Gold Communication VALUE CO.

## REPORT ON THE 1996 EXPLORATION PROGRAM ON THE DOT PROPERTY

Nicola Mining Division N.T.S. 92I/7W

Latitude: 50 deg 20 mins North Longitude: 120 deg 51 mins West

By
Gary Stewart P. Geol
ALHAMBRA RESOURCES LTD.
Suite 500 717 - 7 th Avenue S.W.
Calgary, Alberta
T2P 0Z3

February 17, 1997

GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORT

24,884

# **ASSESSMENT REPORT**

## ON THE

# **DOT COPPER PROPERTY**

| TA | RI | F | $\mathbf{OF}$ | CO | NT | $\mathbf{F}$ | NTS |
|----|----|---|---------------|----|----|--------------|-----|
|----|----|---|---------------|----|----|--------------|-----|

|      |              |                                       | Page |  |  |  |
|------|--------------|---------------------------------------|------|--|--|--|
| 1.0  | SUM          | IMARY AND CONCLUSIONS                 | 5    |  |  |  |
| 2.0  | INTRODUCTION |                                       |      |  |  |  |
|      | 2.1          | Location and Access                   | 7    |  |  |  |
|      | 2.2          | Physiography                          | 7    |  |  |  |
|      | 2.3          | Claim Status                          | 7    |  |  |  |
|      | 2.4          | History                               | 11   |  |  |  |
|      | 2.5          | 1996 Exploration Program              | 12   |  |  |  |
| 3.0  | PRO          | PERTY GEOLOGY                         | 12   |  |  |  |
| 4.0  | MIN          | ERALIZATION, ALTERATION AND STRUCTURE | 12   |  |  |  |
| 5.0  | DIA          | MOND DRILLING 1996 SUMMARY            | 16   |  |  |  |
| 6.0  | SUM          | IMARY OF 1996 EXPENDITURES            | 20   |  |  |  |
| 7.0  | STA          | TEMENT OF QUALIFICATIONS              | 21   |  |  |  |
| 8.0  | REF          | ERENCES                               | 22   |  |  |  |
| 9.0  | DRI          | LL HOLE COMPILATION MAPS              | 23   |  |  |  |
| 10.0 | GEO          | DLOGICAL CROSS SECTIONS               | . 26 |  |  |  |

|          |      | LIST OF TABLES                          |      |
|----------|------|-----------------------------------------|------|
| No.      |      | Table                                   | Page |
| I        | Mine | ral Claim Status - Dot Property         | 9    |
| п        | Sumr | mary of the Dot Property Assay Results  | 14   |
| III      | 1996 | Dot Project - Drill Hole Technical Data | 15   |
|          |      | LIST OF APPENDICES                      |      |
| Appendix | I    | 1996 Diamond Drill Core Logs            |      |
| Appendix | II   | 1996 Ecotech Labs Assay Results         |      |

## LIST OF FIGURES

| Figure No. | Title                                     | Scale      | Page |
|------------|-------------------------------------------|------------|------|
| 1          | Location Map & Claim Map                  | (1:25000)  | 8    |
| 2          | Drill Hole Compilation Map                | (1:4000)   | 23   |
| 3          | Northwest Zone Drill Hole Compilation Ma  | p (1:1500) | 24   |
| 4          | Southeast Zone Drill Hole Compilation Map | (1:2000)   | 25   |
| 5          | Drill hole 96C-01                         | (1:1000)   | 26   |
| 6          | Drill hole 96C-02                         | (1:1000)   | 27   |
| 7          | Drill hole 96C-03                         | (1:1000)   | 28   |
| 8          | Drill hole 96C-04                         | (1:1000)   | 29   |
| 9          | Drill hole 96C-05                         | (1:1000)   | 30   |
| 10         | Drill hole 96C-06                         | (1:1000)   | 31   |
| 11         | Drill hole 96C-07                         | (1:1000)   | 32   |
| 12         | Drill hole 96C-08                         | (1:1000)   | 33   |
| 13         | Drill hole 96C-09                         | (1:1000)   | 34   |
| 14         | Drill hole 96C-10                         | (1:750)    | 35   |
| 15         | Drill hole 96C-11                         | (1:750)    | 36   |
| 16         | Drill hole 96C-12                         | (1:750)    | 37   |
| 17         | Drill hole 96C-13                         | (1:750)    | 38   |
| 18         | Drill hole 96C-14                         | (1:750)    | 39   |
| 19         | Drill hole 96C-15                         | (1:750)    | 40   |
| 20         | Drill hole 96C-16                         | (1:750)    | 41   |
|            |                                           |            |      |

#### 1.0 SUMMARY AND CONCLUSIONS

The Dot project consists of 68 claim units comprising 1700 hectares, is located 15 km. southeast of the Highland Valley porphyry copper district in southern British Columbia. The Claims lie 25 km. northwest of Merritt B.C. at 50 deg 20 mins North latitude and 120 deg 51 mins west longitude, NTS 92I/7W (see figure 1 for location).

The property is underlain by the Guichon Batholith which is host to numerous porphyry copper deposits, including Lornex and Valley copper.

The copper mineralization lies within a north northwest trending zone of altered intrusive containing disseminated, fracture and vein controlled copper minerals. The mineralization occurs within an area which is approximately 600 meters wide and 1000 meters in length.

Alhambra Resources Ltd. may earn 51% interest in the Dot claims through an option agreement signed in May, 1996 with the owner of the claims, Larry Ovington.

Alhambra Resources Ltd. operated and funded the 1992 Exploration Program expending a total of \$300,264.38 during the period of June to December 1996.

Alhambra Resources Ltd. undertook a program of drilling with the completion of 16 diamond drill holes totaling 3108.94 meters. The program tested the existing copper zone to the northwest and delineated a new zone to the southeast of the existing mineralization. All 16 drill holes intersected some degree of copper mineralization. Some of the most significant grade intercepts of the program include: 37.2 meters of 1.23% Cu in DDH 96C-03, 114.5 meters of .44% Cu in DDH 96C-05, 106.0 meters of .35% Cu in DDH 96C-06, 111.7 meters of .34% Cu in DDH 96C-11 and 119.8 meters of .58% Cu in DDH 96C-15.

The mineralization in the Northwest Zone has been traced for a minimum strike length of 270 meters, a depth of 100 meters to a width of 55 meters (Zappa Resources Ltd. 1992). Drilling has indicated that a preliminary geological resource of 2.93 million tonnes grading 0.5% Cu is contained within the Northwest Zone. Diamond drill hole 96C-01 which is located along strike to the Northwest of the existing mineralization, shows the zone is still open in this direction.

The Southeast Zone was discovered in 1996. The copper mineralization in this zone can be traced for a strike length of 500 meters and is open at depth and along strike to the Southeast.

The mineralization is structurally controlled and hosted in an intensely altered Granodiorite. Principal metallic minerals are Bornite, Chalcopyrite, Gold, Silver and Molybdenum with occasional occurrences of Native Copper.


Alteration patterns within the Southeast Zone appear to be similar to the other Highland Valley type copper deposits. Strong potassic alteration occurs throughout this zone with partially overlapping and pervasive argillic alteration. Bornite is the predominate copper mineral and appears to occur in the potassic altered zones with Chalcopyrite extending locally into the argillic alteration.

Metallic mineral zoning in the Highland Valley deposits is well developed. This is typically, Bornite in the central part of the deposit, zoning outward to Chalcopyrite and a fringing pyrite dominated outer zone. If the same zoning pattern holds true for the Dot property, the Bornite dominate Southeast Zone, could be the center of a much larger mineralized area.

Significant amounts of Gold and Silver are also present and appear to increase in concentration along strike to the southeast, toward the contact between the Guichon creek Bathlolith and the Nicola group country rocks.

Significant percentages of Molybdenum up to 0.02%, occur in drill holes 96C-11 and 0.01% in 96C-14. These are the deepest holes on the property and intersected the Molybdenum mineralization at depth.

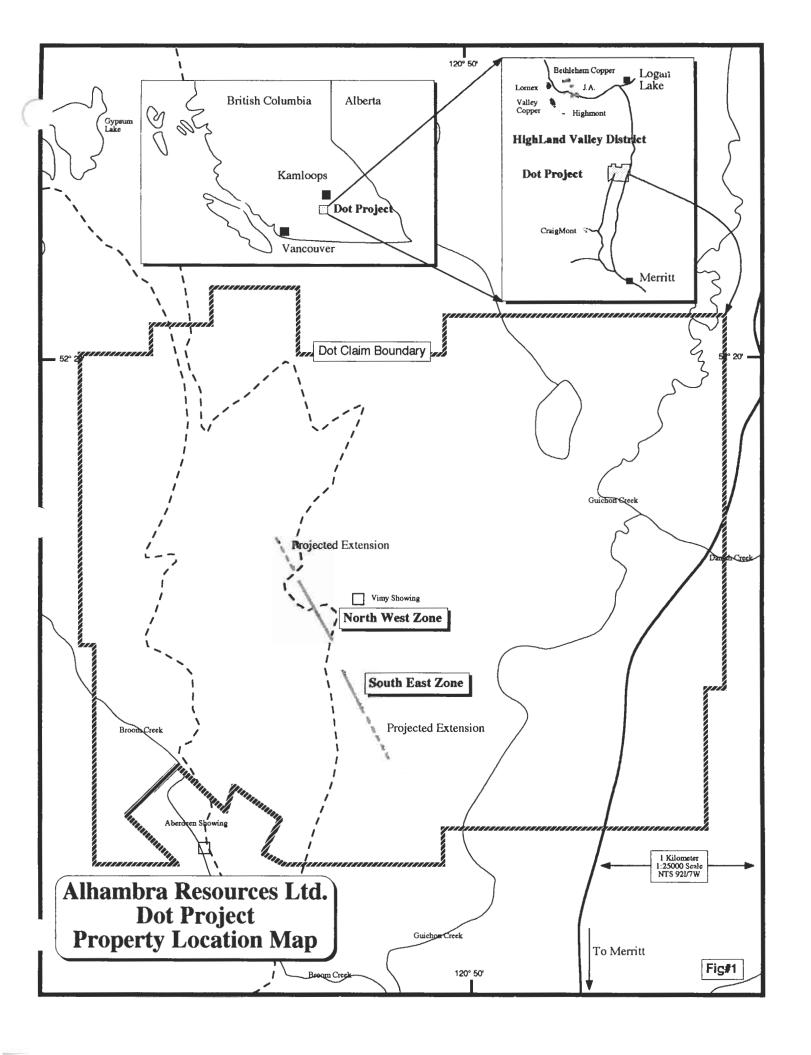
Further exploration is scheduled for the spring of 1997. This program will include surface mapping, geophysical surveys and Diamond drilling to better define the Southeast zone and delineate new zones of mineralization.

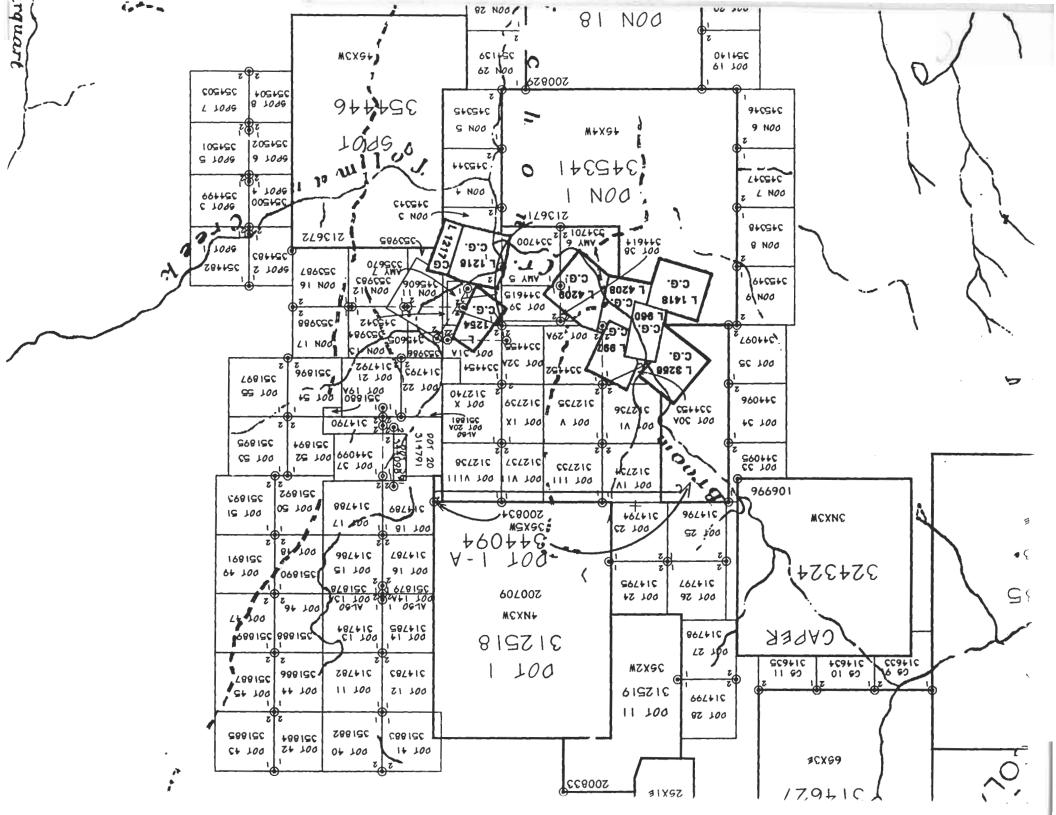


#### 2.0 INTRODUCTION

The 1996 Dot Exploration Program focused on finding new mineralized zones within the Dot Claim group, other then the previously discovered copper zones delineated by Zappa Resources Ltd in 1992. The program was funded and operated by Alhambra Resources Ltd. The Diamond Drilling program was conducted from June to November of 1996.

#### 2.1 LOCATION AND ACCESS


The Dot Property is located in south central British Columbia, approximately 25 kilometers northwest of Merritt, B.C., latitude 50 deg 20 mins, longitude 120 deg 51 mins, NTS 92I/7W. Access is via highway #8, 7 kilometers northwesterly from Merritt to lower Nicola, then by good pavement 6 kilometers northerly to the Craigmont Mine site, at which point the "Aberdeen Mine Road" gives way to an upgraded gravel road. At kilometer "marker 7" northwest from Craigmont, access to claims is gained by traveling northerly an additional 5 kilometers via a unmaintained dirt road.


#### 2.2 PHYSIOGRAPHY

The area of drilling on the Southeast Zone is centered on a rather flat bench in a logged over area. Elevations in this area range from 1000 meters in the southern portion of the property to 1375 meters at the northern end of the Claim group. The majority of the property is overburden cover terrain with scattered outcrops of Granodiorite exposed to the north and west of the property. An esker ridge located north of the drill area gives local relief of 10-15 meters. A tributary to Broom creek traverses the southwestern portion of the claims.

#### 2.3 CLAIM STATUS

The Dot Property consists of 52 mineral claims, the Dot I to X claims and Dot 11 to Dot 28 claims, Dot claims 29A, 30A, 31A, 32A, 13A, 14A, 19A, 20A and Dot 40 to Dot 55 claims comprising a total of 68 units. The Claims are currently free and clear of all liens and held in good standing. The Registered owner of the claims is Larry Ovington of Kamloops, B.C.. Refer to table I for the record numbers and specific expiry dates.





## MINERAL CLAIM STATUS - DOT PROPERTY

| Claim Nama | No of Inito | December 1 | Familia Data      |
|------------|-------------|------------|-------------------|
| Claim Name | No of Units | Record No: | Expiry Date       |
| DOT I      | 12 (4NX3W)  | 312518     | August 16, 2007   |
| DOT II     | 6 (3SX2W)   | 312519     | August 18, 2007   |
| DOTIII     | 1 (2 Post)  | 312733     | August 24, 2007   |
| DOT IV     | 1 (")       | 312734     |                   |
| DOT V      | 1 (")       | 312735     | **                |
| DOT VI     | 1 (")       | 312736     |                   |
| DOT VII    | 1 (")       | 312737     | August 31, 2007   |
| DOT VIII   | 1 (")       | 312738     |                   |
| DOT IX     | 1 (")       | 312739     |                   |
| DOT X      | 1 (")       | 312740     |                   |
| DOT 11     | 1 (")       | 314782     | November 17, 1999 |
| DOT 12     | 1 (")       | 314783     |                   |
| DOT 13     | 1 (")       | 314784     |                   |
| DOT 14     | 1 (")       | 314785     |                   |
| DOT 15     | 1 (")       | 314786     | "                 |
| DOT 16     | 1 (")       | 314787     |                   |
| DOT 17     | 1 (")       | 314788     | November 18, 1999 |
| DOT 18     | 1 (")       | 314789     | "                 |
| DOT 19     | 1 (")       | 314790     | **                |
| DOT 20     | 1 (")       | 314791     |                   |
| DOT 21     | 1 (")       | 314792     | **                |
| DOT 22     | 1 (")       | 314793     |                   |
| DOT 23     | 1 (")       | 314794     | November 17, 1999 |
| DOT 24     | 1 (~)       | 314795     |                   |
| DOT 25     | 1 (``)      | 314796     |                   |
| DOT 26     | 1 (")       | 314797     | • 6               |
| DOT 27     | l (")       | 314798     | November 18, 1999 |
| DOT 28     | 1 (")       | 314799     | re.               |
| DOT 29A    | 1 (")       | 334452     | March 27, 2007    |
| DOT 30A    | 1 (")       | 334453     |                   |
| DOT 31A    | 1 (")       | 334454     |                   |
| DOT 32A    | 1 (")       | 334455     |                   |
| DOT 13A    | 1 (")       | 351878     | October 05, 2007  |
| DOT 14A    | 1 (")       | 351879     | u                 |
| DOT 19A    | 1 (**)      | 351880     | **                |
| DOT 20A    | 1 (")       | 351881     | **                |
| DOT 40     | 1 (")       | 351882     | October 09, 2007  |
| DOT 41     | Ī (")       | 351883     | *                 |
| DOT 42     | 1 (")       | 351884     | **                |
| DOT 43     | 1 (")       | 351885     | ••                |
| DOT 44     | 1 (")       | 351886     | October 19, 2007  |
| DOT 45     | 1 (")       | 351887     | "                 |
| DOT 46     | 1 (")       | 351888     | 66                |
| DOT 47     | 1 (")       | 351889     | ٤.                |
| DOT 48     |             | 351899     | · ·               |
| DOT 49     | 1 (")       | 351891     | **                |
|            | 1 (")       |            |                   |
| DOT 50     | 1 (")       | 351892     | **                |
| DOT 51     | 1 (")       | 351893     |                   |

| MINERAL CLAIM S | STATUS - DOT | PROPERTY |
|-----------------|--------------|----------|
|-----------------|--------------|----------|

| Claim Name<br>DOT 52 | No of Units | Record No: 351894 | Expiry Date October 17, 2007 |
|----------------------|-------------|-------------------|------------------------------|
| DOT 53               | 1 (**)      | 351895            | **                           |
| DOT 54               | 1 (")       | 351896            | **                           |
| DOT 55               | 1 (")       | 351897            |                              |

#### 2.4 HISTORY

Two old mine workings, the Aberdeen and Vimy are located within the Dot property claim groups. Approximately 111,709 Kg of Copper, 24,321 grams of Silver and 280 grams of Gold were recovered from the Aberdeen, with the Vimy producing 8,409 Kg of Copper and 1,866 grams of silver. The Vimy workings are adjacent to the area drilled on the Northwest zone. During 1956-57 Kennco Exploration completed various surveys including trenching and 3,652 meters of drilling in 30 holes.

From 1965 to 1981 exploration programs were completed on prior claims which are now covered by the present Dot property. This work is summarized below:

| 1. | 1960-67 | Chattaway - line cutting, trenching, approximately 50 diamond drill holes (3,658m)                                                                              |
|----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | 1960-67 | Bralorne - Pioneer Mines - line cutting and magnetic surveys, trenching, geochemical surveys, 7 diamond drill holes (341 meters) and 20 percussion drill holes. |
| 3. | 1970    | Asarco - trenching, 148 percussion holes (5,166m on a 610m grid)                                                                                                |
| 4. | 1972    | Aselo Industries - Induced Polarization survey.                                                                                                                 |
| 5. | 1979-81 | Lawrence Mining - Induced Polarization survey, 30 diamond drill holes (5,387m) and 30 percussion holes (2,288m)                                                 |
| 6. | 1982    | Lawernce Mining - 3 diamond drill holes of which the location, results and total meterage is unknown.                                                           |
| 7. | 1992    | Zappa Resources Ltd 6 reverse circulation drill holes totaling 638.5m.                                                                                          |

Drilling prior to 1996 indicated that 2.93 millions tonnes grading 0.5% copper existed within the Northwest zone on the Dot property.

(Northwest zone previously known as the Main copper zone outlined in a report completed for Zappa Resources Ltd. 1993)

#### 2.5 1996 EXPLORATION PROGRAM

A total of 16 diamond drill holes in 3108.94 meters were completed on the Dot property from June to November 1996. Drill hole 96C-01 was drilled northwest of the previous mineralized zone outlined by Zappa Resources Ltd to try and extend the zone in that direction. Drill hole 96C-02 was confined to the previously known copper mineralization and was designed to confirm the continuity and grade of previously reported copper intersections. Diamond drill hole 96C-03 was drilled southeast of the existing mineralization to explore for new zones within the claim block. Drill holes 96C-04 to 96C-16 were drilled along strike to the southeast to delineate the new mineralization discovery in 96C-03.

#### 3.0 PROPERTY GEOLOGY

The Dot property is located within the eastern portion of the upper Triassic Guichon Creek Batholith. The property in underlain by the Guichon variety Highland valley phase intrusive rock, comprised of fine to medium grained hornblende monzodiorite to granodiorite. Outcrops of a coarser grained granodiorite possibly Chataway variety and younger porphyry intrusives are also noted in the literature.

### 4.0 MINERALIZATION, ALTERATION AND STRUCTURE

The mineralization is found in a north northwest trending structural zone of altered granodiorite containing disseminated, fracture controlled and vein hosted Bornite, Chalcopyrite, Gold, Silver, Molybdenum and Native Copper. Bornite is the predominate copper mineral with minor amounts of Chalcopyrite. The Gold and Silver appear to be associated with the copper sulphide mineralization and not free Gold or Silver. Gold concentrations appear to increase along strike to the southeast. Molybdenum mineralization is fracture controlled and does not appear to be associated with the copper sulphide minerals. Drill holes 96C-11 and 96C-14 are the deepest holes on the property and intersect the molybdenum mineralization in steeply dipping veins at depth. Native Copper occurs as thin platy fracture fillings and in quartz veins. Native copper occurring in quartz veins may be either remobilized or related to a second phase of mineralization.

Strong potassic alteration occurs throughout this zone with partially overlapping and pervasive argillic alteration. Bornite occurs in the potassic altered zones with Chalcopyrite extending into the argillic alteration. Potassic alteration is the most wide spread and could be more closely related to the emplacement of an Aplite Dike which subcrops below the mineralized zone then to the mineralization. Potassic alteration also appears vein controlled and radiates out from fractures. Argillic alteration is fracture controlled with the most intense alteration occurring along fractures, faults and highly brecciated zones. Sericite alteration ranges from thin coatings on fractures to replacement of whole feldspar grains adjacent to the fractures. Chlorite vein alteration coats fracture planes, forms veinlets and replaces mafic minerals.

Copper mineralization on the Dot property is fracture controlled and either in or closely associated with veins, faults or breccia zones. The better grades appear where the fracture density is high or where different sets of fractures overlap. The mineralization in the Northwest and Southeast zones is controlled by a major Northwest trending fault. A major fault running Northeast has offset the Northwest and Southeast zones. The mineralization in drill hole 96C-08 is offset to the east, with a noticeable difference in overburden, 19.5m in 96C-08 as compared to 33.4m in 96C-13. Drill hole 96C-13 was drilled west, along strike of this fault and intersected numerous brecciated sections of core and intense argillic alteration. The mineralized zone is steeply dipping and appears to vary, from slightly east in the Northwest zone to westerly in the Southeast zone as indicated by drill holes 96C-10 and 96C-11. Cross faults are believed to control the width of the mineralization and is responsible for the pinching and swelling of the mineralized zone, as seen on the plan view map. Due to the orientation of the drill holes, these cross faults have yet to be defined.

## DOT PROPER'I I ASSAY RESULTS

| DDH#        | FROM (m)                  | TO (m)        | INTV. (m) | INTV. (ft) | Cu (%)      | Ag (g/t) | Au (g/t) | Mo (%) |
|-------------|---------------------------|---------------|-----------|------------|-------------|----------|----------|--------|
| 96C-01      | 18.0                      | 49.0          | 31.0      | 101.7      | 0.26        | N/A      | N/A      | N/A    |
| 96C-02      |                           |               |           |            | <del></del> |          |          |        |
| 300-02      |                           |               |           |            |             |          |          |        |
| 96C-03      | 29.0                      | 66.2          | 37.2      | 123.0      | 1.23        | 5.55     | 0.10     | 0.00   |
| 200.01      |                           |               |           |            |             |          |          |        |
| 96C-04      | 36.0<br>65.2              | 43.0          | 7.0       | 23.1       | 0.85        | 3.51     | 0.05     | 0.00   |
|             | 05.2                      | 130.0         | 64.8      | 214.2      | 0.25        | 1.54     | 0.05     | 0.01   |
| 96C-05      | 72.3                      | 139.5         | 67.2      | 222.2      | 0.61        | 3.73     | 0.04     | 0.00   |
| 96C-06      | 42.0                      | 68.0          | 26.0      | 86.0       | 0.92        | 7.93     | 0.02     | 0.00   |
| 000 00      | 72.0                      |               | 20.0      | 00.0       | 0.02        | 7.00     | 0.02     | 0.00   |
| 96C-07      | 145.0                     | 186.6         | 41.6      | 137.5      | 0.40        | 4.38     | 0.04     | 0.00   |
| 96C-08      | 52.0                      | 73.0          | 21.0      | 69.4       | 0.14        | 0.93     | 0.06     | 0.00   |
| 96C-09      | 82.0                      | 154.0         | 72.0      | 238.0      | 0.41        | 2.56     | 0.04     | 0.00   |
| 96C-10      | 84.4                      | 182.4         | 98.0      | 324.0      | 0.56        | 4.06     | 0.06     | 0.00   |
| 96C-11      | 108.8                     | 135.2         | 26.4      | 87.3       | 0.36        | 2.61     | 0.04     | 0.00   |
|             | 166.7                     | 220.5         | 53.8      | 177.9      | 0.49        | 3.36     | 0.07     | 0.04   |
| 96C-12      | 95.6                      | 130.6         | 35.0      | 115.7      | 0.24        | 1.22     | 0.02     | 0.00   |
|             | 214.6                     | 221.6         | 7.0       | 23.1       | 0.65        | 5.23     | 0.06     | 0.00   |
| 96C-13      | 31.7                      | 43.7          | 12.0      | 39.7       | 0.47        | 2.55     | 0.03     | 0.01   |
| 96C-14      | 138.4                     | 165.4         | 27.0      | 89.3       | 0.31        | 2.38     | 0.03     | 0.01   |
| 000 14      | 213.4                     | 219.4         | 6.0       | 19.8       | 0.49        | 2.30     | 0.03     | 0.00   |
| 96C-15      | 101.7                     | 221.6         | 119.9     | 396.3      | 0.58        | 4.03     | 0.05     | 0.00   |
| 96C-16      | 64.6                      | 126.6         | 42.0      | 138.9      | 0.30        | 3.00     | 0.12     | 0.00   |
| /A (not occ | aved)                     |               |           |            |             | 1.1.1.   |          |        |
| A (not ass  | ayed)<br>gnificant copper | values were r | hebroner  |            |             |          |          |        |

## DRILL HOLE TECHNICAL DATA

| DDH NO: | EASTING | NORTHING | DIP     | AZIMUTH | TOTAL   | HORZ     | VERTICAL | CORE |
|---------|---------|----------|---------|---------|---------|----------|----------|------|
|         | (m)     | (m)      | DEGREES | DEGREES | LENGTH  | PROJ (m) | PROJ (m) | SIZE |
| 96C-01  | 4698    | 5726     | £1      | 50      | 70.10   | 44.11    | 54.47    | NO   |
| 900-01  | 4090    | 5/26     | -51     | 52      | 70.10   | 44.11    | 54.47    | NQ   |
| 96C-02  | 4797    | 5719     | -50     | 223     | 77.72   | 49.95    | 59.53    | NQ   |
|         |         |          |         |         |         |          |          |      |
| 96C-03  | 5093    | 5223     | -51     | 240     | 91.75   | 57.74    | 71.30    | NQ   |
| 000.04  | E447    | 5000     |         | 240     | 145.00  | 70.00    | 404.60   | NO   |
| 96C-04  | 5117    | 5232     | -57     | 240     | 145.09  | 79.02    | 121.68   | NQ   |
| 96C-05  | 5094    | 5263     | -55     | 247     | 163.07  | 93.53    | 133.57   | NQ   |
|         |         |          |         |         |         |          |          |      |
| 96C-06  | 4988    | 5228     | -49     | 73      | 194.16  | 127.38   | 146.53   | NQ   |
| 000.07  | 5040    | 5445     | 40      |         | 222.22  | 100.07   | 150.07   |      |
| 96C-07  | 5016    | 5115     | -49     | 62      | 202.69  | 132.97   | 152.97   | NQ   |
| 96C-08  | 5096    | 5359     | -50     | 246     | 176.48  | 113.43   | 135.19   | NQ   |
| 77.7    |         |          |         | _,,     | 77,0110 |          |          |      |
| 96C-09  | 5072    | 5076     | -50     | 55      | 160.63  | 103.25   | 123.04   | NQ   |
| 000 10  | 5000    | 50.40    | 7-9     |         |         | 105.00   | 100.00   |      |
| 96C-10  | 5083    | 5043     | -47     | 55      | 271.27  | 185,00   | 198.39   | NQ   |
| 96C-11  | 5083    | 5043     | -60     | 55      | 325.22  | 162.61   | 281.64   | NQ   |
| 000.1   | 3333    | 1        |         |         | 020.22  |          | 201.01   |      |
| 96C-12  | 5079    | 4995     | -55     | 55      | 325.22  | 186.53   | 166.40   | NQ   |
|         | 5000    | 5000     |         |         |         | 155.01   |          |      |
| 96C-13  | 5032    | 5269     | -45     | 235     | 239.87  | 169.61   | 169.61   | NQ   |
| 96C-14  | 5201    | 5196     | -60     | 235     | 243.84  | 121.92   | 211.17   | NQ   |
|         |         | 1        |         |         |         | .22      |          |      |
| 96C-15  | 5131    | 4954     | -45     | 55      | 221.58  | 156.68   | 156.68   | NQ   |
|         |         | 1001     |         |         |         |          | 111.55   |      |
| 96C-16  | 5221    | 4881     | -45     | 55      | 200.25  | 141.59   | 141.59   | NQ   |

#### 5.0 DIAMOND DRILLING PROGRAM (1996) RESULTS

A summary of the 16 hole program is given below:

Drill Hole DDH 96C-01 was drilled along strike to the northwest of the known copper mineralization (refer to figures 3 for location and figure 5 for sectional views) to test the north extension of this zone. This drill hole intersected potassic and localized argillic altered Granodiorite throughout. A fault occurred between 8.2m and 9.6m and was noted by the light colored clay content. An Aplite Dike subcropped between 67.0m and 69.8m and consisted of fine grained quartz and feldspar. Bornite with occasional Native copper give this hole an average grade of 0.26% Cu over 31.0m.

Drill Hole DDH 96C-02 was drilled approximately 100m east of DDH 96C-01 on a azimuth of 223 degrees (refer to figure 3 for location and figure 6 for sectional views). This hole was drilled in an fractured granodiorite with strong argillic alteration. This hole was stopped short of the mineralized trend and no grades of copper mineralization was intersected. Significant occurrences of Native Copper were noted from 45.9m to 47.2m with a strong bornite showing at the bottom of the core.

Drill Hole DDH 96C-03 was drilled approximately 300m southeast of the existing mineralization (refer to figure 4 for location and figure 7 for sectional views) to test the southern extension of this zone. This hole collared in mineralization grading 2.63% Cu over 15m, starting at a depth of 29.0m. Granodiorite with potassic alteration was the only lithology encountered in this hole. Massive specular hematite along with abundant bornite and chalcopyrite were the dominated sulphide minerals and resulted in an overall grade of 1.23% Cu over 37.2m. Gold and Silver concentrations averaged 0.10 (g/t) Au and 5.55 (g/t) Ag over this same interval.

Drill Hole DDH 96C-04 Since 96C-03 collared in mineralization DDH 96C-04 was drilled 9m north an 24m east of the previous location (refer to figure 4 for location and figure 8 for sectional views). This was to test the width of the mineralized zone and undercut the mineralization discovered in DDH 96C-03. The main copper minerals were bornite and chalcopyrite with possible chalcocite. Average grade for this hole is 0.25% Cu over 94.0m. The zone is contained within a potassic altered granodiorite with faults occurring at 48.4m, 53.6m to 88.2m, 109.1m and ending in a fault at 137.6m.

Drill Hole DDH 96C-05 was collared 31 metres north of DDH 96C-04 (refer to figure 4 for location and figure 9 for sectional view) to try and find continuity between the two mineralized zones. This drill hole intersected potassic alteration and mineralization soon after entering bedrock. To establish the true width of the mineralized zone 96C-05 should have been collared further east. This new location would intersected the propylitic zone before entering the Potassic and argillic zones and give a true width to the mineralization. Numerous fault zones and two intrusive Dikes were intersected while drilling this hole. Molybdenum was first logged in this hole and occurs in a fracture within an Aplite Dike which subcrops at this location. Average grades for this hole is 0.44% Cu over 112.5m.

<u>Drill Hole DDH 96C-06</u> was drilled 106m west of the previous location.(refer to figure 4 for location and figure 10 for sectional view) This was to create a cross sectional view of the mineralization and give information about the orientation and structure of the mineralization and faulting. The copper mineralization occurs in a intensely altered granodiorite. The high density of fractures created pathways for the mineralization and explains the length of the copper intersection. Average grades for 96C-06 was 0.35% Cu over 109.0m.

Drill Hole DDH 96C-07 was drilled 108m south and 77m west of DDH 96C-03 (refer to figure 4 for location and figure 11 for sectional view) along strike to the Southeast. This was to delineate the length and strike of the new mineralized zone. Extensive faulting was noted in the core with intense potassic and argillic alteration of the granodiorite host rock. Two distinct zones of mineralization occur, 52 0m to 60.8m (8.8m grading 0.22% Cu) and 145.0m to 186.6m (41.6m grading 0.40% Cu). The change in width from the previous holes is believed to be caused by a cross fault with a northeast orientation. Because of the orientation of drilling, the cross fault pattern has not been established. The plan view (figure 4) shows the mineralization pinching and swelling as in DDH 96C-15. Cross faulting would explain this type of structural pattern.

Drill Hole DDH 96C-08 was collared 96m north of 96C-05 (refer to figure 4 for location and figure 12 for sectional view). This was to try and find the mineralization that would connect the two zones. This hole was important because it starts to establish the basis of a major northeast trending fault pattern. The mineralization in 96C-08 is offset to the east and the depth of overburden changes from 33.4m in 96C-13 to 9.5m in this hole. The mineralization is hosted in potassic altered granodiorite. This hole ended in an Aplite dike which appears to intrude the mineralized zone at depth. Average grades for this hole is 0.14% Cu over 21m.

<u>Drill Hole DDH 96C-09</u> was drilled along strike, 39m southeast of 96C-07 (refer to figure 4 for location and figure 13 for sectional view). This was to further delineated the mineralization in this direction. The copper mineralization was hosted in a fractured granodiorite. Bornite is the dominate copper mineral with significant occurrences of molybdenum at the end of this hole. Molybdenum mineralization appears to be associated with emplacement of the Aplite dike and occurs when the drill holes come close to or intersects this intrusive. The copper mineralization occurs from 82.0m to 154.0m and the average grades for this interval are 0.41% Cu over 72.0m.

<u>Drill Hole DDH 96C-10</u> was drilled along strike, 33m southeast of 96C-09 (refer to figure 4 for location and figure 14 for sectional view). Drill holes 96C-10 to 96C-16 were drilled to delineate the mineralized zone along strike to the southeast. The copper mineralization is hosted in strongly potassic altered granodiorite. Bornite is the dominate copper mineral with minor chalcopyrite. Gold and Silver values appear to increase toward the southeast. Average grade for Copper is 0.56% over 98.0m and occurs between 84.4m and 182.4m.

Drill Hole DDH 96C-11 was collared from the same drill site as 96C-10 (refer to figure 4 for location and figure 15 for sectional view). This hole was drilled at -60 degrees to undercut the mineralized zone intersected in 96C-10. This hole was important because it shows the mineralization and grade reported from 96C-10 continues at depth. When the cross sectional views of 96C-10 and 96C-11 are compared, the dip of the mineralization changes from slightly east as in drill holes 96C-03 and 96C-04 to slightly west. Molybdenum concentrations reached there highest level in this hole and lends support to the association of mineralization to the emplacement of the Aplite Dike which was subcrops from 230.7m to 245.0m. Two zones of copper mineralization occur, one from 108.8m to 135.2m and grades 0.36% over 26.4m and the second zone from 166.7m to 220.5m and grades 0.49% over 53.8m.

Drill Hole DDH 96C-12 was collared 48m south of drill hole 96C-11 (refer to figure 4 for location and figure 16 for sectional view). This hole has strong potassic with intense localized argillic alteration. The alteration pattern indicates that this hole intersected similar fractured zones as the previous hole, but does not carry the grades recorded in 96C-10 and 96C-11. The first mineralized zones in this hole occurs from 95.6m to 130.5m and grades 0.24% Cu over 35.0m. The second zone is from 214.6m to 221.6m and grades over 0.655 Cu over 7.0m. What appears to be significant is the amount of visible Native Copper which occurs along fractures at the bottom of this hole.

Drill Hole DDH 98C-13 was drilled 44m east and 41m north of 96C-06 (refer to figure 4 for location and figure 17 for sectional view). 96C-13 was drilled to delineate the western extension of the mineralization intersected in 96C-06. This hole was highly fractured with pervasive argillic alteration throughout. The extent of fracturing and alteration, suggest that this hole was drilled down the center of a large northeast trending fault, which was suspected in 96C-08. The copper mineralization occurs from 31.7m to 43.7m and grades 0.47% Cu over 7.0 meters. Drilling this fault zone in a northwest or southeast direction could delineate new mineralization associated with this fracture system.

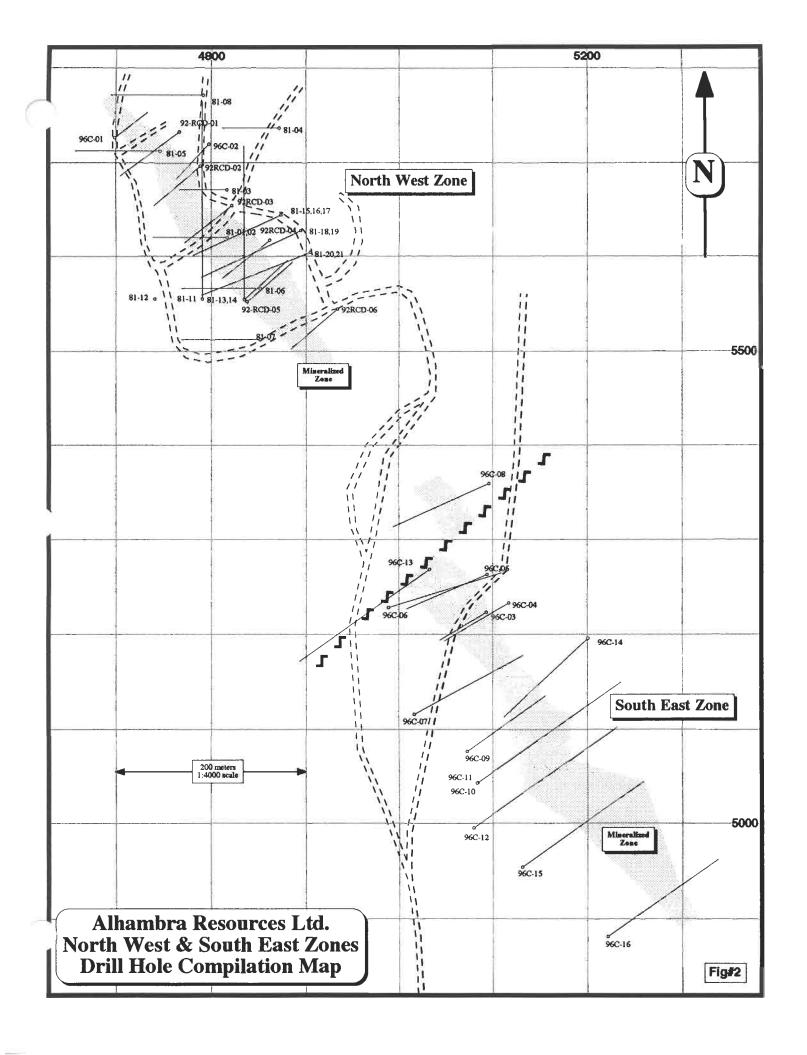
Drill Hole DDH 96C-14 was drilled 120m north and 129m east of 96C-09 (refer to figure 4 for location and figure 18 for sectional view). This hole was drilled at -60 degrees to undercut the mineralization intersected in 96C-09. The location of this hole was off center to the north and did not parallel the azimuth of 96C-09. 96C-14 intersected the propylitic zone to the east of the mineralization and the main copper zone from 138.4m to 165.4m and averaged 0.31% Cu over 27.0m. A small zone from 213.4m to 219.4m averaged 0.49% Cu over 6.0m.

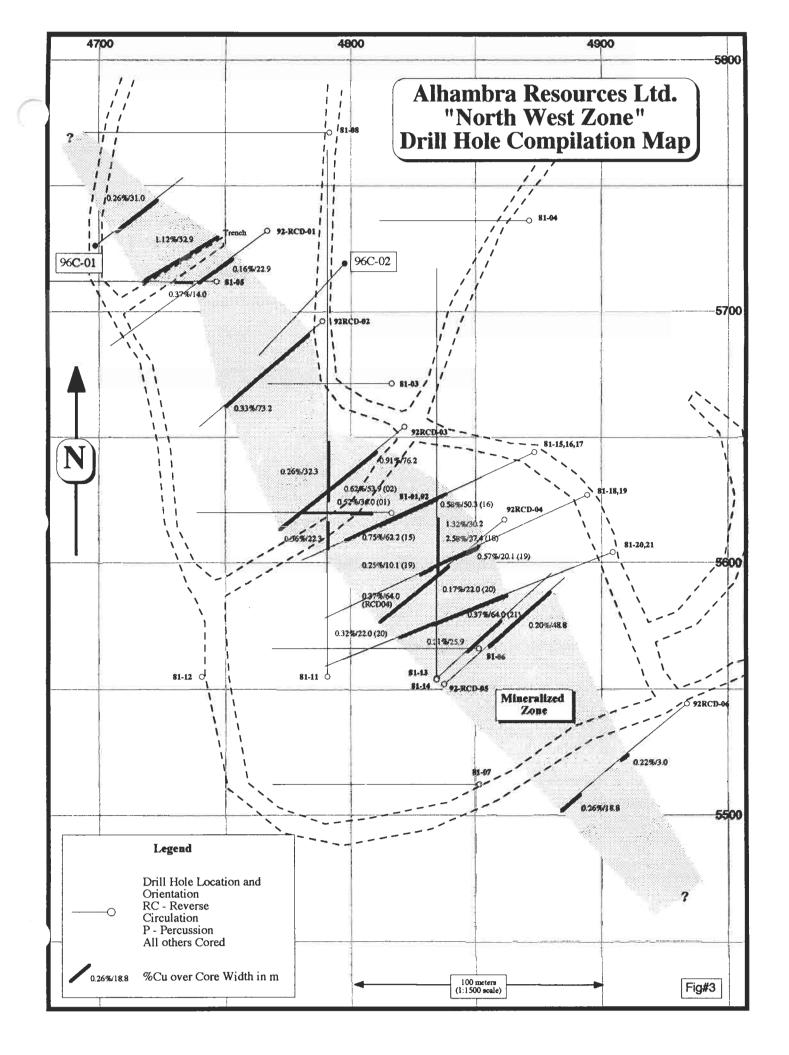
<u>Drill Hole DDH 96C-15</u> was collared 41m south and 52m east of DDH 96C-12 (refer to figure 4 for location and figure 19 for sectional view). This hole has the highest concentration of extended copper mineralization within this zone. After drilling 96C-12 which intersected low copper values, this hole increased the copper sulphide potential of the Dot property and extended the mineralized zone in this direction. The mineralized section in this hole occurred from 101.7m to 221.6m and averaged 0.58% copper over 119.9m.

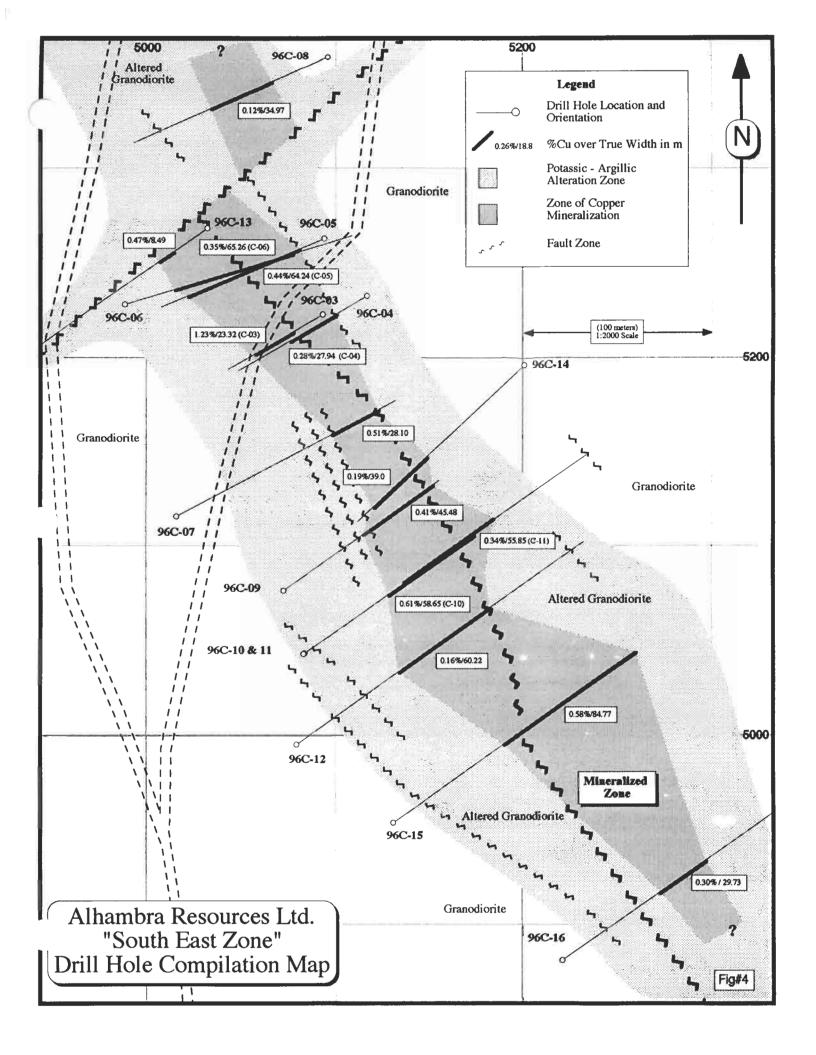
Drill Hole DDH 96C-16 was collared 73m south and 90m east of 96C-15 (refer to figure 4 for location and figure 20 for sectional view). This was the last hole drilled along strike to the southeast. 96C-16 collared in altered granodiorite and the drill site should have been located further west, to evaluate the width of the potassic and argillic altered zone. This drill hole shows that the copper mineralization within the Dot property is open in this direction. The average grade of copper is 0.30% over 42.0 meters. High grades of gold 3.24 (g/t) was noted in a one meter sample. Gold concentrations appear to increase in this direction, the closer this fault zone approaches the contact between the Guichon Creek Batholith and the Nicola volcanics.

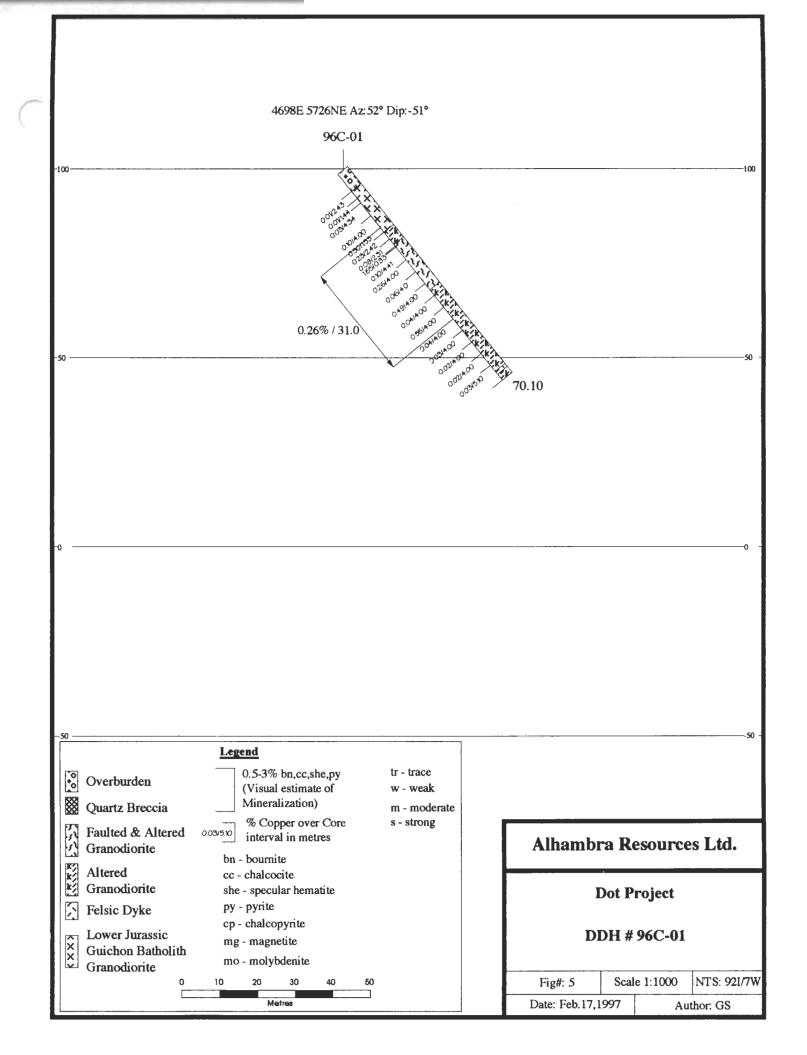
## 6.0 SUMMARY OF EXPENDITURES, DOT PROPERTY

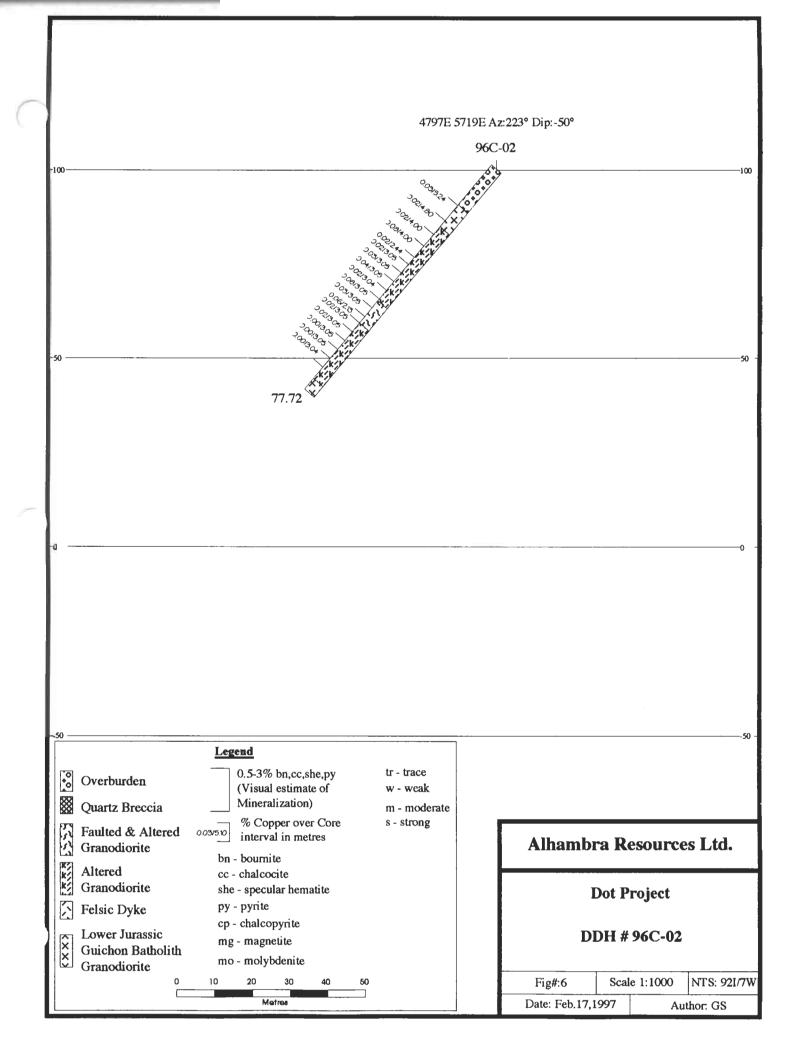
| Exploration Function                 | Expenditure  |
|--------------------------------------|--------------|
| Diamond Drilling                     | \$186,562.09 |
| Drilling Water                       | \$3,960.00   |
| Analysis - Assays                    | \$25,126.00  |
| Project Supervision                  | \$20,171.61  |
| Geological Supervision               | \$34,939.22  |
| Core Splitting                       | \$7,776.87   |
| Core Storage                         | \$2,400.00   |
| Construction                         | \$1,940.80   |
| Core Racks                           | \$1,467.25   |
| Transportation & Hauling             | \$8,083.80   |
| Subsistence                          | \$1,427.46   |
| Accommodations                       | \$936.00     |
| Survey Drill Hole Locations          | \$675.00     |
| Drafting - Maps & Cross Sections     | \$1,050.00   |
| Office Supplies                      | \$333.80     |
| Field Supplies                       | \$545.37     |
| Claim Staking (Dot property 20 units | \$1,487.50   |
| Printing                             | \$217.33     |
| Courier Services                     | \$59.02      |
| Communications                       | \$1,105.26   |
| TOTAL: (No GST added)                | \$300,264.38 |
|                                      |              |


(for the period June 1, 1996 to December 31, 1996)

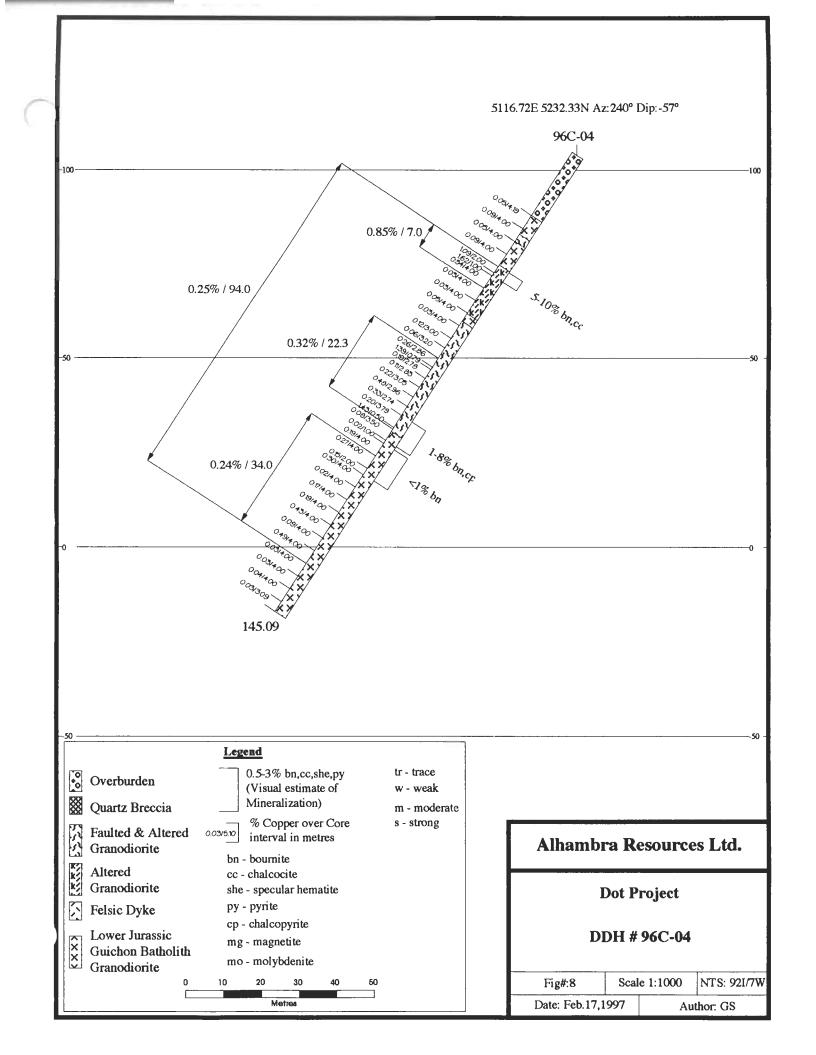

#### 7.0 STATEMENT OF QUALIFICATIONS

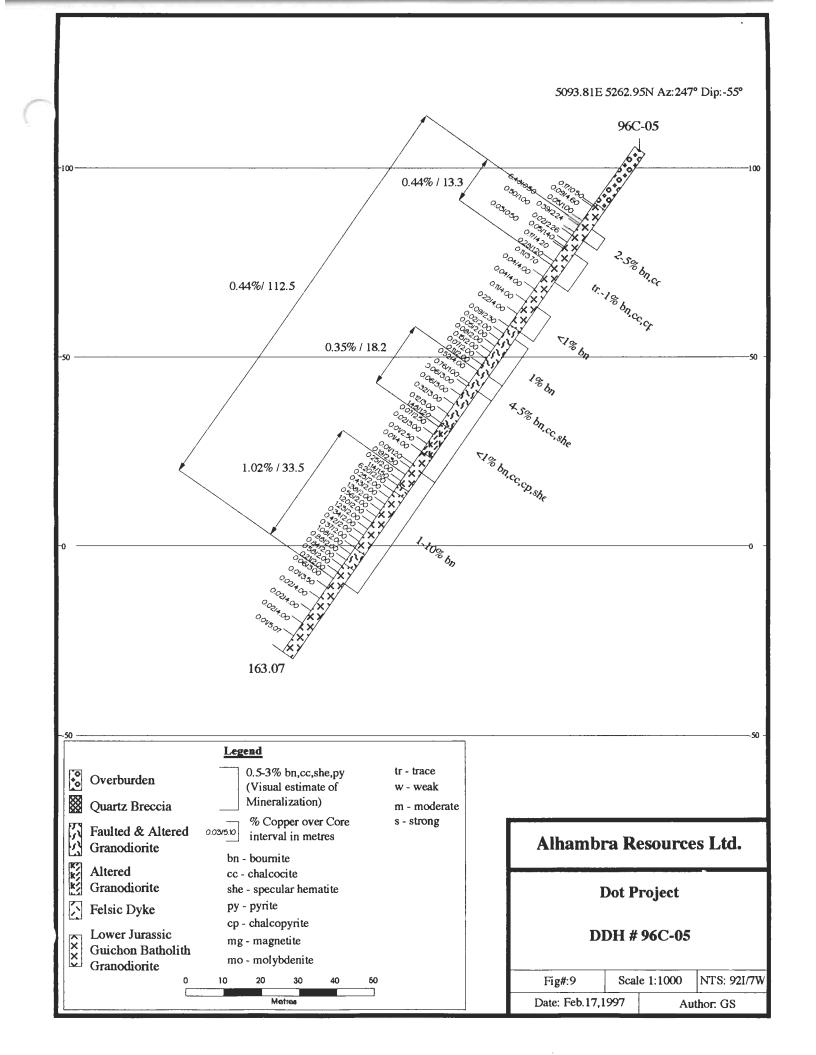

- I, Gary G Stewart of 17 Edgeview Rd N.W. Calgary Alberta do hereby certify that:
- 1. I am a graduate of the Acadia University with a B.Sc in geology, (1976) and presently employed by Alhambra Resources Ltd.
- 2. I am a registered Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) since 1985.
- 3. I have actively practiced my profession as a Geologist for the past 21 years.
- I have personally supervised the fieldwork on the Dot property for Alhambra Resources Ltd. between October 25, 1996 until December 5, 1996.
- 5. This assessment report is based on a study of the field data and literature accumulated during the period from June 1996 until December 1996.

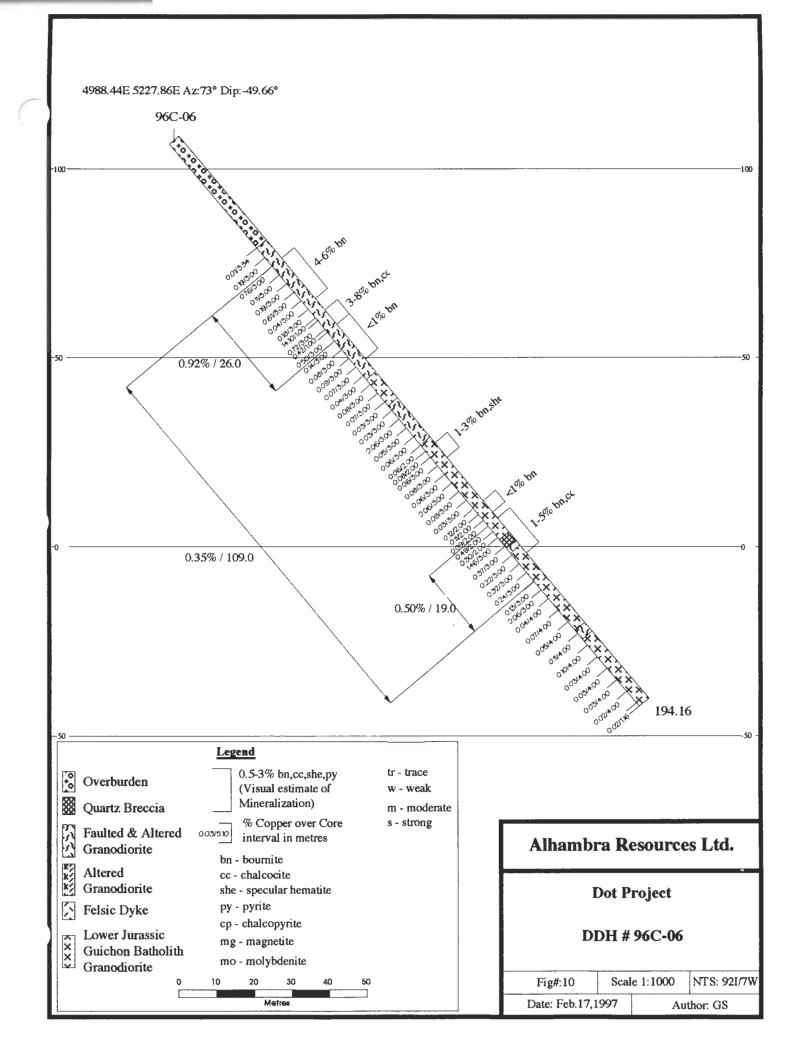

#### 8.0 REFERENCES

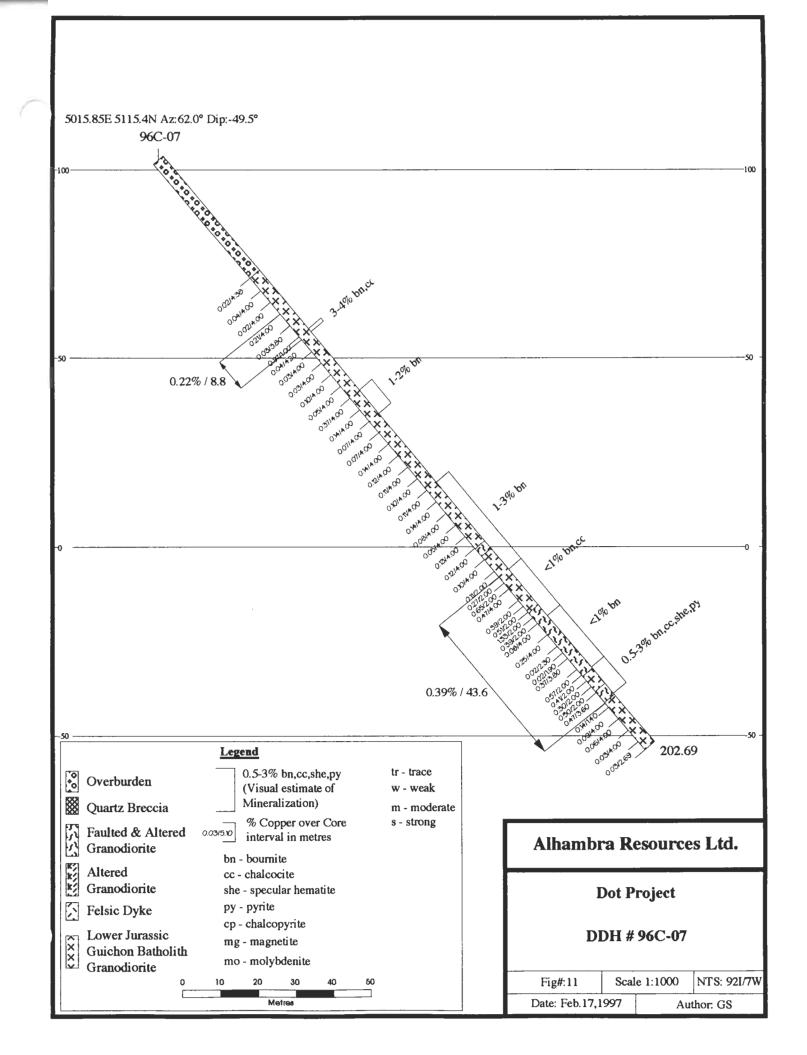

- Casselman, M. J., Mcmillan, W. J., Newman, K. M. (1996): Highland valley porphyry copper deposits near kamloops, British Columbia: A review and update with emphasis on the Valley deposit.
- Hannigan, K. D., (1996) Core Log Descriptions, Dot Property, Diamond Drill holes 96C-01, 96C-02, 96C-03.
- Minfile, (1972): Vimy, Vimy Mine, Upper Vimy, Lower Vimy, IXL, Vimy Ridge, Mine file No. 0921SE023
- Murphy, J. D., (1996) Core Log Descriptions, Dot property, Diamond Drill Holes 96C-03 to 96C-09.
- Norman, G. E., (1992): Report on the 1992 Exploration Program on the Dot Property, prepared for Zappa Resources Ltd.
- Wells, R. A., (1981): Assessment Report for the Vimy Property Mineral claims in the Nicola Mining Division, Percussion and Diamond Drilling reports, Assessment Report No. 9699.

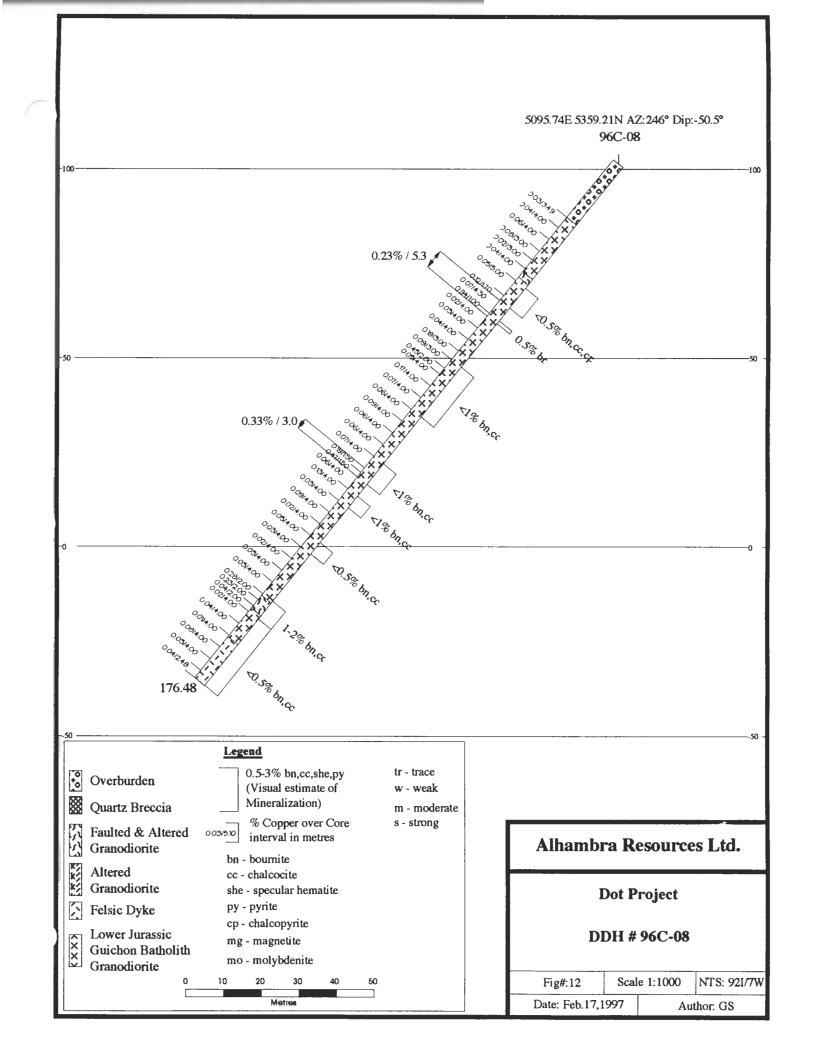


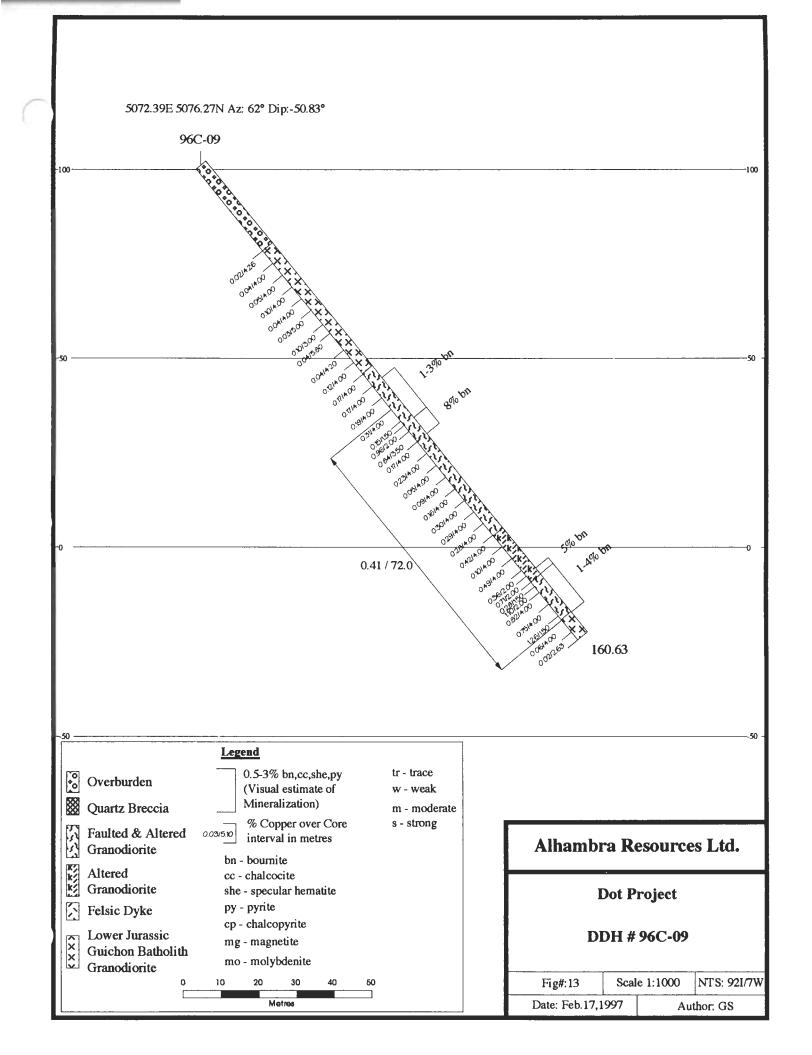


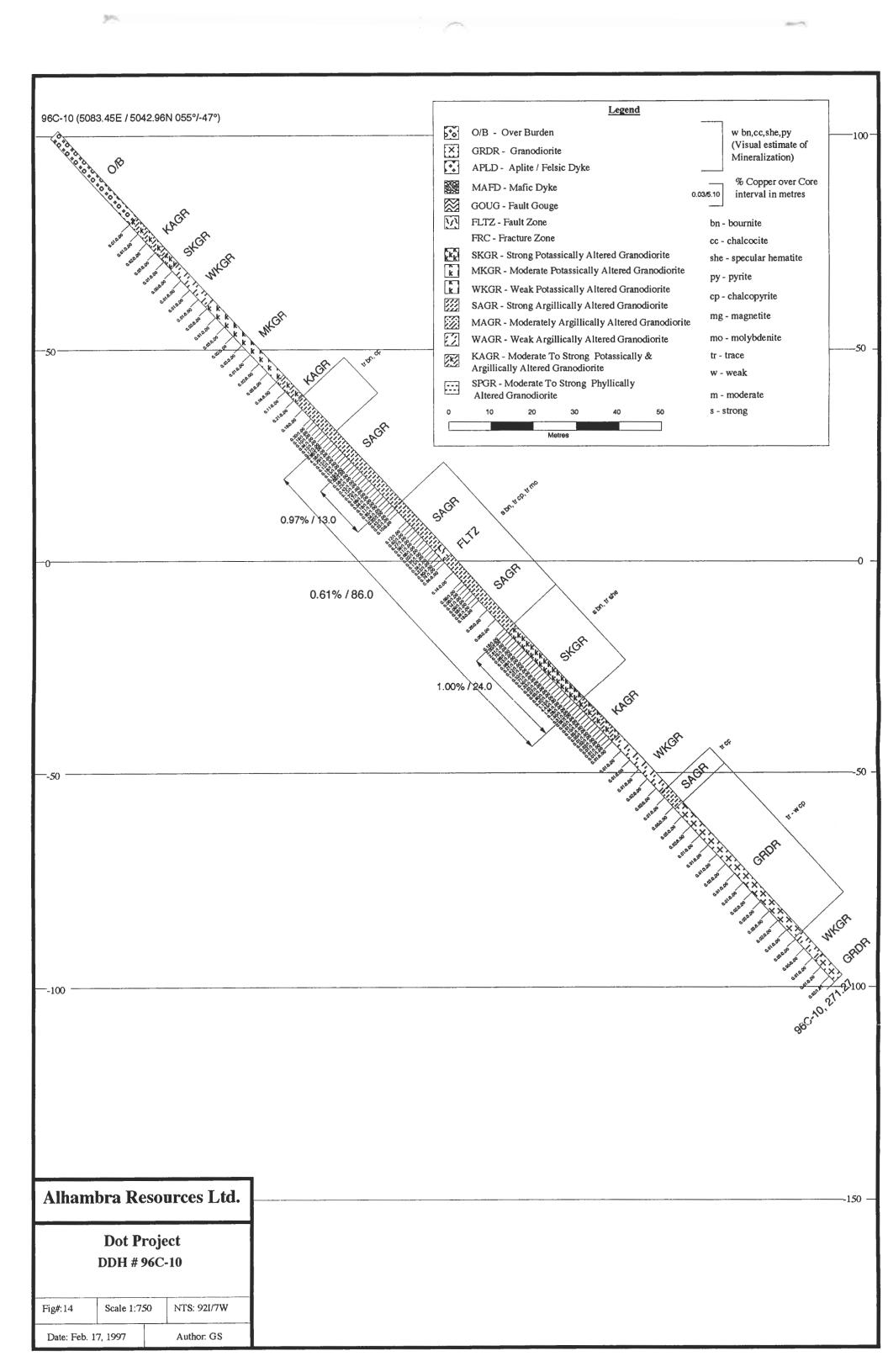



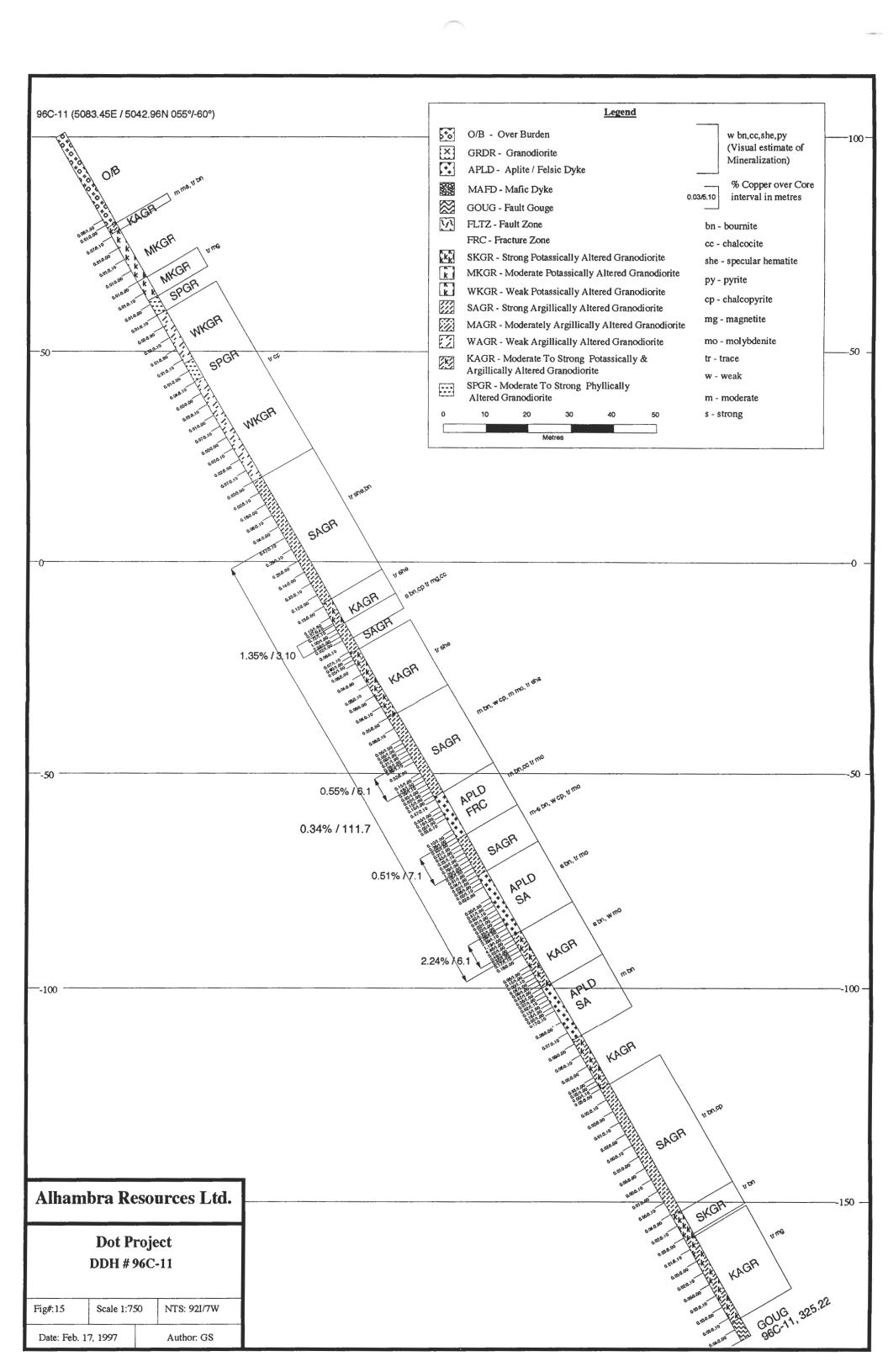



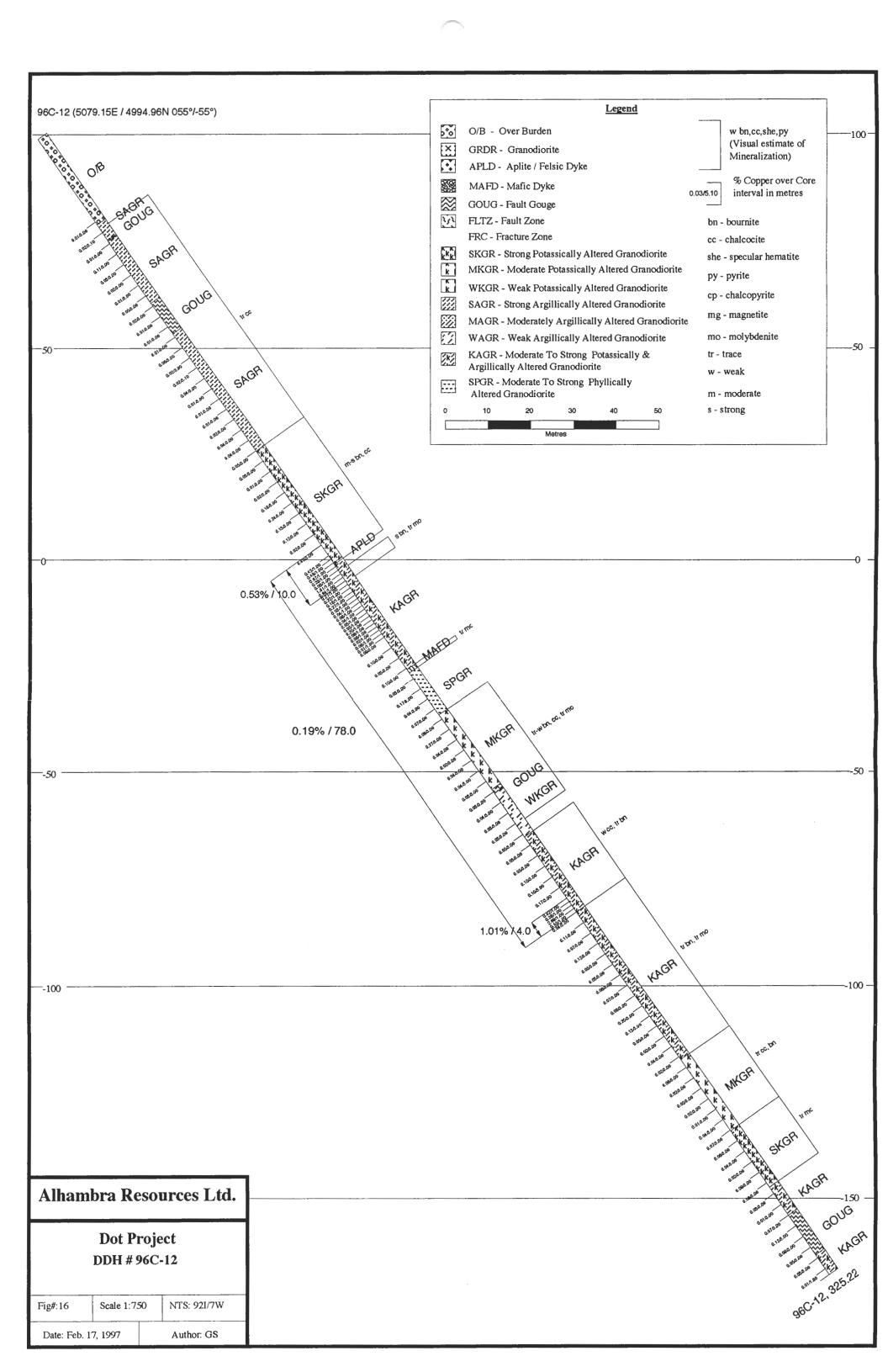



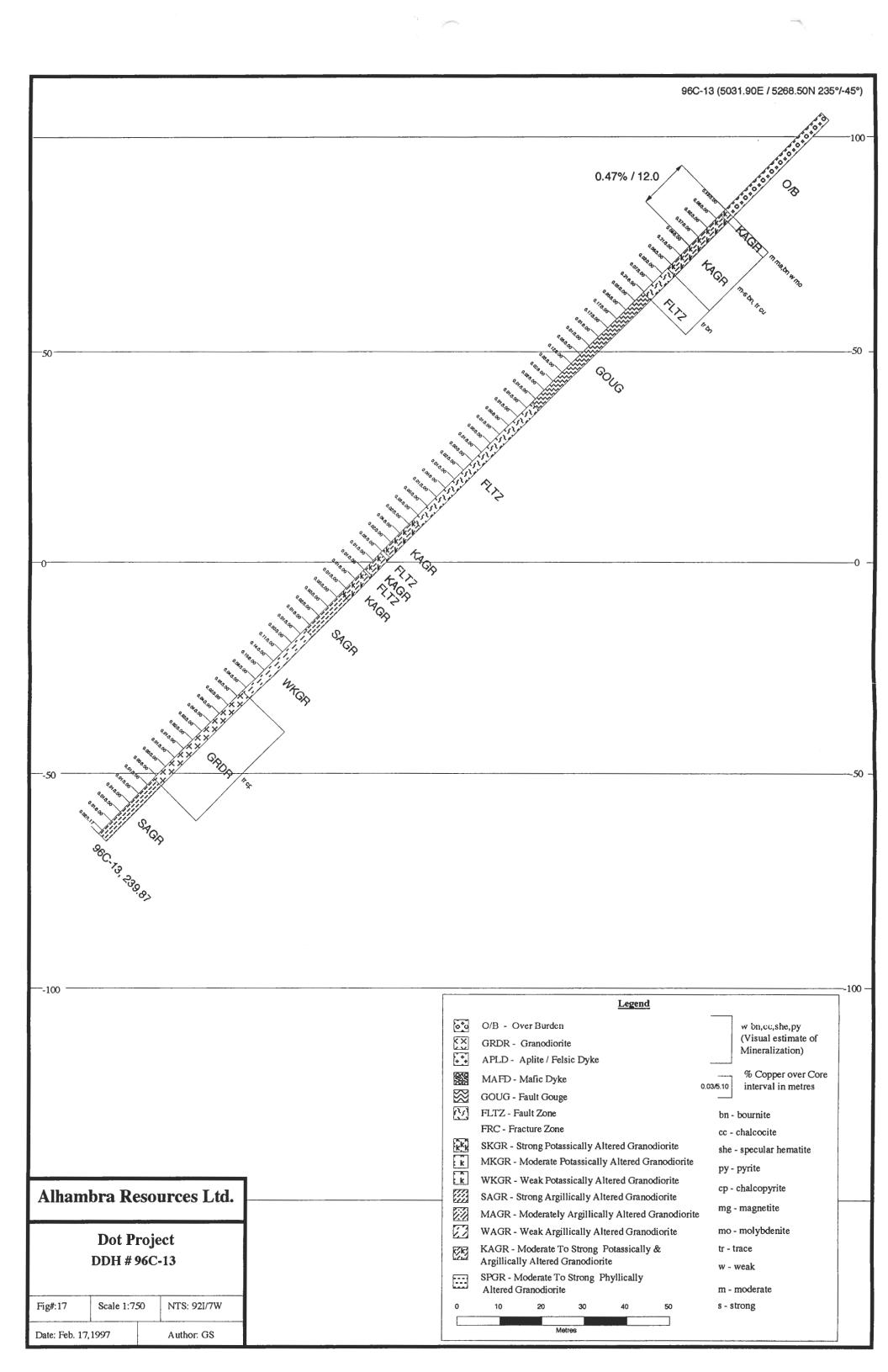



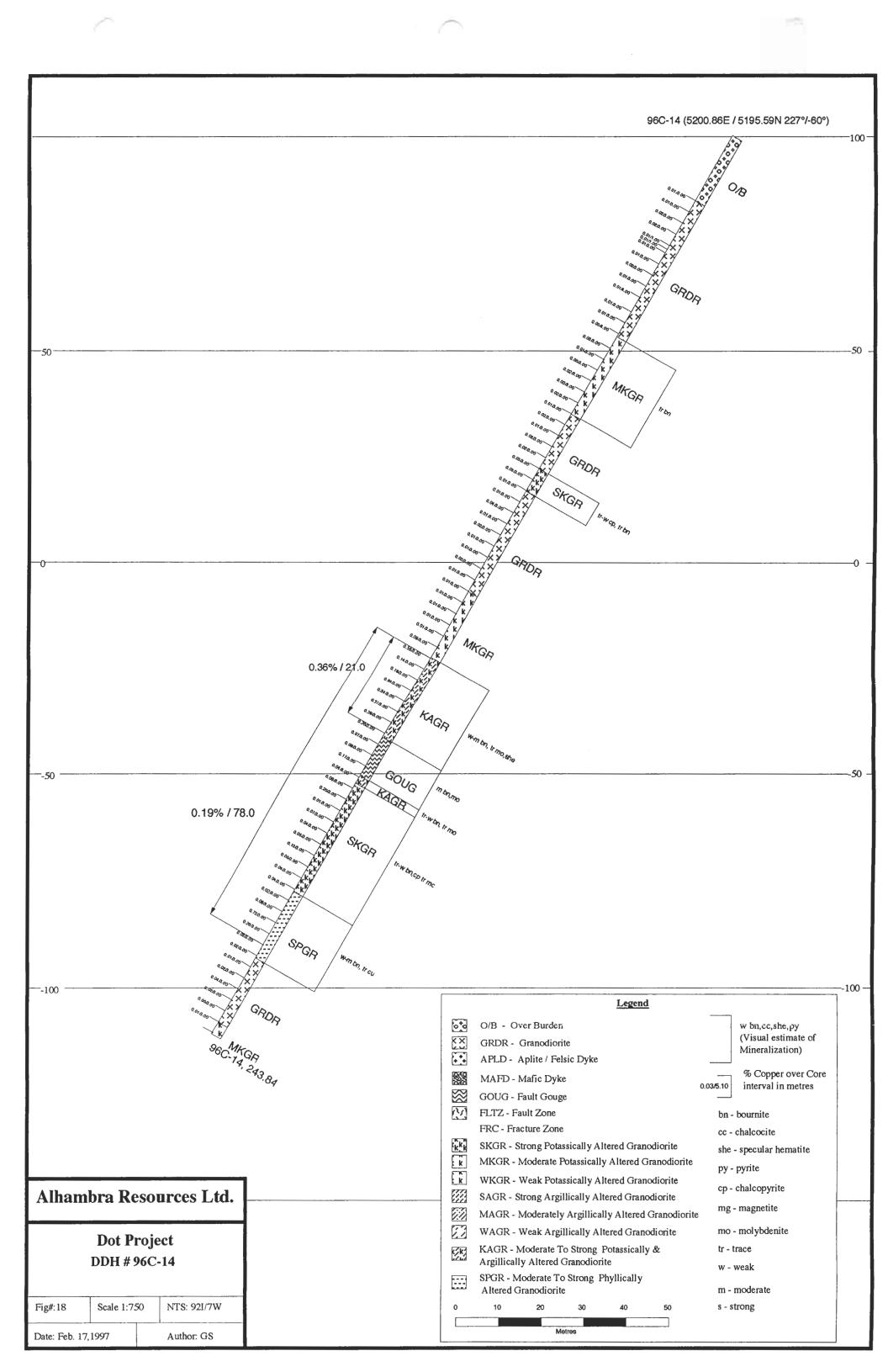



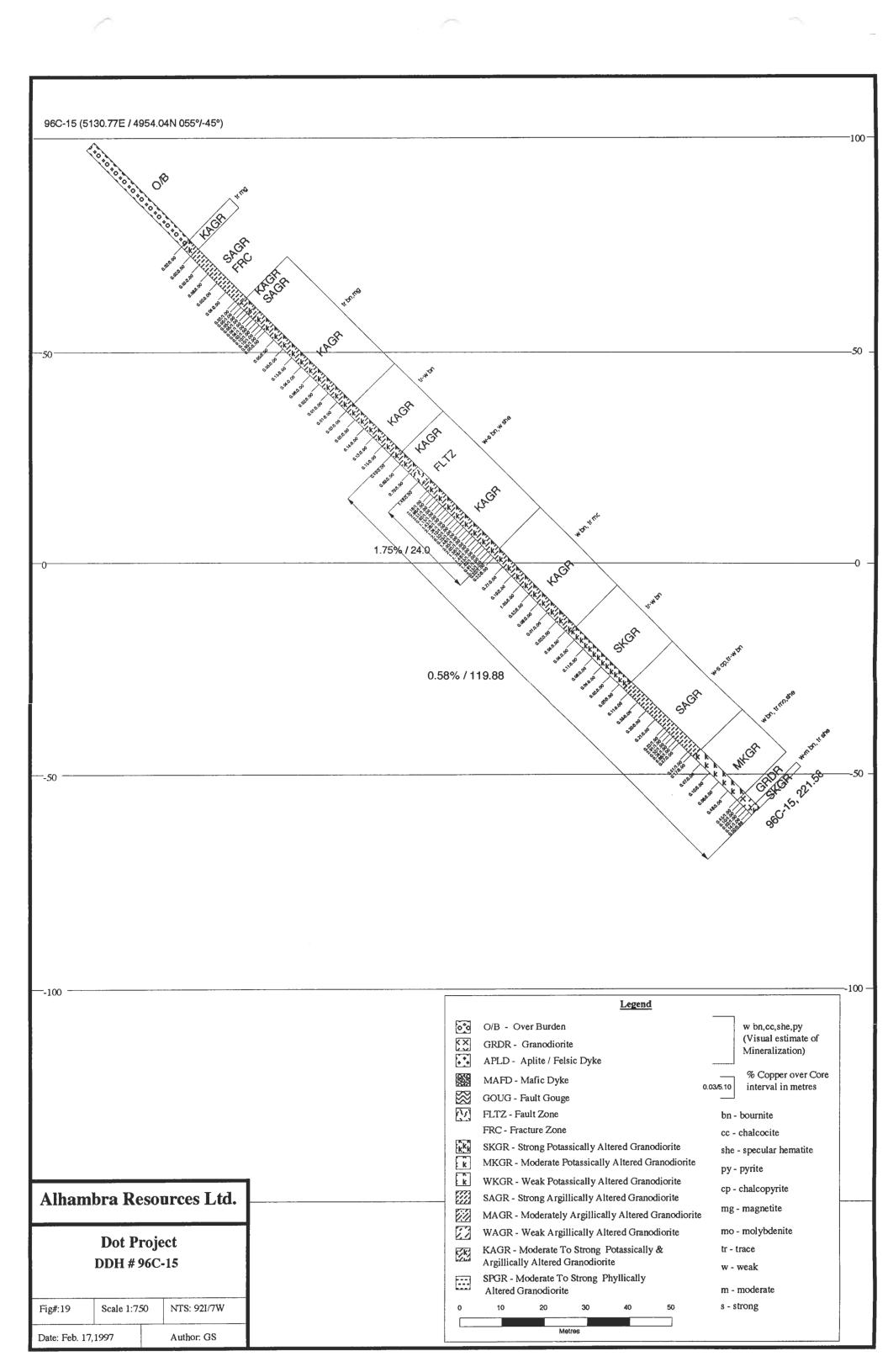



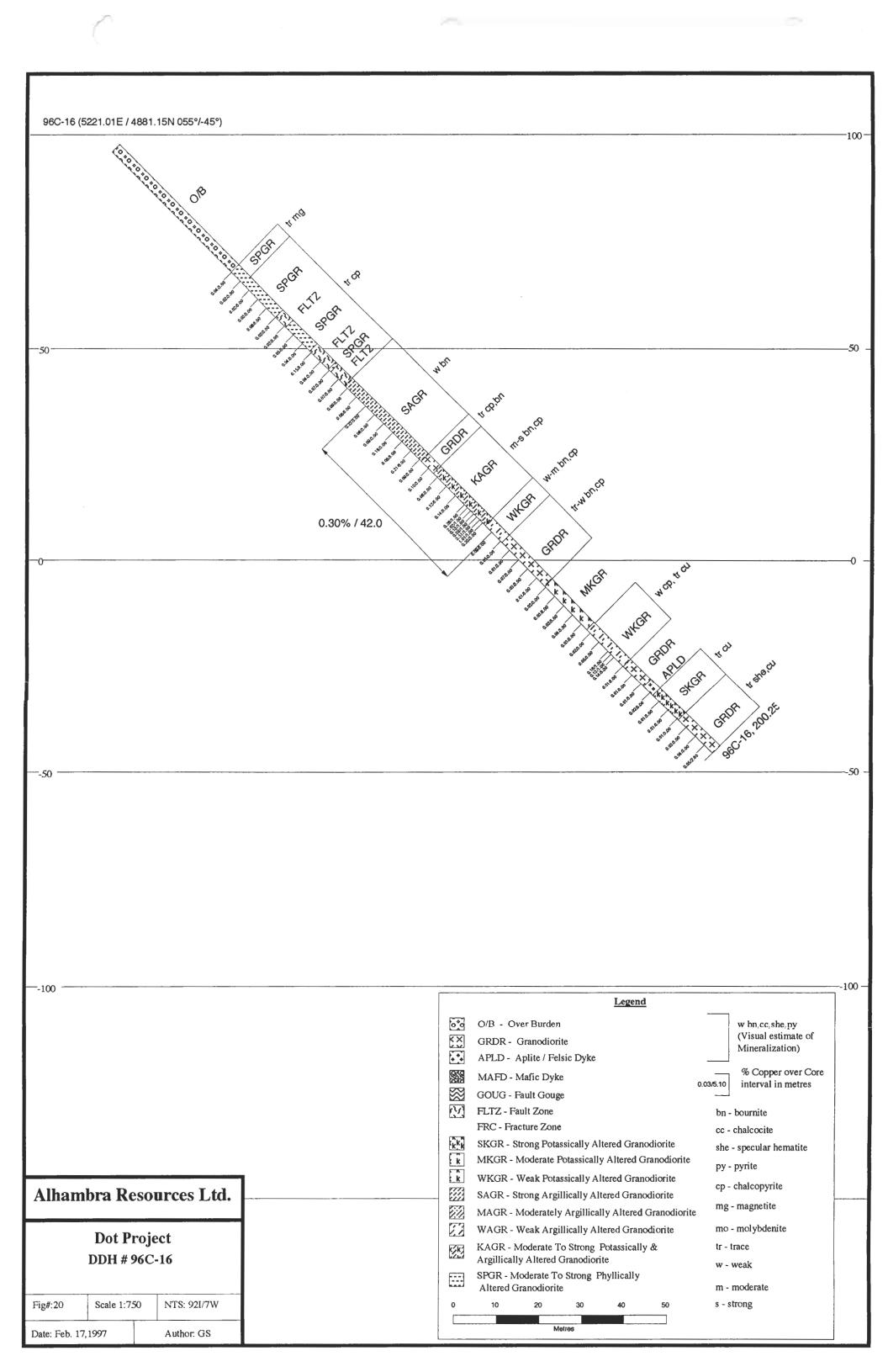














# APPENDIX I DIAMOND DRILL CORE LOGS

#### DOT PROPER... ASSAY RESULTS

| DDH#   | FROM (m) | TO (m) | INTV. (m) | INTV. (ft) | Cu (%) | Ag (g/t) | Au (g/t) | Mo (%) |
|--------|----------|--------|-----------|------------|--------|----------|----------|--------|
| 96C-03 | 29.0     | 66.2   | 37.2      | 123.0      | 1.23   | 5.55     | 0.10     | 0.00   |
| 96C-04 | 36.0     | 43.0   | 7.0       | 23.1       | 0.85   | 3.51     | 0.05     | 0.00   |
| ·-     | 65.2     | 130.0  | 64.8      | 214.2      | 0.25   | 1.54     | 0.05     | 0.01   |
| 96C-05 | 72.3     | 139.5  | 67.2      | 222.2      | 0.61   | 3.73     | 0.04     | 0.00   |
| 96C-06 | 42.0     | 68.0   | 26.0      | 86.0       | 0.92   | 7.93     | 0.02     | 0.00   |
| 96C-07 | 145.0    | 186.6  | 41.6      | 137.5      | 0.40   | 4.38     | 0.04     | 0.00   |
| 96C-08 | 52.0     | 73.0   | 21.0      | 69.4       | 0.14   | 0.93     | 0.06     | 0.00   |
| 96C-09 | 82.0     | 154.0  | 72.0      | 238.0      | 0.41   | 2.56     | 0.04     | 0.00   |
| 96C-10 | 84.4     | 182.4  | 98.0      | 324.0      | 0.56   | 4.06     | 0.06     | 0.00   |
| 96C-11 | 108.8    | 135.2  | 26.4      | 87.3       | 0.36   | 2.61     | 0.04     | 0.00   |
|        | 166.7    | 220.5  | 53.8      | 177.9      | 0.49   | 3.36     | 0.07     | 0.04   |
| 96C-12 | 95.6     | 130.6  | 35.0      | 115.7      | 0.24   | 1.22     | 0.02     | 0.00   |
|        | 214.6    | 221.6  | 7.0       | 23.1       | 0.65   | 5.23     | 0.06     | 0.00   |
| 96C-13 | 31.7     | 43.7   | 12.0      | 39.7       | 0.47   | 2.55     | 0.03     | 0.01   |
| 96C-14 | 138.4    | 165.4  | 27.0      | 89.3       | 0.31   | 2.38     | 0.03     | 0.01   |
|        | 213.4    | 219.4  | 6.0       | 19.8       | 0.49   | 2.30     | 0.03     | 0.00   |
| 96C-15 | 101.7    | 221.6  | 119.9     | 396.3      | 0.58   | 4.03     | 0.05     | 0.00   |
| 96C-16 | 64.6     | 126.6  | 42.0      | 138.9      | 0.30   | 3.00     | 0.12     | 0.00   |

#### DRILL HOLE . \_CHNICAL DATA

| DDH NO: | EASTING | NORTHING | DIP     | AZIMUTH | TOTAL  | HORZ     | VERTICAL | CORE |
|---------|---------|----------|---------|---------|--------|----------|----------|------|
|         | (m)     | (m)      | DEGREES | DEGREES | LENGTH | PROJ (m) | PROJ (m) | SIZE |
| 96C-01  | 4698    | 5726     | -51     | 52      | 70.10  | 44.11    | 54.47    | NQ   |
| 900-01  | 4030    | 3720     | -31     | JZ      | 70.10  | <u> </u> | 34,47    | INQ  |
| 96C-02  | 4797    | 5719     | -50     | 223     | 77.72  | 49.95    | 59.53    | NQ   |
| 96C-03  | 5093    | 5223     | -51     | 240     | 91.75  | 57.74    | 71.30    | NQ   |
| 96C-04  | 5117    | 5232     | -57     | 240     | 145.09 | 79.02    | 121.68   | NQ   |
| 96C-05  | 5094    | 5263     | -55     | 247     | 163.07 | 93.53    | 133.57   | NQ   |
| 96C-06  | 4988    | 5228     | -49     | 73      | 194.16 | 127.38   | 146.53   | NQ   |
| 96C-07  | 5016    | 5115     | -49     | 62      | 202.69 | 132.97   | 152.97   | NQ   |
| 96C-08  | 5096    | 5359     | -50     | 246     | 176.48 | 113.43   | 135.19   | NQ   |
| 96C-09  | 5072    | 5076     | -50     | 55      | 160.63 | 103.25   | 123.04   | NQ   |
| 96C-10  | 5083    | 5043     | -47     | 55      | 271.27 | 185.00   | 198.39   | NQ   |
| 96C-11  | 5083    | 5043     | -60     | 55      | 325.22 | 162.61   | 281.64   | NQ   |
| 96C-12  | 5079    | 4995     | -55     | 55      | 325.22 | 186.53   | 166.40   | NQ   |
| 96C-13  | 5032    | 5269     | -45     | 235     | 239.87 | 169.61   | 169.61   | NQ   |
| 96C-14  | 5201    | 5196     | -60     | 235     | 243.84 | 121.92   | 211.17   | NQ   |
| 96C-15  | 5131    | 4954     | -45     | 55      | 221.58 | 156.68   | 156.68   | NQ   |
| 96C-16  | 5221    | 4881     | -45     | 55      | 200.25 | 141.59   | 141.59   | NQ   |

#### DIAMOND DRILL CLAE LOG DDH 96C-01

| FROM           | TO             | DESCRIPTION                                                                                  | SAMPLE         | FROM           | TO             | М            | Cu (%)       | Au (g/t) | Ag (g/t) | Mo (%) |
|----------------|----------------|----------------------------------------------------------------------------------------------|----------------|----------------|----------------|--------------|--------------|----------|----------|--------|
| 0m             | 5.8m           | Overburden: casing set at 19.0m                                                              |                |                |                |              |              |          |          |        |
| 5.8m           | 8.22m          | Granodiorite: pink, potassic alteration.                                                     | 57732          | 5.79           | 8.22           | 2.43         | 0.01         |          |          |        |
| 8.22m          | 9.66m          | fault breccia, light grey color, clayey, rusty streaks along fractures.                      | 44201          | 8.22           | 9.66           | 1.44         | 0.01         |          |          |        |
|                |                |                                                                                              |                |                |                |              |              |          |          |        |
| 9.66m          | 18.0m          | Granodiorite: as above, grades to darker sections with more hornblende.                      | 57733<br>57734 | 9.66<br>14.00  | 14.00<br>18.00 | 4.34<br>4.00 | 0.03<br>0.10 |          |          |        |
| 18.0m          | 23.8m          | Granodiorite: mottled pink to green grey,                                                    | 57735          | 18.00          | 19.53          | 1.53         | 0.50         |          |          |        |
|                |                | potassic alteration with localized argillic alteration.                                      | 44202<br>57736 | 19.53<br>21.95 | 21.95<br>24.26 | 2.42         | 0.23         |          |          |        |
| 23.8m          | 39.2m          | Granodiorite: light grey, argillic alteration,                                               | 44203          | 24.26          | 24.59          | 0.33         | 1.65         | 0.19     |          |        |
| 25.011         | 33.2111        | brecciated core, trace blebs and stringers of                                                | 57737          | 24.59          | 29.00          | 4.41         | 0.10         | 0.13     |          |        |
|                | 36.8m          | bornite with occasional quartz veinlets.  Native copper                                      | 57738<br>57739 | 29.00<br>33.00 | 33.00<br>37.00 | 4.00         | 0.26<br>0.06 |          |          |        |
|                |                |                                                                                              | 57740          | 37.00          | 41.00          | 4.00         | 0.49         |          |          |        |
| 39.2m          | 67.0m          | Granodiorite: pink to light grey color, potassic with localized argillic alteration,         | 57741<br>57742 | 41.00<br>45.00 | 45.00<br>49.00 | 4.00         | 0.04<br>0.55 |          |          |        |
|                |                | trace Native Copper, brecciated sections of core with hematite streaks.                      | 57743<br>57744 | 49.00<br>53.00 | 53.00<br>57.00 | 4.00         | 0.04         |          |          |        |
|                |                | of core with nematite streaks.                                                               | 57745          | 57.00          | 61.00          | 4.00         | 0.02         |          |          |        |
|                | +              |                                                                                              | 57746          | 61.00          | 65.00          | 4.00         | 0.02         |          |          | 1      |
| 67.0m<br>69.8m | 69.8m<br>70.1m | Aplite Dike: quartz porphyry, red brown colo<br>Granodiorite: bleached, argillic alteration. | 57747          | 65.00          | 70.10          | 4.10         | 0.03         |          |          |        |
| 70.1M          |                | END OF HOLE                                                                                  |                |                |                |              |              |          |          |        |

#### DIAMOND DRILL & RE LOG DDH 96C-02

| FROM     | ТО             | DESCRIPTION                                           | SAMPLE   | FROM  | ТО    | М         | Cu (%)       | Au (g/t) | Ag (g/t) | Mo (%) |
|----------|----------------|-------------------------------------------------------|----------|-------|-------|-----------|--------------|----------|----------|--------|
| 0m       | 13.96m         | Overburden: glacial till, casing set at 12.2m         |          |       |       |           |              |          |          |        |
|          |                |                                                       |          |       |       |           |              |          |          |        |
| 13.96m   | 17.7m          | Granodiorite: medium grained, 25% biotite with        | 44205    | 13.96 | 19.20 | 5.24      | 0.03         |          |          |        |
|          |                | yellow rims, fractures coated with yellow to          |          |       |       | ,         |              |          |          |        |
|          |                | orange brown stain. 3 sets of fractures.              |          |       |       |           |              |          |          |        |
|          |                |                                                       |          |       |       |           |              |          |          |        |
| 17.7m    | 21.3m          | Granodiorite: green to orange color, hematite         | 57748    | 19.20 | 24.00 | 4.80      | 0.02         |          |          |        |
|          |                | staining.                                             |          |       |       |           |              |          |          |        |
|          |                |                                                       |          |       |       |           |              |          |          |        |
| 21.3m    | 27.1m          | Granodiorite: white grading to medium grey,           | 57749    | 24.00 | 28.00 | 4.00      | 0.02         |          |          |        |
|          |                | argillic alteration with limonite staining, trace     |          |       |       |           |              | 1        |          |        |
|          |                | fault breccia.                                        |          |       |       |           |              |          |          |        |
|          | <u> </u>       |                                                       |          |       |       | · · · · · |              |          |          |        |
| 27.1m    | 47.2m          | Granodiorite: grey green color, argillic alteration,  | 57750    | 28.00 | 32.00 | 4.00      | 0.08         |          |          |        |
|          |                |                                                       | 57692    | 32.00 | 34.44 | 2.44      | 0.02         |          |          |        |
|          |                | Fault zone: brown clay.                               | 44217    | 34.44 | 37.49 | 3.05      | 0.02         | 0.001    |          |        |
|          | 37.5m          | white calcite vein.                                   | 44206    | 37.49 | 40.54 | 3.05      | 0.03         |          |          |        |
|          |                |                                                       | 44207    | 40.54 | 43.59 | 3.05      | 0.04         |          |          |        |
|          |                |                                                       | 44208    | 43.59 | 46.63 | 3.04      | 0.02         |          |          |        |
|          | <del> </del> - |                                                       | 44209    | 46.63 | 49.68 | 3.05      | 0.08         |          |          |        |
| 47.2m    | 54.9m          | Granodiorite: red brown to dark brown, argillic       | 44210    | 49.68 | 52.73 | 3.05      | 0.03         |          |          |        |
|          |                | alteration, (schistose shear)                         | 44211    | 52.73 | 54.86 | 2.13      | 0.06         |          |          |        |
|          | 45.9m          | Native Copper                                         |          |       |       |           |              |          |          |        |
|          | 47.2m          | Native Copper                                         |          |       |       |           |              |          |          |        |
| 54.9m    | 72.8m          | Granodiorite: argillic alteration, intense fracturing | 44212    | 54.86 | 57.91 | 3.05      | 0.02         | 0.001    |          |        |
| 5 1.0111 | 72.0111        | 3 sets of fractures with the main fracture            | 44213    | 57.91 | 60.96 | 3.05      | 0.02         | 0.001    |          |        |
|          |                | orientation at 45 degrees.                            | 44214    | 60.96 | 64.01 | 3.05      | 0.03         | 0.001    |          |        |
| <u> </u> |                | onemater at 10 degrees.                               | 44215    | 64.01 | 67.06 | 3.05      | 0.03         | 0.001    |          |        |
|          |                |                                                       | 44216    | 67.06 | 70.10 | 3.04      | 0.04         | 0.001    |          |        |
| 72.8m    | 74.0m          | Granodiorite: white with hematite streaks.            | N/A      |       |       | J. J. T   | 3.57         | 2.001    |          |        |
|          | 1              | 50% of interval has a sandy pitted feeling.           | <u> </u> |       |       |           |              |          |          |        |
| 74.0m    | 77.7m          | Granodiorite: fresh appearance.                       | N/A      |       |       |           |              |          |          |        |
|          | 70.4           | Voialet with population the private with              | NI/A     |       |       |           |              |          |          |        |
|          | 76.1m          | Veinlet with possible chalcocite mixed with           | N/A      |       |       |           |              |          |          |        |
| 76.1     |                | bornite.                                              |          |       |       |           | <del> </del> |          |          |        |
| 76.1m    | 1              | N/A = not assayed (END OF HOLE)                       | L        |       |       |           |              | 1        | <u> </u> |        |

## DIAMOND DRILL RE LOG DDH 96C-03

| FROM    | TO       | DESCRIPTION                                  | SAMPLE | FROM  | ТО                  | M    | Cu (%) | Au (g/t)     | Ag (g/t) | Mo (%) |
|---------|----------|----------------------------------------------|--------|-------|---------------------|------|--------|--------------|----------|--------|
| 0m      | 22.0m    | Overburden: glacial till, casing set at 22.0 |        |       |                     |      |        |              |          |        |
|         |          | meters.                                      |        |       |                     |      |        |              |          |        |
| 22.0    | 20.5     |                                              | 57000  | 00.00 | 05.00               |      | 0.64   |              |          |        |
| 22.0m   | 30.5m    | Granodiorite: Oxidized zone, medium          | 57693  | 22.00 | 25.00               | 3.00 | 0.01   |              |          |        |
|         |          | grained, pink to buff white color, intense   | 57694  | 25.00 | 29.00               | 4.00 | 0.06   |              |          |        |
|         |          | fracturing, all surfaces limenite stained    | 57695  | 29.00 | 31.03               | 2.03 | 1.79   | 0.52         | 9.60     | 0.00   |
|         |          | argillic alteration.                         | ļi     |       |                     |      |        | <del> </del> |          |        |
| 30.5m   | 31.0m    | White siliceous groundmass, with             | 44218  | 31.03 | 31.43               | 0.40 | 0.32   | 0.01         | 1.50     | 0.0053 |
|         |          | branching black veinlets of specular         |        |       |                     |      |        | 1            | -        |        |
|         |          | hematite, hematite could be 50% of core.     |        |       |                     |      |        |              |          |        |
| 31.0m   | 31.5m    | Massive black specular hematite with minor   |        |       |                     |      |        |              |          |        |
|         |          | blebs of chalcopyrite.                       |        |       |                     |      |        |              |          |        |
| 31.5m   | 32.0m    | Granodiorite: 0.3m section of bornite, with  | 44219  | 31.43 | 32.00               | 0.57 | 17.60  | 2.49         | 89.70    | 0.0024 |
| 31.0111 | 32.011   | chalcopyrite and hematite.                   | 77213  | 31.43 | 32.00               | 0.57 | 17.00  | 2.43         | 05.70    | 0.0024 |
|         |          | onaloopy mo una nomano.                      | 1      |       | · · · · <del></del> |      |        |              |          |        |
| 32.0m   | 34.0m    | Granodiorite: with blebs and streaks of      | 44220  | 32.00 | 34.14               | 2.14 | 3.18   | 0.18         | 16.20    | 0.0047 |
|         |          | bornite, chalcopyrite and hematite.          |        |       |                     |      | _      |              |          |        |
| 34.0m   | 38.3m    | Granodiorite: as above.                      | 44221  | 34.14 | 35.91               | 1.77 | 1.62   | 0.09         | 7.20     | 0.0019 |
|         |          |                                              | 44222  | 35.91 | 38.34               | 2.43 | 0.62   | 0.01         | 2.20     | 0.0017 |
| 38.3m   | 39.2m    | Granodiorite: as above, 50% chalcopyrite     | 44223  | 38.34 | 39.14               | 0.80 | 11.60  | 0.23         | 42.40    | 0.0017 |
| 30.3111 | 39.2111  | and 50% bornite.                             | 44223  | 30.34 | 33,14               | 0.60 | 11.00  | 0.23         | 42.40    | 0.0017 |
|         |          | and do to bottime.                           |        |       |                     |      |        |              |          |        |
| 39.2m   | 68.9m    | Fault zone: altered granodiorite, with       | 57696  | 39.14 | 44.00               | 4.86 | 1.06   | 0.01         | 3.10     | 0.0021 |
|         |          | occassional dark grey fine grained veinlets  | 57697  | 44.00 | 48.00               | 4.00 | 0.06   | 0.01         | 0.10     | 0.0018 |
|         | 50.5m    | mnior bornite                                | 57698  | 48.00 | 52.00               | 4.00 | 0.20   | 0.01         | 0.60     | 0.0011 |
|         |          |                                              | 57699  | 52.00 | 56.00               | 4.00 | 0.05   | 0.01         | 0.10     | 0.0013 |
|         |          |                                              | 57700  | 56.00 | 60.00               | 4.00 | 0.51   | 0.01         | 3.70     | 0.0010 |
|         |          |                                              | 63752  | 60.00 | 63.86               | 3.86 | 0.56   | 0.05         | 3.00     | 0.0039 |
|         | 63.4m    | Dark grey to black, mottled blebs and        | 44225  | 63.86 | 63.98               | 0.12 | 0.86   | 0.03         | 7.80     | 0.0799 |
|         |          | veinlets in a light grey matrix.             | 63753  | 63.98 | 65.84               | 1.86 | 0.28   | 0.03         | 1.30     | 0.0660 |
|         |          |                                              | 44226  | 65.84 | 66.20               | 0.36 | 0.45   | 0.12         | 2.20     | 0.0200 |
| 68.9m   | 91 75m   | Granodiorite: pink salmon to grey green      | 63754  | 66.20 | 70.00               | 3.80 | 0.13   | 0.01         | 1.00     | 0.0050 |
| 30.0111 | 31.73111 | color, potassic alteration with localized    | 63755  | 70.00 | 74.00               | 4.00 | 0.13   |              | 1.50     | 0.0000 |

#### DIAMOND DRILL CARE LOG DDH 96C-03

| FROM   | TO    | DESCRIPTION                                   | SAMPLE | FROM  | ТО    | M    | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|-------|-----------------------------------------------|--------|-------|-------|------|--------|----------|----------|--------|
|        |       | argillic alteration, hematite staining, trace | 63756  | 74.00 | 80.00 | 6.00 | 0.04   |          |          |        |
|        |       | epidote.                                      | 63757  | 80.00 | 82.00 | 2.00 | 0.10   |          |          |        |
|        |       |                                               | 63758  | 82.00 | 86.00 | 4.00 | 0.08   |          |          |        |
|        | 89.3m | Fault zone:                                   | 63759  | 86.00 | 90.00 | 4.00 | 0.09   |          |          |        |
|        |       |                                               | 63760  | 90.00 | 91.75 | 1.75 | 0.02   |          |          |        |
| 91.75m |       | END OF HOLE                                   |        |       |       |      |        |          |          |        |

# DIAMOND DRILL RE LOG DDH 96C-04

| FROM   | TO     | DESCRIPTION                                     | SAMPLE | FROM  | TO    | М    | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|--------|-------------------------------------------------|--------|-------|-------|------|--------|----------|----------|--------|
| 0m     | 10.97m | Overburden: casing set at 10.97m                | -      |       |       |      | ,      |          |          |        |
|        |        |                                                 |        |       |       |      |        |          |          |        |
| 10.97m | 19.81m | Overburden: consisting of granodiorite and      |        |       |       |      |        |          |          |        |
|        |        | mafic boulders and compacted clay.              |        |       |       |      |        |          |          |        |
|        |        |                                                 |        |       |       |      |        |          |          |        |
| 19.81m | 28.0m  | Granodiorite: rusty weathered surface zone.     | 57701  | 19.81 | 24.00 | 4.19 | 0.05   |          |          |        |
|        | 25.7m  | Fault zone: broken clayey section of core.      | 57702  | 24.00 | 28.00 | 4.00 | 0.09   |          |          |        |
|        |        | 1 cm streak with scattered chalcopyrite and     |        |       |       |      |        |          |          |        |
|        |        | very fine grain mineral possibly chalcocite.    |        |       |       |      |        |          |          |        |
| 28.0m  | 35.5m  | Granodiorite: dark green near fault grading to  | 57703  | 28.00 | 32.00 | 4.00 | 0.05   |          |          |        |
|        |        | pinkish color.                                  | 57704  | 32.00 | 36.00 | 4.00 | 0.09   |          |          |        |
|        | 34.86m | isolated len with less then 0.5% bornite        |        |       |       |      |        |          |          |        |
| 35.5m  | 51.2m  | Granodiorite: greenish grey color, altered      | 57705  | 36.00 | 38.00 | 2.00 | 1.09   |          |          |        |
| 00.011 |        | chlorites, argillic alteration, strong epidote. | 44227  | 37.64 | 37.91 | 0.27 | 1.00   | 0.02     | 6.20     | 0.0007 |
|        | 38.5m  | 1cm and 2 cm stringers of bornite and           | 57706  | 38.00 | 39.00 | 1.00 | 1.62   | 0.03     |          | 0.0007 |
| -      |        | chalcopyrite, >10% bornite and chalcopyrite.    | 57707  | 39.00 | 43.00 | 4.00 | 0.54   | 0.01     | 3.30     | 0.0007 |
|        |        | scattered disseminated chalcopyrite and         | 57708  | 43.00 | 47.00 | 4.00 | 0.03   | 0.01     | 0.10     | 0.0017 |
|        |        | bornite.                                        | 57709  | 47.00 | 51.00 | 4.00 | 0.03   |          |          |        |
|        | 48.4m  | Fault zone: crushed rock and fault gouge.       |        |       |       |      |        |          |          |        |
| 51.2m  | 53.6m  | Granodiorite: pink, medium grained, hard,       | 57710  | 51.00 | 55.00 | 4.00 | 0.05   |          |          |        |
|        |        | scattered epidote.                              |        |       |       |      |        |          |          |        |
| 53.6m  | 88.2m  | Fault zone: brecciated in part, clayey,         | 57711  | 55.00 | 59.00 | 4.00 | 0.03   |          |          |        |
|        |        | chloritic, potassic alteration.                 | 57712  | 59.00 | 62.00 | 3.00 | 0.12   |          |          |        |
|        |        |                                                 | 57713  | 62.00 | 65.20 | 3.20 | 0.06   |          |          |        |
|        |        |                                                 | 44229  | 65.20 | 68.06 | 2.86 | 0.26   | 0.01     | 1.80     | 0.0010 |
|        |        |                                                 | 44228  | 68.06 | 68.85 | 0.79 | 1.39   | 0.05     | 8.20     | 0.0042 |
|        |        |                                                 | 44230  | 68.85 | 71.63 | 2.78 | 0.19   | 0.01     | 0.05     | 0.0011 |
|        |        |                                                 | 44231  | 71.63 | 74.46 | 2.83 | 0.11   | 0.01     | 0.10     | 0.0023 |
|        |        |                                                 | 44232  | 74.46 | 77.51 | 3.05 | 0.22   | 0.01     | 0.10     | 0.0084 |
|        |        |                                                 | 44233  | 77.51 | 80.47 | 2.96 | 0.48   | 0.01     | 3.70     | 0.0116 |
|        |        |                                                 | 44234  | 80.47 | 83.21 | 2.74 | 0.33   | 0.01     | 1.80     | 0.0041 |
|        |        | 1 to 2 percent bornite and chalcopyrite.        | 57714  | 83.21 | 87.00 | 3.79 | 0.20   | 0.01     | 2.40     | 0.0045 |
|        |        | 8 to 10 percent bornite                         | 57715  | 87.00 | 87.50 | 0.50 | 1.43   | 0.07     |          | 0.0250 |
|        |        | 3 to 5 percent bornite and chalcopyrite.        | 57716  | 87.50 | 91.00 | 3.50 | 0.08   | 0.02     | 0.30     | 0.0333 |

#### DIAMOND DRILL CLAE LOG DDH 96C-04

| FROM    | TO       | DESCRIPTION                                    | SAMPLE | FROM   | TO     | М    | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|---------|----------|------------------------------------------------|--------|--------|--------|------|--------|----------|----------|--------|
| 88.2m   | 145.09m  | Granodiorite: pink, medium grained, hard,      | 57717  | 91.00  | 92.00  | 1.00 | 0.02   | 0.01     | 0.10     | 0.0527 |
|         |          | minor fractures. medium to fine grained        | 57718  | 92.00  | 96.00  | 4.00 | 0.19   | 0.01     | 0.50     | 0.0122 |
|         | <u> </u> | bornite and chalcopyrite to 102m.              | 57719  | 96.00  | 100.00 | 4.00 | 0.27   | 0.01     | 3.80     | 0.0069 |
|         | 91.2m    | massive specularite lens 2 cm in thickness     | 57720  | 100.00 | 102.00 | 2.00 | 0.15   | 0.02     | 0.70     | 0.0140 |
|         |          | filling fracture.                              | 57721  | 102.00 | 106.00 | 4.00 | 0.30   | 0.03     | 1.00     | 0.0019 |
|         | 102m     | dark green, siliceous, hard, well mineralized  | 57722  | 106.00 | 110.00 | 4.00 | 0.02   | 0.01     | 1.30     | 0.0010 |
|         |          | with chalcopyrite and bornite.                 | 57723  | 110.00 | 114.00 | 4.00 | 0.17   | 0.01     | 1.00     | 0.0007 |
|         |          | Fault zone: clayey, fragmental section of core | 57724  | 114.00 | 118.00 | 4.00 | 0.19   | 0.02     | 2.40     | 0.0014 |
|         | 120.7m   | Shear zone: highly carbonaceous, with          | 57725  | 118.00 | 122.00 | 4.00 | 0.43   | 0.01     | 0.20     | 0.0013 |
|         |          | scattered 1 cm stringers of calcite.           | 57726  | 122.00 | 126.00 | 4.00 | 0.09   | 0.02     | 3.20     | 0.0109 |
|         | 124.0m   | Less altered rock, disseminated bornite.       | 57727  | 126.00 | 130.00 | 4.00 | 0.49   | 0.01     | 0.10     | 0.0033 |
|         | 128.6m   | Clayey zone with trace bornite.                | 57728  | 130.00 | 134.00 | 4.00 | 0.03   |          |          |        |
|         |          |                                                | 57729  | 134.00 | 138.00 | 4.00 | 0.03   |          |          |        |
|         | 137.6m   | fractured zone, cut by numerous clay seams     | 57730  | 138.00 | 142.00 | 4.00 | 0.04   |          |          |        |
|         | <u> </u> | at high angles to contact.                     | 57731  | 142.00 | 145.09 | 3.09 | 0.03   |          |          |        |
| 145.09m |          | END OF HOLE                                    |        |        |        |      |        |          |          |        |

## DIAMOND DRILL . RE LOG DDH 96C-05

| FROM  | ТО      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAMPLE | FROM  | TO    | М    | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|------|--------|----------|----------|--------|
| 0m    | 18.3m   | Overburden: Granodiorite boulders and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |       |       |      |        |          |          |        |
|       |         | compacted clay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |       |      |        |          |          |        |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |       |      |        |          |          |        |
| 18.3m | 24.2m   | Granodiorite: grey green color, medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44235  | 18.90 | 19.40 | 0.50 | 0.17   |          | 0.8      |        |
|       |         | grained, sodium plagioclase and amphibole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44331  | 19.40 | 24.00 | 4.60 | 0.09   | 0.01     | 0.2      | 0.0006 |
|       |         | with quartz, occasional pink potassic feldspar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |       |       |      |        |          |          |        |
|       |         | rust streak along fractures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |       |       |      |        |          |          |        |
|       |         | minor fine grained disseminated sulphides,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |       |       |      |        |          |          |        |
|       | 1       | possible chalcocite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |       |       |      |        |          |          |        |
| 24.2m | 25.0m   | Aplite Dike: pinkish grey, fine grained,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44332  | 24.00 | 25.00 | 1.00 | 0.05   | 0.01     | 0.1      | 0.0078 |
|       |         | massive, contains granodiorite fragments near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1002   | 21.00 | 20.00 | 1.00 | 0.00   | 0.01     | 0.1      | 0.0070 |
|       |         | upper contact, trace molybdenum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |       |      |        |          |          |        |
|       |         | The second secon |        |       |       |      |        |          |          |        |
| 25.0m | 71.0m   | Granodiorite: potassic alteration, salmon color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44236  | 25.00 | 25.50 | 0.50 | 6.48   | 0.15     | 44.3     | 0.0029 |
|       |         | >35% bornite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44333  | 25.50 | 27.74 | 2.24 | 0.39   | 0.03     | 3.2      | 0.0008 |
|       | 27.8m   | 1 cm band with minor chalcopyrite, <1mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44237  | 27.74 | 28.74 | 1.00 | 0.50   |          | 1.7      | 0.0005 |
|       |         | wavy seam of reddish brown earthy material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44334  | 28.74 | 31.00 | 2.26 | 0.02   |          |          |        |
|       |         | possibly cuprite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44335  | 31.00 | 32.40 | 1.40 | 0.05   |          |          |        |
|       |         | 2 cm band dark mineral with rusty halos,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44238  | 32.40 | 32.90 | 0.50 | 0.03   | İ        |          |        |
|       |         | possibly disseminated bornite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44336  | 32.90 | 37.10 | 4.20 | 0.17   | "        |          |        |
|       | 28.3m   | 1 cm band of bornite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44239  | 37.10 | 38.30 | 1.20 | 0.28   |          |          |        |
|       | 32.5m   | 1mm stringer of earthy cuprite with bornite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44337  | 38.30 | 42.00 | 3.70 | 0.11   |          |          |        |
|       |         | and occasional chalcopyrite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44338  | 42.00 | 46.00 | 4.00 | 0.04   |          |          |        |
|       |         | 1 to 2 mm stringers of bornite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44339  | 46.00 | 50.00 | 4.00 | 0.04   |          |          |        |
|       | 49.0m   | Fault zone: clay gouge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44340  | 50.00 | 54.00 | 4.00 | 0.11   |          |          |        |
|       |         | scattered bornite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44341  | 54.00 | 58.00 | 4.00 | 0.22   |          |          |        |
|       | 57.4m   | Fault zone: brecciated core imbedded in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44342  | 58.00 | 60.30 | 2.30 | 0.09   |          |          |        |
|       |         | clay matrix, reddish oxidized appearance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44240  | 60.30 | 62.30 | 2.00 | 0.02   |          |          |        |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44241  | 62.30 | 64.30 | 2.00 | 0.05   |          |          |        |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44242  | 64.30 | 66.30 | 2.00 | 0.08   |          |          |        |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44243  | 66.30 | 68.30 | 2.00 | 0.15   |          |          |        |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44244  | 68.30 | 70.30 | 2.00 | 0.07   |          |          |        |
| 71.0m | 89.3m   | Fault zone: granodiorite, fractured with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44245  | 70.30 | 72.30 | 2.00 | 0.11   |          | 0.8      | 0.0019 |
|       | 55.0111 | numerous veinlets of smoky quartz, scattered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44246  | 72.30 | 76.30 | 4.00 | 0.52   | 0.04     | 2.1      | 0.005  |
|       |         | veins of specular hematite with 2 cm vein of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44247  | 76.30 | 77.30 | 1.00 | 0.76   | 0.03     | 6.4      | 0.017  |
|       |         | coarse blebs of bornite and disseminated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44248  | 77.30 | 80.30 | 3.00 | 0.06   | 0.03     | 0.4      | 0.017  |

## DIAMOND DRILL \ RE LOG DDH 96C-05

| FROM                                    | ТО     | DESCRIPTION                                     | SAMPLE |        | TO     | M    |      |      | Aŋ (g/t) |        |
|-----------------------------------------|--------|-------------------------------------------------|--------|--------|--------|------|------|------|----------|--------|
|                                         |        | bornite.                                        | 44249  | 80.30  | 83.30  | 3.00 | 0.06 | 0.01 | 0.1      | 0.0018 |
|                                         | 76.4m  | 3.5 cm vein of specular hematite with           | 44250  | 83.30  | 86.30  | 3.00 | 0.32 | 0.02 | 2        | 0.0054 |
|                                         |        | disseminated bornite and chalcocite.            | 44251  | 86.30  | 89.30  | 3.00 | 0.12 | 0.04 | 0.9      | 0.0063 |
|                                         | 77.8m  | 5 cm band of black fine grained intrusive with  |        |        |        |      |      |      |          |        |
|                                         |        | interbedded granodiorite fragments.             |        |        |        |      |      |      |          |        |
|                                         |        |                                                 |        |        |        |      |      |      |          |        |
| 89.3m                                   | 97.8m  | Granodiorite: grey green, scattered fractures   | 44252  | 89.30  | 90.50  | 1.20 | 1.48 | 0.05 | 6.4      | 0.0112 |
|                                         | 89.7m  | 2 cm patch of coarse grained bornite.           | 44253  | 90.50  | 93.00  | 2.50 | 0.07 | 0.01 | 0.1      | 0.0011 |
|                                         | 90.1m  | irregular veins of bornite.                     | 44254  | 93.00  | 96.00  | 3.00 | 0.02 | 0.01 | 0.1      | 0.0014 |
|                                         |        |                                                 | 44255  | 96.00  | 98.50  | 2.50 | 0.01 | 0.01 | 0.1      | 0.009  |
| 97.8m                                   | 98.5m  | Mafic Dike: actinolite or tremolite, black fine |        |        |        |      |      |      |          |        |
|                                         |        | grained.                                        |        |        |        |      |      |      |          |        |
|                                         |        |                                                 |        |        |        |      |      |      |          |        |
| 98.5m                                   | 109.7m | Granodiorite: salmon color, potassic alteration | 44256  |        | 102.50 | 4.00 | 0.01 | 0.01 | 0.1      |        |
|                                         |        | 2 cm vein with scattered bornite.               | 44257  | 102.50 |        | 1.20 | 0.01 | 0.01 | 0.1      | 1      |
|                                         |        | patches of coarse grained bornite.              | 44258  | 103.70 |        | 2.30 | 0.19 | 0.03 | 0.6      |        |
|                                         | 105.9m | Fault zone: 70 cm band of grey green clay.      | 44259  | 106.00 |        | 2.00 | 0.25 | 0.01 | 1.2      |        |
|                                         |        |                                                 | 44260  | 108.00 | 109.50 | 1.50 | 1.14 | 0.23 | 5        | 0.0036 |
| 109.7m                                  | 111 3m | Fault zone: grey green color, brecciated with   | 44261  | 109.50 | 111.50 | 2.00 | 6.20 | 0.63 | 44.3     | 0.0024 |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        | clay matrix, strong bornite mineralization.     |        |        |        |      |      |      |          |        |
|                                         |        |                                                 |        |        |        |      |      |      |          |        |
| 111.3m                                  | 129.6m | Granodiorite: salmon grey color, potassic       | 44262  | 111.50 |        | 2.00 | 0.25 | 0.01 | 1.6      |        |
|                                         |        | alteration, scattered fractures with argillic   | 44263  |        | 115.50 | 2.00 | 0.43 | 0.01 | 2.9      | 0.0007 |
|                                         |        | alteration.                                     | 44264  | 115.30 |        | 2.00 | 1.38 | 0.01 | 7        | 0.0012 |
|                                         |        | strong bornite mineralization, scattered        | 44265  | 117.50 | 119.50 | 2.00 | 0.56 | 0.04 | 3.3      | 0.0006 |
|                                         |        | throughout this core interval.                  | 44266  | 119.50 | 121.50 | 2.00 | 1.20 | 0.02 | 9.5      | 0.0008 |
|                                         |        |                                                 | 44267  | 121.50 | 123.50 | 2.00 | 1.23 | 0.01 | 9.7      | 0.0009 |
|                                         |        |                                                 | 44268  | 123.50 | 125.50 | 2.00 | 0.34 | 0.03 | 2.5      | 0.0009 |
|                                         | 125.7m | Fault zone: 60 cm band of brecciated core       | 44269  | 125.50 | 127.50 | 2.00 | 0.42 | 0.02 | 2.4      | 0.0106 |
|                                         |        | with clay gouge filling fractures.              | 44270  | 127.50 | 129.50 | 2.00 | 0.37 | 0.04 | 1.7      | 0.0025 |
| 400 Cr-                                 | 404 6  | Fault manay group group color broadisted with   | 44271  | 120 FO | 131.50 | 2.00 | 1.08 | 0.04 | 5.5      | 0.0006 |
| 129.6m                                  | 134.0M | Fault zone: grey green color, brecciated with   | 44271  |        | 133.50 | 2.00 | 0.88 | 0.04 | 4.8      | 0.0007 |
|                                         |        | clayey fault gouge.                             | 44272  |        | 135.50 | 2.00 | 0.88 | 0.06 | 4.8      | 0.0007 |
|                                         |        |                                                 | 44213  | 133.30 | 133.30 | 2.00 | 0.04 | 0.04 | -7.1     | 0.0004 |
| 134.6m                                  | 138.0m | Granodiorite: grey green grading to salmon      | 44274  | 135.50 | 137.50 | 2.00 | 0.58 | 0.01 | 2.7      | 0.0008 |
|                                         |        | color with depth. disseminated bornite.         | 1      |        |        |      |      |      |          |        |

#### DIAMOND DRILL CORE LOG DDH 96C-05

| FROM   | TO     | DESCRIPTION                                   | SAMPLE | FROM   | ТО     | M    | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|--------|-----------------------------------------------|--------|--------|--------|------|--------|----------|----------|--------|
| 138.0m | 163.1m | Granodiorite: weak potassic alteration, light | 44275  | 137.50 | 139.50 | 2.00 | 0.21   | 0.16     | 1.2      | 0.0011 |
|        |        | salmon color.                                 | 44276  | 139.50 | 142.50 | 3.00 | 0.06   |          | <u> </u> |        |
|        |        | trace thin fractures with clay fault gouge.   | 44392  | 142.50 | 146.00 | 3.50 | 0.01   |          |          |        |
|        |        | no visible mineralization.                    | 44393  | 146.00 | 150.00 | 4.00 | 0.02   |          |          |        |
|        |        |                                               | 44394  | 150.00 | 154.00 | 4.00 | 0.02   |          |          |        |
|        |        |                                               | 44395  | 154.00 | 158.00 | 4.00 | 0.02   |          |          |        |
|        |        |                                               | 44396  | 158.00 | 163.10 | 5.07 | 0.01   |          |          |        |
| 163.1m |        | END OF HOLE                                   |        |        |        |      |        |          |          |        |

# DIAMOND DRILL . RE LOG DDH 96C-06

| FROM   | TO     | DESCRIPTION                                   | SAMPLE | FROM   | ТО     | M    | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|--------|-----------------------------------------------|--------|--------|--------|------|--------|----------|----------|--------|
| 0m     | 33.5m  | Overburden: casing set at 33.5m               |        |        |        |      |        |          | - 15     | •      |
|        |        |                                               |        |        |        |      |        |          |          |        |
| 33.5m  | 35.7m  | Overburden: granodiorite and mafic boulders   |        |        |        | •    |        |          |          |        |
|        |        |                                               |        |        |        |      |        |          |          | _      |
| 35.7m  | 81.3m  | Fault zone: 40 cm oxidized zone, rusty        | 44277  | 35.66  | 39.00  | 3.34 | 0.01   |          |          |        |
|        |        | limonitic grading to salmon grey green color. | 44278  | 39.00  | 42.00  | 3.00 | 0.19   | 0.01     | 1.1      | 0.0160 |
|        |        | strongly brecciated and fractured with clay   | 44279  | 42.00  | 45.00  | 3.00 | 0.76   | 0.08     | 4.2      | 0.0176 |
|        |        | fault gouge.                                  | 44280  | 45.00  | 48.00  | 3.00 | 0.11   | 0.01     | 0.1      | 0.0021 |
|        |        | good coarse bornite scattered throughout      | 44281  | 48.00  | 51.00  | 3.00 | 0.19   | 0.01     | 0.5      | 0.0021 |
|        |        | this core interval.                           | 44282  | 51.00  | 54.00  | 3.00 | 0.61   | 0.03     | 3.1      | 0.0021 |
|        |        |                                               | 44283  | 54.00  | 57.00  | 3.00 | 0.04   | 0.01     | 0.1      | 0.0025 |
|        |        |                                               | 44284  | 57.00  | 60.00  | 3.00 | 0.18   | 0.02     | 1.2      | 0.0101 |
|        | 60.1m  | 7 cm vein of massive chalcocite and bornite   | 44285  | 60.00  | 61.00  | 1.00 | 14.10  | 0.16     | 149.8    | 0.0012 |
|        |        |                                               | 44286  | 61.00  | 64.00  | 3.00 | 0.72   | 0.03     | 5.7      | 0.0006 |
|        | 64.5m  | 2 cm vein of massive bornite                  | 44287  | 64.00  | 65.00  | 1.00 | 0.42   | 0.04     | 1.9      | 0.0011 |
|        |        |                                               | 44288  | 65.00  | 68.00  | 3.00 | 0.50   | 0.16     | 3.3      | 0.0065 |
|        |        |                                               | 44289  | 68.00  | 71.00  | 3.00 | 0.14   | 0.02     | 0.3      | 0.0012 |
|        |        |                                               | 44290  | 71.00  | 74.00  | 3.00 | 0.08   |          |          |        |
|        |        |                                               | 44291  | 74.00  | 77.00  | 3.00 | 0.09   |          |          |        |
|        |        |                                               | 44292  | 77.00  | 80.00  | 3.00 | 0.07   |          |          |        |
|        |        |                                               |        |        |        |      |        |          |          |        |
| 81.3m  | 90.4m  | Granodiorite: salmon color, potassic          | 44293  | 80.00  | 83.00  | 3.00 | 0.04   |          |          |        |
|        |        | alteration, scattered fractures with quartz   | 44294  | 83.00  | 86.00  | 3.00 | 0.08   |          |          |        |
|        |        | veins, clay gouge on fracture contacts.       | 44295  | 86.00  | 89.00  | 3.00 | 0.07   |          |          |        |
|        |        |                                               |        |        |        |      |        |          |          |        |
| 90.4m  | 103.9m | Fault zone: brecciated core fragments with    | 44296  | 89.00  | 92.00  | 3.00 | 0.03   |          |          |        |
|        |        | clay fault gouge along contacts.              | 44297  | 92.00  | 95.00  | 3.00 | 0.03   |          |          |        |
|        |        |                                               | 44298  | 95.00  | 98.00  | 3.00 | 0.06   |          |          |        |
|        |        |                                               | 44299  | 98.00  | 101.00 | 3.00 | 0.05   |          |          |        |
|        |        |                                               | 44300  | 101.00 | 104.00 | 3.00 | 0.06   |          |          |        |
|        |        |                                               |        |        |        |      |        |          |          |        |
| 103.9m | 136.7m | Granodiorite: massive to weakly fractured,    | 44301  |        | 106.00 | 2.00 | 0.06   |          |          |        |
|        | -      | scattered quartz stringers.                   | 44302  | 106.00 | 108.00 | 2.00 | 0.08   | 1        |          |        |
|        | 106.5m | strong specular hematite.                     | 44303  | 108.00 | 111.00 | 3.00 | 0.06   | <u> </u> |          |        |
|        | 110.1m | 2 cm to 3 cm quartz veinlets with associated  | 44304  | 111.00 | 114.00 | 3.00 | 0.08   |          |          |        |
|        |        | disseminated bornite.                         | 44305  |        | 117.00 | 3.00 | 0.06   | 1        |          |        |
|        |        |                                               | 44306  | 117.00 | 120.00 | 3.00 | 0.06   |          |          |        |
|        |        |                                               | 44307  |        | 123.00 | 3.00 | 0.08   |          |          |        |

#### DIAMOND DRILL & RE LOG DDH 96C-06

| FROM                                    | TO      | DESCRIPTION                                    | SAMPLE | FROM   | TO     | M    | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|-----------------------------------------|---------|------------------------------------------------|--------|--------|--------|------|--------|----------|----------|--------|
|                                         |         |                                                | 44308  | 123.00 | 126.00 | 3.00 | 0.03   |          |          |        |
|                                         | 126.1m  | <1% bornite                                    | 44309  | 126.00 | 128.00 | 2.00 | 0.12   |          |          |        |
|                                         |         |                                                | 44310  | 128.00 | 130.00 | 2.00 | 0.11   | 0.01     | 0.6      | 0.0140 |
|                                         | 130.3m  | Aplite Dike: 90 cm thick, pink color.          | 44311  | 130.00 | 132.00 | 2.00 | 0.09   | 0.02     | 0,3      | 0.0051 |
|                                         |         |                                                | 44312  | 132.00 | 134.00 | 2.00 | 0.49   | 0.01     | 4        | 0.0128 |
|                                         |         | >1% bornite with streaks of chalcocite.        | 44313  | 134.00 | 136.00 | 2.00 | 0.30   | 0.01     | 2.1      | 0.0050 |
| 136.7m                                  | 139.7m  | Fault zone: brecciated quartz fragments        | 44314  | 136.00 | 139.00 | 3.00 | 1.46   | 0.08     | 14.2     | 0.0150 |
|                                         |         | fractures filled with silica and bornite.      |        |        |        |      |        |          |          |        |
| 139.7m                                  | 141.4m  | Fault zone: brecciated granodiorite with       | 44315  | 139.00 | 142.00 | 3.00 | 0.37   | 0.04     | 3.3      | 0.0066 |
| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |         | clay filling the fractures, >1% bornite blebs. | 44316  | 142.00 |        | 3.00 | 0.22   | 0.03     | 1.6      | 0.0042 |
| 141.4m                                  | 168 0m  | Granodiorite: grey green to rusty pink color.  | 44317  | 145.00 | 148.00 | 3.00 | 0.32   | 0.03     | 0.9      | 0.0044 |
|                                         |         | massive with weak fracturing, moderate blebs   | 44318  | 148.00 |        | 3.00 | 0.24   | 0.01     | 1.5      | 0.0049 |
|                                         |         | and streaks of bornite, stringers of quartz    | 44319  | 151.00 |        | 3.00 | 0.13   | 0.02     | 2.3      | 0.0006 |
|                                         |         | with chalcopyrite.                             | 44320  | 154.00 |        | 3.00 | 0.06   | 0.02     |          | 4.5555 |
|                                         | 157.0m  | Fault zone: brecciated with clay fault gouge.  | 44321  | 157.00 |        | 4.00 | 0.04   |          |          |        |
|                                         |         | weakly disseminated chalcopyrite with          | 44322  | 161.00 |        | 4.00 | 0.07   |          |          |        |
|                                         |         | Fault zone:                                    | 44323  | 165.00 |        | 4.00 | 0.05   |          |          |        |
| 168.0m                                  | 171.0m  | Fault zone: brecciated granodiorite with       | 44324  | 169.00 | 173.00 | 4.00 | 0.11   |          |          |        |
|                                         |         | clay infilling of fractures, disseminated      |        |        |        |      |        |          |          |        |
|                                         |         | bornite.                                       |        |        |        |      |        |          |          |        |
|                                         | 10110   |                                                |        | .=     |        |      |        |          |          |        |
| 171.0m                                  | 194.16m | Granodiorite: fresh appearance, hard, uniform  |        |        | 177.00 | 4.00 | 0.1    |          |          |        |
|                                         |         | unbroken, no visible mineralization.           | 44326  |        | 181.00 | 4.00 | 0.03   |          |          |        |
|                                         |         | <u> </u>                                       | 44327  | 181.00 | 185.00 | 4.00 | 0.03   |          |          |        |
|                                         |         | Fault: brecciated with clay gouge.             | 44328  | 185.00 |        | 4.00 | 0.03   |          |          |        |
|                                         | 191.7m  | trace irregular calcite stringers              | 44329  | 189.00 |        | 4.00 | 0.02   |          |          |        |
|                                         |         |                                                | 44330  | 193.00 | 194.16 | 1.16 | 0.02   |          |          | -      |
| 194.16m                                 | 1       | END OF HOLE                                    |        |        |        |      |        |          |          |        |

## DIAMOND DRILL \ RE LOG DDH 96C-07

| FROM   | ТО     | DESCRIPTION                                     | SAMPLE | FROM   | ТО     | M    | Cu (%)                                  | Au (g/t) | Ag (g/t) | Mo (%)   |
|--------|--------|-------------------------------------------------|--------|--------|--------|------|-----------------------------------------|----------|----------|----------|
| 0m     | 39.6m  | Overburden: granodiorite boulders               |        |        |        |      | \ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ |          | U \U7    |          |
|        |        |                                                 |        |        |        |      |                                         |          |          |          |
| 39.6m  | 155.3m | Granodiorite: salmon color, potassic alteration | 44343  | 39.62  | 44.00  | 4.38 | 0.02                                    |          |          |          |
|        |        | hard, highly fractured core                     | 44344  | 44.00  | 48.00  | 4.00 | 0.04                                    |          |          |          |
|        |        |                                                 | 44345  | 48.00  | 52.00  | 4.00 | 0.02                                    |          |          |          |
|        |        |                                                 | 44346  | 52.00  | 56.00  | 4.00 | 0.21                                    |          |          |          |
|        |        |                                                 | 44347  | 56.00  | 59.80  | 3.80 | 0.03                                    |          |          |          |
|        |        | patchy bornite over 2 cm                        | 44348  | 59.80  | 60.80  | 1.00 | 0.97                                    |          |          |          |
|        |        | irregular vein of bornite mineralization        | 44349  | 60.80  | 65.00  | 4.20 | 0.04                                    |          |          |          |
|        |        | trace chalcopyrite infilling veinlets.          | 44350  | 65.00  | 69.00  | 4.00 | 0.03                                    |          |          |          |
|        |        |                                                 | 44351  | 69.00  | 73.00  | 4.00 | 0.03                                    |          |          |          |
| 73.7m  | 84.8m  | argillic alteration, overprinting potassic      | 44352  | 73.00  | 77.00  | 4.00 | 0.10                                    |          |          |          |
|        |        | alteration in brecciated section of core.       | 44353  | 77.00  | 81.00  | 4.00 | 0.05                                    |          |          |          |
|        |        | Fault zone: clay fault gouge.                   | 44354  | 81.00  | 85.00  | 4.00 | 0.37                                    |          |          |          |
|        |        | scattered disseminated bornite.                 | 44355  | 85.00  | 89.00  | 4.00 | 0.14                                    |          |          |          |
|        | 87.0m  | coarse blebs of bornite.                        | 44356  | 89.00  | 93.00  | 4.00 | 0.07                                    |          |          |          |
|        |        |                                                 | 44357  | 93.00  | 97.00  | 4.00 | 0.07                                    |          |          |          |
|        |        |                                                 | 44358  | 97.00  | 101.00 | 4.00 | 0.14                                    |          |          |          |
|        |        |                                                 | 44359  | 101.00 | 105.00 | 4.00 | 0.12                                    |          |          |          |
|        |        |                                                 | 44360  | 105.00 | 109.00 | 4.00 | 0.11                                    |          |          |          |
|        |        |                                                 | 44361  | 109.00 | 113.00 | 4.00 | 0.10                                    | •        |          | <u>-</u> |
|        |        | trace patches of bornite.                       | 44362  | 113.00 | 117.00 | 4.00 | 0.11                                    |          |          |          |
|        |        |                                                 | 44363  | 117.00 | 121.00 | 4.00 | 0.14                                    |          |          |          |
|        |        | trace blebs of bornite.                         | 44364  | 121.00 | 125.00 | 4.00 | 0.08                                    |          |          |          |
|        | 129.7m | Fault: clay fault gouge.                        | 44365  | 125.00 | 129.00 | 4.00 | 0.05                                    |          |          |          |
|        |        |                                                 | 44366  | 129.00 | 133.00 | 4.00 | 0.13                                    |          |          |          |
| 133.2m | 135.8m | Fault zone: brecciated granodiorite with        | 44367  | 133.00 | 137.00 | 4.00 | 0.12                                    |          |          |          |
|        |        | clay fault gouge filling fractures.             | 44368  | 137.00 | 141.00 | 4.00 | 0.10                                    |          |          |          |
|        |        | trace disseminated bornite.                     | 44369  | 141.00 | 143.00 | 2.00 | 0.11                                    |          |          |          |
|        | 143.2m | brecciated granodiorite.                        | 44370  | 143.00 | 145.00 | 2.00 | 0.27                                    | 0.01     |          | 0.0083   |
|        |        | 1.5 cm stringers and disseminated bornite       | 44371  | 145.00 | 147.00 | 2.00 | 0.65                                    | 0.03     |          | 0.0550   |
|        |        |                                                 | 44372  | 147.00 | 151.00 | 4.00 | 0.47                                    | 0.01     |          | 0.0020   |
|        |        |                                                 | 44373  | 151.00 | 153.00 | 2.00 | 0.39                                    | 0.02     |          | 0.0006   |
|        |        |                                                 | 44374  | 153.00 | 155.00 | 2.00 | 0.51                                    | 0.09     |          | 0.0014   |
|        |        |                                                 |        |        |        |      |                                         |          |          |          |
| 155.0m | 177.4m | Fault zone: fractured brecciated core with      | 44375  | 155.00 | 157.00 | 2.00 | 1.33                                    | 0.14     |          | 0.0009   |
|        |        | clayey fault gouge.                             | 44376  | 157.00 | 159.00 | 2.00 | 0.39                                    |          |          | 0.0011   |
|        |        | scattered coarse bornite.                       | 44377  | 159.00 | 163.00 | 4.00 | 0.08                                    | 0.01     | 0.1      | 0.0038   |

#### DIAMOND DRILL \ RE LOG DDH 96C-07

| FROM   | TO     | DESCRIPTION                                    | SAMPLE | FROM   | TO     | M    | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|--------|------------------------------------------------|--------|--------|--------|------|--------|----------|----------|--------|
|        |        |                                                | 44378  | 163.00 | 167.00 | 4.00 | 0.25   | 0.06     | 0.6      | 0.0006 |
|        |        |                                                | 44379  | 167.00 | 169.30 | 2.30 | 0.02   | 0.01     | 0.1      | 0.0120 |
|        |        |                                                | 44380  | 169.30 | 171.20 | 1.90 | 0.02   | 0.01     |          | 0.0476 |
|        |        |                                                | 44381  | 171.20 | 175.00 | 3.80 | 0.37   | 0.01     | 0.5      | 0.0018 |
|        |        |                                                | 44382  | 175.00 | 177.00 | 2.00 | 0.57   | 0.09     | 1.2      | 0.0017 |
| 177 Am | 192.6~ | Cranadiarita, pinkish salar wask patassis      | 44292  | 477.00 | 470.00 | 2.00 | 0.44   | 0.01     | 6.3      | 0.0024 |
| 177.4m | 182.6m |                                                | 44383  | 177.00 | 179.00 | 2.00 | 0.41   | 0.01     |          |        |
|        |        | alteration, strong specular hematite with      | 44384  | 179.00 | 181.00 | 2.00 | 0.30   | 0.02     |          | 0.0009 |
|        |        | bornite and chalcopyrite.                      | 44385  | 181.00 | 183.00 | 2.00 | 0.50   | 0.11     | 3.2      | 0.0067 |
| 182.6m | 186.4m | Fault zone: grey green color, brecciated,      | 44386  | 183.00 | 186.60 | 3.60 | 0.47   | 0.10     | 2.3      | 0.0027 |
|        |        | clayey, scattered belbs and stringers of       |        |        |        |      | ]      |          | [        |        |
|        |        | bornite and chalcopyrite.                      |        |        |        |      |        |          |          |        |
| 186.4m | 202.7m | Granodiorite: weak potassic alteration with    | 44387  | 186.60 | 188.00 | 1.40 | 0.14   | 0.03     | 0.8      | 0.0024 |
|        |        | localized argillic alteration along fractures. | 44388  | 188.00 | 192.00 | 4.00 | 0.09   |          |          |        |
|        |        | disseminated bornite and chalcopyrite.         | 44389  | 192.00 | 196.00 | 4.00 | 0.06   |          |          |        |
|        | 196.6m | fractures infilled with calcite.               | 44390  | 196.00 | 200.00 | 4.00 | 0.03   |          |          |        |
|        | 200.8m | trace chalcopyrite and molybdenum along        | 44391  | 200.00 | 202.70 | 2.70 | 0.03   | 1        | 1        |        |
|        |        | fractures.                                     |        |        |        |      |        |          |          |        |
| 202.7m |        | END OF HOLE                                    |        |        |        |      |        |          |          |        |

#### DIAMOND DRILL . RE LOG DDH 96C-08

| ТО       | DESCRIPTION                                                                   | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TO     | М     | Cu (%) | Au (g/t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ag (g/t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mo (%) |
|----------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 19.5m    | Overburden: granodiorite boulders and                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          | compacted clay.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 38.0m    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       | 0.06   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          | fractured, potassic alteration.                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 3.00  | 0.08   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          |                                                                               | 57651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.00  | 3.00  | 0.02   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 39 8m    | Fault zone: brecciated core, 4mm hand of                                      | 57652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.00  | 4.00  | 0.04   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 00.0111  |                                                                               | 37002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.00  | 4.00  | 0.04   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          | oldy, 55 offi long, sort.                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 106.1m   | Granodiorite: pink, medium grained, massive                                   | 57653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.00  | 5.00  | 0.05   | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          | uniform, fresh appearance, potassic                                           | 57654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47.70  | 1.70  | 0.12   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          | alteration.                                                                   | 57655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52.00  | 4.30  | 0.07   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0007 |
|          | scattered quartz veins, 5mm to 2cm thick,                                     | 57656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53.00  | 1.00  | 0.94   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0017 |
|          | weak disseminated chalcopyrite and bornite.                                   | 57657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57.00  | 4.00  | 0.02   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0007 |
| 52.5m    | 15cm band with coarse bornite.                                                | 57658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61.00  | 4.00  | 0.03   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0012 |
|          |                                                                               | 57659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65.00  | 4.00  | 0.04   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0010 |
|          |                                                                               | 57660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68.00  | 3.00  | 0.19   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0009 |
|          | two 5mm stringers with bornite.                                               | 57661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71.00  | 3.00  | 0.09   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0011 |
| 71.4m    | 60cm band with blebs of bornite.                                              | 57662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73.00  | 2.00  | 0.45   | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0008 |
| 72.9m    | 2cm quartz stringer with disseminated                                         | 57663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77.00  | 4.00  | 0.05   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0008 |
|          | bornite and chalcopyrite.                                                     | 57664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81.00  | 4.00  | 0.17   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 79.6m    | 5cm quartz vein with chalcopyrite lenses                                      | 57665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85.00  | 4.00  | 0.07   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          | to 4cm long.                                                                  | 57666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89.00  | 4.00  | 0.06   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          |                                                                               | 57667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93.00  | 4.00  | 0.09   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          |                                                                               | 57668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 4.00  | 0.06   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101.00 | 4.00  | 0.06   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       | 0.07   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 105.5m   | 10cm clot of dark minerals with bornite.                                      | 57671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 106.50 | 1.50  | 0.19   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 148.5m   | Granodiorite: fine grained phase, biotite and                                 | 57672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 106 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108.00 | 1.50  | 0.47   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 170.0111 |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| 113 7m   |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 110.1111 |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 121.5m   |                                                                               | 57677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 128.00 | 4.00  | 0.03   | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|          | 19.5m  38.0m  39.8m  106.1m  52.5m  71.4m 72.9m  79.6m  103.9m 105.5m  148.5m | 19.5m Overburden: granodiorite boulders and compacted clay.  38.0m Granodiorite: very broken, soft and clayey, limonitic to 23m, changes to pinkish grading to grey and green, medium grained, uniform fractured, potassic alteration.  39.8m Fault zone: brecciated core, 4mm band of clay, 50 cm long, soft.  106.1m Granodiorite: pink, medium grained, massive uniform, fresh appearance, potassic alteration.  scattered quartz veins, 5mm to 2cm thick, weak disseminated chalcopyrite and bornite.  52.5m 15cm band with coarse bornite.  71.4m 60cm band with blebs of bornite.  72.9m 2cm quartz stringer with disseminated bornite and chalcopyrite.  79.6m 5cm quartz vein with chalcopyrite lenses to 4cm long. | 38.0m Granodiorite: very broken, soft and clayey, limonitic to 23m, changes to pinkish grading to grey and green, medium grained, uniform fractured, potassic alteration. 44400 57651  39.8m Fault zone: brecciated core, 4mm band of clay, 50 cm long, soft. 57652 uniform, fresh appearance, potassic alteration. 57655 scattered quartz veins, 5mm to 2cm thick, weak disseminated chalcopyrite and bornite. 57659 57659 15cm band with coarse bornite. 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 57661 5 | 19.5m  | 19.5m | 19.5m  | 38.0m   Granodiorite very broken, soft and clayey, immoritic to 23m, changes to pinkish grading to grey and green, medium grained, uniform   44398   23.00   27.00   4.00   0.04   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.06   0.0 | 19.5m   Overburden: granodiorite boulders and compacted clay.   38.0m   Granodiorite: very broken, soft and clayey, ilmonitic to 23m, changes to pinkish grading to grey and green, medium grained, uniform   44398   23.00   27.00   4.00   0.04   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.06   4.00   0.07   0.01   4.00   0.07   0.01   4.00   0.07   0.01   4.00   0.07   0.01   4.00   0.07   0.01   4.00   0.07   0.01   4.00   0.07   0.01   4.00   0.07   0.01   4.00   0.07   0.01   4.00   0.00   0.05   4.00   0.00   0.05   4.00   0.00   0.05   4.00   0.00   0.05   4.00   0.00   0.05   4.00   0.00   0.05   4.00   0.00   0.05   4.00   0.00   0.05   4.00   0.00   0.05   4.00   0.00   0.05   0.05   4.00   0.00   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0 | 19.5m  |

#### DIAMOND DRILL CARE LOG DDH 96C-08

| FROM    | TO                                      | DESCRIPTION                                    | SAMPLE | FROM   | TO     | M    | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|---------|-----------------------------------------|------------------------------------------------|--------|--------|--------|------|--------|----------|----------|--------|
|         |                                         | occasional stringers or flecks of bornite      | 57678  | 128.00 | 132.00 | 4.00 | 0.05   |          |          |        |
|         | 133.4m                                  | 1 to 2mm irregular bornite stringers.          | 57679  | 132,00 | 136.00 | 4.00 | 0.03   |          |          |        |
|         | 137.4m                                  | fractured core, blocky.                        | 57680  | 136.00 | 140.00 | 4.00 | 0.02   |          |          |        |
|         |                                         |                                                | 57681  | 140.00 | 144.00 | 4.00 | 0.03   |          |          |        |
|         |                                         |                                                | 57682  | 144.00 | 148.00 | 4.00 | 0.03   |          |          |        |
| 148.5m  | 152.8m                                  | Fault zone: brecciated, grey green, clayey,    | 57683  | 148.00 | 150.00 | 2.00 | 0.28   |          |          |        |
|         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | distinct shear, with scattered bornite.        | 57684  | 150.00 | 152.00 | 2.00 | 0.23   |          |          |        |
| 152.8m  | 162.6m                                  | Granodiorite: mainly pink with patchy grey     | 57685  | 152.00 | 154.00 | 2.00 | 0.04   |          |          |        |
|         |                                         | green crystals, potassic with localized        | 57686  | 154.00 | 158.00 | 4.00 | 0.02   |          |          |        |
|         |                                         | argillic alteration, weak fracture density.    | 57687  | 158.00 | 162.00 | 4.00 | 0.05   |          |          |        |
| 162.6m  | 176.48m                                 | Aplite Dike: pink, feldspar and quartz, low    | 57688  | 162.00 | 166.00 | 4.00 | 0.01   |          |          |        |
|         |                                         | mafic's content, unaltered, fractured, carries | 57689  | 166.00 | 170.00 | 4.00 | 0.08   |          |          |        |
|         |                                         | disseminated specular hematite and minor       | 57690  | 170.00 | 174.00 | 4.00 | 0.03   |          |          |        |
|         |                                         | disseminated bornite.                          | 57691  | 174.00 | 176.48 | 2.48 | 0.04   |          |          |        |
| 176.48m |                                         | END OF HOLE                                    |        |        |        |      |        |          |          |        |

#### ASSAY RL JLTS 96C-09

| FROM     | TO       | DESCRIPTION                                     | SAMPLE | FROM   | ТО     | M    | Cu (%)   | Au (g/t) | Ag (g/t) | Mo (%) |
|----------|----------|-------------------------------------------------|--------|--------|--------|------|----------|----------|----------|--------|
| 0m       | 21.3m    | Overburden: casing set at 21.34m                |        |        |        |      |          | 1        |          |        |
|          |          |                                                 |        |        |        |      |          |          |          |        |
| 21.3m    | 27.7m    | Overburden: Mafic boulders and soil with        |        |        |        |      |          |          |          |        |
|          |          | angular rock fragments.                         |        |        |        |      |          |          |          |        |
|          |          |                                                 |        |        |        |      |          |          |          |        |
| 27.7m    | 69.8m    | Granodiorite: light pinkish grey, highly felsic | 63751  | 27.74  | 32.00  | 4.26 | 0.02     |          |          |        |
|          |          | very prominent quartz, 15 to 20% mafic's.       | 63761  | 32.00  | 36.00  | 4.00 | 0.04     | <u> </u> |          |        |
|          | 35.2m    | 15cm fine grained mafic dike fractured,         | 63762  | 36.00  | 40.00  | 4.00 | 0.05     |          |          |        |
|          |          | intermixed with granodiorite.                   | 63763  | 40.00  | 44.00  | 4.00 | 0.10     |          |          |        |
|          |          |                                                 | 63764  | 44.00  | 48.00  | 4.00 | 0.04     |          |          |        |
|          |          |                                                 | 63765  | 48.00  | 53.00  | 5.00 | 0.03     |          |          |        |
|          | 53.0m    | 3m fractured zone, with bands of chlorite.      | 63766  | 53.00  | 56.00  | 3.00 | 0.10     |          |          |        |
|          |          | disseminated bornite.                           | 63767  | 56.00  | 61.80  | 5.80 | 0.04     |          |          |        |
|          |          |                                                 | 63768  | 61.80  | 66.00  | 4.00 | 0.04     |          |          |        |
|          |          |                                                 | 63769  | 66.00  | 70.00  | 4.00 | 0.12     |          |          |        |
|          |          |                                                 |        |        |        |      |          |          |          |        |
| 69.8m    | 125.2m   | Fault zone: strongly fractured, brecciated,     | 63770  | 70.00  | 74.00  | 4.00 | 0.17     |          |          |        |
|          |          | abundant clay with occasional grain or          | 63771  | 74.00  | 78.00  | 4.00 |          |          |          |        |
|          |          | stringer of bornite.                            | 63772  | 78.00  | 82.00  | 4.00 |          | 0.02     | 1.0      | 0.0002 |
|          |          | patchy molybdenum over 10cm.                    | 63773  | 82.00  | 86.00  | 4.00 | 0.31     | 0.01     | 1.7      | 0.0006 |
|          |          | 4mm stringer of bornite.                        | 63774  | 86.00  | 87.50  | 1.50 | 0.15     | 0.01     | 0.3      | 0.0010 |
|          | 87.5m    | fractured core with fragments of bornite.       | 63775  | 87.50  | 89.50  | 2.00 | 0.96     | 0.02     |          | 0.0007 |
|          |          | coarse bornite over 15cm.                       | 63776  | 89.50  | 93.00  | 3.50 |          | 0.03     |          | 8000.0 |
|          |          | 3 to 4mm band of bornite.                       | 63777  | 93.00  | 97.00  | 4.00 | 0.17     | 0.01     | 0.8      | 0.0014 |
|          | 99.3m    | red hematite altered zone.                      | 63778  | 97.00  | 101.00 | 4.00 | 0.23     | 0.53     |          | 0.0012 |
|          |          |                                                 | 63779  | 101.00 | 105.00 | 4.00 | 0.05     | 0.01     | 0.1      | 0.0008 |
|          |          |                                                 | 63780  | 105.00 | 109.00 | 4.00 | 0.09     | 0.01     | 0.1      | 0.0008 |
|          |          |                                                 | 63781  | 109.00 | 113.00 | 4.00 | 0.16     | 0.01     | 0.6      | 0.0019 |
|          |          |                                                 | 63782  | 113.00 | 117.00 | 4.00 | 0.30     | 0.02     | 1.0      | 0.0012 |
|          |          | good bornite over 4cm.                          | 63783  | 117.00 | 121.00 | 4.00 | 0.29     | 0.01     | 1.1      | 0.0023 |
|          | 121.1m   | 4cm of coarse bornite.                          | 63784  | 121.00 | 125.00 | 4.00 | 0.28     | 0.01     | 1.0      | 0.0011 |
| 125.2m   | 141 0m   | Granodiorite: red brown to 129.1m, pinkish      | 63785  | 125.00 | 129.00 | 4.00 | 0.42     | 0.01     | 2.0      | 0.0009 |
| 123.2111 | 171.0111 | to grey green color, potassic alteration,       | 63786  | 129.00 | 133.00 | 4.00 | 0.42     | 0.01     | 0.3      | 0.0009 |
|          |          | fractured core infilled with calcite, stringers | 63787  | 133.00 | 137.00 | 4.00 | 0.10     | 0.01     |          | 0.0038 |
|          |          | vary up to 1cm thick, scattered blebs of        | 63788  | 137.00 | 139.00 | 2.00 | 0.49     | 0.00     | 2.1      | 0.0038 |
|          |          | bornite, stringer of specular hematite 140.6m   |        | 139.00 | 141.00 | 2.00 | 0.36     | 0.01     | 3.6      | 0.0066 |
|          |          | pornite, surriger of specular nematile 140.000  | 03/09  | 139.00 | 141.00 | 2.00 | 0.71     | 0.01     | 3.6      | 0.000  |
| L        | 1        | <u> </u>                                        | _L     |        |        |      | <u> </u> | <u> </u> |          |        |

#### ASSAY R. JLTS 96C-09

| FROM    | TO      | DESCRIPTION                                    | SAMPLE | FROM   | TO     | M    | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|---------|---------|------------------------------------------------|--------|--------|--------|------|--------|----------|----------|--------|
| 141.0m  |         | Fault zone: brecciated, clay lining fractures, | 63790  | 141.00 | 142.50 | 1.50 | 0.28   | 0.01     | 1.8      | 0.0027 |
|         |         | bornite occurs in blebs, clots and irregular   | 63791  | 142.50 | 144.50 | 2.00 | 1.10   | 0.04     | 6.9      | 0.0118 |
|         |         | stringers and fracture filling.                | 63792  | 144.50 | 148.50 | 4.00 | 0.82   | 0.02     | 7.5      | 0.0027 |
|         | 149.1m  | clay fault gouge.                              | 63793  | 148.50 | 152.50 | 4.00 | 0.75   | 0.00     | 7.1      | 0.0094 |
|         |         |                                                |        |        |        |      |        |          |          |        |
| 153.7m  | 160.63m | Granodiorite: pink to pinkish grey, fine to    | 63794  | 152.50 | 154.00 | 1.50 | 1.26   | 0.03     | 12.5     | 0.0180 |
|         |         | medium grained, potassic with slight argillic  | 63795  | 154.00 | 158.00 | 4.00 | 0.06   | 0.01     | 0.1      | 0.0094 |
|         |         | alteration, siliceous.                         | 63796  | 158.00 | 160.63 | 2.63 | 0.02   | -        |          |        |
| 160.63m |         | END OF HOLE                                    |        |        |        |      |        |          |          |        |

# DIAMOND DRILL (E LOG DDH 96C-10

| FROM    | TO      | DESCRIPTION                                          | SAMPLE   | FROM | ТО              | М | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|---------|---------|------------------------------------------------------|----------|------|-----------------|---|--------|----------|----------|--------|
| 0m      | 18.9m   | Overburden: casing set at 18.9m                      |          |      |                 |   |        |          |          |        |
| 18.9m   | 27.4m   | Overburden: Granodiorite boulders and                |          |      |                 |   |        |          |          |        |
|         |         | compacted clay.                                      |          |      |                 |   |        |          |          |        |
| 27.4m   | 38.5m   | Granodiorite: oxidized zone, yellow to rust          | 80051    | 27.4 | 30.4            | 3 | 0.009  |          |          |        |
|         |         | streaks and staining, strong potassic alteration     | 80052    | 30.4 | 33.4            | 3 | 0.011  |          |          |        |
|         |         | moderate to intense argillic overprinting of         | 80053    | 33.4 | 36.4            | 3 | 0.017  |          |          |        |
|         |         | potassic alteration, Biotites altered to Chlorite.   | 80054    | 36.4 | 39.4            | 3 | 0.025  |          |          |        |
|         |         |                                                      |          |      |                 |   |        |          |          |        |
| 38.5m   | 41.8m   | Granodiorite: strong potassic with moderate          | 80055    | 39.4 | 42.4            | 3 |        |          |          |        |
|         |         | argillic overprinting, feldspars bleached white,     | 80056    | 42.4 | 45.4            | 3 | 0.005  |          |          |        |
|         |         | Biotite altered to Chlorite.                         |          |      |                 |   |        |          |          |        |
|         |         |                                                      |          |      |                 |   |        |          |          |        |
| 41.8m   | 53.9m   | Granodiorite: weak potassic with localized           | 80057    | 45.4 | 48.4            | 3 |        |          |          |        |
|         |         | intense alteration along fracture planes,            | 80058    | 48.4 | 51.4            | 3 |        |          |          |        |
|         |         | feldspars bleached white.                            | 80059    | 51.4 | 54.4            | 3 | 0.014  |          |          |        |
|         |         |                                                      | <u> </u> |      | · <del></del> - |   |        | <u> </u> | İ        |        |
| 53.9m   | 78.3m   | Granodiorite: moderate to strong potassic with       | 80060    | 54.4 | 57.4            | 3 |        |          |          |        |
|         |         | intense argillic alteration along fracture planes,   | 80061    | 57.4 | 60.4            | 3 | 0.013  |          |          |        |
|         |         | biotites altered to chlorite and scattered sericite, | 80062    | 60.4 | 63.4            | 3 |        |          |          |        |
|         |         | feldspars starting to appear argillic, scattered     | 80063    | 63.4 | 66.4            | 3 |        |          |          |        |
|         |         | calcite veinlets.                                    | 80064    | 66.4 | 69.4            | 3 |        | ļ        |          |        |
|         |         |                                                      | 80065    | 69.4 | 72.4            | 3 |        |          |          |        |
|         |         |                                                      | 80066    | 72.4 | 75.4            | 3 |        |          |          |        |
|         |         |                                                      | 80067    | 75.4 | 78.4            | 3 | 0.033  |          |          |        |
|         | 25.0    |                                                      |          | 70.4 |                 |   |        |          |          |        |
| 78.3m   | 85.0m   | Granodiorite: strong potassic alteration with        | 80068    | 78.4 | 81.4            | 3 |        |          |          |        |
|         | ļ       | argillic overprinting, feldspars bleached white,     | 80069    | 81.4 | 84.4            | 3 |        |          | 0.3      | 0.0037 |
|         | ļ       | scattered dark green mafic veins along fractures     | 80070    | 84.4 | 87.4            | 3 | 0.208  | 0.01     | 1.1      | 0.0032 |
|         | L       | scattered calcite veins crosscutting mafic veins     |          |      |                 |   |        |          |          |        |
|         | 82.5m   |                                                      |          |      |                 |   |        |          |          |        |
|         |         | calcite veins.                                       |          |      |                 |   |        |          |          |        |
|         |         | specular hematite                                    |          |      |                 |   |        | <u></u>  |          |        |
|         | 84.5m   | trace disseminated chalcopyrite and bornite          | ļ        |      |                 |   | ļ      | ļ        |          |        |
| 85.0m   | 110 0-  | Granodiorite: pervasive argillic alteration,         | 80071    | 87.4 | 90.4            | 3 | 0.175  | 0.01     | 0.3      | 0.0005 |
| 05.011  | 119.011 |                                                      | 80071    | 90.4 | 91.4            |   |        |          | 0.0      |        |
| 05.0    | 06.7    | feldspars have pale green color.                     | 80072    | 91.4 | 91.4            | 1 |        |          | 0.0      |        |
| 85.0m   | 90./M   | trace disseminated bornite and chalcopyrite          |          |      |                 | 1 |        |          | 1        |        |
| <u></u> | 1       |                                                      | 80074    | 92.4 | 93.4            | 1 | 0.096  | 0.01     | 0.3      | 0.0003 |

## DIAMOND DRILL . RE LOG DDH 96C-10

| FROM   | TO     | DESCRIPTION                                     | SAMPLE | FROM  | TO    | М | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|--------|-------------------------------------------------|--------|-------|-------|---|--------|----------|----------|--------|
|        |        |                                                 | 80075  | 93.4  | 94.4  | 1 | 0.040  | 0.01     | 0.1      | 0.0005 |
|        |        |                                                 | 80076  | 94.4  | 95.4  | 1 | 0.118  | 0.01     | 0.4      | 0.0019 |
|        |        |                                                 | 80077  | 95.4  | 96.4  | 1 | 0.169  | 0.01     | 0.2      | 0.0008 |
| 96.7m  | 98.2m  | 5 cm vein of bornite with chalcopyrite          | 80078  | 96.4  | 97.4  | 1 | 0.862  | 0.04     | 2.6      | 0.0017 |
|        |        |                                                 | 80079  | 97.4  | 98.4  | 1 | 4.560  | 0.13     | 37.7     | 0.0013 |
| 88.2m  | 116.7m | moderate to strong veinlets of bornite and      | 80080  | 98.4  | 99.4  | 1 | 0.288  | 0.02     | 1.0      | 0.0005 |
|        |        | chalcopyrite.                                   | 80081  | 99.4  | 100.4 | 1 | 0.123  | 0.01     | 0.4      | 0.0008 |
|        |        |                                                 | 80082  | 100.4 | 101.4 | 1 | 0.119  | 0.01     | 0.6      | 0.0003 |
|        |        | bornite appears to be associated with chlorite  | 80083  | 101.4 | 102.4 | 1 | 0.179  | 0.01     | 1.2      | 0.0006 |
|        |        | and dark green mafic veinlets.                  | 80084  | 102.4 | 103.4 | 1 | 0.152  | 0.01     | 0.4      | 0.0006 |
|        |        | chalcopyrite and bornite mineralization occurs  | 80085  | 103.4 | 104.4 | 1 | 0.190  | 0.01     | 1.3      | 0.0009 |
|        |        | with quartz rich zones within this section of   | 80086  | 104.4 | 105.4 | 1 | 1.680  | 0.10     | 15.5     | 0.0019 |
|        |        | core, quartz rich zones have sericite along     | 80087  | 105.4 | 106.4 | 1 | 0.576  | 0.01     | 5.6      | 0.0050 |
|        |        | fractures and quartz veins.                     | 80088  | 106.4 | 107.4 | 1 | 0.251  | 0.01     | 2.5      | 0.0042 |
|        |        |                                                 | 80089  | 107.4 | 108.4 | 1 | 0.434  | 0.03     | 3.6      | 0.0600 |
|        |        |                                                 | 80090  | 108.4 | 109.4 | 1 | 3.150  | 1.74     | 26.6     | 0.0004 |
|        |        |                                                 | 80091  | 109.4 | 110.4 | 1 | 0.724  | 0.02     | 5.3      | 0.0016 |
|        |        |                                                 | 80092  | 110.4 | 111.4 | 1 | 0.171  | 0.01     | 1.0      | 0.0019 |
|        |        |                                                 | 80093  | 111.4 | 112.4 | 1 | 0.081  | 0.01     | 0.5      | 0.0073 |
|        |        |                                                 | 80094  | 112.4 | 113.4 | 1 | 3.340  | 0.06     | 24.5     | 0.0640 |
|        |        |                                                 | 80095  | 113.4 | 114.4 | 1 | 0.176  | 0.02     | 1.2      | 0.0027 |
|        |        |                                                 | 80096  | 114.4 |       | 1 | 0.106  | 0.01     | 0.6      | 0.0007 |
|        |        |                                                 | 80097  | 115.4 | 116.4 | 1 | 0.633  | 0.02     | 2.1      | 0.0003 |
| 116.7m | 117.0m | 3 cm vein of bornite                            | 80098  | 116.4 | 117.4 | 1 | 1.340  | 0.01     | 12.2     | 0.0033 |
|        |        |                                                 | 80099  | 117.4 | 118.4 | 1 | 0.202  | 0.03     | 1.2      | 0.0016 |
|        |        |                                                 | 80100  | 118.4 | 119.4 | 1 | 0.429  | 0.01     | 3.5      | 0.0016 |
|        |        |                                                 |        |       | ·     |   |        | - ""     |          |        |
| 119.0m | 158.8m | Granodiorite: pervasive argillic alteration,    | 80101  | 119.4 | 120.4 | 1 | 0.234  | 0.01     | 1.9      | 0.0015 |
|        |        | biotites altered to chlorite and sericite,      | 80102  | 120.4 | 123.4 | 3 | 0.104  | 0.01     | 0.6      | 0.0016 |
|        |        | scattered red hematite streaks along fractures. | 80103  | 123.4 | 124.4 | 1 | 0.117  | 0.01     | 0.8      | 0.0021 |
|        |        | weak bornite with trace chalcopyrite and        | 80104  | 124.4 | 125.4 | 1 | 0.021  | 0.01     | 0.1      | 0.0012 |
|        |        | molybdenum mineralization.                      | 80105  | 125.4 | 126.4 | 1 | 0.267  | 0.01     | 3.0      | 0.0001 |
|        |        |                                                 | 80106  | 126.4 | 127.4 | 1 | 0.588  | 0.01     | 5.6      | 0.0007 |
|        |        |                                                 | 80107  | 127.4 | 128.4 | 1 | 0.107  | 0.01     | 0.5      | 0.0007 |
|        |        |                                                 | 80103  | 128.4 | 129.4 | 1 | 0.077  | 0.01     | 0.7      | 0.0080 |
|        |        |                                                 | 80109  | 129.4 | 130.4 | 1 | 0.015  | 0.01     | 0.5      | 0.0672 |
|        |        |                                                 | 80110  | 130.4 | 131.4 | 1 | 0.009  | 0.01     | 0.1      | 0.0016 |
|        |        |                                                 | 80111  | 131.4 | 132.4 | 1 | 0.145  | 0.01     | 1.0      | 0.0012 |

# DIAMOND DRILL RE LOG DDH 96C-10

| FROM   | TO     | DESCRIPTION                                     | SAMPLE |       | TO    | М | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|--------|-------------------------------------------------|--------|-------|-------|---|--------|----------|----------|--------|
|        |        |                                                 | 80112  | 132.4 | 133.4 | 1 | 0.238  | 0.01     | 2.4      | 0.0043 |
| 133.0m | 136.0m | Fault breccia                                   | 80113  | 133.4 | 134.4 | 1 | 0.323  | 0.01     | 1.6      | 0.0017 |
|        |        |                                                 | 80114  | 134.4 | 135.4 | 1 | 0.597  | 0.01     | 3.4      | 0.0007 |
|        |        |                                                 | 80115  | 135.4 | 136.4 | 1 | 0.740  | 0.99     | 1.2      | 0.0022 |
|        |        |                                                 | 80116  | 136.4 | 139.4 | 3 | 0.638  | 0.11     | 4.5      | 0.0023 |
|        |        |                                                 | 80117  | 139.4 | 142.4 | 3 | 0.137  | 0.01     | 1.6      | 0.0010 |
|        |        |                                                 | 80118  | 142.4 | 143.4 | 1 | 0.093  | 0.03     | 0.6      | 0.0005 |
|        |        |                                                 | 80119  | 143.4 | 144.4 | 1 | 0.065  | 0.02     | 0.5      | 0.0001 |
|        |        |                                                 | 80120  | 144.4 | 145.4 | 1 | 0.137  | 0.04     | 0.7      | 0.0018 |
|        |        |                                                 | 80121  | 145.4 | 146.4 | 1 | 0.095  | 0.02     | 0.3      | 0.0001 |
|        |        |                                                 | 80122  | 146.4 | 147.4 | 1 | 0.560  | 0.02     | 1.4      | 0.0008 |
|        |        |                                                 | 80123  | 147.4 | 148.4 | 1 | 0.236  | 0.04     | 1.4      | 0.0036 |
|        |        |                                                 | 80124  | 148.4 | 151.4 | 3 | 0.184  | 0.05     | 1.6      | 0.0020 |
|        |        |                                                 | 80125  | 151.4 | 154.4 | 3 | 0.262  | 0.01     | 2.2      | 0.0008 |
|        |        |                                                 | 80126  | 154.4 | 157.4 | 3 | 0.062  | 0.02     | 0.7      | 0.0018 |
|        |        |                                                 | 80127  | 157.4 | 158.4 | 1 | 0.177  | 0.07     | 1.7      | 0.0050 |
|        |        |                                                 |        |       |       |   |        |          |          |        |
| 158.8m |        | Granodiorite: Strong potassic with localized    | 80128  | 158.4 | 159.4 | 1 | 2.000  | 0.05     | 6.0      | 0.0022 |
|        |        | argillic alteration along fracture planes.      | 80129  | 159.4 | 160.4 | 1 | 2.610  | 0.14     | 13.5     | 0.0010 |
|        |        | scattered calcite veins, dark green mafic veins | 80130  | 160.4 | 161.4 | 1 | 0.731  | 0.05     | 2.8      | 0.0027 |
|        |        | carrying specular hematite and bornite.         | 80131  | 161.4 | 162.4 | 1 | 0.079  | 0.01     | 1.0      | 0.0008 |
|        |        | mafic veins appear to be crosscut with later    | 80132  | 162.4 | 163.4 | 1 | 0.128  | 0.01     | 0.5      | 0.0015 |
|        |        | stage calcite veins.                            | 80133  | 163.4 | 164.4 | 1 | 0.079  | 0.02     | 0.7      | 0.0005 |
|        |        | strong bornite mineralization occurring in      | 80134  | 164.4 | 165.4 | 1 | 0.208  | 0.01     | 2.1      | 0.0003 |
|        |        | veinlets and disseminated blebs.                | 80135  | 165.4 | 166.4 | 1 | 0.422  | 0.02     | 4.0      | 0.0004 |
|        |        | scattered specular hematite throughout this     | 80136  | 166.4 | 167.4 | 1 | 1.010  | 0.05     | 5.5      | 0.0003 |
|        |        | zone                                            | 80137  | 167.4 | 168.4 | 1 | 0.524  | 0.03     | 4.8      | 0.0001 |
|        |        |                                                 | 80138  | 168.4 | 169.4 | 1 | 0.715  | 0.03     | 3.9      | 0.0007 |
|        |        |                                                 | 80139  | 169.4 | 170.4 | 1 | 0.500  | 0.02     | 3.9      | 0.0015 |
|        |        |                                                 | 80140  | 170.4 | 171.4 | 1 | 1.330  | 0.03     | 7.4      | 0.0008 |
| -      |        |                                                 | 80141  | 171.4 | 172.4 | 1 | 0.229  | 0.01     | 2.6      | 0.0007 |
|        |        |                                                 | 80142  | 172.4 | 173.4 | 1 | 0.073  | 0.01     | 0.2      | 0.0058 |
|        |        |                                                 | 80143  | 173.4 | 174.4 | 1 | 0.026  | 0.01     | 1.0      | 0.0003 |
|        |        |                                                 | 80144  | 174.4 | 175.4 | 1 | 0.801  | 0.07     | 8.5      | 0.0059 |
|        |        |                                                 | 80145  | 175.4 | 176.4 | 1 | 3.320  | 0.13     | 38.8     | 0.0009 |
|        |        |                                                 | 80146  | 176.4 | 177.4 | 1 | 1.120  | 0.03     | 9.0      | 0.0062 |
|        |        |                                                 | 80147  | 177.4 | 178.4 | 1 | 4.450  | 0.30     | 36.7     | 0.0019 |
|        |        |                                                 | 80148  | 178.4 | 179.4 | 1 | 1.640  | 0.12     | 12.4     | 0.0025 |

# DIAMOND DRILL RE LOG DDH 96C-10

| FROM   | ТО     | DESCRIPTION                                          | SAMPLE |       | TO    | M |       |      | Ag (g/t) | Mo (%) |
|--------|--------|------------------------------------------------------|--------|-------|-------|---|-------|------|----------|--------|
|        |        |                                                      | 80149  | 179.4 | 180.4 | 1 | 0.278 | 0.02 | 2.8      | 0.0004 |
|        |        |                                                      | 80150  | 180.4 | 181.4 | 1 | 1.300 | 0.03 | 6.2      | 0.0001 |
|        |        |                                                      | 80151  | 181.4 | 182.4 | 1 | 0.307 | 0.03 | 3.1      | 0.0001 |
| 182.0m | 194.2m | Granodiorite: strong potassic alteration with        | 80152  | 182.4 | 183.4 | 1 | 0.036 | 0.01 | 0.8      | 0.0002 |
|        |        | argillic overprinting, bleached feldspars vary       | 80153  | 183.4 | 184.4 | 1 | 0.023 | 0.01 | 0.1      | 0.0002 |
|        |        | from pink to white and pale green.                   | 80154  | 184.4 | 185.4 | 1 | 0.008 | 0.01 | 0.9      | 0.0002 |
|        |        | localized argillic alteration along fracture planes, | 80155  | 185.4 | 186.4 | 1 | 0.095 | 0.01 | 0.2      | 0.0004 |
|        |        | scattered calcite veins.                             | 80156  | 186.4 | 187.4 | 1 | 0.026 | 0.01 | 0.1      | 0.0002 |
|        |        |                                                      | 80157  | 187.4 | 188.4 | 1 | 0.052 | 0.01 | 0.6      | 0.0001 |
|        |        |                                                      | 80158  | 188.4 | 189.4 | 1 | 0.015 |      |          |        |
|        |        |                                                      | 80159  | 189.4 | 190.4 | 1 | 0.018 |      |          |        |
|        |        |                                                      | 80160  | 190.4 | 191.4 | 1 | 0.024 |      |          |        |
|        |        |                                                      | 80161  | 191.4 | 192.4 | 1 | 0.013 |      |          |        |
|        |        |                                                      | 80162  | 192.4 | 193.4 | 1 | 0.013 |      |          |        |
|        |        |                                                      | 80163  | 193.4 |       | 1 | 0.012 |      | ,        |        |
|        |        |                                                      |        |       |       |   |       |      |          |        |
| 194.2m | 211.0m | Granodiorite: weak potassic with slight argillic     | 80164  | 194.4 | 197.4 | 3 | 0.013 |      |          |        |
|        |        | alteration along fractures.                          | 80165  | 197.4 | 200.4 | 3 | 0.013 |      |          |        |
|        |        | weak alteration of biotites to chlorite, localized   | 80166  | 200.4 | 203.4 | 3 | 0.013 |      | İ        |        |
|        |        | intense alteration along fractures that contain      | 80167  | 203.4 | 206.4 | 3 | 0.013 |      |          |        |
|        |        | calcite veins                                        | 80168  | 206.4 | 209.4 | 3 | 0.020 |      |          |        |
|        |        |                                                      |        |       |       |   |       |      |          |        |
| 211.0m | 216.0m | Granodiorite: pervasive argillic alteration,         | 80169  | 209.4 | 212.4 | 3 | 0.018 |      |          |        |
|        |        | feldspars bleached white, scattered calcite veins    | 80170  | 212.4 |       | 3 | 0.011 |      |          |        |
|        |        | this core interval appears to have had strong        |        |       |       |   |       |      |          |        |
|        |        | potassic alteration with argillic overprinting.      |        |       |       |   | ·     |      |          |        |
|        |        | trace chalcopyrite along fracture planes.            |        |       |       |   |       |      |          |        |
|        |        |                                                      |        |       |       |   |       | ·    |          |        |
| 216.0m | 257.0m | Granodiorite: appears fresh with slight              | 80171  | 215.4 | 218.4 | 3 | 0.051 |      |          |        |
| -      |        | alteration along fractures planes, scattered         | 80172  | 218.4 | 221.4 | 3 | 0.032 |      |          |        |
|        |        | hematite streaks along fractures.                    | 80173  | 221.4 | 224.4 | 3 | 0.021 |      |          |        |
|        |        | trace to weak chalcopyrite mineralization            | 80174  | 224.4 | 227.4 | 3 | 0.014 |      |          |        |
|        |        | scattered along fractures.                           | 80175  | 227.4 | 230.4 | 3 | 0.010 |      |          |        |
|        |        |                                                      | 80176  | 230.4 | 233.4 | 3 | 0.008 |      |          |        |
|        |        |                                                      | 80177  | 233.4 | 236.4 | 3 | 0.030 |      |          |        |
|        |        |                                                      | 80178  | 236.4 | 239.4 | 3 | 0.006 |      |          |        |
|        |        |                                                      | 80179  | 239.4 |       | 3 | 0.008 |      |          |        |
|        |        |                                                      | 80180  |       | 245.4 | 3 | 0.015 |      |          |        |

# DIAMOND DRILL . . RE LOG DDH 96C-10

| FROM   | TO     | DESCRIPTION                                      | SAMPLE   | FROM  | TO    | M   | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|--------|--------------------------------------------------|----------|-------|-------|-----|--------|----------|----------|--------|
|        |        |                                                  | 80181    | 245.4 | 248.4 | 3   | 0.029  |          |          |        |
|        |        |                                                  | 80182    | 248.4 | 251.4 | 3   | 0.035  |          |          |        |
|        |        |                                                  | 80183    | 251.4 | 254.4 | 3   | 0.016  |          |          |        |
|        |        |                                                  | 80184    | 254.4 | 257.4 | 3   | 0.014  |          |          |        |
| 257.0m | 264.3m | Granodiorite: weak to moderate potassic          | 80185    | 257.4 | 260.4 | 3   | 0.026  |          |          |        |
|        |        | alteration near fractures with intense argillic  | 80186    | 260.4 | 263.4 | 3   | 0.046  |          |          |        |
|        |        | overprinting along fracture planes.              |          |       |       |     |        |          |          |        |
|        | 261.5m | fault breccia imbedded in a white clay matrix,   |          |       |       |     |        |          |          |        |
|        |        | strong potassic alteration next to fault zone.   |          |       |       |     |        |          |          |        |
|        |        | trace chalcopyrite lining fault.                 |          |       |       |     |        |          |          |        |
| 264.3m | 271.2m | Granodiorite: appears fresh, unaltered.          | 80187    | 263.4 | 266.4 | 3   | 0.008  |          | -        |        |
|        |        | trace to weak chalcopyrite along fractures,      | 80188    | 266.4 | 269.4 | 3   | 0.010  |          |          |        |
|        |        | mineralization only occurs in fractures and does | 80189    | 269.4 | 271.3 | 1.9 | 0.019  |          |          |        |
|        |        | not extend into granodiorite next to fractures.  |          |       |       |     |        |          |          |        |
|        |        |                                                  | <u> </u> |       |       |     |        |          |          |        |
| 271.3m |        | END OF HOLE                                      |          |       |       |     |        |          |          |        |

## DIAMOND DRILL RELOG DDH 96C-11

| FROM  | TO    | DESCRIPTION                                     | SAMPLE | FROM | ТО   | M   | Cu (%) | Au (g/t)                                         | Ag (g/t)                                         | Mo (%)   |
|-------|-------|-------------------------------------------------|--------|------|------|-----|--------|--------------------------------------------------|--------------------------------------------------|----------|
| 0m    | 21.6m | Overburden: Casing set at 21.6m                 |        |      |      |     |        |                                                  |                                                  |          |
| 21.6m | 24.2m | Overburden: Granodiorite boulders and           |        |      |      |     |        |                                                  |                                                  |          |
|       |       | compacted clay                                  |        |      |      |     |        |                                                  |                                                  |          |
|       |       |                                                 |        |      |      |     |        |                                                  |                                                  |          |
| 24.2m | 26.0m | Granodiorite: oxidized zone, yellow brown       | 79651  | 22.0 | 23.5 | 1.5 | 0.065  |                                                  |                                                  |          |
|       |       | staining, moderate malachite with trace         | 79652  | 23.5 | 25.5 | 3.0 | 0.007  |                                                  |                                                  |          |
|       |       | bornite mineralization.                         |        |      |      |     |        |                                                  |                                                  |          |
|       | 00.7  |                                                 | 70050  | 20.5 |      |     |        |                                                  |                                                  |          |
| 26.0m | 38.7m | Granodiorite: moderate to strong potassic       | 79653  | 26.5 | 29.6 | 3.0 | 0.008  |                                                  |                                                  |          |
|       |       | alteration along fracture planes, trace         | 79654  | 29.6 | 32.6 |     | 0.010  |                                                  | <u> </u>                                         |          |
|       |       | hematite streaks, chlorite alteration           | 79655  | 32.6 | 35.7 | 3.1 | 0.014  |                                                  |                                                  |          |
|       |       | forming scattered veinlets and coats            | 79656  | 35.7 | 38.7 | 3.0 | 0.010  |                                                  |                                                  |          |
|       |       | fracture planes.                                |        |      |      |     |        |                                                  |                                                  |          |
| 20.7  | 42 0  | Oranadiarita, madarata natassis alteration      | 70657  | 20.7 | 44.7 |     | 0.040  | ļ                                                | <u></u>                                          |          |
| 38.7m | 43.8m | Granodiorite: moderate potassic alteration      | 79657  | 38.7 | 41.7 | 3.0 | 0.012  |                                                  |                                                  |          |
|       |       | with argillic alteration along fracture planes, | 79658  | 41.7 | 44.8 | 3.1 | 0.006  | <del>                                     </del> | ļ                                                |          |
|       |       | trace red hematite staining along fractures,    |        |      |      |     |        | ļ                                                |                                                  |          |
|       |       | trace disseminated magnetite.                   |        |      |      |     |        | <u></u>                                          |                                                  |          |
| 43.8m | 47.8m | Granodiorite: pervasive argillic overprinting,  | 79659  | 44.8 | 47.8 | 3.0 | 0.010  | <u> </u>                                         |                                                  | <u> </u> |
|       |       | sericite along fracture planes, trace red       |        |      |      |     |        | <del>                                     </del> | <del>                                     </del> |          |
|       |       | hematite streaks along fracture planes.         |        |      |      |     |        |                                                  |                                                  |          |
|       |       |                                                 |        |      |      |     |        |                                                  |                                                  |          |
| 47.8m | 61.0m | Granodiorite: weak with strong potassic         | 79660  | 47.8 | 50.9 | 3.1 | 0.005  |                                                  |                                                  |          |
|       |       | alteration along fracture planes, trace green   | 79661  | 50.9 | 53.9 | 3.0 | 0.029  |                                                  |                                                  |          |
|       |       | chlorite veinlets, scattered red hematite       | 79662  | 53.9 | 57.0 | 3.1 | 0.025  |                                                  |                                                  |          |
|       |       | streaks, moderate fracture density, trace       | 79663  | 57.0 | 60.0 | 3.0 | 0.010  |                                                  |                                                  |          |
|       |       | disseminated chalcopyrite.                      |        |      |      |     |        |                                                  |                                                  |          |
|       |       |                                                 |        |      |      |     |        |                                                  |                                                  |          |
| 61.0m | 66.0m | Granodiorite: strong argillic alteration        | 79664  | 60.0 | 63.1 | 3.1 | 0.008  |                                                  |                                                  |          |
|       |       | overprinting potassic alteration, strong        | 79665  | 63.1 | 66.1 | 3.0 | 0.015  |                                                  |                                                  |          |
|       |       | alteration to clay, feldspars bleached white,   |        | ·    |      |     |        |                                                  |                                                  |          |
|       |       | trace disseminated chalcopyrite.                |        |      |      |     |        |                                                  |                                                  |          |
|       |       |                                                 |        |      |      |     |        |                                                  |                                                  |          |
| 66.0m | 93.6m | Granodiorite: weak with strong potassic         | 79666  | 66.1 | 69.2 | 3.1 | 0.036  |                                                  |                                                  |          |
|       |       | alteration next to fracture planes, sericite    | 79667  | 69.2 | 72.2 |     | 0.017  |                                                  |                                                  |          |
|       |       | alteration along fractures, trace green         | 79668  | 72.2 | 75.3 | 3.1 | 0.028  |                                                  |                                                  |          |
|       |       | chlorite veinlets, scattered red hematite       | 79669  | 75.3 | 78.3 | 3.0 | 0.015  |                                                  |                                                  |          |

## DIAMOND DRILL RE LOG DDH 96C-11

| FROM   | ТО     | DESCRIPTION                                    | SAMPLE | FROM  | TO    | М   | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|--------|------------------------------------------------|--------|-------|-------|-----|--------|----------|----------|--------|
|        |        | streaks, moderate fracture density,            | 79670  | 78.3  | 81.4  | 3.1 | 0.068  |          |          |        |
|        |        | trace disseminated chalcopyrite.               | 79671  | 81.4  | 84.4  | 3.0 | 0.017  |          |          |        |
|        |        |                                                | 79672  | 84.4  | 87.5  | 3.1 | 0.022  |          |          |        |
|        |        |                                                | 79673  | 87.5  | 90.5  | 3.0 | 0.022  |          |          |        |
|        |        |                                                | 79674  | 90.5  | 93.6  | 3.1 | 0.007  |          |          |        |
|        |        |                                                |        |       |       |     |        |          |          |        |
| 93.6m  | 126.4m | Granodiorite: pervasive argillic alteration    | 79675  | 93.6  | 96.6  | 3.0 | 0.019  | -        |          |        |
|        |        | overprinting potassic alteration, feldspars    | 79676  | 96.6  | 97.7  | 1.1 | 0.021  | 0.03     | 0.1      | 0.003  |
|        |        | bleached white, color of clay alteration vary  | 79677  | 99.7  | 102.7 | 3.0 | 0.156  | 0.03     | 0.1      | 0.020  |
|        |        | from pale white to light grey and pale green   | 79678  | 102.7 | 105.8 | 3.1 | 0.082  | 0.03     | 0.4      | 0.009  |
|        |        | weak specular hematite mineralization          | 79679  | 105.8 | 108.8 | 3.0 | 0.041  | 0.03     | 0.1      | 0.000  |
|        |        | with trace bornite.                            | 79680  | 108.8 | 111.9 | 3.1 | 0.417  | 0.03     | 2.3      | 0.000  |
|        |        | moderate molybdenum mineralization along       | 79681  | 111.9 | 115.0 | 3.1 | 0.279  | 0.03     | 1.5      | 0.001  |
|        | ,      | fractures.                                     | 79682  | 115.0 | 118.0 | 3.0 | 0.235  | 0.03     | 1.8      | 0.001  |
|        |        |                                                | 79683  | 118.0 | 121.0 | 3.0 | 0.141  | 0.03     | 0.8      | 0.001  |
| 123.9m | 124.4m | strong bornite and specular hematite           | 79684  | 121.0 | 124.1 | 3.1 | 0.327  | 0.03     | 2.6      | 0.002  |
|        |        |                                                | 79685  | 124.1 | 127.1 | 3.0 | 0.115  | 0.03     | 0.4      | 0.001  |
|        |        |                                                |        |       |       |     |        |          |          |        |
| 126.4m | 132.8m | Granodiorite: strong potassic with patchy      | 79686  | 127.1 | 130.1 | 3.0 | 0.130  | 0.03     | 0.5      | 0.001  |
|        |        | weak to intense argillic alteration, trace     | 79687  | 130.1 | 131.7 | 1.0 | 0.095  | 0.03     | 0.7      | 0.001  |
|        |        | calcite veins, weak specular hematite          | 79688  | 131.7 | 132.1 | 1.0 | 0.075  | 0.03     | 0.1      | 0.000  |
|        |        | mineralization.                                | 79689  | 132.1 | 133.2 | 1.1 | 0.731  | 0.03     | 7.9      | 0.001  |
|        |        |                                                |        |       |       |     |        |          |          |        |
| 132.8m | 139.8m | Granodiorite: pervasive argillic alteration,   | 79690  | 133.2 | 134.2 | 1.0 | 1.000  | 0.13     | 7.4      | 0.001  |
|        |        | biotites altered to chlorite, trace magnetite, | 79691  | 134.2 | 135.2 | 1.0 | 2.390  | 0.11     | 21.3     | 0.001  |
|        |        | strong bornite and chalcopyrite                | 79692  | 135.2 | 136.2 | 1.0 | 0.022  | 0.03     | 0.1      | 0.001  |
|        |        | chalcopyrite associated with quartz veins.     | 79693  | 136.2 | 139.3 | 3.1 | 0.082  | 0.03     | 0.3      | 0.001  |
|        |        |                                                |        |       |       |     |        |          |          |        |
| 139.8m | 157.6m | Granodiorite: strong potassic with             | 79694  | 139.3 | 140.4 | 1.1 | 0.075  | 0.03     | 0.1      | 0.001  |
|        |        | localized intense argillic alteration,         | 79695  | 140.4 | 141.4 | 1.0 | 0.801  | 3.45     | 6.8      | 0.001  |
|        | ·      | feldspars bleached white, trace slickensides   | 79696  | 141.4 | 142.4 | 1.0 | 0.051  | 0.03     | 0.1      | 0.001  |
|        |        | with red hematite staining, moderate           | 79697  | 142.4 | 145.4 | 3.0 | 0.064  | 0.03     | 0.1      | 0.002  |
|        |        | fracture density.                              | 79698  | 145.4 | 148.4 | 3.0 | 0.036  | 0.03     | 0.1      | 0.003  |
|        |        | trace specular hematite.                       | 79699  | 148.5 | 151.5 | 3.0 | 0.079  | 0.03     | 0.1      | 0.006  |
|        |        |                                                | 79700  | 151.5 | 154.5 | 3.0 | 0.057  | 0.03     | 0.1      | 0.001  |
|        |        |                                                | 79701  | 154.5 | 157.6 | 3.1 | 0.038  | 0.03     | 0.1      | 0.004  |
|        |        |                                                |        |       |       |     |        |          |          |        |
| 157.6m | 179.3m | Granodiorite: pervasive argillic alteration,   | 79702  | 157.6 | 160.6 | 3.0 | 0.050  | 0.03     | 0.1      | 0.001  |

# 

| FROM   | TO     | DESCRIPTION                                  | SAMPLE | FROM  | ТО    | М   | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|--------|----------------------------------------------|--------|-------|-------|-----|--------|----------|----------|--------|
|        |        | color varies from very light grey to pale    | 79703  | 160.6 | 163.7 | 3.1 | 0.062  | 0.03     | 0.1      | 0.049  |
|        |        | green, trace quartz veins.                   | 79704  | 163.7 | 164.7 | 1.0 | 0.046  | 0.03     | 0.3      | 0.028  |
|        |        | moderate to disseminated to thin veinlets    | 79705  | 164.7 | 165.7 | 1.0 | 0.046  | 0.03     | 0.4      | 0.129  |
|        |        | of bornite.                                  | 79706  | 165.7 | 166.7 | 1.0 | 0.094  | 0.03     | 0.1      | 0.003  |
|        |        | weak disseminated chalcopyrite.              | 79707  | 166.7 | 167.7 | 1.0 | 0.215  | 0.03     | 0.5      | 0.036  |
|        |        | strong molybdenum mineralization along       | 79708  | 167.7 | 168.7 | 1.0 | 0.278  | 0.03     | 0.1      | 0.001  |
|        |        | fractures.                                   | 79709  | 168.7 | 169.8 | 1.1 | 0.688  | 0.22     | 1.0      | 0.081  |
|        |        | weak stringers of specular hematite with     | 79710  | 169.8 | 172.8 | 3.0 | 0.322  | 0.03     | 6.3      | 0.005  |
|        |        | trace bornite and chalcopyrite.              | 79711  | 172.8 | 173.8 | 1.0 | 0.152  | 0.03     | 0.6      | 0.001  |
|        |        |                                              | 79712  | 173.8 | 174.8 | 1.0 | 1.460  | 0.12     | 14.1     | 0.001  |
|        |        |                                              | 79713  | 174.8 | 175.9 | 1.1 | 0.290  | 0.03     | 1.7      | 0.000  |
|        |        |                                              | 79714  | 175.9 | 176.9 | 1.0 | 0.329  | 0.06     | 2.3      | 0.000  |
|        |        |                                              | 79715  | 176.9 | 177.9 | 1.0 | 0.020  | 0.03     | 0.1      | 0.002  |
|        |        |                                              | 79716  | 177.9 | 178.9 | 1.0 | 0.150  | 0.05     | 0.8      | 0.010  |
| -      |        |                                              | 79717  | 178.9 | 179.9 | 1.0 | 0.150  | 0.03     | 0.8      | 0.025  |
|        |        |                                              |        |       |       |     |        |          |          |        |
| 179.3m | 190.6m | Aplite Dike: salmon color, strong potassic   | 79718  | 179.9 | 182.0 | 2.1 | 0.566  | 0.04     | 5.1      | 0.012  |
|        |        | with localized intense argillic alteration,  | 79719  | 182.0 | 183.0 | 1.0 | 0.353  | 0.03     | 1.0      | 0.003  |
|        |        | intense fracturing of core.                  | 79720  | 183.0 | 184.0 | 1.0 | 0.179  | 0.03     | 1.1      | 0.003  |
|        |        | moderate disseminated bornite with weak      | 79721  | 184.0 | 185.0 | 1.0 | 0.032  | 0.03     | 0.3      | 0.002  |
|        |        | chalcopyrite occurring in thin veinlets and  | 79722  | 185.0 | 188.1 | 3.1 | 0.025  | 0.03     | 0.1      | 0.014  |
|        |        | disseminated patches.                        | 79723  | 188.1 | 189.1 | 1.0 | 0.102  | 0.15     | 0.2      | 0.078  |
|        |        | trace molybdenum along fractures.            | 79724  | 189.1 | 190.1 | 1.0 | 0.259  | 0.03     | 0.1      | 0.005  |
|        |        |                                              | 79725  | 190.1 | 191.1 | 1.0 | 0.499  | 0.03     | 1.0      | 0.018  |
|        |        |                                              |        |       |       |     |        |          |          |        |
| 190.6m | 200.4m | Granodiorite: pervasive argillic alteration, | 79726  | 191.1 | 192.1 | 1.0 | 0.209  | 0.03     | 0.9      | 0.023  |
|        |        | soapy feeling to core, trace thin open       | 79727  | 192.1 | 193.1 | 1.0 | 0.349  | 0.07     | 0.1      | 0.008  |
|        |        | fractures.                                   | 79728  | 193.1 | 194.2 | 1.1 | 0.230  | 0.03     | 0.1      | 0.036  |
|        |        | moderate to strong massive to                | 79729  | 194.2 | 195.2 | 1.0 | 0.303  | 0.31     | 1.3      | 0.016  |
|        |        | disseminated chalcopyrite with weak          | 79730  | 195.2 | 196.2 | 1.0 | 0.785  | 0.16     | 0.1      | 0.001  |
|        |        | bornite mineralization.                      | 79731  | 196.2 | 197.2 | 1.0 | 1.250  | 0.08     | 11.1     | 0.037  |
|        |        |                                              | 79732  | 197.2 | 198.2 | 1.0 | 0.032  | 0.03     | 1.0      | 0.101  |
|        |        |                                              | 79733  | 198.2 | 199.2 | 1.0 | 0.009  | 0.03     | 0.1      | 0.002  |
|        |        |                                              | 79734  | 199.2 | 200.2 | 1.0 | 0.037  | 0.03     | 0.1      | 0.002  |
|        |        |                                              |        |       |       |     |        |          |          |        |
| 200.4m | 216.5m |                                              | 79735  | 200.2 | 201.2 | 1.0 | 0.018  | 0.03     | 0.1      | 0.013  |
|        |        | of potassic alteration, trace quartz veins   | 79736  | 201.2 | 202.2 | 1.0 | 0.058  | 0.03     | 0.1      | 0.007  |
|        |        | with open fractures, intense fracturing of   | 79737  | 202.2 | 203.? | 1.1 | 0.019  | 0.10     | 0.1      | 0.010  |

## DIAMOND DRILL RELOG DDH 96C-11

| FROM   | ТО     | DESCRIPTION                                   | SAMPLE | FROM  | TO    | М   | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|--------|-----------------------------------------------|--------|-------|-------|-----|--------|----------|----------|--------|
|        |        | core.                                         | 79738  | 203.3 | 206.3 | 3.0 | 0.018  | 0.03     | 0.5      | 0.312  |
|        |        | strong bornite mineralization.                | 79739  | 206.3 | 207.3 | 1.0 | 0.203  | 0.03     | 3.9      | 0.326  |
| 203.5m | 207.5m | strong molybdenum mineralization along        | 79740  | 207.3 | 208.3 | 1.0 | 0.311  | 0.03     | 5.0      | 0.202  |
|        |        | fractures.                                    | 79741  | 208.3 | 209.4 | 1.1 | 0.333  | 0.03     | 1.4      | 0.017  |
|        |        |                                               | 79742  | 209.4 | 210.4 | 1.0 | 0.007  | 0.03     | 0.1      | 0.001  |
|        |        |                                               | 79743  | 210.4 | 211.4 | 1.0 | 0.016  | 0.03     | 0.1      | 0.083  |
|        |        |                                               | 79744  | 211.4 | 212.4 | 1.0 | 0.202  | 0.03     | 1.0      | 0.005  |
|        |        |                                               | 79745  | 212.4 | 213.4 | 1.0 | 0.248  | 0.03     | 1.0      | 0.014  |
|        |        |                                               | 79746  | 213.4 | 214.4 | 1.0 | 2.090  | 0.13     | 18.6     | 0.001  |
| · · ·  |        |                                               | 79747  | 214.4 | 215.5 | 1.1 | 2.290  | 0.10     | 15.6     | 0.004  |
|        | -      |                                               | 79748  | 215.5 | 216.5 | 1.0 | 1.190  | 0.08     | 7.6      | 0.061  |
|        |        |                                               |        |       |       |     |        |          |          |        |
| 216.5m | 230.7m | Granodiorite: strong potassic with moderate   | 79749  | 216.5 | 217.5 | 1.0 | 4.360  | 0.29     | 30.6     | 0.001  |
|        |        | to intense argillic alteration next to        | 79750  | 217.5 | 218.5 | 1.0 | 3.020  | 0.30     | 16.6     | 0.007  |
|        |        | fractures, bleaching of feldspars, trace      | 79751  | 218.5 | 219.5 | 1.0 | 0.484  | 0.09     | 2.7      | 0.002  |
|        |        | scattered chlorite veinlets.                  | 79752  | 219.5 | 220.5 | 1.0 | 0.303  | 0.03     | 2.1      | 0.000  |
|        |        | strong bornite mineralization with weak       | 79753  | 220.5 | 221.6 | 1.1 | 0.173  | 0.03     | 0.9      | 0.005  |
|        |        | molybdenum along fractures.                   | 79754  | 221.6 | 224.6 | 3.0 | 0.176  | 0.03     | 1.5      | 0.008  |
|        |        |                                               | 79755  | 224.6 | 225.6 | 1.0 | 0.055  | 0.03     | 0.7      | 0.004  |
|        |        |                                               | 79756  | 225.6 | 226.6 | 1.0 | 0.147  | 0.03     | 0.2      | 0.031  |
|        |        |                                               | 79757  | 226.6 | 227.7 | 1.1 | 0.020  | 0.03     | 0.1      | 0.006  |
|        |        |                                               | 79758  | 227.7 | 228.7 | 1.0 | 0.035  | 0.03     | 0.1      | 0.052  |
|        |        |                                               | 79759  | 228.7 | 229.7 | 1.0 | 0.092  | 0.03     | 0.1      | 0.032  |
|        |        |                                               | 79760  | 229.7 | 230.7 | 1.0 | 0.321  | 0.03     | 1.3      | 0.044  |
|        |        |                                               |        |       |       |     |        |          |          |        |
| 230.7m | 245.0m | Aplite Dike: pervasive argillic overprinting  | 79761  | 230.7 | 231.7 | 1.0 | 0.360  | 0.03     | 2.4      | 0.027  |
|        |        | of potassic alteration, scattered quartz      | 79762  | 231.7 | 232.7 | 1.0 | 0.074  | 0.03     | 0.3      | 0.079  |
|        |        | veins, intense fracturing.                    | 79763  | 232.7 | 233.8 | 1.1 | 0.020  | 0.03     | 0.1      | 0.185  |
|        |        | moderate disseminated bornite                 | 79764  | 233.8 | 234.8 | 1.0 | 0.151  | 0.03     | 1.0      | 0.008  |
|        |        | mineralization.                               | 79765  | 234.8 | 235.8 | 1.0 | 0.162  | 0.03     | 1.2      | 0.014  |
|        |        |                                               | 79766  | 235.8 | 236.8 | 1.0 | 0.018  | 0.03     | 0.1      | 0.089  |
|        |        |                                               | 79767  | 236.8 | 239.9 | 3.1 | 0.166  | 0.03     | 0.7      | 0.012  |
|        |        |                                               | 79768  | 239.9 | 242.9 | 3.0 | 0.260  | 0.03     | 1.0      | 0.017  |
|        |        |                                               | 79769  | 242.9 | 246.0 | 3.1 | 0.071  | 0.03     | 0.1      | 0.004  |
|        |        |                                               |        |       |       |     |        |          |          |        |
| 245.0m | 258.2m | Granodiorite: strong potassic alteration with | 79770  | 246.0 | 249.0 | 3.0 | 0.088  | 0.03     | 0.3      | 0.011  |
|        |        | moderate argillic overprinting bleaching      | 79771  | 249.0 | 252.1 | 3.1 | 0.057  |          |          |        |
|        |        | feldspars white.                              | 79772  | 252.1 | 255.1 | 3.0 | 0.029  |          |          | -      |

| FROM                                    | TO       | DESCRIPTION                                   | SAMPLE | FROM  | TO    | М   | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|-----------------------------------------|----------|-----------------------------------------------|--------|-------|-------|-----|--------|----------|----------|--------|
|                                         |          |                                               | 79773  | 255.1 | 256.1 | 3.0 | 0.331  |          |          |        |
|                                         |          |                                               | 79774  | 256.1 | 257.1 | 1.0 | 0.034  |          |          |        |
|                                         |          |                                               | 79775  | 257.1 | 258.2 | 1.1 | 0.004  |          |          |        |
|                                         |          |                                               |        |       |       |     |        |          |          |        |
| 258.2m                                  | 292.0m   | Granodiorite: pervasive argillic alteration,  | 79776  | 258.2 | 261.2 | 3.0 | 0.028  |          |          |        |
|                                         |          | biotites altered to sericite, scattered       | 89777  | 261.2 | 264.3 | 3.1 | 0.034  |          |          |        |
|                                         |          | chlorite veinlets.                            | 79778  | 264.3 | 267.3 | 3.0 | 0.015  |          |          |        |
|                                         | 259.6m   | fault breccia.                                | 79779  | 267.3 | 270.4 | 3.1 | 0.014  |          |          |        |
|                                         |          | trace disseminated bornite and                | 79780  | 270.4 | 273.4 | 3.0 | 0.020  |          |          |        |
|                                         |          | chalcopyrite.                                 | 79781  | 273.4 | 276.5 | 3.1 | 0.004  |          |          |        |
|                                         |          |                                               | 79782  | 276.5 | 279.5 | 3.0 | 0.010  |          |          |        |
|                                         |          |                                               | 79783  | 279.5 | 282.5 | 3.0 | 0.051  |          |          |        |
|                                         |          |                                               | 79784  | 282.5 | 285.6 | 3.1 | 0.004  |          |          |        |
|                                         |          |                                               | 79785  | 285.6 | 288.6 | 3.0 | 0.006  |          |          |        |
|                                         |          |                                               | 79786  | 288.6 | 291.7 | 3.1 | 0.053  |          |          |        |
|                                         |          |                                               |        |       |       |     |        |          |          |        |
| 292.0m                                  | 298.6m   | Granodiorite: strong potassic with localized  | 79787  | 291.7 | 294.7 | 3.0 | 0.039  |          |          |        |
|                                         |          | argillic alteration along fractures, biotites | 79788  | 294.7 | 297.8 | 3.1 | 0.015  |          |          |        |
|                                         |          | altered to chlorite.                          | 79789  | 297.8 | 300.8 | 3.0 | 0.030  |          |          |        |
|                                         |          | trace disseminated bornite.                   |        |       |       |     |        |          |          |        |
| 298.6m                                  | 320.3m   | Granodiorite: strong potassic with moderate   | 79790  | 300.8 | 303.9 | 3.1 | 0.007  |          |          |        |
| 200.0111                                | 020.0111 | to pervasive argillic overprinting, intense   | 79791  | 303.9 | 306.9 | 3.0 | 0.026  |          |          |        |
|                                         |          | bleaching of feldspars, biotites altered to   | 79792  | 306.9 | 310.0 | 3.1 | 0.023  |          |          |        |
|                                         |          | sericite, white to pale grey green color.     | 79793  | 310.0 | 313.0 | 3.0 | 0.046  |          |          |        |
| *************************************** |          | trace disseminated magnetite.                 | 79794  | 313.0 | 316.1 | 3.1 | 0.032  |          |          |        |
|                                         |          | a documenta a magnetica.                      | 79795  | 316.1 | 319.1 | 3.0 | 0.028  |          | -        |        |
|                                         |          |                                               |        |       |       |     |        |          |          |        |
| 320.3m                                  | 325.2m   | Fault Zone: Clay, intense alteration,         | 79796  | 319.1 | 322.2 | 3.1 | 0.026  |          |          |        |
|                                         |          | medium grey to pale green color, trace        | 79797  | 322.2 | 325.2 | 3.0 | 0.036  |          |          |        |
|                                         |          | quartz grains imbedded in a clay matrix,      |        |       |       |     |        |          |          |        |
|                                         |          | slickensides.                                 |        |       |       |     |        |          |          |        |
| 325.2m                                  |          | END OF HOLE                                   |        |       |       |     |        |          |          | -      |
| 72.2.111                                | l        | LIAD OF HOLL                                  |        |       |       |     | L      |          |          | L      |

| FROM     | TO     | DESCRIPTION                                   | SAMPLE   | FROM | ТО   | М   | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|----------|--------|-----------------------------------------------|----------|------|------|-----|--------|----------|----------|--------|
| 0m       | 23.9m  | Overburden: casing set at 23.9m               |          |      |      |     |        |          | , , , ,  |        |
|          |        |                                               |          |      |      |     |        |          |          |        |
| 23.5m    | 23.9m  | Granodiorite: Oxidized zone, rust yellow      | 79801    | 23.5 | 26.5 | 3.0 | 0.013  | 0.005    | 0.2      | 0.0002 |
|          |        | color, feldspars weathered white,             |          |      |      |     |        |          |          |        |
|          |        | biotites appear unaltered.                    |          |      |      |     |        |          |          |        |
|          |        |                                               |          |      |      |     |        |          |          |        |
| 23.9m    | 24.3m  | Lamporphyre Dike: dark green color,           |          |      |      |     |        |          |          |        |
|          |        | composed of mafic minerals and quartz,        |          |      |      |     |        |          |          |        |
|          |        | unaltered.                                    |          |      |      |     |        |          |          |        |
|          |        |                                               |          |      |      |     |        |          |          |        |
| 24.3m    | 25.6m  | Granodiorite: Oxidized zone, rust yellow      |          |      |      |     |        |          |          |        |
|          |        | color, pervasive argillic alteration, total   |          |      |      |     |        |          |          |        |
|          |        | overprinting of original rock fabric.         |          |      |      |     |        |          |          |        |
|          |        |                                               |          |      |      |     |        |          |          |        |
| 25.6m    | 89.7m  | Granodiorite: pervasive argillic overprinting | 79802    | 26.5 | 29.6 | 3.1 | 0.016  | 0.005    | 0.2      | 0.0007 |
|          |        | potassic alteration, light grey color to      | 79803    | 29.6 | 32.6 | 3.0 | 0.010  | 0.005    | 0.2      | 0.0003 |
|          |        | core, feldspars bleached white to grey,       | 79804    | 32.6 | 35.6 | 3.0 | 0.110  | 0.006    | 0.2      | 0.0002 |
|          |        | scattered rust streaks along fractures,       | 79805    | 35.6 | 38.6 | 3.0 | 0.027  | 0.005    | 0.4      | 0.0010 |
|          |        | scattered calcite veins, high clay content,   | 79806    | 38.6 | 41.6 | 3.0 | 0.016  | 0.005    | 0.2      | 0.0002 |
| <u> </u> |        | no original rock fabric visible.              | 79807    | 41.6 | 44.6 | 3.0 | 0.015  | 0.005    | 0.2      | 0.0002 |
| 28.7m    |        | Fault zone: dark grey colored clay.           | 79808    | 44.6 | 47.6 | 1.0 | 0.048  | 0.005    | 0.2      | 0.0004 |
| 46.7m    | 55.6m  | Shear zone: medium grey color,                | 79809    | 47.6 | 50.6 | 3.0 | 0.022  | 0.005    | 0.2      | 0.0003 |
|          |        | scattered calcite veins.                      | 79810    | 50.6 | 53.6 | 3.0 | 0.011  | 0.005    | 0.2      | 0.0002 |
|          |        | This core interval appears to be a large      | 79811    | 53.6 | 56.6 | 3.0 | 0.010  | 0.005    | 0.2      | 0.0002 |
|          |        | shear zone with scattered calcite veins,      | 79812    | 56.6 | 59.6 | 3.0 | 0.013  | 0.005    | 0.2      | 0.0034 |
|          |        | rock fabric is totally altered with short     | 79813    | 59.6 | 62.6 | 3.0 | 0.057  | 0.005    | 0.2      | 0.0028 |
| ļ        |        | sections of core containing original rock     | 79814    | 62.6 | 65.6 | 3.0 | 0.016  | 0.005    | 0.2      | 0.0003 |
|          |        | fabric, intense argillic alteration.          | 79815    | 65.6 | 68.6 | 3.0 | 0.024  | 0.005    | 0.2      | 0.0026 |
|          |        | trace disseminated chalcopyrite.              | 79816    | 68.6 | 71.6 | 3.0 | 0.036  | 0.005    | 0.2      | 0.0013 |
| <u></u>  |        |                                               | 79817    | 71.6 | 74.6 | 3.0 | 0.009  | 0.005    | 0.2      | 0.0003 |
|          |        |                                               | 79818    | 74.6 | 77.6 | 3.0 | 0.012  | 0.005    | 0.2      | 0.0005 |
|          |        |                                               | 79819    | 77.6 | 80.6 | 3.0 | 0.013  | 0.005    | 0.2      | 0.0006 |
|          |        |                                               | 79820    | 80.6 | 83.6 | 3.0 | 0.015  | 0.005    | 0.2      | 0.0008 |
|          |        |                                               | 79821    | 83.6 | 86.6 | 3.0 | 0.038  | 0.005    | 0.2      | 0.0008 |
|          |        |                                               | <b>_</b> |      |      |     |        |          |          |        |
| 89.7m    | 121.6m | Granodiorite: strong potassic alteration,     | 79822    | 86.6 | 89.6 | 3.0 | 0.035  | 0.005    | 0.2      | 0.0015 |
|          |        | salmon color with minor sections of light     | 79823    | 89.6 | 92.6 | 3.0 | 0.051  | 0.005    | 0.2      | 0.0011 |
|          |        | grey to grey green alteration, feldspars      | 79824    | 92.6 | 95.6 | 3.0 | 0.027  | 0.006    | 0.2      | 0.0003 |

| FROM     | TO       | DESCRIPTION                                   | SAMPLE         | FROM           | ТО             | М          | Cu (%)         | Au (g/t)       | Ag (g/t) | Mo (%)           |
|----------|----------|-----------------------------------------------|----------------|----------------|----------------|------------|----------------|----------------|----------|------------------|
|          |          | bleached white by intense argillic            | 79825          | 95.6           | 98.6           | 3.0        | 0.007          | 0.005          | 0.2      | 0.0002           |
|          |          | alteration along fractures, biotites altered  | 79826          | 98.6           | 101.6          | 3.0        | 0.019          | 0.008          | 0.2      | 0.0010           |
|          |          | to chlorite with sericite along fractures.    | 79827          | 101.6          | 104.6          | 3.0        | 0.180          | 0.007          | 0.2      | 0.0067           |
|          |          | moderate to strong disseminated bornite       | 79828          | 104.6          | 107.6          | 3.0        | 0.244          | 0.011          | 1.1      | 0.0009           |
|          |          | and chalcopyrite.                             | 79829          | 107.6          | 110.6          | 3.0        | 0.132          | 0.009          | 0.2      | 0.0005           |
|          |          |                                               | 79830          | 110.6          | 113.6          | 3.0        | 0.124          | 0.014          | 0.2      | 0.0009           |
|          |          |                                               | 79831          | 113.6          | 116.6          | 3.0        | 0.017          | 0.005          | 0.2      | 0.0002           |
|          |          |                                               | 79832          | 116.6          | 119.6          | 3.0        | 0.400          | 0.005          | 0.7      | 0.0014           |
|          |          |                                               | 79833          | 119.6          | 120.6          | 1.0        | 0.445          | 0.028          | 2        | 0.0025           |
|          |          |                                               | 79834          | 120.6          | 121.6          | 1.0        | 0.480          | 0.021          | 2.2      | 0.0022           |
|          |          |                                               |                |                |                |            |                |                |          |                  |
| 121.6m   | 122.0m   | Aplite Dike: strong potassic alteration       | 79835          | 121.6          | 122.6          | 1.0        | 0.665          | 0.093          | 2.1      | 0.0049           |
|          |          | bornite with minor chalcopyrite.              |                |                |                |            |                |                |          |                  |
| 400.0    | 454 0    | Carandia standarda attancia attancia a        | 70000          | 400.0          | 400.0          | 4.0        | 0.070          | 0.005          | 0.0      | 0.0040           |
| 122.0m   | 151.9m   | Granodiorite: strong potassic alteration,     | 79836          | 122.6          | 123.6          | 1.0        | 0.276          | 0.005          | 0.6      | 0.0018           |
|          |          | localized pervasive argillic alteration, this | 79837          | 123.6          | 124.6          | 1.0        | 0.058          | 0.005          | 0.3      | 0.0003           |
|          |          | section of core appears to have more          | 79838          | 124.6          | 125.6          | 1.0        | 1.310          | 0.069          | 12.5     | 0.0005           |
|          |          | argillic alteration then previous section.    | 79839          | 125.6          | 126.6          | 1.0        | 0.840          | 0.043          | 7.4      | 0.0010           |
| 404.0    | 407.0    | scattered calcite veins.                      | 79840          | 126.6          | 127.6          | 1.0        | 0.270          | 0.01           | 2.1      | 0.0400           |
| 124.0m   | 127.0m   | pervasive argillic alteration, pale green     | 79841          | 127.6          | 128.6          | 1.0        | 0.224          | 0.009          | 2.7      | 0.0740           |
|          |          | color, quartz rich zone with strong bornite   | 79842          | 128.6          | 129.6          | 1.0        | 0.184          | 0.005          | 0.4      | 0.0009           |
|          |          | and trace molybdenum.                         | 79843          | 129.6          | 130.6          | 1.0        | 0.266          | 0.015          | 1.5      | 0.0004           |
|          |          | moderate to strong bornite and                | 79844          | 130.6          | 131.6          | 1.0        | 0.029          | 0.006          | 0.2      | 0.0002           |
|          |          | chalcopyrite mineralization.                  | 79845          | 131.6          | 132.6          | 1.0        | 0.043          | 0.005          | 0.2      | 0.0002           |
|          |          |                                               | 79846          | 132.6          | 133.6          | 1.0        | 0.084          | 0.005          | 0.2      | 0.0002           |
|          |          |                                               | 79847          | 133.6          | 134.6          | 1.0        | 0.042          | 0.005          | 0.2      | 0.0014           |
|          |          |                                               | 79848<br>79849 | 134.6<br>135.6 | 135.6<br>136.6 | 1.0<br>1.0 | 0.028          | 0.005          | 0.2      | 0.0033<br>0.0006 |
|          |          |                                               | 79850          |                |                | 1.0        | 0.049          | 0.007          | 0.2      | 0.0008           |
|          |          |                                               | 80201          | 136.6<br>137.6 | 137.6<br>138.6 | 1.0        | 0.203<br>0.079 | 0.017          | 0.7      | 0.0022           |
| <u> </u> |          |                                               |                |                |                |            |                | 0.005          |          |                  |
|          |          |                                               | 80202<br>80203 | 138.6<br>139.6 | 139.6<br>140.6 | 1.0        | 0.055<br>0.019 | 0.005          | 0.2      | 0.0005<br>0.0048 |
|          |          |                                               | 80203          | 140.6          | 141.6          | 1.0        | 0.019          | 0.006<br>0.005 | 0.2      | 0.0048           |
|          |          |                                               | 80204          | 140.6          | 141.6          | 1.0        | 0.080          | 0.005          | 0.2      | 0.0012           |
|          |          |                                               | 80206          | 141.6          | 142.6          | 3.0        | 0.011          | 0.005          | 0.2      | 0.0008           |
|          |          |                                               | 80207          | 145.6          | 148.6          | 3.0        | 0.100          | 0.005          | 0.2      | 0.0031           |
|          | -        |                                               | 80207          | 148.6          | 151.6          | 3.0        | 0.100          | 0.005          | 0.3      | 0.0044           |
|          |          |                                               | 00200          | 140.0          | 151.0          | 3.0        | 0.032          | 0.005          | U.Z      | 0.0021           |
| <u> </u> | <u> </u> |                                               |                |                |                |            |                |                | L        |                  |

| FROM   | TO     | DESCRIPTION                                   | SAMPLE |       | ТО    | М   | Cu (%) | Au (g/t) |     | Mo (%) |
|--------|--------|-----------------------------------------------|--------|-------|-------|-----|--------|----------|-----|--------|
| 151.9m | 152.9m | Mafic Dike: (Actinolite or Tremolite) dark    | 80209  | 151.6 | 154.6 | 3.0 | 0.102  | 0.021    | 0.9 | 0.0069 |
|        |        | green color, soapy feeling to core, trace     |        |       |       |     |        |          |     |        |
|        |        | calcite veins.                                |        |       |       |     |        |          |     |        |
|        |        | possible molybdenum mineralization.           |        |       |       |     |        |          |     |        |
|        |        |                                               |        |       |       |     |        |          |     |        |
| 152.9m | 165.3m | Granodiorite: pervasive argillic alteration,  | 80210  | 154.6 | 157.6 | 3.0 | 0.034  | 0.005    | 0.3 | 0.0002 |
|        |        | white to light grey color, no recognizable    | 80211  | 157.6 | 160.6 | 3.0 | 0.173  | 0.015    | 1.9 | 0.0006 |
|        |        | rock fabric.                                  | 80212  | 160.6 | 163.6 | 3.0 | 0.045  | 0.015    | 0.2 | 0.0004 |
|        |        |                                               | 80213  | 163.6 | 166.6 | 3.0 | 0.072  | 0.006    | 0.5 | 0.0002 |
|        |        |                                               |        |       |       |     |        |          |     |        |
| 165.3m | 186.9m | Granodiorite: weak to moderate with           | 80214  | 166.6 | 169.6 | 3.0 | 0.084  | 0.012    | 0.4 | 0.0003 |
|        |        | localized strong potassic alteration,         | 80215  | 169.6 | 172.6 | 3.0 | 0.270  | 0.011    | 2.3 | 0.0003 |
|        |        | scattered argillic alteration along fractures | 80216  | 172.6 | 175.6 | 3.0 | 0.036  | 0.005    | 0.2 | 0.0004 |
|        |        | trace calcite veins.                          | 80217  | 175.6 | 178.6 | 3.0 | 0.015  | 0.005    | 0.2 | 0.0002 |
|        |        | trace to very weak disseminated bornite       | 80218  | 178.6 | 181.6 | 3.0 | 0.044  | 0.005    | 0.3 | 0.0004 |
|        |        | and chalcopyrite with trace molybdenum.       | 80219  | 181.6 | 184.6 | 3.0 | 0.037  | 0.005    | 0.2 | 0.0006 |
|        |        |                                               | 80220  | 184.6 | 187.6 | 3.0 | 0.031  | 0.005    | 0.2 | 0.0201 |
|        |        |                                               |        |       |       |     |        |          |     |        |
| 186.9m | 188.0m | Fault zone: clay, medium to dark grey,        | 80221  | 187.6 | 190.6 | 3.0 | 0.034  | 0.005    | 0.2 | 0.0470 |
|        |        | friable, trace interbedded altered feldspars  |        |       |       | -   |        |          |     |        |
|        |        | trace slickensides                            |        |       |       |     |        |          |     |        |
|        |        |                                               |        |       |       |     |        |          |     |        |
| 188.0m | 200.3m | Granodiorite: weak to trace moderate          | 80222  | 190.6 | 193.6 | 3.0 | 0.038  | 0.005    | 0.2 | 0.0004 |
|        |        | potassic alteration along fractures.          | 80223  | 193.6 | 196.6 | 3.0 | 0.029  | 0.005    | 0.2 | 0.0065 |
|        |        |                                               | 80224  | 196.6 | 199.6 | 3.0 | 0.030  | 0.005    | 0.2 | 0.0035 |
|        |        |                                               |        |       |       |     |        |          |     |        |
| 200.3m | 221.6m | Granodiorite: strong potassic alteration,     | 80225  | 199.6 | 202.6 | 3.0 | 0.046  | 0.007    | 0.2 | 0.0044 |
|        |        | patchy strong to intense argillic alteration  | 80226  | 202.6 | 205.6 | 3.0 | 0.034  | 0.005    | 0.2 | 0.0023 |
|        | -      | white to salmon color, biotites altered to    | 80227  | 205.6 | 208.6 | 3.0 | 0.050  | 0.005    | 0.2 | 0.0008 |
|        |        | chlorite and sericite.                        | 80228  | 208.6 | 211.6 | 3.0 | 0.105  | 0.012    | 0.2 | 0.0021 |
|        | ·      | Weak chalcopyrite with trace                  | 80229  | 211.6 | 214.6 | 3.0 | 0.103  | 0.014    | 0.6 | 0.0071 |
|        |        | disseminated bornite occurring in veinlets    | 80230  | 214.6 | 217.6 | 3.0 | 0.171  | 0.013    | 0.8 | 0.0049 |
|        |        | and disseminated mineralization.              | 80231  | 217.6 | 218.6 | 1.0 | 0.520  | 0.06     | 7.5 | 0.0016 |
|        |        |                                               | 80232  | 218.6 | 219.6 | 1.0 | 0.275  | 0.038    | 3.3 | 0.0012 |
|        |        |                                               | 80233  | 219.6 | 220.6 | 1.0 | 2.690  | 0.248    | 20  | 0.0008 |
|        |        |                                               | 80234  | 220.6 | 221.6 | 1.0 | 0.540  | 0.034    | 3.4 | 0.0002 |
|        |        |                                               |        |       |       |     |        |          |     |        |
| 221.6m | 264.3m | Granodiorite: strong potassic alteration,     | 80235  | 221.6 | 224.6 | 3.0 | 0.045  | 0.005    | 0.3 | 0.0002 |

| FROM   | ТО                                    | DESCRIPTION                                   | SAMPLE | FROM  | ТО    | М   | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|---------------------------------------|-----------------------------------------------|--------|-------|-------|-----|--------|----------|----------|--------|
|        |                                       | salmon color, moderate to localized           | 80236  | 224.6 | 227.6 | 3.0 | 0.110  | 0.008    | 0.9      | 0.0004 |
|        |                                       | pervasive patchy argillic alteration.         | 80237  | 227.6 | 230.6 | 3.0 | 0.068  | 0.005    | 0.3      | 0.0010 |
|        |                                       | sericite developed along fractures.           | 80238  | 230.6 | 233.6 | 3.0 | 0.116  | 0.008    | 0.6      | 0.0105 |
|        |                                       | trace to weak molybdenum along                | 80239  | 233.6 | 236.6 | 3.0 | 0.046  | 0.007    | 0.2      | 0.0008 |
|        |                                       | fractures, trace disseminated bornite.        | 80240  | 236.6 | 239.6 | 3.0 | 0.032  | 0.005    | 0.2      | 0.0003 |
|        |                                       |                                               | 80241  | 239.6 | 242.6 | 3.0 | 0.060  | 0.01     | 0.2      | 0.0014 |
|        |                                       |                                               | 80242  | 242.6 | 245.6 | 3.0 | 0.065  | 0.008    | 0.2      | 0.0006 |
|        |                                       |                                               | 80243  | 245.6 | 248.6 | 3.0 | 0.063  | 0.007    | 0.2      | 0.0021 |
|        |                                       |                                               | 80244  | 248.6 | 251.6 | 3.0 | 0.201  | 0.017    | 1.3      | 0.0015 |
|        |                                       |                                               | 80245  | 251.6 | 254.6 | 3.0 | 0.133  | 0.016    | 0.7      | 0.0143 |
|        |                                       |                                               | 80246  | 254.6 | 257.6 | 3.0 | 0.047  | 0.005    | 0.2      | 0.0028 |
|        |                                       |                                               | 80247  | 257.6 | 260.6 | 3.0 | 0.019  | 0.005    | 0.2      | 0.0006 |
|        |                                       |                                               | 80248  | 260.6 | 263.6 | 3.0 | 0.035  | 0.005    | 0.2      | 0.0003 |
|        |                                       |                                               |        |       |       |     |        |          |          |        |
| 264.3m | 284.3m                                | Granodiorite: weak to moderate potassic       | 80249  | 263.6 | 266.6 | 3.0 | 0.021  | 0.005    | 0.2      | 0.0003 |
|        |                                       | alteration, scattered localized strong        | 80250  | 266.6 | 269.6 | 3.0 | 0.079  | 0.006    | 0.2      | 0.0110 |
|        |                                       | potassic alteration along fractures, fresh    | 80251  | 269.6 | 272.6 | 3.0 | 0.016  | 0.005    | 0.2      | 0.0007 |
|        |                                       | biotites with some alteration to chlorite,    | 80252  | 272.6 | 275.6 | 3.0 | 0.020  | 0.08     | 0.2      | 0.0010 |
|        |                                       | trace hematite streaks along fractures.       | 80253  | 275.6 | 278.6 | 3.0 | 0.019  | 0.005    | 0.2      | 0.0024 |
|        |                                       | trace disseminated chalcopyrite and           | 80254  | 278.6 | 281.6 | 3.0 | 0.013  | 0.005    | 0.2      | 0.0114 |
|        |                                       | bornite.                                      | 80255  | 281.6 | 284.6 | 3.0 | 0.038  | 0.005    | 0.2      | 0.0004 |
|        |                                       |                                               |        |       |       |     |        |          |          |        |
| 284.3m | 300.8m                                | Granodiorite: strong potassic with weak       | 80256  | 284.6 | 287.6 | 3.0 | 0.069  | 0.005    | 0.2      | 0.0007 |
|        |                                       | to moderate argillic alteration along         | 80257  | 287.6 | 290.6 | 3.0 | 0.059  | 0.008    | 0.2      | 0.0014 |
|        |                                       | fractures, feldspars bleached white.          | 80258  | 290.6 | 293.6 | 3.0 | 0.038  | 0.005    | 0.2      | 0.0014 |
|        |                                       | trace molybdenum along fractures.             | 80259  | 293.6 | 296.6 | 3.0 | 0.016  | 0.005    | 0.2      | 0.0030 |
|        |                                       |                                               | 80260  | 296.6 | 299.6 | 3.0 | 0.087  | 0.007    | 0.3      | 0.0044 |
|        |                                       |                                               |        |       |       |     |        |          |          |        |
| 300.8m | 308.6m                                | Granodiorite: strong potassic with            | 80261  | 299.6 | 302.6 | 3.0 | 0.060  | 0.006    | 0.2      | 0.0008 |
|        | · · · · · · · · · · · · · · · · · · · | localized pervasive argillic alteration along | 80262  | 302.6 | 305.6 | 3.0 | 0.032  | 0.005    | 0.2      | 0.0014 |
|        |                                       | fractures.                                    | 80263  | 305.6 | 308.6 | 3.0 | 0.007  | 0.005    | 0.2      | 0.0004 |
|        |                                       |                                               |        |       |       |     |        |          |          |        |
| 308.6m | 319.7m                                | Fault zone: clay, medium grey green,          | 80264  | 308.6 | 311.6 | 3.0 | 0.068  | 0.006    | 0.2      | 0.0026 |
|        |                                       | friable, slickensides, trace hematite         | 80265  | 311.6 | 314.6 | 3.0 | 0.118  | 0.007    | 0.6      | 0.0004 |
|        |                                       | streaks along fractures.                      | 80266  | 314.6 | 317.6 | 3.0 | 0.085  | 0.008    | 0.5      | 0.0007 |
|        |                                       | <u> </u>                                      | 80267  | 317.6 | 320.6 | 3.0 | 0.047  | 0.005    | 0.2      | 0.0004 |
|        |                                       |                                               |        |       |       |     |        |          |          |        |
| 319.7m | 325.3m                                | Granodiorite: strong potassic alteration,     | 80268  | 320.6 | 323.6 | 3.0 | 0.034  | 0.005    | 0.2      | 0.0004 |

| FROM   | TO | DESCRIPTION                               | SAMPLE | FROM  | TO    | М   | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|----|-------------------------------------------|--------|-------|-------|-----|--------|----------|----------|--------|
|        |    | moderate to strong argillic overprinting, | 80269  | 323.6 | 325.2 | 1.6 | 0.007  | 0.005    | 0.2      | 0.0002 |
|        |    | feldspars bleached white.                 |        |       |       |     |        |          |          |        |
|        |    | trace disseminated bornite.               |        |       |       |     |        |          |          |        |
|        |    |                                           |        |       |       |     |        |          |          |        |
| 325.2m |    | END OF HOLE                               |        |       |       |     |        |          |          |        |

| FROM  | ТО     | DESCRIPTION                                        | SAMPLE | FROM  | TO    | М | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|-------|--------|----------------------------------------------------|--------|-------|-------|---|--------|----------|----------|--------|
| 0m    | 31.7m  | Overburden: casing set at 31.7m                    |        |       |       |   |        |          |          |        |
|       |        |                                                    |        |       |       |   |        |          |          |        |
| 31.7m | 33.4m  | Granodiorite: oxidized zone, rust yellow           | 80401  | 31.7  | 34.7  | 3 | 0.487  | 0.03     | 2.6      | 0.0010 |
|       |        | streaks, strong potassic alteration, weak          |        |       |       |   |        |          |          |        |
|       |        | disseminated molybdenum with moderate              |        |       |       |   |        |          |          |        |
|       |        | malachite and disseminated bornite.                |        |       |       |   |        |          |          |        |
| 33.4m | 51.0m  | Granodiorite: salmon with patchy white to          | 80402  | 34.7  | 37.7  | 3 | 0.076  | 0.03     | 0.1      | 0.0008 |
|       |        | light grey color, strong potassic alteration,      | 80403  | 37.7  | 40.7  | 3 | 0.917  | 0.03     | 5.5      | 0.0080 |
|       |        | with patchy argillic overprinting,                 | 80404  | 40.7  | 43.7  | 3 | 0.369  | 0.03     | 2.0      | 0.0006 |
| 35.0m | 35.6m  | Fault zone: clay, grey green color, slickensides   | 80405  | 43.7  | 46.7  | 3 | 0.094  | 0.03     | 0.6      | 0.0003 |
|       | 43.4m  | 10cm fracture filled with brecciated quartz,       | 80406  | 46.7  | 49.7  | 3 | 0.207  | 0.03     | 1.5      | 0.0029 |
|       |        | strong bornite and native copper showing.          | 80407  | 49.7  | 52.7  | 3 | 0.056  | 0.03     | 0.2      | 0.0009 |
|       |        | moderate to strong disseminated and stringers      |        |       |       |   |        |          |          |        |
|       |        | of bornite.                                        |        |       |       |   |        |          |          |        |
|       |        |                                                    |        |       |       |   |        |          |          |        |
| 51.0m | 59.0m  | Granodiorite: color varies from salmon pink to     | 80408  | 52.7  | 55.7  | 3 | 0.022  | 0.03     | 0.1      | 0.0011 |
|       |        | white, strong potassic with argillic overprinting, | 80409  | 55.7  | 58.7  | 3 | 0.069  | 0.03     | 0.3      | 0.0046 |
|       |        | appears to be a fault zone abundant brecciated     | 80410  | 58.7  | 61.7  | 3 | 0.206  | 0.03     | 1.5      | 0.0003 |
|       |        | rock fragments, trace disseminated bornite.        |        |       |       |   |        |          |          |        |
| 59.0m | 96.0m  | Granodiorite: white, pervasive argillic alteration | 80411  | 61.7  | 64.7  | 3 | 0.032  | 0.03     | 0.4      | 0.0001 |
|       |        | large sections of core reduced to rubble.          | 80412  | 64.7  | 67.7  | 3 | 0.052  | 0.03     | 0.4      |        |
|       |        | (due to intense clay alteration.)                  | 80413  | 67.7  | 70.7  | 3 | 0.174  | 0.03     | 1.2      | 0.0017 |
|       |        |                                                    | 80414  | 70.7  | 73.7  | 3 | 0.166  | 0.03     | 1.1      |        |
|       |        |                                                    | 80415  | 73.7  | 76.7  | 3 | 0.015  |          |          |        |
|       |        |                                                    | 80416  | 76.7  | 79.7  | 3 | 0.013  |          |          |        |
|       |        |                                                    | 80417  | 79.7  | 82.7  | 3 | 0.026  |          |          |        |
|       |        |                                                    | 80418  | 82.7  | 85.7  | 3 | 0.119  |          |          |        |
|       |        |                                                    | 80419  | 85.7  | 88.7  | 3 | 0.029  |          |          |        |
|       |        |                                                    | 80420  | 88.7  | 91.7  | 3 | 0.021  |          |          |        |
|       |        |                                                    | 80421  | 91.7  | 94.7  | 3 | 0.023  |          |          |        |
|       |        |                                                    | 80422  | 94.7  | 97.7  | 3 | 0.010  |          |          |        |
| 96.0m | 135.3m | Granodiorite: strong potassic with argillic        | 80423  | 97.7  | 100.7 | 3 | 0.012  |          |          |        |
|       |        | overprinting, massive shear zone, fault breccia    | 80424  | 100.7 | 103.7 | 3 | 0.007  |          |          |        |
|       | -      | spread throughout this section of core,            | 80425  | 103.7 | 106.7 | 3 | 0.003  |          |          |        |
|       |        | slickensides with red hematite streaks.            | 80426  | 106.7 | 109.7 | 3 | 0.005  |          |          |        |

| FROM     | TO      | DESCRIPTION                                      | SAMPLE |       | TO    | М | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|----------|---------|--------------------------------------------------|--------|-------|-------|---|--------|----------|----------|--------|
|          |         |                                                  | 80427  | 109.7 | 112.7 | 3 | 0.004  |          |          |        |
|          |         |                                                  | 80428  | 112.7 | 115.7 | 3 | 0.007  |          |          |        |
|          |         |                                                  | 80429  | 115.7 | 118.7 | 3 | 0.004  |          |          |        |
|          |         |                                                  | 80430  | 118.7 | 121.7 | 3 | 0.016  |          |          |        |
|          |         |                                                  | 80431  | 121.7 | 124.7 | 3 | 0.009  |          |          |        |
|          |         |                                                  | 80432  | 124.7 | 127.7 | 3 | 0.005  |          |          |        |
|          |         |                                                  | 80433  | 127.7 | 130.7 | 3 | 0.006  |          |          |        |
|          |         |                                                  | 80434  | 130.7 | 133.7 | 3 | 0.005  |          |          |        |
|          |         |                                                  | 80435  | 133.7 | 136.7 | 3 | 0.028  |          |          |        |
| 405.0    | 450.0   |                                                  | 20100  | 400.7 | 400 7 |   | 0.010  |          |          |        |
| 135.3m   | 159.3m  | Granodiorite: salmon to light grey color, strong | 80436  | 136.7 | 139.7 | 3 | 0.016  |          |          |        |
|          |         | potassic with patchy argillic alteration,        | 80437  | 139.7 | 142.7 | 3 | 0.040  |          |          |        |
|          |         | numerous slickensides with hematite streaks,     | 80438  | 142.7 | 145.7 | 3 | 0.020  |          |          |        |
|          |         | trace calcite veins.                             | 80439  | 145.7 | 148.7 | 3 | 0.032  |          |          |        |
| 145.4m   | 146.3m  | Fault zone: clay developed along shear planes,   | 80440  | 148.7 | 151 7 | 3 | 0.013  |          |          |        |
|          |         | brecciated calcite fragments.                    | 80441  | 151.7 | 154.7 | 3 | 0.010  |          |          |        |
| 151.5m   | 152.0m  | Fault zone:                                      | 80442  | 154.7 | 157.7 | 3 | 0.006  |          |          |        |
|          |         |                                                  | 80443  | 157.7 | 160.7 | 3 | 0.005  |          |          |        |
| 159.3m   | 171 2m  | Granodiorite: pervasive argillic alteration,     | 80444  | 160.7 | 163.7 | 3 | 0.004  |          |          |        |
| 100.0111 | 171.211 | total overprinting.                              | 80445  | 163.7 | 166.7 | 3 | 0.004  |          | -        |        |
|          |         | total vvorprinting.                              | 80446  | 166.7 | 169.7 | 3 | 0.016  |          |          |        |
|          |         |                                                  | 80447  | 169.7 | 172.7 | 3 | 0.006  |          |          |        |
|          |         |                                                  |        |       |       |   |        |          |          | İ      |
| 171.2m   | 192.0m  | Granodiorite: weak potassic with argillic        | 80448  | 172.7 | 175.7 | 3 | 0.008  |          |          |        |
|          |         | alteration along fractures.                      | 80449  | 175.7 | 178.7 | 3 | 0.004  |          |          |        |
|          |         |                                                  | 80450  | 178.7 | 181.7 | 3 | 0.112  |          |          |        |
|          |         |                                                  | 80452  | 181.7 | 184.7 | 3 | 0.137  |          |          |        |
|          |         |                                                  | 80453  | 184.7 | 187.7 | 3 | 0.097  |          |          |        |
|          |         |                                                  | 80454  | 187.7 | 190.7 | 3 | 0.059  |          |          |        |
|          |         |                                                  |        |       |       |   |        |          |          |        |
| 192.0m   | 221.6m  | Granodiorite: freash appearence with weak clay   |        | 190.7 | 193.7 | 3 | 0.036  |          |          |        |
|          |         | alteration along fractures.                      | 80456  | 193.7 | 196.7 | 3 | 0.032  |          |          |        |
|          |         | trace disseminated chalcopyrite.                 | 80457  | 196.7 | 199.7 | 3 | 0.021  |          |          |        |
|          |         |                                                  | 80458  | 199.7 | 202.7 | 3 | 0.043  |          |          |        |
|          |         |                                                  | 80459  | 202.7 | 205.7 | 3 | 0.038  |          |          |        |
|          |         |                                                  | 80460  | 205.7 | 208.7 | 3 | 0.017  |          |          |        |
|          |         |                                                  | 80461  | 208.7 | 211.7 | 3 | 0.022  |          |          |        |

| FROM   | TO     | DESCRIPTION                                       | SAMPLE | FROM  | TO    | М   | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|--------|---------------------------------------------------|--------|-------|-------|-----|--------|----------|----------|--------|
|        |        |                                                   | 80462  | 211.7 | 214.7 | 3   | 0.009  |          |          |        |
|        |        |                                                   | 80463  | 214.7 | 217.7 | 3   | 0.014  |          |          |        |
|        |        |                                                   | 80464  | 217.7 | 220.7 | 3   | 0.004  |          |          |        |
| 221.6m | 239.9m | Granodiorite: strong argillic alteration          | 80465  | 220.7 | 223.7 | 3   | 0.005  |          |          |        |
|        |        | overprinting potassic alteration, scattered fault | 80466  | 223.7 | 226.7 | 3   | 0.006  |          |          |        |
|        |        | breccia throughout this core interval.            | 80467  | 226.7 | 229.7 | 3   | 0.009  |          |          |        |
|        |        | trace rust colored streaks along fractures.       | 80468  | 229.7 | 232.7 | 3   | 0.011  |          |          |        |
|        |        |                                                   | 80469  | 232.7 | 235.7 | 3   | 0.008  |          |          |        |
|        |        |                                                   | 80470  | 235.7 | 238.7 | 3   | 0.008  |          |          |        |
|        |        |                                                   | 80471  | 238.7 | 239.9 | 1.2 | 0.018  |          |          |        |
| 239.9m |        | END OF HOLE                                       |        |       |       |     |        |          |          |        |

| FROM  | ТО     | DESCRIPTION                               | SAMPLE | FROM  | TO    | M | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|-------|--------|-------------------------------------------|--------|-------|-------|---|--------|----------|----------|--------|
| 0m    | 17.4m  | Overburben: casing set at 17.4m           |        |       |       |   |        |          |          |        |
|       |        |                                           |        |       |       |   |        |          |          |        |
| 17.4m | 54.2m  | Granodiorite: appears fresh with trace    | 80301  | 17.4  | 20.4  | 3 | 0.014  |          |          |        |
|       |        | weak potassic alteration along fractures. | 80302  | 20.4  | 23.4  | 3 | 0.012  |          |          |        |
|       |        |                                           | 80303  | 23.4  | 26.4  | 3 | 0.016  |          |          |        |
|       |        |                                           | 80304  | 26.4  | 29.4  | 3 | 0.023  |          |          |        |
|       |        |                                           | 80305  | 29.4  | 30.4  | 1 | 0.014  |          |          |        |
|       |        |                                           | 80306  | 30.4  | 31.4  | 1 | 0.008  |          |          |        |
|       |        |                                           | 80307  | 31.4  | 34.4  | 3 | 0.010  |          |          |        |
|       |        |                                           | 80308  | 34.4  | 37.4  | 3 | 0.012  |          |          |        |
|       |        |                                           | 80309  | 37.4  | 40.4  | 3 | 0.024  |          |          |        |
|       |        |                                           | 80310  | 40.4  | 43.4  | 3 | 0.010  |          |          |        |
|       | 1      |                                           | 80311  | 43.4  | 47.4  | 3 | 0.010  |          |          |        |
|       | -      |                                           | 80312  | 47.4  | 50.4  | 3 | 0.010  |          |          |        |
|       |        |                                           | 80313  | 50.4  | 53.4  | 3 | 0.007  |          |          |        |
|       |        |                                           |        |       |       |   |        |          |          |        |
| 54.2m | 75.5m  | Granodiorite: fresh appearence with       | 80314  | 53.4  | 57.4  | 3 | 0.033  |          |          |        |
|       |        | moderate to strong potassic alteration    | 80315  | 57.4  | 60.4  | 3 | 0.034  |          |          |        |
|       |        | along fractures.                          | 80316  | 60.4  | 63.4  | 3 | 0.006  |          |          |        |
| 56.0m | 56.2m  | 20 cm thick vein of calcite.              | 80317  | 63.4  | 66.4  | 3 | 0.003  |          |          |        |
|       |        | trace disseminated bornite.               | 90318  | 66.4  | 69.4  |   | 0.019  |          |          |        |
|       |        |                                           | 80319  | 69.4  | 72.4  | 3 | 0.004  |          |          |        |
|       |        |                                           | 80320  | 72.4  | 75.4  | 3 | 0.016  |          |          |        |
|       |        |                                           |        |       |       |   |        |          |          |        |
| 75.5m | 90.5m  | Granodiorite: fresh, trace potassic       | 80321  | 75.4  | 78.4  | 3 | 0.011  |          |          |        |
|       |        | alteration along fractures.               | 80322  | 78.4  | 81.4  | 3 | 0.019  |          |          |        |
|       |        | trace calcite veins.                      | 80323  | 81.4  | 84.4  | 3 | 0.007  |          |          |        |
|       |        |                                           | 80324  | 84.4  | 87.4  | 3 | 0.017  |          |          |        |
|       |        |                                           | 80325  | 87.4  | 90.4  | 3 | 0.021  |          |          |        |
|       |        |                                           |        |       |       |   |        |          |          |        |
| 90.5m | 123.5m | Granodiorite: strong potassic alteration  | 80326  | 90.4  | 93.4  | 3 | 0.032  |          |          |        |
|       |        | with patchy weak to moderate argillic     | 80327  | 93.4  | 96.4  | 3 | 0.026  |          |          |        |
|       |        | overprinting, color varies from salmon to | 80328  | 96.4  | 99.4  | 3 | 0.012  |          |          |        |
|       |        | light grey green.                         | 80329  | 99.4  | 102.4 | 3 | 0.010  | 1        |          |        |
|       |        | trace calcite crystals with dark grey     | 80330  | 102.4 | 105.4 | 3 | 0.039  |          |          |        |
|       |        | haloes.                                   | 80331  | 105.4 | 108.4 | 3 | 0.013  |          |          |        |
|       | 1      | trace to weak disseminated chalcopyrite   | 80332  | 108.4 | 111.4 | 3 | 0.016  |          |          |        |
|       |        | with trace bornite.                       | 80333  | 111.4 | 114.4 |   | 0.011  |          |          |        |

| FROM     | TO       | DESCRIPTION                                   | SAMPLE | FROM  | TO    | М |       | Au (g/t) | Ag (g/t) | Mo (%) |
|----------|----------|-----------------------------------------------|--------|-------|-------|---|-------|----------|----------|--------|
|          | <u> </u> |                                               | 80334  | 114.4 | 117.4 | 3 | 0.011 |          |          |        |
|          |          |                                               | 80335  | 117.4 | 120.4 | 3 | 0.017 |          |          |        |
|          |          |                                               | 80336  | 120.4 | 123.4 | 3 | 0.010 |          |          |        |
|          |          |                                               |        |       |       |   |       |          |          |        |
| 123.5m   | 141.2m   | Granodiorite: weak to moderate grading        | 80337  | 123.4 | 126.4 | 3 | 0.008 |          |          |        |
|          |          | to strong potassic alteration toward lower    | 80338  | 126.4 | 129.4 | 3 | 0.013 |          |          |        |
|          |          | contact, trace localized argillic alteration, | 80339  | 129.4 | 132.4 | 3 | 0.014 |          |          |        |
|          |          | biotites altered to chlorite.                 | 80340  | 132.4 | 135.4 | 3 | 0.011 |          |          |        |
|          |          | trace disseminated bornite towards lower      | 80341  | 135.4 | 138.4 | 3 | 0.015 |          |          |        |
|          |          | contact.                                      | 80342  | 138.4 | 141.4 | 3 | 0.085 | 0.03     | 0.3      | 0.0007 |
|          |          |                                               |        |       |       |   |       |          |          |        |
| 141.2m   | 163.5m   | Granodiorite: strong potassic alteration      | 80343  | 141.4 | 144.4 | 3 | 0.565 | 0.03     | 4.2      | 0.0115 |
|          |          | with almost complete argillic overprinting,   | 80344  | 144.4 | 147.4 | 3 | 0.141 | 0.03     | 0.6      | 0.0065 |
|          |          | sericite along fractures, scattered veins of  | 80345  | 147.4 | 150.4 | 3 | 0.192 | 0.03     | 0.9      | 0.0037 |
|          |          | specular hematite.                            | 80346  | 150.4 | 153.4 | 3 | 0.644 | 0.06     | 4.7      | 0.0323 |
|          |          | trace molybdenum along fractures.             | 80347  | 153.4 | 156.4 | 3 | 0.345 | 0.03     | 4.3      | 0.0031 |
|          |          | weak to moderate disseminated and             | 80348  | 156.4 | 159.4 | 3 | 0.370 | 0.03     | 2.4      | 0.0250 |
|          |          | veinlets of bornite.                          | 80349  | 159.4 | 162.4 | 3 | 0.290 | 0.03     | 2.2      | 0.0270 |
|          |          |                                               |        |       |       |   |       |          |          |        |
| 163.5m   | 174.0m   | Fault zone: clay, medium to dark grey,        | 80350  | 162.4 | 165.4 | 3 | 0.201 | 0.03     | 1.8      | 0.0072 |
|          |          | friable, slickensides, moderate               | 80351  | 165.4 | 168.4 | 3 | 0.074 | 0.03     | 0.5      | 0.0046 |
|          |          | molybdenum mineralization along               | 80352  | 168.4 | 171.4 | 3 | 0.094 | 0.03     | 0.2      | 0.0011 |
|          |          | fractures.                                    | 80353  | 171.4 | 174.4 | 3 | 0.174 | 0.03     | 0.9      | 0.0034 |
|          |          |                                               |        |       |       |   | -     |          |          |        |
| 174.0m   | 176.0m   | Granodiorite: strong potassic alteration      | 80354  | 174.4 | 177.4 | 3 | 0.041 | 0.03     | 0.1      | 0.0024 |
|          |          | with moderate argillic overprinting,          |        |       |       |   |       |          | 1        |        |
|          |          | feldspars bleached white.                     |        |       |       |   |       |          |          |        |
|          |          | trace molybdenum with trace to weak           |        |       |       | - |       |          |          |        |
| -        |          | disseminated bornite.                         |        |       |       |   |       |          |          |        |
|          |          |                                               |        |       |       |   |       |          |          |        |
| 176.0m   | 205.0m   | Granodiorite: strong potassic alteration      | 80355  | 177.4 | 180.4 | 3 | 0.080 | 0.04     | 2.0      | 0.0090 |
| 11010111 |          | with argillic alteration along fractures,     | 80356  | 180.4 | 183.4 | 3 |       | 0.03     | 0.7      | 0.0102 |
|          |          | increase in mafic mineral content.            | 80357  | 183.4 | 186.4 | 3 | 0.006 | 0.03     |          | 0.0074 |
| <u> </u> |          | trace molybdenum along fractures.             | 80358  | 186.4 | 189.4 | 3 |       | 0.03     | 0.1      | 0.0006 |
| 181.0m   | 183.0m   | main zone of mineralization, more intense     | 80359  | 189.4 | 192.4 | 3 |       |          |          | 0.0007 |
|          |          | alteration, grey green color.                 | 80360  | 192.4 | 195.4 | 3 |       |          |          | 0.0006 |
|          |          | weak chalcopyrite with trace disseminated     | 80361  | 195.4 | 198.4 | 3 |       | 0.03     |          | 0.0099 |
|          |          | bornite.                                      | 80362  | 198.4 | 201.4 | 3 |       | 0.04     | 0.4      | 0.0037 |
|          | L        | Domite.                                       | 00302  | 190.4 | 201.4 |   | 0.047 | 0.04     | 0.4      | 0.000  |

| FROM     | ТО           | DESCRIPTION                                  | SAMPLE | FROM  | ТО    | М | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|----------|--------------|----------------------------------------------|--------|-------|-------|---|--------|----------|----------|--------|
|          | 183.0m       | 10 cm vein of mafic minerals with strong     | 80363  | 201.4 | 204.4 | 3 | 0.036  | 0.04     | 0.2      | 0.0010 |
|          |              | disseminated chalcopyrite                    | 80364  | 204.4 | 207.4 | 3 | 0.045  | 0.03     | 0.1      | 0.0014 |
|          |              |                                              |        |       |       |   |        |          |          |        |
| 205.0m   | 223.0m       | Granodiorite: pervasive argillic alteration, | 80365  | 207.4 | 210.4 | 3 | 0.023  | 0.03     | 0.1      | 0.0014 |
|          |              | light grey color, trace hematite streaks     | 80366  | 210.4 | 213.4 | 3 | 0.077  | 0.04     | 0.3      | 0.0005 |
|          |              | along fractures.                             | 80367  | 213.4 | 216.4 | 3 | 0.717  | 0.04     | 3.5      | 0.0007 |
|          |              | weak to moderate mineralization, veinlets    | 80368  | 216.4 | 219.4 | 3 | 0.262  | 0.03     | 1.1      | 0.0009 |
|          |              | and disseminated bornite.                    | 80369  | 219.4 | 222.4 | 3 | 0.023  |          |          |        |
|          | <u> </u>     | trace disseminated native copper.            |        |       |       |   |        |          |          |        |
|          |              |                                              |        |       |       |   |        |          |          |        |
| 223.0m   | 240.7m       | Granodiorite: core appears fresh, very       | 80370  | 222.4 | 225.4 | 3 | 0.023  |          |          |        |
|          |              | weak potassic alteration along fractures,    | 80371  | 225.4 | 228.4 | 3 | 0.015  |          |          |        |
|          |              | slight alteration of biotites.               | 80372  | 228.4 | 231.4 | 3 | 0.017  |          |          |        |
|          |              |                                              | 80373  | 231.4 | 234.4 | 3 | 0.038  |          |          |        |
|          |              |                                              | 80374  | 234.4 | 237.4 | 3 | 0.020  |          |          |        |
|          |              |                                              | 80375  | 237.4 | 240.4 | 3 | 0.055  |          |          |        |
| 240.7m   | 243.8m       | Granodiorite: moderate potassic alteration   | 80376  | 240.4 | 243.4 | 3 | 0.015  |          |          |        |
| 240.7111 | 243.0:11     | with weak argillic alteration, some          | 00370  | 240,4 | 243.4 | 3 | 0.015  |          |          |        |
|          | <del></del>  | bleaching of feldspars, scattered red        |        |       |       |   |        |          |          |        |
|          |              | hematite streaks along fractures.            |        |       |       |   |        |          |          |        |
|          | <del> </del> | nematite streams along fractures.            | -      |       |       |   |        |          |          |        |
| 243.8m   |              | END OF HOLE                                  |        |       |       |   |        |          |          |        |

| FROM   | TO      | DESCRIPTION                                   | SAMPLE | FROM | TO   | M | Cu (%) | Au (g/t)                                | Ag (g/t) | Mo (%) |
|--------|---------|-----------------------------------------------|--------|------|------|---|--------|-----------------------------------------|----------|--------|
| 0m     | 28.0m   | Overburden: casing set at 28.0m               |        |      |      |   |        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |        |
|        |         |                                               |        |      |      |   |        |                                         |          |        |
| 28.0m  | 31.8m   | Overburden: granodiorite boulders and         |        |      |      |   |        |                                         |          |        |
|        |         | compacted clay.                               |        |      |      |   |        |                                         |          |        |
|        |         |                                               |        |      |      |   |        |                                         |          |        |
| 31.8m  | 34.8m   | Granodiorite: Oxidized zone, strong potassic  | 79851  | 31.7 | 34.7 | 3 | 0.017  |                                         |          |        |
|        |         | alteration, argillic overprinting bleaching   |        |      |      |   |        |                                         |          |        |
|        |         | feldspars white, trace yellow brown streaks,  |        |      |      |   |        |                                         |          |        |
|        |         | biotites altered to chlorite and muscovite.   |        |      |      |   |        |                                         |          |        |
|        |         | trace magnetite.                              |        |      |      |   |        |                                         |          |        |
| 34.8m  | 50.9m   | Granodiorite: pervasive argillic alteration,  | 79852  | 34.7 | 37.7 | 3 | 0.025  |                                         |          |        |
| 34.011 | 30.8111 | trace sericite along fractures, core appears  | 79853  | 37.7 | 40.7 | 3 | 0.025  |                                         |          |        |
| -      |         | friable and rubbly, intense fracturing.       | 79854  | 40.7 | 43.7 | 3 | 0.033  |                                         |          |        |
|        |         | mable and rubbly, intense fracturing.         | 79855  | 43.7 | 46.7 | 3 | 0.056  |                                         |          |        |
|        |         |                                               | 79856  | 46.7 | 49.7 | 3 | 0.017  |                                         |          |        |
|        |         |                                               | 79857  | 49.7 | 50.7 | 3 | 0.035  |                                         |          |        |
|        |         |                                               | 19031  | 45.1 | 30.7 |   | 0.033  |                                         | ļ        |        |
| 50.9m  | 86.6m   | Granodiorite: strong potassic alteration,     | 79858  | 50.7 | 51.7 | 1 | 0.049  |                                         |          |        |
|        |         | intense argillic alteration along fractures,  | 79859  | 51.7 | 52.7 | 1 | 0.052  |                                         |          |        |
|        |         |                                               | 79860  | 52.7 | 53.7 | 1 | 0.051  | 0.10                                    | 0.3      | 0.0200 |
| 53.9m  | 55.5m   | Fault zone: intense alteration, trace calcite | 79861  | 53.7 | 54.7 | 1 | 0.036  | 0.03                                    | 0.3      |        |
|        |         | veins, grey color, no apparent rock fabric,   | 79862  | 54.7 | 55.7 | 1 | 0.035  | 0.03                                    | 0.1      |        |
|        |         | total obliteration of granodiorite matrix.    | 79863  | 55.7 | 56.7 | 1 | 0.033  | 0.03                                    | 0.2      | 0.0009 |
|        |         | trace bornite and magnetite.                  | 79864  | 56.7 | 57.7 | 1 | 0.099  | 0.05                                    | 0.7      | 0.0640 |
|        |         |                                               | 79865  | 57.7 | 58.7 | 1 | 0.105  | 0.03                                    | 0.5      | 0.0099 |
|        |         |                                               | 79866  | 58.7 | 59.7 | 1 | 0.054  | 0.03                                    | 0.3      | 0.0034 |
|        |         |                                               | 79867  | 59.7 | 62.7 | 3 | 0.053  | 0.03                                    | 0.3      | 0.0019 |
|        |         |                                               | 79868  | 62.7 | 65.7 | 3 | 0.049  | 0.03                                    | 0.3      | 0.0008 |
| -      |         |                                               | 79869  | 65.7 | 68.7 | 3 | 0.051  | 0.03                                    | 0.6      | 0.0120 |
|        |         |                                               | 79870  | 68.7 | 71.7 | 3 | 0.152  | 0.03                                    | 1.2      |        |
|        |         |                                               | 79871  | 71.7 | 74.7 | 3 | 0.044  | 0.03                                    | 0.5      |        |
|        |         |                                               | 79872  | 74.7 | 77.7 | 3 | 0.062  | 0.03                                    | 0.4      | 0.0040 |
|        |         |                                               | 79873  | 77.7 | 80.7 | 3 | 0.023  | 0.03                                    | 0.4      | 0.0005 |
|        |         |                                               | 79874  | 80.7 | 83.7 | 3 | 0.011  | 0.03                                    | 0.1      |        |
|        |         |                                               | 79875  | 83.7 | 86.7 | 3 | 0.007  | 0.03                                    | 0.2      | 0.0016 |
|        |         |                                               |        |      |      |   |        |                                         |          |        |
|        |         |                                               |        |      |      |   |        |                                         |          |        |

| FROM   | ТО     | DESCRIPTION                                    | SAMPLE | FROM  | TO    | М | Cu (%) | Au (a/t) | Ag (g/t) | Mo (%) |
|--------|--------|------------------------------------------------|--------|-------|-------|---|--------|----------|----------|--------|
| 86.6m  |        | Granodiorite: strong potassic alteration,      | 79876  | 86.7  | 89.7  | 3 | 0.035  | 0.03     | 0.3      | 0.0009 |
|        |        | moderate to intense argillic overprinting,     | 79877  | 89.7  | 92.7  | 3 | 0.032  | 0.03     | 0.1      | 0.0002 |
|        |        | feldspars bleached white, biotites altered to  | 79878  | 92.7  | 95.7  | 3 | 0.136  | 0.03     | 0.7      | 0.0015 |
|        |        | chlorite and sericite, rubbly sections of core | 79879  | 95.7  | 98.7  | 3 | 0.127  | 0.03     | 0.6      | 0.0005 |
|        |        | intense argillic altered zones.                | 79880  | 98.7  | 101.7 | 3 | 0.148  | 0.03     | 0.6      | 0.0009 |
|        |        | trace to weak mineralization, disseminated     | 79881  | 101.7 | 104.7 | 3 | 0.488  | 0.03     | 3.4      | 0.0033 |
|        |        | and veinlets of bornite.                       |        |       |       |   |        |          |          |        |
|        |        |                                                |        |       |       |   |        |          |          |        |
| 102.7m | 135.0m | Granodiorite: pervasive argillic alteration,   | 79882  | 104.7 | 107.7 | 3 | 0.692  | 0.03     | 4.6      | 0.0120 |
|        |        | core has light to medium gray and pale         | 79883  | 107.7 | 110.7 | 3 | 0.793  | 0.07     | 6.1      | 0.0244 |
|        |        | green color, scattered calcite veins,          | 79884  | 110.7 | 113.7 | 3 | 1.460  | 0.04     | 7.0      | 0.0153 |
|        |        | numerous dark green mafic veins and veinlets   | 79885  | 113.7 | 114.7 | 1 | 2.180  | 0.08     | 18.8     | 0.0206 |
| 108.0m | 111.8m | Fault zone: brecciated core fragments, area    | 79886  | 114.7 | 115.7 | 1 | 2.960  | 0.07     | 19.6     | 0.0030 |
|        |        | of numerous dark mafic minerals.               | 79887  | 115.7 | 116.7 | 1 | 2.510  | 0.07     | 18.2     | 0.0074 |
|        |        | mineralization appears to be associated with   | 79888  | 116.7 | 117.7 | 1 | 0.924  | 0.11     | 6.4      | 0.0032 |
|        |        | dark mafic minerals.                           | 79889  | 117.7 | 118.7 | 1 | 1.150  | 0.12     | 7.2      | 0.0002 |
|        |        | strong mineralization, veinlets and            | 79890  | 118.7 | 119.7 | 1 | 1.430  | 0.08     | 13.7     | 0.0008 |
|        |        | disseminated bornite.                          | 79891  | 119.7 | 120.7 | 1 | 2.260  | 0.22     | 16.3     | 0.0002 |
|        |        | weak specular hematite mineralization.         | 79892  | 120.7 | 121.7 | 1 | 1.240  | 80.0     | 9.4      | 0.0003 |
|        |        |                                                | 79893  | 121.7 | 122.7 | 1 | 2.100  | 0.08     | 18.1     | 0.0009 |
|        |        |                                                | 79894  | 122.7 | 123.7 | 1 | 0.522  | 0.07     | 3.2      | 0.0003 |
|        |        |                                                | 79895  | 123.7 | 124.7 | 1 | 0.254  | 0.06     | 1.6      |        |
|        |        |                                                | 79896  | 124.7 | 125.7 | 1 | 1.460  | 0.09     | 16.4     | 0.0010 |
|        |        |                                                | 79897  | 125.7 | 126.7 | 1 | 3.050  | 0.09     | 22.7     | 0.0065 |
|        |        |                                                | 79898  | 126.7 | 127.7 | 1 | 2.030  | 0.17     | 14.8     | 0.0009 |
|        |        |                                                | 79899  | 127.7 | 128.7 | 1 | 1.380  | 0.07     | 12.3     |        |
| _      |        |                                                | 79900  | 128.7 | 129.7 | 1 | 1.760  | 0.11     | 12.1     | 0.0007 |
|        |        |                                                | 79901  | 129.7 | 130.7 | 1 | 1.480  | 0.23     | 11.9     |        |
|        |        |                                                | 79902  | 130.7 | 131.7 | 1 | 3.150  | 0.08     | 22.4     |        |
|        |        |                                                | 79903  | 131.7 | 132.7 | 1 | 1.620  | 0.06     | 16.3     |        |
|        |        |                                                | 79904  | 132.7 | 133.7 | 1 | 0.905  | 0.04     | 8.2      | 0.0006 |
|        |        |                                                | 79905  | 133.7 | 134.7 | 1 | 3.150  | 0.15     | 40.0     | 0.0008 |
|        |        |                                                | 79906  | 134.7 | 135.7 | 1 | 0.336  | 0.05     | 3.3      | 0.0004 |
|        |        |                                                |        |       |       |   |        |          |          |        |
| 135.0m | 160.6m | Granodiorite: strong potassic alteration with  | 79907  | 135.7 | 138.7 | 3 | 0.317  | 0.04     | 1.9      | 0.0004 |
|        |        | pervasive argillic alteration along fractures, | 79908  | 138.7 | 141.7 | 3 | 0.206  | 0.06     | 1.5      | 0.0006 |
|        |        | core is light gray to pale green with salmon   | 79909  | 141.7 | 144.7 | 3 | 0.193  | 0.08     | 1.9      | 0.0012 |
|        |        | color to granodiorites between fractures.      | 79910  | 144.7 | 147.7 | 3 | 1.050  | 0.06     | 6.8      | 0.0035 |

| FROM     | TO       | DESCRIPTION                                    | SAMPLE | FROM  | TO    | М | Cu (%)   | Au (g/t) | Ag (g/t) | Mo (%) |
|----------|----------|------------------------------------------------|--------|-------|-------|---|----------|----------|----------|--------|
|          |          | scattered calcite veins, appear to be later    | 79911  | 147.7 | 150.7 | 3 | 0.315    | 0.05     | 3.2      | 0.0136 |
|          |          | stage implacement then mineralization.         | 79912  | 150.7 | 153.7 | 3 | 0.078    | 0.05     | 0.4      | 0.0077 |
|          |          | trace dark green mafic veins.                  | 79913  | 153.7 | 156.7 | 3 | 0.014    | 0.05     | 0.1      |        |
|          |          | weak mineralization, disseminated and          | 79914  | 156.7 | 159.7 | 3 | 0.024    | 0.06     | 0.1      | 0.0005 |
|          |          | veinlets of bornite.                           |        | ···   |       |   |          |          |          |        |
|          |          | trace molybdenum along fractures.              |        |       |       |   |          |          |          |        |
| 400.0    | 470.0    |                                                | 70045  | 450.7 | 400.7 |   | 0.007    | 0.00     | 0.4      | 0.0000 |
| 160.6m   |          | Granodiorite: strong potassic alteration along | 79915  | 159.7 | 162.7 | 3 | 0.037    | 0.03     | 0.1      | 0.0008 |
|          |          | fractures, trace red hematite streaks.         | 79916  | 162.7 | 165.7 | 3 | 0.041    | 0.05     | 0.1      | 0.0006 |
|          |          | trace to weak mineralization, disseminated     | 79917  | 165.7 | 168.7 | 3 | 0.113    | 0.01     | 0.6      | 0.0006 |
|          |          | bornite.                                       | 79918  | 168.7 | 171.7 | 3 |          | 0.04     | 0.5      | 0.0006 |
|          |          |                                                | 79919  | 171.7 | 174.7 | 3 | 0.038    | 0.03     | 0.1      | 0.0007 |
|          |          |                                                | 79920  | 174.7 | 177.7 | 3 |          | 0.05     | 0.1      | 0.0005 |
|          |          |                                                | 79921  | 177.7 | 180.7 | 3 | 0.089    | 0.04     | 0.1      | 0.0007 |
| 179.0m   | 202.25   | Orangoliarita: papuasiya araillia attaration   | 79922  | 180.7 | 183.7 | 3 | 0.113    | 0.05     | 0.6      | 0.0009 |
| 179.011  | 202.3111 | Granodiorite: pervasive argillic alteration,   | 79922  | 183.7 | 186.7 | 3 | 0.113    | 0.05     | 2.5      | 0.0009 |
|          |          | color varies from light gray to pale green.    |        |       | 189.7 | 3 |          | 0.08     | 0.1      | 0.0004 |
|          |          | pate green sections of core are composed       | 79924  | 186.7 |       |   |          |          |          | 0.0013 |
|          |          | of quartz and pale green feldspars. Noted      | 79925  | 189.7 | 192.7 | 3 |          | 0.06     | 1.7      | 0.0020 |
|          |          | absence of mafic minerals in rock matrix,      | 79926  | 192.7 | 193.7 | 1 | 0.229    | 0.04     | 1.8      |        |
|          | 400      | trace dark green mafic veins.                  | 79927  | 193.7 | 194.7 | 1 | 2.910    | 0.04     | 4.8      |        |
|          | 180.om   | calcite veins 2 cm and 6 cm in thickness.      | 79928  | 194.7 | 195.7 | 1 | 0.522    | 0.06     | 2.1      | 0.0007 |
| <u> </u> |          | The mineralization in this section of core     | 79929  | 195.7 | 196.7 | 1 | 0.238    | 0.04     | 1.9      |        |
|          | 1212     | appears to be predominately chalcopyrite.      | 79930  | 196.7 | 197.7 | 1 | 0.660    | 0.07     | 2.8      |        |
|          | 194.2m   | 1 cm and 2 cm thick veins of chalcopyrite.     | 79931  | 197.7 | 200.7 | 3 |          | 0.03     | 2.6      |        |
|          |          | weak to localized strong chalcopyrite with     | 79932  | 200.7 | 201.7 | 1 | 0.313    | 0.03     | 1.7      | 0.0025 |
|          |          | scattered bornite mineralization.              | ļ      |       |       |   |          |          |          | ļ      |
| 202.2-   | 216.000  | Connedicates maderate to atrong notaccin       | 79933  | 201.7 | 204.7 |   | 0.166    | 0.03     | 0.6      | 0.0010 |
| 202.3m   | 210.0111 | Granodiorite: moderate to strong potassic      | 79934  | 201.7 | 204.7 | 3 |          | 0.03     | 0.8      |        |
| <b>-</b> |          | alteration with localized argillic alteration  |        |       |       |   |          |          |          |        |
|          |          | along fractures, feldspars bleached white to   | 79935  | 207.7 | 210.7 | 3 |          | 0.03     | 0.3      |        |
|          |          | pale green. Trace calcite veins with scattered | 79936  | 210.7 | 213.7 | 3 |          | 0.03     | 0.4      |        |
|          | 040.0    | medium to dark green mafic veins.              | 79937  | 213.7 | 216.7 | 3 | 0.484    | 0.01     | 2.0      | 8000.0 |
| ļ        |          | trace molybdenum                               |        |       |       |   |          |          |          |        |
|          | 214.0m   | specular hematite.                             |        |       |       |   | <u> </u> |          |          | -      |
|          |          | weak mineralization, disseminated with trace   |        |       |       |   |          |          |          |        |
|          | ļ        | veinlets of bornite.                           |        |       |       |   |          |          |          |        |
|          |          |                                                |        |       |       | L | L        | <u> </u> | i        |        |

| FROM   | TO     | DESCRIPTION                                   | SAMPLE | FROM  | TO    | М            | Cu (%)                                | Au (g/t) | Ag (g/t)       | Mo (%) |
|--------|--------|-----------------------------------------------|--------|-------|-------|--------------|---------------------------------------|----------|----------------|--------|
| 216.8m | 220.2m | Granodiorite: appears fresh with slight       | 79938  | 216.7 | 217.7 | 1            | 0.448                                 | 0.03     | 2.3            | 0.0005 |
|        |        | potassic alteration.                          | 79939  | 217.7 | 218.7 | 1            | 0.100                                 | 0.03     | 0.2            | 0.0002 |
|        |        |                                               | 79940  | 218.7 | 219.7 | 1            | 0.023                                 | 0.03     | 0.1            | 0.0005 |
|        |        |                                               | 79941  | 219.7 | 220.7 | 1            | 0.140                                 | 0.03     | 0,8            | 0.0004 |
| 220.2m | 221.6m | Granodiorite: strong potassic alteration with | 79942  | 220.7 | 221.7 | 1            | 0.500                                 | 0.01     | 3.0            | 0.0059 |
|        |        | argillic alteration along fractures.          |        |       |       |              | · · · · · · · · · · · · · · · · · · · |          | ·              |        |
|        |        | trace massive specular hematite.              |        |       |       |              |                                       |          | -              |        |
|        |        | weak to moderate mineralization occurring as  |        |       |       |              |                                       |          |                |        |
|        |        | veinlets and disseminated bornite. Trace      |        | ,     |       |              |                                       |          |                |        |
|        |        | veinlet of bornite at the end of this hole.   |        |       |       |              |                                       |          | · <del>-</del> |        |
| 221.6m |        | END OF HOLE                                   |        |       |       | . <u>.</u> . |                                       |          |                |        |

| FROM     | ТО                                               | DESCRIPTION                                   | SAMPLE  | FROM  | TO    | М | Cu (%) | Au (g/t)                                         | Ag (g/t)                                         | Mo (%) |
|----------|--------------------------------------------------|-----------------------------------------------|---------|-------|-------|---|--------|--------------------------------------------------|--------------------------------------------------|--------|
| 0m       | 39.6m                                            | Overburden: casing set at 39.6m               |         |       |       |   |        | ,,                                               |                                                  |        |
|          |                                                  |                                               |         |       |       |   |        |                                                  |                                                  |        |
| 39.6m    | 43.6m                                            | Granodiorite: Oxidized zone, abundant         | 79951   | 39.6  | 42.6  | 3 | 0.042  |                                                  |                                                  |        |
|          |                                                  | yellow staining, scattered rust color         | 79952   | 42.6  | 45.6  | 3 | 0.021  |                                                  |                                                  | -      |
|          |                                                  | veinlets, pervasive argillic alteration.      |         |       |       | - |        |                                                  |                                                  |        |
|          |                                                  | Trace magnetite.                              |         |       |       |   |        |                                                  |                                                  |        |
|          | 1                                                |                                               | 1       |       |       |   |        |                                                  |                                                  |        |
| 43.6m    | 73.0m                                            | Granodiorite: pervasive argillic alteration   | 79953   | 45.6  | 48.6  | 3 | 0.025  |                                                  |                                                  |        |
|          |                                                  | total overprinting, core bleached white to    | 79954   | 48.6  | 51.6  | 3 | 0.026  |                                                  |                                                  |        |
|          |                                                  | light grey and pale green, biotites altered   | 79955   | 51.6  | 54.6  | 3 | 0.080  |                                                  |                                                  |        |
|          |                                                  | to sericite, trace calcite veins.             | 79956   | 54.6  | 57.6  | 3 | 0.023  |                                                  |                                                  |        |
| 54.6m    | 58.0m                                            | Fault zone: scattered breccia imbedded in     | 79957   | 57.6  | 60.6  | 3 |        |                                                  |                                                  |        |
|          |                                                  | a clay matrix.                                | 79958   | 60.6  | 63.6  | 3 | 0.051  | <del></del>                                      |                                                  |        |
| 66.0m    | 72 2m                                            | Fault zone: brecciated rock fragments,        | 79959   | 63.6  | 66.6  | 3 | 0.036  | <b>†</b>                                         |                                                  |        |
|          | 7 = . =                                          | clay matrix.                                  | 79960   | 66.6  | 69.6  | 3 | 0.150  |                                                  |                                                  |        |
|          | <del> </del>                                     | Trace veinlets and disseminated               | 79961   | 69.6  | 72.6  | 3 | 0.044  |                                                  |                                                  |        |
|          | 1                                                | chalcopyrite.                                 | 79962   | 72.6  | 75.6  | 3 | 0.071  |                                                  |                                                  |        |
|          | <u> </u>                                         | ondisopy.no.                                  |         | ,     |       |   | 0.011  |                                                  |                                                  |        |
| 73.0m    | 77.7m                                            | Fault zone: medium green color, brecciated    | 79963   | 75.6  | 78.6  | 3 | 0.071  | <del> </del>                                     |                                                  |        |
|          |                                                  | rock fragments composed of quartz,            |         |       |       |   |        |                                                  |                                                  |        |
|          | <del> </del>                                     | feldspar and chlorite imbedded in a clay      |         |       |       |   |        | <del></del>                                      |                                                  |        |
|          | <del>                                     </del> | matrix, trace calcite fragments, slickensides |         | i     |       |   |        | <u> </u>                                         |                                                  |        |
|          |                                                  | Trace disseminated chalcopyrite.              |         |       |       |   |        | <del>                                     </del> | <del>                                     </del> |        |
|          | †                                                | Trace discontinuous strategytte.              |         |       |       | _ |        |                                                  |                                                  |        |
| 77.7m    | 103.2m                                           | Granodiorite: pervasive argillic alteration,  | 79964   | 78.6  | 81.6  | 3 | 0.094  | -                                                | <u> </u>                                         |        |
| 17.7111  | 100.211                                          | sericite along fractures, scattered calcite   | 79965   | 81.6  | 84.6  | 3 | 0.081  | 0.03                                             | 22                                               | 0.0002 |
|          | <b>-</b>                                         | veins, numerous dark green mafic veins.       | 79966   | 84.6  | 87.6  | 3 | 0.228  | 0.03                                             |                                                  | 0.0009 |
|          | 92 0m                                            | Fault zone: 5 cm band of clay                 | 79967   | 87.6  | 90.6  | 3 | 0.082  | 0.03                                             |                                                  | 0.0002 |
|          | 02.0111                                          | mineralization appears to be associated       | 79968   | 90.6  | 93.6  | 3 | 0.092  | 0.03                                             |                                                  | 0.0001 |
|          | <u> </u>                                         | with mafic veins and veinlets.                | 79969   | 93.6  | 96.6  | 3 | 0.161  | 0.03                                             |                                                  | 0.0003 |
|          | <del>                                     </del> | Weak mineralization, disseminated with        | 79970   | 96.6  | 99.6  | 3 | 0.057  | 0.03                                             |                                                  | 0.0002 |
|          | <u> </u>                                         | trace veinlets of bornite.                    | 79971   | 99.6  | 102.6 | 3 | 0.208  | 0.12                                             |                                                  | 0.0005 |
|          |                                                  | duce venilets of bornite.                     | 13311   | 33.0  | 102.0 |   | 0.200  | 0.12                                             | 1.0                                              | 0.0003 |
| 103.2m   | 107 3m                                           | Granodiorite: appears fresh with argillic     | 79972   | 102.6 | 105.6 | 3 | 0.086  | 0.03                                             | 11                                               | 0.0002 |
| .00.2111 | 1.0,,011                                         | alteration along fractures, slight potassic   | 79973   | 105.6 | 108.6 | 3 | 0.102  | 0.03                                             |                                                  | 0.0001 |
|          | <del> </del>                                     | alteration, trace dark green mafic veins,     | 73373   | 130.0 | 100.0 |   | 0.102  | 0.03                                             | 0.9                                              | 0.0001 |
|          |                                                  | trace hematite streaks along fractures.       | ļ       |       |       |   |        | <del> </del>                                     | <del> </del>                                     |        |
|          |                                                  | Trace chalcopyrite veinlets and disseminated  |         | -     |       |   |        |                                                  |                                                  |        |
|          | <u> </u>                                         | Trace charcopyrice ventices and disseminated  | <u></u> |       |       |   |        | <u> </u>                                         | <u> </u>                                         |        |

| FROM     | ТО       | DESCRIPTION                                      | SAMPLE                                | FROM  | ТО     | M | Cu (%) | Au (q/t) | Ag (g/t)   | Mo (%) |
|----------|----------|--------------------------------------------------|---------------------------------------|-------|--------|---|--------|----------|------------|--------|
|          |          | bornite.                                         |                                       |       |        |   |        | 3.7      | 1 13 13.57 |        |
|          |          |                                                  |                                       |       |        |   |        |          |            |        |
| 107.3m   | 124.5m   | Granodiorite: Strong potassic alteration with    | 79974                                 | 108.6 | 111.6  | 3 | 0.061  | 0.03     | 0.3        | 0.0002 |
|          |          | intense argillic overprinting, biotites altered  | 79975                                 | 111.6 | 114.6  | 3 | 0.116  | 0.03     | 8.0        | 0.0002 |
|          |          | to chlorite and sericite. Numerous mafic         | 79976                                 | 114.6 | 117.6  | 3 | 0.137  | 0.03     |            | 0.0015 |
|          |          | veinlets, scattered red hematite streaks along   | 79977                                 | 117.6 | 118.6  | 1 | 0.257  | 0.03     | 3.4        | 0.0003 |
|          |          | fractures.                                       | 79978                                 | 118.6 | 119.6  | 1 | 2.020  | 3.24     | 27.3       | 0.0051 |
| "        |          | Moderate to strong mineralization,               | 79979                                 | 119.6 | 120.6  | 1 | 0.125  | 0.03     | 0.8        | 0.0009 |
|          |          | disseminated and veinlets of bornite and         | 79980                                 | 120.6 | 121.6  | 1 | 0.387  | 0.03     |            | 0.0002 |
|          |          | chalcopyrite.                                    | 79981                                 | 121.6 | 122.6  | 1 | 3.510  | 0.03     | 33.4       | 0.0041 |
|          |          |                                                  | 79982                                 | 122.6 | 123.6  | 1 | 1.010  | 0.03     |            | 0.0002 |
|          | 124.0m   | Fracture filled with calcite, open center.       | 79983                                 | 123.6 | 126.6  | 3 | 0.197  | 0.03     |            | 0.0002 |
| 124 5m   | 130 1m   | Granodiorite: Slight to weak potassic            | 79984                                 | 126.6 | 129.6  | 3 | 0.094  | 0.03     | 1.0        | 0.0003 |
| 724.0111 | 100.7111 | alteration along fractures. This core interval   | 1 5551                                | 120.0 | 12.0.0 |   | 0.004  | 0.00     | 1.0        | 0.0000 |
|          |          | appears to have a high mafic's content.          | · · · · · · · · · · · · · · · · · · · |       |        |   |        |          |            |        |
|          |          | Trace calcite veins.                             |                                       |       |        |   |        |          |            |        |
|          |          | Weak to moderate mineralization,                 |                                       |       |        |   |        |          |            |        |
| -        |          | disseminated and veinlets of chalcopyrite,       |                                       |       |        |   |        |          |            |        |
|          |          | trace disseminated bornite.                      |                                       |       |        |   |        |          |            |        |
| 130 1m   | 144 3m   | Granodiorite: appears fresh, trace epidote,      | 79985                                 | 129.6 | 132.6  | 3 | 0.048  | 0.03     | 0.3        | 0.0002 |
| 100:1111 |          | moderate potassic alteration along fractures,    | 79986                                 | 132.6 | 135.6  | 3 | 0.008  | 0.00     | 0.0        | 0.0002 |
|          |          | scattered mafic veinlets.                        | 79987                                 | 135.6 | 138.6  | 3 | 0.072  |          |            |        |
|          |          | Trace to weak mineralization, veinlets and       | 79988                                 | 138.6 | 141.6  | 3 | 0.025  |          |            |        |
|          |          | disseminated bornite, trace disseminated         | 79989                                 | 141.6 | 144.6  | 3 | 0.009  |          |            |        |
|          |          | chalcopyrite.                                    |                                       |       |        |   | 0.000  |          |            |        |
| 444.0==  | 450.4=   | Odiit Mandalati altati                           | 70000                                 | 1116  | 447.0  |   | 0.004  |          |            |        |
| 144.3m   | 156.4m   | Granodiorite: Moderate potassic alteration,      | 79990                                 | 144.6 | 147.6  | 3 | 0.024  |          |            |        |
|          |          | with localized intense argillic alteration next  | 79991                                 | 147.6 | 150.6  | 3 | 0.029  |          |            |        |
|          | ļ        | to fractures. Scattered fresh unaltered          | 79992                                 | 150.6 | 153.6  | 3 | 0.023  | ļ        |            |        |
|          | <u> </u> | sections of core. Trace sericite along           | 79993                                 | 153.6 | 156.6  | 3 | 0.040  |          | <u> </u>   |        |
|          |          | fractures.                                       | 79994                                 | 156.6 | 159.6  | 3 | 0.025  |          |            |        |
| 158.4m   | 170.7m   | Granodiorite: Weak to strong potassic            | 79995                                 | 159.6 | 162.6  | 3 | 0.017  |          |            |        |
|          |          | alteration, trace argillic alteration. Scattered | 79996                                 | 162.6 | 165.6  | 3 | 0.047  |          |            |        |
|          |          | veins of specular hematite.                      | 79997                                 | 165.6 | 166.6  | 1 | 0.164  |          |            |        |
|          |          | weak mineralization, disseminated and            | 79998                                 | 166.6 | 167.6  | 1 | 0.128  | -        |            |        |

| FROM   | TO       | DESCRIPTION                                    | SAMPLE       | FROM  | TO    | М   | Cu (%) | Au (g/t) | Ag (g/t) | Mo (%) |
|--------|----------|------------------------------------------------|--------------|-------|-------|-----|--------|----------|----------|--------|
|        |          | veinlets of chalcopyrite,                      | 79999        | 167.6 | 170.6 | 3   | 0.145  |          |          |        |
|        |          | Scattered disseminated Native copper.          |              | ·     |       |     |        |          |          |        |
|        |          |                                                |              |       |       |     |        |          |          |        |
| 170.7m | 177.5m   | Granodiorite: fresh to weak potassic           | 80000        | 170.6 | 173.6 | 3   | 0.014  |          |          |        |
|        |          | alteration, trace slickensides.                | 80001        | 173.6 | 176.6 | 3   | 0.008  |          |          |        |
|        |          |                                                |              |       |       |     |        |          |          |        |
| 177.5m | 180.5m   | Aplite Dike: Composed of quartz and feldspar   | 80002        | 176.6 | 179.6 | 3   | 0.014  |          |          |        |
|        |          | noted absence of mafic minerals, strong        |              |       |       |     |        |          |          |        |
|        |          | potassic alteration, strong red to rust yellow |              |       |       |     |        |          |          |        |
|        |          | color, argillic alteration, feldspars bleached |              |       |       |     |        |          |          |        |
|        |          | white to pale green, trace hematite streaks    |              |       |       |     |        |          |          |        |
|        |          | and calcite veins.                             |              |       |       |     |        |          |          |        |
|        |          |                                                |              |       |       |     |        |          |          |        |
| 180.5m | 189.0m   | Granodiorite: Strong potassic alteration,      | 80003        | 179.6 | 182.6 | 3   | 0.022  |          |          |        |
|        |          | scattered weak to moderate argillic            | 80004        | 182.6 | 185.6 | 3   | 0.013  |          |          |        |
|        |          | overprinting,                                  | 80005        | 185.6 | 188.6 | 3   | 0.015  |          |          |        |
|        |          | Scattered Native Copper along fractures.       |              |       |       |     |        |          |          |        |
|        | <u> </u> |                                                |              |       |       |     |        | ļ        |          |        |
| 189.0m | 200.3m   | Granodiorite: Appears fresh with weak          | 80006        | 188.6 | 191.6 | 3   | 0.014  |          |          |        |
|        |          | potassic alteration along fractures.           | 80007        | 191.6 | 194.6 | 3   | 0.029  |          |          |        |
|        |          | trace specular hematite.                       | 80008        | 194.6 | 197.6 | 3   |        |          |          |        |
|        |          | Trace Native Copper, associated with           | 80009        | 197.6 | 200.3 | 2.7 | 0.051  |          |          |        |
|        |          | potassic alteration along fractures.           | ļ <u>.</u> . |       |       |     |        |          |          |        |
| 000.0  |          | CNO OF HOLF                                    |              |       |       |     |        |          |          |        |
| 200.3m |          | END OF HOLE                                    |              |       |       |     |        |          |          |        |

# APPENDIX II

1996 ECOTECH LABS ASSAY RESULTS



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. 72C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# CERTIFICATE OF ASSAY AL 96-1312

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 15-Nov-96

ATTENTION: BILL TAYLOR

No. of samples received:72

Sample type:ROCK

PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN

Samples submitted by: GARY STEWART

|                      |            | Au    | Au     | Ag    | Ag     | Cu   |  |
|----------------------|------------|-------|--------|-------|--------|------|--|
| ET#.                 | Tag #      | (g/t) | (oz/t) | (g/t) | (oz/t) | (%)  |  |
| 38                   | 79688      | 0.03  | 0.001  | -     | -      | -    |  |
| - 39                 | 79689      | <.03  | <.001  | -     | -      | -    |  |
| 40                   | 79690      | 0.13  | 0.004  | -     | -      | -    |  |
| -√ 41                | 79691      | 0.11  | 0.003  | 21.3  | 0.62   | 2.39 |  |
| <ul><li>59</li></ul> | 79709      | 0.22  | 0.006  | -     | -      | -    |  |
| ÷ 62                 | 79712      | 0.12  | 0.003  | 14.1  | 0.41   | 1.46 |  |
| 69                   | 79719      | <.03  | <.001  | -     | -      | -    |  |
| QC/DAT/              | <u>\:</u>  |       |        |       |        |      |  |
| Repeat:              |            |       |        |       |        |      |  |
| 41                   | 79691      | 0.12  | 0.003  | -     | -      | -    |  |
| Standard             | <b>f</b> : |       |        |       |        |      |  |
| STD-M                |            | 1.79  | 0.052  | -     | -      | -    |  |
| STD-M                |            | 1.41  | 0.041  | -     | -      | -    |  |
| MPIA                 |            | -     | -      | 69.7  | 2.03   | -    |  |
| CPb-1                |            | -     | -      | -     | -      | 0.25 |  |

ECO-TECH LABORATORIES LTD.

ρ - γ Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

----

XLS/96TARCO#3

Page 1



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

#### **CERTIFICATE OF ASSAY AK 96-1312**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 15-Nov-96

ATTENTION: BILL TAYLOR

No. of samples received: 72

Sample type: ROCK PROJECT #: None given SHIPMENT #: None given

Samples submitted by: Gary Stewart

|          |       | Мо    |   |
|----------|-------|-------|---|
| ~T#.     | Tag # | (%)   |   |
| <u> </u> | 79676 | 0.020 | _ |
| √ 53     | 79703 | 0.049 |   |
| · 54     | 79704 | 0.028 |   |
| , 55     | 79705 | 0.129 |   |
| - 57     | 79707 | 0.036 |   |
| - 59     | 79709 | 0.081 |   |
| 67       | 79717 | 0.025 |   |
| - 68     | 79718 | 0.012 |   |
| · 72     | 79722 | 0.014 |   |
|          |       |       |   |

QC DATA:

Repeat:

27 79676 0.021

Standard:

PR-1 0.590

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ALS/96Tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573 5700 Fax (250) 573-4557

**ASSAYING GEOCHEMISTRY** 

22-Nov-96

# **CERTIFICATE OF ASSAY AK 96-1318**

**TARCO OIL & GAS** 500-717 7th AVE. SW CALGARY, AB

T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received:34

Sample type:ROCK

PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN

Samples submitted by: GARY STEWART

|        |       | Cu <b>M</b> o |
|--------|-------|---------------|
| 5T#.   | Tag # | (%) (%)       |
| 10     | 79860 | 0.020         |
| 14     | 79864 | 0.064         |
| 19     | 79869 | 0.012         |
| 34     | 79884 | 1.46          |
|        |       |               |
| QC/DA  |       |               |
| Standa | ıra:  | 0.25          |
| CPb-I  |       | 0.25          |
| Mp-IA  |       | 1.44          |
| PR-I   |       | 0.59          |
|        |       |               |

ECO-TECH LABORATORIES LTD.

Ffank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96tarco#3

22-Nov-96



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 96-1319**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received:75 Sample type:ROCK PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN

Samples submitted by: GARY STEWART

|                |       | Au    |        | Cu   | Мо    | Ag    | Ag     |
|----------------|-------|-------|--------|------|-------|-------|--------|
| ₹ <u>Τ#.</u>   | Tag # | (g/t) | (oz/t) | (%)  | (%)   | (g/t) | (oz/t) |
| 1              | 79723 |       |        |      | 0.078 |       |        |
| 4              | 79726 |       |        |      | 0.023 |       |        |
| 5              | 79727 | 0.07  | 0.002  |      |       |       |        |
| <sub>→</sub> 6 | 79728 |       |        |      | 0.036 |       |        |
| 7              | 79729 | 0.31  | 0.009  |      | 0.016 |       |        |
| 8              | 79730 | 0.16  | 0.005  |      |       |       |        |
| 9              | 79731 | 0.08  | 0.002  | 1.25 | 0.037 |       |        |
| 10             | 79732 |       |        |      | 0.101 |       |        |
| 16             | 79738 |       |        |      | 0.312 |       |        |
| 17             | 79739 |       |        |      | 0.326 |       |        |
| 18             | 79740 |       |        |      | 0.202 |       |        |
| 19             | 79741 |       |        |      | 0.017 |       |        |
| 21             | 79743 |       |        |      | 0.083 |       |        |
| 23             | 79745 |       |        |      | 0.014 |       |        |
| 24             | 79746 | 0.13  | 0.004  | 2.09 |       | 18.6  | 0.54   |
| 25             | 79747 | 0.10  | 0.003  | 2.29 |       | 15.6  | 0.46   |
| 26             | 79748 | 0.08  | 0.002  | 1.19 | 0.061 |       |        |
| 27             | 79749 | 0.29  | 0.008  | 4.36 |       | 30.6  | 0.89   |
| 28             | 79750 | 0.30  | 0.009  | 3.02 |       | 16.6  | 0.48   |
| 29             | 79751 | 0.09  | 0.003  |      |       |       |        |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

|        |       | Α   | u  | Au     | Cu   | Мо    | Ag    | Ag     |
|--------|-------|-----|----|--------|------|-------|-------|--------|
| ET#.   | Tag # | (g/ | t) | (oz/t) | (%)  | (%)   | (g/t) | (oz/t) |
| 34     | 79756 |     |    |        |      | 0.031 |       |        |
| 36     | 79758 |     |    |        |      | 0.052 |       |        |
| 37     | 79759 |     |    |        |      | 0.032 |       |        |
| 38     | 79760 |     |    |        |      | 0.044 |       |        |
| 39     | 79761 |     |    |        |      | 0.027 |       |        |
| 40     | 79762 |     |    |        |      | 0.079 |       |        |
| 41     | 79763 |     |    |        |      | 0.185 |       |        |
| 43     | 79765 |     |    |        |      | 0.014 |       |        |
| 44     | 79766 |     |    |        |      | 0.089 |       |        |
| 46     | 79768 |     |    |        |      | 0.017 |       |        |
| 48     | 79770 |     |    |        |      | 0.011 |       |        |
|        |       |     |    |        |      |       |       |        |
| Standa | rd:   |     |    |        |      |       |       |        |
| CPb-l  |       |     |    |        | 0.25 |       |       |        |
| Mp-IA  |       |     |    |        | 1.44 |       | 69.7  | 2.03   |
| PR-I   |       |     |    |        |      | 0.59  | 55.7  | 2.00   |
|        |       |     |    |        |      | 2.30  |       |        |

Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

XLS/96tarco#3



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 674 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 96-1332**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 25-Nov-96

ATTENTION: GARY STEWART

No. of samples received: 94

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|       | <b>,</b> | Au     | Au     | Ag    | Ag     | Cu   | Мо    |
|-------|----------|--------|--------|-------|--------|------|-------|
| ET #. | Tag #    | (g/t)  | (oz/t) | (g/t) | (oz/t) | (%)  | (%)   |
| 1     | 79885    | 0.08   | 0.002  | 18.8  | 0.55   | 2.18 | -     |
| 2     | 79886    | 0.07   | 0.002  | 19.6  | 0.57   | -    | -     |
| 3     | 79887    | - 0.07 | 0.002  | 18.1  | 0.53   | 2.51 | -     |
| 4     | 79888    | 0.11   | 0.003  | -     | -      | -    | -     |
| 5     | 79889    | 0.12   | 0.003  | -     | -      | 1.10 | -     |
| 6     | 79890    | 0.08   | 0.002  | 13.7  | 0.40   | 1.43 | -     |
| 7     | 79891    | 0.22   | 0.006  | 16.3  | 0.48   | 2.26 | -     |
| 8     | 79892    | 0.08   | 0.002  | -     | -      | 1.24 | -     |
| 9     | 79893    | 0.08   | 0.002  | 18.1  | 0.53   | 2.10 | -     |
| 12    | 79896    | 0.09   | 0.003  | 16.4  | 0.48   | 1.46 | -     |
| 13    | 79897    | 0.09   | 0.003  | 22.7  | 0.66   | 3.05 | -     |
| 14    | 79898    | 0.17   | 0.005  | 14.8  | 0.43   | 2.03 | -     |
| 15    | 79899    | 0.07   | 0.002  | 12.3  | 0.36   | 1.38 | -     |
| 16    | 79900    | 0.11   | 0.003  | 12.1  | 0.35   | 1.76 | -     |
| 17    | 79901    | 0.23   | 0.007  | 11.9  | 0.35   | 1.48 | -     |
| 18    | 79902    | 0.08   | 0.002  | 22.4  | 0.65   | 3.15 | -     |
| 19    | 79903    | 0.06   | 0.002  | 16.2  | 0.47   | 1.62 | -     |
| 21    | 79905    | 0.07   | 0.002  | 40.6  | 1.18   | 3.10 | -     |
| 26    | 79910    | 0.07   | 0.002  | -     | -      | -    | -     |
| 43    | 79927    | -      | -      | -     | -      | 2.91 | -     |
| 44    | 79928    | 0.06   | 0.002  | -     | -      | -    | -     |
| 58    | 79942    | -      | -      | -     | -      | -    | 0.010 |

#### **ECO-TECH LABORATORIES LTD.**

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

#### **TARCO OIL & GAS AK 96-1332**

25-Nov-96

|                            |       | Au       | Au     | Ag    | Ag         | Cu   | Мо   |
|----------------------------|-------|----------|--------|-------|------------|------|------|
| ET #.                      | Tag # | (g/t)    | (oz/t) | (g/t) | (oz/t)     | (%)  | (%)  |
| 86                         | 79978 | 0.14     | 0.004  | 27.3  | 0.80       | 2.02 | -    |
| 89                         | 79981 | -        |        | 33.4  | 0.97       | 3.51 | -    |
| 90                         | 79982 | -        | -      | -     | -          | 1.01 | -    |
| QC DATA:<br>Resplit:       | 79885 | -        | -      | 17.9  | 0.52       | 1.89 | -    |
| Standard:<br>CPb-I<br>PR-I |       | <u>.</u> | -<br>- | 626.0 | 18.26<br>- | 0.25 | 0.59 |
|                            |       |          |        |       |            |      |      |

note:\*=results to follow

XLS/96tarco#3

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer



28-Nov-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 96-1332aa**

**TARCO OIL & GAS** 500-717 7th AVE. SW CALGARY, AB

T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received: 94

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|              |       | Cu   |
|--------------|-------|------|
| Έ <u>Τ#.</u> | Tag # | (%)  |
| 2            | 79886 | 2.96 |

QC/DATA:

Standard:

CPb 0.25 Mp-IA 1.44

ECO-TECHLABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# CERTIFICATE OF ASSAY AK 96-1345

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 28-Nov-96

ATTENTION: GARY STEWART

No. of samples received:145

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: GARY STEWART

| •       |       | Au    | Au     | Ag    | Ag     | Cu   | Мо    |  |
|---------|-------|-------|--------|-------|--------|------|-------|--|
| ET#.    | Tag # | (g/t) | (oz/t) | (g/t) | (oz/t) | (%)  | (%)   |  |
| 35      | 80079 | 0.11  | 0.003  | 37.70 | 1.10   | 4.56 | -     |  |
| 42      | 80086 | 0.10  | 0.003  | 15.50 | 0.45   | 1.68 | -     |  |
| 45      | 80089 | -     | -      | -     | -      | -    | 0.060 |  |
| 46      | 80090 | 0.68  | 0.020  | 26.60 | 0.78   | 3.15 | -     |  |
| 50      | 80094 | -     | -      | 24.50 | 0.71   | 3.34 | 0.064 |  |
| 54      | 80098 | -     | -      | 12.20 | 0.36   | 1.34 | -     |  |
| 71      | 80115 | 0.08  | 0.002  |       |        |      |       |  |
| 72      | 80116 | 0.11  | 0.003  |       |        |      |       |  |
| 85      | 80129 | 0.14  | 0.004  | 13.50 | 0.39   | 2.61 | -     |  |
| 96      | 80140 | -     | -      | -     | -      | 1.33 | -     |  |
| 100     | 80144 | 0.07  | 0.002  |       |        |      |       |  |
| 101     | 80145 | 0.13  | 0.004  | 38.80 | 1.13   | 2.82 | -     |  |
| 102     | 80146 | -     | -      | -     | -      | 1.12 | -     |  |
| 103     | 80147 | 0.30  | 0.009  | 36.70 | 1.07   | 3.88 | -     |  |
| 104     | 80148 | 0.12  | 0.003  | -     | -      | 1.64 | _     |  |
| 106     | 80150 | -     | -      | -     | -      | 1.30 | -     |  |
|         |       |       |        |       |        |      |       |  |
| QC/DA   |       |       |        |       |        |      |       |  |
| Resplit |       |       |        |       |        |      |       |  |
|         | 80115 | 0.08  | 0.002  | -     | -      | -    | _     |  |
| Standa  | rd:   |       |        |       |        |      |       |  |
| CPb     |       | -     | -      | -     | -      | -    | 0.25  |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



28-Nov-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 614 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 96-1346**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received: 114

Sample type: CORE

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: GARY STEWART

|      |       | Mo    |  |
|------|-------|-------|--|
| ⁻T#. | Tag # | (%)   |  |
| 1    | 79840 | 0.016 |  |
| 2    | 79841 | 0.054 |  |
| 81   | 80343 | 0.011 |  |
| 84   | 80346 | 0.037 |  |
| 87   | 80349 | 0.027 |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 96-1349**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

3-Dec-96

0.59

ATTENTION: GARY STEWART

No. of samples received: 98

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: GARY STEWART

| FT #             | T#    | Au<br>((2) | Au     | Ag    | Ag     | Cu   | Mo    |
|------------------|-------|------------|--------|-------|--------|------|-------|
| ET #.            | Tag # | (g/t)      | (oz/t) | (g/t) | (oz/t) | (%)  | (%)   |
| 27               | 79827 | -          | -      | -     | -      | -    | 0.016 |
| 35               | 79835 | 0.07       | 0.002  | -     | -      | -    | -     |
| 38               | 79838 | 0.11       | 0.003  | 12.1  | 0.35   | 1.31 | -     |
| 49               | 80220 | -          | _      | -     | _      | -    | 0.024 |
| 50               | 80221 | -          | -      | -     | _      | -    | 0.041 |
| 60               | 80231 | 0.06       | 0.002  | -     | -      | -    | -     |
| 62               | 80233 | 0.24       | 0.007  | 38.8  | 1.13   | 2.69 | -     |
| 67               | 80238 | -          | _      | -     | -      | _    | 0.011 |
| 74               | 80245 | -          | -      | -     | -      | -    | 0.012 |
| 79               | 80250 | -          | -      | -     | -      | -    | 0.011 |
| 83               | 80254 | -          | -      | -     | -      | -    | 0.012 |
| QC/DATA          |       |            |        |       |        |      |       |
| Standard:<br>CPb |       | -          | _      | 626.0 | 18.26  | 0.25 | _     |

**ECO-TECH LABORATORIES LTD** 

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

PR-1



9-Dec-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 614 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 96-1345C**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received: 145

Sample type: CORE

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: GARY STEWART

|       | Cu                                                                                                                                  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|
| Tag # | (%)                                                                                                                                 |
| 79994 | 0.02                                                                                                                                |
| 79995 | 0.02                                                                                                                                |
| 79996 | 0.04                                                                                                                                |
| 79997 | 0.16                                                                                                                                |
| 79998 | 0.12                                                                                                                                |
| 79999 | 0.15                                                                                                                                |
| 80000 | 0.01                                                                                                                                |
| 80001 | 0.01                                                                                                                                |
| 80002 | 0.01                                                                                                                                |
| 80003 | 0.03                                                                                                                                |
| 80004 | 0.01                                                                                                                                |
| 80005 | 0.01                                                                                                                                |
| 80006 | 0.02                                                                                                                                |
| 80007 | 0.03                                                                                                                                |
| 80008 | 0.03                                                                                                                                |
| 80009 | 0.04                                                                                                                                |
|       | 79994<br>79995<br>79996<br>79997<br>79998<br>79999<br>80000<br>80001<br>80002<br>80003<br>80004<br>80005<br>80006<br>80007<br>80008 |

EGO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

#### \*ARCO OIL & GAS AK 96-1345C

9-Dec-96

|            |       | Cu   |
|------------|-------|------|
| ET#.       | Tag # | (%)  |
| 8B         | 79994 | 0.02 |
| 9 <b>B</b> | 79995 | 0.02 |
| 10B        | 79996 | 0.05 |
| 11B        | 79997 | 0.15 |
| 12B        | 79998 | 0.13 |
| 13B        | 79999 | 0.13 |
| 14B        | 80000 | 0.01 |
| 15B        | 80001 | 0.01 |
| 16B        | 80002 | 0.01 |
| 17B        | 80003 | 0.03 |
| 18B        | 80004 | 0.61 |
| 19B        | 80005 | 0.02 |
| 20B        | 80006 | 0.02 |
| 21B        | 80007 | 0.03 |
| 22B        | 80008 | 0.03 |
| 23B        | 80009 | 0.04 |
|            |       |      |

C/DATA:

*standard:* 

CPb-1

0.25

XLS/96tarco

ECO-TECH LABORATORIES LTD.

Lank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Karnloops, B.C. VCC 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 96-1345CU**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB 9-Dec-96

T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received: 145

Sample type: CORE

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: GARY STEWART

#### "METALLIC ASSAY"

|      |       | Cu   |
|------|-------|------|
| 5T#. | Tag # | (%)  |
| 8    | 79994 | 0.02 |
| 9    | 79995 | 0.01 |
| 10   | 79996 | 0.06 |
| 11   | 79997 | 0.16 |
| 12   | 79998 | 0.14 |
| 13   | 79999 | 0.11 |
| 14   | 80000 | 0.01 |
| 15   | 80001 | 0.01 |
| 16   | 80002 | 0.02 |
| 17   | 80003 | 0.03 |
| 18   | 80004 | 0.01 |
| 19   | 80005 | 0.02 |
| 20   | 80006 | 0.01 |
| 21   | 80007 | 0.03 |
| 22   | 80008 | 0.03 |
| 23   | 80009 | 0.03 |
|      |       |      |

QC/DATA:

Standard:

CPb-1

0.25

**ECO-TECH LABORATORIES LTD.** 

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/96tarco





10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 673-6700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 96-1345R**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 10-Dec-96

ATTENTION: GARY STEWART

No. of samples received:145

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: GARY STEWART

|       | ,     | Au    | Au     | Ag    | Ag     | Cu   | Mo    |
|-------|-------|-------|--------|-------|--------|------|-------|
| ET #. | Tag # | (g/t) | (oz/t) | (g/t) | (oz/t) | (%)  | (%)   |
| 35    | 80079 | 0.11  | 0.003  | 37.70 | 1.10   | 4.56 | -     |
| 42    | 80086 | 0.10  | 0.003  | 15.50 | 0.45   | 1.68 | -     |
| 45    | 80089 | -     | -      | -     | -      | -    | 0.060 |
| 46    | 80090 | 0.68  | 0.020  | 26.60 | 0.78   | 3.15 | -     |
| 50    | 80094 | -     | -      | 24.50 | 0.71   | 3.34 | 0.064 |
| 54    | 80098 | -     | -      | 12.20 | 0.36   | 1.34 | -     |
| 71    | 80115 | 0.08  | 0.002  | -     | -      | -    | -     |
| 72    | 80116 | 0.11  | 0.003  | -     | -      | -    | -     |
| 84    | 80128 | -     | -      | -     |        | 1.07 | -     |
| 85    | 80129 | 0.14  | 0.004  | 13.50 | 0.39   | 2.61 | -     |
| 96    | 80140 | -     | -      | -     | -      | 1.33 | -     |
| 100   | 80144 | 0.07  | 0.002  | -     | -      | -    | -     |
| 101   | 80145 | 0.13  | 0.004  | 38.80 | 1.13   | 2.82 | -     |
| 102   | 80146 | -     | -      | -     | -      | 1.12 | -     |
| 103   | 80147 | 0.30  | 0.009  | 36.70 | 1.07   | 3.88 | -     |
| 104   | 80148 | 0.12  | 0.003  | -     | -      | 1.64 | -     |
| 106   | 80150 | -     | -      | -     | -      | 1.30 | -     |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

|           | Au    | Au     | Ag    | Ag     | Cu        | Мо   |  |
|-----------|-------|--------|-------|--------|-----------|------|--|
| T#. Tag#  | (g/t) | (oz/t) | (g/t) | (oz/t) | (%)       | (%)  |  |
|           |       |        |       |        |           |      |  |
| C/DATA:   |       |        |       |        |           |      |  |
| esplit:   |       |        |       |        |           |      |  |
| 71 80115  | 0.08  | 0.002  | -     | -      | -         | -    |  |
| tandard:  |       |        |       |        |           |      |  |
| Pb<br>PLA | -     | -      | -     | -      | -<br>1.44 | 0.25 |  |
|           | -     | -      | -     | -      | 1.44      | -    |  |
|           |       |        |       |        |           |      |  |
|           |       |        |       |        |           |      |  |
|           |       |        |       |        |           |      |  |

Per Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-4557 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY A. (96-1312A2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 14-Jan-97

ATTENTION: GARY STEWART

**HOLE #11** 

No. of samples received:72

Sample type:ROCK

PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN

Samples submitted by: GARY STEWART

|               |       | Au    | Au     |  |
|---------------|-------|-------|--------|--|
| ς <u>Τ</u> #. | Tag # | (g/t) | (oz/t) |  |
| 26            | 79676 | 0.03  | 0.001  |  |
| 27            | 79677 | 0.03  | 0.001  |  |
| 28            | 79678 | 0.03  | 0.001  |  |
| 29            | 79679 | 0.03  | 0.001  |  |
| 30            | 79680 | 0.03  | 0.001  |  |
| 31            | 79681 | 0.03  | 0.001  |  |
| 32            | 79682 | 0.03  | 0.001  |  |
| 33            | 79683 | 0.03  | 0.001  |  |
| 34            | 79684 | 0.03  | 0.001  |  |
| 35            | 79685 | 0.03  | 0.001  |  |
| 36            | 79686 | 0.03  | 0.001  |  |
| 37            | 79687 | 0.03  | 0.001  |  |
| 42            | 79692 | 0.03  | 0.001  |  |
| 43            | 79693 | 0.03  | 0.001  |  |
| 44            | 79694 | 0.03  | 0.001  |  |
| 45            | 79695 | 3.45  | 0.101  |  |
| 46            | 79696 | 0.03  | 0.001  |  |
| 47            | 79697 | 0.03  | 0.001  |  |
| 48            | 79698 | 0.03  | 0.001  |  |

ECO-TECH LABORATORIES LTD.

Prink J. Pezzotti, A.Sc.T. B.C. Certified Assayer

|                |           | Au           | Au     |  |
|----------------|-----------|--------------|--------|--|
| ET#.           | Tag #     | (g/t)        | (oz/t) |  |
| 49             | 79699     | 0.03         | 0.001  |  |
| 50             | 79700     | 0.03         | 0.001  |  |
| 51             | 79701     | 0.03         | 0.001  |  |
| 52             | 79702     | 0.03         | 0.001  |  |
| 53             | . 9703    | 0.03         | 0.001  |  |
| 54             | 79704     | 0.03         | 0.001  |  |
| 55             | 79705     | 0.03         | 0.001  |  |
| 56             | 79706     | 0.03         | 0.001  |  |
| 57             | 79707     | 0.03         | 0.001  |  |
| 58             | 79708     | 0.03         | 0.001  |  |
| 60             | 79710     | 0.03         | 0.001  |  |
| 61             | 79711     | 0.03         | 0.001  |  |
| 62             | 79712     | 0.10         | 0.003  |  |
| 63             | 79713     | <.03         | <.001  |  |
| 64             | 79714     | 0.06         | 0.002  |  |
| 65             | 79715     | <.03         | <.001  |  |
| 66             | 79716     | 0.05         | 0.001  |  |
| 67             | 79717     | 0.03         | 0.001  |  |
| 68             | 79718     | 0.04         | 0.001  |  |
| 70             | 79720     | <.03         | <.001  |  |
| 71             | 79721     | <.03         | <.001  |  |
| 72             | 79722     | <.03         | <.001  |  |
|                |           |              |        |  |
|                |           |              |        |  |
| QC/DATA        | <u>4:</u> |              |        |  |
| Resplit:       |           |              |        |  |
| 36             | 79686     | 0.03         | 0.001  |  |
| 71             | 79721     | 0.04         | 0.001  |  |
|                |           |              |        |  |
| Repeat:        | 70070     | 0.00         | 0.004  |  |
| 26             | 79676     | 0.03         | 0.001  |  |
| 49             | 79699     | 0.03         | 0.001  |  |
| 70             | 79720     | 0.10         | 0.003  |  |
| 04             | ı.        |              |        |  |
| Standard       |           | 4 20         | 0.040  |  |
| STD-M<br>STD-M |           | 1.38<br>1.36 | 0.040  |  |
| 9 I D-IVI      |           | 1.30         | 0.040  |  |
|                |           |              |        |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96TARCO#3



21-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ANALYSIS AK 96-1312G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: GARY STEWART

**HOLE #11** 

No. of samples received: 72

Sample type: ROCK

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: GARY

|           |       | Ag    | Cu     | Мо    |     |
|-----------|-------|-------|--------|-------|-----|
| ⁻T#.      | Tag # | (ppm) | (ppm)  | (ppm) |     |
| <u>26</u> | 79676 | <.1   | 210    | 31    |     |
| 27        | 79677 | 0.1   | 1557   | -     |     |
| 28        | 79678 | 0.4   | 816    | 94    |     |
| 29        | 79679 | >.1   | 412    | 4     |     |
| 30        | 79680 | 2.3   | 4170   | 4     |     |
| 31        | 79681 | 1.5   | 2790   | 5     |     |
| 32        | 79682 | 1.8   | 2350   | 9     |     |
| 33        | 79683 | 0.8   | 1406   | 7     |     |
| 34        | 79684 | 2.6   | 3270   | 20    |     |
| 35        | 79685 | 0.4   | 1145   | 13    |     |
| 36        | 79686 | 0.5   | 1297   | 7     |     |
| 37        | 79687 | 0.7   | 950    | 10    |     |
| 38        | 79688 | 0.1   | 746    | 3     |     |
| 39        | 79689 | 7.9   | 7310   | 6     |     |
| 40        | 79690 | 7.4   | >10000 | 9     |     |
| 41        | 79691 |       | -      | 9     |     |
| 42        | 79692 | >.1   | 218    | 10    |     |
| 43        | 79693 | 0.3   | 824    | 7     |     |
| 44        | 79694 | 0.1   | 745    | 8     |     |
| 45        | 79695 | 6.8   | 8010   | 7     |     |
| 46        | 79696 | >.1   | 511    | 10    | 1.6 |

**ECO-TECH LABORATORIES LTD.** 

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

|          |           | Ag    | Cu    | Мо    |   |
|----------|-----------|-------|-------|-------|---|
| ET#.     | Tag #     | (ppm) | (ppm) | (ppm) |   |
| 47       | 79697     | >.1   | 637   | 16    |   |
| 48       | 79698     | >.1   | 355   | 30    |   |
| 49       | 79699     | >.1   | 789   | 61    |   |
| 50       | 79700     | >.1   | 569   | 14    |   |
| 51       | 79701     | >.1   | 382   | 36    |   |
| 52       | 79702     | >.1   | 502   | 12    |   |
| 53       | 79703     | >.1   | 623   | -     |   |
| 54       | 79704     | 0.3   | 456   | -     |   |
| 55       | 79705     | 0.4   | 464   | -     |   |
| 56       | 79706     | 0.1   | 941   | 31    |   |
| 57       | 79707     | 0.5   | 2150  | -     |   |
| 58       | 79708     | >.1   | 2780  | 12    |   |
| 59       | 79709     | 1.0   | 6880  | -     |   |
| 60       | 79710     | 6.3   | 3220  | 49    |   |
| 61       | 79711     | 0.6   | 1524  | 8     |   |
| 62       | 79712     | -     | -     | 10    |   |
| 63       | 79713     | 1.7   | 2900  | 3     |   |
| 64       | 79714     | 2.3   | 3290  | 3     |   |
| 65       | 79715     | >.1   | 200   | 17    |   |
| 66       | 79716     | 0.8   | 1500  | 98    |   |
| 37       | 79717     | 0.6   | 1144  | -     |   |
| 68       | 79718     | 5.1   | 5660  | -     |   |
| 69       | 79719     | 1.0   | 3530  | 25    |   |
| 70       | 79720     | 1.1   | 1794  | 29    |   |
| 71       | 79721     | 0.3   | 321   | 19    | , |
| 72       | 79722     | <.1   | 245   | -     |   |
| QC DAT   | <b>A:</b> |       |       |       |   |
| Resplit: |           |       |       |       |   |
| R/S 36   | 79686     | 0.4   | 1173  | 9     |   |
| R/S 71   | 79721     | >.1   | 391   | 16    |   |
| Repeat:  |           |       |       |       |   |
| 26       | 79676     | <.1   | 223   | 30    | ı |
| 35       | 79685     | 0.3   | 1962  | 21    |   |
| 44       | 79694     | 0.1   | 756   | 7     |   |
| 61       | 79711     | 0.4   | 1503  | 11    |   |
| Standar  |           |       |       |       |   |
| GEO'97   |           | 1.5   | 97    | 2     | : |
| GEO'97   |           | 1.3   | 96    | -     |   |
|          |           |       |       |       |   |
|          |           |       |       |       |   |

Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

ALS/96Tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 96-1318A2**

16-Jan-97

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

**HOLE #15** 

No. of samples received:34

Sample type:ROCK

PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN

Samples submitted by: GARY STEWART

|              |       | Au    | Au     |  |
|--------------|-------|-------|--------|--|
| ς <u>Τ#.</u> | Tag # | (g/t) | (oz/t) |  |
| 10           | 79860 | 0.10  | 0.003  |  |
| 11           | 79861 | 0.03  | 0.001  |  |
| 12           | 79862 | <.03  | <.001  |  |
| 13           | 79863 | <.03  | <.001  |  |
| 14           | 79864 | 0.05  | 0.001  |  |
| 15           | 79865 | 0.03  | 0.001  |  |
| 16           | 79866 | <.03  | <.001  |  |
| 17           | 79867 | <.03  | <.001  |  |
| 18           | 79868 | <.03  | <.001  |  |
| 19           | 79869 | <.03  | <.001  |  |
| 20           | 79870 | <.03  | <.001  |  |
| 21           | 79871 | <.03  | <.001  |  |
| 22           | 79872 | <.03  | <.001  |  |
| 23           | 79873 | <.03  | <.001  |  |
| 24           | 79874 | <.03  | <.001  |  |
| 25           | 79875 | <.03  | <.001  |  |
| 26           | 79876 | <.03  | <.001  |  |
| 27           | 79877 | <.03  | <.001  |  |
| 28           | 79878 | <.03  | <.001  |  |
| 29           | 79879 | <.03  | <.001  |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

#### **TARCO OIL & GAS AK 96-1318A2**

16-Jan-97

|                 |       | Au    | Au     |  |
|-----------------|-------|-------|--------|--|
| ET#.            | Tag # | (g/t) | (oz/t) |  |
| 31              | 79881 | <.03  | <.001  |  |
| 32              | 79882 | <.03  | <.001  |  |
| 33              | 79883 | 0.07  | 0.002  |  |
| 34              | 79884 | 0.04  | 0.001  |  |
| QC/DA<br>Repeat |       | <.03  | <.001  |  |
| Standa<br>STD-M |       | 1.36  | 0.040  |  |

ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/96tarco#3



20-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ANALYSIS AK 96-1318G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. **CALGARY, ALBERTA** T2P 0Z3

**HOLE #15** 

No. of samples received: 34

Sample type: ROCK

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: GARY

ATTENTION: GARY STEWART

|              |       | Ag    | Cu    | Мо    |  |
|--------------|-------|-------|-------|-------|--|
| ~τ <u>#.</u> | Tag # | (ppm) | (ppm) | (ppm) |  |
| 0            | 79860 | 0.3   | 507   | -     |  |
| 11           | 79861 | 0.3   | 360   | 24    |  |
| 12           | 79862 | 0.1   | 351   | 5     |  |
| 13           | 79863 | 0.2   | 332   | 9     |  |
| 14           | 79864 | 0.7   | 986   | -     |  |
| 15           | 79865 | 0.5   | 1048  | 99    |  |
| 16           | 79866 | 0.3   | 540   | 34    |  |
| 17           | 79867 | 0.3   | 531   | 19    |  |
| 18           | 79868 | 0.3   | 494   | 8     |  |
| 19           | 79869 | 0.6   | 506   | -     |  |
| 20           | 79870 | 1.2   | 1522  | 30    |  |
| 21           | 79871 | 0.5   | 441   | 9     |  |
| 22           | 79872 | 0.4   | 618   | 40    |  |
| 23           | 79873 | 0.4   | 229   | 5     |  |
| 24           | 79874 | <0.1  | 107   | 32    |  |
| 25           | 79875 | 0.2   | 72    | 16    |  |
| 26           | 79876 | 0.3   | 349   | 9     |  |
| 27           | 79877 | 0.1   | 515   | 2     |  |
| 28           | 79878 | 0.7   | 1360  | 15    |  |
| 29           | 79879 | 0.6   | 1271  | 5     |  |

O-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

|        |       | Ag    | Cu    | Мо    |  |
|--------|-------|-------|-------|-------|--|
| ET #.  | Tag # | (ppm) | (ppm) | (ppm) |  |
| 31     | 79881 | 3.4   | 4876  | 33    |  |
| 32     | 79882 | 4.6   | 6918  | 120   |  |
| 33     | 79883 | 6.1   | 7933  | 244   |  |
| 34     | 79884 | 7.0   | -     | 153   |  |
|        |       |       |       |       |  |
| QC DA  | TA:   |       |       |       |  |
| Repeat |       |       |       |       |  |
| 10     | 79860 | 0.3   | 523   | -     |  |
| 19     | 79869 | 0.7   | 535   | -     |  |
| 28     | 79878 | 0.7   | 1359  | 21    |  |
|        |       |       |       |       |  |
| Standa | rd:   |       |       |       |  |
| GEO'97 | 7     | 1.5   | 107   | 1     |  |
|        |       |       |       |       |  |

XLS/96Tarco

Prank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer



16-Jan-97

10041 E. Traris Canada Hwy., R.R. #2, Kamtoops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK \$6-1319A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

**HOLE #11** 

No. of samples received:75

Sample type:ROCK

PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN

Samples submitted by: GARY STEWART

|      |       | Au    | Au     |  |
|------|-------|-------|--------|--|
| FT#. | Tag # | (g/t) | (oz/t) |  |
| 1    | 79723 | 0.15  | 0.004  |  |
| 2    | 79724 | 0.03  | 0.001  |  |
| 3    | 79725 | 0.03  | 0.001  |  |
| 4    | 79726 | <.03  | <.001  |  |
| 6    | 79728 | <.03  | <.001  |  |
| 10   | 79732 | <.03  | <.001  |  |
| 11   | 79733 | <.03  | <.001  |  |
| 12   | 79734 | <.03  | <.001  |  |
| 13   | 79735 | <.03  | <.001  |  |
| 14   | 79736 | <.03  | <.001  |  |
| 15   | 79737 | <.03  | <.001  |  |
| 16   | 79738 | <.03  | <.001  |  |
| 17   | 79739 | <.03  | <.001  |  |
| 18   | 79740 | <.03  | <.001  |  |
| 19   | 79741 | <.03  | <.001  |  |
| 20   | 79742 | <.03  | <.001  |  |
| 21   | 79743 | <.03  | <.001  |  |
| 22   | 79744 | <.03  | <.001  |  |
|      |       |       |        |  |

**ECO-TECH LABORATORIES LTD.** 

Frenk J. Pezzotti, A.Sc.T. B.C. Certified Assayer

|             |       | Au    | Au     |  |
|-------------|-------|-------|--------|--|
| ET #.       | Tag#  | (g/t) | (oz/t) |  |
| 23          | 79745 | <.03  | <.001  |  |
| 30          | 79752 | 0.03  | 0.001  |  |
| 31          | 79753 | <.03  | <.001  |  |
| 32          | 79754 | <.03  | <.001  |  |
| 33          | 79755 | <.03  | <.001  |  |
| 34          | 79756 | <.03  | <.001  |  |
| 35          | 79757 | <.03  | <.001  |  |
| 36          | 79758 | <.03  | <.001  |  |
| 37          | 79759 | <.03  | <.001  |  |
| 38          | 79760 | 0.03  | 0.001  |  |
| 39          | 79761 | <.03  | <.001  |  |
| 40          | 79762 | <.03  | <.001  |  |
| 41          | 79763 | <.03  | <.001  |  |
| 42          | 79764 | <.03  | <.001  |  |
| 43          | 79765 | <.03  | <.001  |  |
| 44          | 79766 | <.03  | <.001  |  |
| 45          | 79767 | <.03  | <.001  |  |
| 46          | 79768 | <.03  | <.001  |  |
| 47          | 79769 | <.03  | <.001  |  |
| 48          | 79770 | <.03  | <.001  |  |
|             |       |       |        |  |
|             |       |       |        |  |
| QC/DA       |       |       |        |  |
| Repeat      |       |       | 0.004  |  |
| 1           | 79723 | 0.03  | 0.001  |  |
| 10          | 79732 | <.03  | <.001  |  |
| 19          | 79741 | <.03  | <.001  |  |
| 36          | 79758 | <.03  | <.001  |  |
| D"          | 4.    |       |        |  |
| Respli      |       | <.03  | <.001  |  |
| 1           | 79723 | <.03  | <.001  |  |
| 36          | 79758 | <.03  | <.UU1  |  |
| Standa      | ard:  |       |        |  |
| STD-M       |       | 1.31  | 0.038  |  |
| STD-M       |       | 1.31  | 0.038  |  |
| Ţ. <b>Z</b> |       |       |        |  |
|             |       |       |        |  |

Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

\_S/96tarco#3



20-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kamfoops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ANALYSIS AK 96-1319G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: GARY STEWART

**HOLE #11** 

No. of samples received: 75

Sample type: ROCK

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: GARY

|     |       | Ag     | Cu    | Мо    |   |
|-----|-------|--------|-------|-------|---|
| T#. | Tag # | (ppm)_ | (ppm) | (ppm) |   |
| 1   | 79723 | 0.2    | 1022  | -     |   |
| 2   | 79724 | <.1    | 2590  | 52    |   |
| 3   | 79725 | 1.0    | 4992  | 175   |   |
| 4   | 79726 | 0.9    | 2085  | -     |   |
| 5   | 79727 | <.1    | 3490  | 82    |   |
| 6   | 79728 | <0.1   | 2300  | -     |   |
| 7   | 79729 | 1.3    | 3030  | -     | , |
| 8   | 79730 | <0.1   | 7850  | 8     |   |
| 9   | 79731 | 11.1   | -     | -     |   |
| 10  | 79732 | 1.0    | 316   | -     |   |
| 11  | 79733 | <.1    | 87    | 21    |   |
| 12  | 79734 | <.1    | 371   | 19    |   |
| 13  | 79735 | <.1    | 176   | 130   |   |
| 14  | 79736 | <.1    | 581   | 68    |   |
| 15  | 79737 | <.1    | 186   | 95    |   |
| 16  | 79738 | 0.5    | 178   | -     |   |
| 17  | 79739 | 3.9    | 2030  | -     |   |
| 18  | 79740 | 5.0    | 3110  | -     |   |
| 19  | 79741 | 1.4    | 3330  | -     |   |
| 20  | 79742 | <.1    | 66    | 14    |   |
|     |       |        |       |       | N |

EGO-TECH LABORATORIES LTD.

FYank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

|          |       | Ag    | Cu    | Мо    |   |
|----------|-------|-------|-------|-------|---|
| ET #.    | Tag # | (ppm) | (ppm) | (ppm) | _ |
| 21       | 79743 | <.1   | 158   | -     |   |
| 22       | 79744 | 1.0   | 2017  | 47    |   |
| 23       | 79745 | 1.5   | 2480  | -     |   |
| 24       | 79746 | -     | -     | 13    |   |
| 25       | 79747 | -     | -     | 43    |   |
| 26       | 79748 | 7.6   | -     | -     |   |
| 27       | 79749 | -     | -     | 11    |   |
| 28       | 79750 | -     | -     | 68    |   |
| 29       | 79751 | 2.7   | 4840  | 22    |   |
| 30       | 79752 | 2.1   | 3030  | <1    |   |
| 31       | 79753 | 0.9   | 1725  | 47    |   |
| 32       | 79754 | 1.5   | 1764  | 82    |   |
| 33       | 79755 | 0.7   | 549   | 40    |   |
| 34       | 79756 | 0.2   | 1467  | -     |   |
| 35       | 79757 | <.1   | 200   | 58    |   |
| 36       | 79758 | <.1   | 346   | -     |   |
| 37       | 79759 | <.1   | 916   | -     |   |
| 38       | 79760 | 1.3   | 3210  | -     |   |
| 39       | 79761 | 2.4   | 3600  | -     |   |
| 40       | 79762 | 0.3   | 738   | -     |   |
| 11       | 79763 | <.1   | 201   | -     |   |
| 42       | 79764 | 1.0   | 1514  | 84    |   |
| 43       | 79765 | 1.2   | 1615  | -     |   |
| 44       | 79766 | <.1   | 182   | -     |   |
| 45       | 79767 | 0.7   | 1659  | 123   |   |
| 46       | 79768 | 1.0   | 2600  | -     |   |
| 47       | 79769 | <0.1  | 709   | 41    |   |
| 48       | 79770 | 0.3   | 875   | -     |   |
| QC DAT   | A:    |       |       |       |   |
| Repeat:  |       |       |       |       |   |
| 1        | 79723 | 0.2   | 1028  | -     |   |
| 10       | 79732 | 0.9   | 316   | -     |   |
| 19       | 79741 | 1.2   | 3380  | •     |   |
| 36       | 79758 | <.1   | 329   | -     |   |
| Resplit: |       |       |       |       |   |
| R/S 1    | 79723 | 0.3   | 984   | _     |   |
| R/S 36   | 79758 | <0.1  | 326   | -     |   |
| Standar  |       |       |       |       |   |
| GEO'97   |       | 1.3   | 96    | 2     |   |
| GEO'97   |       | 1.4   | 96    | 5     |   |
|          |       |       |       |       |   |

FCO-TECH LABORATORIES LTD.

Nank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/96Tarco



10041 E. Irans Canada Hwy., B.B. #2, Kanscops, B.C. v2C 674 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-1332AA2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

**HOLE #16** 

No. of samples received: 94

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

28-Jan-97

|      |       | Au    | Au     |  |
|------|-------|-------|--------|--|
| ST#. | Tag # | (g/t) | (oz/t) |  |
| 73   | 79965 | <.03  | <.001  |  |
| 74   | 79966 | <.03  | <.001  |  |
| 75   | 79967 | <.03  | <.001  |  |
| 76   | 79968 | <.03  | <.001  |  |
| 77   | 79969 | <.03  | <.001  |  |
| 78   | 79970 | <.03  | <.001  |  |
| 79   | 79971 | 0.12  | 0.003  |  |
| 80   | 79972 | <.03  | <.001  |  |
| 81   | 79973 | <.03  | <.001  |  |
| 82   | 79974 | <.03  | <.001  |  |
| 83   | 79975 | <.03  | <.001  |  |
| 84   | 79976 | <.03  | <.001  |  |
| 85   | 79977 | <.03  | <.001  |  |
| 87   | 79979 | <.03  | <.001  |  |
| 88   | 79980 | <.03  | <.001  |  |
| 89   | 79981 | 0.03  | 0.001  |  |
| 90   | 79982 | <.03  | <.001  |  |
| 91   | 79983 | <.03  | <.001  |  |
| 92   | 79984 | <.03  | <.001  |  |
| 93   | 79985 | <.03  | <.001  |  |

**ECO-TECH LABORATORIES LTD.** 

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

#### **TARCO OIL & GAS AK 96-1332AA2**

| ET#.                   | Tag # | Au<br>(g/t) | Au<br>(oz/t) | Milmer |
|------------------------|-------|-------------|--------------|--------|
| QC/DA<br>Repea         |       |             |              |        |
| 73                     | 79965 | <.03        | <.001        |        |
| 82                     | 79974 | <.03        | <.001        |        |
| Stand<br>STD-N<br>MPIA |       | 1.32        | 0.038        |        |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

LS/96tarco

28-Jan-97



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ANALYSIS AK 96-1332GG2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

**HOLE #16** 

No. of samples received: 94

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|      |       | Ag    | Мо    | Cu    |  |
|------|-------|-------|-------|-------|--|
| ST#. | Tag # | (ppm) | (ppm) | (ppm) |  |
| 73   | 79965 | 2.2   | 2     | 813   |  |
| 74   | 79966 | 3.2   | 9     | 2280  |  |
| 75   | 79967 | 1.0   | 2     | 819   |  |
| 76   | 79968 | 1.2   | 1     | 922   |  |
| 77   | 79969 | 1.3   | 3     | 1611  |  |
| 78   | 79970 | 0.6   | 2     | 572   |  |
| 79   | 79971 | 1.8   | 5     | 2080  |  |
| 80   | 79972 | 1.1   | 2     | 860   |  |
| 81   | 79973 | 0.9   | 1     | 1021  |  |
| 82   | 79974 | 0.3   | 2     | 608   |  |
| 83   | 79975 | 0.8   | 2     | 1157  |  |
| 84   | 79976 | 1.2   | 15    | 1368  |  |
| 85   | 79977 | 3.4   | 3     | 2570  |  |
| 86   | 79978 | -     | 51    | -     |  |
| 87   | 79979 | 0.8   | 9     | 1254  |  |
| 88   | 79980 | 3.5   | 2     | 3874  |  |
| 89   | 79981 | -     | 41    | -     |  |
| 90   | 79982 | 9.2   | 2     | -     |  |
| 91   | 79983 | 0.9   | 2     | 1969  |  |
| 92   | 79984 | 1.0   | 3     | 943   |  |
| 93   | 79985 | 0.3   | 2     | 479   |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

### TARCO OIL & GAS AK 96-1332AA2

28-Jan-97

| ET#. Tag#           | Ag<br>(ppm) | Mo<br>(ppm) | Cu<br>(ppm) |  |
|---------------------|-------------|-------------|-------------|--|
| QC/DATA: Repeat:    |             |             |             |  |
| 73 79965            | 2.1         | 2           | 819         |  |
| Standard:<br>GEO'97 | 1.4         | 1           | 84          |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

LS/96tarco





10041 E. Frans Janada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-1332A2**

16-Jan-97

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

**HOLE #15** 

No. of samples received: 94

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|       | Au                                                                                                                                                                                                                   | Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tag # | (g/t)                                                                                                                                                                                                                | (oz/t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79894 | 0.07                                                                                                                                                                                                                 | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79895 | 0.06                                                                                                                                                                                                                 | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79906 | 0.05                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79907 | 0.04                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79908 | 0.06                                                                                                                                                                                                                 | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79909 | 0.08                                                                                                                                                                                                                 | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79911 | 0.05                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79912 | 0.05                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79913 | 0.05                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79914 | 0.06                                                                                                                                                                                                                 | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79915 | 0.03                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79916 | 0.05                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79918 | 0.04                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79919 | 0.03                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79920 | 0.05                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79921 | 0.04                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79922 | 0.05                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79924 | 0.05                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79925 | 0.06                                                                                                                                                                                                                 | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79926 | 0.04                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79927 | 0.04                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79928 | 0.06                                                                                                                                                                                                                 | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79929 | 0.04                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 79894<br>79895<br>79906<br>79907<br>79908<br>79909<br>79911<br>79912<br>79913<br>79914<br>79915<br>79916<br>79918<br>79919<br>79920<br>79921<br>79920<br>79921<br>79922<br>79924<br>79925<br>79926<br>79927<br>79928 | Tag #         (g/t)           79894         0.07           79895         0.06           79906         0.05           79907         0.04           79908         0.06           79909         0.08           79911         0.05           79912         0.05           79913         0.05           79914         0.06           79915         0.03           79916         0.05           79918         0.04           79920         0.05           79921         0.04           79922         0.05           79924         0.05           79925         0.06           79926         0.04           79927         0.04           79928         0.06 | Tag #         (g/t)         (oz/t)           79894         0.07         0.002           79895         0.06         0.002           79906         0.05         0.001           79907         0.04         0.001           79908         0.06         0.002           79911         0.05         0.001           79912         0.05         0.001           79913         0.05         0.001           79914         0.06         0.002           79915         0.03         0.001           79918         0.04         0.001           79919         0.03         0.001           79920         0.05         0.001           79921         0.04         0.001           79922         0.05         0.001           79924         0.05         0.001           79925         0.06         0.002           79926         0.04         0.001           79927         0.04         0.001           79928         0.06         0.002 |

ECO-TECH LABORATORIES LTD.

Per Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

|           |       | Au    | Au     |   |
|-----------|-------|-------|--------|---|
| ET #.     | Tag # | (g/t) | (oz/t) |   |
| 47        | 79931 | <.03  | <.001  |   |
| 48        | 79932 | <.03  | <.001  |   |
| 49        | 79933 | <.03  | <.001  |   |
| 50        | 79934 | <.03  | <.001  |   |
| 51        | 79935 | <.03  | <.001  |   |
| 52        | 79936 | <.03  | <.001  |   |
| 54        | 79938 | <.03  | <.001  |   |
| 55        | 79939 | <.03  | <.001  |   |
| 56        | 79940 | <.03  | <.001  |   |
| 57        | 79941 | <.03  | <.001  |   |
|           |       |       |        | • |
| QC DATA:  |       |       |        |   |
| Resplit:  | 70000 | 0.05  | 0.001  |   |
| 36        | 79920 | 0.05  | 0.001  |   |
|           |       |       |        |   |
| Standard: |       |       |        |   |
| STD-M     |       | 1.36  | 0.040  |   |
| STD-M     |       | 1.33  | 0.039  |   |
| STD-M     |       | 1.41  | 0.041  |   |

XLS/96tarco#3

Prank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer



21-Jan-97

15041 Fill trans Canada Hwy , R.R. #2, Kamloops, E.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ANALYSIS AK 96-1332G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: GARY STEWART

**HOLE #15** 

No. of samples received: 94

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: GARY

|      |       | Ag    | Cu    | Мо    |
|------|-------|-------|-------|-------|
| ጉT#. | Tag # | (ppm) | (ppm) | (ppm) |
| 1    | 79885 | -     | _     | 206   |
| 2    | 79886 | -     | -     | 30    |
| 3    | 79887 | 18.2  | -     | 74    |
| 6    | 79890 | -     | -     | 8     |
| 8    | 79892 | 9.4   | -     | 3     |
| 9    | 79893 | -     | -     | 9     |
| 10   | 79894 | 3.2   | 5220  | 3     |
| 11   | 79895 | 1.6   | 2540  | 7     |
| 13   | 79897 | -     | -     | 65    |
| 14   | 79898 | -     | -     | 9     |
| 15   | 79899 | -     | -     | 15    |
| 16   | 79900 | -     | -     | 7     |
| 17   | 79901 | -     | -     | 400   |
| 18   | 79902 | -     | -     | 261   |
| 19   | 79903 | -     | -     | 7     |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

|            |       | Ag    | Cu    | Мо    |
|------------|-------|-------|-------|-------|
| E1 #.      | Tag # | (ppm) | (ppm) | (ppm) |
| 22         | 79906 | 3.3   | 3360  | 4     |
| 23         | 79907 | 1.9   | 3170  | 4     |
| 24         | 79908 | 1.5   | 2055  | 6     |
| 25         | 79909 | 1.9   | 1932  | 12    |
| 27         | 79911 | 3.2   | 3150  | 136   |
| 28         | 79912 | 0.4   | 779   | 77    |
| 29         | 79913 | <.1   | 142   | 12    |
| 30         | 79914 | <.1   | 237   | 5     |
| 31         | 79915 | <.1   | 367   | 8     |
| 32         | 79916 | <.1   | 407   | 6     |
| 34         | 79918 | 0.5   | 847   | 6     |
| 35         | 79919 | 0.1   | 379   | 7     |
| 36         | 79920 | 0.1   | 271   | 5     |
| 37         | 79921 | <.1   | 887   | 7     |
| 38         | 79922 | 0.6   | 1128  | 9     |
| 40         | 79924 | <.1   | 1962  | 13    |
| 41         | 79925 | 1.7   | 2090  | 20    |
| 42         | 79926 | 1.8   | 2290  | 11    |
| 43         | 79927 | 4.8   | -     | 10    |
| 44         | 79928 | 2.1   | 5220  | 7     |
| <b>\</b> 5 | 79929 | 1.9   | 2380  | 9     |
| 47         | 79931 | 2.6   | 3710  | 14    |
| 48         | 79932 | 1.7   | 3130  | 25    |
| 49         | 79933 | 0.6   | 1661  | 10    |
| 50         | 79934 | 0.1   | 675   | 6     |
| 51         | 79935 | 0.3   | 964   | 22    |
| 52         | 79936 | 0.4   | 811   | 5     |
| 54         | 79938 | 2.3   | 4480  | 5     |
| 55         | 79939 | 0.2   | 1000  | 2     |
| 56         | 79940 | 0.1   | 232   | 5     |
| 57         | 79941 | 0.8   | 1396  | 4     |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

|          |           | Ag    | Cu    | Мо    |          |
|----------|-----------|-------|-------|-------|----------|
| ET#.     | Tag #     | (ppm) | (ppm) | (ppm) | <u>-</u> |
|          |           |       | ann - |       |          |
| QC DAT   | <u>A:</u> |       |       |       |          |
| Resplit: |           |       |       |       |          |
| R/S 1    | 79885     | -     | -     | 168   |          |
| R/S 36   | 79920     | 0.1   | 256   | 4     |          |
| Repeat:  |           |       |       |       |          |
| 1        | 79885     | -     | -     | 214   |          |
| 10       | 79894     | 3.3   | 5120  | 6     |          |
| 19       | 79903     | -     | -     | 5     |          |
| 36       | 79920     | <.1   | 273   | 3     |          |
| 55       | 79939     | 0.3   | 1004  | 5     |          |
| Standar  | d·        |       |       |       |          |
| GEO'97   | •         | 1.4   | 92    | _     |          |
| GEO'97   |           | 1.3   | 88    | -     |          |
|          |           |       |       |       |          |

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96Tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamioops, 6.C. V2C 614 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 96-1345A2**

27-Jan-97

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

**HOLE #10** 

No. of samples received:145

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: GARY STEWART

|      |       | Au    | Au     |      |
|------|-------|-------|--------|------|
| ΈT#. | Tag # | (g/t) | (oz/t) | 1800 |
| 25   | 80069 | <.01  | <.001  |      |
| 26   | 80070 | <.01  | <.001  |      |
| 27   | 80071 | <.01  | <.001  |      |
| 29   | 80073 | <.01  | <.001  |      |
| 30   | 80074 | <.01  | <.001  |      |
| 31   | 80075 | <.01  | <.001  |      |
| 32   | 80076 | <.01  | <.001  |      |
| 33   | 80077 | <.01  | <.001  |      |
| 34   | 80078 | 0.04  | 0.001  |      |
| 36   | 80080 | 0.02  | 0.001  |      |
| 37   | 80081 | 0.01  | <.001  |      |
| 38   | 80082 | <.01  | <.001  |      |
| 39   | 80083 | <.01  | <.001  |      |
| 40   | 80084 | <.01  | <.001  |      |
| 41   | 80085 | <.01  | <.001  |      |
| 43   | 80087 | <.01  | <.001  |      |
| 44   | 80088 | 0.01  | <.001  |      |
| 45   | 80089 | 0.03  | 0.001  |      |
| 47   | 80091 | 0.02  | 0.001  |      |
| 48   | 80092 | <.01  | <.001  |      |
| 49   | 80093 | <.01  | <.001  |      |
|      |       |       |        |      |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

|      |       | Au    | Au     |             |
|------|-------|-------|--------|-------------|
| ET#. | Tag # | (g/t) | (oz/t) |             |
| 50   | 80094 | 0.06  | 0.002  |             |
| 51   | 80095 | 0.02  | 0.001  |             |
| 52   | 80096 | <.01  | <.001  |             |
| 54   | 80098 | 0.01  | <.001  |             |
| 55   | 80099 | 0.03  | 0.001  |             |
| 56   | 80100 | <.01  | <.001  |             |
| 57   | 80101 | <.01  | <.001  |             |
| 58   | 80102 | <.01  | <.001  |             |
| 60   | 80104 | <.01  | <.001  |             |
| 61   | 80105 | <.01  | <.001  |             |
| 62   | 80106 | <.01  | <.001  |             |
| 63   | 80107 | 0.01  | <.001  |             |
| 64   | 80108 | <.01  | <.001  |             |
| 65   | 80109 | <.01  | <.001  |             |
| 66   | 80110 | <.01  | <.001  |             |
| 67   | 80111 | <.01  | <.001  |             |
| 68   | 80112 | <.01  | <.001  |             |
| 69   | 80113 | <.01  | <.001  |             |
| 70   | 80114 | 0.03  |        |             |
| 74   | 80118 | 0.03  |        |             |
| 75   | 80119 | 0.02  |        |             |
| 76   | 80120 | 0.04  |        |             |
| 77   | 80121 | 0.02  |        |             |
| 79   | 80122 | 0.03  |        |             |
| 80   | 80123 | 0.04  |        |             |
| 81   | 80124 | 0.05  |        |             |
| 82   | 80125 | 0.01  | <.001  |             |
| 83   | 80126 | 0.02  |        |             |
| 84   | 80127 | 0.07  |        |             |
| 87   | 80131 | 0.01  |        |             |
| 89   | 80133 | 0.02  |        |             |
| 90   | 80134 | 0.01  | <.001  |             |
| 91   | 80135 | 0.02  |        |             |
| 93   | 80137 | 0.03  |        |             |
| 95   | 80139 | 0.02  |        |             |
| 96   | 80140 | 0.03  |        |             |
| 97   | 80141 | 0.01  |        |             |
| 99   | 80143 | 0.01  |        |             |
| 102  | 80146 | 0.03  |        |             |
| 104  | 80148 | 0.07  |        |             |
| 105  | 80149 | 0.02  |        |             |
| 106  | 80150 | 0.03  |        |             |
| 107  | 80151 | 0.03  | 0.001  | _           |
|      |       |       |        | B. fr Mysel |

ECO-TECH LABORATORIES LTD.

Per Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

ETC. TECT LABORATORIES LTD. Page 2

|        |       | Au          | Au     |  |
|--------|-------|-------------|--------|--|
| ET#.   | Tag # | (g/t)       | (oz/t) |  |
| 108    | 80152 | 0.01        | <.001  |  |
| 109    | 80153 | <.01        | <.001  |  |
| 110    | 80154 | <.01        | <.001  |  |
| 112    | 80156 | <.01        | <.001  |  |
| 113    | 80157 | 0.01        | <.001  |  |
|        |       |             |        |  |
| QC/DA  | .тΔ·  |             |        |  |
| Repea  |       |             |        |  |
| 30     | 80074 | <.01        | <.001  |  |
| 38     | 80082 | 0.01        | <.001  |  |
| 65     | 80109 | 0.03        | 0.001  |  |
| 74     | 80118 | 0.01        | <.001  |  |
| 95     | 80139 | 0.02        | 0.001  |  |
|        | 00100 | <b>3.42</b> | 3.33   |  |
| Standa | rd:   |             |        |  |
| STD-M  |       | 1.25        | 0.036  |  |
| STD-M  |       | 1.29        | 0.038  |  |
|        |       |             |        |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ANALYSIS AK 96-1345G2**

20-Jan-97

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: GARY STEWART

**HOLE # 10** 

No. of samples received:145

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: GARY STEWART

|       |       | Ag    | Cu    | Мо    |  |
|-------|-------|-------|-------|-------|--|
| ET #. | Tag # | (ppm) | (ppm) | (ppm) |  |
| 25    | 80069 | 0.3   | 1095  | 37    |  |
| 26    | 80070 | 1.1   | 2080  | 32    |  |
| 27    | 80071 | 0.3   | 1752  | 5     |  |
| 29    | 80073 | 0.7   | 1934  | 2     |  |
| 30    | 80074 | 0.3   | 958   | 3     |  |
| 31    | 80075 | <0.1  | 404   | 5     |  |
| 32    | 80076 | 0.4   | 1182  | 19    |  |
| 33    | 80077 | 0.2   | 1692  | 8     |  |
| 34    | 80078 | 2.6   | 8620  | 17    |  |
| 36    | 80080 | 1.0   | 2880  | 5     |  |
| 37    | 80081 | 0.4   | 1234  | 8     |  |
| 38    | 80082 | 0.8   | 1194  | 3     |  |
| 39    | 80083 | 1.2   | 1790  | 6     |  |
| 40    | 80084 | 0.4   | 1520  | 6     |  |
| 41    | 80085 | 1.3   | 1895  | 9     |  |
| 43    | 80087 | 5.6   | 5760  | 50    |  |
| 44    | 80088 | 2.5   | 2510  | 42    |  |
| 45    | 80089 | 3.6   | 4340  | -     |  |
| 47    | 80091 | 5.3   | 7240  | 16    |  |
| 48    | 80092 | 1.0   | 1711  | 19    |  |
| 49    | 80093 | 0.5   | 812   | 73    |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

|      |       | Ag    | Cu          | Мо    |  |
|------|-------|-------|-------------|-------|--|
| ET#. | Tag # | (ppm) | (ppm)       | (ppm) |  |
| 51   | 80095 | 1.2   | 1760        | 27    |  |
| 52   | 80096 | 0.6   | 1059        | 7     |  |
| 54   | 80098 | -     | -           | 33    |  |
| 55   | 80099 | 1.2   | 2019        | 16    |  |
| 56   | 80100 | 3.5   | 4290        | 16    |  |
| 57   | 80101 | 1.9   | 2340        | 15    |  |
| 58   | 80102 | 0.6   | 1037        | 16    |  |
| 60   | 80104 | <0.1  | 211         | 12    |  |
| 61   | 80105 | 3.0   | 2670        | 1     |  |
| 62   | 80106 | 5.6   | 5880        | 7     |  |
| 63   | 80107 | 0.5   | 1070        | 7     |  |
| 64   | 80108 | 0.7   | 767         | 80    |  |
| 65   | 80109 | ე.5   | 15 <b>1</b> | 672   |  |
| 66   | 80110 | 0.1   | 92          | 16    |  |
| 67   | 80111 | 1.0   | 1452        | 12    |  |
| 68   | 80112 | 2.4   | 2380        | 43    |  |
| 69   | 80113 | 1.6   | 3230        | 17    |  |
| 70   | 80114 | 3.4   | 5970        | 7     |  |
| 72   | 80116 | 4.5   | 6380        | 23    |  |
| 73   | 80117 | 1.6   | 1366        | 10    |  |
| 74   | 80118 | 0.6   | 933         | 5     |  |
| 75   | 80119 | 0.5   | 648         | 1     |  |
| 76   | 80120 | 0.7   | 1370        | 18    |  |
| 77   | 80121 | 0.3   | 949         | 1     |  |
| 79   | 80123 | 1.4   | 2360        | 36    |  |
| 80   | 80124 | 1.6   | 1836        | 20    |  |
| 81   | 80125 | 2.2   | 2620        | 8     |  |
| 82   | 80126 | 0.7   | 617         | 18    |  |
| 83   | 80127 | 1.7   | 1768        | 50    |  |
| 84   | 80128 | 6.0   | _           | 22    |  |
| 85   | 80129 | -     | _           | 10    |  |
| 87   | 80131 | 1.0   | 785         | 8     |  |
| 89   | 80133 | 0.7   | 785         | 5     |  |
| 90   | 80134 | 2.1   | 2080        | 3     |  |
| 91   | 80135 | 4.0   | 4220        | 4     |  |
| 93   | 80137 | 4.8   | 5240        | 1     |  |
| 95   | 80139 | 3.9   | 4996        | 15    |  |
| 96   | 80140 | 7.4   | -           | 8     |  |
| 97   | 80141 | 2.6   | 2290        | 7     |  |
| 99   | 80141 | 1.0   | 264         | 3     |  |
| 100  | 80143 | 8.5   | 8010        | 59    |  |
| 100  | 00144 | 0.0   | 50.0        | 00    |  |

ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

|           |       | Ag    | Cu    | Mo    |  |
|-----------|-------|-------|-------|-------|--|
| ET#.      | Tag # | (ppm) | (ppm) | (ppm) |  |
| 102       | 80146 | 9.0   |       | 62    |  |
| 104       | 80148 | -     | -     | 25    |  |
| 105       | 80149 | 2.8   | 2780  | 4     |  |
| 106       | 80150 | 6.2   | -     | 1     |  |
| 107       | 80151 | 3.1   | 3070  | 1     |  |
| 108       | 80152 | 0.8   | 362   | 2     |  |
| 109       | 80153 | <0.1  | 228   | 2     |  |
| 110       | 80154 | 0.9   | 80    | 2     |  |
| 112       | 80156 | <0.1  | 260   | 2     |  |
| 113       | 80157 | 0.6   | 522   | <1    |  |
| QC/DATA   |       |       |       |       |  |
| Repeat:   |       |       |       |       |  |
| 25        | 80069 | 0.5   | 1105  | 31    |  |
| 37        | 80081 | 0.6   | 1208  | 6     |  |
| 48        | 80092 | 0.9   | 1740  | 16    |  |
| 60        | 80104 | <0.1  | 223   | 11    |  |
| 68        | 80112 | 1.9   | 2600  | 42    |  |
| 80        | 80124 | 1.9   | 1852  | 20    |  |
| 91        | 80135 | 4.1   | 4310  | 4     |  |
| ວເandard: |       |       |       |       |  |
| GEO'97    |       | 1.6   | 83    | <1    |  |

XLS/96Tarco

ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer



20-Jan-97



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. 72C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ANALYSIS AK 96-1346G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: GARY STEWART

**HOLE #14** 

No. of samples received: 114

Sample type: ROCK

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: GARY

|       |       | Ag    | Cu    | Мо    |    |
|-------|-------|-------|-------|-------|----|
| ST #. | Tag # | (ppm) | (ppm) | (ppm) |    |
| 80    | 80342 | 0.3   | 851   | 7     |    |
| 81    | 80343 | 4.2   | 5650  | -     |    |
| 82    | 80344 | 0.6   | 1410  | 65    |    |
| 83    | 80345 | 0.9   | 1922  | 37    |    |
| 84    | 80346 | 4.7   | 6440  | -     |    |
| 85    | 80347 | 4.3   | 3450  | 31    |    |
| 86    | 80348 | 2.4   | 3700  | 25    |    |
| 87    | 80349 | 2.2   | 2900  | -     |    |
| 88    | 80350 | 1.8   | 2014  | 72    |    |
| 89    | 80351 | 0.5   | 737   | 46    |    |
| 90    | 80352 | 0.2   | 935   | 11    |    |
| 91    | 80353 | 0.9   | 1738  | 34    |    |
| 92    | 80354 | <.1   | 410   | 24    |    |
| 93    | 80355 | 2.0   | 798   | 90    |    |
| 94    | 80356 | 0.7   | 1975  | 102   |    |
| 95    | 80357 | 0.2   | 57    | 74    |    |
| 96    | 80358 | <.1   | 673   | 6     |    |
| 97    | 80359 | 0.2   | 353   | 7     |    |
| 98    | 80360 | 0.3   | 460   | 6     |    |
| 99    | 80361 | 0.6   | 1338  | 99    |    |
| 100   | 80362 | 0.4   | 472   | 37    | 1/ |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

|                     |           | Ag    | Cu    | Мо    |  |
|---------------------|-----------|-------|-------|-------|--|
| ET#.                | Tag #     | (ppm) | (ppm) | (ppm) |  |
| 101                 | 80363     | 0.2   | 355   | 10    |  |
| 102                 | 80364     | 0.1   | 449   | 14    |  |
| 103                 | 80365     | <.1   | 234   | 14    |  |
| 104                 | 80366     | 0.3   | 771   | 5     |  |
| 105                 | 80367     | 3.5   | 7170  | 7     |  |
| 106                 | 80368     | 1.1   | 2620  | 9     |  |
| QC DATA<br>Resplit: | <u>\:</u> |       |       |       |  |
| R/S 106             | 80368     | 1.6   | 2920  | 10    |  |
| Repeat:             |           |       |       |       |  |
| 80                  | 80342     | 0.4   | 859   | 10    |  |
| 89                  | 80351     | 0.5   | 779   | 47    |  |
| 98                  | 80360     | 0.3   | 406   | 7     |  |
| Standard.           | :         |       |       |       |  |
| GEO'97              |           | 1.2   | 87    | 1     |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96Tarco



16-Jan-97

10041 F. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-1346A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

**HOLE #14** 

No. of samples received:114

Sample type:CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: GARY STEWART

|      |       | Au    | Au     |   |
|------|-------|-------|--------|---|
| ₹T#. | Tag # | (g/t) | (oz/t) |   |
| 80   | 80342 | <.03  | <.001  |   |
| 81   | 80343 | 0.03  | 0.001  |   |
| 82   | 80344 | 0.03  | 0.001  |   |
| 83   | 80345 | <.03  | <.001  |   |
| 84   | 80346 | 0.06  | 0.002  |   |
| 85   | 80347 | 0.03  | 0.001  |   |
| 86   | 80348 | 0.03  | 0.001  |   |
| 87   | 80349 | <.03  | <.001  |   |
| 88   | 80350 | <.03  | <.001  |   |
| 89   | 80351 | <.03  | <.001  |   |
| 90   | 80352 | <.03  | <.001  |   |
| 91   | 80353 | 0.03  | 0.001  |   |
| 92   | 80354 | <.03  | <.001  |   |
| 93   | 80355 | 0.04  | 0.001  |   |
| 94   | 80356 | <.03  | <.001  |   |
| 95   | 80357 | 0.03  | 0.001  |   |
| 96   | 80358 | <.03  | <.001  |   |
| 97   | 80359 | <.03  | <.001  |   |
| 98   | 80360 | 0.03  | 0.001  |   |
| 99   | 80361 | <.03  | <.001  |   |
| 100  | 80362 | 0.04  | 0.001  |   |
| 101  | 80363 | 0.04  | 0.001  |   |
|      |       |       |        | • |

ECO-TECH LABORATORIES LTD.

f<sup>e</sup>r Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

#### **TARCO OIL & GAS AK 96-1346A2**

|          |              | Au    | Au     |  |
|----------|--------------|-------|--------|--|
| ET #.    | Tag #        | (g/t) | (oz/t) |  |
| 102      | 80364        | 0.03  | 0.001  |  |
| 103      | 80365        | <.03  | <.001  |  |
| 104      | 80366        | 0.04  | 0.001  |  |
| 105      | 80367        | 0.04  | 0.001  |  |
| 106      | 80368        | <.03  | <.001  |  |
|          |              |       |        |  |
| QC/DATA  | \:           |       |        |  |
| Resplit: | <del>=</del> |       |        |  |
| R/S 106  | 80368        | <.03  | <.001  |  |
| Repeat:  |              |       |        |  |
| 80       | 80342        | 0.05  | 0.001  |  |
| 103      | 80365        | <.03  | <.001  |  |
|          |              |       |        |  |
| Standard | :            |       |        |  |
| STD-M    |              | 1.36  | 0.040  |  |
|          |              |       |        |  |

Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

XLS/96tarco



10041 E. Trans Canada Hwy., R.H. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-1348A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 14-Jan-97

ATTENTION: GARY STEWART

**HOLE #13** 

No. of samples received: 70

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: GARY STEWART

|          |             | Au    |       |  |
|----------|-------------|-------|-------|--|
| ĘΤ#.     | Tag #       | (g/t) |       |  |
| 1        | 80401       | <.03  |       |  |
| 2        | 80402       | <.03  | 0.01  |  |
| 3        | 80403       | <.03  | 0.01  |  |
| 4        | 80404       | <.03  | 0.01  |  |
| 5        | 80405       | <.03  | 0.01  |  |
| 6        | 80406       | <.03  | 0.01  |  |
| 7        | 80407       | <.03  | 0.01  |  |
| 8        | 80408       | <.03  | 0.01  |  |
| 9        | 80409       | <.03  | 0.01  |  |
| 10       | 80410       | <.03  | 0.01  |  |
| 11       | 80411       | <.03  | 0.01  |  |
| 12       | 80412       | <.03  | 0.01  |  |
| 13       | 80413       | <.03  | 0.01  |  |
| 14       | 80414       | <.03  | 0.01  |  |
|          |             |       |       |  |
| QC/DAT   | Γ <u>Α:</u> |       |       |  |
| Resplit: |             |       |       |  |
| R/S 1    | 80401       | <.03  | 0.01  |  |
| Repeat:  |             |       |       |  |
| 1        | 80401       | <.03  | 0.01  |  |
| Standar  | rd:         |       |       |  |
| STD-M    |             | 1.35  | 0.039 |  |
|          |             |       |       |  |

ECO-TECH LABORATORIES LTD.

B.C. Certified Assayer

XLS/96tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ANALYSIS AK 96-1348G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

20-Jan-97

ATTENTION: GARY STEWART

**HOLE #13** 

No. of samples received: 70

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: GARY

|                  |       | Ag    | Cu    | Мо    |                 |
|------------------|-------|-------|-------|-------|-----------------|
| -τ <sub>#.</sub> | Tag # | (ppm) | (ppm) | (ppm) |                 |
|                  | 80401 | 2.6   | 4870  | 10    |                 |
| 2                | 80402 | 0.1   | 761   | 8     |                 |
| 3                | 80403 | 5.5   | 9170  | 80    |                 |
| 4                | 80404 | 2.0   | 3690  | 6     |                 |
| 5                | 80405 | 0.6   | 939   | 3     |                 |
| 6                | 80406 | 1.5   | 2074  | 29    |                 |
| 7                | 80407 | 0.2   | 563   | 9     |                 |
| 8                | 80408 | 0.1   | 219   | 11    |                 |
| 9                | 80409 | 0.3   | 686   | 46    |                 |
| 10               | 80410 | 1.5   | 2060  | 3     |                 |
| 11               | 80411 | 0.4   | 324   | 1     |                 |
| 12               | 80412 | 0.4   | 517   | 3     |                 |
| 13               | 80413 | 1.2   | 1740  | 17    |                 |
| 14               | 80414 | 1.1   | 1658  | 34    |                 |
| QC DA<br>Respli  |       |       |       |       |                 |
| R/S 1            |       | 3.1   | 5140  | 12    |                 |
| Repeat           | t:    |       |       |       |                 |
| 1                |       | 2.7   | 4940  | 8     |                 |
| Standa           | ard:  |       |       |       | 1 (             |
| GEO'9            | 7     | 1.5   | 97    | 1     | 1-6             |
|                  |       |       |       |       | ECO-TECH LABORA |

ATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

...S/96Tarco

15-Nov-96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-1312

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received:72 Sample type:ROCK PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN Samples submitted by: GARY STEWART

.'alues in ppm unless otherwise reported

|          | Et#. | Tag #     | Au(ppb) | Ag    | AI % | As | Ba  | Bi | Ca % | Cd  | Co | Cr  | Cu  | Fe % | La  | Mg %  | Mn  | Мо | Na % | Ni | Р   | Pb | Sb            | Sn  | Sr Tì%    | υ   | v  | w   | Υ  | Zn |
|----------|------|-----------|---------|-------|------|----|-----|----|------|-----|----|-----|-----|------|-----|-------|-----|----|------|----|-----|----|---------------|-----|-----------|-----|----|-----|----|----|
| -        | 1 "  | 79651     | 5       | <0.2  |      | <5 | 60  | <5 | 1.40 | <1  | 8  | 81  | 645 | 2.08 | <10 | 0.59  | 334 | 12 | 0.02 | 7  | 420 | <2 | 5             | <20 | 21 < 0.01 | <10 | 39 | <10 | 12 | 20 |
|          | 2    | 79652     | 5       | <0.2  | 0.60 | <5 | 50  | <5 | 2.36 | <1  | 7  | 74  | 70  | 1.98 | 10  | 0.51  | 328 | 8  | 0.02 | 6  | 310 | <2 | <5            | <20 | 28 < 0.01 | <10 | 33 | <10 | 16 | 17 |
|          | 3    | 79653     | 5       | <0.2  | 0.55 | <5 | 30  | <5 | 1.84 | <1  | 7  | 69  | 75  | 1.76 | 10  | 0.46  | 315 | 5  | 0.02 | 5  | 320 | <2 | <5            | <20 | 29 < 0.01 | <10 | 36 | <10 | 17 | 14 |
|          | 4    | 79654     | 5       | <0.2  | 0.72 | <5 | 55  | <5 | 1.99 | <1  | 8  | 96  | 104 | 2.01 | 10  | 0.75  | 400 | 7  | 0.03 | 7  | 380 | 2  | 5             | <20 | 34 < 0.01 | <10 | 42 | <10 | 17 | 19 |
|          | 5    | 79655     | 5       | <0.2  |      | <5 | 45  | <5 | 2.40 | <1  | 9  | 69  | 140 | 2.06 | 10  | 0.71  | 353 | 5  | 0.02 | 6  | 450 | 2  | 5             | <20 | 39 < 0.01 | <10 | 36 | <10 | 15 | 21 |
|          | Ū    | 10000     | •       |       | 00   |    |     |    | 2    | •   | J  | -   |     | 2.00 |     | 0.1 . | 000 | •  | 0.02 | Ū  | 400 | -  |               | -20 | 00 .0.01  |     | -  |     |    |    |
|          | 6    | 79656     | 5       | <0.2  | 0.77 | <5 | 65  | <5 | 1.80 | <1  | 9  | 62  | 97  | 2.27 | <10 | 0.77  | 363 | 9  | 0.03 | 7  | 450 | <2 | 5             | <20 | 45 0.01   | <10 | 49 | <10 | 14 | 14 |
|          | 7    | 79657     | 5       | <0.2  | 0.84 | <5 | 50  | <5 | 1.44 | <1  | 9  | 78  | 116 | 2.14 | <10 | 0.79  | 352 | 6  | 0.04 | 8  | 430 | <2 | <5            | <20 | 46 0.02   | <10 | 49 | <10 | 13 | 18 |
|          | 8    | 79658     | 5       | <0.2  |      | <5 | 65  | <5 | 2.09 | <1  | 10 | 62  | 58  | 2.38 | <10 | 1.21  | 449 | 4  | 0.04 | 8  | 470 | <2 | 10            | <20 | 55 0.01   | <10 | 57 | <10 | 14 | 20 |
|          | 9    | 79659     | 5       |       | 0.63 | <5 | 65  | <5 | 2.17 | <1  | 8  | 67  | 100 | 1.97 | 10  | 1.07  | 380 | 5  | 0.03 | 5  | 370 | <2 | 10            | <20 | 50 < 0.01 | <10 | 42 | <10 | 15 | 16 |
|          | 10   | 79660     | 5       | <0.2  |      | <5 | 60  | <5 | 1.51 | <1  | 8  | 71  | 51  | 2.04 | <10 | 0.73  | 364 | 5  | 0.04 | 7  | 400 | <2 | <5            | <20 | 43 0.01   | <10 | 50 | <10 | 14 | 16 |
|          |      | , , , , , | -       | 0     |      | •  | ••  | •  |      | •   | •  | • • | ٠,  |      |     | 0.,0  | ••• | ·  | 0.0  | •  |     | _  | -             |     | 10 0.01   |     |    |     |    |    |
|          | 11   | 79661     | 5       | <0.2  | 0.81 | <5 | 75  | <5 | 1.86 | <1  | 8  | 65  | 288 | 2.02 | <10 | 0.80  | 402 | 13 | 0.05 | 7  | 430 | <2 | 10            | <20 | 54 < 0.01 | <10 | 48 | <10 | 12 | 16 |
| <i>.</i> | 12   | 79662     | 5       | <0.2  | 0.73 | <5 | 70  | <5 | 2.34 | <1  | 9  | 65  | 254 | 2.16 | <10 | 0.91  | 528 | 7  | 0.04 | 7  | 430 | <2 | <5            | <20 | 54 0.01   | <10 | 46 | <10 | 16 | 17 |
| 1        | 13   | 79663     | 5       | < 0.2 | 0.70 | <5 | 100 | <5 | 1.94 | <1  | 8  | 88  | 103 | 1.97 | <10 | 0.71  | 395 | 18 | 0.05 | 6  | 370 | <2 | <5            | <20 | 45 0.01   | <10 | 47 | <10 | 14 | 16 |
|          | 14   | 79664     | 5       | <0.2  | 0.69 | <5 | 85  | <5 | 1.94 | <1  | 8  | 87  | 78  | 2.00 | <10 | 0.73  | 401 | 18 | 0.04 | 19 | 360 | 2  | < <b>5</b>    | <20 | 45 0.01   | <10 | 49 | <10 | 14 | 16 |
|          | 15   | 79665     | 5       | <0.2  |      | <5 | 60  | <5 | 1.79 | <1  | 6  | 111 | 147 | 1.74 | <10 | 0.58  | 426 | 12 | 0.04 | 5  | 280 | 2  | <5            | <20 | 36 < 0.01 | <10 | 28 | <10 | 14 | 11 |
|          |      |           | •       |       | 0.00 | •  | -   | •  |      |     | Ū  |     |     | ,    |     | 0.00  | 0   |    | 0.0  | •  |     | _  | •             |     | 00 0.01   |     |    |     |    |    |
|          | 16   | 79666     | 10      | <0.2  | 0.77 | <5 | 70  | <5 | 1.95 | <1  | 9  | 85  | 363 | 2.37 | <10 | 0.83  | 489 | 26 | 0.04 | 7  | 400 | <2 | <5            | <20 | 45 0.01   | <10 | 47 | <10 | 12 | 18 |
|          | 17   | 79667     | 5       | < 0.2 | 0.69 | <5 | 75  | <5 | 1.30 | <1  | 9  | 85  | 171 | 2.18 | 10  | 0.72  | 382 | 7  | 0.05 | 7  | 370 | 2  | <5            | <20 | 41 0.02   | <10 | 52 | <10 | 18 | 16 |
|          | 18   | 79668     | 5       | <0.2  | 0.66 | <5 | 80  | <5 | 1.25 | <1  | 7  | 85  | 275 | 1.95 | 10  | 0.66  | 377 | 5  |      | 6  | 370 | <2 | <b>&lt;</b> 5 | <20 | 38 0.01   | <10 | 48 | <10 | 14 | 14 |
|          | 19   | 79669     | 5       | <0.2  | 0.75 | <5 | 80  | <5 | 1.96 | <1  | 8  | 97  | 150 | 2.07 | 10  | 0.70  | 452 | 5  |      | 7  | 370 | 2  | <5            | <20 | 41 0.01   | <10 | 50 | <10 | 16 | 14 |
|          | 20   | 79670     | 5       | <0.2  | 0.64 | <5 | 100 | <5 | 1.53 | <1  | 8  | 79  | 682 | 2.08 | 10  | 0.84  | 371 | 6  | 0.05 | 6  | 380 | <2 | <5            | <20 | 68 < 0.01 | <10 | 49 | <10 | 16 | 14 |
|          | 20   | 15570     | 3       | -0.2  | 5.04 | -3 | ,50 | ٠, | 1.00 | - 1 | 0  | 7 3 | 002 | 2.00 | 10  | 0.04  | 571 | U  | 0.00 | 0  | 550 |    | -0            | -20 | 00 10.01  | -10 | 40 |     | .0 |    |

| Et #. | Tag #   | Au(ppb) | Ag   | Al % | As | Ва          | Bi | Ca % | Cd | Со | Cr  | Cu     | Fe % | La  | Mg % | Mn  | Мо   | Na % | Ni | P   | Pb | Sb | Sn  | Sr Ti%     | U   | v w    | Y  | Zn |
|-------|---------|---------|------|------|----|-------------|----|------|----|----|-----|--------|------|-----|------|-----|------|------|----|-----|----|----|-----|------------|-----|--------|----|----|
| 21    | . 79671 | 5       | <0.2 | 0.62 | <5 | 275         | <5 | 1.94 | <1 | 7  | 72  | 167    | 2.06 | 10  | 0.84 | 422 | 4    | 0.06 | 6  | 370 | <2 | 5  | <20 | 76 0.01    | <10 | 49 <10 | 19 | 16 |
| 22    | 79672   | 5       | <0.2 | 0.65 | <5 | 85          | <5 | 1.97 | <1 | 8  | 91  | 224    | 1.96 | 10  | 0.71 | 392 | 5    | 0.05 | 8  | 390 | <2 | 5  | <20 | 50 0.01    | <10 | 48 <10 | 19 | 15 |
| 23    | 79673   | 15      | <0.2 | 0.65 | <5 | 120         | <5 | 2.11 | <1 | 8  | 100 | 217    | 2.07 | 10  | 0.85 | 466 | 6    | 0.06 | 7  | 370 | <2 | 10 | <20 | 79 < 0.01  | <10 | 47 <10 | 16 | 17 |
| 24    | 79674   | 5       | <0.2 | 0.55 | <5 | 105         | <5 | 2.05 | <1 | 5  | 76  | 69     | 1.45 | <10 | 0.55 | 396 | 4    | 0.04 | 4  | 350 | <2 | <5 | <20 | 51 < 0.01  | <10 | 28 <10 | 11 | 10 |
| 25    | 79675   | 5       | <0.2 | 0.59 | <5 | 210         | <5 | 2.35 | <1 | 6  | 61  | 193    | 1.74 | <10 | 0.86 | 549 | 5    | 0.05 | 5  | 340 | <2 | 5  | <20 | 85 < 0.01  | <10 | 29 <10 | 12 | 14 |
|       |         |         |      |      |    |             |    |      |    |    |     |        |      |     |      |     |      |      |    |     |    |    |     |            |     |        |    |    |
| 26    | 79676   | 10      | <0.2 | 0.46 | <5 | 260         | <5 | 3.10 | <1 | 6  | 74  | 167    | 1.78 | <10 | 0.97 | 516 | 22   | 0.06 | 4  | 310 | <2 | 5  | <20 | 118 < 0.01 | <10 | 28 <10 | 14 | 9  |
| 27    | 79677   | 5       | <0.2 | 0.48 | <5 | 245         | <5 | 3.53 | <1 | 5  | 58  | 1242   | 1.61 | <10 | 1.22 | 550 | 143  | 0.06 | 4  | 300 | <2 | 10 | <20 | 157 < 0.01 | <10 | 21 <10 | 13 | 8  |
| 28    | 79678   | 5       | <0.2 | 0.54 | <5 | 525         | <5 | 2.59 | <1 | 4  | 73  | 608    | 1.55 | <10 | 0.57 | 444 | 64   | 0.06 | 4  | 330 | <2 | <5 | <20 | 87 < 0.01  | <10 | 29 <10 | 13 | 9  |
| 29    | 79679   | 5       | <0.2 | 0.59 | <5 | 285         | <5 | 2.69 | <1 | 7  | 46  | 347    | 2.05 | <10 | 0.80 | 536 | 3    | 0.07 | 6  | 320 | <2 | 5  | <20 | 117 <0.01  | <10 | 29 <10 | 13 | 10 |
| 30    | 79680   | 10      | 2.0  | 0.63 | <5 | 210         | <5 | 4.57 | <1 | 10 | 44  | 3471   | 2.34 | <10 | 0.76 | 799 | 5    | 0.04 | 7  | 250 | <2 | 5  | <20 | 75 < 0.01  | <10 | 21 <10 | 13 | 19 |
|       |         |         |      |      |    |             |    |      |    |    |     |        |      |     |      |     |      |      |    |     |    |    |     |            |     |        |    |    |
| 31    | 79681   | 5       | 1.2  | 0.68 | <5 | 320         | <5 | 2.36 | <1 | 7  | 66  | 2415   | 1.96 | <10 | 0.58 | 536 | 5    | 0.05 | 6  | 350 | <2 | 5  | <20 | 59 < 0.01  | <10 | 30 <10 | 13 | 12 |
| 32    | 79682   | 5       | 1.4  | 0.29 | <5 | 165         | <5 | 3.67 | <1 | 4  | 84  | 1887   | 1.41 | <10 | 0.25 | 613 | 9    | 0.02 | 3  | 320 | <2 | <5 | <20 | 42 < 0.01  | <10 | 9 <10  | 14 | 7  |
| 33    | 79683   | 5       | <0.2 | 0.68 | <5 | 225         | <5 | 2.90 | <1 | 7  | 82  | 1106   | 1.94 | <10 | 0.63 | 534 | 6    | 0.03 | 6  | 340 | <2 | 10 | <20 | 49 < 0.01  | <10 | 24 <10 | 11 | 12 |
| 34    | 79684   | 5       | 2.0  | 0.61 | <5 | 320         | <5 | 4.06 | <1 | 7  | 46  | 2706   | 2.02 | <10 | 0.49 | 723 | 11   | 0.03 | 5  | 330 | <2 | <5 | <20 | 62 < 0.01  | <10 | 23 <10 | 9  | 14 |
| 35    | 79685   | 5       | <0.2 | 1.05 | <5 | 155         | <5 | 3.04 | <1 | 14 | 42  | 919    | 2.50 | <10 | 0.91 | 665 | 11   | 0.03 | 9  | 330 | <2 | 10 | <20 | 51 <0.01   | <10 | 29 <10 | 6  | 24 |
|       |         |         |      |      |    |             |    |      |    |    |     |        |      |     |      |     |      |      |    |     |    |    |     |            |     |        |    |    |
| 36    | 79686   | 5       | <0.2 | 0.69 | <5 | 120         | <5 | 2.50 | <1 | 7  | 64  | 693    | 1.88 | <10 | 0.71 | 625 | 5    | 0.03 | 5  | 350 | <2 | <5 | <20 | 46 < 0.01  | <10 | 24 <10 | 11 | 12 |
| 37    | 79687   | 5       | <0.2 | 1.07 | <5 | 80          | <5 | 2.59 | <1 | 10 | 80  | 1056   | 2.09 | <10 | 0.82 | 567 | 6    | 0.03 | 6  | 370 | <2 | <5 | <20 | 38 < 0.01  | <10 | 29 <10 | 11 | 18 |
| 38    | 79688   | 80      | <0.2 | 1.05 | <5 | 100         | <5 | 2.38 | <1 | 10 | 83  | 578    | 2.33 | <10 | 0.87 | 553 | 5    | 0.03 | 6  | 360 | <2 | 5  | <20 | 42 < 0.01  | <10 | 33 <10 | 9  | 18 |
| 39    | 79689   | 110     | 6.8  | 0.95 | <5 | 95          | <5 | 2.53 | <1 | 10 | 81  | 6217   | 2.71 | <10 | 0.76 | 915 | 7    | 0.02 | 8  | 250 | <2 | <5 | <20 | 34 < 0.01  | <10 | 29 <10 | 11 | 24 |
| 40    | 79690   | 55      | 6.2  | 0.48 | <5 | 60          | <5 | 2.77 | <1 | 5  | 119 | 9783   | 1.49 | <10 | 0.28 | 799 | 6    | 0.01 | 4  | 150 | <2 | <5 | <20 | 25 < 0.01  | <10 | 13 <10 | 9  | 8  |
|       |         |         |      |      |    |             |    |      |    |    |     |        |      |     |      |     |      |      |    |     |    |    |     |            |     |        |    |    |
| 41    | 79691   | 205     | 18.8 | 0.54 | <5 | 65          | <5 | 3.15 | <1 | 7  | 81  | >10000 | 1.75 | <10 | 0.41 | 767 | 4    | 0.01 | 4  | <10 | <2 | <5 | <20 | 34 < 0.01  | <10 | 16 10  | 10 | 13 |
| 42    | 79692   | 5       | <0.2 | 0.88 | <5 | 85          | <5 | 3.36 | <1 | 10 | 78  | 154    | 2.05 | <10 | 0.78 | 988 | 5    | 0.02 | 7  | 320 | <2 | 5  | <20 | 45 < 0.01  | <10 | 24 <10 | 18 | 23 |
| 43    | 79693   | 10      | <0.2 | 1.04 | <5 | 100         | <5 | 2.88 | <1 | 11 | 52  | 664    | 2.30 | <10 | 0.93 | 998 | 7    | 0.03 | 8  | 370 | <2 | 10 | <20 | 45 < 0.01  | <10 | 26 <10 | 12 | 26 |
| 44    | 79694   | 5       | <0.2 | 0.92 | <5 | 85          | <5 | 2.44 | <1 | 9  | 74  | 585    | 2.13 | <10 | 0.80 | 905 | 5    | 0.02 | 6  | 390 | <2 | 5  | <20 | 37 < 0.01  | <10 | 34 <10 | 10 | 22 |
| 45    | 79695   | 5       | 6.2  | 1.01 | <5 | 90          | <5 | 2.57 | <1 | 11 | 77  | 6842   | 2.27 | <10 | 0.87 | 817 | 4    | 0.03 | 7  | 310 | <2 | 10 | <20 | 36 < 0.01  | <10 | 30 <10 | 11 | 22 |
|       |         |         |      |      |    |             |    |      |    |    |     |        |      |     |      |     |      |      |    |     |    |    |     |            |     |        |    |    |
| 46    | 79696   | 5       | <0.2 | 1.07 | <5 | 80          | <5 | 1.53 | <1 | 12 | 69  | 414    | 2.40 | <10 | 0.93 | 627 | 5    | 0.03 | 8  | 400 | <2 | 5  | <20 | 25 < 0.01  | <10 | 33 <10 | 8  | 24 |
| 47    | 79697   | 5       | <0.2 | 0.82 | <5 | 105         | <5 | 1.62 | <1 | 9  | 84  | 529    | 2.05 | <10 | 0.75 | 545 | 9    | 0.04 | 6  | 340 | <2 | <5 | <20 | 37 < 0.01  | <10 | 34 <10 | 12 | 14 |
| 48    | 79698   | 5       | <0.2 | 0.86 | <5 | 95          | <5 | 1.53 | <1 | 10 | 95  | 298    | 2.20 | <10 | 0.77 | 475 | 16   | 0.04 | 6  | 330 | <2 | <5 | <20 | 35 < 0.01  | <10 | 36 <10 | 11 | 15 |
| 49    | 79699   | 10      | <0.2 | 0.86 | <5 | 100         | <5 | 1.99 | <1 | 10 | 78  | 648    | 2.25 | <10 | 0.83 | 653 | 43   | 0.04 | 6  | 390 | <2 | <5 | <20 | 39 < 0.01  | <10 | 37 <10 | 12 | 18 |
| 50    | 79700   | 5       | <0.2 | 0.76 | <5 | 115         | <5 | 1.85 | <1 | 8  | 80  | 477    | 2.16 | <10 | 0.72 | 562 | 9    | 0.04 | 5  | 380 | <2 | <5 | <20 | 45 < 0.01  | <10 | 41 <10 | 12 | 16 |
|       |         |         |      |      |    |             |    |      |    |    |     |        |      |     |      |     |      |      |    |     |    |    |     |            |     |        |    |    |
| 51    | 79701   | 5       | <0.2 | 0.83 | <5 | 85          | <5 | 2.09 | <1 | 9  | 83  | 307    | 2.11 | <10 | 0.74 | 765 | 24   | 0.03 | 6  | 380 | <2 | <5 | <20 | 36 < 0.01  | <10 | 34 <10 | 12 | 16 |
| 52    | 79702   | 10      | <0.2 | 0.89 | <5 | 85          | <5 | 2.35 | <1 | 10 | 83  | 401    | 2.23 | <10 | 0.81 | 781 | 8    | 0.02 | 6  | 390 | <2 | 5  | <20 | 35 < 0.01  | <10 | 33 <10 | 11 | 19 |
| 53    | 79703   | 5       | <0.2 | 0.38 | <5 | <b>1</b> 10 | <5 | 3.21 | <1 | 8  | 79  | 483    | 1.59 | <10 | 0.47 | 945 | 408  | 0.02 | 4  | 360 | <2 | <5 | <20 | 42 < 0.01  | <10 | 10 <10 | 14 | 14 |
| 54    | 79704   | 5       | <0.2 | 0.50 | <5 | 90          | <5 | 1.88 | <1 | 7  | 120 | 367    | 1.53 | <10 | 0.41 | 621 | 216  | 0.03 | 5  | 380 | <2 | <5 | <20 | 30 < 0.01  | <10 | 18 <10 | 13 | 13 |
| 55    | 79705   | 5       | <0.2 | 0.31 | <5 | 115         | <5 | 2.76 | <1 | 8  | 100 | 366    | 1.49 | <10 | 0.79 | 981 | 1094 | 0.02 | 4  | 350 | 4  | <5 | <20 | 37 < 0.01  | <10 | 13 <10 | 15 | 13 |

Page 2

| _Et#. | Tag # | Au(ppb) | Ag   | AI % | As | Ва  | Bi | Ca % | Cd | Co | Сг  | Cu     | Fe % | La  | Mg % | Mn   | Мо  | Na % | Ni | Р   | Pb | \$b | Sn  | Sr Ti%    | U   | V W    | , Y  | Zn |
|-------|-------|---------|------|------|----|-----|----|------|----|----|-----|--------|------|-----|------|------|-----|------|----|-----|----|-----|-----|-----------|-----|--------|------|----|
| 56    | 79706 | 25      | <0.2 | 0.28 | <5 | 135 | <5 | 2.95 | <1 | 7  | 106 | 781    | 1.52 | <10 | 0.81 | 1106 | 17  | 0.02 | 5  | 350 | <2 | 10  | <20 | 43 < 0.01 | <10 | 11 <10 | 12   | 10 |
| 57    | 79707 | 5       | 0.4  | 0.25 | 20 | 80  | <5 | 2.58 | <1 | 5  | 74  | 1910   | 0.76 | <10 | 0.16 | 819  | 318 | 0.02 | 2  | 430 | 4  | <5  | <20 | 31 < 0.01 | <10 | 3 <10  | 13   | 13 |
| 58    | 79708 | 10      | <0.2 | 0.92 | <5 | 130 | <5 | 0.51 | <1 | 22 | 61  | 2376   | 3.51 | <10 | 1.13 | 943  | 9   | 0.01 | 14 | 270 | <2 | <5  | <20 | 15 < 0.01 | <10 | 50 <16 | ) 1  | 52 |
| 59    | 79709 | 195     | 0.8  | 1.02 | <5 | 85  | <5 | 0.25 | <1 | 22 | 57  | 6046   | 3.43 | <10 | 1.03 | 651  | 768 | 0.02 | 15 | 80  | 6  | 5   | <20 | 14 < 0.01 | <10 | 39 <10 | ) <1 | 42 |
| 60    | 79710 | 5       | 4.6  | 1.1ε | <5 | 105 | <5 | 0.66 | <1 | 20 | 51  | 2721   | 2.97 | <10 | 1.21 | 767  | 27  | 0.02 | 15 | 430 | <2 | 10  | <20 | 20 < 0.01 | <10 | 45 <10 | 9    | 40 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |      |    |     |    |     |     |           |     |        |      |    |
| 61    | 79711 | 5       | <0.2 | 0.38 | <5 | 140 | <5 | 1.42 | <1 | 8  | 71  | 1223   | 1.36 | <10 | 0.68 | 701  | 10  | 0.02 | 5  | 430 | 6  | 10  | <20 | 30 < 0.01 | <10 | 17 <10 | 12   | 18 |
| 62    | 79712 | 85      | 11.8 | 0.69 | <5 | 85  | <5 | 0.36 | 2  | 15 | 107 | >10000 | 2.69 | <10 | 0.71 | 726  | 10  | 0.02 | 10 | 180 | <2 | 5   | <20 | 12 <0.01  | <10 | 24 <10 | ) 6  | 36 |
| 63    | 79713 | 10      | 1.2  | 0.74 | <5 | 80  | <5 | 0.19 | <1 | 11 | 95  | 2543   | 1.92 | <10 | 0.66 | 488  | 6   | 0.02 | 7  | 400 | <2 | <5  | <20 | 11 < 0.01 | <10 | 19 <10 | 6    | 26 |
| 64    | 79714 | 5       | 1.4  | 0.94 | <5 | 80  | <5 | 0.24 | <1 | 12 | 108 | 2834   | 1.99 | <10 | 0.90 | 434  | 7   | 0.02 | 9  | 440 | <2 | 10  | <20 | 12 < 0.01 | <10 | 28 <16 | 9    | 27 |
| 65    | 79715 | 5       | <0.2 | 0.64 | <5 | 90  | <5 | 1.11 | <1 | 7  | 95  | 152    | 1.38 | <10 | 0.61 | 525  | 17  | 0.03 | 6  | 400 | <2 | <5  | <20 | 22 < 0.01 | <10 | 26 <10 | ) 11 | 18 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |      |    |     |    |     |     |           |     |        |      |    |
| 66    | 79716 | 5       | 0.2  | 0.71 | <5 | 100 | <5 | 1.59 | <1 | 10 | 77  | 1250   | 1.75 | <10 | 0.70 | 742  | 89  | 0.03 | 7  | 480 | <2 | 5   | <20 | 29 < 0.01 | <10 | 30 <10 | ) 17 | 25 |
| 67    | 79717 | 5       | <0.2 | 0.38 | <5 | 95  | <5 | 1.51 | <1 | 7  | 100 | 924    | 1.39 | <10 | 0.33 | 667  | 213 | 0.02 | 5  | 370 | <2 | <5  | <20 | 23 < 0.01 | <10 | 16 <10 | 14   | 17 |
| 68    | 79718 | 5       | 5.2  | 0.33 | <5 | 100 | <5 | 1.77 | <1 | 8  | 90  | 4804   | 1.58 | 10  | 0.46 | 825  | 103 | 0.01 | 5  | 370 | <2 | <5  | <20 | 27 < 0.01 | <10 | 17 <10 | ) 12 | 19 |
| 69    | 79719 | 150     | 0.8  | 0.25 | <5 | 100 | <5 | 1.27 | <1 | 5  | 107 | 3384   | 1.26 | <10 | 0.45 | 661  | 21  | 0.01 | 4  | 370 | 4  | 5   | <20 | 20 < 0.01 | <10 | 12 <1  | 11   | 10 |
| 70    | 79720 | 5       | 0.6  | 0.28 | <5 | 90  | <5 | 1.26 | <1 | 7  | 110 | 1449   | 1.33 | <10 | 0.18 | 688  | 20  | 0.02 | 5  | 320 | <2 | <5  | <20 | 25 < 0.01 | <10 | 13 <1  | 8 (  | 14 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |      |    |     |    |     |     |           |     |        |      |    |
| 71    | 79721 | 5       | <0.2 | 0.47 | <5 | 90  | <5 | 1.37 | <1 | 5  | 92  | 240    | 1.18 | <10 | 0.39 | 585  | 16  | 0.04 | 5  | 400 | <2 | <5  | <20 | 31 < 0.01 | <10 | 27 <1  | 14   | 14 |
| 72    | 79722 | 5       | <0.2 | 0.34 | <5 | 75  | <5 | 1.24 | <1 | 5  | 95  | 181    | 0.84 | <10 | 0.28 | 510  | 118 | 0.03 | 4  | 370 | 2  | <5  | <20 | 22 < 0.01 | <10 | 13 <10 | 8 0  | 13 |

| Et #.  | Tag#  | Au(ppb) | Ag   | Al % | As | Ва  | Bi | Ca % | Cd | Со | Cr  | Cu   | Fe % | La  | Mg % | Mn  | Мо  | Na % | Ni | Р   | Pb | Sb | Sn  | Sr | Ti %  | U   | V  | w   | Υ  | Zn |
|--------|-------|---------|------|------|----|-----|----|------|----|----|-----|------|------|-----|------|-----|-----|------|----|-----|----|----|-----|----|-------|-----|----|-----|----|----|
| QC DA  | IA:   |         |      |      |    |     |    |      |    |    |     |      |      |     |      |     |     |      |    |     |    |    |     |    |       |     |    |     |    |    |
| Respli | t:    |         |      |      |    |     |    |      |    |    |     |      |      |     |      |     |     |      |    |     |    |    |     |    |       |     |    |     |    |    |
| 1      | 79651 | 5       | <0.2 | 0.83 | <5 | 60  | <5 | 1.41 | <1 | 8  | 81  | 665  | 2.06 | <10 | 0.61 | 339 | 10  | 0.02 | 6  | 430 | <2 | <5 | <20 | 20 | 0.01  | <10 | 38 | <10 | 12 | 19 |
| 36     | 79686 | 5       | <0.2 | 0.70 | <5 | 125 | <5 | 2.57 | <1 | 7  | 68  | 710  | 1.97 | <10 | 0.71 | 635 | 6   | 0.03 | 4  | 360 | <2 | <5 | <20 | 46 | <0.01 | <10 | 26 | <10 | 12 | 12 |
| 71     | 69721 | 5       | <0.2 | 0.50 | <5 | 95  | <5 | 1.32 | <1 | 5  | 106 | 260  | 1.19 | <10 | 0.40 | 555 | 20  | 0.04 | 5  | 410 | <2 | <5 | <20 | 29 | <0.01 | <10 | 27 | <10 | 13 | 18 |
| Repea  | t:    |         |      |      |    |     |    |      |    |    |     |      |      |     |      |     |     |      |    |     |    |    |     |    |       |     |    |     |    |    |
| 1      | 79651 | 5       | <0.2 | 0.82 | <5 | 60  | <5 | 1.44 | <1 | 8  | 82  | 671  | 2.11 | <10 | 0.61 | 342 | 12  | 0.02 | 7  | 450 | <2 | <5 | <20 | 20 | <0.01 | <10 | 39 | <10 | 12 | 20 |
| 10     | 79660 | 5       | <0.2 | 0.76 | <5 | 60  | <5 | 1.48 | <1 | 8  | 68  | 54   | 1.99 | <10 | 0.71 | 356 | 5   | 0.04 | 7  | 390 | <2 | <5 | <20 | 43 | 0.01  | <10 | 49 | <10 | 14 | 15 |
| 19     | 79669 | 5       | <0.2 | 0.73 | <5 | 80  | <5 | 1.95 | <1 | 8  | 95  | 155  | 2.04 | 10  | 0.69 | 450 | 5   | 0.06 | 7  | 370 | <2 | <5 | <20 | 40 | 0.01  | <10 | 50 | <10 | 16 | 14 |
| , 36   | 79686 | 5       | <0.2 | 0.74 | <5 | 125 | <5 | 2.63 | <1 | 8  | 69  | 708  | 2.00 | <10 | 0.74 | 655 | 6   | 0.03 | 4  | 370 | <2 | <5 | <20 | 47 | <0.01 | <10 | 26 | <10 | 12 | 14 |
| 45     | 79695 | 5       | 5.8  | 1.02 | <5 | 90  | <5 | 2.59 | <1 | 11 | 83  | 6658 | 2.32 | <10 | 0.87 | 820 | 6   | 0.03 | 8  | 310 | <2 | 10 | <20 | 36 | <0.01 | <10 | 31 | <10 | 11 | 22 |
| 54     | 79704 | 5       | <0.2 | 0.52 | <5 | 90  | <5 | 1.86 | <1 | 8  | 119 | 381  | 1.53 | <10 | 0.42 | 617 | 231 | 0.03 | 5  | 370 | <2 | <5 | <20 | 31 | <0.01 | <10 | 18 | <10 | 13 | 13 |
| 71     | 79721 | 5       | <0.2 | 0.48 | <5 | 90  | <5 | 1.41 | <1 | 5  | 96  | 248  | 1.22 | <10 | 0.40 | 600 | 17  | 0.04 | 5  | 420 | <2 | <5 | <20 | 31 | <0.01 | <10 | 27 | <10 | 14 | 16 |
| Stand  | ard:  |         |      |      |    |     |    |      |    |    |     |      |      |     |      |     |     |      |    |     |    |    |     |    |       |     |    |     |    |    |
| GEO'9  | 6     | 150     | 1.0  | 1.70 | 65 | 160 | <5 | 1.87 | <1 | 20 | 64  | 76   | 4.02 | <10 | 1.07 | 710 | 3   | 0.02 | 23 | 670 | 18 | 5  | <20 | 53 | 0.09  | <10 | 72 | <10 | 8  | 72 |
| GEO'9  | 6     | 145     | 1.0  | 1.76 | 70 | 165 | <5 | 1.90 | <1 | 21 | 62  | 79   | 3.66 | <10 | 1.09 | 690 | 3   | 0.02 | 24 | 700 | 20 | 5  | <20 | 55 | 0.09  | <10 | 74 | <10 | 9  | 70 |
| GEO'9  | 6     | 145     | 1.2  | 1.76 | 60 | 160 | <5 | 1.86 | 1  | 20 | 66  | 76   | 3.72 | <10 | 1.10 | 660 | 3   | 0.02 | 24 | 690 | 18 | 5  | <20 | 55 | 0.10  | <10 | 75 | <10 | 8  | 68 |

df/1312a XLS/96TARCO#3 PCD-TECH LABORATORIES LTD.
PCT Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700

ICP CERTIFICATE OF ANALYSIS AK 96-1319

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 02;

ATTENTION: GARY STEWART

No. of samples received:75 Sample type:ROCK PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN

Samples submitted by: GARY STEWART

Fax : 604-573-4557

| Et #. | Tag#           | Au(ppb) | Ag   | AI % | As | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu     | Fe % | La  | Mg % | Mn   | Мо   | Na %  | Ni | P   | Pb | Sb | Sn  | Sr Ti %   | U   | ٧  | w   | Y  | Zn |
|-------|----------------|---------|------|------|----|-----|----|------|----|----|-----|--------|------|-----|------|------|------|-------|----|-----|----|----|-----|-----------|-----|----|-----|----|----|
| 1     | 79723          | 10      | 0.4  | 0.31 | <5 | 60  | <5 | 0.86 | <1 | 5  | 111 | 770    | 0.94 | <10 | 0.23 | 486  | 682  | 0.02  | 5  | 250 | 4  | <5 | <20 | 9 < 0.01  | <10 | 9  | <10 | 4  | 13 |
| 2     | 79724          | 20      | 8.0  | 0.26 | <5 | 50  | <5 | 1.91 | <1 | 4  | 100 | 2141   | 0.83 | <10 | 0.14 | 865  | 40   | 0.01  | 4  | 240 | <2 | <5 | <20 | 14 < 0.01 | <10 | 6  | <10 | 7  | 7  |
| 3     | 79725          | 35      | 0.4  | 80.0 | <5 | 60  | <5 | 0.57 | <1 | 2  | 28  | 1175   | 0.55 | <10 | 0.16 | 390  | 50   | <0.01 | 4  | 40  | <2 | 15 | <20 | 27 < 0.01 | <10 | 2  | <10 | 2  | 5  |
| 4     | 79726          | 40      | <0.2 | 0.36 | <5 | 65  | <5 | 0.60 | <1 | 6  | 106 | 1617   | 1.02 | <10 | 0.30 | 511  | 195  | 0.02  | 8  | 500 | 6  | 25 | <20 | 13 < 0.01 | <10 | 11 | <10 | 7  | 12 |
| 5     | 79727          | 80      | 1.4  | 0.54 | <5 | 60  | <5 | 0.74 | <1 | 9  | 70  | 2973   | 1.82 | <10 | 0.57 | 811  | 52   | 0.02  | 6  | 470 | 2  | <5 | <20 | 11 <0.01  | <10 | 16 | <10 | 6  | 22 |
| 6     | 79728          | 15      | <0.2 | 0.46 | <5 | 60  | <5 | 0.50 | <1 | 7  | 81  | 1432   | 1.43 | <10 | 0.41 | 603  | 309  | <0.01 | 11 | 360 | <2 | 40 | <20 | 16 <0.01  | <10 | 13 | <10 | 5  | 20 |
| 7     | 79729          | 295     | 0.6  | 0.61 | <5 | 90  | <5 | 0.61 | <1 | 11 | 85  | 2481   | 2.38 | <10 | 0.61 | 1056 | 145  | 0.02  | 14 | 460 | 4  | 45 | <20 | 17 <0.01  | <10 | 21 | <10 | 9  | 34 |
| 8     | 79730          | 150     | <0.2 | 0.52 | <5 | 65  | <5 | 0.61 | <1 | 10 | 85  | 6570   | 2.56 | <10 | 0.53 | 856  | 11   | 0.02  | 12 | 430 | <2 | 30 | <20 | 13 < 0.01 | <10 | 17 | <10 | 7  | 27 |
| 9     | 79731          | 60      | 9.2  | 0.35 | <5 | 50  | <5 | 0.39 | <1 | 7  | 70  | >10000 | 1.92 | <10 | 0.28 | 442  | 330  | 0.01  | 4  | 220 | 4  | <2 | <20 | 14 0.01   | <10 | 8  | <10 | 3  | 14 |
| 10    | 79732          | 20      | 1.0  | 0.60 | <5 | 80  | <5 | 0.76 | <1 | 12 | 105 | 236    | 2.09 | <10 | 0.70 | 942  | 903  | 0.02  | 9  | 490 | 6  | <5 | <20 | 13 <0.01  | <10 | 24 | <10 | 9  | 34 |
| 11    | 79733          | 5       | <0.2 | 0.81 | <5 | 80  | <5 | 0.64 | <1 | 14 | 78  | 67     | 3.04 | <10 | 0.96 | 1127 | 14   | 0.03  | 10 | 470 | 4  | <5 | <20 | 13 < 0.01 | <10 | 38 | <10 | 10 | 47 |
| 12    | 79734          | 10      | <0.2 | 0.56 | <5 | 115 | <5 | 0.95 | <1 | 13 | 77  | 281    | 3.08 | <10 | 0.83 | 1324 | 14   | 0.03  | 9  | 430 | 4  | <5 | <20 | 21 < 0.01 | <10 | 35 | <10 | 10 | 46 |
| 13    | 79735          | 10      | <0.2 | 0.54 | <5 | 70  | <5 | 0.68 | <1 | 9  | 65  | 112    | 2.05 | <10 | 0.69 | 744  | 88   | 0.01  | 7  | 390 | 6  | <5 | <20 | 9 < 0.01  | <10 | 28 | <10 | 8  | 32 |
| 14    | 79736          | 5       | <0.2 | 0.58 | <5 | 65  | <5 | 0.40 | <1 | 9  | 112 | 445    | 1.68 | <10 | 0.60 | 498  | 44   | 0.02  | 8  | 530 | 4  | <5 | <20 | 9 < 0.01  | <10 | 25 | <10 | 8  | 28 |
| 15    | 79737          | 10      | 0.2  | 0.28 | <5 | 65  | <5 | 0.29 | <1 | 5  | 110 | 139    | 0.98 | <10 | 0.25 | 358  | 84   | 0.02  | 4  | 350 | 2  | <5 | <20 | 9 < 0.01  | <10 | 13 | <10 | 7  | 14 |
| 16    | 79738          | 25      | 0.4  | 0.16 | <5 | 60  | <5 | 0.20 | <1 | 7  | 154 | 124    | 0.41 | <10 | 80.0 | 161  | 2592 | 0.01  | 6  | 150 | 12 | <5 | <20 | 8 < 0.01  | <10 | 2  | <10 | 3  | 6  |
| 17    | 79739          | 25      | 3.2  | 0.29 | <5 | 70  | <5 | 0.11 | <1 | 9  | 114 | 1728   | 0.48 | <10 | 0.09 | 83   | 2928 | 0.02  | 6  | 210 | 14 | <5 | <20 | 14 < 0.01 | <10 | 2  | <10 | 2  | 4  |
| 18    | 79740          | 30      | 4.2  | 0.28 | 10 | 65  | <5 | 0.13 | <1 | 7  | 119 | 2596   | 0.66 | <10 | 0.09 | 105  | 1706 | 0.02  | 4  | 230 | 12 | <5 | <20 | 15 < 0.01 | <10 | 3  | <10 | 3  | 14 |
| 19    | 79741          | 15      | 1.8  | 0.44 | <5 | 75  | <5 | 0.83 | <1 | 9  | 96  | 2927   | 1.74 | <10 | 0.58 | 512  | 151  | 0.03  | 6  | 370 | 6  | <5 | <20 | 19 < 0.01 | <10 | 19 | <10 | 8  | 21 |
| 20    | 797 <b>4</b> 2 | 5       | <0.2 | 0.85 | <5 | 70  | <5 | 0.35 | <1 | 12 | 80  | 64     | 2.86 | <10 | 0.88 | 495  | 11   | 0.04  | 10 | 500 | 4  | <5 | <20 | 12 < 0.01 | <10 | 47 | <10 | 5  | 35 |

|       |       |         |      |      |     | _   |    |      |    | _  | _   | _      |      |     |      |      |      |      |     | _     |     |    | _   | :         |     | ., | 14/ | ., | _  |
|-------|-------|---------|------|------|-----|-----|----|------|----|----|-----|--------|------|-----|------|------|------|------|-----|-------|-----|----|-----|-----------|-----|----|-----|----|----|
| Et #. | Tag # | Au(ppb) |      | Al % | As  | Ba  |    | Ca % | Cd | Co | Сг  |        | Fe % |     | Mg % | Mn   | Mo   | Na % | Ni  | P     | Pb  | Sb | Sn  | Sr Ti %   | U   | V  | W   | Y  | Zn |
| 21    | 79743 | 5       | <0.2 |      | <5  | 85  |    | 0.82 | <1 | 13 | 87  | 121    | 3.50 | <10 | 0.80 | 648  | 729  | 0.03 | 9   | 490   | 4   | <5 | <20 | 17 < 0.01 | <10 | 46 | <10 | 4  | 35 |
| 22    | 79744 | 20      | 1.2  | 0.53 | <5  | 100 |    | 1.08 | <1 | 9  | 69  | 1599   | 2.34 | <10 | 0.73 | 553  | 42   | 0.04 | 6   | 470   | 4   | <5 | <20 | 26 < 0.01 | <10 | 29 | <10 | 6  | 26 |
| 23    | 79745 | 15      | 1.2  | 0.63 | <5  | 65  | <5 | 0.38 | <1 | 10 | 112 | 2124   | 3.03 | <10 | 0.65 | 409  | 105  | 0.03 | 8   | 450   | 4   | <5 | <20 | 9 < 0.01  | <10 | 42 | <10 | 5  | 31 |
| 24    | 79746 | 140     | 15.2 | 0.42 | <5  | 75  | <5 | 0.55 | <1 | 9  |     | >10000 | 3.12 | <10 | 0.52 | 596  | 17   | 0.03 | 6   | 130   | <2  | <5 | <20 | 3 0.01    | <10 | 32 | <10 | 7  | 30 |
| 25    | 79747 | 60      | 12.7 | 0.32 | <5  | 64  | <5 | 0.54 | <1 | 9  | 69  | >10000 | 3.32 | <10 | 0.43 | 578  | 46   | 0.03 | 5   | <10   | <2  | <5 | <7  | 25 0.01   | <10 | 28 | <10 | 4  | 25 |
| 26    | 79748 | 70      | 5.6  | 0.27 | <5  | 93  | <5 | 0.91 | <1 | 9  | 64  | >10000 | 3.92 | <10 | 0.60 | 683  | 478  | 0.03 | 5   | 30    | 4   | <5 | <39 | 24 0.01   | <10 | 31 | <10 | 4  | 23 |
| 27    | 79749 | 260     | 27.4 | 0.35 | <5  | 38  | <5 | 0.37 | <1 | 13 | 68  | >10000 | 4.66 | <10 | 0.51 | 764  | 10   | 0.02 | 5 > | 10000 | 6   | <5 | 14  | 15 <.22   | <10 | 31 | <10 | <1 | 25 |
| 28    | 79750 | 115     | 12.8 | 0.23 | <5  | 3   | <5 | 0.64 | <1 | 12 | 62  | >10000 | 4.09 | <10 | 0.41 | 643  | 61   | 0.02 | 3   | 60    | 4   | <5 | 114 | <23 0.03  | <10 | 34 | <10 | 6  | 19 |
| 29    | 79751 | 135     | 1.9  | 0.56 | <5  | 79  | <5 | 0.87 | <1 | 10 | 82  | 3731   | 2.59 | <10 | 0.75 | 588  | 21   | 0.02 | 6   | 360   | 8   | <5 | <2  | 17 0.01   | <10 | 31 | <10 | 8  | 25 |
| 30    | 79752 | 25      | 1.1  | 0.74 | <5  | 81  | <5 | 0.92 | <1 | 12 | 65  | 2570   | 2.99 | <10 | 0.94 | 700  | 5    | 0.02 | 8   | 370   | 8   | <5 | <23 | 19 0.01   | <10 | 43 | <10 | 11 | 31 |
| 31    | 79753 | 10      | 0.6  | 0.75 | <5  | 68  | <5 | 0.34 | <1 | 11 | 112 | 1388   | 2.70 | <10 | 0.76 | 524  | 43   | 0.03 | 7   | 460   | 8   | <5 | <25 | 12 0.01   | <10 | 40 | <10 | 11 | 29 |
| 32    | 79754 | 10      | 0.7  | 0.66 | <5  | 107 | <5 | 0.89 | <1 | 10 | 75  | 1544   | 2.76 | <10 | 0.78 | 743  | 87   | 0.04 | 7   | 460   | 8   | <5 | <35 | 28 0.01   | <10 | 44 | <10 | 10 | 27 |
| 33    | 79755 | 5       | 0.4  | 0.50 | <5  | 100 | <5 | 0.84 | <1 | 10 | 73  | 416    | 2.56 | <10 | 0.59 | 586  | 38   | 0.05 | 7   | 450   | 4   | <5 | <20 | 24 < 0.01 | <10 | 43 | <10 | 12 | 24 |
| 34    | 79756 | 10      | <0.2 | 0.55 | <5  | 185 | <5 | 0.83 | <1 | 6  | 79  | 1022   | 1.96 | <10 | 0.49 | 376  | 261  | 0.06 | 5   | 470   | 4   | <5 | <20 | 42 0.02   | <10 | 43 | <10 | 13 | 18 |
| 35    | 79757 | 5       | <0.2 | 0.61 | <5  | 175 | <5 | 0.38 | <1 | 7  | 87  | 134    | 2.07 | <10 | 0.44 | 288  | 54   | 0.07 | 6   | 460   | 4   | <5 | <20 | 41 0.02   | <10 | 42 | <10 | 9  | 13 |
| 36    | 79758 | 5       | <0.2 | 0.59 | <5  | 175 | <5 | 0.57 | <1 | 8  | 61  | 237    | 1.97 | <10 | 0.47 | 327  | 434  | 0.07 | 4   | 410   | 6   | <5 | <20 | 43 0.02   | <10 | 40 | <10 | 9  | 11 |
| 37    | 79759 | 5       | 0.2  | 0.58 | <5  | 185 | <5 | 0.59 | <1 | 6  | 58  | 646    | 1.76 | <10 | 0.42 | 328  | 269  | 0.07 | 5   | 490   | 4   | <5 | <20 | 48 0.01   | <10 | 39 | <10 | 10 | 11 |
| 38    | 79760 | 10      | 1.4  | 0.48 | 20  | 110 | <5 | 0.91 | <1 | 8  | 90  | 2490   | 2.00 | <10 | 0.52 | 480  | 350  | 0.05 | 6   | 490   | 4   | <5 | <20 | 31 < 0.01 | <10 | 40 | <10 | 11 | 21 |
| 39    | 79761 | 40      | 2.6  | 0.17 | 115 | 45  | <5 | 0.18 | <1 | 4  | 118 | 2966   | 0.67 | <10 | 0.08 | 137  | 247  | 0.02 | 4   | 150   | <2  | <5 | <20 | 3 < 0.01  | <10 | 5  | <10 | 3  | 18 |
| 40    | 79762 | 10      | 0.6  | 0.18 | 10  | 50  | <5 | 0.09 | <1 | 5  | 157 | 541    | 0.47 | <10 | 0.06 | 127  | 656  | 0.02 | 4   | 140   | 4   | <5 | <20 | 9 < 0.01  | <10 | 3  | <10 | 4  | 6  |
| 41    | 79763 | 20      | <0.2 | 0.25 | <5  | 55  | <5 | 1.19 | <1 | 5  | 111 | 152    | 0.68 | <10 | 0.32 | 475  | 1428 | 0.02 | 3   | 210   | 6   | <5 | <20 | 19 <0.01  | <10 | 3  | <10 | 7  | 8  |
| 42    | 79764 | 10      | 1.2  | 0.51 | <5  | 90  | <5 | 2.84 | 2  | 9  | 92  | 1145   | 2.53 | <10 | 1.00 | 1185 | 77   | 0.03 | 6   | 470   | 4   | 10 | <20 | 39 < 0.01 | <10 | 29 | <10 | 13 | 27 |
| 43    | 79765 | 5       | 1.2  | 0.63 | <5  | 80  | <5 | 0.78 | <1 | 10 | 73  | 1188   | 2.62 | <10 | 0.76 | 631  | 107  | 0.04 | 7   | 480   | 6   | <5 | <20 | 20 < 0.01 | <10 | 48 | <10 | 8  | 27 |
| 44    | 79766 | 10      | <0.2 | 0.35 | <5  | 55  | <5 | 0.24 | <1 | 4  | 130 | 129    | 0.89 | <10 | 0.32 | 191  | 697  | 0.03 | 5   | 230   | 2   | <5 | <20 | 13 < 0.01 | <10 | 15 | <10 | 3  | 13 |
| 45    | 79767 | 5       | 1.0  | 0.45 | <5  | 110 | <5 | 1.45 | <1 | 5  | 71  | 1285   | 1.38 | 10  | 0.68 | 486  | 66   | 0.05 | 4   | 420   | 4   | 5  | <20 | 44 < 0.01 | <10 | 28 | <10 | 12 | 15 |
| 46    | 79768 | 5       | 1.2  | 0.47 | <5  | 90  | <5 | 1.43 | <1 | 5  | 91  | 2094   | 1.61 | <10 | 0.66 | 331  | 126  | 0.05 | 5   | 450   | 4   | <5 | <20 | 36 < 0.01 | <10 | 30 | <10 | 11 | 13 |
| 47    | 79769 | 10      | 0.4  | 0.42 | <5  | 70  | <5 | 0.94 | <1 | 7  | 76  | 516    | 1.77 | 10  | 0.48 | 320  | 42   | 0.04 | 6   | 440   | 4   | <5 | <20 | 24 < 0.01 | <10 | 35 | <10 | 11 | 19 |
| 48    | 79770 | 5       | 0.4  | 0.64 | <5  | 70  | <5 | 0.51 | <1 | 11 | 103 | 646    | 2.68 | <10 | 0.72 | 406  | 100  | 0.04 | 7   | 410   | 4   | <5 | <20 | 17 < 0.01 | <10 | 43 | <10 | 8  | 28 |
| 49    | 79771 | 10      | 0.4  | 0.68 | <5  | 65  | <5 | 0.41 | <1 | 12 | 77  | 568    | 2.79 | <10 | 0.74 | 438  | 59   | 0.04 | 8   | 430   | 448 | <5 | <20 | 15 < 0.01 | <10 | 44 | <10 | 9  | 28 |
| 50    | 79772 | 5       | <0.2 | 0.60 | <5  | 90  | <5 | 0.56 | <1 | 10 | 90  | 285    | 2.60 | <10 | 0.64 | 378  | 15   | 0.05 | 7   | 400   | 6   | <5 | <20 | 28 < 0.01 | <10 | 44 | <10 | 11 | 21 |
| 51    | 79773 | 25      | 2.0  | 0.48 | <5  | 70  | <5 | 0.33 | <1 | 11 | 73  | 3308   | 4.31 | <10 | 0.53 | 343  | 7    | 0.03 | 6   | 370   | <2  | <5 | <20 | 15 0.02   | <10 | 57 | <10 | 1  | 23 |
| 52    | 79774 | 5       | <0.2 | 0.50 | <5  | 70  | <5 | 0.83 | <1 | 8  | 98  | 342    | 2.22 | <10 | 0.69 | 344  | 7    | 0.04 | 6   | 420   | 2   | <5 | <20 | 25 < 0.01 | <10 | 46 | <10 | 10 | 20 |
| 53    | 79775 | 5       | <0.2 | 0.49 | <5  | 110 | <5 | 0.68 | <1 | 7  | 67  | 40     | 2.10 | <10 | 0.51 | 264  | 5    | 0.06 | 6   | 440   | 4   | <5 | <20 | 42 < 0.01 | <10 | 46 | <10 | 15 | 14 |
| 54    | 79776 | 5       | 0.4  | 0.47 | <5  | 85  | <5 | 0.39 | <1 | 9  | 102 | 282    | 2.14 | 10  | 0.52 | 413  | 6    | 0.04 | 7   | 430   | 4   | <5 | <20 | 22 < 0.01 | <10 | 37 | <10 | 13 | 29 |
| 55    | 79777 | 5       | 0.2  | 0.47 | <5  | 80  | <5 | 0.33 | <1 | 9  | 83  | 343    | 1.87 | 20  | 0.50 | 398  | 5    | 0.04 | 6   | 430   | 4   | <5 | <20 | 23 < 0.01 | <10 | 25 | <10 | 13 | 28 |

Page 2

| Et #.  | Tag # | Au(ppb) | Ag   | Al % | As | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn  | Мо  | Na % | Ni | P   | Pb | Sb | Sn  | Sr Ti%    | U   |    | W   | Y  | Zn  |
|--------|-------|---------|------|------|----|-----|----|------|----|----|-----|------|------|-----|------|-----|-----|------|----|-----|----|----|-----|-----------|-----|----|-----|----|-----|
| 56     | 79778 | 5       | <0.2 | 0.41 | <5 | 85  | <5 | 0.37 | <1 | 6  | 93  | 151  | 1.48 | 20  | 0.39 | 287 | 4   | 0.05 | 5  | 440 | 4  | <5 | <20 | 30 < 0.01 | <10 | 25 | <10 | 16 | 21  |
| 57     | 79779 | 10      | <0.2 | 0.43 | <5 | 85  | <5 | 0.56 | <1 | 7  | 79  | 139  | 1.51 | 20  | 0.45 | 333 | 4   | 0.05 | 5  | 430 | 4  | <5 | <20 | 31 < 0.01 | <10 | 25 | <10 | 16 | 21  |
| 58     | 79780 | 10      | <0.2 | 0.42 | <5 | 85  | <5 | 1.02 | <1 | 9  | 122 | 196  | 2.21 | <10 | 0.68 | 517 | 8   | 0.03 | 7  | 480 | 4  | <5 | <20 | 26 <0.01  | <10 | 32 | <10 | 13 | 25  |
| 59     | 79781 | 5       | <0.2 | 0.74 | <5 | 95  | <5 | 1.23 | <1 | 10 | 63  | 42   | 2.31 | <10 | 1.00 | 392 | 5   | 0.05 | 6  | 510 | 2  | <5 | <20 | 45 < 0.01 | <10 | 49 | <10 | 10 | 26  |
| 60     | 79782 | 5       | <0.2 | 0.45 | <5 | 100 | <5 | 0.68 | <1 | 8  | 70  | 98   | 2.07 | 10  | 0.49 | 367 | 25  | 0.06 | 8  | 540 | <2 | <5 | <20 | 39 < 0.01 | <10 | 46 | <10 | 13 | 20  |
|        |       |         |      |      |    |     |    |      |    |    |     |      |      |     |      |     |     |      |    |     |    |    |     |           |     |    |     |    |     |
| 61     | 79783 | 5       | 0.2  |      | <5 | 90  | <5 | 0.46 | <1 | 11 | 70  | 509  | 2.84 | <10 | 0.69 | 402 | 6   | 0.05 | 8  | 550 | 4  | <5 | <20 | 28 < 0.01 | <10 | 53 | <10 | 9  | 26  |
| 62     | 79784 | 5       | <0.2 |      | <5 | 105 | <5 | 0.93 | <1 | 10 | 84  | 36   | 2.83 | <10 | 0.64 | 493 | 6   | 0.06 | 8  | 490 | 2  | <5 | <20 | 43 < 0.01 | <10 | 54 | <10 | 13 | 25  |
| 63     | 79785 | 5       | <0.2 | 0.68 | <5 | 80  | <5 | 1.22 | <1 | 11 | 71  | 61   | 2.51 | <10 | 0.86 | 457 | 75  | 0.04 | 8  | 510 | 6  | 5  | <20 | 39 < 0.01 | <10 | 38 | <10 | 9  | 27  |
| 64     | 79786 | 10      | 0.4  | 0.80 | <5 | 130 | <5 | 1.66 | <1 | 9  | 72  | 526  | 2.59 | <10 | 0.94 | 373 | 21  | 0.08 | 8  | 500 | 2  | <5 | <20 | 76 <0.01  | <10 | 46 | <10 | 10 | 25  |
| 65     | 79787 | 5       | 0.2  | 0.81 | <5 | 80  | <5 | 1.43 | <1 | 11 | 75  | 389  | 2.88 | <10 | 0.98 | 348 | 49  | 0.05 | 7  | 520 | 4  | <5 | <20 | 41 <0.01  | <10 | 52 | <10 | 10 | 27  |
|        |       |         |      |      |    |     |    |      |    |    |     |      |      |     |      |     |     |      |    |     |    |    |     |           |     |    |     |    |     |
| 66     | 79788 | 5       | <0.2 |      | <5 | 345 |    | 1.65 | <1 | 9  | 91  | 151  | 2.73 | <10 |      | 320 | 9   | 0.05 | 8  | 520 | 6  | <5 | <20 | 38 0.02   | <10 | 54 | <10 | 11 | 25  |
| 67     | 79789 | 10      |      |      | <5 | 135 | <5 | 1.74 | <1 | 11 | 55  | 302  | 2.86 | <10 | 1.07 | 370 | 7   | 0.07 | 8  | 510 | 6  | <5 | <20 | 74 < 0.01 | <10 | 51 | <10 | 9  | 28  |
| 68     | 79790 | 5       | <0.2 | 0.67 | <5 | 150 | <5 | 1.71 | <1 | 9  | 71  | 71   | 2.53 | <10 | 0.67 | 357 | 8   | 0.08 | 6  | 470 | 4  | <5 | <20 | 75 <0.01  | <10 | 51 | <10 | 15 | 18  |
| 69     | 79791 | 10      | <0.2 | 0.74 | <5 | 165 | <5 | 2.42 | <1 | 10 | 51  | 258  | 2.74 | <10 | 0.86 | 349 | 7   | 0.08 | 8  | 550 | 6  | <5 | <20 | 92 < 0.01 | <10 | 36 | <10 | 11 | 27  |
| 70     | 79792 | 5       | <0.2 | 0.45 | <5 | 410 | <5 | 4.18 | <1 | 7  | 65  | 218  | 2.03 | <10 | 0.78 | 581 | 17  | 0.06 | 6  | 390 | <2 | <5 | <20 | 83 < 0.01 | <10 | 21 | <10 | 16 | 19  |
|        |       |         |      |      |    |     |    |      |    |    |     |      |      |     |      |     |     |      |    |     |    |    |     |           |     |    |     |    |     |
| 71     | 79793 | 10      | 0.4  |      | <5 | 355 |    | 4.46 | <1 | 7  | 45  | 460  |      |     | 0.56 | 520 | 16  | 0.04 | 5  | 480 | 2  | <5 | <20 | 62 < 0.01 | <10 | 23 | <10 | 14 | 23  |
| 72     | 79794 | 5       | <0.2 |      | <5 | 130 | <5 | 5.14 | <1 | 9  | 46  | 318  | 2.11 | <10 | 0.57 | 597 | 21  | 0.05 | 8  | 480 | 2  | <5 | <20 | 75 <0.01  | <10 | 26 | <10 | 14 | 23  |
| 73     | 79795 | 5       | <0.2 |      | <5 | 455 | <5 | 4.58 | <1 | 5  | 79  | 283  |      | 10  | 0.35 | 584 | 16  | 0.04 | 6  | 460 | 2  | <5 | <20 | 61 <0.01  | <10 | 23 | <10 | 14 | 19  |
| 74     | 79796 | 20      | 0.2  | 0.41 | <5 | 180 | <5 | 3.61 | <1 | 10 | 35  | 258  | 2.44 | <10 | 0.59 | 509 | 14  | 0.04 | 5  | 440 | 2  | <5 | <20 | 63 < 0.01 | <10 | 23 | <10 | 11 | 29  |
| 75     | 79797 | 15      | 0.4  | 0.34 | <5 | 100 | <5 | 1.22 | <1 | 5  | 31  | 363  | 1.29 | <10 | 0.32 | 180 | 26  | 0.04 | 3  | 400 | 2  | <5 | <20 | 40 < 0.01 | <10 | 15 | <10 | 5  | 18  |
|        |       |         |      |      |    |     |    |      |    |    |     |      |      |     |      |     |     |      |    |     |    |    |     |           |     |    |     |    |     |
| QC DA  |       |         |      |      |    |     |    |      |    |    |     |      |      |     |      |     |     |      |    |     |    |    |     |           |     |    |     |    |     |
| Respli |       |         |      |      | _  |     | _  |      |    |    |     |      |      |     |      |     |     |      |    |     |    |    |     |           |     |    |     |    | 40  |
| 1      | 79723 | 10      | 0.6  |      | <5 | 60  | <5 | 0.86 | <1 | 5  | 96  | 704  |      | <10 | 0.22 | 488 | 710 | 0.02 | 5  | 230 | 4  | <5 | <20 | 9 <0.01   | <10 | 8  | <10 | 4  | 13  |
| 36     | 79758 | 5       | <0.2 |      | <5 | 190 | <5 | 0.62 | <1 | 8  | 68  | 242  |      | <10 |      | 331 | 421 | 0.07 | 7  | 460 | 4  | <5 | <20 | 48 0.01   | <10 | 46 | <10 | 11 | 15  |
| _ 71   | 79793 | 15      | 0.4  | 0.42 | <5 | 315 | <5 | 4.28 | <1 | 6  | 49  | 442  | 1.74 | <10 | 0.54 | 499 | 14  | 0.04 | 6  | 460 | 2  | <5 | <20 | 62 < 0.01 | <10 | 22 | <10 | 13 | 21  |
| Repea  |       |         |      |      | _  |     | _  |      |    |    |     |      |      |     |      |     |     |      | _  |     |    | _  |     |           |     | _  |     |    | 4.0 |
| 1      | 79723 | 10      | 0.6  |      | <5 | 60  | <5 | 0.87 | <1 | 6  | 115 | 832  |      |     | 0.23 | 495 | 703 | 0.02 | 5  | 250 | 4  | <5 | <20 | 10 < 0.01 | <10 | 8  | <10 | 4  | 13  |
| 10     | 79732 | 15      | 1.0  |      | <5 | 80  | <5 | 0.75 | <1 | 12 | 102 | 230  |      |     | 0.69 | 931 | 904 | 0.02 | 7  | 480 | 6  | <5 | <20 | 15 < 0.01 | <10 | 24 | <10 | 9  | 34  |
| 19     | 79741 | 20      | 1.6  |      | <5 | 80  | <5 | 0.85 | <1 | 9  | 97  | 3112 |      | <10 |      | 523 | 149 | 0.03 | 7  | 390 | 6  | <5 | <20 | 21 <0.01  | <10 | 19 | <10 | 8  | 21  |
| 36     | 79758 | 5       | <0.2 |      | <5 | 175 | <5 | 0.59 | <1 | 8  | 64  | 239  |      | <10 | 0.49 | 342 | 448 | 0.07 | 6  | 430 | 4  | <5 | <20 | - ↓ 0.02  | <10 | 42 | <10 | 10 | 11  |
| 45     | 79767 | 5       | 1.0  | 0.45 | <5 | 105 | <5 | 1.43 | <1 | 5  | 70  | 1241 | 1.37 | 10  |      | 482 | 61  | 0.05 | 5  | 410 | 4  | <5 | <20 | 42 <0.01  | <10 | 28 | <10 | 11 | 15  |
| 54     | 79776 | 5       | <0.2 |      | <5 | 85  | <5 | 0.38 | <1 | 9  | 100 | 259  | 2.14 | 10  | 0.52 | 411 | 5   | 0.03 | 7  | 420 | 4  | <5 | <20 | 23 < 0.01 | <10 | 37 | <10 | 13 | 28  |
| 71     | 79793 | -       | 0.4  | 0.41 | <5 | 320 | <5 | 4.09 | <1 | 6  | 41  | 425  | 1.76 | <10 | 0.51 | 475 | 15  | 0.04 | 5  | 450 | <2 | 5  | <20 | 56 < 0.01 | <10 | 20 | <10 | 12 | 23  |

TARCO OIL & GAS

#### ICP CERTIFICATE OF ANALYSIS AK 96-1319

#### ECO-TECH LABORATORIES LTD.

| Et#. Tag# | Au(ppb) | Ag  | Al % | As | Ва  | Bi | Ca % | Cd | Сэ | Cr | Cu | Fe % | La  | Mg % | Mn  | Мо | Na % | Ni | Р   | Pb | Sb | Sn  | Sr | Ti % | U   | ٧  | w   | Υ  | Zn |
|-----------|---------|-----|------|----|-----|----|------|----|----|----|----|------|-----|------|-----|----|------|----|-----|----|----|-----|----|------|-----|----|-----|----|----|
| Standard: |         |     |      |    |     |    |      |    |    |    |    |      |     |      |     |    |      |    |     |    |    |     |    |      |     |    |     |    |    |
| GEO'96    | 145     | 1.2 | 1.66 | 70 | 135 | 10 | 1.82 | <1 | 19 | 59 | 79 | 3.91 | <10 | 1.01 | 666 | 1  | 0.02 | 24 | 620 | 24 | <5 | <20 | 60 | 0.12 | <10 | 74 | <10 | 7  | 66 |
| GEO'96    | 145     | 1.2 | 1.74 | 65 | 140 | 5  | 1.79 | <1 | 19 | 63 | 70 | 4.11 | <10 | 1.05 | 693 | 3  | 0.02 | 25 | 660 | 20 | <5 | <20 | 60 | 0.13 | <10 | 78 | <10 | 8  | 70 |
| GEO'96    | 145     | 1.0 | 2.01 | 70 | 160 | 10 | 2.01 | <1 | 22 | 71 | 79 | 4.06 | <10 | 1.06 | 782 | <1 | 0.02 | 24 | 790 | 22 | <5 | <20 | 52 | 0.14 | <10 | 89 | <10 | 10 | 80 |

df/1318b

XLS/96TARCO#3

Fank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-1318

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received:34
Sample type:ROCK
PROJECT #: NONE GIVEN
SHIPMENT #:NONE GIVEN
Samples submitted by: GARY STEWART

| Et #. | Tag#  | Au(ppb) | Ag   | AI % | As | Ва  | 8i | Ca % | Cd | Co | Cr | Cu   | Fe % | La  | Mg % | Mn   | Мо  | Na % | Ni | Р   | Pb | Sb | Sn  | Sr Ti%    | u   | v  | w   | Υ  | Zn |
|-------|-------|---------|------|------|----|-----|----|------|----|----|----|------|------|-----|------|------|-----|------|----|-----|----|----|-----|-----------|-----|----|-----|----|----|
| 1     | 79851 | 5       | <0.2 | 0.77 | <5 | 45  | <5 | 3.33 | <1 | 7  | 39 | 168  | 1.94 | 10  | 0.82 | 504  | 7   | 0.02 | 6  | 470 | 14 | <5 | <20 | 47 < 0.01 | <10 | 41 | <10 | 21 | 55 |
| 2     | 79852 | 5       | <0.2 | 0.93 | <5 | 45  | <5 | 3.40 | <1 | 9  | 46 | 246  | 2.07 | 10  | 1.16 | 581  | 21  | 0.02 | 7  | 460 | 4  | 10 | <20 | 54 < 0.01 | <10 | 41 | <10 | 21 | 27 |
| 3     | 79853 | 5       | <0.2 | 0.79 | 20 | <5  | <5 | 3.23 | <1 | 8  | 58 | 328  | 1.93 | 10  | 0.69 | 515  | 13  | 0.02 | 6  | 600 | 12 | <5 | 20  | 9 < 0.01  | <10 | 39 | 10  | 20 | 25 |
| 4     | 79854 | 5       | <0.2 | 0.93 | <5 | 65  | <5 | 3.04 | <1 | 10 | 55 | 558  | 2.25 | <10 | 0.98 | 572  | 4   | 0.02 | 7  | 490 | 4  | 5  | <20 | 49 < 0.01 | <10 | 42 | <10 | 15 | 26 |
| 5     | 79855 | 5       | <0.2 | 0.71 | <5 | 100 | <5 | 2.55 | <1 | 8  | 56 | 167  | 2.14 | 10  | 0.93 | 462  | 3   | 0.03 | 6  | 490 | 4  | 5  | <20 | 69 < 0.01 | <10 | 47 | <10 | 14 | 18 |
| 6     | 79856 | 5       | <0.2 | 0.72 | <5 | 60  | <5 | 2.06 | <1 | 8  | 74 | 363  | 2.37 | <10 | 0.65 | 369  | 9   | 0.03 | 7  | 480 | 4  | <5 | <20 | 45 < 0.01 | <10 | 55 | <10 | 11 | 24 |
| 7     | 79857 | 5       | <0.2 | 0.86 | <5 | 70  | <5 | 2.83 | <1 | 10 | 64 | 348  | 2.57 | 10  | 1.13 | 564  | 14  | 0.03 | 8  | 460 | 4  | 5  | <20 | 55 <0.01  | <10 | 46 | <10 | 16 | 26 |
| 8     | 79858 | 5       | 0.2  | 0.7  | <5 | 75  | <5 | 2.66 | <1 | 9  | 58 | 493  | 2.30 | <10 | 1.20 | 518  | 4   | 0.03 | 6  | 440 | 6  | <5 | <20 | 60 < 0.01 | <10 | 39 | <10 | 15 | 22 |
| 9     | 79859 | 5       | <0.2 | 0.79 | <5 | 70  | <5 | 3.18 | <1 | 10 | 65 | 518  | 2.48 | <10 | 0.78 | 574  | 5   | 0.02 | 8  | 460 | 4  | <5 | <20 | 41 <0.01  | <10 | 42 | <10 | 14 | 26 |
| 10    | 79860 | 5       | <0.2 | 0.73 | <5 | 75  | <5 | 2.29 | <1 | 9  | 59 | 363  | 1.85 | 10  | 0.61 | 419  | 157 | 0.03 | 7  | 480 | 6  | <5 | <20 | 42 <0.01  | <10 | 31 | <10 | 17 | 18 |
| 11    | 79861 | 5       | <0.2 | 0.73 | <5 | 70  | <5 | 4.26 | <1 | 8  | 55 | 263  | 2.21 | 10  | 1.06 | 602  | 24  | 0.02 | 6  | 460 | 2  | 5  | <20 | 61 < 0.01 | <10 | 22 | <10 | 16 | 24 |
| 12    | 79862 | 10      | <0.2 | 0.74 | <5 | 85  | <5 | 4.73 | <1 | 12 | 55 | 246  | 3.17 | <10 | 1.34 | 797  | 4   | 0.02 | 8  | 420 | 2  | 10 | <20 | 68 < 0.01 | <10 | 30 | <10 | 15 | 36 |
| 13    | 79863 | 5       | <0.2 | 0.82 | <5 | 75  | <5 | 4.97 | <1 | 10 | 63 | 241  | 2.51 | <10 | 1.22 | 796  | 4   | 0.02 | 7  | 460 | 4  | 5  | <20 | 63 < 0.01 | <10 | 35 | <10 | 16 | 37 |
| 14    | 79864 | 10      | 0.4  | 0.93 | <5 | 75  | <5 | 3.29 | <1 | 10 | 61 | 740  | 2.23 | 10  | 0.86 | 593  | 520 | 0.02 | 6  | 490 | 6  | 10 | <20 | 44 < 0.01 | <10 | 32 | <10 | 14 | 32 |
| 15    | 79865 | 5       | 0.2  | 0.97 | <5 | 65  | <5 | 2.81 | <1 | 10 | 63 | 802  | 2.29 | <10 | 0.80 | 526  | 69  | 0.02 | 7  | 500 | 6  | <5 | <20 | 35 < 0.01 | <10 | 37 | <10 | 13 | 32 |
| 16    | 79866 | 5       | <0.2 | 1.01 | <5 | 80  | <5 | 3.63 | <1 | 13 | 59 | 403  | 2.95 | <10 | 1.61 | 701  | 24  | 0.03 | 7  | 430 | 4  | 10 | <20 | 77 <0.01  | <10 | 40 | <10 | 20 | 33 |
| 17    | 79867 | 5       | <0.2 | 1.05 | <5 | 75  | <5 | 2.47 | <1 | 11 | 70 | 399  | 2.64 | 10  | 1.06 | 571  | 16  | 0.03 | 8  | 500 | 6  | 5  | <20 | 43 < 0.01 | <10 | 43 | <10 | 16 | 30 |
| 18    | 79868 | 5       | 0.4  | 0.84 | <5 | 70  | <5 | 2.04 | <1 | 11 | 66 | 353  | 2.62 | <10 | 0.92 | 555  | 5   | 0.03 | 8  | 480 | 4  | <5 | <20 | 44 <0.01  | <10 | 42 | <10 | 14 | 28 |
| 19    | 79869 | 5       | 0.6  | 0.38 | <5 | 100 | <5 | 4.68 | <1 | 9  | 64 | 373  | 2.17 | <10 | 1.86 | 1219 | 106 | 0.02 | 4  | 410 | 2  | 10 | <20 | 136 <0.01 | <10 | 22 | <10 | 20 | 20 |
| 20    | 79870 | 5       | 8.0  | 0.80 | <5 | 90  | <5 | 2.11 | <1 | 13 | 67 | 1231 | 2.82 | <10 | 1.17 | 604  | 25  | 0.03 | 8  | 500 | 6  | 10 | <20 | 60 < 0.01 | <10 | 44 | <10 | 11 | 32 |

| TAR       | CO OIL & G     | AS      |      |      |    |     |    |      |    | 10 | CP CE | RTIFICA | TE OF | ANALY | 'SIS AI | K 96-13 | 118 |       |    |     |    |    | E   | CO-TECH L  | BORAT | ORIE | S LTD. |    |    |
|-----------|----------------|---------|------|------|----|-----|----|------|----|----|-------|---------|-------|-------|---------|---------|-----|-------|----|-----|----|----|-----|------------|-------|------|--------|----|----|
| Et        | #. Tag#        | Au(ppb) | Ag   | AI % | As | Ba  | Bi | Ca % | Cd | Со | Cr    | Cu      | Fe %  | La    | Mg %    | Mn      | Мо  | Na %  | Ni | P   | Pb | Sb | Sn  | Sr_ Ti %   | U     | ٧    | w      | Υ  | Zn |
| 21        | 79871          | 5       | 0.2  | 0.79 | <5 | 100 | <5 | 2.78 | <1 | 10 | 63    | 343     | 2.44  | <10   | 1.05    | 646     | 8   | 0.04  | 6  | 500 | 4  | 5  | <20 | 64 < 0.01  | <10   | 43   | <10    | 14 | 29 |
| 22        | 79872          | 5       | <0.2 | 0.60 | <5 | 70  | <5 | 1.84 | <1 | 8  | 83    | 459     | 2.01  | <10   | 0.53    | 397     | 36  | 0.04  | 6  | 460 | 2  | <5 | <20 | 35 < 0.01  | <10   | 46   | <10    | 10 | 21 |
| 23        | 79873          | 5       | <0.2 | 0.52 | <5 | 95  | <5 | 2.62 | <1 | 8  | 76    | 177     | 1.91  | 10    | 0.68    | 558     | 5   | 0.04  | 6  | 420 | 2  | <5 | <20 | 69 < 0.01  | <10   | 38   | <10    | 14 | 18 |
| 24        | 79874          | 5       | <0.2 | 0.45 | <5 | 110 | <5 | 1.93 | <1 | 7  | 86    | 81      | 1.89  | <10   | 0.57    | 449     | 24  | 0.05  | 6  | 450 | 4  | <5 | <20 | 69 < 0.01  | <10   | 48   | <10    | 11 | 16 |
| 25        | 79875          | 10      | <0.2 | 0.42 | <5 | 115 | <5 | 1.73 | <1 | 6  | 77    | 48      | 1.81  | 10    | 0.59    | 406     | 13  | 0.05  | 5  | 430 | <2 | <5 | <20 | 72 <0.01   | <10   | 48   | <10    | 15 | 16 |
| 26        | 79876          | 5       | <0.2 | 0.62 | <5 | 90  | <5 | 1.63 | <1 | 10 | 102   | 245     | 2.37  | 10    | 0.62    | 428     | 8   | 0.04  | 8  | 460 | 4  | <5 | <20 | 41 <0.01   | <10   | 54   | <10    | 12 | 21 |
| 27        | 79877          | 10      | <0.2 |      | <5 | 115 | <5 | 1.79 | <1 | 9  | 75    | 225     | 2.28  | 10    | 0.60    | 466     | 5   | 0.04  | 7  | 440 | 4  | <5 | <20 | 49 < 0.01  | <10   | 51   | <10    | 12 | 21 |
| 28        | 79878          | 5       | 0.6  | 0.71 | <5 | 80  | <5 | 2.14 | <1 | 10 | 98    | 967     | 2.28  | <10   | 0.74    | 559     | 13  | 0.03  | 6  | 370 | 4  | <5 | <20 | 40 < 0.01  | <10   | 38   | <10    | 10 | 27 |
| 29        | 79879          | 5       | 0.6  | 0.57 | <5 | 115 | <5 | 2.32 | <1 | 10 | 76    | 974     | 2.51  | <10   | 0.80    | 669     | 5   | 0.04  | 7  | 410 | 4  | <5 | <20 | 56 < 0.01  | <10   | 39   | <10    | 13 | 28 |
| ; 30      | 79880          | 5       | 8.0  | 0.73 | <5 | 75  | <5 | 1.62 | <1 | 11 | 97    | 1432    | 2.73  | <10   | 0.69    | 521     | 9   | 0.02  | 8  | 440 | 4  | <5 | <20 | 25 <0.01   | <10   | 42   | <10    | 11 | 28 |
| 31        | 79881          | 10      | 3.8  | 0.54 | <5 | 100 | <5 | 2.96 | <1 | 12 | 77    | 3990    | 3.10  | <10   | 0.72    | 995     | 22  | 0.02  | 7  | 360 | <2 | <5 | <20 | 45 < 0.01  | <10   | 34   | <10    | 11 | 32 |
| 32        | 79882          | 20      | 0.8  | 0.03 | <5 | 5   | <5 | 0.25 | <1 | <1 | 9     | 428     | 0.27  | <10   | 0.03    | 92      | 8   | <0.01 | <1 | <10 | <2 | <5 | <20 | 2 < 0.01   | 20    | 2    | <10    | <1 | 2  |
| 33        | 79883          | 35      | 8.0  | 0.04 | <5 | <5  | <5 | 0.30 | <1 | <1 | 15    | 799     | 0.25  | <10   | 0.03    | 115     | 25  | <0.01 | 1  | 40  | <2 | 5  | <20 | 1 < 0.01   | <10   | 2    | <10    | <1 | 2  |
| 34        | 79884          | 15      | 0.6  | 0.06 | <5 | <5  | <5 | 0.15 | <1 | <1 | 10    | >10000  | 0.29  | <10   | 0.05    | 73      | 11  | <0.01 | 2  | 40  | <2 | <5 | <20 | 1 <0.01    | <10   | 2    | <10    | <1 | 3  |
| QC<br>Res | DATA:<br>olit: |         |      |      |    |     |    |      |    |    |       |         |       |       |         |         |     |       |    |     |    |    |     |            |       |      |        |    |    |
| 1         | 79851          | <5      | <0.2 | 0.83 | <5 | 50  | <5 | 3.48 | <1 | 8  | 42    | 174     | 2.04  | 10    | 0.84    | 525     | 10  | 0.02  | 7  | 500 | 10 | 5  | <20 | 48 < 0.01  | <10   | 44   | <10    | 21 | 41 |
| Rep       |                |         |      |      |    |     | -  |      |    | •  | -     |         |       |       | 0.01    | 020     | ,,, | 0.02  | •  | 000 |    | •  |     |            |       |      |        |    |    |
| 1         | 79851          | 5       | <0.2 | 0.81 | <5 | 40  | <5 | 3.44 | <1 | 8  | 38    | 169     | 2.01  | 10    | 0.85    | 521     | 8   | 0.02  | 6  | 460 | 10 | 5  | <20 | 46 < 0.01  | <10   | 43   | <10    | 20 | 41 |
| 10        | 79860          | 5       | <0.2 | 0.79 | <5 | 80  | <5 | 2.34 | <1 | 9  | 62    | 384     | 1.93  | 10    | 0.64    | 433     | 165 | 0.03  | 7  | 490 | 6  | <5 | <20 | 46 < 0.01  | <10   | 32   | <10    | 17 | 18 |
| 19        |                | 5       | 0.6  | 0.39 | <5 | 105 | <5 | 4.70 | <1 | 9  | 65    | 364     | 2.19  | <10   | 1.83    | 1227    | 115 | 0.02  | 3  | 410 | 6  | 15 | <20 | 126 < 0.01 | <10   | 22   | <10    | 21 | 21 |
|           | dard:          |         |      |      |    |     |    |      | -  | _  | -     | ,       |       |       |         |         |     |       |    |     | •  |    |     |            |       |      |        |    |    |
| GEC       |                | 150     | 1.2  | 1.84 | 65 | 145 | <5 | 1.84 | <1 | 20 | 64    | 77      | 4.21  | <10   | 1.11    | 716     | <1  | 0.02  | 25 | 660 | 24 | <5 | <20 | 58 0.13    | <10   | 83   | <10    | 8  | 70 |

df/1318b XLS/96TARCO#3 Prank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-1332

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received: 94
Sample type: CORE
PROJECT #: NONE GIVEN
SHIPMENT #: NONE GIVEN
Samples submitted by: NOT INDICATED

| Et #. | Tag#  | Au(ppb) | Ag   | AI % | As | Ва  | Bi | Ca % | Cd | Co | Cr Cu      | Fe % | La I | Mg % | Mn   | Мо  | Na %  | Ni | Р   | Pb | Sb | Sn  | Sr Ti%    | U   | ٧  | w   | Υ  | Zn |
|-------|-------|---------|------|------|----|-----|----|------|----|----|------------|------|------|------|------|-----|-------|----|-----|----|----|-----|-----------|-----|----|-----|----|----|
| 1     | 79885 | 80      | 19.4 | 0.87 | <5 | 105 | <5 | 1.99 | <1 | 15 | 82 >10000  | 3.93 | <10  | 0.80 | 973  | 198 | 0.01  | 10 | 320 | <2 | <5 | <20 | 23 0.02   | <10 | 31 | <10 | <1 | 61 |
| 2     | 79886 | 55      | 18.2 | 0.68 | <5 | 80  | <5 | 1.92 | <1 | 11 | 98 >10000  | 2.92 | <10  | 0.49 | 859  | 32  | 0.01  | 8  | <10 | <2 | <5 | <20 | 21 0.02   | <10 | 17 | 10  | 2  | 46 |
| 3     | 79887 | 75      | 18.6 | 0.46 | <5 | 95  | <5 | 3.47 | <1 | 7  | 130 >10000 | 2.48 | <10  | 0.37 | 1314 | 76  | 0.01  | 5  | <10 | <2 | <5 | <20 | 35 0.02   | <10 | 18 | 20  | 6  | 29 |
| 4     | 79888 | 80      | 6.4  | 1.14 | <5 | 285 | <5 | 2.15 | <1 | 14 | 74 9240    | 3.42 | <10  | 0.82 | 996  | 19  | 0.01  | 9  | 490 | 4  | <5 | <20 | 25 < 0.01 | <10 | 28 | <10 | 6  | 61 |
| 5     | 79889 | 90      | 7.2  | 1.31 | <5 | 240 | <5 | 2.00 | <1 | 16 | 92 >10000  | 3.73 | <10  | 1.01 | 937  | 7   | 0.01  | 11 | 550 | 4  | <5 | <20 | 24 0.01   | <10 | 40 | <10 | 3  | 58 |
| 6     | 79890 | 65      | 14.0 | 1.11 | <5 | 190 | <5 | 2.89 | <1 | 13 | 108 >10000 | 3.15 | <10  | 0.77 | 1205 | 7   | <0.01 | 10 | 480 | 2  | <5 | <20 | 31 0.01   | <10 | 36 | <10 | 6  | 51 |
| 7     | 79891 | 200     | 17.2 | 0.88 | ٠5 | 125 | <5 | 1.72 | <1 | 11 | 91 >10000  | 2.88 | <10  | 0.55 | 756  | 26  | <0.01 | 7  | 220 | <2 | <5 | <20 | 18 0.02   | <10 | 35 | 10  | 6  | 35 |
| 8     | 79892 | 60      | 8.4  | 0.77 | <5 | 160 | <5 | 2.37 | <1 | 10 | 68 >10000  | 2.29 | <10  | 0.55 | 802  | 6   | 0.01  | 8  | 500 | <2 | 5  | <20 | 25 < 0.01 | <10 | 30 | <10 | 7  | 35 |
| 9     | 79893 | 65      | 17.4 | 0.44 | <5 | 100 | <5 | 2.27 | <1 | 10 | 104 >10000 | 2.50 | <10  | 0.45 | 854  | 11  | 0.01  | 8  | 280 | <2 | <5 | <20 | 34 0.01   | <10 | 26 | 20  | 5  | 42 |
| 10    | 79894 | 40      | 3.0  | 0.73 | <5 | 305 | <5 | 2.10 | <1 | 11 | 80 4763    | 2.89 | <10  | 0.62 | 826  | 7   | 0.01  | 8  | 520 | 4  | <5 | <20 | 33 < 0.01 | <10 | 37 | <10 | 8  | 37 |
| 11    | 79895 | 10      | 1.4  | 0.93 | <5 | 150 | <5 | 2.61 | <1 | 14 | 78 2189    | 3.20 | <10  | 0.87 | 886  | 8   | 0.02  | 9  | 480 | 6  | <5 | <20 | 40 < 0.01 | <10 | 37 | <10 | 8  | 44 |
| 12    | 79896 | 90      | 14.8 | 0.57 | <5 | 125 | <5 | 2.24 | <1 | 9  | 89 >10000  | 2.00 | <10  | 0.44 | 932  | 247 | <0.01 | 7  | 480 | <2 | <5 | <20 | 29 < 0.01 | <10 | 23 | <10 | 6  | 30 |
| 13    | 79897 | 75      | 21.2 | 0.50 | <5 | 75  | <5 | 2.04 | <1 | 8  | 118 >10000 | 2.09 | <10  | 0.36 | 689  | 54  | <0.01 | 6  | 20  | <2 | <5 | <20 | 24 0.02   | <10 | 22 | <10 | 4  | 22 |
| 14    | 79898 | 150     | 14.2 | 0.56 | <5 | 120 | <5 | 2.52 | <1 | 10 | 96 >10000  | 2.23 | <10  | 0.45 | 847  | 6   | <0.01 | 7  | 390 | <2 | 5  | <20 | 26 0.01   | <10 | 24 | <10 | 6  | 27 |
| 15    | 79899 | 65      | 10.4 | 0.51 | <5 | 160 | <5 | 2.60 | <1 | 8  | 99 >10000  | 2.01 | <10  | 0.43 | 844  | 13  | <0.01 | 6  | 490 | <2 | 10 | <20 | 30 < 0.01 | <10 | 25 | <10 | 8  | 26 |
| 16    | 79900 | 105     | 11.0 | 0.58 | <5 | 105 | <5 | 1.84 | <1 | 9  | 98 >10000  | 2.08 | <10  | 0.45 | 634  | 6   | 0.01  | 7  | 520 | <2 | 5  | <20 | 24 <0.01  | <10 | 23 | <10 | 5  | 33 |
| 17    | 79901 | 235     | 10.4 | 0.58 | <5 | 130 | <5 | 2.25 | <1 | 11 | 78 >10000  | 2.42 | <10  | 0.50 | 624  | 384 | 0.02  | 7  | 460 | <2 | <5 | <20 | 35 < 0.01 | <10 | 21 | <10 | 6  | 34 |
| 18    | 79902 | 80      | 18.8 | 0.52 | <5 | 80  | <5 | 2.82 | <1 | 9  | 85 >10000  | 2.22 | <10  | 0.45 | 786  | 258 | 0.01  | 5  | <10 | <2 | 10 | <20 | 31 0.02   | <10 | 19 | 20  | 4  | 25 |
| 19    | 79903 | 60      | 13.8 | 1.22 | <5 | 140 | <5 | 1.98 | <1 | 14 | 72 >10000  | 3.27 | <10  | 0.92 | 699  | 7   | 0.02  | 9  | 500 | 4  | <5 | <20 | 25 0.01   | <10 | 38 | 10  | 5  | 40 |
| 20    | 79904 | 35      | 8.2  | 0.82 | <5 | 160 | <5 | 2.72 | <1 | 13 | 95 8716    | 3.21 | <10  | 0.74 | 875  | 9   | 0.01  | 10 | 460 | 4  | 5  | <20 | 37 <0.01  | <10 | 30 | <10 | 5  | 41 |

#### ECO-TECH LABORATORIES LTD.

| Et #. | Tag # | Au(ppb) | Ag   | AI % | As | Ва  | 8i | Ca % | Cd | Со | Cr  | Cu     | Fe % | La  | Mg % | Mn   | Мо  | Na %   | Ni | Р   | Pb | \$b | Sn  | Sr Ti%    | U   | ٧  | w   | Υ  | Zn |
|-------|-------|---------|------|------|----|-----|----|------|----|----|-----|--------|------|-----|------|------|-----|--------|----|-----|----|-----|-----|-----------|-----|----|-----|----|----|
| 21    | 79905 | 60      | >30  | 0.78 | <5 | 105 | <5 | 2.08 | <1 | 12 | 68  | >10000 | 2.17 | <10 | 0.65 | 721  | 10  | < 0.01 | 9  | 620 | <2 | 15  | <20 | 22 < 0.01 | <10 | 19 | 20  | 2  | 40 |
| 22    | 79906 | 5       | 3.0  | 0.64 | <5 | 375 | <5 | 2.42 | <1 | 7  | 63  | 3013   | 2.12 | <10 | 0.70 | 695  | 7   | 0.04   | 8  | 540 | 2  | <5  | <20 | 64 < 0.01 | <10 | 33 | <10 | 6  | 23 |
| 23    | 79907 | 25      | 2.0  | 0.76 | <5 | 205 | <5 | 2.98 | <1 | 10 | 63  | 2810   | 2.36 | <10 | 0.77 | 858  | 5   | 0.03   | 7  | 450 | 4  | 10  | <20 | 50 < 0.01 | <10 | 35 | <10 | 5  | 26 |
| 24    | 79908 | 15      | 1.2  | 0.71 | <5 | 225 | <5 | 3.78 | <1 | 10 | 95  | 1885   | 2.38 | <10 | 0.66 | 971  | 7   | 0.02   | 8  | 480 | 6  | 10  | <20 | 52 < 0.01 | <10 | 31 | <10 | 6  | 30 |
| 25    | 79909 | 10      | 1.8  | 0.66 | <5 | 370 | <5 | 4.10 | <1 | 8  | 96  | 1736   | 2.13 | <10 | 0.55 | 993  | 11  |        | 7  | 440 | 4  | 5   | <20 | 50 < 0.01 | <10 | 24 | <10 | 7  | 29 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |        |    |     |    |     |     |           |     |    |     |    |    |
| 26    | 79910 | 60      | 6.6  | 0.43 | <5 | 200 | <5 | 3.14 | <1 | 9  | 102 | 7814   | 2.42 | <10 | 0.44 | 837  | 29  | 0.01   | 8  | 540 | <2 | 5   | <20 | 40 < 0.01 | <10 | 23 | <10 | 8  | 30 |
| 27    | 79911 | 10      | 2.8  | 0.50 | <5 | 270 | <5 | 3.39 | <1 | 9  | 75  | 2640   | 2.18 | <10 | 0.50 | 794  | 143 | 0.02   | 8  | 460 | 4  | 5   | <20 | 50 < 0.01 | <10 | 27 | <10 | 8  | 30 |
| 28    | 79912 | 10      | 0.4  | 0.51 | <5 | 170 | <5 | 4.21 | <1 | 9  | 69  | 724    | 2.31 | <10 | 0.52 | 830  | 78  | 0.02   | 8  | 420 | 2  | 10  | <20 | 60 < 0.01 | <10 | 27 | <10 | 11 | 26 |
| 29    | 79913 | 5       | <0.2 | 0.44 | <5 | 485 | <5 | 4.84 | <1 | 6  | 80  | 125    | 2.03 | 10  | 0.42 | 782  | 12  |        | 7  | 450 | <2 | <5  | <20 | 73 < 0.01 | <10 | 28 | <10 | 13 | 22 |
| 30    | 79914 | 5       | <0.2 | 0.42 | <5 | 245 | <5 | 5.89 | <1 | 8  | 89  | 202    | 2.23 | 10  | 0.54 | 820  |     | 0.02   | 8  | 430 | <2 | <5  | <20 | 76 < 0.01 | <10 | 26 | <10 | 14 | 24 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |        |    |     |    |     |     |           |     |    |     |    |    |
| 31    | 79915 | 5       | <0.2 | 0.60 | <5 | 205 | <5 | 3.71 | <1 | 9  | 86  | 311    | 2.32 | <10 | 0.71 | 618  | 6   | 0.03   | 8  | 440 | 2  | 5   | <20 | 74 < 0.01 | <10 | 33 | <10 | 10 | 28 |
| 32    | 79916 | 5       | <0.2 | 0.61 | <5 | 155 | <5 | 3.01 | <1 | 8  | 97  | 336    | 2.17 | <10 | 0.59 | 549  | 7   | 0.04   | 8  | 480 | 64 | 10  | <20 | 50 < 0.01 | <10 | 43 | <10 | 10 | 28 |
| 33    | 79917 | 5       | 0.8  | 1.00 | <5 | 155 | <5 | 3.19 | <1 | 12 | 85  | 1146   | 2.81 | <10 | 0.97 | 551  | 7   | 0.03   | 11 | 540 | 12 | 10  | <20 | 50 < 0.01 | <10 | 45 | <10 | 10 | 36 |
| 34    | 79918 | 10      | 0.6  | 1.11 | <5 | 325 | <5 | 3.61 | <1 | 11 | 95  | 771    | 2.78 | <10 | 1.02 | 593  | 5   | 0.02   | 10 | 500 | 8  | 10  | <20 | 50 < 0.01 | <10 | 32 | <10 | 7  | 42 |
| 35    | 79919 | 5       | <0.2 | 0.75 | <5 | 275 | <5 | 3.08 | <1 | 9  | 69  | 325    | 2.32 | <10 | 0.81 | 491  | 6   | 0.03   | 8  | 490 | 4  | 10  | <20 | 49 < 0.01 | <10 | 37 | <10 | 8  | 27 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |        |    |     |    |     |     |           |     |    |     |    |    |
| 36    | 79920 | 5       | 0.4  | 0.59 | <5 | 240 | <5 | 3.40 | <1 | 8  | 79  | 245    | 2.16 | <10 | 0.83 | 562  | 4   | 0.03   | 7  | 420 | 4  | 5   | <20 | 70 < 0.01 | <10 | 32 | <10 | 12 | 26 |
| 37    | 79921 | 5       | 0.6  | 0.65 | <5 | 165 | <5 | 5.19 | <1 | 10 | 91  | 736    | 2.42 | <10 | 0.75 | 718  | 5   | 0.02   | 8  | 440 | 4  | <5  | <20 | 58 < 0.01 | <10 | 28 | <10 | 16 | 31 |
| 38    | 79922 | 10      | 1.0  | 0.44 | <5 | 120 | <5 | 3.86 | <1 | 9  | 100 | 1005   | 2.34 | <10 | 0.89 | 695  | 7   | 0.02   | 5  | 380 | <2 | 10  | <20 | 43 < 0.01 | <10 | 24 | <10 | 11 | 27 |
| 39    | 79923 | 45      | 3.6  | 0.39 | <5 | 115 | <5 | 3.52 | <1 | 11 | 87  | 4226   | 2.65 | <10 | 0.61 | 892  | 8   | 0.02   | 6  | 420 | <2 | <5  | <20 | 42 < 0.01 | <10 | 21 | <10 | 11 | 37 |
| 40    | 79924 | 10      | 1.2  | 0.22 | <5 | 80  | <5 | 3.57 | <1 | 8  | 105 | 1842   | 1.96 | <10 | 0.54 | 875  | 11  | 0.01   | 5  | 440 | <2 | <5  | <20 | 37 < 0.01 | <10 | 14 | <10 | 11 | 26 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |        |    |     |    |     |     |           |     |    |     |    |    |
| 41    | 79925 | 35      | 1.8  | 0.24 | <5 | 490 | <5 | 4.00 | <1 | 6  | 82  | 2092   | 1.87 | <10 | 0.55 | 686  | 20  | 0.02   | 5  | 370 | <2 | 5   | <20 | 46 < 0.01 | <10 | 16 | <10 | 12 | 25 |
| 42    | 79926 | 10      | 2.2  | 0.18 | <5 | 70  | <5 | 4.58 | <1 | 7  | 68  | 2594   | 1.76 | <10 | 0.25 | 843  | 8   | 0.01   | 6  | 350 | <2 | <5  | <20 | 38 < 0.01 | <10 | 15 | <10 | 14 | 21 |
| 43    | 79927 | 40      | 5.6  | 0.19 | <5 | 75  | <5 | 1.97 | <1 | 9  | 91  | >10000 | 4.09 | <10 | 0.39 | 508  | 8   | 0.01   | 6  | <10 | <2 | <5  | <20 | 21 0.01   | <10 | 16 | 20  | 3  | 21 |
| 44    | 79928 | 65      | 2.2  | 0.25 | <5 | 80  | <5 | 3.11 | <1 | 12 | 64  | 4830   | 3.12 | <10 | 0.40 | 1002 | 5   | 0.01   | 8  | 430 | <2 | <5  | <20 | 28 < 0.01 | <10 | 25 | <10 | 11 | 36 |
| 45    | 79929 | 10      | 1.8  | 0.29 | <5 | 80  | <5 | 3.65 | <1 | 15 | 102 | 2114   | 3.88 | <10 | 0.57 | 1325 | 8   | 0.01   | 8  | 430 | <2 | <5  | <20 | 33 < 0.01 | <10 | 25 | <10 | 12 | 45 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |        |    |     |    |     |     |           |     |    |     |    |    |
| 46    | 79930 | 40      | 3.6  | 0.22 | <5 | 65  | <5 | 3.91 | <1 | 9  | 97  | 5615   | 2.36 | <10 | 0.37 | 1173 | 10  | <0.01  | 5  | 410 | <2 | <5  | <20 | 28 < 0.01 | <10 | 21 | <10 | 12 | 23 |
| 47    | 79931 | 25      | 2.8  | 0.23 | <5 | 190 | <5 | 3.77 | <1 | 7  | 113 | 3321   | 1.94 | <10 | 0.34 | 1042 | 14  | 0.01   | 5  | 450 | <2 | <5  | <20 | 32 < 0.01 | <10 | 18 | <10 | 12 | 22 |
| 48    | 79932 | 25      | 1.8  | 0.37 | <5 | 350 | <5 | 3.29 | <1 | 11 | 93  | 2863   | 2.91 | <10 | 0.55 | 927  | 23  | 0.02   | 7  | 430 | <2 | <5  | <20 | 38 < 0.01 | <10 | 24 | <10 | 11 | 36 |
| 49    | 79933 | 5       | 8.0  | 0.63 | <5 | 625 | <5 | 3.06 | <1 | 8  | 87  | 1488   | 2.39 | <10 | 0.72 | 730  | 8   | 0.03   | 8  | 460 | <2 | <5  | <20 | 49 <0.01  | <10 | 33 | <10 | 12 | 25 |
| 50    | 79934 | 10      | <0.2 | 0.64 | <5 | 225 | <5 | 2.81 | <1 | 10 | 62  | 589    | 2.45 | <10 | 0.76 | 656  | 6   | 0.04   | 8  | 460 | 2  | <5  | <20 | 47 < 0.01 | <10 | 38 | <10 | 14 | 33 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |        |    |     |    |     |     |           |     |    |     |    |    |
| 51    | 79935 | 5       | 0.4  | 0.72 | <5 | 480 | <5 | 2.87 | <1 | 8  | 76  | 850    | 2.29 | <10 | 1.02 | 558  |     | 0.04   | 8  | 480 | 2  | 10  | <20 | 55 < 0.01 | <10 | 35 | <10 | 12 | 25 |
| 52    | 79936 | 10      | 0.6  | 0.36 | <5 | 145 | <5 | 3.57 | <1 | 8  | 98  | 722    | 2.19 | <10 | 0.56 | 618  | 6   |        | 5  | 480 | <2 | <5  | <20 | 52 < 0.01 | <10 | 21 | <10 | 11 | 28 |
| 53    | 79937 | 5       | 1.8  | 0.91 | <5 | 365 | <5 | 2.92 | <1 | 13 | 97  | 4009   | 3.49 | <10 | 0.97 | 665  | 19  |        | 7  | 390 | 2  | <5  | <20 | 44 < 0.01 | <10 | 36 | <10 | 7  | 45 |
| 54    | 79938 | 10      | 2.2  | 0.85 | <5 | 150 | <5 | 1.16 | <1 | 11 | 99  | 4659   | 2.68 | <10 | 0.93 | 346  | 7   | ,      | 8  | 370 | <2 | <5  | <20 | 28 0.03   | <10 | 59 | <10 | 10 | 21 |
| 55    | 79939 | 5       | <0.2 | 0.80 | <5 | 120 | <5 | 1.40 | <1 | 10 | 77  | 1012   | 2.43 | <10 | 0.95 | 394  | 6   | 0.04   | 8  | 430 | <2 | 5   | <20 | 37 0.02   | <10 | 55 | <10 | 11 | 22 |

| TARCO | OIL & GA | AS      |      |      |    |     |    |      |    |    |      |        |      |     |      |      |     |        |    |     | E  | CO-TECH LA | BORAT | ORIE       | S LTD. |    |     |    |     |
|-------|----------|---------|------|------|----|-----|----|------|----|----|------|--------|------|-----|------|------|-----|--------|----|-----|----|------------|-------|------------|--------|----|-----|----|-----|
| Et #. | Tag#     | Au(ppb) | Ag   | AI % | As | Ва  | Bi | Ca % | Cd | Со | Cr   | Cu     | Fe % | La  | Mg % | Mn   | Мо  | Na %   | Ni | Р   | Pb | Sb         | Sn    | Sr Ti %    | U      | v  | w   | Y  | Zn  |
| 56    | 79940    | 5       | <0.2 | 0.71 | <5 | 115 | <5 | 1.25 | <1 | 9  | 93   | 226    | 2.33 | <10 | 0.77 | 328  | 4   | 0.04   | 8  | 440 | <2 | <5         | <20   | 34 0.05    | <10    | 63 | <10 | 12 | 18  |
| 57    | 79941    | 5       | 0.6  | 0.70 | <5 | 140 | <5 | 1.95 | <1 | 10 | 71   | 1415   | 2.48 | <10 | 1.01 | 481  | 5   | 0.05   | 8  | 400 | <2 | 10         | <20   | 50 0.02    | <10    | 53 | <10 | 16 | 20  |
| 58    | 79942    | 15      | 3.4  | 0.99 | <5 | 360 | <5 | 3.11 | <1 | 11 | 83   | 4299   | 2.93 | <10 | 1.19 | 680  | 103 | 0.04   | 7  | 290 | <2 | <5         | <20   | 66 <( ·)1  | <10    | 30 | <10 | 12 | 36  |
| 59    | 79951    | 5       | 0.2  | 0.56 | <5 | 115 | <5 | 3.16 | <1 | 8  | 72   | 418    | 1.82 | 10  | 0.39 | 852  | 16  | < 0.01 | 7  | 420 | <2 | <5         | <20   | 33 < 0.01  | <10    | 25 | <10 | 15 | 24  |
| 60    | 79952    | 5       | 0.2  | 0.52 | <5 | 55  | <5 | 3.18 | <1 | 8  | 59   | 209    | 1.79 | <10 | 0.60 | 898  | 15  | <0.01  | 8  | 390 | <2 | <5         | <20   | 39 < 0.01  | <10    | 21 | <10 | 14 | 26  |
| 61    | 79953    | 5       | <0.2 | 0.44 | <5 | 85  | <5 | 3.43 | <1 | 7  | 74   | 249    | 1.57 | <10 | 0.46 | 1168 | 15  | <0.01  | 5  | 400 | <2 | <5         | <20   | 38 <0.01   | <10    | 20 | <10 | 13 | 22  |
| 62    | 79954    | 5       | <0.2 | 0.32 | <5 | 510 | <5 | 4.47 | <1 | 3  | 40   | 261    | 1.44 | 10  | 0.51 | 1302 | 4   | <0.01  | 3  | 360 | <2 | <5         | <20   | 64 < 0.01  | <10    | 19 | <10 | 17 | 17  |
| 63    | 79955    | 5       | 0.2  | 0.33 | <5 | 115 | <5 | 3.83 | <1 | 6  | 73   | 803    | 1.64 | 10  | 0.40 | 1339 |     | <0.01  | 4  | 380 | <2 | <5         | <20   | 56 < 0.01  | <10    | 21 | <10 | 15 | 31  |
| 64    | 79956    | 5       | 0.4  | 0.38 | <5 | 160 | <5 | 4.46 | 2  | 9  | 58   | 231    | 2.15 | <10 | 0.54 | 1766 |     | 0.01   | 5  | 400 | 4  | <5         | <20   | 67 < 0.01  | <10    | 21 | <10 | 18 | 118 |
| 65    | 79957    | 5       | 0.2  | 0.34 | <5 | 365 | <5 | 4.35 | 5  | 6  | 91   | 228    | 2.06 | 10  | 0.48 | 1758 |     | 0.01   | 6  | 430 | 6  | 5          | <20   | 62 < 0.01  | <10    | 23 | <10 | 19 | 225 |
| 66    | 79958    | 10      | 0.2  | 0.29 | <5 | 60  | <5 | 4.83 | <1 | 8  | 107  | 512    | 1.73 | <10 | 0.33 | 2276 | 7   | 0.01   | 6  | 340 | 6  | <5         | <20   | 53 < 0.01  | <10    | 16 | <10 | 17 | 47  |
| 67    | 79959    | 20      | 0.2  | 0.28 | <5 | 65  | <5 | 4.21 | <1 | 7  | 96   | 363    | 1.75 | <10 | 0.31 | 1915 | 9   |        | 5  | 390 | <2 | <5         | <20   | 55 < 0.01  | <10    | 16 | <10 | 17 | 28  |
| 68    | 79960    | 5       | <0.2 | 0.41 | <5 | 80  | <5 | 3.37 | <1 | 12 | 71   | 1495   | 3.18 | <10 | 0.58 | 1397 | 5   | 0.02   | 7  | 330 | <2 | <5         | <20   | 51 < 0.01  | <10    | 23 | <10 | 15 | 46  |
| 69    | 79961    | 5       | <0.2 | 0.43 | <5 | 155 | <5 | 3.23 | <1 | 9  | 56   | 441    | 2.20 | <10 | 0.50 | 869  | 12  | 0.02   | 6  | 370 | <2 | <5         | <20   | 59 < 0.01  | <10    | 22 | <10 | 14 | 29  |
| 70    | 79962    | 10      | 0.2  | 1.41 | <5 | 165 | <5 | 3.61 | <1 | 18 | 56   | 710    | 3.78 | <10 | 1.45 | 1041 | 28  | 0.02   | 13 | 530 | <2 | <5         | <20   | 62 < 0.01  | <10    | 45 | <10 | 13 | 56  |
| 71    | 79963    | 5       | 0.6  | 1.09 | <5 | 430 | <5 | 3.98 | <1 | 12 | 43   | 705    | 3.34 | <10 | 1.69 | 1472 | 9   | 0.02   | 11 | 530 | 6  | 10         | <20   | 77 <0.01   | <10    | 46 | <10 | 12 | 77  |
| 72    | 79964    | 5       | 2.0  | 1.30 | <5 | 425 | <5 | 3.41 | <1 | 16 | 59   | 937    | 3.83 | <10 | 1.53 | 1243 | 4   | 0.06   | 15 | 620 | <2 | <5         | <20   | 108 0.03   | <10    | 96 | <10 | 19 | 53  |
| 73    | 79965    | 5       | 1.2  | 1.58 | <5 | 300 | <5 | 3.90 | <1 | 15 | 60   | 920    | 3.44 | <10 | 1.69 | 1066 | 9   | 0.07   | 14 | 560 | <2 | 10         | <20   | 125 0.01   | <10    | 81 | <10 | 19 | 41  |
| 74    | 79966    | 10      | 4.2  | 1.81 | <5 | 240 | <5 | 4.17 | <1 | 18 | 57   | 2867   | 4.17 | <10 | 2.35 | 1246 | 20  | 0.06   | 14 | 500 | <2 | 10         | <20   | 127 < 0.01 | <10    | 69 | <10 | 20 | 53  |
| 75    | 79967    | 5       | 0.6  | 2.08 | <5 | 110 | <5 | 4.64 | <1 | 18 | 51   | 956    | 3.75 | <10 | 1.91 | 1290 | 10  | 0.03   | 13 | 530 | <2 | 10         | <20   | 79 <0.01   | <10    | 56 | <10 | 19 | 59  |
| 76    | 79968    | 5       | 0.4  | 2.12 | <5 | 735 | <5 | 4.36 | <1 | 14 | 47   | 1034   | 3.76 | <10 | 2.08 | 1209 | 6   | 0.03   | 13 | 590 | <2 | 10         | <20   | 78 <0.01   | <10    | 60 | <10 | 20 | 56  |
| 77    | 79969    | 5       | 1.2  | 2.17 | <5 | 420 | <5 | 3.84 | <1 | 18 | 44   | 1833   | 4.05 | <10 | 2.32 | 1165 | 17  | 0.05   | 14 | 620 | <2 | 15         | <20   | 86 < 0.01  | <10    | 67 | <10 | 20 | 54  |
| 78    | 79970    | 5       | <0.2 | 2.18 | <5 | 220 | <5 | 3.00 | <1 | 19 | 58   | 652    | 4.08 | <10 | 2.38 | 993  | 8   | 0.07   | 16 | 680 | <2 | 10         | <20   | 94 0.01    | <10    | 89 | <10 | 18 | 59  |
| 79    | 79971    | 10      | 1.8  | 2.42 | <5 | 310 | <5 | 3.34 | <1 | 21 | 58   | 2557   | 4.65 | <10 | 2.46 | 1105 | 17  | 0.05   | 16 | 510 | <2 | 15         | <20   | 84 < 0.01  | <10    | 76 | <10 | 20 | 57  |
| 80    | 79972    | 5       | 0.6  | 1.92 | <5 | 155 | <5 | 3.19 | <1 | 19 | 73   | 942    | 4.03 | <10 | 2.03 | 1030 | 8   | 0.04   | 14 | 590 | <2 | <5         | <20   | 70 0.01    | <10    | 82 | <10 | 20 | 47  |
| 81    | 79973    | 5       | 0.4  | 1.65 | <5 | 150 | <5 | 2.30 | <1 | 18 | 79   | 1114   | 3.88 | <10 | 1.67 | 874  | 8   | 0.04   | 13 | 560 | <2 | <5         | <20   | 56 0.05    | <10    | 85 | <10 | 14 | 40  |
| 82    | 79974    | 5       | <0.2 | 2.24 | <5 | 310 | <5 | 2.26 | <1 | 20 | 94   | 722    | 4.52 | <10 | 1.96 | 917  | 14  | 0.04   | 15 | 570 | <2 | <5         | <20   | 53 < 0.01  | <10    | 75 | <10 | 17 | 57  |
| 83    | 79975    | 5       | 0.6  | 2.21 | <5 | 405 | <5 | 2.12 | <1 | 19 | 52   | 1214   | 4.24 | <10 | 2.17 | 859  | 9   | 0.06   | 14 | 530 | <2 | <5         | <20   | 77 <0.01   | <10    | 69 | <10 | 11 | 49  |
| 84    | 79976    | 5       | 1.0  | 2.06 | <5 | 705 | <5 | 3.38 | <1 | 16 | 71   | 1533   | 4.15 | <10 | 2.06 | 1034 | 24  | 0.05   | 14 | 510 | <2 | 5          | <20   | 85 < 0.01  | <10    | 61 | <10 | 15 | 49  |
| 85    | 79977    | 10      | 3.6  | 2.11 | <5 | 555 | <5 | 3.68 | <1 | 18 | 67   | 3085   | 4.37 | <10 | 1.95 | 1167 | 7   | 0.03   | 14 | 450 | <2 | <5         | <20   | 67 <0.01   | <10    | 59 | <10 | 15 | 66  |
| 86    | 79978    | 115     | >30  | 1.86 | <5 | 110 | <5 | 3.42 | <1 | 22 | 79 : | >10000 | 4.22 | <10 | 1.45 | 1133 | 56  | 0.02   | 12 | <10 | <2 | <5         | <20   | 47 0.02    | <10    | 42 | <10 | 7  | 68  |
| 87    | 79979    | 5       | 8.0  | 1.56 | <5 | 610 | <5 | 4.43 | <1 | 12 | 64   | 1369   | 3.17 | <10 | 1.50 | 1126 | 14  | 0.03   | 13 | 510 | <2 | 10         | <20   | 82 < 0.01  | <10    | 57 | <10 | 17 | 44  |
| 88    | 79980    | 10      | 3.8  | 1.99 | <5 | 200 | <5 | 4.24 | <1 | 22 | 68   | 4563   | 4.41 | <10 | 1.82 |      | 7   |        | 14 | 380 | <2 | <5         | <20   | 65 < 0.01  | <10    | 61 | <10 | 13 | 64  |
| 89    | 79981    | 40      | >30  | 0.63 | <5 | 80  | <5 | 3.51 | <1 | 14 | 66   | >10000 | 4.07 | <10 | 0.73 | 1133 |     | 0.01   | 9  | <10 | <2 | <5         | 20    | 51 0.02    | <10    | 36 | 10  | 8  | 38  |
| 90    | 79982    | 20      | 3.8  | 1.83 | <5 | 175 | <5 | 2.89 | <1 | 23 |      | >10000 | 4.93 | <10 | 1.75 | 972  |     | 0.03   | 13 | 210 | <2 | <5         | <20   | 66 0.01    | <10    | 80 | <10 | 14 | 49  |

Page 3

| Et #.   | Tag#  | Au(ppb) | Ag    | AI % | As       | Ва  | Bi | Ca % | Cd | Co | Cr   | Cu     | Fe %          | La  | Mg % | Mn    | Мо  | Na %  | Ni | p   | Pb | Sb  | Sn  | Sr 1 | Tí % | и   | v   | w   | Υ  | Zn  |
|---------|-------|---------|-------|------|----------|-----|----|------|----|----|------|--------|---------------|-----|------|-------|-----|-------|----|-----|----|-----|-----|------|------|-----|-----|-----|----|-----|
| 91      | 79983 | 10      | 0.4   | 1.70 |          | 345 |    | 3.34 | <1 | 16 | 70   | 2221   | 3.90          | <10 |      | 773   |     |       |    | 480 | <2 | 5   | <20 | 88 < |      | <10 | 75  | <10 | 14 | 31  |
|         |       | 5       |       | 1.63 | -        | 230 | _  |      |    |    |      |        |               |     |      |       |     | 0.05  | 12 |     | _  | 5   |     |      | 0.02 | <10 | 84  | <10 | 9  |     |
| 92      | 79984 |         | <0.2  |      | <5<br>-= |     | <5 | 2.50 | <1 | 16 | 73   | 1030   | 3.86          | <10 | 1.65 | 666   | 9   | 0.05  | 13 | 550 | <2 | 5   | <20 | -    |      |     |     |     | 7  | 31  |
| 93      | 79985 | 5       | <0.2  | 1.42 | <5       | 120 | <5 | 1.60 | <1 | 16 | 66   | 508    | 3.60          | <10 | 1.31 | 411   | 5   |       | 14 | 630 | <2 | <5  | <20 |      | 0.13 | <10 | 115 | <10 | ,  | 24  |
| 94      | 79986 | 5       | <0.2  | 1.10 | <5       | 195 | <5 | 2.44 | <1 | 8  | 62   | 83     | 2.24          | <10 | 0.73 | 292   | 2   | 0.07  | 8  | 570 | <2 | 10  | <20 | 73   | 80.0 | <10 | 76  | <10 | 14 | 12  |
| QC DA   | TA:   |         |       |      |          |     |    |      |    |    |      |        |               |     |      |       |     |       |    |     |    |     |     |      |      |     |     |     |    |     |
| Resplit | :     |         |       |      |          |     |    |      |    |    |      |        |               |     |      |       |     |       |    |     |    |     |     |      |      |     |     |     |    |     |
| 1       | 79885 | 80      | 15.2  | 0.77 | <5       | 105 | <5 | 2.03 | <1 | 15 | 89 : | >10000 | 3.69          | <10 | 0.76 | 972   | 157 | 0.01  | 11 | 380 | <2 | 5   | <20 | 24   | 0.01 | <10 | 28  | <10 | <1 | 61  |
| 36      | 79920 | 5       | <0.2  | 0.64 | <5       | 275 | <5 | 3.47 | <1 | 8  | 74   | 264    | 2.24          | 10  | 0.94 | 610   | 6   | 0.05  | 6  | 400 | <2 | <5  | <20 | 74 < | 0.01 | <10 | 37  | <10 | 14 | 22  |
| 71      | 79963 | 5       | 0.4   | 1.06 | <5       | 410 | <5 | 4.10 | <1 | 13 | 46   | 736    | 3.21          | <10 | 1.58 | 1536  | 10  |       | 10 | 520 | 8  | 10  | <20 | 76 < |      | <10 | 43  | <10 | 14 | 73  |
| Repeat  |       | ·       | • • • |      | -        |     |    |      |    |    |      |        | O. <b>_</b> . | , , |      |       |     | 0.02  |    | 0_0 | _  | , , |     |      |      |     | -   |     |    |     |
| 1       | 79885 | 80      | 16.4  | 0.66 | <5       | 95  | <5 | 1.71 | <1 | 13 | 70 : | >10000 | 3.31          | <10 | 0.65 | 831   | 173 | <0.01 | 10 | 260 | <2 | 10  | <20 | 21   | 0.01 | <10 | 24  | 10  | <1 | 59  |
| 10      | 79894 | 30      | 3.0   | 0.62 | <5       | 290 | <5 | 2.01 | <1 | 10 | 75   | 4459   | 2.69          | <10 | 0.57 | 782   | 7   | 0.01  | q  | 510 | 2  | <5  | <20 |      | 0.01 | <10 | 32  | <10 | 8  | 35  |
| 19      | 79903 | 80      | 14.0  |      | <5       | 140 | <5 | 2.06 | <1 | 15 |      | >10000 | 3.37          | <10 | 0.95 | 721   | 9   |       | 10 | 500 | 4  | 5   | <20 |      | 0.01 | <10 | 39  | <10 | 5  | 42  |
| 36      | 79920 | 5       | <0.2  |      | <5       | 245 | <5 | 3.45 | <1 | 9  | 85   | 246    | 2.22          | <10 | 0.84 | 578   | 5   |       | 8  | 420 | 4  | 5   | <20 | 70 < |      | <10 | 33  | <10 | 14 | 27  |
| 45      | 79929 | 5       | 1.8   |      | <5       | 80  | <5 | 3.58 | <1 | 14 | 100  | 2284   | 3.80          | <10 | 0.60 | 1318  | 8   |       | 8  | 370 | <2 | <5  | <20 |      | 0.01 | <10 | 25  | <10 | 13 | 40  |
| 73      | 10020 | J       | 1.0   | 0.00 | -0       | 00  | -0 | 0.00 | •• |    | 100  | 2204   | 0.00          | -10 | 0.00 | 1010  | U   | 0.02  | ·  | 5,0 |    | -0  | -20 | 00   | 0.01 | -10 |     | -10 |    | -10 |
| 54      | 79938 | 10      | 2.4   | 0.89 | <5       | 150 | <5 | 1.12 | <1 | 10 | 94   | 5127   | 2.58          | <10 | 0.97 | 341   | 6   | 0.04  | 8  | 330 | <2 | <5  | <20 | 30   | 0.03 | <10 | 60  | <10 | 11 | 18  |
| 71      | 79963 | 5       | 0.6   | 1.12 | <5       | 430 | <5 | 4.07 | <1 | 13 | 44   | 742    | 3.45          | <10 | 1.74 | 1509  | 9   | 0.03  | 10 | 520 | 8  | 10  | <20 | 78 < | 0.01 | <10 | 48  | <10 | 12 | 78  |
| 80      | 79972 | 5       | 8.0   | 1.94 | <5       | 155 | <5 | 3.24 | <1 | 19 | 75   | 942    | 4.11          | <10 | 2.03 | 1048  | 10  |       | 14 | 610 | <2 | 5   | <20 | 68   | 0.01 | <10 | 83  | <10 | 19 | 48  |
| 89      | 79981 | 35      |       |      |          |     |    | •    |    |    |      |        |               |     |      | , , , |     | 0,0,  |    |     | _  | -   |     |      |      |     |     |     |    |     |
| Standa  |       | -       |       |      |          |     |    |      |    |    |      |        |               |     |      |       |     |       |    |     |    |     |     |      |      |     |     |     |    |     |
| GEO'96  |       | 150     | 1.2   | 1.51 | 55       | 145 | <5 | 1.65 | <1 | 18 | 54   | 106    | 3.78          | <10 | 0.97 | 652   | <1  | 0.01  | 24 | 630 | 28 | 10  | <20 | 44   | 0.09 | <10 | 68  | <10 | 4  | 73  |
| GEO'96  |       | 150     | 1.2   |      | 60       | 155 | <5 | 1.86 | <1 | 20 | 66   | 92     | 4.04          | <10 | 1.09 | 720   | <1  | 0.02  | 21 | 700 | 18 | 5   | <20 |      | 0.09 | <10 | 70  | <10 | 6  | 70  |
| GEO'96  |       | 140     | 1.2   |      | 75       | 170 | 10 | 1.83 | <1 | 23 | 68   | 82     | 4.07          | <10 | 1.06 | 722   | <1  | 0.02  | 24 | 820 | 24 | <5  | <20 |      | 0.16 | <10 | 93  | 10  | 10 | 72  |
| GEO 90  | ,     | 140     | 1.2   | 1.93 | 75       | 170 | 10 | 1.03 | ~1 | 23 | 00   | 02     | 4.07          | ~10 | 1.00 | 142   | ~1  | 0.04  | 24 | 020 | 24 | ~5  | ~20 | 00   | 0.10 | -10 | 33  | 10  | 10 | 12  |

df/1321/1332a XLS/96TARCO#3 FCO-TECH LABORATORIES LTD.

Frank J. Fezzotti, A.Sc.T.

B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-1345

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received:145
Sample type: CORE
PROJECT #: NONE GIVEN
SHIPMENT #: NONE GIVEN
Samples submitted by: GARY STEWART

| Et #. | Tag # | Au(ppb) | Ag    | AI % | As | Ва  | Bi | Ca % | Cd | Со | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Мо | Na % | Ni | Р   | Pb | Sb | Sn  | Sr | Ti %  | U   | v   | w   | Υ  | Zn |
|-------|-------|---------|-------|------|----|-----|----|------|----|----|-----|------|------|-----|------|------|----|------|----|-----|----|----|-----|----|-------|-----|-----|-----|----|----|
| 1     | 79987 | 10      | <0.2  | 1.17 | <5 | 210 | <5 | 2.02 | <1 | 13 | 90  | 723  | 3.08 | <10 | 1.07 | 445  | 4  | 0.04 | 13 | 620 | 12 | 5  | <20 | 42 | 0.08  | <10 | 78  | <10 | 13 | 32 |
| 2     | 79988 | 5       | <0.2  | 0.97 | <5 | 125 | <5 | 1.45 | <1 | 12 | 86  | 250  | 2.78 | <10 | 0.78 | 278  | 3  | 0.05 | 11 | 650 | 10 | 5  | <20 | 32 | 0.13  | <10 | 89  | <10 | 10 | 23 |
| 3     | 79989 | 10      | <0.2  | 1.03 | <5 | 100 | <5 | 1.67 | <1 | 12 | 79  | 93   | 2.60 | <10 | 0.83 | 331  | 5  | 0.05 | 11 | 640 | 8  | 10 | <20 | 48 | 0.10  | <10 | 78  | <10 | 14 | 21 |
| 4     | 79990 | 5       | <0.2  | 1.10 | <5 | 150 | <5 | 1.78 | <1 | 15 | 60  | 242  | 3.45 | <10 | 1.15 | 767  | 5  | 0.05 | 12 | 750 | 8  | 10 | <20 | 58 | 0.01  | <10 | 66  | <10 | 21 | 45 |
| 5     | 79991 | 5       | <0.2  | 1.42 | <5 | 180 | <5 | 0.72 | <1 | 19 | 63  | 294  | 4.15 | <10 | 1.46 | 675  | 14 | 0.07 | 14 | 740 | 8  | 10 | <20 | 64 | 0.02  | <10 | 88  | <10 | 17 | 48 |
| 6     | 79992 | 10      | <0.2  | 1.05 | <5 | 145 | <5 | 2.04 | <1 | 17 | 72  | 229  | 3.67 | <10 | 1.39 | 569  | 4  | 0.06 | 15 | 710 | 8  | 10 | <20 | 52 | 0.13  | <10 | 100 | <10 | 18 | 39 |
| 7     | 79993 | 5       | <0.2  | 1.11 | <5 | 160 | <5 | 2.41 | 1  | 15 | 106 | 400  | 3.01 | <10 | 1,22 | 764  | 12 | 0.05 | 13 | 540 | 8  | 10 | <20 | 61 | 0.02  | <10 | 55  | <10 | 14 | 51 |
| 8     | 79994 | 5       | <0.2  | 0.77 | <5 | 125 | <5 | 1.22 | <1 | 8  | 98  | 251  | 2.08 | <10 | 0.66 | 400  | 5  | 0.05 | 8  | 430 | 6  | <5 | <20 | 43 | <0.01 | <10 | 40  | <10 | 11 | 20 |
| 9     | 79995 | 5       | <0.2  | 0.70 | <5 | 120 | <5 | 1.90 | <1 | 9  | 96  | 165  | 2.20 | <10 | 0.69 | 465  | 6  | 0.04 | 7  | 420 | 6  | <5 | <20 | 42 | 0.01  | <10 | 44  | <10 | 12 | 24 |
| 10    | 79996 | 5       | <0.2  | 0.74 | <5 | 405 | <5 | 2.53 | <1 | 8  | 105 | 472  | 2.50 | <10 | 0.75 | 560  | 6  | 0.04 | 7  | 400 | 6  | 10 | <20 | 44 | <0.01 | <10 | 40  | <10 | 13 | 29 |
| 11    | 79997 | 5       | 0.2   | 0.87 | <5 | 390 | <5 | 2.70 | <1 | 9  | 121 | 1638 | 2.61 | <10 | 0.66 | 584  | 8  | 0.03 | 9  | 400 | 6  | <5 | <20 | 42 | <0.01 | <10 | 34  | <10 | 11 | 37 |
| 12    | 79998 | 5       | 0.4   | 0.86 | <5 | 405 | <5 | 2.96 | <1 | 9  | 114 | 1278 | 2.34 | <10 | 0.70 | 734  | 15 | 0.03 | 7  | 420 | 6  | 10 | <20 | 41 | <0.01 | <10 | 29  | <10 | 11 | 39 |
| 13    | 79999 | 5       | <0.2  | 0.80 | <5 | 100 | <5 | 2.45 | <1 | 9  | 99  | 1446 | 2.13 | <10 | 0.81 | 548  | 5  | 0.04 | 8  | 410 | 6  | 15 | <20 | 49 | <0.01 | <10 | 36  | <10 | 13 | 28 |
| 14    | 80000 | 5       | <0.2  | 0.80 | <5 | 90  | <5 | 2.16 | <1 | 9  | 125 | 141  | 2.25 | <10 | 88.0 | 458  | 6  | 0.04 | 8  | 440 | 8  | 10 | <20 | 39 | 0.02  | <10 | 45  | <10 | 12 | 24 |
| 15    | 80001 | 5       | <0.2  | 0.78 | <5 | 105 | <5 | 1.84 | <1 | 8  | 106 | 82   | 2.13 | <10 | 0.72 | 340  | 5  | 0.05 | 8  | 410 | 8  | 5  | <20 | 41 | 0.03  | <10 | 49  | <10 | 13 | 17 |
| 16    | 80002 | 5       | <0.2  | 0.41 | <5 | 70  | <5 | 6.39 | <1 | 5  | 69  | 142  | 1.29 | 10  | 0.44 | 1088 | 3  | 0.03 | 4  | 360 | <2 | 10 | <20 | 47 | <0.01 | <10 | 23  | <10 | 17 | 15 |
| 17    | 80003 | 5       | <0.2  | 0.59 | <5 | 115 | <5 | 4.14 | <1 | 8  | 67  | 218  | 2.05 | <10 | 1.06 | 803  | 4  | 0.04 | 7  | 410 | 6  | 10 | <20 | 62 | :0.01 | <10 | 24  | <10 | 15 | 30 |
| 18    | 80004 | 10      | <0.2  | 0.58 | <5 | 95  | <5 | 2.28 | <1 | 7  | 93  | 128  | 1.64 | 10  | 0.57 | 430  | 5  | 0.04 | 7  | 420 | 4  | 5  | <20 | 41 | <0.01 | <10 | 28  | <10 | 14 | 17 |
| 19    | 80005 | 5       | <0.2  | 0.63 | <5 | 100 | <5 | 1.24 | <1 | 7  | 78  | 147  | 1.82 | <10 | 0.76 | 291  | 4  | 0.05 | 6  | 430 | 6  | 10 | <20 | 42 | <0.01 | <10 | 40  | <10 | 10 | 14 |
| 20    | 80006 | 5       | < 0.2 | 0.75 | <5 | 95  | <5 | 2.01 | <1 | 9  | 97  | 136  | 2.25 | <10 | 0.96 | 421  | 4  | 0.05 | 7  | 430 | 8  | <5 | <20 | 41 | 0.02  | <10 | 46  | <10 | 14 | 18 |

| Et #. | Tag#  | Au(ppb) | Ag   | AI % | As | Ва  | Bi | Ca % | Cd | Co | Cr   | Cu     | Fe % | La  | Mg % | Mn   | Мо  | Na %  | Ni | Р   | Pb | Sb | Sn  | Sr Ti%    | U   | v  | w   | Υ  | Zn         |
|-------|-------|---------|------|------|----|-----|----|------|----|----|------|--------|------|-----|------|------|-----|-------|----|-----|----|----|-----|-----------|-----|----|-----|----|------------|
| 21    | 80007 | 5       | <0.2 | 0.77 | <5 | 100 | <5 | 1.34 | <1 | 8  | 101  | 291    | 2.16 | <10 | 0.70 | 306  | 4   | 0.05  | 7  | 420 | 6  | 10 | <20 | 32 0.03   | <10 | 47 | <10 | 11 | 16         |
| 22    | 80008 | 5       | <0.2 | 0.80 | <5 | 125 | <5 | 1.56 | <1 | 8  | 105  | 363    | 2.08 | <10 | 0.61 | 282  | 5   | 0.05  | 7  | 420 | 6  | 5  | <20 | 33 0.04   | <10 | 47 | 10  | 10 | 17         |
| 23    | 80009 | 5       | <0.2 | 0.84 | <5 | 110 | <5 | 1.58 | <1 | 10 | 103  | 508    | 2.45 | <10 | 0.76 | 359  | 4   | 0.05  | 7  | 410 | 8  | 5  | <20 | 37 0.05   | <10 | 52 | <10 | 12 | 23         |
| 24    | 80068 | 5       | <0.2 | 0.62 | <5 | 120 | <5 | 1.84 | <1 | 8  | 91   | 422    | 1.97 | 10  | 0.66 | 420  | 8   | 0.04  | 7  | 420 | 6  | 5  | <20 | 52 < 0.01 | <10 | 43 | <10 | 16 | 22         |
| 25    | 80069 | 5       | 0.6  | 0.76 | <5 | 115 | <5 | 2.37 | <1 | 10 | 95   | 958    | 2.47 | <10 | 0.63 | 603  | 30  | 0.03  | 7  | 420 | 4  | 5  | <20 | 40 < 0.01 | <10 | 31 | <10 | 13 | 33         |
|       |       |         |      |      |    |     |    |      |    |    |      |        |      |     |      |      |     |       |    |     |    |    |     |           |     |    |     |    |            |
| 26    | 80070 | 10      | 1.4  | 0.71 | <5 | 110 | <5 | 2.83 | <1 | 10 | 100  | 2082   | 2.39 | <10 | 0.65 | 907  | 29  | 0.02  | 6  | 390 | 6  | 5  | <20 | 46 < 0.01 | <10 | 28 | <10 | 15 | 22         |
| 27    | 80071 | 5       | 0.8  | 0.28 | <5 | 95  | <5 | 3.51 | <1 | 8  | 95   | 1686   | 2.08 | <10 | 0.33 | 1679 | 8   | 0.01  | 4  | 360 | <2 | 5  | <20 | 40 < 0.01 | <10 | 14 | <10 | 13 | 22         |
| 28    | 80072 | 5       | 0.4  | 0.30 | <5 | 105 | <5 | 3.42 | 1  | 8  | 112  | 2004   | 2.30 | <10 | 0.30 | 1478 | 16  | 0.02  | 5  | 390 | <2 | <5 | <20 | 41 < 0.01 | <10 | 15 | <10 | 15 | 26         |
| 29    | 80073 | 10      | 1.0  | 0.33 | <5 | 95  | <5 | 3.58 | <1 | 7  | 105  | 1932   | 1.89 | <10 | 0.29 | 1564 | 6   | 0.01  | 4  | 420 | 4  | <5 | <20 | 41 < 0.01 | <10 | 17 | <10 | 18 | 18         |
| 30    | 80074 | 5       | <0.2 | 0.28 | <5 | 120 | <5 | 3.90 | <1 | 8  | 102  | 980    | 2.19 | <10 | 0.31 | 1772 | 6   | 0.01  | 5  | 430 | 2  | <5 | <20 | 50 < 0.01 | <10 | 17 | <10 | 17 | 20         |
|       |       |         |      |      |    |     |    |      |    |    |      |        |      |     |      |      |     |       |    |     |    |    |     |           |     |    |     |    |            |
| 31    | 80075 | 5       | <0.2 | 0.30 | <5 | 120 | <5 | 3.97 | <1 | 5  | 106  | 392    | 1.56 | 10  | 0.24 | 1552 | 6   | 0.02  | 4  | 470 | 4  | <5 | <20 | 52 < 0.01 | <10 | 16 | <10 | 17 | 18         |
| 32    | 80076 | 5       | 1.0  | 0.25 | <5 | 100 | <5 | 3.61 | <1 | 8  | 108  | 1114   | 2.04 | <10 | 0.32 | 1725 | 19  | 0.01  | 4  | 420 | 4  | <5 | <20 | 48 < 0.01 | <10 | 13 | <10 | 15 | 23         |
| 33    | 80077 | 10      | 0.2  | 0.25 | <5 | 80  | <5 | 3.93 | <1 | 6  | 102  | 1730   | 1.77 | <10 | 0.24 | 1892 | 8   | 0.01  | 4  | 430 | <2 | <5 | <20 | 45 < 0.01 | <10 | 11 | <10 | 19 | 18         |
| 34    | 80078 | 30      | 2.6  | 0.21 | <5 | 80  | <5 | 0.66 | <1 | 5  | 132  | 8748   | 1.90 | <10 | 0.11 | 357  | 17  | <0.01 | 4  | 220 | <2 | <5 | <20 | 17 <0.01  | <10 | 9  | <10 | 2  | 12         |
| 35    | 80079 | 90      | 28.8 | 0.23 | <5 | 55  | <5 | 1.33 | 1  | 6  | 99 > | 10000  | 3.37 | <10 | 0.12 | 615  | 12  | <0.01 | 3  | 420 | <2 | <5 | <20 | 19 <0.01  | <10 | 11 | 40  | 1  | 11         |
|       |       |         |      |      |    |     |    |      |    |    |      |        |      |     |      |      |     |       |    |     |    |    |     |           |     |    |     |    |            |
| 36    | 80080 | 15      | 0.8  | 0.22 | <5 | 75  | <5 | 2.98 | <1 | 5  | 131  | 2856   | 1.50 | <10 | 0.17 | 1638 | 7   | <0.01 | 4  | 330 | <2 | <5 | <20 | 37 <0.01  | <10 | 13 | <10 | 15 | 1 <b>1</b> |
| 37    | 80081 | 5       | 8.0  | 0.21 | <5 | 70  | <5 | 3.63 | <1 | 3  | 127  | 1194   | 0.98 | <10 | 0.13 | 1917 | 7   | <0.01 | 3  | 280 | 2  | 5  | <20 | 37 <0.01  | <10 | 7  | <10 | 16 | 6          |
| 38    | 80082 | 5       | 0.8  | 0.51 | <5 | 95  | <5 | 2.46 | <1 | 8  | 102  | 1142   | 1.72 | <10 | 0.39 | 1086 | 6   | 0.01  | 4  | 280 | 4  | <5 | <20 | 28 < 0.01 | <10 | 15 | <10 | 9  | 21         |
| 39    | 80083 | 5       | 0.8  | 1.02 | <5 | 125 | <5 | 1.82 | <1 | 14 | 114  | 1842   | 2.87 | <10 | 0.86 | 763  | 8   | 0.02  | 8  | 450 | 8  | 10 | <20 | 29 <0.01  | <10 | 39 | <10 | 12 | 38         |
| 40    | 80084 | 5       | 0.6  | 0.99 | <5 | 130 | <5 | 2.21 | <1 | 13 | 103  | 1509   | 2.98 | <10 | 0.90 | 847  | 7   | 0.02  | 8  | 430 | 6  | 5  | <20 | 35 < 0.01 | <10 | 40 | <10 | 13 | 36         |
|       |       |         |      |      |    |     |    |      |    |    |      |        |      |     |      |      |     |       |    |     |    |    |     |           |     |    |     |    |            |
| 41    | 80085 | 10      | 1.4  | 0.88 | <5 | 130 | <5 | 2.28 | <1 | 12 | 98   | 2005   | 2.99 | <10 | 0.83 | 861  | 11  |       | 7  | 430 | 6  | 5  | <20 | 40 <0.01  | <10 | 42 | <10 | 12 | 30         |
| 42    | 80086 | 60      | 13.2 |      | <5 | 120 | <5 | 3.05 | <1 | 11 | 92 > | >10000 | 2.86 | <10 | 0.51 | 1226 | 50  | 0.01  | 6  | 30  | <2 | 5  | <20 | 41 < 0.01 | <10 | 25 | <10 | 13 | 28         |
| 43    | 80087 | 10      | 5.6  |      | <5 | 130 | <5 | 4.32 | <1 | 9  | 106  | 6041   | 2.25 | <10 | 0.51 | 1591 | 39  | 0.01  | 4  | 320 | <2 | 10 | <20 | 56 <0.01  | <10 | 16 | <10 | 17 | 25         |
| 44    | 80088 | 40      | 2.2  | 0.54 | <5 | 170 | <5 | 2.81 | <1 | 10 | 117  | 2679   | 2.29 | <10 | 0.45 | 979  | 41  | 0.02  | 6  | 410 | 6  | <5 | <20 | 39 <0.01  | <10 | 14 | <10 | 13 | 31         |
| 45    | 80089 | 10      | 3.4  | 0.36 | <5 | 200 | <5 | 3.43 | <1 | 11 | 86   | 4604   | 2.67 | <10 | 0.48 | 1401 | 527 | 0.02  | 5  | 480 | 6  | 5  | <20 | 56 <0.01  | <10 | 8  | <10 | 13 | 33         |
|       |       |         |      |      |    |     |    |      |    |    |      |        |      |     |      |      |     |       |    |     |    |    |     |           |     |    |     |    |            |
| 46    | 80090 | 640     | 23.8 |      | <5 | 85  | <5 |      | <1 | 7  |      | >10000 | 2.44 | <10 |      | 1293 | 16  | 0.01  | 3  | 380 | <2 | 5  | <20 | 41 0.01   | <10 | 9  | 10  | 11 | 22         |
| 47    | 80091 | 10      | 5.2  |      | <5 | 155 | <5 | 2.49 | <1 | 10 | 102  | 7136   | 2.67 | <10 | 0.57 | 942  | 13  |       | 5  | 320 | 4  | <5 | <20 | 39 <0.01  | <10 | 21 | <10 | 13 | 27         |
| 48    | 80092 | 5       | 8.0  | 0.86 | <5 | 275 | <5 | 2.82 | <1 | 12 | 103  | 1741   | 2.80 | <10 | 0.69 | 965  | 18  | 0.02  | 7  | 420 | 6  | <5 | <20 | 45 < 0.01 | <10 | 27 | <10 | 14 | 33         |
| 49    | 80093 | 5       | 0.4  | 0.76 | <5 | 305 | <5 | 3.01 | <1 | 10 | 103  | 788    | 2.39 | <10 | 0.60 | 999  | 71  | 0.02  | 7  | 440 | 6  | 5  | <20 | 40 < 0.01 | <10 | 21 | <10 | 14 | 30         |
| 50    | 80094 | 15      | 24.2 | 0.60 | <5 | 80  | <5 | 2.38 | <1 | 13 | 91 > | >10000 | 3.36 | <10 | 0.66 | 787  | 13  | 0.02  | 6  | 480 | <2 | <5 | <20 | 38 <0.01  | <10 | 21 | 20  | 8  | 33         |
|       |       |         |      |      |    |     |    |      |    |    |      |        |      |     |      |      |     |       |    |     |    |    |     |           |     |    |     |    |            |
| 51    | 80095 | 5       | 1.0  |      | <5 | 210 | <5 | 2.06 | <1 | 13 | 104  | 1845   | 3.16 | <10 |      | 711  | 27  | 0.03  | 7  | 440 | 6  | 10 | <20 | 55 <0.01  | <10 | 33 | <10 | 12 | 38         |
| 52    | 80096 | 5       | 0.6  | 0.92 | <5 | 210 | <5 | 2.93 | <1 | 14 | 81   | 1078   | 3.75 | <10 | 1.29 | 894  | 8   | 0.03  | 6  | 430 | 6  | 15 | <20 | 70 <0.01  | <10 | 34 | <10 | 18 | 41         |
| 53    | 80097 | 5       | 3.2  | 1.00 | <5 | 135 | <5 | 2.19 | <1 | 12 | 111  | 6327   | 2.60 | <10 | 0.90 | 592  | 8   | 0.03  | 7  | 350 | 4  | 10 | <20 | 39 <0.01  | <10 | 33 | <10 | 11 | 32         |
| 54    | 80098 | 5       | 10.8 | 0.89 | <5 | 120 | <5 | 2.21 | <1 | 12 | 93 > | >10000 | 2.75 | <10 | 0.76 | 597  | 37  | 0.03  | 8  | 120 | 4  | 5  | <20 | 37 <0.01  | <10 | 28 | <10 | 9  | 34         |
| 55    | 80099 | 5       | 1.0  | 0.78 | <5 | 160 | <5 | 3.15 | <1 | 10 | 104  | 2025   | 2.31 | <10 | 0.62 | 727  | 17  | 0.03  | 7  | 360 | 4  | 5  | <20 | 48 < 0.01 | <10 | 22 | <10 | 14 | 31         |

Page 2

| Et #. | Tag#  | Au(ppb) | Ag   | AI % | As | Ba  | Bi | Ca % | Cd | Со | Cr  | Cu     | Fe % | La  | Mg % | Mn   | Мо  | Na % | Ni | Р   | Pb | Sb | Sn  | Sr Tì%     | U   | v  | w   | Υ  | Zn |
|-------|-------|---------|------|------|----|-----|----|------|----|----|-----|--------|------|-----|------|------|-----|------|----|-----|----|----|-----|------------|-----|----|-----|----|----|
| 56    | 80100 | 5       | 3.2  | 0.64 | <5 | 165 | <5 | 3.11 | <1 | 9  | 110 | 4604   | 2.21 | <10 | 0.53 | 679  | 15  | 0.02 | 5  | 280 | 4  | 10 | <20 | 48 < 0.01  | <10 | 17 | <10 | 10 | 25 |
| 57    | 80101 | 5       | 2.0  | 0.57 | <5 | 135 | <5 | 3.96 | <1 | 9  | 111 | 2639   | 2.23 | <10 | 0.51 | 764  | 13  | 0.02 | 6  | 410 | 4  | 10 | <20 | 46 < 0.01  | <10 | 19 | <10 | 15 | 28 |
| 58    | 80102 | 5       | 1.0  | 0.65 | <5 | 220 | <5 | 4.26 | <1 | 12 | 93  | 1073   | 2.74 | <10 | 0.77 | 884  | 20  | 0.02 | 6  | 390 | 4  | 5  | <20 | 64 < 0.01  | <10 | 20 | <10 | 14 | 36 |
| 59    | 80103 | 5       | 1.2  | 0.57 | <5 | 225 | <5 | 3.95 | <1 | 11 | 88  | 1198   | 2.41 | <10 | 0.58 | 751  | 22  | 0.03 | 7  | 400 | 4  | 10 | <20 | 57 < 0.01  | <10 | 20 | <10 | 12 | 35 |
| 60    | 80104 | 5       | <0.2 | 1.11 | <5 | 180 | <5 | 2.82 | <1 | 14 | 72  | 220    | 2.46 | <10 | 1.03 | 795  | 10  | 0.03 | 10 | 390 | 6  | 10 | <20 | 44 < 0.01  | <10 | 27 | <10 | 9  | 36 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |      |    |     |    |    |     |            |     |    |     |    |    |
| 61    | 80105 | 5       | 2.8  | 2.14 | <5 | 170 | <5 | 2.22 | <1 | 26 | 59  | 2905   | 4.07 | <10 | 2.18 | 967  | 6   | 0.02 | 21 | 360 | 12 | 20 | <20 | 30 < 0.01  | <10 | 64 | <10 | <1 | 65 |
| 62    | 80106 | 15      | 5.8  | 0.88 | <5 | 170 | <5 | 3.09 | <1 | 15 | 61  | 6307   | 3.37 | <10 | 1.52 | 1197 | 5   | 0.02 | 9  | 260 | 6  | 15 | <20 | 58 < 0.01  | <10 | 30 | <10 | 9  | 39 |
| 63    | 80107 | 5       | 0.8  | 0.38 | <5 | 515 | <5 | 4.28 | <1 | 12 | 90  | 1142   | 3.49 | <10 | 1.92 | 1442 | 6   | 0.03 | 7  | 410 | 2  | 15 | <20 | 123 < 0.01 | <10 | 23 | <10 | 11 | 35 |
| 64    | 80108 | 5       | 0.8  | 0.48 | <5 | 920 | <5 | 3.21 | <1 | 6  | 62  | 734    | 2.29 | <10 | 0.81 | 864  | 71  | 0.03 | 7  | 400 | 4  | 10 | <20 | 70 < 0.01  | <10 | 19 | <10 | 9  | 28 |
| 65    | 80109 | 5       | <0.2 | 0.62 | <5 | 300 | <5 | 3.04 | <1 | 11 | 82  | 157    | 2.43 | <10 | 0.89 | 672  | 579 | 0.03 | 7  | 480 | 4  | 10 | <20 | 64 < 0.01  | <10 | 19 | <10 | 9  | 28 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |      |    |     |    |    |     |            |     |    |     |    |    |
| 66    | 80110 | 5       | <0.2 | 0.87 | <5 | 330 | <5 | 5.06 | <1 | 14 | 77  | 90     | 3.47 | <10 | 2.44 | 949  | 22  | 0.03 | 9  | 410 | 2  | 20 | <20 | 142 < 0.01 | <10 | 25 | <10 | 10 | 39 |
| 67    | 80111 | 5       | 1.0  | 0.65 | <5 | 295 | <5 | 4.83 | <1 | 12 | 78  | 1415   | 3.17 | <10 | 1.32 | 896  | 14  | 0.03 | 8  | 410 | 2  | 15 | <20 | 90 < 0.01  | <10 | 22 | <10 | 11 | 38 |
| 68    | 80112 | 5       | 1.8  | 0.36 | <5 | 325 | <5 | 4.92 | <1 | 12 | 92  | 2753   | 3.33 | <10 | 0.54 | 1044 | 48  | 0.02 | 8  | 270 | <2 | <5 | <20 | 69 < 0.01  | <10 | 22 | <10 | 10 | 43 |
| 69    | 80113 | 5       | 1.8  | 0.26 | <5 | 250 | <5 | 3.81 | <1 | 11 | 95  | 3607   | 3.26 | <10 | 0.56 | 1091 | 19  | 0.02 | 7  | 310 | <2 | <5 | <20 | 59 < 0.01  | <10 | 20 | <10 | 10 | 41 |
| 70    | 80114 | 20      | 4.2  | 0.33 | <5 | 180 | <5 | 3.90 | <1 | 10 | 82  | 6879   | 2.79 | <10 | 0.54 | 1261 | 9   | 0.02 | 6  | 280 | <2 | 5  | <20 | 54 < 0.01  | <10 | 18 | <10 | 13 | 30 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |      |    |     |    |    |     |            |     |    |     |    |    |
| 71    | 80115 | 65      | 1.6  | 0.29 | <5 | 120 | <5 | 2.99 | <1 | 10 | 82  | 7227   | 2.88 | <10 | 0.36 | 1015 | 25  | 0.02 | 5  | 300 | <2 | <5 | <20 | 45 < 0.01  | <10 | 20 | <10 | 13 | 32 |
| 72    | 80116 | 115     | 6.0  | 0.36 | <5 | 115 | <5 | 3.27 | <1 | 11 | 113 | 6442   | 2.51 | <10 | 0.39 | 995  | 25  | 0.02 | 6  | 350 | <2 | <5 | <20 | 45 < 0.01  | <10 | 16 | <10 | 13 | 34 |
| 73    | 80117 | 5       | 1.2  | 0.52 | <5 | 175 | <5 | 4.14 | <1 | 10 | 80  | 1379   | 2.47 | <10 | 0.95 | 1007 | 14  | 0.03 | 7  | 440 | 4  | 10 | <20 | 81 < 0.01  | <10 | 24 | <10 | 15 | 28 |
| 74    | 80118 | 5       | 0.2  | 0.83 | <5 | 200 | <5 | 2.44 | <1 | 9  | 71  | 982    | 2.20 | <10 | 0.89 | 571  | 9   | 0.05 | 7  | 490 | 4  | 10 | <20 | 73 < 0.01  | <10 | 34 | <10 | 13 | 22 |
| 75    | 80119 | 5       | <0.2 | 0.9  | <5 | 210 | <5 | 2.77 | <1 | 10 | 70  | 663    | 2.38 | <10 | 0.94 | 646  | 5   | 0.05 | 8  | 520 | 6  | 10 | <20 | 74 <0.01   | <10 | 35 | <10 | 14 | 23 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |      |    |     |    |    |     |            |     |    |     |    |    |
| 76    | 80120 | 5       | 0.6  | 0.66 | <5 | 190 | <5 | 4.62 | <1 | 12 | 70  | 1403   | 2.72 | <10 | 1.59 | 1157 | 22  | 0.04 | 6  | 410 | 6  | 25 | <20 | 103 <0.01  | <10 | 26 | <10 | 18 | 33 |
| 77    | 80121 | 5       | 0.4  | 0.86 | <5 | 225 | <5 | 2.62 | <1 | 11 | 62  | 941    | 2.68 | <10 | 1.53 | 747  | 4   | 0.05 | 6  | 460 | 6  | 10 | <20 | 98 <0.01   | <10 | 32 | <10 | 15 | 25 |
| 78    | 80122 | 10      | 2.4  | 0.98 | <5 | 170 | <5 | 2.85 | <1 | 13 | 82  | 5597   | 2.82 | <10 | 1.54 | 751  | 12  | 0.04 | 6  | 360 | 6  | 15 | <20 | 83 <0.01   | <10 | 32 | <10 | 13 | 31 |
| 79    | 80123 | 5       | 1.8  | 0.78 | <5 | 180 | <5 | 3.85 | <1 | 13 | 88  | 2663   | 2.99 | <10 | 1.57 | 864  | 39  | 0.03 | 6  | 370 | 4  | 10 | <20 | 85 <0.01   | <10 | 23 | <10 | 13 | 34 |
| 80    | 80124 | 10      | 1.4  | 0.86 | <5 | 140 | <5 | 3.60 | <1 | 13 | 100 | 1932   | 2.95 | <10 | 1.06 | 798  | 23  | 0.03 | 6  | 390 | 4  | 5  | <20 | 65 < 0.01  | <10 | 25 | <10 | 12 | 36 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |      |    |     |    |    |     |            |     |    |     |    |    |
| 81    | 80125 | 15      | 2.4  | 0.89 | <5 | 115 | <5 |      | <1 | 11 | 110 | 2973   | 2.37 | <10 | 0.84 | 760  | 11  |      | 7  | 350 | 4  | 10 | <20 | 54 <0.01   | <10 | 23 | <10 | 13 | 27 |
| 82    | 80126 | 5       | 0.4  | 0.93 | <5 | 125 | <5 | 3.52 | <1 | 10 | 116 | 646    | 2.22 | <10 | 0.86 | 634  | 20  | 0.03 | 8  | 400 | 4  | <5 | <20 | 53 <0.01   | <10 | 24 | <10 | 14 | 26 |
| 83    | 80127 | 5       | 1.8  | 0.65 | <5 | 275 | <5 | 3.86 | <1 | 9  | 88  | 1791   | 2.42 | <10 | 0.76 | 774  | 50  |      | 7  | 370 | 4  | <5 | <20 | 58 <0.01   | <10 | 25 | <10 | 12 | 27 |
| 84    | 80128 | 45      | 6.2  | 0.88 | <5 | 155 | <5 | 2.16 | 1  | 18 | 76  | >10000 | 7.03 | <10 | 1.34 | 835  | 28  | 0.02 | 9  | 200 | 2  | <5 | 40  | 41 < 0.01  | <10 | 58 | <10 | 2  | 53 |
| 85    | 80129 | 110     | 12.8 | 0.98 | <5 | 85  | <5 | 2.22 | <1 | 16 | 84  | >10000 | 6.01 | <10 | 1.14 | 742  | 10  | 0.02 | 8  | 300 | <2 | <5 | 40  | 35 0.02    | <10 | 57 | 20  | 2  | 42 |
|       |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |      |    |     |    |    |     |            |     |    |     | _  |    |
| 86    | 80130 | 30      | 4.0  | 1.01 | <5 | 210 |    | 2.11 | <1 | 12 | 89  | 7305   | 4.26 | <10 | 1.03 | 667  | 33  |      | 8  | 360 | 4  | <5 | <20 | 40 < 0.01  | <10 | 45 | <10 | 8  | 34 |
| 87    | 80131 | 5       | <0.2 |      | <5 | 480 | <5 |      | <1 | 11 | 84  | 802    |      | <10 | 1.20 | 562  | 10  |      | 9  | 490 | 6  | 10 | <20 | 34 < 0.01  | <10 | 49 | <10 | 11 | 31 |
| 88    | 80132 | 5       | 0.4  | 0.95 | <5 | 145 | <5 |      | <1 | 12 | 90  | 1352   | 2.85 | <10 | 0.98 | 583  | 13  |      | 9  | 490 | 6  | 5  | <20 | 34 < 0.01  | <10 | 43 | <10 | 13 | 31 |
| 89    | 80133 | 5       | 0.4  | 1.20 | <5 | 270 | <5 | 2.05 | <1 | 13 | 94  | 805    | 3.12 | <10 | 1.09 | 551  | 8   |      | 9  | 500 | 8  | 5  | <20 | 33 <0.01   | <10 | 48 | <10 | 11 | 39 |
| 90    | 80134 | 25      | 1.2  | 1.08 | <5 | 170 | <5 | 1.93 | <1 | 13 | 121 | 2344   | 2.93 | <10 | 1.01 | 564  | 12  | 0.03 | 9  | 500 | 6  | <5 | <20 | 32 <0.01   | <10 | 51 | <10 | 12 | 31 |

Page 3

|   | IARCU | OIL & GA | 43      | ICP CERTIFICATE OF ANALTSIS AN |      |    |     |    |      |    |    |      |        |      |     |      | N 90-13     | <b>34</b> 0 |       |    |     |    |    |     | 200-11     | -OII LA | 501VA | TORRES |    |    |
|---|-------|----------|---------|--------------------------------|------|----|-----|----|------|----|----|------|--------|------|-----|------|-------------|-------------|-------|----|-----|----|----|-----|------------|---------|-------|--------|----|----|
|   | Et #  | Tag#     | Au(ppb) | Ag                             | AI % | As | Ва  | Bi | Ca % | Cd | Со | Cr   | Çu     | Fe % | La  | Mg % | Mn          | Мо          | Na %  | Ni | Р   | Pb | Sb | Sn  | Sr Ti %    | U       | ٧     | w      | Υ  | Zn |
| - | 91    | 80135    | 20      | 3.2                            | 1.15 | <5 | 175 | <5 | 2.90 | 1  | 13 | 99   | 4736   | 2.83 | <10 | 0.99 | 767         | 7           | 0.02  | 8  | 500 | 6  | 10 | <20 | 40 < 0.01  | <10     | 36    | <10    | 15 | 37 |
|   | 92    | 80136    | 20      | 5.8                            | 0.72 | <5 | 75  | <5 | 3.90 | <1 | 10 | 91   | 8684   | 2.50 | <10 | 0.82 | 1287        | 7           | <0.01 | 7  | 390 | 4  | 10 | <20 | 35 < 0.01  | <10     | 29    | <10    | 15 | 27 |
|   | 93    | 80137    | 30      | 4.2                            | 1.04 | <5 | 130 | <5 | 2.62 | <1 | 13 | 86   | 5847   | 2.89 | <10 | 0.94 | 883         | 5           | 0.02  | 9  | 450 | 6  | 10 | <20 | 38 < 0.01  | <10     | 32    | <10    | 13 | 40 |
|   | 94    | 80138    | 10      | 4.2                            | 0.80 | <5 | 120 | <5 | 2.76 | <1 | 10 | 96   | 6473   | 2.21 | <10 | 0.70 | 956         | 10          | <0.01 | 7  | 430 | <2 | 10 | <20 | 24 < 0.01  | <10     | 26    | <10    | 9  | 32 |
|   | 95    | 80139    | 20      | 3.0                            | 0.97 | <5 | 65  | <5 | 2.81 | <1 | 13 | 80   | 4787   | 2.87 | <10 | 0.98 | 804         | 18          | 0.02  | 8  | 430 | 4  | 10 | <20 | 36 < 0.01  | <10     | 27    | <10    | 14 | 43 |
|   | 96    | 80140    | 25      | 6.8                            | 1.19 | <5 | 70  | <5 | 2.31 | <1 | 13 | 96 : | >10000 | 2.99 | <10 | 1.03 | 675         | 13          | 0.03  | 9  | 340 | <2 | 5  | <20 | 35 <0.01   | <10     | 32    | <10    | 11 | 41 |
|   | 97    | 80141    | 10      | 1.8                            | 1.25 | <5 | 65  | <5 | 2.03 | <1 | 13 | 76   | 2419   | 2.93 | <10 | 1.09 | 677         |             | 0.03  | 8  | 440 | 6  | 10 | <20 | 38 < 0.01  | <10     | 30    | <10    | 10 | 41 |
|   | 98    | 80142    | 5       | 0.6                            | 0.90 | <5 | 180 | <5 | 3.45 | <1 | 9  | 93   | 791    | 2.26 | <10 | 0.85 | 758         |             | 0.04  | 8  | 540 | 6  | 10 | <20 | 54 < 0.01  | <10     | 34    | <10    | 14 | 22 |
|   | 99    | 80143    | 5       | <0.2                           |      | <5 | 95  | <5 | 3.64 | <1 | 11 | 72   | 259    | 2.63 | <10 | 0.88 | 808         |             | 0.04  | 7  | 520 | 4  | 10 | <20 | 64 < 0.01  | <10     | 29    | <10    | 14 | 25 |
|   | 100   | 80144    | 65      | 7.8                            | 0.93 | <5 | 70  | <5 | 3.29 | <1 | 12 | 61   | 8151   | 2.78 | <10 | 0.84 | 803         | 69          | 0.03  | 9  | 420 | 4  | 10 | <20 | 51 <0.01   | <10     | 30    | <10    | 12 | 32 |
|   | 101   | 80145    | 115     | >30                            | 0.51 | <5 | 55  | <5 | 2.55 | <1 | 12 | 49   | >10000 | 3.35 | <10 | 0.68 | 969         | 11          | 0.01  | 7  | <10 | <2 | <5 | <20 | 29 0.01    | <10     | 23    | 20     | 7  | 32 |
|   | 102   | 80146    | 40      | 9.2                            | 0.33 | <5 | 65  | <5 | 2.84 | <1 | 13 | 70   | >10000 | 3.33 | <10 | 0.63 | 1122        | 73          | 0.02  | 7  | 340 | <2 | 5  | <20 | 32 < 0.01  | <10     | 21    | <10    | 8  | 35 |
|   | 103   | 80147    | 295     | >30                            | 0.21 | 10 | 50  | <5 | 4.78 | <1 | 6  |      | >10000 | 1.97 | <10 | 0.32 | 1318        |             | <0.01 | 3  | 320 | <2 | 10 | <20 | 36 < 0.01  | <10     | 12    | 40     | 13 | 13 |
|   | 104   | 80148    | 80      | 12.4                           | 0.25 | 10 | 110 | <5 |      | <1 | 11 |      | >10000 | 2.76 | <10 | 0.56 | 780         |             | 0.02  | 8  | 260 | <2 | 5  | <20 | 33 < 0.01  | <10     | 21    | <10    | 7  | 33 |
|   | 105   | 80149    | 45      | 1.6                            | 0.49 | <5 | 370 | <5 | 1.86 | <1 | 9  | 62   | 2887   | 2.63 | <10 | 0.57 | 500         | 12          | 0.02  | 7  | 480 | 2  | 5  | <20 | 33 <0.01   | <10     | 20    | <10    | 7  | 31 |
|   | 106   | 80150    | 10      | 6.0                            | 0.63 | <5 | 240 | <5 | 9.41 | <1 | 14 | 54   | >10000 | 3.50 | <10 | 3.10 | 888         | 7           | 0.03  | 7  | 30  | <2 | 25 | <20 | 119 < 0.01 | <10     | 26    | <10    | 10 | 40 |
|   | 107   | 80151    | 5       | 2.2                            |      | 5  | 655 |    |      | <1 | 10 | 49   | 3584   | 2.64 | <10 | 1.85 | 796         |             | 0.03  | 8  | 410 | 4  | 25 | <20 | 81 < 0.01  | <10     | 33    | <10    | 18 | 38 |
|   | 108   | 80152    | 5       | <0.2                           |      | <5 | 100 |    | 1.34 | 1  | 10 | 63   | 377    | 2.31 | <10 | 0.66 | 352         | 5           | 0.04  | 7  | 520 | 4  | 5  | <20 | 33 0.01    | <10     | 56    | <10    | 11 | 24 |
|   | 109   | 80153    | 10      | <0.2                           | 0.71 | <5 | 110 | <5 | 1.84 | 6  | 9  | 105  | 233    | 2.24 | <10 | 0.68 | 401         | 6           | 0.04  | 10 | 530 | 6  | 5  | <20 | 39 0.01    | <10     | 55    | <10    | 13 | 54 |
|   | 110   | 80154    | 5       | <0.2                           | 0.64 | <5 | 140 | <5 | 5.87 | <1 | 10 | 52   | 81     | 2.44 | 10  | 1.15 | 834         | 4           | 0.05  | 7  | 460 | 6  | 15 | <20 | 76 <0.01   | <10     | 33    | <10    | 22 | 26 |
|   | 111   | 80155    | 10      | <0.2                           | 0.34 | <5 | 110 | <5 | 8.92 | <1 | 6  | 92   | 766    | 1.53 | <10 | 1.29 | 1480        | 5           | 0.02  | 4  | 360 | 18 | 20 | <20 | 90 < 0.01  | <10     | 14    | <10    | 18 | 17 |
|   | 112   | 80156    | 10      | <0.2                           | 0.69 | <5 | 160 | <5 | 4.61 | 1  | 9  | 55   | 262    | 2.28 | <10 | 0.53 | 738         | 5           | 0.04  | 7  | 530 | 4  | 10 | <20 | 66 < 0.01  | <10     | 29    | <10    | 16 | 37 |
|   | 113   | 80157    | 5       | 0.4                            | 0.52 | <5 | 205 | <5 | 4.87 | <1 | 7  | 51   | 514    | 1.90 | <10 | 0.44 | 716         | 4           | 0.04  | 6  | 550 | 4  | 10 | <20 | 68 < 0.01  | <10     | 25    | <10    | 18 | 25 |
|   | 114   | 80158    | 5       | <0.2                           | 0.62 | <5 | 100 | <5 | 2.75 | <1 | 10 | 65   | 146    | 2.40 | <10 | 0.63 | 597         | 4           | 0.04  | 9  | 540 | 4  | <5 | <20 | 42 0.02    | <10     | 49    | <10    | 15 | 27 |
|   | 115   | 80159    | 5       | <0.2                           | 0.48 | <5 | 445 | <5 | 6.21 | <1 | 9  | 62   | 177    | 2.50 | 10  | 0.58 | 946         | 4           | 0.04  | 7  | 490 | <2 | 5  | <20 | 76 <0.01   | <10     | 28    | <10    | 21 | 26 |
|   | 116   | 80160    | 5       | <0.2                           | 0.39 | <5 | 525 | <5 | 6.64 | <1 | 5  | 49   | 240    | 1.66 | 10  | 0.38 | 1482        | 11          | 0.03  | 4  | 480 | 10 | 10 | <20 | 72 <0.01   | <10     | 19    | <10    | 21 | 22 |
|   | 117   | 80161    | 5       | <0.2                           | 0.44 | <5 | 130 | <5 | 5.35 | <1 | 11 | 61   | 134    | 2.51 | 10  | 0.56 | 1041        | 4           | 0.04  | 6  | 550 | 4  | <5 | <20 | 64 < 0.01  | <10     | 20    | <10    | 17 | 34 |
|   | 118   | 80162    | 5       | <0.2                           | 0.44 | <5 | 150 | <5 | 5.34 | <1 | 8  | 48   | 126    | 2.09 | <10 | 0.56 | 964         | 4           | 0.04  | 4  | 520 | 2  | 15 | <20 | 71 <0.01   | <10     | 23    | <10    | 16 | 25 |
|   | 119   | 80163    | 5       | <0.2                           | 0.50 | <5 | 215 | <5 | 4.55 | <1 | 7  | 60   | 118    | 1.78 | 10  | 0.44 | 1149        | 4           | 0.04  | 5  | 540 | 2  | 10 | <20 | 65 < 0.01  | <10     | 24    | <10    | 17 | 22 |
|   | 120   | 80164    | 5       | <0.2                           | 0.69 | <5 | 115 | <5 | 2.69 | <1 | 9  | 61   | 125    | 2.30 | <10 | 0.84 | 587         | 4           | 0.05  | 7  | 530 | 4  | 15 | <20 | 54 0.03    | <10     | 56    | <10    | 18 | 25 |
|   | 121   | 80165    | 5       | <0.2                           | 0.73 | <5 | 100 |    | 1.71 | <1 | 10 | 79   | 127    | 2.36 | <10 | 0.88 | <b>4</b> 71 | 3           | 0.05  | 8  | 540 | 6  | 5  | <20 | 40 0.03    | <10     | 58    | <10    | 14 | 24 |
|   | 122   | 80166    | 10      | <0.2                           | 0.77 | <5 | 120 | <5 | 3.47 | <1 | 9  | 58   | 131    | 2.24 | <10 | 0.76 | 681         | 7           | 0.05  | 7  | 540 | 6  | 10 | <20 | 62 < 0.01  | <10     | 40    | <10    | 17 | 24 |
|   | 123   | 80167    | 5       | <0.2                           | 0.75 | <5 | 100 | <5 | 2.23 | <1 | 10 | 81   | 133    | 2.37 | <10 | 0.89 | 525         | 4           | 0.05  | 9  | 550 | 4  | 5  | <20 | 47 0.02    | <10     | 56    | <10    | 17 | 25 |
|   | 124   | 80168    | 15      | <0.2                           | 0.70 | <5 | 135 | <5 | 1.50 | <1 | 9  | 66   | 204    | 2.42 | <10 | 0.83 | 403         | 3           | 0.05  | 7  | 510 | 6  | 10 | <20 | 40 0.06    | <10     | 67    | <10    | 15 | 22 |
|   | 125   | 80169    | 20      | <0.2                           | 0.52 | <5 | 95  | <5 | 3.68 | <1 | 8  | 72   | 183    | 2.05 | <10 | 0.69 | 1013        | 5           | 0.03  | 7  | 570 | 4  | 10 | <20 | 50 0.03    | <10     | 42    | <10    | 14 | 25 |
|   |       |          |         |                                |      |    |     |    |      |    |    |      |        |      |     |      |             |             |       |    |     |    |    |     |            |         |       |        |    |    |

Page 4

| Et  |       | Au(ppb) | Ag   | Al % | As | Ba  | Bi | Ca % | Cd | Co | Cr    | Cu   | Fe % | La  | Mg % | Mn   | Мо | Na %  | Ni | Р   | Pb | \$b | Sn  | Sr Ti  | i %  | <u>u</u> |    | W   | Y  | Zn |
|-----|-------|---------|------|------|----|-----|----|------|----|----|-------|------|------|-----|------|------|----|-------|----|-----|----|-----|-----|--------|------|----------|----|-----|----|----|
| 12  |       | 10      |      | 0.45 | <5 | 120 |    | 4.74 | <1 | 8  | 40    | 109  | 2.11 | <10 | 1.00 | 1232 | 6  | 0.04  | 4  | 540 | 4  | 15  | <20 | 64 <0. |      | <10      | 23 | <10 | 17 | 31 |
| 12  |       | 5       | <0.2 |      | <5 | 135 | <5 | 1.96 | <1 | 9  | 67    | 510  | 2.43 | <10 | 0.94 | 566  | 46 | 0.05  | 8  | 560 | 4  | 5   | <20 |        | .02  | <10      | 51 | <10 | 14 | 27 |
| 12  |       | 5       | <0.2 |      | <5 | 195 | <5 | 1.61 | <1 | 9  | 64    | 319  | 2.42 | <10 | 0.78 | 493  | 22 | 0.04  | 7  | 520 | 10 | 5   | <20 | _      | .07  | <10      | 64 | <10 | 12 | 21 |
| 12  |       | 10      | <0.2 |      | <5 | 105 | <5 | 1.64 | <1 | 9  | 80    | 212  | 2.34 | <10 | 0.84 | 511  | 5  | 0.05  | 8  | 540 | 6  | 10  | <20 |        | .03  | <10      | 60 | <10 | 14 | 26 |
| 13  | 80174 | 10      | <0.2 | 0.93 | <5 | 125 | <5 | 1.28 | <1 | 10 | 65    | 140  | 2.45 | <10 | 0.78 | 321  | 3  | 0.05  | 8  | 550 | 8  | 10  | <20 | 32 0   | .09  | <10      | 76 | <10 | 8  | 25 |
| 13  |       | 5       | <0.2 |      | <5 | 110 | <5 | 1.84 | <1 | 10 | 87    | 103  | 2.47 | <10 | 1.25 | 521  | 5  | 0.05  | 9  | 540 | 6  | 15  | <20 | 37 0   | .06  | <10      | 65 | <10 | 10 | 29 |
| 13  |       | 10      |      | 0.86 | <5 | 160 | <5 | 1.17 | <1 | 9  | 60    | 80   | 2.35 | <10 | 0.66 | 288  | 2  | 0.05  | 7  | 520 | 8  | 5   | <20 | 29 0   | .12  | <10      | 74 | <10 | 6  | 22 |
| 13  |       | 5       | <0.2 | 0.71 | <5 | 80  | <5 | 4.92 | 1  | 8  | 74    | 295  | 2.01 | <10 | 0.69 | 1326 | 5  | 0.03  | 5  | 530 | 10 | 15  | <20 | 57 <0  | .01  | <10      | 29 | <10 | 18 | 29 |
| 13  |       | 5       | <0.2 |      | <5 | 85  | <5 | 1.42 | <1 | 10 | 69    | 55   | 2.40 | <10 | 0.81 | 412  | 3  | 0.05  | 8  | 550 | 6  | 10  | <20 | 31 0   | .07  | <10      | 69 | <10 | 8  | 25 |
| 13  | 80179 | 10      | <0.2 | 1.00 | <5 | 110 | <5 | 1.46 | <1 | 10 | 83    | 75   | 2.46 | <10 | 1.16 | 539  | 3  | 0.06  | 8  | 540 | 6  | 15  | <20 | 50 0   | 0.03 | <10      | 58 | <10 | 15 | 28 |
| 13  |       | 5       | <0.2 |      | <5 | 95  | <5 | 1.54 | <1 | 10 | 69    | 152  | 2.40 | <10 | 0.94 | 379  | 3  | 0.05  | 8  | 500 | 8  | 10  | <20 | 39 0   | 0.07 | <10      | 69 | <10 | 11 | 25 |
| 13  |       | 5       | <0.2 |      | <5 | 85  | <5 | 1.96 | <1 | 10 | 98    | 287  | 2.29 | <10 | 0.87 | 458  | 7  | 0.05  | 9  | 510 | 6  | 5   | <20 | 40 0   | 0.04 | <10      | 60 | <10 | 14 | 27 |
| 13  |       | 5       |      | 0.78 | <5 | 95  | <5 | 4.90 | <1 | 9  | 61    | 349  | 2.18 | <10 | 0.72 | 1325 | 38 | 0.05  | 7  | 510 | 4  | 10  | <20 | 61 0   | 0.01 | <10      | 43 | <10 | 18 | 42 |
| 13  |       | 5       | <0.2 |      | <5 | 95  | <5 | 1.93 | <1 | 7  | 93    | 155  | 1.94 | <10 | 0.64 | 520  | 4  | 0.05  | 6  | 420 | 6  | 5   | <20 |        | 0.03 | <10      | 38 | <10 | 9  | 34 |
| 14  | 80184 | 5       | <0.2 | 0.79 | <5 | 85  | <5 | 1.18 | <1 | 8  | 72    | 135  | 2.09 | <10 | 0.61 | 344  | 3  | 0.05  | 7  | 420 | 6  | 5   | <20 | 29 0   | ).05 | <10      | 47 | <10 | 11 | 25 |
| 14  |       | 10      | <0.2 |      | <5 | 115 | <5 | 2.36 | <1 | 6  | 77    | 264  | 1.66 | <10 | 0.58 | 423  | 4  | 0.06  | 7  | 420 | 4  | 10  | <20 | 57 <0  | 0.01 | <10      | 30 | <10 | 10 | 22 |
| 14  |       | 15      | <0.2 |      | <5 | 135 | <5 |      | <1 | 6  | 45    | 455  | 1.69 | <10 | 1.67 | 602  | 5  | 0.06  | 6  | 360 | 2  | 25  | <20 | 72 <0  |      | <10      | 19 | <10 | 12 | 22 |
| 14  |       | 5       |      | 0.60 | <5 | 100 | <5 | 2.04 | <1 | 8  | 56    | 78   | 1.96 | <10 | 0.79 | 485  | 4  | 0.06  | 7  | 380 | 6  | 10  | <20 |        | 3.01 | <10      | 36 | <10 | 12 | 27 |
| 14  |       | 5       | <0.2 |      | 5  | 110 | <5 | 1.31 | <1 | 7  | 75    | 103  | 1.79 | <10 | 0.57 | 319  | 4  | 0.06  | 6  | 350 | 4  | <5  | <20 | 40 0   | 0.02 | <10      | 39 | <10 | 13 | 22 |
| 14  | 80189 | 5       | <0.2 | 0.54 | <5 | 85  | <5 | 0.92 | <1 | 5  | 68    | 194  | 1.51 | <10 | 0.43 | 203  | 16 | 0.05  | 5  | 260 | 4  | <5  | <20 | 31 0   | 3.02 | <10      | 31 | <10 | 8  | 17 |
| QC. | DATA: |         |      |      |    |     |    |      |    |    |       |      |      |     |      |      |    |       |    |     |    |     |     |        |      |          |    |     |    |    |
| Res |       |         |      |      |    |     |    |      |    |    |       |      |      |     |      |      |    |       |    |     |    |     |     |        |      |          |    |     |    |    |
| 1   | 79987 | 5       | <0.2 |      | <5 | 215 | <5 |      | <1 | 13 | 77    | 703  | 3.06 | <10 | 1.03 | 421  | 3  | 0.04  | 11 | 630 | 98 | 10  | <20 |        | 80.0 | <10      | 80 | <10 | 13 | 36 |
| 36  | 80080 | 15      | 1.2  |      | <5 | 80  | <5 | 3.07 | <1 | 5  | 122   | 2920 | 1.57 | <10 | 0.18 | 1732 | 6  | <0.01 | 4  | 330 | <2 | <5  | <20 | 38 <0  | 0.01 | <10      | 15 | <10 | 16 | 11 |
| 71  | 80115 | 65      | 1.2  |      | <5 | 130 | <5 | 2.98 | <1 | 10 | 100   | 5416 | 2.85 | <10 | 0.37 | 1026 | 20 | 0.02  | 7  | 420 | <2 | <5  | <20 | 43 <0  | 0.01 | <10      | 20 | <10 | 13 | 33 |
| 100 |       | 10      | 7.4  |      | <5 | 220 | <5 | 9.29 | <1 | 14 | 60 >1 | 0000 | 3.56 | <10 | 3.11 | 885  | 7  | 0.03  | 9  | 30  | <2 | 25  | <20 | 114 <0 | 0.01 | <10      | 26 | 10  | 10 | 41 |
| 14  | 80185 | 10      | <0.2 | 0.64 | <5 | 100 | <5 | 2.27 | <1 | 6  | 81    | 247  | 1.67 | <10 | 0.56 | 420  | 4  | 0.06  | 7  | 430 | 4  | 10  | <20 | 55 <0  | 0.01 | <10      | 30 | <10 | 9  | 23 |

|   | Et #.                                            | Tag#                                                                 | Au(ppb)                                  | Ag                                                | Al %                                                 | As                         | Ba                                            | Bi                                       | Ca %                                                 | Cd                                           | Со                                    | Cr                                      | Cu                                                    | Fe %                                                 | La                                     | Mg %                                                 | Mn                                             | Мо                                 | Na %                                         | Ni                               | Р                                           | Pb                                | Sb                                    | Sn                                     | Sr Ti                                                                     | %                          | U                                      | V                                      | W                                      | Υ                                      | Zn                                     |
|---|--------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|------------------------------------------------------|----------------------------|-----------------------------------------------|------------------------------------------|------------------------------------------------------|----------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------|------------------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------|----------------------------------------------|----------------------------------|---------------------------------------------|-----------------------------------|---------------------------------------|----------------------------------------|---------------------------------------------------------------------------|----------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
|   | QC DAT                                           |                                                                      |                                          |                                                   |                                                      |                            |                                               |                                          |                                                      |                                              |                                       |                                         |                                                       |                                                      |                                        |                                                      |                                                |                                    |                                              |                                  |                                             |                                   |                                       |                                        |                                                                           |                            |                                        |                                        |                                        |                                        |                                        |
|   | í                                                | 79987                                                                | 5                                        | < 0.2                                             | 1.15                                                 | <5                         | 210                                           | <5                                       | 2.04                                                 | <1                                           | 13                                    | 97                                      | 727                                                   | 3.13                                                 | <10                                    | 1.07                                                 | 449                                            | 4                                  | 0.04                                         | 12                               | 620                                         | 10                                | <5                                    | <20                                    | 41 0.0                                                                    | 07                         | <10                                    | 78                                     | <10                                    | 13                                     | 32                                     |
|   | 10                                               | 79996                                                                | 5                                        | <0.2                                              | 0.74                                                 | <5                         | 415                                           | <5                                       | 2.57                                                 | <1                                           | 8                                     | 104                                     | 457                                                   | 2.50                                                 | <10                                    | 0.74                                                 | 569                                            | 5                                  | 0.04                                         | 8                                | 410                                         | 6                                 | 5                                     | <20                                    | 48 <0.0                                                                   | 01                         | <10                                    | 39                                     | <10                                    | 13                                     | 29                                     |
|   | 19                                               | 80005                                                                | 5                                        | <0.2                                              | 0.62                                                 | <5                         | 95                                            | <5                                       | 1.26                                                 | <1                                           | 7                                     | 80                                      | 147                                                   | 1.81                                                 | <10                                    | 0.76                                                 | 314                                            | 4                                  | 0.05                                         | 5                                | 440                                         | 4                                 | 5                                     | <20                                    | 41 <0.0                                                                   | 01                         | <10                                    | 39                                     | <10                                    | 11                                     | 15                                     |
|   | 36                                               | 80080                                                                | 10                                       | 1.0                                               | 0.24                                                 | <5                         | 80                                            | <5                                       | 3.06                                                 | <1                                           | 5                                     | 137                                     | 2988                                                  | 1.56                                                 | <10                                    | 0.18                                                 | 1682                                           | 7                                  | <0.01                                        | 3                                | 340                                         | <2                                | <5                                    | <20                                    | 36 < 0.0                                                                  | 01                         | <10                                    | 14                                     | <10                                    | 15                                     | 12                                     |
|   | 45                                               | 80089                                                                | 10                                       | 3.4                                               | 0.38                                                 | <5                         | 210                                           | <5                                       | 3.44                                                 | <1                                           | 11                                    | 87                                      | 4663                                                  | 2.70                                                 | <10                                    | 0.48                                                 | 1402                                           | 541                                | 0.02                                         | 5                                | 500                                         | 8                                 | <5                                    | <20                                    | 56 <0.6                                                                   | 01                         | <10                                    | 8                                      | <10                                    | 14                                     | 33                                     |
| : | 54<br>71<br>80<br>89<br>106<br>115<br>124<br>141 | 80098<br>80115<br>80124<br>80133<br>80150<br>80159<br>80168<br>80185 | 5<br>70<br>5<br>5<br>15<br>10<br>10<br>5 | 10.8<br>1.6<br>1.2<br><0.2<br>6.4<br><0.2<br><0.2 | 0.92<br>0.30<br>0.82<br>1.17<br>0.62<br>0.50<br>0.70 | <5 <5 <5 <5 <5 <5 <5 <5 <5 | 130<br>115<br>140<br>260<br>230<br>435<br>130 | <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 < | 2.21<br>3.03<br>3.54<br>2.03<br>9.51<br>6.22<br>1.48 | <1<br><1<br><1<br><1<br><1<br><1<br><1<br><1 | 12<br>10<br>13<br>13<br>14<br>9<br>10 | 94<br>78<br>102<br>93<br>56<br>52<br>67 | >10000<br>7238<br>1826<br>848<br>>10000<br>189<br>211 | 2.78<br>2.90<br>2.91<br>3.09<br>3.56<br>2.53<br>2.44 | <10<br><10<br><10<br><10<br><10<br><10 | 0.78<br>0.38<br>1.03<br>1.07<br>3.10<br>0.59<br>0.83 | 594<br>1023<br>785<br>551<br>901<br>947<br>401 | 36<br>26<br>23<br>9<br>7<br>4<br>3 | 0.03<br>0.02<br>0.03<br>0.03<br>0.03<br>0.04 | 7<br>6<br>8<br>10<br>7<br>7<br>8 | 90<br>310<br>390<br>510<br>40<br>520<br>540 | 4<br><2<br>4<br>6<br><2<br>2<br>6 | 5<br><5<br>10<br>10<br>20<br><5<br>10 | <20<br><20<br><20<br><20<br><20<br><20 | 40 <0.0<br>43 <0.0<br>64 <0.0<br>31 <0.0<br>117 <0.0<br>78 <0.0<br>40 0.0 | 01<br>01<br>01<br>01<br>01 | <10<br><10<br><10<br><10<br><10<br><10 | 29<br>20<br>25<br>47<br>27<br>29<br>67 | <10<br><10<br><10<br><10<br><10<br><10 | 10<br>13<br>12<br>11<br>10<br>21<br>14 | 34<br>32<br>35<br>38<br>41<br>27<br>22 |
|   | Standai<br>GEO'96<br>GEO'96<br>GEO'96<br>GEO'96  | -                                                                    | 150<br>140<br>150<br>150<br>140          | 1.0<br>1.0<br>0.8<br>1.0<br>1.2                   | 1.74<br>1.77<br>1.73<br>1.63<br>1.69                 | 60<br>55<br>55<br>60<br>60 | 165<br>165<br>160<br>165<br>155               | <5<br><5<br><5<br><5<br><5               | 1.78<br>1.79<br>1.74<br>1.78<br>1.72                 | <1<br><1<br><1<br><1                         | 19<br>19<br>19<br>20<br>18            | 60<br>61<br>58<br>61<br>65              | 84<br>84<br>85<br>80<br>82                            | 4.03<br>4.00<br>3.96<br>4.15<br>3.88                 | <10<br><10<br><10<br><10<br><10        | 1.10<br>1.10<br>1.08<br>1.01<br>1.07                 | 692<br>720<br>692<br>701<br>673                | <1<br><1<br><1<br><1<br><1         | 0.02<br>0.02<br>0.02<br>0.02<br>0.02         | 22<br>25<br>22<br>24<br>25       | 670<br>640<br>650<br>650<br>630             | 40<br>22<br>28<br>34<br>24        | 10<br>10<br>15<br>10                  | <20<br><20<br><20<br><20<br><20        | 55 0.<br>58 0.                                                            | 12<br>10                   | <10<br><10<br><10<br><10<br><10        | 76<br>77<br>76<br>78<br>73             | <10<br><10<br><10<br><10<br><10        | 10<br>9<br>9<br>8<br>12                | 71<br>68<br>69<br>81<br>71             |

df/1345/1345B XLS/96 ECO-TECH ABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

3-Dec-96

EGO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax: 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-1349

1ARGO OIL & GAS 500 717 7th AVE SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

No of samples received, 98 Sample type: CORE PROJECT#: NONE GIVEN SHIPMENT#: NONE GIVEN

Samples submitted by: CARY STEWART

| Et#. | Tag#  | Au(ppb) | Ag    | ۸۱%  | As  | Ba  | Bi  | Ca % | Cd        | Co | Cr | Cu  | Fe % | La.                                                                                                                                                                                                                         | Mg % | Mn  | Мо  | Na % | Ni | P   | Pb | Sb | Sn         | Sr_  | Tì %          | U   | ٧  | w   | Υ  | Zn |
|------|-------|---------|-------|------|-----|-----|-----|------|-----------|----|----|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|------|----|-----|----|----|------------|------|---------------|-----|----|-----|----|----|
| 1    | 79801 | 5       | <0.2  | 1.01 | - 5 | 65  | <5  | 0.72 | <1        | 10 | 50 | 137 | 2.44 | <10                                                                                                                                                                                                                         | 0.62 | 299 | <1  | 0.02 | 6  | 430 | 8  | <5 | <20        | 33   | 0.07          | <10 | 58 | <10 | 13 | 30 |
| 2    | 79802 | 5       | -0.2  | 0.48 | <5  | 50  | <5  | 1.26 | <1        | 8  | 41 | 165 | 2.13 | <10                                                                                                                                                                                                                         | 0.31 | 319 | 7   | 0.01 | ь  | 210 | 4  | <5 | <20        | 34 < | <0. <b>01</b> | <10 | 39 | <10 | 14 | 17 |
| 3    | 79803 | 5       | < 0.2 | 0.59 | 5   | 35  | <5  | 3.30 | <1        | 10 | 36 | 97  | 2.09 | <10                                                                                                                                                                                                                         | 0.92 | 599 | 5   | 0.02 | 6  | 460 | 6  | 5  | <20        | 47 < | 0.01          | <10 | 34 | <10 | 17 | 31 |
| 4    | 79804 | 5       | < 0.2 | 0 62 | <5  | 35  | <5  | 2.94 | <1 ×1     | 8  | 47 | 120 | 1.98 | <10                                                                                                                                                                                                                         | 0.73 | 496 | 3   | 0.02 | 5  | 450 | 4  | 5  | <20        | 40 < | 0.01          | <10 | 39 | <10 | 18 | 27 |
| 5    | 79805 | 5       | <0.2  | 0.58 | 10  | 55  | <5  | 271  | <1        | 10 | 40 | 270 | 2.41 | <10                                                                                                                                                                                                                         | 0 99 | 563 | 10  | 0.02 | 6  | 480 | 4  | 10 | <20        | 59 < | <0.01         | <10 | 46 | <10 | 18 | 32 |
| 6    | 79806 | 5       | <0.2  | 0 64 | 10  | 45  | <5  | 1.54 | <1        | 10 | 48 | 165 | 2.37 | <10                                                                                                                                                                                                                         | 0.66 | 419 | 3   | 0.02 | 8  | 540 | 6  | <5 | <20        | 31 < | •0.01         | <10 | 52 | <10 | 15 | 30 |
| 7    | 79807 | 5       | <0.2  | 0.59 | <5  | 45  | <5  | 3.39 | <1        | 6  | 61 | 175 | 1.80 | 10                                                                                                                                                                                                                          | 0.74 | 418 | 4   | 0.02 | 6  | 410 | <2 | <5 | <20        | 50 * | 0.01          | <10 | 22 | <10 | 13 | 21 |
| 8    | 79808 | 5       | <0.2  | 0.75 | <5  | 50  | < 5 | 4.03 | <1        | 8  | 75 | 473 | 1.82 | <10                                                                                                                                                                                                                         | 0.67 | 454 | 9   | 0.02 | 5  | 470 | 6  | 5  | <20        | 54 < | <0.01         | -10 | 29 | <10 | 17 | 24 |
| 9    | 79809 | 5       | <0.2  | 0.57 | <5  | 45  | <5  | 4.01 | <1        | 7  | 53 | 262 | 1 49 | 10                                                                                                                                                                                                                          | 0.48 | 418 | 7   | 0.02 | 4  | 410 | 4  | 5  | <20        | 51 < | <0.01         | <10 | 18 | <10 | 16 | 19 |
| 10   | 79810 | 5       | <0.2  | 0.74 | <5  | 50  | <5  | 3 84 | <1        | 8  | 60 | 126 | 1.86 | <10                                                                                                                                                                                                                         | 0.53 | 451 | 4   | 0.02 | 6  | 440 | 4  | 5  | <20        | 54 < | <0.01         | <10 | 27 | <10 | 16 | 29 |
| 11   | 79811 | 10      | <0.2  | 0.66 | <5  | 55  | <5  | 4.19 | <b>~1</b> | 8  | 63 | 134 | 2.22 | 10                                                                                                                                                                                                                          | 0.58 | 501 | 4   | 0.02 | 6  | 420 | 4  | <5 | <b>~20</b> | 56 < | <0.01         | <10 | 25 | <10 | 17 | 31 |
| 12   | 79812 | 5       | <0.2  | 0.51 | <5  | 60  | <5  | 4.27 | <1        | 6  | 52 | 111 | 1 92 | <10                                                                                                                                                                                                                         | 0.48 | 491 | 38  | 0.02 | 5  | 370 | <5 | <5 | <20        | 56 < | (U.U)         | <10 | 13 | <10 | 16 | 22 |
| 13   | 79813 | 5       | < 0.2 | 0.69 | 70  | 100 | <5  | 2.69 | <1        | 15 | 46 | 437 | 2.51 | <10                                                                                                                                                                                                                         | 0.62 | 55/ | 25  | 0.04 | 18 | 560 | 4  | <5 | <20        | 78 < | <0.01         | <10 | 22 | <10 | 16 | 35 |
| 14   | 79814 | 5       | <0.2  | 0.46 | <5  | 65  | <5  | 3.30 | <1        | 5  | 59 | 165 | 1.54 | <10                                                                                                                                                                                                                         | 0.44 | 374 | - 5 | 0.03 | 4  | 360 | 4  | <5 | <20        | 61 < | -0.01         | ≺10 | 19 | <10 | 14 | 15 |
| 15   | 79815 | 5       | <0.2  | 0.54 | ∹5  | 60  | <5  | 3 20 | <1        | e  | 84 | 224 | 1 66 | <10                                                                                                                                                                                                                         | 0.50 | 417 | 37  | 0.03 | 5  | 320 | 4  | <5 | <20        | 55 < | <0.01         | <10 | 20 | <10 | 13 | 19 |
| 16   | 79816 | 5       | <0.2  | 0.65 | <5  | 70  | <5  | 2.90 | <1        | 7  | 87 | 357 | 1.90 | <10                                                                                                                                                                                                                         | 0 67 | 400 | 13  | 0.03 | 5  | 370 | 2  | <5 | <20        | 57 < | <0.01         | <10 | 26 | <10 | 14 | 20 |
| 17   | 79817 | 5       | < 0.2 | 0.67 | <5  | 70  | <5  | 3,64 | <1        | 6  | 76 | 103 | 1.73 | <10                                                                                                                                                                                                                         | 0.55 | 421 | 5   | 0.04 | 5  | 380 | 6  | 10 | $<\!\!20$  | 62   | 0.01          | <10 | 21 | <10 | 14 | 21 |
| 18   | 79818 | 5       | <0.2  | 0.58 | <5  | 75  | <5  | 3.61 | < 1       | 5  | 83 | 134 | 1.48 | <10                                                                                                                                                                                                                         | 0.57 | 377 | 7   | 0.03 | 4  | 350 | 2  | 10 | <20        | 64 < | <0.01         | <10 | 19 | <10 | 14 | 17 |
| 19   | 79819 | 5       | <0.2  | 0.58 | <5  | 80  | < 5 | 3.12 | <1        | 6  | 75 | 147 | 1.6Ū | <i0< td=""><td>0.71</td><td>305</td><td>3</td><td>0.04</td><td>4</td><td>320</td><td>2</td><td>10</td><td>&lt;20</td><td>62 &lt;</td><td>&lt;0.01</td><td>&lt;10</td><td>22</td><td>&lt;10</td><td>13</td><td>17</td></i0<> | 0.71 | 305 | 3   | 0.04 | 4  | 320 | 2  | 10 | <20        | 62 < | <0.01         | <10 | 22 | <10 | 13 | 17 |
| 20   | 79820 | 5       | < 0.2 | 0.58 | <5  | 80  | <5  | 2.70 | -1        | 6  | 69 | 167 | 1.78 | <10                                                                                                                                                                                                                         | 0.49 | 352 | 8   | 0.04 | 5  | 340 | 4  | <5 | <20        | 49   | 0.01          | <10 | 23 | <10 | 15 | 18 |

#### ECO-TECH LABORATORIES LTD

| Et #. | Tag#  | Au(ppb) | Ag          | A1_% | As | Ba  | Bi         | Ca % | Cd | Co | Çr  | Cu     | Fe % | La   | Mg % | Mn   | Mo  | Na %  | NI | P   | Pb | Şb             | Sn             | Sr Ti%                      | U     | v          | w    | Υ_ | Zn |
|-------|-------|---------|-------------|------|----|-----|------------|------|----|----|-----|--------|------|------|------|------|-----|-------|----|-----|----|----------------|----------------|-----------------------------|-------|------------|------|----|----|
| 21    | 79821 | 5       | <0.2        | 0.69 | ₹5 | 75  | <5         | 2.72 | <1 | 7  | 71  | 422    | 1,90 | <10  | 0.70 | 354  | 10  | 0.04  | 5  | 370 | 4  | $=\frac{7}{5}$ | -20            | 54 < 0.91                   | <10   | 25         | <10  | 13 | 24 |
| 22    | 79822 | 5       | <0.2        | 0.69 | <5 | 85  | <b>~</b> 5 | 3.21 | <1 | 6  | 75  | 363    | 1.60 | <10  | 0.64 | 357  | 9   | 0.04  | 5  | 360 | 6  | 10             | <20            | 63 < 0.01                   | <10   | 17         | <10  | 13 | 20 |
| 23    | 79823 | 5       | <0 ?        | 0.62 | <5 | 95  | <5         | 3.03 | <1 | 7  | 71  | 502    | 1.90 | <10  | 0.76 | 379  | 14  | 0.04  | 5  | 360 | 4  | 10             | <20            | 66 < 0.01                   | ~ : ŋ | 25         | <10  | 12 | 16 |
| 24    | 79824 | 5       | < 0.2       | 0.50 | <5 | 110 | <5         | 3.66 | -1 | 5  | 72  | 258    | 1.56 | <10  | 0.63 | 369  | 5   | 0.04  | 4  | 300 | 2  | 10             | <20            | 79 <0.01                    | <10   | 22         | <10  | 14 | 14 |
| 25    | 79825 | 5       | <b>~0.2</b> | 0.50 | <5 | 140 | <5         | 2.23 | <1 | 6  | 72  | 79     | 1.78 | <10  | 0.48 | 280  | 4   | 0.05  | 4  | 350 | 4  | <5             | <20            | 69 < 0.01                   | <10   | 29         | < 10 | 11 | 14 |
|       |       |         |             |      |    |     |            |      |    |    |     |        |      |      |      |      |     |       |    |     |    |                |                |                             |       |            |      |    |    |
| 26    | 79826 | 5       | < 0.2       | 0.49 | <5 | 150 | <5         | 2.55 | <1 | 5  | 62  | 166    | 172  | <10  | 0.57 | 297  | 11  | 0.06  | 4  | 330 | 2  | 10             | <20            | 81 < 0.01                   | <10   | 27         | <10  | 13 | 12 |
| 27    | 79827 | 10      | <0.2        | 0.57 | <5 | 110 | <5         | 1.73 | <1 | 7  | 83  | 1724   | 1.87 | <10  | 0.47 | 273  | 161 | 0.05  | 5  | 400 | 4  | <5             | <20            | 45 < 0.01                   | <10   | 29         | <10  | 7  | 15 |
| 28    | 79828 | 5       | 1.0         | 0.80 | <5 | 80  | -5         | 3.43 | <1 | 11 | 80  | 2260   | 2.23 | <10  | 0.93 | 625  | 13  | 0.03  | 5  | 460 | 4  | 15             | <20            | 46 < 0.01                   | <10   | 29         | <10  | 11 | 32 |
| 29    | 79829 | 5       | <0.2        | 0.57 | <5 | 105 | <5         | 1.54 | <1 | 7  | 74  | 1158   | 1.83 | <10  | 0.51 | 316  | 5   | 0.05  | 6  | 430 | 4  | <5             | <20            | 42 < 0.01                   | <10   | 39         | <10  | 9  | 17 |
| 30    | 79830 | 10      | 0.4         | 0.69 | <5 | 110 | <5         | 2 87 | <1 | 9  | 57  | 1584   | 2.09 | < 10 | 0.90 | 416  | 7   | U.04  | 6  | 420 | 2  | 15             | <20            | 55 < 0.01                   | <10   | 33         | <10  | 11 | 20 |
|       |       |         |             |      |    |     |            |      |    |    |     |        |      |      |      |      |     |       |    |     |    |                |                |                             |       |            |      |    |    |
| 31    | 79831 | 5       | < 0.2       | 0.65 | <5 | 725 | <5         | 2.43 | <1 | 6  | 78  | 212    | 2.13 | <10  | 0.76 | 398  | 4   | 0.06  | 6  | 370 | 4  | 10             | <b>&lt;2</b> 0 | 70 0.01                     | <10   | 42         | <10  | 11 | 17 |
| 32    | 79832 | 10      | 1.0         | 0.42 | <5 | 115 | <5         | 3.98 | <1 | 7  | 60  | 3836   | 1.81 | <10  | 0.50 | 487  | 13  | 0.03  | 5  | 460 | 2  | 10             | <20            | 64 < 0.01                   | <10   | 15         | <10  | 11 | 20 |
| 33    | 79833 | 10      | 24          | 0.24 | <5 | 60  | <5         | 3.44 | <1 | 4  | 104 | 4277   | 1.15 | < 10 | 0,13 | 455  | 28  | 0.01  | 3  | 470 | <2 | <5             | <20            | 30 < 0.01                   | <10   | 6          | <10  | 10 | 8  |
| 34    | 79834 | 5       | 2.6         | 0.30 | <5 | 70  | -5         | 2.99 | <1 | 4  | 82  | 3980   | 1.02 | <10  | 0.18 | 396  | 11  | 0.02  | 3  | 470 | <2 | <5             | <20            | 35 < 0.01                   | <10   | 5          | <10  | 10 | 8  |
| 35    | 79835 | 75      | 3.0         | 0.55 | <5 | 80  | <5         | 2.99 | <1 | 7  | 90  | 7830   | 1.40 | <10  | 0.47 | 394  | 28  | 0.02  | 5  | 460 | 4  | 15             | <20            | 41 < 0.01                   | <10   | 10         | <10  | 8  | 15 |
|       |       |         |             |      |    |     |            |      |    |    |     |        |      |      |      |      |     |       |    |     |    |                |                |                             |       |            |      |    |    |
| 36    | /9836 | 5       | 08          | 0.62 | <5 | 125 | <5         | 2.22 | <1 | 7  | 69  | 2488   | 1.73 | <10  | 0.49 | 358  | 17  | 0.04  | 5  | 420 | 4  | <5             | <20            | 49 < 0.01                   | <10   | 29         | <10  | 8  | 13 |
| 37    | 79837 | 5       | 0.2         | 0.48 | <5 | 140 | <5         | 3.35 | <1 | 7  | 71  | 755    | 1.62 | <10  | 0.29 | 405  | 5   | 0.04  | 4  | 430 | 2  | <5             | <20            | 58 < 0.01                   | <10   | 20         | <10  | 12 | 12 |
| 38    | 79838 | 95      | 11.6        | 0.27 | 10 | 130 | <5         | 4.88 | <1 | 1  | 41  | >10000 | 0.38 | <10  | 0.05 | 445  | 6   | 0.03  | <1 | 500 | <2 | 5              | <20            | 62 < 0.01                   | <10   | <1         | <10  | 15 | 2  |
| 39    | 79839 | 40      | 9.8         | 0.31 | 30 | 295 | <5         | 5.09 | <1 | <1 | 29  | 8138   | 0.23 | 10   | 0.06 | 438  | 10  | 0.03  | 1  | 550 | <2 | 5              | <20            | 80 < 0.01                   | <10   | <1         | <10  | 17 | 7  |
| 40    | 80211 | 30      | 2.4         | 0.65 | <5 | 105 | <5         | 4 06 | <1 | 8  | 72  | 2107   | 1.97 | <10  | 0.71 | 1330 | 4   | 0,01  | 5  | 480 | 4  | 10             | <20            | 40 <0.01                    | <10   | 21         | <10  | 14 | 23 |
|       |       |         |             |      |    |     |            |      |    |    |     |        |      |      |      |      |     |       |    |     |    |                |                |                             |       |            |      |    |    |
| 41    | 80212 | 5       | <0.2        | 0.66 | <5 | 75  | <5         | 2.68 | <1 | 9  | 64  | 450    | 2.01 | <10  | 0.50 | 1345 | 6   | <0.01 | 5  | 420 | 4  | <5             | <20            | 28 < 0.01                   | <10   | 25         | <10  | 11 | 24 |
| 42    | 80213 | 5       | 0.4         | 0.60 | <5 | 75  | <5         | 3.27 | <1 | 7  | 74  | 750    | 1.72 | <10  | 0.43 | 1504 | 5   | 0.01  | 4  | 440 | <2 | 5              | <20            | 30 < 0.01                   | <10   | 23         | <10  | 13 | 20 |
| 43    | 80214 | 5       | 0.6         | 0.76 | <5 | 76  | <5         | 2 91 | <1 | 9  | 72  | 676    | 2.09 | <10  | 0.57 | 1430 | 4   | 0.01  | 5  | 420 | 4  | 15             | <20            | 33 <0.01                    | <10   | 27         | <10  | 12 | 22 |
| 44    | 80215 | 5       | 2.2         | 0.94 | 15 | 110 |            |      | <1 | 12 | 77  | 2616   | 2.76 | <10  | 0.80 | 1191 | 6   | 0.02  | 8  | 460 | 4  | 5              | <20            | 36 < 0.01                   | <10   | 35         | <10  | 9  | 44 |
| 45    | 80216 | 5       | <0.2        | 0.57 | 35 | 210 | <5         | 2.82 | <1 | 7  | 76  | 442    | 2.25 | <10  | 0.55 | 1317 | 5   | 0.02  | 6  | 430 | 4  | 10             | <20            | 41 < 0.01                   | <10   | 32         | <10  | 13 | 33 |
|       |       |         |             |      |    |     |            |      |    |    |     |        |      |      |      |      |     |       |    |     |    |                |                |                             |       |            |      |    |    |
| 46    | 80217 | 5       | <0.2        | 0.61 | <5 | 295 |            |      | <1 | 7  | 72  | 184    |      | <10  | 0.64 | 965  | 5   | 0.04  | 6  | 420 | 4  | <5             | <20            | 47 < 0.01                   | <10   | 41         | <10  | 13 | 26 |
| 47    | 80218 | 5       | <0.2        | 0.76 | -5 | 120 | <5         | 2.06 | <1 | 10 | 66  | 416    | 2.36 | <10  | 0.73 | 845  | 6   | 0.03  | 6  | 440 | 4  | <5             | <20            | <b>4</b> 0 <b>&lt;0</b> .01 | <10   | 42         | <10  | 12 | 27 |
| 48    | 80219 | 5       |             | 0.74 | <5 | 125 |            |      | <1 | 9  | 60  | 447    | 2.36 | <10  | 0.60 | 746  | 12  | 0.03  | 7  | 430 | 6  | 5              | <20            | 40 <0.01                    | <10   | <b>4</b> 3 | <10  | 12 | 26 |
| 49    | 80220 | 5       | <0.2        | 0.75 | 25 | 330 | <5         | 1.87 | <1 | 18 | 41  | 291    | 3.68 | <10  | 1.10 | 910  | 269 | 0.09  | 19 | 660 | 4  | 5              | <20            | 99 < 0.01                   | <10   | 47         | <10  | 17 | 39 |
| 50    | 80221 | 5       | <0.2        | 0.69 | 30 | 300 | <5         | 1.72 | <1 | 15 | 72  | 349    | 2.68 | <10  | 0.78 | 628  | 452 | 0.06  | 13 | 510 | 6  | 15             | <20            | 66 < 0.01                   | <10   | 40         | <10  | 15 | 25 |
|       |       |         |             |      |    |     |            |      |    |    |     |        |      |      |      |      |     |       |    |     |    |                |                |                             |       |            |      |    |    |
| 51    | 80222 | 10      | <0.2        | 0.63 | <5 | 270 | <5         | 1.68 | <1 | 7  | 73  | 307    |      | <10  | 0.65 | 619  | 9   | 0.04  | 6  | 410 | 4  | <b>≺</b> 5     | <20            | 43 <0.01                    | <10   | 39         | <10  | 13 | 24 |
| 52    | 80223 | 5       | <0.2        | 0.60 | <5 | 185 | <5         | 1.14 | <1 | 8  | 83  | 249    | 2.13 | <10  | 0.59 | 417  | 60  | 0.04  | 7  | 400 | 6  | <5             | <20            | 35 0.01                     | <10   | 40         | <10  | 12 | 18 |
| 53    | 80224 | 5       |             | 0.72 | <5 | 185 | <5         | 1.83 | <1 | 9  | 65  | 376    | 2.56 | <10  | 0.74 | 608  | 49  | 0.03  | 7  | 420 | 4  | <5             | <20            | 39 <0.01                    | <10   | 41         | <10  | 15 | 22 |
| 54    | 80225 | 5       | <0.2        | 0.69 | <5 | 120 | <5         | 2.06 | <1 | 9  | 79  | 484    | 2.31 | <10  | 0.65 | 649  | 64  | 0.04  | 6  | 450 | 4  | <5             | <20            | 45 <0.01                    | <10   | 38         | <10  | 12 | 25 |
| 55    | 80226 | 5       | <0.2        | 0.71 | <5 | 120 | <5         | 1.60 | ٠1 | 10 | 61  | 317    | 2.47 | <10  | 0.70 | 592  | 30  | 0.04  | 6  | 460 | 4  | 5              | <20            | 44 <0.01                    | <10   | 36         | <10  | 11 | 72 |

₽age 2

| IAACC     | OIL B OF | -13     |       |      |               |     |               |      |    |    | JF C-1 | C III C | 110  | AIAL I | 1010 / | K 30°1 | J48 |      |    |             |    |    |     | 200-11    |     | 30,01 |     |    |    |
|-----------|----------|---------|-------|------|---------------|-----|---------------|------|----|----|--------|---------|------|--------|--------|--------|-----|------|----|-------------|----|----|-----|-----------|-----|-------|-----|----|----|
| Et #.     | Tag#     | Au(ppb) | Ag    | Al % | As            | Ba  | Bi            | Ca % | Cd | Ço | Cr     | Cu      | Fe % | La     | Mg %   | Mn     | Mo  | Na % | Ni | Р           | РЬ | Sb | Sn  | Sr Ti%    | U   | v_    | w   | Y  | Zn |
| 56        | 80227    | 5       | <0.2  | 0.69 | <5            | 155 | <5            | 2.27 | <1 | 10 | 72     | 484     | 2.60 | <10    | 0.85   | 860    | e   | 0.04 | 7  | 470         | 4  | <5 | <20 | 58 < 0.01 | <10 | 40    | <10 | 11 | 26 |
| 57        | 80228    | 5       | 0.4   | 0.49 | <5            | 130 | <5            | 3.36 | <1 | 10 | 64     | 1164    | 2.42 | <10    | 0.89   | 1361   | 21  | 0.02 | 6  | 460         | 2  | 10 | <20 | 49 <0.01  | <10 | 30    | <10 | 12 | 25 |
| 58        | 80229    | 5       | 0.6   | 0.63 | <5            | 145 | <5            | 2.36 | <1 | 11 | 71     | 908     | 2.76 | <10    | 0.87   | 865    | 20  | 0.04 | 7  | 460         | 4  | <5 | <20 | 48 < 0.01 | <10 | 39    | <10 | 12 | 28 |
| 59        | 80230    | 5       | 0.6   | 0.45 | <5            | 110 | <5            | 2.77 | <1 | 9  | 78     | 1009    | 2.16 | <10    | 0.68   | 888    | 67  | 0.03 | 5  | 430         | 2  | <5 | <20 | 40 < 0.01 | <10 | 29    | <10 | 11 | 24 |
| 60        | 80231    | 55      | 5.8   | 0.40 | ≪5            | 70  | <5            | 2.27 | <1 | 7  | 76     | 4234    | 1.82 | <10    | 0.41   | 939    | 20  | 0.01 | 4  | 520         | <2 | <5 | <20 | 23 <0.01  | <10 | 20    | <10 | 9  | 22 |
| 61        | 80232    | 25      | 8.6   | 0.27 | <5            | 105 | <5            | 2.68 | <1 | 10 | 64     | 2533    | 2.44 | ~10    | 0.80   | 1315   | 12  | 0.02 | 6  | 440         | <2 | 5  | <20 | 31 < 0.01 | <10 | 25    | <10 | 11 | 29 |
| 62        | 80233    | 205     | >30   | 0.24 | <5            | 95  | <5            | 4.22 | <1 | 10 | 70     | >10000  | 3.00 | <10    | 1.04   | 1833   | 15  | 0.D1 | 5  | 340         | <2 | 15 | <20 | 39 0.02   | <10 | 12    | <10 | 11 | 25 |
| 63        | 80234    | 5       | 4.8   | 0.41 | <5            | 90  | <5            | 3.04 | <1 | 10 | 65     | 5036    | 2.39 | <†0    | 0.49   | 1318   | 5   | 0.02 | 6  | <b>63</b> 0 | <2 | 5  | 20  | 35 < 0.01 | <10 | 25    | <10 | 13 | 30 |
| 64        | 80235    | 5       | 0.4   | 0.79 | <5            | 75  | <5            | 1.88 | <1 | 10 | 77     | 609     | 2.65 | <10    | 0.69   | 766    | 5   | 0.03 | 8  | 500         | 2  | <5 | <20 | 28 < 0.01 | <10 | 34    | <10 | 11 | 32 |
| 65        | 80236    | 5       | 1.2   | 0.73 | <5            | 80  | <5            | 1 42 | <1 | 12 | 71     | 1404    | 3.02 | <10    | 0.78   | 756    | 8   | 0.02 | 8  | 510         | 4  | <5 | 20  | 21 <0.01  | <10 | 37    | ≺10 | 11 | 35 |
| 66        | 80237    | 5       | 0.6   | 0.49 | <5            | 90  | <5            | 0.98 | <1 | 9  | 70     | 800     | 2.56 | <10    | 0.67   | 571    | 12  | 0.02 | 7  | 440         | 4  | 5  | <20 | 19 < 0.01 | <10 | 35    | <10 | 6  | 26 |
| 67        | 80238    | 5       | 0.4   | 0.57 | <5            | 75  | <5            | 0.61 | <1 | 10 | 62     | 1049    | 2.80 | <10    | 0.69   | 530    | 119 | 0.03 | 8  | <b>45</b> 0 | 4  | <5 | <20 | 18 <0.01  | <10 | 43    | <10 | 10 | 29 |
| 68        | 80239    | 5       | <0.2  | 0.47 | <5            | 110 | <5            | 0.59 | <1 | 8  | 79     | 405     | 2.58 | <10    | 0.56   | 407    | 15  | 0.04 | 6  | 420         | 4  | <5 | <20 | 29 < 0.01 | <10 | 42    | <10 | 10 | 19 |
| 69        | 80240    | 5       | <0.2  | 0.56 | <5            | 100 | <5            | 0.47 | <1 | 9  | 67     | 464     | 2.44 | <10    | 0.60   | 381    | 8   | 0.04 | 6  | 410         | 2  | <5 | <20 | 22 0.01   | <10 | 42    | <10 | 8  | 23 |
| 70        | 80241    | 5       | <0.2  | 0.51 | <5            | 95  | <5            | 0.79 | <1 | 9  | 83     | 769     | 2.46 | <10    | 0.66   | 418    | 32  | 0.03 | 7  | 380         | 2  | <5 | <20 | 24 <0.01  | <10 | 39    | <10 | 6  | 25 |
| 71        | 80242    | 5       | <0.2  | 0.54 | <5            | 95  | <5            | 0.59 | <1 | 10 | 77     | 694     | 2.52 | <10    | 0.64   | 418    | 18  | 0.04 | 7  | 480         | 4  | <5 | <20 | 26 < 0.01 | <10 | 46    | <10 | 10 | 25 |
| 12        | 80243    | 5       | <0.2  | 0.68 | <5            | 110 | <5            | 1.59 | <1 | 12 | 82     | 783     | 3.01 | <10    | 1.00   | 716    | 27  | 0.04 | 8  | <b>45</b> 0 | 4  | 5  | <20 | 38 <0.01  | <10 | 42    | <10 | 11 | 35 |
| 73        | 80244    | 5       | 1.2   | 0.40 | <5            | 110 | <5            | 1.68 | <1 | 9  | 86     | 1863    | 2.39 | <10    | 0.80   | 757    |     | 0.03 | 7  | 490         | 2  | <5 | <20 | 39 <0.01  | <10 | 37    | <10 | 12 | 27 |
| 74        | 80245    | 5       | 0.6   | 0.51 | <5            | 100 | <5            | 08.0 | <1 | 10 | 67     | 1613    | 2.96 | <10    | 0.70   | 600    | 133 | 0.04 | 8  | 460         | 2  | <5 | <20 | 24 < 0.01 | <10 | 48    | <10 | 7  | 31 |
| 75        | 80246    | 5       | 0.2   | 0.49 | <5            | 105 | <5            | 0.85 | <1 | 8  | 81     | 620     | 2.39 | <10    | 0.61   | 548    | 16  | 0.04 | 7  | 450         | 4  | <5 | <20 | 31 <0.01  | <10 | 38    | <10 | 10 | 24 |
| 76        | 80247    | 5       | <0.2  | 0.42 | <5            | 135 | <5            | 0.69 | <1 | 7  | 74     | 194     | 2.15 | <10    | 0.45   | 449    |     | 0.05 | 7  | 430         | <2 | <5 | <20 | 42 <0.01  | <10 | 38    | <10 | 10 | 19 |
| 77        | 80248    | 5       | <0.2  | 0.49 | <5            | 135 | <5            | 1.43 | <1 | 7  | 71     | 305     | 1.90 | <10    | 0.64   | 482    | 6   |      | 5  | 440         | 2  | 10 | <20 | 54 <0.D1  | <10 | 29    | <10 | 8  | 19 |
| 78        | 80249    | 5       | <0.2  | 0.60 | <5            | 220 | <5            | 1.77 | <1 | 7  | 87     | 264     | 2.14 | <10    | 0.61   | 387    | 7   |      | 6  | 410         | 4  | <5 | <20 | 46 < 0.01 | <10 | 36    | <10 | 10 | 18 |
| 79        | 80250    | 5       | <0.2  | 0.70 | <5            | 80  | <5            | 1.29 | <1 | 10 | 72     | 683     | 2.71 | 10     | 08.0   | 454    | 123 | 0.04 | 6  | 430         | 2  | <5 | <20 | 28 < 0.01 | <10 | 40    | <10 | 9  | 24 |
| 80        | 80251    | 5       | <0.2  | 0.55 | <5            | 135 | <5            | 1.43 | <1 | 7  | 62     | 199     | 2.05 | <10    | 83.0   | 294    | 10  | 0.06 | 6  | 460         | <2 | <5 | <20 | 53 < 0.01 | <10 | 41    | <10 | 11 | 14 |
| 81        | 80252    | 5       | <0.2  | 0.67 | <5            | 330 | <5            | 1.73 | <1 | 7  | 62     | 277     | 2.24 | <10    | 0.85   | 302    | 9   | 0.0B | 5  | 420         | 4  | 5  | <20 | 78 0.02   | <10 | 44    | <10 | 14 | 14 |
| 82        | 80253    | 5       | <0.2  |      | <5            | 460 | <5            | 1.97 | <1 | 6  | 51     | 197     | 2.39 | <10    | 0.98   | 377    | 30  | 0.07 | 6  | 430         | 4  | 10 | <20 | 81 0.01   | <10 | 44    | <10 | 14 | 16 |
| 83        | 80254    | 5       | <0.2  |      | <5            | 325 | <5            | 1.41 | <1 | 7  | 58     | 198     | 2.15 | <10    | 0.65   | 278    | 114 | 0.06 | 6  | 460         | 4  | <5 | <20 | 57 0.02   | <10 | 45    | <10 | 13 | 15 |
| 84        | B0255    | 5       | <0.2  |      | <5            | 245 | <5            | 1.29 | <1 | 8  | 67     | 491     | 2.29 | <10    | 0.69   | 301    | 7   | 0.06 | 7  | 450         | 4  | <5 | <20 | 54 0.02   | <10 | 45    | <10 | 13 | 18 |
| 85        | 90256    | 5       | 0.2   |      | <5            | 95  | <b>&lt;</b> 5 | 0.94 | <1 | 11 | 76     | 787     | 2.70 | <10    | 0.85   | 421    | 12  |      | 7  | 480         | 2  | <5 | <20 | 42 < 0.01 | <10 | 44    | <10 | 12 | 28 |
|           |          |         |       |      | _             |     | _             |      |    |    |        |         |      |        |        |        |     |      |    |             |    |    |     |           |     |       |     |    | 20 |
| <b>86</b> | 80257    | 5       | <0.2  |      | <5            | 90  |               | 0.83 | <1 | 10 | 73     | 536     | 2.64 | <10    |        | 392    |     | 0.04 | 6  | 430         | 4  | 10 | <20 | 37 < 0.01 | <10 | 44    | <10 | 10 | 26 |
| 87        | 80258    | 5       | 0.2   | 0.74 | <5            | 160 | <5            | 1.02 | <1 | 10 | 63     | 418     | 2.82 | <10    | 0.84   | 472    |     | 0.05 | 5  | 490         | 4  | <5 | <20 | 53 <0.01  | <10 | 43    | <10 | 10 | 29 |
| 88        | 80259    | 5       | <0.2  | 0.89 | <5            | 115 | <5            | 1.70 | <1 | 13 | 80     | 87      | 2.92 | <10    | 0.98   | 526    | 32  | 0.04 | 7  | 4/0         | 4  | <5 | <20 | 40 < 0.01 | <10 | 35    | <10 | 8  | 38 |
| 89        | 80260    | 5       | 04    | 0.77 | <b>&lt;</b> 5 | 155 | <5            | 1.57 | <1 | 12 | 52     | 951     | 2.96 | <10    |        | 430    | 56  | 0.05 | 7  | 490         | 4  | <5 | <20 | 60 <0.01  | <10 | 38    | <10 | 8  | 33 |
| 90        | 80261    | 5       | < 0.2 | 0.48 | <5            | 195 | <5            | 1.90 | <1 | 10 | 63     | 633     | 2 68 | <10    | 0.86   | 372    | 14  | 0.05 | ი  | 460         | 2  | 5  | <20 | 90 < 0.01 | <10 | 29    | <10 | 9  | 30 |

Page 3

| Et#     | Tag#  | Au(ppb) | Ag   | Al % | As         | Ва  | Bi            | Ca % | Cd        | Со | Cr | Cu   | Fe % | ها  | Mg % | Mn          | Mo | Na % | Ni | P   | РЬ | Sb | \$n | Sr Ti%     | U   | ٧  | w   | Υ  | Zn |
|---------|-------|---------|------|------|------------|-----|---------------|------|-----------|----|----|------|------|-----|------|-------------|----|------|----|-----|----|----|-----|------------|-----|----|-----|----|----|
| 91      | 80262 | 5       | <0.2 | 0.42 | <b>∹</b> 5 | 265 | <5            | 3.35 | <1        | 9  | 56 | 335  | 2.50 | <10 | 1.43 | 644         | 25 | 0.05 | 7  | 410 | 2  | 15 | <20 | 140 < 0.01 | <10 | 23 | <10 | 13 | 27 |
| 92      | 80263 | 5       | <0.2 | 0.43 | <5         | 260 | <5            | 3.27 | <1        | 6  | 54 | 57   | 1.90 | <10 | 0.59 | 378         | 4  | 0.06 | 4  | 490 | <2 | <5 | <20 | 102 < 0.01 | <10 | 26 | <10 | 12 | 16 |
| 93      | 80264 | 5       | 0.2  | 0.55 | <5         | 335 | <5            | 3.82 | <1        | 8  | 20 | 655  | 2.21 | <10 | 0.73 | <b>52</b> 5 | 31 | 0.05 | 4  | 440 | 4  | 10 | <20 | 97 <0.01   | <10 | 21 | <10 | 12 | 23 |
| 94      | 80265 | 5       | 0.8  | 0.53 | <5         | 15C | <5            | 5,18 | <1        | 8  | 63 | 1256 | 2.09 | <10 | 0.56 | 624         | 7  | 0.03 | 5  | 470 | <2 | <5 | <20 | 84 < 0.01  | <10 | 24 | <10 | 18 | 24 |
| 95      | 80266 | 5       | 0.6  | 0.51 | <5         | 125 | <5            | 4.75 | <1        | 8  | 39 | 846  | 2.10 | <10 | 0.55 | 573         | 8  | 0.03 | 5  | 460 | <2 | <5 | <20 | 84 < 0.01  | <10 | 22 | <10 | 15 | 24 |
| 96      | 80267 | 5       | 0.4  | 0.46 | <5         | 190 | <5            | 5.20 | <1        | 7  | 56 | 611  | 1.95 | 10  | 0.52 | 581         | 7  | 0.03 | 4  | 450 | <2 | <5 | <20 | 88 <0.01   | <10 | 22 | <10 | 17 | 21 |
| 97      | 80268 | 5       | 0.2  | 0 47 | <5         | 95  | <5            | 4.86 | <1        | 7  | 46 | 348  | 1.89 | 10  | 0.43 | 594         | 5  | 0.04 | 5  | 410 | 4  | <5 | <20 | 89 <0.01   | <10 | 28 | <10 | 16 | 28 |
| 98      | 80269 | 5       | <0.2 | 0.47 | <5         | 145 | <5            | 3.85 | <1        | 6  | 73 | 77   | 1.58 | 10  | 0.32 | 419         | 4  | 0.04 | 5  | 430 | <2 | <5 | <20 | 74 <0,01   | <10 | 29 | ≺10 | 16 | 20 |
| QC DA   | TA:   |         |      |      |            |     |               |      |           |    |    |      |      |     |      |             |    |      |    |     |    |    |     |            |     |    |     |    |    |
| Resplit | :     |         |      |      |            |     |               |      |           |    |    |      |      |     |      |             |    |      |    |     |    |    |     |            |     |    |     |    |    |
| 1       | 79801 | 5       | <0.2 | 0.88 | <5         | 65  | <5            | 0.69 | <1        | 9  | 30 | 141  | 2.33 | <10 | 0.58 | 283         | <1 | 0.01 | 5  | 390 | 8  | <5 | <20 | 33 0.06    | <10 | 53 | <10 | 12 | 29 |
| 36      | 79836 | 5       | 0.8  | 0.68 | <5         | 130 | <5            | 2.26 | <b>⊲1</b> | 7  | 76 | 2490 | 1.81 | <10 | 0.51 | 363         | 15 | 0.04 | 5  | 430 | 2  | <5 | <20 | 50 < 0.01  | <10 | 31 | <10 | 9  | 17 |
| 71      | B0242 | 5       | <0.2 | 0.51 | <5         | 90  | <5            | 0.59 | <1        | 9  | 67 | 665  | 2.44 | <10 | 0.60 | 405         | 15 | 0.04 | 6  | 450 | 2  | <5 | <20 | 25 <0.01   | <10 | 45 | <10 | 9  | 24 |
| Repeat  |       |         |      |      |            |     |               |      |           |    |    |      |      |     |      |             |    |      |    |     |    |    |     |            |     |    |     |    |    |
| 1       | 79801 | 5       |      | 1.06 | <5         | 70  | <5            | 0.75 | <1        | 10 | 51 | 138  | 2.55 | <10 | 0.64 | 307         | <1 | 0.02 | 7  | 440 | 8  | <5 | <20 | 33 0.08    | <10 | 62 | <10 | 13 | 32 |
| 10      | 79810 | 5       | <0.2 | 0.81 | <5         | 50  | <5            | 3.90 | <1        | 9  | 63 | 128  | 1.91 | <10 | 0.63 | 460         | 4  | 0.02 | 6  | 460 | 4  | 10 | <20 | 52 < 0.01  | <10 | 28 | <10 | 15 | 31 |
| 19      | 79819 | 5       | <0.2 | 0.56 | <5         | 80  | <5            | 3.07 | <1        | 6  | 74 | 142  | 1.77 | <10 | 0.69 | 379         | 12 | 0.04 | 4  | 320 | 4  | 10 | <20 | 63 < 0.01  | <10 | 22 | <10 | 13 | 17 |
| 36      | 79836 | 5       | 1.0  | 0.63 | <5         | 120 | <5            | 2.23 | <1        | 7  | 70 | 2508 | 1.76 | <10 | 0.49 | 364         | 14 | 0.04 | 6  | 430 | 2  | 5  | <20 | 48 <0.01   | <10 | 30 | <10 | 8  | 14 |
| 45      | 80216 | 5       | <0.2 | 0.56 | 35         | 205 | <5            | 2.79 | <1        | 7  | 75 | 439  | 2.24 | <10 | 0.54 | 1308        | 6  | 0.02 | 6  | 430 | 2  | 5  | <20 | 40 < 0.01  | <10 | 32 | <10 | 12 | 32 |
| 54      | 80225 | 5       | <0.2 | 0.67 | <5         | 115 | <5            | 2.07 | <1        | 9  | 81 | 488  | 2.32 | <10 | 0.65 | 652         | 62 | 0.04 | б  | 450 | 6  | <5 | <20 | 44 < 0.01  | <10 | 38 | <10 | 12 | 25 |
| 71      | 80242 | 5       | <0.2 | D.51 | <5         | 85  | <5            | 0.56 | <1        | 9  | 72 | 688  | 2.37 | <10 | 0.59 | 398         | 21 | 0.04 | 7  | 440 | 4  | <5 | 20  | 24 <0.01   | <10 | 43 | <10 | 9  | 23 |
| 80      | 80251 | 5       | <0.2 | 0.55 | <5         | 135 | <5            | 1.41 | <1        | 7  | 62 | 194  | 2.05 | <10 | 0.67 | 293         | 11 | 0.06 | 4  | 440 | 4  | <5 | <20 | 54 < 0.01  | <10 | 41 | <10 | 11 | 14 |
| 89      | 80260 | 5       | 0.4  | 0.74 | <5         | 150 | <b>&lt;</b> 5 | 1.53 | <1        | 11 | 51 | 949  | 2.89 | <10 | 0.91 | 419         | 57 | 0.05 | 7  | 480 | 4  | <5 | <20 | 58 < 0.01  | <10 | 37 | <10 | 8  | 32 |
| Standa  |       |         |      |      |            |     |               |      |           |    |    |      |      |     |      |             |    |      |    |     |    |    |     |            |     |    |     |    |    |
| GEO'96  |       | 140     | 0.8  | 1.69 | 60         | 150 | - 5           | 1.67 | <1        | 18 | 58 | 85   | 3.84 | <10 | 1.03 | 653         | <1 | 0.02 | 25 | 610 | 22 | <5 | <20 | 54 0.11    | <10 | 74 | <10 | 7  | 67 |
| GEO'96  |       | 145     | 8.0  | 1,63 | 50         | 145 | ≺5            | 1.61 | <1        | 17 | 56 | 90   | 3.70 | <10 | 1.01 | 632         | <1 | 0.02 | 23 | 590 | 20 | <5 | <20 | 52 0.11    | <10 | 71 | <10 | 6  | 65 |
| GEO'96  |       | 140     | 0.8  | 1 68 | 60         | 150 | <5            | 1.65 | <1        | 18 | 57 | 80   | 3.80 | <10 | 1.02 | 849         | <1 | 0.02 | 24 | 600 | 18 | <5 | <20 | 56 0.12    | <10 | 73 | <10 | 6  | 68 |

ECO-TECH LABORATORIES LTD.

Prank J Pezzotti, A.Sc.T.

B.C. Certified Assayer

df/1346 XLS/96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-1346

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received:114 Sample type:CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: GARY STEWART

| Et #. | Tag # | Au(ppb) | Ag   | AI % | As | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn  | Мо  | Na % | Ni | Р   | Pb | Sb | Sn  | Sr Ti %   | U   | v  | w   | Υ  | Zn |
|-------|-------|---------|------|------|----|-----|----|------|----|----|-----|------|------|-----|------|-----|-----|------|----|-----|----|----|-----|-----------|-----|----|-----|----|----|
| 1     | 79840 | 5       | 2.8  | 0.29 | 10 | 305 | <5 | 4.53 | <1 | 7  | 52  | 3926 | 1.58 | <10 | 0.22 | 438 | 149 | 0.03 | 5  | 350 | 4  | <5 | <20 | 63 < 0.01 | <10 | 5  | <10 | 12 | 18 |
| 2     | 79841 | 5       | 4.2  | 0.29 | <5 | 130 | <5 | 4.66 | <1 | 11 | 63  | 2668 | 2.20 | <10 | 0.32 | 617 | 490 | 0.02 | 6  | 280 | <2 | <5 | <20 | 60 < 0.01 | <10 | 7  | <10 | 10 | 21 |
| 3     | 79842 | 5       | 0.6  | 0.40 | <5 | 120 | <5 | 3.62 | <1 | 9  | 82  | 1619 | 2.12 | <10 | 0.42 | 520 | 9   | 0.03 | 6  | 370 | <2 | <5 | <20 | 48 < 0.01 | <10 | 11 | <10 | 8  | 19 |
| 4     | 79843 | 5       | 1.0  | 0.64 | <5 | 115 | <5 | 3.64 | <1 | 11 | 81  | 2003 | 2.58 | <10 | 0.55 | 556 | 7   | 0.02 | 8  | 440 | <2 | 5  | <20 | 48 < 0.01 | <10 | 19 | <10 | 11 | 26 |
| 5     | 79844 | 5       | 0.4  | 0.23 | <5 | 150 | <5 | 5.69 | <1 | 7  | 36  | 249  | 1.29 | <10 | 0.21 | 741 | 5   | 0.03 | 4  | 300 | <2 | 10 | <20 | 60 < 0.01 | <10 | 4  | <10 | 13 | 25 |
| 6     | 79845 | 5       | <0.2 | 0.54 | <5 | 120 | <5 | 2.99 | <1 | 8  | 91  | 404  | 2.12 | <10 | 0.41 | 475 | 6   | 0.03 | 7  | 400 | 2  | 5  | <20 | 48 < 0.01 | <10 | 24 | <10 | 12 | 18 |
| 7     | 79846 | 10      | 0.4  | 0.40 | <5 | 170 | <5 | 3.40 | <1 | 5  | 107 | 692  | 1.44 | <10 | 0.29 | 500 | 6   | 0.03 | 5  | 390 | 2  | <5 | <20 | 46 < 0.01 | <10 | 15 | <10 | 15 | 11 |
| 8     | 79847 | 5       | 0.2  | 0.5. | <5 | 105 | <5 | 4.76 | <1 | 9  | 98  | 592  | 2.33 | <10 | 0.66 | 717 | 17  | 0.03 | 6  | 350 | 2  | 5  | <20 | 60 < 0.01 | <10 | 21 | <10 | 15 | 17 |
| 9     | 79848 | 5       | 0.4  | 0.39 | <5 | 535 | <5 | 3.85 | <1 | 6  | 82  | 351  | 2.35 | <10 | 1.28 | 629 | 17  | 0.03 | 5  | 340 | <2 | 10 | <20 | 66 < 0.01 | <10 | 15 | <10 | 15 | 16 |
| 10    | 79849 | 5       | 0.2  | 0.56 | <5 | 310 | <5 | 2.59 | <1 | 7  | 87  | 480  | 2.13 | <10 | 0.78 | 401 | 9   | 0.04 | 5  | 370 | <2 | 5  | <20 | 52 < 0.01 | <10 | 27 | <10 | 11 | 14 |
| 11    | 79850 | 5       | 1.0  | 0.72 | <5 | 250 | <5 | 2.58 | <1 | 8  | 99  | 1992 | 2.09 | <10 | 1.40 | 478 | 24  | 0.03 | 5  | 390 | 2  | 15 | <20 | 47 <0.01  | <10 | 21 | <10 | 11 | 18 |
| 12    | 80051 | 5       | <0.2 | 0.48 | <5 | 30  | <5 | 3.23 | <1 | 7  | 52  | 86   | 1.59 | 10  | 0.37 | 359 | 4   | 0.01 | 5  | 350 | 2  | <5 | <20 | 42 < 0.01 | <10 | 27 | <10 | 16 | 18 |
| 13    | 80052 | 5       | <0.2 | 0.41 | 5  | 35  | <5 | 4.04 | <1 | 7  | 49  | 109  | 1.61 | 10  | 0.46 | 395 | 15  | 0.01 | 4  | 370 | 4  | 10 | <20 | 54 < 0.01 | <10 | 25 | <10 | 20 | 16 |
| 14    | 80053 | 5       | <0.2 | 0.66 | <5 | 35  | <5 | 2.36 | <1 | 8  | 50  | 172  | 1.88 | <10 | 0.57 | 345 | 45  | 0.01 | 6  | 410 | 4  | 10 | <20 | 34 < 0.01 | <10 | 30 | <10 | 14 | 22 |
| 15    | 80054 | 5       | <0.2 | 0.62 | <5 | 45  | <5 | 2.30 | <1 | 8  | 53  | 253  | 2.14 | 10  | 0.76 | 368 | 9   | 0.02 | 6  | 440 | 2  | 5  | <20 | 46 < 0.01 | <10 | 42 | <10 | 16 | 19 |
| 16    | 80055 | 5       | <0.2 | 0.74 | <5 | 40  | <5 | 1.77 | <1 | 9  | 51  | 90   | 2.25 | <10 | 0.77 | 399 | 4   | 0.03 | 7  | 460 | 4  | 10 | <20 | 44 0.01   | <10 | 45 | <10 | 14 | 22 |
| 17    | 80056 | 5       | <0.2 | 0.65 | <5 | 50  | <5 | 1.60 | <1 | 8  | 60  | 45   | 2.07 | <10 | 0.62 | 354 | 4   | 0.03 | 7  | 460 | 4  | 5  | <20 | 45 0.01   | <10 | 43 | <10 | 14 | 22 |
| 18    | 80057 | 5       | <0.2 | 0.60 | <5 | 80  | <5 | 2.55 | <1 | 8  | 58  | 124  | 2.16 | <10 | 1.01 | 460 | 7   | 0.03 | 6  | 400 | 4  | 15 | <20 | 57 < 0.01 | <10 | 40 | <10 | 16 | 25 |
| 19    | 80058 | 5       | <0.2 | 0.58 | <5 | 70  | <5 | 2.17 | <1 | 8  | 58  | 86   | 2.01 | <10 | 0.70 | 440 | 4   | 0.03 | 6  | 390 | 4  | 5  | <20 | 56 < 0.01 | <10 | 41 | <10 | 16 | 23 |
| 20    | 80059 | 10      | <0.2 | 0.60 | <5 | 75  | <5 | 2.35 | <1 | 8  | 77  | 136  | 2.08 | <10 | 0.90 | 547 | 5   | 0.03 | 6  | 450 | 4  | 10 | <20 | 52 < 0.01 | <10 | 41 | <10 | 16 | 25 |

| Et #. | Tag#  | Au(ppb) | Ag    | Al % | As | Ва  | Bi | Ca % | Cd  | Co | Cr       | Cu   | Fe % | La  | Mg % | Mn   | Мо | Na % | Ni | Р   | Pb | Sb  | Sn  | Sr Ti  | %   | U   | ٧   | w   | Y  | Zn |
|-------|-------|---------|-------|------|----|-----|----|------|-----|----|----------|------|------|-----|------|------|----|------|----|-----|----|-----|-----|--------|-----|-----|-----|-----|----|----|
| 21    | 80060 | 5       | <0.2  |      | <5 | 90  |    | 1.98 | <1  | 8  | 56       | 209  | 1.93 |     | 0.74 | 390  | 3  | 0.04 | 6  | 420 | 4  | 10  | <20 | 65 <0. |     | <10 | 43  | <10 | 15 | 20 |
| 22    | 80061 | 5       | <0.2  |      | <5 | 80  |    | 2.17 | <1  | 9  | 66       | 128  | 2.21 |     | 0.58 | 426  | 5  | 0.04 | 8  | 430 | 4  | 10  | <20 |        | .01 | <10 | 48  | <10 | 18 | 23 |
| 23    | 80062 | 5       | <0.2  | 0.50 | <5 | 70  | <5 | 2.52 | <1  | 7  | 91       | 267  | 1.79 | 10  | 0.48 | 566  | 6  | 0.03 | 6  | 400 | 2  | <5  | <20 | 42 <0  | -   | <10 | 34  | <10 | 16 | 17 |
| 24    | 80063 | 5       | <0.2  |      | <5 | 85  | <5 | 1.94 | <1  | 9  | 53       | 193  | 2.12 | <10 | 0.86 | 430  | 9  | 0.04 | 8  | 430 | 4  | 10  | <20 | 57 <0  |     | <10 | 39  | <10 | 17 | 24 |
| 25    | 80064 | 5       | <0.2  |      | <5 | 100 | <5 | 1.92 | <1  | 8  | 54       | 267  | 2.02 | <10 |      | 409  | 4  | 0.05 | 7  | 430 | 4  | 10  | <20 | 68 <0  | -   | <10 | 43  | <10 | 15 | 18 |
| 20    | 0000- | J       |       | 0.01 | -0 | 100 |    | 1.52 | • 1 | U  | <b>J</b> | 207  | 2.02 | -10 | 0.00 | 405  |    | 0.00 | ,  | 430 | 7  | 10  | -20 | 00 40. | .ψ1 | -10 | 70  | -10 | 10 | 10 |
| 26    | 80065 | 5       | <0.2  | 0.65 | <5 | 110 | <5 | 1.47 | <1  | 8  | 51       | 116  | 2.02 | <10 | 0.69 | 333  | 3  | 0.05 | 7  | 450 | 4  | 5   | <20 | 59 0   | .01 | <10 | 50  | <10 | 14 | 20 |
| 27    | 80066 | 10      | <0.2  | 0.57 | <5 | 95  | <5 | 1.28 | <1  | 7  | 72       | 153  | 1.96 | 10  | 0.65 | 311  | 4  | 0.04 | 6  | 380 | 4  | <5  | <20 |        | .01 | <10 | 46  | <10 | 18 | 17 |
| 28    | 80067 | 5       | <0.2  | 0.69 | <5 | 85  |    | 1.47 | <1  | 9  | 76       | 331  | 2.23 | <10 |      | 387  | 8  | 0.04 | 7  | 450 | 4  | 5   | <20 |        | .01 | <10 | 50  | <10 | 15 | 23 |
| 29    | 80201 | 5       | <0.2  | 0.56 | <5 | 235 | <5 | 0.73 | <1  | 7  | 79       | 705  | 1.67 | <10 | 0.60 | 188  | 5  | 0.04 | 5  | 330 | 2  | <5  | <20 | 29 <0  |     | <10 | 31  | <10 | 7  | 9  |
| 30    | 80202 | 5       | <0.2  | 0.57 | <5 | 125 | <5 |      | <1  | 6  | 64       | 629  |      | <10 | 0.63 | 229  | 8  | 0.05 | 5  | 350 | 2  | 10  | <20 | 34 <0  |     | <10 | 29  | <10 | 10 | 10 |
|       |       | _       |       |      | •  |     | •  | 0.00 |     | -  | ٠.       |      |      |     | 4.00 |      | ·  | 0.00 | Ū  | 000 | _  | ,,, |     | · ·    |     |     |     | , , |    |    |
| 31    | 80203 | 5       | <0.2  | 0.54 | <5 | 365 | <5 | 2.13 | <1  | 5  | 56       | 154  | 1.68 | <10 | 0.52 | 378  | 44 | 0.05 | 4  | 380 | 4  | 5   | <20 | 50 <0  | .01 | <10 | 26  | <10 | 11 | 10 |
| 32    | 80204 | 5       | < 0.2 | 0.59 | <5 | 265 | <5 | 1.61 | <1  | 6  | 58       | 1128 | 1.76 | <10 |      | 287  | 11 | 0.05 | 5  | 380 | 2  | 10  | <20 | 46 <0  | .01 | <10 | 28  | <10 | 8  | 11 |
| 33    | 80205 | 5       | < 0.2 | 0.51 | <5 | 145 | <5 | 2.44 | <1  | 6  | 81       | 103  | 1.73 | <10 | 0.58 | 380  | 8  | 0.04 | 4  | 350 | 4  | 5   | <20 | 48 <0  | .01 | <10 | 27  | <10 | 12 | 9  |
| 34    | 80206 | 5       | 0.4   | 0.55 | <5 | 135 | <5 | 3.02 | <1  | 7  | 70       | 957  | 2.03 | <10 | 0.53 | 584  | 72 | 0.03 | 5  | 410 | 2  | <5  | <20 | 46 <0  | .01 | <10 | 26  | <10 | 12 | 13 |
| 35    | 80207 | 5       | 0.6   | 0.70 | <5 | 150 | <5 | 2.59 | <1  | 7  | 93       | 1041 | 1.98 | <10 | 0.61 | 547  | 46 |      | 6  | 440 | 4  | <5  | <20 | 40 <0  |     | <10 | 28  | <10 | 13 | 14 |
|       |       |         |       |      |    |     |    |      |     |    |          |      |      |     |      |      |    |      |    |     |    |     |     |        |     |     |     |     |    |    |
| 36    | 80208 | 5       | 0.2   | 0.69 | <5 | 245 | <5 | 3.92 | <1  | 9  | 71       | 347  | 2.23 | <10 | 0.64 | 1026 | 12 | 0.03 | 6  | 440 | 4  | 5   | <20 | 55 <0  | .01 | <10 | 19  | <10 | 13 | 24 |
| 37    | 80209 | 5       | 1.0   | 2.62 | <5 | 245 | <5 | 3.06 | <1  | 31 | 53       | 805  | 5.76 | <10 | 2.69 | 1788 | 81 | 0.01 | 22 | 300 | 10 | 10  | <20 | 36 <0  | .01 | <10 | 85  | <10 | <1 | 80 |
| 38    | 80210 | 5       | 0.4   | 0.54 | <5 | 115 | <5 | 3.48 | <1  | 7  | 92       | 335  | 1.70 | <10 | 0.55 | 1373 | 8  | 0.01 | 5  | 390 | 2  | 5   | <20 | 33 <0  | .01 | <10 | 21  | <10 | 13 | 17 |
| 39    | 80301 | 5       | <0.2  | 1.12 | <5 | 90  | <5 | 1.28 | <1  | 17 | 61       | 136  | 3.56 | <10 | 0.96 | 341  | 3  | 0.03 | 14 | 700 | 6  | 5   | <20 | 21 0   | .18 | <10 | 117 | <10 | 12 | 38 |
| 40    | 80302 | 5       | <0.2  | 1.08 | <5 | 165 | <5 | 2.13 | <1  | 19 | 65       | 122  | 3.75 | <10 | 0.91 | 534  | 3  | 0.03 | 13 | 730 | 6  | <5  | <20 | 35 0   | .20 | <10 | 119 | <10 | 21 | 39 |
|       |       |         |       |      |    |     |    |      |     |    |          |      |      |     |      |      |    |      |    |     |    |     |     |        |     |     |     |     |    |    |
| 41    | 80303 | 5       | <0.2  | 0.91 | <5 | 110 | <5 | 1.47 | <1  | 19 | 43       | 157  | 4.03 | <10 | 0.94 | 682  | 3  | 0.03 | 14 | 760 | 6  | <5  | <20 | 34 0   | .17 | <10 | 113 | <10 | 25 | 40 |
| 42    | 80304 | 5       | <0.2  | 0.81 | <5 | 65  | <5 | 1.16 | <1  | 14 | 64       | 228  | 3.13 | <10 | 0.77 | 426  | 3  | 0.03 | 11 | 620 | 4  | <5  | <20 | 32 0   | .11 | <10 | 85  | <10 | 15 | 27 |
| 43    | 80305 | 5       | <0.2  | 0.76 | <5 | 55  | <5 | 1.28 | <1  | 12 | 58       | 135  | 2.85 | <10 | 0.57 | 332  | 2  | 0.03 | 10 | 610 | 4  | <5  | <20 | 27 0   | .10 | <10 | 80  | <10 | 15 | 16 |
| 44    | 80306 | 5       | <0.2  | 0.87 | <5 | 60  | <5 | 1.22 | <1  | 13 | 73       | 78   | 3.13 | <10 | 0.66 | 327  | 2  | 0.03 | 10 | 650 | 4  | <5  | <20 | 29 0   | .12 | <10 | 96  | <10 | 13 | 20 |
| 45    | 80307 | 5       | <0.2  | 0.90 | <5 | 65  | <5 | 1.39 | <1  | 15 | 55       | 97   | 3.42 | <10 | 0.80 | 474  | 11 | 0.03 | 13 | 730 | 6  | 10  | <20 | 37 0   | .10 | <10 | 98  | <10 | 16 | 30 |
|       |       |         |       |      |    |     |    |      |     |    |          |      |      |     |      |      |    |      |    |     |    |     |     |        |     |     |     |     |    |    |
| 46    | 80308 | 10      | <0.2  | 1.03 | <5 | 90  | <5 | 1.38 | <1  | 16 | 68       | 118  | 3.46 | <10 | 0.96 | 382  | 3  | 0.03 | 13 | 680 | 6  | 5   | <20 | 28 0   | .17 | <10 | 109 | <10 | 13 | 32 |
| 47    | 80309 | 5       | <0.2  | 0.89 | <5 | 85  | <5 | 1.14 | <1  | 13 | 69       | 240  | 2.98 | <10 | 0.73 | 300  | 4  | 0.04 | 11 | 580 | 4  | 5   | <20 | 26 0   | .14 | <10 | 94  | <10 | 12 | 25 |
| 48    | 80310 | 5       | <0.2  | 0.83 | <5 | 60  | <5 | 1.22 | <1  | 11 | 76       | 102  | 2.63 | <10 | 0.67 | 257  | 3  | 0.03 | 10 | 580 | 4  | <5  | <20 | 27 0   | .09 | <10 | 79  | <10 | 10 | 22 |
| 49    | 80311 | 5       | <0.2  | 0.74 | <5 | 60  | <5 | 1.30 | <1  | 10 | 69       | 103  | 2.46 | <10 | 0.57 | 268  | 3  | 0.03 | 9  | 560 | 4  | 5   | <20 | 30 0   | .07 | <10 | 71  | <10 | 14 | 17 |
| 50    | 80312 | 5       | <0.2  | 0.76 | <5 | 60  | <5 | 2.00 | <1  | 10 | 84       | 104  | 2.40 | <10 | 0.74 | 276  | 5  | 0.03 | 9  | 560 | 6  | 10  | <20 | 36 0   | .07 | <10 | 69  | <10 | 16 | 17 |
|       |       |         |       |      |    |     |    |      |     |    |          |      |      |     |      |      |    |      |    |     |    |     |     |        |     |     |     |     |    |    |
| 51    | 80313 | 5       | <0.2  | 0.82 | <5 | 65  | <5 | 1.24 | <1  | 11 | 79       | 72   | 2.57 | <10 | 0.64 | 278  | 5  | 0.04 | 10 | 600 | 4  | <5  | <20 | 27 0   | .10 | <10 | 79  | <10 | 12 | 20 |
| 52    | 80314 | 10      | <0.2  | 0.62 | <5 | 110 | <5 | 4.18 | <1  | 14 | 81       | 329  | 3.19 | <10 | 0.76 | 1415 | 10 | 0.04 | 10 | 630 | 4  | 5   | <20 | 54 0   | .07 | <10 | 71  | <10 | 17 | 41 |
| 53    | 80315 | 5       | <0.2  | 0.79 | <5 | 525 | <5 | 4.66 | <1  | 15 | 57       | 342  | 3.45 | <10 | 1.00 | 1078 | 8  | 0.04 | 11 | 720 | 4  | 10  | <20 | 77 0   | .08 | <10 | 80  | <10 | 23 | 48 |
| 54    | 80316 | 5       | <0.2  | 1.04 | <5 | 90  | <5 | 2.29 | <1  | 20 | 56       | 62   | 4.09 | <10 | 1.26 | 677  | 3  | 0.06 | 15 | 760 | 6  | 5   | <20 | 62 0   | .14 | <10 | 122 | <10 | 17 | 48 |
| 55    | 80317 | 5       | <0.2  | 13.0 | <5 | 150 | <5 | 1.93 | <1  | 13 | 67       | 33   | 2.87 | <10 | 0.88 | 473  | 3  | 0.04 | 11 | 590 | 4  | 5   | <20 | 48 0   | .10 | <10 | 77  | <10 | 13 | 30 |

| Et #. | Tag#  | Au(ppb) | Ag   | AI % | As  | Ва  | Bí | Ca % | Cd | Со | Cr  | Си   | Fe % | La             | Mg % | Mn   | Мо  | Na % | Ni | Р   | Pb | Sb | Sn  | Sr | Ti %  | U   | v          | w   | Y  | Zn |
|-------|-------|---------|------|------|-----|-----|----|------|----|----|-----|------|------|----------------|------|------|-----|------|----|-----|----|----|-----|----|-------|-----|------------|-----|----|----|
| 56    | 80318 | 5       | <0.2 | 0.52 | <5  | 175 | <5 | 2.38 | <1 | 6  | 97  | 188  | 1.84 | <10            | 0.51 | 691  | 5   | 0.03 | 6  | 380 | 4  | <5 | <20 | 34 | 0.02  | <10 | 30         | <10 | 16 | 23 |
| 57    | 80319 | 5       | <0.2 | 0.76 | <5  | 85  | <5 | 1.06 | <1 | 8  | 95  | 44   | 1.99 | <10            | 0.57 | 293  | 8   | 0.04 | 6  | 400 | 4  | <5 | <20 | 23 | 0.06  | <10 | 47         | <10 | 12 | 19 |
| 58    | 80320 | 5       | <0.2 | 0.67 | <5  | 130 | <5 | 3.21 | <1 | 8  | 100 | 161  | 2.10 | <10            | 0.60 | 696  | 6   | 0.04 | 7  | 430 | 4  | 10 | <20 | 42 | 0.02  | <10 | 41         | <10 | 16 | 21 |
| 59    | 80321 | 5       | <0.2 | 0.77 | <5  | 125 | <5 | 1.75 | <1 | 8  | 69  | 110  | 2.25 | <10            | 0.61 | 416  | 6   | 0.04 | 8  | 470 | 4  | <5 | <20 | 33 | 0.04  | <10 | 52         | <10 | 11 | 26 |
| 60    | 80322 | 5       | <0.2 | 0.70 | <5  | 90  | <5 | 1.08 | <1 | 8  | 93  | 189  | 2.10 | <10            | 0.54 | 282  | 3   | 0.04 | 7  | 450 | 4  | <5 | <20 | 23 | 0.06  | <10 | 55         | <10 | 13 | 21 |
|       |       |         |      |      |     |     |    |      |    |    |     |      |      |                |      |      |     |      |    |     |    |    |     |    |       |     |            |     |    |    |
| 61    | 80323 | 5       | <0.2 | 0.59 | <5  | 50  | <5 | 1.41 | <1 | 8  | 93  | 73   | 1.95 | <10            | 0.57 | 345  | 4   | 0.04 | 7  | 410 | 2  | 5  | <20 | 31 | 0.02  | <10 | 45         | <10 | 17 | 21 |
| 62    | 80324 | 5       | <0.2 | 0.59 | <5  | 60  | <5 | 2.17 | <1 | 8  | 94  | 170  | 2.10 | <10            | 0.60 | 514  | 5   | 0.04 | 8  | 460 | 2  | 5  | <20 | 35 | 0.03  | <10 | 47         | <10 | 16 | 22 |
| 63    | 80325 | 5       | <0.2 | 0.79 | <5  | 145 | <5 | 1.69 | <1 | 10 | 79  | 211  | 2.40 | <10            | 0.90 | 599  | 15  | 0.05 | 8  | 520 | 4  | 10 | <20 | 36 | 0.05  | <10 | 59         | <10 | 14 | 28 |
| 64    | 80326 | 5       | 0.2  | 0.39 | <5  | 220 | <5 | 3.53 | <1 | 9  | 98  | 321  | 2.27 | <10            | 0.91 | 2547 | 9   | 0.03 | 6  | 410 | 4  | 15 | <20 | 42 | <0.01 | <10 | 19         | <10 | 17 | 39 |
| 65    | 80327 | 5       | <0.2 | 0.35 | 10  | 75  | <5 | 1.33 | <1 | 9  | 84  | 260  | 1.79 | 10             | 0.51 | 692  | 5   | 0.05 | 9  | 420 | 2  | 10 | <20 | 36 | <0.01 | <10 | 24         | <10 | 16 | 20 |
|       |       |         |      |      |     |     |    |      |    |    |     |      |      |                |      |      |     |      |    |     |    |    |     |    |       |     |            |     |    |    |
| 66    | 80328 | 10      | <0.2 | 0.53 | <5  | 65  | <5 | 1.43 | <1 | 8  | 90  | 118  | 2.19 | <10            | 0.69 | 484  | 5   | 0.05 | 9  | 440 | 2  | 5  | <20 | 35 | 0.02  | <10 | 48         | <10 | 17 | 21 |
| 67    | 80329 | 5       | <0.2 | 0.59 | <5  | 130 | <5 | 1.48 | <1 | 8  | 84  | 98   | 2.30 | <10            | 0.72 | 521  | 5   | 0.05 | 7  | 440 | 4  | <5 | <20 | 36 | 0.04  | <10 | 52         | <10 | 16 | 17 |
| 68    | 80330 | 5       | 0.2  | 0.47 | <5  | 80  | <5 | 3.58 | <1 | 9  | 83  | 388  | 2.25 | <10            | 0.61 | 1327 | 6   | 0.04 | 6  | 480 | 2  | <5 | <20 | 48 | <0.01 | <10 | 32         | <10 | 16 | 45 |
| 69    | 80331 | 5       | <0.2 | 0.75 | <5  | 100 | <5 | 2.31 | <1 | 9  | 76  | 132  | 2.31 | <10            | 0.94 | 668  | 5   | 0.04 | 8  | 480 | 4  | 5  | <20 | 64 | 0.02  | <10 | 51         | <10 | 20 | 20 |
| 70    | 80332 | 5       | <0.2 | 0.73 | <5  | 140 | <5 | 1.64 | <1 | 9  | 93  | 163  | 2.22 | <10            | 0.73 | 486  | 4   | 0.04 | 7  | 500 | 4  | 5  | <20 | 29 | 0.04  | <10 | 57         | <10 | 14 | 20 |
|       |       |         |      |      |     |     |    |      |    |    |     |      |      |                |      |      |     |      |    |     |    |    |     |    |       |     |            |     |    |    |
| 71    | 80333 | 5       | <0.2 | 0.62 | <5  | 250 | <5 | 2.61 | <1 | 7  | 97  | 105  | 1.98 | 10             | 0.69 | 660  | 6   | 0.04 | 7  | 470 | 4  | 5  | <20 | 43 | <0.01 | <10 | 40         | <10 | 15 | 21 |
| 72    | 80334 | 5       | <0.2 |      | <5  | 80  | <5 | 1,16 | <1 | 8  | 82  | 114  | 2.16 | <10            | 0.60 | 347  | 4   | 0.05 | 7  | 450 | 4  | <5 | <20 | 29 | 0.03  | <10 | 57         | <10 | 14 | 18 |
| 73    | 80335 | 5       | <0.2 | 0.62 | <5  | 95  | <5 | 1.11 | <1 | 8  | 87  | 166  | 2.15 | <10            | 0.54 | 334  | 4   | 0.04 | 7  | 450 | 4  | <5 | <20 | 28 | 0.04  | <10 | 56         | <10 | 13 | 16 |
| 74    | 80336 | 5       | <0.2 | 0.64 | <5  | 135 | <5 | 2.16 | <1 | 8  | 94  | 104  | 2.22 | <10            | 0.62 | 642  | 11  | 0.04 | 9  | 500 | 4  | <5 | <20 | 42 | 0.02  | <10 | 53         | <10 | 14 | 18 |
| 75    | 80337 | 5       | <0.2 | 0.50 | <5  | 95  | <5 | 1.12 | <1 | 8  | 75  | 76   | 2.04 | <10            | 0.51 | 393  | 4   | 0.05 | 7  | 500 | 2  | <5 | <20 | 37 | <0.01 | <10 | 48         | <10 | 15 | 19 |
|       |       |         |      |      |     |     |    |      |    |    |     |      |      |                |      |      |     |      |    |     |    |    |     |    |       |     |            |     |    |    |
| 76    | 80338 | 5       | <0.2 | 0.53 | ·<5 | 100 | <5 |      | <1 | 9  | 85  | 130  |      |                | 0.54 | 391  | 5   | 0.05 | 7  | 530 | 2  | <5 | <20 | 37 | <0.01 | <10 | 52         | <10 | 15 | 21 |
| 77    | 80339 | 5       | <0.2 | 0.60 | <5  | 115 | <5 | 1.71 | <1 | 8  | 93  | 138  | 2.22 | <10            | 0.55 | 413  | 8   | 0.05 | 7  | 540 | <2 | 5  | <20 | 44 | <0.01 | <10 | 52         | <10 | 14 | 19 |
| 78    | 80340 | 5       | <0.2 | 0.48 | <5  | 115 | <5 | 1.13 | <1 | 8  | 78  | 114  | 2.24 | <10            | 0.50 | 340  | 6   | 0.05 | 7  | 490 | 2  | <5 | <20 | 35 | 0.02  | <10 | 60         | <10 | 13 | 17 |
| 79    | 80341 | 5       | <0.2 | 0.53 | <5  | 200 | <5 | 1.60 | <1 | 8  | 91  | 150  | 2.21 | <10            | 0.58 | 389  | 8   | 0.05 | 7  | 500 | 2  | <5 | <20 | 40 | 0.02  | <10 | <b>5</b> 5 | <10 | 15 | 16 |
| 80    | 80342 | 5       | <0.2 | 0.70 | <5  | 130 | <5 | 1.53 | <1 | 8  | 72  | 782  | 2.04 | <10            | 0.72 | 433  | 11  | 0.03 | 8  | 500 | 2  | 5  | <20 | 29 | <0.01 | <10 | 46         | <10 | 14 | 23 |
|       |       | _       |      |      | _   |     |    |      |    |    |     |      |      |                |      |      |     |      |    |     |    |    |     |    |       |     |            |     |    |    |
| 81    | 80343 | 5       | 4.6  | 0.35 | <5  | 160 |    |      | <1 | 11 | 89  | 5884 |      | <10            | 0.79 | 1189 | 105 | 0.02 | 8  | 500 | 4  | 5  | <20 |    | <0.01 | <10 | 25         | <10 | 14 | 30 |
| 82    | 80344 | 5       | 8.0  | 0.50 | <5  | 465 | <5 | 3.74 | <1 | 7  | 96  | 1324 | 2.17 | <10            | 0.58 | 786  | 57  | 0.02 | 7  | 440 | 2  | <5 | <20 | 52 | <0.01 | <10 | 26         | <10 | 12 | 21 |
| 83    | 80345 | 5       | 1.2  | 0.43 | <5  | 285 | <5 | 3.35 | <1 | 8  |     | 1848 | 2.21 | <10            | 0.56 | 716  | 36  | 0.02 | 6  | 430 | 2  | 5  | <20 | 45 | <0.01 | <10 | 25         | <10 | 12 | 22 |
| 84    | 80346 | 10      | 5.6  | 0.35 | <5  | 235 | <5 | 3.22 | <1 | 9  | 75  | 6445 | 2.23 | <10            | 0.59 | 763  | 336 | 0.02 | 8  | 490 | 2  | 5  | <20 | 47 | <0.01 | <10 | 15         | <10 | 10 | 28 |
| 85    | 80347 | 5       | 4.4  | 0.42 | <5  | 165 | <5 | 3.36 | <1 | 12 | 91  | 3628 | 2.81 | <10            | 0.57 | 890  | 32  | 0.02 | 9  | 460 | 2  | <5 | <20 | 43 | <0.01 | <10 | 21         | <10 | 11 | 37 |
|       |       |         |      |      | _   |     |    |      |    |    |     |      |      |                |      |      |     |      |    |     |    |    |     |    |       |     |            |     |    |    |
| 86    | 80348 | 5       | 2.2  |      | <5  | 110 | <5 | 3.23 | <1 | 14 |     | 3797 | 2.71 | <10            | 0.78 | 978  | 22  | 0.01 | 10 | 490 | <2 | 5  | <20 |    | <0.01 | <10 | 25         | <10 | 8  | 41 |
| 87    | 80349 | 5       | 2.4  | 0.32 | <5  | 100 | <5 | 3.45 | <1 | 8  | 86  | 2941 | 1.62 | <10            | 0.31 | 943  | 251 | 0.01 | 5  | 470 | 2  | <5 | <20 |    | <0.01 | <10 | 9          | <10 | 13 | 21 |
| 88    | 80350 | 10      | 2.2  | 0.36 | <5  | 435 | <5 | 3.12 | <1 | 7  | 18  | 2076 | 1.85 | <b>&lt;1</b> 0 | 0.42 | 641  | 71  | 0.03 | 5  | 400 | <2 | <5 | <20 |    | <0.01 | <10 | 12         | <10 | 13 | 24 |
| 89    | 80351 | 5       | 0.6  | 0.37 | <5  | 270 | <5 | 4.59 | <1 | 8  | 32  | 762  | 2.06 | <10            | 0.48 | 712  | 48  | 0.03 | 5  | 400 | 2  | 10 | <20 |    | <0.01 | <10 | 17         | <10 | 15 | 23 |
| 90    | 80352 | 5       | 0.2  | 0.48 | <5  | 175 | <5 | 2.59 | <1 | 7  | 26  | 864  | 1.90 | <10            | 0.81 | 602  | 11  | 0.03 | 4  | 390 | 2  | 15 | <20 | 46 | <0.01 | <10 | 22         | <10 | 11 | 20 |

Page 3

| Et #. | Tag#  | Au(ppb) | Ag   | AI % | As | Ва  | Bi | Ca % | Cd | Со | Cr | Cu   | Fe % | La  | Mg % | Mn   | Мо | Na % | Ni | P   | Pb | Sb | Sn  | Sr Ti%    | U   | ٧  | w   | Υ  | Zn |
|-------|-------|---------|------|------|----|-----|----|------|----|----|----|------|------|-----|------|------|----|------|----|-----|----|----|-----|-----------|-----|----|-----|----|----|
| 91    | 80353 | 5       | 1.2  | 0.48 | <5 | 85  | <5 | 1.07 | <1 | 8  | 69 | 1683 | 1.98 | <10 | 0.57 | 507  | 44 | 0.03 | 5  | 400 | 4  | <5 | <20 | 22 < 0.01 | <10 | 31 | <10 | 11 | 17 |
| 92    | 80354 | 5       | 0.4  | 0.68 | <5 | 80  | <5 | 0.68 | <1 | 10 | 64 | 356  | 2.52 | <10 | 0.76 | 671  | 25 | 0.03 | 6  | 390 | 4  | <5 | <20 | 16 < 0.01 | <10 | 35 | <10 | 8  | 30 |
| 93    | 80355 | 5       | 2.2  | 0.72 | <5 | 60  | <5 | 1.31 | <1 | 10 | 60 | 704  | 2.25 | <10 | 0.69 | 960  | 95 | 0.02 | 7  | 430 | 4  | <5 | <20 | 18 < 0.01 | <10 | 28 | <10 | 10 | 31 |
| 94    | 80356 | 5       | 0.4  | 0.65 | <5 | 70  | <5 | 2.19 | <1 | 10 | 32 | 2051 | 2.74 | <10 | 0.66 | 1709 | 97 | 0.01 | 6  | 490 | 4  | 5  | <20 | 23 < 0.01 | <10 | 23 | <10 | 10 | 44 |
| 95    | 80357 | 10      | <0.2 | 1.09 | <5 | 70  | <5 | 0.95 | <1 | 13 | 65 | 49   | 3.30 | <10 | 0.92 | 950  | 68 | 0.02 | 10 | 480 | 6  | 5  | <20 | 14 <0.01  | <10 | 42 | <10 | 9  | 51 |
| 96    | 80358 | 5       | <0.2 | 0.71 | <5 | 85  | <5 | 1.15 | <1 | 9  | 39 | 582  | 2.41 | <10 | 0.68 | 625  | 12 | 0.04 | 7  | 510 | 4  | <5 | <20 | 27 < 0.01 | <10 | 47 | <10 | 10 | 22 |
| 97    | 80359 | 5       | <0.2 | 88.0 | <5 | 65  | <5 | 1.36 | <1 | 12 | 55 | 307  | 2.72 | <10 | 0.86 | 719  | 7  | 0.03 | 8  | 510 | 4  | 5  | <20 | 20 < 0.01 | <10 | 45 | <10 | 9  | 30 |
| 98    | 80360 | 5       | 0.2  | 0.81 | <5 | 75  | <5 | 1.54 | <1 | 10 | 46 | 414  | 2.49 | <10 | 0.76 | 618  | 8  | 0.04 | 7  | 510 | 6  | 10 | <20 | 30 < 0.01 | <10 | 45 | <10 | 13 | 24 |
| 99    | 80361 | 5       | 0.8  | 0.82 | <5 | 65  | <5 | 1.30 | <1 | 11 | 57 | 1309 | 2.86 | <10 | 0.93 | 559  | 90 | 0.03 | 7  | 490 | 4  | <5 | <20 | 19 < 0.01 | <10 | 43 | <10 | 9  | 26 |
| 100   | 80362 | 5       | <0.2 | 0.83 | <5 | 80  | <5 | 1.50 | <1 | 11 | 45 | 447  | 2.69 | <10 | 0.95 | 498  | 38 | 0.04 | 7  | 510 | 4  | 10 | <20 | 27 <0.01  | <10 | 50 | <10 | 13 | 25 |
| 101   | 80363 | 5       | <0.2 | 0.71 | <5 | 70  | <5 | 1.52 | <1 | 9  | 67 | 338  | 2.28 | <10 | 0.73 | 429  | 13 | 0.03 | 7  | 480 | 4  | 5  | <20 | 31 < 0.01 | <10 | 45 | <10 | 12 | 19 |
| 102   | 80364 | 5       | 0.2  | 0.73 | <5 | 70  | <5 | 2.31 | <1 | 10 | 37 | 419  | 2.36 | <10 | 0.90 | 968  | 19 | 0.03 | 7  | 450 | 4  | 10 | <20 | 35 < 0.01 | <10 | 38 | <10 | 12 | 24 |
| 103   | 80365 | 5       | <0.2 | 0.66 | <5 | 55  | <5 | 3.40 | <1 | 9  | 61 | 229  | 2.08 | <10 | 0.68 | 1328 | 16 | 0.02 | 7  | 480 | 2  | 10 | <20 | 40 < 0.01 | <10 | 29 | <10 | 14 | 29 |
| 104   | 80366 | 5       | 0.4  | 0.64 | <5 | 55  | <5 | 2.71 | <1 | 8  | 55 | 709  | 1.92 | 10  | 0.58 | 927  | 7  | 0.02 | 6  | 440 | 2  | 5  | <20 | 31 < 0.01 | <10 | 28 | <10 | 15 | 28 |
| 105   | 80367 | 10      | 4.0  | 0.51 | <5 | 60  | <5 | 2.20 | <1 | 7  | 68 | 7137 | 1.81 | 10  | 0.55 | 688  | 9  | 0.03 | 6  | 560 | 2  | 10 | <20 | 34 <0.01  | <10 | 32 | <10 | 16 | 21 |
| 106   | 80368 | 5       | 1.8  | 0.56 | <5 | 65  | <5 | 1.72 | <1 | 8  | 43 | 2801 | 1.82 | 10  | 0.89 | 565  | 9  | 0.03 | 5  | 500 | 4  | 10 | <20 | 30 < 0.01 | <10 | 33 | <10 | 16 | 22 |
| 107   | 80369 | 5       | <0.2 | 0.53 | <5 | 75  | <5 | 1.25 | <1 | 7  | 60 | 232  | 1.96 | 10  | 0.51 | 341  | 4  | 0.05 | 7  | 420 | 4  | 10 | <20 | 37 < 0.01 | <10 | 42 | <10 | 20 | 13 |
| 108   | 80370 | 5       | <0.2 | 0.53 | <5 | 85  | <5 | 1.07 | <1 | 7  | 58 | 233  | 2.17 | 10  | 0.50 | 298  | 4  | 0.06 | 6  | 440 | 4  | <5 | <20 | 44 0.01   | <10 | 49 | <10 | 17 | 14 |
| 109   | 80371 | 5       | <0.2 | 0.46 | <5 | 105 | <5 | 0.89 | <1 | 7  | 39 | 148  | 2.06 | 10  | 0.44 | 288  | 4  | 0.06 | 6  | 410 | 4  | <5 | <20 | 42 0.01   | <10 | 48 | <10 | 17 | 18 |
| 110   | 80372 | 5       | <0.2 | 0.59 | <5 | 100 | <5 | 1.27 | <1 | 8  | 71 | 168  | 2.17 | <10 | 0.45 | 283  | 4  | 0.05 | 5  | 400 | 4  | <5 | <20 | 37 0.03   | <10 | 52 | <10 | 14 | 22 |
| 111   | 80373 | 10      | <0.2 | 0.49 | <5 | 85  | <5 | 1.23 | <1 | 7  | 37 | 376  | 2.03 | 10  | 0.42 | 276  | 77 | 0.06 | 5  | 430 | 4  | <5 | <20 | 41 0.01   | <10 | 48 | <10 | 18 | 17 |
| 112   | 80374 | 5       | <0.2 | 0.45 | <5 | 85  | <5 | 0.69 | <1 | 7  | 49 | 195  | 2.19 | 10  | 0.45 | 284  | 5  | 0.06 | 5  | 430 | 2  | <5 | <20 | 44 < 0.01 | <10 | 48 | <10 | 19 | 15 |
| 113   | 80375 | 5       | <0.2 | 0.70 | <5 | 90  | <5 | 1.33 | <1 | 8  | 76 | 546  | 2.29 | <10 | 0.53 | 217  | 4  | 0.06 | 6  | 450 | 4  | <5 | <20 | 43 0.03   | <10 | 55 | <10 | 13 | 15 |
| 114   | 80376 | 5       | <0.2 | 0.49 | <5 | 70  | <5 | 1.54 | <1 | 7  | 72 | 145  | 1.97 | 10  | 0.49 | 339  | 11 | 0.06 | 5  | 400 | 4  | <5 | <20 | 44 < 0.01 | <10 | 42 | <10 | 19 | 18 |

| Et #.   | Tag#         | Au(ppb) | Ag   | AI % | As | Ва  | Bi | Ca % | Cd | Со | Cr  | Cu   | Fe % | La  | Mg % | Mņ   | Мо  | Na % | Ni | Р   | Pb | Sb | Sn  | Sr Ti%    | υ   | ٧   | w   | Υ  | Zn |
|---------|--------------|---------|------|------|----|-----|----|------|----|----|-----|------|------|-----|------|------|-----|------|----|-----|----|----|-----|-----------|-----|-----|-----|----|----|
| QC DA   | Γ <b>A</b> : |         |      |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |    |     |    |    |     |           |     |     |     |    |    |
| Resplit | :            |         |      |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |    |     |    |    |     |           |     |     |     |    |    |
| 1       | 79840        | 5       | -    | -    | -  | -   | -  | -    | -  | -  | -   | -    | -    | -   | -    | _    | -   | _    | -  | -   | -  | -  | -   |           | -   | -   | -   | -  | -  |
| 36      | 80208        | 5       | 0.4  | 0.70 | <5 | 220 | <5 | 3.70 | <1 | 9  | 73  | 371  | 2.26 | <10 | 0.66 | 985  | 23  | 0.03 | 6  | 430 | 2  | <5 | <20 | 54 < 0.01 | <10 | 19  | <10 | 12 | 25 |
| 71      | 80333        | 5       | <0.2 | 0.59 | <5 | 260 | <5 | 2.73 | <1 | 7  | 98  | 100  | 1.98 | <10 | 0.67 | 680  | 6   | 0.04 | 7  | 490 | 4  | 5  | <20 | 43 < 0.01 | <10 | 41  | <10 | 16 | 22 |
| 106     | 80368        | 5       | 1.4  | 0.56 | <5 | 60  | <5 | 1.89 | <1 | 8  | 39  | 3021 | 1.90 | 10  | 0.96 | 610  | 9   | 0.03 | 6  | 510 | 6  | 10 | <20 | 30 < 0.01 | <10 | 33  | <10 | 17 | 23 |
| Repeat  |              |         |      |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |    |     |    |    |     |           |     |     |     |    |    |
| 1       | 79840        | 5       | 3.0  | 0.29 | <5 | 315 | <5 | 4.55 | <1 | 7  | 53  | 4064 | 1.59 | <10 | 0.22 | 442  | 166 | 0.03 | 4  | 360 | 2  | <5 | <20 | 65 < 0.01 | <10 | 5   | <10 | 13 | 16 |
| 10      | 79849        | 5       | 0.2  | 0.57 | <5 | 315 | <5 | 2.62 | <1 | 7  | 88  | 472  | 2.16 | <10 | 0.80 | 407  | 10  | 0.04 | 6  | 380 | 2  | 5  | <20 | 54 < 0.01 | <10 | 27  | <10 | 11 | 14 |
| 19      | 80058        | 5       | <0.2 | 0.58 | <5 | 70  | <5 | 2.16 | <1 | 8  | 58  | 81   | 2.02 | <10 | 0.70 | 438  | 4   | 0.03 | 6  | 400 | 4  | 10 | <20 | 55 < 0.01 | <10 | 42  | <10 | 16 | 23 |
| 36      | 80208        | 5       | <0.2 | 0.70 | <5 | 245 | <5 | 3.84 | <1 | 8  | 70  | 342  | 2.21 | <10 | 0.63 | 1007 | 14  | 0.03 | 6  | 440 | 2  | 10 | <20 | 52 < 0.01 | <10 | 19  | <10 | 13 | 24 |
| 45      | 80307        | 5       | <0.2 | 0.90 | <5 | 65  | <5 | 1.39 | <1 | 15 | 54  | 95   | 3.34 | <10 | 0.78 | 466  | 10  | 0.03 | 12 | 730 | 6  | 5  | <20 | 36 0.10   | <10 | 96  | <10 | 16 | 29 |
| 54      | 80316        | 5       | <0.2 | 1.05 | <5 | 90  | <5 | 2.29 | <1 | 21 | 55  | 61   | 4.12 | <10 | 1.26 | 678  | 2   | 0.06 | 16 | 750 | 6  | <5 | <20 | 63 0.15   | <10 | 124 | <10 | 17 | 48 |
| 71      | 80333        | 5       | <0.2 | 0.64 | <5 | 255 | <5 | 2.63 | <1 | 7  | 100 | 110  | 2.03 | 10  | 0.69 | 664  | 5   |      | 8  | 490 | 4  | 10 | <20 | 42 < 0.01 | <10 | 42  | <10 | 16 | 21 |
| 80      | 80342        | 5       | <0.2 | 0.74 | <5 | 140 | <5 | 1.56 | <1 | 8  | 76  | 811  | 2.11 | <10 | 0.74 | 446  | 11  | 0.03 | 8  | 530 | 4  | 15 | <20 | 30 < 0.01 | <10 | 48  | <10 | 14 | 24 |
| 89      | 80351        | 5       | 0.8  | 0.38 | <5 | 265 | <5 | 4.58 | <1 | 8  | 33  | 717  | 2.08 | <10 | 0.47 | 711  | 48  | 0.03 | 5  | 410 | 2  | 5  | <20 | 67 < 0.01 | <10 | 17  | <10 | 14 | 23 |
| 106     | 80368        | 5       | 1.4  | 0.58 | <5 | 65  | <5 | 1.74 | <1 | 8  | 46  | 2768 | 1.86 | 10  | 0.91 | 571  | 10  | 0.03 | 6  | 510 | 4  | 10 | <20 | 30 < 0.01 | <10 | 33  | <10 | 16 | 23 |
| Standa  | rd:          |         |      |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |    |     |    |    |     |           |     |     |     |    |    |
| GEO'96  |              | 150     | 1.0  | 1.76 | 60 | 155 | <5 | 1.70 | <1 | 18 | 62  | 85   | 3.84 | <10 | 1.04 | 671  | <1  | 0.02 | 25 | 630 | 22 | 10 | <20 | 54 0.10   | <10 | 73  | <10 | 10 | 65 |
| GEO'96  |              | 140     | 1.2  |      | 60 | 150 | <5 | 1.69 | <1 | 18 | 61  | 79   | 3.83 | <10 | 1.04 | 672  | <1  | 0.02 | 25 | 630 | 22 | 10 | <20 | 54 0.10   | <10 | 73  | <10 | 9  | 65 |
| GEO'96  |              | 150     | 1.0  |      | 60 | 155 | <5 | 1.73 | <1 | 18 | 62  | 80   | 3.91 | <10 | 1.05 | 688  | <1  | 0.02 | 25 | 640 | 22 | 10 | <20 | 56 0.11   | <10 | 75  | <10 | 8  | 68 |
| GEO'96  |              | 140     | 1.4  |      | 55 | 155 | <5 | 1.68 | <1 | 18 | 60  | 85   | 3.82 | <10 | 1.02 | 675  | <1  | 0.01 | 24 | 610 | 24 | 5  | <20 | 54 0.11   | <10 | 73  | <10 | 8  | 66 |

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/1346 XLS/96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-1348

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received: 70 Sample type: CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: GARY STEWART

| Et #. | Tag#  | Au(ppb) | Ag   | AI % | As | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn  | Мо | Na % | Ni | Р   | Pb | Sb | Sn  | Sr Ti%    | U   | V  | w   | Υ  | Zn |
|-------|-------|---------|------|------|----|-----|----|------|----|----|-----|------|------|-----|------|-----|----|------|----|-----|----|----|-----|-----------|-----|----|-----|----|----|
| 1     | 80401 | 5       | 2.0  | 0.82 | <5 | 160 | <5 | 2.46 | <1 | 12 | 73  | 4247 | 2.81 | <10 | 0.66 | 474 | 9  | 0.01 | 7  | 210 | 4  | 5  | <20 | 25 < 0.01 | <10 | 26 | <10 | 10 | 35 |
| 2     | 80402 | 5       | 0.2  | 0.81 | 10 | 135 | <5 | 2.33 | <1 | 9  | 66  | 630  | 2.23 | <10 | 0.64 | 364 | 10 | 0.01 | 5  | 400 | 6  | 5  | <20 | 27 < 0.01 | <10 | 24 | 10  | 9  | 21 |
| 3     | 80403 | 5       | 5.0  | 0.48 | <5 | 65  | <5 | 2.29 | <1 | 8  | 60  | 7971 | 2.12 | 10  | 0.37 | 387 | 65 | 0.01 | 4  | <10 | <2 | <5 | <20 | 31 < 0.01 | <10 | 20 | <10 | 10 | 19 |
| 4     | 80404 | 10      | 2.2  | 0.49 | <5 | 75  | <5 | 1.58 | <1 | 8  | 86  | 3118 | 2.15 | <10 | 0.46 | 362 | 6  | 0.01 | 5  | 260 | 2  | 5  | <20 | 22 < 0.01 | <10 | 20 | <10 | 6  | 24 |
| 5     | 80405 | 5       | 0.2  | 0.66 | <5 | 105 | <5 | 1.27 | <1 | 8  | 101 | 825  | 1.75 | 10  | 0.50 | 310 | 5  | 0.02 | 6  | 390 | 4  | 10 | <20 | 17 <0.01  | <10 | 19 | <10 | 8  | 27 |
| 6     | 80406 | 5       | 1.2  | 0.85 | <5 | 75  | <5 | 1.59 | <1 | 11 | 96  | 1716 | 2.50 | <10 | 0.66 | 383 | 27 | 0.02 | 8  | 330 | 4  | 10 | <20 | 20 < 0.01 | <10 | 29 | <10 | 5  | 33 |
| 7     | 80407 | 5       | 0.2  | 0.54 | 35 | 45  | <5 | 2.73 | <1 | 7  | 55  | 484  | 1.55 | <10 | 0.50 | 389 | 11 | 0.02 | 4  | 470 | 10 | <5 | <20 | 20 < 0.01 | <10 | 19 | 70  | 18 | 20 |
| 8     | 80408 | 5       | <0.2 | 0.54 | <5 | 105 | <5 | 1.84 | <1 | 8  | 50  | 174  | 2.18 | 10  | 0.76 | 373 | 9  | 0.03 | 5  | 390 | 4  | <5 | <20 | 52 < 0.01 | <10 | 32 | 10  | 16 | 18 |
| 9     | 80409 | 5       | 0.4  | 0.61 | <5 | 130 | <5 | 3.27 | <1 | 7  | 48  | 520  | 2.01 | <10 | 1.35 | 517 | 39 | 0.03 | 4  | 370 | 4  | 10 | <20 | 78 <0.01  | <10 | 22 | <10 | 13 | 19 |
| 10    | 80410 | 5       | 1.2  | 0.56 | <5 | 75  | <5 | 2.17 | <1 | 7  | 57  | 1907 | 1.49 | <10 | 0.54 | 436 | 7  | 0.02 | 4  | 390 | <2 | 10 | <20 | 36 < 0.01 | <10 | 21 | <10 | 10 | 14 |
| 11    | 80411 | 5       | <0.2 | 0.40 | <5 | 95  | <5 | 2.46 | <1 | 7  | 62  | 238  | 1.83 | <10 | 0.46 | 588 | 5  | 0.03 | 5  | 350 | <2 | 5  | <20 | 47 < 0.01 | <10 | 24 | <10 | 11 | 16 |
| 12    | 80412 | 5       | <0.2 | 0.45 | <5 | 85  | <5 | 3.06 | <1 | 9  | 75  | 410  | 2.39 | <10 | 0.71 | 798 | 5  | 0.02 | 6  | 340 | <2 | 5  | <20 | 43 < 0.01 | <10 | 24 | <10 | 11 | 21 |
| 13    | 80413 | 5       | 1.0  | 0.53 | <5 | 65  | <5 | 2.98 | <1 | 7  | 68  | 1467 | 1.76 | <10 | 0.51 | 734 | 18 | 0.01 | 5  | 310 | 2  | <5 | <20 | 36 < 0.01 | <10 | 14 | <10 | 10 | 22 |
| 14    | 80414 | 5       | 0.8  | 0.58 | <5 | 100 | <5 | 3.23 | <1 | 10 | 60  | 1365 | 2.54 | <10 | 0.96 | 895 | 34 | 0.02 | 6  | 290 | 2  | 5  | <20 | 49 < 0.01 | <10 | 26 | <10 | 13 | 25 |
| 15    | 80415 | 10      | <0.2 | 0.43 | <5 | 115 | <5 | 0.72 | <1 | 8  | 68  | 148  | 1.58 | <10 | 0.33 | 268 | 4  | 0.04 | 6  | 400 | 2  | <5 | <20 | 37 <0.01  | <10 | 28 | <10 | 9  | 10 |
| 16    | 80416 | 5       | <0.2 | 0.48 | <5 | 115 | <5 | 1.01 | <1 | 8  | 68  | 127  | 1.64 | <10 | 0.33 | 296 | 4  | 0.04 | 6  | 400 | 4  | <5 | <20 | 37 < 0.01 | <10 | 30 | <10 | 9  | 11 |
| 17    | 80417 | 5       | <0.2 | 0.59 | <5 | 75  | <5 | 3.81 | <1 | 8  | 93  | 262  | 2.00 | 10  | 0.98 | 732 | 5  | 0.03 | 6  | 340 | 2  | 10 | <20 | 45 < 0.01 | <10 | 25 | <10 | 15 | 17 |
| 18    | 80418 | 5       | 0.6  | 0.53 | 10 | 75  | <5 | 2.69 | <1 | 6  | 71  | 1189 | 1.52 | <10 | 0.60 | 555 | 16 | 0.03 | 4  | 270 | 4  | 10 | <20 | 41 <0.01  | <10 | 17 | <10 | 11 | 16 |
| 19    | 80419 | 5       | <0.2 | 0.40 | <5 | 95  | <5 | 0.79 | <1 | 7  | 72  | 287  | 1.56 | <10 | 0.31 | 250 | 3  | 0.05 | 5  | 390 | 2  | <5 | <20 | 38 < 0.01 | <10 | 29 | <10 | 8  | 9  |
| 20    | 80420 | 5       | <0.2 | 0.49 | <5 | 125 | <5 | 1.38 | <1 | 7  | 68  | 206  | 1.88 | <10 | 0.42 | 330 | 4  | 0.06 | 5  | 340 | 4  | <5 | <20 | 52 < 0.01 | <10 | 30 | <10 | 14 | 12 |

|   | Et#. | Tag #  | Au(ppb) | Aq   | AI % | As       | Ва  | Bi           | Ca % | Cd | Co | Cr | Cu   | Fe % | La  | Mg % | Mn    | Мо | Na % | Ni | Р   | Pb | Sb       | Sn  | Sr Ti%    | υ   | ν        | w   | Υ        | Zn      |
|---|------|--------|---------|------|------|----------|-----|--------------|------|----|----|----|------|------|-----|------|-------|----|------|----|-----|----|----------|-----|-----------|-----|----------|-----|----------|---------|
|   | 21   | 80421  | 5       |      | 0.42 | <5       | 105 | <del> </del> | 1.88 | <1 | 7  | 66 | 226  | 1.66 |     | 0.70 | 358   |    | 0.05 | 5  | 350 | 2  | 10       | <20 | 55 < 0.01 | <10 | 25       | <10 | 13       | 10      |
|   | 22   | 80422  | 5       | <0.2 |      | <5       | 130 |              | 1.31 | <1 | 7  | 28 | 102  | 2.31 | 10  | 0.53 | 381   | 3  | 0.06 | 5  | 350 | 4  | <5       | <20 | 57 <0.01  | <10 | 28       | <10 | 17       | 14      |
|   | 23   | 80423  | 10      | <0.2 |      | <5       | 125 | <5           | 1.75 | <1 | 8  | 34 | 115  | 2.03 | 10  | 0.61 | 416   | 3  | 0.06 | 6  | 360 | 4  | <5       | <20 | 60 < 0.01 | <10 | 28       | <10 | 16       | 15      |
|   | 24   | 80424  | 10      | <0.2 |      | <5       | 105 | <5           | 1.41 | <1 | 6  | 58 | 71   | 1.65 | 10  | 0.54 | 345   | 4  | 0.05 | 4  | 340 | 4  | <5       | <20 | 50 < 0.01 | <10 | 26       | <10 | 17       | 10      |
|   | 25   | 80425  | 5       |      | 0.43 | <5       | 110 | <5           | 0.92 | <1 | 6  | 71 | 33   | 1.92 |     | 0.43 | 314   | 4  |      | 5  | 380 | 4  | <5       | <20 | 46 <0.01  | <10 | 30       | <10 | 15       | 12      |
|   |      | 20.422 | _       | -0.0 | 0.00 |          | 405 |              | 0.07 |    | _  | -  |      | 4.00 | 40  | 0.04 | 250   |    | 0.00 |    | 200 | -0 |          | -00 | 47 -0.04  | -10 | 26       | ~10 | 4.4      | 44      |
|   | 26   | 80426  |         |      | 0.38 | <5       | 105 | <5           |      | <1 | 6  | 60 | 52   | 1.60 |     | 0.34 | 259   | 3  |      | 4  | 360 | <2 | <5<br>-5 | <20 | 47 < 0.01 | <10 | 26       | <10 | 14       | 11      |
|   | 27   | 80427  | 5       |      | 0.34 | <5<br>-5 | 90  | <5           | 0.81 | <1 | 5  | 57 | 35   | 1.50 | 10  |      | 251   | 3  |      | 4  | 330 | 4  | <5       | <20 | 41 < 0.01 | <10 | 30       | <10 | 14<br>11 | 13<br>9 |
|   | 28   | 80428  | 5       |      | 0.32 | <5       | 80  | <5<br>-5     | 0.90 | <1 | 6  | 72 | 68   | 1.43 | 10  | 0.36 | 213   | 4  | 0.05 | 5  | 300 | 2  | <5<br>-5 | <20 | 35 < 0.01 | <10 | 26<br>47 | <10 | 10       | 9       |
|   | 29   | 80429  | 5       | <0.2 |      | <5<br>-5 | 85  | <5           | 1.19 | <1 | 6  | 62 | 35   | 1.27 | <10 | 0.42 | 234   | 4  | 0.05 | 4  | 270 | 4  | <5       | <20 | 42 <0.01  | <10 | 17       | <10 |          | •       |
| , | 30   | 80430  | 5       | <0.2 | 0.41 | <5       | 115 | <5           | 1.20 | <1 | 6  | 60 | 163  | 1.76 | 10  | 0.47 | 309   | 4  | 0.07 | 5  | 360 | 4  | <5       | <20 | 55 <0.01  | <10 | 32       | <10 | 15       | 13      |
|   | 31   | 80431  | 5       | <0.2 | 0.41 | <5       | 115 | <5           | 1.83 | <1 | 5  | 58 | 88   | 1.59 | 10  | 0.44 | 300   | 3  | 0.07 | 5  | 300 | 2  | <5       | <20 | 57 < 0.01 | <10 | 32       | <10 | 15       | 11      |
|   | 32   | 80432  | 5       | <0.2 | 0.56 | <5       | 155 | <5           | 0.86 | <1 | 7  | 61 | 49   | 1.85 | 10  | 0.42 | 247   | 3  | 0.08 | 6  | 370 | 8  | <5       | <20 | 67 0.01   | <10 | 40       | <10 | 12       | 14      |
|   | 33   | 80433  | 5       | <0.2 | 0.55 | <5       | 135 | <5           | 1.53 | <1 | 7  | 62 | 64   | 1.80 | 10  | 0.40 | 304   | 4  | 0.07 | 5  | 360 | 4  | 5        | <20 | 58 < 0.01 | <10 | 38       | <10 | 14       | 15      |
|   | 34   | 80434  | 5       | <0.2 | 0.43 | <5       | 110 | <5           | 2.34 | <1 | 8  | 44 | 47   | 1.86 | 10  | 0.79 | 458   | 4  | 0.06 | 4  | 330 | 2  | 10       | <20 | 63 < 0.01 | <10 | 27       | <10 | 13       | 17      |
|   | 35   | 80435  | 5       | <0.2 | 0.44 | <5       | 120 | <5           | 3.28 | <1 | 7  | 40 | 284  | 1.76 | 10  | 1.20 | 455   | 9  | 0.06 | 5  | 330 | 2  | 15       | <20 | 80 < 0.01 | <10 | 19       | <10 | 16       | 16      |
|   | 36   | 80436  | 5       | <0.2 | 0.38 | <5       | 85  | <5           | 3.89 | <1 | 4  | 52 | 158  | 1.02 | <10 | 0.37 | 323   | 10 | 0.05 | 3  | 320 | <2 | 5        | <20 | 63 < 0.01 | <10 | 14       | <10 | 11       | 10      |
|   | 37   | 80437  | 5       | <0.2 |      | <5       | 70  | <5           | 3.99 | <1 | 6  | 63 | 398  | 1.45 | 10  | 0.36 | 368   | 12 | 0.04 | 5  | 330 | <2 | <5       | <20 | 56 < 0.01 | <10 | 17       | <10 | 13       | 28      |
|   | 38   | 80438  | 5       | <0.2 |      | <5       | 110 | <5           | 3.77 | <1 | 7  | 55 | 200  | 1.98 | 10  | 0.66 | 415   | 10 | 0.06 | 6  | 360 | 2  | <5       | <20 | 77 <0.01  | <10 | 24       | <10 | 17       | 36      |
|   | 39   | 80439  | 5       |      | 0.41 | <5       | 95  | <5           | 5.00 | <1 | 6  | 41 | 316  | 1.47 | 10  | 0.41 | 445   | 17 | 0.06 | 4  | 360 | 2  | <5       | <20 | 74 < 0.01 | <10 | 17       | <10 | 18       | 24      |
|   | 40   | 80440  | 5       | <0.2 |      | <5       | 105 | <5           | 4.40 | <1 | 7  | 46 | 125  | 1.91 | <10 | 1.02 | 478   | 5  |      | 5  | 360 | <2 | 15       | <20 | 78 <0.01  | <10 | 20       | <10 | 13       | 22      |
|   |      |        | _       |      |      |          |     |              |      |    | _  |    |      |      |     | - ·- | - · - | _  |      |    |     | _  | _        |     | 70 .004   | -40 | 47       | -40 |          | 40      |
|   | 41   | 80441  | 5       | <0.2 |      | <5       | 90  | <5           | 4.25 | <1 | 5  | 51 | 97   | 1.32 | <10 | 0.45 | 347   | 5  |      | 4  | 380 | <2 | 5        | <20 | 70 < 0.01 | <10 | 17       | <10 | 14       | 13      |
|   | 42   | 80442  | 5       |      | 0.47 | <5       | 100 | <5           | 3.69 | <1 | 7  | 45 | 63   | 1.86 | <10 | 0.70 | 385   | 3  |      | 4  | 390 | 2  | 10       | <20 | 72 < 0.01 | <10 | 28       | <10 | 15       | 16      |
|   | 43   | 80443  | 5       |      | 0.45 | <5       | 85  | <5           | 3.44 | <1 | 5  | 45 | 53   | 1.46 | 10  | 0.44 | 342   | 3  |      | 4  | 360 | <2 | 5        | <20 | 64 < 0.01 | <10 | 21       | <10 | 14       | 13      |
|   | 44   | 80444  | 5       | <0.2 |      | <5       | 110 | <5           | 1.65 | <1 | 4  | 60 | 39   | 1.34 | <10 | 0.56 | 264   | 3  |      | 4  | 400 | 4  | 10       | <20 | 72 <0.01  | <10 | 26       | <10 | 14       | 13      |
|   | 45   | 80445  | 5       | <0.2 | 0.61 | 15       | 120 | <5           | 2.03 | <1 | 5  | 56 | 38   | 1.63 | <10 | 0.48 | 327   | 4  | 0.09 | 3  | 400 | 6  | <5       | <20 | 76 <0.01  | <10 | 33       | 20  | 10       | 15      |
|   | 46   | 80446  | 5       | <0.2 | 0.47 | <5       | 95  | <5           | 2.20 | <1 | 6  | 76 | 156  | 1.56 | <10 | 0.43 | 348   | 4  |      | 4  | 350 | 2  | <5       | <20 | 64 < 0.01 | <10 | 32       | <10 | 15       | 15      |
|   | 47   | 80447  | 5       | <0.2 | 0.57 | <5       | 95  | <5           | 1.24 | <1 | 7  | 54 | 61   | 1.73 | <10 | 0.47 | 305   | 3  |      | 4  | 380 | 4  | <5       | <20 | 53 0.01   | <10 | 36       | <10 | 10       | 21      |
|   | 48   | 80448  | 5       | <0.2 | 0.56 | <5       | 105 | <5           | 2.02 | <1 | 7  | 50 | 81   | 1.86 | <10 | 0.53 | 354   | 2  | 0.07 | 5  | 360 | 2  | <5       | <20 | 62 ე.01   | <10 | 36       | <10 | 17       | 19      |
|   | 49   | 80449  | 10      | <0.2 | 0.56 | <5       | 105 | <5           | 1.64 | <1 | 5  | 63 | 35   | 1.75 | <10 | 0.48 | 274   | 3  | 0.07 | 4  | 380 | 4  | <5       | <20 | 57 <0.01  | <10 | 37       | <10 | 10       | 13      |
|   | 50   | 80450  | 5       | <0.2 | 0.65 | <5       | 225 | <5           | 1.50 | <1 | 7  | 60 | 1120 | 1.95 | <10 | 0.48 | 302   | 3  | 0.07 | 4  | 410 | 4  | <5       | <20 | 56 0.02   | <10 | 42       | <10 | 13       | 17      |
|   | 51   | 80452  | 5       | 0.6  | 0.70 | <5       | 160 | <5           | 1.15 | <1 | 7  | 73 | 1373 | 2.04 | <10 | 0.50 | 269   | 3  | 0.07 | 6  | 410 | 4  | <5       | <20 | 50 0.03   | <10 | 43       | <10 | 12       | 17      |
|   | 52   | 80453  | 5       | 0.6  | 0.69 | <5       | 610 | <5           | 1.05 | <1 | 6  | 67 | 968  | 2.10 | <10 | 0.50 | 253   | 2  | 0.08 | 4  | 440 | 6  | <5       | <20 | 65 0.04   | <10 | 47       | <10 | 12       | 15      |
|   | 53   | 80454  | 5       | <0.2 | 0.68 | <5       | 250 | <5           | 1.87 | <1 | 7  | 61 | 592  | 2.13 | <10 | 0.48 | 338   | 4  | 0.08 | 6  | 460 | 4  | <5       | <20 | 67 0.01   | <10 | 42       | <10 | 15       | 15      |
|   | 54   | 80455  | 5       | <0.2 | 0.85 | <5       | 155 | <5           | 1.55 | <1 | 7  | 58 | 362  | 2.01 | 10  | 0.52 | 253   | 3  | 0.08 | 6  | 430 | 6  | 5        | <20 | 58 < 0.01 | <10 | 42       | <10 | 11       | 13      |
|   | 55   | 80456  | 5       | <0.2 | 0.88 | <5       | 245 | <5           | 1.40 | <1 | 7  | 69 | 317  | 2.10 | 10  | 0.50 | 251   | 4  | 0.07 | 6  | 420 | 6  | 5        | <20 | 46 0.01   | <10 | 42       | <10 | 13       | 13      |
|   |      |        |         |      |      |          |     |              |      |    |    |    |      |      |     |      |       |    |      |    |     |    |          |     |           |     |          |     |          |         |

|   | Et #.   | Tag#  | Au(ppb) | Ag    | AI % | As | Ва  | Bi | Ca % | Cd | Со | Cr | Cu   | Fe % | La  | Mg % | Mn  | Мо | Na % | Ni | Р   | Pb | Sb | Sn  | Sr | Ti %   | U   | ٧  | w   | Y  | Zn |
|---|---------|-------|---------|-------|------|----|-----|----|------|----|----|----|------|------|-----|------|-----|----|------|----|-----|----|----|-----|----|--------|-----|----|-----|----|----|
|   | 56      | 80457 | 5       | <0.2  |      | <5 | 150 | <5 | 1.43 | <1 | 8  | 70 | 214  | 2.11 | 10  | 0.55 | 237 | 4  | 0.07 | 6  | 420 | 8  | <5 | <20 | 44 | 0.02   | <10 | 41 | <10 | 12 | 14 |
|   | 57      | 80458 | 5       | <0.2  | 0.89 | <5 | 120 | <5 | 1.74 | <1 | 8  | 69 | 426  | 2.17 | 10  | 0.55 | 300 | 4  | 0.07 | 7  | 420 | 6  | <5 | <20 | 47 | 0.01   | <10 | 41 | <10 | 13 | 13 |
|   | 58      | 80459 | 5       | <0.2  | 0.83 | <5 | 100 | <5 | 1.62 | <1 | 8  | 72 | 380  | 2.10 | 10  | 0.48 | 246 | 4  | 0.06 | 6  | 400 | 6  | <5 | <20 | 42 | 0.01   | <10 | 43 | <10 | 13 | 13 |
|   | 59      | 80460 | 5       | <0.2  | 0.75 | <5 | 180 | <5 | 1.50 | <1 | 8  | 66 | 168  | 2.16 | 10  | 0.47 | 266 | 3  | 0.06 | 6  | 440 | 6  | <5 | <20 | 43 | 0.03   | <10 | 49 | <10 | 13 | 15 |
|   | 60      | 80461 | 5       | <0.2  | 0.79 | <5 | 170 | <5 | 1.76 | <1 | 8  | 89 | 224  | 2.11 | 10  | 0.54 | 310 | 5  | 80.0 | 7  | 460 | 6  | <5 | <20 | 54 | 0.02   | <10 | 45 | <10 | 16 | 14 |
|   | 61      | 80462 | 5       | <0.2  | 0.73 | <5 | 110 | <5 | 1.47 | <1 | 7  | 61 | 92   | 2.06 | 10  | 0.52 | 253 | 3  | 0.07 | 6  | 460 | 6  | <5 | <20 | 47 | 0.02   | <10 | 49 | <10 | 12 | 14 |
|   | 62      | 80463 | 5       | <0.2  | 0.76 | <5 | 100 | <5 | 1.87 | <1 | 8  | 52 | 137  | 1.95 | 10  | 0.72 | 315 | 4  | 0.08 | 6  | 450 | 6  | 10 | <20 | 63 | <0.01  | <10 | 43 | <10 | 12 | 15 |
|   | 63      | 80464 | 5       | <0.2  | 0.74 | <5 | 95  | <5 | 1.65 | <1 | 7  | 58 | 43   | 1.99 | 10  | 0.60 | 287 | 4  | 0.07 | 6  | 450 | 4  | <5 | <20 |    | < 0.01 | <10 | 46 | <10 | 10 | 14 |
|   | 64      | 80465 | 5       | <0.2  | 0.63 | <5 | 200 | <5 | 2.48 | <1 | 7  | 48 | 45   | 1.96 | 10  | 0.68 | 399 | 3  | 0.07 | 6  | 420 | 4  | <5 | <20 | 66 | <0.01  | <10 | 40 | <10 | 15 | 20 |
| í | 65      | 80466 | 5       | <0.2  | 0.60 | <5 | 100 | <5 | 2.25 | <1 | 7  | 53 | 57   | 1.98 | 10  | 0.69 | 398 | 3  | 0.08 | 5  | 420 | 4  | 5  | <20 | 73 | <0.01  | <10 | 45 | <10 | 13 | 23 |
|   | 66      | 80467 | 5       | <0.2  | 0.58 | <5 | 425 | <5 | 2.97 | <1 | 6  | 51 | 88   | 1.99 | 10  | 0.86 | 440 | 3  | 0.09 | 6  | 380 | 2  | 10 | <20 | 92 | <0.01  | <10 | 40 | <10 | 16 | 20 |
|   | 67      | 80468 | 5       | <0.2  | 0.61 | <5 | 445 | <5 | 3.56 | 2  | 6  | 32 | 110  | 2.03 | 20  | 1.02 | 453 | 3  | 0.10 | 5  | 410 | 2  | 10 | <20 | -  | <0.01  | <10 | 38 | <10 | 14 | 17 |
|   | 68      | 80469 | 5       | <0.2  | 0.51 | <5 | 185 | <5 | 2.15 | 16 | 5  | 36 | 77   | 1.70 | 10  | 0.44 | 291 | 3  | 0.09 | 5  | 420 | 6  | 5  | <20 |    | <0.01  | <10 | 39 | <10 | 14 | 17 |
|   | 69      | 80470 | 10      | <0.2  | 0.57 | <5 | 220 | <5 | 2.48 | <1 | 6  | 32 | 79   | 1.84 | 10  | 0.81 | 390 | 3  | 0.09 | 5  | 410 | 6  | 10 | <20 |    | <0.01  | <10 | 37 | <10 | 14 | 16 |
|   | 70      | 80471 | 5       | <0.2  | 0.60 | <5 | 90  | <5 | 3.85 | <1 | 10 | 40 | 184  | 2.22 | 20  | 1.19 | 641 | 3  | 0.07 | 6  | 390 | 6  | 10 | <20 | 86 | <0.01  | <10 | 36 | <10 | 21 | 24 |
|   | QC DA   | TA:   |         |       |      |    |     |    |      |    |    |    |      |      |     |      |     |    |      |    |     |    |    |     |    |        |     |    |     |    |    |
|   | Resplit |       |         |       |      |    |     |    |      |    |    |    |      |      |     |      |     |    |      |    |     |    |    |     |    |        |     |    |     |    |    |
|   | 1       | 80401 | 5       | 2.6   | 0.82 | <5 | 175 | <5 | 2.44 | <1 | 12 | 85 | 4396 | 2.84 | <10 | 0.66 | 474 | 11 | 0.01 | 7  | 190 | 4  | <5 | <20 | 23 | <0.01  | <10 | 26 | <10 | 9  | 36 |
|   | 36      | 80436 | 5       | -     | -    | -  | -   | -  | -    | -  | -  | -  | -    | -    | -   | -    | -   | -  | -    | -  | -   | -  | -  | -   | -  | -      | -   | -  | -   | ~  | -  |
|   | Repeat  |       |         |       |      |    |     |    |      |    |    |    |      |      |     |      |     |    |      |    |     |    |    |     |    |        |     |    |     |    |    |
|   | 1       | 80401 | 5       | 2.4   | 0.82 | <5 | 155 | <5 | 2.50 | <1 | 12 | 77 | 4166 | 2.84 | <10 | 0.66 | 477 | 9  | 0.01 | 6  | 190 | 2  | 5  | <20 | 25 | <0.01  | <10 | 26 | <10 | 11 | 35 |
|   | 10      | 80410 | 5       | 1.4   | 0.56 | <5 | 75  | <5 | 2.14 | <1 | 7  | 56 | 1831 | 1.44 | <10 | 0.53 | 433 | 5  | 0.02 | 4  | 400 | 4  | <5 | <20 | 39 | <0.01  | <10 | 22 | <10 | 11 | 14 |
|   | 19      | 80419 | 5       | <0.2  | 0.39 | <5 | 85  | <5 | 0.73 | <1 | 7  | 82 | 208  | 1.54 | <10 | 0.30 | 243 | 4  | 0.05 | 6  | 380 | 2  | <5 | <20 | 29 | <0.01  | <10 | 28 | <10 | 7  | 9  |
|   | 36      | 80436 | 5       | <0.2  | 0.36 | <5 | 90  | <5 | 3.89 | <1 | 4  | 51 | 168  | 1.04 | <10 | 0.36 | 324 | 9  | 0.05 | 3  | 350 | 4  | 5  | <20 | 65 | <0.01  | <10 | 15 | 10  | 14 | 10 |
|   | 45      | 80445 | 5       | < 0.2 | 0.57 | <5 | 120 | <5 | 1.87 | <1 | 5  | 52 | 28   | 1.67 | 10  | 0.48 | 318 | 4  | 0.09 | 4  | 360 | 2  | <5 | <20 | 76 | <0.01  | <10 | 35 | <10 | 11 | 16 |
|   | 54      | 80455 | 5       | <0.2  | 0.83 | <5 | 155 | <5 | 1.55 | <1 | 7  | 58 | 385  | 2.01 | 10  | 0.52 | 254 | 3  | 0.08 | 6  | 430 | 6  | 10 | <20 | 57 | <0.01  | <10 | 42 | <10 | 11 | 13 |
|   | Standa  | rd:   |         |       |      |    |     |    |      |    |    |    |      |      |     |      |     |    |      |    |     |    |    |     |    |        |     |    |     |    |    |
|   | GEO'96  | 3     | 140     | 1.0   | 1.61 | 45 | 150 | 5  | 1.64 | <1 | 18 | 56 | 82   | 3.71 | <10 | 1.01 | 632 | <1 | 0.02 | 25 | 590 | 24 | 15 | <20 | 51 | 0.11   | <10 | 70 | <10 | 12 | 64 |
|   | GEO'96  |       | 145     | 1.0   |      | 50 | 160 | 10 | 1.68 | <1 | 19 | 58 | 75   | 3.81 | <10 | 1.05 | 650 | 1  | 0.02 | 24 | 620 | 24 | 20 | <20 | 53 | 0.11   | <10 | 72 | <10 | 13 | 65 |

df/1348 XLS/96 ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer 3-Dec-96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-1349

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received: 98 Sample type: CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: GARY STEWART

| Et #. | Tag # | Au(ppb) | Ag    | AI % | As | Ва  | Bi | Ca % | Cd | Co | Cr | Cu  | Fe % | La  | Mg % | Mn  | Мо | Na % | Ni | Р   | Pb | Sb | Sn  | Sr Ti%    | U   | ν_ | w   | Υ  | Zn |
|-------|-------|---------|-------|------|----|-----|----|------|----|----|----|-----|------|-----|------|-----|----|------|----|-----|----|----|-----|-----------|-----|----|-----|----|----|
| 1     | 79801 | 5       | <0.2  | 1.01 | <5 | 65  | <5 | 0.72 | <1 | 10 | 50 | 137 | 2.44 | <10 | 0.62 | 299 | <1 | 0.02 | 6  | 430 | 8  | <5 | <20 | 33 0.07   | <10 | 58 | <10 | 13 | 30 |
| 2     | 79802 | 5       | <0.2  | 0.48 | <5 | 50  | <5 | 1.26 | <1 | 8  | 47 | 165 | 2.13 | <10 | 0.31 | 319 | 7  | 0.01 | 6  | 210 | 4  | <5 | <20 | 34 < 0.01 | <10 | 39 | <10 | 14 | 17 |
| 3     | 79803 | 5       | < 0.2 | 0.59 | 5  | 35  | <5 | 3.30 | <1 | 10 | 36 | 97  | 2.09 | <10 | 0.92 | 599 | 5  | 0.02 | 6  | 460 | 6  | 5  | <20 | 47 < 0.01 | <10 | 34 | <10 | 17 | 31 |
| 4     | 79804 | 5       | <0.2  | 0.62 | <5 | 35  | <5 | 2.94 | <1 | 8  | 47 | 120 | 1.98 | <10 | 0.73 | 496 | 3  | 0.02 | 5  | 450 | 4  | 5  | <20 | 40 < 0.01 | <10 | 39 | <10 | 18 | 27 |
| - 5   | 79805 | 5       | <0.2  | 0.58 | 10 | 55  | <5 | 2.71 | <1 | 10 | 40 | 270 | 2.41 | <10 | 0.99 | 563 | 10 | 0.02 | 6  | 480 | 4  | 10 | <20 | 59 < 0.01 | <10 | 46 | <10 | 18 | 32 |
| 6     | 79806 | 5       | <0.2  | 0.64 | 10 | 45  | <5 | 1.54 | <1 | 10 | 48 | 165 | 2.37 | <10 | 0.66 | 419 | 3  | 0.02 | 8  | 540 | 6  | <5 | <20 | 31 < 0.01 | <10 | 52 | <10 | 15 | 30 |
| 7     | 79807 | 5       | <0.2  | 0.59 | <5 | 45  | <5 | 3.39 | <1 | 6  | 61 | 175 | 1.80 | 10  | 0.74 | 418 | 4  | 0.02 | 6  | 410 | <2 | <5 | <20 | 50 < 0.01 | <10 | 22 | <10 | 13 | 21 |
| 8     | 79808 | 5       | <0.2  | 0.75 | <5 | 50  | <5 | 4.03 | <1 | 8  | 75 | 473 | 1.82 | <10 | 0.67 | 454 | 9  | 0.02 | 5  | 470 | 6  | 5  | <20 | 54 < 0.01 | <10 | 29 | <10 | 17 | 24 |
| 9     | 79809 | 5       | <0.2  | 0.57 | <5 | 45  | <5 | 4.01 | <1 | 7  | 53 | 262 | 1.49 | 10  | 0.48 | 418 | 7  | 0.02 | 4  | 410 | 4  | 5  | <20 | 51 < 0.01 | <10 | 18 | <10 | 16 | 19 |
| 10    | 79810 | 5       | <0.2  | 0.74 | <5 | 50  | <5 | 3.84 | <1 | 8  | 60 | 126 | 1.86 | <10 | 0.63 | 451 | 4  | 0.02 | 6  | 440 | 4  | 5  | <20 | 54 < 0.01 | <10 | 27 | <10 | 16 | 29 |
|       |       |         |       |      |    |     |    |      |    |    |    |     |      |     |      |     |    |      |    |     |    |    |     |           |     |    |     |    |    |
| 11    | 79811 | 10      | <0.2  | 0.66 | <5 | 55  | <5 | 4.19 | <1 | 8  | 63 | 134 | 2.22 | 10  | 0.58 | 501 | 4  | 0.02 | 6  | 420 | 4  | <5 | <20 | 56 <0.01  | <10 | 25 | <10 | 17 | 31 |
| 12    | 79812 | 5       | <0.2  | 0.51 | <5 | 60  | <5 | 4.27 | <1 | 6  | 52 | 111 | 1.92 | <10 | 0.48 | 491 | 38 | 0.02 | 5  | 370 | <2 | <5 | <20 | 56 <0.01  | <10 | 13 | <10 | 16 | 22 |
| 13    | 79813 | 5       | <0.2  | 0.69 | 70 | 100 | <5 | 2.69 | <1 | 15 | 46 | 437 | 2.51 | <10 | 0.62 | 557 | 25 | 0.04 | 16 | 560 | 4  | <5 | <20 | 78 <0.01  | <10 | 22 | <10 | 16 | 35 |
| 14    | 79814 | 5       | <0.2  | 0.46 | <5 | 65  | <5 | 3.30 | <1 | 5  | 59 | 165 | 1.54 | <10 | 0.44 | 374 | 5  | 0.03 | 4  | 360 | 4  | <5 | <20 | 61 < 0.01 | <10 | 19 | <10 | 14 | 15 |
| 15    | 79815 | 5       | <0.2  | 0.54 | <5 | 60  | <5 | 3.20 | <1 | 6  | 84 | 224 | 1.66 | <10 | 0.50 | 417 | 37 | 0.03 | 5  | 320 | 4  | <5 | <20 | 55 <0.01  | <10 | 20 | <10 | 13 | 19 |
|       |       |         |       |      |    |     |    |      |    |    |    |     |      |     |      |     |    |      |    |     |    |    |     |           |     |    |     |    |    |
| 16    | 79816 | 5       | <0.2  | 0.65 | <5 | 70  | <5 | 2.90 | <1 | 7  | 87 | 357 | 1.90 | <10 | 0.67 | 400 | 13 | 0.03 | 5  | 370 | 2  | <5 | <20 | 57 <0.01  | <10 | 26 | <10 | 14 | 20 |
| 17    | 79817 | 5       | <0.2  | 0.67 | <5 | 70  | <5 | 3.64 | <1 | 6  | 76 | 103 | 1.73 | <10 | 0.55 | 421 | 5  | 0.04 | 5  | 380 | 6  | 10 | <20 | 62 < 0.01 | <10 | 21 | <10 | 14 | 21 |
| 18    | 79818 | 5       | <0.2  | 0.58 | <5 | 75  | <5 | 3.61 | <1 | 5  | 83 | 134 | 1.48 | <10 | 0.57 | 377 | 7  | 0.03 | 4  | 350 | 2  | 10 | <20 | 64 < 0.01 | <10 | 19 | <10 | 14 | 17 |
| 19    | 79819 | 5       | <0.2  | 0.58 | <5 | 80  | <5 | 3.12 | <1 | 6  | 75 | 147 | 1.80 | <10 | 0.71 | 385 | 9  | 0.04 | 4  | 320 | 2  | 10 | <20 | 62 <0.01  | <10 | 22 | <10 | 13 | 17 |
| 20    | 79820 | 5       | <0.2  | 0.58 | <5 | 80  | <5 | 2.70 | <1 | 6  | 69 | 167 | 1.78 | <10 | 0.49 | 352 | 8  | 0.04 | 5  | 340 | 4  | <5 | <20 | 49 <0.01  | <10 | 23 | <10 | 15 | 18 |

| Et #. | Tag#  | Au(ppb) | Ag          | AI % | As       | Ва  | Bi | Ca % | Cd  | Co | Cr  | Cu     | Fe % | La   | Mg % | Mn          | Мо  | Na %  | Ni | P   | Pb | Sb       | Sn          | Sr Ti <u>%</u> | U   | V  | W   | Y   | Zn |
|-------|-------|---------|-------------|------|----------|-----|----|------|-----|----|-----|--------|------|------|------|-------------|-----|-------|----|-----|----|----------|-------------|----------------|-----|----|-----|-----|----|
| 21    | 79821 | 5       | <0.2        | 0.69 | <5       | 75  | <5 | 2.72 | <1  | 7  | 71  | 422    | 1.90 | <10  | 0.70 | 354         | 10  | 0.04  | 5  | 370 | 4  | 5        | <20         | 54 < 0.01      | <10 | 25 | <10 | 13  | 24 |
| 22    | 79822 | 5       | < 0.2       | 0.69 | <5       | 85  | <5 | 3.21 | <1  | 6  | 75  | 363    | 1.60 | <10  | 0.64 | 357         | 9   | 0.04  | 5  | 360 | 6  | 10       | <20         | 63 < 0.01      | <10 | 17 | <10 | 13  | 20 |
| 23    | 79823 | 5       | <0.2        | 0.62 | <5       | 95  | <5 | 3.03 | <1  | 7  | 71  | 502    | 1.90 |      | 0.76 | 379         | 14  | 0.04  | 5  | 360 | 4  | 10       | <20         | 66 < 0.01      | <10 | 25 | <10 | 12  | 16 |
| 24    | 79824 | 5       | <0.2        | 0.50 | <5       | 110 | <5 | 3.66 | <1  | 5  | 72  | 258    | 1.56 | <10  | 0.63 | 369         | 5   | 0.04  | 4  | 300 | 2  | 10       | <20         | 79 < 0.01      | <10 | 22 | <10 | 14  | 14 |
| 25    | 79825 | _       | <0.2        |      | <5       | 140 | <5 | 2.23 | <1  | 6  | 72  | 79     | 1.78 | <10  | 0.48 | 280         |     | 0.05  | 4  | 350 | 4  | <5       | <20         | 69 < 0.01      | <10 | 29 | <10 | 11  | 14 |
| 20    | 70020 | J       | -0.2        | 0.00 | -0       | 140 | -0 | 2.20 | - 1 | Ū  | -   |        | 1.70 | -10  | 0.40 | 200         | •   | 0.00  | •  | 000 | •  |          |             | 0.0            |     |    |     |     |    |
| 26    | 79826 | 5       | <b>-0</b> 2 | 0.49 | <5       | 150 | -5 | 2.55 | <1  | 5  | 62  | 166    | 1.72 | <10  | 0.57 | 297         | 11  | 0.06  | 4  | 330 | 2  | 10       | <20         | 81 < 0.01      | <10 | 27 | <10 | 13  | 12 |
| 27    | 79827 | 10      | <0.2        |      | <5       | 110 |    | 1.73 | <1  | 7  | 83  | 1724   | 1.87 | <10  | 0.47 | 273         | 161 | 0.05  | 5  | 400 | 4  | <5       | <20         | 45 < 0.01      | <10 | 29 | <10 | 7   | 15 |
| 28    | 79828 | 5       | 1.0         |      | <5       | 80  | -  | 3.43 | <1  | 11 | 80  | 2260   | 2.23 | <10  | 0.93 | 625         |     | 0.03  | 5  | 460 | 4  | 15       | <20         | 46 < 0.01      | <10 | 29 | <10 | 11  | 32 |
|       |       | -       |             |      |          |     |    |      | -   | 7  | 74  | 1158   | 1.83 | <10  | 0.53 | 316         |     | 0.05  | 6  | 430 | 4  | <5       | <20         | 42 < 0.01      | <10 | 39 | <10 | 9   | 17 |
| 29    | 79829 | 5       | <0.2        |      | <5<br><5 | 105 |    | 1.54 | <1  | -  |     |        |      |      |      |             |     |       | -  |     | 2  | 15       | <20         | 55 < 0.01      | <10 | 33 | <10 | 11  | 20 |
| 30    | 79830 | 10      | 0.4         | 0.69 | <5       | 110 | <5 | 2.87 | <1  | 9  | 57  | 1584   | 2.09 | <10  | 0.90 | 416         | -   | 0.04  | 6  | 420 | 2  | 15       | <b>\2</b> 0 | 55 \0.01       | ~10 | 30 | -10 | ••• | 20 |
| 24    | 70004 | -       | -0.0        | 0.05 | - 1      | 706 | -5 | 2.42 | -4  | •  | 70  | 240    | 2 42 | -10  | 0.70 | 200         |     | 0.00  | c  | 270 | 4  | 10       | <20         | 70 0.01        | <10 | 42 | <10 | 11  | 17 |
| 31    | 79831 | 5       | <0.2        |      | <5       | 725 |    | 2.43 | <1  | 6  | 78  |        | 2.13 |      |      | 398         | -   | 0.06  | 6  | 370 | 2  | 10<br>10 | <20         | 64 < 0.01      | <10 | 15 | <10 | 11  | 20 |
| 32    | 79832 | 10      | 1.0         | 0.42 | <5       | 115 | <5 | 3.98 | <1  | 7  | 60  | 3836   | 1.81 | <10  | 0.50 | 487         |     | 0.03  | 5  | 460 | _  |          |             |                | <10 | 6  | <10 | 10  | 8  |
| 33    | 79833 | 10      | 2.4         | 0.24 | <5       | 60  | <5 | 3.44 | <1  | 4  | 104 | 4277   | 1.15 | <10  | 0.13 | 455         | 28  |       | 3  | 470 | <2 | <5       | <20         | 30 < 0.01      |     | 5  | <10 | 10  | 8  |
| 34    | 79834 | 5       | 2.6         |      | <5       | 70  | <5 | 2.99 | <1  | 4  | 82  | 3980   | 1.02 | <10  | 0.18 | 396         |     | 0.02  | 3  | 470 | <2 | <5       | <20         | 35 < 0.01      | <10 | _  |     | 8   | 15 |
| 35    | 79835 | 75      | 3.0         | 0.55 | <5       | 80  | <5 | 2.99 | <1  | 7  | 90  | 7830   | 1.40 | <10  | 0.47 | 394         | 28  | 0.02  | 5  | 460 | 4  | 15       | <20         | 41 <0.01       | <10 | 10 | <10 | 0   | 15 |
|       |       | _       |             |      | _        |     | _  |      |     | _  |     |        |      |      |      |             |     |       | _  |     |    |          | -00         | 10 :0.01       | -40 | 20 | -10 | 8   | 13 |
| 36    | 79836 | 5       | 8.0         | 0.62 | <5       | 125 | <5 | 2.22 | <1  | 7  | 69  | 2488   | 1.73 | <10  | 0.49 | 358         |     | 0.04  | 5  | 420 | 4  | <5       | <20         | 49 < 0.01      | <10 | 29 | <10 | -   | 12 |
| 37    | 79837 | 5       | 0.2         |      | <5       | 140 |    | 3.35 | <1  | 7  | 71  | 755    | 1.62 | <10  | 0.29 | 405         |     | 0.04  | 4  | 430 | 2  | <5       | <20         | 58 <0.01       | <10 | 20 | <10 | 12  |    |
| 38    | 79838 | 95      | 11.6        |      | 10       | 130 | <5 | 4.88 | <1  | 1  |     | >10000 | 0.38 | <10  | 0.05 | <b>44</b> 5 |     |       | <1 | 500 | <2 | 5        | <20         | 62 < 0.01      | <10 | <1 | <10 | 15  | 2  |
| 39    | 79839 | 40      | 9.8         | 0.31 | 30       | 295 | <5 | 5.09 | <1  | <1 | 29  | 8138   | 0.23 | 10   | 0.06 | 438         |     | 0.03  | 1  | 550 | <2 | 5        | <20         | 80 < 0.01      | <10 | <1 | <10 | 17  | 7  |
| 40    | 80211 | 30      | 2.4         | 0.65 | <5       | 105 | <5 | 4.06 | <1  | 8  | 72  | 2107   | 1.97 | <10  | 0.71 | 1330        | 4   | 0.01  | 5  | 480 | 4  | 10       | <20         | 40 < 0.01      | <10 | 21 | <10 | 14  | 23 |
|       |       |         |             |      |          |     |    |      |     |    |     |        |      |      |      |             |     |       |    |     |    |          |             |                |     |    |     |     |    |
| 41    | 80212 | 5       | <0.2        |      | <5       | 75  | <5 | 2.68 | <1  | 9  | 84  | 450    | 2.01 | <10  | 0.50 | 1345        | -   | <0.01 | 5  | 420 | 4  | <5       | <20         | 28 < 0.01      | <10 | 25 | <10 | 11  | 24 |
| 42    | 80213 | 5       | 0.4         | 0.60 | <5       | 75  | <5 | 3.27 | <1  | 7  | 74  | 750    | 1.72 | <10  | 0.43 | 1504        | 5   | 0.01  | 4  | 440 | <2 | 5        | <20         | 30 < 0.01      | <10 | 23 | <10 | 13  | 20 |
| 43    | 80214 | 5       | 0.6         | 0.76 | <5       | 75  | <5 | 2.91 | <1  | 9  | 72  | 676    | 2.09 | <10  | 0.57 | 1430        | 4   | 0.01  | 5  | 420 | 4  | 15       | <20         | 33 < 0.01      | <10 | 27 | <10 | 12  | 22 |
| 44    | 80215 | 5       | 2.2         | 0.94 | 15       | 110 | <5 | 2.52 | <1  | 12 | 77  | 2616   | 2.76 | <10  | 0.80 | 1191        | 6   | 0.02  | 8  | 460 | 4  | 5        | <20         | 36 < 0.01      | <10 | 35 | <10 | 9   | 44 |
| 45    | 80216 | 5       | <0.2        | 0.57 | 35       | 210 | <5 | 2.82 | <1  | 7  | 76  | 442    | 2.25 | <10  | 0.55 | 1317        | 5   | 0.02  | 6  | 430 | 4  | 10       | <20         | 41 <0.01       | <10 | 32 | <10 | 13  | 33 |
|       |       |         |             |      |          |     |    |      |     |    |     |        |      |      |      |             |     |       |    |     |    |          |             |                |     |    |     |     |    |
| 46    | 80217 | 5       | <0.2        | 0.61 | <5       | 295 | <5 | 2.12 | <1  | 7  | 72  | 184    | 2.22 | <10  | 0.64 | 965         | 5   | 0.04  | 6  | 420 | 4  | <5       | <20         | 47 < 0.01      | <10 | 41 | <10 | 13  | 26 |
| 47    | 80218 | 5       | <0.2        | 0.76 | <5       | 120 | <5 | 2.06 | <1  | 10 | 66  | 416    | 2.36 | <10  | 0.73 | 845         | 6   | 0.03  | 6  | 440 | 4  | <5       | <20         | 40 < 0.01      | <10 | 42 | <10 | 12  | 27 |
| 48    | 80219 | 5       | < 0.2       | 0.74 | <5       | 125 | <5 | 1.95 | <1  | 9  | 80  | 447    | 2.36 | <10  | 0.69 | 746         | 12  | 0.03  | 7  | 430 | 6  | 5        | <20         | 40 < 0.01      | <10 | 43 | <10 | 12  | 26 |
| 49    | 80220 | 5       | < 0.2       | 0.75 | 25       | 330 | <5 | 1.87 | <1  | 18 | 41  | 291    | 3.68 | <10  | 1.10 | 910         | 269 | 0.09  | 19 | 660 | 4  | 5        | <20         | 99 < 0.01      | <10 | 47 | <10 | 17  | 39 |
| 50    | 80221 | 5       | <0.2        | 0.69 | 30       | 300 | <5 | 1.72 | <1  | 15 | 72  | 348    | 2.68 | <10  | 0.78 | 628         | 452 | 0.06  | 13 | 510 | 6  | 15       | <20         | 66 < 0.01      | <10 | 40 | <10 | 15  | 25 |
|       |       |         |             |      |          |     |    |      |     |    |     |        |      |      |      |             |     |       |    |     |    |          |             |                |     |    |     |     |    |
| 51    | 80222 | 10      | <0.2        | 0.63 | <5       | 270 | <5 | 1.68 | <1  | 7  | 73  | 307    | 2.27 | <10  | 0.65 | 619         | 9   | 0.04  | 6  | 410 | 4  | <5       | <20         | 43 < 0.01      | <10 | 39 | <10 | 13  | 24 |
| 52    | 80223 | 5       | <0.2        |      | <5       | 185 | <5 | 1.14 | <1  | 8  | 83  | 249    | 2.13 | <10  | 0.59 | 417         | 60  |       | 7  | 400 | 6  | <5       | <20         | 35 0.01        | <10 | 40 | <10 | 12  | 18 |
| 53    | 80224 | 5       | <0.2        |      | <5       | 185 | <5 | 1.83 | <1  | 9  | 65  | 376    | 2.56 | <10  | 0.74 | 608         | 49  |       | 7  | 420 | 4  | <5       | <20         | 39 < 0.01      | <10 | 41 | <10 | 15  | 22 |
| 54    | 80225 | 5       | <0.2        | 0.69 | <5       | 120 | <5 | 2.06 | <1  | 9  | 79  | 484    | 2.31 | <10  | 0.65 | 649         | 64  |       | 6  | 450 | 4  | <5       | <20         | 45 < 0.01      | <10 | 38 | <10 | 12  | 25 |
| 55    | 80226 | _       | <0.2        |      | <5       | 120 | <5 | 1,60 | <1  | 10 | 61  | 317    | 2.47 | <10  |      | 592         | 30  |       | 6  | 460 | 4  | 5        | <20         | 44 < 0.01      | <10 | 36 | <10 | 11  | 22 |
| 30    | 30220 | J       | ~0.2        | V.1  | -5       | 120 | 70 | 1.00 | ~ 1 | 10 | 01  | 017    | 2.71 | - 10 | 0.70 | 004         | 50  | 0.04  | J  | 700 |    | 9        | -20         |                |     |    |     |     |    |

|                | - "            | A 4 1.3 |             |              |          | _         | ъ.       | <b>0</b> • •/ | ٠.         | _       | _        | _           |              |            |              |            |           |      |        | _          |        |          | •          | 0 - 7:0/             |     | .,   | 14/ | v        | 7               |
|----------------|----------------|---------|-------------|--------------|----------|-----------|----------|---------------|------------|---------|----------|-------------|--------------|------------|--------------|------------|-----------|------|--------|------------|--------|----------|------------|----------------------|-----|------|-----|----------|-----------------|
| Et #.          | Tag #          | Au(ppb) |             | AI %         | As       | Ba        |          | Ca %          | Cd         | Co      | Cr       |             | Fe %         |            | Mg %         | Mn         |           | Na % | Ni     | P          | Pb     | Sb       | Sn         | Sr Ti%               | U   | V 10 | -10 | 1 44     | <u>Zn</u><br>26 |
| 56             | 80227          | 5       | <0.2        | 0.69         | <5       | 155       |          | 2.27          | <1         | 10      | 72       | 484         | 2.60         | <10        | 0.85         | 860        | 8         | 0.04 | 7      | 470        | 4      | <5       | <20        | 58 < 0.01            | <10 | 40   | <10 | 11       |                 |
| 57             | 80228          | 5       | 0.4         | 0.49         | <5<br>-5 | 130       | <5       | 3.36          | <1         | 10      | 64       | 1164        | 2.42         | <10        | 0.89         | 1361       | 21        | 0.02 | 6      | 460        | 2      | 10       | <20        | 49 < 0.01            | <10 | 30   | <10 | 12<br>12 | 25<br>28        |
| 58             | 80229          | 5       | 0.6         | 0.63         | <5<br>-5 | 145       | <5       | 2.36          | <1         | 11      | 71       | 908         | 2.76         | <10        | 0.87         | 865        | 20        | 0.04 | 7      | 460        | 4      | <5<br>-5 | <20        | 48 < 0.01            | <10 | 39   | <10 | 11       | 24              |
| 59             | 80230          | 5       | 0.6         | 0.45         | <5       | 110       | <5       | 2.77          | <1         | 9       | 78       | 1609        | 2.16         | <10        | 0.68         | 888        | 67        | 0.03 | 5      | 430        | 2      | <5       | <20        | 40 < 0.01            | <10 | 29   | <10 | 9        | 22              |
| 60             | 80231          | 55      | 5.8         | 0.40         | <5       | 70        | <5       | 2.27          | <1         | 7       | 76       | 4234        | 1.82         | <10        | 0.41         | 939        | 20        | 0.01 | 4      | 520        | <2     | <5       | <20        | 23 <0.01             | <10 | 20   | <10 | Э        | 22              |
| 61             | 80232          | 25      | 8.6         | 0.27         | <5       | 105       | <5       | 2.68          | <1         | 10      | 64       | 2533        | 2.44         | <10        | 0.80         | 1315       | 12        | 0.02 | 6      | 440        | <2     | 5        | <20        | 31 <0.01             | <10 | 25   | <10 | 11       | 29              |
| 62             | 80233          | 205     | >30         | 0.24         | <5       | 95        | <5       | 4.22          | <1         | 10      | 70       | >10000      | 3.00         | <10        | 1.04         | 1833       | 15        | 0.01 | 5      | 340        | <2     | 15       | <20        | 39 0.02              | <10 | 12   | <10 | 11       | 25              |
| 63             | 80234          | 5       | 4.8         | 0.41         | <5       | 90        | <5       | 3.04          | <1         | 10      | 65       | 5036        | 2.39         | <10        | 0.49         | 1318       | 5         | 0.02 | 6      | 630        | <2     | 5        | 20         | 35 < 0.01            | <10 | 25   | <10 | 13       | 30              |
| 64             | 80235          | 5       | 0.4         | 0.79         | <5       | 75        | <5       | 1.88          | <1         | 10      | 77       | 609         | 2.65         | <10        | 0.69         | 766        | 5         |      | 8      | 500        | 2      | <5       | <20        | 28 < 0.01            | <10 | 34   | <10 | 11       | 32              |
| 65             | 80236          | 5       | 1.2         | 0.73         | <5       | 80        | <5       | 1.42          | <1         | 12      | 71       | 1404        | 3.02         | <10        | 0.78         | 756        |           | 0.02 | 8      | 510        | 4      | <5       | 20         | 21 <0.01             | <10 | 37   | <10 | 11       | 35              |
| 66             | 80237          | _       | 0.6         | 0.40         | <5       | 00        | <5       | 0.98          | -1         | ^       | 70       | 900         | 2.50         | -10        | 0.67         | E74        | 40        | 0.00 | -      | 440        |        | 5        | <20        | 19 <0.01             | <10 | 35   | <10 | 6        | 26              |
| 66             |                | 5<br>5  | 0.6         | 0.49         |          | 90        | -        |               | <1         | 9       |          | 800         |              | <10        | 0.67         | 571        |           | 0.02 | 7      | 440        | 4      | -5<br>-5 |            |                      | <10 | 43   | <10 | 10       | 29              |
| 67<br>68       | 80238<br>80239 | 5       | 0.4<br><0.2 | 0.57<br>0.47 | <5<br><5 | 75<br>110 | <5<br><5 | 0.61<br>0.59  | <1<br><1   | 10<br>8 | 62<br>79 | 1049<br>405 | 2.80<br>2.58 | <10<br><10 | 0.69<br>0.56 | 530<br>407 | 119<br>15 |      | 8<br>6 | 450<br>420 | 4<br>4 | <5       | <20<br><20 | 18 <0.01<br>29 <0.01 | <10 | 42   | <10 | 10       | 19              |
|                | 80240          | ວ<br>5  | <0.2        | 0.47         | ^ɔ<br><5 | 100       | -        |               |            | 9       | 67       |             |              |            |              |            |           |      | •      |            | 4      | <5       | <20        | 29 < 0.01            | <10 | 42   | <10 | 8        | 23              |
| 69<br>70       |                | ວ<br>5  |             | 0.56         | <5       | 95        | <5<br><5 | 0.47<br>0.79  | <1<br><1   | 9       |          | 464         | 2.44         | <10        | 0.60         | 381        | 8         | 0.04 | 6<br>7 | 410        | 2      | <5       | <20        | 24 < 0.01            | <10 | 39   | <10 | 6        | 25              |
| 70             | 80241          | 5       | <0.2        | 0.51         | ~5       | 90        | ~5       | 0.79          | <b>~</b> 1 | Э       | 83       | 769         | 2.46         | <10        | 0.66         | 418        | 32        | 0.03 | ,      | 380        | 2      | -5       | ~20        | 24 ~0.01             | ~10 | 39   | 10  | U        | 25              |
| 71             | 80242          | 5       | <0.2        | 0.54         | <5       | 95        | <5       | 0.59          | <1         | 10      | 77       | 694         | 2.52         | <10        | 0.64         | 418        | 18        | 0.04 | 7      | 480        | 4      | <5       | <20        | 26 < 0.01            | <10 | 46   | <10 | 10       | 25              |
| 72             | 80243          | 5       | <0.2        | 0.68         | <5       | 110       | <5       | 1.59          | <1         | 12      | 82       | 783         | 3.01         | <10        | 1.00         | 716        | 27        | 0.04 | 8      | 450        | 4      | 5        | <20        | 38 < 0.01            | <10 | 42   | <10 | 11       | 35              |
| 73             | 80244          | 5       | 1.2         | 0.40         | <5       | 110       | <5       | 1.68          | <1         | 9       | 86       | 1863        | 2.39         | <10        | 0.80         | 757        | 27        | 0.03 | 7      | 490        | 2      | <5       | <20        | 39 < 0.01            | <10 | 37   | <10 | 12       | 27              |
| 74             | 80245          | 5       | 0.6         | 0.51         | <5       | 100       | <5       | 0.80          | <1         | 10      | 67       | 1613        | 2.96         | <10        | 0.70         | 600        | 133       | 0.04 | 8      | 460        | 2      | <5       | <20        | 24 < 0.01            | <10 | 48   | <10 | 7        | 31              |
| 75             | 80246          | 5       | 0.2         | 0.49         | <5       | 105       | <5       | 0.85          | <1         | 8       | 81       | 620         | 2.39         | <10        | 0.61         | 548        | 16        | 0.04 | 7      | 450        | 4      | <5       | <20        | 31 < 0.01            | <10 | 38   | <10 | 10       | 24              |
|                |                |         |             |              |          |           |          |               |            |         |          |             |              |            |              |            |           | •    |        |            |        |          |            |                      |     |      |     |          |                 |
| 76             | 80247          | 5       | <0.2        | 0.42         | <5       | 135       | <5       | 0.69          | <1         | 7       | 74       | 194         | 2.15         | <10        | 0.45         | 449        | 8         | 0.05 | 7      | 430        | <2     | <5       | <20        | 42 <0.01             | <10 | 38   | <10 | 10       | 19              |
| 77             | 80248          | 5       | <0.2        | 0.49         | <5       | 135       | <5       | 1.43          | <1         | 7       | 71       | 305         | 1.90         | <10        | 0.64         | 482        | 6         | 0.05 | 5      | 440        | 2      | 10       | <20        | 54 <0.01             | <10 | 29   | <10 | 8        | 19              |
| 78             | 80249          | 5       | <0.2        | 0.60         | <5       | 220       | <5       | 1.77          | <1         | 7       | 87       | 264         | 2.14         | <10        | 0.61         | 387        | 7         | 0.05 | 6      | 410        | 4      | <5       | <20        | 46 <0.01             | <10 | 38   | <10 | 10       | 18              |
| 79             | 80250          | 5       | <0.2        | 0.70         | <5       | 80        | <5       | 1.29          | <1         | 10      | 72       | 683         | 2.71         | 10         | 0.80         | 454        | 123       | 0.04 | 6      | 430        | 2      | <5       | <20        | 28 <0.01             | <10 | 40   | <10 | 9        | 24              |
| 80             | 80251          | 5       | <0.2        | 0.55         | <5       | 135       | <5       | 1.43          | <1         | 7       | 62       | 199         | 2.05         | <10        | 0.68         | 294        | 10        | 0.06 | 6      | 460        | <2     | <5       | <20        | 53 <0.01             | <10 | 41   | <10 | 11       | 14              |
| 81             | 80252          | 5       | <0.2        | 0.67         | <5       | 330       | <5       | 1.73          | <1         | 7       | 62       | 277         | 2.24         | <10        | 0.85         | 302        | 9         | 0.08 | 5      | 420        | 4      | 5        | <20        | 78 0.02              | <10 | 44   | <10 | 14       | 14              |
| 82             | 80253          | 5       | <0.2        | 0.54         | <5       | 460       | <5       | 1.97          | <1         | 6       | 51       | 197         | 2.39         | <10        | 0.98         | 377        | 30        |      | 6      | 430        | 4      | 10       | <20        | 81 0.01              | <10 | 44   | <10 | 14       | 16              |
| 83             | 80254          | 5       | <0.2        | 0.70         | <5       | 325       | <5       | 1.41          | <1         | 7       | 58       | 198         | 2.15         | <10        | 0.65         | 278        | 114       | 0.06 | 6      | 460        | 4      | <5       | <20        | 57 0.02              | <10 | 45   | <10 | 13       | 15              |
| 84             | 80255          | 5       | <0.2        | 0.73         | <5       | 245       | <5       | 1.29          | <1         | 8       | 67       | 491         | 2.29         | <10        | 0.69         | 301        | 7         |      | 7      | 450        | 4      | <5       | <20        | 54 0.02              | <10 | 45   | <10 | 13       | 18              |
| 85             | 80256          | 5       | 0.2         | 0.71         | <5       | 95        | <5       | 0.94          | <1         | 11      | 76       | 787         |              | <10        | 0.85         | 421        |           | 0.04 | 7      | 480        | 2      | <5       | <20        | 42 < 0.01            | <10 | 44   | <10 | 12       | 28              |
|                |                |         |             |              | _        |           | _        |               | -          |         |          |             |              |            |              |            |           |      | -      |            | _      | -        |            |                      |     |      |     |          |                 |
| 8 <del>6</del> | 80257          | 5       | <0.2        | 0.71         | <5       | 90        | <5       | 0.83          | <1         | 10      | 73       | 536         | 2.64         | <10        | 0.78         | 392        | 30        | 0.04 | 6      | 430        | 4      | 10       | <20        | 37 <0.01             | <10 | 44   | <10 | 10       | 26              |
| 87             | 80258          | 5       | 0.2         | 0.74         | <5       | 160       | <5       | 1.02          | <1         | 10      | 63       | 418         | 2.82         | <10        | 0.84         | 472        | 15        | 0.05 | 5      | 490        | 4      | <5       | <20        | 53 < 0.01            | <10 | 43   | <10 | 10       | 29              |
| 88             | 80259          | 5       | <0.2        | 0.89         | <5       | 115       | <5       | 1.70          | <1         | 13      | 80       | 87          | 2.92         | <10        | 0.98         | 526        | 32        | 0.04 | 7      | 470        | 4      | <5       | <20        | 40 <0.01             | <10 | 35   | <10 | 8        | 38              |
| 89             | 80260          | 5       | 0.4         | 0.77         | <5       | 155       | <5       | 1.57          | <1         | 12      | 52       | 951         | 2.96         | <10        | 0.95         | 430        | 56        | 0.05 | 7      | 490        | 4      | <5       | <20        | 60 < 0.01            | <10 | 38   | <10 | 8        | 33              |
| 90             | 80261          | 5       | <0.2        | 0.48         | <5       | 195       | <5       | 1.90          | <1         | 10      | 63       | 633         | 2.68         | <10        | 0.86         | 372        | 14        | 0.05 | 6      | 460        | 2      | 5        | <20        | 90 < 0.01            | <10 | 29   | <10 | 9        | 30              |

Page 3

TARCO OIL & GAS

ICP CERTIFICATE OF ANALYSIS AK 96-1349

ECO-TECH LABORATORIES LTD.

| Et #.           | Tag#  | Au(ppb) | Ag    | AI % | As | Ва  | Bi | Ca % | Cd | Co | Cr | Cu   | Fe % | La  | Mig % | Mn   | Мо | Na % | Ni | Р   | Pb | Sb | Sn  | Sr Ti%     | U   | ٧  | w   | Y  | Zn |
|-----------------|-------|---------|-------|------|----|-----|----|------|----|----|----|------|------|-----|-------|------|----|------|----|-----|----|----|-----|------------|-----|----|-----|----|----|
| 91              | 80262 | 5       | <0.2  | 0.42 | <5 | 265 | <5 | 3.35 | <1 | 9  | 56 | 335  | 2.50 | <10 | 1.43  | 644  | 25 | 0.05 | 7  | 410 | 2  | 15 | <20 | 140 < 0.01 | <10 | 23 | <10 | 13 | 27 |
| 92              | 80263 | 5       | <0.2  | 0.43 | <5 | 260 | <5 | 3.27 | <1 | 6  | 54 | 57   | 1.90 | <10 | 0.59  | 378  | 4  | 0.06 | 4  | 490 | <2 | <5 | <20 | 102 < 0.01 | <10 | 26 | <10 | 12 | 16 |
| 93              | 80264 | 5       | 0.2   | 0.55 | <5 | 335 | <5 | 3.82 | <1 | 8  | 20 | 655  | 2.21 | <10 | 0.73  | 525  | 31 | 0.05 | 4  | 440 | 4  | 10 | <20 | 97 <0.01   | <10 | 21 | <10 | 12 | 23 |
| 94              | 80265 | 5       | 0.8   | 0.53 | <5 | 150 | <5 | 5.18 | <1 | 8  | 63 | 1256 | 2.09 | <10 | 0.56  | 624  | 7  | 0.03 | 5  | 470 | <2 | <5 | <20 | 84 < 0.01  | <10 | 24 | <10 | 18 | 24 |
| 95              | 80266 | 5       | 0.6   | 0.51 | <5 | 125 | <5 | 4.75 | <1 | 8  | 39 | 846  | 2.10 | <10 | 0.55  | 573  | 8  | 0.03 | 5  | 460 | <2 | <5 | <20 | 84 <0.01   | <10 | 22 | <10 | 15 | 24 |
| 96              | 80267 | 5       | 0.4   | 0.46 | <5 | 190 | <5 | 5.20 | <1 | 7  | 56 | 611  | 1.95 | 10  | 0.52  | 581  | 7  | 0.03 | 4  | 450 | <2 | <5 | <20 | 88 <0.01   | <10 | 22 | <10 | 17 | 21 |
| 97              | 80268 | 5       | 0.2   | 0.47 | <5 | 95  | <5 | 4.86 | <1 | 7  | 46 | 348  | 1.89 | 10  | 0.43  | 594  | 5  | 0.04 | 5  | 410 | 4  | <5 | <20 | 89 <0.01   | <10 | 28 | <10 | 16 | 28 |
| 98              | 80269 | 5       | <0.2  | 0.47 | <5 | 145 | <5 | 3.85 | <1 | 6  | 73 | 77   | 1.58 | 10  | 0.32  | 419  | 4  | 0.04 | 5  | 430 | <2 | <5 | <20 | 74 <0.01   | <10 | 29 | <10 | 16 | 20 |
| QC DA<br>Respli |       |         |       |      |    |     |    |      |    |    |    |      |      |     |       |      |    |      |    |     |    |    |     |            |     |    |     |    |    |
| 1               | 79801 | 5       | <0.2  | 0.88 | <5 | 65  | <5 | 0.69 | <1 | 9  | 30 | 141  | 2.33 | <10 | 0.58  | 283  | <1 | 0.01 | 5  | 390 | 8  | <5 | <20 | 33 0.06    | <10 | 53 | <10 | 12 | 29 |
| 36              | 79836 | 5       | 8.0   | 0.68 | <5 | 130 | <5 | 2.26 | <1 | 7  | 76 | 2490 | 1.81 | <10 | 0.51  | 363  | 15 | 0.04 | 5  | 430 | 2  | <5 | <20 | 50 < 0.01  | <10 | 31 | <10 | 9  | 17 |
| 71              | 80242 | 5       | <0.2  | 0.51 | <5 | 90  | <5 | 0.59 | <1 | 9  | 67 | 665  | 2.44 | <10 | 0.60  | 405  | 15 | 0.04 | 6  | 450 | 2  | <5 | <20 | 25 <0.01   | <10 | 45 | <10 | 9  | 24 |
| Repeat          | tr    |         |       |      |    |     |    |      |    |    |    |      |      |     |       |      |    |      |    |     |    |    |     |            |     |    |     |    |    |
| 1               | 79801 | 5       | < 0.2 | 1.06 | <5 | 70  | <5 | 0.75 | <1 | 10 | 51 | 138  | 2.55 | <10 | 0.64  | 307  | <1 | 0.02 | 7  | 440 | 8  | <5 | <20 | 33 0.08    | <10 | 62 | <10 | 13 | 32 |
| 10              | 79810 | 5       | <0.2  | 0.81 | <5 | 50  | <5 | 3.90 | <1 | 9  | 63 | 128  | 1.91 | <10 | 0.63  | 460  | 4  | 0.02 | 6  | 460 | 4  | 10 | <20 | 52 < 0.01  | <10 | 28 | <10 | 15 | 31 |
| 19              | 79819 | 5       | <0.2  | 0.56 | <5 | 80  | <5 | 3.07 | <1 | 6  | 74 | 142  | 1.77 | <10 | 0.69  | 379  | 12 | 0.04 | 4  | 320 | 4  | 10 | <20 | 63 < 0.01  | <10 | 22 | <10 | 13 | 17 |
| 36              | 79836 | 5       | 1.0   | 0.63 | <5 | 120 | <5 | 2.23 | <1 | 7  | 70 | 2508 | 1.76 | <10 | 0.49  | 364  | 14 | 0.04 | 6  | 430 | 2  | 5  | <20 | 48 < 0.01  | <10 | 30 | <10 | 8  | 14 |
| 45              | 80216 | 5       | <0.2  | 0.56 | 35 | 205 | <5 | 2.79 | <1 | 7  | 75 | 439  | 2.24 | <10 | 0.54  | 1308 | 6  | 0.02 | 6  | 430 | 2  | 5  | <20 | 40 < 0.01  | <10 | 32 | <10 | 12 | 32 |
| 54              | 80225 | 5       | <0.2  | 0.67 | <5 | 115 | <5 | 2.07 | <1 | 9  | 81 | 488  | 2.32 | <10 | 0.65  | 652  | 62 | 0.04 | 6  | 450 | 6  | <5 | <20 | 44 <0.01   | <10 | 38 | <10 | 12 | 25 |
| 71              | 80242 | 5       | <0.2  | 0.51 | <5 | 85  | <5 | 0.56 | <1 | 9  | 72 | 688  | 2.37 | <10 | 0.59  | 398  | 21 | 0.04 | 7  | 440 | 4  | <5 | 20  | 24 <0.01   | <10 | 43 | <10 | 9  | 23 |
| 80              | 80251 | 5       | <0.2  | 0.55 | <5 | 135 | <5 | 1.41 | <1 | 7  | 62 | 194  | 2.05 | <10 | 0.67  | 293  | 11 | 0.06 | 4  | 440 | 4  | <5 | <20 | 54 < 0.01  | <10 | 41 | <10 | 11 | 14 |
| 89              | 80260 | 5       | 0.4   | 0.74 | <5 | 150 | <5 | 1.53 | <1 | 11 | 51 | 949  | 2.89 | <10 | 0.91  | 419  | 57 | 0.05 | 7  | 480 | 4  | <5 | <20 | 58 <0.01   | <10 | 37 | <10 | 8  | 32 |
| Standa          |       |         |       |      |    |     |    |      |    |    |    |      |      |     |       |      |    |      |    |     |    |    |     |            |     |    |     |    |    |
| GEO'96          |       | 140     | 8.0   | 1.69 | 60 | 150 | <5 | 1.67 | <1 | 18 | 58 | 85   | 3.84 | <10 | 1.03  | 653  | <1 | 0.02 | 25 | 610 | 22 | <5 | <20 | 54 0.11    | <10 | 74 | <10 | 7  | 67 |
| GEO'96          |       | 145     | 0.8   | 1.63 | 60 | 145 | <5 | 1.61 | <1 | 17 | 56 | 90   | 3.70 | <10 | 1.01  | 632  | <1 | 0.02 | 23 | 590 | 20 | <5 | <20 | 52 0.11    | <10 | 71 | <10 | 6  | 65 |
| GEO'96          | 3     | 140     | 8.0   | 1.68 | 60 | 150 | <5 | 1.65 | <1 | 18 | 57 | 80   | 3.80 | <10 | 1.02  | 649  | <1 | 0.02 | 24 | 600 | 18 | <5 | <20 | 56 0.12    | <10 | 73 | <10 | 6  | 68 |

df/1346 XLS/96 ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer





10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

## **CERTIFICATE OF ASSAY AK 96-511**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 28-Jun-96

ATTENTION: HENRY PEDERSON

No. of samples received: 4

Sample type: Rock PROJECT: # None Given SHIPMENT: # None Given

Samples submitted by: Henry Pederson

| ·                           |       |       |        | Nor  | n-Sulphide |
|-----------------------------|-------|-------|--------|------|------------|
|                             |       | Au    | Au     | Cu   | Cu         |
| T#.                         | Tag # | (g/t) | (oz/t) | (%)  | (%)        |
| 1                           | 44231 | <.03  | <.001  | 0.11 | 0.01       |
| 2                           | 44232 | <.03  | <.001  | 0.22 | 0.01       |
| 3                           | 44233 | 0.03  | 0.001  | 0.48 | 0.01       |
| 4                           | 44234 | 0.03  | 0.001  | 0.33 | 0.01       |
| QC/DAT<br>Resplit:<br>R/S 1 |       | <.03  | <.001  | 0.11 | <.01       |
| Repeat:                     | 44231 | 0.03  | 0.001  | 0.11 | 0.01       |
| Standar<br>STD-M<br>Mp-IA   | rd:   | 3.22  | 0.094  | 1.42 | -          |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

\_S/96tarco



ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

## **CERTIFICATE OF ASSAY AK 96-561**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 9-Jul-96

ATTENTION: BILL TAYLOR

No. of samples received: 11

Sample type: CORE PROJECT #: None given SHIPMENT #: None given

Samples submitted by: Not indicated

|         |           | Cu                             |        |
|---------|-----------|--------------------------------|--------|
| #.      | Tag #     | (%)                            |        |
| 1       | 44235     | 0.17                           |        |
| 2       | 44236     | 6.48                           |        |
| 3       | 44237     | 0.50                           |        |
| 4       | 44238     | 0.03                           |        |
| 5       | 44239     | 0.28                           |        |
| 6       | 44240     | 0.02                           |        |
| 7       | 44241     | 0.05                           |        |
| 8       | 44242     | 0.08                           |        |
| 9       | 44243     | 0.15                           |        |
| 10      | 44244     | 0.07                           |        |
| 11      | 44245     | 0.11                           |        |
|         |           |                                |        |
| QC DA   | т.        |                                |        |
| Respli  |           |                                |        |
| R/S 1   | 44235     | 0.18                           |        |
| N/S I   | 44233     | 0.10                           |        |
| Repeat  | <b>4.</b> |                                |        |
| nepear  | 44235     | 0.17                           |        |
| '       | 44233     | U. 11                          |        |
| Standa  | ard.      |                                |        |
| MPla    |           | 1.42                           |        |
| 1411 14 |           | EQO-TECH LABORATORIES L        | TD     |
|         |           | Per Frank J. Pezzotti, A.Sc.T. | . I D. |
| XLS/96  | Starco    | B.C. Certified Assayer         |        |
| ALGISO  | idi CO    | B.C. Certified Assayer         |        |



ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

## **CERTIFICATE OF ASSAY AK 96-561a**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 24-Jul-96

ATTENTION: BILL TAYLOR

No. of samples received: 11

Sample type: CORE-RESPLIT SAMPLES

PROJECT #: None given SHIPMENT #: None given

Samples submitted by: Not indicated

| ,             | Tag # | Cu<br>(%) |  |
|---------------|-------|-----------|--|
|               |       |           |  |
| 7             | 44241 | 0.05      |  |
| 8             | 44242 | 0.08      |  |
| 10            | 44244 | 0.08      |  |
| Stand<br>MPla | ard:  | 1.44      |  |

CO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-510**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 28-Jun-96

ATTENTION: HENRY PEDERSON

No. of samples received: 6

Sample type: Rock

PROJECT: # None Given SHIPMENT: # None Given Samples submitted by:

|                           |       |       |        |      | Non-Sulphide |  |
|---------------------------|-------|-------|--------|------|--------------|--|
|                           |       | Au    | Au     | Cu   | Cu           |  |
| T#.                       | Tag # | (g/t) | (oz/t) | (%)  | (%)          |  |
| 1                         | 44225 | <.03  | <.001  | 0.86 | 0.02         |  |
| 2                         | 44226 | 0.76  | 0.022  | 0.45 | 0.01         |  |
| 3                         | 44227 | <.03  | <.001  | 1.00 | 0.03         |  |
| 4                         | 44228 | 0.03  | 0.001  | 1.39 | 0.02         |  |
| 5                         | 44229 | <.03  | <.001  | 0.26 | 0.01         |  |
| 6                         | 44230 | <.03  | < 001  | 0.19 | 0.01         |  |
| QC/DAT                    |       |       |        |      |              |  |
| R/S 3                     | 44227 | <.03  | <.001  | 1.01 | 0.03         |  |
| Repeat:                   | 44225 | <.03  | <.001  |      | 0.02         |  |
| Standar<br>STD-M<br>Mp-IA | rd:   | 3.23  | 0.094  | 1.42 |              |  |

CO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



24-Jul-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557 .

# **CERTIFICATE OF ASSAY AK 96-585a**

TARCO OIL & GAS LTD.

500-717 Seventh Ave. S.W.

CALGARY, AB

V2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 14

Sample type: Core PROJECT #: none given SHIPMENT #: none given

Samples submitted by: J.D. Murphy

| ET#.          | Tag #       | Cu<br>(%) |  |
|---------------|-------------|-----------|--|
| C A           | NTA:<br>it: |           |  |
| 11            | 44256       | 0.03      |  |
| 12            | 44257       | 0.02      |  |
| Stand<br>MP1a | ard:        | 1.44      |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

# **CERTIFICATE OF ASSAY AK 96-585**

TARCO OIL & GAS LTD.

12-Jul-96

500-717 Seventh Ave. S.W.

CALGARY, AB V2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 14

Sample type: Core

PROJECT #: none given SHIPMENT #: none given

Samples submitted by: J.D. Murphy

|        |       | Cu   |
|--------|-------|------|
| ET #.  | Tag # | (%)  |
|        | 44246 | 0.52 |
|        | 44247 | 0.76 |
| 3      | 44248 | 0.06 |
| 4      | 44249 | 0.06 |
| 5      | 44250 | 0.32 |
| 6      | 44251 | 0.12 |
| 7      | 44252 | 1.48 |
| 8      | 44253 | 0.07 |
| 9      | 44254 | 0.02 |
| 10     | 44255 | 0.01 |
| 11     | 44256 | 0.01 |
| 12     | 44257 | 0.01 |
| 13     | 44258 | 0.19 |
| 14     | 44259 | 0.25 |
|        |       |      |
| QC DA  |       |      |
| Respli |       |      |
| R/S 1  | 44246 | 0.52 |
| Repeat |       |      |
| 1      | 44246 | 0.52 |
| Standa | rd:   |      |
| MP1a   |       | 1.45 |
|        |       |      |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96Tarco

Jn July 24/96.



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-608**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 17

Sample type: core

PROJECT #: none given SHIPMENT #: none given

Samples submitted by: not indicated

| - д       | T #   |        | Cu   |
|-----------|-------|--------|------|
| <u>#.</u> | Tag # |        | (%)  |
| 1         | 44260 |        | 1.14 |
| 2         | 44261 |        | 6.20 |
| 3         | 44262 |        | 0.25 |
| 4         | 44263 |        | 0.43 |
| 5         | 44264 |        | 1.38 |
| 6         | 44265 |        | 0.56 |
| 7         | 44266 | , p3,  | 1.20 |
| 8         | 44267 | Yorkis | 1.23 |
| 9         | 44268 | ,      | 0.34 |
| 10        | 44269 |        | 0.42 |
| 11        | 44270 |        | 0.37 |
| 12        | 44271 |        | 1.08 |
| 13        | 44272 |        | 0.88 |
| 14        | 44273 |        | 0.84 |
| 15        | 44274 |        | 0.58 |
| 16        | 44275 |        | 0.21 |
| 17        | 44276 |        | 0.06 |

16-Jul-96

#### `CO OIL & GAS LTD. AK 96-608

16-Jul-96

|                      |       | Cu   |
|----------------------|-------|------|
| ET #.                | Tag # | (%)  |
| QC DATA:<br>Resplit: |       |      |
| R/S 1                | 44260 | 1.13 |
| Repeat:              |       |      |
| 1                    | 44260 | 1.09 |
| 10                   | 44269 | 0.42 |
| Standard:            |       | 4.45 |
| MPI-a                |       | 1.45 |

XI 9/96TARCO#1

ECO-TECH LABORATORIES LTD. Prank J. Pezzotti, A.Sc.T

B.C. Certified Assayer



**ASSAYING GEOCHEMISTRY** 

16-Jul-96



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

# **CERTIFICATE OF ASSAY AK 96-621**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. **CALGARY, ALBERTA** T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 13

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|                  |       | Cu                   |
|------------------|-------|----------------------|
|                  | Tag # | (%)                  |
| = , <del>=</del> | 44277 | 0.01                 |
| 2                | 44278 | 0.19                 |
| 3                | 44279 | 0.76                 |
| 4                | 44280 | 0.11                 |
| 5                | 44281 | 0.11<br>0.19<br>0.61 |
| 6                | 44282 | 0.61                 |
| 7                | 44283 | 0.04                 |
| 8                | 44284 | 0.18                 |
| 9                | 44285 | 14.10                |
| 10               | 44286 | 0.72                 |
| 11               | 44287 | 0.42                 |
| 12               | 44288 | 0.50                 |
| 13               | 44289 | 0.14                 |
|                  |       |                      |

ECO-TECH LABORATORIES LTD.

Frenk J. Pezzotti, A.Sc.T. **B.C. Certified Assayer** 

#### **CO OIL & GAS LTD. AK 96-621**

16-Jul-96

| ET #.            | Tag # | Cu<br>(%) |
|------------------|-------|-----------|
| QC DAT           |       |           |
| Resplit:         |       |           |
| R/S 1            | 44277 | 0.02      |
| Repeat:          |       |           |
| 1                | 44277 | 0.02      |
| Standar<br>MP1-a | d:    | 1.44      |

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/TARCO



18-Jul-96



10041 E. Trans Canada Hwy., R.R. #2, Kamloops B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-632**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA

T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 15

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|       | Cu                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------|
| Tag # | (%)                                                                                                                        |
| 44290 | 0.08                                                                                                                       |
| 44291 | 0.09                                                                                                                       |
| 44292 | 0.07                                                                                                                       |
| 44293 | 0.04                                                                                                                       |
| 44294 | 0.08                                                                                                                       |
| 44295 | 0.07                                                                                                                       |
| 44296 | 0.03                                                                                                                       |
| 44297 | 0.03                                                                                                                       |
| 44298 | 0.06                                                                                                                       |
| 44299 | 0.05                                                                                                                       |
| 44300 | 0.06                                                                                                                       |
| 44301 | 0.06                                                                                                                       |
| 44302 | 0.08                                                                                                                       |
| 44303 | 0.06                                                                                                                       |
| 44304 | 0.08                                                                                                                       |
|       | 44290<br>44291<br>44292<br>44293<br>44294<br>44295<br>44296<br>44297<br>44298<br>44299<br>44300<br>44301<br>44302<br>44303 |

EÇO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer XLS/96TARCO

| ET #.                     | Tag # | Cu<br>(%) |
|---------------------------|-------|-----------|
| QC DATA                   | •     |           |
| Resplit:                  | 44290 | 0.10      |
| Repeat:<br>1<br>Standard: | 44290 | 0.09      |
| MPI-a                     |       | 1.42      |
|                           |       |           |

ÉCO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

# **CERTIFICATE OF ASSAY AK 96-638**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 18-Jul-96

ATTENTION: BILL TAYLOR

No. of samples received: 11

Sample type: Core

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: Not Indicated

|      | Cu                                                                   |
|------|----------------------------------------------------------------------|
| ag # | (%)                                                                  |
| 4305 | 0.06                                                                 |
| 4306 | 0.06                                                                 |
| 4307 | 0.08                                                                 |
| 4308 | 0.03                                                                 |
| 4309 | 0.12                                                                 |
| 4310 | 0.11                                                                 |
| 4311 | 0.09                                                                 |
| 4312 | 0.49                                                                 |
| 4313 | 0.30                                                                 |
| 4314 | 1.46                                                                 |
| 4315 | 0.37                                                                 |
|      | 4305<br>4306<br>4307<br>4308<br>4309<br>4310<br>4311<br>4312<br>4313 |

ECO-TECH LABORATORIES LTD

p < Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

| ET#. Tag#         | Cu<br>(%) |  |
|-------------------|-----------|--|
|                   |           |  |
| QC DATA: Resplit: |           |  |
| R/S 1 44305       | 0.06      |  |
| Repeat:           |           |  |
| 1 44305           | 0.06      |  |
| Standard:         |           |  |
| MPI-a             | 1.42      |  |

FGO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/96TARCO



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-646**

TARCO OIL & GAS LTD.
500-717 7TH AVE. S.W.
CALGARY, ALBERTA

18-Jul-96

ATTENTION: BILL TAYLOR

No. of samples received: 42

Sample type: CORE

T2P 0Z3

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|   |           |       | Cu   |
|---|-----------|-------|------|
| _ | <b>#.</b> | Tag # | (%)  |
| = |           | 44316 | 0.22 |
|   | 2         | 44317 | 0.32 |
|   | 2<br>3    | 44318 | 0.24 |
|   | 4         | 44319 | 0.13 |
|   | 5         | 44320 | 0.06 |
|   | 6         | 44321 | 0.04 |
|   | 7         | 44322 | 0.07 |
|   | 8         | 44323 | 0.05 |
|   | 9         | 44324 | 0.11 |
|   | 10        | 44325 | 0.10 |
|   | 11        | 44326 | 0.03 |
|   | 12        | 44327 | 0.03 |
|   | 13        | 44328 | 0.03 |
|   | 14        | 44329 | 0.02 |
|   | 15        | 44330 | 0.02 |
|   | 16        | 44331 | 0.09 |
|   | 17        | 44332 | 0.05 |
|   | 18        | 44333 | 0.39 |
|   | 19        | 44334 | 0.02 |
|   | 20        | 44335 | 0.05 |
|   | 21        | 44336 | 0.17 |
|   | 22        | 44337 | 0.11 |
|   | ავ        | 44338 | 0.04 |
|   | ,         | 44339 | 0.04 |
|   | 25        | 44340 | 0.11 |
|   |           |       |      |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

|          |           | Cu   |
|----------|-----------|------|
| ET #.    | Tag #     | (%)  |
| 26       | 44341     | 0.22 |
| 27       | 44342     | 0.09 |
| 28       | 44343     | 0.02 |
| 29       | 44344     | 0.04 |
| 30       | 44345     | 0.02 |
| 31       | 44346     | 0.21 |
| 32       | 44347     | 0.03 |
| 33       | 44348     | 0.97 |
| 34       | 44349     | 0.04 |
| 35       | 44350     | 0.03 |
| 36       | 44351     | 0.03 |
| 37       | 44352     | 0.10 |
| 38       | 44353     | 0.05 |
| 39       | 44354     | 0.37 |
| 40       | 44355     | 0.14 |
| 41       | 44356     | 0.07 |
| 42       | 44357     | 0.07 |
| QC DATA  | <u>\:</u> |      |
| Resolit: |           |      |
| 1        | 44316     | 0.24 |
| R/S 36   | 44351     | 0.03 |
| Repeat:  |           |      |
| 1        | 44316     | 0.22 |
| 10       | 44325     | 0.1  |
| 19       | 44334     | 0.03 |
| 36       | 44351     | 0.03 |
| Standard | ı.        |      |
| MPI-a    | •         | 1.44 |
| MPI-a    |           | 1.44 |
| IVIT I-d |           | 1.77 |

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/96TARCO



24-Jul-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

Cu

### **CERTIFICATE OF ASSAY AK 96-661**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 14 PROJECT #:NONE GIVEN SHIPMENT #NONE GIVEN P.O.#: NONE GIVEN

Samples submitted by:NOT INDICATED

|                     |       | - Ju |
|---------------------|-------|------|
| ¥.                  | Tag # | (%)  |
| 1 1                 | 44358 | 0.14 |
| 2                   | 44359 | 0.12 |
| 3                   | 44360 | 0.11 |
| 4                   | 44361 | 0.10 |
| 5                   | 44362 | 0.11 |
| 6                   | 44363 | 0.14 |
| 7                   | 44364 | 0.08 |
| 8                   | 44365 | 0.05 |
| 9                   | 44366 | 0.13 |
| 10                  | 44367 | 0.12 |
| 11                  | 44368 | 0.10 |
| 12                  | 44369 | 0.11 |
| 13                  | 44370 | 0.27 |
| 14                  | 44371 | 0.65 |
| QC DATA<br>Resplit: | i     |      |
| 1                   | 44358 | 0.12 |
| Repeat:             |       |      |
| ·<br>1              | 44358 | 0.13 |
| Standard:<br>MPI-a  |       | 1.42 |

ECD-TECH LABORATORIES LTD.

Fitzank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



24-Jul-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

# **CERTIFICATE OF ASSAY AK 96-669**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA

T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 11

Sample type: Core

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: None Given

|     | Cu    |      |  |
|-----|-------|------|--|
| `#. | Tag # | (%)  |  |
| 1   | 44372 | 0.47 |  |
| 2   | 44373 | 0.39 |  |
| 3   | 44374 | 0.51 |  |
| 4   | 44375 | 1.33 |  |
| 5   | 44376 | 0.39 |  |
| 6   | 44377 | 0.08 |  |
| 7   | 44378 | 0.25 |  |
| 8   | 44379 | 0.02 |  |
| 9   | 44380 | 0.02 |  |
| 10  | 44381 | 0.37 |  |
| 11  | 44382 | 0.57 |  |
|     |       |      |  |

QC DATA:

Resplit:

R/S 1 44372 0.45

Standard:

MPIa 1.44

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



24-Jul-96

10041 E. Trans Canada Hwy., R.R. #2, Kamlooph, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-679**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 9

Sample type: Core

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: None Given

|         |          | Cu   |
|---------|----------|------|
| #.      | Tag #    | (%)  |
| 1       | 44383    | 0.41 |
| 2       | 44384    | 0.30 |
| 3       | 44385    | 0.50 |
| 4       | 44386    | 0.47 |
| 5       | 44387    | 0.14 |
| 6       | 44388    | 0.09 |
| 7       | 44389    | 0.06 |
| 8       | 44390    | 0.03 |
| 9       | 44391    | 0.03 |
|         |          |      |
| QC DA   |          |      |
| Resplit | <b>:</b> |      |
| R/S 1   | 44383    | 0.53 |
|         |          |      |
| Standa  | rd:      |      |
| MPla    |          | 1.42 |
|         |          |      |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

# **CERTIFICATE OF ASSAY AK 96-693**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 25-Jul-96

ATTENTION: BILL TAYLOR

No. of samples received: 10

Sample type: CORE

PROJECT #: NONE GIVEN

NONE GIVEN

Samples submitted by: NOT INDICATED

|        |       |          | Cu   |  |
|--------|-------|----------|------|--|
| ,<br>_ | Tag # |          | (%)  |  |
| = ·    | 44392 |          | 0.01 |  |
| 2      | 44393 |          | 0.02 |  |
| 3      | 44394 |          | 0.02 |  |
| 4      | 44395 |          | 0.02 |  |
| 5      | 44396 |          | 0.01 |  |
| 6      | 44397 |          | 0.03 |  |
| 7      | 44398 |          | 0.04 |  |
| 8      | 44399 |          | 0.06 |  |
| 9      | 44400 |          | 0.08 |  |
| 10     | 57561 | 1.5 /001 | 0.02 |  |
|        |       |          |      |  |

QC DATA:

Resplit:

1 44392 0.01

Repeat:

1 44392 0.01

Standard:

MPla 1.42

ECO-TECH LABORATORIES LTD

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96Tarco

Page 1



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-720**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 29-Jul-96

ATTENTION: BILL TAYLOR

No. of samples received: 10

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|     |       | Cu   |  |
|-----|-------|------|--|
|     | Tag # | (%)  |  |
| - , | 57673 | 0.06 |  |
| 2   | 57674 | 0.13 |  |
| 3   | 57675 | 0.03 |  |
| 4   | 57676 | 0.09 |  |
| 5   | 57677 | 0.02 |  |
| 6   | 57678 | 0.05 |  |
| 7   | 57712 | 0.12 |  |
| 8   | 57713 | 0.06 |  |
| 9   | 57714 | 0.20 |  |
| 10  | 57715 | 1.43 |  |
|     |       |      |  |

#### QC DATA:

Resplit:

1 57673 0.06

Standard:

MPla 1.46

ECO-TECH LABORATORIES LTD.

Frank J. Pézzotti, A.Sc.T. B.C. Certified Assayer



29-Jul-96



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-706**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 32 Sample type: 1/2 CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|        |       | Cu   |
|--------|-------|------|
| r<br>= | Tag # | (%)  |
|        | 57652 | 0.04 |
| 2      | 57653 | 0.05 |
| 3      | 57654 | 0.12 |
| 4      | 57655 | 0.07 |
| 5      | 57656 | 0.94 |
| 6      | 57657 | 0.02 |
| 7      | 57658 | 0.03 |
| 8      | 57659 | 0.04 |
| 9      | 57660 | 0.19 |
| 10     | 57661 | 0.09 |
| 11     | 57662 | 0.45 |
| 12     | 57663 | 0.05 |
| 13     | 57664 | 0.17 |
| 14     | 57665 | 0.07 |
| 15     | 57666 | 0.06 |
| 16     | 57667 | 0.09 |
| 17     | 57668 | 0.06 |
| 18     | 57669 | 0.06 |
| 19     | 57670 | 0.07 |
| 20     | 57671 | 0.19 |
| 21     | 57672 | 0.47 |
| 22     | 57701 | 0.05 |
| 03     | 57702 | 0.09 |
|        | 57703 | 0.05 |
|        |       |      |

ECO-TECH ABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



29-Jul-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-732**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 9 Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|          |       | Cu   |  |  |
|----------|-------|------|--|--|
| <u>"</u> | Tag # | (%)  |  |  |
| _ ,      | 57679 | 0.03 |  |  |
| 2        | 57680 | 0.02 |  |  |
| 3        | 57681 | 0.03 |  |  |
| 4        | 57682 | 0.03 |  |  |
| 5        | 57683 | 0.28 |  |  |
| 6        | 57684 | 0.23 |  |  |
| 7        | 57685 | 0.04 |  |  |
| 8        | 57716 | 0.08 |  |  |
| 9        | 57717 | 0.02 |  |  |
|          |       |      |  |  |
| QC D     |       |      |  |  |
| Respi    | lit:  |      |  |  |
| 1        | 57679 | 0.03 |  |  |
| Repeat:  |       |      |  |  |
| 1        | 57679 | 0.03 |  |  |
| Stand    | lard: |      |  |  |
| MPla     |       | 1.44 |  |  |
|          |       |      |  |  |

**ECO-TECH LABORATORIES LTD.** 

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

#### T' CO OIL & GAS LTD. AK 96-706

29-Jul-96

|         |           | Cu   |  |  |  |
|---------|-----------|------|--|--|--|
| ET #.   | Tag #     | (%)  |  |  |  |
| 25      | 57704     | 0.09 |  |  |  |
| 26      | 57705     | 1.09 |  |  |  |
| 27      | 57706     | 1.62 |  |  |  |
| 28      | 57707     | 0.54 |  |  |  |
| 29      | 57708     | 0.03 |  |  |  |
| 30      | 57709     | 0.03 |  |  |  |
| 31      | 57710     | 0.05 |  |  |  |
| 32      | 57711     | 0.03 |  |  |  |
|         |           |      |  |  |  |
|         |           |      |  |  |  |
| QC DA   |           |      |  |  |  |
| Resplit |           | 0.03 |  |  |  |
| 1       | 57652     | 0.03 |  |  |  |
| Repeat  |           |      |  |  |  |
| 1       | 57652     | 0.03 |  |  |  |
| ,       | 3.00      | 0.00 |  |  |  |
| Standa  | Standard: |      |  |  |  |
| MPla    |           | 1.42 |  |  |  |
|         |           |      |  |  |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



1-Aug-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-746**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB

T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 7

Sample type: core

PROJECT: # none given SHIPMENT: # none given

Samples submitted by: not indicated

|                |       | Cu   |
|----------------|-------|------|
| r<br>= :       | Tag # | (%)  |
|                | 57686 | 0.02 |
| 2              | 57687 | 0.04 |
| 3              | 57688 | 0.01 |
| 4              | 57689 | 0.08 |
| 5              | 57690 | 0.03 |
| 6              | 57691 | 0.04 |
| 7              | 57722 | 0.02 |
| QC/D/<br>Respi |       |      |
| 1              | 57686 | 0.01 |
| Repea          | at:   |      |
| 1              | 57686 | 0.01 |
| Stand<br>Mp-IA |       | 1.44 |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

# **CERTIFICATE OF ASSAY AK 96-595b**

TARCO OIL & GAS LTD.

2-Aug-96

500-717 Seventh Ave. S.W.

CALGARY, AB

V2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 14

Sample type: Core PROJECT #: none given SHIPMENT #: none given

Samples submitted by: J.D. Murphy

| ET #.          | Tag #       | Cu<br>(%) |  |
|----------------|-------------|-----------|--|
| C A            | NTA:<br>it: |           |  |
| 8              | 44253       | 0.05      |  |
| 10             | 44255       | 0.01      |  |
| Standa<br>MP1a | ard:        | 1.46      |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



2-Aug-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-754**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 11

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

| ŗ     | Tag # | (%)  |
|-------|-------|------|
| = ;   | 57718 | 0.19 |
| 2     | 57719 | 0.27 |
| 3     | 57720 | 0.15 |
| 4     | 57721 | 0.30 |
| 5     | 57723 | 0.17 |
| 6     | 57724 | 0.19 |
| 7     | 57725 | 0.43 |
| 8     | 57726 | 0.09 |
| 9     | 57727 | 0.49 |
| 10    | 57728 | 0.03 |
| 11    | 57729 | 0.03 |
|       |       |      |
| QC D  | ΔΤΔ.  |      |
| Respl |       |      |
| 1     | 57718 | 0.16 |
|       |       |      |
| Repea | at:   |      |
| 1     | 57718 | 0.19 |
| _     |       |      |
| Stand | lard: |      |
| MPla  |       | 1.46 |

Cu

ECO-TECH LABORATORIES LTD.

\*Ank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96Tarco

Page 1



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-808**

Cu

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 6-Aug-96

ATTENTION: BILL TAYLOR

No. of samples received: 5 Sample type: CORE

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT IDICATED

| `T#.    | Tag # | (%)  |
|---------|-------|------|
| 1       | 63779 | 0.05 |
| 2       | 63780 | 0.09 |
| 3       | 63781 | 0.16 |
| 4       | 63782 | 0.30 |
| 5       | 63783 | 0.29 |
|         |       | ,    |
| QC/DA   |       |      |
| Resplit |       |      |
| 1       | 63779 | 0.06 |
| D       | L-    |      |
| Repeat  |       | 0.05 |
| 1       | 63779 | 0.05 |
| Standa  | rd·   |      |
| Mp-IA   |       | 1.44 |
|         |       |      |

ECO-TECH LABORATORIES LTD.

Prank J. Pezzotti, A.Sc.T. B.C. Certified Assayer





10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERT!FICATE OF ASSAY AK 96-798**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 6-Aug-96

ATTENTION: BILL TAYLOR

No. of samples received: 11

Sample type: CORE

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT INDICATED

|         |            | Cu   |
|---------|------------|------|
| ⁻T #.   | Tag #      | (%)  |
| 1       | 63768      | 0.04 |
| 2       | 63769      | 0.12 |
| 3       | 63770      | 0.17 |
| 4       | 63771      | 0.17 |
| 5       | 63772      | 0.19 |
| 6       | 63773      | 0.31 |
| 7       | 63774      | 0.15 |
| 8       | 63775      | 0.96 |
| 9       | 63776      | 0.84 |
| 10      | 63777      | 0.17 |
| 11      | 63778      | 0.23 |
|         |            |      |
| QC/DA   | <u>TA:</u> |      |
| Resplit | <b>:</b>   |      |
| R/S 1   | 63768      | 0.05 |
| Repeat  | :          | ·    |
| 1       | 63768      | 0.04 |
| Standa  | rd:        |      |
| Al-qM   |            | 1.46 |
|         |            |      |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



6-Aug-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-788**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 7 Sample type: CORE

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT IDICATED

|          |             | Cu   |
|----------|-------------|------|
| T#.      | Tag #       | (%)  |
| 1        | 63761       | 0.04 |
| 2        | 63762       | 0.05 |
| 3        | 63763       | 0.10 |
| 4        | 63764       | 0.04 |
| 5        | 63765       | 0.03 |
| 6        | 63766       | 0.10 |
| 7        | 63767       | 0.04 |
|          |             |      |
| QC/DAT   | <del></del> |      |
| Resplit: |             |      |
| 1        | 63761       | 0.04 |
|          |             |      |
| Repeat:  |             |      |
| 1        | 63761       | 0.04 |
|          |             |      |
| Standar  | rd:         |      |
| Mp-IA    |             | 1.46 |

ECO-TECH LABORATORIES LTD.

EJank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-777**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 6-Aug-96

ATTENTION: BILL TAYLOR

No. of samples received: 11

Sample type: Core PROJECT: # None Given SHIPMENT: # None Given

Samples submitted by: None Given

|         |       | Cu   |
|---------|-------|------|
| `T#.    | Tag # | (%)  |
| 1       | 57700 | 0.51 |
| 2       | 63751 | 0.02 |
| 3       | 63752 | 0.56 |
| 4       | 63753 | 0.28 |
| 5       | 63754 | 0.13 |
| 6       | 63755 | 0.07 |
| 7       | 63756 | 0.04 |
| 8       | 63757 | 0.10 |
| 9.      | 63758 | 0.08 |
| 10      | 63759 | 0.09 |
| 11      | 63760 | 0.02 |
| QC/DAT  |       |      |
| Resplit |       |      |
| R/S 1   | 57700 | 0.48 |
| Repeat  | :     |      |
| 1       | 57700 | 0.53 |
| Standa  | rd:   |      |
| CPb-1   |       | 0.25 |
|         |       |      |

ECO-TECH LABORATORIES LTD.

Hank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-765**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 6-Aug-96

ATTENTION: BILL TAYLOR

No. of samples received: 29

Sample type: Core

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: None Given

|             |       | Cu           |
|-------------|-------|--------------|
| <u>*</u> #. | Tag # | (%)          |
| 1           | 57692 | 0.02         |
| 2           | 57693 | 0.01         |
| 3           | 57694 | 0.06         |
| 4           | 57695 | 1.79         |
| 5           | 57696 | 1.06         |
| 6           | 57697 | 0.06         |
| 7           | 57698 | 0.20         |
| 8           | 57699 | 0.05         |
| 9           | 57730 | 0.04         |
| 10          | 57731 | 0.03         |
| 11          | 57732 | 0.01         |
| 12          | 57733 | 0.03         |
| 13          | 57734 | 0.10         |
| 14          | 57735 | 0.50         |
| 15          | 57736 | 0.08         |
| 16          | 57737 | 0.10         |
| 17          | 57738 | C. <b>26</b> |
| 18          | 57739 | 0.06         |
| 19          | 57740 | 0.49         |
| 20          | 57741 | 0.04         |
| 21          | 57742 | 0.55         |
|             |       |              |

Frank J. Pezzotti, A. Sc. T. B.C. Certified Assayer

Page 1

|                       |                       | Cu   |
|-----------------------|-----------------------|------|
| ET #.                 | Tag#                  | (%)  |
| 22                    | 57743                 | 0.04 |
| 23                    | 57744                 | 0.03 |
| 24                    | 57745                 | 0.02 |
| 25                    | 57746                 | 0.02 |
| 26                    | 57747                 | 0.03 |
| 27                    | 57748                 | 0.02 |
| 28                    | 57749                 | 0.02 |
| 29                    | 57750                 | 0.08 |
| QC DA                 |                       |      |
| R/S 1                 | 57692                 | 0.02 |
| Repeat<br>1           | <del>:</del><br>57692 | 0.02 |
| <b>Standa</b><br>MPla | rd:                   | 1.46 |

ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer



9-Aug-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

# **CERTIFICATE OF ASSAY AK 96-827**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W.

CALGARY, ALBERTA

T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 13

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|       |       | Cu   |
|-------|-------|------|
| F     | Tag # | (%)  |
| -     | 63784 | 0.28 |
| 2     | 63785 | 0.42 |
| 3     | 63786 | 0.10 |
| 4     | 63787 | 0.49 |
| 5     | 63788 | 0.36 |
| 6     | 63789 | 0.71 |
| 7     | 63790 | 0.28 |
| 8     | 63791 | 1.10 |
| 9     | 63792 | 0.82 |
| 10    | 63793 | 0.75 |
| 11    | 63794 | 1.26 |
| 12    | 63795 | 0.06 |
| 13    | 63796 | 0.02 |
|       |       |      |
| QC DA |       |      |
| Respl |       |      |
| 1     | 63784 | 0.29 |
| Repea |       |      |
| 1     | 63784 | 0.28 |
| Stand | lard: |      |
| MPla  |       | 1.44 |
|       |       |      |

ECO-TECH LABORATORIES LTD.

Rrank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96Tarco

Page 1



15-Aug-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-669a**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA

T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 11

Sample type: Core

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: None Given

|       |       | Cu   |
|-------|-------|------|
| F- 4. | Tag # | (%)  |
| = =   | 44380 | 0.01 |

QC DATA:

Repeat:

9 44380

0.01

FCO-TECH LABORATORIES LTD.

Per Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer





10041 E. Trans Canada Hwy., R.R. #2. Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-475**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 20-Jun-96

ATTENTION: HENRY PEDERSON

No. of samples received: 11

Sample type: Rock PROJECT: # None given SHIPMENT: # None given

Samples submitted by: Not given

|         |          |        |      | Non-Sulphide | • |
|---------|----------|--------|------|--------------|---|
|         |          |        | Cu   | Cu           |   |
| 5T#.    | Tag #    |        | (%)  | (%)          |   |
| 1       | 44201    |        | 0.01 | <.01         |   |
| 2       | 44202    |        | 0.23 | 0.02         |   |
| 3       | 44203    | HOLE ! | 1.65 | 0.04         |   |
| 4       | 44204    |        | 0.14 | 0.01         |   |
| 5       | 44205    |        | 0.03 | 0.01         |   |
| 6       | 44206    |        | 0.03 | <.01         |   |
| 7       | 44207    |        | 0.04 | 0.01         |   |
| 8       | 44208    | doce 2 | 0.02 | <.01         |   |
| 9       | 44209    |        | 0.08 | 0.01         |   |
| 10      | 44210    |        | 0.03 | 0.01         |   |
| 11      | 44211    |        | 0.06 | 0.01         |   |
|         |          |        |      |              |   |
| QC/DA   |          |        |      |              |   |
| Resplit | <b>:</b> |        |      |              |   |
| R/S 2   | 44202    |        | 0.23 | 0.02         |   |
|         |          |        |      |              |   |
| Repeat  | :        |        |      |              |   |
| 1       | 44201    |        | 0.02 | <.01         |   |
|         |          |        |      |              |   |
| Standa  | rd:      |        |      |              |   |
| HVC,C,  |          |        | 0.54 | -            |   |
| Mp-IA   |          |        | 1.42 | -            |   |
|         |          |        |      |              |   |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-486**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 21-Jun-96

ATTENTION: HENRY PEDERSON

No. of samples received: 6

Sample type: Core

PROJECT: # None given SHIPMENT: # None given

Samples submitted by: Tarco Oil & Gas

|                           |       |          |       |        | ٨         | lon-Sulphide | • |
|---------------------------|-------|----------|-------|--------|-----------|--------------|---|
|                           |       |          | Au    | Au     | Cu        | Cu           |   |
| ¬Τ#.                      | Tag # |          | (g/t) | (oz/t) | (%)       | (%)          |   |
| 1                         | 44212 |          | <.03  | <.001  | 0.02      | <.01         |   |
| 2                         | 44213 |          | <.03  | <.001  | 0.02      | <.01         |   |
| 3                         | 44214 | Hx. +2   | <.03  | <.001  | 0.03      | <.01         |   |
| 4                         | 44215 | 7.00 . 2 | <.03  | <.001  | 0.03      | <.01         |   |
| 5                         | 44216 |          | <.03  | <.001  | 0.04      | <.01         |   |
| 6                         | 44217 |          | <.03  | <.001  | 0.02      | <.01         |   |
| QC/DA<br>Resplit<br>R/S 1 |       |          | <.03  | <.001  | 0.02      | <.01         |   |
| Repeat                    | :     |          |       |        |           |              |   |
| 1                         | 44212 |          | <.03  | <.001  | 0.02      | <.01         |   |
| Standar<br>STD-M<br>Mp-IA | rd:   |          | 3.33  | 0.097  | -<br>1.42 | -            |   |

ECO-TECH LABORATORIES LT

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer





10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

### **CERTIFICATE OF ASSAY AK 96-487**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 21-Jun-96

ATTENTION: HENRY PEDERSON

No. of samples received: 7 Sample type: Core/Sand PROJECT: # None given SHIPMENT: # None given

Samples submitted by: Tarco Oil & Gas

|                         |            |         |        |       | Non-Sulphide |  |
|-------------------------|------------|---------|--------|-------|--------------|--|
|                         |            | Au      | Au     | Cu    | Cu           |  |
| ST #.                   | Tag #      | (g/t)   | (oz/t) | (%)   | (%)          |  |
| 1                       | 44218 ;    | <.03    | <.001  | 0.32  | 0.04         |  |
| 2                       | 44219      | 0.76    | 0.022  | 17.60 | 0.14         |  |
| 3                       | 44220      | 0.06    | 0.002  | 3.18  | 0.07         |  |
| 4                       | 44221 Hitz | 3 <.03  | <.001  | 1.62  | 0.05         |  |
| 5                       | 44222      | <.03    | <.001  | 0.62  | 0.04         |  |
| 6                       | 44223 '    | 0.08    | 0.002  | 11.60 | 0.07         |  |
| 7                       | 44224 (san | i) <.03 | <.001  | 0.04  | <.01         |  |
| QC/DA<br>Resplit        |            |         |        |       |              |  |
| R/S 1                   |            | <.03    | <.001  | 0.32  | 0.04         |  |
| Repeat<br>1             | <b>:</b>   | <.03    | <.001  | 0.32  | -            |  |
| S <b>tanda</b><br>Mp-IA | rd:        | -       | -      | 1.42  | -            |  |

CO-TECH LABORATORIES LTD.

Prank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

مر LS/96tarco



15-Nov-96



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 96-510**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB

T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 6

Sample type: ROCK

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT INDICATED Samples submitted by: NOT INDICATED

|       |              | Au    | Au     |  |
|-------|--------------|-------|--------|--|
| ET #. | Tag#         | (g/t) | (oz/t) |  |
| 2 1   | +OLE 3.44226 | 0.29  | 0.008  |  |

QC/DATA:

Repeat:

2 HOLE 3 44226 0.22 0.006

Standard:

STD-M 1.79 0.052

ECO-TECH LABORATORIES LTD.

Arank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96TARCO#3



10041 F. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V°C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ANALYSIS AK 96-510**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 31-Oct-96

ATTENTION: BILL TAYLOR

No. of samples received: 6 Sample type: ROCK

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT INDICATED

|              |              | Au    |  |
|--------------|--------------|-------|--|
| ς <u>Τ#.</u> | Tag #        | (ppb) |  |
| 1            | HOLE 3 44225 | 5     |  |
| 2            | HOLE 3 44226 | 230   |  |
| 3            | HOLE 4 44227 | 5     |  |
| 4            | HOLE 4 44228 | 40    |  |
| 5            | HOLE 4 44229 | 5     |  |
| 6            | HOLE 4 44230 | 5     |  |
| QC/D         |              |       |  |
| Repe         |              |       |  |
| 1            | HOLE 3 44225 | 5     |  |
| Stand        | lard:        |       |  |
| GEO9         | 96           | 150   |  |

ECO-TECH LABORATORIES LTD

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96tarco



10041 E. Irans Canada Hwy , R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ASSAY AK 96-475**

TARCO OIL & GAS LTD. 500-717 SEVENTH AVE. S.W. CALGARY, AB T2P 0Z3 15-Nov-96

ATTENTION: BILL TAYLOR

No. of samples received: 1 Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN

Samples submitted by: NOT INDICATED

| ET#.                         | Tag #  |       | Au<br>(g/t) | Au<br>(oz/t) |  |
|------------------------------|--------|-------|-------------|--------------|--|
| 3                            | Hole 1 | 44203 | 0.19        | 0.006        |  |
| QC/DA <sup>*</sup><br>Repeat |        |       |             |              |  |
| 3<br>Standa                  | Hole 1 | 44203 | 0.17        | 0.005        |  |
| STD-M                        |        |       | 1.79        | 0.052        |  |

FOO-TECH LABORATORIES LTD.

Roank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer





10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

#### **CERTIFICATE OF ASSAY AK 96-487**

TARCO OIL & GAS 15-Nov-96

500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 7 Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED Samples submitted by: NOT INDICATED

|       |              | Au    | Au     | Ag     | Ag     |  |
|-------|--------------|-------|--------|--------|--------|--|
| ₹T#.  | Tag #        | (g/t) | (oz/t) | (g/t)  | (oz/t) |  |
| 2     | HOLE 3 44219 | 2.49  | 0.073  | 89.7   | 2.62   |  |
| 3     | HOLE 3 44220 | 0.18  | 0.005  | 16.2   | 0.47   |  |
| 4     | HOLE 3 44221 | 0.09  | 0.003  |        |        |  |
| 6     | HOLE 3 44223 | 0.23  | 0.007  | 42.4   | 1.24   |  |
|       |              |       |        |        |        |  |
| QC/D/ | ATA:         |       |        |        |        |  |
| Repea | • •          |       |        |        |        |  |
| 2     | HOLE 3 44219 | 0.63  | 0.018  |        |        |  |
| Stand | ard:         |       |        |        |        |  |
| STD-N | Λ            | 1.79  | 0.052  | 70.0   | 2.04   |  |
| KCI-a |              |       |        | 1659.0 | 48.38  |  |

ECO-TECH LABORATORIES LTD

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kar. oops, B.C. V2C 614 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-754**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 15-Nov-96

ATTENTION: BILL TAYLOR

No. of samples received: 11

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|     |              | Мо    |  |
|-----|--------------|-------|--|
| ST# | Tag #        | (%)   |  |
| 3 1 | IOLE 4 57720 | 0.014 |  |

QC/DATA:

Standard:

PR-I

0.59

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

#### **CERTIFICATE OF ASSAY AK 96-720**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 15-Nov-96

ATTENTION: BILL TAYLOR

No. of samples received: 10

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|      |             | Au    | Au     | Ag    | Ag     | Mo    |  |
|------|-------------|-------|--------|-------|--------|-------|--|
| ST#. | Tag #       | (g/t) | (oz/t) | (g/t) | (oz/t) | (%)   |  |
| 10 H | OLE 4 57715 | 0.07  | 0.002  | 11 3  | 0.33   | 0.025 |  |

QC/DATA:

Repeat:

10 HOLE 4 57715 0.04 0.001

Standard:

STD-M 1.79 0.052 70.0 2.04

PR-I 0.59

ECO-TECH LABORATORIES LTD.

Frenk J. Pezzotti, A.Sc.T. B.C. Certified Assayer



15-Nov-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

#### **CERTIFICATE OF ASSAY AK 96-561**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB

T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 11

Sample type: CORE-RESPLIT SAMPLES

PROJECT #: None given SHIPMENT #: None given

Samples submitted by: Not indicated Samples submitted by: NOT INDICATED

|      |             | Au    | Au     | Ag    | Ag     |  |
|------|-------------|-------|--------|-------|--------|--|
| ET#. | Tag #       | (g/t) | (oz/t) | (g/t) | (oz/t) |  |
| 2 4  | OLE 5 44236 | 0.15  | 0.004  | 44.3  | 1 20   |  |

QC/DATA:

Repeat:

2 HOLE 5 44236 0.13 0.004

Standard:

STD-M 1.79 0.052

KCI-a 1659.0 48.38

ECO-TECH LABORATORIES LTD.

Prank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



19041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

#### **CERTIFICATE OF ASSAY AK 96-585**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA

15-Nov-96

ATTENTION: BILL TAYLOR

No. of samples received: 14

Sample type: Core PROJECT #: none given SHIPMENT #: none given

Samples submitted by: J.D. Murphy

Mo T#. Tag# (%) 2 HOLE 5 44247 0.017

QC/DATA: Standard:

T2P 0Z3

PR-I 0.59

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer





10041 E. Trans Canada Hwy., R.B. #2. Kamloops, B.C. V2C 614 Phone (250) 573-5700 Fax (250) 573-4557

#### **CERTIFICATE OF ASSAY AK 96-608**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 15-Nov-96

ATTENTION: BILL TAYLOR

No. of samples received: 17

Sample type: CORE

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT INDICATED

|              |               | Au    | Au     | Ag     | Ag     |  |
|--------------|---------------|-------|--------|--------|--------|--|
| ₹T#.         | Tag #         | (g/t) | (oz/t) | (g/t)  | (oz/t) |  |
| 1            | HOLE 5 44260* | 0.23  | 0.007  |        |        |  |
| 2            | HOLE 5 44261  | 0.63  | 0.018  | 44.3   | 1.29   |  |
| 11           | HOLE 5 44270  | 0.04  | 0.001  |        |        |  |
| 13           | HOLE 5 44272  | 0.06  | 0.002  |        |        |  |
| QC/D<br>Repe |               |       |        |        |        |  |
| 1            | HOLE 5 44260* | 1.67  | 0.049  |        |        |  |
| Stand        | lard:         |       |        |        |        |  |
| STD-I        | VI            | 1.79  | 0.052  |        |        |  |
| KCI-a        | E.            |       |        | 1659.0 | 48.38  |  |

note:\*=metallic gold suspected/screen assay recommended

ECO-TECH LABORATORIES LTD.

Arank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



15-Nov-96



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. J2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-621**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB

T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 12

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|                                                      |                                   | Au           | Au             | Ag     | Ag     | Mo    |  |
|------------------------------------------------------|-----------------------------------|--------------|----------------|--------|--------|-------|--|
| ĘΤ#.                                                 | Tag #                             | (g/t)        | (oz/t)         | (g/t)  | (oz/t) | (%)   |  |
| 3                                                    | HOLE 6 44279                      |              |                |        |        | 0.016 |  |
| 9                                                    | HOLE 6 44285                      | 0.16         | 0.005          | 149.8  | 4.369  |       |  |
| 12                                                   | HOLE 6 44288                      | 0.16         | 0.005          |        |        |       |  |
| QC/D<br>Repe<br>9<br>Stand<br>STD-I<br>PR-I<br>KCI-a | at:<br>HOLE 6 44285<br>dard:<br>M | 0.21<br>1.79 | 0.006<br>0.052 | 1659.0 | 48.38  | 0.59  |  |

**ECO-TECH LABORATORIES LTD.** 

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer





10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-638**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 15-Nov-96

ATTENTION: BILL TAYLOR

No. of samples received: 11

Sample type: Core

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: Not Indicated

| Au<br>(g/t) | Au<br>(oz/t)  | Ag<br>(g/t)                | Ag<br>(oz/t)                       | Мо<br>(%)                                       |                                                                 |
|-------------|---------------|----------------------------|------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|
|             |               |                            |                                    | 0.014                                           |                                                                 |
| 0.08        | 0.002         | 14.2                       | 0.41                               | 0.015                                           |                                                                 |
|             |               |                            |                                    |                                                 |                                                                 |
|             |               |                            |                                    |                                                 |                                                                 |
| 1.79        | 0.052         | 70.0                       | 2.04                               | 0.59                                            |                                                                 |
|             | (g/t)<br>0.08 | (g/t) (oz/t)<br>0.08 0.002 | (g/t) (oz/t) (g/t) 0.08 0.002 14.2 | (g/t) (oz/t) (g/t) (oz/t)  0.08 0.002 14.2 0.41 | (g/t) (oz/t) (g/t) (oz/t) (%)  0.014 0.08 0.002 14.2 0.41 0.015 |

ECΦ-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

#### **CERTIFICATE OF ASSAY AK 96-661**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 15-Nov-96

ATTENTION: BILL TAYLOR

No. of samples received:14
PROJECT #:NONE GIVEN
SHIPMENT #NONE GIVEN
P.O.#: NONE GIVEN
Samples submitted by:NOT INDICATED

Mo 5T #. Tag # (%) 14 HOLE 7 44371 0.055

QC/DATA: Standard:

PR-I

0.59

XLS/96TARCO#3

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer





10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

#### **CERTIFICATE OF ASSAY AK 96-669**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 15-Nov-96

ATTENTION: BILL TAYLOR

No. of samples received: 7 Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN

Samples submitted by: NOT INDICATED Samples submitted by: Not Indicated

| ST #.          | Tag #        | Au<br>(g/t) | Au<br>(oz/t) | Ag<br>(g/t) | Ag<br>(oz/t) |  |
|----------------|--------------|-------------|--------------|-------------|--------------|--|
| 2              | HOLE 7 44373 | (97         | (0.0.1)      | 12.2        | 0.36         |  |
| 3              | HOLE 7 44374 | 0.09        | 0.003        | 13.3        | 0.39         |  |
| 4              | HOLE 7 44375 | 0.14        | 0.004        | 29.1        | 0.85         |  |
| 5              | HOLE 7 44376 | 0.07        | 0.002        |             |              |  |
| 11             | HOLE 7 44382 | 0.09        | 0.003        |             |              |  |
| QC/D/<br>Repea |              |             |              |             |              |  |
| 3              | HOLE 7 44374 | 0.07        | 0.002        |             |              |  |
| Stand          | lard:        |             |              |             |              |  |
| STD-N          |              | 1.79        | 0.052        | 70.0        | 2.04         |  |
| KCI-a          |              |             |              | 1659.0      | 48.38        |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

#### **CERTIFICATE OF ASSAY AK 96-679**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 15-Nov-96

ATTENTION: BILL TAYLOR

No. of samples received: 9

Sample type: Core

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: None Given

|       |           | Au    | Au     |  |
|-------|-----------|-------|--------|--|
| ⊤T#.  | Tag #     | (g/t) | (oz/t) |  |
| 3 HOL | F 7 44385 | 0.11  | 0.003  |  |

QC/DATA:

Repeat:

3 HOLE 7 44374 0.09 0.003

Standard:

STD-M 1.79 0.052

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 614 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-706**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 15-Nov-96

ATTENTION: BILL TAYLOR

No. of samples received: 32 Sample type: 1/2 CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|      |               | Ag    | Ag     |  |
|------|---------------|-------|--------|--|
| ℉T#. | Tag #         | (g/t) | (oz/t) |  |
| 27   | HOLE \$ 57706 | 11.4  | 0.33   |  |

QC/DATA:

Standard:

STD-M

70.0

2.04

XLS/96TARCO#3

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer





10041 E. irans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-827**

TARCO OIL & GAS LTD 500-717 SEVENTH AVE S.W. CALGARY, AB T2P 0Z3 15-Nov-96

ATTENTION: BILL TAYLOR

No. of samples received: 11

Sample type: CORE PROJECT #: None given SHIPMENT #: None given

Samples submitted by: Not indicated

|                                 |                              | Au           | Au             | Ag    | Ag     | Mo    |  |
|---------------------------------|------------------------------|--------------|----------------|-------|--------|-------|--|
| ςΤ#.                            | Tag #                        | (g/t)        | (oz/t)         | (g/t) | (oz/t) | (%)   |  |
| 4                               | HOLE 9 63787                 | 0.06         | 0.002          |       |        |       |  |
| 8                               | HOLE 9 63791                 | 0.04         | 0.001          |       |        |       |  |
| 10                              | HOLE 9 63793                 | 0.09         | 0.003          |       |        |       |  |
| 11                              | HOLE 9 63794                 |              |                | 12.5  | 0.37   | 0.018 |  |
| QC/D.<br>Repeated<br>4<br>Stand | at:<br>HOLE 9 63787<br>lard: | 0.04<br>1.79 | 0.001<br>0.052 | 70.0  | 2.04   | 0.50  |  |
| PR-I                            |                              |              |                |       |        | 0.59  |  |

EGO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

#### **CERTIFICATE OF ASSAY AK 96-798**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

15-Nov-96

ATTENTION: BILL TAYLOR

No. of samples received: 11

Sample type: CORE

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT INDICATED

|      |              | Au    | Au     |  |
|------|--------------|-------|--------|--|
| ът#. | Tag #        | (g/t) | (oz/t) |  |
| 11   | HOLE 9 63778 | 0.53  | 0.015  |  |

QC/DATA:

Repeat:

11 HOLE 9 63778 0.20 0.006 **Standard**:

STD-M 1.79 0.052

**ÉCO-TECH LABORATORIES LTD.** 

Prank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. \ 2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ASSAY AK 96-777A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 24-Jan-97

ATTENTION: GARY STEWART

HOLE#3

No. of samples received: 11

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|                        |       | Au    | Au     |  |
|------------------------|-------|-------|--------|--|
| ₹T#.                   | Tag # | (g/t) | (oz/t) |  |
| 1                      | 57700 | 0.01  | <.001  |  |
| 3                      | 63752 | 0.05  | 0.001  |  |
| 4                      | 63753 | 0.03  | 0.001  |  |
| 5                      | 63754 | <.01  | <.001  |  |
| QC/DA<br>Repeat        |       | 0.01  | <.001  |  |
| <i>Standa</i><br>STD-M |       | 1.31  | 0.038  |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ANALYSIS AK 96-777G2**

TARCO OIL & GAS LTD.

22-Jan-97

500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: GARY STEWART

HOLE #3

No. of samples received: 11

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

| ~~ #.                     | Tag #       | Ag<br>(ppm) |    |  |
|---------------------------|-------------|-------------|----|--|
|                           | 57700       | 3.7         |    |  |
| 3                         | 63752       | 3.0         |    |  |
| 4                         | 63753       | 1.3         |    |  |
| 5                         | 63754       | 1.0         |    |  |
| QC DA<br>Resplit<br>R/S 1 |             | 3.1         | 17 |  |
| Repeat<br>1               | t:<br>57700 | 3.6         | 9  |  |
| Standa<br>GEO'97          |             | 1.3         | 4  |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

...S/96Tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-798A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 24-Jan-97

ATTENTION: GARY STEWART

HOLE#9

No. of samples received: 11

Sample type: CORE

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT INDICATED

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

\_S/96tarco



22-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kauticops, B.C. V2C 6T4 Phone (250) 573 5700 Fax (250) 573-4557

#### **CERTIFICATE OF ANALYSIS AK 96-798G2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: BILL TAYLOR

HOLE#9

No. of samples received: 11

Sample type: CORE

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT INDICATED

|                 |       | Ag    | Mo    |  |
|-----------------|-------|-------|-------|--|
| T#.             | Tag # | (ppm) | (ppm) |  |
| 5               | 63772 | 1.0   | 2     |  |
| 6               | 63773 | 1.7   | 6     |  |
| 7               | 63774 | 0.3   | 10    |  |
| 8               | 63775 | 4.8   | 7     |  |
| 9               | 63776 | 5.5   | 8     |  |
| 10              | 63777 | 0.8   | 14    |  |
| 11              | 63778 | 0.4   | 12    |  |
| QC DA<br>Standa |       |       |       |  |
| GEO'97          | 7     | 1.3   | 2     |  |

ECO-TECH LABORATORIES LTD

Pe Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

xLS/96tarco





10041 E. Trans Canada Hwy., R.R. #2. Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-808A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 24-Jan-97

ATTENTION: GARY STEWART

HOLE#9

No. of samples received: 5

Sample type: CORE

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT INDICATED

|                 |       | Au    | Au     |   |
|-----------------|-------|-------|--------|---|
| ⁻T#.            | Tag # | (g/t) | (oz/t) |   |
| 1               | 63779 | 0.01  | <.001  |   |
| 2               | 63780 | 0.01  | <.001  |   |
| 3               | 63781 | 0.01  | <.001  |   |
| 4               | 63782 | 0.02  | 0.001  |   |
| 5               | 63783 | <.01  | <.001  |   |
| QC/DA<br>Repeat |       | <.01  | <.001  | • |
| Standa<br>STD-M |       | 1.18  | 0.034  |   |

XLS/96tarco

Prenk J. Pezzotti, A.Sc.T.

B.C. Certified Assayer



22-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

#### **CERTIFICATE OF ANALYSIS AK 96-808G2**

TARCO OIL & GAS LTD.

500-717 7TH AVE. S.W. CALGARY, ALBERTA

T2P 0Z3

**ATTENTION: GARY STEWART** 

HOLE#9

No. of samples received: 5

Sample type: CORE

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT INDICATED

|                           |       | Ag    | Mo    |
|---------------------------|-------|-------|-------|
| <del>*</del> #.           | Tag # | (ppm) | (ppm) |
| 1                         | 63779 | <0.1  | 8     |
| 2                         | 63780 | <0.1  | 8     |
| 3                         | 63781 | 0.6   | 19    |
| 4                         | 63782 | 1.0   | 12    |
| 5                         | 63783 | 1.1   | 23    |
| QC DA<br>Resplit<br>R/S 1 | 63779 | <0.1  | 8     |
| 1                         | 63779 | <0.1  | 9     |
| Standa<br>GEO'97          |       | 1.3   | 2     |

**ECO-TECH LABORATORIES LTD.** 

Prank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ALS/96Tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-827A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 24-Jan-97

ATTENTION: GARY STEWART

HOLE#9

No. of samples received: 11

Sample type: CORE PROJECT #: None given SHIPMENT #: None given

Samples submitted by: Not indicated

|                   |       | Au    | Au     |
|-------------------|-------|-------|--------|
| ⁻·T #.            | Tag # | (g/t) | (oz/t) |
| 1                 | 63784 | <.01  | <.001  |
| 2                 | 63785 | <.01  | <.001  |
| 3                 | 63786 | <.01  | <.001  |
| 5                 | 63788 | <.01  | <.001  |
| 6                 | 63789 | <.01  | <.001  |
| 7                 | 63790 | <.01  | <.001  |
| 9                 | 63792 | 0.02  | 0.001  |
| 11                | 63794 | 0.03  | 0.001  |
| 12                | 63795 | 0.01  | <.001  |
|                   | _     |       |        |
| QC/DAT            |       |       |        |
| Resplit:<br>R/S 1 | 63784 | 0.01  | <.001  |
| Repeat:           | 63784 | 0.01  | <.001  |
|                   |       |       |        |
| Standar<br>STD-M  | d:    | 1.18  | 0.034  |

ECO-TECH LABORATORIES LTD.

Fank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96tarco



22-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

#### **CERTIFICATE OF ANALYSIS AK 96-827G2**

TARCO OIL & GAS LTD.

500-717 7TH AVE. S.W.

**CALGARY, ALBERTA** 

T2P 0Z3

ATTENTION: GARY STEWART

HOLE#9

No. of samples received: 11

Sample type: CORE PROJECT #: None given SHIPMENT #: None given

Samples submitted by: Not indicated

|             |       | Ag    | Mo    |  |
|-------------|-------|-------|-------|--|
| ~ <u>#.</u> | Tag # | (ppm) | (ppm) |  |
| , —         | 63784 | 1.0   | 11    |  |
| 2           | 63785 | 2.0   | 9     |  |
| 3           | 63786 | 0.3   | 99    |  |
| 4           | 63787 | 3.4   | 38    |  |
| 5           | 63788 | 2.1   | 7     |  |
| 6           | 63789 | 3.6   | 66    |  |
| 7           | 63790 | 1.8   | 27    |  |
| 8           | 63791 | 6.9   | 118   |  |
| 9           | 63792 | 7.5   | 27    |  |
| 10          | 63793 | 7.1   | 94    |  |
| 12          | 63795 | <0.1  | 94    |  |
| QC DA       | TA:   |       |       |  |
| Respli      |       |       |       |  |
| R/S 1       | 63784 | 1.6   | 16    |  |
| Repeat      | t:    |       |       |  |
| 1           | 63784 | 1.3   | 13    |  |
| Standa      | ard:  |       |       |  |
| GEO'9       | 7     | 1.3   | 2     |  |
|             |       |       |       |  |

ECO-TECH LABORATORIES LTD.

PerFrank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

∧∟S/96Tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V\_C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-487A2**

**TARCO OIL & GAS** 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

24-Jan-97

ATTENTION: GARY STEWART

HOLE#3

No. of samples received: 7

Sample type: CORE

PROJECT #: NONE GIVEN

SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|       |       | Au    | Au     |  |
|-------|-------|-------|--------|--|
| ⁻T #. | Tag # | (g/t) | (oz/t) |  |
| 1     | 44218 | <.01  | <.001  |  |
| 5     | 44222 | 0.01  | <.001  |  |

QC/DATA:

Standard:

STD-M

1.32

0.038

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 674 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ANALYSIS AK 96-487G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 22-Jan-97

ATTENTION: GARY STEWART

HOLE#3

No. of samples received: 7 Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

| `#.       | Tag # | Ag Mo<br>(ppm) (ppm) |
|-----------|-------|----------------------|
| <u>"-</u> |       |                      |
| 1         | 44218 |                      |
| 2         | 44219 | - 24                 |
| 3         | 44220 | - 47                 |
| 4         | 44221 | 7.2 19               |
| 5         | 44222 | 2.2 17               |
| 6         | 44223 | - 17                 |
|           |       |                      |
|           |       |                      |
|           |       |                      |
| QC DA     | TA:   |                      |

QC DATA:

Repeat:

1 44218 1.5 58

Standard:

GEO'97 1.3 1

ECO-TECH ABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ALS/96Tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-510A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 24-Jan-97

ATTENTION: GARY STEWART HOLE # 3 (1&2) HOLE # 4 (3-6)

No. of samples received: 6

Sample type: ROCK

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT INDICATED

|                 |       | Au    | Au     |  |
|-----------------|-------|-------|--------|--|
| ₹T#.            | Tag # | (g/t) | (oz/t) |  |
| 1               | 44225 | 0.03  | 0.001  |  |
| 2               | 44226 | 0.12  | 0.003  |  |
| 3               | 44227 | 0.02  | 0.001  |  |
| 4               | 44228 | 0.05  | 0.001  |  |
| 5               | 44229 | <.01  | <.001  |  |
| 6               | 44230 | 0.01  | <.001  |  |
| QC/DA<br>Repeat |       | 0.02  | 0.001  |  |
| Standa<br>STD-M |       | 1.32  | 0.038  |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

\_S/96tarco



22-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kar-lcops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ANALYSIS AK 96-510G2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART HOLE # 3 (1&2) HOLE # 4 (3-6)

No. of samples received: 6

Sample type: ROCK

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT INDICATED

|                 | Ag                                                 | Mo                                                                                                                                      |                                                                                                                                                                                                                                                                              |
|-----------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tag #           | (ppm)                                              | (ppm)                                                                                                                                   |                                                                                                                                                                                                                                                                              |
| 44225           | 7.8                                                | 799                                                                                                                                     |                                                                                                                                                                                                                                                                              |
| 44226           | 2.2                                                | 200                                                                                                                                     |                                                                                                                                                                                                                                                                              |
| 44227           | 6.2                                                | 7                                                                                                                                       |                                                                                                                                                                                                                                                                              |
| 44228           | 8.2                                                | 42                                                                                                                                      |                                                                                                                                                                                                                                                                              |
| 44229           | 1.8                                                | 10                                                                                                                                      |                                                                                                                                                                                                                                                                              |
| 44230           | 0.5                                                | 11                                                                                                                                      |                                                                                                                                                                                                                                                                              |
| <u>A:</u><br>d: | 1.3                                                | 1                                                                                                                                       |                                                                                                                                                                                                                                                                              |
|                 | 44225<br>44226<br>44227<br>44228<br>44229<br>44230 | Tag #     (ppm)       44225     7.8       44226     2.2       44227     6.2       44228     8.2       44229     1.8       44230     0.5 | Tag #         (ppm)         (ppm)           44225         7.8         799           44226         2.2         200           44227         6.2         7           44228         8.2         42           44229         1.8         10           44230         0.5         11 |

XLS/96tarco

ECO-TECH LABORATORIES LTD
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-511A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 24-Jan-97

ATTENTION: GARY STEWART

HOLE#4

No. of samples received: 4

Sample type: Rock PROJECT: # None Given SHIPMENT: # None Given

Samples submitted by: Henry Pederson

| ¬T #.           | Tag # | Au<br>(g/t) | Au<br>(oz/t) |   |
|-----------------|-------|-------------|--------------|---|
| 1               | 44231 | <.01        | <.001        | = |
| 2               | 44232 | <.01        | <.001        |   |
| 3               | 44233 | <.01        | <.001        |   |
| 4               | 44234 | <.01        | <.001        |   |
| QC/DA<br>Repeat |       | 0.01        | <.001        |   |
| Standa<br>STD-M |       | 1.32        | 0.038        |   |

ECO-TECH LABORATORIES LTD

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ANALYSIS AK 96-511G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 22-Jan-97

ATTENTION: GARY STEWART

HOLE#4

No. of samples received: 4

Sample type: Rock

PROJECT: # None Given SHIPMENT: # None Given

Samples submitted by: Henry Pederson

|     | IVIÇ      | Ag          |                         |    |
|-----|-----------|-------------|-------------------------|----|
|     | (ppm)     | (ppm)       | Tag #                   | #. |
| *** | 23        | 0.1         | 44231                   | 1  |
|     | 84        | <0.1        | 44232                   | 2  |
|     | 116       | 3.7         | 44233                   | 3  |
|     | 41        | 1.8         | 44234                   | 4  |
|     | 84<br>116 | <0.1<br>3.7 | 44231<br>44232<br>44233 | 2  |

QC DATA:

Standard:

GEO'97

1.3

1

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

∧∟S/96Tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ASSAY AK 96-561A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 24-Jan-97

ATTENTION: GARY STEWART

HOLE #5

No. of samples received: 11

Sample type: CORE-RESPLIT SAMPLES

PROJECT #: None given SHIPMENT #: None given

Samples submitted by: Not indicated

|                    |            | Au    | Au     |  |
|--------------------|------------|-------|--------|--|
| T#.                | Tag #      | (g/t) | (oz/t) |  |
| 1                  | 44235      | 0.02  | 0.001  |  |
| 3                  | 44237      | 0.02  | 0.001  |  |
| 11                 | 44245      | 0.01  | <.001  |  |
| QC/DA              |            |       |        |  |
| R/S 1              | 44235      | 0.01  | <.001  |  |
| 100                | 44200      | 0.01  | 3.001  |  |
| <b>Repeat</b><br>1 | :<br>44235 | 0.01  | <.001  |  |
| Standa<br>STD-M    | rd:        | 1.62  | 0.047  |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



22-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573 4557

## **CERTIFICATE OF ANALYSIS AK 96-561G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. **CALGARY, ALBERTA** T2P 0Z3

ATTENTION: BILL TAYLOR

HOLE #5

No. of samples received: 11

Sample type: CORE-RESPLIT SAMPLES

PROJECT #: None given SHIPMENT #: None given

Samples submitted by: Not indicated

| ⁻T#. | Tag # | Ag<br>(ppm) | Mo<br>(ppm) |  |
|------|-------|-------------|-------------|--|
| 1    | 44235 | 0.8         | 8           |  |
| 2    | 44236 | -           | 29          |  |
| 3    | 44237 | 1.7         | 5           |  |
| 11   | 44245 | 0.8         | 19          |  |

QC DATA: Standard:

GEO'97

1.3

1

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V23 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-585A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 24-Jan-97

ATTENTION: GARY STEWART

HOLE #5

No. of samples received: 14

Sample type: Core PROJECT #: none given SHIPMENT #: none given

Samples submitted by: J.D. Murphy

|        |          | Au    | Au     |  |  |
|--------|----------|-------|--------|--|--|
| ⁻T#.   | Tag #    | (g/t) | (oz/t) |  |  |
| 1      | 44246    | 0.04  | 0.001  |  |  |
| 2      | 44247    | 0.03  | 0.001  |  |  |
| 3      | 44248    | <.01  | <.001  |  |  |
| 4      | 44249    | <.01  | <.001  |  |  |
| 5      | 44250    | 0.02  | 0.001  |  |  |
| 6      | 44251    | 0.04  | 0.001  |  |  |
| 7      | 44252    | 0.05  | 0.001  |  |  |
| 8      | 44253    | <.01  | <.001  |  |  |
| 9      | 44254    | 0.01  | <.001  |  |  |
| 10     | 44255    | <.01  | <.001  |  |  |
| 11     | 44256    | <.01  | <.001  |  |  |
| 12     | 44257    | <.01  | <.001  |  |  |
| 13     | 44258    | 0.03  | 0.001  |  |  |
| 14     | 44259    | 0.01  | <.001  |  |  |
| QC/DA  | QC/DATA: |       |        |  |  |
| Repeat | t:       |       |        |  |  |
| 1      | 44246    | 0.03  | 0.001  |  |  |
| Standa | rd:      |       |        |  |  |
| STD-M  |          | 1.32  | 0.038  |  |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



22-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ANALYSIS AK 96-585G2**

TARCO OIL & GAS LTD.

500-717 7TH AVE. S.W.

**CALGARY, ALBERTA** 

T2P 0Z3

ATTENTION: GARY STEWART

HOLE #5

No. of samples received: 14

Sample type: Core

PROJECT #: none given

SHIPMENT #: none given

Samples submitted by: J.D. Murphy

|      |       | Ag       | Мо  |
|------|-------|----------|-----|
| `T#. | Tag # | (ppm) (p | pm) |
| 1    | 44246 | 2.1      | 50  |
| 2    | 44247 | 6.4      | 159 |
| 3    | 44248 | NO SAM   | PLE |
| 4    | 44249 | 0.1      | 18  |
| 5    | 44250 | 2.0      | 54  |
| 6    | 44251 | 0.9      | 63  |
| 7    | 44252 | 6.4      | 112 |
| 8    | 44253 | <0.1     | 11  |
| 9    | 44254 | <0.1     | 14  |
| 10   | 44255 | <0.1     | 90  |
| 11   | 44256 | <0.1     | 108 |
| 12   | 44257 | <0.1     | 38  |
| 13   | 44258 | 0.6      | 11  |
| 14   | 44259 | 1.2      | 22  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

|                          |           | Ag    | Мо    |  |
|--------------------------|-----------|-------|-------|--|
| ET #.                    | Tag #     | (ppm) | (ppm) |  |
| QC DAT                   | <u>A:</u> |       |       |  |
| R/S 1                    | 44246     | 2.2   | 45    |  |
| R/S 8                    | 44253     | <0.1  | 7     |  |
| R/S 10                   | 44255     | <0.1  | 87    |  |
| Repeat:                  | 44246     | 2.2   | 50    |  |
| <b>Standar</b><br>GEO'97 | d:        | 1.3   | 1     |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96Tarco



10041 E. Irans Canada Hwy., R.R. #2, Kamioops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 96-608A2**

**TARCO OIL & GAS** 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

24-Jan-97

ATTENTION: GARY STEWART

HOLE #5

No. of samples received: 17

Sample type: CORE

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT INDICATED

|      |       | Au    | Au     |  |
|------|-------|-------|--------|--|
| T #. | Tag # | (g/t) | (oz/t) |  |
| 3    | 44262 | 0.01  | <.001  |  |
| 4    | 44263 | 0.01  | <.001  |  |
| 5    | 44264 | <.01  | <.001  |  |
| 6    | 44265 | 0.04  | 0.001  |  |
| 7    | 44266 | 0.02  | 0.001  |  |
| 8    | 44267 | 0.01  | < .001 |  |
| 9    | 44268 | 0.03  | 0.001  |  |
| 10   | 44269 | 0.02  | 0.001  |  |
| 12   | 44271 | 0.04  | 0.001  |  |
| 14   | 44273 | 0.04  | 0.001  |  |
| 15   | 44274 | 0.01  | <.001  |  |
| 16   | 44275 | 0.16  | 0.005  |  |

QC/DATA:

Standard:

STD-M

1.32 0.038

**ECO-TECH LABORATORIES LTD.** 

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 674 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ANALYSIS AK 96-608G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA

21-Jan-97

T2P 0Z3

**ATTENTION: GARY STEWART** 

HOLE #5

No. of samples received: 17

Sample type: CORE

PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT INDICATED

|        |       | Ag    | Мо    |                               |
|--------|-------|-------|-------|-------------------------------|
| ET #.  | Tag # | (ppm) | (ppm) |                               |
| 1      | 44260 | 5.0   | 36    |                               |
|        | 44261 | -     | 24    |                               |
| 3      | 44262 | 1.6   | 13    |                               |
| 4      | 44263 | 2.9   | 7     |                               |
| 5      | 44264 | 7.0   | 12    |                               |
| 6      | 44265 | 3.3   | 6     |                               |
| 7      | 44266 | 9.5   | 8     |                               |
| 8      | 44267 | 9.7   | 9     | •                             |
| 9      | 44268 | 2.5   | 9     |                               |
| 10     | 44269 | 2.4   | 106   |                               |
| 11     | 44270 | 1.7   | 25    |                               |
| 12     | 44271 | 5.5   | 6     |                               |
| 13     | 44272 | 4.8   | 7     |                               |
| 14     | 44273 | 4.1   | 4     |                               |
| 15     | 44274 | 2.7   | 8     |                               |
| 16     | 44275 | 1.2   | 11    |                               |
| QC DA  | TA:   |       |       |                               |
| Respli | t:    |       |       |                               |
| R/S 1  | 44260 | 5.1   | 33    |                               |
| Repeat | t:    |       |       |                               |
| 1      | 44260 | 4.9   | 38    |                               |
| Standa | ard:  |       |       | 1 ,                           |
| GEO'9  | 7     | 1.4   | 2     |                               |
|        |       |       |       | ECO-TECH LABORATORIES LTD     |
|        |       |       |       | وح Frank J. Pezzotti, A.Sc.T. |
| XLS/96 | Tarco |       |       | R.C. Certified Assayor        |

**B.C. Certified Assayer** 



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-621A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 24-Jan-97

ATTENTION: GARY STEWART

HOLE#6

No. of samples received: 12

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|        |       | Au    | Au     |  |
|--------|-------|-------|--------|--|
| ₹T#    | Tag # | (g/t) | (oz/t) |  |
| 2      | 44278 | 0.01  | <.001  |  |
| 3      | 44279 | 0.08  | 0.002  |  |
| 4      | 44280 | 0.01  | <.001  |  |
| 5      | 44281 | 0.01  | <.001  |  |
| 6      | 44282 | 0.03  | 0.001  |  |
| 7      | 44283 | 0.01  | <.001  |  |
| 8      | 44284 | 0.02  | 0.001  |  |
| 10     | 44286 | 0.03  | 0.001  |  |
| 11     | 44287 | 0.04  | 0.001  |  |
| 13     | 44289 | 0.02  | 0.001  |  |
|        |       |       |        |  |
| QC/DA  |       |       |        |  |
| 2      | 44278 | 0.02  | 0.001  |  |
| Standa | rd:   |       |        |  |
| STD-M  |       | 1.62  | 0.047  |  |

ECO-TECH LABORATORIES LTD.



23-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kam Lups, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ANALYSIS AK 96-621G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: GARY STEWART

HOLE#6

No. of samples received: 12

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|           |       | <b>Ag</b> i | Mo |
|-----------|-------|-------------|----|
| <b>#.</b> | Tag # | (ppm) (pp   | m) |
|           | 44278 | 1.1         | -  |
| 3         | 44279 | 4.2         | 76 |
| 4         | 44280 | <0.1        | 21 |
| 5         | 44281 | 0.5         | 21 |
| 6         | 44282 | 3.1         | 21 |
| 7         | 44283 | <0.1        | 25 |
| 8         | 44284 | 1.2 1       | 01 |
| 9         | 44285 | -           | 12 |
| 10        | 44286 | 5.7         | 6  |
| 11        | 44287 | 1.9         | 11 |
| 12        | 44288 | 3.3         | 65 |
| 13        | 44289 | 0.3         | 12 |
| QC DA     | TA:   |             |    |
| Repeat    | t:    |             |    |
| 2         | 44278 | 1.0         | -  |
| Standa    | ırd:  |             |    |
| GEO'97    | 7     | 1.3         | 1  |

ECO-TECH LABORATORIES LTD.

B.C. Certified Assayer

∧∟S/96Tarco



:0041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-638A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 24-Jan-97

ATTENTION: GARY STEWART

HOLE#6

No. of samples received: 11

Sample type: Core

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: Not Indicated

|       | Au                               | Au                                                                                                  |                                                                               |
|-------|----------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Tag # | (g/t)                            | (oz/t)                                                                                              |                                                                               |
| 44310 | 0.01                             | <.001                                                                                               |                                                                               |
| 44311 | 0.02                             | 0.001                                                                                               |                                                                               |
| 44312 | 0.01                             | <.001                                                                                               |                                                                               |
| 44313 | 0.01                             | <.001                                                                                               |                                                                               |
| 44315 | 0.04                             | 0.001                                                                                               |                                                                               |
|       | 44310<br>44311<br>44312<br>44313 | Tag #     (g/t)       44310     0.01       44311     0.02       44312     0.01       44313     0.01 | Tag #         (g/t)         (oz/t)           44310         0.01         <.001 |

QC/DATA:

Standard:

STD-M 1.62 0.047

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ANALYSIS AK 96-638G2**

TARCO OIL & GAS LTD.

22-Jan-97

500-717 7TH AVE. S.W. **CALGARY, ALBERTA** T2P 0Z3

ATTENTION: GARY STEWART

HOLE #6

No. of samples received: 11

Sample type: Core

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: Not Indicated

|             |       | Ag    | Mo    |  |
|-------------|-------|-------|-------|--|
| ₹ <u>#.</u> | Tag # | (ppm) | (ppm) |  |
|             | 44310 | 0.6   | -     |  |
| 7           | 44311 | 0.3   | 51    |  |
| 8           | 44312 | 4.0   | 128   |  |
| 9           | 44313 | 2.1   | 50    |  |
| 11          | 44315 | 3.3   | 66    |  |
|             |       |       |       |  |

QC DATA:

Standard:

GEO'97

1.4

3

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ALS/96Tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ASSAY AK 96-646A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 24-Jan-97

ATTENTION: GARY STEWART HOLE # 6 (1-4) HOLE #5 (16,17,18)

No. of samples received: 5

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|      |       | Au    | Au      |  |
|------|-------|-------|---------|--|
| ¬Τ#. | Tag # | (g/t) | (oz/t)_ |  |
| 1    | 44316 | 0.03  | 0.001   |  |
| 2    | 44317 | 0.03  | 0.001   |  |
| 3    | 44318 | 0.01  | <.001   |  |
| 4    | 44319 | 0.02  | 0.001   |  |
| 16   | 44331 | 0.01  | <.001   |  |
| 17   | 44332 | 0.01  | <.001   |  |
| 18   | 44333 | 0.03  | 0.001   |  |
|      |       |       |         |  |

QC/DATA:

Repeat:

44316 0.04 0.001

Standard:

STD-M 1.62 0.047

ECO-TECH LABORATORIES LTD.

Frank J. Pezzőtti, A.Sc.T.

B.C. Certified Assayer



22-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ANALYSIS AK 96-646G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA

T2P 0Z3

ATTENTION: GARY STEWART HOLE # 6 (1-4) HOLE #5 (16,17,18)

No. of samples received: 5

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|               |       | Ag Mo       |  |
|---------------|-------|-------------|--|
| ¯#.           | Tag # | (ppm) (ppm) |  |
| , <del></del> | 44316 | 1.6 42      |  |
| 2             | 44317 | 0.9 44      |  |
| 3             | 44318 | 1.5 49      |  |
| 4             | 44319 | 2.3 6       |  |
| 16            | 44331 | 0.2 6       |  |
| 17            | 44332 | <0.1 78     |  |
| 18            | 44333 | 3.2 8       |  |
|               |       |             |  |
|               |       |             |  |

QC DATA:

Standard:

GEO'97

1.4

3

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

∧LS/96Tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamioops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-661A2**

**TARCO OIL & GAS** 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

24-Jan-97

ATTENTION: GARY STEWART

HOLE #7

No. of samples received:14 PROJECT #:NONE GIVEN SHIPMENT #NONE GIVEN

P.O.#: NONE GIVEN

Samples submitted by:NOT INDICATED

|      |       | Au    | Au     |  |
|------|-------|-------|--------|--|
| ¬T#. | Tag # | (g/t) | (oz/t) |  |
| 13   | 44370 | 0.01  | <.001  |  |
| 14   | 44371 | 0.03  | 0.001  |  |

QC/DATA:

Standard:

STD-M

1.62

0.047

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Karmoops, B C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ANALYSIS AK 96-661G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 22-Jan-97

ATTENTION: GARY STEWART

HOLE #7

No. of samples received:14
PROJECT #:NONE GIVEN
SHIPMENT #NONE GIVEN
P.O.#: NONE GIVEN
Samples submitted by:NOT INDICATED

|     |       | Ag    | Мо    |  |
|-----|-------|-------|-------|--|
| `#. | Tag # | (ppm) | (ppm) |  |
| . ૩ | 44370 | 0.9   | 83    |  |
| 14  | 44371 | 3.3   | -     |  |

QC DATA:

Standard:

GEO'97

1.4

3

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

∧∟S/96Tarco





10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERT!FICATE OF ASSAY AK 96-669A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 23-Jan-97

ATTENTION: GARY STEWART

HOLE #7

No. of samples received: 7 Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN

Samples submitted by: NOT INDICATED

|                  |             | Au    | Au     |  |
|------------------|-------------|-------|--------|--|
| ኙ <u>ፐ</u> #.    | Tag #       | (g/t) | (oz/t) |  |
| 1                | 44372       | 0.01  | <.001  |  |
| 2                | 44373       | 0.02  | 0.001  |  |
| 6                | 44377       | 0.01  | <.001  |  |
| 7                | 44378       | 0.06  | 0.002  |  |
| 8                | 44379       | < .01 | <.001  |  |
| 9                | 44380       | <.01  | <.001  |  |
| 10               | 44381       | <.01  | <.001  |  |
| QC/DA            |             |       |        |  |
| Resplit<br>R/S 1 | t:<br>44372 | 0.08  | 0.002  |  |
| Repeat<br>1      | ::<br>44372 | 0.01  | <.001  |  |
| Standa<br>STD-M  |             | 1.31  | 0.038  |  |

ECO-TECH LABORATORIÉS LTD



22-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kamlonps, B.C V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ANALYSIS AK 96-669G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA

T2P 0Z3

ATTENTION: GARY STEWART

HOLE#7

No. of samples received: 7 Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN

Samples submitted by: NOT INDICATED

|              |       | Ag    | Мо    |  |
|--------------|-------|-------|-------|--|
| ~ <b>#</b> . | Tag # | (ppm) | (ppm) |  |
| 1            | 44372 | 6.2   | 20    |  |
| 2            | 44373 | -     | 6     |  |
| 3            | 44374 | -     | 14    |  |
| 4            | 44375 | -     | 9     |  |
| 5            | 44376 | 1.6   | 11    |  |
| 6            | 44377 | <0.1  | 38    |  |
| 7            | 44378 | 0.6   | 6     |  |
| 8            | 44379 | <0.1  | 120   |  |
| 9            | 44380 | <0.1  | 476   |  |
| 10           | 44381 | 0.5   | 18    |  |
| 11           | 44382 | 1,2   | 17    |  |
| QC DA        |       |       |       |  |
| 1            | 44372 | 6.6   | 23    |  |
| Standa       | rd:   |       |       |  |
| GEO'97       | 7     | 1.4   | 3     |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

∧∟S/96Tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-679A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 24-Jan-97

ATTENTION: GARY STEWART

HOLE #7

No. of samples received: 9

Sample type: Core

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: None Given

|                 |               | Au    | Au     |  |
|-----------------|---------------|-------|--------|--|
| ⁻T #.           | Tag #         | (g/t) | (oz/t) |  |
| 1               | 44383         | 0.01  | <.001  |  |
| 2               | 44384         | 0.02  | 0.001  |  |
| 4               | 44386         | 0.10  | 0.003  |  |
| 5               | 44387         | 0.03  | 0.001  |  |
| QC/DA           | <del>::</del> | 0.05  | 0.001  |  |
| R/S 1           | 44383         | 0.05  | 0.001  |  |
| Standa<br>STD-M |               | 1.62  | 0.047  |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



22-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2c 3T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ANALYSIS AK 96-679G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA

T2P 0Z3

ATTENTION: GARY STEWART

HOLE #7

No. of samples received: 9

Sample type: Core

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: None Given

|                                          |                     | Ag         | Мо    |  |
|------------------------------------------|---------------------|------------|-------|--|
| `#.                                      | Tag #               | (ppm)      | (ppm) |  |
| 1                                        | 44383               | 6.3        | 24    |  |
| 2                                        | 44384               | 1.7        | 9     |  |
| 3                                        | 44385               | 3.2        | 67    |  |
| 4                                        | 44386               | 2.3        | 27    |  |
| 5                                        | 44387               | 0.8        | 24    |  |
| QC DA<br>Repeat<br>1<br>Standa<br>GEO'97 | 44383<br><i>rd:</i> | 6.1<br>1.4 | 21    |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

∧LS/96Tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ASSAY AK 96-706A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB

T2P 0Z3

24-Jan-97

ATTENTION: GARY STEWART

HOLE # 8 (4-12) HOLE # 4 (25,26,27-29)

No. of samples received: 32 Sample type: 1/2 CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|        |       | Au    | Au     |  |
|--------|-------|-------|--------|--|
| ⁻T#.   | Tag # | (g/t) | (oz/t) |  |
| 4      | 57655 | <.01  | <.001  |  |
| 5      | 57656 | 0.01  | <.001  |  |
| 6      | 57657 | 0.05  | 0.001  |  |
| 7      | 57658 | 0.01  | <.001  |  |
| 8      | 57659 | 0.01  | <.001  |  |
| 9      | 57660 | <.01  | <.001  |  |
| 10     | 57661 | <.01  | <.001  |  |
| 11     | 57662 | 0.03  | 0.001  |  |
| 12     | 57663 | <.01  | <.001  |  |
| 27     | 57706 | 0.03  | 0.001  |  |
| 28     | 57707 | 0.01  | <.001  |  |
| 29     | 57708 | <.01  | <.001  |  |
|        |       |       |        |  |
|        |       |       |        |  |
| QC/DA  |       |       |        |  |
| Repeat |       |       |        |  |
| 4      | 57655 | 0.01  | <.001  |  |
| Standa | rd:   |       |        |  |
| STD-M  |       | 1.31  | 0.038  |  |
|        |       |       |        |  |

ECO-TECH LABORATORIES LTD.



22-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kamioops, B.C. v2C 614 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ANALYSIS AK 96-706G2**

TARCO OIL & GAS LTD.

500-717 7TH AVE. S.W.

CALGARY, ALBERTA

T2P 0Z3

ATTENTION: GARY STEWART

HOLE # 8 (4-12) HOLE # 4 (25,26,27-29)

No. of samples received: 32 Sample type: 1/2 CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

| <del>-</del> #. | Tag # | Ag<br>(ppm) | Mo<br>(ppm) |  |
|-----------------|-------|-------------|-------------|--|
| +               | 57655 | 1.0         | 7           |  |
| 5               | 57656 | 8.6         | 17          |  |
| 6               | 57657 | <0.1        | 7           |  |
| 7               | 57658 | <0.1        | 12          |  |
| 8               | 57659 | <0.1        | 10          |  |
| 9               | 57660 | 1.3         | 9           |  |
| 10              | 57661 | 0.4         | 11          |  |
| 11              | 57662 | 2.3         | 8           |  |
| 12              | 57663 | <0.1        | 8           |  |
| 27              | 57706 | -           | 7           |  |
| 28              | 57707 | 3.3         | 7           |  |
| 29              | 57708 | 0.1         | 17          |  |
| QC DA           |       |             |             |  |
| GEO'97          | 7     | 1.3         | 4           |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ASSAY AK 96-720A2**

**TARCO OIL & GAS** 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

24-Jan-97

ATTENTION: GARY STEWART

HOLE#4

No. of samples received: 10 Sample type: CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|      |       | Au    | Au     |  |
|------|-------|-------|--------|--|
| ΈT#. | Tag # | (g/t) | (oz/t) |  |
| 9    | 57714 | 0.01  | <.001  |  |

QC/DATA:

Repeat:

9 57714 0.06 0.002

Standard:

1.31 0.038 STD-M

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamioops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ANALYSIS AK 96-720G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. **CALGARY, ALBERTA** T2P 0Z3

22-Jan-97

ATTENTION: GARY STEWART

HOLE#4

No. of samples received: 10

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|    |       | Ag    | Mo    |  |
|----|-------|-------|-------|--|
| *# | Tag # | (ppm) | (ppm) |  |
| J  | 57714 | 2.4   | 45    |  |

QC DATA:

Standard:

GEO'97

1.3

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

3/96Tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-732A2**

**TARCO OIL & GAS** 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

24-Jan-97

ATTENTION: GARY STEWART

HOLE#4

No. of samples received: 9

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: BILL TAYLOR

|      |       | Au    | Au     |  |
|------|-------|-------|--------|--|
| ⁻T#. | Tag # | (g/t) | (oz/t) |  |
| 8    | 57716 | 0.02  | 0.001  |  |
| 9    | 57717 | <.01  | <.001  |  |

QC/DATA:

Repeat:

8 57716 0.09 0.003

Standard:

STD-M 1.31 0.038

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. **B.C. Certified Assayer** 



10041 E. Trans Canada Hwy., R.R. #2, Kamlocps, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ANALYSIS AK 96-732G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. **CALGARY, ALBERTA** T2P 0Z3

22-Jan-97

ATTENTION: GARY STEWART

HOLE#4

No. of samples received: 9

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: BILL TAYLOR

|           |       | Ag    | Мо    |  |
|-----------|-------|-------|-------|--|
| <u>#.</u> | Tag # | (ppm) | (ppm) |  |
| ن         | 57716 | 0.3   | 333   |  |
| 9         | 57717 | <0.1  | 527   |  |

QC DATA:

Standard:

GEO'97

1.3

4

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 96-746A2**

**TARCO OIL & GAS** 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

24-Jan-97

ATTENTION: GARY STEWART

HOLE #4

No. of samples received: 7

Sample type: core

PROJECT: # none given SHIPMENT: # none given

Samples submitted by: not indicated

|     |       | Au    | Au     |  |
|-----|-------|-------|--------|--|
| T#. | Tag # | (g/t) | (oz/t) |  |
| 7   | 57722 | <.01  | <.001  |  |

QC/DATA:

Repeat:

0.01 <.001 57722

Standard:

1.31 0.038 STD-M

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C ...T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ANALYSIS AK 96-746G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 22-Jan-97

ATTENTION: GARY STEWART

HOLE#4

No. of samples received: 7

Sample type: core

PROJECT: # none given SHIPMENT: # none given

Samples submitted by: not indicated

|                                        | IMO   | Ag    |       |    |
|----------------------------------------|-------|-------|-------|----|
| 1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - | (ppm) | (ppm) | Tag # | #. |
|                                        | 10    | <0.1  | 57722 |    |

QC DATA:

Standard:

GEO'97

1.3

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

3/96Tarco



24-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-754A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB

T2P 0Z3

ATTENTION: GARY STEWART

HOLE#4

No. of samples received: 11

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|               |       | Au    | Au     |  |
|---------------|-------|-------|--------|--|
| ₹ <u>T #.</u> | Tag # | (g/t) | (oz/t) |  |
| 1             | 57718 | <.01  | <.001  |  |
| 2             | 57719 | 0.01  | <.001  |  |
| 3             | 57720 | 0.02  | 0.001  |  |
| 4             | 57721 | 0.03  | 0.001  |  |
| 5             | 57722 | <.01  | <.001  |  |
| 6             | 57723 | <.01  | <.001  |  |
| 7             | 57724 | 0.02  | 0.001  |  |
| 8             | 57725 | 0.01  | <.001  |  |
| 9             | 57726 | 0.02  | 0.001  |  |
| 10            | 57727 | <.01  | <.001  |  |
|               |       |       |        |  |
| QC/DAT        |       |       |        |  |
| 1             | 57718 | <.01  | <.001  |  |
| Standar       | rd:   |       |        |  |
| STD-M         |       | 1.18  | 0.034  |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer





10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ANALYSIS AK 96-754G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3 22-Jan-97

ATTENTION: GARY STEWART

HOLE#4

No. of samples received: 11

Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|        |       | Ag    | Мо    |  |
|--------|-------|-------|-------|--|
| ⁻T #.  | Tag # | (ppm) | (ppm) |  |
| 1      | 57718 | 0.5   | 122   |  |
| 2      | 57719 | 3.8   | 69    |  |
| 3      | 57720 | 0.7   | -     |  |
| 4      | 57721 | 1.0   | 19    |  |
| 5      | 57722 | 1.3   | 10    |  |
| 6      | 57723 | 1.0   | 7     |  |
| 7      | 57724 | 2.4   | 14    |  |
| 8      | 57725 | 0.2   | 13    |  |
| 9      | 57726 | 3.2   | 109   |  |
| 10     | 57727 | <0.1  | 33    |  |
| QC DA  |       |       |       |  |
| 1      | 57718 | 0.9   | 116   |  |
| '      | 37710 | 0.5   | 110   |  |
| Standa | rd:   |       |       |  |
| GEO'97 | •     | 1.3   | 4     |  |

FOO-TECH LABORATORIES LTD.

B.C. Certified Assayer



24-Jan-97

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ASSAY AK 96-765A2**

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

HOLE #3

No. of samples received: 2 Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|                              |       | Au Au        |  |
|------------------------------|-------|--------------|--|
| FT#.                         | Tag # | (g/t) (oz/t) |  |
| 4                            | 57695 | 0.52 0.015   |  |
| 5                            | 57696 | 0.01 <.001   |  |
| 6                            | 57697 | <.01 <.001   |  |
| 7                            | 57698 | <.01 <.001   |  |
| 8                            | 57699 | <.01 <.001   |  |
| QC/DA <sup>*</sup><br>Standa |       |              |  |
| STD-M                        |       | 1.31 0.038   |  |

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### **CERTIFICATE OF ANALYSIS AK 96-765G2**

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA

22-Jan-97

T2P 0Z3

ATTENTION: GARY STEWART

HOLE #3

No. of samples received: 2 Sample type: CORE

PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

|    |       | Ag    | Mo    |  |
|----|-------|-------|-------|--|
| #. | Tag # | (ppm) | (ppm) |  |
| 4  | 57695 | 9.6   | 34    |  |
| 5  | 57696 | 3.1   | 21    |  |
| 6  | 57697 | 0.1   | 18    |  |
| 7  | 57698 | 0.6   | 11    |  |
| 8  | 57699 | <0.1  | 13    |  |

QC DATA: Standard:

GEO'97

1.3

4

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T.

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4 ICP CERTIFICATE OF ANALYSIS AK 96-475

TARCO OIL & GAS LTD. 500-717 SEVENTH AVE. S.W. CALGARY, AB T2P 0Z3

Phone: 604-573-5700 Fax : 604-573-4557 ATTENTION: BILL TAYLOR

No. of samples received: 1 Sample type: CORE PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN Samples submitted by: NOT INDICATED

Values in ppm unless otherwise reported

| Et #.     | Tag#  | Au(ppb) | Ag  | AI % | As | Ва  | Bi | Ca % | Cd | Co | Cr | Cu     | Fe % | La  | Mg % | Mn  | Mo | Na %  | Ni | P   | Pb         | Sb | Sn  | Sr | Ti %  | U          | ٧  | W   | Υ  | Zn |
|-----------|-------|---------|-----|------|----|-----|----|------|----|----|----|--------|------|-----|------|-----|----|-------|----|-----|------------|----|-----|----|-------|------------|----|-----|----|----|
| 3 Hole 1  | 44203 | 150     | 9.2 | 0.68 | <5 | 65  | <5 | 4.02 | <1 | 9  | 98 | >10000 | 2.92 | <10 | 0.49 | 670 | 12 | <0.01 | 6  | 410 | <2         | <5 | <20 | 39 | 0.01  | <10        | 13 | <10 | 14 | 23 |
|           |       |         |     |      |    |     |    |      |    |    |    |        |      |     |      |     |    |       |    |     |            |    |     |    |       |            |    |     |    |    |
|           |       |         |     |      |    |     |    |      |    |    |    |        |      |     |      |     |    |       |    |     |            |    |     |    |       |            |    |     |    |    |
|           |       |         |     |      |    |     |    |      |    |    |    |        |      |     |      |     |    |       |    |     |            |    |     |    |       |            |    |     |    |    |
|           |       |         |     |      |    |     |    |      |    |    |    |        |      |     |      |     |    |       |    |     |            |    |     |    |       |            |    |     |    |    |
| QC DATA:  |       |         |     |      |    |     |    |      |    |    |    |        |      |     |      |     |    |       |    |     |            |    |     |    |       |            |    |     |    |    |
| Repeat:   | 44202 | 260     | 0.0 | 0.61 | -6 | 60  | -E | 2 02 | -1 |    | 02 | >10000 | 2 00 | -10 | 0.44 | 674 | 10 | -0.01 | 5  | 420 | <2         | <5 | <20 | 27 | <0.01 | -10        | ۵  | <10 | 14 | 22 |
| 3         | 44203 | 200     | 9.0 | 0.61 | <5 | OU. | <5 | 3.83 | <1 | 9  | 92 | >10000 | 2.80 | ~10 | 0.44 | 624 | 10 | <0.01 | 3  | 420 | <b>\</b> 2 | ~5 | ~20 | 31 | 10.0  | <b>~10</b> | 9  | -10 | 14 | 22 |
| Standard: |       |         |     |      |    |     |    |      |    |    |    |        |      |     |      |     |    |       |    |     |            |    |     |    |       |            |    |     |    |    |
| GEO'96    |       | 145     | 1.4 | 1.68 | 60 | 150 | <5 | 1.76 | <1 | 19 | 65 | 82     | 4.10 | <10 | 0.99 | 670 | 1  | 0.01  | 21 | 660 | 20         | <5 | <20 | 58 | 0.10  | <10        | 70 | <10 | 8  | 67 |

df/798X XLS/96 EGO-TECH LABORATORIES LTD.
Trank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-487

TARCO OIL & GAS LTD. #500-717 SEVENTH AVE. S.W. CALGARY, AB T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 7 Sample type: CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: NOT INDICATED

### Values in ppm unless otherwise reported

| Et #.          | ,              | Tag#  | Au(ppb) | Ag   | Al % | As | Ва  | Bi | Ca % | Cd | Co | Сг  | Cu     | Fe % | La  | Mg % | Mn  | Mo Na%    | Ni | Р      | Pb | Sb | Sn  | Sr | Ti %  | U   | v_ | w   | Υ  | Zn |
|----------------|----------------|-------|---------|------|------|----|-----|----|------|----|----|-----|--------|------|-----|------|-----|-----------|----|--------|----|----|-----|----|-------|-----|----|-----|----|----|
| 1              | Hole 3         | 44218 | 5       | 1.6  | 0.32 | <5 | 115 | <5 | 2.79 | <1 | 9  | 67  | 2632   | >10  | <10 | 0.43 | 805 | 52 < 0.01 | 3  | 110    | <2 | <5 | <20 | 26 | 0.01  | <10 | 56 | 10  | <1 | 18 |
| 2              | Hole 3         | 44219 | 720     | >30  | 0.68 | <5 | 75  | <5 | 1.56 | <1 | 17 | 31  | >10000 | >10  | <10 | 0.86 | 644 | 33 < 0.01 | 3  | >10000 | <2 | <5 | <20 | 17 | <0.01 | <10 | 45 | 110 | <1 | 32 |
| 3              | Hole 3         | 44220 | 310     | 16.8 | 0.67 | <5 | 55  | <5 | 1.49 | <1 | 12 | 59  | >10000 | 5.02 | <10 | 0.60 | 452 | 44 < 0.01 | 4  | >10000 | <2 | <5 | <20 | 14 | <0.01 | <10 | 26 | 10  | <1 | 31 |
| 4              | Hole 3         | 44221 | 70      | 9.0  | 0.73 | <5 | 75  | <5 | 1.65 | <1 | 11 | 95  | >10000 | 3.68 | <10 | 0.53 | 457 | 19 < 0.01 | 6  | 480    | <2 | <5 | <20 | 16 | 0.01  | <10 | 20 | 10  | 5  | 29 |
| 5              | Hole 3         | 44222 | 5       | 2.4  | 0.72 | <5 | 75  | <5 | 1.72 | <1 | 10 | 81  | 5247   | 3.29 | <10 | 0.48 | 471 | 15 ა.01   | 5  | 580    | 2  | <5 | <20 | 21 | <0.01 | <10 | 21 | <10 | 7  | 24 |
| 6              | Hole 3         | 44223 | 135     | >30  | 0.95 | <5 | 45  | <5 | 2.09 | <1 | 18 | 41  | >10000 | 7.40 | <10 | 0.77 | 666 | 17 <0.01  | 6  | >10000 | <2 | <5 | <20 | 29 | <0.01 | <10 | 24 | 60  | <1 | 33 |
| 7              | Hole 3         | 44224 | 5       | 0.2  | 1.00 | <5 | 55  | <5 | 1.15 | <1 | 9  | 108 | 485    | 3.16 | <10 | 0.42 | 253 | 8 0.06    | 21 | 460    | 4  | <5 | <20 | 41 | 0.07  | <10 | 80 | 20  | 4  | 14 |
|                | lit:<br>Hole 3 | 44218 | 5       | -    | -    | -  | -   | -  | -    | -  | -  | -   | -      | -    | -   | -    | -   |           | -  | -      | -  | -  | -   | -  | -     | -   | -  | -   | -  | -  |
| Repe           | Hole 3         | 44218 | 5       | 2.2  | 0.36 | <5 | 110 | <5 | 2.79 | 1  | 10 | 71  | 2577   | >10  | <10 | 0.41 | 796 | 54 <0.01  | 5  | 100    | <2 | <5 | <20 | 26 | 0.02  | <10 | 61 | 10  | <1 | 19 |
| Stand<br>GEO's |                |       | 145     | 1.4  | 1.68 | 60 | 150 | <5 | 1.76 | <1 | 19 | 65  | 82     | 4.10 | <10 | 0.99 | 670 | 1 0.01    | 21 | 660    | 20 | <5 | <20 | 58 | 0.10  | <10 | 70 | <10 | 8  | 67 |

df/798X XLS/96 Per Flank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

Page 1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4 ICP CERTIFICATE OF ANALYSIS AK 96-511

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

Phone: 604-573-5700 Fax : 604-573-4557 ATTENTION: BILL TAYLOR

No. of samples received: 4
Sample type: Rock
PROJECT: # None Given
SHIPMENT: # None Given
Samples submitted by: Henry Pederson

#### Values in ppm unless otherwise reported

| Et #.                 | Tag# /       | Au(ppb) | Ag   | Al % | Aş            | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn  | Mo | Na % | Ni | P   | Pb | Sb            | Sn  | Sr | Ti %  | U   | ٧  | W   | Υ  | Zn         |
|-----------------------|--------------|---------|------|------|---------------|-----|----|------|----|----|-----|------|------|-----|------|-----|----|------|----|-----|----|---------------|-----|----|-------|-----|----|-----|----|------------|
| 1                     | HOLE 4 44231 | 5       | <0.2 | 0.97 | <5            | 250 | <5 | 1.25 | <1 | 12 | 101 | 906  | 3.05 | <10 | 0.83 | 372 | 18 | 0.03 | 8  | 500 | 8  | <5            | <20 | 21 | 0.01  | <10 | 41 | <10 | 8  | 24         |
| 2                     | HOLE 4 44232 | 5       | 0.6  | 1.08 | <5            | 295 | <5 | 1.49 | <1 | 14 | 56  | 1724 | 3.43 | <10 | 0.98 | 450 | 70 | 0.03 | 9  | 500 | 8  | <5            | <20 | 30 | 0.01  | <10 | 38 | <10 | 10 | 31         |
| 3                     | HOLE 4 44233 | 5       | 4.2  | 0.54 | <5            | 295 | <5 | 2.17 | <1 | 10 | 79  | 4036 | 2.81 | <10 | 0.49 | 484 | 91 | 0.02 | 5  | 520 | 4  | <5            | <20 | 33 | <0.01 | <10 | 20 | <10 | 7  | 30         |
| 4                     | HOLE 4 44234 | 5       | 2.6  | 0.39 | <5            | 240 | <5 | 2.69 | <1 | 12 | 86  | 3163 | 3.21 | <10 | 0.52 | 755 | 49 | 0.02 | 6  | 470 | <2 | <5            | <20 | 34 | <0.01 | <10 | 20 | <10 | 8  | 32         |
| QC DA<br>Repea<br>1   |              | 5       | 0.4  | 1.00 | <b>&lt;</b> 5 | 255 | <5 | 1.23 | <1 | 13 | 108 | 921  | 3.00 | <10 | 0.87 | 384 | 17 | 0.04 | 8  | 560 | 6  | <b>&lt;</b> 5 | <20 | 22 | <0.01 | <10 | 41 | <10 | 8  | 26         |
| <i>Stand</i><br>GEO'9 |              | 145     | 1.0  | 1.70 | 65            | 150 | <5 | 1.83 | <1 | 19 | 61  | 78   | 3.97 | <10 | 1.05 | 675 | <1 | 0.02 | 22 | 670 | 22 | <5            | <20 | 59 | 0.12  | <10 | 75 | <10 | 10 | <b>7</b> 7 |

df/1246 XLS/96tarco EGO-TECH LABORATORIES LTD.

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4 ICP CERTIFICATE OF ANALYSIS AK 96-561

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

Phone: 604-573-5700 Fax : 604-573-4557 ATTENTION: BILL TAYLOR

No. of samples received: 11
Sample type: CORE-RESPLIT SAMPLES
PROJECT #: None given
SHIPMENT #: None given
Samples submitted by: Not indicated

#### Values in ppm unless otherwise reported

| Et #.                   | Tag #        | Au(ppb) | Ag  | AI % | As  | Ba  | Bi            | Ca % | Cd | Co | Cr | Cu     | Fe % | La  | Mg % | Mn  | Мо | Na %  | Ni | P      | Pb | Sb            | Sn  | Sr | Ti %   | U   | V  | w   | Υ | Zn |
|-------------------------|--------------|---------|-----|------|-----|-----|---------------|------|----|----|----|--------|------|-----|------|-----|----|-------|----|--------|----|---------------|-----|----|--------|-----|----|-----|---|----|
| 1                       | HOLE 5 44235 | 5       | 1.2 | 2.02 | <5  | 65  | <5            | 1.75 | <1 | 24 | 83 | 1459   | 5.26 | <10 | 1.82 | 741 | 10 | 0.01  | 18 | 730    | 8  | <5            | <20 | 19 | 0.01   | <10 | 91 | <10 | 4 | 93 |
| 2                       | HOLE 5 44236 | 75      | >30 | 0.63 | 915 | 65  | <5            | 2.96 | <1 | 28 | 74 | >10000 | 4.50 | <10 | 1.45 | 741 | 26 | <0.01 | 12 | >10000 | 32 | <5            | <20 | 26 | < 0.01 | 10  | 51 | 10  | 7 | 93 |
| 3                       | HOLE 5 44237 | 5       | 8.8 | 0.72 | 260 | 80  | <5            | 2.61 | <1 | 17 | 72 | 4620   | 3.50 | <10 | 1.09 | 612 | 18 | <0.01 | 10 | 750    | 6  | <5            | <20 | 21 | 0.02   | <10 | 46 | <10 | 8 | 58 |
| QC DA<br>Stand<br>GEO'9 | ard:         | 150     | 1.8 | 2.02 | 70  | 150 | <b>&lt;</b> 5 | 1.97 | <1 | 20 | 70 | 82     | 4.04 | <10 | 1.06 | 747 | 2  | 0.02  | 24 | 660    | 18 | <b>&lt;</b> 5 | <20 | 59 | 0.16   | <10 | 87 | <10 | 9 | 72 |

df/585 XLS/96tarco Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-585

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 14
Sample type: Core
PROJECT #: none given
SHIPMENT #: none given
Samples submitted by: J.D. Murphy

### Values in ppm unless otherwise reported

| £t #.          | Tag #        | Au(ppb) | Ag  | AI % | As | Ba  | Bi | Ca % | Cd | Co | Сг  | Cu     | Fe % | La  | Mg % | Mn  | Мо  | Na % | Ni | P   | Pb | Sb | Sn  | Sr | Ti %  | U   |    | W   | <u>Y</u> |
|----------------|--------------|---------|-----|------|----|-----|----|------|----|----|-----|--------|------|-----|------|-----|-----|------|----|-----|----|----|-----|----|-------|-----|----|-----|----------|
| 1              | HOLE 5 44246 | 45      | 3.2 | 0.57 | <5 | 285 | <5 | 2.13 | <1 | 9  | 127 | 4776   | 2.53 | <10 | 0.49 | 475 | 42  | 0.03 | 7  | 450 | 4  | <5 | <20 | 27 | <0.01 | <10 | 15 | <10 | 9        |
| 2              | HOLE 5 44247 | 5       | 7.8 | 0.56 | <5 | 255 | <5 | 3.39 | <1 | 9  | 100 | 7111   | 4.18 | <10 | 0.52 | 516 | 140 | 0.03 | 6  | 360 | <2 | <5 | <20 | 43 | 0.01  | <10 | 29 | <10 | 6        |
| 7              | HOLE 5 44252 | 25      | 8.0 | 0.84 | <5 | 90  | <5 | 2.54 | <1 | 9  | 103 | >10000 | 2.88 | <10 | 0.66 | 680 | 92  | 0.02 | 7  | 130 | <2 | <5 | <20 | 29 | <0.01 | <10 | 30 | <10 | 10       |
| 14             | HOLE 5 44259 | 20      | 2.0 | 0.60 | <5 | 65  | <5 | 1.79 | <1 | 7  | 119 | 2218   | 1.84 | 10  | 0.46 | 939 | 20  | 0.02 | 6  | 390 | <2 | <5 | <20 | 21 | <0.01 | <10 | 22 | <10 | 13       |
| QC D<br>Repe   |              | 35      | 3.0 | 0.58 | <5 | 305 | <5 | 2.21 | <1 | 8  | 133 | 4813   | 2.59 | <10 | 0.48 | 503 | 45  | 0.02 | 6  | 470 | 2  | <5 | <20 | 26 | <0.01 | <10 | 14 | <10 | 9        |
| Stand<br>GEO's | -            | 150     | 1.8 | 2.02 | 70 | 150 | <5 | 1.97 | <1 | 20 | 70  | 82     | 4.04 | <10 | 1.06 | 747 | 2   | 0.02 | 24 | 660 | 18 | <5 | <20 | 59 | 0.16  | <10 | 87 | <10 | 9        |

df/585 XLS/96tarco Flank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

Page 1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

#### ICP CERTIFICATE OF ANALYSIS AK 96-608

TARCO OIL & GAS LTD. 500-717 SEVENTH AVE. S.W. CALGARY, AB T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 19
Sample type: CORE
PROJECT #: NONE GIVEN
SHIPMENT #: NONE GIVEN
Samples submitted by: NOT INDICATED

Values in ppm unless otherwise reported

|      |        | T 4     | A suface less |     | A1 0/ |    | -   | ъ. | 0- % | ~- | •  | •       | O 5-   |       |     | A A/  |      |    | A1 - 07 |     | _     | ъ. | ٥. | 0-        | O- T: 9/  |     |    | 14/ | v  | <b>7</b> |
|------|--------|---------|---------------|-----|-------|----|-----|----|------|----|----|---------|--------|-------|-----|-------|------|----|---------|-----|-------|----|----|-----------|-----------|-----|----|-----|----|----------|
| Et # | ·      | Tag #   | Au(ppb)       | Ag  | Al %  | As | Ba  | Bi | Ca % | Ca | Co | Cr      | Cu Fe  | 76    | Lan | Vig % | Mn   | MO | Na %    | Ni  | P     | Pb | Sb | <u>Sn</u> | Sr Ti%    | U   |    | W   |    | Zn       |
| 1    | Hole 5 | 44260** | 225           | 4.8 | 0.64  | <5 | 60  | <5 | 3.52 | <1 | 8  | 88 >10  | 000 1. | .83 < | <10 | 0.43  | 1681 | 25 | 0.01    | 7   | 540   | 10 | <5 | <20       | 26 0.01   | <10 | 18 | <10 | 15 | 23       |
| 2    | Hole 5 | 44261   | 470           | >30 | 0.31  | 5  | 85  | <5 | 4.78 | 2  | 6  | 89 >10  | 000 1. | .89 < | <10 | 0.50  | 2265 | 20 | <0.01   | 3 : | 10000 | 2  | 5  | <20       | 31 <0.01  | <10 | 6  | 10  | 11 | 12       |
| 3    | Hole 5 | 44262   | 10            | 2.0 | 0.75  | <5 | 70  | <5 | 1.67 | <1 | 10 | 97 2    | 191 1. | .76 < | <10 | 0.58  | 852  | 10 | 0.02    | 7   | 380   | 6  | <5 | <20       | 15 < 0.01 | <10 | 19 | <10 | 9  | 22       |
| 4    | Hole 5 | 44263   | 5             | 3.4 | 0.82  | <5 | 90  | <5 | 1.90 | <1 | 11 | 124 30  | 32 1.  | .95 < | <10 | 0.62  | 1011 | 5  | 0.02    | 7   | 490   | 6  | <5 | <20       | 18 < 0.01 | <10 | 19 | <10 | 15 | 28       |
| 5    | Hole 5 | 44264   | 5             | 7.4 | 0.82  | <5 | 75  | <5 | 2.02 | <1 | 12 | 99 >10  | 000 2. | .19 < | <10 | 0.62  | 1046 | 7  | 0.02    | 7   | 300   | 4  | <5 | <20       | 17 <0.01  | <10 | 20 | <10 | 12 | 26       |
|      |        | 44005   | 4.5           |     | 0.40  |    | 0.5 |    |      |    |    | 407 4   |        |       | .40 |       | 4000 | _  |         |     | 252   |    | _  | .00       | 47 .004   | -40 |    | -40 | 40 | 40       |
| 6    | Hole 5 | 44265   | 15            | 3.2 |       | <5 | 65  | <5 | 2.29 | <1 | 6  | =       |        |       |     | 0.33  | 1000 | 3  | 0.01    | 4   | 350   | 4  | <5 | <20       | 17 <0.01  |     | 11 | <10 | 13 | 13       |
| 7    | Hole 5 | 44266   | 5             | 9.6 | 0.69  | <5 | 85  | <5 | 2.17 | <1 | 7  | 157 >10 | 000 1. | .40 < | <10 | 0.38  | 964  | 7  | 0.02    | 6   | 300   | 4  | <5 | <20       | 18 <0.01  | <10 | 11 | <10 | 10 | 14       |
| 8    | Hole 5 | 44267   | 5             | 9.4 | 0.57  | <5 | 90  | <5 | 1.77 | <1 | 8  | 123 >10 | 000 1. | .27 < | <10 | 0.51  | 783  | 5  | 0.02    | 4   | 300   | 10 | <5 | <20       | 16 <0.01  | <10 | 10 | <10 | 8  | 17       |
| 9    | Hole 5 | 44268   | 5             | 2.4 | 0.58  | <5 | 75  | <5 | 2.95 | <1 | 8  | 84 2    | 596 1. | .32   | <10 | 0.36  | 974  | 6  | 0.01    | 5   | 470   | 12 | <5 | <20       | 20 < 0.01 | <10 | 10 | <10 | 11 | 22       |
| 10   | Hole 5 | 44269   | 5             | 2.6 | 0.44  | <5 | 75  | <5 | 3.26 | <1 | 7  | 98 3    | )52 1. | .23   | <10 | 0.19  | 885  | 74 | 0.01    | 4   | 460   | 6  | <5 | <20       | 25 <0.01  | <10 | 9  | <10 | 11 | 15       |
| 11   | Hole 5 | 44270   | 70            | 2.0 | 0.46  | <5 | 85  | <5 | 3.90 | <1 | 9  | 97 3    | 061 1  | 64    | <10 | 0.22  | 1022 | 23 | <0.01   | 6   | 450   | 4  | <5 | <20       | 24 < 0.01 | <10 | 10 | <10 | 13 | 18       |
| 12   | Hole 5 | 44271   | 35            | 5.8 |       | <5 | 60  | <5 | 3.70 | <1 | 4  | 125 >10 |        |       | -   | 0.08  | 1011 |    | <0.01   | 3   | 450   | A  | <5 | <20       | 26 < 0.01 |     | 5  | <10 | 15 | 5        |
| 13   | Hole 5 | 44272   | 55            | 5.4 |       | <5 | 70  | <5 | 4.01 | <1 | _  |         |        |       |     | 0.42  | 1031 |    |         | 4   | 340   | 7  | <5 | <20       | 26 < 0.01 |     | 6  | <10 | 18 | 12       |
|      |        |         |               |     |       |    |     | _  |      |    | 0  |         |        |       |     |       |      |    | <0.01   | 4   |       |    | -  |           |           |     | -  |     |    |          |
| 14   | Hole 5 | 44273   | 10            | 4.4 |       | <5 | 70  | <5 | 3.44 | <1 | 8  |         |        |       |     | 0.70  | 1036 | 4  | <0.01   | 4   | 270   | 4  | <5 | <20       | 24 < 0.01 |     | 14 | <10 | 14 | 17       |
| 15   | Hole 5 | 44274   | 5             | 2.8 | 0.78  | <5 | 70  | <5 | 2.95 | <1 | 9  | 115 4   | 544 1  | .83   | 10  | 0.55  | 851  | 6  | 0.02    | 6   | 340   | 4  | <5 | <20       | 25 <0.01  | <10 | 26 | <10 | 13 | 18       |
| 16   | Hole 5 | 44275   | 5             | 1.4 | 0.71  | <5 | 90  | <5 | 2.42 | <1 | 8  | 95 2    | 257 1  | .95   | 10  | 0.56  | 681  | 9  | 0.04    | 6   | 440   | 6  | <5 | <20       | 31 0.01   | <10 | 37 | <10 | 17 | 13       |

|   | Et #.               |                  | Tag#           | Au(ppb)  | Ag  | AI % | As      | Ba  | Bi            | Ca % | Cd      | Со | Cr      | Cu   | Fe % | La  | Mg % | Mn   | Мо | Na % | Ni | Р        | Pb | Sb      | Sn  | Sr | Ti %       | U        | ٧  | w   | Υ  | Zn |
|---|---------------------|------------------|----------------|----------|-----|------|---------|-----|---------------|------|---------|----|---------|------|------|-----|------|------|----|------|----|----------|----|---------|-----|----|------------|----------|----|-----|----|----|
|   | QC DAT.<br>Resplit: | A:<br>lole 5     | 44260          | 35       | 5.2 | 0.84 | <5      | 75  | <5            | 3.61 | <1      | 8  | 94      | 8620 | 1.95 | 10  | 0.45 | 1698 | 29 | 0.03 | 7  | 460      | 6  | <5      | <20 | 33 | 0.01       | <10      | 21 | <10 | 17 | 18 |
|   |                     | lole 5<br>lole 5 | 44260<br>44267 | 105<br>5 | 5.0 | 0.59 | <5<br>- | 65  | <b>&lt;</b> 5 | 3.44 | <1<br>- | 7  | 87<br>- | 8868 | 1.76 | 10  | 0.37 | 1616 | 25 | 0.01 | 4  | 510<br>- | 6  | <5<br>- | <20 | 28 | <0.01<br>- | <10<br>- | 14 | <10 | 15 | 20 |
| ( | Standar<br>GEO'96   | d:               |                | 150      | 1.0 | 1.74 | 65      | 165 | <5            | 1.85 | <1      | 20 | 66      | 82   | 4.21 | <10 | 1.00 | 710  | <1 | 0.02 | 24 | 650      | 24 | <5      | <20 | 53 | 0.13       | <10      | 79 | <10 | 10 | 70 |

NOTE:\*\*=METALLICS SUSPECTED-SCREEN ASSAY IS SUGGESTED

df/5436 XLS/96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-621

TARCO OIL & GAS LTD. 500-717 SEVENTH AVE S.W. CALGARY, AB T2P 0Z3

#### ATTENTION: BILL TAYLOR

No. of samples received: 12 Sample type: CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: NOT INDICATED

#### Values in ppm unless otherwise reported

| Et #.          |        | Tag#  | Au(ppb) | Ag  | AI % | As | Ва  | Bi | Ca %         | Cd | Co | Cr  | Cu     | Fe % | La  | Mg % | Mn  | Mo  | Na %  | Ni  | Р     | Pb | Sb | Sn  | Sr Ti%    | U   | v    | w   | Υ  | Zn |
|----------------|--------|-------|---------|-----|------|----|-----|----|--------------|----|----|-----|--------|------|-----|------|-----|-----|-------|-----|-------|----|----|-----|-----------|-----|------|-----|----|----|
| 2              | Hole 6 | 44278 | 5       | 1.8 | 1.09 | <5 | 190 | <5 | 3.39         | <1 | 13 | 110 | 1646   | 4.09 | <10 | 0.97 | 629 | 25  | 0.01  | 8   | 580   | 4  | <5 | <20 | 43 < 0.01 | <10 | 45 < | 10  | 13 | 32 |
| 3              | Hole 6 | 44279 | 15      | 6.8 | 0.59 | <5 | 90  | <5 | 2.42         | <1 | 10 | 171 | 7135   | 3.56 | <10 | 0.44 | 538 | 163 | <0.01 | 6   | 580   | <2 | <5 | <20 | 25 < 0.01 | <10 | 16 < | :10 | 10 | 24 |
| 4              | Hole 6 | 44280 | 5       | 8.0 | 1.20 | <5 | 85  | <5 | 2.06         | <1 | 15 | 122 | 974    | 3.90 | <10 | 0.80 | 549 | 23  | 0.01  | 7   | 560   | 6  | <5 | <20 | 25 < 0.01 | <10 | 30 < | :10 | 8  | 42 |
| 5              | Hole 6 | 44281 | 5       | 1.4 | 1.16 | <5 | 110 | <5 | 2.30         | <1 | 17 | 140 | 1678   | 5.08 | <10 | 1.11 | 659 | 24  | 0.02  | 9   | 490   | 6  | <5 | <20 | 33 < 0.01 | <10 | 36 < | :10 | 9  | 50 |
| 6              | Hole 6 | 44282 | 5       | 4.8 | 1.10 | <5 | 115 | <5 | 3.14         | <1 | 17 | 155 | 5768   | 4.95 | <10 | 1.25 | 771 | 27  | 0.02  | 7   | 570   | 4  | <5 | <20 | 33 < 0.01 | <10 | 37 < | :10 | 11 | 44 |
| 7              | Hole 6 | 44283 | 5       | 0.2 | 1.19 | <5 | 95  | <5 | 1.94         | <1 | 12 | 134 | 388    | 3.52 | <10 | 0.78 | 446 | 24  | 0.02  | 8   | 450   | 4  | <5 | <20 | 27 <0.01  | <10 | 38 < | :10 | 11 | 29 |
| 8              | Hole 6 | 44284 | 10      | 2.2 | 1.01 | <5 | 170 | <5 | 3.44         | <1 | 12 | 111 | 1576   | 3.28 | <10 | 0.65 | 587 | 86  | 0.02  | 8   | 500   | 4  | <5 | <20 | 36 < 0.01 | <10 | 27 < | :10 | 13 | 30 |
| 9              | Hole 6 | 44285 | 165     | >30 | 0.61 | <5 | 65  | <5 | 3.01         | <1 | 9  | 127 | >10000 | 2.87 | <10 | 0.30 | 570 | 19  | <0.01 | 4 > | 10000 | <2 | <5 | <20 | 21 < 0.01 | <10 | 14   | 80  | 3  | 12 |
| 10             | Hole 6 | 44286 | 10      | 9.8 | 1.12 | <5 | 145 | <5 | 2.18         | <1 | 11 | 116 | 7988   | 3.36 | <10 | 0.62 | 531 | 9   | 0.02  | 6   | 600   | 4  | <5 | <20 | 30 < 0.01 | <10 | 27 < | :10 | 7  | 27 |
| 11             | Hole 6 | 44287 | 10      | 3.6 | 0.61 | <5 | 285 | <5 | 3.17         | <1 | 8  | 106 | 4198   | 2.57 | <10 | 0.53 | 687 | 10  | 0.01  | 5   | 500   | <2 | <5 | <20 | 31 < 0.01 | <10 | 18 < | <10 | 9  | 16 |
| 12             | Hole 6 | 44288 | 140     | 5.4 | 0.65 | <5 | 355 | <5 | 3.09         | <1 | 7  | 136 | 4981   | 2.48 | <10 | 0.34 | 704 | 60  | 0.01  | 6   | 580   | <2 | <5 | <20 | 33 < 0.01 | <10 | 17 < | <10 | 10 | 23 |
| 13             | Hole 6 | 44289 | 5       | 1.6 | 0.75 | <5 | 415 | <5 | <b>4</b> .19 | <1 | 8  | 147 | 1527   | 3.14 | <10 | 0.70 | 919 | 18  | 0.02  | 5   | 550   | 2  | <5 | <20 | 43 <0.01  | <10 | 26 < | <10 | 14 | 21 |
| QC D           | ATA:   |       |         |     |      |    |     |    |              |    |    |     |        |      |     |      |     |     |       |     |       |    |    |     |           |     |      |     |    |    |
| Repe           |        |       |         |     |      |    |     |    |              |    |    |     |        |      |     |      |     |     |       |     |       |    |    |     |           |     |      |     |    |    |
|                | Hole 6 | 44278 | 10      | 2.2 | 1.17 | <5 | 195 | <5 | 3.44         | <1 | 14 | 106 | 1680   | 4.48 | <10 | 1.04 | 615 | 27  | 0.02  | 10  | 590   | 6  | <5 | <20 | 47 <0.01  | <10 | 48 < | <10 | 15 | 35 |
| Stand<br>GEO'S |        |       | -       | 1.2 | 1.80 | 60 | 165 | <5 | 1.90         | <1 | 24 | 66  | 78     | 4.08 | <10 | 1.05 | 721 | 2   | 0.03  | 24  | 600   | 24 | <5 | <20 | 67 0.12   | <10 | 76 < | <10 | 13 | 71 |

df/798X XLS/96 FCO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
B.C. Certifled Assayer

Page 1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-646

TARCO OIL & GAS LTD. 500-717 SEVENTH AVENUE S.W. CALGARY, AB T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 5 Sample type: CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

### Values in ppm unless otherwise reported

| Et#               |        | Tag#  | Au(ppb) | Ag  | AI % | As | Ва  | Bi | Ca % | Cd | Co | Çr  | Cu   | Fe % | La  | Mg % | Mn   | Мо | Na % | Ni | P   | Pb | Sb | Sn  | Sr | Ti %  | U   | ٧  | w   | Y  |
|-------------------|--------|-------|---------|-----|------|----|-----|----|------|----|----|-----|------|------|-----|------|------|----|------|----|-----|----|----|-----|----|-------|-----|----|-----|----|
| 1                 | Hole 6 | 44316 | 25      | 2.6 | 1.09 | <5 | 110 | <5 | 3.45 | <1 | 10 | 111 | 2091 | 2.96 | <10 | 0.69 | 866  | 36 | 0.03 | 6  | 600 | 6  | <5 | <20 | 43 | <0.01 | <10 | 36 | <10 | 13 |
| 2                 | Hole 6 | 44317 | 5       | 2.2 | 1.13 | <5 | 110 | <5 | 4.04 | <1 | 11 | 128 | 3032 | 3.25 | <10 | 0.88 | 1103 | 38 | 0.02 | 6  | 640 | 6  | <5 | <20 | 39 | <0.01 | <10 | 33 | <10 | 16 |
| 3                 | Hole 6 | 44318 | 5       | 2.4 | 1.11 | <5 | 210 | <5 | 2.15 | <1 | 10 | 115 | 2367 | 3.43 | <10 | 0.89 | 618  | 53 | 0.05 | 8  | 650 | 4  | <5 | <20 | 38 | 0.04  | <10 | 64 | <10 | 20 |
| 4                 | Hole 6 | 44319 | 10      | 1.0 | 1.13 | <5 | 185 | <5 | 3.09 | <1 | 11 | 136 | 1305 | 3.73 | <10 | 1.18 | 767  | 12 | 0.06 | 7  | 620 | 4  | <5 | <20 | 48 | 0.01  | <10 | 54 | <10 | 21 |
| 33                | Hole 7 | 44348 | 5       | 8.8 | 0.64 | <5 | 95  | <5 | 4.71 | <1 | 8  | 92  | 8560 | 2.71 | <10 | 1.35 | 1236 | 11 | 0.02 | 5  | 630 | 2  | 5  | <20 | 68 | <0.01 | <10 | 19 | <10 | 16 |
| QC D<br>Repe<br>1 |        | 44316 |         | 2.6 | 1.07 | <5 | 100 | <5 | 3.34 | <1 | 10 | 108 | 2008 | 2.80 | <10 | 0.68 | 800  | 36 | 0.03 | 7  | 580 | 6  | <5 | <20 | 42 | <0.01 | <10 | 35 | <10 | 13 |
| Stand<br>GEO'     |        |       | 150     | 1.4 | 1.68 | 60 | 150 | <5 | 1.76 | <1 | 19 | 65  | 82   | 4.10 | <10 | 0.99 | 670  | 1  | 0.01 | 21 | 660 | 20 | <5 | <20 | 58 | 0.10  | <10 | 70 | <10 | 8  |

df/798X XLS/96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 96-661

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CA .. GARY, ALBERTA T2P 0Z3

Phone: 604-573-5700 Fax : 604-573-4557 ATTENTION: BILL TAYLOR

No. of samples received:14 PROJECT #:NONE GIVEN SHIPMENT #NONE GIVEN P.O.#: NONE GIVEN Samples submitted by:NOT INDICATED

#### Values in ppm unless otherwise reported

| Et #.                 | Tag#         | Au(ppb) | Ag  | A1 % | As | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn  | Мо  | Na % | Ni | P   | Pb | Sb | Sn  | Sr | Ti %  | U   | V  | w   | Υ | Zn |
|-----------------------|--------------|---------|-----|------|----|-----|----|------|----|----|-----|------|------|-----|------|-----|-----|------|----|-----|----|----|-----|----|-------|-----|----|-----|---|----|
| 13                    | HOLE 7 44370 | 5       | 2.2 | 0.52 | 90 | 145 | <5 | 1.42 | <1 | 10 | 113 | 2483 | 3.39 | <10 | 0.78 | 824 | 80  | 0.03 | 6  | 380 | <2 | <5 | <20 | 28 | <0.01 | <10 | 31 | <10 | 8 | 25 |
| 14                    | HOLE 7 44371 | 5       | 5.2 | 0.57 | <5 | 120 | <5 | 1.00 | <1 | 8  | 103 | 6872 | 3.78 | <10 | 0.40 | 627 | 470 | 0.03 | 5  | 350 | <2 | <5 | <20 | 18 | 0.02  | <10 | 33 | <10 | 3 | 21 |
| QC DA<br>Repeat<br>13 |              | 5       | 2.2 | 0.51 | 85 | 145 | <5 | 1.39 | <1 | 9  | 110 | 2380 | 3.33 | <10 | 0.76 | 813 | 80  | 0.03 | 6  | 370 | <2 | <5 | <20 | 29 | <0.01 | <10 | 31 | <10 | 8 | 24 |
| Standa<br>GEO'96      |              | 150     | 1.6 | 2.04 | 70 | 150 | <5 | 1.96 | <1 | 20 | 70  | 80   | 4.02 | <10 | 1.06 | 740 | 2   | 0.04 | 20 | 640 | 18 | 45 | <20 | 64 | 0.16  | 40  | 80 | 40  | 9 | 70 |

XLS/96tarco

df/585

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-669

TARCO OIL & GAS LTD. 500-717 SEVENTH AVE. S.W. CALGARY, AB T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 7 Sample type: CORE PROJECT #: NONE GIVEN SHIPMENT #:NONE GIVEN

Samples submitted by: NOT INDICATED

#### Values in ppm unless otherwise reported

| Et #.          | Tag#                | Au(ppb) | Ag   | AI % | As            | Ва          | Bi | Ca % | Cd | Co | Cr  | Cu     | Fe % | La  | Mg % | Mn   | Мо | Na %  | Ni | Р   | Pb | Sb            | Sn  | Sr_Ti%    | U   | v  | w   | Υ  | Zn |
|----------------|---------------------|---------|------|------|---------------|-------------|----|------|----|----|-----|--------|------|-----|------|------|----|-------|----|-----|----|---------------|-----|-----------|-----|----|-----|----|----|
| 1              | HOLE 7 44372        | 10      | 7.8  | 0.57 | 5             | 115         | <5 | 2.06 | <1 | 8  | 132 | 3844   | 2.99 | <10 | 0.33 | 1032 | 23 | 0.02  | 5  | 510 | 6  | <5            | <20 | 23 <0.01  | <10 | 22 | <10 | 9  | 17 |
| 2              | HOLE 7 44373        | 10      | 13.2 | 0.54 | 5             | 145         | <5 | 3.79 | <1 | 5  | 156 | 3552   | 2.12 | <10 | 0.26 | 1884 | 8  | 0.01  | 4  | 550 | 4  | <5            | <20 | 30 < 0.01 | <10 | 15 | <10 | 16 | 12 |
| 3              | HOLE 7 44374        | 80      | 17.8 | 0.60 | 20            | <b>14</b> 0 | <5 | 3.66 | <1 | 8  | 141 | 4663   | 2.99 | <10 | 0.38 | 2073 | 15 | 0.01  | 5  | 640 | 2  | <5            | <20 | 31 <0.01  | <10 | 31 | <10 | 18 | 20 |
| 4              | HOLE 7 44375        | 60      | >30  | 0.48 | <5            | 130         | <5 | 4.77 | <1 | 8  | 127 | >10000 | 2.91 | <10 | 0.27 | 2489 | 10 | <0.01 | 5  | 780 | <2 | <5            | <20 | 39 < 0.01 | <10 | 19 | <10 | 20 | 19 |
| 5              | HOLE 7 44376        | 105     | 3.0  | 0.53 | <5            | 270         | <5 | 4.68 | <1 | 8  | 145 | 3334   | 2.81 | <10 | 0.26 | 1752 | 11 | 0.01  | 6  | 630 | <2 | <5            | <20 | 41 < 0.01 | <10 | 22 | <10 | 17 | 20 |
| 10             | HOLE 7 44381        | 25      | 1.4  | 0.62 | <5            | 175         | <5 | 2.82 | <1 | 18 | 82  | 3003   | 4.56 | <10 | 0.70 | 1406 | 14 | 0.02  | 9  | 560 | 4  | <5            | <20 | 36 < 0.01 | <10 | 19 | <10 | 7  | 53 |
| 11             | HOLE 7 44382        | 65      | 2.8  | 0.72 | <5            | 195         | <5 | 3.48 | <1 | 22 | 78  | 5010   | 4.85 | <10 | 0.87 | 1752 | 18 | 0.02  | 11 | 690 | 2  | <5            | <20 | 38 <0.01  | <10 | 20 | <10 | 8  | 56 |
| QC D<br>Respi  |                     | 40      | -    | -    | -             | -           | -  | -    | -  | -  | -   | ~      | -    | -   | -    |      | -  | -     | -  | -   | -  | -             | -   |           | -   | -  | -   | -  | -  |
| Repea<br>1     | et:<br>HOLE 7 44372 | 60      | 4.8  | 0.59 | <b>&lt;</b> 5 | 195         | <5 | 2.89 | <1 | 10 | 92  | 3147   | 3.65 | <10 | 0.68 | 1459 | 16 | 0.02  | 9  | 620 | 2  | <5            | <20 | 38 <0.01  | <10 | 18 | <10 | 8  | 24 |
| Stano<br>GEO'9 |                     | 150     | 1.2  | 1.80 | 60            | 165         | <5 | 1.90 | <1 | 24 | 66  | 24     | 4.08 | <10 | 1.05 | 721  | 2  | 0.03  | 24 | 800 | 24 | <b>&lt;</b> 5 | <20 | 67 0.12   | <10 | 76 | <10 | 13 | 71 |

df/798X XLS/96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700

Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK 96-638

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 11

Sample type: Core

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: Not Indicated

#### Values in ppm unless otherwise reported

| Et #.          | Tag#         | Au(ppb) | Ag   | AI % | As | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu     | Fe % | La  | Mg % | Mn   | Мо  | Na %   | Ni | Р           | Pb | Sb            | Sn  | Sr Ti %   | υ   | v  | w   | Υ  | Źn |
|----------------|--------------|---------|------|------|----|-----|----|------|----|----|-----|--------|------|-----|------|------|-----|--------|----|-------------|----|---------------|-----|-----------|-----|----|-----|----|----|
| 5              | HOLE 6 44309 | 5       | 1.6  | 0.56 | <5 | 640 | <5 | 3.23 | <1 | 9  | 139 | 1047   | 2.70 | <10 | 0.88 | 859  | 20  | 0.02   | 9  | 450         | <2 | <5            | <20 | 43 < 0.01 | <10 | 27 | <10 | 13 | 21 |
| 6              | HOLE 6 44310 | 5       | 1.2  | 0.46 | <5 | 510 | <5 | 2.39 | <1 | 12 | 132 | 1003   | 3.41 | <10 | 1.02 | 911  | 41  | 0.01   | 8  | 490         | <2 | <5            | <20 | 27 < 0.01 | <10 | 36 | <10 | 10 | 31 |
| 7              | HOLE 6 44311 | 5       | 1.2  | 0.44 | <5 | 810 | <5 | 2.50 | <1 | 8  | 166 | 764    | 2.64 | <10 | 0.63 | 850  | 43  | 0.01   | 8  | 510         | <2 | <5            | <20 | 30 < 0.01 | <10 | 26 | <10 | 8  | 27 |
| 8              | HOLE 6 44312 | 5       | 5.6  | 0.54 | <5 | 425 | <5 | 2.11 | <1 | 9  | 174 | 5200   | 2.38 | <10 | 0.43 | 805  | 124 | 0.01   | 8  | 450         | <2 | <5            | <20 | 25 < 0.01 | <10 | 20 | <10 | 5  | 25 |
| 9              | HOLE 6 44313 | 10      | 3.2  | 0.61 | <5 | 180 | <5 | 2.01 | <1 | 10 | 155 | 2978   | 2.68 | <10 | 0.44 | 678  | 47  | 0.01   | 8  | 410         | <2 | <5            | <20 | 23 < 0.01 | <10 | 20 | <10 | 9  | 26 |
| 10             | HOLE 6 44314 | 125     | 15.6 | 0.25 | <5 | 70  | <5 | 4.29 | <1 | 7  | 216 | >10000 | 2.09 | <10 | 0.25 | 1073 | 124 | < 0.01 | 5  | 20          | <2 | <5            | <20 | 33 0.01   | <10 | 15 | <10 | 7  | 14 |
| 11             | HOLE 6 44315 | 10      | 4.8  | 0.59 | <5 | 105 | <5 | 3.10 | <1 | 9  | 105 | 3567   | 2.40 | <10 | 0.79 | 1128 | 52  | 0.03   | 6  | 470         | <2 | <5            | <20 | 40 <0.01  | <10 | 21 | <10 | 11 | 28 |
| QC Da<br>Repea |              | 5       | 1.6  | 0.55 | <5 | 640 | <5 | 3.26 | <1 | 9  | 139 | 1030   | 2.69 | <10 | 0.88 | 865  | 19  | 0.02   | 9  | <b>4</b> 50 | <2 | <b>&lt;</b> 5 | <20 | 43 <0.01  | <10 | 27 | <10 | 13 | 22 |
| Stand<br>GEO'S |              | 150     | 1.8  | 2.02 | 70 | 150 | <5 | 1.97 | <1 | 20 | 70  | 82     | 4.04 | <10 | 1.06 | 747  | 2   | 0.02   | 24 | 660         | 18 | <5            | <20 | 59 0.16   | <10 | 87 | <10 | 9  | 72 |

df/585 XLS/96tarco ECD-TECH LABORATORIES LTD. Prank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-679

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 9
Sample type: Core
PROJECT #: None Given
SHIPMENT #: None Given
Samples submitted by: None Given

#### Values in ppm unless otherwise reported

| Et #. | Tag#         | Au(ppb) | Ag  | AI % | As | Ва  | Bi | Ca % | Cd | Со | Сг | Cu   | Fe % | La  | Mg % | Mn   | Мо | Na % | Ni | Р   | Pb | Sb | Sn  | Sr | Ti %  | U   | V  | w   | Υ  | Zn |
|-------|--------------|---------|-----|------|----|-----|----|------|----|----|----|------|------|-----|------|------|----|------|----|-----|----|----|-----|----|-------|-----|----|-----|----|----|
| 1     | HOLE 7 44383 | 5       | 7.4 | 0.55 | <5 | 280 | <5 | 3.02 | <1 | 11 | 56 | 4722 | 2.65 | <10 | 0.50 | 1265 | 22 | 0.01 | 7  | 400 | 30 | <5 | <20 | 39 | <0.01 | <10 | 17 | <10 | 9  | 36 |
| 2     | HOLE 7 44384 | 5       | 3.2 | 0.50 | <5 | 360 | <5 | 3.20 | <1 | 7  | 68 | 2855 | 2.37 | <10 | 0.44 | 1172 | 11 | 0.02 | 4  | 620 | 8  | <5 | <20 | 41 | <0.01 | <10 | 12 | <10 | 9  | 26 |
| 3     | HOLE 7 44385 | 180     | 5.8 | 0.50 | <5 | 325 | <5 | 3.46 | <1 | 9  | 50 | 4963 | 2.85 | <10 | 0.49 | 1358 | 62 | 0.02 | 5  | 680 | 4  | <5 | <20 | 46 | <0.01 | <10 | 13 | <10 | 10 | 31 |
| 4     | HOLE 7 44386 | 10      | 4.2 | 0.39 | <5 | 120 | <5 | 3.93 | <1 | 13 | 68 | 4672 | 3.34 | <10 | 1.02 | 1625 | 27 | 0.02 | 7  | 330 | 4  | <5 | <20 | 36 | <0.01 | <10 | 16 | <10 | 10 | 37 |
| 5     | HOLE 7 44387 | 10      | 1.8 | 0.54 | <5 | 150 | <5 | 3.98 | <1 | 10 | 77 | 1417 | 2.77 | 20  | 0.60 | 1113 | 23 | 0.03 | 6  | 450 | 4  | <5 | <20 | 52 | <0.01 | <10 | 21 | <10 | 15 | 25 |
| QC D  |              |         |     |      |    |     |    |      |    |    |    |      |      |     |      |      |    |      |    |     |    |    |     |    |       |     |    |     |    |    |
| 1     | HOLE 7 44383 | -       | 8.2 | 0.57 | <5 | 285 | <5 | 3.12 | <1 | 12 | 62 | 4820 | 2.91 | <10 | 0.54 | 1322 | 24 | 0.01 | 5  | 440 | 20 | <5 | <20 | 43 | <0.01 | <10 | 17 | <10 | 9  | 38 |
| Repea | at:          |         |     |      |    |     |    |      |    |    |    |      |      |     |      |      |    |      |    |     |    |    |     |    |       |     |    |     |    |    |
| 5     | HOLE 7 44387 | 5       | -   | -    | -  | -   | ~  | -    | -  | -  | -  | -    | -    | -   | -    | -    | -  | -    | -  | -   | -  | -  | -   | -  | -     | -   | -  | •   | -  | -  |
| Stand | ard:         |         |     |      |    |     |    |      |    |    |    |      |      |     |      |      |    |      |    |     |    |    |     |    |       |     |    |     |    |    |
| GEO'S | 96           | 150     | 1.8 | 2.02 | 70 | 150 | <5 | 1.97 | <1 | 20 | 70 | 82   | 4.04 | <10 | 1.06 | 747  | 2  | 0.02 | 24 | 660 | 18 | <5 | <20 | 59 | 0.16  | <10 | 87 | <10 | 9  | 72 |

df/679 XLS/96tarco

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4 ICP CERTIFICATE OF ANALYSIS AK 96-706

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

Phone: 604-573-5700 Fax : 604-573-4557 ATTENTION: BILL TAYLOR

No. of samples received: 32 Sample type: 1/2 CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

#### Values in ppm unless otherwise reported

| Et #.          | Tag #        | Au(ppb) | Ag   | Al % | As | Ва  | Bi | Ca % | Cd | Co | Сг | Cu     | Fe % | La  | Mg % | Mn   | Мо | Na % | Ni | Р   | Pb | Sb | Sn  | Sr | Ti %  | U   | ٧  | W   | Υ  | Zn |
|----------------|--------------|---------|------|------|----|-----|----|------|----|----|----|--------|------|-----|------|------|----|------|----|-----|----|----|-----|----|-------|-----|----|-----|----|----|
| 5              | HOLE 8 57656 | 10      | 8.4  | 0.47 | 15 | 65  | <5 | 5.24 | <1 | 10 | 73 | 8206   | 2.69 | <10 | 2.06 | 1139 | 17 | 0.02 | 6  | 380 | 4  | 10 | <20 | 57 | <0.01 | <10 | 27 | <10 | 19 | 44 |
| 26             | HOLE 8 57705 | 10      | 6.4  | 1.40 | <5 | 80  | <5 | 2.55 | <1 | 23 | 67 | 9477   | 5.02 | <10 | 1.56 | 840  | 7  | 0.03 | 14 | 650 | 6  | <5 | <20 | 90 | 0.05  | <10 | 87 | <10 | 15 | 44 |
| 27             | HOLE 8 57706 | 15      | 10.0 | 1.21 | <5 | 65  | <5 | 2.67 | <1 | 23 | 45 | >10000 | 5.70 | <10 | 1.50 | 883  | 5  | 0.02 | 14 | 460 | 6  | <5 | <20 | 85 | 0.04  | <10 | 84 | <10 | 15 | 43 |
| 28             | HOLE 8 57707 | 5       | 3.2  | 0.99 | <5 | 250 | <5 | 2.91 | <1 | 15 | 51 | 5091   | 3.60 | <10 | 1.28 | 684  | 4  | 0.03 | 10 | 680 | 6  | <5 | <20 | 80 | 0.03  | <10 | 71 | <10 | 15 | 37 |
| QC DA<br>Repea |              | 15      | ٠.3  | 0.50 | 20 | 70  | <5 | 5.26 | <1 | 13 | 74 | 8025   | 2.80 | <10 | 2.06 | 1136 | 13 | 0.02 | 6  | 430 | 2  | 10 | <20 | 58 | <0.01 | <10 | 29 | <10 | 19 | 43 |
| Stand<br>GEO'9 |              | 150     | 1.0  | 1.70 | 65 | 150 | <5 | 1.83 | <1 | 19 | 61 | 78     | 3.97 | <10 | 1.05 | 675  | <1 | 0.02 | 22 | 670 | 22 | <5 | <20 | 59 | 0.12  | <10 | 75 | <10 | 10 | 77 |

df/1246 XLS/96tarco

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 96-720

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

Phone: 604-573-5700 Fax : 604-573-4557

ATTENTION: BILL TAYLOR

No. of samples received: 10 Sample type: CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: NOT INDICATED

#### Values in ppm unless otherwise reported

| Et #.                     | Tag #        | Au(ppb) | Ag   | Al % | As | Ва  | Bi | Ca % | Cd | Co | Cr     | Cu Fe % | 6 La  | Mg % | Mn   | Мо  | Na % | Ni | Р   | Pb | Sb | Sn  | Sr | Ti %  | U   | ٧  | W   | Υ  | Zn |
|---------------------------|--------------|---------|------|------|----|-----|----|------|----|----|--------|---------|-------|------|------|-----|------|----|-----|----|----|-----|----|-------|-----|----|-----|----|----|
| 10 H                      | IOLE 4 57715 | 50      | 10.0 | 0.41 | 5  | 110 | <5 | 3.98 | <1 | 8  | 64 >10 | 000 2.0 | 1 <10 | 0.55 | 1207 | 196 | 0.02 | 4  | 220 | 2  | 10 | <20 | 37 | <0.01 | <10 | 13 | <10 | 13 | 21 |
| QC DAT<br>Repeat:<br>10 H |              | 45      | 9.6  | 0.34 | 10 | 95  | <5 | 3.77 | <1 | 7  | 55 >10 | 000 1.8 | 0 <10 | 0.49 | 1124 | 188 | 0.01 | 3  | 210 | <2 | 5  | <20 | 34 | <0.01 | <10 | 10 | <10 | 12 | 19 |
| Standar<br>GEO'96         | rd:          | 150     | 1.0  | 1.80 | 65 | 150 | <5 | 1.80 | <1 | 18 | 61     | 80 3.6  | 9 <10 | 0.95 | 688  | 1   | 0.01 | 21 | 650 | 24 | <5 | <20 | 56 | 0.09  | <10 | 75 | <10 | 9  | 78 |

df/1264 XLS/96tarco

FOO-TECH LABORATORIES LTD. Prank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4 ICP CERTIFICATE OF ANALYSIS AK 96-754

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

Phone: 604-573-5700 Fax : 604-573-4557 ATTENTION: BILL TAYLOR

No. of samples received: 11 Sample type: CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

#### Values in ppm unless otherwise reported

| Et #. | Tag#         | Au(ppb) | Ag  | AI % | As | Ва  | Bí | Ca % | Cd | Co | Çr  | Cu   | Fe % | La  | Mg % | Mn   | Мо  | Na % | Ni | P   | Pb | Sb | Sn  | Sr Ti %   | U   | ٧  | w   | Υ  | Zn |
|-------|--------------|---------|-----|------|----|-----|----|------|----|----|-----|------|------|-----|------|------|-----|------|----|-----|----|----|-----|-----------|-----|----|-----|----|----|
| 1     | HOLE 4 57718 | 5       | 1.2 | 0.71 | 45 | 195 | <5 | 1.96 | <1 | 9  | 111 | 1799 | 2.15 | <10 | 0.54 | 841  | 95  | 0.03 | 6  | 420 | 26 | <5 | <20 | 25 < 0.01 | <10 | 21 | <10 | 11 | 29 |
| 2     | HOLE 4 57719 | 5       | 4.0 | 0.65 | 20 | 165 | <5 | 2.73 | <1 | 9  | 114 | 2533 | 2.48 | <10 | 0.43 | 1221 | 67  | 0.03 | 6  | 460 | 16 | <5 | <20 | 29 < 0.01 | <10 | 22 | <10 | 12 | 27 |
| 3     | HOLE 4 57720 | 5       | 1.4 | 0.52 | 10 | 170 | <5 | 2.20 | <1 | 7  | 143 | 1622 | 2.25 | <10 | 0.29 | 1146 | 134 | 0.03 | 4  | 420 | 10 | <5 | <20 | 23 < 0.01 | <10 | 14 | <10 | 8  | 23 |
| 4     | HOLE 4 57721 | 5       | 1.6 | 0.76 | 20 | 250 | <5 | 3.60 | <1 | 10 | 93  | 2802 | 2.24 | <10 | 0.72 | 1645 | 30  | 0.02 | 6  | 530 | 8  | <5 | <20 | 37 < 0.01 | <10 | 22 | <10 | 14 | 29 |
| 5     | HOLE 4 57722 | 5       | 1.8 | 0.93 | 15 | 185 | <5 | 3.83 | <1 | 11 | 135 | 1772 | 2.49 | <10 | 0.99 | 1987 | 15  | 0.03 | 8  | 580 | 8  | <5 | <20 | 43 < 0.01 | <10 | 37 | <10 | 15 | 30 |
| 6     | HOLE 4 57723 | 5       | 1.6 | 0.86 | 5  | 195 | <5 | 3.25 | <1 | 10 | 111 | 1867 | 2.43 | <10 | 0.81 | 1619 | 10  | 0.03 | 7  | 570 | 8  | <5 | <20 | 42 < 0.01 | <10 | 42 | <10 | 13 | 26 |
| 7     | HOLE 4 57724 | 5       | 3.2 | 0.92 | <5 | 95  | <5 | 3.14 | <1 | 10 | 130 | 4138 | 2.44 | <10 | 0.71 | 1263 | 13  | 0.03 | 7  | 570 | 6  | <5 | <20 | 39 < 0.01 | <10 | 41 | <10 | 13 | 26 |
| 8     | HOLE 4 57725 | 5       | 0.6 | 0.80 | <5 | 115 | <5 | 3.24 | <1 | 9  | 104 | 1199 | 2.35 | 10  | 0.74 | 872  | 9   | 0.04 | 7  | 540 | 4  | <5 | <20 | 44 < 0.01 | <10 | 37 | <10 | 15 | 20 |
| 9     | HOLE 4 57726 | 5       | 3.6 | 0.95 | <5 | 250 | <5 | 2.96 | <1 | 10 | 140 | 4497 | 2.63 | <10 | 1.09 | 842  | 99  | 0.05 | 8  | 510 | 4  | <5 | <20 | 43 < 0.01 | <10 | 42 | <10 | 15 | 18 |
| QC D  |              |         |     |      |    |     |    |      |    |    |     |      |      |     | -    |      |     |      |    |     |    |    |     |           |     |    |     |    |    |
| 1     | HOLE 4 57718 | 5       | -   | -    | -  | -   | -  | -    | -  | -  | -   | -    | -    | -   | -    | -    | -   | -    | -  | -   | -  | -  | -   |           | -   | -  | -   | -  | -  |
| Repe  | at:          |         |     |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |    |     |    |    |     |           |     |    |     |    |    |
| 1     | HOLE 4 57718 | 5       | 1.4 | 0.74 | <5 | 220 | <5 | 2.03 | <1 | 10 | 115 | 1779 | 2.31 | <10 | 0.60 | 862  | 104 | 0.03 | 7  | 450 | 20 | <5 | <20 | 26 < 0.01 | <10 | 22 | <10 | 11 | 30 |
| Stand | lard:        |         |     |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |    |     |    |    |     |           |     |    |     |    |    |
| GEO'S | 96           | 145     | 1.0 | 1.80 | 65 | 150 | <5 | 1.80 | <1 | 18 | 61  | 80   | 3.69 | <10 | 0.95 | 688  | 1   | 0.01 | 21 | 650 | 24 | <5 | <20 | 56 0.09   | <10 | 75 | <10 | 9  | 78 |

df/1246 XLS/96tarco

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4 ICP CERTIFICATE OF ANALYSIS AK 96-746

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

Phone: 604-573-5700 Fax : 604-573-4557 ATTENTION: BILL TAYLOR

No. of samples received: 7 Sample type: core PROJECT: # none given SHIPMENT: # none given Samples submitted by: not indicated

#### Values in ppm unless otherwise reported

| Et #.          | Tag #        | Au(ppb) | Ag   | AI % | As | Ва  | Bi | Ca % | Cd | Co | Cr | Си  | Fe % | La  | Mg % | Mn   | Мо | Na % | Ni | _ Р | Pb | Sb | Sn  | Sr | Ti %  | U   | ٧  | w   | Y  | Zn |
|----------------|--------------|---------|------|------|----|-----|----|------|----|----|----|-----|------|-----|------|------|----|------|----|-----|----|----|-----|----|-------|-----|----|-----|----|----|
| 7              | HOLE 4 57722 | 5       | <0.2 | 0.66 | <5 | 165 | <5 | 3.01 | <1 | 8  | 97 | 336 | 1.63 | <10 | 0.60 | 1132 | 8  | 0.02 | 6  | 520 | 4  | <5 | <20 | 29 | <0.01 | <10 | 23 | <10 | 13 | 23 |
| QC DA<br>Repea |              | 5       | <0.2 | 0.68 | <5 | 165 | <5 | 3.19 | <1 | 8  | 98 | 278 | 1.60 | <10 | 0.61 | 1204 | 7  | 0.03 | 7  | 540 | 4  | <5 | <20 | 30 | <0.01 | <10 | 23 | <10 | 14 | 24 |
| Stand<br>GEO'9 |              | 145     | 1.0  | 1.80 | 65 | 150 | <5 | 1.80 | <1 | 18 | 61 | 80  | 3.69 | <10 | 0.95 | 688  | 1  | 0.01 | 21 | 650 | 24 | <5 | <20 | 56 | 0.09  | <10 | 75 | <10 | 9  | 78 |

df/1246 XLS/96tarco

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4 ICP CERTIFICATE OF ANALYSIS AK 96-765

TARCO OIL & GAS LTD. 500-717 SEVENTH AVE. S.W. CALGARY, AB T2B 0Z3

Phone: 604-573-5700 Fax : 604-573-4557 ATTENTION: BILL TAYLOR

No. of samples received: 2 Sample type: CORE PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN

Samples submitted by: NOT INDICATED

#### Values in ppm unless otherwise reported

| Et #. |        | Tag#  | Au(ppb) | Ag  | AI %  | As | Ва  | Bi | Ca % | Cd | Co | Сг     | Cu    | Fe % | La  | Mg % | Mn  | Mo | Na %  | Ni | Р     | Pb | Sb | Sn  | Sr | Tì %  | U   | V  | W   | Υ | Zn |
|-------|--------|-------|---------|-----|-------|----|-----|----|------|----|----|--------|-------|------|-----|------|-----|----|-------|----|-------|----|----|-----|----|-------|-----|----|-----|---|----|
| 4     | Hole 3 | 57695 | 5       | 9.0 | 0.52  | <5 | 65  | <5 | 2.47 | <1 | 8  | 125 >1 | 10000 | 3.00 | <10 | 0.54 | 563 | 26 | <0.01 | 6  | 340   | <2 | <5 | <20 | 22 | <0.01 | <10 | 19 | <10 | 4 | 22 |
| 5     | Hole 3 | 57696 | 10      | 3.2 | 0.87  | <5 | 80  | <5 | 1.42 | <1 | 11 | 75     | 8880  | 3.54 | <10 | 0.68 | 449 | 17 | 0.02  | 6  | 430   | <2 | <5 | <20 | 17 | <0.01 | <10 | 36 | <10 | 5 | 26 |
|       |        |       |         |     |       |    |     |    |      |    |    |        |       |      |     |      |     |    |       |    |       |    |    |     |    |       |     |    |     |   |    |
|       |        |       |         |     |       |    |     |    |      |    |    |        |       |      |     |      |     |    |       |    |       |    |    |     |    |       |     |    |     |   |    |
|       |        |       |         |     |       |    |     |    |      |    |    |        |       |      |     |      |     |    |       |    |       |    |    |     |    |       |     |    |     |   |    |
|       |        |       |         |     |       |    |     |    |      |    |    |        |       |      |     |      |     |    |       |    |       |    |    |     |    |       |     |    |     |   |    |
|       |        |       |         |     |       |    |     |    |      |    |    |        |       |      |     |      |     |    |       |    |       |    |    |     |    |       |     |    |     |   |    |
| QC DA | \TA.   |       |         |     |       |    |     |    |      |    |    |        |       |      |     |      |     |    |       |    |       |    |    |     |    |       |     |    |     |   |    |
| Repea |        |       |         |     |       |    |     |    |      |    |    |        |       |      |     |      |     |    |       |    |       |    |    |     |    |       |     |    |     |   |    |
| 4     |        | 57695 | 20      | 8.2 | 0.47  | <5 | 50  | <5 | 2.28 | <1 | 8  | 118 >1 | 10000 | 2.73 | <10 | 0.46 | 513 | 23 | <0.01 | 4  | 340   | <2 | <5 | <20 | 18 | <0.01 | <10 | 16 | <10 | 4 | 20 |
| •     |        | 51000 |         | ٠.ـ | 0. () |    | •   |    | 2.20 |    | •  |        |       |      |     | 00   |     |    | 0.0   |    | • • • | _  | _  |     |    | •     |     |    |     |   |    |
| Stand | ard:   |       |         |     |       |    |     |    |      |    |    |        |       |      |     |      |     |    |       |    |       |    |    |     |    |       |     |    |     |   |    |
| GEO'9 |        |       | _       | 1.2 | 1.80  | 65 | 160 | <5 | 1.87 | <1 | 20 | 65     | 80    | 3.65 | <10 | 0.92 | 695 | 2  | 0.01  | 20 | 680   | 18 | <5 | <20 | 61 | 0.08  | <10 | 82 | <10 | 7 | 67 |

df/827 XLS/96

ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway KAMLOOPS, B.C.

Phone: 604-573-5700 Fax : 604-573-4557

V2C 6T4

Et #.

ICP CERTIFICATE OF ANALYSIS AK 96-777

TARCO OIL & GAS LTD. 500-717 SEVENTH AVE. S.W. CALGARY, AB T2P 0Z3

ATTENTION: BILL TAYLOR

P Pb Sb Sn Sr Ti %

No. of samples received: 1
Sample type: CORE
PROJECT #: NONE GIVEN
SHIPMENT #: NONE GIVEN
Samples submitted by: NOT INDICATED

Values in ppm unless otherwise reported

Tag # Au(ppb) Ag A! % As

| 1 F                     | lole 3 | 57700 | 5   | 3.2 | 0.49 | <5 | 105 | <5 | 3.39 | <1 | 8  | 95  | 3468 | 2.23 | <10 | 0.55 | 1172 | 12 | 0.01 | 5  | 440 | <2 | <5 | <20 | 36 | <0.01 | <10 | 24 | <10 | 13 | 16 |
|-------------------------|--------|-------|-----|-----|------|----|-----|----|------|----|----|-----|------|------|-----|------|------|----|------|----|-----|----|----|-----|----|-------|-----|----|-----|----|----|
|                         |        |       |     |     |      |    |     |    |      |    |    |     |      |      |     |      |      |    |      |    |     |    |    |     |    |       |     |    |     |    |    |
| QC DAT<br>Resplit:<br>1 |        | 57700 | 5   | -   |      | -  | -   | -  |      |    |    | -   | -    | -    | -   | -    | -    | -  |      | -  | -   | -  |    | -   | -  |       |     |    | -   |    | -  |
| Repeat:<br>1            | ;      | 57700 | -   | 3.8 | 0.51 | <5 | 110 | <5 | 3.70 | <1 | 8  | 103 | 3797 | 2.39 | <10 | 0.57 | 1298 | 12 | 0.01 | 6  | 470 | <2 | <5 | <20 | 38 | <0.01 | <10 | 26 | <10 | 14 | 17 |
| Standar<br>GEO'96       |        |       | 145 | 1.2 | 1.80 | 65 | 160 | <5 | 1.87 | <1 | 20 | 65  | 80   | 3.65 | <10 | 0.92 | 695  | 2  | 0.01 | 20 | 680 | 18 | <5 | <20 | 61 | 0.08  | <10 | 82 | <10 | 7  | 67 |

La Mg% Mn Mo Na%

Bi Ca % Cd Co Cr Cu Fe %

df/827 XLS/96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-798

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 11 Sample type: CORE PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN

Samples submitted by: NOT INDICATED

#### Values in ppm unless otherwise reported

| Et #.               | Ta     | ıg# | Au(ppb) | Ag  | Ai % | As | Ва  | Bi | Ca % | Cd | Co | Çr  | Cu   | Fe % | La  | Mg % | Mn   | Мо | Na % | Ni | Р   | Pb | Sb | Sn  | Sr Ti %  | · U |    | w     | Υ  | Zn |
|---------------------|--------|-----|---------|-----|------|----|-----|----|------|----|----|-----|------|------|-----|------|------|----|------|----|-----|----|----|-----|----------|-----|----|-------|----|----|
| 2 Hole              | e 9 63 | 769 | 5       | 0.8 | 0.74 | <5 | 80  | <5 | 1.95 | <1 | 9  | 78  | 874  | 2.46 | 10  | 0.65 | 497  | 8  | 0.03 | 6  | 430 | 4  | <5 | <20 | 38 0.0   | <10 | 40 | <10   | 16 | 18 |
| 3 Hole              | e 9 63 | 770 | 5       | 1.2 | 0.86 | <5 | 125 | <5 | 2.42 | <1 | 12 | 110 | 1323 | 3.27 | 10  | 0.91 | 626  | 11 | 0.03 | 6  | 470 | 2  | <5 | <20 | 52 < 0.0 | <10 | 41 | <10   | 16 | 21 |
| 4 Hole              | e 9 63 | 771 | 5       | 1.2 | 0.69 | <5 | 120 | <5 | 2.62 | <1 | 10 | 87  | 1434 | 2.86 | <10 | 0.64 | 758  | 23 | 0.03 | 6  | 480 | 4  | <5 | <20 | 49 < 0.0 | <10 | 39 | <10   | 16 | 19 |
| 5 Hole              | e 9 63 | 772 | 10      | 1.8 | 0.45 | <5 | 115 | <5 | 3.38 | <1 | 10 | 130 | 1689 | 3.12 | <10 | 0.38 | 1298 | 11 | 0.01 | 5  | 480 | <2 | <5 | <20 | 44 < 0.0 | <10 | 22 | <10   | 15 | 21 |
| 6 Hole              | e 9 63 | 773 | 10      | 2.6 | 0.34 | <5 | 125 | <5 | 3.80 | <1 | 11 | 83  | 2665 | 4.08 | <10 | 0.59 | 1840 | 10 | 0.01 | 4  | 450 | <2 | <5 | <20 | 58 < 0.0 | <10 | 27 | ′ <1( | 12 | 25 |
|                     |        |     |         |     |      |    |     |    |      |    |    |     |      |      |     |      |      |    |      |    |     |    |    |     |          |     |    |       |    |    |
| 7 Hole              | e 9 63 | 774 | 5       | 1.4 | 0.39 | <5 | 110 | <5 | 3.98 | <1 | 9  | 100 | 1401 | 2.82 | <10 | 0.31 | 1473 | 8  | 0.01 | 5  | 490 | <2 | <5 | <20 | 45 < 0.0 | <10 | 21 | <10   | 16 | 20 |
| 8 Hole              | e 9 63 | 775 | 10      | 6.4 | 0.47 | <5 | 125 | <5 | 3.35 | <1 | 13 | 84  | 9429 | 3.86 | <10 | 0.40 | 1176 | 8  | 0.02 | 6  | 480 | <2 | <5 | <20 | 42 < 0.0 | <10 | 24 | <10   | 13 | 24 |
| 9 Hole              | e 9 63 | 776 | 20      | 6.6 | 0.43 | <5 | 110 | <5 | 3.25 | <1 | 10 | 87  | 7381 | 2.61 | <10 | 0.39 | 934  | 8  | 0.02 | 5  | 450 | <2 | <5 | <20 | 40 < 0.0 | <10 | 23 | <10   | 13 | 15 |
| 10 Hole             | e 9 63 | 777 | 5       | 1.2 | 0.48 | <5 | 120 | <5 | 4.13 | <1 | 8  | 127 | 1352 | 2.27 | <10 | 0.31 | 1057 | 10 | 0.01 | 5  | 410 | <2 | <5 | <20 | 38 < 0.0 | <10 | 20 | <10   | 14 | 16 |
| 11 Hole             | e 9 63 | 778 | 160     | 1.4 | 0.74 | <5 | 255 | <5 | 3.53 | <1 | 9  | 116 | 1921 | 2.67 | <10 | 0.66 | 894  | 8  | 0.03 | 6  | 450 | <2 | <5 | <20 | 53 <0.0  | <10 | 29 | <10   | 14 | 19 |
|                     |        |     |         |     |      |    |     |    |      |    |    |     |      |      |     |      |      |    |      |    |     |    |    |     |          |     |    |       |    |    |
| QC DATA:<br>Repeat: | :      |     |         |     |      |    |     |    |      |    |    |     |      |      |     |      |      |    |      |    |     |    |    |     |          |     |    |       |    |    |
| 2 Hole              | e 9 63 | 769 | 5       | 0.6 | 0.77 | <5 | 90  | <5 | 2.02 | <1 | 10 | 84  | 946  | 2.71 | 10  | 0.70 | 506  | 9  | 0.03 | 6  | 470 | <2 | <5 | <20 | 41 <0.0  | <10 | 42 | ? <10 | 17 | 18 |
| Standard:           |        |     |         |     |      |    |     |    |      |    |    |     |      |      |     |      |      |    |      |    |     |    |    |     |          |     |    |       |    |    |
| GEO'96              |        |     | 140     | 1.4 | 1.68 | 60 | 150 | <5 | 1.76 | <1 | 19 | 65  | 82   | 4.10 | <10 | 0.99 | 670  | 1  | 0.01 | 21 | 660 | 20 | <5 | <20 | 58 0.1   | <16 | 70 | ) <1( | 8  | 67 |

df/798X XLS/96

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Page 1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-827

TARCO OIL & GAS LTD 500-717 SEVENTH AVE S.W. CALGARY, AB T2P 0Z3

ATTENTION: BILL TAYLOR

No. of samples received: 11 Sample type: CORE PROJECT #: None given SHIPMENT #: None given Samples submitted by: Not indicated

#### Values in ppm unless otherwise reported

| Et#            |        | Tag#  | Au(ppb) | Ag   | AI % | As | Ba  | Bi | Ca % | Cd | Co | Cr  | Cu     | Fe % | La  | Mg % | Mn  | Мо  | Na % | Ní | Р   | Pb | Sb | Sn  | Sr | Tì %  | U   | ٧  | W   | Υ  | Zn |
|----------------|--------|-------|---------|------|------|----|-----|----|------|----|----|-----|--------|------|-----|------|-----|-----|------|----|-----|----|----|-----|----|-------|-----|----|-----|----|----|
| 1              | Hole 9 | 63784 | 5       | 2.2  | 1.00 | <5 | 130 | <5 | 2.95 | <1 | 12 | 109 | 2095   | 2.71 | <10 | 0.87 | 592 | 10  | 0.03 | 8  | 450 | 4  | <5 | <20 | 51 | 0.01  | <10 | 30 | <10 | 12 | 23 |
| 2              | Hole 9 | 63785 | 5       | 4.0  | 1.05 | <5 | 135 | <5 | 3.50 | <1 | 12 | 125 | 3534   | 2.80 | <10 | 0.99 | 658 | 8   | 0.04 | 8  | 500 | <2 | <5 | <20 | 54 | <0.01 | <10 | 34 | <10 | 15 | 23 |
| 3              | Hole 9 | 63786 | 5       | 0.8  | 1.19 | <5 | 145 | <5 | 2.72 | <1 | 13 | 78  | 1120   | 3.13 | <10 | 1.07 | 557 | 73  | 0.04 | 7  | 490 | <2 | <5 | <20 | 45 | <0.01 | <10 | 35 | <10 | 13 | 22 |
| 4              | Hole 9 | 63787 | 95      | 4.6  | 0.96 | <5 | 190 | <5 | 3.47 | <1 | 13 | 98  | 4410   | 3.31 | <10 | 0.93 | 716 | 33  | 0.03 | 7  | 550 | <2 | <5 | <20 | 50 | <0.01 | <10 | 27 | <10 | 12 | 27 |
| 5              | Hole 9 | 63788 | 10      | 4.4  | 1.09 | <5 | 135 | <5 | 4.06 | <1 | 14 | 85  | 3289   | 3.30 | <10 | 1.40 | 850 | 12  | 0.02 | 6  | 540 | <2 | <5 | <20 | 49 | <0.01 | <10 | 36 | <10 | 15 | 26 |
|                |        |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |     |     |      |    |     |    |    |     |    |       |     |    |     |    |    |
| 6              | Hole 9 | 63789 | 5       | 4.0  | 1.31 | <5 | 115 | <5 | 3.00 | <1 | 16 | 126 | 6545   | 3.76 | <10 | 1.22 | 682 | 48  | 0.03 | 10 | 610 | <2 | <5 | <20 | 45 | <0.01 | <10 | 44 | <10 | 11 | 30 |
| 7              | Hole 9 | 63790 | 5       | 1.8  | 0.91 | <5 | 105 | <5 | 2.65 | <1 | 11 | 71  | 2258   | 3.10 | <10 | 1.16 | 634 | 20  | 0.03 | 6  | 460 | <2 | <5 | <20 | 49 | <0.01 | <10 | 39 | <10 | 9  | 21 |
| 8              | Hole 9 | 63791 | 60      | 7.4  | 0.76 | <5 | 95  | <5 | 2.77 | <1 | 13 | 111 | >10000 | 3.41 | <10 | 0.95 | 798 | 79  | 0.02 | 7  | 450 | <2 | <5 | <20 | 36 | <0.01 | <10 | 34 | <10 | 9  | 24 |
| 9              | Hole 9 | 63792 | 35      | 7.2  | 0.89 | <5 | 110 | <5 | 2.38 | <1 | 12 | 88  | 7116   | 3.31 | <10 | 0.89 | 750 | 19  | 0.02 | 6  | 450 | <2 | <5 | <20 | 29 | <0.01 | <10 | 31 | <10 | 7  | 24 |
| 10             | Hole 9 | 63793 | 95      | 7.2  | 0.70 | <5 | 120 | <5 | 2.58 | <1 | 15 | 68  | 6564   | 3.49 | <10 | 0.89 | 934 | 59  | 0.01 | 8  | 360 | <2 | <5 | <20 | 27 | <0.01 | <10 | 27 | <10 | 8  | 35 |
| 11             | Hole 9 | 63794 | 15      | 11.0 | 0.46 | <5 | 100 | <5 | 3.05 | <1 | 14 | 66  | >10000 | 3.37 | <10 | 1.14 | 932 | 127 | 0.02 | 6  | 310 | <2 | <5 | <20 | 30 | <0.01 | <10 | 29 | <10 | 6  | 32 |
|                |        |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |     |     |      |    |     |    |    |     |    |       |     |    |     |    |    |
| QC D<br>Repe   |        |       |         |      |      |    |     |    |      |    |    |     |        |      |     |      |     |     |      |    |     |    |    |     |    |       |     |    |     |    |    |
| 1              | Hole 9 | 63784 | 10      | 1.8  | 0.86 | <5 | 120 | <5 | 2.85 | <1 | 10 | 103 | 2062   | 2.49 | <10 | 0.82 | 565 | 14  | 0.03 | 6  | 400 | <2 | <5 | <20 | 47 | <0.01 | <10 | 25 | <10 | 10 | 20 |
| Stand<br>GEO's |        |       |         | 1.2  | 1.80 | 65 | 160 | <5 | 1.87 | <1 | 20 | 65  | 80     | 3.65 | <10 | 0.92 | 695 | 2   | 0.01 | 20 | 680 | 18 | <5 | <20 | 61 | 0.08  | <10 | 82 | <10 | 7  | 67 |

df/827 XLS/96/Tarco ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer