

NTS92L/14E, 92M/3ELATITUDE50° 59' NLONGITUDE127° 12' W

GEOLOGICAL & GEOCHEMICAL REPORT ON THE NUGGET QUEEN CLAIM GROUP SEYMOUR INLET AREA VANCOUVER MINING DIVISION BRITISH COLUMBIA

For

Solaia Ventures Inc. 640 - 625 Howe Street Vancouver, B.C. V6C 2T6

Ву

Fayz F. Yacoub, P.Geo., F.G.A.C.

6498 - 128B Street Surrey, B.C. V3W 9P4

&

John Young, H.B.Sc. 603 - 1176 Burnaby Street Vancouver, BC V6E 1P1

February 1997

SUMMARY

The Nugget-Queen property is comprised of the Nugget and the Queen claims totaling 24 units and lies approximately 35 kilometres northeast of Port Hardy in the Seymour Inlet area, Vancouver Mining Division.

Geologically the property is underlain by a sequence of metavolcanic and sedimentary rocks which form a roof pendant in a granodiorite intrusive. Mineralization consists of gold, silver, copper, lead and zinc in quartz veins associated with east-southeast trending shear zones within argillitic sedimentary rocks.

Previous mineral exploration on the property outlined a favourable geologic environment for a gold-bearing quartz vein deposit. A number of gold, silver and base metal soil anomalies have been detected on the Nugget and Queen property. Seven veins, known as the No. 1 to No. 7 veins, were originally located by the Mining Company of Canada and one vein, the No. 8 vein, was recently discovered by Ashworth Explorations Ltd. Mineralization within the veins consists of galena, sphalerite, pyrrhotite and chalcopyrite.

Productions records during the period of 1940 to 1941 indicate that a total of 666 tonnes of ore was shipped to the Tacoma Smelter. Sampling the main vein during the 1996 program returned gold values as high as 1.313 oz/tonne Au.

The 1995 geological, geochemical and geophysical exploration work carried out by Ashworth Explorations Ltd. indicated the potential for extending the known veins and outlined a new soil anomaly zone parallel to the Main Showing.

The 1996 geological, geochemical and trenching program was initiated on the Nugget-Queen property to test the extension of the known gold-bearing mineralization between the No. 4 and No. 6 vein, and to test the new soil geochemical anomaly area by trenching. Results of this program yielded values up to 0.24 opt gold and 0.42 opt silver from eight trenches.

Soil sampling yielded coincident Au, Ag, Cu, Pb and Zn anomalies along the 1996 target area and suggests a gold-bearing quartz vein striking 280°. A newly discovered quartz vein was located just east of the 1996 trench area. Chip samples across 1 metre of the vein returned values of 34,978 ppb gold (1.119 opt). This discovery has increased the strike length of the south zone (the 1996 target area) from Trench 9 in the northwest to the newly discovered No. 8 vein in the southeast for a relatively continuous strike length of 130 metres.

The results of the 1996 trenching program were very encouraging, and the possibility for the Nugget-Queen property to have potential to host an economic gold, silver, copper, lead and zinc deposit in quartz veins has been greatly enhanced.

Further exploration has been recommended which will consist of 500 metres of diamond drilling in six drill holes to test the down dip extension of the No. 6 vein and the new alteration zone delineated by the 1996 trenching program at an estimated cost of \$160,000.

TABLE OF CONTENTS

1

.

		Page
	Summary	i
1.0	Introduction	1
2.0	Location, Access & Physiography	1
3.0	Property Status	3
4.0	Property History	3
5.0	Regional Geology	6
6.0	1996 Field Program	8
6.1	Scope & Purpose	8
6.2	Methods & Procedures	8
7.0	Results	9
7.1	Property Geology	9
7.1.1	Lithology	9
7.2	Mineralization	12
7.2.1	No. 1 Vein	13
7.2.2	No. 2 Vein	13
7.2.3	No. 3 Vein	13
7.2.4	No. 4 Vein	13
7.2.5	No. 5 Vein	17
7.2.6	No. 6 Vein	17
7.2.7	No. 7 Vein	17
7.2.8	No. 8 Vein	17
7.3	1996 Trenching Program	20
7.3.1	Trench Descriptions	20
7.3.1.1	Trench 8	21
7.3.1.2	Trench 9A	21
7.3.1.2	Trench 9B	24
7.3.1.4	Trench 10	24
7.3.1.5	Trench 11	27
7.3.1.6	Trench 12	27
7.3.1.7	Trench 13	30
7.3.1.8	Trench 14	30
7.3.2	Discussion of 1996 Trenching Results	33
7.4	Geochemical Soil Survey	34
7.4.1	Gold in Soils	34
7.4.2	Silver in Soils	36
7.4.3	Copper, Lead & Zinc in Soils	36
7.4.3	Arsenic in Soils	41
7.4.5	Discussion of Geochemical Results	41
8.0	Conclusions	41
9.0	Recommendations	45
10.0	Proposed Budget	40
10.0	References	4/
	Certificate of Qualifications	
	Personnel	

LIST OF FIGURES

- - -

_

		Page
Figure 1	General Location Map	2
Figure 2	Claim Location Map	4
Figure 3	General Geology	7
Figure 4	General Outcrop Map	10
Figure 5	General Geology and Vein Locations	11
Figure 6	No. 1 Vein	14
Figure 7	Bobmac Mine (Assay Plan No. 4 Vein)	15
Figure 8	Veins 3, 4 & 5 (Plan & Assay Results)	16
Figure 9	Main Showing - Vein 6 (Plan & Assay Results)	18
Figure 10	No. 8 Vein	19
Figure 11	Trench 8	22
Figure 12	Trench 9A	23
Figure 13	Trench 9B	25
Figure 14	Trench 10	26
Figure 15	Trench 11	28
Figure 16	Trench 12	29
Figure 17	Trench 13	31
Figure 18	Trench 14	32
Figure 19	Gold Soil Surveys Map	35
Figure 20	Silver Soil Surveys Map	37
Figure 21	Copper Soil Surveys Map	38
Figure 22	Lead Soil Surveys Map	39
Figure 23	Zinc Soil Surveys Map	40
Figure 24	Arsenic Soil Surveys Map	42
Figure 25	Au-Ag-As Compilation Map	43
Figure 26	Cu-Pb-Zn Compilation Map	44

LIST OF MAPS

		Page
Map 1	Geology, Rock Sample Locations & Rock Geochemistry	In Pocket

LIST OF APPENDICES

Appendix A	Rock Sample Descriptions
Appendix B	Analytical Results (1995 & 1996)
Appendix C	Analytical Techniques
Appendix D	Statistical Analysis & Soil Sample Descriptions

1.0 INTRODUCTION

At the request of Solaia Ventures Inc., Ashworth Explorations Ltd. conducted a mineral exploration program on the Nugget and Queen mineral group, Seymour Inlet, British Columbia from December 4 to 22, 1996. The main purpose of this report is to evaluate the precious and the base metal potential of the property resulting from the 1996 geological, geochemical and trenching program. This report also describes the regional geology and the past exploration activities in the area, and outlines a budget proposed for a next phase exploration program.

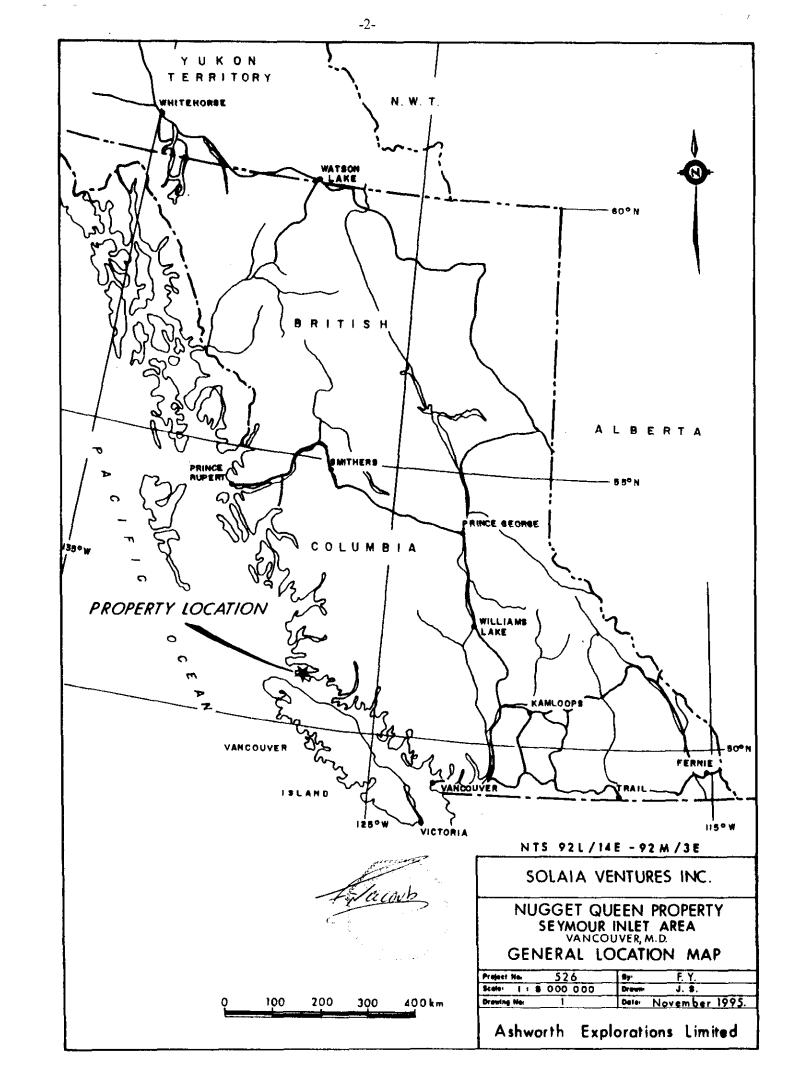
The work was performed by Fayz Yacoub, P.Geo., F.G.A.C.; John Young, geologist; and a crew of six geotechnicians. The work was conducted from a camp located on the northwest-central part of the Nugget claim.

This report is based upon the geological, geochemical and geophysical data collected during the 1995 and 1996 exploration activities on the property, and on a review of government assessment reports, regional geological maps, and claim data from the Vancouver Mining Recorder's Office. Both writers, Mr. Fayz Yacoub and Mr. John Young, were on the property and supervised all field work during the work program of December 1996.

2.0 LOCATION, ACCESS & PHYSIOGRAPHY (Figure 1)

The Nugget and Queen mineral group is located in the Seymour Inlet area, British Columbia. This area is located approximately 350 kilometres northwest of Vancouver. The property is located some 35 kilometres northeast of Port Hardy and covers part of the peninsula lying between McKinnon and Nenahlmai Lagoons which are part of a southeasterly arm of Seymour Inlet. The claims are situated within the Vancouver Mining Division of B.C., NTS mapsheets 92L/14E and 92M/3E, latitude 50° 59'N, longitude 127° 12'W.

Access to the claims can be reached via boat, float plane and helicopter from Port Hardy or Port McNeill. The best helicopter landing site on the property is located at the small swampy pond in the centre of the Nugget claim where a tent-frame camp was erected in 1995.


The claim area lies within part of the Hecate lowland, a geomorphic division dominated by low lying, knobby hills and ridges, and numerous small lakes connected to the Queen Charlotte Strait by narrow fjords.

The claims and adjacent areas are thickly covered by typical dead top cedar forest which includes western hemlock, balsam and douglas fir, and cypress. The dense undergrowth is comprised of young conifers, salal, ferns and deadfall. Precipitation is typical of temperate coastal climates, meaning significant rainfall, and occasional snow. Field work is feasible most of the year.

Elevations within the property ranges from sea level at the McKinnon and Nenahlmai Lagoons to 369 metres on a small rounded hill at the northeast part of the Nugget claim.

Water sufficient for drilling is available from the main creek running through the central part of the claims.

.

3.0 PROPERTY STATUS (Figure 2)

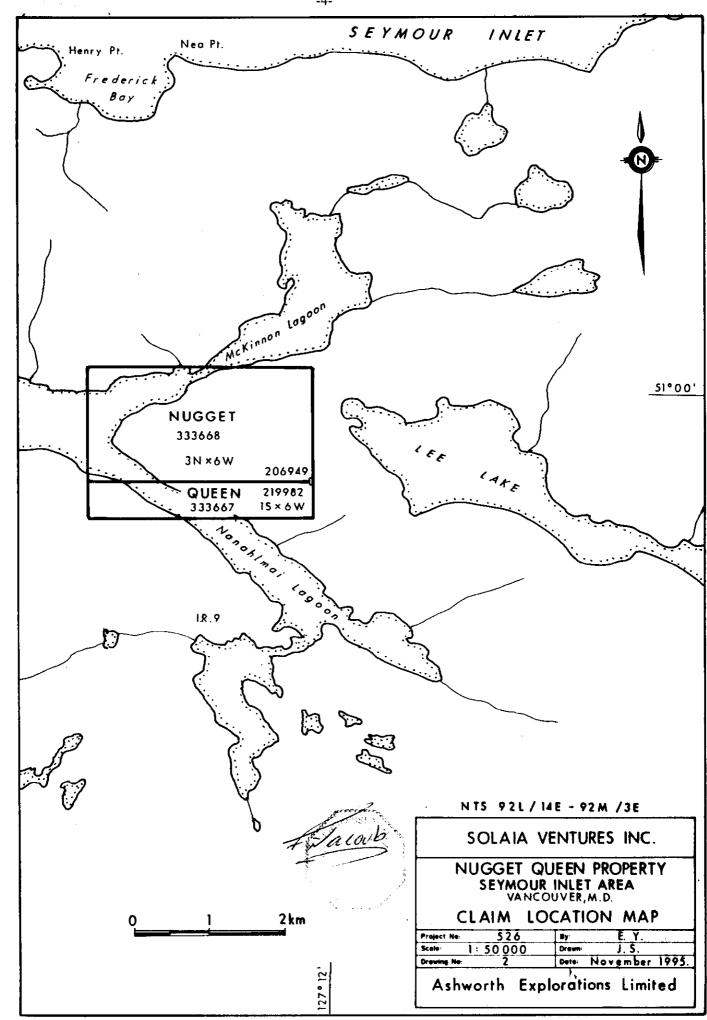
The subject property is comprised of two mineral claims totaling twenty-four units. The property was located January 30, 1995 and is owned by David A. Heyman of Burnaby, B.C. The claims are currently under option by Solaia Ventures Inc. of Vancouver, B.C.

Pertinent claim data is as follows:

CLAIM	UNITS	RECORD NUMBER	RECORD DATE	EXPIRY DATE
Queen	6	333667	January 30, 1995	January 30, 1998
Nugget	18	333668	January 30, 1995	January 30, 1998

The total area of the property is 6 km^2 - 600 hectares (1,482.6 acres).

4.0 **PROPERTY HISTORY**


In 1938, the Mining Company of Canada Ltd. completed a work program that included more than 1,000 feet of stripping along seven quartz veins, vein sampling and preliminary geological mapping of the area currently known as Nugget-Queen. An anonymous report describing this work is held with the B.C. Energy Mines and Petroleum Resources but the work was never recorded and the claims were abandoned.

The 1938 report indicated that the No. 3 vein was exposed continuously for 250 feet with widths varying from a few inches to 5 feet. This vein was sampled at 1.5 metre intervals and is shown here as Figure 9. The calculated weighted width and grad of 43 samples from this vein has been noted as 5.69 grams per tonne over an average width of 0.7 metres (EMPR PF 92L 178). Sample results over a length of 65 metres ranged from 0.005 opt Au to 2.44 opt Au (69.95 g/tonne - "picked sample") over 0.9 metres. The No. 4 vein is described as milky quartz with an irregular sulphide content which includes chalcopyrite, bornite, galena, sphalerite, pyrite, pyrrhotite and magnetite as well as angular wall rock fragments lying within a west-northwesterly trending, steeply dipping shear.

The No. 5 vein had also been exposed by trenching over a length of 250 feet and lies along an intersecting 1 to 6 foot wide northwesterly shear. The No. 5 vein system includes milky quartz as lenses and stringers with minor sulphides. Bobmac Mines did not record assay results for this vein.

The No. 6 vein, also known as the Main Showing, was exposed by trenching but was not sampled by Bobmac Mines. The vein outlines and assays are shown in Figure 10. This vein is described as having a length of 95 feet with an irregular width from 20 inches to 5.5 feet, comprising mainly quartz, wall rock fragments and a sulphide content varying from weak to heavy. The sulphide minerals included galena, sphalerite, pyrrhotite and chalcopyrite. The claims were dropped in 1938.

In 1939, the DUD claim was staked by R. Dudley Smith and optioned to Greta B. McCorkell. The property was restaked as the SILTA.

-4-

From 1940 to 1941, the No. 6 vein was stoped by the new owner. Recorded production records indicate that 666 tonnes of ore were shipped to the Tacoma smelter during this period. A further 6 tonne shipment from the DUD claim, probably taken from the old stockpile, was made in 1949 (MMAR):

ORE	METALS RECOVERED				
SHIPPED	Gold (oz)	Silver (oz)	Copper (oz)	Lead (oz)	Zinc (oz)
SILTA	668	1,384	3,870	21,488	
666 Tonnes					
DUD 1949	3	55		973	516
6 Tonnes					
TOTAL	671	1,439	3,870	22,461	516
67 Tonnes					

As a result of mining vein No. 6, a surface pit of about 15 metres long, 5 metres deep, with an average width of 2 metres, is supported by timbers left as the Main Showing.

No significant work was recorded on the property during the 1960's. In 1973, the veins were restaked as the QC 1-40 with the No. 6 vein located on the QC 3. Work included an EM survey on a 200 by 400 foot grid on the QC 1 to 4 claims. The property was again restaked as the Whelakis Group in 1979 for Frank Beban Logging Ltd. and a preliminary reconnaissance including some sampling was made by Nevin Sadlier-Brown Goodbrand Ltd. (NSBG). In 1980, NSBG and Premier Geophysics conducted geological mapping, rock sampling, and a magnetometer, VLF-EM survey which covered 3.4 kilometres on the WHELAKIS and MINE 1 and 2 claims.

In 1983, five short Winke holes totaling 156.8 metres were drilled above and just west of the No. 6 vein stope without conclusive results (locations and logs not available). In 1990, the property reverted to the Crown.

On December 29, 1991, the property was staked as the CHERRY 1-4 claims and recorded by Mr. David A. Heyman. NSBG carried out a review of the geological and geophysical data on the claim group in 1994, essentially a revision of the 1980 NSBG report. In the report, the No. 3, No. 4 and No. 5 veins were referred to as the West Showing and the No. 6 vein as the Main Showing. Geological and geophysical surveys were reviewed and the authors suggested that work on the property had shown that gold quartz mineralization of sufficient tenor to be economic was present within the vein system. A geochemical survey of the entire property was recommended and dependent upon this and trenching results, drilling would be justified. The property was forfeited on December 29, 1994.

On January 30, 1995, the Nugget and Queen property was re-staked by the current owner and optioned to Solaia Ventures Inc.

The most recent geological, geochemical and geophysical exploration work on the claims was carried out by Ashworth Explorations Ltd. in October and November of 1995. The field work included an erection of a tent-frame camp, cutting a trail to the old corduroy road, cutting a new baseline and cross lines, stream silt sampling, soil sampling, vein sampling and geophysical surveys. Resampling of veins No. 3, No. 4 and No. 6 has indicated higher gold and silver grades

than previously recorded. The new geochemical soil survey has indicated the potential for extensions of the known veins and has outlined parallel new zones to the No. 4 and No. 6 veins.

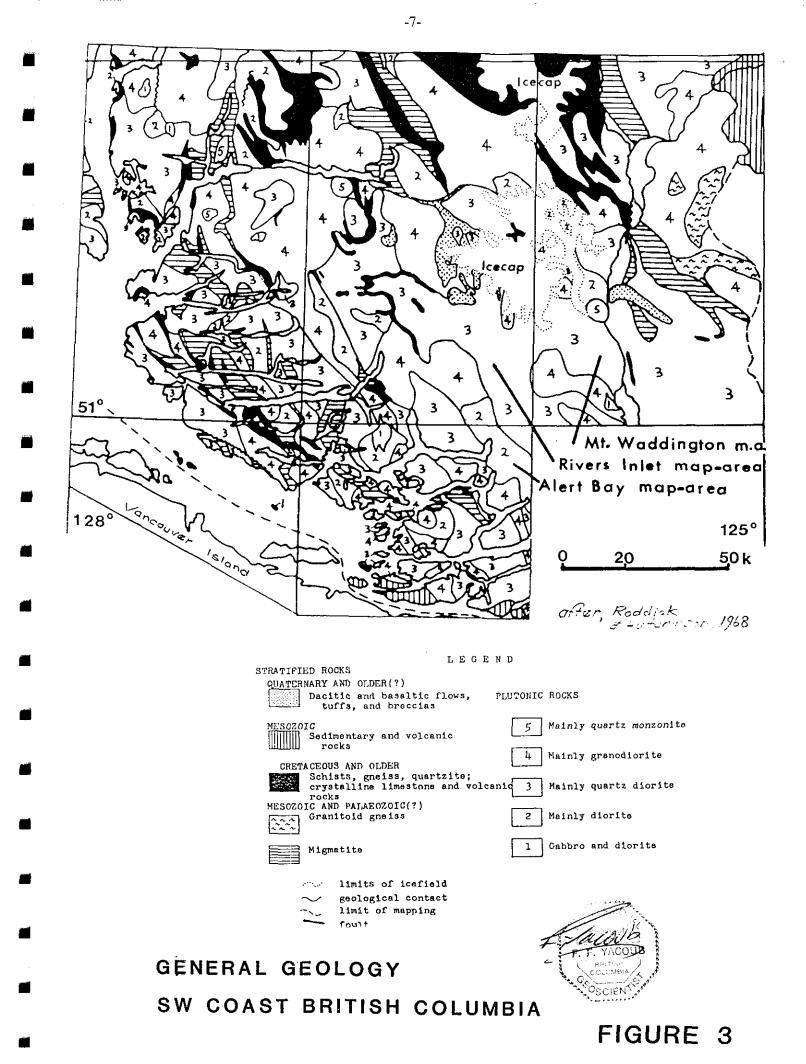
The apparent size and tenor of the known veins is sufficient to warrant further work which would include trenching and sampling of the known and new anomalous zones.

Strong support of the geochemical anomalies has been provided by the geophysical surveys conducted in 1995. The VLF-EM conductors, in particular, emphasize the need to test vein extensions and to investigate the 1995 geochemical and geophysical anomalies in more detail.

Accordingly, further exploration work on the claims was recommended and consisted of extending the geochemical soil anomalies beyond the limits of the 1995 survey, and by trenching and vein sampling all new exposed mineralization.

5.0 **REGIONAL GEOLOGY (Figure 3)**

The area of the claims lies within one of the least studied areas on British Columbia's mainland coast. The first geological studies of the mainland and coastal islands were undertaken in 1874 by James Richardson, followed by G. M. Dawson in 1876 and J. F. Whiteaves in 1878.


A more detailed study of the region was attempted by O. E. Leroy in 1908 in the area from Vancouver to Dean Channel. This study was continued by V. Dolmage as far as Stewart, B.C.

The "Coast Mountains" project was initiated by the Geological Survey of Canada in 1964 and results of this study were published in 1968 (Figure 3). A variety of regional maps and studies have since been published although few are at a scale useful to detailed mineral exploration.

The rocks in the coastal Cape Scott, Alert Bay, and Rivers Inlet map areas are generally included in the Insular Superterrane, an area which also includes Vancouver Island. The rocks of the island as well as the adjacent coastal roof pendants are mainly Mesozoic in age, and include a variety of volcanic, sedimentary and metamorphic units called the Wrangellia Terrane. This terrane impinges easterly against the Coast Plutonic Complex. This complex is composed of a multitude of dykes, stocks and batholiths mainly of quartz diorite or granodiorite composition. Correlation of pendanttype rocks in the central seacoast area has been mainly impossible due to isolation, and the overall degree of alteration and deformation of the rocks.

Geological studies of the central seacoast shows a scattering of small, thin to irregular, northwest trending country rock pendants lying within a matrix of intrusive rock. These rocks are dominated by quartz diorite, diorite and tonalite, and comprise approximately 75% of the area. The rocks are mainly Jurassic-Early Cretaceous in age and probably represent outliers of the main Coast Plutonic Complex separated by a thin veneer of Wrangellian Crust (Friedman et al., 1995).

Other recent studies (Monger and Journeay, 1994) suggest that the central seacoast plutons are mainly Early Cretaceous in age but rock dates are still deficient between latitudes 51°N and 53°N. In view of the range in pluton ages, it is probable that the pendant country rocks are remnants of volcanic arc assemblages which were as old as Late Triassic, but also partly coeval with the Jurassic-Early Cretaceous magmatic systems (Grove, 1996).

6.0 1996 FIELD PROGRAM

6.1 SCOPE & PURPOSE

From December 4 to 22, 1996, a ten man crew consisting of two geologists, seven geotechnicians and a camp cook carried out a field work program of geological mapping, trenching, grid work, line cutting, and soil sampling. The purpose of this program was to:

- 1) extend the grid to the open areas beyond the limits of the 1995 survey;
- 2) investigate the newly discovered soil anomaly south of the No. 6 vein;
- 3) trench and rock sample the anomaly area to expose mineralization which may delineate a drill target; and
- locate the No. 1 and No. 7 showings originally discovered by the Mining Company of Canada.

6.2 METHODS & PROCEDURES

Utilizing compass and hipchain, a slope-corrected, 3,460 metres of grid lines was laid out for the purpose of geochemical soil sampling using the pre-existing 1995 base line oriented at 305°.

A total of 30 new cross-lines was completed in the western, central and eastern areas to fill in gaps left from the 1995 grid. All cross-lines were oriented N35E.

A total of 8 reconnaissance lines was completed 10 metres to the east and west of trenches T-8, T-9, T-10 and T-11. Lines were 30 metres in length with 5 metre stations oriented at N25E.

Using a grub hoe, soil samples were collected at grid stations. Sample depths averaged 25 centimetres. All samples were analyzed for gold by Fire Assay Atomic Absorption Spectrometry (FA/AAS) and multi-element ICP by Acme Analytical Laboratories Ltd. of Vancouver, B.C.

The lab results for six elements (Au, Ag, As, Cu, Pb and Zn) were computer-plotted on 1:2,500 scale maps. Frequency distribution histograms, based upon lab data, were prepared for each element (Appendix D). Anomalous values were chosen using natural breaks in each histogram. For interpretation purposes, anomalous ranges for each element were plotted using geochemical contour maps (Figures 20-25). Copper, lead, zinc and gold, silver and arsenic compilation maps were prepared for interpretation (Figures 26 & 27). All statistical analysis was performed by Prime Geochemical Methods Ltd.

A trenching program consisting of eight hand trenches was initiated to investigate several areas of soil geochemical anomalies delineated from the 1995 soil sampling program. A total of 90.6 metres of hand trenching was completed. All trenches were geologically mapped and sampled. A total of 112 rock samples was collected, 94 samples from all trenches and 18 samples from different mineralized rock types within the property area. All trenches were filled back in and grass seeded at the end of the program.

7.0 1996 RESULTS

7.1 PROPERTY GEOLOGY (Figures 4 & 5, Map 1)

The first map produced of the Lee Lake peninsula and adjacent shorelines was produced by the Mining Company of Canada at a scale of 1 inch = 500 feet as part of the Bobmac Mines' exploration program. The area geology was described as consisting of a northwest trending volcanic-sedimentary sequence at least 4,000 feet "thick", bounded at the west by massive granodiorite and cut by a parallel 1,000 to 1,500 foot wide granodiorite zone near the northwest shore. All quartz veins examined were within the volcanic-sedimentary sequence.

The geology was refined in 1980 and work compiled by Nevin Sadlier-Brown Goodbrand Ltd. (NSGB) included an outcrop map (Figure 4) and geology map (Figure 5). The following geological description was excerpted from NSBG reports (1980, 1994).

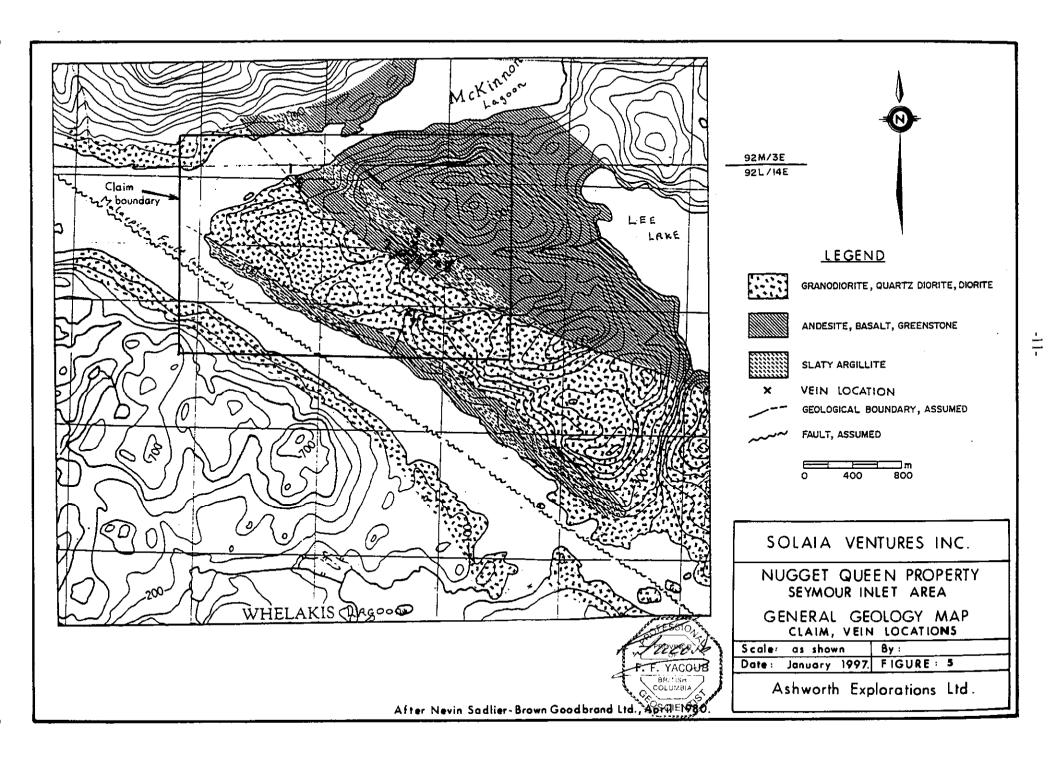
7.1.1 LITHOLOGY

The claims are underlain in the north by a sequence of metavolcanic and sedimentary rocks which form a roof pendant in a granodiorite intrusive which is exposed in the southern part of the property near Nenahlmai Lagoon.

The metavolcanic rocks range in composition from basalt to andesite, and locally form greenstones. Along Nenahlmai Lagoon they consist of light, greenish brown andesite with some remnant pillow structures. A siliceous tuff marks the contact with the adjacent metasedimentary rocks. Exposures on the shore of McKinnon Lagoon consist mainly of massive greenstone but with some intervals of strong foliation.

The metasedimentary rocks are comprised of dark grey, slaty argillites which exhibit local silicification. North of the contact, with the intrusive rocks in the central part of the claim group, the argillite contains interbeds of altered tuff which weather a light buff colour.

The intrusive rocks in the southern part of the property range in composition from strongly foliated granodiorite to fine grained diorite. Gabbroic plugs locally cut both the pendant and intrusive rocks.


The rocks throughout the property area are cut by many small, widely scattered quartz veins. The slaty argillite unit in the northern part of the claim group is also cut by large continuous quartz veins up to 2 metres wide.

The claims lie immediately east of the Malaspina Fault which passes through Nenahlmai Lagoon on a bearing of 305°. This orientation is reflected in the general trend of the local structural elements including the major geological boundaries on the property. A set of faults striking at about 291° and dipping to the north at about 74°, parallel the major quartz vein system within the slaty argillite.

FIGURE 4

Geology observed during the 1996 field program consisted mainly of exposures within the small streams and rivers on the property, and rocks exposed in trenches.

Trenches cut within country rock during the 1996 program revealed metasediments. These rocks consisted of a dark grey, banded pyritic argillite marked by tight folding and foliation. Thin interbeds of light buff coloured tuff occur throughout the metasediments. At trench T-11, a siliceous tuff marks the boundary between the metasediments and metavolcanics. The sediments generally strike NW and dip to the NE.

Thin section H6, observed by Dr. E. W. Grove as part of the 1995 program, revealed a very fine grained, well foliated rock marked by micro-kink banding. The thin section contained scattered brown biotite, fine grained quartz, magnetite, pyrite and calcite.

Alteration within the sediments exposed in trenches was observed as silicification with moderate to strong hematitic/limonitic oxidation. Small mineralized veins exposed within the trenches consisted mainly of quartz containing disseminated pyrite, galena, with minor chalcopyrite and sphalerite. These veins are described in detail in the trench descriptions.

Metavolcanic rocks were exposed in the vicinity of trenches T-10, T-11 and T-14, in the eastern portion of the grid. T-11 exposed a contact between the metasediments/metavolcanics, and this boundary was marked by a buff coloured siliceous tuff unit.

In a hand specimen, the metavolcanic appears as a massive, fine grained greenish coloured rock. A thin section of this material, observed by Dr. E. W. Grove as part of the 1995 program, revealed mainly secondary quartz, calcite and sericite with rare remnant plagioclase. Strong hematitic/limonitic oxidation and MnO₂ staining was observed in most exposures. Mineralization was observed as minor disseminated pyrite.

7.2 MINERALIZATION (Figures 6-10)

Previous and recent mineral exploration on the property has outlined a favourable geologic environment for quartz vein gold deposits. During the 1996 program, the writer observed that mineralization on the property is specifically related to fault and fracture zones. The sulphide minerals included mainly galena, sphalerite, pyrrhotite, chalcopyrite and pyrite. Mineral showings on the Nugget-Queen claim group included eight known quartz veins localized along shear systems within the metasediments, and partly in altered volcanic. Seven veins were originally located by the Mining Company of Canada, and one new vein was discovered by Ashworth Explorations Ltd. during the 1996 field work program.

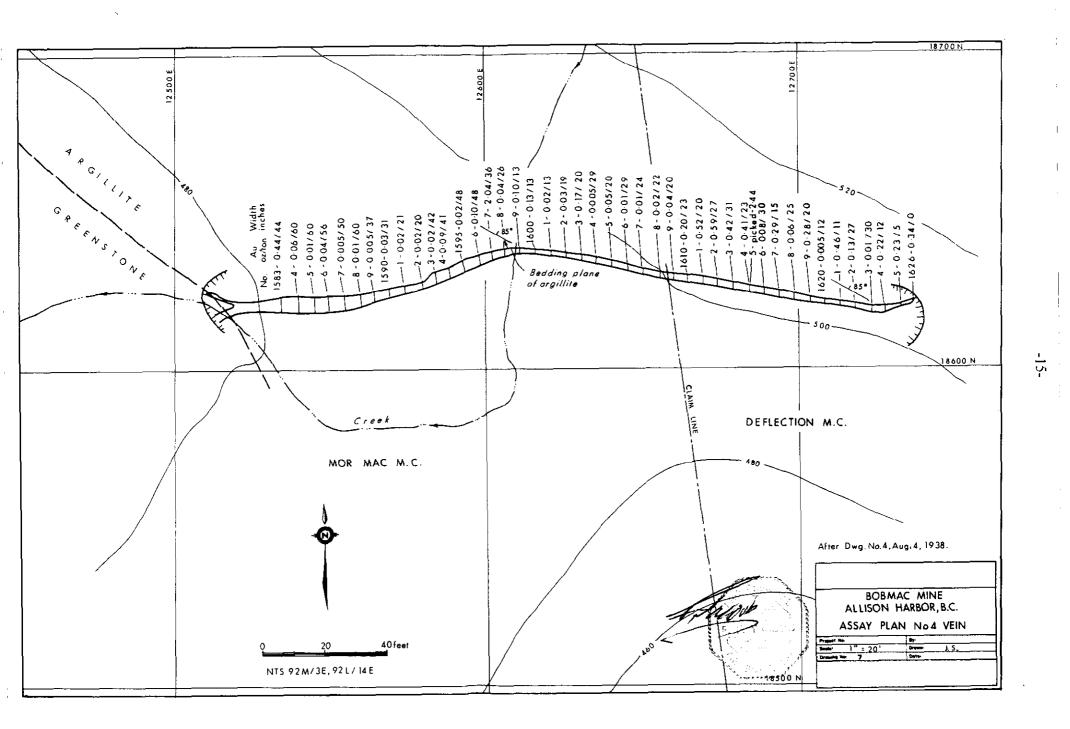
7.2.1 No. 1 VEIN (Figure 6)

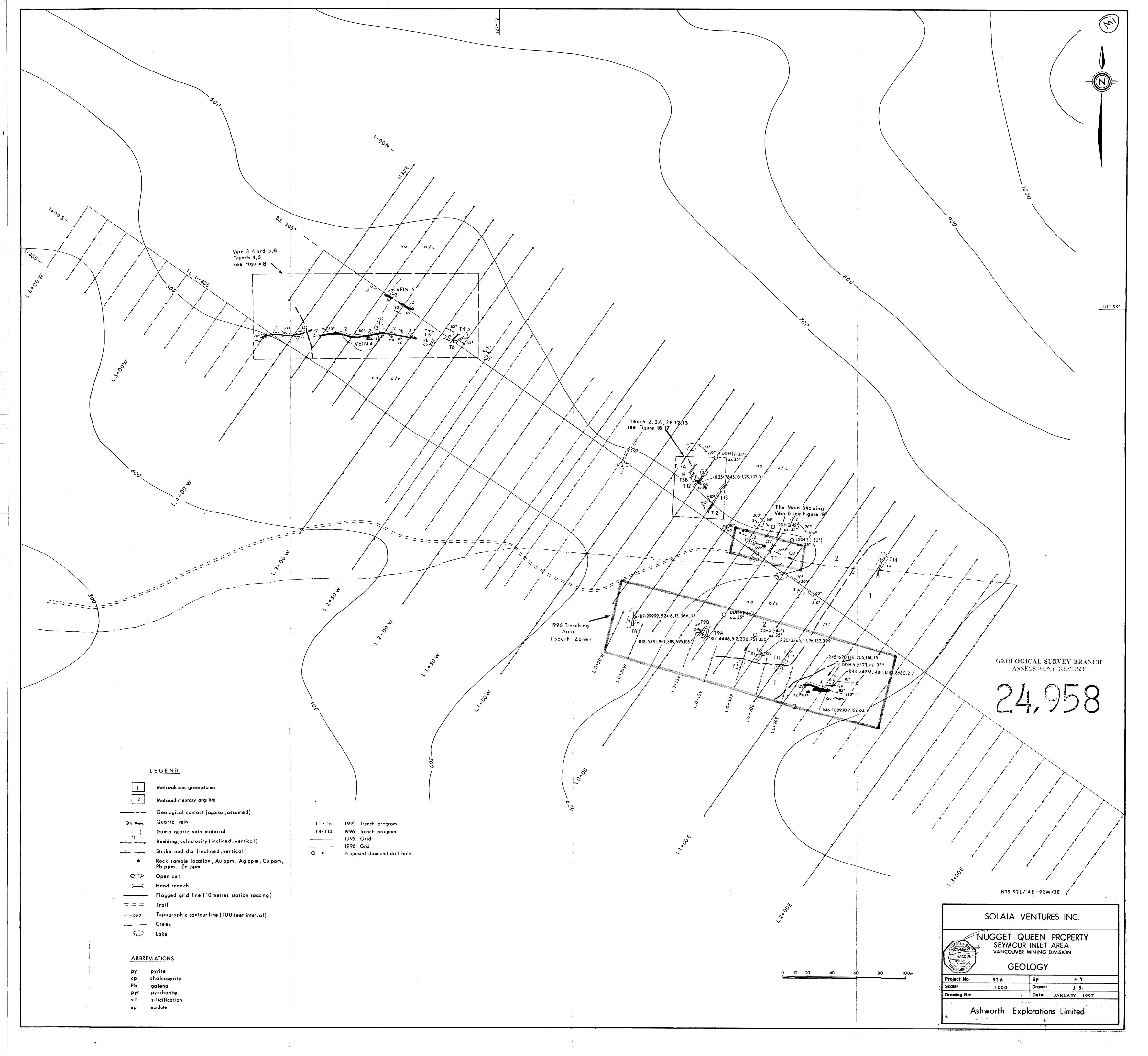
The No. 1 vein is located at the northern part of the Nugget claims and consists of three quartz veins varied in thickness from 1 to 3.5 metres, exposed in a creek bed at approximately 100 metres south of McKinnon Lagoon and exhibits milky, massive barren veins hosted by argillitic metasediments. No sulphide mineralization was observed. The veins are parallel with a general attitude of N40°E and dipping 85° NW. Three chip samples were collected from the veins during the 1996 program. All samples returned low values in gold and base metals.

7.2.2 No. 2 VEIN (Figure 5)

The No. 2 vein, also known as the West vein, is located just west of the No. 3 vein and is hosted by volcanic rocks. Sampling of the No. 2 vein returned gold values between 0.018 opt and 0.126 opt. The preceding vein analyses were not used to calculate average grades because of the lack of vein sample widths and irregular sample spacing.

7.2.3 No. 3 VEIN (Figure 8)


The No. 3 vein, also known as the South vein, is exposed continuously for 250 feet. The vein widths vary from a few inches to 5 feet and was sampled in 1938 by Bobmac Mines. Eight vein samples taken over a length of about 41 metres, at an irregular spacing, gave results which ranged from a low of 2.45 g/tonne Au (0.07 opt), and 0.2 g/tonne Ag (0.005 opt) over a width of 20 centimetres to a high of 475.44 g/tonne Au (13,865 opt) and 135.6 g/tonne Ag (3.98 opt) over a width of 35 centimetres (Figure 8). The simple uncut average for the eight samples is about 63 g/tonne Au (1.84 opt), 19 g/tonne Ag (0.55 opt), 83 ppm Cu, 150 ppm Pb and 17 ppm Zn across an average width of 31 centimetres. A simple average of the seven samples results reported by NSBG was about 29.22 g/tonne Au (0.85 opt) and 142 g/tonne Ag (4.14 opt).


7.2.4 No. 4 VEIN (Figures 7 & 8)

This vein is located just 15 metres east of the No. 3 vein and is exposed continuously for 250 feet with widths varying from a few inches to five feet. The vein is described as milky quartz with an irregular sulphide content which includes chalcopyrite, bornite, galena, sphalerite, pyrite, pyrrhotite and magnetite as well as angular wall rock fragments lying within a west-northwesterly trending, steeply dipping shear.

The No. 4 vein was sampled in detail by Ashworth Explorations and the results of the seventeen samples gave values from 5 ppb to 3,990 ppb Au, and a high of 5.38 opt Ag with significant copper, lead and zinc. The weighted, uncut average grade of the vein was calculated as 22.31 g/tonne Au (0.65 opt), 30.4 g/tonne Ag (0.88 opt), 371 ppm Cu, 3,374 ppm Pb and 494 ppm Zn over an average width of 49 centimetres and a length of 65 metres. This result is higher than sampling results produced by Bobmac Mines which gave an average of 5.69 g/tonne (0.166 opt) over an assay width of 0.7 metres (EMPR, PF 92L, 178).

7.2.5 No. 5 VEIN (Figure 8)

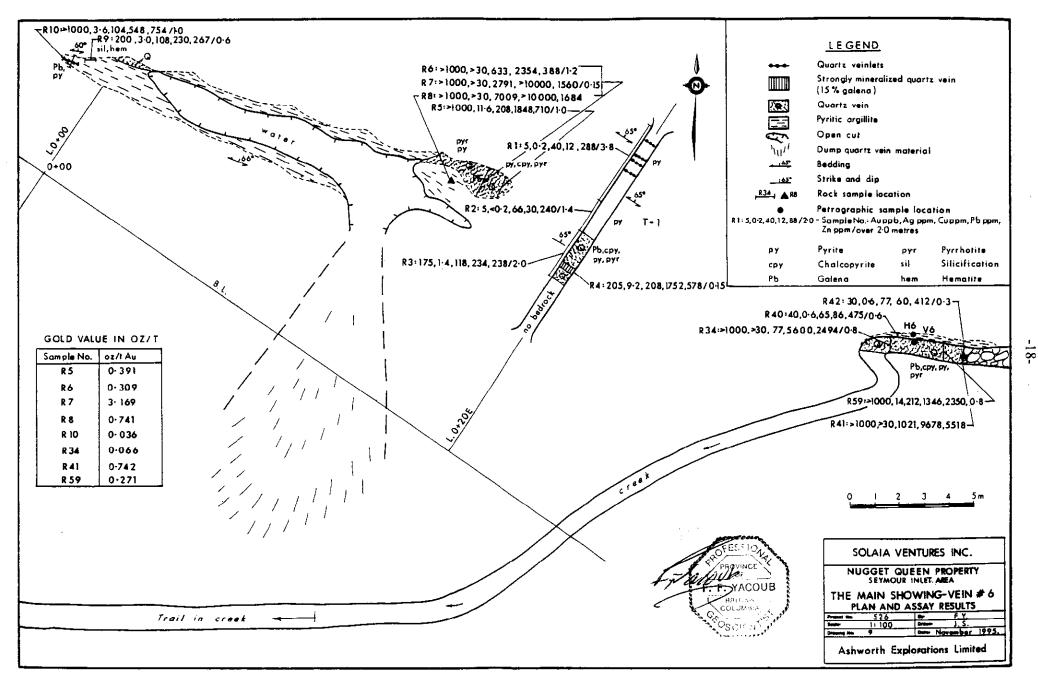
This vein was exposed by trenching over a length of 250 feet, is located above the No. 4 vein and lies along a northwesterly shear zone. Mineralization within the vein includes milky quartz as lenses and stringers with minor sulphides. A total of six samples were collected across the vein width during the 1995 field work program and returned gold values ranging from 5 ppb to 0.38 opt. The No. 3, No. 4 and No. 5 veins combined are known as the West Showings.

7.2.6 No. 6 VEIN (Figure 9)

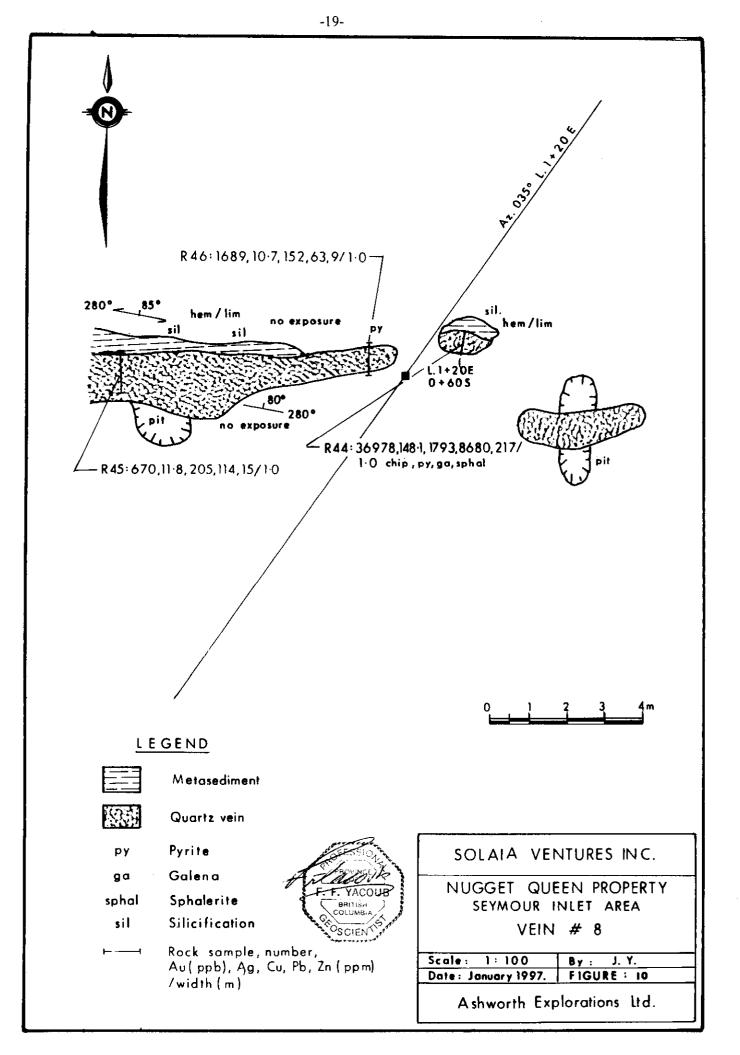
This vein is now known as the Main Showing. The vein was exposed by trenching in 1938 by Bobmac Mines. It is described as having a length of 95 feet with an irregular width from 20 inches to 5.5 feet. Mineralization consists of galena, sphalerite, pyrrhotite and chalcopyrite. During the period of 1940 to 1941, the vein was stoped and mined. Production records indicate that a total of 666 tonnes of ore was shipped to the Tacoma Smelter and a further 6 tonne shipment was made during 1949. Sampling of the vein during the 1996 program returned gold values as high as 1.313 opt.

7.2.7 No. 7 VEIN (Figure 5)

This vein was previously located by Bobmac Mines in a creek bed flowing south from Lee Lake at the northeastern part of the Queen claims. The vein is hosted by granodiorite and received little attention. During 1996, an unsuccessful attempt to relocate the vein was made.


7.2.8 No. 8 VEIN (Figure 10)

During the 1996 program, a newly discovered mineralized quartz vein was located at L1+20E - 0+60S. The vein strikes 280°, dips 85°NE and was followed for approximately 20 metres along its strike. A more detailed investigation of the newly discovered vein is required. It is expected that the vein continues in both east and west directions.


The exposed part of the vein consists of mineralized milky quartz bounded to the north by silicified hematitic-limonitic, pyritic argillite. The vein is approximately 2.5 metres at its widest exposure. Mineralization within the vein consists of fine-grained pyrite, minor galena, chalcopyrite and sphalerite.

A total of three chip samples was collected across the vein. R44 was taken across 1 metre of the vein near station L1+20E - 0+60S, and this sample returned values of 34,978 ppb Au (1.119 opt). R45 was collected as a chip sample across 1 metre of the same mineralized quartz vein at the west end exposure. Mineralization consists of pyrite, minor galena and chalcopyrite. This sample yielded a gold value of 670 ppb (0.02 opt).

Sample R46 was another chip sample taken across 1 metre at the eastern end of the vein exposure and returned 1,689 ppb Au (0.05 opt).

1.1

7.3 1996 TRENCHING PROGRAM (Map 1, Figures 11-18)

The purpose of the 1996 trenching program was to test known gold, silver, copper, lead and zinc soil geochemical anomalies previously detected by soil sampling during the 1995 field work program, and to also test gold-bearing mineralization previously defined as mineralized quartz veins exposed on surface.

A total of 90.6 metres of hand trenching, demonstrated by eight trenches - T-8, T-9A, T-9B, T-10 and T-11, was completed within the 1996 target area. Three trenches, T-12, T-13 and T-14, were completed between the No. 5 and No. 6 vein to test the extension of the two veins.

The location of trenches completed during the 1996 trenching program are shown in Map 1. This map also shows a compilation of the geology, anomalous gold sample locations and geophysical anomalies. The locations, strike length and the trend of the trenches were chosen to intersect known soil geochemical anomalies associated with the VLF-EM conductor.

Five of the trenches in the target area trend NE and are spaced between 20 to 40 metres apart. The trench dimensions varied from 6.2 to 20 metres in strike length, 1 metre in width and from surface level to 2 metres in depth.

Exposure within the trenches was usually continuous along their lengths except in areas where talus accumulation was high. Exposure in between the trenches is poor and outcrops typically as metre-scale subcrop and frostheaved remnants.

7.3.1 TRENCH DESCRIPTIONS

A total of 50 trench panel samples was collected during the 1996 trenching program. Trench sample descriptions are listed in Appendix A.

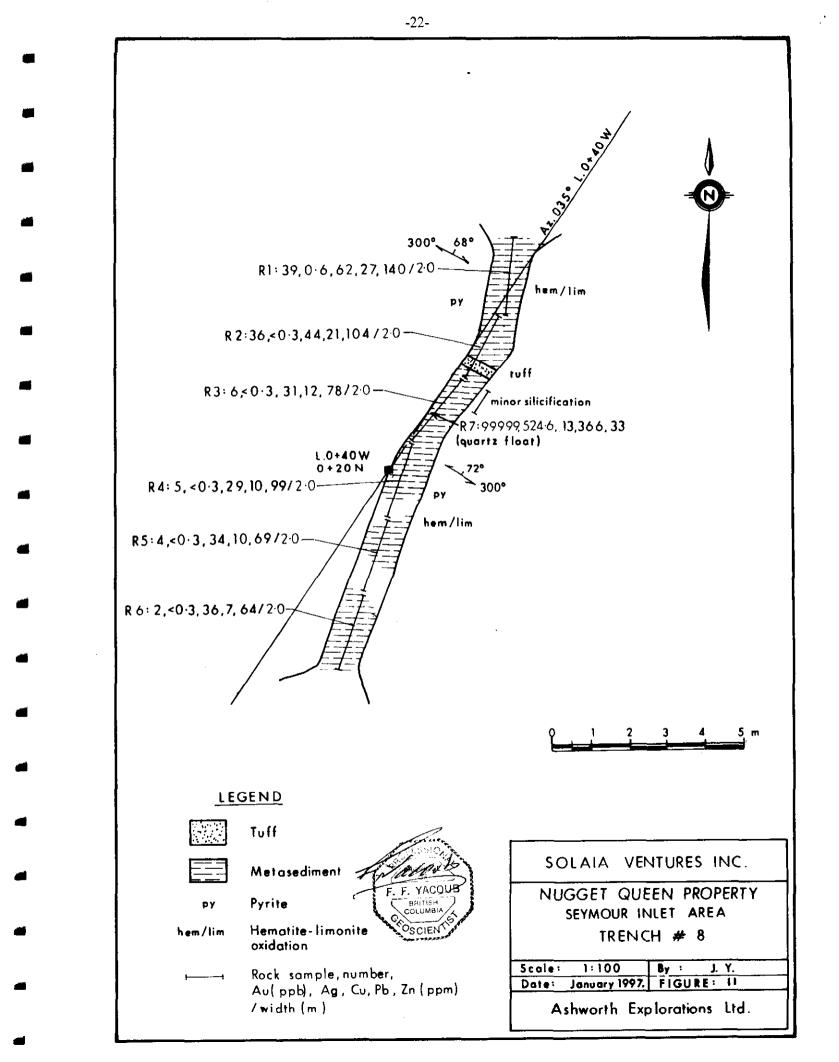
Samples were collected primarily from quartz veins, veinlets and silicified zones in argillitic, metasediment country rock. Samples consisted of 1-2 kilograms of rock panel and/or unconsolidated material.

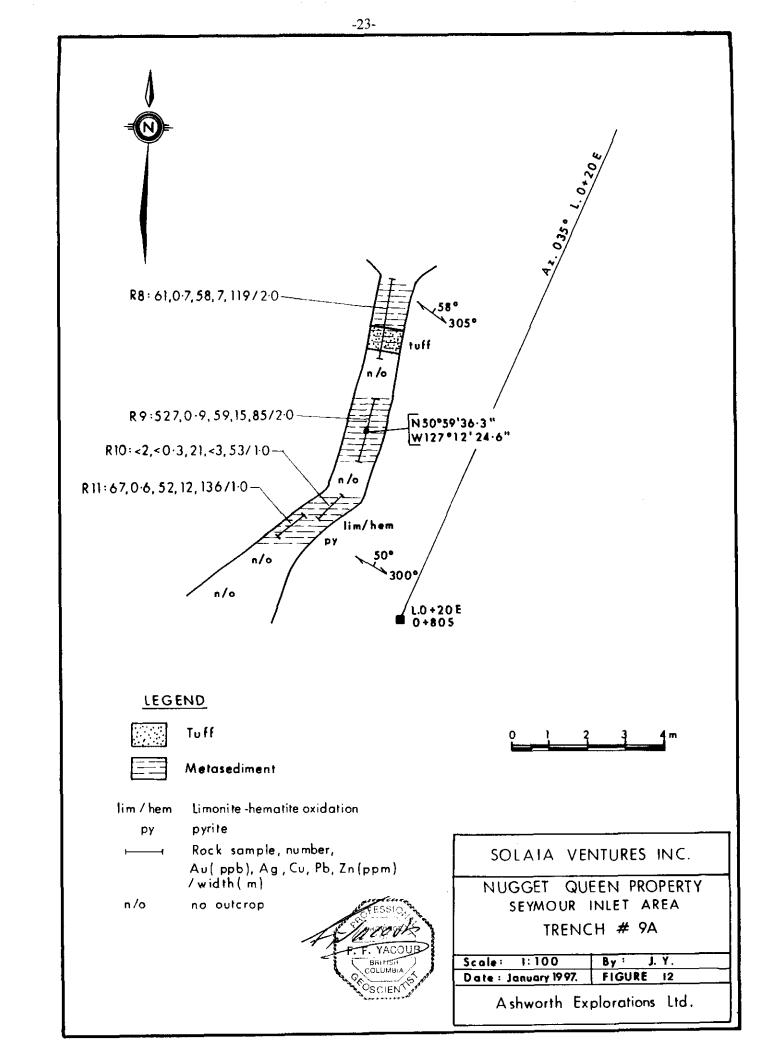
Complete rock geochemistry of samples collected are shown on each individual trench figure (Figures 11-18).

Descriptions of trenches and discussion of geochemical results are given below.

7.3.1.1 TRENCH 8 (Figure 11)

T-8 is centred at L0+40W - 1+00S, is 11.4 metres in length, approximately 1 metre wide and trends NE. A total of 6 panel samples were taken at 2 metre spacing within pyritic argillite which contained thin units of buff coloured tuff. These samples are described in detail in appendix A. The metasediments strike 300° with dips ranging from 68° to 72° to the NE.


Alteration within the trench consists of weak to moderate hematitic/limonitic oxidation as well as minor silicification near the centre of the trench. Mineralization present within the sediments consists mainly of disseminated pyrite. All samples yielded relatively low Au values; the highest came from T8-R1 and returned a value of 39 ppb Au.


No quartz veins were intersected within T-8, although several large pieces of mineralized quartz float were found inside and near the centre of the trench. The fragments appeared very fresh and angular, suggestive of a proximal source. Mineralization within the quartz consists of disseminated pyrite with minor galena. Sample T8-R7 was a grab sample of this material and returned values of 99,999 ppb Au (detection limit) (3.19 opt), 524.6 ppb Ag and 366 ppm Pb.

7.3.1.2 TRENCH 9A (Figure 12)

The SW end of trench 9A is positioned approximately 3 metres west of L0+20E - 0+80S. The trench trends NE, is 11 metres in length and 1 metre wide. The trench is centred at coordinates N59° 59' 36.3", W127° 12' 24.6" and exposes pyritic argillitic bedrock along its length. The sediments strike 310° and dips vary from 50° to 60° NE. A total of 4 panel samples were taken from T-9A.

Alteration within the metasediments consists of moderate hematitic/limonitic oxidation with minor silicification. Mineralization was observed as disseminated pyrite within the metasediments. Sample T9A-R9 yielded an elevated gold value of 527 ppb, the highest obtained from this trench.

7.3.1.3 TRENCH 9B (Figure 13)

Trench 9B is situated 5 metres to the NW of Trench 9A, centred at coordinates N50° 59' 32.9", W127° 12' 32.3", is 9 metres in length, 1 metre wide and trends NE. A total of 7 samples were taken along the length of the trench.

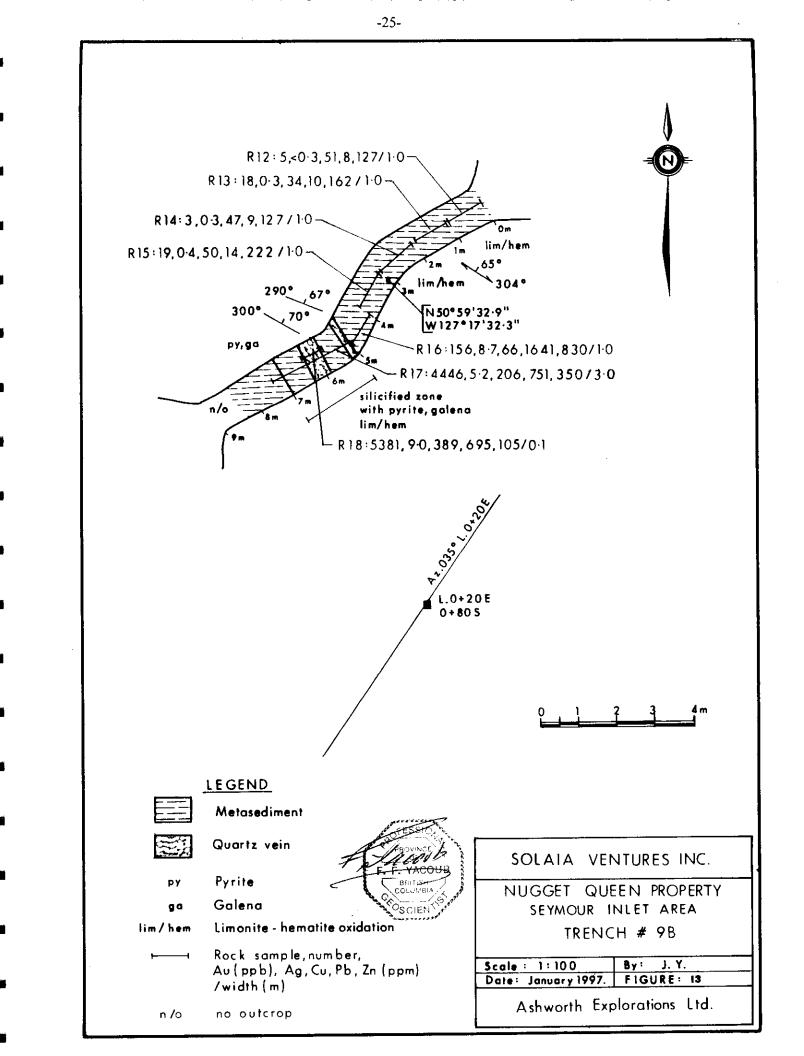
The trench exposes pyritic argillite having a strike of 304° and dipping 64°NE. Alteration within the trench consists of hematitic/limonitic oxidation with moderate to strong silicification.

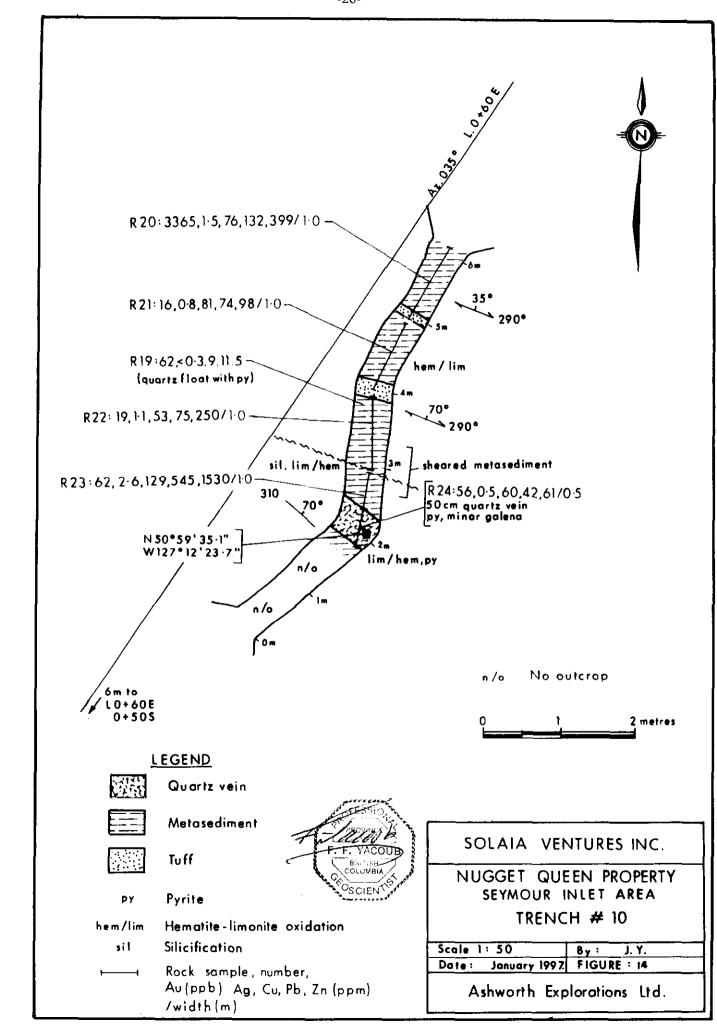
The SW end of the trench exposed a 3 metre wide alteration zone exhibiting strong silicification and local quartz veining, 10-12 centimetres wide. Mineralization observed in this zone consists of pyrite with minor chalcopyrite, galena and sphalerite within both the quartz and the surrounding altered sediments.

A chip sample across a 10-12 centimetre quartz vein within the middle of this zone, T9B-R18, yielded values of 5,381 ppb Au, 695 ppm Pb, 389 ppm Cu and 105 ppm Zn.

T9B-R17 was a chip sample taken across the entire 3 metre alteration zone and returned values of 4,446 ppb Au (0.14 opt), 751 ppm Pb, 206 ppm Cu, and 350 ppm Zn.

Other high values obtained from trench T9B include sample T9B-R16, a 1 metre by 3 metre panel sample taken within altered metasediments. This sample returned values of 156 ppb Au (0.005 opt), 1,641 ppm Pb, 66 ppm Cu and 830 ppm Zn.


7.3.1.4 TRENCH 10 (Figure 14)


Trench 10 is centred at coordinates N50° 59' 35.1", W127° 12' 23.9", and its most northeastern end is 6 metres from station L0+60E - 0+80S. The trench is 6.2 metres in length, 1 metre wide and trends NE. A total of 5 panel samples and 1 float sample were taken from this trench.

T-10 exposes pyritic argillite containing thin interbeds of buff coloured tuff. The sediments strike from 290° to 310° and dips vary from 70° to 80° NE. Alteration within the sediments consists of hematitic/limonitic alteration with moderate to strong silicification. Mineralization observed consists of 1 to 2% disseminated pyrite.

A zone of strong alteration containing a 50 centimetre quartz vein was exposed at the 4 metre mark of the trench. This vein was found to strike 310° and dips 70° NE. Chip sample T10-R24 was taken across the vein and yielded values of 56 ppb Au, 42 ppm Pb, 60 ppm Cu, and 61 ppm Zn.

T10-R20 is a panel sample taken at the northeast end of the trench over a silicified zone and contains disseminated pyrite. Sediments here were moderately silicified and contained disseminated pyrite. This sample returned values of 3,365 ppb Au (0.12 opt), 132 ppm Pb, 76 ppm Cu and 399 ppm Zn.

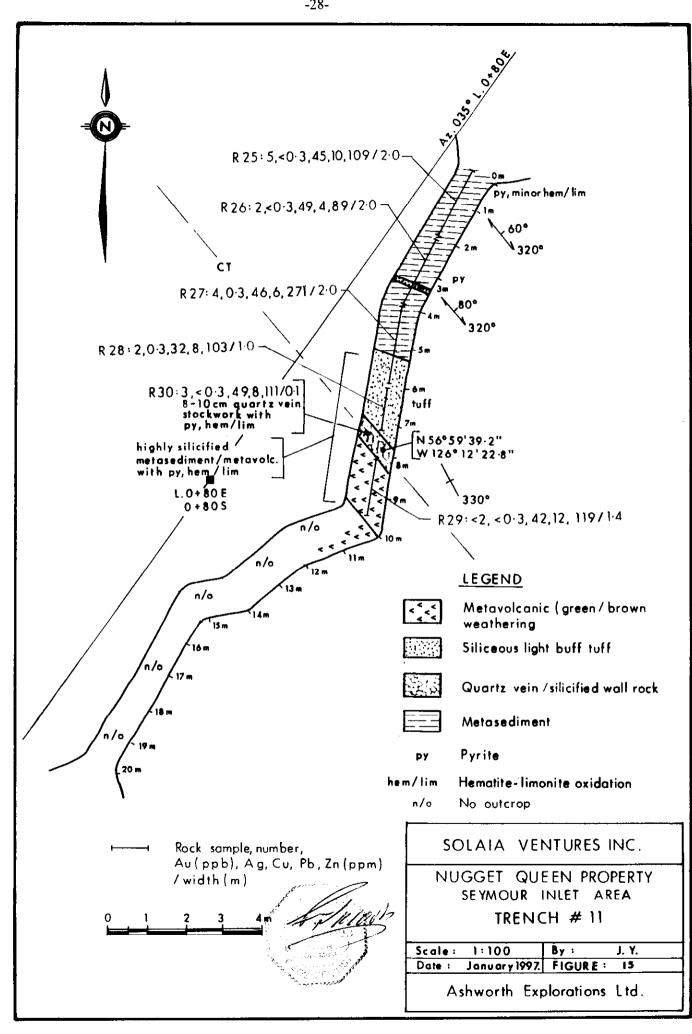
7.3.1.5 TRENCH 11 (Figure 15)

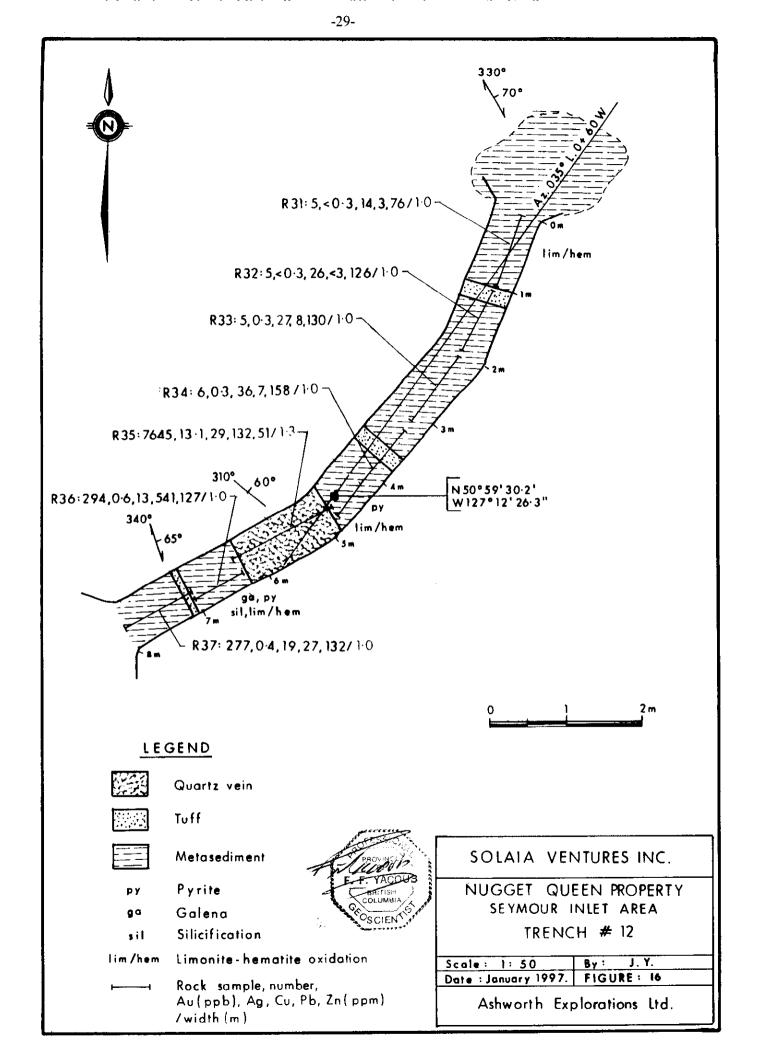
Trench 11 is centred at coordinates N56° 59' 39.2", W127° 12' 22.8", is 20 metres in length, 1 metre wide and trends NE. A total of 6 samples was collected.

T-11 exposes metasediments at the NE end and consists of pyritic argillite with thin interbeds of buff coloured tuff. The sediments strike from 310° to 320° and dips 80° NE. A contact between these metasediments and yellow-green weathered metavolcanics occurs at the centre of the trench.

Alteration within the trench consists of moderate to strong hematitic alteration and becomes more intense in the vicinity of the argillite-metavolcanic contact where mineralization occurs as disseminated pyrite. Weak to moderate silicification was observed within the metasediments, while pyrolusite (MnO_2) staining and epidote were prevalent within the metavolcanic unit.

Sample T11-R30 was a chip sample taken across a 10 centimetre quartz vein within the metavolcanic unit at the 9 metre mark which appeared to be barren of any mineralization. This sample returned gold value of 3 ppb Au. All panel samples taken along the length of the trench yielded low values, the highest gold value being from T11-R25 which returned values of 5 ppb Au, 10 ppm Pb, 45 ppm Cu and 109 ppm Zn.


7.3.1.6 TRENCH 12 (Figure 16)


Trench 12 is centered at L0+60W - 0+20N at coordinates N50° 59' 30.2", W127° 12' 26.3", is 8 metres in length, 1 metre wide and trends NE. A total of 7 chip and panel samples was collected from this trench.

T-12 exposes metasediments consisting of argillite/pyritic argillite containing interbeds of buff coloured tuff along its length. The sediments strike from 330° to 340° and dips from 65° to 70° NE. Mineralization consists of disseminated pyrite within the argillite/tuff unit. The SW portion of the trench exposed a 1.3 metre quartz vein containing minor visible sulphides, mainly pyrite.

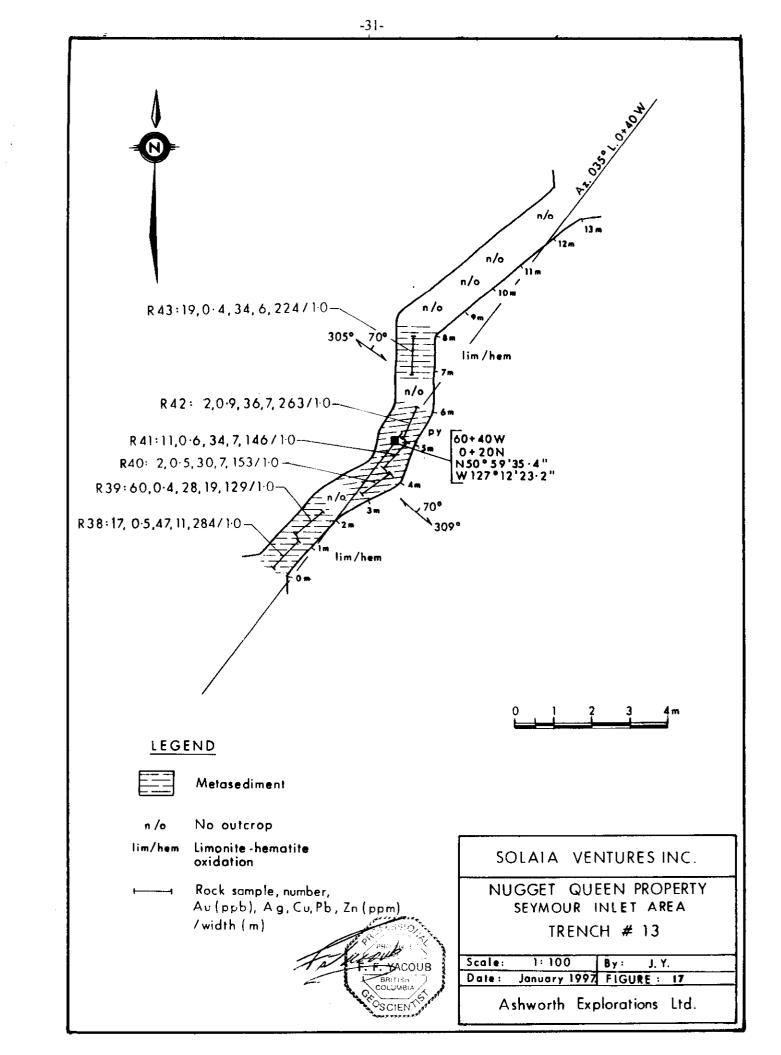
Alteration within the trench consists of strong hematitic/limonitic alteration in the argillite/tuff and moderate to strong silicification in the area of the exposed vein. T12-R35, a 1.3 metre chip sample taken across this vein, returned values of 7,645 ppb Au (0.24 opt), 132 ppm Pb, 29 ppm Cu and 51 ppm Zn.

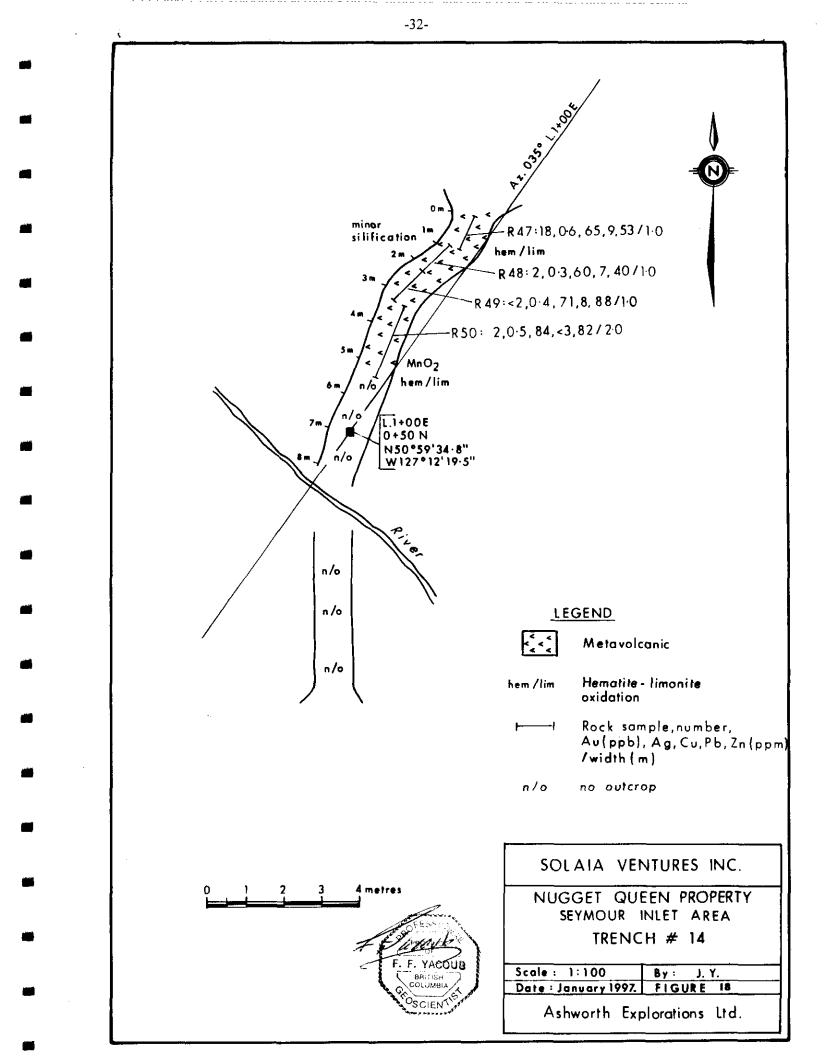
T12-R36, a 1 metre chip sample taken near the SW end of the trench across silicified metasediments intercalated with quartz veinlets, returned values of 294 ppb Au, 141 ppm Pb, 13 ppm Cu and 127 ppm Zn. Sulphides observed within this section consisted of pyrite, minor galena and sphalerite.

7.3.1.7 TRENCH 13 (Figure 17)

Trench 13 is an extension to the NE of trench T-2 from the 1995 field program, is centred at L0+40W - 0+20N at coordinates N50° 59' 35.4", W127° 12' 23.2", is 13 metres in length, 1 metre wide and trends roughly NE. A total of 6 panel samples was taken along the length of the trench.

T-13 exposes argillite/pyritic argillite interbedded with thin units of tuff, both of which are moderately silicified. Moderate limonitic-hematitic oxidation occurs throughout the exposed bedrock. The metasediments strike from 305° to 309° and dips 70° to the NE.


Sulphide mineralization is fairly scarce and consists of disseminated pyrite within the metasediments, particularly in areas of heavy hematitic-limonitic oxidation. Assay results of the 6 panel samples taken yielded low Au values, the highest being 60 ppb Au from T13-R39, a 1 metre by 0.3 metre panel sample taken within argillite at the SW end of T-13.


7.3.1.8 TRENCH 14 (Figure 18)

Trench 14 is centred at L1+00E - 0+50N at coordinates N50° 59' 34.8", W127° 12' 19.5", is 12 metres in length, 1 metre wide and trends roughly NE. The trench is bisected by a small stream at the 8 metre mark. No outcrop was exposed for the last 4 metres to the south of this stream. A total of 4 panel samples was taken along the exposed length of the trench.

T-14 exposes metavolcanic rock throughout its length. The metavolcanic bedrock in T-14 is composed of fine-grained andesite which weathers a greenish-brown colour on surface exposures. Thin veinlets of epidote are common throughout this section as well as a strong pervasive hematitic-limonitic oxidation. Staining from pyrolusite (MnO_2) was also observed along the length of the trench. Mineralization consists of minor pyrite disseminated throughout the volcanic.

All four panel samples, T14-R47 to T14-R50, yielded low gold values, the highest being 18 ppb Au taken from T14-R47, a 1 metre by 0.5 metre panel sample taken at the NE end of the trench.

7.3.2 DISCUSSION OF 1996 TRENCHING RESULTS

Anomalous gold, silver, copper, lead and zinc values have been obtained primarily from the main target area located south of the No. 6 vein, indicated by the 1995 soil geochemistry.

A hematitic, limonitic and locally silicified alteration zonc associated with 10 to 12 centimetres of discontinuous quartz veining hosted by argillic metasedimentary rocks, correlates with the northwest-southeast trending VLF-EM conductor.

Three panel samples assayed anomalous gold values greater than 1,000 ppb Au. Samples T9-R17, T9-R18 and T10-R20 yielded values of 4,446 ppb Au (0.14 opt), 5,381 ppb Au (0.17 opt) and 3,365 ppb Au (0.11 opt) over a width of 1 to 2 metres. R7 is an angular, local float sample collected from T8 and returned the highest gold assay of 99,999 ppb Au (3.19 opt). The alteration zone is exposed in all trenches and the anomalous gold-silver values within the target area correlates closely with the VLF-EM conductor.

A total of eight rock samples collected from the target area of the 1996 trenching program yielded gold values greater than 500 ppb.

The distribution of anomalous gold values extends from T-9 in the southeast to the newly discovered No. 8 vein in the northwest, and represents a continuous auriferous zone of at least 130 metres strike length and up to 2 metres in width. The potential of a continuous mineralized zone along strike exists and is supported by the discovery of the No. 8 vein which is located 25 metres southeast of T-11. Rock sample R46, across 1 metre of the vein, returned a value of 1,689 ppb gold (0.05 opt). Another chip sample R44, across 1 metre of the same vein, returned 34,978 ppb (1.12 opt) which is considered the highest gold value obtained during the 1996 trenching program. The southeast extension of the zone is also supported by the southeast trending VLF-EM conductor delineated by the 1995 geophysical program.

The alteration zone in T-11 yielded low gold values ranging 2 to 5 ppb Au compared to anomalous gold values on strike in adjacent Trenches 8-10. The continuity of the EM conductor across the low gold zone in T-11 would suggest that the mineralized zone is continuous and the apparent absence of anomalous gold values may be a factor of zonation of mineralization which was not intersected at the depth of T-11.

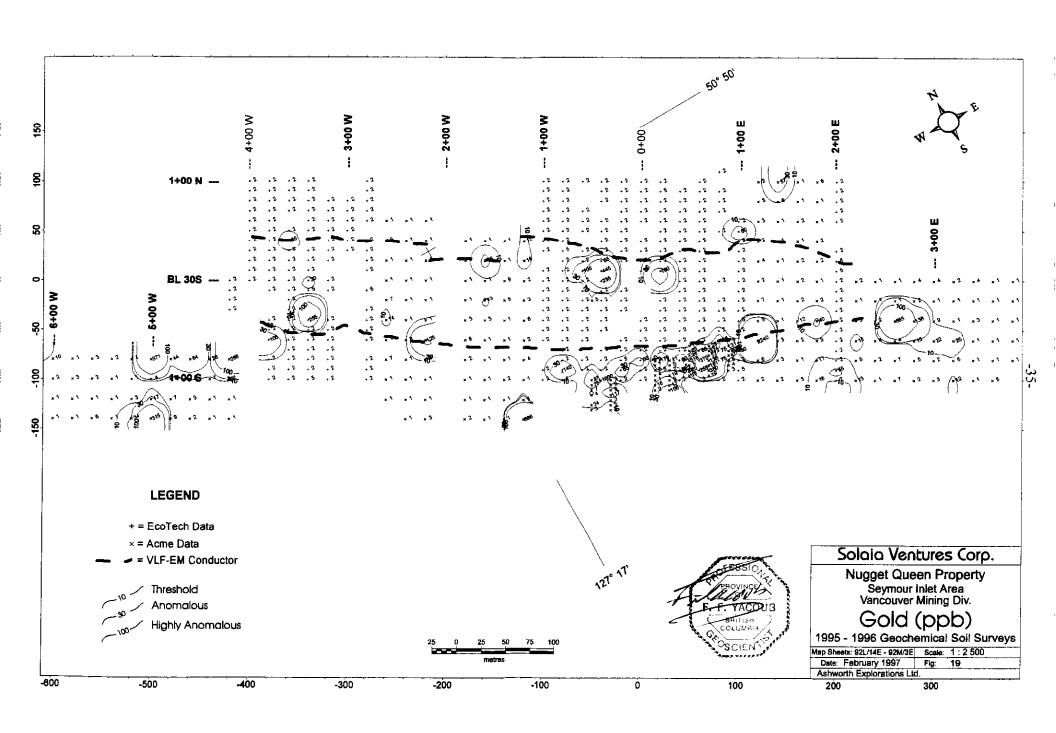
The distribution of anomalous Au, Ag, Cu, Pb and Zn values in soil suggests a potential of further mineralization along a minimum strike length of 250 metres. The mineralization directly correlates with the EM conductor.

7.4 GEOCHEMICAL SOIL SURVEY (Figures 19-26)

Geochemical soil testing carried out during the 1996 work program was designed to expand and test the soil geochemical anomalies delineated during the 1995 work program (see Map 1).

Geostatistical analysis of the 1996 soil samples included Au, Ag, Cu, Pb, Zn and As as potential pathfinder elements. The values used to determine the anomalous levels for these elements were 30 ppb Au, 0.8 ppm Ag, 40 ppm Cu, 60 ppm Pb, 100 ppm Zn and 10 ppm As.

Data presentation and comparison of element concentrations between Eco-Tech and Acme Analytical Laboratories for the 1995 and 1996 Nugget-Queen geochemical soil surveys are shown in Appendix C.


7.4.1 GOLD IN SOILS (Figure 19)

Gold values ranged from 0 to 2,240 ppb. Most of the gold values ranged between 1 and 10. Values were grouped as:

0-<30 ppb Au	Low Values
30-<100 ppb Au	Anomalous
100 ppb Au and up	Highly Anomalous

A geochemical gold anomaly zone trending east-southeast is located approximately 80 metres south of the Main Showing (No. 6 vein). The zone is 225 metres long, centred at L0+60E - 0+80S with the highest gold value of 2,240 ppb. The zone is open to the southeast. A parallel zone is located and centred at the Main Showing (Station BL 0+20E). Both anomaly zones correlate directly with a southeasterly trending VLF-EM conductor delineated during the 1995 program.

A third gold gcochemical anomaly zone was also located at the west end of the grid and centred at L4+40W - 1+20S. The zone correlates directly with a shear zone trending east-west. All three gold anomalous areas, outlined by the soil geochemistry, display strong correlations with silver, copper, lead, zinc and arsenic (see Compilation Maps, Figures 26 & 27).

7.4.2 SILVER IN SOILS (Figure 20)

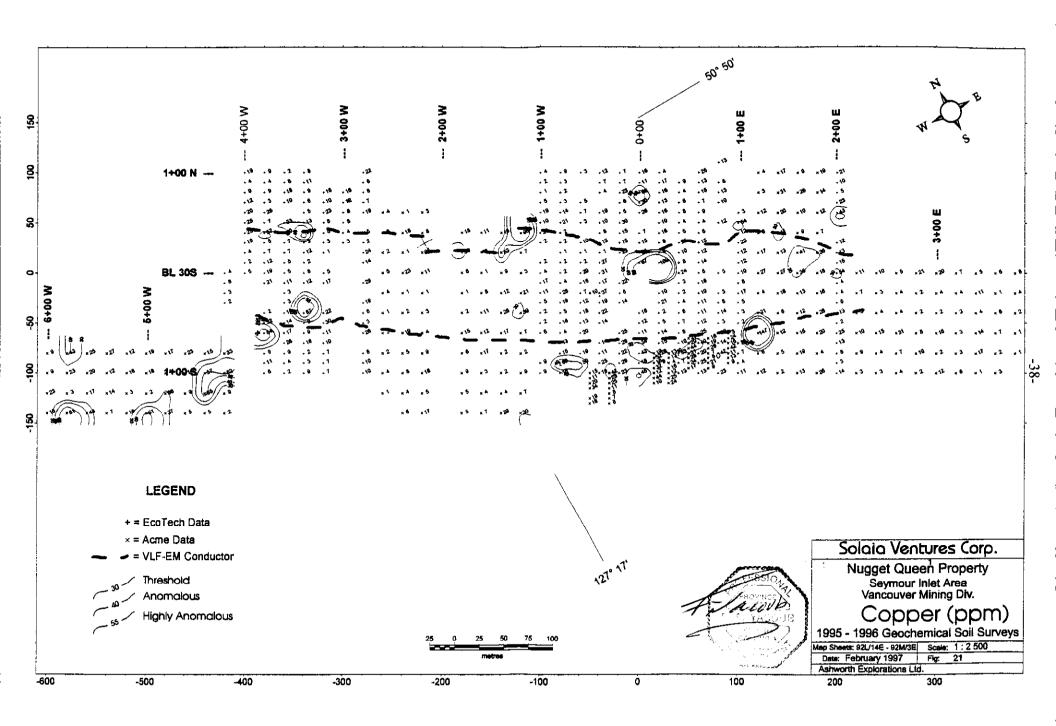
The silver values ranged from 0 to 3 ppm with most values between 0 and 0.5 ppm. Silver values were grouped as:

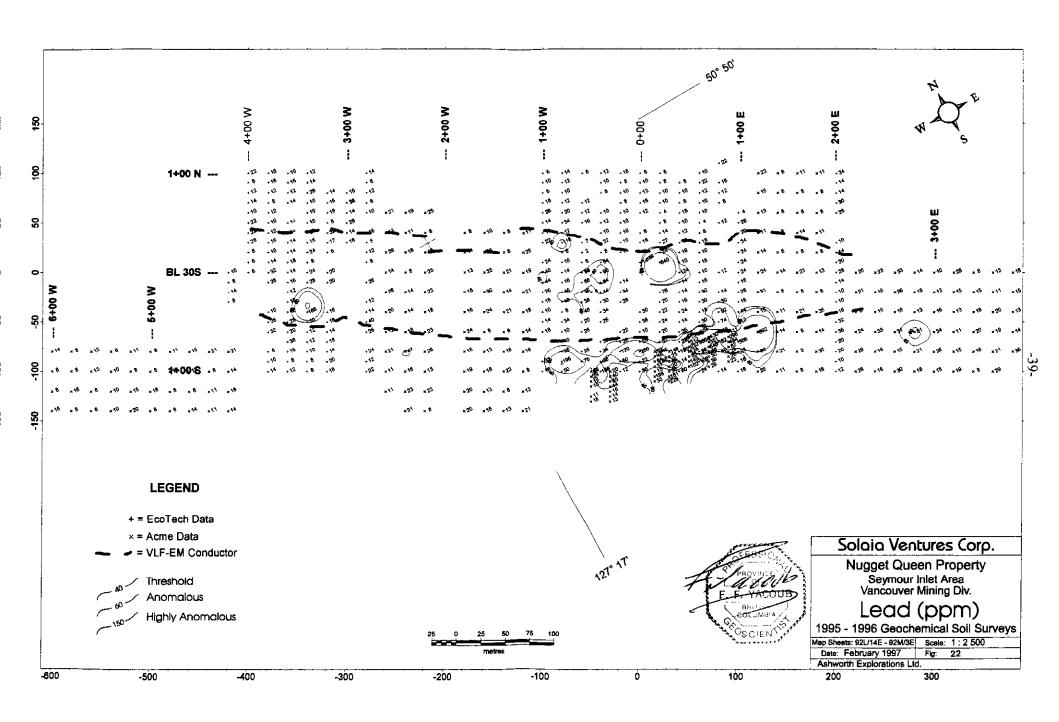
0-<0.5 ppb Au	Low Values
0.5-<0.8 ppb Au	Anomalous
0.8 ppb Au and up	Highly Anomalous

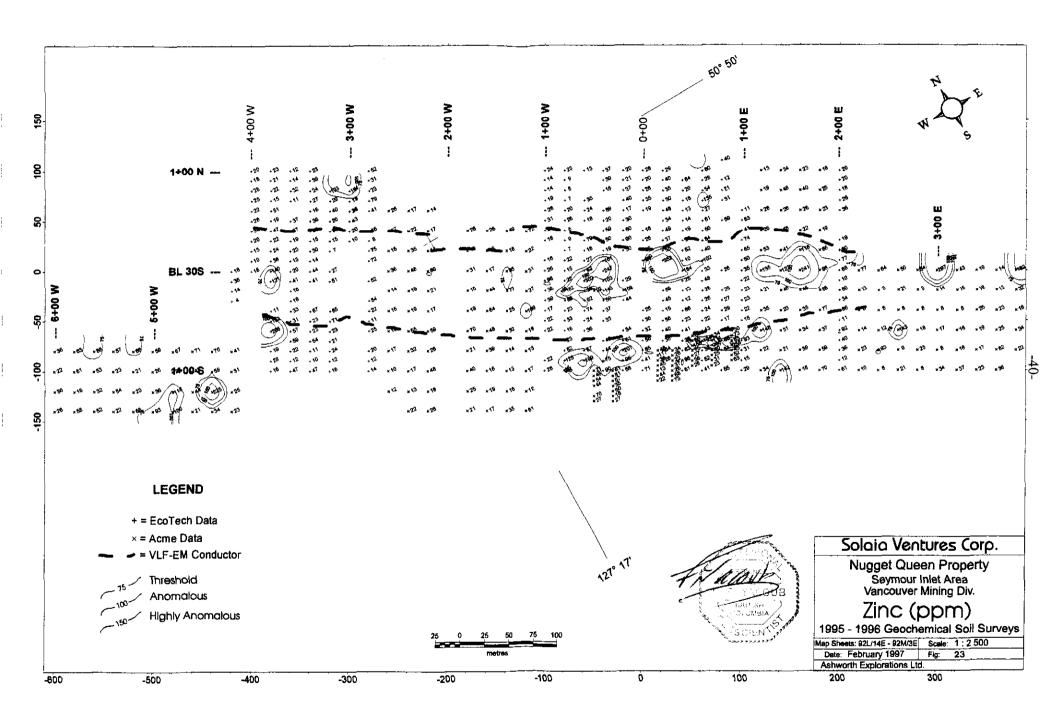
A moderate to high populated silver anomaly zone was located between L1+20E - Station 0+80S and L0+80W - Station 1+00E. This zone corresponds with high gold, copper, lead and zinc values located in the same area. The zone also corresponds with a shear zone trending east-southeast and with a VLF-EM conductor.

The highest silver value of 3 ppm occurs at L0+20E - BL. It is coincident with a very strong, anomalous, multi-element composite zone located at the Main Showing.

Anomalous to highly anomalous silver values occur in the area of the West Showings (No. 3, No. 4 and No. 5 veins) as well as the west end of the grid. Both areas display a strong correlation with anomalous copper values.


7.4.3 COPPER, LEAD & ZINC IN SOILS (Figures 21-23)

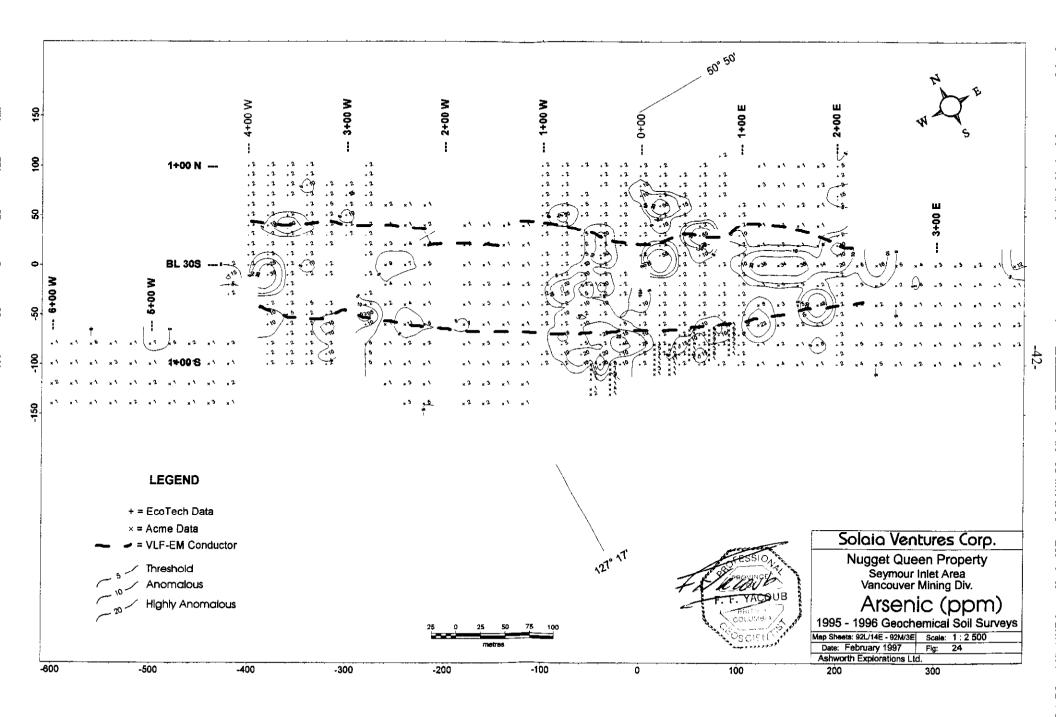

The value range and grouping of the copper, lead and zinc elements are shown in the following table:

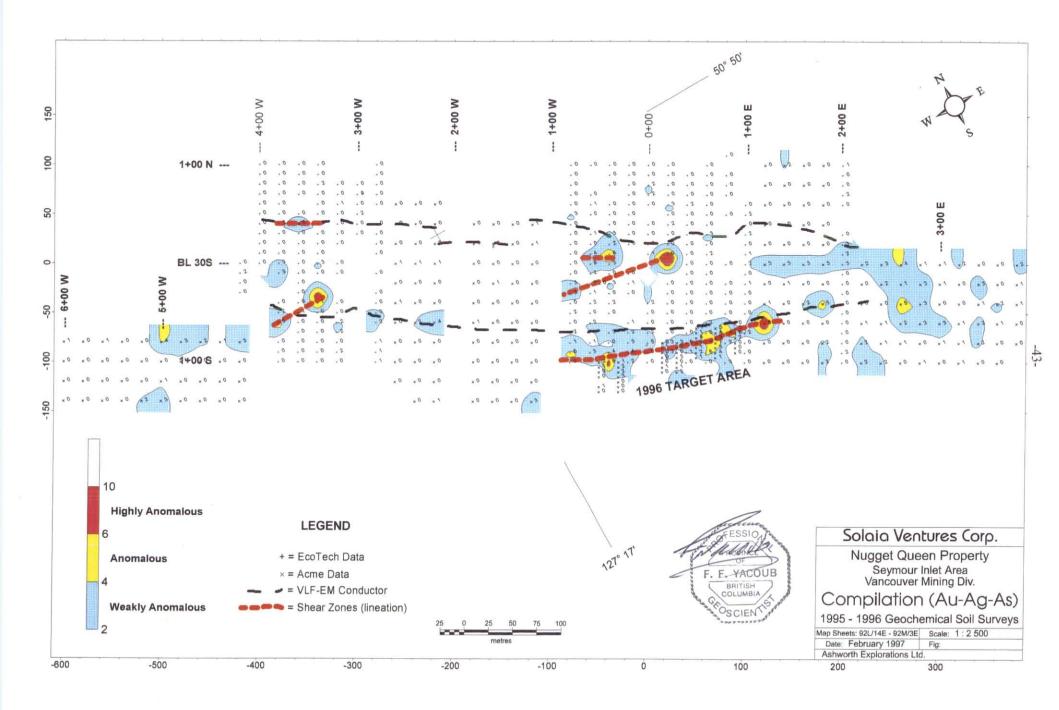

	COPPER	LEAD	ZINC
Range	1-147 ppm	4-892 ppm	6-352 ppm
Low Values	1-<40 ppm	4-<60 ppm	0-<100 ppm
Anomalous	40-<55 ppm	60-<150 ppm	100-<150 ppm
Highly Anomalous	55 ppm and up	150 ppm and up	150 ppm and up

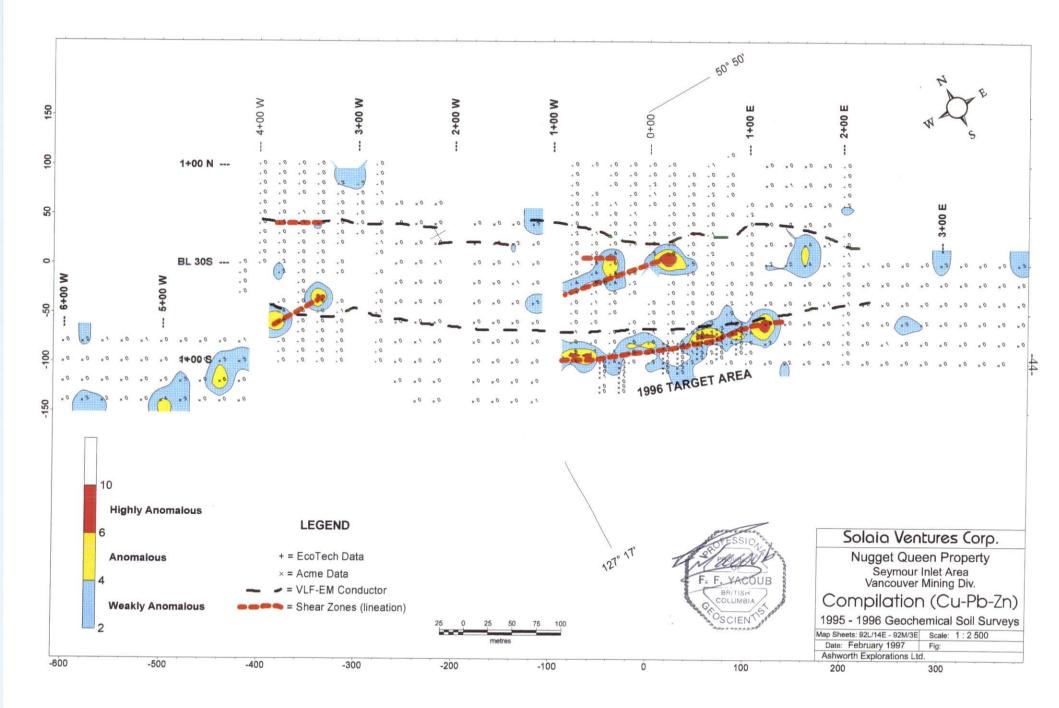
The copper, lead and zinc elevated values demonstrate strong correlations in three different areas. The first is located at the 1996 target area between L0+80W and L1+20E for a total of 225 metres. The second area is located at the Main Showing - No. 6 vein. The anomaly area extends between L0+80W and L0+20E for a total of 125 metres. The third area is located at the west corner of the grid between L3+80W and L3+20W for a total of 60 metres in length. All copper, lead and zinc anomalous areas display strong correlation with gold, silver and arsenic.

7.4.4 ARSENIC IN SOILS (Figure 24)

The arsenic values ranged from <5-65 ppm. They are grouped as:


0-<10 ppb As	Low Values
10-<20 ppb As	Anomalous
20 ppb As and up	Highly Anomalous


7.4.5 DISCUSSION OF GEOCHEMICAL RESULTS (Figures 25 & 26)


Several anomalous to highly anomalous arsenic values are clustered over the area of the grid with values up to 65 ppm As. Anomalous to highly anomalous arsenic values display strong correlations with anomalous gold, silver, copper, lead and zinc values.

Three anomalous areas were outlined by the soil geochemistry on the Nugget-Queen claim group during the 1995 and 1996 field work programs:

- the 1996 target area, where a very strong soil geochemical anomaly for gold, silver, copper, lead, zinc and arsenic was delineated. This anomaly zone displayed mineralization related to and coincident with a shear zone trending east-south for a strike length of 225 metres;
- a very strong anomalous zone has been outlined by a multi-element composite located in the Main Showing area. The zone trends east-southeast, almost parallel to the 1996 target area and extends between L0+80W and L0+20E for a length of 125 metres; and
- 3) a highly anomalous to anomalous gold, silver and arsenic zone was indicated by the 1996 soil sampling program. The zone is located between L6+00W and L3+40W at the west corner of the grid area. The elevated gold and silver values strongly correlate with elevated copper, lead and zinc values, and also are coincident with an easterly trending shear zone.

8.0 CONCLUSIONS

Geological mapping, trenching and rock sampling on the 1996 main target area located south of the No. 6 vein has produced additional anomalous gold and base metal values in trenches along a previously detected east-west trending soil anomaly zone. Anomalous gold and base metal values in rock samples, up to 34,978 ppb Au (1.01 opt), obtained from the newly discovered No. 8 vein appears to have a spatial relationship with mineralization exposed in the trenching area.

The distribution of anomalous gold and base metal values in the 1996 target area, starting from T-9 in the northwest to the newly discovered No. 8 vein in the southeast and in all intervening trenches with the exception of T-11, extends for at least 130 metres strike length and is open in both directions.

The coincident gold and base metal values in trenches, soil anomalies, and the VLF-EM conductor in the 1996 trench area suggests a southeast-northwest extension of the mineralized zone. This target area warrants a shallow drill program to investigate the extension, depth and the grade of the zone.

The apparent size and tenor of the No. 6 and No. 4 veins, supported by strong geochemical anomalies and elevated gold and base metal values obtained from rock sampling of T-12, is sufficient to warrant further work which should include a diamond core drilling program to test the down dip extension and the grade of the No. 6 vein.

A new gold and base metal geochemical anomaly zone was delineated by the 1996 soil sampling at the west end of the grid. The zone displays strong correlations with silver, copper, lead and zinc. Strong support of the geochemical anomaly in this area has been provided by an east-west trending structure. The soil anomaly zone should be further investigated by a limited hand trenching program.

Field programs to date have covered about one-quarter of the property. Good potential exists for locating more significant mineralization on the remainder of the Nugget-Queen claims. For this reason further exploration work is warranted and recommended.

9.0 **RECOMMENDATIONS** (Figure 9, Map 1)

During the 1995 and 1996 field programs, testing of the Main Showing (No. 6 vein) by sampling and trenching have shown good gold and base metal mineralization with significant lengths and widths. This report supports the recommendations of Grove (1995) for a follow-up core drilling program.

A total of 500 metres of a shallow diamond drilling program is recommended to further investigate the mineralization of the No. 6 vein as well as the new gold and base metal anomaly zone delineated by soil sampling and geophysics during the 1995 work program, and by trenching during the 1996 field work program. The zone is located 60 to 80 metres south of the No. 6 vein.

Three diamond drill holes were designed to be drilled from three different set-ups (DDH 1, 2 and 3) to test the down dip extension of the No. 6 vein. The first hole set at -35° in the 40 to 50 metre range, the second hole designed to be drilled at -45° in the 50 to 60 metre range and the third hole designed to be drilled at -50° in the 60 to 70 metre range.

Another three drill holes (DDH 4, 5 and 6) were designed to test the down dip extension of the south zone (1996 trenching area) including the newly discovered No. 8 vein as indicated on Map 1.

If the results from the proposed holes (DDH 1-6) are encouraging, additional holes at -60° should be drilled from the same initial set-ups.

New target areas can be delineated by extending the grid lines to the northeast and to the southwest, and should be initiated for the next phase after drilling is completed. It should consist of further soil sampling, geophysical surveys and geological mapping in order to delineate more target areas.

10.0 PROPOSED BUDGET

Phase 2: Core Drilling Program

Project Preparation	- 100 · 01 · · · · · · · · · · · · · · ·		\$ 4,000.00
Mob/Demob (includes Helicopter Support)			\$ 30,000.00
Camp Supplies, Room & Board			\$ 15,000.00
Core Drilling		·	
500 metres @ \$100/metre		\$50,000.00	
Assaying		\$ 6,000.00	
			\$ 56,000.00
Geology, Core Logging, Sampling			\$ 10,000.00
Property Visit & Engineering Report			\$ 15,000.00
	Subtotal		\$130,000.00
Administration & Supervision @ 15%		\$19,500.00	
	Subtotal		\$149,500.00
GST @ 7%		\$10,465.00	
	TOTAL		\$159,965.00
	SAY		\$160,000.00

Respectfully submitted,

F. F. VACOUB BRITISH COLUMBIA

Fayz Yacoub, P.Geo., F.G.A.C. February 1997

REFERENCES

EMPR, Geology, Exploration & Mining, 1973.

EMPR, G.E.M., 1980, 1983.

EMPR, Property File 92L, 178, 179.

EMPR, Assessment Reports 4252, 7991.

- Freidman, R.M., Mahoney, J.B. and Cui, Y., <u>Magmatic Evolution of the Southern Coast Belt</u> from Nd-Sr, Isotopic Schematics and Geochronology of the Southern Coast Plutonic <u>Complex</u>, Can. Jour. Earth Sci., October 1995.
- Grove, Edward W., <u>Geological Report and Work Proposal on the Nugget & Queen Claims</u>, February 19, 1996.

GSC, Map 1552A.

GSC, Open File 480, 722, 1163, 2490, 2787.

GSC, Paper 68-1, 74-B.

GSC, Memoir 372, 394.

Mark, David G., Geophysical Report on the Nugget Queen Property, February 2, 1996.

Minister of Mines Annual Reports, 1939-41, 1949.

Monger, J.W.H. and Journeay, J.M., <u>Guide to the Geology and Tectonic Evolution of the</u> <u>Southern Coastal Belt</u>, G.S.C., 1992.

CERTIFICATE OF QUALIFICATIONS

I, FAYZ F. YACOUB, of 6498 - 128B Street, Surrey, British Columbia, V3W 9P4, do hereby declare that:

- I am a graduate in: Geology and Chemistry from Assuit University, Egypt (B.Sc., 1967); and Mining Exploration Geology of the International Institute for Aerial Survey and Earth Sciences (I.T.C.), Holland (Diploma 1978);
- 2) I am a fellow in good standing with the Geological Association of Canada;
- I am a professional geologist and a member of the Association of the Professional Engineers and Geoscientists of B.C;
- 4) I have actively pursued my career as a Geologist for the past twenty-one years;
- 5) The information, opinions and recommendations in this report are based upon field work carried out by myself, and on published literature. I was present on the subject property between November 5 to 14, 1995 and December 6 to 12, 1996; and
- 6) I have no interest in Solaia Ventures Inc., nor any property owned by Solaia Ventures Inc., nor do I expect to receive any interest as a result of this report.

F. YACOUB BE USE COLUMBIA SCIEN

Fayz Yacoub, P.Geo., F.G.A.C. February 1997

CERTIFICATE OF QUALIFICATIONS

I, JOHN YOUNG, of 1328 Zenith Road, Brackendale, British Columbia, V0N 1T0, do hereby declare that:

- 1) I am a graduate in Geology from Lakehead University, Ontario (H.B.Sc., 1990);
- 2) I have actively pursued my career as a Geologist for the past 7 years;
- 3) The information, opinions and recommendations in this report are based upon field work carried out by myself, previous work and on published literature. I was present on the subject property between December 4 to 22, 1996; and
- 4) I have no interest, directly or indirectly, in the property nor do I expect to receive any interest as a result of this report.

John D. Young, H.B.Sc. February 1997

PERSONNEL

The following persons were contracted during the 1996 field work program on the Nugget Queen mineral claims.

Fayz Yacoub, P.Geo., F.G.A.C. 6498 - 128 B Street Surrey, B.C. V3W 9P4 Tel: (604) 596-8592

John Young - Geologist 1328 Zenith Road Brackendale, B.C. VON 1T0 Tel: (604) 898-9659

Robert Paeseler - Party Chief 1208 Brisbane Avenue Coquitlam, B.C. V3J 1L5 Tel: (604) 936-8254

Scott Hodges - Geotechnician 1009 - 20th Street West Vancouver, B.C. V7V 3Z3 Tel: (604) 922-4294

Will Markham - Geotechnician Markham House Sooke, B.C. V0S 1N0 Tel: (250) 642-7542

Michael Cupit - Geotechnician 523 Newcroft Place West Vancouver, B.C. V7T 1W9 Tel: (604) 922-6439 Jamie Cupit - Geotechnician 523 Newcroft Place West Vancouver, B.C. V7T 1W9 Tel: (604) 922-6439

Chris Recek - Geotechnician 1521 Eric Road Victoria, B.C. V8N 5Y6 Tel: (250) 721-0894

Doug Stover - Geotechnician 674 Keith Road West Vancouver, B.C. V7T 1L9 Tel: (604) 926-6756

Martina Javorova - Camp Cook 1009 - 20th Street West Vancouver, B.C. V7V 3Z3 Tel: (604) 922-4294

.

1996 ROCK SAMPLE DESCRIPTIONS

T

T8-R1	2 motes by 0.4 motes manufacture in motes the set (as with a set illity) as in a
10-KI	2 metre by 0.4 metre panel sample - in metasediments (pyritic argillite), minor silicification.
T8-R2	
10-K2	2 metre by 0.4 metre panel sample - in metasediments (argillite), minor silicification and hematitic/limonitic oxidation.
T8-R3	2 metre by 0.5 metre panel sample - in metasediments (argillite), minor pyrite.
T8-R4	2 metre by 0.4 metre panel sample - in metasediments (arginite), minor pyrite.
10-114	silicification.
T8-R5	2 metre by 0.4 metre panel sample - in metasediments (pyritic argillite).
T8-R6	2 metre by 0.3 metre panel sample - in metasediments.
T8-R7	Quartz float with pyrite found in centre of Trench 8.
T9A-R8	2 metre by 0.3 metre panel sample - in metasediments (argillite).
T9A-R9	2 metre by 0.4 metre panel sample - in metasediments (argillite).
T9A-R10	1 metre by 0.3 metre panel sample - in metasediments (argillite).
T9A-R10	1 metre by 0.5 metre panel sample - in metasediments (argillite).
T9B-R12	1 metre by 0.5 metre panel sample - in metasediments, minor pyrite.
T9B-R12 T9B-R13	1 metre by 0.8 metre panel sample - in metasediments.
T9B-R14	1 metre by 0.9 metre panel sample - in metasediments.
T9B-R15	1 metre by 0.4 metre panel sample - in metasediments, minor pyrite.
T9B-R16	1 metre by 0.3 metre panel sample - in metasediments.
T9B-R17	3 metre chip across silicified, mineralized zone. Hematitic/limonitic oxidation,
172 117	disseminated pyrite, galena and chalcopyrite.
T9B-R18	10 centimetre chip across quartz vein. Minor pyrite and galena present in vein.
T10-R19	Barren quartz float from centre of Trench 10.
T10-R20	1 metre by 1 metre panel sample - in metasediments with hematitic/limonitic
	oxidation.
T10-R21	1 metre by 0.4 metre panel sample - sheared, pyritic argillite.
T10-R22	1 metre by 0.8 metre panel sample - in metasediments with hematitic/limonitic
2	oxidation.
T10-R23	1 metre by 1 metre panel sample - in metasediments, minor silicification and
	disseminated pyrite.
T10-R24	50 centimetre quartz vein in silicified metasediments with hematitic/limonitic
	oxidation, minor pyrite, galena and chalcopyrite.
T11-R25	2 metre by 0.8 metre panel sample - in metasediments with disseminated pyrite, and
	hematitic/limonitic oxidation.
T11-R26	2 metre by 0.8 metre panel sample - in metasediments, minor silicification and pyrite.
T11-R27	2 metre by 0.7 metre panel sample - in metasediments, buff coloured tuff, minor
	silicification and disseminated pyrite.
T11-R28	1 metre by 0.6 metre panel sample - buff coloured tuff, hematitic/limonitic oxidation
	and minor pyrite.
T11-R29	1.4 metre by 0.8 metre panel sample - in metavolcanics, silicification, minor
	hematitic/limonitic oxidation, pyrolusite (MnO2) and minor pyrite.
T11-R30	10 centimetre chip across quartz vein - no visible mineralization.
T12-R31	1 metre by 0.7 metre panel sample - in metasediments (pyritic argillite),
	hematitic/limonitic oxidation.

T12-R32	1 metre by 0.8 metre panel sample - in metasediments, buff coloured tuff, no visible
	mineralization.
T12-R33	1 metre by 0.5 metre panel sample - in metasediments (argillite), minor pyrite.
T12-R34	1 metre by 0.5 metre panel sample - in metasediments, tuff, minor pyrite.
T12-R35	1.3 metre chip across mineralized quartz vein - pyrite, galena and minor chalcopyrite
T12-R36	1 metre by 0.5 metre chip across silicified metasediments containing small
	mineralized quartz veinlets - visible pyrite, minor galena.
T12-R37	1 metre by 0.3 metre panel sample - in metasediments (pyritic argillite), minor
	silicification.
T13-R38	1 metre by 0.4 metre panel sample - in metasediments (argillite), hematitic/limonitic
	oxidation.
T13-R39	1 metre by 0.3 metre panel sample - in metasediments, hematitic/limonitic oxidation,
	minor pyrite.
T13-R40	1 metre by 0.4 metre panel sample - in metasediments (argillite), hematitic/limonitic
	oxidation.
T13-R41	1 metre by 0.4 metre panel sample - in metasediments, minor pyrite.
T13-R42	1 metre by 0.4 metre panel sample - in metasediments, minor pyrite,
	hematitic/limonitic oxidation.
T13-R43	1 metre by 0.3 metre panel sample - in metasediments (argillite), no visible
	mineralization.
R44	Mineralized quartz float sample near No. 8 vein, L1+20E - 0+60S. Disseminated to
	semi-massive pyrite, galena and chalcopyrite.
R45	Chip sample across 1 metre quartz vein containing pyrite and chalcopyrite.
R46	Chip sample across 1 metre quartz vein, minor pyrite present.
T14-R47	1 metre by 0.5 metre panel sample, altered metavolcanics - epidote, pyrolusite
	(MnO ₂), no visible mineralization.
T14-R48	1 metre by 0.4 metre panel sample - in metavolcanics - epidote, pyrolusite, no visible
	mineralization.
T14-R49	1 metre by 0.3 metre panel sample - in metavolcanics, MnO ₂ , hematitic/limonitic
	oxidation.
T14-R50	2 metre by 0.4 metre panel sample - in metavolcanics with epidote, MnO ₂ .

-- -

-

-

11

1

Appendix B

	C1																

852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

						Exp	lor	ati	52 B GE <u>ON</u> V. Ha	OCH Ltd	EMI P	CAL ROJ	an ECT	ALY NU	SIS GGE	CE T O	RTI UEE	FIC	ate Fi]	l .e #	96	-69			age		FAX			A /	
SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U P P M	Au ppn	ĩh ppm	Sr ppn	Cd ppm	Sb ppm	Bi ppm	V PPN	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к %	W PPM	
L6+00W 0+80S L6+00W 1+00S L6+00W 1+20S L6+00W 1+40S L6+00W 1+40S L5+80W 0+80S	2 1 1 2	9 9 23 10 43	6 <3 <3 8 <3	22 11 22 14 43	<.3 <.3 <.3 <.3 <.3 <.3	11 7 9 7 23	3 1 4 6 9	138 52 131 127 167	.79 2.30 .73	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2	<5 <5 6 7 <5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 11 12 12 6	<.2 .2 .4 <.2	<2 2 <2 <2 <2 <2 <2	11 <2 <2 <2 3	228 49 151 41 184	.17 .23 .21	.017 .022 .042 .041 .016	1 2 4 3 4	50 23 44 22 73	.45 .13 .27 .20 .49	13 20 25 26 30	.45 .10 .15 .12 .34	دی ح ع	1.12 1.59 2.74 1.15 4.97	.02 .02 .03 .01 .04	.03 .02 .03 .02 .02	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	10 2 1 <1 1
5+80W 1+00S 5+80W 1+20S 5+80W 1+40S 5+60W 0+80S E L5+60W 0+80S	2 1 1 2 2	23 3 81 25 28	<3 8 <3 5 <3	41 6 39 62 66	.3 <.3 <.3 <.3 <.3	9 3 15 11 11	15 2 16 5	409 75 745 200 211	.60 3.89 4.71	<2 <2 <2 5 5	14 <5 10 <5	~? ~? ~? ~?	2 ~2 ~2 ~3 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2	14 8 13 11 12	<.2 .2 <.2 <.2 <.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 <2 3 6 <2	52	.12 .23 .13	.036 .024 .093 .018 .019	4 2 10 4 4	41 18 54 43 43	.30 .08 .30 .69 .72	45 13 36 56 52	.16 .15 .16 .27 .29	<3 <3 5	3.02 .57 5.06 5.17 5.53	.03 .01 .03 .02 .03	.03 .02 .03 .04 .03	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 1 1 3 12
5+60W 1+00S 5+60W 1+20S 5+60W 1+40S 5+40W 0+80S 5+40W 1+00S	1 <1 1 2 1	20 17 43 27 12	5 3 3 3 3	35 19 34 38 12	<.3 <.3 <.3 <.3 .4	17 12 11 11 5	32 5 4	418 716 146 155 115	2.89 1.84 4.10	<2 <2 <2 <2 <2 <2 <2 <3	11 5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 <2 <2 2 2 3	14 18 12 8 6	.4 .3 <.2 <.2 .2	<2 <2 ~2 ~2 ~2 ~2 ~2	6 <2 <2 3 4	150 110 96 146 161	.27 .21 .13	.023 .056 .102 .019 .028	5 5 8 5 3	45 28 43 49 48	.18 .22 .26 .36 .20	33 26 33 41 13	.15 .07 .11 .23 .31	ব্য ব্য ব্য	2.64 2.80 5.51 6.03 3.17	.02 .04 .03 .02 .02	.02 .02 .03 .02 .03	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 1 6 2 1
5+40W 1+20S 5+40W 1+40S 5+20W 0+80S 5+20W 1+00S 5+20W 1+20S	2 1 1 2 1	14 7 12 16 3	3 3 4 3 7	36 11 61 10 12	<.3 <.3 <.3 <.3 <.3	15 10 8 3 5	6 3 7 2 1	417	3.56 3.43 3.93	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9 <5 <5 <5 <5	~~~~~ ~~~~~~	3 2 2 2 2 3	5 9 24 6 3	<.2	~? ~? ~? ~?	10 5 <2 <2 4	132 181 128 160 217	. 19 . 44 . 13	.023 .015 .022 .017 .012	5 1 2 3 2	77 38 11 40 81	.41 .29 1.36 .13 .13	18 8 65 20 5	.32 .18 .26 .19 .40	<3 4 <3	3.64 .85 2.16 2.13 .74	.02 .02 .04 .02 .02	.03 .03 .12 .02 .02	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1 1 1 3
5+20W 1+40S 5+00W 0+80S 5+00W 1+00S 5+00W 1+20S 5+00W 1+40S	1 5 2 <1 2	18 19 18 2 61	11 <3 <3 9 <3	47 40 14 22 66	<.3 <.3 <.3 <.3 <.3	44 8 7 14 6	3 2 9	563 124 71 418 388	4.48 3.30 6.84	2 7 <2 2 <2	<5 5 5 5 5 5	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 3 <2 2 2	8 10 9 6 16	.3	<2 2 3 2 2 2	<2 8 2 2 6	194 171 152 319 130	. 15 . 15 . 47	.026 .018 .025 .013 .053	2 4 1 6	106 37 38 44 28	1.23 .31 .17 .50 1.00	22 81 24 50	.29 .25 .15 .58 .19	<3 <3 <3	4.23 4.14 3.34 .88 4.07	.03 .01 .02 .02 .02	.06 .02 .02 .20 .20	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	34 371 4 17 315
4+80W 0+80S 4+80W 1+00S 4+80W 1+20S 4+80W 1+40S 4+80W 1+40S 4+60W 0+80S	3 1 1 5	17 4 36 37 23	4 5 3 3 7	46 11 84 72 49	.3 .5 <.3 <.3 <.3	5 5 40 65 8		2251 6 39	3.82	5 2 <2 <2 2 2	<5 10 <5 7 <5	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2 2 3	15 15 14 8 11	.2 .2 .2 .2 .2	<2 <2 <2 <2 <2 <2 <2	2 5 2 4 6	107 246 172 201 167	. 34 . 47 . 19	.037 .020 .025 .011 .019	3 1 3 1 4		.27 .09 1.27 2.78 .37	166 19 56 24 145	.17 .21 .29 .41 .28	ও ও ও	3.79 .39 4.42 4.26 5.57	.02 .01 .02 .02 .02	.03 .02 .12 .11 .03	<u>%%%%%%</u>	44 2 7 9 84
4+60W 1+00S 4+60W 1+20S 4+60W 1+40S 4+40W 0+80S 4+40W 1+00S	1 2 3 2 1	14 9 5 15 57	5 <3 6 12 <3	27 28 10 48 40	<.3 <.3 <.3 .4 <.3	23 16 3 13 20	1 16	305	4.67 6.29 4.25	3 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2	<5 <5 12 <5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 3 2 3 <2	9 6 4 21 11	<.2	2 3 2 3 2 3 2 3 2 3 2	<2 <2 <2 5 <2	233 146 332 139 98	.22 .12 .16	.012 .019 .012 .013 .012	1 3 7 2	54 48 44 25 44	.69 .51 .18 1.02 .82	17 18 9 78 24	.56 .27 .45 .22 .24	<3 <3 3	1.20 2.98 .83 2.52 2.19	.05 .03 .01 .02 .02	.03 .02 .02 .08 .02	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4 3 2 26 7
STANDARD C2/AU-S	I	THIS ASSAY - SAM	.500 LEACH RECO IPLE T	GRAN IS F MMEND YPE:	SAMP ARTIA ED FO PAGE	LE IS L FOR R ROC 1-8 S	DIGE MN F K AND OIL P	STED E SR CORE AGE 9	3.96 WITH CA P SAMP -10 R nd 7	3ML 3 LA CR LES I OCK	-1-2 MGB/ FCU AU	HCL-HI ATI PBZN * - I	NO3-H BWA AS> GNITE	20 AT ND LI 1%, D, AQ	95 D MITED AG >	EG. C FOR 30 PP	FOR NAK M&A	one h And a Lu > 1	IOUR #	ND IS	DILU	TED T	0 10		_		1.99	.06	.17	11	50
DATE RECE		: 0	EC 23	1 99	5 DI	ATE	REPO	RT	MAIL	ED:	Ja	n q	1/97	7		INED		С. г act		- 1				-	JANG;	CERT	IFIED		ASSA1	(ER\$	

•	ΔÀ

Ashworth Exploration Ltd. PROJECT NUGGET QUEEN FILE # 96-6913

ACHE ANALYTICAL	-								-																A						
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni popra	Со ррп	Mn ppm	Fe %	As ppn	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V sppnt	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	B ppm	Al %	Na %	K %	W Maga	Au* ppb
L4+40W 1+20S L4+40W 1+40S L4+20W 0+80S L4+20W 1+00S L4+20W 1+20S	2 <1 1 <1 1	65 5 33 62 9	4 4 12 6 9	169 20 26 18 13	<.3 <.3 <.3 <.3 <.3	6 9 9 13 5	7 4 4 7 2	360 2 170 8 143 2 276 2 89 2	3.05 1.00 2.62	<2 3 3 <2 2	<5 <5 <5 <5 <5	~2 ~2 ~2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 4 32 18 5	.6 <.2 .2 <.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2	< < < < < < < < < < < < < < </td <td>72 298 56 126 199</td> <td>.18 .37 .47</td> <td>.030 .012 .029 .038 .023</td> <td>5 1 3 3 3</td> <td>35 70 48 45 30</td> <td>.22 .34 .37 .39 .22</td> <td>17 <1 50 20 11</td> <td>.18 .38 .23 .11 .26</td> <td><3 3 <3 (</td> <td>4.80 1.12 1.70 2.31 1.52</td> <td>.04 .04 .03 .04 .02</td> <td>.02 .02 .06 .04 .02</td> <td>~? ~? ~? ? ? ?</td> <td>1 1 288 2 1</td>	72 298 56 126 199	.18 .37 .47	.030 .012 .029 .038 .023	5 1 3 3 3	35 70 48 45 30	.22 .34 .37 .39 .22	17 <1 50 20 11	.18 .38 .23 .11 .26	<3 3 <3 (4.80 1.12 1.70 2.31 1.52	.04 .04 .03 .04 .02	.02 .02 .06 .04 .02	~? ~? ~? ? ? ?	1 1 288 2 1
L4+20W 1+40S L2+60W 0+60N L2+60W 0+40N L2+60W 0+20N RE L2+60W 0+20N	<1 1 7 7	2 4 8 2 2	6 12 5 18 21	12 14 3 6	<.3 <.3 <.3 <.3 <.3	2 11 2 1 <1	1 3 1 <1 <1	107 115 30 40 42	.49 .24 .44 .39 .41	<2 2 <2 3 <2	<5 <5 9 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	< < < < < < < < < < < < < < < <> </td <td>2 5 4 2 2</td> <td><.2 <.2 .3 <.2 <.2</td> <td><2 2 2 4 2 4 2</td> <td>3 4 ~2 ~2 ~2</td> <td>51 89 47 128 136</td> <td>.12 .08 .03</td> <td>.007 .015 .030 .002 .002</td> <td>5 2 5 2 2</td> <td>18 37 17 16 17</td> <td>.17 .55 .09 .06 .06</td> <td>7 8 <1 4 5</td> <td>.39 .38 .10 .56 .60</td> <td><3 4 <3 <3 <3</td> <td>.57 .80 1.90 .29 .29</td> <td>.02 .02 .01 .01 .01</td> <td>.01 .03 .01 .01 .01</td> <td>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</td> <td><1 1 3 <1 <1</td>	2 5 4 2 2	<.2 <.2 .3 <.2 <.2	<2 2 2 4 2 4 2	3 4 ~2 ~2 ~2	51 89 47 128 136	.12 .08 .03	.007 .015 .030 .002 .002	5 2 5 2 2	18 37 17 16 17	.17 .55 .09 .06 .06	7 8 <1 4 5	.39 .38 .10 .56 .60	<3 4 <3 <3 <3	.57 .80 1.90 .29 .29	.02 .02 .01 .01 .01	.01 .03 .01 .01 .01	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<1 1 3 <1 <1
L2+60W 0+00N L2+60W 0+20S L2+60W 0+60S L2+60W 0+80S L2+60W 1+00S	17 2 2 <1 1	5 4 <1 3 2	6 17 11 5 12	22 5 6 9 7	<.3 <.3 <.3 <.3 <.3	2 1 3 5	<1 <1 2 3 1		2.16 .20 1.62 1.36 .69	9 4 2 2 2 2	\$ 6 \$ \$ \$	~~~~~ ~~~~~	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 9 4 8 3	<.2 <.2 <.2 <.2 <.2	4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	246 26 123 143 79	.10 .08 .30	.006 .026 .010 .009 .010	1 3 3 2	13 10 21 62 35	.06 .04 .11 .28 .17	1 18 5 2 <1	.29 .08 .22 .37 .33	उ उ ठ ठ ठ ठ	.67 .69 .63 .49 .46	.01 .01 .01 .03 .01	.02 .03 .02 .01 .02	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	<1 7 14 1 7
L2+60W 1+20S L2+60W 1+40S L2+40W 0+60N L2+40W 0+40N L2+40W 0+20N	<1 <1 2 2 10	4 1 18 1	4 4 10 9	2 3 7 11 21	<.3 <.3 <.3 <.3 <.3	<1 <1 5 10 2	1 <1 1 3 <1	58 63	5.92 .58 .47 2.25 .88	~2 ~2 ~2 ~2 ~4	ও ও ও ও ও ও	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	~~~~ ~~~~~~	3 2 5 5 5	<.2 <.2 <.2 <.2 <.3	<2 <2 <2 2 2 2 2	<2 <2 3 2 <2	218 55 62 105 170	.05 .12 .14	.010 .006 .011 .019 .006	1 2 4 2	29 12 20 70 19	-07 -03 -20 -33 -22	<1 2 <1 <1 29	.20 .13 .31 .25 .35		.82 .25 .49 4.56 .53	.01 .01 .01 .03 .01	.02 .01 .01 .02 .02	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1 <1 <1 1 <1
L2+40W 0+00 L2+40W 0+20S L2+40W 0+40S L2+40W 0+60S L2+40W 0+80S	4 1 1 4 2	23 1 2 19 5	<3 6 9 32	30 9 9 37 19	<.3 <.3 <.3 .4 <.3	5 <1 1 4 6	15 <1 <1 3 4	180 4 142 120 175 5 100 1	.63 .49 5.09	7 <2 4 11 2	১ ১ ১ ১ ১ ১ ১ ১ ১ ১	< < < < < < < < < < < < < < < < < <> </td <td>~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>4 5 4 11 8</td> <td><.2 .2 <.2 .2 <.2</td> <td>~2 ~2 ~2 2 2</td> <td><2 <2 3 <2 2</td> <td>163 59 37 205 142</td> <td>.05 .06 .16</td> <td>.021 .010 .008 .024 .012</td> <td>5 7 6 3 2</td> <td>51 6 5 24 33</td> <td>. 14 . 18 . 13 . 31 . 40</td> <td>16 22 15 56 22</td> <td>.26 .16 .10 .28 .67</td> <td><3 <3</td> <td>5.29 .59 .46 2.49 .80</td> <td>.01 .01 .01 .02 .02</td> <td>.01 .04 .03 .05 .02</td> <td>~~~~~</td> <td>1 <1 <1 8 <1</td>	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 5 4 11 8	<.2 .2 <.2 .2 <.2	~2 ~2 ~2 2 2	<2 <2 3 <2 2	163 59 37 205 142	.05 .06 .16	.021 .010 .008 .024 .012	5 7 6 3 2	51 6 5 24 33	. 14 . 18 . 13 . 31 . 40	16 22 15 56 22	.26 .16 .10 .28 .67	<3 <3	5.29 .59 .46 2.49 .80	.01 .01 .01 .02 .02	.01 .04 .03 .05 .02	~~~~~	1 <1 <1 8 <1
L2+40W 1+00S L2+40W 1+20S L2+40W 1+40S L2+40W 1+40S L2+20W 0+60N L2+20W 0+40N	1 1 1 1	8 4 5 8	8 13 20 15 <3	7 4 11 5 7	<.3 <.3 <.3 <.3 <.3	5 3 4 4 4	2 <1 2 1 1	59 35	.40 .29 .89 .33 3.43	<2 3 3 2 2	<5 5 5 5 5 5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2	7 7 9 5 2	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 2 2 2	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	91 28 64 76 391	.09 .14 .10	.026 .055 .019 .014 .011	3 2 3 2 1	38 14 24 26 41	. 13 . 05 . 12 . 09 . 19	8 16 13 <1 3	. 14 . 03 . 17 . 38 . 43	<3 <3 1 3	2.46 .82 1.38 .43 1.20	.02 .02 .02 .01 .01	.02 .02 .01 .01 .02	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	<1 1 1 1
L2+20W 0+20N L2+20W 0+00 L2+20W 0+20S L2+20W 0+40S L2+20W 0+60S	1 6 4 2 4	25 11 <1 3 4	5 15 13 9 13	5 63 10 7 40	<.3 <.3 <.3 <.3 <.3	6 9 1 2 4	1 3 1 1 2			<2 5 <2 6	6 <5 5 8 <5	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	7 12 7 6 7	<.2 .2 <.2 .2 .2	<2 <2 <2 2 2	5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	35 94 35 42 115	.20 .08 .12	.114 .030 .008 .012 .016	4 6 2 2 6	47 24 12 18 17	.05 .20 .07 .09 .55	3 56 26 6 131	.03 .23 .18 .22 .12	<3 1 3 <3	2.21 1.63 .39 .72 1.33	.01 .02 .01 .01 .01	.02 .02 .01 .01 .06	< < < < < < < < < < < < < < < < < <> </td <td>1 <1 1 1 125</td>	1 <1 1 1 125
STANDARD C2/AU-S	19	56	37	145	6.7	69	33	1163 3	5.78	47	19	8	33	52	20.3	17	28	69	.56	.110	38	60	.92	205	.08	30 1	1.89	.07	.15	13	48

Sample type: Soil, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

.

Data 1 FA

Page 2

•	AA	
		1

ACHE ANNLYTICAL			Ash	wor	th	Exp	lor	ati	on	Ltd	. P	ROJ	ECT	NU	GGE	T Q	UEE	N	FIL	E #	96	-69	13			Pag	je	3			itca.
SAMPLE#	No ppm	Cu	РЬ ррл	Zn ppm	Ag ppm	Ni ppm	Co ppm	Ma	Fe %	As ppm	U maq	Au ppm	Th ppm	Sr p pm	Cd ppm	Sb ppm	Bi pprm	V ppm	Ca %	P %	La. ppm	Cr ppm	Mg %	8a ppm	Ti %	8 ppm	Al %	Na %	K %		Au* ppb
L2+20W 0+80S L2+20W 1+00S L2+20W 1+20S L2+20W 1+40S L2+20W 1+40S L1+80W 0+40N	2 1 2 2 1	9 18 5 17 18	16 5 13 <3 <3	14 31 8 16 16	<.3 <.3 <.3 <.3 <.3	5 15 2 6 11	3 5 2 3 5	107 59	1.06 2.59	2 2 2 2 5 2 5 2	<5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 2 2	8 14 6 2	.2 .2 <.2 <.2 <.2 <.2	2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 6 <2 2 2 <2	95 147 98 176 346	.29 .10 .12	.039 .043 .011 .023 .011	3 6 4 2 1	22 45 18 58 107	.21 .42 .11 .20 .73	22 25 20 5 8	.12 .17 .22 .19 .52	34 41 <37		.01 .04 .01 .03 .02	.03 .02 .01 .01 .01	<2 <2 <2 <2 <2 <2 <2 <2 <2	4 1 ~1 3 ~1
L1+80W 0+20N L1+80W 0+00 L1+80W 0+20S L1+80W 0+40S L1+80W 0+60S	1 6 3 2 4	39 6 1 2 15	6 5 9 8 14	9 18 2 9 48	<.3 <.3 <.3 <.3 <.3	9 4 2 2 4	2 <1 <1 <1 1	39	.38 6.69 .24 3.01 5.53	2 <2 2 <2 7	<5 8 <5 <5	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 2 2 2 2 2 2 2	16 5 2 2 6	.5 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	2 12 <2 3	26 372 27 201 169	.08 .01 .05	.056 .021 .005 .006 .024	2 2 3 4 5	14 48 4 26 28	.06 .38 .03 .11 .31	18 29 8 8 26	.02 .41 .09 .15 .14	3 3 3 3 3 3 3 3 3	.35 .07	.02 .01 .01 .01 .01	.02 .02 .01 .01 .02	<2 <2 <2 <2 <2 <2 <2	1 1 √1 3 6
L1+80W 0+80S L1+80W 1+00S L1+80W 1+20S L1+80W 1+40S L1+60W 0+40N	1 2 1 1 <1	6 9 5 5 11	9 10 11 11 3	10 25 13 10 14	<.3 <.3 <.3 <.3 <.3	4 4 8 4 12	1 4 3 3 4	119 84 80	1.09 1.28 1.32 .97 4.44	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<5 9 <5 <5 <5	~? ~? ~? ~?	<2 2 <2 <2 <2 <2	7 9 11 7 2	.2 <.2 <.2 <.2 <.2	<2 2 2 2 2 2 2 2 2 2 2	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	77 86 89 80 307	.14 .17 .15	.020 .031 .016 .015 .007	3 4 2 3 1	22 34 25 30 48	.11 .41 .29 .18 .72	3 29 2 16 2	. 15 . 13 . 19 . 22 . 53		.28 .49 .26	.01 .02 .02 .02 .02	.01 .02 .02 .01 .01	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 1 2 1
L1+60W 0+20N RE L1+60W 0+20N L1+60W 0+00 L1+60W 0+20S L1+60W 0+40S	4 5 9 5	2 2 1 8 11	13 15 15 19 14	4 3 7 28 44	<.3 <.3 <.3 <.3 <.3	2 1 2 2 2	<1 <1 <1 1 3	38 35 54 57 426	.35 .30 .29 2.04 5.16	3 2 <2 2 3	<5 <5 6 5 <5	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2	3 4 6 5 11	<.2 <.2 .2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2	45 43 58 174 217	.05 .05 .08	.011 .011 .009 .019 .033	6 5 2 4 3	12 12 9 25 30	.05 .04 .07 .15 .51	11 12 33 23 44	. 16 . 15 . 32 . 20 . 29		.47 .49 .52 .92 .62	.01 .01 <.01 .01 .02	.01 .01 .02 .01 .06	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	45 41 <1 13 3
L1+60W 0+60S L1+60W 0+80S L1+60W 1+00S L1+60W 1+20S L1+60W 1+40S	3 2 1 1 1	12 17 3 4 7	<3 5 9 5 8	31 24 6 9 7	<.3 <.3 <.3 <.3 <.3	5 5 4 12 1	4 4 <1 3 1	-		<2 3 <2 3 2 2	5 8 <5 <5	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 <2 <2 <2 <2 <2 <2	6 9 7 10 2	<.2 .3 <.2 <.2 .3	<2 <2 3 <2 <2 <2 <2 <2	<2 <2 2 <2 3	152 83 57 81 379	.19 .08 .17	.022 .047 .035 .024 .012	3 5 2 2	46 33 19 49 54	.19 .23 .05 .27 .04	16 23 9 9 <1	.20 .14 .15 .16 .34	64 33 3 31 3	.73	.02 .02 .01 .03 .01	.02 .02 .02 .02 .02	2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 <1 1
L1+40W 0+40N L1+40W 0+20N L1+40W BL L1+40W 0+20S L1+40W 0+40S	3 1 6 4 2	16 53 9 12 26	<3 <3 12 6 12	32 8 68 54 13	<.3 <.3 <.3 .3 <.3	5 8 12 3 5	5 7 5 56 3	362 281 304 1902 105	1.69 3.43	4 ~? ~ 4 ~?	ও ও ও ও	~ ~ ~ ~ ~ ~	3 <2 <2 2 2	8 6 10 14 7	<.2 .2 <.2 <.2 <.2 <.2	< < < < < < < < < < < < < < < < < < <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	285 48 174 172 77	.19 .18 .12	.016 .128 .017 .030 .015	4 6 4 3 5	62 49 79 53 39	.34 .05 1.24 .52 .21	17 10 95 62 22	.29 .02 .35 .17 .17	62 32	. 19 . 68 . 52 . 09 . 64	.02 .02 .02 .02 .02	.02 .02 .03 .04 .01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 <1 9 5 1
L1+40W 0+60S L1+40W 0+80S L1+40W 1+00S L1+40W 1+20S L1+40W 1+20S L1+40W 1+40S	3 1 1 <1 1	17 2 2 4 29	<3 9 13 <3 5	19 5 4 21	<.3 <.3 <.3 <.3 <.3	3 2 2 <1 8	3 <1 1 3 23	57 53	9.54 .85 .36 1.94 5.25	<> < < < < < < < < < < < < < <<	<5 <5 6 <5 <5	< < < < < < < < < < < < < < < < < < < <	3 <2 <2 <2 2	6 4 5 12 9	<.2 <.2 <.2 <.2 <.3	~? ~? ~? ?	~ ~ ~ ~ ~ ~ ~ ~ ~	290 53 82 120 123	.08 .08 .33	.015 .016 .007 .013 .039	1 2 3 1 3	61 15 28 12 59	.23 .05 .06 .07 .20	7 3 10 3 19	.30 .15 .30 .10 .16	<33 3 <3 3 <33 <33	.33 .63 .17	.02 .01 .02 .02 .03	.03 .02 .01 .02 .04	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1 2 <1 <1
STANDARD C2/AU-S	19	56	35	147	6.7	68	34	1140	3.84	46	15	7	34	50	19.6	18	18	72	.53	.107	38	62	.96	189	.08	28 1	.86	.05	.15	13_	47

Sample type: Soil. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_4 FA

ΔÀ

Ashworth Exploration Ltd. PROJECT NUGGET QUEEN FILE # 96-6913

Page 4

1

IF FA

Data_

ACHE ANALYTICAL																													AC	HE ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni pprn	Со ррп	Mn ppm	Fe %	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	Р Х	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	8 ppm	Al X	Na %	К %	U ppn	Au* ppb
L1+20W 0+40N L1+20W 0+20N L1+20W BL L1+20W 0+20S L1+20W 0+40S	1 1 4 3 4	98 7 3 21 39	4 15 10 12 9	50 11 18 15 79	<.3 <.3 <.3 <.3 <.3	70 8 1 6 14	18 3 2 3 10	577 73 144 106 488	.70 1.12 3.71	<>> 2 <> 2 <> 2 <> 2 <> 2 <> 2 <> 2 <> 2	<5 5 5 5 5 5	<2 <> <> <> <> <> <> <> <> <> <> <> <> <>	2 2 2 2 2 2 2 2 2	9 6 12 11 27	<.2 <.2 <.2 .4 .7	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	~2 ~2 4 ~2 4 ~2 4	112 47 82 90 149	.13 .13 .18	.023 .047 .028 .073 .097	2 3 3 4	219 32 18 28 30	2.37 .36 .39 .28 1.37	89 16 43 23 119	.31 .10 .12 .07 .21	<33 <3 <3 41 52	.98 .69	.04 .02 .01 .03 .07	.13 .03 .03 .04 .71	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	12 16 2 3 6
L1+20W 0+60S L1+20W 0+80S RE L1+20W 0+80S L1+20W 1+00S L1+20W 1+20S	2 1 1 1 1 <1	7 2 1 9 7	6 8 9 3 5	8 4 3 7 3	<.3 <.3 <.3 <.3 <.3	2 1 <1 4 6	2 1 1 2 2	57 53	6.50 2.19 2.19 6.13 .35	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<5 <5 <5 <5 <5	< < < < < < < < < < < < < < < < < < < <	2 ~2 ~2 ~3 ~2	8 5 7 6	.2 <.2 <.2 <.2 <.3	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 5 3 2 2 2	284 195 198 227 17	.09 .12	.014 .009 .008 .013 .090	2 2 3 5	44 44 47 62 14	.12 .07 .07 .17 .05	16 7 4 11 17	.30 .22 .22 .25 .03	<3 3 3	. 18 . 89 . 93 . 40 . 52	.02 .02 .01 .03 .02	.03 .01 .01 .02 .02	~~~~ ~~~~~	2 4 1 1
L1+20W 1+40S L0+50W 0+20S L0+50W 1+00S L0+50W 1+05S L0+50W 1+10S	2 2 3 2 1	30 10 15 11 20	12 <3 13 18 10	41 11 10 31 36	<.3 <.3 <.3 <.3 <.3	15 8 6 9 20	8 5 2 11 11	167 157 83 323 428	5.85 4.22 3.39	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <		<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 <2 <2 <2 <2 <2 <2	10 3 5 13 7	<.2 <.2 <.2 .4 <.2	2 <2 <2 <2 <2 <2	<2 <2 6 4 2	114 270 374 148 183	.10 .11 .53	.048 .012 .010 .024 .015	6 1 1 2 1	48 58 33 43 64	.36 .24 .11 .42 .74	21 4 11 21 21	.16 .31 .59 .22 .32		-86 -50 -23	.03 .02 .01 .03 .04	.02 .01 .01 .03 .04	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	886 5 97 28 7
L0+50W 1+15S L0+50W 1+25S L0+50W 1+30S L0+30W 1+00S L0+30W 1+05S	<1 1 2 5 4	34 19 16 42 28	7 4 9 11 27	28 48 15 41 57	<.3 <.3 <.3 .4	18 13 4 15 18	347 30 4 5 6	16150 (2387 (260 (219 (132 (4.09 2.90 7.32	<2 <2 2 6 7	<5 <5 <5 5 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 3 2	9 6 4 8	.3 <.2 <.2 .2 .5	~? ~? ~? ~?	<2 <2 2 3 8	126 123 125 208 1 93	.21 .11 .08	.038 .022 .032 .016 .021	1 3 4 2 4	49 53 47 92 63	.81 .48 .11 .65 .28	41 21 11 37 42	. 13 .27 . 19 .48 .30	3 2 <3 2 <3 3 <3 3 <3 4	.90 .65	.05 .03 .02 .02 .02	.09 .05 .02 .04 .02	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 24 3 3 3
L0+30W 1+10S L0+30W 1+15S L0+30W 1+20S L0+30W 1+25S L0+30W 1+30S	1 1 2 2 1	25 11 8 7 8	47 30 8 6 5	38 21 33 8 15	.6 < 3 < 3 < 3 < 3	10 10 20 3 5	9 7 10 7 104	254 238 387 646 8041	2.06 2.61 2.98	5 ~2 ~2 ~4 ~2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2 2	5 8 4 5	.3 <.2 <.2 <.2 <.2 <.2	4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	83 87 135 131 132	.22 .30 .12	.055 .056 .025 .016 .039	4 3 2 2 2	53 31 58 24 48	.22 .33 .64 .09 .15	22 27 22 12 22	.15 .15 .23 .24 .19	<37 41 <31 3 61	.36 .52 .93	.03 .03 .03 .02 .02	.02 .03 .03 .02 .02	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 117 3 5 3
L0+15E 0+80s L0+15E 0+85s L0+15E 0+90s L0+15E 0+95s L0+15E 1+00s	2 2 3 2 <1	19 52 16 32 12	37 33 46 20 7	30 85 22 29 4	.3 <.3 <.3 <.3 <.3	3 18 4 6 1	9 8 <1 4 1	440 258 85 161 114	3.36 6.03 5.59	2 5 2 2 2 2 2 2 2 2 2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 <2 2 3 2	6 14 5 7 1	.2 .3 <.2 <.2 <.2	<2 3 <2 3 2	2 6 ~2 6 ~2	163 105 264 187 498	.30 .15 .16	.025 .057 .019 .043 .005	3 6 3 4 1	47 54 52 88 37	. 19 . 59 . 18 . 56 . 15	12 26 19 23 13	.22 .18 .44 .27 .96	<33 <34 <32 <35 <3	.72 .87	.03 .04 .03 .02 .01	.03 .02 .02 .04 .04	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	9 7 6 4 1
L0+15E 1+05S L0+15E 1+10S L0+30E 0+80S L0+30E 0+85S L0+30E 0+90S	3 1 2 2 1	44 10 13 13 4	152 21 113 15 7	28 11 20 14 11	.3 .4 .3 <.3	5 4 4 <1 9	8 1 7 1 3		.98	3 <2 4 <2 2	<5 6 <5 5 5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5 6 9 4 5	<.2 <.2 <.2 <.2 <.2	4 2 3 2 2 2	<2 <2 <2 <2 <2 <2	132 86 123 302 445	.13 .20 .08	.075 .040 .045 .015 .009	7 3 2 2	58 27 26 59 38	.13 .16 .21 .08 .04	9 19 26 9 16	.14 .18 .16 .34 .32	<36 31 <31 41 <3	.42	.02 .02 .03 .02 .01	.02 .02 .03 .03 .02	<u>%</u> %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	16 2 11 3 2
STANDARD C2/AU-S	19	57	35	144	6.8	68	35	1151 :	3.88	43	18	8	34	51	19.5	19	15	70	.53	.108	39	63	.95	193	.08	30 1	.95	.07	. 16	11	44

Sample type: Soil. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

	IPLE# No Cu Pb Zn Ag Ni Co Mn Fe As. U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K																														
SAMPLE#																		•								-				W	Au* ppb
L0+30E 0+95S L0+30E 1+00S L0+30E 1+05S L0+30E 1+10S L0+30E 1+10S L0+50E 0+65S	2 2 2 2 2 2 2 2	16 12 25 24 23	11 24 123 174 99	23 14 47 51 43	.3 .3 .3 .3	5 4 16 11 6	1 1 30 25 5		5.72	11 <2 <2 <2 2	<5 <5 <5 <5	∽ ∽∽∽∽ ∽	2 2 2 2 2 2 2 2 2	5 5 6 10	<.2 <.2 .4 <.2 <.2	<>> <> <> <> <> <> <> <> <> <> <> <> <>> <>> <>> <>> <>>> <>>> <>>> <>>> <>>>> <>>>> <>>>> <>>>>>>	9 4 ~2 3 2	287 173 122 159 72	.14 .17 .16	.014 .011 .034 .024 .023	1 3 6 4 4	54 32 64 66 27	.38 .17 .30 .29 .26	3 7 14 7 20	.60 .29 .20 .29 .15	<3 6 5	1.09 1.41 4.37 3.59 1.98	.02 .02 .03 .02 .01	.02 .02 .02 .02 .02	~~~~~~	19 9 17 106 11
L0+50E 0+70S L0+50E 0+75S L0+50E 0+80S L0+50E 0+85S L0+50E 0+90S	3 4 2 2 1	20 44 31 28 34	243 179 94 37 109	61 117 52 15 22	.3 .9 .3 .7 .6	7 14 11 8 8	12 15 6 4 3		4.87	<2 10 4 <2 <2	\$ \$ 5 5 \$ 5	~~~~~ ~~~~~~	< 2 2 3 2 3 2	10 6 7 5 6	.3 .4 .2 <.2 <.2	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 <2 2 3 8	105 129 134 235 166	. 15 . 19 . 16	.013 .030 .027 .011 .015	2 6 4 2 4	30 47 56 71 52	.30 .20 .23 .14 .13	53 27 <1 4 <1	.25 .17 .20 .34 .19	3 3 <3	1.93 3.95 5.50 3.52 4.10	.02 .03 .03 .03 .02	.02 .02 .02 .02 .02	<2 <2 <2 <2 <2 <2	25 26 318 5 20
L0+50E 0+95S L0+70E 0+65S L0+70E 0+70S L0+70E 0+75S L0+70E 0+80S	1 3 4 8 2	17 18 19 28 7	76 337 274 510 27	14 20 80 223 25	.3 .5 .4 .3 1.8	7 8 6 14 5	2 6 4 34 2	287 141 1634	4.30	<2 6 5 9 5		~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2 2 2 2	4 5 7 4	<.2 .2 .5 .3	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 4 7 2 4	281 190 160 265 247	.12 .12 .27	.011 .020 .012 .023 .007	2 2 2 4 2	63 32 37 66 26	.13 .22 .29 .25 .15	<1 1 <1 27 3	.32 .20 .24 .32 .36	<3 <3	2.21 1.80 1.69 3.75 .46	.01 .02 .02 .02 .01	.02 .02 .02 .03 .02	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	16 28 324 57 138
L0+70E 0+85S L0+70E 0+90S L0+70E 0+95S L0+90E 0+60S L0+90E 0+65S	2 2 1 4 7	8 21 9 3 24	19 26 18 83 230	13 18 12 17 51	<.3 <.3 <.3 .3 .3	8 13 8 4 8	3 5 3 1 2	100 114 86 124 125	5.44 8.49 .87	3 6 <2 <2 5	6 <5 <5 <5	< < < < < < < < < < < < < < < < < < <> </td <td><2 2 2 2 2 2 2 2</td> <td>4 7 4 10 5</td> <td><.2 <.2 <.2 <.2 <.2 <.2</td> <td><2 3 2 2 2 2 2</td> <td>2 <2 4 2 4 2 4</td> <td>217 321 360 85 192</td> <td>.13 .11 .09</td> <td>.009 .011 .008 .011 .010</td> <td>3 2 2 3 2</td> <td>39 48 89 13 34</td> <td>.20 .38 .10 .43 .40</td> <td>3 <1 3 20 6</td> <td>.22 .34 .44 .20 .32</td> <td><3</td> <td>.54 .83 1.04 1.07 2.27</td> <td>.01 .01 .01 .01 .01</td> <td>.02 .02 .02 .03 .02</td> <td>~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>101 380 19 9 31</td>	<2 2 2 2 2 2 2 2	4 7 4 10 5	<.2 <.2 <.2 <.2 <.2 <.2	<2 3 2 2 2 2 2	2 <2 4 2 4 2 4	217 321 360 85 192	.13 .11 .09	.009 .011 .008 .011 .010	3 2 2 3 2	39 48 89 13 34	.20 .38 .10 .43 .40	3 <1 3 20 6	.22 .34 .44 .20 .32	<3	.54 .83 1.04 1.07 2.27	.01 .01 .01 .01 .01	.02 .02 .02 .03 .02	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	101 380 19 9 31
L0+90E 0+70S L0+90E 0+75S L0+90E 0+80S L0+90E 0+85S RE L0+90E 0+85S	5 2 1 1	16 42 11 13 13	380 60 18 16 14	43 192 27 34 34	1.6 .3 <.3 <.3	2 43 11 26 26	1 14 4 11 10	132 257 95 273 269	3.41 .79 2.37	8 3 ~2 ~2	<5 <5 <5 <5	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 13 5 7 7	<.2 .5 .2 <.2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	< < < < < < < < < < < < < < < < < < <> </td <td>73 108 46 138 138</td> <td>.35 .47</td> <td>.037 .044 .034 .016 .018</td> <td>4 5 3 1 1</td> <td></td> <td>.39 .98 .33 1.03 1.03</td> <td>20 84 23 18 16</td> <td>. 14 . 20 . 20 . 41 . 41</td> <td><3 <3</td> <td>.78 5.11 1.68 1.24 1.25</td> <td>.01 .04 .02 .06 .06</td> <td>.04 .07 .02 .05 .04</td> <td>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</td> <td>90 47 6 4 7</td>	73 108 46 138 138	.35 .47	.037 .044 .034 .016 .018	4 5 3 1 1		.39 .98 .33 1.03 1.03	20 84 23 18 16	. 14 . 20 . 20 . 41 . 41	<3 <3	.78 5.11 1.68 1.24 1.25	.01 .04 .02 .06 .06	.04 .07 .02 .05 .04	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	90 47 6 4 7
L0+90E 0+90S L1+20E 1+00N L1+20E 0+80N L1+20E 0+60N L1+20E 0+40N	1 1 2 2 2	9 4 3 12 6	13 13 7 5 4	43 9 16 14	<.3 <.3 <.3 <.3 <.3	2 2 4 8 6	4 <1 2 2 <1	46 71 67	6.67 .27 .46 2.51 2.52	< < < < < < < < < < < < < < < < < < <> </td <td><5 <5 <5 7</td> <td>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</td> <td>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</td> <td>9 9 5 6 4</td> <td><.2 <.2 <.2 <.2 <.2</td> <td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td><2 6 4 3 <2</td> <td>266 45 48 94 178</td> <td>.12 .13 .13</td> <td>.013 .015 .006 .031 .015</td> <td>2 3 2 4 2</td> <td>25 23 37 44 37</td> <td>.52 .04 .22 .23 .11</td> <td>10 6 <1 6 <1</td> <td>.71 .24 .24 .14 .23</td> <td><3 <3 <3</td> <td>1.24 .42 .46 3.36 1.61</td> <td>.01 .01 .01 .02 .01</td> <td>.03 .02 .01 .02 .01</td> <td><2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2</td> <td>3 2 3 3 3</td>	<5 <5 <5 7	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	9 9 5 6 4	<.2 <.2 <.2 <.2 <.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 6 4 3 <2	266 45 48 94 178	.12 .13 .13	.013 .015 .006 .031 .015	2 3 2 4 2	25 23 37 44 37	.52 .04 .22 .23 .11	10 6 <1 6 <1	.71 .24 .24 .14 .23	<3 <3 <3	1.24 .42 .46 3.36 1.61	.01 .01 .01 .02 .01	.03 .02 .01 .02 .01	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 2 3 3 3
L1+20E 0+20N L1+20E BL L1+20E 0+20S L1+20E 0+40S L1+20E 0+60S	3 27 1 2 3	17 27 4 21 147	6 14 20 7 704	35 99 10 21 109	<.3 <.3 <.3 <.3	13 20 6 10 4	4 2 3 1	56 62 104	1.54 6.68 .52 4.84 6.75	<2 36 <2 8 23	6 10 <5 <5 <5	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 4 <2 3 4	9 11 6 6	<.2 <.2 <.2 <.2	<>> <> <> <> <> <> <> <> <> <> <> <> <>	4 9 4 5	103 183 51 140 191	.07 .07 .11	.034 .021 .009 .018 .032	5 5 4 2 4	39 40 22 74 130	.29 .07 .11 .30 .19	20 31 3 6 <1	. 19 .35 . 19 .20 . 16	5 <3 <3	2.88 6.34 .89 4.68 5.37	.02 .01 .01 .02 .02	.02 .02 .02 .02 .02	~~ ~~ ~~ ~~	4 2 7 3 2240
STANDARD C2/AU-S	19	57	37	148	6.7	72	34	1146	3.77	48	14	7	34	50	20.1	15	21	70	.53	.110	38	62	.92	195	.08	29	1.92	.07	.16	12	52

Sample type: Soil. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

ΔΔ

Ashworth Exploration Ltd. PROJECT NUGGET OUEEN FILE # 96-6913

ACHE AND VITCH ρ Cr Ma 8a Τi 8 AL Cu Ph Zn Aa Ní Co Mn Fe As 41 Aυ Th Sr. Cd Sh Ri v Ca i a Na ĸ u. Δu* SAMPLE# Mo % DOM % DÓM X noo x X % DDR DOM DDA DDM DDM DDM % ppm % DOM DOD DOM DOM DOM DOM DOM pom DDI DOM DOR DOM DOM .51 15 .12 6 .87 .01 L1+20E 0+80S 11 .4 28 4 82 . 60 <2 <5 <2 <2 7 <.2 <2 7 26 .26 .025 61 .02 <2 6 <1 ٨ 66 <2 <5 0 <2 10 <.2 <2 7 48 .26 .028 3 38 .43 8 - 14 <3 1.48 .03 .04 <2 20 .3 14 5 111 1 02 2 11+20E 1+00S 12 16 1 18 . 13 <5 9 44 .24 .025 3 34 .40 <3 1.33 03 03 18 12 101 .94 <2 <2 <2 <.2 <2 <2 τ 13 16 <.3 1. 6 RE 11+20E 1+00S 1 .23 19 <2 5 7 218 .13 .014 2 88 . 18 <3 5.06 .02 .02 3 17 <3 20 <.3 7 2 69 4.89 <2 3 <.2 <2 3 <2 57 11+40F 1+00N <5 <2 <2 7 .3 3 <2 105 .16 .046 3 65 .60 5 .16 <3 6.67 .02 .03 <2 2 31 <3 31 14 154 1.95 <2 6 L1+40E 0+80N < 3 6 3 117 . 19 5 . 15 6 7.98 L1+40E 0+60N 20 <3 16 <.3 11 1 57 4.77 <2 7 <2 ス 5 .2 <2 7 125 .09 .026 .02 .02 <2 1 1 39 33 5 115 1.94 <2 <5 <2 <2 10 .3 <2 0 on .16 .066 g 67 .55 26 . 13 <3 5,90 .03 .02 <7 41 <3 <.3 1 11+40F 0+40N 1 9 95 .18 .030 4 50 .20 13 . 16 .02 26 2 79 1.71 2 <5 <2 <2 <.2 <2 5 <3 4.45 .01 <2 1 2 13 <3 <.3 7 11+40E 0+20N .07 .019 3 43 .11 24 .42 4 7.92 -01 .03 29 27 6 89 <.3 11 72 5 22 34 <5 <2 2 6 .5 3 3 210 <2 1 1.1+40E BL 1 5 <5 9 65 .19 .038 6 41 .35 26 .17 <3 5.15 .02 .02 <2 <3 31 12 94 1.37 <2 <2 <.2 <2 3 1 L1+40E 0+20S 1 18 <.3 3 .2 <2 <2 189 2 .20 .24 <3 3.65 .02 .02 <2 11+40F 0+40S 1 6 4 12 <.3 5 66 4.45 ٦ <5 <2 2 4 .12 .014 64 6 1 1 <5 5 .13 .017 2 54 .19 10 .20 <3 4.55 .02 .02 <2 3 11+40E 0+60S 12 6 18 <.3 2 99 4.49 3 <2 2 .5 <2 3 161 1 4 .25 10 9 68 . 99 2 <5 <2 <2 6 <.2 <2 5 66 .15 .015 3 34 7 .24 <3 1.53 .01 .02 <2 3 11+40F 0+80S 5 12 <.3 1 1 <5 <2 <2 178 .43 .024 103 2.21 44 .29 <3 2.32 .05 .20 <2 2 L1+40E 1+00S <1 2 4 104 <.3 64 24 709 5.03 4 5 .3 <2 4 1 12 5 3 <2 <5 <2 <2 4 .2 <2 3 251 .13 .012 57 .31 10 .33 3 1.53 .01 .02 <2 1 Q <.3 112 6.51 1 L1+60E 1+00N 1 4 25 <2 10 <2 .21 .036 5 55 .32 .17 3 4.42 .03 .02 <2 L1+60E 0+80N 26 <3 25 <.3 20 6 96 2.41 <2 <5 <2 <.2 <2 160 1 1 14 5 <1 53 2.35 2 <5 <2 <2 7 <.2 <2 <2 293 .14 .018 3 55 .11 <1 .28 <3 3.64 .02 .02 <2 Z L1+60E 0+60N 10 <3 <.3 1 <5 <2 <2 5 <2 2 260 .11 .018 3 55 .14 11 .29 4 3.60 .01 .02 <2 1 Q 11 <.3 59 5.88 <2 <.2 4 1 L1+60E 0+40N 1 6 137 3.28 <2 <5 <2 <2 11 <.2 4 4 141 .21 .063 9 49 .40 19 .16 4 6.49 .03 .03 <2 2 L1+60E 0+20N 2 41 <3 84 <.3 17 6 .38 35 181 38 289 6.34 36 <5 <2 3 8 .8 3 <2 259 .07 .025 4 70 1.30 40 <3 4.81 .01 .02 <2 2 L1+60E BL 25 13 <.3 8 2 3 3.86 .02 .02 <2 2 30 112 1.24 3 8 <2 <2 12 .5 <2 65 .28 .044 6 41 .31 24 .13 1.1+60E_0+20S 13 <3 <.3 11 3 1 3 3.37 .02 <2 2 12 12 21 <.3 7 1 82 2.50 5 <5 <2 <2 7 .2 2 3 114 .14 .021 6 37 .27 15 . 14 .01 12 11+60E 0+40S .02 <2 <3 20 <.3 Q. 3 99 2.35 2 <5 <2 <2 11 <.2 <2 3 89 .29 .047 6 47 .31 12 .15 4 4.43 .04 2 15 L1+60E 0+60S <1 .33 <2 <5 <2 2 5 .3 <2 <2 163 .16 .016 1 88 16 .24 5 5.81 .03 .02 <2 1 <3 24 11 116 5.07 1.1+60E 0+80S 1 19 <.3 3 <5 2 .06 .010 2 26 -14 9 .08 <3 2.23 -01 .01 <2 3 228 1.56 <2 <2 <2 <.2 <2 4 46 L1+60E 1+00S 1 13 <3 6 <.3 4 2 .19 <3 4.09 .02 <2 10 . 19 .02 7 2 63 2.64 ζ 8 <2 <2 8 .3 <2 5 144 .13 .028 5 56 6 L1+80E 1+00N 1 10 4 8 <.3 .02 .02 <2 122 .20 .030 3 47 .21 20 .18 <3 3.35 L1+80E 0+80N 14 <3 13 <.3 7 3 82 2.57 2 <5 <2 <2 9 .2 2 6 1 1 .02 7 77 5.52 <2 <5 <2 <2 6 .5 <2 <2 199 .14 .018 2 72 . 16 17 .24 <3 3.97 .02 <2 1 12 <3 12 <.3 2 L1+80E 0+60N 1 .03 .02 <2 2 79 4.68 <2 <5 <2 <2 10 <.2 <2 2 228 .15 .015 3 59 .30 13 .23 <3 3.50 L1+80E 0+40N 1 7 4 9 <.3 8 2 .20 125 .12 .025 62 .58 27 5 6.32 .02 .02 <2 2 L1+80E 0+20N 3 36 <3 45 <.3 19 5 124 2.91 4 <5 <2 2 6 <.2 <2 9 3 <2 5 35 4 6.18 .01 .02 1 <2 <2 9 <2 128 .13 .031 43 .24 .21 L1+80E BL 10 18 -5 70 .5 8 59 2.64 -14 -5 .4 6 - 1 .02 <2 2 <2 <2 104 .30 .046 5 44 .34 20 . 15 4 4.20 .02 16 3 47 <.3 12 3 102 1.56 2 <5 14 <.2 <2 4 L1+80E 0+20S 4 .01 48 <5 <2 2 7 <.2 <2 <2 180 .17 .030 9 44 .28 35 .11 4 5.31 .02 <2 40 23 54 145 8.30 L1+80E 0+40S 4 28 <.3 8 3 <2 3 <2 3 96 .25 .027 4 70 .37 17 .25 <3 4.68 .02 .02 <5 <2 10 .2 <2 L1+80E 0+60S 20 6 23 <.3 7 3 127 1.72 <2 1 .03 <2 11 229 .18 .030 2 52 . 95 19 .31 3 1.76 .02 L1+80E 0+80S 2 21 40 <.3 19 7 379 4.41 8 <5 <2 <2 6 <.2 <2 <2 1. 44 29 2.05 .06 .15 11 19 57 37 151 7.0 76 34 1172 3.97 46 19 7 32 52 20.7 17 18 73 .56 .109 38 60 .95 195 .08 STANDARD C2/AU-S

Sample type: SOIL. Samples beginning (RE/ are Reruns and (RRE/ are Reject Reruns.

Data 4 FA

Page 6

44
ACHE ANALYTICAL

÷

Ashworth Exploration Ltd. PROJECT NUGGET QUEEN FILE # 96-6913

ACHE ANALYTICAL						_	-																						AC	HE AMALY	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Са ррпі	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La. ppm	Cr ppnt	Mg %	8a ppm	Ti %	B ppm	AL X	Na %	K X	y ppm	Au* ppb
L1+80E 1+00S L2+20E 0+00 L2+20E 0+20S L2+20E 0+20S L2+20E 0+40S L2+20E 0+60S	2 7 2 <1 3	26 11 7 3 10	9 11 12 <3 14	48 54 4 <1 5	.5 .5 .3 .3 .4	12 2 1 <1 1	5 2 1 1 1	190 6 105 1 26 29 34		<2 6 3 4 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	4 <2 <2 <2 <2 <2	6 6 5 4 5	1.5 1.4 .8 .4 .6	3 4 3 2 <2	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	233 103 35 5 31	.10 .05 .02	.020 .029 .032 .011 .071	5 4 3 3 4	88 28 19 1 11	.41 .95 .04 .01 .07	16 22 21 11 30	.51 .13 .16 .01 .04	<3 1 3 4	.59 .21 .92 .18 .76		.02 .02 .03 .03 .05	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16 2 1 2 15
L2+20E 0+80S L2+20E 1+00S L2+40E 0+00 L2+40E 0+20S L2+40E 0+40S	1 <1 34 2 <1	9 3 10 3 4	18 17 15 8 3	12 2 44 1 <1	.6 .5 .6 .5 <.3	7 2 6 1 <1	4 <1 1 1	37 1	2.48 .25 .50 .20 .13	5 4 16 5 2	6 11 <5 13 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 5 12 3 4	.3 .4 .6 .5 <.2	3 4 5 2	4 5 ~2 ~2 ~2	194 64 171 41 5	.07 .11 .04	.068 .021 .016 .010 .014	3 3 5 3 2	35 17 21 7 2	.23 .05 .15 .11 .04	14 14 20 30 13	.18 .46 .33 .15 <.01	3	.27 .52 .53 .69 .30		.02 .02 .02 .04 .03	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	5 13 1 <1 2
L2+40E 0+60S L2+40E 0+80S L2+40E 1+00S L2+60E 0+00 L2+60E 0+20S	1 <1 <1 16 6	15 4 3 5 4	23 8 8 21 16	3 66 <1 33 10	-6 -6 -5 1.2 -6	2 19 <1 3 2	1 10 1 <1 <1	44 318 1 61 55 1 125 3	.26 .19	3 2 5 5 2	<5 15 9 14 5	<2 <2 <2 <2 <2 <2	<2 <2 2 2 2 2 2	8 10 2 3 10	.5 .5 .4 .4 <.2	3 5 4 5 5	<2 5 4 5 7	36 85 39 185 203	.41 .06 .02	.036 .011 .005 .012 .016	3 2 3 2 4	23 73 5 25 25	.09 1.20 .03 .65 .36	20 23 3 12 31	.10 .41 .33 .38 .37	4 2 <3 <3 1	2.03 .46 1.39 1.47		.01 .06 .03 .02 .06	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 2 1 1
L2+60E 0+40S L2+60E 0+60S L2+60E 0+80S L2+60E 1+00S L2+60E 1+00S L2+80E 0+00	1 10 <1 <1 7	4 31 7 4 21	10 20 7 19 6	<1 105 1 10 36	.6 .5 .6 .3	<1 10 3 <1 8	<1 <1 1 1 4	108 5	.47 .97	5 5 3 2 4	<5 <5 12 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 14 3 4 10	.3 .4 <.2 .4 .3	2 3 4 2 2	4 6 2 2 2 2	17 146 18 169 127	.11 .04 .14	.023 .030 .081 .004 .030	3 4 3 1 8	5 46 11 18 41	.03 .10 .02 .23 .21	11 22 14 <1 14	.08 .33 .03 .59 .20	<3 6 3 <3	.28 5.39 .92 .65 5.49	.01 .01 .01 .01 .03	.03 .02 .03 .01 .02	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	565 4 7 7 4
L2+80E 0+20S L2+80E 0+40S L2+80E 0+60S RE L2+80E 0+60S L2+80E 0+80S	1 <1 3 3	2 2 8 10	9 5 59 59 12	1 <1 8 8 13	.8 <.3 .9 .6 <.3	2 <1 10 7 3	<1 <1 2 2 1	74 35 46 48 104 7	.24 .12 .69 .71 .99	6 2 2 6 2 0 2 0	14 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 5 5 3	.5 <.2 .2 .2 .2	3 2 4 3 2	<2 <2 3 <2 7	29 23 54 56 315	.01 .09 .09	.010 .015 .018 .019 .011	5 1 4 3 3	6 2 23 25 74	.06 .03 .22 .23 .28	1 13 20 9 <1	.14 .05 .23 .24 .45	-	.44 .80 .68 .72 3.04	.01 <.01 .01 .01 .02	.02 .02 .03 .03 .02	<u>~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 138 13 12 5
L2+80E 1+00S L3+00E 0+00 L3+00E 0+20S L3+00E 0+40S L3+00E 0+60S	<1 6 1 1	2 20 4 2 16	9 3 5 8 22	<1 225 5 <1 7	.6 .6 .6 <.3 .8	<1 23 <1 <1 1	1 3 <1 <1 <1	41 99 1 57 75 43	.23 .40 .12 .24 .66	2 3 3 <2 4	8 <5 14 <5 <5	<2 <2 <2 <2 <2 <2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 18 3 4 5	<.2 .4 <.2 <.2 <.2	3 2 4 2 3	5 2 2 2 2 2 2 2	22 57 40 34 20	.41 .02 .09	.011 .087 .004 .007 .030	4 7 4 2 9	7 27 2 19 13	.03 .34 .04 .04 .14	6 32 2 <1 15	.20 .11 .14 .16 .03	34	.54 .98 .40 .39 .77	<.01 .03 <.01 .01 .01	.04 .02 .02 .02 .02	~~~~ ~~~~	2 4 1 9 22
L3+00E 0+80S L3+00E 1+00S L3+20E 0+00 L3+20E 0+20S L3+20E 0+40S	<1 <1 10 5 1	2 12 7 4 3	16 7 17 7 5	<1 20 27 6 <1	.6 <.3 .8 <.3 <.3	1 35 5 1 <1	<1 8 1 <1 <1	58 215 1 156 119 1 77	.86	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 <5 13 <5 <5	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 5 10 20 2	.5 .3 <.2 .5 <.2	4 2 5 2 2	10 <2 4 <2 <2	57 75 120 123 20	.25 .08 .19	.005 .005 .015 .014 .007	2 1 2 4	22 70 80 11 4	.05 1.15 .68 .25 .02	1 5 60 17 <1	.49 .39 .35 .28 .11		1.32 1.25 .65	<.01 .03 .01 .01 <.01	.01 .04 .03 .05 .02	<u>^</u> ~~~~~	2 3 2 1 1 1
STANDARD C2/AU-S	18	55	37	133	7.0	68	34	1104 3	3.70	48	19	8	32	50	19.0	18	21	6 9	.52	.108	37	60	.91	195	.08	27	1.89	.06	. 15	12	46

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 7

Data____FA

	E# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr M															13			Pa	ge	8			YTICAL							
SAMPLE#					-						-							V mqq					Mg %	8a ppm	Ti %	8 ppm	Al %	Na %	K X	W ppm	Au*
L3+20E 0+60S	1			6	<.3	<1	1	19	.12																					- Prim	ppb
L3+20E 0+80S	<1	2	7	8		3	ź		1.10	<2	<5	<2	<2	3	<.2	<2	<2	16	.02	.008	19	3	.02	8	.01	3		<.01	.03	<2	25
L3+20E 1+00S	<1	2	10	23	.4	17	3	158 8		<2	13	<2	4	4	.6	5	<2	103		.006	6	8	.07	2	.43	3	.21	.01	.01	<2	5
13+40E 0+00	1	5	<3	9	4	4	د 1>		3.88	4 2	16 6	<2	<2	4 5	<.2	<2	<2	406		.009	2	77	.74	<1	.62		1.34	.04	.03	<2	12
RE L3+40E 0+00	1	7	~ 7	ő	.4	3	1	67 9		2	10	<2 <2	2	2	.2 .2	2	6	335		.016	2	67	.14	5	.43		2.12	.02	.02	<2	4
	'		5	•	.0			01.5		2	10	< <u>2</u>	2	4	.2	4	<2	337	.11	.014	2	67	.15	2	.44	<3 2	2.16	.02	.03	<2	2
L3+40E 0+20S	1	11	7	8	1.1	5	<1	19 1	กผ	4	<5	<2	<2			~3	~2	37	04	110	,	•/	0 7	45	00						
L3+40E 0+40S	2	4	6	13	.5	ź	1		5.02	~?	5	~2		4	.4	<2	<2	23		.110	4	14	.02	15	.02	<3	.73	.01	.02	<2	1
L3+40E 0+60S		14	11	9	.9	3	<1	32	.34	ž	<5	<2	2 <2	10 13	<.2	2	<2	88		.038	5	22	.12	21	.08		1.17	.01	.04	<2	3
L3+40E 0+80S	l i	17	9	7	.8	6	1	26	.20	ź	8	~2	ŝ		<.2	2	<2	14		-064	3	5	.03	2	.02	3	.63	.01	.03	<2	1
L3+40E 1+00S	7	1	<3	12	.3	<1	4	12	.43	~2	<5	~2	<2	6 21	<.2 .6	<2	2	60		.042	4	31	.04	17	.10		1.54	.01	.02	<2	<1
	•	•		12				14	.40	12	13	12	12	21	••	<2	<2	36	.27	.032	1	3	.08	10	.05	7	.10	.01	.03	<2	1
L3+60E 0+00	1	6	5	5	.4	5	1	19	.26	<2	<5	<2	<2	9	.2	<2	<2	9	10	.067	2	,	07			-		• •		_	_
L3+60E 0+20S	ź	<1	4	4	<.3	1	<1		.16	<2	<5	<2	~2	ź	<.2	<2	~2	43		.005	2 2	6	.03 .04	23 7	.01	3	.49	.01	.02	<2	1
L3+60E 0+40S	6	6	11	12	.8	5	1	59	.53	<2	<5	<2	<2	ģ	.2	2	<2	43		.036	ź	-	. 15		.20	<3		<.01	.01	<2	<1
L3+60E 0+60S	z	7	10	13	.5	5	ż	72	61	<2	8	<2	2	7	<.2	2	~2	77			5	21		12	.14	্র	.54	.02	.04	<2	<1
L3+60E 0+80S	<1	ź	12	42	.3	10	7	333 1	.02	<2	<5	<2	<2	1	.2	<2	<2	116		.017	2	51	.20	<1	.25	<31	1.88	.02	.02	<2	1
		-	142	76		10	•			~ 2	~	14	~6	4	. 2	~2	~2	110	. 17	.010	4	45	.95	2	.34	<3	.95	.03	.03	<2	1
L3+60E 1+00S	<1	3	18	22	.4	11	3	218 1	-94	<2	5	<2	<2	8	.5	4	2	259	.15	.006	5	12	7/	F	10	.7			~~	~	-
L3+80E 0+00	21	ã		120	<.3	10	<1		.85	12	< <u>ś</u>	<2	<2	5	.2	4	<2	207		.008	4	42 30	.34 .34	5 58	.62 .26	<3	.60	.01	.02	<2	5
L3+80E 0+20S	<1	4	7	19	.6		1		.07	<2	<5	~2	<2	28	.5	<2	<2	207		.051	4	2	.09	- 26 - 17 -			.76		.03	<2	1
L3+80E 0+40S	3	ž	5	6	.7	<1	<i< td=""><td>10</td><td>.22</td><td>~2</td><td>~5</td><td><2</td><td>2</td><td>3</td><td>.2</td><td><2</td><td><2</td><td>28</td><td></td><td>.011</td><td>2</td><td>ź</td><td>.09</td><td></td><td></td><td>6</td><td>.09</td><td>.01</td><td>.06</td><td><2</td><td><1</td></i<>	10	.22	~2	~5	<2	2	3	.2	<2	<2	28		.011	2	ź	.09			6	.09	.01	.06	<2	<1
L3+80E 0+60S	ž	1	6	20	<.3	10	4		41	ž	<5	~2	<2	6	<.2	~2	~2	52		.018	4	32	.58	8	.03	<3 3	.30	<.01	-04	<2	<1
	-	•	-				7			-		- 6		0		~4	74	26	.20	.010	1	32	. 30	1	. 10	2	•71	.03	.03	<2	<1
L3+80E 0+80S	2	<1	23	11	.4	5	1	81	.84	2	<5	<2	<2	6	.5	2	3	105	.15	.007	4	31	. 18	4	.52	7	.70	01	03	-3	-1
STANDARD C2/AU-S	20	56	32		6.9	71	33	1142 3		47	16	7	35	52 2		20	18	72	.53		39	63		201	. 08	- 3 - 28 1		.01 .07	.02	<2 13	<1 45

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 4 FA

Ashworth Exploration Ltd. PROJECT NUGGET QUEEN FILE # 96-6913

Page 9

ACHE ANALYTICAL	_			
	 ACHE	ANAL	YTICAL	-

ACHE ANALTIILAL																															AC	HE ANALYTICAL
SAMPLE#	Мо ррпп	Cu ppm	Pb ppm	Zn ppm	-	Ni ppm	Co ppm	Mn ppm		As ppm		Au ppm			Cd ppm	Sb ppm		V ppm	Ca %		La ppm			8a ppm		8 ppm	Al X	Na %		W ppm	Au** ppb	
R1 R2 R3 RE R3 R4	3 2 2	62 44 31 30 29	27 21 12 15 10	140 104 78 78 99	.6 <.3 <.3 <.3 <.3	24 24 23	8 8 8	458 408 415	3.56 3.93 4.37 4.38 5.47	6 <2 2	<5	<2 <2 <2	2	39 14 14	.2 2.>	<2 2 <2	5 6 <2	102 106 105	.61 .37	.068 .042 .025 .024 .018	4 3 3	38 53 52	1.61	96 72 69	.20	4 <3 <3	2.88 3.45 3.35 3.38 5.22	.18 .07 .07	.22	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	39 36 6 8 5	
R5 R6 R7 R8 R9	1 9 3	34 36 13 58 59	10 7 366 7 15	69 64 33 119 85	<.3 524-6 .7	28 21 11 20 24	10 <1 12	262 155 489	4.03 3.45 .63 4.57 4.24	11 5 2	<5 <5 <5	<2 <2 410 <2 <2	<2	35 4	.3 1.1 .4	<2 <2 <2	2 7 <2	5 116	.74	.003 .092	<1 6	33 38 27		87 15 133	.01 .16	<3 <3 <3	4.03 2.30 .16 3.07 3.44	.15 .01 .21	.15 .03 .20	<2 4 <2	4 2 99999 61 527	
R10 R11 R12 R13 R14	4 3 2	21 52 51 34 47		53 134 127 162 127	.6 3.> 3.	19	12 17 16	564 881 1818	7.12 4.57 4.50 6.10 4.46	9 23 20	<5 <5 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2	44 21	.5 5. 2.>	<2 <2	<2 3 <2	107 83 115	3.03 .51 .45 .25 .53	.081 .083	8 9 9	29 26 35	7.12 1.41 1.34 1.76 1.06	247 169 461	.10 .10 .08	4 <3 <3	5.86 2.53 2.55 3.29 1.85	. 19 . 09 . 09	.27 .24	<2 <2 <2	<2 67 5 18 3	
R15 R16 R17 R18 R19	19 7 5	50 66 206 389 9	14 1641 751 695 11	222 830 350 105 5	.4 8.7 5.2 9.0 <.3	21 20 11	9 4	192 563 901	4.65 2.68 4.05 2.90 .51	70 71 102	5 <5 <5	<2 <2	<2 <2	8	11.8		2 <2 <2	21 45	.08 .13 .05	.069 .077 .059 .022 .002	5 4 3	10 17 24 18 28		84 31	.01 .05 .01	<3 <3 4	1.05 .40 1.79 .43 .10	.01 .03 .01	.16 .40 .10		19 156 4446 5381 42	
R20 R21 R22 R23 R24	7 9 18	76 81 53 129 60	132 74 75 545 42	399 98 250 1530 61	1.5 .8 1.1 2.6 .5	33 43 49	13	452 1187 867	3.79 2.47 3.68 3.67 2.10	70 8 41	<5 6 <5	<2 <2 <2	<2 <2 <2	19 25 11	1.1 2.9 36.5	<2 <2	2 <2 <2	42 50 71	.53 .25		4 6 9	24 38 24 23 27	-46 -63 -63	86 166 95	.05 .03 .02	ব্য ব্য ব্য	1.11 .72 1.11 1.10 .56	.09 .07 .05	.08 .16 .18	<2 <2 2	3365 16 19 62 56	
R25 R26 R27 R28 R29	39	45 49 46 32 42	4 6 8	109 89 271 103 119	.3		13 9 15	600 387 1000	3.90 3.78 3.45 5.26 5.69	6 16 9	<5 <5	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	24 58		<2 <2 <2	<2 4 <2	128 92 140	.41 .71	.077	6 5 6	36 21 38	1.45 .82	277 292 97	.22 .18 .16	ও ও ও	2.93 2.67 1.75 3.64 4.31	.21 .09 .14	.46 .33 .21	<2 <2 <2	5 2 4 2 2 2	
R30 R31 R32 R33 R34	16 12 15	49 14 26 27 36	3	111 76 126 130 158	<.3	14 32 12	<1 5 1	179 383 168	5.95 2.46 3.69 3.81 3.59	36 20 11	<5 <5 <5	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 2	10 12 21	<.2 .5 1.0 2.0 2.7	<2 2	<2 <2 2		.27 .25	.055 .157 .114 .181 .082	5 5 4	23	.43 1.64 .73	113 79 128	.07 .08 .04	ও ও ও	3.97 .86 1.81 1.19 1.05	.01 .02 .03	.24 .19 .23	<2 <2	3 5 5 5 6	
STANDARD C2/AU-R	19	5 3	38	139	6.5	69	32	1105	3.67	45	23	8	31	49	19.2	18	18	67	.52	.109	37	60	.94	192	.08	29	1.92	.07	. 15	11	499	

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.

Data A FA VIA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Ashworth Exploration Ltd. PROJECT NUGGET OUEEN FILE # 96-6913

ANE ANALYTICS SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca Moc Ba Ti B P La Cr AL Na K U Au++ mag mag mag DDM mod mod mod mod * % oom oom X pon % oom % % % pom DOD R35 132 51 a 29 13.1 9 <1 45 1.21 26 <5 9 <2 6 .8 4 <2 12 .02 .021 3 27 .03 44<.01 <3 .15 .01 .08 7645 7 R36 13 141 127 17 3 88 3.67 119 <2 20 .6 <5 <2 7 3.9 2 <2 23 .04 .083 5 12 . 04 62<.01 5 .34 .01 .20 294 <2 R37 27 132 24 19 .4 14 2 103 3.16 45 <2 2 <2 49 .15 .147 13 18 <5 <2 10 .7 .03 86<.01 4 .45 .01 .25 <2 277 838 0 47 11 284 .5 17 6 188 4.64 11 <5 <2 <2 17 4.1 <2 3 80 .21 .123 4 25 1.08 116 .01 5 1.54 .03 .29 <2 17 R39 13 28 19 129 .4 10 155 4.53 62 <5 <2 <2 14 3 .8 <2 <2 100 .29 .184 8 26 .71 144 .03 <3 1.37 .01 .35 <2 60 R40 7 153 3 155 2.55 2 <5 <2 16 30 .5 22 2 15 2.8 <2 <2 88 .26 .127 4 26 .64 110 .10 <3 1.01 .03 .22 <7 <2 R41 23 34 7 146 .6 25 4 210 3.42 <2 <2 9 1.5 3 2 95 .27 .178 4 <5 7 31 .70 155 .06 3 1.19 .02 .29 <2 11 23 33 RF R41 9 145 .8 25 4 210 3.40 3 < 5 <2 2 9 2.0 2 <2 95 .28 .175 7 30 .70 155 .06 <3 1.18 .02 .29 <2 4 15 36 .9 33 R42 7 263 5 302 3.13 27 <5 <2 <2 18 3.6 3 <2 102 .39 .152 5 31 .73 90 .10 3 1.22 .05 .24 <2 <2 32 34 R43 6 224 .4 16 2 228 3.93 11 <5 <2 <2 12 1.3 3 <2 137 .16 .130 5 26 .56 142 .04 <3 1.10 .03 .27 19 <2 R44 30 2.18 49 <5 89 <2 2 19.1 11 22 8 .01 .006 <1 30 .01 18 .01 <3 .10<.01 .05 6 1793 8680 217 148.1 12 3 3 34978 R45 5 205 114 15 11.8 9 <1 38 .61 8 <5 <2 <2 1 .3 <2 <2 6 .01 .005 1 37 .02 18<.01 <3 .06 .01 .04 6 670 R46 152 63 9 10.7 11 38 1 <.2 <2 2 1.01.002 <1 30 <.01 7<.01 <3 .02 .01 .01 5 1689 4 1 .45 2 <5 <2 <2 R47 6 <5 <2 <2 15 <.2 <2 111 .62 .014 <1 202 3.98 31 .17 <3 3.93 .14 .15 <2 1 65 9 53 .6 156 31 638 4.82 18 R48 1 60 7 40 .3 129 26 505 3.37 5 <5 <2 <2 24 <.2 <2 72 .94 .018 1 121 2.95 23 .16 <3 3.29 .19 .11 <2 2 R49 71 8 88 .4 217 51 1318 7.49 3 <5 <2 <2 5 1 .4 <2 <2 218 .16 .012 1 336 6.48 32 .14 6 6.01 .07 .11 <2 <2 .5 151 42 1001 6.70 <2 <5 <2 <2 6 <.2 <2 <2 193 .31 .016 <1 223 5.53 32 .21 4 5.17 .07 .10 <2 R50 84 <3 82 <1 <2 FR 1 2 238 4 44 1.3 24 12 503 2.97 <2 <5 <2 <2 5 .3 <2 <2 99 .20 .017 <1 71 1.32 19 .14 <3 1.46 .04 .04 580 6 17 FR 2 <3 52 <.3 19 12 378 3.24 <2 <5 <2 <2 13 <.2 <2 3 92 .47 .017 1 56 1.51 13 .13 <3 1.89 .02 .02</p> 2 5 10 FR 3 30 <3 1 80 <.3 46 24 665 5.27 <2 <5 <2 <2 24 .2 <2 <2 164 .85 .048 1 153 2.71 31 .28 6 3.02 .11 .10 2 53 FR 4 9 2 142 .57 <2 5 32 1 -14 <.3 8 - 5 <2 .2 <2 3 7 .39 .004 6 8 11 .15 65 .03 5 .78 .11 .14 <2 2 FR 5 5 12 9 3 140 .77 <2 <5 <2 5 7 <.3 21 <.2 <2 <2 14 .26 .004 1 9 11 .20 55 .04 3 .75 .12 .14 3 3 FR 6 1 7 8 7 <.3 7 2 89 .50 <2 6 <2 4 8 <.2 <2 4 5 .20 .002 7 10 .08 131 .03 <3 .63 .11 .21 2 <2 STANDARD C2/AU-R 19 55 6.8 74 35 1120 3.81 42 18 8 31 51 19.6 20 20 70 .51 .108 38 63 .96 195 .08 32 1.90 .08 .16 12 38 151 466

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data - FA VIN

Page 10

6-Dec-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

ASHWORTH EXPLORATION LTD. AK 95-1125 405-609 HASTINGS ST, W VANCOUVER, B.C. V6B 4W4

ATTENTION: Mr. Fayz Yacoub

329 Soil samples received Nov. 21, 1995 PROJECT #: None given SHIPMENT #: None given

Et #.	Tag #	Au(ppb)	Ag	AI %	As	6=	Bi	Ca %	Cd	Co	Cr	Си	Fe %	ها	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Π%	U	v	w	Y	Zn
1	L0+00- 0+40 S	- s	<.2	4.93	10	20	5	0.12	v	6	39	18	2.96	<10	0.13	51	<1	0.01	6	500	30	ব	8	6	0,10	<10	133	<10	4	26
2	L0+00- 0+50 S	<5	<.2	1.63	<5	30	20	0.07	1	10	26	12	10.30	<10	0.11	109	2	<.01	2	20	36	<5	<20	2	0.25			<10	<1	36
3	lo+00-0+60 s	<5	<.2	2.00	<5	15	<5	0.10	<1	6	19	11	2.11	<10	0.20	106	<1	0.01	5	190	10	<\$	<20	6	0.10		76	<10	<1	32
4	10+00-0+70 S	<5	<.2	3.18	10	30	<5	0.16	<1	8	26	- 34	2.22	<10	0.23	138	<1	0.01	13	580	28	<5	<20	11	0,11	<10	95	<10	3	56
5	1,0+00- 0+80 S	60	<.2	3.54	20	35	5	0.11	<1	21	31	43	4.00	<10	0.10	844	2	<.01	8	300	260	<5	<20	5	0.11	<10	157	<10	2	85
6	L0+00- 0+90 S	<5	<.2	3.07	<5	25	25	0.08	<1	12	60	18		<10	0.07	76	<1	<.01	7	90	22	<5	<20	3	0.32	<10	205	<10	<1	41
7	L0+00- 1+00 S	<5	<.2	6,17	<5	40	20	0.11	<1	19	123	45	6.84	<10	1.14	388	ব	<.01	16	240	30	<5	<20	4	0.40	<10	130	<10	2	71
8	L0+00- 0+10 N	10	<.2	0.59	ব	15	<5	0.02	<1	2	11	67	1.63	<10	0.04	29	9	<.01	5	110	14	<5	<20	1	0.04	<10	89	<10	<1	64
9	L0+00- 0+20 N	<5	<.2	0.11	⊲5	<5	<5	0.03	<1	<1	2	23	0.07	<10	<.01	9	2	<.01	<1	90	4	<5	<20	<1	<.01	<10	4	<10	<1	36
10	L0+00- 0+30 N	<5	<.2	0.78	4	15	<5	0.04	<1	2	16	15	0.82	<10	0.05	20	2	<.01	2	230	18	\$	<20	8	0.04	<10	31	<10	1	26
11	L0+00- 0+40 N	<5	<.2	0.24	<5	15	10	0.03	<1	4	2	7	0.65	<10	0.08	29	<1	<.01	<1	30	8	ৰ	<20	<1	0.26	<10	52	<10	4	16
12	L0+00- 0+60 N	4	<.2	1.54	<5	15	<5	0.07	<1	3	26	26	0.30	<10	0.14	33	<1	<.01	Э	220	12	\$	<20	6	0.09	<10	32	<10	3	19
13	L0+00- 0+70 N	<\$	<.2	2.35	10	10	-5	0.11	<1	4	25	30	0.52	<10	0.18	55	<1	<.01	4	310	16	<5	<20	6	0.09	<10	58	<10	з	35
14	LO+00- 0+80 N	<5	<.2	3.13	10	10	<5	0.08	<	5	40	66	0.76	<10	0.22	56	<1	<.01	8	330	12	<5	<20	3	0.13	<10	83	<10	5	28
15	L0+00- 0+90 N	45	<.2	0,59	<5	10	5	0,06	<1	4	15	11	1.15	<10	0.10	29	<	<.01	Э	70	10	<5	<20	2	0.18	<10	76	<10	1	20
16	L0+00- 1+00 N	ব	<.2	0.65	<5	10		0,09	<1	3	13	16	1.16	<10	0.15	47	<1	<.01	5	200	6	\$	<20	4	0.06	<10	39	<10	<1	28
17	L0+20E- 0+10 N	180	3,0	3.35	55	55	<5	0.16	6	11	33	169	6.13	<10	0.32	313	26	<.01	36	580	640	\$	<20	15	0.11	<10	147	<10	4	352
18	L0+20E- 0+20 N	<5	<.2	0.88	<5	40	15	0.09	<1	5	18	9	4,79	<10	0.13	53	15	<.01	2	<10	24	<5	<20	12	0.18	<10	324	<10	<1	55
19	L0+20E- 0+30 N	<5	<.2	1.16	<5	15	5	0.17	<1	4	19	9	0.99	<10	0.10	65	<1	<.01	3	110	22	\$	<20	7	0.16	<10	79	<10	2	37
20	L0+20E+ 0+40 N	<5	<.2	5.1 8	10	25	5	0.15	<1	5	40	16	3.75	<10	0.19	101	3	0.01	9	500	14	4	<20	7	0.11	<10	85	<10	7	49
21	L0+20E- 0+50 N	<5	<.2	1.87	<5	20	-	0,13	<1	5	17	10	2.99	<10	0.08	319	<1	<.01	4	190	8	\$	<20	4	0.13	<10	65	<10	2	34
22	L0+20E- 0+60 N	ব	<.2	1.88	55	35		0.14	<1	10	30	16	7.78	<10	0.15	346	5	<.01	7	260	4	<5	<20	4	0.10	<10	108	<10	<1	48
23	L0+20E- 0+70 N	<5	<.2	0.24	<5	10	5	0.07	<1	3	15	13	0.20	<10	0.02	15	<1	<.01	<1	90	10	\$	<20	6	0.14	<10	20	<10	1	30
24	LO+20E- 0+60 N	\$	<.2	0.39	-5	20		0.11	<1	10	34	16	5,45	<1Q	0,30	80	<1	<.01	9	30	10	ব্	<20	3	0.29	<10	256	<10	<1	35
25	LD+20E- 0+90 N	5	<.2	1.77	<5	20	5	0.23	<1	6	28	17	3.54	<10	0.17	122	<1	0.01	5	220	8	ৎ	<20	10	0.09	<10	141	<10	<1	40

1105

Comments: 1CD

Fax No.:

Compa

V

σ

х 0

Fax No.:

5 From: . Date: _

9

To: _____ Dept.:

Poet-11'

Page 1

. . . .

ECO-TECH LABORATORIES LTD.

ASHWORTH EXPLORATION LTD. AK 95-1125

.

									_	_	•		1 - A	1- V	Mn	Mo	Na %	NI	Р	РЪ	Sb	Sn	Sr	Π%	U	v	w	Y	Zn
ELA	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI Ca %	Cd	Co	Cr	Cu			0.75	148		<.01	22	50	- 6	10	<28	<1	0.20	<10	65	<10	<1	29
26	L0+20E- 1+00 N	<5	<.2	0.87	<5	<5	10 0.10	<1	10	36	•	1.41		0.75	200	<1	<.01	16	60	29	<5	<20	10	0.20	<10	162	<10	<1	59
20	L0+20E- 0+20 S	<5	<.2	2.02	<5	40	15 0.06	<1	10	77		5.86		0.89	200	1	< 01	4	120	20	<5	<20	4	0.22	<10	211	<10	<1	45
28	L0+20E- 0+30 S	<5	<.2	3.67	<5	35	15 0.04	<1	9	36	21	8.18		0.10	35	<1	<.01	2	40	22	<5	<20	3	0,13	<10	43	<10	<1	15
20	L0+20E- 0+40 S	<5	<.2	0.40	<5	10	5 0.06	<	з	9	2	0.86	. –		126	<1	<.01	3	250	24	<5	<20	5	0.05	<10	46	<10	<1	56
30	L0+20E- 0+50 S	<5	<.2	0.79	<5	10	5 0.07	<1	3	16	5	1.21	<10	0,41	120	~1		•											
30	0,202,0.00								_		•		-40	0.08	75	<1	<.01	4	170	20	<5	<20	5	0.19	<10	170	<10	<1	40
31	L0+20E- 0+60 S	<5	<.2	4.02	<5	25	10 0.08	<1	8	43	14	5.91	<10	0.05	60	<1	<.01	6	130	32	<5	<20	5	0.21	<10	145	<10	ব	35
312	L0+20E- 0+70 S	<5	<.2	2.52	4	20	5 0.09	<1	8	39	15	4.09	<10	0.01	74	<1	<.01	ā	70	46	<5	<20	<1	0.42	<10	265	<10	ব	64
33	L0+20E- 0+80 S	170	<.2	1.85	<5	30	30 0.12	2	15	44	28	9.94	<10 <10	0.01	33	<1	<.01	4	130	46	<5	<20	<1	0.14	<10	70	<10	2	26
34	L0+20E- 1+00 S	5	1.8	0.99	<5	<5	5 0.08	<1	4	29	9	0.84	•	0.13	- 3-3 98	7	<.01	10	440	124	<\$	<20	8	0,06	<10	94	<10	<1	184
35	L0+40E- 0+00 BL		<.2	0,99	<5	35	5 0,16	2	3	17	24	2.87	<10	U. 10	30	r		14			-								
30									_			o 77	<10	0.10	31	<1	<.01	з	150	10	<5	<20	4	0.08	<10	61	<10	1	10
36	10+40E- 0+10 N	<5	<.2	1.17	<5	10	<5 0.07	<1	3	22	8	0,77		0.28	177	<1	0.01	8	70	18	<5	<20	6	0.23	<10	355	<10	<1	52
37	10+40E- 0+20 N	<5	<.2	1.03	<5	45	20 0.11	1	13	36	10	9.59	<10	0.25	35	<1	0.02	4	500	12	<5	<20	9	0.03	<10	47	<10	2	58
38	L0+40E- 0+30 N	<5	<.2	1.20	5	20	<5 0,30	<1	2	20	25	0.59		0.05	53	<1	<.01	5	100	12	<5	<20	6	0.19	<10	80	<10	2	19
39	L0+40E- 0+40 N	<5	<.2	1.44	<5	15	10 0.09	<1	6	28	5	1.67	<10 <10	0.03	28	<1	<.01	2	80	10	<5	<20	4	0.17	<10	161	<10	<1	14
40	10+40E- 0+50 N	<5	<.2	1.46	<5	15	10 0.06	<1	5	31	4	2.47	~10	0.05	20	- •		-											
									_		•	0.65	<10	0.09	35	<1	0.01	3	320	18	<5	<20	9	0.08	<10	Π	<10	4	13
41	1.0+40E- 0+60 N	<5	<.2	4.01	15	15	<5 0.12	<1	3	33	8 6	0.74	<10	0.05	21	<1	<.01	1	140	8	<5	<20	5	0.06	<10	34	<10	1	18
42	10+40E- 0+80 N	<5	<.2	1.23	<5	10	<5 0.06	<1	2	21	-	0.39	<10	0.09	30	<	<.01	2	60	10	<5	<20	3	0.23	<10	111	<10	3	20
43	L0+40E- 0+90 N	<5	<.2	0.79	<5	5	10 0.07	<1	5	31	4		<10	0.03	75	<1	0.02	3	370	8	<5	<20	7	0. 06	<10	96	<10	<1	64
44	L0+40E- 1+00 N	<5	<.2	0.76	<5	30	<5 0.11	1	4	17	9	1.73	<10	0.35	89	<1	<.01	1	130	14	<5	<20	6	0.05	<10	49	<10	<1	25
45	L0+40E- 0+10 S	<5	<.2	0.79	<5	20	<5 0.04	<1	2	14	3	1.06	10	0.00	~	.,													
~								_		~	2	0.13	<10	0.04	17	<1	<.01	<1	90	14	<5	<20	7	0.11	<10	23	<10	2	13
46	1.0+40E- 0+20 S	<5	<.2	0.38	<5	` 10	5 0.05	<1	2	9	4	0.13	<10	0.05	22	<1	<,01	1	90	18	<5	<20	5	0.12	<10	35	<10	2	12
47	L0+40E- 0+30 S	<5	<.2	0.82	<5	10	<5 0.07	<1	3	22	4	1.73	<10	0.03	46	1	0.01	3	820	24	<5	<20	7	0.01	<10	22	<10	<1	66
48	10+40E- 0+40 S	<5	0.4	0,83	<5	20	<5 0.23	্ব	2	10	7	0.84	<10	0.09	36	<1	0.02	2	210	14	<5	<20	11	0.06	<10	27	<10	2	23
49	L0+40E- 0+50 S	<5	<.2	1.17	<5	20	<5 0.15	<1	2	15	8	0.97	<10	0.07	41	<1	<.01	2	360	26	<5	<20	7	0.06	<10	45	<10	<1	41
50	L0+40E- 0+60 S		<.2	0,77	<5	15	<5 0,11	<1	2	12	•	Q.97	-10	0.07		•													
									-	~~	10	2.96	<10	0.09	34	<1	<.01	3	130	28	<5	<20	4	0.16	<10	168	<10	<1	23
51	L0+40E- 0+70 S	<5	<.2	1.85	<5	20	10 0.10		5	28 52	53	2.91	<10	0.08	172	1	0.01	10	600	190	<5	<20	5	0.11	<10	126	<10	7	63
52	L0+40E- 0+80 S	80	0.8		15	20	<5 0.10		20	32	- 33	0.93	<10	0.09	97	<1	0.03	3	370	14	<5	<20	15	0.03	<10	25	<10	<1	96
53	L0+40E- 0+90 S	<5	0.6	0.50	<5	15	<5 0.43		3	-	13	6,01	<10	0.09	48	<	0.02	5	140	60	<5	<20	5	0.22	<10	154	<10	<1	61
54	L0+40E- 1+00 S	<5	<.2	1.41	<5	30	15 0.09		8	29	13	0.50	<10	0.16	73	3		5	400	10	<5	<20	- 14	0.03	<10	22	<10	3	33
55	L0+60E- 0+00	<5	<.2	1.03	<5	20	<5 0.13	<1	2	10		0.00	10	u . 10															
										~	14	8,85	<10	0.10	643	17	<.01	11	760	16	<5	<20	21	0.06	<10	128	<10	<1	102
56	L0+60E- 0+10 N	I <5	<.2	4,94	10	85	15 0.47		11	22 40	12		<10	0.28	705	2		8	130	10	<5	<20	6	0,14	<10	183	<10	<1	40
57	L0+60E- 0+20 N	I <5	<.2	-	<5	30	15 0.10		38		12	5.70 6.07	<10	0.16	943	30		16	230	18	ব্য	<20	5	0.05	<10	200	<10	<1	84
58	L0+60E- 0+30 N		<.			45	10 0.16		22	12	15 6	0.58	<10	0.15	49	<1	0.02	4	240	8	<5	<20	4	0,06	<10	28	<10	<1	50
59	L0+60E- 0+40 N	_	<3	2 0,57	<5	10	<5 0.07		3	13	-	1.86	<10	0.13		<1	<.01	8	70	4	<5	<20	4	0.15	<10	162	<10	<1	61
60	10+60E- 0+50 M	_	<.2	2 0.26	<5	10	5 0.15	4	6	28	4	1.00	-10	0.13															

ASHWORTH EXPLORATION LTD. AK 85-1125

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi (Ca %	Cd	Co	Cr	Сш	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	SÞ	Sn	Sr	Π%	U	v	W	Y	Zn
61	L0+60E- 0+60 N	<	<2	1.33	<5	10	Ś	0.06	<1	4	32	9	1.14	<10	0.18	41	<1	<.01	5	260	10	<5	20	2	0.09	<10	78	<10	2	27
62	10+60E- 0+70 N	-5	<2	0.13	<5	20	\$	0,34	<1	<1	3	7	0.15	<10	0.12	70	<1	0.05	Э	400	10	5	<20	23	<.01	<10	5	<10	<1	135
63	10+60E- 0+80 N	\$	<2	1.71	<5	20	10	0.15	<1	5	38	15	2.08	<10	0.27	74	<1	0.03	8	330	12	<5	<20	11	0.09	<10	138	<10	1	54
64	L0+60E- 1+00 N	4	<.2	0.89	\$	15	<5	0.11	<1	1	17	25	0.60	<10	0.06	27	<1	0.02	4	510	10	<5	20	5	0.02	<10	25	<10	1	80
65	L0+60E- 0+10 S	<5	<2	1.16	ৎ	25	10	0.13	<1	5	19	18	3,83	<10	0.12	102	1	0.01	4	340	16	<5	<20	6	0.09	<10	122	<10	<1	48
66	L0+60E- 0+20 S	-5	<2	1.10	ৎ	15	4	0.09	<1	4	19	10	1.31	<10	0.16	46	<1	<.01	5	240	30	<5	<20	5	0.08	<10	44	<10	<1	26
67	L0+60E- 0+30 S	<5	<.2		<\$	15	5	0.08	<1	3	19	11	1.22	<10	D.15	39	<1	<.01	5	230	30	<5	<20	5	0.07	<10	39	<10	<1	26
68	L0+60E- 0+40 S	4	<2		\$	30	20	0.07	1	8	41	11	5.90	<10	0.07	54	4	<.01	4	80	18	<5	<20	5	0.19	<10	159	<10	<1	24
69	L0+60E- 0+50 S	4	<2	0.51	<5	20	5	0.04	<1	2	8	12		<10	0.15	49	<	<.01	1	120	30	<5	<20	9	0.07	<10	63	<10	<1	22
70	L0+60E- 0+60 S	4	<2	4.30	10	20	\$	0.19	শ	5	27	25	0.83	<10	0.17	55	<1	0.02	7	590	104	10	<20	10	0.07	<10	33	<10	5	43
71	10+60E- 0+70 S	85	3.4		<5	60	20	0.14	2	218	53	40	14,10	<10	0.01	>10000	11	<.01	6	460	3604	-5	<20	4	0.13	<10	213	<10	<1	104
72	lo+60e- 0+80 s	370	<.2	3.82	<5	25		0.13	<1	7	53	20	4.08	<10	0.17	76	<1	0.02	12	230	98	<5	<20	9	0.15	<10	108	<10	<1	33
73	LO+60E- 0+90 S	255	0.4	3.77	15	25		0.18	4	6	39	25	3.29	<10	0.09	48	4	0.02	5	260	108	<5	<20	8	0.13	<10	85	<10	<1	52
74	L0+60E- 1+00 S	<5	<.2	2.28	<5	40		0.16	<1	44	45	13	6.33	<10	0,18	1930	<1	0.01	7	170	24	-5	<20	6	0,27	<10	135	<10	4	41
75	LO+80E- 1+10 N	<5	<.2	2.27	4	35	15	0.16	<1	44	45	13	6.32	<10	0,18	1971	4	0.01	7	160	22	<5	<20	6	0.27	<10	134	<10	<1	40
76	LO+80E- 0+50 N	\$	<.2	2.00	<5	70		0.11	ব	26	34		6.68	<10	0.11	735	5	<.01	7	70	12	<5	<20	10	0.29	<10	202	<10	<1	59
77	LO+80E- D+70 N	4	<.2	0.50	<5	10		0.13	<1	3	35	10	0.47	<10	0.20	61	<1	<.01	10	250	8	5	<20	5	0.05	<10	26	<10	<1	31
78	lo+80e- 0+80 N	<5	<.2	1.23	\$	15	-	0.13	<1	5	40	13	0.70	<10	0.27	61	<1	<.01	7	210	12	<5	<20	6	0.14	<10	48	<10	3	21
79	LO+80E- 0+90 N	<5	<.2	2.56	\$	10	5	0.09	ব	5	42	6	1.58	<10	0.07	37	<1	0.01	3	170	-16	<5	<20	⁻ 6	0.16	<10	110	<10	3	12
80	L0+80E- 0+00 S	4	<.2	0.26	4	10	4	0.09	4	3	17	5	1.09	<10	0.03	39	<1	0.02	3	50	12	<5	<20	8	0.07	<10	104	<10	<1	26
81	L0+80E- 0+20 S	<	<.2	0.57	\$	15	5	0.08	<	6	15	3	1.07	<10	0.16	56	<1	<.01	5	100	14	<5	<20	4	0.24	<10	76	<10	2	26
82	L0+80E- 0+30 S	5	<.2	1.64	\$	25	10	0.13	<⊓	5	21	8	3.22	<10	0.14	80	<1	0.01	3	170	30	<5	<20	7	0.12	<10	122	<10	<1	27
83	L0+80E- 0+40 S	<5	0.4	2,48	\$	20	10	0.08	4	4	22	14	2.16	<10	0.20	77	<1	<.01	4	240	92	<5	<20	6	0.12	<10	97	<10	2	29
84	L0+80E- 0+50 S	\$	<.2	0,53	-	20	10	0.07	4	4	14	3	0.46	<10	0.12	40	<1	<.01	2	60	74	<5	<20	5	0.20	<10	50	<10	2	17
85	10+80E- 0+60 S	135	<.2	4.69	15	20	\$	0,13	ব	5	40	30	2.65	<10	0.19	60	<1	0.01	6	380	188	<5	<20	8	0,11	<10	91	<10	3	38
86	L0+80E- 0+70 S	75	<.2	3.53	10	35	10	0.25	4	10	42	14	3.06	<10	0.23	100	<1	0.02	15	190	62	<5	<20	9	0,17	<10	113	<10	1	68
67	lo+80e- 0+80 s	75	<.2	2.16	\$	40	25	0.18	4	21	52	42	5.20	<10	1.11	320	<1	0.02	19	120	40	<5	<20	9	0.49	<10	200	<10	2	84
88	L0+80E- 1+00 S	<5	1.4	3.57	<5	90	35	0.30	2	216	67	23	> 15	<10	0.02	>10000	12	0.02	9	400	14	<5	<20	6	0,14	<10	188	<10	<1	55
89	L0+20W- 0+20 N	<5	<.2	1.38	<5	15	<5	0.10	<1	2	22	23	0.41	<10	0.05	35	<1	<.01	6	330	14	<5	<20	6	0.03	<10	38	<10	2	30
90	L0+20W- 0+30 N	<5	<.2	1.24	<5	10	<5	0.06	<1	1	16	15	0.64	<10	0.03	21	<1	0.02	3	550	10	<5	<20	5	0.01	<10	55	<10	2	90
91	L0+20W- 0+40 N	<5	<.2	1.41	<5	10	<5	0.04	<1	1	27	15	0.45	<10	0.04	13	<1	<.01	3	370	10	<5	<20	4	0,03	<10	33	<10	1	50
92	L0+20W- 0+50 N	<5	<.2	2.06	<5	20	<5	0.10	<1	3	59	30	1.99	<10	0.14	32	<1	<.01	6	380	10	<5	<20	6	0,04	<10	79	<10	<1	30
93	L0+20W- 0+60 N	<5	-2	0.90	<€	10	10	0.09	<1	e	25	5	0.57	<10	0.30	57	<1	<.01	8	80	10	<5	<20	4	0.17	<10	50	<10	3	17
94	L0+20W- 0+70 N	<5	<.2	0.54	<5	15	10	0.08	<1	3	15	6	1.43	<10	0.09	36	<1	0.02	3	300	8	<5	<20	6	0.07	<10	30	<10	<1	40
95	L0+20W- 0+80 N	<	<.2	1,49	<	10	\$	0.11	<1	1	26	23	0.23	<10	0,03	16	<1	0.02	3	330	10	<5	<20	6	0.02	<10	31	<10	1	37

٤.

,

ECO-TECH LABORATORIES LTD.

is Line 2000, Hords N ed ed ed is is<	Et #.	Tag #	Au(ppb)	Ag	AI %	As	84	9	Ca %	Cd	Co	Cr	Cu	Fe %	La	<u>Mg %</u>	Ma	Mo	Na %	NI	P	РЬ	Sb	Sn	Sr	Π%	U	v	w	Y	Zn
bs bs cs cs<	- 96	L0+20W- 0+90 N		<.2	0.95	ব	10	\$	0.06	<1	2	15	7	0.23	<10	0.06	18	<1	<.01	3	200	8	<5	<20	4	0.06	<10	20	<10	1	21
is interval is interval	97	L0+20W- 1+00 N	5	<.2	3.23	<5	25	15	0.08	<1	7	43	7	4.37	<10	0.09	51	<1	0.01	5	140	16	<5	<20	6	0.15	<10	149	<10	<1	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	98	L0+20W- 0+10 S	ক	<.2	1.36	<5	15	4	0.09	<1			22	0.41	<10	0.05		<1	<.01	6	310	14		<20	6	0.02	<10	38	<10	2	29
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	99	L0+20W- 0+20 S	4	0,6	0.23	\$	35	_	0.68	1	1	_	6	0.68	<10	0.04	50	4	0.02	3				<20	30	0.02	<10	38	<10	<1	108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	L0+20W- 0+30 S	<5	<.2	2.53	<5	20	15	0.09	<1	6	33	14	3.10	<10	0.08	31	<1	<.01	4	150	26	4	<20	4	0.18	<10	148	<10	4	44
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	101	L0+20W-0+60 S		<.2		-					-																			-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	102	L0+20W- 0+70 S	-	<.2							•					-		-		_	-	_	-		-					-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	103	1.0+20W- 0+80 S		<.2														-					-						-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104	L0+20W- 0+90 S	65	<2		10	25			<1															-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105	L0+20W- 1+00 S	4	<.2	1.22	10	40	20	0.05	<1	15	41	23	8.43	<10	0.07	85	2	<.01	12	30	12	<5	<20	2	0.35	<10	271	<10	<1	58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	106	L0+40W- 0+00 BL						-															-								
100 10-40W-0+00 N -5 -2 2.55 20 -4 50 10 10 32 -5 200 5 0.06 +10 73 -10 4 50 110 LD+40W-0+00 N -5 -2 0.44 -5 0.06 -1 1 14 8 0.58 -10 0.22 3 460 10 -5 -20 8 0.04 -10 23 -10 2 59 111 LD+40W-0400 N -5 -22 1.04 -5 0.06 -1 1 13 10 0.07 -1 4 60 10 0.27 <10	107										•									-					3						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108	L0+40W- 0+20 N						-				-													1					•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								-			-							-						-	-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110	L0+40W- 0+40 N	<5	<.2	0.84	<5	15	<5	0.09	<1	1	14	8	0,58	<10	0.02	18	4	0.02	3	460	10	<5	<20	ð	0.04	<10	29	<10	2	59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											•		. –							•			-		-					-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112							-										-												-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113	LO+40W- 0+80 N		<.2		-														-		-			-					•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114	L0+40W- 0+90 N											•							-											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115	L0+40W- 1+00 N	4	<.2	1.70	45	15	5	0.09	<1	3	27	12	0.52	<10	0.13	44	<1	0.02	5	230	12	<5	<20	6	0.07	<10	31	<10	2	37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116	L0+40W- 0+10 S	<	<2	3.45	<5	45	• 15	0.09	<1	10	39	17	7,65	<10	0.09	44	6	<.01	7		64	<5	<20	6	0.29	<10	315	<10	<1	103
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117	L0+40W- 0+20 S	<5	<.2	6.21	20	60	10	0,12	<1	10	41	37	4,28	<10	0.28	123	2	0.01	24	350	44	<5	<20	12	0.18	<10	137	<10	8	143
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	118	L0+40W- 0+30 S	4	<.2	3.37	<5	40	20	0.09	<1	9	52	19		<10	0.20	104	<1	0.01	9		30		<20	5	0,19	<10	195	<10	<1	·50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	119	L0+40W- 0+40 S	<5	<.2	5.94	10	30		0.12	<1	8	48	22	3,99	<10	0.13		<1	0.01	-			-		9					4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120	L0+40W- 0+50 S	4	<.2	4.23	<5	30	15	0.10	<1	8	38	14	4.63	<10	0.11	63	<1	0.02	5	190	26	<5	<20	7	0.19	<10	160	<10	1	35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		L0+40W-0+70 S	4	<.2														-		-					-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122	L0+40W- 0+80 S	<5	<.2	1.57	ৰ	25	10	0.08	<1	6	28	11		<10	0.08	39	<1	<.01	4	80				5	0.12	<10	178	<10	<1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123	1.0+40W- 0+90 S	<5	0.6	4.52	20	35	5	0.10	<1	13	44	25		<10	0.09	395	2	0.01	17	310			<20	6			141	<10	12	75
126 0T+60W-0+10 N 105 0.2 0.10 5 15 <5 0.04 <1 <1 1 2 0.47 <10 <0.1 21 5 <01 2 80 6 <5 <20 2 <01 <10 21 5 <01 21 5 <01 2 80 6 <5 <20 2 <01 <10 21 5 <01 2 80 6 <5 <20 2 <01 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	124	L0+40W- 1+00 S	>1000	4.4	1,52	35			0.09	<1	-	20								8					6	-				4	
127 07+60W-0+20 N <5 <2 0.09 <5 10 <5 0.02 <1 <1 2 <1 0.11 <10 <.01 20 2 <.01 <1 130 2 <5 <20 1 0.01 <10 7 <10 <1 18 129 10+60W-0+30 N <5 <2 0.25 5 20 10 0.02 <1 4 4 10 2.99 <10 0.01 56 22 <.01 8 166 2 <5 <20 3 0.06 <10 175 <10 <1 79 129 L0+60W-0+50 N <5 <2 1.39 <5 15 15 0.08 <1 7 39 3 1.17 <10 0.11 34 <1 <.01 3 30 16 <5 <20 4 0.35 <10 163 <10 3 18	125	0T+60W- 0+00 BL	<5	<.2	0.37	10	35	5	0.02	<1	3	6	6	1.64	<10	0.07	38	16	<.01	4	30	10	4	<20	4	0.08	<10	212	<10	<1	47
129 L0+60W-0+30 N <5 <2 0.25 5 20 10 0.02 <1 4 4 10 2.99 <10 0.01 06 22 <01 8 100 2 <5 <20 3 0.00 <10 175 <10 <1 79 129 L0+60W-0+50 N <5 <2 1.39 <5 15 15 0.08 <1 7 39 3 1.17 <10 0.11 34 <1 <01 3 30 16 <5 <20 4 0.35 <10 163 <10 3 18	126	07+60W- 0+10 N	105	0.2	0.10	5	15		0.04	<1	<1	1	2					-		_		-	-		2					-	
129 L0+60W-0+50 N <5 <2 1.39 <5 15 15 0.08 <1 7 39 3 1.17 <10 0.11 34 <1 <01 3 30 16 <5 <20 4 0.35 <10 163 <10 3 18	127	0T+60W- 0+20 N	\$	<2		<5		-		<1	<1	_						-							1						
	129	L0+80W- 0+30 N	÷	<2	0.25	5			0.02	<1	4			2.99		0.01									3						
130 L0+60W-0+60 N <5 <.2 1.45 5 10 <5 0.08 <1 4 23 7 0.47 <10 0.19 48 <1 <.01 5 210 12 <5 <20 4 0.08 <10 33 <10 2 24	129	L0+60W- 0+50 N	4	<.2		-					7		-							-					4					-	
	130	L0+60W- 0+60 N	ব	<.2	1.45	5	10	<5	0. 08	<1	4	23	7	0.47	<10	0.19	49	<1	<.01	5	210	12	<5	<20	4	0.08	<10	33	<10	2	24

ECO-TECH LABORATORIES LTD.

ASHWORTH EXPLORATION LTD. AK 86-1125

																												~	-
		القريبية وال	10	AI %	Âs,	Ba	81 Ca%	Cd	Co	Cr	Ca	Fe %	La I	Ng %	_Ma	Mo	<u>Na %</u>	<u> </u>	P	Ph	Sb	Sn		11%	U	V 57	<10	Y 3	<u>Z#</u> 35
<u>Et #</u>		Autoph)		the second second		15	10 0.21	ব	7	28	5	0.90	<10	0.34	85	4	<01	7	150	12	4	<20			<10	-		2	13
131	LD+60W- 0+70 N	0		0.72	জ ব্য	5	5 0.07	<1	3	8	3	0.28	<10	0.09	30	4	<01	2	80	6	\$	<20	3		<19	23	<10	_	302
132	L0+60W- 1+00 N	4	<2	0.33	-	-	20 0.08	1	11	46	18	9.07	<1D	0.26	97	9	<.01	16	130	56	<5	<∞	-5			267			
133	L0+60W- 0+10 \$	4	<2	3.60	20	70	5 0.11	ন	5	18	7	1.99	<10	0.10	44	<1	<.01	- 4	110	36		20	6			111	<10	1	39 27
134	L0+60W- 0+20 S	- ব	<2		<	25	<5 0.11	đ	7	27	12	277	<10	0.37	129	2	<01	7	270	38	\$	-20	18	0.13	<10	115	<10	4	92
135	ld+60W- 0+30 S	-5	<2	2.30	5	50	<0 LL11	~1	•																				~.
								<1	10	51	18	5.84	<10	0.15	86	<1	0.01	5	260	48	S	<21	5					1	74
136	LOH60W-0H40 S	4	<2	5.50	10	35	20 0.15	4	11	49	13	6.48	<10	0.10	66	4	0.01	6	90	20	ও	<20	7			_		<1	24
137	LC+60W- 0+50 \$	4	<2	2.27	4	35	25 0.10		7	33	20	2.81	<10	0.15	58	ব	0.02	8	230	26	-5	-20	11		•-			3	36
138	LO+6074- 0+60 S	\$	<2	4.24	10	25	5 0.16	<1	-	36	19	231	<10	0.28	98	4	0.02	10	340	28	4	<∕20	13	0.11	<10	-		1	57
139	10+60W- 0+80 S	<5	<2	2.81	5	30	5 0.16	4	11	39	50	3.26	<10	0.32	597	2	0.02	32	720	76	\$	<20	10	0.10	<10	-80	<10	15	199
140	LO+60W- 0+90 S	-5	0.4	5.57	20	35	<5 0.21	1	20	39		فتهيد	-12	0		-													
									~	54	20	7.91	<10	0.32	247	<1	0.01	11	250	54	\$	20	7	0.32	<10	203	<10	6	63
141	L0+60W- 0+00 S	\$	<2	3.67	~ 5	6 0	25 0.27	1	20	- 7	2	1.41	40	0.01	16	5	<.01	4	30	14	4	<20	<1	0.08	<10	180	<10	2	15
142	L0+80W- 0+00 BL	 S 	<2	0.55	<5	20	<5 0.04	4	2	•	2	0.39	<10	0.08	24	a	<.01	ব	130	10	S	<20	3	0.05	<10	42	<10	2	22
143	LO+80W- 0+10 N	<	<2	0.20	<	10	<5 0.04	4	1	3			<10	<.01	41	<1	< 01	ব	20	8	4	<20	3	0.05	<10	36	<10	2	7
144	L0+80W- 0+20 N	4	<2		ৰ	4	<5 0.02	<1	1	4	4	0.16	<10	0.01	20	ব	< 01	4	90	118	5	<20	2	0.21	<10	25	<10	6	9
145	10+80W- 0+30 N	5	<2	0.26	<	5	10 0.06	<1	4	11	2	0.21	~10	0.01	20			•	++										
									_		~		<10	<01	17	<1	<.01	ব	40	12	5	<20	3	0.25	<10	32	<10	7	6
146	10+80W- 0+40 N	\$	<.2	0.20	<5	10	15 0.04	4	4	12	2				41	<1	0.01	8	370	34	<5	<20	5	0.15	<10	<10 36 <10 <10 25 <10 <10 32 <10 <10 110 <10 <10 375 <10			26
147	LO+804-0+50 N	4	<2	5.35	20	15	5 0.11	<1	5	52	21	0.88	<10	0.15	26	<1	<.01	4	170	20	<5	<20	6	0,17	<10	375	<10	4	20
149	LO-180W- 0160 N	4	<2	3.17	- 5	35	15 0.13	<1	7	53	- 14	5,44	<10	0.06		<1	<.01	2	50	12	<5	20	6	0.29	<10	37	<10	8	7
149	10+80W- 0+70 N	4	<2	0.36	<5	10	10 0.08	4	6	18	3	0.28	<10	0.04	21	<1	<01	3	20	10	45	<20	3	0.24	<10	103	<10	7	8
150	10+80W- 0+80 N	<5	<2	0.27	- 5	<5	15 0.10	<1	6	12	2	0.48	<10	0,11	52	~1	~01				-	_	_						
155											_				~		<.01	2	40	12	ৰ	<20	7	0.30	<10	46	<10	8	9
151	LO+80W- 0+90 N	4	<2	0.26	4	10	15 0.09	4	6	26	3		<10	0.07	27	<1		3	170	14	3	<20	4	D.15	<10	83	<10	2	23
152	L0+80W- 1+00 N	4	<2	2.18	ক	15	10 0.09	<1	6	23	9	1.57	<10	0,19	57	<1	0.01	1	10	16	ৰ	<20	<1	D.19	<10	161	<10	2	22
153	10+80W- 0+10 S	-5	<.2	0.82	<5	20	10 0.03	-1	- 4	13	- 4	1.53	<10	0.06	23	3		14	340	46	ঁ	<20	5	0.22	<10	167	<10	6	162
154	10+80W- 0+20 S	\$	<2		20	55	15 0.07	4	11	71	28		<10	0.27	110	5	<.01	9	820	48	୍	<20	11	0.07	<10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8	39
155	LD+80/V- 0+30 S	હં	<2	7.71	25	30	5 0.22	<1	5	39	19	1.62	<10	0.12	52	<1	0.04	3	020	40	~	-	••						
1.00		-											_				~ ~ ~	~	180	8	ব	<20	9	0.07	<10	60	<10	<1	23
156	10+80W- 0+40 S	ব	0.4	0,98	<5	15	10 0.13	<1	- 4	13	5		<10	0.14	166	<1	0.01	2 7	460	34	୍ଦ୍	<20	11			101	<10	5	33
157	LD+80W- 0+50 S	-5	<2		10	25	15 0.14	<1	7	42	16		<10	0.17	65	<1	0.02			10	~5	<20	8				<10	2	16
158	L0+80AV- 0+60 S	3	<2		-5	10	5 0.12	ৰ-	3	10	- 4		<10		40	<1	0.01	2	170	40	~5	<20	5			-	<10	3	23
159	L0+80W- 0+70 S	ৰ	<2		15	20	15 0.10	<1	7	57	13	4.10	<10	0.08	47	<1	0.02	6	290	•	্র	<20	10					2	52
160	L0+80W- 0+80 S	ँ	<2		5	25	<5 0.22	<1	8	24	15	1.75	<10	0.30	120	<1	0.02	8	480	28	9	~20		0.00	-16			-	
190		~																			~	~~~	18	0.09	<10	130	<10	<1	125
161	LD+80W- 0+90 S	140	0.6	2.03	10	50	<5 0.27	2	19	32	69		<10	0.40	636	- 4		15	490	196	4		10					<1	51
		<5	<.2		<5	50	25 0.23	1	77	ន	18	8.80	<10	0.32	760	<1	0.02	12	350	50	୍ କ	<20	7	0.22			<10	3	26
162		-	<2		š	30	10 0.11	<	5	15	4	0.49	-:0	0.17	- 43	<1		2	120	49	<5	<20	5				<10	1	16
163	L1 HOOW- 0+00 BI		<2		ୖ୕	35	5 0.05	ব	1	6	2	0.12	<10	0.04	16	1	<.01	<1	90	24	<5	<20	5				<10	1	16
164	(1+00W- 0+10 N	-	- 2		~	35	<5 0.05	<1	1	6	2	0.16	<10	0.05	17	2	<.01	<1	80	22	<5	<20	2	i 0.07	~ 10	13	-10	•	
165	L1+00W- 0+30 N	0				50		•																					

R

R

Et 4	Tag #	Au(ppb)	Aa	AI %	As	Ba	Bi Ca%	Cd	Co	Cr	Cu Fe %	_ھا	Mg %	Mn	Mo I	Na %	NI	P	Pb	Sb	Sa	S	П%	U	<u>v</u>	W	<u>Y</u> .	Zņ
166	L1+00W- 0+40 N	<u></u>	_	2.39	5	30	<5 0.13	ব	7	34	26 2.62	<10	0.30	83	4	0.03	7	270	18	Ş	ß	6	0.13	<10	90	<10	3	44
167	1+00W- 0+50 N	š	<2		-5	20	15 0.18	ব	15	45	10 2.04	<10	0.90	152	<1	0.01	22	110	14	10	<28	3	0.29	<10	73	<10	Э	31
168	L1+00W- 0+60 N	5	<2		4	35	30 0.10	<1	10	75	19 6.39	<10	0.07	33	4	0.01	5	110	26	ব্য	<20	5	0.38	<10	242	<10	3	28
169	L1+00W- 0+70 N	ক	<2		ৰ্ব্ত	20	25 0.15	<1	12	33	5 3,19	<10	0.33	78	<1	0.91	7	<10	18	ৎ	<20	2	** **		247	<10	4	19
170	L1+00W- 0+80 N	Ś	<2		Ś	<	5 0.06	<1	- 4	15	1 0.28	<10	0.13	44	4	<.01	Э	30	6	ব	<20	2	0.16	<10	40	<10	2	14
	LI WHE CLOUT	•	-		-	-																						
171	1.1+00W- 0+90 N	4	<.2	0.22	ৰ	S	10 0.11	ব	5	24	2 0.44	<10	0.06	33	4	<.01	2	30	10	~ 5	<20		0.27	<10	91	<10	3	14
172	L1+00W- 1+00 N	-5	<2		ৰ	20	15 0.04	<1	6	4	4 2.34	<10	0.03	-59	<1	<.01	1	20	6	4	<20	4		<10	83	<10	1	24
173	11+00W- 0+10 S	-5	<.2	2.66	\$	70	35 0.13	<1	14	49	17 5.84	<10	0.12	109	<1	<,01	11	120	44	\$	<20	8			274	<10	2	96
174	L1+00W- 0+20 S	\$	<2		6	30	20 0.09	<1	10	52	11 5.82	<10	0.08	41	<	0.01	4	150	26	<5	<20	4			226	<10	<1	36
175	L1+00M- 0+30 S	Ś	<.2		\$	15	<5 0.09	<1	2	14	5 0.45	<10	0.05	24	<	<.01	2	230	16	<5	<20	7	0.10	<10	35	<10	2	39
		-																					_					
176	L1+00W- 0+40 S	~	<.2	0.42	\$	10	5 0.06	<1	з	8	2 0.37	<10	0.08	41	4	<.01	-1	80	10	5	<20		0.14		28	<10	4	17
177	L1+00W- 0+50 S	-5	<.2	0.48	\$	20	5 0.10	4	3	9	2 0.41	<10	0.14	64	<1	<01	1	130	14	<	<20	8			29	<10	4	22
178	L1+00W- 0+60 S	<5	<.2	1,58	\$	30	15 0.09	ব	8	40	5 4.01	<10	0.05	39	<1	<.01	- 4	70	18	ব	<20	5			211	<10	5	22
179	L1+00W- 0+90 S		<.2	5.04	<	30	20 0.09	<1	7	42	9 4.75	<10	0.05	29		0.02	4	350	32	\$	20	5	0.16		135	<10	4	22
180	L1+00W- 1+00 S	ব	<.2	2,52	<5	35	20 0.10	<1	8	37	9 4.56	<10	0.09	46	<	0.01	4	130	18	-5	20		0.20	10	172	<10	3	28
	-																_				~~~	-	0.45	~10	00	-40	7	70
181	L0+60E- 0+90 N	45	<.2	2.96	4	15	10 0.11	<1	5	40	13 0.89	<10	0.17	46	4	0.01	5	250	22	ବ	<20		0.15		66	<10	5	28 35
182	L1+00E- 0+00	<	<.2	3.40	10	15	<5 0.18	<1	6	29	10 1.08	<10	0.18	68	4	0.02	6	580	24	5	8	8			42 62	<10	5	50
183	L1+00E- 0+10 N	<5	<.2	3.60	5	20	5 0.27	4	5	29	12 1.51	<10	0.14	62		0.03	- 11	820	24	< 5	<20	12			02 170	ব0 ব0	3	85
184	L1+00E- 0+20 N	- ব	<2	3.40	4	40	15 0.13	4	21	34	12 5. 00	<10	0.14	846	8	0.01	6	320	24	ବ	<28	9			103	<10	6	74
185	L1+00E- 0+30 N	<	<.2	5.46	10	30	10 0.25	4	17	40	23 3.27	<10	0.24	557	3	0.03	12	810	34	<5	<20	13	0,11	~10	:00	510	ų	
															-		-		~	4	<20	E	0.17	-10	114	<10	5	41
186	L1+00E- 0+40 N	5	<.2	260	4	25	15 0.13	<1	14	33	12 3.54	<10	0.17	317	ব	0.01	7	240	20 28	5	38	- 4			137	<10	15	63
187	L1+00E- 0+50 N	60	<.2		4	45	25 0.09	1	21	182	54 5.98	<10	1.31	320	ব	<.01	2	2B0		- জ	20	5			29	<10	2	11
168	11+00E- 0+60 N	<	<.2	0.27	\$	5	<5 0.09	ব	2	17	3 0.34	<10	0.05	24	4	< 01	2	160	4	5	28	7			53	<10	5	22
189	L1+00E- 0+10 S	<5	<2		- ৩	15	< 0.16	ব	6	24	B 1.13	<10	0.23	76	4	0.01	7	260	15	3	~20	5		<10	107	<10	š	23
190	L1+00E- 0+20 S	ব	<_2	3.14	5	20	15 0.12	d	7	34	17 257	<10	0.18	-58	4	0.01	5	190	28	5	~20		4.21	-10	194		Ŭ	2
									-				0.40	400	~		∿ 5	210	16	ৰ	<20	9	0.08	<10	91	<10	<1	23
191	11+00E- 0+30 S		<.2		<	30	15 0.17	<1	5	22	5 4.27	40	81.0	132 33	2 <1	0.01 <.01	د . ح	120	44	ર્ક	30	6			68	<10	4	22
192	L1+00E- 0+40 S	5	<.2		<	25	10 0.09	<1	4	12	3 0.69	<10	0.08		4	<.01	<1	100	12	-> <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5			14	<10	1	18
193	L1+00E- 0+50 S	- ব	<.2		ব	15	<5 0.06	ব	1	4	2 0.19	<10	0.03	20	4	<.01	7	280	306	5	Ž	7			96	<10	9	93
194	L1+00E- 0+70 S	30	<.2		-5	55	15 0.27	<1	8	35	18 2.38	<10	0.41	137 113	4	0.02	11	80	28	10	20	7	-		151	<10	14	31
195	L1+00E-0+80 S	ব	<.2	0.61	<5	15	25 0.33	ব	11	34	7 1,18	<10	0.39	113	~1	uuz	••		20		~20		u					
		_	_			40	40 0.40	_	F	46	4 0.20	<t0< td=""><td>0.12</td><td>48</td><td><1</td><td>0.01</td><td>з</td><td>160</td><td>16</td><td>4</td><td><20</td><td>5</td><td>0.23</td><td><10</td><td>41</td><td><10</td><td>7</td><td>15</td></t0<>	0.12	48	<1	0.01	з	160	16	4	<20	5	0.23	<10	41	<10	7	15
196	L1+00E- 0+90 S	5	<.2		ব	10	10 0.13	4	5	16	4 0.39	<10	0.12	115	<	0.02	9	180	18	ঁ	~20	6				<10	9	29
197	L1+00E- 1+00 S	<	<2		\$	25	25 0.23	4	11	43	11 3.41	<10	0.13	48		0.01	11	470	28	ડે	20	14			109	<10	11	68
198	L2+00E+ 0+00	\$	<.2		25	25	10 0.13		e 7	1	54 1.69		0.47	107	ব	0.01	9	300	20	10	~20	8		-	117	40	7	\overline{n}
199	L2+00E- 0+10 N	5	<.2		10	40	15 0.15		~	41	15 2.68	<10 <10		1389	7	0.05	8	390	14	5	20	5				<10	a.	60
200	L2+00E- 0+20 N	5	<_2	1.74	40	55	10 0.13	<1	27	26	13 6.02	~10	للحدي	1303	•	0.03	3	للب		-		Ģ					-	

ECO-TECH LABORATORIES LTD.

量

Et #	Tag #	Au(ppb)	Aa	AI %	As	Ba	BiCar%a	Cd	Co	Cr	C <u>u</u> Fe %	La	Mg %	Mn	Mo	Na %	NI	р	Pb	Sb	Sn	Sr	Ті %	υ	٧	w	Y	Zn
201	12+00E- 0+30 N	<u></u> <5		1.10	<5	15	5 0.10	<1	4	23	12 1.01	<10	0.06	52	<1	<,01	3	140	10	[~] <5	<20	7	0.14	<10	81	<10	5	19
201	L2+00E- 0+60 N	حة	<.2		<5	45	25 0.14	<1	17	163	43 5.62	<10	0.75	209	<1	0.01	29	250	28	<5	60	6	0.35		119	<10	9	38
202	12+00E- 0+70 N	Š	<.2	4.72	15	20	10 0.25		6	45	23 1.49	<10	0.18	63	<1	0.02	7	830	30	<5	20	11	0.10	<10	87	<10	9	26
203	L2+00E- 0+60 N	ঁ	<.2	0.82	<5	15	10 0.14	<1	5	20	5 1.13	<10	0.19	59	<1	0.01	4	210	14	<5	<20	7	0,14	<10	51	<10	4	18
204	12+00E- 0+90 N	ँ	<.2	1.16	<5	25	15 0.11	<1	6	21	10 2.11	<10	0.13	50	<1	0,03	4	200	14	<5	<20	6	0.15	<10	128	<10	3	20
200		~		1.10	Ť																							
206	L2+00E- 1+00 N	4	<.2	4.12	5	25	15 0.16	4	6	45	21 3.13	<10	0.14	52	<1	0.02	6	480	24	<5	<20	7	0.12		122	<10	4	20
207	L2+00E- 0+10 S	Ś	<.2		<5	10	5 0.08	i <1	3	13	4 0.26	<10	0.06	25	3	<.01	<1	140	14	<5	<20	6	0.14	<10	32	<10	5	10
208	L2+00E- 0+20 S	ঁ	<.2		<5	70	30 0.10	1	8	55	4 10.90	<10	0.31	99	6	0.02	6	160	10	<5	<20	7	0.12		218	<10	<1	60
209	12+00E- 0+30 S	- <	< 2	0.62	\$	15	<5 0.05	<1	2	7	6 1.29	<10	0.18	83	<1	<.01	1	200	10	<5	<20	5	0.03	<10	24	<10	<1	34
210	L2+00E- 0+40 S		<.2	0.46	<5	25	10 0.27	<1	4	6	13 0.87	<10	0.20	399	<1	<.01	1	330	16	10	<20	9	0,14	<10	45	<10	З	86
210		•																				_					_	
211	L2+00E- 0+50 S	<5	<.2	0.33	<5	15	10 0.06	i <1	4	13	2 0.67	<10	0.03	18	<1	<.01	ব	90	32	<5	<20		0.18	<10	29	<10	5	11
212	L2+00E- 0+60 S		<.2		4	15	20 0.40	1	12	41	25 1.04	<10	0.27	116	<1	0.02	11	180	36	5	<20	8	0.51		131	<10	13	92
213	12+00E- 0+70 S	<5	<.2	0.73	<5	15	<5 0.14	<1	2	22	13 0.34	<10	0.13	48	<1	0.01	5	730	20	<5	<20	6	0.06	<10	23	<10	3	40
214	12+00E- 0+80 S	<5	<.2	1.33	<5	20	15 0.20) <1	11	42	8 1.57	<10		157	<1	0.01	14	210	20	10	<20	7	0.31	<10	79	<10	10	36
215	L2+00E- 0+90 S	55	<.2	0.37	<5	10	15 0.05	i <1	5	5	3 0.37	<10	0.03	31	<1	<.01	<1	60	10	<5	<20	4	0.28	<10	44	<10	8	12
																				_	~~						~	64
216	L2+00E- 1+00 S	- ব্য	<.2	0.28	<5	20	5 0.14	<1	3	4	14 0.69			80	<1	0.02	1	350	12	<5	<20	11	0.10	<10	40	<10	3	61
217	L2+80W- 0+10 N	<5	0.2	0.25	4	205	<5 0.8 1	<1	<1	2	14 0.71	<10	0,09	39	3	0.04	2	320	8	<5	<20	28	0.03	<10	16	<10	2	72
218	L2+80W- 0+20 N	<5	<.2	0.45	<\$	25	<5 0.24	<1	2	8	24 0.80			61	2	0.03	4	480	12	<	<20	13	0,06	<10	30	<10	3	75 6
219	L2+80W- 0+30 N	<5	<.2	0.12	<5	30	<5 0.07	′ <1	2	6	2 0.10			10	<	<.01	<1	80	6	<5	<20	5	0.13	<10	31	<10	4	16
220	12+80W- 0+40 N	<	<.2	0.58	<5	10	5 0.05	<1	3	17	5 0.38	<10	0.07	24	<1	<.01	2	140	16	ৎ	<20	5	0.13	<10	30	<10	4	10
																					~		0.24	-10	90	<10	6	41
221	12+90W- 0+60 N	<5	<.2	1.42	<5	45	10 0.23	I <1	18	35	19 3.10			141	<1	0.02	22	140	10	10	<20	3 12	<.01	<10 <10	90 4	<10	<1	79
222	L2+80W- 0+70 N	<5	0.2	0.07	<5	10	<5 0.74	i <1	<1	2	7 0.12			44	<1	0.05	2	350	8	<5	<20	5	0.11	10	151	<10	<1	23
223	L2+80W- 0+80 N	ব	<.2	0.92	<5	25	10 0.10) <1	5	26	8 3.70			33	<1	0.03	3	230	12	< হ	<20	ວ 5	0.15	<10	53	<10	4	23 31
224	L2+80W- 0+90 N	<5	<.2	0.60	<5	15	10 0.22	2 1	9	133	6 1.27	<10		104	<1	0.02	18	110	6	5 ⊲5	<20 <20	6	0.10	<10	37	<10	2	52
225	L2+80W- 1+00 N	<5	<.2	0.40	<5	10	<5 0,12	! <1	3	14	22 0.62	<10	0.05	26	<1	0.01	2	610	14	<5	<20	0	0.10	10	37	10	~	32
									_						_	0.05	40	100	26	ব	<20	17	0.21	<10	146	<10	14	52
226	12+80W- 0+10 S	5	<.2	2.81	<5	30	10 0.25		8	32	29 3.23			75	2	0.05	10	180 90	12	3	<20	4	0.35	30	620	<10	<1	54
227	L2+80W- 0+30 S	<5	<.2		<5	95	45 0.09		25	36	19 14.90			199	<1	0.02	20 6	180	14	Ś	<20	6	0.11	<10	44	<10	4	22
228	12+80W- 0+40 S	-5	<.2		<5	10	<5 0.12	-	4	33	6 0.79			61	<1	0.02	-	30	40	 ⊲5	<20	5	0.29	<10	91	<10	7	11
229	L2+80W-0+50 S	<5	<.2		35	20	15 0.06		5	7	3 0.59			40	<1	<.01 0.02	<1 5	820	26	<5	40	10	0.07		104	<10	6	25
230	12+80W- 0+60 S	<5	<.2	4.39	10	25	<5 0.19) <1	4	33	26 1.44	<10	0.11	51	<1	0.02	5	620	20	~>	40	10	0.07	-10	104	-10	v	1.5
									-				0.07		-1	0.01	з	210	24	<5	40	6	0,17	<10	138	<10	6	20
231	1.2+80W-0+80 S	<5	<.2		5	15	10 0.10		5	41	8 2.50			39	<1 <1	0.01	2	230	12	~3 <5	~20	5	0.05	<10	27	<10	š	12
232	L2+80W-0+90 S	<	<.2		5	5	<5 0.08		2	22	10 0.39			30 42	-	0.02	4	350	22	3	20	8	0.10	<10	82	<10	6	14
233	L2+00W- 1+00 S	5	<.2		5	20	5 0.12		5	30	10 2.15			42	<1 <1	<.01	<1	-300 80	18	5	<20	Ă	0.35	<10	79	<10	9	10
234	13+00W- 0+30 N	4	<.2		<5	10	15 0.00		6	12	3 0.19			13 24	<1	<.01	2	250	14	ر ح	<20	7	0.16	<10	33	<10	š	20
235	L3+00W- 0+40 N	4	<.2	0.42	<5	10	<5 0.09) <1	4	15	4 0.33	<10	0.03	24	~1	~.0 1	2	2.0	1-4	~	-20	•	4.14				-	

.

270

13+40W- 0+40 S

255

1.4 2.63 5 50 <5 0.38 1

Mo Na % Pb Sb Sn Sr TI% U v w Y Cr Cu Fe % La Mo % Ma NI P Zn An Al % As Ba Bí Ca % Cd Co Et 🛍 Tag # Aurophi 0.04 28 Ś 0 12 013 <10 56 <10 43 8 1.49 <10 0.22 116 1 A 390 ও <.2 3.39 10 0.26 <1 ß 28 10 25 236 13+00W- 0+50 N 14 5 <20 0.31 <10 49 <10 21 4 0.53 <10 0.29 66 <1 <.01 3 ŝ A я 15 0.09 <1 6 45 237 L3+00W+ 0+60 N <5 <.2 0.56 <5 10 6 0.13 <10 32 6 40 61 <10 6 <10 0.08 34 <1 0.02 3 330 19 10 10 0.08 <1 4 52 12 1 31 L3+00W- 0+70 N ≪5 <.2 4.85 15 238 ବ 10 0.03 <10 50 <10 <1 5 14 16 3.72 <10 0.04 135 3 0.02 4 880 16 *c*20 <1 154 30 5 0.20 1.3+00W- 0+80 N <5 <.2 0.76 <5 239 36 <.01 5 280 14 65 ∞ 7 0.18 <10 96 <10 A 35 27 8 1.85 <10 0.10 <1 20 10 0.11 <1 5 ح> <.2 0.70 <5 240 13+00W- 0+90 N 70 14 5 $\langle 2 \rangle$ 5 0.35 <10 54 <10 9 17 43 0.45 <10 0.19 41 <1 <.01 5 <5 <2 0.50 <5 10 15 0.16 <1 A A 13+00M-1+00 N 241 20 -< 207 0.23 <10 81 <10 6 27 5 19 5 1.11 <10 0.20 63 3 0.02 2 160 ⊲5 0.79 35 10 0.09 <1 L3+20W- 0+00 <.2 242 <10 0.02 21 4 0.01 <1 20 6 6 <20 2 0.13 <10 49 <10 3 7 0.21 0.18 <5 <5 5 0.05 <1 2 6 - 1 243 1.3+20W- 0+20 N <5 <2 <10 0.09 <1 0.03 2 70 12 ⊲5 < 205 0.19 <10 59 <10 5 15 0.55 36 <.2 0.37 <5 10 5 0.11 <1 5 24 3 244 1.3+20M- 0+30 N <5 60 <1 0.04 7 170 32 4 ~ 0 B 0.13 <10 71 <10 4 30 1.44 <10 0.19 1.3+20M- 0+40 N <5 <.2 1.18 <5 20 10 0.14 <1 5 28 8 245 0.63 <10 0.18 53 <u>-</u>1 0.01 5 240 8 <5 <20 5 0.06 <10 28 <10 з 20 <5 <2 0.95 < 10 <5 0.14 <1 4 19 9 246 13+20W- 0+70 N <10 0.27 70 <1 0.04 2 270 18 5 <20 А 0.16 <10 69 <10 6 40 23 0.98 ⊲5 < 2 2.55 5 30 5 0.15 <1 7 36 247 1.3+20W- 0+80 N <1 0.01 5 200 16 ⊲5 $\langle 20 \rangle$ ß 0.14 <10 58 <10 4 29 1.58 <10 0.19 64 248 L3+20W- 0+90 N 6 < 2 2.11 <5 15 10 0.13 <1 6 27 10 60 2 0.03 5 1150 14 ଶ <20 11 0.01 <10 41 <10 <1 103 ⊲5 < 2 0.94 ৰ্জ 30 <5 0.27 <1 3 18 18 2.81 <10 0.03 1.3+20W- 1+00 N 249 <10 < 01 4947 24 < 01 1 190 20 <5 < 205 0.02 <10 199 <10 <1 51 0.05 52 22 17 > 15 6 0.4 3.35 ৰ্ত 145 45 4 L3+20W- 0+10 S 250 < $< \infty$ 7 0.03 <10 45 <10 65 <10 0.05 86 <1 < 01 530 16 A 21 22 0.51 4 L3+20W- 0+40 S <5 <.2 1.64 <5 15 6 0.14 1 2 251 ৰ <20 a 0.02 <10 33 <10 з 71 0.02 36 <1 0.02 3 720 18 ≤5 <.2 1.32 ⊲5 20 ⊲5 0.19 <1 2 17 30 0.25 <10 L3+20W- 0+50 S 252 <5 <20 5 0.08 <10 40 <10 з 28 11 0.61 <10 0,17 53 <1 0.01 5 270 14 4 23 <5 15 15 <5 0 12 <1 L3+20W- 0+60 S <2 194 253 600 18 <5 <20 9 0.07 <10 49 <10 5 21 10 0.51 <10 0,13 52 <1 0.01 4 15 <5 0 16 <1 а 24 <5 <2 237 10 254 L3+20W- 0+70 S 0.15 <10 36 \$ <20 <10 6 24 7 0.61 <10 0.10 44 <1 0.01 3 150 14 R 10 10 0.16 <1 4 21 255 L3+20W- 0+80 S <5 <.2 1.30 <5 0.08 <10 92 <10 12 28 7 1.78 <10 0.08 45 <1 0.02 4 510 20 < $< \infty$ a 6 ≪5 10 20 5 0.14 <1 4 256 L3+20W- 0+90 S <.2 3.11 1.53 <10 0.09 47 <1 0.02 3 240 18 ⊲5 <20 6 0.11 <10 84 <10 7 16 0.12 5 31 7 <5 -65 15 10 <1 L3+20W- 1+00 S <2 2.76 257 0.19 <10 63 <10 0.94 <10 0.09 65 8 0.01 5 70 24 5 <20 R 5 44 0.12 5 10 R 10 25 10 <1 258 L3+40W- 0+00 20 <.2 0.89 <10 <10 2 0.08 43 2 25 2 0.47 <10 0.13 40 <1 <.01 < 70 в 5 <20 6 14 L3+40W- 0+10 N 6 <.2 0.48 -75 5 0.08 <1 259 10 296 <10 24 65 5 0.38 -5 30 <5 35 20 0.12 <1 11 58 12 5.29 <10 0.09 53 <1 <.01 3 80 <20 260 13+40W- 0+20 N <5 <.2 2.90 16 65 <20 5 0.38 <10 118 <10 А 15 13 3 0.85 <10 0.19 58 <1 <.01 <1 -50 10 0.09 7 <5 -5 15 <1 261 13+40W- 0+30 N <.2 0.43 0.15 <10 10 48 <10 12 39 10 <10 102 <1 0.01 26 490 26 <20 9 35 0.24 <1 10 60 96 1.14 0.42 262 13+40W- 0+40 N <5 <.2 3.50 -6 65 <10 22 <10 <10 36 <1 <.01 5 430 10 <20 4 0.04 Э 38 <5 10 -5 0.10 **c1** 2 18 13 0.27 0.11 263 13+40W- 0+50 N <5 <.2 1.22 0.19 <10 61 <10 15 5 0.53 <10 0.04 30 < <.01 2 150 10 - 5 <20 5 4 16 10 10 D 09 <1 4 264 L3+40W- 0+60 N <5 <.2 0.31 <5 32 110 10 6 <20 3 0.26 <10 77 <10 8 27 5 22 6 0.50 <10 0.06 <1 <.01 1 0.19 <1 265 L3+40W- 0+70 N ⊲ <.2 0.32 <5 5 10 24 28 4 40 5 0.22 <10 133 <10 5 1.50 <10 0.09 38 <1 <.01 3 170 L3+40W- 0+80 N <5 <.2 3,90 10 15 10 0.10 <1 5 49 9 266 32 14 <5 <20 7 0.13 <10 61 <10 3 39 <1 20 11 1.40 <10 0.07 <1 0.02 2 390 <5 <.2 0.71 <5 20 10 0.11 . 267 L3+40W- 0+90 N <1Ô 0.16 71 <1 0.01 5 130 12 <5 <20 5 0.23 <10 101 <10 4 23 ā 22 ā. Ŷ4Ā 13+40M- 1+00 N <5 -5 Z 15 ū.15 <i 288 <.2 1.07 28 ⊲5 <20 7 0.54 <10 326 <10 8 41 <10 0.28 125 <1 <.01 2 80 12 19 12 5.13 1.07 <5 50 25 0.11 <1 269 L3+40W- 0+10 S -5 <.2 168 \$ <20 20 0.12 <10 98 <10 5 67 <10 0.38 303 <1 0.03 13 530 12 29 87 3.25

ECO-TECH LABORATORIES LTD.

. .

ECO-TECH LABORATORIES LTD.

Et #	Tag #	Au(ppb)	Ag	AI %	As	Ba	B) (Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	N	P	РЬ	Sb	Sn	Sr	П%	u	v	w	Y	Źn
271	L3+40W- 0+50 S	<	<.2	1.10	ৰ	20	10	0.16	<1	8	28	9	1.97	<10	0.38	109	<1	0.01	9	130	10	3	<20	10	0.14	_		<10	3	
272	L3+40W- 0+60 S	<5	<.2	1.41	<5	20	<5	0.31	<1	6	27	9	0.85	<10	0.27	108	<1		9	240	12	10	<20	.0	0.13			<10	4	23 23
273	L3+40W- 0+70 S	<5	<.2	0.39	<5	10	<5	0.18	<1	3	8	18	0.60	<10		54	<1		2	260	12	<	<20	4	0.09	<10		<10	2	-
274	L3+40W- 0+90 S	<5	<.2	0.29	<5	<5	5	0.11	<1	2	11	2		<10		28	<		1	60	10	ঁ	<20	3	0.13	<10	39	<10	23	54
275	L3+40W- 0+90 S	<5	<.2	0,64	<5	15	15	0.06	<1	5	25	3	2.94	<10		28	ব		<1	20		~	~20	ž	0.21	<10			2	11
												-						01	•1	10	•	~	~20		0.21	10	131	<10	2	10
276	L3+40W- 1+00 S	5	<.2	0.31	<5	10	5	0.36	<1	2	7	9	0,56	<10	0.03	34	<1	0.02	1	250	8	<5	<20	10	0.10	<10	36	~10	~	-
277	L3+60W- 0+00	<5	<.2	0.55	-5	20	<5	0.10	<1	4	15	5		<10		- 44	<1		3	310	14	ঁ	~20	8	0.10	<10	- 30 35	<10	2	47
278	L3+60W- 0+10 N	<5	<.2	1.21	<5	10	5	0.11	<1	з	18	5		<10		30	<1		3	150	18	<5	<20	6	0.12	<10	-35 25	<10	Э	20
279	L3+60W- 0+20 N	<5	<.2	1.77	<5	25	20	0.04	<1	8	28	7		<10	0.01	34	<1		3	60	14	<5	<20	4	0.12	20		<10	4	13
280	L3+60W- 0+30 N	<5	<.2	1.72	<5	35		0.07	<1	10	41	7		<10		39	4		4	10	14	~> <5	<20		0.27		256 200	<10	2	23
												•	0.10		0.01			4.01	-	10	1-4	~	~20	4	0.34	20	266	<10	2	19
281	L3+60W- 0+40 N	35	<.2	5.24	30	35	25	0.11	<1	14	134	30	5,30	<10	0.51	135	<1	0.01	24	190	34	<5	<20	5	0.26	<10	420	-10		_
282	13+60W- 0+50 N	<5	<.2	2.29	ব	40		0.23	<i></i>	20	137	33		<10		237	<1		36	90	14	~	<20	5	0.44	<10		<10	4	37
283	L3+60W- 0+70 N	<5	<.2	1.91	<5	10	5	0.08	<1	-4	34	10	0.80	<10	0.08	30	<1		3	150	14	~ ~5	<20	5	0.15	<10	184	<10	4	37
284	L3+60W- 0+80 N	<5	<2	1.48	<5	5	<5	0.05	ব	1	35	18	0.48	<10	0.03	13	<1		2	450	12	ঁ	<20	4	0.04	<10	60 46	<10 <10	5	11
285	L3+60W- 0+90 N	<5	<.2	0.57	<5	20	30	0.11	<1	12	30	6		<10	0.13	47	<1		5	<10	16	-⊲	20	3	0.57	<10	40 258	<10	9	32
												-	/-				•		•		10	~	-20		0.07	~10	200	10	э	14
286	L3+60W- 1+00 N	<5	<.2	0.54	\$	10	10 -	0.19	<1	11	28	2	1.07	<10	0.45	87	<1	0.01	13	10	10	5	<20	6	0.30	<10	125	<10	6	40
267	L3+60W- 0+10 S	<5	<.2	1.23	<5	65	10	0.17	<1	9	17		1.87	<10	0.43	230	<1		4	240	16	<5	<20	16		<10	82	<10 <10	3	12 41
288	L3+60W- 0+20 S	-5	<.2	0.45	<5	15	1D (0.09	<1	4	7	3	0.88	<10	0.09	95	4	<.01	2	70	12	3	<20	5		<10	76	<10	2	
289	13+60W- 0+30 S	<5	<.2	0.65	⊲5	20	10 (0.09	<1	4	13	3		<10	0.16	84	<1	<.01	2	40	10	Ś	<20	6			112	<10		16
290	L3+60W- 0+40 S	<5	<.2	2.33	<5	55	35 1	0.06	2	12	40	10	11.20	<10	0.03	69	2		3	100	18	3	<20	4	0.32	20	273		2	18
									_	_		. –		• •			-		Ŭ	,00	10	~	-20	-	0.52	20	213	<10	<1	33
291	13+60W- 0+50 S	<5	<.2	5.17	5	55 `	10 (0.23	<1	7	38	14	2.84	<10	0,15	63	<1	0.01	7	310	28	<5	<20	10	0.17	<10	108	<10	5	~
292	L3+60W-0+60 S	<5	<.2	1.70	<5	25	15 (0.17	<1	11	59	17	2.66	<10	0.48	158	<1		8	110	20	Ś	<20	10		<10	107	<10	э 6	31 57
293	L3+60W- 0+70 S	<5	<.2	0.97	<5	20	10 (0.17	<1	9	43	26	2.05	<10		101	<1		15	290	38	3	<20	6		<10	93	<10	4	57 59
294	L3+60W- 0+80 S	<5	<.2	1.71	<5	20	<5 (0.12	<1	5	32	9	0.71	<10	0.31	74	<1			190	16	-> -<	~20	9		<10	33 45	<10	3	
295	L3+60W- 0+90 S	<5	<.2	0.58	<5	20	15 (0.08	<1	8	36	4	3.86	<10	0.03	41	<1	<.01	3	20	8	ৰ	<20	2			202	<10	3	22 12
																			-	-	Ŭ	~	-20	~	0.20	10	202	10	3	12
296	L3+60W- 1+00 S	<5	<.2	1.25	<5	25	25 (0.24	<1	18	255	2	5.05	<10	0.94	211	<1	0.02	34	20	12	<	<20	3	0.31	<10	158	<10	4	47
297	L3+80W- 0+00	<5	<.2	5.60	25	95	20 0	0.06	<	10	37	19	5.84	<10	0.14	88	15	<.01	16	240	32	\$	<20	Ă.			159	<10		140
298	L3+80W- 0+10 N	<5	<.2	1.89	<5	35	15 (0.14	<1	11	36	12	6.23	<10	0.05	58	<1	<.01	6	100	14	<	<20		0.34		193	<10	2	38
299	l3+80W- 0+20 N	<5	<.2	1.07	<	25	20 (0.09	<1	8	31	7	4.42	<10	0.08	40	<1	<.01	4	50	10	<u>ج</u>	<20	Ă			203	<10	2	24
300	L3+80W- 0+30 N	4	<.2	1.56	<5	20	15 0	0.15	<1	10	24	8	2,45	<10	0.41	100	<1	<.01	9	80	16	Ś	<20	5			128	<10	5	22
																			•		14	Ť	-20		0.02	-10	120	-10	5	~
301	L3+80W- 0+40 N	<5	<.2	1.82	10	35	15 (0.14	4	4	25	52	5.80	<10	0.09	47	3	<.01	5	540	12	4	<20	6	0.06	<10	196	<10	<1	47
302	13+80W- 0+50 N	<5	<.2	0.69	<5	20	15 0	0.12	<1	11	28	7	2,72	<10	0.40	90	<1	<.01	9	20	10	3	~20	3			196	<10	5	47 19
303	L3>00W- 0+00 N	\$	<.2	1.39	-5	35	50	0.69	<1	ii	36	28	211	<10	0.60	211	<1	0.01	16	420	12	5	20	10		<10	62	<10	5	7 9 51
304	L3+80W- 0+70 N	<5	<.2	0.26	<	5	5 C).13	<1	4	34	Э	0.58	<10	0.15	41	<1	<.01	4	120	8	\$	<20			<10	47	<10	3	51 15
305	L3+80W- 0+80 N	<5	<.2	1.87	<5	30	20 0	0.12	<1	11	41	9	5.88		0.12	60	<1	<.01	5	140	12	\$	<20		0.35		223	<10	2	22
							-					-							5		12,		-20	3	0.30	10	دعم	202	4	4

•

.

ECO-TECH LABORATORIES LTD.

Et #	Tag #	Au(ppb)	Ag	AI %	As	Ba	BĮ	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	Р	РЬ	Sb	Sn	Sr	П%	U	v	w	Y	Zn
306	L3+00W- 0+90 N	\$	<.2	0.66	<5	10	10	0.15	<1	9	35	4	0.79	<10	0.34	69	1>	0.01	7	140	16	10	<20	4	0.31	<10	51	<10	6	21
307	L3+80W- 1+00 N	\$	<.2	1.36	<5	30	25	0.10	<1	10	30	9	5,79	<10	0.15	46	<1	<.01	5	170	10	<	<20	3	0.29	10		<10	4	23
308	L3+80W- 0+10 S	<5	<.2	3.46	35	60	30	0.07	<1	14	23	21	7.80	<10	0.04	64	25	<.01	21	130	28	4	<20	3	0.42	20		<10	3	121
309	L3+80W- 0+40 S	<5	<.2	0.24	<5	10	5	80.0	<1	- 4	9	2	0,43	<10	0.05	33	<1	<.01	1	40	10	5	<20	5	0.20	<10		<10	3	11
310	L3+80W- 0+50 S	4	<.2	4.06	10	75	10	0.30	<1	11	36	32	2,01	<10	0.24	201	4	0.02	23	500	26	ব	~20	13	0,15	<10		<10	8	152
311	L3+80W-0+60 S	105	<.2	3.45	10	125	15	0.26	2	47	180	84	8.22	<10	1.50	446	4	0.02	81	580	32	<5	<20	10	0.22	<10	225	<10	A	208
312	L3+80W- 0+80 S	<5	<.2	0,84	<5	10	<5	0.09	<1	3	18	9	0.45	<10	0.17	49	<1	<.01	5	180	8	ব	<20	8	0.06	<10	25	<10	2	19
313	1.3+80W- 0+90 S	-5	<.2	1.31	\$	30	<5	0.16	<1	9	29	11	2.11	<10	0.39	149	<1	0.01	10	250	10	<5	~20	10	0.12	<10	88	<10	2	28
314	13+80W- 1+00 S	<5	<.2	0.58	-5	25	30	0.22	1	13	65	6	4.78	<10	0.16	76	<1	<.01	10	<10	14	ব্য	<20	6	0.46	10	300	<10	5	16
315	L4+00W- 0+00	<5	<.2	0,14	4	10	10	0.02	<1	3	4	5	0.64	<10	<.01	6	6	<.01	2	5 0	6	<	<20	3		<10	86	<10	3	16
316	L4+00W- 0+10 N	<5	<.2	0.25	<5	15	4	0.03	<1	<1	4	2	0.26	<10	0.03	35	<1	<.01	<1	100	6	<5	<20	2	0.05	<10	8	<10	1	10
317	L4+00W- 0+20 N	<5	<.2	0.76	<5	30	20	0.07	<1	9	36	4	6.03	<10	0.03	37	<1	<.01	3	<10	8	<5	<20	4	0.26		-		~	15
318	l4+00W- 0+30 N	<5	<.2	5.26	<5	25	15	0.09	<1	6	63	10	4.19	<10	0.07	37	<1	0.01	4	290	28	<	<20	5		<10		<10	3	20
319	1.4+00W- 0+40 N	<	<.2	3,59	<5	30	15	0.16	<1	15	79	25	2.28	<10	0.66	145	<1	0.01	19	240	22	<5	<20	6		<10		<10	8	38
320	1,4+00W- 0+50 N	<5	<.2	4.70	<5	55	30	0.10	1	14	68	25	11.10	<10	0.08	56	<1	0.01	4	160	22	<5	<20	5	0.32		214	<10	<1	28
321	14+00W- 0+60 N	<	<.2	2.43	<5	60	40	0.09	2	14	62	20	12.70	<10	0.03	32	<1	<.01	5	<10	10	ব	<20	6	0.47	30	328	<10	<1	22
322	14+00W- 0+70 N	ব	<.2	1.73	⊲5	20	20	0.16	<1	9	36	12	2,56	<10	0.43	88	<1	0.01	10	160	14	-5	<20	5		<10	_	<10	4	25
323	L4+00W- 0+80 N	<	<.2	1,08	\$	50	30	0.13	1	11	33	9	8.68	<10	0.14	48	<1	<.01	7	80	12	<5	<20	6	0.30		395		<	28
324	l4+00W- 0+90 N	<5	<.2	0.49	<5	10	15	0.11	<1	7	24	4	1.20	<10	0,35	79	<1	<.01	10	50	8	<5	<20	4	0.23	<10	98	<10	3	18
325	L4+00W- 1+00 N	4	<.2	3.95	Ś	50	30	0.10	<1	12	47	19	9.30	<10	0.06	40	<1	0.01	4	240	22	<5	<20	5	0.41		181	<10	4	20
326	L4+20W- 0+00	\$	<.2	0.45	<5	20	` 10	0.04	<1	4	7	4	1.65	<10	0.02	27	11	<.01	1	10	10	4	<20	2	0.19	<10	163	<10	2	18
327	L4+20W- 0+10 S	<5	<.2	0.45	15	25	15	0.02	<1	6	8	8	4.37	<10	<.01	19	27	<.01	6	20	8	<	<20	<ī			305		ন	36
328	L4+20W- 0+20 S	<5	<.2	0.42	<	15	<5	0.05	<1	2	з	3	0.32	<10	0.02	20	<1	<.01	<1	130	14	<5	<20	4		<10	34	<10	1	14
329	L4+20W- 0+30 S	\$	<.2	0.29	<	5	<5	0,03	<1	<1	з	2	0.19	<10	0.03	16	<1	<.01	<1	100	8	<5	<20	5		<10	18	<10	1	4

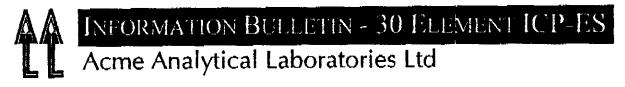
.

ECO-TECH LABORATORIES LTD.

Et #	. Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	ها	Mg %	Mn	Ma	<u>Na %</u>	Ni	P	РЬ	Sb	Sn	Sr	пχ	υ	v	w	Y	Zn
	TA:																													
Repeat	5																													
1	L0+00- 0+40 S	<5	<.2	4,88	5	15	5	0.11	<1	6	38	18	2.91	<10	0,12	49	<1	0.01	6	500	20	~E		~						
10	L0+00- 0+30 N	<5		0.71	Ś	15	ঁ	0.04	<1	1	15	16		<10			2		2	500	30	<5 <5	<20	6				<10	4	26
19	L0+20E- 0+30 N	ঁ		1.17	<5	20	5	0.17	<1	i.	19	11		<10		66	<1		3	220	16	-	<20	6				<10	<1	25
28	10+20E- 0+30 S	-5	<.2		<5	25	20	0.04	<1	10	36	21		<10			3		5	100	22	<5	<20	11	0.16			<10	2	37
36	L0+40E- 0+10 N	ব	<.2		ৰ্ব্ত	10	5	0.06	<1	3	23	8		<10		- •	-		-	130	24	<5	<20	<1	0.21	<10		<10	4	46
		•		1.2.0	~		~	0.00	•1		ω	Ů	0.00	10	0.10		<1	<.01	3	140	10	<5	<20	5	0.08	<10	64	<10	1	11
45	L0+40E- 0+10 S	<5	<.2	0.79	<5	15	<5	0.04	4	2	14	3	1.08	<10	0.35	90	<1	<.01	2	130	14	ব	~~							
54	L0+40E- 1+00 S	<5	<.2	1.31	<5	30	20	0.09	<1	9	32	12		<10		52	4		6	90	52	ও	<20	45	0.05	<10		<10	<1	26
63	LD+60E- 0+80 N	ব	<.2	1,79	<5	20	\$	0.11	<1	5	38	16		<10		75	4		g	290			<20	57	0.22	<10		<10	<1	47
71	L0+60E- 0+70 S	105	3.4	3.90	<5	65	25	0.14	2	217	53		14.10	<10		>10000	11		6	480	14	<ই	<20	•	0.08		• • •	<10	2	51
80	L0+80E- 0+00 S	<5	<.2	0.29	<5	10	5	0.10	<1	3	15	6		<10		36	<1		3	460 60	3626 6	<5 <5	<20	6	0.13			<10	4	106
		_			-		•			•		•	1.00	-10	0.04		~,	0.02	3	00	Þ	-0	<2	8	0.08	<10	97	<10	<1	29
89	L0+20W- 0+20 N	<5	<.2	1.29	<5	20	10	0.04	<1	5	16	7	2.96	<10	0.02	23	2	<.01	4	80	30	<5	<20	4	0.15	-40	4.77			
106	L0+40W- 0+00 BL	-	1.0	4.79	5	35	15	0.19	<1	12	43	31	5.24	<10		128	ĩ		20	450	90	<5	<20	11				<10	<1	42
115	L0+40W- 1+00 N	-	<.2	1.61	<5	10	Ś	0.09	<1	3	27	12		<10		45			4	220	12	ري ج	<20	11			139	<10	4	244
124	L0+40W- 1+00 S	>1000	7.0	1.45	35	35	15	0.09	<1	9	18	17		<10		69	<1		9	70	164	হ	<20	5	0.06	<10	31	<10	3	33
										-		•••			0.21			4.01	3	10	104	4	~20	Э	0.31	<10	148	<10	3	81
133	L0+60W- 0+10 S	< হ	<.2	3.69	5	65	30	0.06	1	11	47	18	9.09	<10	0.26	102	10	<.01	16	140	56	<	<20	6	0.27	<10	267		-4	
141	10+60W- 0+00 S	<5	<.2	3.54	<5	60	30	0.26	<1	20	53	19	7.60	<10	0.31	237	ব	0.01	12	240	48		<20	В			207 194	<10	<1	306
150	L0+80W- 0+80 N	< 5	<.2	0.44	<5	-5	10	0.11	<1	6	14	2	0.61	<10		62	<1	<.01	4	20	a	\$	<20	2	-			<10	5	60
159	L0+80W- 0+70 S	<	<.2	> 15	10	25	10	0.10	<1	7	58	14	4.26	<10	0.09	46	4	0.02	4	270	~2	~ ~5	<20					<10	3	8
168	L0+80W- 0+60 N	<5	<.2	4.43	ক	30	20	0.11	<1	11	74	19	6.36	<10	0.08	37	<1		4	120	26	<5	<20	3			127 242	<10	3 3	25
																••	-		-	12.00	20	~	~20		0.30	~10	292	<10	3	29
176	LO+80W- 0+40 S	ৰ	<.2	0.44	<5	5	5	0.06	<1	3	8	2	0,40	<10	0.07	49	<1	<.01	<1	80	8	<5	<20	4	0.12	<10	27	<10	3	40
185	L1+00E- 0+30 N	<	<.2	5.19	10	30	10	0.23	<1	16	38	22	3,08	<10	0.23	510	3		13	750	30	š	<20	11		<10	97	<10	6	16 71
194	l1+00E- 0+70 S	20	<.2	1.53	<5	55	15	0.27	<1	8	37	18	2,45	<10	0.42	132	<1	<.01		270	316	Ś	<20	8		<10	99	<10	9	
203	L2+00E- 0+70 N	<5	<.2	4.53	15	20	<5	0.26	<1	5	44	22	1.41	<10	0.16	60	<1	0.02	7	830	29	š	<20	10		<10	84	<10	9 8	94 27
211	L2+00E- 0+50 S	<5	<.2	0.32	ব	15	10	0.06	<1	Э,	13	2		<10	D.03	17	<1		4	80	30	\$	~20	6		<10	29	<10	5	<i>27</i> 10
220	12+80W- 0+40 N	ব	<.2	0.61	ব	10	5	0.09			.7		~ ~	-45					-											
229	12+80W- 0+50 S	ঁ	<.2	0.64	36	20	-		<1	3	17	5		<10		27	4	<.01	2	140	14	<5	<20	4		<10	32	<10	4	17
238	L3+00W- 0+70 N	9 5	<.2	4.97	30 15	لك 15	15 5	0.06	<1	5	8	3	0.59	<10	0.07	44	<1	<.01	<1	40	40	<5	<20	5		<10	93	<10	7	11
236	L3+20W- 0+70 N	জ ব্য	<2	4.97	⊃ <5	15	-	0.09	<1	4	54	13	1.37	<10	0.09	37	<1	0.01	3	340	28	<	40	7		<10	64	<10	6	19
255	L3+20W- 0+80 S	জ ব্য	<.2	1.03	৩ ৩		<5	0.15	<1	4	21	8	0.67	<10	0.19	56	<1	0.01	6	260	10	<5	<20	6	0.06	<10	30	<10	3	22
2.00	L372011- 0400 S		~.2	1.33	\$	15	10	0.20	<1	5	22	7	0.66	<10	0,11	51	<1	0.01	3	160	14	<	<20	6	0.18	<10	39	<10	7	25

ECO-TECH LABORATORIES LTD.

.


Et \$	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bl	Ca %_	Cd	Co	Cr	Си	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	υ	_v	W	<u>Y</u>	Zn
QC/DA Repeat																														
264	L3+40W- 0+60 N	ও	<.2	0.33	⊲5	5	10	0.09	<1	4	16	5	0.56	<10	0.05	34	<1	<.01	2	160	10	<5	<20	4	0,20	<10	65	<10	4	17
273	L3+40W- 0+70 S	<	<2	0.43	<5	10	5	0.19	<1	э	â	17	0.63	<10	0.14	62	ব	0.02	3	290	- 14	<5	<20	5	0.10	<10	43	<10	2	56
281	L3+60W- 0+40 N	50	<.2	5.23	35	35	20	0.11	<1	14	136	30	5.36	<10	0.53	139	4	0.01	24	190	36	<5	<20	5	0.27	<10	140	<10	4	38
290	L3+60W- 0+40 S	<5	<.2	2.54	<5	60	35	0.07	1	12	41	11	11.40	<10	0.03	76	2	<.01	3	110	16	<5	<20	- 4	0.31	30	263	<10	<1	35
299	L3+80W- 0+20 N	\$	<.2	1.03	<5	25	20	0.09	1	4 18 5 0.56 <10 0.05 34 <1 <.01 2 160 10 <5 <20 4 0.20 <10 65 <10 4 17 3 8 17 0.63 <10 0.14 62 <1 0.02 3 290 14 <5 <20 6 0.10 <10 43 <10 2 56 14 136 30 5.38 <10 0.53 139 <1 0.01 24 190 36 <5 <20 5 0.27 <10 140 <10 4 38																				
308	L3+80W- 0+10 S	~5	<2	3.42	30	60	30	0.07	1	14	23	21	7.72	<10	0.04	64	25	<.01	20	110	26	<5	<20	6	0.42	20	226	<10	1	121
316	L4+00W- 0+10 N	ঁ	<.2	0.25	<5	10	<5	0.03	<1	<1	<1	1	0.27	<10	0.03	33	<1	<.01	<1	110	6	<5	<20	4	0.05	<10	9	<10	<1	10
325	L4+00W- 1+00 N	-5	-		-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-
Standa	nd:																													
GEO'95	i	150	1.0	1.62	65	155	<5	1.70	<1	17	56	76	3.98	<10	0.87	675	2	0.01	24	690	20	4	<20	51	0.09	<10	76	<10	3	75
GEO'95	i	145	1.0	1.78	65	155	<5	1.86	<1	19	67	74	3.65	<10	1.01		<1		25			<5		59				<10	5	
GEO'95	1	150	1.0	1,79	65	150	<5	1.86	<1		66			<10			<1					5					• -		6	
GEO'95	i	150	1.0	1.82	65	155	-5	1.87	4								শ					5							-	
GEO'95	5	150	1.0	1.70	70	170	5	1.73	<1	18	66	81	$\begin{array}{cccccccccccccccccccccccccccccccccccc$																	
GEO'95	i	150	1.0	1.79	65	155	<5	1.B3	4	18	57	76	3,76	<10	1.00	647	<1	0.02	24	730	22	· 5	<20	54	0.11	<10	72	<10	7	75
GEO'95		150	4.2	1.71	65	155	<5	1.62	<1	18	60	- 77	3.65	<10	1.01	657	<1	0.02	25	710	20	<5	<20	55	0.12	<10	75	<10	7	76
GEO'95		150	1.0	1.81	70	155	10	1.79	<1	18	58	76	3.82	<10	0.96		<1		23		22	<5	<20			<10		<10	6	
GEOS		150	1.2	1.70	70	160	<	1.78	<1	18	60	78	3.98	<10	0.95	678	4		22		22	<5	<20	58	0.12	<10	78	<10	5	
GEO'95		-	1.2	1.82	65	155	<5	1.90	<1	18	59	77	3.85	<10	0.90	668	<1	0.02	24	730	22	<5	<20	54	0,11	<10	74	<10	6	76

ECO-TECH LABORATORIES LTD. - Frank J. Pozzoti, A.Sc. T. B.C. Certified Assayer

df/1125/1133/1131/1125B XLS/Astworth

Appendix C

INTRODUCTION

ICP-ES, in analytical shorthand, stands for Inductively Coupled Plasma - Emission Spectrograph, an instrument that has revolutionized the analysis of samples for mineral exploration and mining. Unlike its predecessors that relied on absorption, titration, colourmetric change, etc. to deliver a single element determination, the ICP-ES delivers simultaneous multielement determinations. Samples dissolved in a solution or reduced to a gas, are aspirated into a "plasma" operating at 8000°K that atomizes the sample and excites electrons to higher energy levels. Light given off by the atoms as they return to their ground state, reflects off a grating the separates the light into its various spectral lines. Photomultiplier tubes (PMTs) in critical positions measure individual spectral line intensities thus giving the concentration of each element. ICP-ES has become one of the most popular analytical methods for exploration owing to the number of elements that can be determined (over 70), the wide linear range (4 to 5 orders of magnitude), sensitivity (ppm to ppb level detection limits) and stability of readings for solutions with high dissolved solids. Because the ICP-ES relies upon sample dissolution, the explorationist can be selective towards the species of the element to be determined. A weak or sequential leach can permit examination of metal transported by groundwater or bound up in iron and manganese coatings on grains. A fusion followed by acid digestion can totally dissolve the sample allowing absolute determination of the element of interest. In addition, pre-concentration or dilution of the sample solution permits expansion of the dynamic linear range of the instrument.

Acme has 8 ICP-ES units (Jarrel-Ash Atomcomp 800s and 975s) each with 15 to 40 PMTs. Individual units are devoted to specific analytical tasks such as our 30 Element ICP, Ultratrace ICP, Precious Metal ICP, Whole Rock ICP, Hydride ICP and Rare Earth ICP packages. Computers attached to ICP-ES units and connected to Acme's local area network, control analysis, capture data, correct for instrument drift and background noise and monitor analytical precision and accuracy.

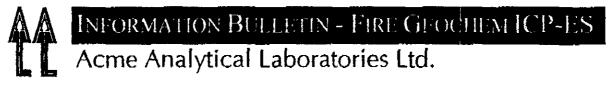
30 ELEMENT ICP

Samples are sieved to -80 mesh (soils and sediments) or crushed and pulverized to -100 mesh (rocks and drill cores). Acme's in-house standard (STD-C) and duplicate samples are inserted in the sample sequence. A 0.5 gram split is weighed and digested in hot (95°C) aqua regia (3:1:2 mixture of HCl, HNO₃ and H₂O) for 1 hour. After cooling for 2 hours, the sample solution is analyzed for 30 elements by ICP-ES. Aqua regia is particularly effective in the total digestion of sulphides, carbonates and most metal oxides. Some sulphates are totally dissolved (e.g. PbSO₄) while others are only marginally attacked (e.g. BaSO₄). Silicates vary in their susceptibility; micas and ferromagnesian silicates are more readily digested compared to the tektosilicates such as feldspar and quartz. Chromite is highly resistant while magnetite is less so. Analytical results are considered partial for B, Ba, Ca, Cr, Fe, La, Mg, Mn, P, Sr, Ti and W and limited for Al, K and Na.

QUALITY ASSURANCE - QUALITY CONTROL

Acme is implementing procedures under the ISO 9002 series of standards, from the initial commitment to quality by our management and employees to statistical process control of all analytical operations.

Samples arriving at the laboratory are logged into Acme's local-area computer network and labeled for positive identification. At every stage of the analytical process, technicians inspect the work performed at the previous stage thus insuring that the quality of their work is optimized. Reference standards, duplicates and analytical blanks are inserted every 20 to 40 samples (depending on sample type and analytical package) to monitor overall accuracy and precision. Analytical results are inspected and verified at four levels by; the computer, operator, data verification technician and finally by a British Columbia Certified Assayer before they are released to the client. Anomalous samples are frequently re-analyzed to confirm their content.


Precision of the 30-Element ICP Package

TICCION	/H UI	шс Э	0-menicut	TOL CHICK	tRc				
Cd	ppm	0.01	± 100% 0.01 - 0.08	±50% 0.09 - 0.20	±25% 0.21 - 0.50	± 15% 0.51 • 1.00	± 12.5% 1.01 - 3.00	±10% 3.00 - 100.00	12.5% >100.00
Аg	ppm	0.3	10 - 80	81 - 200	201 - 500	501 - 1000	1001 - 3000	3000 - 20000	>20000
Cr. Co,									
Cu, La,	}ppm	t	1 - 2	3 - 5	6 - 10	11 - 20	21 - 50	51 - 5000	>5000
Mo, Sr, V, Zn	i								
Ba	, ppm	I	1 - 5	6 - 15	16 - 30	31 - 50	51 - 100	101 - 5000	>5000
Ni	ppm	1	1-4	5 - 10	11 - 20	21 - 40	41 - 100	101 - 5000	>5000
As, Au,	、 • •	•		5 .0	11.20	41 - 40	41 - 100	101 - 2000	-3000
Bi, Mn, Sb, Th, W		2	2 - 4	5 - 10	11 - 20	21 - 40	41 - 100	101 - 10000	>10000
Pb	ppm	3	0.3 - 0.6	0.7 - 1.5	1.6 - 6.0	6.1 - 20.0	>20.0		
В	ppm	3	3 - 20	21 50	51 - 100	>100			
U	ppm	5	5 - 10	11 - 20	21 - 40	41 - 50	51 - 100	100 - 1000	>1000
Р	%	.001	.001002	.003005	.006010	.011020	.021050	.050 - 10.000	>10.000
Al, Ca Fe, K Mg, Na Ti	} } %	.01	.0102	.0305	.0610	.1120	.21 5 0	.51 - 20.00	>20.00

Accuracy of 30 Element ICP Standard - STD-C*

Element	Mo	Çu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd
units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ррт	ppm	ppm	ppm	ppm
mean	18.4	57.8	40.7	133.5	6.7	71.1	31.5	1074	4.01	40.7	18.7	6.7	34.9	48.6	18.0
R.S.D.*	6.5	3.6	5.7	3.8	6.9	4.3	7.3	3.3	5.7	6.4	11.4	11.2	4.2	4.7	5.1
Element	Sb	Bi	V	Ça	P	La	Cr	Mg	Ba	TI	B	Al	Na	ĸ	W
units	ppm	ppm	ppm	%	%	ppm	ppm	%	ррт	%	ррт	%	%	%	ppm
mean	17.0	20.7	62.4	0.509	0.091	41.4	59.7	0.871	181	0.095	31.3	1.91	0.058	0.155	11.7
R.S.D.*	10.4	10.3	4.9	5.9	4.3	5.0	9.9	4.8	3.9	10.6	11.2	5.0	11.1	7.4	9,4

* Relative Standard Deviations (in %) based on a recent survey of 20 determinations for STD-C

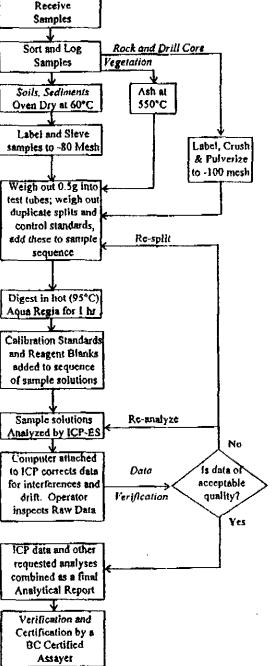
INTRODUCTION

ICP-ES, in analytical shorthand, stands for Inductively Coupled Plasma - Emission Spectrograph, an instrument that has revolutionized the analysis of samples for mineral exploration and mining. Unlike its predecessors that relied on absorption, titration, colorimetric change, etc. to deliver a single element determination, the ICP-ES delivers simultaneous multielement determinations. Samples dissolved in a solution or reduced to a gas, are aspirated into a "plasma" operating at 8000°K that atomizes the sample and excites electrons to higher energy levels. Light given off by the atoms as they return to their ground state, reflects off a grating that separates the light into its various spectral lines. Photomultiplier tubes (PMTs) in critical positions measure individual spectral line intensities thus giving the concentration of each element. ICP-ES has become one of the most popular analytical methods for exploration owing to the number of elements that can be determined (over 70), the wide linear range (4 to 5 orders of magnitude), sensitivity (ppm to ppb level detection limits) and stability of readings for solutions with high dissolved solids. Because the ICP-ES relies upon sample dissolution, the explorationist can be selective towards the species of the element to be determined. A weak or sequential leach can permit examination of metal transported by groundwater or bound up in iron and manganese coatings on grains. A fusion followed by acid digestion can totally dissolve the sample allowing absolute determination of the element of interest. In addition, pre-concentration or dilution of the sample solution permits expansion of the dynamic linear range of the instrument.

Acme has 8 ICP-ES units (Jarrel-Ash AtomComp 800s and 975s) each with 15 to 40 PMTs. Individual units are devoted to specific analytical tasks such as our 30 Element ICP, Ultratrace ICP, Fire Geochem ICP, Whole Rock ICP, Hydride ICP and Rare Earth ICP packages. Computers attached to ICP-ES units and connected to Acme's local area network, control analysis, capture data, correct for instrument drift and background interference and monitor analytical precision and accuracy.

AU, PT, PD BY ICP

Samples are sieved to -80 mesh (soils and sediments) or crushed and pulverized to -100 mesh (rocks and drill cores). Acme inhouse standard FA-100S and duplicate samples are inserted in the sample sequence. A 30 gram split is weighed, mixed with fireassay fluxes and fused at 1050°C for 1 hr. After cooling, the lead button is separated from the slag and cupelled at 1000°C to recover the $Ag \pm precious$ metals dore bead. The dore bead is digested in hot (95°C) HNO₃ and HCl acids. After cooling for 2 hours, the sample solution is analyzed for Au, Pt and Pd by ICP-ES. Standard recovery is 95 to 98% of precious metal bound up in silicates, oxides, carbonates, sulphates or sulphides as well as free metal. Smaller splits are used for high chromite and high sulphide samples. Fire geochem ICP-ES can determine Rh, but requires a Au inquart. Acme recommends that samples containing in excess of 1 ppm Au, Pt or Pd, be confirmed by a precious metal fire assay.


ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis 852 E, Hastings St., Vancouver, B.C., Canada V6A 1R6 Telephone: (604) 253-3158 Fax: (604) 253-1716

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE **GROUP 1D - 30 ELEMENT ICP BY AQUA REGIA**

Receive Samples

Analytical Process

Comments

Sample Preparation

Soils and sediments are dried (60°C) and sleved to -80 mesh (-177 microns), rocks and drill core are crushed and pulverized to -100 mesh (-150 microns). Plant samples are dried (60°C) and pulverized or dry ashed (550°C). Moss-mat samples are dried (60°C), pounded to loosen trapped sediment then sieved to -80 mesh. At the clients request, moss mats can be ashed at 550°C then sieved to -80 mesh although this can result in the potential loss by volatilization of Hg, As, Sb, Bi and Cr. A 0.5 g split from each sample is placed in a test tube. A duplicate split is taken from 1 sample in each batch of 34 samples for monitoring precision. A sample standard is added to each batch of samples to monitor accuracy.

Sample Digestion

Aqua Regia is a 3:1:2 mixture of ACS grade conc. HCl, conc. HNO₁ and demineralized H₂O. Aqua Regia is added to each sample and to the empty reagent blank test tube in each batch of samples. Sample solutions are heated for 1 hr in a boiling hot water bath (95°C).

Sample Analysis

Sample solutions are aspirated into an ICP emission spectrograph (Jarrel Ash AtomComp model 800 or 975) for the determination of 30 elements comprising: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La. Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W. Żn.

Data Evaluation

Raw and final data from the ICP-ES undergoes a final verification by a British Columbia Certified Assayer who then signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

Document: ICP30M&S.doc

Prepared By: J. Gravel

QUALITY ASSURANCE - QUALITY CONTROL

Acme is implementing procedures under the ISO 9002 series of standards, from the initial commitment to quality by our management and employees to statistical process control of all analytical operations.

Samples arriving at the laboratory are logged into Acme's local-area computer network and labeled for positive identification. At every stage of the analytical process, technicians inspect the work performed at the previous stage thus insuring that the quality of their work is optimized. Reference standards, duplicates and analytical blanks are inserted every 20 to 40 samples (depending on sample type and analytical package) to monitor overall accuracy and precision. Analytical results are inspected and verified at four levels by; the computer, operator, data verification technician and finally by a British Columbia Certified Assayer before they are released to the client. Anomalous samples are frequently re-analyzed to confirm their content.

Precisio	n of	the 3	0-Element	ICP Packs	Ige				
			± 100%	±50%	±25%	±15%	±12.5%	±10%	12.5%
Ċď	ppm	0.01	80.0 - 10.0	0.09 - 0,20	0.21 - 0.50	0.51 - 1.00	1.01 - 3.00	3.00 - 100.00	>100.00
Ag	ppm	0.3	10 - 80	81 - 200	201 - 500	501 - 1000	1001 - 3000	3000 - 20000	>20000
Cr, Co, Cu, La, Mo, Sr, V, Zn	}ppm	1	I - 2	3 - 5	6 - 10	11 - 20	21 - 50	51 - 5000	>5000
Bu	ppm	1	I - 5	6 - 15	16 - 30	31 - 50	51 - 100	101 - 5000	>5000
Ni	рртя	1	Ł – 4	5 - 10	11 - 20	21 - 40	41 - 100	101 - 5000	>5000
As, Au, Bi, Mn, Sb, Th, W		2	2 - 4	5 - 10	11 - 20	21 - 40	41 - 100	101 - 10000	>10000
Pb	ррт	3	0.3 - 0.6	0.7 - 1.5	1.6 - 6.0	6.1 - 20.0	>20.0		
В	ppm	3	3 - 20	21 50	51 - 100	>100			
U	ppm	5	5 - 10	11 - 20	21 - 40	41 - 50	51 - 100	100 - 1000	>1000
P	%	.001	.001002	.003005	.006010	.011020	.021050	.050 - 10.000	>10.000
Al, Ca Fe, K Mg, Na Tl) } %6 }	.01	.0102	.0305	.0610	.1120	.2150	.51 - 20.00	>20.00

Accuracy of 30 Element ICP Standard - STD-C*

Element	Mo	Çu .	Pb	Zn	Ag	NI	Co	Ma	Fe	As	U	Au	Th	Sr	Ĉď
units	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
mean	18.4	57.8	40.7	133.5	6.7	71.1	31.5	1074	4.01	40.7	18.7	6.7	34.9	48.6	18.0
R.S.D.*	6.5	3.6	5.7	3.8	6.9	4.3	7.3	3.3	5.7	6.4	[1.4	11.2	4.2	4.7	5.1
Element	Sb	Bi	V	Ça	P	La	Cr	Mg	Ba	TI	B	Â	Na	K	W
units	ppm	ppm	ppm	%	%	ppm		%	ppm	%	ppm	%	%	%	ppn
					-9-9 - 92 - 94 - 9-		***	2.2.2.2.3		2 2 2 2 2	77.20		0.000	N 722	
mean	17.0	20.7	62.4	0.509	0.091	41.4	59.7	0.871	181	0.095	31.5	1.91	0.058	0.122	

* Relative Standard Deviations (in %) based on a recent survey of 20 determinations for STD-C

Appendix D

Data Presentation

The 1995-1996 soil geochemistry data set contains analytical results generated by Eco-Tech and Acme Analytical laboratories, respectively. Statistical review (Table and Charts) demonstrate strong variation between the laboratories for As, Pb and Zn. Cu displays good correlation between the laboratories while Ag lacks sufficient range in concentrations to assess if a difference exists and Au is strongly influenced by the detailed sampling carried out on parts of the grid. Patterns in geochemical contour plots can be strongly affected by bias between laboratories, adjusting of one of the data sets is necessary (if possible) to remove the bias. The bulk of As values are below detection limits for both data sets, correction for bias is not possible. A linear regression analysis was conducted between the data sets for both Pb and Zn to determine if the bias between laboratories is linear. Samples falling between the 10th and 90th percentiles for both elements with correlation coefficients of 0.98 and 0.94 for Pb and Zn, respectively. Pb and Zn values in the Acme Analytical Lab data set (the lesser in both cases) were adjusted using their respective regression equations.

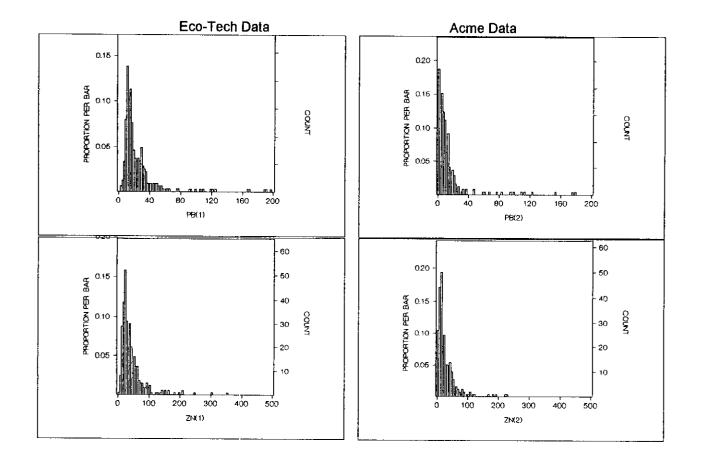
í,

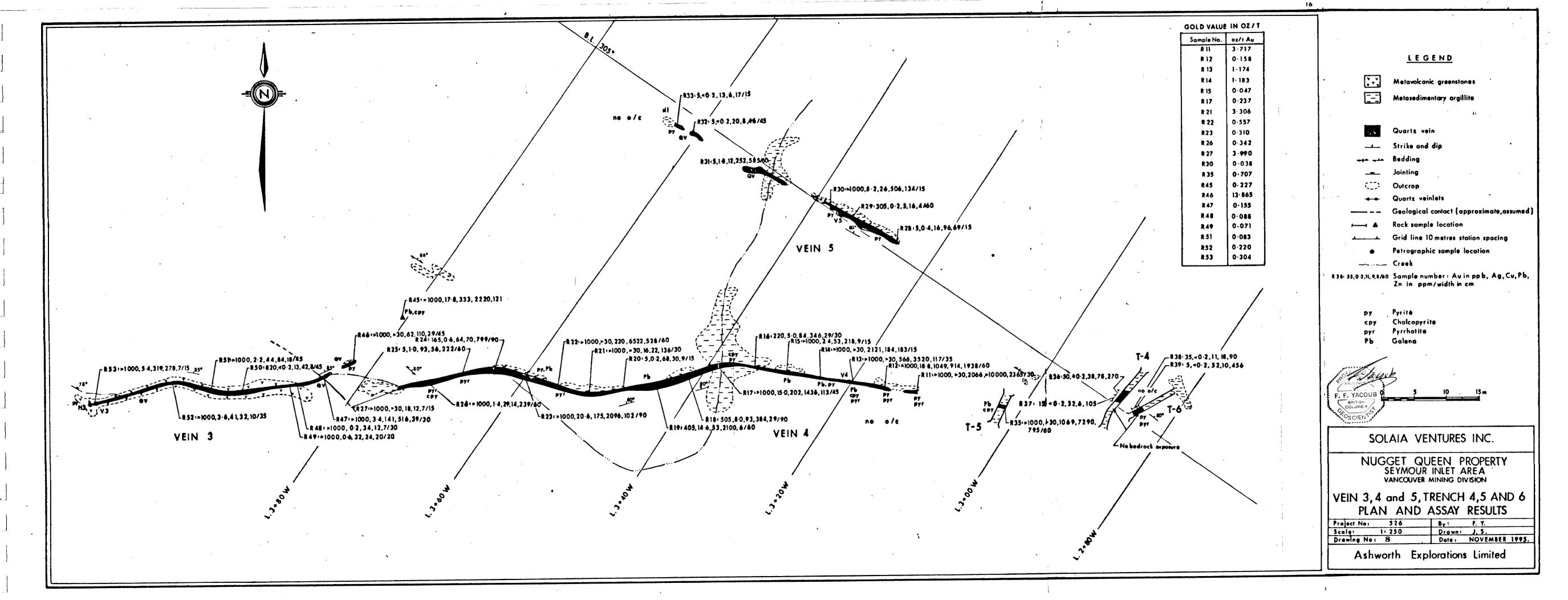
Contour plots depicting threshold, anomalous and highly anomalous concentrations were generated for Au, Ag, As, Cu, Pb and Zn. Selection of concentration intervals is based on interpretation of histograms. In general, Threshold, Anomalous and Highly Anomalous concentrations roughly correspond to the 90th, 95th and 97th percentiles of the combined data set.

Colour compilation contour plots were generated for precious metals (Au, Ag, As) and base metals (Cu, Pb, Zn). These are Sum Score plots wherein a value (sum score) is assigned to each sample site. Sum scores are calculated by assigning values of 1, 2 or 3 for concentrations at the Threshold, Anomalous or Highly Anomalous level and summing the numbers for the elements represented in the compilation (*vis* Au+Ag+As or Cu+Pb+Zn). Colour contours representing Weakly Anomalous, Anomalous and Highly Anomalous are based on sum scores equal to or greater than 2, 4 and 6, respectively.

Sheet1


TableComparison of Element Concentrations between Laboratories for 1995 - 1996 Nugget QueenGeochemical Soil Survey


Eco-Tech Data	Au(ppb)	Ag	As	Cu	Pb	Zn	Acme Data	Au(ppb)	Ag	As	Cu	Pb	Zn
Minimum	2	0.1	2	0.5	2	4	Minimum	0.5	0,1	1	0.5	1	0.5
Maximum	445	4.4	65	169	3604	352	Maximum	2240	1.8	48	147	704	225
Average	11.5	0.16	5.2	14.4	38.1	43.1	Average	31.2	0.24	3.1	15.1	24.2	27.7
Standard Deviation	44.5	0.37	8.2	15.9	202.9	41.6	Standard Deviation	16 1.3	0.25	5.2	16.4	69.8	33.3
10th Percentile	2	0.1	2	3	8	14	10th Percentile	0.5	0.1	1	2	1	4
25th Percentile	2	0.1	2	5	10	20	25th Percentile	1	0.1	1	4	4	9
35th Percentile	2	0.1	2	7	12	23	35th Percentile	1	0.1	1	7	5	11
Median	2	0.1	2	10	16	30	Median	2	0.1	1	11	8	16.5
65th Percentile	2	0.1	2	14	22	40	65th Percentile	4	0.1	2	16	12	26
75th Percentile	2	0.1	2	18	28	52	75th Percentile	7	0.3	3	19	14.75	36
90th Percentile	5.0	0.1	10.0	26.2	44.4	84.0	90th Percentile	28.9	0.6	5.3	32.3	30.6	58.2
95th Percentile	65.0	0.3	20.0	38.8	84.4	106.4	95th Percentile	107.7	0.8	8.1	42.2	100.5	84.2
97.5th Percentile	129.8	0.6	30.0	53.8	157.6	159.6	97.5th Percentile	316.7	0.9	13.2	55.3	208.3	113.6


Eco-Tech Cu = Acme Cu Eco-tech Pb = 1.2583 * Acme Pb + 6.2714 ppm Eco-Tech Zn = 1.2866 * Acme Zn + 7.8332 ppm

.

Sheet1

