# GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL AND DIAMOND DRILLING REPORT

## **CHACO BEAR PROJECT**

## FOR

# IMPERIAL METALS CORPORATION

OMINECA MINING DIVISION NTS 94D/2W

56°08'N, 126°56'W



Wesley Raven, P. G&COLOGICAL SURVEY BRANCH ASSESSMENT REPORT

November 27th, 1996

OREQUEST

| British Columbia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ministry of<br>Energy, Mines and<br>Petroleum Resources<br>GEOLOGICAL SURVEY BRANCH                                                                                                                                                                                                                                       | ASSESSMENT REPOR<br>TITLE PAGE AND SUMMAR                                                                                                                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| TITLE OF REPORT [type of survey(s)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                           | TOTAL COST                                                                                                                                                     |  |
| AUTHOR(S) Wesley Raven                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | signature(s) MUC                                                                                                                                                                                                                                                                                                          | sley Raven                                                                                                                                                     |  |
| NOTICE OF WORK PERMIT NUMBER(S)/DATE(S) <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1996-1300293-770<br>R(S)/DATE(S)                                                                                                                                                                                                                                                                                          | 2YEAR OF WORK996                                                                                                                                               |  |
| PROPERTY NAME <u>CHACO BEI</u><br>CLAIM NAME(S) (on which work was done) <u>CHA(</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AR<br>COBEAR 1                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                |  |
| MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN_<br>MINING DIVISION_ $Ov(neca)$<br>LATITUDE 56_° $OE'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NTS 94012<br>LONGITUDE 126 • 50                                                                                                                                                                                                                                                                                           | こ<br>(at centre of work)                                                                                                                                       |  |
| 1) J. M. Ashton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2}2                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                |  |
| WINER(S)<br>1) J. M. Ashton<br>MAILING ADDRESS<br>#707-609 W. Has<br>Noncouve, BC<br>VGB 4W4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2)<br>tings St                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                |  |
| OWNER(S)<br>1) J. M. Ashton<br>MAILING ADDRESS<br>#707-609 W. Has<br>Nancouve, BC<br>V6B 4W4<br>OPERATOR(S) [who paid for the work]<br>1) Imperial Metals Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2)<br><u>tings St</u><br><u>popution</u> 2)                                                                                                                                                                                                                                                                               |                                                                                                                                                                |  |
| OWNER(S)<br>1) J. M. Ashton<br>MAILING ADDRESS<br>#707-609 W. Has<br>Nancouver, BC<br>V6B 4W4<br>OPERATOR(S) [who paid for the work]<br>1) Imperial Metals Com<br>MAILING ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2)<br><u>tings St</u><br><u>poration</u> 2)                                                                                                                                                                                                                                                                               |                                                                                                                                                                |  |
| OWNER(S)<br>1) J. M. Ashton<br>MAILING ADDRESS<br>#707-609 W. Has<br>Nancouve, BC<br>V6B 4W4<br>OPERATOR(S) [who paid for the work]<br>1) Imperial Metals Cox<br>MAILING ADDRESS<br># 420-355 Burrend St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2)<br><u>tings_St</u><br><u>popution</u> 2)                                                                                                                                                                                                                                                                               |                                                                                                                                                                |  |
| OWNER(S)<br>1) J. M. Ashton<br>MAILING ADDRESS<br>#707-609 W. Has<br>Nancouve, BC<br>V6B 4W4<br>OPERATOR(S) [who paid for the work]<br>1) Imperial Metals Con<br>MAILING ADDRESS<br># 420-355 Burrend St<br>Vancouva, BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2)<br><u>+1 mgs_St</u><br><u>porution</u> 2)                                                                                                                                                                                                                                                                              |                                                                                                                                                                |  |
| OWNER(S)<br>1) J. M. Ashton<br>MAILING ADDRESS<br>#707-609 W. Has<br>Nancouver, BC<br>V6B 4W4<br>OPERATOR(S) [who paid for the work]<br>1) Imperial Metals Con<br>MAILING ADDRESS<br># 420-355 Burrend St<br>Vancouver, BC<br>Vancouver, BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2)<br>tings St<br>porution 2)                                                                                                                                                                                                                                                                                             |                                                                                                                                                                |  |
| OWNER(S)<br>1) J. M. Ashton<br>MAILING ADDRESS<br>#707-609 W. Has<br>Nancouve, BC<br>VGB 4W4<br>OPERATOR(S) [who paid for the work]<br>1) Imperial Metals Con<br>MAILING ADDRESS<br># 420-355 Burrend St<br>Vancouver, BC<br>Vancouver, BC<br>Vancouver, BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2)<br><u>tings St</u><br><u>peration</u> 2)<br>graphy, structure, alteration, mineralization, size                                                                                                                                                                                                                        | e and attitude):                                                                                                                                               |  |
| OWNER(S)<br>1) J. M. Ashton<br>MAILING ADDRESS<br>#707-609 W. Has<br>Vancouve, BC<br>V6B 4W4<br>OPERATOR(S) [who paid for the work]<br>1) Imperial Metals Con<br>MAILING ADDRESS<br># 420-355 Burrend St<br>Vancouver, BC<br>Vancouver, BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2)<br><u>tings St</u><br><u>poration</u> 2)<br><u>prophy</u> , structure, alteration, mineralization, size<br><u>y a thick succession</u> of<br><u>mensed many of ende</u>                                                                                                                                                | e and attitude):<br><u>t Lower to Middle Junas</u><br>sitic tutts flows and                                                                                    |  |
| OWNER(S)<br>1) J. M. Ashton<br>MAILING ADDRESS<br>#707-609 W. Has<br>Nancouve, BC<br>VGB 4W4<br>OPERATOR(S) [who paid for the work]<br>1) I mperial Metals Cox<br>MAILING ADDRESS<br># 420-355 Burrend St<br>Vancouver, BC<br>Vancouver, BC<br>V | 2)<br><u>tings St</u><br><u>poration</u> 2)<br><u>praphy, structure, alteration, mineralization, size</u><br><u>y a thick succession or</u><br><u>nuprised mainly of ende</u><br><u>at set structures</u> 330-340°                                                                                                        | e and attitude):<br>1 Lower to Middle Junes<br>Sitic tutts, flows and<br>, dips 50-60° southwest                                                               |  |
| OWNER(S)<br>1) J. M. Ashton<br>MAILING ADDRESS<br>#707-609 W. Has<br>Vancouve, BC<br>V6B 4W4<br>OPERATOR(S) (who paid for the work)<br>1) Imperial Metals Cox<br>MAILING ADDRESS<br># 420-355 Burrend St<br>Vancouver, BC<br>Vancouver, BC<br>Va | 2)<br>tings St<br>porution 2)<br>provide 2)<br>graphy, structure, alteration, mineralization, size<br>y a thick succession of<br>mprixed mainly of ender<br>at set structures 330-340°<br>shear 1 brecciated Vugg                                                                                                         | e and attitude):<br>t Lower to Middle Junas<br>Sitic tutts, flows and<br>dips 50-60° southwest<br>y quartz vern from 5-11                                      |  |
| OWNER(S)<br>1) J. M. Ashton<br>MAILING ADDRESS<br>#707-609 W. Has<br>Nancouver, BC<br>VGB 4W4<br>OPERATOR(S) [who paid for the work]<br>1) I mperial Metals Cox<br>MAILING ADDRESS<br># 420-355 Burrend St<br>Vancouver, BC<br>Vancouver, BC     | 2)<br>tings St<br>poration 2)<br>prophy, structure, alteration, mineralization, size<br>y a thick succession or<br>mprised mainly of ender<br>at set structures 330-340°<br>shear Ibrecciated Vugy<br>prite, bornite, chalcobite                                                                                          | e and attitude):<br>t Lower to Middle Junas<br>sitic tutts, flows and<br>dips 50-60° southwest<br>y quantz vein from 5-11<br>, tetrahedrik, pyrit & specular   |  |
| OWNER(S)<br>1) J. M. Ashton<br>MAILING ADDRESS<br>#707-609 W. Has<br>Vancouver, BC<br>VGB 4W4<br>OPERATOR(S) (who paid for the work)<br>1) I mperial Metals Con<br>MAILING ADDRESS<br># 420-355 Burrend St<br>Vancouver, BC<br>Vancouver, Vancouver, BC<br>Vancouver, Vancouver,                        | 2)<br><u>tings St</u><br><u>poration</u> 2)<br><u>prophy, structure, alteration, mineralization, size</u><br><u>y a thick succession of</u><br><u>unprised mainly of ende</u><br><u>at set strukes 330-340°</u><br><u>shear Ibrecciated Vugy</u><br><u>prite, bornite, chalcosite</u><br><u>Assessment REPORT NUMBERS</u> | e and attitude):<br>+ Lower to Middle Junes<br>Sitic tutts, flows and<br>, dips 50°60° southwest<br>y quartz vern from 5-11<br>, tetrahedrik, pyrit + specular |  |

#### SUMMARY

A Phase I and II exploration program consisting of prospecting, mapping, rock and soil geochemical sampling, geophysical surveys (Max-Min) and diamond drilling was completed on the Chaco Bear Project on behalf of Imperial Metals Corporation. The property is located approximately 160 kilometres north of Smithers, B. C., in the Skeena Mountains. The property initially consisted of four 4-post claims (totalling 80 units) with five 4-post claims (totalling 100 units) that were added to the land position at the start of the Phase II program.

This report describes the exploration program completed intermittently on the claims from August 29 to September 11, 1996 (Phase I) and October 15 to October 27, 1996 (Phase II). Phase I work consisted of general prospecting, geological mapping and rock sampling throughout the property with a total of 193 rock samples collected and sent for assay. Phase II work consisted of claim staking, grid based geophysical surveys (Max-Min) totalling 3.85 line-km and 455.8 metres (1495 feet) of BQ-size diamond drill core in five holes.

The Phase I program was highly successful in outlining numerous areas throughout the claims reporting anomalous gold-copper-silver values. The anomalous samples are mostly all from narrow carbonate-quartz veins, 0.1 to 1.0 metres wide, that have been brecciated, enclosing angular fragments of andesitic wallrock often with well developed quartz crystals indicating open space growth. Mineralogy of the veins includes pyrite, chalcopyrite, bornite, tetrahedrite (?) specular hematite, and lesser galena and sphalerite with malachite and azurite stain. Values obtained from grab samples include highs of 25.52 g/t gold (0.744 oz/ton); 10,530 g/t silver (307.09 oz/ton), 36.90% copper, 2.93% lead and 5.63% zinc.

The Phase II program attempted to follow up on some of the better areas outlined during Phase I exploration. Severe winter conditions hampered the program throughout its duration and severely limited the number of suitable drill pad locations. The weather confined the drilling to the northwest trending creek located off the northwest edge of the unnamed centrally located lake. Four holes from two setups were drilled to test an area of fault bounded carbonate-quartz veining and the final hole was drilled to test a geophysical conductor outlined by the Max-Min survey.

The results received from the Phase I and II programs are very encouraging and further work is recommended. Prior to undertaking further field surveys, a Phase III exploration program should include acquisition of both the landsat and radar images of the property and preparation of an orthophoto base map to provide better control for data plotting. Field surveys should be broken down into two types: preliminary prospecting, mapping, stream sediment geochemistry and rock sampling on the newly staked Chaco Bear 5-9 claims (Phase IIIa), and follow-up surveys on the original Chaco Bear 1-4 claims (Phase IIIb). The follow-up surveys should include continued prospecting, detailed geological mapping, grid based ground geophysics (magnetic, VLF-EM,

horizontal loop and induced polarization), trenching, and diamond drilling. It is estimated that 1,500 metres (5,000 feet) will be required to test targets that were not drilled during the Phase II program. The Phase IIIa program on the new claims is estimated to cost \$77,000 and take three weeks to complete. The Phase IIIb program on the original claims is estimated to cost \$475,000 and take 1-2 months to complete for an aggregate cost of \$552,000. The Phase IIIb program is not contingent upon successful completion of Phase IIIa.

# TABLE OF CONTENTS

ŧ٩

ألفنه

**1** 

لک

44

ژن ا

**1** 

فنك

45

ø

100

| Summary                         |    |
|---------------------------------|----|
| Introduction                    | l  |
| Location and Access             | 1  |
| Physiography and Vegetation     | 2  |
| Claim Status                    | 2  |
| Regional Geology                | 3  |
| History and Previous Work       | 4  |
| Property Geology                | 9  |
| Exploration Program             | 12 |
| Mapping and Prospecting         | 14 |
| Soil Geochemical Surveys        | 20 |
| Property Geophysics             | 22 |
| Diamond Drilling                | 22 |
| CB-96-1 & 2                     | 23 |
| CB-96-3 & 4                     | 24 |
| CB-96-5                         | 26 |
| Discussion                      | 29 |
| Conclusions and Recommendations | 31 |
| Statement of Costs              | 34 |
| Budget Estimate                 | 35 |
| Certificate of Oualifications   |    |
| W. Raven, P. Geo.               |    |
| Bibliography                    |    |
| Promo Prakan                    |    |

# LIST OF TABLES

| Table 1 | Claim Information              |    |
|---------|--------------------------------|----|
|         | A second and Deals Samplag     | 17 |
| Table 2 | Anomalous Rock Samples         |    |
| Table 3 | Drillhole Location Information | 23 |
| Table 4 | Drilling Assay Intersections   | 27 |
| Table 5 | Petrographic Analysis          |    |

# Page

,

# LIST OF FIGURES

| Figure 1  | Location Map                            | Following Page 1  |
|-----------|-----------------------------------------|-------------------|
| Figure 2  | Claim Map                               | Following Page 3  |
| Figure 3  | Regional Geology Map                    | Following Page 4  |
| Figure 4  | Area of Detailed Surveys                | Following Page 13 |
| Figure 5a | Rock Sample Location and Number         | In Pocket         |
| Figure 5b | Rock Sample Geochemistry Au, Ag         | In Pocket         |
| Figure 5c | Rock Sample Geochemistry Cu, Pb, Zn     | In Pocket         |
| Figure 6a | Rock Chip Line #1                       | Following Page 15 |
| Figure 6b | Rock Chip Line #2                       | Following Page 19 |
| Figure 6c | Rock Chip Line #3                       | Following Page 20 |
| Figure 7a | Soil Geochemistry (Au)                  | Following Page 20 |
| Figure 7b | Soil Geochemistry (Ag)                  | Following Page 21 |
| Figure 7c | Soil Geochemistry (Cu)                  | Following Page 21 |
| Figure 8a | Max-Min Survey Profiles 220 & 880 Hz    | Following Page 22 |
| Figure 8b | Max-Min Survey Profiles 3520 & 7040 Hz  | Following Page 22 |
| Figure 8c | Max-Min Survey Profiles 14, 28 & 56 kHz | Following Page 22 |
| Figure 9a | DDH Section CB-96-1&2                   | Following Page 23 |
| Figure 9b | DDH Section CB-96-3&4                   | Following Page 25 |
| Figure 9c | DDH Section CB-96-5                     | Following Page 27 |

# LIST OF APPENDICES

| Analytical Results       |
|--------------------------|
| Drill Logs               |
| Petrographic Report      |
| Rock Sample Descriptions |
|                          |

1

**.** 

**INTRODUCTION** 

This report summarizes the results of Phase I and Phase II exploration programs completed on the Chaco Bear Project on behalf of Imperial Metals Corporation. Imperial is optioning the property from a private individual, J. Ashton, over a seven year agreement. Phase I work consisted of preliminary prospecting, geological mapping and rock sampling (August 29 to September 11, 1996). Phase II surveys consisted of claim staking, ground geophysics, and diamond drilling (October 15 to 27, 1996).

#### LOCATION AND ACCESS

The property is located in the Omineca Mining Division in NTS map area 94D/2. The claims are located at the headwaters of the Driftwood River approximately five kilometres west of Bear Lake, which is approximately 160 kilometres north of Smithers, B. C. The claims are centred at 56°08'N latitude and 126°56'W longitude (Figure 1).

Access to the property is obtained by helicopter from Smithers, B. C. A network of logging roads up the Nilkitkwa River valley to the Nilkitkwa logging camp provide road access to within 45 kilometres south-southeast of the property. Alternatively, a larger camp could be mobilized to the north end of the Bear Lake via float plane with helicopter support providing daily access to the claims. The B.C.R. Takla Lake extension rail line leaves from Fort. St. James and passes by the east side of Bear Lake providing the closest non-airsupported access. The rail access would provide the cheapest transportation of heavy equipment to the area.



#### PHYSIOGRAPHY AND VEGETATION

The Chaco Bear claims encompass the headwaters of the Driftwood River valley in the Skeena Mountains district. The topography is quite rugged with steep sided mountain slopes and knife edge ridges. Elevations range from 1,380 metres in the Driftwood River Valley and 1,020 metres in the northeast portion of the property, to 2,183 metres on the ridge traversing the southwestern portion of the claims.

Most of the property is above treeline in alpine terrain. Alpine vegetation consists of small bushes and grasses with local areas of moss. Lower portions of the Driftwood River valley contain stunted trees including spruce and some pine. Large talus slopes are present throughout the claims and are generally devoid of vegetation except for small mosses and lichen.

The claims are snow covered for a good portion of the year resulting in a fairly narrow window within which to conduct exploration surveys. A typical field season would last from roughly mid-June to mid-October.

## CLAIM STATUS

The property is comprised of nine contiguous mineral claims, the Chaco Bear 1-9 claims, located in the Omineca Mining Division. The claims are comprised of 180 units encompassing an area of 4500 hectares (11,120 acres). The property initially consisted of four claim blocks totalling 80 units, owned by J.M. Ashton who has a 100% interest. At

the start of the Phase II program five additional claim blocks totalling 100 units were added to the property. These additional claims were staked by Imperial on behalf of J.M. Ashton. Imperial Metals has the option to earn a 100% interest in the project from the vendor over a seven year period. The claim blocks are shown in Figure 2. Table 1 lists relevant information for the respective claims. Complete title opinions and individual option agreements are beyond the scope of this report. Detailed information on these matters can be obtained from the company or its solicitors.

| Claim Name   | Record No. | No. of units | <b>Current Expiry Date</b> |
|--------------|------------|--------------|----------------------------|
| Chaco Bear 1 | 312051     | 20           | August 6, 1997             |
| Chaco Bear 2 | 312052     | 20           | August 6, 1997             |
| Chaco Bear 3 | 312053     | 20           | August 6, 1997             |
| Chaco Bear 4 | 312054     | 20           | August 6, 1997             |
| Chaco Bear 5 | 352114     | 20           | October 18, 1997           |
| Chaco Bear 6 | 352115     | 20           | October 18, 1997           |
| Chaco Bear 7 | 352116     | 20           | October 17, 1997           |
| Chaco Bear 8 | 352117     | 20           | October 17, 1997           |
| Chaco Bear 9 | 352118     | 20           | October 17, 1997           |

**TABLE 1 - CLAIM INFORMATION** 

#### **REGIONAL GEOLOGY**

The area was first mapped by C. S. Lord between 1941 to 1945, the results of that work were reported in 1948 in Geological Survey of Canada Memoir 251. Lord classified the rocks in the area as belonging to the Upper Jurassic division of the Takla Group Volcanics. He further subdivided the units into a lower section of predominantly volcanic rocks and an upper section of mostly sedimentary rocks, with lesser intercalated

. . . . . . .



volcanic units. Richards, 1976, has re-classified the rocks as forming part of the Hazelton Group volcanics.

The Lower to Middle Jurassic aged Hazelton Group, in the McConnell Creek map area, is further subdivided into an upper unit of mostly sedimentary rocks and a lower unit of mostly volcanic rocks. The Chaco Bear claims are underlain primarily by lower members of the Hazelton Group volcanics (Figure 3).

#### HISTORY AND PREVIOUS WORK

Very little recorded exploration work has been completed on the Chaco Bear claims but the property has been examined by previous operators. A brief summary of the previous work history is provided below:

- 1948 Area is mapped as part of a regional survey of the McConnell Creek Area by C. S. Lord, Geological Survey of Canada Memoir 251.
- 1968 Cominco stakes the Dave claims over a portion of the present day claims and completes electromagnetic (horizontal loop) geophysical surveys totalling 7.8 line-miles. The survey was unsuccessful in locating any conductive zones.
- 1984 Suncor Inc. Resources Group of Calgary, Alberta, stakes the Peteka 1-4 claims and completes preliminary stream sediment sampling and prospecting. The surveys outline anomalous gold and copper values in the stream sediments collected from the Driftwood River valley as well as from the rock samples.
- 1985 Suncor Inc. Resources Group completes further detailed exploration surveys consisting of prospecting, geological mapping, soil geochemical surveys, rock sampling, and magnetic and VLF-EM geophysical surveys. Most of the work was completed over a 15.25 line km grid along the Driftwood River valley



over the central portion of the present day Chaco Bear 3 claim. The surveys were successful in locating several areas of anomalous soil and rock geochemistry as well as zones of anomalous magnetics and several VLF-EM conductors.

A number of showings with various degrees of development are indicated as being on or close to the property based on information from Minfile map 94D, McConnell Creek, 1992. Within the fault bounded block of Hazelton volcanics between the Driftwood River and Bear Lake there are 12 showings; west of the fault block there are 8 showings.

A review of the Minefile data has provided the following generalizations: all of the showings west of the fault block are hosted in sedimentary rocks of the Middle and Upper Jurassic Bowser Lake Group. These invariably have been intruded by intrusive rocks ranging from diorite to granodiorite to felsic dykes, all believed to be related to either the Eocene Kastberg Intrusions or the Cretaceous Bulkley Intrusions. Five of the eight showings (Mot 1, Squingula, Mot 2, FC, and Gold #8) are hydrothermal veins/shear veins hosting variable amounts of pyrite, chalcopyrite, galena, sphalerite, tetrahedrite, pyrrhotite and arsenopyrite. Most have reported anomalous values of gold and silver, with lesser copper.

The most advanced of these is the Mot 1, where five shear zones are hosted in a three kilometre long gossan zone. The best results have come from the Huestis Zone, where a 1.5 metre wide drill intersection assayed 20.6 g/t gold and 322.3 g/t silver. On the Goudridge Zone, a 3.0 metre surface chip sample assayed 11.9 g/t gold and 16.1 g/t

silver. Other encouraging results are found on the Squingula showing, 23.5 g/t gold and 115 g/t silver, and the Gold #8 showing, where a 5.0 cm wide quartz vein assayed 0.53% lead, 0.29% zinc, 368.3 g/t silver and 16.73 g/t gold.

The remaining three showings are characteristic of porphyry style mineralization. The Quin Showing has reported low grade disseminated molybdenum with assays of 0.05% molybdenum. The MP showing hosts disseminated chalcopyrite in fault bounded metavolcanic rocks and disseminated molybdenum in pyrite felsic dykes and sills. The Horn showing is comprised of a 300 by 2000 metre porphyry plug intruding argillite with disseminated molybdenite and variable chalcopyrite mineralization.

The showings within the fault bounded block fall into three main categories, shear veins, (8) stratabound sedimentary replacements, (3) and porphyry style (1) with shear veins the most prevalent. Four of the twelve showings, all shear veins, lie within the property, the Bearnx, Dave, Coccola and Peteyaz. The Bearnx and Dave were likely examined by Canadian Superior Exploration Ltd., 1973 and also by Suncor, 1985. A grab sample of a quartz-carbonate vein collected by Suncor (Bearnx - Chaco Bear 1) assayed 5.97 g/t gold and 4.4% copper, this same target area was tested by four of five drill holes that are the subject of this report.

The Dave showing (Chaco Bear 4) consists of chalcopyrite, specular hematite and calcite in quartz veins and localized shear zones. The veins are narrow, irregular, and fracture controlled. The Coccola (Chaco Bear 2) and Peteyaz (Chaco Bear 3) are both

high grade narrow shear veins assaying 460.8 g/t silver and 2.6 g/t gold; and 8.25% copper, 5.6 g/t gold and 185.8 g/t silver respectively. Three of the remaining four shear vein systems, the Magnum, Spur, and Copper, have also returned anomalous gold and silver assays. At the Magnum showing a north-northwest trending fault bisects the property and contains chloritization and silicification Samples of bornite and chalcopyrite in malachite stained fractures and veins from a blasted surface cut assayed 1.84% copper and 32.9 g/t silver over 8.23 metres. The Copper Showing is similar to the Magnum with a 2.44 m sample assaying 1.2% copper and 226.1 g/t silver. At the Spur Showing near the contact between volcanic and volcaniclastic rocks, chalcocite, covellite, bornite, and chalcopyrite as disseminations and fracture fillings were drill tested by the Canadian Nickel Company Limited (Cominco) with a 5.79 m intersection assaying 2.36% copper and 48.34 g/t silver.

Two of the three stratabound sedimentary replacement type deposits are hosted in Hazelton Group sedimentary rocks (Red and Topo) with the third, the Pat showing confined to a volcanic horizon and maybe better described as a stratabound shear zone. The most advanced of the three is the Red, or Spring occurrence, where finely disseminated chalcopyrite, pyrite and lesser bornite is found in a fossiliferous dolomitic limestone that can be in excess of 30 metres thick. Diamond drilling has outlined a drill indicated resource of 5,000,000 tonnes grading 0.5% copper and 11.25 g/t silver.

More recent work has been undertaken by International Skyline Gold Corp. on its Bear Lake Property which adjoins the Chaco Bear property along the southern border.

The property has been previously examined by Inco as a porphyry copper-molybdenum prospect hosted in Eocene Kastberg Intrusions. The stock is comprised primarily of quartz monzonite porphyry and quartz latite porphyry and intrudes Hazelton Group volcanic and volcaniclastic rocks. Alteration includes intense potassic alteration within the monzonite, the strongest mineralization is associated with this alteration and consists of quartz veinlets bearing chalcopyrite, molybdenite, and pyrite.

Previous drilling by Inco in the 1970's consisted of ten holes, two of which returned encouraging results including 0.226% copper and 0.05% molybdenum over 140 metres in hole DDH 03 and 0.270% copper and 0.061% molybdenum over 159 metres in hole DDH 08. Skyline drilled four holes, the best results came from DDH 14 which assayed 0.320% copper and 0.106% molybdenum over 121 metres. Skyline concluded that the grades tended to increase with depth and towards the north and plan further work in 1997 (George Cross Newsletter, Oct., 10, 1996).

One of the most important discoveries in the area include the Sustut copper deposit, hosted in Upper Triassic Savage Mountain Formation (Takla Group) volcanics of predominantly andesitic to basaltic composition. The volcanics are mostly red to green in colour and range from massive to pillowed flows, to breccia and bedded tuffs to tuffaceous siltstones and sandstones and a thick pile of volcaniclastic units, mainly agglomerates. The volcanics are overlain by a sequence of argillaceous to arenaceous clastic sedimentary rocks, largely of volcanic composition. Intrusive rocks in the vicinity of the deposit are restricted to subvolcanic andesite to dolerite dykes.

The deposit consists of a sheet-like or tabular zone that is up to 76 metres thick containing hematite, pyrite, chalcocite, bornite, chalcopyrite, and native copper. The mineralization is believed to have been derived from the metamorphism of copper-rich basaltic rocks with the more porous and permeable sections of the host lithology providing a conduit for the solutions. The ore fluid was derived at depth in an oxidizing environment with sulphide precipitation occurring when a reducing environment was encountered. Unclassified reserves for the deposit are 50 million tons grading 1.25% copper.

## PROPERTY GEOLOGY

No detailed geological mapping was undertaken during the Phase I and II exploration programs. The Phase I program was comprised of prospecting and very general geological mapping around areas of interesting surface mineralization. The most detailed work available on the property was completed by Suncor Inc. Resources Group in 1984 and 1985. That work focused on the southern half of the present day claims, east and west of the Driftwood River.

The property is underlain by a thick succession of intermediate to basic metavolcanic rocks of the Hazelton Group with minor intercalated sedimentary units. Most of the units mapped are believed to be of andesitic composition and consist of purple to grey-green massive flows, ash tuff, lapilli tuff and agglomerate. Minor felsic volcanics were observed in the east-central portion of the claims. These units are cut by

fine grained, greenish-white, locally flow banded felsic dykes possibly of rhyolitic composition or aphanitic dykes related to the Kastberg intrusions. Minor siliceous metasedimentary volcaniclastic rock was observed in a few outcrops and a black, well bedded mudstone was mapped at higher elevations on the western portion of the property.

The volcanic flows are fine grained, massive, generally darker green units that are locally amygdaloidal and moderately chloritized. The amygdules are mostly calcite filled but occasionally silica is observed and slender laths of plagioclase feldspar are common. The unit is locally magnetic and contains minor traces of disseminated pyrite.

The most common unit observed is a grey-green to purple andesite tuff. It ranges in colour from green to reddish purple to a grey-green colour with a faint reddish-purple tinge. This unit underlies the bulk of the property and varies from a fine grained ash tuff to lapilli tuff with subangular fragments, to a coarse agglomerate with subangular to subrounded fragments up to 50 cm. The fragments are often the same composition as the matrix making them hard to distinguish on fresh surfaces but they are easily indentifiable on weathered surfaces. Locally the agglomerate fragments are weakly to moderately epidote altered making them quite prominent.

Local sections of reddish-purple feldspar porphyry were observed. These are believed to be volcanic in origin as they do not appear to cross-cut the volcanic lithologies. They may represent thicker portions of flows or have a trachytic texture.

Felsic volcanic rocks were observed in the east central portion of the claims in an area locally called the Saddle Zone. It is not clear if this unit is a primary rhyolite or if the felsic nature of the rock is due to intense silicification. The unit consists of a fine grained, almost cherty to coarser grained, sugary, white coloured rock. The unit contains trace to 2% fine grained disseminated pyrite and weathers a rusty yellow-brown gossanous colour.

Minor sedimentary rocks were observed in two areas of the property. The first area is located in the central portion of the claims where minor outcrops of a pale green coloured, weakly laminated volcaniclastic unit were observed. The unit was observed over a very local extent in an area of faulting and may represent relic fault blocks of some pre-existing unit.

On the central portion of the Chaco Bear 3 claim a banded mudstone was observed at higher elevations. The unit is comprised of dark black muddy layers alternating with yellowish-green silty layers and varies in thickness from 5 to 15 metres. The rugged nature of the terrain makes it difficult to trace this unit.

General structures observed on the claims are confined primarily to major joint sets and shear zones; primary bedding was observed in a mudstone unit and at what is believed to be a conformable contact between a fine andesite tuff and a coarse agglomerate unit.

The most prominent joint set strikes approximately 330° to 340° and dips 50° to 60° southwest. The three prominent gossan zones on the Chaco Bear 3 claim follow this trend as do many of the mineralized vein systems. Another strong fracture pattern is orientated 040° to 050° dipping 60° to 70° to the northwest. A weaker pattern is also observed trending 000 to 010° dipping moderately to the west. The 330°-340° is considered the most important as most of the better assays received are from veins orientated along this trend.

Bedding, and flow direction of the volcanics, is also oriented at 330° to 340° but dips to the northeast at approximately 40°. One fault zone, following the dominant joint trend, hosts the Bearnx showing; no determination of offset was possible.

### EXPLORATION PROGRAM

The work completed on the property was conducted in two phases. Phase I was completed between August 29/96 and September 11/96 with Phase II work from October 15 to October 27, 1996. The Phase I program consisted of prospecting, reconnaissance geological mapping and rock sampling throughout the property. The work was intended to re-examine anomalous areas reported by Suncor (1984 & 1985) and to gain a general understanding of the styles of mineralization (epithermal veins/porphyry) present within the claims. A fly camp was established on the east side of the large lake in the central part of the property to facilitate examining the northern half of the property. The camp

was then moved to the west side of the Driftwood River to work the southern half of the property. A total of 193 rock chip and grab samples were collected and sent to Eco-Tech Laboratories Ltd. for a 28 element ICP analysis. Any gold, silver, or copper values exceeding the ICP detection limits were subsequently assayed.

The Phase II program was intended to follow up anomalous results from the Phase I work. Phase II exploration was comprised of claim staking (5 new claims totalling 100 units), electromagnetic (Max-Min) geophysical surveys (3.85 line kilometres) and diamond drilling of five BQ-sized holes totalling 455.8 metres (1490 feet) (Figure 4). The program was hampered throughout its duration by winter conditions which deteriorated as the program progressed. Rapidly accumulating snow limited the duration of the Max-Min survey and hampered the drill program. Several highly prospective areas targeted for drilling were inaccessible due to deep snow conditions on steep mountainous slopes.

The Max-Min survey was completed by personnel from S. J. Geophysics Ltd. of Delta, B. C. utilizing an Apex Parametrics Ltd. Max-Min I-10. The survey was completed on a flagged line grid which was not slope corrected.

The diamond drilling was completed by Falcon Drilling Ltd. of Prince George, B. C. utilizing a Falcon 1000 drill designed for fly jobs. A total of 125 core samples were split and sent to Eco-Tech Laboratories Ltd. in Kamloops, B. C. All samples were



analyzed for gold by fire assay and a 28 element ICP analysis. Selected samples were also assayed for copper.

#### Mapping and Prospecting

The preliminary mapping and prospecting program was highly successful in outlining several areas with anomalous gold-silver-copper results (Figures 5a, 5b, and 5c). In the northeastern claim block (Chaco Bear 2), three main areas were located, two in the north of the claim (Area A, Coccola) and one in the south (Saddle Zone). Several anomalous samples were found on a ridge located north-northeast of the fly camp location, tested by samples BD 1 to 6 in an anomalous region called Area A. Mineralization consists of pyrite, chalcopyrite, bornite, possible tetrahedrite and galena, and specular hematite with malachite staining in quartz-carbonate shear-breccia veins. Assays ranged up to 13.28 g/t gold (BD96-3) 276.6 g/t silver (BD96-5) and 3.72% copper (BD96-6) with samples BD96-3 and 5 also assaying 3.52% and 3.63% copper respectively.

Further east of this area, samples BD96-8 to 12 were collected in the area of what is believed to be the Coccola showing, as several old pits, now filled with debris, were located and sampled. All of the samples reported anomalous gold assays, BD96-8 assayed 555 ppb gold with the remaining samples ranging from 2.01 to 6.16 g/t gold and up to 100.7 g/t silver. Sample BD96-11, a grab sample of a 6-10 cm wide siliceous vein assayed 6.16 g/t gold, 47.4 g/t silver, 6.48% copper and 1.76% zinc.

In the southern portion of the Chaco Bear 2 claim block, an area known as the Saddle Zone returned highly anomalous values from float material believed to be weathered in situ. The float boulders from the weathered outcrop form a linear trend before disappearing under snow. There is evidence of previous work in the area of these boulders as one old picket was found together with a small trench; the trench did not hit bedrock and was still in talus. Float boulders consist of vuggy quartz veins with strong limonite staining. Mineralization consists of chalcopyrite and tetrahedrite(?) with strong malachite and azurite staining in total concentrations of up to 30%. Sample WR96-12 assayed 17.63 g/t gold, 1,066 g/t silver, 2.41% arsenic and 6.16% copper.

The northwestern claim block, Chaco Bear 1, is also host to areas of multiple carbonate-quartz shear/breccia veins, with three main areas of interest. The first area, known as the Bearnx showing, is located in a creek, northwest of the main lake, and was the focus of the Phase II diamond drilling program. The showing consists of a fault bounded zone of carbonate-quartz veining with veins up to 0.4 m wide. The zone is hosted in a green to reddish andesite tuff. Mineralization consists of 5-20% chalcopyrite and 5-10% specular hematite over narrow widths of 10-20 cm in quartz flooded sections within carbonate veins. The chip sampling was completed across the width of the zone in one location and across portions of the zone in other locations with the sampling restrained by topography (Figure 6a). The longest chip line across the zone assayed 1.493 g/t gold, 14.7 g/t silver and 0.58% copper over 7.0 metres. A second line, 7 metres north, assayed 0.486 g/t gold, 1.2 g/t silver and 0.85% copper over 5.0 metres.



The second area, Higrade Zone, occurs on a ridge top near the claim boundary between the Chaco Bear 1 & 2 and Chaco Bear 6 & 7 mineral claims. One grab sample, RR96-22, assayed 2.31 g/t gold, 31.0 g/t silver and 3.68% copper. Spectacular results were obtained from a float sample (WR96-5), which assayed 10,530 g/t silver (307.09 oz/ton) and 36.9% copper. The sample is likely the result of weathering in place of outcrop that has formed a very linear trend up to near the top of the ridge. Trenching will be required to locate the vein in place.

The third area of interest, Area B, occurs in an area of rugged terrain on the west side of the central lake. In this area there are a number of vuggy quartz-carbonate shear/breccia veins which range in width from 0.05 to 1.0 metres and have been traced over a strike length of several hundred metres. Grab and chip samples from these veins have returned a number of anomalous gold-silver-copper assays in samples RR96-7 to 19. The results are given in Table 2 - Anomalous Rock Samples.

| Sample No. | Sample Type &  | Rock     | Au g/t | Ag g/t | Cu%    | Vein     |
|------------|----------------|----------|--------|--------|--------|----------|
|            | Width (Grab or | Туре     | (ppb)  | (ppm)  | (ppm)  | Width cm |
|            | Chip)          |          |        |        |        |          |
| RR96-7     | Grab           | vein     | (5)    | (5.8)  | (5242) | 30       |
| RR96-8     | Grab           | vein     | (5)    | (<0.2) | (834)  | 5        |
| RR96-9     | Grab           | vein     | 2.75   | (3.4)  | 4.67   | 80       |
| RR96-10    | Grab           | vein     | 1.86   | (1.0)  | (8743) | 3        |
| RR96-11    | Grab           | vein     | 4.94   | (2.4)  | 2.86   | 5        |
| RR96-12    | Grab           | wallrock | (60)   | (6.8)  | 0.32   | 300-400  |
| RR96-13    | Grab           | vein     | 7.69   | (1.4)  | (2973) | 50       |
| RR96-14    | Grab           | vein     | (125)  | (6.8)  | 2.69   | 30       |
| RR96-15    | Chip-1.0 m     | vein     | (680)  | (1.4)  | (1357) | 100      |
| RR96-16    | Grab           | vein     | 7.35   | 392.2  | 6.94   | 50       |
| RR96-17    | Grab           | vein     | (105)  | (2.0)  | 2.56   | 3-20     |
| RR96-18    | Grab           | vein     | 5.01   | 61.8   | 1.84   | 10-20    |
| RR96-19    | Chip-1.0 m     | vein     | (355)  | (1.8)  | (6073) | 100      |
| WR96-15    | Chip-20 cm     | vein     | (5)    | (0.4)  | (11)   | 20       |

 TABLE 2 - ANOMALOUS ROCKS SAMPLES

These results demonstrate the ability of the veins to carry economic grades of gold and copper. Although generally narrow, the veins are clustered together and may have a source at depth that coalesces into a larger, singular vein or a deeper porphyry style vein stockwork; further work is certainly warranted in this area.

In the southern portion of the property, Chaco Bear 3 & 4 claims, the zones of interest can be divided into three main types: narrow shear veins, porphyry style pyritic halo or broad shear zone, and possible stratabound mineralization.

Brecciated, shear hosted carbonate-quartz veins are present throughout the area, like those observed in the northern half of the property. The veins are generally narrow, 5-20 cm, but locally attain widths of up to 1.2 metres. The mineralogy is slightly

different than that observed on the northern half of the property in that pyrite and specular hematite are much more common at the expense of chalcopyrite and tetrahedrite (?). Anomalous results were obtained from some of the samples including 22.03 g/t gold from sample RR96-43, a grab from a 10 cm wide carbonate vein containing minor pyrite. Other anomalous assays include 2.82 g/t gold, 5.0 ppm silver and 7452 ppm copper from sample RR96-37, a selected sample from a 5.0 cm wide quartz-calcite vein with up to 20% specular hematite, and 7.06 g/t gold from sample BD96-47, a grab from a 15.0 cm wide quartz-hematite vein.

On the Chaco Bear 3 claim there is a large ridge which transects the claim from southeast to northwest. Approximately halfway up this ridge is a prominent gossan zone well exposed on three "knobs" with a strike length of 1.3 km where exposed. This "Gossan Zone" appears to line up with that seen on the east side of the Driftwood River which corresponds to the Bear Lake Property drilled by Skyline Gold Corp. The zone is hosted in purple to grey green andesite tuff which is believed to have been variably altered to a pale greenish-white colour due to silicification and sericitization. Pyrite is ubiquitous as fine disseminations in concentrations of 2 to 10%.

Grab samples were collected from various locations along the Gossan Zone and returned some encouraging assays though none of the magnitude received from the narrow shear/breccia veins. Assay values from various samples ranged from 5 to 190 ppb gold and 0.6 to 13.0 ppm silver. Base metal values are generally low, less than 100 ppm though elevated results were received including highs of 315 ppm copper, 1194 ppm lead

and 827 ppm zinc, all from sample BD96-42. One chip sample (Chip Line #2) was completed over a portion of the gossan in the middle of the exposed zone. A total of 24 samples, each 2.0 metres in length, for a total length of 48.0 metres, was completed. Gold assays are generally low, ranging from 5 to 30 ppb, silver ranged from 0.2 to 2.4 ppm. Copper values were also low however some interesting results were received for lead and zinc. The lead and zinc assays are consistently higher than those obtained from any other area sampled within the claims. The entire sample line assayed 1.2 g/t silver, 220 ppm lead and 293 ppm zinc over 48.0 metres including 1.7 g/t silver, 387 ppm lead and 316 ppm zinc over 26.0 metres (Figure 6b).

The final area of interest was not fully defined during the surveys as it appears to have a large extent. It consists of a very rusty weathering agglomerate called the Ferruginate Zone. The unit is well exposed at the headwaters of the two easterly draining tributaries of the Driftwood River on the Chaco Bear 4 claim and crops out both sporadically in the crcek beds down to the Driftwood River itself and partway up the eastern side of the valley. In places it appears as a cap (3-4 m thick) on a less iron altered andesitic agglomerate. In other outcrops, by the Driftwood River, it appears to be at least 30 m thick. Exposures of the unit give the impression that it forms a dip slope. It is unclear whether the intense gossan is the result of surficial weathering or hydrothermal alteration.

Massive specular hematite veins were found at various locations and elevations throughout the unit; the veins range from 0.05 to 0.4 m thick. A narrow quartz vein





containing up to 40% massive specular hematite, 10% pyrite and minor magnetite, sample RR96-24, assayed 25.52 g/t gold and 1.16% copper. One chip sample line was completed across what is believed to be the strike of the unit; no anomalous results were obtained from this line (Figure 6c).

### Soil Geochemical Surveys

A limited soil sampling program was completed on the property in mid-July, 1996. The data was discussed in an assessment report on the property by the author dated Oct. 10/96. That information is summarized in this report so that all surveys completed on the property in 1996 are contained within one report.

The soil sampling was completed on the same flagged-line grid as the geophysical surveys, as shown on Figure 4. A total of 91 B-horizon samples were collected at approximately 50 metre intervals along the cross-lines; snow conditions dictated the availability of sample locations.

Gold distribution in the soil samples is mostly as single station highs. The majority of samples returned assays results below detection limits, with only three samples reporting values greater than 15 ppb gold. These locations and assays are as follows: L5N, 3+50E (>1000 ppb), L7N, 4+50W (40 ppb) and L7N, 0+70E (45 ppb). The value of >1000 ppb gold is highly anomalous and should be followed up (Figure 7a).





Silver assays are generally fairly low with over half the samples returning values below the detection limits. An arbitrary value of 1.0 ppm was chosen as anomalous. All results  $\geq$  1.0 ppm silver are found on the two southernmost lines, L1N and L3N, with the exception of one value of 1.8 ppm on L11N, 2+20E. Most of these higher values are found as single station highs though there is a north-northeast trend, east of the baseline, on lines 1N and 3N with assays ranging from 1.0 to 2.4 ppm silver. Follow-up work would be required to evaluate the elevated silver values and determine their source (Figure 7b).

Copper assays are also fairly low throughout the grid area with 9 samples assaying greater than 100 ppm copper. These elevated copper results are located in two main areas, one near the west end of the grid on lines 5N and 7N with a high of 162 ppm copper, and the other just east of the baseline, on L3N and L5N, with a high of 218 ppm copper. Single station anomalies are found on L1N, 2+50W (179 ppm) and L1N, 2+50E (339 ppm) (Figure 7c).

In summary, no broadly anomalous trends for gold, silver, and copper are evident from the geochemical survey. However, the line and sample spacing is wide; a more detailed survey may further refine the anomalous areas outlined by the survey. Other elements were analysed but have not been plotted. Ranges for some of these elements are as follows: molybdenum (<1 to 6 ppm), lead (8 to 126 ppm) and zinc (42 to 275 ppm).




## Property Geophysics

A limited horizontal loop (Max-Min) survey was completed over several flagged lines in the northern part of the property (3.85 line-km) and one line in the south. The survey was of a reconnaissance nature to test for possible massive sulphide mineralization at depth, coincident with the mineralization seen at the Bearnx showing which is fault related.

The survey outlined several distinct anomalies. However, these anomalies are suspicious because they are in phase responses alone without any out of phase response which is theoretically possible for a highly conductive feature but is rarely seen in practice. In addition, the anomalies have the same amplitude for both frequencies used. This cannot occur if the anomalies are due to electromagnetic induction in a conductor but can occur if topography and slope are not taken into account by the survey and subsequent data processing.

The out of phase component which is not affected by topography and slope exhibits a few subtle anomalies the most distinct of which indicates a weak conductor at 200E on line 1000N (Figures 8a, 8b, and 8c). The VLF-EM method would be more appropriate given the style of mineralization on the property

### Diamond Drilling

The diamond drilling program was intended to test several prospective target areas but inclement weather conditions confined the program to the area of the Bearnx





:



showing, the only area of relatively level ground requiring minimal pad building to accommodate the drill. All holes were drilled to the east to test westerly dipping structures which, in the case of the -45° holes, was essentially drilling down dip on stratigraphy. As a result most of the holes were in the same rock unit throughout their length, encountering subtle variations of the same unit or same volcanic pile. A total of five BQ-sized holes totalling 455.8 metres were drilled from three locations. Relevant drillhole information is summarized on Table 3 - Drillhole Location Information.

| Hole No. | Northing | Easting | Azimuth | Dip | Length (metres) |
|----------|----------|---------|---------|-----|-----------------|
| CB-96-1  | 3+20     | 0+25    | 060     | -45 | 57.93           |
| CB-96-2  | 3+20     | 0+25    | N/A     | -90 | 155.49          |
| CB-96-3  | 4+00     | 0+25    | 060     | -55 | 43.29           |
| CB-96-4  | 4+00     | 0+25    | N/A     | -90 | 90.55           |
| CB-96-5  | 8+00     | 0+25    | 060     | -45 | 108.54          |

**TABLE 3 - DRILLHOLE LOCATION INFORMATION** 

## CB-96-1&2

Both these holes were collared from the same set-up to test the Bearnx showing in the same area as surface chip line #1. They encountered predominantly chlorite and hematite altered andesite tuff throughout their length. The unit is a red-purple-maroon colour with darker green chloritic sections with coarser grained tuffaceous fragments. The hematite is found as a pervasive constituent throughout the matrix and in sections as a secondary alteration comprised of contorted bands appearing as a stain. Local sections of the unit are a deep reddish colour with no chlorite present (Figure 9a).



Both holes successfully intersected the carbonate-quartz fault bounded breccia zone structure. The zone is comprised of quartz-carbonate veins up to 0.5 metres wide and as stringer veinlets flooding the fault structure. Tension gash infillings, 5-10%, are present throughout the zone which was fractured and brecciated by faulting and subsequently healed with sulphide bearing carbonate-quartz veining. Within the zone are local patches of pale green highly siliceous rock, a product of secondary silicification. Mineralization consists mostly of chalcopyrite as fine disseminations and euhedral cubes up to 4 mm<sup>2</sup> with trace amounts of disseminated pyrite and specular hematite, total sulphide concentration ranges from 2 to 4%.

Hole CB-96-1 intersected the zone from 47.42 to 54.20 metres, an interval which assayed 0.45 g/t gold, 5.61 g/t silver and 0.60% copper over 6.78 m including 0.75 g/t gold, 9.17 g/t silver and 0.86% copper over 3.70 metres from 50.50 to 54.20 metres. Hole CB-96-2 intersected the zone from 73.65 to 82.42 metres with the interval from 75.5 to 82.5 metres assaying 0.49 g/t gold, 4.23 g/t silver and 0.38% copper over 7.0 metres.

### CB-96-3&4

These two holes were collared from the same location, 80 metres north-northwest of holes CB-96-1&2. Both holes intersected a fine grained pale greenish-grey coloured unit with orange-brown limonite staining, tentatively identified as a volcaniclastic unit with local foliated or laminated sections representing bedding. Minor tight isoclinal folding was observed in the foliated/laminated intervals. The unit also contains 5-10%

fine grained white carbonate specks with no obvious preferential alignment. Sulphides consist of minor disseminations of fine grained pyrite (Figure 9b).

Underlying the volcaniclastic unit is a narrow interval of pervasively hematite stained feldspar porphyry or trachyandesite containing 30-40% euhedral porphyritic feldspar crystals up to 10 mm long by 3 mm wide. Carbonate is found throughout the unit as partial replacement of the feldspars and as irregularly shaped white to pink blebs. Mineralization consists of traces of pyrite and specular hematite. This is underlain by a thin layer of mottled chlorite-hematite altered andesitic lapilli tuff to coarse agglomerate. The unit is predominately reddish due to pervasive hematite staining with angular fragments of green to black andesite. Fragments are several centimetres square up to 5x10 cm.

Underlying this unit is a thick succession of hematitic andesite tuff, with local coarser grained fragmental sections. The tuff has a brownish-red to deep red colour with small contorted blebs of white to pink carbonate. This is underlain by the same agglomerate/lapilli tuff unit as above in hole CB-96-4 only.

Both holes intersected the carbonate-quartz breccia zone which was similar to that seen in holes CB-96-1 and 2. The only obvious difference in the zone from the two setups is the lack of larger carbonate-quartz veins. In holes 1 & 2 there are 0.5 m wide pure carbonate-quartz veins whereas in holes 3 & 4 all the veins are generally no wider than 1 cm, just narrow stockwork/stringer veins.



In hole CB-96-3 the carbonate-quartz breccia zone was intersected from 24.20 to 31.37 metres with the interval from 24.20 to 29.00 metres assaying 0.18 g/t gold, 0.49 g/t silver and 0.20% copper over 4.8 metres. In hole CB-96-4 the carbonate-quartz breccia zone was intersected from 67.96 to 75.15 metres with the interval from 67.5 to 75.5 metres assayed 0.20 g/t gold, 0.88 g/t silver and 0.25% copper over 8.0 metres including 0.25 g/t gold, 0.80 g/t silver and 0.30% copper over 6.0 metres.

Also in hole CB-96-4 there is a zone of faulting from 36.8 to 58.23 metres with patchy quartz-carbonate veining. This same fault zone was not observed in hole CB-96-3. It was assumed that this shear zone is dipping the same as all others observed on the property, which is 50° to 60° southwest, and thus should have been intersected by hole CB-96-3. It is possible that this shear zone dips to east and thus lies underneath hole CB-96-3, or was not of sufficient intensity to express itself in hole CB-96-3. Portions of this shear zone, and the overlying unit, are mineralized as the interval from 32.5 to 43.0 metres assayed 0.62 g/t gold, 0.42 g/t silver and 0.13% copper over 10.5 metres including 3.32 g/t gold, 0.60 g/t silver and 0.15% copper over 1.5 metres.

## CB-96-5

This hole was collared 400 metres north-northwest of holes CB-96-3 & 4 to test a max-min conductor outlined over several hundred metres. It is also in an area of carbonate-quartz-chalcopyrite bearing narrow shear veins. The hole intersected similar

lithologies to those seen around the Bearnx showing, predominantly pervasive hematite stained andesite tuff, lapilli tuff and agglomerate. No well mineralized zones were intersected to explain the max-min conductor. Local pyrite bearing intervals in andesite tuff and quartzite were intersected which produced a few weak anomalies. The two most encouraging intersections are from 24.0 to 25.5 metres which assayed 3.4 g/t silver and 559 ppm copper over 1.5 metres and from 71.5 to 76.0 metres which assayed 0.08 g/t gold, 1.13 g/t silver and 581 ppm copper over 4.5 m (Figure 9c).

The better assay intersections are summarized in Table 4- Drill Intersections.

| Hole No. | From  | To    | Length (m) | Au (g/t) | Ag (g/t) | Cu (%)  |
|----------|-------|-------|------------|----------|----------|---------|
| CB-96-1  | 47.42 | 54.20 | 6.78       | 0.45     | 5.61     | 0.60    |
| "        | 50.50 | 54.20 | 3.70       | 0.75     | 9.17     | 0.86    |
| 44       | 50.50 | 56.00 | 5.50       | 0.54     | 6.95     | 0.63    |
| CB-96-2  | 75.5  | 82.5  | 7.0        | 0.49     | 4.23     | 0.38    |
| CB-96-3  | 24.20 | 29.00 | 4.8        | 0.18     | 0.49     | 0.20    |
| CB-96-4  | 32.5  | 43.0  | 10.5       | 0.62     | 0.42     | 0.13    |
|          | 35.5  | 37.0  | 1.5        | 3.32     | 0.60     | 0.15    |
| ÷6       | 67.5  | 75.5  | 8.0        | 0.20     | 0.88     | 0.25    |
| <u>،</u> | 67.5  | 73.5  | 6.0        | 0.25     | 0.80     | 0.30    |
| CB-96-5  | 24.0  | 25.5  | 1.5        | < 0.03   | 3.4      | 559 ppm |
| "        | 71.5  | 76.0  | 4.5        | 0.08     | 1.13     | 581 ppm |

**TABLE 4 - DRILLING ASSAY INTERSECTIONS** 

A petrographic study on selected core samples was completed by Vancouver Petrographics Ltd. with a total of seven samples sent for thin section analysis. This analysis grouped the seven samples into three main lithologies which are as follows: porphyritic, hematitic, basalt/andsite; latite flow; and latite tuff. A brief summary of the



samples analysed is presented in Table 5 - Thin Section Analysis, with the full report enclosed as Appendix III.

|          | ]         | Rock Type                |                        |  |  |  |  |  |  |  |  |  |
|----------|-----------|--------------------------|------------------------|--|--|--|--|--|--|--|--|--|
| Hole No. | Depth (m) | Field Name               | Petrographic Analysis  |  |  |  |  |  |  |  |  |  |
| CB96-1   | 44.5      | Andesite Lapilli         | Porphyritic, Hematitic |  |  |  |  |  |  |  |  |  |
|          |           | Tuff/Agglomerate         | Basalt/Andesite        |  |  |  |  |  |  |  |  |  |
| CB96-1   | 48.9      | Carbonate-Quartz Breccia | Latite Tuff            |  |  |  |  |  |  |  |  |  |
|          |           | Zone                     |                        |  |  |  |  |  |  |  |  |  |
| CB96-3   | 2.7       | Volcaniclastic           | Latite Flow            |  |  |  |  |  |  |  |  |  |
| CB96-3   | 42.7      | Andesite Lapilli Tuff    | Porphyritic, Hematitic |  |  |  |  |  |  |  |  |  |
|          |           |                          | Basalt/Andesite        |  |  |  |  |  |  |  |  |  |
| CB96-4   | 4.0       | Volcaniclastic           | Latite Flow            |  |  |  |  |  |  |  |  |  |
| CB96-4   | 8.8       | Hematitic Feldspar       | Porphyritic, Hematitic |  |  |  |  |  |  |  |  |  |
| ]        |           | Porphyry                 | Basalt/Andesite        |  |  |  |  |  |  |  |  |  |
| CB96-4   | 72.2      | Green Andesite Tuff      | Latite Tuff            |  |  |  |  |  |  |  |  |  |

## **TABLE 5 - PETROGRAPHIC ANALYSIS**

A few general characteristics of the three main rock types are summarized below. The porphyritic, hematitic andesite/basalt unit has a fine grained groundmass comprised of plagioclase and devitrified volcanic glass containing abundant hematite. Phenocrysts are comprised of plagioclase with much lesser biotite and occasionally magnetite. Plagioclase phenocrysts are altered completely to sericite and calcite, biotite phenocrysts to muscovite and the magnetite is replaced by hematite. One sample, CB96-1, 44.5 m contains abundant amygdules of calcite, with lesser quartz-calcite and quartz-sericite.

The latite flow unit is comprised of fine grained plagioclase with less abundant quartz. In some sections the plagioclase is relatively fresh while in others it has been

completely replaced with cryptocrystalline sericite. Other minor constituents of this unit include calcite, dolomite, and titanium oxides.

The two samples identified as latite tuff are both from the carbonate-quartz breccia zone and as such have undergone considerable hydrothermal alteration. Sample CB96-1, 48.9 metres contains fragments of latite tuff and latite flow in a matrix comprised largely of fine grained quartz and calcite. The sample also contains patches of medium to coarse grained calcite and a few dark grey fragments of basalt/andesite similar to sample CB96-1, 44.5 metres. Also within the matrix are minor amounts of sericite, muscovite and sphalerite. Sample CB96-4, 72.2 metres, is similar to the above sample but the various stages of hydrothermal replacement are more evident. The host rock is comprised mainly of sericite and quartz with rare phenocrysts of plagioclase. The early replacement was comprised mainly of calcite as both fine and coarse grained patches with inclusions of hematite. The later replacement is patches and veins of sulphide-bearing calcite and quartz with sulphides consisting mainly of chalcopyrite with lesser bornite and minor tetrahedrite and galena. The boundaries between the two stages of replacement are often diffuse and difficult to identify.

## DISCUSSION

The surveys completed to date indicate the property has good potential to host economic concentrations of base and/or precious metals. Several encouraging areas have been outlined for detailed geological evaluation to gain a better understanding of the

controls on mineralization. Work to date indicates that there are three possible style of mineralization: vein, porphyry, and stratabound.

There are numerous carbonate-quartz breccia veins varying in width from a few centimetres to 1.2 metres found throughout the property with good potential for additional discoveries. None of the veins individually are economic, however, there may be areas where the vein density is sufficient to justify mining or some of the larger veins may widen with depth. Alternatively, areas of several smaller veins may coalesce into one larger vein system at depth.

Within the claims are several areas of very strong epidote and chlorite alteration as well as pyritic halos indicative of porphyry type alteration. The abundant, narrow, high-grade shear/breccia veins may be the expression of a larger, buried porphyry system. Careful geological mapping, particularly of alteration assemblages may refine areas of porphyry-type mineralization potential.

There appears to be some potential for stratabound mineralization within an altered agglomerate unit. The unit has a large extent with extensive alteration to gossan and appears to be cemented with iron. Values for precious and base metals are generally low though secondary specular hematite veins with quartz have yielded anomalous gold assays. The agglomerate unit may have had a higher porosity and permeability than surrounding units and acted as a favourable trap for mineralized solutions related to a porphyry event or structural shear zone.

### CONCLUSIONS AND RECOMMENDATIONS

Work completed on the Chaco Bear project located approximately 160 kilometres north of Smithers, B.C. in the Skeena Mountains, west of Bear Lake included a Phase I program of reconnaissance style mapping, prospecting, and rock sampling and a Phase II program of diamond drilling and electromagnetic (Max-Min) geophysical surveys

The Phase I rock sampling program outlined several areas of anomalous precious and base metal mineralization. The anomalous results are virtually all from carbonatequartz-sulphide-bearing veins over widths ranging from a few centimetres to in excess of one metre. Assays are typically in the range of 1.0 to 5.0 g/t gold and 1-5% copper with silver, lead, and zinc also present. A float sample believed to be weathered in place vein material assayed 10,530 g/t silver (307.09 oz/ton). Values from numerous grab samples returned assays of up to 25.52 g/t gold (0.744 oz/ton), 36.9% copper, 2.93% lead and 5.63% zinc.

The Phase II diamond drilling program was intended to test several target areas however early winter conditions limited the availability of suitable drill pad locations. All of the drilling was confined to the northwest trending valley at the northwest end of the unnamed central lake. Five holes from three pad locations, totalling 455.8 metres, were completed; four of the holes tested the Bearnx Showing. All of the holes intersected the zone which returned assays of up to 0.45 g/t gold, 5.61 g/t silver and 0.60% copper over 6.78 metres from hole CB-96-1. Grades obtained from the other holes were lower,

though still encouraging, and the core thickness of the zone was fairly consistent, ranging from 4.8 to 8.0 metres.

Given the successful results from the two-phased program further detailed geological evaluation of the Chaco Bear project is warranted. The work should consist of two separate programs: Phase IIIa reconnaissance work on the new claims, and Phase IIIb detailed geological surveys on the original core of the property. Phase IIIa exploration on the new claims (Chaco Bear 5 to 9) should consist of preliminary mapping, prospecting, stream sediment geochemistry, and rock sampling to locate new areas of mineralization and to see if zones seen on the original claims trend onto the new claims.

The Phase IIIb program for the original Chaco Bear 1-4 claims should consist of continued prospecting, detailed geological mapping, grid based ground geophysics (magnetic, VLF-EM, horizontal loop and induced polarization), trenching, and diamond drilling. It is also recommended that the company obtain the landsat and radar image of the property to assist in completing alteration and structural studies. In addition an orthophoto base map should be prepared to provide accurate positioning control for the subsequent surveys.

The Phase IIIa reconnaissance program is estimated to cost \$77,000 and the Phase IIIb program \$475,000 for an aggregate cost of \$552,000, with both programs to run concurrently for approximately 1 to 2 months. Phase IIIb is not contingent upon successful completion of Phase IIIa.

- -

- -

- - -

## <u>STATEMENT OF COSTS</u> Chaco Bear - Phase I & II

| Mob/Demob                          |                      |
|------------------------------------|----------------------|
| Airfares                           | \$1,318.03           |
| Fixed Wing Charter                 | 2,720.52             |
| Meals, Taxi, Motel, Etc.           | 504.23               |
| Wages                              |                      |
| W. Raven 4 days @ \$350/day        | 1,498.00             |
| R. Riedel 4 days @ \$300/day       | 1,284.00             |
| Wages                              |                      |
| W. Raven 22.5 days GL @ \$350/day  | 8,426.25             |
| W. Raven 13.5 days DD @ \$350/day  | 5,055.75             |
| R. Riedel 19.5 days PR @ \$300/day | 6,259.50             |
| R. Riedel 10 days DD @ \$300/day   | 3,210.00             |
| Contractors                        |                      |
| Canadian Helicopters               | 9,811.49             |
| Pacific Western Helicopters        | 65,692.65            |
| Falcon Drilling Ltd.               | 58,319.23            |
| SJ Geophysics Ltd.                 | 8,140.84             |
| Hobson Contracting                 | 12,511.24            |
| Room & Board                       | 11,897.66            |
| Assays                             | 6,089.53             |
| Shipping                           | 989.97               |
| Communication                      | 297.02               |
| Field Supplies                     | 273.16               |
| Expediting Fees                    | 385.20               |
| Miscellaneous                      | 717.51               |
| Report & Typing                    | 5,336.62             |
| Drafting                           | <u>1,296.36</u>      |
| TOTAL                              | \$ <u>212,034.76</u> |

## BUDGET ESTIMATE - PHASE IIIa Bear 5-9 claims

## PHASE IIIa:

| Mob/Demob (4 man crew)                   | \$6,100          |
|------------------------------------------|------------------|
| Wages                                    |                  |
| Sr. Geologist 14 days @ \$400/day        | 5,600            |
| Jr. Geologist 14 days @ \$350/day        | 4,900            |
| Prospector 14 days @ \$300/day           | 4,200            |
| Field Assistant 14 days @ \$300/day      | 4,200            |
| Project Manager 1 day @ \$450/day        | 450              |
| Support Costs                            |                  |
| Motel Room & Board                       | 400              |
| Camp Costs - 56 man days @ \$110/man/day | 6,160            |
| Camp Supplies                            | 1,000            |
| Transportation                           |                  |
| Fixed Wing - 2 flight @ \$1,200/flight   | 2,400            |
| Helicopter - 25 hours @ \$900/hr         | 22,500           |
| Assays                                   |                  |
| 250 rock samples @ \$25/sample           | 6,250            |
| 50 silt samples @ \$25/sample            | 1,250            |
| Report <u>4,700</u>                      |                  |
| Subtotal                                 | \$70,110         |
| Contingencies @ 10%                      | <u>7,011</u>     |
| TOTAL                                    | \$77,121         |
| TOTAL PHASE IIIa (SAY)                   | \$ <u>77,000</u> |

35

- -

**BUDGET ESTIMATE - PHASE IIIb** Chaco Bear 1-4 Claims

## PHASE IIIb:

| Mob/Demob                                        | \$13,000            |
|--------------------------------------------------|---------------------|
| Wages                                            |                     |
| Project Manager 6 days @ \$450/day               | 2,700               |
| Sr. Geologist 30 days @ \$400/day                | 12,000              |
| Jr. Geologists (2) 30 days @ \$300/day/man       | 9,000               |
| Geophysicist 15 days @ \$400/day                 | 6,000               |
| Prospector 30 days @ \$350/day                   | 10,500              |
| Field Assistants (2) 30 days @ \$250/day/man     | 15,000              |
| Cook 30 days @ \$300/day                         | 9,000               |
| Support Costs                                    | • • • • •           |
| Motel Room & Board                               | 2,000               |
| Camp Costs 400 man days @ \$110/man              |                     |
| (including drillers)                             | 44,000              |
| Camp Supplies                                    | 8,000               |
| Transportation                                   |                     |
| Fixed Wing - Caravan - 2 flights @ \$1200/flight | 2,400               |
| Cessna 206 - 3 flights @ \$600/flight            | 1,800               |
| Helicopter - 100 hours @ \$1100/hour             | 110,000             |
| Communication                                    | 3,000               |
| Freight                                          | 3,000               |
| Equipment Rental                                 |                     |
| VLF-EM - 10 days @ \$75/day                      | 750                 |
| Magmetometer - 10 days @ \$75/day                | 750                 |
| I.P 10 days @ \$250/day                          | 2,500               |
| Contractors                                      | 25.000              |
| Trenching                                        | 25,000              |
| Diamond Drilling                                 | 0.000               |
| Mob/Demob                                        | 8,000               |
| 1500 m @ \$90/m                                  | 135,000             |
| Analysis                                         | 10 000              |
| 500 rocks (geochem) @ \$20/sample                | 10,000              |
| 100 rocks (assay) @ \$30/sample                  | 3,000               |
| 500 core (assay) @ \$30/sample                   | 15,000              |
| Landsat Imagery                                  | 5,000               |
| Radar Imagery                                    | 5,000               |
| Orthophoto base map preparation                  | 5,000               |
| Report and drafting                              | £421 800            |
| Subtotal                                         | \$431,000<br>42.180 |
| Contingencies (a) 10%                            | 43,160<br>\$474.080 |
| IOIAL                                            | ⊅ <u>4/4,70U</u>    |
| PHASE IIIb TOTAL (SAY)                           | \$ <u>475,000</u>   |
| TOTAL PHASE IIIa & IIIb (SAY)                    | \$ <u>552,000</u>   |

## **CERTIFICATE OF QUALIFICATIONS**

I, Wesley D.T. Raven, of #108 - 1720 West 12th Avenue, Vancouver, British Columbia, hereby certify:

- 1. I am a graduate of the University of British Columbia (1983) and hold a B.Sc. degree in geology.
- 2. I have been employed as an exploration geologist on a full time basis since 1983.
- 3. I am a Fellow of the Geological Association of Canada.
- 4. I am currently retained as an independent consulting geologist by OreQuest Consultants Ltd., I hold no interest in OreQuest Consultants Ltd.
- 5. I am a Professional Geologist registered with the Association of Professional Engineers and Geoscientists of British Columbia.
- 6. The information contained in this report is from information listed in the Bibliography, and from onsite supervision of the exploration program.
- 7. I do not have nor expect to receive direct or indirect interest in the Chaco Bear project nor in the securities of Imperial Metals Corporation.
- 8. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document, providing the report is used in its entirety or any summary thereof is approved by the author.

Wishy Rav

Wesley D.T. Raven, P.Geo.

DATED at Vancouver, British Columbia, this 27th day of November, 1996.

## **BIBLIOGRAPHY AND REFERENCES**

ASHTON, J. M.

1993: Induced Polarization Survey on the Chaco Bear Group Mineral Claims, NTS.94D, Omineca Mining Division, July 5, 1993.

DONNELLY, T.

1984: Geochemical and Prospecting Report on Peteka 1 to 4 Inclusive, Claims, Omineca Mining Division, for Suncor Inc., Resources Group, Assessment Report #14, 678.

EISBACHER, G. H.

1973: Sedimentary History and Tectonic Evolution of the Sustut and Sifton Basins, North-Central British Columbia, G. S. C. Paper 73-31.

GEORGE CROSS NEWSLETTER

- 1996: No. 68, August 29, 1996
- 1996: No. 197, October 10, 1996

## HARTLEY, C.

1985: Geological, Geochemical Geophysical and Prospecting Report, Peteka 1 to 4 Claims, for Suncor Inc. Resources Group, Assessment Report #14,424.

JELETSKY, O. L.

1976: Takla Project: Preliminary Report on Stratigraphy and Depositional History of Middle to Upper Jurassic Stata in McConnell Creek Map Area (west half) British Columbia in Report of Activities, Part A, Geological Survey of Canada, Paper 76-1A, Report 13.

LORD, C. S.

1948: McConnell Creek Map-Area, Cassiar District, British Columbia, Geological Survey of Canada Memoir 251.

#### MEMPR

1992: Minfile, Map 094D McConnell Creek, 1:250,000

## RAVEN, W.

1996: Assessment Report, Chaco Bear Project, for Imperial Metals Corporation, Omineca Mining Division, NTS 94D/2W, October 10, 1996 RICHARDSON, J.

1968: Geophysical survey Report on the Dave Group of Claims, Driftwood Creek, Omineca Mining Division, NTS 94 D/2, August 20, 1968, Assessment Report #1616.

RICHARDS, T.A.

1975: Takla Project: McConnell Creek Map Area (94D east half) in Report of Activities, Part A, Geological Survey of Canada, Paper 76-1A, Report 10.

WILTON, D. H., and SINCLAIR, A. J.

1978: Origin of the Sustut Copper Deposit, Central British Columbia (abs.): Canadian Institute of. Minerals and Metals Bulletin, V71, p. 129.

# APPENDIX I

ľ

Analytical Results

.\*



## ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

# CERTIFICATE OF ASSAY AK 96-1074

OREQUEST CONSULTANTS 306-595 HOWE STREET VANCOUVER, B.C. V6C 2T5 23-Sep-96

## ATTENTION: WES RAVEN

- No. of samples received: 88 Sample type: ROCK PROJECT #: CHACO BEAR
- SHIPMENT #: NONE GIVEN Samples submitted by: W.RAVEN

|       |         | Au    | Au     | Ag      | Ag     | As   | Cu    | Pb   | Zn   |
|-------|---------|-------|--------|---------|--------|------|-------|------|------|
| ET #. | Tag #   | (g/t) | (oz/t) | (g/t)   | (oz/t) | (%)  | (%)   | (%)  | (%)  |
| 1     | RR96-1  | -     | -      | 49.0    | 1.43   | -    | -     | -    | -    |
| 3     | RR96-3  | 2.32  | 0.068  | 79.2    | 2.31   | -    | 1.42  | -    | -    |
| 4     | RR96-4  | -     | -      | 47.2    | 1.38   | -    | 3.18  | -    | -    |
| 9     | RR96-9  | 2.75  | 0.080  | -       | -      | -    | 4.67  | -    | -    |
| 10    | RR96-10 | 1.86  | 0.054  | -       | -      | -    | -     | -    | -    |
| 11    | RR96-11 | 4.94  | 0.144  | -       | -      | -    | 2.86  | -    | -    |
| 12    | RR96-12 | -     | -      | -       | -      | -    | 0.32  | -    |      |
| 13    | RR96-13 | 7.69  | 0.224  | -       | -      | -    | -     | -    | -    |
| 14    | RR96-14 | -     | -      | -       | -      | -    | 2.69  | -    | -    |
| 16    | RR96-16 | 7.35  | 0.214  | 392.2   | 11.44  | -    | 6.94  | -    | -    |
| 17    | RR96-17 | -     | -      | -       | -      | -    | 2.56  | -    | -    |
| 18    | RR96-18 | 5.01  | 0.146  | 61.8    | 1.80   | -    | 1.84  | 2.93 | 5.63 |
| 24    | WR96-5  | -     | -      | 10530.0 | 307.09 | -    | 36.90 | -    | -    |
| 25    | WR96-6  | -     | -      | 56.5    | 1.65   | -    | -     | -    | -    |
| 31    | WR96-12 | 17.63 | 0.514  | 1066.0  | 31.09  | 2.41 | 6.16  | -    | •    |
| 39    | BD96-1  | -     | -      | 45.9    | 1.34   | -    | -     | -    | •    |
| 40    | BD96-2  | 4.89  | 0.143  | -       | -      | -    | 1.90  | -    |      |
| 41    | BD96-3  | 13.28 | 0.387  | 75.7    | 2.21   | -    | 3.52  | -    |      |
| 43    | BD96-5  | -     | -      | 276.6   | 8.07   | -    | 3.63  | -    |      |
| 44    | BD96-6  | 2.77  | 0.081  | -       |        | -    | 3.72  | -    |      |
| 46    | BD96-8  | -     | -      | -       | -      | -    | 1.64  | -    |      |
| 47    | BD96-9  | 3.59  | 0.105  | 100.7   | 2.94   | -    | 5.45  | -    | ,    |
|       |         |       |        |         |        |      |       |      | × .  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

### **OREQUEST CONSULTANTS - AK 1074**

| 5 | 1 |   | C | - | - |   | $\sim$ | 0 |
|---|---|---|---|---|---|---|--------|---|
| ۷ | 3 | - | Э | e | υ | - | Э      | σ |

|       |         | Au    | Au     | Ag    | Ag     | As  | Cu    | Pb  | Zn   |
|-------|---------|-------|--------|-------|--------|-----|-------|-----|------|
| ET #. | Tag #   | (g/t) | (oz/t) | (g/t) | (oz/t) | (%) | (%)   | (%) | (%)  |
| 48    | BD96-10 | 2.01  | 0.059  | -     | _      | -   |       | -   |      |
| 49    | BD96-11 | 6.16  | 0.180  | 47.4  | 1,38   | -   | 6.48  |     | 1.76 |
| 50    | BD96-12 | 5.32  | 0.155  | -     | -      | -   | -     | -   | -    |
| 51    | BD96-13 | -     | -      | -     | -      | -   | -     | -   | -    |
| 58    | BD96-20 | -     | -      | 67.7  | 1.97   | -   | -     | -   | -    |
| 60    | BD96-22 | -     | -      | 198.0 | 5.77   | -   | 5.23  | -   | -    |
| 66    | BD96-27 | 4.19  | 0.122  | 90.4  | 2.64   | -   | 10.32 | -   | -    |
| 67    | BD96-28 | -     | -      | 179.7 | 5.24   | -   | 2.26  | -   | -    |
| 68    | BD96-29 | 3.04  | 0.089  | -     | -      | -   | -     | -   | -    |
| 70    | BD96-31 | -     | -      | -     | -      | -   | -     | -   | -    |
| 73    | 4202    | 4.52  | 0.132  | 90.7  | 2.65   | -   | 2.84  | -   | -    |
| 74    | 4203    | 5.47  | 0.160  | -     | -      | -   | -     | -   | -    |
| 80    | 4209    | 1.26  | 0.037  | -     | -      | -   | 1.62  | -   | -    |
| 81    | 4210    | -     | -      | -     | -      | -   | 1.59  | -   | -    |
| 83    | 4212    | 1.13  | 0.033  | -     | -      | -   | -     | -   | -    |
|       | 1213    | 1.82  | 0.053  |       | -      | -   | -     | -   | -    |

|   | 1100 0 0 1111 |        |   |   |       |       |      |      |      |       |
|---|---------------|--------|---|---|-------|-------|------|------|------|-------|
|   | 1             | RR96-1 | - | - | 50.8  | 1.48  | -    | -    | -    | -     |
| ۲ | Standard:     |        |   |   |       |       |      |      |      |       |
|   | MPI-a         |        | - | - | -     | -     | -    | 1.45 | 4.33 | 19.02 |
|   | CPb-I         |        | - | - | 631.0 | 18.40 | -    | -    | -    | -     |
|   | CD-1          |        | - | - | -     | -     | 0.66 |      |      |       |
|   |               |        |   |   |       |       |      |      |      |       |

XLS/96Orquest#2 Fax @: 604-688-6788 - Attn: Wes Raven cc: results/inv: Imperial Metals Corp. - Attn: Patrick McAndless

Fax @: 604-687-4030 - Attn: Pat McAndless

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

,

B.C. Certified Assayer

23-Sep-96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK 96-1074

OREQUEST CONSULTANTS 306-595 HOWE STREET VANCOUVER, B.C. V6C 2T5

#### ATTENTION: WES RAVEN

No. of samples received: 88 Sample type: ROCK PROJECT #: CHACO BEAR SHIPMENT #: NONE GIVEN Samples submitted by: W.RAVEN

## Values in ppm unless otherwise reported

| 10.000   |         |         |              |      | •    | 0   | ο:       | C ~ % | Cd         | Co      | Cr    | Cu     | Fe %  | La I | Ma %       | Mn   | Mo Na%    | Ni  | Р        | Pb     | Sb  | Sn  | <u>Sr</u> T | Ti %  | <u> </u> | <u>v</u> |     | Y     | Zn       |
|----------|---------|---------|--------------|------|------|-----|----------|-------|------------|---------|-------|--------|-------|------|------------|------|-----------|-----|----------|--------|-----|-----|-------------|-------|----------|----------|-----|-------|----------|
| <u> </u> | Tag #   | Au(ppb) | Ag           | AI % | AS   | ва  |          |       |            |         | 07    | 6005   | 3.84  | <10  | 0 14       | 3779 | 13 < 0.01 | 4   | 570      | 80     | <5  | <20 | 18 0        | 0.01  | <10      | 40       | <10 | 9     | 139      |
| 1        | RR96-1  | 15      | >30          | 0.70 | 150  | 100 | <5       | 4.15  | ~1         | 14      | 74    | 6010   | 2.66  | 40   | 0.30       | 1409 | 6 0.03    | 1   | 820      | 4      | <5  | <20 | 24 (        | 0.02  | <10      | 23       | <10 | 5     | 35       |
| 2        | RR96-2  | 5       | 19. <b>2</b> | 0.53 | <5   | 360 | <5       | 3.29  | 2          | 4       | 170 - | 40000  | 0.01  | <10  | 0.00       | 1123 | 9 < 0.01  | 3   | 190      | 4134   | <5  | <20 | 10 <(       | 0.01  | <10      | 6        | <10 | 2     | 10       |
| 3        | RR96-3  | >1000   | >30          | 0.31 | <5   | 45  | <5       | 1.21  | 2          | 3       | 1/9 - | 10000  | 1 62  | 20   | 0.00       | 8015 | 2 < 0.01  | 2   | <10      | 58     | <5  | <20 | 94 (        | 0.03  | <10      | 22       | <10 | 6     | 14       |
| 4        | RR96-4  | 205     | >30          | 0.26 | <5   | 110 | <5       | >10   | <1         | د<br>00 | 10    | 200001 | 2 31  | <10  | 0.14       | 3895 | 1 < 0.01  | 9   | 200      | 14     | <5  | <20 | 122 (       | 0.02  | <10      | 68       | <10 | <1    | 355      |
| 5        | RR96-5  | 5       | <0.2         | 0.40 | <5   | 70  | <5       | >10   | <1         | 23      | 19    | 30     | 3.91  | 10   | 0.40       | 0000 |           | -   |          |        |     |     |             |       |          |          |     |       |          |
|          |         |         |              |      | _    |     | -        |       |            | 2       | 22    | 2802   | 0.62  | <10  | 0.08       | 1755 | <1 <0.01  | <1  | 50       | <2     | <5  | <20 | 24          | 0.03  | <10      | 11       | <10 | 6     | 9        |
| 6        | RR96-6  | 5       | 14.2         | 0.22 | <5   | 20  | <5       | >10   | <1         | 2       | 406   | 5242   | 7.85  | <10  | 0.00       | 1544 | 6 < 0.01  | 3   | 250      | 1196   | <5  | <20 | 5           | 0.03  | <10      | 51       | <10 | <1    | 47       |
| 7        | RR96-7  | 5       | 5.8          | 1.42 | <5   | 45  | <5       | 3.92  | 1          | 9       | 70    | 0242   | 2 31  | <10  | 0.06       | 648  | 6 < 0.01  | 1   | 570      | 422    | <5  | <20 | 3           | 0.03  | <10      | 18       | <10 | 3     | 10       |
| 8        | RR96-8  | 5       | <0.2         | 0.51 | <5   | 40  | <5       | 0.96  | <1         | ა<br>ი  | 100   | 0.000  | 7.63  | <10  | 0.00       | 816  | 19 < 0.01 | 8   | <10      | 104    | <5  | <20 | <1          | 0.02  | <10      | 20       | 10  | <1    | 56       |
| 9        | RR96-9  | >1000   | 3.4          | 1.00 | <5   | 40  | <5       | 0.13  | 2          | 8       | 100 - | 0743   | 2 14  | <10  | 0.03       | 1187 | 10 < 0.01 | I 3 | 350      | 260    | <5  | <20 | 2           | 0.01  | <10      | 6        | <10 | 3     | 57       |
| 10       | RR96-10 | >1000   | 1.0          | 0.37 | <5   | 35  | <5       | 0.94  | 17         | 0       | 101   | 0140   | 2.04  | -10  | 0.00       |      |           |     |          |        |     |     |             |       |          |          | _   |       |          |
|          |         |         |              |      | _    |     | -        | ~     | 20         | 10      | 176   | -1000D | 3.62  | <10  | 0.01       | 1106 | 6 < 0.01  | 1 4 | <10      | 1442   | <5  | <20 | 14          | 0.01  | <10      | 3        | <10 | 2     | 53       |
| 11       | RR96-11 | >1000   | 2.4          | 0.07 | <5   | 40  | <5       | 6.10  | 26         | 10      | 140   | -10000 | >10   | <10  | 0.16       | 445  | 12 < 0.0  | 1 2 | >10000   | 506    | <5  | <20 | 1 <         | :0.01 | <10      | 19       | 10  | <1    | 245      |
| 12       | RR96-12 | 60      | 6.8          | 0.56 | <5   | 50  | <5       | 0.12  | 8          | 22      | 140   | 2073   | >10   | <10  | 2.56       | 3983 | 34 0.02   | 28  | 650      | 154    | <5  | <20 | 16          | 0.22  | <10      | 136      | <10 | <1    | 222      |
| 13       | RR96-13 | >1000   | 1.4          | 4.30 | 10   | 100 | <5       | 0.59  | 0          | 12      | 55    | ×10000 | 6 30  | <10  | 0.45       | 1553 | 52 < 0.0  | 15  | 160      | 942    | <5  | <20 | 5           | 0.02  | <10      | 31       | <10 | <1    | 57       |
| 14       | RR96-14 | 125     | 6.8          | 1.31 | <5   | 50  | <5       | 4.35  | < 1<br>- 4 | 13      | 106   | 1357   | 3 47  | <10  | 0.17       | 704  | 3 < 0.01  | 1 3 | 680      | 66     | <5  | <20 | 8           | 0.03  | <10      | 18       | <10 | 3     | 07       |
| 15       | RR96-15 | 680     | 1.4          | 0.82 | <5   | 410 | <5       | 0.64  | ~1         | 4       | 100   | 1007   | 0, 11 |      | ••••       | -    |           |     |          |        |     |     |             |       |          |          |     |       | 011      |
|          |         |         |              |      |      |     |          | 0.07  |            | 7       | 164   | >10000 | 2.66  | <10  | <0.01      | 259  | 12 < 0.0  | 1 4 | <10      | <2     | 45  | <20 | 3           | 0.02  | <10      | 3        | 30  | <1    | 100      |
| 16       | RR96-16 | >1000   | >30          | 0.14 | 120  | 25  | <0       | 2.60  | 10         | 27      | 89    | >10000 | 6.35  | <10  | 0.38       | 1631 | 5 < 0.0   | 1 4 | 160      | 2266   | <5  | <20 | 3           | 0.01  | <10      | 10       | <10 | <1    | 400      |
| 17       | RR96-17 | 105     | 2.0          | 1.48 | <>   | 70  | <0<br>26 | 0 17  | ~1000      | 26      | 63    | >10000 | 3.16  | <10  | 0.23       | 2164 | <1 <0.0   | 1 3 | s <10    | >10000 | 475 | <20 | 48 <        | <0.01 | <10      | 38       | <10 | <   > | 10000    |
| 18       | RR96-18 | >1000   | >30          | 0.38 | 3025 | 40  | >0       | 0.17  | -1000      | 7       | 257   | 6073   | 7.53  | <10  | <0.01      | 166  | 8 <0.0    | 1 6 | ; 90     | 1314   | <5  | <20 | <1          | 0.01  | <10      | 24       | <10 | < 1   | .50      |
| 19       | RR96-19 | 355     | 1.8          | 0.21 | <5   | 106 | <0       | 5.24  | 3          | 20      | 30    | 54     | 6.53  | <10  | 0.73       | 1533 | <1 0.0    | 5 2 | 850      | 38     | <5  | <20 | 41          | 0.19  | <10      | 139      | <10 | 1     | 00       |
| 20       | WR96-1  | 5       | <0.2         | 0.83 | <5   | 125 | <0       | 5.24  | 5          | 20      | 50    | 0.     | 0.00  |      |            |      |           |     |          |        |     |     |             |       |          |          |     | ~     | 20       |
|          |         |         |              |      |      | 100 | ~E       | 4 5 4 | <i>r</i> 1 | 6       | 72    | 22     | 3.02  | 20   | 0.08       | 1049 | 1 0.0     | 3 2 | 2 840    | 8      | <5  | <20 | 8           | 0.04  | <10      | 25       | <10 | 5     | 407      |
| 21       | WR96-2  | 5       | <0.2         | 0.43 | <5   | 105 | <0<br>-5 | 0.70  | ~1         | 22      | 27    | 19     | 6.08  | <10  | 1.89       | 3561 | 2 0.0     | 4 5 | 5 1050   | 12     | <5  | <20 | 22          | 0.10  | <10      | 135      | <10 | < 1   |          |
| 22       | WR96-3  | 5       | <0.2         | 1.79 | <5   | 55  | <0       | 2.19  | ~1         | 20      | 68    | 22     | 5.40  | <10  | 1.20       | 1768 | <1 0.0    | 7 3 | 3 1150   | 26     | <5  | <20 | 279         | 0.31  | <10      | 164      | <10 | 5     | 303      |
| 23       | WR96-4  | 5       | 0.4          | 1.62 | <5   | 55  | 10       | 2.1   | 75         | 15      | 20    | <1     | 1.02  | <10  | 0.06       | 493  | 6 <0.0    | 1 4 | 1 >10000 | 190    | 15  | <20 | 7 4         | <0.01 | <10      | 12       | 200 | <1    | 01<br>20 |
| 24       | WR96-5  | 5       | >30          | 0.17 | 5    | 55  | < 5      | 2.47  | 10         | 13      | 70    | 633    | 0.79  | <10  | 0.13       | 1323 | 1 0.0     | 1 1 | 2 40     | 2      | <5  | <20 | 12 •        | <0 01 | <10      | 2        | <10 | 6     | 13       |
| 25       | WR96-6  | 5       | >30          | 0.38 | <5   | 210 | <0       | 1.77  | 1          | 5       | 10    | 000    | 5,10  | Page | <b>•</b> 1 |      |           |     |          |        |     |     |             |       |          |          |     |       |          |

ECO-TECH LABORATORIES LTD.

ICP CERTIFICATE OF ANALYSIS AK 96-1074

OREQUEST CONSULTANTS

|       | <b>T</b> - 4 | A       | 4~   | A1 0/ | ٨٠       | Ra        | Bi                                                                                    | Ca %  | Crt                                     | Co     | Cr    | Cu     | Fe % | La M  | g %   | Мn    | Mo N  | a %     | Ni | Р      | Pb   | Sb   | Sn  | Sr  | <u>Ti %</u> | υ   | V   | W    | Y  | Zn     |
|-------|--------------|---------|------|-------|----------|-----------|---------------------------------------------------------------------------------------|-------|-----------------------------------------|--------|-------|--------|------|-------|-------|-------|-------|---------|----|--------|------|------|-----|-----|-------------|-----|-----|------|----|--------|
| Et #. | lag #        | Au(ppb) | Ag   |       |          | 125       |                                                                                       | 2.92  | <u></u>                                 | 1      | 102   | 217    | 0.58 | <10 ( | 0.05  | 1858  | 7 (   | 0.02    | 2  | 30     | <2   | <5   | <20 | 43  | < 0.01      | <10 | <1  | <10  | 6  | 26     |
| 26    | WR96-7       | 5       | 10.4 | 0.32  | <0<br>-5 | 133       | ~5                                                                                    | 3.02  | ~1                                      | -1     | 87    | 43     | 0.33 | 10 0  | 0.03  | 937   | 2 <0  | 0.01    | 2  | 40     | <2   | <5   | <20 | 10  | <0.01       | <10 | <1  | <10  | 13 | 4      |
| 27    | WR96-8       | 10      | 1.8  | 0.42  | <5       | 20        | ~0<br>~E                                                                              | 4.20  | 1                                       | 25     | 63    | 6353   | 7.63 | <10 3 | 2 97  | 2387  | <1 (  | 0.03    | 18 | 630    | 184  | <5   | <20 | 184 | 0.21        | <10 | 178 | <10  | <1 | 245    |
| 28    | WR96-9       | 5       | 9.0  | 3.69  | <5       | 70        | ~5                                                                                    | 4.50  | - 4                                     | 33     | 156   | 41     | 2 42 | <10   | 0.14  | 816   | 11 <( | 0.01    | 3  | 370    | 10   | <5   | <20 | <1  | <0.01       | <10 | 11  | <10  | <1 | 45     |
| 29    | WR96-10      | 20      | 0.8  | 0.48  | <5       | 140       | 5                                                                                     | 0.05  | ~1                                      |        | 100   | 21     | 2.76 | 20 0  | 0.14  | 1368  | 6 (   | 0.04    | 2  | 1070   | 4    | <5   | <20 | 14  | 0.03        | <10 | 43  | <10  | 3  | 79     |
| 30    | WR96-11      | 5       | 0.4  | 0.54  | <5       | 150       | <5                                                                                    | 1.27  | I                                       | 9      | 54    | 31     | 5.70 | 20 0  | 0.20  | 1000  | 0.    |         | -  |        |      |      |     |     |             |     |     |      |    |        |
|       |              |         |      |       |          | 45        | ~5                                                                                    | 4 60  | 262                                     | 42     | 110 5 | 10000  | 6 78 | <10   | 0.80  | 6198  | 8 <(  | 0.01    | 6  | <10    | 3896 | 6745 | <20 | 43  | 0.03        | <10 | 18  | <10  | <1 | 7743   |
| 31    | WR96-12      | >1000   | >30  | 0.26  | >10000   | 40        | <0<br>-5                                                                              | 4.00  | 202                                     | -1     | 05    | 10000  | 1 10 | 10 <  | 0.01  | 79    | 15 <( | 0.01    | 2  | 180    | 126  | <5   | <20 | 2   | < 0.01      | <10 | 1   | <10  | <1 | 54     |
| 32    | WR96-13      | 15      | 1.8  | 0.18  | 35       | 85        | <0<br>20                                                                              | 0.02  | 2                                       |        | 175   | 142    | 0.98 | 10 <  | 0.01  | 211   | 17 <  | 0.01    | 3  | 180    | 34   | <5   | <20 | 2   | <0.01       | <10 | 1   | <10  | <1 | 179    |
| 33    | WR96-14      | 20      | 3.2  | 0.28  | 65       | 45        | <0<br>                                                                                | 0.00  | -1                                      | -1     | 173   | 11     | 0.30 | <10   | 0.03  | 1226  | 1 <   | 0.01    | 2  | <10    | <2   | <5   | <20 | 395 | <0.01       | <10 | 6   | <10  | <1 | 43     |
| 34    | WR96-15      | 5       | 0.4  | 0.06  | <5       | 1120      | <5                                                                                    | 2.09  | ~1                                      | - 1    | 142   | 62     | 3 48 | <10   | 0.02  | 413   | 11 <  | 0.01    | 1  | 660    | 52   | <5   | <20 | 8   | <0.01       | 20  | 5   | <10  | <1 | 50     |
| 35    | BR96-1       | 80      | 1.0  | 0.30  | 20       | 40        | <5                                                                                    | 0.08  | ~1                                      | 0      | 143   | 02     | 5.40 | -10   | 0.04  |       |       |         |    |        |      |      |     |     |             |     |     |      |    |        |
|       |              |         |      |       | e        | 70        | 10                                                                                    | 0.02  | 2                                       | 6      | 107   | 279    | 3 38 | <10 < | 0.01  | 921   | 25 <  | 0.01    | 4  | 260    | 3682 | <5   | <20 | <1  | <0.01       | <10 | 9   | <10  | <1 | 472    |
| 36    | BR96-2       | 15      | 11.0 | 0.15  | -<br>- E | 210       | -6                                                                                    | 0.02  | 5                                       | Å      | 16    | 38     | 4 78 | <10   | 0.19  | 269   | 6 <   | 0.01    | <1 | 1680   | 180  | <5   | <20 | 13  | 0.07        | 30  | 28  | <10  | <1 | 201    |
| 37    | BR96-3       | 10      | 2.2  | 0.80  | <0       | 210       | ~5                                                                                    | 0.23  | ~1                                      | -1     | 127   | 255    | 1 48 | <10   | 0.02  | 72    | 14 <  | 0.01    | 2  | 500    | 98   | <5   | <20 | <1  | <0.01       | 20  | 4   | <10  | <1 | 4      |
| 38    | BR96-4       | 195     | 1.4  | 0.29  | 10       | 300       | <0<br>- E                                                                             | 0.04  | ~1                                      | יר     | 62    | 4740   | 4.81 | <10   | 2.00  | 10000 | 10 <  | 0.01    | 5  | 10     | 8    | <5   | <20 | 151 | 0.02        | <10 | 85  | <10  | 3  | 379    |
| 39    | BD96-1       | 10      | >30  | 0.14  | 10       | 170       | <0                                                                                    | 0.10  | 3                                       | 23     | 120 - | 10000  | 5.77 | <10 < | 0.01  | 423   | 9 <   | 0.01    | 3  | <10    | 42   | <5   | <20 | <1  | <0.01       | <10 | 5   | <10  | <1 | 20     |
| 40    | BD96-2       | >1000   | 25.4 | 0.10  | <5       | 35        | <0                                                                                    | 0.07  | •                                       | 4      | 159 - | -10000 | 9.77 |       | 0.01  | 120   | -     | • • • • | -  |        |      |      |     |     |             |     |     |      |    |        |
|       |              |         |      | 0.40  | 400      | 55        | ~5                                                                                    | 1 01  | 30                                      | 126    | 115 : | >10000 | 4.47 | <10   | 0.12  | 3779  | 56 <  | 0.01    | 5  | <10    | 834  | <5   | <20 | 3   | 0.02        | <10 | 6   | <10  | 1  | 698    |
| 41    | BD96-3       | >1000   | >30  | 0.10  | 100      | 50<br>E10 | -5                                                                                    | 7.06  | - <sup>2</sup> 2                        | 11     | 45    | 3285   | 2.87 | <10   | 1.42  | 4190  | 3 <   | 0.01    | 2  | 500    | 50   | 5    | <20 | 75  | <0.01       | <10 | 35  | <10  | 7  | 266    |
| 42    | BD96-4       | 55      | 28.4 | 0.29  | 30       | 210       | ~5                                                                                    | 3.44  | 5                                       | 10     | 79 :  | >10000 | 2.49 | <10   | 0.91  | 2539  | 11 <  | 0.01    | 2  | <10    | 4    | 5    | <20 | 109 | 0.01        | <10 | 14  | <10  | <1 | 148    |
| 43    | BD96-5       | 505     | >30  | 0.14  | 100      | 50        | ~5<br>~E                                                                              | 0.95  | 95                                      | 10     | 105 : | >10000 | 4 43 | <10 < | 0.01  | 835   | 8 <   | 0.01    | 1  | <10    | 1316 | <5   | <20 | 2   | 0.01        | <10 | 6   | <10  | <1 | 73     |
| 44    | BD96-6       | >1000   | 15.0 | 0.13  | < 5      | 50        | ~0<br>~E                                                                              | 0.00  | 50                                      | 24     | 61    | 4707   | 8 12 | <10   | 0.82  | 3931  | 38 <  | 0.01    | 9  | 600    | 90   | <5   | <20 | <1  | < 0.01      | <10 | 76  | <10  | <1 | 364    |
| 45    | BD96-7       | 115     | 6.4  | 1.63  | 15       | 45        | <5                                                                                    | Ų.24  | 1                                       | 54     | 01    | 4107   | 0.12 |       | *     |       |       |         |    |        |      |      |     |     |             |     |     |      |    |        |
|       |              |         | • •  |       | 25       | ~5        | ~5                                                                                    | 6 74  | -1                                      | 7      | 110 : | >10000 | 2.28 | <10   | 0.02  | 2632  | 42 <  | 0.01    | 3  | <10    | 24   | <5   | <20 | 41  | <0.01       | <10 | 4   | <10  | 4  | 15     |
| 46    | BD96-8       | 555     | 6.6  | 0.19  | 20       | <0<br>00  | <0<br>                                                                                | 0.14  | 22                                      | í.     | 65    | >10000 | 6 20 | <10   | 0.02  | 466   | 14 <  | 0.01    | <1 | <10    | 158  | <5   | <20 | <1  | 0.02        | 20  | 10  | <10  | <1 | 2134   |
| 47    | BD96-9       | >1000   | >30  | 0.34  | <>       | 20        | -5                                                                                    | 1 10  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 168    | 123   | 9276   | 3.38 | <10 < | 0.01  | 462   | 130 < | 0.01    | 1  | <10    | 386  | 10   | <20 | <1  | <0.01       | 10  | 4   | <10  | <1 | 295    |
| 48    | BD96-10      | >1000   | 29.4 | 0.14  | 1360     | 40        | -0                                                                                    | 1.10  | 161                                     | 264    | 07    | S10000 | 6 59 | <10 < | 0.01  | 975   | 211 < | 0.01    | <1 | <10    | 1082 | <5   | <20 | 7   | 0.02        | <10 | < 1 | <10  | <1 | >10000 |
| 49    | BD96-11      | >1000   | >30  | 0.11  | 795      | 50        | <0                                                                                    | 2.12  | 67                                      | 204    | 126   | 1071   | 2 41 | <10 < | :0.01 | 52    | 587 < | 0.01    | 3  | <10    | 3222 | <5   | <20 | <1  | <0.01       | <10 | 3   | <10  | <1 | 7738   |
| 50    | BD96-12      | >1000   | 28.0 | 0.11  | 35       | 10        | <0                                                                                    | <0.01 | 07                                      | 0      | 120   | 1971   | 2.71 |       |       | •     | •••   |         |    |        |      |      |     |     |             |     |     |      |    |        |
|       |              |         |      | • • • | 400      | 00        | <u> </u>                                                                              | 0.03  | 2                                       | 25     | 10    | <1     | >10  | <10 < | :0.01 | 66    | 5 <   | 0.01    | 2  | >10000 | 112  | 90   | <20 | 11  | <0.01       | 80  | 14  | 150  | <1 | 69     |
| 51    | BD96-13      | 10      | >30  | 0.06  | 120      | 90        | <0<br>                                                                                | 0.03  | -1                                      | 23     | 275   | 351    | 1 18 | <10   | 0.09  | 579   | 7 <   | 0.01    | 3  | 20     | 6    | <5   | <20 | 1   | <0.01       | <10 | 15  | <10  | <1 | 82     |
| 52    | BD96-14      | 10      | 7.0  | 0.10  | 10       | 65        | <ol> <li><ol> <li><ol> <li><ol> <li><ol></ol></li></ol></li></ol></li></ol></li></ol> | 0.55  | ~1                                      | 2      | 121   | 287    | 0.97 | <10   | 0.20  | 570   | 8 <   | 0.01    | 2  | 280    | 24   | <5   | <20 | 93  | 80.0        | <10 | 49  | <10  | <1 | 42     |
| 53    | BD96-15      | 5       | 1.2  | 1,67  | <5       | 30        | <0                                                                                    | 3.14  |                                         |        | 146   | 207    | 2 30 | <10   | 0.91  | 2588  | 3     | 0.01    | 5  | 310    | 4    | <5   | <20 | 23  | 0.06        | <10 | 132 | <10  | <1 | 330    |
| 54    | BD96-16      | 5       | 0.8  | 0.74  | <5       | 20        | 5                                                                                     | 0.00  | <  <br>                                 | 9      | 115   | 1470   | 0.69 | <10   | 0.12  | 463   | А <   | 0.01    | <1 | 110    | 2    | <5   | <20 | <1  | <0.01       | <10 | 3   | <10  | <1 | 55     |
| 55    | BD96-17      | 5       | 16.6 | 0.29  | <5       | 20        | <5                                                                                    | 0.42  | <1                                      | <1     | 90    | 1470   | 0.50 | ~10   | 0.12  | 400   | v     | 0.01    | •  |        | -    | -    |     |     |             |     |     |      |    |        |
|       |              |         |      |       |          | -         |                                                                                       | ×40   | 24                                      | £      | 75    | 20     | 1 37 | <10   | 0.51  | 1720  | 2 <   | 0.01    | 3  | 140    | <2   | <5   | <20 | 94  | 0.01        | <10 | 58  | <10  | <1 | 46     |
| 56    | BD96-18      | 5       | 3.2  | 0.53  | s <5     | 5         | <5                                                                                    | >10   | ~ !                                     | 5<br>* | 73    | 29     | 1.07 |       |       | •     |       |         | •  | •      | •    | •    | •   | •   | •           | ٠   | •   | •    | ٠  |        |
| 57    | BD96-19      | 5       | •    | •     | _        | ·         |                                                                                       | 4 00  |                                         | 25     | 16    | 7040   | 0 17 | 10    | 2 72  | 3686  | 4     | 0.03    | 10 | 1340   | 34   | <5   | <20 | 10  | 0.04        | <10 | 163 | < 10 | <1 | 443    |
| 58    | BD96-20      | 5       | >30  | 2.97  | <5       | 85        | <5                                                                                    | 1.33  | <1                                      | 35     | 140   | 7949   | 0.64 | <10   | 0.07  | 2697  | 11 <  | 0.01    | 3  | 70     | <2   | <5   | <20 | 69  | <0.01       | <10 | 9   | <10  | 2  | 20     |
| 59    | BD96-21      | 5       | 0.2  | 0.05  | 5 <5     | 65        | <5                                                                                    | 6.05  | <1                                      | 2      | 140   | 22     | 0.04 | <10   | 2.54  | 2007  |       | 0.02    | 10 | 80     | 52   | <5   | <20 | 13  | 0.03        | <10 | 220 | < 10 | <1 | 592    |
| 60    | BD96-22      | 5       | >30  | 2.79  | ) <5     | 45        | <5                                                                                    | 0.64  | <1                                      | 29     | 14    | >10000 | 8.14 | ×10   | 2.04  | 5540  | 5     | 9.0£    | 10 | 00     | JL   | -0   | 20  |     | •           | . 2 |     |      |    |        |

| H m         Augph         Aug         Aug         Aug         C         C         C         C         Cu         Pes         No         No         Pes         Sb         Sn         Sr         Ti%         U         V         W         V         Zn           61         8056-23         5         10         0.24         5         1.06         5         5         5         10         0.24         5         1.06         0.07         10         0.01         0.03         100         0.01         1.00         0.01         0.00         1.00         0.01         1.00         0.01         1.00         0.01         1.00         0.01         1.00         0.01         1.00         0.01         1.00         0.01         1.00         0.01         1.00         0.02         2.00         1.00         1.01         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                           | OREQU | JEST CONS | ULTANTS |      |      |      | ICP CERTIFICATE OF ANALYSIS AK 96-1074 |    |      |    |    |       |        |      |     |       |       |          |    |      |      |     | ECO-TECH LABORATORIES LTD. |              |      |              |     |     |    |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|---------|------|------|------|----------------------------------------|----|------|----|----|-------|--------|------|-----|-------|-------|----------|----|------|------|-----|----------------------------|--------------|------|--------------|-----|-----|----|------|
| 61         BD62:33         140         6         1.0         0.24          65         1.14 $(10)$ $(20)$ $(20)$ $(40)$ $(11)$ $(10)$ $(20)$ $(20)$ $(20)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(22)$ $(21)$ $(21)$ $(21)$ $(21)$ $(21)$ $(21)$ $(21)$ $(21)$ $(21)$ $(21)$ $(21)$ $(21)$ $(21)$ <th>Ft#.</th> <th>Tag #</th> <th>Au(opb)</th> <th>Aa</th> <th>AI %</th> <th>As</th> <th>Ba</th> <th>Bi</th> <th>Ca %</th> <th>Cd</th> <th>Co</th> <th>Cr</th> <th>Cu</th> <th>Fe %</th> <th>La</th> <th>Mg %</th> <th>Mn</th> <th>Mo Na%</th> <th>Ni</th> <th>Р</th> <th>Pb</th> <th>Sb</th> <th>Sn</th> <th>Sr Ti</th> <th>%</th> <th>U</th> <th>v</th> <th>w</th> <th>Y</th> <th>Zn</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ft#.  | Tag #     | Au(opb) | Aa   | AI % | As   | Ba                                     | Bi | Ca % | Cd | Co | Cr    | Cu     | Fe % | La  | Mg %  | Mn    | Mo Na%   | Ni | Р    | Pb   | Sb  | Sn                         | Sr Ti        | %    | U            | v   | w   | Y  | Zn   |
| B096-24       10       10       10       10       400       1       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61    | BD06.23   | 5       | 10   | 0.24 | <5   | 210                                    | <5 | 1.88 | <1 | 2  | 63    | 193    | 1.14 | <10 | 0.03  | 1103  | 5 < 0.01 | 1  | 480  | 8    | <5  | <20                        | 8 <0.        | .01  | <10          | 4   | <10 | 2  | 24   |
| BD902-2A       BD       BD       BD       Columbra       Columbra <thcolumbra< th="">       Columbra       Columa</thcolumbra<>                                                                                                                                                                                                                                                                                               | 62    | BD96-24   | 140     | 1.0  | 0.07 | <5   | <5                                     | <5 | >10  | 67 | <1 | 18    | 204    | 0.17 | 10  | <0.01 | 2900  | 4 <0.01  | <1 | 60   | 1222 | 10  | <20                        | 26 <0.       | .01  | <10          | 1   | <10 | 10 | 65   |
| BB96-256         10         3.8         0.14         <5         55         <5         57         2         2         10         0.00         2         10         15         10         16         1786         5         0.00         2         10         150         1786         5         0.00         2         10         150         1786         5         0.00         2         10         10         1786         5         0.00         5         0.00         2         10         0.00         10         1786         5         0.00         2         10         10         1786         5         0.00         2         10         10         17         10         17         10         17         10         17         10         15         10         17         10         10         10         17         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 </td <td>63</td> <td>BD96-25A</td> <td>80</td> <td>3.0</td> <td>0.43</td> <td>&lt;5</td> <td>65</td> <td>&lt;5</td> <td>8.06</td> <td>2</td> <td>2</td> <td>63</td> <td>2755</td> <td>1.19</td> <td>&lt;10</td> <td>0.18</td> <td>1779</td> <td>6 &lt;0.01</td> <td>1</td> <td>250</td> <td>424</td> <td>&lt;5</td> <td>&lt;20</td> <td>13 &lt;0.</td> <td>.01</td> <td>&lt;10</td> <td>4</td> <td>&lt;10</td> <td>4</td> <td>28</td> | 63    | BD96-25A  | 80      | 3.0  | 0.43 | <5   | 65                                     | <5 | 8.06 | 2  | 2  | 63    | 2755   | 1.19 | <10 | 0.18  | 1779  | 6 <0.01  | 1  | 250  | 424  | <5  | <20                        | 13 <0.       | .01  | <10          | 4   | <10 | 4  | 28   |
| BBD6-28       90       10.6       2.51         5       5.97       2       21       43       6650       5.37       <10       160       178       5       <00       6       630       342       <5       <20       29       0.07       <10       75       <10       <11       200         66       BD96-28       470       >30       0.21       35       50       <5       28       21       19       105       10000       <10       <10       340       2       100       133       <010       356       <5       <20       110       10       15       <10       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64    | BD06-25R  | 10      | 3.8  | 0.14 | <5   | 35                                     | <5 | >10  | 6  | <1 | 51    | 1785   | 0.44 | <10 | 0.05  | 3463  | 2 <0.01  | 2  | 70   | 1234 | 5   | <20                        | 32 <0.       | .01  | <10          | 2   | <10 | 6  | 18   |
| 66       B096-27       >1000       >30       21.3       <5       60       <5       2.11       65       100       20       115       0.17       <10       67       100       30       21.3       <5       50       <5       2.11       50       50       <5       2.11       100       100       100       100       12       <10       106       12       <10       106       15       <10       <10       100       12       <10       100       12       <10       100       15       <10       <10       <10       12       <10       100       12       <10       100       12       100       11       17.7       <10       <5       0.02       22       11       14       17.8       100       0.07       24.00       12       100       03       20.01       2       100       32       540       0.01       <10       22.0       23.11       110       0.07       24.05       11       100       122.0       100       122.0       100       32       540       0.01       100       122.0       100       32.01       102.0       100       102.0       100       100       102.0       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65    | BD30-230  | 0       | 10.6 | 2.51 | <5   | 55                                     | <5 | 5.97 | 2  | 21 | 43    | 6650   | 5.37 | <10 | 1.60  | 1788  | 5 <0.01  | 6  | 630  | 342  | <5  | <20                        | 29 0.        | .07  | <10          | 75  | <10 | <1 | 137  |
| 66       B096-27       >1000       >30       2.13        65       2.11       0.0>       0.00       6.05       <100       1.67       2495       <1       0.00       33       <10       356       0.17       <10       0.167       <10       157       0.17       <100       156       0.17       <100       150       100       15       0.07       <100       150       0.07       <100       150       0.07       <100       150       0.07       <100       150       0.07       <100       150       0.07       <100       150       0.07       <100       150       0.07       <100       150       0.07       <100       150       0.07       <100       100       350       0.01       4.13       28       <0.01       4.13       28       <0.01       4.13       28       <0.01       4.13       28       <0.01       4.13       28       <0.01       4.13       28       <0.01       4.13       28       <0.01       4.13       28       <0.01       4.13       28       <0.01       4.13       28       <0.01       2.13       4.10       2.10       2.10       2.10       2.10       2.10       2.10       2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05    | 0030-20   |         | 10.0 | 2.0  | -    |                                        |    |      |    |    |       |        |      |     |       |       |          |    |      |      |     |                            |              |      |              |     |     |    |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66    | BD96-27   | >1000   | >30  | 2.13 | <5   | 50                                     | <5 | 2.81 | 6  | 21 | 30 :  | >10000 | 6.05 | <10 | 1.67  | 2495  | <1 <0.01 | 3  | <10  | 358  | <5  | <20                        | 115 0.       | .17  | <10          | 67  | <10 | <1 | 200  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67    | BD96-21   | 470     | >30  | 0.22 | 300  | 40                                     | <5 | 0.03 | 2  | 19 | 105 : | >10000 | >10  | <10 | <0.01 | 180   | 33 <0.01 | 2  | <10  | 1664 | <5  | <20                        | <1 <0.       | .01  | 30           | 15  | <10 | <1 | 188  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68    | BD06-20   | >1000   | 44   | 0.14 | 75   | 140                                    | <5 | 0.02 | 22 | 1  | 165   | 353    | 2.18 | <10 | 0.01  | 43    | 26 <0.01 | 2  | 410  | 2376 | <5  | <20                        | <1 <0.       | .01  | 10           | 5   | <10 | <1 | 2362 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60    | 8006-20   | 10      | 14   | 1 77 | <5   | 60                                     | <5 | 1.21 | 2  | 20 | 39    | 115    | 4.78 | <10 | 0.97  | 2460  | <1 0.01  | 4  | 1300 | 50   | <5  | <20                        | <b>26</b> 0. | .19  | <10          | 46  | <10 | 2  | 291  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70    | BD96-31   | .0      | >30  | 0.17 | 1070 | 95                                     | <5 | 5.64 | 30 | 21 | 114   | 2780   | 6.50 | <10 | 0.91  | 7332  | 8 <0.01  | 9  | 100  | 32   | 540 | <20                        | 54 0         | .01  | <10          | 22  | <10 | <1 | 1054 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10    | 0030-01   | 5       |      |      |      |                                        |    |      |    |    |       |        |      |     |       |       |          |    |      |      |     |                            |              |      |              |     |     |    |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71    | 8096.32   | 5       | 16   | 1.64 | 5    | 65                                     | 5  | 0.28 | <1 | 10 | 37    | 39     | 4.58 | <10 | 1.19  | 948   | <1 0.03  | 1  | 1220 | 40   | <5  | <20                        | 2 0          | 1.27 | 30           | 95  | <10 | <1 | 109  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72    | 4201      | 130     | 24   | 0.41 | <5   | 70                                     | <5 | >10  | 8  | 4  | 25    | 932    | 3.14 | <10 | 0.10  | 5611  | 9 <0.01  | 2  | 540  | 78   | <5  | <20                        | 33 0.        | 0.01 | <10          | 26  | <10 | 7  | 148  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 73    | 4202      | >1000   | >30  | 0.62 | <5   | 80                                     | <5 | 3.47 | 20 | 14 | 65    | >10000 | >10  | <10 | 0.10  | 10000 | 39 <0.01 | 8  | <10  | 224  | <5  | <20                        | 32 0         | 0.06 | <10          | 40  | <10 | <1 | 228  |
| 75       4204       75       1.2       0.68       <5       26       1249       3.36       <10       0.15       4586       2       <0.01       1       470       152       <5       <20       18       0.03       <10       39       <10       8       150         76       4205       5       0.4       0.69       <5       125       <5       8.88       <1       8       21       387       3.99       <10       0.18       3495       3       <0.01       2       700       46       <5       <20       30       <10       67       <10       757         77       4206       5       0.68       0.55       <5       60       <5 $27$ 1054       3.31       <10       0.07       3818       <1       <0.01       2       680       36       <5       <20       22       0.07       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10       <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73    | 4202      | >1000   | 7.0  | 0.35 | <5   | 65                                     | <5 | 7.60 | 8  | 11 | 57    | 4085   | 8.40 | <10 | 0.10  | 10000 | 35 <0.01 | 4  | 50   | 308  | <5  | <20                        | 24 0         | 0.03 | <10          | 28  | <10 | 4  | 202  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75    | 4200      | 55      | 12   | 0.68 | <5   | 205                                    | <5 | >10  | 6  | 5  | 26    | 1249   | 3.36 | <10 | 0.15  | 4586  | 2 <0.01  | 1  | 470  | 152  | <5  | <20                        | 18 0         | 0.03 | <10          | 39  | <10 | 8  | 150  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73    | 4204      | 00      |      | 0.00 | -    |                                        |    |      |    |    |       |        |      |     |       |       |          |    |      |      |     |                            |              |      |              |     | _   | _  |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76    | 4205      | 5       | 04   | 0.69 | <5   | 125                                    | <5 | 8.88 | <1 | 8  | 21    | 387    | 3.99 | <10 | 0.18  | 3495  | 3 <0.01  | 2  | 700  | 46   | <5  | <20                        | 30 0         | ).06 | <10          | 67  | <10 | /  | 57   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77    | 4206      | 5       | 0.6  | 0.38 | <5   | 150                                    | <5 | 9.76 | <1 | 5  | 27    | 1054   | 3.31 | <10 | 0.07  | 3818  | <1 <0.01 | 2  | 680  | 36   | <5  | <20                        | 22 0         | 0.07 | <10          | 51  | <10 | ь  | 29   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 78    | 4207      | 265     | 0.6  | 0.55 | <5   | 60                                     | <5 | 7.22 | 1  | 8  | 51    | 4791   | 3.42 | <10 | 0.14  | 3589  | 6 <0.01  | <1 | 470  | 96   | <5  | <20                        | 23 0         | ).04 | <10          | 46  | <10 | 4  | 53   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70    | 4208      | 470     | 2.0  | 0.52 | <5   | 95                                     | <5 | 9.43 | 26 | 4  | 41    | 2613   | 1.84 | <10 | 0.07  | 4673  | 5 <0.01  | <1 | 480  | 214  | <5  | <20                        | 25 <0        | 0.01 | <10          | 15  | <10 | 7  | 357  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80    | 4200      | >1000   | 20   | 0.37 | <5   | 45                                     | <5 | 9.55 | 55 | 6  | 36    | >10000 | 3.08 | <10 | 0.06  | 3538  | 7 <0.01  | 1  | <10  | 488  | <5  | <20                        | 21 <0        | 0.01 | <10          | 10  | <10 | 2  | 872  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50    | 4205      | - 1000  | ~    |      |      |                                        |    |      |    |    |       |        |      |     |       |       |          |    |      |      |     |                            |              |      |              |     |     |    |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81    | 4210      | 335     | 14   | 0.38 | 5    | 60                                     | <5 | 6.38 | 8  | 7  | 34    | >10000 | 3.26 | <10 | 0.04  | 2459  | 3 <0.01  | 1  | 190  | 100  | <5  | <20                        | 22 <0        | 0.01 | <10          | 9   | <10 | 3  | 134  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82    | 4211      | 205     | 16   | 0.94 | <5   | 40                                     | <5 | 6.31 | 49 | 13 | 22    | 3344   | 3.97 | <10 | 0.21  | 3355  | 10 <0.01 | 3  | 370  | 352  | <5  | <20                        | 16 <0        | 0.01 | <10          | 20  | <10 | 2  | /1/  |
| 63       4212       >1000       1.2       1.38       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93    | 4212      | >1000   | 14   | 0.85 | <5   | 20                                     | <5 | 4.21 | 9  | 13 | 36    | 4615   | 3.74 | <10 | 0.32  | 2222  | 14 <0.01 | 2  | 390  | 298  | <5  | <20                        | 14 <0        | 0.01 | <10          | 25  | <10 | <1 | 192  |
| 04       4210       10       102       11       11       11       10       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84    | 4213      | >1000   | 12   | 1.38 | <5   | 25                                     | <5 | 1.71 | 14 | 15 | 28    | 7158   | 4.49 | <10 | 0.61  | 1693  | 8 <0.01  | 3  | 550  | 108  | <5  | <20                        | 7 <0         | 0.01 | <10          | 38  | <10 | <1 | 349  |
| 86       4215       5       <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85    | 4214      | 5       | 0.4  | 0.52 | <5   | 115                                    | 10 | 3.82 | <1 | 21 | 11    | 22     | 4.94 | <10 | 0.71  | 1995  | 4 <0.01  | 3  | 1110 | 12   | <5  | <20                        | 48 0         | 0.03 | < <b>1</b> 0 | 110 | <10 | 2  |      |
| 86 4215 5 <0.2 0.61 <5 80 15 5.62 <1 21 13 29 5.00 <10 0.72 2368 2 <0.01 3 1050 6 <5 <20 56 0.07 <10 131 <10 4 67<br>87 4216 5 0.4 0.40 <5 85 5 6.07 <1 17 20 23 4.50 <10 0.26 2465 <1 <0.01 4 880 <2 <5 <20 51 0.11 <10 84 <10 5 43<br>88 4217 5 <0.2 1.01 <5 130 <5 3.39 <1 21 12 8 4.79 <10 1.43 1518 2 0.02 2 960 12 <5 <20 58 0.05 <10 122 <10 4 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00    | 74.17     |         | •,-  | 0.04 | •    |                                        | _  |      |    |    |       |        |      |     |       |       |          |    |      |      |     |                            |              |      |              |     |     |    | 07   |
| 87 4216 5 0.4 0.40 <5 85 5 6.07 <1 17 20 23 4.50 <10 0.26 2465 <1 <0.01 4 880 <2 <5 <20 51 0.11 <10 84 <10 5 43<br>88 4217 5 <0.2 1.01 <5 130 <5 3.39 <1 21 12 8 4.79 <10 1.43 1518 2 0.02 2 960 12 <5 <20 58 0.05 <10 122 <10 4 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86    | 4215      | 5       | <0.2 | 0.61 | <5   | 80                                     | 15 | 5.62 | <1 | 21 | 13    | 29     | 5.00 | <10 | 0.72  | 2368  | 2 <0.01  | З  | 1050 | 6    | <5  | <20                        | 56 0         | 0.07 | <10          | 131 | <10 | 4  | 67   |
| 88 4217 5 <0.2 1.01 <5 130 <5 3.39 <1 21 12 8 4.79 <10 1.43 1518 2 0.02 2 960 12 <5 <20 58 0.05 <10 122 <10 4 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87    | 4216      | 5       | 0.4  | 0.40 | <5   | 85                                     | 5  | 6.07 | <1 | 17 | 20    | 23     | 4.50 | <10 | 0.26  | 2465  | <1 <0.01 | 4  | 880  | <2   | <5  | <20                        | 51 0         | D.11 | <10          | 84  | <10 | 5  | 43   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88    | 4217      | 5       | <0.2 | 1.01 | <5   | 130                                    | <5 | 3.39 | <1 | 21 | 12    | 8      | 4.79 | <10 | 1.43  | 1518  | 2 0.02   | 2  | 960  | 12   | <5  | <20                        | 58 0         | 0.05 | <10          | 122 | <10 | 4  | 91   |

Page 3

~ •

| OREQU    | EST CONS | ULTANTS |     |      |     |     |    |      |                                               | I  | CP CE | RTIFICA | TE OF | ANALY        | SIS A | K 96-1 | 074       |       |        |      |      |          |      |    | ECO-TE      | CHLA | BORA | TORIES | S LTD. |             |
|----------|----------|---------|-----|------|-----|-----|----|------|-----------------------------------------------|----|-------|---------|-------|--------------|-------|--------|-----------|-------|--------|------|------|----------|------|----|-------------|------|------|--------|--------|-------------|
| Ft #.    | Tao #    | Au(pob) | Aa  | A1 % | As  | Ba  | Bi | Ca % | Cd                                            | Co | Cr    | Cu      | Fe %  | La           | Mg %  | Mn     | Мо        | Na %  | Ni     | P    | РЪ   | Sb       | Sn   | Sr | Ti %        | U    |      | w      | Y      | Zn          |
|          |          |         |     |      |     |     |    |      | <u>,                                     </u> |    |       |         |       |              |       |        |           |       |        |      |      |          |      |    |             |      |      |        |        |             |
|          | A:       |         |     |      |     |     |    |      |                                               |    |       |         |       |              |       |        |           |       |        |      |      |          |      |    |             |      |      |        |        |             |
| Resplit: |          |         |     |      |     |     |    |      |                                               |    |       |         |       |              | 0.40  | A700   |           | -0.01 | c      | 620  | 96   | ~5       | <20  | 21 | 0.01        | <10  | 39   | <10    | 9      | <b>14</b> G |
| R/S 1    | RR96-1   | 20      | >30 | 0.66 | 150 | 115 | <5 | 4.04 | <1                                            | 13 | 95    | 5882    | 3.81  | <10          | Q.13  | 3733   | 8         | <0.01 | 3      | 030  | 00   | -5       | ~20  |    | 0.01        | -10  |      |        |        |             |
| R/S 36   | BR96-3   | 5       | -   | -    | •   | -   | -  | -    | -                                             | -  | -     | -       |       |              |       | -      | •         | 0.02  | ·<br>2 | 1200 | 28   | <5       | <20  | 5  | 0.23        | <10  | 82   | <10    | <1     | 97          |
| R/S 71   | BD96-32  | 5       | 1.2 | 1.39 | 10  | 60  | <5 | 0.25 | <1                                            | 8  | 42    | 37      | 4.13  | <10          | 0.98  | 900    | ~ 1       | 0.05  | 2      | 1200 | 50   | -5       | -20  | Ŭ  | 0.20        |      | ÷-   |        |        |             |
| Repeat.  |          |         |     |      |     |     |    |      |                                               |    | -     |         | 0.67  |              | 0.47  | 2542   |           | c0 01 | n      | 650  | 78   | <5       | <20  | 19 | 0.01        | <10  | 37   | <10    | 9      | 130         |
| 1        | RR96-1   | 20      | >30 | 0.60 | 140 | 90  | <5 | 3.84 | 1                                             | 13 | 78    | 5619    | 3.57  | <10          | 0.13  | 1165   | 10        | ~0.01 | 2      | 340  | 260  | <5       | <20  | <1 | 0.01        | <10  | 6    | <10    | 3      | 76          |
| 10       | RR96-10  | >1000   | 0.8 | 0.36 | <5  | 35  | <5 | 0.93 | 17                                            | 6  | 103   | 8562    | 2.31  | < 10<br>- 40 | -0.02 | 174    | 10        | <0.01 | ~      | 040  | 1284 | <5       | <20  | 1  | 0.01        | 10   | 24   | <10    | <1     | 147         |
| 19       | RR96-19  | 300     | 2.2 | 0.21 | <5  | 50  | <5 | 0.11 | 5                                             | 8  | 253   | 5814    | 7.30  | < I Q        | <0.03 | 174    | 9         | ~0.01 | -      | 50   | 1204 |          |      |    |             |      |      | -      | -      |             |
| 31       | WR96-12  | >1000   | •   | -    | -   | -   | •  | -    | -                                             | •  | -     | -       | •     | -            | -     | -      | -         | -     | -      |      | -    | _        |      |    |             | -    | -    | -      | -      | -           |
| 40       | BD96-2   | >1000   | •   | •    | •   | -   | -  | -    | -                                             | -  | -     |         |       | - 10         | 0.78  | 3760   | 26        | <0.01 | 6      | 580  | 86   | <5       | <20  | <1 | <0.01       | <10  | 74   | <10    | <1     | 353         |
| 45       | BD96-7   | -       | 6.2 | 1.58 | 15  | 50  | <5 | 0.24 | 2                                             | 33 | 61    | 4453    | 1.82  | <10          | 0.76  | 3760   | 30        | ~0.01 |        |      |      |          | - 20 | -  | -0.01       |      |      | -      | -      |             |
| 50       | BD96-12  | >1000   | -   | -    | -   | •   | -  |      | •                                             | -  | 400   | -       | 2 40  | -10          | 0.02  | 2570   | 2         | 0.01  | 6      | 300  | 6    | <5       | <20  | 22 | 0.06        | <10  | 134  | <10    | <1     | 329         |
| 54       | BD96-16  | -       | 1.0 | 0.74 | <5  | 20  | 5  | 6.58 | <1                                            | 8  | 120   | 20      | 3.40  | ~10          | 0.92  | 23/0   | 3         | 0.01  | 0      | 5000 |      |          | 20   |    | -           |      |      | _      |        |             |
| 61       | BD96-23  | 10      | -   | •    | •   | -   | •  |      | -                                             | -  | -     | -       |       | - 10         | 0 17  | 1764   | - 7       | <0.01 | -1     | 240  | 440  | <5       | <20  | 15 | <0.01       | <10  | 4    | <10    | 4      | 28          |
| 63       | BD96-25A |         | 2.6 | 0.44 | <5  | 65  | <5 | 7.90 | 2                                             | 2  | 65    | 2793    | 1.10  | 510          | 0.17  | 1704   | '         | ~0.01 | - 1    | 2-0  |      | -        |      | -  | -           |      | _    | -      |        |             |
| 70       | BD96-31  | 5       | -   | -    | -   | -   | -  |      | -                                             | •  | -     |         |       |              | 4 4 2 |        | -1        | 0.02  | -      | 1200 | 40   | <5       | <20  | 6  | 0.24        | <10  | 93   | <10    | <1     | 108         |
| 71       | BD96-32  | -       | 1.2 | 1.62 | 10  | 70  | 15 | 0.30 | <1                                            | 9  | 48    | 44      | 4.40  | <10          | 1.12  | 2600   | ا ~<br>م  | <0.03 | 3      | <10  | 486  | <5       | <20  | 20 | <0.01       | <10  | 10   | <10    | 2      | 879         |
| 80       | 4209     | >1000   | 2.2 | 0.36 | <5  | 45  | <5 | 9.35 | 57                                            | 6  | 37    | >10000  | 3.08  | <10          | 0.07  | 3000   | 0         | ~0.01 | 3      | ~10  | 400  | -0       | -10  |    | -0.01       |      |      |        |        |             |
| 88       | 4217     | 5       | -   | -    | •   | -   | -  | -    | •                                             | -  | -     | •       | -     | -            | -     | -      | -         | •     | -      | -    | -    |          |      |    |             |      |      |        |        |             |
| Standa   | rd:      |         |     |      |     |     |    |      |                                               |    |       |         |       |              |       | 704    |           | 0.02  | 22     | 760  | 20   | ~5       | <20  | 69 | 0.15        | <10  | 90   | <10    | 3      | 70          |
| GEO'96   |          | 150     | 1.0 | 2.06 | 60  | 150 | <5 | 1.97 | <1                                            | 20 | 71    | 76      | 4.28  | <10          | 1.06  | 7.34   | ۲><br>امر | 0.03  | 23     | 700  | 20   | ~5       | <20  | 54 | 0.13        | <10  | 78   | <10    | 1      | 75          |
| GEO'96   |          | 145     | 1.2 | 1.71 | 65  | 165 | <5 | 1.76 | <1                                            | 18 | 62    | 74      | 3.86  | <10          | 0.92  | 656    | <1        | 0.02  | 23     | 630  | 24   | ~0<br>~5 | <20  | 51 | 0.13        | <10  | 76   | <10    | 1      |             |
| GEO'96   |          | 145     | 0.6 | 1.74 | 70  | 155 | <5 | 1.73 | <1                                            | 18 | 62    | 74      | 3.69  | <10          | Ų.76  | 004    | <1        | 0.02  | ΖU     | 000  | 24   | -0       | -20  | 5. | <b>G</b> 11 |      | .0   | . 0    |        |             |

Note: \* = No Sample

df/1074

XLS/96Orequest

Fax @: 604-688-6788 • Attn: Wes Raven

cc: results/inv: Imperial Metals Corp. - Attn: Patrick McAndless

· .

Fax @: 604-687-4030 - Atin: Pat McAndless

· · · · · · ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

## ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

LABORATORIES LTD.

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 614 Phone (250) 573-5700 Fax (250) 573-4557

# CERTIFICATE OF ASSAY AK 96-1099

OREQUEST CONSULTANTS
 306-595 HOWE STREET
 VANCOUVER, B.C.
 V6C 2T5

7-Oct-96

## ATTENTION: WES RAVEN

20

- No. of samples received:105
   Sample type: ROCK
   PROJECT #: CHACO BEAR
   SHIPMENT #:NOT GIVEN
- Samples submitted by: W. RAVEN

| -        |       |          | Au    | Au     | Ag           | Ag     | Cu         |          |
|----------|-------|----------|-------|--------|--------------|--------|------------|----------|
|          | ET #. | Tag #    | (g/t) | (oz/t) | <u>(g/t)</u> | (oz/t) | <u>(%)</u> | <u> </u> |
| =        | 17    | RR96- 21 | -     | -      | 397.6        | 11.60  | 8.62       |          |
|          | 18    | RR96- 22 | 2.31  | 0.067  | 31.0         | 0.90   | 3.68       |          |
| <b>F</b> | 19    | RR96-23  | -     | -      | -            | -      | 1.67       |          |
|          | 20    | RR96- 24 | 25.52 | 0.744  | -            | -      | 1.16       |          |
|          | 25    | RR96- 29 | -     | -      | -            | -      | 1.11       |          |
|          | 27    | RR96- 31 | 5.79  | 0.169  | -            | +      | 1.17       |          |
|          | 33    | RR96- 37 | 2.82  | 0.082  | -            | -      | -          |          |
|          | 37    | RR96- 41 | 1.02  | 0.030  | -            | -      | -          |          |
|          | 30    | RR96- 43 | 22.03 | 0.642  | · _          | -      | -          |          |
|          | 84    | BD96- 33 | 2.66  | 0.078  | -            | -      | -          |          |
|          | 98    | BD96- 47 | 7.06  | 0.206  | -            | -      | -          |          |
|          | 101   | BR96- 6  | 10.72 | 0.313  | -            | -      | 4.73       |          |
|          | 105   | BR96- 10 | 5.03  | 0.147  | -            | -      | -          |          |

| QC | DATA: |
|----|-------|

| Standard: |  |   |           |       |      |
|-----------|--|---|-----------|-------|------|
| SUI-a     |  | - | <br>-     | -     | 1.44 |
| CPb-1     |  | - | <br>632.0 | 18.43 | 0.25 |

 XLS/96Orequest#2 fax:688-6788/w.raven cc:fax:687-4030/p.mcandless Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer 1-Oct-96

.

ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway

KAMLOOPS, B.C.

V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-1099

OREQUEST CONSULTANTS 306-595 HOWE STREET VANCOUVER, B.C. V6C 2T5

#### ATTENTION: WES RAVEN

No. of samples received:105 Sample type: ROCK PROJECT #: CHACO BEAR SHIPMENT #:NOT GIVEN Samples submitted by: W. RAVEN

Values in ppm unless otherwise reported

~

| E+ # | Tag #  |      | Au(nnb) | Aα   | Ał % | As       | Ва  | Bi  | Ca % | Cd       | Co  | Cr  | Cu      | Fe % | La  | Mg % | Mn   | Mo Na%    | Ni | P      | Pb       | Sb       | Sn  | Sr Ti%   | <u> </u> | <u>v</u> | W    | <u>Y</u> | Zn   |
|------|--------|------|---------|------|------|----------|-----|-----|------|----------|-----|-----|---------|------|-----|------|------|-----------|----|--------|----------|----------|-----|----------|----------|----------|------|----------|------|
|      | 109 #  | 16   | 105     | 0.9  | 1.53 | -5       | 125 | 10  | 0.14 | 1        | 11  | 23  | 28      | 9.97 | 70  | 0.87 | 1510 | 10 < 0.01 | 5  | 650    | <2       | <5       | <20 | 3 0.01   | <10      | 50       | <10  | <1       | 52   |
|      | WR90-  | 47   | 105     | 0.0  | 0.26 | -5       | 45  | <5  | 0.54 | <1       | 2   | 99  | 127     | 0.74 | 20  | 0.03 | 438  | 9 0.02    | 3  | 140    | 4        | <5       | <20 | 9 <0.01  | <10      | <1       | <10  | 3        | 11   |
| 2    | VVK90- | 17   | 040     | 0.0  | 0.20 | ~5       | 115 | - 5 | 0.71 | 5        | 12  | 63  | 571     | >10  | 70  | 0.13 | 594  | 11 <0.01  | 4  | 400    | 76       | <5       | <20 | 5 <0.01  | <10      | <1       | <10  | <1       | 560  |
| 3    | WR96-  | 18   | 240     | 2.4  | 0.12 | <0<br>05 | 115 | -0  | 2.25 | 20       | 1.4 | 64  | 567     | 6 15 | 50  | 0.77 | 3101 | 6 < 0.01  | 16 | 760    | 312      | <5       | <20 | 51 0.02  | <10      | 14       | <10  | <1       | 4000 |
| 4    | WR96-  | 19   | 80      | 3.6  | 0.30 | 25       | 70  | ~0  | 2.33 | 11       | 10  | 27  | 1075    | >10  | 90  | 0.16 | 197  | 17 < 0.01 | 3  | <10    | 26       | <5       | <20 | 4 < 0.01 | 20       | 13       | 50   | <1       | 112  |
| 5    | WR96-  | 20   | 235     | 0.4  | 0.14 | <5       | 150 | <0  | 0.15 |          | 19  | 21  | 1375    | - 10 | 50  | 0.10 | 10.  | .,        | _  |        |          |          |     |          |          |          |      |          |      |
|      |        |      | _       |      |      | -        | 76  |     | 0.40 | -1       | E   | 01  | 30      | 1 46 | 10  | 0.31 | 909  | 7 0.05    | 3  | 310    | 506      | <5       | <20 | 12 0.07  | <10      | 9        | <10  | <1       | 69   |
| 6    | WR96-  | 21   | 5       | 2.2  | 0.58 | <0       | 15  | - 5 | 0.12 | - 1      | 27  | 50  | 0       | 6 92 | 40  | 1 54 | 1047 | 4 0.01    | 5  | 960    | <2       | <5       | <20 | 22 0.11  | <10      | 52       | <10  | <1       | 69   |
| 7    | WR96-  | 22   | 25      | 1.8  | 1.78 | 25       | 110 | <5  | 0.36 | <1<br>.4 | 37  | 59  | 21      | 2.42 | 20  | 0.03 | 1047 | 6 0.01    | 6  | 190    | <2       | <5       | <20 | 7 < 0.01 | <10      | 10       | <10  | <1       | 2    |
| 8    | WR96-  | 23   | 10      | <0.2 | 0.38 | 15       | 45  | <5  | 0.04 | <1       |     | 15  | 31      | 3.43 | 20  | 0.03 | - 11 | 24 <0.01  | <1 | <10    | 12       | <5       | <20 | 1 < 0.01 | 90       | 2        | <10  | <1       | 165  |
| 9    | WR96-  | 24   | 5       | <0.2 | 0.08 | <5       | 380 | 20  | 0.34 | 6        | 9   | <1  | 2       | >10  | 300 | 0.00 | 1000 | 24 <0.01  | 5  | <10    | 2        | <5       | <20 | 3 < 0.01 | <10      | 7        | 60   | <1       | 16   |
| 10   | WR96-  | 25   | 805     | <0.2 | 0.19 | <5       | 150 | <5  | 0.51 | 2        | 4   | 23  | 1334    | >10  | 90  | Ų.16 | 1000 | 9 \0.01   | 5  | ~10    | ~        | -0       | -20 | 0 0.01   |          |          | •    |          |      |
|      |        |      |         |      |      |          |     |     |      |          | _   |     |         |      |     |      | 4050 | 0.00      | 2  | 620    | 40       | ~5       | <20 | 8 0 10   | <10      | 14       | <10  | <1       | 69   |
| 11   | WR96-  | 26   | 10      | 1.8  | 0.91 | <5       | 90  | <5  | 0.14 | <1       | 6   | 29  | 52      | 3.66 | 30  | 0.50 | 1250 | 8 0.02    | 2  | 4400   | 40       | ~5       | <20 | 11 0.20  | c10      | 122      | <10  | < 1      | 167  |
| 12   | WR96-  | 27   | 10      | 3.2  | 2.78 | <5       | 135 | <5  | 0.35 | <1       | 17  | 9   | 49      | 9.21 | 80  | 2.55 | 3706 | <1 0.03   | 5  | 1420   | -2       | <0<br><5 | <20 | 3 0.02   | <10      | 55       | <10  | <1       | 57   |
| 13   | WR96-  | 28   | 190     | 13.0 | 1.36 | 15       | 100 | 10  | 0.16 | 1        | 16  | 29  | 39      | 7.36 | 50  | 0.97 | 2811 | 9 < 0.01  | 6  | 1290   | <2<br>40 |          | ~20 | 3 0.02   | <10      | 20       | <10  | ~1       | 254  |
| 14   | WR96-  | 29   | 75      | 0.2  | 1.83 | <5       | 100 | <5  | 0.44 | 23       | 26  | 59  | 435     | 8.03 | 60  | 0.62 | 1168 | 3 <0.01   | 1  | 470    | 12       | <0       | <20 | 3 0.06   | 10       | 39       | ~10  | -1       | 204  |
| 15   | WR96-  | 30   | 100     | 1.0  | 1.11 | <5       | 65  | <5  | 7.22 | 2        | 7   | 127 | 1227    | 4.22 | 30  | 0.33 | 1760 | 12 <0.01  | 4  | 250    | 66       | <5       | <20 | 18 0.03  | <10      | 33       | < 10 |          | 20   |
| .0   |        |      |         |      |      |          |     |     |      |          |     |     |         |      |     |      |      |           |    |        |          |          |     |          |          |          |      |          | ~    |
| 16   | 8896-  | 20   | 10      | >30  | 0.02 | 10       | 25  | <5  | >10  | 2        | <1  | 24  | 6951    | 0.15 | 10  | 0.07 | 6035 | <1 <0.01  | 1  | <10    | <2       | 15       | <20 | 183 0.06 | <10      | <1       | <10  | 11       | 2    |
| 17   | DDDC   | 20   | 5       | >30  | 1.03 | <5       | 105 | <5  | 9.83 | 1        | 14  | 43  | >10000  | 3.57 | 30  | 0.54 | 1495 | <1 <0.01  | 3  | >10000 | <2       | <5       | <20 | 20 <0.01 | <10      | 60       | 80   | <1       | 65   |
| 10   | DD00   | 21   | ~1000   | >20  | 0.33 | -5       | 115 | <5  | >10  | 1        | 6   | 76  | >10000  | 4.77 | 30  | 0.21 | 5499 | <1 <0.01  | 3  | >10000 | 44       | <5       | <20 | 57 <0.01 | <10      | 12       | 50   | <1       | 83   |
| 18   | RR90-  | 22   | ~1000   | -30  | 4 07 |          | 110 | -5  | 0.23 | 2        | 25  | 162 | >10000  | 5.82 | 40  | 0.94 | 2557 | 10 <0.01  | 68 | <10    | 60       | <5       | <20 | 3 0.06   | <10      | 40       | <10  | <1       | 248  |
| 19   | KK96-  | 23   | 465     | 14.6 | 1.07 | ~0       | 400 |     | 0.10 | 2        | 20  | 40  | >10000  | 9.17 | 50  | 0.08 | 97   | 11 < 0.01 | 3  | <10    | 16       | <5       | <20 | 2 0.03   | 20       | 1        | 30   | <1       | 53   |
| 20   | RR96-  | - 24 | >1000   | 5.0  | 0.19 | <5       | 100 | <0  | 0.12 | 4        | 0   | 43  | ~ 10000 | 9.17 | 00  | 0.00 | 0.   |           | -  |        |          |          |     |          |          |          |      |          |      |

| OREQUEST CONSULTANTS ICP CERTIFICATE OF ANALYSIS AK 96-1099 ECO-TE |       |          |             |      |      |          |      |        |      |        |          |       |        |              | ECH LA | BORAT | ORIES | S LTD. |       |        |      |     |    |     |    |        |      |     |     |     |          |
|--------------------------------------------------------------------|-------|----------|-------------|------|------|----------|------|--------|------|--------|----------|-------|--------|--------------|--------|-------|-------|--------|-------|--------|------|-----|----|-----|----|--------|------|-----|-----|-----|----------|
| Et #                                                               | Tao # |          | Au(nob)     | Aα   | AI % | As       | Ba   | BI     | Ca % | Cď     | Co       | Cr    | Cu     | Fe %         | La     | Mg %  | Mn    | Мо     | Na %  | Ni     | P    | Pb  | Şb | Sn  | Sr | Ti %   | U    | V   | w   | Y   | Zn       |
| 21                                                                 | PPO6. | 25       | 110         | <0.2 | 0.34 | <5       | 85   | <5     | 0.10 | <1     | 7        | 80    | 151    | 7.65         | 40     | 0.11  | 169   | 12     | <0.01 | 2      | 320  | <2  | <5 | <20 | <1 | <0.01  | <10  | 18  | 10  | <1  | 6        |
| 21                                                                 | DDOG- | 26       | 50          | <0.2 | 0.26 | <5       | 245  | 10     | 0.07 | 1      | 4        | 58    | 33     | 7.72         | 40     | 0.05  | 274   | 12     | <0.01 | 3      | 110  | 8   | <5 | <20 | 3  | <0.01  | <10  | 4   | <10 | <1  | 7        |
| 22                                                                 | DDOG  | 20       | 330         | 54   | 1 73 | 50       | 80   | <5     | 1.26 | 67     | 21       | 54    | 515    | 5.58         | 40     | 1.52  | 2064  | 17     | 0.01  | 8      | 880  | 294 | <5 | <20 | 39 | 0.12   | <10  | 48  | <10 | <1  | 5549     |
| 23                                                                 | 0000  | 20       | 25          | <0.7 | 1 27 | <5       | 415  | 15     | 0.35 | 6      | 17       | <1    | 49     | >10          | 330    | 1.06  | 1776  | 7      | <0.01 | 2      | <10  | 6   | <5 | <20 | 3  | 0.01   | 10   | 69  | 40  | <1  | 119      |
| 24<br>25                                                           | RR96- | 20<br>29 | 605         | 21.0 | 1.83 | <5       | 90   | <5     | 1.75 | 2      | 9        | 103 : | >10000 | 6.70         | 50     | 1.04  | 1912  | 10     | <0.01 | 8      | <10  | 98  | <5 | <20 | 20 | 0.06   | <10  | 56  | <10 | <1  | 101      |
|                                                                    |       |          | -           | ~ .  |      | ~¢       | 60   | ~5     | 0 73 | -1     | 11       | 126   | 58     | 2 74         | 20     | 0.95  | 1459  | <1     | 0.02  | 5      | 710  | <2  | <5 | <20 | 63 | 80.0   | <10  | 40  | <10 | <1  | 95       |
| 26                                                                 | RR96- | 30       | 5           | 0.4  | 1.52 | < 5      | 200  | ~5     | 0.73 |        | 20       | 47    | >10000 | >10          | 170    | 0.93  | 1713  | 11     | <0.01 | 7      | <10  | 4   | <5 | <20 | 9  | 0.05   | <10  | 66  | <10 | <1  | 86       |
| 27                                                                 | RR96- | 31       | >1000       | 8.0  | 1.26 | <5       | 260  | <0<br> | 0.57 | -1     | 20       |       | 25     | 7 31         | 40     | 0.57  | 377   | 4      | <0.01 | 6      | 450  | <2  | <5 | <20 | 22 | 0.03   | <10  | 30  | 20  | <1  | 28       |
| 28                                                                 | RR96- | 32       | 15          | 0.8  | 0.91 | <5       | 110  | <0     | 0.10 | ~      | 23       | 442   | 22     | 0.82         | 60     | 0.13  | 593   | 13     | <0.01 | 2      | <10  | <2  | <5 | <20 | 2  | 0.01   | <10  | 34  | 20  | <1  | 15       |
| 29                                                                 | RR96- | 33       | 5           | <0.2 | 0.26 | <5       | 120  | 5      | 0.47 | -      | =        | 113   | 12     | 9.02<br>R 04 | 40     | 0.08  | 325   | 8      | <0.01 | 4      | 170  | 22  | <5 | <20 | 2  | < 0.01 | <10  | 15  | 20  | < 1 | 10       |
| 30                                                                 | RR96- | 34       | 10          | <0.2 | 0.27 | <5       | 105  | 5      | 0.13 | 1      | 50       | 110   | 12     | 0.04         | 40     | 0.00  | 020   | Ū      | .0.01 |        |      |     |    |     |    |        | _    | _   |     |     |          |
| 21                                                                 | PR06. | 35       | 280         | 0.6  | 0.14 | <5       | 80   | <5     | 2.27 | <1     | 51       | 122   | 11     | 5.53         | 20     | 0.11  | 832   | 17     | <0.01 | 5      | 160  | 6   | <5 | <20 | 12 | <0.01  | <10  | 9   | <10 | <1  | 20       |
| 32                                                                 | PR06- | 36       | 100         | 0.8  | 2.40 | <5       | 110  | 5      | 8.57 | 2      | 20       | 76    | 43     | 7.93         | 50     | 1.11  | 3026  | 3      | <0.01 | 6      | 620  | <2  | <5 | <20 | 15 | 0.03   | <10  | 60  | <10 | <1  | /4       |
| 33                                                                 | PPOR. | 37       | >1000       | 5.0  | 0.61 | <5       | 85   | <5     | >10  | 7      | 8        | 33    | 7452   | 5.03         | 30     | 0.30  | 5536  | 2      | <0.01 | 2      | <10  | <2  | <5 | <20 | 33 | 0.07   | <10  | 24  | <10 | 5   | 41       |
| 33                                                                 | PP06  | 38       | - 1000      | 18   | 1.95 | <5       | 100  | <5     | >10  | 40     | 12       | 28    | 4372   | 6.81         | 30     | 1.02  | 2933  | <1     | <0.01 | 6      | 640  | 386 | <5 | <20 | 15 | 0.05   | <10  | 62  | <10 | 2   | 650      |
| 25                                                                 | DDOG  | 30       | 5           | <0.2 | 0.99 | 120      | 65   | <5     | 1.51 | 1      | 22       | 38    | 151    | 7.25         | 20     | 0.77  | 715   | 8      | 0.01  | 10     | 1210 | 8   | <5 | <20 | 8  | <0.01  | <10  | 84  | <10 | <1  | 69       |
| 30                                                                 | KN30- | 55       | 0           | •0.L | 0.00 |          | •••  | _      |      |        |          |       |        |              |        |       |       |        |       |        |      |     |    |     | _  |        |      |     |     | -   |          |
| 26                                                                 | DD06  | 40       | 5           | <0.2 | 0.65 | <5       | 35   | <5     | 0.49 | <1     | 9        | 62    | 24     | 3.72         | <10    | 0.27  | 205   | 5      | 0.02  | <1     | 860  | 8   | <5 | <20 | 9  | 0.18   | <10  | 16  | <10 | 5   | 12       |
| 27                                                                 |       | 41       | S1000       | <0.2 | 0.00 | <5       | 140  | 15     | 0.09 | 3      | 9        | 57    | 58     | >10          | <10    | <0.01 | 26    | 19     | <0.01 | <1     | <10  | 6   | <5 | <20 | 2  | <0.01  | 30   | 17  | 110 | <1  | 41       |
| 20                                                                 | 0006  | 42       | 745         | 0.6  | 0.63 | <5       | 75   | <5     | 0.58 | 17     | 8        | 115   | 8484   | >10          | <10    | 0.17  | 517   | 17     | <0.01 | 1      | <10  | 348 | <5 | <20 | 2  | 0.02   | <10  | 27  | <10 | <1  | 460      |
| 38                                                                 | RR90- | 44       | 140<br>NADO | 2.0  | 0.00 | ~5       | 00   | <5     | 0.09 | 19     | 3        | 63    | 1585   | >10          | <10    | 0.07  | 657   | 38     | <0.01 | 34     | <10  | 88  | 55 | <20 | 6  | <0.01  | <10  | 15  | <10 | <1  | 223      |
| 39                                                                 | RR90- | 43       | ×1000       | 2.2  | 0.43 | <5       | 60   | <5     | 2.73 | 5      | 24       | 235   | 559    | 4,92         | <10    | 0.26  | 1003  | 11     | <0.01 | 6      | 190  | 252 | <5 | <20 | 6  | 0.02   | <10  | 27  | <10 | <1  | 32       |
| 40                                                                 | KK90- | 44       | 40          | 0.0  | 0.70 | -0       | 00   | ÷      | 2    | -      |          |       |        |              |        |       |       |        |       | _      |      |     | -  | -00 | 00 | 0.00   | - 10 | 61  | ~10 | -1  | 02       |
| 41                                                                 | RR96- | 45       | 5           | 0.4  | 2.34 | <5       | 85   | <5     | 3.49 | 1      | 18       | 99    | 2672   | 6.81         | <10    | 1.24  | 1833  | 4      | <0.01 | 7      | 980  | 60  | <5 | <20 | 22 | 0.08   | <10  | 01  | <10 | ~1  | 90<br>10 |
| 42                                                                 | RR96. | 46       | 125         | 1.6  | 0.67 | 5        | 45   | 5      | 1.06 | 2      | 149      | 160   | 21     | 7.92         | <10    | 0.16  | 547   | 17     | <0.01 | 5      | 680  | 22  | <5 | <20 | 4  | 0.02   | <10  | 21  | <10 | ~ 1 | 222      |
| 43                                                                 | 4218  | 40       | 20          | 0.2  | 3.29 | <5       | 80   | <5     | 0.82 | 2      | 25       | 47    | 67     | 7.95         | 10     | 3.17  | 4304  | <1     | 0.02  | 7      | 1590 | 22  | <5 | <20 | 21 | 0.24   | <10  | 103 | <10 | <   | 220      |
| 43                                                                 | 4210  |          | 15          | 0.2  | 3 18 | <5       | 65   | <5     | 0.80 | <1     | 24       | 45    | 15     | 7.75         | <10    | 3.29  | 4431  | <1     | 0.02  | 4      | 1760 | 26  | <5 | <20 | 18 | 0.25   | <10  | 114 | <10 | < 1 | 273      |
| 45                                                                 | 4220  |          | 25          | 0.6  | 3.55 | 25       | 65   | 10     | 0.46 | <1     | 23       | 30    | 24     | 8.61         | <10    | 3.90  | 4750  | <1     | <0.01 | 7      | 1150 | 22  | <5 | <20 | 5  | 0.27   | <10  | 103 | <10 | <   | 277      |
|                                                                    |       |          |             |      |      |          |      | -      |      | 4      | 25       | 20    | 42     | 9.45         | <10    | 3 31  | 4510  | <1     | 0.01  | 9      | 1310 | 10  | <5 | <20 | 15 | 0.34   | <10  | 119 | <10 | <1  | 264      |
| 46                                                                 | 4221  |          | 5           | 0.4  | 3.46 | <5       | 70   | <5     | 0.74 | 1      | 20       | 30    | 40     | 0.40         | <10    | 3 01  | 4010  | <1     | 0.02  | 7      | 1420 | 56  | <5 | <20 | 16 | 0.35   | <10  | 135 | <10 | <1  | 296      |
| 47                                                                 | 4222  |          | 5           | 0.4  | 3.44 | <5       | 60   | 5      | 0.75 | 1      | 29       | 45    | 41     | 0.12         | ~10    | 2.01  | 4602  | <1     | 0.01  | 8      | 1360 | 14  | <5 | <20 | 23 | 0.37   | <10  | 128 | <10 | <1  | 254      |
| 48                                                                 | 4223  |          | 5           | 0.6  | 3,16 | <5       | 70   | <5     | 0.90 | 1      | 22       | 34    | 102    | 0.17         | ~10    | 2.04  | 4630  | 1      | 0.01  | 7      | 1460 | 10  | <5 | <20 | 11 | 0.24   | <10  | 103 | <10 | <1  | 273      |
| 49                                                                 | 4224  |          | 10          | 0.8  | 3.04 | <5       | 70   | <5     | 0.55 | 2      | 23       | 38    | 135    | 0.30         | <10    | 2.00  | 4000  | -1     | 0.01  | ,<br>8 | 1370 | 4   | <5 | <20 | 18 | 0.28   | <10  | 108 | <10 | <1  | 236      |
| 50                                                                 | 4225  |          | 5           | 0.8  | 2.94 | <5       | 70   | <5     | 0.82 | 1      | 22       | 37    | 182    | 7.70         | <10    | 2.04  | 4403  | ~ 1    | 0.01  | a      | 1370 | -   | -0 | ~20 | .0 | 0.20   | - 10 |     |     | -   |          |
|                                                                    |       |          |             |      | 2.40 | ~F       | 70   | Ā      | n an | 2      | 24       | 32    | 70     | 8,96         | 10     | 3.32  | 5851  | <1     | 0.01  | 5      | 1500 | 66  | <5 | <20 | 20 | 0.19   | <10  | 130 | <10 | <1  | 330      |
| 51                                                                 | 4226  |          | 10          | 1.4  | 3,90 | <0<br><5 | 70   |        | 0.50 | <1     | 18       | 29    | 24     | 7.72         | <10    | 2.70  | 3897  | <1     | 0.01  | 6      | 1180 | 12  | <5 | <20 | 24 | 0.19   | <10  | 105 | <10 | <1  | 214      |
| 52                                                                 | 4227  |          | 30          | 0.6  | 3,14 | <0       | , 10 | -0     | 0.72 | -1     | 20       | 24    | 11     | 8 04         | 10     | 4 27  | 5444  | <1     | 0.02  | 5      | 1520 | 14  | <5 | <20 | 23 | 0.27   | <10  | 154 | <10 | 2   | 283      |
| 53                                                                 | 4228  |          | 10          | 0.4  | 4.04 | <0       | 70   | 10     | 0.99 | י<br>מ | 20       | 24    | 10     | 8 1 3        | 10     | 374   | 5341  | <1     | 0.02  | 6      | 1510 | 356 | <5 | <20 | 21 | 0.17   | <10  | 132 | <10 | <1  | 269      |
| 54                                                                 | 4229  |          | 15          | 2.0  | 3.36 | 45       | 70   | 5      | 0.62 | 2      | 20<br>10 | 24    | 10     | 7 16         | <10    | 2 00  | 5054  | <1     | 0.02  | 5      | 1490 | 362 | <5 | <20 | 30 | 0.29   | <10  | 133 | <10 | <1  | 345      |
| 55                                                                 | 4230  |          | 30          | 1.4  | 2.97 | 40       | 80   | 5      | 0.80 | 2      | 19       | 54    | 12     | 1.10         | -10    | 2.33  | 0004  | - 1    | 0.02  |        | 1,00 | 002 | -  |     |    |        |      |     |     |     |          |

.

1

.

Page 2
| OREQ      | UEST CON | NSULTAN      | rs         |              |      |            |     |           |      |     | IC  | CP CEF | RTIFICA | TE OF , | ANALY | SIS AI | K 96-10 | 999       |    |      |     |    | E   | CO-TECH LA | BORA | TORIES | S LTD. |    |     |
|-----------|----------|--------------|------------|--------------|------|------------|-----|-----------|------|-----|-----|--------|---------|---------|-------|--------|---------|-----------|----|------|-----|----|-----|------------|------|--------|--------|----|-----|
| Ft #      | Tao #    | Auton        | ы          | Aa           | AI % | As         | Ва  | Bi        | Ca % | Cd  | Co  | Cr     | Cu      | Fe %    | Lal   | Mg %   | Mn      | Mo Na %   | NI | Р    | Pb  | Sb | Sn  | Sr Ti%     | U    | V      | w      | Y  | Zn  |
| 56        | 4231     |              | 10         | 14           | 2.71 | 10         | 90  | <5        | 0.74 | 2   | 16  | 52     | 101     | 7.33    | 10    | 2.21   | 5863    | 3 0.01    | 5  | 1530 | 62  | <5 | <20 | 21 0.10    | <10  | 88     | <10    | <1 | 308 |
| 57        | 4237     |              | 15         | 1.6          | 2.88 | <5         | 95  | 10        | 0.99 | 2   | 17  | 38     | 42      | 6.65    | 10    | 2.27   | 5472    | <1 0.01   | 4  | 1780 | 304 | <5 | <20 | 49 0.23    | <10  | 102    | <10    | <1 | 289 |
| 50        | 4232     |              | 25         | 12           | 2 76 | <5         | 85  | 5         | 1.26 | 2   | 22  | 52     | 25      | 6.53    | 10    | 2.27   | 7025    | <1 0.02   | 6  | 1930 | 198 | <5 | <20 | 37 0.28    | <10  | 106    | <10    | 1  | 332 |
| 50        | 4200     |              | 20         | 22           | 2 47 | 35         | 95  | 10        | 0.77 | 1   | 15  | 82     | 13      | 6.51    | <10   | 2.08   | 5812    | <1 0.02   | 4  | 1700 | 310 | <5 | <20 | 27 0.22    | <10  | 83     | <10    | <1 | 273 |
| 59        | 4204     |              | 20         | 2.2          | 204  | 25         | 80  | 5         | 0.63 | 2   | 17  | 53     | 42      | 7.08    | 10    | 2.59   | 7345    | <1 0.01   | 4  | 1730 | 518 | <5 | <20 | 20 0.19    | <10  | 91     | <10    | <1 | 355 |
| 00        | 4200     |              | 20         | 2.4          | 2.04 | 20         | 00  | Ũ         | 0.00 | -   |     |        |         |         |       |        |         |           |    |      |     |    |     |            |      |        |        |    |     |
| 04        | 4028     |              | £          | 20           | 2.83 | 10         | 70  | <5        | 0.78 | 2   | 21  | 48     | 32      | 7.09    | 10    | 2.57   | 6783    | <1 0.01   | 6  | 1650 | 544 | <5 | <20 | 26 0.26    | <10  | 98     | <10    | <1 | 353 |
| 01        | 4230     |              | 5          | 4.0          | 2.00 | <5         | 80  | 5         | 0.61 | 2   | 20  | 46     | 28      | 7.36    | 10    | 2.95   | 8195    | <1 0.01   | 6  | 1430 | 132 | <5 | <20 | 16 0.18    | <10  | 93     | <10    | <1 | 368 |
| 62        | 4237     |              | ບ<br>ຮ     | 1.0          | 2.22 | 10         | 95  | <5        | 0.62 | 3   | 16  | 58     | 30      | 6.96    | 10    | 2.62   | 7480    | <1 0.01   | 6  | 1500 | 452 | <5 | <20 | 17 0.22    | <10  | 84     | <10    | <1 | 421 |
| 03        | 4230     |              | 5<br>E     | 1.0          | 4.97 | 10         | 120 | -5        | 0.30 | ž   |     | 88     | 34      | 5.04    | <10   | 1.37   | 4186    | 1 < 0.01  | 5  | 1100 | 892 | <5 | <20 | 11 0.16    | <10  | 49     | <10    | <1 | 292 |
| 64        | 4239     |              | о<br>Б     | 1.0          | 1.02 | 5          | 05  | <5        | 0.00 | 1   | 7   | 81     | 35      | 4.95    | 10    | 1.37   | 4344    | 2 < 0.01  | 1  | 1150 | 430 | <5 | <20 | 18 0.14    | <10  | 51     | <10    | <1 | 202 |
| 65        | 4240     |              | 5          | 1.0          | 1.50 | 5          | 55  | -0        | 0,42 | •   | •   |        |         |         |       |        |         |           |    |      |     |    |     |            |      |        |        |    |     |
| 66        | 4244     |              | 5          | 1.6          | 2 22 | 10         | 105 | <5        | 0.53 | 2   | 9   | 62     | 48      | 5.60    | 10    | 1.60   | 4890    | 2 0.01    | 5  | 1320 | 474 | <5 | <20 | 23 0.14    | <10  | 69     | <10    | <1 | 297 |
| 00        | 4241     |              | 5<br>E.    | -0.2         | 0.48 | -5         | 100 | 10        | 0.00 | 2   | 15  | 96     | 15      | >10     | 10    | <0.01  | 75      | 16 < 0.01 | 2  | 250  | 8   | <5 | <20 | 3 < 0.01   | 20   | 5      | 40     | <1 | 19  |
| 67        | 4242     |              | ິງ .<br>ເ  | ~U.Z         | 0.40 | <5         | 80  | <5        | 0.39 | 1   | 6   | 68     | 10      | 3.30    | 30    | <0.01  | 785     | 7 < 0.01  | 2  | 840  | 4   | <5 | <20 | 5 <0.01    | <10  | 2      | <10    | 4  | 9   |
| 68        | 4243     |              | с<br>с     | 0.2          | 0.52 | ~5         | 105 | <5        | 0.00 | i   | Å   | 44     | 13      | 3.17    | 30    | <0.01  | 748     | 5 < 0.01  | 3  | 850  | <2  | <5 | <20 | 4 < 0.01   | <10  | 2      | <10    | 5  | 9   |
| 59        | 4244     |              | 5<br>E.    | 0.Z          | 0.30 | <5         | 80  | 5         | 0.12 | 2   | 19  | 86     | 17      | 8.31    | <10   | <0.01  | 163     | 11 <0.01  | 2  | 560  | 2   | <5 | <20 | 2 < 0.01   | <10  | 4      | <10    | <1 | 25  |
| 70        | 4240     |              | 5.         | <b>≺∪.</b> ∠ | 0.43 | ~0         | 00  | 5         | 0.14 | -   | ,0  |        |         |         |       |        |         |           |    |      |     |    |     |            |      |        |        |    |     |
| 74        | 1016     |              | <u>ج</u>   | -0.2         | 0 33 | <5         | 55  | 10        | 0.05 | 1   | 22  | 84     | 10      | 7.14    | <10   | <0.01  | 51      | 11 <0.01  | 3  | 300  | 4   | <5 | <20 | <1 <0.01   | 10   | 3      | 20     | <1 | 6   |
| 71        | 4240     |              | 5          | ~0.2         | 0.00 | -5         | 70  | 5         | 0.07 | 2   | 18  | 106    | 12      | 8.75    | <10   | <0.01  | 61      | 13 <0.01  | 3  | 370  | 2   | <5 | <20 | 2 <0.01    | 10   | 4      | 20     | <1 | 8   |
| 72        | 4247     |              | 5          | ~0.2<br>~0.2 | 0.30 | -5         | 60  | <5        | 0.09 | <1  | 6   | 77     | 7       | 3.12    | 30    | <0.01  | 66      | 9 <0.01   | 2  | 740  | <2  | <5 | <20 | 4 <0.01    | <10  | 2      | <10    | <1 | 5   |
| 73        | 4240     |              | 5          | 0.2          | 0.45 | 15         | 70  | <5        | 0.25 | 1   | 6   | 57     | 24      | 3.35    | 20    | 0.04   | 316     | 9 0.01    | 1  | 870  | 4   | <5 | <20 | 6 <0.01    | <10  | 4      | <10    | 1  | 8   |
| 74        | 4249     |              | 5          | 0.2          | 0.00 | <5         | 60  | <5        | 0.34 | 1   | 9   | 73     | 19      | 4.32    | 20    | 0.02   | 341     | 9 <0.01   | <1 | 760  | 8   | <5 | <20 | 6 <0.01    | <10  | 4      | <10    | <1 | 10  |
| 75        | 4200     |              | 5          | 0.2          | 0.40 | -0         | ••• | Ũ         |      | •   | -   |        |         |         |       |        |         |           |    |      |     |    |     |            |      |        |        |    |     |
| 76        | 4261     |              | 5          | 02           | 0.52 | <5         | 40  | <5        | 0.80 | 1   | 9   | 56     | 12      | 3.37    | 40    | 0.01   | 412     | 7 <0.01   | <1 | 910  | 6   | <5 | <20 | 9 <0.01    | <10  | 2      | <10    | 3  | 8   |
| 70        | 4257     |              | 55.        | <0.2         | 0.47 | <5         | 50  | <5        | 0.16 | 1   | 21  | 59     | 20      | 4.97    | 30    | <0.01  | 185     | 11 <0.01  | 3  | 900  | 6   | <5 | <20 | 4 <0.01    | <10  | 3      | <10    | <1 | 8   |
| 78        | 4252     |              | 55<br>60 - | <0.2         | 0.40 | <5         | 60  | 10        | 0.09 | 2   | 39  | 85     | 20      | 9.33    | <10   | <0.01  | 98      | 15 <0.01  | 2  | 500  | 4   | <5 | <20 | 2 <0.01    | <10  | 4      | 20     | <1 | 9   |
| 70        | 4255     |              | 45         | 0.2          | 0.51 | <5         | 35  | 5         | 0.42 | 1   | 15  | 64     | 10      | 4.18    | <10   | <0.01  | 199     | 10 <0.01  | 2  | 880  | 4   | <5 | <20 | 2 < 0.01   | <10  | 3      | <10    | <1 | 5   |
| 7.9<br>RO | 4255     |              |            | <0.2         | 0.42 | <5         | 50  | 10        | 0.10 | 1   | 18  | 61     | 18      | 5.39    | <10   | <0.01  | 67      | 9 <0.01   | 2  | 700  | 6   | <5 | <20 | 2 < 0.01   | <10  | 4      | <10    | <1 | 6   |
| 00        | 4233     |              | 5          | -0.2         | 0.12 | Ŭ          |     |           | •••• |     |     |        |         |         |       |        |         |           |    |      |     |    |     |            |      |        |        |    |     |
| 91        | 4256     |              | 10         | 04           | 0.34 | <5         | 100 | 10        | 0.03 | 2   | 7   | 48     | 14      | 4.79    | 10    | <0.01  | 45      | 12 <0.01  | <1 | 610  | 8   | <5 | <20 | 3 <0.01    | <10  | 3      | <10    | <1 | 4   |
| 62        | 4257     |              | 10         | 0.7          | 0.38 | <5         | 65  | 10        | 0.08 | 2   | 8   | 50     | 15      | 5.37    | 10    | <0.01  | 114     | 9 <0.01   | 2  | 810  | 4   | <5 | <20 | 3 <0.01    | <10  | 3      | 10     | <1 | 12  |
| 02        | 4207     |              | ы<br>Б.    | <0.2         | 2 10 | <5         | 95  | 5         | 0.04 | 1   | 4   | 25     | 38      | 8.13    | 10    | 2.14   | 723     | 6 <0.01   | 2  | 1020 | 12  | <5 | <20 | 2 <0.01    | <10  | 61     | <10    | <1 | 86  |
| 03        | 4200     | 22 - 10      | -0<br>00   | 2.0          | 0.16 | <5         | 30  | <5        | 0.03 | 2   | 12  | 172    | 754     | 5.68    | <10   | <0.01  | 38      | 8 < 0.01  | 3  | 250  | 142 | <5 | <20 | 1 <0.01    | <10  | 3      | <10    | <1 | 19  |
| 84        | BD90-    | 33 210       | 00<br>60   | 3.Z          | 0.10 | ~5         | 85  | <5        | 5.85 | 18  | 7   | 197    | 4687    | 1.43    | 20    | <0.01  | 6035    | 17 < 0.01 | 4  | 230  | 248 | <5 | <20 | 13 0.02    | <10  | 1      | <10    | 6  | 23  |
| 85        | RD30-    | 34 /         | 00         | 4.4          | Q.20 | <b>~</b> U | 00  | -0        | 5,00 | .0  |     | 107    | ,       |         |       | ÷      |         |           |    |      |     |    |     |            |      |        |        |    |     |
| 00        | PDOG     | 25 4         | 00         | 1 4          | 0.25 | <5         | 360 | <5        | 0.08 | 1   | 2   | 192    | 836     | 2,18    | <10   | <0.01  | 366     | 13 <0.01  | 2  | 410  | 78  | <5 | <20 | 4 <0.01    | <10  | 3      | <10    | <1 | 4   |
| 00        | BD90-    | 00 4<br>00 4 | 10         | 5.7          | 0.20 |            | 105 |           | 9.24 | 15  | - 9 | 221    | 4060    | 1.65    | 10    | <0.01  | 7555    | 18 <0.01  | 3  | 420  | 260 | <5 | <20 | 17 0.03    | <10  | 1      | <10    | 3  | 19  |
| 87        | 8D30-    | ად 4<br>27   | 5          | 20.0         | 1.50 | ~5         | 160 | <br>-5    | 0.17 | 2   | 12  | 20     | 126     | >10     | <10   | 0.87   | 451     | 1 0.01    | 4  | 1700 | 14  | <5 | <20 | 7 0.27     | <10  | 94     | <10    | <1 | 57  |
| 88        | 8090-    | 3/<br>20     | 0 ·        | ~U.4<br>A 0  | 0.70 | 140        | 140 | 15        | 0.17 | - 1 | 50  | 18     | 78      | >10     | <10   | 0.11   | 1913    | 22 <0.01  | 7  | 3170 | 16  | <5 | <20 | 5 <0.01    | <10  | 57     | <10    | <1 | 70  |
| 89        | RD30-    | 30<br>20     | 00<br>E    | 0.0<br>-0.0  | 1.79 | 140        | 60  | ں ا<br>جم | 0.00 | 2   | 30  | 23     | 75      | >10     | <10   | 0.58   | 319     | 10 0.01   | 7  | 1450 | 12  | <5 | <20 | 4 0.01     | 10   | 54     | <10    | <1 | 31  |
| 90        | BD96-    | 39           | Э          | <b>~</b> 0.2 | 1.06 | ~0         | 00  | ~0        | 0.05 | 2   |     | 20     |         |         |       |        |         |           |    |      |     |    |     |            |      |        |        |    |     |

| OREQ                  | JEST CC              | NSU     | LTANTS  |                 |                   |              |      |          |      |     | 10         | CP CE | RTIFICA | TE OF /   | ANALY   | SIS A        | K 96-10   | 99      |       |         |       |         |            | E   | CO-TI | ECH LA    | BORAT    | ORIES | ; LTD.   |         |     |
|-----------------------|----------------------|---------|---------|-----------------|-------------------|--------------|------|----------|------|-----|------------|-------|---------|-----------|---------|--------------|-----------|---------|-------|---------|-------|---------|------------|-----|-------|-----------|----------|-------|----------|---------|-----|
| Et#.                  | Taq #                |         | Au(ppb) | Ag              | AI %              | As           | Ва   | Bi       | Ca % | Cd  | Co         | Cr    | Cu      | Fe %      | La      | M <u>g %</u> | Mn        | Mo N    | a %   | Nì      | Р     | Pb      | Sb         | Sn  | Sr    | Ti %      | U        | V     | <u>w</u> | Y       | Zn  |
| 91                    | BD96-                | 40      | 875     | 0.2             | 0.31              | <5           | 150  | <5       | 0.06 | 3   | 11         | 134   | 2165    | >10       | <10     | 0.03         | 114       | 19 <    | 0.01  | 3       | <10   | 6       | <5         | <20 | 2     | 0.01      | 30       | 18    | 130      | <1      | 14  |
| 92                    | BD96-                | 41      | 275     | <0.2            | 0.24              | <5           | 145  | 20       | 0.47 | 4   | 16         | 102   | 65      | >10       | 10      | 0.05         | 329       | 27 <    | 0.01  | 4       | <10   | 8       | <5         | <20 | 1     | 0.01      | 30       | 43    | 150      | <1      | 24  |
| an<br>an              | BD96-                | 42      | 100     | 8.4             | 0.74              | <5           | 215  | <5       | 0.12 | 5   | 22         | 22    | 315     | >10       | <10     | 0.04         | 1843      | 25 <    | 0.01  | 2       | 1030  | 1194    | <5         | <20 | 3     | < 0.01    | <10      | 16    | <10      | <1      | 827 |
| 94                    | BD96-                | 43      | 25      | 2.8             | 0.25              | <5           | 145  | <5       | >10  | 12  | 19         | 9     | 27      | >10       | 20      | 5.47         | 6766      | 3 <     | 0.01  | 13      | 90    | 122     | <5         | <20 | 114   | 0.02      | <10      | 33    | <10      | <       | 827 |
| 95                    | BD96-                | 44      | 15      | 1.2             | 0.28              | 5            | 55   | <5       | 0.74 | 2   | 2          | 102   | 12      | 1.43      | 20      | 0.07         | 441       | 13 (    | 0.02  | 1       | 290   | 22      | <5         | <20 | 9     | <0.01     | <10      | 1     | <10      | 2       | 62  |
|                       | DDOC                 | 45      | 145     | -0.2            | 1 27              | <b>6</b> 5   | 200  | 10       | 0.08 | 2   | 12         | 8     | 80      | >10       | <10     | 0.41         | 386       | 15 <    | 0.01  | 4       | 1960  | 10      | <5         | <20 | 2     | 0.02      | 10       | 79    | <10      | <1      | 45  |
| 90                    | DD90-                | 40      | 140     | 70.2            | 510               | 70           | 235  | <5       | 0.29 | 8   | 108        | 4     | 1019    | >10       | 110     | 0.43         | 10000     | 23 <    | 0.01  | 42      | 220   | <2      | <5         | <20 | 10    | 0.12      | <10      | 20    | <10      | 42      | 223 |
| 97                    | 8030-                | 40      | 54000   | 7.0             | 0.66              | -5           | 120  | <5       | 0.19 | 3   | 15         | 108   | 1469    | >10       | <10     | 0.25         | 703       | 14 <    | 0.01  | 6       | <10   | 14      | <5         | <20 | 3     | 0.06      | <10      | 53    | 10       | <1      | 36  |
| 98                    | BD96-                | 47      | >1000   | 10              | 4.42              | ~5           | 05   | <5       | 0.10 | 5   | 10         | 157   | 3217    | >10       | <10     | 0.35         | 994       | 20 <    | 0.01  | 5       | 60    | 282     | <5         | <20 | 2     | 0.02      | <10      | 34    | <10      | <1      | 134 |
| 99<br>100             | BD96-                | 48<br>5 | 5       | 0.2             | 0.26              | ~5<br><5     | 45   | <5       | 0.03 | 2   | 19         | 107   | 17      | 5.45      | <10     | <0.01        | 58        | 7 <     | 0.01  | 5       | 40    | 4       | <5         | <20 | 3     | <0.01     | 10       | 3     | 10       | <1      | 6   |
|                       |                      | •       | - 4000  | 40.0            | 0.00              | ~5           | 160  | ~5       | 0 09 | 6   | 12         | 13    | <1      | >10       | 10      | 0.01         | 3         | 21 <    | 0.01  | <1 >    | 10000 | 60      | <5         | <20 | 1     | <0.01     | 50       | 9     | 140      | <1      | 69  |
| 101                   | BK96-                | 6       | >1000   | 10.6            | 0.09              | ~0           | 260  | ~5       | 0.00 | Ă   | 16         | 35    | 322     | >10       | <10     | <0.01        | 211       | 35 <    | 0.01  | 3       | <10   | 72      | <5         | <20 | 3     | <0.01     | 50       | 29    | 50       | <1      | 71  |
| 102                   | BR96-                |         | 135     | <0.Z            | 0.20              | >0           | 70   | ~5       | 0.00 | 2   | 14         | 64    | 100     | 5.42      | 20      | 1.41         | 3836      | 3       | 0.02  | 2       | 990   | 20      | <5         | <20 | 14    | 0.19      | <10      | 41    | <10      | 3       | 205 |
| 103                   | RK80-                | 8       | 10      | 0.4             | 1.04              | <0<br><5     | 100  | ~5       | 0.07 | 2   | 36         | 147   | 134     | 7 76      | <10     | 0.54         | 2024      | 8 <     | 0.01  | 4       | 860   | 54      | <5         | <20 | 3     | 0.01      | <10      | 29    | <10      | <1      | 75  |
| 104<br>105            | BR96-<br>BR96-       | 9<br>10 | >1000   | 0.4<br>1.8      | 1.85              | <5<br><5     | 100  | -5<br><5 | 1.24 | 6   | 10         | 123   | 5492    | >10       | <10     | 0.47         | 1367      | 17 <    | 0.01  | 2       | 210   | 124     | <5         | <20 | 4     | 0.02      | <10      | 39    | <10      | <1      | 116 |
| <u>QC D/</u><br>Respl | IA:<br>t:            |         |         |                 |                   |              |      |          |      |     |            |       |         | . 40      | 60      | 0.04         | 1541      | 12 -    | -0.01 | 4       | 750   | 14      | <5         | <20 | 1     | 0.01      | <10      | 60    | 20       | <1      | 58  |
| 1                     | WR96-                | 16      | 110     | 0.8             | 1.43              | 10           | 110  | 10       | 0.16 | <1  | 13         | 26    | 22      | >10       | 60      | 0.81         | 1541      | 12 5    | -0.01 | 4       | 750   | 1-7     | ~5         | ~20 |       | 0.01      |          | -     |          | -       |     |
| 36                    | RR96-                | 40      | 5       | •               | -                 | •            | •    | -        | -    | -   | -          | -     | -       | -         | -       | •            | -         | -       | -     | -       | _     |         | _          | _   | _     |           | -        |       | -        |         |     |
| 71                    | 4246                 |         | 5       | -               | -                 | -            | -    | -        | -    | -   | -          | •     | -       | •         | -       |              | -         | -       | -     | -       | -     | -       | _          |     |       |           |          |       |          |         |     |
| Repea                 | t:                   |         |         |                 |                   |              |      |          |      |     |            |       |         |           |         | • • •        | 4000      | 42      | -0.04 | c       | 700   | -2      | <b>~</b> 5 | ~20 | з     | 0.01      | <10      | 53    | <10      | <1      | 56  |
| i                     | WR96-                | 16      | 120     | 1.0             | 1.58              | <5           | 130  | 15       | 0.15 | 2   | 11         | 25    | 30      | >10       | 80      | 0.90         | 1623      | 13 <    | Q.01  | 0       | /00   | -2      | ~5         | ~20 | 3     | <0.01     | <10      | 7     | 60       | <1      | 15  |
| 10                    | WR96-                | 25      | 550     | <0.2            | 0.18              | <5           | 150  | <5       | 0.50 | 2   | 5          | 23    | 1279    | >10       | 80      | 0.14         | 992       | 9 <     | ×0.01 | 3<br>60 | <10   | 4<br>62 | ~5         | ~20 | 3     | 0.06      | <10      | 36    | <10      | <1      | 234 |
| 19                    | RR96-                | 23      | 420     | 14.2            | 1.78              | <5           | 105  | <5       | 0.21 | 2   | 24         | 158   | >10000  | 5.61      | 40      | 0.91         | 2414      | 8 <     | -0.01 | 08      | <10   | 02      | ~0         | ~20 |       | 0.00      | - 10     |       |          |         | 2.5 |
| 31                    | RR96-                | 35      | 270     | -               | -                 | -            | -    | •        | •    | -   | -          | -     | -       | -         | -       | -            | -         |         | -     | -       | -     |         | ~5         | -20 | a     | 0.10      | <10      | 18    | <10      | 5       | 14  |
| 36                    | RR96-                | 40      | -       | <0.2            | 0.68              | <5           | 35   | <5       | 0.51 | <1  | 10         | 63    | 24      | 3.80      | <10     | 0.28         | 229       | 5       | 0.02  | <1      | 860   | Ð       | <5         | ~20 | 5     | 0.13      | 10       | .0    |          | 0       |     |
|                       | RR96-                | 44      | 30      | -               | -                 |              | -    | -        | -    | -   | -          |       | -       | -         | -       | -            | -         | -       | -     | -       |       | -       | -          | -   | •     | -         | -        |       | - 10     | -       | 27' |
| 40                    |                      |         |         |                 |                   | 25           | 66   | 10       | 0.46 | <1  | 24         | 29    | 25      | 8.52      | 10      | 3.93         | 4670      | <1 <    | <0.01 | 4       | 1120  | 22      | <5         | <20 | 5     | 0.27      | <10      | 103   | 10       |         | 212 |
| 40<br>45              | 4220                 |         | -       | 0.6             | 3.58              | 30           | 00   | 10       | 0.40 |     | <b>_</b> , |       |         |           |         |              |           |         |       |         |       |         |            |     |       |           |          |       |          |         |     |
| 40<br>45<br>49        | 4220<br>4224         |         | -<br>15 | 0.6             | 3.58              | 30<br>-      |      | -        | -    | -   | -          | -     | -       | -         | -       | -            | -         | -       | •     | -       | -     | -       | -          | -   | -     | -         | -        | -     | 10       | -       | 27/ |
| 40<br>45<br>49<br>54  | 4220<br>4224<br>4229 |         | 15      | 0.6<br>-<br>2.0 | 3.58<br>-<br>3.26 | -<br>-<br>55 | - 75 | - 5      | 0.40 | - 1 | 20         | 29    | -<br>10 | -<br>8.23 | -<br>10 | -<br>3.63    | -<br>5420 | -<br><1 | 0.02  | -<br>5  | 1510  | 362     | <5         | <20 | 18    | -<br>0.17 | -<br><10 | 134   | -<br><10 | -<br><1 | 274 |

.

.

| OREQ   | JEST CO | DNSU | LTANTS  |      |      |     |     |    |      |    | 10 | CP CER | TIFICA | TE OF | ANALY | 'SIS A | K 96-10 | 099 |       |    |      |    |    | E   | ЕСО-Т | ECHLA | BORA | TORIE | S LTD. |    |    |
|--------|---------|------|---------|------|------|-----|-----|----|------|----|----|--------|--------|-------|-------|--------|---------|-----|-------|----|------|----|----|-----|-------|-------|------|-------|--------|----|----|
| Et #.  | Tag #   |      | Au(ppb) | Ag   | AI % | As  | Ba  | Bi | Ca % | Cd | Co | Cr     | Cu     | Fe %  | La    | Mg %   | Mn      | Мо  | Na %  | Ni | Р    | Pb | Sb | Sn  | Sr    | Ti %  | U    | v     | w      | Y  | Zn |
| 80     | 4255    |      | 5       | <0.2 | 0.42 | <5  | 50  | 5  | 0.10 | 1  | 18 | 58     | 19     | 5.18  | <10   | < 0.01 | 65      | 8   | <0.01 | 2  | 690  | 4  | <5 | <20 | 2     | <0.01 | <10  | 4     | <10    | <1 | 6  |
| 89     | BD96-   | 38   | 60      | 0.8  | 0.81 | 115 | 145 | 20 | 0.08 | 3  | 50 | 11     | 82     | >10   | <10   | 0.11   | 1986    | 22  | <0.01 | 6  | 3190 | 20 | <5 | <20 | 5     | <0.01 | <10  | 56    | <10    | <1 | 70 |
| 98     | BD96-   | 47   | >1000   | -    | -    | -   | -   | -  | -    | -  | -  | -      | -      | -     | -     | -      | -       | -   | -     | -  | -    | -  | -  | -   | -     | -     | -    | -     | -      | -  |    |
| 105    | BR96-   | 10   | >1000   | -    | -    | -   | -   | -  | •    | -  | -  | -      | -      | -     | -     | -      | -       | -   | -     |    | -    | -  | -  | -   | -     | -     | -    | •     |        | •  | -  |
| Standa | rd:     |      |         |      |      |     |     |    |      |    |    |        |        |       |       |        |         |     |       |    |      |    |    |     |       |       |      |       |        |    |    |
| GEO'96 | 5       |      | 150     | 1.8  | 2.08 | 50  | 180 | <5 | 2.08 | 1  | 23 | 71     | 87     | 4.19  | <10   | 1.08   | 740     | <1  | 0.02  | 24 | 780  | 22 | <5 | <20 | 59    | 0.19  | <10  | 84    | <10    | 2  | 83 |
| GEO'96 | 6       |      | 155     | 1.6  | 2.09 | 50  | 180 | <5 | 2.02 | 1  | 23 | 71     | 85     | 4.04  | <10   | 1.05   | 740     | <1  | 0.02  | 26 | 770  | 20 | <5 | <20 | 57    | 0.19  | <10  | 85    | <10    | 2  | 79 |
| GEO'96 | 3       |      | 150     | 1.6  | 1.82 | 25  | 170 | <5 | 2.02 | 1  | 18 | 73     | 83     | 4.73  | 20    | 0.98   | 740     | <1  | <0.01 | 25 | 720  | <2 | <5 | <20 | 56    | 0.14  | <10  | 86    | <10    | <1 | 80 |
| GEO'96 | 3       |      | 145     | -    | -    | -   | -   | -  | -    | -  | -  | -      | -      | -     | -     | -      | -       | -   | -     | -  | -    | -  | -  | -   | -     | -     | -    | -     | -      | -  | -  |

df/1099

XLS/96OREQUEST#2

fax@688-6788/w.raven cc:fax@687-4030/p.mcandless

.

FCO.TECH LABORATORIES LTD. β Mank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# CERTIFICATE OF ASSAY AK 96-1284

OREQUEST CONSULTANTS 306-595 HOWE STREET VANCOUVER, B.C. V6C 2T5 4-Nov-96

## ATTENTION: WES RAVEN

No. of samples received: 7 Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN Samples submitted by: NOT INDICATED

|        |       | · Au  | Au     | Cu   |
|--------|-------|-------|--------|------|
| ET #.  | Tag # | (g/t) | (oz/t) | (%)  |
| 1      | 4265  | <.03  | <.001  | -    |
| 2      | 4266  | <.03  | <.001  | -    |
| 3      | 4267  | <.03  | <.001  | -    |
| 4      | 4268  | <.03  | <.001  | -    |
| 5      | 4269  | <.03  | <.001  | 0.13 |
| 6      | 4270  | 0.04  | 0.001  | 0.21 |
| 7      | 4271  | 0.18  | 0.005  | 0.56 |
|        | .TA:  |       |        |      |
| Repea  | t:    |       |        |      |
| 1      | 4265  | <.03  | <.001  |      |
| 5      | 4269  | -     | -      | 0.13 |
| Respli | t:    |       |        |      |
| 1      | 4265  | <.03  | <.001  | -    |
| Stand  | ard:  |       |        |      |
| Mp-IA  |       | -     | -      | 1.44 |
| Std-m  |       | 1.50  | 0.044  | -    |
|        |       |       |        |      |

EGO-TECH LABORATORIES LTD. Por Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96OREQUEST#2

Page 1

8-Nov-96

.

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK 96-1284

OREQUEST CONSULTANTS 306-595 HOWE STREET VANCOUVER, B.C. V6C 2T5

ATTENTION: WES RAVEN

#### No. of samples received: 7 Sample type: CORE PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN Samples submitted by: NOT INDICATED

Values in ppm unless otherwise reported

| Et #.   | Tag # | Aq   | AI % | As | Ва  | Bi | Ca % | Cđ  | Co | Cr | Cu   | Fe % | La  | Mg % | Mn   | Mo Na  | % Ni   | P   | Pb       | Sb | Sл  | Sr  | Ti %  | U   | v        | W   | Y  | Zn   |
|---------|-------|------|------|----|-----|----|------|-----|----|----|------|------|-----|------|------|--------|--------|-----|----------|----|-----|-----|-------|-----|----------|-----|----|------|
| 1       | 4265  | <0.2 | 0.65 | <5 | 100 | 10 | 7.12 | <1  | 14 | 17 | 14   | 4.51 | <10 | 0.49 | 2161 | 1 0.   | .01 1  | 810 | <2       | <5 | <20 | 90  | 0.14  | <10 | 25       | <10 | 17 | 25   |
| 2       | 4266  | <0.2 | 0.67 | <5 | 520 | 15 | 8.04 | <1  | 13 | 23 | 13   | 4.72 | <10 | 0.52 | 2820 | 2 < 0. | .01 2  | 840 | <2       | <5 | <20 | 101 | 0.14  | <10 | 36       | <10 | 17 | 27   |
| 3       | 4267  | <0.2 | 1 18 | <5 | 195 | 10 | 6.89 | <1  | 20 | 14 | 18   | 5.53 | <10 | 0.89 | 2809 | 3 < 0. | .01 2  | 770 | 2        | <5 | <20 | 92  | 0.08  | <10 | 75       | <10 | 11 | 65   |
| Ă       | 4268  | <0.2 | 1.56 | <5 | 155 | <5 | 5.93 | <1  | 17 | 8  | 316  | 5.79 | <10 | 0.92 | 3242 | 5 <0.  | .01 2  | 900 | 1 4      | <5 | <20 | 84  | 0.03  | <10 | 81       | <10 | 9  | 122  |
| 5       | 4269  | 12   | 0.36 | <5 | 130 | <5 | >10  | 29  | 3  | 23 | 882  | 1.08 | <10 | 0.10 | 4149 | 4 <0   | .01 <1 | 250 | 116      | <5 | <20 | 72  | <0.01 | <10 | 10       | <10 | 42 | 372  |
| Â       | 4270  | 14   | 0.27 | <5 | 55  | <5 | >10  | 114 | 3  | 23 | 1278 | 1.28 | <10 | 0.09 | 5682 | 7 <0   | .01 1  | 100 | 126      | <5 | <20 | 49  | 0.01  | <10 | 8        | <10 | 43 | 1329 |
| 7       | 4271  | 1.4  | 0.84 | <5 | 70  | <5 | 7.71 | 13  | 9  | 53 | 4679 | 5.01 | <10 | 0.19 | 4670 | 24 <0  | .01 3  | 320 | 86       | <5 | <20 | 42  | 0.02  | <10 | 57       | <10 | 7  | 217  |
| QC/DA   | TA:   |      |      |    |     |    |      |     |    |    |      |      |     |      |      |        |        |     |          |    |     |     |       |     |          |     |    |      |
| Repeat  |       |      |      |    |     |    |      |     |    |    |      |      |     |      |      |        |        |     | _        | _  |     |     |       |     | ~~       |     |    | ~-   |
| 1       | 4265  | <0.2 | 0.63 | <5 | 90  | 15 | 6.79 | <1  | 15 | 20 | 14   | 4.68 | <10 | 0.48 | 2121 | 1 0    | .01 2  | 830 | ) <2     | <5 | <20 | 86  | 0.16  | <10 | 26       | <10 | 17 | 25   |
| Resplit |       |      |      |    |     |    |      |     |    |    |      |      |     |      |      |        |        |     | <u>.</u> |    |     |     |       |     | <u>^</u> |     |    |      |
| 1       | 4265  | <0.2 | 0.69 | <5 | 105 | 10 | 6.99 | <1  | 15 | 17 | 17   | 4.68 | <10 | 0.48 | 2170 | <1 0   | .01 2  | 830 | ) <2     | <5 | <20 | 88  | 0.16  | <10 | 26       | <10 | 17 | 25   |
| Standa  | rd:   |      |      |    |     |    |      |     |    |    |      |      |     |      |      |        |        |     |          |    |     |     |       |     |          |     |    | -    |
| GEO 96  | 3     | 1.2  | 1.91 | 65 | 170 | <5 | 1.76 | <1  | 19 | 64 | 76   | 4.08 | <10 | 1.13 | 684  | 20     | .02 25 | 610 | ) 16     | 10 | <20 | 61  | 0.13  | <10 | 83       | <10 | 11 | 72   |

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/1284 XLS/96OREQUEST#2

# **APPENDIX II**

Drill Logs

| Role No.<br>Property<br>Location<br>NTS<br>Claim No | CB-96<br>CHACO<br>BBAR<br>94D/2<br>CHACO | 5-1<br>) BEAR<br>LAXE<br>2W<br>) BEAR 3 |     | Northing<br>Easting<br>Blevation<br>Latitude<br>Longitude | 3+25N Core Size<br>0+25E Casing<br>1610 Length<br>Dip-Colla<br>Bearing                                                                                                                                | BQ<br>Pulled<br>57.93<br>r -45<br>060                                                                                                   | Depth Dip Azimuth                                                                                                                                         | De               | pth Dip A  | zimuth  |     | tarted<br>completed<br>prill Co.<br>wogged By<br>nnits | OCT.17,199<br>OCT.17,199<br>PALCON DRI<br>W.RAVEN<br>NETERS | 6<br>6<br>LLING | Farget<br>Comments | BEARNY 2001 | 2         |           |         |
|-----------------------------------------------------|------------------------------------------|-----------------------------------------|-----|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|---------|-----|--------------------------------------------------------|-------------------------------------------------------------|-----------------|--------------------|-------------|-----------|-----------|---------|
| PROM                                                | TO                                       | ROCK<br>TYPE                            | ALT | POL<br>C/A                                                |                                                                                                                                                                                                       | DESCRIPTION                                                                                                                             |                                                                                                                                                           | t<br>Solphide    | SAMPLE Ro. | FROM    | TO  | LENGT                                                  | l Au<br>gpt                                                 | Àg<br>pp∎       | Cu<br>pet          | Cu<br>pp=   | Pb<br>ppa | 21<br>pp1 | n.<br>D |
|                                                     | 3.05                                     |                                         |     |                                                           | CASING - OVERBORDEN                                                                                                                                                                                   |                                                                                                                                         |                                                                                                                                                           |                  |            |         |     |                                                        |                                                             |                 |                    |             |           |           |         |
| 3.05                                                | 12.40                                    |                                         |     |                                                           | GREEN ANDESITE TOP?                                                                                                                                                                                   |                                                                                                                                         |                                                                                                                                                           |                  |            |         |     |                                                        |                                                             |                 |                    |             |           |           |         |
|                                                     |                                          |                                         |     |                                                           | (hematite). Looks amygda<br>carbonate blebs, some may<br>trace-1% very fine grains<br>infillings often with fai<br>Weakly fractured with min<br>Minor (1-2%) 1-2 mm wide<br>hairline veins & 0-15 deg | loidal with 5-10%<br>be replacing feld<br>d dissem. py. Cart<br>nt to moderate ora<br>or broken zone. P<br>qtz veins at 50 de<br>, SCA. | 1-3 mm square to rounded<br>spar crystals. Unit has<br>+/- qtz tension gash<br>nge limonite staining (54<br>assive, non foliated.<br>g to SCA. One set of | }                |            |         |     |                                                        |                                                             |                 |                    | 10          |           |           |         |
| 8.00                                                | 9.50                                     | 2                                       | cl  | hl                                                        | - as above, respresentat:                                                                                                                                                                             | ve sample.                                                                                                                              |                                                                                                                                                           | tr               | 4259       | 8,01    | . 9 | .50 1.5                                                | 0 (0.03                                                     | (0.2            |                    | 38          |           | 4         | 3       |
| 12.40                                               | 20.15                                    |                                         |     |                                                           | RED ANDESITE TUPP<br>Basically same as above i<br>stain. D.C. sharp at 50 d<br>tr-2% fine grained disse<br>3-5% gtz-carb tension ga<br>Uhere are bands of hem at                                      | nit only has a sti<br>leg to SCA. Lower of<br>py and specular h<br>h infillings. Un:<br>.10-20 and 40-50 of                             | rong pervasive red hematit<br>contact gradational. Has<br>nematite, non-magnetic.<br>it is massive. Locally<br>leg to SCA.                                | e                |            |         |     |                                                        |                                                             |                 |                    |             |           |           |         |
| 13.17                                               | 13,19                                    |                                         |     |                                                           | <ul> <li>carb-qtz breccia vein s<br/>fragments Vein is 1.5</li> </ul>                                                                                                                                 | angular green:<br>cm wide 0 60 deg 1                                                                                                    | ish-black and red andesite<br>to SCA with trace spec best                                                                                                 | 2                |            |         |     |                                                        |                                                             |                 |                    |             |           |           |         |
| 15.02                                               | 15.05                                    |                                         |     |                                                           | - 3cm carb-qtz vein with                                                                                                                                                                              | breccia fragments                                                                                                                       | as above 0 30 deg to SCA                                                                                                                                  | ,<br>            | 104        | 1 1 5 6 |     | no 1 5                                                 | n (n. h.                                                    | (0.3            |                    | 6           |           | 9         | q       |
| 15.50<br>17.30                                      | 17.00<br>17.70                           | 3                                       | h   | e <b>n</b>                                                | <ul> <li>as general description</li> <li>has 25% carb-gtz veini.</li> <li>with breccia fragments</li> </ul>                                                                                           | representative s<br>ig, at 17.37 to 17                                                                                                  | ∎pie<br>58∎ ja strong hematite                                                                                                                            | tr               | 9251       | 1 19,0  | 1   | .uu 1.3                                                | U (U.U.                                                     | \V.2            |                    | 0           |           | v         | 7       |
| 20.15                                               | 40.75                                    |                                         |     |                                                           | MOTTLED GREY-GREEN & RED                                                                                                                                                                              | ANDESITE TUFF                                                                                                                           |                                                                                                                                                           |                  |            |         |     |                                                        |                                                             |                 |                    |             |           |           |         |
|                                                     |                                          |                                         |     |                                                           | Same as the previous two<br>The hematite "fades" in<br>hematite while other are<br>sharp contacts. Qtz-car                                                                                            | units with roughl<br>and out, local sec<br>as have virtually<br>b veins & tension                                                       | y equal proportions of bo<br>tions have strong pervasi-<br>none but there are no rea<br>gashes (2-5%) are present                                         | th.<br>Ve<br>11y |            |         |     |                                                        |                                                             |                 |                    |             |           |           |         |

E

|                |                |              | O      | REQ        | UEST CONSULTANTS LTD.                                                                                                                                                                                                                                                                                                                                                             |                  |              | HC             | DLE # :        | CB-96-1      |           | PAGE         | 2 of      | 3         |           |           |        |
|----------------|----------------|--------------|--------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|----------------|----------------|--------------|-----------|--------------|-----------|-----------|-----------|-----------|--------|
| FROM           | <b>1</b> 0     | ROCK<br>TYPE | alt    | FOL<br>C/A | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                       | <b>s</b> olphide | SAMPLE No.   | FROM           | 10             | LENGTH       | Au<br>gpt | 99<br>Ag     | Cu<br>pet | Cu<br>ppm | 6bm<br>8p | 2л<br>ррв |        |
|                |                | ***          |        |            | throughout. Some well defined carb veinlets 3-10 mm wide at 30 deg<br>to SCA. Minor disseminated mineralization as py & specular hematite<br>{tr-1%}, quite fine grained.                                                                                                                                                                                                         | ;                |              |                |                |              |           |              |           |           |           |           |        |
| 23.17<br>24,56 | 23.60<br>24.70 |              |        |            | <ul> <li>hematite gouge on fractures as thin (1-2 mm) coatings.</li> <li>contorted Pe-carb, carb and gtz veining with minor<br/>sericite, mome brecciated wallrock fragments.</li> </ul>                                                                                                                                                                                          |                  |              |                |                |              |           |              |           |           |           |           |        |
| 25.70<br>32.75 | 26.00<br>35.00 |              |        |            | <ul> <li>- as above interval</li> <li>- has 5-10% carb-gtz tension gash infillings, looks fractured</li> <li>then healed with carb-gtz.</li> </ul>                                                                                                                                                                                                                                |                  |              |                |                |              |           |              |           |           |           |           |        |
| 35.00          | 36.50          | 4            | hev, c | b)         | <ul> <li>mod to strong qtz-carb tension gash infillings, locally quite<br/>brecciated. At 15.92 is contact @ 60 deg to SCA with pervasive<br/>lim-hem altered rock to end of interval, hem gouge at contact, upp<br/>25 cm above contact is breccia.</li> </ul>                                                                                                                   | tr-l             | 4261         | 35.00          | 36.50          | 1.50         | (0,03     | (0.2         |           | 9         | f         | . 11      | ;      |
| 36.50          | 38.00          | 4            | hen,c  | hì         | <ul> <li>Boderate hem as pervasive in matrix and as marrow bands or stains,</li> <li>2.15 mode de decima de la filiaria</li> </ul>                                                                                                                                                                                                                                                | tr-1             | 4262         | 36.50          | 38.00          | 1.50         | (0.03     | <0.2         |           | 8         | 10        | ) 8/      | 4      |
| 38.00          | 39.50          | 4            | hen, c | h]         | <ul> <li>- as above, from 38.83-38.96 is 15% carb-qtz veining and hem gouge</li> <li>- ds above, from 38.83-38.96 is 15% carb-qtz veining and hem gouge</li> </ul>                                                                                                                                                                                                                | tr-l             | 4263         | 38.00          | 39.50          | 1.50         | <0.03     | <0.2         |           | 7         | 8         | J Bi      | 6      |
| 39.50          | 41.00          | 4            | hen,ci | hì         | stringers & 70 deg to 50A.<br>- more greenish-black minor hem, lower 25 cm is strong pervasive hem                                                                                                                                                                                                                                                                                | tr-I             | 4264         | 39.50          | 41.00          | 1,50         | (0.03     | (0.2         |           | 13        | î         | 4         | 4      |
| 40.75          | 46.18          |              |        |            | RED ARDESITE LAPILLI TUFF TO ACGLOMERATE.                                                                                                                                                                                                                                                                                                                                         |                  |              |                |                |              |           |              |           |           |           |           |        |
|                |                |              |        |            | Strong to intense, pervasive hematite stain. Contains sub-angular t<br>sub-rounded fragments IxI Cm up to 3x8 cm of the dark green-black<br>andesite. Contains 10-15% fine blebs of white carbonate and 1-3%<br>I-2 mp carb-gtz stringer veins & 20, 60 and 80 deg to SCA.<br>Mineralization is trace amounts of dissem specular hematite. Upper<br>& lower contacts gradational. | .0               |              |                |                |              |           |              |           |           |           |           |        |
| 41.00          | 42.50          | 6            | h      | en         | - as general description                                                                                                                                                                                                                                                                                                                                                          | tr               | 4265         | 41.00          | 42.50          | 1.50         | <0.03     | (0.2         |           | 14        | (1        | 2         | ŝ      |
| 42.50<br>44.00 | 44.00<br>46.18 | 6            | հ<br>հ | e∎<br>e∎   | - as general description<br>- as general description                                                                                                                                                                                                                                                                                                                              | tr<br>tr         | 4266<br>4267 | 42.50<br>44.00 | 44.00<br>46.18 | 1.50<br>2.18 | (0.03     | (0.2<br>(0.2 |           | 13<br>18  | (1<br>1   | 2<br>2 6  | 7<br>5 |
| 46.18          | 47.42          |              |        |            | GREEN ANDESITE TUFF                                                                                                                                                                                                                                                                                                                                                               |                  |              |                |                |              |           |              |           |           |           |           |        |
|                |                |              |        |            | As 3.05-12.40 metres.<br>Gradational upper contact, lower contact sharp at 20 deg to SCA at<br>gouge contact. Has 20% white carb specks throughout, trace dissem.<br>py ercept over lower 10 cm where py=3-4%.                                                                                                                                                                    |                  |              |                |                |              |           |              |           |           |           |           |        |
| 46.18          | 47.42          | 2            | c      | h]         | - as above description                                                                                                                                                                                                                                                                                                                                                            | tr               | 4268         | 46.18          | 47.42          | 1.24         | <0.03     | <0.2         |           | 316       | ı         | ¥ 12      | 2      |
| 47.42          | 54.20          |              |        |            | CARBONATE-QUART2 BRECCIA SONE                                                                                                                                                                                                                                                                                                                                                     |                  |              |                |                |              |           |              |           |           |           |           |        |
|                |                |              |        |            | Sone is hosted in paler green andesite tuff which is brecciated and<br>flooded with carb-gtz veining. Local patches of pale green highly                                                                                                                                                                                                                                          |                  |              |                |                |              |           |              |           |           |           | _ • •     |        |

.

HOLE #: CB-96-1

.

i

|         |       |              | OR      | EQI        | JEST CONSULTANTS LTD.                                                                                                                                                                                                                                                                                            |          |            | BC    | DLE   : | CB-96-1 |           | PAGE 4    | 3 of      | 3         |           |                   |
|---------|-------|--------------|---------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-------|---------|---------|-----------|-----------|-----------|-----------|-----------|-------------------|
| PROM    | TO    | ROCX<br>TYPE | ALT     | POL<br>C/A | DESCRIPTION                                                                                                                                                                                                                                                                                                      | SOLPHIDE | SAMPLE No. | PROH  | T0      | LENGTH  | Au<br>gpt | Ag<br>ppm | Cu<br>pet | Cu<br>PPB | 669<br>bp | In<br>pp <b>n</b> |
|         | ,     |              |         |            | siliceous rock-secondary silicification. Minor yellow-brown Re-carb<br>staining. Sulphides are mostly cpy as dissm blebs & cubes up to<br>4x4 mm with a few coarse clots up to 1x5 cm. Average sulphide content<br>=2-4%. Opper contact sharp @ 20 deg to SCA as is lower contact.                               |          |            |       |         |         |           |           |           |           |           |                   |
| * 47.42 | 48.50 | 1            | ear,qta |            | - 30-40% gtz-carb to 48.00 m then 0.5 m carb vein to 48.50 m, the carb                                                                                                                                                                                                                                           | Ь 2-3    | 4269       | 47.42 | 48.50   | 1.08    | (0.03     | 1.2       | 0.13      |           | 116       | 372               |
| 48.50   | 49,50 | 1            | ear,gta | 1          | vein is parren. Supprises in opper half=1-24 cpy and 2-34 py 70% qtz-carb weining with brecciated andesite fragments, has 1% blebs of cpy with trace specks of galena, lower 8 cm is strongly brecciated with 5-6% blebs of cpy & 1-2 py                                                                         | 1        | 4270       | 48.50 | 49.50   | 1.00    | 0.04      | 1.4       | 0.21      |           | 126       | 1329              |
| 49.50   | 50.50 | 7 -          | ar,qta  | 1          | - 30-40% carb-gtz veining & flooding in brecciated andesite with 2-5% disea one from 50 30 to 50 33 is come wait & 50 dec to 50%                                                                                                                                                                                 | 3        | 4271       | 49,50 | 50.50   | 1.00    | 0.18      | 1.4       | 0.56      |           | 86        | 217               |
| 50.50   | 51.50 | 7 -          | ear,qta | :          | <ul> <li>60-70% carb-gtz veining within which is 10-40% pale yellow-brown<br/>Pe-carb, minor hem staining. Fair cpy throughout, avg 2-5%, some<br/>coarse clots near the and/carb contacts, rare traces of bornite and<br/>trace course that and carb contacts.</li> </ul>                                       | 3        | 4272       | 50.50 | 51.50   | 1.00    | 0.79      | 9.0       | 1.18      |           | 100       | 126               |
| 51.50   | 52.50 | 1            | car,qta |            | - 30% carb-qt, 30% chl-hem altered andesite to 52.2 m then rubble<br>zone to 52.09 with 40% recovery. One 3 mm wide magnetite § 51.89 m<br>moderate one throughout                                                                                                                                               | 3-4      | 4273       | 51.50 | 52.50   | 1.00    | 0.26      | 7.4       | 0.40      |           | 58        | 39                |
| 52.50   | 53.50 | 1            | car,gt: | 2          | - rubble cone to 52.9 m with 30% recovery then coarse clots of cpy to                                                                                                                                                                                                                                            | 3-4      | 4274       | 52.50 | 53.50   | 1.00    | 1.38      | 12.2      | 1.32      |           | 90        | 126               |
| 53.50   | 54.20 | 7 -          | sar,qta | 5          | <ul> <li>- carb-gtz vein to 53.75 m then gtz-carb flooding in brecciated<br/>andesite, 3-5% cpy in vein, 1-2% in andesite, chloritic<br/>bands at 10 deg to SCA.</li> </ul>                                                                                                                                      | 2        | 4275       | 53.50 | 54.20   | .70     | 0.52      | 7.6       | 0.40      |           | 108       | 90                |
| 54.20   | 56.00 |              |         |            | RED ANDESITE TUPP                                                                                                                                                                                                                                                                                                |          |            |       |         |         |           |           |           |           |           |                   |
|         |       |              |         |            | As described 121.40-20.15 m. Has 5-15% carb veining as narrow<br>stringers and larger veins at 55.13-55.33 and 55.81-55.91 m. Contain<br>1-3% dissm cpy and up to 5% dissm py with some py as narrow stringers<br>@ 20-40% to SCA. Dpper contact sharp @ 20 deg to SCA along 8 mm wide<br>carb vein with 5% cpy. | 8        |            |       |         |         |           |           |           |           |           |                   |
| 54.20   | 56.00 | 3            | hei     | L          | - as general description                                                                                                                                                                                                                                                                                         | 2        | 4276       | 54.20 | 56.00   | 1.80    | 0.11      | 2.4       |           | 1536      | 138       | 11                |
| 56.00   | 57.93 |              |         |            | MOTTLED CREEN & RED ANDESITE TUPP                                                                                                                                                                                                                                                                                |          |            |       |         |         |           |           |           |           |           |                   |
|         |       |              |         |            | As described 20.15-40.75 m. Has 10-15% carb blebs, tr py & specular hematite.                                                                                                                                                                                                                                    |          |            |       |         |         |           |           |           |           |           |                   |
| 56.00   | 57.93 | 4            | chl,hei | )          | - as above                                                                                                                                                                                                                                                                                                       | tr       | 4277       | 56.00 | 57.93   | 1.93    | 0.03      | (0,2      |           | 66        | 8         | 86                |
|         | 57.93 |              |         |            | END OF HOLE                                                                                                                                                                                                                                                                                                      |          |            |       |         |         |           |           |           |           |           |                   |

.

8

| Hole No.<br>Property<br>Cocation<br>NTS<br>Claim No | CB-96-2<br>CHACO BE/<br>BEAR LARI<br>94D/2W<br>CHACO BE/ | Northing<br>RE Basting<br>Blevation<br>Latitude<br>RI Longitude | 3+25¥<br>0+258<br>1610                                                                                                                             | Core Size<br>Casing<br>Length<br>Dip-Collar<br>Bearing                                                                                 | 8Q<br>Puiled<br>155.49<br>-90<br>W/A                                                                                                                  | Depth                                                                                             | Dip Azimuth                                                                                    | Dej           | eth Dip Az | imuth | Sta<br>Com<br>Dri<br>Log<br>Uni | rted<br>pleted<br>ll Co.<br>ged By<br>ts | OCT.17,1996<br>OCT.18,1996<br>FALCON DRIL<br>W.RAVEN<br>NETERS | LING              | Target<br>Comments | BEARNX ZONI | 3                 |         |     |
|-----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------|------------|-------|---------------------------------|------------------------------------------|----------------------------------------------------------------|-------------------|--------------------|-------------|-------------------|---------|-----|
| PROM                                                | TO RO<br>TY                                              | CK ALT POL<br>Pe C/A                                            |                                                                                                                                                    |                                                                                                                                        | DESCRIPTION                                                                                                                                           |                                                                                                   |                                                                                                | t<br>SULPHIDE | SAMPLE No. | FROM  | to                              | LENGTH                                   | Au<br>gpt                                                      | Ag<br>pp <b>n</b> | Cu<br>pct          | Cn<br>Cn    | РЪ<br>РР <b>п</b> | 2<br>PP | n   |
|                                                     | 2.74                                                     |                                                                 | CASING - OVERBU                                                                                                                                    | DRDEN                                                                                                                                  |                                                                                                                                                       |                                                                                                   |                                                                                                |               |            |       |                                 |                                          |                                                                |                   |                    |             |                   |         |     |
| 2.74                                                | 69.04                                                    |                                                                 | MOTTLED REDDISF<br>Dnit has a perv<br>hematite staim<br>tuffaceous fraq<br>epidote as repl<br>+/- carb string<br>Minor mineraliz<br>hematite. Some | H-GREEN ANDESI<br>vasive red-pur<br>as contorted<br>gments or alte<br>lacement of fe<br>ger veins and<br>zation as trac<br>gtz-carb br | ITE TUPF<br>ple-maroon colou<br>bands. Contains<br>ered feldspar/maf<br>eldspar(?) and a<br>some tension gas<br>re disseminations<br>veins with green | r with seco<br>approx. 304<br>ic mineral.<br>few veins.<br>h infilling<br>of py and<br>andesite f | ndary dark re<br>coarser<br>Also minor<br>Variable qtz<br>s up to 5%.<br>specular<br>ragments. | d             |            |       |                                 |                                          |                                                                |                   |                    |             |                   |         |     |
| 2.74<br>5.75                                        | 5.00<br>7.90                                             | 4 chl,hem                                                       | <ul> <li>strongly brok</li> <li>10-15% qtz-ca</li> <li>fragments and</li> <li>and</li> <li>and</li> </ul>                                          | ken and fractu<br>arb veining, s<br>d minor serici                                                                                     | ared, 65% recover<br>some brx veins wi<br>ite, no sulphides                                                                                           | y<br>th green ar<br>1, veins 8 (                                                                  | idesite<br>10-50 deg                                                                           | tr            | 4278       | 5.75  | 7.90                            | 2.15                                     | 0.03                                                           | (0.2              | !                  | 15          |                   | 8       | 70  |
| 12.30<br>13.60<br>21.90<br>27.13<br>28.35           | 12.85<br>15.10<br>22.43<br>27.15<br>28.72                | 4 chl,hem                                                       | <ul> <li>brecciated wi<br/>enclosing gre</li> <li>strongly brol</li> <li>30% carb blei</li> <li>barren gtz we</li> <li>strongly bree</li> </ul>    | ith gouge vein<br>een andesite<br>ken and fractu<br>bs<br>ein @ 15 and 1<br>cciated                                                    | ns (hematite) at<br>ured with 40% rec<br>10 deg to SCA                                                                                                | 50 deg to 8<br>:overy                                                                             | iCA, strong he                                                                                 | n tr          | 4279       | 12.30 | 12.85                           | 5 .55                                    | 0.18                                                           | (0.1              | !                  | 5           |                   | ŧ       | 105 |
| 33.40                                               | 43.70                                                    |                                                                 | Carb-Utz Strin<br>Has 5-8% veins<br>45-50 deg to St<br>mineralized.                                                                                | ger Vein Syste<br>from narrow :<br>CA, lesser tre                                                                                      | em<br>stringers to 2-3<br>end is 75 deg to                                                                                                            | c∎ veins, (<br>SCA, the ve                                                                        | dominant set f<br>eins are not                                                                 |               |            |       |                                 |                                          |                                                                |                   |                    |             |                   |         |     |
| 39.00<br>48.40<br>51.44<br>55.80                    | 41.00<br>48.60<br>51.59<br>56.00                         | 7 car,qtz                                                       | - as above, rep<br>- large 313 cm<br>- gtz carb vei<br>fragments<br>- 30% gtz-carb                                                                 | presentative s<br>clasts<br>n with minor s<br>veining @ 10-                                                                            | sample with a few<br>green sericite as<br>-25 deg to SCA.                                                                                             | e∎inor brx<br>nd a few pu                                                                         | zones.<br>rple andesite                                                                        | tr            | 4280       | 39.00 | 41.0(                           | 2.00                                     | 0.03                                                           | <0.               | 2                  | 6           |                   | 8       | 81  |
| 58.60                                               | 73.65                                                    |                                                                 | Epidote String<br>Begin to see n<br>and also on fr<br>also as small                                                                                | er Veins<br>arrow (1-2 mm<br>acture planes<br>clots.                                                                                   | ) epidote veins ;<br>. Overall epidot;                                                                                                                | and tension<br>e content al                                                                       | gash infilli<br>bout 1-2% and                                                                  | igs           |            |       |                                 |                                          |                                                                |                   |                    |             |                   |         |     |

. L

•

E

|       |            |              | OF                | <b>SEQ</b> I | JEST CONSULTANTS LTD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            | BC    | )LE   : | CB-96-2 |           | PAGE      | 2 of         | 4         |           |             |
|-------|------------|--------------|-------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|-------|---------|---------|-----------|-----------|--------------|-----------|-----------|-------------|
| PROM  | <b>T</b> 0 | ROCK<br>Type | ALT               | FOL<br>C/A   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$<br>SULPHIDE | SAMPLE No. | PROM  | TO      | LENGTH  | Au<br>gpt | Ag<br>pp∎ | Cu<br>pct    | Cu<br>ppm | Pb<br>pp∎ | 2n<br>ppm   |
| 59.90 | 60.30      |              |                   |              | - moderately broken and fractured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |            |       |         |         |           |           |              |           |           |             |
| 67.86 | 69.04      |              |                   |              | Green Andesite Tuff<br>Broken upper contact, lower contact sharp at 40 deg to SCA at 2 cm gt<br>wein. From 68.40-68.60 m is carb-gtz-ep-ser vein @ 70 deg to SCA with<br>tr blebs of cpy.                                                                                                                                                                                                                                                                                                                                                                                                                            | 2              |            |       |         |         |           |           |              |           |           |             |
| 69.04 | 73.65      |              |                   |              | PURPLE ANDESITE/CARB-QT3 STRINGER VEIN 30MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |            |       |         |         |           |           |              |           |           |             |
|       |            |              |                   |              | The same red-purple-maroon volcanic unit with 5-10% veining and tension gash infilling. Unit is disrupted as it lies above the faulted carb-gtz brz zone.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |            |       |         |         |           |           |              |           |           |             |
| 69.00 | 70.50      | 3,           | 7 hem,cl          | h            | <ul> <li>as general description, local breccia veining, minor traces of py<br/>and ensemble benetite.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tr             | 4281       | 69.00 | 70.50   | 1.50    | <0.03     | (0.2      |              | 72        | 8         | 111         |
| 70.50 | 72.00      | 3,           | 7 he <b>n</b> ,cl | 1            | <ul> <li>as general description, from 70.50-70.70 is well fractured, from<br/>70.70-70.95 is bleached grey-green chl-ser altered with tr py, from<br/>71.47 to 71.75 is brecciated with ep fragments up to 2r2 cm and dee</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                 | tr<br>P        | 4282       | 70.50 | 72.00   | 1.50    | 0.04      | 0.6       |              | 379       | 20        | 101         |
| 72.00 | 73.50      | 3,           | 7 he <b>n</b> ,cl | nl           | red hematite, there are trace blebs of py & cpy<br>- as general description, chlorite altered green andesite from<br>73.28 to 73.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tr             | 4283       | 72.00 | 73.50   | 1.50    | 0.06      | <0.2      |              | 56        | 8         | 239         |
| 73.65 | 82.42      |              |                   |              | CARBONATE-QUART2 BRECCIA 20NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |            |       |         |         |           |           |              |           |           |             |
|       |            |              |                   |              | Pault bounded mineralized zone with carb-quartz veins as narrow<br>stringers and 0.5m veins as well as tension gash infillings. Opper<br>contact sharp at gouge zone, 5 cm vide, at 50 deg to SCA, lower<br>contact also sharp at 45 deg to SCA, looks brecciated and subsequentl<br>healed, no gouge though 10 cm of broken core 20 cm above contact.<br>Zone is hosted in strongly hematitized andesite to 82.30 m then in<br>a yellow-green epidote (?) to end of zone at 82.42 m.<br>Mineralization is comprised mainly of cpy as fine to coarse dissem<br>blebs averaging 2-44. Minor py and specular hematite. | ÿ              |            |       |         |         |           |           |              |           |           |             |
| 73.50 | 74,50      |              | 7 car,g           | tz           | - as general description, minor dissem sulphides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tr             | 4284       | 73.50 | 74.50   | 1.00    | (D.03     | 0.4       | 0.02<br>0.14 |           | 1         | ) 71<br>) 1 |
| 74.50 | 75.50      |              | / car,q           | [2           | - as general description, from 74.01-74.90 is carp vein but barren<br>looking, rest of interval has 10-15% veining with 1% cpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rt.i           | 9203       | /1,00 | الروبية | 1.00    | 5.03      |           | 0.00         |           |           |             |
| 75.50 | 76.50      |              | 7 car,q           | tz           | <ul> <li>as general description 70% carb-qtz wein with brx fragment to<br/>76.34 m with 2-3% cpy throughout wein, from 75.50 to 75.95 has<br/>approximately 4-5% cpy</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3              | 4286       | 75.50 | 76.50   | 1.00    | 1.81      | 4.4       | 1.89         |           | 11        | ; /         |
| 76.50 | 77,50      |              | 7 car,g           | tz           | - as general description, from 76.67-77.09 is carb-gtz vein with tr-<br>chalconwrite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>1</b> 1     | 4287       | 76.50 | 77.50   | 1.00    | 0.09      | 1.0       | 0.09         |           | :         | 2 1         |
| 77.50 | 78.50      |              | 7 car,q           | tz           | <ul> <li>- as general description, from 77.89 to 78.50 is strong breccia with<br/>2-5% cpy in carb-gtz veins and host volcanic</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3              | 4288       | 77.50 | 78.50   | 1.00    | 0.53      | 3.0       | 0.52         |           | ]:        | • 3         |

•

OREQUEST CONSULTANTS LTD.

.

HOLE # : CB-96-2 PAGE # 3 of 4

.

•

. . . . . . . . i

| PROM  |      | t0     | ROCI<br>TYPI | A A   | LT   | POL<br>C/A | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                     | SOLPHIDE  | SAMPLE No. | FROM  | ŢO    | LENGTH | Au<br>gpt | }g<br>pp∎ | Cu<br>pct | Cu<br>ទទ្ <b>ខ</b> ា | 66<br>86 | 2a<br>pp <b>n</b> |
|-------|------|--------|--------------|-------|------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-------|-------|--------|-----------|-----------|-----------|----------------------|----------|-------------------|
| 78.5  | 0    | 79.50  |              | 7 car | ,qtz |            | - strong breccia as above to 78.92 then fairly barren looking carb-<br>vein to 79.50                                                                                                                                                                                                                                                                                                            | gtz 2     | 4289       | 78,50 | 79.50 | 1.00   | 0.23      | 1.6       | 0,32      |                      | < 2      | 21                |
| 79.5  | Q    | 80.50  |              | ) car | ,gt2 |            | <ul> <li>carb-qtz vein as above to 79.74 then silica-hem breccia to 80.00,<br/>from 88.0-80.50 is mod to strongly fractured</li> </ul>                                                                                                                                                                                                                                                          | 1-2       | 4290       | 79.50 | 80.50 | 1.00   | 0.38      | 0.6       | 0.26      |                      | <2       | 37                |
| 80.5  | 0    | 81.50  |              | 7 car | ,gtz |            | <ul> <li>noderately to strongly fractured to 80.86 m, then barren carb veit<br/>to 81.20 m, strong gouge at upper contact of vein § 50 deg to SCA<br/>from 81.20 to 81.50 is brecciated hematitic andesite with 30-50%<br/>the strong floating mine throughout</li> </ul>                                                                                                                       | n 1-2     | 4291       | 80.50 | 81.50 | 1.00   | 0.13      | 8.6       | 0.17      |                      | <2       | 71                |
| 81.5  | 0    | 82.50  |              | 7 car | ,qtz |            | <pre>gt2-cars flooding, minor cpy introgeout<br/>- strong hematite breccia to 82.42 m then last 8 cm is yellow-green<br/>epidote altn(?)</pre>                                                                                                                                                                                                                                                  | tr-1      | 4292       | 81.50 | 82.50 | 1.00   | 0.27      | 10.4      | 0.39      |                      | <2       | 60                |
| 82.4  | 2    | 85.42  |              |       |      |            | YELLOW-GREEN TRANSITION SONE(?)                                                                                                                                                                                                                                                                                                                                                                 |           |            |       |       |        |           |           |           |                      |          |                   |
|       |      |        |              |       |      |            | Bleached yellow-green epidote(?) altered rock to 83.28 then breccia<br>green unit to 85.42. Opper contact is gouge 0 50 deg to SCA, lower<br>contact sharp at 45 deg to SCA, looks like healed gouge. Has 1-5%<br>specks of hematite throughout and some darker green epidote crystal<br>Trace pyrite.                                                                                          | ted<br>s. |            |       |       |        | ·         |           |           |                      |          |                   |
| 82.5  | Û    | 83.50  |              | 2 ch  | l,ep |            | - as general description, mostly yellow-green unit with 5% qtz-carb<br>weining                                                                                                                                                                                                                                                                                                                  | tr        | 4293       | 82.50 | 83.50 | 1.00   | <0.03     | 0.8       |           | 215                  | <2       | 177               |
| 83.5  | Û    | 84.50  |              | 2 ch  | l,ep |            | - mostly green andesite with 20% anastomosing gtz-carb stringers an<br>S-10% normbyritic feldemar greatals, some with hem rentarement                                                                                                                                                                                                                                                           | d tr      | 4294       | 83.50 | 84.50 | 1.00   | (0.03     | 0.4       |           | 21                   | 4        | 252               |
| 84.5  | 0    | 85.50  |              | 2 ch  | l,ep |            | - yellow green unit, brecciated                                                                                                                                                                                                                                                                                                                                                                 | tr        | 4295       | 84.50 | 85.50 | 1,00   | (0.03     | 2.8       |           | 1338                 | 10       | 244               |
| 85.4  | 2 1  | 101.80 |              |       |      |            | RED-PURPLE-MARGON ANDESITE LAPILLI TUPP/AGGLOMERATE                                                                                                                                                                                                                                                                                                                                             |           |            |       |       |        |           |           |           |                      |          |                   |
|       |      |        |              |       |      |            | Strong pervasive blood red hematite stain in a purple tuff/<br>agglomerate. Has some large 5x5 cm fragments of purple tuff, locall<br>even larger fragments up to 6x12 cm. Op to 30-40% carbonate<br>(porphyritic) crystals in the fragments. Also has 1-2% carb-gtz<br>stringer veins generally at 45 deg to SCA. Very little<br>mineralization, minor traces of pyrite and specular hematite. | 7         |            |       |       |        |           |           |           |                      |          |                   |
| 85.5  | 0    | 87.00  |              | 6     | hen  |            | <ul> <li>as general description, paler reddish-pink colour to 86.23 then t<br/>deep purple/red</li> </ul>                                                                                                                                                                                                                                                                                       | he tr     | 4296       | 85,50 | 87.00 | 1.50   | (0.03     | 0.4       |           | 111                  | 1        | 170               |
| 87.0  | 0    | 88.50  |              | 6     | hen  |            | - as general description                                                                                                                                                                                                                                                                                                                                                                        | tr        | 4297       | 87.00 | 88.50 | 1.50   | <0.03     | <0.2      |           | 20                   | 4        | 106               |
| 88.5  | 0    | 90.00  |              | 6     | hen  |            | - as general description                                                                                                                                                                                                                                                                                                                                                                        | tr        | 4298       | 80.50 | 90.00 | 1.50   | 0.07      | (0.2      |           | 17                   | <u>1</u> | 168               |
| 90.0  | 0    | 91.50  |              | 6     | he∎  |            | - as general description, from 90.45-91.00 has abundant green<br>fragments, from 91.00-91.20 is carb-qtz vein with 3-4% cpy, upper<br>contact sharp at 60 deg to SCA, lower contact sharp along 1 cm go<br>& 60 deg to SCA                                                                                                                                                                      | tr<br>uge | 4299       | 90.00 | 91.50 | 1.50   | 0.05      | 0.6       |           | 745                  | 13(      | 240               |
| 101.8 | 10 1 | 106.28 |              |       |      |            | GREEN & PURPLE ANDESITE & CARB QTZ VEIN                                                                                                                                                                                                                                                                                                                                                         |           |            |       |       |        |           |           |           |                      |          |                   |
|       |      |        |              |       |      |            | Intercalated lithologies, upper green unit from 101.80-103.15 with                                                                                                                                                                                                                                                                                                                              |           |            |       |       |        |           |           |           | HOL                  | E #:     | св-96-2           |

| OREQUEST | CONSULTANTS | LTD. |
|----------|-------------|------|
|----------|-------------|------|

~

HOLE | : CB-96-2

PAGE | 4 of 4

|        |        |              |        |            |                                                                                                                                                             |                      |            | ·      |        |        |           |           |           |           |           |           |
|--------|--------|--------------|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|--------|--------|--------|-----------|-----------|-----------|-----------|-----------|-----------|
| FROM   | TO     | ROCK<br>Type | ALT    | POL<br>C/A | DESCRIPTION                                                                                                                                                 | <b>\</b><br>Solphide | SAMPLE No. | FROM   | T0     | LENGTH | Au<br>gpt | Ag<br>PPD | Cu<br>pct | Cu<br>ppn | Pb<br>₽pæ | 2n<br>ppæ |
|        |        |              |        |            | hematite stained breccia fragments, Carb-gtz vein from 103.15-104.08<br>then brecciated purple tuff to 105.67 then fine grained green andesite<br>to 106.28 |                      |            |        |        |        |           |           |           |           |           |           |
| 101 90 | 103-15 | 4.7          | ear at | ,          | - as shown organ and with trait one in earb-att stringers                                                                                                   | tr-1                 | 4300       | 101.80 | 103.15 | 1.35   | 0.12      | 1.2       |           | 711       | 144       | 260       |
| 103.15 | 104.08 | 4,7          | car,qt | 2          | <ul> <li>carb-qtz vein with 2-3% pale green siliceous fragments with tr cpy<br/>in fragments</li> </ul>                                                     | tr                   | 4324       | 103.15 | 104.08 | .93    | 0.09      | 1.0       |           | 228       | 66        | 1132      |
| 104.08 | 105.67 | 4,7          | car,qt | 2          | <ul> <li>brecciated pink-purple andesite with 5-10% pale green-grey siliceous<br/>patches, 5% carb-stz veins and 1-2% blebs of cov</li> </ul>               | 1-2                  | 4325       | 104.08 | 105.67 | 1.59   | 0.12      | 0.8       |           | 3220      | 304       | 538       |
| 105.67 | 105.28 | 4,7          | car,qt | 2          | - fine grained medium green andesite, chlorite on fractures, 1% py,<br>ends abruptly at irregular contact.                                                  | 1                    | 4326       | 105.67 | 106.28 | .61    | 0.03      | (0,2      |           | 184       | 20        | 344       |
| 106.28 | 155.49 |              |        |            | GREEN AND PURPLE ANDESITE TUP?                                                                                                                              |                      |            |        |        |        |           |           |           |           |           |           |
|        |        |              |        |            | As described 101.80 to 106.28 metres                                                                                                                        |                      |            |        |        |        |           |           |           |           |           |           |
| 113.00 | 113.24 |              |        |            | - coupe-carb-gtz vein # 60-70 deg to SCA with chlorite and hematite                                                                                         |                      |            |        |        |        |           |           |           |           |           |           |
| 117.59 | 117.82 |              |        |            | - 5 mm carb-gtz-hematite gouge vein 2 80 deg to SCA                                                                                                         |                      |            |        |        |        |           |           |           |           |           |           |
| 120.65 | 121.34 |              |        |            | - moderately fractured and broken                                                                                                                           |                      |            |        |        |        |           |           |           |           |           |           |
| 121.62 | 122.70 |              |        |            | - very fine grained                                                                                                                                         |                      |            |        |        |        |           |           |           |           |           |           |
| 132.01 | 133.54 |              |        |            | <ul> <li>greener &amp; more chloritic especially over the last 50 cm which has<br/>54 carb-gtz veining</li> </ul>                                           |                      |            |        |        |        |           |           |           |           |           |           |
| 133.54 | 155.79 |              |        |            | - all undifferentiated hematitic andesite lapilli tuff to agglomerate                                                                                       |                      |            |        |        |        |           |           |           |           |           |           |
|        | 155.49 |              |        |            | END OF HOLE                                                                                                                                                 |                      |            |        |        |        |           |           |           |           |           |           |

|                                                     | -                                        |                                       | 0                                  | REQU                                                      | $\mathbf{EST} \propto$                                                                                                                     | ONSUL                                                                                                                                   | TANTS                                                                                                                                                     | LTI                                                                                         | 5.                                                                    | DIAM                                                                            | DND DBILL H           | DPR RECORD | Clien    | IC IMPBE       | LIAL MET                             | ALS                                 |                                                                | rage 11      |                    |                   |           |          |                    |
|-----------------------------------------------------|------------------------------------------|---------------------------------------|------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|------------|----------|----------------|--------------------------------------|-------------------------------------|----------------------------------------------------------------|--------------|--------------------|-------------------|-----------|----------|--------------------|
| Hole No.<br>Property<br>Location<br>RTS<br>Claim No | CB-96<br>CHACC<br>BEAR<br>94D/2<br>CHACC | 5-3<br>) BEAR<br>LAKE<br>2W<br>) BEAR | 1                                  | Northing<br>Basting<br>Blevation<br>Latitude<br>Longitude | 4+00R<br>0+258<br>1625                                                                                                                     | Core Size<br>Casing<br>Length<br>Dip-Collar<br>Bearing                                                                                  | BQ<br>Pulled<br>43.29<br>-55<br>960                                                                                                                       | Depth                                                                                       | Dip                                                                   | Azibuth                                                                         | De                    | oth Dip    | Azibu    | ath            | Star<br>Comp<br>Dril<br>Logg<br>Unit | ted<br>Jeted<br>1 Co.<br>ed By<br>s | OCT.19,1996<br>OCT.19,1996<br>PALCON DRIL<br>W.RAVEN<br>METERS | LING         | Target<br>Comments | BEARNY ZON        | £         |          |                    |
| FROM                                                | 10                                       | ROCK<br>TYPE                          | AL                                 | T POL<br>C/A                                              |                                                                                                                                            |                                                                                                                                         | DESCRIPTION                                                                                                                                               |                                                                                             |                                                                       |                                                                                 | <b>\$</b><br>SULPHIDE | SAMPLE N   | o. F     | ROM            | TO                                   | LENGTH                              | Au<br>gpt                                                      | Åg<br>PP∎    | Cu<br>pet          | Сц<br>р <b>ра</b> | Pb<br>pp∎ | P        | 8n<br>j <b>p</b> n |
|                                                     | 1.22                                     |                                       |                                    |                                                           | CASING - OVERB                                                                                                                             | IURDEN                                                                                                                                  |                                                                                                                                                           |                                                                                             |                                                                       |                                                                                 |                       |            |          |                |                                      |                                     |                                                                |              |                    |                   |           |          |                    |
| 1.22                                                | 10.88                                    |                                       |                                    |                                                           | VOLCANICLASTIC                                                                                                                             | : UNIT                                                                                                                                  |                                                                                                                                                           |                                                                                             |                                                                       |                                                                                 |                       |            |          |                |                                      |                                     |                                                                |              |                    |                   |           |          |                    |
| 2.29                                                | 2.52                                     |                                       |                                    |                                                           | tight isoclina<br>at 45 deg § 85<br>Lower contact<br>- broken and f<br>- trace malach                                                      | il folding with<br>5 deg to SCA w<br>broken at app<br>fractured<br>hite stain on :                                                      | h ares at 85 deg<br>ith manganese sta<br>rox 60 deg to SCA<br>fractures                                                                                   | to SCA. W<br>in on fra<br>i.                                                                | leakly<br>ictures                                                     | fractured                                                                       |                       |            |          |                |                                      |                                     |                                                                |              |                    |                   |           |          |                    |
| 7.00                                                | 8.00                                     | 1                                     |                                    | ser                                                       | - typical repr                                                                                                                             | regentative sa                                                                                                                          | mple, tr pyrite                                                                                                                                           |                                                                                             |                                                                       |                                                                                 | tr                    | 43         | 27       | 7.00           | 8.00                                 | 1.00                                | 0.13                                                           | 0.2          |                    | 6:<br>•           | )<br>1 1  | 60<br>06 |                    |
| 8.00<br>9.50                                        | 9.50<br>11.00                            | 1                                     | i                                  | Bel<br>Sel                                                | - as general d<br>- as general d<br>and feldspar<br>contact at 6                                                                           | tescription, 2<br>lescription, f<br>r porphyry, st<br>55 deg to SCA                                                                     | -3% carb-gtz ven<br>rom 10.24-10.88 i<br>art of intercalai                                                                                                | ns, trace<br>ns interca<br>ed sectio                                                        | cpy<br>alated<br>on at s                                              | guartzite<br>sharp                                                              | tr<br>tr              | 43         | 29       | 9.50           | 11.00                                | 1.50                                | (0.03                                                          | 0.2          |                    | 6.                | , ,       | 8        |                    |
| 10.88                                               | 24.20                                    |                                       |                                    |                                                           | BENATITIC PELD                                                                                                                             | DSPAR PORPHYRY                                                                                                                          |                                                                                                                                                           |                                                                                             |                                                                       |                                                                                 |                       |            |          |                |                                      |                                     |                                                                |              |                    |                   |           |          |                    |
|                                                     |                                          |                                       |                                    |                                                           | Difficult to d<br>a fine grained<br>crystals up to<br>the feldspar l<br>cross-cutting<br>Mineralization<br>Opper contact<br>is broken. Hem | determine if u<br>d dark reddish<br>o 1 cm long x<br>laths as well<br>marrow (1-5 m<br>n is trace spe<br>fairly sharp<br>matite stainin | nit is of volcan<br>black matrix wi<br>3 mm wide. Parti.<br>as white to pink<br>m} carbonate vei<br>cks of specular<br>& appros 60 deg<br>g on fractures. | ic or inti<br>th 30-40%<br>al carbona<br>blebs of<br>bs & 70 de<br>hematite A<br>to SCA, le | rusive<br>euhedi<br>ate rep<br>carboi<br>eg to S<br>& rare<br>ower co | origin. H<br>ral feldsp<br>placement<br>nate. Min<br>sCA.<br>pyrite.<br>pontact | as<br>par<br>of<br>or |            |          |                |                                      |                                     |                                                                |              |                    |                   |           |          |                    |
| 11.00<br>12.50<br>19.81                             | 12.50<br>14.00<br>20.15                  |                                       | δ he <b>n</b> ,<br>S be <b>n</b> , | ,chl<br>,ch)                                              | - as general d<br>- as general d<br>- shear hosted<br>green andesi                                                                         | description<br>description<br>d interval of<br>ite fragments                                                                            | finer grained he<br>UC # 65 deg to S                                                                                                                      | natitic an<br>CA, LC ( )                                                                    | ndesito<br>30 deg                                                     | e with<br>to SCA wi                                                             | tr<br>tr              | 43<br>43   | 30<br>31 | 11.00<br>12.50 | 12.50<br>14.00                       | 1.50<br>1.50                        | <0.03<br>(0.03                                                 | <0.2<br><0.2 |                    | 4<br>11           | 7<br>2    | 12<br>8  |                    |

,

|                                           |                                           |              | OF               | œQi               | UEST CONSULTANTS LTD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | _            | HC             | DLE 🕴 :        | CB-96-3      |               | PAGE 4       | 2 of         | 2                 |                   |            |
|-------------------------------------------|-------------------------------------------|--------------|------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------------|----------------|--------------|---------------|--------------|--------------|-------------------|-------------------|------------|
| FROM                                      | TO                                        | ROCK<br>TYPE | ALT              | POL<br>C/A        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SULPHIDE    | SAMPLE No.   | FROM           | TO             | LENGTH       | Au<br>gpt     | Ag<br>Pça    | Cu<br>pct    | Cu<br>PP <b>n</b> | <b>в</b> бð<br>бр | 2n<br>ppm  |
| 19.60                                     | 22.00                                     | 5            | hen,ch           | 1                 | - as general description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tr          | 4332         | 19.60          | 22.00          | 2.40         | (0.03         | (0.2         |              | 13                | 10                | 98<br>78   |
| 23.50                                     | 23.30                                     | 5            | he <b>n</b> , ch | ]                 | - as general description, 5 cm pink carb very e 22.05 m<br>- as general description, 5% carb gtz veins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tr          | 4334         | 23.50          | 24.20          | ,70          | (0.03         | <0.2         |              | 26                | 10                | 76         |
| 24.20                                     | 31.37                                     |              |                  |                   | CARBONATE-QUARTS "BRECCIA" SOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |                |                |              |               |              |              |                   |                   |            |
|                                           |                                           |              |                  |                   | Not as well defined as in holes 1 & 2. No individual carb-gtz veins<br>)1 cm wide, mostly small contorted tension gash infillings with minor<br>stringer veins but definitely a zone of disruption. Upper and lower<br>contacts are not clearly defined, more gradational & arbitrarily<br>chosen, especially lower contact. Upper contact sharp 0 50 deg to SCA<br>at lithological break between hematitic feldspar porphyry and<br>aphanitic hematitic andesite. Zone hosted primarily in green andesite<br>with lesser intercalated f-spar porphyry and aphanitic andesite at<br>gradational lower contact. The mineralization is mostly dissem blebs<br>of cpy except near upper contact where there is a 10 cm interval of<br>banded cpy (10%) 0 deg to SCA. |             |              |                |                |              |               |              |              |                   |                   |            |
| 24.20                                     | 25.00                                     | 7            | car,qt           | .2                | <ul> <li>as general description, aphantic red andesite to 24.48 m then green<br/>andesite. from 24.57-24.69 is ontz flooded with 10% cov</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 2         | 4335         | 24.20          | 25.00          | .80          | 0.68          | 1.2          | 0.43         |                   | 100               | 224        |
| 25.00<br>26.00                            | 26.00<br>27.00                            | ר<br>ר       | car,qt<br>car,qt | 2<br>. Z          | - as general description, green andesite, tr dissem cpy<br>- as general description, silicified & brecciated with gouge from<br>26 5 3 26 9 3 20 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tr-1<br>3-4 | 4336<br>4337 | 25.00<br>26.00 | 26.00<br>27.00 | 1.00<br>1.00 | 0.04<br>0.21  | 0.4<br>0.6   | 0.13<br>0.39 |                   | 70<br>58          | 308<br>190 |
| 27.00                                     | 28.00                                     | 1            | car,gt           | Z                 | - green andesite to 27.75 then aphanitic red andesite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tr-1        | 4338         | 27.00          | 28.00          | 1.00         | 0.05          | 0.2          | 0.09         |                   | 14                | 326        |
| 28.00                                     | 29.00                                     | ,            | car,gt           | .2                | - red andesite to 26.61 m then red felospar porphyry to end of<br>interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tr-1        | 4333         | 20.00          | 27.00          | 1.00         | 0.03          | (0.2         | 0.01         |                   | 10                | 122        |
| 29.00                                     | 30.00                                     | '            | car,qt           | .2                | <ul> <li>red feldspar porphyry to 23.45 % and from 23.07-30.00, rest of<br/>interval is red aphanitic andesite</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ιr          | 9340         | 27.00          | 30.00          | 1.00         | (0.05         | (0.2         | 0.01         |                   | 10                | 101        |
| 30.00                                     | 31.37                                     | 1            | ' car,qt         | .2                | <ul> <li>intermixed green &amp; red aphanitic andesite and red feldspar porphyr;<br/>lower contact broken with gouge.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , tr        | 4341         | 30.00          | 31.37          | 1.37         | (0.03         | 0.2          | 0.02         |                   | ł                 | 178        |
| 31,37                                     | 43.29                                     |              |                  |                   | HEMATITIC ANDESITE LAPILLI TOFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |                |                |              |               |              |              |                   |                   |            |
|                                           |                                           |              |                  |                   | Maroon colour, aphanitic matrix with fragments of greenish-black<br>andesite. Minor carb-gtz stringer veins & tension gash infillings.<br>Unit is massive & homogeneous. Minor traces of py & specular hematit<br>Broken upper contact, lower contact broken with gouge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.          |              |                |                |              |               |              |              |                   |                   |            |
| 31.37<br>33.00<br>37.83<br>40.82<br>42.73 | 33.00<br>34.50<br>38.32<br>41.16<br>43.05 |              | he<br>he         | - D<br>- D<br>- D | <ul> <li>as general description</li> <li>as general description</li> <li>qtz-carb breccia, trace specular hematite</li> <li>qtz-carb breccia, trace specular hematite</li> <li>qtz-carb breccia, trace specular hematite</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tr<br>tr    | 4342<br>4343 | 31.37<br>33.00 | 33.00<br>34.50 | 1.63<br>1.50 | (0.03<br>0.14 | <0.2<br>(0.2 |              | 19<br>8           | :(<br>1(          | 111<br>91  |

.

43.29 BND OF HOLE

.

|                                                     |                                          | l.                                      | OR                             | EQU                                                       | EST                                                                       | CONSI                                                                                                   | ULTA                                                                                        | NTS                                                                            | LT                                                                       | D.                                                                         | DIAMO                                                           | ND DRILL H     | DLE RECORD | Client II | MPERIAI | L METALS                                             |                                    |                                                        | Page #            | 1 of                       | 4             |     |                    |                   |  |
|-----------------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|----------------|------------|-----------|---------|------------------------------------------------------|------------------------------------|--------------------------------------------------------|-------------------|----------------------------|---------------|-----|--------------------|-------------------|--|
| Hole Ro.<br>Property<br>Location<br>RTS<br>Claim Ro | CB-9(<br>CHACO<br>BEAR<br>94D/2<br>CHACO | 5-4<br>) BEAR<br>LAKE<br>2W<br>) BEAR 1 | )<br> <br> <br> <br> <br> <br> | Northing<br>Basting<br>Elevation<br>Gatitude<br>Longitude | 4+00N<br>0+258<br>1625                                                    | Core Si<br>Casing<br>Length<br>Dip-Col<br>Bearing                                                       | ze BQ<br>Pull<br>90.5<br>lar -90<br>N/A                                                     | ed<br>5                                                                        | Depth                                                                    | Dip A                                                                      | izimuth                                                         | De             | oth Dip    | Azimuth   |         | Started<br>Complete<br>Drill Co<br>Logged E<br>Units | Of<br>ed Of<br>o. P.<br>By W<br>Hi | CT.19,199<br>CT.20,199<br>ALCON DRI<br>.RAVEN<br>ETERS | 6<br>6<br>LLING   | Target<br>Co <b>ns</b> ent | BEARNI 2<br>S | ONE |                    |                   |  |
| FROM                                                | to                                       | ROCK<br>TYPE                            | ALT                            | POL<br>C/A                                                |                                                                           |                                                                                                         | DESCR                                                                                       | IPTION                                                                         |                                                                          |                                                                            |                                                                 | \$<br>Solphide | SAMPLE No  | . PROM    | T       | O LENG                                               | GTH                                | Au<br>gpt                                              | Ag<br>pp <b>n</b> | Cu<br>pct                  | Cu<br>PP₽     | F   | Pb<br>p <b>p</b> n | în<br>pp <b>n</b> |  |
|                                                     | 2.13                                     |                                         |                                |                                                           | CASING -                                                                  | OVERBURDEN                                                                                              |                                                                                             |                                                                                |                                                                          |                                                                            |                                                                 |                |            |           |         |                                                      |                                    |                                                        |                   |                            |               |     |                    |                   |  |
| 2.13                                                | 4.51                                     |                                         |                                |                                                           | VOLCANICL                                                                 | ASTIC DAIT                                                                                              |                                                                                             |                                                                                |                                                                          |                                                                            |                                                                 |                |            |           |         |                                                      |                                    |                                                        |                   |                            |               |     |                    |                   |  |
|                                                     |                                          |                                         |                                |                                                           | Massive,<br>Jimonite<br>contact f<br>dissem py                            | fine grained p<br>stained section<br>airly sharp at                                                     | pale greenis<br>ons. Practur<br>: 40 deg to                                                 | h-grey col<br>es have ma<br>SCA with c                                         | lour with<br>anganese<br>:Jay goug                                       | orange-t<br>staining<br>e. Minor                                           | orown<br>, Lower<br>traces o                                    | of             |            |           |         |                                                      |                                    |                                                        |                   |                            |               |     |                    |                   |  |
| 4.51                                                | 10.00                                    |                                         |                                |                                                           | HERATITIC                                                                 | PELDSPAR PORE                                                                                           | PHYRY                                                                                       |                                                                                |                                                                          |                                                                            |                                                                 |                |            |           |         |                                                      |                                    |                                                        |                   |                            |               |     |                    |                   |  |
|                                                     |                                          |                                         |                                |                                                           | Reddish-b<br>staibing<br>1-2% gtz-<br>specular<br>contact i<br>pink carb  | iack matris wi<br>on fractures.<br>carb veiniets.<br>hematite. Oppe<br>s fairly sharp<br>wonate.        | th 30-40% e<br>Partial car<br>Mineraliza<br>er contact f<br>e 0 35-40 de                    | uhedral fe<br>bonate reg<br>tion is mi<br>airly shan<br>g to SCA.              | eldspar c<br>placement<br>inor trac<br>rp <b>Q</b> 40 d<br>A few co      | rystals.<br>of feld:<br>es of pylleg to SCI<br>intorted l                  | Limonite<br>spars. Ha<br>rite &<br>A, lower<br>blebs of         | 2              |            |           |         |                                                      |                                    |                                                        |                   |                            |               |     |                    |                   |  |
| 10.00                                               | 16.89                                    |                                         |                                |                                                           | NOTTLED R                                                                 | ED & GREEN ANI                                                                                          | DESITE LAPII                                                                                | LI TOPP/AC                                                                     | SCLOMERAT                                                                | <b>'</b> B                                                                 |                                                                 |                |            |           |         |                                                      |                                    |                                                        |                   |                            |               |     |                    |                   |  |
|                                                     |                                          |                                         |                                |                                                           | Coarse fr<br>red hemat<br>2-10% con<br>traces of<br>35-40 deg<br>stringer | agmental unit<br>ite stained wi<br>itorted blebs of<br>pyrite and sp<br>to SCA, lower<br>veins and mine | with very m<br>ith minor gr<br>of white can<br>pecular hema<br>r contact is<br>pr tension g | ottled app<br>een-black<br>bonate. Ve<br>tite. Oppe<br>gradation<br>ash infill | pearance.<br>chloriti<br>ery littl<br>er contac<br>nal. Has<br>lings. So | . Predomin<br>c patcher<br>le minera<br>t fairly<br>2-5% carl<br>me pink ( | nantly<br>8. Has<br>lization,<br>sharp at<br>b-gtz<br>carbonate | 2.             |            |           |         |                                                      |                                    |                                                        |                   |                            |               |     |                    |                   |  |
| 16.89                                               | 36.80                                    |                                         |                                |                                                           | BEMATITIC                                                                 | ANDESITE TOP:                                                                                           | 2                                                                                           |                                                                                |                                                                          |                                                                            |                                                                 |                |            |           |         |                                                      |                                    |                                                        |                   |                            |               |     |                    |                   |  |
|                                                     |                                          |                                         |                                |                                                           | Similar t<br>tuff, gra<br>secondary<br>pink carl                          | to above unit l<br>adational cont<br>y brownish-red<br>bonate. Gradat                                   | but not as (<br>act. Hematil<br>stain. Stil<br>ional upper                                  | coarse, moi<br>le pervasiv<br>l has cont<br>contact, l                         | re of a t<br>ve throug<br>torted bl<br>broken lo                         | uff to li<br>phout mat<br>lebs of wi<br>ower cont                          | apilli<br>rix and a<br>hite to<br>act.                          | 38             |            |           |         |                                                      |                                    |                                                        |                   |                            |               |     |                    |                   |  |
|                                                     |                                          |                                         |                                |                                                           | - 4000 -                                                                  | a atous t as                                                                                            | areer frame                                                                                 | nta)                                                                           |                                                                          |                                                                            |                                                                 |                |            |           |         |                                                      |                                    |                                                        |                   |                            |               |     |                    |                   |  |

|                |                |              | OR                 | EQU        | JEST CONSULTANTS LTD.                                                                                                                                                                                                                                                                               |                      |              | H              | OLE :          | CB-96-4      |              | PAGE        | 2 of      | 4         |           |           |
|----------------|----------------|--------------|--------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|----------------|----------------|--------------|--------------|-------------|-----------|-----------|-----------|-----------|
| PROM           | TO             | ROCX<br>TYPE | ALT                | POL<br>C/A | DESCRIPTION                                                                                                                                                                                                                                                                                         | <b>%</b><br>SULPHIDB | SAMPLE No.   | FROM           | TO             | LENGTH       | Au<br>gpt    | Àg<br>ppm   | Cu<br>pet | Cu<br>ppo | 66a<br>bp | Zn<br>ppo |
| 34.00<br>35.50 | 35.50<br>37.00 | 3            | he <b>n</b><br>hen |            | no visible sulphides<br>- as above, 65% recovery<br>- as above, solid core to 36.00 m then broken, remainder of interval<br>is green andesite with gouge and rubble, local dissem cpy with<br>silicification                                                                                        | -<br>tr-1            | 4345<br>4346 | 34.00<br>35.50 | 35.50<br>37.00 | 1.50<br>1.50 | 0.18<br>3.32 | <0.2<br>0.6 |           | 5<br>1514 | 14<br>680 | 98<br>291 |
| 36.80          | 58.23          |              |                    |            | FAULT ZONE                                                                                                                                                                                                                                                                                          |                      |              |                |                |              |              |             |           |           |           |           |
|                |                |              |                    |            | Broad interval of strongly broken and fractured core comprised of<br>intermixed red (hematite} and green {chlorite} andesite, Patchy carb-<br>gtz veining but not consistent throughout the zone. Broken upper and<br>lower contacts. Variable sulphides as trace cpy, py and specular<br>hematite. |                      |              |                |                |              |              |             |           |           |           |           |
| 32 00          | 18 50          | 1            | hen chl            |            | - as showe, preen andesite to 36.5 <b>m</b> then red andesite to 38.50 m                                                                                                                                                                                                                            | tr                   | 4347         | 37.00          | 38.50          | 1.50         | 0.15         | (0.2        |           | 320       | 140       | 253       |
| 38.50          | 40.00          | ĩ            | hem.chl            |            | - as above, red andesite to 39.63 then green andesite to 40.00                                                                                                                                                                                                                                      | tr                   | 4348         | 38.50          | 40.00          | 1.50         | 0.14         | (0.2        |           | 68        | 16        | 161       |
| 40.00          | 41.50          | 3            | hem,chl            |            | <ul> <li>- as above, green andesite throughout interval, from 41.28-41.50 is<br/>strong qtz-carb flooding with 5% cpy in this interval, also minor<br/>traces of orex sulphide = caleas/tetrabedrite</li> </ul>                                                                                     | 2                    | 4349         | 40.00          | 41.50          | 1.50         | 0.34         | 1.6         |           | 4620      | 854       | 149       |
| 41.50          | 43.00          | 3            | he <b>n</b> ,chl   |            | <ul> <li>strong qtz-carb flooding to 42.00 m with 5% cpy &amp; trace galena/<br/>tetrahedrite, balance of interval is green andesite, coarse cpy<br/>blebs over 5 cm &amp; 42.60 m</li> </ul>                                                                                                       | 3                    | 4350         | 41.50          | 43.00          | 1.50         | 0.06         | 1.2         |           | 2534      | 668       | 150       |
| 43.00          | 44.50          | 3            | hem,chl            |            | - green andesite throughout, minor competent core                                                                                                                                                                                                                                                   | 1                    | 4351         | 43.00          | 44.50          | 1.50         | 0.07         | 0,6         |           | 338       | 16        | 15        |
| 44.50          | 46.00          | 3            | hen,chl            |            | - red andesite throughout, minor carb-gtz veins                                                                                                                                                                                                                                                     | 1                    | 4352         | 44.50          | 46.00          | 1.50         | 0.06         | (0.2        |           | 246       | 20        | t 4       |
| 46.00          | 47.50          | 3            | hem,chl            |            | - red andesite, 10% carb-gtz to 48.86, some sericite on fractures                                                                                                                                                                                                                                   | 1                    | 4353         | 46.00          | 47.50          | 1.50         | 0.14         | (0.2        |           | 16        | 14        | 8         |
| 47.50          | 49.00          | 3            | hen, ch]           |            | - intermixed green & red andesite with 5% broken carb-gtz veining                                                                                                                                                                                                                                   | tr                   | 4354         | 47.50          | 49.00          | 1.50         | 0.31         | <0.2        |           | 16        | 10        | 10        |
| 49.00          | 50.50          | 3            | hem, ch]           |            | - mostly red andemite, minor stringers                                                                                                                                                                                                                                                              | tr                   | 4355         | 49.00          | 50.50          | 1.50         | 0.15         | (0.2        |           | 60        | 16        | 2 2       |
| 50.50          | 52.00          | 3            | hen,chl            |            | – red andesite, minor carb-qtz veins 🖲 50 deg to SCA                                                                                                                                                                                                                                                | tr                   | 4356         | 50.50          | 52.00          | 1.50         | 0.08         | (0.2        |           | 138       | 32        | 61        |
| 52.00          | 53.50          | 3            | hem,chl            |            | - red andesite                                                                                                                                                                                                                                                                                      | tr                   | 4357         | 52.00          | 53,50          | 1.50         | 0.14         | <0.2        |           | 6         | 22        | 16        |
| 53.50          | 55.00          | 3            | hem,chl            |            | - red andesite                                                                                                                                                                                                                                                                                      | tr                   | 4358         | 53.50          | 55.00          | 1.50         | 0.28         | (0.2        |           | 2         | 20        | 12        |
| 55.00          | 56.50          | 3            | hem,chl            |            | <ul> <li>red andesite, upper half of interval is competent rock</li> </ul>                                                                                                                                                                                                                          | tr                   | 4359         | 55.00          | 56,50          | 1.50         | (0.03        | <0.2        |           | 3         | 20        | 13        |
| 56.50          | 58.23          | 3            | hem,ch]            |            | <ul> <li>red andesite, 50% broken, 50% competent, ends in rubble zone, also<br/>end of major fault zone</li> </ul>                                                                                                                                                                                  | tr                   | 4360         | 36.50          | 58.23          | 1.73         | 0.15         | (0.2        |           | 52        | iû        | 10        |
| 58.23          | 67.96          |              |                    |            | HEMATITIC ANDESITE TUPP                                                                                                                                                                                                                                                                             |                      |              |                |                |              |              |             |           |           |           |           |
|                |                |              |                    |            | As described 16.89-36.80 metres. Competent core with 1003 recovery.<br>Local coarser fragmental sections. Has 3-103 carh-gtz veining, the<br>intensity of veining increases closer to the zone. Broken upper<br>contact, lower contact somewhat arbitrary.<br>Trace dissem py & specular hematite.  |                      |              |                |                |              |              |             |           |           |           |           |
| 50 11          | <b>20 00</b>   | 3            | h                  |            | - as above 3-5% carbouts values # 35 day to SCA                                                                                                                                                                                                                                                     | tr                   | 4761         | 58.23          | 60.00          | E 1.77       | (0.01        | (0))        |           | 12        | • 0       | 7         |
| 10.13<br>60 00 | 61 50          | 3<br>7       | (101)<br>հծ=       |            | - as above, a sy carb-gra veins e sa deg to atm<br>- as above, has 3 carb-gra veins 0.5, 1.0 & 1.5 cm wide 0 45 to 80%.                                                                                                                                                                             | tr.                  | 4362         | 60.00          | 61.50          | 1.50         | 6.10         | (0.2        |           | 9         | É.        | 6         |
| 61 50          | 61.00          | 2            | hom                |            | - as above, from 62.33-63.40 m is very strong red hem staining                                                                                                                                                                                                                                      | tr                   | 4363         | 61.50          | 63.00          | 1.50         | (0.0)        | (0.2        |           | 5         | 12        | ġ         |

. .

•

HOLE #: CB-96-4

1 . . . . . . .

.



#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# CERTIFICATE OF ASSAY AK 96-1269

# OREQUEST CONSULTANTS 306-595 HOWE STREET

31-Oct-96

ATTENTION: WES RAVEN

VANCOUVER, B.C.

V6C 2T5

- No. of samples received:118 Sample type:CORE
   PROJECT #: CHACO BEAR
- SHIPMENT #:NONE GIVEN Samples submitted by: WES RAVEN

|   |       |       | Au    | Au     | Cu   |       |
|---|-------|-------|-------|--------|------|-------|
| - | ET #. | Tag # | (g/t) | (oz/t) | (%)  |       |
|   | 1     | 4259  | <.03  | <.001  | -    |       |
|   | 2     | 4260  | <.03  | <.001  | ÷    |       |
| - | 3     | 4261  | <.03  | <.001  | -    |       |
|   | 4     | 4262  | <.03  | <.001  | -    |       |
|   | 5     | 4263  | <.03  | <.001  | -    |       |
| - | 6     | 4264  | <.03  | <.001  |      |       |
| - | 7     | 4272  | 0.79  | 0.023  | 1.18 |       |
|   | 8     | 4273  | 0.26  | 0.008  | 0.40 |       |
|   | 9     | 4274  | 1.38  | 0.040  | 1.32 |       |
| - | 10    | 4275  | 0.52  | 0.015  | 0.40 |       |
|   | 11    | 4276  | 0.11  | 0.003  | -    |       |
|   | 12    | 4277  | 0.03  | 0.001  | -    |       |
| - | 13    | 4278  | 0.03  | 0.001  | -    |       |
|   | 14    | 4279  | 0.18  | 0.005  | -    |       |
|   | 15    | 4280  | 0.03  | 0.001  | -    |       |
|   | 16    | 4281  | <.03  | <.001  | -    |       |
|   | 17    | 4282  | 0.04  | 0.001  | -    |       |
|   | 18    | 4283  | 0.06  | 0.002  | -    |       |
|   | 19    | 4284  | <.03  | <.001  | 0.02 | · · · |
|   | 20    | 4285  | 0.03  | 0.001  | 0.14 |       |

ECO-TECH LABORATORIES LTD. Per Frank J. Pezzotti, A.Sc.T. **B.C. Certified Assayer** 

**OREQUEST CONSULTANTS AK 96-1269** 

-----

31-Oct-96

|       |         | Au    | Au     | Cu   |  |
|-------|---------|-------|--------|------|--|
| ET #. | Tag #   | (g/t) | (oz/t) | (%)  |  |
| 21    | 4286    | 1.81  | 0.053  | 0.89 |  |
| 22    | 4287    | 0.09  | 0.003  | 0.09 |  |
| 23    | 4288    | 0.53  | 0.015  | 0.52 |  |
| 24    | 4289    | 0.23  | 0.007  | 0.32 |  |
| 25    | 4290    | 0.38  | 0.011  | 0.26 |  |
| 26    | 4291    | 0.13  | 0.004  | 0.17 |  |
| 27    | 4292    | 0.27  | 0.008  | 0.39 |  |
| 28    | 4293    | <.03  | <.001  | -    |  |
| 29    | 4294    | <.03  | <.001  | -    |  |
| 30    | 4295    | <.03  | <.001  | -    |  |
| 31    | 4296    | <.03  | <.001  | -    |  |
| 32    | 4297    | <.03  | <.001  | -    |  |
| 33    | 4298    | 0.07  | 0.002  | -    |  |
| 34    | 4299    | 0.05  | 0.001  | -    |  |
| 35    | 4300    | 0.12  | 0.003  | -    |  |
| 36    | 4324    | 0.09  | 0.003  | -    |  |
| 37    | 4325    | 0.12  | 0.003  | -    |  |
| 38    | 4326    | 0.03  | 0.001  | -    |  |
| 39    | 4327    | 0.13  | 0.004  | -    |  |
| 40    | 4328    | 0.03  | 0.001  | -    |  |
| 41    | 4329    | <.03  | <.001  | -    |  |
| 42    | 4330    | <.03  | <.001  | -    |  |
| 43    | 4331    | <.03  | <.001  | -    |  |
| 44    | 4332    | <.03  | <.001  | -    |  |
| 45    | 4333    | <.03  | <.001  | -    |  |
| 46    | 4334    | <.03  | <.001  | -    |  |
| 47    | 4335    | 0.68  | 0.020  | 0.43 |  |
| 48    | 4336    | 0.04  | 0.001  | 0.13 |  |
| 49    | 4337    | 0.21  | 0.006  | 0.39 |  |
| 50    | 4338    | 0.05  | 0.001  | 0.09 |  |
| 51    | 4339    | 0.03  | 0.001  | 0.01 |  |
| 52    | 4340    | <.03  | <.001  | 0.01 |  |
| 53    | 4341    | <.03  | <.001  | 0.02 |  |
| 54    | 4342    | <.03  | <.001  | -    |  |
| 55    | 4343    | 0.14  | 0.004  | -    |  |
| 56    | 4344    | 0.16  | 0.005  | -    |  |
| 57    | 4345    | 0.18  | 0.005  | -    |  |
| 58    | 4346    | 3.32  | 0.097  | -    |  |
| 59    | 4347    | 0.15  | 0.004  | -    |  |
| 60    | 4348    | 0.14  | 0.004  | -    |  |
|       | · - · - | ••••  |        |      |  |

ECO-TECH LABORATORIES LTD. ρ-- Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

EGD. TECH LABORATORIES LTD. Page 2

# **OREQUEST CONSULTANTS AK 96-1269**

31-Oct-96

|       |       | Au    | Au     | Cu   |  |
|-------|-------|-------|--------|------|--|
| ET #. | Tag # | (g/t) | (oz/t) | (%)  |  |
| 61    | 4349  | 0.34  | 0.010  | -    |  |
| 62    | 4350  | 0.06  | 0.002  |      |  |
| 63    | 4351  | 0.07  | 0.002  | -    |  |
| 64    | 4352  | 0.06  | 0.002  | -    |  |
| 65    | 4353  | 0.14  | 0.004  | -    |  |
| 66    | 4354  | 0.31  | 0.009  | -    |  |
| 67    | 4355  | 0.15  | 0.004  | -    |  |
| 68    | 4356  | 0.08  | 0.002  | -    |  |
| 69    | 4357  | 0.14  | 0.004  | -    |  |
| 70    | 4358  | 0.28  | 0.008  | -    |  |
| 71    | 4359  | <.03  | <.001  | -    |  |
| 72    | 4360  | 0.15  | 0.004  | -    |  |
| 73    | 4361  | <.03  | <.001  | -    |  |
| 74    | 4362  | 0.10  | 0.003  | -    |  |
| 75    | 4363  | <.03  | <.001  | -    |  |
| 76    | 4364  | <.03  | <.001  | -    |  |
| 77    | 4365  | <.03  | <.001  | -    |  |
| 78    | 4366  | <.03  | <.001  | -    |  |
| 79    | 4367  | 0.08  | 0.002  | 0.01 |  |
| 80    | 4368  | 0.03  | 0.001  | 0.08 |  |
| 81    | 4369  | <.03  | <.001  | 0.04 |  |
| 82    | 4370  | 0.16  | 0.005  | 0.25 |  |
| 83    | 4371  | 0.34  | 0.010  | 0.53 |  |
| 84    | 4372  | 0.88  | 0.026  | 0.91 |  |
| 85    | 4373  | <.03  | <.001  | 0.12 |  |
| 86    | 4374  | <.03  | <.001  | 0.07 |  |
| 87    | 4375  | <.03  | <.001  | -    |  |
| 88    | 4376  | <.03  | <.001  | -    |  |
| 89    | 4377  | <.03  | <.001  | -    |  |
| 90    | 4378  | <.03  | <.001  | -    |  |
| 91    | 4379  | <.03  | <.001  | -    |  |
| 92    | 4380  | <.03  | <.001  | -    |  |
| 93    | 4381  | <.03  | <.001  | -    |  |
| 94    | 4382  | <.03  | <.001  | -    |  |
| 95    | 4383  | <.03  | <.001  | -    |  |
| 96    | 4384  | <.03  | <.001  | -    |  |
| 97    | 4385  | 0.03  | 0.001  | -    |  |
| 98    | 4386  | 0.03  | 0.001  | -    |  |
| 99    | 4387  | <.03  | <.001  | -    |  |
| 100   | 4388  | <.03  | <.001  | -    |  |

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

EGO · TECH LABORATORIES LTD. Page 3

# **OREQUEST CONSULTANTS AK 96-1269**

31-Oct-96

|        |       | Au    | Au     | Cu      |                        |    |
|--------|-------|-------|--------|---------|------------------------|----|
| ET #.  | Tag # | (g/t) | (oz/t) | (%)     |                        |    |
| 101    | 4389  | 0.03  | 0.001  | -       |                        |    |
| 102    | 4390  | 0.36  | 0.010  | -       |                        |    |
| 103    | 4391  | <.03  | <.001  | -       |                        |    |
| 104    | 4392  | <.03  | <.001  | -       |                        |    |
| 105    | 4393  | <.03  | <.001  | -       |                        |    |
| 106    | 4394  | <.03  | <.001  | -       |                        |    |
| 107    | 4395  | <.03  | <.001  | -       |                        |    |
| 108    | 4396  | 0.10  | 0.003  | -       |                        |    |
| 109    | 4397  | 0.19  | 0.006  | -       |                        |    |
| 110    | 4398  | 0.08  | 0.002  | -       |                        |    |
| 111    | 4399  | <.03  | <.001  | -       |                        |    |
| 112    | 4400  | <.03  | <.001  | -       |                        |    |
| 113    | 85301 | 0.13  | 0.004  | -       |                        |    |
| 114    | 85302 | <.03  | <.001  | -       |                        |    |
| 115    | 85303 | 0.17  | 0.005  | -       |                        |    |
| 116    | 85304 | <.03  | <.001  | -       |                        |    |
| 117    | 85305 | <.03  | <.001  | -       |                        |    |
| 118    | 85306 | <.03  | <.001  | -       |                        |    |
| QC/DA  | TA:   |       |        |         |                        |    |
| Respli | t:    |       |        |         |                        |    |
| 1      | 4259  | <.03  | <.001  | -       |                        |    |
| 36     | 4324  | 0.10  | 0.003  | -       |                        |    |
| 71     | 4359  | <.03  | <.001  | -       |                        |    |
| 106    | 4394  | <.03  | <.001  | -       |                        |    |
| Repea  | t:    |       |        |         |                        |    |
| 1      | 4259  | <.03  | <.001  | -       |                        |    |
| 7      | 4272  | -     | -      | 1.21    |                        |    |
| 10     | 4275  | 0.51  | 0.015  | -       |                        |    |
| 19     | 4284  | <.03  | <.001  | -       |                        |    |
| 36     | 4324  | 0.11  | 0.003  | -       |                        |    |
| 45     | 4333  | <.03  | <.001  | -       |                        |    |
| 54     | 4342  | <.03  | <.001  | -       |                        |    |
| 71     | 4359  | <.03  | <.001  | -       |                        |    |
| 80     | 4368  | 0.05  | 0.001  | -       |                        |    |
| 89     | 4377  | <.03  | <.001  | -       |                        |    |
| 106    | 4394  | <.03  | <.001  | -       |                        |    |
| Stand  | ard:  |       |        |         |                        |    |
| Mp-IA  |       | -     | -      | 1.44    |                        |    |
| STD-N  | Λ     | 1.37  | 0.040  | -       |                        |    |
| STD-N  | Λ     | 1.41  | 0.041  | -       |                        |    |
| STD-   | Л     | 1.48  | 0.043  | -       |                        |    |
| STD-N  | Л     | 1.40  | 0.041  | -       |                        |    |
|        |       |       |        | 4       | ·                      |    |
|        |       |       |        | EQ      | TECH LABORATORI        | ES |
|        |       |       |        | Ar Fran | k J. Pezzotti, A.Sc.T. |    |

XLS/96OREQUEST

ECO • TECH LABORATORIES LTD. Page 4

4-Nov-96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700

**(**] 002

20

.

Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK 96-1269

OREQUEST CONSULTANTS 306-595 HOWE STREET VANCOUVER, B.C. V6C 2T5

ATTENTION: WES RAVEN

No. of samples received:118 Sample type:CORE PROJECT #: CHACO BEAR SHIPMENT #:NONE GIVEN Samples submitted by: WES RAVEN

#### Values in ppm unless otherwise reported

| values | in ppm un | ness on | ter wisc | repon |     |    |      |    |    |      |        |      |      |      |        | Ma Na M   | 6J) | þ    | РЬ     | Sb         | Sn  | Sr  | Ti % | U   | v   | w   | Y  | Zn   |
|--------|-----------|---------|----------|-------|-----|----|------|----|----|------|--------|------|------|------|--------|-----------|-----|------|--------|------------|-----|-----|------|-----|-----|-----|----|------|
| Et#.   | Taq #     | Ag      | AI %     | As    | Ba  | Bi | Ça % | Cd | Co | Cr   | Cu     | Fe % |      | Mg % | Mn     | MO NA 76  | - 7 | 1000 | 4      | <5         | <20 | 40  | 0.17 | <10 | 134 | <10 | 16 | 52   |
| 1      | 4259      | <0.2    | 1.16     | <5    | 215 | 15 | 3.94 | <1 | 24 | 21   | 38     | 6.08 | <10  | 1.08 | 1217   | 2 0.02    | 2   | 1000 | т<br>я | <5         | <20 | 55  | 0.07 | <10 | 185 | <10 | 13 | 94   |
| ,      | 4260      | <0.2    | 2.03     | <5    | 120 | 10 | 5.06 | <1 | 28 | 10   | 6      | 6.62 | <10  | 2.33 | 1672   | 3 0.03    | 2   | 610  | ă      | <5         | <20 | 108 | 0.06 | <10 | 151 | <10 | 10 | 77   |
| 2      | 4261      | <0.2    | 1.21     | <5    | 140 | 10 | 7.76 | <1 | 25 | 17   | 9      | 5.98 | <10  | 1.60 | 23/8   | 4 4 40.01 |     | 1080 | 10     | <5         | <20 | 72  | 0.06 | <10 | 152 | <10 | 13 | 84   |
| 4      | 4262      | <0.2    | 1.61     | <5    | 120 | 10 | 5.85 | <1 | 29 | 13   | 8      | 6.48 | <10  | 1.78 | 1873   | 3 0.01    |     | 1020 | R      | <5         | <20 | 103 | 0.06 | <10 | 156 | <10 | 12 | 86   |
| 5      | 4263      | <0.2    | 1.38     | <5    | 955 | 10 | 5.85 | <1 | 22 | 14   | 7      | 6.12 | <10  | 2.02 | 1900   | 4 0.01    |     | 1020 |        | _          |     |     |      |     |     |     |    |      |
| •      |           |         |          |       |     |    |      |    |    |      |        | 4    |      | 0.00 | 1062   | 1 0.01    | 1   | 970  | 2      | <5         | <20 | 72  | 0.14 | <10 | 81  | <10 | 16 | 44   |
| 6      | 4264      | <0.2    | 0.76     | <5    | 130 | 10 | 6.27 | <1 | 19 | 15   | 13     | 5.56 | <10  | 0.00 | 1302   | 21 <0.01  | 4   | <10  | 100    | <5         | 20  | 34  | 0.08 | <10 | 37  | <10 | 11 | 126  |
| 7      | 4272      | 9.0     | 1.01     | <5    | 100 | <5 | 9.56 | 5  | 15 | 38 : | >10000 | >10  | <10  | 0.39 | ~10000 | 14 <0.01  | 1   | 40   | 58     | <5         | 20  | 66  | 0.08 | <10 | 38  | <10 | 26 | 39   |
| 8      | 4273      | 7.4     | 0.78     | <5    | 210 | <5 | >10  | <1 | 9  | 36   | 3341   | >10  | <10  | 0.32 | >10000 | 23 <0.01  | 2   | <10  | 90     | <5         | 20  | 46  | 0.06 | <10 | 23  | <10 | 15 | 126  |
| 9      | 4274      | 12.2    | 0.91     | <5    | 120 | <5 | >10  | 2  | 12 | 37 : | >10000 | >10  | <10  | 0.30 | ~10000 | 16 <0.01  | 2   | 280  | 108    | <5         | 20  | 56  | 0.05 | <10 | 34  | <10 | 21 | 90   |
| 10     | 4275      | 7.6     | 1.07     | <5    | 135 | <5 | >10  | <1 | 9  | 45   | 3431   | 1.09 | <10  | 0.29 | /10000 | 10 -0.01  | -   |      |        |            |     |     |      |     |     |     |    |      |
|        |           |         |          |       |     |    |      | _  |    |      | 45.00  | 2.02 | -110 | 0.16 | 5735   | 4 <0.01   | 2   | 900  | 138    | <5         | <20 | 50  | 0.01 | <10 | 22  | <10 | 12 | - 77 |
| 11     | 4276      | 2.4     | 0.84     | <5    | 80  | <5 | 9.76 | 2  | 13 | 23   | 1536   | 3,93 | <10  | 0.10 | 2448   | 4 0.01    | z   | 1040 | 8      | <5         | <20 | 76  | 0.06 | <10 | 98  | <10 | 12 | 86   |
| 12     | 4277      | <0.2    | 1.60     | <5    | 95  | <5 | 7.16 | <1 | 19 | 18   | 00     | 7.04 | ~10  | 0.00 | 1792   | 5 0.02    | 3   | 1160 | 8      | <5         | <20 | 50  | 0.07 | <10 | 143 | <10 | 13 | 70   |
| 13     | 4278      | <0.2    | 1.47     | <5    | 135 | 15 | 6.25 | <1 | 20 | 22   | 15     | 7.31 | <10  | 2.25 | 2051   | 4 <0.01   | 2   | 790  | 4      | <5         | <20 | 147 | 0.02 | <10 | 147 | <10 | 7  | 105  |
| 14     | 4279      | <0.2    | 0.62     | <5    | 955 | 10 | 7.61 | <1 | 19 | 19   | 5      | 0.90 | ~10  | 2.00 | 1798   | 4 0.02    | 2   | 1110 | 8      | <5         | <20 | 52  | 0.10 | <10 | 133 | <10 | 12 | 87   |
| 15     | 4280      | <0.2    | 1.89     | <5    | 120 | 5  | 6.22 | <1 | 27 | 23   | 6      | 0.00 | ~10  | 2.20 | 1.00   |           | -   |      |        |            |     |     |      |     |     |     |    |      |
|        |           |         |          |       |     |    |      |    |    |      |        | 7 07 | ~10  | 1 04 | 2882   | 5 0.01    | 3   | 1120 | 8      | <5         | <20 | 86  | 0.04 | <10 | 153 | <10 | 12 | 111  |
| 16     | 4281      | <0.2    | 1.31     | <5    | 355 | <5 | 6.43 | <1 | 22 | 1/   | 12     | 7.07 | ~10  | 0.01 | 4141   | 6 <0.01   | 4   | 950  | 20     | <5         | <20 | 65  | 0.02 | <10 | 80  | <10 | 13 | 101  |
| 17     | 4282      | 0.6     | 0.66     | <5    | 140 | <5 | 9.57 | <1 | 18 | 38   | 3/9    | 5.50 | ~10  | 2 51 | 3340   | 8 < 0.01  | 2   | 1120 | 8      | <5         | <20 | 56  | 0.03 | <10 | 152 | <10 | <1 | 239  |
| 18     | 4283      | <0.2    | 1.97     | <5    | 160 | 15 | 4.41 | <1 | 32 | 10   | 00     | 4 66 | <10  | 0.64 | 4260   | 4 <0.01   | 1   | 1070 | 4      | <b>~</b> 5 | <20 | 65  | 0.02 | <10 | 75  | <10 | 15 | 76   |
| 19     | 4284      | 0.4     | 0.66     | <5    | 620 | <5 | 8.29 | <1 | 8  | 4/   | 118    | 4.00 | 210  | 0.04 | 4920   | 4 < 0.01  | 1   | 710  | <2     | <5         | <20 | 61  | 0.01 | <10 | 49  | <10 | 27 | 38   |
| 20     | 4285      | 1.4     | 0.38     | <5    | 310 | <5 | >10  | <1 | 4  | 27   | (157   | 3.04 | -10  | 0.21 |        |           |     |      |        |            |     |     |      |     |     |     |    |      |

Page 1

| :  | OREQU | IEST CON | SULTA                                                                                                                                                                                                                                                                                                                                                | NTS  |          |     |           |              |      | IC | CP CEF | RTIFICAT |       |      | sis af | (96-126 | 9        |     |      |     |     |     | 1   | ECO-TE                                                                               | CH LAE  | BORAT | ORIES | LTD. |             |
|----|-------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----|-----------|--------------|------|----|--------|----------|-------|------|--------|---------|----------|-----|------|-----|-----|-----|-----|--------------------------------------------------------------------------------------|---------|-------|-------|------|-------------|
|    | Et #. | Tag #    | Aq                                                                                                                                                                                                                                                                                                                                                   | AI % | As       | Ba  | Bi        | Ca %         | Cd   | Co | Cr     | Cu       | Fe %  | ا ها | Mg %   | Mn      | Mo Na %  | NI  | P    | Pb  | \$b | Sn  | Sr_ | TI %                                                                                 | U       | V     | W     | Y 43 | Zn<br>79    |
|    | 21    | 4286     | 44                                                                                                                                                                                                                                                                                                                                                   | 0.22 | <5       | 55  | <5        | >10          | 5    | 5  | 26     | 6657     | 3.47  | <10  | 0.15   | >10000  | 12 <0.01 | Э   | <10  | 138 | <5  | <20 | 60  | 0.03                                                                                 | <10     | 10    | ~10   | 34   | 14          |
| Ì  | 22    | 4297     | 10                                                                                                                                                                                                                                                                                                                                                   | 0.25 | 5        | 40  | <5        | >10          | <1   | 5  | 21     | 656      | 1.32  | <10  | 0.06   | 3754    | 4 < 0.01 | <1  | 420  | 2   | <5  | <20 | 48  | <u.u1< td=""><td>&lt;10</td><td>12</td><td>&lt;10</td><td>31</td><td>39</td></u.u1<> | <10     | 12    | <10   | 31   | 39          |
|    | 22    | 4299     | 30                                                                                                                                                                                                                                                                                                                                                   | 0.25 | <5       | 50  | <5        | >10          | <1   | 8  | 59     | 4702     | 3.13  | <10  | 0.13   | 8995    | 26 <0.01 | 3   | 200  | 34  | <5  | <20 | 63  | 0.02                                                                                 | <10<br> | 21    | ~10   | 54   | 21          |
|    | 20    | 4200     | 16                                                                                                                                                                                                                                                                                                                                                   | 0.12 | <u> </u> | 20  | <5        | >10          | <1   | 3  | 26     | 2653     | 1.27  | <10  | 0.06   | 6468    | 5 < 0.01 | <1  | 110  | 2   | <5  | <20 | 54  | 0.01                                                                                 | <10     |       | 10    | 22   | 27          |
|    | 24    | 4200     | 0.6                                                                                                                                                                                                                                                                                                                                                  | 0.76 | -6       | 115 | <5        | >10          | <1   | 6  | 51     | 2086     | 3.55  | <10  | 0.20   | 3359    | 6 <0.01  | 2   | 580  | <2  | <5  | <20 | 38  | 0.01                                                                                 | <10     | 30    | \$10  | 23   | 31          |
| 1  | 20    | 4290     | Ų.0                                                                                                                                                                                                                                                                                                                                                  | 0,30 | ~~       | 115 |           |              | - •  |    |        |          |       |      |        |         |          |     |      |     |     |     |     |                                                                                      |         |       |       | 22   | 71          |
| i  | 20    | 4201     | 86                                                                                                                                                                                                                                                                                                                                                   | 0.31 | 160      | 615 | <5        | >10          | 3    | 2  | 31     | 1503     | 2.28  | <10  | 0.22   | 4716    | 3 <0.01  | 1   | 380  | <2  | 30  | <20 | 87  | 0.01                                                                                 | <10     | 22    | <10   | 10   | 60          |
|    | 20    | 4202     | 10.4                                                                                                                                                                                                                                                                                                                                                 | 0.30 | 240      | 375 | <5        | >10          | 3    | 3  | 72     | 3312     | 2.54  | <10  | 0.19   | 8331    | 6 0.01   | 2   | 490  | <2  | 10  | <20 | 59  | 0.02                                                                                 | <10     | 10    | -10   | 13   | 177         |
|    | 27    | 4292     | 10.4                                                                                                                                                                                                                                                                                                                                                 | 0.50 | 240      | 125 | <5        | 6.58         | <1   | 23 | 39     | 215      | 7,91  | <10  | 1.66   | 6555    | 8 0.02   | 24  | 800  | <2  | <5  | <20 | 65  | 0.01                                                                                 | <10     | 72    | <10   | -    | 160         |
|    | 20    | 4293     | 0.0                                                                                                                                                                                                                                                                                                                                                  | 1.00 | ~5       | 130 | <5        | 7.63         | <1   | 36 | 46     | 21       | 7.51  | <10  | 2.85   | 5134    | 6 0.02   | 29  | 740  | 4   | <5  | <20 | 71  | <0.01                                                                                | <10     | 93    | <10   | - 4  | 2.52        |
| 1  | 29    | 4284     | - U.4<br>- D.0                                                                                                                                                                                                                                                                                                                                       | 0.49 | 265      | 80  | ~ ~ ~     | 6 16         | 2    | 28 | 43     | 1338     | 6.62  | <10  | 1.97   | 3655    | 15 0.02  | 18  | 660  | 10  | <5  | <20 | 63  | <0.01                                                                                | <10     | 66    | <10   | <1   | 244         |
|    | 30    | 4290     | 2.0                                                                                                                                                                                                                                                                                                                                                  | 0.49 | 205      | 00  | -0        | 0.10         | -    |    |        |          |       |      |        |         |          |     |      |     |     |     |     |                                                                                      |         |       |       | -    | 470         |
| :  |       | 4000     |                                                                                                                                                                                                                                                                                                                                                      | 0.40 | -5       | 130 | -5        | 7 22         | <1   | 23 | 23     | 111      | 6.49  | <10  | 1.61   | 3112    | 5 0.02   | 9   | 870  | 4   | <5  | <20 | 69  | 0.03                                                                                 | <10     | 45    | <10   | 5    | 170         |
|    | 31    | 4290     | -0.4                                                                                                                                                                                                                                                                                                                                                 | 0.49 | ~        | 220 | 10        | 7 16         | <1   | 25 | 16     | 20       | 6.47  | <10  | 1.43   | 2763    | 3 0.02   | 10  | 930  | 4   | <5  | <20 | 77  | 0.09                                                                                 | <10     | 75    | <10   | 8    | 106         |
| i  | 32    | 4297     | <0.2                                                                                                                                                                                                                                                                                                                                                 | 0.32 | S        | 125 | 6         | 7.10         | - 1  | 30 | 15     | 17       | 6.27  | <10  | 1.69   | 3481    | 4 0.02   | 12  | 900  | 4   | <5  | <20 | 67  | 0.04                                                                                 | <10     | 60    | <10   | в    | 168         |
| i  | 33    | 4296     | <0.2                                                                                                                                                                                                                                                                                                                                                 | 1.07 | 40       | 133 | -5        | 6.98         | 2    | 28 | 19     | 745      | 7.07  | <10  | 2.00   | 2956    | 5 0.02   | 11  | 860  | 130 | <5  | <20 | 47  | 0.02                                                                                 | <10     | 66    | <10   | 2    | 240         |
|    | 34    | 4299     | 0.6                                                                                                                                                                                                                                                                                                                                                  | 0.57 | 10       | 400 | <5<br><5  | 7.00         | -1   | 28 | 90     | 731      | 7 11  | <10  | 2.43   | 3457    | 7 0.01   | 47  | 700  | 144 | <5  | <20 | 31  | <0.01                                                                                | <10     | 80    | <10   | 2    | 260         |
|    | 35    | 4300     | 1.2                                                                                                                                                                                                                                                                                                                                                  | 2.32 | <5       | 100 | ~5        | 1.00         |      | 20 |        |          |       |      |        |         |          |     |      |     |     |     |     |                                                                                      |         |       |       |      | 4499        |
| l. |       |          |                                                                                                                                                                                                                                                                                                                                                      |      | -5       | 10  | -6        | >10          | 144  | 2  | 21     | 228      | 0.50  | <10  | 0.17   | 4900    | 2 <0.01  | 3   | 40   | 66  | 5   | <20 | 45  | 0.01                                                                                 | <10     | 5     | <10   | 85   | 1132        |
| 1  | 36    | 4324     | 1.0                                                                                                                                                                                                                                                                                                                                                  | 0.11 | -0       | 100 | ~5        | 244          | 47   | 15 | 53     | 3220     | 3.81  | <10  | 0.48   | 1060    | 8 0.03   | 12  | 1350 | 304 | <5  | <20 | 52  | <0.01                                                                                | <10     | 58    | <10   |      | 538         |
|    | 37    | 4325     | 0.8                                                                                                                                                                                                                                                                                                                                                  | 0.62 | <0<br>   | 100 | <0<br><5  | 2.44         | 7    | 66 | 173    | 184      | 8.65  | <10  | 3.39   | 2946    | 5 0.02   | 149 | 640  | 20  | <5  | <20 | 52  | <0.01                                                                                | <10     | 128   | <10   | <1   | 344         |
|    | 38    | 4326     | <0.2                                                                                                                                                                                                                                                                                                                                                 | 2.47 | <0       | 400 | ~0        | 3.80         | Â    | 4  | 03     | 68       | 0.57  | 10   | 0.10   | 566     | 7 0.01   | 4   | 90   | 60  | <5  | <20 | 33  | <0.01                                                                                | <10     | 3     | <10   | 8    | 64          |
|    | 39    | 4327     | 0.2                                                                                                                                                                                                                                                                                                                                                  | 0.37 | <5<br>/5 | 160 | <0<br>- E | 2.13         | 7    | 4  | 117    | ∆R       | 0.53  | 10   | 0.09   | 621     | 8 < 0.01 | 3   | 100  | 106 | <5  | <20 | 35  | <0.01                                                                                | <10     | 2     | <10   | 8    | 61          |
|    | 40    | 4328     | <0.2                                                                                                                                                                                                                                                                                                                                                 | 0.32 | 15       | 100 | 0         | 3.30         | -    | •  | 114    |          | 0.00  |      | ••••   |         |          |     |      |     |     |     |     |                                                                                      |         |       |       |      | ~~          |
|    |       |          |                                                                                                                                                                                                                                                                                                                                                      | 0.74 | -6       | 05  | ~5        | 4 96         | -1   | 4  | 64     | 64       | 1.04  | 20   | 0.29   | 823     | 3 < 0.01 | 2   | 400  | 8   | <5  | <20 | 59  | <0.01                                                                                | <10     | 9     | <10   | 11   | 38          |
|    | 41    | 4329     | 0.2                                                                                                                                                                                                                                                                                                                                                  | 0.74 | ~0<br>~E | 195 | ~         | 4 61         | 4    | 22 | 28     | 47       | 6.42  | 20   | 1.94   | 1555    | 5 0.03   | 5   | 1640 | 12  | <5  | <20 | 60  | 0.01                                                                                 | <10     | 105   | <10   | 21   | 127         |
|    | 42    | 4330     | <u.z< td=""><td>2.42</td><td>-0</td><td>160</td><td>-5</td><td>4.42</td><td>- 4</td><td>23</td><td>26</td><td>112</td><td>6.63</td><td>20</td><td>1.96</td><td>1518</td><td>6 0.05</td><td>5</td><td>1670</td><td>8</td><td>&lt;5</td><td>&lt;20</td><td>69</td><td>0.02</td><td>&lt;10</td><td>140</td><td>&lt;10</td><td>23</td><td>87</td></u.z<> | 2.42 | -0       | 160 | -5        | 4.42         | - 4  | 23 | 26     | 112      | 6.63  | 20   | 1.96   | 1518    | 6 0.05   | 5   | 1670 | 8   | <5  | <20 | 69  | 0.02                                                                                 | <10     | 140   | <10   | 23   | 87          |
| 1  | 43    | 4331     | <0.2                                                                                                                                                                                                                                                                                                                                                 | 2.30 | 5        | 155 | -5        | 4.74<br>5.67 |      | 22 | 37     | 13       | 5.98  | 20   | 1.18   | 1751    | 5 < 0.01 | 7   | 1520 | 10  | <5  | <20 | 56  | 0.04                                                                                 | <10     | 73    | <10   | 13   | 98          |
|    | 44    | 4332     | <0.2                                                                                                                                                                                                                                                                                                                                                 | 1.74 | <5       | 155 | 5         | 5.07         | ~1   | 10 | 27     | 5        | 5 24  | 20   | 1.05   | 1698    | 4 < 0.01 | 5   | 1620 | 12  | <5  | <20 | 68  | 0.04                                                                                 | <10     | 62    | <10   | 15   | 74          |
| ĺ  | 45    | 4333     | <0.2                                                                                                                                                                                                                                                                                                                                                 | 1.44 | <5       | 165 | <0        | 0.90         | ~1   | 10 | 20     | v        | 0.21  |      |        |         |          |     |      |     |     |     |     |                                                                                      |         |       |       |      |             |
|    |       |          |                                                                                                                                                                                                                                                                                                                                                      |      |          |     | -         |              | ~1   | 16 | 37     | 26       | 5 95  | 10   | 0.82   | 1400    | 5 <0.01  | 5   | 1790 | 10  | <5  | <20 | 54  | 0.03                                                                                 | <10     | 60    | <10   | 17   | 76          |
| i  | 46    | 4334     | <0.2                                                                                                                                                                                                                                                                                                                                                 | 1.45 | <5       | 1/5 | -F        | 5.57         | - 1  | 25 | 07     | 3004     | 640   | <10  | 2.14   | 2621    | 9 <0.01  | 52  | 710  | 100 | <5  | <20 | 40  | 0.01                                                                                 | <10     | 76    | <10   | 4    | 224         |
| 1  | 47    | 4335     | 1.2                                                                                                                                                                                                                                                                                                                                                  | 2.69 | <5       | 100 | <0        | 3.97         | <br> | 20 | 222    | 1240     | 7.07  | <10  | 4 02   | 4137    | 8 <0.01  | 143 | 690  | 70  | <5  | <20 | 48  | 0.01                                                                                 | <10     | 108   | <10   | <1   | 308         |
| ł  | 48    | 4336     | 0.4                                                                                                                                                                                                                                                                                                                                                  | 3.94 | <5       | 80  | <5        | 7.88         | 2    | 30 | 74     | 2408     | 4 72  | <10  | 1 19   | 3062    | 8 ⊲0.01  | 30  | 840  | 58  | <5  | <20 | 43  | <0.01                                                                                | <10     | 43    | <10   | 4    | 190         |
| ļ  | 49    | 4337     | 0.6                                                                                                                                                                                                                                                                                                                                                  | 2.09 | <5       | 65  | <5        | 7.48         | 3    | 20 | 64     | 9400     | 7 1 4 | <10  | 2.56   | 3875    | 7 < 0.01 | 35  | 980  | 14  | <5  | <20 | 50  | 0.01                                                                                 | <10     | 83    | <10   | <1   | 326         |
| ,  | 50    | 4338     | 0.2                                                                                                                                                                                                                                                                                                                                                  | 3.71 | <5       | 80  | <5        | 7.84         | <1   | 34 | 04     | 000      | 1.44  | 10   | 2.00   | 00.0    |          |     |      |     |     |     |     |                                                                                      |         |       |       |      |             |
|    |       |          |                                                                                                                                                                                                                                                                                                                                                      |      |          |     | -         |              |      | ~~ | 60     | 50       | 5 77  | 10   | 1 10   | 2626    | 4 ⊲001   | 21  | 1250 | 10  | <5  | <20 | 64  | 0.04                                                                                 | <10     | 54    | <10   | 9    | 122         |
|    | 51    | 4339     | <0.2                                                                                                                                                                                                                                                                                                                                                 | 1.92 | <5       | 110 | <5        | 6.75         | <1   | 20 | 52     | 28       | 5.12  | 10   | 4 20   | 2020    | 3 <0.01  | 14  | 1510 | 10  | <5  | <20 | 71  | 0.04                                                                                 | <10     | 61    | <10   | 12   | 10 <b>1</b> |
| i  | 52    | 4340     | <0.2                                                                                                                                                                                                                                                                                                                                                 | 1.85 | <5       | 120 | <5        | 6.76         | <1   | 21 | 40     | 10       | 5./5  | 40   | 1.20   | 4012    | 5 <0.01  |     | 1190 | 8   | <5  | <20 | 67  | 0.03                                                                                 | <10     | 70    | <10   | 13   | 128         |
| 1  | 53    | 4341     | 0.2                                                                                                                                                                                                                                                                                                                                                  | 2.10 | <5       | 110 | <5        | 7.30         | <1   | 22 | 25     | 111      | 5.79  | -10  | 4 50   | 1012    | 5 <0.01  | Ř   | 320  | 10  | <5  | <20 | 37  | 0.06                                                                                 | <10     | 90    | <10   | <1   | 111         |
| i  | 54    | 4342     | <0.2                                                                                                                                                                                                                                                                                                                                                 | 1.98 | <5       | 100 | 10        | 1.70         | 1    | 23 | 53     | 19       | 0.18  | <10  | 1.30   | 704     | 4 <0.01  | 7   | 270  | 10  | <5  | <20 | 40  | 0.05                                                                                 | <10     | 79    | <10   | <1   | 91          |
|    | 55    | 4343     | <0.2                                                                                                                                                                                                                                                                                                                                                 | 1.82 | <5       | 115 | 5         | 1.12         | <1   | 23 | 33     | 8        | 5.84  | <10  | 1.30   | (4)     | 4 -0.01  |     | 2.0  |     | -   |     |     |                                                                                      |         |       |       |      |             |
|    |       |          |                                                                                                                                                                                                                                                                                                                                                      |      |          |     |           |              |      |    |        |          |       |      |        | Page 2  |          |     |      |     |     |     |     |                                                                                      |         |       |       |      |             |

.

ជ្ឈ ០០3

•••• OREQUEST ECO-TECH KAM.

2250 573 4557 11/04/96 16:14

÷ i

|            |          |                                                                                                                                                                                                                                                                                                                                                                | TÓ   |           |        |         |                         |            | IC       | P CER | TIFICAT | E OF / | ANALYS | SIS AK | ( 96-1269  | 9                |            |        |     |          |                  | I  | ECO-TE           | CHLA | BORAI       | ORIES | LTD. |     |
|------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|--------|---------|-------------------------|------------|----------|-------|---------|--------|--------|--------|------------|------------------|------------|--------|-----|----------|------------------|----|------------------|------|-------------|-------|------|-----|
| REQU       | EST CONS | SULIAN                                                                                                                                                                                                                                                                                                                                                         | 13   |           | _      | -       | 0- N                    | <b>C</b> 4 | <u> </u> | Cr.   | Cu      | Fe %   | ta t   | fa %   | Ma         | Mo Na%           | Ni         | Р      | Pb  | Sb       | Sn               | Sr | <u>TI %</u>      | U    | <u>v</u>    | w     | Y    | Zn  |
| Et #.      | Tag #    | Ag                                                                                                                                                                                                                                                                                                                                                             | AI % | <u>As</u> | Ba     | Bi      | Ca %                    | Ca         | <u></u>  |       |         | 8.60   | <10    | 103    | 1896       | 4 0.01           | 3          | 1040   | 8   | <5       | <20              | 69 | 0.08             | <10  | 169         | <10   | 13   | 1   |
| 56         | 4344     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 1.34 | <5        | 310    | 15      | 6.57                    | <1         | 25       | 25    | 5       | 0.09   | <10    | 1.03   | 2371       | 4 < 0.01         | 4          | 1080   | 14  | <5       | <20              | 72 | 0.07             | <10  | 134         | <10   | 15   | 98  |
| 57         | 4345     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 1.59 | <5        | 410    | 15      | 7.28                    | <1         | 25       | 18    | 5       | 0.22   | <10    | 1.15   | 2835       | 5 < 0.01         | 4          | 1070   | 680 | <5       | <20              | 64 | 0.05             | <10  | 106         | <10   | 16   | 291 |
| 58         | 4346     | 0.6                                                                                                                                                                                                                                                                                                                                                            | 1.94 | <5        | 220    | <5      | 8.20                    | 18         | 24       | 26    | 1014    | 0.00   | ~10    | 1.13   | 3115       | 4 < 0.01         | 4          | 1050   | 140 | <5       | <20              | 70 | 0.05             | <10  | 82          | <10   | 9    | 253 |
| 59         | 4347     | <0,2                                                                                                                                                                                                                                                                                                                                                           | 2.24 | <5        | 140    | <5      | 7.72                    | 8          | 24       | 15    | 320     | 0.94   | <10    | 1.13   | 3046       | 5 <0.01          | 4          | 1150   | 16  | <5       | <20              | 75 | 0.05             | <10  | 80          | <10   | 10   | 163 |
| 60         | 4348     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 2.30 | <5        | 85     | 10      | 6.59                    | <1         | 28       | 12    | 68      | 1.21   | ~10    | 1.20   | 3040       |                  |            |        |     |          |                  |    |                  |      |             |       | _    |     |
|            |          |                                                                                                                                                                                                                                                                                                                                                                |      |           |        |         |                         |            |          |       |         | c co   | -10    | 1.01   | 4105       | 5 <0.01          | 5          | 820    | 854 | <5       | <20              | 66 | 0.01             | <10  | 51          | <10   | 9    | 149 |
| 61         | 4349     | 1.6                                                                                                                                                                                                                                                                                                                                                            | 2.06 | <5        | 80     | <5      | 10.00                   | 2          | 24       | 27    | 4620    | 5.09   | ~10    | 0.04   | 3668       | 5 <0.01          | 3          | 950    | 668 | <5       | <20              | 69 | <0.01            | <10  | 53          | <10   | 9    | 150 |
| 62         | 4350     | 1.2                                                                                                                                                                                                                                                                                                                                                            | 1.93 | <5        | 80     | <5      | 8,18                    | 7          | 20       | 38    | 2534    | 4.70   | <10    | 4.07   | 2771       | 4 <0.01          | 2          | 980    | 16  | <5       | <20              | 94 | 0.02             | <10  | 97          | <10   | 8    | 159 |
| 63         | 4351     | 0.6                                                                                                                                                                                                                                                                                                                                                            | 2.35 | <5        | 95     | <5      | 8.17                    | <1         | 25       | 18    | 338     | 6.37   | <10    | 1.47   | 3777       | 6 <0.01          | -          | 1090   | 20  | <5       | <20              | 68 | 0.03             | <10  | 151         | <10   | 9    | 141 |
| 64         | 4352     | ⊲0.2                                                                                                                                                                                                                                                                                                                                                           | 2.48 | <5        | 110    | <5      | 6.88                    | <1         | 29       | 17    | 246     | 8.01   | <10    | 1.70   | 2224       | 4 <0.01          | 2          | 1100   | 14  | <5       | <20              | 86 | 0.06             | <10  | 139         | <10   | 13   | 84  |
| 65         | 4353     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 1,75 | <5        | 110    | 10      | 8,50                    | <1         | 26       | 16    | 16      | 6.35   | <10    | 1.41   | 2211       | 4 ~0.01          | -          |        |     |          |                  |    |                  |      |             |       |      |     |
|            |          |                                                                                                                                                                                                                                                                                                                                                                |      |           |        |         |                         |            |          |       |         |        |        | 4 9 0  | 7770       | 4 <0.01          | 3          | 1170   | 10  | <5       | <20              | 79 | 0.05             | <10  | 136         | <10   | 13   | 107 |
| 66         | 4354     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 1.84 | <5        | 120    | 10      | 7.33                    | <1         | 26       | 25    | 16      | 6.62   | <10    | 1.20   | 2119       | 4 \0.01          | ت<br>د ا   | 1130   | 16  | <5       | <20 <sup>`</sup> | 77 | 0.03             | <10  | 152         | <10   | 11   | 229 |
| 67         | 4355     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 2.24 | <5        | 1175   | 5       | 6.09                    | <1         | 22       | 14    | 60      | 6.88   | <10    | 1.70   | 2092       | 4 0.07           | ,          | 1070   | 32  | <5       | <20              | 68 | 0.04             | <10  | 162         | <10   | 10   | 611 |
| 69         | 4356     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 2.12 | <5        | 155    | <5      | 6.26                    | 12         | 27       | 12    | 138     | 7.12   | <10    | 1.80   | 2037       | 4 0.02<br>E 0.02 | 2          | 1150   | 22  | <5       | <20              | 74 | 0.04             | <10  | 196         | <10   | 14   | 169 |
| 60         | 4357     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 2.27 | <5        | 155    | 5       | 5.86                    | 1          | 29       | 10    | 6       | 7.18   | <10    | 2.17   | 2129       | 3 0.03           | 2          | 1060   | 20  | <5       | <20              | 64 | 0.05             | <10  | 180         | <10   | 12   | 126 |
| 70         | 4358     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 2.03 | <5        | 130    | 10      | 5.25                    | <1         | 28       | 14    | 2       | 6.91   | <10    | 2.10   | 1966       | 4 0.03           | 2          | 1000   | 20  | Ŭ        |                  |    |                  |      |             |       |      |     |
| 10         |          | •                                                                                                                                                                                                                                                                                                                                                              |      |           |        |         |                         |            |          |       |         |        |        |        |            | 4 0.04           | 2          | 1000   | 20  | <5       | <20              | 73 | 0,05             | <10  | 188         | <10   | 12   | 138 |
| 71         | 4359     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 2.30 | <5        | 150    | 15      | 4.75                    | <1         | 28       | 9     | 3       | 7.16   | <10    | 2.43   | 2020       | 4 0.04           | 2          | 1030   | 10  | <5       | <20              | 96 | 0.12             | <10  | 117         | <10   | 14   | 104 |
| 73         | 4360     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 1.76 | <5        | 110    | 5       | 7.44                    | <1         | 25       | 6     | 52      | 6.64   | <10    | 1.55   | 2672       | 2 0.02           |            | 1000   | 10  | <5       | <20              | 65 | 0.16             | <10  | 103         | <10   | 14   | 76  |
| 72         | 4361     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 1.56 | <5        | 105    | 10      | 6.58                    | <1         | 25       | 11    | 12      | 6.36   | <10    | 1.55   | 2120       | 1 0.02           | 4          | 000    | 6   | <5       | <20              | 64 | 0.14             | <10  | 93          | <10   | 11   | 62  |
| 74         | 4362     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 1.24 | <5        | 110    | 10      | 8.71                    | <1         | 20       | 21    | 9       | 6.01   | <10    | 0.92   | 2546       | 1 0.01           |            | 1020   | 12  | <5       | <20              | 59 | 0.10             | <10  | 145         | <10   | 12   | 91  |
| 75         | 4363     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 1.85 | <5        | 110    | 10      | 7.00                    | <1         | 27       | 9     | 5       | 6.62   | <10    | 1.73   | 2646       | 3 0.01           | 2          | 1020   | .~  |          | ~~~              |    |                  |      |             |       |      |     |
| 75         | 4000     |                                                                                                                                                                                                                                                                                                                                                                |      | -         |        |         |                         |            |          |       |         |        |        |        |            | 0 004            |            | 1160   | 16  | <5       | <20              | 64 | 0.06             | <10  | 152         | <10   | 11   | 103 |
| 76         | 4384     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 2.09 | <5        | 90     | <5      | 7.25                    | <1         | 28       | 10    | 57      | 7.46   | <10    | 1.64   | 2978       | 3 0.01           |            | 1050   | 12  | <5       | <20              | 57 | 0.07             | <10  | 128         | <10   | 10   | 91  |
| 70         | 4365     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 1.87 | <5        | 115    | 10      | 7.46                    | <1         | 23       | 13    | 46      | 7.37   | <10    | 1.20   | 2679       | 4 0.01           |            |        |     | <5       | <20              | 73 | 0.11             | <10  | 109         | <10   | 14   | 69  |
| 79         | 4366     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 1.44 | <5        | 135    | <5      | 8.03                    | <1         | 20       | 12    | 12      | 6.62   | <10    | 0.90   | 3382       | 2 0.01           | 4          | 1000   | 40  | <5       | <20              | 75 | 0.11             | <10  | 109         | <10   | 10   | 96  |
| 70         | 4367     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 1.78 | <5        | 110    | 10      | 6.47                    | <1         | 25       | 17    | 6       | 7.36   | <10    | 1.13   | 2961       | 4 0.01           | -          | 1000   | 10  | <5       | <20              | 58 | 0.05             | <10  | 133         | <10   | 11   | 88  |
| 00         | 4368     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 1.54 | <5        | 355    | <5      | 6.07                    | <1         | 16       | 18    | 631     | 6.68   | <10    | 0.88   | 2792       | 4 0.01           |            | 1000   | 12  |          |                  |    |                  |      |             |       |      |     |
| 0 <b>U</b> | -,,,,,,  | -0.2                                                                                                                                                                                                                                                                                                                                                           |      | •         |        |         |                         |            |          |       |         |        |        |        |            |                  |            | 4070   | ß   | -5       | <20              | 71 | 0.04             | <10  | 133         | <10   | 14   | 53  |
| 04         | 4260     | <fi 2<="" td=""><td>1.00</td><td>&lt;5</td><td>105</td><td>&lt;5</td><td>7,60</td><td>&lt;1</td><td>11</td><td>25</td><td>274</td><td>5.82</td><td>&lt;10</td><td>0.35</td><td>3229</td><td>4 0.01</td><td>4</td><td>1070</td><td></td><td>-5</td><td>&lt;20</td><td>45</td><td>0.03</td><td>&lt;10</td><td>124</td><td>&lt;10</td><td>14</td><td>76</td></fi> | 1.00 | <5        | 105    | <5      | 7,60                    | <1         | 11       | 25    | 274     | 5.82   | <10    | 0.35   | 3229       | 4 0.01           | 4          | 1070   |     | -5       | <20              | 45 | 0.03             | <10  | 124         | <10   | 14   | 76  |
| 81<br>00   | 4309     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 0.92 | <5        | 115    | <5      | 5.39                    | <1         | 8        | 34    | 2079    | 5.67   | <10    | 0.21   | 2215       | 5 0.01           |            | 0001 2 |     | -5       | 20               | 52 | 0.03             | <10  | 81          | <10   | 15   | 112 |
| 82         | 4370     | -0.2                                                                                                                                                                                                                                                                                                                                                           | 0.52 | <5        | 95     | <5      | >10                     | <1         | 5        | 32    | 4489    | 4.54   | <10    | 0.15   | 3989       | 4 <0.01          |            | 1 810  | 140 | ~5       | <20              | 47 | 7 0.02           | <10  | 25          | <10   | 10   | 124 |
| 83         | 4371     | 1.2                                                                                                                                                                                                                                                                                                                                                            | 0.77 |           | 125    | <5      | >10                     | <1         | 5        | 74    | 8132    | 3.18   | <10    | 0.18   | 5179       | 21 < 0.01        |            | 3 300  | 140 | <0<br>~5 | ~20              | 47 | 7 0.01           | <10  | 24          | <10   | 11   | 84  |
| 84         | 4372     | 2.0                                                                                                                                                                                                                                                                                                                                                            | 0.77 | <5        | 145    | <5      | >10                     | 1          | 9        | 84    | 941     | 2.73   | <10    | 0.28   | 6225       | 35 < 0.01        | 5          | 9 510  | 108 | < 5      | ~20              | 4, | 0.01             |      | -           |       |      |     |
| 85         | 4373     | 1.0                                                                                                                                                                                                                                                                                                                                                            | 0.67 | ~         | , 140  |         | ,                       |            |          |       |         |        |        |        |            |                  |            |        |     |          | -00              |    | 0.01             | <10  | 40          | <10   | 10   | 123 |
|            |          | ~ ~                                                                                                                                                                                                                                                                                                                                                            | 4.62 |           |        | <i></i> | 6 20                    | <1         | 14       | 65    | 596     | 3.48   | <10    | 0.64   | 3815       | 17 <0.01         | 1.         | 4 950  | 108 | <5       | <20              | 4: | , <u>0.01</u>    | 210  | 90          | <10   | 9    | 208 |
| 86         | 4374     | 0.6                                                                                                                                                                                                                                                                                                                                                            | 1.03 |           | : 400  |         | , <u>0.10</u><br>; 7.18 | <1         | 20       | 17    | 133     | 6.07   | <10    | 1.08   | 2774       | 4 < 0.01         |            | 4 1200 | 22  | <5       | <20              | 4: | ) 0.02<br>0 0.02 | ~10  | 109         | <10   | 11   | 271 |
| 87         | 4375     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 2.10 |           | . 4.40 | -0      | 746                     | <1         | 22       | 9     | 86      | 6.53   | <10    | 1.20   | 3196       | 4 <0.01          |            | 1 1270 | 20  | <5       | <20              | 6  | 0.03             | >10  | . 001<br>20 | <10   | 16   | 242 |
| 88         | 4376     | 0.2                                                                                                                                                                                                                                                                                                                                                            | Z,14 | <         | 140    | ~2      | ; ,,=o<br>: o.∩≏        | 2          | 16       | 12    | 410     | 5.55   | i <10  | 0.82   | 3291       | 4 <0.01          |            | 1 1270 | 56  | <5       | <20              | 5  | s 0.01           | < 10 | (1)<br>(1)  | ~10   | 14   | 135 |
| 89         | 4377     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 1.72 |           | 0 120  | <0<br>  | ; <del>3</del> .00      | - A        | 20       | 11    | 793     | 6.55   | i <10  | 1.30   | ) 2928     | 5 0.03           | <b>}</b> . | 3 1370 | 24  | <5       | <20              | 6  | 1 0.02           | < 10 | 123         | 510   |      |     |
| 90         | 4378     | <0.2                                                                                                                                                                                                                                                                                                                                                           | 2.01 | <         | 0 145  | <       | 0.03                    | -1         | 20       | .,    |         |        |        |        |            |                  |            |        |     |          |                  |    |                  |      |             |       |      |     |
|            |          |                                                                                                                                                                                                                                                                                                                                                                |      |           |        |         |                         |            |          |       |         |        |        |        | <b>n .</b> |                  |            |        |     |          |                  |    |                  |      |             |       |      |     |

Page 3

Q 004

+++ OREQUES'

ECO-TECH KAM.

250 573 4557

11/04/98 16:16

| 0.05010 | -et colid |             | TQ          |            |     |          |      |     | iC | P CER      | TIFICAT   |       |      | sis ak | 96-1269 | Ð  |       |    |      |     |          |     | 1         | ECO-TE  | CHLA | BORAT | ORIES        | LTD. |     |
|---------|-----------|-------------|-------------|------------|-----|----------|------|-----|----|------------|-----------|-------|------|--------|---------|----|-------|----|------|-----|----------|-----|-----------|---------|------|-------|--------------|------|-----|
| OREQUI  | EST CONS  | ULIAN       | 13          |            |     | _        |      |     | •  | <b>6</b> - | <b>Cu</b> | Fa *4 | ta I | Ma %   | Mo      | Мо | Na %  | Ni | Р    | ₽b  | Sb       | Sn  | Sr        | Ti %    | U    | V     | <u></u>      | Y    | Zn  |
| Et #.   | Tag #     | Ag          | <u>AI %</u> | As         | Ba  | Bi       | Ca % | Cd  | 00 | <u>_</u>   |           | 0.04  | <10  | 240    | 3200    | 3  | <0.01 | 9  | 1290 | 14  | <5       | <20 | 94        | 0.08    | <10  | 146   | <10          | 13   | 216 |
| 91      | 4379      | ⊲0.2        | 1.90        | <5         | 190 | 10       | 6.71 | <1  | 32 | 9          | 29        | 0.01  | ~ 10 | 4 20   | 1681    | 6  | <0.01 | 4  | 920  | 8   | 5        | <20 | 62        | <0.01   | <10  | 34    | <10          | 17   | 113 |
| 92      | 4380      | 1.0         | 1.72        | <5         | 105 | <5       | 4.61 | <1  | 14 | 30         | 102       | 3.09  | ~10  | 1.45   | 3683    | ě  | 0.02  | 8  | 1430 | 18  | <5       | <20 | 76        | 0.04    | <10  | 114   | <10          | 9    | 393 |
| 93      | 4381      | 3.4         | 2.15        | <5         | 830 | <5       | 4,67 | <1  | 20 | 29         | 203       | 7.00  | 10   | 1.70   | 3155    | 4  | 0.02  | 8  | 1620 | 22  | <5       | <20 | 68        | 0.06    | <10  | 114   | <10          | 12   | 367 |
| 94      | 4382      | <0.2        | 1.73        | <5         | 230 | 10       | 5.50 | <1  | 23 | 23         | 32        | 1.00  | 10   | 1.05   | 3197    | 4  | 0.02  | 8  | 1570 | 22  | <5       | <20 | 81        | 0.05    | <10  | 110   | <10          | 11   | 354 |
| 95      | 4383      | 1.6         | 1.68        | <5         | 480 | <5       | 6.31 | <1  | 21 | 23         | 11.9      | 0.97  | 10   | 1.00   | 2101    | •  | ••••  |    |      |     |          |     |           |         |      |       |              | -    |     |
|         |           |             |             |            |     |          |      |     |    |            | ~~        | e 70  | ~10  | 1 70   | 2683    | 4  | 0.03  | 24 | 1470 | 46  | <5       | <20 | 115       | 0.03    | <10  | 114   | <10          | 9    | 269 |
| 96      | 4384      | 0.2         | 2.22        | <5         | 230 | <5       | 5.94 | <1  | 27 | 59         | 220       | 0.70  | <10  | 1.02   | 2777    | 8  | 0.03  | 17 | 770  | 44  | <5       | <20 | 146       | <0.01   | <10  | 46    | <10          | 9    | 133 |
| 97      | 4385      | 0.6         | 1.88        | 5          | 265 | <5       | 6.93 | <1  | 18 | 51         | 330       | 2.14  | <10  | 0.30   | 1977    | 16 | 0.01  | 11 | 840  | 60  | <5       | <20 | 46        | <0.01   | <10  | 19    | <10          | В    | 58  |
| 98      | 4386      | 1.0         | 0.81        | 15         | 75  | <5       | 5.75 | <1  | 17 | 70         | 290       | 3.14  | <10  | 0.75   | 3116    | 15 | 0.02  | 24 | 1050 | 58  | <5       | <20 | 65        | <0.01   | <10  | 33    | <10          | 10   | 125 |
| 99      | 4387      | 0.8         | 1.44        | 10         | 65  | <5       | 7.59 | <1  | 18 | 92         | 140       | 5.04  | <10  | 1.31   | 2820    | 6  | 0.02  | 15 | 1260 | 80  | <5       | <20 | 61        | <0.01   | <10  | 55    | <10          | 10   | 187 |
| 100     | 4388      | 0.6         | 2.29        | <5         | 75  | <5       | 6.05 | <1  | 28 | 30         | 143       | 3.84  | -10  |        |         |    |       |    |      |     |          |     |           |         |      |       | 40           | 7    | 100 |
|         |           |             |             |            |     | _        |      |     | 20 | 20         | 154       | 6 60  | <10  | 1.71   | 3103    | 6  | 0.02  | 11 | 1080 | 76  | <5       | <20 | 51        | <0.01   | <10  | 61    | <10          | 1    | 100 |
| 101     | 4389      | 0.4         | 2.55        | <5         | 70  | <5       | 6.58 | <1  | 30 | 20         | 60        | 6.26  | <10  | 1.52   | 3829    | 6  | 0.02  | 11 | 960  | 80  | <5       | <20 | 77        | 0.01    | <10  | 62    | <10          | 13   | 123 |
| 102     | 4390      | 0.4         | 2,13        | <5         | 145 | <5       | 7.78 | 1   | 23 | 20         | 382       | 6.20  | <10  | 1.38   | 4151    | 5  | 0.02  | 9  | 1220 | 18  | <5       | <20 | 57        | 0.02    | <10  | 75    | <10          | 16   | 111 |
| 103     | 4391      | 0.2         | 2.20        | <5         | 170 | <5       | 6.92 | <1  | 19 | 23         | 253       | 6.87  | <10  | 1 74   | 3732    | 6  | 0.02  | 11 | 1170 | 44  | <5       | <20 | 58        | 0.01    | <10  | 66    | <10          | 9    | 141 |
| 104     | 4392      | 0.4         | 2.62        | <5         | 110 | <5       | 7.08 | <1  | 20 | 120        | 216       | 868   | <10  | 1.86   | 3833    | 7  | 0.02  | 10 | 1120 | 42  | <5       | <20 | 72        | <0.01   | <10  | 63    | <10          | (    | 141 |
| 105     | 4393      | 0.2         | 2.65        | <5         | 165 | <5       | 9.07 | <1  | 29 | 52         | 210       | 0.00  | -10  | 1.00   |         |    |       |    |      |     |          |     |           |         |      | • •   |              | -    | 105 |
|         |           |             |             | -          |     |          | 7.00 | -1  | 28 | 25         | 779       | 6 88  | <10  | 1.93   | 3351    | 5  | 0.02  | 11 | 1020 | 34  | <5       | <20 | 58        | <0.01   | <10  | 64    | <10          |      | 100 |
| 106     | 4394      | 0.4         | 2,60        | <5         | 105 | <0       | 7.00 | - 1 | 20 | 17         | 711       | 6.89  | <10  | 1.70   | 3571    | 5  | 0.01  | 11 | 1070 | 60  | <5       | <20 | 53        | <0.01   | <10  | 60    | < (U<br>- 40 | 4    | 100 |
| 107     | 4395      | 0.4         | 2.23        | <5         | 120 | <0<br>~C | 1.10 | -1  |    | 69         | 195       | 1.26  | 10   | 0.22   | 1470    | 5  | <0.01 | 2  | 360  | 138 | <5       | <20 | 33        | <0.01   | <10  | 5     | <10          | 5    | 10  |
| 108     | 4396      | 0.4         | 0.34        | <5         | 60  | <0       | 9.27 |     | วั | 87         | 86        | 0.80  | <10  | 0.08   | 826     | 6  | <0.01 | 2  | 240  | 38  | <5       | <20 | 20        | <0.01   | <10  | 2     | <10          | 11   | 8   |
| 109     | 4397      | 0,6         | 0.29        | <5         | 45  | <0<br>   | 2.20 | ~1  | 2  | 72         | 48        | 0.53  | 20   | 0.06   | 1137    | 4  | <0.01 | 1  | 300  | 16  | <5       | <20 | 34        | <0.01   | <10  | 1     | \$10         |      | 0   |
| 110     | 4398      | 0.4         | 0.33        | <5         | 40  | -9       | 3.42 | ~,  | -  |            |           |       |      |        |         |    |       |    |      |     | _        |     |           |         | -40  | ~     | ~10          | 11   | 4   |
|         |           |             | ~ ~ ~       | -6         | 40  | ~        | 3 70 | <1  | 2  | 104        | 185       | 0.52  | <10  | 0.09   | 1225    | 6  | <0.01 | 2  | 270  | 10  | <5       | <20 | 27        | <0.01   | <10  |       | <10          | 8    | 12  |
| 111     | 4399      | 0.4         | 0.35        | <0<br>     | 40  | ~        | 6 20 | <1  | 4  | 80         | 322       | 1.22  | 10   | 0.20   | 3314    | 10 | <0.01 | <1 | 230  | 26  | <5       | <20 | 55        | <0.01   | ~10  | 52    | <10          | 5    | 171 |
| 112     | 4400      | 0.0         | 0.31        |            | 45  | ~5       | 5.69 | <1  | 29 | 34         | 313       | 6.70  | <10  | 1.69   | 4076    | 12 | 0.01  | 8  | 1450 | 64  | <5       | <20 | 00        | 0.01    | <10  | 50    | <10          | 4    | 172 |
| 113     | 85301     | 0.0         | 2.10        | :<br>-5    | 25  | ~5       | 5.48 | <1  | 28 | 32         | 293       | 6.56  | <10  | 1.60   | 3923    | 12 | 0.01  | 7  | 1410 | 64  | <5       | <20 | 52        | . <0.01 | ~10  | 50    | <10          | 15   | 147 |
| 114     | 85302     | 0.0         | 2.00        | 5          | 85  | <5       | >10  | <1  | 29 | 17         | 1103      | 6.96  | <10  | 1.60   | 8704    | 11 | 0.01  | 6  | 1380 | 56  | <5       | <20 | 00        | 0.04    | ~10  |       | -10          |      |     |
| 115     | 85303     | <b>∠</b> .U | 2.21        | þ          | 00  |          |      | - • |    |            |           |       |      |        |         |    |       | _  |      |     |          | ~20 | E.        | 0.01    | <10  | 68    | <10          | 7    | 203 |
| 140     | 05004     | 0.0         | 2.75        | <u>ح</u> ة | 80  | <5       | 6.51 | <1  | 33 | 11         | 347       | 8.31  | <10  | 2.43   | 5675    | 7  | 0.01  | 9  | 1600 | 34  | <5<br>/* | <20 | من<br>د ع | 0.01    | <10  | 94    | <10          | 9    | 166 |
| 116     | 85304     | 0.0<br><0.0 | 2.20        | ~5         | 125 | <5       | 6.83 | <1  | 26 | 10         | 221       | 7.54  | <10  | 2.04   | 4300    | 4  | 0.02  | 7  | 1450 | 14  | <5<br>/* | <20 | 0<br>  0  | 1 0.05  | <10  | 101   | <10          | 8    | 111 |
| 117     | 80300     | <0.Z        | 2.29        | -5         | 265 | 10       | 7.58 | <1  | 23 | 15         | 18        | 7.71  | <10  | 1.87   | 5427    | 4  | 0.02  | 6  | 1500 | 14  | <0       | ≺20 | D.        | , U.U~4 | ~10  | 101   |              | -    |     |
| 118     | 83300     | Ų.2         | 2.11        |            | 200 | 14       |      | •   |    |            |           |       |      |        |         |    |       |    |      |     |          |     |           |         |      |       |              |      |     |

Page 4

**Q**005

+++ OREQUEST

ECO-TECH KAM.

11/04/96 18:17

|          |              |       |             |    |    |     |         |             |          | ťC       | P CER     | TIFICAT     | E OF A       | NALY | sis af | ( 96-126 <b>%</b> | 9        |          |    |      |     |    |     | 1  | ECO-TE | CH LAE   | BORAT    | ORIES | LTD.     |            |
|----------|--------------|-------|-------------|----|----|-----|---------|-------------|----------|----------|-----------|-------------|--------------|------|--------|-------------------|----------|----------|----|------|-----|----|-----|----|--------|----------|----------|-------|----------|------------|
| OREQUI   | EST CONS     | ULTAN | ITS         |    |    |     |         |             | ~ 1      | <u> </u> | <i>c.</i> | <b>C</b> 14 | Fo %         | La I | Ma %   | Mn                | No       | Na %     | Ni | Р    | Pb  | Sb | รก  | Sr | Π%     | <u> </u> | <u>v</u> | W     | <u>Y</u> | Zn         |
| Et #     | Tag #        | Ag    | <u>Al 9</u> | 4  | As | Ba  | <u></u> | <u>_a %</u> | <u> </u> |          |           |             |              |      |        |                   |          | <u>.</u> |    |      |     |    |     |    |        |          |          |       |          |            |
|          | A:           |       |             |    |    |     |         |             |          |          |           |             |              |      |        |                   |          |          |    |      |     |    | -20 | 40 | 0.20   | <10      | 140      | <10   | 14       | 56         |
| Resplit: |              |       |             |    | _  |     | 40      | 4.04        | ~1       | 28       | 22        | 46          | 6.27         | <10  | 1.18   | 1240              | <1       | 0.02     | 4  | 1060 | 10  | <5 | <20 | 40 | 0.20   | <10      | 10       | <10   | 81       | 1229       |
| 1        | 4259         | <0.2  | 1.2         | 8  | <5 | 220 | 10      | 4.04        | 450      | 20       | 25        | 108         | 0.60         | <10  | 0.22   | 5002              | 1        | <0.01    | 3  | 50   | 74  | 10 | <20 | 44 | 0.01   | ~10      | 107      | <10   | 13       | 142        |
| 36       | 4324         | 1.0   | 0.1         | 6  | <5 | 15  | <5      | >10         | 155      | 20       | 15        | 6           | 7 79         | <10  | 2.67   | 2216              | 4        | 0.04     | 2  | 1180 | 26  | <5 | <20 | 13 | 0.05   | ~10      | 67       | <10   | 7        | 177        |
| 71       | 4359         | <0.2  | 2.3         | 7  | <5 | 165 | 15      | 5.22        | <1       | 30       | 24        | 000         | 7.08         | <10  | 2.04   | 3439              | 5        | 0.02     | 10 | 1050 | 30  | <5 | <20 | 64 | <0.01  | ~10      | 01       | -10   | •        |            |
| 106      | 43 <b>94</b> | 0.4   | 2.7         | 6  | <5 | 110 | <5      | 7.33        | <1       | 29       | 21        | 050         | 1.00         |      |        |                   |          |          |    |      |     |    |     |    |        |          |          |       |          |            |
|          |              |       |             |    |    |     |         |             |          |          |           |             | _            |      |        | 1747              | 2        | 0.02     | з  | 1010 | 6   | <5 | <20 | 38 | 0.19   | <10      | 142      | <10   | 16       | 56         |
| Repeat   | 4250         | <0.2  | 11          | 6  | <5 | 215 | 10      | 4.01        | <1       | 26       | 21        | 37          | 6.46         | <10  | 1.00   | 1447              | 10       | <0.01    | 2  | 280  | 110 | <5 | <20 | 54 | 0.04   | <10      | 34       | <10   | 20       | 97         |
| 10       | 4235         | 74    | 10          | าส | <5 | 135 | <5      | >10         | <1       | 8        | 47        | 3375        | 7.97         | <10  | 0.29   | >10000            | 10       | 20.01    | 1  | 1060 | 4   | <5 | <20 | 63 | 0.02   | <10      | 75       | <10   | 16       | /5         |
| 10       | 4284         | 0.4   | 0.6         | 37 | <5 | 645 | <5      | 8.07        | <1       | 8        | 46        | 119         | 4.62         | <10  | 0.63   | 4212              |          | <0.01    |    | 60   | 68  | 10 | <20 | 47 | 0.01   | <10      | 7        | <10   | 84       | 1077       |
| 19       | 4204         | 0.9   | 0.1         | 16 | <5 | 15  | <5      | >10         | 138      | 2        | 21        | 225         | 0.54         | <10  | 0.21   | 4944              | 2        | ~0.01    | Å  | 1650 | 12  | <5 | <20 | 66 | 0.04   | <10      | 63       | <10   | 14       | 84         |
| 36       | 4324         | 20.0  | 1.4         | 17 | <5 | 165 | 5       | 6.21        | <1       | 19       | 24        | 8           | <b>5.4</b> 4 | 20   | 1.04   | 1792              | 4        | ~0.01    | v  |      |     |    |     |    |        |          |          |       |          |            |
| 45       | 4000         | ~U.Z  | •           | -  | -  |     |         |             |          |          |           |             |              |      |        | 4400              | -        | <0.01    | Q  | 310  | 14  | <5 | <20 | 37 | 0.06   | <10      | 90       | <10   | <1       | 122        |
|          | 4040         | ~0.2  | 1 4         | 08 | <5 | 100 | <5      | 1.83        | 1        | 24       | 53        | 24          | 6.33         | <10  | 1.49   | 1160              | С<br>С   | 0.01     | 1  | 1120 | 22  | <5 | <20 | 71 | 0.05   | <10      | 192      | <10   | 12       | 146        |
| 54       | 4344         | ~0.2  | 2           | 31 | <5 | 155 | 5       | 4.93        | <1       | 29       | 10        | 3           | 7.45         | <10  | 2.41   | 2087              | 3        | 0.04     | 2  | 1080 | 12  | <5 | <20 | 62 | 0.05   | <10      | 134      | <10   | 10       | 89         |
| 71       | 4309         | -0.2  | 11          | 57 | <5 | 355 | <5      | 6.07        | <1       | 16       | 18        | 633         | 6.67         | <10  | 0.87   | 2799              | 4        | <0.01    | 1  | 1230 | 58  | <5 | <20 | 55 | 0.01   | <10      | 79       | <10   | 15       | 243        |
| 80       | 4300         | -0.2  | 11          | 60 | <5 | 115 | <5      | 8,92        | 2        | 16       | 13        | 397         | 5.37         | <10  | 0.79   | 3228              | 4        | 0.01     | 44 | 1110 | 38  | <5 | <20 | 60 | <0.01  | <10      | 67       | <10   | 7        | 193        |
| 89       | 43//         | 0.2   |             | 71 | <5 | 110 | <5      | 7.52        | 1        | 30       | 28        | 734         | 7.35         | <10  | 2.00   | 3591              | 5        | 0.02     |    | 1110 |     | -  |     |    |        |          |          |       |          |            |
| 106      | 4394         | 0.0   | 2.          | 1  | -0 |     |         |             |          |          |           |             |              |      |        |                   |          |          |    |      |     |    |     |    |        |          |          |       |          | <b>C</b> 0 |
| Ct       | -            |       |             |    |    |     |         |             |          |          |           |             |              |      | 4.00   | 777               | 1        | 0.02     | 20 | 670  | 22  | <5 | <20 | 56 | i 0.10 | <10      | 91       | <10   | 9        | 69         |
| CECION   | 20.<br>R     | 1.2   | 2.          | 02 | 65 | 160 | <5      | 1.98        | <1       | 22       | 70        | 80          | 4.06         | <10  | 1.00   | 740               | <1       | 0.02     | 22 | 670  | 20  | <5 | <20 | 54 | 0.12   | <10      | 89       | <10   | 10       | 11         |
| GEO'S    | ß            | 1.0   | 1.          | 97 | 70 | 160 | <5      | 1,96        | <1       | 22       | 71        | 76          | 4,08         | <10  | 1,13   | 720               | <1<br><1 | 0.02     | 26 | 760  | 22  | <5 | <20 | 54 | ⊧ 0.14 | <10      | 84       | <10   | 8        | ឋ3<br>. ០៣ |
| 020 5    | e o          | 1.0   | 2           | 08 | 70 | 170 | <5      | 1.96        | <1       | 24       | 78        | 77          | 4.10         | <10  | 1.00   | 710               |          | 0.02     | 20 | 750  | 24  | <5 | <20 | 56 | 5 0.10 | <10      | 82       | ≺10   | 7        | 82         |
| OEC 9    | 6            | 1 0   | 2           | 12 | 65 | 170 | <5      | 2.01        | <1       | 24       | 79        | 87          | 4.04         | <10  | 1.04   | , 10              |          |          | 20 |      |     |    |     |    |        |          |          |       |          |            |

ත<u>ි</u> 006

-++ OREQUEST

ECO-TECH KAM.

2250 573 4557

16:18

11/04/96

df/1269 XLS/96

.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer per

Page 5

|       |            |              | OF     | ŒQI        | JEST CONSULTANTS LTD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |            | H              | DLB 🛔 : | CB-96-4          |                | PAGE #            | 3 of         | 4           |                   |                   |
|-------|------------|--------------|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|----------------|---------|------------------|----------------|-------------------|--------------|-------------|-------------------|-------------------|
| PROM  | <b>T</b> 0 | ROCK<br>TYPE | alt    | POL<br>C/A | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t<br>SULPHIDB | SAMPLE No. | FROM           | TO      | LENGTH           | Au<br>gpt      | Ag<br>pp <b>o</b> | Cu<br>pet    | Cu<br>ភូទួល | РЬ<br>Ррш         | Zn<br>FP <b>n</b> |
| 63.00 | 64.50      | 3            | he     |            | - strong red hem staining to 64.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tr            | 4364       | 63.00          | 64.50   | 1.50             | <0.03          | (0.2              | • ·          | 57          | 16                | 103               |
| 64.50 | 66.00      | 3            | he     | 8          | <ul> <li>- as above, coarser &amp; more fragmental, good carb-gtz brz vein from<br/>64 62-64 67 m with tr blabs of one &amp; ne</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tr            | 4365       | 64.50          | 66.00   | 1.50             | <0.03          | <0.2              |              | 46          | 17                | 91                |
| 66.00 | 67.50      | 3            | he     | •          | <ul> <li>- as above, coarser fragmental, 5-10% irregular carb blebs, some wit<br/>faint pink stain</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | h tr          | 4366       | 66.00          | 67.50   | 1.50             | (0.03          | (0.2              |              | 12          | 8                 | 69                |
| 67.96 | 75.15      |              |        |            | CARBONATE-QUARTA BRECCIA ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |            |                |         |                  |                |                   |              |             |                   |                   |
|       |            |              |        |            | Byper portion of zone from 67.96 to 70.10 is hosted in reddish-green<br>andesite tuff with 10% carb-qtz veining and tension gash infillings.<br>Veins at various angles, two dominant trends are 20 deg 6 60 deg to<br>to SCA. From 72.10 to 73.53 is 60-70% carb-qtz veining with hematite<br>chlorite, rarer sericite and dissem blebs of cpy with lesser py. Fro<br>73.53 to 75.15 is pale green andesite with 10-35% carb-qtz veining.<br>Contacts are somewhat arbitrary, upper contact chosen at gouge zone<br>from 67.96 to 68.28 m, lower contact sharp at 50 deg to SCA however<br>there is 3-10% carb-qtz veining below this contact, no gouge zone to<br>define lower contact. | 1<br>         |            |                |         |                  |                |                   |              | -           |                   |                   |
| 67.50 | 68.50      | 1            | car,qt | 2          | - as above, tr cpy in carb-gtz veins, fault gouge from 67.96 to 68.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8m tr         | 4367       | 67.50          | 68.50   | 1.00             | 0.08           | <0.2              | 0.01         |             | 10                | 96                |
| 68.50 | 69.50      | 7            | car,qt | .2         | <ul> <li>- as above, St carb-gtz veining, at 69.25 is 8 mm wide wein with<br/>10t chalcopyrite, vein is truncated along hairline fracture at<br/>approximately 70 deg to SCA</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tr-1          | 4368       | 68.50          | 69.50   | 1.00             | 0.03           | (0.2              | 0.08         |             | 17                | . 88              |
| 69.50 | 70.50      | 7            | car,gt | z          | - as above, 5% carb-gtz veins, tr cpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tr            | 4369       | 69.50<br>70.50 | 70,50   | 1.00             | <0.03          | <0.2              | 0.04<br>0.05 |             | f                 | - 53<br>- 76      |
| /0.50 | /1.00      |              | car,qu | z          | <ul> <li>As above, carp-qiz verns e zu a ou deg to ste with is opy blebs it<br/>verns</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | £ 2           | 4370       | /0.30          | /1.30   | 1.00             | 0.10           | 10.2              | <i>u.</i>    |             | ,                 | 10                |
| 71.50 | 72.50      | 1            | car,qt | 2          | - as above, from 72.10 to 72.50 m is 60-70% carb-qtz veins & breccia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-4           | 4371       | 71.50          | 72.50   | 1.00             | 0,34           | 1.2               | 0.53         |             | 28                | 112               |
| 72.50 | 73.50      | 7            | car,qt | .2         | - 60-70% carb-gtz veining with chl & hem staining, brecciated, 2-3% diseas now                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-3           | 4372       | 72.50          | 73.50   | 1.00             | 0.88           | 2.8               | 0,91         |             | 14(               | ) 124             |
| 73.50 | 74.50      | 7            | car,qt | 2          | - pale yellowish-green andesite, brecciated, 20% carb-qtz veining, }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nas 2-3       | 4373       | 73,50          | 74.50   | 1.00             | <0.03          | 1.6               | 0.12         |             | 104               | j 84              |
| 74.50 | 75.50      | 1            | car,qt | 2          | 1-2% each of cpy and py as disseminations<br>- pale green brecciated andesite to 75.15 m then dark green chloriti<br>andesite to 75.50, has trace py & cpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ie tr         | 4374       | 74.50          | 75.50   | ) 1.00           | (0.03          | 0.6               | 0.07         |             | 101               | 123               |
| 75.15 | 84.20      |              |        |            | HEMATITIC ANDESITE TOPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |            |                |         |                  |                |                   |              |             |                   |                   |
|       |            |              |        |            | As previously described 16.89-36.80 m. Has 3-5% carb-gtz veins,<br>gradually fading in intensity downhole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |                |         |                  |                |                   |              |             |                   |                   |
| 75.50 | 76.50      | 3            | he     | 20         | - as above, trace py and cpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tr            | 4375       | 75.50          | 76.50   | 1.00             | <0.03          | (0.2              |              | 133         | 2                 | 2 208             |
| 76.50 | 78.00      | 3            | he     | 20         | - as above<br>- as above from 78 77-78 93 is othersphilter usis \$ 55 dos to ev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tr<br>va t-   | 4376       | 76.50<br>79 An | 78.00   | 1 1.50<br>1 1.50 | (0.03<br>70.03 | 0.2<br>70.2       |              | 86<br>41 N  | 2                 | J 271<br>6 949    |
| 78.00 | /3*20      | 3            | ne     | : D        | - as above, from (6.77-76.55 is gearcathron)-set wern e 55 deg to so<br>with 1% dissem cpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in l[         | #J11       | 10.00          | 17.30   | 1.11             | 10.03          | · · · · 2         |              | 114         | ۲ <b>پ</b>        |                   |
| 79.50 | 81.00      | 3            | he     | 20         | - as above, from 79.81-80.33 is ytz-carb-chl-ser vein as above<br>interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tr            | 4378       | 79.50          | 81.00   | 1 1.50           | (0.03          | (0.2              |              | 79]<br>HOL  | 2:<br>E <b>#:</b> | 1 135<br>CB-96-4  |

ł

1

•

|       |       |              | OF  | EQU        | EST       | CONSI          | ULTA        | NTS     | LTD. |     |            |            | 8    | 0 <b>18  </b> : | CB-96-4 |           | PAGE      | <b>8 4</b> of | 4                 |           |           |
|-------|-------|--------------|-----|------------|-----------|----------------|-------------|---------|------|-----|------------|------------|------|-----------------|---------|-----------|-----------|---------------|-------------------|-----------|-----------|
| FROM  | ₹0    | ROCK<br>TYPE | ALT | FOL<br>C/A |           |                | DESC        | RIPTION |      | SUL | N<br>PHIDE | SAMPLE No. | FROM | TO              | LENGTH  | Au<br>gpt | Ag<br>ppm | Cu<br>pct     | Cu<br>pp <b>o</b> | bba<br>5p | 2u<br>Ppe |
| 84.20 | 90.55 |              |     |            | RED ANDES | ITE LAPILLI TI | UFP/AGGLOME | RATE    |      |     |            |            |      |                 |         |           |           |               |                   |           |           |

•

ŧ

|                                                     |                                      |                                       | OI    | REQU                                                      | EST                                                                       | CONSUL                                                                                                                            | TANTS                                                                                                                    | LTE                                                                                   | >_ D1/                                                                        | NOND DRILL A       | OLE RECORD C | lient IMP | ERIAL M                       | ETALS                                         |                                                                | Page <b>† 1</b>   | of                 | ļ           |                   |                   |
|-----------------------------------------------------|--------------------------------------|---------------------------------------|-------|-----------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------|--------------|-----------|-------------------------------|-----------------------------------------------|----------------------------------------------------------------|-------------------|--------------------|-------------|-------------------|-------------------|
| Role No.<br>Property<br>Location<br>NTS<br>Claim No | CB-9<br>CHAC<br>BEAR<br>94D/<br>CHAC | 6-5<br>O BEAR<br>LAKE<br>2W<br>O BEAR | I     | Northing<br>Easting<br>Elevation<br>Latitude<br>Longitude | 8+00N<br>0+25B<br>1660                                                    | Core Size<br>Casing<br>Length<br>Dip-Collar<br>Bearing                                                                            | BQ<br>Pulled<br>108.54<br>-45<br>060                                                                                     | Depth                                                                                 | Dip Azimut)                                                                   | De                 | pth Dip Ar   | ziputh    | Sti<br>Coi<br>Dr<br>Loi<br>Un | arted<br>mpleted<br>ill Co.<br>gged By<br>its | OCT.22,1996<br>OCT.22,1996<br>PALCON DRIL<br>W.RAVEN<br>METERS | 1<br>LING         | Target<br>Comments | MAX-MIN 20N | E                 |                   |
| *PROM                                               | <b>T</b> O                           | ROCK<br>TYPE                          | ALT   | POL<br>C/A                                                |                                                                           |                                                                                                                                   | DESCRIPTION                                                                                                              |                                                                                       |                                                                               | %<br>Solphide      | SAMPLE No.   | PROM      | T0                            | LENGTH                                        | Au<br>gpt                                                      | Ag<br>PP <b>®</b> | Cu<br>pct          | Cu<br>ppa   | Pb<br>pp <b>a</b> | 3n<br>pp <b>n</b> |
|                                                     | 4.88                                 |                                       |       |                                                           | CASING -                                                                  | OV ERBURDEN                                                                                                                       |                                                                                                                          |                                                                                       |                                                                               |                    |              |           |                               |                                               |                                                                |                   |                    |             |                   |                   |
| 4.88                                                | 10,92                                |                                       |       |                                                           | RED ANDES                                                                 | ITE TUFF                                                                                                                          |                                                                                                                          |                                                                                       |                                                                               |                    |              |           |                               |                                               |                                                                |                   |                    |             |                   |                   |
|                                                     |                                      |                                       |       |                                                           | Pine grai<br>Fine grai<br>veining a<br>host rock<br>defined a             | ned with pervasive<br>ned ash tuff as fra<br>nd tension gash in<br>. Broken up near le<br>t approx. 60 deg te                     | hematite stainin<br>agments generally<br>filling. Trace di<br>ower contact and<br>o SCA                                  | ng and weak<br>( 2 mm. H<br>issem py in<br>actual con                                 | er chlorite.<br>as 5% carb-gi<br>veins and in<br>tact is poor.                | 2<br>1<br>1        |              |           |                               |                                               |                                                                |                   |                    |             |                   |                   |
| 8.00                                                | 9.50                                 | 3                                     | h     | eD                                                        | - as abov                                                                 | e, representative :                                                                                                               | sample                                                                                                                   |                                                                                       |                                                                               | tr                 | 4379         | 8.00      | 9.5                           | 0 1.50                                        | (0.03                                                          | (0.2              |                    | 29          | 14                | 216               |
| 10.92                                               | 21.05                                | i                                     |       |                                                           | DIORITE P                                                                 | BLDSPAR PORPEYRY                                                                                                                  |                                                                                                                          |                                                                                       |                                                                               |                    |              | ·         |                               |                                               |                                                                |                   |                    |             |                   |                   |
|                                                     |                                      |                                       |       |                                                           | Medium to<br>crystals<br>look fine<br>chlorite.<br>infilling<br>and poorl | pale green colour<br>up to 1 cm 1 3 mm<br>or grained and more<br>Also has 2-4% carl<br>(s. Opper contact po<br>y defined. Minor t | ed unit with sub<br>(pink orthoclase)<br>volcanic. Weak s<br>b-gtz stringer ve<br>oorly defined, lo<br>races of dissemin | to euhedra<br>). Portions<br>sericite on<br>eins and mi<br>ower contac<br>nated pyrit | l feldspar<br>of the unit<br>fractures a<br>nor tension<br>t is also br<br>e. | nd<br>gaah<br>sken |              |           |                               |                                               |                                                                |                   |                    |             |                   |                   |
| 13.97<br>15.50<br>17.07                             | 14.11<br>17.00<br>17.65              | 5                                     | chl,s | er                                                        | <ul> <li>broken</li> <li>as abov</li> <li>moderat</li> </ul>              | and fractured<br>e, representative :<br>ely broken and frac                                                                       | sample<br>ctured with one :                                                                                              | shallow gou                                                                           | ige vein                                                                      | tr                 | 4380         | 15.50     | 17.0                          | 0 1.50                                        | (0.03                                                          | 1.0               |                    | 162         | 8                 | 113               |
| 20.12<br>20.57                                      | 20.10<br>21.0                        | 5                                     |       |                                                           | - chl-he∎<br>- pale gr                                                    | eg co sca<br>gouge @ 45 deg to<br>een silicified uni                                                                              | SCA<br>t with grey bleb:                                                                                                 | s of qtz                                                                              |                                                                               |                    |              |           |                               |                                               |                                                                |                   |                    |             |                   |                   |
| 21.05                                               | 29.50                                | 1                                     |       |                                                           | RED ANDES                                                                 | ITE TUPP                                                                                                                          |                                                                                                                          |                                                                                       |                                                                               |                    |              |           |                               |                                               |                                                                |                   |                    |             |                   |                   |
|                                                     |                                      |                                       |       |                                                           | Pervasive<br>carb-qtz<br>lower con<br>Strongest<br>winor tra              | : hematite stain wi<br>tension gash infil<br>tact sharp at 60 d<br>tension gash infi<br>ces of py present                         | th small tuffaced<br>lings throughout<br>eg to SCA in com<br>llings are from i<br>as fine dissemina                      | ous fragmen<br>. Upper con<br>petent clay<br>24.64 to 29<br>ations.                   | its. Has 5-10<br>itact is brok<br>gouge zone.<br>1.50 m. Only                 | å<br>≞n,           |              |           |                               |                                               |                                                                |                   |                    |             |                   |                   |

.

•

OREQUEST CONSULTANTS LTD.

HOLE : CB-96-5 PAGE 2 of 4

| PROM  | TO             | ROCK<br>Type | ALT POL<br>C/A | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$<br>Solphide | SAMPLE No. | PRON  | TO    | LENGTH | Au<br>gpt | Ag<br>ppu | Cu<br>pct | Cu<br>ppn | РЪ<br>рр∎ | än<br>pp <b>s</b> |
|-------|----------------|--------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|-------|-------|--------|-----------|-----------|-----------|-----------|-----------|-------------------|
| 24.00 | 25.50          | 3            | hen            | - as general description, pink carb tension gash infillings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tr             | 4381       | 24.00 | 25.50 | 1.50   | (0.03     | 3.4       |           | 559       | 18        | 393               |
| 25.50 | 27.00          | 3            | he <b>n</b>    | - as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tr             | 4382       | 25.50 | 27.00 | 1.50   | (0.03     | (0.2      |           | 32<br>170 | 22        | 367               |
| 28.50 | 28.50<br>30.00 | 3            | nen<br>hen     | <ul> <li>- as above</li> <li>- as above to 29.50 then green andesite, from 29.37-30.00 is competen<br/>clay gouge, with 1-3% very fine grained dissem py and<br/>contorted blebs of carb-gtz</li> </ul>                                                                                                                                                                                                                                                                                                                                                               | t 1            | 4384       | 28.50 | 30.00 | 1.50   | (0.03     | 0.2       |           | 90        | 46        | 269               |
| 29.50 | 34.70          |              |                | SILICIFIED ANDESITE/DACITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |            |       |       |        |           |           |           |           |           |                   |
|       |                |              |                | Pale green unit with variable silicification. Upper portion in fault<br>gouge is more chloritic while central portion has strong<br>silicification/guartz flooding and looks brecciated. Faulted section<br>is well foliated at 25 to 45 deg to SCA, rest of unit looks massive.<br>Lower contact sharp at 40 deg to SCA. Variable sulphide<br>mineralization, mostly 1-3% fine dissem py with trace cpy.                                                                                                                                                             |                |            |       |       |        |           |           |           |           |           |                   |
| 30.00 | 31.50          | 2            | chl,sil        | - chi-carb and lesser hem fault gouge to 31.36 then gtz flooded unit,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-2            | 4385       | 30.00 | 31.50 | 1.50   | 0.03      | 0.6       |           | 338       | 44        | 133               |
| 31.50 | 33.00          | 2            | chl,sil        | - from 31.50-32.19 is git flooded with 2-4% fine pyrite, from 32.19-<br>32.73 is silicified andesite, from 32.73-33.00 is git flooded as<br>etat of interval                                                                                                                                                                                                                                                                                                                                                                                                          | 2-3            | 4386       | 31.50 | 33.00 | 1.50   | 0.03      | 1.0       |           | 344       | 60        | 58                |
| 33.00 | 34.50          | 2            | ch],sil        | - gtz flooded to 33.46 then aphanitic green andesite with 54 white<br>carb blebs, 2-44 fine py and tr cpy in siliceous unit, 14 fine py i<br>andesite                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-3<br>n       | 4387       | 33.00 | 34.50 | 1.50   | <0.03     | 0,8       |           | 280       | 58        | 126               |
| 34.70 | 46.26          |              |                | MOTTLED GREEN ANDESITE TUPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |            |       |       |        |           |           |           |           |           |                   |
|       |                |              |                | Unit is disrupted as has 5-10% carb-qtz tension gash infillings.<br>Predominantly chlorite altered though local sections with strong,<br>pervasive hematite. Also has white and pink irregularly shaped blebs<br>of carbonate (5%). Relic mafic minerals, probably hornblende, (10-15%<br>Variable sulphide content, mostly pyrite as disseminations (1-5%).<br>Also has small (1x2 mm) yellow-green blebs of epidote(?). Upper<br>contact sharp at 40 deg to SCA, lower contact is gradational<br>over 10 cm and is not clearly defined. Some black glassy fragments | )              |            |       |       |        |           |           |           |           |           |                   |
| 34.50 | 36.00          | 4            | hem, chi       | - as general description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-2            | 4388       | 34.50 | 36.00 | 1.50   | (0.03     | 0.6       |           | 149       | 80        | 187               |
| 36.00 | 37.50          | 4            | hem,chl        | - as general description, from 36.76 to 36.98 is 10% py as euhedral cubes up to 4 mm sq., minor traces of cpy                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-4            | 4389       | 36.00 | 37.50 | 1.50   | 0.03      | 0.4       |           | 154       | 76        | 180               |
| 37.50 | 39.00          | 4            | hem,chl        | <ul> <li>as general description, from 38.41 to 39.00 is moderately hematite<br/>stained, from 37.70 to 37.87 is 5-8% dissem py, one 5-8 mm carb-hem<br/>yein from 37.95-38.41</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              | 2              | 4390       | 37.50 | 39.00 | 1.50   | 0.36      | 0.4       |           | 90        | 80        | 123               |
| 39.00 | 40.50          | 4            | hem,chl        | <ul> <li>as general description, mod hem stain to 39.46 and from 39.80-40.50<br/>last 20 cm is brecciated with py &amp; cpy in stringer veins &amp; 50 deg t<br/>sca</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                       | ), }<br>.o     | 4391       | 30.00 | 40.50 | 10.50  | (0.03     | 0.2       |           | 382       | 18        | 111               |

HOLE #: CB-96-5

OREQUEST CONSULTANTS LTD.

,

HOLE # : CB-96-5 PAGE # 3 of 4

| PROM           | <b>to i</b>    | ROCK ALT<br>PYPE     | FOL<br>C/A | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SOLPEIDE       | SAMPLE No. | FROM         | <b>1</b> 0 | LERGTH | Au<br>gpt | Ag<br>ppm | Cu<br>pet | Cu<br>pp# | P₽<br>P₽® | 66a<br>Su |     |
|----------------|----------------|----------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|--------------|------------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----|
| 40.50          | 42.00          | 4 hem,chl            | 1          | - as general description, has 5-8% py from 40.90 to 41.18 m centered<br>around 8 cm gtz flooded zone with 10% cpv 6 2% cpv                                                                                                                                                                                                                                                                                                                                                   | 3              | 4392       | 40.50        | 42.00      | 1.50   | <0.03     | 0.4       |           | 253       | 44        | 1         | 41  |
| 42.00          | 43.50          | i hen chi            | ı          | - as general description                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3              | 4393       | 42.00        | 43.50      | 1.50   | (0.03     | 0.2       |           | 216       | 42        | 1         | 41  |
| 41 50          | 45.00          | A her chi            |            | - as general description                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-2            | 4394       | 43.50        | 45.00      | 1.50   | <0.03     | 0.4       |           | 729       | 34        | 1         | 85  |
| 45.00          | 46.50          | 4 hem,chl            | 1          | <ul> <li>as general description, from 45.23-45.60 has 5-6% dissem py, tr cpy<br/>at 45.93 is 8 mm wide carb-qtz-hem vein with 10% cpy in vein, last<br/>15 cm of interval is strongly altered at contact with pale green<br/>siliceous unit</li> </ul>                                                                                                                                                                                                                       | , 3-5          | 4395       | 45.00        | 46.50      | 1.50   | (0.03     | 0.4       |           | 711       | 60        | 1         | 83  |
| 46.35          | 71.95          |                      |            | GREEN QUARTZITE(?)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |            |              |            |        |           |           |           |           |           |           |     |
|                |                |                      |            | Aphanitic, massive homogeneous unit. Looks like it is almost pure<br>quartz but is not hard enough as is fairly easily scratched. The<br>contact zone with overlying volcanic unit is definitely silicified to<br>47.51 m then softer. Gradational upper contact from 46.35 to 46.67 m<br>then silicified with ep stringers to 47.51. Unit has 1–5% narrow qtz-<br>carb stringers @ 55 deg to SCA and minor veinlets of black chloritel?<br>Tr-1% dissem py & cpy throughout | )              |            |              |            |        |           |           |           |           |           |           |     |
| 46.50          | 48.00          | 1 chl,e              | P          | <ul> <li>as general description, silicified, gradational upper contact has<br/>mod hem staining and a bit of gouge § 50 deg to SCA with sericite,<br/>has trace to 1% each of dissem by &amp; cov</li> </ul>                                                                                                                                                                                                                                                                 | I              | 4396       | 46.50        | 48.00      | 1.50   | 0.10      | 0.4       |           | 195       | 139       |           | 23  |
| 48.00          | 49.50          | 1 chl.e              | n          | - as general description                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1              | 4397       | 48.00        | 49.50      | 1.50   | 0.19      | 0.6       |           | 86        | 38        | I.        | 11  |
| 49.50          | 51.00          | 1 chl.e              | ר<br>ס     | - as general description                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1              | 4398       | 49.50        | 51.00      | 1,50   | 0.08      | 0.4       |           | 48        | 16        | i.        | 6   |
| 51.00          | 52.50          | 1 chl.e              | p          | <ul> <li>as general description, local sections of black chlorite/manganese<br/>veins</li> </ul>                                                                                                                                                                                                                                                                                                                                                                             | 1              | 4399       | 51.00        | 52.50      | 1.50   | (0.03     | 0.4       |           | 185       | 10        |           | 4   |
| 52.50          | 54.00          | 1 chl.e              | σ          | - as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1              | 4400       | 52.50        | 54.00      | 1.50   | (0.03     | 0.6       |           | 322       | 26        |           | 12  |
| 54.00          | 71.95          | l chl,e              | P          | <ul> <li>Same as general description, 2-4% carb-qtz veins with traces of py<br/>chalcopyrite</li> </ul>                                                                                                                                                                                                                                                                                                                                                                      | <b>&amp;</b> 3 | 85301      | 70.00        | 71.50      | 1.50   | 0.13      | 0.6       |           | 313       | 64        | ]         | .71 |
| 70.00          | 71.50          |                      |            | - as general description, strong (10-15%) carb-qtz-chl-mang veins &<br>80 deg to SCA with 1% py and tr-1% cpy as dissem blebs                                                                                                                                                                                                                                                                                                                                                |                |            |              |            |        |           |           |           |           |           |           |     |
| 71.95          | 75.93          |                      |            | MOTTLED GREEN ANDESITE TUPP                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |            |              |            |        |           |           |           |           |           |           |     |
|                |                |                      |            | As described 34.70-46.26 m. Some coarser fragmental sections. Upper<br>contact at approx 55 deg to SCA, lower contact approx 50 deg to SCA,<br>neither are clearly defined. Variable sulphides = 1-2% blebs of py,<br>2-4% carb-gtz stringer veins and minor larger pink coloured veins.                                                                                                                                                                                     |                |            |              |            |        |           |           |           |           |           |           |     |
|                |                |                      | _          | muchaile (a) with an 21 AC - this is prevent dependention                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1            | ะเวลา      | <u>71 50</u> | 73 01      | 0 1.50 | (ሰ_ቡን     | A. 8      |           | 291       | 6         | 4         | 172 |
| 71.50<br>73.00 | 73.00<br>74.50 | 4 chí,he<br>4 ch],he | :0<br>:D   | <ul> <li>- guartzitet() unit to 11.95 m then as general description</li> <li>- as general description from 73.70-74.05 is contorted &amp; broken pink</li> </ul>                                                                                                                                                                                                                                                                                                             | 2-3            | 85303      | 73,00        | 74.5       | 1.50   | 0.17      | 2.0       |           | 1103      | 5         | 5         | 147 |
| 14 54          | 76.00          | 1                    | -          | carp veining, one vein is 5 cm wide e 50 deg to SCA with ep servage                                                                                                                                                                                                                                                                                                                                                                                                          | :»<br>Э        | 85304      | 74.50        | 76.0       | 0 1.50 | (0.03     | 0.6       |           | 347       | 3         | 1         | 203 |
| /4.50          | /6.00          | 4 chi,he             | <b>2</b>   | - as general description                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4              | 00004      |              |            |        |           |           |           | 371       |           |           |     |

HOLE #: CB-96-5

1 Т

|                 |                 |              | OR                     | EQU        | JEST CONSULTANTS LTD.                                                                                                                                                                                                                                 |          |                | H              | 01E # :        | CB-96-5          |                | PAGE        | 4 of      | 4         |           |                   |
|-----------------|-----------------|--------------|------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|----------------|----------------|------------------|----------------|-------------|-----------|-----------|-----------|-------------------|
| FROM            | t0              | ROCK<br>TYPE | ALT                    | POS<br>C/A | DESCRIPTION                                                                                                                                                                                                                                           | SULPHIDE | SAMPLE No.     | PROM           | <b>t</b> o     | LENGTH           | Au<br>9pt      | Ag<br>ppm   | Cu<br>pet | Cu<br>ppæ | ₽b<br>PF∎ | 2n<br>pp <b>s</b> |
| 75.93           | 82.97           | ,            |                        |            | REMATITIC ANDESITE LAPILLI TUPP/AGGLOMERATE                                                                                                                                                                                                           |          |                |                |                |                  |                |             |           |           |           |                   |
|                 |                 |              |                        |            | Mottled greenish-red colour with coarse fragments. Pervasive hematite<br>stain with lesser chlorite. Bas local finer grained interbeds. Has<br>1-4% carb-gtz stringer veins. Upper contact at approx 55 deg to SCA.<br>Minor {tr-1%} dissem sulphides | 2        |                |                |                |                  |                |             |           |           |           |                   |
| 76.00<br>77.50  | 77.50<br>79.00  | 6            | i hen,chi<br>i hen,chi | l<br>1     | - as general description<br>- as general description                                                                                                                                                                                                  | tr<br>tr | 85305<br>85306 | 76.00<br>77.50 | 77.50<br>79.00 | 0 1.50<br>0 1.50 | <0.03<br><0.03 | <0.2<br>0.2 |           | 221<br>18 | 14<br>14  | 166<br>111        |
| 82.97           | 90.36           |              |                        |            | RED APRANITIC ANDESITE TUPP                                                                                                                                                                                                                           |          |                |                |                |                  |                |             |           |           |           |                   |
|                 |                 |              |                        |            | Much finer grained than previous unit with pervasive deep red hematit<br>stain. Was gradational upper and lower contacts.                                                                                                                             | ie.      |                |                |                |                  |                |             |           |           |           |                   |
| 90.36           | 108.54          |              |                        |            | REMATITIC ANDESITE LAPILLI TUPP/AGGLOMERATE                                                                                                                                                                                                           |          |                |                |                |                  |                |             |           |           |           |                   |
|                 |                 |              |                        |            | As described 75.93-82.97                                                                                                                                                                                                                              |          |                |                |                |                  |                |             |           |           |           |                   |
| 92.75<br>102.00 | 92.82<br>108.54 |              |                        |            | - carb-gtz-chl-ser vein, barren <b>f 4</b> 5 deg to SCA<br>-strong pervasive red he <b>m s</b> tain                                                                                                                                                   |          |                |                |                |                  |                |             |           |           |           |                   |
|                 | 108.54          |              |                        |            | END OF HELE                                                                                                                                                                                                                                           |          |                |                |                |                  |                |             |           |           |           |                   |

.

# APPENDIX III

Petrographic Report



# Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

Report # 960789 for:

David Cole, Pat McAndless, Imperial Metals Corporation, 420 - 355 Burrard Street, Vancouver, B.C., V6C 2G8

November 1996

| Samples: | CB-96-1: | 44.5 m, 48.9 m     |
|----------|----------|--------------------|
| -        | CB-96-4: | 4 m, 8.8 m, 72.2 m |
|          | CB-96-3: | 2.7 m, 42.7 m      |

## **Mineralogical Notes:**

The mineral identified as sericite is mainly cryptocrystalline and could be illite. As well, in some samples it has an anomalously low refractive index (R.I.), which suggests that it may be intermediate in composition towards the montmorillonite group (mixed layer clay). However, recent X-ray diffraction and S.E.M. studies of a similar mineral with similar anomalously low R.I. from two other clients yielded indicated that the mineral was sericite.

Carbonates are identified on the basis of R.I. and reactivity with cold dilute HCl. Calcite has a low R.I. and reacts vigorously, dolomite has a moderate R.I. and reacts slowly, and ankerite has a moderately high R.I. and reacts very slowly. N some samples, dusty inclusions, (mainly of hematite and/or leucoxene) can give calcite and apparent higher R.I than for the same mineral without such inclusions. In samples where more than one carbonate phase is present, distinction is difficult, and estimates of relative carbonate abundances are not precise.

## Summary:

Samples are grouped as follows in terms of original lithology:

## A: Porphyritic, Hematitic Basalt/Andesite

Sample CB-96-1 44.5 m is a porphyritic, amygdaloidal, hematitic basalt/andesite containing phenocrysts of plagioclase and minor ones of biotite in a variable groundmass of plagioclase and devitrified volcanic glass containing abundant hematite. Plagioclase phenocrysts are altered completely to sericite and calcite, and biotite phenocrysts are altered completely to muscovite. Abundant amygdules are of calcite, and much fewer ones are of quartz-(calcite) and quartz-sericite. A veinlets of calcite is cut by one of ankerite.

In the hand sample of **Sample CB-96-1 48.9 m** a few dark grey fragments up to 2 cm across may be of basalt/andesite as in Sample CB-96-1 44.5 m.

Sample CB-96-3 42.7 m is a brecciated, porphyritic basalt/andesite somewhat similar to Sample CB-96-1 44.5 m, but lacks calcite-rich amygdules. Phenocrysts of plagioclase and very minor ones of biotite and magnetite are set in a variable, commonly finely patchy groundmass of plagioclase and devitrified volcanic glass, the latter containing abundant dusty hematite. Plagioclase phenocrysts and groundmass are altered completely to sericite and calcite. Biotite phenocrysts are altered completely to muscovite. Magnetite is replaced completely by hematite. The breccia matrix is dominated by extremely fine grained, cherty quartz and less abundant patches of calcite. Discontinuous veinlets are of calcite and of hematite.

4 Sample CB-96-4 8.8 m is a porphyritic amygdaloidal basalt/andesite containing phenocrysts of plagioclase and lesser ones of pyroxene/hornblende and patches of sphene(?) in a groundmass dominated by lathy plagioclase with interstitial plagioclase, hematite, and minor chlorite. Plagioclase is altered moderately with sericite and calcite. Pyroxene/hornblende is replaced to either patches of chlorite-calcite-quartz or patches bordered by opaque with cores of quartz and lesser calcite and minor chlorite. Irregular amygdules are dominated by calcite with much less abundant quartz and chlorite Some have delicate, concentric growth zones from calcite to quartz to chlorite. Others have outer zones of chlorite and inner zones of quartz and calcite.

## B: Latite Flow

5 Sample CB-96-3 2.7 m is a latite flow dominated by equant, very fine grained plagioclase and less abundant quartz. Some patches of plagioclase were altered strongly to completely to cryptocrystalline sericite and much less abundant patches of calcite. A fragment 4 mm across is of a very fine grained latite flow/dike. A vein and subparallel veinlet are dominated by chalcopyrite with lesser calcite and much less pyrite and quartz.

Sample CB-96-4 4 m is a latite flow dominated by interlocking, fine grained plagioclase with minor interstitial quartz. Alteration is moderate to disseminated sericite/montmorillonite and patches of dolomite. Veinlets are of calcite-(quartz).

## C: Latite Tuff, moderately to strongly replaced by calcite or calcite-quartz

7 Sample CB-96-1 48.9 m contains fragments of latite tuff(?) up to 8 mm across and a few of latite flow up to 3 mm across in a variable matrix dominated by very fine grained quartz and calcite with minor sericite, sphalerite, and pyrite. Moderately abundant replacement patches are of medium to coarse grained calcite. In the hand sample a few dark grey fragments up to 2 cm across may be of basalt/andesite as in Sample CB-96-1 44.5 m.

Sample CB-96-4 72.2 m contains relic fragments up to several mm across of extremely fine grained to cryptocrystalline latite tuff(?) dominated by sericite with minor quartz and Ti-oxide. Minor altered phenocrysts of plagioclase and one of hornblende are replaced completely by sericite and quartz-(Ti-oxide), respectively. Early replacement is to patches of very fine to coarse grained calcite containing abundant inclusions of hematite. Later replacement is to patches and veinlets of very fine to fine grained calcite-quartz with moderately abundant patches of chalcopyrite, lesser bornite, and minor tetrahedrite and galena. Boundaries between the two stages of replacement are in part diffuse and difficult to identify.

## Sample CB-96-1 44.5 m Porphyritic, Amygdaloidal, Hematitic Basalt/Andesite; Calcite Veinlet; Late Ankerite Veinlet

Phenocrysts of plagioclase and minor ones of biotite are set in a variable groundmass of plagioclase and devitrified volcanic glass containing abundant hematite. Plagioclase phenocrysts are altered completely to sericite and calcite, and biotite phenocrysts are altered completely to muscovite. Abundant amygdules are of calcite, and much fewer ones are of quartz-(calcite) and quartz-sericite. A veinlets of calcite is cut by one of ankerite.

| phenocrysts       |       | amygdules |       |
|-------------------|-------|-----------|-------|
| plagioclase       | 8-10% | calcite   | 8-10% |
| biotite           | 0.5   | quartz    | 1     |
| groundmass        |       | sericite  | 1     |
| plagioclase       | 20-25 | veinlets  |       |
| devitrified glass | 45-50 | calcite   | 0.5   |
| hematite          | 2-3   | ankerite  | 0.5   |

Plagioclase forms subhedral to euhedral phenocrysts averaging 0.08-0.15 mm in size and a few from 0.3-1.3 mm long. Alteration is variable, mainly to cryptocrystalline sericite and minor to abundant patches of cryptocrystalline to very fine grained calcite.

Biotite(?) forms a few phenocrysts averaging 0.1-0.5 mm in size. It is altered to pseudomorphic muscovite/biotite which is pleochroic from colourless to light brown. The presence of biotite phenocrysts in a rock of this composition is unusual.

Much of the groundmass contains minor disseminated lathy plagioclase grains averaging 0.03-0.07 mm in size in a semi-opaque to opaque matrix of devitrified glass containing very abundant deep red hematite. Other patches in the groundmass are of lathy plagioclase altered to cryptocrystalline sericite with moderately abundant dusty to extremely fine grained hematite.

Hematite also forms disseminated, equant grains averaging 0.07-0.15 mm in size and a few up to 0.25 mm in size. Grains probably are secondary after magnetite.

Calcite forms irregular amygdules averaging 0.2-0.5 mm in size and a few up to a few mm across. A few amygdules from 0.1-0.3 mm in size have a discontinuous outer zone of extremely fine grained quartz and a core of cryptocrystalline sericite. One patch up to 2 mm across contains abundant amygdules up to 0.5 mm across of slightly interlocking, extremely fine grained quartz with minor patches of cryptocrystalline to extremely fine grained calcite.

An early veinlet averaging 0.1-0.2 mm wide is of very fine grained calcite.

A late vein averaging 0.2-0.3 mm wide is of very fine grained ankerite containing moderately abundant dusty inclusions.
# Sample CB-96-1 48.9 m Brecciated, Calcite-Quartz-Sericite Altered Latite (?); Patches of Coarse Calcite

Fragments of latite tuff(?) up to 8 mm across and a few of latite flow up to 3 mm across are set in a variable matrix dominated by very fine grained quartz and calcite with minor sericite, sphalerite, and pyrite. Moderately abundant replacement patches are of medium to coarse grained calcite. In the hand sample a few dark grey fragments up to 2 cm across may be of basalt/andesite as in Sample CB-96-1 44.5 m.

| <b>fragments</b><br>latite tuff<br>latite flow | 30-35%<br>2- 3 |                    |                      |
|------------------------------------------------|----------------|--------------------|----------------------|
| basalt/andesite(?)                             | -              | (10% coarse fragme | ents in hand sample) |
| groundmass                                     |                |                    |                      |
| a) quartz                                      | 20-25          | sphalerite         | 0.2%                 |
| calcite                                        | 17-20          | opaque             | 0.1 (pyrite?)        |
| sericite                                       | 1-2            | muscovite          | e minor              |
| b) coarse calcite                              | 17-20          |                    |                      |
| quartz                                         | 0.2            |                    |                      |

A few fragments from 2-8 mm long contain minor phenocrysts averaging 0.2-0.3 mm in size of muscovite (after biotite?) in a matrix of cryptocrystalline sericite with disseminated patches of cryptocrystalline hematite and wispy lenses of cryptocrystalline ankerite. The largest fragment contains a few euhedral phenocrysts of hornblende up to 0.5 mm long; alteration of these is to extremely fine grained quartz with dusty hematite concentrated in minor patches and along the margins of the phenocrysts. Several similar smaller sericite-rich fragments are from 0.3-0.6 mm long. Some of the fragments have a moderate foliation.

A few latite flow fragments up to a few mm across are dominated by equant, slightly interlocking plagioclase grains averaging 0.05-0.2 mm in size intergrown with patches of cryptocrystalline sericite with less abundant calcite grains averaging 0.05-0.1 mm in size. Biotite forms minor small phenocrysts averaging 0.15-0.2 mm in size. Hematite is concentrated moderately to strongly in patches up to 0.07 mm across of dusty grains.

One diffuse fragment 0.8 mm in size is of cryptocrystalline to extremely fine grained plagioclase/quartz and cryptocrystalline sericite.

The main groundmass contains moderately abundant disseminated, prismatic quartz grains averaging 0.1-0.2 mm long and anhedral calcite grains averaging 0.05-0.1 mm in size in a matrix of extremely fine grained quartz and calcite, and minor cryptocrystalline sericite. A few prismatic quartz grains are up to 0.9 mm long. Some patches up to a few mm across contain abundant calcite grains averaging 0.1-0.3 mm in size. Muscovite forms scattered flakes from 0.1-0.2 mm in length.

Sphalerite forms disseminated patches averaging 0.03-0.08 mm in size and a few irregular patches up to 0.3 mm long, it is colourless with very high relief.

Opaque (probably pyrite, possibly with some chalcopyrite) forms disseminated grains averaging 0.03-0.01 mm in size.

Later(?) replacement patches up to a few mm across are of medium to coarse grained calcite with minor subhedral to euhedral prismatic grains of quartz averaging 0.1-0.2 mm long.

# Sample CB-96-3 2.7 m Latite Flow; Sericite-Calcite Alteration Chalcopyrite-Calcite-(Quartz-Pyrite) Veinlets

The sample is dominated by equant, very fine grained plagioclase and less abundant quartz. Some patches of plagioclase were altered strongly to completely to cryptocrystalline sericite and much less abundant patches of calcite. A fragment 4 mm across is of a very fine grained latite flow/dike. A vein and subparallel veinlet are dominated by chalcopyrite with lesser calcite and much less pyrite and quartz.

40-45% plagioclase sericite 30-35 quartz 12-15 5-7 calcite pyrite minor chalcopyrite trace Ti-oxide trace fragment latite flow/dike 2-3 amygdules/patches quartz-calcite 0.2 veins chalcopyrite-calcite-pyrite-quartz 2%

Plagioclase forms equant, slightly interlocking grains averaging 0.05-0.08 mm in size. In some patches it is relatively fresh to altered slightly to sericite. Elsewhere, it is replaced completely by cryptocrystalline sericite.

A patch up to 4 mm across is of a latite flow dominated by equant, slightly interlocking grains of plagioclase and much less calcite and quartz averaging 0.07-0.12 mm in size. Plagioclase in this patch is altered slightly to cryptocrystalline sericite.

Quartz forms anhedral grains averaging 0.03-0.07 mm in size and a few up to 0.15 mm across. Calcite is concentrated in irregular patches averaging 0.1-0.5 mm in size.

Pyrite and chalcopyrite form disseminated grains averaging 0.01-0.03 mm in size and a few up to 0.08 mm across. A few patches up to 0.12 mm in size are of a few pyrite grains with interstitial patches of chalcopyrite

Ti-oxide forms disseminated grains averaging 0.01-0.03 mm in size.

A few patches (possibly amygdules) up to 0.6 mm across are of quartz and calcite grains averaging 0.15-0.3 mm in size.

A vein up to 0.3 mm wide is dominated by very fine to fine grained chalcopyrite and calcite with minor very fine grained pyrite and quartz. A few patches of chalcopyrite are replaced slightly along fractures to hematite. A smaller discontinuous veinlet up to 0.1 mm wide is dominated by chalcopyrite with lesser chalcopyrite and quartz.

#### Sample CB-96-3 42.7 m Brecciated, Porphyritic Basalt/Andesite; Breccia Matrix of Cherty Quartz-Calcite; Veinlets of Calcite, Hematite

The host rock is somewhat similar to Sample CB-96-1 44.5 m, but lacks the calcite-rich amygdules. Phenocrysts of plagioclase and very minor ones of biotite and magnetite are set in a variable, commonly finely patchy groundmass of plagioclase and devitrified volcanic glass, the latter containing abundant dusty hematite. Plagioclase phenocrysts and groundmass are altered completely to sericite and calcite. Biotite phenocrysts are altered completely to muscovite. Magnetite is replaced completely by hematite. The breccia matrix is dominated by extremely fine grained, cherty quartz and less abundant patches of calcite. Discontinuous veinlets are of calcite and of hematite.

| phenocrysts        |       |
|--------------------|-------|
| plagioclase        | 7- 8% |
| biotite            | minor |
| groundmass         |       |
| plagioclase        | 5-7   |
| devitrified glass  | 20-25 |
| sericite           | 15-17 |
| hematite/magnetite | 1-2   |
| leucoxene          | 0.2   |
| breccia matrix     |       |
| quartz             | 30-35 |
| calcite            | 7-8   |
| veinlets           |       |
| calcite            | 2-3   |
| hematite           | 0.5   |
|                    |       |

Plagioclase forms subhedral to euhedral phenocrysts averaging 0.1-0.3 mm in size and a few from 0.5-1 mm long. Alteration is complete to cryptocrystalline sericite and minor to abundant patches of cryptocrystalline to very fine grained calcite.

Biotite(?) forms a few phenocrysts averaging 0.1-0.3 mm in size. It is altered to pseudomorphic muscovite/biotite which is pleochroic from colourless to light brown. The presence of biotite phenocrysts in a rock of this composition is unusual.

The groundmass of the host rock contains minor disseminated lathy plagioclase grains averaging 0.03-0.05 mm in size in a semi-opaque to opaque matrix of devitrified glass containing very abundant deep red hematite.

Moderately abundant, irregular patches averaging 0.05-0.2 mm in size are of cryptocrystalline sericite. These grade texturally into several patches in the groundmass up to 2 mm in size, mainly 'bordering the breccia matrix, which are dominated by cryptocrystalline sericite with 2-5% disseminated hematite ranging from dusty grains to equant grains up to 0.1 mm in size.

Hematite also forms disseminated, equant grains averaging 0.07-0.15 mm in size and a few up to 0.3 mm in size. These grains probably are secondary after magnetite.

Leucoxene (probably after ilmenite) forms a few patches up to 0.1 mm in size of cryptocrystalline grains. Interstitial to some clusters of hematite/magnetite are patches up to 0.3 mm long of cryptocrystalline leucoxene.

(continued)

## Sample CB-96-3 42.7 m (page 2)

The matrix of the breccia is dominated by equant, moderately interlocking grains of cherty quartz averaging 0.005-0.01 mm in size, with a few patches up to 1.5 mm across of grains averaging 0.01-0.02 mm in size. Calcite forms disseminated, very fine grained patches averaging 0.1-0.3 mm in size, and a few irregular ones up to 2 mm across; some of the calcite patches grade into the calcite veinlets, and the two may be of the same age. A few patches contain abundant poikilitic calcite grains up to 1 mm in size intergrown with abundant cherty quartz averaging 0.01-0.02 mm in grain size. The largest of these, a lens up to 1.5 mm wide also contains 2-5% disseminated patches averaging 0.03-0.05 mm in size of cryptocrystalline sericite. Hematite forms disseminated, subhedral grains averaging 0.05-0.08 mm in size. Disseminated hematite-rich patches averaging 0.05-0.1 mm in size probably are relics of the host rock.

Discontinuous veinlets averaging 0.05-0.15 mm wide of very fine grained calcite cut both breccia matrix and fragments. One vein up to 0.3 mm wide is of fine grained calcite. A few discontinuous veinlets up to 0.2 mm wide of cryptocrystalline hematite cut the breccia matrix.

#### Sample CB-96-4 4 m

#### Latite Flow: Sericite-Dolomite Alteration; Veinlets of Calcite-(Quartz)

The rock is dominated by interlocking, fine grained plagioclase with minor interstitial quartz. Alteration is moderate to disseminated sericite and patches of dolomite. Veinlets are of calcite-(quartz).

| plagioclase    | 78-80% |
|----------------|--------|
| sericite       | 12-15  |
| quartz         | 3-4    |
| dolomite       | 2-3    |
| Ti-oxide       | minor  |
| veinlets       |        |
| calcite-quartz | 1      |

Plagioclase forms anhedral, interlocking, untwinned grains averaging 0.1-0.3 mm in size. Alteration is slight to moderate to cryptocrystalline sericite, whose refractive index (R.I.) is moderately lower than that of quartz.

Quartz forms single grains and clusters of a few grains averaging 0.1-0.25 mm in size and a few up to 0.4 mm across interstitial to plagioclase.

Dolomite forms disseminated, irregular to skeletal patches grains averaging 0.1-0.3 mm in size, and is concentrated in a few irregular patches up to 1 mm across.

Ti-oxide/leucoxene forms disseminated patches averaging 0.02-0.05 mm in size of cryptocrystalline grains

A discontinuous veinlet 0.2-0.3 mm wide is of very fine grained calcite. A few veinlets from 0.03-0.1 mm wide are of very fine grained calcite and lesser quartz.

# Sample CB-96-4 8.8 m Porphyritic Amygdaloidal Basalt/Andesite; Plagioclase, Pyroxene/Hornblende Phenocrysts; Ilmenite(?) Patches Chlorite-Quartz-Calcite-Sericite Alteration; Chlorite-Quartz-Calcite Amygdules

Phenocrysts of plagioclase and lesser ones of pyroxene/hornblende and patches of sphene(?) are set in a groundmass dominated by lathy plagioclase with interstitial plagioclase, hematite, and minor chlorite. Plagioclase is altered moderately with sericite and calcite. Pyroxene/hornblende is replaced by either patches of chlorite-calcite-quartz or patches bordered by opaque with cores of quartz and lesser calcite and minor chlorite. Irregular amygdules are dominated by calcite with much less abundant quartz and chlorite. Some have delicate, concentric growth zones from calcite to quartz to chlorite. Others have outer zones of chlorite and inner zones of quartz and calcite.

|        | groundmass                                         |                                                                           |
|--------|----------------------------------------------------|---------------------------------------------------------------------------|
| 30-35% | plagioclase                                        | 40-45                                                                     |
| 7-8    | hematite                                           | 4-5                                                                       |
| 2-3    | chlorite                                           | 2-3                                                                       |
| trace  | apatite                                            | 0.2                                                                       |
|        |                                                    |                                                                           |
| 5-7    |                                                    |                                                                           |
| 0.5    |                                                    |                                                                           |
| 0.3    |                                                    |                                                                           |
|        | 30-35%<br>7-8<br>2-3<br>trace<br>5-7<br>0.5<br>0.3 | groundmass30-35%plagioclase7-8hematite2-3chloritetraceapatite5-70.50.30.3 |

Plagioclase forms euhedral to subhedral, prismatic phenocrysts averaging 0.5-2 mm in size and a few up to 4 mm long. Alteration is moderate to strong to cryptocrystalline sericite and patches of extremely fine grained calcite and extremely fine grained chlorite. A few grains contain a rounded inclusion averaging 0.03-0.05 mm in size of cryptocrystalline chlorite.

Pyroxene/hornblende forms subhedral to euhedral, prismatic grains averaging 0.7-1 mm long and 0.2-0.4 mm across. In many patches, alteration consists of rims and ribs of opaque and interstitial patches of cryptocrystalline to extremely fine grained, moderately interlocking quartz and others of cryptocrystalline calcite in widely varying proportions. Some also contain minor chlorite. In less abundant phenocrysts, alteration is complete to very fine grained intergrowths of two or more of calcite, chlorite, and quartz. Possibly one of these types is after pyroxene and the other is after hornblende, or they may represent two types of alteration of a single mafic phase.

Hematite/leucoxene forms patches averaging 0.2-0.5 mm in size of cryptocrystalline grains. A few patches have a rim of hematite and a core dominated by cryptocrystalline leucoxene intergrown with cryptocrystalline sericite. These patches probably are secondary after ilmenite.

Apatite forms a few subhedral prismatic grains up to 0.6 mm long.

In the groundmass, plagioclase forms lathy grains averaging 0.05-0.1 mm long. Interstitial to these is cryptocrystalline plagioclase with moderately abundant disseminated hematite and minor chlorite. Plagioclase is altered slightly to moderately to cryptocrystalline sericite. Apatite forms equant, subhedral to euhedral grains averaging 0.05 mm across, and a few up to 0.2 mm across.

(continued)

## **Sample CB-96-4 8.8 m** (page 2)

Amygdules averaging 0.5-1.5 mm in size and a few up to a few mm long are dominated by cryptocrystalline to extremely fine grained calcite. Along borders of some are patches of very fine grained quartz. Chlorite occurs in some as irregular patches up to 0.5 mm in size.

Some amygdules contain hemispheric to spherical aggregates up to 0.3 mm across of calcite with lesser chlorite and quartz. A few amygdules up to 2 mm across contain abundant, delicate, concentric intergrowths zoned from calcite on the outside to quartz in an intermediate zone and chlorite in the core.

Two spheroidal to ellipsoidal amygdules 1.1-1.7 mm across have an outer zone of opaque to deep red hematite, in part with spheroidal patches growing inwards, to an intermediate zone of very fine grained calcite and chlorite, with an inner zone of cryptocrystalline ankerite/dolomite.

A few amygdules up to 1.5 mm across are zoned from rim to core as follows: chlorite, quartz, calcite, quartz.

# Sample CB-96-4 72.2 m Strongly Altered Latite Tuff(?); Early Calcite-(Hematite) Replacement; Later Calcite-Quartz-Chalcopyrite-Bornite Replacement

Relic fragments up to several mm across are of extremely fine grained to cryptocrystalline latite tuff(?) dominated by sericite with minor quartz and Ti-oxide. Minor altered phenocrysts of plagioclase and one of hornblende are replaced completely by sericite and quartz-(Ti-oxide), respectively. Early replacement is to patches of very fine to coarse grained calcite containing abundant inclusions of hematite. Later replacement is to patches and veinlets of very fine to fine grained calcite-quartz with moderately abundant patches of chalcopyrite, lesser bornite, and minor tetrahedrite and galena. Boundaries between the two stages of replacement are in part diffuse and difficult to identify.

| host rock     |       |
|---------------|-------|
| sericite      | 10-12 |
| quartz        | 2-3   |
| Ti-oxide      | 0.2   |
| chalcopyrite  | minor |
| early replace | ment  |
| calcite       | 30-35 |
| hematite      | 1     |
| chlorite      | minor |
| Ti-oxide      | trace |
| later replace | ment  |
| calcite       | 30-35 |
| quartz        | 8-10  |
| chalcopyrite  | 5-7   |
| bornite       | 0.5   |
| tetrahedrite  | 0.1   |
| galena        | minor |
| apatite       | trace |

The host rock forms fragments up to several mm across. A few fragments contain subhedral patches from 0.5-0.9 mm in size of cryptocrystalline sericite, probably after plagioclase phenocrysts. One patch 0.4 mm long is of very fine grained quartz and minor Ti-oxide; it may be secondary after a hornblende phenocryst. The groundmass is dominated by cryptocrystalline sericite, with minor to moderately abundant cryptocrystalline to extremely fine grained quartz and/or calcite, and moderately abundant disseminated hematite/Ti-oxide. A few patches up to 0.2 mm across are of Ti-oxide with moderately abundant ribs of hematite, probably after ilmenite. Some fragments contain discontinuous veinlets up to 0.1 mm in size of extremely fine to very fine grained quartz.

Early calcite-rich replacement occurs in patches up to several mm across of very fine grained to coarse aggregates. In some patches, hematite forms abundant dusty to extremely fine grained inclusions with a deep red internal reflection. Elsewhere hematite forms minor to moderately abundant dusty grains, which are partly why the calcite grains have an apparent moderate relief. One irregular patch 0.2 mm across is of cryptocrystalline, medium green chlorite with minor disseminated Ti-oxide, and a few wispy seams are of similar chlorite.

(continued)

### Sample CB-96-4 72.2 m (page 2)

Later replacement patches are of calcite and much less abundant quartz and sulfides. This calcite has low relief and is free of dusty hematite inclusions. In several places it appears to replaced the earlier phase of calcite, and locally it forms veinlets cutting coarse grained, early calcite. In some patches, it is difficult to distinguish the two stages of calcite because "borders" between them are diffuse. Along one border of the largest sulfide patch, calcite forms a comb-textured aggregate up to 0.1 mm wide in which grains are oriented perpendicular to the border of the sulfide patch. In the core of one large patch of medium to coarse grained early-formed calcite is a zone a few mm wide of fine to medium grained later-formed calcite containing a core a few mm long and up to 1 mm wide of fine grained quartz and one patch of chalcopyrite up to 0.4 mm across.

Quartz commonly forms subhedral to euhedral prismatic grains averaging 0.1-0.5 mm long and up to 0.1 mm across disseminated in interstitial calcite grains. A few prismatic grains are from 0.5-0.7 mm long. A few patches up to 3 mm long contain moderately abundant prismatic quartz grains averaging 0.1-0.2 mm long in a matrix of extremely fine grained, equant quartz grains with minor calcite and chalcopyrite.

Sulfides form irregular patches averaging 0.05-0.5 mm in size and a few about 1 mm across and one patch 7 mm across. Most smaller patches and a few large ones are of chalcopyrite with only minor other sulfides, mainly bornite, and most are intergrown with very fine grained quartz. The largest patch and a few smaller ones nearby and one patch at the other end of the section are of chalcopyrite with moderately abundant zones up to 0.9 mm across mainly along their margins dominated by bornite with less abundant tetrahedrite and galena. A few delicate intergrowths along the margin are of bornite rimmed by tetrahedrite. In the largest patch, galena forms several inclusions up to 0.1 mm in size away from the margin. Sulfides commonly are intergrown with very fine to fine grained quartz.

Apatite forms a few anhedral grains up to 0.03 mm in size in one patch of quartz.

John G. Payne, Ph.D., Tel: (604)-986-2928 Fax: (604)-983-3318 email: johnpayn@istar.ca

# APPENDIX IV

- --

- -

Rock Sample Descriptions

,

| Sample: Dat       | te: Location: | Lithology:         | Remarks / Alteration / Structure:      | Mineralization:                       | Analysis:                             |
|-------------------|---------------|--------------------|----------------------------------------|---------------------------------------|---------------------------------------|
| WR96-1            | Grab          | Andesite   Basalt  | pervasive carb alt" minor hemotite     | tr py + specular hemotite             |                                       |
| WR96-2            | Grab          | Andesite Tuff      | faint yellow-orange Fe-carb altered.   | tr blebs specular hematite            |                                       |
|                   |               |                    | and Silican + Ca-carb altered          |                                       |                                       |
| WR96-3            | Grab          | Andesite Tuff      | Strong carbalt, nanow barren           | to specular hemotite possibly         |                                       |
|                   |               |                    | carb stochwork veins                   | atter pepite                          |                                       |
| WR96-4            | Grab          | Andesite           | Strong pervesive hem and lesser        | tr specules hematite                  |                                       |
|                   |               |                    | silica alteration                      | · · · · · · · · · · · · · · · · · · · | -                                     |
| WR96-5            | FLOAT         | Atz-Carb Vein      | Float trail, follow up to top of ridge | Mussive tetrahedaite, lesser          |                                       |
|                   |               |                    | but canit find in place                | banite, mal stain                     |                                       |
| WR96-6            | Grab          | Rhydite ayh        | Flow banded dybe up to 10 mwrde        | trace specular hemotite               | +                                     |
|                   |               |                    | with carb a tustion                    |                                       |                                       |
| <u>WK96-7</u>     | Grab          |                    | as above                               | as above                              |                                       |
| WK46-8            | Grab          |                    |                                        |                                       | +                                     |
| WR 96-9           | Grab          | Matric Dyla        | 10-do cm wide carb vin                 |                                       |                                       |
| WK 46-10          | Grab          | (Xtz Zone          | Petchy queste thooding even Im         | Trace gry + py                        | · · · · · · · · · · · · · · · · · · · |
| 120.01            |               |                    | Wide zone in andesite                  |                                       | +                                     |
| <u>WK96-11</u>    | Grab          | - Findesite        | Yellow-brown re-carb altered           | TY-110 Specular nemative of           |                                       |
| 1)2 21 12         | FLOAT         | - Australia Ma     | Marcon tutt                            | Tetrahedit, Very tin grained          | +                                     |
| WK 96-12          |               | Quant Van          | Vaggy of Vin conil find in             | the bud to anot + azont               |                                       |
|                   |               |                    | figer, old Horahs and Hoal             | Staws + fine constal masses           |                                       |
| $1/16 q_{1} = 12$ | Grah          | Rhult 7            | What Colsic want with fourt            | Tr-24 free dissem pu inches           |                                       |
|                   |               |                    | and time a portassic a 1th ??          | 11 2 % MQ CISS ME F 4 COLORS          |                                       |
| 10896 - 14        | Gmb           | Rhughte / Atz Von? | Rusty area with sugary att cont        | miner traces of parite                |                                       |
|                   |               |                    | act good origntation may altered       |                                       | 1                                     |
|                   |               |                    | looking than talsic unit               |                                       | 1                                     |
| WR96-15           | Chip          | Banite Vein        | Benite yein m felsic dyle with         | no visible sulphides                  |                                       |
|                   | 20cm          |                    | limenite + Fe-carb stain               |                                       |                                       |

. . . . . . .

t

£

c

.

1 1

| Sample:                               | Date:   | Location: | Lithology:           | Remarks / Alteration / Structure:     | Mineralization:                   | Analysis: |
|---------------------------------------|---------|-----------|----------------------|---------------------------------------|-----------------------------------|-----------|
| WR96-16                               |         | CHIP      | Shear Zone           | Andesite shear zone with a 5cm        | spreular hematite                 |           |
|                                       |         | 40 cm     |                      | wide specular hemosite VCIN           |                                   |           |
| WR96-17                               |         | Grab      | Silicified Andesite? | Pale greenish - white silic rous unit | 2-5% five dissm py                |           |
| WR96-18                               |         | Grab      | Quart Van?           | Siliceous quartz flooding or          | coarse py cubes, 5mm <sup>2</sup> |           |
|                                       |         |           |                      | "vem-like" quartz                     |                                   |           |
| WR96-19                               |         | Grab      | Andesite             | Qtz, chlerite, hemotite, epidote      | to dissm py                       |           |
| WR96-20                               |         | CHIP      | Shean Zone           | Shear zone with multiple socialing    | specular hemotite veins up to     |           |
|                                       |         | 1.2 m     |                      | hemotite vicing                       | 15 cm wide                        |           |
| WR96-21                               |         | Grah      | Andesite Dacite      | Siliceous gossen - silicified         | tr-2% dissm pu                    |           |
|                                       |         |           |                      | andesite or decite                    |                                   |           |
| WR96-22                               |         | Grab      | Andesite             | Epidote altered, on fractures         | mino trace py up to 3-4%          |           |
| WR96-23                               |         | FLOAT ??  | Ferriciete ?         | Agglomerate that is intensity         | + 2-10% five diss py and          |           |
|                                       |         |           |                      | weathered to limonite + manganese     | some coarses cubes                |           |
| WR96-24                               |         | Grab      | Ferricrete           | Intensely weathered rech, mestly      | - none visible                    |           |
| · · · · · · · · · · · · · · · · · · · |         |           |                      | pure limonite + manganese             |                                   |           |
| WR 96-25                              |         | Chip      | Vein (Qtz)           | Vein that is quartz with miner        | 65-75% specular hemotite          |           |
|                                       |         | 30cm      |                      | hematite, cpy + mal                   | in 30 cm wide vein                |           |
| WR96-26                               |         | Grab      | Andesite Tuff        | Greenish - gray sericite and          | 3-6% fine dissem. py              |           |
|                                       |         |           |                      | Silica altered full + porphyry        | ' U                               |           |
| WR96-27                               |         | Grah      | Andesite Tutl        | as above rusty fracture               | 5-7% fine dissou py               |           |
| WR96-28                               | <u></u> | Grab      | Andeste Tuff         | minor clusts of flow bundled          | -tr dissin py                     |           |
|                                       |         |           |                      | they lite or rhydite defle            |                                   |           |
| WR96-29                               |         | Chip      | Carb-atz Vein        | - mostly quartz vin, juik vuggy       | 20% specular hemotite             |           |
|                                       |         | 50 cm     |                      | with good open space growth           |                                   |           |
| NR 96 - 30                            |         | Grab      | Quartz Vein          | Nuggy vein ~ Im wide but              | 10-15% specular hemotite          |           |
|                                       |         |           |                      | difficult to sample (on \$ cliff)     | and up to 5% CP4                  |           |
|                                       |         | <u></u>   |                      | •                                     |                                   |           |
|                                       |         |           |                      |                                       |                                   |           |
|                                       |         |           |                      |                                       |                                   | 1         |

£

.

f

ŧ

E

t

| Sample:         | Date: Location: | Lithology:             | Remarks / Alteration / Structure:      | Mineralization:                       | Analysis: |
|-----------------|-----------------|------------------------|----------------------------------------|---------------------------------------|-----------|
| RR96-1          | Grab            | Calcite Vein           | 5-10 cm wide on limonite stand         | bounte, Cpy, mal                      |           |
|                 |                 |                        | Zone 2-4m × 12m, dispreas in till      | · · · · · · · · · · · · · · · · · · · |           |
| RR96-2          | Grab            | Coleite Vern           | as above (12m South of RR96-1)         | fresher sample, bornite more obvious  |           |
| RR96-3          | Grab            | Quertz Vein            | Shear Zone with 1-5cm wide gtz view    | banite, cpy                           |           |
| R96- 4          | Grab            | Calcite Vein           | Carb vemlets over 30 cm × 5m           | 2% cpy, mat                           |           |
| R96-5           | Grab            | Carbonete Zone         | Colcareous zone in gully sampled       | limonity humotity no sulphides        |           |
|                 |                 |                        | at top of ridge                        |                                       |           |
| RR96-6          | Grab            | Carbonate Voin         | Sample from 3-5cm wide Vein in a       | 1-2% banity mal stain                 |           |
|                 |                 |                        | Swarm of 7 manac veins                 |                                       |           |
| <u>RR96 - 7</u> | Grab            | Carbonate Vains        | Area of 3-30 cm wide × Am long         | 1-10% chalco, 10-30% specular         |           |
|                 |                 | ·                      | carb. Van swarm can only access        | hematite mal. stain                   |           |
|                 |                 | ···                    | one vein due to tengin                 |                                       |           |
| <u> R96 - 8</u> | Grab            | Qtz-Carb Vcin          | Smell Van 3-5 cm wide × 50 cm.         | 1-5% cpy                              |           |
|                 |                 |                        | at base of cliff, moderate talus train | ·                                     |           |
| <u></u>         |                 |                        | leading up to cliff with better cpy    |                                       |           |
|                 | <u> </u>        |                        | in talus then in semple                |                                       |           |
| RR96-9          | Grab            | Conb-Qtz Vims          | 2 gtz-cents veins menging + diverging  | 20% cpy difficult access so           |           |
|                 |                 | 15 muphill             | over zone 10-80 cm wide over length    | douit know if sulphides are           |           |
|                 |                 | frem RR96-8            | of 25 metres. Can only access portion. | consistent throughout vein            |           |
| ~               |                 |                        | at vein                                |                                       |           |
| R96-10          | Grab            | Gtz-Carb Veins         | 1-3 cm wide Vaintets in swarm up       | 10% cpy malachite and                 |           |
|                 |                 | 7m lover than          | to 50cm w.de                           | limenite stain                        |           |
|                 |                 | RR96-8                 |                                        |                                       |           |
| <u>(R96-11</u>  | Grab            | Otz-Carb Vein          | 3-6 cm wide Vin over 5m length         | up to 20% cpy, hematite,              |           |
| 2.0             |                 |                        |                                        | malachite + azunite stain             |           |
| (K96-12         | Grab            | Andesite               | Andesite with limmite + molachite      | less than 1% cpy limonite             |           |
| <b>1</b>        |                 | (Wallrock ton RR96-13) | Staining over 3-4 m width              | + malachite Stain                     |           |
| KR96-13         | Grab            | Quartz Vein            | 50cm wide length unknown               | described as 30-60% cpy but           |           |
|                 | <b>   </b>      |                        |                                        | must be stained by as Cu              | ļ         |
|                 |                 |                        |                                        | Volues not high enough                | [         |

E

· ·

£

£

**£** 

**Q** 

ŧ

ŧ

| Sample:  | Date: | Location:        | Lithology:         | Remarks / Alteration / Structure:    | Mineralization:                             | Analysis: |
|----------|-------|------------------|--------------------|--------------------------------------|---------------------------------------------|-----------|
| RR96-14  |       | Grab             | Qtz-Carb Vein      | 5-6m wide zone of nanow stochwich    | Spotty Cpy + molachite.                     |           |
|          |       |                  |                    | veins (1-10mm wide). Local intense   | Locally Cpy up to 10%                       |           |
|          |       |                  |                    | stockwark over 30cm with breecioted  | )   /                                       |           |
|          |       |                  |                    | wollroch frogments (andesite tuff)   |                                             |           |
| RR 96-15 |       | CHIP             | Qtz-Carb Vain      | Qtz-carb stockwork vins up to Im     | 5-10% epg                                   |           |
|          |       | 1.0 metres       | Possible Bante     | wide, individual vains to joam       | • 0                                         |           |
| RR96-16  |       | Grab             | Atz-Carb Vin       | ·Hi grade grab from same vein        | 5-10% chalcosite 3% cpu                     |           |
|          |       | _                | (100m along strike | 45 RR96-15. Finches + swells         | · · · · · · · · · · · · · · · · · · ·       |           |
|          |       |                  | from RR96-15)      | from 0-5-1.0 m wide                  |                                             |           |
| RR96-17  |       | Grab             | Otz-Carb Van       | 3-20 cm wide × 25m long they         | 10% chalcopyrite, mal stain,                |           |
|          |       |                  | ļ                  | till covered                         | minor banite + specular hemetite            |           |
| RR96-18  |       | Grab             | Qtz-conb Vin       | Vein, width + length unknown         | 5% chelcopyrite, minor                      |           |
|          |       | 10m upslope from |                    | (not mentioned probably nanow)       | mal + specular hematite.                    |           |
|          |       | RR96-17          |                    |                                      | (some specular must be galena + sphelerite) |           |
| RR96-19  |       | CHIP             | Qtz-Carb Vein      | Breccioted with coarse vugs intilled | Has up to 10cm × 3cm cpy messo              |           |
|          |       | 1.0 metres       |                    | with gtz crystols. Veni visible      | intergrown with the gte crystals.           |           |
|          |       |                  |                    | over 50m length                      | Locally up to 10% cpy and                   |           |
|          |       |                  |                    | v                                    | 15-30% specular hemotite                    |           |
| RR96-20  |       | Chip             | Calcite Vein       | Nuggy Vicin, 30cm × 50m kng          | 1-3% tetrahedrite ?                         |           |
|          |       | 30cm             |                    |                                      |                                             |           |
| RR96-21  |       | Grab             | Calcite Vin        | Caleite vein swarm with 3-20 cm      | 3-5% totrahedute malachite                  |           |
|          |       |                  |                    | wide vemilets over 2-3 metres, zone  | stain                                       |           |
|          |       |                  |                    | bounded by Snow                      |                                             |           |
| RR96-22  |       | Grab             | Otz-Carb Vein      | Small vain swarm exposed in rubble   | Cholcopyrite, melachite                     |           |
|          |       |                  |                    | with from wide pure cpy van          |                                             |           |
| RR96-23  |       | Grab.            | Shean Zone         | Brecciated shear zone up to Smull    | molachite stain, trace cpy                  |           |
| RR96-24  |       | Grab             | Quartz Van         | Vein in Jossan Zone, silicous        | 40% specular hemetite, 10% put              |           |
|          |       |                  |                    |                                      | and minor magnetite                         |           |
| KR46-25  |       | Grab             | Vein               | Nauci (< 5 cm) vin                   | specular hemotite                           | ļ         |
| RR96-26  |       | Grub             | Van                | Bom von in 3m wide silicous duke     | Scienter hemetite                           | ł         |

. . . . . . . . . . . . . .

L

.

£

| Bample:          | Date:                                        | Location: | Lithology:          | Remarks / Alteration / Structure:      | Mineralization:                     | Analysis:                             |
|------------------|----------------------------------------------|-----------|---------------------|----------------------------------------|-------------------------------------|---------------------------------------|
| (R96-27          |                                              | Grab      | Andeste Dyle        | Cossan zone 2 million either           | 5-10% pyrite                        |                                       |
|                  |                                              |           | <b>`</b>            | side of condote enriched andesite dybe | troce - 1% cholcopyrite             |                                       |
| eR96-28          |                                              | Grab      | Andesite            | 2-10 cm wide band of maynetite at      | mognetite                           |                                       |
|                  |                                              |           |                     | contect between pyrite and non-pyrite  |                                     |                                       |
|                  |                                              |           |                     | bearing andesite                       |                                     |                                       |
| R96-29           |                                              | Grob      | Andesite / Vein     | 1-4 cm wide quartz-calcite voin        | 5% cpy                              |                                       |
|                  |                                              |           |                     | in epidote altered andesite            | 10% specular hemotite               |                                       |
| RR96-30          |                                              | Grab      | Andesite            | Atz- cpidote blow out in andesite      | -minor trace of cpy                 |                                       |
| RR96-31          |                                              | FLOAT     | Rhyolite?           | Qtz rich unit                          | 5-10% cpy, molachite stein          |                                       |
| <u>RR96-32</u>   |                                              | Grob      | Qtz Vein            | 1-5cm wide vein Im wide limonite stein | 5-10% pyrite                        |                                       |
| R96-33           |                                              | Grah      | ate Vein            | 1-3 cm wide vun an andesite            | specular hematite                   |                                       |
| <u> RR96-34</u>  |                                              | Grab      | atz Van             | 10cm wide x 75m long                   | 10-15% pyrik. 25% specular hemotite |                                       |
| R96-35           |                                              | Grab      | atz Vein            | 10cm wide x 8 m long                   | 10% pyrite, 25% specular humatite   |                                       |
| <u> R96-36</u>   |                                              | Grab      | Atz Vein            | 10cm × 15m                             | 50% specular hemotite               |                                       |
| <u> RR96-37</u>  |                                              | Grab      | atz Vain            | Atzand calcite van, 5 cm wide          | 20% specular humotite, 1-5% cpy     |                                       |
| <u> RR96-38</u>  |                                              | CHIP      | atz-Calcite Vein    | 30-80 cm wick vin, visible ta          | variable specular hemotite,         |                                       |
|                  |                                              |           |                     | 2 70 metris                            | CPY, 3-10% molechite Stain          |                                       |
| <u> 2896-39</u>  |                                              | Grab      | Andesite Ferrierete | Agglemerate unit, highly weathered,    | 2-5% time dissmpy                   |                                       |
|                  |                                              |           |                     | random chips over 25m length           |                                     |                                       |
| RR96-40          |                                              | Grab      | Andesite Ferricrete | silicecus limenite cemented            | 5% time dissin py                   |                                       |
| <u> RR96- 41</u> |                                              | Grab      | Vein                | 5 cm will vein                         | specular hemotite                   |                                       |
| R96-42           |                                              | Grab      | Vein Mudston        | 3-107 cm wide van (gtz) in mudstone    | 1-5% cpy, special hematite          |                                       |
| RR96-43          | l                                            | Grob      | Otz Van             | 4-20 cm wick vein in andesite          | 30% specular hemetite, 1-5% Cpy     | · · · · · · · · · · · · · · · · · · · |
| <u> RR96-44</u>  |                                              | Grab      | Atz Vein            | 10cm wide very , one of several verns  | 1-5% cpy                            |                                       |
| <u>-</u>         |                                              |           |                     | ouer 8 m zone                          |                                     |                                       |
| <u>R96-45</u>    | <u>                                     </u> | Grap .    | Atz-Carb Vein       | A-10 cm wide × 60m long Vin            | 5% cpy, spotty specular humatite    | ļ                                     |
| <u> </u>         |                                              |           |                     |                                        | and molachite Stain                 | <u> </u>                              |
| 2R96-46          |                                              | Grab      | atz-Conb Vun        | nanow Vin in andesiti                  | 5-1090 py; 5% specular hamatite     | · · · · · ·                           |

. . . . . . . . . . . . .

.

| Sample:            | Date: Location:                       | Lithology:                            | Remarks / Alteration / Structure:    | Mineralization:                        | Analysis:   |
|--------------------|---------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------|-------------|
| BD96-1             | FLOAT                                 | Qtz-Carb Vein                         | Qtz-carb van float, names 1/4"       | Small blebs of possible                |             |
|                    |                                       |                                       | ate stringers in nearby andesite     | Specular hemotite of chalcosite        |             |
| · -··· ··· ··· ··· |                                       | · · · · ·                             | foldsper perphysic                   |                                        |             |
| B096-2             | GRAB                                  | Qtz Vum                               | Vun up to 10 cm wide, breccioted     | rusty packets of cpy with              |             |
|                    |                                       |                                       |                                      | mal staining on fractures              |             |
| <u>BD96-3</u>      | GRAB                                  | atz Vein                              | as above, 7m north of B096-2         | as above with bornite                  | · · · · · · |
| BD96-4             | FLOAT                                 | Feldsper Porphyny                     | Carb altered in float train below    | minor cou + mal                        |             |
| <u> </u>           | · · · · · · · · · · · · · · · · · · · |                                       | outcise with ankente, epidoti and    |                                        |             |
|                    |                                       |                                       | chlorite, minor atz breccia          |                                        |             |
| BD96-5             | GRAB                                  | atz-Carb Van                          | -no width given                      | dark sulphide blebs = tetraheduite?    |             |
|                    |                                       |                                       |                                      | Some mal stain                         |             |
| BD96-6             | Grab                                  | Atz-Conh Vein                         | 5m uphill from BD96-5                | malachite, cpy + possible galena       |             |
| BD96-7             | ELOAT                                 | Atz-Conb Van                          | Old pit? Conb + chlorite altered     | py, cpy, mal stain                     |             |
|                    |                                       |                                       | ingular float                        |                                        |             |
| BD96-8             | FLOAT                                 | atz-Carb Vein                         | as above but no pit                  | as above                               |             |
| BD96-9             | FLOAT                                 | atz-Carb Vein                         | Brecciated, and carb altered         | Cpy, malachite                         |             |
|                    | (ROm from BD96-B)                     |                                       |                                      | •••                                    |             |
| BD96-10            | GRAB                                  | Otz Vein Shear                        | 2m wide at z braccia filled shear    | py, cpy and malachite                  |             |
|                    |                                       | · · · · · · · · · · · · · · · · · · · | Zone, Sample 15 11-grade grab        | and azunite stain                      |             |
| Deal at            |                                       |                                       | from core of zone                    |                                        | ļ           |
| 15D46-11           | Grab                                  | OTZ-Carb Van                          | 6-10 cm wide siliceous van           | malachite + azmite stain               |             |
| 13096-12           | <u> </u>                              | atz-Carb Vein                         | - float from old pit                 | pyrite, sphelerite + specular hemotite |             |
| 131296-13          | Grab                                  | Sheen Vein                            | Atz-carb Shear voin                  | <u>cpy + malachite</u>                 |             |
| DD 46-14           | Gmb                                   | Atz Stochwork                         | Red jesper + hematite staining       | no visible sulphides                   | [           |
|                    |                                       |                                       | in menow gtz stochwork vein          |                                        |             |
| 121296-12          | - <u>Brab</u> -                       | atz Van                               | 10 cm wide vein mearby float has     | no visible sulphides                   | ļ           |
| BDar 11            | EL                                    | ()                                    | hemetic, epidote + gtz-carbaysteli   |                                        | ļ           |
| <u>2076-16</u>     |                                       | L INTRUSING                           | brey jospen brecciated by red        | no visible sulphides                   | <u> </u>    |
|                    |                                       |                                       | Juspe and white silica in a slightly |                                        | <b> </b>    |

:

.

Ē

| CHACO BEA      | R PRA                                 | JECT                                  |                         |                                          |                                |           |
|----------------|---------------------------------------|---------------------------------------|-------------------------|------------------------------------------|--------------------------------|-----------|
| Sample:        | Date:                                 | Location:                             | Lithology:              | Remarks / Alteration / Structure:        | Mineralization:                | Analysis: |
| BD96-17        |                                       | FLOAT                                 | Intrusive               | bleached and preccipited entrusive       | minor malachite or selactinite | <u></u>   |
| BD 96-18       | ļ                                     | Grab                                  | Qtz-Carb Vin            | 8-10 cm wide van in fine                 | no visible sulphides           |           |
|                |                                       |                                       |                         | grained chloritic andesite               |                                |           |
| BD96-19        |                                       | FLOAT                                 | Andesite                | fine grained marcon -pinkish             | calcite, premetite, molachite  |           |
|                | L                                     | ·                                     |                         | Silicified                               | or seladinite                  |           |
| BD96-20        | ļ                                     | FLOAT                                 | Andesite                | angular float, fine grained dark         | malachite, magnetite           |           |
|                |                                       |                                       |                         | andesite                                 |                                |           |
| BD96-21        |                                       | FLOAT                                 | QUARTZ                  | Carb altered, rosey anythyst             | no sulphides                   |           |
|                |                                       | · · · · · · · · · · · · · · · · · · · |                         | and calcite                              | <u>'</u>                       |           |
| BD96-27        |                                       | CHIP                                  | Andesite                | andesite in creek draw                   | malachite staining             | 1         |
|                |                                       | 1.0 metres                            |                         |                                          |                                |           |
| <u>BD96-23</u> |                                       | GRAB                                  | Feldspon Porphyry       | Conb and epidote altered reddish         | fine grained disseminated      |           |
|                |                                       |                                       |                         | feld spar porphyny from guid             | unknown sulphide               |           |
| · ·            |                                       |                                       |                         | anomaly @ L5N; 3+50E                     |                                |           |
| BD96-24        |                                       | FLOHT                                 | Vein                    | Chlorite and carb altered floot          | mino cpy + galena              |           |
|                | <u>_</u>                              |                                       |                         | Van 10 cm wick, milkly calate            | 1.5 2                          |           |
|                |                                       |                                       |                         | crystals mino manganese                  |                                | <u> </u>  |
| BD96-25        |                                       | Grob /Chip                            | Calcite Van             | up to 30 cm wide                         | mina cpy                       |           |
|                |                                       | <u>30 cm</u>                          |                         |                                          | • 0                            | <u> </u>  |
| BD96-26        | <br>                                  | Chip                                  | Carbonate Vin           | Weathered out carbonate/                 | mina malachite                 |           |
| <u> </u>       |                                       | 80 cm                                 | <u> </u>                | andesite vein                            |                                | ļ         |
| BD96-27        | · · · · · · · · · · · · · · · · · · · | Grab                                  | Continate Vein          | thin 3cm wide carbycin in                | minor pynhotite bomite         |           |
|                |                                       |                                       |                         | medium - coarse grained andesite         | and possible chalcocite        |           |
| BD96-28        |                                       | Grab                                  | Quartz Bracia           | Quartz filled precia Zone                | pyrite + mino cpy              |           |
| BD46-29        |                                       | FLOAT                                 | Quartz Breccia          | as above, remains of weathered out zone  | pyrite + minor Gpy             |           |
| 13D96-30       |                                       | CHIP.                                 | Andesite                | Pyritic altered zone in 3-4m unde gessun | dissm by throughout with myra  |           |
| Bodi 2         |                                       | 1. Ometres                            |                         | Chlorite + epidote                       | cpy + possible galena          |           |
| DU46-31        |                                       | Grab                                  | 19tz-Cash Vein          | 5 cm wide                                | tetrehechite + malachite stain |           |
| 2096-52        |                                       | Grab                                  | Conglamente l'Agglameni | e Kusty outcrop                          | trace py                       |           |
| BU16-33        |                                       | Grab                                  | Lastz-Carb Van          | 1 10 cm wich                             | 40 h 15% ou                    |           |

. . . . . . . . . . . . . .

| Sample:         | Date: Location: | Lithology:    | Remarks / Alteration / Starting:       | Mineralization | Analysis    |
|-----------------|-----------------|---------------|----------------------------------------|----------------|-------------|
| 3096 - 34       | Grah            | Otz Vein      | 12 cm will plen conce filling          | con materia    | Z/iQ(19313; |
| BD46-35         | Erch            | Ot Ven        | 10 cm winde mino braccio tron          | ounte          |             |
|                 |                 |               | Some Continue                          | - P\$B.1C      |             |
| BD96-36         | Grab            | Qtz Vun       | Frothy quartz                          | none visible   |             |
| BD96-37         | Grab            | Agglomerate   | clay altered                           | pante          |             |
| BD96-38         | Grab            | Vein          | 12 cm inde class altered skin mandente | auste          |             |
| 3096-39         | Grah            | Andesite      | Wallroch to above Var                  | pyrite         |             |
| 31296-40        | Grab            | atz Van       | Qtz-hemotite van an flow bended        | miner pytcpy   |             |
|                 |                 |               | rhydite to silicoous greenstone        |                |             |
| 3096-41         | Grab            | atz-Carb Vein | 10cm wide, hematite altered            | MINO PY        |             |
| 3096-42         | Grab            | Carb Van      | 10cm wide,                             | limonite stain |             |
| 3096-43         | Grab            | Carb Van      | 10 cm wide                             | minor pyrite   |             |
| 3096-44         | Grab            | Rhyolite      | Siliceous zone, probably phyolite      | pyrite         |             |
| 3096-45         | Grab            | Agglomerate   | Clay-carbonate altered vein vein       | punite         |             |
|                 |                 |               | with magnaese + limenite, Alteration   |                |             |
|                 |                 |               | zon a go cm wide                       |                |             |
| 3096-46         | Grab            | Agalomerate_  | Heavily oxidized, soft orange rock     | limonite       |             |
| 3 <u>D96-47</u> | Grab            | Qtz Vun       | atz-hemotite vein up to 15cm           | mind cpy       |             |
|                 |                 |               | wide in protunitic andesite            |                |             |
| 31796-48        | Grab            | atz Vun       | 5-25 cm wide vin with hematite         | opy, motochite |             |
|                 |                 |               | in andesite porphyry                   |                |             |
|                 |                 |               | 1100                                   |                |             |
| · · · ·         |                 |               |                                        |                |             |
|                 |                 |               |                                        |                |             |
|                 |                 |               |                                        |                |             |
|                 |                 |               |                                        |                |             |
|                 |                 |               |                                        |                |             |
|                 |                 |               |                                        |                |             |
|                 |                 |               |                                        |                |             |
|                 |                 |               |                                        |                |             |

. . . . . . . . . . . . .

•

| Sample: | Date: | Location:                              | Lithology:     | Remarks / Alteration / Structure:     | Mineralization:                       | Analusis |
|---------|-------|----------------------------------------|----------------|---------------------------------------|---------------------------------------|----------|
| BR96-1  |       | Grah                                   | Sheen Zone     | 0.5 meter wide at 2 flooded           | 3-6% cou with moderate                |          |
|         |       |                                        |                | shear zone                            | melachite + azunite story             |          |
| 3R96-2  |       | Grab                                   | Quartz Breccia | Atz filled breater Zone               | Quite + mines cou                     |          |
| 3R96-3  |       | Grab                                   | Gossen         | gangillic and punitic                 | Augusta munos aclena?                 |          |
| BR96-4  |       | Chip                                   |                |                                       |                                       |          |
|         |       | 1.0 metris                             | Pyritic Zone   | gossan z 3-4 m wide                   | pyrite                                |          |
|         |       |                                        |                |                                       | 17                                    |          |
|         |       |                                        |                |                                       |                                       |          |
|         | ·     |                                        |                |                                       |                                       |          |
|         |       |                                        |                |                                       |                                       |          |
|         |       |                                        |                |                                       |                                       |          |
|         |       |                                        |                |                                       |                                       |          |
|         |       |                                        |                |                                       |                                       |          |
|         |       |                                        |                |                                       |                                       |          |
|         |       |                                        |                |                                       |                                       |          |
|         |       |                                        |                |                                       |                                       |          |
| r       |       |                                        |                | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |          |
|         |       |                                        |                |                                       |                                       |          |
|         |       |                                        |                |                                       |                                       |          |
|         |       |                                        |                |                                       |                                       |          |
|         |       |                                        |                |                                       |                                       |          |
|         |       |                                        |                |                                       |                                       |          |
|         |       | ······································ | <u></u>        |                                       |                                       |          |
|         |       |                                        |                |                                       |                                       |          |
|         |       |                                        |                |                                       |                                       |          |
|         |       | ,                                      |                |                                       |                                       |          |
|         |       |                                        |                |                                       |                                       |          |
|         |       |                                        | 1              |                                       |                                       |          |

. . . . . . . . . . . . . . . . .

.





