MINERAL TITLES BRANCH
Rec'd.

MAD 1 0 1997
L. I. # _____
FIRE VANCOUVER, B.C.

ASSESSMENT REPORT on

1996 FALL DRILL PROGRAM

SILVER QUEEN PROPERTY

NTS 93L/2 E

Lat: 54° 04'N Long: 126° 43'W

New Nadina Explorations Limited Box 130, 330 Copper St. Greenwood, B.C. V0H 1J0

Linda Caron, P. Eng.
March, 1997
GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORT

24,899

TABLE OF CONTENTS

			Page
1.0	SUMMA	RY	1
2.0	INTROD	DUCTION	3
	2.2 Pro 2.3 Hist	ation, Access and Terrain perty and Ownership tory nmary of Current Work Program	3 3 4 7
3.0	GEOLO	oGY .	8
4.0	DRILLIN	NG	9
5.0	RECON	MENDATIONS	12
6.0	REFER	ENCES	13
		LIST OF FIGURES	
Figur	re 1 - Loca	tion Map	Page aft p. 3
Figu	re 2 - Clain	n Map	aft p. 3
Figu	re 3 - Drill	Hole Location Map	in pocket
		LIST OF APPENDICES	
APP	ENDIX 1	Diamond Drill Logs	
APP	ENDIX 2	Analytical Results	
APF	PENDIX 3	Cost Statement	
APF	PENDIX 4	Statement of Qualifications	

1.0 SUMMARY

The Silver Queen property is located about 36 km south of Houston, B.C. with good road access. The property has seen a considerable amount of research, exploration and development work directed at polymetallic epithermal veins. The veins are strongly zoned, with higher gold values in the south (average grade of 0.22 opt Au at the south end of the No. 3 vein system). Alteration and mineralogy studies show a fluid flow from south to north, with gold values in the higher temperature southern zone. Property scale alteration mapping has identified a large high temperature zone to the south of the known veins which is felt to be prospective for bulk tonnage gold mineralization. A Max-Min EM survey completed in October, 1996 identified a number of strong conductors in the prospective heavy overburden covered area south of the known veins.

The current drill program was designed to test 5 different EM conductors. Hole 96S-06 tested conductor I, under the large swampy area informally known as the Triple Junction zone. The conductor has been explained by the major fault zone intersected in the hole. This is a very significant structure, over 200 feet in width, and dipping moderate to steeply north. Geophysics has suggested a strike length of over 600 metres, and open to the east. Zinc and manganese values are elevated throughout the hole, typically in the order of 1,000-10,000 ppm Mn and 1000-7,000 ppm Zn. Silver, copper and lead values are locally anomalous in narrow typical barite-rhodochrosite zinc veins, however no veins of significant size were intersected. Gold values are low throughout the hole. Although grades were low and fluid chemistry indicates only the early Zn-Mn mineralizing event and not the later precious metal rich stage of mineralization, this is such a significant structure that further work is recommended.

Hole 96S-7 was drilled to test EM conductor H, a strong 600 metre long conductor, parallel to conductor I described above and located about 150 metres to the north. Conductor H has been explained by the presence of the major fault zone intersected in the hole. Again, the structure is in the order of 200' in width, and appears to be moderate to steeply north dipping. Gold values are low throughout the hole, while zinc and manganese values are elevated. As with Conductor I, although precious metal values were low and the fluid chemistry indicates only early stage Zn-Mn mineralization, the size and strength of this zone warrants further work.

Hole 96S-8 tested EM conductor A and the recessive gully previously assumed to represent the eastern extension of the George Lake Lineament, on the east side of the Cole Creek Fault. In the upper portion of the hole minor narrow breccia zones and veins are elevated in gold. Trace element chemistry shows a gold-silver-arsenic-bismuth-antimony-copper event in this portion of the hole, which accompanies the early, more pervasive zinc-manganese event. Although individual mineralized zones were narrow, the presence of fluids of this chemistry is extremely encouraging since this same suite of elements indicates gold rich, ore grade mineralization at the south end of the No. 3 vein system. Significant geochemical results from the hole include 2785 ppb Au, 775 g/t Ag, 1.89% Cu. 5.67% Pb and 8.59% Zn from a 1" vuggy quartz vein at 77', and a 4.5' wide zone at 325' containing an estimated 30% vein material within a broken and faulted zone, with values of 534 ppb Au, 671 g/t Ag, 5.16% Cu, 1.63% Pb and 4.65% Zn. Zinc and manganese values are elevated throughout the top portion of the hole. Conductor A may be explained by a narrow zone of brecciation and veining intersected in the hole. although this is not conclusive. There is no evidence of the presence of a structure which could represent the George Lake Lineament under the prominent east-west trending gully. Correlation with known offset of the No. 3 vein by the Cole Creek Fault would suggest that the George Lake Lineament is located 50 to 100 metres north of the set-up for Hole 96S-8, and would not have been tested by hole. Further geophysics and drilling in this area is recommended.

Hole 96S-9 was drilled to test EM conductor B (a similar anomaly to A and located south of the prominent gully previously assumed to represent the extension of the George Lake Lineament). Typical, massive altered coarse blocky felspar porphyry was intersected to a depth of 300' in the hole, below which rocks were fine pyroclastics. Several fault zones cut the above rocks and minor very narrow

breccia zones and veins have elevated gold values to 887 ppb Au with accompanying slightly elevated copper and silver values. Conductor B has been explained by the presence of a strong near vertical fault zone at a depth of about 250' in the hole.

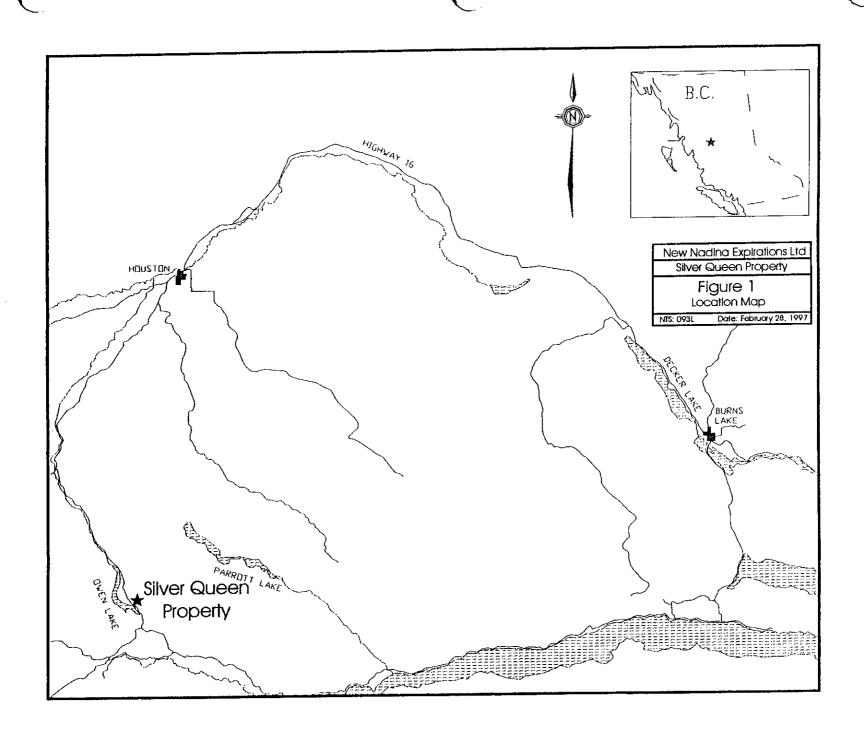
Hole 96S-10 tested EM conductor G, a weak anomaly, 400 metres in length, parallel to and flanking conductor H, about 100 metres to the north of 'H'. A sequence of coarse polymictic conglomerate with interbedded wacke and finely lamellar, pyritic mudstone was intersected in the hole, which is a believed to be a new unit on the property. A number of fault zones cut this sequence, and locally the groundmass of the conglomerate becomes moderate to strongly silicified. Below this sedimentary package the hole passed through a thick section of intermixed pyroclastics (crystal lapilli tuffs) and lesser volcanics, again cut by numerous dykes and fault zones. There were no significantly anomalous results from the drill hole, although as in Hole 96S-7, zinc and manganese values are elevated throughout the hole.

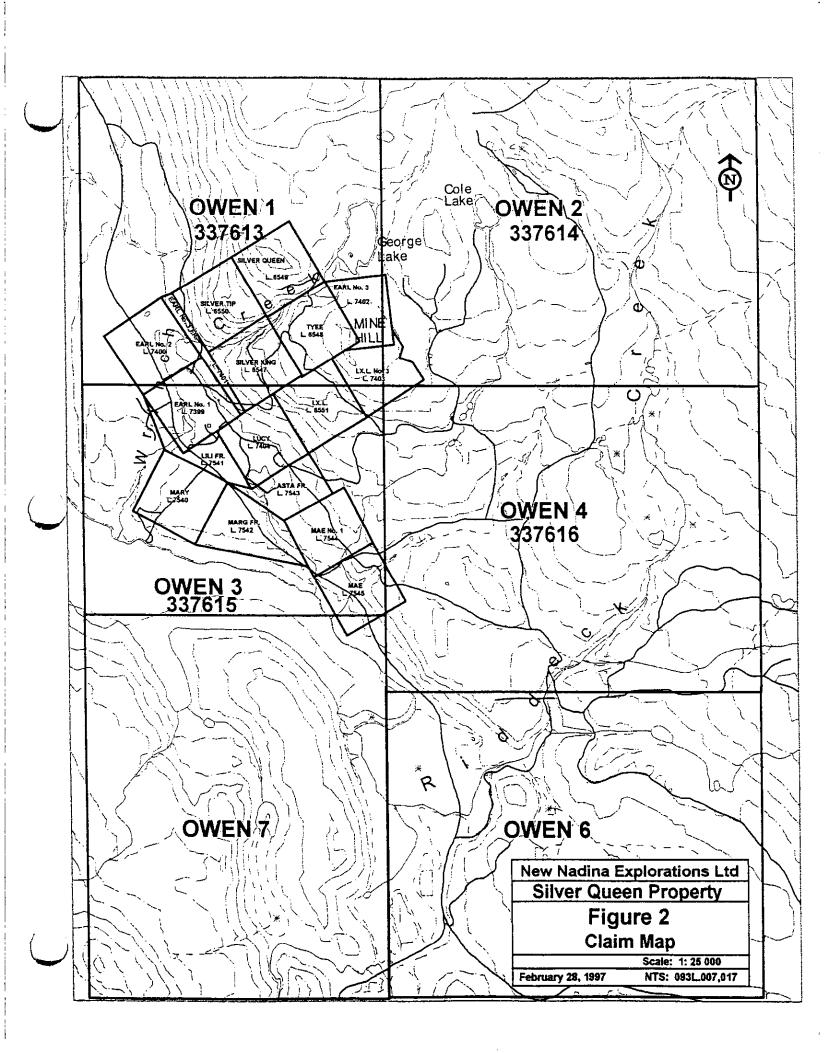
An extension of the EM survey to the north and east is recommended to locate the position of the George Lake Lineament and the eastern strike extensions of conductors H and I. IP should be investigated as a possible method of locating potential mineralized areas within these large structures. Additional drilling is recommended in these three areas, based on the results of the above described geophysics.

2.0 INTRODUCTION

2.1 Location, Access and Terrain

The Silver Queen property is situated in central B.C., about 36 km south of Houston, and 30 km southwest of the Equity Silver Mine, on NTS map sheet 93L/2E as shown in Figure 1. Access to the property is south from Houston on the Morrice River-Owen Lake Forestry road, a good all-weather road which branches south from Highway 16 three kilometres west of Houston.


The property is situated just east of Owen Lake. Much of the property occupies a moderate southwest facing slope. Close to Owen Lake and in the southeastern portion of the property, the ground is relatively flat. Vegetation is generally heavy, with poplar, willows and heavy ground cover, and with local spruce and fir forest. Elevations range from 2,500 feet at Owen Lake, to more than 4,000 feet at the top of Tip Top Hill. Outcrop is relatively scarce and overburden exceeds 100 feet in some areas.


2.2 Property and Ownership

The property consists of 6 located and 17 crown granted mineral claims as detailed below and shown on Figure 2. (Note that the Owen 5 claims has now been abandoned as it is included within Owen 7). All claims are owned 100% by New Nadina Explorations Limited.

Claim Name	CG/Located	<u>Units</u>	Record #	Expiry Date
Owen 1	4 post	16	337613	July 11, 2007
Owen 2	4 post	20	337614	July 10, 2007
Owen 3	4 post	12	337615	July 11, 2007
Owen 4	4 post	20	337616	July 10, 2006
Owen 6	4 post	20	346115	May 23, 2003
Owen 7	4 post	20	346116	May 24, 2003
Silver King	CG	1	L 6547	
Tyee	CG	1	L 6548	
Silver Queen	CG	1	L 6549	
Silver Tip	CG	1	L 6550	
IXL	CG	1	L 6551	
Earl No. 1	CG	1	L 7399	
Earl No. 2	CG	1	L 7400	
Earl No. 1 Fr	CG	1	L 7401	
Earl No. 3	CG	1	L 7402	
IXL No. 3	CG	1	L 7403	
Lucy	CG	1	L 7404	
Mary	CG	1	L 7540	
Lily Fraction	CG	1	L 7541	
Mary Fraction	CG	1	L 7542	
Asta Fraction	CG	1	L 7543	
Mae No. 1	CG	1	L 7544	
Mae	CG	1	L 7545	

Expiry dates listed are after filing this report.

2.3 History

The present Silver Queen property was historically comprised of two separate properties, the Silver Queen and the Cole Lake properties which were managed separately (except for the period 1928-43), until 1985. A considerable amount of exploration and development has been done on the property. A summary of this work is presented in point form below. For simplicity, the pre-1985 history of exploration of the two properties is discussed separately.

Pre 1985 History - Silver Queen Property:

- 1912 mineralization discovered, three adits driven on the Wrinch vein system
- 1915 38 tons of ore (31% Pb and 6 oz Ag) shipped from two shallow shafts
- 1923 optioned to Federal Mining and Smelting Co., more than 500 ft of drifting done from the three adits
- 1928 Silver Queen and Cole Lake properties acquired by Owen Lake Mining and Development Company, Cole Shaft sunk, a 3,000 ft cross-cut driven
- 1941 Canadian Exploration (now Placer Development) purchased Silver Queen claims, and optioned Cole Lake property; surface and underground mapping and sampling completed
- option on the Cole Lake ground dropped, work continued on Silver Queen veins until 1947
- Nadina Explorations Ltd optioned Silver Queen claims; aggressive program of diamond drilling, trenching, and underground development on the No. 3 vein traced Wrinch vein system south to the "Ruby Extension zone"
- 1966 Nadina continued underground and surface work on the property
- 1967 property optioned to Kennco Explorations; geological mapping, soil sampling and IP survey done; several deep holes drilled to test for porphyry copper mineralization
- 1968 Nadina continued work on Silver Queen veins; soil sampling, trenching, diamond drilling and underground mapping done
- BC Ministry of Energy, Mines and Petroleum Resources mapped entire property in detail, as well as the area surrounding Owen Lake. Nadina completed 4,000 ft of drifting, 51 drill holes (both underground and surface) plus airborne geophysical surveys
- 1970 Northgate Explorations optioned the property from Nadina; did extensive underground check sampling, 13,500 ft of surface drilling, 1,500 ft of underground drilling and 4,200 ft of drifting and raising
- 1971 Bralome Can Fer Resources Limited and Pacific Petroleum Ltd. optioned the property, and formed the Bradina Joint Venture; feasibility study prepared by Dolmage Cambell and Associates, surface EM and IP surveys, 6,000 ft of surface drilling and 800 ft of drifting and raising done

- 1972 property put into production in March, 1972, using equipment from Bralorne's recently closed gold mine in southern B.C.
- operations ceased September, 1973 due to an over design of the mill and complex metallurgy. 200,000 tons of ore milled. Drill indicated reserves on the Wrinch vein system at mine closure were 577,600 tonnes averaging 3.7 g/t Au, 257 g/t Ag, 6.53% Zn, 1.49% Pb, and 0.49% Cu. During 1972-73, 47 surface holes and 68 underground holes, totalling over 20,000 ft drilled.
- 1974 5,900 ft of drilling done, JV agreement terminated
- Nadina purchased Silver Queen property outright in 1977; Placer retained backin right, which hampered the involvement of larger companies in the property. Property optioned by New Frontier Petroleum Ltd, the successor company to Frontier Explorations Ltd. which held the Cole Lake property. Limited deep surface drilling done and the option dropped in 1978.
- 1980 Nadina reorganized as New Nadina Explorations Ltd.; a major program of backhoe trenching done, as well as surface drilling and rehabilitation of underground workings.
- 1981 rehabilitation completed, additional drifting done, and 28 underground and 4 surface drill holes drilled (a total of over 8,000 ft).
- 1982 Campbell Resources did detailed re-evaluation of the Silver Queen property in 1982, completed limited metallurgical testing
- 1983-84 New Nadina completed 7,500 ft of surface diamond drilling in 15 holes

Pre 1985 History - Cole Lake Property:

- 1915 Cole vein system staked as the Diamond Belle group
- 1928 property was acquired, along with the Silver Queen property, by the Owen Lake Mining and Development Company; Cole shaft sunk
- 1941 Canadian Exploration optioned property, completed mapping and sampling. Option dropped in 1943.
- 1967 considerable trenching and some drilling was done on the Cole Lake veins by Frontier Explorations Ltd, who had acquired the ground in this area in 1960, and done minor work in the early 1960's
- 1972 Frontier Explorations did EM survey, as well as percussion drilling and 1,500 ft of diamond drilling on George Lake Lineament Vein
- 1980 backhoe trenching done by Frontier
- 1981 New Frontier sold all its mining interests to Bulkley Silver Resources Ltd, who attempted to raise money to complete the Earl Adit which would intersect the Cole Vein system at depth. Insufficient funds were raised and only 100 feet of this drive was completed.

Post 1985 History

- 1985 Bulkley Silver optioned the New Nadina ground to put the entire camp under one management; a max-min EM survey and 6 diamond drill holes were completed
- 1987 JV formed between Pacific Houston Resources Inc (previously Houston Metals Corp, the successor to Bulkley Silver), and New Nadina. In excess of \$7,500,000 was spent on exploration on the property during 1987 and 1988, including 35,000 ft of diamond drilling and 8,100 ft of tunnelling, cross-cutting, and declining; minor metallurgical work done
- 1988 indicated reserves estimated at 1.7 million tons of 2.7 g/t Au, 328 g/t Ag, and 6.19% Zn; significant levels of Cd, Ga, Ge, In, Sb and Bi contained in the ore
- University of British Columbia became involved under NSERC grant; Numerous studies done including geological mapping, structural studies, 2 MSc theses (mineralogy, ore reserves), 1 PhD thesis (alteration)
 "in situ mining resource" determined to be:
 Central area: 708,134 tons at 0.086 opt Au, 4.78 opt Ag, 0.19% Cu,0.82% Pb, 5.43% Zn South area: 220,266 tons at 0.152 opt Au, 8.15 opt Ag, 0.54% Cu, 0.89% Pb, 5.67% Zn
- 1990 Pacific Houston bankrupt, New Nadina assumed the debts and purchased the claims outright from Pacific Houston. Also in 1990, an agreement was reached with Placer, whereby Placer signed over all remaining rights to the property.
- 1991 New Nadina addressed site remediation through a study by consultant Tom Higgs, to develop a system of treating zinc rich mine drainage prior to release into the environment.
- 1992 A tailings pond/wetland passive treatment system was implemented to treat mine drainage.
- 1993 present

Ongoing water sampling by New Nadina to test mine drainage, as required by the Ministry of Environment

- 1995 New Nadina Explorations abandoned the old Silver 4 claim and restaked the property as the current Owen 1 5 claims. A thorough compilation of previous data was initiated. Reclamation work was done to address water contamination concerns.
- New Nadina Explorations completed a PIMA alteration study of the property, identifying a prospective high temperature zone to the south. The Owen 6 and 7 claims were staked to the south and the Owen 5 abandoned, as it was included within the Owen 7. The Cole Creek grid was established in the high temperature zone, and soil/rock sampling and geological mapping done. 5 diamond drill holes, totalling 3,041 feet, were drilled in the spring of 1996, as detailed in an assessment report dated September 1996. A Max-Min EM survey was completed by Frontier Geosciences, in the prospective southern area, to look in particular for southern extensions of known mineralized structures ie. Church, S26, George Lake Lineament, etc. (Candy, 1996). A number of strong EM conductors were identified, 5 of which were tested by a 5 hole, 3,027 foot drill program in November 1996, as described in this report. Reserves on the South and Central portions of the No. 3 vein were recalculated during 1996, and results are as follows:

South Zone:

456,000 tons at 0.22 oz/t Au, 11.62 oz/t Ag and 6.99% Zn

Central Zone:

517,000 tons at 0.08 oz/t Au, 4.8 oz/t Ag and 7.43% Zn

2.4 Summary of Current Work Program

Five NQ diamond drill holes, a total of 3,027 feet, were drilled from November 16 to 27, 1996. Drilling was done under contract by J.T. Thomas Diamond Drilling of Smithers, B.C.. Core was logged and split at the Silver Queen Mine site. Logging was done by L. Caron, with core sawing and sampling by N. Braam and J. Hutter. Program supervision and drill hole lay-out was done by G. Stewart and L. Caron. A total of 140 core samples were collected and sent to Min-En Labs in Smithers for sample prep, and from there to Min-En Labs in Vancouver for 30 element ICP plus Au analysis.

3.0 GEOLOGY

The regional geology of the Silver Queen area has been described by a number of workers and will not be repeated in any detail here. The reader is referred to Church and Barakso (1990), Cheng (1995), Hood (1991) and Leitch, et al (1991) for excellent in-depth descriptions of the area geology. In brief, the property is situated on the western edge of what has been referred to as the Buck Creek Basin Past workers have classified this as a resurgent caldera, however recent work by Struik and others in the Nechako area has identified similar features which are a result of Tertiary extensional faulting. A reinterpretation of the "Buck Creek Basin" suggests that this is true here also. A prominent regional structure (interpreted as a release fracture due the extensional faulting) passes through the Equity Silver Mine and the Silver Queen Mine, and may be an important regional control to mineralization. In the southwest portion of the property, Telkwa Formation conglomerate of the Early to Mid Jurassic Hazelton Group occurs, unconformably overlain by volcanics and sediments of the Upper Cretaceous Kasalka Group. Known veins at the Silver Queen property are hosted by the Kasalka Group rocks. A basal polymictic conglomerate is overlain by a thick sequence of tuffs and lahars, followed by a thick andesite flow and sill unit, and intruded by microdiorite intrusives. Eocene andesitic flows cover the older rocks in part. At least three different Tertiary dykes or stocks are recognized cutting the older rocks and constraining the age of vein mineralization at about 51 Ma.

The rocks in the mine area are tilted as a result of block faulting and dip gently north to northwest. Two main sets of faults cut the rock sequence, an early, pre to syn-mineral northwest trending set, and a later post-mineral northeast trending set. Most of the veins occur along northwest trending structures, and are offset by the post-mineral, northeast trending faults.

A considerable amount of exploration has been devoted to the series of polymetallic veins on the property. Veins are typically 1 - 2 metres in width, with disseminated to massive pyrite, sphalerite, galena, chalcopyrite, tennantite and tetrahedrite, and with Cu-Pb-Ag-Bi sulfosalts and electrum, in a gangue of quartz, carbonate or barite. The veins are strongly zoned from south to north and much effort has been made to study changes in alteration and mineralogy within the veins (ie. Hood, 1991, Cheng, 1995). These and other studies, suggest a fluid flow from south to north, with gold enrichment in the higher temperature southern zones.

A property scale alteration study was completed to define a high temperature zone prospective for bulk tonnage gold mineralization, south of the known veins. Portable infrared spectrometry techniques were used to observe the change from sericite to illite, and thus define a zone of higher temperature alteration. This area is largely covered by deep overburden and detailed geological and alteration mapping is not possible. Most of the geological information in this overburden covered area comes from the limited amount of diamond drilling done in the spring of 1996 and during this program. The area is largely covered by a thick sequence of fine, medium and coarse grained, feldspar porphyritic volcanics of dacitic composition, with minor interbedded pyroclastics (crystal lapilli tuffs) of similar composition and lesser sediments (conglomerate, wacke, mudstone). Evidence from drilling suggests moderate to steep northerly dips to the rocks, roughly parallel to the orientation of major structures known in this area. Two very significant fault zones, up to 200' in width, have been intersected by drilling in the vicinity of the ranch gate (EM conductors H and I). Both structures have an assumed strike length of in excess of 600 metres, and are open to the east.

4.0 DRILLING

Five holes, a total of 3,027 feet, were drilled during November, 1996 as described below. Drill hole locations are plotted on Figure 3 and logs are included in Appendix 1. Selected core was sawn and sampled. A total of 140 core samples were collected and shipped to Min-En Labs in Smithers for preparation, and from there to Min-En Labs in Vancouver for analysis. Analytical results for core samples are contained in Appendix 2.

Drill Hole	Co-ordinates (Frontier 96 EM Grid)	Azimuth	Dip	Depth (feet)
96S-06	4+75 N 5+00 E	196°	-55°	697'
96S-07	6+70N 7+00E	196°	-60°	518'
96S-08	15+30N 5+00E	203°	-50°	810'
968-09	13+25N 5+00E	196°	-50°	442'
96S-10	8+85N 7+65E	172°	-60°	560'

Hole 96S-6 was drilled to test EM conductor I, under the large swampy area informally known as the Triple Junction zone. Conductor I is a strong, well defined, east-west trending conductor, over 600 metres in length, with an intersecting second conductor ('J') at the west end. Conductor I has an interpreted depth of 55 to 60 metres and is open to the east. Hole 96S-6 encountered 131' (down-hole) of overburden, before passing into a 300' section of typical coarse, altered, dacitic, feldspar porphyritic volcanic. There is a high degree of faulting, brecciation, crushing and local gouge development within this section, however the protolith is recognizable. From 433-674' in the hole a major fault zone was intersected, moderate to steeply north dipping and with intense clay alteration, zones of crushing and brecciation, gouge, and only rarely sections of good, unbroken volcanics. There appears to be a distinct lithologic change at the upper contact of the fault zone, from the coarse feldspar porphyry above, to a finer grained, acidic, feldspar lath porphyritic volcanic within the fault. Locally the rocks within the fault zone are silicified, and pyrite ranges up to 20%, locally as fine flooding in the matrix of siliceous breccias. Minor dykes occur within the fault zone. Moderately siliceous, fine grained acidic feldspar porphyritic volcanic was intersected below the fault zone. Zinc and manganese values are elevated throughout the hole, typically in the order of 1,000-10,000 ppm Mn and 1000-7,000 ppm Zn. Silver, copper and lead values are locally anomalous in narrow typical barite-rhodochrosite zinc veins, however no veins of significant size were intersected in the hole. Gold values are low throughout the hole.

Conductor I has been explained by the major fault zone intersected in the hole. Although grades were low and fluid chemistry indicates only the early Zn-Mn mineralizing event and not the later precious metal rich stage of mineralization, this is such a significant structure that one drill hole should not be assumed to have adequately tested it. Detailed geophysics, perhaps IP, is recommended to provide better definition of the zone, with subsequent drilling along strike.

Hole 96S-7 was collared about 250 metres northeast of Hole 96S-6 (and about 150 metres northeast of the "Discovery boulder"), at the edge of a cultivated field about 100 metres west of the ranch road. The hole was drilled to the southwest to test EM conductor H, a strong 600 metre long conductor. parallel to conductor I described above and located about 150 metres to the north. The conductor has been interpreted to occur at a depth of 60 metres and is open to the east. Overburden thickness in the hole was 118', below which the hole intersected a sequence of typical altered dacitic coarse feldspar porphyritic volcanics cut by white, aphanitic, flow banded rhyolite dykes. Sandwiched between two such rhyolite dykes, is a thick section of tectonically brecciated volcanics and pyroclastics, the "black breccia unit", from 248-433.5'. This interval represents a major fault zone, with accompanying brecciation, crushing, local gouge and pyrite flooding. Throughout the section pyrite content averages about 10%, locally increasing up to 20%. Core angles on gouge zones and contacts within the larger brecciated zone average about 60°, indicating a dip to the zone of about 60° to the north. Minor pulaskite dykes cut the fault zone. Gold values are low throughout the hole. One narrow (4") pyritic breccia zone contained irregular mineralized amygdules, and returned assays of 3.89% Zn, and 1.64% Pb, with 50 ppm Ag. Silver values are elevated, to 7.1 ppm, throughout all samples collected over an interval of greater than 70', of faulted, brecciated volcanics, from 362.5-433'. Zinc and manganese values are elevated throughout the hole (except in dykes), with typical values of 2,000-10,000 ppm Mn and 500-7,000 ppm

Conductor H has been explained by the presence of the major fault zone intersected in the hole. As with Conductor I, although precious metal values were low and the fluid chemistry indicates only early stage Zn-Mn mineralization, the size and strength of this zone warrant further geophysics and drilling.

Hole 96S-8 tested EM conductor A and the recessive gully previously assumed to represent the eastern extension of the George Lake Lineament, on the east side of the Cole Creek Fault. It was collared in a large cultivated field about 400 metres west of the ranch road. Conductor A is a strong east-west trending conductor, defined over a strike length of 300 metres but open in both directions. It has an interpreted depth of approximately 50 metres. Hole 96S-8 intersected only 53' of overburden, before passing into typical altered, massive, dacitic, fine to medium felspar porphyritic volcanics. To a depth of about 425' in the hole minor narrow breccia zones and veins are elevated in gold. Trace element chemistry shows a gold-silver-arsenic-bismuth-antimony-copper event in this portion of the hole. which accompanies the early, more pervasive zinc-manganese event. Although individual mineralized zones were narrow, the presence of fluids of this chemistry is extremely encouraging since this same suite of elements indicates gold rich, ore grade mineralization at the south end of the No. 3 yein system. It is believed that the narrow zones intersected in Hole 96S-8 represent leakage from a major mineralized structure, possibly located further north. Significant geochemical results from the hole include 2785 ppb Au, 775 g/t Ag, 1.89% Cu. 5.67% Pb and 8.59% Zn. from a 1" vuggy quartz vein at 77', and a 4.5' wide zone at 325' containing an estimated 30% vein material within a broken and faulted zone. with values of 534 ppb Au, 671 g/t Ag, 5.16% Cu, 1.63% Pb and 4.65% Zn. Zinc and manganese values are elevated throughout the top portion of the hole, to a depth of about 425', with values in the order of 1,000-10,000 ppm Zn and 200-6,000 ppm Mn.

The zone of brecciation and veining at a depth of about 325' could explain the presence of Conductor A, although this is not conclusive. There is no evidence of the presence of a structure which could represent the George Lake Lineament under the prominent east-west trending gully. Correlation with known offset of the No. 3 vein by the Cole Creek Fault would suggest that the George Lake Lineament is located 50 to 100 metres north of the set-up for Hole 96S-8, and would not have been tested by hole. Further geophysics and drilling in this area is recommended.

Hole 96S-9 was collared about 200 metres southwest of 96S-8, and drilled to the southwest in the same section to test EM conductor B (a similar anomaly to A and located south of the prominent gully previously assumed to represent the extension of the George Lake Lineament). Typical, massive altered coarse blocky felspar porphyry was intersected to a depth of 300' in the hole, below which rocks were fine pyroclastics (crystal lapilli tuffs) with well preserved textures and moderate clay alteration. These rocks show local moderately well developed bedding with dips of about 50° to the north. Several

fault zones cut the above rocks and minor very narrow breccia zones and veins have elevated gold values to 887 ppb Au with accompanying slightly elevated copper and silver values (to 486 ppm Cu, 7.4 ppm Ag).

Conductor B has been explained by the presence of a strong near vertical fault zone at a depth of about 250' in the hole.

Hole 96S-10 tested EM conductor G, a weak anomaly, 400 metres in length, parallel to and flanking conductor H, about 100 metres to the north of 'H'. Overburden depth was 150' measured downhole, below which rocks were typical, altered coarse blocky felspar porphyry. From 187-360' a sequence of coarse polymictic conglomerate with interbedded wacke and finely lamellar, pyritic mudstone was intersected. Core angles suggest bedding with dips of about 60° to the north. A number of fault zones cut this sequence, and locally the groundmass of the conglomerate becomes moderate to strongly silicified. Below this sedimentary package the hole passed through a thick section of intermixed pyroclastics (crystal lapilli tuffs) and lesser volcanics, again cut by numerous dykes and fault zones. There were no significantly anomalous results from the drill hole, although as in Hole 96S-7, zinc and manganese values are elevated throughout the hole.

Conductor G is believed to be a result of the black, finely lamellar pyritic mudstone intersected in the hole.

5.0 RECOMMENDATIONS

An extension of the EM survey to the north and east is recommended. The extension of the George Lake Lineament, assumed to be located north of hole 96S-8 would be located by such a survey. Additionally, the eastern strike extensions of conductors H and I should be surveyed. Drilling showed both these conductors to represent major east-west fault zones with moderate to steep northerly dips. IP should be investigated as a possible method of locating potential mineralized areas within these large structures.

Additional drilling is recommended in these three areas, based on the results of the above described geophysics.

6.0 REFERENCES

Candy, C., 1996.

Report of a Max-Min Electromagnetic Survey, Silver Queen Project, Houston, B.C. by Frontier Geosciences Inc. In-house report #837.

Caron, L, 1996.

Assessment Report on 1996 Spring Drill Program, Silver Queen Property, for New Nadina Explorations Limited. September 1996.

Cheng, X.L., 1995.

A Quantitative Evaluation of Hydrothermal Alteration at Silver Queen Deposit, A Precious- and Base-Metal Epithermal Vein System in Volcanic Rocks. PhD thesis, University of British Columbia, 1995.

Church, B.N. and J.J. Barasko, 1990.

Geology, Lithogeochemistry and Mineralization in the Buck Creek Area, British Columbia. B.C. Geological Survey Branch, Paper 1990-2.

Hood, C., 1991.

Mineralogy, Paragenesis, and Mineralogical Zonation of the Silver Queen Vein System, Owen Lake, Central British Columbia. M.Sc. Thesis, University of British Columbia, 1991.

Leitch, C.H.B., C.T. Hood, X.L. Cheng and A.J. Sinclair, 1991.

Tip Top Hill volcanics: Late Cretaceous Kasalka Group rocks hosting Eocene epithermal base- and precious-metal veins at Owen Lake, west-central British Columbia. Canadian Journal of Earth Sciences, Vol 29, p. 854-864.

APPENDIX 1

DIAMOND DRILL LOGS

Hole Silver Queen 96S-6

To test the Fronteir '96 EM Anomaly I, under the swamp by the ranch gate "Triple Junction Zone"

Northing:

Fronteir 96 Grid

4+75 N

Easting:

L. 500E

Azimuth:

196°

Dip:

-55°

Depth:

697 feet

Drilled Nov 16-19, 1996 Drilled by: JT Thomas
Logged by: L. Caron
Core stored in shop at mine site.

Inte	rval	Rock type	Description							
From	To			Alteration	Mineralization	Number	From	To		
(feet)	(feet)						(feet)	(feet)		
0	131'	overburden								
131	433'	Coarse Dacitie Fsp Porph Volc.	Med-coarse grained, dacitic fsp porph volc. 15-20% Fsp phenos - strongly saus, avg 3.5mm, subhedral; 5% 2-3mm mafic phenos, sub-euhedral, alt'd to chl & some have dark hem? rims, Minor qtz eyes. Mtrx fn grained Grey-purple weak prop alt'n where relatively fresh ie) 131-139', gets pale grey perv clay alt'n bleached as selveges along fracs within prop alt'd rx, and becomes bleached & perv clay alt'd throughout where intensity of alt'n increases. Dom fracs and alt'n boundaries @ 50-70° to C/A. Bleaching appears controlled by structures.	131 - 139' weak prop alt'n saus fsp, chl mafics, hem mtrx 139-160' strongly bleached, mod perv clay alt'n	Minor diss py & local phritic gouge zones					
			155 - 156' Fault Zone. Strong gouge & str perv clay alt'n. Stressed, bx with minor angular rhodochrosite frags to 2cm. 1/2" grey pyrite gouge @ lower contact. Zone @ 60° to C/A 156 - 156.5' str silica flooding porph texts preserved but mtrx flooded. @ 157.5' minor rhodochrosite vnlts @ 55° to C/A to 1 cm @ 167' 1" grey pyritic gouge @ 85° to C/A	155 - 156' Flt zone str clay alt'n & gouge 156-156.5' str silica flooding 160-171' patchy bleaching & mod pen clay alt'n as		D001	155	158		
		,		zones & as selveges along fracs. V.						

	· · · · · · · · · · · · · · · · · · ·	1			7
@ 168' 3" zone of mod- str silic flood in mtrx, with zones of 5%-10% fine diss py & str silica as irreg vns to 1 cm within this zone	minor qtz vnlts.				
171 - 188' Fault Zone Str perv clay & gougy zones - locally alt'n less intense & rx are maroon prop alt'd within this zone. Local bx & crush zones, any porph volc frags to 4m in gougy mtrx supported bx. Locally gouge may be pyrtic ie) 171.5-172', or may be reddish hematite stained ie) 175' sharp upper contact @ 55° to C/A	171 - 188' Fit zone str perv clay & gouge				
188 - 199' bleached, mod perv clay alt'd Fsp porph volc as above with saus fsp & clay alt'd mtrx, rare qtz eyes, ghosty bleached remnant mafics	188 - 199' bleached, mod - str perv clay				
199 - 226.5' Fault zone as in 171-188' str perv clay & gouge, bx in gougy mtrx. Locally pyritic gouge. Local v. weak silica flood. Minor rhod. vnlts. Rare py frags.	199 - 226,5' Flt zone - str perv clay & gouge				
@212' minor py frags to 1 cm. 216 - 217.5 15% py diss in frags & as grey gougy mtrx. 5% clasts of alt'd as above, to 6cm, in gouge zone @ 30° to C/A ie) -75° S? dip.		212 - 226.5' 2-5% diss py & rare py frags & local py gouge	D002 D003	216 217.5	217.5 226.5
226.5 - 267' bleached mod-str perv clay alt'd fsp porph volc as above. Saus fsp in pale greenish soft, sericitic mtrx. Minor gouge on fracs. dom @ 60-80° to C/A.	226.5 - 267' bleached, mod - str clay alt'n	226.5 - 267' Minor diss py & local py vnlts & gougy zones on			
@ 234 3" gougy bx zone @ 45° to C/A 253.5 - 261' 5% clotty black py (+poss. sphal) & minor py vntls 262 - 262' & 266 - 267' Faults with gougy bx & crush zones with 50-70% frags. gen <0.5cm with gougy mtrx. 5- 15% frags are rhodoch., rest alt'd fsp porph		fracs & minor diss sphal (black specs).	D004	253.5	267'
267 - 297' Weak prop alt'd dacitic fsp porph volc as @ 131 - 139'. Fsp phenos saus 25-30%, avg 3-4mm, mafic phenos have chl alt'd cores, dark hem? rims Rare qtz phenos in maroon hem alt'd ıntrx. Minor pale purple hematitic gouge	267 - 297' weak prop alt'd	<u>267 - 297'</u> minor diss py & poss spal	D004	233.3	201

Γ	T		on fracs.					
			295 - 296' Flt zone - gougy bx crush zone as in 261-262', 266-267', 80° to C/A 297 - 307' bleached with weak-mod perv clay alt'd dacitic fsp porph volc as above. Massive med soft, minor gouge on fracs	297 - 307' weak-mod bleached, perv clay alt'n	297 - 307' v. minor diss py			
			307 - 362' Massive v. weak prop alt'd dacitic fsp porph volc as in 267-297' with patchy bleaching as selveges (1-4cm wide) to fracs & as zone to 3' wide. V minor gouge on fracs. @ 338' Icm banded py/qtz/carb vn @ 75° to C/A Gougy/bx/crush zones @ 338.5' 340.5 - 341' @ 80° to C/A 351 - 352' @ 60° to C/A	307 - 362' v. weak prop alt'd with patchy bleaching & weak perv clay & bleached selveges to fracs clay alt'n incr downwards in zone	307 - 362' Tr py			
			362 - 438' Pale green-grey, mod soft, massive pen clay alt'd dacitic fsp porph as above less bleached than where it occurs as patches within the prop. alt'd rx immediately above, & >> clay alt'd. Porph texts can be blurred by alt'n. May be weak silic @ 430' More open space fracs than higher in hole 3-5/ft vuggy clay/gonge fracs	362 - 433' mod. str perv clay alt'n @ 430' weak silic?	362 - 433' Minor diss py @432' ½-1" fine muddy black py vn - irreg. @ 20° to C/A with 5% fine white bx clasts within	D005	423	433
433	674	Fault Zone in acidic fsp (lath) porphyritic volcanic	Sharp upper contact @ 433" @ 85° to C/A Distinct lithogic change at fault contract from bleached dacitic coarse fps porph volc above to fine grained acidic volc with approx. 30% fine white, euhedral fsp, avg 1mm, clay alt'd. Commonly these are lath shaped and locally weakly aligned. G mass is v. siliceous & pyritic. Generally in this fault zone the rx are strongly crushed or bx'd - only rarely are there good, unbroken sects of this volc		Gen. 5-10% fine py throughout			

1

			,	1	T	1
	Bx's are quite variable throughout the zone, as detailed below - from crush zones with mosaic type bx & little to no mtrx between clasts, to good tectonic type bx with clasts aug 1-4cm in soft, gougy mtrx (which may be black & py rich). Clasts ran be white alt'd volc, or dark grey, sulf rich volc. Clasts may also be earlier bx's with fine white bx frags & broken fsp xtals in a black siliceous, pyritic mtrx. Rarely there are angular massive py clasts & rare clasts of rhodochrosite. The breccia can also be healed (+/-siliceous) with a dark grey, pyritic (+/- siliceous) mtrx - similar to that seen in bx clasts in other bx's.					
	Recoveries gen. v. good throughout flt zn 433 - 447' Mtrx supported flt bx with 40% clasts, 1 mm - 6cm in size, avg 1 cm, in grey-black gougy mtrx. Frags are white clay alt'd fsp porph & black (+/-siliceous) bx with fine white fsp & volc clasts in fine py-silica mtrx & fng black pyritic, siliceous fsp lath volcanic & rare white silica frags & rare hem frags.		433 - 447' 5-10% py	D006 D007	433 440	440 447
	444 - 445.5' Med grained, white strongly clay alt'd dyke? of 'microdiorite' @ 45° to C/A. Rem textures suggest 25% tabular fsp, 5% mafic phenos avg 2mm, in fng mtrx - but v. strong perv clay alt'n. Massive, unbroken core. Looks like a dyke which postdates fault bx'n. 447 - 458' Sealed silic fault bx. Bx texts locally blurred by	<u>447 - 458'</u>	<u>447 - 458'</u>			
	silic'n - 30-40% pale grey subangular clasts of bleached, pyritic acidic fsp lath porph (which may be silicified or have silic overprint or may be clay alt'd) supported in fng dark grey, py rich, siliceous mtrx (may be banded with abund. fine white bx frags & broken fsp xtals). V. minor white qtz vnlts. Minor gouge on fracs.	silic, py rich scaled bx	15-20% fine py diss & banded in bx mtrx.	10008	447	458
	449 -450' dark fsp porph volc or dyke @ 45° to C/A with bleached core, sim to 444 - 445.5'?? but << alt'd. Massive, looks like later than bx'n. @ 457' 4" pale grey gouge zone @ 60° to C/A @ 458' sharp lower contact @ 50° to C/A					

ornaria en entre de marconales de l'estate de la companya de la companya de la companya de la companya de la c

			- ,		
458 - 463' Pale grey intensely clay alt'd fsp lath porph volc crushed bx'd with gougy infilling on fracs & between bx clasts	int clay alt'n & gouge	458 - 463' 5-10% diss py	D009	458	463
463 - 490' Healed with silic'd bx, sim to 447 - 458, but with late crush/gouge. 20-30% subround, milled frags of dom	463 - 490' w-mod silic'd bc	463 - 490' 10% diss py	D010	463	470
white clay alt'd fsp lath porph in med grey, silic, pyritic gmass with abund fine white bx frags & fsp xtals. Mtrx			D011	470	480
locally faintly banded @ 60° to C/A. Bx texts may be blurred. Zone is crushed with increasing gouge on facs & gougy zones (to 3" @ 45-90° to C/A) with depth. This looks like a later event.			D012	480	490
488-5 - 490' fine fsp porph volc - shows weak alignment of fsp - fsp avg 1 mm, lath shaped in fng silic, py pmass.					
490 - 490.3' 3.5" banded vn @ 70° to C/A. Silica - bladed barite - rhodochrosite - sphal - py vn. Minor rosin zn - typical colloform, rhodoc. texts.		490 - 490.3' sphal & py	D013	490	490.3
490.3 - 492' black silic bx & clasts of fug silic sulfide rich 'ore' in black gougy mtrx.		490.3 - 492° 15-20% fine py	D028	490.3	492
492 - 510' Dark grey crush/bx zone - Mcd-dark grey, volc with euhedral lath shaped fsp in fng, py rich, weak silic gmass. May be bx'd with gougy mtrx, or may be simply	492 - 510' weakly silic'd volc with saus fsp, bx'd &	492 - 510' 10% diss py & py clots			
crushed with little mtrx between frags of volc. Dom fracs & gougy zones @ 45° to C/A	crushed with gougy		D014	492	500
504.5' 1.5" banded py clasts sim to @ 492'			D015	500	510
510 - 531.5' Pale med grey volc with lath fsp in weak mod	<u>510 - 531.5'</u>	<u>510 - 531,5°</u>	D016	510	520
silic gmass - crushed & locally bx'd with gougy mtrx. Dom fracs @ 50° to C/A	weak -mod silic fsp lath volc	10-15% py diss, clots & rare clasts & py gouge	D017	520	531.5
531.5 - 587' Dark grey volc with lath fsp in fng silic, py rich gmass. strongly crushed & bx'd with pale to dark grey	531.5 - 587' strong crush & bx	531,5 - 587' 15-20% py-v. fine	D018	531.5	540
gouge (may be pyritic)	zone in silic/py volc	py flooding in gmass of volc &	D019	540	550
		py gouge &	D020	550	560

					diagona	T	T]
			560 - 564' intense gouge supported bx with 30-40% ang		dissem	D021	560	564
			frags in banded gougy mtrx - Banding @ 40° to C/A - Rare frags of minz'd material as in 564-565'			D022	564	565
			564-565' mineralized silica flood zone - Qtz/int. silic'd volc, minz'd with py & brown sphal & br mineral??	<u>564 - 565'</u> silic'd - yn	<u>564 - 565'</u> py-sphal	D023	565	568.5
			voic, mine q with py ac oronin sprint as or similarity			D024	568.5	568.8
			565 - 568.5' gouge supported bx as in 560 - 564' with serveral clasts of minz'd material			D025	568.8	573.5
			568.5 - 568.8' 'vn' @ 60° to C/A of min2'd gtz-py-sphal material as in 564-565'. Good sharp contacts.	568.5 - 568.8' vn	568.5 - 568.8' py-sphal	D026	573.5	575.5
			568.8 - 573.5' Intense gouge with bx clasts - strongly minz'd, with minor gtz vning and local banding @ 40° to			D027	575.5	576.5
		ļ	C/A with py sphal			D029	576.5	580
			573.5 - 575.5' broken med hard, pyritic weakly silic'd microdiorite dyke - cut by numerous small gouge filled fracs.					
			575.5 - 576.5' silic'd flooded, minz'd bx zone qtx-py- sphal & brown min as in 564 - 565', but see rem volc texts here suggesting flooding rather than true vn.	575.5 - 576.5' bx, silic'd flood zone	575.5 - 576.5' py-sphal	D030	580	587
			576.5 - 587' Intese bx with clay gouge, which is locally black, pyritic with 50% any frags of alt'd volc & bxt rare 'vn' material (as in 575.5 - 576.5') cut by numerous small microd. dykes to 15cm. Weak banding at 40° to C/A					
			587 - 589.5' massive mod soft dyke cutting fit zone. Greygreen, poss same 'microdior' as in 444 - 445.5'. Cut by numerous small gouge filled fracs @ 50° to C/A					
	1		589.5 - 634' as in 531 - 580', but paler gray. V. strong bx, crushing	589.5 - 634' strong crush /bx	589.5 - 634' 10% py-diss	D031	587	589.5
'					• •	D032	589.5	591.5
			591.5 - 592.5' black py rich gouge @ 60° to C/A			D033	591.5	592.5

	_				1		T	
			600.5 - 602' Pale grey, bleached, weak slic'd dyke as in 444 - 445.5', @ 55° to C.A			D034	592.5	600
			608 - 609' sev. black pyritic gouge zones to 0.5" wide @ 80° to C/A			D035	600	610
]]]	80° 10 C/A	ļ		D036	610	620
			612 - 613' poss dyke as in 600 - 602', mod silic'd			D037	620	634
			615'dom frac/gouge direc @ 50° to C/A]		
			630 - 634' - strongly bx'd, pinkish colour + abund coarse blocky rem fsp. Early dyke crushed in flt? - or part of amyg dyke below?					
			634 - 642.5' DYKE Fng, maroon-grey, amygdaloidal. Minor white carb jnlts & carb filled amygdules. Bleached @ contacts & along fracs. Sharp lower contact @ 60° to C/A. Very bx, shattered upper contact.		634 - 642.5' Tr diss py			
		<u> </u>	642.5 - 645' pale-med grained, mod hard massive microd? dyke, as in 612-613, etc., cut by numerous gougy fracs	642.5 - 645' clay alt'd, weak silic'd dyke	642 - 645' 5% py fine diss & vnlts	D038 D039 D040	642.5 645 655	645 655 662
			645 - 674' v. strong bx/crush zone as in 589.5 - 634' with numerous zones of intense gouge +/- bx fracs. Weakstrong banding @ 50° to C/A. In places black gouge bands, commonly to 1cm, grade into "rotted" fine grained py vns ie) 669'. Minor narrow microd dykes as in 642.5-645', to 15cm		645 - 674' 5-10% py	D041	662	667.5
			662-670' 10-20% of this interval is black py gouge					
			667.5 - 669' black py gouge +20% bx frags & irreg silic'd bands. Banding + contacts @ 50° to C/A		667.5 - 669' black gouge	D042	667.5	669
			671 - 674' v. broken, indistinct, bx contact			D043	669	674
674	697	silic'd frg, acidic fsp porph volcanic	Fine grained, pale grey, siliceous, acidic volc, 25% fine rem fsp, avg <1mm saus, in aphanitic fsp rich, locally siliceous gmass. Locally hard - silicified. Locally get banded, swirled silica - py flooding. Gmass has patchy white/tan &	674 - 697' mod silíc'd	10-15% py - diss, clots and minor vnlts	D044	674	685
		Volcanic	grey mottled appearance clay alt'd fsp rich gmass with			D045	685	697

en de la companya de

	partial silica flooding. V. broken core, 60-75% recoveries throughout the zone.			
	Cut by minor pale grey gouge & gouge/bx zones to 3 cm.			
	686 - 687' gouge/bx fault zone @ 70° to C/A 688 - 689' strong silic'n @689.5' 3 cm gouge zone with fine bx frags @ 70° to C/A 690 - 697' str silic'n	688 - 689' strong silic'n 690 - 697' strong silic'n		
	@ 697' EOH - Many problems drilling last 40' of hole - had to quit, hole caved, rods torquing. Tried to pull casing - broke off 20' below surface. 100' of casing left in hole.			

.- .

								,					,
NA	. Ni	Р	PВ	SB	SN	SR	TH	TI		<u> </u>	· 	ZN	Au-fire
%	PPM	PPM	PPM	PPM	PPM	PPM	PPM	%	PPM	PPM	РРМ	PPM	PPB
0.07	11	1020	1	1	4	164	1	0.01	1			61	3
0.08	9	1090	34	1	4	113	1	0.01	1	7	1	169	1
0.06	11	1110	132	1	4	123	1	0.01	1	6.1	1	324	3
0.05	10	1190	4	1	_ 4	112	1	0.01	1	8.4	1	141	2
0.05	9	1240	9	1	3	159	1	0.01	1	12.4	1	54	4
0.05	14	1180	107	1	4	100	1	0.01	1	10.8	1	398	8
0.05	15	1360	138	1	5	90	1	0.01	1	10.6	1	497	3
0.05	14	1170	57	1	5	106	1	0.01	1	7.9	1	227	4
0.04	31	1360	777	3	8	57	1	0.01	1	8.3	2	2335	7
0.04	79	1200	3119	17	11	38	1	0.01	1	10.8	3	1601	11
0.04	41	1300	450	3	9	30	1.	0.01	1	6.8	1	1402	14
0.04	94	1270	428	10	12	31	1	0.01	1	8.9	4	2144	10
0.02	20	820	7619	219	12	218	1	0.01	1	1.2	237	10000	17
0.03	81	1210	1127	43	13	31	1	0.01	1	6.4	6	3413	5
0.04	73	1340	832	15	11	52	1	0.01	1	6.5	5	2869	12
0.04	50	1470	562	16	9	46	1	0.01	1	4.7	1	1026	5
0.03	18	1700	85	1	7	36	1	0.01	1	2.5	1	474	14
0.03	31	1550	149	4	8	35	1	0.01	1	4.6	1	1135	13
0.03	74	1610	224	35	11	18	1	0.01	1	7.5	5	2469	17
0.03	43	1660	211	35	10	23	1	0.01	1	5.5	6	3949	37
0.03	20	1650	165	7	9	36	1	0.01	1	3.8	3	3437	42
0.02	20	1510	216	6	8	8	1	0.01	1	2.8	15	8857	46
0.03	41	1780	127	4	10	12	1	0.01	1	5.4	1	1805	18
0.02	13	1910	176	5	7	94	1	0.01	1	3.1	5	4656	25
0.03	38	1460	159	7	8	61	1	0.01	1	6.7	2	1654	12
0.02	21	1640	270	63	9	5	1	0.01	1	5.3	13	8254	34
0.02	17	1830	841	69	8	102	1	0.01	1	5	12	7435	26
0.03	39	1180	458	14	14	23	1	0.01	1	4.6	1	2988	15
0.03	27	1470	217	6	8	37	1	0.01	1	8.6	4	3485	40
0.03	28	1810	140	4	8	38	1	0.01	1	5.5	1	1776	61
0.02	38	1770	223	17	8	15	1	0.01	1	4.6	2	2022	28
0.03	33	1450	167	95	9	21	1	0.01	1	5.2	1	1754	75
0.03	22	1500	423	10	8	84	1	0.01	1	5.9	1	1834	27
0.02	33	1290	398	1	В	23	1	0.01	1	7.1	1	1638	30
0.02	31	1350	290	1	7	28	1	0.01	1	7.5	1	1297	21
0.02	36	1470	256	4	8	14	1	0.01	1	9.7	1	714	13
0.02	29	1300	640	6	8	19	1	0.01	1	7.1		1745	21
0.02	17	1260	1030	7	8	7	1	0.01	1	6.2	12	7381	39
0.02	29	1330	909	5	8	8	1	0.01	1	9	7	4445	33
0.02	17	1350	344	5	8	11	1	0.01	1	5.1	4	3632	20

										Janipio	_									,	 -
Certificate	Sample	From	То	AG	AL	AS	ВА	BE	ВІ	CA	CD	co	CR	СU	FE	GA	К		MG	MN	МО
Number	Number	feet	feet	РРМ	%	PPM	РРМ	РРМ	РРМ	%	PPM	РРМ	PPM	РРМ	%	PPM	%	РРМ	%	PPM	РРМ
6S-0270-RJ1	D001	155	158	0.1	0.24	1	215	0.1	1	4.86	0.1	4	6	8	2.25	1	0.19	1	0.84	1434	6
6S-0270-RJ1	D002	216	217.5	0.1	0.32	1	74	0.1	1	2.71	0.1	6	5	12	2.58	1	0.19	2	0.46	1058	7
6S-0270-RJ1	D003	217.5	226.5	0.1	0.25	264	185	0.1	1	3.82	0.1	6	15	8	2.63	1	0.19	1	0.6	1500	9
6S-0270-RJ1	D004	253.5	267	0.1	0.25	1	211	0.1	1	2.99	0.1	. 4	14	5	2.33	1	0.2	1	0.55	1236	6
6S-0270-RJ1	D005	423	433	0.1	0.26	1	297	0.1	1	4.53	0.1	3	9	3	1.98	1	0.18	2	0.28	1803	4
6S-0270-RJ1	D006	433	440	2.3	0.37	1	179	0.1	1	3.31	0.1	8	11	13	3.16	1	0.22	2	0.22	2138	8
6S-0270-RJ1	D007	440	447	3.8	0.31	1	154	0.1	1	2.98	0.1	11	11	17	3.41	1	0.2	2	0.22	2333	8
6S-0270-RJ1	D008	447	458	0.1	0.36	1	157	0.1	1	3.04	0.1	9	9	11	3.54	1	0.22	2	0.21	2136	8
6S-0270-RJ1	D009	458	463	0.4	0.28	1	62	0,1	1	1.2	0.1	12	13	14	4.75	1	0.19	1	0.19	9021	11
6S-0270-RJ1	D010	463	470	0.1	0.29	1	72	0.1	1	0.96	0.1	11	13	55	5.31	1	0.21	1	0.23	10000	16
6S-0270-RJ1	D011	470	480	8,0	0.26	1	71	0.1	1	0.72	0.1	12	13	14	5.32	1	0.18	1	0.18	10000	14
6S-0270-RJ1	D012	480	490	0.1	0.24	1	69	0.1	2	0.61	0.1	12	15	15	6.01	1	0.18	1	0.2	10000	19
6S-0270-RJ1	D013	490	490.3	200	0.17	362	50	0.1	37	0.21	100	10	21	1824	5.67	1	0.12	1	0.02	1048	28
6S-0270-RJ1	D014	492	500	19.9	0.24	1	33	0.1	1	0.49	0.1	12	15	139	6.86	1	0.19	1	0.12	10000	21
6S-0270-RJ1	D015	500	510	3.6	0.24	1	40	0.1	1	0.83	0.1	12	17	58	5.98	1	0.17	1	0.15	10000	18
6S-0270-RJ1	D016	510	520	1.2	0.33	1	66	0.1	1	0.62	0.1	11	15	35	5.26	1	0.2	1	0.08	10000	14
6S-0270-RJ1	D017	520	531.5	0.1	0.28	1	80	0.1	1	0.6	0.1	10	19	12	4.82	1	0.19	1	0.06	4146	11
6S-0270-RJ1	D018	531.5	540	9.2	0.3	1	52	0,1	1	0.5	0.1	11	13	18	4.75	1	0.24	1	0.06	9053	12
6S-0270-RJ1	D019	540	550	18.8	0.3	1	78	0.1	2	0.55	0,1	12	18	55	5.3	1	0.26	1	0.09	10000	15
6S-0270-RJ1	D020	550	560	20.8	0.32	1	66	0.1	1	0.5	0.1	12	14	78	5.05	1	0.23	1	0.08	10000	14
6S-0270-RJ1	D021	560	564	5	0.36	1	57	0.1	1	0.49	0.1	12	17	29	6.75	1	0.24		0,05	2989	12
6S-0270-RJ1	D022	564	565	6.1	0.25	1	76	0.1	1	0.44	0.1	11	12	24	5.07		0.2		0.05	3658	13
6S-0270-RJ1	D023	565	568.5	0.3	0.37	1	56	0.1	1	0.52	0.1	12	17	17	6.68	1	0.27	1	0.08	10000	15
6S-0270-RJ1	D024	568.5	568.8	2.7	0.4	1	71	0.1	1	0.5	0.1	12	12	34	5.58		0.25		0.04	689	12
6S-0270-RJ2	D025	568.8	573.5	2.4	0.38	1	45	0.1	1	0.47	0.1	11	- 8	61	4.82	1	0.25	- 1	80.0	10000	12
6S-0270-RJ2	D026	573.5	575.5	72.9	0.45	1	54	0.1	1	0.46	0.1	13	16	131	6.25	1	0.3		0.06	3324	13
6S-0270-RJ2	D027	575.5	576.5	49.9	0.47	1	69	0.1	1	0.55	0.1	10	21	176	5.46		0.29		0.07	1882	20
6S-0270-RJ2	D028	490.3	492	4.3	0.36	1	19	0.1	1	0.43	0.1	13	17	38	9.77		0.23		0.11	9624	22
6S-0270-RJ2	D029	576.5	580	3.1	0.49	1	54	0.1	1	1.08	0.1	11	13	39	5.01	- 1	0.31		0.23	6503	14
6S-0270-RJ2	D030	580	587	0.3	0.55	1	78	0.1	1	0.63	0.1	10	14	16	4.9	1	0.32		0.09	7615	12
6S-0270-RJ2	D031	587	589.5	4.9	0.46	1	77	0.1	1	0.61	0.1	8	12	35	4.85	- 1	0.35		0.08	10000	11
6S-0270-RJ2	D032	589.5	591.5	69.5	0.43	1	63	0.1	1	0.76	0.1	11	16	238	6.71	1	0.29	1	0.09	7846	13
6S-0270-RJ2	D033	591.5	592.5	5.8	0.38	1	72	0.1	1	1.15	0.1	10	6	62	5.58	1	0.21	2	0.19	4015	 -
	D034	592.5	600	0.1	0.38	1	94	0.1	1	3.18	0.1	9	15	73	4.17	1	0.24		0.68	8581	13
6S-0270-RJ2		600	610	0,1	0.35	1	108	0.1	1	3.23	0.1	8	10	43	3.92	1	0.24		0.66	8143	13
	D036	610	620	0,1	0.45	1	83	0.1	1	1.35	0.1	9	14	107	4.95	1	0.3		0.35	9460	16
6S-0270-RJ2		620	634	2	0.38		72	0.1	1	2.19	0.1	9	15	94	4.86		0.26		0.46	7610	16
	D038	642.5	645	5	0.39	1	77	0.1	1	1.01	0.1	10	16	61	5.73	1	0.26		0.19	1943	17
	D039	645	655	5.1	0,29	1	75	0.1		1.22	0.1	10	13	327	5 00		0.22		0.23	7168	14
6S-0270-RJ2	D040	655	662	3,1	0.48	1 _	61	0.1	1	0.82	0.1	9	17	105	5.63	1	0.31	1	0.14	3262	14

6S-0270-RJ2	D041	662	667.5	8.0	0.36	1	75	0.1	1	0.73	0.1	10	13	94	5.96	1	0.21	1	0.14	584	13
6S-0270-RJ2	D042	667.5	669	0.4	0.4	1	62	0.1	1	0.42	0.1	11	14	97	6.84	1	0.19	3	0.07	261	22
6S-0270-RJ2	D043	669	674	0.1	0.3	1	52	0.1	1	0.22	0.1	10	11	23	6.2	1	0.2	1	0.02	45	14
6S-0270-RJ2	D044	674	685	0.1	0.42	1	86	0.1	1	0.29	0.1	8	13	39	5.16	1	0.26	1	0.03	116	11
6S-0270-RJ2	D045	685	697	0.1	0.37	1	70	0.1	1	0.39	0.1	10	10	150	5.51	1	0.24	1	0.06	208	13
٥																					

Γ	0.02	14	1230	33	1	7	16	1	0.01	_ 1	7.1	1	331	25
ſ	0.02	14	920	49	1	8	67	1	0.01	1	4.9	1	328	32
Γ	0.02	12	890	54	1	7	43	1	0.01	1	1.2	1	53	24
ľ	0.02	10	1130	48	2	6	16	1	0.01	1	1.7	1	251	29
Γ	0.02	10	1210	6	4.	7	13	_ 1	0.01	1	1.4	1	147	32

Hole Silver Queen 96S-7

To test the Frontier '96 EM anomaly H, under field, NE of Discovery boulder

Northing:

Frontier 96 Grid 6+70 N

Easting:

7+00 E

Azimuth:

196°

Dip:

-60°

Depth:

518 feet

Drilled Nov 20-21, 1996 Drilled by: JT Thomas Logged by: L. Caron
Core stored in shop at mine site.

Int	erval	Rock type	Description							
From (feet)	To (feet)			Alteration	Mineralization	Number	From (feet)	To (feet)		
0	118,	overburden	Drillers report a layer of fine sand/clay on bedrock, above which is 30' of med gravel.				<u></u>			
118	130'	Chl-clay alt'd diorite?	Med-coarse grained, porphyritic, green & white mottled coloured diorite?, mod hard, unusual turquoise-green chlorite? alt'n of mafics and in gmass. Clay alt'd fsp, 50% phenos, avg 1-2 mm (30-40% fsp, 10-20% mafic phenos). Local bleaching + perv clay alt'n, esp adj to gougy structures. Cut by numerous gouge zones (pale to dark grey) ie. 119' and 120.5' 3" pale-dark grey gouge zone @ 50° to C/A. V minor patchy silica flooding in mtrx ie. 128.5' 129.5 - 130' Bx zone @ contact. Mtrx supported with 10-20% fine clasts and fsp xtals (<.5 cm) in fine, med grey muddy mtrx, mod soft. 30% of clasts are fine dark bx with 10-20% py. @130' sharp contact @ 80° to C/A with 1.5" pale grey gouge.	mod-strong chlorite- clay alt'n	minor py					
130	143.5'	Rhyolite Dyke	White to v pale grey, v fine grained, hard. Flow banded rhyolite dyke with 5% subround xenoliths to 1 cm of dom dark py rich gmass volc or bx. Flow banding gen @ v low		Тг ру					

			core angles. Fine dirty brown bands and swirls par to flow banding. Gougy upper and lower contacts & cut by several pale grey gouge zones ie) 132 - 133' pale grey gouge @ 40° to C/A 142.5 - 143' gougy/bx zone @70° to C/A					
143.5	169'	Coarse Fsp Porph	As in top of Hole 96S-6 but << alt'd. Pale green, coarse fsp porph with 30% coarse white saus fsp phenos, sub-anhedral, avg 2-3 mm, 2-5% chl alt'd and partly resorbed mafic phenos avg 1-2 mm, in fng fsp rich, pale green gmass. Mod soft. Massive, cut by several narrow gouge zones ie)157' and by several black bx zones as detailed below. 146-148' irreg black bx zone, poss 650 contacts. 30-50% clasts to >10cm of dom pale green coarse fsp porph, but some black py-rich mtrx bx or volc, in fine dark-med grey, py rich gougy & gravelly mtrx. @ 153' irreg patch + narrow vn @ 45° to C/A of black bx + gouge as in 146-148' 166.5-169' Black gravelly bx zone. Irreg upper contact 166-166.5'. Fine gravelly bx with 5% coarse frags (avg 1 cm) of alt'd volc & 60-70% fine gravel-sand sized frags & fsp xtals, in a fine, med grey mtrx with 5-10% fine py. Mod soft. Sharp lower contact @70° to C/A, with pale grey gouge @ top of rhyelite zone.	weak clay-chl alt'n	146 - 148' 5-10% fine py @ 153' 5-10% py 166 - 169' 5-10% fine py Tr rosin zn?	D046	166.5	169'
169	248'	Rhyolite dyke	White, aphanitic, mod hard 'rhyolite' dyke as in 130-143.5'. Locally well developed flow banding with swirled irreg brown bands. Dom banding @ 50° to C/A. Massive but locally v broken. Cut by several minor gouge and crush zones ie)192-194'. Weak-mod perv clay alt'n locally.	Local weak perv clay alt'n				

-•

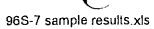
- - - - -

	Г	Γ	Rare xenoliths to 3 cm of black gravelly bx + fine dark volc.					<u> </u>
			Upper contact @ 169' - 1' intense pale grey gouge @ 70° to C/A.					
			Lower contact, broken, bx, gougy from 245-248', @55° to C/A.					
248	433.5'	Black Bx zone	Generally this is tectonic/fault breccia of fsp porph volc, sometimes protolith may be pyroclastic or volc bx.					
			@ 248' sharp but v broken, irreg contact					
			248 - 255.5' Fine grained py flood zone. Fine grained mod soft, black py rich zone. 20% v fine an-euhedral white saus fsp in a sulf rich, mod soft (fsp rich/clay alt'd) gmass - Cut by several dark bx zones to 15 cm wide @75° to C/A, with clasts of massive py + pale grey, pyritic, fsp rich volc or intr? in similar fine, mod soft py rich mtrx. Cut by minor gouge zones.		248 - 255.5' 15-20% fine black py, 5% coarse brassy py	D047	248	255.5
			255.5 - 268' Bx or possible welded lapilli tuff? with white, mod soft fsp rich gmass with 20% subangular frags of fng dark grey py-fsp rich rx (as in 248-255.5'). Frags (or poss lapilli) are locally flattened and show weak alignment @60° to C/A. Minor gouge zones @ 255.5', 257', 261', 266', 267' @ 40-60° to C/A.		255.5 - 268' 5-10% py dom in bx frags but also diss in mtrx & as minor vnlts	D048	255.5	257.7
			257.5 - 258.0' 4" zone @ 60° to C/A with narrow		257.7 - 258.0' 15-20% py, minor	D049	257.7	258.0
			gougy contacts. Bx with fine grained py flood, fsp rich intrx as in 248-255.5', with 30% frags, to 3 cm, of fsp rich, white volc as in gmass of bx in 255.5-268'. Also frags of massive, brassy py. 2 irreg filled cavities (1/2 x 3 cm) with rhodochrosite/galena/brassy + black py/rosin zn, + several small patches of same.		gal, rosin zn	D050	258.0	268.0
			268 - 279' Fault bx / crushed zone. Dom clasts of and crushed pale grey fsp rich volc, mod clay alt'd, locally with strong pale grey gouge between clasts. Rare massive fng py clasts to 2 cm. Common patches/clasts of dark grey fng, grainy fsp-py rich rx.	268-279' mod clay alt'n crushing, bx & gouge	268-279' 5-10% py-diss & as massive py clasts & clots	D051	268	279

(

				·		.~	
		279 - 283' Dyke Bleached, tan-grey pulaskite dyke.	İ				1 1
Į]	Massive, mod hard. Minor diss py + py vnlts. Sharp	}		1	1	1 1
		contacts with gouge @ 70° to C/A.					
		Contacts with godge (c) 10 to Ciri.			D052	283	293
			200 2001	202 222	0032	203	293
]]]]	283 - 323' Fault Bx / Crushed zone as in 268 - 279'.	<u>283-323'</u>	283-323'))
		Clasts of + crushed pale-med grey fsp rich, mod soft, clay	mod-strong clay	5-10% py - diss &		293	303
1		alt'd pyritic volc, locally with strong pale grey gouge	alt'n, crushing, bx &	in clasts	D054	303	313
		between clasts. Common clasts of py rich-dark grey volc.	gouge		D055	313	323
) ·]]	20,000	, ,	}]]
		308 - 320' is intense flt gouge supported bx. 50-65%	308-320'	<u> </u>			!
			intense gouge bx.				1
		clasts in grey gouge.	intense gouge ox.				
	1 1		202 422 53	202 422 53		1	
		323 - 433.5' Med grey, fine grained, muddy looking fsp	<u>323 - 433.5'</u>	<u>323 - 433.5'</u>	1 200		
		rich volc. Texts blurred by alt'n but vague rem fine fsp	mod perv clay alt'n.	5-15% py-mainly	D056	323	333
		porph text visible. Mod soft, perv clay alt'n, 5-15% diss py.	Local bx & crushing	diss & minor			1 /
	1	Locally bx'd or crushed with local pale grey gouge		vnlts & cavity	D057	333	343
,		zones.		filling to 3cm	j		!
				long			1
		329 - 330' mod crushed		_	D058	343	353
	·	333 - 335' mod-strongly crushed, minor gougy mtrx]		D059	353	362.5
		338 - 338.5' mod crush			1		
					ĺ		1 1
		356 - 357' strong bx with gougy mtrx					
	i	358 - 362.5 strong bx with gougy mtrx		262 4 262 43	2000	0.00	1 262 - 1
		362.5 - 363.3' dark grey flt gouge @ 60° to C/A		<u>362,5 - 363,5°</u>	D060	362,5	363.5
		@ 368' strong bx with gouge		pyritic fit gouge		İ	į į
					D061	363.5	370
	[[370 - 373' Black volc? bx with 40% angular mod hard		<u> 370 - 373'</u>		Ĭ	[[
		clasts, 2 mm to > 4 cm of white fsp rich pyritic volc		20% fine py	D062	370	373
		supported in fine grained dark soft mtrx with 20% fine py +		2.7			
		abund clay (alt'd fsp?) Rare massive py clasts. Minor py					
		vnlts cut clasts + mtrx. Minor late grey gouge filled fracs.			D063	373	380.5
		viits cut clasts + mirx. Withor late grey gouge fined fracs.			כסטם	313	380,3
		000 5 0011 57		200 5 2013	Doca	200.5	, ,
J	1	380.5 - 381' Fine grained py flood zone as in 248 -]	380.5 - 381'	D064	380.5	381'
ļ	!	255.5' @ 70° to C/A.		20% fine py			
İ							
					:		
ļ	1	381 - 391' Black volc? bx as in 370 - 373' but > frags &		<u>381 - 391'</u> 20%	D065	381	391
	1	more subtle bx texts. Local bx/gouge zones @ 388', 389.5'.		fine py in bx mtrx			
	1			• ~		ĺ	
	1		391-403.5'				
Į	1	391 - 403.5' Strong fault bx with gougy mtrx.	Flt zone, Strongly		D066	391	403.5
		371 103.5 Offents muit on with Boney mith.	The Estive Burdings		2000		

and the second of the second of



. .

	T	1		bx'd with gougy mtx				
			411 - 412' Black volc bx as in 381-391' & 370-373' with 20% fine py in mtrx. Mtrx similar to py flood zone @ 417-418', etc - suggests orig volc origin???		411 - 412' 20% fine py in mtrx	D067	403.5	411
			417 - 418' Fine grained py flood zone as in 380.5-381' and 248-255.5' with 10% fine white bx clasts and weak		417 - 418' 20% fine py	D068	411	417
			banding @ 65° to C/A. 422 - 423.5' Strong bx/crush zone with gougy mtrx			D070 D071	417 418 425	425 433'
	<u></u>		423.5 - 433.5' Vague bx texts, weak fine dark py rich bands/bedding? @ 50°. 428 - 433' weak-mod tectonic bx overpring, with local gouge mtrx bx					
			@ 433' sharp contact @ 75-80° to C/A					
433	518'	Rhyolite	Hard, massive, cream-white aphanitic, flow banded 'rhyolite' as in 169-248' with rare xenoliths (angular, avg 1 cm) of fine black bx + minor small rounded & sometimes partially resorbed frags of green-black-white mottled diorite, as in 118-130' which are concentrated in bands and accompanied by strong flow banding. These zones show subtle colour change of rhyolite from cream to grey and are accompanied by 2-3% diss py (+ GOMS reports minor cpy? - I didn't see).		Тг ру			
			@ 433' sharp but irreg contact with black bx with 6" which gouge @ 70° to C/A					
			438 - 447' Transition to pale green, fng rhyodacite. 442 - 446.5' pale green, strong perv clay + chl alt'n + gouge.	442 - 446.5' str clay & gouge		D072	470	472
			472 - 483' v broken, mod hard, slightly chalky looking white rhyolite with minor gouge zones.					
			@ 518' EOH					

;

	<u>,</u>				F	- AC	וומ	BE	BIT	CAI	CDI	col	CRI	cul	FE	GA	- K	1.1	MG	MN	MO
Certificate	Sample	From	То			AS	BA		PPM	%	PPM	PPM	PPM	PPM	' <u>-</u>	PPM	- %		1 %	PPM	PPM
Number	Number	feet	feet	PPM	%	PPM	PPM	PPM	PPM						3.09	F F IVI	0.19	1-1 101	0.51	1827	11
6S-0272-RJ1	D046	166.5	169	0.8		21	114	0.1		2.25	0.1	10	14	21				 	0.31	7710	12
6S-0272-RJ1	D047	248	255.5	1.2	0.36	1	67	0.1	1	0.94	0.1	12	9	15	4.54		0.21	ļ <u>-</u>		10000	17
6\$-0272-RJ1	D048	255.5	257.7	3.2	0.57	1	54	0.1	4	1.09	0.1	12	14	22	4.41	- 1	0.32	1	0.19	10000	23
6\$-0272-RJ1	D049	257.7	258	50	0.33	46	47	0.1	10	1.01	100	14	15	100	4.6		0.21		0.16	10000	14
6S-0272-RJ1	D050	258	268	1.4	0.43	1	50	0.1	1	1.23	0.1	13	13	17	4.83	!	0.25	<u> </u>	0.31		
6S-0272-RJ1	D051	268	279	1.8	0.33	26	60	0.1	1	1.56	0.1	13	9	15	4.08	1	0.19	1	0.35	2308	12
6S-0272-RJ1	D052	283	293	1.6	0.37	1	60	0.1	1]	0.77	0.1	11	12	18	4.31		0.2	1	0.11	2906	16
6S-0272-RJ1	D053	293	303	3.4	0.32	1	51	0.1	1	0.82	0.1	13	8	12	4.49	1	0.17	1	0.12	2335	11
6S-0272-RJ1	D054	303	313	1.7	0.47	1	44	0.1	1	1.54	0.1	14	15	16	5.43	1	0.24	2	0.39	4925	
6S-0272-RJ1	D055	313	323	1.2	0.31	1	22	0.1	1	0.71	0.1	14	11	18	5.51	1	0.18	1	0.11	2100	18
6S-0272-RJ1	D056	323	333	3.1	0.47	1	55	0.1	1]	1.06	0.1	14	15	14	5.3	1	0.24	1	0.18	4496	12
6S-0272-RJ1	D057	333	343	0.8	0.39	41	43	0.1	1	1.68	0.1	13	12	16	4.63		0.21	1	0.36	4141	11
6S-0272-RJ1	D058	343	353	1	0.47	4	44	0.1	1	1.6	0.1	14	16	13	4.71	1	0.24		0.28	5394	13
6S-0272-RJ1	D059	353	362.5	0.8	0.41	27	64	0.1	1[2.04	0.1	12	12	10	4.16	1	0.22		0.39	5316	10
6S-0272-RJ1	D060	362.5	363.5	7.5	0.49	207	57	0.1	10	0.86	0.1	12	10	98	4	1	0.26		0.19	10000	43
6S-0272-RJ1	D061	363.5	370	3.1	0.43	67	46	0.1	1	1.9	0.1	111	10	14	3.73	1	0.26	1	0.29	5809	11
6S-0272-RJ1	D062	370	373	3.5	0.48	33	26	0.1	1]	2.12	0.1	12	14	21	4.52	1	0.28	1	0.45	7167	13
6S-0272-RJ1	D063	373	380.5	4.2	0.41	8	53	0.1	1	1.4	0.1	13	8	17	3.82	1	0.24	1	0.3	3576	
6\$-0272-RJ1	D064	380.5	381	5.7	0.48	1	50	0.1	1	0.43	0.1	11	9	17	4.18	1	0.28		0.04	104	10
6S-0272-RJ1	D065	381	391	5.7	0.35	1	44	0.1	1	1.02	0.1	10	6	15	3.55	1	0.23	1	0.26	2337	9
6S-0272-RJ1	D066	391	403.5	2.9	0.51	1	43	0.1	1	1 1	D.1	10	11	15	3.64	1	0.29	1	0.28	2458	9
6\$-0272-RJ1	D067	403.5	411	3.9	0.35	47	44	0.1	1	1.43	0.1	10	6	9	3.54	1	0.24	1	0.38	4024	8
6\$-0272-RJ1	D068	411	417	3.1	0.48	23	43	0.1	1	1.15	0.1	10	12	15	3.46	1	0.29	!	0.32	3524	9
6S-0272-RJ1	D069	417	418	4.7	0.34	1	43	0.1	1	0.38	0,1	8	6	17	3.32	1	0.21		0.05	542	8
6S-0272-RJ2	D070	418	425	2.2	0.52	1	56	0.1	1	1.02	0.1	13	16	13	4.59	1	0.32	1	0.23	3782	12
6S-0272-RJ2	D071	425	433	2.5	0.35	1	49	0.1	1	0.37	0.1	12	12	15	4.63		0.24		0.04	1577	11
6\$-0272-RJ2	D072	470	472	2.1	0.65	84	32	0.1	1	0.66	0.1	3	34	14	0.91	1	0.36	5	0.2	766	11

96S-7 sample results.xls

									9	05-7 58	ampie d	SSUILS.X	12		
														<u>Ph</u>	<u>Zv</u>
NA	NI	P	PB	SB		SR								≱-Assay	и-Assay
%	РРМ	PPM	PPM	PPM	PPM	PPM	PPM		PPM		PPM		PPB	%	%
0.03	16	910	47	1	3	40	1	0.01	1	11.7	1	354	5		<u></u>
0.04	31	1600	369	5		49	1	0.01	1	7.9		1266	9		
0.04	73	1390		14		106	1	0.01	3	·	10	3546	10		
0.03	. 90	1550	10000	37	9	71	1	0.01	6		100	10000	17	1.64	3.89
0.04	42	1870	375	6	6	58	1	0.01	1	10.4	1	1154	4		
0.05	18	1870	178	3		70	1	0.01	1	6.4	1	594	7		
0.04	18	1790	317	- 5	4	67	1	0.01	1	5.1	1	1229	7		
0.05	16	1960	215	3	5	81	1	0.01	1	5.1	1	529	2		
0.05	28	1640	125	3	7	57	1	0.01	1	11.5	1	325	2		
0.05	18	1730	170	4	6	66	1	0.01	1	5.7	1	754	7		
0.05	25	1940	189	5	6	55	1	0.01	1	16.3	1	833	8		
0.05	23	1750	203	4	6	62	1	0.01	1	7.8	1	684	5		
0.05	28	1920	193	5	6	63	1	0.01	1	8.3	1	1205	8		
0.05	26	1840	239	4	5	74	1	0.01	1	9	1	712	6		
0.06	68	1870	1851	24	6	103	1	0.01	4	8.9	_18	7184	74		
0.04	25	1890	99	5	5	50	1	0.01	1	7.6	1)	147	32		
0.04	34	1630	323	4	6	37	1	0.01	_ 1	8	1	700	36		
0.04	20	1740	471	3	5	35	1	0.01	1	6.9	1	1211	13		
0.04	10	1410	145	3	4	29	1	0.01	1	5.7	1	207	22		
0.04	15	1440	105	1	4	23	1	0.01	1	5.3	1]	190	8		
0.04	17	1390	100	1	5	27	1	0.01	1	6.7	1[286	6		
0.03	22	1610	205	1	5	22	1	0.01	1	6.1	1	256	8		
0.04	19	1430	243	1	4	23	1	0.01	1	6.7	1	336	12		
0.03	9	1260	280	1	4	16	1	0.01	1]	4	1	20	12		
0.03	24	1770	216	4	5	25	1	0.01	1	6.8	1	1530	15		
0.03	15	1670	422	4	5	19	1	0.01	1	4.1	1]	1689	21		
0.04	7	60	68	3	1	24	2	0.01	1	3	1	56	19		
							<u>l</u>		l						

Hole Silver Queen 96S-8

To test the Frontier '96 EM anomaly A plus southern extension of George Lake Lineament, under the gully

Northing:

Frontier 96 Grid 15+30 N

15+30 N 5+00 E

Easting: Azimuth:

203°

Dip:

-50°

Depth:

810 fcet

Drilled Nov 21-24, 1996 Drilled by: JT Thomas Logged by: L. Caron

Core stored in shop at mine site.

Inte	rval	Rock type	Description			Sample		
From (feet)	To (feet)			Alteration	Mineralization	Number	From (feet)	To (feet)
0	53'	overburden					((134.)
53	112'	Fine Fsp Porph (dacitic?) Volcanic	Typical grey-green fine fsp porph dacitic volc. Massive with excellent core recovery. 30-40% fsp phenos, avg 1-2 mm, white, sans, sub-anhedral in fng pale-med grey green gmass. Mod soft, mod perv clay alt'n.	Mod perv clay alt'n	5% py - diss + minor vnlts			
	!		5% diss py + minor py (+/- qtz) vnlts, avg 1 mm, dom @30° to C/A + v minor narrow black & brassy py vns & narrow black pyritic mtrx bx zones.					
			75.5 - 77' Grey, weak silic'n, blurred texts, gougy lower contact with vn @ 30° to C/A.			D073	75.5	77
			@ 77' 1" vn @ 30° to C/A, sharp contacts. Vuggy with terminated qtz xtal druse, rhodochrosite-barite gangue with py-hem-red, soft, vitreous mineral (pyrobitumen?) + black py + rosin zn?? + gal?			D074	77	77.1
			77 - 84' Pale grey-green, mod soft, blurred texts. Poss finer grained volc than above, or poss alt'n effect.					
			84 - 88' 2-5% black chl alt'd mafic phenos, part repl by py. Mod soft. Sim to above but > alt'd.					

		88 - 108.5' Massive grey-green fng fsp porph volc - Minor mafic phenos part alt'd to py. Mod soft - weak perv clay alt'n. Mottled pale greeny-grey & darker grey appearance d.t. alt'n. Weak bedding @ 40° to C/A. 108.5 - 112' Basal flow bx - fuzzy indistinct text near top, becoming stronger @ 111' and gradational into massive coarse fsp porph @ 112'. Grey fine fsp porph volc as mtrx with clasts of coarse fsp porph.					
112' 300	Med-coarse Dacitic Fsp Porph Volc.	Massive pale grey-green, medium-coarse fsp porph volc. Looks compositionally similar to above but coarser fsp pheno size. Prob dacitic. 40-50% white, sub-anhedral fsp phenos, avg 2-4 mm, minor euhedral mafics, part to totally replaced by py, in fng grey-green gmass. Fsp saus, fsp rich gmass, perv clay alt'd. 121-138' v weak mosaic type bx text defined by 10-20/ft stockworking py vnlts. @ 125' 0.5" py+hem+sphal vn/flood zone on frac @ 45° to C/A. @ 133' 0.5" py-hem vn @ 20° to C/A @ 136.5' 0.5" coarse py-hem vn @ 45° to C/A 137-138' broken, crushed zone with mod pale grey gouge 138-213' Massive, pale grey, locally mottled, bleached grey-buff colour. Med-coarse fsp porph as above with rare rounded frags to 2 cm of fine pale green aphanitic volc. Mod hard with saus fsp and weak perv clay alt'n. @ 142.5 Black gravelly bx zone with 30% coarse, avg 1 cm, subround polymictic clasts (volc + silic ? + hem, pale orange aphanitic rx) in med grey, soft, fine black py - clay rich grainy mtrx with 5% coarse brassy py + minor hem + minor rosin zn. Zone is 1.5" wide @ 20° to C/A.	Weak-mod perv clay alt'n.	2-5% diss py & py clots after mafic phenos + minor py (+/- qtz) vnlts. Locally minor sphal + hem with py in vnlts. 121-138' 10-20/ft py vnlt stockwork @ 125' 0.5' py-hem-sphal vn @ 133', 136.5' 0.5' py-hem-sphal vn 138-213' 2% diss py + py clots + minor py vnlts dom @ 45° to C/A. Minor hem with py. @ 142.5' 1.5" black bx zone with py + tr hem, zn	D075	125	136.5

			@ 151' bx zone as in 142.5 2.5" wide, @ 45° to C/A.		@ 151' 2.5" black bx zone	D076	151	151.2
					with py + tr hem, zn	D077	151.2	152.5
			152.5 - 152.8' 3.5" wide black bx zone as in 142.5' 161 - 185' bleached, paler colour, slightly obscured		@ 152.5' 3.5" black bx zone with py + tr hem,	D078	152.5	152.8
			textures locally. V weak mosaic type bx texts with 5/ft hairline py vnlts. Minor gouge on fracs.		zn			
			161 - 170' Mod coarse py + hem + v minor sphal in vnlts to 0.5" and as irreg zones. 20-35° to C/A (4-5 in this interval).		161 - 170' coarse py + hem + minor sphal vnlts + patches.	D079	161	170
			213 - 300' Plain massive pale-med grey-green coarse fsp porph, close packed, 40-50% subhedral saus fsp, avg 3mm, rare alt'd mafics + qtz eyes, in fng mod hard gmass.		213 - 300' 2-5% coarse diss py + minor (+/- coarse) py vnlts + minor diss black mineral (hem, sphal?) Rare tr rhodoc + sphal with py in vnlts.			
					@ 278' 0.5" bleached clay frac vn with coarse brassy py + minor rhodochrosite + sphal	D080	270	280
300	581'	Med Fsp Porph Volc	Pale grey, massive, fine-med fsp porph dacitic volc. 20-30% white, saus, subhedral fsp, avg 1mm, rare rem mafic phenos, in fng pale grey, fsp rich gmass. Mod hard. 2-5% diss py + hairline py vnlts to 10/ft. Not as coarse and close packed as 112-300', but coarser than 53-112'.	Weak perv clay alt'n	2-5% diss py + hairline py vnlts + minor coarse brassy py vns, avg 0.5"			
			323-327.5' Fault zone. Str perv clay + clay gouge on fracs.	323 - 327.5' str clay alt'n + gouge		D081	323	327.5

	327.5 - 332' Broken zone with 30% vning. Vns @ 20-30°		327.5 - 332'	D082	327.5	328
} }	to C/A, up to 0.5' wide, typically massive coarse brassy py +		Zone of 30%	D002	321.3	320
			vning - py + qtz +	D083	328	332
	fine black py + hem + qtz + minor rhodochrosite + minor		hem + minor	D083	328	ا کرر
	rosign zn.		1			
}	@ 327.5' 6" vn		rhodochrosite +] }
]]	@ 328' 3" piece of vn		sphal			1 1
	@ 329 - 330.5' broken with 30% vns, < 0.5"				1	
]	@ 331' 1 - 11/2" vn @ 25° to C/A					
	@ 332' 1.5" vn with gouge @ 35-40° to C/A			Ì		
	@ 337' 0.5 " vn with py + rhodochrosite + minor rosin zn					
	in soft gmass @ 60° to C/A. Cuts earlier coarse brassy py		[([
	vnlt @ low core angle				İ	İ
	Vint to rote angle					}
	@ 357' 0.5 - 1" coarse brassy, xtalline py vn @ 30° to C/A.					
		}			1	
	@ 365' 1" coarse brassy xtalline py vn @ 30° to C/A.					
	382 - 455' Gradational change to slightly finer grained volc				}	
	with less distinct porph texture. Still massive, weak perv					
	clay alt'n, diss py + py vnlts & narrow coarse xtalling py]	
	vns & clots. No colour or comp change - only textural. By					
	420' may start to get slightly paler.	ļ				
	, 25 mm, 5 mm v a geven-g.m., p.m.]	1
	@ 423' 4" zone with bx, gouge + vn @ 85° to C/A.		@423' py + rosin	D084	423	423.3
	Massive coarse brassy py + rosin zn vn, 1-2" wide, in soft		zn vn			
	grey gouge + bx.			D085	423.3	433
	8.0) Bongo . am.					İ
	@ 430.5' 0.5 - 1" coarse brassy py vn @ 45° to C/A.					ļ
	(a) 150,5 0.10 1 050,150 01,050 pp. 11 12 57.11					
	455 - 461' Gradational change to a coarser grained, darker		45 <u>5 - 461'</u>	D086	455	461
	grey volc with more distinct fsp porph texts.		5% diss py + local			
	g.t.) Total man visit and in the pro-part visits		py (+/- talc or			1
1	@ 456' 6" zone of v soft, pale green talc with coarse	@ 456' 6" talc zone	gouge) vns and			
	brassy py + clay gouge. 45° to C/A.	(6) 150 0 1810 15110	patches (3-4 in			
	bidasy py Colay gougo. 45 to Ora.		this interval)			
1	461 - 581' Massive pale grey, med grained, moderate hard,					-
	fsp porph volc as in 300 - 382'					
1	13h bothir toto ag in 200 - 205		}	D087	480	490
	@ 485' 1" coarse py + gouge zone @ 80° to C/A with					
	minor rosin zn					
	1 made room zu				<u> </u>	

					,	1		
			@ 489' 0.75" coarse brassy py vn @ 30° to C/A 509-510' weak silic'd fsp porph + 15% vning - py + white qtz (healed bx'd qtz). Vns 2-5 mm, massive brassy py + 1-2" qtz with 20-30% py. 70° to C/A.	509 - 510' silic'd + qtz/py vning	509 - 510' qtz-py + massive py vns to 2"	D088	509	510
			510 - 511.5' Fault zone. Intense clay alt'n and gouge (pale grey-green) @35° to C/A. 511.5 - 512.3' Healed, silic'd qtz-py bx vn @ 35° to	511.5 - <u>512.3'</u>	511.5 - <u>5</u> 12.3'	D090	511.5	512,3
			C/A. Upper 2" is massive fing brassy py frags in fine black py mtrx with fine white qtz frags. Lower 9" is white bx'd silic'd fsp porph + white aphanitic siliceous frags with 10% coarse brassy py + py vns.	Healed silic'd bx with py	10% py			
			512.3 - 521' Mod perv silc'n + 10% diss py & py vnlts. 521 - 550' Gradational change to massive, mod soft, slightly paler, slightly finer grained fsp porph volc with locally indistinct porph texts, as in 382 - 455'. Still has py.	512.3 - 521' mod perv silic'n	512.3 - 521' 10% diss py	D091	512.3	521
			@ 531' 2" silic'd zone, pale grey, bleached, @ 45° to C/A, with 10% coarse py.	@ 531' 2" silic'd zone	@ 531' 2" zone with 10% py			1
			@ 574' 2" coarse brassy py vn with qtz gangue @ 30° to C/A.			D092	574	581
<u> </u>			574 - 581' interval has 4 brassy py vns + gouge					
581'	608,	Pulaskite Dyke	Massive, fresh, dark grey muddy looking dyke. 10% phenos and less common glomerocrysts of fsp (2 fsp?). Plag phenos avg 1-2mm, Kspar? glomerocrysts avg 4-5 mm. 1% fine biotite and 3-5% 1mm mafic phenos in dark aphanitic gmass. Minor late carb vnlts. Pale greeny-grey bleached chill zones to 1' wide at contacts. @ 581' sharp contact @ 55° to C/A 587 - 590' v broken core/ Fault zone. @ 608' sharp contact @ 30° to C/A.					

 $(x_1, \dots, x_n) = (x_1, \dots, x_n$

608'	810'	Med - fine Fsp Porph Volc	as in 300 - 581' Pale grey, massive, med-fine fsp porph dacitic volc, with 2-5% diss py + hairline py vnlts & minor coarse brassy py vns. Mod soft with saus fsp & mod perv clay alt'n.	Mod perv clay alt'n. Fsp saus.	2-5% py - diss + hairline vnlts + coarse brassy py vns			
			608 - 611' Coarser grained with 25% white saus fsp phenos, avg 2-3 mm.			1. 1. 1.		
			620 - 624' Patchy mod silic'n causes dark-pale grey mottled and banded appearance. Minor long soft black tabular needle like mineral - mafic phenos? 10% diss py + strong py vnlts 10-20/ft.	620 - 624' Patchy silic'n	620 - 624' 10% py, diss + vnlts, dom @ 20° and 70° to C/A.	D093	620	624
			@ 641' I" brassy py + qtz vn @ 30° to C/A.					
			@ 642' 2" black py rich gouge zone @ 40° to C/A.			D094	641	642.5
			642.5 - 645.5' Mosaic type bx in med, pale grey fsp porph volc with 5% coarse brassy py interstitially between clasts. Mod silic'n.	642.5 - 645.5' bx, mod silic	642.5 - 645.5' 5% coarse brassy py interstitial to bx clasts	D095	642.5	645.5
			645.5 - 652' Dark - pale grey mottled. Weakly banded due to patchy weak-mod silic'n. Two 0.5-1" coarse brassy py vns in this interval.	645.5 - 652' patchy silc'n		D096	645.5	652
			652 - 705' Typical massive pale-med grey, med-fine fsp porph volc but with 3-5% good cuhedral, black, tabular, needle-like mafic phenos which are weakly aligned @ 80-90° to C/A. 5% diss py + rare coarse py vns.	652 - 682.5' weak clay alt'n		D097	652	660
.]			@ 657.5' 0.5' qtz + brassy coarse py vn @ 20° to C/A. @ 660' 0.5' qtz + brassy coarse py vn @ 30° to C/A.			D098	660	670
			683 - 689' Coarse grained, dark grey massive porph volc (or poss microdiorite? dyke?) Contacts with volc above and below are gradational - doesn't look like dyke. 20-30% coarse subhedral, blocky, saus fsp, <1mm to 4mm in size, 5% 4mm long, tabular needle-like euhedral mafics, aligned @ 90° to C/A, may be part - totally alt'd. Gmass is dark		683 - 689' 5% diss py. V minor vnlts			

_ _ _ .

(

grey, aphanitic. 5% diss py + v. minor vnlts. 689 - 705' Massive, relatively fresh, no coarse py vns. @ 692', 695' strong 'bedding' @ 80° to C/A defined by aligned mafic phenos. 705 - 810' Massive pale-med grey, typical fine fsp porph volc, Mod soft as above but finer grained. Still minor good tabular mafic phenos. 5% py - diss + clots after mafics. V minor hairline py vnlts. No coarse py vns. Rel fresh looking. 730 - 741' Weak Fault zone. Strongly broken, strong clay alt'n. V. minor gouge. 730 - 741' Weak Fault zone. Strongly broken, strong clay alt'n. V. minor gouge.	
761 - 768' Str patchy silica + py flooding gives core dark grey banded appearance @ 90° to C/A. @ 767' vuggy coarse py/qtz vn @ 20° to C/A. 768 - 775.5' Weakly patch silica + py flooding as above, giving local banded appearance @ 90° and 45° to C/A. 790 - 810' core is mod broken. @ 810' E.O.H. D099 761 768' Patchy silica + py flooding 761 - 768' 768 775.5' 775.5' 775	

.

96S-8 sample results.xls

Certificate	Sample	from	to	AG	AL	AS	BA	BE	Bi	CA	CD	CO	CR	CU	FE	GA	К	LI	MG	MN	MO
Number	Name	feet	feet	PPM	%	РРМ	PPM	PPM	РРМ	%	PPM	PPM	PPM	PPM	%	PPM	%	MAA	%	PPM	PPM
6S-0274-RJ1	D073	75.5	77	5	0.64	129	65	0.1	1	0.35	0.1	9	28	122	4.41	1	0.41	1	0.09	5860	10
6S-0274-RJ1	D074	77	77.1	200	0.33	3591	20	0.1]	314	0.76	100	8	71[10000	3.42	3	0.19	1	0.02	210	21
6S-0274-RJ1	D075	125	136.5	9.3	0.48	359	53	0.1	19	0.35	0.1	9	15	1161	4.46	1	0.33	1	0.1	7092	10
6S-0274-RJ1	D076	151	151.2	58.6	0.36	1697	43	0.1	85	0.26	29.5	14	21	4649	6.3	1	0.24	1	0.06	4925	15
6S-0274-RJ1	D077	151.2	152.5	4.2	0.39	119	49	0.1	1	0.31	0.1	11	12	358	4.12	1	0.27	1	0.07	2629	8
6S-0274-RJ1	0078	152.5	152.8	31.1	0.38	894	46	0.1	64	0.32	0,1	13	15	2527	5.59	1	0.24	1	0.08	3610	11
6S-0274-RJ1	D079	161	170	2.7	0.55	265	105	0.1	5	0.91	0.1	10	15	509	3.89	1	0.34	2	0.8	6944	10
6S-0274-RJ1	D080	270	280	1.3	0.52	19	75	0.1	1	1.2	0.1	10	13	25	4.01	1	0.27	4	0.4	2656	8
6S-0274-RJ1	D081	323	327.5	13.9	0.49	727	57	0.1	24	0.31	0.1	9]	18	1922	4.04	1	0.29	1	0.03	100	7
6S-0274-RJ1	D082	327.5	328	200	0.16	10000	5	0.1	827	0.34	100	19	34	10000	15	1	0.12	1	0.02	187	32
6S-0274-RJ1	D083	328	332	149	0.43	6007	28	0.1	318	0.43	42.3	12	40	10000	9.21	1	0.27	1	0.03	215	18
6S-0274-RJ1	D084	423	423.3	40.4	0.2	339	16	0.1	107	1.39	0.1	23	39	3691	15	1	0.17	1	0.22	1004	42
6S-0274-RJ1	D085	423.3	433	1.7	0.53	1	49	0.1	1	0.31	0.1	10	19	208	4.63	1	0.34	1	0.02	47	9
6S-0274-RJ1	D086	455	461	0.3	0.38	1	18	0.1	1	0.28	0.1	13	28	124	8.85	1	0.25	1	0.01	41	13
6S-0274-RJ1	D087	480	490	11.1	0.53	101	42	0.1	1	0.29	0,1	11	22	560	5.89	1	0.33	1	0,02	60	10
6S-0274-RJ1	D088	509	510	4.6	0.35	1	29	0,1	62	0.16	0.1	11]	26	336	6.21	1	0.22	1	0.02	67	17
6S-0274-RJ1	D089	510	511,5	0.5	0.74	37	101	0.4	1	0.64	0.1	1	27	25	0.85	1	0.24	2	0.14	1147	6
6S-0274-RJ1	D090	511.5	512.3	1.7	0.28	1	8	0.1	1	0.18	0.1	12	30	347	12.1	1	0.19	1	0.01	108	40
6S-0274-RJ1	D091	512.3	521	0.3	0.43	1	27	0.1	1	0.24	0.1	11	20	54	7.05	1	0.27	1	0.01	38	12
6S-0274-RJ1	D092	574	581	2.9	0.33	192	- 8	0.1	3	1.44	0.1	14	21	1173	10.61	1	0.23	1	0.04	208	16
6S-0274-RJ1	D093	620	624	0.1	0.54	1	31	0.1	1	0.29	0.1	13	23	18	7.33	1	0.34	1	0.03	79	11
6S-0274-RJ1	D094	641	642.5	3	0.26	1	16	0.1	1	0.47	0.1	19	36	82	15	1	0.19	1	0.01	50	20
6S-0274-RJ1	D095	642.5	645,5	0.3	0.53	1	26	0.1	1	0.28	0.1	11	30	13	9.6	1	0.33	1	0.02	39	14
6S-0274-RJ1	D096	645.5	652	0.1	0.36	1	30	0.1	1	0.35	0.1	11	20	13	8.25		0.24	1	0.02	51	12
6S-0274-RJ2	D097	652	660	0.3	0.4	1	53	0.1	1	0.7	0.1	12	23	13	8.94	1	0.25	1	0.02	97	13
6S-0274-RJ2	D098	660	670	0.1	0.61	1	77	0.1	1	0.58	0.1	13	36	18	8.55	1	0.35	1	0.03	72	15
6S-0274-RJ2	D099	761	768	0.6	0.39		72	0.1		0.57	0.1	13	26	17	10.48	1	0.22	1	0.02	92	15
6S-0274-RJ2	D100	768]	775.5	0.6	0.69	1	103	0.1	1]	0.8	0.1		37	12	6.56	1	0.36	1]	0.1	302	12

96S-8 sample results.xls

NA	NI	Р	РВ	SB	SN		TH				·			Ag-Assay		Pb-Assay	Zn-Assay
%	PPM	PPM	РРМ	PPM	PPM	PPM	PPM	%	PPM		PPM				%	%	%
0.01	26	1300		27	5		_ 1	0.01	[1	_5.7	3		290				
0.01	19	4250	10000	6049	6	55	1	0.01	1	3.6	1		2785	775	1.89	5.67	8.59
0.01	31	1290	1155	101	5		1	0.01		6.9			117				
0.01	31	1030	3564	263			1	0.01	1	7.4	26	10000	484				1.12
0.01	17	1220	391	11	5		1	0,01	1 1	6.2	1	1583	93				
0.01	24	1360		120		6	1		1	7	8						
0.01	31	1420	309	1	5		1	0.01	1	8.8		2975	51				
0.01	19	1270	33	2	5	10	1	0.01	1	10.6	1	395	66	·			
0.01	12	1230	222	87	4	33	1	0.01	1	4	1	1254	61				
0.01	36	2600	10000	4725	21	21	1	-,-	1	6.3		10000	534	671	5.16	1.63	4.65
0.01	23	1440	2684	1162	11	35	1	0.01	1	6.1	27	10000	384	198	2.4		1.38
0.01	36	1530	3203	273	23	1	1	0.01	1	8.8	49	10000	694				2.61
0.01	12	1230	100	16	5	3	1	0.01	1	4.1		348	29 34				
0.01	17	1040	89	8	9	1	1	0.01	1	3.4	1	148					
0.01	13	1090	112	79	7	3	1	0.01	1	4.7	1	357	131				
0.01	13	130	70	_ 51	7	26	1	0.01	1	3.4	1	112	135				
0.01	6	220	29	5	1	133	11	0.01	4	1.4	1	31	8				
0.01	24	490	53	19	13	13	1	0.01	1	3.5	11	72	101				
0.01	16	860	12	10	8	3	1	0.01	1	3.9	1	36	23				
0.01	22	940	50	46	11	52	1	0.01	1	4.9	1	158	97				
0.01	16	750	47	5	- 8	6	1	0.01	1	4.5	1	143	24				
0.01	26	1010	228	7	17		1	0.01	!	5	1	553	92				
0.01	20	920	43	4	10	1		0.01		4.8		143	33	——·			
0.01	18	900	29	4	9	1	!	0.01	1	3.9		73	27				
0.01	18	1090	38	5	9	12		0.01		4.6		97	40				
0.01	19	1060	48	5	9	8		0.01		5.6	- 1	278	60				
0.01	21	1070	58	6	10	1		0.01		4.7		81	28				
0.01	17	1260	65	6	7]	11	1	0.01	1]	6.5	1	102	39				

Hole Silver Queen 96S-9

To test the Frontier '96 EM anomaly B

Northing:

Frontier 96 Grid 13+25 N

5+00 E

Easting:

Azimuth: 196°

Dip:

-50°

Depth: 442 feet

Drilled Nov 24-25, 1996 Drilled by: JT Thomas
Logged by: L. Caron
Core stored in shop at mine site.

Inte	rval	Rock type	Description				Sample	
From (feet)	To (feet)			Alteration	Mineralization	Number	From (feet)	To (feet)
0	70'	overburden	60-70' is rusty br clay with ang frags of purple hematitic volc + white fsp porph					
70	300'	Fine Fsp Porph (dacitic?) Volcanic	Medium grey, massive coarse fsp porph volc, 20-25% white saus, subhedral fsp phenos, avg 3-4 mm, 2-5% large, euhedral hex x-section, tabular, corroded poikiolitic dark grey - pinkish platey phenos (part repl by py) - biotite? Fng grey mod hard - mod soft, perv clay alt'd gmass, with minor weak local silic'd gmass. 2% to locally 10%, 1-2 mm vugs. Minor fng, rounded grey pyritic xenoliths - may be partially resorbed. 106-107' v broken, vuggy alt'd fsp porph with strong rusty fracs.	Fsp saus. Mod perv clay alt'n + local weak silic'd gmass	5% diss py + v minor hairline py vnlts & minor vuggy coarse xtalline py +/- qtz vns	D103	90	100
			@ 110' strong rusty frac @ 45° to C/A with minor coarse py + qtz 118.5 - 120' Fault zone. V broken core with 20% of interval coarse-med brassy to black py + qtz. Crushed with minor gouge. 121.5 - 123.5' Rusty + jarosite coating on fracs			D105	110	120
			131.5 - 140.3' 10% 1-2mm vugs			D106	131.5	139.5

	@ 133' 1.5' coarse xtalline py+qtz vn @450 to C/A.	1			T	T
				D107	139.5	140.3
	@ 139.5' vuggy coarse-fine xtalline brassy to black py + qtz vn @ 10-15° to C/A. V broken with some core loss. Vn may be 6-8" in tw.					
	140.3 - 147.5' Weak-mod perv silic'n + str silic'n in zones			D108	140.3	147.5
	to 3 cm along fracs +/- py. 146.5 - 147.5 Pale yellow, jarosite stn.					
	155 - 157,5' Mod silic'd with 2 0.5" coarse py vns @ 40° to C/A @ 156'. Yellow jarosite stn.	155 - 157' mod silic'd		D109	155	157.5
	174 - 177' Mod silic'd with coarse xtalline py + qtz vns @ 175' (2" @ 10° to C/A) and 176' (1" @ 15° to C/A)	174 - 177' mod silic'd	174 - 177' 10% py - diss + yns & hairline	D110	174	177
	177 - 192' @ 177' fsp phenos decrease slightly to about 15% of rx.		vnlts			
	This is a gradational change with no distinct contact. % of hairline py vnlts increases up to 30/ft stockworking vnlts @		180 -190' 30/ft stkworking	D111	180	190
	180-190'.		hairline py vnlts			
	192 - 212.5 AMYGDALOIDAL DYKE V fine grained, massive, fresh, dark maroon - brown dyke with minor round carb filled amygdules. 1' bleached contacts top and bottom.					
	@ 192' sharp contact @ 40° to C/A @212.5' sharp contact @ 20° to C/A 2" qtz/py bx vn at			D112	212.5	212.7
	dyke contact, at 20° to C/A. Coarse brassy py + fine black py.					
	@ 218.5' 1" vuggy coarse xtalline py + qtz vn @ 40o to C/A.					
İ	245 - 260' mod perv silic'n	245 - <u>260'</u>		D113	245	255
	@ 251', 252' strong slickensides on fracs @ 30° to C/A with no gouge FAULT ZN	mod perv silic'n				
	280 - 300' 10/ft hairline py vnlts, dom @ 45-60°, rx gradually has < phenos, > gmass from 280' down. By 295',					

			rx is fng, pale grey with only minor v small phenos. Chill contact? Py vnlts define weak, indistinct mosaic crack type bx.					
300'	442'	Fine pyroclastic volcanic (Xtal Lapilli tuff)	300 - 306' Massive, well developed grey volc bx / pyroclastic with 40% subround polymictic frags < 0.5 cm to > 3cm of dom fsp porph as above + fine soft, pale cream - mauve aphanitic rx, in grey, mod soft, fsp rich gmass. 306 - 442' Grey, massive fine-med pyroclastic/ xtal lapilli tuff with 10-15% subround lapilli/frags, avg 0.5 cm, rarely to > 5 cm of white clay alt'd fsp porph, maroon hem fsp porph, or soft, white-cream aphanitic rx in fine-med grained granular looking fsp rich, mod harp, clay alt'd gmass. Alt'n makes orig texts of gmass difficult to see. (@355' poss weak bedding @ 80° to C/A (@370' minor pale grey gouge on frac @ 10° to C/A (@372' ½" grey gouge with fine bx frags @75° to C/A.	Mod perv clay alt'n	5% diss py	D114	300	310
			374 - 382' Fault zone - common zones to 6" wide of gouge + bx frags, @45° to C/A within this interval - weak bx & crush.			D115	374	382
			@ 382' Below fault, becomes slightly coarser grained with > # of lapilli and coarser gmass. @ 404' bedding? @ 60° to C/A			D116	411	420
	<u>_</u>		@442' EOH					

96S-9 sample results.xls

Certificate	Sample	from	to	AG	Al	AS	BA	BEI	BI	CA	CDI	col	CR	CU	FE	GA	K	ĹĬ	MG	MN	MO
Number	Number	feet	feet	PPM	· · · · · · · · · · · · · · · · · ·	PPM		PPM	PPM	%	РРМ	РРМ	PPM	PPM	%	PPM	%	PPM	%	PPM	PPM
65-0274-RJ2	D103	90	100	0.2	0.42	1	75	0.1	1	0.26	0.1	11	22	28	5.93	1	0.24	1	0.03	99	11
6S-0274-RJ2	D104	100			0.76	189	99	0.1	1	0.15	0.1	12	38	395	5.38	1	0.4	1	0.05	57	14
6S-0274-RJ2	D105	110	120	0.1	0.45	1	111	0.1	1	0.03	0.1	12	39	18	5.31	1	0.25	1	0.02	14	12
65-0274-RJ2	D106	131.5	139.5	0.2	0.45	1	71	0.1	1	0.02	0.1	7	36	39	4.86	1	0.26	1	0.01	9	10
6S-0274-RJ2	D107	139.5	140.3	7.4	0.25	1.	11	0.1	1	0.01	0.1	16	47	486	15	1	0.18	1	0.01	1	27
6S-0274-RJ2	D108	140.3	147.5	3.9	0.43	1.	77	0.1	1	0.02	0.1	9	35	218	6.65	1	0.25	1	0.01	7	12
6S-0274-RJ2	D109	155	157.5	1	0.5	1	159	0.1	2	0.02	0.1	5	36	132	3.85	1	0.3	1	0.01	8	10
6S-0274-RJ2	D110	174		0.1	0.44	1	9	0.1	1	0.03	0.1	20	51	43	14.01	1	0.24	1	0.01	4	26
65-0274 RJ2	D111	180	190	0.1	0.47	1	123	0.1	1	0.15	0.1	9	20	17	4.18	1	0.26	1	0.02	22	8
6S-0274-RJ2	D112	212.5	212.7	5.5	0.39	1	7	0.1	1	0.28	0.1	33	56	463	15	1	0.19	1	0.08	128	29
6S-0274-RJ2	D113	245	255	0.2	0.57	1	90	0.1	1	0.15	0.1	10	18	39	4.15	1	0.29	1	0.04	37	12
6S-0274-RJ2	D114	300	310	0.2	0.66	26	69	0.1	1	0.28	0.1	15	35	205	5.83	1	0,35	1	0.05	176	14
6S-0274-RJ2	D115	374	382	0.1	0.49	1	77	0,1	1	0.03	0.1	14	26	55	5.48	1	0.27	1	0.03	- 8	13
6S-0274-RJ2	D116	411	420	0.6	0.64	48	77]	0.1	1]	0.22	0.1]	14]	31]	254	<u>5.36</u>	1	0.35	1	0.05	60	13

96S-9 sample results.xls

														M)	ри	V)	ZA	 			
NA	NI	P	PB	SB	SN	SR	TH	TI	U	V	W	ZN	Au-fire	g-Assay	ਖ-Assay	⊌-Assay					
%	PPM	PPM	РРМ	PPM	РРМ	РРМ	PPM	%	PPM	PPM	PPM	PPM		g/tonne	%	%	%				
0.01	13	1080	5	_ 5	6	43	1	0,01		3.7	1	49	125					 			
0.01	16	810	26	14	5	62	1	0,01	1	5.3	1	113						 <u> </u>			
0.01	13	240	15	5	5	96	1	0.01	1	3.8	1	40	30								
0.01	11	100	6	12	5	35	1	0.01	1	3.1	1	45	_25								
0.01	31	10	1	156	18	1	1	0.01	1	5.3	1	583	115					 <u></u>	<u> </u>		
0.01	13	80	1	78	7	30	1	0.01	1	3.2	1]	123	100					 <u> </u>	<u> </u>		
0.01	10	80	8	27	4	55	1	0.01	1	2.6	1	50	86					 			
0.01	25	60	1	7	14	27	1	0.01	1	4.9	1	18									
0.01	10	650	8	6	4	49	1	0.01	1	3.5	1	40	38								
0.01	45	810	20	36	21	111	1	0.01	1	31.6	1[208	887					 l			
0.02	11	980	16	9	4	49	1	0.01	1	4.6	1	50	41					l		1	
0.02	17	1160	12	13	7	13	1	0.01	1	6.8	1	89	54					 			
0.01	17	70	6	15	6	42	1	0.01	1	5.3	1	40	36					 	ļ <u>.</u>	<u> </u>	
0.02	16	960	21	27	6	32	1	0.01	11	5.9	11_	82	34		1	l		 <u></u>	<u> </u>	<u> </u>	

٠,

Hole Silver Queen 96S-10

To test the Frontier '96 EM anomaly G

Northing:

Frontier 96 Grid

8+85 N 7+65 E

Easting:

Azimuth: Dip:

172° -60°

Depth:

560 feet

Drilled Nov 25-27, 1996 Drilled by: JT Thomas
Logged by: L. Caron
Core stored in shop at mine site.

Inte	rval	Rock type	Description				Sample	
From	То			Alteration	Mineralization	Number	From	То
(feet)	(feet)	<u> </u>					(feet)	(feet)
0	150'	overburden					ļ	<u> </u>
150	187'	Coarse Blocky Fsp Porph Volcanic	Generally grey, blocky fsp porph with 20% subhedral blocky fsp phenos, avg 3-4 mm, saus + minor alt'd mafic phenos in an aphanitic, leucocratic, mod soft, mod clay alt'd gmass. 5% diss py + local diss sphal + sphal rims on py & zinc filled fissures/interrupted vnlts to 1" long, 1 mm wide. Common crush & gouge zones. 150 - 176' Fault Zone 150 - 151' strong grey gouge with minor bx clasts 151 - 154' pale grey, v fine grained but granular, soft, leucocratic, perv clay alt'd vole or tuff with rare faint fsp pheno remnants 154 - 160' Strong clay gouge @ 80° to C/A, with minor fine bx clasts + minor coarse fsp porph zones to 2". @159.5' py+sphal in gouge @ contact	Mod - str perv clay alt'n + local clay gonge	5% diss py, minor sphal	D117	150	160
	J		160 - 176' v broken coarse fsp porph with strong perv clay			D118	160	170

			alt'n 160 - 166' rusty + jarositic fracs with 2-3 1" gouge zones @ 167' 4' grey gouge with 30% fine bx frags 169 - 170' v broken, poor recov @ 172' 2" grey gouge + fine gravelly frags @ 80° to C/A 173 - 174.5' v. broken, strong gouge + bx 176 - 187' Massive but mod broken clay alt'd coarse fsp porph, with minor sphal, diss, as rims on coarse diss py + as rare fissure filling/interrupted vns to 1 mm x 1"	176 - 187 minor sphal	D119 D120	170 176	176 187
187'	360'	Coarse Conglom with minor interbedded wacke & mudstone (plus possible xtal tuff)	Polymictic conglomerate with 50% rounded polymictic frags 1mm - 5 cm, avg 0.5 - 1 cm, in soft, grainy, fine grained, paly grey mtrx. Frags are 1) white fsp porph 2) maroon hematitic fsp porph 3) aphanitic soft white rx 4) rare sulfides (py) 5) aphanitic soft black rx Locally mtrx is grey gouge. 198 - 200' fng grey, massive, soft wacke/xtal tuff with rare	187 - 198' 2-5% diss dy + rare small massive py clasts 198 - 200' 5% fine diss py	D121	187	198
			ang soft dark frags to 1 cm. 200 - 210.5' Med-coarse conglomerate with 50%, avg 1 cm frags in grainy fine mtrx. Strong clay (gouge) zones (conglom gmass has gone to gouge). Minor massive fine grained py + clay clasts to 6 cm. 200-202', 204 - 205', 207-210' Fault zones. Strong gouge with bx clasts.	200 - 210.5' Minor diss py + minor massive fng py (+clay) frags	D123	200	210.5
			210.5 - 213.0 Black - dark grey, well bedded, banded mudstone, 0.5 - 1 cm scale banding with bands of soft dark aphanitic mudstone with 5-10% fine diss py, alternating with bands of 25-40% fine grainy brassy py in white soft clay. Occasional flattened py rich "clasts" or replacements,	210.5 - 213.0 Bedded py rich bands to 1 cm.	D124	210.5	213

The source of th

		to 2cm x 4mm. Fine black, hairline wisps, par to bedding (carbon?). 213.0 - 230' Pale-med grey, massive, fine-coarse conglom, generally 25-35% coarse frags, 0.5->8cm, avg 0.5-1cm, in fine, granular gmass with 5-10% saus fsp xtals (sim to 187-198' but > gmass). Several zones to 6" wide of fine wacke (or xtal tuff?) with only 5-10% frags - may be weakly welded. Weak bedding @45-60° to C/A. Fng py rich clasts about 1 every 2ft, avg 2cm, round-subround. @226' common black wisps and irreg partial bands par to bedding in fine wacke or tuff?. V soft. Carbon (or black chlorite?).		213.0 - 230' 2% diss py + minor py rich clasts	D125	213	221
		227.5 - 228' Fine tuff/wacke band with good bedding @45° to C/A and with clasts and irreg beds of massive fng py. 230 - 240' Fault Zone Coarse conglom with strong-intense pale grey gouge. V broken, core got stuck in tube. Water loss @231' 240 - 260' Coarse polymictic conglomerate, soft. Clasts supported with	230 - 240' Intense fault gouge	230 - 240' 2 - 5% py	D127	230	240
•		70-80% clasts 2mm to 5 cm, in fine granular gmass. Sim to 187-198' but with >% frags. Local weak bedding @45° to C/A Minor interbedded banded mudstone. V minor late gouge on fracs parallel to bedding. Rare massive py frags. 260 - 277' Black to dark grey, well bedded (@ 60° to C/A) banded siltmudstone as in 210 - 213.0, but with less py rich bands. Good soft sediment textures, ie. @261.5' and 263', indicating tops right way up. Mm to cm scale banding with dark, fng, soft carbon rich bands and paler gritty soft bands, both with 2% diss py. Minor soft, massive py bands to 0.5 cm. 268.5 - 270' Fault zone. Strong gouge/flt zone with bx'd, alt'd mudstone and siltstone.		Minor diss py 260 - 270' 2% py	D128	260	270

i

271.5 - 272.5' Fault zone. Strong fit gouge + bx @ 60°			D129	270	277
to C/A.					
273 - 274' % of py rich bands increases to 10/ft. Rounded marcasite blobs adj to py bands.		273 - 274' 10/ft 1-5mm py bands + marcasite			
277 - 360' Coarse polymictic conglomerate as above with rare chalcedonic frags + rare massive py frags. Local gougy matrix.		277 - 360' 2% py	D130	285	293
282 - 284' Congl mtrx is dark brown-grey, fng volc with abund fsp xtals (euhedraul). Contacts + weak clast alignment @45° to C/A. 30% ang white fine fsp porph clasts in dark volc mtrx.					
293 - 298' Mod perv silic'd gmass in coarse clast supported conglom.	293 - 298' Mod silic'd gmass	293 - 298' 5% diss py	D131	293	298
298 - 304.5' Fault zone. Strong clay gouge in gmass of conglom. Flt @ 40° to C/A.	304.5 - 315°		D132	298	304.5
304.5 - 315' Mtrx supported coarse conglom with 40-50% large subround, soft, alt'd frags in fine granular, weak silic'd gmass. Minor gouge on fracs @ 30-45° to C/A.	weak silic'd gmass		D133	304.5	315
315 - 317.5' Strong silic'd gmass, 20% ang polymictic frags, 0.5-6 cm, supported in aphanitic hard silic mtrx with	315 - 317.5' strong silic'd gmass		D134	315	317.5
10% fine white fsp xtals. 318 - 333' Fault zone @ 45° to C/A. Conglom mtrx gone to strong clay gouge. 50-50% clasts in gouge mtrx.			D135	317.5	325
@ 342 - 344', 347', 352-352' Fault zones as in 318- 333' @ 45° to C/A.					
353 - 354' Fault zone as above @ 60° to C/A.	<u>354 - 355'</u>				
354 - 355' Mod perv silic'n in gmass + 5% diss py.	mod silic'd gmass	354 - 355' 5% py	D136	354	355

Par 1 į

ļ.

Pinkish-orange mtrx supported bx. Volc bx with ang clasts of white, soft, fine-med fsp porph, 2mm to >5 cm, avg 1cm, in fng pinkish-orange gmass with 10-15% fine fsp xtals. Gougy upper and lower contacts @ 60° to C/A. 371 - 393' Fine packed pebble conglomerate with 80% round-subround, 2-5 mm pebbles of fsp porph + aphanitic black rx + aphanitic grey rx in fng gmass with minor fsp + mafic xtals. 5% diss py. Locally get flows of v fine volc with fine fsp xtals with py flooding mtrx interbedded in this unit ie. 385', 393-410'. @385' 3" fine pyritic, massive, aphanitic volc bed 385 - 393' v soft, str clay alt'n in pebble conglom, with sharp upper and lower contacts, with massive fng pyritic volc above and below @ 70° to C/A. Minor gouge on fracs. Weak fl1 zone. 393 - 410' Massive, fng volc with 20% fine (.5 mm) fsp + rare larger fsp, in aphanitic gmass. Soft, minor gouge on fracs, rare clasts.	385 - 393' str clay alt'n	371 - 393' 5% diss py 393 - 410' 2-5% fine diss py	D137	400	405
405 - 410' Paler colour, volc is mixed with minor conglom intervals. Weak banding/bedding @60° to C/A. 410 - 413.5' Soft, bx'd and locally gougy close packed conglom as above with 2% diss py. @ 413.5' sharp contact @70° to C/A.					
413.5 - 465.5' Fine pyroclastic - xtal lapilli tuff with 10% 0.5 cm, subangangular clasts in fine grained gmass with 30-40% fsp xtals. Locally becomes frag rich, resembles pebble conglom ic.424-430'.		413.5 - 465.5' 5% fine diss py			

- -- ---

- •

- -

430 - 436' intensely bx'd with gouge.			D138	450	459
465.5 - 487' AMYGDALOIDAL DYKE Massive, fing to aphanitic fresh dyke. Pale grey-buff, amygdaloidal, bleached aphanitic margins with massive, slightly coarser xtalline maroon and locally bleached core. Sharp contacts @ 40° to C/A.					
487 - 488' Massive fine granular soft fsp rich tuff? With 10% fine frags to 1 cm. 5% diss py.		487 - 488' 5% diss py			
488 - 492' AMYGDALOIDAL DYKE Pale grey massive amygdaloidal dyke as in 465.5 - 487' with sharp upper contact @40° to C/A and sharp lower contact @ 10-15° to C/A.					
492 - 501' Med grey, massive fine granular soft fsp rich tuff? With 10% fine frags to 1 cm, 5% diss py. As in 486-488'.		492 - 560' 5% diss py	D139	492	501
501 - 514' Grey - slightly rusty coloured bx'd tuff? Or conglom?. Later tectonic mosaic bx with minor gonge between clasts.			D140	501	510
514 - 525' Typical massive coarse polymictic mtrx supported conglom with 50-60% rounded frags, avg 1 cm, in grainy, sandy gmass with 5% diss py.			D141	520	525
525 - 558' Pyroclastic bx with 20-60% ang frags avg 1 cm, of dom fine fsp porph and aphanitic white volc in grey fsp rich gmass with 5% diss py.					
530 - 540' Fault zone. Tectonic bx'd pyroclastic bx with gougy mtrx between clasts.	-		D142	535	540
558 - 560' Typical massive grey-green med fsp porph volc with 25% 3mm, blocky subhedral fsp in fng gmass. Soft with mod-str					

- - - .

	perv clay.			
	@ 558' sharp contact @ 80° to C/A.			ļ
	@ 560, EOH			

.

_ - -

Garage

Certificate	Sample	From	To	AG	AL.	AS	ВА	BE	BI	CA	CD	CO	CR	CU	FE	GA.	K	LI	MG	MN	MO
Number	Number	feet	feet	PPM	%	РРМ	PPM	РРМ	РРМ	%	PPM	PPM	PPM	PPM	%	PPM	%	PPM	%	PPM	PPM
6S-0278-RJ1	D117	150	160	10.4	0.52	471	84	0.1	25	0.2	0.1	11	20	1036	4,73	1	0.27	1	0.04	89	9
6S-0278-RJ1	D118	160	170	4.2	0.46	131	54	0.1	11	0.42	0.1	9	11	149	3,75	1	0.25	1	0.09	7020	9
6S-0278-RJ1	D119	170	176	0.9			59	0.1	1	1.85	0.1	10	13	25	3.45	1	0.27	4	0.57	10000	12
65-0278-RJ1	D120	176	187	1.8		216	61	0.2	1	3.01	20.1	9	8	37	2,85		0.19	5	1.02	9578	9
6S-0278-RJ1	D121	187	198	3.2	0.54	140	96	0.1	1[2.37	0.1	11	18	26	4.26	1	0.25	3	0.75	5633	14
6S-0278-RJ1	D122	198	200	4.1	0.52	223	64	0.1	1	1.47	83.4	9	8	179	3 68	1	0.27	2	0.39	3748	12
6S-0278-RJ1	D123	200	210.5	2.1	0.52	150	101	0.1	1	2.34	0.1	11	13	16	4.9	1	0.25	3	0.7	4547	17
6\$-0278-RJ1	D124	210.5	213	2	0.42	176	80	0.1	1	2.02	0.1	10	6	27	5.3	1	0.22	1	0.6	2638	19
6S-0278-RJ1	D125	213	221	2.7	0.55	102	94	0.1	1	2.17	0.1	10	19	11	5.03	1	0.28	1	0.78	2601	12
6S-0278-RJ1	D126	221	230	7.2	0.41	118	103	0.1	1	2.48	0.1	9	10	11	4.16	1	0.21	2	0.7	2606	10
6S-0278-RJ1	D127	230	240	3.8	0.4	107	102	0.1	1	3.8	0.1	11	13	15	4.2	1	0.19	3	1.06	4731	11
6S-0278-RJ1	D128	260	270	3.5	0.36	186	88	0.1	11	3.26	0.1	- 8	5	25	3,41	1	0.18	3	0.83	5597	17
6S-0278-RJ1	D129	270	277	8.0	0.61	149	98	0.1		3.35	0.1	9	14	21	3.96	1	0.27	4	0.92	4750	23
6S-0278-RJ1	D130	285	293	1.5	0.49	111	111	0.1	1	3.25	0.1	9	10	12	3,59	1]	0.23	3	0.9	4758	10
6S-0278-RJ1	D131	293	298	0.9	0.46	86	71	0.1	1	2.75	0.1	11	17	16	3,49	1	0.21	2	0.85	5024	13
6S-0278-RJ1	D132	298	304.5	0.6	0.54	71	75	0.1	1	4.23	0.1	13	12	19	4,73	1	0.2	4	1.43	10000	14
6S-0278-RJ1	D133	304.5	315	1.3	0.68	44	101	0.1	1	2.06	0.1	13	23	77	4.98	1	0.3	1	0.62	8577	14
6S-0278-RJ1	D134	315	317.5	1.2	0.51	52	85	0.1	1	2.96	0.1	13	12	26	3.93	1	0.26	1	0.86	10000	12
6S-0278-RJ1	D135	317.5	325	1]	0.51	22	92	0.1	1	2.52	0.1	15	23	38	4.91		0.24	8	0.73	10000	13
6S-0278-RJ1	D136	354	355	1]	0.41	55	59	0.1	1	2.73	0.1	15	9	8	4.3		0.19	2	0.85	8774	12
6S-0278-RJ1	D137	400	405	0.8	0.53	150	117	0.1	1	2.64	0.1	9	17	7	3.34		0.28	2	0.93	5270	14
6S-0278-RJ1	D138	450	459	1.9	0.33	139	106	0.1		2.9	0.1	9	11	30	3.81	!	0.18	2	0.86	7861	15
6S-0278-RJ1	D139	492	501	3.4	0.45	29	88	0.1		1.96	0.1	11	21	26	4,53	1	0.23	2	0.52	5182	16
6S-0278-RJ1	D140	501	510	1.8	0.4	49	82	0.1		2.24	0.1	11	9	23	4.06		0.24		0.6	8460	41
6S-0278-RJ2	D141	520	525	0.1	0.6	1]	112	0.1	1	1.95	0.1	10	19	14	4,21		0.31	2	0.54	8425	15
6S-0278-RJ2	D142	535	540	6.6	0.58	1	76	0.1	<u> </u>	0.84	0.1	11	16	42	4.87	1	0.31	2	0.19	7507	19

96S-10 sample résults.xls

NA	NII	Pl	PB	SB	SN	SR	TH	TI	Ü	V	W	ZN		ท์-Assay
96	PPM	PPM	PPM	PPM	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	PPB	%
0.02	13	640	608	50	5	43	_ 1	0.01	1	5.2	3	2205	53	
0.02	28	1570	836	13	5	18	1	0,01	1	6,9	8	4049	20	
0.02	41	1480	714	4	6	23	1	0.01	1	10.9	4	2055	19	
0.02	38	1370	1023	1	6	11	1	0,01	1	13	5	3433	11	
0.02	29	1390	394	1	7	9	1	0.01	1	9.3	3	2423	14	
0.02	21	1420	1343	7	5	12	1	0.01	1	7.6	29	10000	16	1.32
0.02	27	1380	390	2	7	14	1	0,01	1	9.1	3	2577	9	
0.02	22	1380	364	1	7	28		0.01	1	6	1	1332	8	
0.02	21	1220	328	1	7	23	1	0.01	1	7.3	1	342	7	
0.02	19	1240	571	1	5	36		0,01	1	6.7	1	982	9	
0.03	25	1630	366	1	7	48	1	0.01	1	11.8	3	2828	6	
0.03	27	1360	849	4	5	59	1	0.01	1	5.9	6	4000	21	
0.03	26	1450	291	1	6	70	1	0.01	1	10.2	1	1453	24	
0.03	26	1430	644	3	5	47	1	0.01	1	8.4	1	376	8	
0.04	26	1280	412	1	5	30	1	0.01	1	9.5	1	251	5	
0.04	44	1620	947	1	8	32	1	0.01	1	12.4	1	1206	3	
0.04	37	1710	669	10	8	37	1	0.01	1	12.4	4	2526	11	
0.03	46	1840	124	2	7	27	1}	0.01	1	13.2	2	1517	6	
0.04	43	1840	248	6	8	36	1	0.01	1	13.2	3	1890	11	
0.03	37	1600	390	1	7	18	1	0.01	1	9.2	1	511	9	
0.02	26	1350	267	1]	5	24	1	0.01	1	6.8	1	188	6	
0.02	34	1260	842	3	6	33	1	0,01	1]	6.8	3	2341	8	
0.02	31	1250	294	7	7	19	1	0,01	1	8.4	4	2729	5	
0.02	35	1580	390	5	- 6	23	1	0.01	1]	7.7	4	2400	10	
0.02	33	1680	375	4	6	20	1	0,01	1	7.2	1	478	12	
0.02	28	1750	3057	15	7	28	1	0,01	1]	6.7	10	5546	14	0,54

APPENDIX 2

ANALYTICAL RESULTS

COMP: NEW NADINA EXPLORATION LTD

MIN-EN LABS - ICP REPORT

PROJ: SILVER QUEEN ATTN: LINDA CARON

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 6S-0270-RJ1+2 DATE: 96/11/28

SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	B1 PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA K PPM %	L I PPM		MN PPM			NI MPM	P PP M	PB PPM		SN PPM	SR PPM P		TI PPI	J V M PPM	W PPM	ZN PPM	Au-fire PPB
D001 D002 D003 D004 D005	.1 .1 .1	.24 .32 .25 .25	1 1 264 1	215 74 185 211 297	.1	1 1	4.86 2.71 3.82 2.99 4.53	.1 .1 .1 .1	4 6 6 4 3	6 5 15 14 9	12 8 5	2.25 2.58 2.63 2.33 1.98	1 .19 1 .19 1 .19 1 .20 1 .18	1 2 1 1 2	.84 .46 .60 .55 .28	1434 1058 1500 1236 1803	6 7 9 6 4	.08 .06 .05	11 10	1020 1090 1110 1190 1240	1 34 132 4 9	1 1 1 1	4 4 4	164 113 123 112 159	1 .	01 01 01 01 01	1 11.3 1 7.0 1 6.1 1 8.4 1 12.4		61 169 324 141 54	3 1 3 2 4
D006 D007 D008 D009 D010	2.3 3.8 .1 .4 .1	.37 .31 .36 .28 .29	1 1 1	179 154 157 62 72	.1 .1 .1 .1	1 2	3.31 2.98 3.04 1.20 .96	.1 .1 .1 .1	8 11 9 12 11	11 11 9 13 13	17 3 11 3 14 4	3.16 3.41 4.54 2.75 3.31	1 .22 1 .20 1 .22 1 .19 1 .21	2 2 1 1	.22 .22 .21 .19 .23	2138 2333 2136 9021 >10000	8 8 8 11 16	.05 .05 .05 .04	15 14 31	1180 1360 1170 1360 1200	107 138 57 777 3119	1 1 1 3 17	5	100 90 106 57 38	1.	01 1 01 1 01 1 01 1	10.8 10.6 7.9 8.3 10.8	1 1 1 2 3	398 497 227 2335 1601	8 3 4 7 11
D011 D012 D013 D014 D015	.8 .1 >200.0 19.9 3.6	.26 .24 .17 .24 .24	1 1 362 1 1	71 69 50 33 40	.1 .1 .1 .1	1 2 37 1 1	.72 .61 .21 > .49 .83	.1 100.0 .1 .1	12 12 10 12 12	13 15 21 15 17	15 6 1824 5 139 6	.32 .01 .67 .86 .98	1 .18 1 .18 1 .12 1 .19 1 .17	1 1 1 1	.20 .02 .12	>10000 >10000 1048 >10000 >10000	14 19 28 21 18	.04 .04 .02 .03 .04	94 20 81		450 428 7619 1127 832	3 10 219 43 15	9 12 12 13 11	30 31 218 31 52	1 .	01 1 01 1 01 1 01 1	6.8 8.9 1.2 6.4 6.5	1 4 237 6 5	1402 2144 >10000 3413 2869	14 10 17 5 12
D016 D017 D018 D019 D020	1.2 .1 9.2 18.8 20.8	.33 .28 .30 .30 .32	1 1 1 1	66 80 52 78 66	.1 .1 .1 .1	1 1 1 2 1	.62 .60 .50 .55	.1 .1 .1 .1	11 10 11 12 12	15 19 13 18 14	12 4 18 4 55 5 78 6	.75 .30 .05	1 .20 1 .19 1 .24 1 .26 1 .23	1 1 1 1	.06 .06 .09	>10000 4146 9053 >10000 >10000	11 12 15	.04 .03 .03 .03	18 31 74	1470 1700 1550 1610 1660	562 85 149 224 211	16 1 4 35 35	9 7 8 11 10	46 36 35 18 23	1 .4	01 1 01 1 01 1 01 1	4.7 2.5 4.6 7.5 5.5	1 1 1 5 6	1026 474 1135 2469 3949	5 14 13 17 37
D021 D022 D023 D024 D025	5.0 6.1 .3 2.7 2.4	.36 .25 .37 .40 .38	1 1 1 1	57 76 56 71 45	.1	1	.49 .44 .52 .50 .47	.1 .1 .1 .1	12 11 12 12 11	17 12 17 12 8	17 6 34 5 61 4	.07 .68 .58 .82	1 .24 1 .20 1 .27 1 .25 1 .25	1 1 1 1	.05 .05 .08 .04 .08	2989 3658 >10000 689 >10000	13 15 12	.03 .02 .03 .02 .03	20 41 13	1650 1510 1780 1910 1460	165 216 127 176 159	7 6 4 5 7	8 10 7	36 8 12 94 61) i	3.8 2.8 5.4 3.1 6.7	3 15 1 5 2	3437 8857 1805 4656 1654	42 46 18 25 12
D026 D027 D028 D029 D030	72.9 49.9 4.3 3.1 .3	.45 .47 .36 .49	1 1 1	54 69 19 54 78	.1	1 1	.46 .55 .43 .08 .63	.1 .1 .1 .1	13 10 13 11 10	16 21 17 13 14	176 5 38 9 39 5 16 4	.77 .01 .90	1 .30 1 .29 1 .23 1 .31 1 .32	1	.06 .07 .11 .23 .09	3324 1882 9624 6503 7615	20 22 14 12	.02 .02 .03 .03	17 7 39 1 27 1	1470	270 841 458 217 140	63 69 14 6	14 8	5 02 23 37 38	1 .0 1 .0 1 .0 1 .0	01 1 01 1 01 1	5.3 5.0 4.6 8.6 5.5	13 12 1 4 1	8254 7435 2988 3485 1776	34 26 15 40 61
D031 D032 D033 D034 D035	4.9 69.5 5.8 .1	.46 .43 .38 .38 .35	1 1 1 1	77 63 72 94 108	.1	1		.1 .1 .1	8 11 10 9 8	12 16 6 15 10	62 5 73 4	.71	1 .35 1 .29 1 .21 1 .24 1 .24	1 2 1	.08 2 .09 .19 .68 .66	>10000 7846 4015 8581 8143	13 15 13	.03 .03 .02	33 1 22 1 33 1	450 500 290	223 167 423 398 290	17 95 10 1	9 8 8	15 21 84 23 28	1 .0 1 .0 1 .0 1 .0	1 1 1 1 1 1 1	4.6 5.2 5.9 7.1 7.5	2 1 1 1	2022 1754 1834 1638 1297	28 75 27 30 21
D036 D037 D038 D039 D040	2.0 5.0 5.1 3.1	.45 .38 .39 .29 .48	1 1 1 1	83 72 77 75 61	.1 .1 .1 .1	1 2. 1 1. 1 1.	.35 .19 .01 .22 .82	.1 .1 .1 .1	9 10 10 9	14 15 16 13 17	61 5. 327 5.	.86 .73	1 .30 1 .26 1 .26 1 .22 1 .31	1 .	.35 .46 .19 .23 .14	9460 7610 1943 7168 3262	16 . 16 . 17 .	02 02 02	29 1 17 1	300 260 1 330	256 640 030 909 344	4 6 7 5 5	8 8 8	14 19 7 8	1 .0 1 .0 1 .0 1 .0	1 1 1 1 1 1	9.7 7.1 6.2 9.0 5.1	1 1 12 7 4	714 1745 7381 4445 3632	13 21 39 33 20
D041 D042 D043 D044 D045	.8 .4 .1 .1	.36 .40 .30 .42 .37	1 1 1 1 1	75 62 52 86 70	.1 .1 .1 .1	1 .	.73 .42 .22 .29 .39	.1 .1 .1 .1	10 11 10 8 10	13 14 11 13 10	94 5. 97 6. 23 6. 39 5. 150 5.	20 16	1 .21 1 .19 1 .20 1 .26 1 .24	3 .	. 14 . 07 . 02 . 03 . 06	261 45	22 . 14 . 11 .		14 12 10 1	230 920 890 130 210	33 49 54 48 6	1 1 1 2 4	B 6	16 67 43 16	1 .0 1 .0 1 .0 1 .0	1 1 1 1 1 1	7.1 4.9 1.2 1.7 1.4	1 1 1 1	331 328 53 251 147	25 32 24 29 32
}																														

COMP: NEW NADINA EXPLORATION LTD

PROJ: SILVER QUEEN

MIN-EN LABS --- ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL: (604)327-3436 FAX: (604)327-3423

FILE NO: 6S-0272-RJ1+2

DATE: 96/12/10

TN: Linda (Caron										TEL:	(604).	327-3	430	FAX: (604)32/	-3443													
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	B1 PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM		GA PPM	K X P	PM 3	PPM	PPM	%	NI PPM I			SB PPM	PPM	SR PPM	PPM	% PF		V W	PPM	Au-fir PP
0046 0047 0048 0049 0050	.8 1.2 3.2 50.0 1.4	.33 .36 .57 .33 .43	21 1 1 46 1	114 67 54 47 50	.1 .1 .1	1 4 10	2.25 94 1.09 1.01 1.23	.1 .1 .1 >100.0	10 12 12 14 13	14 9 14 15 13	15 22 100 17	3.09 4.54 4.41 4.60 4.83	1 1 1	.19 .21 .32 .21 .25	1 .16 1 .31	7710 >10000 >10000 >10000	12 17 23 14	.03 .04	42 1	600 390 550 > 870	369 1273 10000 375	1 5 14 37 6	9 6	40 49 106 71 58	1 1 1	.01 .01	1 10.	.9 1 .8 10 .5 100 .4 1	354 1266 3546 >10000 1154	1
0051 0052 0053 0054 0055	1.8 1.6 3.4 1.7	.33 .37 .32 .47	26 1 1 1	60 60 51 44 22	.1	1 1 1 1	1.56 .77 .82 1.54 .71	.1 .1 .1 .1	13 11 13 14 14	9 12 8 15 11	18 12 16	4.08 4.31 4.49 5.43 5.51	1 1 1	.19 .20 .17 .24 .18	1 .35 1 .11 1 .12 2 .39 1 .11	2906 2335 4925 2100		.04 .05 .05	18 18 18 17 16 19 28 16 18 17	790 960 640 730	178 317 215 125 170	3 5 3 4	4 5 7 6	70 67 81 57 66	1 1 1		1 6. 1 5. 1 11. 1 5.	1 1 1 1 5 1 7 1	594 1229 529 325 754	
0056 0057 0058 0059 0060	3.1 .8 1.0 .8 7.5	.47 .39 .47 .41 .49	1 41 4 27 207	55 43 44 64 57	.1 .1 .1 .1	1 1 1	1.06 1.68 1.60 2.04 .86	.1 .1 .1 .1	14 13 14 12 12	15 12 16 12 10	16 13 10 98	5.30 4.63 4.71 4.16 4.00	1 1 1 i	.24 .21 .24 .22 .26	1 .18 1 .36 1 .28 1 .39 1 .19	5394 5316 >10000	12 11 13 10 43	.05 .06	25 19 23 17 28 19 26 18 68 18	840 870	189 203 193 239 1851	5 4 5 4 24	6	55 62 63 74 103	1		1 16. 1 7. 1 8. 1 9. 4 8.	8 1 3 1 0 1 9 18	833 684 1205 712 7184	7
061 062 063 064 065	3.1	.43 .48 .41 .48	67 33 8 1	46 26 53 50 44	.1 .1 .1 .1	1 1 1	1.90 2.12 1.40 .43 1.02	.1 .1 .1 .1	11 12 13 11 10	10 14 8 9 6	17 17 15	3.73 4.52 3.82 4.18 3.55	1 1	.26 .28 .24 .28 .23	1 .29 1 .45 1 .30 1 .04 1 .26	5809 7167 3576 104 2337	13 9 10 9	.04 .04	25 18 34 16 20 17 10 14 15 14	740 410 440	99 323 471 145 105	5 4 3 1	5 6 5 4 4	50 37 35 29 23	1 .	01	1 7. 1 8. 1 6. 1 5.	0 1 9 1 7 1 3 1	147 700 1211 207 190 286	3 3 1 2
0066 0067 0068 0069 0070	2.9 3.9 3.1 4.7 2.2	.51 .35 .48 .34 .52	1 47 23 1	43 44 43 43 56	.1 .1 .1 .1	1 1	1.10 1.43 1.15 .38 1.02	.1 .1 .1	10 10 10 8 13	11 6 12 6 16	9 15 17 13	3.64 3.54 3.46 3.32 4.59	1 1	.29 .24 .29 .21 .32	1 .28 1 .38 1 .32 1 .05 1 .23	2458 4024 3524 542 3782	8 9 8 12	.03 .03	17 13 22 16 19 14 9 12 24 17	610 430 260 770	100 205 243 280 216	1 1 4	5 4 4 5	27 22 23 16 25	1 . 1 . 1 .	.01 .01 .01 .01	1 6. 1 6. 1 6. 1 4. 1 6.	1 1 7 1 0 1 8 1	256 336 20 1530	1 1 1
0071 0072	2.5 2.1	.35 .65	1 84	49 32	:1	1	.37 .66	:1	12 3	12 34	15 14	4.63 .91	1	.24 .36	1 .04 5 .20	1577 766	11	.03 .04	15 16 7	60	422 68	3	5 1	19 24	2 .	01 01	1 4.		1689 56	2 1
									·																					
100																,							•							
		,					-																							
		··				<u>-</u>				-			-	<u></u> -!																
															<u> </u>				• "						. 1.77					

COMP: NEW NADINA EXPLORATIONS LTD

PROJ: SILVER QUEEN

ATTN: Linda Caron

MIN-EN LABS — ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 6S-0274-RJ1+2 DATE: 96/12/10

SAMPLE	AG AL	AS BA BE BI	CA CD CO CR % PPM PPM PPM			C LI M		MO NA PM %	NI I		SB PPM	SN SI PPM PPI		TI U % PPM	V W	PPM	Au-fire PPB
NUMBER D073 D074 D075 D076	5.0 .64 >200.0 .33 9.3 .48 58.6 .36 4.2 .39	129 65 .1 1 3591 20 .1 314 359 53 .1 19 1697 43 .1 85 119 49 .1 1	.35 .1 9 28 .76 >100.0 8 71 >1	122 4.47 0000 3.47 1161 4.46 4649 6.30 358 4.17	3 .19 1 .32 1 .24	1.0	2 210 0 7092 6 4925	10 .01 21 .01 10 .01 15 .01 8 .01	26 1300 19 4250 31 1290 31 1030 17 1220	0 >10000 0 1155 0 3564	101 263 11	5 6 6 5! 5 24 5 24	1 1 4 1 1 1	.01 1 .01 1 .01 1 .01 1	6.9 4 7.4 26 6.2 1	1583	290 2785 117 484 93
D077 D078 D079 D080 D081	31.1 .38 2.7 .55 1.3 .52 13.9 .49 >200.0 .16	894 46 .1 64 265 105 .1 5	.32 .1 13 15 .91 .1 10 15 1.20 .1 10 13 .31 .1 9 18	2527 5.59 509 3.89 25 4.01 1922 4.04 0000 >15.00	1 .27	2.8 7 4.4 7 1.0	0 6944 0 2656 3 100	11 .01 10 .01 8 .01 7 .01 32 .01	24 1360 31 1420 19 1270 12 1230 36 2600	0 309 0 33 0 222 0 >10000	120 1 2 87 4725	7 6 5 2 5 10 4 33 21 2	1 1 1 1 1 1 1 1	.01 1 .01 1 .01 1 .01 1		4575 2975 395 1254 >10000	227 51 66 61 534
D082 D083 D084 D085 D086	149.0 .43 40.4 .20 1.7 .53 .3 .38 11.1 .53	6007 28 .1 318	43 42.3 12 40 >1	0000 9.21 3691 >15.00 208 4.63 124 8.85 560 5.89	1 .17 1 .34 1 .25	1.2	2 1004 2 47 1 41	18 .01 42 .01 9 .01 13 .01 10 .01	23 1440 36 1530 12 1230 17 1040 13 1090	3203 100 89 3 112	273 16 8 79	11 35 23 5 7 3	1 1 3 1 1 1 3 1	.01 1 .01 1 .01 1 .01 1	8.8 49 4.1 1 3.4 1 4.7 1	>10000 >10000 348 148 357	384 694 29 34 131
D087 D088 D089 D090 D091 D092	4.6 .35 .5 .74 1.7 .28 .3 .43 2.9 .33	1 29 .1 62 37 101 .4 1 1 8 1 1 1 27 .1 1	.16 .1 11 26 .64 .1 1 27 .18 .1 12 30 .24 .1 11 20 1.44 .1 14 21	336 6.21 25 .85 347 12.10 54 7.05 1173 10.61	1 .24	2.1	4 1147 1 108 1 38	17 .01 6 .01 40 .01 12 .01 16 .01	13 130 6 220 24 490 16 860 22 940	29 53 12 50	51 5 19 10 46	7 20 1 133 13 13 8 3 11 52	11 1 3 1 2 1	.01 1 .01 4 .01 1 .01 1	3.4 1 1.4 1 3.5 1 3.9 1 4.9 1	112 31 72 36 158	135 8 101 23 97
0093 0094 0095 0096 0097	.1 .54 3.0 .26 .3 .53 .1 .36 .3 .40	1 31 -1 1 1 16 -1 1 1 26 -1 1 1 30 -1 1 1 53 -1 1	.29 .1 13 23 .47 .1 19 36 .28 .1 11 30 .35 .1 11 20 .70 .1 12 23	18 7.33 82 >15.00 13 9.60 13 8.25 13 8.94	1 .19 1 .33 1 .24	1 .0 3 1 .0 4 1 .0	1 50 1 2 39 2 51	11 .01 20 .01 14 .01 12 .01 13 .01	16 750 26 1010 20 920 18 900 18 1090	228 3 43 3 29	5 7 4 4 5	8 6 17 10 9 1	1 1	.01 1 .01 1 .01 1 .01 1	4.5 1 5.0 1 4.8 1 3.9 1 4.6 1	143 553 143 73 97	24 92 33 27 40
D098 D099 D100 D103	.1 .61 .6 .39 .6 .69 .2 .42	1 77 .1 1 1 72 .1 1 1 103 .1 1 1 75 .1 1 189 99 .1 1	.58 .1 13 36 .57 .1 13 26 .80 .1 11 37 .26 .1 11 22 .15 .1 12 38	18 8.55 17 10.48 12 6.56 28 5.93 395 5.38	1 .22 1 .36 1 .22	1 .0 5 1 .1 1 .0	92 0 302 3 99	15 .01 15 .01 12 .01 11 .01 14 .01	19 1060 21 1070 17 1260 13 1080 16 810	58 65 65 65 65 65 65	5 6 6 5 14	9 8 10 5 7 11 6 43 5 62	1 1	.01 1 .01 1 .01 1 .01 1	5.6 1 4.7 1 6.5 1 3.7 1 5.3 1	278 81 102 49 113	60 28 39 125 74
D104 D105 D106 D107 D108	.1 .45 .2 .45 7.4 .25 3.9 .43 1.0 .50	1 111 .1 1 1 71 .1 1 1 11 .1 1 1 11 .1 1 1 77 .1 1 1 159 .1 2	.03 .1 12 39 .02 .1 7 36 .01 .1 16 47 .02 .1 9 35 .02 .1 5 36	18 5.31 39 4.86 486 >15.00 218 6.65 132 3.85	1 .26 1 .18 1 .25	1 .0 3 1 .0 5 1 .0	1 9 1 1 1 7	12 .01 10 .01 27 .01 12 .01 10 .01	13 240 11 100 31 10 13 80 10 80	6 0 1 0 1	5 12 156 78 27	5 96 5 35 18 1 7 30 4 55	1 1 1 1 1 1	.01 1 .01 1 .01 1 .01 1	3.8 1 3.1 1 5.3 1 3.2 1 2.6 1	40 45 583 123 50	30 25 115 100 86
D110 D111 D112 D113	.1 .44 .1 .47 5.5 .39 .2 .57 .2 .66	1 9 .1 1 1 123 .1 1 1 7 .1 1 1 90 .1 1 26 69 .1 1	.03 .1 20 51 .15 .1 9 20 .28 .1 33 56 .15 .1 10 18 .28 .1 15 35	43 14.01 17 4.18 463 >15.00 39 4.15 205 5.83	1 .24 1 .26 1 .19	1 .0 7 1 .0 7 1 .0	2 22 8 128 1 4 37	26 .01 8 .01 29 .01 12 .02 14 .02	25 60 10 650 45 810 11 980 17 1160	8 20 16	7 6 36 9 13	14 27 4 49 21 111 4 49 7 13) 1 1 1 1	.01 1 .01 1	4.9 1 3.5 1 31.6 1 4.6 1 6.8 1	18 40 208 50 89	49 38 887 41 54
D114 D115 D116	.1 .49	1 77 .1 1 48 77 .1 1	.03 .1 14 26 .22 .1 14 31	55 5.48 254 5.36			3 8 5 60	13 ,01 13 ,02	17 70 16 960		15 27	6 42 6 32		.01 1 .01 1	5.3 1 5.9 1	40 82	36 34

COMP: NEW NADINA EXPL LTD

PROJ: SILVER QUEEN

ATTN: LINDA CARON

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 6S-0278-RJ1+2 DATE: 96/12/12

SAMPLE NUMBER	AG PPM	AL %	AS PPH	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K X	L1 PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SN PPM	SR PPM	TH PPM	TI % F	U	V PPM	W PPM	ZN PPM	Au-fire PPB
D117 D118 D119 D120 D121	10.4 4.2 .9 1.8 3.2	.52 .46 .66 .49 .54	471 131 141 216 140	84 54 59 61 96	.1		.20 .42 .85 .01 .37	.1 .1 .1 20.1	11 9 10 9 11	20 11 13 8 18	149 3 25 3	.73 .75 .45 .85 .26	1 1 1	.27 .25 .27 .19 .25	1 1 4 5 3	.04 .09 .57 1.02 .75	89 7020 >10000 9578 5633	9 12 9 14	.02 .02 .02 .02 .02	13 28 41 38 29	640 1570 1480 1370 1390	608 836 714 1023 394	50 13 4 1	5 5 6 6 7	43 18 23 11 9	1 1 1	.01 .01 .01 .01	1 1	5.2 6.9 0.9 3.0 9.3	3 8 4 5 3	2205 4049 2055 3433 2423	53 20 19 11 14
D122 D123 D124 D125 D126	4.1 2.1 2.0 2.7 7.2	.52 .52 .42 .55	223 150 176 102 118	64 101 80 94 103	.1.1.1.1	1 2 1 2 1 2	.47 8 .34 .02 .17 .48	33.4 .1 .1 .1 .1	9 11 10 10 9	8 13 6 19 10	11 5		1 1 1 1	.27 .25 .22 .28 .21	2 3 1 1 2	.39 .70 .60 .78 .70	3748 4547 2638 2601 2606		.02 .02 .02 .20	27 22 21	1420 1380 1380 1220 1240	1343 390 364 328 571	7 2 1 1	5 7 7 7 5	12 14 28 23 36	1	.01 .01 .01 .01	1	7.6 9.1 6.0 7.3 6.7	29 : 3 1 1	10000 2577 1332 342 982	16 9 8 7 9
D127 D128 D129 D130 D131	3.8 3.5 .8 1.5	.40 .36 .61 .49 .46	107 186 149 111 86	102 88 98 111 71	.1 .1 .1 .1	1 3. 1 3. 1 3.	. 80 . 26 . 35 . 25 . 75	.1 .1 .1 .1	11 8 9 9	13 5 14 10 17	25 3. 21 3.	.96 .59	1 1 1 1 1	.19 .18 .27 .23 .21	かめなかな	1.06 .83 .92 .90 .85	4731 5597 4750 4758 5024	17 23 10	.03 .03 .03 .03	27 26	1630 1360 1450 1430 1280	366 849 291 644 412	1 4 1 3	7 5 6 5 5	48 59 70 47 30	1	.01 .01 .01 .01	1 1 1 1	1.8 5.9 0.2 8.4 9.5	3 6 1 1	2828 4000 1453 376 251	6 21 24 8 5
D132 D133 D134 D135 D136	.6 1.3 1.2 1.0 1.0	.54 .68 .51 .51 .41	71 44 52 22 55	75 101 85 92 59	.1	1 2. 1 2. 1 2.	23 .06 .96 .52 .73	.1 .1 .1 .1	13 13 13 15 15	12 23 12 23 9		.98 .93 .91	1 1 1 1	.20 .30 .26 .24 .19	4 1 1 8 2	1.43 .62 .86 .73 .85	10000 8577 10000 10000 8774	12 13	.04 .04 .03 .04 .03	37 46 43	1620 1710 1840 1840 1600	947 669 124 248 390	1 10 2 6 1	8 8 7 8 7	32 37 27 36 18	1 1	.01 .01 .01 .01	1 1 1 1 1 1	2.4 2.4 3.2 3.2 9.2	1 4 2 3 1	1206 2526 1517 1890 511	3 11 6 11 9
D137 D138 D139 D140 D141	.8 1.9 3.4 1.8 .1	.53 .33 .45 .40 .60	150 139 29 49	117 106 88 82 112	.1	1 2. 1 1. 1 2.	.64 .90 .96 .24 .95	.1	9 9 11 13 10	17 11 21 9 19	23 4.		1 1 1	.28 .18 .23 .24 .31	22212	.93 .86 .52 .60 .54	5270 7861 5182 8460 8425	15 16	.02 .02 .02 .02 .02	34 1 31 1 35 1	1350 1260 1250 1580 1680	267 842 294 390 375	1 7 5 4	56766	24 33 19 23 20	1 :	01 01 01 01 01	1 1	6.8 6.8 8.4 7.7 7.2	1 3 4 4 1	188 2341 2729 2400 478	6 8 5 10 12
D142	6.6	.58	1	76	.1	1 .	84	. 1	11	16	42 4.	87	1	.31	2	.19	7507	19 .	.02	28 1	750 3	057	15	7	28	1.	01	1 6	5.7	10	5546	14

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

6S-0272-RA1

Date: DEC-11-96

Company:

NEW NADINA EXPLORATION LTD

SILVER QUEEN

Project: Attn:

Linda Caron

We hereby certify the following Assay of 1 ROCK samples submitted NOV-25-96 by Linda Caron.

Sample	Рb	Zn
Number	용	ક
DO49	1.64	3.89

Certified by _____

MIN-EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

VANCOUVER OFFICE:

VANCOUVER OFFICE.
VANCOUVER, B.C., CANADA V5X 4E8
TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

6S-0274-RA1

Company:

NEW NADINA EXPLORATIONS LTD

Date: DEC-11-96

Project:

SILVER QUEEN

Attn:

Linda Caron

We hereby certify the following Assay of 5 ROCK samples submitted NOV-26-96 by Linda Caron.

Sample Number	Ag g/tonne	Cu %	Pb %	Zn %	
D074	775.0	1.890	5.67	8.59	
D076				1.12	
D082	671.0	5.160	1.63	4.65	
D083	198.0	2.400		1.38	
D084				2.61	

Certified by

MIN-EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

6S-0278-RA1

Date: DEC-12-96

Company: NEW NADINA EXPL LTD

Project:

SILVER QUEEN

Attn:

LINDA CARON

We hereby certify the following Assay of 2 Rock samples submitted NOV-27-96 by Linda Caron.

Sample	Zn
Number	જ
D122	1.32
D142	.54

Certified by

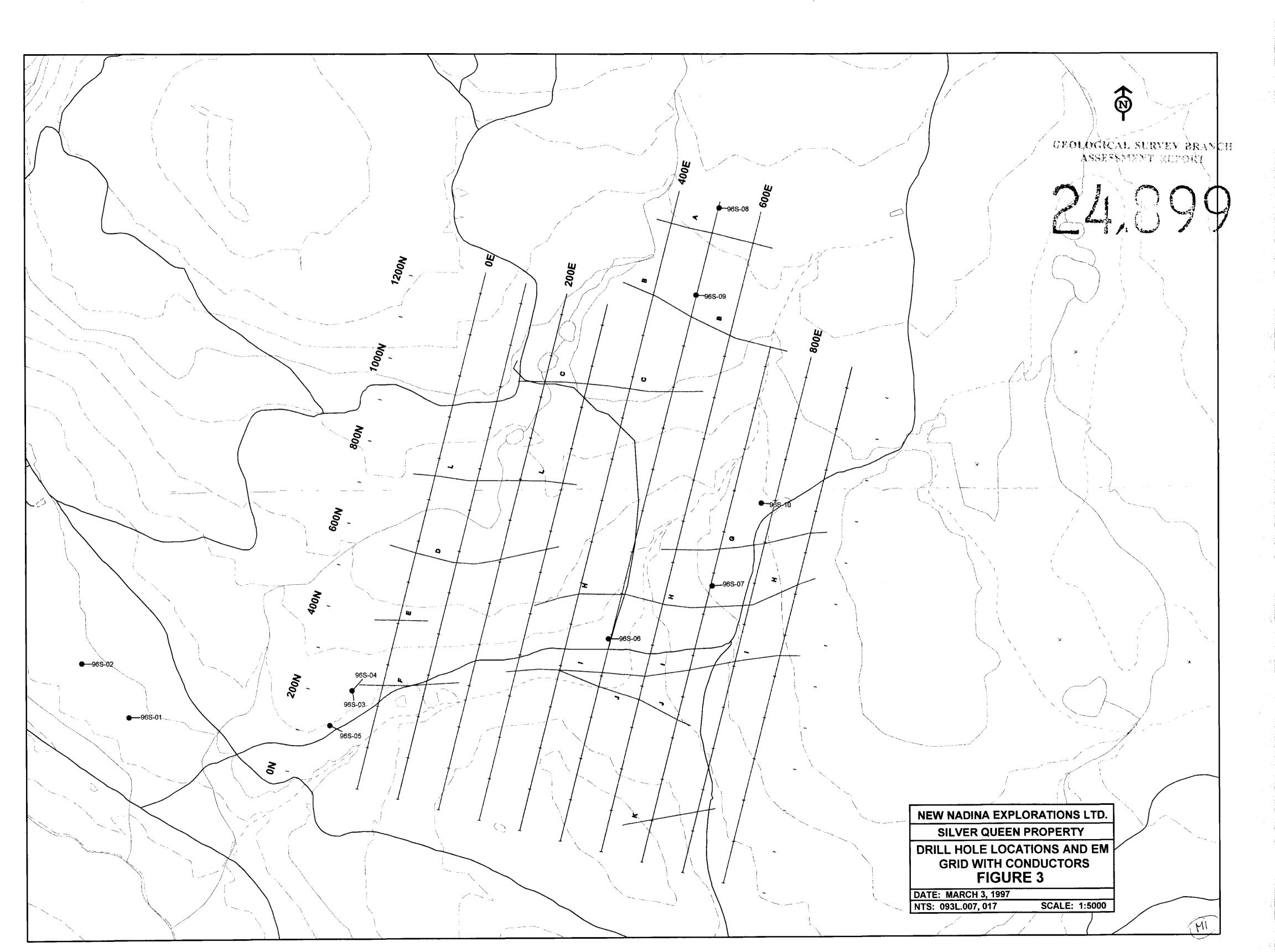
MIN-EN LABORATORIES

APPENDIX 3

COST STATEMENT

COST STATEMENT

LABOU	JR G. Stewart L. Caron J. Hutter N. Braam	14 days @ \$450/day 17 days @ \$200/day 3 days @ \$200/day 14 days @ \$100/day		\$ 6,300.00 3,400.00 600.00 1,400.00 \$ 11,700.00
DRILL	J.T. Thomas Diamond 3027 feet @ \$19.30/ft mob cost		ce	\$ 58,421.10 2,700.00 <u>13,635.00</u> \$ 74,756.61
ANAL		ver - 30 element ICP plus Au \$21.00 (including shipping)		\$ 2,940.00 \$ 2,940.00
SUPP	LIES Saw blades General field supplies Generator rental Fuel	s (bags, etc)		\$ 500.00 120.00 1,000.00 600.00 \$ 2,220.00
TRAN	SPORTATION AND AC Vehicle rental 14 da Room and board 48	iys @ \$50/day		\$ 700.00 2,400.00 \$ 3,100.00
OFFIC	CE EXPENSES Phone, fax Drafting and office su Misc.	upplies	TOTAL	\$ 65.00 120.00 30.00 \$ 215.00
			TOTAL:	\$94,931.61


APPENDIX 4

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Linda J. Caron, certify that:

- 1. I am an exploration geologist residing at Bubar Road (RR #2), Rock Creek, B.C.
- I obtained a B.A.Sc. in Geological Engineering (Honours) in the Mineral Exploration Option, from 2. the University of British Columbia (1985).
- 3. I graduated with an M.Sc. in Geology and Geophysics from the University of Calgary (1988).
- 4. I have practised my profession since 1987 and have worked in the mineral exploration industry since 1980.
- 5. I am a member in good standing with the Association of Professional Engineers and Geoscientists of B.C. with professional engineer status.
- 6. I am employed by Kettle River Resources Ltd. as an exploration geologist.

