

REPORT OF

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL FIELD WORK

RAINBOW PROJECT, TULAMEEN DISTRICT,

SIMILKAMEEN MINING DIVISION, B.C.

October and November, 1996.

49 degrees 34' North Latitude 120 degrees 50' West Longitude

NTS Sheet 92H/10W.

Work by Erik A. Ostensoe, P. Geo. and T. E. Lisle, P. Eng.

Report by Erik A. Ostensoe, P. Geo.

Date of Report: January 15, 1997.

GEOLOGI CHA\$5885812 $\{N\}$

CONTENTS

Page

0.1 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	1
1.0 INTRODUCTION	2
 1.1 Introduction 1.2 Location and Access 1.3 Geography 1.4 Property History 1.5 1996 Work 1.6 References 	2 2 3 3 4 4
2.0 GEOLOGY OF RAINBOW PROPERTY	5
2.1 Regional Geology2.2 Geology of Rainbow Claims	5 5
3.0 GEOCHEMISTRY OF RAINBOW PROJECT	7
4.0 MAGNETICS OF RAINBOW PROJECT	8
4.1 Introduction4.2 Magnetics of Rainbow Claims	8 8

1

APPENDICES

Geochemical Data Sheets
Geochemical Analyses
Personnel
EG+G Model G-856 "Memory Mag" Magnetometer
Statement of Expenditures

- 20

2

ILLUSTRATIONS

page

Figure 1.	Location of Tulameen District	follows page 1
Figure 2.	Rainbow Claims	follows page 1
Figure 3.	Regional Geology	follows page 5
Figure 5.	Geology	in pocket
Figure 6.	Copper-Gold Soil Geochemistry	in pocket
Figure 7.	Magnetometer Survey	in pocket

0.1 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A program of grid preparation, geological mapping, geochemical sampling, and magnetometer surveying was carried out on the Rainbow Project claims during October and November, 1996 by Erik Ostensoe and Thomas Lisle. This work was a continuation of similar programs that the owners have been pursuing since 1992.

Geological mapping showed that the tuffaceous and andesitic volcanic rocks that are present in the central and northern parts of the property are replaced by dominantly andesitic and dioritic volcanic and intrusive rocks in the southern area. The rhyolite/feldspar porphyry unit that forms gossans in the central and northwestern parts of the property was not found to the south. Minor amounts of fine-grained sulphide minerals occur with feldspathic alteration. Analyses of geochemical samples revealed low copper values and several narrow zones of elevated gold values. The magnetometer survey showed a partially defined area of "high" magnetics in the central part of the newly prepared grid. This anomalous area has no outcrops and is unexplained.

Work during 1996 expanded coverage of the Rainbow Project. The owners believe that the original proposal, that the area has good potential to host valuable mineral deposits, remains valid and that the recent work has contributed useful data.

Further, more detailed, magnetometer surveys are required to better define the geometry of the newly recognized magnetically anomalous area. The possibility that the anomaly reflects the presence of an outlier of the Tulameen Ultramafic Complex deserves further study. A first step in such a study may be the PGE analysis of a few soil samples from the area. Several narrow low level gold anomalies should be further sampled and prospected. Steep cliffs that rise from the north side of Lawless Creek cannot be gridded but should be prospected as conditions permit. The advisability of carrying out a complete VLF-EM survey of the claims should be considered.

All surveys should be extended southerly to the limit of the property near the Tulameen River. Examination of several small areas south of Lawless Creek Forest Road that have been gridded but not surveyed should be completed. Soil samples from 1995 that have not been analysed should be processed to obtain maximum information. The northernmost part of the property has not been surveyed.

A compilation of available data, geological, prospecting, geochemical and geophysical, would be a useful tool in interpreting the potential of the area.

-1-

RAINBOW PROJECT, CLAIM MAP. BRITISH COLUMBIA CLAIM MAP 92 H 056

Figure 2.

1.0 INTRODUCTION

1.1 Introduction

The Rainbow Project comprises forty-six claim units in three four-post mineral claims owned jointly by Erik Ostensoe and T. E. Lisle and as detailed below:

Name	Record No.	No. of Units	Record Date	Current Expiry Date*
Rainbow 2	309158	20	May 6, 1992	May 6, 1999
Rainbow 3	309159	16	May 6, 1992	May 7, 1999
Rainbow 4	323956	10	March 1, 1992	4 March 1, 1999.

*1996 Work will be submitted in support of a Statement of Work to extend the expiry dates shown.

Mssrs. Lisle and Ostensoe, during October and November, 1996, completed a program of technical surveys on the southern part of the Rainbow Project area. This work was a continuation of similar work undertaken elsewhere on the claims by the same persons during 1994 and 1995 field seasons. The objective of the project is to thoroughly examine the geological setting of the claims and to search for mineral deposits, particularly gold-bearing quartz structures similar to those found nearby to the southwest on the Rabbit property, and massive sulphide-type deposits similar to those found to the east on the east side of Boulder Mountain. Platinum occurs at Grasshopper Mountain about three kms southwest of the property but is not known to be present on the Rainbow claims.

Work has in the past included prospecting, geological mapping, geochemical soil sampling, and a magnetometer survey. A VLF-EM survey was attempted during 1994 but may not have been properly executed. Work in 1996 comprised grid preparation, mapping, soil sampling and magnetometer surveying as discussed in following sections of this report.

Field work on the Rainbow property has in part been financed by grants from the Prospectors Assistance Program of the Energy and Minerals Division of the Ministry of Employment and Investment. The Annual Work Approval Number is KAM 96-1500440-357.

1.2 Location and Access

The Rainbow 1, 2, 3 claims are located from six to ten km west of the town of Tulameen, in the Similkameen Mining District (Figures 1, 2), on the west side of Rabbit Mountain. They are north

· •

of Tulameen River and are almost entirely east and north of Lawless Creek. Elevations range from 840 metres at Tulameen River to 1646 metres at the northwest end of the claims.

Access to Tulameen is provided by 25 km of paved provincial road from Highway 3 at Princeton, B. C., 280 km east of Vancouver, or alternatively, by 30 km of logging road from Coquihalla toll booth on Highway 5. The Rainbow claims, as illustrated in Figure 2, are crossed by two roads: a lower road that follows Tulameen River at the south end of the claims; and a higher road, the Lawless Creek Forestry Road, that provides access to the middle and northern parts of the property.

1.3 Geography

The Rainbow claims are located in the Cascade Mountains of southern British Columbia in the Intermontane Physiographic Belt. Moderately steep slopes near major streams give way at higher elevation to gentle upland terrain. Forests of interior fir, with pine and cedar, where readily accessible, have been extensively logged; substantial damage from beetle infestations has occurred in recent years.

Tulameen, an unincorporated town of about 300 persons, offers basic services and accommodation. Princeton, a town of about 3000 persons, provides all support services required by mineral explorers.

1.4 Property History

The Tulameen area of southern British Columbia has attracted the attention of prospectors since the earliest miners found placer gold and platinum in the area and rich deposits of low grade coal a short distance south. Several copper prospects, mostly related to the felsic "Cousin Jack" horizon east of Rabbit Mountain, were explored by short underground adits and by several programs of diamond drilling. The Rabbit gold prospect, located southwest of the southwest corner of Rainbow 2 claim, hosted impressive lode gold occurrences and has recorded production of 1057 ounces gold from 1432 tons of quartz vein ore. Coarse placer gold is reported to have been recovered from the north side of Lawless Creek, on or near the Rainbow 2 claim.

The present owners of the Rainbow claims commenced work in 1992 and completed various reconnaissance and detailed technical surveys in ensuing years (i.e. Assessment Report 24302).

1.5 1996 Work

The author and T. E. Lisle, P. Eng., with the assistance of Prospectors Assistance Grant 96/97-P70, explored the southern portion of the Rainbow claims in the period October 8 through November 6, 1996. Work included preparation of 12 km of grid, geological mapping of approximately 3 square km area, 18 km of magnetometer survey, and gathering of 162 soil samples. Work was handicapped by early winter conditions that resulted in frozen ground and partial snow cover. Annual Work Approval Number is KAM 96-150040-357.

1.6 References

1.	Camsell, Charles	Geology and Mineral Deposits of Tulameen District, British Columbia, Geol. Surv. Canada, Memoir 16, 1913
2.	Monger, JWH	Structural Evolution of the Southwestern Intermontane Belt, Ashcroft and Hope Map Area, British Columbia: in Current Research, Part A, Geol. Surv. Canada, Paper 85 - 1A, pp 349 - 358.
3.		Geology of the Hope and Ashcroft Map Areas, British Columbia Geol. Surv. Canada, Maps 41-1989, 42-1989
4.	Lisle, T. E. and	
	Ostensoe, E.	Prospecting Report on the Rainbow 2 and 3 Mineral Claims, Tulameen Area, Similkameen Mining Division, B. C., Assessment Report, 1993
5.		Geochemical and Geophysical Report on the Rainbow 2 and 3 Mineral Claims, Tulameen Area, Similkameen Mining Division, B. C., Assessment Report, 1995
6.		Geological and Geochemical Report on the Rainbow 2, 3 and 4 Mineral Claims, Tulameen, Similkameen Mining Division, B. C., Assessment Report 24302, 1995.

2.0 GEOLOGY OF RAINBOW PROJECT

2.1 Regional Geology

The Tulameen area is situated in the Intermontane Belt of southern British Columbia in a northwesterly trending terrain of Upper Triassic age Nicola Group volcanic and sedimentary rocks. The Nicola Group comprises a three-fold assemblage: an eastern portion of alkalic and calc-alkalic submarine volcanic rocks, lahar deposits, basaltic flows and high-level syenite stocks; a central section of subaerial and submarine andesite, basalt and co-magmatic intrusions of diorite and syenite; and a western belt of flows and pyroclastic rocks with andesitic to rhyolitic composition and minor interbedded limestone, volcanic conglomerate, sandstone and argillite. The Rainbow Project lies within the western belt.

Major intrusions are: the Upper Triassic age Tulameen Ultramafic Complex located south and southwest of Rainbow Project; the Eagle Granodiorite of apparent Upper Jurassic age which occurs along the west side, and Tertiary Otter granite intrusions located at and north of the town of Tulameen. Rocks are disrupted by northwest and northeast trending faults with unknown displacement.

Nicola volcanic rocks and related intrusions in southern British Columbia are host to several world-class mineral deposits, including the Brenda and Highland Valley copper-molybdenum mines, the Copper Mountain/Ingerbelle and Afton copper-gold mines, and the Craigmont copper-iron skarn deposit. The Tulameen River and its westside tributaries have produced substantial amounts of placer gold and platinum and low grade coal was produced for many years from Eocene age deposits located a few km south of Tulameen townsite. Several gold and base metal prospects have received substantial exploration work and prospecting is active throughout the Tulameen district.

2.2 Geology of the Rainbow Claims

Much of the Rainbow claims have been mapped in detail by Mssrs. Lisle and Ostensoe (i. e. Assessment Report No. 24302). Figure 4 of this report includes recently acquired additional information from the southern part of the claims.

The northern and western parts of the claims are dominated by tuffs, flows and tuff breccias of andesitic to dacitic composition, intruded by an extensive body of dark-grey to purplish coloured diorite/monzonite. A variably altered pale grey to greenish-grey rhyolite/feldspar porphyry unit is present in a broad northwesterly band that is poorly exposed from 1+50 west on line 12 north northwesterly to 6+00 west on line 25 north . A siliceous zone within the band carries up to 10%

FIGURE 3. GEOLOGICAL SKETCH, HOPE-ASHCROFT MAP AREAS (After Monger) Showing major geologic units and mineral deposits.

LEGEND.

Cretaceous.	Spences Bridge Group	SBV
U.Triassic-L.Cretaceous	.Mt.Lytton-Eagle Granodiorite	ML-E-GD.
Late Triassic.	Nicola Arc Complex.	
	1)Western Volcanic Facies.	NG 1
	2)Central Volcanic Factors.	NG 2
	3)Fastern Volcanic Facies.	NG 3
Triassic-Jurassic.	Tulameen Ultramafic Complex.	UNC
<u>PRINCIPAL MINES</u> Highland Valley IN. Afton. AF. Copper Mountain. Off	PPINCIPAL SETTILISENTS A. Ashcroft, H Ho L Lilloot, M Me CC, Cache Creek, CK,	ne. KKamloops, LY-Lytton. rritt. P Frinceton, T Tulameen Chilliwack.

pyrite and minor magnetite and chalcopyrite in skarn-like propyllitic chlorite, quartz, epidote alteration.

The southern parts of Rainbow 2 and 4 claims are underlain by andesite, brecciated, porphyritic and tuffaceous, and by diorites of various appearances. Alteration varies from moderate to strong and is typically propyllitic: feldspathic and epidotic. Sulphide minerals, pyrite and chalcopyrite, are present in small amounts. Deep overburden is present near the baseline between 0 + 00 and 7 + 00 north.

3.0 GEOCHEMISTRY OF RAINBOW PROJECT

The geochemistry of the Rainbow claims has been investigated by collection of 1081 soil samples, of which 747 have been analysed by ICP methods for 30 elements and for gold by fire assay/atomic absorption. 334 samples taken as part of the 1995 work program remain in storage pending analysis.

162 samples were taken and analysed as part of the 1996 work program. Details of sample site, soil horizon, soil depth and characteristics, were recorded in the field on Sample Data Sheets that are included along with Geochemical Analysis Certificates in Appendix 1 of this report. Copper and gold analyses have been plotted on Figure 5 of this report. Figure 5 also displays copper and gold data for all previously analysed soil samples.

Figure 5 of this report is contoured to show the 10 ppb gold values. In general, the pattern of elevated gold in soil shows a northwesterly trend that obliquely crosses the property grid and in part correlates with the rhyolite/feldspar porphyry unit.

Soil samples from the 1996 work returned gold values as high as 333 ppb (one analysis of 1020 ppb gold was re-checked by the lab and returned 11 ppb). Three areas of anomalous gold values are present.

Copper in soil values are, in general, low to a maximum of 189 ppm. There is only a very feeble correlation of elevated copper and gold values.

4.0 MAGNETICS OF RAINBOW PROJECT

4.1 Introduction

An eighteen km grid located south of the Lawless Creek Forestry Road was surveyed during 1996 using a EG+G model G-856 proton magnetometer. Observations were recorded at 25 metre intervals and data have been compiled in Figure 6 of this report.

A data sheet describing the design and operation of the G-856 magnetometer is included as Appendix III of this report.

The claim owners acknowledge with thanks the cooperation and assistance of Better Resources Ltd., owner of the magnetometer, and of Gary H. Giroux, P. Eng., who prepared Figure 6.

4.2 Magnetics of Rainbow Claims

A EG+G model G-856 magnetometer was employed in the Rainbow property survey. A second instrument that would have been used as a recording base station was not available so that the operator relied upon repeated observations at certain locations to ensure that the survey was completed in a period of low magnetic activity. No unusual variations in the magnetic field that may have been related to magnetic storms were noticed.

The survey totalled 18 km, with observations at 25 metre intervals on east-west lines spaced 100 metres apart. The survey area extended from line 7+00 North to line 7+00 South and from 1000 metres east of the base line to as far as 8+50 metres west. Data were retrieved from the module and plotted as Figure 6 of this report using a "Fast-CAD" computer method and a contour interval of 200 nT.

Figure 6 shows little variation in the magnetic field outside of the area enclosed by line 0+00 south to line 5+00 south. Small amplitude apparent anomalies in the northwest part of the figure may result from steep topography as no particular geological features that might have influenced the magnetic field were noted in that part of the area. A sharply defined anomaly oriented north-south and with amplitude in the order of 2300 nT occurs at 2+00 E on lines 0+00 and 1+00S, with probable continuations both to the west and southeast. A thumb-print anomaly with similar amplitude centered at 5+00 E on line 1+00 S has a one reading source and lacks any dipole effect and is not given much credence. The broad 2000 nT magnetic high that occupies the area from 6+50 East on line 1+00 S southeasterly at least as far as the east end of line 3+00 S is not completely defined by the survey. It occurs in a flat area of no outcrops and, speculatively, may

represent an area of strongly magnetic rocks, such as Tulameen Ultramafite, that, if present, may have important economic implications.

APPENDIX I.

Geochemical Data Sheets

Geochemical Analysis Certificates

0 4+50-9+50E

- 1 - C

and the second sec

					G	BEOCH	IEMIC/		A							
			PROJECT GENERAL LOCATION	- Rainbo Tulay	ween	_			SAMPLER DATE NTS MAP GHEET	Enk Nov 92	Oste 5,19	<u>enso</u> 16 1/	<u>د</u>			
			LOCATION	NTS UTM GRID ☞ EAST ₩889T	Survey-type	Deoth	Horizon	Colour	Matadal		<u> </u>					
		TT		9+50			0	77		X Gravel	% Organic		Sin	Sand	Bedrock	Remarks 15° Slope-South
1	┾┢	╉	0+00	1.30	5011	0.2	15	Brown	HILUNUM	35	5	5	35	20		W side of small cr.
2				9+00		0.2	B	brown	11	30	10	5	40	15		Some fine to live
3				8+50	 	0.25	в	Yellow brown	modified till	25	5	20	35	15		Under allyvium layer
•	- -		 	8+00		0,35	ß	Medium brown	Allnvium?	50	~	Ś	25	20	-	Gravel 0.5 to 1.5 cm.
5		┨┨		7+50		0.25	B	Yellow brown	Till/allus.	40	5	10	20	25	_	8° slope-south.
•	┨╌┨╌			7+00		0,35	B	Brown	Glacial- Eluvial	50	\swarrow	5	25	20	_	Fair quality.
7				6+50		0.25	BK	Light	<i>Т.</i> 11	35		25	25	15	-	
•				6+00		0.30	в	Pale brown	T.11	4.5		30	15	10	-	
•		╞╌┟╴		5+50		0.20	в	Red- brown	Glacial. Fluvial	40		20	30	10		Fair quality.
10				5-00		0,25	B	Red brown	G-f ?	30	-	25	30	15		Good material
SU DE	RVEY PTH:	TYPE: Measu	: S=Soil; SS=Sill; R=Rock () red in metera.	4+50		0.25	B -	Rich red brown	G-£?	25		20	30	25		Lower slope, Good. End of spl. line.

in side

Sec. Sin

i in

,

E. M

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black, R. Red. G. Grey, O. Orange, Dk. Dark, Lt. Light.

MATERIAL: T Till; Co. Colluvium, A. Altuvium, F. Fluvial, GF. Glaciofluvial, D. Organic.

in a

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragmenta.

CLAY-SILT-SAND: Low to moderate to high estimates.

٢ 25 5-10E

. . .

1

I

1

i

I

T

. . .

1. .

	PROJECT	Para	C	GEOC	HEMIC	AL DAT	A	A .					·	
	GENERAL LOCATION	_ KAINBO	en Br.	_			SAMPLER DATE	Evik	Ostenso	•		-		
			<u> </u>				NTS MAP SHEET	92H - 10W						
	LOCATION	NTS UTM GRID V FAST MEON		D a d								-		
			Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Sin	Sand	Bedrock	Remarks
╶╀┈╁╶╂╶╃ ┈	2+00	5+00	Soil	0.2	B	brown	+ talus	25	5	20	30	20	Dioritic	On shoe 15°E
++++		5+50		0.2	В	Light brown	U.	25	V	25	30	20		Lower slope
++++		6+00		0.25	B	Red brown	clayey Soil	20	V	45	25	10	1	Flat. Beside violdla
┟╌┠╌┠╶┠╸┥		6+50		0.25	В	Dark red/mai	oon clay	-	/	100				Flat: V. gummy.
		7+00		0.25	в	Grey Brown	clay	_		80	15	5		" " Lacustri
		7+50		0.25	Blc	Red brown	Tilliay	20	-	65	10	5		Flat, Logged ~ 1960.
		8+00		0.ZC	В	Deep	1.11 ?	10		80	5	5		"Lacustrin
┝╌┥╌┥		8+50		0.25	B	Yellow brown	Till	15		70	10	5		Flat. Under call
┥┥┥		9+00		0.25	ß	brown	Till?	20		60	10	10		Flat. Good materia
		9+50		0.25	в	Red brown	7.11?	20		65	10	5		Flat
IRVEY TYPE: S PTH: Measure	=Soil; SS=Silt; R=Rock C d in meters.	10400 hip		0.40	В	Ok red brown	5011	-		70	15	15	I	Flat ground
RIZON: Marke LOUR: Br. Br	d A, B, or C own: Bl. Black, R. Red.	G. Grey. O. Oranga.	Ok. Dark. Lt. Li	oht,									E	- 0 6.

ч,

der de

. .

an voie.

1. A.

MATERIAL: T Till; Co. Colkrvium, A. Alluvium, F. Fkuvial, GF, Glaciofluvial, O. Organic,

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

	ast de	an at	بالد (يَعْلَقُ مِنْ		<u>قەرى</u>	Shi, alike	647. Id.	Ber and the second s	4	بالقرائي كالم	an an	a dia aria	فير المتناق
												4	
											4	S 0-	5 E 👘

KAIWSON -PROJECT TULAMOUN.

GEOCHEMICAL DATA

GENERAL LOCATION

SAMPLER

SAMPLER	TILISLE	
DATE	Detorson,	1996
NTS MAP SHEET	92N 10W.	

1

Т

LOCATION NTS

UTM GRID -

	_ _	T T	NINGEL SOUTH	EAST THE	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Sik	Sand	Bedrock	Remarks
1			4+00	0+00	JOIL											No Sample.
2			1	0+50	11	0.22	ß	Pale BR.	G.F. TILL	+20%	٨	4	M.	#		Grovelly . (Reward or ?)
3			11	1+00	11	0.35	B	11	5.63	+20%	4	L.	~	H		11
			11	1+50	"	0.30	ß	11	11 3	+15%	L	L	м	Н		
5			11	2+00	4	0.52	B	11	TILL!	±152	L	LM	M	#1		Below Outerop.
•			"	2+50	"	0.30	ß	·/	TILL?	±15%	٢	M	М	M		Neur OC.
,			4	3+00	"	0.15	c	BZ.	Rocky TILL		4	M	M	M		Susceep.
•			11	3+50	"	0.35	B	Y-R. BA	GF1	HIG Nº	۲.	M	м	#		
•			1/	4+00	11	0.20	B	Pale Bri	TILL	Mod.	4.	M	M	M		<u>- , m, a a a a a a a a a a a a a a a a a </u>
10			1)	4+50	"	?	В	11	TILL	Mod.	L	M٢	Μ	м – Н		
SUR	VEY	TYPE: S	// S=Soil: SS=Silt: R=Rock (5+00 Chin	"	0.35	в	Y-R.BR.		Mod		ـــــــــــــــــــــــــــــــــــــ	14	<u>L</u> .		SILTY - Reworked ?

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black, R. Red, G. Grey, O. Orange, Dk. Dark, Lt. Light,

MATERIAL: T Till; Co. Colluvium, A. Alluvium, F. Fluvial, GF. Glaciofluvial, O. Organic,

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments,

		A STOCKED			ää.				i. <u>8</u> i. Par ia i	. .		in the second		L 45 5+s
													i .	
	PROJECT	Rains	ow	-			SAMPLER	7.6	.15LF /	E.C	<u>2ste</u>	1500		1041
	GENERAL LOCATION	TULAM	CBN	_			DATE NTS MAP SHEET	<u> </u>	ZHIDI	199 N	6	Nov	ember,	, / 446.
	LOCATION	NTS UTM												
 	-NGERI SOUTH	GRID EAST WEBE.	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
	4+00	5+50	SOIL	0.25	'B?	R.Be,	TILL		L	M	H	M		Cobbles + some pe 64
	1	6+00	.1	0.15	e	Bn.	11		h-M	h-11	N	?		ON BEDROCIL
		6+50	11	0.20	B/c	Grey brown	TIL	20		50	25	5		
		7+00		0.15	в	Red- brown		20	L	50	25	0-5	Otter Intr.	shallow cover son
		7+50			в	Red-	(?)	30		50	เร	5		Good soil material
		8+00		0.25	в	Red- brown	h	25		45	20	10		ti 11 (4
1 1 1		and the second design of the s					Residual		[-		Mixed	l
┥┥┥		8+50		0.20	В	red	Soil	20		40	30	10	otter	ndesite
		8+50 9+00		0.20 0.15	B B	red Red bmwa	5011	20 30		40 30	30 30	10 10	otter Intr. /a	adesite Good soil

-

-

-

Ì

i

i.

ì

-

1

ļ

.

Boggy. No soil.

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip

DEPTH: Measured in meters.

10

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bt. Black, R. Red. G. Grey, O. Orange, Dk. Dark, Lt. Light.

MATERIAL: T Till; Co. Colluvium, A. Altuvium, F. Fluvial, GF, Glaciofluvial, O. Organic.

10+00

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

55 0-5E

GEOCHEMICAL DATA

....

RAINBOW TULAMBON PROJECT GENERAL LOCATION

SAMPLER	TELISCO
DATE	OCTOBER, 1896
NTS MAP SHEET	92H 10W.

LOCATION	NTS
	UTM

SOUTH GRID

EACT

C

T	T		Survey-type	Oupun	Horizon	Colour	Material	% Gravel	% Organic	Clay	SIN	Sand	Bedrock	Remarks
			-			RA					<u> </u>			

	· · · · · · · · · · · · · · · · · · ·					110112011	001001	141414111	N Gravei	vrganic	Citty	SIR	Sand	Bedrock	Remarks
,		5+00	0+00	SOIL	0.30	B'	BR	TiLL.	7	L	M	м	H		
2		11	0+50	"	0.35	B	"	Stocio Shame	+25%	٤.	4	M	H.		Growelly - Rewarked 3.
3		47	1+00	"	0.25	e: B.	11	TILL ?	> 202	L-	L	М	14		Hurd
4		и	1+50	"	0.15	c	"	TILL	710%	L	2	M.	H		Neur Bedrock
5		11	2+00	"	0.30	e	11	FINOS		2	2	M	H		ANGULAR RIC FRAGS.
•		11	2+50	"	0.50	C	BR	TILL	>10%	2	L	M.	4		en " " + pekke
,		11	3+00	"	0.35	C	BR	TOLUS FINES	7/00	. ८	2	4	H		Poor Sample.
		"	3+50	"	0.30	e	Pale Br.	TILL		L	2	м.	H		Subcrop. by OC.
•		"	4+00	4	0.10	e	Br.	u		L	M	м	M		ON BEDROCK
10		4	4+50	"	0.35	C	Pale BN.	10	\$ 10%.	L	L	M.	14		
SUE	TYDE	/ / http://www.com/	5+00	11	0.35	c	LI	Glacio Road	15%	٤	<u>ل</u>	M	M		Ancolor to Roovel Rebblar.

SURVEY TYPE: S=Soil; SS=Sill; R=Rock Chip

DEPTH: Measured in meters,

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black, R. Red, G. Grey, O. Orange, Dk. Dark, LL Light,

MATERIAL: T Till; Co. Colluvium, A. Alluvium, F. Fluvial, GF. Glaciofluvial, O. Organic,

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments,

CLAY-SILT-SAND: Low to moderate to high estimates.

ANCOLOR Kebblar. Near Balrock.

ł

				4
				55 5+50-10E

.

ł

PROJECT	k
GENERAL LOCATION	7

GEOCHEMICAL DATA

Reinbow ULAMATON

SAMPLER TILISLE DATE DC70BER, 1996 NTS MAP SHEET 924 10W.

LOCATION	NTS

		HINNI SOUTH	UTM GRID EAST VIIIIT	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clav	Sitt	Sand	Bedrock	Remarks
	Π	5+00	5+50	SOIL	0.15	c	Pole Br.	TILL	+10%	٤.	4	M	H		ON BEDROCK
			6+00	11	0.15	с	u	TILL	+10%?	٢	2	M	A		Subcrop.
		- 11	6+50	"	035	e	11	pł.	\$ 107?	4	٤.	N	14		11
		11	7 +00	11	0.30	в	BR	G.F. ?	<i>"</i> ?	ст. н. 	<u> </u>	M	H		Glacio flusial ?.
		11	7450	17	0.20	e	Y.Bn.	TILL	15%	L	L	M	. H		
		11	8700	11	0.25	с	Alt Br.	41	?	L-M	4				ANGULAR POBLIES. ON BEDROCK
		"	8+50	4	0.30	ß	Ale BR	11	+ 25%	L	٢	М.	Н		Basal Till ?
		"	9.100	1/	0.15	C	"	TILL ?	+15%	L	13	M ?.	4		Subcard!
		1/	9+50	4	0.20	B.e?	BR	11	15%.	۷	٢	M	H		News Bodiost
		4	10400	"	035	ß	BR.	af?	+202	۲_	4	M	H.		

10

SURVEY TYPE: S=Soil; SS=Sill; R=Rock Chip

DEPTH: Measured in meters,

HORIZON: Marked A, B, or C

COLOUR: Sr. Brown, Bl. Black, R. Red, G. Grey, O. Orange, Dk. Dark, LL Light,

MATERIAL: T Till; Co. Colluvium. A. Altuvium. F. Fluvial, GF. Glaciofluvial. O. Organic.

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

65 0-4+51

GEOCHEMICAL DATA

PROJECT GENERAL LOCATION

a meen

SAMPLER	Erik Ostensoe
DATE	October 13,1996
NTS MAP SHEET	92.H-10W

.

1

Т

ł

				LOCATION	NTS UTM GRID												
г	-		+	-HORTH SOUTH	EAST WEEKT	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Sih	Sand	Bedrock	Remarks
1	_			6+00	0+00	Soil	0.20		Yellowish	Alluvium	_30		15	30	20		Flat ground above handless Cr
2		Ш			0+50		0.15		Dark brown		25		35	20	20		slopes ~10°S. Fair sande
3					1+00		0.15	C	med. brown	-Taclus fines + silt				,		60% - Talus	40% soil. Poor
4					1+50		0.25	C	Grey brown	13			20			65%	Poor
5	L				2+00	-	0.20	C	Light brown	clay till	(5						25° slope with talus
┛	_				2+50		0.25	С	Light brown	Till + Clay	۱5		65				20° slope
7					3+00		0.15	С	Brown	elay till	25		45	20	10		
▲					3+50		0.20		Grey	<124 4111	15		45	20	20		1
•					4+00		0.10		Red brown	Alluvium	25		65				Very rocky.
10					4+50		0.10	C	Grey- brown	Very thin elay till	10		75	-13	F		

SURVEY TYPE: S=Soll; SS=Sill; R*Rock Chip

DEPTH: Measured in meters.

HORIZON: Marked A.B. or C

COLOUR: Br. Brown, Bl. Black, R. Red, G. Grey, O. Orange, Dk. Dark, Lt. Light,

MATERIAL: T Till; Co. Colluvium, A. Alluvium, F. Fluvial, GF. Glaciofluvial, O. Organic.

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

L 65 5-9E

Т

*****#

E

a star

1. A.

1. 4

					D.	G	BEOCH	IEMIC/	AL DAT	A							
				PROJECT GENERAL LOCATION	-Kainbo Tulane	Weni B.C.	-			SAMPLER DATE	Erik Ostensoe						
							-			NTS MAP SHEET	<u> </u>	- 10 - 10	$\frac{3}{2}$	96.	-		
				LOCATION	NTS UTM												
_				NORTH SOUTH	GRID V EAST -WEER	Survey-type	Depth	Horizon	Colour	Material	K Group	× 0					
				() = =	5100	C . 1		-1	Light			% Organic	Clay	Sin	Sand	Bedrock	Remarks
1	┼┦		╏╌╁╴	6+00	5+00	2011	0.10	B/C	6000	·	15	L	65	10	10	_	Very then soil.
2	\downarrow				5+50		0.10	C	Ash- grey		15		50	25	10		-Thun - 1
3					6+00		0.10	B	Reddish	modified + 11	30		40				
					0.50			~	Light	Talus	<u> </u>	· · · · · · · · · · · · · · · · · · ·					On bedrock.
4	╁╌⋠		┞╼┟╴	<u> </u>	6+50				brown	and till	30		40	20	10		
5		_		ļ	7+00		0.10	C.	Light brown	Talus + clayey dirt	30		50	20			
	11				7+50		0.10	63	Light	·	7.0		6				
	1			· · · · · · · · · · · · · · · · · · ·			- 0.15		Norown Dailicl	c law all	50		60	10			Very rocky terrain
7	$\left \right $				8+00		0.15		brown	talus chip	. 60		30	10			Prote + covr in bedrock
•				·	8+50		0.15		Grey- brown	Tru	35		30	25	10		
•					9+00		0.20		Reddish	क्तिम	35	··	30	25	10		
10				J	10+00		9.10	e	Grey	elay tim							

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip DEPTH: Measured in meters, HORIZON: Marked A, B, or C

5

COLOUR: Br. Brown, Bl. Black, R. Red. G. Gray, O. Orange, Dk. Dark, Lt. Light, MATERIAL: T Till; Co. Colluvium, A. Alluvium, F. Fluvisi, GF. Giaciofluvial, O. Organic.

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

L 75 1 - 5450E

Sec. 1.

1

1

÷

ä. 4.

					-	G											
				PROJECT GENERAL LOCATION	Kambo Tulène	en, B.C.	_			SAMPLER DATE NTS MAP SHEET	Erik Ostensoe October 13,1996 924 - 10W			_			
				LOCATION	NTS UTM GRID									···	_		
Г	T	· · - · ·	- <u>1</u> -1-	HORTH SOUTH	EAST WINGE	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Sin	Sand	Bedrock	Remerte
1				7+00	1+00	Soil			Yellow	DILUVIUM	~~		0	v			Rounded pea gravel.
2					1+50		0.40	13						1			Limonitic Soil
J			$\left \right $		2+00			C	Yellow -marcon	Talus fines (Coarse)			r	~			25° slope to South Fair
4			$\left \right $		z +50			C		Clay + talus fine	5					,	steep slope. Fair
5					3+00		0.05	B ?	brown	clay on angular talus	Talus 35 %		25	25	15		Page and
•					3+50		.05- 10	B?	As a	bove.							······································
7		_ _			4+00		.10	Β?	med. brown	clay + talus			V	V			Better than the above
•					4+50		. 10	B	Red brown	LT.					-		Much outeron Good - 1
•		-			5+00		.05-		Grey brown	30% c talus	2124 +111		30	30			10° slope to south
10					5+50		.20	C	Reddist brown	Clay 50: 1:13	150% frags.		60	- 2	5%-		

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip

DEPTH: Measured in meters.

Sec. Sec.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Drange. Dk. Dark. Lt. Light.

MATERIAL: T Till; Co. Colluvium. A. Alfurium. F. Fluvial. GF. Glaciofiuvial. O. Organic. ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

4 75 6-10E

PROJECT	\mathcal{D}
GENERAL LOCATION	- Tu

GEOCHEMICAL DATA

SAMPLER	Erik Os-	ensoe
DATE	October	13,1996
NTS MAP BHEET	92H -	IOW.

LOCATION

NTS UTM GRID 🛩

600 Jameeni B.C.

_	<u> </u>		rr-	NORTH SOUTH	EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Sin	Sand	Bedrock	Remarka
1	_	_		7+00	6+00	Soil	ļ	C	Very Pale brown	modified till?	レ レ		~		~		Gentle slope
2					6+50				Grey	Till ?	~~		17				clayey soil with rounded pebbles
_ د					7+00		0.15	C	Brown grey	modified +,11 ?	V		vv			i	
					7+50		0.15	С	Grey brown	modified			vv			·	
6					8+00	·	0.(5	C	Brown	11			2~				As above but better waterial
•					8+50		0.20			c layey alluvium	Vi						Stream gravels + soil. Fair quality.
7					9+00		0.15	С	Grey	Stream STRUELS	35		~				Slope 10° to south.
					9+50		0.15	С	Grey	clayey Soil	~~		vr				Very similar to 9+00E.
				 	10+00		0.15	C	11	Gravel and soil	~~		~	~	v		coarse gravel
10																	

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black, R. Red. G. Grey, O. Orange, Dk. Dark, LI, Light, MATERIAL: T Till; Co. Colluvium, A. Alluvium, F. Fluvial, GF. Glaciofluvial, O. Organic.

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments,

IN O.SE

	2
PROJECT	KAINBOW
GENERAL LOCATION	TULAMEEN.

÷.

GEOCHEMICAL DATA

T.LISLE SAMPLER OCTOBER, 1996 DATE 924 10W1 NTS MAP SHEET

i i i i i i

LOCATION NTS UTM

GRID 🖊

				NORTH SOUTH	EAST MENT	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
,				1+00 N.	0+00	80 IL			<u></u>								
2				• 4	0+50	11											
,				4	1+00	4	0.25	B	Geor to him. Br.	GLALIOFL UND		4	н	H	۷		DLO LOGGINGI DISTURATO ARUA
				"	1+50	"	0.30	В	Ge. BR.	- 11	0	L	H	M.	L		REWORKED TILL ?.
5				4	2+00	"	0.30	c?	YBR.	TILL?	×5	L	H	H.	٢		
				11	2+50	"	0.35	в	BR.	TILL	45	۲,	H.	M	4		
,				"	3+00	"	o·20	B	BR.	TILL.	+20	2	M	M	2		OLD ROAD.
				1	3+50	*	0.35	B	Bn.		5	L.	M	M	۷		Glaciofluria 1. ?
					1 +00	4	0.35	в	Pale BR.	11	5-10	L	M	M	۷		
			††	· · · · · · · · · · · · · · · · · · ·	4+50	"	0.35	в	BR.	TILL	10-15	4	M	M	M.		
" 🛄 // SU	RVE	 Y TYF	⊥i PE: S≖	// Soil: SS=Silt: R=Rock (5+00 Chip	••	0.30	в	13R.	"	10%	<i>L</i> .	N	M	м		Probles tobales ANGULAR TO ROUND.

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black, R. Red, G. Grey, O. Orange, Dk. Dark, Lt. Light,

MATERIAL: T Till; Co. Colluvium, A. Alluvium, F. Fluvial, GF. Glaciofluvial, O. Organic,

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

L IN 5+50-10E

. .

Š. L.

GENERAL LOCATION TULAMOON

 SAMPLER
 T. LISE

 DATE
 OCTOBER 1996

 NTS MAP SHEET
 92 A 10 M

LOCATION	NTS

La in

-
UTM
GRID

	·	 NORTH SHAREN	EAST MINT	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Sin	Sand	Bedrock	Remarks
,		1+001	5+50	BOIL.	0.35	B.	BR	TILL	10-15%	2	M	M	M		
2		"	6100	.1	0.20			TALOS FINE							TALOS FINEL-POOR.
3		11	6150	"	0.35	c?	Bn.		15%	٢.	M	M	M		Pobles Awg To Rooms.
		"	7400	"	?	e	BR.	TILL	+15%	L	L	÷L	H		AT BOOROCK.
5		11	7+50	"	0.35	c ?	BR.	11	15%	4	M	м	H		
		11	8+00	"	0.25	e?	RBR.		+153	L	L	L			Subcrop? Awaawa Free
7		11	8+50	"	0.30	в	Pare Be	"	120%	۲	M	м.	H		
		11	9+00	"	0.30	ß	"	11	± 20%	L	м	M	H		
,		11	9+50	"	0.30	B	Be.	11	± 10	4	M	м	M		W bank of CK.
10		"	10+00	4	0.30	ß?	Pale Be.	"	10%	L	м	м.	L		E bank of CK.

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black, R. Red, G. Grey, O. Orange, Dk. Dark, Lt. Light.

MATERIAL: T Till; Co. Colluvium. A. Altuvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

:		<u></u>	-														L 2N 0-5E
					RAINBO		EOCH	IEMICA	L DAT	SAMPLER		SLE			-		
				GENERAL LUCATION	- IULAME		-			NTS MAP SHEET	<u>96</u> H	IPW	196		- -		
				LOCATION	NTS UTM GRID 🗸												
_	<u> </u>			NORTH SOUTH	EAST WEPT	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Şik	Sand	Bedrock Rer	narks
1				2+00 N.	0+00	Soin	0.30	в	BR.	TILL ?	+ 1.5%	Ŀ	L	м.	н		
2					OTSOE	41	02.0	B	BR.	TILL !	+252	L	<u> </u>	м.	14		GRAUNCLY · Rowercan?
3				'f	1+00E	4	0.35	в		TILL	±107.	L-	L	м.	м.	6	PORD BANK (1.0 nd clown)
4				3e	1+SOE	u	0.35	C?.	R.BR.	11	+102	L	L	м.	м.	F	Pebble fill
5					2+00F	v	0.35	BIC?	R.B.	<u> </u>	+ 10%	L	L	м	M		
6				Ly.	2+50E	4	o [.] 30	В	Y BR	"	152.	L.,	M	м	M.		
7					31008	4	?	В	BR.	"	± 20%	L	м.	М.	M	R	EWORKED TILL !
∎	_			4 	37503	4	0.35	в	BR.	"	± 10%.	4	M	М.	M		
∙⊢			_	£g.	4+00E	4	0.35	B?. C?	R.BR.	"	?	L	м.	м.	М.	k	eworkern Till?

Be.

BR.

R

B

5%

57-10%

4

*

M

M

м

M

M

L

4

Pebbby

10 IL.

SURVEY TYPE: S=Soil; SS=Sill; R=Rock Chip DEPTH: Measured in accord

4

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black, R. Red, G. Grey, O. Orange, Dk. Dark, Lt. Light. MATERIAL: T Till; Co, Colluvium, A. Alluvium, F. Fluvial, GF, Glaciofluvial, O, Organic,

4+50E

..

43

0.30

0.30

ORGANICS: Visual estimate of organic content. GRAVEL: Estimate of Gravel sized fragments.

L 2N 5+50-10E

					G	SEOCH	IEMICA		A							
			PROJECT GENERAL LOCATION	Roin BO TULAMO	₩' ₩	-			SAMPLER DATE NTS MAP SHEET	7.L 0070 91	T. LISLE OCTOBER, 1996 924 IOWA			- -		
				NTS UTM GRID	Sucrey home	Denth	Hodron	Colour	M eterial	t Const	Y Omenia	Class	Cite	Canad	Badmak	Roma des
Γ					Juivej-ijpe		HOILEON		meteriet		76 Organic		JIK	Sano	Bedrock	Kenarks
1			 2+00	5150E	SOIL	0.30	<i>L</i> .'	BR.	TILL	5-10	7	м	M	M.		Pebbly of to Stood
2				6+00E	-1	0'30	В	RBR		10-15	L	м	M	M		
3			•,	6+50E	11	0:30	B. e?	Y.BR.		- 10	۲.	M	M	M		
			"	7+00E	"	0.35	c?	BR.		= 10%	4	м	M	M		
5			*	7+50E	11	0.30	в	BR.		t 10	۷.	M.	M	М		
		-	Ŷ	8+00G	4	0.40	C	Y.Be.		=15%	L	м	м.	м		
7			4	8-150E	4	0.50	c?	BR.		15-20	۷	м	M	м.		
,			۴	9+00E	4	035	7,	Bn.		7258	L-M					POR MIYTORE OF TILL RUAD FILL & TALOS FINE
9		i	"	9+50E	4	0.30	в	BA	•	10%	L	M	M	M		1.0 M down - Wall
10	Π		4	10+006	4	0.35	B?	Pale BR		±10	۷	M	м	M		E.ol.C.K.

110

in a state

SURVEY TYPE: S=Soil; SS=Sill; R=Rock Chip

DEPTH: Measured in meters,

. .

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black, R. Red. G. Grey, O. Orange, Dk. Dark, Lt. Light,

MATERIAL: T Till: Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

L 3N 0-5E

GEOCHEMICAL DATA

PROJECT GENERAL LOCATION

RAINAOW. TULAMOON

SAMPLER T. LISLE DATE Detober 1996 NTS MAP SHEET 97 H LOW.

LOCATION

UTM GRID -

NTS

NORTH SOURT EAST THE Survey-type Depth Horizon Colour Material % Gravel % Organic Clay Sitt Bedrock Remarks Sand

,[3+00	0+00	5012.	0.40	ß.	BR.	Ghacis Show	25%	٤.	M	M	н	Growelly Rework to ? Tur
2				0+50	11	0.60	B?	BR:	Glucio Storm	+25%	L	M	M.	М.	
3			"	1+00	"	0.35	ß	Br.	Glasso Aline	+25%	٢	M	M	L	Abundand cobbles Goverly
			"	1+50	4	0.45	B	BR.	4	125%	Ц.	M	М.	м	SI. Limonitic .
5			"	2+00	4	0.45	B	BR.	TILL	15-20%	4	м	м.	н	Neur Road
6			"	2+50	4	0.50	в	BR.	TILL	201.	L	м	м.	и	
7			"	3+00	"	0.25	B	Be	TILL	+10%	۷	M	м	4	
			"	3+50	4	0.35	B	Br.	TILL	7	L	M	M	M	Road Bank 1.0 M down
•			"	4+00	4	0.30	ß	BR	TILL	15%	L.	м	м	M	
0			"	4+50	11	·25	B	BR	u -	\$ 15%	۲	м	м	M.	
	 . TVD	C . C	// http://www.com/	5100	11	0.40	в	Bn	. 1/	2	k	M	M	M .	

SURVEY TYPE: S=Soil: SS=Sill: R=Rock Chip

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bt. Black, R. Red, G. Grey, O. Orange, Dk. Dark, Lt. Light,

MATERIAL: T Till; Co, Colluvium, A. Alluvium, F. Fluvial, GF, Glaciofluvial, O. Organic,

ORGANICS: Visual estimate of organic content. GRAVEL: Estimate of Gravel sized fragments.

L 3N 5+50-101

		PROJECT	RAINSO	w	_			SAMPLER	7. 215				-		
		GENERAL LOCATION	TULAM	I HE AJ	-			DATE NTS MAP SHEET	00000 921	10 W	<u>996</u>		-		
		LOCATION	NTS UTM GRID	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	SIK	Sand	Bedrock	Remarks
		3+00	5+50	Sole	0.30	B	Pale BR.	Glacio Flori	25%	L	M	М.	H		Reworkers? TILL.
			6+00	"	0.35	B?	BR.	Tice'	20%	۷.	?	м	M		POOR Samalt. Borrun of Road Bank
		"	6+50	4	0.35	в	BR.	TILL ?	+10%	٨.	M	N	H		Upper Sive of Road. 10 Metaor North.
		"	7+00	"	0.30	B	BR	TILL	20%	L.	M	M	M·	G	Steep Boak - Possibly Reworked fill
		4	7+50	4	0.30	B	BR.	11	>10%	4	M	м	м.		SL.
		4	8+00	+	0.40	B	BR	. 11	710%	2	M	М	H-M		Pebbly Approximate.
		4	8+50	4	0.30	B·	be.	11	720%	L	M	M	M		Rebbly
		"	9+00	4	0.15	C	BR	4	-10%	ん	H- M	н- М.	۲.		
		"	9150	47			BR.	FINOS.	7£						AboNGANT ROCK FRAGS
Ī		11	10+00	11	0.25	c?	G-BR.	TILL	710	L.	H	H .	<u>ل</u> .		Base of Board Cut. 1.5M below Tot.

GEOCHEMICAL DATA

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip

DEPTH: Measured in meters.

10

HORIZON: Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey, O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

				<u>T</u>	<u> </u>	<u>Lis</u>	<u>le (</u>	<u>& A</u>	<u>ввос</u> 145	iate W. Roc	<u>a P</u> kland	<u>Road,</u>	CT North	<u>HAT</u> Vancol	Fil ver BC	е # v7N	96- 2v8	659	0	Pa		.1		.÷				Ľ
ANPLE#	No ppm	Cu ppn p	Pb xpan p	Zn Ag xom pom	Ni ppm	Co	Mn ppm	Fe X	As ppm p	U Au xpm ppm	Th ppm	Sr ppm	Cd PPm	Sb £ ppm pç	i V na ppm	Ca %	P X	La. ppm	Cr ppm	Mg %	Ва ррп	Ti %	B ppm	Al %	Na X	к %	W ppm	Au
6 R-1 6 R-2 6 R-3 E 96 R-3	5 2 1 1	6 173 7 7	5 ও ও ও	4 <.3 5 <.3 18 <.3 18 <.3	8 30 3 5	1 29 10 ! 11	47 1 115 2 548 3 522 3	.43 .00 .16 .16	6 34 <2 <2	ব্য ব্য ব্য ব্য ব্য ব্য ব্য ব্য	2 <2 <2 2	10 35 107 107	<.2 <.2 <.2 <.2	<2 < <2 < <2 < <2 <	2 3 4 54 2 96 2 97	.04 .84 1.66 1.64	.013 .087 .146 .144	14 5 11 11	20 23 6 6	.01 .28 1.86 1.87	47 6 33 33	<.01 .20 .20 .20	6 4 3 4	.18 _60 2.03 2.03	.06 .04 .07 .07	.17 .04 .05 .04	5 <2 <2 <2	<
		ICP	5	CO GRAN	SAMPL	E IS D	IGEST	ED WI	TH 3ML	3-1-2	HCL-HN	03-K20	AT 9	5 DEG.	C FOR		DUR AN	DISI	DILUT	ED TO	10 M	1L WIT:	H WAT	ER.				
		1 H I ASS - S	S LEA AY RE AMPLE	CH IS PA COMMENDE TYPE: I	ED FOR	FOR MA ROCK / K P2 T(N FE S AND CO O P7 S Bosing	SR CA ORE S. SOIL	PLA AMPLES AU	CR MG B/ IF CU F * - IGNI	A TI B PB ZN I ITED, I	W AND AS > 1 AQUA-R	LIMI %, AG EGIA/	TED FOR > 30 P MIBK EX	NAKA PH&AI TRACT,	AND AU J > 10 GF/A/	 000 PP A FINI	B Sked.	(10 G	M)								
סיפידעת	201211	<u>, 179</u>		17 1006	<u>19 'кс</u>	<u>' are i</u> Trip de		<u>s and</u> ידי ארא		<u>аге ке</u>	<u>јест к</u>			e t cintei	יים ר	C.	h				EONC	- 1.07	.uc- 1	r6071		вс	89984	EDC
DATE R.	SCRIV	ED:	DEC	13 1990	DA:	TE RE	POR.	г ма	TLED	: 1/6	x 24	99	6. °	SIGNE.	JBY.	Η:1		'	.101	:, [.,	LEUNG,	, J.WA	(NG; 1	LEKIII	FIED I	8.6.	435ATC	;K2
																		1										
					·																							
									•																			
									•		_																	
									•		ſ																	
									•		-																	
									•		l .																	
									•		1																	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

a.

i i ACHE ANALYTE

T.E. Lisle & Associates PROJECT HAT FILE # 96-6590

ACHE ANALYTICAL																													N	CHE ANALY	TICAL
SAMPLE#	No	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Nî ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppmi	V ppm	Ca X	Р Х	La ppm	Cr ppm	Mg %	Ва ррп	Ti X	B ppm	Al %	Na %	K %	W ppm	Au* ppb
3N 0+00E	1	44	7	167	<.3	21	18	1240	3.93	<2	<5	<2	2	36	.4	2	<2	82	.45	.136	15	33	.85	271	.07	<3	2.57	.01	. 13	<2	1
3N 0+50E	1	60	5	182	<.3	22	20	1068	4.36	<2	<5	<2	2	36	.5	<2	<2	90	.45	.209	16	35	.91	245	.08	<3	3.08	.02	.10	<2	1
3N 1+00E	1	50	18	143	<.3	21	19	1320	4.07	<2	<5	<2	<2	44	.5	<2	<2	83	.73	.102	14	31	.87	272	.05	<3	2.60	.01	. 13	<2	2
3N 1+50E	1	37	8	214	<.3	17	14	1154	3.41	<2	<5	<2	2	34	.3	<2	<2	68	.46	.156	10	27	.74	270	.06	<3	2.39	.02	. 11	<2	1
3N 2+00E	1	30	8	211	<.3	17	11	799 3	3.18	2	<5	<2	<2	38	<.2	<2	<2	66	.46	.116	10	27	.73	184	.07	<3	1.84	.02	.13	<2	8
3N 2+50E	1	34	9	186	<.3	18	13	1188	3.32	<2	<5	<2	2	25	<.2	<2	<2	66	.30	.148	14	22	.67	266	.06	<3	2.28	.01	.11	<2	1
3N 3+00E	1	43	8	116	<.3	18	16	947	3.83	<2	<5	<2	3	28	<.2	<2	<2	73	. 38	.128	24	24	.83	292	.04	<3	2.98	-01	.17	<2	<1
3N 3+50E	1	47	8	96	<.3	19	15	805	3.87	<2	<5	<2	2	33	<.2	<2	<2	82	.43	.076	22	30	.85	198	.06	<3	2.13	.01	- 14	<2	2
3N 4+00E	1	44	8	101	<.3	19	- 14	545	3.95	<2	<5	<2	2	27	<.2	<2	2	86	.36	.105	16	28	- 84	181	.06	<3	2.16	.01	. 13	<2	6
3N 4+50E	1	43	7	130	<.3	20	14	817 3	3.84	<2	<5	<2	2	32	<.2	3	<2	87	.42	.110	10	27	.80	194	.07	<3	2.00	.01	.12	<2	2
3N 5+00E	2	67	12	93	<.3	23	17	810	4.66	5	<5	<2	3	39	<.2	<2	<2	111	- 54	.112	23	36	1.28	101	.06	<3	2.37	.01	. 12	<2	9
3N 5+50E	1	45	5	122	<.3	21	13	924	3.77	<2	<5	<2	<2	27	<.2	<2	<2	82	. 34	.120	15	30	.78	170	.05	<3	2.18	.02	.13	<2	1
3N 6+00E	1	54	14	165	<.3	25	16	1708	3.88	<2	<5	<2	<2	41	- 4	<2	<2	82	.59	. 163	17	32	.96	195	.05	<3	2.14	.02	. 14	<2	2
3N 6+50E	2	70	17	92	<.3	18	16	840 4	4.34	3	<5	<2	2	41	<.2	<2	<2	106	.53	-044	24	35	1.07	66	.07	<3	1.97	.01	.07	<2	3
3N 7+00E	1	94	14	179	<.3	22	20	1522 4	4.78	<2	<5	<2	2	44	.5	<2	2	97	.62	.115	20	38	1.36	139	.06	<3	2.71	.02	. 15	<2	5
3N 7+50E	1	65	9	162	<.3	23	16	1050	4.15	2	<5	<2	2	32	<.2	<2	<2	87	.40	. 136	18	34	1.02	160	.07	<3	2.46	.01	.12	<2	1
3N 8+00E	1	56	6	144	<.3	27	15	692 4	4.09	<2	<5	<2	<2	30	<.2	<2	2	87	. 39	.104	13	36	1.00	108	.05	<3	2.15	.01	. 12	<2	1
3N 8+50E	1	56	7	110	<.3	20	14	681 .	3.95	<2	<5	<2	2	28	<.2	<2	<2	86	.33	.069	15	37	.93	118	.06	<u><</u>	2.23	.01	.08	<2	1
3N 9+00E	1	88	16	161	<.3	23	16	1767 4	4.26	<2	<5	<2	<2	29	.3	<2	<2	91	.50	.097	39	40	1.02	160	.05	্হ	3.02	.01	.09	<2	1020
RE 3N 9+00E	1	88	13	159	<.3	22	16	1757	4.24	2	<5	<2	<2	29	-4	<2	<2	91	.49	.097	39	41	1.00	157	.05	<3	3.00	.01	. 10	<2	11
3N 9+50E	2	46	6	75	<.3	18	17	1602 4	4.71	26	<5	<2	3	66	.4	<2	<2	121	1.15	- 148	48	27	.98	115	.06	<3	2.36	.01	. 17	<2	11
3N 10+00E	4	86	9	142	<.3	31	25	2518 !	5.03	6	<5	<2	2	55	- 4	2	<2	105	1.02	.119	18	47	1.42	231	.05	<3	2.37	.03	.11	<2	1
2N 0+00E	1	41	7	97	<.3	17	15	815	3.76	3	<5	<2	2	29	<.2	<2	<2	77	.35	.069	12	27	.86	135	.05	<3	1.89	.01	.11	<2	5
2N 0+50E	1	43	6	161	<.3	20	15	999	3.73	<2	5	<2	<2	35	<.2	<2	3	74	.49	.123	12	28	.81	213	.05	د>	2.35	.01	14	<2	8
2N 1+00E	1	57	10	127	<.3	19	17	667 4	4.14	2	<5	<2	2	28	<.2	<2	<2	84	.37	.068	17	30	.95	169	.07	<3	2.34	.01	.11	<2	2
2N 1+50E	<1	42	8	181	<.3	21	13	878 3	3.43	<2	<5	<2	2	32	.2	<2	<2	69	.46	.135	13	29	.87	191	.06	<3	2.29	.02	. 15	<2	6
2N 2+00E	<1	34	7	151	<.3	23	12	774 3	3.40	<2	<5	<2	2	30	<.2	<2	<2	72	.34	.100	11	29	.91	163	.06	<u>د</u> >	2.11	.01	.11	<2	2
2N 2+50E	1	41	7	122	<.3	18	13	829	3.61	2	<5	<2	2	29	<.2	<2	<2	78	. 38	.091	13	30	.98	130	.06	<3	1.79	.01	.11	<2	5
2N 3+00E	1	41	8	89	<.3	17	13	639 3	3.80	<2	<5	<2	<2	28	<.2	<2	2	74	.36	.077	13	28	.81	124	. 05	<3	1.71	.01	. 12	<2	- 5
2N 3+50E	1	32	5	99	<.3	19	13	545 3	3.70	3	<5	<2	<2	25	<.2	<2	3	77	.28	.088	8	30	.79	150	.07	<3	2.04	.01	.12	<2	2
2N 4+00E	1	24	6	174	<.3	18	13	942 3	3.37	<2	<5	<2	2	28	.2	<2	2	69	.37	. 126	9	24	.64	283	.06	<3	2.46	.02	.11	<2	1
2N 4+50E	1	39	6	143	<.3	19	14	783	3.91	<2	<5	<2	2	30	<.2	2	<2	82	.38	.121	12	26	. 83	200	.07	<3	2.23	.01	.12	<2	3
2N 5+00E	1	45	8	84	<.3	18	16	610 4	14	<2	<5	<2	2	33	<.2	<2	<2	92	.42	.073	20	25	.93	110	.07	<3	1.94	.01	. 13	<2	5
2N 5+50E	1	32	7	66	<.3	15	13	707 3	3.90	<2	<5	<2	3	30	<.2	<2	<2	88	.51	.085	30	17	.68	281	.06	<3	2.35	.01	. 15	<2	1
2N 6+00E	1	56	8	140	<.3	33	16	953 3	3.94	<2	5	<2	2	31	<.2	<2	<2	87	.40	.111	15	28	.85	203	.06	<3	2.57	.02	. 17	<2	1
STANDARD C2/AU-S	20	61	41	139	6.8	71	35	1118 3	3.86	41	17	8	37	52	19.0	18	19	75	.53	.109	39	70	.96	205	.08	27	1.94	.06	. 13	12	51

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

4

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 👖 FA

Page 2

T E Lisle & Associates PROT

ACHE ANALYTIC

T.E. Lisle & Associates PROJECT HAT FILE # 96-6590

8 F

10 A

計 套一

Page	3
------	---

CHE ANALYTICAL

SAMPLE#	No ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppn	Bi ppm	V ppm	Ca X	P %	La ppn	Cr ppm	Mg X	Ba ppm	Ti X	BA ppm 2	Na X	K %	W ppm	Au* ppb
2N 6+50E 2N 7+00E 2N 7+50E 2N 8+00E 2N 8+50E	1 1 1 3	41 27 21 73 86	9 10 10 7 7	103 189 181 73 126	<.3 <.3 <.3 <.3 <.3	19 20 19 22 34	13 10 10 17 19	1594 1275 979 689 1618	.21 5.12 5.03 5.33 5.61	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 2 2 2	39 37 41 43 41	<.2 <.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	107 67 66 102 98	.48 .53 .50 .59 .58	.110 .089 .113 .077 .123	18 10 9 20 16	29 26 24 31 33	.73 .73 .70 1.03 .95	164 191 229 97 197	.05 .07 .08 .08 .09	4 1.9 3 2.0 3 2.0 3 2.0 3 2.1 3 2.5	2 .01 2 .02 2 .01 2 .01 2 .01 2 .01	. 14 . 13 . 13 . 08 . 12	<2 <2 <2 <2 <2 <2 <2	13 1 1 1 <1
2N 9+00E 2N 9+50E 2N 10+00E 1+00N 1+00E 1+00N 1+50E	<1 1 1 1 <1	24 78 55 49 32	10 8 9 10 4	140 116 119 97 123	<.3 <.3 <.3 <.3 <.3	19 21 21 26 20	11 14 14 22 12	1371 3 781 4 1034 3 1559 4 608 3	.08 .43 .73 .80 .36	<2 <2 <2 3 <2	ৎ ৎ জ জ জ	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2	39 32 41 45 35	.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2	84 87 75 88 70	.61 .49 .64 .65 .53	. 163 . 099 . 066 . 029 . 056	9 21 16 20 11	21 36 1 34 43 1 32	.76 1.23 .97 1.26 .97	165 84 95 259 147	.10 .05 .06 .06 .06	<3 2.27 <3 2.10 <3 1.75 <3 2.70 <3 1.91	.02 .01 .02 .02 .02	.09 .09 .16 .14 .11	<2 <2 <2 <2 <2 <2	<1 5 1 2
1+00N 2+00E 1+00N 2+50E 1+00N 3+00E 1+00N 3+50E 1+00N 4+00E	1 <1 1 1	32 28 72 45 26	8 4 <3 5 6	160 150 68 131 106	<.3 <.3 <.3 <.3 <.3	22 21 23 18 15	14 12 20 13 14	732 3 841 3 889 4 1039 4 740 3	.70 .35 .50 .06 .73	2 <2 4 <2 <2 <2	6 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	30 29 44 40 28	<.2 <.2 <.2 <.2 <.2	3 <2 3 <2 <2	<2 <2 <2 <2 <2 <2 <2	79 72 92 75 63	.42 .37 .59 .61 .31	.104 .072 .110 .058 .086	10 10 14 19 12	35 1 31 43 1 29 23	.03 .99 .51 .97 .87	156 163 66 234 223	.06 .07 .08 .06 .03	<3 2.19 <3 2.07 <3 2.19 <3 2.52 <3 1.99	.01 .01 .01 .02 .01	.11 .14 .08 .10 .11	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 1 <1 <1 1
1+00N 4+50E 1+00N 5+00E 1+00N 5+50E 1+00N 6+00E 1+00N 6+50E	<1 <1 5 3	37 31 27 49 136	5 12 8 11 6	115 164 165 61 65	<.3 <.3 <.3 .3 <.3	18 18 16 24 31	12 13 14 32 23	901 3 1083 3 1614 3 1815 4 623 5	.44 .44 .19 .53 .75	<2 <2 <2 <2 <2 <2 <3	ও ও ও ও ও	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	33 31 37 98 43	<_2 <_2 <_2 <_2 <_2 <_2	2 <2 2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	74 72 66 121 129	.43 .41 .59 1.96 .58	.058 .134 .118 .277 .118	33 10 13 28 13	30 26 21 20 1 26	.78 .73 .63 .83 .93	135 224 251 187 73	.06 .07 .06 .04 .05	<3 1.98 <3 2.36 <3 2.23 7 1.91 <3 1.88	.02 .01 .02 .01 .01	.09 .11 .12 .19 .10	<2 <2 <2 <2 <2 <2	2 20 6 2 4
1+0DN 7+00E 1+00N 7+50E RE 1+00N 7+50E 1+00N 8+00E 1+00N 8+50E	3 2 2 1 2	81 62 60 58 55	6 8 7 11 6	60 103 100 172 119	<.3 <.3 <.3 <.3 <.3	25 26 25 25 23	24 16 16 15 16	669 5 782 4 763 4 581 3 992 4	.50 .51 .37 .92 .12	3 2 2 2 2	ৎ ২ ২ ২ ২ ২ ২ ২	<2 <2 <2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	49 40 39 44 38	<.2 <.2 <.2 .3 .4	<2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2	130 104 101 82 89	.62 .47 .46 .57 .55	. 108 . 109 . 105 . 142 . 068	16 20 20 20 12	28 1 32 1 31 1 33 33 1	.22 .11 .08 .89 .02	78 158 153 223 147	.07 .08 .08 .07 .07	<3 2.08 <3 2.20 <3 2.15 <3 2.28 <3 2.08	.01 .01 .01 .01 .01	.08 .16 .16 .13 .11	<2 <2 <2 <2 <2 <2	13 2 7 <1 2
1+00N 9+00E 1+00N 9+50E 1+00N 10+00E 4+00S 0+50E 4+00S 1+00E	1 1 1 1 1	60 44 54 54 66	10 9 6 4	141 164 111 111 73	<.3 <.3 <.3 <.3 <.3	24 21 19 23 19	16 13 14 17 17	891 4 1376 3 827 3 997 3 717 3	.25 .67 .77 .90 .99	3 2 2 2 3	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 <2 <2 2 2	32 32 40 36 34	<.2 .2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	3 <2 <2 <2 <2 <2	89 80 82 87 93	.43 .40 .53 .50 .50	. 118 . 081 . 067 . 069 . 074	15 12 13 14 22	35 1 30 34 1 34 35 1	.00 .82 .09 .84 .00	150 227 123 198 69	.06 .06 .06 .09 .09	<3 2.40 <3 2.29 <3 1.94 <3 2.67 <3 1.79	.01 .01 .01 .01 .01	.09 .10 .12 .09 .08	<2 <2 <2 <2 <2 <2	<1 1 <1 <1
4+00S 1+50E 4+00S 2+00E 4+00S 2+50E 4+00S 3+00E 4+00S 3+50E	1 <1 <1 <1 1	51 81 34 29 34	9 9 7 5 7	99 132 100 147 107	<.3 <.3 <.3 <.3 <.3	20 26 19 15 20	18 20 1 12 11 2 13	826 3 708 4 762 3 1093 3 837 3	.89 .28 .34 .09 .40	2 <2 <2 <2 <2 <2	<5 <5 5 5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	37 38 36 25 30	<.2 .2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2 <2	89 96 81 74 78	.48 .46 .56 .35 .40	. 095 . 204 . 079 . 383 . 102	15 15 8 9	36 38 1 30 24 32	.94 .06 .74 .48 .74	114 257 145 352 197	.10 .09 .08 .09 .09	<3 2.38 3 3.62 <3 2.35 <3 2.51 <3 2.39	.01 .02 .01 .02 .01	.12 .13 .09 .07 .10	<2 <2 <2 <2 <2 <2	1 18 5 <1 13
STANDARD C2/AU-S	20	57	43	140	6.3	69	34 1	170 3	. 84	38	18	8	33	47 1	7.7	13	16	70	.54	108	37	66	.95	185	.08	26 1.86	.06	. 13	12	48

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data /

T.E. Lisle & Associates PROJECT HAT FILE # 96-6590

Page 4

i:∦=

NE ANALYTICAL

1 FA

Data

SAMPLE#	No ppm	Cu ppm	Pb ppn	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppn	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ва ррп	Ti X	B A ppm	l Na	×	V ppm	Au* ppb
4+005 4+00E 4+005 4+50E 4+005 5+00E 4+005 5+50E 4+005 6+00E	1 1 1 2	29 31 34 24 52	8 10 7 13 9	94 109 155 141 128	<.3 <.3 .3 <.3 .3	20 16 21 21 23	14 12 13 12 14	635 593 943 748 1742	3.53 3.55 3.26 3.37 3.77	4 2 2 2 2 2 2 2		<2 <2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2	31 34 30 31 57	<.2 <.2 <.2 <.2 <.2 <.2	3 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2	88 89 78 80 82	.40 .45 .40 .38 1.09	.076 .077 .108 .101 .096	8 8 15 8 37	36 33 31 31 35	.87 .82 .66 .61 .64	116 115 142 150 177	.09 .08 .09 .09 .07	<3 1.7 <3 1.6 <3 2.6 <3 2.7 <3 3.4	3 .01) .02 3 .02 5 .02 .02	. 08 . 07 . 09 . 08 . 09	<2 <2 <2 <2 <2 <2 <2	1 1 <1 <1 <1
5+00S 0+00E 5+00S 0+50E 5+00S 1+00E 5+00S 1+50E 5+00S 2+00E	1 1 1 1	46 59 45 63 92	8 10 12 10 14	100 119 108 115 141	<.3 .3 <.3 .3 <.3	24 25 24 25 27	15 16 15 15 16	568 795 757 939 1089	3.73 4.01 3.94 4.00 4.10	4 6 5 2 2	ৎই ৎই ৎই ৎই	<br <br <br <br </th <th>2 3 2 3 3</th> <th>37 38 35 44 41</th> <th><.2 <.2 <.2 <.2 <.2</th> <th>2 <2 <2 <2 <2 <2 <2</th> <th><2 <2 <2 3 <2</th> <th>95 96 100 97 99</th> <th>-44 -47 -42 -54 -54</th> <th>.084 .109 .047 .081 .160</th> <th>11 15 11 18 18</th> <th>40 40 36 45 40</th> <th>.83 .86 .78 .92 .86</th> <th>106 164 170 135 159</th> <th>.12 .11 .10 .11 .11</th> <th><3 2.1 <3 2.4 <3 2.3 <3 2.3 <3 2.7 <3 3.7</th> <th>.02 .02 .02 .02 .01 .02</th> <th>.08 .09 .08 .13 .10</th> <th><2 <2 <2 <2 <2</th> <th><1 3 1 <1 2</th>	2 3 2 3 3	37 38 35 44 41	<.2 <.2 <.2 <.2 <.2	2 <2 <2 <2 <2 <2 <2	<2 <2 <2 3 <2	95 96 100 97 99	-44 -47 -42 -54 -54	.084 .109 .047 .081 .160	11 15 11 18 18	40 40 36 45 40	.83 .86 .78 .92 .86	106 164 170 135 159	.12 .11 .10 .11 .11	<3 2.1 <3 2.4 <3 2.3 <3 2.3 <3 2.7 <3 3.7	.02 .02 .02 .02 .01 .02	.08 .09 .08 .13 .10	<2 <2 <2 <2 <2	<1 3 1 <1 2
5+005 2+50E 5+005 3+00E 5+005 3+50E 5+005 4+00E 5+005 4+50E	1 <1 1 <1	59 73 50 21 40	10 12 10 9 8	137 169 146 178 116	.3 <.3 <.3 <.3 <.3	22 21 24 9 21	13 17 13 9 13	1052 1533 1245 2991 695	3.80 3.73 3.39 2.97 3.76	<2 2 2 2 2 3	হ হ হ হ	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2	40 37 29 15 29	<.2 <.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2	88 87 89 76 90	.55 .46 .34 .20 .38	.069 .239 .141 .374 .091	19 10 10 6 11	35 36 33 19 36	.72 .69 .62 .22 .79	181 192 199 250 159	.10 .08 .11 .12 .07	<3 3.50 <3 3.11 <3 3.00 <3 1.97 <3 2.43	0 .02 .02 .02 .02 .02	.12 .09 .07 .03 .07	<2 <2 <2 <2 <2	26 3 8 2 12
5+00\$ 5+00E RE 5+00\$ 5+00E 5+00\$ 5+50E 5+00\$ 6+00E 5+00\$ 6+50E	1 1 1 1	42 45 40 37 27	14 13 11 10 7	118 122 123 141 97	<.3 <.3 <.3 <.3 <.3	25 25 22 23 19	14 15 14 15 19	741 784 1078 1086 664	4.14 4.35 4.11 4.19 4.75	<2 <2 <2 <2 <2 <2	5 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 3 2 3 3	22 24 26 25 30	<.2 <.2 <.2 <.2 <.2	2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	96 101 104 98 124	.28 .29 .35 .28 .35	. 135 . 140 . 214 . 085 . 176	9 9 8 12 11	38 40 31 38 28	.79 .82 .63 .78 .81	186 197 148 182 90	.10 .11 .11 .08 .10	<3 3.80 <3 3.97 <3 3.00 <3 3.52 <3 2.91	.02 .02 .02 .02 .02	.07 .07 .06 .08 .05	<2 <2 <2 <2 <2 <2	1 6 1 1 2
5+00S 7+00E 5+00S 7+50E 5+00S 8+00E 5+00S 8+50E 5+00S 9+00E	1 1 1 1	30 40 34 32 25	10 12 12 7 17	124 107 149 104 202	<.3 <.3 <.3 <.3 <.3	19 19 18 19 17	12 15 14 14 13	668 3 1237 3 2069 3 773 4 2861 3	5.66 5.92 5.52 5.28 5.09	<2 <2 <2 4 <2	ৎ ৎ ৎ ৎ ৎ ৎ	<2 <2 <2 <2 <2 <2	<2 2 <2 2 2 2	32 23 55 39 48	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 <2 <2 ~2 ~2 ~2 ~2	88 92 80 90 69	.37 .31 .98 .55 .80	.065 .159 .204 .051 .098	9 16 13 16 10	33 30 31 34 28	.69 .63 .58 .58 .51	152 183 274 175 344	.07 .09 .06 .07 .06	<3 2.29 <3 3.17 <3 2.69 <3 1.96 <3 1.82	.01 .01 .01 .02 .02	-09 .08 .10 .10 .11	<2 <2 <2 <2 <2 <2	2 <1 1 37 2
5+00S 9+50E 5+00S 10+00E 6+00S 0+00E 6+00S 0+50E 6+00S 1+00E	1 1 1 1	31 34 61 51 63	24 8 10 13 11	202 130 108 127 111	<.3 <.3 <.3 <.3 <.3	19 20 25 23 30	13 11 15 15 19	2092 3 1085 3 650 3 1451 3 1365 4	5.60 5.39 5.96 5.95 5.11	4 2 7 4 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 3 2 2	46 32 33 42 34	.2 <.2 <.2 <.2 <.2 <.2	<2 <2 <2 3 <2	<2 <2 <2 <2 <2 <2	79 77 86 96 94	.71 .46 .37 .49 .41	. 132 . 100 . 277 . 125 . 102	11 9 15 12 10	33 31 39 39 39 38	.59 .62 .82 .77 .75	293 188 201 146 174	.06 .07 .12 .13 .11	<3 2.22 <3 1.88 <3 2.66 <3 2.49 <3 2.97	.02 .01 .02 .02 .02	.13 .10 .08 .10 .08	<2 <2 <2 <2 <2 <2	1 2 4 16 1
6+00S 1+50E 6+00S 2+00E 6+00S 2+50E 6+00S 3+00E 6+00S 3+50E	1 1 1 1	64 63 45 63 35	12 10 11 10 13	124 98 95 123 112	<.3 .3 <.3 <.3 <.3	27 22 20 21 21	18 14 12 16 12	1965 4 584 4 481 3 997 4 715 3	.33 .16 .82 .20 .93	10 3 2 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 4 3 2	50 40 36 36 37	<.2 <.2 <.2 <.2 <.2 <.2	<2 <2 3 2 <2	<2 <2 2 <2 <2 <2	100 99 95 100 92	.61 .54 .45 .48 .48	.097 .066 .057 .075 .059	21 18 12 17 12	34 40 37 36 38	.79 .89 .77 .79 .75	203 142 128 189 110	.09 .12 .12 .10 .10	<3 3.02 <3 2.77 <3 2.37 <3 3.47 <3 2.30	.02 .02 .02 .02 .02	.11 .11 .10 .09 .12	<2 <2 <2 <2 <2 <2	10 333 32 4 3
STANDARD C2/AU-S	20	59	42	143	6.8	76	36	211 3	.82	39	17	7	36	52	17.9	16	16	75	.57	. 106	41	70	.95	207	.09	24 1.90	.06	. 13	12	48

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

٠

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACE AMUTTICA					T.E	s. 1	is	Le 6	A A	3800	iat	:es	PRC	JEC	CT H	IAT	FJ	LE	# 9	96 - 6	590)				Pa	ge	5		4	TTICA.
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr 19pm	b3 mqq	\$b ppm	Bi ppm	v ppm	Ca X	Р Х	La ppm	Cr ppm	Mg X	Ba ppn	Ti X	B PPm	Al X	Na X	к Х	V ppm	Au* ppb
6+005 4+00E 6+005 4+50E 6+005 5+00E RE 6+005 5+00E 6+005 5+50E	1 1 1 2	44 38 91 97 27	14 11 12 15 14	186 165 134 138 114	<.3 <.3 <.3 <,3 <,3	21 35 22 22 18	15 12 20 21 11	1903 583 1452 1570 550	3.93 3.45 4.63 4.65 3.82	2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 2 2 2 2 2 2	31 32 24 25 31	<.2 <.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2	<2 <2 2 <2 <2 <2	94 82 120 117 91	.42 .47 .38 .39 .42	.219 .069 .323 .352 .047	12 10 12 13 9	37 35 34 35 33	.62 .60 .69 .71 .61	225 190 131 140 101	.09 .11 .11 .11 .11	3 3 3 2 3 3 <3 3 <3 2	. 30 .63 .44 .64 .61	.02 .02 .02 .02 .02	.08 .10 .07 .07 .08	< < < < < < < < < < < < < < < < <> <> <>	4 2 8 23 9
6+005 6+00E 6+005 6+50E 6+005 7+00E 6+005 7+50E 6+005 8+00E	1 <1 1 5	63 32 36 37 33	17 7 11 13 10	140 119 93 125 135	<.3 <.3 <.3 <.3 <.3	21 18 19 22 19	16 12 13 16 18	1912 822 578 994 770	4.43 3.60 3.98 4.58 4.65	2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 2 2 2	38 33 33 30 42	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	2 <2 3 <2 <2	98 84 99 110 105	.57 .41 .40 .43 .48	. 106 . 090 . 052 . 148 . 177	24 10 11 14 16	39 31 31 33 24	.72 .58 .72 .70 .65	175 227 151 144 193	.08 .09 .10 .11 .07	<33. <32. <33. 34. 32.	33 36 15 05 81	.02 .02 .02 .02 .02	. 11 . 13 . 09 . 10 . 12	<2 <2 <2 <2 <2 <2	4 6 9 4 11
6+005 8+50E 6+005 9+00E 6+005 10+00E 7+005 1+00E 7+005 1+50E	1 1 1 1	31 23 31 60 109	11 13 12 15 8	174 105 164 107 96	<.3 <.3 <.3 <.3 <.3	22 18 23 23 40	17 14 13 15 28	1045 805 2286 694 1102	4.21 3.78 3.72 3.80 4.63	<2 4 2 7 14	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2	36 34 44 43 35	<.2 <.2 <.2 <.2 <.2	<2 2 2 2 2 2 2 2 2 2 2	<2 <2 3 2	90 86 82 89 127	.53 .41 .60 .50 .53	.073 .073 .130 .141 .090	12 13 16 14 12	36 26 36 40 38	.70 .56 .60 .73 .92	204 205 379 154 124	.08 .07 .08 .10 .13	32. 32. 32. 32. 32. 32. 32.	45 37 40 50 83	.02 .02 .02 .02 .02	.11 .11 .17 .10 .08	<2 <2 <2 <2 <2 <2	16 3 4 3 1
7+005 2+00E 7+005 2+50E 7+005 3+00E 7+005 3+50E 7+005 4+00E	1 1 1 1	54 56 69 75 53	8 8 13 11 10	93 129 120 112 132	<.3 <.3 <.3 <.3 <.3	21 27 27 24 22	16 16 21 20 15	653 559 2401 1232 2035	3.87 3.41 4.20 4.41 3.89	12 <2 6 4 3	ৎ ৎ ৎ ৎ ৎ	<2 <2 <2 <2 <2 <2 <2 <2	2 3 2 2 2	35 38 61 36 43	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	97 78 100 102 83	.45 .44 .77 .44 .56	. 114 . 154 . 196 . 078 . 108	10 10 14 19 16	27 28 35 34 32	.62 .58 .71 .75 .65	153 161 303 182 257	.09 .12 .10 .10 .09	3 2. 3 2. 3 2. 3 2. 3 2. 3 2. 3 2.	21 37 32 81 85	.02 .03 .02 .02 .02	.10 .10 .11 .12 .11	<2 <2 <2 <2 <2 <2 <2	8 3 5 19 100
7+005 4+50E 7+005 5+00E 7+005 5+50E 7+005 6+00E 7+005 6+50E	1 1 2 1	112 153 37 35 32	9 12 12 10 11	128 114 151 133 123	<.3 <.3 <.3 <.3 <.3	21 108 22 17 20	18 28 12 12 13	969 1169 438 1143 616	4.02 4.91 3.76 3.45 3.94	<2 <2 <2 <2 3	5 <\$ <\$ <5 <5	<2 <2 <2 <2 <2 <2	3 3 2 2 2	28 33 40 38 39	<.2 <.2 <.2 <.2 <.2 <.2	2 <2 3 <2 4	2 <2 <2 <2 <2	97 107 81 78 90	.35 .52 .52 .56 .54	. 174 . 097 . 213 . 107 . 096	18 17 8 7 10	31 245 34 28 32	.76 2.42 .61 .53 .60	157 163 260 172 169	. 12 . 15 . 08 . 08 . 08	<3 3. <3 3. <3 2. <3 2. <3 2. <3 3.	30 97 78 40 12	. 02 . 01 . 02 . 02 . 02	.08 .09 .12 .09 .11	< < < < < < < < < < < < < < < < < <> </td <td>15 15 3 1</td>	15 15 3 1
7+005 7+00E 7+005 7+50E 7+005 8+00E 7+005 8+50E 7+005 9+00E	2 1 2 1 1	52 41 43 56 26	10 7 10 13 15	108 113 145 141 218	<.3 <.3 <.3 <.3 <.3	22 24 23 24 20	16 13 18 19 13	966 641 882 1199 1234	5.11 5.81 5.34 5.67 5.90	<2 <2 <2 4 2	<5 <5 5 <5 7	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2	41 34 38 35 40	<,2 <,2 <,2 <,2 <,2	2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	95 94 103 93 84	.62 .48 .57 .49 .57	048 065 108 113 137	14 10 16 28 10	34 32 34 36 34	.67 .73 .71 .69 .61	102 176 140 220 293	.09 .11 .09 .08 .07	<3 2.1 <3 3.1 <3 3.4 <3 2.1 <3 2.1	B1 39 40 83 59	.02 .02 .02 .02 .02 .01	.08 .13 .10 .13 .13 .12	<2 <2 <2 <2 <2 <2 <2 <2	2 3 4 12 2

.

		L
ADE	444	TICA

T.E. Lisle & Associates PROJECT HAT FILE # 96-6590

Page 7

Data

ADE ANALYTICAL													<u> </u>																	ADE A	NAL YTICAL	-
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn	Ag ppm	Ni	o3 mqq	Mis ppm	Fe X	As	U pom	Au	Th	Sr ppm	Cd	Sb	Bi	V	Ca X	P X	La	Cr DOM	Mg %	8a pom	Ti X	B	Al X	Na X	K	W ppm	Au*	
8+50E 0+00 8+50E 2+00S 8+50E 4+00S RE 8+50E 4+00S 9+00E 0+00	2 1 1 1 3	33 41 38 37 29	12 9 11 10 10	172 96 144 145 175	<.3 <.3 <.3 <.3 <.3 <.3	17 15 18 19 15	13 9 12 12 12	794 392 583 588 1780	3.47 3.18 3.50 3.57 2.91	2 <2 <2 <2 <2 <2 <2	حة حة حة حة	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 2 2 2 2 2	30 37 20 20 43	<.2 <.2 <.2 <.2 <.2 <.2	<2 3 <2 <2 <2 <2	2 <2 <2 <2 <2 <2 <2 <2 <2	70 58 74 76 59	.45 .68 .28 .28 .28 .82	.068 .028 .122 .122 .059	9 11 12 12 10	29 28 31 31 24	.77 .75 .65 .66 .53	110 114 147 147 147 157	.08 .07 .07 .07 .07	<3 <3 <3 <3 <3 <3	1.98 2.05 2.84 2.85 1.97	.02 .03 .01 .01 .02	.09 .05 .07 .07 .10	<2 <2 <2 <2 <2 <2 <2	4 5 2 2 3	
9+00E 2+00S 9+00E 4+00S 9+50E 0+00 - 9+50E 2+00S 9+50E 4+00S	1 1 1 1	59 33 37 45 39	12 9 7 11 10	233 205 131 155 106	<.3 <.3 <.3 .3 .3	22 18 17 17 21	16 11 12 12 11	652 473 664 727 527	4.40 3.26 3.52 3.38 3.55	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2	26 21 28 42 28	<.2 <.2 <.2 <.2 <.2	3 3 <2 <2 3	<2 <2 <2 2 <2	87 71 75 73 72	.33 .27 .40 .52 .35	.141 .132 .072 .042 .099	12 9 9 13 17	40 30 30 27 36	1.04 .59 .73 .64 .70	179 177 117 252 173	.07 .09 .07 .08 .05	ব্য ব্য ব্য ব্য	3.30 2.59 1.86 3.09 2.52	.01 .02 .01 .02 .02	.09 .07 .10 .08 .08	<2 <2 <2 <2 <2 <2	1 6 6 4	
10+00E 2+00S	1	105	12	174	.5	25	18	1375	4.66	<2	<5	<2	<2	73	.3	2	<2	83	1.10	.092	28	44	1.07	380	. 04	<3	3.65	.02	. 12	<2	5	
<u>Sample</u>	type	<u>: soi</u> i	<u>. </u> \$	ample:	s beg	<u>innin</u>	g <u>'R</u> E	' аге	Reru	<u>ns an</u>	<u> 'RRE</u>	: are	e Rejo	ect R	<u>eruns</u>	-																
4+50E 0+00 5+00E 0+00 5+00E 2+00S 5+50E 0+00		1 44 1 82 1 37 1 39		3 104 8 114 4 115 3 194	4 <.3 5 <.3 4 <.3	3 19 3 23 3 18 3 18 3 17	7 1 5 1 3 1 7 1	7 106 5 79 8 100 4 54	9 3.38 8 4.14 5 4.13 8 3.60	<	3 <5 3 <5 2 <5 2 <5			2 3 2 3 2 2 3 3	3 <. 7 <. 8 <. 5 <.	2 < 2 < 2 <	2 < 2 < 4 < 2 <	27 28 210 27	5 . 8 .4 2 .1 9 .4	36 .13 47 .05 30 .11 49 .10	9 8 1 4 7 1	6 3 8 4 9 2 6 2	8 .9 4 1.1 7 .8 1 .6	0 15 1 14 2 13 8 15	9 .0 2 .0 7 .0 5 .0)8 <)8 <)8 <	3 2.2 3 2.6 3 2.8 3 3.3	28 .0 52 .0 18 .0 10 .0	11 .(12 .' 12 .(12 .()8 11)8)8	<2 <2 <2 <2 <2	2 3 1 2
5+50E 2+00S 6+00E 0+00 6+00E 0+00(A) 2+0 6+50E 0+00 6+50E 2+00S	10	1 30 7 96 3 51 1 57 1 186		5 191 5 68 8 83 5 86 9 235	<.3 3 <.3 5 <.3 5 <.3 5 <.3	5 19 5 39 5 19 5 19 5 19 5 38	29 1 29 29 29 14 29 19 3 19	1 70 9 83 4 70 5 53 5 109	0 2.95 0 5.43 7 3.88 9 4.24 9 5.92		<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2		3 2 2 4 2 4 2 3 3 5	5 <. 3 <. 9 <. 9 <.	2 2 2 2 3 3		2 6 2 13 2 8 2 9 2 9 2 9	6 .2 2 .8 2 .6 8 .5 7 .9	27 .23 37 .11 54 .04 50 .08 20 .11	5 2 3 2 2 2 1 3 3	9 2 2 5 7 3 3 3 7 5	2 .4 5 1.5 4 .8 2 1.0 5 1.1	9 19 2 6 B 15 1 7 0 44	8.1 6.0 6.0 9.0 0.0	0 < 94 97 < 97 3 <	3 2.5 3 2.6 3 2.5 3 1.8 3 6.0	5 .0 60 .0 3 .0 62 .0 1 .0	2 .(1 . ¹ 2 .(1 .1 2 .2)7 16 19 12 20	2 <2 <2 <2 <2 <2	1 3 1 2 5
6+50E 4+00S 7+00E 0+00 7+00E 2+00S 7+00E 4+00S 7+50E 0+00	1 2 2 2	21 60 189 22 55	4 10 4 8 7	119 166 121 149 99	 <.3 <.3 .6 <.3 <.3 <.3 	16 24 24 18	10 17 14 11) 46(7 70) 86(53) 52(3 2.91 5 4.26 3 3.94 5 2.98 3 3.92	<2 . 3 . 2 . 2 . 2 . 2 . 6	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2		2 2 2 3 2 6 2 2 2 2 2 2	4 <.2 4 <.2 5 .4 3 <.2			2 71 2 9 2 78 2 68 2 87	3 .2 1 .4 8 1.2 8 .2 7 .3	28 .07(2 .12) 2 .12) 2 .123 8 .08(0 .054	0 : 5 1: 5 4: 3 1: 5 4:	5 24 3 31 5 32 7 26 3 31	4 .58 1 .80 2 .90 5 .50 1 .88	8 12 6 21 0 12 6 18 8 90	200 000 700 800 600	7 < 9 < 6 7 <	3 1.8 3 3.3 3 3.0 3 2.5 3 1.9	7.0 8.0 2.0 7.0 5.0	2 .0 2 .1 3 .0 2 .0 1 .0	17 · 4 · 19 · 16 ·	<pre></pre>	1 5 1 8
7+50E 2+00S 7+50E 4+00S 8+00E 0+00 8+00E 2+00S 8+00E 4+00S	4 1 2 1 1	80 20 49 34 27	7 6 10 5 9	79 153 173 118 125	.3 <.3 <.3 <.3 <.3	24 19 19 15 16	22 9 14 13 11	1265 893 584 481 447	4.40 2.66 3.85 3.55 3.25	<2 <2 5 <2 <2 <2	دې دې دې دې	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 21 30 40 21	1 .2 7 <.2 3 <.2 5 <.2		2 <2 <2 <2 2 2 2 2 2	101 65 84 83 77	1 1.1 5 .3 5 .3 8 .7 7 .3	2 .061 8 .094 4 .053 6 .032 0 .068	28 8 14 19 6	3 28 3 22 3 31 9 22 9 29	1.06 .37 .79 .69	5 149 187 121 115 123	9 .00 1 .01 1 .01 5 .01 5 .01	6 9 < 9 < 7 < 6 <	3 2.8 3 2.1 3 2.1 3 2.1 3 2.4 3 2.0	5 .0 8 .0 6 .0 8 .0 2 .0	2.0 2.0 2.1 2.0 2.0	7 < 7 < 0 < 6 < 7 ,	:2 :2 :2 :2 :2 :2	2 3 1 1
STANDARD C2/AU-S	21	60	38	148	6.9	73	36	1157	4.07	47	18	9	36	54	19.5	19	19	79) .5	4.108	41	72	1.00	211	. 08	3 29	2.03	3.0	7.1	4 1	3 45	5

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

*

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

APPENDIX II.

PERSONNEL

1. Erik Ostensoe, P. Geo.

- ----

- - - - - - - - - -

- -

2. Thomas E. Lisle, P. Eng.

PERSONNEL

The following persons carried out the field work described in the accompanying report:

- 1. Erik A. Ostensoe, P.Geo. geologist (UBC, 1960)
 - more than thirty years experience in mineral exploration, principally in western and northern North America
 - member 18,727 of Assoc. of Professional Engineers and Geoscientists of British Columbia
 - worked on Rainbow Project claims 1992 to 1996
 - co-owner of Rainbow 2, 3, 4 claims
 - prepared accompanying report of work.
- 2. Thomas E. Lisle, P. Eng. geologist (UBC, 1964)
 - more than thirty years experience in mineral exploration, principally in western North America
 - member 08528 of Assoc. of Professional Engineers and Geoscientists of British Columbia
 - worked on Rainbow Project claims 1992 to 1996
 - co-owner of Rainbow 2, 3, 4 claims.

APPENDIX III.

4

- A

EG+G Model G-856 "Memory Mag" Magnetometer

Magnetometers

A magnetometer is an instrument for measuring the intensity of the carth's magnetic field. Most rocks contain some magnetite, the most common magnetic mineral, and therefore produce some disturbances in the magnetic field. Soils and even some man made objects such as pottery can have magnetic properties.

Through interpretation of magnetometer readings, assumptions can be made about what exists beneath the surface, whether it is a pipeline, an ancient urn, a particular mineral, or geologic structure. The interpretation of magnetic data received from a magnetometer is sometimes a difficult task, made even more complex by constant changes in the earth's overall magnetic field, the size and distance of objects from the magnetometer, the amount of magnetic material the object contains, and the susceptibility of the object to absorb magnetism from other sources. On the other hand, many applications may require only simple interpretations of anomalies.

The proton precession magnetometer has become the principal instrument for magnetic studies because it combines high accuracy and ease of use. The <u>Applicatons Manual for Portable Magnetometers</u>, supplied with this instrument, includes general information on the use of magnetometers. It should be studied as a companion to this volume, which deals specifically with the G-B56 Memory Mag⁻ magnetometer.

The G-856

The G-856 is a portable, man-carried magnetometer and a "base station" magnetometer. As a hand-carried instrument, it features simple, push button operation and a built-in digital memory which stores over 1000 readings. This relieves you of the need to log data in the field, eliminates transcription errors and most important, lets you use computers to automatically record and process the data from the magnetic survey.

The G-856 Hemory-Hag magnetometer will also record automatically at regular intervals, so it can be left unattended to monitor diurnal changes in the earth's magnetic field. These readings are used to correct simultaneous field measurements for high accuracy surveys. Here again, the data may be fed directly into a computer so that the field data taken with an identical G-856 may be automatically corrected. The time-of-day is recorded with each reading taken in either mode from a built-in digital clock.

All operations are controlled from a weatherproof membrane switch front panel. The Sequence of operations was carefully designed to be very simple to operate and yet flexible. Erasing the memory requires an intricate, fail-safe sequence to protect the data, except for the most recent reading which can be casily deleted and replaced if desired.

> A single connector is used for the sensor and data output. The output format is in the universal RS-232, understood by most small and large computers and some printers. The data may also be printed and graphed on the G-866 Recording Hagnetometer, or stored for later analysis on digital tape recorders like Geometrics G-724M.

> Physically, the G-836 is compact and lightweight. It is weatherproof and operates over a wide temperature range. It is powered by eight D-Cell batteries, sufficient for about 3000 readings.

Above all, the G-856 is a high-precision magnetometer, the result of many years experience in the manufacture of similar instruments. An internal programming switch allows modification of the cycle times to ensure that the G-856 works properly near the magnetic equator and in high gradients where other models may operate only marginally or fail to obtain reliable data.

The operation of the instrument is controlled by a microprocessor and the control program may be changed at any time for product improvement or other considerations. In that event, you may find variations between this manual and the operation of your actual instrument operation. Such variations will have no adverse effect and should be recognizeable as you familiarize yourself with operation.

APPENDIX IV.

: 🖀

) }

•

Statement of Expenditures

The following expenditures were incurred in carrying out the work described in the accompanying report:

1. Transportation -	truck rental - Ford Bronco 30 days @ \$50/	1500.00	
-	mileage - 2332 km @0.18/km	419.76	
	gasoline	293.67	
	repairs	151.11	
	other transportation (bus)	34.45	
			\$2398.99
2. Accommodation	- motels	333.14	
	house (Neil Southworth)	<u>570.00</u>	
			903.14
3. Meals -			137.46
4. Groceries -			332.47
5. Supplies -	Neville Crosby	50.87	
-	Misc. stationery	1.81	
	Photocopies	1.82	
	Parking	3.00	
	Telephone	<u>18.52</u>	
			76.02
6. Geochemical Ana	lyses - Acme Analytical		2465.95
7. Allowance for lat	oour - 30 person days @ \$250/day		7500.00
8. Allowance for rep	port preparation - labour - four days @ \$250/		1000.00
	- photocopies, white prints, c	overs	_150.00
TOTAL EXPENDE	FURES -		\$14,964.03

.

10 N

9 N

ΒN

7 N

.

46(49) 41 26 36 53 55 34 45 SW OF SW 25 29 32 46 103 45 51 45 31

22 40 40 53 25 38 99 29 37 37 40 70(69) 37 56 /61 28 15 43 36 29 11 65. 28 40 3 2 44 5 4 8 / 4

Po 270

Bi 3 N To Tulameen 1 1020(11) 11 7 56 88(88)/146 - 94 65 56 56 2N 78 55 60 44 54 IN

i

 $+5^{1}+5^{$ * + 5 $+95^{1}$ $+9^{2}+9^{4}+9^{4}+9^{2}+9^{$ $+9^{+}+9^{$ 600E

SIMILKAMEEN MINING DIVISION TULAMEEN, B.C.

GEOLOGY

Scale 1: 5000 Revised November, 1996. Map 92H 10W Figure 4.

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

.

•

,

Ň