RECEIVED

APR 141997
Cold Commiadonor's oflce
VANCOUVER B.O.

REPORT OF

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL FIELD WORK
 RAINBOW PROJECT, TULAMEEN DISTRICT, SIMILKAMEEN MINING DIVISION, B.C.

October and November, 1996.

49 degrees 34 ' North Latitude 120 degrees 50^{\prime} West Longitude

NTS Sheet 92H/10W.

Work by Erik A. Ostensoe, P. Geo. and T. E. Lisle, P. Eng.
Report by Erik A. Ostensoe, P. Geo.
Date of Report: January 15, 1997.

CONTENTS

Page
0.1 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 1
1.0 $\operatorname{INTRODUCTION}$ 2
1.1 Introduction 2
1.2 Location and Access 2
1.3 Geography 3
1.4 Property History 3
1.5 1996 Work 4
1.6 References 4
2.0 GEOLOGY OF RAINBOW PROPERTY 5
2.1 Regional Geology 5
2.2 Geology of Rainbow Claims 5
3.0 GEOCHEMISTRY OF RAINBOW PROJECT 7
4.0 MAGNETICS OF RAINBOW PROJECT 8
4.1 Introduction 8
4.2 Magnetics of Rainbow Claims 8

APPENDICES

Appendix 1.	Geochemical Data Sheets
	Geochemical Analyses
Appendix 2.	Personnel
Appendix 3.	EG + G Model G-856 "Memory Mag" Magnetometer
Appendix 4.	Statement of Expenditures

ILLUSTRATIONS

page
Figure 1. Location of Tulameen Districtfollows page 1
Figure 2. Rainbow Claims follows page 1
Figure 3. Regional Geology follows page 5
Figure 5. Geology in pocket
Figure 6. Copper-Gold Soil Geochemistry in pocket
Figure 7. Magnetometer Survey in pocket

0.1 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A program of grid preparation, geological mapping, geochemical sampling, and magnetometer surveying was carried out on the Rainbow Project claims during October and November, 1996 by Erik Ostensoe and Thomas Lisle. This work was a continuation of similar programs that the owners have been pursuing since 1992.

Geological mapping showed that the tuffaceous and andesitic volcanic rocks that are present in the central and northern parts of the property are replaced by dominantly andesitic and dioritic volcanic and intrusive rocks in the southern area. The rhyolite/feldspar porphyry unit that forms gossans in the central and northwestern parts of the property was not found to the south. Minor amounts of fine-grained sulphide minerals occur with feldspathic alteration. Analyses of geochemical samples revealed low copper values and several narrow zones of elevated gold values. The magnetometer survey showed a partially defined area of "high" magnetics in the central part of the newly prepared grid. This anomalous area has no outcrops and is unexplained.

Work during 1996 expanded coverage of the Rainbow Project. The owners believe that the original proposal, that the area has good potential to host valuable mineral deposits, remains valid and that the recent work has contributed useful data.

Further, more detailed, magnetomcter surveys are required to better define the geometry of the newly recognized magnetically anomalous area. The possibility that the anomaly reflects the presence of an outlier of the Tulameen Ultramafic Complex deserves further study. A first step in such a study may be the PGE analysis of a few soil samples from the area. Several narrow low level gold anomalies should be further sampled and prospected. Steep cliffs that rise from the north side of Lawless Creek cannot be gridded but should be prospected as conditions permit. The advisability of carrying out a complete VLF-EM survey of the claims should be considered.

All surveys should be extended southerly to the limit of the property near the Tulameen River. Examination of several small areas south of Lawless Creek Forest Road that have been gridded but not surveyed should be completed. Soil samples from 1995 that have not been analysed should be processed to obtain maximum information. The northernmost part of the property has not been surveyed.

A compilation of available data, geological, prospecting, geochemical and geophysical, would be a useful tool in interpreting the potential of the area.

LOCATION MAP, RAINBOW CLAIMS
TULAMEEN AREA
SIMILKAMEEN MINING DIVISION
BRITISH COLUMBIA

Fig 1

RAINBOW PROJECT, CLAIM MAP.
BRITISH COLUMBIA CLAIM MAP 92 H 056
Figure 2.

1.0 INTRODUCTION

1.1 Introduction

The Rainbow Project comprises forty-six claim units in three four-post mineral claims owned jointly by Erik Ostensoe and T. E. Lisle and as detailed below:

Name	Record No. No. of Units		Record Date	Current Expiry Date*
Rainbow 2	309158	20	May 6, 1992	May 6, 1999
Rainbow 3	309159	16	May 6, 1992	May 7, 1999
Rainbow 4	323956	10	March 1, 1994	March 1, 1999.

*1996 Work will be submitted in support of a Statement of Work to extend the expiry dates shown.

Mssrs. Lisle and Ostensoe, during October and November, 1996, completed a program of technical surveys on the southern part of the Rainbow Project area. This work was a continuation of similar work undertaken elsewhere on the claims by the same persons during 1994 and 1995 field seasons. The objective of the project is to thoroughly examine the geological setting of the claims and to search for mineral deposits, particularly gold-bearing quartz structures similar to those found nearby to the southwest on the Rabbit property, and massive sulphide-type deposits similar to those found to the east on the east side of Boulder Mountain. Platinum occurs at Grasshopper Mountain about three kms southwest of the property but is not known to be present on the Rainbow claims.

Work has in the past included prospecting, geological mapping, geochemical soil sampling, and a magnetometer survey. A VLF-EM survey was attempted during 1994 but may not have been properly executed. Work in 1996 comprised grid preparation, mapping, soil sampling and magnetometer surveying as discussed in following sections of this report.

Field work on the Rainbow property has in part been financed by grants from the Prospectors Assistance Program of the Energy and Minerals Division of the Ministry of Employment and Investment. The Annual Work Approval Number is KAM 96-1500440-357.

1.2 Location and Access

The Rainbow 1,2,3 claims are located from six to ten km west of the town of Tulameen, in the Similkameen Mining District (Figures 1, 2), on the west side of Rabbit Mountain. They are north
of Tulameen River and are almost entirely east and north of Lawless Creek. Elevations range from 840 metres at Tulameen River to 1646 metres at the northwest end of the claims.

Access to Tulameen is provided by 25 km of paved provincial road from Highway 3 at Princeton, B. C., 280 km east of Vancouver, or alternatively, by 30 km of logging road from Coquihalla toll booth on Highway 5. The Rainbow claims, as illustrated in Figure 2, are crossed by two roads: a lower road that follows Tulameen River at the south end of the claims; and a higher road, the Lawless Creek Forestry Road, that provides access to the middle and northern parts of the property.

1.3 Geography

The Rainbow claims are located in the Cascade Mountains of southern British Columbia in the Intermontane Physiographic Belt. Moderately steep slopes near major streams give way at higher elevation to gentle upland terrain. Forests of interior fur, with pine and cedar, where readily accessible, have been extensively logged; substantial damage from beetle infestations has occurred in recent years.

Tulameen, an unincorporated town of about 300 persons, offers basic services and accommodation. Princeton, a town of about 3000 persons, provides all support services required by mineral explorers.

1.4 Property History

The Tulameen area of southern British Columbia has attracted the attention of prospectors since the earliest miners found placer gold and platinum in the area and rich deposits of low grade coal a short distance south. Several copper prospects, mostly related to the felsic "Cousin Jack" horizon east of Rabbil Mountain, were explored by short underground adits and by several programs of diamond drilling. The Rabbit gold prospect. located southwest of the southwest comer of Rainbow 2 claim, hosted impressive lode gold occurrences and has recorded production of 1057 ounces gold from 1432 tons of quartz vein ore. Coarse placer gold is reported to have been recovered from the north side of Lawless Creek, on or near the Rainbow 2 claim.

The present owners of the Rainbow claims commenced work in 1992 and completed various reconnaissance and detailed technical surveys in ensuing years (i.e. Assessment Report 24302).

1.5 1996 Work

The author and T. E. Lisle, P. Eng., with the assistance of Prospectors Assistance Grant 96/97-P70, explored the southern portion of the Rainbow claims in the period October 8 through November 6, 1996. Work included preparation of 12 km of grid, geological mapping of approximately 3 square km area, 18 km of magnetometer survey, and gathering of 162 soil samples. Work was handicapped by early winter conditions that resulted in frozen ground and partial snow cover. Annual Work Approval Number is KAM 96-150040-357.

1.6 References

1. Camsell, Charles Geology and Mineral Deposits of Tulameen District, British
2. Monger, JWH
3. Columbia, Geol. Surv. Canada, Memoir 16, 1912.
4. Lisle, T. E. and

Ostensoe, E. Prospecting Report on the Rainbow 2 and 3 Mineral Claims, Tulameen Area, Similkameen Mining Division, B. C., Assessment Report, 1993
5.
6.

Geochemical and Geophysical Report on the Rainbow 2 and 3 Mineral Claims, Tulameen Area, Similkameen Mining Division, B. C., Assessment Report, 1995

Geological and Geochemical Report on the Rainbow 2, 3 and 4 Mineral Claims, Tulameen, Similkameen Mining Division, B. C., Assessment Report 24302, 1995.

2.0 GEOLOGY OF RAINBOW PROJECT

2.1 Regional Geology

The Tulameen area is situated in the Intermontane Belt of southern British Columbia in a northwesterly trending terrain of Upper Triassic age Nicola Group volcanic and sedimentary rocks. The Nicola Group comprises a three-fold assemblage: an eastern portion of alkalic and calc-alkalic submarine volcanic rocks, lahar deposits, basaltic flows and high-level syenite stocks; a central section of subaerial and submarine andesite, basalt and co-magmatic intrusions of diorite and syenite; and a western belt of flows and pyroclastic rocks with andesitic to rhyolitic composition and minor interbedded limestone, volcanic conglomerate, sandstone and argillite. The Rainbow Project lies within the western belt.

Major intrusions are: the Upper Triassic age Tulameen Ultramafic Complex located south and southwest of Rainbow Project; the Eagle Granodiorite of apparent Upper Jurassic age which occurs along the west side, and Tertiary Otter granite intrusions located at and north of the town of Tulameen. Rocks are disrupted by northwest and northeast trending faults with unknown displacement.

Nicola volcanic rocks and related intrusions in southern British Columbia are host to several world-class mineral deposits, including the Brenda and Highland Valley copper-molybdenum mines, the Copper Mountain/Ingerbelle and Afton copper-gold mines, and the Craigmont copper-iron skarn deposit. The Tulameen River and its westside tributaries have produced substantial amounts of placer gold and platinum and low grade coal was produced for many years from Eocene age deposits located a few km south of Tulameen townsite. Several gold and base metal prospects have received substantial exploration work and prospecting is active throughout the Tulameen district.

2.2 Geology of the Rainbow Claims

Much of the Rainbow claims have been mapped in detail by Mssrs. Lisle and Ostensoe (i. e. Assessment Report No. 24302). Figure 4 of this report includes recently acquired additional information from the southern part of the claims.

The northern and western parts of the claims are dominated by tuffs, flows and tuff breccias of andesitic to dacitic composition, intruded by an extensive body of dark-grey to purplish coloured diorite/monzonite. A variably altered pale grey to greenish-grey rhyolite/feldspar porphyry unit is present in a broad northwesterly band that is poorly exposed from $1+50$ west on line 12 north northwesterly to $6+00$ west on line 25 north. A siliceous zone within the band carries up to 10%

Figure 3.
GEOLOGICAL SKETCH, HOPE-ASHCROFT MAP AREAS (After Monger) Showing major geologic mits and mineral deposits.

IEGMD.

Cretaceous. Snences bridge iroup SBV
U.Triasisic-L.Cretaceous.Ałt. Litton-Fagle firanodiorite ML-E-GD.
late Triassic.
Njcola ATc Comnlex
1)hestem Volcanic Fiaties. Nril
2) Central Volcanic Fac:cs. NC:
3) Eastem Volconic Fance. NC:

Triassic-jurassic, \quad Juamen l!tramafic foniles. iRC
$\frac{\text { prinetbia atyES. }}{\text { Machand iallev }}$
n
$A R$
$n+$
 itton. AT
l.. - lillooct. M.- Merritt. P.-Finceton. T. Tulameen. CC. Catche Crome Cli. Chilliwack.
pyrite and minor magnetite and chalcopyrite in skam-like propyllitic chlorite, quartz, epidote alteration.

The southern parts of Rainbow 2 and 4 claims are underlain by andesite, brecciated, porphyritic and tuffaceous, and by diorites of various appearances. Alteration varies from moderate to strong and is typically propylitic: feldspathic and epidotic. Sulphide minerals, pyrite and chalcopyrite, are present in small amounts. Deep overburden is present near the baseline between $0+00$ and $7+00$ north.

3.0 GEOCHEMISTRY OF RAINBOW PROJECT

The geochemistry of the Rainbow claims has been investigated by collection of 1081 soil samples, of which 747 have been analysed by ICP methods for 30 elements and for gold by fire assay/atomic absorption. 334 samples taken as part of the 1995 work program remain in storage pending analysis.

162 samples were taken and analysed as part of the 1996 work program. Details of sample site, soil horizon, soil depth and characteristics, were recorded in the field on Sample Data Sheets that are included along with Geochemical Analysis Certificates in Appendix 1 of this report. Copper and gold analyses have been plotted on Figure 5 of this report. Figure 5 also displays copper and gold data for all previously analysed soil samples.

Figure 5 of this report is contoured to show the 10 ppb gold values. In general, the pattern of elevated gold in soil shows a northwesterly trend that obliquely crosses the property grid and in part correlates with the rhyolite/feldspar porphyry unit.

Soil samples from the 1996 work returned gold values as high as 333 ppb (one analysis of 1020 ppb gold was re-checked by the lab and returned 11 ppb). Three areas of anomalous gold values are present.

Copper in soil values are, in general, low to a maximum of 189 ppm . There is only a very feeble correlation of elevated copper and gold values.

4.0 MAGNETICS OF RAINBOW PROJECT

4.1 Introduction

An eighteen km grid located south of the Lawless Creek Forestry Road was surveyed during 1996 using a EG + G model G-856 proton magnetometer. Observations were recorded at 25 metre intervals and data have been compiled in Figure 6 of this report.

A data sheet describing the design and operation of the G-856 magnetometer is included as Appendix III of this report.

The claim owners acknowledge with thanks the cooperation and assistance of Better Resources Ltd., owner of the magnetometer, and of Gary H. Giroux, P. Eng., who prepared Figure 6.

4.2 Magnetics of Rainbow Claims

A EG+G model G-856 magnetometer was employed in the Rainbow property survey. A second instrument that would have been used as a recording base station was not available so that the operator relied upon repeated observations at certain locations to ensure that the survey was completed in a period of low magnetic activity. No unusual variations in the magnetic field that may have been related to magnetic storms were noticed.

The survey totalled 18 km , with observations at 25 metre intervals on east-west lines spaced 100 metres apart. The survey area extended from line $7+00$ North to line $7+00$ South and from 1000 metres east of the base line to as far as $8+50$ metres west. Data were retrieved from the module and plotted as Figure 6 of this report using a "Fast-CAD" computer method and a contour interval of 200 nT .

Figure 6 shows little variation in the magnetic field outside of the area enclosed by line $0+00$ south to line $5+00$ south. Small amplitude apparent anomalies in the northwest part of the figure may result from steep topography as no particular geological features that might have influenced the magnetic field were noted in that part of the area. A sharply defined anomaly oriented north-south and with amplitude in the order of 2300 nT occurs at $2+00 \mathrm{E}$ on lines $0+00$ and $1+00 \mathrm{~S}$, with probable continuations both to the west and southeast. A thumb-print anomaly with similar amplitude centered at $5+00 \mathrm{E}$ on line $\mathrm{l}+00 \mathrm{~S}$ has a one reading source and lacks any dipole effect and is not given much credence. The broad 2000 nT magnetic high that occupies the area from $6+50$ East on line $1+00 \mathrm{~S}$ southeasterly at least as far as the east end of line $3+00 \mathrm{~S}$ is not completely defined by the survey. It occurs in a flat arca of no outcrops and, speculatively, may
represent an area of strongly magnetic rocks, such as Tulameen Ultramafite, that, if present, may have important economic implications.

APPENDIX I.

Geochemical Data Sheets

Geochemical Analysis Certificates

GEOCHEMICAL DATA

HORIZON Mind milers.
COLOUR: Br. Brown. Ba. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.
material: Til: Co. Collusium. A. Alluvium. F. Fluvial. GF. Glactohuvial. O. Organic.
ORGANICS: Visual estimate of organic content.
GRAVEL: Estimate of Gravel sized fragments.
CLAY-SILT-SNND: Low to moderate to high estimates.

GEOCHEMICAL DATA

samples date HTS MAP SHEET $\frac{\text { NOV. } 5.1996}{-9 \mathrm{ZH}-10 \mathrm{~W}}$

material: T Th: Co. Colknium. A. Alluvium. F. Fluvial. GF. Glactohuvial. O. Organic.
ORGANICS: Visual esdmbte of organic content.
GRAVEL: Estimate of Gravel sized fragments.
CLAY-SILT-SANO: Low to moderate to high estimates.

GEOCHEMICAL DATA

SURVEY TYPE: $\mathbf{S}=$ SOP: SS \approx Sin: RxRock Chip DEPIH: Measured ha meters.
HORIZON: Marked A. B. or C
COLOUR: Br. Brown. Br. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt Light.
MATERIAL: T TIm; Co. Coliseum. A. Ahrwum. F. Fhuvisi. GF. Gleciohuvial. O. Organic.
ORGANICS: Visual estimate of organic content.
CLAY-SILT-SAND: Low to moderate to high estimates.

SURVEY TYPE: $\mathbf{S = S o l}: \mathbf{S S}=$ Sit: R=Rock Chip
DEPTH: Measured in meters.
HORIZON: Marked AB, or C
COLOUR: Br. Brown. Br. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt Light.
MATERLAL: T Tin: Co. Colluvium. A Alluvium. F. Fluvial. GF. Glackohuvial. O. Organic.
ORGANICS: Visual estimate of organic content.
GRAVEL: Estimate of Gravel sized fragments.
CLAY-SIL.T-SANO: Low to moderate to high estimates.

GEOCHEMICAL DATA

OEPTH: Matured in meters.
HORIZON: Marked A, B, or C
COLOUR: Br. Brown. Bi. Black. R. Red. G. Grey. O. Orange. Dk. Dark. LL Light
MATERIAL: T Tiff; Co. Cohuvium. A. Alluvium. F. Fluvial. GF. Glacioffuvial. O. Organic.
ORGANICS: Visual estimate of organic content.
GRAVEL: Estimate of Graved sized fragments.
CLAY-SILT-SAND: Low to moderate to high estimates.

GEOCHEMICAL DATA

LOCATiON $\begin{gathered}\text { NTH } \\ \text { UTU }\end{gathered}$

SURVEY TYPE: $\mathbf{S = S o l l}$ SS=Sill; R=Rock Chip
DEPTH: Measured in meters.
HORIZON: Marked A.B. orC
COLOUR: Br. Brown Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. LL Light.
MATERIAL: T Tin: Co. Collurium. A. Ahsuium. F. Fhuvial. GF. Gisciohurial. O. Organic.
ORGANICS: Visual estimate of organic content.
GRAVEL: Estimate of Gravel sized fragments.
CLAY-SILT-SAND: Low to moderate to high estimates.

GEOCHEMICAL DATA

SURVEY TYPE: S*Soll, SS=SHT, R*Rock Chip
DEPTH: Measured in meters.
HORIZON: Marked A.B. OC
COLOUR: Br. Grown. Be. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.
MATERILL: T Tit Co Collunium. A Alluvium F. Fluvial. GF. Gaciofuvial. O. Organic.
ORGANICS: Visual estimate of organic content.
GRAVEL: Estimate of Graver shed fragments.
CLAY-SILT.SAND: Low to moderate to high astmatos.

GEOCHEMICAL DATA
Project
General location
$\frac{\text { Rambow }}{\text { Tulameen, B.C. }}$
stapler
date
ants mes sheet
$\frac{\text { Erik Ostensoe }}{\frac{\text { October } 13,1996}{92 H-10 W}}$

SURVEY TYPE: S-Soll: SS=SIH: R=Rock CHip
DEPTH: Measured in meters.
HORIZON: Marked A.B, or C
COLOUR: Br. Brown. Br, Black. R. Red. G. Grey. O. Orange. Ok. Dark. Lt. Light.
MATERIAL: T Tin: Co. Corundum. A Ahuvism. F. Fluvial. GF. Gectofluvial. O. Organic.
ORGANICS: Visual esumaie of organic content.
GRAVEL: Estimate of Gravel sized fragments.
CLAY-SILT.SAND. Low to moderate to high estimates.

GEOCHEMICAL DATA

SURVEY TYPE: S=SOH: SS=SM: R=Rock Chip
DEPTH: Measured in meters.
COLOUR: Br. Brown. Br. Black. R. Red. G. Grey. O. Orange. Dk. Dark. LI. LIght.
MATERIAL: T TiA: Co. Collustium. A. Alluvium. F. Fhuvial. GF. Giactofuvial. O. Organic.
ORGANICS: Manual estimate of organic content.
GRAVEL: Estimate of Gravel sized fragments.
CLAY-SILT-SAND: Low to modernity to high estimates.

GEOCHEMICAL DATA
\qquad

DEPTH: Measured in meters.
HORIZON: Marked A.B, or C
COLOUR: Br. Brown. Br. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt Light.
MATERIAL: T Till; Co. Conium. A. Alluvium. F. Fluvial. GF. Gaciofuvial. O. Organic.
ORGANICS: Visual estimate of organic content.
GRAVEL: Estimate of Gravel sized fragments.
CLAY-SILT-SAND: Low to moderate to high estimates.

GEOCHEMICAL DATA

sNMPLER
oate
NTS MUP SHEET
T. LISLE

LOCATON

SURVEY TYPE: $\mathbf{S = S o i l}$: SS=Sit: R=Rock Chip
DEPTH: Measured in meters.
HORIZON: Marked A. B. or C
COLOUR: Br. Brown. Bu. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.
MATERIAL: T Till: Co. Collusium A Alluviurn. F. Fhuvial. GF. Glactofluvid. O. Organic.
ORGANICS: Visued estimate of orparic content.
GRAVEL: Estimate of Gravel sized fragments.
CLAY-SILT-SAND: Low to moderme to hiph estimstes.

GEOCHEMICAL DATA

SURVEY TYPE: S=Soil; SS*Sin; R=Rock Chip
DEPTH: Measured in meters.
HORIZON: Marked A, B. or C
COLOUR: Er. Brown. Br. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt Light.
MATERLAL: T Tim; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Gariofluviar. O. Organic.
ORGANICS: Visual estimate of organic content.
GRAVEL: Estimate of Gravel sized fragments.
CLAY-SILT-SANO: Low to moderate to high estimates.

GEOCHEMICAL DATA

DEPTH: Measured in meters.
HORIZON: Marked A. B, or C
COLOUR: Br. Brown, Bt. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.
MATERIAL: T Tin: Co. Collyrium. A. Alluvium. F. Finial. GF. Glacioflivial. O. Organic.
ORGANICS: Visual estimate of organic content
GRAVEL: Estimate of Gravel sized fragments.
CLAY-SILT-SAND: Low to moderate so high estimates.

GEOCHEMICAL DATA

SURVEY TYPE: Se Soil: SSw Sin; R=Rock Chip
DEPTH: Measured in meters.
HORIZON: Marked A. B. or C
COLOUR: Br. Brown. Bi. Black. R. Red. G. Grey. O. Orange. Dk. Dark. LL Light
MATERLAL: T Twi; Co. Colhvium. A. Ahrvhm. F. Fhuvid. GF. Glaciohuvial. O. Organic.
ORGANICS: Visual estimate of organic content.
GRAVEL: Estimate of Gravel sired fragments.
CLAY-SILT-SAND: Low to moderate to high estimates.

SAMPLE*	$\begin{gathered} \text { Mo } \\ \text { ppn } \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppma} \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppon} \end{gathered}$	$\begin{array}{r} 2 n \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \text { co } \\ & \text { ppm } \end{aligned}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{Z} \end{gathered}$	$\begin{array}{r} \text { As } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{U} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Au} \\ \mathrm{p} P \mathrm{~m} \end{gathered}$	$\begin{array}{r} \mathrm{Th} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Sr} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Cd} \\ \mathrm{PPm} \end{gathered}$	$\begin{array}{r} \mathrm{sb} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Bi} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} v \\ p p p^{2} \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	$\begin{aligned} & p \\ & \% \end{aligned}$	$\begin{gathered} \mathrm{La} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Mg} \\ \% \end{gathered}$	$\begin{array}{r} \text { Ba } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Ti} \\ \% \end{gathered}$	$\begin{array}{r} B \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Al} \\ \mathbf{\%} \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$	$\begin{aligned} & \mathrm{k} \\ & \% \end{aligned}$	$\begin{array}{r} W \\ p p \mathrm{~m} \end{array}$	$\begin{aligned} & \mathrm{Au}^{*} \\ & \mathrm{ppb} \end{aligned}$
$96 \mathrm{R}-1$	5	6	5	4	<. 3	8	1		1.43	6	< 5	<2	2	10	<.2	<2	<2	3	. 04	. 013	14	20	. 01		<. 01	6	. 18	. 06	. 17	5	5
$96 \mathrm{R}-2$	2	173	<3	5	<. 3	30	29	115	2.00	34	< 5	<2	<2	35	<. 2	<2	4	54	. 84	. 087	5	23	. 28	6	. 20	4	. 60	. 04	. 04	<2	1
$96 \mathrm{R}-3$	1	7	<3	18	<. 3	3	10		3.16	<2	<	<2	<2	107	<. 2	<2	<2	96	1.66	. 146	11	6	1.86	33	. 20		2.03	. 07	. 05	<2	<1
RE $96 \mathrm{R}-3$	1	7	3	18	<. 3	5	11	522	3.16	<2	< 5	<2	2	107	<. 2	<2	<2	97	1.64	. 144	11	6	1.87	33	. 20		2.03	. 07	. 04	<2	<1

icp - . 500 gram sample is digested with 3ml 3-1-2 hcl-hno3-h2o at 95 deg. c for one hour and is diluted to 10 ml hith hater.
this leach is partial for mi fe sr ca p la cr mg ba ti b H and limited for na K and al.
assay recomhended for rock and core samples if Cu PB ZN AS $>1 \%$, aG >30 PPH \& aU >1000 PPB

- SAMPLE TYPE: P1 rock P2 TO P7 SOIL aU* - IGNITED, AQUA-REGIA/MIbK EXTRACT, GF/AA FINISHED.(10 GM)

Samples beginning 'RE' are Reruns and 'RRE' are Reject' Reruns.
DATE RECEIVED: DEC 131996 dATE REPORT MAILED: Tec 24 / 96 . SIGNED by. :

[^0]\qquad

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: soll. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE*	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	Cu	$\underset{\underset{\mathrm{Pb}}{\mathrm{~Pb}}}{ }$	$\begin{array}{r} 2 n \\ \text { pprin } \end{array}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Ni} \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Co } \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{Z} \end{gathered}$	$\begin{array}{r} \text { As } \\ \text { Ppm } \end{array}$	$\begin{array}{r} \text { U } \\ \text { ppon } \end{array}$	$\begin{array}{r} \text { AU } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \text { Cd } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathrm{Sb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{p} p \mathrm{a} \end{array}$	$\begin{array}{r} v \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \text { \% } \end{gathered}$	$\begin{aligned} & P \\ & X \end{aligned}$	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \% \end{gathered}$	$\begin{array}{r} 8 a \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathrm{Ti} \\ \mathbf{Z} \end{array}$	$\begin{array}{r} \text { B } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Al} \\ \mathbf{Z} \end{array}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$	$\begin{aligned} & K \\ & \mathbf{K} \end{aligned}$	ppon	$A u^{\star}$ ppb
8+50E 0+00	2	33	12	172	<. 3	17	13	794	3.47	2	<5	<2	<2	30	< 2	<2	2	70	. 45	. 068	9	29	. 77	110	. 08	<3	1.98	. 02	. 09	<2	4
$8+50 \mathrm{E} 2+00 \mathrm{~S}$	1	41	9	96	<. 3	15	9	392	3.18	<2	<5	<2	2	37	<. 2	3	<2	58	. 68	. 028	11	28	. 75	114	. 07	<3	2.05	. 03	. 05	<2	5
8+50E 4+00S	1	38	11	144	<. 3	18	12	583	3.50	<2	<5	<2	2	20	<. 2	<2	<2	74	. 28	. 122	12	31	. 65	147	. 07	<3	2.84	. 01	. 07	<2	2
RE 8+50E 4+00S	1	37	10	145	<. 3	19	12	588	3.57	<2	<5	<2	2	20	<. 2	<2	<2	76	. 28	. 122	12	31	. 66	147	. 07	<3	2.85	. 01	. 07	<2	2
9+00E $0+00$	3	29	10	175	<. 3	15	12	1780	2.91	<2	<5	<2	<2	43	.3	<2	<2	59	. 82	. 059	10	24	. 53	157	. 07	<3	1.97	. 02	. 10	<2	3
9+00E 2+00S	1	59	12	233	$<.3$	22	16	652	4.40	<2	<5	<2	2	26	$<.2$	3	<2	87	. 33	. 141	12	40	1.04	179	. 07	<3	3.30	. 01	. 09	<2	1
9+00E 4+00S	1	33	9	205	< 3	18	11	473	3.26	<2	<5	<2	2	21	<. 2	3	<2	71	. 27	. 132	9	30	. 59	177	. 09	<3	2.59	. 02	. 07	<2	1
9+50E $0+00-$	1	37	7	131	< 3	17	12	664	3.52	<2	<5	<2	<2	28	<. 2	<2	<2	75	. 40	. 072	9	30	. 73	117	. 07	<3	1.86	. 01	. 10	<2	6
9+50E 2+00S	1	45	11	155	. 3	17	12	727	3.38	<2	< 5	<2	<2	42	<. 2	<2	2	73	. 52	. 042	13	27	. 64	252	. 08	<3	3.09	. 02	. 08	<2	6
9+50E 4+00S	1	39	10	106	. 3	21	11	527	3.55	<2	<5	<2	<2	28	$<.2$	3	<2	72	.35	. 099	17	36	. 70	173	. 05	<3	2.52	. 02	. 08	<2	4
10+00E 2+00S	1	105	12	174	. 5	25	18	1375	4.66	<2	<5	<2	<2	73	. 3	2	<2	83	1.10	. 092	28	44	1.07	380	. 04	<3	3.65	. 02	. 12	<2	5

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

4+50E 0+00	1	44	3	104	< 3	19	17	1069	3.58	3	< 5	<2	<2	33	<. 2	<2	<2	75	. 36	. 139	6	38	. 90	159	. 08		2.28	. 01	. 08	<2	2
5+00E 0+00	1	82	8	116	$<.3$	23	15	798	4.14	3	< 5	<2	2	37	< 2	<2	<2	88	. 47	. 058	18	44	1.11	142	. 08	<3	2.62	. 02	. 11	<2	3
5+00E 2+00S	1	37	4	115	< 3	18	18	1005	4.13	<2	<5	<2	<2	28	<. 2	4	<2	102	. 30	. 114	9	27	. 82	137	. 08	<3	2.88	. 02	. 08	<2	1
5+50E 0+00	1	35	3	194	<. 3	17	14	548	3.60	2	< 5	<2	3	35	< 2	<2	<2	79	. 49	. 107	16	21	. 68	155	. 08	<3	3.30	. 02	. 08	<2	2
5+50E $2+000$	1	30	5	191	<. 3	19	11	700	2.95	4	<5	<2	3	25	<. 2	2	<2	66	. 27	. 235	9	22	. 49	198	. 10	<3	2.55	. 02	. 07	2	1
6+00E 0.00	7	96	5	68	$<.3$	39	29	830	5.43	5	<5	<2	2	43	< 2	3	2	132	. 87	. 112	32	55	1.52	66	. 04		2.60	. 01	. 16	<2	3
$6+00 \mathrm{E} 0+00(\mathrm{~A}) 2400$	3	51	<3	83	< 3	19	14	707	3.88	2	<5	<2	2	49	$<.2$	<2	<2	82	. 64	. 042	27	34	. 88	156	. 07	<3	2.53	. 02	. 09	<2	1
$6+50 E \quad 0+00$	1	57	3	86	<. 3	19	15	539	4.24	4	<5	<2	2	39	<. 2	<2	<2	98	. 50	. 082	13	32	1.01	79	. 07		1.82	. 01	. 12	<2	2
6+50E 2+005	1	186	9	235	. 8	38	15	1099	5.92	<2	<5	<2	3	55	. 3	<2	<2	97	. 90	. 118	37	56	1.10	440	. 03	<3	6.01	. 02	. 20	<2	5
6+50E 4+00S	1	21	4	119	c. 3	16	10	468	2.91	<2	<5	<2	<2	24	$<.2$	<2	2	73	. 28	. 070	5	24	. 58	122	. 07	<3	1.87	. 02	. 07	<2	1
7+00E 0+00	2	60	10	166	$<.3$	24	17	704	4.26	3	<5	<2	2	34	<. 2	<2	<2	91	. 42	. 123	13	31	. 86	210	. 09	<3	3.38	. 02	. 14	<2	1
7+00E 2+00S	2	189	4	121	. 6	24	14	860	3.94	<2	<5	<2	2	65	. 4	<2	<2	78	1.22	. 123	46	32	. 90	127	. 06		3.02	. 03	. 09	<2	5
7+00E 4+00S	<1	22	8	149	$<.3$	18	11	533	2.98	<2	<5	<2	2	23	<. 2	<2	<2	68	. 28	. 088	7	26	. 56	188	. 08	<3	2.57	. 02	. 06	<2	<1
7+50E 0+00	2	55	7	99	$<.3$	18	14	528	3.92	6	<5	<2	2	26	$<.2$	2	<2	87	. 30	. 054	8	31	. 88	96	. 07	<3	1.95	. 01	. 08	<2	18
7+50E 2+00S	4	80	7	79	. 3	24	22	1265	4.40	<2	<5	<2	2	71	. 2	<2	<2	101	1.12	. 061	28	28	1.06	149	. 06		2.85	. 02	. 07	<2	2
7+50E 4+00S	1	20	6	153	<. 3	19	9	893	2.66	<2	<5	<2	2	27	<. 2	<2	<2	65	. 38	. 094	8	22	. 37	181	. 09	<3	2.18	. 02	. 07	-2	3
8+OOE $0+00$	2	49	10	173	<. 3	19	14	584	3.85	5	<5	<2	2	30	$<.2$	<2	<2	84	. 34	. 053	14	31	. 79	121	. 09	<3	2.16	. 02	. 10	<2	1
8+00E 2+005	1	34	5	118	<. 3	15	13	481	3.55	<2	< 5	<2	2	46	$<.2$	<2	2	83	. 76	. 032	19	22	. 69	115	. 07	<3	2.48	. 02	. 06	<2	<1
8+00E 4+00S	1	27	9	125	<. 3	16	11	447	3.25	<2	<5	<2	<2	23	$<.2$	<2	<2	77	. 30	. 068	6	29	. 60	123	. 06	<3	2.02	. 02	. 07	<2	1
STANDARD C2/AU-S	21	60	38	148	6.9	73	36	1157	4.07	47	18	9	36	54	19.5	19	19	79	. 54	. 108	41	72	1.00	211	. 08	29	2.03	. 07	. 14	13	45

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. \square

APPENDLX II.

PERSONNEL

1. Erik Ostensoe, P. Geo.
2. Thomas E. Lisle, P. Eng.

PERSONNEL

The following persons carried out the field work described in the accompanying report:

1. Erik A. Ostensoe, P.Geo. - geologist (UBC, 1960)

- more than thirty years experience in mineral exploration, principally in western and northern North America
- member 18,727 of Assoc. of Professional Engineers and Geoscientists of British Columbia
- worked on Rainbow Project claims 1992 to 1996
- co-owner of Rainbow 2, 3, 4 claims
- prepared accompanying report of work.

2. Thomas E. Lisle, P. Eng. - geologist (UBC, 1964)

- more than thirty years experience in mineral exploration, principally in western North America
- member 08528 of Assoc. of Professional Engineers and Geoscientists of British Columbia
- worked on Rainbow Project claims 1992 to 1996
- co-owner of Rainbow 2, 3, 4 claims.

APPENDIX III.

EG+G Model G-856 "Memory Mag" Magnetometer

A aagnetoacter is an instrument for masuring the intensity of the carch's oagnetic field. Most rocks contain some magnetite, the wse coanon mognetic mineral, and therefore produce some discurbances in the magnetic field. Soils and even some man made objects such as poctery can have magnetic propercies.

Through incerpretation of magnetometer readings, assumprions can be made about what exists beneath che surface, whether it is a pipeline, an ancienc urn, a paricular mineral, or geologic structure. The interpretarion of magnetic data received from magnetometer is sowetimes a difficult task, made even more complex by constanr changes in the earch's overall magnetic field, the size and distance of objects from the wagnetometer, the amount of magnetic material the object contains, and the susceptibility of the object co absorb magnetist from other sources. On the other hand, many applications oay require only siople interprecations of anomalies.

The proton precession magnetometer has become the principal instrument for magnecic studies because it combines high accuracy and ease of use. The Applicasons Manuzl for Portable Magnetometers, supplied with this inscrument. includes general information on the use of magneromerers. It should be studied as companion to this voiuar, which deals apecifically wish the G-856 Memory Mag magnetometer.

The 6-856

The C-856 is a portable, man-carried magnetomerer and a -base stationmagnetogeter. is a hand-carried instrument, it features siaple, push butcon operacion and abile-in digital memory which scores over 1000 readings. This relieves you of the need ro log data in the field, eliminates canscription errors and most important, lets you use computers co automatica:i: record and process the cata from the magnetic survey.

The C-856 Kemory Hag angneroarzer will also record automasically at regular incervals, so it can be left unattended ro wonicor diurnal changes in the earth's magnetic field. These readings are used to correct sianltaneous field deagurements for high accuracy surveys. Here again. the dara eay be fed directly inco a conpucer so that the field data taken with an identical G-856 may be automarically corrected. The tiae of day is recorded wish each reading taken in either mode from bulltin digital clock.

All operstions are controlled from a weatherproof meabrane suich front pancl. The sequence of operacions was carefully designed to be very sipple ro operare and yet flexible. Erasing the memory requites an incricate, fali-sate sequence to protect the data, except for the most recenc readina which can be casily deleced and replaced if desired.

A single connector is used for the sensor and data ousput. The ourpur formac is in the universal RS-232, underscood by aost small and large compucers and some princers. The data may also be princed and graphed on the C-866 Recording Magnerometer, or scored for lacer analysis on digical tape recorders like Geometrics G-724M.

Physically, the C-856 is compact and lightweighe. It is veacherproot and operates over a vide cempersture range. It is povered by eight D-Cell bacceries, sufficient for about $\mathbf{3 0 0 0}$ readings.

Above all. the G-856 is a high-prectsion magnecomecer, the reault of many years experience in the annufacture of siallar instruments. An incernal programing suich allows modification of che cycle times to ensure that the G-856 works properly near the atgnecic equator and in high gradients where ocher sodels eay operate only atginally or fail to obtain rellable data.

The operation of the instrusent is concrolled by a microprocessor and che control program may be changed at any time for product improvement or other considerations. In chat event, you may find variations betveen this manual and che operation of your actual Instrupent operation. Such variations will have no adverse effect and should be recognizeable as you famillarize yourself with operation.

APPENDLX IV.

Statement of Expenditures

The following expenditures were incurred in carrying out the work described in the accompanying report:

1. Transportation - truck rental - Ford Bronco 30 days @ $\$ 50$ / 1500.00
mileage - $2332 \mathrm{~km} @ 0.18 / \mathrm{km}$ 419.76
gasoline 293.67
repairs 151.11
other transportation (bus) 34.45
2. Accommodation - motels 333.14
house (Neil Southworth) $\underline{570.00}$
3. Meals - 137.46
4. Groceries - 332.47
5. Supplies - Neville Crosby 50.87
Misc. stationery 1.81
Photocopies 1.82
Parking 3.00
Telephone 18.5276.02
6. Geochemical Analyses - Acme Analytical 2465.95
7. Allowance for labour -30 person days @ $\$ 250$ /day 7500.00
8. Allowance for report preparation - labour - four days @ $\$ 250$ / 1000.00

- photocopies, white prints, covers 150.00
TOTAL EXPENDITURES - \$14,964.03

[^0]: Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

