PROSPECTOR'S REPORT ON THE RECEIVED MAR 1 9 1997 **SUN CLAIM** Gold Commissioner's Office VANCOUVER, B.C. LIARD MINING DIVISION **BRITISH COLUMBIA, CANADA** NTS MAP SHEET 104I/16 CENTRED AT LATITUDE: 50° 47' 45"N. LONGITUDE: 128° 22' 33" W WORK PERFORMED: AUG. 20 - 25, 1996 FOR: CUSAC GOLD MINES LTD., DEMAND GOLD LTD. AND PACIFIC BAY MINERALS LTD. #908 - 700 W. PENDER STREET VANCOUVER, BEONE 1681 SURVEY BRANCH ASSESSMENT REPORT 24 FRANCIS MOYLE, B.Sc.

SUN PROPERTY TABLE OF CONTENTS

7

PAGE

1.0	SUMMARY	1
2.0	 INTRODUCTION	1 2 2 2
3.0	EXPLORATION HISTORY 3.1 Regional History 3.2 Property History	5 5 5
4.0	GEOLOGY 4.1 Property Geology 4.2 Lithologies	5 5 5
5.0	 1996 EXPLORATION PROGRAM	7 7 7 8 8
6.0	CONCLUSIONS	9
7.0	RECOMMENDATIONS	9
8.0	REFERENCES	10

SUN PROPERTY

PAGE

LIST OF FIGURES:

1)	Location Map	3
2)	Property Claim Map	4

LIST OF TABLES:

1)	Property Claims Status	2
2)	Table of Formations	6
3)	Lithogeochemical Analysis	8
4)	Stream silt Geochemical Analysis	9

LIST OF APPENDICES:

1) Itemized Cost Statem

- II) Summary of Personnel
- III) Analytical Procedure
- IV) Geochemical Lab Reports
- V) Rock Sample Descriptions VI) Statement of Qualifications

LIST OF MAPS:

1)	Property Geology and Sample Locations 1:10,000 scale
2)	Stream Silt Geochemistry 1:10,000 scale
3)	Rock Geochemistry 1:10,000 scale
4)	Soil Geochemistry 1:10,000 scale

1.0 SUMMARY

The Sun property comprises 15 units located approximately 150 kilometres southeast of Watson Lake, Yukon. Access to the property is via helicopter from Dease Lake or Watson Lake.

The property is located in the Cry Lake map area in north-central British Columbia and lies approximately 6 km. northwest of Blue Sheep Lake. The property covers an area of high relief with excellent bedrock exposure. The claim is underlain by marine Devonian to Mississippian carbonates and shales. The Earn Group shales are believed to be the ore-bearing source rock and strike in a north-south direction.

A review of all available information indicates that the area has experienced little prospecting, probably due to the remoteness of the area. No large economic mineral occurrences are reported within the immediate area.

The 1996 exploration program consisted of helicopter supported reconnaissance prospecting, geological mapping, rock chip, stream silt and soil sampling with the objective of evaluating the property's potential for hosting economic base metal deposits. Reconnaissance prospecting and geochemical sampling indicated that the sulphide mineralization is restricted to the Earn Group shales. Geochemical analysis of rock chip, silt and soil samples yielded elevated to anomalous values for Zn, Ba, Cd, Pb, Ni, Cu and Co. A stream sediment sample at the contact with the Earn Group shales returned anomalous values for Zn (6,739 ppm), Ni (1,658 ppm), Co (307 ppm), Cu (185 ppm), Cd (159.7) and Ba (1,955 ppm).

2.0 INTRODUCTION:

The Cry Lake Syndicate conducted a field exploration program on the Sun property located in the Cry Lake Map area of north-central British Columbia. Exploration was performed by a 2-man crew based out of Boulder City on the Tournagain River.

The objective of this program was to evaluate the property's economic potential through follow-up exploration on a geochemical anomaly delineated by the 1996 Cry Lake regional geochemical survey, as well as to provide reconnaissance coverage throughout the property. The 1996 program was conducted during the period of August 20 to August 25 1996 and included detailed geological mapping, prospecting and rock, silt and soil sampling.

A total of 28 rock grab, float and chip samples, 19 soil samples and 34 silt samples were collected from the claim area. Geological and geochemical data were compiled on 1:10,000 scale contour maps.

All geochemical samples were shipped to Acme Analytical Labs in Vancouver for geochemical analysis, utilizing the 32 element ICP method. Analytical procedures are described in Appendix III and analytical results are presented in Appendix IV.

2.1 Location and Access:

The Sun property is located in north-central British Columbia approximately 150 km southeast of Watson Lake, Yukon (Figure 1). The claims are situated within the NTS map sheet 104I/16W and centered about 58° 47' 45"N latitude and 128° 22' 30"W longitude. Access to the property is via helicopter from Dease Lake, B.C. or Watson Lake, Yukon.

2.2 Physiography, Vegetation and Climate:

The Sun property is located within the Cassiar Mountains physiographic division which is characterized by moderate to steep mountainous ranges and broad forested valleys. The property lies along the Omineca Tectonic Belt within the Kechika range which has relief up to 750 metres. Excellent bedrock exposures exist within the claim area owing to the altitude being mostly above treeline.

Forests of spruce and balsam generally cover most of the region with lodge pole pine at lower elevations. Precipitation is moderate, averaging 50-60 cm. per annum with temperatures ranging between -35° C and 30° C. The climate is continental type with warm summers and long, cold winters characterized by moderate to heavy snowfall between 3-4 metres.

2.3 Property Status and Ownership:

The Sun property (Figure 2) consists of 1 claim of 15 units located within the Liard Mining Division. The claims were staked by Francis Moyle for Cusac Gold Mines Ltd. The property is owned by 3 separate companies, Cusac Gold Mines Ltd. (33.3%), Demand Gold Ltd. (33.3%) and Pacific Bay Minerals Ltd. (33.3%) which all form the Cry Lake Syndicate. Relevant claims data are tabulated in Table 1.

Table 1 - Sun Property Claim Status

Claim Name	<u>No. of Units</u>	<u>Record #</u>	<u>Recording Date</u>	Expiry Date
SUN	15	347662	July 6, 1996	July 6, 2001

3.0 EXPLORATION HISTORY:

3.1 Regional History:

The area has had limited prospecting and study in the past. Dr. H. Gabrielse has done some regional mapping of the area and contributed his accumulated work to the 1996 B.C. Government geochemical survey. Ten kilometres to the east of Blue Sheep Lake, a silver, copper and quartz vein showing outcrops within the Rosella limestones of the Atan Group on the Winco claim. On the northeast end of Blue Sheep Lake, another silver, lead and zinc showing occurs within the Rosella limestones, 6 kilometres southeast of the Sun property. The remoteness of the area has led to little prospecting, however, the strong Zn and Ba signatures from the 1996 geochemical survey has drawn much attention to the area.

3.2 Property History:

Prior to 1996, the ground was previously staked by the Quebec Cartier Mining Company on April 29, 1977.

4.0 GEOLOGY:

4.1 Property Geology:

The Sun property was geologically mapped and lithogechemically sampled along with silt and soil samples by Cry Lake Syndicate personnel and these data were plotted on 1:10,000 scale contour maps. Approximately 80% of the property contains good outcrop exposures.

4.2 Lithologies:

Geological mapping on the Sun property has identified the primary lithologies underlying the claim as a package of Earn Group shales and McDame limestones (Table 2). The Earn Group lithology at the Sun property includes black slate with siliciclastic components of gray to black chert and argillaceous chert. The black slates tend to have a greenish stain along cleavage faces. The Earn Group occurs within the Selwyn basin and its southerly extension, the Kechika Trough. Large economically important sedimentary exhalative (SEDEX) zinc-lead masive sulphide and bedded barite deposits occur in basinal clastic rocks of the Devono-Mississippian Earn Group within the northern Canadian Cordillera. Sedimentological and paleontological evidence indicates that the Earn Group deposits formed in tilted half-grabens along the rifted continental margin of ancestral North America.

TABLE 2

TABLE OF FORMATIONS

The McDame group consists of dolostone and lesser limestone. Dark grey laminated to massive, commonly fetid dolostone is overlain by dark gray, locally platy, partly dolomitized limestone containing abundant fossiliferous beds. The presence of amphipora, algal laminae and stromatolites indicates a shallow-water subtidal to intertidal lagoonal environment. The McDame Group comprises middle to upper(?) Devonian reefal-lagoonal carbonate and is the host rock for the Midway manto deposit further north in the Tootsee lake map area.

The host rock for base metal deposits are typically carbonaceous cherty argillites and distal turbidites of the Lower Earn Group. The composition of these rocks indicates a starved, anoxic depositional environment. In the southern Kechika Trough, carbonate reefs developed along uplifted edges of tilted fault blocks. The onset of tectonic activity may have triggered exhalation of heated metaliferous brines and the development of growth faults. The timing of exhalative activity is roughly coincident with the end of starved basin sedimentation.

5.0 1996 EXPLORATION PROGRAM:

5.1 Geological Mapping:

Approximately 80% of the property was evaluated by geological mapping, prospecting and random rock, silt and soil sampling.

5.2 Geochemistry:

5.2.1 Sampling Procedure:

A total of 28 rock grab, float and chip samples, 19 soil samples and 34 silt samples were collected from the 1996 property evaluation program. Rock grab and chip samples were collected from outcrop exposures exhibiting favourable characteristics such as gossanous staining, sulphide content, shearing and alteration. Rock specimens were placed in marked plastic bags. All sample sites were marked with a fluorescent ribbon displaying the corresponding sample code. Silt samples were collected every 30-50 metres along creeks flowing through the claim block.

The silt samples were placed in marked plastic bags and the sample sites were marked with fluorescent ribbon displaying the corresponding sample code. Soil samples were randomly taken at locations exhibiting favourable characteristics such as gossanous staining, faulting, shearing and exposed lithological contacts. The majority of the soils collected appeared to have residual character and probably developed in situ. Glacial and glaciofluvial material is rare and bedrock generally occurs less than one metre from the surface. The soil samples were placed in marked paper soil bags and the sample sites were marked with fluorescent ribbon displaying the corresponding sample code. Analytical results are presented in Appendix IV and geochemical values are plotted on maps 2, 3 and 4. Ground control for mapping and sampling was provided by altimeter, compass and topo chain and the field crew was supplied with 1:10,000s scale topo maps for plotting data.

5.2.2 Rock Geochemistry:

During the 1996 exploration program, 28 rock samples were collected. Analytical results are presented in Appendix IV and rock sample descriptions are recorded in Appendix V.

The majority of the rock samples were collected from areas of alteration, shearing, faulting and lithological contacts. Table 3 records anomalous values in Cu, Zn, Pb, Ag, Ni and Ba.

Table 3 - Lithogeochemical Analysis (1996)

Sample #	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Ni (ppm)	Ba (ppm)
FR 96-48	178	240	670	10.1	99	289
FR 96-53	8	4	5	<0.3	6	1,701
FR 96-54	143	19	449	<0.3	53	83
FR 96-07	608	3	136	11.4	12	1,417

5.2.3 Stream Silt Geochemistry:

During the 1996 exploration program, 34 stream silt samples were collected. Analytical results are presented in Appendix IV.

The stream silt samples were collected every 30-50 metres up streams flowing from the Sun property. Table 4 records anomalous values for Zn, Ni, Co, Cd and Ba.

Table 4 - Stream Silt Geochemical Analysis (1996)

Sample #	Zn (ppm)	Ni (ppm)	Co (ppm)	Cd (ppm)	Ba (ppm)
TW 96-01	1,226	228	23	15	1,468
TW 96-02	4,172	588	91	35	617
TW 96-04	3,278	522	61	27	1,040
TW 96-06	6,212	98	134	47	963
TW 96-15	6,739	1,658	307	159.7	1,955
TW 96-16	3,869	688	76	53.4	1,622

6.0 CONCLUSIONS:

Prospecting, Geological mapping, lithogeochemical sampling, soil and silt sampling were the focus of exploration activity on the Sun property during the 1996 reconnaissance program. Geological mapping has shown that the property covers an assemblage of north striking units of shale and carbonate of the Devono-Mississippian Earn Group and McDame Formation.

The Earn Group shales formed within a half graben along the rifted continental margin of ancestral North America. With the onset of tectonic activity during the end of Frasnian-Famennian time exhalation was triggered forming heated metalliferous brines interbedded with slump breccias and the appearance of post ore sedimentary sequences. The timing of the exhalative event roughly corresponds with the end of starved basin sedimentation and the beginning of a major tectonic event that greatly modified the pattern of continental margin sedimentation in the northern Cordillera. The host rocks for the SEDEX deposits in the Kechika Trough area are generally carbonaceous cherty argillites and distal turbidites of the Lower Earn Group. The high zinc and barite values found in the silt samples on the Sun property point toward a possible SEDEX vent source. The McDame carbonates on the Sun property is the same carbonate unit which hosts the manto-style deposits at the Midway property to the north. A similar style of manto deposit is plausible on the Sun property and warrants further explorational study.

7.0 RECOMMENDATIONS:

Analytical results from the 1996 geochemical soil/silt sampling program were excellent and point to the presence of a SEDEX-style base metal deposit of economic size and grade. Observations made during the program delineate two target areas with economic potential and warrant work comprised of the following:

1) A follow-up soil sampling program comprised of 2 grids 500m x 500m running over the high stream silt anomalous zones covering the Earn group thrust contacts should be initiated with samples taken at 25m intervals along 50m spaced grid lines.

- 2) A ground geophysical program should be initiated following the geochemical survey. The geophysical program should involve VLF-EM and possibly I.P. surveys in order to outline any fault structures and associated mineralization.
- 3) Diamond drilling is recommended for a Phase II exploration program contingent upon positive results from the geochemical and geophysical surveys.

8.0 REFERENCES:

Nelson, J.L., Bradford, J.A., 1993 Geology of the Midway-Cassiar Area, Northern British Columbia (104/0, 104/P). <u>Mineral Resources Division, Geological Survey Branch.</u>

Macintyre, D., Nelson, J.L., Devono-Mississippian SEDEX deposits of the northern Canadian Cordillera - a comparison of stratigraphic and structural settings. <u>British</u> <u>Columbia Ministry of Energy, Mines and Petroleum Resources</u>. Abstract (1994).

APPENDIX I

Itemized Cost Statement

ITEMIZED COST STATEMENT

FIELD COSTS:

<u>Salaries</u>	<u>Man Days</u>	<u>Cost/Manday</u>	<u>Total</u>
F. Moyle T. Dunk	5 days @ 5 days @	\$190.00 \$135.00	\$ 950.00 \$ 675.00
			\$1,650.00

FIELD EXPENSES:

	<u>Man Days</u>	<u>Cost/Manday</u>	<u>Total</u>
Accommodation Meals Helicopter Time Helicopter Fuel Freight/Shipping Field Supplies & Materials	5 days @ 5 @ 3 hours @	\$ 40.00 \$ 40.00 \$750.00	\$ 200.00 \$ 200.00 \$2,250.00 \$ 210.00 \$ 107.00 \$ 50.00
TOTAL			\$3,017.00

GEOCHEMICAL ANALYSIS:

	<u>Samples</u>	<u>Cost/Sample</u>	<u>Total</u>
Rock Samples (ICP) Soil Samples (ICP) Silt Samples (ICP)	28 19 34	\$17.12 \$14.07 \$20.85	\$ 547.84 \$ 267.33 \$ 708.90
TOTAL			\$1,524.07
OFFICE COSTS:			

<u>Salaries</u>	<u>Man Days</u>	<u>Cost/Manday</u>	<u>Total</u>
F. Moyle Autocad Digitizing	5 days @	\$165.00	\$ 825.00 <u>\$ 650.00</u>
TOTAL			\$1,475.00

APPENDIX II

Summary of Personnel

SUMMARY OF PERSONNEL

The following personnel are credited with the field work on the Sun Property during the 1996 field season:

Francis Moyle Tim Dunk

APENDIX III

Analytical Procedure

ACME ANALYTICAL LABORATORIES LTD. Assaying and Trace Analysis 852 Hastings Street, Vancouver, BC V6A 1R6 Telephone: (604) 253-3158 Fax: (604) 253-1716

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 1D - 30 ELEMENT ICP BY AQUA REGIA

Sample Preparation:

Soils and sediments are dried (60°C) and sieved to -80 mesh (-177 microns), rocks and drill core are crushed and pulverized to -100 mesh (-150 microns). Plant samples are dried (60°C) and pulverized or dry ashed (550°C). Moss-mat samples are dried (60°C), pounded to loosen trapped sediment then sieved to -80 mesh. At the clients request, moss mats can be ashed at 550°C then sieved to -80 mesh although this can result in the potential loss by volatilization of Hg, As, Sb, Bi and Cr. A 0.5 g split from each sample is placed in a test tube. A duplicate split is taken from 1 sample in each batch of 34 samples for monitoring precision. A sample standard is added to each batch of samples to monitor accuracy.

Sample Digestion:

Aqua Regia is a 3:1:2 mixture of ACS grade conc. HCI, conc. HNO₃ and demineralized H_2O . Aqua Regia is added to each sample and to the empty reagent blank test tube in each batch of samples. Sample solutions are heated for 1 hour in a boiling hot water bath (95°C).

<u>Sample Analysis:</u>

Sample solutions are aspirated into an ICP emission spectrograph (Jarrel Ash Atom Comp model 800 or 975) for the determination of 30 elements comprising: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Data Evaluation:

Raw and final data from the ICP-ES undergoes a final verification by a British Columbia Certified Assayer who then signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

ACME ANALYTICAL LABORATORIES LTD. Assaying and Trace Analysis 852 Hastings Street, Vancouver, BC V6A 1R6 Telephone: (604) 253-3158 Fax: (604) 253-1716

METHOD FOR WET GEOCHEM GOLD ANALYSIS

Sample Preparation:

Soils and sediments are dried (60°C) and sieve to -80 mesh.

Rocks and cores are crushed and pulverized to -100 mesh.

Sample Digestion

- 1. 10g samples in 250 ml beaker, ignite at 600°C for four hours.
- 2. Add 40 ml of 3:1:2 mixture HCL:HNO₃:H₂0.
- 3. Cover beaker with lids.
- 4. Boil in hot water bath for one hour.
- 5. Swirl samples 2 to 3 times within the hour.
- 6. Cool, add 60 ml of distilled water and settle.
- 7. Pour 50 ml of leached solution using a graduated cylinder into 100 ml volumetric flask.
- 8. Add 10 ml of MIBK and 25 ml of distilled water.
- 9. Shake 3 to 4 minutes in shaker.
- 10. Add additional 25 ml of distilled water to stripe out excess iron.
- 11. Shake each flask 10 times.
- 12. Pour MIBK into container for graphite AA finished.

APPENDIX IV

Geochemical Lab Reports

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Cusac Gold Mines PROJECT SUN File # 96-4253 Page 1 908 - 700 W. Pender St., Vancouver BC V6C 1GB

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Ρ	La	Cr	Ma	Ba T	i	3 A	L M	Na	κ	WA	u*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	۲,	ppm (ppm	ppm ;	nga	ppm	ppm	ppm	DDm	ppm	*	Χ.	nom 1	opm	x	DDM	X pp	n	K.	Χ.	X p	a ma	ob
	· • • • • • • • • • • • • • • • • • • •					· · · · · · ·				· · · · · · · · · · · · · · · · · · ·																					
FR96-45	2	4	13	13	<.3	7	1	31	.27	3	<5	<2	<2	4	.4	2	<2	2	.07	.002	<1	21	.04	110<.0)1 :	3.0	3.0	01 <.	.01	6	1
FR96-46	2	1	29	229	<.3	38	<1	167	1.17	203	5	<2	<2	1195	.3	16	<2	6	39.84	.003	2	4	6.01	219<.0)1 :	3 .0	2.0	01.	.01	<2	6
FR96-47	1 1	54	10	71	<.3	182	29	677	4.24	2	<5	<2	3	142	.6	<2	<2	132	2.44	.375	26	59	4.50	578 .2	25 1	5 1.4	9.0	04 1.	.18	<2	1
FR96-48	60	178	240	672	10.1	99	4	83	19.60	167	<5	<2	6	20	1.8	64	2	73	.34	.051	9	13	.17	289 .0	01	8.3	B .(01	31	<2	24
FR96-49	2	7	9	52	<.3	25	1	152	2.54	7	<5	<2	<2	233		6	<2	13	4.60	.013	2	15	1.91	50<.0	1	4 .0	6 .(01	.03	5	2
	1 -	•					•			•				200	• • •	Ŭ			4.00	.015	•		••••	20.10		• ••	•••			2	-
FR96-50	1	3	7	78	<.3	25	1	1067	.21	6	6	<2	<2	63	.5	4	<2	9	41.28	.003	2	3	.36	59<.0)1 <	3.0	7<.(01.	.03	<2	3
FR96-51	6	8	11	57	<.3	27	1	40	1.24	9	<5	<2	<2	10	<.2	2	<2	33	.43	.094	17	18	.05	121<.0	51	7.1	7<.(01 .	. 12	4	2
FR96-52	2	225	4	116	7.2	19	3	79	1.11	22	<5	<2	<2	10	.4	135	<2	3	.26	.021	3	25	.01	26<.0) 1 <	3 .0	6 . (01	.02	7	ī
FR96-53	2	8	4	5	<.3	6	2	22	.87	4	<5	<2	<2	13	<.2	3	2	ž	.01	016	1	22	.01	1701<	11	3 0	5 1	01	.03	Å	2
FR96-54	23	143	19	449	<.3	53	<1	81	23.14	41	<5	<2	6	32	< 2	14	~	43	01	610	2	43	06	R3< (11 1	1 3	R< 1	01	10	õ	7
			••				•	•••		••			•	52			Ŭ				•			03 - 10			••••	vi		·L	•
FR96-55	1	3	12	13	<.3	23	2	248	.54	3	<5	<2	<2	451	.2	2	<2	54	22.66	.013	4	11	13.73	1368<.0	01	6.1	3.	01 .	.06	<2	2
FR96-56	2	3	5	111	<.3	14	<1	76	.52	<2	<5	<2	<2	54	1.5	<2	<2	25	2.78	.055	2	20	1.42	146<.0)1 <	3.0	9.1	01 .	.10	6	2
RE FR96-56	2	4	3	110	<.3	13	<1	76	.52	<2	<5	<2	<2	55	1.6	<2	<2	25	2.77	.055	2	22	1.41	137<.(01 <	3.0	9.	01	.10	7	1
FR96-57	30	22	9	127	.7	18	1	32	.86	62	5	<2	<2	19	2.7	6	<2	80	.46	. 143	6	26	.13	129<.0	01	9.2	1 .	01	.11	5	4
FR96-58	2	11	<3	6	<.3	7	1	110	.75	19	<5	<2	<2	5	<.2	<2	2	3	.02	.005	3	25	.02	457<.1	D1	3.1	0.	01	.04	6	2
	1																														
FR96-59	2	129	5	253	.6	8	<1	786	3.14	<2	<5	<2	<2	39	.6	<2	4	42	1.02	.037	2	19	.46	81 .	25 24	4.6	8.	02	.04	<2	5
FR96-60	2	23	7	19	<.3	12	2	260	.68	2	<5	<2	<2	47	<.2	<2	<2	3	.86	.006	4	26	.03	22<.0	01	3.0	8.	01	.02	8	1
TR96-01	1	61	- 4	84	<.3	163	31	782	5.15	381	<5	<2	6	170	.4	5	<2	138	4.86	.492	30	101	3.33	74 .	27 2	2 1.2	8.	03	.97	<2	1
TR96-02	2	11	24	95	.3	33	2	246	.86	247	<5	<2	<2	74	.7	23	7	3	36.29	.013	6	3	.31	55<.	01	4.1	1.	01	.10	<2	31
TR96-03	2	75	72	70	<.3	103	20	193	3.69	13	<5	<2	6	238	<.2	4	3	54	1.44	.570	27	49	.81	38.	02	8 1.0	8.	02	.39	2	3
TR96-04	2	19	9	13	<.3	10	1	49	.82	3	<5	<2	<2	10	<.2	<2	2	10	.08	.008	5	31	.07	605<.	01	3.1	5<.	01	.05	6	1
TR96-05	15	131	- 31	198	.5	34	<1	- 99	15.79	22	<5	<2	12	38	<.2	7	7	- 36	. 18	.399	8	38	.06	102<.	01 1	1.4	7.	01	. 18	2	4
TR96-06	2	- 4	23	52	<.3	6	1	89	.71	341	7	<2	12	5	.2	2	2	1	.04	.005	22	7	.02	697<.	01 1	3.3	3<.	01	.23	2	26
TR96-06A	37	123	17	119	<.3	- 37	26	1181	28.33	87	<5	<2	12	91	<.2	8	<2	79	.07	.827	4	89	.07	42.	01	6.2	9.	02	. 19	<2	4
TR96-10	2	4	6	72	<.3	11	<1	96	.32	9	<5	<2	<2	92	1.0	2	<2	6	10.73	.003	2	16	4.66	55<.	01	5.0	3<.	01	.02	5	2
TR96-11	1	- 77	14	84	<.3	32	6	669	2.71	<2	<5	<2	7	11	۲.>	<2	6	49	.32	.046	17	32	.90	110 .	20	3 1.2	. 8	02	.15	<2	3
STANDARD C2/AU-R	20	56	32	139	6.5	69	33	1082	3.84	40	18	7	33	52	19.8	19	23	71	.50	. 104	40	62	.93	191 .	08 3	1 2.0)2.	06	.15	11 4	469

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 5 1996 DATE REPORT MAILED: Sept 18/96 SIGNED BY.....D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Cusac Gold Mines PROJECT SUN FILE # 96-4253

Page 2

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	8 ppm	Al %	Na %	K %	W ppm	Au* ppb
			-										-																		•
TR96-07	2	808	- 3	136	11.4	12	1	89	.22	104	<5	<2	<2	134	4.7	251	2	54	8.48	.036	1	18	4.50	1417	<.01	4	.08	.01	.01	4	1
TR96-08	6	8	23	- 59	.3	26	<1	107	.47	6	<5	<2	<2	176	.5	4	3	46	9.94	.069	3	20	5.16	558	<.01	5	.07	<.01	.03	5	1
TR96-09	2	14	7	62	.4	10	<1	77	.37	4	<5	<2	<2	116	.6	5	2	15	6.82	.028	1	18	3.50	106	<.01	3	.02	<.01	.01	4	1
RE 1R96-09	2	15	5	64	.4	11	<1	72	.37	4	<5	<2	<2	119	.9	5	<2	15	7.00	.029	1	17	3.57	109	<.01	<3	.02	<.01	.01	5	1

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

L

Cusac Gold Mines PROJECT SUN FILE # 96-4253

Page 3

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	Ρ	La	Cr	Mg	Ba	Ti	8	AL	Na	K	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	*	ppm	ppm	x	ppm	*	ppm	%	*	%	ppm	ppb
TP96-01	8	32	10	552	.3	95	10	362	1.34	16	<5	<2	3	43	5.8	5	-2	61	1 51	080	11	14	56	1480	01	4	13	01	11	- 2	4
TP96-02	9	31	14	2027	.4	277	45	1772	1.29	12	<5	<2	3	162	17.7	ž	~2	47	15 04	087		12	04.5	1/05	.01	5	.4J 71	.01		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7
TP96-03	7	20	17	698	.3	104	8	361	1.34	11	<5	<2	3	163	6.8	ž	~2	65	13 45	157	10	14	J.07	1767	.01	4		.01	17	~2	2
TP96-04	7	26	125	1191	.3	151	19	812	2.15	20	<5	<2	ž	172	11 0	4	~2	44	17 01	000	7	14	5.JI 6 71	937	.03	5	.37	.01		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4
TP96-05	11	35	16	1962	.3	292	47	1759	1.43	15	<5	<2	Ž	106	17.4	ž	<2	38	13.44	.062	ģ	11	3.21	1526	.01	3	.32	<.01	.09	<2	1
1006-06	10	60	11	2003	5	448	75	2825	2 00	22	~5	~7	•		27 0	-	-		7 40		-	20			~	-		~		•	
1006-10	77	50	18	587	.7	170	11	2023	2.09	22		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	22	23.0	2	~ ~ ~	00	3.12	.100	30	20	.61	1413	.01	2	.58	.01	.14	<2	4
1006-11	11	26	10	217	• • •	139		313	2.0/	25	<5	<2	<u>'</u>	12	11.3	8	<2	109	6.54	.318	24	53	.52	903	.03	5	.62	.01	.15	<2	10
104-17		20		213	.4	59	17	222	1.40		<2	<2	2	108	3.8	2	<2	21	10.96	.080	11		.88	1155	<.01	6	.22	<.01	.10	<2	4
1000 12	2	33	0	00	<.3	24	13	420	2.12	4	~ 2	~2	2	14	.4	<2	<2	86	1.15	.044	7	54	1.32	1462	.18	8	1.94	.02	.07	<2	- 4
KE IPYO-12	2	34	د	80	<.3	22	15	427	2.10	5	<5	<2	2	14	.4	<2	<2	87	1.15	.044	7	56	1.34	1485	.18	8	1.97	.02	.07	<2	4
TP96-13	8	33	6	212	<.3	60	12	459	2.84	10	<5	<2	3	20	3.4	<2	<2	85	.86	.096	10	36	.95	1678	. 14	5	1.55	.01	07	~2	7
TP96-14	25	110	21	770	.5	168	20	684	2.40	25	16	<2	4	33	9.6	- Ā	ž	63	1.07	118	15	32	.83	1064	04	6	1.12	01	13	-2	Ä
TP96-15	30	73	13	2569	.8	654	114	5802	2.59	22	<5	<2	4	50	55.7	6	<2	79	.33	146	18	20	18	1688	02	ŭ	72	< 01	12	-2	4
TP96-16	17	42	11	2185	.5	419	54	2584	1.91	19	<5	<2	4	37	31.8	3	<2	60	.75	102	16	18		1578	.01	5	57	01	13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	z
TP96-17	10	28	9	698	.3	138	17	616	1.42	17	<5	<2	3	32	9.2	4	<2	62	.61	.085	11	14	.38	1895	.01	4	.38	<.01	.10	~2	3
STANDARD C2/AU-R	20	56	36	134	6.7	69	33	1098	3.68	37	16	7	35	50	19.5	17	18	70	.50	. 105	40	60	.94	190	.08	27	1.94	.06	. 14	11	460

Sample type: PAN CONC.. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Cusac Gold Mines PROJECT SUN FILE # 96-4253

Page 4

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррт	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	ррт	Al %	Na %	K X	W ppm	Au* ppb
TP96-07	9	16	16	239	<.3	39	3	229	1.39	26	<5	<2	4	179	3.2	4	<2	143	12.50	.993	33	21	5.69	1268	.02	14	.45	.01	.20	<2	4
TP96-08	8	12	19	363	<.3	41	4	223	1.40	25	<5	<2	3	145	4.0	4	Ž	64	10.50	.248	12	14	5.51	1287	.01	10	.27	.01	.10	<2	3
TP96-09	5	13	15	224	<.3	30	4	251	1.42	19	<5	<2	2	102	2.4	3	<2	75	6.68	.159	11	15	3.48	1268	.02	5	.32	.01	.08	<2	2
RE TP96-09	5	13	15	222	<.3	31	4	251	1.40	20	<5	<2	3	102	2.6	2	<2	72	6.57	.155	12	15	3.43	1377	.02	7	.31	.01	.08	<2	1

Sample type: PAN CONC.. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

L

Cusac Gold Mines PROJECT SUN FILE # 96-4253

SAMPLE#	Mo	Cu	Pb ppm	Zn	Ag	Ni	Co	Mn	Fe X	As DDmit	U	Au Dom i	Th Dom r	Sr	Cd mag	Sb Dom t	Bi	V	Ca %	P X	La	Cr	Mg X	Ba pom	Ti Xi	B	Al X	Na %	K X I	A W ci mox	u* ob
T\$96-01	14	59	26	366	.5	114	14	420	3.29	21	<5	<2	</th <th>14</th> <th>2.5</th> <th>2</th> <th><2</th> <th>41</th> <th>. 37</th> <th>. 175</th> <th>35</th> <th>13</th> <th>. 12</th> <th>179</th> <th>.02</th> <th>8</th> <th>.52<</th> <th>.01</th> <th>.09</th> <th><?</th><th>5</th></th>	14	2.5	2	<2	41	. 37	. 175	35	13	. 12	179	.02	8	.52<	.01	.09	</th <th>5</th>	5
1596-02	11	51	16	224	0	43	8	666	5 22	11	<5	~	ō	15	1 6	~	7	50	10	152	32	40	62	157	14	<3 7	1 81	04	07	2	ž
1006-07	16	77	44	307	5 4	80	11	316	7 40	16	-5	~2	10	1/2		17	2	37	05	371	16	25	15	05	.17	7	77	.07		2	z
1370-05	71	76	24	2/1	5 8	56	1	106	10 28	40	-5	~2	6	00	. 7	2	~~	60	.05	276	11	31	. 15	104	.02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50	.05		~	5
1370-04	25	105	24	777	7.4	111	44	522	11 7/	44	` ,	~2	1	0/	`. 2		22	45	.02	.2/4	20	21		507	.02	.7		07	15	~~	7
1390-03	25	105	47	551	5.0			522	11.74	00	,	14		74	. 2	~2	~2	0)	.20	.055	20	כנ	.00	202	.01	S	.70	.05	. 15	12	5
TS96-06	18	149	14	306	2.5	114	11	367	4.56	16	8	<2	6	95	.4	<2	<2	19	.06	. 124	11	20	.06	524	.01	4	1.17	.02	.11	<2	8
TS96-07 not received	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
TS96-08	6	9	13	40	<.3	23	5	143	1.74	15	<5	<2	3	111	.4	<2	<2	7	15.30	.032	9	6	9.28	1024	<.01	<3	.04	.01	.02	<2	1
TS96-10	38	80	57	1143	1.8	159	9	243	2.14	68	<5	<2	4	158	11.5	16	<2	184	9.97	.214	23	22	5.54	403	.01	8	.38	.01	.12	6	2
TS96-11	8	16	25	386	.4	67	8	318	2.06	29	<5	<2	3	181	3.8	5	<2	58	17.21	.066	11	17	10.58	8594	<.01	7	.25	.01	.06	<2	1
	-					-	-				-	_	-			-	-								•••	-	•			-	•
1596-12	25	35	41	466	.5	118	11	197	3.06	38	<5	<2	4	152	3.8	8	<2	47	11.17	.080	11	13	6.21	5524	<.01	7	. 18	.01	.07	<2	2
1596-13	69	103	29	718	1.3	151	15	386	4.25	190	12	<2	6	43	11.2	19	<2	98	3.31	.177	15	27	1.73	271	.01	7	.37<		.09	<2	8
T\$96-14	14	30	25	487	.7	72	5	267	1.49	39	<5	<2	ž	158	5 2	Ś	<2	03	13.88	196	16	18	8.02	615	.01	ò	33	.01	.07	<2	2
1596-15	12	30	33	697	0	79	Ŕ	403	2 53	54	<5	<2	~2	64	5 1	5	<2	111	6 02	208	23	23	3 10	643	.02	Ŕ	66	01	10	2	L.
1596-16	15	36	36	644		104	12	820	3.87	37	<5	~	~2	23	6.8	7	2	106	0.02	104	37	20	.52	677	05	7	1.34	.01	10	2	3
1376 10		50	50	0.11				02/	5.0.	5.					4.0				• * *	• • • • •	5.	~ /		0		•	1134				5
RE 1596-16	15	37	34	650	1.0	104	13	835	3.89	34	<5	<2	<2	23	5.0	8	3	108	.98	. 196	38	29	.52	686	.05	9	1.37	.01	.10	<2	4
T\$96-17	16	335	33	397	1.6	152	40	5119	5.11	88	<5	<2	4	53	1.6	2	3	60	.11	.171	25	39	.36	1663	.01	4	1.31	.01	. 10	<2	6
T\$96-18	6	380	19	280	1.0	113	49	1722	6.91	8	<5	<2	4	29	<.2	<2	5	96	.54	.086	29	64	1.44	669	.16	7	2.40	.01	.06	<2	13
1596-19	7	330	20	271		76	22	1089	5.48	Ř	<5	<2	4	30	3	~2	Ś	69	31	. 191	26	41	.77	477	.16	11	1.57	.01	.09	2	7
1596-20	36	75	16	684	1.6	133	12	330	3.21	45	<5	~2	<2	50	11 8	13	<2	02	.41	181	22	26	. 14	612	.01	7	.49	.01	.15	<2	i.
	1	•••		501									•	20			•••					20				•					•
STANDARD CZ/AU-S	21	63	38	150	7.2	73	34	1222	4.04	42	19	8	37	55	21.5	16	23	76	.55	.106	43	68	1.00	209	.08	32	2.13	.06	.16	11	51

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr M	lg	Ba	Ti	8	Al	Na	ĸ	W	Au*	-
	ppm	ррп	ррп	ррт	ppm	ppm	ppm	ррп	%	ррп	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	%	ppm	ppm	× 1	ppm	%	ppm	%	%	X	ppm	ppb	
T\$96-09	39	128	56	1204	4.2	149	7	252	1.62	129	7	<2	5	104	23.9	26	<2	472	12.82	.481	23	46 6.8	30	498	.01	16	.45	.01	.21	<2	1	

Sample type: SOIL.

AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

Cusac Gold Mines PROJECT SUN FILE # 96-4253

SAMPLE#	Mo ppm	Cu ppm	РЬ ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B	Al X	Na %	K X	W W ppm	lu* opb	
																	<u> </u>									<u></u>				·	<u> </u>	
1096-01	10	45	22	1226	.4	228	23	978	1.83	28	<5	<2	<2	51	15.0	9	<2	67	2.98	.099	15	51	1.40	1468	.01	4	.60	.01	.12	<2	1	
TW96-02	14	50	23	4172	.3	588	91	3605	1.62	18	<5	<2	2	179	35.0	8	<2	45	14.11	.106	9	21 /	4.03	617	.01	<3	.57	.01	.09	<2	1	
TW96-03	12	37	28	1214	.3	225	13	444	2.11	21	<5	<2	<2	143	14.5	7	2	58	11.20	.142	12	23	3.15	522	.01	3	.41	.01	.11	<2	<1	
TW96-04	12	43	18	3278	<.3	522	61	2442	1.58	14	<5	<2	2	169	27.0	5	<2	46	14.60	.088	9	33 4	4.96	1040	.01	5	.53	.01	.07	<2	<1	
TW96-05	12	54	19	3732	<.3	560	82	3229	1.61	17	<5	<2	<2	97	30.0	7	<2	28	14.14	.066	8	22	2.98	609	<.01	<3	.57	.01	.06	<2	2	
TW96-06	17	98	23	6212	.3	984	134	4895	2.30	22	<5	<2	z	65	47.2	8	<2	42	3.98	.090	16	35	.99	963	.01	4	1.12	.01	.09	<2	3	
TW96-10	19	58	24	1093	.6	248	21	519	3.37	24	<5	<2	3	36	16.8	8	<2	54	3.36	.129	22	34	.51	427	.03	5	1.01	.01	.13	<2	3	
TW96-11	13	34	17	275	<.3	83	13	433	2.36	21	<5	<2	3	104	7.0	5	<2	13	11.17	.097	13	8	1.40	247	<.01	<3	.21	<.01	.06	<2	1	
TW96-12	6	90	12	211	<.3	73	17	707	3.49	17	<5	<2	3	28	1.4	<2	<2	68	. 83	.087	16	56	1.05	859	.06	<3	1.68	.01	.09	<2	3	
RE TW96-12	6	91	11	209	<.3	71	17	693	3.39	15	<5	<2	3	27	1.4	<Ž	<2	66	.80	.086	15	56	1.04	850	.06	<3	1.66	.02	.09	<Ž	Ž	
TW96-13	34	143	19	1096	.3	239	35	1288	2.60	40	31	<2	4	43	20.6	9	2	40	3.35	.108	13	33	1.58	394	<.01	4	.76	<.01	.08	<2	3	
TW96-14	18	70	11	431	<.3	99	18	692	3.45	25	<5	<2	2	20	7.8	<2	<2	80	.62	.109	18	40	.70	524	.05	<3	1.34	.01	.10	<2	2	
TW96-15	50	185	17	6739	<.3	1658	307	15184	3.31	28	12	<2	<2	74	159.7	7	<2	72	.61	. 168	24	60	.29	1955	.02	<3	1.52	.01	.12	<2	3	
TW96-16	16	65	18	3869	<.3	688	76	3682	2.37	21	<5	<2	<2	51	53.4	6	<2	56	3.32	.111	18	55	1.81	1622	.01	<3	.77	.01	.11	<2	1	
TW96-17	15	48	14	1618	.4	312	36	1641	1.81	24	<5	<2	<2	46	24.7	6	<2	63	3.79	.092	14	47	1.96	1444	.01	3	.51	.01	.10	<2	1	
STANDARD C2/AU-S	18	54	39	128	6.2	69	34	1113	3.83	38	14	7	33	51	19.6	17	15	69	.50	.101	39	60	.95	183	.07	23	1.99	.07	. 15	10	47	

Sample type: SILT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Cusac Gold Mines PROJECT SUN FILE # 96-4253

Page 8

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe X	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca X	P X	La	Cr	Mg X	Ba	Ti	B	Al X	Na %	K	W	Au*
								PP			PP		PP	PPIN	ppin	PP	PP	PP''			PP	PP ***		FF ¹⁰		F F ***				PP""	PP-
TW96-07	16	25	30	404	.7	71	5	279	1.49	36	<5	<2	2	171	4.4	7	<2	119	13.54	.318	19	19	7.53	587	.01	8	.29	.01	.09	<2	<1
TW96-08	14	30	28	867	.7	95	7	283	1.96	43	<5	<2	<2	109	6.7	8	<2	79	9.03	.153	15	18 4	4.83	813	.01	9	.33	.01	.06	<2	1
TW96-09	11	30	24	631	.6	84	7	331	1.99	39	<5	<2	<2	96	5.8	5	<2	90	9.74	.111	14	19	5.51	962	.02	8	.50	.02	.10	<2	2
RE TW96-09	11	29	22	601	.6	80	7	313	1.90	37	<5	<2	<2	92	5.5	5	<2	86	9.26	. 107	14	18	5.22	918	.02	8	.48	.02	.09	<2	3

Sample type: SILT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

APPENDIX V

Rock Sample Descriptions

Sun RECCE TRAVERSE/SAMPLE RECORD

NAME: F. Moyle

PAGE 2 OF 2

DATE	TRAVERSE	NTS	AREA	SAMPLE #'8	COMMENTS/ROCK DESCRIPTION
Aug 22	Sun	104I16W	NE of claim block	TR9607	912 veining in Shaley Argillite w/ malachite, and Azurite in pods locally when 12 vein (grab)
~				TR9608	(42) qt2 Vein (1m below TRO7) bull qt2 weak mintzu
				TR9609	19+2 Vein (5m NWOF TRO7) Pr blebs of millione w/ose
	-			TR9610	Carge at 2 vein in Dol baker float - Fe stand weak minizin gyrab
				FR9655	412 vein (5 m helow TROF) less minized try
				FR9656	19+2 float - Fe stained to py - Unggy
				FR96 57	chip sumple over Im of gtz veined Higillite -very mist
Aug 23	Sun	104I16W	N-central of claim block	FR96 58	9+2 veining in Argillite
				FR9659	For nodule in matic volc's at bothm of cirgue
				FR9660	At 2 vein w/ breachated argillite - te stained
				TR96 11	Alteration halo around gossanous serp unit
Aug 24	Sun	104I16w	,	TR 966A	float in felsenmer. U Ultrematic w/ strong Py dissemination
. J				•	J 7
					·

San RECCE TRAVERSE/SAMPLE RECORD

NAME: F. Moyle

PAGE / OF 2-

date 96	TRAVERSE	NTS	AREA	SAMPLE #'8	COMMENTS/ROCK DESCRIPTION
Aug 20	Sun	104 IIGN	SE end of claim block	FR9645	Qtz float amoungst 6st/Dol (Celid) float Dol of Ziminitic stain
J				FR9646	Argillite w/ dolomitic vein The rich nodelle
				FR9647	ultramafic dyke intruding List/Dol cliff (grab)
Aug 21	Sun		Sw end, of clarin block	FR9648	Welded constance - Limmitic inuddy MAX
				FR96 49	Fine grained by nodule in chert w/ gtz veinlets (grab)
				FR96 50	Fe stained gtz/corb veins in Argillaceous/shale unit
				FR96 51	Phyllitic slake w/ quest2/carb veining - Festaned Subcrop (ardb)
		-		FR9652	Vugay quartze in Arg. Ilitic unit - Suberoo trov
				FR9653	9+2 vein w/in Aryillite cuterop 10in wide - Limmit
				FR9654	l' float from omx ion cliff face brecciated /friable fault gouge - Fe rich - healed
				TR9601	
				TR9602	
				TR9603	Pyritic argillite - subcrop (arab)
				TR9604	Otz Vein in Araillite - Limonitic trov
				TR9605	Slip gouge along bedded Araillite - weakly healed
Augzz				TR9606	rusty 3+2 vein perpendicular to carb. bedding.

APPENDIX VI

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, Francis S. Moyle, of 928 Berkley Road in the municipality of North Vancouver, British Columbia, do hereby certify that:

- I am an independent contract geologist currently employed under contract to Cusac Gold 1) Mines Ltd., Pacific Bay Minerals Ltd., Demand Gold Ltd. and Dan Brett. The office is at #908-700 West Pender Street, Vancouver, B.C. V6C 1G8;
- I am a graduate of the University of British Columbia (1994) with a B.Sc degree in 2) geology and have had this profession continuously since graduation;
- I have been employed in the mineral exploration industry since 1990, within Canada; 3)
- I am the author of a recent report dated March, 1997 entitled "Prospector's Report on the 4) Sun Claim", British Columbia;
- I have personally performed the work discussed in this report; 5)
- I do not own or expect to receive any interest (direct, indirect or contingent) in the property 6) described herein with respect of services in the preparation of this report.

Dated at Vancouver, B.C. this _____ day of March, 1997.

Respectfully submitted:

France Mayl

NI1 GEOLOGICAL SURVEY BRANCH SSESSMENT REPORT key to sample results notation Zn Cu Pb Ba All units are in parts per million (ppm)

	Soil
	Rock
	Pans/Silts
	Contact (defined)
- 100 1 200	Contact (approximate)
-	Contact (assumed)
~	Fault
	Creeks
-	Forest
	Outcrop

LEGEND

0

_11

0

Ancestral North America

Upper Devonian to Mississippian (Frasnian to Visean) DME Earn Group:

Shale, black-gray and blue-gray locally pyritic; argillite; light green shale; porcellanite

Middle to Upper Devonian (Civetian to Frasnian) DM McDame Formation:

Upper member, limestone, platy, light-gray, local karst breccia; Lower member, dolostone, dark gray, fetit; limestone; carbonate breccia.

Lower ordovician to Lower Silurian (Arenig to Wenlock) OSRR Road River Formation: Upper unit, graptolitic, platy siltstone, silurian; Lower unit block, pyritic, graptolitic

SCALE: 1:10000 COMPANY: CRY LAKE SYNDICATE DRAWING TITLE: SUN CLAIM BASE SAMPLE LOCATIONS LOCATION: BLUE SHEEP LAKE
 DATE:
 OCTOBER. 1996
 SCALE:
 1 : 10000

 DRAWN:
 TC 96162 MSH
 GEOLOGIST:
 F.MOYLE
 DATA: 104 I 16W DRAWING: MAP 1

LOGICAL SURVEY BRANCE

0	Pans/Silts
	Contact (defined)
	Contact (approximate)
	Contact (assumed)
~~~~	Fault
	Creeks
<u></u>	Forest
0	Outcrop

Upper Devonian to Mississippian ( Frasnian to Visean)



