

REPORT ON THE 1996

DELTA WEST PROJECT:

SKEENA MINING DIVISION

NORTHWESTERN BRITISH COLUMBIA

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

24.961

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM

Name: David E. Molloy

Prospecting Other Days: Project Total Project Area: Completed? Days Days Days Delta West Yes, as 30 9 39 Project Area field conditions allowed

PROSPECTING ASSISTANTS:

Janine Calder, B.Sc., geologist.

CLAIMS STAKE DURING/AFTER PROSPECTING ACTIVITY:

Project Area:	Claim Names:	No. of Units
Delta West	Fox 30-40	208

OPTION AGREEMENTS: None to date

EXPENDITURES (total of all projects):

ANALYSES/ASSAY COSTS:\$3334.31	
EQUIPMENT RENTALS/SUPPLIES\$1048.87	
FOOD AND ACCOMMODATION\$1708.89	
VEHICLE RENTAL/OPERATION\$ 899.83	
OTHER EXPENSES (specify)CLAIM RECORDING\$1041.07 FIELD SALARIES\$3317.10 REPORT PREPARATION\$ 665.76	2381.00
TOTAL.,\$12015.83	10034.16

10021 invir & Maroci SIGNATURE OF GRANTEE

TABLE 1A A. SUMMARY OF PROSPECTING ACTIVITY (CONTINUED) DAILY REPORTS (DIARY): DELTA WEST PROJECT AREA

		PROSPECTING DAYS	: WORK PERFORMED:
	JUNE 16		PROCURE SUPPLIES, PACK
	2 JUNE 17		RESERVATIONS, LOGISTICS
	JUNE 18	1	TRAVEL, SUPPLIES, FIELD OR
	JUNE 19		CLAIM STAKING
	5 JUNE 20	1	CLAIM STAKING
	5 JUNE 21	1	CLAIM STAKING
-	JUNE 22	1	CLAIM STAKING
8	3 JUNE 23	1 1	CLAIM STAKING
9	JUNE 24	1 1	RUN SAMPLE, MAP LINES
10) JUNE 25	1	RUN SAMPLE, MAP LINES
11	JUNE 26	1	RAIN OUT FIELD - STEWART
			SUPPLIES
1:	2 JUNE 27	1	CLAIM STAKING
13	JUNE 28	1	RAIN OUT - ROAD RECON
	JUNE 29	1	CLAIM STAKING
19	5 JUNE 30	1	CALIM STAKING
10	5 JULY 1	1	CLAIM STAKING
	7 JULY 2	1	FIELD RAIN OUT - RECORD
			CLAIMS; WORK PERMIT
18	3 JULY 3	1	GEOCHEM SAMPLE
	JULY 4	1	GEOCHEM SAMPLE
		_	RAINOUT
21) JULY 5	1	GEOCHEM SAMPLE
	L JULY 6		GEOCHEM SAMPLE
			C/W ASSIST
2	2 JULY 7	1.5	GEOCHEM SAMPLE
			C/W ASSIST
2	3 JULY 8	1	GEOCHEM SAMPLE
	4 JULY 11		LOG SAMPLES
-		-	DATA ENTRY
2	5 JULY 12	1	LOG SAMPLES
		-	DATA ENTRY
21	5 JULY 22	1	LOG/PACK SAMPLES
	7 AUGUST 29		GEOCHEM SAMPLE
2	100001 23	±	RAINOUT
2	B AUGUST 30	1	GEOCHEM SAMPLE
2		±	RAINOUT
2	AUGUST 31	. 1	GEOCHEM SAMPLE
) SEPT 1	1	GEOCHEM SAMPLE/LOG SAMPLES
	I SEPT 2	1	LOG/PACK SAMPLES
	2 OCT 3	÷	REPORT
	3 OCT 4		REPORT
	4 OCT 5		REPORT
	5 OCT 26		REPORT
	5 OCT 30		REPORT
	7 NOV 18		REPORT
	3 NOV 18		REPORT
TOTALS:	- IIO - IJ	30 PROSPECTING	
TATUDO.		9 OTHER DAYS	
		> STILL DATO	

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM

B. TECHNICAL REPORT:

NAME: David E. Molloy

PROJECT AREA: Delta West Project Area

LOCATION OF PROJECT AREA: NTS: 104 A/12 Lat 56 deg, 36'; Long 129 deg, 38'

DESCRIPTION OF LOCATION AND ACCESS:

The Delta West Project is situated in the Delta Peak Area of the Skeena Mining Division about 80 km northeast of the town of Stewart, B.C.; and, about 75 km north of Meziadin Junction, B. C.

The Stewart-Cassiar Highway trends generally northwest on the west side of the project area and provides excellent access. Much of the ground in the vicinity of the highway has been clear cut and a number of old lumber roads provide some additional, interior access.

MAIN COMMODITIES SEARCHED FOR: Gold, copper

KNOWN MINERAL OCCURRENCES IN PROJECT AREA: None

WORK PERFORMED:

3. GEOCHEMICAL (type and no. of samples): 300 soil; 10 biogeochemical; 4 stream water

7. OTHER (specify): Claim staking - 208 claim units

SIGNIFICANT RESULTS:

COMMODITIES: Zinc soil anomalies CLAIM NAME: Fox 31-34; 40

LOCATION (shown on Map 4): area of interest centered at about Lat 56 deg, 37.5', Long 129 deg, 39.8'; Elevation: approx. 534 m

BEST ASSAYS/SAMPLE TYPE: successive soil samples (50 m spacing; zinc, copper, silver, cadmium, barium in ppm, Zone 1): F76 432, 20, 0.4, 0.5, 310 F77 800, 106, 0.6, 3.0, 460 F78 672, 114, 0.6, 9.5, 570

DESCRIPTION OF MINERALIZATION, HOST ROCKS, ANOMALIES:

Linear zinc soil anomalies most often with barium correlation, and varying degrees of copper (usually flanking), cadium and silver correlation. Five zones identified with apparent widths and strike lengths up to over 300 and 4.5 km, respectively (interpreted dimensions must be confirmed with detailed follow-up sampling). Anomalies occur near postulated Bowser Lake Group/Hazelton Group contact and are deemed to offer interesting, stratabound zinc targets. REPORT ON THE 1996 DELTA WEST PROJECT,

- ---

DELTA PEAK AREA:

SKEENA MINING DIVISION,

NORTHWESTERN BRITISH COLUMBIA

LATITUDE 56°36' NORTH

LONGITUDE 129°38' WEST

NTS 104 A/12

BY

DAVID E. MOLLOY

NOVEMBER, 1996

SUMMARY:

DELTA WEST PROJECT:

The Delta West Project was carried out partially in June, July, August and September, 1996, as weather and field conditions allowed. The work comprised claim staking (11 mineral claims totalling 208 claim units) and a reconnaissance geochemical evaluation (the collection of 300 soil, 4 stream water and 10 biogeochemical samples) of part of the western flank of the Oweegee Dome which is postulated to be underlain by favourable Hazelton Group rocks.

The project area is located in the Stewart Gold Camp about 75 km north of Meziadin Junction in Northwestern British Columbia. The project area is centred on NTS Map Sheet 104A/12 at latitude 56°36'N, longitude 129°38'W and covers 52 square kms.

The field program was carried out in conjunction with the activities of prospecting partner, David R. Kennedy (see separate Kennedy report). Kennedy supervised the claim staking and carried the geological mapping and stream sediment sampling out concurrently with the activities described in this report. An the application has been filed to fund the majority of approximately \$12,000 expenditure under the 1996 Prospector's Assistance Program of British Columbia.

The main exploration target was gold and polymetallic mineralization most likely in structurally controlled, sulfidized zones hydrothermally associated with altered, pyroclastic and intermediate to felsic intrusive rocks. Relevant models include Marc Zone type mineralization (auriferous pyrite and sphalerite in plunging oreshoots in structurally controlled zones in and in proximity to a porphyritic diorite intrusion) located on Barrick's Red Mountain Property; and, the Silbak-Premier en echelon ore bodies hosted by Unuk River Formation andesites and comagmatic porphyritic dacite sills and dykes and controlled by northwesterly and northeasterly trending structures and their intersections.

The majority of rather sparse outcrops are found along the Stewart-Cassiar Highway and generally comprise northwest trending, steeply dipping Bowser Lake Group sediments ranging from fine grained black mudstones and siltstones to medium grained, grey sandstones that are often sheared and weakly to strongly limonitized. Mafic to intermediate volcanic rocks showing varying degrees of propylitic alteration also occur, most often on the eastern side of the project area that was evaluated. Soil sampling was carried out mainly along claim lines, the cutting of which was often limited by topography. Initially, approximately one half of the 300 soil samples (representing a 100 m sample spacing) were subject to gold analysis (FA-AA) and 32 element ICP in order to delineate any anomalous trends and ascertain possible masking effects of some apparent transported overburden cover.

Contrary to the postulated prospective gold environment, all of the soil gold values were less than 5 ppb. Copper values (ranging between 8 and 106 ppm except for one value of 310 ppm) were generally weak. However, the zinc values that range between 40 and 578 ppm (except for one value of 800 ppm) and average 229 ppm, appeared to define a number of anomalies, some with weakly anomalous silver, copper, cadmium, and manganese correlation. In order to determine the importance of the zinc anomalies (generally using a threshold value of 225 ppm zinc in lieu of a statistically calculated value due to the lack of a fully representative sample population), 32 element ICP was run on 75 additional, fill-in samples to give analytical results at a spacing of 50 m in areas of interest.

When all the sample results are evaluated in terms of a multielement zinc, copper, silver, cadmium and barium signature, a number of interesting anomalies are defined. Some of the most important zinc anomalies have direct copper, silver, cadmium and barium correlation. Others have some cadmium and/or silver correlation, with flanking but weakly anomalous copper association. Using these criteria, five northwest trending, anomalous zinc zones have been initially interpreted from the reconnaissance soil survey.

In a broad interpretation, the apparently linear zones have strike lengths possibly up to over 4 kms and open for extension; and, widths ranging up to over 300 m. The zinc soil anomalies are not obvious via any strongly anomalous metal values in the reconnaissance stream sediment and rock samples collected by D. Kennedy. However, the apparent zones of anomalous zinc soil values, often with polymetallic association, are deemed to be sufficiently prospective to warrant detailed follow-up activities.

The targets are all in relatively close proximity to the Stewart-Cassiar Highway and are amenable to detailed evaluation via gradient IP and magnetometer surveying, geological mapping and detailed soil sampling on the existing lines and on in-fill lines spaced initially at 400 m intervals. Trenching should be facilitated by lumber trails in the clear cut areas.

It is concluded that while there is no significant, currently apparent gold potential based on the results of the soil survey in the project area explored to date, a number of anomalous zinc zones require follow-up. The zinc zones are relatively weak but appear to have considerable widths, extensive strike lengths, prospective polymetallic signatures and favourable geological associations. Any IP or EM correlation could offer high priority drill targets for stratabound zinc mineralization in an area that has not previously been subjected to detailed exploration. Most importantly, all significant gold mineralization that the author has encountered in the Stewart Camp has been haloed by similar zones of anomalous zinc mineralization, often without any gold signature. Thus, the apparent lack of gold potential may be a function of the early stage exploration activities.

As referenced in the Kennedy report, the only two gold sediment anomalies (25 and 35 ppb) located in the stream sediment survey do occur on the east and west flanks of the central and northern sections, respectively, of the Zone 2 zinc anomaly. Detailed follow-up of the gold anomalies is strongly recommended in conjunction with the evaluation of the Zone 2 zinc anomaly: sediment gold anomalies of similar magnitude in the Stewart Camp are often indicative of important, proximal gold mineralization.

TABLE OF CONTENTS

- - -

TITLE: PAGE:
SUMMARYi
TABLE OF CONTENTSiv
1. INTRODUCTION:1
2. LOCATION AND ACCESS:
3. TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE AND VEGETATION:.3
4. EXPLORATION HISTORY:
5. REGIONAL GEOLOGY:
6. REGIONAL MINERALIZATION AND EXPLORATION ACTIVITIES:13
7. DELTA PROJECT AREA GEOLOGY
8. 1996 DELTA WEST PROJECT
8.A. CLAIM STAKING19
8.B. GEOCHEMICAL PROGRAM
9. RECOMMENDATIONS22
10. CONCLUSIONS
11. REFERENCES:
12. STATEMENT OF QUALIFICATIONS:
LIST OF FIGURES
FIGURE: PAGE:
1. DELTA WEST PROJECT LOCATION MAP2
2. STEWART GOLD CAMP4
3. ROAD MAP
4. RELIEF MAP6
5. LUMBER ROAD, NORTH SIDE DELTAIC CREEK

6. STEWART COMPLEX.....10

LIST OF FIGURES (CON'T)

FIGURE:	PAGE:
7A. MT. DILWORTH FORMATION IN STEWART CAMP STRATIGRAPHY	.14
7B. STEWART VOLCANIC BELT.	.15
8. MINERALIZATION TYPES, STEWART CAMP	.15A
9. SOIL PROFILE, ZONE 1	.23
10. SOIL PROFILE, ZONE 2	.24
11. SOIL PROFILE, ZONE 4	.25

LIST OF MAPS

MAI	P:	APPENDIX 1	LOCATIO)N :
1A	MINERAL TITLES MAP M104A/12E	IN	POCKET	A
1B	MINERAL TITLES MAP M104A/11W	IN	POCKET	A
2.	TOPOGRAPHIC MAP: MAP104A/12E	IN	POCKET	в
з.	GEOLOGY MAP	IN	POCKET	С
4.	SOIL SAMPLE LOCATIONS AND ANALYTICAL RESUL	LTSIN	POCKET	D

LIST OF APPENDICES:

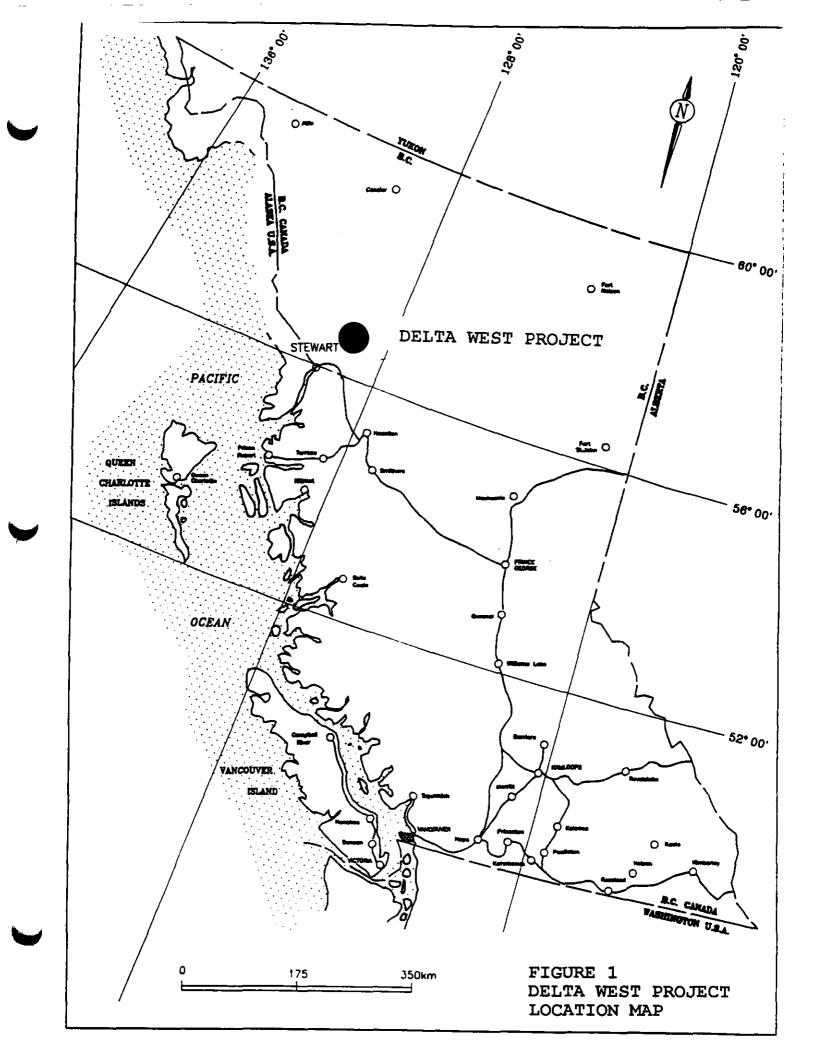
APPENDIX 1: WORK PERMIT

APPENDIX 2: CERTIFICATES OF ANALYSES

У

REPORT ON 1996 DELTA WEST PROJECT:

SKEENA MINING DIVISION,


NORTHWESTERN BRITISH COLUMBIA

1. INTRODUCTION:

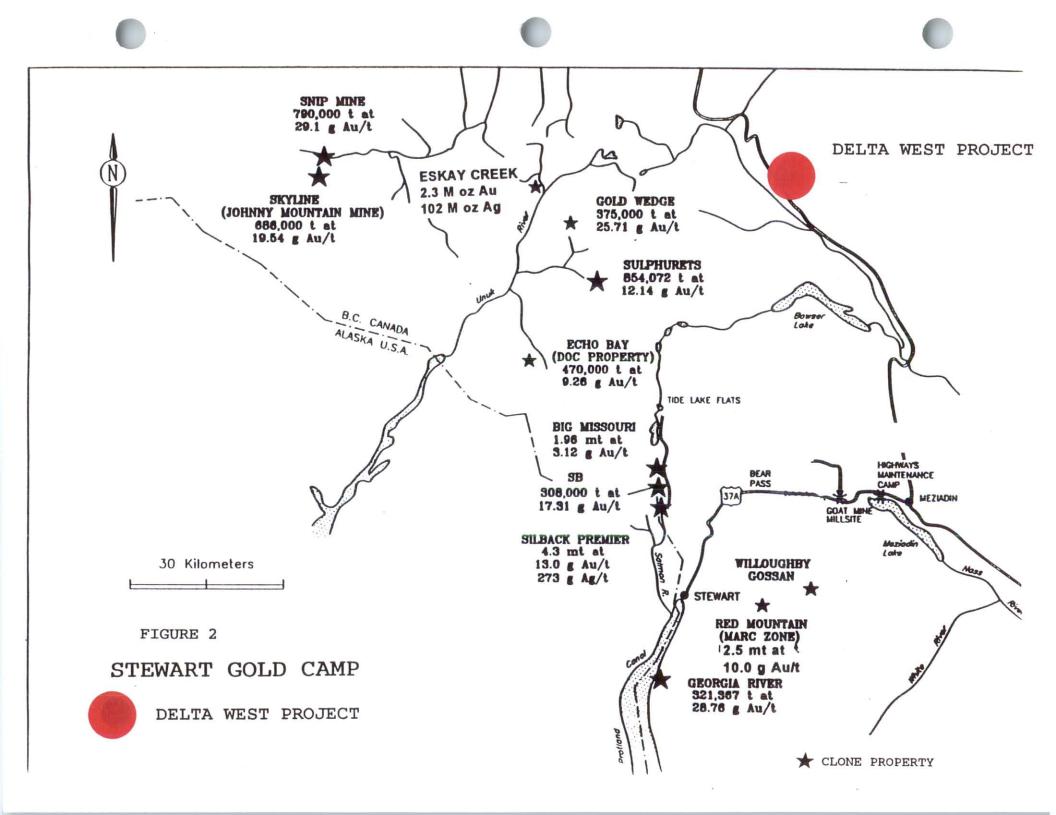
This report describes the results of claim staking and a geochemical survey carried out as part of the Delta West Project. The project area is located on the eastern edge of the Stewart Gold Camp, approximately 80 km northeast of Stewart in northwestern B.C. (Figure 1).

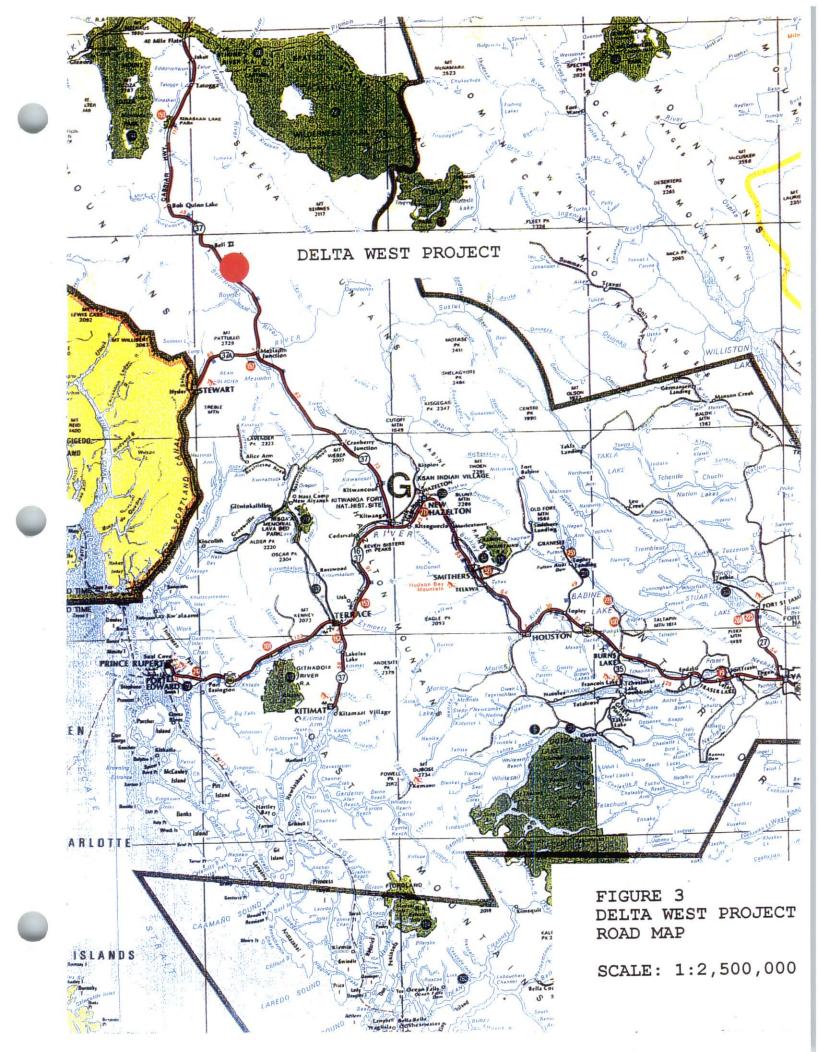
The rationale for the program includes the copper and gold mineralization reported on Cominco's Delta 1 and 2 mineral claims located about 3 km east of the Delta West Project area (Lee, 1990; Hamilton, 1991; Maps 1A, B); a historical report describing widespread gold and copper values apparently on the Old Claims located just west of the project area (British Columbia Minister of Mines, 1929; Map 1A); and, the presence of favourable Hazelton Group volcanic rocks mapped by the Geological Survey of Canada (Greig, Evenchick, 1993) on the flanks of the Oweegee Dome (Map 3). The Hazelton Group rocks host most of the significant gold deposits in the Stewart Camp and only minor historical exploration has ever been carried out in the Delta West Project Area.

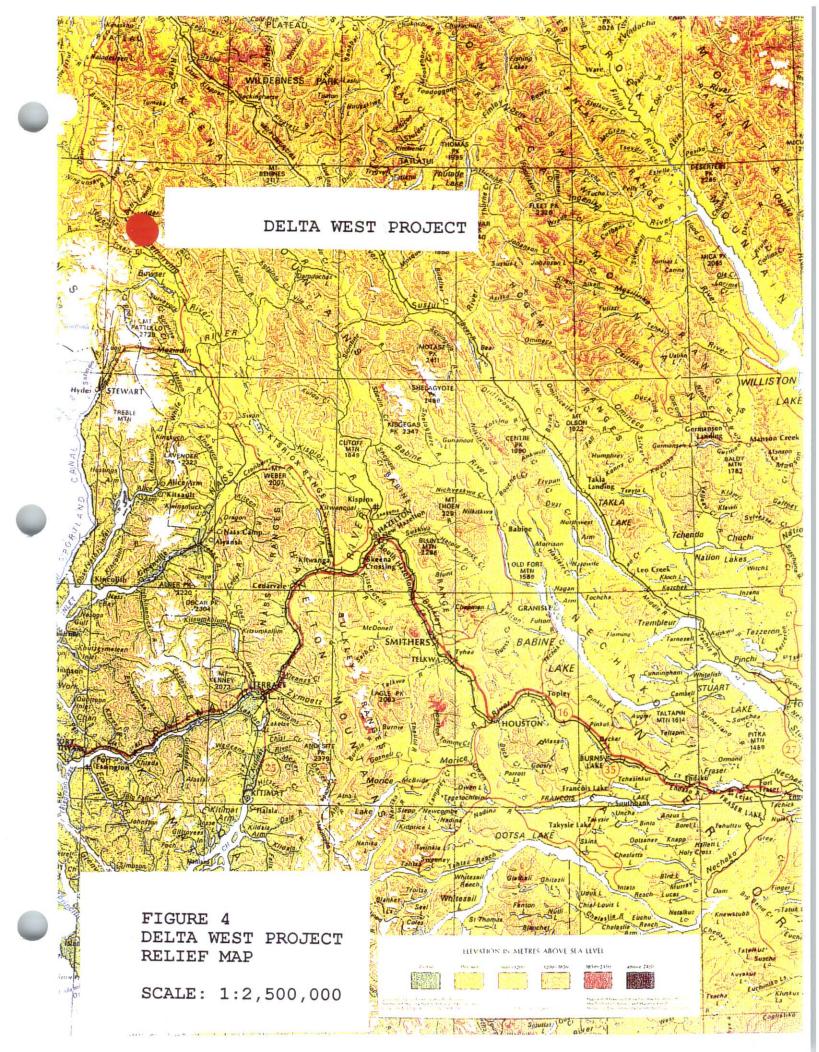
The original project as outlined in the Application for Funding to the Prospector's Assistance Program contemplated the author participating in the claim staking and carrying out the soil, stream sediment and biological geochemical surveys. The project was modified with consent from the director of the program: in view of the paucity of outcrops, D. Kennedy, the prospecting partner, assumed the responsibility for the stream sediment survey.

2. LOCATION AND ACCESS:

The Delta West Project is situated in the Delta Peak Area of the Skeena Mining Division about 80 km northeast of the town of Stewart, B.C. (Figure 2); and, about 75 km north of Meziadin Junction, B. C (Figure 3). The Delta West Project is centred on NTS Map Sheet 104A/12, at latitude 56°36'N, longitude 129°38'W (Map 2).


The Stewart-Cassiar Highway trends generally northwest on the west side of the project area and provides excellent access. Much of the ground in the vicinity of the highway has been clear cut and a number of old lumber roads provide some additional, interior access. Accommodation and fuel can be obtained at Bell 2 (Map 3) or at Meziadin Junction. Gravel pits in close proximity to the highway and to the main streams draining the area provide excellent overnight camp sites.


3. TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE & VEGETATION:

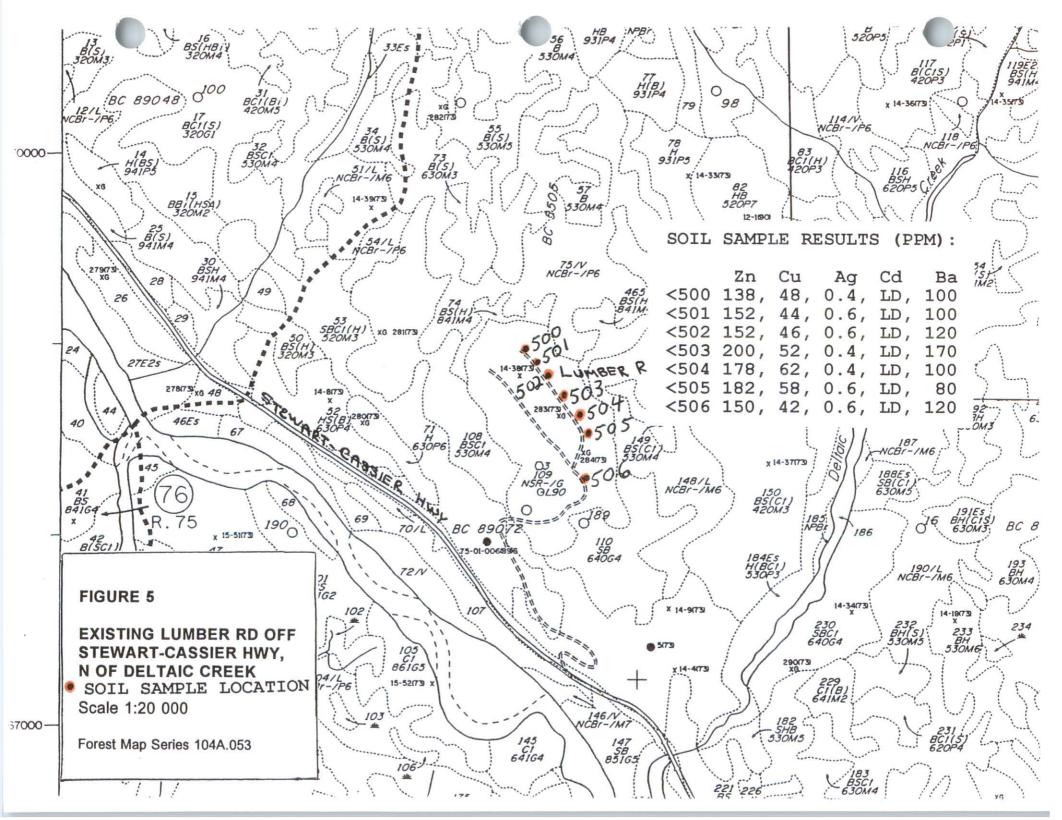

The Delta West Project is located within the Boundary Ranges of the northern British Columbia Coast Mountains (Figure 4). The general area is characterized by the Bell-Irving River valley and the fairly rugged mountainous terrain to the east ranging from about 500 to 1600 metres above sea level (Map 2). Delta Peak, to the east of the Project, and Oweegee Peak, 1 km north of Delta Peak, are both over 2200 m in elevation and dominate the topography. The mountain terrain is incised with young, deep valleys that trend northeast and that drain the area to the southwest, generally into the Bell-Irving River that parallels the Stewart-Cassiar Highway (Map 2).

The field exploration season usually extends from June through October. Snowfalls are heavy and can deposit several meters in a 24 hour period. Recorded mean annual snowfalls in the area range from 520 cm at Stewart (sea level) to 1,500 cm at Bear Pass (460 m elevation) to 2,250 cm at Tide Lake Flats (915 m elevation). In 1996, winter snow cover prevailed in most areas of the Stewart Camp at elevations of over 1200 m almost to the end of July. Summers are usually characterized by long hours of daylight and pleasant temperatures. However, the proximity to the ocean and relatively high mountains make for highly changeable weather. The summer of 1996 was generally characterized by cold temperatures and fog and rain that, along with the snow cover, tended to hinder exploration activities in the Camp.

Wildlife in the area of the Property mainly consists of goats, foxes, grizzly bears, black bears, wolves, marmots, martins, and ptarmigan.

About 90% of the project area is situated below the treeline. Parts of the area immediately to the east and west of Stewart-Cassiar Highway have been lumbered via clear cutting (Figure 5). Vegetation on the Property ranges from coastal rain forest including mature western hemlock, sitka spruce, fir, cottonwood and tag alders, with ferns, devil's club and moss as ground cover, to sub-alpine spruce thickets with heather and alpine meadows. Above treeline, at approximately 1,300 m, bare rock and talus slopes with occasional islands of alpine meadow prevail.

4. EXPLORATION HISTORY:


The central area of the Stewart Camp was prospected mainly for visible gold in quartz veins at the close of the 19th century but very little of this work was documented.

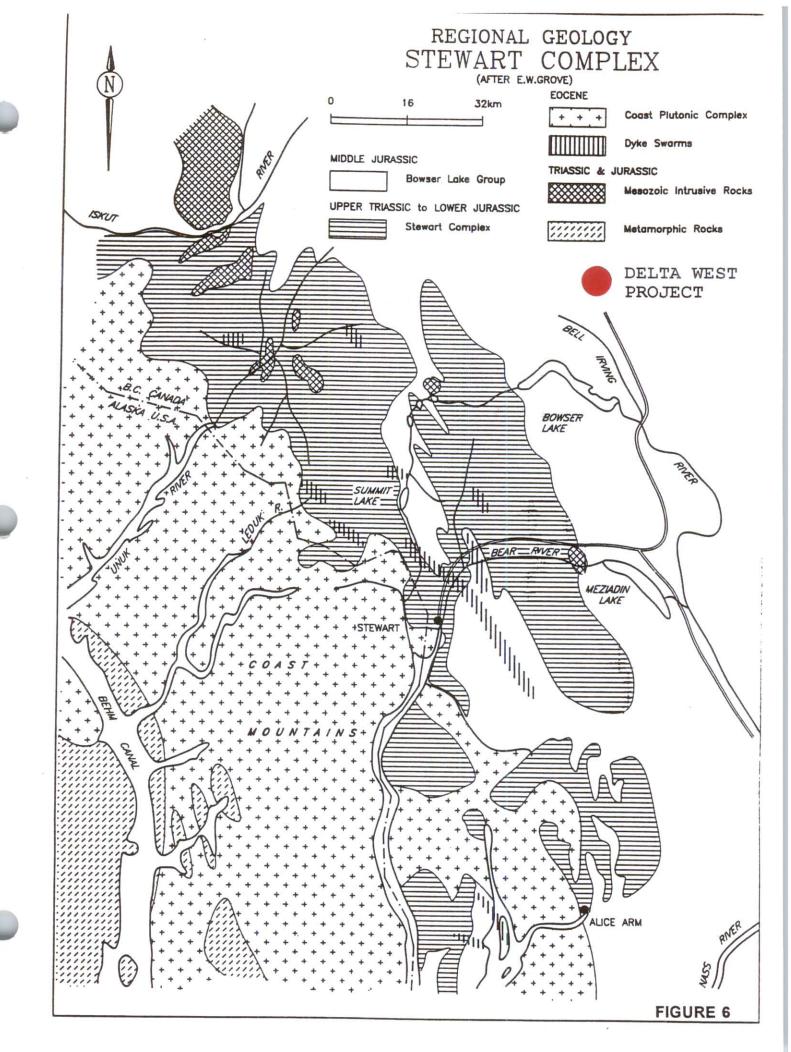
The Camp, after more recent discoveries that included Snip, Eskay Creek and Red Mountain (Figure 2), continues to be regarded as elephant country in which low cost discoveries can be made. For example, the Red Mountain deposit was discovered in 1989 on the first day of activities and more recent discoveries in the Stewart Camp such as the Teuton/Minvita Clone deposit were made in relatively short periods of time.

Some regional historical activities were reported apparently on the on the Old claims, in the 1920's. As referenced in the Annual Report of the British Columbia Minister of Mines, 1929, Consolidated Mining and Smelting Company of Canada carried out work on the North side of Treaty Creek about 58 km from the confluence of the Bell-Irving with the Nass River. According to the Report the company indicates that "the values are scattered over a large mineralized area and appear to be mainly in gold, silver, and copper, although sufficient work has not been done to form a criterion of the possible value of the property".

Indigo Mines funded an Aerodat helicopterborne magnetometer and VLF-EM survey in 1991 that covered the area of the Oweegee Dome. Apparently the company was wound up in 1992 and its ground position lapsed. There is no indication that the survey, the magnetic portion of which was useful in outlining Hazelton Formation rocks and structure, was followed-up on the ground.

In the 1990's, Cominco apparently carried out regional geochemical surveys in the area before staking the Delta claims that cover a large colour anomaly (Lee, 1990; Hamilton, 1991). Cominco initiated reconnaissance surveys in 1990 and 1991 that delineated very anomalous gold and copper values in rock, stream sediment and talus samples. No additional work was recommended and detailed follow-up was never carried out.

Geofine carried out the Phase 1A reconnaissance program on the Fox claims surrounding the Delta claims (Molloy, 1993) for Barrick Gold in August 1993. The program focused on the evaluation of colour anomalies hosted by or in the vicinity of prospective geology. Although a number of the gossan zones (Skowill, Porphyry) failed to return encouraging assay results, the Deltaic Zone and surrounding areas were deemed to constitute a high priority gold target.


Based on the positive analytical results obtained from the Geofine and Cominco initial exploration programs, the Deltaic Zone mineralization was interpreted to trend northeast over an apparent intermittent strike length of 3 km and have an apparent intermittent width of over 1 km. The Deltaic Zone remains open for expansion and detailed evaluation, and had never been drill tested.

As a follow-up to the 1993 Phase 1A program, Geofine carried out a 1993, Phase 1B program that was funded by Barrick Gold (Molloy, 1993A). The program was carried out on the Deltaic Grid on the Delta claims and comprised IP and magnetometer surveying, as well as soil geochemical surveys completed on grid lines totalling about 7.3 km. The follow-up program successfully delineated a number of weak - strong IP chargeability anomalies with coincident gold and copper geochemical anomalies. The most prominent targets are often haloed by zinc soil anomalies. The polymetallic geochemical signatures are similar to those that are associated with most gold deposits in the Stewart Camp.

5. **REGIONAL GEOLOGY:**

The Delta West project area is situated on the eastern margin of a broad, north-northwest trending volcanogenic-plutonic belt consisting of the Upper Triassic Stuhini Group and the Upper Triassic to Lower Middle Jurassic Hazelton Group. This belt has been termed the "Stewart Complex" (Figure 6) by Grove (1986) and forms part of the Stikinia Terrane. The Stikinia Terrane together constitute the with the Cache Creek and Quesnel Terranes Intermontane Superterrane which was accreted to North America in Middle Jurassic time (Monger et al 1982). To the west the Stewart Complex is bordered by the Coast Plutonic Complex. Sedimentary rocks of the Middle to Upper Jurassic Bowser Lake Group overlay the Stewart Complex in the east.

The Jurassic stratigraphy was established by Grove (1986) during regional mapping conducted from 1964 to 1968. Formational subdivisions have been and are currently being modified and refined as regional work continues most notably by the Geological Survey Branch of the British Columbia Ministry of Energy Mines and Petroleum Resources (Alldrick 1984, 1985, 1989) and the Geological Survey of Canada (Anderson 1989, Anderson and Thorkelson 1990).

The sedimentological, structural, and stratigraphic framework of the area is being established with some degree of precision.

The Hazelton Group represents an evolving (alkalic/cal-alkalic) island arc complex, capped by a thick turbidite succession (Bowser Lake Group; Figure 6). Grove (1986) divided the Hazelton into four litho-stratigraphic units (time intervals defined by Alldrick 1987):

- 1. The Upper Triassic to Lower Jurassic Unuk River Formation (Norian to Pliensbachian)
- 2. The Middle Jurassic Betty Creek Formation (Pliensbachian to Toarcian)
- 3. The Middle Jurassic Salmon River Formation (Toarcian to Bajocian)
- 4. The Middle to Upper Jurassic Nass Formation (Bathonian to Oxfordian Kimmeridigian)

Alldrick assigned formational status (Mt. Dilworth Formation) to a Toarcian rhyolite unit (Monitor Rhyolite) overlying the Betty Creek formation. Rocks of the Salmon River Formation are transitional between the mostly volcanic Hazelton Group and the wholly sedimentary Bowser Lake Group and are presently regarded as the uppermost formation of the Hazelton or the basal formation of the Bowser Lake Group.

The Unuk River Formation, a thick sequence of andesitic flows and tuffs with minor interbedded sedimentary rocks, hosts a number of major gold deposits in the Stewart area (Figure 2). The unit is unconformably overlain by heterogeneous maroon to green, epiclastic volcanic conglomerates, breccias, greywackes and finer grained clastic rocks of the Betty Creek Formation. Felsic flows, tuffs and tuff breccias characterize the Mt. Dilworth Formation (Figure This formation represents the climactic and penultimate 7A). volcanic event of the Hazelton Group volcanism and forms an important regional marker horizon. The overlying Salmon River Formation has been subdivided in the Iskut area into an Upper Lower Jurassic and a Lower Middle Jurassic member (Anderson and Thorkelson 1990). The upper member has been further subdivided into three north trending facies belts: the eastern Troy Ridge facies (starved basin), the medial Eskay Creek facies (back-arc basin) and the western Snippaker Mountain facies (volcanic arc).

Sediments of the Bowser Lake Group rest unconformably on the Hazelton Group rocks and were originally thought to underlie most of the Delta West project area. They include shales, argillites, silt and mudstones, greywackes and conglomerates. The contact between the Bowser Lake Group and Hazelton Group passes between Strohn Creek in the north and White River in the south. The contact appears to be a thrust zone with Bowser Lake Group sediment "slices" occurring within and overlying the Hazelton Group pyroclastics to the west. Two main intrusive episodes occur in the Stewart area: a Lower Jurassic suite of diorite to granodiorite porphyries (Texas Creek Suite) that are comagmatic with extrusive rocks of the Hazelton Group; and, an Upper Cretaceous to Early Tertiary intrusive complex (Coast Plutonic Complex and satellite intrusions). The early Jurassic suite is characterized by the occurrence of coarse hornblende, orthoclase and plagioclase phenocrysts and locally potassium feldspar megacrysts. The Eocene Hyder quartz-monzonite, comprising a main batholith, several smaller plugs and a widespread dike phase, represents the Coast Plutonic Complex.

Middle Cretaceous regional metamorphism (Alldrick et al. 1987) is predominantly of the lower greenschist facies. This metamorphic event seems to be related to compression and concomitant crustal thickening at the Intermontane - Insular superterrane boundary (Rubin et al. 1990). Biotite hornfels zones are associated with a majority of the guartz monzonite and granodiorite stocks.

6. REGIONAL MINERALIZATION AND EXPLORATION ACTIVITIES:

The Stewart Complex is the setting for the Stewart (Silbak-Premier, Silver Butte, Big Missouri), Iskut (Snip, Johnny Mountain, Eskay Creek), Sulphurets, and Kitsault (Alice Arm) gold/silver mining camps (Figure 2). Mesothermal to epithermal, depth persistent gold-silver veins form one of the most significant types of economic deposit. There appears to be a spatial as well as a temporal association of gold deposits to Lower Jurassic calcalkaline intrusions and volcanic centres (Figures 7A, 7B). These intrusions are often characterized by 1-2 cm sized, potassium feldspar megacrysts and correspond to the top of the Unuk River Formation.

The most prominent example of this type of mineralization is the historic Silbak-Premier gold-silver mine which has produced 56,000 kg gold and 1,281,400 kg silver in its original lifetime from 1918 to 1976. The mine was reopened by Westmin in 1988 with reserves quoted as 5.9 million tonnes grading 2.16 g Au/t and 80.23 g Ag/t (Randall 1988). Mining was terminated in 1996 but the plant is still used for custom milling.

The ore is hosted by Unuk River Formation andesites and comagmatic Texas Creek porphyritic dacite sills and dykes. The ore bodies comprise a series of en echelon lenses which are developed over a strike length of 1800 metres and through a vertical range of 600 m (Grove 1986, McDonald 1988). The mineralization is controlled by northwesterly and northeasterly trending structures and their intersections but also occurs locally concordant with andesitic flows and breccias.

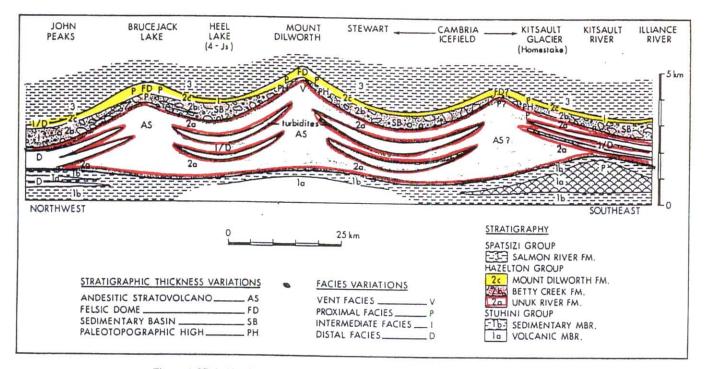


Figure 1-27-4. North-south schematic reconstruction through the Stewart complex.

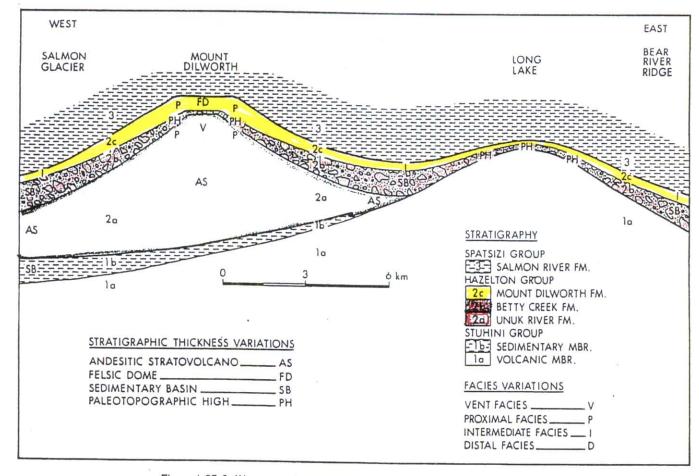


Figure 1-27-5. West-cast schematic reconstruction through the Stewart complex.

FIGURE 7A DILWORTH FORMATION IN STEWART COMPLEX STRATIGRAPHY

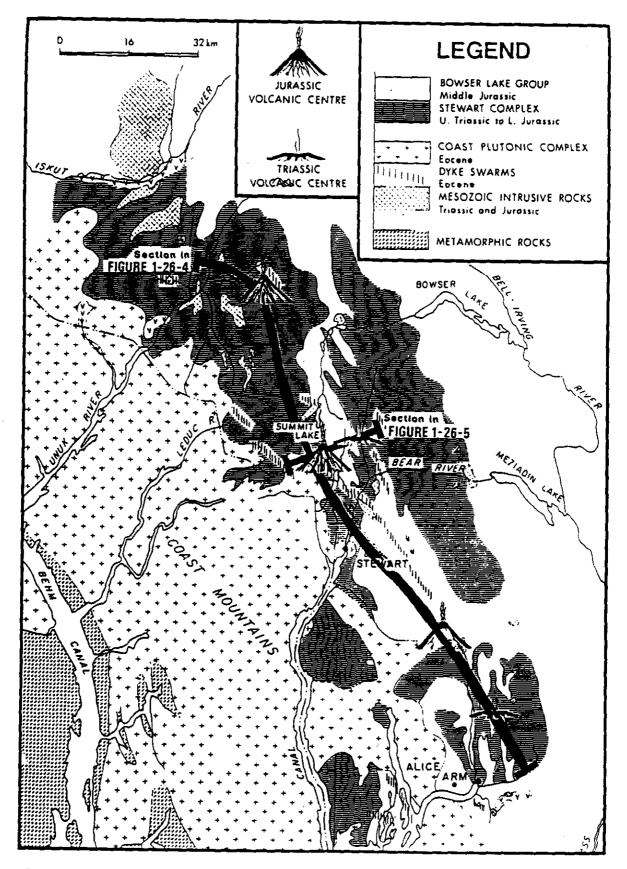
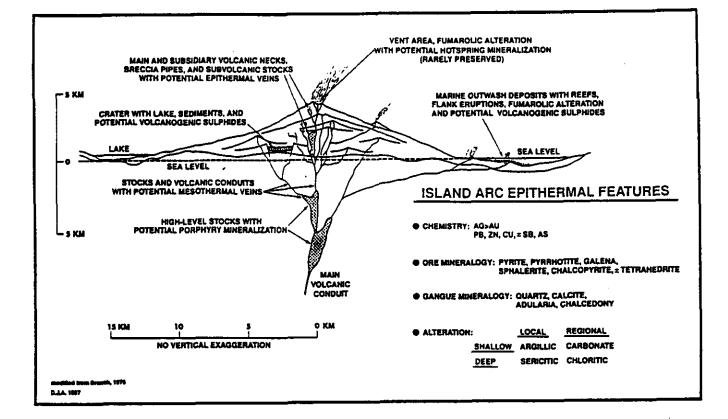


Figure 1-27-3. Distribution of the Stewart complex showing the locations of section lines for Figures 1-27-4 and 1/27-5.

FIGURE 7B STEWART VOLCANIC BELT


STEWART CAMP

MINERALIZATION TYPES

FIGURE 8

.

Distribution of ore deposits within a stratovolcano (modified from Branch, 1976).

Two main vein types occur: silica-rich, low-sulfide precious metal veins and sulfide-rich base metal veins. The precious metal veins are more prominent in the upper levels of the deposit and contain polybasite, pyrargyrite, argentiferous tetrahedrite, native silver, electrum, and argentite. Combined sulfides of pyrite, sphalerite, chalcopyrite and galena are generally less than 5%. The base metal veins crosscut the precious metal veins and increase in abundance with depth. They contain 25 to 45% combined pyrite, sphalerite, chalcopyrite and galena with minor amounts of pyrrhotite, argentiferous tetrahedrite, native silver, electrum and arsenopyrite.

Quartz is the main gangue mineral, with lesser amounts of calcite, barite, and some adularia being present. The mineralization is associated with strong silicification, feldspathization, and pyritization. A temperature range of 250 to 260 degrees C has been determined for the deposition of the base and precious metals (McDonald 1990).

Middle Eocene silver-lead-zinc veins are characterized by high silver to gold ratios and by spatial association with molybdenum and/or tungsten occurrences. They are structurally controlled and lie within north, northwest, and east trending faults. This mineralization has been less significant in economic terms.

Porphyry molybdenum deposits are associated with Tertiary Alice Arm Intrusions, a belt of quartz-monzonite intrusions parallel to the eastern margin of the Coast Plutonic Complex. An example of this type of deposit is the B.C. Molybdenum Mine at Lime Creek.

Recent exploration in the Stewart Mining Camp has resulted in the discovery of a number of exciting new deposits. Cominco's Snip Mine commenced production in January of 1991 with reserves of 790,000 tonnes grading 29.1 g Au/t.

The Eskay Creek gold-silver mine was constructed in 1994. Proven and probable reserves are currently estimated at about 2 million ounces of gold and 104 million ounces of silver. The mine is producing at a rate of 280 tonnes per day, with concentrates being trucked to Stewart for shipment to smelters in Japan and Quebec.

The Eskay Creek 21A Deposit is hosted within Contact Unit carbonaceous mudstone and breccia, as well as the underlying rhyolite breccia. Two styles of mineralization are present. The first is a visually striking assemblage of disseminated to near massive stibnite and realgar within the Contact Unit. The second style occurs in the adjacent footwall rhyolite, and features a stockwork style quartz-muscovite-chlorite breccia mineralized with sphalerite, tetrahedrite and pyrite. Highest gold and silver values are obtained where the Contact Unit is thickest and the immediately underlying rhyolite breccia is highly fractured and altered. Drilling has outlined a zone approximately 280 m long, up to 100 m wide and of variable thickness but averaging 10 m.

The Eskay Creek 21B Deposit is approximately 900 m long, from 60 to 200 m wide and locally in excess of 40 m thick. Contact Unit mineralization comprises a continuous stratiform sheet of banded high grade gold and silver bearing base metal sulfide layers, from 2 to 12 m thick. Mineralization appears to be bedding-parallel. sphalerite, Sulfide minerals present include tetrahedrite, boulangerite, bornite plus minor galena and pyrite. Gold and silver is associated with electrum, which occurs as abundant grains associated with sphalerite. Peripheral and footwall to the banded sulfide mineralization are areas of microfracture, veinlet hosted, disseminated tetrahedrite, pyrite and minor boulangerite mineralization.

Barrick's Red Mountain (formerly Bond Gold's and Lac Minerals') project (Figure 2) is currently being vigorously explored by Royal Oak. According to the August 5, 1996 Northern Miner, Royal Oak's strategy for 1996 is to expand minable reserves by 500,000 ounces to 1.3 M ounces through surface and underground drilling of the down plunge extension of the deposit. The existing decline is being extended 330 m. The company is looking at putting the deposit into production in the fourth quarter of 1999 at a production rate of 150,000 ounces of gold per year. Cash costs are expected to be in the range of \$150 per ounce.

The Marc Zone and its northerly extension, the AV Zone, occur as sulfide lenses or cylinders associated with a structural junction and the brecciated contact of the Goldslide Intrusion. The mineralization consists of densely disseminated to massive pyrite and/or pyrite stringers and veinlets and variable amounts of associated pyrrhotite and sphalerite as well as chalcopyrite, arsenopyrite, tetrahedrite and various tellurides. Several phases of mineralization and deformation are indicated by the presence of different generations of pyrite and breccia fragments consisting of pyrite. High grade gold values are usually associated with the semi-massive, coarse-grained pyrite aggregates, but also with stockwork pyrite stringers and veinlets. Gold occurs as native gold, electrum and as tellurides.

The Willoughby Project (Figure 2) is located about 6 km east of Red Mountain and was initially drilled by Bond Gold in 1989. Seven structurally hosted zones of gold mineralization were intersected with varying amounts of copper, lead and zinc. Camnor and Giant Gold Minerals are carrying out a \$1.3 M, 1996 program of surface and underground drilling concentrated on the North and Wilby Zones. In 1995, drilling on the North and Wilby Zones had returned up to 2.3 m grading 382.91 g gold/t and, 13 m grading 13.37 g gold/t, respectively. Geochemical sampling has recently located a 150 by 150 m, very strong gold soil anomaly between the North and Wilby Zones that remains open in three directions. The gold mineralization is associated with massive and semi-massive pyrite/pyrrhotite lenses and hosted by Hazelton Group volcaniclastic and intrusive rocks.

On the Clone Property located south of Red Mountain, Teuton Resources and Minvita Enterprises continue their pursuit of two sub-parallel shear zones up to 1.5 km in length that host high grade gold veins and stockworks. To date, the companies have completed 64 diamond drill holes and 140 trenches. As emphasized by the Teuton/Minvita August 29, 1996 press release, plunging ore shoot morphologies can be difficult exploration targets: "results strongly suggest that the mineralization at the Clone occurs in shoots having an unknown size plunging and orientation". Exploration continues with Homestake Canada Inc. and Prime Resources Group Inc. having a first right of refusal on any future financing. The latter companies are also technical advisors to Teuton and Minvita on the Clone Property.

7. DELTA PROJECT AREA GEOLOGY:

The Delta West project area is postulated to cover a tectonic window in which Jurassic Hazelton Group and Palaeozoic Stikine Assemblage rocks have been exposed by the uplift of broad anticlinal features known as the Oweegee and Ritchie Domes and by the erosion of Upper Jurassic sediments of the Bowser Basin.

The evolution of geological thinking with regard to the project area is described in the 1993, Phase 1B program report (Molloy, 1993A). The results of the Geological Survey of Canada's mapping activities are summarized on Map 3.

As indicated on Map 3, the west margin of the Oweegee Dome is dominated by rocks of the Lower Jurassic Hazelton Group: intermediate to mafic plagioclase-pyroxene lapilli tuff-breccia, lapilli, ash and dust tuffs; intermediate and felsic flows and derived debris flows; tuffaceous arkose, siltstone and mudstone; and, conglomerate and sandstone. The rocks are interpreted to extend west to within 300 m to 1 km of the east side of the Stewart-Cassiar Highway. Further to the west, the Hazelton Group is overlain by the Upper Jurassic Bowser Lake Group sediments including silty mudstones, fined grained sandstone and arkose.

The main components of the structural fabric trend northwest and northeast. Older faults (pre-Bowser Lake Group) according to Greig (1991) are mainly characterized by northwest dips which place Permian limestone on Stuhini Group rocks, and a steeply south dipping fault which juxtaposes the Stuhini Group with Hazelton Group rocks.

8. 1996 DELTA WEST PROJECT:

The Delta West Project was carried out partially in June, July, August and September, 1996, as weather and field conditions allowed. Project expenditures total \$12,015.83 and are summarized in Table 1 along with a description of daily activities. British Coloumbia Prospector's Assistance Program funding of approximately \$7500 has been allocated to the project.

The Delta West Project as described in this report consisted of 2 main components:

A. CLAIM STAKING

B. GEOCHEMICAL SURVEYS

8.A. CLAIM STAKING:

The staking of 11 claims (Fox 30-40) comprising 208 units was the main focus of the first 11 days of field activities. The claims are summarized in Table 2 and are shown on Mineral Titles Map 1A. The claims were registered in the name of David R. Kennedy and a Notice of Work (Appendix 1) was granted on July 2, 1996 (Approval Number SMI-96-0101533-200).

TABLE2

LIST OF NEW CLAIMS:

NAME:	TAG:	UNITS:	STAKING DATE:
FOX 30	233413	20	JUNE 21, 1996
FOX 31	233414	20	JUNE 21, 1996
FOX 32	233415	16	JUNE 29, 1996
FOX 33	233416	20	JUNE 24, 1996
FOX 34	233417	20	JUNE 24, 1996
FOX 35	233160	16	JULY 03, 1996
FOX 36	233422	16	JUNE 24, 1996
FOX 37	233403	20	JULY 01, 1996
FOX 38	233402	20	JUNE 30, 1996
FOX 39	233420	20	JUNE 29, 1996
FOX 40	233421	20	JUNE 29, 1996

TOTALS: 11 CLAIMS

208 CLAIM UNITS

TABLE 1

-

DIARY: DELTA WEST PROJECT:

- ---

FIELD WORK: EXPENDITURES:

_

DATE:	ACTIVITY:	ITEM:	AMOUNT:	
			INCL. GST%	OF TOTA
JUNE 16	PLAN TRIP;	PROCURSAL.		100.00
	EQUIP	BUG SPRAY	25.00	50.00
		FLAGGING	25.00	50,00
		SAMP BAGS	50.00	50.00
		BEAR BOM	3 100.00	50.00
		SAMPLER	29.95	100.00

JUNE 17 PACK, RESERVATIONSSAL

	JUNE	18	SUPPLIES, TRAV	SAL TRUCK INS COMP/GPS RENT FOOD	107.00 553.73 90.00 5.35 25.50	100.00 50.00 50.00 50.00
•	JUNE	19	COMMENCE STAKING	SAL COMP/GPS RENT SUBSIST	107.00 5.35 69.55	100.00 50.00
	JUNE	20	CLAIM STAKING	SAL COMP/GPS RENT SUBSIST	107.00 5.35 69.55	100.00 50.00 100.00
	JUNE	21	CLAIM STAKING	SAL COMP/GPS RENT SUBSIST	107.00 5.35 69.55	100.00 50.00 100.00
	JUNE	22	CLAIM STAKING	SAL COMP/GPS RENT SUBSIST	107.00 5.35 69.55	100.00 50.00 100.00
	JUNE	23	CLAIM STAKING	SAL COMP/GPS RENT SUSBIST	107.00 5.35 69.55	100.00 50.00 100.00

	JUNE	24	RUN SAMPLE LINES	SAL COMP/GPS		100.00 50.00	
				RENT	5.55	50100	
i				SUBSIST	69.55	100.00	
				CONT MAP	89.86	50.00	
				GAS	23.00	50.00	
	JUNE	25	RUN SAMPLE LINES	SAL			
				COMP/GPS RENT	5.35	50.00	
				SUSBIST	69.55	100.00	
	JUNE	26	RAIN OUT	GAS	10.00		
			STEWART SUPPLIES	FLAGGING	10.24	50.00	
				BUG SPRAY	13.39	50.00	
				SAL	107.00	100.00	
				COMP/GPS RENT	5.35	50.00	
				SUBSIST	69.55	100.00	
	TINE	27	CLAIM STAKING	SAL	107.00	100.00	
	UUNI	2,		COMP/GPS RENT			
				SUBSIST	69.55	100.00	
	JUNE	25-2	2HELP RE BLOWUP OF TOPOG BASE MAP	SAL	53.50	50.00	
		~~		0.011	107 00	100.00	
	JUNE	28	RAIN OUT - RD RECO		107.00 5.35	100.00 50.00	
				COMP/GPS RENT			
				SUBSIST	69.55		
				GAS	14.50	50.00	
	JUNE	29	CLAIM STAKING	SAL	107.00		
				COMP/GPS RENT	5.35	50.00	
				SUBSIST	69.55	100.00	
				GAS	24.79	50.00	
	JUNE	30	CLAIM STAKING	SAL	107.00	100.00	
				COMP/GPS RENT	5.35	50.00	
				SUBSIST	69.55	100.00	
	JULY	1	CLAIM STAKING	SAL	107.00	100.00	
				COMP/GPS RENT	5.35	50.00	
				SUBSIST	69.55	100.00	

•	JULY	2	RAINOUT- WORK PERMIT, CLAIM RECORDING	SAL COMP/GPS RENT	107.00 5.35	100.00 50.00
				SUBSIST	69.55	100.00
				CL RECORD	961.07	50.00
				REFRESH	5.00	100.00
				GAS	22.16	50.00
	JULY	3	GEOCHEM SAMPLE	SAL	107.00	100.00
				COMP/GPS RENT	5.35	50.00
				FOOD/ACC	69.55	100.00
	JULY	4	GEOCHEM SAMPLE	SAL	107.00	100.00
			RAINOUT	COMP/GPS RENT	5.35	50.00
				SUBSIST	69.55	100.00
				CL RECORD	80.00	160.00
	JULY	5	GEOCHEM SAMPLE	SAL	107.00	100.00
				COMP/GPS RENT	5.35	50.00
				SUBSIST	69.55	100.00
				FIELD FOO	11.95	50.00
					4.49	50.00
				EQUIP	46.95	
				MAPS	30.00	50.00
				MILEAGE	75.00	50.00
				GAS	15.65	50.00
	JULY	6	GEOCHEM SAMPLE	SAL	107.00	100.00
				COMP/GPS RENT	5,35	50.00
				SUBSIST	69.55	100.00
			ASSIST SAMP DATA PLOT	SAL	53.50	50.00
	JULY	7	GEOCHEM SAMPLE	SAL	107.00	100.00
			DATA ENTRY	COMP/GPS RENT	5.35	50.00
				SUBSIST	69.55	100.00
			ASSIST SAMP	SAL	53.50	50.00
	JULY	8	GEOCHEM SAMPLE	SAL	107.00	100.00
				COMP/GPS RENT	5.35	50.00
				SUBSIST	69.55	100.00
				GAS	20.00	10.00
			ASSIST LOG		53.50	50.00

- - -

JULY 9	GEOCHEM S RAINOUT	SAMPLE	SAL COMP/GPS RENT	107.00 5.35	100.00 50.00
			SUBSIST	69.55	100.00
JULY 11	LOG SAMPI DATA ENTF		SAL	107.00	100.00
JULY 12	DATA ENRI	ΥY	SAL	107.00	100.00
JULY 22	LOG, PACH SAMPLES DATA ENRI		SAL FOOD	107.00 23.00	100.00 50.00
AUGUST 27	GEOCHEM S RAINOUT	SAMPLE-	SAL SUBIST	107.00 63.50	100.00
AUGUST 28	GEOCHEM S RAINOUT	SAMPLE	SAL SUBSIST	107.00 63.50	100.00
AUGUST 29	GEOCHEM S	SAMPLE	GAS SAL SUBSIST	16.00 107.00 63.50	50.00 100.00 100.00
SEPT. 1	GEOCHEM S LOG SAMPI		SAL SUBSIST	107.00 63.50	100.00 100.00
SEPT. 2	LOG, PACK	SAMPLES	SAL SUBSIST	107.00 63.50	100.00 100.00
SEPT 10 SEPT 11 SEPT 12 SEPT 19		I9630086 I9631636 I9632030 I9631624	CHEMEX CHEMEX	2253.12 34.24 40.23 125.32	100.00 100.00 100.00 100.00
OCT 3	REPORT		SAL	107.00	100.00
OCT 4	REPORT		SAL	107.00	100.00
OCT 5	REPORT		SAL	107.00	100.00
OCT 26	REPORT		SAL	107.00	100.00
OCT 22 OCT 21		CHEMEX CHEMEX	I9636018 I9632406	584.22 293.18	100.00 100.00

_

-- -- --

OCT 29	COPIER	58.85 57.29	100.00 100.00
NOV1 NOV 18 NOV 19	HOME DEP REPORT REPORT	76.04	100.00
GEN	COMMUNICATIONS LOCAL MILEAGE COURIER EST	105.00 35.00 25.00	
	WORKERS COMP BC ONTARTIO	182.04 2.32	100.00 100.00 100.00

-

TOTAL: 12015.83

- -

8.B. GEOCHEMICAL PROGRAM:

The geochemical program included the collection of 300 soil samples generally taken at a 50 m spacing on claim lines and sample lines. The majority of the samples collected represent B horizon materials that are described in Table 3; sample locations are shown on Map 4 and Figure 5. The extent of the soil sampling was limited by the steep topographical conditions that terminated the running of most claim lines and by sand/gravel deposits of apparent glacial/fluvial origin found in a number of areas in the Bell-Irving River Valley. The field work was also hampered by unusual 1996 weather conditions: the persistence of snow accumulations at higher elevations into August and the generally wet weather that resulted in swollen streams and often difficult traverse conditions.

In view of the large areas of clear cutting and the lack of a uniform medium (fir trees) for biological sampling, the proposed biological component of the geochemical survey was limited to an orientation survey: 10 samples of first and second twigs from mature fir trees. The biological samples are described in Table 3 and shown on Map 4. Four water samples were also collected (Map 2) and tested for PH and gold content. The analytical results for all of the samples are presented in Appendix 2.

As an initial appraisal of the mineral potential of the project area, the odd numbered soil samples from 1 to 293 (142 samples generally constituting a 100 m sample spacing) were subject to gold (FA-AA) and 32 element ICP analyses at Chemex Labs Ltd. in Vancouver (Appendix 2, Map 4). Contrary to the postulated prospective gold environment, no anomalous gold values were encountered and other important signature elements such as lead and arsenic were discouraging. Copper values (ranging between 8 and 106 ppm except for one value of 310 ppm) were also generally weak.

However, the zinc values that range between 40 and 578 ppm (except for one value of 800 ppm) and average 229 ppm, appeared to define a number of anomalies, some with weakly anomalous silver, copper, cadmium, and manganese correlation. In order to determine the importance of the zinc anomalies (generally using a threshold value of 225 ppm zinc in lieu of a statistically calculated value due to the lack of a fully representative sample population), 32 element ICP (Appendix 2) was run on 75 additional, fill-in samples to give analytical results at a spacing of 50 m in areas of interest.

When all the sample results referenced above are evaluated in terms of a multi-element zinc, copper, silver, cadmium and barium signature, a number of interesting anomalies are defined (Map 4). Some of the most important zinc anomalies have direct copper, silver, cadmium and barium correlation. Others have some cadmium and/or silver correlation, with flanking but weakly anomalous copper association. Using these criteria, five northwest trending,

- - - - ---

BIOGEOCHEMICAL SURVEYS:

- ...

UMBER:	NAME:	TYPE	SOURCE
'B1	FIR N	1&2 N	NAT FIR
B2	FIR N	1 82 N	NAT FIR
B3	FIR N	142 N	Y FIR
B4	FIR N	1&2 N	Y FIR
B5	FIR N	1 &2 N	Y FIR
B6	FIR N	142 N	Y FIR
31	FIR N	182 N	Y FIR
38	FIR N	142 N	Y FIR
39	FIR N	142 N	Y FIR
310	FIR N	142 N	Y FIR

	AMPLES:									
{BER:	NAME:	SOIL HOR.:	DEVEL.: DEPTH		GR. SIZE:	COMPOSITION	DRAINAGE	:DIR:	VEG.:	GEOLOGY
			(CH)							
	LOAM	В	WELL	20 BLK	FI-CO	SIL, CL, MIN ORG	GOOD	S	MIXED	NA
	ORG/SD	A/B	POOR	20 BRN	SI-CO	ORG, SD FR VOL	GOOD	S	FIR	NA
	AS F1								ŗ	
	CL-SD	В	WELL	20 BN	CL	, SD FR VOL	GOOD	S	FIR	NA
	AS F4									
	AS F2									
	AS F4							N		
•	ORG	Å	POOR	20 BL K	FI-CO	ORG	POOR	SWAMPY Con	TAGS	NA
	SD	B	WELL	20 BRN	FI-CO	SD, SOME ORG SIL	PAIR	N	FIR	
J	ORG, SD	AB	POOR	20	FI-CO	BLK/BRN	GOOD	NW	FIR	NA
1	AS 9									
2	AS 9									
3	CL SD	B	WELL	20 BRN	CL-CO	CL, VOL SD	GOOD	SW	FIR FOR	NA
4	AS 13									
5	AS 13									
5	AS 13									
7	AS 13									

_

\smile	ORG, SD	AB	POOR	20	BRN/BLK	FI-CO	ORG, SD, SIL	FAIR	SW	FIR	NA
F19	AS 13										
F20	ORG	Å	POOR	20	BLK	FI-CO	ORG	POOR	SWAMPY	TAGS	NA
F21	AS 20										
F22	SD	B	WELL	20	BRN	FI-CO	SD FR VOL	GOOD	SW	CC	NA
F23	ORG	A	POOR	20	BLK	FI-CO	ORG	POOR	SWAMP	TAGS	NA
F24	SD-GRAV	B OR TRANS	WELL OR TRANS	20	BRN	FI-PEBS	SIL, VOL SD M VOL PEBS	FAIR	SW	TAGS/CC	NA
F25	AS 23										
F26	AS 24										
F27	AS 24										
F28	AS 24										
F29	AS 24										
F30	AS 24										
F31	SD	В	WELL	20	BRN	FI-CO	VOL SD SIL	GOOD	S	CC	NA
F32	AS 31 WITE 1	DZ ORG							N RIDGE		
F33	ORG	Å	POOR	20	BLK	FI-CO	ORG, CARB	GULLY	S -	CC	NA
834	AS 33										
\checkmark	SD-SIL-ORG	A/B	POOR	20		FI-CO	ORG, SIL, VOL SD	GOOD	S	CC	NA

AS 35

736

	AS 39									
F38	AS 39									VOL FLT
F39	SD	В	WELL	20 BRN	FI-CO	VOL SD SIL	GOOD	S	CC	NA
F40	ORG	Å	POOR	15 BLK	FI-CO	ORG, SIL	GOOD	S	CC	NA
F41	AS 42							S	CC	
F42	CL	LOAM	GOOD	20 BLK	CL-MED	CL, SIL, ORG	GOOD	SW	DEAD TRE	ES NA
F43	ORG/CL SD	AB	FAIR	20 BLK	CL-CO	ORG, CL, VOL SD CARB	GOOD	SW	FIR/DT	NA
P44	AS 45									NA
F45	ORG	A	POOR	15 BLK	FI-CO	ORG, SIL	GOOD	SW	FIR/TAGS	S NA
	ORG/SD	A/B	FAIR	20 BLK	FI-CO	ORG, VOL SD	GOOD	SW	FIR/TAGS	S M VOL
F47	CL SD	B	WELL	20 BRN	FI-CO	VOL SD	GOOD	SW	FIR FOR TAGS	M VOL
F48	AS 49									
F49	SD	B	WELL	20 BRN	FI-CO	VOL SD	GOOD	SW	FIR FOR	M VOL
F50	SD	B	WELL	20 BRN	FI-CO	SI, VOL SD		SW Re stream	FIR FOR	
F51	AS 52						VALLEY			
F52	CL-SD	В	WELL	20 BRN	CL-CO	CL, VOL SD	GOOD	E	FIR FOR	
253	ORG, SD	A/B	POOR	20 BRN	FI-CO	ORG, VOL SD	GOOD	SW	FIR	N VOL O
\checkmark										SEE FR
354	SD	3	WELL	20 BRN	SIL-CO	SIL, VOL SD	GOOD	SW	CC	N VOL

.

· · · · ·

---- ---

•

· · -

\checkmark	SD-GRAV	B	WELL	20 BRN	FI-PEBS	SD, M VOL PEBS Carb	GOOD	SW	CC	NA
F56	SD	B	WELL	20 BRN	SIL-CO	SIL, VOL SD	FAIR	FLAT	CC	H VOL
F57	CL-SD	B	WELL	20 BRN	CL-C0	CL, VOL SD	GOOD	SW	CC	M VOL
F58	AS 60 - MAY	BE GLACIAL	. FLU DEP							
F59	AS 60									
F60	SD	B	WELL	20 BRN	SIL-CO	SIL, SD	GOOD	SW	CC	M VOL F
F61	AS 62						FAIR	FLAT		
F62	SD-GRAV	8	WELL	20 BRN	FI-PEBS	SD, M VOL PEBS	GOOD	NW	CC	NA
	SD-GRAV	B	WELL	20 BRN	FI-PEBS	SD, M VOL PEBS	GOOD	NW	CC	NA
F64	SD	B	WELL	20 BRN	SIL-CO	SIL, SD	GOOD	SW	CC	N VOL F
F65	SD-GRAV	B	MOD	20 BRN	PI-PEBS	SD, M VOL PRBS SIL	FAIR	FLAT	CC	NA
F66	ORG	Å	POOR	15 BLK	SIL-CO	ORG, CARB	FAIR	FLAT	CC	N VOL
F67	AS 76									
F68	AS 76			ORG-BRN	Ī					
F69	AS 76									SEEARED
270	AS 76									SEE FR3
110		B	1761 7	<u>ንሰ በ</u> ካህ	011 PT	011 01 0PG	0000	8 P	00	W A
	LOAM	В	WELL	20 BRN	SIL-FI	SIL, CL, ORG	GOOD	SE	CC	NA

72 AS 76

113	AS 76			ORG-	BRN						
F74	AS 76										
F75	AS 76										
F76	SD-GRAV	B	HOD	20 BRN		FI-PEBS	SD, M VOL PEBS org Mat, sil	GOOD	NW	CC	NA
F77	CL-SD	В	WELL	20 BRN-	GRY	CL	CL	GOOD	NW	CC	NA
F78 0	LOAM	B	WELL	20 BLK		SIL-FI	SIL, CL, ORG	GOOD	NW	CC	NA
F79	AS 81										
F80	AS 81										
	CL LOAM	8	WELL	20 BLK		SIL-FI	SIL, CL, ORG	FAIR	FLAT	CC	NA
F82	SD	B	WELL	20 BRN		SIL-CO	SIL, SD	FAIR	FLAT	CC	NA
F83	LOAM	B	WELL	20 BLK		SIL-FI	SIL, CL, ORG	FAIR	FLAT	CC	NA
F84	SD	B	WELL	20 BRN		SIL-CO	SIL, SD	FAIR	FLAT	CC	NA
F85	CL-SD	B	WELL	20 BRN-	GRY	CL-CO	CL, SD	FAIR	FLAT	CC	NA
F86	CL	B	WELL	20 BRN-(GRY	CL	CL	FAIR	FLAT	CC	NA
F87	SD	B	WELL	20 BRN		SIL-CO	SIL, SD	FAIR	FLAT	CC	NA
F88	CL-SD	B	WELL	20 BRN		CL-CO	CL, SD	FAIR	FLAT	CC	NA
	SD	В	WELL	20 BRN		SIL-CO	SIL, SD	FAIR	FLAT	CC	NA
<u>7</u> 90	SD-GRAV	B	MOD	20 BRN		FI-PEBS	SD, M VOL PEBS ORG MAT, SIL	NOD	FLAT	CC	NA

	SD	B	WELL	20 BRN	SIL-FI	SI, SD	FAIR	FLAT	CC	NA
F92	CL LOAM	B	WELL	20 BLK	SIL-FI	CL, SIL	FAIR	FLAT	FIR/DC Mature F	
F93	SD	B	WELL	20 BRN	SIL-FI	SI, SD	FAIR	FLAT	FIR/TAG MATURE F	
F94	AS 95									
F95	CL LOAM	B	WELL	20 BLK	SIL-FI	CL, SIL FAIR	FLAT	FIR/DC MATURE H		
F96	ORG	A	HOD	20 BLK	FI-CO	ORG: ROOTS, BARK NEEDLES	, FAIR	FLAT	FIR/DC MATURE F	
F97	SD	B	WELL	20 BRN	SIL-FI	SI, SD	POOR	FLAT	FIR/TAG Mature F	
F98	CL	B	WELL	25 BRN	CL-SIL	CL, SIL	POOR	FLAT	FIR/TAG MATURE F	
E99	SD-GRAV	В	WELL	20 BRN	FI-PEBS	SIL, SD, FRAGS	MOD	W	FIR/TAG	
FIUU	ORG AS 104	Å	POOR	25 BRN	FI-CO	M VOL, OXID MAT ORG	POOR	FLAT	MATURE F FIR/TAG MATURE F	NA
F101	AS 104									
F102	AS 104									
F103	AS 104									
F104	AS 105						GOOD	SW		
F105	SD	B	MOD	20 BRN	FI-CO	SIL, SD, ANG VOL	MOD	FLAT	CC	M VOL
F106	AS 107									
F107	SD-GRAV	B	WELL	20 BRN	FI-PEBS	SIL, SD , FRAGS	MOD	FLAT	CC	SHEARED
\smile						M VOL				
F	AS 110									

- - - -

_ _

. . . .

AS 110

E110	SD-GRAV	В	WELL	20 BRN	PI-PEBS	SIL, SD, FRAGS	GOOD	SW	CC	INTERES
						M VOL, CARB, BAR				FL WITE
F111	SD-GRAV	8	WELL	25 BRN	FI-PEBS	STWK SIL, SD, FRAGS M VOL	GOOD	SW	CC	NA
F112	SD-GRAV	В	WELL	25 BRN	FI-PEBS	SIL, SD, FRAGS H VOL	GOOD	SW	CC	NA
F113	SD-GRAV	B	WELL	25 BRN	FI-PEBS	SIL, SD, FRAGS M VOL, ORG	GOOD	NE	CC	NA
F114	SD	В	WELL	20 ORG-BRN	SIL-FI	SIL, SD	GOOD	SW	CC	NA
F115	SD-GRAV	B	WELL	18 BRN	FI-PEBS	SIL, SD, FRAGS M VOL, ORG	GOOD	SW	CC	NA
F116	SD	B	WELL	20 ORG-BRN	SIL-FI	SIL, SD	GOOD	SW	CC	NA
\checkmark	SD	В	WELL	20 ORG-BRN	SIL-FI	SIL, SD, MIN ORG	GOOD	NW	CC	NA
F118	SD	B	WELL	16 BRN	SIL-FI	SIL, SD, MIN ORG	GOOD	NW	CC	NA
E119	CL-SD	B	POOR	15 BR	CL-FI	CL, SD	GOOD	W	FIR	M VOL
F1 20	CL	В	GOOD	20 BR	CL	CL	GOOD	W	FIR	NA
F121	SILTY CL	В		15 BR	SIL-CL	SIL, CL	GOOD	W	FIR	NA
F122	ORG	Å	POOR	25 BLK	FI-C0	ORG	GOOD	W	FIR	NA
F123	CL LOAM	8	WELL	40 BLK	CL-FI	CL, SIL, SD	GOOD	W	TAG	NA
F124	CL	В	WELL	25 BRN	CL	CL	GOOD	S	TAG	NA
°	CL	A/B	WELL	30 BRN	CL	CL	GOOD	W	TAG	NA
F126	SD	В	NOD	20 BRN	FI-CL	SD	GOOD	W	FIR/TAG	NA

. _ ..._

	SIL-SD	B	WELL	30 BRN	SIL-FI	SIL, SD	GOOD	W	FIR	NA
F128	SIL-SD-LOAM	В	WELL	25 BRN	SIL-FI	SIL, SD, CL	GOOD	W	TAG/FIR	NA
F129	SD	B	WELL	25 BRN	FI-CO	SD	GOOD	W	FIR	NA
F130	SD	В	WELL	25 BRN	SIL-CO	SD	GOOD	SW	FIR FOR	NA
F131	LOAM	B	WELL	20 ORG BRN	CL-FI	CL, SIL	FAIR	5	FIR FOR	NA
F132	CL	B	WELL	20 BRN	CL	CL	GOOD	S	FIR FOR	NA
F133	SIL-CL-SD	B	MOD	12 BRN	CL-CO	SIL, CL, SD	GOOD	SW	FIR FOR	NA
F134	SIL-SD	B	WELL	25 BRN	SI-PI	SIL, SD	GOOD	SW	FIR FOR	NA
F135	CL-SD	B	WELL	35 BRN	CL-CO	CL, SD	GOOD	S	FIR FOR	SHEARED
\sim										FLOAT -
F136	SD	В	WELL	25 BRN	SIL-CO	SD	GOOD	SW	FIR FOR	NA
F137	SD	8	WELL	25 BRN	SIL-CO	SD	GOOD	SW	CC/TAGS	NA
F138	CL-SD	B	WELL	20 BRN	FI-CO	CL, SD	GOOD	SW	CC	
F139	SD	TRANS?		20 BRN	FI-CO	SD	GOOD	SW	CC	M VOL O
F140	SD	B	WELL	20 BRN	FI	SD	GOOD	SW	CC	NA
F140 F141	SD Cl/ORG	B A/B	WELL Poor	20 BRN 20 BRN	FI CL-FI	SD CL/ORG	GOOD GOOD	SW SW		NA NA
									CC	
F141	CL/ORG	A/B	POOR	20 BRN	CL-FI	CL/ORG	GOOD	SW	CC CC	NA

_ _

.

	ORG	A	POOR	25 BLK	FI-CO	ORG	POOR	SW	TAGS	NA
F146	SD	B	GOOD	20 BRN	SIL-FI	SD	GOOD	E	TAGS	NA
F147	CL-SD	B	WELL	45 BRN	CL-FI	CL, SD	FAIR	FLAT	TAGS	NA
F148	SD-GRAV	В	GOOD	20 BRN	FI-PEBS	SD, ANG PRAGS SEDS, M VOL	FAIR	FLAT	TAG	NA
F149	CL-SD	В	WELL	20 BRN	CL-C0	CL, SD	GOOD	W	CC	NA
F150	CL	B	WELL	20 GREY	CL	CL	FAIR	FLAT	TAGS	NA
F151	CL-SD	B	WELL	20 BRN	CL-CO	CL, SD	GOOD	W	FIR	NA
F152	CL-SD	B	WELL	20 BRN	CL-CO	CL, SD	FAIR	E	FIR	NA
F153	SD-GRAV	B	FAIR	20 BRN	FI-PEBS	SD, ANG PRAGS SEDS, M VOL	FAIR	FLAT	FIR	NA
	CL-SD	A/B	POOR	20 BRN	CL-CO	CL, SD	FAIR	SW	FIR	NA
F155	SD	B	GOOD	45 BRN	SIL-FI	SIL, SD	GOOD	SW	CC	NA
F156	CL	B	FAIR	25 BRN	CL-SIL	CL, SIL	FAIR	SW	CC	NA
F157	SILTY SD	B	W	25 BRN	SILT-FI	SIL, SD	GOOD	S	FIR/TAG/	'DNA
F158	łt	B	W	20 BRN	P	SIL, SD	π	SSW	FIR	NA
F159	ł	B	W	20 BRN	R	SIL, SD	-	NE	FIR	NA
F160	٣	В	W	20 BRN	17	SIL, SD	R	NE	FIR	NA
F161	CL SD	B	W	20 BRN	CL-C0	CL, SD	GOOD	W	FIR FOR	APP SH
Fi.	CL	В	W	35 BL K	CL	CL	GOOD	W	FIR FOR	APP SO

- -

_

	SD	B	W	15 BRN	SIL-FI	SIL, SD	GOOD	W	π	SE M VO
\checkmark										FR16
F164	SD-GRAV	В	¥	15 BRN	FI-PEBS	SD, GRAV	GOOD	W	r	SH M VO
						CW ASS PEBS				FR16, 1
F165	SD	3	W	15 BRN	SIL-FI	SD	GOOD	W	7	
F166	SD-GRAV	В	W	15 BRN	FI-PEBS	SD, GRAV	GOOD	SW	•	SE M VO
						CW ASS PEBS		,		SEE SAM
F167	CL-SD	B	W	20 ORG-BRN	CL-CO	CL, SD, ORG	GOOD	SW	FIR FOR	
F168	SD-GRAV	8	W	15 BRN	FI-PEBS	SD, GRAV	GOOD	W	•	SH M VO
						CW ASS PEBS				
F169	CL-GRAV	B	FAIR	25 BRN	CL-PEBS	CL, SD, GRAV CW ASS PEBS	GOOD	E	FIR EDGE CC	NA
F	CL-GRAV	8	W	25 BRN	FI-PEBS	CL, SD, GRAV CW ASS PEBS	GOOD	W	CC	NA
F171	SD	B	WELL	25 BRN	SI-CO	SD	GOOD	N	CC	NA
F172	AS 171									
21 73	SD	B	WELL	25 BRN	SI-CO	SD	FAIR	W	CC	NA
81 74	SD-CL LOAM	B	WELL	25 BLK	CL-C0	SD, CL, SIL	GOOD	W	CC	NA
£1 75	SD	B	FAIR	25 BRN	SI-CO	SD	GOOD	W	CC	NA
176	CL-SD	B	WELL	25 BRN	CL-CO	CL-SD	GOOD	W	CC	NA
'177	CL LOAM	B	WELL	25 BLK	CL-SIL	CL, SIL	FAIR	SW	CC	NA
\checkmark	SD	В	WELL	20 BRN	SI-CO	SD	GOOD	SW	CC	NA
179	SD-GR	AB	MOD	25 BRN	FI-PEBS	SD, GR, ASS PEBS	GOOD	SW	CC	NA

- -

į

- ----

	SD-GR	AB	MOD	25 BRN	FI-PEBS		GOOD	SW	CC	NA
F181	CL LOAM	B	WELL	25 BRN	CL-SIL	SD, GR, ASS PEBS	GOOD	SW	CC	NA
F182	ORG	A	POOR	25 BLK	SIL, CO	CL, SIL	GOOD	SW	CC	NA
F183	SD	B	WELL	30 BRN	SI-CO	SD	GOOD	W	CC	POSS TR
F184	SD-GR	AB	POOR	20 BRN	FI-PEBS	SD, GR,	GOOD	SW	CC	POSS TR
						ASS PEBS				
F185	SD-GR	AB	POOR BK	BRN	FI-PEBS	SD, GR,	GOOD	E	CC	POSS TR
						ASS PEBS				
F186	AS 185					SD, GR, ASS PEBS				
F187	SD	В	POOR	10 BRN	SI-CO	SD	GOOD	W	CC	POSS TR
\mathbf{i}										
F188	AS 187					SD				
F189	AS 187					SD				
F† 90	CL-SD	B	WELL	45 BRN	FI-CO	CL, SD	GOOD	W	CC	
F191	SD	B	FAIR	20 BRN	FI-CO	SD	GOOD	E	CC	POSS TR
F192	SD	B	WELL	20 BRN	SIL-CO	SIL, SD, MIN ORG	GOOD	SW	MIXED FIR, TA DC, VIN	
F193	AS 192								201 TI	U U
F194	CL-SD-GRA	B	WELL	20 GR	CL-PEBS	CL, SD, PEBS - ANG FRAGS SED - OXID AND SHEARED	FIGOOD	SW	MIXED	NA
5	AS 194									

E196 AS 194

-- -- -

-- -

___ _

	AS 194									
F198	AS 194									
F199	SD-GRAV	B	WELL	20 BRN	FI-PEBS	SD, PEBS ANG SEDS	GOOD	SW	MIXED	SEDS?
F200	AS 199									
F201	AS 199									
F202	CL LOAM	B	WELL	20 BRN	CL-SIL	CL, SIL, ORGS	GOOD	SW	MIXED	NA
F203	AS 202									
F204	CL/ORG	ÅB	POOR	20 BLK	CL-CQ	CL, TWIGS, BARK	FAIR	SW	MIXED	NA
F205	SD	AB	POOR	20 BRN	FI-CO	SD, ORG, SHEARED FRAGS	GOOD	SW	CC	NA
FZU6	AS 205					BLK SEDS			CW TAGS	
F207	CL-SD-GRA	B	WELL	20 GR	CL-PEBS	CL, SD, PEBS - ANG FRAGS SED - OXID AND SBEARED	FIGOOD	SW	CC	NA
F208	CL-SD	B	WELL	25 BRN	CL-CO	CL, SD, FRAGS SED	GOOD	SW	CC	
F209	CL-SD-GRA	AB	POOR	25 GR	CL-PEBS	CL, SD, PEBS - ANG FRAGS SED - OXID AND SHEARED 15		SW	CC	NA
F210	CL	B	WELL	36 GR	CL	ORGS 152 CL	FAIR	SW	C C	NA
F211	LOAM	AB	POOR	25 BLK	SIL-CO	ORG, SIL	POOR	SW	MIXED	
F212	CL	B	WELL	20 GRY-BLK	CL	CL	FAIR	SW	TAGS	NA
F213	AS 212 10% ORG								TAGS/FII	

· · · · —

-

.

L	LOAM	AB	FAIR	36 BLK	CL-CO	ORG, SIL CL 20%, ORGS 20%, FAIR	SW	TAGS	NA
F215	SD	B	WELL	20 BRN	SF-CO	SD, 10% ORG, ANG FRAGS BLK GOOD	SW	TAGS	
F216	AS 215								
F217	AS 215								
F218	AS 215								
F219	SD-GRAV	B	POOR	20 BRN	FI-PEBS	SD, SIL, PEBS BLK SED- GOOD ANG, FI AND CO GR	N -	FIR FOR	TALUS S 10 M T
F220	AS 219		WELL						
F221	AS 219		WELL			GOOD	S		
	AS 221					INCL 20% ORG			
F2 2 3	AS 221								
F224	AS 221								
F225	AS 221					10% ORG, 10 ANG PGOOD SW			
7226	SD	B	WELL	20 BRN	SIL-FI	SIL, SD, MIN ORGS GOOD	S	FIR FOR TAGS	SEDS?
F227	LOAM	B	WELL	20 BLK	CL-CO	ORGS, CL, SIL GOOD 20% ROOTS	S	FIR	SEDS
3228	SD-GRAV	AB	POOR	20 BRN	FI-PEBS	SD-PEBS OF BLK SEDGOOD	SW	FIR	SEDS
7229	SD-GRAV	B	WELL	20 BRN	FI-PEBS	SD-PEBS OF BLK SEDGOOD	W	CC	NA
- n	SD	B	WELL	20 BRN	SIL-FI	SIL, SD, MIN ORG FAIR	FLAT	CC	
231	SD-GRAV	В	WELL	20 BRN	FI-PEBS	SD-PEBS OF BLK SEDGOOD 10%, 5% ORG ROOTS	¥	CC	SEDS?

· — · ·

- - -

-

	SD-GRAV	B	POOR			YEL-PK BRN	FI-PEBS		SD-PEBS OF BLK SI 257, ANG, HEM, I		FLAT Id	CC	SEDS?
F233	SD	B	WELL		20		SIL-FI		57 BLK CARB SIL, SD, NIN ORG		W	CC	SEDS?
F234	AS 233								10% ORG, 5% CAR	GOOD	SW	CC	SEDS?
F235	AS 233								20% ORG				
F236	SD-GRAV	B OR TRANS?	WELL		25	BRN	FI-PEBS		SD-PEBS OF BLK SI 10% ORGS	IDGOOD	SW	CC	SEDS?
F237	AS 236								51 CARB	GOOD	W	CC	SEDS
F238	SD	B	WELL		20	BRN	FI-CO		SIL, SD, 15% ORG 15% SED FRAGS	GOOD	W	CC	SEDS?
F239	AS 238								51 ORGS				
F240	AS 238												
	SD	В	WELL		20	BRN-BLK	FI-MED		OXID, ANG SHEARE) SEDS FAIR	FLAT	CC	
F242	AS 241												
E243	LOAN	B	WELL		20 1	BLK	CL-CO	CL, SIL,	MIN ORG	GOOD	S	FIR FOR	SED
F244	SD	B	WELL		20 1	BRN	SI-CO	SIL, SD,	FRAGS BLK SED	GOOD	N	FIR FOR	SED
F245	SD	B	WELL		20	BRN-BLK	SI-CO	SIL, SD,	FRAGS BLK SED	FAIR	REL FLAT	FIR FOR	SED
F246	SD-GRAV	BC	POOR		20	BRN	FI-PEBS	SIL, SD, 40 X	FRAGS BLK SED-	GOOD	¥	FIR FOR	SED
F247	AS 246								INCL 10% ORGS				
?248	CL-SD-GRAV	BC	POOR		20	BRN	FI-PEBS	CL, SIL, AND OXID	SD, FRAGS BLK SE Nat)-GOOD	W	CC	SED
\checkmark	SD	B	WELL	BANK	70 (BRN	SIL-CO	SIL, SD,	MIN ORG	GOOD	W	CC	

	AS 249										
F251	AS 249										
F252	SD	B OR TRANS	WELL		70 BRN	SI-FI	SI, SD, MIN ORGS	GOOD	V	CC	SEDS
F253	SD-GRAV	BC	POOR	BANK	SO BRN	FI-PEBS	SIL, SD, FRAGS BLK SED- And oxid mat	GOOD	W	W	CC
F254	AS 253										
F255	AS 253										
F256	AS 253										
F257	SD	B	WELL		25 BRN	SIL, FI	SIL, SD, MIN ORGS	GOOD	W	CC	SEDS
F258	SD	B	WELL		20 ORG/BRN	SIL, FI	SIL, SD, MIN ORGS	FAIR	FLAT	CC	SEDS
E GUT	SD	B	WELL		20 ORG/BRN	SIL, FI	SIL, SD, MIN ORGS	GOOD	W	CC	SEDS
F260	ORG	A	POOR		20 BLK	FI-CO	ROT TREES	GOOD	SW	FIR/NIXE	D
F261	CL SD	B	WELL		20 BRN	CL-FI	CL, SD	GOOD	E	EDGE CC	
F262	SD-GRAV	B	WELL		20 BRN	FI-PEBS	SI, SD, PEBS OF BLK SED	GOOD	W	CC	
F263	AS 262										
F264	CL SD	B	FAIR		20 BRN	CL-CO	CL, SD, 5%ORGS, 5% ERAGS B	KPOOR	V	CC	
F265	SD	B	WELL	BK	75 ORG/BRN	FI-CO	75% SD, 25% ANG BLK SED	GOOD	W	CC	SEDS
F266	ORG	A	POOR		20 BLK-BRN	FI-CO	ORG	GOOD	NE TO Swamp	MAT FIR	FOR SEDS?
\checkmark	ORG-SD-GRAV				22 BLK	FI-PEBS	ORG, SD, BLK SED PEBS	GOOD	E TO SWA	MP	SEDS SE
		ABC	POOR							MAT FIR	FOR

	AS 267									
F269	AS 267 BUT NOT ORG						GOOD	S TO SW	AMP	
F270	ORG/SD	AB Most a	POOR	20 BRN/BLK	FI-CO	ORG, SD, FRAGS OXID SED	GOOD	S	MAT FIR	FOR
F271	AS 271									
F272	ORG/SD	AB	POOR	20 BRN/BLK	FI-CO	ORG, SD, FRAGS OXID SED	GOOD	S	MAT FIR	FOR
F273	ORG-CL-SD-G	RAV		22 BRN	CL-PEBS	ORG, CL,SD, BLK SED PEBS	GOOD	S¥		SEDS SE
		ABC	POOR						MAT FIR	FOR
F274	AS 273									
F275	ORG	Å	POOR	20 BLK-BRN	FI-CO	ORG	GOOD	SW	CC	SEDS?
7776	ORG-CL-SD-G	RAV		22 BRN	CL-PEBS	ORG, CL,SD, BLK SED PEBS	GOOD	SW	CC	SEDS SE
$\mathbf{\vee}$		ABC	POOR							
F277	SD	8	WELL	20 BRN	CL-FI	CL, SD, 10% ROT TREE	FAIR	FLAT	CC	SEDS
F278	SD	B	WELL	20 GRY	CL-FI	CL, SD	POOR	BOG	CC	SEDS
F279	SD	B	WELL	20 BN	CL-FI	CL, SIL, SD	GOOD	W	CC	SEDS
F280	SD-GRAV	B	WELL	20 BRN	FI-PEBS	SI, SD, PEBS OF BLK SED	GOOD	NV	CC	
F281	SD	B	¥EL	20 BRN	SIL-FI	SIL, SD	GOOD	W	CC	SEDS
F282	SD-GRAV	B	WELL	20 BRN	FI-PEBS	SI, SD, PEBS OF BLK SED	GOOD	¥	CC	SEDS
7283	AS 282									
2004	SD-GRAV	B	WELL	25 BRN	FI-PEBS	SD, PEBS- ANG, BLU/GRY VO	L GOOD	¥	MAT FIR FOR	AND PLT
285	SD/ORG	ABC	POOR	20 BRN	FI-MED	70% SD, 20% ANG FRAGS RB 10% ORG	Y,GOOD	S	MAT FIR	FOR RHY FLT

~

\smile	SD	A/B	POOR		20 BLK	FI-CO	SD 40%, 60% ORG-ROOTS, Rot trees	GOOD	SW	EDGE CC MIX FOR	
F290	SD-GRAV	B	WELL		25 ORG/BRN	FI-PEBS	85% FI SILT SD, 10% ANG H GRY/GRY VOL, 5% ORG/ROOTS	RGOOD	SE	EDGE OF CC	
F291	SD	B	WELL		20 BRN	FI-MED	SD, ORG- 85%, 10% SILT, 5% MIN PEBS OF OXID MATAND GRN/GRY VOL	GOOD	W	CC	
F29 2	SD-GRAV	B	WELL		25 BRN	FI-PEBS	SD-80X, 15X PEBS BLU/GRY 1 5X SILT	VOGOOD	W	CC	QFP FLT
F293	AS 292						30% PEBS, ORG/BRN				
F500	SILT/SD/GRAV	TRANS?	TRANS?	BK	ORG/BRN	SILT-PEBS	70% CL/SILT 30% FRAGS	GOOD	SW	CC	SEDS
F501	SD/GRAV	۳	۳	BK	BRN	SILT-PEBS	70% SILT 20% SD 10% FRAGS	GOOD	SW	CC	SEDS
F502	SD/GRAV	π	۳	BK	BRN	SILT-PEBS	70% SILT 20% SD 10% FRAGS	GOOD	SW	CC	SEDS
F503	SD/SILT	n	Ħ	BK	ORGBRN	SILT-FI	80% SILT 20% SD	GOOD	SW	CC	SEDS
\checkmark	SD/SILT	В	WELL	BK	ORGBRN BRN	SILT-FI SILT-PEBS	40% SILTOXID PEBS OF BLK 60% SD SILTSTONE	GOOD	SW	CC	SEDS
F505	SD/SILT	B	WELL	BK	ORGBRN BRN	SILT-FI SILT-PEBS	40% SILTSEDS 60% SD	GOOD	SW	CC	SEDS
F506	SD/SILT	TRANS?	TRANS?	BK	ORGBRN	SILT-MED	70% SILTSEDS	GOOD	SW	CC	SEDS

C. WATER SAMPLES:

_

NUMBER: LOCATION:	DESCRIPTION:	COMMENTS:
W1 MAP 2	WATER	TAKEN IN SMALL CREEK ABOVE BEAVER DAM, MOD FLOW
W2 MAP 2	WATER	SMALL CREEK E. SIDE OF ROAD, MOD FLOW
W3 MAP 2	WATER	GLACIER CREEK, MOD-HIGH FLOW
W4 MAP 2	WATER	DELTAIC CREEK, MOD-HIGH FLOW

anomalous zinc zones have been initially interpreted from the reconnaissance soil survey (Map 4).

In the broad interpretation, these linear zones have apparent strike lengths up to over 4 kms and open for extension; and, widths ranging up to over 300 m. However, in all cases, detailed followup work is required to determine the morphology and significance of the anomalies.

A zone of oxidized volcanic rocks is associated with the strongest zinc values (up to 800 ppm) obtained in the survey and located near the southwest end of Zone 1 as defined to date (Map 4). Zone 1 trends northwest and is about 250 m wide with an apparent strike length of over 3 km. The zone is located in close proximity to the Stewart-Cassiar Highway and is very amenable to follow-up. For example, prospecting and hand trenching over the consecutive (50 m spaced) 432, 800, and 672 ppm zinc values (Figure 9) on the south end of Zone 1 could give some immediate information about the potential of the sparsely outcropping gossan zone.

Some of the most intensely altered (carbonatized, silicified) volcanic rock outcrops are associated with the probable southern extension of Zone 2 (Map 4). Zone 2 is up to 300 m wide (Figure 10) but generally consists of a number of narrower, parallel zones. The zone trends northwest and may have a strike length of greater than 4.5 km. The geochemical expression of the southern section of Zone 2 appears to be somewhat mitigated by deeper overburden on the east side of the Fox 30 Claim. The central portion of the zone where zinc, copper, silver, cadmium and barium soil values range up to 578, 310, 1.0, 4.0 and 740 ppm, respectively, is a logical place to focus initial follow-up activities. As referenced in the Kennedy report, the only two gold anomalies (25 and 35 ppb) located in the stream sediment survey do occur on the east and west flanks of the central and northern sections, respectively, of the Zone 2 zinc anomaly.

Zone 3 (Map 4) is about 100 m wide and has been apparently traced over a 700 m strike length. It is open for further delineation and is characterized by zinc soil values ranging up to 394 ppm.

Zinc 4 (Map 4; Figure 11) is interpreted to be about 150 m wide and to date may have been traced by reconnaissance sampling over a strike length of 2 km. The polymetallic signatures from the north end of Zone 4 as outlined to date include zinc, copper, silver, cadmium and barium ICP values ranging up to 446, 63, 1.8, 4.0 and 750 ppm, respectively.

As referenced in the Kennedy report, a number of the highest zinc values (up to 262 ppm) in stream sediments are found in the northwest corner of the project area, in the vicinity of Zone 5 (Map 4). Zone 5 is currently a relatively wide, one line target and detailed follow-up sampling on and in the vicinity of the claim line is required to evaluate the anomaly.

Of the ten biological samples collected on the claims (Table 3; Map 4; Appendix 2), none are considered to have an anomalous zinc content. The population is too small to draw conclusions from but a number of the biological samples were taken in the anomalous zinc zones. Soil samples are readily available and cost effective: they may be much more useful in defining zinc anomalies.

Soil samples F500-506 were collected in a clear cut area located south of the new claims, north of Deltaic Creek (Figure 5; Table 3; Appendix 2). No anomalous gold or zinc values were detected, although some weak copper and silver anomalies are apparent.

Four water samples were collected in the project area to ascertain PH conditions amenable to gold being transported in stream waters. All the streams are weakly alkaline and none, including Deltaic Creek whose upstream tributaries drain the auriferous Delta Claims, have anomalous gold water contents.

9. RECOMMENDATIONS:

The soil zinc anomalies are not predicted by any strongly anomalous zinc values in the reconnaissance stream sediment and rock samples collected by D. Kennedy. However, the apparent zones of anomalous zinc soil values, often with polymetallic association, are deemed to be of sufficient interest for detailed follow-up activities to be recommended.

Appropriate fill-in sample lines spaced at 400 m should be established in proximity to the most important sections of Zones 1, 2 and 4, and detailed soil sampling along with detailed mapping (where possible) should be carried out to confirm the interpreted strikes and prioritize the importance of the targets. Detailed follow-up of the gold stream sediment anomalies on the flanks of the Zone 2 zinc anomaly is strongly recommended in conjunction with the evaluation of the zinc anomaly.

If successful, magnetometer and IP surveying are recommended to precisely locate trench and diamond drill targets. Follow-up activities should include additional claim staking as warranted by on-going results.

10. CONCLUSIONS:

Based on the soil survey, it is concluded that while there is no significant, currently apparent gold potential, a number of anomalous zinc zones warrant follow-up. The interpreted zinc zones are relatively weak but appear to have considerable widths, extensive strike lengths, encouraging polymetallic signatures and some favourable geological associations. Any IP or EM correlation could offer prospective drill targets for stratabound zinc mineralization in the project area that has not previously been subjected to detailed exploration. Most importantly, all significant gold mineralization that the author has encountered in the Stewart Camp, particularly in the Oweegee Dome area, has been haloed by similar zones of anomalous zinc mineralization often without any gold signature. Thus, the apparent lack of gold potential may be a function of the early state of exploration activities.

As referenced in the Kennedy report, two interesting gold stream sediment anomalies do occur on the flanks of the Zone 2 zinc anomaly: sediment gold anomalies of similar magnitude in high velocity streams in the Stewart Camp are often indicative of important, proximal gold mineralization.

11. REFERENCES:

Aerodat Limited (1991): Report on the Oweegee Project for Indigo Gold Mines Inc.: BCMEMPR Assessment Work File 22,082.

ALLDRICK, D. J. (1984): Geologic Setting of the Precious Metal Deposits in the Stewart Area; in: Geological Fieldwork 1983, BCMEMPR, Paper 1984-1, p. 149-164

ALLDRICK, D. J. (1985): Stratigraphy and Petrology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1984, BCMEMPR, Paper 1985-1, p. 316-341

ALLDRICK, D.J. (1989): Geology and Mineral Deposits of the Salmon River Valley - Stewart Area, 1:50,000. BCMEMPR Open File Map 1987-22.

ALLDRICK, D.J. (1989): Volcanic Centres in the Stewart Complex (103P and 104A,B); in: Geological Fieldwork 1988, BCMEMPR, Paper 1989-1 p. 223-240.

ALLDRICK, D. J., BROWN, D. A., HARAKAL, J. E., MORTENSEN, J. K. and ARMSTRONG, R. L. (1987): Geochronology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1986, BCMEMPR, Paper 1987-1, p. 81-92.

ANDERSON, R. G. (1989): A Stratigraphic, Plutonic, and Structural Framework of the Iskut River Map Area, Northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 89-1E, p. 145-154.

ANDERSON, R. G. and THORKELSON, D. J. (1990): Mesozoic Stratigraphy and Setting for some Mineral Deposits in Iskut Map Area, northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 90-1E, p. 131-139.

Bowering, A: (1996): Clone Property - More Encouraging Phase 1 Drilling Results, Strike Length Extended to 1.5 km: August 29, 1996 News Release, Teuton Resources Corp./Minvita Enterprises Ltd.

BLACKWELL, J. (1990): Geology of the Eskay Creek #21 Deposits; in: The Gangue, MDD-GAC, No 31, April, 1990.

DANIELSON, VIVIAN (1993): Busy Summer For Stewart Area; Northern Miner August 16, 1993, p. 1

Forest Service, British Columbia (1995): Regulations, April 1995, Forest Practices Code of British Columbia, BC Ministry of Environment. Greig, C. J. (1991): Stratigraphic and structural relations along the west-central margin of the Bowser Basin, Oweegee and Kinskush areas, northwestern British Columbia: in Current Research, Part A, Geological Survey of Canada, Paper 91-1A, p. 197-205.

GREIG, C. J., EVENCHICK, C. A., Mustard, P. S., Porter, J. S. (1992): Regional Jurassic and Cretaceous facies assemblages, and structural geology in Bowser Lake map area (104A), B.C.: Open File 2582, EMR Canada.

GREIG, C. J., EVENCHICK, C. A. (1993): Geology of Oweegee Dome, Delta Peak (104A/12) And Taft Creek (104A/11W) Map Areas, GSC Preliminary Map.

GROVE, E. W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; BCMEMPR, Bulletin 63.

Hamilton, A. (1991): Assessment Report on Geological and Geochemical Work on the Delta 1 and 2 Mineral Claims, BCMEMPR Assessment Work File 21.745, prepared for Cominco Ltd.

JVX Limited (1993): Report ON Geophysical Surveys On The Stewart Project, Delta Target Area, Northwestern British Columbia, prepared for Geofine Exploration Consultants Ltd.

LEE, A. W. (1990): Assessment Report on Geological and Geochemical Work on the Delta 1 and 2 Mineral Claims, BCMEMPR Assessment Work File 20.399, prepared for Cominco Ltd.

McLoed, D. A. (1996): Surface Drilling Starts ON Wilby Zone & New Zone Discovered On Surface: August 28, 1996 Press Release, Camnor Resources Ltd.

MCDONALD, D. (1989): Metallic Minerals in the Silbak Premier Silver Gold Deposits, Stewart; in: Geological Fieldwork 1987, BCMEMPR, Paper 1988-1, p. 349-352.

MINISTER OF MINES (1929): Annual Report For The Year Ended 31st December, 1929, Being AN Account Of Mining Operations For Gold, Coal, Etc. In The Province of British Columbia.

MOLLOY, D. E. (1993): Report On The Phase 1A Reconnaissance Program On The Fox Claims Of The Stewart Property, prepared for American Barrick Resources Corporation by Geofine Exploration Consultants Ltd.

MOLLOY, D. E. (1993): Report On The Phase 1B Follow-up Geophysical & Geochemical Program On The Fox Claims Of The Stewart Property, prepared for American Barrick Resources Corporation by Geofine Exploration Consultants Ltd. MOLLOY, D. E. (1994): Report On The Phase 1, 1994 Exploration Program Carried Out On The Todd Property, Skeena Mining Division, Northwestern British Columbia prepared for Oracle Minerals Inc. by Geofine Exploration Consultants Ltd.

RAINSFORD, D. R. B. (1990): Report on A Combined Helicopter Borne Magnetic Electromagnetic and VLF Survey, Stewart Area; BCMEMPR Assessment Report # 20,200.

RANDALL, A. W. (1988): Geological Setting and Mineralization of the Silbak Premier and Big Missouri Deposits; in Field Guide Book, Major Gold-Silver Deposits of the northern Canadian Cordillera, Society of Economic Geologists, p. 85-99.

Robertson, R. (1996): Companies Zeroing In On Stewart Area, The Northern Miner, August 5, 1996, Vivian Danielson, Editor.

RUBIN, C. M., SALEEBY, J. B., COWAN, D. S., BRANDON, M. T., and MCGRODER, M. F., (1990): Regionally Extensive Mid-Cretaceous Westvergent Thrust Systems in the Northwestern Cordillera: Implications for Continent-Margin Tectonism. Geology, v.18, p. 276-280.

TENAJON RESOURCES CORP. (1992): Report to Shareholders; in: Annual Report 1992 p. 1.

VOGT, ANDREAS H., BRAY, ADRIAN D., and BULL, KATE, (1992): Geologic Setting and Mineralization of the Lac Minerals Red Mountain Deposit, handout at 1992 Cordilleran Roundup "Spotlight Session".

WESTMIN RESOURCES LIMITED (1992): Premier Gold Project: in: Annual Report 1991; p.9.14.

I, David E. Molloy, of the Town of Unionville, of the Regional Municipality of York, Ontario, hereby certify that:

- i. I am President of Geofine Exploration Consultants Ltd. with a business address at 49 Normandale Road, Unionville, Ontario, L3R 4J8.
- ii. I am a graduate of McMaster University, in the City of Hamilton, Ontario, with a B.A. in Philosophy (1968); I am a graduate of the University of Waterloo, in the City of Waterloo, Ontario, with a B.Sc. in Earth Science (1972);
- iii. I have practised my profession in mineral exploration continuously for the past 24 years, including 5 years as a consultant; 10 years with St. Joe Canada Inc./Bond Gold Canada Inc./LAC Minerals Ltd. as Regional Geologist, Exploration Manager and as Senior Vice President, Canadian Exploration; and, 8 years with Beth-Canada Mining Company as a Regional Geologist;
- iv. I am a Fellow of The Geological Association of Canada;
- v. I am a Member of the Canadian Institute of Mining and Metallurgy; of the Prospectors and Developers' Association; of the Association of Exploration Geochemists; and, of the Association of Geoscientists of Ontario.
- vi. I have supervised the field program and the preparation of this report titled "Report On The 1996 Deltaic Creek Project Carried Out On The Deltaic Grid Of The Stewart Property: Fox 1-26, Old 1-4, Delta 1, 2 Claims, Skeena Mining Division, Northwestern British Columbia" for Viceroy Resource Corporation. I have referenced the technical data available in the BCMEMPR assessment work files as well as other sources listed in the References.
- vii. The recommendations herein are solely the responsibility of Geofine Exploration Consultants Ltd.

E Molloy

David E. Molloy, B.A., B.Sc., F.G.A.C. President

Dated at Unionville, Ontario, this 20th day of November, 1996.

12.

APPENDIX 1

Province of British Columbia

Ministry of Employment and Investment Energy and Minerals Drivision Bag 5000 Smithers British Columbia VoJ 2N0 Telephone, (604) 947-7383 Fax, (604) 847-7603

> File No. 14675-20 Mine No. 0101533

July 3, 1996

D. Kennedy, 5596 Nuthatch Place, North Vancouver, B.C. V7R 4R8

Dear D. Kennedy:

RE: Fox (Fox 30 to 40 inclusive) Mineral Property Skeena Mining Division

Your Notice of Work dated July 2, 1996, on the above mineral property has been received and reviewed pursuant to Section 10 of the Mines Act.

Since the proposed disturbance is minimal reclamation bonding will not be required at this time.

You are authorized to proceed with the proposed program under Approval number SMI-96-0101533-200.

This number will be required when recording a Statement of Exploration and Development with the Mineral Titles Branch to maintain title.

This approval applies only to the requirements under Section 10 of the Mines Act. Other legislation may be applicable to the operation and the necessary approvais under that legislation are required to be attained by the permittee.

Please find enclosed a Notice of Completion of Work Form which must be completed by your company. This is a requirement under Section 6.1.6 of the Health, Safety & Reclamation Code for Mines in British Columbia. Your completed work program form should include a set of photographs showing the condition of your work sites prior to commencing work and at the completion of your work program. Please include a description of the photographs. These photos will assist in evaluating the reclamation work.

For future programs, please review the enclosed implementation of the Forest Practices Code pamphlet, particularly the section entitled "Information Requirements for Permits".

Yours truly,

A.J. (Jill) Pardoe, P.Geo., inspector of Mines Northwest Region

AJP;emb

NAMES HAVE BE FAM

APPENDIX 2

.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

DECISION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Total Jer :1-A 4 Certificate Date: 10-SEP-96 Invoice No. : 19630086 P.O. Number Account έκιν

~*

Project : Comments: ATTN: DAVID KENNEDY CC: D. MOLLOY

							,					С	ERTIF	-ICAT	E OF	ANAL	YSIS		A963	0086		
SAMPLE	PR	ep De	Au ppb FA+AA		Ag ppm	л1 %	λs ppm	Ba ppm	Be ppm			Cđ ppm			Cu ppm			-				
P-001	201		< 5		< 0.2	3.07	< 2	50	< 0.5	< 2	1.20	< 0.5	14	21	36	4.63	< 10	< 1	0.05	< 10	1.62	795
F-003 F-005	201		< 5		0.4	1.74	4	210	< 0.5			2.0			. 15			-	0.08	< 10	0.39	1715
F-005 F-007	201		< 5 < 5		0.2	2.01	10	130 100	< 0.5			< 0.5			13		10		0.06	< 10	0.38	
F-009		202	< 5		< 0.2	1.51	6	150	< 0.5			< 0.5 < 0.5		22 24	9		< 10 10		0.04	< 10 < 10	0.20 0.31	
F-011		202	< 5		0.6	0.88	2	550	< 0.5	< 2	0.80	2.5	12	22	13	2.02	< 10	< 1	0.11	< 10	0.22	3920
F-013	201		< 5		0.2	1.56	8	250	< 0.5	_		0.5		34	15	3.00	< 10		0.15	< 10	0.45	
F-015 F-017		202 202	< 5		0.4	2.63	6 14	140 170	< 0.5			< 0.5		49	15		< 10		0.11	< 10	0.61	
F-019		202	< 5		0.6	1.73	8	960	< 0.5 < 0.5			0.5 4.0	-		24 28		< 10 10		0.12 0.14	< 10 < 10		530 >10000
P-021			NotRed	l bk	otRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotReđ	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed
P -023			NotRed			NotRed		NotRed			NotRed	NotRcā	NotRed	NotRed	NotRed	NotRed	NotRed					NotRed
2-025 2-027		202	< 5		0.2	0.22 3.40	< 2 16	470	< 0.5			1.5			25		< 10		0.04	< 10		
-029		202	< 5		< 0.2	1.95	6	210 120	0.5 < 0.5			< 0.5 < 0.5	14 8	57 43	30 16		< 10 < 10		0.11 0.07	< 10 < 10	1.01 0.54	635 345
F-031	201		< 5		0.2	2.63	14	280	0.5		0.39	0.5	17	40	33	4.53	< 10	< 1	0.09	< 10	0.78	2640
P-033	201		< 5		0.4	0.41	< 2	180	< 0.5	_		1.5			21	0.75	< 10		0.06	< 10	0.20	
F-035 F-037	201	202 202	< 5 < 5		0.2	1.81 1.92	8	240	< 0.5	< 2	0.54	1.5	20		32	3.90	< 10		0.10	< 10	0.57	
2-039		202	< 5		0.4	2.43	10 12	190 210	< 0.5 0.5		0.35 0.61	< 0.5 0.5	21 21		36 43	4.01 4.65	< 10 < 10	_	0.10 0.06	< 10 < 10	0.61 0.81	
F-041	201	202	< 5		0.8	0.71	6	120	< 0.5	< 2	0.45	< 0.5	5	14	34	2.34	< 10	< 1	0.07	< 10	0.11	555
7-043		202	< 5		0.6	1.28	2	850	< 0.5	< 2		3.0	35		46		10		0.12	< 10	0.34	
2-045 2-047		202	< 5		0.4	0.46	< 2	230	< 0.5	< 2	2.65	1.0	5	8	27	1.09	< 10		0.06	< 10	0.18	
F-049		202	< 5 < 5		0.2	1.68 1.84	10 8	250 180	< 0.5 < 0.5	2 < 2	0.35 0.18	0.5 < 0.5	15 12	27 27	16 14	3.92 3.82	< 10 < 10	< 1 < 1	0.17 0.05	< 10 < 10	0.39 0.40	
r -051	201	202	< 5	•	< 0.2	2.21	16	160	0.5	< 2	0.15	< 0.5	14	30	18	4.39	< 10	< 1	0.08	< 10	0.44	1635
r-053		202	< 5		0.2	1.12	< 2	610	< 0.5	< 2		2.0	33	26	18	3.58	10		0.10	< 10	0.23	
-055		202	< 5		0.2	2.86	4	260	0.5	< 2	0.49	0.5	17	37	25	5.41	10	< 1	0.09	< 10	0.64	
2-057 7-059		202 202	< 5		< 0.2 0.2	2.04 3.38	6 10	190 260	< 0.5 1.0	< 2	0.11 0.21	0.5 0.5	15 16	35 46	15 36	4.10	10 10	< 1	0.08	< 10 < 10	0.35	
7-061	201	202	< 5		0.2	2.22	10	250	< 0.5	< 2	0.48	1.0	17	38	23	3.97	< 10	< 1	0.13	< 10	0.71	2180
-063		202	< 5		ot/ss				not/ss		not/ss							not/ss		not/ss		
-065		202	< 5		¢ 0.2	2.35	16	350	0.5	< 2	1.19	2.5	19	38	64	4.20	< 10	< 1	0.10	< 10	0.83	1830
-067		202 202	< 5			1.71	8	1220	< 0.5	< 2		1.0	20	31	13	4.49	10	< 1	0.08	< 10	0.40	3190
-069	-						-			DOC/##	not/ss	not/ss	DOT/SE	not/##	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss
7-071 7-073	201 201		< 5 < 5		0.2	1.98	12 12	230 300	< 0.5	< 2	1.02	2.0	17 17	38 46	31 27	3.75	< 10 10	< 1 < 1	0.10	< 10 < 10	0.56	1655 1260
-075	201	202	< 5		0.2	2.02	4	330	< 0.5	2	0.50	0.5	16	33	18	4.00	10		0.14	< 10	0.45	2410
7-077 7-07 9		202 202	< 5 < 5		0.6	2.47 2.45	10 10	460 250	0.5	< 2	1.15	3.0 0.5	33 13	63 51	106	6.11	10	< 1	0.14	< 10	0.50	4050
			~ 2				10	#3V	. 0.3	~ 4	V. 04	0.5	13	51	24	3.95	< 10	< 1	0.20	< 10	1.07	730
																			j i			
																CERTIF	ICATION	l:	<u> </u>			· .

Analytical Chemists * Geochemists * Registered Assayers

Mississauga L4W 2S3 5175 Timberlea Blvd., Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 o: GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

/er :1-8 T٥ :4 No. 19630086 Certific. Invoice No. P.O. Number 1 Account KIV

~*

Project :

₹

Comments: ATTN: DAVID KENNEDY CC: D. MOLLOY

													C	ERTI	FICAT	EOF	ANA	LYSIS	A9630086
SAMPLE	PR CO		M pp:			Na %	Ni ppm	P ppm	Pb ppm	Sb ppm) pp		
P-001		202			< 0.		8	580	< 2	2	9		0.30	< 10			< 10		
-003 -005		202 202			< 0.		22 20	1410 1610	10 6	2	3		0.06	< 10			< 10		
-007		202			ς υ. < Ο.		13	750	6	2 < 2	3	-	0.05	< 10 < 10			< 10 < 10		
-009		202			< 0.		12	1370	8	2			0.07	< 10			< 10		
-011 -013		202 202			< 0.		16	900	8	2	2		0.06	< 10					
-015		202		_	< 0. < 0.		29 31	1270 1010	6 2	< 2	25		0.03	< 10			< 10		
-017		202			< 0.		33	720	6	2		25	0.04	< 10 < 10			< 10 < 10		
-019		202			¢ 0.		32	1960	12	2	3	26		< 10			< 10		
-021							NotRed		NotRed	NotRed	NotRed	NotRed				NotRed			
-023 -025		202			ютн (0.		NOTRCO 6	NotRed 1430	NotRed							NotRed			
-027		202		_	ς Ο.		57	1240	26	< 2	< 1	155 17	< 0.01	< 10 < 10			< 10		
-029		202			0.		31	1420	6	< 2	3		0.04	< 10			< 10		
-031		202			¢ 0.		36	1530	12	2	-		0.05	< 10		104	< 10	242	
-033		202		_	¢ 0.		9	670	2	< 2	< 1		0.03	< 10			< 10		
-035 -037		202 202			¢ 0.		33 44	1300 1160	8 10	< 2	3	27	0.05	< 10			< 10		
-039		202			¢ 0.		63	760	10	< 2	4	21 32	0.02	< 10 < 10			< 10 < 10		
-041		202		1 <	0.	01	18	470	6	< 2	< 1	24	0.01	< 10	< 10	51	< 10	68	
-043		202			: 0.		23	1420	20	2	4	30	0.10	< 10		127	< 10	342	
-045 -047		202 202		1			13	1120	4	< 2	< 1		0.03	< 10			< 10		
-049		202			: 0. : 0.		20 18	1820 1050	8 8	2	3	15 10	0.07	< 10 < 10			< 10 < 10		
-051	201			1 <	: 0.	01	30	2490	6	2	3	10	0.03	< 10	< 10	74	< 10	378	
-053		202			: 0.		20	1820	16	2	2	27	0.07	< 10			< 10		
-055		202			0.		20	2900	12	2	5	18	0.12	< 10			< 10		
-057 -0 59		202 202			0.		16 53	1990 1650	10 8	2	3 7	10 12	0.11 0.04	< 10 < 10			< 10 < 10		
-061	201	202	;	1 <	0.	01	28	1870	10	2		18	0.07	< 10	< 10	93	< 10	236	
-063		202						not/ss		•		not/ss	not/ss	not/ss	not/ss	not/ss			
-065		202			0.		44	1000	14	2	7	63	0.04	< 10			< 10		
-067 -069		202 202			:0. 0t/		13 not/ss	1450 not/ss	16 not/ss	2 not/ss	4 not/ss	23 not/ss	0.15 not/ss	< 10 not/ss	< 10 not/ss	130 not/se	< 10 not/se	202 not/ss	
-071	201	202	1	1 <	0.	01	34	750	10	2	5	59	0.06	< 10	< 10	85	< 10	358	
-073	201		2	2 <	0.	01	28	3470	10	2	5	14	0.07	< 10	< 10	135	< 10		
-075	201				0.		16	2070	10	2	3	23	0.09	< 10	< 10	105	< 10		
-077 -079	201				0.		60 34	2090	14	< 2	5	44	0.13	< 10	< 10	101	< 10		
-~/2				. <	U .	JT	34	1070	0	4	ġ.	26	0.05	< 10	< 10	102	< 10	142	
																			Ister AParchle

PHONE: 905-624-2806 FAX: 905-624-6163

5175 Timberlea Blvd

Ontario Canada

Analytical Chemists * Geochemists * Registered Assayers

Mississauga

14W 253

io: GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project ·

Pater : 2-A Tota : 4 Certificate Date: 10-SEP-96 Invoice No. : 19630086 P.O. Number : Account : KIV

.

_*

Comments: ATTN: DAVID KENNEDY CC: D. MOLLOY

CERTIFICATE OF ANALYSIS A9630086 DRED Au obb λα λ1 λs Ba Be Bİ Ċa Cđ Co Cr Chi Fe Ga Ηg K La Ma Mn SAMPLE CODE FX+XX ٩. DDM DDE DDB nom * DDB 2 שממ DDE DDM DDE DDE * שממ * ppm 201 202 F-081 < 5 2.11 < 0.2 10 160 < 0.5 < 2 0.28 < 0.5 12 44 22 4.02 < 10 < 1 0.08 < 10 1.02 630 P-083 201 202 0.5 < 5 < 0.2 2.63 B 190 0.40 17 < 2 0.5 49 48 4.31 < 10 < 1 0.08 < 10 1.32 890 P-085 201 202 < 5 < 0.2 2.20 6 230 < 0.5 < 2 < 0.5 0.29 13 45 27 4.01 < 10 < 1 0.08 < 10 1.01 670 2-087 201 202 0.2 2.30 < 5 2 80 < 0.5 < 2 < 0.5 0.37 16 50 29 4.24 < 10 < 1 0.05 < 10 1.25 560 P-089 201 202 < 5 < 0.2 1.96 < 0.5 ۵ 80 < 2 0.43 < 0.5 13 46 25 4.07 < 10 0.06 555 < 1 < 10 1.15 **F-091** 201 202 < 5 190 < 0.2 2.03 6 < 0.5 < 2 0.34 < 0.5 14 47 25 3.93 < 10 < 1 0.06 < 10 1.15 825 F-093 201 202 < 5 < 0.2 2.14 Ŕ 160 < 0.5 < 2 0.22 < 0.5 13 48 25 4.20 < 10 < 1 0.06 < 10 1.09 520 201 202 P-095 < 5 < 0.2 2.34 9 230 < 0.5 < 2 0.53 < 0.5 16 50 27 4.10 < 10 < 1 0.11 < 10 1.15 735 **P-097** 201 202 < 5 < 0.2 1.9R 2 220 < 0.5 < 2 0.55 0.5 16 43 27 3.62 < 10 < 1 0.15 < 10 0.79 865 F-099 201 202 not/ss < 0.22.11 14 210 0.5 < 2 0.79 21 1.0 38 66 3.84 < 10 0.10 0.92 < 1 < 10 1930 7-101 201 202 < 5 < 0.2 3.00 2 270 < 0.5 < 2 0.22 0.5 14 44 19 5.39 10 < 1 0.08 < 10 0.71 950 201 < 5 < 0.2 -103 202 2.27 2 320 < 0.5 < 2 0.35 0.5 41 14 28 3.79 < 10 < 1 0 09 < 10 0.83 1550 F-105 201 202 0.4 < 5 1.96 2 280 < 0.5 < 2 0.44 0.5 17 25 18 3.58 < 10 0.10 3360 < 1 < 10 0.32 2-107 201 202 not/ss < 0.2 2.26 10 250 0.5 < 2 0.42 0.5 17 38 41 4.08 < 10 < 1 0.07 < 10 0.77 1795 -109 201 202 not/ss < 0.2 2.25 4 350 < 0.5 0.25 11 < 2 0.5 38 22 3.93 < 10 0.09 1 < 10 0.61 1005 F-111 201 202 0.2 8 340 0.5 < 5 1.85 < 2 0.30 0.5 13 36 34 4.53 < 10 < 1 0.06 < 10 0.42 1345 -113 201 202 < 5 < 0.2 1.68 < 2 250 < 0.5 < 2 0.15 0.5 11 28 11 3.79 < 10 0.07 < 1 < 10 0.26 1170 7-115 201 202 < 5 0.2 2.22 220 < 0.5 4 < 2 0.21 0.5 11 33 18 4.63 < 10 < 1 0.08 < 10 0.44 1910 2-117 201 202 < 5 < 0.2 2.54 2 140 < 0.5 < 2 0.20 0.5 9 41 14 4.11 < 10 0.06 < 10 0.63 555 < 1 201 -119 202 < 5 < 0.2 2.30 14 240 0 5 < 2 0.41 1.5 27 21 27 4 40 10 < 1 0.10 < 10 0.35 3340 F-121 201 202 < 0.2 2.55 200 0.5 26 < 5 . < 2 0.16 0.5 . 17 4.76 < 10 < 1 0.10 < 10 0.37 1025 F-123 201 202 < 5 0.2 1.19 12 280 < 0.5 1.22 < 2 2.5 12 18 58 3.27 < 10 < 1 0.10 < 10 0.14 2520 201 202 F-125 < 5 0.2 1.69 10 160 < 0.5 0.59 12 < 2 1.5 19 33 3.80 < 10 < 1 0.06 < 10 0.21 545 2-127 201 202 < 5 < 0.2 1.11 6 730 < 0.5 < 2 0.57 3.5 14 22 22 3.70 < 10 < 1 0.12 < 10 0.17 3480 F-129 201 202 < 5 < 0.2 2.04 < 2 990 < 0.5 < 2 0.50 3.0 18 39 22 3.32 < 10 < 1 0.1B < 10 0.34 3540 F-131 201 202 < 5 < 0.2 1.27 A 240 < 0.5 0.21 < 0.5 25 < 2 5 30 3.14 < 10 < 1 0.10 < 10 0.21 400 7-133 2011 202 < 5 < 0.2 2.14 160 0.5 6 < 0.5 < 2 0.08 10 20 14 3.80 < 10 0.10 < 10 0.34 660 < 1 r-135 201 202 < 0.2 < 5 2.50 4 240 0.5 < 2 0.14 0.5 21 25 18 4.41 < 10 0.10 < 10 0.42 2190 < 1 **P**-137 201 202 < 5 0.2 0.92 350 < 0.5 4 < 2 0.61 3.0 14 20 45 3.18 < 10 < 1 0.12 < 10 0.17 2210 F-139 201 202 12 190 < 5 < 0.2 2.05 0.5 < 2 0.18 0.5 14 26 24 3.91 < 10 < 1 0.07 < 10 0.62 1060 F-141 201 202 < 5 < 0.2 0.75 2 380 < 0.5 < 2 1.30 1.5 23 12 14 2.98 < 10 0.08 < 10 0.17 5040 < 1 7-143 201 202 < 5 < 0.2 2.06 10 160 0.5 < 2 0.32 0.5 23 23 36 4.14 < 10 0.05 10 0.57 2580 < 1 F-145 201 202 < 5 < 0.2 0.13 < 2 80 < 0.5 < 2 0.60 1.5 1 1 28 0.33 < 10 < 1 0.04 < 10 0.03 100 2-147 201 202 < 5 250 0.4 2.69 4 0.5 < 2 0.07 0.5 17 46 25 4.51 < 10 < 1 0.05 < 10 0.63 2030 7-149 201 202 6 < 5 2.19 200 < 0.5 14 0.4 < 2 0.11 0.5 33 16 4.69 < 10 1 0.07 < 10 0.41 1270 201 202 P-151 < 5 < 0.2 1.33 2 150 < 0.5 < 2 0.08 < 0.5 17 10 3.03 1370 9 < 10 < 1 0.06 < 10 0.19 F-153 201 202 < 5 0.2 1.71 < 2 870 < 0.5 < 2 0.08 2.5 21 25 10 3.60 0.08 0.18 >10000 < 10 < 1 < 10 P-155 201 202 < 5 0.2 2.66 160 0.5 < 2 0.12 < 0.5 15 37 6 28 4.37 0.07 < 10 0.71 1675 < 10 < 1 P-157 201 202 < 0.2 1.45 2.75 < 5 < 2 340 < 0.5 < 2 0.44 1.5 15 38 0.47 2030 14 < 10 < 1 0.12 < 10 P-159 201 202 < 5 < 0.2 1.42 300 35 < 2 < 0.5 < 2 0.27 < 0.5 8 10 2.42 0.08 0.36 990 < 10 < 1 < 10

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

o: GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

~*

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

Project :

Comments: ATTN: DAVID KENNEDY CC: D. MOLLOY

									<u></u>		CE	RTIF	CATE	OF A	NALY	/SIS	A9630086
SAMPLE	PREI		Mo ppm	Na. %	Ni ppm	P PPm	Pb pp a	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U Mqq	V ppm	W ppm	Zn ppm	
-081	201			< 0.01	35	1070	6	< 2	5	11	0.03	< 10	< 10	81	< 10	110	
083	201 2			< 0.01	50	880	2	< 2	8	13	0.05	< 10	< 10	. 92	< 10	144	
085	201 2			< 0.01	39	1080	2	< 2	4	13	0.01	< 10	< 10	77	< 10	120	
087 089	201 2			< 0.01	48	730	2	< 2	6	11	0.04	< 10	< 10	79	< 10	102	
				< 0.01	40	1150	4	< 2	5	12	0.03	< 10	< 10	77	< 10	104	
091		102		< 0.01	41	1230	4	< 2	4	12	0.03	< 10	< 10	81	< 10	138	the second second second second second second second second second second second second second second second se
093	201 2			< 0.01	- 44	860	6	< 2	5	9	0.02	< 10	< 10	83	< 10	106	
095 097		102		< 0.01	47	1400	2	< 2	6	19	0.03	< 10	< 10	81	< 10	128	
099	201 2			< 0.01	33	1790	6	< 2	1	19	0.01	< 10	< 10	81	< 10	160	
	401 4			< 0.01	49	1330	10	< 2	7	26	0.05	< 10	< 10	81	< 10	194	
101	201 2			< 0.01	27	1910	4	< 2	5	12	0.07	< 10	< 10	122	< 10	424	
103	201 2			< 0.01	39	750	4	< 2	5	19	0.05	< 10	< 10	83	< 10	270	
105	201 2			< 0.01	21	1730	2	< 2	3	19	0.04	< 10	< 10	73	< 10	360	
107 109	201 2			< 0.01	51	880	8	< 2	6	23	0.04	< 10	< 10	76	< 10	180	
103	201 2	u ∡	4 4	< 0.01	28	1130	4	< 2	4	13	0.03	< 10	< 10	86	< 10	276	
111	201 2		4 <	0.01	57	1340	4	< 2	4	20	0.01	< 10	< 10	58	< 10	278	
113	201 2			0.01	11	2040	8	< 2	2	10	0.07	< 10	< 10	84	< 10	164	
115	201 2			0.01	17	2790	6	< 2	4	12	0.05	< 10	< 10	102	< 10	216	
117 119		02		0.01	29	1530	< 2	< 2	4	13	0.07	< 10	< 10	83	< 10	280	
119 	201 2	02	3 <	0.01	16	1600	14	< 2	4	17	0.05	< 10	< 10	102	< 10	442	
121	201 2			0.01	18	1440	8	< 2	3	12	0.03	< 10	< 10	93	< 10	276	
123	201 2			: 0.01	27	980	2	< 2	3	46	0.03	< 10	< 10	62	< 10	278	
125	201 2			0.01	23	670	6	< 2	3	20	0.02	< 10	< 10	64	< 10	118	
127 129	201 2			0.01	25	1260	2	< 2	3	20	0.03	< 10	< 10	50	< 10	230	
147	201 2	02	2 <	0.01	34	1920	6	< 2	4	21	0.03	< 10	< 10	64	< 10	400	
131	201 2		4 <	0.01	23	1160	4	< 2	1	17	0.02	< 10	< 10	58	< 10	96	
133	201 2			0.01	24	1080	6	< 2	5	8	0.03	< 10	< 10	72	< 10	210	
135	201 2			0.01	31	1760	4	< 2	4	11	0.04	< 10	< 10	77	< 10	412	
137 139	201 2			0.01	36	1030	10	< 2	2	31	0.05	< 10	< 10	55	< 10	240	
		•∡	4 <	0.01	50	910	2	< 2	4	11	0.02	< 10	< 10	59	< 10	218	
41	201 2		1 <	0.01	20	1250	8	< 2	< 1	53	0.02	< 10	< 10	38	< 10	362	
143	201 2			0.01	49	820	ē	< 2	6	17	0.03	< 10	< 10	47	< 10	156	
145	201 2			0.01	15	340	< 2	< 2	< 1	38	0.01	< 10	< 10	7	< 10	72	
L47	201 2			0.01	57	1320	2	< 2	5	5	0.02	< 10	< 10	57	< 10	284	
149	201 2	2	3 <	0.01	29	1170	6	< 2	4	10	0.04	< 10	< 10	75	< 10	266	
151	201 2	02	3 <	0.01	15	1150	6	< 2	1	8	0.01	< 10	< 10	59	< 10	210	
153	201 2	02		0.01	23	1960	6	< 2	2	ğ	0.04	< 10	< 10	61	< 10	410	
155	201 20			0.01	59	2420	< 2	< 2	4	11	0.01	< 10	< 10	56	< 10	198	
157	201 20			0.01	32	1110	< 2	< 2	2	27	0.03	< 10	< 10	47	< 10	308	
.59	201 20	92	1 <	0.01	25	1060	< 2	< 2	2	18	0.03	< 10	< 10	48	< 10	174	
		F														<u>_</u>	

CERTIFICATION:_

•

.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 io: GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project :

Comments: ATTN: DAVID KENNEDY CC: D. MOLLOY

CERTIFICATE OF ANALYSIS A

A9630086

_*

SAMPLE	PRE COD	- 1	Au ppb FA+AA	λg ppm	λ1 *	As ppm	Ba ppn	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg Ppm	K %	La ppm	Mg *	
-161	201	202	< 5	0.2	1.26	14	280	< 0.5	< 2	0.16	0.5	10	14	27	3.52	< 10	1	0.10	< 10	0.13	87
-163		202	< 5	< 0.2	1.96	49	240	< 0.5	< 2	0.42	< 0.5	13	16	29	4.37	< 10	< 1	0.13	< 10	0.34	161
-165	201	202	< 5	0.2	2.05	18	340	< 0.5	< 2	0.40	< 0.5	15	22	27	3.96	< 10	< 1	0.11	< 10	0.59	24
-167				NotRed							NotRed				NotRcd	NotRed	NotRed	NotRed	NotRed	NotRed	NotRe
-169	201	202	< 5	0.6	2.25	24	110	< 0.5	< 2	0.06	< 0.5	11	26	20	5.87	10	< 1	0.05	< 10	0.25	16
171		202	< 5	0.2	2.81	20	200	< 0.5	< 2	0.20	< 0.5	13	35	31	4.70	< 10	< 1	0.06	< 10	0.64	8:
-173		202	< 5	0.8	1.87	26	120	< 0.5	< 2	0.43	2.5	13	24	59	4.75	< 10	< 1	0.06	< 10	0.25	16
-175		202	< 5	0.4	2.19	10	250	< 0.5	< 2	0.48	1.0	15	32	43	4.41	< 10	< 1	0.07	< 10	0.60	17
-177		202	< 5	1.0	2.77	20	360	1.5	< 2	1.47	3.5	22	49	310	4.11	< 10	< 1	0.05	40	0.43	63
-179	201	102	< 5	0.2	1.98	6	740	< 0.5	< 2	0.44	4.0	20	31	19	3.97	< 10	< 1	0.11	< 10	0.39	53:
-181 -183	1	202	< 5 < 5	0.2	1.32 2.56	8 14	190 280	< 0.5	< 2	0.49	0.5	6	32	47	3.73	< 10	< 1	0.06	< 10	0.27	3
-185		202	< 5	0.2	2.72	22	240	< 0.5	< 2	0.38	1.5	18	41	35	4.62	< 10	< 1	0.06	< 10	0.98	15
-187		202	not/ss	< 0.2	1.45	8	100	< 0.5	< 2	0.30	1.0	19 8	39 22	41 11	4.98	< 10	< 1	0.07	< 10	0.66	14
189	201		< 5	0.2	1.81	14	290	< 0.5	< 2	0.21	0.5	10	31	16	3.54	< 10 < 10	< 1 < 1	0.05 0.09	< 10 < 10	0.45 0.33	3 14
191	201	202	< 5	0.2	2.77	10	330	< 0.5	< 2	0.14	< 0.5	16	48	24	4.85	< 10	< 1	0.09	< 10	0.62	25
193	201	102	< 5	0.6	1.62	20	170	< 0.5	< 2	0.22	1.5	16	20	63	4.79	< 10	1	0.10	< 10	0.20	21
195	201	202	not/ss	1.2	1.24	18	690	< 0.5	< 2	0.68	3.0	16	24	38	5.02	< 10	< 1	0.15	< 10	0.17	36
-197	201	102	< 5	0.6	1.46	6	750	< 0.5	< 2	0.53	4.0	18	17	26	3.25	< 10	< 1	0.11	< 10	0.17	66
199	201	202	< 5	1.2	2.28	22	260	0.5	< 2	0.28	< 0.5	15	26	36	4.78	< 10	< 1	0.12	< 10	0.50	17
-201	201		< 5	0.2	1.69	32	170	< 0.5	< 2	0.64	1.0	17	19	42	4.74	< 10	< 1	0.09	< 10	0.53	18
-203	201		< 5	0.2	1.74	12	90	< 0.5	< 2	0.16	0.5	6	17	19	3.32	< 10	< 1	0.08	< 10	0.26	2
-205	201		< 5	0.2	1.31	24	160	< 0.5	< 2	0.33	2.0	18	15	31	3.81	< 10	< 1	0.11	< 10	0.40	16
-207	201		< 5	0.2	1.71	40	180	0.5	< 2	0.39	0.5	18	16	42	4.69	< 10	< 1	0.11	< 10	0.50	17
-209	201	102	< 5	0.4	1.00	18	340	< 0.5	< 2	0.97	2.0	18	14	27	3.36	< 10	< 1	0.13	< 10	0.31	41
211	201		< 5	0.4	0.98	16	280	< 0.5	< 2	0.29	4.0	14	12	38	3.23	< 10	< 1	0.10	< 10	0.17	29
213		102	< 5	0.2	0.81	36	80	< 0.5	< 2	0.46	< 0.5	9	13	25	3.73	< 10	1	0.09	< 10	0.22	6
215 217		102 102	< 5	0.2	1.68	24 20	160 230	0.5	< 2	0.25	< 0.5	19	29	52	5.05	< 10	< 1	0.10	< 10	0.64	15
219	201		not/ss	0.6	1.95	24	160	< 0.5 0.5	< 2	0.34 0.13	0.5	12 31	23 43	27 49	4.25	< 10 < 10	< 1 < 1	0.11 0.10	< 10 < 10	0.37 0.59	9 11
221		102 102	< 5	0.2	1.82	24	320	< 0.5	< 2	0.26	0.5	14	33	30	3.81	< 10	< 1	0.10	< 10	0.32	23
225		02	< 5	< 0.2 0.8	0.85	30 24	80 240	< 0.5	< 2	0.13	< 0.5	11	27	50	5.27	< 10	< 1	0.07	< 10	0.10	2
445 227		02	< 5	0.6	1.16	14	180	< 0.5	< 2	0.72	2.0 2.0	18 25	32 34	47 52	4.81 4.24	< 10 < 10	< 1	0.12	< 10	0.20	11 18
229	201		< 5	0.2	2.22	12	240	< 0.5	< 2	0.12	< 0.5	10	37	23	4.15	< 10	< 1 1	0.09 0.05	< 10 < 10	0.43 0.52	8
231	201 2	02	< 5	< 0.2	2.76	14	370	< 0.5	< 2	0.15	0.5	10	46	24	4.50	< 10	< 1	0.06	< 10	0.78	7
233		02	< 5	< 0.2	2.52	10	210	< 0.5	< 2	0.37	< 0.5	9	42	47	4.10	< 10	< 1	0.11	< 10	0.87	4
235		02	< 5	0.2	2.62	12	430	< 0.5	< 2	0.18	< 0.5	14	42	21	4.27	< 10	< 1	0.10	< 10	0.66	22
237	201 2		< 5	0.2	2.35	12	500	< 0.5	< 2	0.46	2.5	17	45	18	4.22	< 10	< 1	0.16	< 10	0.70	35
239	201 2		< 5	< 0.2	3.16	18	310	0.5	< 2	0.35	1.0	14	53	37	5.03	< 10	< 1	0.11	< 10	1.02	7

CERTIFICATION:

Hart Prella

o: GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

~*

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

Project : Comments: ATTN: DAVID KENNEDY CC: D. MOLLOY

											CE	RTIF		OF A	NAL	/SIS	A9630086
SAMPLE	PRE		Mo ppm	Na. X	Ni ppm	P ppm	9b ppm	Sb ppm	Sc ppm	Sr pp n	ti X	T1 ppm	U PPM	V ppm	W ppm	Zn ppm	
·161	201		2 .	< 0.01	13	500	10	< 2	3	18	0.03	< 10	< 10	64	< 10	174	·····
163	201			< 0.01	26	720	6	2	4	25	0.01	< 10	< 10	62	< 10	182	
165 167	201	202	NotRed I	< 0.01	36 NotRed 1	1250 NotRed 1	8 NotRcd 1	< 2	4	19	0.04	< 10	< 10	70	< 10	236	
169	201			< 0.01	21	750	B	2	4	7 7	0.03	< 10	NotRed I < 10	115	< 10	198	
171	201			< 0.01	30	620	6	< 2	5	12	0.04	< 10	< 10	106	< 10	160	
173	201			< 0.01	40	1580	12	2	3	22	0.03	< 10	< 10	89	< 10	168	
175 177	201		3	< 0.01 0.01	35 71	1150 3110	12 14	2 < 2	4	22 97	0.04	< 10 < 10	< 10 < 10	101 85	< 10 < 10	180 308	
179	201		-	< 0.01	22	2290	12	2	3	21	0.05	< 10	< 10	85 77	< 10	578	
181	201			< 0.01	34	1770	8	< 2	1	26	0.02	< 10	< 10	63	< 10	82	
183 185	201 201			< 0.01 < 0.01	48	1140 2730	12 12	< 2 < 2	5	13 12	0.05	< 10 < 10	< 10 < 10	96 111	< 10 < 10	228 284	
187	201			< 0.01	16	1120	4	< 2	2	6	0.03	< 10	< 10	54	< 10	190	
189	201			< 0.01	18	1640	6	< 2	3	11	0.05	< 10	< 10	82	< 10	162	
191		202	_	< 0.01	31	1850	4	< 2	4	9	0.04	< 10	< 10	110	< 10	242	
193 195	201 201			< 0.01 0.01	50 42	2430 2390	10 B	< 2 < 2	3	22 59	0.02 0.01	< 10 < 10	< 10 < 10	62 59	< 10 < 10	168 446	
197	201			< 0.01	38	1700	10	2	2	45	0.05	< 10	< 10	52	< 10	426	
199	201			< 0.01	46	1380	6	< 2	5	25	0.01	< 10	< 10	75	< 10	186	
201	201 201			< 0.01 < 0.01	33 19	1390 610	8 6	< 2	3	34 16	0.03	< 10 < 10	< 10 < 10	77 65	< 10	144 88	
205	201			< 0.01	21	1100	8	22	1	20	0.01	< 10	< 10	57	< 10 < 10	216	
207	201			< 0.01	31	1480	8	2	6		< 0.01	< 10	< 10	57	< 10	210	
209	201	202	2 -	< 0.01	22	1780	8	2	3	41	0.01	< 10	< 10	51	< 10	206	
211	201			< 0.01	27	1790	6	2	3		< 0.01	< 10	< 10	40	< 10	194	
213 215	201			< 0.01 < 0.01	23 55	1530 1330	6 10	< 2	7		< 0.01 < 0.01	< 10 < 10	< 10 < 10	<u>44</u> 60	< 10 < 10	118 174	
217	201			< 0.01	32	2330	8	2	4		< 0.01	< 10	< 10	54	< 10	192	
219	201			< 0.01	77	1520	12	2	5	27	0.01	< 10	< 10	69	< 10	228	
221	201		1 -	< 0.01	43	1630	ß	2	4	28	0.01	< 10	< 10	69	< 10	180	
223	201			< 0.01	81	760	B	< 2	8		< 0.01	< 10	< 10	55	< 10	148	
225	201			< 0.01	65	1640	10	< 2	4		< 0.01	< 10	< 10	64	< 10	266	
227 229	201 201			< 0.01 < 0.01	83 26	1610 1740	12 10	2	5 4	63 · 8	< 0.01 0.01	< 10 < 10	< 10 < 10	47 85	< 10 < 10	260 168	
231	201			< 0.01	40	1250	6	< 2	5	10	0.01	< 10	< 10	90	< 10	208	· · · · · · · · · · · · · · · · · · ·
233	201			< 0.01	52	1320	8	2	5	15	0.01	< 10	< 10	79	< 10	160	
235 237	201			< 0.01 < 0.01	29 35	1620 2210	10 B	< 2	4	10 20	0.03	< 10 < 10	< 10 < 10	102 86	< 10 < 10	300 308	
239	201			< 0.01	57	2560	10	2	6	14	0.01	< 10	< 10	104	< 10	252	
			-						-								

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 5175 Timberlea Blvd.,

io: GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

÷.

~*

Project : Comments: ATTN: DAVID KENNEDY CC: D. MOLLOY

SAMPLE	PREP CODE		Au ppb FA+AA	yd Yd	A1 %	уя рбя	Ba ppz	Be	Bi ppm		CERTIFICATE OF ANALYSIS A963008								086		
										Ca	Cđ ppn	Co ppm	Cr ppn	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
F-241		202	< 5	0.2	2.08	16	220	< 0.5	< 2	0.81	1.0	19	42	31	4.20	< 10	< 1	0.09	< 10	0.93	1130
F-243 F-245		202 202	< 5	0.2	0.90	6	210	< 0.5	< 2	0.26	0.5	5	14	33	1.76	< 10	< 1	0.04	< 10	0.95	1130
2-247		202	< 5 < 5	< 0.2 0.2	2.70 2.94	16 20	320 410	0.5	< 2	0.53	0.5	19	32	47	5.32	< 10	< 1	0.08	20	0.40	4350
F-249		202	< 5	0.4	2.60	16	190	< 0.5 0.5	< 2 < 2	0.13 0.11	0.5 < 0.5	27 15	31 42	28 25	5.02 4.33	< 10 < 10	1 < 1	0.10 0.07	< 10 < 10	0.52	4610 1400
F-251			< 5	0.2	2.36	18	210	0.5	< 2	0.11	0.5	24	30	37	4.84	< 10	< 1	0.07	10	0.62	1730
F-253 F-255		202	< 5	0.2	2.11	16	440	< 0.5	< 2	0.31	1.5	23	32	24	4.59	< 10	< 1	0.10	< 10	0.61	3530
F-257		202 202	< 5	0.6	3.10	16	160	< 0.5	< 2	0.11	< 0.5	16	44	36	5.23	< 10	< 1	0.05	< 10	0.84	2190
F-259		202	< 5 < 5	0.8 0.4	2.67 2.17	14 10	170 180	< 0.5 0.5	< 2	0.13	< 0.5	15	40	25	4.38	< 10	< 1	0.05	< 10	0.65	1640
· · · · · · · · · · · · · · · · · · ·									< 2	0.11	0.5	16	38	16	4.34	< 10	< 1	0.05	< 10	0.43	2760
F-261 F-263		202 202	< 5 < 5	0.2	1.85		160	< 0.5	< 2	0.05	< 0.5	10	36	16	3.86	< 10	< 1	0.05	< 10	0.36	820
-265		202	< 5	0.2	1.95 2.38	18 18	180	< 0.5	< 2	0.21	< 0.5	14	36	26	4.83	< 10	< 1	0.07	< 10	0.56	1435
-267		202	< 5	0.6	1.39	8	80 200	0.5	< 2 < 2	0.16	< 0.5	21	56	46	3.87	< 10	1	0.06	< 10	1.09	1490
-269		202	< 5	0.2	2.37	8	110	< 0.5	< 2	0.16 0.09	1.0 < 0.5	22 12	23 42	19 14	3.57 4.77	< 10 < 10	< 1 < 1	0.10 0.06	< 10 < 10	0.31 0.41	2440 675
P -271		202	< 5	0.6	2.18	8	230	< 0.5	< 2	0.06	0.5	16	35	21	4.12	< 10	< 1	0.07	< 10	0.50	2460
-273	201		< 5	0.6	1.36	6	150	< 0.5	< 2	0.07	< 0.5	9	20	18	2.54	< 10	<1	0.06	< 10	0.22	750
7-275	201	202	not/ss	1.2	0.08	< 2	130	< 0.5	< 2	2.27	3.0	1	1	12	0.13	< 10	< 1	0.04	< 10	0.21	245
F-277 F-279	201 201		< 5 < 5	0.4	0.90 0.93	10 14	270 300	< 0.5 < 0.5	< 2 < 2	0.44 0.27	0.5	9 8	20 17	15 19	1.71 2.83	< 10 < 10	1 < 1	0.09	< 10 < 10	0.13	2970 1335
F-281	201	202	< 5	0.8	2.54	12	250	< 0.5	< 2	0.13	0.5	13	37	20	3.95	< 10			 .		
7-283	201	202	< 5	1.8	2.55	24	260	0.5	< 2	0.30	0.5	15	38	42	6.62	< 10	< 1 < 1	0.10 0.12	< 10 < 10	0.59 0.42	1030 1135
2-285		202	< 5	0.2	1.76	10	810	< 0.5	< 2	0.54	3.5	21	14	25	3.53	< 10	< 1	0.16	< 10	0.23	8980
-287		202	< 5	0.2	2.30	16	330	< 0.5	< 2	0.21	0.5	15	25	29	5.06	< 10	< 1	0.07	< 10	0.47	1490
F-289	201	202	< 5	< 0.2	0.69	6	240	< 0.5	< 2	0.51	< 0.5	4	9	12	2.02	< 10	< 1	0.07	< 10	0.07	210
r-291 r-293	201 201		< 5 < 5	0.2	2.14 3.27	16 22		< 0.5	< 2	0.27	< 0.5	14	26 39	41 35	4.03	< 10 < 10	< 1 < 1	0.07	< 10 < 10	0.65	1225 750

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga L4W 2S3 Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 .o: GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project :

Comments: ATTN: DAVID KENNEDY CC: D. MOLLOY

CERTIFICATE OF ANALYSIS

A9630086

~*

SAMPLE	PREP CODE		Мо ррш	Na %	Nİ ppm	P Ppm	Pb ppm	Sb pp n	Sc ppm	Sr p pm	ti X	T1 ppm	U ppm	V PPE	W ppm	Zn ppm		
-241	201 20			< 0.01	39	1330	10	4	4	26	0.02	< 10	< 10	B4	< 10	190		
-243 -245	201 20:			< 0.01	28 58	550 1130	8	< 2	< 1	22	0.01	< 10	< 10	34	< 10	62		
-247	201 20			< 0.01	50	1470	2 10	< 2	45	31 10	0.05 0.03	< 10 < 10	< 10 < 10	71 72	< 10 < 10	400 510		
-249	201 20:			< 0.01	54	1320	6	2	5	9	0.10	< 10	< 10	62	< 10	262		
-251 -253	201 202			0.01	58	960	8	< 2	4	7	0.02	< 10	< 10	60	< 10	460		······
-255	201 20			< 0.01 < 0.01	40 54	2410 1460	10	< 2 < 2	3	25 4	0.04	< 10	< 10	78	< 10	352		
-257	201 20			< 0.01	51	1310	4	2		9	0.07	< 10 < 10	< 10 < 10	61 57	< 10 < 10	270 242		
-259	201 20	2		¢ 0.01	37	1240	6	6	3	8	0.07	< 10	< 10	56	< 10	396		
-261 -263	201 202			0.01	26	1270	6	< 2	3	5	0.03	< 10	< 10	63	< 10	162		
-265	201 20			< 0.01 < 0.01	40 82	1800 1090	8 8	< <u>4</u> < 2	3	13 9	0.04 0.01	< 10 < 10	< 10	53	< 10	162		
-267	201 20			0.01	24	2130	12	< 2	1	13	0.05	< 10	< 10 < 10	47 53	< 10 < 10	158 282		
-269	201 20	2		0.01	28	670	8	2	3	9	0.03	< 10	< 10	90	< 10	230		
-271	201 20			0.01	37	2000	8	2	2	6	0.02	< 10	< 10	59	< 10	394		
-273 -275	201 202			0.01	23	1110	8	< 2	2	7	0.01	< 10	< 10	51	< 10	98		
-277	201 20			0.01 0.01	6 16	850 880	2	2 < 2	< 1 1	177 · 39	< 0.01 0.03	< 10 < 10	< 10 < 10	3 38	< 10 < 10	224 60		
-279	201 202			0.01	21	1300	B	2	i	25	0.03	< 10	< 10	49	< 10	156		
-281	201 202			0.01	42	1070	6	2	4	18	0.03	< 10	< 10	68	< 10	436		
-283 -285	201 202 201 202			0.01	36 20	2200 2150	10 8	< 2 < 2	4	42	0.08	< 10	< 10	92	< 10	314		
-287	201 202			0.01	28	490	8	< 2	3 5	29 13	0.02 0.01	< 10 < 10	< 10 < 10	55 56	< 10 < 10	396 132		
-289	201 202			0.01	-7	850	i.	< 2	< Ī	36	0.01	< 10	< 10	42	< 10	40		
-291	201 202			0.01	37	570	6	< 2	5	18	0.02	< 10	< 10	66	< 10	124		
293	201 202		< 1 <	0.01	33	1700	8	< 2	6	12	0.03	< 10	< 10	112	< 10	326		
		1																
		1																
		1																
				<u>.</u>						•								·
																	Street Port	. <u>.)</u> <u>.</u>

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

TO: GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Jer :1-A Certificate Date: 22-OCT-96 Invoice No. 19636018 Invoice No. P.O. Number . Account KIV

Project : Comments: ATTN:DAVID KENNEDY CC:D.MOLLOY

. •

											C	ERTI	FICAT	EOF	ANAL	YSIS		A963	6018		
SAMPLE	PR CO		λg ppm	۸1 *			Ве ррш									Hg					Мо
P 050		202	0.2	1.98	•		< 0.5	2	0.11	. 0.!	5 12	33	16	3.55	10	< 1	0.05	< 10	0.41	3130	1
F 052 F 054		202	0.2	2.27	8	160	0.5	_				5 36			10						2
F 056	201	202 202	0.2	2.26	10		0.5								10	< 1					1
P 058		202	0.2	2.78		390 270	< 0.5 0.5								10 10	< 1					1
7 060	201		0.2	2.69	10	220	1.0	2	0.21	1.0	0 14	32	30		10	< 1					
P 070	201	202	0.2	1.95		230	< 0.5	4							10						1
7 072 7 074	201	202	0.2	1.61	4	300	< 0.5	-				33			10	< 1					1
F 074	201	202 202	0.2	2.52	6 8	230	< 0.5								10	< 1	0.08	< 10			1
				4.43	5	310	0.5	< 2	0.52	0.!	5 20) 37	20	4.82	10	< 1	0.12	< 10	0.59	2390	1
P 078	201	202	0.6	1.18	2	570	0.5	2	1.91	9.5	5 23	29	114	2.62	< 10	< 1	0.10	< 10	0.28	4830	1
F 102 F 104	201	202	< 0.2	2.50	10		0.5	< 2						3.97	10	< 1	0.10				i
F 106	201	202	< 0.2	2.94	10 18	200 210	0.5	< 2							10	< 1					1
F 108		202	0.2	2.51	20	160	0.5	< 2						4.54	< 10 10	< 1 < 1					3
F 110		202	0.4	1.78	16	340	0.5	< 2	0.59	1.5	5 19	32	32	4.75	10	< 1	0.10	< 10	0.30		
7 112		202	0.4	2.84	14	290	0.5	2	0.21						10	< 1			0.30		2
P 114		202	0.2	2.30	6	160	< 0.5	2	0.27		5 10				10	< 1			0.56		1
P 116 P 118		202	0.4	3.49	10	180	0.5	< 2						6.62	10	< 1	0.05	< 10	0.64		3
		404		2.27	6	190	0.5	2	0.27	0.5	5 15	34	19	5.54	10	< 1	0.08	< 10	0.41	1530	2
F 120 F 122	201	202	< 0.2 0.6	1.43	8 4	80 270	< 0.5	< 2							10	< 1	+		0.18		3
7 124	201	202	< 0.2	1.52	24	110	< 0.5	< 2				-		0.81	< 10	< 1			0.09		2
7 126	201	202	< 0.2	1.23	18	170	< 0.5	< 2		1.0				4.29 3.82	< 10 10	< 1 < 1		< 10	0.12		6
7 128	201		< 0.2	1.75	10	610	0.5	< 2		2.0				3.92	< 10	< 1		< 10 < 10	0.22		3
7 130	201	202	< 0.2	1.73	8	2000	0.5	< 2	0.27	1.5	5 17	25	28	4.24	< 10	< 1	0.18	< 10	0.33	1925	5
7 132	201	202	< 0.2	1.77	8	230	< 0.5	< 2		0.5	5 13	23	13	3.62	10	< 1			0.26		ž
7 134 7 136			NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed		NotRed				NotRed	NotRed	NotRed	NotRed	NotRed
138	201	202	NOCKCQ 0.4	0.92	NOCKCO	NotRed 90	< 0.5	NOTRCO	Notrea 0.16	NotRed 0.5	NotRed		NotRcđ 36	NotRed 3.72	NotRcd < 10	NotRcd < 1			NotRcd 0.11	NotRed 745	NotReđ 2
7 140	201	202	< 0.2	1.47	10	210	< 0.5	< 2	0.30	0.5				<u></u> .							
142	201		0.2	1.67	12	160	0.5	< 2	0.30	< 0.5			19 41	3.48 3.74	< 10 10	< 1 < 1	0.08	< 10	0.49		1
144	201		< 0.2	1.33	10	360	0.5	< 2	0.47	< 0.5			34	3.26	< 10	< 1		10 < 10	0.49	2340 3240	3
146		202	0.4	2.19	10	210	< 0.5	2	0.50				30	4.23	10	< 1	0.07	< 10	0.45	1160	2
148	201	202	0.2	2.30	8	180	0.5	2	0.11	< 0.5			39	4.10	10	< 1	0.08	< 10	0.67	1430	2
150	201		0.2	1.72	10	170	0.5	< 2	0.20	< 0.5	18	20	47	3.17	< 10	< 1	0.11	< 10	0.48	3630	3
152		202	< 0.2	1.76	4	190	< 0.5	< 2	0.10	< 0.5		25	13	3.30	10	< 1	0.08	< 10	0.27	1145	2
154		202	< 0.2	0.99	8	140	< 0.5	< 2	0.09	< 0.5	-		18	3.05	< 10	< 1	0.06	< 10	0.10	965	1
156 172	201 201	202	0.6	1.62	10 12	180 230	< 0.5	< 2	0.20	0.5			32	3.86	10	< 1	0.08	< 10	0.24	940	3
		- * •		4,74	14	430	0.5	< 2	0.26	0.5	18	32	34	5.13	10	< 1	0.07	< 10	0.45	3810	3
	1						<u> </u>								<u>-</u>			·	•		

F.

CERTIFICATION 1000 Parales

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers

5175 Timberlea Blvd Mississauga Ontario, Canada L4W 253 PHONE: 905-624-2806 FAX: 905-624-6163 io. GEOFINE EXPLORATION CONSULTANTS LTD

49 NORMANDALE RD. UNIONVILLE, ON L3R 4.18

Jer 1-B as :2 Certificate Date: 22-OCT-96 Invoice No. :19636018 P.O. Number Account ÷ĸiv

.

Project :

Comments: ATTN:DAVID KENNEDY CC:D.MOI LOY

CERTIFICATE OF ANALYSIS A9636018 PREP Nİ Na P Pb Sb Sc ጥተ Sr ጥ1 t٦ v W Zn SAMPLE CODE x DDW ppn DOR DDM DDE DDM * DDM DDD ppm DDB DDE P 050 201 202 < 0.01 29 1330 8 1 2 4 7 0.01 < 10 < 10 63 < 10 262 052 201 202 < 0.01 40 930 8 2 4 9 0.03 < 10 < 10 69 < 10 152 054 201 202 < 0.01 26 2900 12 < 2 3 53 0.04 < 10 < 10 96 < 10 406 201 202 056 < 0.01 29 1620 8 < 2 4 25 0.04 < 10 < 10 89 < 10 496 058 201 202 < 0.01 37 870 8 2 6 11 0.05 < 10 < 10 96 < 10 312 060 201 202 < 0.01 54 890 10 2 5 14 0.06 < 10 < 10 69 < 10 182 070 201 202 < 0.01 19 760 14 < 2 4 19 0.12 < 10 < 10 110 < 10 218 072 201 202 < 0.01 19 1700 8 < 2 3 0.05 11 < 10 < 10 79 < 10 218 074 201 202 < 0.01 27 2190 10 2 . 16 0.04 < 10 < 10 110 < 10 292 076 201 202 < 0.01 26 2500 12 0.06 < 2 4 25 < 10 < 10 105 < 10 432 078 201 202 < 0.01 63 12 1450 2 S 97 0.06 < 10 < 10 44 < 10 672 102 201 202 < 0.01 41 1390 10 < 2 6 21 0.04 < 10 < 10 86 < 10 300 104 201 202 < 0.01 53 430 10 2 6 13 0.05 < 10 < 10 90 < 10 192 106 201 202 < 0.01 54 1120 14 2 6 25 0.04 < 10 < 10 83 < 10 198 108 201 202 < 0.01 54 1130 12 2 7 16 0.04 < 10 < 10 88 < 10 160 110 201 202 < 0.01 35 1290 12 2 47 4 0.06 < 10 < 10 72 < 10 336 201 202 < 0.01 112 29 2270 10 2 6 16 0.06 < 10 < 10 116 < 10 394 201 202 < 0.01 P 114 22 1580 6 2 4 11 0.05 < 10 < 10 98 < 10 242 201 202 < 0.01 25 3060 P 116 Ê 2 5 9 0.05 < 10 < 10 120 < 10 250 118 201 202 < 0.01 20 1420 10 2 3 22 0.12 < 10 < 10 118 < 10 264 201 202 120 < 0.01 11 340 10 < 2 2 21 0.03 < 10 < 10 111 < 10 64 201 202 122 < 0.01 26 740 4 2 < 1 123 0.01 < 10 < 10 14 < 10 108 201 202 124 < 0.01 12 830 10 2 2 23 0.01 < 10 < 10 64 < 10 88 201 202 126 < 0.01 23 600 10 2 3 27 0.03 < 10 < 10 78 < 10 112 128 201 202 < 0.01 42 970 ß 2 6 18 0.04 < 10 < 10 59 342 < 10 130 201 202 < 0.01 30 2810 R 2 3 17 0.03 < 10 < 10 48 < 10 274 201 202 132 < 0.01 20 740 R < 2 4 14 0.04 < 10 < 10 71 < 10 172 134 -------NotRed NotRed 136 ----138 201 202 < 0.01 25 1780 12 2 1 12 0.04 < 10 < 10 77 < 10 168 201 202 140 < 0.01 29 1290 8 2 19 0.02 < 10 57 < 10 244 4 < 10 201 202 < 0.01 7 142 47 800 10 2 5 27 0.03 < 10 < 10 47 < 10 160 201 202 < 0.01 144 40 830 10 2 4 24 0.02 < 10 < 10 44 < 10 164 146 201 202 < 0.01 35 550 8 2 28 0.07 < 10 4 < 10 57 < 10 146 148 201 202 < 0.01 71 940 B 2 5 7 0.05 < 10 < 10 53 < 10 196 . 201 202 1200 150 < 0.01 49 2 10 5 14 0.01 < 10 216 < 10 51 < 10 201 202 < 0.01 20 152 1680 2 3 0.02 4 • < 10 < 10 67 < 10 192 154 201 202 < 0.01 18 810 12 2 3 8 0.04 72 < 10 < 10 < 10 132 156 201 202 < 0.01 35 1070 10 2 3 21 0.01 < 10 < 10 66 < 10 146 172 201 202 < 0.01 31 1380 18 2 4 17 0.09 < 10 < 10 106 < 10 340

- -

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

fo: GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

⇒er :2-A ⊮s :2 тð Certificate Date: 22-OCT-96 Invoice No. 19636018 P.O. Number : Account έκιν

Project : Comments: A

С	ERTIFICATE OF A	NALYSIS	A9636018
its:	ATTN:DAVID KENNEDY	CC:D.MOLLOY	

~*

· · · · · · · · · · · · · · · · · · ·																				
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	8e ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	pH mqq	K %	La ppm	Mg %	Mn ppm	Mo ppm
F 174	201 202	0.8	2.15	14	280	1.0	< 2	0.77	2.0	20	29	115	4.14	10	< 1	0.07	20	0.42	2620	2
F 176	201 202	0.2	1.75	10	180	< 0.5	2	0.49	0.5	16	32	40	4.68	10	< 1	0.06	< 10	0.53	1360	2
P 178	201 202	0.2	2.42	10	180	< 0.5	< 2	0.26	< 0.5	18	41	26	4.33	10	< 1	0.09	< 10	1.02	1570	1
F 180 F 182	201 202 201 202	0.2 < 0.2	2.16	10 6	130	< 0.5	< 2	0.37	0.5	17	43	36	4.04	10	< 1	0.13	< 10	0.95	1245	2
F 104		× 0.2	0.49	D	130	< 0.5	< 2	0.72	0.5	4	12	25	1.70	< 10	< 1	0.08	< 10	0.12	215	2
F 184	201 202	< 0.2	2.01	16	290	0.5	< 2	0.62	2.5	23	37	56	4.11	10	< 1	0.11	< 10	0.70	2670	2
ir 186	201 202	< 0.2	2.66	10	430	0.5	< 2	0.35	1.0	17	39	42	4.67	10	< 1	0.09	< 10	0.74	1465	2
7 192 F 194	201 202 201 202	1.8	1.09	18	170	< 0.5	< 2	0.28	< 0.5	15	20	70	4.90	< 10	< 1	0.12	< 10	0.16	1635	3
F 196	201 202	1.0	1.05 1.19	10 8	610 400	< 0.5 0.5	2	0.48 0.18	3.5 1.5	35 24	29 18	29 27	4.21	10	< 1	0.14	< 10	0.22	7780	2
	A01 A03	±,	4.13		400	0.3		0.10	1.3	44	10	41	4.17	< 10	< 1	0.11	< 10	0.15	4160	3
F 198	201 202	0.6	1.29	16	430	< 0.5	2	0.31	3.0	18	21	33	4.14	< 10	< 1	0.14	< 10	0.24	2140	2
F 230	201 202 201 202	0.2	2.31	6	250	< 0.5	< 2	0.15	< 0.5	10	42	20	4.19	10	< 1	0.10	< 10	0.61	465	1
F 232 F 234	201 202	0.4	1.44 1.74	4	280 590	< 0.5 < 0.5	< 2	0.17 0.63	< 0.5 2.0	14 23	27 36	29 19	4.50 3.82	10	< 1	0.15	< 10	0.28	1320	3
236	201 202	< 0.2	1.97		480	< 0.5	< 2	0.83	0.5	15	39	17	3.37	10 10	< 1 < 1	0.17 0.15	< 10 < 10	0.61 0.46	4380 2020	1
		<u>.</u>		-	-										• 1		·		2020	± .
F 238	201 202	< 0.2	2.73	10	310	0.5	< 2	0.27	< 0.5	17	51	24	4.19	10	< 1	0.12	< 10	1.04	1330	1
F 240	201 202	0.2	2.13	8	180	0.5	2	0.72	0.5	19	47	36	3.96	10	< 1	0.17	< 10	0.99	1820	1
F 242 F 244	201 202 201 202	< 0.2 0.8	1.99 2.07	10 12	280 130	< 0.5 < 0.5	< 2 < 2	0.61 0.11	< 0.5 < 0.5	17 38	42 27	35 39	3.69	10	< 1	0.12	< 10	1.10	1000	2
F 246	201 202	0.2	1.62	8	200	0.5	< 2	0.13	< 0.5	38	21	17	4.47 4.20	10 10	< 1 < 1	0.06	< 10 < 10	0.55 0.24	3440 5440	2
	•													10	• •		< 10 			•
F 248	201 202	0.4	0.97	12	380	< 0.5	< 2	0.38	1.0	7	41	54	3.68	10	< 1	0.10	< 10	0.19	945	2
P 250	201 202	0.6	1.80	6	270	< 0.5	< 2	0.05	< 0.5	22	25	13	4.27	10	< 1	0.07	< 10	0.22	2670	1
P 252 P 254	201 202 201 202	< 0.2	1.96	14 10	100 160	0.5	< 2 < 2	0.15 0.19	< 0.5 < 0.5	17 20	34 39	32 32	3.80 4.49	10 10	<1	0.09	< 10	0.87 0.95	1665 3790	23
256	201 202	0.8	2.26	10	170	0.5	2	0.11	< 0.5	25	41	34	4.15	10	< 1 < 1	0.08	< 10 < 10	0.79	2620	3
			<u>_</u>	10									·		• 1	0.07	< 10 	0.75		
258	201 202	0.2	1.89	8	130	< 0.5	2	0.02	< 0.5	8	33	11	4.65	10	< 1	0.05	< 10	0.26	540	2
F 268	201 202 201 202	0.6	1.30 0.94	6	250 470	< 0.5 < 0.5	< 2	0.19	0.5	11 15	36	36 11	2.87	< 10	< 1	0.10	< 10	0.24	655	3
P 270 P 272	201 202	0.2	1.74	4	150	< 0.5	< 2	0.08	< 0.5	13	21 32	11	2.61 3.22	< 10	< 1 < 1	0.13 0.11	< 10 < 10	0.20 0.48	7650 1135	1
274	201 202	0.6	1.89	10	340	0.5	< 2	0.12	1.5	36	45	46	4.69	10	< 1	0.10	< 10	0.57	6310	4
		· · · · ·																		
F 276	201 202	0.2	0.85	6	110	< 0.5	< 2	0.16	< 0.5	15	41	19	2.42	< 10	< 1	0.07	< 10	0.18	1300	1
278	201 202	< 0.2	0.62	2	210	< 0.5	< 2	0.26	< 0.5	2	11	8	0.53	< 10	< 1	0.09	< 10	0.13	365	< 1
P 280	201 202 201 202	1.0	2.84 1.70	16	130 360	0.5 < 0.5	2	0.09	< 0.5	24 15	60 32	53	4.76 2.98	10	< 1	0.10	10	1.05	1225 2600	5 1
F 282 F 284	201 202	< 0.2	1.56	36	440	0.5	< 2	0.25 0.34	1.5	26	15	13 42	3.92	10 < 10	< 1 < 1	0.11 0.17	< 10 < 10	0.28 0.38	4760	2
							• •							~ 10		V+11	·	0.20		
286	201 202	< 0.2	0.17	2	40	< 0.5	< 2	0.86	< 0.5	< 1	1	5	0.24	< 10	< 1	0.03	< 10	0.04	80	< 1
F 292	201 202	0.6	1.86	10	210	0.5	< 2	0.19	0.5	27	20	29	4.21	10	< 1	0.13	< 10	0.34	2170	2

,

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 253 PHONE: 905-624-2806 FAX: 905-624-6163 fo: GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 F Der :2-B s :2 Certificate Date: 22-OCT-96 Invoice No. :19636018 P.O. Number : Account :KIV

_*

Project :

Comments: ATTN:DAVID KENNEDY CC:D.MOLLOY

										CE	RTIFI	CATE	OF A	NALYSIS	A9636018
SAMPLE	PREP CODE	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl pp n	U ppm	V ppm	W M	Zn ppm	
7 174 7 176 7 178 7 180 7 182	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01	51 28 40 40 14	1580 780 1200 460 560	16 12 8 12 4	< 2 < 2 2 2 < 2 < 2	5 3 5 6 1	53 36 13 19 31	0.05 0.06 0.03 0.04 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	92 107 91 81 69	< 10 < 10 < 10 < 10 < 10 < 10	334 174 280 174 64	
7 184 7 186 7 192 7 194 7 196	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01	44 36 39 32 31	1700 1340 3760 2590 1910	16 12 12 18 14	2 2 2 2 2	5 5 3 4	32 21 29 < 50 20	0.04 0.05 0.01 0.06 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	84 116 58 66 63	< 10 < 10 < 10 < 10 < 10 < 10	336 314 196 328 248	
7 198 7 230 7 232 7 234 7 236	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	37 29 20 30 28	1850 2260 1780 1590 1840	12 6 14 10 10	2 2 2 2 2 2	5 5 4 4	27 11 16 26 22	0.01 0.03 0.01 0.08 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	64 101 68 82 78	< 10 < 10 < 10 < 10 < 10 < 10	374 188 144 426 362	
238 240 242 244 244 246	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01	43 45 42 53 32	1270 1750 1260 1050 1310	8 12 10 10 14	2 2 2 4 < 2	6 6 4 1	13 22 24 8 8	0.04 0.04 0.04 0.02 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	100 86 81 51 58	< 10 < 10 < 10 < 10 < 10 < 10	360 204 172 182 300	
248 250 252 254 256	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01	24 20 69 57 54	4620 2140 770 1990 910	10 10 8 10 10	2 2 2 2 2 2	3 3 5 4 4	28 7 12 9 9	0.05 0.03 0.03 0.06 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	77 67 57 58 56	< 10 < 10 < 10 < 10 < 10 < 10	106 260 190 188 160	9999-19 · · · · · · · · · · · · · · · · · · ·
258 268 270 272 274	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	19 31 21 32 79	820 1000 1620 2210 1660	10 10 8 8 12	2 2 2 2 2	4 1 1 4 6	6 22 54 9 15	0.05 0.01 0.06 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	80 62 51 61 60	< 10 < 10 < 10 < 10 < 10 < 10	102 154 314 136 294	
276 278 280 282 284	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	37 7 100 27 38	980 220 1590 1110 950	8 6 12 8 10	2 < 2 2 2 2	1 1 6 3 4	12 22 12 < 27 23	0.01 0.05 0.01 0.05 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	40 18 60 56 55	< 10 < 10 < 10 < 10 < 10 < 10	112 40 296 458 224	· ·
286 292	201 202 201 202	< 0.01 < 0.01	2 28	730 2990	< 2 10	< 2 2	< 1 4	27 17	0.02 0.02	< 10 < 10	< 10 < 10	4	< 10 < 10	28 416	
			, <u>.</u>							<u> </u>					

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: GEOFINE EXPLORATION CONSULTANTS LTD.

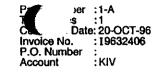
49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

_*

L3R 4J8

Project : Comments: ATTN:DAVID KENNEDY

ſ <u></u>		1								CE	RTIFI	CATE	OF A	NAL	YSIS	~/	A9631	624		
SAMPLE	PREP CODE	Au ppb RUSH	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppm	Mg %	Mn ppm
IF 41 FS 101 FS 102 FS 103 FS 103 FS 104	241 202 241 202 241 202 241 202 241 202 241 202	<pre>< 5 < 5 < 5 < 5</pre>	0.2 0.6 0.2 0.2 0.2	2.93 2.16 1.82 1.61 1.87	10 12 16 18 16	100 270 140 140 220	< 0.5 0.5 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.19 0.82 0.18 0.22 0.39	0.5 1.5 0.5 0.5 0.5	12 18 18 19 21	24 29 34 31 32	38 40 44 40 31	4.92 2.72 3.61 3.77 3.54	10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.09 0.08 0.07 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.81 0.39 0.57 0.51 0.51	1230 3240 1360 3980 1980
FS 105 FS 106 F 500 F 501 F 502	241 202 241 202 241 202 241 202 241 202 241 202	<pre>< \$ < \$ < 5 < 5 < 5 < 5 < 5 </pre>	< 0.2 < 0.2 0.4 0.6 0.6	1.48 2.40 2.08 2.85 2.82	20 12 18 20 20	100 100	0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.06 0.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	20 14 16 10 11	42 43 37 44 39	49 59 48 44 46	4.12 3.75 4.42 5.30 4.81	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.09 0.10 0.08 0.07 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.68 1.45 0.49 0.40 0.45	1250 725 950 690 720
P 503 P 504 P 505 P 506	241 202 241 202 241 202 241 202 241 202	< 5 < 5	0.4 0.6 0.6	1.90 2.35 2.63 2.34	24 24 22 16	100 80	< 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.10	0.5 < 0.5 < 0.5 < 0.5	12 18 19 13	31 37 39 37	52 62 58 42	4.51 4.62 4.79 4.34	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.07 0.07 0.06 0.07	< 10 < 10 < 10 < 10	0.31 0.57 0.50 0.51	1515 1210 1415 1095


CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Fo: GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

~*

Project : Comments:

		<i>t</i>				CERTIF	ICATE	OF ANALY	'SIS	A	96324	406		
SAMPLE	PREP CODE	Al Sb NAA As NAA ppm ppm ppm ppm	Ba Be Bi ppm ppm ppm	Cd ppm	Ca ppm	Cr Co ppa, ppa	Cu pp m	Ga Au NAA ppm ppb	Fe I ppm	a NAA ppm	Pb ppa	Mg Pp a	Mn ppm	Hg Ppm
FB 1 FB 2 FB 3 FB 4 FB 5	210 237 210 237 210 237 210 237 210 237 210 237	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5 < 0.20 < 1.00 < \\ 15 < 0.20 < 1.00 \\ 5 < 0.20 < 1.00 \\ 1.00 \\ 5 < 0.20 < 1.00 \\ 15 < 0.20 < 1.00 \\ 65 < 0.20 < 1.00 \end{array}$	0.20 0.20 0.40	4700 4900 3600 5400 4400	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.0 3.5 3.0 3.0 3.0	<pre>< 5 < 0.4 < 5 < 0.1 < 5 < 0.1 < 5 < 0.1 < 5 < 0.3 < 5 0.4</pre>	50 50	0.3 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 <	0.50 0.50 0.50	1000 950 900 950 700	1610 740 3800	<pre>< 1 < 1</pre>
FB 6 FB 7 FB 8 FB 9 FB 10	210 237 210 237 210 237 210 237 210 237 210 237 210 237	<pre>< 50 < 0.05 < 0.1 < 50 < 0.05 < 0.1 < 50 < 0.05 < 0.1 200 < 0.05 < 0.1 200 < 0.05 < 0.1</pre>	30 < 0.20 < 1.00 < 230 < 0.20 < 1.00 < 65 < 0.20 < 1.00 < 70 < 0.20 < 1.00 < 1.00 < 130 < 0.20 < 1.00	0.20 0.20 0.20	2900 8400 5100 5800 9300	0.5 < 0.50 0.5 < 0.50 0.5 < 0.50 0.5 < 0.50 0.5 < 0.50 0.5 < 0.50	2.5 2.5 3.0 3.0 2.5	<pre>< 5 < 0.2 < 5 < 0.2 </pre>	< 50 < 50 < 50	< 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 <	0.50 0.50 0.50	600 800 750 850 900	330 230 720	<pre>< 1 < 1</pre>
									,					

CERTIFICATION:_

and a second state the second states

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GEOFINE EXPLORATION CONSULTANTS LTD.

1 1 Mar 1

~*

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 Poper :1-B Tota s:1 Certificate Date: 20-OCT-96 Invoice No. : I9632406 P.O. Number : Account :KIV

Project : Comments:

Г

			,							CE	RTIF	ICATE	OF A	NAL	YSIS	A9632406	
SAMPLE	PREP CODE	Мо ррш	Ni ppm	P PPm	K ppm	Sc ppm	Ag ppm	Na ppm	Sr ppm	Tl pp=	Ti pp n	W NAA ppm	U PP n	V ppm	Zn ppm		
FB 1 FB 2 FB 3 FB 4 FB 5	210 237 210 237 210 237 210 237 210 237 210 237	< 0.50	4.0 2.0 1.00 2.5 2.0	1365 2150 1405 1740 1930	3700 5300 4500 3900 6600	< 2 < 2 <	(0.10 0.10 (0.10 0.30 0.10	50 50 50 50 < 50	9.5 10.0 7.0 7.5 8.0	<pre>< 5 < 5</pre>	< 50 < 50	0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	<pre>< 5 < 5 < 5</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	31 24 22		
FB 6 FB 7 FB 8 FB 9 FB 10	210 237 210 237 210 237 210 237 210 237 210 237	<pre>< 0.50 0.50 0.50 0.50 0.50 0.50</pre>	2.0 1.50 2.0 2.0 2.0	1430 1225 1250 1385 1330	5300 6500 5700 4600 4300	<pre>< 2 < <pre></pre></pre>	(0.10 (0.10 (0.10 (0.10 (0.10) (0.10)	50	43 30 28	<pre>< 5 < 5 </pre>	< 50	<pre>< 0.1 < 0.1 < 0.1 < 0.1 0.1 0.1</pre>	< 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	38 32 41		

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 fo: GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

~*

Project : Comments: ATTN:DAVID KENNEDY

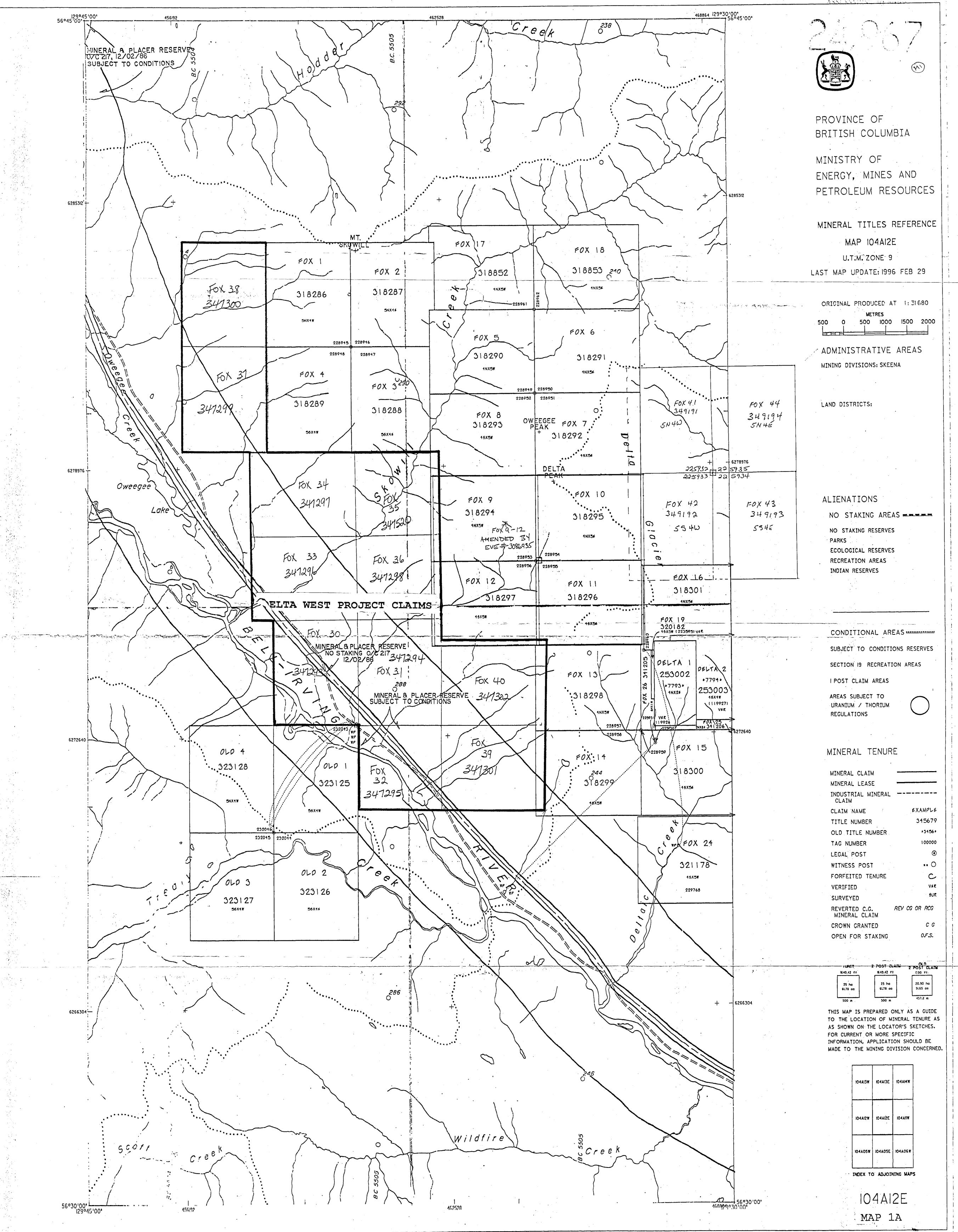
			 CERTIFICATE OF A	NALYSIS A	9632030
SAMPLE	PREP CODE	Au FA mg/L			
W-1 W-2 W-3 W-4	221 221 221 221 221	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01			
W-4	221	< 0.01			
140 Notes					

CERTIFICATION: Much Vinh

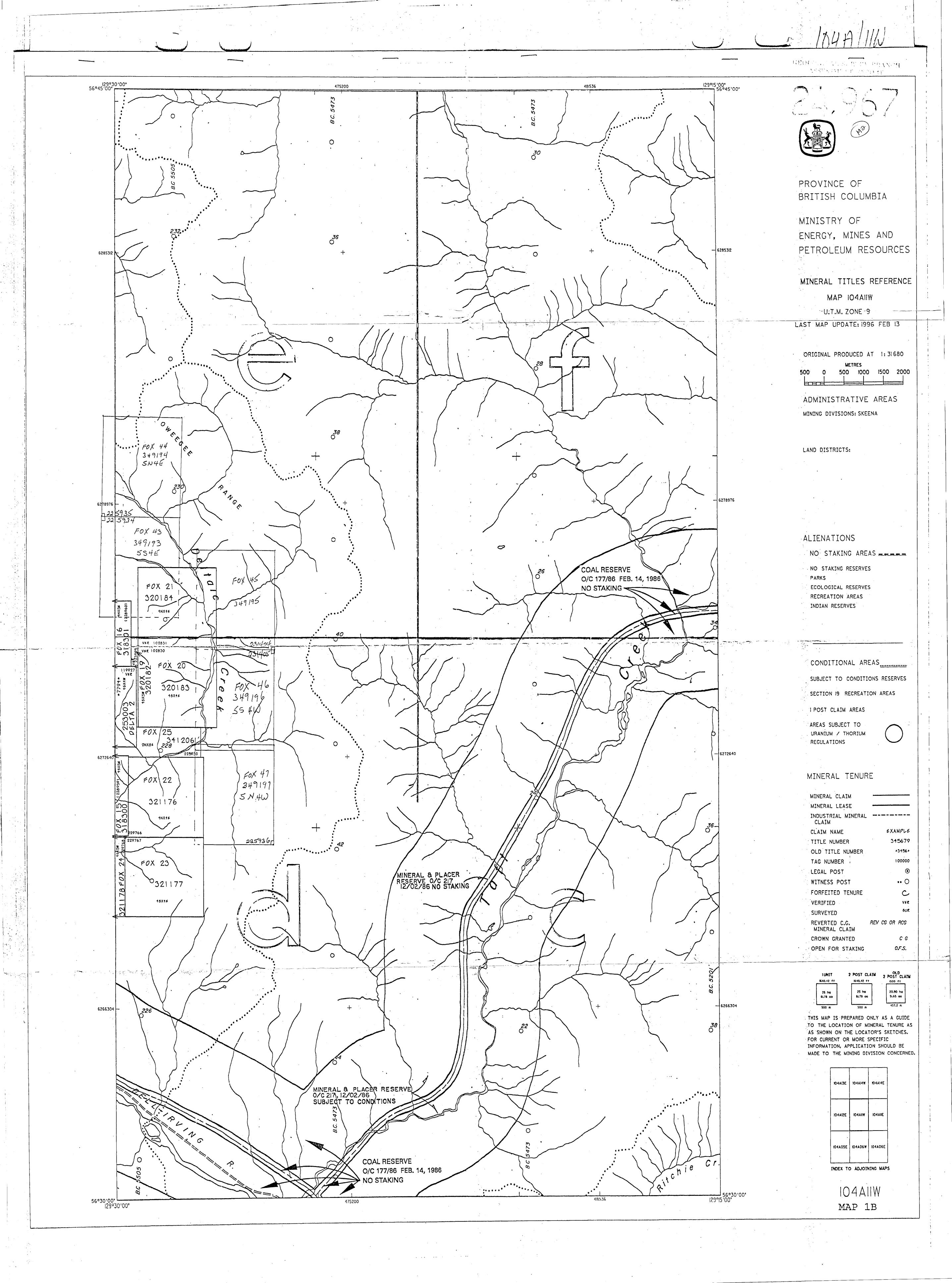
Analytical Chemists * Geochemists * Registered Assayers

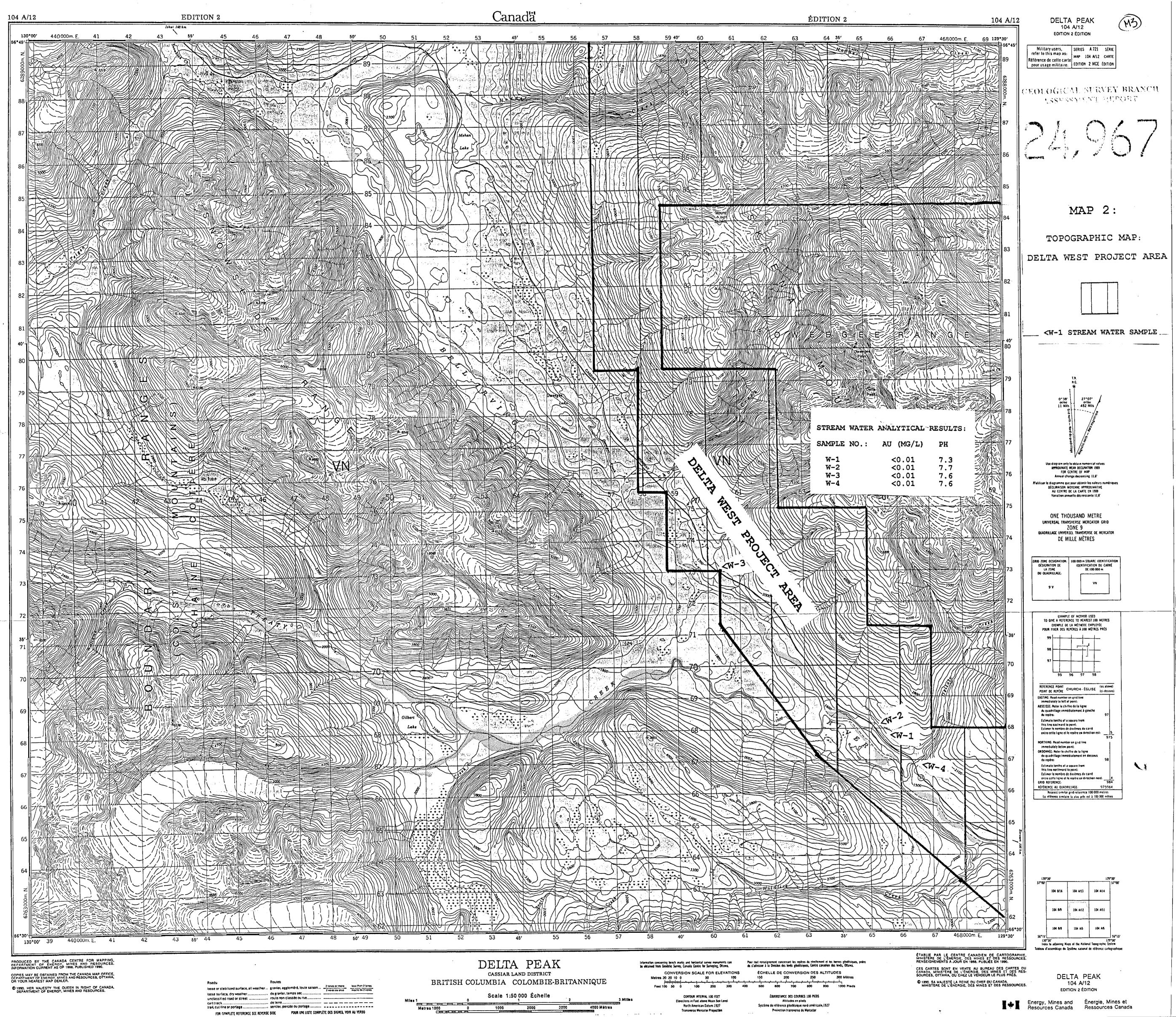
5175 Ontai PHOI

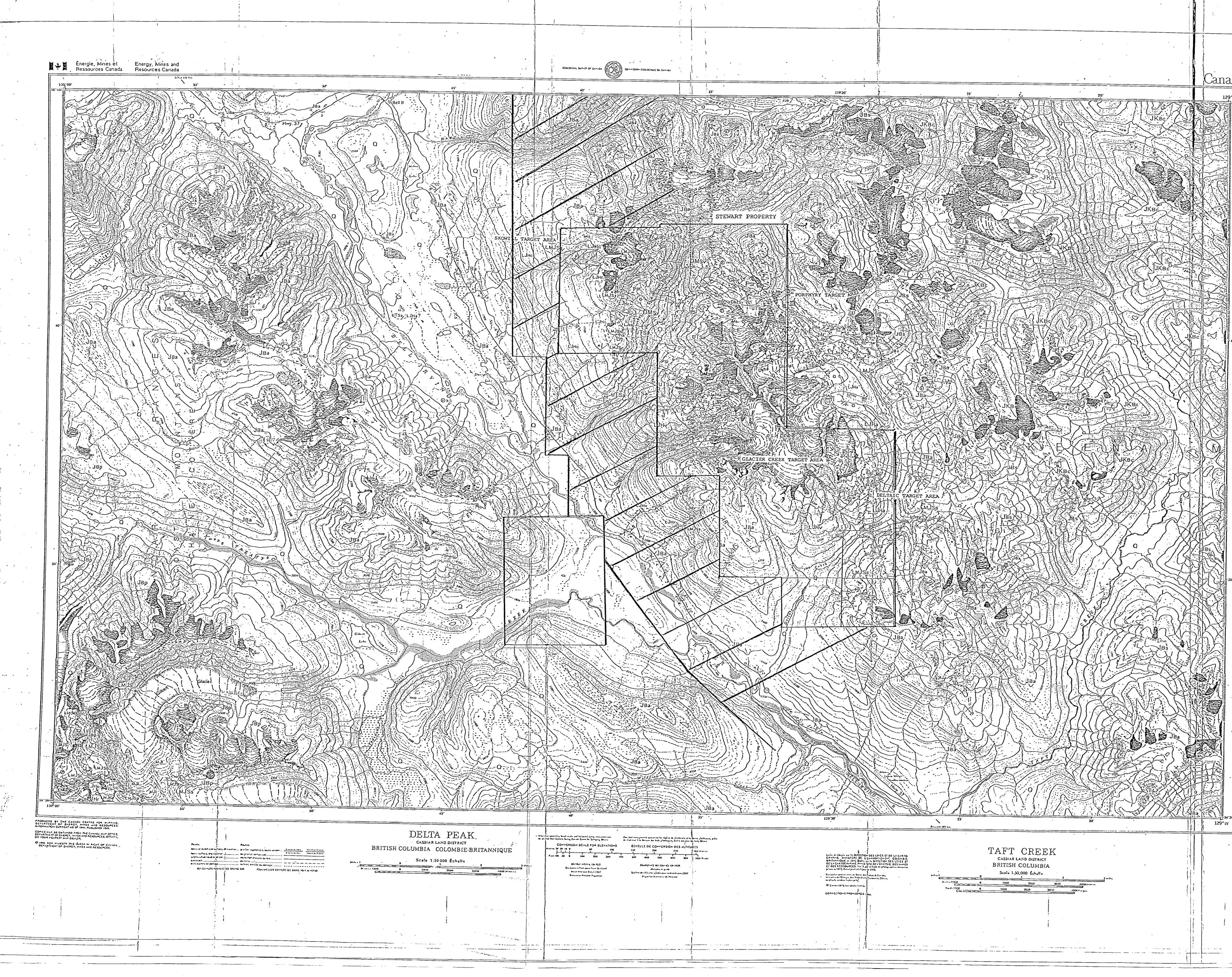
5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: GEOFINE EXPLORATION CONSULTANTS LTD.


49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

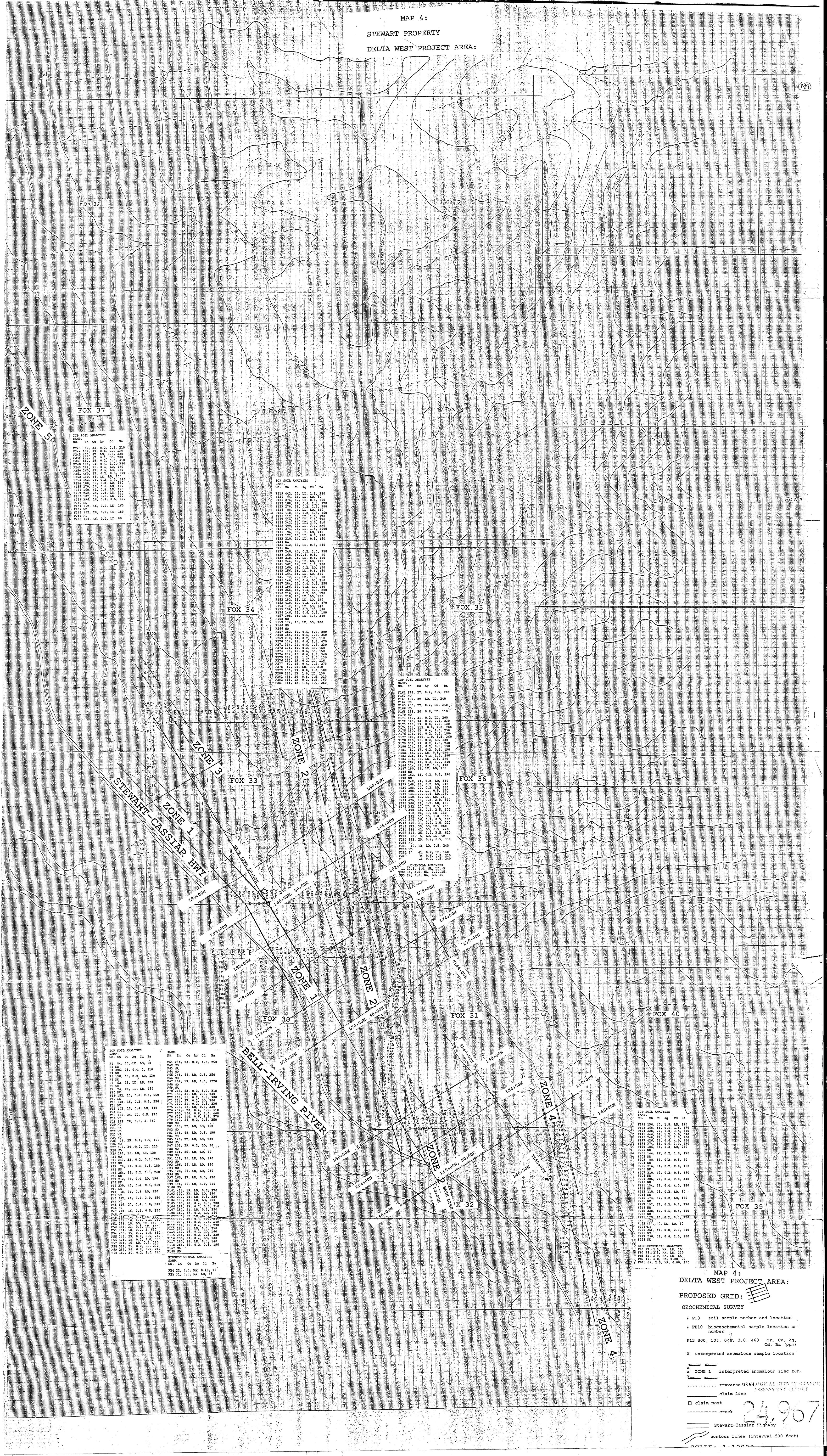
~*


Project : Comments: ATTN: DAVID KENNEDY


					CERTIFIC	ATE OF	ANALYSIS	A9	631636	
PARAMETER DESCRIPTIONS	SAMPLE ¥-1	SAMPLE W-2	SAMPLE W-3	SAMPLE W-4						
Sample preparation code Sample preparation code	221	221	221	221						
pH	7.3	7.7	7.6	7.6						
										- - -
			- - -							
									ł	
		İ						Par	L.A	. D



GEOLOGIA NE SERVER REANCH



; ;		
	GEOLOGICAL SURVEY BRANCH	/
-	ASSESSMENT REPORT	•
	21,967	
		•
		• •
11	GEOLOGY OF OWEEGEE DOME (104A/12) AND TAFT CREEK (104A/11W) MAP AREAS, NORTHWESTERN BRITISH COLUMBIA	
(with	C.J. GREIG and C.A. EVENCHICK contributions by M.H.Gunning, B.D.Ricketts and S.P.Porter)	
	Scale 1:50,000	• • • •
OUATERNARY	LEGEND	•
	drift colluvium, ຢູ່ມ.	· · ·
	STRATIFIED ROCKS	•
MIDDLE(?) AND I	UPPER JURASSIC TO LOWER CRETACEOUS(?) BOWSER LAKE GROUP	
JKBc chert l interro MIDDLE(?) AND L	itharenite lithofacies: fine to medium grained, moderately well sorted chert litharenite, edded silty mudstone, common bivalve coquinas, rare chert pebble conglomerate. JPPER JURASSIC	
	BOWSER LAKE GROUP udstone lithofacies: bioturbated sity mudstone with regularly interbedded, buff ering, Fe-carbonate cemented fine grained sandstone.	
JBa arkosic graine	volcanic litharenite turbidite litholacies; thin and medium bedded, line to medium d, poorly sorted arkosic litharenite with interbedded silty mudstone.	•
JBp pyritic	silty mudstone lithofacies; pyritic, siliceous, tuffaceous silty mudstone, line to medium I lithic arkose.	
LOWER AND HIDI	DLE JURASSIC	
	HAZELTON GROUP SALMON RIVER FORMATION	· · · ·
LMJSs thin be	dded siliceous silly mudstone, clay-altered dust tuff(?), discontinuous limestone lenses.	
LMJSb amygda	aloidal pillow basalt, basalt pillow breccia, luif-breccia and debris flow breccia.	•
LMJSr rhyodad	cite Iapilli tulf-breccia; locally welded.	
LMJS fossilife	rous limy, coarse grained arkose; polymict peoble, boulder and cobble conclomerate.	·
		•
	illy shale and mudstone.	
LMJS undivide	ed Spatsizi Group	:
LOWER JURASSIC	HAZELTON GROUP	•
LJHr felsic la	filli tulf-breccia, ash and dust tult. $D: I = f$:
	and cobble conglomerate, pebbly sandstone; well-stratified, green and marcon ash, d dust tuff, tuffaceous arkose and mudstone.	
	tiate to matic plagioclase-pyroxene and subordinate plagioclase-hornolende phyric If breccia, lapilli, ash and dust wif, flows; derived debris flows, arkese and silistene:	
soft-sedi	ded and massive tulfaceous arkose and silistone with abundant syn-depositional ment deformation structures; matic to intermediate fragmental volcanic rocks and ed debris flows.	
malic to	STUHINI GROUP Ise-pyroxene crystal tuff turbidite arkose and siltstone, plagioclase-pyroxene phyric Intermediate Ispilli and ash tuff, tuff-breccia and rare flows; minor limestone lenses.	· :
PALEOZOIC PERMIAN	STIKINEASSEMBLAGE	·
PSI medium micrite	and thick bedded to massive bioclastic limestone with chert interlayers; thin-bedded	·
DEVONIAN AND MIS	intermediate plagiclase-pyroxene phyric lapilli tuff, lapilli tuff, breccia, and flows;	•
	se phyric amygdaloidal andesite(?) flows; myolite and rhyodacite lapilli tulf-breccia.	•
MIDDLE JURASSIC	INTRUSIVE ROCKS	
MJi pyroxene	diorite sills.	
	· MAP SYMBOLS	
	Limit of thick Quaternary drift. Geologic contact: defined, approximate, inferred.	
	Thrust or reverse fault, defined, approximate, inferred; teeth on upthrown side.	
	High angle lault, defined, approximate, inferred; ball on downthrown side.	
151 2 2	Bedding: inclined, vertical, overturned; estimated: vg=very gentle(<10°), g=gentle (10°-30°), m=moderate(30°-50°), s=steep(50°-70°), vs=very steep(>70°).	
	Bedding formlines.	
12	Cleavage: inclined, vertical.	
8 	Minor fold axis, plunge. Anticline, overturned anticline, trace of axial surface: defined, approximate; arrow	
enter enternet	indicates vergence direction. Syncline, overturned syncline, trace of axial surface: defined, approximate; arrow	•
MAP 3	indicates vergence direction.	• •
GEOLO	GY – GENERAL PROJECT AREA	
	PROJECT AREA	

