

VANCOUVER, B.C.

1996 ASSESSMENT REPORT

BIG MISSOURI PROPERTY STEWART, BRITISH COLUMBIA

DIAMOND DRILLING

SKEENA MINING DIVISION NTS 104B/1, 104A/4 LATITUDE 56° 12'00" N, LONGITUDE 130° 01'00" W

> OWNER/OPERATOR WESTMIN RESOURCES LIMITED

> REPORT BY DAVID J. PAWLIUK, B.Sc., P.Geo. WESTMIN RESOURCES LIMITED

> > MARCH 5, 1997

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

7-004

TABLE OF CONTENTS

Page

1.0	SUMMARY	1
2.0	INTRODUCTION	1
3.0	1996 EXPLORATION PROGRAM	2
4.0	EXPENDITURES	2
5.0	LOCATION, ACCESS, VEGETATION AND PHYSIOGRAPHY	2
6.0	CLAIM STATUS	6
7.0	PROPERTY GEOLOGY	6
8.0	DIAMOND DRILLING	7 16
9.0	CONCLUSIONS	17
10.0	RECOMMENDATIONS	1 7
11.0	STATEMENT OF QUALIFICATIONS	18
12.0	REFERENCES	1 9

LIST OF TABLES

Table		Page
1	Expenditures	3
2	1996 Martha Ellen Drill Hole Co-ordinates and Downhole Surveys	8
3	Summary of Significant Intersections	10

LIST OF FIGURES

Figure		Page
1	Location Map	4
2	Property Map	5
3	Drill Hole Location Map, 1:2000 Scale	(Back Pocket)
4	Drill Section 403N, 1:500 Scale	(Back Pocket)
5	Drill Section 600N, 1:500 Scale	(Back Pocket)
6	Drill Section 750N, 1:500 Scale	(Back Pocket)
7	Drill Section 850N, 1:500 Scale	(Back Pocket)
8	Drill Section 950N, 1:500 Scale	(Back Pocket)
9	Drill Section 1200N, 1:500 Scale	(Back Pocket)
10	Drill Section 1358N, 1:500 Scale	(Back Pocket)
11	Drill Section 1140W, 1:500 Scale	(Back Pocket)

LIST OF APPENDICES

Appendix			
Α	Personnel	A1	
В	Drill Hole Geological Logs	B 1	
С	Assay Results	C 1	
D	Claim Status, Big Missouri Property	D1	

1.0 SUMMARY

A diamond drilling program was carried out on the Martha Ellen deposit during August and September 1996. Martha Ellen deposit is located within Westmin Resources Limited's Big Missouri mineral property. The purpose of the program was to test interpreted favourable subsurface geology eastward from the Martha Ellen deposit with a series of widely-spaced drill holes.

Nine holes totalling 2,155.23 metres were drilled, seven of which intersected typical Premier Porphyry and the underlying andesitic rocks. Quartz breccia mineralized with pyrite, sphalerite, galena and rare chalcopyrite occurs along the eastward-dipping contact between the porphyry and the andesitic rocks. This mineralized quartz breccia locally contains significant amounts of gold and silver. One hole was drilled within altered andesitic rocks, to test the presumed subsurface extension of an easterly striking, mineralized quartz vein. The other remaining hole was drilled to test for the possible southward extension of the Martha Ellen occurrence. Typical Premier Porphyry does not occur within this southern area.

Drilling indicates that the geology of the target area is favourable and the presence of alteration and mineralization in the holes is encouraging.

Six to ten holes should be drilled to further test the Martha Ellen occurrence area. Some of these holes should be drilled in the vicinity of drill holes B96CH1, B96CH2 and B96CH7 as the mineralized quartz breccia within these two holes contains significant amounts of gold and silver. The other holes should be wider-spaced to continue evaluating the overall continuity and grade of the mineralized quartz breccia zone eastward from the Martha Ellen occurrence area.

2.0 INTRODUCTION

The Big Missouri property is 100% owned by Westmin Resources Limited.

Previous work on the Martha Ellen occurrence area began in the early 1900's. Two shallow shafts, a few short adits and numerous trenches were excavated by 1930. Westmin Resources Limited began work in the area during 1979; by 1988 a total of 8,389 metres of diamond drilling in 144 holes had been completed. For further historical information see Greig (1996).

During September 1995 the author mapped the surface geology of the Martha Ellen area, and re-examined core from some of the earlier drill holes. The results of this work indicated that the geometry of the mineralized zones at Martha Ellen was not well established. The geometry of the mineralized zones in the subsurface was difficult to determine because the mineralized quartz veins exposed at surface have variable geometries, and because many of the earlier drill holes are shallow and randomly oriented. However, the mineralized zones generally appear to dip eastward, following the contact between Premier Porphyry and underlying andesitic rocks.

The drilling program tested the idea that the mineralized quartz breccia zone generally follows the contact with the intrusive(?) Premier Porphyry body, and dips moderately eastwards.

3.0 1996 EXPLORATION PROGRAM

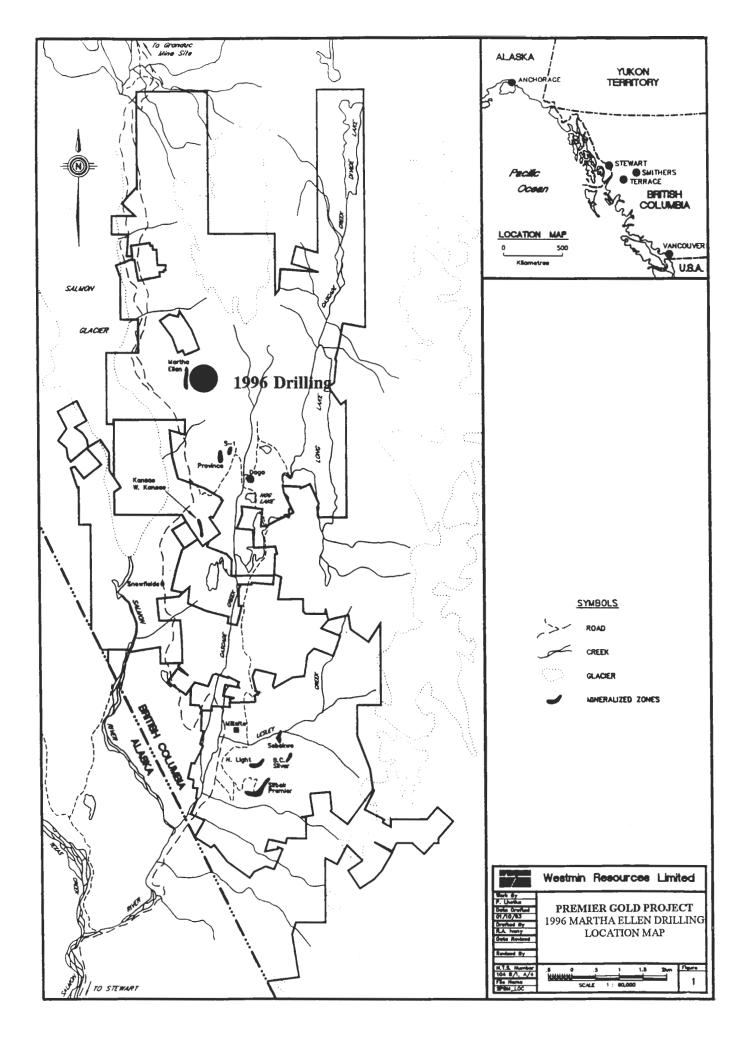
A program of diamond drilling was carried out between August 3 and September 2, 1996 under the direction of the author.

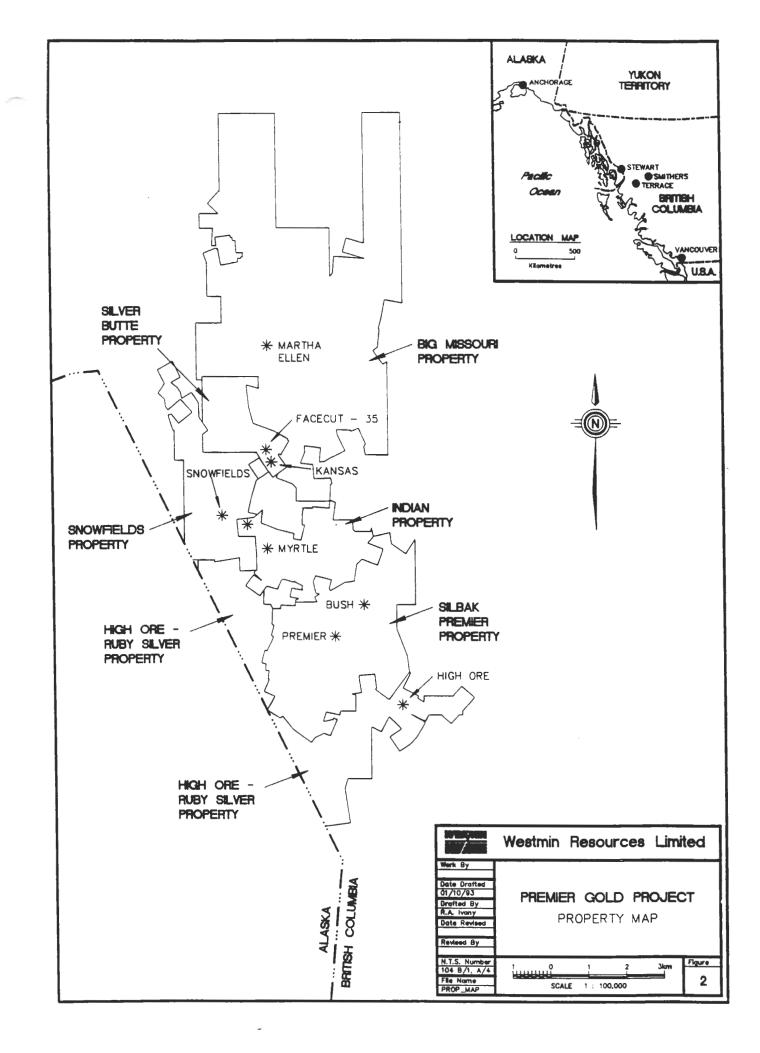
Diamond drilling was contracted to F. Boisvenu Drilling Ltd. of Delta, B.C. A Boyles 56A drill was used for the drilling. A Komatsu D-58 tractor was used to move the drill, to refurbish existing cat roads, and also to prepare drill sites. Most of the holes were drilled from the edges of previously existing cat roads. Areas disturbed by the tractor were recontoured upon completion of the work. A list of personnel employed on the project is included as Appendix A.

The crew was accommodated at Westmin's exploration trailer camp at Premier Gold, 8 kilometres south of the work area.

4.0 EXPENDITURES

Assessment work in the amount of \$191,891.00 was filed on November 14, 1996.


Expenditures for the 1996 exploration program are shown in Table 1.


Assessment work done on the Big Missouri property was filed on adjacent mineral claims. These adjacent mineral claims were grouped with the Big Missouri property in order to best utilize the assessment credit. Westmin has a 100% interest in all of these properties.

5.0 LOCATION, ACCESS, VEGETATION AND PHYSIOGRAPHY

The Big Missouri property is located 24 kilometres north of Stewart, British Columbia, within NTS map-sheets 104A/4 and 104B/1, at latitude 56° 12' N, longitude 130° 01' W (see Figures 1 and 2).

TABLI EXPENDI		
	(\$)	Total (\$)
Diamond drilling Coring, 7,071 feet (2,155.23 metres) Mobilization/demobilization Cat rental Other drilling costs	124,757 9,000 4,960 7,327	146,044
Core boxes		2,914
Camp expense 145 mandays at \$50 per manday		7,250
Materials and supplies		500
Equipment and instrument rentals		2,550
Salaries and benefits		19,225
Travel		250
Fuel		5,000
Shipping and telephone		250
Assays 416 samples at \$13 per sample		5,408
Total		191,891

Access to the property is via an old road established to provide access for the earlier drilling. This road starts in the area of the old Big Missouri townsite, at the S-1 open pit. A network of good bulldozer roads covers the Martha Ellen area. Heavy snowfalls limit exploration work to the period between mid-July and the end of September.

The area is mostly above treeline. A few flat areas are covered with peat bogs. Local topographic relief is gentle.

6.0 CLAIM STATUS

The Big Missouri property consists of 29 reverted Crown grants, 80 two-post and four-post mineral claims that cover the equivalent of 148 units. The Big Missouri property is 100% owned by Westmin Resources Limited (Figure 2). Claim data is presented in Appendix D.

7.0 **PROPERTY GEOLOGY**

The Big Missouri property is underlain by lower Jurassic "Hazelton Group" volcanic and sedimentary rocks which are part of the accreted terrane of Stikinia. In the Stewart area Alldrick (1985, 1987) subdivided the Hazelton Group into four formations. It is unclear which portions of Alldrick's stratigraphy correlate with the descriptions that follow, but the Unit 9 rocks described below probably belong within Alldrick's Unuk River Formation.

Detailed mapping by the author during September 1995 showed that the Martha Ellen area is underlain mainly by extensive Unit 9 and esitic tuffs and flows. These rocks are locally altered with abundant sericite, pyrite and quartz in the vicinity of mineralized zones.

Immediately overlying the andesitic rocks is a potassic intrusive(?) body of Premier Porphyry. This porphyry contains diagnostic potassium feldspar megacrysts. The contact between the porphyry and the andesitic rocks dips at 25 to 30 degrees to the east; it is locally irregular. Subhorizontal apophyses of Premier Porphyry up to 5 or 7 metres wide intrude the andesitic rocks. The Premier Porphyry is often bleached and altered near its contact with the andesitic rocks.

Fresh granodiorite, diorite and monzodiorite dykes of Tertiary age intrude the Unit 9 andesites. These dykes are mainly medium grained, and contain dark green, acicular hornblende crystals. The largest of the dykes trends southeasterly and dips 65 to 80 degrees to the southwest. These dykes are part of the Portland Canal swarm.

Late dykes of andesite or, less commonly, dacite or rhyolite are also present within the Martha Ellen area. Andesite dykes intrude some of the dioritic dykes of the Portland Canal swarm.

The South and the North (or Glacier) faults are the two main fault structures within the Martha Ellen area. These faults strike northerly and have apparent right-lateral displacements. The South Fault has an apparent displacement of about 15 metres, and the North Fault has an apparent displacement of about 30 to 60 metres. These faults dip approximately 68 degrees to the west.

The Unit 9 rocks at Martha Ellen occurrence area have a consistent, pervasive, northerly trending foliation that dips from 49 to 64 degrees to the west.

Mineralized veins and zones at Martha Ellen are similar to other occurrences within the Big Missouri area (Greig, 1996). Semi-massive to massive lenses, pods and stringers of pyrite, sphalerite, galena and chalcopyrite occur within variably altered andesitic rocks of Unit 9. Unit 7a Premier Porphyry has also been mineralized in a few places. The Premier Porphyry and the mineralized zones in the Martha Ellen area appear to be genetically related. Mineralization has occurred directly at the porphyry contact, and also within 12 or 15 metres of this contact. The mineralization may have occurred during the later stages of the intrusive event. The mineralized quartz veins exposed in the surface trenches at the Martha Ellen occurrence area have variable geometries and orientations.

The mineralized Unit 9 andesites have been silicified and sericitized, and also contain finely disseminated pyrite. They have a bleached appearance. Contacts between mineralized zones and the wallrock andesites are usually gradational.

Vein quartz within the mineralized zones ranges from watery grey to off-white to clear. This quartz has been brecciated and rehealed by silica. Later, barren veins in the area contain white quartz, carbonate and chlorite with minor local pyrite.

8.0 DIAMOND DRILLING

Diamond drilling was conducted using a skid-mounted Boyles 56A drill. Drilling took place on two 10-hour shifts. The total, all-inclusive cost of the drilling was \$97.93 per metre.

NQ size core was recovered. The nine holes were drilled from nine different sites. Locations and directions of the holes are shown on Figure 3, and listed within Table 2.

		Estimate	d Collar Co	-ordinates					Classic Standards
Hole	Length (m)	East	North	Elevation	Azimuth (wrt true n)	Dip	Depth (m)	Method	Comments
B96CH1	334.06	95437	107566	1183	240 254	-52 -51 -55	0 324.92 332.23	Acid Tropari	
B96CH2	270.05	95224	107551	1167	240 241	-58 -63	0 268.22	Тгорагі	
B96CH3	209.05	94991	107608	1169	240 241	-62 -66	0 207.26	Тгорагі	
B96CH4	254.81	95604	107573	1143	240 345	-62 -62	0 252.98	Tropari	Probably Unreliable
B96CH5	135.03	95155	107293	1065	111 111	-45 -58	0 131.98	Тгорагі	
B96CH6	248.72	94875	107814	1205	240 256	-50 -63	0 247.19	Tropari	
B96CH7	273.1	95255	107803	1232	240 254	-50 -58	0 271.58	Тгорагі	
B96CH8	148.13	95756	107468	1101	240	-50	0		
B96CH9	282.24	95377	107758	1204	240 016	-50 -51	0 213.36	Тгорагі	Probably Unreliable
Total	2,155.2								

Complete geological logs for the holes are included as Appendix B and assay results are included as Appendix C. All of the split core samples were analyzed for gold, silver, copper, lead and zinc.

Cross-sections showing the 1996 diamond drill holes are included as Figures 4 to 11.

Hole B96CH1 (Figure 6)

Hole B96CH1 was drilled to test the theory that the mineralized zone at the south part of Martha Ellen follows the eastward-dipping contact between altered Unit 9 and esitic rocks and Premier Porphyry (Figures 3 and 4).

The hole is within Premier Porphyry to a depth of 129.48 metres. This rock contains phenocrysts of plagioclase, hornblende and potassium feldspar. The porphyry also contains about 1% quartz veinlets, and 1% pyrite as subhedral crystals averaging about 0.75 millimetres across.

From 129.48 to 135.82 metre depth, mineralized quartz breccia was cored. The breccia contains angular fragments of vein quartz and variably silicified andesite wallrock; the breccia has been rehealed by late silica. Both the upper and lower contacts of the mineralized zone are gradational across 5 to 20 centimetres. The mineralized zone contains pyrite, sphalerite and galena. Sphalerite occurs as irregular, brecciated veins and patches up to 25 by 120 millimetres across; sphalerite is usually rimmed by galena. Vein material from the lower part of the zone was stained by sodium cobaltinitrite. This stained material contains about 25% angular fragments 3 or 4 centimetres across with abundant potassium feldspar, within a siliceous matrix. From 130.00 to 132.50 metre depth the core assayed 0.228 oz/ton gold and 5.17 oz/ton silver.

From 135.82 to 334.06 metre depth mainly Unit 9 andesite lapilli tuff was cored in B96CH1. Alteration and stringer mineralization within this unit decrease downhole. The andesitic rocks are faulted in several places, and are also cut by mineralized quartz veins up to 84 centimetres wide. The andesitic rocks are also intruded by dykes of andesite, feldspar porphyry and Premier Porphyry up to 5.6 metres wide.

Hole B96CH2 (Figure 8)

Hole B96CH2 was drilled parallel to B96CH1, about 200 metres northwest of B96CH1.

TABLE 3 SUMMARY OF SIGNIFICANT INTERSECTIONS					
Hole	From	То	Width (m)	Gold (oz/ton)	Silver (oz/ton)
B96CH1	130.00 318.30	132.5 319.30	2.5 1.0	0.228 0.118	5.17 0.38
B96CH2 includes	140.40 141.40	146.75 142.90	6.35 1.50	0.226 0.869	0.59 2.20
B96CH3	168.50	169.00	0.50	0.074	0.09
B96CH4	39.79	40.59	0.80	0.002	1.72
B96CH5	59.50 113.11	60.50 113.61	1.00 0.50	0.156 0.240	0.06 0.55
B96CH6	55.41 60.17 108.35	57.17 61.17 109.85	1.76 1.00 1.50	0.099 0.102 0.143	4.38 0.47 0.82
B96CH7	175.83 245.90 255.25 255.25 256.20 263.68	176.33 246.70 256.70 255.75 256.70 263.98	0.50 0.80 1.45 0.50 0.50 0.30	0.262 0.100 0.206 0.494 0.102 0.446	40.54 0.15 0.14 0.23 0.18 8.66
B96CH8	131.80	132.40	0.60	Trace	0.61
B96CH9	268.30	269.30	1.00	0.068	0.23

The upper part of this hole is within Premier Porphyry similar to that in B96CH1; the porphyry extends to a depth of 105.36 metres. From 16.77 to 34.32 metres the porphyry is bleached, brecciated and contains quartz veins with open cavities lined by drusy quartz crystals. This vein quartz contains traces of dusty disseminated pyrite, galena and sphalerite.

From 90.86 to 91.61 metres and from 95.00 to 96.44 metres the rock is about 60% quartz with 5% pyrite and to 1% combined sphalerite and galena. The sulphides are finely disseminated within irregular masses up to 10 by 30 millimetres across; the sulphide masses generally have faint boundaries. Pyrite is most abundant near the margins of the silicified zones.

From 105.36 to 141.40 metres hole B96CH2 intersected massive porphyritic andesite with fine pale yellow-green leucoxene speckles. The contact between the Premier Porphyry and the andesitic rocks has a relatively consistent dip of 25 to 30 degrees to the east in this area.

From 141.40 to 142.90 metres the hole intersected 50% vein quartz breccia mineralized with pyrite, galena and sphalerite, and 50% intensely brecciated porphyry. The sulphides are most abundant along the margins of quartz and quartz-carbonate veins. High grade gold values occur in this area.

From 142.90 to 270.05 metre depth the hole was mainly in andesitic lapilli tuffs and porphyritic flows(?), with occasional late andesite dykes.

The mineralized zone along the Premier Porphyry contact in B96CH2 is better mineralized, though not as wide as the mineralized zone in hole B96CH1. In hole B96CH2 the Premier Porphyry nearby the andesite contact is finer grained, and more bleached, altered and brecciated than the Premier Porphyry near the andesite contact within hole B96CH1.

Hole B96CH3 (Figure 9)

This hole was collared 250 metres northwest of B96CH2, and like the first two holes it was designed to test the eastward-dipping contact between the Premier Porphyry and the underlying Unit 9 and esitic rocks.

From surface to 80.17 metres the hole intersected Premier Porphyry mainly similar to that seen in the first two holes. From 3.66 to 32.30 metres, however, the porphyry contains 2 to 3% finely disseminated pyrite with local traces of finely disseminated sphalerite, galena and chalcopyrite. This rock may be part of Dykes' Unit 6, surface exposures of which have been mapped eastward from the collar of B96CH3.

From 80.17 to 82.35 metres weakly mineralized quartz breccia with contacts at 60 degrees to the core axis was recovered. This unit contains disseminated pyrite, sphalerite and galena; the vein quartz gradually changes from medium grey at the top of the interval to pale grey-green at the bottom. A stained sample of mineralized rock from 82.25 metre depth contains 5% potassic fragments within a siliceous matrix.

From 82.35 to 128.56 metres the hole intersected massive to locally brecciated Unit 9 andesite. The rock is locally bleached across 10 to 40 centimetres where quartz-carbonate+/-pyrite-galena-sphalerite stringers are present.

From 128.56 to 128.83 metres weakly mineralized quartz breccia was intersected.

From 128.83 to 209.09 metres the hole intersected mainly dark grey, fine-grained intrusive diorite, probably of Tertiary age. Andesitic dykes up to 12.8 metres wide are present within this interval.

Hole B96CH4 (Figure 5)

This hole was collared approximately 175 metres southeast of B96CH1, and like the first three holes it was designed to test the eastward-dipping contact between the Premier Porphyry and the underlying andesitic rocks.

From surface to 146.53 metres the hole intersected Premier Porphyry mainly similar to that seen in holes B96CH1 and B96CH2. However, the porphyry is thicker and coarser-grained than that seen in the holes to the north. Possibly hole B96CH4 is collared near the source of the Premier Porphyry in this area. The rock locally contains 1% euhedral quartz phenocrysts, and also occasional subhedral to euhedral potassium feldspar megacrysts up to 15 by 8 millimetres. From 94.33 to 126.20 metres the rock has a pseudo-"fragmental" appearance due to sericite and silica alteration apparently related to pervasive fluid movement through the rock. A weathered surface exposure of this "fragmental" rock could possibly be mapped as a breccia dyke within the Premier Porphyry.

From 146.53 to 156.48 metres the hole intersected weakly mineralized quartz breccia which has been brecciated and rehealed by later silica. Spots of pyrite, galena and sphalerite up to a few millimetres across are evenly distributed throughout the unit. The rock locally contains wispy veinlets of blue-black carbonaceous material. A graphite veinlet 2 millimetres wide was seen at 149.75 metres. More or less altered, angular Premier Porphyry fragments to 8 centimetres across are present in the middle third of the interval; angular andesite fragments are present in the lower third of the quartz breccia interval.

- 13 -

Hole B96CH5 (Figure 11)

This hole was collared approximately 225 metres west-northwest of B96CH2. It was designed to test the presumed down-dip extension of the eastward-striking mineralized quartz vein exposed on surface in Trench "86." The mineralized quartz vein here cuts altered andesitic rocks. Trench "86" was sampled during 1986 work by Dykes. Chip samples from the trench contain up to 0.130 oz/ton gold and 41.82 oz/ton silver across 4 metres, and 0.104 oz/ton gold and 83.13 oz/ton silver across 4 metres.

From surface to 55.83 metres the hole intersected mainly green-grey, faintly banded and esitic tuff. There are local patches where sericite-altering fluids have moved through the rock.

From 55.83 to 77.00 metres the hole intersected mainly black, magnetic andesite dykes of Tertiary age. Some of these dykes are brecciated and contain veinlets of garnet, epidote and calcite.

From 77.00 to 101.61 metre depth the hole intersected a medium grained, moderately magnetic diorite dyke.

From 101.61 to 125.80 metres the hole intersected dark grey, fine grained, argillaceous andesite tuff. Quartz occurs both as pervasive alteration and as wormy veinlets. Sphalerite veinlets 1 to 3 millimetres wide, on average at about 60 degrees to the core axis, occur throughout much of the unit. No quartz breccia was intersected; the mineralization is of a different style than that seen along the base of the Premier Porphyry to the east.

From 125.80 to 135.03 metres a Tertiary andesite dyke was cored.

Hole B96CH6 (Figure 10)

Hole B96CH6 was drilled parallel to B96CH3, about 240 metres north-northeast of B96CH3.

The upper part of this hole is Premier Porphyry similar to that within B96CH3; the porphyry extends to a depth of 106.85 metres. Above 12.31 metres, books of pale mica up to 5 millimetres across are present. A weakly mineralized, locally banded quartz breccia is present from 55.41 to 57.17 metre depth; mineralized stringers occur both above and below this interval.

From 106.85 to 110.71 metres the rock is finely brecciated quartz breccia mineralized with pyrite, sphalerite and galena. The upper contact between the quartz breccia and the porphyry is at 55 degrees to the core axis; the lower quartz breccia contact is gradational.

From 110.71 to 154.23 metre depth very fine grained porphyry was cored. This unit may be an altered andesite porphyry of Unit 9, but contains no diagnostic leucoxene. This rock becomes less silicified and less brecciated with depth. The rock contains faint hornblende and plagioclase phenocrysts.

From 154.23 to 248.72 metres hole B96CH6 intersected mainly massive andesitic lapilli tuff, with rare sphalerite in carbonate-quartz veinlets. The rock has a local pervasive fabric subparallel the core axis.

Hole B96CH7 (Figure 8)

Hole B96CH7 was drilled parallel to and behind B96CH2; it was collared about 243 metres northeast of B96CH2.

The upper part of this hole is in Premier Porphyry similar to that within B96CH2; the porphyry extends to a depth of 224.21 metres. Dacite and rhyolite dykes intrude the porphyry. The late dykes intruding porphyry within other holes in this area are more commonly andesite. Sericite-altered patches are present below 180.35 metre depth.

From 224.21 to 227.91 metres quartz breccia weakly mineralized with pyrite, galena and sphalerite was recovered. This unit has been brecciated and rehealed by watery grey quartz. Pyrite is most abundant in topmost 30 centimetres and within lowermost 15 centimetres of unit. Late, off-white carbonate veins are present. The contacts between the quartz breccia and the wallrocks are at 37 and 48 degrees to the core axis.

From 227.91 to 273.10 metre depth andesite was recovered. Mineralized stringers to 30 millimetres wide are locally present within this unit. A massive sulphide band at 40 degrees to the core axis was cored from 263.72 to 263.95 metre depth. The sulphides are both banded and brecciated. The sulphide band contains about 50% sphalerite, 30% chalcopyrite, 2.5% pyrite and about 2.5% galena as well as about 10% vein quartz. Sulphide mineralization of this style was not seen in any of the other drill holes. The andesite wallrock is altered across a couple of centimetres at the upper contact, and across 30 centimetres at the lower contact.

Hole B96CH8 (Figure 4)

Hole B96CH8 was drilled parallel to holes B96CH1 and B96CH4 (Figure 3). It was collared about 175 metres south of B96CH4 to test for the possible southward extension of the mineralized zone at Martha Ellen, and also to test for the presence of Premier Porphyry in the same area.

The hole did not intersect typical Premier Porphyry. The rock cored is a medium to fine grained feldspar porphyry with plagioclase and hornblende phenocrysts, but only one (probable) potassium feldspar megacryst was observed at 39.55 metre depth. The rock is less quartz- and less carbonate-altered than typical Premier Porphyry from the area. Sericite-altering fluids have likely moved through the rock; a similar style of alteration is seen in core from a few of the other holes in the Martha Ellen area.

No mineralized quartz breccia was intersected in hole B96CH8.

Hole B96CH9 (Figure 7)

Hole B96CH9 was drilled parallel to, between and behind holes B96CH1 and B96CH2 (Figure 3). Hole B96CH9 was collared about 200 metres northeast of B96CH1. It was drilled to test for the down-dip extension of the mineralized quartz breccia seen in holes B96CH1 and B96CH2, along the Premier Porphyry/andesite contact. Surface geological mapping had outlined an area of abundant quartz veins in the vicinity of the collar.

The upper part of the hole is Premier Porphyry similar to that within B96CH2 and B96CH1; occasional zoned potassium feldspar megacrysts up to 13 by 26 millimetres across are present. This porphyry extends to a depth of 131.88 metres.

A major fault zone with broken core and gouge is present from 120.70 to 131.88 metre depth. The Premier Porphyry below the fault zone is altered by silica sericite and clay. Phenocrysts are obscured by the alteration, but are visible with a hand lens. This more altered porphyry extends from 131.88 to 206.59 metre depth.

From 206.59 to 282.24 metre depth generally uniform, massive to mottled andesite was recovered. No mineralized quartz breccia was intersected along the Premier Porphyry/andesite contact in this hole; perhaps the mineralized zone here has been displaced as a result of late faulting.

8.1 Analytical Methods

All of the split drill core samples collected were prepared and analyzed at the Premier Gold Assay Laboratory under the direction of Senior Assayer Rosa Craverio.

The core samples were oven dried and crushed in a jaw crusher to about minus 1/4". The samples were then cone crushed to minus 1/8", and then split using a riffle splitter. About 250 grams were then pulverized in a stainless steel ring and puck pulverizer.

Gold assays were done on a one-half assay ton aliquot by standard fire assay techniques using lead collection; silver was parted and the remaining gold bead weighted gravimetrically.

A separate aliquot of the pulp was digested with acid and analyzed for silver, copper, lead and zinc by atomic absorption.

Four hundred sixteen split core samples from the 1996 diamond drill holes were analyzed.

9.0 CONCLUSIONS

Six of the holes intersected the targeted quartz breccia zone along or near the eastward-dipping Premier Porphyry/andesite contact. Base metals were present in the mineralized quartz breccia from all of these six holes. Holes B96CH1 and B96CH2 contained the highest gold and silver concentrations. Gold and silver contents of the mineralized quartz breccia are variable. In addition, some of the mineralized quartz breccia contains fragments of potassium feldspar-altered material.

The above indicates that the geological model upon which the drilling was predicated is correct. A favourable setting for mineralization has been confirmed in the subsurface east of the Martha Ellen deposit.

10.0 RECOMMENDATIONS

Further drilling is warranted to test the prospective Premier Porphyry/andesite contact east of Martha Ellen.

Six to ten holes should be drilled during the next phase of work. Some of these holes should be spotted in the vicinity of holes B96CH1 and B96CH2, in order to follow-up on the favourable results from the 1996 drilling.

- 18 -

11.0 STATEMENT OF QUALIFICATIONS

I, David J. Pawliuk, of Nanoose Bay, in the Province of British Columbia, hereby certify that:

- 1. I reside at R.R. 2, Box 133, Garry Oaks, Nanoose Bay, British Columbia, V0R 2R0.
- 2. I hold a B.Sc. in Geology from the University of Alberta in 1975.
- 3. I am registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4. I am registered as a Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of the Province of Alberta.
- 5. I have practised geology in Canada since 1975.
- 6. I have no direct financial interest in this property.
- 7. I supervised the work described in this report.

DATED this <u>26 %</u> day of <u>February</u>, 1997 at Vancouver, British Columbia.

-10F

David J. Fawliuk, B.Sc., P.Geo. Geologist

12.0 REFERENCES

Alldrick, D. J. 1987. Geology and Mineral Deposits of the Salmon River Valley, Stewart Area. B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Open File Map 1987-22.

Alldrick, D. J. 1985. Stratigraphy and Petrology of the Stewart Mining Camp (104B/1). B.C. Ministry of Energy, Mines and Petroleum Resources, Fieldwork 1984, Paper 1985-1, pp. 316-341.

Dykes, S. Various unpublished assessment reports for Westmin Resources Limited.

Greig, C. 1996. Stewart Re-evaluation, Reassessment of Exploration Potential, Silbak Premier-Big Missouri Property, Stewart, B.C. Unpublished report for Westmin Resources Limited. APPENDIX A

PERSONNEL

RPT/97-004

APPENDIX A PERSONNEL				
Name	Position	Company		
Paul Lhotka	Senior Project Geologist	Westmin Resources Limited		
David Pawliuk	Geologist	Westmin Resources Limited		
Leigh Edwards	Cook	Westmin Resources Limited		
Patrick Burns	Core Splitter	Westmin Resources Limited		
Waylon Grue	Core Splitter	Westmin Resources Limited		
F. Falardeau	Driller	F. Boisvenu Drilling Ltd.		
C. Johnston	Driller	F. Boisvenu Drilling Ltd.		
D. Cleveland	Drill Assistant	F. Boisvenu Drilling Ltd.		
M. Leduc	Drill Assistant	F. Boisvenu Drilling Ltd.		
S. Tarrant	Drill Assistant	F. Boisvenu Drilling Ltd.		
J. Cleveland	Cat Operator	F. Boisvenu Drilling Ltd.		

APPENDIX B

DRILL HOLE GEOLOGICAL LOGS

RPT/97-004

linek f T % T Q TEXT M U ST A TD ALTERATION SULFIDES ALT el from to mHROCK MAT GRANI NRUZ/I MIN MIN MIN d X MAT FRAG N I CT BP y a g T İ # rec Q2X * PFAX * * * FC%H* * ** # ***QZLECYCBAKXXPYCPGLYYF1F2 ** # ***KFMUCLEPHE SSSVSL M1M2 rad KS CR * * * Ŀ R K ŧ # 7 Û. 1 2 3 4 5 ń 8 12345678.901234.5678901234567890 BOISVEN94 1 IDEN6B0202 S94CU28 BOTK941017PGL 2 IPRJ WESTMIN RESOURCES LTD. KANSAS 3 S 1 0.00 0.00 0.00 0.00 SEC 700N -20E 4 R 0.00 2.80 AXXS GG+MXBR PGC B4085 V) E1 E* 65 5 / E) 54 6 L 0.00 2.80 5**λ** Q+ 2.80 V. SIMILAR TO UNIT OF SAME NAME IN 94-26 AND 27 WITH REPLACEMENT 7 R 0.00 0.00 2.80 SULFIDES. METALLIC GREY SPHALERITE. ABRUPT END. 8 R 9 FFLT 1.00 1.30 1.00 1.30 MINOR FAULT AT 30 DEGREES TO CORE AXIS. 10 R EXPLANANTORY NOTES: AFTER THE TOP THREE HEADER LINES THERE ARE THREE MAIN TYPES OF LINE "/" LINES ARE THE UPPER LINE OF A COUPLET WHICH CONTAIN THE INFORMATION FOR CODE ITEMS AS NOTED ABOVE "L" LINES ARE THE LOWER LINE OF THE CUPLET AND CONTAIN CODES FOR DIFFERENT ITEMS "R" LINES ARE SIMPLY FREE FORM TEXT COMMENTS LASTLY "K" LINE ARE SOMETIMES USED TO FLAG OTHER FEATURES (EG FAULTS) AND DO NOT CONTAIN ANY CODED INFORMATION EG "KTMN" MEANS "KEY TOP OF MINERALIZATION" LITHOLOGIC UNIT TYPES (INDICATED IN COLUMN 47 IN / LINE) "P" P-UNITS ARE THE PRIMARY ROCK TYPE AND MUST FORM & CONTINUOUS NON OVERLAPPING SEQUENCE FROM THE START TO END OF THE HOLE. "R" R-UNITS ARE DIFFERENT TO THE ENCLOSING P-UNIT FOR EXAMPLE & SMALL ANDESITE DIKE IN SHALES THEY CAN FIT ANYWHERE IN THE P-UNIT CHAIN. "D" D-UNITS ARE SUBUNITS OF THEIR HOST P-UNIT AND ARE THE SAME EXCEPT FOR THE CODES ENTERED IN THE D-UNIT. "A" A-UNITS ARE THE SAME AS THE PREVIOUS P-NITS EXCEPT FOR WHATEVER IS CODED IN THE A-UNIT NOTES ON CODE POSITIONING CODES BEGIN IN COLUMN 21 FOR BOTH / AND L LINES A. PHENOCRYSTS (TYPIFYING MATERIAL) ARE INDICATED AS FOLLOWS: QUARTZ / COL 21-22 IN ALL CASES K-SPAR L COL 21-22 THE 1ST COLUMN IS THE SIZE FROM S-SCALE

 PLAGIOCLASE
 / COL 28-29
 THE 2ND COLUMN IS THE AMOUNT FROM THE G-SCALE

 AMPHIBOLE
 / COL 30-31

 EG
 "J2" IN LCOL28-29

 MEANS
 "K-SPAR PHENOCRYSTS OF 1.4MM MAKE UP 20% OF ROCK"

B. ROCK CODE

A FOUR LETTER ROCK CODE IN /24-27 SEE LIST OF ROCK CODES EXAMPLE ABOVE MEANS "ANDESITE SILICIFIED"

C. %MIX

IN /COL23 INDICATES THE PERCENTAGE OF THE ROCK UNIT USING THE G-SCALE (NORMALLY 100% BUT COULD USE LESS EG A ZONE OF R-UNIT DYKES TOTALLING 70% OF THE INTERVAL)

- D. ROCK COLOR IS IN L28-29 SEE LIST OF COLOR CODES TWO COLORS OR A COLOUR AND INTENSITY CAN BE ENTERED EG "5A" MEANS "MEDIUM GRAY"
- E. Q MAT (QUALIFYING MATERIAL IN / AND L 32-34) IS USED TO INDICATE THE TYPE OF MATERIAL COL 32-33 AND AMOUNT COL 34 USING THE G-SCALE EG."GG+" MEANS "GOUGE 2.5%"
- F. TEXTURES (TWO DESCRIPTORS MAY BE USED IN /35-36 AND /37-38) IN THE EXAMPLE "MX" MEANS "MASSIVE" AND "BR" MEANS "BRECCIATED"
- G. FRAGMENT TYPES ARE INDICATED IN L35-36 AND L37-38 SEE CODE LIST
- H. GRAIN SIZE IS INDICATED IN /39-42 WHERE /39 IS THE FINE FRACTION USING S-SCALE /40 IS THE COARSE FRACTION USING S-SCALE /41 IS THE % OF COARSE FRACTION USING G-SCALE /42 IS THE MAXIMUN SIZE USING THE G-SCALE
- I. THE ROCK UNIT TYPE CODE IS IN /47 (SEE ABOVE)
- K. STRUCTURES ARE INDICATED IN /49-50 AND/OR L49-50 EG "GC" MEANS GRADATIONAL CONTACT"

THE A2IMUTH OF THE STRUCTURE WOULD BE INDICATED IN /51-53 AND/OR L51-53

THE TOP OR BOTTOM OF A CONTACT IS INDICATED IN /54 AND/OR L54 EG THE "B" MEANS THE "BOTTOM GRADATIONAL CONTACT"

DIP OF A STRUCTURE TO CORE AXIS IS INDICATED IN /55-56 AND/OR L55-56 ORDINARY INTEGERS EG "40" MEANS "40 DEGREES TO CORE AXIS"

L. ALTERATION MINERALS ARE INDICATED IN / AND L 57-68 EACH MINERAL HAS A SPECIFIC POSITION AS INDICATED WHERE THE H-SCALE AND G-SCALE INDICATE HOW THE OCCUR AND IN WHAT AMOUNT RESPECTIVELY. Q2 QUART2 KF K-SPAR LE LEUCOXENE NU MUSCOVITE/SERICITE CY CLAY CL CHLORITE CB CARBONATE EP EPIDOTE AK ANKERITE HE HEMATITE XX USER DEFINED XX HOW AND AMOUNT USER DEFINED RC RHODOCHROSITE BA BARITE JS JASPER AB ALBITE

FOR EXAMPLE "V)" IN /63-64 MEANS "CARBONATE OCCURS AS VEINS TOTALING 1%" FOR OTHER USER DEFINED MINERALS THE MINERAL IS INDICATED IN /63-64 AND THE HOW AND AMOUNT OF THE USER DEFINED MINERAL ARE INDICATED IN L63-64

M. METALLIC MINERALS WORK EXACTLY THE SAME AS ALTERATION MINERALS AND ARE INDICATED IN /69-76 AND /69-76 PY PYRITESS SULPHOSALTSCP CHALCOPYRITESV NATIVE SILVERGL GALENASL SPHALERITEYY USER DEFINEDYY HOW AND AMOUNTUSER DEFINEDTD TETRAHEDRITEEL ELECTRUMRS RUBY SILVERAP ARSENOPYRITE

- N. ALTERATION SUMMARY IS IN /77-78 AND/OR /79-80 AND INDICATES THE TYPE OF ALTERATION (SEE CODES) AND INTENSITY (1-9 INCREASING) FOR EXAMPLE "65" ABOVE MEANS "SILICIFICATION MODERATE" SEE N-SCALE
- 0. MINERALIZATION SUMMARY WORKS THE SAME AS ALTERATION SUMMARY BUT IN /77-78 AND/OR L79-80 EG "54" MEANS "PYRITE>GALENA + SPHALERITE LOW-MODERATE INTENSITY" SEE N-SCALE

of

tt LIST OF SCALES

1 2 3 4 5 6 7 8 9 10 11 12 13 14	COL 987654321NORUOTYLGQBV	WHITE PALEST PALE LIGHT LIGHTER (M. LIGHT) MEDIUM (50%) DARKER (M. LIGHT) DARK VERY DARK DARKEST BLACK
8	G === (- SCALE
9 10 11 13 14 15 17 18 19 20 21 22 23 24 25 29 31 56)*+- ·/123456789=?	1 % 0.3 % 2.5 % 0.03 % 0.01 % Non Determined Amount 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 %

	N -	SCALE
8	(0.1 %
9)	1 %
10	*	0.3 %
11	+	2.5 %
13		0.03 %
14		0.01 %
15	1	Non Determined Amount of
16		absent
17	1	trace
18	2	very low
19	3	low
20	4	fairly low
21	5	moderate
22	6	fairly high
23	7	high
24	8	very high
25	9	extremely high
29		5 %
31	?	Possibly Present
5 6	Х	exceptionally high

```
H - SCALE
    _____
        In Breccia Fillings,
3
    #
4
    $
        as sheetings
8
   (
        0.1 %
9
        1 %
    )
10
    *
        as clasts,
11
    +
        as phenocrysts,
13
    -
        0.03 %
14
        0.01 %
    ٠
15
        Non Determined Amount of
    /
16
        as spots,
    0
17
        occurs as amygdaloids, minor veins and disseminations,
    1
18
    2
        occurs as macro veins and veins,
19
        occurs as veins and dalmationite,
    3
20
   4
        occurs as veins occasionally with envelopes,
21
   5
        occurs as veins often with abundant envelopes,
22
    6
        as Veins > Diss, Env, & Perv,
23
   7
        occurs as perv. dissem. = to veins, selvages and envelopes,
24
        Occur as Diss, Env, & Perv, >Veins,
   8
25
   9
        Flooded,
        in micro veins,
28
    <
29
        5 %
    =
        in macro veins,
30
   >
31
    ?
        Possibly Present
33
   Α
        in amygdaloids or cavity fillings,
35
   С
        as coatings,
36
    D
        as disseminations,
        In Envelopes of Veins,
37
    Ε
38
    F
        as framework crystals,
39
    G
        as gouge,
40
    Н
        as Phenocryst Replacement,
41
    Ι
        as eyes or augens,
42
    J
         interstitial,
43
    Κ
         in stockwork,
44
    L
        as laminations or beds,
45
    M
         is massive,
    N
46
        as nodules,
47
    0
        as spots,
    Ρ
48
         pervasive,
49
    Q
         as patches,
50
    R
         as rosettes,
    S
         in selvages,
51
52
    т
         as stainings,
53
    U
         as euhedral crystals,
54
    V
         as Veins,
         in lenses,
55
    W
56 X
         massive,
58
    Z
         Primary Mineral in Rock
```

	TEXT	URES
1	BD	bedded,
2	BK	blocky,
3	BN	banded veins,
4	BR	brecciated,
5	FŞ	fissile,
6	FB	Flow Banded
7	FO	foliated,
8	FR	fragmented,
9	HO	homogeneous,
10 11	HT IB	heterogeneous, In-Situ Breccia
12^{11}	IC	intercalated,
13	LM	laminated,
14	LN	lensoidal,
15	MX	massive,
16	ND	nodular,
17	SC	schistose,
18	SL	slaty,
19	UF	uniform,
20	VR	varved,
21	XB	cross-bedded,
22	\$ \$	slickensided,
23 24	IQ EQ	inequigranular, equigranular,
25	AM	amygdaloidal,
26	AG	augen,
27	CR	crenulated,
28	FB	FUBERITE
29	LV	LEVERITE
30	XC	cross-cutting,
31	\mathbf{XL}	crystalline,
32	G;	graded bedding,
33	GN	gneissic,
34	GP	glomeroporphyritic,
35 36	<< >>	micro-veined, macro-veined,
37	PK	poikilitic,
38	PB	porphyritic,
39	P/	porphyroblastic,
40	VG	vuggy,
41	WL	welded,
42	vv	intense veining,
43	TB	thick bedded,
44	BC	bicoloured,
45	SP	spotted,
46	MT	mottled,
47 48	PO BR	porphyritic, Breccia
48 49	BR FI	Fiamme
50	CS	Carbonate Spots
51	IB	In-situ Breccia
52		Oxidized
53	BN	Banded Veins
54		Foliated,
55	< C	Slickensided

54	FO	Foliated,
55	SS	Slickensided

- 56 0X Oxidized 57 BX Brecciated,

STRUCTURAL IDENTIFIERS

Banding at 1 BN BD Bedding at 2 3 CV Cleavage at 4 CNSharp Contact at 5 D/ Dyke at 6 Fault at F/ 7 SH Shear at 8 Contact Gradational, GC 9 LM laminations at 10 VN veins at 11 FO foliation at 12 V5 Cb-(Qtz) Veins at 13 V2 Grey Chalcedony + Py Veins at 14 **V1** Qtz-Kf Veins at 15 Qtz - Carb Veins at VO 16 **V3** Qz-(Py-S1-G1)-(Ss) Veins at 17 V4 Qz-Py-Ss Veins at 18 VP Pyrite Veins at 19 **V8** Qz-Cl-Cb Veins at 20 VS Sericite Veins at Cb-Rc-Base Metal Veins at 21 V6 Cb-Qtz-Ser Veins at 22 V7 Fairly Low Foliation at 23 F4 24 F2 Very Low Foliation at 25 Faint Foliation at FI 26 F2 Very Weak Foliation at 27 Weak Foliation at F3 28 F4 Fairly Weak Foliation at 29 F5 Moderate Foliation at Fairly Strong Foliation at 30 F6 31 F7 Strong Foliation at 32 F8 Very Strong Foliation at 33 F9 Extremely Strong Foliation at 34 vo as Qtz-(Cb)Faint Foliation at 35 F1 36 vc Cb-Gl-Ss veins at 37 F0 foliation at

T-SCALE _____ 1 BN Banding at BD 2 Bedding at 3 CV Cleavage at 4 CN Sharp Contact at 5 D/ Dyke at 6 F/ Fault at 7 SH Shear at 8 GC Contact Gradational, laminations at 9 LM 10 VN veins at 11 FO foliation at 12 V5 Cb-(Qtz) Veins at 13 V2 Grey Chalcedony + Py Veins at 14 **V1** Qtz-Kf Veins at 15 vo Qtz - Carb Veins at 16 THINLY LAMINAR (<0.2 cm) 0 17 1 LAMINATED (0.2 cm to 0.6 cm) VERY THIN BEDDED (0.6 cm to 2 cm) 18 2 19 3 THIN BEDDED (2 cm to 6 cm) 20 MEDIUM THIN BEDDED (6 cm to 20 cm) 4 21 5 MEDIUM BEDDED (20 cm to 60 cm) 22 6 MEDIUM THICK (60 cm to 2 m) 23 7 THICK BEDDED (2 to 6m) 24 8 VERY THICK (6 to 20m) 25 9 EXTREMELY THICK (>20m) 26 F2 Very Weak Foliation at 27 F3 Weak Foliation at 28 < micro-29 F5 Moderate Foliation at 30 **F6** Fairly Strong Foliation at 31 F7 Strong Foliation at 32 F8 Very Strong Foliation at 33 F9 Extremely Strong Foliation at 34 vo as Qtz-(Cb)35 F1 Faint Foliation at 36 VC Cb-Gl-Ss veins at 37 FO foliation at 38 PB porphyritic, 39 P/ porphyroblastic, 40 VG vuggy, WL 41 welded, $\mathbf{v}\mathbf{v}$ 42 intense veining, 43 TΒ thick bedded, 44 BC bicoloured, 45 SP spotted, 46 MT mottled, 47 PO porphyritic, 48 BR Breccia 49 FI Fiamme CS 50 Carbonate Spots 51 In-situ Breccia ΪB 52 0**X** Oxidized 53 BN Banded Veins 54 FO Foliated, 55 SS Slickensided

- 56 0X Oxidized 57 BX Brecciated, 58 Z Primary Mineral in Rock

_____ _____ 1 BN Banding at 2 BD Bedding at 3 CV Cleavage at 4 CN Sharp Contact at 5 D/ Dyke at 6 F/ Fault at 7 SH Shear at 8 Contact Gradational, GC 9 LM laminations at 10 VN veins at 11 FO foliation at 12 V5 Cb-(Qtz) Veins at 13 **V2** Grey Chalcedony + Py Veins at 14 V1 Qtz-Kf Veins at 15 VO Qtz - Carb Veins at 16 0.003 mm 0 17 0.008 mm 1 18 2 0.03 mm 19 3 0.12 mm 20 4 0.5 mm 21 5 2.0 mm 22 6 8.0 mm 23 7 16-64 mm 24 8 6.4-256 cm 25 9 25.6 cm to 1 m 26 F2 Very Weak Foliation at 27 F3 Weak Foliation at 28 micro-< 29 F5 Moderate Foliation at 30 F6 Fairly Strong Foliation at 31 F7 Strong Foliation at 32 F8 Very Strong Foliation at 33 Α 0.003-0.004 mm 34 в 0.004-0.004 mm 35 С 0.008-0.016 mm 36 D 0.016-0.03 mm 37 E 0.03-0.06 mm 38 F 0.06-0.12 mm 39 G 0.12=0.25 mm 40 н 0.25-0.50 mm 41 Ι 0.5-1.0 mm 42 J 1.0-2.0 mm 2.0-4.0 mm 43 Κ 44 L 4.0-8.0 mm 45 М 8.0-16.0 mm 46 N 16 mm - 3.2 cm 47 0 3.2-6.4 cm 48 Ρ 6.4-13.0 cm 49 Q 13.0-25.0 cm 50 R 25.0-50.0 cm 51 S 0.5-1.0 m 52 т 1.0-2.0 m 53 U 2.0-4.0 m 54 v 4.0-8.0 m 55 W > 8.0 m

S - SCALE

DEGREE SCALE ______ 1 BN Banding at BD 2 Bedding at 3 CV Cleavage at 4 CN Sharp Contact at 5 D/ Dyke at 6 F/ Fault at 7 Shear at SH 8 Contact Gradational, GC 9 LM laminations at 10 VN veins at 11 FO foliation at 12 Cb-(Qtz) Veins at V5 13 V2 Grey Chalcedony + Py Veins at 14 Qtz-Kf Veins at V1 15 VO Otz - Carb Veins at 16 0 Degrees 0 17 1 1 Degrees 18 2 2 Degrees 19 3 3 Degrees 20 4 4 Degrees 21 5 5 Degrees 22 6 6 Degrees 7 23 7 Degrees 24 8 8 Degrees 25 9 9 Degrees Very Weak Foliation at 26 F2 27 F3 Weak Foliation at 28 < micro-29 F5 Moderate Foliation at 30 F6 Fairly Strong Foliation at 31 F7 Strong Foliation at 32 F8Very Strong Foliation at 33 0.003-0.004 mm Α 34 в 0.004-0.004 mm С 35 0.008-0.016 mm 36 D 0.016-0.03 mm 37 Ε 0.03-0.06 mm F 38 0.06-0.12 mm 39 G 0.12=0.25 mm 40 Η 0.25-0.50 mm 41 Ι 0.5-1.0 mm 42 J 1.0-2.0 mm 43 K 2.0-4.0 mm 44 L 4.0-8.0 mm 45 М 8.0-16.0 mm 46 N 16 mm - 3.2 cm 47 0 3.2-6.4 cm 48 Ρ 6.4-13.0 cm 49 Q 13.0-25.0 cm 50 R 25.0-50.0 cm 51 S 0.5-1.0 m 52 т 1.0-2.0 m 53 U 2.0-4.0 m

54

55

v

W

4.0-8.0 m

> 8.0 m

1 BN Banding at 2 BD Bedding at 3 CV Cleavage at 4 CN Sharp Contact at 5 D/ Dyke at 6 F/ Fault at 7 SH Shear at 8 GC Contact Gradational, 9 LM laminations at 10 VN veins at 11 FO foliation at 12 V5 Cb-(Qtz) Veins at 13 **V2** Grey Chalcedony + Py Veins at 14 V1 Qtz-Kf Veins at 15 VO Qtz - Carb Veins at 16 0 0 17 1 1 2 2 18 19 3 3 20 4 4 21 5 5 22 6 6 23 7 7 24 8 8 25 9 9 26 F2 Very Weak Foliation at Weak Foliation at 27 F3 28 < micro-29 F5 Moderate Foliation at 30 F6 Fairly Strong Foliation at 31 F7 Strong Foliation at 32 F8 Very Strong Foliation at 33 Α 0.003-0.004 mm 34 в 0.004-0.004 mm 35 С 0.008-0.016 mm 36 D 0.016-0.03 mm 37 Ε 0.03-0.06 mm F 38 0.06-0.12 mm 39 G 0.12=0.25 mm 40 H 0.25-0.50 mm 41 Ι 0.5-1.0 mm 42 J 1.0-2.0 mm 43 Κ 2.0-4.0 mm 44 L 4.0-8.0 mm 45 М 8.0-16.0 mm 46 N 16 mm - 3.2 cm 47 0 3.2-6.4 cm Ρ 48 6.4-13.0 cm 49 13.0-25.0 cm Q 50 R 25.0-50.0 cm 51 S 0.5-1.0 m 52 Т 1.0-2.0 m 53 U 2.0-4.0 m 54 v 4.0-8.0 m 55 W > 8.0 m

NUMBER CODE SCALE

DIP SCALE ______ 1 BN Banding at 2 BD Bedding at 3 CV Cleavage at 4 CN Sharp Contact at 5 D/ Dyke at 6 F/ Fault at 7 SH Shear at 8 GC Contact Gradational, 9 LM laminations at 10 VN veins at FO 11 foliation at 12 ν5 Cb-(Qtz) Veins at Grey Chalcedony + Py Veins at **V2** 13 14 V1 Qtz-Kf Veins at 15 vo Qtz - Carb Veins at 16 0 0 Degrees to Core Axis 17 1 Degrees to Core Axis 1 18 2 Degrees to Core Axis 2 19 3 3 Degrees to Core Axis 20 4 4 Degrees to Core Axis 21 5 5 Degrees to Core Axis 22 6 6 Degrees to Core Axis 23 7 7 Degrees to Core Axis 24 8 8 Degrees to Core Axis 25 9 9 Degrees to Core Axis Very Weak Foliation at 26 F2 27 F3 Weak Foliation at 28 < micro-29 F5 Moderate Foliation at Fairly Strong Foliation at 30 F6 31 F7 Strong Foliation at 32 F8 Very Strong Foliation at 33 Α 0.003-0.004 mm 34 в 0.004-0.004 mm 35 С 0.008-0.016 mm 36 D 0.016-0.03 mm 37 Ε 0.03-0.06 mm 38 F 0.06-0.12 mm 39 G 0.12=0.25 mm 40 Η 0.25-0.50 mm 41 Ι 0.5-1.0 mm 42 J 1.0-2.0 mm 43 Κ 2.0-4.0 mm 44 L 4.0-8.0 mm 45 М 8.0-16.0 mm 46 N 16 mm - 3.2 cm 47 0 3.2-6.4 cm 48 Ρ 6.4-13.0 cm 49 Q 13.0-25.0 cm 50 R 25.0-50.0 cm S 51 0.5-1.0 m 52 Т 1.0-2.0 m 53 U 2.0-4.0 m 54 V 4.0-8.0 m 55 W > 8.0 m

QUALIFYING MATERIALS

=<u>______</u>

- 1 KF K-FELDSPAR IN SIBX MATRIX 2 SI SILICA IN SIBX MATRIX
- 3 CB CARBONATE IN SIBX MATRIX
- 4 SL SULPHIDE IN SIBX MATRIX
- 5 GG GOUGE IN FAULT ZONE
- 6 VN VEINS

.

ALTERATION FACIES

1 KF K-FELDSPAR IN SIBX MATRIX 2 ST SILICA IN SIBX MATRIX CB CARBONATE IN SIBX MATRIX 3 SULPHIDE IN SIBX MATRIX 4 SĽ 5 GG GOUGE IN FAULT ZONE 6 VN VEINS 7 8 GC Contact Gradational, 9 LM laminations at 10 VN veins at 11 FO foliation at 12 V5 Cb-(Qtz) Veins at 13 V2 Grey Chalcedony + Py Veins at 14 V1 Qtz-Kf Veins at 15 VO Qtz - Carb Veins at 16 0 Fresh Rock 17 Propylitic 1 2 18 Chlorite 19 3 Albite 20 4 Carbonate 21 5 5 Degrees to Core Axis 22 6 Silicification 23 24 8 K-Feldspar Flooding 25 9 Degrees to Core Axis 9 26 F2 Very Weak Foliation at 27 F3 Weak Foliation at 28 < micro-29 F5 Moderate Foliation at 30 F6 Fairly Strong Foliation at 31 F7 Strong Foliation at 32 F8 Very Strong Foliation at 33 A Argillic 34 в 0.004-0.004 mm 35 С 0.008-0.016 mm 36 D 0.016-0.03 mm 37 Ε 0.03-0.06 mm F 0.06-0.12 mm 38 39 G 0.12=0.25 mm 40 H 0.25-0.50 mm 41 0.5-1.0 mm I 42 J 1.0-2.0 mm 43 Κ K-Feldspar Flooding 44 Ĺ 4.0-8.0 mm 45 8.0-16.0 mm M 46 Ν 16 mm - 3.2 cm 47 0 3.2-6.4 cm 6.4-13.0 cm 48 Ρ 49 Q 13.0-25.0 cm 50 R 25.0-50.0 cm 51 S 0.5-1.0 m 52 Т 1.0-2.0 m 53 U 2.0-4.0 m 54 V Qtz + Adularia Veins, 55 W > 8.0 m

- 56 X Hematite
- 57 BX Brecciated, 58 Z Primary Mineral in Rock

```
METALLIC MIN. FACIES
   _____
   KF
        K-FELDSPAR IN SIBX MATRIX
1
2
   SI
        SILICA IN SIBX MATRIX
3
        CARBONATE IN SIBX MATRIX
   CB
4
        SULPHIDE IN SIBX MATRIX
   SL
        GOUGE IN FAULT ZONE
5
   GG
6
   VN
        VEINS
7
8
   GC
        Contact Gradational,
9
   LM
         laminations at
10
   VN
         veins at
11
   FO
         foliation at
12
   V5
         Cb-(Qtz) Veins at
13
         Grey Chalcedony + Py Veins at
   V2
         Qtz-Kf Veins at
14
    V1
15
         Qtz - Carb Veins at
   VO
16
    0
        Negligible,
17
        Ss >Py+(G1),
    1
    2
18
        Ss-Gl-Py,
19
    3
        Py+Gl+(Sl) > Ss,
20
   4
        Sl+Gl >Py,
21
    5
        Py >Sl+Gl,
22
    6
        Pyrite in Addition To Normal Dissemination,
23
    7
        Barren Veins,
24
    8
        K-Feldspar Flooding
25
    9
        9 Degrees to Core Axis
   F2
         Very Weak Foliation at
26
27
    F3
         Weak Foliation at
28
        micro-
    <
29
    F5
         Moderate Foliation at
30
    F6
         Fairly Strong Foliation at
31
         Strong Foliation at
    F7
32
    F8
         Very Strong Foliation at
33
        Argillic
    А
34
    В
        0.004-0.004 mm
35
    С
        0.008-0.016 mm
36
    D
        0.016-0.03 mm
37
    Е
        0.03-0.06 mm
38 F
        0.06-0.12 mm
39 G
        0.12=0.25 mm
        0.25-0.50 mm
40 H
41
   I
        0.5-1.0 mm
42 J
        1.0-2.0 mm
    Κ
43
        K-Feldspar Flooding
44
    L
        4.0-8.0 mm
45 M
         8.0-16.0 mm
         16 mm - 3.2 cm
46
    Ν
47
    0
         3.2-6.4 cm
    Ρ
 48
         6.4-13.0 cm
 49
    Q
         13.0-25.0 cm
 50
    R
         25.0-50.0 cm
    S
 51
         0.5-1.0 m
 52
    т
         1.0-2.0 m
 53 U
         2.0-4.0 m
 54
    V
         Qtz + Adularia Veins,
 55 W > 8.0 m
```

STRUCTURE DIP CODE

```
K-FELDSPAR IN SIBX MATRIX
1
   KF
2
   SI
         SILICA IN SIBX MATRIX
3
         CARBONATE IN SIBX MATRIX
   CB
4
         SULPHIDE IN SIBX MATRIX
   SL
5
   GG
        GOUGE IN FAULT ZONE
   VN
6
        VEINS
7
8
   GC
         Contact Gradational,
9
   LM
         laminations at
10
   VN
         veins at
11
   FO
         foliation at
         Cb-(Qtz) Veins at
12
   V5
13
   V2
         Grey Chalcedony + Py Veins at
14
   V1
         Qtz-Kf Veins at
15
   vo
         Qtz - Carb Veins at
16
    0
        Negligible,
17
    1
        Ss > Py+(G1),
18
    2
        Ss-Gl-Py,
19
    3
        Py+Gl+(Sl) > Ss,
20
   4
        S1+G1 > Py,
21
    5
        Py > S1+G1,
        Pyrite in Addition To Normal Dissemination,
22
    6
23
    7
        Barren Veins,
24
        K-Feldspar Flooding
    8
25
    9
        9 Degrees to Core Axis
26
   F2
         Very Weak Foliation at
         Weak Foliation at
27
    F3
28
    <
        micro-
29
    F5
         Moderate Foliation at
30
    F6
         Fairly Strong Foliation at
31
    F7
         Strong Foliation at
32
    F8
         Very Strong Foliation at
33
    A
        Argillic
34
       SS- GL -PY,
    С
35
        0.008-0.016 mm
36
   D
        0.016-0.03 mm
37 E
        0.03-0.06 mm
38 F
        0.06-0.12 mm
39
   G
        0.12=0.25 mm
40 H
        0.25-0.50 mm
41 I
        0.5-1.0 mm
42
   J
        1.0-2.0 mm
43 K
        K-Feldspar Flooding
44 L
        4.0-8.0 mm
45 M
        8.0-16.0 mm
46 N
         16 mm - 3.2 cm
47 0
         3.2-6.4 cm
        6.4-13.0 cm
48 P
49 Q
         13.0-25.0 cm
50 R
         25.0-50.0 cm
51 S
         0.5-1.0 m
52
    т
         Top
53 U
         2.0-4.0 m
54
    V
         Qtz + Adularia Veins,
55
   W
        > 8.0 m
```

FRAGMENT TYPES

```
K-FELDSPAR IN SIBX MATRIX
1
   KF
 2
   SI
         SILICA IN SIBX MATRIX
3
   CB
         CARBONATE IN SIBX MATRIX
 4
    SL
         SULPHIDE IN SIBX MATRIX
 5
    GG
         GOUGE IN FAULT ZONE
 6
    VN
         VEINS
 7
 8
    GC
         Contact Gradational,
 9
    LM
         laminations at
10
   VN
         veins at
11
    FO
         foliation at
12
   V5
         Cb-(Qtz) Veins at
13
    V2
         Grey Chalcedony + Py Veins at
14
    V1
         Qtz-Kf Veins at
         Qtz - Carb Veins at
15
    VO
16
    0
        type 1 non-porphyritic
17
        Type 2 non-porphyritic
    1
18
    2
        Plagioclase porphyritic
19
    3
        Amphibole porphyritic
20
    4
        Plagioclase and Amphibole prophyritic
21
    5
        Py > S1+G1,
22
        Pyrite in Addition To Normal Dissemination,
    6
23
    7
        Barren Veins,
24
    8
        K-Feldspar Flooding
25
    9
         9 Degrees to Core Axis
26
    F2
         Very Weak Foliation at
27
         Weak Foliation at
    F3
28
        micro-
    <
29
    F5
         Moderate Foliation at
30
    F6
          Fairly Strong Foliation at
31
    F7
          Strong Foliation at
32
    F8
          Very Strong Foliation at
33
    A
         Argillic
34
        SS- GL -PY,
35
    С
         0.008-0.016 mm
36
    D
         0.016-0.03 mm
37
    E
         0.03-0.06 mm
38
    F
         0.06-0.12 mm
39
    G
         0.12=0.25 mm
40
   H
         0.25-0.50 mm
41
         0.5-1.0 mm
    Ι
42
    J
         1.0-2.0 mm
43
    ĸ
         K-Feldspar Flooding
44
    L
         4.0-8.0 mm
45
    М
         8.0-16.0 mm
 46 N
         16 mm - 3.2 cm
         3.2-6.4 cm
 47
     0
 48
    Ρ
         6.4-13.0 cm
 49
     Q
         13.0-25.0 cm
 50
    R
         25.0-50.0 cm
 51
     S
         0.5-1.0 m
 52
     \mathbf{T}
         goT
 53 U
         2.0-4.0 m
 54
    V
         Qtz + Adularia Veins,
 55 W
         > 8.0 m
```

RC	OCK NAMES	
	========	
1	ALXX	ANDESITE LAPILLI TUFF
2	ATXX	ANDESITE TUFF
3	AFPX	PORPHYRITIC ANDESITE
		ANDESITE, NONDESCRIPT
5	BXXX	BRECCIA, BLACK MATRIX
		FAULT ZONE
7	FXXX	FAULT
8	AM*X	"MESSY" ANDESITE
9	SXXX	SEDIMENTS
10	SA/9	INTERMIXED ANDESITE/ARGILLITE
11	SAXX	ARGILLITE
12	CTUF	CHERTY TUFF
13	AXXS	ANDESITE, SILICIFIED
14	ALXS	ANDESITE LAPILLI TUFF, SILICIFIED
15	QBXX	QUARTZ BRECCIA
		QUARTZ BRECCIA, DISSEMINATED SULFIDE 2-10%
17	QBXS	QUARTZ BRECCIA, SEMIMASSIVE SULFIDE 10-25%
18	QBXM	QUARTZ BRECCIA, MASSIVE SULFIDE >25%
19	VMXX	VEIN, MINERALIZED
20	V3XX	VEIN, LATE STAGE QUART-CALCITE+-CHLORITE
21		
24		

25

KEY NAMES

MN	MINERALIZATION
IB	IN-SITU BRECCIA
SA	SERICITE ALTERATION
IA	INTENSE ALTERATION
SB	SILICEOUS BRECCIA
$F\mathbf{R}$	FRACTURE ZONE
ΓŻ	FAULT ZONE
VG	VISIBLE GOLD/ELECTRUM
BK	BROKEN CORE
\mathbf{FL}	FAULT
C1	10% CORE LOSS
C2	20% CORE LOSS
C3	30% CORE LOSS
C4	40% CORE LOSS
C5	50% CORE LOSS
C6	60% CORE LOSS
C7	70% CORE LOSS
C8	80% CORE LOSS
C9	90% CORE LOSS
	IB SA SB FR FZ VG BK FL C2 C3 C4 C5 C6 C7 C8

FLAG NAMES

- 1 FAL MAJOR FAULT
- 2 CON

XX MINERALS

- 1 LE Leucoxene
- 2 AK Ankerite
- 3 RC Rhodocrosite
- 4 BA Barite
- 5 X1 Unknown mineral
- 6 9**6 222** 7 JS Jasper
- 8 AB Albite

YY MINERALS

- 1 SS Sulphosalts
- SV 2 Native Silver
- 3 TD Terahedrite
- 4 EL Electrum
- RS Ruby Silver 5
- 6 Y1 Unknown mineral
- 7 AP Arsenopyrite

	k f e l y a	from	to		T % m ROC d X	T K MAT	MAT	TEX r F A	GRA	M J N	U N 1 T	S R CT		D / P	AL	ter/ Min	ΑΤΙΟ	N	SL	jlfic Min		ALT. FACIES MIN. FACIES
	9 / L R	#	#		Q * KS	PF A CR	*	* *	*	*	÷	**	# #					A X HE				F1 F2 M M2
	К	#	#																			
	0	1 5678.90	1234.56	2 7890	12 3 4 5 6 7	3 80 01		56.7	4 78	34 56	R	5 90	123	56	78	6 90.1	2 34	56 78	7 1 0 1		M 56	8 78 90
==== ;		=======			=======				-		_											
	IDEN6 I DP	3B0202	B96CH1 N WESTMIN			Boisv Fd.	EN	MAI	RTHA I	ELLEN												
4	1	0.00	6.10)	CASI	4					Ρ											
5		6.10	95.27	7	PIKX	KF 5=	= VN+	ME	3	6	Ρ	V5			V+		V+		8)			26
6 7						AG PY A	s su	BHF		TALS	AV	0.75	5 MA	и тн	RO	>' UGH(•	POR	энү	'RY		62
8	R									ATCHY												
9										PHENO							-				3.	
10 11										9 M. BL DRAL												
12										ARE VE										21 (10)		
13										TERY												
14 15										IS. BEL ATHS '										TO		
16										S AT 7										ID.		
17																						
18	•	49.37	49.82	2	PIKX			BR			D				65		V2		D))-	66
19 20						20 %	DISS	FMI		PY IN	BRI	FCC			ANI			IN2)		L) .	
21										EGRE					/ 11 41	0,01		,				
22		57.78	57.96	3	PIKX						D								D+	•		
23 24		66.28	66.40		FALT	NG	GG.				Б	F/		52		Ρ)					
24		00.20	00.40	,	FALI				Y PY O	N SLIP			28: N			HEA	LED					
26		66.73	67.03	3	ΡΙΚΧ			BR				CN		63		V		•	D)			
27	L																		,			
28	1	95.27	129.48	5	PIKX	KF	VN=	BR	+	5	Ρ				7=		V+		D+	•		
29						GA											+ P)					
30 31) BREC Z-CB-P							AN A	ABOAI	=;			
32										COLO							5 MN		os	S.		
33	R					FELD	SPA	r Ph	ENOS	SMALL	ER	ANE	D RC	OCK :	SOF	TER	TH	AN UP	Ю	LE.		
34										O 50 D							N 4 I	MM W	IDE	AT		
35	ĸ					35 DE	:GRE	ES /	AI 128	23 WIT	HT	KAC	JE C	JALE	NA((?).						

36 R				PATCHY MODERATE KSPAR	ALTERATION	OF POR	PHYRY AT	127.4	0	
37 R 38 / 39 L	103.45	105.49	ЫКХ	BR	D	83 P)	V* I	D≈	D- D.	62 52
40 / 41 R	105.39	105.39	FALT	GG. SMEAR OF SOOTY PY, SER A	R F/ 33 AND FINELY B		ON SLIP.		D.	JZ
42 /	129.48	135.82	SIBX		PGC T	67		6+	S*	67
43 L				WA	GC B	P1 Q*	-,		Q)	56
44 R				REHEALED SILICEOUS BREC		-	RAGMENT	S OF	-,	
45 R				VEIN QUARTZ AND VARIABL	Y SILICIFIED A	ANDS WA	LLROCK W	/ITHIN	N	
46 R				SILICEOUS MATRIX. MINOR	LATE OFF-WH	IITE CB-Q	Z VEINS,			
47 R				VEINLETS TO 6 MM WIDE. GI						
48 R				20 CM AT ZONE MARGINS. S				/EINS	3	
49 R				AND PATCHES, LIGHT BROW						
50 R				RIMMED BY GL. PY MAINLY I						
51 R				DISCONTINUOUS FRACTURI						
52 R 53 R				131.30 - 131.75, 132.00 - 132. MATERIAL FROM LOWER PA						
53 R 54 R				KSPAR BRECCIA FRAGMENT						
55 R				MILKY WHITE SILICEOUS MA					~	
56 /	134.60	135.05	ΑΧΧ		D CN 4	5	V) I	D=	D.	
57 L	101.00	100.00		UG		P)			D-	
58 R				UPPER CONTACT DISCRETE	.				-	
59 /	135.82	169.80	AXLT	MB 8	P 6)) V	* D+			
60 L				GA		P+P)				
61 R				ALTERATION AND MINERALI	ZATION DECF	REASE WI	TH DEPTH	•		
62 R				WATERY GREY TO OFF-WHI	-			.Y		
63 R				BANDED. VEINS TO 12 MM W						
64 R				IRREGULAR PY MASSES. PA		TO MODE	RATE KSP	AR S	TAIN	
65 00 (4 40 50	1 40 50		<u>60</u>		'n				
66 / 67 R	149.50	149.50	FALT		RF/ 33	3				
68 /	149.50	149.97	AXLT	BLACK CL ON SMOOTH SLIP	D.	73				
69 L	143.00	140.07		GA	0	15				
70 /	150.80	150.80	FALT		RF/ 40	5				
71 R	100.00			4 MM BLACK CL. PY AND FIN		•				
72 R				WALLROCK FINELY BRECCI			ACROSS			
73 R				15 TO 25 CM BOTH ABOVE A	ND BELOW FA	AULT.				
74 /	150.65	151.32	AXLT	BR	D	72				
75 L						P=P)				
76 /	155.15	156.10	AXLT		D CN 25	5 64	D1			
77 L				GU		P+	_			
78 /	169.20	172.56	DXPX		PF/ 20		. D+			
79 L					25					
80 R										
81 R				PALE GREENISH BROWN, BL VEIN QUARTZ ALONG LOWE					:	

82 /	169.20	169.80	FALT	
83 R	170 50			MODERATELY BROKEN CORE; CL SLIP AT 169.62. FAIRLY MAJOR FAULT.
84 /	172.56	174.40	AXLT	
85 R 86 /	172.85	172.85	FALT	AS FOR 135.82 - 169.80. - GG* R F/ 10
87 R	172.00	172.05	FALI	GG* R F/ 10 CLAY AND PY GOUGE ON SLIP.
88 /	174.40	180.00		XA KF M B 6 P CN 15 D)
89 L		100.00	0/11/	UG F/ 50 P) P)
90 R				SOMEWHAT ALTERED, NON-MAGNETIC.
91 /	177.00	178.80	AXLT	
92 R				AS FOR 135.82 - 169.80.
93 /	178.65	178.80	FALT	R
94 R				15 CM MODERATELY BROKEN CORE;; ?? ORIENTATION.
95 /	180.00	205.06	AXLT	
96 L				GA
97 R	100.07	100.40	DIDI	AS FOR 135.82 - 169.80.
98 / 99 L	189.87	190.19	DIDI	R CN 70
100 /	190.84	191.72	DIDI	3A R CN 55
100 / 101 L	100.04	131.74	וטוט	3A 3A
102 /	197.46	198.77	ыкх	KFPF R CN 22 V+
103 L				G
104 R				APPEARS TO BE TWO GENERATIONS OF PORPHYRY. LATE CB
105 R				VEINS TO 13 MM WIDE, RANDOMLY ORIENTED.
106 /	203.40	203.45	VEIN	R CN 35 V6 V4 D)
107 R				4 CM WIDE.
108 /	205.06	255.23	D/AN	
109 L				GA P) P)
110 R 111 R				BRECCIATED PY-QZ-CB +/- PY VEINS AT 212.00, 219.25, 238.70 4 MM WIDE AT 15 DEGREES. UNIT MAY
112 R				BE MASSIVE FLOW.
113 /	210.70	212.18	D/AN	
114 R	-10.70	212.10	0// 41	MODERATELY BRECCIATED BAND. BX'D PY-QZ-SL(?) VEIN 15 MM
115 R				WIDE SUBPARALLEL CORE AXIS FROM 211.80 -212.18.
116 /	223.05	223.50	AFXX	
117 L				P* D)
118 R				SLAS REDDISH BROWN MASSES AV. 1 TO 1.5 MM. GLAS FAINT
119 R				DISSEMINATIONS AND AS WISPY MASSES. UPPER CONTACT CHLORITIC
120 R				SLIP AT 25 DEGREES.
121 /	225.70	226.20	AFXX	
122 L				
123 R 124 R				LIGHT REDDISH BROWN TO BROWN -ORANGE, MOSTLY AS MASSES 2 TO 4 MM. GL
124 K	224 70	245 27	AEVV	PATCHES TO 3 X 10 MM. NO CP SEEN. VEIN QZ MAINLY WATERY GREY.
1257 126 L	224.79	245.27	AFXX	C BR D CN 2063 V) Q= D- P) P+ Q*
127 /	225.23	289.41	AXLT	
		200.11	/ V L	

128 L				G								P)	P)				
129 /	259.30	259.93	SBXX			в	RN		R	CN	B'20 :		·′ v)	۵))	D<	
130 L	239.30	200.00	00/0	WA								v1	D* */		''	D*	
130 L 131 R						лш			PV	CREV T				MTH 20	ר %	INCLUSI	ONS
																	NS WITHIN
132 R															336		
133 R			A \/ 1 -							BANDS							
134 /	264.70	264.80	AXLT		~ 7		~		_	VN	25			0			
135 R										MM WIE						-	
136 /	267.48	268.75	AXLT			В	MI		D			V2	*	L)+	D-	
137 L													P+			D*	
138 R										IEALED	; PALE	GR	EEN VE	IN QUA	ART	Ζ.	
139 R					HIDE	S A	S BLE	EBS AV.									
140 /	269.41	274.77	D/AN			MX		5	Р	CN	32 \		A)	C)*		
141 L				GA								P)	P)				
142 /	274.77	302.45	AXL1	Ī		М	B	7	Р		,	V)	V+	C)+		
143 L				G								P)	P)				
144 R				PY V	EIN 4	ΜN	I WIDI	E AT 20	DEC	GREES A	AT 276	6.35.	D/AN 20	OMM V	VID	E AT 15 D	EGREES AT
145 R				AT 27	9.26;	DY	KE CI	OUDY,	AP	HANITIC	, LIGH	IT GR	EEN G	REY.			
146 R				QZ-S	L-GL-	ΡY	STRIN	IGERS	AT 1	15 TO 40	DEGI	REES	6 AT 29	4.98, 29	95.8	6, 298.25	, 298.98,
147 R							00.73.										
148 /	284.70	285.15	D/AN						R	CN	60						
149 L				3A													
150 R					FRAT	F۱	Y MAG	NETIC.	LIG	HT GRE	EN. C	LOU	DY. CH		ΛAF	RGINS.	
151 /	290.60	292.10	D/AN						R				,				
152 L	200.00	202.10	Dir i	3A													
153 /	293.05	295.60	D/AN						R								
154 L	233.00	230.00	Diran	3A													
155 /	302.45	303.29	SBXX			в	мт			CN	20 (67		Г)+	D-	
156 L	302.45	505.25	00//	WG		U	IAI f			BGC		P1	P)			D)	
150 L 157 R						C M					-				Δł	ONG MAR	CINS
158 R																	ER WHITE
159 R								GRADA	101		035		. KOPA		CU	I DI LAI	
160 R			A 1/1 T					•		F /	64			Γ.	-		
161 /	303.29	320.28	AXLT			MT		8		F/	61		V*	D+	D		
162 L				GA								P* P)			D		
163 R																PY BELO	
164 R																	UNDERLYING
165 R				DYKE	E MAR	KE	D BY	MODER	ATE	ELY TO F	INEL	Y BRO	OKEN C	CORE A	CR	OSS 17 C	М.
166 R										20 CM V							
167 R																	BPARALLEL
168 R				C.A. \	NK KS	SPA	R ST	ain in f	PATO	CHES W	ITH F/	AINT	MARGI	NS AT 3	318	.40.	
169 /	316.30	316.30	FALT	-					R	F/	20						
170 R				HEAL	ED P	YRI	TIC S	LIP.									
171 /	319.07	319.07	FALT		GG-				R	F/	25						
172 R				SME	R CL	AY	EY, SI	ERICITIC	C G	DUGE O	N SMO	DOTH	I SLIP/				
173 /	320.28	321.80	D/FP			MX		4	P								
								-	-								

D
OX.
Y
S
2

	k f e l y a	from	to	m	% ROCI X	T K MAT	MAT			GRA	M I N	-	S R CT	A Z	0 / F	l		ER/ /IIN		ION		SL	JLF MI	ides N		ALT. F Min. F		
	9 / L R	#	#	rec Q rqd K		PF A CR	•	*	* *		*	*	**	# #	* *:						ι Χ IE					1 F2 1 M2		
	к	#	#			_							_					_										
	0	1 5678.90	1234.56	2 7890_13	2 3 4 5 6 7	3 89 01		56	78	4	34 56	ì	5 90	123	5	67	8 9	6 101	23	14 5	6 78	7 190		34 5	67	8 09.81		
====		============			= = ====					===					-													
	iden I DP		96CH2 NO WESTMIN			BOISVI TD.	ΞN	МА	RTH	IA EI	LLEN																	
4	1	0.00	3.66		CAS	1						Ρ																
5		3.66	105.36		PIKX	KFP	VN)	М	Β'	' '(6	Ρ				V			١	/*		D*				6		
6						AG		~~~								<u></u>	•	2+ F		.		• • •			-	2		
	R R										Y, CO IT. HB															J		
9											PERVA																	
10											/M AC																	
11											S MOS							•										
12											WITH														- • -			
13 14											LE B96)F 7 X														:AH	ł.		
14											05. MC														ST			
16						STAIL																			0.			
17																												
18		16.77	34.32		PIKX			B	MX			D				V	=_	P	י1			D)		D*	6	6		
19 20						UW	AUE	ת ח		000		000	114 B		-00		•)+ 		-		<u>, , , , , , , , , , , , , , , , , , , </u>	۸ TT I	D*				
20											AMY I							•						=LY				
22											ERE A	-								- •			-	BY				
23										-	EACH																	
24											IOM 10																	
25								•			GREE																	
26											DISSE																	
27											AND			ACH	IED	PC	DRF	эНλ	(R)	(A]	L BC	TT	ЭM	OF I	NTE	ERVAL		
28		_							ELY	TER	TIAR					_												
29		25.30	25.30		FALT		GG)			~ •			F/		2	3												
30 31		75.94	78.46		ЫКХ	з MM	PAL	E GI M I		υLA	YEY (שט D	JOF	•			÷	D	1			D+						
32		70.94	/0.40		LIVY	uw		IVI	ла			υ				-	+) P	-				U†						
33							CHE	DE	VE	LOPI	E ARC	UN	D F	AUL	ТА		, ·		/N	QΖ	HEF	RE V	νні	TE.				
34											PENC														· 01	F		
35											ATION																1	

20 0											
36 R	77 70	77.07		EACHED IN	ERVAL.						
37 /	77.70	77.97	FALT			R					
38 R		~~~~		RATELY BR						FACES	ð.
39 1/	85.12	98.90	PIKX			D		_ P)	D)		
40 L			GA					P+			
41 R			LIGH	GREYISH	REEN A	ND GREYIS	SH BROW	N PATCHE	S. STREA	AMING	SERICITE
42 R			AND	QUARTZ ALT	ERATIO	N HAS OCC	URRED G	IVING ROO	CK THE A	PPEA	RANCE OF BRECCIA.
43 L			93.7 9			2 -3 % IN	MATRIX. F	ROM 90.8	6 - 91.61	AND 9	5.00 - 96.44 ROCK CONTAINS 60
44 R						•					FIED ZONES), AND
45 R											S, AND WITHIN IRREGULAR
46 R											HAVE FAINT BOUNDARIES
47 R				SULAR PY V							HAVE I AINT BOONDARIES.
			PIKX			CN	50 V+	13 AT 30.2		V)	
48 /			PIKA					D.	8)	V) V-	
49 L			0440							•	
50 R											-PY-SL VLTS AV.
51 R				MM WIDE S		ALLEL C.A.	ANDATA	ABOUT 401	DEGREE	\$100	J.A. VLIS
52 R				INUE TO 103	3.25 M.						
53 /	103.25	104.14	VEIN			CN	20				
54 L			W			CN	65				
55 R				WHITE QZ-C							
56 /	105.36	141.40	AXPX	МВ	5	P F1	20 P	P*	D)	D.	
57 L			4G					P+		D-	
58 R			VERY	FINE SPECH	(LES YE	LLOW-GRE	EN LEUC	OXENE. PE	RVASIVE	=	
59 R			GREE	N CL(?) ALT	ERATION	I; FAINT PH	IENOCRY	STS. OFTE	N GREE	NISH	
60 R			BLAC	K CL COATIN	IG FRAC	TURE SUR	FACES. F.	AINT FABR	RIC		
61 R			AT 20	DEGREES.	ANDESIT	E PORPHY	'RY?				
62 /	106.06	106.06	VEIN			R CN	60				
63 L			W			CN	43				
64 R					3-CL VEI						
65 /	129.10	129.10	VEIN			RCN	18 V7		D+	V2	
66 L	.20.10	120.10	AB				10 11			•-	
67 R				ISH BLUE Q							
68 /	131.41	131.41	FALT	GG*		R	34				
69 R	101.41	131.41		R GREY, CL							
70 /	134.19	124.42	PIKX	BR	ATEL OU		30 P4	V=	D=	D*	
		134.43						-	-	_	00.44
71 /	141.40	142.90	QBXX	BR		P CN	20 76	V+	7)	7+	66 41
72 L			6A			CN		P) P*		Q+	44
73 R				QUARTZ AS							
74 R				INS. CB AS			. INTERVA	AL ABOUT !	50 % INTI	ENSEL	Y
75 R			BREC	CIATED(?) P	ORPHYF	RY.					
76 /	142.90	158.55	AXLT	MX	8	Р	V) I	P* V)	D-	V. V	
77 L			5G					P)			
78 R							UCOXEN	E(?) SPECH	KLES VAF	RY FR	OM TRACES TO
79 R			LOCA	LLY 2 % ACF	OSS 20	TO 30 CM.					
80 /	142.90	145.25	APXX	BR	6	D GC	B 82	∨*	D+	D)	62
81 R			5A					P) P*		D	51
										,	

82 R 83 R				GRADATIONAL CONTACT OVER ABOUT 50 CM WITH UNDERLYING AXLT. LOWERMOST 110 CM OF INTERVAL IS BEST-MINERALIZED.
84 R				NO KSPAR STAINED AT 145 A
85 /	158.55	270.05	AXP)	(MF 6 PCN 25V+D)V)D)
86 L				4G R F/ 10
87 R				WATERY GREY, FAINT, SUBHEDRAL PLAG PHENOS. 2 % PY (AND SL?) AS
88 R				IRREGULAR VLTS TO 4 MM WIDE FROM 170.10 - 170.50. NO KSPAR STAINED AT
89 R				240.40. SAY 2 % KSPAR STAINED AT 254.00 AS FAINT, BRECCIATED VLTS.
90 R				TWO QZ-PY-GL VEINS 8 MM WIDE AT 30 DEGREES AT 194.09. 5 % PY-GL-SL VLTS
91 R				AND IRREGULAR MASSES ACROSS 20 CM AT 211.95. 1 % DISSEMINATED SL ACROSS
92 R				10 CM AT 219.90. FEW SL VLTS TO 3 MM AT 40 DEGREES FROM 229.40 - 229.80.
93 R				QZ-PY-GL VEIN 15 MM AT 20 DEGREES AT 239.77. MODERATELY BRECCIATED
94 R				FROM 239.60 - 240.40.
95 /	161.52	163.54	D/AN	······································
96 L				
97 R				MODERATELY MAGNETIC. LATE QZ-CB-CL VEINS 23 CM WIDE ALONG BOTH UPPER
98 R 99 /	164.00	164 50	FAL]	AND LOWER DYKE CONTACTS. FAULT SLIP BOTTOM DYKE CONTACT.
100 R	164.00	164.50	FALI	GG- R 40 GREEN CHLORITIC GOUGE ON SLIP AT 164.40. MODERATELY BROKEN
101 R				CORE OVER INTERVAL.
102 /	231.06	238.52	AXL1	
103 R	201.00	LUU.UL		AS FOR 145.25 - 158.55.
104 /	248.56	253.70	AXP)	
105 L				6G F/ 25
106 R				POSSIBLE APOPHYSIS OF PREMIER PORPHYRY, THOUGH NO MEGACRYSTS
107 R				SEEN. LOWER CONTACT FAULT WITH 3 MM GREY GOUGE; FINER GRAINED
108 R				NORMAL" AXPX BELOW FAULT IS INTENSELY TO MODERATELY BRECCIATED
109 R				ACROSS 70 CM; THIS INTERVAL CONTAINS 3 % DISSEMINATED PY AND 0.3 %
110 R				DISSEMINATED GL.
111 /	256.50	258.65	AXP)	-, .,
112 L				V* V-
113 R	050 54	050.00	C A I 7	IRREGULAR STRINGERS AND VEINLETS TO 12 MM WIDE, MOSTLY AT ABOUT 25 DEGREES.
114 /	259.54	259.80	FALT	
115 R 116 R				35 CM FINELY BROKEN CORE AND GREY-GREEN CHLORITIC GOUGE.
117 /	265.50	266.24	D/AN	CORE MODERATELY TO LOCALLY FINELY BROKEN 256.00 - 262.50.
118 L	200.00	200.24	DIAN	R CN 40 A) 7A F/ 36
119 R				MODERATELY MAGNETIC. CHILLED MARGIN 9 CM WIDE AT TOP.
120 R				LOWER CONTACT FAULT SLIP WITH 1 MM GOUGE.
121 /	267.17	267.79	D/AN	
122 L	201111	201.10	2000	7A CN 38
123 R				MODERATELY MAGNETIC. CHILLED MARGIN 6 CM WIDE ALONG LOWER CONTACT.
124 /		270.05		K
125 R				END OF HOLE.
126 RSUM				TROPARI AT 268.22 M AZ. 241 DEGREES INCLIN63 DEGREES.
127 RSUM				MINERALIZED ZONE ALONG PORPHYRY / VOLCANIC CONTACT AS

128 RSUM	FOUND IN HOLE B96CH01. ZONE IN H
129 RSUM	AS WIDE AS IN HOLE -1.

FOUND IN HOLE B96CH01. ZONE IN HOLE -2 BETTER-MINERALIZED BUT NOT AS WIDE AS IN HOLE -1.

Τ% U S A D ALTERATION k f Т Q TEXT м SULFIDES ALT. FACIES line m ROCK MAT GRA 1 NRZ/I MIN MIN MIN. FACIES e I from to I CT Ρ y a dΧ MAT F AG N т g # Q PFA ** *** Q LEC C A X P C G Y F1F2 * # гес rad KS CR # *** KMCEHESSSL MIM2 L R к 2 0 3 4 5 6 7 8 7890 12 3 4567 89 01 234 56 78 90 123 56 78 90 12 34 56 78 90 12 34 56 78 90 1234 5678.90 1234.56 34 56 B96CH3 NQ 960814 BOISVEN 1 IDEN6B0202 2 I DP WESTMIN RESOURCES LTD. MARTHA ELLEN 3 4/ 0.00 3.66 CASN Ρ 5/ 3.66 32.30 PIKX KFQ VN*M B ' ''6 Ρ V* ٧. D D. D-6 L '5U P* D-DENSE, SULPHIDES VERY FINELY DISSEMINATED: OCCASSIONAL SPECKLES GLAND SL. 7 R 8 R PORPHYRY MUCH MORE MINERALIZED THAN IN HOLES B96CH01, -02, PY THROUGHOUT 9 R INTERVAL MAY BE AFTER HEMATITE? CP SPECKS TO 1 MM ALONG MARGINS OF PY 10 R MASSES UP TO 7 X 25 MM ACROSS AT 31.70 M. NO KSPAR STAIN AT 14.30. 11 R WEAK TO MODERATE KSPAR IN PORPHYRY MATRIX AT 29.10 M. LHOTKA THINKS THAT 12 R THIS ROCK MAY BE PART OF MAP-UNIT 6. '''6 13 / 3.66 8.68 PIKX D P+ D* 14 L $P+P^*$ GA 15 R SUBROUND TO ANGULAR FRESH PORPHYRY REMNANTS IN LIGHT GREY. 16 R PERVASIVELY SERICITE- AND QZ-ALTERED MATRIX. FRESH REMNANTS TO 14 CM ACROSS. 17 R ROCK HAS BRECCIA-LIKE APPEARANCE. 18 / 21.68 21.85 FALT R F/ 12 19 R MODERATELY TO FINELY BROKEN CORE WITH LIMONITE ON FRACTURE 20 R SURFACES, FRACTURE AT 12 DEGREES AT 21.68. 21 / 24.4 24.65 FALT R 22 R LIKELY FAULT; MODERATELY BROKEN WITH SOME GROUND CORE. 23 / 32.3 42 PIKX VN* MX Ρ 6 V* 6*AD34' D* 24 L 3A P* 7) 25 R 1 TO 2 % BRICK RED, IRREGULAR HEMATITE VEINLETS TO 4 MM ACROSS 26 R FROM 38.75 TO 40.25. 27 / 42 80.17 PIKX VN) MX 6 P GC V* D* в S 28 L 7* GA 29 R GRADATIONAL CONTACT ACROSS 5 CM WITH UNDERLYING QBXX. PY XTALS 30 R SUBHEDRAL, DISSEMINATED, AND UP TO 1.5 MM ACROSS, MATRIX HAS 31 R MODERATE KSPAR STAIN AT 43.60. 32 / 75.7 8* V. 58.73 PIKX VN+M BR D V+ S 33 L 8T V-34 R BLEACHED ENVELOPE ALONG FAULTS. GRADATIONAL CONTACTS WITH 35 R ADJACENT UNBLEACHED PORPHYRY, HAIRLINE TO 2 MM PY-GL VLTS BELOW

36 R				71.80 FORM SAY 1 % OF THE ROCK VOLUME.
37 /	59.74	60.09		Q C VN5 BR K CN 55 V4 V1 8) D)
38 L				GA
39 R				LOWER THIRD LATE, OFF-WHITE CB-QZ VEIN.
40 /	70.68	70.94	VEIN	
41 L				9G
42 R				OPEN CAVITIES TO 12 MM ACROSS LINED BY CLEAR, DRUSY QUARTZ
43 R				CRYSTALS. LOCAL TRACES BLUISH, VERY FINELY DISSEMINATED
44 R				SULPHIDES; GL? TOP CONTACT FAULT SLIP.
45 /	71.04	71.14	FALT	BR K F/ 20
46 R				IRREGULAR FRACTURE AT 20 DEGREES COATED BY YELLOW-BROWN
47 R	70.05	70.0		LIMONITE AND A MINOR AMOUNT OF FINELY BROKEN CORE. GG* K F/ 42
48 / 40 D	73.65	73.8	FALT	GG* K F/ 42 SERICITIC GOUGE ON SLIPS AT 42 DEGREES; MOERATELY BROKEN CORE.
49 R 50 /	76.00	78.5	D/AN	R
507 51 L	76.28	70.0		4A
51 L 52 R				WEAKLY MAGNETIC.
53 /	80.17	82.35	QBX	
54 L	00.77	02.00		8A P= D-54
55 R				PY (AND CP?) MASS 4.3 X 11.0 CM WITHIN IRREGULAR VEIN AT 20 DEGREES AT 81.08.
56 R				PY VEIN CUT BY LATE WHITE CB VEINLETS TO 4 MM WIDE. VEIN QUARTZ GRADUAL CHANGE
57 R				FROM MEDIUM GREY AT TOP OF VEIN TO PALE GREY-GREEN AT BOTTOM OF VEIN.
58 R				5 % STAINED KSPAR FRAGMENTS WITHIN SILICEOUS BRECCIA MATRIX AT 82.25 M.
59 /	82.35	128.56	AXXX	
66.1				GA ⁽ 8)
60 L			(GA 0)
60 L 61 R				LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE
			I	
61 R			 (LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE
61 R 62 R				LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83,70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE.
61 R 62 R 63 R 64 R 65 R				LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M.
61 R 62 R 63 R 64 R 65 R 66 /	93.8	96.35		LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D-
61 R 62 R 63 R 64 R 65 R 66 / 67 L	93.8	96.35	AXXX	LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D- D.
61 R 62 R 63 R 64 R 65 R 66 / 67 L 68 R			AXXX	LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D- D. OCCASSIONAL SHORT, DISCONTINUOUS, WISPY STRINGERS.
61 R 62 R 63 R 64 R 65 R 66 / 67 L 68 R 69 /	101.07	101.96	AXXX	LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D- D. OCCASSIONAL SHORT, DISCONTINUOUS, WISPY STRINGERS. VN3 BR D CN 43 V3 V= 8= D-
61 R 62 R 63 R 64 R 65 R 66 / 67 L 68 R 69 / 70 /			AXXX AXXX VEIN	LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D- D. OCCASSIONAL SHORT, DISCONTINUOUS, WISPY STRINGERS. VN3 BR D CN 43 V3 V= 8= D- R CN 75 V8 V2
61 R 62 R 63 R 64 R 65 R 66 / 67 L 68 R 69 / 70 / 71 L	101.07 113.85	101.96 114.32	AXXX AXXX VEIN	LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D- D. OCCASSIONAL SHORT, DISCONTINUOUS, WISPY STRINGERS. VN3 BR D CN 43 V3 V= 8= D- R CN 75 V8 V2 W 55 V+
61 R 62 R 63 R 65 R 66 / 67 L 68 R 69 / 70 / 71 L 72 /	101.07	101.96	AXXX AXXX VEIN FALT	LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D- D. OCCASSIONAL SHORT, DISCONTINUOUS, WISPY STRINGERS. VN3 BR D CN 43 V3 V= 8= D- R CN 75 V8 V2 W 55 V+ R
61 R 62 R 63 R 65 R 66 / 67 L 68 R 69 / 70 / 71 L 72 / 73 R	101.07 113.85	101.96 114.32	AXXX AXXX VEIN FALT	LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D- D. OCCASSIONAL SHORT, DISCONTINUOUS, WISPY STRINGERS. VN3 BR D CN 43 V3 V= 8= D- R CN 75 V8 V2 W 55 V+ R MODERATELY BROKEN, SLIGHTLY BLEACHED CORE. 50 % VEIN
61 R 62 R 63 R 64 R 65 R 66 / 67 L 68 R 69 / 70 / 71 L 72 / 73 R 74 R	101.07 113.85 116.48	101.96 114.32 116.74	AXXX AXXX VEIN FALT	LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D- D. OCCASSIONAL SHORT, DISCONTINUOUS, WISPY STRINGERS. VN3 BR D CN 43 V3 V= 8= D- R CN 75 V8 V2 W 55 V+ R MODERATELY BROKEN, SLIGHTLY BLEACHED CORE. 50 % VEIN QUARTZ ACROSS 10 CM WITH 2 - 3 % DISS. PY BELOW FAULT.
61 R 62 R 63 R 65 R 66 / 67 L 68 R 69 / 70 / 71 L 72 / 73 R 74 R 75 /	101.07 113.85	101.96 114.32	AXXX AXXX VEIN FALT	LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D- D. OCCASSIONAL SHORT, DISCONTINUOUS, WISPY STRINGERS. VN3 BR D CN 43 V3 V= 8= D- R CN 75 V8 V2 W 55 V+ R MODERATELY BROKEN, SLIGHTLY BLEACHED CORE. 50 % VEIN QUARTZ ACROSS 10 CM WITH 2 - 3 % DISS. PY BELOW FAULT. Q CB BR R CN 65 Q*
61 R 62 R 63 R 65 R 66 / 67 L 68 R 69 / 70 / 71 L 72 / 73 R 74 R 75 / 76 L	101.07 113.85 116.48	101.96 114.32 116.74	AXXX AXXX VEIN FALT	LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D- D. OCCASSIONAL SHORT, DISCONTINUOUS, WISPY STRINGERS. VN3 BR D CN 43 V3 V= 8= D- R CN 75 V8 V2 W 55 V+ R MODERATELY BROKEN, SLIGHTLY BLEACHED CORE. 50 % VEIN QUARTZ ACROSS 10 CM WITH 2 - 3 % DISS. PY BELOW FAULT. Q CB BR R CN 65 Q* W CL Q*
61 R 62 R 63 R 65 R 65 R 66 / 67 L 68 R 69 / 70 / 71 L 72 / 73 R 74 R 75 / 76 L 77 R	101.07 113.85 116.48	101.96 114.32 116.74	AXXX AXXX VEIN FALT	LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D- D. OCCASSIONAL SHORT, DISCONTINUOUS, WISPY STRINGERS. VN3 BR D CN 43 V3 V= 8= D- R CN 75 V8 V2 W 55 V+ R MODERATELY BROKEN, SLIGHTLY BLEACHED CORE. 50 % VEIN QUARTZ ACROSS 10 CM WITH 2 - 3 % DISS. PY BELOW FAULT. Q CB BR R CN 65 Q* W CL Q* 3 % COMBINED SL AND GL AS IRREGULAR MASSES OVER 15 CM WITHIN AND
61 R 62 R 63 R 65 R 65 / 67 L 68 / 70 / 71 L 73 R 74 R 75 / 76 L 77 R 78 R	101.07 113.85 116.48 123.18	101.96 114.32 116.74 123.25	AXXX AXXX VEIN FALT VEIN	LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D- D. OCCASSIONAL SHORT, DISCONTINUOUS, WISPY STRINGERS. VN3 BR D CN 43 V3 V= 8= D- R CN 75 V8 V2 W 55 V+ R MODERATELY BROKEN, SLIGHTLY BLEACHED CORE. 50 % VEIN QUARTZ ACROSS 10 CM WITH 2 - 3 % DISS. PY BELOW FAULT. Q CB BR R CN 65 Q* W CL Q* 3 % COMBINED SL AND GL AS IRREGULAR MASSES OVER 15 CM WITHIN AND BELOW VEIN.
61 R 62 R 63 R 65 R 65 / 67 L 68 R 69 / 70 / 71 L 73 R 75 / 76 L 77 R 78 R 79 /	101.07 113.85 116.48	101.96 114.32 116.74	AXXX AXXX VEIN FALT VEIN QBXX	LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D- D. OCCASSIONAL SHORT, DISCONTINUOUS, WISPY STRINGERS. VN3 BR D CN 43 V3 V= 8= D- R CN 75 V8 V2 W 55 V+ R MODERATELY BROKEN, SLIGHTLY BLEACHED CORE. 50 % VEIN QUARTZ ACROSS 10 CM WITH 2 - 3 % DISS. PY BELOW FAULT. Q CB BR R CN 65 Q* W CL Q* 3 % COMBINED SL AND GL AS IRREGULAR MASSES OVER 15 CM WITHIN AND BELOW VEIN. B MT P CN 54 75 V+ D+ D-
61 R 62 R 63 R 65 R 65 / 67 L 68 / 70 / 71 L 73 R 74 R 75 / 76 L 77 R 78 R	101.07 113.85 116.48 123.18	101.96 114.32 116.74 123.25	AXXX AXXX VEIN FALT VEIN QBXX	LOCALLY MODERATELY BRECCIATED ACROSS 10 TO 40 CM WHERE QZ-CB +/- PY-GL-SL STRINGERS PRESENT. LOCAL CHLORITIC SELVAGES ALONG VEINS. AXXX UNIFORM, MONOTONOUS. MODERATELY BRECCIATED ABOVE 83.70. LHOTKA THINKS THAT UNIT MAY BE EARLY SILL OR DYKE. 2 % STAINED KSPAR VEINLETS TO 3 X 20 MM AT 85.00 M. VN1 BR D V1 V+ D) D- D. OCCASSIONAL SHORT, DISCONTINUOUS, WISPY STRINGERS. VN3 BR D CN 43 V3 V= 8= D- R CN 75 V8 V2 W 55 V+ R MODERATELY BROKEN, SLIGHTLY BLEACHED CORE. 50 % VEIN QUARTZ ACROSS 10 CM WITH 2 - 3 % DISS. PY BELOW FAULT. Q CB BR R CN 65 Q* W CL Q* 3 % COMBINED SL AND GL AS IRREGULAR MASSES OVER 15 CM WITHIN AND BELOW VEIN.

82 L				GA						
83 /	128.83	137	DIDI		1	D GC	В			
84 L				1A						
85 R				DARK GREY TO BLAG	CK, VER'	Y FINE G	RAINED, M	ODERATEL	Y MAC	GNETIC.
86 R				LOOKS MUCH LIKE D	AN EXC	EPT GR	ADATIONAL	_ CONTACT	FACRO	OSS A COUPLE OF
87 R				METRES WITH UNDE	RLYING	AXXX.				
88 /	155.7	161.5	DIDI		I	D F7	40		D+	
89 R				LOCAL MODERATEL	Y WELL I	DEVELO	PED FABRI	C.		
90 /	168.8	168.8	VEIN	Q CB		R CN	35		D	D
91 L				6U PY						
92 R				QZ-CB-PY-GL VEIN 1	5 MM WI	DE AT 35	DEGREES	i.		
93 /	175.84	176.34	DIDI			D				
94 L				8G			P)	P+		
95 R				BLEACHED ENVELO	PE ALON				IEAR (OF PALE
96 R				GREY CLAYEY GOUC						
97 /	181	193.8	DIDI		I	D F3	40		D+	
98 R				AS FOR 155.70 - 161.	50 WITH	LOCAL.	MODERATI	ELY WELL-	DEVEL	OPED
99 R				FABRIC AT ABOUT 40						
100 /	193.8	209.09	D/Di	VN- MX	6 (P CN	25 V-	V-	D.	
101 L				GA				P-		
102 R				SUBHEDRAL, BLOCK	Y PLAG	PHENOS	WKLY ALT	ERED TO P	PALE Y	ELLOW-
103 R				GREEN EPIDOTE(?).	PY VERY	Y FINELY	DISSEMIIN	IATED.		
104 /	205.28	207.97	DIDI	VN) B FO	[D		P1	<)	
105 L				8T			P	F		
106 R				BLEACHED, CLAY-AL	TERED	FAULT E	NVELOPE.	MODERAT	ELY BF	ROKEN 206.50
107 R				- 207.97. CLEAR, DR	USY QZ :	XTALS T	0 2 MM AL(DNG FRAC	TURE S	SURFACE
108 R				AT 35 DEGREES.						
109 /	207.6	207.85	FALT		F	R F/	46			
110 L				6A						
111 R				FINELY CRUSHED AN	ND REHE	EALED B	RECCIA; BA	NDED AT 4	16 DEG	REES.
112 /	209.09			END OF HOLE						
113 RSUM				MINERALIZED QUAR						
114 RSUM				ANDESITE CONTACT	ZONEI	ESS MIN	IERALIZED	AND MORI	E NARI	ROW THAN
115 RSUM				IN HOLES B96CH01, I	B96CH02	2. TROPA	RI AT 207.2	26 M AZ. 24	1DEG	REES,
116 RSUM				INCLIN 66 DEGREE	S.					

line k f e l from y a g	to m d X	ROCK	Q TEXT MAT GR/ F AG		SA RZ/ CT	D ALTERATION I MIN P	SULFIDES ALT. FACIES MIN MIN. FACIES
9 # L R	# rec Q rqd KS	* PFA CR	• * *	• •	** # * ** # *	*** Q LEC C A X	KPCGYF1F2 SSSLMM2
K #	#				_	_	
0 1	2	4507 00 0		04.50	5	6	7 8
1234 5678.90		4567 89 0°		34 56	90 123		78 90 12 34 56 78 90
1 IDEN6B0202 2 I DP	B96CH4 NQ 960812 WESTMIN RESOURC	BOISV ES LTD.	EN MARTHA	ELLEN			
3 4 / 0.00) 3.66	CASN		Р			
5 / 3.66		PIKX KFP	VN*M B	6 P		P) P)	D*
6 L		8T				P+	
7 R							L SUBHEDRAL TO EUHEDRAL
8 R 9 / 19.52	2 19.52		R MEGACRYS GG-		Y 8 MM. F F/	PATCHY PERVASIVE '30	E MODERATELY SILICIFIED.
9 / 19.52 10 R	19.52	FALT					
11 / 28.73	30.63	D/PX PFA		5	F/	'21	
12 L		8G		-	CN	'23	
13 R						LIP AT UPPER DYK	
14 R						ECES 2 TO 4 CM AC	
15 R 16 R						LT DRILLING THRO DWER CONTACT.	UGH THIS.
17 / 33.80) 34.30	PIKX	BR	D		V1	D≕
18 L							
19 / 36.08	42.88	PIKX	M BR	D		81	D) D-
20 R 21		7A				P+	ATELY BRECCIATED
22							WITHIN IRREGULAR
23						ARGINS OF PY MAS	
24			LET 25 MM WI	DE AT 32 D			-
25 '/ 38.39 26 L	38.77	VEIN Q CI W	B MT		CN	'70	D)
20 L 27 R					5 % BLA	CK CARBONACEOU	SMATERIAL
28 R 29						D 1.5 MM ACROSS.	
30 / 40.54	40.74	SIBX QZ	вМТ		F/	40 67 V)	D+
31 L		7A		_			
32 / 42.88 33 R	56.47	D/PX PF A	МВ	5	CN	27 V* V*	D-
33.87		00					
34 R		8G CHII	ED MARGINS			38 P- P* D. NISTY SPECKLES V	VITHIN SOME PLAG PHENOS.

36 R				TO C.A. LOCAL GLOB	ULAR MASSES	TO 2.5 CM ACRO	DSS- SOME SOR	T OF MELT SEGREG	ATION?
37 R			I	NON-MAGNETIC ROC	К.				
38 R									
39 /	56.47	146.53	PIKX	+	3 P	-	√* 8)		
40 R				A *6		V) P+P*			
41 R				HBLD PHENOS ELON		•			
42 R				MODERATELY SILICIF					
43 R				2 TO 5 % PY WITHIN A					
44 R				ZONES. DARK BLUISH				IRREGULAR VLIS	
45 R				TO 2.5 MM WIDE THR	OUGHOUT; < 0.3	5 % ROCK VOLU	ME.		
46	57.00	50.05	DIVY	D MT	D	64	0.		
47 /	57.00	58.05	PIKX	B MT	D	64 V+	8+	64	
48 L				PATCHY MOTTLED G		•		61	
49 R	67.00	60.00		PATCHY MUTTLED G		30 V=	8+	<i>.</i>	
50 /	67.00	68.20	PIKX		U V4	30 V-	07		
51 52 /	71.83	73.03	ЫКХ	M BR	D VP	40 84	6=		
52 / 53 L	71.05	73.03	FINA		DVF	40 04	0-	62	
53 L 54 /	74.72	75.31	PIKX	BR	D VP	15 82	82	02	
55 L	14.12	75.51	1 1100	DIX		10 02	UL	66	
56 R				DISSEMINATED PY W	THIN VEIN 25 M	M WIDE.			
57 /	80.50	94.33	PIKX	M BR	D	84			
58 L	00.00	0 1.00		6A	_	P=P=	D-		
59 R				LIGHT BROWN CAST	TO ROCK BELO	W 93.45 M DEP	TH POSSIBLY		
60 R				DUE TO DUSTY DISSE					
61 /	93.75	93.75	FALT		RF/	37			
62 R			:	SLICKS ON PY-COATE	ED SLIP.				
63 /	94.33	126.20	PIKX		D	81	D)		
64 R				GU		P+			
65 R			i	PSUEDO "FRAGMEN	TAL" WITH PER\	ASIVE SERICITI	E-SILICIA ALTER	ATION	
66 R				POSSIBLY WITH FLUI					
67 R				FRAGMENTS" (THE LE					
68 R				SOMETIMES WITH FA					
69 R				LENSOID 1 TO 4 CM A					
70 R				A RELIC OF ALTERING					
71 R				PERHAPS ON WEATH		E THIS UNIT COU	JLD BE MAPPED	AS	
72 R				UNIT 7A BRECCIA DY					
73 /	117.97	118.10	VEIN	MT	CN		/= D+		
74 R				QZ - CB VEIN 6 CM WI			IED , PYRITIC EN	IVELOPES	
75 R			:	3 CM WIDE ALONG UP	PPER AND LOW	ER CONTACTS.			
76		100 (5				05.05	A 54		
77 /	126.20	128.43	PIKX	M BR	CN		/) D*	64	
78 L				7A		P+ P-			
79 80 /	400.40	440.50	DUVY	F #1/		54	0.		
80 /	128.43	146.53	PIKX	MX	CN	54	D+		
81 L				MU		P+	D+		

82 R 83 R 84 R 85 R				SECTION AND PY PORPHY	IS CONTA VERY FINE RY MATRI	IN FINE ELY DIS X. DISC	LY DISSE SEMINAT	MINATED P	MINATED H Y. DENSE IN 3HOUT. H UNDERLY	ITERVA	L. BO	
86 R					OR GL SEI	EN.						
87 /	140.37	140.37	FALT				RF/	35				
88 R					PYRITIC	SLIP						
89 /	146.53	156.48	SBXX	x	BMT		CN	44 86		8)	D*	67
90 L				6A				P1 F			Q*	52
91 R				BRECCIA	TED AND	REHEA	led; har	D, COMPET	ENT ROCK.	MINER	RALIZE	D WITH SPOTS OF GL
92 R												BUT LESS WELL
93 R												FRIBUTED. SILICA
94 R				CONTEN	T GREATE	EST IN T	OPMOST	THIRD OF U	JNIT. MORE	e or le	ESS AL	TERED, ANGULAR
95 R				PORPHY	RY FRAG	MENTS	TO 8 CM	ACROSS IN	MIDDLE TH	IRD OF	INTEF	RVAL. ANGULAR
96 R				ANDESIT	E FRAGM	ENTS IN	BOTTOM	1 THIRD OF	INTERVAL.	NO CA	RBON	IATE SEEN.
97 R				LOCAL B	LUE-BLAC	K CARE	BONACEC	US MATERI	AL FORMS	WISPY	VEINL	ETS; LOCALLY
98 R				UP TO 10) % ACRO	SS 6 CN	I: GRAPH	TE VEINLE	T 2 MM WIDI	E AT 15	DEGR	REES AT 149.75 M.
99 /	156.48	162.58	AXL1		FB	7	́Р			D=		
100 L				1U				F	P=			65
101 R				SOFT. EA	ASILY SCF	RATCHE	D WITH N	AIL: CARBO	NACEOUS(?).		
102 /	157.28	157.65	DXP			5	CN	36				
103 L				8G			CN	37				
104 /	158.70	158.70	FALT	GG	à-		RF/	20				
105 R						I SLIPS		25 DEGREE	ES IN UPPE	R. PYRI	TIC U	NIT
106 /	162.58	187.45	AXLT		+MB	6	P CN	50 V) [8)		
107 L	102.00			5G	2	•	GC			-,		
108 R				• •	USUALLY	MORE S			HAN FRAG	MENTS.	MOF	REROD
109 R												AL CONTACT
110 R								RLYING UNI		••••		
111 /	180.15	181.60	AXLT		BR		D	V+	V+			
112	100.10	101.00	/0121		DIX		2	•	•			
113 /	187.45	201.97	ΑΧΧ	ĸ	8 M	5	Р	8=	V)	7+		
114 L	107.45	201.07	/////	AU		Ŭ	•	-	D= •,	, .		
115 R					BROWNIS			•	K. BRECCI			WEAK
116 R												
117 R												IS. PATCHY
118 R									ES EASILY S			
	204 25	201.07	ΑΧΧ		VELTOIL	CIFIED,	D		EO EAGILI V	JUNAN	D-	DT KNIFE.
119 /	201.25	201.97	AAAA	`			D				D*	51
120 L						TOOM		C			U	51
121 R	004 07				SL SPOTS	IU Z M			10		5	
122 /	201.97	203.64	VEIN		M BR		CN	23 V4	V2	D)	D-	40
123 L				WA			GC		TTON OF 7		Q)	
124 R												
125 R										E. ALSO	U SAY	0.5 % BLUISH BLACK
126 R					ACEOUS				.	D†	5	70.04
127 /	203.64	254.81	ΑΧΧ	(= +	MX	5	Р	8) F	P* V*	D*	D.	73 61

128 L				6A P=P-
129 R				LATE CB-QZ VLTS MAINLY AT ABOUT 30 DEGREES. QZ-SER-PY ALTERATION GRADUALLY
130 R				DECREASES DOWNHOLE. ROCK WEAKLY BRECCIATED IN TOPMOST 5 M WITH SAY 5 %
131 R				QZ-CB+/-PY VEINS TO 5 CM WIDE.
132 /	240.00	240.00	VEIN	R
133 R				PY-QZ-SL VEINLET 3 TO 5 MM WIDE SUBPARALLEL C. A.
134 /	254.81			END OF HOLE.
135 RSUM				TROPARI TEST HOLE AZ. 345 DEGREES, INCLIN62 DEGREES AT 252.98 M;
136 RSUM				AZIMUTH DUBIOUS. THICK PORPHYRY ALONG THIS SECTION WITH
137 RSUM				MINERALIZED ZONE ALONG BASE. NOT AS WELL-MINERALIZED AS
138 RSUM				HOLES B96CH1, B96CH2, BUT WIDER.

	k f e l y a g	from	to	m	% ROCI X	T K MAT	MAT			RA	M I N	-	S R CT		D / 1 P		.TERA MIN	TIO	N	SL	ULFII MIN	DES		FACIES FACIES
	/ L R	#	#	rec Q rqd K		PF A CR	*	*	*		*	•	**	# #		_		_	A X HE		_		F1 F2 M M2	
	ĸ	#	#	2		3				4			5				6			7	,		8	8
		5678.90	1234.56	7890 12	2 3 4 5 6 7	89 01	234				34 56		90	123			90 12			90	12 3		78 90	
====	= === IDEN(======== 6B0202	====== B96CH5 N(== == 301SV		== :	= = =	===	== ==	==	== :	===	===	==	== ==	===	== ==	==	== =	= ==	== ==	
•	I DP	000202	WESTMIN		•		L (N	MA	RTH	A E	LLEN													
3												_												
4 5		0.00 3.66			CASN AXX1			B	в'		e	P P				די	'D*	v		D)			72 62	
6		3.00	7.95		AAA 1	AG	7117	D	D		0	Г				'	'P P	.,		υ,			61	
	R										IM WI		AT 4	47 T	O 65	5 DE	EGRE	ES.						
	R	7.05	0.00						RE			?	CN	ŀ	52	,		A*		D-				
9 10		7.95	9.86		DIAN	'1 '= 4A					5		CN)	Ű2	2		A		D-				
11											C; AM		DUL	ES '	ιтο				SS.					
12	-	9.86	55.83		AXXT		VN≂			, , ,	6	Ρ				'7	D) P+P			'7*				
13 14						AG GENI	ERAL	MX LY		ITLY	/ BAN	DEI	D. B/		S AI	ND '			JASP	ER	LOC	CALL	Y	
15	R										LUME													
16														E SE			RING	FLU	ID HA	S S	STRE	EAME	Ð	
17 18						OF "L			JUK;	UN/	ALTEF	ĸĸ	F/		12									
19		19.6	19.6		FALT		GG))					F/		43									
20										-	AYEY			EON	I SL	P.	10 %	JAS	PER					
21 22	-	21.3	25.1		AXXT		522:	B		1 11/	LLRO	D	э.			71				8+				
23			20.1			GA		-				-				• •	P=			•				
24											NOF							10 [DEGR	EE:	S AT	23.1	6	
25 26		25	25.1		FALT		IIN P/			.00	RED, I		D. S. F/	IL SI	ירט <u>-</u> 60		•							
27		20	20.1				ED F			XD.				ED			T LEA	ST 2	2					
28	R						ERAT			= VE	IN QT									_				
29		32.6	36.62		AXXT	AU		BR				D				72	P=			8+		ך- ס∗	63 71 52	
30 31	_						SL. 1	% G	LIN	οz		R B/		6 C	мw	IDE	•	5 DE	GRE	ES	,		52	
32						AT 33	3.08 N	И. S	L AS	IRF	REG. N													
33					A 3/3/-	DUSI				ΑΤΙΟ	ONS.	P				00		14		C \		~		
34 35		45.4	46.7		AXXT		VN2	BR				D				62		V=		6)		ך- סא	52	
35						8T														,	(ົ2*	52	

26 Ď				
36 Ř				BXD AND REHEALED WATERY GREY QZ-CB VNS TO 8 CM WIDE AT 40 DEGREES
37 R				AND 60 DEGREES. SLAS SPOTS AND VEINLETS TO 3 MM WIDE,
38 R				WITHIN VEINS OR INTENSELY SILICIFIED BANDS.
39 /	49.84	49.84	VEIN	R
40 R				SL - QZ - GL VEINLETS 4 MM WIDE AT 35 AND 65 DEGREES.
41 /	52.7	53.15	AXXT	BR D F/ 70 65
42 L			ŧ	6A
43 R			I	MOD. SIL, HEALED FAULT WITH WATERY GREY VEIN QZ FRAGS.
44 /	55.83	77	D/AN	VN2 B MT CN 50 61 V+ V1 D) D.
45 L			(UN
46 R			I	LIGHT BROWN GARNET AS IRREG., HAIRLINE WISPY VLTS MOSTLY AT
47 R				ABOUT 60 DEGREES. RARE TR DUSTY DISS GL. LOWER CONTACT DISCRETE.
48 R				IRREG., WORMY QZ-CB-GT STGRS BELOW D/AN; SOME SL LIKELY
49 R				PRESENT AS WELL.
50 /	62.79	63.88	D/AN	VNSBR D P= V5 Q)
507 51 L	02.18	05.00		5A
52 R				MOD. TO INT. BXD; REHEALED. AT LEAST 2 GENERATIONS OF VEIN CB,
53 R				ONE WITH BLUISH GREY CALCITE. DOGTOOTH SPAR XTALS UP TO
54 R				6 OR 8 MM ACROSS. EP AS LOCAL HAIRLINE RIMS AROUND
55 R				IRREG. GT MASSES. LIKELY SL TRACES WITHIN GARNET.
56 /	73.98	73.98	FALT	
57 R				BLEACHED, CLAY-ALTERED ENVELOPE 80 CM WIDE ALONG FAULT;
58 R			4	40 CM ABOVE AND 40 CM BELOW FAULT. WISPY SL VLT 1.5 MM
59 R			١	WIDE AT 74.48.
60 /	75.1	75.1	VEIN	R CN 80
61 R			J	WATERY GREY QZ-CB VEIN 7 MM WIDE AT 80 DEGREES PARALLEL
62 R			1	TO ADJACENT SL-HE-PY VLT 4 MM WIDE.
63 /	76.55	77	D/AN	D
64 R			1	MEDIUM GREY - GREEN; CHILLED CONTACT ZONE.
65 /	77	101.61	D/DI 5	
66 L				5A 61 <-
67 R				MOD. MAGNETIC: BOTTOM CONTACT GRADATIONAL ACROSS 15 CM.
68 /	84.45	84.95	D/DI	D V)
69 L	54.45	04.00	0/01	U V) <*
70 R				WEAKLY BLEACHED ENVELOPE ALONG SMALL HEALED FAULT
70 R 71 R				
	400.4	101 64		SLIP AT 20 DEGREES AT 84.70.
72 /	100.4	101.61	D/DI	
73 R				FINE GRAINED CHILLED MARGIN WITH CB AMYGDULES TO 6 MM ACROSS.
74 /	101.61	125.8	AXXT	M B 4 P 82 6) 7* D- 63
75 L				4A P) 6* 44
76 R				DK GREY TO MEDIUM OR LIGHT GREY (WHERE MORE SILICIFIED) TO
77 R			E	BLACK, UNIT APPEARS ARGILLACEOUS; NO CL NOR LEUCOXENE SEEN.
78 R			V	WATERY GREY TO LIGHT BLUISH GREY TO OFF-WHITE QZ BOTH AS PERVASIVE
79 R			, A	ALTERATION AND AS WORMY VEINLETS. SL AS SOMEWHAT IRREGULAR
80 R			Ň	VEINLETS AV. 1 TO 3 MM WIDE OFTEN WITHIN OR
81 R				ALONG MARGINS OF QZ VEINLETS, SL VEINLETS DISCONTINUOUS
			,	

92 / 101.61 104.78 AXXT MT D P6 7) 93 L 6A < <- 94 R HARD, SILICA-INDURATED; MORE PY AND LESS SL THAN <- 95 R IN UNDERLYING ROCK. D B* 96 / 108.8 113.5 AXXT BR D S* 97 L	82 R 83 R 84 R 85 R 86 R 87 R 88 R 89 R 90 R 91 R				AND MOSTI AND VEINLI LONG ARE PREFERRE MINERALIZ PREMIER P WITHIN THI ANY ACCOM (STRATABO THAN IN SB	ETS OF SI IN DETAIL D ALIGNN ATION DIF ORPHYR' S HOLE, A MPANYIN DUND WIT	L ALON(RAND(MENT OF FEREN Y TO TH AND NU G QZ. M THIN AR(3 SHORT, OMLY ORII THESE S T IN STYL E EAST O MEROUS S INERALIZ/ GILLACEO	DISCONT ENTED; TI L VLTS A E FROM T F THIS HC SL +/- GL V ATON OF I US AXXT	INUOUS FF HERE SEEN T ABOUT 60 THAT SEEN DLE. THERE VLTS OCCU LOWER GR	RACTUR MS TO I DEGR ALONO E IS NO JR WITI	RES TO BE A EES. BASE SBXX HOUT	OF
94 R HARD, SILICA-INDURATED; MORE PY AND LESS SL THAN IN UNDERLYING ROCK. 96 / 108.8 113.5 AXXT BR D	92 /	101.61	104.78	AXXT	· N	1T		D	P6		7)		
95 R IN UNDERLYING ROCK. 96 / 108.8 113.5 AXXT BR D <+	93 L				6A						,	<-	
97 L								NORE PY /	ND LESS	SL THAN			
98 R WKLY TO MODERATELY BX'D, WELL-MINERALIZED ZONE. QZ-SL-GL VEINS 99 R AT 64 DEGREES AT 109.52, AT 45 DEGREES AT 110.58, AT 70 DEGREES AT 112.45, 100 R AT 40 DEGREES AT 113.13, AT 60 DEGREES AT 113.35. SL VLTS AT 101 R 110.10 M AT 75 DEGREES. 102 / 124.71 125.8 103 L M BR CN 40 V8 V1 D- 104 R BOTH UPPER AND LOWER CONTACTS BRECCIATED; APPROX. ORIENTATION. VEIN 105 R POSSIBLY ALONG A HEALED FAULT? 106 / 125.8 135.03 D/AN VN=M B 4 P V) V= D- 107 L A CB IN AMYGDULES AND PERVASIVE AS WELL AS VEINS. FREH-LOOKING ROCK.; LOCALLY WKLY MAGNETIC. CI ANY GOVERTIC. NT D- 110 / 127.87 128.31 VEIN MT CN 30 V3 V7 D- 111 L 7A S) SI SI SI SI SI 112 R TROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES. SEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH SEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH	96 /	108.8	113.5	AXXT	E	R		D			D	. 8*	
99 R AT 64 DEGREES AT 109.52, AT 45 DEGREES AT 110.58, AT 70 DEGREES AT 112.45, AT 40 DEGREES AT 113.13, AT 60 DEGREES AT 113.35. SL VLTS AT 110.10 M AT 75 DEGREES. 101 R 110.10 M AT 75 DEGREES. 102 / 124.71 125.8 103 L WA 104 R BOTH UPPER AND LOWER CONTACTS BRECCIATED; APPROX. ORIENTATION. VEIN POSSIBLY ALONG A HEALED FAULT? 106 / 125.8 107 L January Control (Control (Contro))) 106 R	97 L											<+	
100 R AT 40 DEGREES AT 113.13, AT 60 DEGREES AT 113.35. SL VLTS AT 101 R 110.10 M AT 75 DEGREES. 102 / 124.71 125.8 103 L WA CN 40 V8 V1 D- 103 L WA CN 40 V8 V1 D- D- 103 L WA CN 40 S+ Q* 41 104 R BOTH UPPER AND LOWER CONTACTS BRECCIATED; APPROX. ORIENTATION. VEIN POSSIBLY ALONG A HEALED FAULT? DO 106 / 125.8 135.03 D/AN VN=M B 4 P V) V= D- 107 L SA C CB IN AMYGDULES AND PERVASIVE AS WELL AS VEINS. FREH-LOOKING ROCK.; LOCALLY WKLY MAGNETIC. TO 109 R CN MT CN 30 V3 V7 D- 111 L TA TA S) S) 1112 113 / 135.03 END OF HOLE. TROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES. SEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH	98 R				WKLY TO M	ODERATI	ELY BX	D, WELL-N	IINERALIZ	ED ZONE.	QZ-SL-	GL VEI	NS
101 R 110.10 M AT 75 DEGREES. 102 / 124.71 125.8 VEIN M BR CN 40 V8 V1 D- D- 103 L WA CN 40 V8 V1 D- D- 103 L WA CN 40 V8 V1 D- D- 104 R BOTH UPPER AND LOWER CONTACTS BRECCIATED; APPROX. ORIENTATION. VEIN POSSIBLY ALONG A HEALED FAULT? OX V= D- 105 R 125.8 135.03 D/AN VN= M B 4 P V) V= D- 107 L 3A CB IN AMYGDULES AND PERVASIVE AS WELL AS VEINS. FREH-LOOKING ROCK,; LOCALLY WKLY MAGNETIC. NT CN 30 V3 V7 D- 108 R CB IN AMYGDULES AND PERVASIVE AS WELL AS VEINS. FREH-LOOKING ROCK,; LOCALLY WKLY MAGNETIC. NT CN 30 V3 V7 D- 110 / 127.87 128.31 VEIN MT CN 30 V3 V7 D- 111 L 7A S) 111 IN A S) 112 113 / 135.03 END OF HOLE. IN TROPARI AT	99 R				AT 64 DEGF	REES AT 1	109.52, /	AT 45 DEG	REES AT	110.58, AT	70 DEG	REES	AT 112.45,
102 / 124.71 125.8 VEIN M BR CN 40 V8 V1 D- D- 103 L WA CN 40 S+ Q* 41 104 R BOTH UPPER AND LOWER CONTACTS BRECCIATED; APPROX. ORIENTATION. VEIN POSSIBLY ALONG A HEALED FAULT? 106 / 125.8 135.03 D/AN VN=M B 4 P V) V= D- 107 L 3A CB IN AMYGDULES AND PERVASIVE AS WELL AS VEINS. FREH-LOOKING ROCK.; LOCALLY WKLY MAGNETIC. CB IN AMYGDULES AND PERVASIVE AS WELL AS VEINS. FREH-LOOKING 109 R ROCK.; LOCALLY WKLY MAGNETIC. 110 / 127.87 128.31 VEIN MT CN 30 V3 V7 D- 111 L 7A S) 113 / 135.03 END OF HOLE. 114 TROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES. SEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH	100 R				AT 40 DEGF	REES AT 1	113.13, /	AT 60 DEG	REES AT	113.35. SL	VLTS A	Т	
103 L WA CN 40 S+ Q* 41 104 R BOTH UPPER AND LOWER CONTACTS BRECCIATED; APPROX. ORIENTATION. VEIN 105 R POSSIBLY ALONG A HEALED FAULT? 106 / 125.8 135.03 D/AN VN=M B 4 P V) V= D- 107 L 3A 108 R CB IN AMYGDULES AND PERVASIVE AS WELL AS VEINS. FREH-LOOKING ROCK.; LOCALLY WKLY MAGNETIC. 110 / 127.87 128.31 VEIN MT CN 30 V3 V7 D- 111 L 7A S) <	101 R				110.10 M AT	75 DEGF	REES.						
104 RBOTH UPPER AND LOWER CONTACTS BRECCIATED; APPROX. ORIENTATION. VEIN105 RPOSSIBLY ALONG A HEALED FAULT?106 /125.8107 LJAN107 LJAN108 RC109 RROCK,; LOCALLY WKLY MAGNETIC.110 /127.87127.87128.31111 LTA112 R113 /135.03114END OF HOLE.115 RSUMTROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES.116 RSUMSEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH	102 /	124.71	125.8	VEIN	N	1 BR		CN	40 V8	V1	D-	D-	
105 R POSSIBLY ALONG A HEALED FAULT? 106 / 125.8 135.03 D/AN VN = M B 4 P V) V = D- 107 L 3A GB IN AMYGDULES AND PERVASIVE AS WELL AS VEINS. FREH-LOOKING 108 R CB IN AMYGDULES AND PERVASIVE AS WELL AS VEINS. FREH-LOOKING ROCK.; LOCALLY WKLY MAGNETIC. 109 R ROCK.; LOCALLY WKLY MAGNETIC. TO D- 110 / 127.87 128.31 VEIN MT CN 30 V3 V7 D- 111 L 7A S) TA S) S) 112 R 113 / 135.03 END OF HOLE. TROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES. SEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH	103 L				WA			CN	40	S+		Q*	41
106 / 125.8 135.03 D/AN VN=M B 4 P V) V= D- 107 L 3A 108 R CB IN AMYGDULES AND PERVASIVE AS WELL AS VEINS. FREH-LOOKING 109 R ROCK,; LOCALLY WKLY MAGNETIC. 110 / 127.87 128.31 VEIN MT CN 30 V3 V7 D- 111 L 7A S) S) 112 R 113 / 135.03 END OF HOLE. 114 TROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES. SEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH	104 R				BOTH UPPE	R AND LO	OWER C	ONTACTS	BRECCIA	TED; APPI	ROX. OI	RIENTA	TION. VEIN
107 L3A<-108 RCB IN AMYGDULES AND PERVASIVE AS WELL AS VEINS. FREH-LOOKING ROCK,; LOCALLY WKLY MAGNETIC.SVIN100 RROCK,; LOCALLY WKLY MAGNETIC.110 /127.87111 LTA112 RTA113 /135.03114END OF HOLE.115 RSUMTROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES.116 RSUMSEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH	105 R				POSSIBLY A	ALONG A	HEALED) FAULT?					
108 RCB IN AMYGDULES AND PERVASIVE AS WELL AS VEINS. FREH-LOOKING109 RROCK,; LOCALLY WKLY MAGNETIC.110 /127.87110 /127.87128.31VEINMTCN30 V3V7J11 L7ATAS)112 R113 /135.03END OF HOLE.114115 RSUMTROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES.116 RSUMSEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH	106 /	125.8	135.03	D/AN	VN=N	1 B	4	Р	V)	V=	D-		
109 R ROCK,; LOCALLY WKLY MAGNETIC. 110 / 127.87 128.31 VEIN MT CN 30 V3 V7 D- 111 L 7A S) S) 112 R 113 / 135.03 END OF HOLE. 114 TROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES. SEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH	107 L				3A					<-			
110 / 127.87 128.31 VEIN MT CN 30 V3 V7 D- 111 L 7A S) S) 112 R 113 / 135.03 END OF HOLE. 114 115 RSUM TROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES. SEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH	108 R				CB IN AMYO	DULES A	ND PEF	VASIVE A	S WELL A	S VEINS. F	REH-LO	DOKING	3
111 L 7A S) 112 R 113 / 135.03 113 / 135.03 END OF HOLE. 114 115 RSUM TROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES. 116 RSUM SEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH	109 R				ROCK,; LOC	ALLY WK	LY MAG	NETIC.					
112 R 113 / 135.03 114 115 RSUM 116 RSUM TROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES. SEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH	110 /	127.87	128.31	VEIN	N	1T		CN	30 V3	V7		D-	
113 / 135.03 END OF HOLE. 114 115 RSUM TROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES. 116 RSUM SEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH					7A					S)			
114TROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES.115 RSUMSEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH	112 R												
115 RSUMTROPARI AT 131.98 M INCLIN 58 DEGREES, AZ. 111 DEGREES.116 RSUMSEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH			135.03		END OF HO	LE.							
116 RSUM SEE REMARKS FOR INTERVAL FROM 101.61 TO 125.80 M DEPTH													
									•				
											DEPTH		
FOR DETAILS ON WINERALIZATION WITHIN THIS HOLE.	117 RSUM				FOR DETAIL	S ON MIN	NERALIZ	ATION WI	THIN THIS	SHOLE.			

line k f e l y a	from to	T m d	ROCK	T K MAT	Q MAT	TEX1	GRA	M I N		S R CT	A Z	D / I P	AL	TERA MIN	τιο	N	SL	JLFI MI	IDES N		LT. FACIES IIN. FACIES
g / L R	# #	rec Q rqd KS	*	PF A CR	*	* *		٠	*	** **	# #			LEC MC				C S			l F2 M2
к	# #			-						_				•			_				
0 1234 5	1 678.90 1234.5	2 6 7890 12	34567	3 89 01 :	234	56 7	4 3	34 56	3	5 90	123	56	78	6 90 12	2 34	56 78	7 8 90		34 50	5 78	8 3 90
==== = === =								=== ==	==	:== :	===	===	==	== ==	==	== ==	==	==	== ==	==	==
1 IDEN6E		6 NQ 960824		OISVE			T 11A F														
2 I DP 3	WEST	MIN RESOUR	CESLI	D.		WAR		LLEN													
4 /	+	3.66	CASN						Ρ												
5/	3.66 12	2.31	PIKX	53 Q	VN*	ΜF		'6	Ρ	F1		10		D)	۷*		D٩	÷			
6 L 7 R				'5U RARE,	OF	F-WH		OFT F	ΗFX			30 I MI		P) BOOK	ST	0.5 M	MA		oss		
8 R				GROU	NDH	IOG I	MARK	ER??	WE.	AK F	AB	RIC S	SUB	PARA	LLE	LTO	10	DE	GREE	sт	O C.A.
9 R				PY DU	ISTY		SEMIN	IATED.					_				_				
10 /	7.30 12	2.31	PIKX			BR			D				P=				D=	:			
11 R 12																					
13 /	12.31 23	3.74	D/AN		VN*	MX	• • •	'5		CN		'3	P+		Α*		D-				
14 L				GA											Q*				(CTIC		
15 R 16 /	23.74 29	9.86	РіКХ	EP AS	FAI	MX MX	ATCH	ES ANI 5	JR			-	νΜ1 P+		LE9	. NON	I-M/ D=		NETIC	RC	JCK.
17 L	20.74 20		1 100	5U				0					•••	P)			0			65	i
18 R					SIM		TO UI	NIT IN 1	TOF					CH3.							
19 /	29.86 37	7.53	D/AN			MX		5		CN		33			A) P-						
20 L 21 R				AG CB IN	АМΥ	(GDU	LES		X AI		LTS	5. MC		RATE	•	MAGN	IET	IC.			
22 R				10 % E			-	RAL H													
23 /	37.53 55	5.41	PIKX	53 5+		MX		6		CN		28	i		V*		D-				
24 L 25 R				AU RELAT			RESH	MEDU	IM.			GR	ΔΙΝ		RP	HYRY	,				
25 K 26 /	38.77 39	9.56	D/AN	NELAI	IVL				141	CN		20			A*		•				
27 /		15.2	FALT						R	F/		23	P1				Q2	2			
28 L																				62	
29 R	50 75 EF	- 44	ЫКХ			B M		LT 20 N	MM D	WID	E. P	Y AS	5 El 62		ATE V=	LENS	SES 6+		ID DI	SS. 63	
30 / 31 L	52.75 55	5.41	FINA		VINI	D M	•		υ				02	P*	v-		Û,		Q*	61	
32 R				BLUIS	H BL	ACK	CARE	BONAC	EO	USN	/AT	ERIA	LA	SLO	CAL	WISP	۲H	IAIF	RLINE	VL	TS.
33 R								SPOT	ST										-		
34 / 35 R	55.41 57	7.17	SBXX	6A	VN5	B M BN	ł			CN		30	77		V2	D-	D)		D- D-		
35 K				54		DIN										0.			0		

36 R 37 R 38 R				LOCALLY BANDED PY VEIN OR BAND 55 MM WIDE AT 30	16 MM WIDE AT 35	DEGREES A	ATER, C T 56.82.	QZ-CB-	te SL-gl	VEIN
39 /	57.17	69.67	PIPX	51 B M	5 CN	23 82		D)		
40 L				5A		P* F	>_			
41 R				FELDSPAR PHENO	S FAINT, SUBHEDF	RAL. FEW QZ	-CB-SL-	GL STG	RS TO	15
42 R				MM WIDE AT ABOU	T 30 DEGREES TH	ROUGHOUT	INTERV	AL. SL A	ND GI	L AS SPOTS
43 R				TO 5 MM ACROSS.						
44 /	68.84	69.43	VEIN	M BR	CN	76 V4	V5	D*	D*	
45 L				8A	CN	43			Q=	45
R				SL AS HONEY BRO			ROSS:	GL AS	-	
R				WISPY RIMS ON SL			,			
46 /	69.67	74.13	PIKX	B MT	GC	81	V5	D)		⁻ 46
47 L	••••			6A		P*		-,	D-	
48 R				GRADATIONAL CO	NTACT ACROSS 20	CM AT BOT		UNIT.	_	
49 /	69.67	71	PIKX		D				D*	
50 L					-				Q+	45
51									-	
52 /	73.88	74.04	FALT	GG-	RF/	20				
53 L	10.00	74.01		00						
54 R				SMEAR PY ON IRR	EGULAR FRACTUR	E AT 20 DEG	REES.	FAULT V	VITHIN	BRECCIATED.
55 R				HEALED, THEN FAI						
56 /	74.13	106.85	PIKX	52 5= VN= B M	5 GC	7=	V+	D*		
57 L	1 1.10	100.00	1 1101	AG	• ••	P+f)*	-		
58 R				LIGHT GREENISH	REY VARIABLY A				GRAD	ATIONAL
59 R				CONTACT ACROSS						
60 R				2.5 MM ACROSS W						5
61 R				BELOW 99.58 M. SI						
62 /	74.13	75.08	PIKX	BR	D	P+				
63 L		10.00	1 1100		-	F	?)			
64 R				INTENSELY BRECO	IATED: REHEALED					
65 /	82.07	85.21	PIKX	VN1 BR	GC	7=	V=	7=		72 41
66 L			,	UA	CN	26 P=	-	-		67
67 /	103.87	106.85	PIKX	VN=B MT	CN	55 85	∨*	7+	D*	66
68 L		100100		6A	GC	P) \$	3-	·	D)	54
69 R				QZ-PY-SL-GL STGF				2 % WH		
70 R				LATE QZ-CB-CL VE					··· _ ,	
71 /	106.85	110.71	SBXX		GC	88		D+	D*	
72 L	100.00	110.11	00/01	5A	GC				D+	
73 R				FINELY BRECCIATI		GULAR, MOS	TLY 5 T	O 15 MM	-	OSS)
74 R				AND REHEALED BY						
75 R				1 TO 2 % LATE WH						
76 R				LOCAL RED-BROW						
77 R				DEPTH. LOWER CO						
78										
79										

80 / 81 R	110.71	154.23	PIPA	VN+B M AG	5	GC	7A P)	V+	D*	D- D*	62 52	
82 R				LIGHT GREENISH	GREY,	VERY FINE G			WITH C	-		FAINT
83 R				HORNBLENDE AN	ID PLAG	PHENOS. U	NIT MAY PO	SSIBLY I	BE UNIT	9 ANI	DESITE	BUT NO
84 R				DIAGNOSTIC LEU	COXEN	E SEEN. SILI	CIFICATION	AND BR	ECCIATI	ION D	ECREAS	SE
85 R				DOWNHOLE. OCC								
86 R				SPECKLES ABOV					ES TO O	C.A. G	RADATI	ONAL
87 R				CONTACT ACROS	SS 3 TO /	4 M AT BOTT	OM OF UNIT	Г.				
88 R												
89 /	110.71	114	PIPA	VN2 BR		GC	74	V+	D)	D)	65	
90 R								S*		D)	44	
91 R				WATERY GREY, M								
92 R				MOSTLY AT ABOU						TRING	SERS FO	ORM ABOUT
93 R				10 % OF THE ROO	CK VOLL			4.00 M D	EPTH.			
94 /	118.43	119.76	PIPA	VN= BR		D	71	V)	D+	D)	61	
95 L										D)	42	
96 R				FINELY BRECCIA								
97 /	130.42	138.43	PIPX	VN+BR		D	6+	V)	D=	D*		
98 L							P+			D*	52	
99 R				PY VERY FINELY		AND SL SP	OTS IN CB-C	2Z STRIN	IGERS A	AV. AB	SOUT 30	DEGREES,
100 R				UP TO 15 MM WIE	DE.				_			
101 /	138.43	143.25	PIPX	M BR	_	DF/	8=	V)	D+			
102 /	146.67	154.23	PIPA	BR	5	CN	20 71	N N	D=			
103 L						GC	P+1					
104 R				BOTH PLAG AND				AINT BO	UNDARI	ES; M	AIRIX	
105 R	454.00	404.00		APHANITIC AND S					D +			
106 /	154.23	181.32	AALT	VN+M F	8	GC	6+	V)	D*			
107 L 108 R				5G	7.4 70		35 P* I	,				
100 R				RARE SL IN CB-Q C.A.BRECCIA MAT								
110 R				A CRYSTAL TUFF						-		
111 R				GRAINED PREMIE								E
112 R				VARIOUS LITHOL								Γ
113 R				COMPETENT UNI								
114 /	162.35	162.87	AALT	VN3 MX	•.	D	V2	V1	D)	D-	63	
115 L	102.00	102.01		7G		U	V2	vi	0)	D*	51	
116 /	170.4	170.4	FALT	VN-		RF/	17			U	51	
117 R	110.1	170.1		CB VLT 1 MM WID	E WITH						IRE	
118 R				SURFACE. WELL-						0.010		
119 /	181.32	190.34	AXXT	VN* M F	5	CN	20 V*	V-				
120 L	101.02	100.04		6G	Ŷ	011		S-				
121 R				UNIFORM. NON-M				_	FARAN		:	
122 R				FINE GRAINED CF			OF ILL T THE					
123 /	189.32	189.32	FALT	GG.		R F/	31					
124 R				TRACE PALE GRE	Y GOUG			FABRIC	PARALI	EL FA	ULT	
125 R				WITHIN BLEACHE								
							· ·					

126 /	190.34	248.72	AALT		7	Р	V*		V)	D*	
127 L				6G	-			P+5-			
128 R				MORE SER-ALTERE							
129 R				TUFF ABOVE. LAPIL							
130 R				LAPILLI WITHIN THIS							THAN ABOVE.
131 R				1 % PY LAPILLI FRO	M 228.1		•	IM AC			
132 /	190.34	201.5	AALT	VN+BR		D	V)		V+	D)	
133						_			_		
134 /	212.16	218.08	AALT			D			P+	P1	
135 L				8L							
136 R				PALE GREENISH YE	ELLOW, I			OPE A	LONC	3 FAULTS	
137 /	212.5	212.75	FALT			RF/	22				
138 R				25 CM MODERATEL	Y BROK	EN CORE.					
139 /	216.3	216.3	FALT			RF/	30				
140 R				12 MM CLAYEY, PYF	RITIC GO	DUGE ON S	LIP AT 3	0 DE	GREE	S.	
141 /	218.08	218.08	FALT	GG		RF/	30				
142 R				2 MM CLAYEY, PYRI	ITIC GOI	JGE ON SL	IP AT BC	OTTO	M OF I	BLEACHE	D INTERVAL.
143 /	238.47	240.11	AALT			D		P1	ł		
144 L				8L							
1 45 R				BLEACHED ENVELC	PE ALO	NG FAULT.					
146 /	239.17	239.23	FALT	GG2		RF/	55				
147 R				5 CM FINELY BROKE	EN COR	E AND GOL	JGE.				
148 /	243.76	244.1	VEIN			CN	25 V8		V2		
149 L				W		CN	80	S+	-		
150											
151											
152 /	248.72			END OF HOLE							
153 RSUM				APPEARS TO BE BE	ST-MINE	ERALIZED F	HOLE OF	1996	3 PRO	GRAMME	•
154 RSUM				MINERALIZED ZONE	ES WITH	IN PREMIE	R PORPI	IYRY	', AND	CHARAC	TERIZED
155 RSUM				BY FINELY BRECCIA	ATED AN	ID REHEAL	ED WAT	ERY	GREY	QUARTZ	. SULPHIDES
156 RSUM				MOSTLY DISSEMINA	ATED, BI	UT BOTH S	L AND G	L LO	CALLY	OCCUR	
157 RSUM				AS MASSES 18 MM	ACROSS	. TROPAR	I AT 247	.19 M	DEPT	TH INCLIN	l.
158 RSUM				- 63 DEGREES, AZ. 2	256 TRU	E.					
				-							

line	k f e l y a	from	to		T 9 m d 2	ROCH	T MAT	Q MA1			GRA	M I N	U N I T	S R CT	_	1	D A I P		ER. MIN		ION	I	รเ	JLF MI	ides N	6	ALT. FACIES MIN. FACIES
	9 / L R	#	#	rec rqd	Q KS	•	PF A CR	*	*	• *		*	*	**	# #	* *									G SL		F1 F2 M M2
	κ	#	#											_					_				_	_			-
	0	1		2	-		3	004		70	4	04.54	~	5	400	_			6					7			8
	1234	4 5678.90 = =======	1234.56	7890		3 4567						34 50			123	-											78 90
2	1 DP	6B0202	B96CH7 N WESTMIN	NQ 960)824	E	BOISVE					LLEN										_					
3		0.00		-		CASN							Р														
	·/ ·/	0.00 3.05					'652	VN*	м	в,		6	P				'7	7=			<*		D'	·			61
	Ĺ	0.00	140.00	,		1 11/03	G '5=		141	U		0	•				,		>* F		•		Ľ				01
_	R						MEDI		I O	IGH	T GF	REYIS	НG	REE	EN, I	REL	.ATI	IVE	ELY	FF	RES	SH A	ND	LIT	TLE		
8	R						ALTE	RED	FO	RT	IE M	OST I	PAR	T. D	SP/	AR I	MEC	GΑ	CR	YS	TS .	AV.	6 - ⁻	10 1	ИM,		
	R						MAX.																				
	R						MOST																			5	
	R						AV. 2 UNIF																				
	R						BREC												VVF			RUC				=0	,
14							DIVEC			, 70						V L II	ini Ga	<u> </u>									
15		16.60	19.25	5		ΡΙΚΧ		VN)	в	ΜΧ			D				'8	32					8)				A1
	L						6U												P) F								
17	R						WKLY	' BRI			ED; F	PY BO	TH	DIS	s ai				SP	ΥV	LTS	S. S(HAT	BR	OKEN CORE.
18		30.53	31.07	7		VEIN			М	BR				CN			I V	9					D١	F			
	L						DEUE		~ ~					CN			12	- 1 . 1	~		\ ~ 7			пv			
	R R																										/ DISS D WITHIN
	R						CENT								07			VIIV		2111	500	, U			1110	•	
23							0		•••				•••														
24																											
25	1	34.95	39.8	3		ΡΙΚΧ		VN+	в	МΧ				GC			8	1	F	י1			6)			1	A3
	L						8T							CN			8	-) *								
	R			_			WEAH				ATE	D, BLE	EAC						sol	ME	WH	IAT	BRC)KE	N CO	DR	Ε.
28		39.8	40)		VEIN			В	MT				CN		1	8 V	8									
29							7A HEAL		or	COL		BOSS	20	CN		NIC		-		~			E 18/	TU	071		TRIV
+ +	R R																										RBONACEOUS
	R						MATE														. 0	2010				er u	2017 02000
33		47.55	51.28	3		D/RH			M		6			CN		6	4										
34							7G							CN			1										
	R						DYKE	SPC	DTT	EDE	BY LI	GHT (GRE	EY, S	SUB	HE	DRA	٩L	то	EU	IHE	DR/	AL C	ZF	HEN	108	S UP TO 6 MM

36 R 37 / 38 L 39 R 40 R	54.23 56	58.68 56	ACROSS. NON-MAGNETIC. NO CB PRESENT. PIKX VN+ BR GC 6= P= 8) A2 7T GC P* S* 61 BLEACHED, WEAKLY TO MODERATELY BRECCIATED FAULT ENVELOPE. CLAY ALONG SELVAGES OF LATE WHITE QZ VEINS. FALT GG- R F/ 20
41 / 42 R 43 44	96	96	SMEAR OF PALE ORANGE LIMONITIC GOUGE ON FRACTURE AT 20 DEGREES.
45 / 46 L 47 R 48 R 49 R	60.9	66.33	PIKX VN+ BR GC 82 P= 7) A2 7T GC P) 61 INTENSELY BRECCIATED 64.27 TO 65.14 M.
50 / 51 L 52 R 53 R	61.28	61.35	FALT GG- BR F/ 46 71 D= 4U F/ 46 62 HEALED, FINELY BRECCIATED AND CRUSHED BAND WITH DISS PY AND PERVASIVE SILICA WITHIN MATRIX. SMOOTH SLIPS WITH THIN SMEARS OF GOUGE AT TOP AND BOTTOM.
54 / 55 R	62.03	62.23	FALT R INTERVAL INCLUDES 8 CM FINELY BROKEN CORE.
56 / 57 R	63.68	63.9	FALT GG. R F/ 18 SMEAR ORANGE LIMONITIC GOUGE ON FRACTURE.
58 / 59 L 60 R 61 R	74.7	85.86	PIKX B MX GC 81 P2 A4 8T GC P= BLEACHED, GENERALLY BRECCIATED FAULT ENVELOPE. OCC. KSPAR MEGACRYSTS TO 18 MM ACROSS. SMEARS BLACK CARBONACEOUS MATERIAL ALONG MINOR, SMOOTH SLIP
62 / 63 R 64 R	80.43	80.43	FALT GG8 R F/ 20 SEAM OF LIGHT GREY CLAYEY GOUGE 7 MM THICK ON FRACTURE AT 20 DEGREES. PROBABLY MAJOR FAULT.
65 / 66 R	90.4	90.4	FALT GG* R F/ 21 0.5 MM MEDIUM GREY PYRITIC GOUGE ON SMOOTH SLIP.
67 / 68 L 69 R 70 R	92.3	94.33	D/RH MX CN 16 8T CN 11 2 % SUBHEDRAL QZ PHENOS UP TO 8 MM ACROSS.
71 / 72 L 73 R	94.33	96.63	D/AN MX F/ P+ P* 3G BOTTOM CONTACT FAULTED. MODERATELY MAGNETIC ROCK.
74 / 75 L 76 R 77 R 78 R 79 R	116.98	118.25	FALT VN= BR R F/ 14 7= P+ 7= 7T P) MODERATELY TO INTENSELY BRECCIATED, FINELY FRACTURED, WITH SAY 5 % BLACK CARBONACEOUS MATERIAL IN ABUNDANT IRREGULAR, HAIRLINE VEINLETS AND AS BRECCIA MATRIX. IRREGULAR FAULT SLIP AT 14 DEGREES TO C. A. AT 117.97 M.
80 / 81 L	118.25	130.67	PIKX VN) BR D 8+ P) 7) TG P)

82 R					D SAY 5				и снт			
83 /	139.21	140.98	PIKX 51		D, 0/(1 0)							
84 L	100.21	140.00	GN		-			P+				
85 R				EN- BLACK, CHL	ORITE AL	TERED	MAY BE H	•		PART?	1	
86 R				E ABUNDANT H								
87 /	140.98	143.97	D/DA	VN*		CN	24	A)	D.			
88 L		110.01	5G			CN	24	.,				
R				LED MARGINS.				WHAT BRO	DKEN C	ORE.		
89 /	145.66	153.6	D/DA	VN*	5	CN	10	A)				
90 L			5G			CN	10					
91 R				L FAULT SLIPS	ALONG B			LOWER C	ONTAC [*]	TS. W	EAKLY TO MO	DERATELY
92 R				NETIC. CB AS V								
93 /	150.02	150.22	PIKX			CN	30		-			
94 L						CN	16					
95 R			AS F	OR 3.05 - 145.66	M ABOVE	E. SLIVE	R OF POR	PHYRY BE	TWEEN	12		
96 R				DYKES. DYKES								
97												
98 /	153.2	175.83	PIKX	VN) MX	6	CN	40 8=	P- V)	8*	D)	65	
99 R			6G	,				P)		D)	44	
100 R			LOCA	LLY FAINTLY B	LEACHED	. PERVA	ASIVE SILI		N INCRI	EASE	S WITH	
101 R			DEPT	H. CB - QZ VLT	S MAINLY	AT 30 D	EGREES	TO 34 DEG	REES T	ro c. /	A.,	
102 R				O 13 MM WIDE.								
103 /	155.33	156.05	D/DA			CN	39	P-				
104 L						CN	45					
105 R												
106 /	156.2	156.65	FALT	BR	R							
107 R			PRO	BABLE FAULT. N	/ODERAT	ELY BRI	ECCIATED	AND MOD	ERATE	LY		
108 R			BRO	KEN CORE.								
109 R												
110 /	160.77	163.37	D/DA			CN	22					
111 L			3G			CN	23					
112 R			CHILI	LED MARGINS.								
113 /	174.97	175.83	PIKX	VN1 BR	D		7=	V1	D)	D)	45	
114 R				ERATELY BREC								
115 /	175.83	180.35	PIKX	BR	6	CN	59 73	P+ V2	D)	D*	63 42	
116 R			7 T				P			D*	51	
117 R				NSELY TO MOD					ATE SI	LICA.	SULPHIDES	
118 R			MOS	T ABUNDANT AI	LONG MAP	rgins c	F QZ- CB	VEINS.				
119 R				WELL - MINERA	LIZED.							
120 /	180.35	224.21	PIKX 52 6-	VN*M B	6	CN	37 8=	V*	D)			
121 L			3 51				-	+ P+				
122 R			000	AISIONALLY BL	EACHED V	VHERE \$	SERICITE-	ALTERED,	BOTH A	AS FAI	ULT	
123 R			ENVE	LOPES AND AS	MORE LO	DCAL FL	UID STRE	AMING TH	ROUGH	I ROCI	Κ.	
124 R			LOCA	LLY ROCK HAS	APPEAR	ANCE O	F COARSE	TO MEDIL	JM GRA	INED	ANDESITE	
125 R			PORF	PHYRY. OVERA	LL MORE		PREMIER	PORPHYR	Υ.			
126 /	184.64	184.71	D/RH	BN		CN	35					

127 L			6G CN 33	
128 R			CHILLED MARGINS. BANDED THROUGHOUT.	
129 /	184.81	191.57	PIKX BR D	
130 R			WEAKLY TO MODERATELY BRECCIATED. SOMEWHAT FRAGMENTAL	
131 R			APPEARANCE.	
132 /	197.06	201.13	PIKX VN1 BR GC 83 V* D+ D+ 63	
133 L			AU GC P=P+ D* 51	
134 R			MODERATELY TO INTENSELY BRECCIATED. PATCHY MODERATE SILICIFICA	
135 /	202.1	202.1	VEIN R CN 28	HON. BOLI HIDED
	202.1	202.1		
136 L				
137 R			GL - SL VEINLET 8 MM WIDE.	
138 /	202.72	202.72	VEIN R CN 30	
139 L			4 A	
140 R			GL - SL - QZ VEIN 10 MM WIDE.	
141 /	204.02	204.02	FALT GG* R F/ 10	
142 R			3 MM GOUGE AND FINELY BROKEN CORE ON CHLORITIC SLIP.	
143 /	216.75	218.13	PIKX D F/ 45 P1 P= D+	
144 L			7T P+	
145 R			BLEACHED FAULT ENVELOPE; 0.5 MM GOUGE ON SLIP AT 45 DEGREES	
146 R			AT 217.55 M.	
147 /	224.21	227.91		
	224.21	227.91		
148 L			6A CN 48 P) D* 52	D 1110050
149 R			BRECCIATED AND REHEALED BY WATERY GREY QUARTZ. PY AS IRREGULA	
150 R			UP TO 15 BY 45 MM. SL AND GL DISS. SPOTS TO 3 OR 4 MM ACROSS, VEIN C	
151 R			OFF - WHITE. PY MOST ABUNDANT IN TOPMOST 30 CM OF SBXX WHERE IT IS	S UP TO 25 %
152 R			ROCK VOLUME. PY ALSO ABUNDANT IN LOWERMOST 15 CM OF UNIT.	
153 /	227.91	263.72	AXXX 42 41 VN) M B 5 P V) D- V* D)	
154 L			5G P+P+	
155 R			VEIN QZ MAINLY IN UPPER HALF OF UNIT. VEIN CB MAINLY IN LOWER HALF.	
156 R			OCCASSIONAL MINERALIZED PY- SL - +/- STRGR VEINS TO 8 MM WIDE	
157 R			AT 30 TO 40 DEGREES TO C.A.	
158 /	246.1	246.6	VEIN	
159 R	240.1	240.0	QZ - PY - SL - GL VEIN 12 TO 30 MM WIDE SUBPARALLEL CORE AXIS.	
160 /	749 E	248.95		
	248.5	240.90	AXXX VN2 BR D V2 V* D1	
161 L	055.5			
162 /	255.5	255.5	VEIN R CN 40 D- D=	
163 L			Q4	
164 R			SL - QZ - CB - GL - PY VEIN 15 MM WIDE AT 40 DEGREES.	
165 /	256.3	256.3	AXXX BR D V1 D=	
166 L			6G D4 51	
167				
168				
169 /	263.1	263.3	FALT R	
170 R	200.1	200.0	MODERATELY BROKEN CORE; POSSIBLE FAULT.	
			WUDERATELT BRUKEN UURE, FUOOIBLE FAULT.	
171	000	000.05		
172 /	263.72	263.95	MSSB SL9 B B 5 CN 40 V1 D L3 D= 61	

173 L			UY		CN	40		L5	49
174 R			BAI	NDED MASSIVE SI	ULPHIDES. THIS S	STYLE OF MINE	RALIZATION	NOT S	SEEN IN ANY OF THE
175 R			PRI	EVIOUS 1996 DRIL	L HOLES. MODER	RATELY BRECC	IATED AND N	NODEF	RATELY SERICITE-ALTERED.
176 R			AXX	X OVER A COUPI	LE OF CM AT THE	UPPER MARGI	N. MODERAT	FELY 8	RECCIATED WITH
177 R			20 %	% PY ACROSS 30	CM AT THE LOWE	ER MARGIN. NO	CB WHERE	TESTE	ED. NON-MAGNETIC.
178 /	263.95	273.1	AXXX		Р				
179 R			AS	FOR 227.91 - 263.	72 ABOVE.				
180 /	270	270.63	AXXX	VN1 BR	D	V1	D*	D-	
181 L								D*	
182 R			IRR	EGULAR OFF-WH	IITE QZ VEINS TO	20 MM WIDE SI	POTTED BY I	TO 21	MM SL, PY AND GL.
183 /	273.1		ENI	D OF HOLE					
184 RSUM			MIN	IERALIZED SILICE	OUS BRECCIA A	GAIN NEAR PRI	EMIER PORP	HYRY/	1
185 RSUM			VO	LCANIC CONTACT	I. INTERESTING N	ASSIVE SULPH	IDE BAND		
186 RSUM			МО	RE LIKE PREMIER	R MINE - STYLE M	INERALIZATION	INTERSECT	ED.	
187 RSUM			TRO	OPARI TEST AZ. 2	54 DEGREES, INC	LIN 58 DEGR	EES, AT 271.	58 M.	

	k f e l y a	from	to		T 9 m d)	ROCI	T MAT	Q MAT		XT GRA AG	M I N		S R CT		D / P		.TERA MIN	τιο	N	SL	jlfic Min		ALT. FACIES MIN. FACIES	
	g / L R	#	#	rec rqd	Q KS	*	PF A CR	•	*	*	*	*	** **	# #	* **		LE C M C						F1 F2 M M2	
	К	#	#										_				•			_	_		0	
	0 1 234	1 5678.90	1234.56		12 3		3 89 01	234			34 5										12 3		8 78 90	
-	IDEN(DP		B96CH8 N WESTMIN	Q 960	812	E	BOISVE			RTHA I				===	= ==	- ==	== ==	: ==		==	== =	= ==	22 22	
4		0.00									14	_								_				
5 6		0.00	54.04			PIPX	52 51 GA		МΧ		'6	Р				'<'	' D P1P)	- '<*)	D-	D-			'73	
7 8								-		INE GF													E ATION	
9																								
10																								
11 12																							ER INTERVAL THA	
13							ONLY	' ONE	E (P	ROBAE	LE) KS	SPA	RM	IEGA	CRY	/ST	SEEN	I AT	39.55	MI	DEP	ΓH.		
14 15																							A ELLEN. Y UNALTERED	
16										VITHIN										1.1.		VLL	TONALIENED	
17												_												
18 19		6.10	10.60			PIPX						D							D*					
20							DUST	Y DI	SSE	MINAT	ED HE	MAT	LITE	E TH	ROU	GH	OUT S		_	ALT	FERE	DR	OCK.	
21		0.00	0.00									_			ta i	~								
22 23		9.60	9.80			FALT		RAT	F١				F/ NITE		'1: AINF		ORE	FR	ACTU	RF	WITI	4 FIN	ELY BROKEN	
24	R									EN CO											•••••			
25		14.90	14.90			FALT							F/		'0'									
26 27		18.07	18.07			FALT		GULA	RS	SLIP WI	TH SLI		ENS F/	IDE	5 A I '3:		OUT 5	DE	GREE	S.				
28		10.07	10.07					FINE	LY	BROKE				GO			I SLIP	AT :	33 DE	GR	EES.			
29	1	30.05	30.40			FALT		GG+				R	F/		'1	0								
30		22 50	DE 40			E A I T		FINE	LY	BROKE	IN COF			CLA			DUGE	ON	SLIP	AT :	30.28	5 M.		
31 32	R	33.50	35.10			FALT	INTEN			RECCI		MOI				BLE						BRC	OKEN	
33 34		36.65	37.15			PIPX	FROM	1 34.5	5 -	34.76 N	1. SLIP	ME D	ASI	URE	U AT	34	.55 M.	MA.	JOR F	'Q+ 'Q+				
35		00.00	07.10									5								~	-		'61	

36 R				PY DISSEMINATED WITHIN IRREGULAR MASSES TO 11 BY 25 MM.
37 38 / 39 L 40 R 41 R 42 R 43 R 43 R	54.04	91.66	PIPX	'5 '5 VN) MX ''''6 CN '7 '8= V) D* 6A CN '40 P=D+ LIGHT GREENISH GREY, MASSIVE. PERVASIVE ALTERATION MAKES PHENOS LOCALLY APPEAR FAINT. NO SERICITE STREAMING AS SEEN IN OVERLYING UNIT. HORNBLENDE PHENOS MORE OR LESS COMPLETELY CHLORITE - ALTERED AND GREEN - BLACK. CONTACT WITH OVERLYING UNIT DISCRETE WITH 2 % PY OVER 10 CM.
45 / 46 R 47 R	66.09	66.09	FALT	GG* RF/ 07 THIN SMEAR OF GOUGE ON SLIP WITH ŚLICKS; PY VLT 1 MM WIDE ALONG FAULT.
48 / 49 R	78.35	78.55	FALT	R F/ 27 HEALED FAULT; FINELY BANDED INTERVAL.
50 / 51 R	86.03	86.92	PIPX	
51 K 52 / 53 R 55 R 55 R 56 R 57 R 58 R 59 R 59 R 61 R 62 R 63 R 63 R 63 R 65 /	91.66	134.71	PIPX FALT	52 51 MX ' '6 P '< D- '< D- '73 GA P1 P) D- MEDIUM TO FINE GRAINED FELDSPAR PORPHYRY. PLAG PHENOS PALE GREY, SERICITE- AND LOCALLY ALSO CLAY-ALTERED. SERICITE ALTERATION THROUGHOUT ROCK UNIT APPEARS TO HAVE OCCURRED AS A RESULT OF FLUID STREAMING AS SEEN IN SIMILAR ROCK ABOVE PREMIER PORPHYRY TO THE NORTH OF THIS HOLE. SER-ALTERING STREAMING IN THIS HOLE OVER MUCH WIDER INTERVAL THAN SEEN ELSEWHERE. PERHAPS THIS IS A MARGINAL PHASE OF THE PREMIER PORPHYRY? ONLY ONE (PROBABLE) KSPAR MEGACRYST SEEN AT 39.55 M DEPTH. UNIT HAS LESS QZ AND LESS CB ALTERATION THAN USUAL AT MARTHA ELLEN. NON-MAGNETIC. PSUEDO "BRECCIA" WITH FRAGMENTS OF RELATIVELY UNALTERED PORPHYRY WITHIN GREYISH, SERICITE-ALTERED MATRIX. IRREGULAR PY MASSES. PATCHY WEAK TO MODERATE KSPAR STAIN
67 R 68 / 69 L	131.88	132.27	VEIN	0.5 MM GREY PYRITIC GOUGE ON SLIP. MT CN 40 P9 D* 7A CN 20 PYRITE - RICH SELVAGES.
70 R 71 / 72 L 73 R 74	134.71	148.13	PIPX	
75 / 76 R 77 R	137.57	138.42	FALT	R F/ 19 V+ D+ 62 MODERATELY TO INTENSELY BRECCIATED. FAULT SLIP AT 137.75 M.
78 R 79 /	148.13			END OF HOLE. P
80 81 RSUM				TROPARI AT 122.22 M INCLIN 53 DEGREES, AZ. 237 DEGREES.

•

82 RSUM	HOLE DID NOT INTERSECT TYPICAL PREMIER POPHYRYAS SEEN IN HOLES
83 RSUM	TO NORTH. ALSO, NO MINERALIZED SILICEOUS BRECCIA WAS INTERSECTED.
84 RSUM	HOLE PERHAPS ORIENTED PARALLEL TO, OR AT A SHALLOW ANGLE TO,
85 RSUM	ROCK UNIT CONTACTS.

	k f e l	from	to	T% m_ROC	K MA		LI N	N R	A DA Z/I P	LTERATION MIN	SULFIDES MIN	ALT. FACIES MIN. FACIES
	ya g / L	#	#	d X rec Q * rgd KS	MAT PFA * CR *	F AG	N I 7		# *** Q	LECCAX MCEHE		F1 F2 M M2
	R K	#	#		UIT						0 0 02	
	0 1234	5678.90	1 1234.56	2 7890 12 3 4567			34 56	5 90 1		6 8 90 12 34 56 78		
	I DP	6B0202	896CH9 N	960812 RESOURCES L	BOISVEN	MARTHA E		=== =			** ** ** **	== ==
4 5	/ /	0.0	D 131.88	CAS PIKX	'5 '5 VN) MX ''	F '6 F		8	-	D)	'62
8	R R R R				SUBHED COLOUR PHENOS	RAL TO EUH PALE GREY BLOCKY, SI	iedral i 7. Large Jbhedr	(SPAF EST M AL TO	R MEGACF EGACRYS ANHEDR/	T SEEN 13 BY 2 AL WITH FAINT I	/IEGACRYST 6 MM, AT 10 MARGINS PF	'61 DNAL BLOCKY S APPEAR ZONED; 0.41 M DEPTH. PLAG ROBABLY DUE TO GENERALLY WITH
12 13 14 15 16	R R R R				BLUISH E VOLUME SELVAGE FORMS II	BLACK CARE . THE CARBO ES. PY DISSI RREGULAR I	SONACEO ONACEO EMINATE MASSES	DUS M US M/ D EUI TO 10	IATERIAL (ATERIAL (HEDRAL T MM ACR	COMPROMISING S USUALLY CON O SUBHEDRAL	3 2 TO 10 % ICENTRATE XTALS AV. 0 /EINLETS. P	OF THE VEINLET D ALONG THE VEINLET 0.75 MM; PY LOCALLY ORPHYRY HARD,
17 18 19	R /	4.36	ô 4.97	У РІКХ	PHENOS			LTER	ED TO BL	ACK CHLORITE. 4 P)		MAGNETIC. HORNBLENDE
20 21 22 23	R					TELY SILICII GREES AT 4		IGHTI	LY BLEACI	P+ Hed. QZ-Carbo	N-PY VEIN 1	10 MM WIDE
24 25 26	R	9.25	5 9.75	FAL1	TRACE L	IMONITIC GO	DUGE AN			KEN CORE ON F		
27 28	1	17.60) 19.13	PIKX	VN		D)	'71	V) D+		-
29 30 31	1	23.64	4 23.64	FAL1	•	с, ѕмоотн	R	₹'F/	'35			
32 33	1	24.08	3 24.08	FAL1	-		F	R F/	'12			
34 35		31.06	3 31.06	FALĨ				RF/	'20 IMONITIC	GOUGE ON IRR	EGULAR	

36 R	25.02	DE 40	5 4 1 7	FRACTURE SURFACE. WALLROCKS	6 WEAKLY BL '25	EACHED AC	ROSS	A FE	W CM.
37 / 38 R	35.03	35.40	FALT	GG= R F/ GREY GOUGE WITH SOOTY PY ON	-+				
39				GRET GOUGE WITH SOUTH FI ON		ATELI BAC		JUNE	
40 /	35.88	36.04	ΡΙΚΧ	D	'83		D=		
41 L	00.00	00.04	1 100	7A			-		
42 R				MODERATELY SILICIFIED; DRUSY (Z XTALS TO	3 MM LINE (Y 10 M	IM ACROSS
43 /	38.80	39.33	FALT	B MX GC		P+			
44 R				7G GC					
45				WEAKLY BLEACHED, CLAY-ALTERE	D FAULT EN	VELOPE. GE	NERA	LLY M	IODERATELY
46				FRACTURED AND WEAKLY BRECC	ATED INTER	VAL			
47 '/	43.69	44.28	FALT	R 'F/	'18				
48 R				MODERATELY BROKEN CORE; INTE		CCIATED AC	ROSS	18 CN	И.
49 '/	46.00	46.00	FALT	R 'F/	'05				
50 R				SMOOTH BLACK SLIP COATED WIT		(?).			
51	54.50	50.05	5000	88 00	0.5		D)	-	
52 /	51.50	56.35	PIKX	BR GC 7A F/	85 30		D)	D.	66
53 R 54 R				7A F/ MODERATELY BRECCIATED. REHE			TEDV		OUADTZ SAV 1 %
54 R 55 R				BLUISH BLACK CARBONACEOUS					
56 R				VEINLETS AND AS IRREGULAR PAT					
57 R					01120:1 000	ibee to the			
58 /	53.17	53.57	FALT	GG) RF/	25				
59		••••	• • • • • •	3A					
60 R				0.5 MM BLACK, GRAPHITIC GOUGE	ON SLIP. CO	RE MODERA	TELY	BROK	(EN
61 R				ACROSS 40 CM.					
62 /	59.43	59.88	PIKX	BR D	83	P+	6=		
63 L				8T					62
64 R				BLEACHED, BRECCIATED. PROBAB	LE FAULT				
65 /	60.10	60.10	FALT						
66 R				SMEAR OF PYRITIC GOUGE ON SM	OOTH SLIP @	9 30 DEGRE	ES		
67 R		00.45	DIV			D			
68 / 60 l	64.40	69.45	ΡΙΚΧ	B MX GC		P=			
69 L 70 R				7T GENERALLY MODERATELY BLEACH				ר דעב	
71 R				GENERALLI MODERATELI BLEACI	IED, WEARLI	DRECOMI	-D, LN	Shi i	ANCOLUUR
72 /	65.57	65.57	FALT	GG- RF/	43				
73 R	00.07	00.07		TRACE PYRITIC GOUGE ON SMOOT					
74 /	68.70	68.70	FALT	R F/	10				
75 R	00.70	00.10	1000	APPROXIMATE ORIENTATION OF FI		IRFACE			
76 /	69.82	70.73	FALT	GG* R F/	05				
77 R				SMEAR PYRITIC GOUGE ON SMOO					
78									
79 /	74.90	77.25	PIKX	BR D	82	P+	6)		62
80 L				6G					
81				LIGHT GREYISH GREEN, MODERAT	ELY TO INTE	NSELY BRE	CIATI	ED	

82 /	76.72	77.23	FALT		RF/	05				
83 R		11.20		INELY BROKEN PYRITI			AT 77.05			
84 /	78.13	78.40	VEIN	MT	CN	65 V9				
85 L	10.10	10.10	• = •		CN	40				
86 R			Ν	AILKY WHITE QZ VEIN; I						
87 /	78.50	78.54	FALT	GG2	R F/	63			67	
88 R	70.50	70.04		GOUGE AND FINELY BR		++			52	
89 /	79.60	79.60	FALT	BOOGE AND TIMEET BR	R F/	30			52	
90 R	79.00	79.00		INELY BROKEN CORE						
	04 40	96 54	PIKX		CN	58 76	P* V-	7)	67	
91 /	81.19	86.51		BMT	CN	40 V* F		"	67	
92 L										
93 R			L	IGHT BROWNISH GREY				TO 2 OD 4	BOTH DISSEMINATED	
94 R				ND AS IRREGULAR WIS						
95 R									TH FRACTURE SURFACE	
96 R									H BLACK CARBONACEOUS	
97 R			N	AATERIAL AS WISPY, H	AIRLINE, RAN	DOMLY OF	RIENTED,	IRREGULAR	VEINLETS THROUGHOUT.	
98					•••					
99 /	87.72	88.70	PIKX	BR	GC		P)			
100 L				Τ	GC	•)+ 			
101 R				BLEACHED, WEAKLY TO			IATED FAL	JLT ENVELO	PE.	
102 /	88.23	88.23	FALT	GG-	RF/	23				
103 R			ר	RACE PYRITIC GOUGE	ON SMOOTH	I SLIP.				
104										
105 /	89.35	91.00	PIKX	M BR	D	82		6+		
106										
107 /	97.23	98.52	PIKX		D	82	P+			
108 L			-	я т						
109 R			E	BLEACHED.						
110										
111 /	97.24	97.24	FALT	GG*	RF/	23				
112 R			S	MEAR PYRITIC GOUGE	ON SLIP					
113										
114 /	99.00	115.00	PIKX		D	71				
115 R			C	Z-CB VEINS HAVE MOD	DERATELY SI	LICIFIED E	NVELOPE	S 3 TO 8 CM	WIDE.	
116										
117 /	104.82	104.82	FALT	GG)	RF/	20				
118 R			S	MEAR PYRITIC GOUGE	ON SLIP					
119 /	114.50	115.22	FALT		R F/	10				
120 R				ODERATELY BROKEN	CORE. SMEA	R OF GOU	GE ON SLI	IP		
121										
122 /	118.75	125.19	PIKX	BR	D		P=			
123 R		120.70		т	-					
124			-	LEACHED, LOCALLY IN	TENSELY FR	ACTURED	CORE UP	PER PORTI	ON	
125				AJOR FAULT ZONE.			CONE. OF			
126 /	120.70	131.88	FALT	BR	RF/	12				
120 / 127 L	120.70	131.00		T	1. 17	12				
			0							

128 R 129 R 130 R 131 R 132 R 133 R 133 R 134 R 135) 1 1 2 2	MAJOR FAULT ZONE. MOD ON IRREGULAR FRACTUR FAULT AT 131.75 M DEPTH THICK ON FRACTURE AT 1 DISCONTINUOUS HAIRLIN CLAY MINERAL ALTERATIO TOUGH DRILLING	ES AND SLI WHERE PA 12 DEGREES FRACTUR	PS AT 12 T LE TAN SI 6. FINELY E ES. BLEAC	O 40 DEGI LICIFIED O BRECCIAT CHED WITH	REES; MAII GOUGE(?) 2 ED WITH A I PERVASIV	N 20 MM BUNDANT VE
136 / 137 L 138 R	129.95	131.88		BR 8T BLEACHED.	D	71	P=	V)	
130 K 139 / 140 L 141 R 142 R 143 R 144	131.88	206.59	PIKX 5 6 1 1	52 51 VN+MX 6 6G		CITE AND			62 FHROUGHOUT; EUHEDRAL ND LENS. VEIN CB
145 / 146	141.35	142.11	ΡΙΚΧ	VN2 BR	D	72	V2		
147 / 148 R	143.18	143.18	VEIN	OFF-WHITE QZ-CB-PY (SE	R CN LVAGES) VE	80 IN 3 CM W	/IDE.	D3	
149 / 150	149.25	150.30	PIKX	VN=BR	D	8=	V=		
151 / 152 R 153	151.08	151.08	VEIN (OFF-WHITE QZ-CB-PY(SEL	R _VAGES) VE	25 IN 3 CM WI	IDE.		
154 / 155 R 156	155.81	155.81	FALT f	BLUISH BLACK CARBONA	R F/ CEOUS MAT	28 ERIAL ON	slip.		
157 / 158 R 159 R	162.40	162.50		GG BR MODERATELY TO FINELY FRACTURES AT 70 DEGRE		70 DRE WITH S	SERICITIC	GOUGE OI	Ν
160 / 161 L 162 R 163 R 164 R	163.50	164.27	PIKX E E	BR BT BLEACHED; OFTEN FINEL BLACK CARBONACEOUS M SECTIONS.	D GC CN Y BRECCIAT				ECCIATED
165 / 166 L 167 R	172.41	172.52	VEIN	BN 7A BANDED LIGHT GREY TO (R CN CN OFF-WHITE.	30 V4 46	V6	D-	
168 / 169 L 170 R 171	184.42	185.77	PIKX	VN+BR 7T BLEACHED; WEAKLY BREG	D	72 ULT ENVE	P1 LOPE.		
172 / 173 R	185.07	185.07	FALT F	FINELY BROKEN CORE ON	R F/ NIRREGULA	25 R SLIP.			

174 / 175 R 176 R 177	192.16	201.16	PIKX VN= BR D 71 V+ WEAKLY BRECCIATED WITH MILKY WHITE QZ-CB VEINS TO 5 CM WIDE MAINLY AT ABOUT 65 DEGREES TO C.A., SOME WITH CL SELVAGES.
178 / 179 R	195.70	195.88	FALT R F/ MODERATELY TO FINELY BROKEN CORE.
180 / 181 R 182	198.71	199.33	FALT BN R F/ 43 REHEALED; FINELY CRUSHED, MYLONITIC BANDING
183 / 184 L 185 R 186 R 187 R 188	206.59	282.24	AXXX 52 51 VN* M M 5 P V- D- V* 4G P* P+ DARK GREEN TO MEDIUM GREYISH GREEN, GENERALLY UNIFORM ROCK. VEIN CB MOTTLED, LIGHT GREY, IN VEINS TO 6 CM WIDE MOSTLY AT 20 DEGREES NON-MAGNETIC WHERE TESTED.
189 / 190 L 191 R 192 R 193 R	206.59	209.78	AXXX F BR D F5 40 P= L= FINELY LAMINATED, MYLONITIC, CRUSHED BRECCIA ZONE BELOW FAULT CONTACT WITH OVERLYING PORPHYRY. BANDS AND SLIPS AT 40 DEGREES LINED BY BLACK CHLORITE.
194 R 195 L 196 R 197	220.94	221.00	D/AN R CN 15 4T CN 54 CHILLED MARGINS; WEAKLY MAGNETIC
198 / 199 R 200	224.30	224.30	FALT R F/ 22 BLACK CHLORITE(?) ON SLIP. 5 % DISSEMINATED PY ACROSS 5 CM ABOVE FAULT
201 / 202 R	236.25	236.25	FALT R F/ 21 SLICKENSIDES; SOOTY PY ON SLIP SURFACE
203 / 204 R	248.33	248.33	FALT R F/ 21 SLICKENSIDES; BLACK CHLORITE ON SLIP SURFACE
205 / 206 L 207 R 208 R 209	252.13	256.86	AXXX VN+BR D V) V) D) 7G P+ LIGHT GREEN, WEAKLY BRECCIATED. VEINLETS IRREGULAR, DISCONTINUOUS; MOST AT ABOUT 10 DEGREES.
210 / 211 L 212 R 213 R 214	267.33	270.15	AXXX MT D D= GU P) BROWNISH GREEN. PY FORMING FINE DISSEMINATIONS IN IRREGULAR MASSES UP TO 25 MM ACROSS. PY OFTEN VERY FINE, SOOTY, BROWN COLOUR
215 / 216 L 217 R	272.30	276.83	AXXX VN+B MX D 81 P=V) 7T BLEACHED, ALTERED FAULT ENVELOPE.
218 / 219 R	275.13	275.33	FALT R F/ FINELY BRECCIATED, REHEALED BY SILICA. MODERATELY BROKEN CORE.

220		
221 /	282.24	END OF HOLE P
222 RSUM		TROPARI TEST HOLE AZ. 016 DEGREES, INCLIN51 DEGREES AT 213.36 M;
223 RSUM		AZIMUTH DUBIOUS. NO SILICEOUS BRECCIA INTERSECTED IN HOLE ALTHOUGH
224 RSUM		FAVOURABLE PORPHYRY/VOLCANIC CONTACT WAS CORED. PERHAPS
225 RSUM		SILICEOUS BRECCIA HERE WAS TRANSPORTED OR DISPLACED BY LATE FAULTING?

APPENDIX C

ASSAY RESULTS

RPT/97-004

drill hole numi	ber=	B96CH1		HF=half W=whole					
from (m)	to (m)	interval (m)	sample no.	core sampled	GOLD (oz/ton)	SILVER (g/t)	COPPER (g/t)	ZINC (g/t)	LEAD (g/t)
6.10	8.50	2.40	59001	HF-CORE	0.010	1	20	165	2
11.00	12.00	1.00		HF-CORE	0.014	0	4	65	130
20.00 21.00	21.00 22.00	1.00 1.00		HF-CORE	0.010 0.022	0 2	19 38	49 40	67 31
37.20	38.20	1.00		HF-CORE	0.022	0	11	40	36
38.20	39.20	1.00		HF-CORE	0.006	4	0	28	Õ
49.00	50.00	1.00	59007	HF-CORE	0.006	9	18	98	27
57.60	58.10	0.50		HF-CORE	0.006	5	6	46	2
103.45	104.45	1.00		HF-CORE	0.000	2	22	66	28
104.45 126.20	105.49 127.20	1.04 1.00		HF-CORE	0.002 0.000	13 5	78 16	190 6 4	156 66
127.20	127.20	1.28		HF-CORE	0.004	3	25	141	51
128.48	129.48	1.00		HF-CORE	0.004	12	32	84	86
129.48	130.00	0.52		HF-CORE	0.014	21	92	990	956
130.00	130.50	0.50		HF-CORE	0.152	48	131	2120	1100
130.50	131.00	0.50		HF-CORE	0.128	45	155	2880	1440
131.00 131.50	131.50 132.00	0.50 0.50		HF-CORE	0.294 0.124	220 249	528 568	22400 9820	12100 9530
132.00	132.50	0.50		HF-CORE	0.440	324	414	29500	14900
132.50	133.00	0.50		HF-CORE	0.036	27	45	241	293
133.00	133.50	0.50		HF-CORE	0.024	17	15	255	239
133.50	134.00	0.50		HF-CORE	0.016	7	9	31	57
134.00	134.60	0.60		HF-CORE	0.012	6	3	62	122
134.60 135.05	135.05 136.00	0.45 0.95		HF-CORE	0.012 0.018	2 3	4 0	47 51	23 6
136.00	137.00	1.00		HF-CORE	0.014	2	8	89	9
137.00	138.00	1.00		HF-CORE	0.016	2 2	8 2	90	22
138.00	139.00	1.00		HF-CORE	0.016	3	1	105	29
139.00	140.00	1.00		HF-CORE	0.014	15	3	77	99
140.00	141.00	1.00		HF-CORE	0.012	5	12	323	95 170
141.00 142.00	1 42 .00 1 43 .00	1.00 1.00		HF-CORE	0.028 0.026	6 7	13 42	628 112	170 66
142.00	150.50	1.00		B HF-CORE	0.010	6	65	167	71
150.50	151.50	1.00		HF-CORE	0.018	2	12	90	56
155.15	156.15	1.00		5 HF-CORE	0.026	6	3	65	13
203.25	203.75	0.50		HF-CORE	0.006	44	28	90	28
211.75	212.25	0.50		HF-CORE	0.002 0.008	7 3	14 29	66 83	49
219.00 222.00	219.50 223.00	0.50 1.00		HF-CORE	0.008	3 1	29 16	116	1 26
223.00	223.50	0.50) HF-CORE	0.026	3	21	1590	970
223.50	224.50	1.00		HF-CORE	0.022	1	22	423	197
224.50	225.50	1.00		2 HF-CORE	0.018	2	26	271	101
225.50	226.25	0.75		B HF-CORE	0.038	4	47	5040	1110
226.25	227.25 239.00	1.00 0.50		HF-CORE	0.028 0.014	0 1	21 25	258 146	59 36
238.50 244.75	239.00	0.50		B HF-CORE	0.014	26	25 41	264	205
258.30	259.30	1.00		7 HF-CORE	0.008	2	28	431	257
259.30	259.93	0.63		B HF-CORE	0.016	1	35	428	194
259.93	260.93	1.00		HF-CORE	0.014	0	24	148	81
264.20	265.20	1.00) HF-CORE	0.018	1	59	1580	502 320
267.20 267.90	267.90 268.90	0.70 1.00		1 HF-CORE 2 HF-CORE	0.020 0.012	1	1 4 15	586 446	320 97
276.00	276.50	0.50		B HF-CORE	0.012	1	5	85	47
294.80	295.30	0.50	59054	4 HF-CORE	0.018	3	98	3490	2110
295.30	296.30	1.00		5 HF-CORE	0.008	2	24	1340	952
296.30	297.30	1.00		3 HF-CORE	0.022	0	9	244	111
297.30 298.30	298.30 299.30	1.00 1.00		7 HF-CORE 8 HF-CORE	0.006 0.004	0 4	5 40	1160 51 1 0	775 3360
298.30	300.30	1.00		HF-CORE	0.004	11	151	12700	8050
300.30	301.30	1.00		HF-CORE	0.010	2	27	1760	1120
301.30	302.30	1.00		1 HF-CORE	0.008	1	13	340	289
302.30	303.30	1.00	59062	2 HF-CORE	0.012	2	26	1090	409

drill hole number=		B96CH1		HF=half W=whoie						
from (m)	to (m)	interval (m)	sample no.	core sampled	GOLD (oz/ton)	SILVER (g/t)	COPPER (g/t)	ZINC (g/t)	LEAD (g/t)	
303.30	304.60	1.30	59063	HF-CORE	0.018	 1		830	201	
306.90	307.90	1.00	59064	HF-CORE	0.018	0	4	643	254	
314.30	315.30	1.00	59065	HF-CORE	0.014	0	19	306	128	
315.30	316.30	1.00	59066	HF-CORE	0.016	2	17	78	49	
316.30	317.30	1.00	59067	HF-CORE	0.018	2	11	123	112	
317.30	318.30	1.00	59068	HF-CORE	0.008	2	6	174	110	
318.30	319.30	1.00	59069	HF-CORE	0.118	13	247	2300	1380	
319.30	320.28	0.98	59070	HF-CORE	0.012	2	10	99	51	
326.90	327.30	0.40	59071	HF-CORE	0.008	1	12	1030	532	
327.30	327.70	0.40	59072	HF-CORE	0.010	3	11	1210	682	
332.92	333.42	0.50	59073	HF-CORE	0.058	5	15	204	102	

ill hole num	nber=	B96CH2		HF=half W=whole					
from (m)	to (m)	interval (m)	sample no.	core sampled	GOLD (oz/ton)	SILVER (g/t)	COPPER (g/t)	ZINC (g/t)	LEAD (g/t)
15.77	16.77	1.00		HF-CORE	0.012	10	16	125	93
16.77	17.07	0.30		HF-CORE	0.03	65	37	146	161
17.07	18.07	1.00		HF-CORE	0.01	4	8	128	57
18.07	19.07	1.00		HF-CORE	0.014	2	15	76	15
19.07	20.07	1.00		HF-CORE	0.014	3	13	75	22
20.07	21.07	1.00		HF-CORE	0.008	5	15	65 02	44
21.07	22.07 23.37	1.00 1.30	59080	HF-CORE HF-CORE	0.004	4	15 23	93	56
22.07		0.50		HF-CORE	0.014 0.018	23 50	23 99	293 475	93 290
23.37 23.87	23.87 24.37	0.50		HF-CORE	0.018	26	28	297	290
23.87	24.37 24.97	0.60		HF-CORE	0.012	20	20	322	90
24.37	25.97	1.00		HF-CORE	0.024	20	10	148	2
25.97	26.97	1.00		HF-CORE	0.008	5	10	89	2
26.97	27.97	1.00		HF-CORE	0.006	3	22	58	1
27.97	28.97	1.00		HF-CORE	0.004	2	19	69	1
28.97	29.97	1.00		HF-CORE	0.004	1	18	60	2
89.86	90.86	1.00		HF-CORE	0.004	1	19	51	4
90.86	91.66	0.80		HF-CORE	0.018	3	27	562	59
91.66	92.66	1.00		HF-CORE	0.008	1	22	349	23
94.00	95.00	1.00	59093	HF-CORE	0.01	2	35	599	30
95.00	95.50	0.50	59094	HF-CORE	0.016	2	10	564	33
95.50	96.00	0.50	59095	HF-CORE	0.022	5	66	601	32
96.00	96.50	0.50	59096	HF-CORE	0.046	4	30	291	13
96.50	97.50	1.00	59097	HF-CORE	0.002	5	6	175	4
101.20	102.00	0.80	59098		0.014	6	227	547	57
102.00	102.60	0.60		HF-CORE	0.018	12	257	2000	490
102.60	103.25	0.65		HF-CORE	0.008	3	113	636	51
128.80	129.30	0.50		HF-CORE	0.008	2	13	102	410
133.69	134.19	0.50		HF-CORE	0.004	3	19	140	6
1 34 .19	134.49	0.30		HF-CORE	0.002	2	8	66	5
134.49	134.99	0.50		HF-CORE	0.006	1	16	98	6
140.40	141.40	1.00		HF-CORE	0.022	3	74	1960	200
141.40	141.90	0.50		HF-CORE	0.35	34	712	46200	528
141.90	142.40	0.50		HF-CORE	1.376	79	2280	69100	880
142.40	142.90	0.50		HF-CORE	0.88	113	4000	58800	840
142.90	143.90	1.00		HF-CORE HF-CORE	0.01 0.038	3 7	68	2400 2520	86 320
143.90	144.40 144.90	0.50 0.50		HF-CORE	0.038	4	127 90	2520 580	37
144.40 144.90	145.25	0.35		HF-CORE	0.018	4	90 15	320	20
145.25	146.75	1.50		HF-CORE	0.044	2	112	2510	280
170.00	170.60	0.60		HF-CORE	0.006	3	33	227	11
193.85	194.75	0.90		HF-CORE	0.022	3	69	5800	440
211.50	212.20	0.70		HF-CORE	0.002	1	14	107	
219.50	220.30	0.80		HF-CORE	0.01	2	81	3200	300
229.00	230.00	1.00		HF-CORE	0.01	1	32	123	g
239.50	240.50	1.00		HF-CORE	0.002	1	65	1980	36
253.70	254.40	0.70		HF-CORE	0.008	12	60	6900	360
256.00	257.00	1.00		HF-CORE	0.004	10	114	5000	310
257.00	258.00	1.00		HF-CORE	0.002	7	89	4400	400
258.00	259.00			HF-CORE	0.006	5	108	8500	360

drill hole numb	oer≂	B96CH3		HF=half W =w hole					
from (m)	to (m)	interval (m)	sample no.	core sampled	GOLD (oz/ton)	SILVER (g/t)	COPPER (g/t)	ZINC (g/t)	LEAD (g/t)
8.68	9.68	1.00		HF-CORE	0	1	17	80	20
9.68	10.68	1.00		HF-CORE	0	1	40	2290	53
10.68	11.68	1.00		HF-CORE	0	1	21	189	75
11.68	12.68	1.00		HF-CORE	0	1	19	78	31
12.68	13.68	1.00		HF-CORE	0	1	18	87	28
13.68	14.68	1.00		HF-CORE	0.002	1	21	166	43
14.68	15.68	1.00		HF-CORE	0.002	2	19	94	58
15.68	16.68	1.00		HF-CORE	0.002	3	17	79	48
16.68	17.68	1.00		HF-CORE	0.002	2	21	80	19
17.68	18.68	1.00		HF-CORE	0.002	2	16	75	23
18.68	19.68	1.00		HF-CORE	0.002	2	20	84	55
19.68	20.68	1.00		HF-CORE	0.002	2	19	74	49
20.68	21.68	1.00		HF-CORE	0.002	2	18	69	25
29.45	30.45	1.00		HF-CORE	0.002	3	24	81	21
30.45	31.45	1.00		HF-CORE	0.002	3	23	40	25
31.45	32.45	1.00		HF-CORE	0	2	20	52	28
32.45	33.45	1.00		HF-CORE	0	3	49	61	18
38.75	40.25	1.50		HF-CORE	0	0	5	71	14
59.70	60.70	1.00		HF-CORE	0	2	8	42	37
71.80	72.80	1.00		HF-CORE	0.002	5	35	66	36
72.80	73.80	1.00		HF-CORE	0.000	3 2	23	344	188
79.17	80.17	1.00 0.50		HF-CORE HF-CORE	0.002		29	294	131
80.17	80.67	0.50		HF-CORE	0.012	1 6	63 53	616 1470	387
80.67	81.05	0.38		HF-CORE	0.028	8			1260
81.05	81.30	0.25	+ + • • • -	HF-CORE	0.028	20	45 72	341 127	945 236
81.30 81.80	81.80 82.35	0.50		HF-CORE	0.008	20	38	127	121
	83.35	1.00		HF-CORE	0.012	3	30 17	67	93
82.35 83.35	84.35	1.00		HF-CORE	0.020	3	23	101	56
	85.35	1.00		HF-CORE	0	0	23	151	62
84.35 85.35	86.35	1.00		HF-CORE	0.006	1	35	241	87
93.80	94.80	1.00		HF-CORE	0.006	2	33	190	101
93.80 94.80	94.80 96.30	1.50		HF-CORE	0.000	1	20	226	65
101.00	102.00	1.00		HF-CORE	0.004	2	20	405	298
123.00	123.50	0.50		HF-CORE	0.002	2	21	56	290
126.30	123.50	1.00		HF-CORE	0.008	1	7	1210	588
127.30	127.50	1.00		HF-CORE	0.002	0	21	1090	407
128.50	128.90	0.40		HF-CORE	0.002	0		421	894
128.90	128.90	1.00		HF-CORE	0.002	9	11 122	3080	5100
128.90	129.90	1.50		HF-CORE	0.008	9	58	2450	658
160.00	160.00	1.50		HF-CORE	0.004	1	23	2450	51
160.00	161.50	0.50		HF-CORE	0.004	3	23 26	83 79	39
100.00	109.00	0.30	09100	HE-CORE	0.074	3	20	19	39

drill hole numb	er=	B96CH4		HF=half W=whole					
from (m)	to (m)	interval (m)	sample no.	core sampled	GOLD (oz/ton)	SILVER (g/t)	COPPER (g/t)	ZINC (g/t)	LEAD (g/t)
33.80	34.30	0.50		HF-CORE	0.002	14	7	270	34
38.39	38.79	0.40		HF-CORE	0.002	6	5	50	31
38.79	39.79	1.00		HF-CORE	0.002	22	13	92	19
39.79	40.59	0.80		HF-CORE	0.002	59	17	620	180
40.59	41.34	0.75		HF-CORE	0.004	35	15	260	72
41.34 57.00	42.88 58.10	1.54 1.10		HF-CORE HF-CORE	0.004 0.008	7 22	13 28	80 183	15 150
67.00	68.20	1.10		HF-CORE	0.008	22	11	70	20
71.83	73.03	1.20		HF-CORE	0.006	14	31	93	98
74.70	75.40	0.70		HF-CORE	0.002	14	21	68	50
117.80	118.30	0.50		HF-CORE	0.002	4	19	69	41
143.13	144.13	1.00		HF-CORE	0.004	5	31	128	106
144.13	145.13	1.00		HF-CORE	0.002	3	19	105	100
145.13	146.13	1.00		HF-CORE	0.002	3	20	176	151
146.13	146.53	0.40		HF-CORE	0.006	4	15	75	69
146.53	147.13	0.60		HF-CORE	0.028	9	25	553	410
147.13	147.63	0.50		HF-CORE	0.024	10	102	2630	1920
147.63	148.13	0.50 0.50		HF-CORE HF-CORE	0.01 0.004	7 12	101	435 712	400
148.13 148.63	148.63 149.13	0.50		HF-CORE	0.004	8	41 83	1460	650 1590
140.03	149.13	0.50		HF-CORE	0.012	6	151	2190	2260
149.63	150.13	0.50		HF-CORE	0.01	12	125	1950	1890
150.13	150.63	0.50		HF-CORE	0.004	8	65	148	169
150.63	151.13	0.50		HF-CORE	0.006	11	100	166	151
151.13	152.13	1.00		HF-CORE	0.004	7	103	1090	960
152.13	153.13	1.00		HF-CORE	0.034	25	185	7200	5900
153.13	153.63	0.50		HF-CORE	0.014	3	98	625	510
153.63	1 54 .13	0.50		HF-CORE	0.004	12	586	6430	5000
154.13	154.63	0.50		HF-CORE	0.004	9	504	3810	2960
154.63	155.13	0.50		HF-CORE	0.002	14	556	7770	6870
155.13	155.63	0.50		HF-CORE	0.002	2	24	201	153
155.63	156.13 156.48	0.50 0.35		HF-CORE HF-CORE	0.002 0.004	3 3	74 28	256 651	199 549
156.13 156.48	157.28	0.35		HF-CORE	0.004	3	31	110	129
157.65	158.65	1.00		HF-CORE	0.002	3	25	93	150
158.65	159.65	1.00		HF-CORE	0.002	3	26	78	95
159.65	160.65	1.00		HF-CORE	0.002	2	33	68	17
160.65	161.65	1.00		HF-CORE	0.004	4	24	96	33
161.65	162.65	1.00	59205	HF-CORE	0.002	4	15	100	35
199.97	200.97	1.00		HF-CORE	0.004	4	15	67	48
200.97	201.97	1.00		HF-CORE	0.006	3		191	58
201.97	202.47	0.50		HF-CORE	0.006	5		43	40
202.47	202.97	0.50		HF-CORE	0	6	6	33	29
202.97	203.67	0.70		HF-CORE	0	3	7	45	35
203.67 204.67	204.67 205.67	1.00 1.00		HF-CORE HF-CORE	0.01 0.002	7 5	19 10	109 53	20 2 4
204.67	205.67	1.00		HF-CORE	0.002	2	6	52	2 4 16
205.67	207.67	1.00		HF-CORE	0.034	4		82	17
240.90	242.40	1.50		HF-CORE	0	2		69	24
-									

drill hole num	ber=	B96CH5		HF=half W=whole					
from (m)	to (m)	interval (m)	sample no.	core sampled	GOLD (oz/ton)	SILVER (g/t)	COPPER (g/t)	ZINC (g/t)	LEAD (g/t)
	=======		=======	==========	===========	(9/1/	(9/1)		(9/1)
18.80	19.80	1.00		HF-CORE	0.012	4	131	89	52
32.60	33.10	0.50		HF-CORE	0.006	5	26	5180	9 9 7
33.10	33.60	0.50		HF-CORE	0.002	4	34	502	262
45.40	46.40	1.00		HF-CORE	0.002	1	34	936	437
46.40	47.40	1.00		HF-CORE	0	4	34	785	206
49.60	50.10	0.50	59221	HF-CORE	0	4	32	3290	1240
59.50	60.50	1.00		HF-CORE	0.156	2	115	1760	394
60.50	60.80	0.30		HF-CORE	0.016	4	197	23800	1410
60.80	61.15	0.35		HF-CORE	0.012	12	433	107000	3720
61.15	61.65	0.50		HF-CORE	0.006	4	109	11700	3050
61.65	62.65	1.00		HF-CORE	0.008	3	53	10700	926
62.65	63.15	0.50		HF-CORE	0.004	4	22	1440	373
63.15	63.65	0.50	59228		0	5	11	632	249
63.65	64.10	0.45		HF-CORE	0.008	6	57	3890	480
73.60	74.70	1.10		HF-CORE	0	4	178	98	30
74.70	75.70	1.00	59231	HF-CORE	0	5	141	5070	269
75.70	77.00	1.30		HF-CORE	0	1	41	156	20
101.61	102.61	1.00		HF-CORE	0.002	1	15	227	39
102.61 103.61	103.61	1.00 1.00		HF-CORE HF-CORE	0	5	20	508	163
103.61	104.61 105.61	1.00		HF-CORE	0.002	4	14	274	90
104.61	106.61	1.00		HF-CORE	0.004 0.002	2 2	15	956	89
106.61	107.61	1.00		HF-CORE	0.002	4	26 40	1200 1611	238
107.61	107.01	1.00		HF-CORE	0.002	1	40	96	1090 45
108.61	109.11	0.50		HF-CORE	0.024	3	92	1860	45 370
109.11	109.61	0.50			0.002	2	92 87	2160	320
109.61	110.11	0.50		HF-CORE	0.006	2	41	1010	191
110.11	110.61	0.50		HF-CORE	0.002	1	48	1300	480
110.61	111.11	0.50		HF-CORE	0.012	3	87	5990	1540
111.11	111.61	0.50		HF-CORE	0.004	2	45	1530	680
111.61	112.11	0.50		HF-CORE	0.016	3	9	1990	737
112.11	112.61	0.50	59247		0.03	8	77	4610	1520
112.61	113.11	0.50		HF-CORE	0.004	1	26	2013	277
113.11	113.61	0.50		HF-CORE	0.24	19	136	2933	310
113.61	114.61	1.00	59250	HF-CORE	0.002	3	31	920	252
114.61	115.61	1.00	59251	HF-CORE	0	3	15	700	236
115.61	116.61	1.00	59252	HF-CORE	0	3	17	841	214
116.61	117.61	1.00	59253	HF-CORE	0	2	28	1250	148
117.61	116.51	-1.10	59254	HF-CORE	0	1	17	359	87
116.51	119.61	3.10		HF-CORE	0	2	25	1250	258
119.61	120.61	1.00		HF-CORE	0.002	2	35	260	71
120.61	121.61	1.00		HF-CORE	0	2	22	307	118
121.61	122.61	1.00		HF-CORE	0.002	2	14	191	78
122.61	123.61	1.00		HF-CORE	0	4	37	4040	1140
123.61	124.61	1.00		HF-CORE	0	6	32	2260	1100
124.61	125.81	1.20	59261	HF-CORE	0	1	2	295	161

drill hole num	ber=	B96CH6		HF=half W=whole					
from (m)	to (m)	interval (m)	sample no.	core sampled	GOLD (oz/ton)	SILVER (g/t)	COPPER (g/t)	ZINC (g/t)	LEAD (g/t)
52.75	53.75	1.00		HF-CORE	0.02	9	68	782	334
53.75	54.25	0.50		HF-CORE	0.048	27	102	3600	1540
54.25 54.75	54.75 55.41	0.50 0.66		HF-CORE HF-CORE	0.024 0.008	17 16	61 73	3160 335	980 317
55.41	55.91	0.50		HF-CORE	0.056	102	167	3710	1310
55.91	56.41	0.50		HF-CORE	0.062	336	266	6050	2830
56.41	57.17	0.76	59268		0.152	60	620	7100	3190
57.17	58.17	1.00		HF-CORE	0.004	10	43	289	405
58.17 59.17	59.17 60.17	1.00 1.00	59270 59271	HF-CORE HF-CORE	0.01 0.006	11 8	111 145	58 71	52 43
60.17	61.17	1.00		HF-CORE	0.000	16	293	4440	1810
61.17	62.17	1.00		HF-CORE	0.014	6	57	241	190
62.17	63.17	1.00		HF-CORE	0.016	3	33	74	15
63.17	64.17	1.00		HF-CORE	0.034	5	142	158	162
64.17 65.17	65.17 66.17	1.00 1.00		HF-CORE HF-CORE	0.002 0.01	3	24 64	100 118	26 284
65.17 66.17	67.17	1.00		HF-CORE	0.022	6 8	241	90	138
67.17	68.17	1.00		HF-CORE	0.004	5	71	76	31
68.17	68.84	0.67		HF-CORE	0.01	5	22	96	61
68.84	69.44	0.60		HF-CORE	0.04	22	335	20500	4260
69.44	69.94	0.50 0.50		HF-CORE HF-CORE	0.052 0.032	18	345 124	7010 3240	4700 1110
69.94 70.44	70.44 70.94	0.50		HF-CORE	0.032	9 31	672	14100	6630
70.94	71.94	1.00		HF-CORE	0.03	10	121	1950	1260
71.94	72.94	1.00	59286	HF-CORE	0.008	4	28	172	128
72.94	74.14	1.20		HF-CORE	0.008	5	26	78	101
87.25	87.75	0.50		HF-CORE HF-CORE	0.004	5	317	1950	275
94.30 99.50	94.80 100.50	0.50 1.00		HF-CORE	0.022 0.008	4 8	17 277	2420 1460	1380 1390
100.50	101.50	1.00	59291		0.004	13	32	1220	960
101.50	102.50	1.00		HF-CORE	0.038	5	50	460	330
102.50	103.50	1.00		HF-CORE	0.018	6	59	310	190
103.50	104.50	1.00		HF-CORE	0.054	8	108	140	110
104.50 105.50	105.50 106.50	1.00 1.00		HF-CORE HF-CORE	0.102 0.038	6 15	31 182	110 1031	159 1130
106.50	106.85	0.35		HF-CORE	0.058	5	18	1440	265
106.85	107.35	0.50		HF-CORE	0.042	10		2480	726
107.35	107.85	0.50		HF-CORE	0.036	19		2280	4000
107.85	108.35	0.50		HF-CORE	0.01	13		1820	1470
108.35 108.85	108.85 109.35	0.50 0.50		HF-CORE HF-CORE	0.162 0.142	29 30		11900 24800	14700 16100
109.35	109.85	0.50		HF-CORE	0.124	25		37700	15400
109.85	110.35	0.50		HF-CORE	0.032	22		32100	12700
110.35	110.70	0.35		HF-CORE	0.01	6		2370	2740
110.70	111.20	0.50		HF-CORE	0.014	3		1400	316
111.20 111.70	111.70 112.20	0.50 0.50		HF-CORE HF-CORE	0.036 0.02	4 4		772 4680	380 331
112.20	112.70	0.50		HF-CORE	0.02	5		5120	1320
112.70	113.20	0.50		HF-CORE	0.022	5	79	6000	1360
113.20	113.70	0.50		HF-CORE	0.036	7		6300	2570
113.70	114.20	0.50		HF-CORE	0.004	6		5730	2130
114.20 115.20	115.20 116.20	1.00 1.00		HF-CORE	0.002 0.01	5 5	31 46	1360 1030	1010 908
116.20	117.20	1.00		HF-CORE	0.006	6		775	598
117.20	118.20	1.00	59316	HF-CORE	0.012	4	23	391	460
118.20	119.20	1.00		HF-CORE	0.01	4		520	337
119.20	120.20 121.20	1.00 1.00		HF-CORE	0.01 0	3		1896 151	1310 148
120.20 121.20	121.20	1.00		HF-CORE	0.004	4		682	461
122.20	123.20	1.00		HF-CORE	0.01	6		1340	952
123.20	124.20	1.00		HF-CORE	0.006	4		2610	1820
124.20	125.20	1.00	59323	HF-CORE	0.004	5	9	790	558

125.20	126.20	1.00	59324 HF-CORE	0.01	3	18	2960	1380
126.20	127.20	1.00	59325 HF-CORE	0.002	4	28	820	388
127.20	128.20	1.00	59326 HF-CORE	0.006	9	13	316	279
133.10	134.10	1.00	59327 HF-CORE	0.024	5	10	2620	1810
134.10	135.10	1.00	59328 HF-CORE	0.026	5	8	1010	734
135.10	136.10	1.00	59329 HF-CORE	0.026	8	9	360	277
136.10	137.10	1.00	59330 HF-CORE	0.018	5	8	2161	1700
137.10	138.10	1.00	59331 HF-CORE	0.034	5	5	720	577
162.20	162.90	0.70	59332 HF-CORE	0.012	13	17	932	594

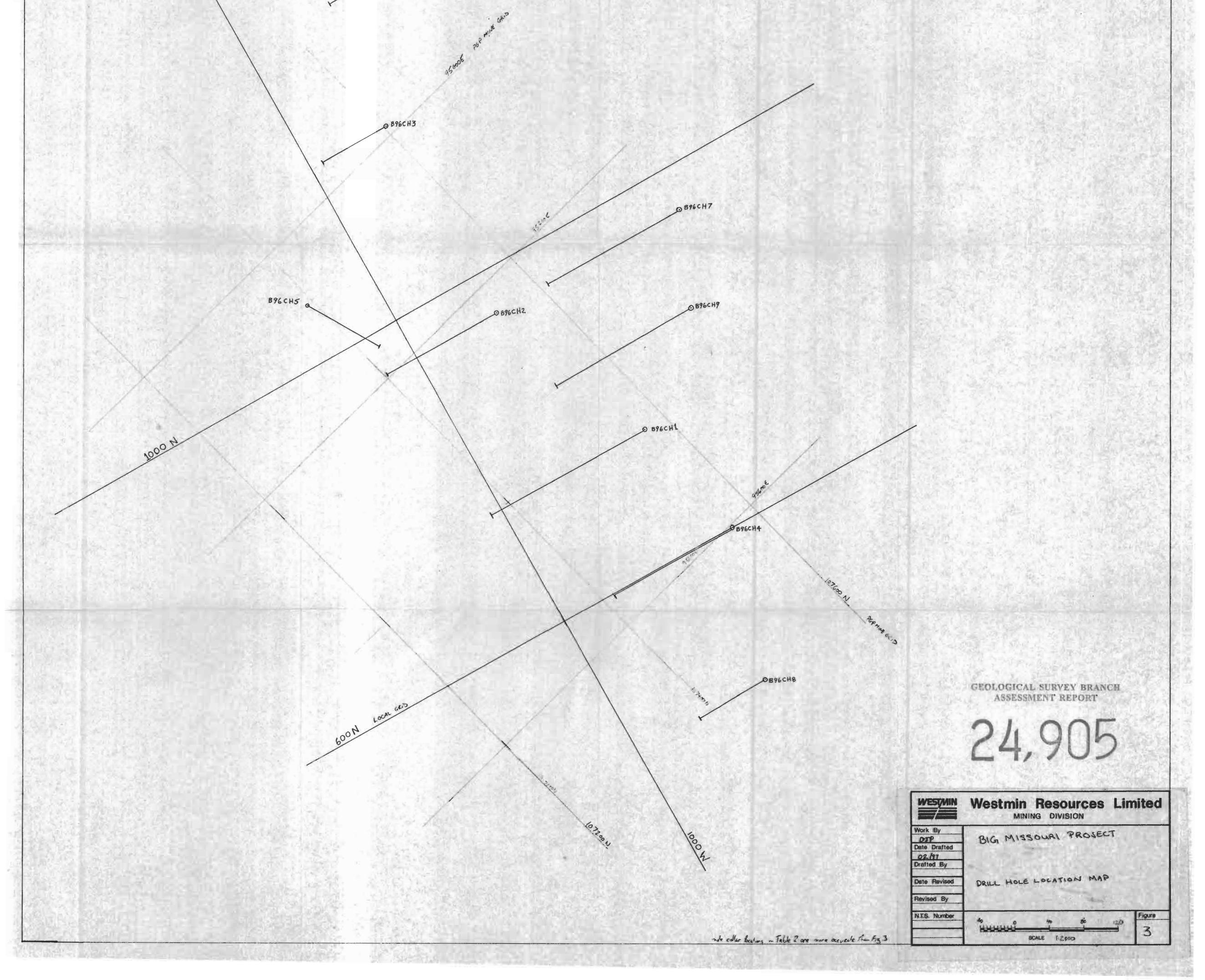
drill hole r	number=	B96CH7		HF=half W=whole					
from (m)	to (m)	interval (m)	sample no.	core sampled	GOLD (oz/ton)	SILVER (g/t)	COPPER (g/t)	ZINC (g/t)	LEAD (g/t)
30.4			59333		0	5	9	152	 19
39.8				HF-CORE	0	3	9	96	32
174.8				HF-CORE	0.014	72	19	430	138
175.8				HF-CORE	0.262	1390	160	9960	6580
176.3				HF-CORE	0.002	10	28	410	155
176.8				HF-CORE	0.004	12	59	699	481
177.3				HF-CORE	0	9	36	720	544
177.8				HF-CORE HF-CORE	0.002	7	16	151	108
178.3 178.8				HF-CORE	0 0.002	6	22	460	249
179.3				HF-CORE	0.002	5 7	13 12	103 114	75 57
179.8				HF-CORE	0.002	5	25	260	138
180.3				HF-CORE	0.002	2	13	200 74	28
196.0				HF-CORE	0.002	2	46	52	18
197.0				HF-CORE	0.02	6	96	3610	2570
197.5				HF-CORE	0.018	5	42	2280	1120
198.0				HF-CORE	0.016	3	44	1030	552
198.5				HF-CORE	0.018	4	24	960	436
199.0			59351		0.014	4	17	420	85
199.5			59352	HF-CORE	0.018	3	35	590	115
200.0			59353	HF-CORE	0.026	6	44	4950	3090
200.5				HF-CORE	0.018	3	36	275	183
201.1				HF-CORE	0.018	4	93	4210	2620
202.1				HF-CORE	0.022	18	1230	10200	8520
205.2				HF-CORE	0.01	7	62	3040	2170
212.1				HF-CORE	0.006	2	14	69	35
223.2			59359		0.004	4	13	54	25
224.2				HF-CORE	0.008	9	16	103	63
224.7 225.2				HF-CORE HF-CORE	0.022 0.022	40 31	22	307	159
225.2				HF-CORE	0.022	92	19 27	351 760	375 520
226.2				HF-CORE	0.013	92	28	393	215
226.7				HF-CORE	0.006	6	20 50	193	101
227.2				HF-CORE	0.032	8	177	880	590
227.9			59367		0.004	4	191	94	39
233.9			59368		0.004	1	5	374	460
245.9				HF-CORE	0.1	5	50	22	1400
248.5				HF-CORE	0.024	3	5	93	57
255.2			59371		0.494	8	108	2390	2610
256.2				HF-CORE	0.102	6	279	4861	4100
263.6				HF-CORE	0.446	297	44600	82000	10400
263.9				HF-CORE	0.054	8	366	7233	5820
269.8	0 270.80	1.00	5 937 5	HF-CORE	0.008	4	46	1459	1010

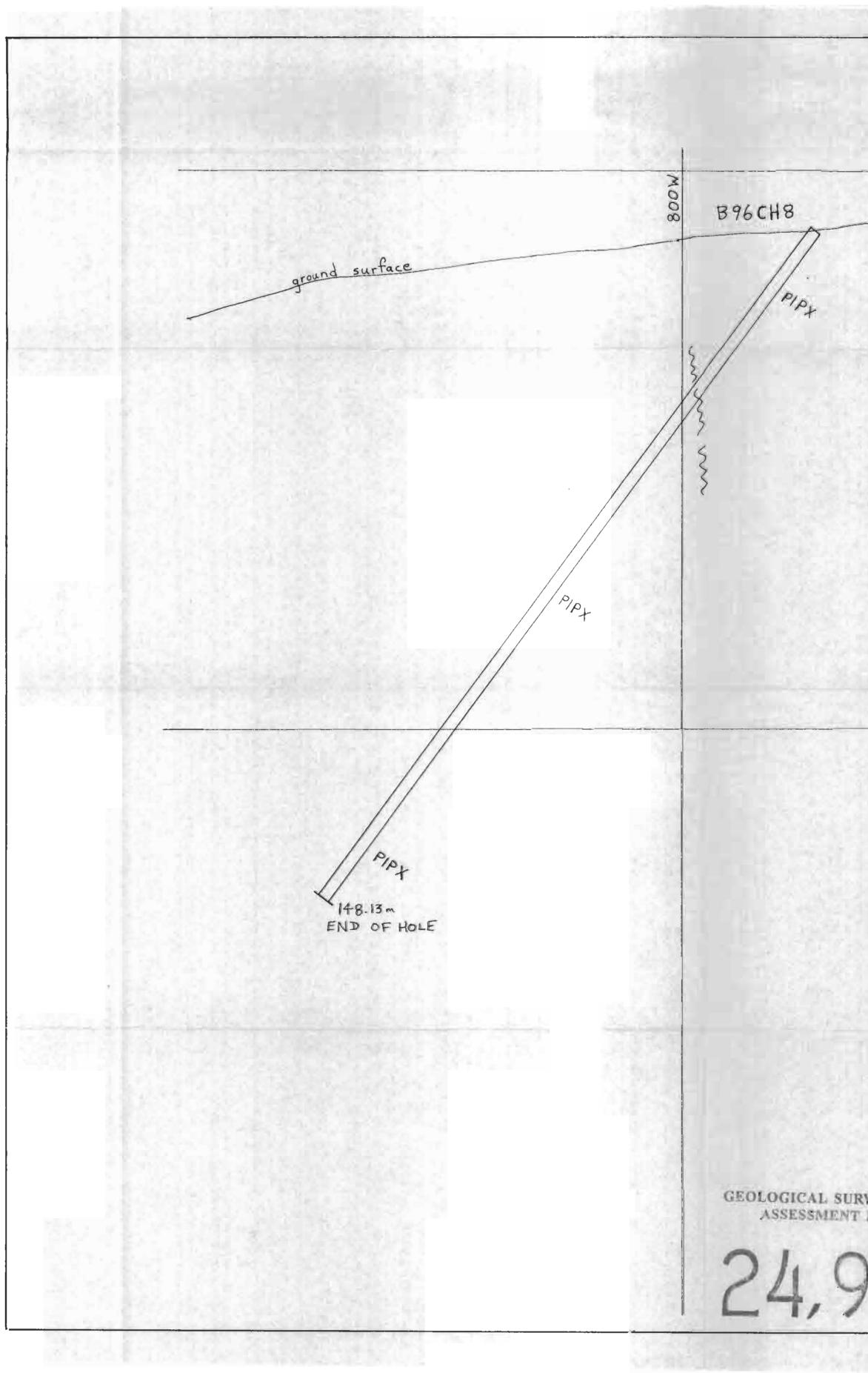
drill hole num	ber=	B96CH8		HF=half W=whole					
from (m)	to (m)	interval (m)	sample no.	core sampled	GOLD (oz/ton)	SILVER (g/t)	COPPER (g/t)	ZINC (g/t)	LEAD (g/t)
36.65	37.15	0.50	59376	HF-CORE	0	1	15	= 57	 96
86.00	87.00	1.00	59377	HF-CORE	0	3	24	36	25
131.80	132.40	0.60	59378	HF-CORE	0	21	23	623	410
137.50	138.50	1.00	59379	HF-CORE	0	5	15	162	109

drill hole num	ber=	B96CH9		HF=half W=whole					
from (m)	to (m)	interval (m)	sample no.	core sampled	GOLD (oz/ton)	SILVER (g/t)	COPPER (g/t)	ZINC (g/t)	LEAD (g/t)
4.20	5.20	1.00	59380	HF-CORE	0.002	2	15	111	200
18.43	19.13	0.70	59381	HF-CORE	0.002	4	14	58	150
51.50	52.50	1.00	59382	HF-CORE	0	3	6	31	70
52.50	53.50	1.00		HF-CORE	0.008	5	9	54	6 9
53.50	54.50	1.00		HF-CORE	0.012	2	5	90	58
54.50	55.50	1.00	59385	HF-CORE	0.002	2 5	11	57	85
55.50	56.50	1.00		HF-CORE	0.002	5	9	28	15
81.19	82.19	1.00		HF-CORE	0.012	4	9	27	19
82.19	83.19	1.00		HF-CORE	0.002	4	10	36	26
83.19	84.19	1.00		HF-CORE	0.002	7	9	35	30
84.19	85.19	1.00	59390		0	40	11	201	140
85.19	86.19	1.00		HF-CORE	0	81	13	160	97
86.19	87.19	1.00		HF-CORE	0	16	18	73	81
130.00	130.70	0.70	59393		0	3 2	6	19	10
130.70	131.70	1.00	59394		0.004	2	7	17	10
141.35	142.15	0.80		HF-CORE	0.004	5 2	9	24	30
142.80	143.30	0.50		HF-CORE	0.006	2	16	48	29
150.90	151.40	0.50		HF-CORE	0.002	3	11	37	40
154.80	155.80	1.00		HF-CORE	0.002	2 3	7	17	10
155.80	156.80	1.00	59399		0	3	13	34	19
156.80	157.80	1.00	59400		0	3	13	70	65
205.59	206.59	1.00	59401		0	2	14	44	31
206.59	207.59	1.00	59402		0	3	12	48	39
207.59	208.59	1.00	59403		0	2	12	65	50
208.59	209.59	1.00	59404		0.004	4	20	112	79
224.00	224.50	0.50		HF-CORE	0.002	3	12	53	33
252.13	253.13	1.00		HF-CORE	0	9	20	52	26
253.13	254.13	1.00	59407		0	8	23	49	59
254.13	255.13	1.00	59408		0	8	14	61	70
255.13	256.13	1.00	59409		0	17	24	76	59
256.13	257.13	1.00	59410		0.004	8	21	47	56
267.30	268.30	1.00	59411	HF-CORE	0.002	7	15	38	19
268.30	269.30	1.00		HF-CORE	0.068	8	13	38	15
269.30	270.30	1.00		HF-CORE	0	6	15	48	38
270.30	271.30	1.00	59414		0	4	9	42	40
271.30	272.30	1.00	59415	· ·· = = · · =	0	4	8	44	57
274.50	275.50	1.00	5 94 16	HF-CORE	0.002	9	20	117	95

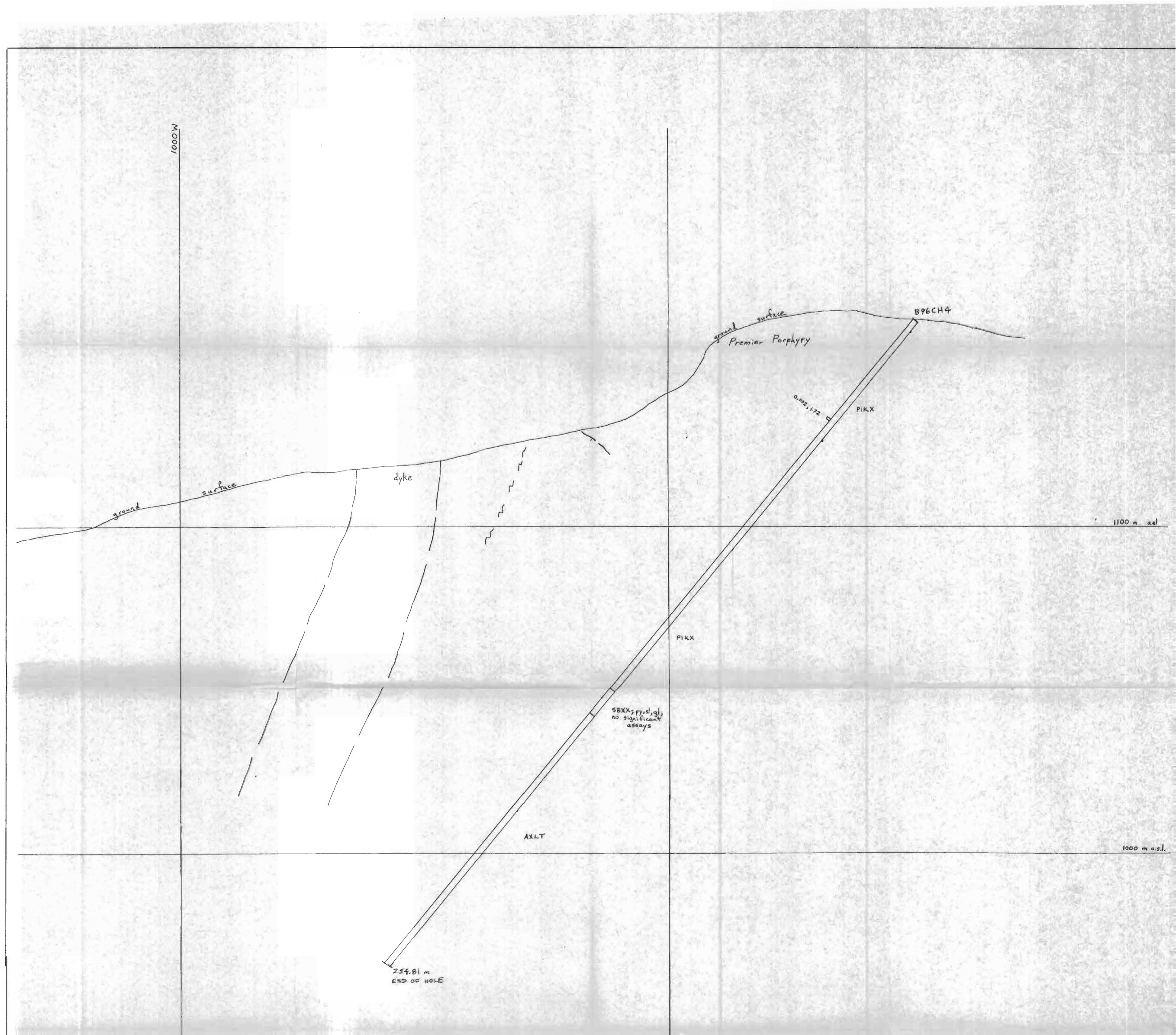
APPENDIX D

CLAIM STATUS, BIG MISSOURI PROPERTY

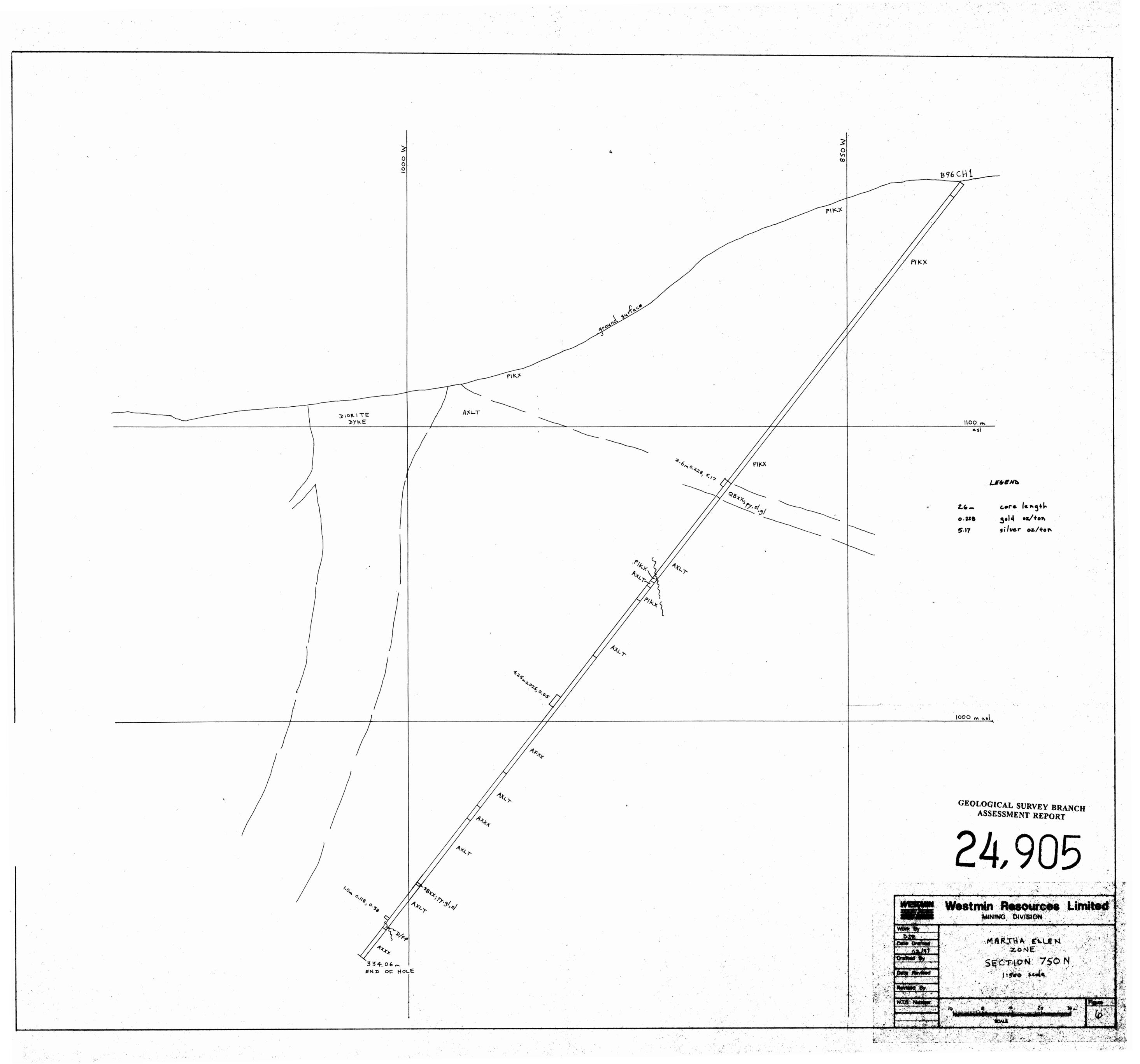

RPT/97-004

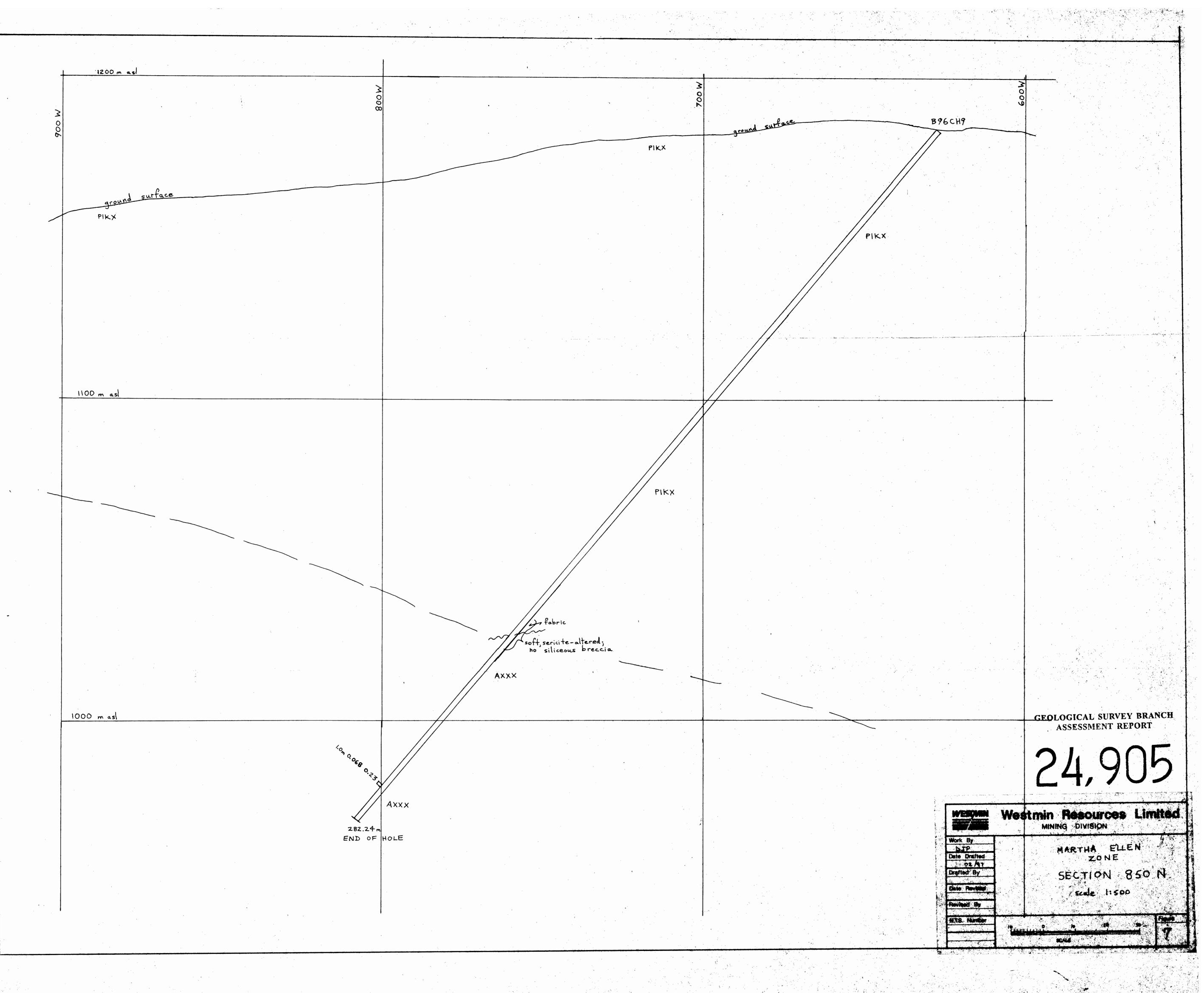

REF	DISP'N #		LOT No	TYPE		UNITS	REC DATE	EXP DATE
		MARTHA ELLEN			104B/1E			Wednesday, 02 July, 19
		GLACIER			104B/1E			Wednesday, 02 July, 19
		LECKIE FR.			104B/1E			Wednesday, 02 July, 19
		PROVINCE			1048/1E			Wednesday, 02 July, 19
		GOLDEN CROWN			104B/1E			Wednesday, 02 July, 19
		J P FRACTION		_	104B/1E			Wednesday, 02 July, 19
	3213	E PLURIBUS		+SUR	1048/1E			Wednesday, 02 July, 19
		UNUM FR.		+SUR	104B/1E			Wednesday, 02 July, 19
	4036	BELLA COOLA			104B/1E		10/01/76	Wednesday, 02 July, 19
	4037	GOOD HOPE			104B/1E		02/14/78	Wednesday, 02 July, 19
		MAY P.J.			104B/1E		10/01/76	Wednesday, 02 July, 19
	4039	SILVER LEAF			1048/1E		02/08/79	Wednesday, 02 July, 19
	4040	LADYBIRD #2			104B/1E		10/01/76	Wednesday, 02 July, 19
	4127	DAY NO 1			104B/1E			Wednesday, 02 July, 19
	4129	DAY NO 2			104B/1E			Wednesday, 02 July, 19
	4130	DAY NO 3			104B/1E			Wednesday, 02 July, 19
	4131	DAY NO 4			104B/1E			Wednesday, 02 July, 19
	4132	DAY FRACTION			104B/1E			Wednesday, 02 July, 19
	4163	SEPTEMBER FR.			104B/1E		02/08/79	Wednesday, 02 July, 19
	4534	UNICORN			104B/1E			Wednesday, 02 July, 19
	4535	UNICORN NO 2			1048/1E			Wednesday, 02 July, 19
	4536	UNICORN NO 3			104B/1E			Wednesday, 02 July, 19
	4537	UNITY			104B/1E			Wednesday, 02 July, 19
	4538	GOOD HOPE			104B/1E			Wednesday, 02 July, 19
		SNOW KING			104B/1E			Wednesday, 02 July, 19
		SILVER CREEK FR		+SUR	104B/1E			Wednesday, 02 July, 19
	4541	H AND W FRACTION			104B/1E			Wednesday, 02 July, 19
		UNITY FR.			104B/1E			Wednesday, 02 July, 19
		V FRACTION			1048/1E		-	Wednesday, 02 July, 19
-		TIGER	L4152		104B/1E		75/08/11	Saturday, 11 August, 20
		PYRARGYRITE	L4155		104B/1E		75/08/11	Saturday, 11 August, 20
-		SILVERCREST FR.	L4162	-	104B/1E		75/08/11	Wednesday, 10 September, 20
		LION #1	L4166		104B/1E		75/08/11	Saturday, 11 August, 20
		LION #2	L4167	_	104B/1E		75/08/11	Saturday, 11 August, 20
		YELLOWSTONE FR.	L4025		104B/1E	<u> </u>	75/09/10	Wednesday, 10 September, 20
		BOSTON	L4026	+	104B/1E		75/09/10	Wednesday, 10 September, 20
		DARWIN	L4028		1048/1E		75/09/10	Wednesday, 10 September, 20
		DUMAS	L4029		1048/1E	_	75/09/10	
		DICKENS	L4029	-	1048/1E		75/09/10	Wednesday, 10 September, 20 Wednesday, 10 September, 20
		OCCIDENTAL FR.	 L4035	_	1			
	+				104B/1E		75/09/10	Wednesday, 10 September, 20
			L4168	_	1048/1E		75/09/10	Wednesday, 10 September, 20
	+	LION FR.	L4169	_	104B/1E		75/09/10	Wednesday, 10 September, 20
		HIGH GRADE #2	L4603	_	104B/1E		75/09/10	Wednesday, 10 September, 20
		HIGH GRADE #1	L4604		104B/1E		75/09/10	Wednesday, 10 September, 20
		HIGH GRADE	L4605		104B/1E		75/09/10	Wednesday, 10 September, 20
		GALENA	L4615		104B/1E		75/09/10	Wednesday, 10 September, 20
			L5092		104B/1E		75/09/10	Wednesday, 10 September, 20
		MONTANA #1	L5093		104B/1E		75/09/10	Wednesday, 10 September, 20
		MONTANA #2	L5094		104B/1E		75/09/10	Wednesday, 10 September, 20
		TERMINUS	L3221		104B/1E		75/09/30	Tuesday, 30 September, 20
		G. T. FR.	L3222		1048/1E		77/09/19	Friday, 19 September, 20
		FALLS VIEW	L3223	-	104B/1E		77/09/20	Saturday, 20 September, 20
		PROUSTITE	L4156		1048/1E		77/09/20	Saturday, 20 September, 2
		STEPHANITE	L4157		104B/1E		77/09/20	Saturday, 20 September, 2
	250435	NATIVE	L4158		104B/1E		77/09/20	Saturday, 20 September, 2
	250436	HESSITE	L4159		104A/4W		77/09/20	Saturday, 20 September, 2
	250437	CERARGERITE	L4160		104A/4W		77/09/20	Saturday, 20 September, 2
		STROMEYRITE	L4161		104A/4W		77/09/20	Saturday, 20 September, 2
		A. G. FR.	L4171	_	104B/1E		77/09/20	Saturday, 20 September, 2
		DAUNTLESS	L3219		1048/1E		77/09/20	Saturday, 20 September, 2

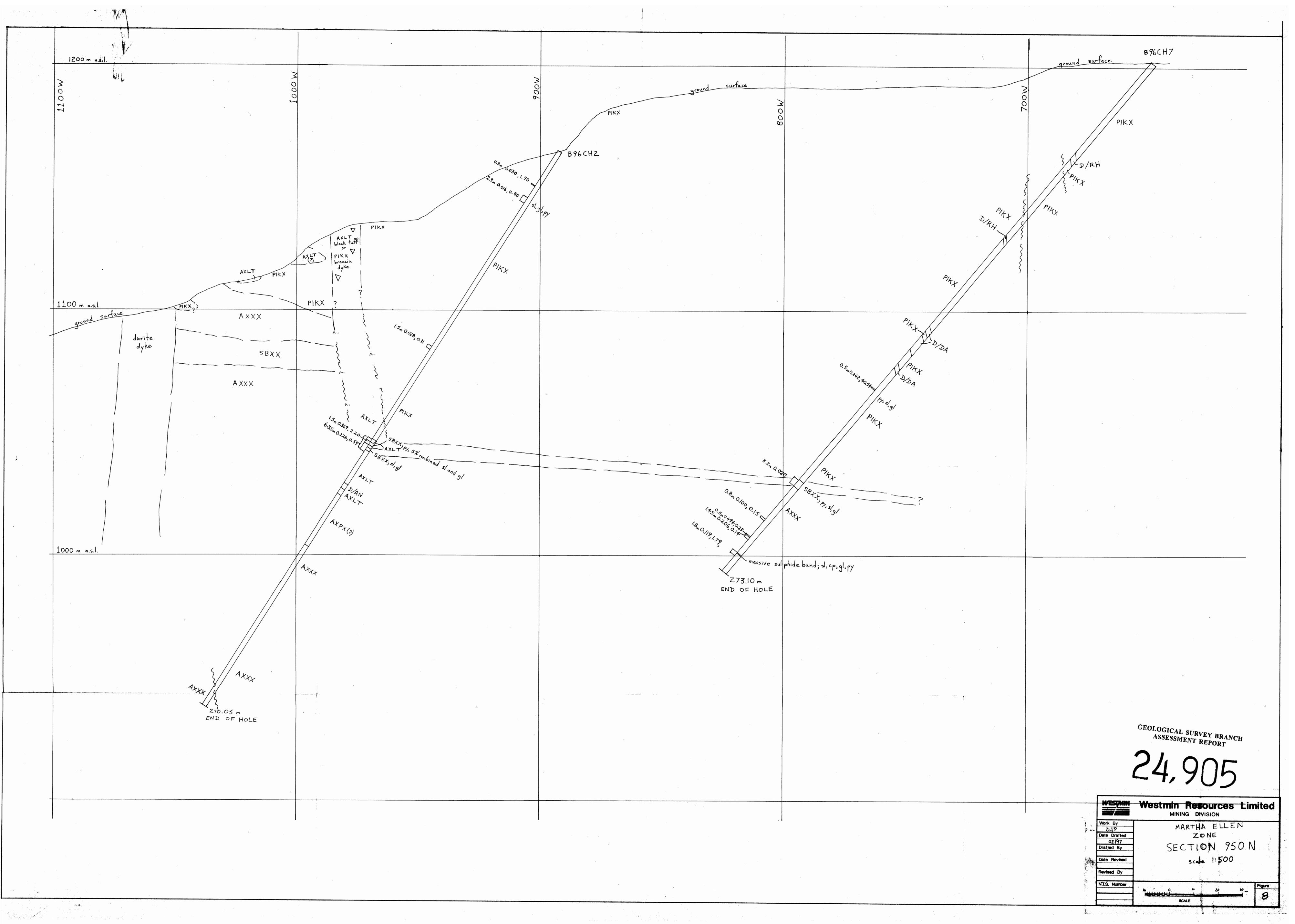
1	9-1	1	-96
---	-----	---	-----

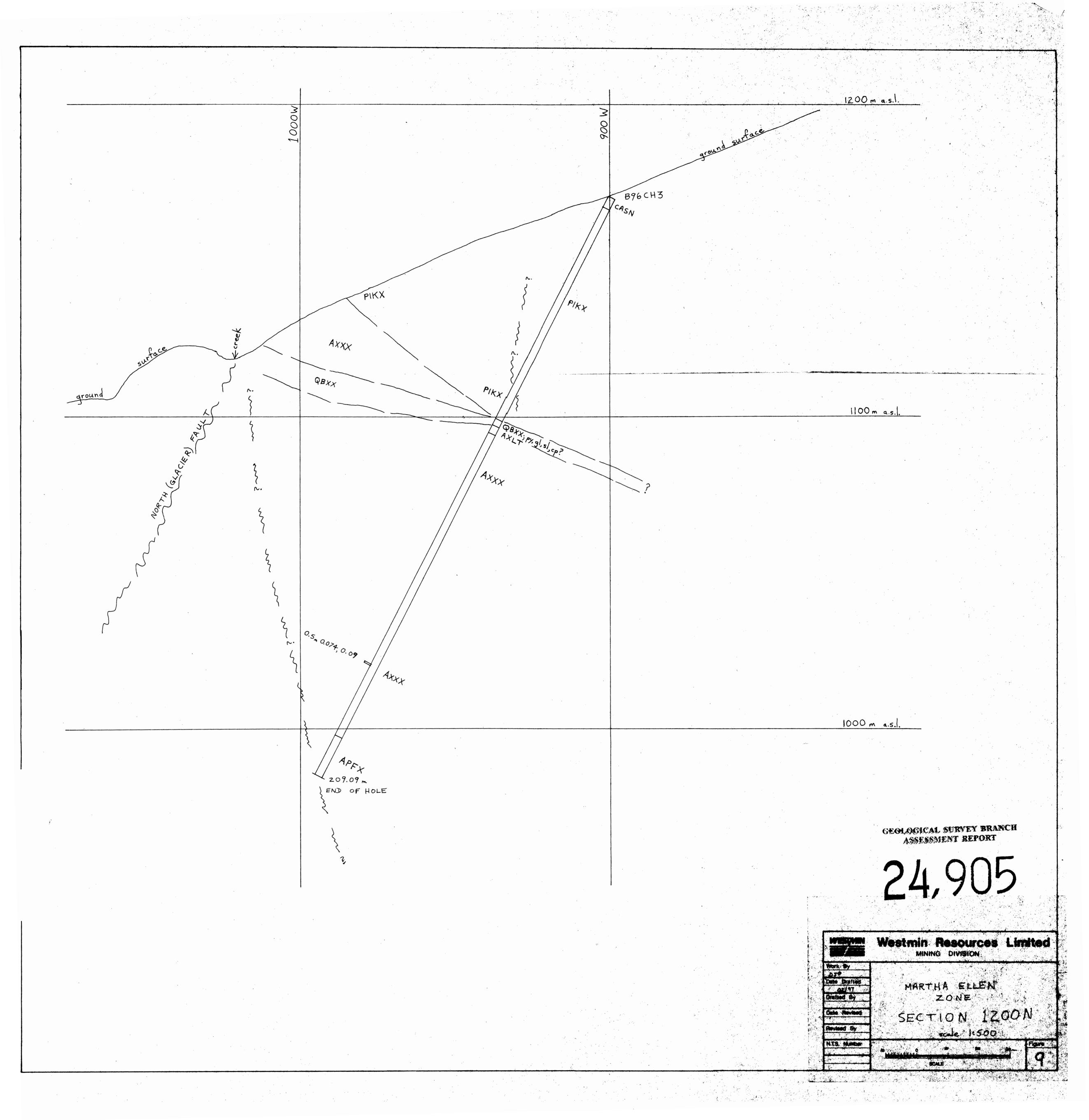

PREF	DISP'N #	DISPOSITION NAME	LOT No	TYPE	NTS	UNITS	REC DATE	EXP DATE
	250666	PASS FR.	L3906		104B/1E		79/04/04	Wednesday, 04 April, 2007
	250754	DICKY			104B/1E	4	79/08/13	Saturday, 13 September, 2003
	250755	20TH CENTURY			1048/1E	12	79/08/13	Saturday, 13 September, 2003
	250756	WMI			104B/1E	4	79/08/13	Saturday, 13 September, 2003
	250758	BOX FR.			104B/1E	1	79/08/13	Saturday, 13 September, 2003
	250759	BOETS FR.			104B/1E	1	79/08/13	Saturday, 13 September, 2003
	250767	LINDGREN			104B/1E	18	79/08/30	Thursday, 30 August, 2007
	250770	SILVER LAKE			104B/1E	4	79/08/27	Monday, 27 August, 2007
	250908	LOUPY			104A/4W	10	80/09/26	Friday, 26 September, 2003
	250909	HELEN			104A/4W	6	80/09/26	Friday, 26 September, 2003
	250910	B.C. FR.			104A/4W	1	80/09/26	Friday, 26 September, 2003
	250920	VASEY FR.			1048/1E	1	80/09/08	Monday, 08 September, 2003
	251030	KAT			104A/4W	10	81/10/14	Tuesday, 14 October, 2003
	251031	ERL			104A/4W	10	81/10/14	Tuesday, 14 October, 2003
	251067	PAM FR.			104B/1E	1	82/07/28	Saturday, 28 July, 2007
	251778	LOOKOUT	L3905		1048/1E		87/04/06	Friday, 06 April, 2007
	252193	CHICAGO FR.			104B/1E	1	88/08/11	Saturday, 11 August, 2007
	252194	MARIE RITA			104A/4W	2	88/08/11	Saturday, 11 August, 2007
	252201	TIGER FR.			104B/1E	1	88/08/11	Saturday, 11 August, 2007
	252952	MARIE NO. 2			104B/1E	8	89/07/21	Saturday, 21 July, 2007
	255397	POLYBACITE	L4154		104B/1E		75/01/06	Saturday, 06 January, 2007
	255398	ARGENTITE	L4153		104B/1E		75/01/06	Saturday, 06 January, 2007
	255399	POLYBACITE FR.	L4177		104B/1E		75/01/06	Saturday, 06 January, 2007
	255400	THE "49"	L4024		104B/1E		75/03/04	Sunday, 04 March, 2007
	255401	OXEDENTAL	L4023		1048/1E		75/03/04	Sunday, 04 March, 2007
	255402	CHICAGO	L4027		1048/1E		75/03/04	Sunday, 04 March, 2007
	255403	MILLAN DOLLAR FR.	L4034		104B/1E		75/03/04	Sunday, 04 March, 2007

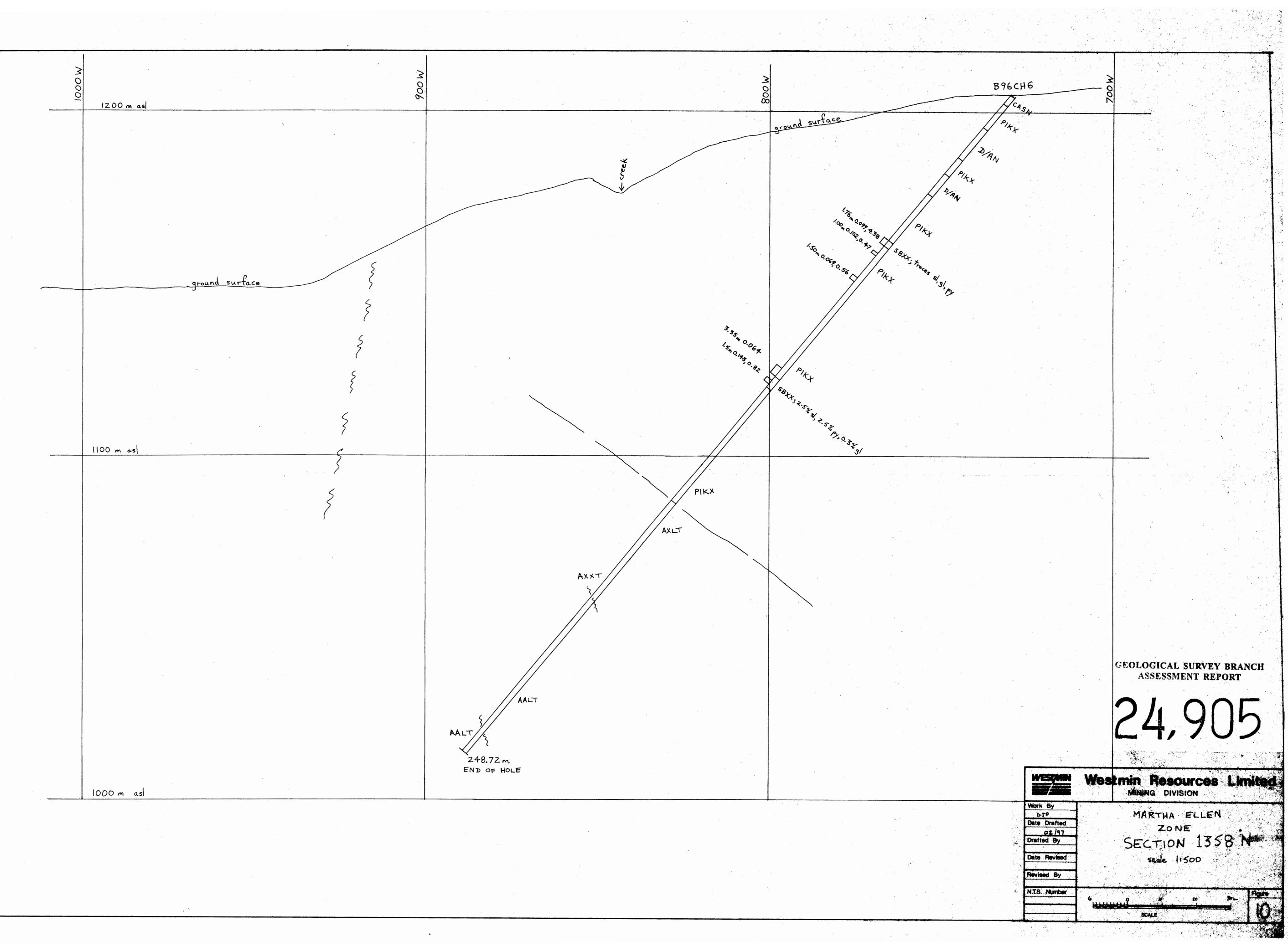
		1	
	© B96CH6		






			110	00 m a.s.l.	
сня	750 W				
1	×				
11.					
1/PIPT					
			Con low		
			1000 m	a.s.).	
			1.4.2		
	WEST	UN Most	ain Deseu	ces Limite	al
		Westi	MINING DIVISION		a
	Work By D3P Date Dra		MARTHA EL		
LOGICAL SURVE ASSESSMENT RE	PORT	y	ZONE ECTION .		
10	Date Rev	seo			
491	h.T.S. Nor		0 10 1	Figure	ð
11/1			SCALE 1:500	4	




	24,905
Work By bip Date Drafted	Stmin Resources Limited MINING DIVISION MARTHA ELLEN ZONE
O2.197 Draffied By Date Revised Revised By	SECTION 6001 1:500 scale

