RECEIVED

APR 24 1997

Gold Commissioner's Office VANCOUVER, B.C.

GEOCHEMICAL REPORT

MOLY QUEEN CLAIM

Latitude 55° 35' N Longitude 129° 24' W NTS 103 P/11 W

Skeena Mining Division

By: Dave Visagie, P. Geo

March 22, 1997

Owner: Tenajon Resources Ltd. 860-625 Howe Street Vancouver, B.C. V6C 2T6

> 者(近) (素で)(対抗・含む (物) (発)(対抗・ **機器(含め**の)(数 (対対)(素が (気) (表) (表) (力) (対) (対)(数)

TABLE OF CONTENTS

Introduction	1
Location and Access	1
Climate, Topography and Vegetation	1
Property Status	1
Property History	1
Regional Geology	1
Property Geology	4
1996 Work Program	4
Assaying	4
Assay Results	5
Summary and Conclusions	5
Recommendations	5
Statement of Qualifications	6
Cost Statement	7
LIST OF FIGURE	
Property Location	2
The state of the s	3
Sample Locations with Gold and Silver Values	At Back of Report
LIST OF APPENDICES	
Sample Description	8
Assay Results	9
	Climate, Topography and Vegetation Property Status Property History Regional Geology Property Geology 1996 Work Program Assaying Assay Results Summary and Conclusions Recommendations Statement of Qualifications Cost Statement LIST OF FIGURE Property Location Claim Map Sample Locations with Gold and Silver Values LIST OF APPENDICES Sample Description

1.0 INTRODUCTION

In 1996 Tenajon Resources Ltd. staked the Molly Queen #1 claim. The property, located 13 km northeast of Alice Arm, B.C., covers a porphyry molybdenum deposit commonly known as the Ajax. Previous work by Newmont Mines and Inco Gold showed a sequence of sedimentary rocks with minor interbedded volcanic rocks to be intruded by four closely spaced stocks of quartz monzonite porphyry. Their work outlined geological reserves of 196,800,000 tonnes grading 0.072% Mo. No mention of precious metal content was noted. In 1996 1 day, September 19, was spent by a three man crew prospecting and sampling the property. The work resulted in the taking of ten samples. Samples of narrow quartz veins returned anomalous gold values with the best chip sample assaying 0.069 opt Au with 0.67 opt Ag over 50 cm. The cost of the program is calculated to be \$3801.

2.0 LOCATION AND ACCESS

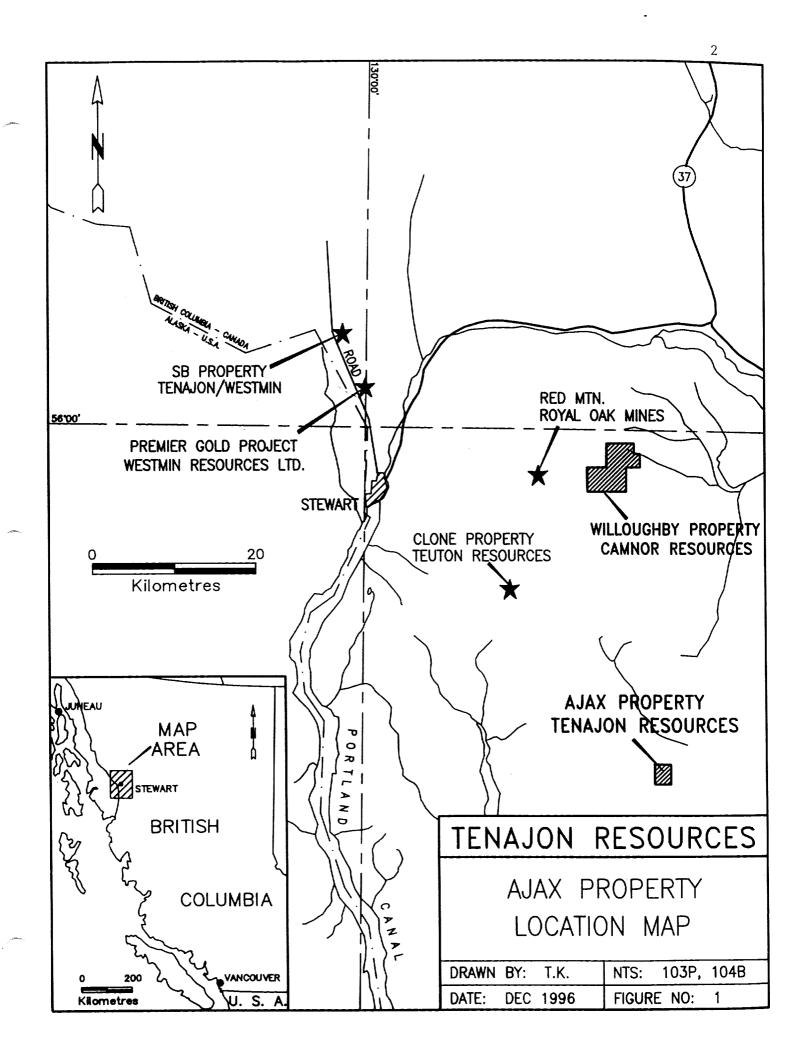
The Molly Queen #1 claim is located 13 km northeast of Alice Arm, B.C. The property is centred at latitude 55°35' N, longitude 129°23' W. It occurs on NTS sheet 103 P 11 W. Access to the property is by helicopter from Stewart, 60 km to the north.

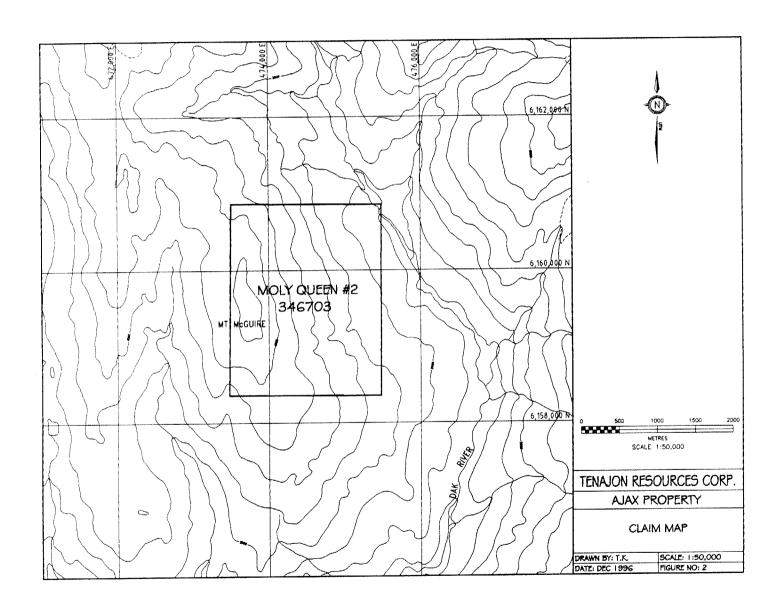
3.0 CLIMATE, TOPOGRAPHY AND VEGETATION

The property covers the eastern slope of Mount McGuire. Relief is moderate to steep with the property elevation ranging from approximately 450 to in excess of 1500 metres. Treeline is at approximately the 1200 metre level. Below the treeline large stand of fir and spruce occur while above it scrub juniper and moss is common.

The climate is typical of the northern Coast Mountain Range. Winters are cool and wet, with snow being common, while the summers tend to mild and wet. Temperatures vary from a minimum of -25C in the winter to +25C in the summer.

4.0 PROPERTY STATUS


The Molly Queen #1 property consists of one twenty unit claim whose tenure number is 346703. The claim occurs in the Skeena Mining Division. The present expiry date for the claim is June 9, 1997.


5.0 PROPERTY HISTORY

Lead-zinc-silver mineralization, peripheral to the molybdenite zone, was explored by prospectors in the early part of the century. A reference to molybdenite mineralization, contained in the 1927 Minister of Mines Annual Report, prompted S. Barclay to locate the property for Newmont Mining Corporation. Between 1965 and 1967 Newmont completed some 8,100 metres of diamond drilling. Although extensive work has been completed on the property there is has been little released to the public.

6.0 REGIONAL GEOLOGY

Molybdenum-bearing grantite stocks, referred to collectively as the Alice Arm intrusions occur near the western edge of the Bowser successor basin, marginal to the east contact of the Coast Plutonic Complex. Alice Arm intrusions are generally less than 0.8 km in diameter. Porphyritic quartz monzonite is the dominant rock type. This distinguishes the molybdenum bearing stocks from equigranular satellitic stocks related to the Coast Plutonic Complex. Although molybdenum bearing stocks generally intrude Bowser assemblage siltstones, greywackes and shales of Late Jurassic age, some do occur within the Coast Plutonic Complex.

7.0 PROPERTY GEOLOGY

Mapping shows the property to be underlain by a folded sequence of Upper Triassic Stuhini Group sediments locally consisting of black argillites, siltstones and microgreywackes. Overall the units strike north-northwest with the dip being steep to the east. Four closely spaced, northwest trending, quartz monzonitic stocks have intruded the rocks. The rocks, in close proximity to the stocks are contact metamorphosed with hornfelsing of the sediments being common. The stocks are variably altered with the alteration consisting of the sericitization of plagioclase phenocrysts and the alteration of biotite to muscovite. Silicification occurs adjacent to quartz veins.

Mineralization occurs within the stocks and in the adjacent contact metamorphosed rocks as randomly oriented fractures filled with quart and pyrrhotite and coatings and bands of molybdenite. Disseminated molybdenite also occurs in a stockwork of 3 - 6 millimeter diameter quartz veinlets and in silicified zones deep within the stock.

8.0 1996 WORK PROGRAM

One day, September 19, was spent by a 3 person crew evaluating the Ajax property. The work resulted in the taking of ten rock chip and grab samples, The crew was housed at Camnor's Willoughby camp site located 45 km to the northeast. Access to the property was by a camp base Hughes 500 D helicopter chartered from Vancouver Island Helicopters.

The following personnel were employed for the evaluation:

Andrew Wilkins

Geologist Geologist

Krista Nelson

Ocologist

Tim Kirby

Geological Technician

9.0 ASSAYING

All ten samples were initially assayed for gold at Westmin Mines' Premier Gold Mine then forwarded to Chemex Labs, 212 Brooksbank, North Vancouver, for 30 element Inductively Coupled Plasma (I.C.P.) analysis. Samples containing > 30 ppm Au were assayed. The following is an outline of the procedure used for the preparation and analysis of the samples.

Grab samples or measured width chip samples were taken using a hammer and chisel, identified, stored in plastic bags then sent for analysis.

At Westmin the samples are dried (if necessary), crushed and sieved to pulp size and pulverized to approximately -140 mesh.

For gold analysis a 1 assay ton is preconcentrated by conventional fire assay. The resulting Ag prill is digested in 3 ml 30% HNO₃, anything insoluble is dissolved using 3 ml concentrated HCl. The resulting solution is diluted to 10 ml and analyzed by atomic absorption.

For the 30 element I.C.P. analysis a 10 gram sample is digested with 3 ml of 3:1:3 nitric acid to hydrochloric to water at 90° for 1.5 hours. The sample is then diluted to 20 mls with demineralized water and analyzed. The leach is partial for Al, B, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sb, Ti, U and W.

For silver analysis a 2.0 gram sample is digested in 20 ml HNO₃ for 20 minutes or until all NO₃ has disappeared. The digestion is then cooled, 10 ml HCl added and digested for 30 minutes. The digestion is again cooled and another 50 ml HCl added and digested for one hour. When this digestion has cooled to room temperature it is bulked to 200 ml, mixed, centrifuged and analyzed by atomic absorption.

10.0 ASSAY RESULTS

The sample locations along with the assay results for gold and silver are plotted on Figure 4. The sample descriptions are located in Appendix 1 with the assay results being in Appendix 2.

Chip samples results of quartz veining are variably gold and silver anomalous. The best chip sample assayed 0.069 opt Au with 22.4 ppm Ag over 50 cm while a grab sample of a pyritic boulder assayed 0.016 opt Au with 1469.3 ppm Ag.

11.0 SUMMARY AND CONCLUSIONS

One day was spent by a three person crew evaluating the Molly Queen # 1 claim. During the property evaluation 10 samples were collected and sent for analysis. The assays show quartz veins to contain anomalous gold values. Previous work by Newmont does not make mention of any gold assaying being undertaken. It is possible the property has a significant precious metal content.

12.0 RECOMMENDATIONS

It is recommended that the data for the Ajax property be acquired from Newmont and a review of the data be undertaken to determine whether any gold analysis was completed. If possible the core should be located and selected samples of veining and stockwork analyzed for precious metal content.

13.0 STATEMENT OF QUALIFICATIONS

I Dave Visagie of 860-625 Howe Street, Vancouver, B.C. do hereby declare that:

- 1. I graduated from the University o British Columbia with a Bachelor of Science Degree, Majoring in Geology, in 1976.
- 2. I am a registered member of the Association of Professional Engineers and Geoscientist of the Province of British Columbia.
- 3. I have been steadily employed in the mining industry since 1976 and have been employed by International Northair Mines Ltd. as Senior Geologist since January 1990.
- 4. The work undertaken on the Molly Queen #1 claim was completed under my supervision.

Dated at Vancouver, British Columbia, this 20th day of March, 1997

Dave Visagie, P. Geo

14.0	COST STATEM	MENT			
1.	Labour				\$ 685
	Andrew Wilken Krista Nelson Tim Kirby	1 day @ \$315/c 1 day @ \$170/c 1 day @ \$200/c	day		
2.	Room And Boar	rd			\$ 300
	3 man-days @ \$	\$100/day			
3.	Transportation				\$1,785
		hours @ \$850/hour 1 day @ \$100/day			
4.	Assaying				\$ 185
		Prep + Gold Analysis @ \$11.50/sample	30 element I.C.P ② \$7.00/sample		
	10 samples	\$115.00	\$70.00		
5.	Report			Sub Total	\$ 500 \$3,455
6.	Management Fo	ee			
	@ 10%			Total	\$ 346 \$3,801

Tenajon Resources Corp. Rock Sample Descriptions - Ajax Property

Date	Sample No.	Sample Type	Sampler	Eastings	Northings	Rock Type	Alteration	Mineralization	Sample Descriptions	Au g/ton opt	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm
Sept. 19	331527	grab	KN	473676	6160681	siltstone/ fine grained sandstone	,,,,,	medium grained	moderate brownish-orange iron stained dark grey siltstone to fine grained sandstone	0.03 0.001	0.2	114	<2	102	16
Sept. 19	331528	grab	KN	473938	6160330	quartz vein	quartz + pyrite	5-10% medium- coarse grained pyrite + 3-5% fine galena(?) crystals + minor graphite	10-15cm wide orange iron stained quartz vein in dark grey fine grained sandstone/siltstone	0.27 0.008	115 g/ton	238	6460	2820	8
Sept. 19	331529	grab	KN	474051	615919	quartz vein	quartz + pyrite	15% fine & coarse grained pyrite blebs, stringers & disseminations + 5% galena(?) + minor graphite	orange iron stained 50cm wide coarse grained to massive quartz vein (119/21) system with black fine grained laminations with 2–5cm quartz splays in fine grained sandstone/siltstone	2.37 0.0 69	22.4	137	7030		>1000
Sept. 19	331530	talus	KN	474483	6159352	quartz vein	quartz + pyrite	10% coarse pyrite clots + 5% fine grained galena(?) + 5% graphite	orange iron stained float of coarse crystalline quartz	0.55 0.016	g/t	106			
Sept. 19	331670	grab	ALW	473501	6160663	meta- sediments	hornfels and quartz veining	up to 5% disseminated pyrrhotite, minor chalcopyrite	gossanous, light gray, hornfelsed metasediments	0.14 0.004					
Sept. 19	331671	l grab	ALW	47426	6158960	meta- sediments	hornfels and quartz veining	minor pyrite + molybdenite in quartz veining	boxwork weathering in quartz veins, very gossanous	0.14 0.004					
Sept. 19	331672	2 subcrop	ALW	474390	6159273	meta- sediments	hornfels and quartz veining	malachite + pyrite + molybdenite ? in veins		1.82 0.053				84	
Sept. 19	33167	3 talus	ALW	47448	6159603	meta- sediments	hornfels and quartz veining	5 to 15% blebs of pyrite, minor molybdenite		0.03 0.001					
Sept. 19	33167	4 talus	ALW	47449	6159600	quartz eye + feldspar porphyry	coarse crystaline quartz veining	pyrite + molybdenite in veins	light gray, fine to medium grained quartz monzonite with quartz eyes and feldspar phenocrysts up to 4mm in size	2.95 0.086					>1000
Sept. 19	33167	5 talus	ALW	47453	5 615981	meta- sediments	hornfels and quartz veining	fine grained molybdenite and blebs of pyrite in yeins		1.85 0.054	•	206	1410	862	>1000

WESTMIN RESOURCES LIMITED PREMIER GOLD PROJECT **ASSAY LABORATORY**

CERTIFICATE OF ASSAY

TO: Dave Visagie

PROJECT >>> CAMNOR

DATE: 09-30-96

ASSAY LAB FILE: C0930A.WK4

PAGE:

SAMPLE TYPE: ORIGINALS

5HIP #28

SAMPLE	
IDENTITY Au (oz/ton)	Au (g/t)
0.004	0.14
149119 0.004	0.14
149120 0.004	
149121 0.014	0.48
149122 0.001	0.03
149123 0.015	0.51
149124 0.009	0.31
149125 0.006	0.21
149126 0.002	0.07
149143 0.001	0.03
149144 0.001	0.03
149145 0.001	0.03
149146 0.001	0.03
149147 0.000	0.00
149148 0.000	0.00
149149 0.000	0.00
149150 0.000	0.00
\$\int 331527 - 0.001 \$\int 331528 - 0.008	0.03
√ ∂331528−	0.27
331529 - 0.069	2.37
331530 - 0.016	0.55
331851 0.000	0.00
331852 0.001	0.03
(331670 - 0.004	0.14
331671 - 0.004	0.14
331672 — 0.053	1.82
331673~ 0.001	0.03
331674 0.086	2.95
331675 0.054	1.85
331742- 0.070	2.40
331743 0.005	0.17

PREMIER GOLD PROJECT ASSAY LABORATORY

certified by

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

b: CAMNOR RESOURCES

860 - 625 HOWE ST. VANCOUVER, BC V6C 2T6

CERTIFICATE OF ANALYSIS

Project : Comments:

Page I Total Pages 6 Certificate Date: 27-OCT-96 :19636834

Invoice No. P.O. Number :MXC Account

A9636834

* DI EASE NOTE

PLEASE NO	TE									CKIIL	ICAIC	OF A	MAL	1313	A3030034
SAMPLE	PREP	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr Ti		U ppm	V mqq	W	Zn ppm	
						8	< 2	7	172 < 0.01	< 10	< 10	70	< 10	46	
16487	214 229	_	< 0.01 < 0.01	9 8	940 1080	16	< 2	7	155 < 0.01		< 10	69	< 10	46	
16488	214 229 214 229	_	< 0.01	9	960	8	< 2	7	200 < 0.01		< 10	86	< 10	38	
16489 16490	214 229	_	< 0.01	8	870	6	< 2	ģ	183 < 0.01		< 10	105	< 10	42	
16491	214 229	1	0.01	5	1100	8	< 2	8	190 < 0.01		< 10	89	< 10	58	
											. 40	0.F	< 10	54	
16492	214 229	< 1	0.01	4	1130	8	< 2	9	170 < 0.01		< 10 < 10	95 99	< 10	50	
16493	214 229	1	0.01	3	1140	4	< 2	10 5	187 < 0.03 172 < 0.03		< 10	52	< 10	36	
16494	214 229		< 0.01	9	850	26 8	4 < 2	5 8	198 < 0.01		< 10	78	< 10	70	
16495	214 229	< 1	0.01	5 6	1230 970	4	< 2	7	230 < 0.01		< 10	72	< 10	50	
16496	214 229	- · ·	< 0.01		910	*	` 4		230 \ 0.03						
46497	214 229	1 •	< 0.01	6	730	6	< 2	8	218 < 0.03		< 10	82	< 10	78	
16498	214 229	2	0.01	6	820	6	< 2	7	213 < 0.01		< 10	74	< 10	126	
16499	214 229		< 0.01	5	1060	6	< 2	7	201 < 0.03		< 10	99	< 10	60	
46500	214 229		< 0.01	7	750	8	< 2	8	200 < 0.01		< 10	111	< 10	32	
19108	214 229	3	0.01	8	640	26	8	3	1015 < 0.03	< 10	< 10	9	< 10	100	
9109	214 229	4	0.02	11	1230	20	6	6	152 < 0.03		< 10	20	< 10	170	
9110	214 229	12	0.01	11	1300	20	2	5	116 < 0.03		< 10	25	< 10	424	
19111	214 229	6	0.02	11	1110	10	2	7	97 < 0.03		< 10	31	< 10	62	
49112	214 229	3	0.02	10	1140	18	2	8	143 < 0.03		< 10	61	< 10	68	
49113	214 229	2	0.01	11	1170	14	< 2	9	160 < 0.0	< 10	< 10	79	< 10	68	
49114	214 229	3	0.02	11	1250	28	< 2	7	115 < 0.0		< 10	50	< 10	68	
49115	214 229	2	0.03	9	1270	22	< 2	8	151 < 0.03		< 10	71	< 10	84	
49116	214 229	3	0.03	10	1260	18	< 2	8	130 < 0.03		< 10	68	< 10	84	
49117	214 229	2	0.01	11	1200	20	< 2	7	124 < 0.03		< 10	69	< 10	86	
49118	214 229	1	0.02	10	1260	18	< 2	8	117 < 0.03	L < 10	< 10	80	< 10	68	
9119	214 229	1	0.02	11	1250	18	< 2	8	141 < 0.0		< 10	79	< 10	64	
19120	214 229	3	0.02	10	1290	16	< 2	8	98 < 0.03		< 10	76	< 10	56	
9121	214 229	2	0.01	9	1220	18	< 2	7	117 < 0.01		< 10	62	< 10	64	
19122	214 229	< 1	0.01	11	1290	20	< 2	8	88 < 0.03		< 10	79 59	< 10 < 10	182 184	
19123	214 229	2 •	< 0.01	11	1340	58	< 2	6	81 < 0.0	L < 10	< 10	23	< 10	704	
19124	214 229	1 •	< 0.01	12	1280	82	< 2	6	66 < 0.0		< 10	46	< 10	292	
19125	214 229	1 •	< 0.01	9	1360	18	< 2	6	70 < 0.03		< 10	53	< 10	200	
19126	214 229		< 0.01	9	1300	428	2	6	79 < 0.03		< 10	31	< 10	2260	
49127	214 229		< 0.01	6	500	3090	312	3	108 < 0.03		< 10	3		>10000	
19128	214 229	5 •	< 0.01	7	1210	288	4	3	116 < 0.0	. ∢ 1 0	< 10	13	< 10	5160	
19129	214 229	< 1 ·	< 0.01	8	870	1340	124	3	107 < 0.03		< 10	7		>10000	
9130	214 229	< 1 •	< 0.01	10	830	1820	62	2	63 < 0.03		< 10	7		>10000	
9131	214 229		< 0.01	8	1040	1970	30	2	53 < 0.03		< 10	7		>10000	
49132	214 229		< 0.01	5	220	1130	72	1	127 < 0.03		10	3		>10000	
19133	214 229	3 •	< 0.01	12	1100	422	2	3	40 < 0.03	L < 10	< 10	15	< 10	1420	

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

b: CAMNOR RESOURCES

860 - 625 HOWE ST. VANCOUVER, BC V6C 2T6

Comments:

år :5-A Page i Total Pages :6 Certificate Date: 27-OCT-96 Invoice No. :19636834 P.O. Number :MXC Account

.

Project:

				·						CE	יורוי	JAIC	OF F	NALY	313		19636	004		
SAMPLE	PREP CODE	Au ppb FA+AA	-	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mi ppi
149134	214 22		10.2	0.62	56	40	< 0.5	< 2	0.66	5.0	9	110	91	4.78	< 10	< 1	0.24	< 10	0.27	92
L49134 L49135	214 22		36.0		>10000	< 10	< 0.5	10		>100.0	100	100	692	>15.00	< 10	1	0.11	< 10	0.17	171
49136	214 22		3.4	0.69	534	40	< 0.5	< 2	1.45	20.5	8	100	92	4.69	< 10	< 1	0.32	< 10	0.40	116
49137	214 22		11.6		>10000	30	< 0.5	18		>100.0	21	94	361	8.53	< 10	6	0.20	< 10	0.29	114
49138	214 22		12.6		>10000	10	< 0.5	10		>100.0	18	88	216	14.60	< 10	1	0.15	< 10	0.55	220
49139	214 22	9	13.2	0.60	2180	30	< 0.5	2	1.09	50.0	4	78	144	5.54	< 10	1	0.24	< 10	0.19	44
49140	214 22		2.8	0.54	3270	30	< 0.5	< 2	2.13	40.0	5	103	99	5.46	< 10	< 1	0.24	< 10	0.50	81
49141	214 22		21.4	0.43	>10000	30	< 0.5	4	1.06	>100.0	9	125	479	5.97	< 10	5	0.22	< 10	0.12	43
49142	214 22		12.4	0.52	>10000	10	< 0.5	10	1.82	>100.0	24	134	423	13.55	< 10	4	0.17	< 10	0.23	128
49143	214 22			0.63	50	30	< 0.5	< 2	3.53	2.5	11	65	68	3.03	< 10	< 1	0.25	< 10	0.58	239
49144	214 22	g	0.8	1.09	78	20	< 0.5	< 2	2.87	1.5	16	81	95	4.91	< 10	< 1	0.15	< 10	0.97	105
49145	214 22	9	0.2	1.92	124	30	< 0.5	< 2	1.81	< 0.5	14	107	75	5.67	< 10	< 1	0.16	< 10	1.19	59
49146	214 22	9	1.6	0.83	60	60	< 0.5	< 2	2.19	2.5	15	78	119	3.35	< 10	< 1	0.22	< 10	0.85	70
49147	214 22		1.4	1.57	44	40	< 0.5	< 2	3.12	1.0	14	77	82	4.78	< 10	< 1	0.18	< 10	0.99	108
49148	214 22		1.2	1.62	8	50	< 0.5	< 2	3.40	1.5	9	68	57	3.86	< 10	< 1	0.19	< 10	1.04	117
49149	214 22	9	1.0	1.27	14	40	< 0.5	< 2	2.89	2.5	11	65	62	4.50	< 10	< 1	0.17	< 10	0.82	107
49150	214 22		1.0	1.58	46	40	< 0.5	< 2	2.49	3.5	11	74	55	4.64	< 10	< 1	0.19	< 10		106
49290	214 22		2.6		>10000	50	< 0.5	2	1.14	1.5	4	47	72	6.51	< 10	< 1	0.20	< 10	0.08	55
49291	214 22		10.0	0.33	796	30	< 0.5	2	0.05	< 0.5	3	40	25	8.67	< 10	< 1	0.16	< 10	0.01 0.17	109
49292	214 22	9 250	3.0	0.39	38	30	< 0.5	< 2	0.66	< 0.5	16	61	5	6.98	< 10	< 1	0.16	< 10	0.17	103
49293	214 22	9	4.2	0.45	24	30	< 0.5	< 2	0.37	1.5	10	37	13	6.23	< 10	< 1	0.17	< 10	0.08	117
49294	214 22	9	30.0	0.28	2680	30	< 0.5	6	0.01	< 0.5	3	78	46	6.93	< 10	6	0.18	< 10	< 0.01	4
49295	214 22	9	5.6	0.35	274	40	< 0.5	< 2	0.06	< 0.5	6	55	21	5.72	< 10	< 1	0.18	< 10	0.01	52
49296	214 22	9	3.4	0.38	162	30	< 0.5	< 2	0.61	< 0.5	5	45	20	5.94	< 10	< 1	0.20	< 10	0.17	83
49297	214 22	9	6.4	0.33	1690	40	< 0.5	4	0.01	< 0.5	1	41	10	2.55	< 10	< 1	0.24	< 10	0.01	13
49298	214 22		8.2	0.38	1010	30	< 0.5	< 2	0.01	< 0.5	< 1	41	33	5.21	< 10	< 1	0.23		< 0.01	3
49299	214 22		10.6	0.30	3410	30	< 0.5	6	0.01	1.0	1	48	20	4.17	< 10	< 1	0.18	< 10	0.01	27
49300	214 22	9	2.0	0.33	86	30	< 0.5	< 2	0.49	< 0.5	. 5	36	11	5.37	< 10	< 1	0.17	< 10	0.09	78
31527	214 22		0.2	2.12	16	200	< 0.5	< 2	1.23	< 0.5	19	99	114	4.71	< 10	< 1	0.33	< 10	1.36	43
31528	214 22	9 25	>100.0	1.24	84	30	< 0.5	206	0.50	98.0	11	150	238	3.95	< 10	< 1	0.42	< 10	0.60	13
31529	214 22		22.4		>10000	< 10	< 0.5	136		>100.0	12	119	137	7.02	< 10	< 1	0.04	< 10	0.53	116
31530	214 22	9	>100.0	0.07	526	< 10	< 0.5	2230	0.01	75.0	1	247	106	3.63	< 10	< 1	0.02	< 10	0.03	4.05
31580	214 22	9	63.0	1.90	10	320	< 0.5	Intf*	3.95	1.5	9		10000	3.46	< 10	< 1	0.15	< 10	1.34	193
3130U					_		. ^ -	*-LE	0.06	< 0.5	7	85 >	4 0 0 0 0	6.93	< 10	< 1	0.12	< 10	0.47	70
31581	214 22	9	3.2	1.05	8 42	60 40	< 0.5 < 0.5	Intf* < 2	0.08	< 0.5	15	66	10000 166	4.00	< 10	< 1	0.06	< 10	0.13	13

4.00

0.21

3.13

3.54

7.09

< 2

< 2

< 2

< 0.5

< 0.5

260 < 0.5 Intf*

< 0.5 Intf*

750

660

250

1790 < 0.5

22

16

76

0.5

1.0

2.0

1.0

< 0.5

35

92

35

19

12

36

23

11

121

2780

36 >10000

85 >10000

60

5.36

3.36

1.05

3.23

3.50

< 10

< 10

< 10

< 10

< 10

CERTIFICATION:

0.04

0.06

0.10

0.12

0.08

< 10

< 10

< 10

< 10

< 10

0.83

0.28

1.25

0.33

1.79 >10000

< 1

< 1

< 1

< 1

< 1

1295

3140

1955

570

214 229

214 229

214 229

214 229

214 229

0.2

0.2

22.4

13.0

11.4

155

1.97

1.35

1.50

1.58

1.15

331583

331584

331585

331586

331587

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver

V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 b: CAMNOR RESOURCES

860 - 625 HOWE ST. VANCOUVER, BC V6C 2T6

CERTIFICATE OF ANALYSIS

Project : Comments:

Page Number : 1-A
Total Pages : 7
Certificate Date: 28-OCT-96
Invoice No. : I9636835
P.O. Number :

MXC Account

A9636835

* DI EASE NOTE

PLEASE NO	ΓE							,,,		VE	TA HIFT	CAIL	OF F	IIIAL	1313	<i></i>	19030	000		
SAMPLE	PREP CODE	Au ppb FA+AA	Au FA g/t	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
31630	214 229			3.2	3.50	44	70	< 0.5	< 2	0.36	1.5	15	32	949	8.79	< 10	< 1	0.15 0.05	< 10 < 10	2.15
31631	214 229			0.6	1.12	14	50	< 0.5	< 2	0.49	< 0.5	19	101	50 156	4.89 8.17	< 10 < 10	< 1 < 1	0.10	< 10	1.57
31632	214 229			1.6	2.12	20	30	< 0.5	< 2	0.79	< 0.5	19 30	49 59	3650	6.55	< 10	< 1	0.08	< 10	1.71
31633	214 229			3.6	2.24	20	40	< 0.5 < 0.5	2 < 2	3.73 2.21	0.5 < 0.5	30 37	57	201	6.37	< 10	< 1	0.14	< 10	1.22
31634	214 229			1.8	1.92	28	30	× 0.5	· · ·	4.41	. 0.3									
31635	214 229			1.4	2.64	12	40	< 0.5	2 < 2	1.12	< 0.5 < 0.5	28 13	49 41	877 176	7.36 4.59	< 10 < 10	< 1 < 1	0.06	< 10 < 10	1.89
31636	214 229			0.8	1.62	22	150 110	< 0.5	< 2		< 0.5	20	31	197	4.26	< 10	< 1	0.32	< 10	0.57
31637	214 229			1.4	1.56 1.45	20 4	260	< 0.5	Intf*	5.18	< 0.5	21		>10000	1.99	< 10	< 1	0.24	10	0.68
31638	214 229		12 07	91.2 3.8	1.20	6	80	< 0.5	Intf*		< 0.5	- 9		>10000	5.18	< 10	< 1	0.15	< 10	0.55
31639	214 229	>10000	12.07	3.6	1.20													- 4 -		
31640	214 229			6.0	1.76	6	130	< 0.5	Intf*	0.28	< 0.5	13		>10000	7.12	< 10	< 1 < 1	0.17 0.10	< 10 < 10	0.84
31641	214 229			20.2	0.49	6	30	< 0.5	Intf*	0.03	< 0.5	1 7	123 70	>10000	8.93 4.83	< 10 < 10	< 1	0.10	< 10	0.13
31644	214 229			0.4	1.49	20	150	< 0.5	< 2	0.11	< 0.5 < 0.5	20		97 >10000	5.54	< 10	< 1	0.09	< 10	1.43
31645	214 229			44.0	2.47	6 6	200 200	< 0.5	Intf*	2.23	< 0.5	11	25	99	2.42	< 10	< 1	0.12	< 10	0.22
31646	214 229			0.2	1.18	0	200	< 0.5	\ <u> </u>	0.27	· · · · · ·	<u> </u>								w
31647	214 229			< 0.2	1.13	24	1360	< 0.5	< 2	9.79	0.5	9	137	130	3.47 5.38	< 10 10	< 1 5	0.01	< 10 < 10	0.50
31648	214 229			71.0	1.75	262	30	< 0.5	< 2	0.96	14.0	15 15	194 260	425 57	7.65	10	1	0.01	< 10	0.43
31649	214 229			8.6	2.02	138	30	< 0.5	< 2 < 2	0.35	1.5	22	∡60 54	53	8.63	< 10	< 1	0.05	< 10	0.88
31650	214 229			0.2	2.62 0.98	18 10	10 50	< 0.5 < 0.5	< 2	0.06	< 0.5	- 8	62	36	4.68	< 10	< 1	0.09	< 10	0.22
31651	214 229	()		< 0.2	0.36	10		· · · · ·	`											
31652	214 229	1		< 0.2	2.14	12	60	< 0.5	< 2	0.53	< 0.5 16.5	4 9	91 161	22 48	5.22 3.66	< 10 10	< 1 4	0.07	< 10 < 10	1.23
31654	214 229			6.0	1.30	98 646	30 20	< 0.5 < 0.5	< 2 < 2	0.51 1.27	14.0	25	200	1715	4.22	10	10	0.02	< 10	0.22
31655	214 229			60.8 27.4	1.27 0.22	1005	10	< 0.5	2	0.34	14.5	28	173	2890	6.07	< 10		< 0.01	< 10	0.06
31656 31657	214 229 214 229			0.8	0.68	62	30	₹ 0.5	< 2	0.75	< 0.5	24	55	136	4.96	< 10	1	0.17	< 10	0.07
								< 0.5		1.55	< 0.5	13	2.4	>10000	1.87	< 10	< 1	0.10	< 10	0.25
31658	214 229			29.2	0.40	70 92	220 130	< 0.5	< 2 < 2	1.33	4.5	11	209	286	4.92	10	3	0.01	< 10	0.35
31659	214 229			12.6 3.6	1.88 2.56	114	10	< 0.5	< 2	0.58	4.5	49	154	319	11.25	< 10	17	0.05	< 10	0.67
31660	214 229 214 229			2.0	1.19	70	10	< 0.5	< 2	0.39	1.5	48	80	282	8.99	< 10	6	0.10	< 10	0.28
31661 31662	214 229			0.6	1.13	10	140	< 0.5	< 2	0.40	< 0.5	21	83	79	5.85	< 10	1	0.07	< 10	0.32
	121 222			4.0	0.49	130	60	< 0.5	< 2	0.29	1.0	15	157	105	3.18	< 10	1	0.06	< 10	0.05
31663	214 229 214 229			1.0	2.10	12	1030	< 0.5	< 2	1.81	< 0.5	15	100	86	5.41	< 10	< 1	0.10	< 10	0.81
31664 31665	214 229			0.6	0.97	58	20	< 0.5	< 2	1.82	0.5	9	177	26	5.74	< 10	< 1	0.04	< 10	0.68
31666	214 229			1.0	2.11	54	30	< 0.5	< 2	0.44	< 0.5	12	97	35	7.32	< 10	< 1	0.09	< 10	0.57
31667	214 229			0.2	0.40	22	560	< 0.5	2	7.56	< 0.5	14	55	585	5.57	< 10	< 1	0.08	< 10	1.47
31668	214 229			>100.0	0.10	1260	10	< 0.5	2	0.10	7.0	48	135	2180	10.65	< 10	25	0.01	, 10	< 0.01
31669	214 229			>100.0	0.42	1465	10	< 0.5	< 2	0.15	7.5	37	114	1915	11.45	< 10	32	0.01	< 10	0.07
31670	214 229	•		0.8	1.01	34	50	< 0.5	2	5.02	10.5	23	118	174	4.28	< 10	< 1	0.18	< 10	1.08
31671	214 229			1.2	0.40	14	10	< 0.5	2	0.08	0.5	8	389	133	6.00	< 10	< 1	0.08	< 10	0.27 2.58
31672	214 229	1650		3.0	0.54	244	40	0.5	2	8.32	1.0	24	144	194	5.76	< 10	< 1	0.19	< 10	4.55
																		•		

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: CAMNOR RESOURCES

860 - 625 HOWE ST. VANCOUVER, BC V6C 2T6

Project: Comments: Page N er :1-B
Total Pages :7
Certificate Date: 28-OCT-96

Invoice No. : 19636835

P.O. Number Account :MXC

*	PΙ	۸	c	_	٨	ı	$\overline{}$	7	-1	

* PLEASE NOT	E									CE	RTIFI	CATE	OF A	NALY	'SIS	A9	9636835
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W ppm	Zn ppm	
331630 331631 331632 331633 331634	214 229 214 229 214 229 214 229 214 229 214 229	1575 590 1140 1260 1030	7 2 4 6 8	0.01 0.04 0.02 0.04 0.03	3 6 4 6 6	1350 1190 1280 1230 1170	1995 44 162 154 76	6 < 2 2 4 6	9 11 19 20 12	24 21 25 62 39	0.01 0.02 0.13 0.11 0.02	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	147 127 218 207 164	< 10 < 10 < 10 < 10 < 10	94 40 80 88 70	
331635 331636 331637 331638 331639	214 229 214 229 214 229 214 229 214 229 214 229	1440 465 500 2700 795	2 4 3 60 4	0.02 0.03 0.02 < 0.01 0.01	6 4 4 1 3	1610 1130 1940 Intf* Intf*	130 24 42 4 12	4 2 2 4 < 2	27 6 7 1	25 <	0.14 : 0.01 : 0.01 : 0.01 0.04	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	285 71 69 16 29	< 10 < 10 < 10 < 10 < 10	98 46 44 98 60	
331640 331641 331644 331645 331646	214 229 214 229 214 229 214 229 214 229	1155 395 140 2690 105	_	< 0.01 < 0.01 0.04 0.02 0.05	5 < 1 11 3 9	Intf* Intf* 190 Intf* 870	40 22 24 16 66	2 6 < 2 4 < 2	3 < 1 5 4 2	38 < 100	0.07 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	44 10 55 80 13	< 10 10 < 10 < 10 < 10	90 22 53 298 26	
331647 331648 331649 331650 331651	214 229 214 229 214 229 214 229 214 229 214 229	3490 315 585 285 75	5 14 11 1	0.01 0.01 0.01 0.02 0.04	14 7 8 10 6	100 4470 1510 1130 440	50 >10000 6170 134 38	90 8 2 2	4 3 4 10 3	65 4 40 4 48 4	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	13 48 64 96 18	< 10 < 10 < 10 < 10 < 10	100 652 584 264 80	
331652 331654 331655 331656 331657	214 229 214 229 214 229 214 229 214 229	1045 155 205 90 60	1 12 38 82 2	0.03 0.02 0.02 0.01 0.03	3 5 8 8		68 >10000 >10000 2510 84	< 2 6 210 680 4	6 3 4 1 3	49 - 93 - 31 -	<pre>0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01</pre>	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	41 47 42 7 24	< 10 < 10 < 10 < 10 < 10	264 1965 1040 608 26	
331658 331659 331660 331661 331662	214 229 214 229 214 229 214 229 214 229	700 470 1680 470 2930	1 12 7 1 4	0.03 0.01 0.02 0.03 0.04	1 6 18 17 5	1600 4220 810 700 840	22 >10000 1955 268 36	8 18 14 16 2	6 6 5 6 8	111 · 34 · 27 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10	20 < 10 < 10 < 10 < 10	30 59 68 53 63	< 10 < 10 < 10 < 10 < 10	58 942 1690 476 74	
331663 331664 331665 331666 331667	214 229 214 229 214 229 214 229 214 229	80 1925 985 430 3470	22 3 8 2 3	0.02 0.03 < 0.01 0.03 0.03	7 10 6 8 3	1280 1040 1160 1370 120	8320 66 62 328 16	10 6 < 2 < 2 8	1 7 12 5 8	139 - 66 - 37 -	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	20 67 49 52 19	< 10 < 10 < 10 < 10 < 10	102 142 136 124 120	
331668 331669 331670 331671 331672	214 229 214 229 214 229 214 229 214 229	35 80 1060 205 1640	11 6 2	< 0.01 < 0.01 0.01 < 0.01 < 0.01	11 10 33 23 25	560 1040 510 280 680	4470 2430 22 20 6	566 518 8 6 70	< 1 1 2 6 15	72 · 66 · 3 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 50 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	7 23 49 34 61	< 10 < 10 < 10 < 10 130	590 704 408 146 84	

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver V7J 2C1 British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

b: CAMNOR RESOURCES

860 - 625 HOWE ST. VANCOUVER, BC V6C 2T6

Project: Comments: Page N er :2-A

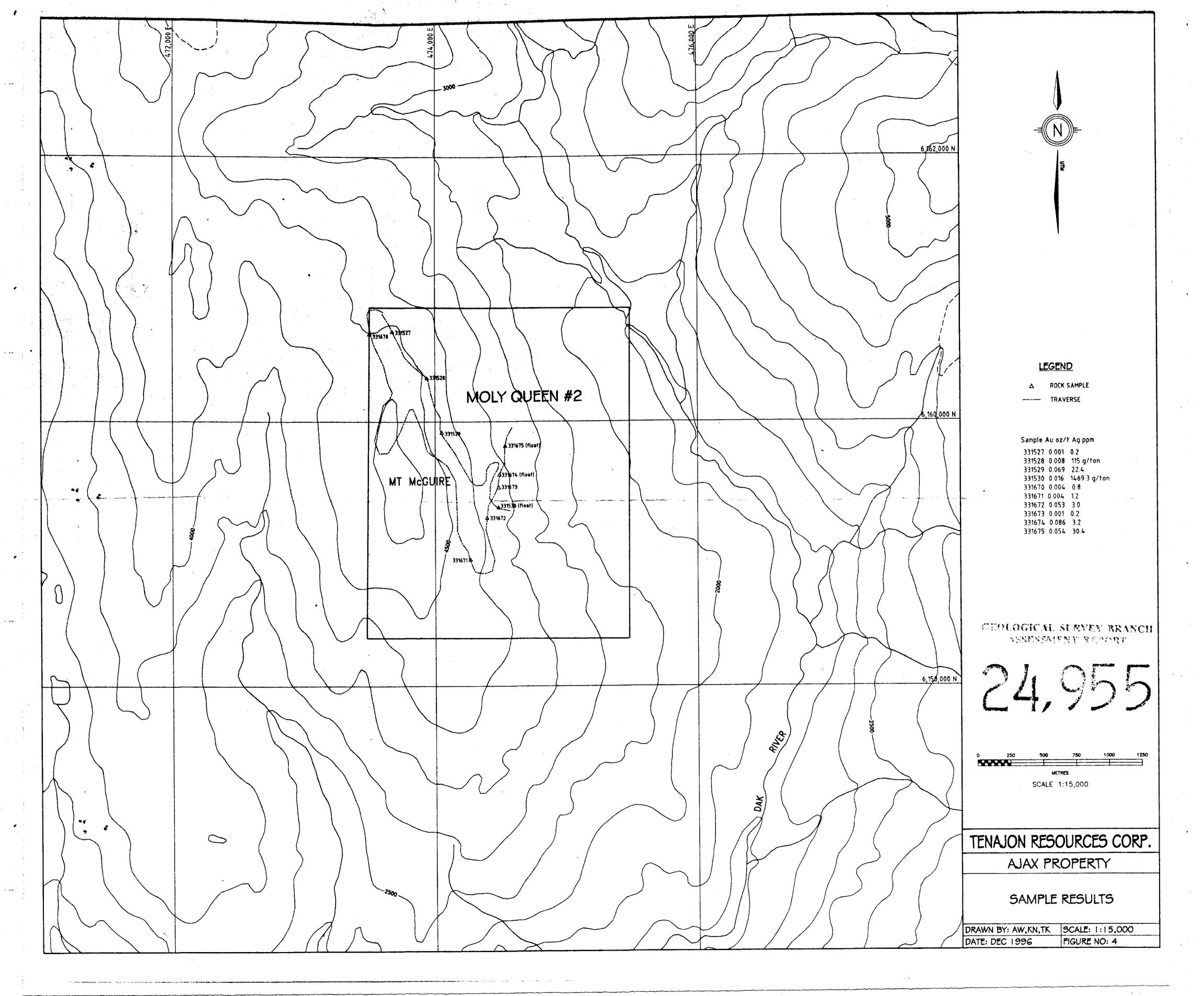
Total Pages :7 Certificate Date: 28-OCT-96 Invoice No. :19636835

P.O. Number : :MXC Account

* PLEASE NOT	E									CE	RTIFI	CATE	OF A	NAL	/SIS	F	19636	835		
SAMPLE	PREP CODE	Au ppb FA+AA	Au FA g/t	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
331673 331674 331675 331701 331702	214 229 214 229 214 229 214 229 214 229	 9		0.2 3.2 30.4 4.6 0.6		272 52	< 10 < 10 < 10 50 100	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 < 2 < 2 < 2	2.56 0.02 1.83 3.85 4.71	< 0.5 6.5 10.0 14.5 < 0.5	12 < 1 4 11 12	186 261 158 58 53	175 16 206 132 40	6.77 2.68 3.79 5.26 4.43	< 10 < 10 < 10 < 10 < 10		0.01 0.01 0.10 0.21 0.20	< 10 < 10 < 10 < 10 < 10	0.83 0.01 0.53 0.72 0.92
331703 331704 331705 331706 331707	214 22 214 22 214 22 214 22 214 22	9		0.6 0.8 < 0.2 < 0.2 0.2	0.76 0.36 1.11 1.48 1.92	38 36 16 18 16	50 60 110 120 250	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	4.17 6.03 5.89 4.95 4.96	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 11 13 13	45 39 72 56 66	70 95 1 2 9	4.32 4.43 4.18 3.89 4.29	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.19 0.19 0.21 0.17 0.18	< 10 < 10 < 10 < 10 < 10	0.81 1.03 1.45 1.43 1.24
331708 331709 331710 331711 331712	214 22 214 22 214 22 214 22 214 22 214 22	9		0.2 0.4 26.6 4.6 0.6	1.12 1.46 0.90 0.72 1.28	48 62 1040 602 126	160 90 < 10 10 190	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	5.14 3.39 2.53 1.70 4.49	< 0.5 0.5 >100.0 37.5 1.0	12 11 11 13 14	49 70 83 101 59	19 26 290 53 14	4.36 4.92 9.83 6.71 4.75	< 10 < 10 < 10 < 10 < 10	1 < 1 3 1 < 1	0.19 0.19 0.18 0.20 0.16	< 10 < 10 < 10 < 10 < 10	1.15 1.01 0.58 0.47 1.44
331713 331714 331715 331716 331717	214 22 214 22 214 22 214 22	NotRcd		0.4 0.2 NotRcd 1 0.2 2.2	1.52 1.63 NotRed 0.86 0.50	16 38 NotRcd 24 658	80 310 NotRcd 110 50	< 0.5 < 0.5 NotRcd < 0.5 < 0.5	< 2 < 2 NotRcd < 2 < 2	4.68 4.87 NotRed 4.96 4.18	< 0.5 0.5 NotRed : < 0.5 4.5	14 13 NotRcd : 9 17	64 63 NotRcd 61 63	49 20 NotRcđ 13 80	4.08 4.32 NotRcd 3.89 4.39	< 10 < 10 NotRed 1 < 10 < 10	< 1 < 1 NotRcd 1 < 1 < 1	0.18 0.22 NotRcd 0.19 0.18	< 10 < 10 NotRcd : < 10 < 10	1.57 1.56 NotRed 1.23 1.11
331718 331719 331720 331721 331722	214 22 214 22 214 22 214 22 214 22 214 22	9		2.2 1.8 0.8 0.4 0.6	0.41 0.36 0.44 0.46 0.61	24 12 16 16	40 40 40 40 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	3.29 3.62 2.98 4.25 3.02	0.5 < 0.5 0.5 < 0.5 0.5	12 10 11 10 8	46 47 52 60 53	10 3 5 5 8	5.14 5.13 5.15 4.80 5.38	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.17 0.16 0.17 0.17 0.15	< 10 < 10 < 10 < 10 < 10	0.99 1.17 0.94 1.05 1.36
331723 331724 331725 331726 331727	214 22 214 22 214 22 214 22 214 22 214 22	9		0.8 1.0 0.6 0.2 < 0.2	0.34 0.34 0.32 0.30 0.38	20 24 32 24 12	40 40 40 30 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	3.45 3.46 4.25 3.95 3.64	0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 15 12 11 11	59 48 62 51 49	4 12 5 8 5	4.02 4.58 5.21 5.11 3.78	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.14 0.16 0.15 0.14 0.16	< 10 < 10 < 10 < 10 < 10	1.05 0.84 0.90 1.04 1.02
331728 331729 331730 331731 331732	214 22 214 22 214 22 214 22 214 22 214 22	9 9 9		0.8 1.0 1.0 1.4 0.8	0.32 0.35 0.40 0.44 0.29	30 24 22 16 40	40 30 40 40 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	3.70 3.65 3.92 3.59 3.38	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 9 12 8 8	49 58 73 64 56	4 6 5 5 21	4.20 4.99 4.61 3.87 4.31	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.14 0.16 0.19 0.20 0.13	< 10 < 10 < 10 < 10 < 10	0.99 0.90 0.88 0.82 0.98
331733 331734 331735 331736 331737	214 22 214 22 214 22 214 22 214 22	9 9 9		0.8 1.2 4.0 1.6 6.6	0.38 0.32 0.26 0.32 0.34	68 92 280 174 1180	20 30 30 30 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	3.71 0.82 0.02 0.42 0.29	2.5 0.5 0.5 0.5 < 0.5	15 8 2 4 < 1	45 65 60 68 48	98 27 18 48 33	4.43 4.92 5.21 7.56 5.43	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.14 0.16 0.15 0.16 0.18	< 10 < 10 < 10 < 10 < 10	1.30 0.15 0.01 0.11 0.04
		1																		

CERTIFICATION: Harry Priciler

Analytical Chemists * Geochemists * Registered Assayers


North Vancouver 212 Brooksbank Ave., British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218 to: CAMNOR RESOURCES

860 - 625 HOWE ST. VANCOUVER, BC V6C 2T6

Project: Comments: Page N Jer : 2-B
Total Pages : 7
Certificate Date: 28-OCT-96
Invoice No. : 19636835
P.O. Number : :MXC Account

* PLEASE NOT	E									CE	RTIF	ICATE	OF A	NAL	/SIS	A	19636835	
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	ppm W	Zn ppm		
331673 331674	214 229 214 229	1060 35		< 0.01	39 8	990 < 10	< 2 574	2 362	6 < 1		0.07	< 10 < 10	< 10 < 10	168	160 < 10	54 452		
331675 331701 331702	214 229 214 229 214 229	735 4520 4120	4 3 3	0.01 0.03 0.01	21 8 7	200 1010 1010	1410 744 12	7190 14 4	1 4 5	80	< 0.01 < 0.01 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	13 11 12	< 10 < 10 < 10	862 2650 144		
331703 331704	214 229 214 229	3380 4000	3	0.01	6	1040 1030	8 10	4 6	5 4		< 0.01 < 0.01	< 10 < 10	< 10 < 10	15 10	< 10 < 10	156 76		
331705 331705 331706 331707	214 229 214 229 214 229	2550 2110 2460	3	0.01 < 0.01 0.01	23 20 23	1160 1170 1200	< 2 < 2 < 2	< 2 2 2	8 7 8	105	< 0.01 < 0.01 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	34 37 45	< 10 < 10 < 10	76 104 164		
331708 331709	214 229 214 229	3540 2740	3	< 0.01	15 19 15	1230 1280 1000	< 2 10 7920	2 < 2 16	6 5 3	79	< 0.01 < 0.01 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	27 30 18	< 10 < 10 < 10	78 234 >10000		
331710 331711 331712	214 229 214 229 214 229	2560 2400 2900	< 1 4 1	< 0.01 0.05 0.01	17 19	1170 1150	1165 114	2 4	3	39	< 0.01 < 0.01	< 10 < 10	< 10 < 10	14 35	< 10 < 10	6480 178		
331713 331714	214 229 214 229	2070 2240	2 < 1	0.01	21 23	1140 1180	28	2 2	7 8	135	< 0.01 < 0.01	< 10 < 10	< 10 < 10	43 45 Not Rad	< 10 < 10 NotRcđ	82 186 Notrad		
331715 331716 331717	214 229 214 229	2670	NotRed 3	0.01 0.02	Notred . 8 9	1000 1200	22 116	NotRed 1	5 6	113	< 0.01 < 0.01	< 10 < 10	< 10 < 10	22 19	< 10 < 10	138 550		
331718 331719	214 229 214 229		2 2	0.02	11 9	1200 1170	22 16 14	2 2 2	5 5 5	101	< 0.01 < 0.01 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	17 21 17	< 10 < 10 < 10	148 62 162		
331720 331721 331722	214 229 214 229 214 229	905	3 1 2	0.02 0.03 0.03	10 8 9	1100 980 1020	< 2 8	< 2 2	5	177	< 0.01 < 0.01	< 10 < 10	< 10 < 10	16 27	< 10 < 10	106 108		· · · · · · · · · · · · · · · · · · ·
331723 331724 331725 331726 331727	214 229 214 229 214 229 214 229 214 229 214 229	695 705	1 3 2 3 2	0.02 0.01 0.01 0.01 0.02	8 13 7 7 8	1000 1120 1020 1030 1720	8 2 6 < 2 2	< 2 2 2 2 2 2	5 5 5 5	101 128 122	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	18 19 10 14 13	< 10 < 10 < 10 < 10 < 10	82 74 46 28 30		
331728 331729	214 229 214 229	790	3 1	0.01	8 10	1050 1050	4 < 2	2 4	5 4	116	< 0.01 < 0.01	< 10 < 10	< 10 < 10	11 14	< 10 < 10	44		
331730 331731 331732	214 229 214 229 214 229	980 1195	3 1 3	0.01 0.01 0.01	10 8 7	1070 1350 990	< 2 2 2	2 2 2	5 4 4	99	< 0.01 < 0.01 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	19 16 12	< 10 < 10 < 10	26 56 72		
331733 331734 331735 331736 331737	214 229 214 229 214 229 214 229 214 229	115 405	1 3 < 1 3 1	0.02 0.01 0.01 0.01 0.01	10 6 1 3	1240 1260 760 1260 810	50 74 722 144 628	6 < 2 2 < 2 8	8 6 2 4 3	21 3 14	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	16 17 15 18 16	< 10 < 10 < 10 < 10 < 10	332 138 144 378 186		

CERTIFICATION:

