A最 141997
Cold Commisgloner＇s Giflue VANOOUV：R，BC．

GEOLOGICAL AND GEOCHEMICAL REPORT ON THE

HAT，BOB AND KEN MINERAL CLAIMS

ATLIN MINING DIVISION

NORTHWEST BRITISH COLUMBIA

LAT． 58 12＂；LONG． 131 34＇；NTS 104J／4E

WORK COMPLETED ：September 4 to Se［tember 22， 1996
WORK BY ：T．E．Lisle，P．Eng．；and E．A．Ostensoe，P．Geo．

REPORT BY ：T．E．Lisle，P．Eng．
Date ：January 10， 1997

$$
\begin{aligned}
& \text { GPOMOGMCALSRVEY BRANCH } \\
& \text { ASg世44MDER: REPORT }
\end{aligned}
$$

CONTENTS

Introduction Page 1
Location and Access. Page 1
Property Page 2
History Page 2
1996 Work Program Page 3
Regional Setting Page 3
Geology of the Hat Claims. Page 4
Geochemistry Page 5
Summary and Conclusions Page 7
Recommendations Page 8
References. Page 9
MAPS
Location Map Fig. 1
Claim Map Fig. 2
Regional Geology Fig. 3
Geology-Geochemistry ($(: 10,000)$ Fig. 4

APPENDICES

Appendix 1 Statement of Expenditures.
Appendix 2 Qualifications
Appendix 3 Geochemical Data Sheets
Appendix 4 Geochemical Certificates of Analyses.

INTRODUCTION

During July, 1995, the writer accompanied by E. Ostensoe, P. Geo. completed a program of prospecting, mapping and sampling on the Hat claims located neat Hatchau Lake to the northwest of Telegraph Creek in Northwest British Columbia. The results of the exploration were sufficiently attractive that a further program was undertaken in the area in 1996. The later program was targeted to an area lying to the north and west of the 1995 work and was partly undertaken to obtain geochemical, geological and sample data on a large area of alteration known to occur in that area.

This report describes the work program carried out in 1996 under Energy and Mines work permit SMI 96-0101459-99. A brief discussion of the results and technical data is included along with maps showing the location of the work.

LOCATION AND ACCESS

The Hat project is located in the Atlin Mining Division at Hatchau Lake some forty kilometres northwest of Telegraph Creek and ninety-five kilometres southwest of Dease Lake in northwest British Columbia. (Figure 1).

Access to the Lake is by fixed-wing aircraft from either of the above centres. Access for the 1996 program was to an old overgrown gravel airstrip at Sheslay about ten kilometres west of the property, then by charter helicopter working in the area but based at Dease Lake.

The road connecting the Dease Lake-Telegraph Creek road to thn Golden Bear Mine passes about eight kilometres south of the property, and may at a future date facilitate work at the property.

PROPERTY

The Hat project comprises 99 claim units in six (four-post), and ten (two-post) mineral claims. The claims are located in and recorded in the Atlin Mining Division. Particulars of the claims are as follows:

Claim Name	Units	Record	Owner	Anniversary.
Bob 1	20	338097	E.Ostensoe	July 12, 1999
Bob 2	20	338096	T.E.Lisle	July 12, 1999
Bob 3*	1	338098	T.E.Lisle	July 25, 1999
Bob 4*	1	338099	E.Ostensoe	July 25.1999
Hat 3	9	326685	T.E.Lisle	June 12, 1999
Hat 4	8	326782	E. Ostensoe	June 12, 1999
Ken 1	20	350726	T.E.Lisle	Sept.7, 1997
Ken 2	12	350727	E.Ostensoe	Sept.8,1997
Ken 3*	1	350728	E.Ostensoe.	Sept.8, 1997
Ken 4*	1	350729	E.Ostensoe	Sept.8, 1997
Ken 5*	1	350730	E. Ostensoe	Sept.8, 1997
Ken 6*	1	350731	E. Ostensoe	Sept.8, 1997
Ken 7*	1	350732	E. Ostensoe	Sept.8, 1997
Ken 8*	1	350733	E. Ostensoe	Sept.8, 1997
Ken 9*	1	350734	E.Ostensoe	Sept.8, 1997
Ken 10*		350735	E. Ostensoe	Sept.8, 1997

Total 99

* Two-post claim.

HISTORY

The Hoey prospect located on the Hat 3 claim is believed to have been first prospected and sampled by prospector Frank Hoey in 1963. Geochemical surveys and further prospecting was carried out in the late 1960's and early 1970's by Atled Exploration on behalf of Skyline Exloration Ltd., and Colorado Corporation, a unit of King Resources.

Utah Mines Ltd. (BHP) staked the SKI 1 to 6 mineral claims over the property in 1977, and to 1980 conducted geological, geochemical (2,000 soil samples), and induced polarization and magnetic surveys over 144 line kilometres of grid.

United Cambridge Mines Limited staked the Hoey prospect in 1984, and to 1991 with associated companies carried out limited geochemical, geological and geophysical surveys before allowing the claims to revert. Golden Ring Resources Ltd. carried out a regional scale airbourne magnetic, electromegnetic and VLF-EM survey over the Sheslay area in 1991 that included the western part of the current property.

Background data from all of the above programs can be accessed through Ministry of Mines Assessment Reports: 2554, 3296, 6835, 7482, 13939, 14802, 16311, 18158, and 21615.

The writer and E. Ostensoe staked the Hatchau Lake Property in 1994 and carried out a preliminary assessment of the claims in 1995. The results of this work were filed for assessment purposes in a report by E. Ostensoe, P.Geo. dated January 10, 1996.

1996 WORK PROGRAM

Between September 4 and 22, 1996, the writer accompanied by E. Ostensoe, P.Geo. travelled to the property and carried out the preliminary prospecting program described herein. A helicopter supported fly camp was established on a small lake near the south part of the Ken 1 claim. Prospecting traverses were made to various parts of the property and reconnaissance geological data was recorded in notebooks or on air photographs

A total of 24 rock samples and 78 soil samples were collected from areas thought to be of economic interest. The location of all samples are shown of figure 4 to this report. In addition, 18 soil samples collected in 1995 from the western section of line 8S at Gossan Creek were also analyzed. An early season snowfall slowed progress and limited the coverage to the areas shown.

REGIONAL SETTING.

The Hatchau Lake area is in the intermontaine belt where the Stikine Plateau merges with the Coast mountains. This area is coincident with the northern margin of tectonic terrane Stikinia where structural trends are dominantly west northwest and northerly, in part parallel to the King Salmon Fault and the terrane bounding Nahlin Fault.

The geology of the area is dominated by three major units that lie on older Paleozoic basement north and west of Sheslay; and in part are overlain by Cretaceous to Tertiary felsic volcanic rocks in the same area. The oldest of the three units is the upper Triassic Stuhini Group, an island arc assemblage dominated by andesitic to basaltic flows, pillow lavas, agglomerate and breccia in the lower part, and volcanic sandstone, lapilli tuff, greywacke, siltstone and minor argillite and limestone in the upper part. Fine exhalative sulphides are locally present in thin cherty members near the transition from volcanic to sedimentary units.

Miocene-Recent. Level Mtn. and Hearts Peak volcanics.

Upper Triassic Stuhini fon.

Upper Triassic-Jurassic Granodiorite to gabbroic intrusive rocks. 10 Km .

SHESLAY AREA, REGIONAL CEOLOGY.
1 Kid-Grizzly.
Kaketsa Mtn.
Dick Creek.
4 Copper Creek.
Hatchau Lake.
6 Wolverine Creek.

The Stuhini Group is intruded by the the large Moosehorn batholith of late Triassic to early Jurassic age. The composition of the batholith ranges from biotite-hornblende diorite, quartz diorite and granodiorite, and locally quartz monzonite. A number of smaller intrusive masses include diorite, gabbro, monzonite and syenite. A large outlier of the batholith underlies Kaketsa Mountain to the west of the project area, and a number of smaller stocks and tabular masses of variable composition are scattered between Kaketsa Mountain and the project area. Some of these units are coeval with Stuhini volcanics, and scattered concentrations of sulphides are locally present.

The volcanic and intrusive rocks are partly overlain by volcanic rocks of the Level Mountain complex. Level Mountain is a large Shield volcano of Miocene to Recent age, and is included in a northerly trending belt of smaller volcanoes. The composition of the volcano is dominated by alkali olivene basalt flows and breccias with subordinate concentrations of trachyte and rhyolite in the upper later phases.

The southwest contact of Level Mountain parallels a short distance to the north the Hackett River valley. The valley contains both Hatchau and Kennicott lakes and is interpreted to host a major west-northwest fault. North-northeast faults and lineaments, parallel the Moosehorn Fault to the west and offset the valley Fault in the claim area. Both sets may relate to an extensional tectonic regime developed in the post-Eocene period.

GEOLOGY OF THE HAT CLAIMS.

The geology of the claim area was mapped in the 1977 to 1980 period, however this data is not in the public record. The following summary is from the reconnaissance program carried out in September, 1996.

The three lithologies described above are present in varying proportions on the western part of the Bob-Hat-Ken claims. The Stuhini Group includes an interbedded assemblage of siltstone and augite and plagioclase rich basaltic flows with minor tuff. In places the rocks are well altered, and the siltstones are locally mineralized with up to 10% pyrite. Stuhini Group rocks are mainly present on the western part of the property, but are also known to occur to the east of the large gabbroic stock.

Three types of intrusive rocks are present. Near the northwest corner of Ken 1 claim, outcrops of hornblende diorite grading to quartz diorite and granodiorite? are evident, and appear to be part of a small stock that abuts or is overlain by Level Mountain volcanic rocks on the north. This unit is grey, medium-grained, mainly eqigranular, in places weakly porphyritic. Locally it contains up to 3% pyrite and is similar to exposures on Kaketsa Mountain to the west.

A large stock grading from diorite to gabbro in composition underlies much of the area prospected during 1996. The stock is massive, dark-grey and commonly medium to coarse-grained, although finer-grained phases may be present near the borders. The unit is magnetite-rich and the coarse phases contain crysts of hornblende + - augite greater than 1 cm . in diameter. Minor concentrations of pyrite and chalcopyrite are lolcally present. Where the stock intrudes Stuhini Group rocks on the west, the contact area is marked by a large zone of alteration. To the north, the stock abuts or is overlain by the Level Mountain vocanics. The south contact of the stock may be along the Hackett River Fault, and the east boundary is undefined. Because of it's characteristics, we have provisionally labelled it the Hatchau Lake Stock for ease of reference.

The older rocks are cut by numerous orange-weathering monzonite to syenite dykes. The dykes are up to a few metres wide and commonly trend north northwest. At one location, a dyke was noted to dip easterly at 50 degrees. Some of the dykes are dark green and porphyritic and are similar to porphyritic andesites of the Stuhini Group. Locally, the dykes are mineralized with minor pyrite and/or chalcopyrite.

The Level Mountain volcanics comprising basaltic flows and breccias are present to the north of the Hatchau Lake Stock. The nature of the contact is uncertain however it follows a strong lineament trending northwest.

A large area to the west of the Hatchau Lake Stock has been flooded with carbonate and lesser silica alteration. Locally, the altered zone is mineralized with 1% to 2% pyrite + chalcopyrite. Near $98+00 \mathrm{~N}$ and $6+00 \mathrm{E}$, a coarse grey-green breccia with up to 50% subangular clasts of altered augite basalt to 6.0 cm . in diameter is developed. Further to the south in a creek at the western margin of the Ken 2 claim, calcareous tufa, is thought related to vents along a fault bounding the Hatchau Lake Stock on the west.

GEOCHEMISTRY.

During the program, a total of 78 soil samples and 24 rock samples were collected. The samples were taken from areas previously shown to have anomalous levels of copper in the soil, or from the large alteration zone. The soil samples were collected with a shovel. Details of sample horizon, depth, colour and material were recorded on sample data sheets that accompany this report.

21 of the 24 rock samples collected were grab or character samples taken to determine general or background levels of base and precious metals. Three of the samples were taken in an old trench near the common boundary of the Ken 1 and 2 claims. These samples were chipped over specific widths as shown on assay data sheets.

The analyses of soil samples confirmed the high copper background noted in previous surveys. Assays below 100 ppm copper are few. Several of the samples have elevated levels (+300 PPM) of zinc and few of the samples have anomalous levels of arsenic (+20 PPM) and gold (+20 ppb).

An area along the east boundary of the Ken 2 claim is underlain by Stuhini volcanics intruded by diorite and monzonite. Exposures appear to suggest a pendant. The roc̀ks are skarn-like with magnetite and locally chalcopyrite and pyrite. Soil samples collected over this zone on line $10+50$ south ranged to 377 ppm copper, 760 ppm zinc, and 107 ppb gold. Three small rock chips from this area, HR 3, 4 and 5 assayed up to 832 ppm copper, 211 ppm zinc with low (-10 ppb) gold. This zone appears to be marked by a magnetic high, however it has not been explored thoroughly.

Several soil samples were collected on line 600 S about 400 metres to the north. Bedrock is poorly exposed along much of the line but one exposure near the west end is skarn-like as above. The copper content of the soils ranged from 107 to 348 ppm , and Zinc ranged up to 218 ppm . Gold content ranged to 43 ppb gold.

The bulk of soil samples were collected over a large area of altered Stuhini volcanic and sedimentary rocks sandwiched between the coarse grained gabbroic stock on the east and the Kaketsa style dioritic intrusion on the west. The soil analyses revealed a copper content up to 476 ppm , and zinc up to 666 ppm . The arsenic content is commonly less than 10 ppm but five samples from $2+00$ to $4+00 \mathrm{E}$ on line $100+00 \mathrm{~N}$ ranged from 13 to 67 ppm ., and two other samples in the same area yielded 144 and 171 ppm respectively. The gold content is commonly less than 10 ppb however several samples yielded from 10 to 74 ppb and one sample assayed 811 ppb gold.

Nineteen rock samples were taken from exposures in the same area. The copper, gold and zinc assays are commonly low. The highest copper assay of 515 ppm is from an exposure of pyritized siltstone on a ridge that trends northwesterly. Some of the anomalous soil samples are coincident with this area suggesting the possibility that these horizons may be more prospective of mineralization than the large area of alteration.

The highest assay recorded in the program was from a sample selected from a gossan zone after a long traverse to the upper part of Gossan Creek. It assayed 2500 ppm copper, 3 ppm silver and 1170 ppb gold. This result may be significant in view of the preliminary results obtained from the Gossan Creek area in 1995, and that 18 soil samples collected in 1995 from the western part of line 8S at Gossan Creek and analyzed in 1996 showed a continuation of anomalous copper, arsenic and gold in that area.

SUMMARY AND CONCLUSIONS

A preliminary interpretation of the geology and geochemistry of the Hat claim area suggests the following:

The Hatchau Lake Stock and related monzonite intrusions were emplaced into and are likely coeval with volcanic rocks of the Stuhini Group. The size and shape of the stock is not fully defined.

Geophysical evidence indicates that a major fault underlies the Hackett River Valley and this structure is offset by a number of northerly and northeasterly trending faults. Movement along these structures with brittle deformation around the margins of the stock could produce the permeability necessary to host the large areas of carbonate-silica alteration found at the northwest and southeast parts of the stock.

The character of the alteration, calcareous tufa and the breccia zones, particularly at the southeast end of the stock, indicates a late geological event that may relate to the emplacement of the Level Mountain and other nearby volcanoes.

The Hat property covers part of a belt of mineralized occurrences that stretches several kilometres northwest and roughly parallels the Hackett River Fault on the north. Porphyry and skarn-type prospects within the belt have previously been investigated and large areas in the vicinity of the prospects have anomalous copper + - zinc, lead, gold and silver. Mineralized cherty horizons within the trend indicates that some of the mineralization is exhalative. Mineralized occurrences at the Hat property in places also have elevated levels of arsenic, cobalt and locally antimony; and epithermal deposits are important targets.

The 1996 work revealed that soils overlying the Hatchau Lake Stock are locally anomalous in copper, zinc and gold. Minor amounts of chalcopyrite were noted in bedrock. Pyritized siltstones and a small magnetite-rich skarn zone also contain anomalous copper. Some of the soil samples overlying the large alteration zone and pyritized siltstone at the northwest end of the stock are anomalous in copper, zinc and locally arsenic and gold, however rock samples from the alteration zone yielded low to slightly above background levels of those elements.

Exploration carried out in 1995 and 1996 appears to indicate that the area to the east of the Hatchau Lake Stock has potential for the discovery of significant mineralization. As determined in 1995, this mineralization will likely occur in large epithermal systems as at Gossan Creek, or in imbricated vein and/or porphyry deposits as at the Hoey. As much of the mineralization encountered occurs within or near the intrusions, further work to the north of Gossan Creek and the Hoey Prospect along the easterly trace of the Hatchau Lake Stock should be undertaken.

RECOMMENDATIONS.

1) Carry out detailed geological, geochemical and geophysical surveys over the large alteration zone at Gossan Creek.
2) Compile all technical data and carry out a limited field program as above at the Hoey Prospect to better define drill targets.
3) Undertake a field program of prospecting, mapping and geochemistry to systematically re-evaluate those areas shown to be of geochemical and geophysical interest on the plateau area to the north of Gossan and Hoey Creeks.

T.E. Lisle, P.EAg. Mi,

January 10, 1996

REFERENCES.

Assessment Reports.

2554, 3296, 6835, 7482, 13939, 14802, 16311, $18,158,22,100,21,615$.
Energy and Minerals Division, Ministry of Employment and Investment.

Energy and Minerals Division, Ministry of Employment and Investment.

Ostensoe, E. P.Geo.
Souther, J.G.

Geological Fieldwork, 1974, 1977.
G.E.M. 1972, 1974.

Report of work on the Hat Prospect, Jan. 10, 1996.
GSC Memoir 362. Geology and Mineral Deposits of the Tulsequah Map Area. 1971.

- Volcanism and its relationship to recent crustal movements in the Canadian Cordillera. Canadian Journal of Earth Science, Vol 7, 1970

APPENDIX 1

STATEMENT OF EXPENDITURES.

Transportation. Helicopter 1,770.93
Fixed-Wing Aircraft. 361.66
Truck 19 days at 50.00 950.00
3592 km . at 0.18 646.56 3,729.15
Analytical Costs. Acme Analytical Lab. 1,679.73
Gasoline. 433.08
Consumables and Travel. 729.09
Field Supplies. 153.14
Wages. 2 X19days at 250.00 $9,500.00$
Report. 4 days at 250.00 $1,000.00$
Miscellaneous. Thin sections, copy, maps etc. 60.00
Total $\$ 17,284.19$

APPENDIX 2

STATEMENT OF QUALIFICATIONS

The exploration program described in this report was carried out by the following personnel.

1) T.E. Lisle, P. Eng. \quad- Geologist, (UBC, 1960) - More than thirty years of experience in mineral exploration mainly in western and northern North America. -Member of the APEGBC since 1972 (\#8528); Geological Association of Canada, and CIMM. -Author of Report.	
2) Erik.A Osttensoe, P.Geo.	Geologist, UBC 1960. -More than thirty years experience in mineral exploration principally in western North America. - Member of APEGBC No. 18727.

APPENDIX 3

GEOCHEMICAL DATA SHEETS.

GEOCHEMICAL DATA

DEPTH; Measured in meters.
HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey, O. Orange. Dk. Dark. Lt. Light.
MATERIAL; T Til; Co. Collyrium. A. Alluvium. F. Fluid. GF. Glacionuvial. O. Organic. ORGANICS; VIsual estimate of organic content.
GRAVEL; Estimate of Gravel elzed fragments.
CLAY-SILT-SAND. Low to moderate to high estimator.

Project: Hat
Dea' : July 13.1995
Sampler: E.A.O.

GEOCHEMICAL DATA

DEPTH; Measured in meters,
HORIZON: Marked A, B, or C
COLOUR: Br. Brown. Bi. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.
MATERIAL; T TIll; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Genciofurial. O. Organic.
ORGANICS; Venal estimate of organic content.
GRAVEL; Estimate of Graved sized fragments.
CLAY-SILT-SAND. LOw to moderate to high estimates.

GEOCHEMICAL DATA

DEPTH; Msasured in motera.
HORIZON; Marked A. B or C
COLOUR: Br. Brown. Bi. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.
MATERIAL; T TII; Co. Colluvium. A. Aluvium. F. Fhuvial. GF. Glactohuvial. O. Organk.
ORGANICS; Vsual eatimate of organic content.
GRAVEL; Estimate of Gravel slzed tragments.
CLAY-SILT-SAND. Low to moderate to high estimates.

Geochemical Data
HAT ROOJET, SEPT. 1996
$96 H R 1$
$H^{H} 2$
$H R 3$
HR4
HRS
HR 6
$H R 7$
HR8
HR 9
$H R 10$
HR\|
HR 12
HR 13
HR 14
HR 15
HR 16
HR 17
HR 18
HR 19
$96 H R 20$
96 HREI
HREZ
HRE 3
HRE4.

Grab 4

1
0

Grab
Flocet
Grab
Grab
Grab
select
1.2 m chip
4.OM. citip.
3.OM Ginno

Grab
Grab.
Random Chirs

Giab
select
SAAB
Gans
fort.
20 m chip.
harge alteration zone.
Altered augite bece 4. + sitstona, Qf uns
skearn alteration-Valeanic pendant in Diorite
./ wift minos malactite! Cpy.
oxara altencetión impaymetite;
Near altered Breecia - Flow? Introsive.
Highly altered - Pink (k. Spar)?
Pynitized S_{i} itstone - $3 \%-10 \%$ 有y.on Ridge
Pyritized siltstone and baralt.
Alteration zone - Qh veius $-K-S p a r$?
Silicified alteration zune $+P_{y}+$ Lim.
Monzonite Porphymy + Py - Otd tisueh.
Doonte. Tr Py.him, Ep.- "
Diovite + Monzon.te. Minou Py.t Ep.
Higlly altered voleanics.
Highly altered zone.
Highly altered (carb-sil) basultic flow-7. ©
-•
Augite
c-mck.
Highly alterad trift, cand slows'.
otrong gossan in Dior.te, Py + Cpy-Gossam Crael

Srnows Alteration zone - Discontincos chap.

GEOCHEMICAL DATA

SURVEY TYPE: $\mathbf{S = S o l i t} \mathbf{S S}=$ Smi: R=Rock Chip
DEPTM: Moseured in moters.
HORIZON: Marted A.B. or C
COLOUR: Bc. Brown. Bi. Backt. R. Red. G. Grty. O. Orange. Dk. Dank. Li. Lipht.
MATERIAL: T Tal: Co. Comuium. A Alusium. F. Fhuvia. GF. Glaciofluvial. O. Organic.
ORGAWCS: Visule estirnete of orgenic conlent.
GPAVEL: Escimive of Gravel adzed frgmeals.
CLAY-SHY-SANO: Low to moderate to high estimetee.

GEOCHEMICAL DATA

DEPTH: Mamarred in maters.
COLOUR: Br. Brown. B. Beck. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Lo ht

ORGANICS: Vised estimate of organic condiment.
CLAY-SLT.SAND: Low to moderns io high entimenes.

GEOCHEMICAL DATA
\qquad

SURVEY TYPE: S=Soll; SS=Sim; ReRock CNIP
DEPTH: Maseured in metios.
HORIZON: Mathed A. B. or C
COLOUR: Er. Brown. Bi. Beck. R. Red. G. Grey. O. Ormge. Dk. Daft. Lt. Lipht.

ORGANCS: Vivie emineme of orgenic content.
GRAVEL: Estimety of Grivel sized ingmente.

GEOCHEMICAL DATA

$K E 2$

SURVEY TYPE: $\mathbf{S = S o m} ; \mathbf{S S = S m}$; R=Rock Chip
DEPTH: Moseurad th mevis.
COLOUR: Br. Bown Bu. Btect R Red G Gry. O. Orene Di Dark. Lt Light
MATERIAL: I Tim: Co. Comomum. A Alunhm. F. Fhoviel. GF. Gleciohuvial. O. Organic.
ORGANCS: View estimete of organic contert.
GRAVEL: Estincte of Grivel sired traponents
CLAY-SILT-SAND: LOw to moderite to high eatmanas

GEOCHEMICAL DATA

SURVEY TYPE: S=Soi: SS=Sm; RwRock Chip
DEPTH: Mamerred in mivera.
HORIZON: Mated A 8 or C
COLOUR: Br. Brown. Bi. Brock. R. Red G. Grey. O. Oreme. Dk. Dark Lt Lighe
waterial: T Till: Co Collinim. A. Alrvinm. F. Fivial. GF. Giaclonuvia. O. Organic.
ORGANHCS: Visum entimete of orgenic contert
Ravel: Etinnito of Gravel sized wipmente.
CLAY-SMT-SAND: LOw to modertio to high eatrnetes.

GEOCHEMICAL DATA

$$
\begin{aligned}
& \operatorname{s}_{\text {SAMPLER }}^{\text {DATE }} \\
& \text { TS MAP SHEET } \\
& \text { Sept } 13,1996 \\
& \cline { 2 - 3 }
\end{aligned}
$$

SURVEY TYPE: S=Soil; SS=Sitt; R=Rock Chip
DEPTH: Measured in meters.
HORIZON: Marked A, B, or C
COLOUR: Br. Brown. B. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.
MATERIAL: T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.
ORGANICS: Visual estimate of organic content.
GRAVEL: Estimate of Gravel sized fragments.
CLAY-SILT-SAND: Low to moderate to high estimates.

SURVEY TYPE: S"Soil: SS=Sw; R=Rock Chip
DEPTH: Mamind in melma.
HORIZON: Marked A. B, or C
COLOUR: Bx Brown Ei. 日iect. R. Red. G. Grey. O. Orenge. Du. Dank. Lt. Light
MATERINL: T Til; Co. Comminm. A. Alrvium. F. Fhrial. GF. Glaciolluviel. O. Orpenic.
ORGANICS: Visuel estimete of orgeric contiond
GRGANICS: Visued estmele of orperic conion
CLAY-SILT-SAND: Low to moderies to high esimetes.

96 MR -El - old blast pit. Elev. 3700 feet.
vary fuse grimed to fine grained monzonite with magnetite as layers and disseminations.

96 HR-E2 - bleached augite (?) porphyry. No sulphides. sample across $20 \mathrm{m}$.$\pm . Alt. 3720$ ' \pm
96 HR -E 3 - rusty pyritic layer -siltstone. 2-4\% pyrite alt. 3840 ft .
SOM.N.I $4+00 E$ on line $100+00 \mathrm{~N}$.

- grab sample of root chaps.

96AR-E4- discontinuous chap sample- 20 m .
south of west and of camp lake
strong feldspathce alteration in diorite (- TEL tied to old (Pgrid) check for $g \delta 1 d$.
$96 H R-20$ - rustyivibroken rock on E side of small (Sep t19/96) creek that flows S'ly to HackettRwer. alt. 3120 ft .

- prom Ind bulldozer cut. Near headwtrs. Gossan Cr.

APPENDIX 4
ASSAY CERTIFICATES.

ICP - . 500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL
ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS $>1 \%$, AG >30 PPM $\&$ AU >1000 PPB
SAMPLE TYPE: P1 ROCK P2 TO P4 SOIL
AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. (10 GM)
Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^0]

Samole type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^0]: Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

