

REPORT ON THE

TCHENTLO PROPERTY

Caribou Mining Division NTS 93N/2 E

Latitude 55° 10'N Longitude 124° 51'W

December 1996

Owner/Operator: Hudson Bay Exploration & Development Co. Ltd. 405-470 Granville St. Vancouver B.C. V6C 1V5

> CROLOGIAL STRVEN BELCH RESELLED BALLES DE BALL

Author:

M.D. Buchanan

155

TABLE OF CONTENTS

SUMMARY	1
LOCATION AND ACCESS	1
PHYSIOGRAPHY AND CLIMATE	3
HISTORY OF EXPLORATION	3
PROPERTY STATUS AND OWNERSHIP	4
WORK PERFORMED	4
REGIONAL GEOLOGY	6
PROPERTY GEOLOGY	6
GEOCHEMICAL SURVEY	8
GEOPHYSICAL SURVEY	10
CONCLUSIONS AND RECOMMENDATIONS	12

LIST OF FIGURES

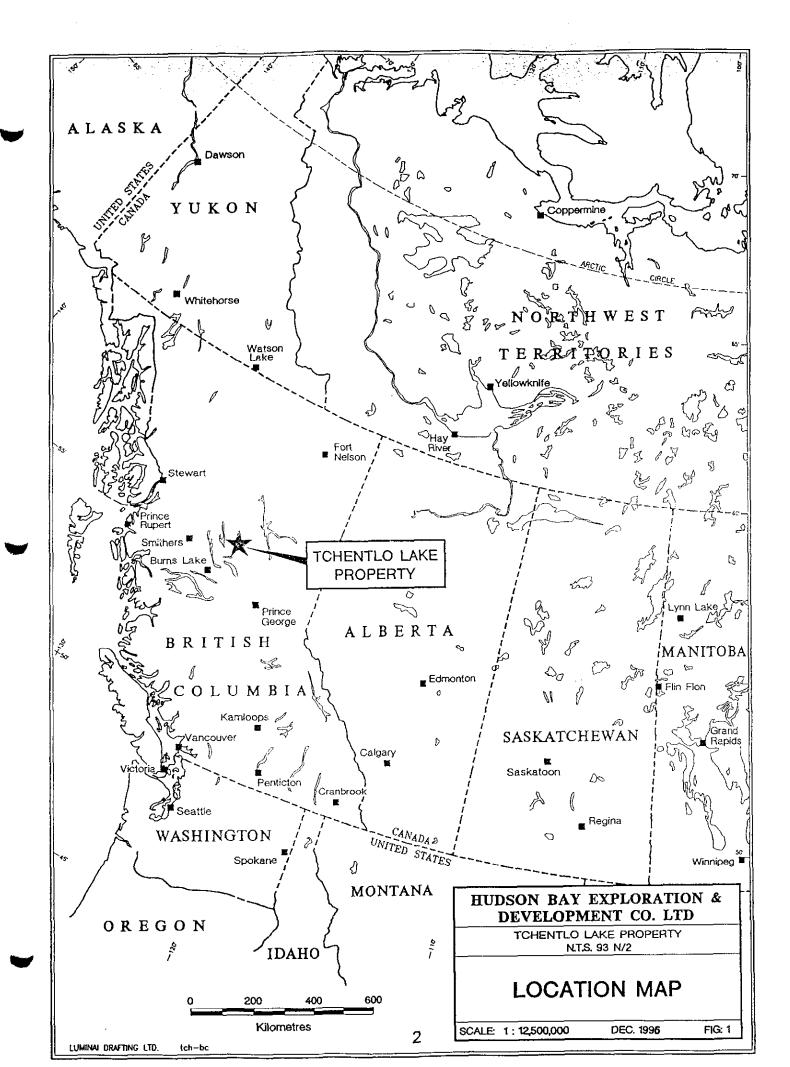
Figure 1	Location Map	2
Figure 2	Claim Map	5
Figure 3	Regional Geology Map	7
Figure 4	Property Geology Map	back pocket
Figure 5	Soil Geochemical Map	back pocket
Figure 6	Trench Map	11
Figure 7	Geophysical Map Mag/VLF	back pocket

APPENDICES

- Appendix 1 Statement of Qualifications
- Appendix 2 Statement of Expenditures
- Appendix 3 Analytical Results for Soils Samples
- Appendix 4 Statistical Analysis of Soils Samples
- Appendix 5 Analytical Results for Rocks Samples
- Appendix 6 Rock Sample Descriptions

Appendix 7 Geophysical Techniques and Instrument Specifications

SUMMARY


The Tchentlo property is located 80 km north of Fort St. James. The property consists of two 4-post claims totalling 40 units and is 100% owned by Hudson Bay Exploration & Development Co. Ltd.. The area surrounding the property has variable tree and ground coverage with elevations ranging from 1250m to 1450m.

The Tchentlo property is found within a volcanic assemblage known as the Quesnel Trough. The southwestern part of the property is underlain by alkaline (to calc-alkaline) Takla Group volcanics while the eastern portion of the property is underlain by comagmatic intrusive rocks of the Hogem Batholith.

In July 1996, HBED personnel conducted an exploration program to investigate anomalous soil geochemistry delineated by previous work. The exploration program consisted of a detailed outcrop map along flagged grids at a scale of 1:5,000, the collection of 523 'B' horizon soil samples, 35 rock samples, and a ground Mag/VLF survey along selected lines on the grid.

LOCATION AND ACCESS

The Tchentlo Lakes property is located in north-central British Columbia, 80 km north of Fort St. James approximately 5 km south of Tchentlo Lake (Figure 1). Access to the property is made by helicopter from Fort St. James or near by Tchentlo Lake Lodge from which Pacific Western Helicopters run a base. Road access from Fort St. James is possible to within 2 or 3 km of the property via the Leo Creek, Driftwood, Leo-Airline gravel forest service roads.

PHYSIOGRAPHY AND CLIMATE

Topography of the area consists of rolling, moderately forested upland with elevations of 1250 to 1450m. Glacial material covers most of the property and ranges in thickness from 0.5 to 5m thick. Vegetation ranges from tall grass and shrubs in the poorly drained areas to fir, balsam, spruce, and pine on the hillsides. The climate of the area is characterized by warm wet summers and cold snowy winters with snow accumulations greater than 2 m.

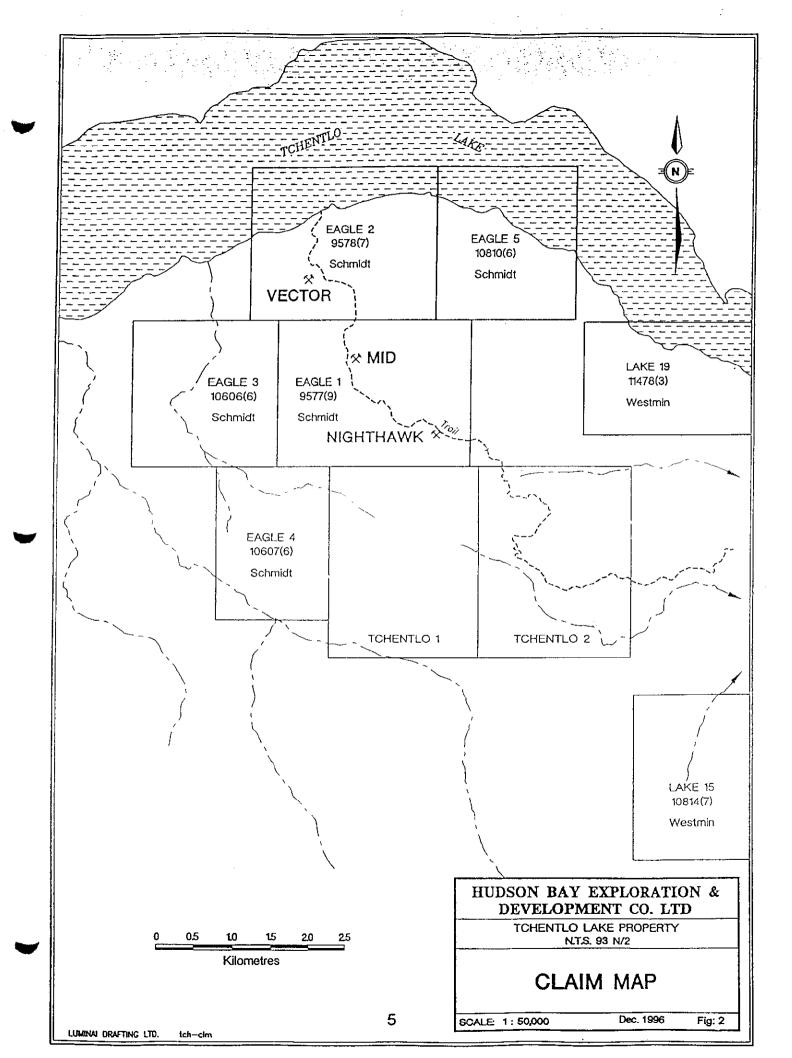
HISTORY OF EXPLORATION

The history of the area dates back to 1961 with the completion of a Government regional airborne magnetic survey (flight lines spaced 0.8 km apart). From 1966-72 West Coast Mining & Exploration and Boronda Exploration Corporation conducted a geochemical and geophysical exploration program for porphyry copper deposits. In 1983 renewed interest in the area was sparked by a joint Canada/British Columbia regional stream sediment and water geochemical survey. Commencing in 1989 Westmin Resources conducted an exploration program consisting of airborne Mag-VLF-HEM survey, multi-element stream sediment and soil geochemistry, geological mapping and trenching. In October 1995, Hudson Bay Exploration & Development personnel performed a preliminary exploration program to cover open ground formally held by Westmin Resources. The geochemical program included one soil grid composed of 3 lines spaced 500m apart with 50m station spacing, one 1,200m soil contour line with 100m station spacing, and general prospecting where random rock samples were taken. Using data collected from the grid and the soil contour lines a number of copper/gold anomalies were outlined which required further exploration to determine the source or sources of the said anomalies. Based on this information an area surrounding the grid and contour soil line was staked for Hudson Bay Exploration & Development Co. Ltd..

PROPERTY STATUS AND OWNERSHIP

The Tchentlo Lake property is composed of two 4-post claims totalling 40 units (Figure 2). The property is 100% owned by Hudson Bay Exploration & Development Company Limited.

CLAIM	TENURE No.	UNITS	EXPIRY	OWNER
TCHENTLO 1	343099	20	*January 23,2000	HBED
TCHENTLO 2	343100	20	*January 23,2000	HBED


* Pending the acceptance of this report.

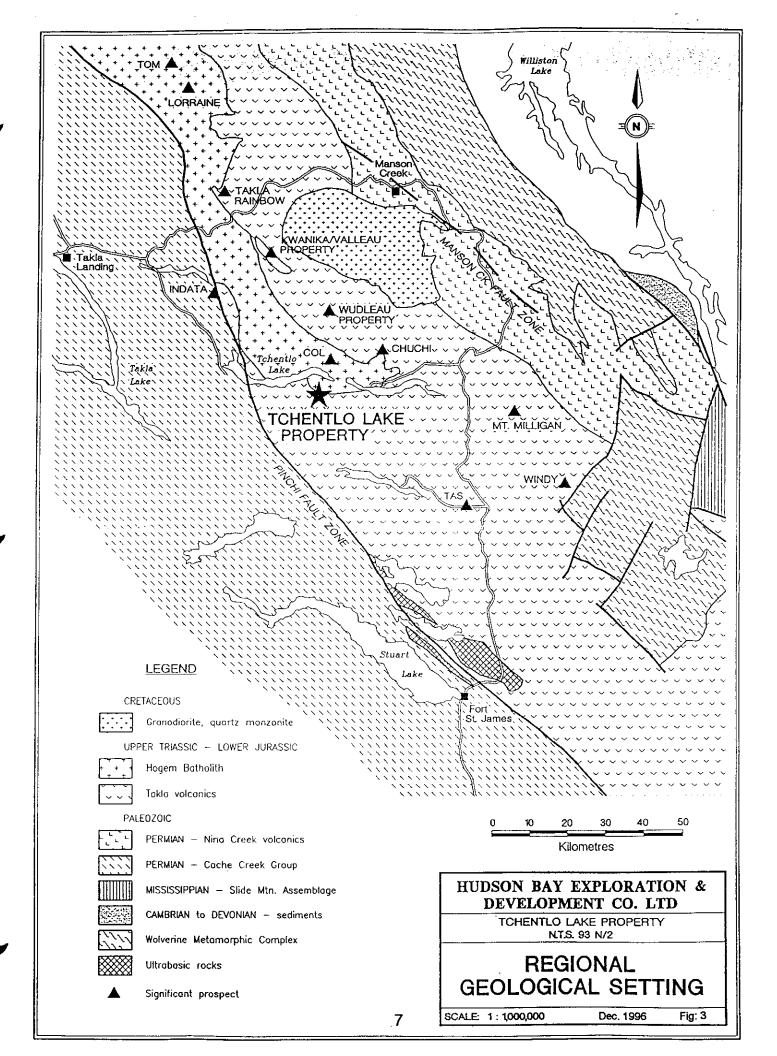
WORK PERFORMED

Work performed on the Tchentlo property was implemented in two phases. During phase one from July 10 to August 1 E. Fluskey, M. Buchanan, D. Garratt, J, Dyson, T. Bird, and R. Riedel conducted a program of soil and rock sampling, grid construction, and mapping. A total 2,500 meters of slashed baseline and 25,400 meters of flagged crosslines were surveyed over two grid areas. From these grids 523 soil samples and 35 rock samples were collected and sent to Eco-Tech Labs for 30 ICP + AA for Gold.

Phase two of the 1996 field survey was conducted from September 24 to September 27 by M. Buchanan, E. Fluskey, and J. Sigfied. This survey included additional prospecting/mapping and a MAG/VLF survey totalling approximately 10,700 meters.

4

REGIONAL GEOLOGY


The Tchentlo Lakes claims are located in a central portion of the northwest trending volcanic assemblage known as the Quesnel Trough. The size of the Quesnel Trough varies from 30 to 60 km wide and extends northwestward 1,300+ km from the southern B.C. border to the Stikine River in northern B.C. (Figure 3). The volcanic assemblage comprises alkalic and calc-alkalic volcanics and deep water sedimentary rocks of Upper Triassic to Jurassic age (Rossland, Nicola, Takla and Stuhini Assemblages), which are intruded by comagmatic plutons of the Hogem batholith.

PROPERTY GEOLOGY

The Tchentlo property is predominantly covered by moderate thicknesses of glacial till ranging from 1 to 5 meters. Outcrop exposures on property vary, with little to no exposures in the bogs & valleys and numerous outcrops on the upper slopes of the hills. In general the underlying geology has been mapped and/or interpreted to consist of Takla group volcanics in the south and comagmatic monzodioritic intrusives of the Nations Lake intrusive porphyry in the north.

TAKLA GROUP VOLCANICS

The Takla Group volcanics comprise approximately 30% of the underlying geology observed on the Tchentlo property. To date most if not all of the volcanics are found in the southern portion of the claims (Figure 4 in back pocket). The rocks of this volcanic package consist of dark green/grey to grey coloured andesites (possibly basalts). In the very southern portions of the claims the andesites occur massively and show very little structure. Further to the north there is a mapped and/or inferred contact with the Hogem intrusives. Along this contact the andesites become increasingly hornfels/pyritized, fractured and brecciated. Also occurring locally near the contact are numerous intrusive monzo-dioritic dykes most of which appear to be less than 5m x 25m in size.

HOGEM INTRUSIVES

The Hogem batholith comprises approximately 70% of the underlying rocks on the Tchentlo property. These rocks are located in the central and northern portions of the claims and appear as small to medium sized plutons (Figure 4 in back pocket). The composition of the plutons range from diorites to monzonites and are often cross cut by dykes of magnetite rich diorites and/or syenites. In general the intrusives show weak to moderate amounts of propylitic alteration and a lesser number of the rocks show evidence of potassic alteration. Joint sets are very common occurring at near right angles approximately 300° and 025° and foliation generally trends northwestsoutheast.

GEOCHEMICAL RESULTS

SOIL SURVEY

A total of 523 soil samples were collected over two grid areas. Samples were collected from the 'B' soil horizon typically ranging in depth from 20 to 45 cm using long handled grub-hoes. The samples were then placed into labelled kraft wet strength paper bags and sent to Eco Tech Labs in Kamloops for 30 element ICP and AA for gold. Complete analytical results can be found in Appendix 3.

Basic statistics performed on selected analytical results for copper, gold, silver and arsenic revealed the approximate anomalous threshold values (mean + two standard deviations) to be 400 ppm Cu, 7.8 ppb Au, 1.1 ppm Ag, & 375 ppm As respectively. Complete statistical analysis are shown in Appendix 4. Using these threshold values geochemical contour and spot maps were plotted. Copper and silver values are shown in Figure 5 (back pocket). Arsenic and gold values are shown in Figure 6 (back pocket).

Based on Figures 5 & 6 a number of zones were found to have anomalous values. Of these outlined regions four coincidental multi-element anomalous zones and two open ended arsenic anomalous stations/zones have been described in further detail below.

ANOMALY 'A'

The area yielding the highest geochemical response was outlined in the southeast portion of the property within the hornfels Tacka group volcanics. The anomaly is located in grid TCH-2 along lines L56N & L57N and spans an area 100 x 100 meters. Anomalous values range as follows copper 719 - 10,000 ppm, arsenic 505 - 1290 ppm, silver 0.4 - 5.6 ppm, and gold 10 - 30 ppm. During the course of the survey detailed prospecting of this area revealed the source of this anomaly to be a small shear zone approximately 1 to 2 meters wide with undetermined length and orientation.

ANOMALY 'B'

Anomalous zone 'B' is located at line L47+50N - 48+50E and spans to L45+00N - L47+00E. The anomaly trends north-northwest and covers an area approximately 250 x 150 meters. Plotted values suggest there are two zones which make up the overall anomaly. The northern portion is comprised of a copper/silver zone with values ranging from 606 - 1160 ppm copper and 1.2 ppm silver. The southern portion of the anomalous zone is dominated by a arsenic high consisting of values ranging from 510 - 1445 ppm.

ANOMALY 'C'

Located in the central portions of grid TCH-1 anomaly 'C' begins at L51+25N, 48+50E and trends west to L53+75N,46+00E. It is approximately 100 meters wide by 400 meters long and has above normal background levels of copper (491 - 878 ppm) and silver (1.2 - 2.0 ppm).

ANOMALY 'D'

Anomaly 'D' located in the southeast corner of TCH-1 grid and is composed of one spot anomaly and one open ended anomaly that trends south between lines L46+25N & L45+00N in the vicinity of stations 42+00E. Values for these stations range from 390 - 1380 ppm arsenic.

ANOMALIES 'E' & 'F'

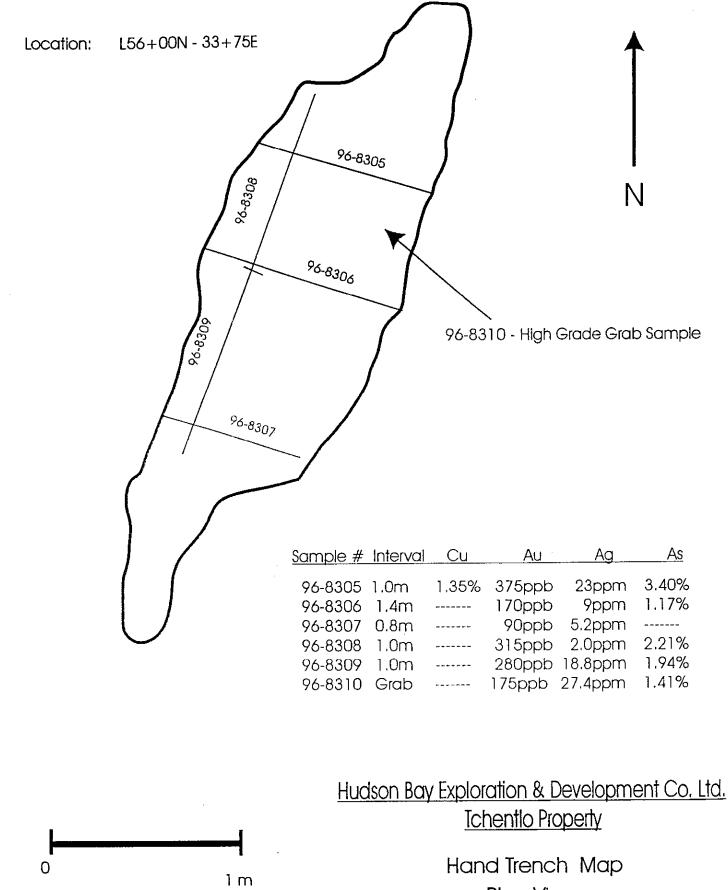
The remaining two anomalies outlined by the 1996 survey consist of single station, open ended anomalies. Anomaly 'E' is located at L56+25N,42+00E and is open to the southwest. It consists of anomalous copper (1256ppm), silver (1.6ppm) and arsenic (585ppm) values. Anomaly 'F' is located at L55+00N, 32+50E and is open to the southeast. It consists of anomalous copper (1571ppm), silver (1.6ppm) and arsenic (400ppm) values.

ROCK SURVEY

A total of 35 rock samples were collected during the prospecting and the mapping of the two grid areas. The samples were placed in labelled plastic bags and sent to Eco-Tech Labs in Kamloops for 30 element ICP and AA for gold. Of the 35 samples collected 29 were grab and float type and 8 were type samples. Chip samples collected from the hand trench located at approximately L56+00N 32+75E yielded the highest copper arsenic, silver and gold values on the property (Figure 7). These samples are more than likely the source of the geochemical soil Anomaly 'A'. Other samples worth mention include 1296TCH252 located at L52+50N 51+00E, it assayed 625ppb gold with slightly elevated levels of silver, and sample 1296TCH255 & 256 both of which assayed 1402 ppm and 3919 ppm Cu respectively. Complete descriptions and analytical results are listed in Appendix 5 & 6.

GEOPHYSICAL SURVEY

MAG/VLF SURVEY


Phase II of the 1996 exploration program included 8,600 meters of ground VLF and/or MAG surveys conducted over TCH-1 and a portion of the TCH-2 grid. The survey was conducted using a GSM-19 Magnetometer/VLF and a station spacing of 25 meters (See Appendix 3 for instrument specifications).

TCH-1 Grid

A total 5,750 meters of MAG survey was completed on the TCH-1 grid. The results of this survey indicate northwest/southeast trending magnetic spot highs ranging from 642 nT to 3,257 nT on lines L51+25N/53+75E, L53+75N/51+50E & L56+25N/53+25E. No VLF was completed on TCH-1 due to instrument problems (See Figure 7 in back pocket).

TCH-2 Grid

The entire TCH-2 grid was covered by 2,850 meters of MAG/VLF. The results of the magnetometer survey suggest increasing magnetic trend from northeast to southwest across the entire grid area. The VLF response over the same area delineated northwest/southeast trending structures using stations in Seattle and Annapolis (See Figure 7 in back pocket).

Plan View

Scale 5 cm=1m

Fig: 6

Date: Jan 1997

CONCLUSIONS AND RECOMMENDATIONS

The Tchentlo claims are situated in the Quesnel Trough, an island-arc package of volcanics intruded by the Hogen batholith. The property is underlain by hornfels andesites of the Takla group volcanics in the south and by comagmatic monzodioritic intrusions of the Hogen batholith in the north.

During July and September 1996, two programs of exploration were executed. These programs included the establishment of 27,900m of grid, detailed geologic mapping at a scale of 1:5,000, geochemical sampling and a limited geophysical survey. In total 523 soil and 35 rock samples were collected and analysed.

Mapping and prospecting of previously known anomalies occurring along L56+00N 33+75 further outlined and confirmed the source of the anomalies to be related to a 1 to 2 meter mineralized shear zone with unknown orientation.

Soil geochemistry delineated numerous coincidental multi element copper, silver, arsenic and gold soil anomalies. A number of these anomalies are unexplained and inferred to occur within the intrusives of the Hogem batholith.

The Mag/VLF survey over selected areas of the grids outlined a few northwest/southeast structures however, do the size of the survey only generalizations can be made as to local trends.

There are still numerous unexplained and open ended geochemical targets on the Tchentlo claims. Therefore, further prospecting and an IP survey should be conducted to explain these anomalies followed by trenching and/or diamond drilling.

REFERENCES

Garnett, J.A. (1978): Geology & Mineral Occurrences of the Southern Hogem Batholith., B.C., BCGS, Bulletin 70, pp 23-25.

Tucker, Terry L. (1992): <u>Assessment Report Geological, Geochemical and Geophysical</u> <u>- Tchentlo Lake Property</u>, B.C. Assessment Report No. 22, 672.

Wojdak, Paul J. (1992): <u>Assessment Report Geology, Soil and Silt Geochemistry,</u> <u>Line cutting and Induced Polarization Survey - Tchentlo/Wil Property</u>, B.C. Assessment Report No. 22,308.

GSC/BCGS (1994): OPEN FILE 2814: Chuchi Lake Airborne Geophysical Survey 92N/2 Appendix 1 Statement of Qualifications

STATEMENT OF QUALIFICATIONS

- I, Michael Buchanan, of Vancouver, B.C. hereby certify that:
 - 1) I am a graduate of the University of British Columbia, with a BSc (Hon) in Geology (1995).
 - 2) I am currently employed as a Geologist for Hudson Bay Exploration & Development Company Limited.
 - 3) I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (Geologist in Training).
 - 4) The information contained within this report is based on published and unpublished reports on the property and work carried out in part or in full by myself and others.
 - 5) I have no interest in the Tchentlo property or any other within a 10 km radius.

Signed this day 23 of April, 1996.

MA Buchemen

Michael Buchanan Geologist Hudson Bay Exploration & Development Company Limited

Appendix 2 Statement of Expenditures

TCHENTLO PROPERTY

Manpower 6,160 2 field assistance @ \$140/day/assistant - 22 days \$ \$ 8,000 2 Geologists @ \$200/day/geologist - 20 days 1 Geophysist @ \$200/day - 5 days <u>\$ 1,000</u> \$ 15,160 Total Room & Board 4 men @ \$55/day/man -22 days \$ 4,840 Travel 2 Truck Rentals @ \$60/day/truck - 4 days \$ 480 **Supplies** \$ 350 Soil & plastic bags, flagging, etc.. Helicopter Support 9,300 \$ 12 Hrs @ \$775/Hr (includes fuel) **Analytical Charges** 523 soil samples @ \$11/sample \$ 5,753 35 rock samples @ \$14/sample <u>490</u> <u>\$</u> Total \$ 6,243 **Report Preparation** \$ 800 4 days @ \$200/day Drafting/Secretarial <u>\$ 1,000</u> Total \$ 1,800

1.1

Total Expenditures \$38,173

Appendix 3 Analytical Results for Soil Samples

À

.

÷

20-Aug-96

*

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-840

HUDSON BAY EXPLORATION & DEVELOPMENT LTD. # 405-470 GRANVILLE STREET VANCOUVER, BC V6C 1V5

ATTENTION: MIKE BUCHANAN

No. of samples received: 497 Sample type: SOIL PROJECT #: 2314 SHIPMENT #: 96004 Samples submitted by: MIKE BUCHANAN

Values in ppm unless otherwise reported

Et #	. Tag #		Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cď	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	L42+50N	52 1	E <5	3.6	4.96	80	385	<5	1.92	1	26	85	531	6.73	<10	1.27	1505	3	0.02	79	930	26	<5	<20		0.08			<10	27	159
2	L42+50N	52+50 l	Ξ <5	<0.2	2.52	25	135	<5	0.42	<1	19	46	70	4.24	<10	0.68	382	<1		32	1930	14	<5	<20	24		<10		<10	1	71
3	L42+50N	53 I	E <5	<0.2	3.50	185	105	<5	0.44	<1	27	33	219	6.60	<10	0.79	562	2	<0.01	21	1510	, 18	<5		31	0.14		186	<10	6	135
4	L42+50N	53+50 I	E <5	<0.2	2.80	35	150	5	0.33	<1	17	46	36	4.22	<10	0.59	296	<1	0.01	37	1130	20		<20	19				<10	<1	106
5	L42+50N	54 I	E <5	<0.2	2.57	10	125	5	0.46	<1	12	35	37	5.03	<10	0.50	547	<1	<0.01	18	2630	20	<5	<20	33	0.14	<10	141	<10	<1	109
e	L42+50N	54+50 l	5	0.6	4.53	10	300	<5	0.53	<1	21	29	163	7.80	<10	1.10	545	1	<0.01	22	2430	14	<5	<20	438	0.18	<10	212	<10	<1	105
7	L42+50N	55 1	5	0.4	3.93	30	200	-	0.29	<1	18	39	90	6.94	<10	0.88	631	2	<0.01	22	2750	22	<5	<20	33	0.13	<10	178	<10	<1	128
Ŕ	L42+50N	55+50	= <5	<0.2		<5	400	<5		1	40	19	114	7.50	<10	1.29	2506	<1	<0.01	16	3320	14	<5	<20	117	0.20	<10	193	<10	3	135
ğ	L42+50N	56 1	5	<0.2	3.41	50	155	<5		<1	15	47	65	6.04	<10	0.68	491	2	<0.01	31	2770	28	<5	<20	32	0.10	<10	139	<10	<1	121
10	L42+50N		 ≝ <5	<0.2		25	200	<5	0.57	<1	16	41	56	5.07	<10	0.68	681	2	0.01	24	1500	22	<5	<20	39	0.12	<10	133	<10	<1	113
11	L42+50N	57 1	£ <5	<0.2	2.12	15	120	<5	0.30	<1	10	30	28		<10	0.42	243		<0.01	14	600	26	-	<20	24					<1	56
12	L42+50N	57+50 I	= <5	<0.2	1.96	10	140	5		<1	12	32	37	5.43	<10	0.41	376	-	<0.01	15	790	24		<20	36	0.12			<10	<1	79
13	L42+50N	58 1	= <5	<0.2	2.22	55	140	<5		<1	16	41	53	4.95		0.53	585		<0.01	25	900	36	-	<20	27	0.09			<10	<1	107
14	L42+50N	58+50 l	E 5	0.2	2.65	20	150	<5		<1	14	27	64	3.89		0.42	288		<0.01	20	850	22		<20	38	0.07			<10	3	55
15	L42+50N	59 I	E <5	<0.2	3.74	35	105	<5	0.24	<1	15	48	87	5.36	<10	0.65	326	<1	<0.01	32	1800	26	<5	<20	20	0.12	<10	138	<10	<1	82
16	L42+50N	59+50 1	= <5	<0.2	3.07	15	150	<5	0.36	<1	16	36	49	6.91	<10	0.68	427	3	<0.01	23	2350	16	<5	<20	30	0.14	<10	185	<10	<1	114
17	L42+50N	60 1	10	0.4	3.17	205	240	<5	0.54	<1	20	9	54	6.91	<10	0.27	1888	6	<0.01	7	4130	12	<5	<20	29	0.01	<10	149	<10	<1	99
18	L43+75N		- <5	<0.2	2.15	235	115	<5	0.48	<1	24	41	67	6.05	<10	0.53	331	2	<0.01	23	1370	12	<5	<20	36	0.15	<10	158	<10	<1	89
19	L43+75N		= <5	<0.2	2.25	195	90	<5	0.45	<1	26	39	55	5.89	<10	0.59	385	1	0.01	24	1100	12	<5	<20	30	0.15	<10	158	<10	<1	119
20		44+50	E <5	<0.2	2.54	585	120	<5	1.16	<1	45	38	321	6.83	<10	0.78	739	4	0.02	26	1510	22	<5	<20	51	0.16	<10	188	<10	4	145
21	L43+75N	44+50 E	B <5	<0.2	2.84	110	115		0.36	<1	24	41	67		<10	0.72	369		<0.01		2970	12	-	<20	25				<10	<1	140
22	L43+75N	45+00	Ξ <5	<0.2	2.05	320	160	<5	0.86	<1	35	36	111	5.69		0.72	1076	2	0.01	26		12	_	<20	41	0.19			<10	2	126
23	L43+75N	45+50	E 5	<0.2		185	105	<5		<1	32	35	170	7.95		0.85	443	4	0.01	28		12	<5		31	0.20			<10	<1	121
24	L43+75N	46+00 l	∃ <5	<0.2	2.89	210	115	<5		<1	31	29	112		<10	0.79	544	5		20		12	-	<20	28	0.22			<10	<1	93
25	L43+75N	46+50 l	= <5	<0.2	2.92	80	205	<5	0.77	<1	22	18	137	7.18 Page	<10 e 1	0,82	719	<1	0.02	12	3030	8	<5	<20	68	0.17	<10	217	<10	<1	78

<u></u>

ICP CERTIFICATE OF ANALYSIS AK 50-840

ECO-TECH LABORATORIES LTD.

_ Et #.	Tag #		Au	(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na %	Ni	Р	РЪ	Sb	Sn	Sr	Ti %	Ų	v	w	Y	Zn
26	L43+75N	47+00	E	5	<0.2	2.40	150	125	5	0.37	<1	25	36	70	6.68	<10	0.59	588	1 0.01	22	3310	14	<5	<20	25	0.18	<10	187	<10	<1	89
27	L43+75N	47+50	E	<5	<0.2	3.63	90	110	<5	0.49	<1	27	35	142	6.47	<10	0.76	502	1 0.01	27	2930	16	<5	<20	24	0.18	<10	198	<10	2	121
28	L43+75N	48+00	E	<5	<0.2	2.32	85	90	<5	0.38	<1	21	31	56	6.58	<10	0,58	355	4 <0.01	17	1580	14	<5	<20	24	0.18	<10	203	<10	<1	122
29	L43+75N	48+50	E	<5	<0.2	3.02	35	125	<5	0.43	<1	20	41	71	7.35	<10	0.72	330	2 0.01	29	2760	12	<5	<20	26	0.18	<10	183	<10	<1	82
30	L43+75N	49+00	Е	10	<0.2	2.78	35	90	<5	0.33	<1	16	31	85	6.25	<10	0.46	504	1 <0.01	17	2180	14	<5	<20	26	0.15	<10	200	<10	<1	61
31	L43+75N	40.00	-	~5	-0.0	3.30	75	115	~E	0.25	<1	15	43	76	7.64	~10	0.40	290	2 <0.01	25	3720	14	~5	<20	10	0.15	~10	201	~10	<1	60
32	L43+75N		E			3.30	25 15	70		0.23	<1	7	43 29		3.32			171	<1 <0.01		1120	12		<20		0.13				<1	60 25
33	L43+75N		E	-		2.92	20	75		0.33	<1	13	27		5.59			307	3 0.01		2090	12	-	<20		0.10	-			<1	48
34	L43+75N		_	-		2.65	45	140		0.54	<1	20	56		4.04			676	1 0.01		770	20		<20		0.12				2	102
35	L43+75N					4.07	45	80			<1	16	47		5.30			387	2 < 0.01		3310	18		<20		0.10				<1	50
			-	-																											
36	L43+75N		E			2.26	20	120		0.36	<1	15	50		3.64			397	<1 <0.01		760	16		<20		0.12		100		<1	61
37	L43+75N		E		<0.2		60	220		0.43	<1	24	58		4.45			515	<1 0.02	44	830	26		<20		0.14		120		<1	101
38	L43+75N	52	E	<5	<0.2	2.44	35	110		0.71	<1	19	47	53	4.02	<10	0.60	537	<1 0.01	34	520	22		<20		0.12		123	<10	1	130
39	L43+75N	52+50	E	<5	<0.2	2.74	60	205		0.53	<1	17	54	35	4.80	<10	0.67	401	<1 0.01	38	830	22	<5	<20	26	0.13	<10	127	<10	1	154
40	L43+75N	53	E	<5	<0.2	1.83	20	140	<5	0.39	<1	11	42	22	3.33	<10	0.46	349	<1 <0.01	24	940	22	<5	<20	24	0.10	<10	95	<10	<1	105
			-	-			-0	40-			- 4	40	40				0.00			07	1510		-5	-00		0.40	-10		-40		00
41	L43+75N		E			2.77	50	125			<1	19	48		4,49			448	<1 0.01		1540	22		<20		0.10				<1	90
42	L43+75N		E	<5		2.19	35	95		0.28	<1	11	42		4.33		0.54	262	<1 <0.01		630	22		<20		0.12		127		<1	72
43	L43+75N		E			3.10	65	135		0.22	<1	14	52		6.41			321	4 < 0.01		1250	30		<20		0.09		164		<1	94
44	L43+75N		E			3.88	55	190		0.47	<1	20	48		5.47			388	2 < 0.01		1970	28	-	<20		0.11			-	<1	142
45	L43+75N	55+50	E	<5	<0.2	2.55	20	200	10	0.44	<1	13	39	26	5.88	<10	0.50	581	<1 <0.01	19	2540	24	<0	<20	43	0.14	<10	171	<10	<1	87
46	L43+75N	56	E	<5	<0.2	2.30	25	140	<5	0.27	<1	10	34	49	4.44	<10	0.39	225	2 <0.01	19	660	34	<5	<20	28	0.11	<10	127	<10	<1	66
47	L43+75N	56+50	E	<5	<0.2	1.85	10	115	10	0.34	<1	10	26	27	4.75	<10	0.32	297	<1 <0.01	11	2230	24	<5	<20	31	0.11	<10	140	<10	<1	47
48	L43+75N	57	E	<5	<0.2	2.89	15	120	5	0.36	<1	14	33	52	6.13	<10	0.56	335	<1 <0.01	20	1800	18	<5	<20	30	0.15	<10	173	<10	<1	88
49	L43+75N	57+50	E	<5	<0.2	3.46	45	150	<5	0.33	<1	17	50	77	6.13	<10	0.79	397	1 <0.01	37	1290	22	<5	<20	27	0.13	<10	148	<10	<1	118
50	L43+75N	58	E	<5	<0.2	3.16	35	160	<5	0.35	<1	16	50	73	6.07	<10	0.78	423	2 <0.01	36	1460	22	<5	<20	28	0.14	<10	154	<10	<1	110
51	L43+75N	58+50	E	~5	<0.2	3.77	30	175	~5	0.97	<1	22	48	154	4.88	<10	0.80	981	3 0.01	43	990	20	<5	<20	44	0.10	<10	136	<10	6	84
50	L43+75N		E		<0.2		15	125		0.30	<1	12	37		3.86			273	<1 <0.01	23		16		<20	29		<10			<1	59
52	L43+75N		E		<0.2		40	105		0.20	<1	11	47		4.68			250	1 < 0.01		1860	20		<20	20	0.09		122		<1	69
53			-					+			•		••					520	3 < 0.01		2690	16		~20 <20		0.09		159		1	101
54	L43+75N		E		<0.2		20	250		0.49	<1	23	42		7.02				+ -				+	<20 <20				159		، <1	82
55	L45N	42	E	<5	<0.2	2.69	60	110	5	0.31	<1	15	42	42	5.97	<10	0.47	452	<1 <0.01	24	2010	18	<5	<20	16	0.17	<10	199	<10	< 1	82
56	L45N	42+50	E	<5	<0.2	2.12	295	135	<5	0.36	<1	20	40	71	6.43	<10	0.56	461	3 0.01	25	1390	12	<5	<20	23	0.17	<10	176	<10	<1	83
57	L45N	43	Ξ	<5	<0.2	3.17	1380	220	<5	0.43	<1	50	42	192	9.50	<10	0.76	467	14 0.01	37	1430	14	<5	<20	35	0.21	<10	213	<10	<1	122
58	L45N	43+50	Ξ	<5	<0.2	2.06	215	115	5	0.42	<1	18	33	37	5.66	<10	0.51	562	<1 <0.01	12	1580	26	<5	<20	24	0.19	<10	181	<10	<1	63
59	L45N	44	E	5	<0.2	2.34	240	140	10	0.48	<1 [·]	26	48	46	7.09	<10	0.79	409	2 0.01	19	1160	16	<5	<20	25	0.27	<10	221	<10	<1	188
60	L45N	44+50	=	<5	<0.2	2.40	170	130	5	0.30	<1	18	43	61	6.41	<10	0.67	279	1 0.01	21	1410	14	<5	<20	20	0.22	<10	202	<10	<1	78

Page 2

~

\

ECO-TECH LABORALORIES LTD.

Et #.	. Tag #		Au((ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	NI	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
61	L45N	45	E	5	<0.2	2.76	60	115	<5	0.22	<1	14	64	50	5.46	<10	0.59	259	4 < 0.01	39	1380	14	<5	<20	17	0.11	<10	134	<10	<1	80
62	L45N	45+50	E	<5	<0.2	3.38	120	100	<5	0.31	<1	21	29	94	7.43	<10	0.61	318	3 0.01	20	3160	18	<5	<20	20	0.19	<10	230	<10	<1	116
63	L45N	46	Ε	<5	<0.2	3.14	70	115	<5	0.48	<1	29	24	101	8.74	<10	0.81	455	1 0.01	17	3950	14	<5	<20	29	0.24	<10	277	<10	<1	123
64	L45N	46+50	E	<5	<0.2	2.06	40	110	5	0.31	<1	13	23	40	5.95	<10	0.35	344	3 0.01	12	2440	12	<5	<20	27	0.15	<10	223	<10	<1	52
65	L45N	47	E	<5	<0.2	3.97	510	90	<5	0.59	<1	37	30	359	8.21	<10	0.84	352	5 0.01	27	2450	18	<5	<20	30	0.21	<10	224	<10	3	70
66	L45N	47+50 i	-	~E	-0.2	2.18	45	76	10	0.29	-1	4.4	24	25	5.88	~10	0.40	259	1 0.01	10	1500	40	۶E	~20	24	0.47	-10	207	-10		
67	L45N		E	-	<0.2		45 80	75 90		0.29	<1 <1	14 16	24 26		5.60 7.08			259	6 0.01		1520 2980	16 14	-	<20 <20		0.17 0.17		207 236		<1	45
68	L45N	-	E		<0.2		40	65		0.27				47		<10			2 < 0.01											<1	48
			E								<1	14	30		0.00 4.90			315	<pre>2 <0.01 <1 <0.01</pre>		3700	16		<20		0.18		222		<1	50
69	L45N		_		<0.2		<5	85		0.38	<1	11	21					215			970	14	-	<20		0.21		235		<1	34
70	L45N	49+50	E	<0	<0.2	2.47	30	75	<0	0.21	<1	12	44	50	3.68	<10	0.40	158	2 <0.01	32	850	16	<5	<20	14	0.09	<10	94	<10	<1	52
71	L45N	50	Ε	<5	<0.2	2.21	130	95	<5	0.61	<1	22	36	94	4.69	<10	0.67	557	4 <0.01	20	1220	20	<5	<20	29	0.17	<10	149	<10	1	94
72	L45N	50+50	E	<5	<0.2	2.62	45	145	<5	0.47	<1	15	56	54	4.57	<10	0.79	492	4 <0.01	35	660	28	<5	<20	29	0.12	<10	126	<10	<1	97
73	L45N	51+00	E	<5	<0.2	2.79	20	110	5	0.27	<1	15	57	45	4.23	<10	0.66	291	<1 <0.01	37	800	20	<5	<20	16	0.13	<10	116	<10	<1	57
74	L45N	51+50	Ε	<5	<0.2	2.69	45	105	<5	0.31	<1	15	44	54	4.86	<10	0.46	234	2 < 0.01	27	1210	18	<5	<20	24	0.11	<10	140	<10	<1	100
75	L45N	52+00 l	E	<5	<0.2	3.91	40	125	<5	0.72	<1	40	18	136	9.20	<10	1.04	814	<1 0.01	17	2810	12	<5	<20	54	0.31	<10	319	<10	2	143
76	L45N	52+50	=	<5	<0.2	4.06	45	160	<5	0.94	<1	30	46	185	5.56	<10	1 02	473	<1 0.01	54	1360	18	~ 5	<20	48	0.14	<10	166	~10	2	63
77	L45N	53+00	-	-	<0.2		45	145		0.46	<1	20	43		5.11			391	<1 0.01		1250	18		<20		0.12		129		<1	94
78	L45N	53+50			<0.2		55	155		0.29	<1	19	57		4,72			347	<1 <0.01		1280	30		<20			<10			<1	141
79	L45N	54+00			<0.2		25	135		0.39	<1	18	37		5.95			649	2 < 0.01		2760	26		<20		0.12		155		<1	97
80	L45N	54+50			<0.2		40	160		0.37	<1	16	60		5.05			374	1 < 0.01		1190	28		<20			<10			1	155
00	LHOIN	J-1100 I	-	-0	~U.L	5.20	40	100	-0	0.57	~1	10	00	55	5.05	10	0.00	514	1 -0.01	-4-4	1150	20	-0	~20	2.7	0.11	-10	121	-10	•	100
81	L45N	55+00 l	Ξ	<5	<0.2	3.87	75	155	<5	0.24	<1	19	59	86	5.71	<10	0.76	431	2 < 0.01	44	1610	46	<5	<20	18	0.11	<10	131	<10	1	154
82	L45N	55+50 l	Ξ	<5	<0.2	3.68	35	115	<5	0.20	<1	14	49	53	4.37	<10	0.57	286	2 <0.01	34	880	32	<5	<20	18	0.11	<10	109	<10	<1	111
83	L45N	56+00 I		<5	<0.2	2.86	25	120	<5	0.27	<1	13	43	42	4,52	<10	0.53	504	<1 <0.01	25	1450	32	<5	<20	21	0.13	<10	131	<10	<1	100
84	L45N	56+50	2	<5	<0.2	2.69	85	125	<5	0.26	<1	13	64	38	4.58	<10	0.69	346	1 < 0.01	41	1670	40	<5	<20	21	0.09	<10	103	<10	<1	87
85	L45N	57+00 i	=	<5	<0.2	3.70	25	125	<5	0.29	<1	20	45	91	5.12	<10	0.77	395	1 <0.01	32	1280	20	<5	<20	28	0.14	<10	140	<10	<1	80
86	L45N	57+50 E	=	<5	<0.2	3.25	25	140	<5	0.27	<1	14	51	62	4.93	<10	0.59	426	4 <0.01	32	1520	24	<5	<20	23	0.10	<10	120	<10	<1	100
87	L45N	58+00 8			<0.2		25	130		0.32	<1	16	43		5.70			362	1 < 0.01		2250	22		<20		0.13		131		<1	101
88	L45N	58+50		-	<0.2		15	160		0.49	<1	17	33		5.97			580	3 < 0.01		1280	18		<20		0.13		155		<1	101
89	L45N	59+00			<0.2		15	150			<1	18	39		4.52			575	1 < 0.01		1160	18		<20		0.10		118		<1	89
90	L45N	59+50			<0.2		25	140		0.32	<1	20	39		5.91			388	2 < 0.01		1820	26		<20		0.12		130		<1	78
20	L-1014	33.30 1	-	-0	-0.2	5.40	20	140	-0	0.52	~1	20	55	500	0.51	10	0.00	000	2 -0.01	52	1020	20	~5	~20	02	0.12	~10	150	~10	~1	10
91	L45N	60+00 E	Ξ	<5	<0.2	3.90	30	185		0.42	<1	22	43	148	7.02	<10	0.78	474	3 <0.01	31	2010	22	<5	<20			<10	176	<10	<1	114
92	L46+25N	42 E	Ξ	<5	<0.2	4.53	115	145	<5	0.28	<1	28	56	113	7.30	<10	1.16	466	2 0.01	41	830	20	<5	<20	22	0.18	<10	185	<10	<1	124
93	L46+25N	42+50 E	Ξ	<5	<0.2	3.79	195	120	<5	0.26	<1	28	40	150	7.03	<10	0.73	593	2 0.01	23	2930	20	<5	<20	19	0.17	<10	163	<10	<1	121
94	L46+25N	43 E	3	<5	<0.2	2.59	90	175	<5	0.32	<1	17	46	63	6.36	<10	0.77	913	1 0.01	24	1810	16	<5	<20	27	0.17	<10	183	<10	<1	79
95	L46+25N	43+50 E	Ξ	5	<0.2	3.05	210	160	<5	0.38	<1	24	51	99	7,35	<10	1.13	738	2 0.01	32	1370	16	<5	<20	28	0.19	<10	186	<10	<1	135

Page 3

1

٠

HUDSON BAY EN _ORATION & DEVELOPMENT LTD. ICP CERTIFICATE OF ANALYSIS AK -----840

1

ECO-TECH LABORATORIES LTD.

_ Et #.	Tag #			Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
96	L46+25N	44	E	<5	<0.2	3.53	390	110	<5	0.65	<1	82	21	382	7.77	<10	1.02	677	1 0.01	18	2370	18	<5	<20	46	0.21	<10	187	<10	4	124
97	L46+25N	44+50	Ε	<5	<0.2	2.60	90	115	<5	0.37	<1	20	34	72	5.68	<10	0.63	346	<1 0.01	19	1580	18	<5	<20	21	0.16	<10	165	<10	<1	94
98	L46+25N	45	E	<5	<0.2	1.81	45	130	5	0.21	<1	16	38	41	6.27	<10	0.51	365	<1 0.01	15	1980	16	<5	<20	16	0.21	<10	201		<1	67
99	L46+25N	45+50	Е	<5	<0.2	1.45	185	125	10	0.44	<1	15	21	54	6.46	<10	0.35	205	8 0.01	10	1230	16	<5	<20	26	0.24	<10	239	<10	<1	55
100	L46+25N	46	Ε	<5	<0.2	3.65	60	95	<5	0.62	<1	23	15	176	8.30	<10	0.88	391	9 0.02	13	2350	14	<5	<20	31	0.27	<10	233	<10	2	71
																														-	• •
101	L46+25N	46+50	Ε	<5	<0.2	1.99	270	105	5	0.24	<1	14	33	62	7.64	<10	0.40	223	30 <0.01	16	1430	16	<5	<20	18	0.16	<10	195	<10	<1	42
102	L46+25N	47	E	<5	<0.2	2,37	75	95	<5	0.47	<1	17	39	79	4.65	<10	0.59	376	2 0.01	24	1510	20	<5	<20	26	0.12	<10	131	<10	1	63
103	L46+25N	47+50	Ε	<5	<0.2	2.08	1445	95	10	0.37	<1	34	26	59	6.95	<10	0.45	338	5 < 0.01	13	1870	46	<5	<20	30	0.14	<10	180	<10	1	47
104	L46+25N	48	Ε	<5	<0.2	0.86	30	85	<5	0.28	<1	6	29	23	2.37	<10	0.15	151	<1 <0.01	12	400	10	<5	<20	19	0.12	<10	94	<10	<1	13
105	L46+25N	48+50	Е	<5	1.2	4.34	1440	70	<5	0.83	<1	118	34	1160	5.12	20	0.58	700	7 <0.01	29	1900	36	<5	<20	35	0.09	<10	130	<10	38	52
106	L46+25N	49	Е			2.65		135		0.59	<1	22	38		5.42			414	7 <0.01		1130	18	<5	<20	39	0.13	<10	150	<10	<1	80
107	L46+25N		Е	-		2.52		95		0.27	<1	13	41	- 31	6.18	<10	0.42	247	1 <0.01	16	1570	18	<5	<20	18	0.21	<10	196	<10	<1	55
108	L46+25N	50	Е			2.32		95		0.23	<1	11	50	46	3.89	<10	0.62	338	2 < 0.01	27	630	22	<5	<20	14	0.08	<10	106	<10	<1	74
109	L46+25N	50+00	Е			3.60		130		0.40	<1	45	39	196	7.94	<10	0.56	444	6 <0.01	74	1660	14	<5	<20	51	0.10	<10	120	<10	<1	149
110	L46+25N	50+50	Ε	<5	<0.2	2.39	45	135	<5	0.27	<1	12	41	109	3.97	<10	0.39	258	2 <0.01	31	740	22	<5	<20	23	0.10	<10	120	<10	<1	91
111	L46+25N			<5	<0.2	2.61	65	150	5	0.36	<1	16	56	41	5.23	<10	0.65	373	1 0.01	36	1140	28	<5	<20	20	0.12	<10	132	<10	<1	154
112	L46+25N	51+50	Е	<5	<0.2	3.06	60	105	<5	0.58	<1	21	42	94	5.56	<10	0.66	340	2 < 0.01	29	640	18	<5	<20	38	0.13	<10	142	<10	<1	70
113	L46+25N	52+00	Е	<5	<0.2	2.98	45	120	<5	0.36	<1	20	50	55	5.08	<10	0.68	315	<1 <0.01	37	810	34	<5	<20	24	0.14	<10	128	<10	<1	95
114	L46+25N	52+50	Е	5	<0.2	2.88	50	105	<5	0.29	<1	16	47	55	4.66	<10	0.56	285	1 <0.01	32	1240	30	<5	<20	21	0.11	<10	125	<10	<1	80
115	L46+25N	53+00	Е	<5	<0.2	4.11	30	145	<5	1.22	<1	28	41	135	5.83	<10	0.92	1746	2 0.01	40	1590	24	<5	<20	61	0.15	<10	163	<10	10	115
116	L46+25N	** **				3.02	-	175	<5	0.43	<1	26	31	77	6.44	<10	0.72	726	<1 <0.01		1720	26	<5	<20	31	0.19	<10	164	<10	<1	124
117	L46+25N					1.99		115		0.45	<1	13	47	31	3.59	<10	0.56	346	< 1 <0.01	27	640	26	<5	<20	26	0.11	<10	106	<10	<1	92
118	L46+25N					4.05		160		0.21	<1	18	62	73	6.13	<10	0.71	362	1 <0.01	44	950	48	<5	<20	17	0.15	<10	144	<10	<1	204
119	L46+25N					3.82		125		0.30	<1	16	50		5.46			388	2 <0.01	46	2760	24	<5	<20		0.1 0				<1	87
120	L48+25N	56+00	Ε	<5	<0.2	4.40	50	145	<5	0.23	<1	20	59	121	4.61	<10	0.86	389	1 <0.01	58	1500	34	<5	<20	17	0.10	<10	113	<10	1	106
			_	_					_																						
121	L46+25N					2.55	25	210		0.42		12	47		3.87			395	3 < 0.01		480	20		<20		0.08				<1	80
122	L46+25N					2.33	10	85		0.16	<1	5	29		3.41			127	3 <0.01		760	22		<20		0.05			<10	<1	23
123	L46+25N					3.68	30	80		0.17	<1	13	36		5.63			311	2 <0.01		1850	22		<20		0.12		147		<1	65
	L46+25N		_	-	<0.2		20	110		0.19	<1	10	37		5.17			269	3 <0.01		1670	22		<20		0.10		132		<1	64
125	L46+25N	58+50	Е	<5	<0.2	2.51	10	120	<5	0.31	<1	8	36	52	3.63	<10	0.39	237	1 <0.01	18	1370	20	<5	<20	23	0.07	<10	100	<10	<1	41
400	1.40.000	50.00	-	.=		0.04	_					_											-					•			••
126	L46+25N		_			2.21		115		0.24	<1	8	27		3.25			217	<1 <0.01		1450	20		<20		0.07			<10	<1	31
127	L46+25N		Ë			4.42		120		0.24	<1	14	42		5.41			292	2 < 0.01		980	20		<20		0.10			<10	2	52
128	L46+25N		E	<5		1.39	<5	145		0.31	<1	5	17	+ -	2.43			109	2 < 0.01		980	14		<20		0.04			<10	1	18
129	L47+50N	42	E			4.45	180	125		0.25	<1	26	48		6.48			446	3 < 0.01		1460	20		<20		0.13			<10	<1	112
130	L47+50N	42+50	E	<5	U.4	2.79	55	110	<5	0.23	<1	14	44	63	5.50	<10	0.74	554	2 <0.01	22	1710	16	<5	<20	18	0.12	<10	141	<10	<1	94

ICP CERTIFICATE OF ANALYSIS AK -0-840

ECO-TECH LABORATORIES LTD.

Et #.	Tag #			Au(ppb)	Ag	At %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	รก	Sr	Ti %	U	v	N 1	(Za	n
131	L47+50N	43	E	5	<0.2	2.80	80	115	<5	0.24	<1	19	35	84	5.75	<10	0.72	395	2 0.01	19	1110	14	<5 <	<20	18	0.15	<10	159 <	0 <	8	5
132	147+50N	43+50	Ε	<5	<0.2	4.01	300	120	<5	0.26	<1	33	28	150	7.45	<10	0.84	350	5 0.01	20	1450	18	<5 <	<20	26	0.13	<10	195 <*	0 <	1 89	9
133	L47+50N	44	Е	<5	<0.2	2.34	85	115	5	0.30	<1	14	36	48	5.89	<10	0.65	323	3 <0.01	20	2580	16	<5 <	-20	25	0.11	<10	159 <	0 <		-
134	L47+50N	44+50	Е	<5	<0.2	1.72	25	90	5	0.29	<1	14	14	40	5.86	<10	0.43	354	3 0.01	8	3370	12	<5 <	<20	16	0.13	<10	197 <	0 <	1 43	2
135	L47+50N	45	Е	<5	<0.2	1.92	230	160	5	0.69	<1	16	26	50	6.75	<10	0.50	626	9 0.01	13	1470	20	<5 <	<20	38	0.15	<10	195 <			
																															•
136	L47+50N	45+50	Е	<5	<0.2	2.14	250	105	<5	0.61	<1	38	25	139	6.45	<10	0.69	795	8 0.01	15	1300	16	<5 <	20	33	0.16	<10	187 <	0	1 92	2
137	L47+50N	46	ε	<5	<0.2	4.25	75	90	5	0.19	<1	17	30	59	7.81	<10	0.46	317	5 < 0.01	16	3030	18	<5 <			0.14		167 <			
138	L47+50N	46+50	E	<5	<0.2	1.69	60	105	10	0.23	<1	13	20	26	5.42	<10	0.41	263	<1 <0.01	10	2510	14	<5 <	20	16	0.18	<10	200 <	-		-
139	L47+50N	47	Е	<5	<0.2	1.93	60	85	<5	0.50	<1	17	34	87	4.60	<10	0.61	335	12 0.01	22	960	12	<5 <	20		0.12		139 <1		1 48	-
140	L47+50N	47+50	Е	<5	<0.2	2.26	100	75		0.49	<1	18	33		5.44			357	7 0.01		1250	12	<5 <					175 <		1 75	
																							-						•		•
141	L47+50N	48	ε	<5	<0.2	1.38	50	65	<5	0.23	<1	9	29	24	4.66	<10	0.30	192	3 < 0.01	11	1630	14	<5 <	:20	13	0.12	<10	141 <	0 <	1 48	8
142	L47+50N	48+50	Ε	25	<0.2	2.79	160	85	<5	0.83	<1	24	36	606	5.38	10	1.08	596	5 0.01	27	1260	12	<5 <	:20	36	0.16	<10	145 <	0 2	0 68	8
143	L47+50N	49	Е	<5	<0.2	3.38	80	175	<5	0.45	<1	23	43	120	6.66	<10	0.74	411	6 0.01	45	1460	28	<5 <	:20	24	0.13	<10	187 <	0 <	1 11	1
144	L47+50N	49+50	Е	<5	<0.2	3.55	65	230	<5	0.62	<1	25	68	123	5.50	<10	0.94	460	3 < 0.01	72	1620	20	<5 <	<20	33	0.09	<10	136 <	0 <	1 102	2
145	L47+50N	50	E	<5	<0.2	2.60	30	115	<5	0.28	<1	15	49	41	4.46	<10	0.60	266	1 <0.01	34	960	16	<5 <	<20	16	0.11	<10	113 <	0 <	1 90	0
							•																								
146	L47+50N	50+50	Е	<5	<0.2	2.59	35	150	<5	0.26	<1	17	57	42	3.63	<10	0.76	352	<1 0.01	45	570	36	<5 <	<20	19	0.11	<10	89 <	0 <	1 8:	5
147	L47+50N	51+00	Е	<5	<0.2	3.78	60	130	<5	0.61	<1	25	34	114	7.34	<10	0.73	374	3 <0.01	31	1670	18	<5 <	<20	39	0.14	<10	162 <'	0 <	1 12	5
148	L47+50N	51+50	Е			1.72	25	80	<5	0.57	<1	14	40	37	3.60	<10	0.61	394	<1 <0.01	25	650	28	<5 <	<20	28	0.10	<10	104 <	0 <	1 68	8
149	L47+50N	52+00	Е	<5	<0.2	5.91	60	135	<5	1.63	<1	23	16	181	6.34	<10	0.72	455	2 0.01	19	3150	20	<5 <	-20	23	0.12	<10	144 <	0 <	1 69	9
150	L47+50N	52+50	ε	<5	<0.2	3.42	70	160	<5	0.61	<1	47	17	247	7.68	<10	0.91	1507	3 <0.01	17	2950	14	<5 <	-20	58	0.13	<10	197 <	0 <	1 84	4
151	L47+50N					4.52	15	90		0.56	<1	23	26		8.28			568	1 <0.01		2530	16	<5 <					197 <		1 93	3
152	L47+50N					2,90	35	135			<1	16	48		5.06			487	2 < 0.01		1330	20	<5 <	<20	23	0.10	<10	118 <	0 <	1 110	0
153	L47+50N					3.58	40	145		0.31	<1	18	57		5.17			413	2 < 0.01		1420	22	<5 <	<20	20	0.09	<10	121 <′	0 <	1 116	6
154	L47+50N					2.52	20	170		0.44	<1	14	48		3.95			595	2 < 0.01		950	18	<5 <			0.07		95 <1	0 <	1 98	8
155	L47+50N	55+00	Е	5	<0.2	3.06	20	155	<5	0.25	<1	15	53	70	4.52	<10	0.65	436	2 <0.01	45	1560	20	<5 <	<20	25	0.07	<10	115 <	0 <	1 89	9
450	1474501	50.00	-	-6	-0.0	2.64	25	400		0.00	-4			60	4.04	-10	0.74	200	0 -0.04	25	4070	40		-00	47	0.00	-40	07	•		
156	L47+50N		_			2.64	25	100			<1	14	45				0.74	363	2 < 0.01		1070	16	<5 <			0.09		97 <		•	-
157	L47+50N					2.49	10	125		0.20	<1	11	48		3.51			242	<1 <0.01		390	14	<5 <			0.09		107 <		• -	
158	L47+50N					2.45	20	90		0.22	<1	12	38		5.86			278	3 < 0.01		2720	14	<5 <			0.08		137 <			
159	L47+50N		_	-		2.36	<5	95		0.56	<1	14	19					391	1 0.01		2560	10	<5 <			0.12		160 <	-		-
160	L47+50N	58+50	Ę	<5	0.6	2.48	<5	120	<5	0.50	<1	19	20	191	7.14	<10	0.71	1039	4 <0.01	13	3680	10	<5 <	:20	27	0.07	<10	158 <'	0 <	1 4:	3
404	1 47.000	50.00	-	-	• •				-	0.50				·	F 40		0.07	400	4			<u></u>			~~						
161	L47+50N					4.16	20	140		0.59	<1	21	41		5.18			462	4 0.01		1590	20	<5 <				<10	131 <	-	7 83	-
162	L47+50N					2.56	15	155			<1	21	49		6.03			581	4 <0.01		1000	14	<5 <			0.09		142 <			
163		60+00		<5	0.8	4.63	20	255		0.70	<1	26	54		5.72			923	6 0.01		1580	18	<5 <			0.06		144 <		3 11:	-
164	L48+75N	42	E			2.59	90	155		0.25	<1	21	46		6.99		0.85	431	<1 0.02		1490	16	<5 <			0.27		213 <1			
165	L48+75N	42+50	E	5	<0.2	2.09	80	145	5	0.27	<1	18	35	53	7.12	<10	0.66	379	<1 0.01	15	1940	14	<5 <	:20	18	0.24	<10	232 <1	0 <	1 81	7

ICP CERTIFICATE OF ANALYSIS AK 96-840

ECO-TECH LABORATORIES LTD.

Et #.	Tag #			Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr	Ti %	ບ	v	w	Y	Zn
166	L48+75N	43 .	Ē	<5	<0.2	1.69	230	105	<5	0.35	<1	19	29	76	5.98	<10	0.51	347	3 0.01	14	2450	12	<5	<20	20	0.14	<10	215	<10	<1	64
167	L48+75N	43+50	E	<5	<0.2	2.41	135	165	<5	0.49	<1	20	33	80	6.41	<10	0.58	1044	5 0.01	15	2870	16	<5	<20			<10			<1	104
168	L48+75N	44	Е	<5	0.4	2.91	420	160	<5	1.44	<1	64	41	332	7.03	<10	0.98	1369	5 0.01	27	2330	18	<5	<20	70	0.11	<10	180	<10	23	196
169	L48+75N	45+50	Е	<5	0.4	2.16	45	135	<5	0.55	<1	11	31	48	4.82	<10	0.42	187	5 0.01	12	670	16	<5	<20	36	0.12	<10	178	<10	<1	63
170	L48+75N	46	ε	<5	<0.2	2.76	35	90	10	0.23	<1	14	33	36	6.06	<10	0.46	257	<1 <0.01	14	1460	18	<5	<20	13	0.19	<10	195	<10	<1	76
171	L48+75N	46+50	E	<5	<0.2	1.91	25	155	<5	0.92	<1	11	36	37	3.58	<10	0.57	343	1 0.01	16	740	16	<5	<20	48	0.11	<10	145	<10	1	63
172	L48+75N	47	E	<5	<0.2	1.70	90	85	5	0.25	<1	13	41	43	6.16	<10	0.42	266	2 < 0.01	17	640	16	<5	<20	16	0.21	<10	253	<10	<1	49
173	L48+75N	47+50	E	<5	0.6	2.04	150	115	<5	0.48	<1	17	38	87	5.91	<10	0.62	345	4 < 0.01	23	1400	14	<5	<20	24	0.13	<10	179	<10	<1	68
174	L48+75N	48	Е	<5	<0.2	2.10	25	120	<5	0.28	<1	12	58	35	4.12	<10	0.62	347	<1 <0.01	37	790	24	<5	<20	17	0.10	<10	103	<10	<1	74
175	L48+75N	49	Ε	<5	<0.2	1.79	20	130	<5	0.41	<1	11	25	34	5.27	<10	0.48	340	4 < 0.01	12	2170	14	<5	<20	31	0.15	<10	174	<10	<1	51
176	L48+75N	49+50	Е	<5	<0.2	2.00	15	135	<5	0.52	<1	13	58	47	3.68	<10	0.58	548	3 < 0.01	33	480	14	<5	<20	31	0.07	<10	108	<10	1	58
177	L48+75N	50+00	E	<5	<0.2	2.59	35	130	<5	0.29	<1	12	58	25	4.31	<10	0.51	244	1 <0.01	34	720	38	<5	<20	16	0.09	<10	107	<10	<1	88
178	L48+75N	50+50	E	<5	0.2	3.66	85	80	<5	1.21	<1	33	14	154	7.45	<10	0.72	398	4 0.02	12	1860	10	<5	<20	78	0.12	<10	198	<10	2	64
179	L48+75N	51+00	E	<5	<0.2	2.68	50	125	<5	0.25	<1	17	46	49	4.50	<10	0.60	264	2 < 0.01	35	1370	22	<5	<20	19	0.10	<10	107	<10	<1	65
180	L48+75N	51+50	Е	<5	<0.2	4.23	105	95	<5	0.63	<1	26	21	171	7.06	<10	0.76	341	2 < 0.01	18	1440	16	<5	<20	54	0.18	<10	187	<10	<1	63
181	L48+75N	52+00	E	<5	<0.2	5.36	45	90	<5	1.05	<1	32	10	224	7.15	<10	0.83	831	1 0.04	10	3450	18	<5	<20	107	0.16	<10	179	<10	2	107
182	L48+75N	52+50	Е	<5	<0.2	7.91	30	75	<5	1.06	<1	19	10	140	5.26	<10	0.50	296	1 0.03	10	5340	16	<5	<20	103	0.09	<10	102	<10	3	71
183	L48+75N	53+00	E	<5	<0.2	4.53	10	260	<5	0.82	<1	27	29	141	6.87	<10	0.83	661	2 <0.01	30	2830	22	<5	<20	109	0.11	<10	141	<10	<1	139
	L48+75N			5	<0.2	2.51	20	115	<5	0.31	<1	13	41	40	4.69	<10	0.60	280	2 < 0.01	25	770	18	<5	<20	23	0.11	<10	123	<10	<1	72
185	L48+75N	54+00	E	<5	<0.2	3.52	40	250	<5	0.33	<1	17	57	266	5.33	<10	0.86	410	5 <0.01	54	520	22	<5	<20	45	0.08	<10	139	<10	<1	96
186	L48+75N		_			2.71	30	125		0.27	<1	12	57		3.94			329	2 <0.01	36		16		<20		0.08			<10	<1	95
187	L48+75N		_		<0.2		5	130		0.58	<1	16	31		4.86			664	1 <0.01		1840	14		<20		0.10		135	<10	<1	74
188	L48+75N		-		<0.2		20	95		0.32	<1	14	33		5.94			373	3 <0.01		3050	12		<20				140		<1	66
189	L48+75N		_		<0.2		20	95		0.20	<1	13	40		5.16			409	2 <0.01		1260	14		<20				138		<1	68
190	L48+75N	56+50	Ε	5	<0.2	2.60	20	100	<5	0.23	<1	11	44	56	5.49	<10	0.54	271	3 <0.01	22	900	14	<5	<20	20	0.10	<10	146	<10	<1	55
191	L48+75N	57400	-	~5	<0.2	2.16	30	105	~5	0.17	-1	10	47	74	4.06	~10	0.50	202	2 -0.01	20	1420		~6	-20	4 5	0.00	-10	474	-10	-4	74
192	L48+75N				<0.2		30 25	105		0.17		12 13	47 42		4.96			293	2 < 0.01		1430	14		<20			<10			<1	71
	L48+75N		Ē		<0.2		20 30	80		0.25	<1 <1	10	42 42		5.69			319	2 < 0.01		1470 880	14		<20		0.10		137		<1	69 64
193	L48+75N		Ē							0.10					4.46			264	2 < 0.01			12		<20			<10			<1	54
194	L40+75N				<0.2		15	110			<1 <1	12	38		4.86			431	2 < 0.01		1270	10		<20		0.10		153		<1	54
190	L48+7 DIN	59+00 I	Ę	5	<0.2	3,38	25	155	<0	0.47	<1	20	49	181	4.59	<10	0.83	724	2 0.01	40	1480	12	<5	<20	33	0.07	<10	121	<10	7	93
196	L48+75N	59+50	F	<5	<0.2	3.10	35	115	2 5	0.24	<1	14	44	87	6.20	<10	0.64	266	4 <0.01	31	2420	14	-5	<20	17	0.10	<10	155	~10	<1	61
190	L48+75N				<0.2		33 15	120		0.24	<1	15	28		5.54			333	2 < 0.01		1090	12	-	<20							51
197	L40+75IN	42 1			<0.2		95			0.30					5.54 6.49						1690	12	-		21			150	-	<1 -1	
198	L50N	42 1				2.50		120 125		0.28 1.78	<1	20 22	39					597 1200	<1 0.02					<20		0.18		176		<1	104
200	L50N										<1		31		3.63			1290	6 0.01		1540	14		<20		0.04		114		23	82
200	LOUN	43 I	5	Ç	≤u,Z	2.11	105	160	<0	0.40	<1	20	32	64	7.16	<10	0.55	522	3 0.01	16	1400	14	<5	<20	24	0.16	<10	214	<10	<1	85

Page 6

.

ICP CERTIFICATE OF ANALYSIS AK 96-840

ECO-TECH LABORATORIES LTD.

.

<u> </u>	Tag #			Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	ບ	v	w	Y	Zn
201	L50N	43+50	E	<5	<0.2	1.07	50	110	5	0.28	<1	10	28	33	4.26	<10	0.28	380	2	<0.01	12	1370	14	<5	<20	17	0.13	<10	159	<10	<1	47
202	L50N	44	Е	<5	<0.2	1.26	15	80	<5	0.31	<1	12	18	32	4.12	<10	0.41	344	<1	0.01	8	1230	8	<5	<20	15	0.16	<10	162	<10	<1	39
203	L51+25N	42	Е	<5	<0.2	1.89	50	90	10	0.26	<1	15	26	35	5.98	<10	0.53	290	1	<0.01	11	2200	16	<5	<20	18	0.15	<10	175	<10	<1	80
204	L51+25N	42+50	Ε	5	<0.2	1.76	50	85	<5	0.27	<1	15	28	46	5.38	<10	0.57	357	<1	0.01	13	1120	14	<5	<20	25	0.18	<10	166	<10	<1	84
205	L51+25N	43	Ε	<5	<0.2	1.87	135	120	5	0.28	<1	18	24	51	8.25	<10	0.54	339	16	<0.01	14	1350	12	<5	<20	22	0.21	<10	253	<10	<1	54
																																•
206	L51+25N	43+50	Е	<5	<0.2	1.77	30	140	5	0.39	<1	14	19	40	5.86	<10	0.48	509	<1	0.01	10	2600	12	<5	<20	24	0.20	<10	206	<10	<1	53
207	L51+25N	44	Е	<5	<0.2	1.85	50	70	5	0.22	<1	13	22	48	6.27	<10	0.48	247	<1	0.01	11	2750	12	<5	<20	12	0.18	<10	212	<10	<1	39
208	L51+25N	44+50	E	<5	<0.2	3.43	455	175	<5	0.57	<1	56	42	534	6.96	<10	0.89	632	9	<0.01	45	1120	18	<5	<20	36	0.10	<10	189	<10	<1	116
209	L51+25N	45	Е	5	<0.2	1.83	45	115	<5	0.36	<1	14	28	44	6.08	<10	0.44	357	3	<0.01	13	2290	14	<5	<20	22	0.18	<10	197	<10	<1	62
210	L51+25N	45+50	Е	<5	<0.2	1.80	25	100	<5	0.57	<1	14	28	76	4.96	<10	0.61	258	2	0.01	15	1360	14	<5	<20	31	0.18	<10	155	<10	<1	47
211	L51+25N	46	Е	<5	<0.2	4.40	40	85	<5	0.33	<1	17	35	129	5.74	<10	0.69	363	4	<0.01	24	2990	18	<5	<20	21	0.11	<10	142	<10	<1	65
212	L51+25N	46+50	Е	<5	<0.2	1.75	20	95	5	0.25	<1	11	31	40	6.16	<10	0.35	253	5	<0.01	13	2180	16	<5	<20	22	0.10	<10	199	<10	<1	44
213	L51+25N	47	Ē	5	<0.2	2.55	5	85	<5	0.14	<1	13	39	58	3.65	<10	0.55	207	2	<0.01	24	660	14	<5	<20	13	0.06	<10	73	<10	<1	67
214	L51+25N	47+50	Е	<5	<0.2	2.36	30	130	5	0.25	<1	14	42	39	4,78	<10	0.61	320	2	<0.01	29	1950	26	<5	<20	14	0.09	<10	126	<10	<1	106
215	L51+25N	48	Ε	<5	<0.2	2.23	40	95	<5	0.18	<1	10	50	29	3.94	<10	0.49	222	2	<0.01	27	850	28	<5	<20	10	0.06	<10	99	<10	<1	70
216	L51+25N	48+50	Ε	<5	0.4	3.51	40	180	<5	0.64	<1	40	52	491	6.19	<10	1.03	1164	4	<0.01	58	970	24	<5	<20	39	0.12	<10	172	<10	2	101
217	L51+25N	49	ε	5	1.6	2.81	35	135	<5	0.94	1	24	44	187	5.75	<10	0.71	785	5	0.03	36	840	20	<5	<20	34	0.08	<10	156	<10	3	109
218	L51+25N	49+50	Е	<5	<0.2	3.23	30	160	<5	0.86	<1	22	52	228	5.82	<10	0.80	660	5	<0.01	40	1020	16	<5	<20	38	0.08	<10	156	<10	10	74
219	L51+25N	50	Е	<5	<0.2	2.68	40	115	<5	0.59	<1	21	37	202	6.24	<10	0.78	362	5	<0.01	30	1200	18	<5	<20	30	0.09	<10	153	<10	<1	86
220	L51+25N	50+50	Е	<5	<0.2	1.01	5	90	<5	0.27	<1	6	25	20	2.94	<10	0.16	159	2	<0.01	11	950	10	<5	<20	22	0.07	<10	96	<10	<1	34
221	L51+25N	51	Е	<5	<0.2	2.05	15	90	<5	0.39	<1	12	30	53	4.36	<10	0.49	245	2	<0.01	19	2100	12	<5	<20	22	0.08	<10	120	<10	<1	56
222	L51+25N	51+50	Е	<5	1.4	4.95	45	250	<5	1.28	4	29	65	431	6.46	10	1.06	1955	8	0.01	73	1720	16	<5	<20	66	0.04	<10	160	<10	16	104
223	L51+25N	52	Ε	<5	<0.2	5.07	100	165	<5	1.45	2	35	37	286	6.96	<10	1.32	543	5	0.03	48	1150	10	<5	<20	108	0.10	<10	204	<10	<1	93
224	L51+25N	52+50	Е	<5	<0.2	3.91	40	95	<5	0.20	<1	15	46	155	4.73	<10	0.66	298	2	<0.01	41	1720	22	<5	<20	14	0.08	<10	108	<10	<1	80
225	L51+25N	53	E	<5	<0.2	3.98	30	85	<5	0.13	<1	14	47	143	5.84	<10	0.56	266	3	<0.01	31	1920	16	<5	<20	8	0.09	<10	136	<10	<1	67
226	L51+25N	53+50	E	5	0.4	2.92	20	85	<5	0.17	<1	10	44	52	3.99	<10	0.54	254	1	<0.01	27	960	16	<5	<20	13	0.07	<10	100	<10	<1	59
227	L51+25N	54	E	<5	<0.2	2.86	20	70	<5	0.13	<1	8	41	34	4.82	<10	0.36	211	3	<0.01	18	1270	14	<5	<20	12	0.07	<10	111	<10	<1	49
228	L51+25N	54+50	Е	<5	<0.2	2.26	15	85	<5	0.18	<1	9	33	30	3.67	<10	0.45	186	2	<0.01	17	1070	14	<5	<20	16	0.07	<10	103	<10	<1	49
229	L51+25N	55	Е	<5	0.2	3.40	40	125	<5	0.28	<1	15	40	105	4.62	<10	0.74	326	3	<0.01	35	1530	12	<5	<20	19	0.07	<10	112	<10	<1	74
230	L51+25N		_	<5		2.32	35	90		0.18	5	11	37	60			0.50	228		<0.01		1510	14	-	<20		0.06		149		<1	50
																										,					-	
231	L51+25N	56	Е	<5	<0.2	1.78	10	120	<5	0.16	<1	13	26	86	3.82	<10	0.31	1015	3	<0.01	15	950	12	<5	<20	16	0.05	<10	115	<10	<1	44
232	L51+25N	56+50	Ē	-		3.03	25	105		0.22	<1	13	34	60			0.59	292	-	< 0.01			14	-	<20		0.08	. –		<10	<1	66
233	L51+25N	57	Ē			3.92	20	115	<5	0.58	<1	19	30	149		<10		412		<0.01	26	2690	12	-	<20	41		<10		<10	<1	75
234	L51+25N	57+50	Ē		<0.2		20	95		0,32	<1	14	34	98		<10		387		< 0.01	24	1620	10		<20	20	0.08		118		<1	69
235	L51+25N	58	Ē	-		2.98	20	160		0.97	<1	19	34	351				784		<0.01		1530	10	-	<20		0.04		123		8	70
				-	-									-	-	-					-					-	-				-	

ICP CERTIFICATE OF ANALYSIS AK 96-840

ECO-TECH LABORATORIES LTD.

Et #.	Tag #			Au(ppb)	Ag	Ai %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
236	L51+25N	58+50	E	<5	<0.2	3.35	35	135	<5	0.52	<1	18	18	172	5.40	<10	0.84	395	4 0.03	18	3240	28	<5	<20	35	0.07	<10	141	<10	1	88
237	L51+25N	59	Е	<5	<0.2	1,58	15	120	<5	0.36	<1	12	33	47	4.29	<10	0.55	352	2 < 0.01	18	1290	10	<5	<20	29	0.08	<10	114	<10	<1	66
238	L51+25N	59+50	Ε	<5	<0.2	1.53	15	125	<5	0.52	<1	9	32	71	3.41	<10	0.43	301	3 <0.01	17	660	8	<5	<20	34	0.05	<10	104	<10	<1	43
239	L51+25N	60	E	<5	1.2	3.21	25	225	<5	1.36	2	33	41	538	6.11	<10	0.85	2847	6 0.01	31	1870	20	<5	<20	68	0.05	<10	159	<10	9	116
240	L51+25N	60+50	Е	<5	<0.2	1.52	10	110	<5	0.29	<1	11	23	55	4.54	<10	0.34	454	3 < 0.01	14	1460	12	<5	<20	22	0.09	<10	153	<10	<1	48
241	L51+25N	61	Ε	<5	<0.2	2,19	25	220	<5	0.40	<1	31	29	150	5.49	<10	0.52	1829	6 <0.01	23	990	24	<5	<20	33	0.05	<10	162	<10	<1	82
242	L51+25N	61+50	E	<5	<0.2	1.91	20	115	<5	0.50	1	15	26	69	6.31	<10	0.58	359	4 < 0.01	16	1070	10	<5	<20	36	0.09	<10	216	<10	<1	63
243	L51+25N	62	Ε	<5	<0.2	1.26	15	120	5	0.35	<1	10	22	39	5.09	<10	0.33	209	2 <0.01	11	1370	8	<5	<20	29	0.09	<10	200	<10	<1	31
244	L51+25N	62+50	Ę	<5	<0.2	3.61	30	125	<5	0.53	<1	19	20	146	5,70	<10	0.61	868	2 0.03	15	4230	16	<5	<20	33	0.09	<10	158	<10	<1	76
245	L51+25N	63	E	5	<0.2	3.11	25	135	<5	0.42	2	14	22	119	6.88	<10	0.55	261	5 0.03	15	2430	14	<5	<20	29	0.10	<10	180	<10	<1	53
246	L51+25N	63+50	Е		<0.2		30	130			<1	19	32		5.00			611	2 <0.01		1780	10		<20				137		<1	64
247	L51+25N	64	E	<5	<0.2	1.37	15	180	-	0.39	<1	9	26		3.76			254	1 <0.01		750	12	-	<20		0.10		136		<1	45
248	L52+50N	41	Ę		<0.2		30	115		0.27	<1	16	45		7.00			345	<1 0.01		2700	16		<20		0.30		250		<1	52
249	L52+50N	41+50	E	<5	<0.2	1.97	60	90		0.37	<1	11	29		4.84			202	3 < 0.01		1220	32		<20		0.14		161		<1	50
250	L52+50N	42	Ε	<5	<0.2	1.88	105	85	5	0.26	<1	14	35	60	6.98	<10	0.54	300	2 0.01	18	2870	18	<5	<20	18	0.17	<10	208	<10	<1	65
251	L52+50N	42+50	E	<5	<0.2	1.77	230	125		0.77	<1	23	19		6.78			779	5 0.01		1080	10		<20			<10			<1	76
252	L52+50N	43	Е	-		3.26		110		0.65	<1	15	26		6.53			258	2 <0.01		2020	12	-	<20		0.14		180		<1	73
253	L52+50N	43+50	Е	5	<0.2	1.61	90	95		0.78	<1	15	15		5.26			220	2 0.01		1040	8		<20			<10	181		3	45
254	L52+50N		E	-	<0.2		75	90		0.38	<1	16	22		7.44			255	3 <0.01		5230	12		<20	19		<10	223		<1	51
255	L52+50N	44+50	Ε	<5	<0.2	2.88	75	130	<5	0.34	<1	20	27	151	7.52	<10	0.80	339	5 <0.01	21	1580	12	<5	<20	34	0.19	<10	190	<10	<1	68
																							_								
256	L52+50N	45	E			2.30	70	100		0.34	<1	17	47		8.22			294	5 < 0.01		1810	34	-	<20			<10			<1	98
257	L52+50N		Е	<5		2.61		115		1.14	<1	28	35			-	1.04	2016	6 0.01		1830	22	-	<20		0.11		159		10	85
258	L52+50N	46	Е	-		2.25	35	110		0.27	<1	12	36		7.10			268	6 <0.01		3360	14	-	<20		0.06		183		<1	55
259	L52+50N	46+50	Е	<5	<0.2	1.45	15	100		0.40	<1	13	35		3.53			456	3 < 0.01		740	10		<20	21		<10	98		<1	73
260	L52+50N	47	E	<5	2.0	3.73	195	270	<5	1,92	<1	33	52	878	6.03	30	0.69	2679	11 0.01	59	1630	18	<5	<20	91	0.04	<10	134	<10	35	70
			_	_					-													~~			~ /			400			
261	L52+50N		Е	<5		4.35	80	240		1.17	1	41			7.98			1880	8 < 0.01		1600	20		<20			<10			14	113
262	L52+50N	48	Ε	<5	<0.2	1.89	85	100		0,50	<1	14	48		3.64			426	4 <0.01		490	14		<20		0.05		93		4	65
263	L52+50N	48+50	E	<5	1.4	3.36	205	185	<5	1.07	<1	38	61	760	7.03		0.85	1875	10 <0.01		1310	16	<5	<20	55	0.08	<10	142	<10	13	87
264	L52+50N	49	Ε	<5	<0.2	2.08	10	95	<5	1.25	1	22	7	621	6.55	30	0.71	328	<1 0.02	10	1810	8	<5	<20	52	0.25	<10	174	<10	30	32
265	L52+50N	49+50	Е	5	<0.2	1.99	20	80	<5	0.27	<1	12	28	64	4,42	<10	0.55	254	2 <0.01	18	1120	14	<5	<20	19	0.09	<10	116	<10	<1	62
266	L52+50N	50	Е	10	<0.2	2.23	50	95		0.35	<1	21	31	191	7.50	<10	0.62	532	8 <0.01		2000	10	<5	<20			<10			<1	121
267	L52+50N	51	Е	<5	<0.2	1.78	25	70	<5	0.21	<1	11	20	65	4.93	<10	0.40	301	6 <0.01	12	770	8	<5	<20	17	0.05	<10	139	<10	<1	67
268	L52+50N	51+50	Ε	<5		2.58	10	110	<5	0.48	2	18	28	72	6. 42	<10	0.78	457	2 <0.01	21	1540	8	<5	<20	41	0.15	<10	178	<10	<1	98
269	L52+50N	52	Ε	<5	<0.2	2.78	20	110	<5	0.79	1	17	26	75	5.92	<10	0.60	504	4 <0.01	20	2980	8	<5	<20	89	0.06	<10	128	<10	<1	94
270	L52+50N	52+50	Ε	5	<0.2	3.90	35	265	<5	1.01	2	28	33	210	9.58	<10	1.35	496	8 0.03	38	1930	8	<5	<20	61	0.15	<10	252	<10	<1	109

ICP CERTIFICATE OF ANALYSIS AK 96-840

ECO-TECH LABORATORIES LTD.

.

Et #.	Tag #			Au(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
271	L52+50N	53	E	<5	<0.2	3.04	40	100	<5	0.29	<1	15	39	82	7.36	<10	0.62	287	4 <0.01	27	2360	12	<5	<20	17	0.09	<10	193	<10	<1	75
272	L52+50N	53+50	ε	<5	<0.2	2.62	25	170	<5	0.30	<1	19	40	112	4.74	<10	0.77	554	3 <0.01	38	990	14	<5	<20	24	0.06	<10	125	<10	1	88
273	L52+50N	54	ε	5	<0.2	2.27	45	100	<5	0.24	<1	13	41	78	5.73	<10	0.59	269	4 <0.01	28	2500	18	<5	<20	14	0.07	<10	148	<10	<1	75
274	L52+50N	54+50	Е	<5	<0.2	1.91	35	105	<5	0.37	<1	11	36	47	5.04	<10	0.47	285	3 <0.01	21	2350	16	<5	<20	29	0.08	<10	145	<10	<1	67
275	L52+50N	55	ε	<5	<0.2	2.42	60	180	<5	0.89	<1	16	42	154	4.48	<10	0.85	485	3 0.01	38	1070	16	<5	<20	50	0.07	<10	154	<10	5	70
276	L52+50N	55+50	Е	<5	<0.2	2.34	25	315	<5	0.53	<1	21	27	153	5.30	<10	0.64	1693	6 < 0.01	20	880	24	<5	<20	39	0.04	<10	159	<10	<1	104
277	L52+50N	56+00	Е	<5	<0.2	1.65	5	235	<5	0.26	<1	9	15	44	4.75	<10	0.23	520	3 <0.01	8	470	14	<5	<20	47	0.07	<10	188	<10	<1	52
278	152+50N	56+50	E	5	<0.2	2.85	35	205	<5	1.24	<1	25	23	194	5.63	<10	0.84	1371	5 <0.01	23	1730	56	<5	<20	53	0.03	<10	163	<10	6	161
279	L52+50N	57+00	Е	<5	<0.2	1.39	10	80	<5	0.24	<1	12	24	79	5.83	<10	0.35	256	7 <0.01	15	1870	12	<5	<20	14	0.11	<10	157	<10	<1	42
280	L52+50N	57+50	E			3.17	15	90	<5	0.21	<1	18	34	167	6.07	<10	0.62	439	3 <0.01	24	1920	14	<5	<20	14	0.09	<10	156	<10	<1	83
281	L52+50N	58+00	Ε	5	<0.2	1.89	15	105	10	0.24	<1	12	43	30	5.47	<10	0.51	232	2 <0.01	23	2070	12	<5	<20	17	0.10	<10	165	<10	<1	46
282	L52+50N	58+50	Ē	<5	<0.2	2.25	10	115	<5	0.32	<1	15	34	70	5.14	<10	0.62	441	2 <0.01	24	1510	12	<5	<20	21	0.10	<10	143	<10	<1	61
283	L52+50N	59+00	E	5	<0.2	1.96	30	145	<5	0.34	2	14	36	89	5.04	<10	0.64	448	3 <0.01	30	1750	14	<5	<20	26	0.08	<10	119	<10	<1	61
284	L52+50N	59+50	E	<5	<0.2	3.33	60	125	<5	0.97	<1	24	17	148	7.93	<10	1.15	679	5 0.01	16	4900	24	<5	<20	40	0.10	<10	240	<10	<1	91
285	L52+50N	60+00	Ē	<5	<0.2	2.20	20	120	<5	0.33	<1	19	19	64	7.25	<10	0.39	1484	5 <0.01	10	1930	14	<5	<20	25	0.07	<10	233	<10	<1	55
286	L52+50N	60+50	Е	<5	<0.2	3.52	20	110	<5	0.25	<1	15	21	74	7.18	<10	0.58	363	5 <0.01	13	1850	16	<5	<20	25	0.05	<10	202	<10	<1	72
287	L52+50N	61+00	Е	<5	<0.2	1.78	15	145	<5	0.60	<1	13	25	46	5.34	<10	0.61	296	4 <0.01	21	1310	12	<5	<20	43	0.08	<10	196	<10	<1	48
288	L52+50N	61+50	Е	5	<0.2	3.40	40	140	<5	0.47	<1	21	34	264	4.84	<10	0.86	412	1 <0.01	36	1980	18	<5	<20	28	0.11	<10	136	<10	4	58
289	L52+50N	62+00	E	<5	<0.2	1.90	<5	150	<5	0.65	1	18	24	67	7.28	<10	0.59	878	3 < 0.01	15	2060	12	<5	<20	44	0.12	<10	291	<10	<1	54
290	L52+50N	62+50	Е	5	<0.2	1.71	<5	200	10	0.52	<1	15	21	35	6.77	<10	0.54	924	2 <0.01	12	2270	10	<5	<20	32	0.13	<10	262	<10	<1	67
291	L52+50N	63+00	Е	<5	<0.2	1.55	<5	165	<5	0.40	<1	13	25	37	5.54	<10	0.38	1277	2 <0.01	14	2160	12	<5	<20	22	0.12	<10	181	<10	<1	69
292	L52+50N	63+50	Е	<5	<0.2	2.76	5	85	<5	0.31	<1	16	31	88	5.45	<10	0.53	306	2 < 0.01	24	1580	16	<5	<20	19	0.11	<10	161	<10	<1	68
293	L53+75N	40	Ę	<5	<0.2	0.86	10	80			<1	6	23				0.15	220	<1 <0.01		860	12		<20	13	0.09			<10	<1	27
294	L53+75N	40+50	Ε			1.65	75	100			<1	11	32				0.37	221	<1 <0.01		960	22	-	<20			<10		<10	<1	59
295	L53+75N	41	ε	<5	<0.2	2.14	60	95	<5	0.24	<1	15	43	71	6.89	<10	0.60	373	3 <0.01	21	1640	22	<5	<20	12	0.12	<10	165	<10	<1	97
			-										~ 7	400			0.40	205	5 40.64	40	040	~		-00			-40	40.1	-40	•	400
296	L53+75N		_			1.71		130		0.75		18	27				0.46	385	5 < 0.01		810	24	-	<20			<10			3	123
297	L53+75N	42	E			2.02	95	75			<1	16	17		7.95			268	<1 0.01		1790	12		<20			<10			<1	53
298	L53+75N		E			1.96	420	100		0.91	<1	47	23				0.86	637	4 0.01		2320	10	-	<20			<10			3	93
299	L53+75N	43	E	-		2.13		85			<1	23	19				0,38	279	8 < 0.01		1490	18	-	<20			<10			<1	78
300	L53+75N	43+50	E	<5	<0.2	2.03	180	105	5	0.81	<1	31	32	108	8.13	<10	0.86	1451	9 0.01	19	2810	26	<5	<20	27	0.19	<10	310	<10	2	80
			_	-		4.05		~~	-	~ ~ ~		40	~ ~		~ ~ ~		0.00	075	E -0.04	4-	4000	40		-00			-40	040			70
301	L53+75N	44	E			1.85	135	90		0.61	<1	16	34				0.63	375	5 < 0.01		1220	16	-	<20			<10		<10	<1	76
302	L53+75N		E			2.00	70	100		0.55	<1	20	62				0.79	449	4 < 0.01		1440	14	-	<20			<10		<10	<1	99
303	L53+75N	45	E			3.06	10	90		0.21	1	15	48				0.48	293	4 < 0.01		1740	16		<20		0.17			<10	<1	78
304	L53+75N		E			1.40	10	120		0.56	<1	24	12	. –			0.53	596	1 0.01		1820	10		<20	23	0.23			<10	<1	50
305	L53+75N	46	Ę	<5	1.0	3.87	290	190	<5	0.88	<1	38	47	627	7.46	10	0.60	1721	8 <0.01	46	1390	34	<5	<20	42	0.10	<10	180	<10	14	74

ICP CERTIFICATE OF ANALYSIS AK 96-840

ECO-TECH LABORATORIES LTD.

306 L53+75N 46+50 E <5	0 <1 87 0 <1 76 0 <1 91 0 <1 56 0 7 117 0 <1 43
308 L53+75N 47+50 E <5	0 <1
309 L53+75N 48 E <5 <0.2 1.89 75 125 <5 0.41 <1 22 56 123 4.25 <10 0.68 981 5 <0.01 39 690 16 <5 <20 22 0.06 <10 108 <	0 <1 91 0 <1 56 0 7 117 0 <1 43
	0 <1 56 0 7 117 0 <1 43
240 1521751 40160 5 5 70.2 2.20 15 100 75 0.22 71 15 24 60 7.33 710 0.40 253 2 70.01 14 3010 12 75 720 10 0.18 710 202 7	0 7 117 0 <1 43
310 L53+75N 48+50 E 5 <0.2 2.28 15 100 <5 0.32 <1 15 24 60 7.33 <10 0.49 253 2 <0.01 14 3010 12 <5 <20 19 0.16 <10 202 <	0 <1 43
	0 <1 43
311 L53+75N 49 E <5 1.0 3.34 165 180 <5 0.81 2 37 53 369 5.63 <10 0.73 3268 9 <0.01 49 1390 24 <5 <20 39 0.08 <10 121 <	
312 L53+75N 49+50 E <5 <0.2 1.11 40 90 <5 0.21 <1 9 25 47 4.36 <10 0.24 180 3 <0.01 11 1290 10 <5 <20 14 0.12 <10 135 <) <1 74
313 L53+75N 50 E <5 <0.2 2.18 25 115 <5 0.30 <1 14 41 59 4.63 <10 0.64 272 3 <0.01 30 1260 14 <5 <20 24 0.08 <10 114 <	
314 L53+75N 50+50 E <5 <0.2 2.03 20 115 <5 0.37 <1 17 43 72 4.35 <10 0.70 338 3 <0.01 39 920 12 <5 <20 22 0.10 <10 127 <	0 <1 48
315 L53+75N 51 E <5 <0.2 4.50 55 210 <5 0.63 <1 38 54 189 7.00 <10 0.99 793 5 <0.01 61 1700 22 <5 <20 62 0.07 <10 167 <	0 2 156
316 L53+75N 51+50 E <5 <0.2 3.23 35 90 <5 0.17 <1 14 35 80 5.06 <10 0.59 255 2 <0.01 25 2740 22 <5 <20 11 0.09 <10 129 <	0 <1 92
317 L53+75N 52 E <5 <0.2 1.68 20 100 5 0.32 <1 11 36 33 4.30 <10 0.50 302 2 0.01 19 1180 14 <5 <20 25 0.09 <10 125 <	0 <1 73
318 L53+75N 52+50 E 5 <0.2 1.58 10 80 5 0.19 <1 9 36 21 4.27 <10 0.33 208 2 <0.01 17 2180 12 <5 <20 13 0.07 <10 116 <	0 <1 60
319 L53+75N 53 E <5 <0.2 1.61 25 70 <5 0.16 <1 9 35 36 4.64 <10 0.36 206 2 <0.01 17 1150 14 <5 <20 12 0.08 <10 131 <	
320 L53+75N 53+50 E <5 <0.2 2.33 10 155 <5 0.26 <1 15 29 88 6.26 <10 0.60 273 1 <0.01 21 1960 16 <5 <20 18 0.14 <10 193 <	0 <1 57
321 L53+75N 54 E 5 <0.2 1.42 10 120 <5 0.35 <1 10 22 37 4.54 <10 0.37 332 2 <0.01 15 2010 12 <5 <20 24 0.09 <10 148 <	0 <1 36
322 L53+75N 54+50 E <5 <0.2 1.81 15 110 10 0.33 1 13 37 51 5.32 <10 0.56 248 2 <0.01 24 1750 12 <5 <20 21 0.11 <10 155 <	0 <1 72
323 L53+75N 55+50 E <5 0.4 2.01 15 95 5 0.19 <1 10 41 26 5.79 <10 0.33 185 4 <0.01 19 2290 12 <5 <20 12 0.09 <10 158 <	0 <1 60
324 L53+75N 56 E <5 0.4 1.42 10 125 5 0.28 <1 12 30 42 4.90 <10 0.37 691 1 <0.01 17 2520 12 <5 <20 17 0.09 <10 148 <	0 <1 49
325 L53+75N 56+50 E <5 <0.2 1.61 20 200 <5 0.58 <1 18 30 74 4.17 <10 0.42 1066 3 <0.01 20 1040 18 <5 <20 42 0.07 <10 127 <	0 <1 54
326 L53+75N 57 E 5 <0.2 1.94 40 85 <5 0.36 <1 15 31 92 5.06 <10 0.59 332 2 <0.01 24 1500 12 <5 <20 20 0.09 <10 150 <	0 <1 53
327 L53+75N 57+50 E <5 <0.2 1.85 45 95 <5 0.40 <1 13 26 72 5.02 <10 0.52 288 3 <0.01 16 1210 14 <5 <20 23 0.08 <10 149 <	0 <1 81
328 L53+75N 58 E <5 <0.2 2.08 55 115 <5 0.94 <1 24 32 128 5.28 <10 0.81 777 2 <0.01 25 1480 20 <5 <20 42 0.09 <10 139 <	0 2 100
329 L53+75N 58+50 E <5 <0.2 1.75 20 95 <5 0.50 <1 15 33 84 6.07 <10 0.65 309 2 <0.01 24 1580 12 <5 <20 38 0.12 <10 199 <	0 <1 55
330 L53+75N 59 E <5 0.6 3.11 25 130 <5 0.35 <1 15 24 138 7.66 <10 0.46 495 7 <0.01 19 1550 16 <5 <20 29 0.05 <10 200 <	0 <1 69
331 L53+75N 59+50 E <5 <0.2 2.66 25 115 <5 0.38 <1 15 24 65 6.61 <10 0.45 345 4 <0.01 13 3620 16 <5 <20 24 0.08 <10 207 <	
332 L53+75N 60 E 5 0.2 2.26 15 115 <5 0.45 <1 11 21 71 4.12 <10 0.54 281 4 <0.01 13 680 12 <5 <20 32 0.07 <10 140 <	
333 L53+75N 60+50 E <5 <0.2 2.33 10 170 <5 0.47 <1 19 31 75 5.45 <10 0.77 419 2 <0.01 29 1860 14 <5 <20 37 0.10 <10 161 <	
334 L53+75N 61 E 20 <0.2 2.76 20 120 <5 0.25 <1 18 37 75 5.25 <10 0.62 334 2 <0.01 27 1550 20 <5 <20 18 0.11 <10 136 <	
335 L53+75N 61+50 E <5 <0.2 3.44 15 120 <5 0.21 <1 19 37 120 5.52 <10 0.72 372 1 <0.01 31 2530 18 <5 <20 14 0.12 <10 138 <	0 <1 78
336 L53+75N 62 E <5 <0.2 1.06 <5 80 <5 0.31 <1 8 23 17 3.86 <10 0.20 330 <1 <0.01 11 970 10 <5 <20 19 0.10 <10 135 <	
337 L55+00N 39 E <5 <0.2 1.59 240 105 <5 0.54 <1 20 23 160 5.53 <10 0.63 345 7 <0.01 14 1130 16 <5 <20 24 0.14 <10 159 <	
338 L55+00N 39+50 E <5 <0.2 0.96 30 60 <5 0.29 <1 8 29 39 3.15 <10 0.23 154 2 <0.01 13 550 12 <5 <20 11 0.09 <10 116 <	
339 L55+00N 40 E 5 <0.2 0.75 10 65 <5 0.20 <1 8 16 22 3.48 <10 0.19 167 <1 <0.01 7 1050 8 <5 <20 7 0.14 <10 164 <	
340 L55+00N 40+50 E <5 <0.2 1.85 145 140 <5 0.51 <1 23 36 91 5.46 <10 0.71 766 4 0.01 25 1010 26 <5 <20 25 0.11 <10 177 <	0 <1 94

.

ICP CERTIFICATE OF ANALYSIS AK 30-840

ECO-TECH LABORATORIES LTD.

.

.

Et #.	Tag #			Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
341	L55+00N	41	Ē	10	<0.2	1.85	145	105	<5	0.43	<1	22	33	110	7.63	<10	0.78	493	4 0.01	19	1930	54	<5	<20	15	0.19	<10	310	<10	<1	97
342	L55+00N	41+50	Е	<5	<0.2	1.62	100	115	5	0.48	<1	14	36	32	5.89	<10	0.63	253	3 0.01	15	1110	16	<5	<20	28	0.23	<10	269	<10	<1	72
343	L56+00N	31	Е	<5	<0.2	3.87	45	115	<5	0.14	<1	15	60	42	6.00	<10	0.55	323	3 <0.01	36	1180	24	<5	<20	9	0.06	<10	126	<10	<1	136
344	L56+00N	31+50	Е	<5	<0.2	2.36	45	95	<5	0.21	<1	14	53	38	5.43	<10	0.51	408	4 <0.01	32	950	18	<5	<20	12	0.07	<10	123	<10	<1	134
345	L56+00N	32	Е	<5	<0.2	2.37	125	135	<5	0.74	2	37	49	84	4.33	<10	0.71	1182	4 <0.01	39	520	30	<5	<20	62	0.06	<10	112	<10	1	200
346	L56+00N	32+50	ε	<5	<0.2	2.19	80	110	<5	0.46	<1	15	51	94	3.83	<10	0.70	401	3 <0.01	31	300	16	<5	<20	22	0.06	<10	107	<10	2	144
347	L56+00N	32+75	ε	<5	<0.2	3.24	60	125	<5	0.42	<1	24	87	171	4.72	<10	1.25	369	<1 0.02	48	300	22	<5	<20	19	0.23	<10	168	<10	<1	137
348	L56+00N	33	Ε	<5	<0.2	3.04	255	180	<5	0.37	<1	26	57	197	6.35	<10	0.85	388	4 <0.01	54	600	28	<5	<20	17	0.09	<10	153	<10	<1	305
349	L56+00N	33+25	Е	20	2.0	2.98	1290	200	<5	1.28	<1	399	81	8747	5.44	<10	1.25	1470	<1 0.03	101	1170	16	<5	<20	30	0.25	<10	149	<10	36	687
350	L56+00N	33+50	Е	<5	<0.2	3.09	155	155	<5	0.48	<1	41	98	330	5,78	<10	1.71	447	<1 0.01	44	230	22	<5	<20	23	0.39	<10	202	<10	<1	257
351	L56+00N	33+75	E	<5	<0.2	2.53	225	180	<5	0.26	<1	19	57	94	6.36	<10	0.92	400	<1 <0.01	28	1290	28	<5	<20	12	0.24	<10	211	<10	<1	164
352	L56+00N	34	Е	5	<0.2	2.57	80	120	<5	0.13	<1	15	55	61	4.47	<10	0.54	287	3 <0.01	43	610	30	<5	<20	8	0.06	<10	104	<10	<1	146
353	L56+00N	34+25	Е	<5	<0.2	2.97	85	130	<5	0.19	1	14	67	55	6.32	<10	0.65	313	4 <0.01	36	900	34	<5	<20	12	0.06	<10	144	<10	<1	137
354	L56+00N	34+50	Ę	<5	<0.2	1.73	50	115	<5	0.11	<1	9	51	32	4.15	<10	0.40	207	<1 <0.01	21	710	22	<5	<20	9	0.10	<10	134	<10	<1	77
355	L56+00N	35	Е	<5	<0.2	2.31	35	115	<5	0.17	<1	15	38	50	5.46	<10	0.37	609	3 <0.01	21	2010	20	<5	<20	9	0.06	<10	122	<10	<1	139
356	L56+25N	42	ε	<5	<0.2	2.12	160	120	<5	0.27	<1	20	25	119	7.51	<10	0.47	866	16 <0.01	14	490	12	<5	<20	24	0.08	<10	113	<10	<1	55
357	L56+25N	43+50	Ε	<5	1.0	2.36	30	155	<5	1.67	1	16	38	239	3,50	10	0.59	1567	5 <0.01	35	1490	14	<5	<20	74	0.03	<10	87	<10	19	70
358	L56+25N	44	Е	<5	0.6	2.30	45	130	<5	1. 1 0	<1	16	42	261	3.95	<10	0.60	945	5 <0.01	33	1430	16	<5	<20	55	0.03	<10	101	<10	16	76
359	L56+25N	44+50	Е	<5	0.4	2.57	125	145	<5	0.68	<1	22	55	462	4.64	20	0.63	1671	6 <0.01	50	1100	24	<5	<20	35	0.06	<10	105	<10	23	97
360	L56+25N	45	ε	<5	<0.2	2.04	15	135	5	0.36	<1	16	42	41	6.24	<10	0.59	318	3 < 0.01	27	2970	14	<5	<20	22	0.09	<10	167	<10	<1	155
361	L56+25N	45+50	Ε	<5	<0.2	1.27	15	90	<5	0.34	<1	9	30	20	4.40	<10	0.28	210	2 < 0.01	13	1470	14	<5	<20	16	0.09	<10	145	<10	<1	74
362	L56+25N	46	Ε	<5	<0.2	0.79	10	95	<5	0.16	<1	4	23	10	1.86	<10	0.18	90	<1 <0.01	9	450	10	<5	<20	16	0.06	<10	67	<10	<1	26
363	L56+25N	46+50	ε	20	<0.2	1.46	10	80	5	0.15	<1	8	38	18	3.96	<10	0.34	163	1 <0.01	18	1000	14	<5	<20	12	0.07	<10	120	<10	<1	43
364	L56+25N	47+50	E	<5	<0.2	2.06	75	105	<5	0.62	<1	25	30	154	5.80	<10	0.66	868	2 <0.01	27	1340	18	<5	<20	33	0.14	<10	170	<10	<1	107
365	L56+25N	48	Е	<5	<0.2	1.95	50	125	<5	0.43	<1	17	37	130	5.74	<10	0.58	418	5 <0.01	29	1660	14	<5	<20	26	0.09	<10	158	<10	<1	67
366	L56+25N	48+50	Е	<5	<0.2	2.56	35	85	<5	0.27	<1	15	28	93	6.32	<10	0.57	376	3 <0.01		3060	16		<20		0.10		150		<1	76
367	L56+25N	49+50	E	<5	<0.2	1.38	20	90	<5	0.33	2	11	26	43	4.59	<10	0.39	339	3 <0.01	13	1560	14	<5	<20	25	0.08	<10	124	<10	<1	73
368	L56+25N	50	Е	<5	<0.2	2.14	40	125	<5	0.25	4	16	37	145	6.84	<10	0.59	242	10 <0.01		1230	14	<5	<20	32	0.11	<10	170	<10	<1	50
369	L56+25N	50+50	E	<5	<0.2	1.97	35	100	<5	0.20	2	12	35	54	5.53	<10	0.42	242	4 <0.01	21	1010	14	<5	<20	15	0.07	<10	157	<10	<1	63
370	L56+25N	51	E	<5	<0.2	2.68	15	80	<5	0.24	1	13	27	84	5.00	<10	0.53	294	2 <0.01	19	2000	14	<5	<20	13	0.09	<10	114	<10	<1	57
371	L56+25N	51+50	Е	<5	<0.2	1.84	<5	85	<5	0.29	1	13	11	32	4.63	<10	0.59	515	<1 0.01	7	1190	14	<5	<20	17	0.12	<10	150	<10	<1	47
372	L56+25N	52	E	5	1.4	3.59	40	220	<5	0.75	2	72	34	531	5.72	<10	0.56	4013	5 < 0.01	33	2120	20	<5	<20	39	0.07	<10	121	<10	2	141
373	L56+25N	52+50	Е	<5	<0.2	1.60	25	65	<5	0.19	1	12	29	42	5.33	<10	0.41	264	4 <0.01	14	750	10	<5	<20	12	0.09	<10	177	<10	<1	38
374	L56+25N	53	Е	<5	<0.2	1,43	30	70	5	0.14	2	10	28	30	4.98	<10	0.33	225	2 <0.01	13	1280	14	<5	<20	10	0.08	<10	159	<10	<1	39
375	L56+25N	53+50	Ε	<5	<0.2	0.90	<5	65	<5	0.13	1	3	8	27	1.63	<10	0.09	151	<1 <0.01	3	1250	10	<5	<20	9	0.06	<10	53	<10	<1	14

ICP CERTIFICATE OF ANALYSIS AK 96-840

ECO-TECH LABORATORIES LTD.

Et #.	Tag #			Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	La	Mg %	Mn	Mo Na	% N	i P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
376	L56+25N	54	E	<5	<0.2	1.67	20	65	<5	0.20	1	11	31	33	5.24	<10	0.35	213	2 <0.	.01 17	2040	10	<5	<20	14	0.11	<10	151	<10	<1	39
377	L56+25N	54+50	Е	<5	<0.2	2.13	<5	80	<5	0.30	2	12	26	66	4.43	<10	0.50	228	2 <0.	.01 16	1080	12	<5	<20	17	0.10	<10	130	<10	2	40
378	L56+25N	55	Е	<5	<0.2	1.61	45	90	<5	0.31	<1	14	28	58	6.56	<10	0.58	256	2 <0.	.01 16	1490	14	<5	<20	22	0.15	<10	211	<10	<1	47
379	L56+25N	55+50	Е	<5	<0.2	1.52	20	75	<5	0.19	2	10	12	27	5.07	<10	0.34	226	2 <0.	.01 8	1500	12	<5	<20	17	0.10	<10	183	<10	<1	36
380	L56+25N	56	Ε	5	<0.2	3.17	<5	190	<5	0.36	1	12	5	44	5.95	<10	0.93	470	7 <0.	.01 f	1720	6	<5	<20	11	<0.01	<10	169	<10	<1	58
381	L56+25N	56+50	Е	<5	<0.2	1.24	<5	130	<5	0.42	3	9	25	39	4.39	<10	0.30	400	2 <0.	.01 12	1030	12	<5	<20	25	0.10	<10	152	<10	<1	39
382	L56+25N	57	E	<5		2.53	20	80	<5	0.24	2	17	35	91	5.51	<10	0.55	316	2 <0.		1830	14	<5	<20	15	0.12	<10	152	<10	<1	76
383	L56+25N	57+50	E	<5		1.23	15	65		0.19	<1	8	29	21	3.50	<10	0.27	200	1 <0.	.01 1:	980	12	<5	<20	14	0.09	<10	121		<1	31
384	L56+25N	58	Е	<5			15	125		0.64	<1	10	26	44			0.31	220	3 <0.		540	14		<20		0.13		208		<1	41
385	L57N	30+50	ε	<5	1.2	4.06	250	195	<5	1.13	2	46	56	250	6.26	<10	0.68	3037	4 <0.	.01 60	1450	56	<5	<20	39	0.06	<10	133	<10	6	354
			_	_					_														_								
386	L57N	31				2.72		140		0.33	<1	26	48		4.79			557	2 <0.		5 490			<20		0.07		110		<1	344
387	L57N	31+50	E	<5		2.13	60	110		0.16	<1	12	53		3.95			294	2 <0.					<20		0.05			<10	<1	118
388	L57N	32	E	20		2.28	110	145		0.24	6	15	39		5.21			344	<1 <0.		5 730			<20		0.12		147		<1	164
389	157N	32+50	Ē	10		3.66	95	130		0.20	<1	17	58		5.18			434	4 <0.		1840			<20		0.05		108		<1	148
390	L57N	32+75	Ε	5	<0.2	2.19	50	90	<5	0.14	<1	12	50	28	5.17	<10	0.40	365	4 <0.	.01 28	1150	28	<5	<20	12	0.06	<10	127	<10	<1	109
			_	_					-			-	~~			:								~ ~							
391	L57N	33	E	-		1.10	15	75			<1	6	29		1.41			182	<1 0.				-	<20		0.05			<10	<1	59
392	L57N	33+25	Ε	10	0.4		505	150		0.69	<1	28	57	1596	4.06		0.78	819	2 0.		800			<20	20	0.05			<10	5	139
393	L57N	33+50	E	<5		2.66	50	125		0.22	<1	19	37	80	5.24		0.70	349	2 0.		1070		-	<20		0.10		115		<1	142
394	L57N	34	E	<5		5.09	40	140		0.29	<1	25	66	175	6.13			494	<1 0.		5 1760			<20		0.39		224		<1	86
395	L57N	34+25	E	5	<0.2	3.26	45	100	<5	0.15	1	12	43	40	4.13	<10	0.56	257	<1 0.	.01 2	5 940	26	<5	<20	11	0.10	<10	113	<10	<1	95
200	L57N	04.50	-		-0.0	0.07	50	100	-6	0.47	-	10	10	74	6.04	-10	0.47	24.4	2 0	02 2	1530	20	-5	~20	45	0.00	-10	402	-10	-4	100
396 397	L57N L57+50N	34+50 31+50	-	5 10		2.67 2.03	50 85	100 100	<5 <5	0.17 0.21	5 <1	13 11	46 46		5.24 4.66			314 246	30. 20.					<20 <20		0.09 0.06		123 123		<1 <1	100 102
398	L57+50N	31+50	F	<5		2.03	30	95	-	0.21	<1	9	46		3.03			240	<1 0.					<20		0.00			<10	<1	71
390	L57+50N	32+50	E	-		1.67	30	115		0.20	<1	9	-+0 54	13				226	2 0.					<20	16	0.03			<10	<1	90
400	L57+50N	33	Ē			2.50	20	105			<1	10	34	27			0.37	312	3 0.		5 1000			<20		0.07		133		<1	80
400		00	-	U	-0.2	2.50	20	100	10	0.17	-1	10	Q 4		0.20	.10	0.01	012	0 0.		1000		-0	-20	10	0.01	-10	100		••	00
401	L57+50N	33+50	Е	<5	0.2	2.61	25	115	<5	0.18	<1	15	32	75	5.53	<10	0.55	691	40.	.01 2	5 1680	48	<5	<20	17	0.06	<10	120	<10	<1	177
402	L57+50N	33+75	Ē	<5		2.76	65	100		0.17	<1	17	44		5.74			297	20.		920			<20	16	0.09		134		<1	120
403	L57+50N	34	E	5		1.65	30	95			<1	12	37		4.45			292	<1 0.		710			<20	12			191		<1	54
404	L57+50N	38+50	Ē	<5	2.4	3.25	70	385		1.49	2	22	69		5.23			1867		.02 6				<20	56	0.04		129		6	183
405	L57+50N	39	Ē	<5	<0.2		10	140	<5	0.97	<1	28	19	99	7.01	<10	1,45	875	<1 0.	.03 1	1880	18	<5	<20	90	0.21	<10	271	<10	2	106
			_	-																											
406	L57+50N	40	E	<5	<0.2	3.68	25	75	<5	0.25	<1	16	47	296	4.44	<10	0.71	390	10.	.02 43	3 2290	28	<5	<20	20	0.09	<10	109	<10	<1	75
407	L57+50N	41	Ē	<5		2.32	10	70	<5	0.15	<1	8	35	24	3.13	<10	0.36	175	<1 0.	.01 10	5 1530	20	<5	<20	14	0.07	<10	82	<10	<1	46
408	L57+50N	41+50	Ε	<5	<0.2		15	65	<5	0.16	<1	11	34	41	4,44	<10	0.35	183	20.	.01 10	5 1790	20	<5	<20	13	0.09	<10	106	<10	<1	50
409	L57+50N	42	E	<5	<0.2		15	75	<5	0.15	<1	8	37	54	3.41	<10	0.36	190	<1 0.	.02 1	5 2070	22	<5	<20	12	0.08		75	<10	<1	78
410	L57+50N	42+50	Е	<5	<0.2	1,29	35	70	<5	0.38	<1	11	23	50	2.37	<10	0.39	291	<1 0.	.01 1:	2 540	14	<5	<20	21	0.09	<10	72	<10	<1	58

Page 12

,

;

ICP CERTIFICATE OF ANALYSIS AK 96-840

ECO-TECH LABORATORIES LTD.

-

Et #.	Tag #			Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cđ	Co	Сг	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
411	L57+50N	43	E	<5	<0.2	2.43	<5	70	10	0.17	<1	9	22	25	5.70	<10	0.27	169	3	0.01	11	2320	20	<5	<20	14	0.08	<10	165	<10	<1	39
412	L57+50N	43+50	Ε	<5	<0.2	1.68	105	145	<5	0.60	<1	25	19	133	6.57	<10	0.52	524	4	0.02	21	1130	20	<5	<20	31	0.12	<10	297	<10	<1	107
413	L57+50N	44	Е	<5	<0.2	1.72	25	110	5	0.35	<1	12	40	38	4.81	<10	0.44	245	2	0.02	21	2040	16	<5	<20	27	0.08	<10	122	<10	<1	110
414	L57+50N	44+50	Е	<5	<0.2	1.56	25	135	<5	0.45	<1	17	34	44	4.70	<10	0.50	534	. 1	0.02	21	1330	20	<5	<20	32	0.11	<10	140	<10	<1	72
415	L57+50N	45	Е	<5	<0.2	1.80	20	180	<5	0.43	<1	16	40	37	4.97	<10	0.49	509	2	0.02	25	1680	16	<5	<20	30	0.10	<10	143	<10	<1	137
416	L57+50N	45+50	Е	<5	<0.2	1.72	30	100	<5	0.58	<1	17	32	99	4.98	<10	0.49	245	2	0.02	24	1150	14	<5	<20	63	0.11	<10	151	<10	<1	60
417	L57+50N	46	Е	<5	<0.2	1.16	10	75	<5	0.26	<1	9	41	19	2.74	<10	0.36	165	1	0.01	25	470	12	<5	<20	19	0.07	<10	71	<10	<1	42
418	L57+50N	46+50	Е	<5	<0.2	1.90	60	125	5	0.48	<1	28	30	86	5.16	<10	0.61	779	1	0.02	22	1440	16	<5	<20	32	0.12	<10	130	<10	<1	84
419	L57+50N	47	Е	<5	<0.2	2.20	25	175	<5	1.31	<1	23	26	234	4.27	<10	0.77	1341	1	0.02	27	1890	18	<5	<20	69	0.08	<10	111	<10	4	55
420	L57+50N	48	Е	<5	<0.2	3.06	10	185	<5	0.40	<1	25	29	120	6.09	<10	0.76	621	<1	0.02	26	2830	22	<5	<20	29	0.17	<10	158	<10	<1	87
421	L57+50N	48+50	ε	<5	0.2	2.49	20	180	<5	0.42	<1	36	39	106	4.53	<10	0.57	1405	3	0.02	32	1400	30	<5	<20	31	0.05	<10	106	<10	2	129
422	L57+50N	49	E	<5	<0,2	2.97	45	215	<5	0.74	<1	24	54					1458	4	0.02		1240	22	-	<20			<10			2	123
423	L57+50N				<0.2		95	120		0.41	<1	21	26		5.09			675	4	0.01		1190	20		<20		0.08		151		3	92
	L57+50N	50	Е		<0.2		<5	85		0.33	<1	9	25				0.27	206	2	0.02		950	12		<20		0.11		143		<1	32
425	L57+50N	51	ε	<5	<0.2	2.08	65	90	<5	0.29	<1	20	19	112	5.36	<10	0.80	254	5	0.02	15	1220	14	<5	<20	21	0.16	<10	175	<10	<1	50
			_																_					_								
426	L57+50N		Е			1.22	30	85		0.27	<1	11	24				0.32	306		0.01		1590	14		<20			<10			<1	33
427	L57+50N				<0.2		30	120		0.33	<1	11	30				0.43	256	10	0.02		660	20	-	<20			<10			<1	55
428	L57+50N		E		<0.2		<5	100		0.51	<1	17	22				0.48	236	3			1510	16		<20			<10			<1	73
429	L57+50N	55	Ε		<0.2		10	120		0.34	<1	9	16		3.83			200	<1	0.02		1010	14		<20			<10			<1	21
430	L57+50N	55+50	E	<5	<0.2	1.58	<5	115	<5	0.28	<1	10	21	35	4.47	<10	0.39	222	<1	0.02	12	1350	16	<5	<20	37	0.11	<10	139	<10	<1	28
			_	_			- •		_		-									0.04	40	4000	~ .		-00	40						
431	L57+50N	56	E			1.87	20	70	-	0.16	<1	9	35				0.38	208	-	0.01		1030	24	-	<20			<10			<1	37
432	L57+50N		E		1.4		20	170		1.30	<1	12	34				0.55	1006		0.02		1550	16		<20	48	0.05			<10	9	66
433	L58+75N	50	E		<0.2		35	85		0.21	<1	10	37				0.37	210		0.01		1600	22	-	<20		0.07			<10	<1	67
434	L58+75N		Ε		<0.2		10	100	-	0.27	<1	8	30		3.00			267		0.01		1020	14	-	<20	20				<10	<1	38
435	L58+75N	51	Е	5	<0.2	1.31	45	145	5	0.46	<1	13	33	40	4.84	<10	0.41	267	(0.02	17	860	20	<5	<20	26	0.10	<10	148	<10	<1	52
400	1.50 . 751	54 . 50	-		-0.0	4.40	45	05	F	0.07	- 4	•		20	4.00	~10	0.20	102	4	0.02	12	1210	14	~F	~20	15	0.10	~10	122	~10	<1	38
436	L58+75N				<0.2		15	85		0.27		9	28				0.30	192		0.02		1210			<20				133		-	
437	L58+75N	52	E		<0.2		10	70		0.29	<1	11	26		4.28			303		0.01		770	16		<20		0.09		181		<1	39
438	L58+75N		E		<0.2		<5	50		0.21	<1	4	16		1.68			216		0.01	6	690	12		<20		0.08			<10	<1	12
439	L58+75N	53	ε	-	<0.2		20	70		0.22	<1	9	21		4.48			193	3	0.01	10		14		<20		0.09		153		<1	24
440	L58+75N	53+50	E	<5	<0.2	0.69	5	75	<5	0.22	<1	6	17	15	2,13	<10	0.14	167	<1	0.02	8	580	12	<5	<20	14	0.08	<10	81	<10	<1	14
			_				_					_															0.40		400	-40		• •
441	L58+75N		Е		<0.2		<5	80		0.27		9	22				0.26	261		0.02		1500	12		<20		0.13		133		<1	34
442	L58+75N			-	<0.2		15	95		0.30	<1	9	26		3.99			191				1850	14		<20		0.10		129		<1	25
443	L58+75N		Е		<0.2		25	145		0.49	<1	17	36		4.97			527		0.02		2300	22		<20		0.10		133		<1	97
	1296TCHX	260			<0.2	1.78	20	175		1.02	<1	17	66	59			0.90	908		0.02	49		14	-	<20		0.07			<10	6	72
445	1296TCHX	261		<5	<0.2	1.57	15	120	<5	0.61	<1	18	53	43	3.94	<10	1.05	803	<1	0.02	39	710	10	<5	<20	25	0.11	<10	83	<10	3	58

ICP CERTIFICATE OF ANALYSIS AK 96-840

ECO-TECH LABORATORIES LTD.

.

Et #	Tag #		Au(ppb)	Ag	AI %	As	Ва	Bi	Ca <u>%</u>	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	รก	Sr	Ti %	U	v	W	Y	Zn
446	1296TCHX	262	<5	<0.2	1.55	25	165	<5	0.59	<1	17	45	44	3.71	<10	1.02	800	<1	0.02	39	670	10	<5	<20	22	0.09	<10	77	<10	3	58
447	1296TCHX	263	<5	<0.2	1.45	15	105	<5	0.56	<1	17	50	35	3.74	<10	0.98	684	<1	0.02	38	630	12	<5	<20	22	0.11	<10	77	<10	2	56
448	1296TCHX	264	<5	<0.2	1.88	45	170	<5	0.95	<1	20	53	78	4.09	<10	0.96	907	<1	0.03	43	860	14	<5	<20	38	0.09	<10	89	<10	5	66
449	1296TCHX	265	<5	<0,2	1.48	15	130	10	0.55	<1	17	40	39	3.63	<10	0.98	799	<1	0.02	35	660	12	<5	<20	18	0.09	<10	73	<10	3	61
450	1296TCHX		<5	<0.2	1.55	15	130	<5	0.63	<1	18	63	57	3.93	<10	0.98	802	<1	0.02	43	660	12	<5	<20	28	0.09	<10	85	<10	3	61
451	1296TCHX	269	5	<0.2	1.71	60	175	<5	0.84	1	18	57	59	3.86	<10	0.92	829	1	0.02	46	910	14	<5	<20	34	0.07	<10	79	<10	5	73
452	1296TCHX	270	<5	<0.2	1.46	35	110	<5	0.58	1	17	52	47	4.21	<10	1.00	745	<1	0.02	38	650	12	<5	<20	22	0.10	<10	94	<10	2	59
453	1496TCHS	205	<5	0.2	0.91	15	215	10	5.41	<1	22	15	49	9.17	<10	1.59	2010	7	0.01	26	1300	<2	<5	<20	154	<0.01	<10	86	<10	3	58
	1496TCHS	206	<5		1.78	<5	110		0.22	<1	11	49	42	3.99	<10	0.51	435	2	0.01	22	1010	14	<5	<20		0.08		117		<1	42
	1496TCHS		<5	0.8	1.98	5	120		0.24	1	13	49	34	4.41	<10	0.71	591	<1	0.01	22	750	12	<5	<20	21	0.10	<10	127	<10	<1	53
400	140010110	201		0.0		·			0.21	•			•••										-								
456	1496TCHS	208	5	<0.2	2.52	20	160	<5	0,15	1	16	76	39	5.34	<10	0.89	845	4	0.01	31	880	16	<5	<20	12	0.03	<10	142	<10	<1	74
	1496TCHS	209	<5		2.02	<5	205	<5	0.37	<1	19	59	66	5.45	<10	0.76	1262	3	0.02	29	1510	12	<5	<20	47	0.11	<10	166	<10	<1	56
458	1496TCHS	210	<5	1.0	2.21	160	150	<5	0.21	<1	16	43	42	6.11	<10	0.78	638	26	0.02	26	1080	20	<5	<20	9	0.07	<10	144	<10	<1	78
459	1496TCHS	211	<5	<0.2	2.80	30	95	<5	0.09	<1	19	26	72	7.87	<10	0.71	1063	7	<0.01	18	1350	14	<5	<20	9	0.06	<10	159	<10	<1	77
460	1496TCHS	212	<5	<0.2	3.65	25	115	<5	0.17	<1	16	55	83	5.86	<10	1.06	487	4	0.02	31	1090	20	<5	<20	12	0.04	<10	113	<10	<1	66
461	1496TCHS	213	5	<0.2	3.63	30	140	15	0.18	з	22	95	72	8.03	<10	1.92	603	<1	0.01	36	970	16	<5	<20	10	0.27	<10	207	<10	<1	45
462	1496TCHS	214	<5	0.6	2.69	55	230	5	0.23	4	20	28	76	7.31	<10	0.66	2065	8	0.01	19	2560	24	<5	<20	16	0.02	<10	128	<10	<1	124
463	1496TCHS	215	<5	<0.2	4.43	45	90	<5	0.17	2	15	50	94	4.34	<10	0.88	297	2	0.01	39	890	26	<5	<20	13	0.07	<10	92	<10	<1	63
464	1496TCHS	216	<5	<0.2	2.77	25	205	<5	0.64	3	27	42	127	5.12	<10	0.84	1093	3	0.01	42	1490	16	<5	<20	44	0.07	<10	122	<10	<1	76
465	1496TCHS	217	<5	<0.2	4.00	35	145	<5	0.18	4	21	67	90	4.58	<10	1.13	435	<1	0.02	65	1090	24	<5	<20	19	0.10	<10	105	<10	2	75
466	1496TCHS	218	5	<0.2	2.29	280	120	10	0.15	<1	17	18	49	8.14	<10	0.46	1026	6	0.01	17	2420	16	<5	<20	13	0.04	<10	144	<10	<1	43
467	1496TCHS	219	<5	<0.2	3.43	140	120	<5	0.08	1	14	38	95	7.62	<10	0.99	455	5	0.01	29	830	24	<5	<20	9	0.08	<10	142	<10	<1	49
468	1496TCHS	220	<5	<0.2	2.77	30	115	<5	0.17	<1	14	43	49	4.80	<10	0.69	279		0.02	31	960	16	<5	<20	16	0.10	<10	116	<10	<1	49
469	1496TCHS	221	<5	0.2	2.92	50	135	<5	0.23	<1	20	56	62	4.92	<10	0.73	423	2	0.01	41	1090	20	<5	<20	16			107		<1	75
470	1496TCHS	222	<5	<0.2	1.79	65	140	10	0.32	<1	12	44	34	4.60	<10	0.48	378	3	0.01	21	690	14	<5	<20	16	0.08	<10	112	<10	<1	77
							_	_			_							_		.			_		-	.					
	1496TCHS	223	-	<0.2		30	80	-		<1	7	41	-	3.12			184		<0.01		560	12		<20		0.05			<10	<1	41
472	1696TCHS	094	<5	<0.2	3.92	195	150		0.09	<1	15	41		6.78			499		0.01	37	990	44		<20		0.06			<10	<1	134
	1696TCHS	095	<5	<0.2	4.94		160	<5	0.11	<1	21	39	109	6.07	<10	0.83	455		0.02		1200	36		<20	12				<10	<1	178
474	1696TCHS	096	5	0.2	1.61	95	225	<5	0.22	<1	16	30	47			0.57	1319		0.01	25	550	18		<20		0.07			<10	<1	85
475	1696TCHS	097	<5	<0.2	2.63	10	120	10	0.19	1	23	49	53	6.71	<10	1.07	662	<1	0.02	20	760	16	<5	<20	7	0.31	<10	206	<10	<1	103
476	1696TCHS	098	<5	<0.2	2.47	15	125	5	0.19	<1	14	43	51	5.60	<10	0.82	330		0,01	20	1410	14	<5	<20	21	0.05	<10	154	<10	<1	92
477	1696TCHS	099	5	<0.2	2.48	50	170	<5	0.09	<1	17	26	62	6.82	<10	0.37	402		<0.01		990	18	<5	<20		<0.01			<10	<1	92
478	1696TCHS	100	<5	1.4	1.19	5	170	<5	0.47	<1	5	9	53	1,70	<10	0.15	152		0.02		1590	14		<20		<0.01			<10	1	32
479	1696TCHS	101	<5	<0.2	0.94	<5	65	<5	0.21	<1	2	3	8	0.92	<10	0.07	60		0.01	2		12	-	<20	29	0.03			<10	<1	5
480	1696TCHS	102	<5	<0.2	0.93	20	110	5	0.19	<1	7	23	22	3.44	<10	0.16	167	1	0.01	10	530	12	<5	<20	15	0.09	<10	124	<10	<1	26

ICP CERTIFICATE OF ANALYSIS AK 96-840

ECO-TECH LABORATORIES LTD.

Et #.	Tag #		Au(ppb) Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	ті %	Ų	v	w	Y	Zn
481	1696TCHS	103	<	5 1.2	2 3.62	35	305	<5	0.77	1	44	50	170	5.65	10	0.61	3597	12	0.02	46	1500	26	<5	<20	42	0.06	<10	136	<10	10	84
482	1696TCHS	104	<	5 <0.2	2 0.80	10	50	<5	0,17	<1	6	19	9	2.41	<10	0.16	171	<1	0.01	7	1080	10	<5	<20	15	0.08	<10	86	<10	<1	22
483	1696TCHS	105	<:	5 <0.2	2 1.40	30	115	<5	0.31	<1	11	30	44	3.58	<10	0.39	327	1	0.02	18	1100	12	<5	<20	19	0.08	<10	96	<10	<1	37
484	1696TCHS	106	:	5 <0.2	2 1.47	30	65	5	0.34	<1	15	28	46	4.80	<10	0.62	644	2	0.02	20	1850	12	<5	<20	11	0.10	<10	148	<10	<1	46
485	1696TCHS	107	<	5 <0.2	2 1.38	<5	200	<5	0.44	<1	17	31	18	3.73	<10	0.37	1555	<1	0.01	18	1460	14	<5	<20	32	0.08	<10	109	<10	<1	97
486	1696TCHS	108	<	5 <0.2	2 2.03	20	140	<5	0.58	<1	18	41	85	4.14	<10	0.62	608	2	0.02	30	1440	16	<5	<20	33	0.08	<10	119	<10	2	53
487	1696TCHS	109	1() <0.2	2 1.62	35	155	<5	0.52	<1	16	36	61	4.34	<10	0.44	786	1	0.01	23	2220	16	<5	<20	21	0.08	<10	139	<10	<1	82
488	1696TCHS	110	<	5 <0.2	2.67	60	150	<5	0.60	<1	28	43	215	5.00	<10	0.86	522	<1	0.02	43	2160	20	<5	<20	26	0.15	<10	163	<10	4	69
489	1696TCHS	111	<	5 <0.2	2 2.31	50	160	<5	0.68	<1	23	43	141	4.57	<10	0.69	936	2	0.02	37	1590	18	<5	<20	34	0.08	<10	119	<10	5	73
490	1696TCHS	112	<	5 <0.2	2 3.00	315	130	<5	0.46	<1	32	48	201	6.30	<10	0.87	637	2	0.02	44	2380	30	<5	<20	25	0.14	<10	181	<10	<1	137
491	1696TCHS	113	<	5 <0.2	2 2.62	25	110	<5	0.51	<1	21	30	162	4,95	<10	0.84	451	<1	0.02	28	1900	16	<5	<20	25	0.12	<10	157	<10	3	44
492	1696TCHS	114	<	5 <0.2	2.93	45	105	<5	0.42	<1	22	37	117	5.08	<10	0.85	382	1	0.01	34	1950	20	<5	<20	26	0.11	<10	125	<10	1	70
493	1696TCHS	115	<	5 <0.3	2 1.84	20	110	<5	0.85	<1	17	31	79	4.39	<10	0.64	556	2	0.02	23	2300	18	<5	<20	46	0.10	<10	127	<10	1	56
494	1696TCHS	116	<	5 <0.3	2.03	40	165	<5	0.90	<1	21	34	116	5.14	<10	0.69	788	2	0.02	25	2780	22	<5	<20	38	0.10	<10	144	<10	2	101
495	1696TCHS	117	<	5 <0.2	2.13	35	110	<5	0.30	<1	13	30	58	4.46	<10	0.45	422	2	0.02	17	2560	20	<5	<20	19	0.09	<10	124	<10	<1	77
496	1696TCHS	118	<	5 <0.2	3.40	75	125	<5	0.32	<1	25	35	121	4.78	<10	0.68	393	<1	0.02	35	2020	28	<5	<20	13	0.11	<10	125	<10	1	85
497	1696TCHS	119	10) <0.2	2.47		120	<5	0.21	<1	20	44	69	4.06	<10	0.64	329	<1	0.02	35	1170	24	<5	<20	14	0.11	<10	104	<10	2	79
QC D/																															
1		52	E	- 3.6	5.10	85	395	<5	1.95	1	27	88	533	6.83	<10	1.28	1527	3	0.02	80	960	30	<5	<20	85	0.09	<10	186	<10	27	170
2			- E </th <th></th> <th></th> <th></th> <th>_</th> <th>-</th> <th>_</th> <th></th> <th>-</th> <th></th> <th>-</th> <th>-</th> <th>-</th> <th>_</th> <th>_</th> <th>_</th> <th>-</th> <th>-</th> <th>-</th> <th>-</th> <th>-</th> <th>-</th> <th>-</th> <th></th> <th>-</th> <th>-</th> <th>-</th> <th>-</th> <th>-</th>				_	-	_		-		-	-	-	_	_	_	-	-	-	-	-	-	-		-	-	-	-	-
10	L42+50N		E <	5 <0.2	2.25	30	190	<5	0.57	<1	16	42	53	5.05	<10	0.68	676	1	0.01	24	1500	22	<5	<20	39	0.12	<10	133	<10	<1	114
19	L43+75N	44+00	E <	5 <0.2	2.29	195	90	<5	0.46	<1	27	40	56	5.94	<10	0.60	389	<1	0.01	24	1090	12	<5	<20	30	0.16	<10	161	<10	<1	121
28	L43+75N	48+00	E <				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
31	L43+75N	49+50	E	- <0.2	2 3.31	15	115	10	0.26	<1	16	45	75	7.66	<10	0.49	295	3	<0.01	26	3620	14	<5	<20	18	0.16	<10	206	<10	<1	61
36	L43+75N	50+50 I	E8 <	5			-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	•	-	-	•	-	-	-	-	-
40	L43+75N	53	E	- <0.2	1.86	25	140	<5	0.40	1	11	43	21	3.33	<10	0.47	351	<1	<0.01	25	930	22	<5	<20	24	0.11	<10	95	<10	<1	107
45	L43+75N	55+50	E <	5		• -	-	-	-	-	-	•	-	-	-	-	•	-	-	•	-	-	-	-	-	-	-	-	-	-	-
49	L43+75N	57+50	E	- <0.2	2 3.54	55	155	<5	0.35	<1	17	52	80	6.26	<10	0.81	408	2	<0.01	38	1290	22	<5	<20	29	0,14	<10	153	<10	<1	122
54	L43+75N	60	E <	5			•	•	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
61	L45N		-		2.75	55	110	<5	0.23	<1	14	63	50	5.49	<10	0.59	260	4	<0.01	40	1350	14	<5	<20	15	0.12	<10	135	<10	<1	87
63	L45N		E <				-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-
70	L45N	49+50	E	- <0.2	2.52	35	80	<5	0.21	<1	12	44	51			0.41	158		<0.01	33	830	18	<5	<20	16	0.10		93	<10	1	53
79	L45N	54+00	E <	i <0.2	2.59	25	135	<5	0.41	<1	18	38	69	5.97	1 ^{≤10}	0.59	650	2	<0.01	24	2840	26	<5	<20	33	0,13	<10	155	<10	<1	100
														Page	10																

HUDSON BAY EAL-LORATION & DEVELOPMENT LTD.

~

Et #.	Tag #			Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
Repea	t						•																								
80	L45N	54+50	E	<5	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-
89	L45N	59+00	Е	<5	-	•	-	-	-	-	-	-	-	-	-	•		•		-	-	-	-	•	-	-	-	-	-	-	-
91	L45N	60+00	E	-	<0.2	3.83	25	185	<5	0.42	<1	21	43	145	6.86	<10	0.77	468	4 <0.01	31	1970	20	<5	<20	28	0.12	<10	174	<10	<1	112
98	L46+25N	45	E	<5	-	-	-	-	-	-	-	-	-	-	-	•	-	-		•	-	-	•	-	-	-	-	-	-	-	-
100	L46+25N	46	Е	•	<0.2	3.64	60	95	<5	0.61	<1	23	15	174	8.19	<10	0.88	389	9 0.02	12	2350	12	<5	<20	29	0.27	<10	227	<10	2	69
106	L46+25N	49	E	<5	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-
109	L46+25N		E		<0.2	3.52	320	130	<5	0.39	<1	45	39	192	7.92	<10	0.54	442	9 <0.01	75	1670	16	<5	<20	49	0.10	<10	118	<10	<1	149
115	L46+25N		E	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	•	•		-	-	-	-	-
121	L46+25N	-+ +-	E		<0.2	2.52		205	<5	0.41	<1	12	45	46	3.86	<10	0.64	384	3 <0.01	30	490	20	<5	<20	25	0.08	<10	108	<10	<1	80
124	L46+25N	58+00	E	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
400	1 47 . 5011	40.50	_					440			-4					-40			0 -0.04	~~	4700			-00	47	0.40	-40		-40		~~
130	L47+50N		E		0.4	2.77	60	110	<5	0.23	<1	14	43	63	5.50	<10	0.74	551	2 <0.01	22	1700	14	<0	<20	17	0.12	<10	142	<10	<1	93
133	L46+25N	44	E	<5	-	-	-	-	-		-	-	-	-		-	-			~	-	-		-00	-		-			ż	-
139	L47+50N L47+50N	47	E	-	<0.2	1.91	65	85	<0	0.50	<1	17	35	80	4.60	<10	0.01	332	12 <0.01	22	970	12	<0	<20	30	0.12	<10	140	<10	1	49
141 150		48		<5 <5	-	•	•	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
150	L47+50N	92490	=	~ 0	-	-	-	-	•	-	•	-	-	-	-	-	-	-		-	-	-	-	-	-	•	-	-	-	•	-
151	L47+50N	53+00	F		<0.2	4.44	15	90	5	0.54	<1	23	26	100	8.17	<10	1.07	561	2 <0.01	22	2470	16	<5	<20	44	0.18	<10	193	<10	<1	93
159	L47+50N			<5	-0.2					0.04		-	20	100	0.11	-10	1.01		2 -0.01		2410			-20		0.10	-10	100	- 10		
160	L47+50N		E		0.6	2.51	5	120	<5	0.49	<1	19	19	195	7.23	<10	0 70	1062	5 < 0.01	13	3780	10	<5	<20	27	0.07	<10	155	<10	<1	44
168	L48+75N		Ē	<5	0.0		ž	120	-	Q.40 -	-		-			-					-	-				-		-	-		-
169	L48+75N		_		04	2.16	45	135	<5	0.55	<1	11	31	46	4.83	<10	0.43	178	4 0.01	12	650	20	<5	<20	37	0.12	<10	177	<10	1	64
100	21011011	10.00	-		•.,				Ŷ	0.00		.,	•.										•		•.						•••
176	L48+75N	49+50	Ε	<5	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
181	L48+75N	52+00	Е	-	<0.2	5.13	40	85	<5	1.03	<1	32	10	217	7.02	<10	0.84	807	2 0.04	11	3370	16	<5	<20	102	0.15	<10	182	<10	2	108
185	L48+75N	54+00	E	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
190	L48+75N	56+50	Е	-	<0.2	2.54	20	105	<5	0.22	<1	11	43	54	5.42	<10	0.53	267	2 < 0.01	22	860	14	<5	<20	21	0.10	<10	145	<10	<1	54
194	L48+75N	58+50	Е	<5	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-		•		-	-	-	-	-	-
199	L50N	42+50	E	-	1.0	2.00	290	120	<5	1.71	<1	22	29	285	3.60	<10	0.53	1180	5 0.01	16	1560	12	<5	<20	75	0.05	<10	112	<10	23	82
203	L51+25N	42	Е	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	•	-	-	-	-	-	-	-	-
211	L51+25N	46	Е	<5	<0.2	4.45	40	85	<5	0.36	<1	17	36	131	5.89	<10	0.71	371	3 <0.01	25	3000	18	<5	<20	23	0.12	<10	148	<10	<1	67
220	L51+25N	50+50	E	<5	<0.2	1.02	10	90		0.28	<1	6	26	19	2.98			163	1 <0.01	10		10	<5	<20		0.07		98	<10	<1	35
229	L51+25N	55	E	<5	0.4	3.40	40	120	<5	0.29	<1	15	41	105	4.63	<10	0.74	330	2 0.03	36	1550	12	<5	<20	20	0.08	<10	113	<10	<1	80
_			_																												
238	L51+25N		E	<5																											
241	L51+25N	61	E	-	0.4	2.19	25	230	<5	0.45	<1	37	27	150	5.50	<10	0.55	2048	6 <0.01	22	980	26	<5	<20	36	0.06	<10	164	<10	<1	80
247	L51+25N	64	E	<5					_														-								
250	L52+50N	42	Е		<0,2	1.84	105	80	5	0.26	<1	14	35	58	6.77	<10	0.54	284	2 0.01	18	2810	16	<5	<20	16	0.16	<10	202	<10	<1	63
256	L52+50N	45	ε	<5											0	16															

HUDSON BAY EXPLORATION & DEVELOPMENT LTD.

.

ICP CERTIFICATE OF ANALYSIS AK 96-840

ECO-TECH LABORATORIES LTD.

.

.

265 L52+50N 49+50 E <5 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
265 L52+50N 49+50 E <5 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
271 L52+50N 53 E <5 <0.2 3.05 35 100 5 0.28 <1 14 39 82 7.48 <10 0.62 2 280 L52+50N 57+50 E <5 <0.2 3.12 20 95 <5 0.21 <1 18 35 166 6.14 <10 0.62 2 289 L52+50N 62+00 E <5 <0.2 1.87 <5 150 <5 0.65 <1 18 22 67 7.49 <10 0.60 9 298 L53+75N 42+50 E <5 - <td< th=""><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th></td<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
280 L52+50N 57+50 E <5 <0.2 3.12 20 95 <5 0.21 <1 18 35 166 6.14 <10 0.62 289 L52+50N 62+00 E <5 <0.2 1.87 <5 150 <5 0.65 <1 18 22 67 7.49 <10 0.60 9 298 L53+75N 42+50 E <5 -<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
289 L52+50N 62+00 E <5 <0.2 1.87 <5 150 <5 0.65 <1 18 22 67 7.49 <10 0.60 9 298 L53+75N 42+50 E <5 -	906 3 <0.01 14 2080 12 <5 <20 44 0.12 <10 304 <10 <1 54 384 5 0.01 18 1250 14 <5 <20 26 0.14 <10 223 <10 <1 77 256 2 <0.01 15 3090 12 <5 <20 20 0.17 <10 203 <10 <1 56 207 2 <0.01 18 1130 12 <5 <20 12 0.08 <10 135 <10 <1 43
298 L53+75N 42+50 E <5 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
301 L53+75N 44 E -<0.2 1.87 125 90 5 0.62 <1 17 35 66 6.29 <10 0.64 306 306 L53+75N 46+50 E <5 -	256 2 0.01 15 3090 12 <5 <20 0.17 <10 203 <10 <1 56 207 2 <0.01 18 1130 12 <5 <20 12 0.08 <10 135 <10 <1 43
306 L53+75N 46+50 E <5	256 2 0.01 15 3090 12 <5 <20 0.17 <10 203 <10 <1 56 207 2 <0.01 18 1130 12 <5 <20 12 0.08 <10 135 <10 <1 43
310 L53+75N 48+50 E - <0.2 2.33 5 100 5 0.33 <1 15 23 61 7.41 <10 0.50	207 2 <0.01 18 1130 12 <5 <20 12 0.08 <10 135 <10 <1 43
	207 2 <0.01 18 1130 12 <5 <20 12 0.08 <10 135 <10 <1 43
315. L53+75N 51 E <5	
319 L53+75N 53 E - <0.2 1.60 25 70 5 0.16 <1 9 35 36 4.64 <10 0.36	343 5 <0.01 13 3660 16 <5 <20 24 0.08 <10 214 <10 <1 42
324 L53+75N 56 E <5	343 5 <0.01 13 3660 16 <5 <20 24 0.08 <10 214 <10 <1 42
333 L53+75N 60+50 E <5	
340 L55+00N 40+50 E - <0.2 1.86 145 140 <5 0.50 <1 23 36 92 5.40 <10 0.71	762 4 0.01 25 990 28 <5 <20 26 0.11 <10 173 <10 <1 95
341 L55+00N 41 E 5	
349 L56+00N 33+25 E - 2.0 2.98 1315 200 <5 1.30 <1 405 81 8786 5.47 <10 1.24 1	1501 <1 0.03 102 1160 18 <5 <20 30 0.25 <10 148 <10 37 695
350 L56+00N 33+50 E <5	
359 L56+25N 44+50 E <5	
361 L56+25N 45+50 E - <0.2 1.28 15 90 5 0.34 2 9 29 20 4.35 <10 0.28	208 2 <0.01 14 1510 14 <5 <20 16 0.09 <10 141 <10 <1 74
368 L56+25N 50 E <5	
370 L56+25N 51 E - <0.2 2.59 15 80 <5 0.24 <1 13 27 82 4.90 <10 0.52	287 2 <0.01 18 1920 16 <5 <20 14 0.09 <10 112 <10 <1 55
376 L56+25N 54 E <5	
379 L56+25N 55+50 E - <0.2 1.50 20 80 5 0.18 <1 10 12 27 4.98 <10 0.33	220 2 <0.01 7 1500 14 <5 <20 17 0.09 <10 177 <10 <1 36
385 L57N 30+50 E <5	
	174 <1 0.01 17 130 16 <5 <20 12 0.06 <10 38 <10 1 57
394 L57N 34 E <5	
400 L57+50N 33 E - <0.2 2.48 15 110 <5 0.17 1 11 35 26 5.18 <10 0.37	310 2 0.02 21 970 24 <5 <20 19 0.08 <10 131 <10 <1 83
403 L57+50N 34 E <5	
409 L57+50N 42 E - <0.2 2.69 10 75 <5 0.16 <1 9 38 54 3.40 <10 0.36	191 <1 0.02 16 2080 22 <5 <20 14 0.08 <10 75 <10 <1 79
411 L57+50N 43 E <5	
420 L57+50N 48 E <5	· · · · · · · · · · · · · · ·
421 L57+50N 48+50 E - 0.2 2.43 20 175 <5 0.41 <1 35 39 101 4.46 <10 0.56 1	1342 3 0.02 32 1340 28 <5 <20 30 0.06 <10 107 <10 2 127
429 L57+50N 55 E <5	

iupso	ON BAY EX	LORAI	FION	& DEVEL	OPME).			ICP CE	RTIFI	CATE C	F ANA	LYSIS	AK 5	o-840										E	со-ті	ECH L	ABOR	ATORI	IES LT	۲ D .
Et #.	Tag #			Au(ppb)	Ag	AI %	As	Ва	Bí	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	υ	v	w	Y	2
lepea			-																										-			—
430	L57+50N	55+50	E	-	<0.2	1.57	<5	115	5	0.29	<1	10	22	34	4.37	<10	0.38	222	<1	0.01	11	1320	14	<5	<20	35	0.12	<10	139	<10	<1	:
438	L58+75N	52+50	ε	<5	-	-	-	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
439	L58+75N	53	E	•	<0.2	1.43	20	70	<5	0.23	<1	10	23	33	4,58	<10	0.31	205	3	0.01	11	940	14	<5	<20	15	0.09	<10	158	<10	<1	
446	1296TCHX	262		<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
451	1296TCHX	269		-	<0.2	1.80	70	175	<5	0.87	2	19	58	62	4.03	<10	0.97	867	1	0.02	47	920	12	<5	<20	36	80.0	<10	83	<10	5	
455	1496TCHS	207		<5	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	_	
460	1496TCHS	212		-	<0.2	3,66	30	115	<5	0.17	<1	16	56	83	5.86	<10	1.05	482	4	0.02	31	1090	18	<5	<20	13	0.04	<10	113	<10	<1	
464	1496TCHS	216		<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	•					
469	1496TCHS	221		-	<0.2	2.86	45	135	<5	0.23	<1	19	55	61	4.82	<10	0.73	415	1	0.02	41	1040	18	<5	<20	16	0.09	<10	106	<10	<1	
473	1696TCHS	095		<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
481	1696TCHS	103		<5	1.2	3.65	45	310	<5	0.77	2	45	50	169	5.69	10	0.61	3563	12	0.02	47	1520	28	<5	<20	43	0.07	<10	137	<10	10	
490	1696TCHS	112		<5	-	-	-	-	•	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	
tanda	rd:																															
EO 96	3			145	1.0	1.97	65	165	<5	1.91	<1	19	69	82	4.29	<10	1.03	723	<1	0.02	22	740	20	<5	<20	65	0.15	<10	88	<10	4	
EO 96	3			150	1.0	1.99	70	160	<5	1.92	<1	20	68	83	4.27	<10	1.04	723	<1	0.02	20	740	18	<5	<20	63	0.16	<10	88	<10	4	
EO 96	3			140	1.0	2.05	65	160	<5	1.94	<1	20	70	86	4.33	<10	1.04	733	<1	0.03	24	730	24	<5	<20	60	0.16	<10		<10	4	
EO 96	3			135	0.8	2.03	65	175	<5	1.94	<1	20	69	83	4.37	<10	1.03	739	<1	0.02	22	750	22	<5	<20		0.15		88	<10	4	
EO 96	3			140	1.2	1.85	70	155	<5	1.80	<1	19	63	82	4.10	<10	0.99	709	<1	0.02	25	730	18	<5	<20		0.14		82	<10	5	
EO 96	3			140	1.0	1.88	70	155	<5	1.82	<1	19	63	83	4.16	<10	1.00	708	<1	0.02	25	730	20	<5	<20	63	0.14	<10		<10	4	
EO 96	3			150	1.0	1.86	65	150	<5	1.81	<1	18	62	82	4.06	<10	1.00	703	<1	0.02	25	690	18	<5	<20	61	0.13	<10		<10	4	
EO 96	6			150	1.0	1.81	60	155	<5	1.80	<1	19	20	86	4.11	<10	1.00	721	<1	0.01	26	720	16	<5	<20	56	0.11	<10	79	<10	3	
EO 96	6			146	1.0	1.81	65	165	<5	1.80	<1	19	61	85	4.17	<10	1.01	723	<1	0.02	22	710	18	<5	<20	62	0.11	<10	80	<10	4	
EO 96	5			155	1.2	1.83	65	160	<5	1.85	<1	19	63	85	4.26	<10	1.00	748	<1	0.02	24	770	18	<5	<20	60	0.12	<10	82	<10	3	
EO 96	3			145	1.2	1.77	70	155	<5	1.79	<1	19	61	82	4.13	<10	0.98	719	<1	0.02	22	760	22	<5	<20	58	0.12	<10	79	<10	3	
EO 96	3			140	1.0	1.73	65	150	<5	1.77	<1	18	61	81	4.03	<10	0.95	705	<1	0.01	25	760	20	<5	<20	55	0.11	<10	77	<10	5	
EO 96	5			145	1.2	1.82	65	160	<5	1.87	<1	19	63	85	4.27	<10	1.01	744	<1	0.02	22	790	22	<5	<20	60	0.12	<10	81	<10	5	
EO 96				140	1.0	1.75	65	150	<5	1.76	<1	18	60	78	3.98	<10	0.96	693	<1	0.02	25	720	22	<5	<20	56	0.11	<10	77	<10	3	
EO 96				150	1.0	1.74	70	150	<5	1.76	<1	18	60	77	3.98	<10	0.96	693	<1	0.02	25	740	20	<5	<20	55	0.11	<10	76	<10	3	
EO 96	5			-	1.6	1.75	65	160	<5	1.77	<1	18	61	77	4.01	<10	0.96	691	<1	0.01	25	740	22	<5	<20	59	0.11	<10	77	<10	3	
EO 96	2				1.0	1.77	70	160	<5	1.76	<1	19	61	77	4.02	-10	0.97	697	<1	0.03	25	750	24	<5	<20	58	0.12			<10	3	

df/840r/840ar/840B/840C XLS/HUDSON BAY#3

Ø

Page 18

ECO-TECH LABORATORIES LTD. Perf Erank J.Pezzotti, A.Sc.T. B.C. Cerlified Assayer

a

٠

12-Aug-96

 $\mathcal{P}:= \mathcal{Q}_{1}$

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 674

.

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-813

HUDSON BAY EXPLORATION & DEVELOPMENT # 405-470 GRANVILLE STREET VANCOUVER, BC V6C 1V5

.

.

÷

.

ATTENTION: MIKE BUCHANAN

No. of Samples Received:80 Sample Type:SOIL PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: NOT INDICATED

Values in ppm unless otherwise reported

Et #.	Tag #		Au(ppb)	Ag	AI %_	As	Ва	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	РЪ	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	L55N	31+50 E	<5	<0.2	3.34	25	125	<5	0.15	<1	15	65	133	4.22	<10	0.73	411	2	<0.01	43	1190	8	<5	<20	9	0.04	<10	96	<10	<1	134
2	L55N	32+00 E	<5	<0.2	2.92	25	105	<5	0.30	<	24	35	79	6.19	~10	0.53	746	3	0.03	28	1810	6	<5	<20	20	0,12	<10	136	<10	<1	189
3	L55N	32+50 E	10	0.2	3.21	400	130	<5	0.22	<1	22	57	63	5.02	<10	0.78	625	3	<0.01	45	700	12	<5	<20	14	0.06	<10	110	<10	<1	390
4	L55N	33+00 E	<5	1.0	2,98	245	130	<5	0.41	<1	61	56	1571	4.46			1943	5	0.04	47	760	16		<20	23	0.04	<10	99	<10	14	210
5	L65N	33+50 E	<5	<0.2	2.49	40	100	<5	0.16	<1	13	52	59	4.86	<10	0.54	327	2	<0.01	28	560	12	<5	<20	14	0.07	<10	121	<10	<1	115
6	L55N	34+00 E	<5	<0.2	4 33	55	105	<5	0.14	<1	15	71	58	5.62	<10	0.65	309	3	0.03	38	1210	14	<5	<20	10	0.07	<10	124	<10	<1	164
7	L55N	34+50 E	5	0.6		50	140		0.15	<1	15	48	72		<10	0.65	684	_	<0.01		1030	14		<20	22	0.05	<10		<10		169
2 2	-	30+50 E	<5	<0.2		30	180		0.34	<1	12	54	69	3.58	<10	0.75	312		<0.01	45	410	8			22	0.03	<10		<10	2	99
q		31+00 E	5			20	145		0.46	<1	24	77		6.15	<10	1.13	788		0.03	37	1670	4		<20	27	0.23	<10	• -	<10	<1	157
10		31+50 E		<0.2		70			0.16	<1	14	57	60			0.63	366		<0.01		1300	6		<20	10	0.05	<10		<10		100
	200 / 0011	01.00 1	~	· •	0.00			-	•=	•																					
11	L55+50N	32+00 E	<5	<0.2	3.47	30	135	<5	0.15	<1	15	56 [.]	37	4.69	<10	0.68	376	-	<0.01	34	960	6				0.06	<10		<10	<1	132
12	L55+50N	32+50 E	<5	1.0	3.29	235	160	<5	0.77	<1	32	63	197	5.60	<10	0.95	1832	4	0.01	51	500	30			29	0.07	<10	136	<10	7	263
13	L55+50N	32+75 E	<5	<0.2	2.73	85	145	<5	0.42	<1	21	60	86	5.57	<10	0.68	420		<0.01	47	440	60		<20	20	0.10	<10		<10		193
14	L55+50N	33+00 E	<5	<0.2	1.53	20	130	<5	0.31	<1	, 12	35	33	4.32	<10	0.42	200	<1	0.03	17	270	14	-	<20	15	0.20	<10		<10		94
15	L55+50N	33+25 E	<5	<0.2	1.89	45	140	<5	0.21	<1	16	45	84	3.66	<10	0.64	429	3	<0.01	25	280	12	<5	<20	14	0.06	<10	101	<10	<1	104
			_					~				- 4		5 40		0.00	004		0.00		~~~	40		-00		0.00		404	-10		404
16		33+50 E		< 0.2		40			0.18	<1	14	51		5.12		0.60	361		0.02	29	610	12			19	0.08	<10		<10		161
17		33+75 E	<5	•		40	145		0.24	<1	15	53	34	+ -		0.64	424	3	0.02	30	510	14			13	0.08	<10		<10		140
18	L55+50N			<0.2		85	95		0.27	<1	15	46	55	5.89	<10	0.71	320	<1	0.03	18	870	14		<20	14	0.21	<10		<10		130
19	L55+50N		-	<0.2		25	65		0.16	<1	7	24		2.16		0.34	183		0.02	11	770	18			10	0.09	<10		<10	-	54
20	L55+50N	34+50 E	5	<0.2	1.79	50	90	5	0.15	<1	11	57	34	5.22	<10	0.51	301	3	0.02	26	960	14	<5	<20	12	0.05	<10	128	<10	<1	93
21	I SGLOEN	39+00 E	<5	1.6	2.62	585	165	<5	0.84	2	80	34	1253	7.28	<10	0.43	7974	7	0.03	32	1530	26	<5	20	38	0.11	<10	194	<10	7	482
21		39+50 E	~> <5	2.0		10	160		0.39	<1	9	15	35	3.16	<10		1596	<1	0.03	9	940	6	_		30	0.09	<10		<10	<1	88
22		40+00 E	<5	<0.2		15	105	-5		<1	11	19	28	4.66	<10	0.40	268	<1	0.01	8	880	8	<5	<20	17	0.18	<10		<10		46
23 24		40+00 E 40+50 E	~0 5	<0.2		35	70	จ <5		1	11	32	20 88	3.80	<10	0,40	253	-1	0.03	16	340	10	<5	<20	27	0.11	<10		<10	2	73
24 25	L56+25N		0 ~5	<0.2		30	120	-	0.39	<1	12	29	135		<10	0.39	230	1	0.01	17	750	12	<5	<20	31	0.13	<10	213		1	54
20	LOUTZON	HITVV E	~0	~U.Z	1.01	30	120	-0	0.54	~ 1	16	20	100	7.55	- 10	0.03	200	'	5.67				-0	-20	Ų,	5.10	10	2.0			0,

HUDSON BAY EXPLORATION & DEVELOPMENT

ICP CERTIFICATE OF ANALYSIS AK 96-813

ECO-TECH LABORATORIES LTD.

6453

Et #.	Tag #		Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na %	Ni	P	Pb	Sb	Sn	_Sr	TI %	υ	<u>v</u>	<u>w y</u>	Zn
26		41+50 E	<5	<0.2	2.06	35	125	<5	0.32	<1	13	26	59	6.44	<10	0.45	244	3 0.01	11	610	10	<5	<20	27	0.16	<10	286 <	10 <1	55
27	L56+50N		<5	<0.2		285	105	<5	0.22	<1	23	25	122	9.33	<10	0.46	660	6 <0.01	15	2310	18	<5	20	14	0.10	<10	180 <	10 <1	286
28	L56+50N		<5	<0.2	2.32	30	80	<5	0.25	1	14	38	54	6.23	<10	0.47	479	4 <0.01	22	1830	26	<5	<20	13	0.08	<10	145 <	10 <1	126
29	L56+50N	31+50 E	10	<0.2	2.43	55	120	5	0.27	<1	11	42	36	5.22	<10	0.46	232	2 <0.01	21	510	12	<5	<20	22	80.0	<10	151 <	10 <1	102
30	L56+50N		<5	<0.2		80	110	<5	0.28	<1	21	39	63	6.63	<10	0.84	445	2 0.01	23	1270	8	<5	<20	48	0.18	<10	185 <	10 <1	199
			-	-																									
31	L56+50N	32+50 E	30	6.4	>10	655	270	<5	1.55	<1	37	79	960	6.11	20	0.65	1110	5 0.04	98	2370	<2	<5	<20	48	0.03	<10	107 <	10 50	257
32	L56+50N	32+75 E	<5	<0.2	2.75	420	185	<5	0.60	<1	31	64	719	5.40	<10	1.03	1537	2 <0.01	54	490	14	<5	<20		0.11	<10	140 <	10 5	276
33	L56+50N	33+00 E	<5	0.6	2.93	585	185	<5	0.84	<1	23	77	1377	5.50	<10	1.18	1262	3 <0.01	75	880	24	<5	<20		0.06	<10	121 <	10 17	223
34	L56+50N	33+25 E	5	5.6	2.80	870	155	<5	3.12	<1	90	42 >	10000	2.52	50	0.31	3080	2 0.05	68	2270	10	<5	<20	56	0.03	<10		10 170	225
35	L56+50N	33+50 E	<5	<0.2	2.90	115	115	<5	0.20	<1	20	55	179	5.81	<10	0.68	383	4 <0.01	41	1000	12	<5	<20	28	0.06	<10	126 <	10 <1	161
36	L56+50N	33+75 E	<5	<0.2	1.87	40	105	<5	0.16	<1	9	44	25	4.28	<10	0.36	212	3 <0.01	18	470	12	-	<20		0.08	<10		10 <1	75
37	L56+50N	34+00 E	<5	<0.2	3.13	130	95	<5	0.15	<1	15	69	68	5.50	<10	0.63	303	3 0.02	35	850	26	-	<20	11	80.0	<10		10 <1	103
38	L56+50N	34+25 E	5	<0.2	2.94	40	155	-	0.14	<1	14	58	89	4.76	<10	0.68	271	4 0.02	35	500	22		<20	14	0.05	<10		:10 <1	110 150
39	L56+50N	34+50 E		<0.2		55	115		0.22	<1	14	68	60	5.47	<10	0.85	387	4 < 0.01	38	910	12		<20	15	0.06	<10		10 <1	77
40	L56+50N	35+00 E	5	<0.2	2.51	35	115	10	0.23	<1	20	77	47	6.16	<10	0.98	292	<1 0.02	24	720	10	<0	<20	15	0.40	<10	245 <	10 1	
								_						5 07	-10	0.51	045	2 0 02	21	680	12	<5	<20	19	0.13	<10	140 -	-10 <1	79
· 41 (L56+50N			<0.2		35	95		0.20	<1	12	49	46	5.37		0.53	245 251	2 0.02 2 <0.01	28	800	12		<20	12	0.05	<10		<10 <1	130
42	L58+00N			<0.2		30	130		0.18	<1	11	50	20	3.79	<10	0.53		2 < 0.01	20 53	300	16		<20	32	0.00	<10		<10 <1	243
43	L58+00N			<0.2	3.05	100	190	<5	0.49	<1	35	60	61	4.59	<10 <10	0.85	690 366	2 < 0.01	- 55 46	960	16		<20	11	0.08	<10		<10 <1	119
44		32+50 E		<0.2		75	130	<5	0.17	<1	18	61	66	4.65		0.79		2 < 0.01	24	820	18		<20	11	0.06	<10		<10 <1	92
45	L58+00N	33+00 E	<5	<0.2	2.44	40	100	<5	0.17	<1	10	47	31	4.45	<10	0.48	263	5 -0.01	24	020	10	~0	~20		0.00	~10	110	-10 -1	97
			-	-0.0	0.70		405	- . .	0.47	~ 4	10	44	35	5.67	<10	0.33	199	4 < 0.01	19	560	20	<5	<20	11	0.11	<10	159 <	<10 <1	71
46		33+50 E	-	<0.2		65	105	-	0.17 0.20	<1 <1	10 21	44 65		4.45	<10	0.90	295	<1 0.01	43	490	12	-	<20			<10	143 4		69
47		32+00 E	5	+	4.06	40	180 170		0.20	<1	14	57	44	4.55	<10	0.86	429	2 < 0.01	43	1570	12	-	<20	20	0.08	<10		<10 <1	106
48		32+50 E		< 0.2		30 40	115		0.20	<1	11	48	37	5.38	<10	0.43	260	3 < 0.01	23	620	14		<20		0.10	<10	152 <	<10 <1	79
49	L58+50N			<0.2		40 25	120		0.17	<1	9	29	42		<10	0.25	371	4 < 0.01	23	710	8	-	<20		0.10	<10		<10 <1	60
50	L58+50N	33+50 E	~ >	<0.2	1.40	20	120	~0	0.22	-1	5	20	76	0.41	- (🗸	0.20	0			1.5	•	-							
51		34+00 E	5	<0.2	1.60	40	100	<5	0.26	<1	10	37	33	4.35	<10	0.45	277	1 0.03	19	800	12	<5	<20	16	0.12	<10	133 <	<10 <1	82
52	L58+50N			<0.2	2.65	35	95		0.13	<1	9	32	41	4.20	<10	0.36	236	2 0.03	16	630	10	<5	<20	9	0.10	<10	112 <	<10 <1	80
53		34+50 E	<5	0.4	3.07	55	105		0.29	<1	18	46	49	5.09	<10		574	2 < 0.01	24	2440	22	<5	<20	19	0.09	<10	126 <	<10 <1	102
53 54		39+50 E	<5		1.87	20	105	<5	0.39	1	12	33	50	5.67	<10	0.50	249	3 0.03	19	1850	12	<5	<20	23	0.12	<10	163 •	<10 <1	101
		40+00 E	-	<0.2		5	75	<5	0.19	<1	9	38	31	4.34	<10		186	2 < 0.01	17	710	6	<5	<20	15	0.09	<10	116 •	<10 <1	56
55	L00+70N	40700 ⊏	~0	~0.2	1.03	5	15	-0	0.15	~ 1		00	Ű.	1.01		••••					-	-							
50	1 60±76N	41+50 E	25	<0.2	2.13	15	85	<5	0.24	<1	10	45	35	4.60	<10	0.47	213	3 < 0.01	24	750	6	<5	<20	17	0.07	<10	106 -	<10 <1	68
56 57		41+50 E 42+00 E	5 5		2.13	20	110	~5 <5	0.24	<1	14	38	56	6.46	<10		250	4 < 0.01	24	2480	4	<5	<20	23	0.09	<10	148 ·	<10 <1	85
57 58		42+00 E 42+50 E	<5		2.08	15	85	<5	0.50	<1	12	31	58	5.59	<10	0.42	230	3 < 0.01	15	1030	6	<5	<20	29	0.11	<10	163 ·	<10 <1	70
50 59		42+50 E	-5		2.08	25	110	-5		<1	15	36	54	6.69	<10	0.65	295	4 < 0.01	21	2150	10	<5	<20	31	0.12	<10	178 -	<10、<1	100
59 60		43+00 E	-	<0.2		15	160	-	0.42	<1	16	40	47			0.67	414	3 < 0.01		1870	12	<5	<20	28	0.11	<10	181	<10`<1	127
ψu	LOUTION	-0100 L	Ş	-0.2	·				····	•				-	-														

ICP CERTIFICATE OF ANALYSIS AK 96-813 ECO-TECH LABORATORIES LTD. HUDSON BAY EXPLORATION & DEVELOPMENT Cu Fe % La Mg % Mn Mo Na% Ni Р Pb Sb Sn Sr Ti% Bi Ca % Cd Co Сг Et #. Tag # Au(ppb) Ag Al% As Ba 18 3910 <2 <5 <20 18 0.17 19 26 265 7.62 <10 0.71 425 3 0.03 L58+75N 44+00 E <5 <0.2 3.96 20 100 <5 0.31 <1 61 156 6.59 <10 0.68 464 3 0.02 24 2510 4 <5 <20 27 0.12 L58+75N 44+50 E <5 <0.2 3.08 25 85 <5 0.40 <1 17 31 62 1280 24 37 82 5.46 <10 0.48 642 2 < 0.01 38 8 <5 <20 18 0.13 L58+75N 45+00 E <5 <0.2 2.40 10 120 <5 0.26 <1 63 <1 12 42 5.93 <10 0.40 289 4 < 0.01 19 2260 14 <5 <20 19 0.08 64 L58+75N 45+50 E 5 <0.2 1.92 25 100 <5 0.25 41 21 659 4.94 30 0.75 1629 7 < 0.01 35 860 18 <5 <20 50 0.08 35 95 <5 0.66 <1 47 65 L58+75N 46+00 E <5 0.6 2.91 275 7.92 <10 1.01 507 3 < 0.01 24 1910 4 <5 <20 31 0.21 L58+75N 46+50 E 5 <0.2 3.11 <5 105 <5 0.54 1 26 28 66 27 53 3.33 <10 0.39 186 <1 0.02 13 790 10 <5 <20 14 0.09 L58+75N 47+00 E 5 70 <5 0.18 <1 8 67 <5 <0.2 1.88 <1 24 6 126 9.36 <10 0.73 657 5 0.03 8 2370 <2 <5 <20 28 0.14 L58+75N 47+50 E <5 <0.2 1.39 <5 80 <5 0.75 68 <5 0.22 <1 11 21 67 4.63 <10 0.52 283 1 < 0.01 12 1290 10 <5 <20 17 0.11 <5 <0.2 2.02 <5 75 69 L58+75N 48+00 E <1 35 86 4.73 <10 0.49 366 2 0.02 19 1910 10 <5 <20 16 0.08 70 L58+75N 48+50 E 5 < 0.2 2.78 10 100 <5 0.17 11

 $\{i,j\} \in S^{n}_{\mathcal{H}}$

<10 0.81 1034 2 < 0.01 33 1600 236 <5 <20 29 0.08 <10 124 <10 3 1726 71 L58+75N 49+50 E <5 0.2 2.76 465 115 <5 0.53 1 24 46 119 5.40 48 7.73 <10 0.61 506 2 0.03 12 4240 8 <5 <20 37 0.19 <10 240 <10 <1 151 110 <5 0.51 <1 17 24 72 L60N 36+50 E <5 <0.2 2.73 10 226 <10 <1 65 <10 0.49 281 1 0.03 9 390 10 <5 <20 45 0.16 <10 73 L60N 37+00 E <5 <0.2 1.35 15 120 <5 0.98 1 13 16 54 4.87 2 < 0.01 12 28 6.28 <10 0.44 310 13 2280 6 <5 <20 20 0.15 <10 214 <10 <1 52 75 10 0.25 <1 26 74 L60N 38+00 E <5 <0.2 2.12 <5 168 <10 <1 38 <5 0.21 <1 10 23 33 5.16 <10 0.35 231 2 < 0.01 11 1820 2 <5 <20 14 0.11 <10 L60N 38+50 E <5 <0.2 1.88 <5 60 75 75 5 0.20 8 33 25 4.28 <10 0.32 185 2 < 0.01 13 1210 10 <5 <20 15 0.08 <10 131 <10 <1 44 76 L60N 39+50 E <5 <0.2 1.56 10 <1 281 3 < 0.01 24 3760 8 <5 <20 23 0.11 <10 187 <10 <1 64 <5 0.33 <1 13 42 48 6.89 <10 0.59 40+00 E 20 100 77 L60N <5 <0.2 2.62 152 <10 <1 68 5 0.24 <1 12 39 39 5.82 <10 0.45 245 3 < 0.01 21 3060 8 <5 <20 18 0.10 <10 L60N 40+50 E <5 <0.2 2.16 10 95 78 200 <10 <1 41 244 1 < 0.01 12 1290 8 <5 <20 17 0.14 <10 75 5 0.28 <1 10 26 21 5.01 <10 0.29 79 L60N 41+00 E 5 <0.2 1.31 <5 163 <10 5 137 <5 0.82 33 31 171 5.72 <10 0.66 2666 4 0.02 20 960 30 <5 <20 46 0.14 <10 80 160N 41+50 E <5 0.6 2.24 10 120 1

مرغو فيحرج والأرا

Zn

90

110

126

75

88

112

57

69

42

62

V W Y

180 <10 <1

138 <10 <1

141 <10 <1

163 <10 <1

121 <10 23

1

<1

2

<1

234 <10

101 <10

490 <10

116 <10

134 <10 <1

u

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

UDSC	ON BAY EX	PLORATIO	ON & DEV	ELOPN	IENT				1	CP CEI	RTIFIC	TE OF	ANALY	ISIS AF	(96-81	3				Ε	ECO-TI	ECHL	ABO	RATOR	IES L	TD.					
Et #.	Tag #	<u>,</u>	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Си	Fe %	La	<u>Mg %</u>	Mn	Mo	Na %	Ni	<u>P</u>	Pb	Sb	Sn	Sr	<u>Ti %</u>	U	v	<u></u>	<u>Y</u>	-
C/DA	TA:																														
epeat	-																														
1	L55N	31+50 E	<5	<0.2	3.46	20	130	<5	0.16	<1	15	66	110	4.32	<10	0.75	422		<0.01		1210	4	<5	<20	11	0.05	<10			<1	
10	L55+50N	31+50 E	<5	<0.2	3.08	65	110	<5	0.17	<1	14	58	59	5.67	<10	0.65	378	4	<0.01	33	1270	8	<5	<20	10	0.05	<10	131	<10	<1	
19	L55+50N	34+25 E	<5	<0.2	1.38	20	65	<5	0.16	<1	7	27	18	2.20	<10	0.33	185	<1	0.02	11	770	18	<5	<20	12	0.09	<10	71	<10	<1	
28	L56+50N	31+00 E	<5	<0.2	2.36	30	80	5	0.27	<1	15	41	56	6.19	<10	0.50	503	4	<0.01	23	1810	24	<5	<20	13	0.09	<10	147	<10	<1	
36	L56+50N	33+75 E	<5	<0.2	1.84	35	100	<5	0.15	<1	9	43	24	4.25	<10	0.37	209	2	<0.01	18	460	12	<5	<20	10	0.07	<10	120	<10	<1	
45	L58+00N	33+00 E	<5	<0.2	2.44	40	100	<5	0.16	<1	10	47	31	4.41	<10	0.46	260	3	<0.01	24	830	18	<5	<20	11	0.06	<10	113	<10	<1	
54	L58+75N	39+50 E	<5	<0.2	1.89	20	105	<5	0.39	<1	12	33	52	5.77	<10	0.52	253	2	<0.01	18	1360	10	<5	<20	23	0.12	<10	167	<10	<1	
63	L58+75N	45+00 E	<5	<0.2	2.38	10	120	<5	0.26	<1	25	37	82	5,49	<10	0.47	648	2	<0.01	39	1290	8	<5	<20	19	0.13	<10	140	<10	<1	
71	L58+75N	49+50 E	<5	0.4	2.75	490	115	<5	0.53	<1	24	48	116	5.54	<10	0.80	1036	2	0.02	33	1620	242	<5	<20	30	0.09	<10	128	<10	2	
80	160N	41+50 E	-	0.8	2.25	10	120	<5	0.82	2	33	30	172	5.79	<10	0.67	2696	4	0.02	20	950	28	<5	<20	46	0.14	<10	166	<10	5	
tanda	rd:																														
EO'96	5		140	1.2	1.82	65	175	<5	1.90	<1	20	66	84	4.42	<10	1.01	755	<1	0.02	25	730	16	<5	<20	67	0.12	<10	83	<10	4	
EO'96	}		150	1.2	1.86	70	160	<5	1.86	<1	19	64	88	4.31	<10	1.05	734	<1	0.02	22	720	18	<5	<20	61	0.12	<10	83	<10	4	
EO'96	}		140	1.2	1.83	70	155	<5	1.84	<1	19	63	85	4.25	<10	1.04	739	<1	0.02	22	720	20	<5	<20	62	0.11	<10	83	<10	4	

(

*

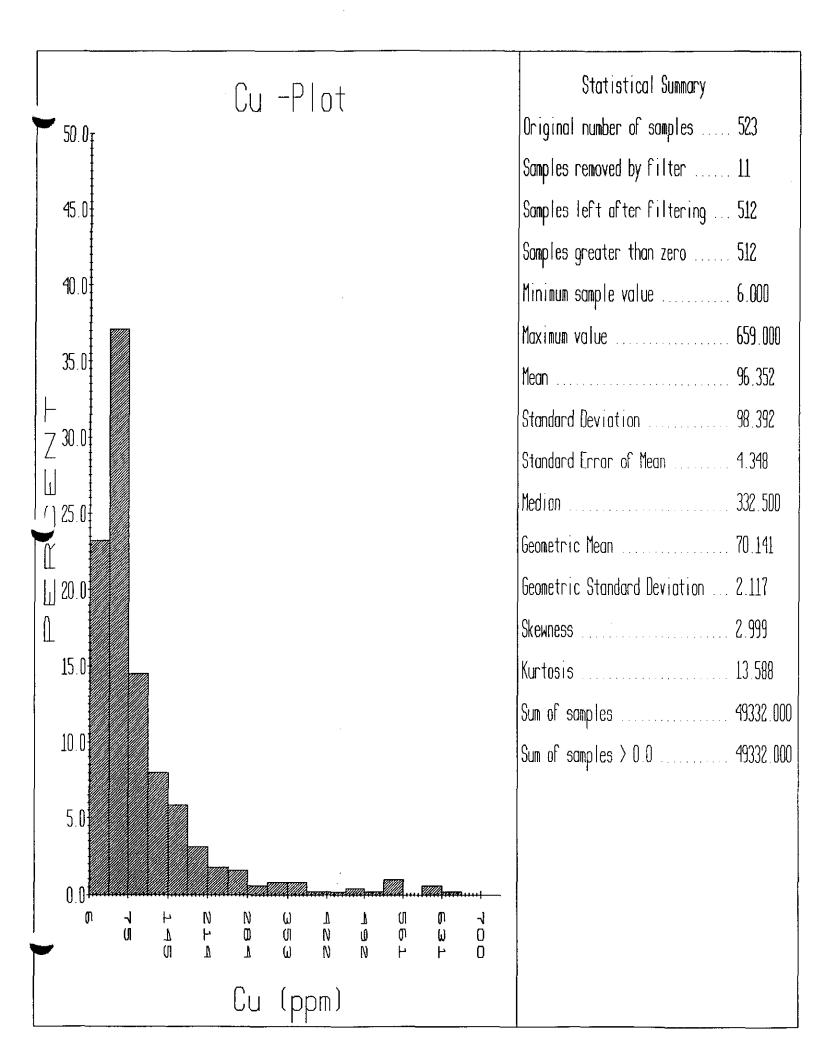
.

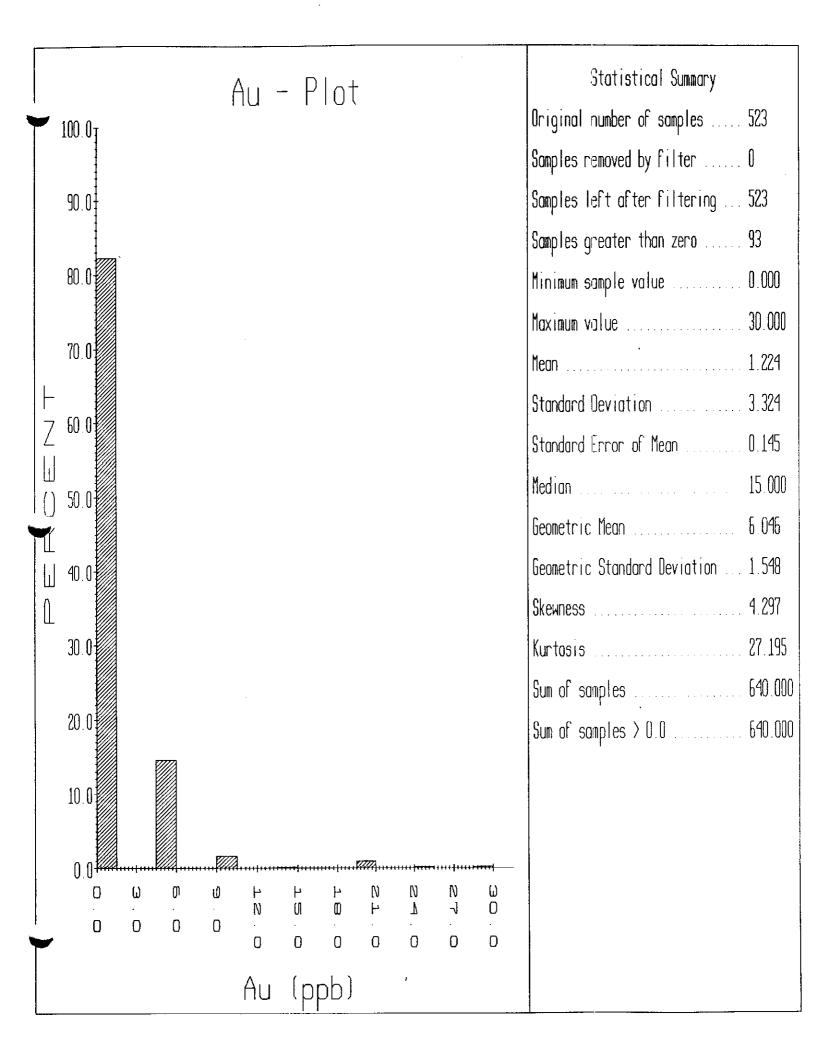
*

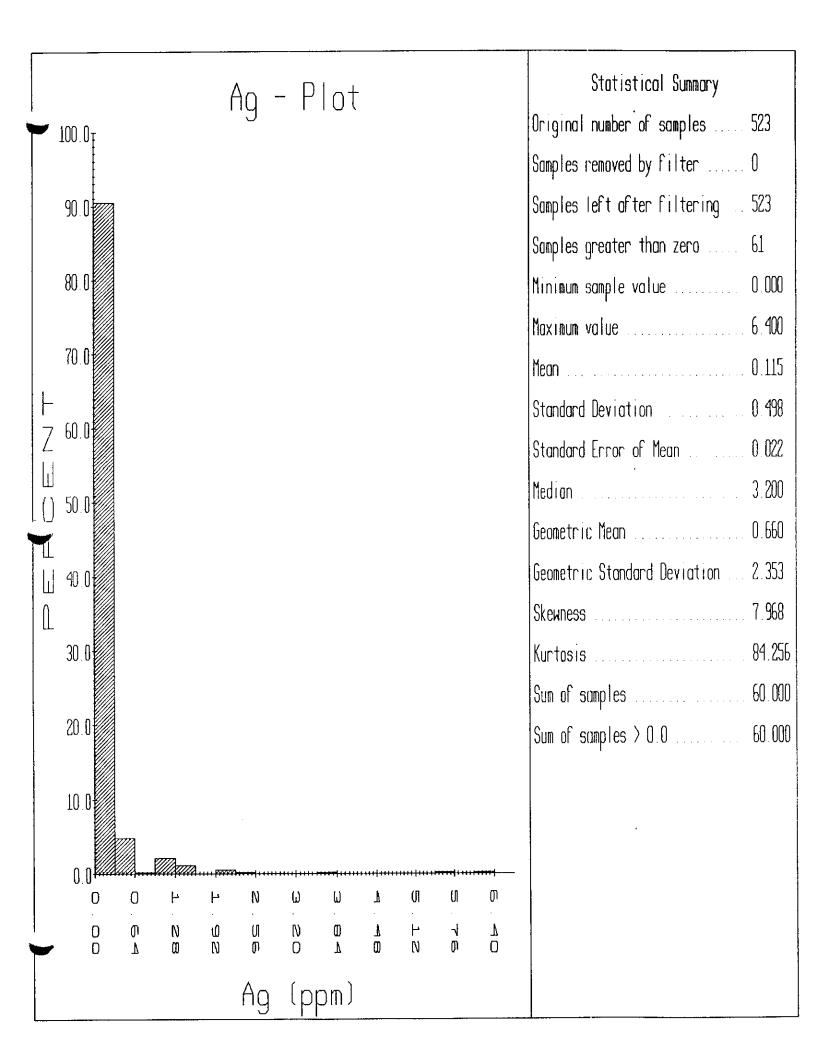
XLS96/HudsonBay

8 . 55

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer


-


Appendix 4 Statistical Analysis of Soil Samples


1.

 $\gamma_{i,j} \in$

•

		_			As	_ P	י ח+	_				Statistical Summary	
-	100.0 ₁				нJ	I	101					Original number of samples	. 523
												Samples removed by filter	. 0
	90.0											Samples left after filtering	523
												Samples greater than zero	. 497
	80.0											Minimum sample volue	0.000
	70.0											Maximum value	1445.000
	70.0											Neon	77.218
	60.0											Standard Deviation	154.183
	00.0											Standard Error of Mean	6.742
	50.0											Median	722.500
\mathbf{M}												Geometric Nean	41.107
Ŀ	40.0											Geometric Standard Deviation	2.811
												Skewness	5.750
	30.0				·							Kuntosis	44.312
												Sum of samples	40385,000
	20.0											Sum of samples > 0.0	40385.000
	10.0												
	-		2										
	0.0			4444	7 1111 (1777)	ᢪᢟᠶᠮ᠋ᠯ᠋᠄᠂᠂᠂᠂	++++ {++++ +	····{···		*****	നന്ന]		
	0	₹ L	N 0 0	Δ ω ω	U 7 0	N N	ወ ጦ ላ	(V 4 4	9 12 4 4 13 13	е С	ч 1		
		Д	W	ω	W	IV	٦	N H	01 On	6 0 0	ע ע וט		
					As	(p	om)						

Appendix 5 Rock Sample Descriptions

	HUDSON BAY D	/ 61 24		TIONS			ENT CO I TO
	TUUSUN BAT E		i Ni				INTERNAL PLET
						ERTY_	
			RC	<u>) CK SAN</u>	ABLIN	G.	
SAMPLE #	LOCATION		ΤY	PE	101100000000000000	LENGTH	REMARKS
		GRAB	CHIP	TRENCH	PANEL	(m)	
96-8305	L56+00N - 32+75E		Х			1	Sheared chlorotized andesite with quartz and calcite veins. Baked
96-8306	L56+00N - 32+75E		X			1,4	& vuggy in regions. 3-5 % arsenopyrite, 1-3% chalcopyrite,
96-8307	L56+00N - 32+75E		X			0.8	<1% pyrite, minor azurite & malachite staining.
96-8308	L56+00N - 32+75E		Х			1	
96-8309	L56+00N - 32+75E		X			1	
96-8310	L56+00N - 32+75E	X			· .		Selected high grade sample.
1296TCH250	L55+86N - 55+00E	X					1-2% Chalcopyrite trace pyrite/malachite. Diorite with Hornblende X-Tals
1296TCH251	L53+50N - 52+00E	X					Trace - 1% disseminated chalcopyrite/pyrite malachite stained diorite
1296TCH252	L52+50N - 51+00E		X			0.3	Trace - 1% disseminated chalcopyrite/pyrite malachite stained diorite
1296TCH253	L52+50N - 51+00E		X	╏───╂		0.2	Trace - 1% disseminated chalcopyrite/pyrite malachite stained diorite
1296TCH254	L55+10N - 38+30E	X		┨			Highly attered/baked intrusive with small calcite blebs 1-3% chalcopyrite.
1296TCH255	L55+10N - 38+30E	X		┨┨			Diorite boulder with narrow calcite vein, 1-5% chalcopyrite
1296TCH256	L55+00N - 38+30E	X		Į			Siliceos greenish/grey andesite with 1-5% pyrite.
1296TCH257	L56+25N - 39+50E	X		 			Diorite with 1-3% disseminated pyrite.
1296TCH271	L53+25N - 51+00E	X	i	i			Attered monzodiorite with epidote/chlorite 1-2% chalcopyrite.
1296TCH272	L50+00N - 52+50E	X		┨───┼			Monzodiorite with black magnetite 1-2% chalcopyrite.
1296TCH273	L52+70N - 50+90E	X			· ·		Altered monzodiorite with epidote/chlorite 1-2% chalcopyrite.
1596TCHR015	L59+00N - 33+50E	X		╏───┤			Medium grained monzodiorite with minor syenitic dykes T-0.5% Pyrite <1% Mag
1596TCHR016	L58+50N - 33+50E	X		┨──┤			Fine grained intrusive or andesite, gry/green, minor qtz <0.5% chalcopyrite.
1596TCHR017	L56+00N - 32+75E	X		i			Balck/Gry baked volcanic andesite, sheared, vuggy, quartz & catcite infilling, 1-3%
		1		т			chalcopyrite, 1-5% Arsenopyrite.
1596TCHR019	L60+00N - 38+50E	X		╏───┤-			Baked Andesite with 1-3% pyrite, minor chalcopyrite
1596TCHR020	L60+00N - 38+50E	X		i - I			Mesocratic monzodiorite in contact with andesite.
1596TCHR023	L47+00N - 40+00E	X		┟───┤-			Grab sample from rusty andesite, 1-3% pyrite.
1596TCHR024	L54+50N - 52+00E	X		┨───┤			Monzodiorite with 30 cm wide epidote/qtz/chlorite vein 1-2% chalcopyrite/malachite Monzodiorite with guartz epidote veins/fractures.
1596TCHR025	L49+00N - 59+00E	Â		┇───┤		· · · ·	Mesocratic chlorite rich diorite/monzodiorite
1596TCHR026	L48+75N - 56+25E	x		┨───┤			Baked chloritic monzodiorite in contact with small
1596TCHR027 1696TCHR021	L48+75N - 55+00E L55+50N - 55+00E	X		┨───┤			H.N. Monzonite Kspar 40, Plag 40% Hn 20% Jointing 290° + 10°
1696TCHR021	L55+50N - 55+00E	Â		<u> </u>			Monzodiorite 80% Plag, 15% Kspar, 5% HN, Foliation 316° SL Shearing Minor Ma
1696TCHR022	L56+25N - 55+25E	x		┦ ┃			Diorite 75% Plag, 5 Kspar, 10 Biot, 10% HN Minor Mag Minor AP/Lite Veinlets
1696TCHR023	L59+80N - 53+45E	x		<u>}</u> }-			Monzodiorite 75% Plag, 15% Kspar10 HN, TR Cpy Mod. Mag. Fol 327°
1696TCHR024	L53+25N - 52+25E	X		<u></u> }──-}		-	Diorite 85 % Plag, 5% Kspar, 15% HN Minor Mag Part of L.G. O/C
1696TCHR025	L57+00N - 50+00E	Â		┋╶┈╍╌┨╴			Monzodiorite 80 % Plag 10% Kspar 10 % HN Non Magnetic
16961CHR026	L57+55N - 47+75E	x		!			Monzodiorite to Diorite - 80% Plag 10% Kspar 15% HN Trace PY
10001000027	LOTTODIC - 41 TIVE	1	I	<u> </u>		l	Sample HN Field, Porphyry Dyke TR- 2 % PY Strike 290° or wide
1696TCHR028	L55+50N - 50+00E	x	ľ	1			Monzodiorite 70 % Plag 5 % Biot, 15 % Ha, 5 % Kspar
	L00+0014 - 00+002	1	I	1I		L	Massive TR PV 5 % QTL
1696TCHR029	L57+50N - 48+00E	x		I T			Monzodiorite 70% Plag, 2% Kspar 10 % HN Minor Mag Jointing 306°
1696TCHR029	L58+75N - 48+25E	Î	—	 	·		Monzodiorite 60% Plag, 20% Kspar, 20% HN Minor Mag Jointing 302° & 30°
1696TCHR030	L60+10N - 49+25E	Î		1 1			Monzodiorite 75 % Plag, 10 % Kspar, 15 % HN TR Mag Mass
1796TCHR001	L40+00N - 60+20E	Î X		╏──╂			Otz Monzodiurite, contains strong magnetic Feo's
1796TCHR002	L41+60N - 60+00E	x	 	<u></u> ∤			Monzonite, Mufic w/epidate veins, little dispyrite
1796TCHR003	L41+90N - 59+90E	X	 				Otz Syenite, contains Ote veins 3-4 cm (largest 50 cm)

•

.

-

Appendix 6

Analytical Results for Rock Samples

16-Aug-96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-861

HUDSON BAY EXPLORATION & DEVELOPMENT # 405-470 GRANVILLE STREET VANCOUVER, BC V6C 1V5

ATTENTION: MIKE BUCHANAN

No. of Samples Received:20 Sample Type:ROCK PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: NOT INDICATED

Values in ppm unless otherwise reported

Et	#Tag #	Au(ppb)*	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	РЬ	Sb	Sn	Sr	Ti %	U	V	w	Y	Zn
1	96-8305		23.0	0,75	>10000	35	<5	1.03	<1	2558	123 :	10000	5.04	<10	0.16	563	11	<0.01	150	620	12	75	<20	9	0.02	<10	21	<10	4	58
2	96-8306		9.0	1.40	>10000	50	<5	0.91	<1	1199	89	5136	5.13	<10	0.96	1215	7	0.01	78	1160	12	10	<20	14	80.0	<10	79	<10	3	105
3	96-8307		5.2	2.36	4835	65	<5	0.59	<1	687	92	3467	6.88	<10	1.71	2397	3	0.03	60	1240	14	<5	<20	16	0,16	<10	144	<10	5	154
4	96-8308		2.0	0.38	>10000	20	<5	0.68	<1	1736	150	1136	2.39	<10	0.09	406	11	<0.01	80	240	10	55	<20	7	<0.01	<10	12	<10	3	31
5	96-8309		18.8	0.51	>10000	25	<5	0.79	<1	1781	195	9877	3.81	<10	0.30	646	14	<0.01	90	720	6	35	<20	10	0.03	<10	20	<10	2	53
6	96-8310		27,4	0.87	>10000	25	<5	0.97	<1	950	128 ፡	•10000	4.92	<10	0.58	965	16	<0.01	70	860	6	25	<20	9	0.03	<10	26	<10	2	74
7	1296TCH250		0.2	1.11	1570	85	<5	0.28	<1	64	73	279	3.90	<10	0.30	276	4	<0.01	3	1120	8	<5	<20	12	0.05	<10	28	<10	<1	10
8	1296TCH251		0.8	2.67	30	45	<5	2.89	<1	19	24	972	4.66	<10	1.21	623	<1	0.01	6	1820	16	<5	<20	53	0.15	<10	130	<10	<1	48
9	1296TCH252		4.8	0.98	35	40	<5	0.69	<1	9	32	913	2.76	<10	0.24	122	2	0.04	5	1080	26	<5	<20	75	0.06	<10	20	<10	<1	16
10	1296TCH253		1.0	1.18	40	50	<5	1.76	<1	18	18	914	2.20	<10	0.47	280	2	0.01	5	2600	10	<5	<20	47	0.10	<10	48	<10	3	10
11	1296TCH254		<0.2	1.88	25	70	<5	1.66	<1	24	83	414	5.79	<10	1.47	1022	7	0.07	71	1060	16	<5	<20	40	0.10	<10	142	<10	3	91
12	1296TCH255		1.8	0.13	1295	<5	<5	>10	<1	90	25	1402	1.02	<10	0.10	2199	7	<0.01	3	160	86	10	<20	431	<0.01	<10	3	<10	71	257
13	1296TCH256		4.2	0.74	300	25	<5	1.74	<1	65	87	3919	2.58	<10	0.55		7	0.01	3	2750	6	<5	<20	24	0.02	<10	21	<10	6	41
14	1296TCH257		<0.2	2.91	<5	85	<5	4,44	<1	25	19	828	5.26	<10	1.54	867	<1	0.04	5	2560	16	<5	<20	38	0.15	<10	141	<10	2	63
16	1596TCHR015	i	<0.2	1.33	10	50	<5	0.76	<1	12	97	112	3.46	<10	0.95	392	3	0.03	20	920	14	<5	<20	9	0.17	<10	108	<10	4	37
17	1596TCHR016	3	<0.2	3.05	25	45	<5	2.00	<1	42	24	192	6.28	<10	1.76	999	<1	0.03	12	1510	30	<5	<20	19	0.14	<10	175	<10	<1	74
18	1596TCHR017	,	22.4	0.46	>10000	15	<5	0.81	<1	1189	92 :	10000	3.45	<10	0.29	543	11	<0.01	78	970	4	20	<20	7	0.03	<10	16	<10	1	51
19	1596TCHR019		<0.2	2.58	20	95	<5	2.42	<1	23	31	379	5.53	<10	1,56	840	<1	0.16	11	1830	24	<5	<20	59	0.20	<10	178	<10	<1	46
20	1 596TCHR020		<0.2	1.37	<5	140	<5	1.21	<1	20	33	645	4.41	<10	0,76	563	3	0.10	7	2570	10	<5	<20	67	0.10	<10	164	<10	5	63

HUDSON E	BAY EXPLOR	ATION & D	EVELO	PMEN	IT				ICP C	ERTIFI	CATE (of ana	LYSIS	4K 96-8	861					ECO-TE	ECH LA	BORA	TORIE	S LTD	•					
Et #.	Tag #	Au(ppb)*	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	<u>Y</u>	Zn
QC/DAIA: <i>Resplit:</i> 2	96-8306		9.6	1.48	5 >10000	50	<5	0.94	<1	1225	91	5401	5.32	<10	1.00	1255	7	0.02	81	1210	10	15	<20	13	0.07	<10	82	<10	3	108
<i>Repeat:</i> 1 10	96-8305 1296TCH25	3	22.8 1.0		3 >10000 3 30		-		<1 <1	2585 16	122 > 18	-10000 904	5.09 2.15	<10 <10	0.16 0.47	568 276		<0.01 0.01	150 5	670 2540	10 8	75 <5	<20 <20	9 45		<10 <10	21 46	<10 <10	3 2	58 10
Standard: GEO'96			1.2	1,73	3 70	150	<5	1.74	<1	18	61	80	3.98	<10	0.94	689	<1	0.02	22	710	24	<5	<20	55	0.11	<10	76	<10	5	72

Note: * = Result to follow

.

df/850r

~

XLS/96Hudson Bay

ECO-TECH LABORATORIES LTD. Arank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

.

.

-

16-Aug-96

۲۰ مرد د **و برمان د درد می و م**رد د و **رو د د**ر د

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

.

Phone: 604-573-5700 Fax : 604-573-4557

.

ICP CERTIFICATE OF ANALYSIS AK 96-854

HUDSON BAY EXPLORATION & DEVELOPMENT # 405-470 GRANVILLE STREET VANCOUVER, BC V6C 1V5

.....

.

ATTENTION: MIKE BUCHANAN

No. of samples received: 21 Sample type: ROCK PROJECT: # 2314 SHIPMENT: # 96 004 Samples submitted by: MIKE BUCHANAN

Values in ppm unless otherwise reported

<u> </u>	Tag #	Au(ppb)*	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	ບ	V	W	Y	Zn
3	1296	TCH 271	1.8	1,48	20	70	<5	2.66	<1	16	24	2058	3.98	<10	1.27	499	<1	0.01	8	810	8	<5	<20	31	0.08	<10	119	<10	<1	16
4	1296	TCH 272	<0.2	1.99	10	70	<5	1.89	<1	19	24	353	4.49	<10	1.03	557	<1	0.04	4	2520	12	<5	<20	39	0.14	<10	167	<10	4	52
5	1296	TCH 273	2.2	1.31	<5	215	<5	3.79	<1	12	84	1953	3.35	10	1.07	727	31	<0.01	5	1630	22	<5	<20	41	0.02	<10	57	<10	3	36
7	1596	TCH R023	<0,2	0.29	<5	50	5	>10	<1	10	34	20	5.80	<10	4.04	1685	5	<0.01	10	300	<2	5	<20	456	<0.01	<10	40	<10	<1	25
8	1596	TCH R024	0.8		15	30	<5	2.84	<1	29	48	4880	5.01	<10	0.73		<1			3710	8	<5	<20	237			60	<10	4	43
11	1696	TCH R021	<0.2	2.07	<5	60	<5	2.57	<1	26	38	218	5.83	<10	1.16	691	3	0.04	8	2800	10	<5	<20	49	0.17	<10	186	<10	4	43
12	1696	TCH R022	<0.2	1.34	<5	70	<5	1.09	<1	31	31	477	6.10	<10	1.03	550	7	0.06	17	2440	6	<5	<20	45	0.15	<10	211	<10	3	36
13	1696	TCH R023	<0.2	2,02	<5	90	<5	1.60	<1	29	29	189	7.02	<10	1,48	935	<1	0.04	7	3550	8	<5	<20	36		<10	215	<10	6	83
14	1696	TCH R024	<0.2	1.38	<5	50	<5	1.58	<1	22	33	214	6.02	<10	1.05	585	2	0.05	5	2740	6	<5	<20	37	0,13	<10	195	<10	6	27
15	1696	TCH R025	<0.2	1.28	10	75	<5	1.40	<1	22	34	165	5,66	<10	0.83	410	2	0.08		2410	6	<5	<20	56			218	<10	3	18
16	1696	TCH R026	<0.2	1.75	<5	65	<5	1.90	<1	17	18	39	4.69	<1Û	0.82	307	<1	0.06	3	2330	10	<5	<20	43	0.13	<10	214	<10	5	22
17	1696	TCH R027	<0.2	1.86	<5	115	<5	1,70	<1	19	20	117	4.98	<10	1.15	449	<1	0.10	5	1870	10	<5	<20	40	0.19	<10	130	<10	1	25
18	1696	TCH R028	<0.2	1.09	<5	90	<5	1,18	<1	19	40	201	5,65	<10	0,67	360	3	0.11	5	2480	6	<5	<20	66	0.11	<10	243	<10	4	`29 `
19	1696	TCH R029	<0.2	1,14	<5	135	<5	0.96	<1	20	38	162	5.53	<10	0.72	379	2	0.11	7	1940	10	<5	<20	70	0.16	<10	251	<10	2	15
20	1695	TCH R030	<0.2	1.50	<5	60	<5	1.28	<1	22	37	193	5,68	<10	0.97	463	2	0.09	4	1860	8	<5	<20	54	0.16	<10	233	<10	2	20
21	1696	TCH R031	<0.2	1.14	<5	75	<5	1.11	<1	21	35	138	5.38	<10	0.73	368	2	0.06	3	2520	8	<5	<20	41	0.12	<10	196	<10	6	30

Page 1

Ø

۴

HUDSON	BAY EX	PLORATION	& DEVELO	PMEN	Г					ICP C	ERTIFI	ICATE (OF ANA	LYSIS	AK 96-	854					ECO-T	ECH L	ABO	RATOF	RIES L	.TD.					
Et #.	Tag #		Au(ppb)*	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	w	Y	Zn
<u>QC/DATA</u> <i>Resplit:</i> 1	: 1296	TCH 267	,	<0.2	1.42	<5	75	<5	1.41	<1	13	45	93	4.50	<10	0.98	589	4	0.04	5	1420	12	<5	<20	59	0.13	<10	91	<10	<1	40
<i>Repeat:</i> 1 10	1296 1596	TCH 267 TCH R029		<0.2 6.2	1.43 0.09	<5 <5	80 95	<5 <5	1.40 0.11	<1 3		43 19 >	98 10000	4.52 ≻10	<10 <10	1.00 0.02	587 69		0.03 <0.01	5 926	1440 60	10 <2	<5 <5	<20 <20		0.13 0.02	. –	93 52	<10 <10	1 <1	40 117
Standard: GEO'96		101111020		1.2		70	155	<5	1.75	-		59	78		<10	0.95	684	<1	0.02	22	730	24	<5	<20	56			76	<10	5	70

l

,

Note: * = Result to follow

df/850r

XLS/96Hudson Bay

FCO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

...

1.1

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS AK 96-861

HUDSON BAY EXPLORATION & DEVELOPMENT LTD. # 405-470 GRANVILLE STREET VANCOUVER, BC V6C 1V5 20-Aug-96

ATTENTION: MIKE BUCHANAN

No. of Samples Received:20 Sample Type:ROCK PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: NOT INDICATED

			Au	
	ET #.	Tag #	(ppb)	
=	1	96-8305	375	
	2	96-8306	170	
	3	96-8307	90	
	4	96-8308	315	
	5	96-8309	280	
	6	96-8310	175	
	7	1296TCH250	5	
	8	1296TCH251	5	
	9	1296TCH252	625	
×.	10	1296TCH253	5	
	11	1296TCH254	5	
	12	1296TCH255	5	
	13	1296TCH256	5	
	14	1296TCH257	5	
	15	1296TCH258	5	
	16	1596TCHR015	5	
	17	1596TCHR016	* 5	
	18	1596TCHR017	170	
	19	1596TCHR019	5	
	20	1596TCHR020	5	

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY AK 96-861

HUDSON BAY EXPLORATION & DEVELOPMENT LTD. # 405-470 GRANVILLE STREET VANCOUVER, BC V6C 1V5 21-Aug-96

ATTENTION: MIKE BUCHANAN

No. of samples received: 20 Sample type: ROCK PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: NOT INDICATED

		As	Cu	
ET #.	. Tag #	(%)	(%)	
1	96-8305	3.40	1.35	·
2	96-8306	1.17	-	
4	96-8308	2.21	-	
5	96-8309	1,94	-	
6	96-8310	1.41	1.31	
18	1596TCHR017	1.01	1.31	
19	1596TCHR019	0.01	-	

QC/			A:
	1.000		and the local division of
		_	

Resplit: 2 96-8306

1.17

Standard:
1404 4

MP1A

1.44

O-TECH LABORATORIES LTD Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96Hudson Bay#4

HUDSON BAY EXPLORATION & DEVELOPMENT LTD. AK 96-861

20-Aug-96

		Au	
ET #.	Tag #	(ppb)	
QC/DATA:			
Resplit:			
2	96-8306	160	
Repeat:			
1	96-8305	410	
10	1296TCH253	5	
Standard: GEO'96		140	

FCD-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96HUDSON BAY EXP.#3

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS AK 96-854

HUDSON BAY EXPLORATION & DEVELOPMENT LTD. # 405-470 GRANVILLE STREET VANCOUVER, BC V6C 1V5 20-Aug-96

ATTENTION: MIKE BUCHANAN

٩

No. of samples received: 21 Sample type: ROCK PROJECT: # 2314 SHIPMENT: # 96 004 Samples submitted by: MIKE BUCHANAN

			Au
₩.	ET #.	Tag #	(ppb)
-	1	1296 TCH 267	5
	2	1296 TCH 268	5
	3	1296 TCH 271	10
	4	1296 TCH 272	5
	5	1296 TCH 273	5
	6	1496 TCH R010	5
	7	1596 TCH R020	5
	8	1596 TCH R024	5
	9	1596 TCH R028	5
	10	1596 TCH R029	5
	11	1696 TCH R021	5
	12	1696 TCH R022	5
	13	1696 TCH R023	5
	14	1696 TCH R024	5
	15	1696 TCH R025	5
	16	1696 TCH R026	5
	17	1696 TCH R027	. 5
	18	1696 TCH R028	5
	19	1696 TCH R029	5
	20	1696 TCH R030	5
	21	1696 TCH R031	5

HUDSON BAY EXPLORATION & DEVELOPMENT LTD. AK 96-854

20-Aug-96

ET #.	Tag #	Au (ppb)
QC/DATA:		· · · · · · · · · · · · · · · · · · ·
Resplit:	-	
1	1296 TCH 267	5
Repeat:		
1	1296 TCH 267	5
10	1596 TCH R029	5
Standard: GEO 96		150

XLS/96HUDSON BAY EXP#3.

ECO-TECH LABORATORIES LTD. ρ Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

20-Aug-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY AK 96-854

HUDSON BAY EXPLORATION & DEVELOPMENT LTD. # 405-470 GRANVILLE STREET VANCOUVER, BC V6C 1V5

ATTENTION: MIKE BUCHANAN

No. of samples received: 21 Sample type: ROCK PROJECT: # 2314 SHIPMENT: # 96 004 Samples submitted by: MIKE BUCHANAN

ET #. Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Cu (%)	Pb (%)	Zn (%)
10 1596 TCH R029	<.03	<.001	7.1	0.21	2.25	0.01	0.04
10 1590 1011 (029	<.0 5	<.001	(.)	0.21	2.2.0	0.01	0.04
QC/DATA:							
Repeat:							
21 1696 TCH R031	<.03	<.001	-	-	-	-	-
Standard:							
CPb-I	-	**	625.0	18.23	0.25	-	-
Mp-IA	-	-	-	-	-	4.33	19.02
STD-M	3.22	0.094	-	-	-	-	-

TECH LABORATORIES LTD.

Fwank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

XLS/96HUDSONBAY#3

Appendix 7

Geophysical Techniques & Instrument Specifications

GSM-19

2. INSTRUMENT SPECIFICATIONS

2.1 Magnetometer/Gradiometer

Resolution:	0.01 nT (gamma), magnetic field and gradient
Accuracy:	0.2 nT over operating range
Range:	18,000 to 150,000 nT, 80 overlapping steps automatic tuning, requiring initial set-up.
Gradient Tolerance:	Over 10,000 nT/meter
Operating interval:	3 seconds minimum, faster optional. Readings initiated by keyboard depression, external trigger or carriage return via RS-232-C.
input/Output:	6 Pin weatherproof connector, RS-232C, and (optional) analog output.
Power Requirements:	12v 200 mA peak (during polarization), 30 mA standby.
Power Source:	Internal 12v, 1.9 Ah sealed lead-acid battery standard, others optional. An External 12V power source can also be used.
Battery Charger:	Input: 110/220 VAC, 50/60 Hz and/or 12VDC (optional). Output: 12V dual level charging.
Operating Ranges:	Temperature: -40 °C to +60 °C. Battery Voltage: 10.0 V minimum to 15 V maximum. Humidity: up to 90% relative, non condensing.
Storage Temperature:	-50°C to +65°C
Dimensions:	Console: 223 x 69 x 240mm Sensor staff: 4 x 450mm sections Sensor: 170 x 71mm dia Weight: Console 2.1kg, Staff 0.9kg, Sensors 1.1kg cach.

2.2 VLF

Frequency Range:	15 - 30.0 kHz in 0.1 kHz steps
Parameters Measured	: Vertical In-phase and Out-of-phase components as percentage of total field.
Resolution:	0.1%
Number of Stations:	Up to 3 at a time.
Storage:	Automatic with: time, coordinates, magnetic field/gradient, slope, EM field, frequency, in- and out-of-phase vertical, and both horizontal components for each selected station.
Terrain Slope Range:	0° - 90° (entered manually)
Sensor Dimensions:	14 x 15 x 9 cm. (5.5 x 6 x 3 inches)
Sensor Weight:	1.0 kg (2.2 lb)

GEOPHYSICAL SURVEYS

Description of Survey Methods and Techniques

Grid System

A grid system is established in the field to facilitate accurate area control for geophysical surveys over favourable mining exploration geological units. A baseline is established parallel to the strike of the surrounding country rocks by cutting and blazing trees. A system of cross lines is then formed perpendicular to the baseline at appropriate intervals, say 100 or 200 metres apart. These cross lines are then surveyed by the desired geophysical system.

Geophysical Survey Systems

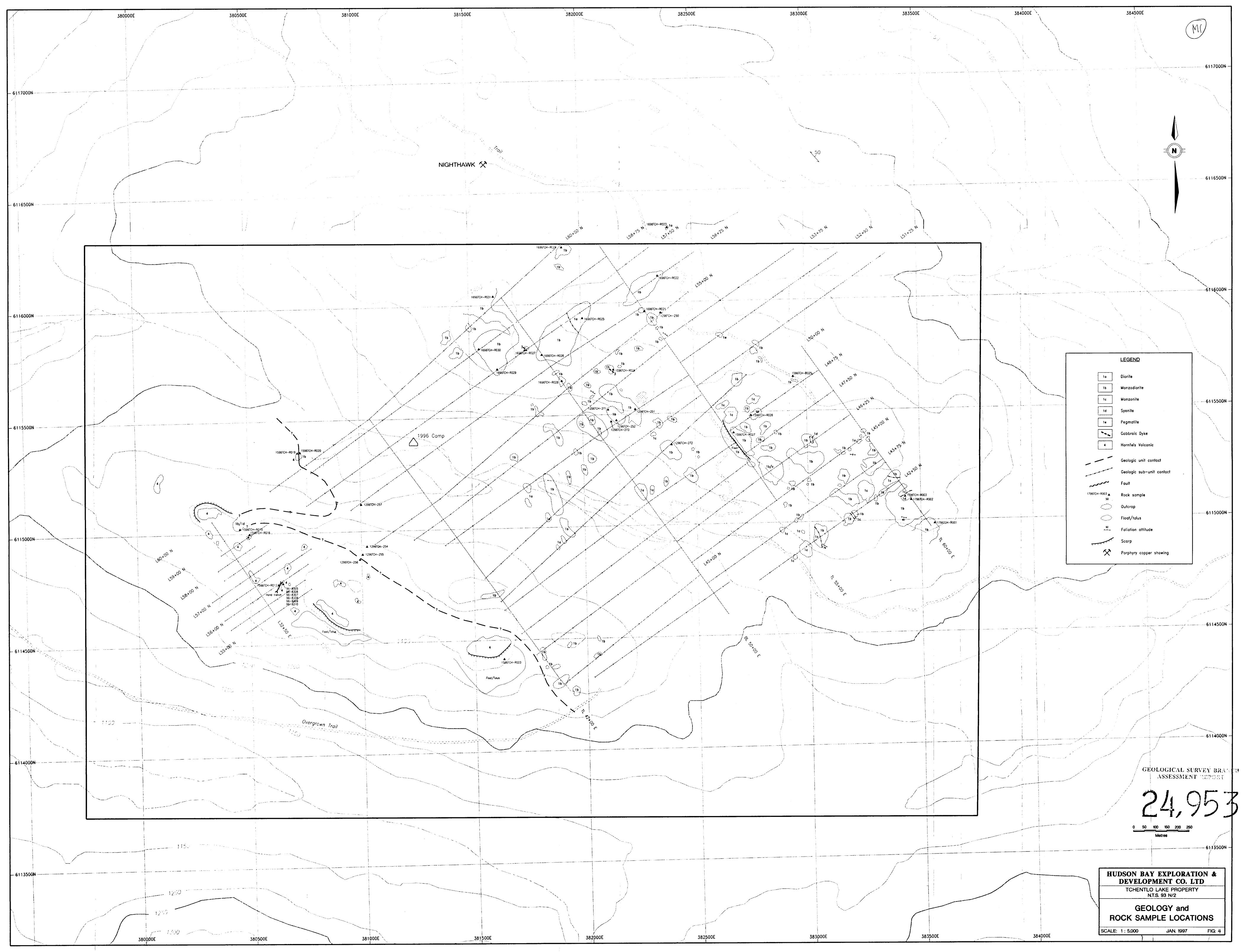
The total field magnetometer and the VLF electromagnetic surveys were completed utilizing the Gem Systems integrated GSM - 19G Overhauser Proton Precession magnetometer/VLF system. Accuracy of this system is typically +- 0.2 nT. with a resolution of 0.01 nT. The transmitting stations of Seattle, Washington (frequency - 24.8 kHz.) and Annapolis, Maryland (frequency - 21.4 kHz.) were used in the VLF - EM survey.

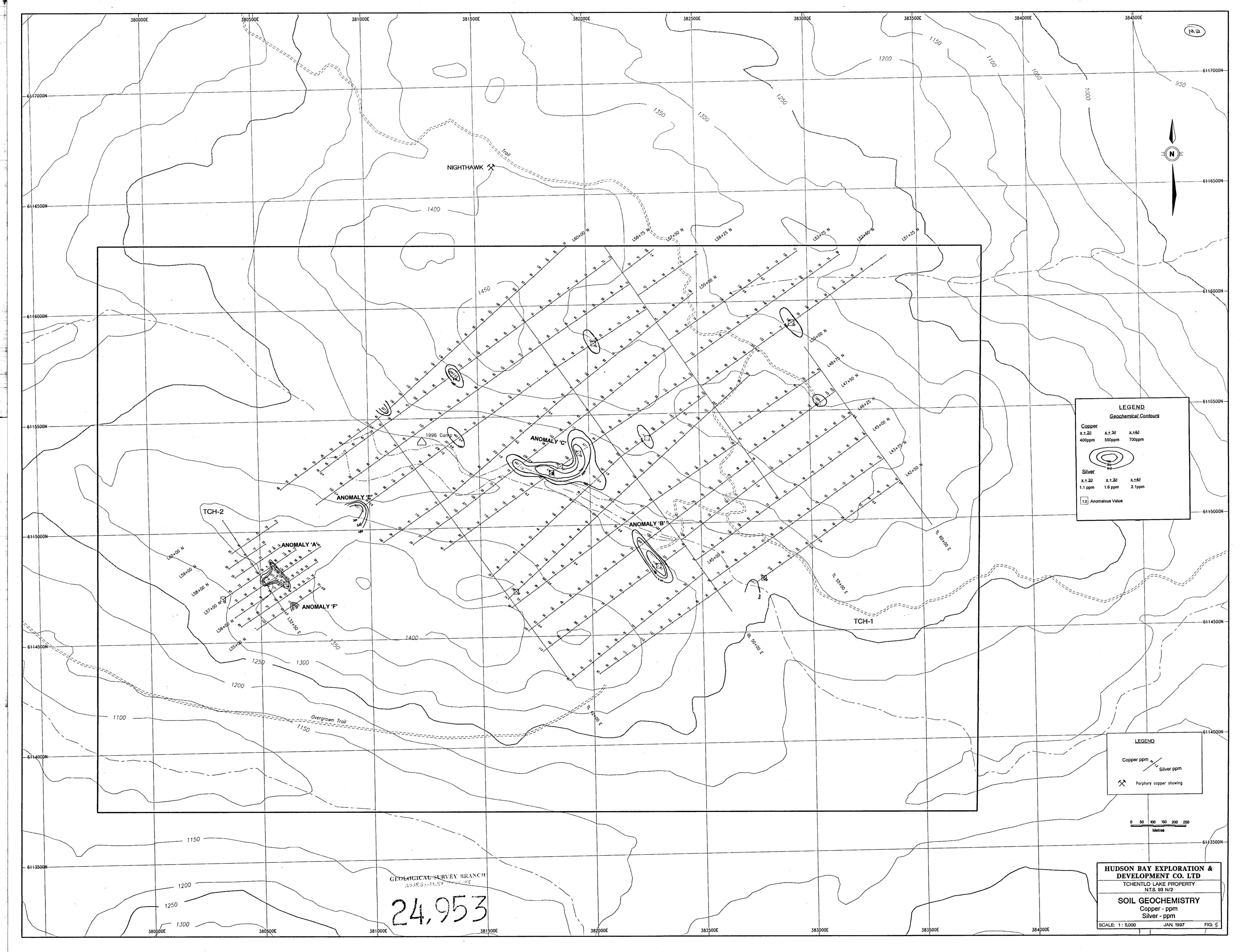
Principle of VLF - EM Surveying

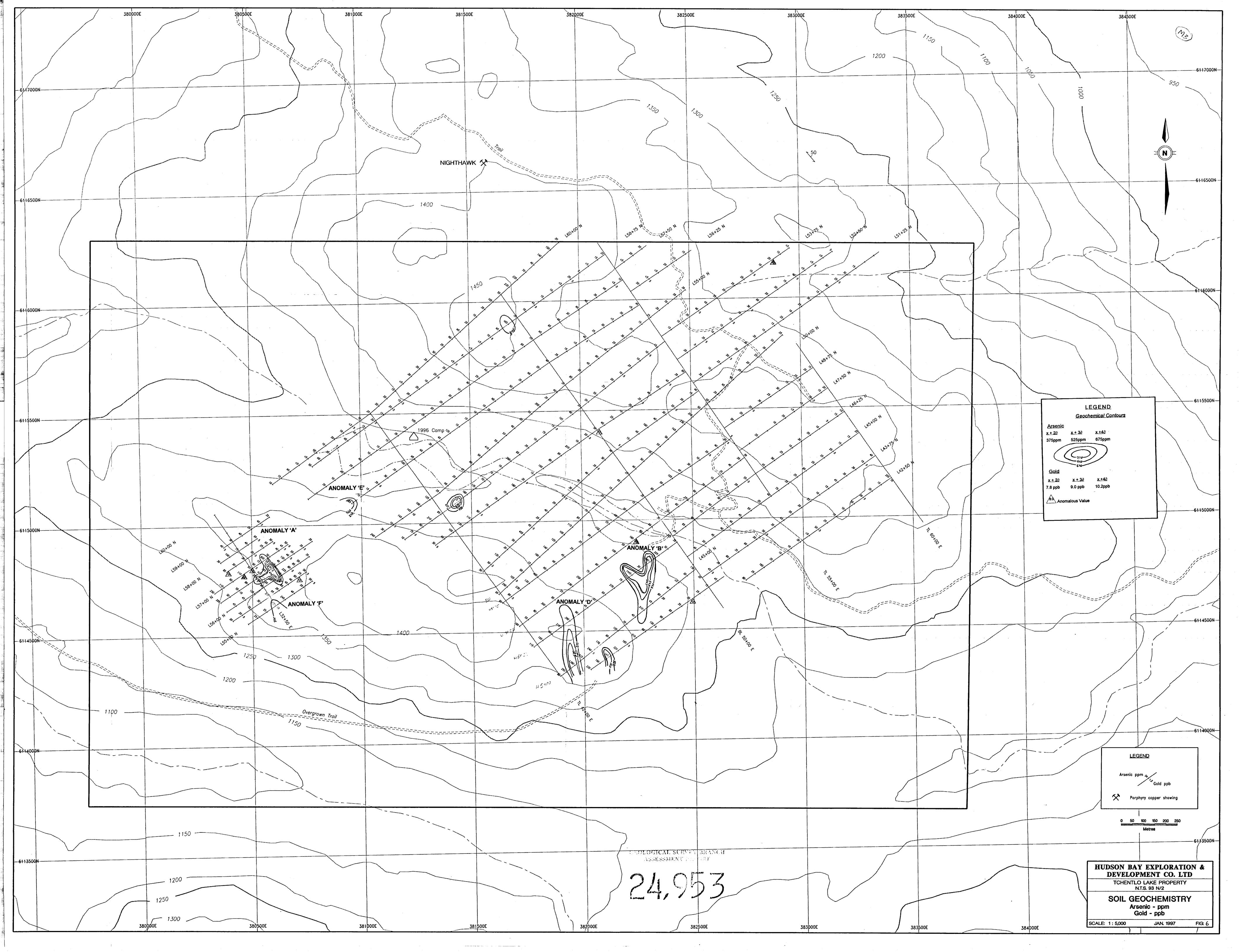
The basic principle behind electromagnetic surveying is that certain geologic formations are electrically conductive and can be excited electrically by an "applied primary EM field" which generates a secondary field that may be detected above ground. In VLF - EM surveying, the primary field (very low frequency - 15 to 30 kHz.) is generated by a marine navigation station that has a vertical antenna. The antenna current is vertical, creating a concentric horizontal magnetic field around it. When these magnetic fields meet conductive bodies in the ground, there will be secondary fields radiating from these bodies. In the survey, the instrument measures one or all of the vertical, horizontal and total field components of these secondary fields. The detection of the VLF signals and measurement of these components is facilitated by two mutually perpendicular colls wound on ferrite cores. The coils, one vertical and one horizontal, allow the instrument's circuitry to measure the vertical and horizontal components of the secondary field and primary field).

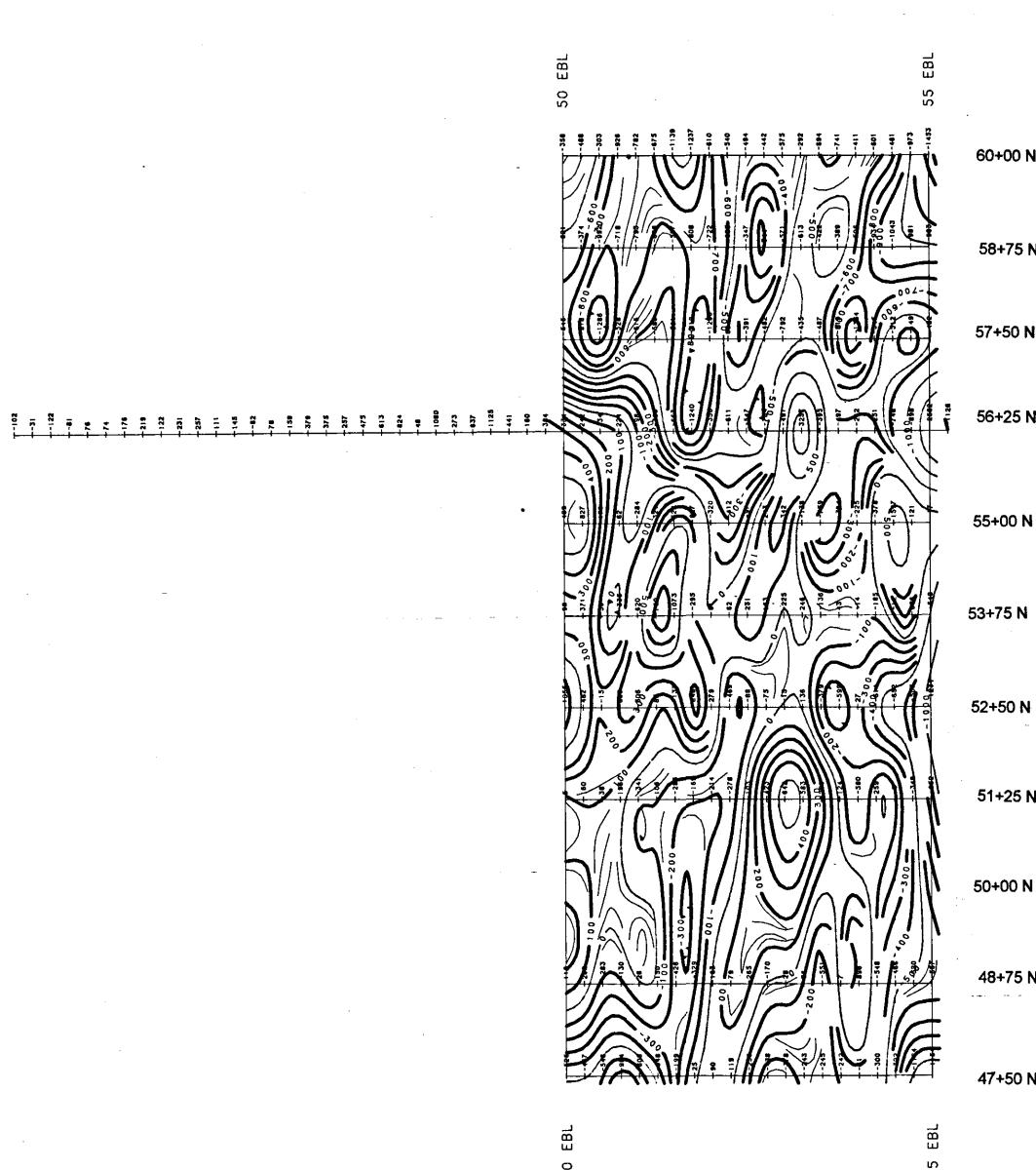
The strength of the secondary field increases as the conductor gets larger or more conductive (higher metallic or electrolytic content). The secondary field is weaker if the conductor is deeper under the surface or if it is covered by a layer of absorbing material or overburden.

Measurement of the strength, character, and distribution of the secondary field facilitates location of conductive formations and tells something about their size and nature.


Principle of Proton Precession Magnetometers


The proton precession magnetometer is so named because it utilizes the precession of spinning protons or nuclei of the hydrogen atom in a sample of highly protonated hydrocarbon fluid to measure the total magnetic field intensity. The spinning protons behave as small spinning magnetic dipoles. These magnets are temporarily aligned or polarized by application of a uniform magnetic field generated by a current in a coil of wire. When the current is removed, the spin of the protons causes them to precesses about the direction of the earth's magnetic field, much as a spinning top precesses about the gravitational field. The precessing protons then generate a small signal in the same coil used to polarize them - a signal whose frequency is precisely proportional to the total magnetic field intensity and independent of the orientation of the coil (or sensor of the magnetometer). The proportionality constant, which relates frequency to field intensity, is the atomic constant known as the gyrometric ratio of the proton. The precession frequency is measured by digital counters as the absolute value of the total magnetic field intensity in the earth's magnetic field to an accuracy of 1 nT.


In contrast to a standard proton magnetometer sensor, where only a proton rich liquid is required to produce a precession signal, the Overhauser Effect sensor must also have a free radical added to the liquid. This free radical ensures the presence of free, unbound electrons that couple with protons producing a two-spin system. A strong RF magnetic field is used to disturb the electron-proton coupling. By saturating free electron resonance lines the polarization of protons in the sensor liquid is greatly increased. The Overhauser effect offers a more powerful method of proton polarization than the standard DC polarization, i.e., stronger signals are achieved from smaller sensors and with less power.


Principle of Magnetic Surveying

The earth's total field magnetic intensity is measured by the proton precession magnetometer along stations on the cross lines of the grid system. The readings or values gained are time variable because the earth's magnetic field is not uniform in intensity - it varies throughout the course of the day (known as the diurnal variation). This variation, along with small micropulsations and with the troublesome magnetic storms, tend to make uncorrected magnetometer surveys erroneous. The simplest and most accurate way to correct a magnetometer survey is to have a second magnetometer (called a base station) take readings at one point on the grid at frequent intervals throughout the day. The field readings are adjusted relative to the base station values. A more time consuming and less accurate method is to take several readings at selected points on the grid (base stations) throughout the day with the mobile magnetometer - for example, every hour or so. The adjustment in time and differences in intensities is taken into account when correcting the field values.

TCH-2 GRID

•

1

•

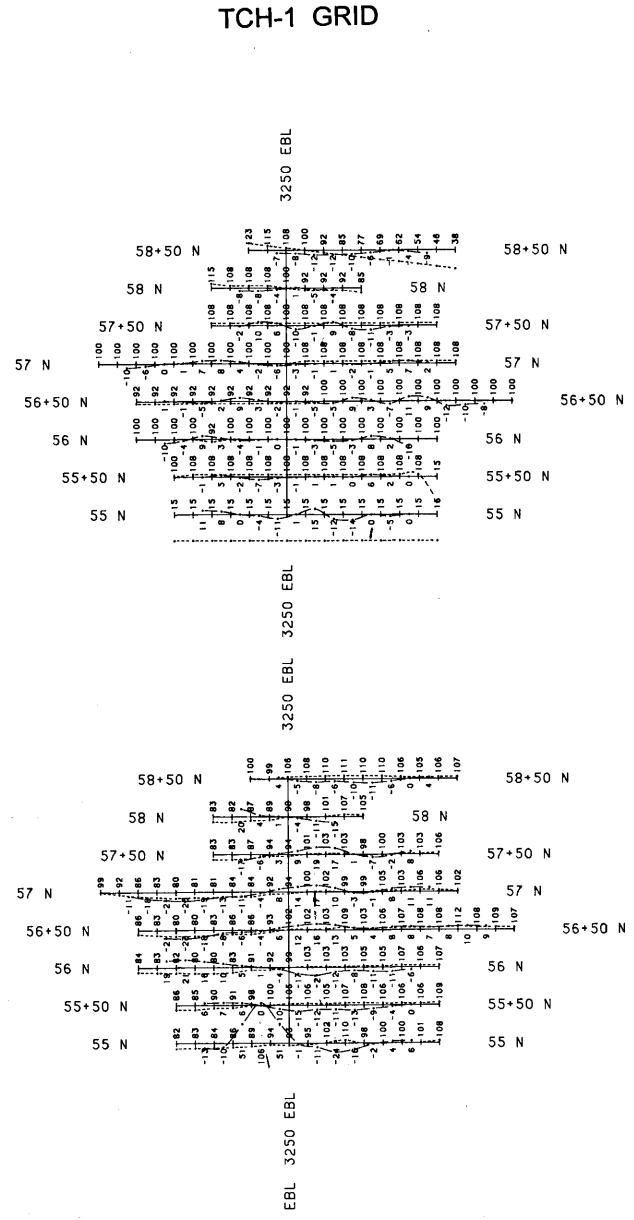
~.... 60+00 N

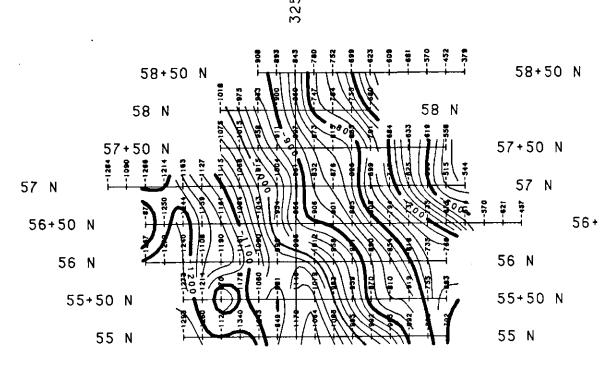
58+75 N 57+50 N

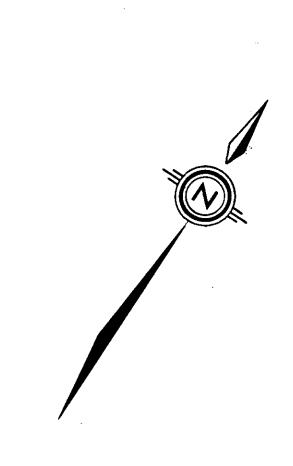
56+25 N

55+00 N

52+50 N


51+25 N


50+00 N


48+75 N

47+50 N

Annapolis, Md.

Seattle, Wa.

56+50 N

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

KEY AMPLITUDE

FRASER FILTERED IN-PHASE

SCALE: 1 : 5000 SURVEYED BY M. CHORNEY & ASSOCIATES LTD. HBED DATE: OCTOBER 1996 SYSTEM USED: GEN SYSTEME GSH-19 PPH/VLF GRID: TCHI AND TCH2 GRIDS CONTOUR INTERVAL: 20 aT., 100 aT., 500 aT. VLF-EM TOTAL FIELD MAGNETOMETER SURVEY CLAIMS: VERTICAL SCALE (AVPLITUDES) I CH + 125.02 TCH PROJECT PROJECT NO: VERT. SCALE (FILTERED IN-PH) + 1 CH =100.0" NTS REF NO: FORT ST. JAMES AREA. B.C. FREQUENCIES: SEATTLE. VA. AMMAPOLIS. HD.