D-1008        | 1.14         | <1   | 95 | 5  |     |    | 3   | 1   | diorite   | mid grey<br>dark<br>green | f-<br>mg | sheared,<br>fractured  | chl                    | Diorite with chlorite and slight potassic alterations,<br>containing about 15 cm of chlorite rock zone with<br>sulphides. Quartz carbonate veinlets of 1-3mm at 4-<br>90°ca. Sulphides present as stringers and blebs in<br>sheared chlorite zones. |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour                    | Size     | Structure              | Alteration             | Comments                                                                                                                                                                                                                                                                                         |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|---------------------------|----------|------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80.14       | 82.80     |               | 2.66         | 0    | r  |    |     |    | 4   | 2   | diorite   | mid grey                  | mg       | fractured              | kspar,<br>chl          | Diorite with potassic and chloritic alterations<br>containing potassic stringers of up to 15 mm thick.<br>Quartz carbonate veinlets of 1-8 mm at 0-90°ca.                                                                                                                                        |
| 82.80       | 83.80     | D-1009        | 1.00         | <1   | 95 | 5  |     |    | 3   | 1   | diorite   | dk green-<br>mid grey     | mg       | brecciated             | chl,<br>kspar          | Brecciated diorite with chlorite and potassic<br>alterations. Sulphide blebs present in chloritized<br>sections a few centimetres wide. Quartz carbonate<br>veinlets of 1-4 mm at 10-80°ca. Red hematite<br>scattered throughout the rock.                                                       |
| 83.80       | 86.00     |               | 2.20         | 0    |    |    |     |    | 4   | 2   | diorite   | mid grey                  | mg       | fractured              |                        | Diorite with weak potassic and chlorite alterations.<br>Quartz carbonate veinlets of 1-10mm at 0-80°ca.                                                                                                                                                                                          |
| 86.00       | 87.00     | D-1010        | 1.00         | 1    | 60 | 40 |     |    | 2   | 1   | diorite   | dk green<br>& mid<br>grey | f-<br>mg | sheared                | chl,<br>clay           | Diorite with strong chlorite and clay alterations as<br>well as weak potassic alteration. Sulphide stringers<br>and blebs are present in sheared chlorite rock of 40<br>cm thick. Quartz carbonate veinlets of 1-3mm at<br>20-60°ca. Pinkish red hematite present along some<br>fracture planes. |
| 87.00       | 94.85     |               | 7.85         | 0    |    |    |     |    | 5   | 2   | diorite   | mid grey                  | mg       | fractured              | chl, epi               | Diorite with chlorite, epidote and weak potassic<br>alterations. Various generations of quartz carbonate<br>veinlets of 1-10mm at 0-85°ca. Some hematite<br>present along fracture planes.                                                                                                       |
| 94.85       | 95.85     | D1011         | 1.00         | <1   | 95 | 5  |     |    | 4   | 1   | diorite   | mid grey<br>& dk<br>green | f-<br>mg | sheared                | chl                    | Diorite with chlorite and weak potassic alterations,<br>containing a zone of about 10 cm thick chlorite<br>rock with sulphides. Quartz carbonate veinlets of 1-<br>5mm at 5-85°ca.                                                                                                               |
| 95.85       | 110.50    |               | 14.65        | 0    |    |    |     |    | 5   | 2   | diorite   | mid grey                  | mg       | slightly<br>fractured  |                        | Diorite with potassic, and weak chlorite and<br>epidote alterations. Quartz carbonate veinlets of 1-<br>20mm at 0-85 ca.(various generations)                                                                                                                                                    |
| 110.50      | 111.86    | D-1012        | 1.36         | 1    | 90 | 10 |     |    | 2   | 1   | diorite   | dk green<br>& dk<br>grey  | f-<br>mg | sheared,<br>brecciated | clay,<br>chl,<br>kspar | Highly brecciated and sheared diorite and chlorite<br>rock with clay, chlorite, and potassic alterations.<br>Quartz carbonate veinlets of 1-5mm at 20-45°ca.                                                                                                                                     |
| 111.86      | 112.74    | D-1013        | 1.08         | <1   | 95 | 5  |     |    | 3   | 1   | diorite   | mid-dk<br>grey            | f-<br>mg | sheared,<br>brecciated | clay,<br>chl, epi      | Diorite with clay, chlorite, epidote, and weak<br>potassic alterations, containing a chlorite vein of<br>about 2 cm wide with sulphides. Quartz carbonate<br>veinlets of 1-8 mm at 50-60°ca.                                                                                                     |

.

I I

ł

, I

.

.

۱

L

.

h

.

| From<br>(m) | <b>To</b><br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz. | Lithology | Colour                     | Size     | Structure              | Alteration            | Comments                                                                                                                                                                                                                                                                                             |
|-------------|------------------|---------------|--------------|------|----|----|-----|----|-----|------|-----------|----------------------------|----------|------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 112.74      | 116.06           |               | 4.20         | 0    |    |    |     |    | 4   | 2    | diorite   | mid grey                   | mg       | sheared,<br>brecciated | clay,<br>chl, epi     | Diorite with clay, chlorite, epidote, and weak<br>potassic alterations, containing a chlorite vein of<br>about 2 cm wide with sulphides. Quartz carbonate<br>veinlets of 1-8 mm at 50-60°ca.                                                                                                         |
| 116.06      | 117.16           | D-1014        | 1.10         | 1    | 95 | 5  |     |    | 3   | 1    | diorite   | dk green<br>& mid-<br>grey | f-<br>mg | sheared,<br>brecciated | clay,<br>chl, epi     | Diorite with clay, chlorite, epidote alterations as<br>well as weak potassic alteration. Quartz carbonate<br>veinlets of 1-8 mm at 5-60°ca.                                                                                                                                                          |
| 117.16      | 120.65           |               | 3.49         | 0    |    |    |     |    | 5   | 2    | diorite   | mid grey                   | mg       | fractured              | kspar,<br>chl, epi    | Diorite with clay, chlorite, epidote alterations as<br>well as weak potassic alteration. Quartz carbonate<br>veinlets of 1-8 mm at 5-60°ca. Sulphides found in<br>two zones of chlorite rock of about 3 cm and 10 cm<br>thick. Sulphides also present in brecciated, highly<br>epidote-altered rock. |
| 120.65      | 121.55           | D-1015        | 0.90         | <1   | 60 | 40 |     |    | 4   | 1    | diorite   | mid grey                   | f-<br>mg | fractured              | kspar,<br>, chl, epi  | Diorite with potassic, chlorite, and epidote<br>alterations containing a chlorite vein of 10mm with<br>sulphides. Quartz carbonate veinlets of 1-4 mm at<br>40-90°ca.                                                                                                                                |
| 121.55      | 125.95           |               | 4.40         | 0    |    |    |     |    | 5   | 2    | diorite   | mid grey                   | mg       | fractured              | kspar,<br>chł, epi    | Diorite with chlorite, epidote, and potassic<br>alterations containing a few chlorite seams of up to<br>8 mm with 1% sulphides. Quartz carbonate veinlets<br>of 1-10mm at 10-75°ca.                                                                                                                  |
| 125.95      | 126.95           | D-1016        | 1.00         | <1   | 90 | 10 |     |    | 4   | 2    | diorite   | mid grey                   | f-<br>mg | sheared,<br>fractured  | chl,<br>epi,<br>kspar | Diorite with chlorite, epidote, and potassic<br>alterations containing a few chlorite seams of up to<br>8 mm with 1% sulphides. Quartz carbonate veinlets<br>of 1-10mm at 10-75°ca.                                                                                                                  |
| 126.95      | 130.84           |               | 3.89         | 0    |    |    |     |    | 5   | 1    | diorite   | mid grey                   | mg       | fractured              | chl, epi              | Diorite with chlorite and epidote alterations as well<br>as weak potassic alteration. Contains a chlorite vein<br>of about 10mm with 1% sulphides. Quartz<br>carbonate veinlets of 1-8 mm at 0-75° ca.                                                                                               |
| 130.84      | 131.84           | D-1017        | 1.00         | <1   | 90 | 10 |     |    | 4   | 1    | diorite   | mid grey                   | mg       | fractured              | chl, epi              | Diorite with chlorite and epidote alterations as well<br>as weak potassic alteration. Contains a chlorite vein<br>of about 10mm with 1% sulphides. Quartz<br>carbonate veinlets of 1-8mm at 0-75° ca.                                                                                                |
| 131.84      | 132.84           | D-1018        | 1.00         | 0    |    |    |     |    | 4   | 1    | diorite   | mid grey                   | mg       | fractured              | chl, epi              | Diorite with chlorite and epidote alterations as well<br>as weak potassic alteration. Quartz carbonate<br>veinlets of 1-8mm at 0-75° ca.                                                                                                                                                             |

L

1

1

ŝ.

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology       | Colour         | Size     | Structure             | Alteration    | Comments                                                                                                                                                                                                                                                                              |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------------|----------------|----------|-----------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 132.84      | 142.60    |               | 9.76         | 0    |    |    |     |    | 5   | 2   | diorite         | mid grey       | mg       | fractured             | chl, epi      | Biotite diorite with chlorite, epidote, and potassic<br>alterations. Various generations of quartz carbonate<br>veinlets of 1-30mm at 10-80°ca. Two sections of<br>10mm and 30mm clay altered rock at about 60°ca.                                                                    |
| 142.60      | 143.70    | D-1019        | 1.10         | 0    |    |    |     |    | 4   | 2   | diorite         | brown-<br>grey | mg       | fractured             | chł,<br>kspar | Diorite with chlorite and potassic alterations with various generations of quartz carbonate veinlets of 1-30mm at 10-80°ca.                                                                                                                                                           |
| 143.70      | 144.80    | D-1020        | 1.10         | 2    | 80 | 20 |     |    | 2   | 1   | diorite<br>or c | brown-<br>grey | f-<br>mg | sheared,<br>fractured | chl,<br>kspar | Diorite with chlorite and potassic alterations with<br>various generations of quartz carbonate veinlets of<br>1-30mm at 10-80°ca. Three zones of sheared and<br>clay altered chlorite rock of 10cm, 5cm, & 8cm; the<br>10 and 5cm zones contain 2% and 5% sulphides,<br>respectively. |
| 144.80      | 145.90    | D-1021        | 1.10         | 0    |    |    |     |    | 4   | 1   | diorite         | mid grey       | mg       | fractured             | chl,<br>kspar | Diorite with chlorite and potassic alterations with various generations of quartz carbonate veinlets of 1-30mm at 10-80°ca.                                                                                                                                                           |
| 145.90      | 146.90    | D-1022        | 1.00         | 0    |    |    |     | _  | 4   | 1   | diorite         | brown-<br>grey | mg       | fractured             | chl,<br>kspar | Diorite with chlorite and potassic alterations with various generations of quartz carbonate veinlets of 1-30mm at 10-80°ca.                                                                                                                                                           |
| 146.90      | 170.64    |               | 23.74        | 0    |    |    |     |    | 5   | 2   | diorite         | mid grey       | mg       | fractured             | epi, chł      | Diorite with epidote, chlorite, and weak potassic<br>alterations. Various generations of quartz carbonate<br>veinlets of 1-20mm at 0-80°ca. A few small<br>sections of up to 40mm show clay alteration at 60-<br>80°ca.                                                               |
| 170.64      | 171.64    | D-1023        | 1.00         | 0    |    |    |     |    | 4   | 1   | diorite         | mid<br>green   | mg       | brecciated            | epi, chl      | Diorite with epidote, chlorite, and weak potassic<br>alterations. Various generations of quartz carbonate<br>veinlets of 1-20mm at 0-80°ca. A few small<br>sections of up to 40mm show clay alteration at 60-<br>80°ca.                                                               |
| 171.64      | 172.64    | D-1024        | 1.00         | 0    |    |    |     |    | 4   | 1   | diorite         | mid<br>green   | f-<br>mg | brecciated            | epi, chl      | Moderately broken diorite with epidote, chlorite,<br>and weak potassic alterations. Various generations<br>of quartz carbonate veinlets of 1-20mm at 0-80°ca.<br>A few small sections of up to 40mm show clay<br>alteration at 60-80°ca.                                              |

ĥ

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ρο | mag | qtz | Lithology                         | Colour                     | Size     | Structure              | Alteration     | Comments                                                                                                                                                                                                                         |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------------------------------|----------------------------|----------|------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 172.64      | 174.75    |               | 2.11         | 0    |    |    |     |    | 5   | 1   | diorite                           | mid grey                   | mg       | fractured              |                | Diorite with weak chlorite and potassic alterations.<br>Various generations of quartz carbonate veinlets of<br>1-4mm at 10-65°ca. A couple of epidote veinlets of<br>about 2mm at 45°ca.                                         |
| 174.75      | 175.75    | D-1025        | 1.00         | 0    |    |    |     |    | 5   | 1   | diorite                           | mid grey                   | mg       | fractured              |                | Broken diorite with weak chlorite and potassic<br>alterations. Strongly fractured. Various generations<br>of quartz carbonate veinlets of 1-4mm at 10-65°ca.<br>A couple of epidote veinlets of about 2mm at<br>45°ca.           |
| 175.75      | 176.75    | D-1026        | 1.00         | 2    | 90 | 10 |     |    | 2   | 1   | diorite                           | dk green<br>& mid-<br>grey | f-<br>mg | sheared,<br>fractured  | chl            | Highly chloritized diorite with several chloride rock<br>zones of up to 30cm at about 60°ca. Sulphides<br>present as stringers and blebs in the chlorite rock<br>(5%). Quartz carbonate veinlets of 1-8 mm at 0-<br>80°ca.       |
| 176.75      | 177.75    | D-1027        | 1.00         | 0    |    |    |     |    | 2   | 1   | diorite                           | dk green<br>& mid-<br>grey | f-<br>mg | sheared,<br>brecciated | chl,<br>clay   | Highly chloritized diorite with clay and weak potassic alterations, and fault gouge. Quartz carbonate veinlets of 1-8 mm at 10-65°ca.                                                                                            |
| 177.75      | 178.65    | D-1028        | 0.90         | 0    |    |    |     |    | 3   | 1   | diorite                           | mid<br>brown-<br>green     | mg       | sheared,<br>brecciated | clay,<br>kspar | Diorite with chlorite, clay, and weak potassic<br>alterations contain a section of about 40cm sheared<br>and gouged chlorite rock with disseminated<br>sulphides of 2%. Quartz carbonate veinlets of 1-5<br>mm at 10-65°ca.      |
| 178.65      | 179.65    | D-1029        | 1.00         | 1    | 90 | 10 |     |    | 2   | 1   | diorite<br>&<br>chlorit<br>e rock | mid grey<br>& dk<br>green  | f-<br>mg | sheared                | chl,<br>clay   | Diorite with chlorite, and weak clay and potassic<br>alterations contain a section of about 40cm sheared<br>and gouged chlorite rock with disseminated<br>sulphides of < 1%. Quartz carbonate veinlets of 1-5<br>mm at 10-65°ca. |
| 179.65      | 180.65    | D-1030        | 1.00         | <1   | 90 | 10 |     |    | 4   | 1   | diorite<br>&<br>chlorit<br>e      | mid grey<br>& dk<br>green  | f-<br>mg | sheared                | chl            | Diorite with chlorite, epidote and weak potassic<br>alterations. Quartz carbonate veinlets of 1-15 mm<br>at 0-80°ca.                                                                                                             |
| 180.65      | 182.55    |               | 1.90         | 0    |    |    |     |    | 4   | 1   | diorite                           | mid grey                   | mg       | brecciated             | chl, epi       | Diorite with chlorite, epidote and weak potassic alterations. Quartz carbonate veinlets of 1-15 mm at 0-80°ca.                                                                                                                   |

Т

| From   | To     | Sample | Width | Sulp | ру | ср | gai      | po | mag | qtz | Lithology | Colour                    | Size     | Structure                | Alteration            | Comments                                                                                                                                                                                                                                |
|--------|--------|--------|-------|------|----|----|----------|----|-----|-----|-----------|---------------------------|----------|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (m)    | (m)    | No.    | (m)   |      |    |    | <u> </u> |    |     |     |           |                           |          |                          |                       |                                                                                                                                                                                                                                         |
| 182.55 | 183.55 | D-1031 | 1.00  | 0    |    |    |          |    | 4   | 1   | diorite   | mid grey<br>& green       | f-<br>mg | brecciated               | chl, epi              | Slightly broken diorite with chlorite, epidote and weak potassic alterations. Quartz carbonate veinlets of 1-15 mm at 0-80°ca.                                                                                                          |
| 183.55 | 186.50 |        | 2.95  | 0    |    |    |          |    | 4   | 1   | diorite   | mid grey                  | mg       | fractured                | chl, epi              | Slightly broken diorite with chlorite, epidote and weak potassic alterations. Quartz carbonate veinlets of 1-15mm at 0-80°ca.                                                                                                           |
| 186.50 | 187.50 | D-1032 | 1.00  | 0    |    |    |          |    | 4   | 1   | diorite   | mid grey                  | mg       | fractured                | chl, epi              | Slightly broken diorite with chlorite, epidote and weak potassic alterations. Quartz carbonate veinlets of 1-15mm at 0-80°ca.                                                                                                           |
| 187.50 | 190.06 |        | 2.56  | 0    |    |    |          |    | 4   | 1   | diorite   | mid grey                  | mg       | fractured                | chl, epi              | Slightly broken diorite with chlorite, clay, epidote<br>and weak potassic alterations. Quartz carbonate<br>veinlets of 1-15 mm at 0-80°ca.                                                                                              |
| 190.06 | 191.11 | D-1033 | 1.05  | 0    |    |    |          |    | 3   | 1   | diorite   | mid grey                  | mg       | fractured,<br>brecciated | chl,<br>epi,<br>clay  | Slightly broken diorite with clay, chlorite, epidote<br>and weak potassic alterations. Quartz carbonate<br>veinlets of 1-15 mm at 0-80°ca.                                                                                              |
| 191.11 | 192.90 |        | 1.79  | 0    |    |    |          |    | 4   | 1   | diorite   | mid grey                  | mg       | fractured                | chl, epi              | Slightly broken diorite with chlorite, epidote and weak potassic alterations. Quartz carbonate veinlets of 1-15mm at 0-80°ca.                                                                                                           |
| 192.90 | 193.90 | D-1034 | 1.00  | 0    |    |    |          |    | 3   | 1   | diorite   | mid grey<br>& green       | f-<br>mg | brecciated,<br>s         | clay,<br>chl,<br>epi  | Slightly broken diorite with strong clay<br>alteration, medium chlorite, epidote and weak<br>potassic alterations. Quartz carbonate veinlets of 1-<br>15mm at 0-80°ca.                                                                  |
| 193.90 | 197.21 |        | 3.31  | 0    |    |    |          |    | 4   | 1   | diorite   | mid grey                  | mg       | fractured                | chl, epi              | Slightly broken diorite with medium chlorite,<br>epidote and weak potassic alterations. Quartz<br>carbonate veinlets of 1-15mm at 0-80°ca.                                                                                              |
| 197.21 | 198.21 | D-1035 | 1.00  | 5    | 90 | 10 |          |    | 1   | 2   | diorite   | dk green                  | f-<br>mg | fractured                | clay,<br>carb,<br>chl | Diorite with strong clay, moderate carbonate and<br>chlorite alterations. Contains disseminated<br>sulphides and some sulphide blebs in quartz<br>carbonate veinlets of 1-20 mm at 0-80°ca. Chlorite<br>veinlets of 2-10mm of 10-80°ca. |
| 198.21 | 199.21 | D-1036 | 1.00  | <1   | 90 | 10 |          |    | 3   | 2   | diorite   | mid grey<br>& dk<br>green | f-<br>mg | fractured                | clay,<br>carb,<br>chl | Diorite with clay, carbonate, and chlorite<br>alterations. Contains only a few disseminated<br>sulphides and some sulphide blebs in quartz<br>carbonate veinlets of 1-20 mm at 0-80°ca. Chlorite<br>veinlets of 2-10mm of 10-80°ca.     |

T

1

ß

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gat | ро | mag | qtz | Lithology | Colour                    | Size     | Structure              | Alteration                     | Comments                                                                                                                                                                                                        |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|---------------------------|----------|------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 199.21      | 200.25    | D-1037        | 1.04         | <1   | 90 | 10 |     |    | 3   | 1   | diorite   | mid grey<br>& dk<br>green | f-<br>mg | fractured,<br>sheared  | chl,<br>clay,<br>kspar,<br>epi | Diorite with chlorite, clay, potassic and epidote<br>alterations. Contains a section about 5cm chlorite-<br>epidote vein which contains sulphide blebs (2%).<br>Quartz carbonate veinlets of 1-4mm at 10-80°ca. |
| 200.25      | 200.30    |               | 2.10         | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey                  | mg       | fractured              | chl,<br>clay,<br>kspar,<br>epi | Diorite with chlorite, clay, potassic and epidote alterations.                                                                                                                                                  |
| 200.30      | 203.30    | D-1038        | 1.00         | <1   | 90 | 10 |     |    | 4   | 1   | diorite   | mid grey                  | mg       | fractured              | chl,<br>clay,<br>kspar,<br>epi | Diorite with chlorite, clay, potassic and epidote<br>alterations. Contains a chlorite-epidote vein of<br>about 20mm with sulphide stringers (5%) at 75°ca.                                                      |
| 203.30      | 204.40    | D-1039        | 1.10         | 0    |    |    |     |    | 5   | 1   | diorite   | mid grey                  | mg       | fractured              | chl, epi                       | Relatively fresh diorite with chlorite and epidote<br>alteration. Quartz carbonate veinlets of 1-4mm at 5-<br>75°ca. Hematite present on some fracture planes.                                                  |
| 204.40      | 205.35    |               | 0.95         | 0    |    |    |     |    | 5   | 1   | diorite   | mid grey                  | mg       | fractured              | chl, epi                       | Relatively fresh but broken diorite with chlorite and<br>epidote alteration. Quartz carbonate veinlets of 1-<br>4mm at 5-75°ca. Hematite present on some<br>fracture planes.                                    |
| 205.35      | 206.35    | D-1040        | 1.00         | 0    |    |    |     |    | 3   | 1   | diorite   | mid grey                  | f-<br>mg | sheared,<br>brecciated | chl, epi,<br>kspar,<br>clay    | Diorite with chlorite, epidote, potassic and clay alterations. Quartz carbonate veinlets of 1-8mm at 5-85°ca. Epidote vein of about 20mm at 70°ca.                                                              |
| 206.35      | 207.35    | D-1041        | 1.00         | 0    |    |    |     |    | 2   | 1   | diorite   | dk green                  | f-<br>mg | sheared                | chl, epi                       | Highly chlorite and epidote altered rock that can<br>hardly be recognized. Quartz carbonate veinlets of<br>1-8mm at 0-85°ca.                                                                                    |
| 207.35      | 209.40    |               | 2.05         | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey                  | mg       | fractured              | chl, epi                       | Diorite with chlorite, epidote, and weak potassic alterations. Various generations of quartz carbonate veinlets of 1-20mm at 10-74°ca.                                                                          |
| 209.40      | 210.40    | D-1042        | 1.00         | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey                  | mg       | fractured              | chl, epi                       | Strongly fractured and broken diorite with chlorite,<br>epidote, and weak potassic alterations. Various<br>generations of quartz carbonate veinlets of 1-20mm<br>at 10-74°ca.                                   |
| 210.40      | 214.15    |               | 3.75         | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey                  | mg       | fractured              | chl, epi                       | Strongly fractured and broken diorite with chlorite,<br>epidote, and weak potassic alterations. Various<br>generations of quartz carbonate veinlets of 1-20mm<br>at 10-74°ca.                                   |

k

Ĩ.

ŝ.

i

÷.

ŝ.

Ł

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour                        | Size                       | Structure  | Alteration                  | Comments                                                                                                                                                                                                                                                         |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|-------------------------------|----------------------------|------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 214.15      | 215.15    | D-1043        | 1.00         | <1   | 90 | 10 |     |    | 3   | 1   | diorite   | mid<br>grey-<br>mid<br>green  | f.<br>mg                   | fractured  | chl,<br>clay,<br>epi        | Diorite with chlorite, clay, epidote, and weak<br>potassic alterations and contains a section of 28 cm<br>highly chloritized and clay altered rock which<br>shows minor disseminated sulphides(~1%). Quartz<br>carbonate veinlets of 1-8mm at 10-70°ca.          |
| 215.15      | 229.83    |               | 14.68        | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey                      | mg                         | fractured  | chl, epi,<br>kspar          | Diorite with chlorite, epidote, and potassic<br>alterations. Quartz carbonate veinlets of 1-10mm at<br>10-70°ca. Epidote and chlorite veins of up to<br>20mm at 45-65°ca.                                                                                        |
| 229.83      | 230.73    | D-1044        | 0.90         | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey                      | mg                         | fractured  | chl, epi,<br>kspar          | Slightly broken diorite with chlorite, epidote, and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-70°ca. Epidote and chlorite veins of up<br>to 20mm at 45-65°ca.                                                                       |
| 230.73      | 248.25    |               | 7.52         | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey                      | mg                         | fractured  | chl, epi,<br>kspar          | Slightly broken diorite with chlorite, epidote, and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-70°ca. Epidote and chlorite veins of up<br>to 20mm at 45-65°ca.                                                                       |
| 248.25      | 249.25    | D-1045        | 1.00         | <1   | 90 | 10 |     |    | 3   | 1   | diorite   | mid grey<br>lt-mid<br>green   | mg                         | fractured  | chl, epi,<br>kspar          | Diorite with chlorite, epidote and potassic<br>alterations, containing a section of clay altered,<br>lighter coloured rock of about 35cm at 45-65°ca,<br>with 1% sulphides. Quartz carbonate veinlets of 1-<br>10mm at 10-60°ca.                                 |
| 249.25      | 250.25    | D-1046        | 1.00         | 1    | 85 | 5  | 10  |    | 3   | 1   | diorite   | mid grey<br>- lt-mid<br>green | mg                         | fractured  | chl, epi,<br>kspar,<br>clay | Diorite with chlorite, epidote and potassic<br>alterations. The clay altered lighter sections of<br>25cm and 10cm have about 3% sulphides. A grey<br>vein of 2cm at 60°ca, with py, gal, cp can be seen<br>in the first section of the clay altered area.        |
| 250.25      | 251.25    | D-1047        | 1.00         | <1   | 90 | 10 |     |    | 1   | 5   | diorite   | lt grey-<br>green             | mi<br>d-<br>co<br>ars<br>e | brecciated | chl, epi                    | Diorite with chlorite and epidote alterations. A zone of clay altered, recemented breccia of about 70cm is in the middle of the sample section, at about 45°ca. The zone is gradually changed to relatively fresh diorite within a few cm on both ends. Quartztl |
| 251.25      | 252.25    | D-1048        | 1.00         | 0    |    |    |     |    | 4   | 1   | diorite   | lt-mid<br>green               | mg                         | fractured  | clay,<br>chl, epi           | Diorite with clay, chlorite, and epidote alterations.<br>Quartz carbonate veinlets of 1-10mm at 10-85°ca.                                                                                                                                                        |

------

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour          | Size      | Structure              | Alteration                    | Comments                                                                                                                                                                                                                   |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|-----------------|-----------|------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 252.25      | 253.25    | D-1049        | 1.00         | <1   | 90 | 10 |     |    | 3   | 1   | diorite   | lt-mid<br>green | mg        | fractured              | clay,<br>chl, epi             | Diorite with clay, chlorite, and epidote alterations.<br>Quartz carbonate veinlets of 1-10mm at 10-85°ca.<br>Minor sulphide mineralization can be seen in a<br>small portion(8cm) of strongly clay altered rock(1-<br>2%). |
| 253.25      | 254.25    | D-1050        | 1.00         | 1    | 90 | 10 |     |    | 1   | 3   | diorite   | lt grey         | fg-<br>cg | brecciated,<br>sheared | clay,<br>chl, epi             | Partially recemented breccia with clay, chlorite, carbonate, and epidote alterations, with disseminated sulphides.                                                                                                         |
| 254.25      | 255.32    | D-1051        | 1.07         | 1    | 90 | 10 |     |    | 1   | 3   | diorite   | lt grey         | f-<br>mg  | brecciated,<br>sheared | clay,<br>chl, epi             | Partially recemented breccia with clay, chlorite, carbonate, and epidote alterations, with disseminated sulphides.                                                                                                         |
| 255.32      | 256.32    | D-1052        | 1.00         | 1    | 90 | 10 |     |    | 1   | 3   | diorite   | lt grey         | f-<br>mg  | brecciated,<br>sheared | clay,<br>chl, epi             | Partially recemented breccia with clay, chlorite, carbonate, and epidote alterations, with disseminated sulphides.                                                                                                         |
| 256.32      | 257.32    | D-1053        | 1.00         | 1    | 90 | 10 |     |    | 1   | 2   | diorite   | lt grey         | f-<br>mg  | brecciated             | clay,<br>chl,<br>carb,<br>epi | Brecciated diorite with clay, chlorite, carbonate,<br>and epidote alterations. Quartz carbonate veinlets<br>of 1-8mm at 10-80°ca. Disseminated sulphides also<br>visible in rock.                                          |
| 257.32      | 258.32    | D-1054        | 1.00         | 1    | 90 | 10 |     |    | 1   | 2   | diorite   | lt grey         | f-<br>mg  | brecciated             | clay,<br>chl,<br>carb,<br>epi | Brecciated diorite with clay, chlorite, carbonate,<br>and epidote alterations. Quartz carbonate veinlets<br>of 1-8mm at 10-80°ca. Disseminated sulphides also<br>visible in rock.                                          |
| 258.32      | 259.32    | D-1055        | 1.00         | <1   | 90 | 10 |     |    | 4   | 1   | diorite   | mid grey        | mg        | fractured              | chl,<br>kspar,<br>ciay        | Relatively fresh diorite with chlorite, potassic and<br>clay alterations. Minor disseminated sulphides<br>present in the rock. Quartz carbonate veinlets of 1-<br>6mm at 20-85°ca.                                         |
| 259.32      | 260.32    | D-1056        | 1.00         | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey        | mg        | fractured              |                               | Relatively fresh diorite with chlorite, potassic and<br>clay alterations. Quartz carbonate veinlets of 1-<br>6mm at 20-85°ca.                                                                                              |
| 260.32      | 261.42    | D-1057        | 1.10         | <1   | 90 | 10 |     |    | 3   | 1   | diorite   | lt-m grey       | mg        | fractured              | clay,<br>chl,<br>kspar        | Relatively fresh diorite with chlorite, potassic and<br>clay alterations. Minor disseminated and bleb<br>sulphides present in the rock. Quartz carbonate<br>veinlets of 1-6mm at 20-85°ca.                                 |

.

1

1

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour               | Size | Structure | Alteration             | Comments                                                                                                                                                                                                                                                                                  |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|----------------------|------|-----------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 261.42      | 262.62    | D-1058        | 1.20         | <1   | 90 | 10 |     |    | 3   | 1   | diorite   | lt-m grey            | mg   | fractured | clay,<br>chl,<br>kspar | Relatively fresh diorite with chlorite, potassic and<br>clay alterations. Minor disseminated and bleb<br>sulphides present in the rock. Quartz carbonate<br>veinlets of 1-6mm at 20-85°ca.                                                                                                |
| 262.62      | 263.90    | D-1059        | 1.28         | 0    |    | -  |     |    | 5   | 1   | diorite   | mid<br>brown-<br>red | mg   | fractured | kspar,<br>chl          | Diorite with strong potassic and chlorite alterations<br>as well as a little epidote alteration. Quartz<br>carbonate veinlets of 1-10mm at 5-70°ca. A few<br>chlorite veins of several mm at 40-60°ca.                                                                                    |
| 263.90      | 290.69    |               | 26.79        | 0    |    |    |     |    | 5   | 1   | diorite   | mid grey             | mg   | fractured |                        | Fresh diorite with medium to weak chlorite, epidote<br>and potassic alterations. Quartz carbonate veinlets<br>of 1-15mm at 5-85°ca. Several chlorite and epidote<br>veins up to 20mm at 30-60°ca. Clay alteration is<br>seen in some chlorite veins.                                      |
| 290.69      | 291.69    | D-1060        | 1.00         | <1   | 95 | 5  |     |    | 4   | 3   | diorite   | mid grey             | mg   | fractured | chl, epi,<br>kspar     | Fresh diorite with moderate to strong chlorite<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-30m at 5-85°ca which contained a few<br>sulphides. Several chlorite and epidote veins up to<br>20mm at 30-60°ca. Clay alteration is seen in some<br>chlorite veins. |
| 291.69      | 293.69    |               | 2.00         | 0    |    |    |     |    | 5   | 1   | diorite   | mid grey             | mg   | fractured |                        | Fresh diorite with minor chlorite, epidote, and<br>potassic alterations. Quartz carbonate veinlets of 1<br>8mm at 10-85°ca. An epidote vein of 15mm a<br>60°ca has chlorite veins of 5-10mm on its edges.                                                                                 |
| 293.69      | 294.97    | D-1061        | 1.05         | 0    |    |    |     |    | 5   | 1   | diorite   | mid grey             | mg   | fractured | chl                    | Fresh diorite with strong clay and minor chlorite<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 10-85°ca. End of Hole.                                                                                                                                   |
| 294.97      |           | <u> </u>      |              |      |    |    | 1   |    |     |     |           |                      | 1    |           |                        | ЕОН                                                                                                                                                                                                                                                                                       |

ł

e

# **Diamond Drill Log**

**Drill Hole No:** EA-96-02

Logged By: Simon X. Fan

**Date:** September 23-27, 1996

| Easting:   | 41 + 34E    | Azimuth:     | 042°    |
|------------|-------------|--------------|---------|
| Northing:  | 36+00N      | Inclination: | -65°    |
| Elevation: | 976m a.s.l. | Total Depth: | 398.37m |
|            |             | Core Size:   | NQ-2    |

### Survey Type: Tropari

| depth   | az.  | dip  |
|---------|------|------|
| Collar: | 042° | -63° |
| 96.62m  | 046° | -66° |
| 209.44m | 049° | -80° |
| 300.84m | 038° | -67° |
| 398.37m | 048° | -68° |

| From<br>(m) | To<br>(m)      | Sample<br>No. | Width<br>(m) | Sulp     | ру       | ср | gal | ро       | mag | qtz | Lithology     | Colour         | Size     | Structure              | Alteration                      | Comments                                                                                                                                                                                                                                                                     |
|-------------|----------------|---------------|--------------|----------|----------|----|-----|----------|-----|-----|---------------|----------------|----------|------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DDH: EA     | <b>\-96-02</b> |               |              | <b> </b> | <u> </u> |    |     | <u> </u> |     |     |               |                |          |                        |                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                        |
| 0.00        | 12.19          |               | 12.90        |          |          |    |     | _        |     |     |               |                |          |                        |                                 | Casing                                                                                                                                                                                                                                                                       |
| 12.19       | 16.12          |               | 3.93         | 0        |          |    |     |          | 4   | 1   | diorite       | mid grey       | mg       | fractured              | chl,<br>kspar,<br>carb          | Diorite with chlorite, potassic and carbonate<br>alterations. Quartz carbonate veinlets of 1-8mm at<br>5-75°ca. Chlorite and epidote veins up to 20mm at<br>about 60°ca.                                                                                                     |
| 16.12       | 17.12          | D-1062        | 1.00         | 0        |          |    |     |          | 4   | 1   | diorite       | lt brown       | mg       | fractured              | chl,<br>kspar,<br>clay,<br>carb | Diorite with chlorite, potassic, clay, and carbonate<br>alteration. Quartz carbonate veinlets of 1-8mm at 5-<br>75°ca. Chlorite and epidote veins up to 20mm at<br>about 60°ca.                                                                                              |
| 17.12       | 19.20          |               | 2.08         | 0        |          |    |     |          | 4   | 1   | diorite       | lt brown       | mg       | fractured              | chl,<br>kspar,<br>clay,<br>carb | Diorite with chlorite, potassic, clay, and carbonate<br>alteration. Many quartz carbonate veinlets of 1-<br>8mm at 5-75°ca. Chlorite and epidote veins up to<br>20mm at about 60°ca.                                                                                         |
| 19.20       | 19.75          |               | 0.55         | 0        |          |    |     |          | 1   | 1   | mafic<br>dyke | mid<br>green   | fg       | fractured              | ері                             | Fine grained volcanic rock with epidote alteration<br>as well as minor carbonate alteration. Sharp contact<br>with host rock at 45°ca. A few quartz carbonate<br>veinlets of 1-8mm at 30-60°ca.                                                                              |
| 19.75       | 24.40          |               | 4.65         | 0        |          |    |     |          | 5   | 1   | diorite       | mid grey       | mg       | fractured              | epi,chl                         | Relatively fresh diorite with moderate epidote<br>chlorite and weak potassic alterations. Quartz<br>carbonate veinlets of 1-8 mm at 10-80°ca. Chlorite<br>and epidote veins of 10-20mm at 30-60°ca.                                                                          |
| 24.40       | 25.40          | D-1063        | 1.00         | <1       | 90       | 10 |     |          | 4   | 1   | diorite       | brown-<br>grey | f-<br>mg | sheared ,<br>fractured | epi, chł                        | Relatively fresh diorite with moderate epidote<br>chlorite and weak potassic alterations. Quartz<br>carbonate veinlets of 1-8 mm at 10-80°ca. Chlorite<br>and epidote veins of 10-20mm at 30-60°ca<br>Contains a chlorite zone of about 10cm with<br>sulphides(1%) at 45°ca. |
| 25.40       | 30.15          |               | 4.75         | 0        |          |    |     |          | 5   | 1   | diorite       | mid grey       | mg       | fractured              | epi,chl                         | Relatively fresh diorite with moderate epidote<br>chlorite and weak potassic alterations. Quartz<br>carbonate veinlets of 1-8 mm at 10-80°ca. Chlorite<br>and epidote veins of 10-20mm at 30-60°ca.                                                                          |

|             |           |               |              |      |    | _  |     |    |     |     |           |                |          |                           |                            |                                                                                                                                                                                                                                                          |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|----------------|----------|---------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From<br>(m) | To<br>(m) | Sampie<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour         | Size     | Structure                 | Alteration                 | Comments                                                                                                                                                                                                                                                 |
| 30.15       | 31.15     | D-1064        | 1.00         | 0    |    |    |     |    | 5   | 1   | diorite   | lt-mid<br>grey | mg       | breccia-<br>ted           | clay,<br>chl,epi,<br>kspar | Brecciated diorite with clay, chlorite, epidote, and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>15mm at 10-70°ca. Chlorite and epidote veins of<br>10-20mm at 45-65°ca.                                                                 |
| 31.15       | 33.70     |               | 2.55         | 0    |    |    |     |    | 5   | 1   | diorite   | lt-mid<br>grey | mg       | breccia-<br>ted           | cłay,<br>chl,epi,<br>kspar | Brecciated diorite with clay, chlorite, epidote, and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>15mm at 10-70°ca. Chlorite and epidote veins of<br>10-20mm at 45-65°ca.                                                                 |
| 33.70       | 43.81     |               | 10.11        | 0    |    |    |     |    | 5   | 1   | diorite   | mid grey       | mg       | fractured                 | chl,epi                    | Relatively fresh diorite with moderate chlorite,<br>epidote and weak potassic alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-85°ca.                                                                                                            |
| 43.81       | 44.81     | D-1065        | 1 .00        | <1   | 90 | 10 |     |    | 5   | 1   | diorite   | mid grey       | mg       | fractured                 | epi,chl                    | Relatively fresh diorite with moderate chlorite,<br>epidote and weak potassic alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-85°ca. Contains<br>epidote veins of upto 20mm at 30°ca which has<br>minor sulphides(<1%).                         |
| 44.81       | 53.95     |               | 9.14         | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey       | mg       | fractured<br>&<br>sheared | chl,epi                    | Diorite with chlorite, epidote, and minor potassic<br>alterations. A recemented berecciated zone of<br>30cm is present on top of the section. Quartz<br>carbonate veinlets of 1-8mm at 5-75°ca. Epidote<br>and chlorite veins of up to 30mm at 40-65°ca. |
| 53.95       | 55.65     |               | 1.70         | 0    |    |    |     |    | 1   | 10  | diorite   | rusty<br>grey  | f-cg     | breccia-<br>ted           |                            | Recemented breccia with minor chlorite and<br>epidote alterations. Quartz carbonate veinlets of 1-<br>20mm at 30-45°ca.                                                                                                                                  |
| 55.65       | 56.65     | D-1066        | 1.00         | <1   | 90 | 10 |     |    | 1   | 3   | diorite   | rusty<br>grey  | f-<br>mg | breccia-<br>ted           |                            | Recemented breccia with minor chlorite and<br>epidote alterations. Only a few quartz carbonate<br>veinlets of 1-20mm at 30-45°ca and with minor<br>sulphides present.                                                                                    |
| 56.65       | 57.65     | D-1067        | 1.00         | <1   | 90 | 10 |     |    | 1   | 3   | diorite   | rusty<br>grey  | f-<br>mg | breccia-<br>ted           |                            | Partially recemented breccia with minor chlorite<br>and epidote alterations. Only a few quartz<br>carbonate veinlets of 1-20mm at 300045°ca and<br>with minor sulphides present.                                                                         |
| 57.65       | 58.80     |               | 1.15         | 0    |    |    |     |    | 1   | 2   | diorite   | rusty<br>grey  | rng      | breccia-<br>ted           | chl,epi,<br>kspar          | Brecciated diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca.                                                                                                                              |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour                  | Size     | Structure                 | Alteration                 | Comments                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|-------------------------|----------|---------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 58.80       | 60.80     |               | 2.00         | <1   | 85 | 15 |     |    | 8   | 3   | diorite   | rusty<br>brown          | m-<br>cg | fractured                 | kspar                      | Syenite dyke, or diorite with strong potassic<br>alterations and weak chlorite alterations, with areas<br>of magnetite. Mag veins and stringers of up to<br>20mm at 0-90°ca. Chlorite veins of up to 10mm at<br>30-60°ca. Sulphides found as stringers and blebs<br>around some chlorite veins (1%).                                                                                    |
| 60.80       | 61.80     | D-1068        | 1 .00        | <1   | 85 | 15 |     |    | 10  | 3   | diorite   | rusty<br>brown          | m-<br>cg | fractured                 | kspar                      | Syenite dyke or diorite with strong potassic<br>alterations and weak chlorite alterations, with areas<br>of magnetite. Mag veins and stringers of up to<br>20mm at 0-90°ca. Chlorite veins of up to 10mm at<br>30-60°ca. Sulphides found as stringers and blebs<br>around some chlorite veins (1%). The dyke or the<br>alteration zone at 40°ca in sharp contact with fresh<br>diorite. |
| 61.80       | 66.14     |               | 4.34         | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey                | mg       | fractured                 | chl,epi,<br>kspar          | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 5-65°ca. Chlorite veins of 2-10mm at 0-<br>85°ca.                                                                                                                                                                                                               |
| 66.14       | 67.14     | D-1069        | 1.00         | <1   | 90 | 10 |     |    | 4   | 1   | diorite   | mid grey                | mg       | fractured<br>&<br>sheared | chl,epi,<br>kspar          | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 5-65°ca. Chlorite veins of 2-50mm at<br>5°ca which contain 1% sulphides.                                                                                                                                                                                        |
| 67.14       | 73.20     |               | 6.06         | 0    |    |    |     |    | 4   | 1   | diorite   | mid<br>grey-dk<br>green | f-<br>mg | fractured<br>&<br>sheared | chl,epi,<br>kspar,c<br>lay | Relatively fresh, broken diorite with chlorite,<br>epidote and potassic alterations. Also a little clay<br>alteration. Quartz carbonate veinlets of 1-10mm at<br>5-65°ca. Chlorite veins of 2-50mm at 5°ca which<br>contain 1% sulphides.                                                                                                                                               |
| 73.20       | 74.20     | D-1070        | 1.00         | 1    | 95 | 5  |     |    | 1   | 2   | diorite   | lt green                | f-<br>mg | fractured                 | clay,ch<br>I,epi           | Diorite with clay, chlorite, and epidote alterations.<br>Quartz carbonate veinlets of 1-15mm at 10-85°ca.<br>Disseminated sulphides present in strongly clay<br>altered rock(1-2%).                                                                                                                                                                                                     |

È

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour          | Size     | Structure                    | Alteration                 | Comments                                                                                                                                                                                                                                                                                 |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|-----------------|----------|------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 74.20       | 75.20     | D-1071        | 1.00         | <1   | 90 | 10 |     |    | 1   | 30  | diorite   | lt green        | f-cg     | breccia-<br>ted &<br>sheared | clay,ch<br>l,epi           | Recemented brecciated diorite with clay, chlorite,<br>and epidote alterations. Quartz carbonate veins of<br>up to 10cm at 35-65°ca. Chlorite veins of up to<br>10mm at 45 -85°ca. Disseminated sulphides and<br>sulphide blebs in strongly clay-altered rock and<br>chlorite vein (2%).  |
| 75.20       | 76.20     | D-1072        | 1.00         | 1    | 90 | 10 |     |    | 2   | 20  | diorite   | lt-mid<br>green | f-<br>mg | breccia-<br>ted &<br>sheared | chl,epi,<br>clay           | Recemented brecciated diorite with chlorite, and<br>epidote alterations. Weak clay alteration also<br>present. Quartz carbonate veins of up to 10cm at<br>35-65°ca. Chlorite veins of up to 10mm at 45 -<br>85°ca. Disseminated sulphides and sulphide blebs<br>in weak clay alteration. |
| 76.20       | 81.38     |               | 5.18         | 0    |    |    |     |    | 4   | 2   | diorite   | mid grey        | mg       | fractured                    | chl,epi,<br>kspar,<br>clay | Relatively fresh diorite with moderate chlorite,<br>epidote, potassic, and clay alterations. Various<br>generations of quartz carbonate veinlets of 1-10 mm<br>at 0-85°ca. Chlorite veins of up to 15mm at 40-<br>60°ca.                                                                 |
| 81.38       | 82.38     | D-1073        | 1.00         | <1   | 95 | 5  |     |    | 2   | 5   | diorite   | lt-mid<br>grey  | mg       | breccia-<br>ted &<br>sheared | clay,<br>chl,<br>kspar     | Brecciated diorite with clay, chlorite, and potassic<br>alterations. Various generations of quartz carbonate<br>veinlets of 1-15mm at 5-80°ca. Chlorite veins of 2-<br>5mm at 45-85°ca some of which contain minor<br>sulphides.(1-2%)                                                   |
| 82.38       | 83.43     | D-1074        | 1.05         | <1   | 80 | 20 |     |    | 1   | 1   | diorite   | dk green        | fg       | sheared                      | clay                       | Chlorite rock with minor clay alteration. Quartz carbonate veinlets of 1-8 mm at 10-65°ca. A few sulphide stringers and blebs present along some fracture planes.                                                                                                                        |
| 83.43       | 84.90     |               | 1.47         | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey        | mg       | fractured                    | chl,epi,<br>kspar          | Relatively fresh diorite with chlorite, epidote,<br>potassic alterations and minor clay alteration.<br>Quartz carbonate veinlets of 1-8mm at 30-60°ca. A<br>few chlorite veins of up to 15mm at 45-65°ca.                                                                                |
| 84.90       | 85.90     | D-1075        | 1.00         | < 1  | 70 | 30 |     |    | 4   | 1   | diorite   | mid grey        | mg       | fractured                    | chl,epi,<br>kspar          | Relatively fresh diorite with chlorite, epidote,<br>potassic alterations and minor clay alteration.<br>Quartz carbonate veinlets of 1-8mm at 30-60°ca. A<br>few chlorite veins of up to 15mm at 45-65°ca. Also<br>contains an epidote vein of about 30mm at 5°ca<br>with <1% sulphides.  |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру       | Сф       | gal      | ро | mag | qtz | Lithology                         | Colour                  | Size     | Structure                    | Alteration        | Comments                                                                                                                                                                                                                                                                              |
|-------------|-----------|---------------|--------------|------|----------|----------|----------|----|-----|-----|-----------------------------------|-------------------------|----------|------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (11)        |           |               |              |      | <u> </u> | <b>J</b> | <b>.</b> |    | 1   |     |                                   | · · · • • • •           | <b>I</b> | l                            |                   | <b>I</b> <u> </u>                                                                                                                                                                                                                                                                     |
| 85.90       | 86.90     | D-1076        | 1 .00        | <1   | 80       | 20       |          |    | 4   | 1   | diorite                           | mid grey                | mg       | fractured                    | chl,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote,<br>potassic alterations and minor clay alteration.<br>Quartz carbonate veinlets of 1-8mm at 30-60°ca. A<br>few chlorite veins of up to 15mm at 45-65°ca.<br>Minor sulphides (<1%) found in a chlorite vein of<br>20mm at 35°ca.      |
| 86.90       | 91.22     |               | 4.32         | 0    |          |          |          |    | 4   | 1   | diorite                           | mid grey                | mg       | fractured                    | cht,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote,<br>potassic alterations and minor clay alteration.<br>Quartz carbonate veinlets of 1-8mm at 30-60°ca. A<br>few chlorite veins of up to 15mm at 45-65°ca.<br>Trace (< 1%) sulphides found in chlorite and<br>epidote veins.           |
| 91.22       | 92.22     | D-1077        | 1.00         | <1   | 90       | 10       |          |    | 3   | 1   | diorite                           | mid grey                | mg       | breccia-<br>ted &<br>sheared | ch!,epi,<br>kspar | Brecciated diorite with chlorite, epidote, and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 5-85°ca. Some of which contain<br>disseminated sulphides as well as sulphide blebs<br>(1%).                                                                        |
| 92.22       | 93.22     | D-1078        | 1.00         | <1   | 90       | 10       |          |    | 3   | 1   | diorite                           | mid grey                | mg       | breccia-<br>ted &<br>sheared | chl,epi,<br>kspar | Brecciated diorite with chlorite, epidote, and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 5-85°ca. Some of which contain<br>disseminated sulphides as well as sulphide<br>blebs.(1%)                                                                         |
| 93.22       | 94.22     | D-1079        | 1.00         | <1   | 90       | 10       |          |    | 3   | ]   | diorite<br>&<br>chlorit<br>e rock | mid<br>grey-dk<br>green | f-<br>mg | breccia-<br>ted &<br>sheared | chl               | Brecciated diorite with chlorite (strong), epidote,<br>and potassic alterations. Quartz carbonate veinlets<br>of 1-10mm at 5-85°ca. Some of which contain<br>disseminated sulphides as well as sulphide<br>blebs.(1%) One part of the section can hardly be<br>recognized as diorite. |
| 94.22       | 96.30     |               | 2.08         | 0    |          |          |          |    | 4   | 1   | diorite                           | mid<br>brown            | mg       | fractured                    | chl,<br>kspar     | Relatively fresh diorite with chlorite and potassic<br>alterations. Quartz carbonate veinlets of 1-10mm at<br>5-85°ca. Chlorite veins of 2-30mm at 45-70°ca.                                                                                                                          |
| 96.30       | 97.30     | D-1080        | 1.00         | 0    |          |          |          |    | 3   | 10  | diorite<br>&<br>chlorit<br>e rock | dk<br>green,<br>brown   | f-<br>mg | breccia-<br>ted &<br>sheared | chí               | Partially recemented brecciate and diorite with<br>chlorite alterations, minor clay and potassic<br>alterations. Quartz carbonate veinlets of 1-15mm at<br>5-75°ca. Chlorite veins of up to 30mm at 30-65°ca.                                                                         |

ŝ.

|             |           |               |              |      |    |    |     |    | _   |     |                           |                       |          |                              |                       |                                                                                                                                                                                                                                                                                          |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|---------------------------|-----------------------|----------|------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology                 | Colour                | Size     | Structure                    | Alteration            | Comments                                                                                                                                                                                                                                                                                 |
| 97.30       | 104.35    |               | 7.05         | 0    |    |    |     |    | 5   | 1   | diorite                   | mid grey              | mg       | fractured                    | chl,epi,<br>kspar     | Relatively fresh diorite with chlorite, epidote, and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite veins of 3-20mm at 30-<br>60°ca.                                                                                                             |
| 104.35      | 105.35    | D-1081        | 1.00         | <1   | 90 | 10 |     |    | 2   | 3   | diorite                   | mid<br>grey,<br>rusty | f-<br>mg | fractured<br>&<br>sheared    | kspar,<br>chl         | Fully potassic and chlorite altered rock and diorite<br>with chlorite, potassic, and epidote alterations.<br>Quartz carbonate veinlets of 1-4mm at 10-80°ca.<br>Chlorite veins of 3-15mm at 10-60°ca, some of<br>which contain sulphide blebs.(1-2%)                                     |
| 105.35      | 106.35    | D-1082        | 1.00         | <1   | 85 | 15 |     |    | 1   | 1   | mafic<br>dyke             | lt brown              | fg       | fractured                    | kspar,<br>chl         | Fully potassic and chlorite altered rock on acidic<br>volcanic rock with chlorite alterations. Quartz<br>carbonate veinlets of 1-5mm at 15-85°ca. Sulphide<br>stringers and blebs found in some chlorite<br>veins.(<1%)                                                                  |
| 106.35      | 115.25    |               | 8.90         | 0    |    |    |     |    | 5   | 2   | diorite                   | mid grey              | mg       | fractured                    | chl,<br>kspar,<br>epi | Relatively fresh diorite with moderate chlorite,<br>potassic, and epidote alterations. Quartz carbonate<br>veintets of 1-20mm at 5-85°ca. Chlorite veins and<br>epidote veins of 2-20mm at 35-65°ca.                                                                                     |
| 115.25      | 116.25    | D-1083        | 1.00         | 1    | 90 | 10 |     |    | 1   | 15  | diorite<br>& chl.<br>rock | It grey,<br>It green  | f-<br>mg | breccia-<br>ted &<br>sheared | clay,chl              | Diorite with clay and chlorite alterations containing disseminated sulphides(<1%). A zone of quartz carbonate and chlorite brecciate of 25cm at 45°ca, contains sulphide blebs(1%).                                                                                                      |
| 116.25      | 137.00    |               | 20.75        | 0    |    |    |     |    | 5   | 2   | diorite                   | mid grey              | mg       | fractured                    | chl,epi,<br>kspar     | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-20mm at 0-85°ca. Chlorite and<br>epidote veins of up to several cm at 20-80°ca.                                                                                 |
| 137.00      | 138.00    | D-1084        | 1.00         | <1   | 90 | 10 |     |    | 5   | 1   | diorite                   | dk green              | f-<br>mg | fractured                    | chl                   | Relatively fresh diorite with strong chlorite,<br>moderate epidote, and potassic alterations. Quartz<br>carbonate veinlets of 1-20mm at 0-85°ca. Chlorite<br>and epidote veins of up to several cm at 20-80°ca.<br>A few sulphide blebs were found in a small epidote<br>stringer (<1%). |
| 138.00      | 147.74    |               | 9.74         | 0    |    |    |     |    | 5   | 2   | diorite                   | mid grey              | mg       | fractured                    | chl,epi,<br>kspar     | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-25mm at 0-85°ca. Chlorite and<br>epidote veins of 3-15mm at 30-60°ca.                                                                                           |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | РУ | ср | gal | ро | mag | qtz | Lithology                 | Colour                   | Size     | Structure                 | Alteration        | Comments                                                                                                                                                                                                                                                                                                           |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|---------------------------|--------------------------|----------|---------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 147.74      | 148.74    | D-1085        | 1.00         | <1   | 80 | 20 |     |    | 5   | 2   | diorite                   | mid grey                 | mg       | fractured                 | chl,epi,<br>kspar | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-25mm at 0-85°ca. Chlorite and<br>epidote veins of 3-15mm at 30-60°ca. Also has a<br>chlorite vein of 15mm at 45°ca that contains<br>sulphide stringers and blebs (1%).                    |
| 148.74      | 151.44    |               | 2.7 0        | 0    |    |    |     |    | 5   | 2   | diorite                   | mid grey                 | mg       | fractured                 | chl,epi,<br>kspar | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-25mm at 0-85°ca. Chlorite and<br>epidote veins of 3-15mm at 30-60°ca.                                                                                                                     |
| 151.44      | 152.44    | D-1086        | 1.00         | <1   | 80 | 20 |     |    | 3   | . 1 | diorite<br>& chl.<br>rock | mid<br>grey, dk<br>green | f-<br>mg | sheared<br>&<br>fractured | cht,epi,<br>kspar | Approximately half diorite rock and half diorite<br>with chlorite, epidote, and potassic alterations. The<br>contact of chlorite rock and diorite is at about 5°ca.<br>Sulphide stringers and blebs found in chlorite rock<br>(1%). Quartz carbonate veinlets of 1-8mm at 5-<br>85°ca.                             |
| 152.44      | 153.49    | D-1087        | 1.05         | <1   | 80 | 20 |     |    | 3   | 1   | diorite<br>& chl.<br>rock | mid<br>grey, dk<br>green | f-<br>mg | sheared<br>&<br>fractured | chl,epi,<br>kspar | Approximately half diorite rock and half diorite<br>with chlorite, epidote, and potassic alterations. The<br>contact of chlorite rock and diorite is at about 5° ca.<br>Sulphide stringers and blebs found in chlorite rock<br>(1%). Quartz carbonate veinlets of 1-8mm at 5-<br>85° ca seen with both rock types. |
| 153.49      | 154.49    | D-1088        | 1.00         | <1   | 80 | 20 |     |    | 4   | 1   | diorite                   | mid grey                 | mg       | fractured                 | chl,epi,<br>kspar | Relatively fresh diorite with few sulphides (<1%) in small epidote stringers.                                                                                                                                                                                                                                      |
| 154.49      | 155.49    | D-1089        | 1.00         | <1   | 80 | 20 |     |    | 3   | 1   | diorite<br>& chl.<br>rock | mid<br>grey, dk<br>green | f-<br>mg | fractured                 | chl,epi,<br>kspar | Approximately one third chlorite rock and two<br>thirds diorite with chlorite, epidote, and potassic<br>alterations. The contact of these two types of rock<br>is at about 5-10°ca. Sulphide blebs are seen in<br>chlorite rock (<1%). Quartz carbonate veinlets of<br>1-15mm at 5-65°ca seen in both rocks.       |
| 155.49      | 156.49    | D-1090        | 1.00         | <1   | 80 | 20 | -   |    | 3   | 1   | diorite<br>& chl.<br>rock | mid<br>grey, dk<br>green | f-<br>mg | fractured                 | chl,epi,<br>kspar | Approximately one third chlorite rock and two<br>thirds diorite with chlorite, epidote, and potassic<br>alterations. The contact of these two types of rock<br>is at about 5-10°ca. Sulphide blebs are seen in<br>chlorite rock (<1%). Quartz carbonate veinlets of<br>1-15mm at( $\ddot{o}$                       |

D.

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour           | Size | Structure | Alteration                 | Comments                                                                                                                                                                                                                                                                                 |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|------------------|------|-----------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 156.49      | 157.49    | D-1091        | 1.00         | 0    |    |    |     |    | 5   | 2   | diorite   | mid <b>g</b> rey | mg   | fractured | chl,epi,<br>kspar          | Approximately one third chlorite rock and two<br>thirds diorite with chlorite, epidote, and potassic<br>alterations. The contact of these two types of rock<br>is at about 5-10°ca. Quartz carbonate veinlets of 1-<br>15mm at 5-65°ca present in both rocks.                            |
| 157.49      | 162.53    |               | 5.04         | 0    |    |    |     |    | 5   | 1   | diorite   | mid grey         | mg   | fractured | chl,epi,<br>kspar          | Approximately one third chlorite rock and two<br>thirds diorite with chlorite, epidote, and potassic<br>alterations. The contact of these two types of rock<br>is at about 5-10°ca. Quartz carbonate veinlets of 1-<br>15mm at 5-65°ca present in both rocks.                            |
| 162.53      | 163.53    | D-1092        | 1 .00        | < 1  | 80 | 20 |     |    | 3   | 1   | diorite   | mid grey         | mg   | fractured | chl,epi,<br>kspar          | Diorite with chlorite, epidote, and potassic<br>alterations. A fully chloritized and epidotized zone<br>of about 30cm at 50°ca contains a few sulphide<br>blebs(<1%). Quartz carbonate veinlets of 1-5mm<br>at 10-80°ca present throughout the section.                                  |
| 163.53      | 170.05    |               | 6.52         | 0    | -  |    | -   |    | 5   | 1   | diorite   | mid grey         | mg   | fractured | chl,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Minor clay<br>alterations can be seen in a small portion of the<br>rock. Quartz carbonate veinlets of 1-10mm at 0-<br>85°ca. Chlorite and epidote veins of up to 45mm at<br>45-65°ca.             |
| 170.05      | 171.05    | D-1093        | 1.00         | <1   | 95 | 5  |     |    | 4   | 1   | diorite   | mid grey         | mg   | fractured | chl,epi,<br>kspar,<br>clay | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Minor clay<br>alterations can be seen in a small portion of the<br>rock. Quartz carbonate veinlets of 1-10mm at 0-<br>85°ca. Chlorite and only a few epidote veins of up<br>to 45mm at 45-65°ca.  |
| 171.05      | 172.05    | D-1094        | 1.00         | <1   | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey         | mg   | fractured | chl,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 0-85°ca. Chlorite and only a<br>few epidote veins of up to 45mm at 45-65°ca.<br>Some sulphides are also present in small (5mm)<br>chlorite veins (<1%). |

R.

| From   | То     | Sample | Width  | Sulp | ру       | ср | gal | ро | mag | qtz | Lithology | Colour                   | Size     | Structure                    | Alteration        | Comments                                                                                                                                                                                                                                                                                |
|--------|--------|--------|--------|------|----------|----|-----|----|-----|-----|-----------|--------------------------|----------|------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (m)    | (m)    | No.    | (m)    |      | <b>1</b> |    | Ľ   |    |     |     |           |                          |          |                              |                   |                                                                                                                                                                                                                                                                                         |
| 172.05 | 173.05 | D-1095 | 1.00   | <1   | 80       | 20 |     |    | 4   | 1   | diorite   | mid grey                 | mg       | fractured                    | chl,epi,<br>kspar | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 0-85°ca. Chlorite and only a<br>few epidote veins of up to 45mm at 45-65°ca.<br>Some sulphides are also present in small (5mm)<br>chlorite vein (<1%). |
| 173.05 | 192.95 |        | 19.9 0 | <1   | 80       | 20 |     |    | 5   | 1   | diorite   | mid grey                 | mg       | fractured                    | chl,epi,<br>kspar | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 0-85°ca. Chlorite and only a<br>few epidote veins of up to 45mm at 45-65°ca.<br>Some sulphides are also present in small (5mm)<br>chlorite vein (<1%). |
| 192.95 | 193.95 | D-1096 | 1.00   | <1   | 80       | 20 |     |    | 5   |     | diorite   | mid grey                 | mg       | fractured                    | chl,epi,<br>kspar | Relatively fresh and broken diorite with moderate<br>chlorite, epidote, and potassic alterations. Quartz<br>carbonate veinlets of 1-10mm at 0-85°ca. Chlorite<br>and only a few epidote veins of up to 45mm at 45-<br>65°ca. Some sulphides are also present in small<br>(5mm).         |
| 193.95 | 200.25 |        | 6.30   | 0    |          |    |     |    | 5   | 5   | diorite   | mid grey                 | mg       | fractured                    | chl,epi,<br>kspar | Relatively fresh and broken diorite with moderate<br>chlorite, epidote, and potassic alterations. Quartz<br>carbonate veinlets of 1-10mm at 0-85°ca. Chlorite<br>and only a few epidote veins of up to 45mm at 45-<br>65°ca.                                                            |
| 200.25 | 201.25 | D-1097 | 1.00   | 0    |          |    |     |    | 4   | 1   | diorite   | mid<br>grey-mid<br>green | f-<br>mg | breccia-<br>ted &<br>sheared | chl,epi,<br>kspar | Diorite with chlorite, epidote, and potassic<br>alterations. Quartz carbonate veinlets of 1-8mm at<br>5-80°ca. Chlorite and epidote veinlets of up to<br>50mm at 45-65°ca.                                                                                                              |
| 201.25 | 204.45 |        | 3.20   | 0    |          |    |     |    | 4   | 1   | diorite   | mid<br>grey-mid<br>green | mg       | sheared<br>&<br>fractured    | chl,epi,<br>kspar | Diorite with chlorite, epidote, and potassic<br>alterations. Quartz carbonate veinlets of 1-8mm at<br>5-80°ca. Chlorite and epidote veinlets of up to<br>50mm at 45-65°ca.                                                                                                              |
| 204.45 | 205.45 | D-1098 | 1 .00  | <1   | 90       | 10 |     |    | 2   | 1   | diorite   | lt grey                  | f-<br>mg | breccia-<br>ted &<br>sheared | clay,<br>chl,epi  | Diorite with clay, chlorite, and epidote alterations.<br>Quartz carbonate veinlets of 1-10mm at 10-80°ca.<br>Disseminated sulphides found in clay altered<br>diorite(<1%). A few sulphide blebs found in<br>chlorite veins(<1%).                                                        |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | РУ | ср | gai | ро | mag | qtz | Lithology     | Colour               | Size     | Structure                         | Alteration                 | Comments                                                                                                                                                                                                                                                                                              |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|---------------|----------------------|----------|-----------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 205.45      | 206.45    | D-1099        | 1.00         | <1   | 90 | 10 |     |    | 2   | 1   | diorite       | lt grey              | f-<br>mg | breccia-<br>ted &<br>sheared      | clay,<br>chl,epi           | Diorite with clay, chlorite, and epidote alterations.<br>Quartz carbonate veinlets of 1-10mm at 10-80°ca.<br>Disseminated sulphides found in clay altered<br>diorite(<1%). A few sulphide blebs found in<br>chlorite veins(<1%).                                                                      |
| 206.45      | 207.45    | D-1100        | 1.00         | <1   | 90 | 10 |     |    | 2   | 1   | diorite       | lt grey              | f-<br>mg | breccia-<br>ted &<br>sheared      | clay,<br>chl,epi           | Diorite with clay, chlorite, and epidote alterations.<br>Quartz carbonate veinlets of 1-10mm at 10-80°ca.<br>Disseminated sulphides found in clay altered<br>diorite(<1%). A few sulphide blebs found in<br>chlorite vein.s(<1%)                                                                      |
| 207.45      | 208.45    | D-1101        | 1.00         | <1   | 90 | 10 |     |    | 3   | 1   | diorite       | It grey-<br>mid grey | mg       | breccia-<br>ted &<br>sheared      | clay,<br>chl,epi,<br>kspar | Diorite with clay, chlorite, and epidote alterations.<br>Potassic alteration near the end of the section.<br>Quartz carbonate veinlets of 1-10mm at 10-80°ca.<br>Disseminated sulphides found in clay altered<br>diorite(<1%). A few sulphide blebs found in<br>chlorite veins (<1%).                 |
| 208.45      | 212.76    |               | 4.31         | 0    |    |    |     |    | 4   | 1   | diorite       | mid grey             | mg       |                                   | chl,epi,<br>kspar          | Relatively fresh diorite with chlorite, epidote, and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 1-<br>15mm at 30-60°ca.                                                                                                              |
| 212.76      | 213.76    | D-1102        | 1.00         | 0    |    |    |     |    | 4   | 1   | diorite       | mid grey             | mg       | breccia-<br>ted &<br>sheared      | chl,epi,<br>kspar          | Relatively fresh broken diorite with chlorite,<br>epidote, potassic, and minor clay alterations.<br>Quartz carbonate veinlets of 1-10mm at 10-80°ca.<br>Chlorite and epidote veins of 1-15mm at 30-60°ca.                                                                                             |
| 213.76      | 237.00    |               | 23.24        | 0    |    |    |     |    | 4   | 1   | diorite       | mid grey             | mg       | fractured<br>&<br>breccia-<br>ted | chl,epi,<br>kspar          | Relatively fresh diorite with chlorite, epidote,<br>potassic, and minor clay alterations. Quartz<br>carbonate veinlets of 1-10mm at 10-80°ca. Chlorite<br>and epidote veins of 1-15mm at 30-60°ca. Also<br>contains a mid-grren volcanic dyke of about 45cm<br>at 5°ca in the middle of this section. |
| 237.00      | 238.10    | D-1103        | 1.00         | 0    |    |    |     |    | 0   | 2   | mafic<br>dyke | mid grey             | fg       | fractured                         | chl,epi                    | Volcanic rock with moderate chlorite and epidote<br>alterations. Quartz carbonate veinlets of 1-10mm at<br>10-70°ca.                                                                                                                                                                                  |

L

È.

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp      | ру | ср | gal | ро | mag | qtz | Lithology                 | Colour                   | Size     | Structure | Alteration        | Comments                                                                                                                                                                                                                                                                           |
|-------------|-----------|---------------|--------------|-----------|----|----|-----|----|-----|-----|---------------------------|--------------------------|----------|-----------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 238.10      | 246.32    |               | 8.22         | 0         |    |    |     |    | 5   | 1   | diorite                   | mid grey                 | mg       | fractured | chl,epi,<br>kspar | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-75°ca. Chlorite and<br>epidote veins of 2-10mm at 30-60°ca.                                                                                     |
| 246.32      | 247.32    | D-1104        | 1.00         | <1        | 95 | 5  |     |    | 3   | 1   | diorite<br>& chl.<br>rock | mid<br>grey, dk<br>green | f-<br>mg | fractured | chl,epi,<br>kspar | Approximately half chlorite rock and half diorite<br>with chlorite, epidote, and potassic alterations. The<br>contact of these two types of rock is about 40°ca.<br>Trace sulphides in the chlorite rock. Quartz<br>carbonate veinlets of 1-5mm at 10-80°ca in both<br>rock types. |
| 247.32      | 248.62    | D-1105        | 1.3 0        | trac<br>e | 95 | 5  |     |    | 0   | 1   | mafic<br>dyke             | mid<br>green             | fg       | fractured | dyke              | Volcanic dyke with moderate epidote and chlorite<br>alterations. Trace disseminated sulphides present in<br>the rock. Quartz carbonate veinlets of 1-5mm at 10-<br>70°ca.                                                                                                          |
| 248.62      | 252.57    |               | 3.95         | 0         |    |    |     |    | 5   | 1   | diorite                   | mid grey                 | mg       | fractured | chl,epi,<br>kspar | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-75°ca. Chlorite and<br>epidote veins of 2-10mm at 30-60°ca.                                                                                     |
| 252.57      | 255.08    |               | 2.51         | 0         |    |    |     |    | 0   | 1   | mafic<br>dyke             | mid<br>green             | fg       | fractured | dyke              | Volcanic dyke with moderate epidote and chlorite alterations. Quartz carbonate veinlets of 1-8mm at 10-80°ca.                                                                                                                                                                      |
| 255.08      | 261.42    |               | 6.34         | 0         |    |    |     |    | 5   | 1   | diorite                   | mid gray                 | mg       | fractured | chl,epi,<br>kspar | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-75°ca. Chlorite and<br>epidote veins of 2-10mm at 30-60°ca.                                                                                     |
| 261.42      | 262.42    | D-1106        | 1.00         | 0         |    |    |     |    | 4   | 1   | diorite                   | mid gray                 | mg       | fractured | chl               | Relatively fresh diorite with strong chlorite,<br>moderate epidote, and potassic alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-75°ca. Chlorite<br>and epidote veins of 2-10mm at 30-60°ca.                                                                              |
| 262.42      | 265.70    |               | 3.28         | 0         |    |    |     |    | 5   | 1   | diorite                   | mid gray                 | mg       | fractured | chl               | Relatively fresh diorite with strong chlorite,<br>moderate epidote, and potassic alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-75°ca. Chlorite<br>and epidote veins of 2-10mm at 30-60°ca.                                                                              |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср       | gal | ро | mag | qtz | Lithology | Colour         | Size     | Structure                 | Alteration           | Comments                                                                                                                                                                                                                                  |
|-------------|-----------|---------------|--------------|------|----|----------|-----|----|-----|-----|-----------|----------------|----------|---------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | (iii)     |               |              | [    | [  | <u> </u> | I   |    |     |     |           | ł <u>.</u>     | I        | I                         |                      |                                                                                                                                                                                                                                           |
| 265.70      | 266.70    | D-1107        | 1.00         | <1   | 90 | 10       |     |    | 3   | 1   | diorite   | dk green       | f-<br>mg | sheared<br>&<br>fractured | chl                  | Strongly chlorite altered diorite and some portion<br>has become chlorite rock. Quartz carbonate<br>veinlets of 1-15mm at 10-80°ca. Some<br>disseminated sulphides in clay altered portion, and<br>a few sulphide blebs in chlorite(<1%). |
| 266.70      | 267.70    | D-1108        | 1.00         | <1   | 90 | 10       |     |    | 3   | 1   | diorite   | lt-mid<br>grey | mg       | fractured                 | clay,<br>chl,epi     | Diorite with clay, chlorite, and epidote alterations.<br>Quartz carbonate veinlets of 1-10mm at 5-80°ca.<br>Disseminated sulphides in the clay altered portion<br>~20cm (<1%).                                                            |
| 267.70      | 268.75    |               | 1.05         | 0    |    |          |     |    | 4   | 1   | diorite   | mid grey       | mg       | fractured                 | chl,epi              | Diorite with chlorite and epidote alterations. Quartz carbonate veinlets of 1-10mm at $5-80^{\circ}$ ca. Disseminated sulphides in the clay altered portion $^{\circ}20$ cm (<1%).                                                        |
| 268.75      | 269.75    | D-1109        | 1 .00        | <1   | 90 | 10       |     |    | 3   | 1   | diorite   | mid grey       | mg       | fractured                 | chl,<br>clay,<br>epi | Diorite with moderate clay, chlorite, and epidote alterations. Quartz carbonate veinlets of 1-10mm at 5-80°ca. Disseminated sulphides in some clay altered portions $^{-25}$ cm (< 1%).                                                   |
| 269.75      | 273.93    |               | 4.18         | 0    |    |          |     |    | 5   | 1   | diorite   | mid grey       | mg       | fractured                 | chl,<br>clay,<br>epi | Relatively fresh diorite with strong chlorite,<br>moderate epidote, and potassic alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-75°ca.                                                                                          |
| 273.93      | 274.93    | D-1110        | 1.00         | 0    |    |          |     |    | 4   | 1   | diorite   | mid grey       | mg       | fractured                 | chl,epi              | Relatively fresh diorite with strong chlorite and<br>epidote alterations, and moderate potassic<br>alterations. Quartz carbonate veinlets of 1-10mm at<br>5-75°ca. Also with a few centimetres of fault gouge.                            |
| 274.93      | 277.51    |               | 2.58         | 0    |    |          |     |    | 4   | 1   | diorite   | mid grey       | mg       | fractured                 | chl,epi,<br>clay     | Relatively fresh diorite with chlorite, epidote, and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 5-75°ca. Also with a few centimetres of<br>fault gouge.                                                          |
| 277.51      | 278.51    | D-1111        | 1 .00        | <1   | 80 | 20       |     |    | 4   | 1   | diorite   | mid grey       | mg       | fractured                 | chl,epi,<br>clay     | Relatively fresh diorite with chlorite, epidote, and potassic alterations. Quartz carbonate veinlets of 1-10mm at $5-75$ °ca. Also with a few centimetres of fault gouge. Minor sulphide blebs present in some chlorite veins(<1%).       |

Ì.

|             |           | <del></del>   | <u> </u>     | 1.   | <b>-</b> | <b></b> |     | 1  |     |     | 1         | i              | -    |           |                            | r                                                                                                                                                                                                                                                                                                       |
|-------------|-----------|---------------|--------------|------|----------|---------|-----|----|-----|-----|-----------|----------------|------|-----------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру       | ср      | gal | ро | mag | qtz | Lithology | Colour         | Size | Structure | Alteration                 | Comments                                                                                                                                                                                                                                                                                                |
| 278.51      | 280.76    |               | 2.25         | 0    |          |         |     |    | 5   | 1   | diorite   | mid grey       | mg   | fractured | chl,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-15mm at 10-85°ca. Chlorite and<br>epidote veins of 2-10mm at 35-65°ca.                                                                                                         |
| 280.76      | 281.76    | D-1112        | 1.00         | <1   | 90       | 10      |     |    | 3   | 1   | diorite   | lt-mid<br>grey | mg   | fractured | chl,epi,<br>kspar,<br>clay | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-15mm at 10-85°ca. Chlorite and<br>epidote veins of 2-10mm at 35-65°ca. A portion of<br>45cm shows clay alterations well. Disseminated<br>sulphides seen in clay-altered rocks. |
| 281.76      | 282.76    | D-1113        | 1.00         | 0    |          |         |     |    | 4   | 1   | diorite   | mid grey       | mg   | fractured | chl,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-15mm at 10-85°ca. Chlorite and<br>epidote veins of 2-10mm at 35-65°ca. Weak clay<br>alteration as well.                                                                        |
| 282.76      | 287.27    |               | 4.51         | 0    |          |         |     |    | 5   | 1   | diorite   | mid grey       | mg   | fractured | chl,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite, epidote, and potassic alterations.                                                                                                                                                                                                                     |
| 287.27      | 288.27    | D-1114        | 1.00         | <1   | 80       | 10      |     |    | 6   | 1   | diorite   | mid grey       | mg   | fractured | chl,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. A few sulphide<br>blebs present in a chlorite vein of about 80mm<br>which also contains some mag stringers up to<br>several cm <sup>2</sup> .                                                                    |
| 288.27      | 289.27    | D-1115        | 1.00         | 0    |          |         |     |    | 5   | 1   | diorite   | mid grey       | mg   | fractured | chl,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite, epidote, and potassic alterations.                                                                                                                                                                                                                     |
| 289.27      | 290.53    |               | 1.26         | 0    |          |         |     |    | 5   | 1   | diorite   | mid grey       | mg   | fractured | chł,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite, epidote, and potassic alterations.                                                                                                                                                                                                                     |
| 290.53      | 291.53    | D-1116        | 1.00         | <1   | 85       | 15      |     |    | 5   | 1   | diorite   | mid grey       | mg   | fractured | chl,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. A few sulphide<br>blebs can be seen in a couple of chlorite veins of<br>20mm and 10mm at ~45°ca.                                                                                                                 |
| 291,53      | 292.08    |               | 0.55         | 0    |          |         |     |    | 5   | 1   | diorite   | mid grey       | mg   | fractured | chl,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite, epidote, and potassic alterations.                                                                                                                                                                                                                     |

Ë.

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour   | Size | Structure                 | Alteration                     | Comments                                                                                                                                                                                                                                                                      |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|----------|------|---------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 292.08      | 293.08    | D-1117        | 1 .00        | <1   | 85 | 15 |     |    | 5   | 1   | diorite   | mid grey | mg   | fractured                 | chl,epi,<br>kspar              | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. A few sulphide<br>blebs are present in a chlorite vein of a few<br>centimetres at <sup>-</sup> 40°ca.                                                                                  |
| 293.08      | 294.08    | D-1118        | 1.00         | <1   | 85 | 15 |     | -  | 5   | 1   | diorite   | mid grey | mg   | fractured                 | chl,epi,<br>kspar              | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. A few sulphide<br>blebs are present in a chlorite vein of a few<br>centimetres at ~40°ca.                                                                                              |
| 294.08      | 295.08    | D-1119        | 1.00         | <1   | 85 | 15 |     |    | 5   | 1   | diorite   | mid grey | mg   | fractured                 | chl,epi,<br>kspar              | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. A few sulphide<br>blebs are present in a chlorite vein of a few<br>centimetres at <sup>-40°</sup> ca.                                                                                  |
| 295.08      | 296.08    | D-1120        | 1.00         | <1   | 85 | 15 |     |    | 5   | 1   | diorite   | mid grey | mg   | fractured                 | chl,<br>clay,<br>epi,<br>kspar | Relatively fresh diorite with moderate clay, chlorite,<br>epidote, and potassic alterations. A few sulphide<br>blebs are present in a chlorite vein of a few<br>centimetres at ~40°ca. The clay altered zone of the<br>section contained some disseminated sulphides<br>(1%). |
| 296.08      | 297.23    | D-1121        | 1.15         | <1   | 85 | 15 |     |    | 5   | 1   | diorite   | mid grey | mg   | fractured                 | chl,<br>clay,<br>epi,<br>kspar | Relatively fresh diorite with moderate clay, chlorite,<br>epidote, and potassic alterations. A few sulphide<br>blebs are present in a chlorite vein of a few<br>centimetres at ~40°ca. The clay altered zone of the<br>section contained some disseminated sulphides<br>(1%). |
| 297.23      | 303.90    |               | 6.67         | 0    |    |    |     |    | 5   | 1   | diorite   | mid grey | ണg   | fractured                 | chl,epi,<br>kspar              | Relatively fresh diorite with moderate epidote, chlorite, and potassic alterations. A few sulphide blebs are present in a chlorite vein of a few centimetres at $^{2}40^{\circ}$ ca.                                                                                          |
| 303.90      | 304.90    | D-1122        | 1.00         | <1   | 85 | 15 |     |    | 5   | 1   | diorite   | mid grey | mg   | sheared<br>&<br>fractured | chl,epi,<br>kspar              | Relatively fresh diorite with moderate epidote, chlorite, and potassic alterations. A few sulphide blebs are present in a chlorite vein of a few centimetres at $^{-40}$ °ca. Some sulphide blebs in a few chlorite veins of 5-20mm at 30-45°ca.                              |

ħ.

۴.

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp      | ру | ср | gal | ро | mag | qtz | Lithology     | Colour       | Size | Structure                 | Alteration        | Comments                                                                                                                                                                                                                                                                                                                |
|-------------|-----------|---------------|--------------|-----------|----|----|-----|----|-----|-----|---------------|--------------|------|---------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 304.90      | 305.90    | D-1123        | 1 .00        | <1        | 85 | 15 |     |    | 5   | 1   | diorite       | mid grey     | mg   | sheared<br>&<br>fractured | chl,epi,<br>kspar | Relatively fresh diorite with moderate epidote,<br>chlorite, and potassic alterations. A few sulphide<br>blebs are present in a chlorite vein of a few<br>centimetres at ~40°ca. Some sulphide blebs in a<br>few chlorite veins of 5-20mm at 30-45°ca.                                                                  |
| 305.90      | 306.90    | D-1124        | 1.00         | <1        | 85 | 15 |     |    | 5   | 1   | diorite       | mid grey     | mg   | sheared<br>&<br>fractured | chl,epi,<br>kspar | Relatively fresh diorite with moderate epidote,<br>chlorite, and potassic alterations. A few sulphide<br>blebs are present in a chlorite vein of a few<br>centimetres at ~40°ca. Some sulphide blebs are<br>present in a few chlorite veins of 5-20mm at 30-<br>45°ca.                                                  |
| 306.90      | 307.90    | D-1125        | 1.00         | 0         | 85 | 15 |     |    | 5   | 1   | diorite       | mid grey     | mg   | sheared<br>&<br>fractured | chl,epi,<br>kspar | Relatively fresh diorite with moderate epidote,<br>chlorite, and potassic alterations. A few sulphide<br>blebs are present in a chlorite vein of a few<br>centimetres at <sup>2</sup> 40°ca.                                                                                                                            |
| 307.90      | 308.83    |               | 0.93         | 0         |    |    |     |    | 0   | 0   | diorite       |              |      |                           | chl,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 3-<br>15 mm at 30-60°ca.                                                                                                                                |
| 308.83      | 309.83    | D-1126        | 1 .00        | 0         |    |    |     |    | 0   | 1   | mafic<br>dyke | mid<br>green | f-cg | slightly<br>fractured     | dyke              | Diabase dyke or basic volcanic porphyry with<br>epidote alteration and minor chlorite alteration. A<br>few quartz carbonate veinlets of 1-10mm at 10-<br>80°ca.                                                                                                                                                         |
| 309.83      | 312.40    |               | 2.57         | 0         |    |    |     |    | 0   | 1   | mafic<br>dyke | mid<br>green | f-cg | slightly<br>fractured     | dyke              | Diabase dyke or basic volcanic porphyry with<br>epidote alteration and minor chlorite alteration. A<br>few quartz carbonate veinlets of 1-10mm at 10-<br>80°ca.                                                                                                                                                         |
| 312.40      | 313.40    | D-1127        | 1.00         | trac<br>e | 90 | 10 |     |    | 4   | 1   | diorite       | mid grey     | mg   | fractured                 | chl,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 3-<br>15 mm at 30-60°ca. Contact zone with the above<br>diabase dyke was highly chlorite altered at 45°ca.<br>Minor sulphides seen in the contact zone. |

.

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology     | Colour       | Size | Structure | Alteration        | Comments                                                                                                                                                                                                                                                                                                                |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|---------------|--------------|------|-----------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 313.40      | 321.37    |               | 7.97         | 0    |    |    |     |    | 5   | 1   | diorite       | mid grey     | mg   | fractured | chł,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 3-<br>15 mm at 30-60°ca. Contact zone with the above<br>diabase dyke was highly chlorite altered at 45°ca.<br>Minor sulphides seen in the contact zone. |
| 321.37      | 322.17    | D-1128        | 0.8 0        | <1   | 85 | 15 |     |    | 1   | 2   | mafic<br>dyke | mid<br>green | fg   | fractured | dyke              | Volcanic sandstone with epidote and chlorite<br>alteration. Quartz carbonate veinlets of 1-5mm at 5-<br>70°ca. Chlorite and epidote veins of 2-20mm at 40-<br>60ca. A few sulphide blebs up to 2cm <sup>2</sup> can be seen<br>along chlorite epidote veins.                                                            |
| 322.17      | 323.37    | D-1129        | 1.2 0        | 0    |    |    |     |    | 5   | t   | diorite       | mid grey     | тg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 3-<br>15 mm at 30-60°ca.                                                                                                                                |
| 323.37      | 324.67    |               | 1.30         | 0    |    |    |     |    | 5   | 1   | diorite       | mid grey     | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 3-<br>15 mm at 30-60°ca.                                                                                                                                |
| 324.67      | 325.67    | D-1130        | 1 .00        | 1    | 85 | 15 |     |    | 4   | ł   | diorite       | mid grey     | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 3-<br>15 mm at 30-60°ca. Sulphide stringers and blebs<br>can be seen in some chlorite veins and along some<br>fracture planes.                          |
| 325.67      | 326.67    | D-1131        | 1.00         | 1    | 85 | 15 |     |    | 4   |     | diorite       | mid grey     | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 3-<br>15 mm at 30-60°ca. Sulphide stringers and blebs<br>can be seen in some chlorite veins and along some<br>fracture planes.                          |

R

|             |           | 1             |              |      | 1  |    | τ   | <u> </u> | r   | ·   | <u> </u>  |          | 1    |           | T                 |                                                                                                                                                                                                                                                                                                                                                  |
|-------------|-----------|---------------|--------------|------|----|----|-----|----------|-----|-----|-----------|----------|------|-----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро       | mag | qtz | Lithology | Colour   | Size | Structure | Alteration        | Comments                                                                                                                                                                                                                                                                                                                                         |
| 326.67      | 327.67    | D-1132        | 1 .00        | 1    | 85 | 15 |     |          | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 3-<br>15 mm at 30-60°ca. Sulphide stringers and blebs<br>can be seen in some chlorite veins and along some<br>fracture planes.                                                   |
| 327.67      | 328.67    | D-1133        | 1.00         | 1    | 85 | 15 |     |          | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 3-<br>15 mm at 30-60°ca. Also contains a brecciated<br>zone of about 35cm. Sulphide stringers and blebs<br>can be seen in some chlorite veins and along some<br>fracture planes. |
| 328.67      | 329.67    | D-1134        | 1.00         | <1   | 85 | 15 |     |          | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 3-<br>15 mm at 30-60°ca. Sulphide stringers and blebs<br>can be seen in some chlorite veins and along some<br>fracture planes.                                                   |
| 329.67      | 330.67    | D-1135        | 1.00         | <1   | 85 | 15 |     |          | 5   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 3-<br>15 mm at 30-60°ca. Sulphide stringers and blebs<br>can be seen in some chlorite veins and along some<br>fracture planes.                                                   |
| 330.67      | 331.67    | D-1136        | 1.00         | <1   | 85 | 15 |     |          | 5   | ĩ   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 3-<br>15 mm at 30-60°ca. Sulphide stringers and blebs<br>can be seen in some chlorite veins and along some<br>fracture planes.                                                   |
| 331.67      | 332.67    | D-1137        | 1.00         | <1   | 85 | 15 |     |          | 5   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 3-<br>15 mm at 30-60°ca. Sulphide stringers and blebs<br>can be seen in some chlorite veins and along some<br>fracture planes.                                                   |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour          | Size     | Structure                 | Alteration                     | Comments                                                                                                                                                                                                                                                |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|-----------------|----------|---------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 332.67      | 334.53    |               | 1.86         | 0    |    |    |     |    | 5   | 1   | diorite   | mid grey        | mg       | fractured                 | chl,epi,<br>kspar              | Relatively fresh diorite with chlorite, epidote and<br>potassic alterations. Quartz carbonate veinlets of 1-<br>10mm at 10-80°ca. Chlorite and epidote veins of 3-<br>15 mm at 30-60°ca.                                                                |
| 334.53      | 335.53    | D-1138        | 1 .00        | <1   | 90 | 10 |     |    | 3   | 1   | diorite   | mid grey        | f-<br>mg | sheared<br>&<br>fractured | chl,<br>cłay,<br>epi,<br>kspar | Diorite with strong chlorite, and moderate clay, epidote, and potassic alterations. Quartz carbonate veinlets of 1-8mm of 10-80°ca. Sulphide blebs present in chlorite veins(<1%). Disseminated sulphides present in the clay altered zone(~15cm, <1%). |
| 335.53      | 336.53    | D-1139        | 1 .00        | 0    |    |    |     |    | 5   | 1   | diorite   | brown-<br>green | mg       | fractured                 | kspar,<br>epi,chl              | Diorite with strong potassic and epidote alterations<br>and moderate chlorite alteration. Quartz carbonate<br>veinlets of 1-8mm at 5-80°ca. Chlorite and epidote<br>veins of 3-15mm at 30-60°ca.                                                        |
| 336.53      | 337.53    | D-1140        | 1.00         | <1   | 90 | 10 |     |    | 3   | 1   | diorite   | lt-mid<br>grey  | mg       | fractured                 | cłay,<br>chl,epi               | Diorite with clay, chlorite and epidote alterations.<br>Quartz carbonate veinlets of 1-8mm at 5-85°ca.<br>Chlorite veins of 2-5mm at 40-60°ca. A few<br>sulphide blebs present in a chlorite vein at<br>60°ca(<1%).                                     |
| 337.53      | 338.53    | D-1141        | 1 .00        | <1   | 90 | 10 |     |    | 4   | 1   | diorite   | mid grey        | mg       | fractured                 | chl,<br>kspar,<br>epi          | Diorite with potassic, chlorite and epidote<br>alterations. Quartz carbonate veinlets of 1-8mm at<br>5-85°ca. Chlorite veins of 2-5mm at 40-60°ca. A<br>few sulphide blebs present in a chlorite vein at<br>60°ca(<1%).                                 |
| 338.53      | 339.53    | D-1142        | 1 .00        | <1   | 90 | 10 |     |    | 4   | 1   | diorite   | mid grey        | mg       | fractured                 | chl,<br>kspar,<br>epi          | Diorite with potassic, chlorite and epidote alterations. Quartz carbonate veinlets of 1-8mm at 5-85°ca. Chlorite veins of 2-5mm at 40-60°ca. A few sulphide blebs present in a chlorite vein at $60^{\circ}$ ca(<1%).                                   |
| 339.53      | 340.96    |               | 1.43         | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey        | mg       | fractured                 | chl,<br>kspar,<br>epi          | Diorite with potassic, chlorite and epidote<br>alterations. Quartz carbonate veinlets of 1-8mm at<br>5-85°ca. Chlorite veins of 2-5mm at 40-60°ca.                                                                                                      |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour                   | Size | Structure                 | Alteration                     | Comments                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|--------------------------|------|---------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 340.96      | 342.11    | D-1143        | 1.15         | <1   | 90 | 10 |     |    | 4   | 1   | diorite   | mid grey                 | mg   | fractured                 | chl,<br>kkspar,<br>epi         | Diorite with potassic, chlorite and epidote<br>alterations. Quartz carbonate veinlets of 1-8mm at<br>5-85°ca. Chlorite veins of 2-5mm at 40-60°ca. A<br>few sulphide blebs present along chloritized<br>fracture planes.                                                                                                                                                                         |
| 342.11      | 343.11    | D-1144        | 1 .00        | 1    | 85 | 15 |     |    | 3   | 1   | diorite   | mid grey                 | mg   | fractured                 | chl,<br>kkspar,<br>epi<br>clay | Diorite with potassic, chlorite and epidote<br>alterations. Quartz carbonate veinlets of 1-8mm at<br>5-85°ca. Chlorite veins of 2-5mm at 40-60°ca. A<br>few sulphide blebs present along chloritized<br>fracture planes. Also with stringer chlorite and clay<br>alterations.                                                                                                                    |
| 343.11      | 344.11    | D-1145        | 1.00         | <1   | 85 | 15 |     |    | 3   | 1   | diorite   | mid grey                 | mg   | fractured                 | chl,epi,<br>kspar,<br>clay     | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca. A few sulphide blebs<br>present along chloritized fracture planes. Also with<br>stringer chlorite and clay alterations.                                                                                     |
| 344.11      | 345.21    | D-1146        | 1.1 0        | <1   | 85 | 15 |     |    | 3   | 1   | diorite   | mid<br>grey-mid<br>green | mg   | fractured                 | chl,epi,<br>kspar,<br>clay     | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca. A few sulphide blebs<br>present along chloritized fracture planes. Also with<br>stringer chlorite and clay alterations.                                                                                     |
| 345.21      | 346.21    | D-1147        | 1 .00        | 0    |    |    |     |    | 3   | 1   | diorite   | mid grey                 | mg   | sheared<br>&<br>fractured | chl,epi,<br>kspar,<br>c<br>lay | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca. Also with stringer<br>chlorite and clay alterations. Contains a shear zone<br>of about 20 cm at 45°ca, and no visible sulphides.                                                                            |
| 346.21      | 347.21    | D-1148        | 1.00         | <1   | 90 | 10 |     |    | 3   | 1   | diorite   | mid grey                 | mg   | sheared<br>&<br>fractured | chl,epi,<br>kspar,<br>clay     | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca. A few sulphide blebs<br>present along chloritized fracture planes. Also with<br>stringer chlorite and clay alterations. Some sulphide<br>blebs seen along some fracture planes with chlorite<br>alteration. |

| <b></b>     | <b>.</b>                              |               |              |      |    |    |                                               |    |     | -   |           |          | <b>-</b> |                           |                            |                                                                                                                                                                                                                                                                                                              |
|-------------|---------------------------------------|---------------|--------------|------|----|----|-----------------------------------------------|----|-----|-----|-----------|----------|----------|---------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From<br>(m) | To<br>(m)                             | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal                                           | ро | mag | qtz | Lithology | Colour   | Size     | Structure                 | Alteration                 | Comments                                                                                                                                                                                                                                                                                                     |
|             | · · · · · · · · · · · · · · · · · · · |               |              |      | 1  | 1  | <u>,                                     </u> |    |     |     | 1         |          | 1        |                           |                            |                                                                                                                                                                                                                                                                                                              |
| 347.21      | 348.21                                | D-1149        | 1 .00        | <1   | 90 | 10 |                                               |    | 3   | 1   | diorite   | mid grey | mg       | sheared<br>&<br>fractured | chl,epi,<br>kspar,<br>clay | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca. A few sulphide blebs<br>present along chloritized fracture planes. Also with<br>stringer chlorite and clay alterations. |
| 348.21      | 349.21                                | D-1150        | 1.00         | <1   | 90 | 10 |                                               |    | 3   | 1   | diorite   | mid grey | mg       | sheared<br>&<br>fractured | chl,epi,<br>kspar,<br>clay | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca. A few sulphide blebs<br>present along chloritized fracture planes. Also with<br>stringer chlorite and clay alterations. |
| 349.21      | 350.21                                | D-1151        | 1.00         | <1   | 90 | 10 |                                               |    | 3   | 1   | diorite   | mid grey | mg       | sheared<br>&<br>fractured | chl,epi,<br>kspar,<br>clay | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca. A few sulphide blebs<br>present along chloritized fracture planes. Also with<br>stringer chlorite and clay alterations. |
| 350.21      | 351.21                                | D-1152        | 1 .00        | <1   | 90 | 10 |                                               |    | 3   | 70  | diorite   | mid grey | mg       | sheared<br>&<br>fractured | chl,epi,<br>kspar,<br>clay | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca. A few sulphide blebs<br>present along chloritized fracture planes. Also with<br>stringer chlorite and clay alterations. |
| 351.21      | 352.21                                | D-1153        | 1 .00        | < 1  | 90 | 10 |                                               |    | 3   | 1   | diorite   | mid grey | mg       | sheared<br>&<br>fractured | chl,epi,<br>kspar,<br>clay | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca. A few sulphide blebs<br>present along chloritized fracture planes. Also with<br>stringer chlorite and clay alterations. |
| 352.21      | 353.21                                | D-1154        | 1 .00        | <1   | 85 | 15 |                                               |    | 3   | 1   | diorite   | mid grey | mg       | fractured                 | chl,epi,<br>kspar,<br>clay | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca. A few sulphide blebs<br>present along chloritized fracture planes. Also with<br>stringer chlorite and clay alterations. |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour   | Size | Structure | Alteration                 | Comments                                                                                                                                                                                                                                                                                       |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|----------|------|-----------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 353.21      | 354.21    | D-1155        | 1 .00        | <1   | 85 | 15 |     |    | 3   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar,<br>clay | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca. A few sulphide<br>stringers and blebs mainly seen in epidote veins of<br>up to 3 cm at about 60°ca (<1%). |
| 354.21      | 355.31    | D-1156        | 1.1 0        | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar,<br>clay | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca.                                                                                                           |
| 355.31      | 356.41    | D-1157        | 1.10         | <1   | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar,<br>clay | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca. Sulphide stringers and<br>blebs can be seen in an epidote vein of up to 40mm<br>at about 40°ca (1%).      |
| 356.41      | 357.51    | D-1158        | 1.10         | <1   | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar,<br>clay | Diorite with strong epidote alteration and moderate<br>potassic and chlorite alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. Chlorite veins of 2-<br>5mm at 40-60°ca. Sulphide stringers and blebs can<br>be seen in an epidote vein of up to 40mm at about<br>40°ca (1%).      |
| 357.51      | 358.61    | D-1159        | 1.10         | <1   | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar,<br>clay | Diorite with strong epidote alteration and moderate<br>potassic and chlorite alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. Chlorite veins of 2-<br>5mm at 40-60°ca. Sulphide stringers and blebs can<br>be seen in an epidote vein of up to 40mm at about<br>40°ca (1%).      |
| 358.61      | 359.61    | D-1160        | 1.00         | <1   | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar,<br>clay | Diorite with strong epidote alteration and moderate<br>potassic and chlorite alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. Chlorite veins of 2-<br>5mm at 40-60°ca. Sulphide stringers and blebs can<br>be seen in an epidote vein of up to 40mm at about<br>40°ca (1%).      |

I

Т

1

1

1

i i

| From   | To<br>(m)      | Sample<br>No. | Width<br>(m) | Sulp      | ру | ср | gal | po | mag | qtz | Lithology | Colour   | Size | Structure | Alteration                 | Comments                                                                                                                                                                                                                                                                                         |
|--------|----------------|---------------|--------------|-----------|----|----|-----|----|-----|-----|-----------|----------|------|-----------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (m)    | <u>  (iii)</u> | <u>no.</u>    | (11)         | L         |    | I  |     |    |     |     |           |          |      | 1         |                            |                                                                                                                                                                                                                                                                                                  |
| 359.61 | 360.71         | D-1161        | 1.10         | <1        | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar,<br>clay | Diorite with strong epidote alteration and moderate<br>potassic and chlorite alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. Chlorite veins of 2-<br>5mm at 40-60°ca. Sulphide stringers and blebs can<br>be seen in an epidote vein of up to 40mm at about<br>40°ca (1%).        |
| 360.71 | 361.84         | D-1162        | 1.13         | <1        | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>clay,<br>kspar | Diorite with strong epidote alterations and<br>moderate clay, potassic, and chlorite alterations.<br>Quartz carbonate veinlets of 1-8mm at 5-85°ca.<br>Chlorite veins of 2-5mm at 40-60°ca. Sulphide<br>stringers and blebs can be seen in an epidote vein<br>of up to 40mm at about 40°ca (1%). |
| 361.84 | 362.84         | D-1163        | 1 .00        | <1        | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar          | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca. Sulphide stringers and<br>blebs can be seen in an epidote vein of up to 40mm<br>at about 40°ca (1%).        |
| 362.84 | 363.84         | D-1164        | 1.00         | <1        | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar          | Diorite with strong epidote alterations and<br>moderate potassic and chlorite alterations. Quartz<br>carbonate veinlets of 1-8mm at 5-85°ca. Chlorite<br>veins of 2-5mm at 40-60°ca. Sulphide stringers and<br>blebs can be seen in an epidote vein of up to 40mm<br>at about 40°ca (1%).        |
| 363.84 | 364.84         | D-1165        | 1 .00        | trac<br>e | 90 | 10 |     |    | 5   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-8mm at 30-60°ca. Trace<br>sulphides present along fracture planes with<br>chlorite alteration.                 |
| 364.84 | 368.75         |               | 3.91         | trac<br>e | 90 | 10 |     |    | 5   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-8mm at 30-60°ca. Trace<br>sulphides present along fracture planes with<br>chlorite alteration.                 |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour   | Size | Structure | Alteration        | Comments                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|----------|------|-----------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 368.75      | 369.75    | D-1166        | 1.00         | <1   | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca, with<br>sulphide stringers and blebs (1%).                                                                                                                                |
| 369.75      | 370.80    | D-1167        | 1.05         | <1   | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca, with<br>sulphide stringers and blebs (1%).                                                                                                                                |
| 370.80      | 371.80    | D-1168        | 1.00         | <1   | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca, with<br>sulphide stringers and blebs (1%).                                                                                                                                |
| 371.80      | 372.80    | D-1169        | 1 .00        | <1   | 75 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca, with<br>sulphide stringers and blebs (1%).                                                                                                                                |
| 372.80      | 373.90    | D-1170        | 1.1 0        | <1   | 75 | 20 |     | 5  | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca, with<br>sulphide stringers and blebs (1%).                                                                                                                                |
| 373.90      | 374.90    | D-1171        | 1 .00        | 1    | 85 | 15 |     |    | 10  | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca. Strong mag<br>flooding in a zone of about 20cm at 45°ca.Mag<br>crystals up to several cm. Disseminated sulphides,<br>sulphide stringers and blebs seen in this zone (2%). |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Suip | ру | ср | gal | ро | mag | qtz | Lithology | Colour   | Size | Structure | Alteration            | Comments                                                                                                                                                                                                                                                                                                              |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|----------|------|-----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 374.90      | 375.90    | D-1172        | 1.00         | <1   | 85 | 15 |     |    | 10  | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar     | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca. Strong mag<br>flooding in a zone of about 20cm at 45°ca.Mag<br>crystals up to several cm. Sulphides seen but <2%. |
| 375.90      | 376.90    | D-1173        | 1.00         | <1   | 75 | 20 |     | 5  | 4   | 1   | diorite   | mid grey | mg   | fractured | chł,epi,<br>kspar     | Relatively fresh diorite with strong epidote<br>alteraion, moderate chlorite and potassic<br>alterations. Quartz carbonate veinlets of 1-8mm at<br>5-85°ca. A few chlorite and epidote veins of 3-<br>15mm at 30-60°ca, contain sulphide stringers and<br>blebs. Weak mag.                                            |
| 376.90      | 377.90    | D-1174        | 1 .00        | <1   | 75 | 20 |     | 5  | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,epi,<br>kspar     | Relatively fresh diorite with strong epidote<br>alteraion, moderate chlorite and potassic<br>alterations. Quartz carbonate veinlets of 1-8mm at<br>5-85°ca. A few chlorite and epidote veins of 3-<br>15mm at 30-60°ca, containing sulphide stringers<br>and blebs. Weak mag.                                         |
| 377.90      | 378.90    | D-1175        | 1.00         | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.                                                                                                                   |
| 378.90      | 380.14    | D-1176        | 1.24         | 0    |    |    |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | dyke                  | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca. Also contains<br>a dark grey volcanic dyke of 15cm at 70°ca.                                                      |
| 380.14      | 381.14    | D-1177        | 1.00         | <1   | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.                                                                                                                   |
| 381.14      | 382.14    | D-1178        | 1.00         | 1    | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.                                                                                                                   |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gai | ро | mag | qtz | Lithology | Colour   | Size | Structure | Alteration                    | Comments                                                                                                                                                                                                                                                                                 |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|----------|------|-----------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 382.14      | 383.24    | D-1179        | 1.00         | 1    | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi         | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.                                                                                      |
| 383.24      | 384.24    | D-1180        | 1 .00        | 1    | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi         | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.                                                                                      |
| 384.24      | 385.24    | D-1181        | 1.00         | 1    | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi         | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.                                                                                      |
| 385.24      | 386.24    | D-1182        | 1 .00        | 1    | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi         | Relatively fresh diorite with moderate chlorite,<br>epidote, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.                                                                                      |
| 386.24      | 387.24    | D-1183        | 1.00.        | 1.5  | 80 | 20 |     |    | 2   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi         | Relatively fresh diorite with strong chlorite, epidote,<br>and potassic alterations. Quartz carbonate veinlets<br>of 1-8mm at 5-85°ca. A few chlorite and epidote<br>veins of 3-15mm at 30-60°ca.                                                                                        |
| 387.24      | 388.24    | D-1184        | 1.00         | 1.5  | 80 | 20 |     |    | 3   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi<br>clay | Relatively fresh diorite with strong chlorite, epidote,<br>clay, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.                                                                                  |
| 388.24      | 389.34    | D-1185        | 1 .00        | 1.5  | 80 | 20 |     |    | 3   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi<br>clay | Relatively fresh diorite with strong chlorite, epidote,<br>clay, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.                                                                                  |
| 389.34      | 390.34    | D-1186        | 1.1 0        | 2    | 80 | 20 |     |    | 10  | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi<br>clay | Relatively fresh diorite with strong chlorite, epidote,<br>clay, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca. Has a zone<br>of 15cm at 40°ca which contains massive mag and<br>sulphide blebs. |

ŝ.

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour   | Size | Structure | Alteration                     | Comments                                                                                                                                                                                                             |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|----------|------|-----------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 390.34      | 391.34    | D-1187        | 1.00         | 1    | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chi,<br>kspar,<br>epi<br>clay  | Relatively fresh diorite with strong chlorite, epidote,<br>clay, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.              |
| 391.34      | 392.44    | D-1188        | 1.10         | 1    | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi<br>clay  | Relatively fresh diorite with strong chlorite, epidote,<br>clay, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.              |
| 392.44      | 393.34    | D-1189        | 1.1 0        | 1    | 80 | 20 |     |    | 4   | *** | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi<br>clay  | Relatively fresh diorite with strong chlorite, epidote,<br>clay, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.              |
| 393.34      | 394.64    | D-1190        | 1.1 0        | 1    | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi<br>clay  | Relatively fresh diorite with strong chlorite, epidote,<br>clay, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.              |
| 394.64      | 395.64    | D-1191        | 1.00         | 1    | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi<br>clay  | Relatively fresh diorite with strong chlorite, epidote,<br>clay, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.              |
| 395.64      | 396.64    | D-1192        | 1.00         | 1    | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi<br>clay  | Relatively fresh diorite with strong chlorite, epidote,<br>clay, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.              |
| 396.64      | 397.64    | D-1193        | 1 .00        | 1    | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi,<br>clay | Relatively fresh diorite with strong chlorite, epidote,<br>clay, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca.              |
| 397.64      | 398.37    | D-1194        | 0.70         | 1    | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl,<br>kspar,<br>epi,<br>clay | Relatively fresh diorite with strong chlorite, epidote,<br>clay, and potassic alterations. Quartz carbonate<br>veinlets of 1-8mm at 5-85°ca. A few chlorite and<br>epidote veins of 3-15mm at 30-60°ca. End of Hole. |
| 398.37      |           |               |              |      |    |    |     |    |     |     |           |          |      |           |                                | ЕОН                                                                                                                                                                                                                  |

.

## **Diamond Drill Log**

Drill Hole No: EA-96-03

Logged By: Simon X. Fan

**Date:** September 23-27, 1996

Easting: Northing: Elevation: 39+00E 12+00N 1392m a.s.l. Azimuth:042°Inclination:-45°Total Depth:300.84mCore Size:NQ-2

1

Т

I

1

1

T

1

## Survey Type: Tropari

| depth   | az.  | dip  |
|---------|------|------|
| Collar: | 042° | -45° |
| 99.67m  | 041° | -44° |
| 200.25m | 020° | -46° |
| 300.84m | 040° | -46° |

|      | <b>T</b> |        | 147.444 | l oute |    |    |     |    |     | - 4 | 1 Mb ala av | 0      | 0:   | Charles   | A 14 4     | Commente |
|------|----------|--------|---------|--------|----|----|-----|----|-----|-----|-------------|--------|------|-----------|------------|----------|
| From | То       | Sample | Width   | Sulp   | ру | ср | gai | po | mag | qtz | Lithology   | Colour | Size | Structure | Alteration | Comments |
| /m>  | /ma\     | No     | (m)     | 1      |    |    | -   |    |     | •   |             |        |      |           |            |          |
| (m)  | (m)      | NO.    | (m)     | 1      |    |    | F 1 |    | 1 1 |     |             |        |      |           |            |          |

| DDH: EA- | 96-03 |        |       |    |    |    |   |   |   |                                  |                   |      |                           |                            |                                                                                                                                                                                                                                                                                               |
|----------|-------|--------|-------|----|----|----|---|---|---|----------------------------------|-------------------|------|---------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.00     | 32.00 |        | 32.00 |    |    |    |   |   |   |                                  |                   |      |                           |                            | Casing                                                                                                                                                                                                                                                                                        |
| 32.00    | 43.67 |        | 11.67 | 0  |    |    |   | 5 | 1 | diorite                          | mid grey          | mg   | fractured                 | chl,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca.                                                                                                  |
| 43.67    | 44.67 | D-1195 | 1.00  | <1 | 80 | 15 | 5 | 5 | 1 | diorite                          | mid grey          | mg   | fractured                 | chl,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Sulphide blebs visible<br>in chlorite veinlets and fracture planes with chloritie<br>alteration. |
| 44.67    | 49.06 |        | 4.37  | 0  |    |    |   | 5 | 1 | diorite                          | mid grey          | mg   | fractured                 | chl,epi,<br>kspar          | Relatively fresh diorite with moderate chlorite<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca.                                                                                                  |
| 49.06    | 50.06 | D-1196 | 1.00  | 0  |    |    |   | 5 | 1 | diorite                          | mid to lt<br>grey | mg   | fractured                 | chl,clay,<br>epi,<br>kspar | Relatively fresh diorite with moderate clay, chlorite<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca.                                                                                            |
| 50.06    | 51.06 | D-1197 | 1.00  | 0  |    |    |   | 2 |   | diorite<br>&<br>chlorite<br>rock | mid to lt<br>grey | m-cg | fractured &<br>brecciated |                            | Recemented breccia at about 20°ca. Relatively frest<br>diorite seen only in the first half of the section (1/2<br>diorite, 2/3 breccia). Quartz carbonate veinlets of 1<br>8mm of 10-80°ca present in both rock types.                                                                        |
| 51.06    | 53.23 |        | 2.17  | 0  |    |    |   | 4 | 5 |                                  | lt to mid<br>grey | mg   | brecciated<br>& fractured | clay,chl,<br>kspar         | The first half of the core is recemented breccia with<br>clay alteration; the second half is relatively fresh<br>diorite with chlorite and potassic alterations.                                                                                                                              |
| 53.23    | 54.23 | D-1198 | 1.00  | <1 | 80 | 20 |   | 4 | 1 | diorite                          | mid grey          | mg   | fractured                 | clay, chl,<br>kspar        | Recemented breccia at about 20°ca. Relatively fresh<br>diorite seen only in the first half of the section (1/2<br>diorite, 2/3 breccia). Quartz carbonate veinlets of 1<br>8mm of 10-80°ca present in both rocks. Trace<br>disseminated sulphides ( $< 1\%$ ).                                |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | Ср | gal | ро | mag | qtz | Lithology | Colour   | Size | Structure | Alteration          | Comments                                                                                                                                                                                                                                                                                                                                       |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|----------|------|-----------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 54.23       | 55.23     | D-1199        | 1.00         | <1   | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | kspar,clay,<br>chl  | Recemented breccia at about 20°ca. Relatively fresh diorite seen only in the first half of the section (1/3 diorite, 2/3 breccia). Quartz carbonate veinlets of 1-8mm of 10-80°ca present in both rocks. Trace disseminated sulphides ( $<$ 1%). Also with a few zones of strongly K-altered rock (or syenite dyke?) of 3-20 cm at 45-65°ca.   |
| 55.23       | 56.23     | D-1200        | 1.00         | <1   | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | kspar,<br>clay, chl | Recemented breccia at about 20°ca. Relatively fresh diorite seen only in the first half of the section (1/3 diorite, 2/3 breccia). Quartz carbonate veinlets of 1-8mm of 10-80°ca present in both rocks. Trace disseminated sulphides ( $< 1\%$ ). Also with a few zones of strongly K-altered rock (or syenite dyke?) of 3-20 cm at 45-65°ca. |
| 56.23       | 60.04     |               | 3.81         | <1   | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | kspar,<br>clay, chl | Recemented breccia at about 20°ca. Relatively fresh diorite seen only in the first half of the section (1/3 diorite, 2/3 breccia). Quartz carbonate veinlets of 1-8mm of 10-80°ca present in both rocks. Trace disseminated sulphides ( $<$ 1%). Also with a few zones of strongly K-altered rock (or syenite dyke?) of 3-20 cm at 45-65°ca.   |
| 60.04       | 61.04     | D-1201        | 1.00         | <1   | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured |                     | Recemented breccia at about 20°ca. Relatively fresh diorite seen only in the first half of the section (1/3 diorite, 2/3 breccia). Quartz carbonate veinlets of 1-8mm of 10-80°ca present in both rocks. Trace disseminated sulphides (< 1%). Also with a few zones of strongly K-altered rock (or syenite dyke?) of 3-20 cm at 45-65°ca.      |
| 61.04       | 62.04     | D-1202        | 1.00         | <1   | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl                 | Recemented breccia at about 20°ca. Relatively fresh diorite seen only in the first half of the section (1/3 diorite, 2/3 breccia). Quartz carbonate veinlets of 1-8mm of 10-80°ca present in both rocks. Trace disseminated sulphides ( $<$ 1%). Also with a few zones of strongly K-altered rock (or syenite dyke?) of 3-20 cm at 45-65°ca.   |

,

1

:

. . . . . . . .

| From<br>(m) | То<br>(m) | Sample<br>No. | Width<br>(m) | Sulp  | РУ | ср | gal | ро | mag | qtz | Lithology | Colour   | Size | Structure | Alteration | Comments                                                                                                                                                                                                                                                                                                                            |
|-------------|-----------|---------------|--------------|-------|----|----|-----|----|-----|-----|-----------|----------|------|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 62.04       | 63.04     | D-1203        | 1.00         | <1    | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | clay,chl   | Recemented breccia at about 20°ca. Relatively fresh diorite seen only in the first half of the section (1/3 diorite, 2/3 breccia). Quartz carbonate veinlets of 1-8mm of 10-80°ca present in both rocks. Trace disseminated sulphides ( $< 1\%$ ).                                                                                  |
| 63.04       | 94.27     |               | 31.23        | trace | 80 | 20 |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | clay,chi   | Recemented breccia at about 20°ca. Moderate clay<br>alteration in some areas of the sample. Relatively<br>fresh diorite seen only in the first half of the section<br>(1/3 diorite, 2/3 breccia). Quartz carbonate veinlets of<br>1-8mm of 10-80°ca present in both rocks. Trace<br>disseminated sulphides (< 1%).                  |
| 94.27       | 95.27     | D-1204        | 1.00         | 0     |    |    |     |    | 4   | 1   | diorite   | mid grey | mg   | fractured | chl        | Recemented breccia at about 20°ca. Relatively fresh<br>broken diorite seen only in the first half of the section<br>(1/3 diorite, 2/3 breccia). Quartz carbonate veinlets of<br>1-8mm of 10-80°ca present in both rocks. Trace<br>disseminated sulphides ( $< 1\%$ ).                                                               |
| 95.27       | 128.10    |               | 34.88        | 0     |    |    |     |    | 5   | 1   | diorite   | mid grey | mg   | fractured | chl        | Recemented breccia at about 20°ca. Relatively fresh<br>broken diorite seen only in the first half of the<br>section. 1/3 diorite, 2/3 breccia). Quartz carbonate<br>veinlets of 1-8mm of 10-80°ca present in both rocks.<br>Trace disseminated sulphides ( $< 1\%$ ).                                                               |
| 128.10      | 129.10    | D-1205        | 1,00         | 0     |    |    |     |    | 5   | 1   | diorite   | mid grey | mg   | fractured | dyke       | Recemented breccia at about 20°ca. Relatively fresh<br>broken diorite seen only in the first half of the section<br>(1/3 diorite, 2/3 breccia). Quartz carbonate veinlets of<br>1-8mm of 10-80°ca present in both rocks. Trace<br>disseminated sulphides ( $<$ 1%). Also contains a<br>fine-grained volcanic dyke of 5 cm at 45°ca. |
| 129.10      | 130.10    | D-1206        | 1.00         | 0     |    |    |     |    | 5   | 1   | diorite   | mid grey | mg   | fractured | chl        | Recemented breccia at about 20°ca. Relatively fresh<br>broken diorite seen only in the first half of the section<br>(1/3 diorite, 2/3 breccia). Quartz carbonate veinlets of<br>1-8mm of 10-80°ca present in both rocks. Trace<br>disseminated sulphides (< 1%).                                                                    |

k

.

h

| From<br>(m) | Ta<br>(m) | Sample<br>No. | Width<br>(m) | Sulp  | ру | ср | gal | po | mag | qtz | Lithology     | Colour            | Size | Structure                 | Alteration       | Comments                                                                                                                                                                                                                                                                                                       |
|-------------|-----------|---------------|--------------|-------|----|----|-----|----|-----|-----|---------------|-------------------|------|---------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 130.10      | 130.80    |               | 0.70         | 0     |    |    |     |    | 5   | 1   | diorite       | mid grey          | mg   | fractured                 | chl              | Recemented breccia at about 20°ca. Relatively fresh<br>broken diorite seen only in the first half of the section<br>(1/3 diorite, 2/3 breccia). Quartz carbonate veinlets of<br>1-8mm of 10-80°ca present in both rocks. Trace<br>disseminated sulphides (< 1%).                                               |
| 130.80      | 131.65    | D-1207        | 0.85         | trace | 80 | 20 |     |    | 2   | 1   | mafic<br>dyke | dk grey           | fg   | fractured                 | chl, epi         | Volcanic rock with chlorite and epidote alterations.<br>Quartz carbonate veinlets of 1-4mm at 15-65°ca.<br>Trace sulphides in an epidote vein of 2mm at 45°ca.                                                                                                                                                 |
| 131.65      | 134.52    |               | 2.87         | 0     |    |    |     |    | 4   | 1   | diorite       | mid grey          | mg   | fractured                 | chl, epi         | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca.                                                                                                                  |
| 134.52      | 135.52    | D-1208        | 1 .00        | 0     |    |    |     |    | 5   | 2   |               | lt to mid<br>grey | mg   | brecciated<br>& fractured | chl,clay,<br>epi | Brecciated diorite with chlorite, clay, and epidote alterations. Quartz carboate veinlets of 1-15mm at 15-75°ca. Chlorite veins of 3-10mm at 30-60°ca.                                                                                                                                                         |
| 135.52      | 138.29    |               | 3.77         | 0     |    |    |     |    | 7.5 | 1   | diorite       | mid grey          | mg   | fractured                 | chl,epi          | Fresh diorite with moderate chlorite and epidote alterations.                                                                                                                                                                                                                                                  |
| 138.29      | 139.29    | D-1209        | 1.00         | <1    | 75 | 20 |     | 5  | 7.5 | 1   | diorite       | mid grey          | mg   | fractured                 |                  | Fresh diorite with moderate chlorite and epidote<br>alterations. Also contains a 30mm syenite dyke (or a<br>strong potassic-altered zone) with quartz carbonate<br>veins of 8mm inside the dyke. A few sulphide blebs<br>are present along the contact of the dyke or the<br>carbonate quartz veins.           |
| 139.29      | 140.48    |               | 1.19         | 0     |    |    |     |    | 7.5 | 1   | diorite       | mid grey          | mg   | fractured                 |                  | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca.                                                                                                                  |
| 140.48      | 141.48    | D-1210        | 1.00         | <1    | 80 | 20 |     |    | 7.5 | 1   | diorite       | mid grey          | mg   | fractured                 |                  | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Also has weak potassic<br>alteration and trace sulphides visible on fracture<br>planes with chlorite alteration. |

ĥ

h

÷

| |-||

J

1

1

| | | |

i I I

| From<br>(m) | To<br>(m) | Sample<br>No | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour   | Size | Structure                 | Alteration        | Comments                                                                                                                                                                                                                                                                      |
|-------------|-----------|--------------|--------------|------|----|----|-----|----|-----|-----|-----------|----------|------|---------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 141.48      | 145.24    |              | 3.76         | 0    |    |    |     |    | 7.5 | 1   | diorite   | mid grey | mg   | fractured                 | chl, epi          | Relatively fresh diorite with moderate chlorite<br>epidote and weak potassic alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-85°ca. Chlorite<br>and epidote veins of 2-15mm at 30-60°ca.                                                                             |
| 145.24      | 146.24    | D-1211       | 1.00         | 0    |    | -  |     |    | 5   | 1   | diorite   | mid grey | mg   | fractured                 | chl,clay,<br>epi  | Relatively fresh diorite with moderate clay, chlorite,<br>epidote and weak potassic alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-85°ca. Chlorite<br>and epidote veins of 2-15mm at 30-60°ca.                                                                      |
| 146.24      | 155.36    |              | 9.12         | 0    |    |    |     |    | 5   | 1   | diorite   | mid grey | mg   | fractured                 | chl, clay,<br>epi | Relatively fresh diorite with moderate clay, chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Also has potassic<br>alteration near the end of the section (about 25cm). |
| 155.36      | 156.36    | D-1212       | 1.00         | 0    |    |    |     |    | 5   | 1   | diorite   | mid grey | mg   | fractured                 | chl,clay<br>epi   | Relatively fresh diorite with moderate clay, chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Also has potassic<br>alteration near the end of the section (about 25cm). |
| 156.36      | 163.83    |              | 7.47         | 0    |    |    |     |    | 8   | 1   | diorite   | mid grey | mg   | fractured                 | chl,<br>kspar,epi | Relatively fresh diorite with chlorite, potassic,<br>epidote, and minor clay alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-75°ca. Chlorite and k<br>feldspar veins of 2-10mm at 35-65°ca.                                                                          |
| 163.83      | 164.83    | D-1213       | 1.00         | 0    |    |    |     |    | 5   | 1   | diorite   | mid grey | mg   | fractured                 | chl,<br>kspar,epi | Relatively fresh diorite with chlorite, potassic,<br>epidote, and minor clay alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-75°ca. Chlorite vein of 2-<br>10mm at 35-65°ca. K-feldspar vein of 15cm at 85°ca                                                        |
| 164.83      | 168.20    |              | 3.37         | 0    |    |    |     |    | 6   | 1   | diorite   | mid grey | mg   | fractured                 | chl,kspar,<br>epi | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Contains a quartz<br>carbonate vein of up to 10cm at 70°ca.                     |
| 168.20      | 169.20    | D-1214       | 1.00         | 0    |    |    |     |    | 6   | 1   | diorite   | mid grey | mg   | brecciated<br>& fractured | chl,kspar,<br>epi | Relatively fresh diorite with moderate chlorite<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Contains a quartz<br>carbonate vein of up to 10cm at 70°ca.                      |

I

I

i

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour            | Size | Structure                 | Alteration             | Comments                                                                                                                                                                                                                                                  |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|-------------------|------|---------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 169.20      | 172.10    |               | 1.10         | 0    |    |    |     |    | 6   | 1   | diorite   | mid grey          | mg   | brecciated<br>& fractured | chl,kspar,<br>epi      | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Contains a quartz<br>carbonate vein of up to 10cm at 70°ca. |
| 172.10      | 173.10    | D-1215        | 1.00         | <1   | 80 | 20 |     |    | 8   | 1   | diorite   | mid grey          | mg   | fractured                 | chl,kspar,<br>epi      | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Also has a trace of<br>disseminated sulphides(< 1%).        |
| 173.10      | 179.92    |               | 6.82         | 0    |    |    |     |    | 8   | 1   | diorite   | mid grey          | mg   | fractured                 | chl,kspar,<br>epi      | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca.                                                             |
| 179.92      | 180.92    | D-1216        | 1.00         | <1   | 80 | 20 |     |    | 8   | 1   |           | mid to lt<br>grey | mg   | fractured                 | chl,clay,<br>kspar,epi | Relatively fresh diorite with moderate clay, chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Trace of disseminated<br>sulphides.                   |
| 180.92      | 186.05    |               | 5.13         | 0    |    |    |     |    | 8   | 1   | diorite   | mid to lt<br>grey | mg   | fractured                 | chl,clay,<br>kspar,epi | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca.                                                             |
| 186.05      | 187.05    | D-1217        | 1.00         | <1   | 80 | 20 |     |    | 8   | 1   | diorite   | mid to lt<br>grey | mg   | fractured                 | kspar, epi             | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Trace disseminated<br>sulphides present.                    |
| 187.05      | 210.44    |               | 23.39        | 0    |    |    |     |    | 8   | 1   |           | mid to It<br>grey | mg   | fractured                 | kspar,epi              | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca.                                                             |

÷

т i

1

1

1

Τ

T.

1

i

h

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour            | Size | Structure | Alteration               | Comments                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|-------------------|------|-----------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 210.44      | 211.44    | D-1218        | 1 .00        | 0    | 3  |    |     |    | 8   | 2   | diorite   | mid to It<br>grey | mg   | fractured | chl,clay,<br>kspar,epi   | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. A large quartz<br>carbonate vein of 40mm is at 60°ca.                                                                                                                                        |
| 211.44      | 212.44    | D-1219        | 1.00         | 0    |    |    |     |    | 8   | 2   | diorite   | It grey           | mg   | fractured | chl, clay,<br>kspar, epi | Relatively fresh diorite with strong clay alteration and<br>moderate chlorite, epidote and potassic alterations,<br>Quartz carbonate veinlets of 1-10mm at 5-85°ca.<br>Chlorite and epidote veins of 2-15mm at 30-60°ca. A<br>large quartz carbonate vein of 40mm is at 60°ca.                                                                                                             |
| 212.44      | 213.44    | D-1220        | 1.00         | 0    |    |    |     |    | 8   | 2   | diorite   | lt grey           | mg   | fractured | chl,clay,<br>kspar,epi   | Relatively fresh diorite with strong clay alteration and<br>moderate chlorite, epidote and potassic alterations.<br>Quartz carbonate veinlets of 1-10mm at 5-85°ca.<br>Chlorite and epidote veins of 2-15mm at 30-60°ca. A<br>large quartz carbonate vein of 40mm is at 60°ca.                                                                                                             |
| 213.44      | 240.40    |               | 26.96        | 0    |    |    |     |    | 8   | 1   | diorite   | mid grey          | mg   | fractured | dyke                     | Relatively fresh diorite with strong clay alteration and<br>moderate chlorite, epidote and potassic alterations.<br>Quartz carbonate veinlets of 1-10mm at 5-85°ca.<br>Chlorite and epidote veins of 2-15mm at 30-60°ca. A<br>large quartz carbonate vein of 40mm is at 60°ca.<br>Contains a 25-cm dark grey volcanic dyke at 80°ca,<br>and a few syenite dykes of up to 10cm at 45-75°ca. |
| 240.40      | 241.40    | D-1221        | 1.00         | 0    |    |    |     |    | 5   | 1   | diorite   | mid grey          | mg   | fractured | dyke                     | Relatively fresh diorite with strong clay alteration and<br>moderate chlorite, epidote and potassic alterations.<br>Quartz carbonate veinlets of 1-10mm at 5-85°ca.<br>Chlorite and epidote veins of 2-15mm at 30-60°ca. A<br>large quartz carbonate vein of 40mm is at 60°ca.<br>Contains a 25-cm dark grey volcanic dyke at 80°ca.                                                       |
| 241.40      | 243.25    |               | 1.85         | 0    |    |    |     |    | 8   | 1   | diorite   | mid grey          | mg   | fractured |                          | Relatively fresh diorite with strong clay alteration and<br>moderate chlorite, epidote and potassic alterations.<br>Quartz carbonate veinlets of 1-10mm at 5-85°ca.<br>Chlorite and epidote veins of 2-15mm at 30-60°ca. A<br>large quartz carbonate vein of 40mm is at 60°ca.                                                                                                             |

.

----

1

i |

1

i

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp  | ру | ср | gai | ро | mag | qtz | Lithology | Colour                 | Size | Structure   | Alteration             | Comments                                                                                                                                                                                                                                                                                                                                                           |
|-------------|-----------|---------------|--------------|-------|----|----|-----|----|-----|-----|-----------|------------------------|------|-------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 243.25      | 244.25    | D-1222        | 1.00         | 0     |    |    |     |    | 6   | 1   | diorite   | miđ to It<br>grey      | mg   | fractured & | clay,chl,<br>kspar     | Relatively fresh diorite with very strong clay alteration<br>and moderate chlorite, epidote and potassic<br>alterations. Quartz carbonate veinlets of 1-10mm at<br>5-85°ca. Chlorite and epidote veins of 2-15mm at 30-<br>60°ca. A large quartz carbonate vein of 40mm at<br>60°ca.A few dark pinkish clay veins (fault gouge?) of<br>2-5 cm are at 45-60°ca.     |
| 244.25      | 252.62    |               | 8.37         | 0     |    |    |     |    | 6   | 1   | diorite   | mid to lt<br>grey      | mg   | fractured & | clay,chl,<br>kspar     | Relatively fresh diorite with very strong clay alteration<br>and moderate chlorite, epidote and potassic<br>alterations. Quartz carbonate veinlets of 1-10mm at<br>5-85°ca. Chlorite and epidote veins of 2-15mm at 30-<br>60°ca. A large quartz carbonate vein of 40mm at<br>60°ca.                                                                               |
| 252.62      | 253.62    | D-1223        | 1.00         | trace | 80 | 20 |     |    | 6   | 1   | diorite   | mid grey               | mg   | fractured   | clay,chl,<br>kspar     | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Trace disseminated<br>sulphides present in rock and a few sulphide blebs<br>can be seen in a quartz-chlorite vein of about 4 cm at<br>45°ca. Sulphides are $< 1\%$ . |
| 253.62      | 254.62    | D-1224        | 1.00         | 0     |    |    |     |    | 6   | 1   | diorite   | mid grey               | mg   | fractured   | clay,chl,<br>kspar     | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca.                                                                                                                                                                      |
| 254.62      | 261.04    |               | 6.38         | 0     |    |    |     |    | 6   | 1   | diorite   | mid grey               | mg   | fractured   | dyke                   | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Also contains a few<br>syenite dykes of up to 40 mm at 30-60°ca.                                                                                                     |
| 261.04      | 262.04    | D-1225        | 1.00         | 1     | 80 | 15 |     | 5  | 2   |     |           | mid grey,<br>red-brown | mg   | fractured   | kspar,epi,<br>chl,dyke | Diorite with potassic, chlorite, and epidote<br>alterations, containing a dyke of about 30cm at<br>30°ca. Massive sulphides are visible in epidote<br>altered portion of the dyke (2%).                                                                                                                                                                            |

.

1

i

i

i

.

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour                        | Size | Structure | Alteration        | Comments                                                                                                                                                                                                                                                                             |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|-------------------------------|------|-----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 262.04      | 263.04    | D-1226        | 1.00         | <1   | 80 | 15 |     | 5  | 5   | 1   |           | mid grey,<br>red-brown        | mg   | fractured | chl dyke          | Diorite with potassic, chlorite, and epidote<br>alterations, containing a syenite dyke of about 18 cm<br>at 60°ca with sulphides(1%). Also containing a<br>chlorite vein of 50mm at 60°ca without any visible<br>sulphides.                                                          |
| 263.04      | 264.04    | D-1227        | 1.00         | 0    |    |    |     |    | 6   | 1   | diorite   | mid grey                      | mg   | fractured | kspar,epi,<br>chl | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15 mm at 30-60°ca.                                                                                       |
| 264.04      | 271.74    |               | 7.70         | 0    |    |    |     |    | 6   | 1   | diorite   | mid grey                      | mg   | fractured | kspar,epi<br>chl  | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15 mm at 30-60°ca.                                                                                       |
| 271.74      | 272.74    | D-1228        | 1.00         | <1   | 85 | 15 |     |    | 6   | 1   | diorite   | mid grey<br>to brown-<br>grey | mg   | fractured | chi               | Relatively fresh diorite with strong potassic and<br>moderate chlorite and epidote alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-85°ca. Chlorite<br>and epidote veins of 2-15mm at 30-60°ca. Sulphide<br>blebs occur in the chlorite and epidote veins at<br>60°ca (<1%). |
| 272.74      | 273.74    | D-1229        | 1.00         | 0    |    |    |     |    | 6   | 1   |           | mid grey<br>to brown-<br>grey | mg   | fractured | chl               | Relatively fresh diorite with strong potassic alteration<br>and moderate chlorite and epidote alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-85°ca. Chlorite<br>and epidote veins of 2-15mm at 30-60°ca.                                                                   |
| 273.74      | 274.74    | D-1230        | 1.00         | 0    |    |    |     |    | 6   | 1   |           | mid grey<br>to brown-<br>grey | mg   | fractured | chl               | Relatively fresh diorite with strong potassic alteration<br>and moderate chlorite and epidote alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-85°ca. Chlorite<br>and epidote veins of 2-15mm at 30-60°ca.                                                                   |
| 274.74      | 275.74    | D-1231        | 1.00         | <1   | 85 | 15 |     |    | 6   | 1   |           | mid grey<br>to brown-<br>grey | mg   | fractured |                   | Relatively fresh diorite with strong potassic alteration<br>and moderate chlorite and epidote alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-85°ca. Chlorite<br>and epidote veins of 2-15mm at 30-60°ca. Trace<br>disseminated sulphides (< 1%).                           |

Ê

•

1

1 ; 1

:

1

1

i.

| | |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp  | ру | ср | gai | ро | mag | qtz | Lithology | Colour                        | Size | Structure | Alteration        | Comments                                                                                                                                                                                                                                                              |
|-------------|-----------|---------------|--------------|-------|----|----|-----|----|-----|-----|-----------|-------------------------------|------|-----------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 275.74      | 277.60    |               | 1.86         | <1    | 85 | 15 |     |    | 6   | 1   | diorite   | mid grey                      | mg   | fractured | kspar,epi,<br>chl | Relatively fresh diorite with strong potassic alteration<br>and moderate chlorite and epidote alterations. Quarta<br>carbonate veinlets of 1-10mm at 5-85°ca. Chlorite<br>and epidote veins of 2-15mm at 30-60°ca. Trace<br>disseminated sulphides ( $< 1\%$ ).       |
| 277.60      | 278.60    | D-1232        | 1.00         | <1    | 85 | 15 |     |    | 6   | 1   | diorite   | mid grey                      | mg   | fractured | kspar,epi,<br>chl | Relatively fresh diorite with strong potassic alteration<br>and moderate chlorite and epidote alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-85°ca. Chlorite<br>and epidote veins of 2-15mm at 30-60°ca. Trace<br>disseminated sulphides ( $< 1\%$ ).       |
| 278.60      | 279.60    | D-1233        | 1.00         | 0     |    |    |     |    | 6   | 1   | diorite   | mid grey                      | mg   | fractured | kspar,epi,<br>chl | Relatively fresh diorite with strong potassic alteration<br>and moderate chlorite and epidote alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-85°ca. Chlorite<br>and epidote veins of 2-15 mm at 30-60°ca.                                                   |
| 279.60      | 280.60    | D-1234        | 1.00         | <1    | 90 | 10 |     |    | 6   | 1   |           | mid grey<br>to brown-<br>grey | mg   | fractured | kspar,epi,<br>chi | Relatively fresh diorite with strong potassic alteration<br>and moderate chlorite and epidote alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-85°ca. Chlorite<br>and epidote veins of 2-15mm at 30-60°ca<br>Disseminated sulphides and sulphide blebs(<1%).  |
| 280.60      | 281.60    | D-1235        | 1.00         | <1    | 90 | 10 |     |    | 6   | 1   |           | mid grey<br>to brown-<br>grey | mg   | fractured | kspar,epi,<br>chl | Relatively fresh diorite with strong potassic alteration<br>and moderate chlorite and epidote alterations. Quartz<br>carbonate veinlets of 1-10mm at 5-85°ca. Chlorite<br>and epidote veins of 2-15 mm at 30-60°ca<br>Disseminated sulphides and sulphide blebs(<1%). |
| 281.60      | 288.57    | -             | 6.97         | 0     |    |    |     |    | 6   | 1   | diorite   | mid grey                      | mg   | fractured | kspar,epi,<br>chl | Relatively fresh diorite with moderate potassic<br>chlorite and epidote alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca.                                                                          |
| 288.57      | 289.57    | D-1236        | 1.00         | trace | 90 | 10 |     |    | 6   | 1   | diorite   | mid grey                      | mg   | fractured | kspar,epi,<br>chl | Relatively fresh diorite with moderate potassic<br>chlorite and epidote alterations. Quartz carbonate<br>veinlets of 1-10mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Trace disseminated<br>sulphides(< < 1%).                                 |

I

i.

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp  | ру | ср | gal | ро | mag | qtz | Lithology | Colour   | Size | Structure | Alteration        | Comments                                                                                                                                                                                                                                                                                                                                      |
|-------------|-----------|---------------|--------------|-------|----|----|-----|----|-----|-----|-----------|----------|------|-----------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 289.57      | 291.37    |               | 1.80         | 0     |    |    |     |    | 6   | 1   | diorite   | mid grey | mg   | fractured | kspar,epi,<br>chl | Relatively fresh diorite with moderate potassic,<br>chlorite and epidote alterations. Quartz carbonate<br>veinlets of 1-10 mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15 mm at 30-60°ca.                                                                                                                                               |
| 291.37      | 292.37    | D-1237        | 1.00         | <1    | 90 | 10 |     |    | 6   | 1   | diorite   | mid grey | mg   | fractured | kspar,epi,<br>chl | Relatively fresh diorite with moderate potassic,<br>chlorite and epidote alterations. Quartz carbonate<br>veinlets of 1-10 mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15 mm at 30-60°ca. Chlorite vein of 5 mm<br>at 60°ca. Massive sulphides visible in this vein.<br>Strong potassic alteration occurs on both sides of the<br>vein. |
| 292.37      | 293.37    | D-1238        | 1.00         | <1    | 90 | 10 |     |    | 6   | 1   | diorite   | mid grey | mg   | fractured | kspar,epi,<br>chl | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10 mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Trace disseminated<br>sulphides (<<1%).                                                                                                        |
| 293.37      | 294.88    |               | 1.51         | trace | 90 | 10 |     |    | 6   | 1   | diorite   | mid grey | mg   | fractured | kspar,epi,<br>chl | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10 mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15mm at 30-60°ca. Trace disseminated<br>sulphides (<<1%).                                                                                                        |
| 294.88      | 295.88    | D-1239        | 1.00         | 0     | 90 | 10 |     |    | 6   | 1   | diorite   | mid grey | mg   | fractured |                   | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10 mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15 mm at 30-60°ca. Trace disseminated<br>sulphides (< < 1%).                                                                                                     |
| 295.88      | 297.16    |               | 1.28         | 0     |    |    |     |    | 6   | 1   | diorite   | mid grey | mg   | fractured | chl               | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10 mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15 mm at 30-60°ca.                                                                                                                                               |
| 297.16      | 298.26    | D-1240        | 1.1 0        | 0     |    |    |     |    | 6   | 1   | diorite   | mid grey | mg   | fractured | cht               | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10 mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15 mm at 30-60°ca.                                                                                                                                               |

i 1 1 - - -

i i j

i

h

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour   | Size | Structure | Alteration | Comments                                                                                                                                                                                                                                      |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|----------|------|-----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 298.26      | 299.36    | D-1241        | 1.10         | <1   | 90 | 10 |     |    | 6   | 1   | diorite   | mid grey | mg   | fractured | chl        | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10 mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15 mm at 30-60°ca. Trace disseminated<br>sulphides.              |
| 299.36      | 300.84    | D-1242        | 1.48         | <1   | 90 | 10 |     |    | 6   | 1   | diorite   | mid grey | mg   | fractured | chl        | Relatively fresh diorite with moderate chlorite,<br>epidote and potassic alterations. Quartz carbonate<br>veinlets of 1-10 mm at 5-85°ca. Chlorite and epidote<br>veins of 2-15 mm at 30-60°ca. Trace disseminated<br>sulphides. End of Hole. |
| 300.84      |           |               |              |      |    |    |     |    |     |     |           | 1        |      |           |            | ЕОН                                                                                                                                                                                                                                           |

ħ.

A.

Ē.

A

R

Ē.

| From | To  | Sample | Width | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour | Size | Structure | Alteration | Comments |
|------|-----|--------|-------|------|----|----|-----|----|-----|-----|-----------|--------|------|-----------|------------|----------|
| (m)  | (m) | No.    | (m)   |      |    |    |     |    |     |     |           |        |      |           |            |          |

i

I

## **Diamond Drill Log**

Drill Hole No: EA-96-04

Logged By: Daniel A. Beauchamp

**Date:** October 1-3, 1996

Easting: Northing: Elevation: 39+00E 12+00N 1392m a.s.l. Azimuth:042°Inclination:-65°Total Depth:349.61mCore Size:NQ-2

1

1

1

T

ī

| Survey Type: | l ropai | -1   |
|--------------|---------|------|
| depth        | az.     | dip  |
| Collar:      | 042°    | -65° |
| 108.81m      | 044°    | -65° |
| 200.25m      | 038°    | -66° |
| 337.41m      | 025°    | -66° |

|      |     |        |       |      |    |    | á.  |     |     |     |           |        |      |           |            |          |
|------|-----|--------|-------|------|----|----|-----|-----|-----|-----|-----------|--------|------|-----------|------------|----------|
| From | То  | Sample | Width | Sulp | py | ср | gal | ро  | mag | qtz | Lithology | Colour | Size | Structure | Alteration | Comments |
| (m)  | (m) | No.    | (m)   |      |    |    |     | l . | Ū   |     | ••        |        |      |           |            |          |

1

T

I

ļ

ļ

| DDH: EA- | 96-04 |        |       |    |     |  |   |    |                |                |    |           |                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|-------|--------|-------|----|-----|--|---|----|----------------|----------------|----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.00     | 30.48 |        | 30.48 |    |     |  |   |    |                |                |    |           | Casing                                                                                                                                                                                                                                                                                                                                                                                                       |
| 30.48    | 39.10 |        | 8.62  | 0  |     |  | 3 | 0  | diorite        | grey green     | mg | fractured | Diorite, Mg, occassional chlorite lined fracture<br>planes. Biotite 1-2%, containing several quartz<br>feldspar veins 1-15cm wide at 45°ca. Relatively fresh<br>rock.                                                                                                                                                                                                                                        |
| 39.10    | 39.20 |        | 0.10  | 0  |     |  | 0 |    | fault<br>gouge | white,<br>grey | mg | faulted   | Fault gouge, quartz chlorite-carbonate.                                                                                                                                                                                                                                                                                                                                                                      |
| 39.20    | 44.70 |        | 5.50  | 0  |     |  | 3 | 0  | diorite        | grey green     | mg | fractured | Diorite, Mg, occassional chlorite lined fracture<br>planes. Biotite 1-2%, containing several quartz<br>feldspar veins 1-15cm wide at 45°ca. Relatively fresh<br>rock.                                                                                                                                                                                                                                        |
| 44.70    | 44.92 |        | 0.22  | 0  |     |  | 0 |    | fault<br>gouge | white,<br>grey | mg | faulted   | Fault gouge:quartz-chlorite carbonate.                                                                                                                                                                                                                                                                                                                                                                       |
| 44.92    | 49.20 |        | 4.28  | 0  |     |  | 3 | 10 | diorite        | white,<br>grey | mg | fractured | Diorite, Mg, occassional chlorite lined fracture<br>planes. Biotite 1-2%, containing several quartz<br>feldspar veins 1-15cm wide at 45°ca. Relatively fresh<br>rock. 10 cm chlorite shear zones at 48.20 and 48.60                                                                                                                                                                                          |
| 49.20    | 50.20 | D-1243 | 1.00  | <1 | 100 |  | 5 | 10 | diorite        | grey,<br>green | mg |           | Diorite, Mg, occassional chlorite lined fracture<br>planes. Biotite 1-2%, containing several quarts<br>feldspar veins 1-15cm wide at 45°ca. Relatively fresh<br>rock. 10 cm chlorite shear zones at 48.20 and 48.60<br>Diorite mg-cg. Chlorite lined fractures, two of which<br>are injected with quartz-carbonate veins 10mm wide<br>at 0-30°ca. Sufides are in or near quartz-carbonate<br>veins in blebs. |
| 50.20    | 52.40 | D-1244 | 2.20  | <1 | 90  |  | 2 | 5  | diorite        | grey,<br>green | mg |           | Diorite, Mg, occassional chlorite lined fracture<br>planes. Biotite 1-2%, containing several quart<br>feldspar veins 1-15cm wide at 45°ca. Relatively fresh<br>rock. Contains quartz carbonate vein 10mm wide a<br>40°ca. Sulphides are disseminated in the diorite as<br>small flecks.                                                                                                                      |

| From<br>(m) | To<br>(m) | Sampie<br>No. | Width<br>(m) | Sulp | ру  | ср | gal | ро | mag | qtz | Lithology | Colour                  | Size | Structure            | Alteration | Comments                                                                                                                                                                                                                                                                                      |
|-------------|-----------|---------------|--------------|------|-----|----|-----|----|-----|-----|-----------|-------------------------|------|----------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 52.40       | 55.40     |               | 3.00         | 0    |     |    |     |    | 3   | 5   |           | grey,<br>green          | mg   |                      |            | Diorite, Mg, occassional chlorite lined fracture<br>planes. Biotite 1-2%, containing several quartz<br>feldspar veins 1-15cm wide at 45°ca. Relatively fresh<br>rock. Contains 1-2mm wide quartz carbonate veins<br>from 53.00-55.20.                                                         |
| 55.40       | 56.40     | D-1245        | 1.00         | <1   | 90  | 10 |     |    | 3   | 5   | diorite   | grey green              | mg   |                      |            | Diorite, Mg, occassional chlorite lined fracture<br>planes. Biotite 1-2%, containing several quartz<br>feldspar veins 1-15cm wide at 45°ca. Relatively fresh<br>rock. Contains a few quartz carbonate veins 5mm<br>wide which have py and cp as small blebs 1-2mm<br>long.                    |
| 56.40       | 57.40     | D-1246        | 1.00         | <1   | 80  | 20 |     |    | 1   | 5   |           | grey,<br>green,<br>pink |      | moderate<br>shearing |            | Diorite, Mg, occassional chlorite lined fracture<br>planes. Biotite 1-2%, containing several quartz<br>feldspar veins 1-15cm wide at 45°ca. Relatively fresh<br>rock, moderately sheared and contains py and cp in<br>quartz-carbonate veins which are in chlorite shear<br>zones 3-6mm wide. |
| 57.40       | 63.60     |               | 6.20         | 0    |     |    |     | -  | 2   | 10  |           | grey,<br>green,<br>pink | mg   |                      | kspar,epi  | Diorite containing quartz-carbonate veinlets 1-3mm<br>wide at various angles to core. Diorite has minor<br>potassic alteration and has been injected with quartz<br>feldspar in veins up to 10 cm wide. Minor epidote<br>alteration in bands 2-10cm wide.                                     |
| 63.60       | 64.60     | D-1247        | 1.00         | <1   | 100 |    |     |    | 3   | 5   | diorite   | grey, grren<br>(pink)   | mg   |                      | kspar      | Diorite:relatively fresh containing pink quartz-feldspar<br>veins and quartz carbonate veins 3-10mm wide.<br>Sulphides are as blebs in quartz-carbonate veins.                                                                                                                                |
| 64.60       | 76.80     |               | 12.20        | 0    |     |    |     |    | 3   | 3   |           | grey,<br>green          | mg   |                      |            | Diorite: fresh, slightly fractured, relatively<br>homogeneous except for a few quartz rich sections up<br>to 15cm wide. Only alteration is biotite and<br>saussuritization of feldspar. Minor chlorite along<br>fracture planes. Carbonate veins 2-25mm from 72.1-<br>73.3 at 70°ca.          |

1

÷

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology       | Colour                    | Size | Structure | Alteration | Comments                                                                                                                                                                                                                                                                                           |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------------|---------------------------|------|-----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 76.80       | 82.60     |               | 5.80         | 0    |    |    |     |    | 3   | 8   | diorite         | grey,<br>green,<br>orange | mg   |           |            | Diorite, fresh, slightly fractured, relatively<br>homogeneous except for a few quartz rich sections up<br>to 15cm wide. Only alteration is biotite and<br>saussuritization of feldspar. Minor chlorite along<br>fracture planes. Contains orange red quartz feldspa<br>veins 1-15cm wide at 40°ca. |
| 82.60       | 87.10     |               | 4.50         | 0    |    |    |     |    | 2   | 5   | diorite         | grey,<br>green,<br>orange | mg   | fractured |            | Diorite with slight potassic alteration throughout<br>Chlorite along fractures.                                                                                                                                                                                                                    |
| 87.10       | 88.10     | D-1248        | 1.00         | <1   | 50 | 50 |     |    | 3   | 10  | diorite         | grey,<br>green            | mg   |           |            | Potassic altered diorite with quartz-fedIspar veining<br>Sulphides occur as 1-2mm blebs along chlorite shea<br>zones about 10mm wide at 45°ca.                                                                                                                                                     |
| 88.10       | 90.75     |               | 2.65         | 0    |    |    |     |    | 3   | 5   | diorite         | grey,<br>green            | mg   | fractured |            | Diorite, minor potassic alteration in bands 2-6cm a<br>45°ca. Chlorite along fracture planes. Rock i<br>relatively more fractured.                                                                                                                                                                 |
| 90.75       | 91.10     |               | 0.35         | 0    |    |    |     |    | 1   | 15  | diorite         | white,<br>green           | mg   | breccia   |            | Brecciated diorite                                                                                                                                                                                                                                                                                 |
| 91.10       | 91.90     |               | 0.80         | 0    |    |    |     |    | 3   | 3   | diorite         | grey,<br>green            | mg   |           |            | Diorite                                                                                                                                                                                                                                                                                            |
| 91.90       | 93.00     | D-1249        | 1.10         | <1   |    |    | 10  |    | 0   |     | qtz-fsp<br>vein | light<br>orange to<br>red | fg   |           | clay       | Quartz-feldspar vein; fine-grained, minor ?clay<br>alteration. Minor galena?                                                                                                                                                                                                                       |
| 93.00       | 99.30     |               | 6.30         | 0    |    |    |     |    | 3   | 2   | diorite         | grey,<br>green            | mg   | sheared   |            | Diorite slightly sheared over most of the section.                                                                                                                                                                                                                                                 |
| 99.30       | 99.50     | -             | 0.20         | 0    |    |    |     |    | 0   | 60  | qtz-fsp<br>vein | light pink                | fg   |           |            | Quartz feldspar vein, f.g. minor ?clay? alteration<br>Minor galena?                                                                                                                                                                                                                                |
| 99.50       | 124.50    |               | 25.00        | 0    |    |    |     |    | 3   | 2   |                 | grey,<br>green            | mg   |           | kspar      | Diorite: m.g., blocky chlorite-lined fracture zones 30<br>70°ca. Occassional quartz veinlets 1-3mm wide<br>Minor 1-2 carbonate veins 5-20 mm wide.                                                                                                                                                 |
| 124.50      | 128.20    |               | 3.70         | 0    |    |    |     |    | 2   | 5   | diorite         | cream and<br>green        | mg   |           |            | Diorite: m.g., very blocky, all/most fracture plane<br>coated with much chlorite. Minor potassic alteration<br>in rock and along some fracture zones.                                                                                                                                              |
| 128.20      | 132.00    |               | 3.80         | 0    |    |    |     |    | 2   | 5   |                 | grey,<br>green            | mg   |           |            | Fresh diorite, m.g., minor chlorite along fracture planes.                                                                                                                                                                                                                                         |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру  | ср | gai | po | mag | qtz | Lithology | Colour                    | Size | Structure   | Alteration | Comments                                                                                                                                                                    |
|-------------|-----------|---------------|--------------|------|-----|----|-----|----|-----|-----|-----------|---------------------------|------|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 132.00      | 132.80    |               | 0.80         | 0    |     |    |     |    | 3   | 5   | diorite   | grey,<br>green            | mg   |             | kspar,epi  | Diorite with minor potassic alteration; epidote<br>alteration along veinlets. Quartz feldsapr veinlets 2-5<br>mm wide 30-60°ca.                                             |
| 132.80      | 136.80    |               | 4.00         | 0    |     |    |     |    | 5   | 2   | diorite   | green,<br>grey            | mg   | blocky      |            | Diorite: m.g. slightly more mafic than usual, chlorite<br>along fracture planes. Fairly fresh.                                                                              |
| 136.80      | 137.40    |               | 0.60         | 0    |     |    |     |    | 3   | 2   | diorite   | grey,<br>green            | mg   | fault gouge |            | Diorite : sheared and fault gouge, crumbly.                                                                                                                                 |
| 137.40      | 145.00    |               | 7.60         | 0    | -   |    |     |    | 5   | 2   |           | green,<br>grey            | mg   |             |            | Diorite m.g. slightly more mafic than usual, chlorite<br>along fracture planes. Moderately fresh, containing 1<br>5 mm wide white quartz carbonate veinlets.                |
| 145.00      | 145.80    |               | 0.80         | 0    |     |    |     |    | 5   | 2   | diorite   | green                     | mg   |             |            | Diorite with quartz feldspar veins 1-3mm wide.                                                                                                                              |
| 145.80      | 146.80    | D-1250        | 1.00         | <1   | 100 |    |     |    | 4   | 5   | •         | green,<br>orange          | mg   |             | kspar,epi  | Diorite: potassic and epidote alterations containing<br>minor quartz carbonate veinlets 1-5mm wide 30<br>60°ca. Py in diorite, v.f.g.                                       |
| 146.80      | 147.80    | D-1251        | 1.00         | <1   | 100 |    |     |    | 4   | 5   |           | green,<br>orange          | mg   |             |            | Diorite: potassic and epidote alterations containing<br>minor quartz carbonate veinlets 1-5mm wide 30<br>60°ca. Py in diorite, v.f.g.                                       |
| 147.80      | 153.79    |               | 5.99         | 0    |     |    |     |    | 5   | 2   | diorite   | green,<br>grey            | mg   |             | kspar      | Relatively fresh diorite with only 3 quartz felspa veinlets 2mm wide and minor potassic alterations.                                                                        |
| 153.79      | 156.20    |               | 2.41         | 0    |     |    |     |    | 3   | 10  |           | grey,<br>green,<br>orange | mg   |             |            | Diorite: potassic alteration overprinted by epidote<br>alteration throughout most of the section. Quartz and<br>quartz carbonate have been injected in bands 1-8cm<br>wide. |
| 156.20      | 161.00    |               | 4.80         | 0    |     |    |     |    | 3   | 2   |           | grey,<br>green            | mg   |             | kspar      | Diorite relatively fresh with little potassic alteration<br>Chlorite occurs along fracture planes.                                                                          |
| 161.00      | 162.00    | D-1252        | 1.00         | <1   | 100 |    |     |    | 3   | 2   |           | grey,<br>green,<br>orange | mg   |             | kspar      | Diorite: potassic alteration is moderate, especially<br>near one shear zone and one quartz-feldspar?? veir<br>(green and orange, v.f.g), minor py in diorite.               |
| 162.00      | 167.20    |               | 5.20         | 0    |     |    |     |    | 3   | 2   |           | grey,<br>green,<br>orange | mg   |             | kspar      | Diorite: moderate potassic alteration. Diorite is<br>partially sheared throughout. Chlorite lined fracture<br>planes.                                                       |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp  | ру  | ср | gal | ро | mag | qtz | Lithology           | Colour                        | Size | Structure   | Alteration | Comments                                                                                                                                                                                                                                                                         |
|-------------|-----------|---------------|--------------|-------|-----|----|-----|----|-----|-----|---------------------|-------------------------------|------|-------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 167.20      | 169.10    |               | 1.90         | 0     |     |    |     |    | 0   | 10  | diorite             | grey,<br>green,<br>orange     | fg   | sheared     |            | Sheared diorite containing one 20cm wide f.g. orang<br>quartz feldspar vein.                                                                                                                                                                                                     |
| 169.10      | 169.67    |               | 0.57         | 0     |     |    |     |    | 1   | 3   | diorite             | grey,<br>green                | mg   |             | kspar      | Diorite: moderate potassic alteration.                                                                                                                                                                                                                                           |
| 169.67      | 183.65    |               | 13098        | 0     |     |    |     |    | 3   | 3   | diorite             | green                         | mg   |             | kspar      | Diorite: Fresh, with chlorite-lined fractures. Contain<br>2 quartz-calcite veinlets 3-5m wide at 30-45°ca<br>Contains 10 orange-red quartz feldspar veins 1-15cn<br>wide. Very little potassic alteration within 10mm o<br>quartz feldspar veins. Chloritized fracture planes.   |
| 183.65      | 187.95    |               | 4030         | 0     | _   |    |     |    | 0-2 | 10  | diorite             | green                         | mg   |             | clay       | Diorite: clay altered throughout. Some sections up to<br>15cm are sheared to v.f.g. Contains 2 quart<br>carbonate veins 13cm wide at 50°ca. Chloritized<br>fracture planes.                                                                                                      |
| 187.95      | 203.65    |               | 15.70        | 0     |     |    |     |    | 3   | 5   |                     | grey,<br>green                | mg   | shearing    | clay       | Diorite: Fresh looking m.g., grey-green containing<br>very fine grained quartz-fedlspar (orange) veins 5-10<br>mm wide at 20-40°ca. Heavily clay altered an<br>sheared zones at 192.00-192.01(10mm wide) an<br>199.30-199.35. Minor quartz carbonate veining up to<br>5 mm wide. |
| 203.65      | 204.75    |               | 1.10         | 0     |     |    |     |    | 3   | 2   | diorite             | dk green                      | mg   | fault gouge |            | Fault gouge-diorite. Heavily sheared in place:<br>Chlorite throughout.                                                                                                                                                                                                           |
| 204.75      | 205.45    | D-1252        | 0.70         | trace | 100 |    |     |    | 0   | 65  | qtz-fsp<br>vein     | orange,<br>red                | ∨fg  |             |            | Quartz-feldspar vein; very fine grained, possibl sulphides.                                                                                                                                                                                                                      |
| 205.45      | 205.75    |               | 0.30         | 0     |     |    |     |    | 3   | 2   | diorit <del>e</del> | dk green                      | mg   | fault gouge |            | Fault gouge in diorite.                                                                                                                                                                                                                                                          |
| 205.75      | 209.70    |               | 3.95         | 0     |     |    |     |    | 3   | 1   |                     | grey,<br>green                | mg   |             |            | Fresh diorite containing a few quartz carbonate veinlets 2-20mm wide. Somewhat blocky at times.                                                                                                                                                                                  |
| 209.70      | 211.20    |               | 1.50         | 0     |     |    |     |    | 3   | 1   |                     | grey,<br>green                | mg   | fault gouge |            | Fault gouge - broken quartz diorite.                                                                                                                                                                                                                                             |
| 211.20      | 214.00    |               | 2.80         | 0     |     |    |     |    | 3   | 1   |                     | grey,<br>green                | mg   |             |            | Diorite contains very few carbonate veinlets 1-2 mn<br>wide at various angles to core axis. Diorite is fresh.                                                                                                                                                                    |
| 214.00      | 215.00    |               | 1.00         | 0     |     |    |     |    | 0   |     | vein                | orange-<br>red, grn,<br>white | fg   |             |            | Quartz feldspar vein, chlorite shear zone and quart chlorite vein at 10°ca.                                                                                                                                                                                                      |

٠.

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру  | ср | gal | ро | mag | qtz | Lithology | Colour                    | Size      | Structure | Alteration | Comments                                                                                                                                                                                                                           |
|-------------|-----------|---------------|--------------|------|-----|----|-----|----|-----|-----|-----------|---------------------------|-----------|-----------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 215.00      | 221.75    |               | 6.75         | 0    |     |    |     |    | 2   | 10  | diorite   | grey,<br>green,<br>orange | m.g       | sheared   | kspar      | Diorite: sheared throughout and by several events<br>Contains quartz carbonate veinlets 2-20 mm wide<br>throughout. Shear zones are 20-30 mm wide at 30<br>45°ca. Potassic alteration is in zones 1-10 cm thick<br>along the core. |
| 221.75      | 226.75    |               | 5.00         | 0    |     |    |     |    | 2   | 10  | diorite   | grey,<br>green            |           |           |            | Diorite: relatively fresh with frequent quartz<br>carbonate veinlets 1-5 mm wide at 30-45°ca. Shea<br>zone 20 mm wide at 225.40.                                                                                                   |
| 226.75      | 227.65    | D-1253        | 0.90         | <1   | 100 |    |     |    | 3   | 5   | diorite   | grey,<br>green,<br>orange | fg-<br>mg | sheared   | kspar      | Diorite with moderate potassic alteration. Sheared<br>section has no potassic alteration but a few pyrite<br>blebs ~1mm. Rock contains a few quartz-carbonate<br>veinlets 1-3 mm in diametre at 45-60°ca.                          |
| 227.65      | 231.20    |               | 3.55         | 0    |     |    |     |    | 5   | 3   | diorite   | grey,<br>green            | mg        |           |            | Fresh diorite with a few healed chlorite-lined fracture and minor quartz-carbonate veinlets, 1-5 mm wide.                                                                                                                          |
| 231.20      | 233.60    |               | 2.40         | 0    |     |    |     |    | 1   | 3   | diorite   | lt green                  | fg-<br>mg |           | clay       | Clay altered diorite; shearing, quartz veining and chlorite rock over a section of 30cm.                                                                                                                                           |
| 233.60      | 239.50    |               | 5.90         | 0    |     |    |     |    | 3   | 2   |           | grey,<br>green            | mg        |           |            | Relatively fresh diorite with frequent quartz carbonat<br>veinlets 1-5 mm. Minor shearing over 10 mm width<br>in 2-3 locations.                                                                                                    |
| 239.50      | 240.80    | D-1254        | 1.30         | <1   | 100 |    |     |    | 1.5 | 5   |           | grey,<br>green,<br>orange | mg        |           |            | Diorite with potassic alteration throughout in large<br>patches 15-20 cm long. Possible sulphides. There are<br>quartz-carbonate veinlets throughout.                                                                              |
| 240.80      | 241.90    |               | 1.10         | 0    |     |    |     |    | 1   | 5   | diorite   | beige                     | mg        |           | clay       | Clay altered diorite containing several quartz veinlet<br>1-3 mm wide.                                                                                                                                                             |
| 241.90      | 252.45    |               | 10.55        | 0    |     |    |     |    | 5   | 1   |           | grey,<br>green            | mg        |           |            | Fresh diorite with a few slightly bleached sections up<br>to 60 cm wide containing 1-3 mm wide quart<br>veinlets every 10-20 cm from 241.90-247.70<br>Chlorite occurs along fracture planes.                                       |
| 252.45      | 254.10    |               | 1.65         | 0    |     |    |     |    | 0   | 5   | diorite   | lt grey                   | mg        |           | clay       | Diorite with clay-serecite alteration. Every 20 cm<br>shear zones at 30-45°ca are bleached for 1-2 cm ir<br>wallrock and contain fault gouge over 10 mm.                                                                           |
| 254.10      | 259.10    |               | 5.00         | 0    |     |    |     |    | 4   | 2   |           | grey,<br>green            | mg        |           |            | Fresh looking diorite containing a few quartz<br>carbonate veinlets 1-10mm wide at 0-60°ca. Chlorite<br>occurs along fracture planes.                                                                                              |

i 1

i T

1

i i

I

I

| From<br>(m) | <b>To</b><br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру  | ср | gal | ро | mag | qtz | Lithology | Colour                    | Size      | Structure | Alteration | Comments                                                                                                                                                                                                          |
|-------------|------------------|---------------|--------------|------|-----|----|-----|----|-----|-----|-----------|---------------------------|-----------|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 259.10      | 260.50           |               | 1.40         | 0    |     |    |     |    | 4   | 2   | diorite   | grey,<br>green            | mg        |           |            | Highly fractured diorite with a lot of chlorite along fracture planes.                                                                                                                                            |
| 260.50      | 263.48           |               | 2.98         | 0    |     |    |     |    | 4   | 2   | diorite   | grey,<br>green            | mg        |           |            | Highly fractured diorite with a lot of chlorite along fracture planes.                                                                                                                                            |
| 263.48      | 264.60           |               | 1.12         | 0    |     |    |     |    | 2   | 2   | diorite   | grey,<br>green            | mg        |           | kspar      | Diorite with potassic alteration (light).                                                                                                                                                                         |
| 264.60      | 271.35           |               | 6.75         | 0    |     |    |     |    | 4   | 0   | diorite   | grey,<br>green            | mg        |           |            | Fresh diorite containing chlorite along the fracture<br>planes. Very few quartz-carbonate veinlets 1mm<br>wide.                                                                                                   |
| 271.35      | 272.05           | D-1255        | 0.70         | <1   | 100 |    |     |    | 0   | 60  |           | grey,<br>green,<br>orange | fg-<br>mg |           |            | Quartz-feldspar vein. May exhibit "graphic granite'<br>texture. Possible sulphides along shear/fracture<br>planes.                                                                                                |
| 272.05      | 273.21           |               | 1.16         | 0    |     |    |     |    | 4   | 1   |           | grey,<br>green            | mg        |           |            | Fresh diorite containing chlorite along fracture planes.                                                                                                                                                          |
| 273.21      | 273.31           |               | 0.10         | 0    |     |    |     |    | 0   | 60  | diorite   | grey                      | mg        |           |            | Quartz-feldspar vein, may exhibit 'graphi granite'<br>texture. No sulphides.                                                                                                                                      |
| 273.31      | 273.41           | D-1256        | 0.10         | <1   | 100 |    |     |    | 0   | 3   | diorite   | grey                      | mg        |           |            | Diorite: brecciated and healed throughout; very little<br>k-spar and clay alteration in zone 10 cm wide.                                                                                                          |
| 273.41      | 275.45           | D-1257        | 2.04         | 0    |     |    |     | -  |     |     |           | grey,<br>green            | mg        |           |            | Diorite: brecciated and healed throughout; very little k-spar and clay alteration in zone 10 cm wide.                                                                                                             |
| 275.45      | 279.80           |               | 4.35         | 0    |     |    |     |    |     |     |           | grey,<br>green            | mg        |           |            | Fresh diorite with minor potassic alteration along<br>fracture planes and up to 10mm into the country<br>rock. Chlorite along fracture planes. (Potassic<br>alteration 1-2% of rock)                              |
| 279.80      | 280.80           | D-1258        | 1.00         | 1    | 100 |    |     |    |     |     |           | grey,<br>green            | mg        |           | •          | Diorite similar to 275.45-279.80 but with more<br>extensive potassic alteration along fracture planes and<br>2-3cm into country rock(40% potassic alteration).<br>Carbonate veinlets occur along fracture planes. |
| 280.80      | 282.50           | 4             | 1.70         | 0    |     | :  |     |    | 3   | 1   |           | grey,<br>green            | mg        |           |            | Diorite with very slight potassic alteration all along<br>fracture planes. The rock contains 1/4 carbonate vein<br>20mm wide. Rest of diorite is fresh.                                                           |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру  | ср | gal | ро | mag | qtz | Lithology       | Colour         | Size | Structure          | Alteration | Comments                                                                                                                                                                                                                             |
|-------------|-----------|---------------|--------------|------|-----|----|-----|----|-----|-----|-----------------|----------------|------|--------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 282.50      | 283.50    | D-1259        | 1.00         | <1   | 100 |    |     |    | 3   | 1   | diorite         | grey,<br>green | mg   |                    |            | Diorite with very, very slight potassic alteration al<br>along fracture planes. The rock contains 1/4<br>carbonate vein 20mm wide. Rest of diorite is fresh<br>Very little visible pyrite.                                           |
| 283.50      | 285.60    |               | 2.10         | 0    |     |    |     |    | 3   | 1   | diorite         | grey,<br>green | mg   |                    |            | Fresh diorite with no veins, no veinlets. Very homogeneous. A little chlorite along fracture planes                                                                                                                                  |
| 285.60      | 286.60    | D-1260        | 1.00         | <1   | 100 |    |     |    | 3   | 1   | diorite         | grey,<br>green | mg   |                    | kspar      | Fresh diorite in minor potassic alterations extending<br>20mm into country rock from fracture planes<br>Possible sulphides in potassic altered sections.                                                                             |
| 286.60      | 287.60    | D-1261        | 1.00         | <1   | 100 |    |     |    | 2   | 5   |                 | grey,<br>green | mg   |                    | kspar      | Fresh diorite in potassic alterations (15-20% of rock)<br>extending 20mm into country rock from fracture<br>planes. Possible sulphides in potassic altered sections                                                                  |
| 287.60      | 288.60    | D-1262        | 1.10         | <1   | 100 |    |     |    | 3   | 1   |                 | grey,<br>green | mg   |                    |            | Fresh, very broken diorite with very little potassie<br>alterations extending 20mm into country rock from<br>fracture planes. Possible sulphides in potassic altered<br>sections.                                                    |
| 288.60      | 289.00    |               | 0.40         | 0    |     |    |     |    | 3   | 5   |                 | grey,<br>green | mg   |                    | kspar      | Diorite with minor potassic alteration along a quart<br>carbonate veinlet 3mm wide.                                                                                                                                                  |
| 289.00      | 293.90    |               | 4.90         | 0    |     |    |     |    | 3   | 2   |                 | grey,<br>green | mg   |                    |            | Diorite, mostly fresh containg 3-4 1-2mm wide<br>fractures with potassic alteration and one zone 10cm<br>wide with potassic alteration. Also contains quart<br>carbonate veinlets 1-3mm wide. Chlorite lines the<br>fracture planes. |
| 293.90      | 294.84    | D-1263        | 0.94         | <1   |     |    |     |    | 0   |     | qtz-fsp<br>∨ein | orange,<br>red |      | graphic<br>granite |            | Quartz feldspar vein, that has "graphic granite<br>texture. Minor sulphides? along fracture planes lined<br>with chlorite.                                                                                                           |
| 294.84      | 299.20    |               | 4.36         | 0    |     |    |     |    | 3   | 0   | diorite         | dk green       | mg   |                    | kspar      | Diorite containing a little potassic alteration. Entire section is friable and fractured.                                                                                                                                            |
| 299.20      | 302.60    |               | 3.40         | 0    |     |    |     |    | 2   | 5   | diorite         | it green       | mg   |                    |            | Diorite containing weak potassic alteratior throughout unit.                                                                                                                                                                         |
| 302.60      | 303.00    |               | 0.40         | 0    |     |    |     |    | 2   | 0   | diorite         | dk green       | mg   |                    |            | Heavily fractured and friable diorite.                                                                                                                                                                                               |
| 303.00      | 306.70    |               | 3.70         | 0    |     |    |     |    | 3   | 1   | diorite         | dk green       | mg   |                    |            | Mostly fresh diorite with only 3 zones of quartz feldspar veining 2-4mm wide.                                                                                                                                                        |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср  | gal | ро | mag | qtz | Lithology | Colour                    | Size      | Structure | Atteration | Comments                                                                                                                                                                                                                                                                       |
|-------------|-----------|---------------|--------------|------|----|-----|-----|----|-----|-----|-----------|---------------------------|-----------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 306.70      | 308.70    |               | 2.00         | 0    |    |     |     |    | 2   | 3   | diorite   | green,<br>grey,<br>orange | mg        |           | clay,kspar | Diorite with superimposed clay alteration(1st) and<br>potassic alteration(2nd). Contact with fresh diorite<br>above is gradual over 50mm. Section contains quartz-<br>carbonate veinlets 0.1-3mm wide at various angles<br>to ca.                                              |
| 308.70      | 309.70    | D-1264        | 1.00         | 1    |    | 100 |     |    | 0   | 10  | diorite   | dk grey,<br>orange        | fg-<br>mg |           | kspar      | Diorite with potassic alteration and a chlorite shear<br>zone with quartz injection. cp occurs as blobs and<br>blebs up to 10mm long in dark grey quartz-rich<br>section over 10 cm along core.                                                                                |
| 309.70      | 310.70    | D-1265        | 1.00         | <1   |    |     |     |    | 2   | 2   | diorite   | dk grey                   | fg-<br>mg |           |            | Diorite: Dark grey sheared section, grading into fresh diorite with patchy potassic alteration.                                                                                                                                                                                |
| 310.70      | 319.15    |               | 8.45         | 0    |    |     |     |    | 3   | 1   |           | dk grey,<br>green         | mg        |           | kspar      | Fresh diorite with chlorite-lined fractures. Somewhat<br>blocky at times. Contains a few quartz carbonate<br>veinlets 1-2mm wide along which occassional<br>potassic alteration extending for up to 3mm into<br>country rock.                                                  |
| 319.15      | 319.40    |               | 0.25         | 0    |    |     |     |    |     |     | [ ]       | lt grey, dk<br>green      | mg        |           | clay       | Diorite with slight clay alteration(bleaching). Gradual contacts over 1-2cm top and bottom.                                                                                                                                                                                    |
| 319.40      | 321.67    |               | 2.27         | 0    |    |     |     |    | 4   | 0   |           | dk grey,<br>green         | mg        |           |            | Fresh diorite throughout. Fractures are lined with chlorite.                                                                                                                                                                                                                   |
| 321.67      | 322.13    |               | 0.46         | 0    |    | 6   |     |    | 0   | 15  |           | lt green,<br>cream        | fg-<br>mg |           | clay       | Diorite cut by quartz vein 20mm wide. Clay<br>alteration extends to 15-20cm on either side of the<br>quartz vein, gradually decreasing in intensity.                                                                                                                           |
| 322.13      | 327.30    |               | 5.17         | 0    |    |     |     |    | 4   | 0   |           | dk grey,<br>green         |           |           | kspar      | Fresh diorite with some chlorite-lined fractures. Only<br>one potassic altered section 30mm wide with gradual<br>contacts. Fairly homogeneous.                                                                                                                                 |
| 327.30      | 343.73    |               | 16.43        | 0    |    |     |     |    | 3   | 0   |           | dk grey,<br>green         |           |           |            | Fresh diorite, slightly more felsic minerals (qtz&fsp)<br>than before. Very little potassic alteration along 10cm<br>section at 349.75. One dark red quartz-k feldspar<br>vein, 30mm wide has partly potassic altered the<br>country rock over 20mm on either side at 338.26m. |
| 343.73      | 344.75    | D-1266        | 1.02         | <1   |    |     |     |    | 0   | 10  |           | dk red,<br>grey           |           |           |            | Diorite has extensive potassic alteration throughout.<br>Rock contains thin quartz-carbonate veinlets 1-3mm.<br>Possible sulphides.                                                                                                                                            |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gai | po      | mag | qtz | Lithology | Colour            | Size | Structure | Alteration | Comments                                                                                                                                                             |
|-------------|-----------|---------------|--------------|------|----|----|-----|---------|-----|-----|-----------|-------------------|------|-----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 344.75      | 346.00    | D-1267        | 1.25         | <1   |    |    |     | <b></b> | 2   | 3   |           | grey,<br>green    | mg   |           |            | Diorite: mild pervasive potassic alteration. Very<br>strong chlorite shear zone over 10cm width a<br>beginning of section at 30°ca.                                  |
| 346.00      | 346.56    | D-1268        | 0.56         | 1    |    |    |     |         | 0   | 15  |           | dk red,<br>white  | fg   |           |            | Heavily potassic-altered diorite throughout sectior<br>and is overprinted by bleaching (clay alteration) along<br>fracture zones.                                    |
| 346.56      | 347.59    | D-1269        | 1 .03        | <1   |    |    |     |         | 2   | 3   |           | dk grey,<br>green | mg   |           |            | Diorite with mild potassic alteration throughout<br>Fairly homogeneous. Possible sulphides.                                                                          |
| 347.59      | 349.61    |               | 2.0.2        |      |    |    |     |         |     |     |           | grey,<br>green    |      |           |            | Fresh diorite with only very mild potassic alteration<br>over 20 cm at 347.00 and on either side of a fracture<br>zone at 348.40. Chlorite-lined fractures at 30°ca. |
| 349.61      |           |               |              |      |    |    |     |         |     |     |           |                   |      |           |            | ЕОН                                                                                                                                                                  |

A.

## **Diamond Drill Log**

Drill Hole No: EA-96-05

Logged By: Daniel A. Beauchamp

**Date:** October 3-6, 1996

Easting: Northing: Elevation: 39+25E 11+00N 1414m a.s.l. Azimuth:042°Inclination:-45°Total Depth:197.21mCore Size:NQ-2

I

ļ

1

Т

Survey Type: Tropari

| depth   | az.  | dip  |
|---------|------|------|
| Collar: | 042° | -45° |
| 102.72m | 045° | -44° |
| 197.21m | 043° | -43° |

|          |            |        |         | ·    |    |    |      |    | _   |      | 1         |        |      |           | r          |             |
|----------|------------|--------|---------|------|----|----|------|----|-----|------|-----------|--------|------|-----------|------------|-------------|
| <b>F</b> | <b>—</b> . | 0      | 146-446 | C.U. |    |    | 0.01 | ~~ | mag | at 7 | Lithology | Colour | Size | Structure | Alteration | Comments    |
| From     | 10         | Sample | Width   | Sulp | ру | ср | gal  | po | mag | qtz  | Lithology | COIOUI | 2526 | Olivolaie | Alleration | Gontinonito |
| (100)    | ( / \      | No     | (m)     |      |    |    |      |    |     |      |           |        |      |           |            |             |
| (m)      | (m) j      | NO.    | (uu)    |      |    |    |      |    |     |      |           |        |      |           |            |             |

| DDH: EA- | 96-05 |        |       |    |    |     |  |   |    |                    |                   |    |                    |       |                                                                                                                                                                                                                                                                               |
|----------|-------|--------|-------|----|----|-----|--|---|----|--------------------|-------------------|----|--------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.00     | 21.33 |        | 21.33 |    |    |     |  |   |    |                    |                   |    |                    |       | Casing                                                                                                                                                                                                                                                                        |
| 21.33    | 25.00 |        | 3.67  | 0  |    |     |  | 5 | 0  | diorite            | dk grey,<br>green | mg |                    |       | Fresh diorite slightly fractured. Chlorite-lined fracture planes.                                                                                                                                                                                                             |
| 25.00    | 26.00 | D-1270 | 1.00  | <1 | 30 | 70  |  | 4 | 3  | diorite            | white,<br>green   | mg | shearing           | kspar | Diorite, slightly more felsic and contains 3 zones of<br>potassic alterations 10mm wide at 25.20. Cp and py<br>occur along chlorite shear zones. One of which also<br>contains quartz veining 8mm wide. The sulphides are<br>as blebs and blobs up to 10 mm long and 5mm wide |
| 26.00    | 30.48 |        | 4.48  | 0  |    |     |  | 4 | 3  | diorite            | white,<br>green   | mg |                    | kspar | Diorite, slightly more felsic and contains 3 zones o<br>potassic alterations 10mm wide at 25.20. Cp and py<br>occur along chlorite shear zones. One of which also<br>contains quartz veining 8 mm wide.                                                                       |
| 30.48    | 31.48 | D-1271 | 1.00  | <1 | 0  | 100 |  | 2 | 3  | diorite            | green             | mg | shear zone         |       | Sheared and recemented diorite at 60°ca containing chlorite shear zone at 30.48 which was quarta veining and cp blebs 10mmx3mm.                                                                                                                                               |
| 31.48    | 35.71 |        | 4.23  | 0  |    |     |  | 4 | 1  | diorite            | dk grey,<br>green | -  |                    | kspar | Diorite with minor potassic alteration at 31.75 and 35.00 along quartz veinlets 3 mm wide remains in relatively fresh diorite.                                                                                                                                                |
| 35.71    | 38.75 |        | 3.04  | 0  |    |     |  | 0 | 30 | diorite            | grey              | mg | fault gouge        |       | Fault gouge at 45°ca.                                                                                                                                                                                                                                                         |
| 38.75    | 45.85 |        | 7.10  | 0  |    |     |  | 4 |    | diorite,<br>gabbro | dk green          | mg |                    |       | Fresh diorite-gabbro. More mafic than previously<br>described diorite. Contains fault gouge at 43.05 and<br>quartz veins 5mm wide at 10-45°ca at 43.55-44.25m                                                                                                                 |
| 45.85    | 51.00 |        | 5.15  | 0  |    |     |  | 0 | 20 | diorite            | lt grey,<br>green |    | hvy frctr &<br>shr | clay  | Diorite with moderate to complete replacement of al<br>minerals by clay-serecite minerals. Rock is heavily<br>sheared and fractured throughout. Quartz veining i<br>present throughout the section as anastomozing vein<br>in the fractured section and as veins at 20-70°ca. |
| 51.00    | 51.10 |        | 0.10  | 0  |    |     |  | 0 | 30 | diorite            | It grey           | fg | shear zone         |       | Shear zone in diorite at 45°ca. Quartz veining throughout.                                                                                                                                                                                                                    |
| 51.10    | 53.65 |        | 2.55  | 0  |    |     |  | 4 | 3  | diorite            | grey,<br>green    | mg |                    |       | Fresh diorite. Chlorite-lined fracture zone<br>throughout. Quartz veining up to 20 mm wide a<br>52.60-52.68m                                                                                                                                                                  |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру  | ср | gal | ро | mag | qtz | Lithology | Colour            | Size  | Structure | Alteration | Comments                                                                                                                                                                                                                                                      |
|-------------|-----------|---------------|--------------|------|-----|----|-----|----|-----|-----|-----------|-------------------|-------|-----------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 53.65       | 54.00     |               | 0.35         | 0    |     |    |     |    | 0   | 5   | diorite   | lt grey,<br>green | mg    |           | cłay       | Diorite with clay-serecite alteration. Gradual contact above and below.                                                                                                                                                                                       |
| 54.00       | 62.57     |               | 8.57         | 0    |     |    |     |    | 4   | 5   | diorite   | grey,<br>green    |       |           | kspar      | Diorite with sparse potassic alteration. Mostly alon<br>fracture planes and about 10 mm into country rocl<br>Chlorite-lined fracture planes. Minor quartz carbonat<br>veinlets.                                                                               |
| 62.57       | 63.70     | D-1272A       | 1.13         | <1   | 100 |    |     |    | 4   | 5   | diorite   | grey,<br>green    | - × 1 |           | kspar      | Diorite with sparse potassic alteration. Mostly alor<br>fracture planes and about 10 mm into country roc<br>Chlorite-lined fracture planes. Minor quartz carbona<br>veinlets. Contains five zones of chlorite shearing eac<br>1-2cm wide. Possible sulphides. |
| 63.70       | 64.70     | D-1272B       | 1.00         | <1   | 100 |    |     |    | 4   | 5   | diorite   | green             | mg    | ·         | kspar      | Diorite with sparse potassic alteration. Mostly alor<br>fracture planes and about 10mm into country roc<br>Chlorite-lined fracture planes. Minor quartz carbona<br>veinlets. Zones of shearing (chlorite) are 3 and 10 cr<br>wide. Possible sulphides.        |
| 64.70       | 66.65     |               | 1.95         | 0    |     |    |     |    | 4   | 5   | diorite   | grey,<br>green    | mg    |           | kspar      | Diorite with sparse potassic alteration. Mostly alor<br>fracture planes and about 10mm into country roc<br>Chlorite-lined fracture planes. Minor quartz carbona<br>veinlets. Zones of shearing (chlorite) are 3 and 10 c<br>wide. Possible sulphides.         |
| 66.65       | 67.65     | D-1273        | 1.00         | <1   |     |    |     |    | 4   | 5   | diorite   | grey,<br>green    |       |           | kspar      | Diorite with minor potassic alteration throughou<br>One zone of intense shearing at 30°ca has inject<br>quartz (5-10%) and thin streaks of hematite.                                                                                                          |
| 67.65       | 74.52     |               | 6.87         | 0    |     |    |     |    | 3   | 3   | diorite   | grey,<br>green    | mg    |           |            | Diorite with rare, weak potassic alteration. Fractu<br>planes are lined with chlorite. Somewhat blocky ar<br>broken 69.00-69.19m.                                                                                                                             |
| 74.52       | 75.05     |               | 0.53         | 0    |     |    |     |    | 2   | 0   | diorite   | lt grey,<br>green | mg    |           | clay       | Diorite with moderate clay alteration. Upper conta<br>is gradual, lower contact is sharp along a chlorit<br>lined fracture.                                                                                                                                   |
| 75.05       | 78.45     |               | 3.40         | 0    |     |    |     |    | 3   | 5   | diorite   | grey,<br>green    | mg    |           |            | Relatively fresh diorite throughout. Quartz carbona veinlets are present 0.1-12 mm wide.                                                                                                                                                                      |
| 78.45       | 79.20     | D-1274A       | 0.75         | 0    |     |    |     |    | 1.5 | 15  | diorite   | white,<br>grey    |       |           | clay       | Diorite: Highly altered to clay, especially 78.7<br>79.20. Gradual contact to top, sharp contact below<br>Possible sulphides?                                                                                                                                 |

ĥ

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour            | Size      | Structure  | Alteration | Comments                                                                                                                                                                              |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|-------------------|-----------|------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 79.20       | 80.96     |               | 1.76         | 0    |    |    |     |    | 3   | 3   | diorite   | grey,<br>green    |           |            | clay       | Diorite with moderate clay alteration in zones 2<br>10cm. Otherwise relatively fresh. Two quartz veins 2<br>and 10mm wide. Chlorite is present along fracture<br>planes.              |
| 80.96       | 88.10     |               | 7.14         | 0    |    |    |     |    | 4   | 2   | diorite   | dk grey,<br>green |           |            |            | Relatively fresh diorite throughout. Somewhat more<br>mafic than 79.20-80.76. Only 1 clay altered zone<br>(mild) at 87.05 for 30 mm.                                                  |
| 88.10       | 88.60     |               | 0.50         | 0    |    |    |     |    | 0.5 | 25  | diorite   | white to<br>grey  | mg        |            | clay       | Diorite with extensive clay alteration. Gradua<br>contact top, sharp at bottom. All minerals converted<br>to clay-serecite at 88.29-88.60.                                            |
| 88.60       | 103.72    |               | 15.12        | 0    |    |    |     |    | 3   | 2   | diorite   | grey,<br>green    | mg        |            |            | Relatively fresh diorite and unaltered. Contain occasional quartz veinlets 1-3mm wide and rare potassic-filled veinlets < 1mm wide.                                                   |
| 103.72      | 104.05    | D-1274B       | 0.33         | 0    |    |    |     |    | 0   | 25  | diorite   | orange,<br>red    | fg-<br>mg |            | kspar      | Diorite that has been extensively potassic altered<br>Much quartz has been injected into the section<br>Gradual contact at top of unit but sharp contac<br>below. Possible sulphides. |
| 104.05      | 106.76    |               | 2.71         | 0    |    |    |     |    | 2   | 5   | diorite   | lt grey,<br>green |           |            | kspar      | Diorite with weak potassic alteration over most of the section. Very little epidote alteration at 105.00, nea a quartz-carbonate vein 8 mm wide.                                      |
| 106.76      | 107.90    | D-1275        | 1.14         | <1   |    |    |     |    | 2   | 0   | diorite   | dk green          | fg-<br>mg |            | ері        | Relatively fresh diorite but containing 4 chlorite shea<br>zones 2-20 cm wide, one of which has quartz veinin<br>2-4mm wide and epidote alteration. Possible<br>sulphides.            |
| 107.90      | 110.47    |               | 2.57         | 0    |    |    |     |    | 3   | 0   | diorite   | grey,<br>green    |           |            | kspar      | Fresh diorite, slightly fractured with only weal potassic alterations over 10 mm along fracture zone and shear zones.                                                                 |
| 110.47      | 111.47    | D-1276        | 1.00         | <1   |    |    |     |    | 3   | 5   | diorite   | grey,<br>orange   | -         | shear zone | kspar      | Fresh diorite, with recemented shear zone over 40cm<br>wide at 30°ca. Shear zone shows local mild potassi<br>alteration. Possible sulphides.                                          |
| 111.47      | 116.91    |               | 5.44         | 0    |    |    |     |    | 3.5 | 1   | diorite   | dk grey,<br>green | mg        | fractured  |            | Fresh diorite with several moderately fractured zone<br>most fracture planes coated with chlorite an<br>occasionally by carbonate. Most fractures are a<br>10,30,and 60°ca.           |

ß

2

1

1

. . .

1

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру  | ср | gal | ро | mag | qtz | Lithology       | Colour                | Size      | Structure           | Alteration | Comments                                                                                                                                                                                                                                                                        |
|-------------|-----------|---------------|--------------|------|-----|----|-----|----|-----|-----|-----------------|-----------------------|-----------|---------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 116.91      | 117.70    | D-1277        | 0.79         | <1   | 100 |    |     |    | 2   | 5   | diorite         | orange,<br>grey-green |           | sheared             | kspar      | Diorite, mostly potassic altered. Chlorite shear zones<br>5 and 10 cm thick containing pyrite chunks up to 2-3<br>mm in diametre. One quartz carbonate vein 10 mm<br>wide.                                                                                                      |
| 117.70      | 118.80    | D-1278        | 1.10         | <1   | 100 |    |     |    | 1   | 5   | diorite         | dk grey,<br>green     | - ×       | sheared,fria<br>ble |            | Extensively sheared and friable diorite containg a few quartz carbonate veinlets of up to 5 mm wide.                                                                                                                                                                            |
| 118.80      | 119.90    | D-1279        | 1.10         | <1   | 70  | 30 |     |    | 2   | 5   | diorite         | grey,<br>green        |           | shear zones         | kspar      | Relatively fresh diorite containing one quartz vein 8<br>mm at 30°ca. One quartz veinlet 2 mm with potassic<br>alteration 3 mm into the country rock on either side<br>and one chlorite shear zone 3 mm wide at 45°ca<br>with about 10% sulphides in blobs up to 10 mm<br>long. |
| 119.90      | 125.00    |               | 5.10         | 0    |     |    |     |    | 3   | 2   | diorite         | grey,<br>green        | -         |                     |            | Fresh looking diorite with chlorite-lined fracture zones. Blocky section 120.60-125.00.                                                                                                                                                                                         |
| 125.00      | 126.55    |               | 1.55         |      |     |    |     |    | 2   | 3   | diorite         | grey,<br>green        |           |                     | kspar      | Diorite with only minor weak potassic alteration<br>Contains one dark brown quartz vein 40 mm wide a<br>125.40.                                                                                                                                                                 |
| 126.55      | 127.55    | D-1280        | 1.00         |      |     |    |     |    | 2   |     | diorite         | grey,<br>green        |           | shear zones         |            | Diorite with only minor weak potassic alteration<br>Contains one dark brown quartz vein 40 mm wide a<br>125.40. Also contains two healed shear zones a<br>125.05 and 126.50. Possible sulphides. Chlorite<br>along fracture planes.                                             |
| 127.55      | 129.00    |               | 1.45         |      |     |    |     |    |     |     | diorite         | grey,<br>green        | mg        |                     |            | Fresh looking diorite with chlorite-lined fracture zones. Blocky section 120.60-125.00.                                                                                                                                                                                         |
| 129.00      | 130.10    | D-1281        | 1.10         | <1   | 100 |    |     |    | 3   | 5   | diorite         | grey,<br>green        | mg        |                     |            | Relatively fresh and blocky diorite, with chlorite lined<br>shear zones. Also contains two dark grey-orange<br>quartz-feldspar veins, 20cm at 128.00 and 10cm at<br>130.00.                                                                                                     |
| 130.10      | 131.65    |               | 1.55         | 0    |     |    |     |    | 3   | 0   | diorite         | grey,<br>green        | mg        |                     |            | Relatively fresh and blocky diorite, with chlorite-linec shear zones.                                                                                                                                                                                                           |
| 131.65      | 132.65    | D-1282        | 1 .0         | <1   | 100 |    |     |    | 0   | 60  | qtz-fsp<br>vein | grey, pink            | fg-<br>mg | shear zone          | -          | Quartz feldspar veining pink and grey. Minor fine<br>grained chloritized mineral—syenite? Contains fine<br>grained pyrite flecks throughout. Chlorite shear zone<br>at upper contact                                                                                            |

ĥ

A

P

:

:

T T T

:

: • • • •

h

A

.

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру  | ср | gal | ро | mag | qtz | Lithology       | Colour         | Size      | Structure   | Alteration | Comments                                                                                                                                                                                                                                                                                                                         |
|-------------|-----------|---------------|--------------|------|-----|----|-----|----|-----|-----|-----------------|----------------|-----------|-------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 132.65      | 133.65    | D-1283        | 1.0          | <1   | 100 |    |     |    | 0   | 60  | qtz-fsp<br>vein | grey, pink     | fg-<br>mg |             |            | Quartz feldspar veining pink and grey. Minor fine-<br>grained chloritized mineral - syenite? Contains fine-<br>grained pyrite flecks throughout. Minor epidote along<br>fractures.                                                                                                                                               |
| 133.65      | 134.65    | D-1284        | 1.00         | <11  |     |    |     |    | 5   |     | mafic<br>dyke   | dk green       | ∨fg       |             |            | Chlorite-rich, very fine grained mafic dyke cut by<br>numerous quartz carbonate veinlets 0.1-2mm wide.<br>Upper contact is sharp and injects into syenite?.<br>Possible sulphides.                                                                                                                                               |
| 134.65      | 135.65    | D-1285        | 1 .00        | <1   |     |    |     |    | 5   | 0   | diorite         | dk green       | √fg       |             |            | Chlorite-rich, very fine grained mafic dyke cut by<br>numerous quartz carbonate veinlets 0.1-2mm wide.<br>Upper contact is sharp and injects into syenite?.<br>Possible sulphides. Lower contact is jagged and<br>shows intrusive nature of this unit. Quartz carbonate<br>veinlets are accompanied by minor k-spar.             |
| 135.65      | 138.60    |               | 0            | 0    |     |    |     |    | 3   | 1   | diorite         | grey,<br>green |           |             |            | Moderately fresh diorite with minor k-feldspar<br>injected along fractures and extending up to 10 mm<br>into country rock. Quartz-feldspar veining at 132.80-<br>132.87, very fine grained and orange.                                                                                                                           |
| 138.60      | 139.75    | D-1286        | 1.15         | <1   | 100 |    |     |    | 3   | 15  | diorite         | grey,<br>green | mg        |             |            | Moderately fresh diorite with minor k-feldspar<br>injected along fractures and extending up to 10mm<br>into country rock. Very fine grained orange-red<br>quartz-feldsapr veining at 135.65-135.77 and 139.40-<br>139.57 contains 0.1-3mm quartz-carbonate veinlets<br>and minor epidote veinlets 0.2 mm. Possible<br>sulphides? |
| 139.75      | 149.44    |               | 9.69         |      |     |    |     |    | 3   | 2   | diorite         | grey,<br>green | mg        | fault gouge | 1          | Moderately fresh diorite with minor k-feldspar<br>injected along fractures and extending up to 10mm<br>into country rock. Quartz-feldspar veining at 132.80-<br>132.87. Very fine grained orange quartz-feldspar vein<br>144.57-144.63. Fault gouge at 145.37.                                                                   |
| 149.44      | 152.48    |               | 3.04         | 0    |     |    |     |    | 3   | 1   | diorite         | grey,<br>green | mg        | fault zone  |            | Fresh but very broken diorite. Brecciated 150.60-<br>150.75; very broken brecciated 151.48-152.00.                                                                                                                                                                                                                               |
| 152.48      | 156.58    |               | 4.10         | 0    |     | -  |     |    | 3   | 1   | diorite         | grey,<br>green | mg        |             |            | Relatively fresh diorite. Chlorite-lined fracture zones.                                                                                                                                                                                                                                                                         |

h

h

h

.

ħ

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology            | Colour            | Size | Structure            | Atteration | Comments                                                                                                                                                                                     |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|----------------------|-------------------|------|----------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 156.58      | 157.58    | D-1287        | 1.00         | <1   |    |    |     |    | 3   | 2   | diorite              | grey,<br>green    |      |                      |            | Relatively fresh diorite. Chlorite-lined fracture zones.<br>Quartz feldspar vein also present from 157.02-<br>157.12. Sharp contacts on either side. Possible<br>sulphides.                  |
| 157.58      | 161.80    |               | 4.22         | 0    |    |    |     |    | 4   | 0   | diorite              | grey,<br>green    | mg   |                      |            | Fresh diorite with chlorite-lined fracture zones.                                                                                                                                            |
| 161.80      | 162.80    | D-1288        | 1.00         | <1   |    |    |     |    | 3   | 2   | diorite              | lt grey,<br>green |      |                      | clay       | Diorite with moderate clay alteration over most of<br>section. Minor potassic alterations along fractures;<br>contains one quartz-feldspar vein 20mm wide at<br>162.20m. Possible sulphides. |
| 162.80      | 174.15    |               | 11.35        | 0    |    |    |     |    |     |     | diorite              | grey,<br>green    | mg   |                      |            | Fresh diorite; quartz-carbonate vein 5-15mm wide at 20-30°ca at 165.50 and 167.55.                                                                                                           |
| 174.15      | 175.15    | D-1289        | 1.00         | <1   |    |    |     |    | 2   | 8   | diorite              | grey,<br>green    | -    | shear zone           | kspar,epi  | Diorite with mild potassic alteration throughout, with<br>more intense quartz feldspar veining/alteration 75.37-<br>75.80 changing into epidote alteration at 75.93m.<br>Possible sulphides. |
| 175.15      | 176.15    | D-1290        | 1.00         | <1   |    |    |     |    | 3   | 3   | diorite              | grey,<br>green    | mg   | heavily<br>fractured |            | Mostly fresh diorite with biotite; chlorite-linec<br>fractures in heavily broken zone 175.20-175.82<br>Quartz-feldspar vein from 175.82-175.91.                                              |
| 176.15      | 181.32    |               | 5.17         | 0    |    |    |     |    | 3   | 0   | diorite              | grey,<br>green    | mg   |                      |            | Fresh diorite with very rare potassic altered fractures<br>extnding to 5mm into country rock. Chlorite-lined<br>fracture planes.                                                             |
| 181.32      | 185.40    |               | 4.08         | 0    |    |    |     |    | 3   | 1   | diorite              | grey,<br>green    | mg   |                      | kspar      | Fresh diorite with only a few potassic altered fracture<br>extending to 20 mm into country rock. Chlorite-lined<br>fracture planes.                                                          |
| 185.40      | 190.47    |               | 5.07         | 0    |    |    |     |    | 3   | 2   | diorite              | grey,<br>green    | mg   |                      |            | Fresh diorite containing one quartz feldspar vein with<br>graphic granite texture at 189.70-189.80m. 50%<br>quartz-50% k-spar.                                                               |
| 190.47      | 191.47    | D-1291        | 1.00         | <1   |    |    |     |    | 2   | 5   | dio,qtz-<br>fsp vein | grey,<br>green    | - 1  |                      | kspar      | Diorite with mild potassic alteration throughout<br>Quartz feldspar vein 190.47-190.58. Open calcite<br>vein 5 mm wide at 190.58. Possible sulphides.                                        |
| 191.47      | 192.47    | D-1292        | 1.00         | <1   |    |    |     |    | 2   | 5   | dio,qtz-<br>fsp vein | grey,<br>green    |      |                      |            | Diorite with mild potassic alteration throughout<br>quartz feldspar vein 191.65-191.91m. Open calcite<br>vein 5mm wide at 190.58. Possible sulphides.                                        |

1 | |

1

I

1 1 1

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour         | Size | Structure | Alteration | Comments                                                                                                                                                                                    |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|----------------|------|-----------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 192.47      | 194.75    |               | 2.28         | 0    |    |    |     |    | 3   | 2   | diorite   | grey,<br>green |      |           |            | Diorite with mild potassic alteration in zones 5-10cm<br>wide. Contains quartz feldspar veins at 193.16 10mm<br>wide 10-20°ca and at 194.75 several quartz-k<br>feldspar veinlets at 15°ca. |
| 194.75      | 197.21    |               | 2.46         | 0    |    |    |     |    | 2   | 3   | diorite   | grey,<br>green |      |           |            | Diorite with mild potassic alteration along fractures<br>planes and weak shear zones. Chlorite-lined fracture<br>zones. End of Hole.                                                        |
| 197.21      |           |               |              |      |    |    |     |    |     |     |           |                |      |           |            | ЕОН                                                                                                                                                                                         |

ŝ.

## **Diamond Drill Log**

Drill Hole No: EA-96-06

Logged By: Daniel A. Beauchamp

**Date:** October 6-8, 1996

Easting: Northing: Elevation: 39+25E 11+00N 1414m a.s.l. Azimuth:042°Inclination:-65°Total Depth:279.79mCore Size:NQ-2

1

I

Т

I

T

Т

i 1

Survey Type: Tropari

| depth   | az.  | dip          |
|---------|------|--------------|
| Collar: | 042° | -65°         |
| 105.70m | 042° | -71°         |
| 209.40m | 047° | <b>-6</b> 7° |
| 297.79m | 049° | -70°         |

| Γ | From | То  | Sample | Width | Sulp | ру | СР | gal | ро | mag | qtz | Lithology | Colour | Size | Structure | Alteration | Comments |
|---|------|-----|--------|-------|------|----|----|-----|----|-----|-----|-----------|--------|------|-----------|------------|----------|
|   | (m)  | (m) | No.    | (m)   |      |    |    |     |    |     |     |           |        |      |           |            |          |

Т

i T

| DDH: EA-9 | 96-06 |     |      |   |  |   |    |                    |                   |           |         |       |                                                                                                                                                                                                                                                    |
|-----------|-------|-----|------|---|--|---|----|--------------------|-------------------|-----------|---------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.00      | 21.34 | 21. | 34   |   |  |   |    |                    |                   |           |         |       | Casing                                                                                                                                                                                                                                             |
| 21.34     | 21.80 | 0.  | 46 0 | ) |  | 3 | 0  | diorite            | grey,<br>green    | mg        |         |       | Fresh diorite containing a few chlorite-lined fractures.                                                                                                                                                                                           |
| 21.80     | 22.20 | 0.  | 40 0 | ) |  | 1 | 5  | diorite            | It grey,<br>green |           |         | clay  | Diorite with moderate clay-sericite alterations near<br>fracture zones.                                                                                                                                                                            |
| 22.20     | 36.00 | 13. | 80 0 | ) |  | 3 | 0  | diorite            | grey,<br>green    |           |         |       | Fresh diorite throughout most of the section. Quartz vein contains black amphibole (?)actinolite vein at 30.20-30.28.                                                                                                                              |
| 36.00     | 37.35 | 1.  | 35 0 | ) |  | 0 | 5  | diorite            | lt grey,<br>green |           | sheared | clay  | Diorite with clay alteration. Upper contact broken,<br>lower contact gradual. Section is highly sheared and<br>recemented from 36.66-37.00m. Quartz carbonate<br>veining is present at top and bottom of sheared<br>section and at othe locations. |
| 37.35     | 40.25 | 2.  | 90 0 | ) |  | 2 | 3  | diorite            | grey,<br>green    |           |         | kspar | Fresh diorite with occasional areas up to 20mm in<br>diametre of mild potassic alteration. Core is<br>somewhat broken and many fractures planes are lined<br>with chlorite.                                                                        |
| 40.25     | 42.77 | 2.  | 52 0 | ) |  | 5 |    | diorite,g<br>abbro | dk green          | mg        |         |       | Diorite gabbro which is much darker than the diorite<br>above. Contact is sharp with diorite above and<br>broken with unit below.                                                                                                                  |
| 42.77     | 49.85 | 7.  | 08 0 | ) |  | 4 | 2  | diorite            |                   | mg        |         | kspar | Relatively fresh diorite with occasional patches of potassic alteration along fracture planes up to 10 mm into the country rock.                                                                                                                   |
| 49.85     | 52.90 | 3.  | 05 0 | ) |  | 2 | 4  | diorite            | grey,<br>green    | mg        |         | clay  | Diorite with mild clay-sericites alteration throughout<br>most of section. A few zones of weak potassic<br>alteration, mostly along fracture planes.                                                                                               |
| 52.90     | 55.00 | 2.  | 10 0 | ) |  | 3 | 3  | diorite            | lt grey,<br>green | mg        |         |       | Heavily fractured and sheared diorite at 45°ca. Fault<br>gouge at 43.50-43.60. Minor quartz veining along<br>shear zone.                                                                                                                           |
| 55.00     | 56.05 | 1.  | 05 0 | ) |  | 1 | 10 | diorite            | lt grey           | fg-<br>mg |         | clay  | Diorite with moderate to extensive clay-sericite<br>alteration. Quartz veining and injection of quartz is<br>apparent throughout the section.                                                                                                      |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology       | Colour                       | Size | Structure           | Alteration | Comments                                                                                                                                                                                                                                                                              |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------------|------------------------------|------|---------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 56.05       | 70.52     |               | 14.47        | 0    |    |    |     |    | 3   | 2   | diorite         | grey,<br>green               | mg   | m i l d<br>shearing | kspar, epi | Moderately fresh diorite. Very sparse potassic and<br>epidote alteration where the diorite has been weakly<br>sheared from 60.50-61.35. Chlorite-lined fracture<br>zones throughout' potassic alteration. Also presen<br>about every 1m along fractures and 1cm into country<br>rock. |
| 70.52       | 71.60     | D-1293        | 1.08         | <1   |    |    |     |    | 1   | 5   | diorite         | lt green,<br>orange          | mg   |                     | kspar,epi  | Diorite with moderate potassic alteration and mino epidote alteration along fractures. Possible sulphides                                                                                                                                                                             |
| 71.60       | 72.68     | D-1294        | 1.08         | <1   |    |    |     |    | 0   | 65  | qtz-fsp<br>vein | grey,<br>green,<br>orange    | fg   |                     |            | Quartz and quartz-feldspar veining. Quartz is dark<br>grey to green containing chlorite fragments. Possible<br>sulphides.                                                                                                                                                             |
| 72.68       | 73.76     | D-1295        | 1.08         | <1   | -  |    |     |    | 0   | 70  | qtz-fsp<br>vein | grey,<br>green,<br>orange    | fg   |                     |            | Quartz and quartz-feldspar veining. Quartz is darl<br>grey to green containing chlorite fragments. Possible<br>sulphides.                                                                                                                                                             |
| 73.76       | 74.92     | D-1296        | 1.16         | <1   |    |    |     |    | 2   | 5   | diorite         | grey,<br>green               | mg   |                     | kspar      | Diorite with minor potassic alteration at top and bottom of section. Possible sulphides.                                                                                                                                                                                              |
| 74.92       | 76.00     | D-1297        | 1.08         | <1   |    |    |     |    | 3   | 4   | diorite         | grey,<br>green               | mg   |                     | kspar      | Diorite relatively fresh but with intensly potassic altered section at 75.16-75.19.                                                                                                                                                                                                   |
| 76.00       | 76.92     |               | 0.92         | 0    |    |    |     |    | 4   | 0   | diorite         | grey,<br>green               | mg   |                     |            | Fresh-looking diorite, chlorite-lined fractures.                                                                                                                                                                                                                                      |
| 76.92       | 77.92     | D-1298        | 1 .00        | <1   |    |    |     |    | 3   | 20  | diorite         | dk grey,<br>green,<br>orange |      |                     |            | Relatively fresh diorite with quartz-feldspar vein from 76.92-77.17. Possible sulphides.                                                                                                                                                                                              |
| 77.92       | 79.33     |               | 1.41         | 0    |    |    |     |    | 3   | 1   | diorite         | dk grey,<br>green            | mg   |                     |            | Fresh-looking diorite with chlorite-lined fracture<br>planes and one quartz carbonate veinlet 10mm wide<br>at 79.88 at 30°ca.                                                                                                                                                         |
| 79.33       | 80.96     |               | 1.63         | 0    |    |    |     |    | 2   | 4   | diorite         | It grey,<br>green            | mg   |                     | kspar      | Diorite with weak potassic alteration throughout<br>Contains quartz-carbonate veinlets at 30-60°ca.                                                                                                                                                                                   |
| 80.96       | 85.60     |               | 4.64         | 0    |    |    |     |    | 4   | 1   | diorite         | dk grey,<br>green            | mg   |                     |            | Fresh-looking diorite. Biotite-lined fracture planes<br>Only occasional quartz carbonate veinlets.                                                                                                                                                                                    |
| 85.60       | 86.08     | D-1299        | 0.48         | <1   | 30 | 70 |     |    | 4   | 5   | diorite         | dk grey,<br>green            | mg   |                     |            | Fresh-looking diorite. Biotite-lined fracture planes<br>Quartz-cahlorite-carbonate vein 15mm wide a<br>86.68m containing cp/py blebs up to 10 mm x 7 mm                                                                                                                               |

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру  | ср  | gal | ро | mag | qtz | Lithology | Colour                                 | Size | Structure             | Alteration | Comments                                                                                                                                                                                                                                                    |
|-------------|-----------|---------------|--------------|------|-----|-----|-----|----|-----|-----|-----------|----------------------------------------|------|-----------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 86.08       | 87.89     |               | 1.81         | 0    |     |     |     |    | 4   | 0   | diorite   | dk grey,<br>green                      |      |                       | <u> </u>   | Fresh diorite with chlorite-lined fracture planes.                                                                                                                                                                                                          |
| 87.89       | 88.89     |               | 1.00         | 3    | 0   | 100 |     |    | 4   | 5   | diorite   | dk grey,<br>green                      | mg   |                       | kspar      | Fresh diorite with minor quartz carbonate veinlets.<br>Contains potassic-altered section at 88.08-88.19.<br>From 88.04-88.08 a 20mm wide cp-quartz-carbonate<br>vein is at the top of the potassic-altered zone at<br>30°ca. Cp represents 80% of the vein. |
| 88.89       | 95.35     |               | 6.46         | 0    |     |     |     |    | 3   | 2   | diorite   | dk grey,<br>green                      | -    |                       | kspar      | Fresh diorite with minor potassic alteration and major<br>recemented shear zone at 35°ca from 95.68-95.98.<br>Possible sulphides.                                                                                                                           |
| 95.35       | 96.35     |               | 1.00         | <1   | 100 |     |     |    | 2   | 2   | diorite   | grey,<br>green,<br>orange              | -    |                       | kspar      | Diorite with potassic alteration and major recemented<br>shear zone at 35°ca from 95.68-95.98. Possible<br>sulphides.                                                                                                                                       |
| 96.35       | 102.56    |               | 6.21         |      |     |     |     |    | 3   | 1   | diorite   | grey,<br>green                         | mg   |                       |            | Diorite with weak potassic alterations throughout ir patches 2-4cm wide. Epidote alteration along some shearing at 30°ca at 99.65.                                                                                                                          |
| 102.56      | 105.26    |               | 2.70         | 0    |     |     |     |    | 1   | 4   | diorite   | grey,<br>orange                        | mg   |                       |            | Diorite with weak potassic alterations throughout ir patches 2-4cm wide. Epidote alteration along some shearing at 30°ca at 99.65.                                                                                                                          |
| 105.26      | 106.81    |               | 1.55         | 0    |     |     |     |    | 2   | 3   | diorite   | grey,<br>gr <del>een</del> ,<br>orange | -    | m i n o r<br>shearing |            | Diorite with intermediate potassic alteration with minor epidote alteration near shear zones.                                                                                                                                                               |
| 106.81      | 107.81    | D-1302        | 1 .00        | <1   |     |     |     |    | 1   | 2   | diorite   | grey,<br>green,<br>orange              | mg   | sheared               |            | Diorite with intermediate potassic and moderate<br>epidote alteration. Contains pyrite crystals in a<br>sheared section from 107.45-107.54                                                                                                                  |
| 107.81      | 108.85    | D-1303        | 1.04         | <1   | 100 |     |     |    | 1   | 4   | diorite   | grey,<br>orange                        | mg   | shear zone            |            | Diorite with intermediate potassic and moderate<br>epidote alteration from 107.88-107.91 and along a<br>quartz carbonate filled shear zone at 108.58-108.81<br>Possible sulphides.                                                                          |
| 108.85      | 109.85    | D-1304        | 1.00         | <1   |     |     |     |    | 1   | 4   | diorite   | grey,<br>orange                        | mg   |                       |            | Diorite with intermediate potassic alteration<br>throughout; intermediate epidote alteration along<br>fractured zones at 109.15-109.25 and with quart:<br>carbonate veins at 109.45-109.63.                                                                 |

A

.

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру  | Ср | gai | po | mag | qtz | Lithology | Colour              | Size      | Structure               | Alteration | Comments                                                                                                                                                                                                                                           |
|-------------|-----------|---------------|--------------|------|-----|----|-----|----|-----|-----|-----------|---------------------|-----------|-------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 109.85      | 118.20    |               | 8.35         | 0    |     |    |     |    | 3   | 3   | diorite   | dk grey,<br>green   |           |                         | kspar      | Fresh diorite with only occasoinal potassic altered<br>zones, mostly along quartz carbonate veinlets 3-30<br>mm. Alteration usually extends 1/2 the width of vein<br>into either side of country rock at 115.41 and<br>115.78m.                    |
| 118.20      | 118.25    |               | 0.05         | 0    |     |    |     |    | 1   | 5   | diorite   | dk green            | fg        | fault gouge             |            | Diorite that is sheared and fault-gouged.                                                                                                                                                                                                          |
| 118.25      | 123.05    |               | 4.80         | 0    |     |    |     |    | 3   | 0   | diorite   | dk green            | mg        |                         |            | Fresh diorite with few fractures, all of which are located within chlorite.                                                                                                                                                                        |
| 123.05      | 124.05    |               | 1.00         | 0    |     |    |     |    | 0   | 10  | diorite   | dk grey             | fg-<br>mg | breccia                 | clay       | Diorite with clay-serecite alteration. Quartz carbonate<br>breccia is present from 123.05-123.20. A 30cm wide<br>quartz shear zone is present at 123.87 at 40°ca.                                                                                  |
| 124.05      | 126.23    |               | 2.18         | 0    |     |    |     |    | 3   | 1   | diorite   | dk grey,<br>green   | mg        |                         |            | Fresh diorite containing quartz-carbonate veinlets 0.5-<br>5mm wide at 30-45°ca.                                                                                                                                                                   |
| 126.23      | 127.00    |               | 0.77         | 0    |     |    |     |    | 2   | 15  | diorite   | white to It<br>grey |           | breccia                 | clay       | Fractured diorite that has a partly recemented breccia<br>zone. Quartz-carbonate veining is the cement. Clay<br>alteration is moderate.                                                                                                            |
| 127.00      | 133.25    |               | 6.25         | 0    |     |    | -   |    | 4   | 0   | diorite   | grey,<br>green      | mg        |                         |            | Fresh diorite with chlorite-lined fractures.                                                                                                                                                                                                       |
| 133.25      | 144.45    |               | 11.20        | 0    |     |    |     |    | 3   | 1   | diorite   | green,<br>grey      | mg        |                         | kspar, epi | Mostly fresh diorite with minor bleaching (k-spar)<br>along fracture zones, extending more than 1mm into<br>country rock. Potassic and epidote alteration at<br>136.10 over 50mm section. Quartz veining and<br>epidote at 142.44m.                |
| 144.45      | 145.50    | D-1305        | 1.05         | <1   | 100 |    |     |    | 2   | 2   | diorite   | dk grey,<br>green   |           | sheared &<br>recemented |            | Diorite with minor potassic alteration in upper<br>section (30cm) followed by extensive shearing and<br>recementation of the unit. Possible sulphides.                                                                                             |
| 145.50      | 146.75    |               | 1.25         | 0    |     |    |     |    | 3   | 2   | diorite   | dk grey,<br>green   | mg        |                         | kspar      | Fresh diorite with one section of mild potassic alteration 146.44-146.52.                                                                                                                                                                          |
| 146.75      | 148.05    | D-1306        | 1.30         | <1   |     |    |     |    | 3   | 2   | diorite   | dk grey,<br>green   | -         | sheared &<br>recemented |            | Diorite containing mild potassic alterations<br>throughout and epidote alterations along veins and<br>veinlets at 147.33-143.44. Zones of extensive<br>shearing and recementation occur at 146.75-147.80<br>and 147.83-148.02. Possible sulphides. |

.

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour                        | Size | Structure | Alteration | Comments                                                                                                                                                                                                                                                    |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|-------------------------------|------|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 148.05      | 153.53    |               | 5.48         |      |    |    |     |    | 3   | 0   | diorite   | dk grey,<br>green             |      |           |            | Fresh diorite with chlorite-coated fracture planes.                                                                                                                                                                                                         |
| 153.53      | 154.00    |               | 0.47         | 0    |    |    |     |    | 0   | 5   | diorite   | dk grey                       | mg   |           | clay       | Diorite with moderate clay-sericite alteration and very<br>weak potassic and epidote alterations at 153.71<br>153.78.                                                                                                                                       |
| 154.00      | 164.73    |               | 10.73        | 0    |    |    |     |    | 3   | 1   | diorite   | dk grey,<br>green             | -    |           |            | Fresh diorite with chlorite-lined fractures and mino<br>quartz-carbonate veining 0.1-2mm wide. Very rare<br>weak potassic alteration along fracture zones and 2<br>4mm into country rock.                                                                   |
| 164.73      | 165.73    | D-1307        | 1.00         | 0    |    |    |     |    | 3   | 0   | diorite   | dk grey,<br>green             | mg   |           | kspar      | Fresh diorite with chlorite-lined fractures and mino<br>quartz-carbonate veining 0.1-2mm wide. Very rare<br>weak potassic alteration along fraacture zones and 2<br>4 mm into country rock. No sulphides visible.                                           |
| 165.73      | 170.00    |               | 4.27         | 0    |    |    | :   |    | 3   | 0   | diorite   | dk grey,<br>green             | mg   |           |            | Fresh diorite with chlorite-lined fractures.                                                                                                                                                                                                                |
| 170.00      | 172.82    |               | 2.82         | 0    |    |    |     |    | 3   | 0   | diorite   | dk grey,<br>green             | mg   | fractured |            | Fresh diorite with chlorite-lined fractures. Core is very heavily fractured.                                                                                                                                                                                |
| 172.82      | 190.61    |               | 17.79        | 0    |    |    |     |    | 4   | 0   | diorite   | dk grey,<br>green             | mg   |           |            | Fresh diorite, medium grained with chlorite-lined<br>fracture. Very homogeneous. Very few quartz<br>carbonate fractures, rarely with potassic alteration.                                                                                                   |
| 190.61      | 193.83    |               | 3.22         | 0    |    |    |     |    | 3   | 2   | diorite   | lt grey,<br>green             | mg   |           |            | Diorite with very weak potassic alteration throughout<br>Diorite is slightly more felsic than previous.                                                                                                                                                     |
| 193.83      | 197.71    |               | 3.88         | 0    |    |    |     |    | 4   | 0   | diorite   | dk grey,<br>green             | mg   |           | kspar      | Diorite is mostly fresh. Minor bleaching and potassic alteration 194.90-194.93m.                                                                                                                                                                            |
| 197.71      | 198.71    | D-1308        | 1.00         | 0    | _  |    |     |    | 3   | 2   | diorite   | dk grey,<br>green,<br>It pink |      |           |            | Mostly fresh diorite, but with a zone of potassic<br>alteration 197.71-197.95 where the alteration extend<br>up to 20mm from the quartz carbonate veinlets.                                                                                                 |
| 198.71      | 205.60    |               | 6.89         | 0    |    |    |     |    | 3   | 1   | diorite   | dk grey,<br>green,<br>It pink | mg   |           |            | Mostly fresh diorite but with zones up to 80mm wide<br>where very weak potassic alteration has extended<br>from fracture zones. At 200.26-200.32, one of these<br>zones extends from a 15mm quartz vein and has beer<br>superimposed by epidote alteration. |

Ä

à

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology | Colour               | Size      | Structure               | Alteration | Comments                                                                                                                                                                 |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|-----------|----------------------|-----------|-------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 205.60      | 207.60    |               | 2.00         | 0    |    |    |     |    | 3   | 1   | diorite   | dk grey,<br>green    |           | very broken             | kspar      | Diorite, mostly weak potassic alteration throughour<br>section, emanating from quartz carbonate-filled<br>fracture zones. Core is very fractured from 206.15-<br>206.50. |
| 207.60      | 211.10    |               | 3.50         | 0    |    |    |     |    | 3   | 1   | diorite   | pink                 | mg        |                         |            | Diorite with very little potassic alteration 1-2 mm<br>wide at most.                                                                                                     |
| 211.10      | 212.10    | D-1309        | 1.00         | <1   |    |    |     |    | 3   | 2   | diorite   | pink, grey           | mg        |                         | kspar      | Diorite with moderate potassic alteration; chlorite shearing at 211.10m. Possible sulphides.                                                                             |
| 212.10      | 213.10    | D-1310        | 1.00         | <1   |    |    |     |    | 3   | 2   | diorite   | grey, pink           | mg        |                         | kspar      | Diorite with moderate potassic alteration; chlorite shearing at 211.10m. Possible sulphides.                                                                             |
| 213.10      | 214.10    | D-1311        | 1.00         | <1   |    |    |     |    | 3   | 3   | diorite   | grey, pink           | fg-<br>mg | shearing                | kspar      | Diorite with mostly potassic alteration. Heavily sheared 213.40-213.75, containing much chlorite. Possible sulphides.                                                    |
| 214.10      | 215.10    | D-1312        | 1.00         | <1   |    |    |     |    | 3   | 1   | diorite   | grey, pink           | fg-<br>mg | shearing                | kspar      | Diorite with somewhat weaker potassic alteration<br>Chlorite shear zones at 214.47-214.56 and 214.83<br>215.10. Possible sulphides.                                      |
| 215.10      | 216.10    | D-1313        | 1.00         | <1   |    |    |     |    | 3   | 1   | diorite   | grey,<br>green       | -         | broken &<br>recemented  |            | Diorite with mostly weak potassic alterations<br>throughout. Diorite appears to have been heavily<br>broken and recemented. Possible sulphides.                          |
| 216.10      | 220.31    |               | 4.21         | 0    |    |    |     |    | 3   | 1   | diorite   | grey,<br>green       | mg        |                         | kspar      | Mostly fresh diorite with minor potassic alteration.                                                                                                                     |
| 220.31      | 221.59    |               | 1.28         | 0    |    |    |     |    | 3   | 2   | diorite   | dk grey,<br>green    | -         | sheared &<br>recemented |            | Diorite containing several shear zones that have been recemented by chlorite; 2-13 cm wide.                                                                              |
| 221.59      | 225.18    |               | 3.59         | 0    |    |    |     |    | 3   | 0   | diorite   | dk grey,<br>green    | mg        |                         |            | Fresh diorite with chlorite-coated fracture planes.                                                                                                                      |
| 225.18      | 228.35    |               | 3.17         | 0    |    |    |     |    | 2   | 2   | diorite   | med grey             | mg        |                         |            | Diorite showing mild potassic alteration in patchy zones 3-20 cm wide.                                                                                                   |
| 228.35      | 233.88    |               | 5.53         | 0    |    |    |     |    | 2   | 1   | diorite   | lt grey, dk<br>green | mg        |                         | kspar      | Diorite with mild to moderate potassic alteration.                                                                                                                       |
| 233.88      | 234.88    | D-1314        | 1.00         | <1   |    |    |     |    | 2   | 1   | diorite   | dk green             | fg-<br>mg |                         |            | Diorite: exclusively brecciated and recemented section containg much chlorite. Possible sulphides.                                                                       |
| 234.88      | 237.80    |               | 2.92         | D    |    |    |     |    | 3   | 1   | diorite   | dk grey,<br>green    | mg        |                         |            | Fresh diorite.                                                                                                                                                           |

ß

8

1

.

h

| From<br>(m) | To<br>(m) | Sample<br>No. | Width<br>(m) | Sulp | ру  | ср | gal | ро | mag | qtz | Lithology            | Colour                       | Size | Structure                    | Alteration | Comments                                                                                                                                                                                                                                            |
|-------------|-----------|---------------|--------------|------|-----|----|-----|----|-----|-----|----------------------|------------------------------|------|------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 237.80      | 239.10    | D-1315        | 1.30         | <1   | 100 |    |     |    | 3   | 2   | diorite              | dk grey,<br>green,<br>orange | -    |                              | kspar      | Fresh diorite with two zones 15 cm wide of extensive<br>potassic alteration along fracture zones filled with<br>quartz carbonate veins 2-3mm wide. Possible<br>sulphides.                                                                           |
| 239.10      | 240.88    |               | 1.78         | 0    |     |    |     | -  | 3   | 1   | diorite              | dk grey,<br>green            | mg   | sheared &<br>re-<br>cemented |            | Fresh diorite with minor chlorite-lined fracture zones.                                                                                                                                                                                             |
| 240.88      | 241.88    | D-1316        | 1.00         | <1   | 100 |    |     |    | 3   | 2   | diorite              | dk grey,<br>green            | mg   | sheared &<br>recemented      | kspar      | Mostly fresh diorite with minor potassic alteration<br>near an extensively sheared and recemented zone 80<br>mm wide at 30°ca. Possible sulphides.                                                                                                  |
| 241.88      | 242.88    | D-1317        | 1.00         | <1   | 100 |    |     |    | 2   | 10  | dio,qtz-<br>fsp vein | dk grey,<br>orange           | -    |                              |            | Quartz feldspar veining injected into relatively fresh<br>diorite. Edges of the vein are well defined.                                                                                                                                              |
| 242.88      | 244.35    |               | 1.47         | 0    |     |    |     |    | 3   | 0   | diorite              | dk grey,<br>green            | mg   |                              |            | Fresh diorite.                                                                                                                                                                                                                                      |
| 244.35      | 245.35    | D-1318        | 1.00         | <1   | 100 |    |     |    | 2   | 2   | diorite              | dk grey,<br>green            | -    | Shearing                     |            | Fresh diorite containing two zones of extensive shearing at 20-30°ca of 10 cm true width.                                                                                                                                                           |
| 245.35      | 254.85    |               | 9.50         | 0    |     |    |     |    | 3   | 1   | diorite              | grey,<br>green               | mg   | fractured                    | kspar      | Fresh diorite with rare potassic alteration for up to 10<br>mm on either side of 1 mm-wide shear zone filled<br>with quartz carbonate. Highly fractured 251.65-<br>252.07.                                                                          |
| 254.85      | 255.85    | D-1319        | 1.00         | <1   | 100 |    |     |    | 2   | 3   | diorite              | dk grey,<br>green            | mg   |                              | kspar      | Diorite with moderate potassic alteration. Contains 5-<br>10 mm-wide quartz carbonate veins. Possible<br>sulphides.                                                                                                                                 |
| 255.85      | 261.20    |               | 5.35         | 0    |     |    |     |    | 2   | 4   | diorite              | dk grey,<br>green            | mg   |                              | kspar,epi  | Diorite with moderate potassic alteration. Contains 5-<br>10mm-wide quartz carbonate veins. Possible<br>sulphides. Also contains epidote alteration along the<br>centre of a wider quartz carbonate vein (30 mm) at<br>258.39, 259.50, and 259.76m. |
| 261.20      | 262.30    | D-1320        | 1.10         | <1   | 100 |    |     |    | 1   | 1   | diorite              | dk orange                    | mg   |                              | kspar      | Diorite with extensive potassic alteration cut by 0.2-<br>1mm quartz carbonate veinlets, some of which show epidote alteration.                                                                                                                     |

| From<br>(m) | To<br>(m) | Sampie<br>No. | Width<br>(m) | Sulp | ру | ср | gal | ро | mag | qtz | Lithology           | Colour                    | Size | Structure | Alteration | Comments                                                                                                                                                                                                                                                                                                                                   |
|-------------|-----------|---------------|--------------|------|----|----|-----|----|-----|-----|---------------------|---------------------------|------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 262.30      | 264.40    |               | 2.10         | 0    |    |    |     |    | 2   | 1   | diorite             | dk grey,<br>orange        |      |           |            | Diorite with moderate potassic alteration. Contains 5-<br>10mm-wide quartz carbonate veins. Possible<br>sulphides. Also contains epidote alteration along the<br>centre of a wider quartz carbonate vein (30 mm) at<br>258.39, 259.50, and 259.76m. Has 30mm-wide shear<br>zone with extensive chlorite, manganese oxide and<br>magnetite. |
| 264.40      | 272.36    |               | 7.96         | 0    |    |    |     |    | 4   | 1   | diorite             | grey,<br>green            | mg   |           | kspar      | Diorite containing occasional potassic alteration in<br>zones 2-10 cm wide and rare epidote alteration in the<br>k-spar sections. Recemented shear zones at 30°ca at<br>269.80-269.15                                                                                                                                                      |
| 272.36      | 277.60    |               | 5.24         | 0    |    |    |     |    | 3   | 2   | diorite             | grey,<br>green            | mg   |           |            | Diorite is highly sheared and broken.                                                                                                                                                                                                                                                                                                      |
| 277.60      | 280.18    |               | 2.58         | 0    |    |    |     |    | 3   | 0   | diorite             | grey,<br>green            | mg   |           |            | Diorite is relatively fresh with chlorite-lined fracture zones.                                                                                                                                                                                                                                                                            |
| 280.18      | 281.18    | D-1321        | 1.00         | <1   |    |    | -   |    | 0   |     | qtz-fsp<br>vein,dio | orange, dk<br>green       | fg   |           | kspar      | Quartz feldspar vein and potassic altered diorite<br>(~50:50). Minor quartz carbonate veining, 1-2 mm a<br>45°ca. Possible sulphides.                                                                                                                                                                                                      |
| 281.18      | 288.95    |               | 7.77         | 0    |    |    |     |    | 3   | 1   | diorite             | dk grey,<br>green         | mg   |           |            | Fresh diorite containing chlorite shear zones a<br>285.00; 20 mm wide at 15°ca.                                                                                                                                                                                                                                                            |
| 288.95      | 289.65    |               | 0.70         | 0    |    |    |     |    | 2   | 3   | diorite             | grey,<br>green<br>orange, | mg   |           | kspar      | Diorite shows four zones of potassic alteration, each<br>3-8 cm wide at 45°ca.                                                                                                                                                                                                                                                             |
| 289.65      | 297.79    |               | 8.14         |      |    |    |     |    |     |     |                     | dk grey,<br>green         |      |           |            | Mostly unaltered diorite containing several quartz<br>carbonate veinlets from 295.10-297.79. All 0.5<br>10mm wide at 30-90°ca. End of Hole.                                                                                                                                                                                                |
| 297.79      |           |               |              |      |    |    |     |    |     |     |                     |                           |      |           |            | ЕОН                                                                                                                                                                                                                                                                                                                                        |

i

i

i