RECEIVED

MAY / 2 1997

Gold Commissioner's Office VANCOUVER, B.C.

DIAMOND DRILLING REPORT ON THE CJ PROPERTY

OMINECA MINING DIVISION, BC

NTS 93 O/4

Latitude: 55° 03'N

Longitude: 123° 50'W

OWNER/OPERATOR:
Abitibi Mining Corp.
#1000 - 675 West Hastings Street
Vancouver, BC
V6B 1N2

BY: P. SOUTHAM, P. Geo. (B.C.)

May, 1997

OF OURSELS STREET BRANCH ANSOSSITERS REPORT

TABLE OF CONTENTS

LOCATION AND ACCESS	1
TOPOGRAPHY AND VEGETATION	1
PROPERTY STATUS	1
HISTORY	1
REGIONAL GEOLOGY	5
PROPERTY GEOLOGY	5
WORK PROGRAM	8
DIAMOND DRILLING RESULTS	8
SUMMARY AND CONCLUSIONS	9
LIST OF TABLES	
Table 1 - Claims List	4
Table 2 - Drill Hole Locations	ρ

LIST OF FIGURES

Figure 1 - Location Map	2
Figure 2 - Claim Map	3
Figure 3 - Regional Geology	6
Figure 4 - Drill Hole Location Map	7

APPENDICES

Appendix I - STATEMENT OF EXPENDITURES

Appendix II - STATEMENT OF QUALIFICATIONS

Appendix III - DRILL LOGS AND SAMPLE DATA

Appendix IV - ASSAY RESULTS

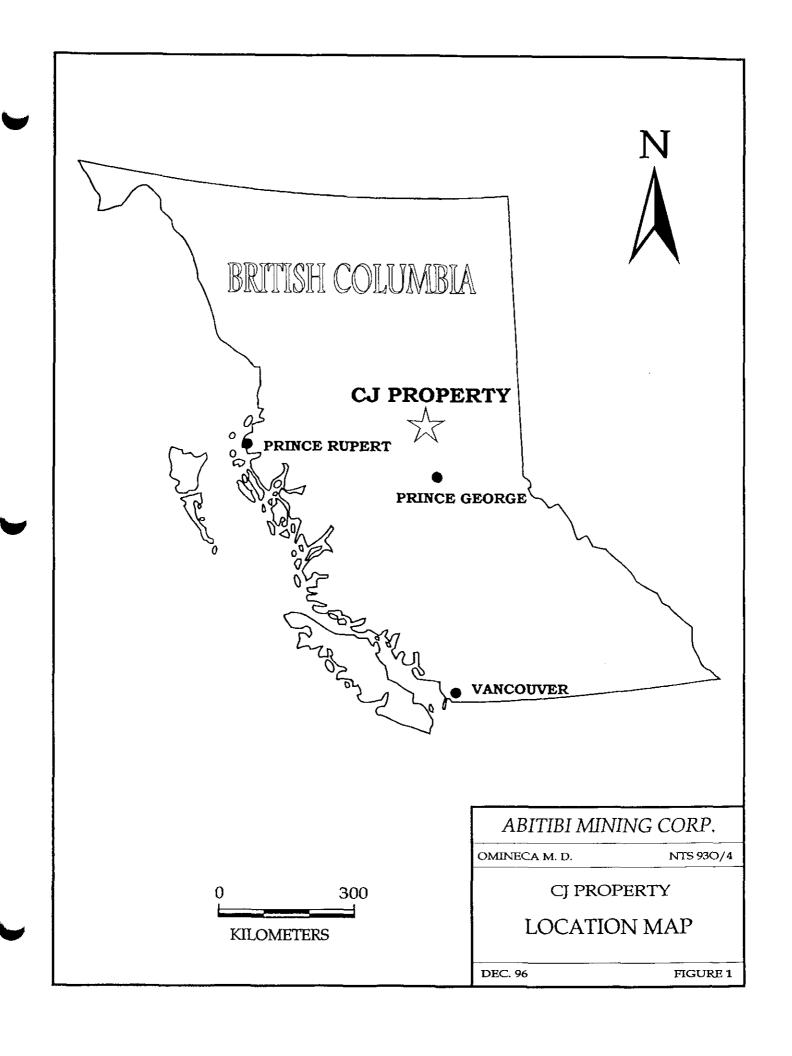
LOCATION AND ACCESS

The property is located approximately 140 kilometers northwest of Prince George (figure 1) and 55 kilometers west of Windy Point, BC on the Finlay Philip Forest Service Road. The Christina Jean claim is centered on 55° 03' north latitude and 123° 54' west longitude on NTS sheet 93 O/4. It is accessible by logging roads from spring to fall or by helicopter from Mackenzie.

TOPOGRAPHY AND VEGETATION

The topography of the area is rolling hills ranging in elevation from 980 meters (2990 ft.) above sea level (ASL) to 1250 meters (3800 ft.) ASL covered with economic stands spruce and fir and also poplar trees. The area is covered with a moderate to thick blanket of glacial till often greater than 30 meters. Outcrop exposure is limited to less than 1% with the best exposures found along road cuts and at higher elevations.

PROPERTY STATUS


The property (figure 2) consists of 6 four-post and 28 two-post mineral claims listed in Table 1.

HISTORY

The property is located 10 kilometers southeast of Placer Dome's Mt. Milligan copper/gold porphyry deposit. The southern part of the property was explored BGM Diversified Energy Inc. in 1991 (Leriche, 1991) following the exploration boom in the area associated with Mt. Milligan's discovery. An airborne magnetics and VLF survey was flown which highlighted two large east-west magnetic highs flanked by a high contrast magnetic low. Coincident with the magnetic highs are three significant copper anomalies. Although a followup program was recommended, no further work was done and the claims were allowed to lapse.

In 1991 the Geological Survey of Canada (GSC) conducted a high resolution airborne gamma ray spectrometric (AGRS) survey (Shives, R.B.K., Ballantyne, S.B. and Harris D.C., 1991) over the Mt. Milligan area. This survey delineated potassic halo "bulls-eyes" over the Mt. Milligan, Taylor, Wit, Chuchi and other known deposits and identified several new targets, one of which lies under the property (figure 3) known as the "K6" anomaly.

The property was restaked by Dave Forshaw, a local prospector, and optioned to Pacific Mariner Exploration Ltd., later renamed Abitibi Mining Corp., in February 1994. Soil sampling was completed over the heart of the potassic halo in the spring of 1994. Additional ground was staked to cover the southern part of the potassic anomaly which included the BGM copper soil anomaly. Three diamond drill holes were completed in August of 1994 to test the core of the potassic anomaly at depth. The drilling returned low but significant values of copper and gold. Minor soil sampling was completed in 1995 for assessment work.

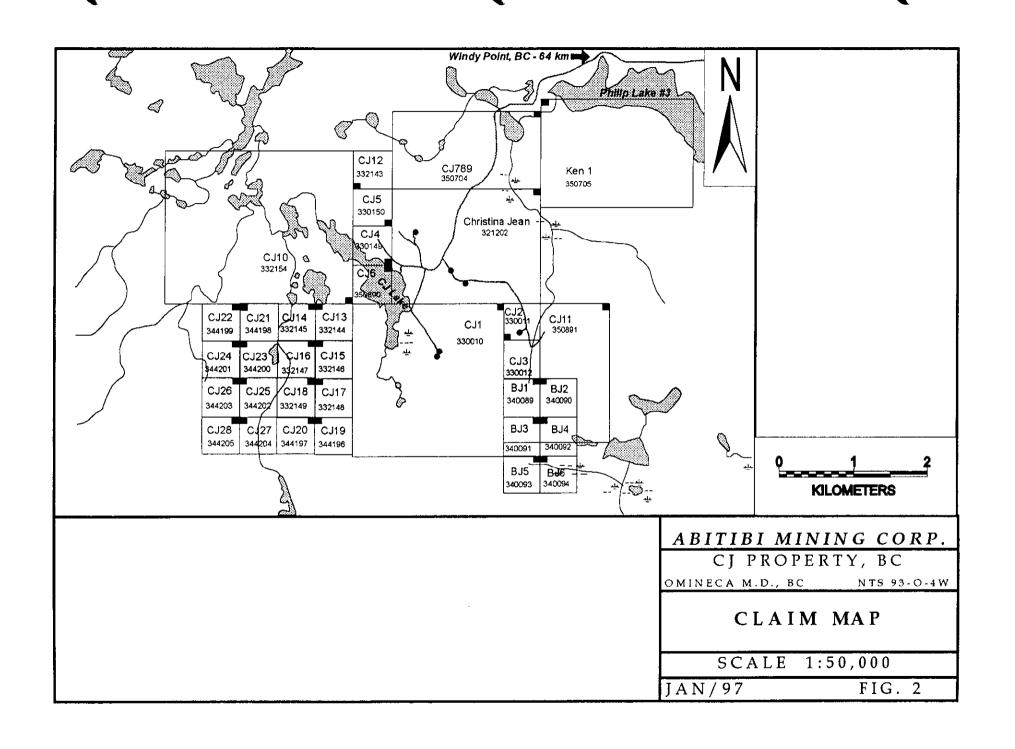


Table 1 - Claims List

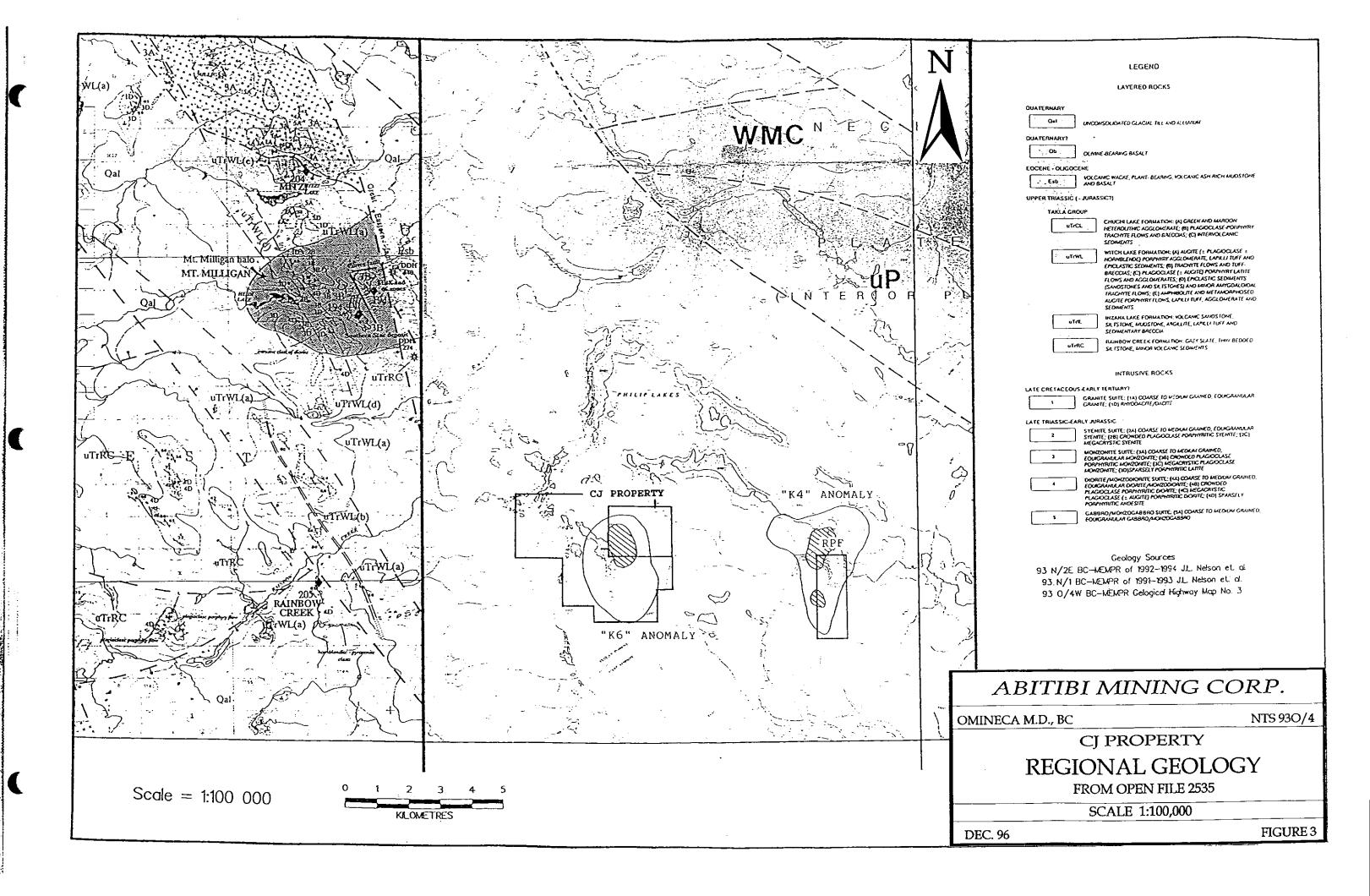
CLAIM NAME	RECORD No.	UNITS	EXPIRY DATE*	OWNER
CJ19	344196	1	March 10/2000	ABB
CJ20	344197	1	March 10/2000	ABB
CJ21	344198	1	March 10/2000	ABB
CJ22	344199	1	March 10/2000	ABB
CJ23	344200	1	March 10/2000	ABB
CJ24	344201	1	March 10/2000	ABB
CJ25	344202	1	March 10/2000	ABB
CJ26	344203	1	March 10/2000	ABB
CJ27	344204	1	March 10/2000	ABB
CJ28	344205	1	March 10/2000	ABB
CJ1	330010	16	Aug 19/2000	ABB
CJ2	330011	1	Aug 18/2000	ABB
CJ 3	330012	1	Aug 18/2000	ABB
CJ4	330149	1	Aug 22/2000	ABB
CJ5	330150	1	Aug 24/2000	ABB
C16	350890	1	Sept 26/2000	ABB
CJ 789	350704	8	Sept 21/1999	ABB
BJ1	340089	1	Sept 21/1999	ABB
BJ2	340090	1	Sept 21/1999	ABB
ВЈЗ	340091	1	Sept 21/1999	ABB
BJ4	340092	1	Sept 21/1999	ABB
BJ5	340093	1	Sept 21/1999	ABB
BJ6	340094	1	Sept 21/1999	ABB
Christina Jean	321202	12	Sept. 29/1999	ABB
Ken 1	350705	12	Sept 22/1997	ABB
CJ 10	332154	20	Oct. 28/1999	ABB
CJ 11	350891	12	Sept 26/1999	ABB
CJ 12	332143	1	Oct. 27/1999	ABB
CJ 13	332144	1	Oct. 28/1999	ABB
CJ 14	332145	1	Oct. 28/1999	ABB
CJ 15	332146	1	Oct. 28/1999	ABB
CJ 16	332147	1	Oct. 28/1999	ABB
CJ 17	332148	1	Oct. 28/1999	ABB
CJ 18	332149	1	Oct. 28/1999	ABB

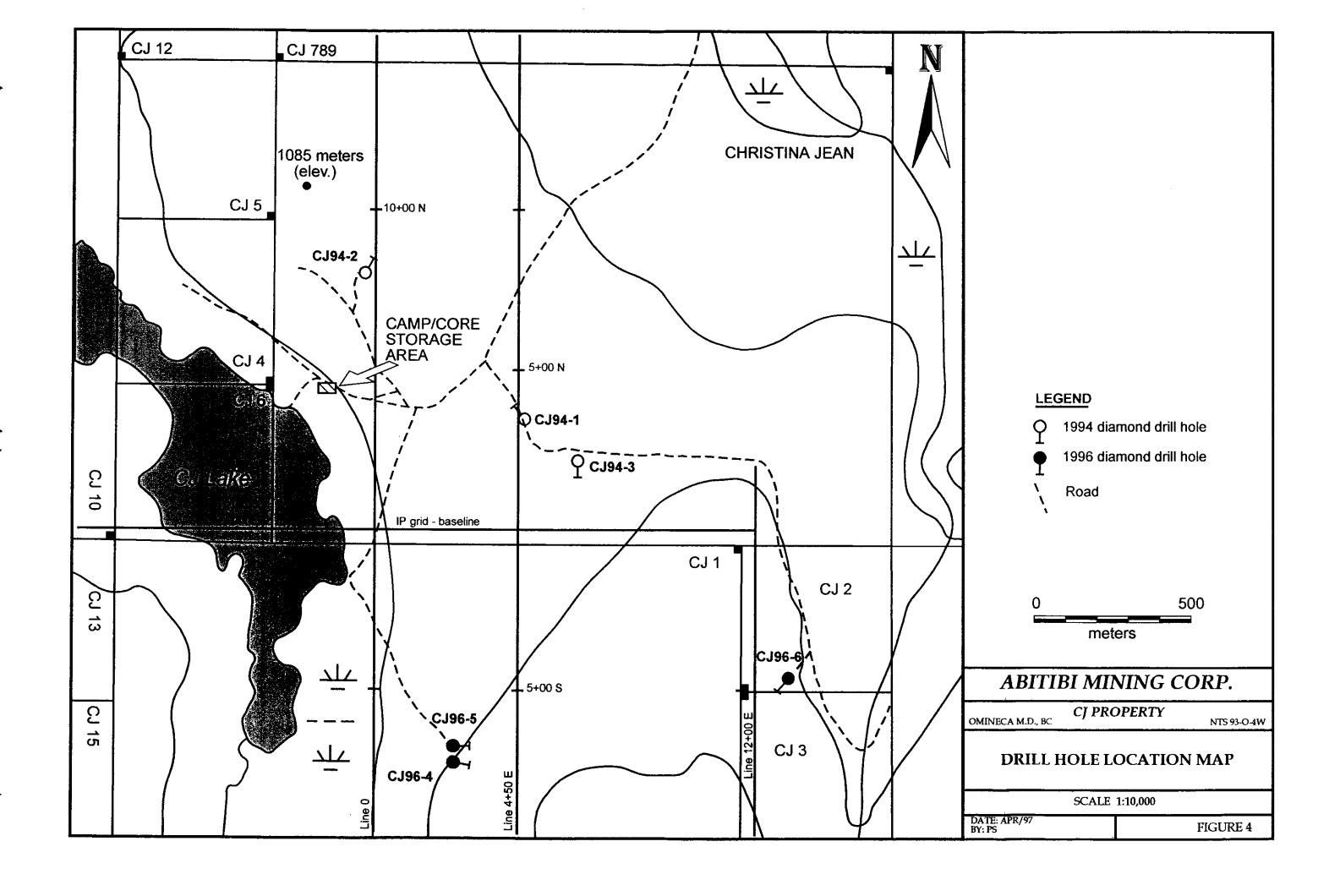
^{*} With acceptance of this report. ABB - Abitibi Mining Corp.

REGIONAL GEOLOGY

The following has been culled from the capsule geology on Minfile number 093N 194 of the Mount Milligan deposit:

The claims lie within the Quesnel Belt (figure 3) composed of Upper Triassic Takla Group andesitic to basaltic massive volcanic flows, sills and volcaniclastic rocks that have been metamorphosed to greenschist facies and intruded by intermediate to mafic subvolcanic and plutonic rocks. Lithologies within the Takla Group include augite and plagioclase porphyritic flows and tuffs and their subvolcanic equivalents, massive non-porphyritic flows and crystal lapilli tuffs. The intrusive suite includes a complex mix of syenite, monzonite, diorite/monzodiorite and gabbro/monzogabbro from the Late Triassic - Early Jurassic and Late Cretaceous granite.


The Mount Milligan deposit is underlain by coarse-grained labradorite diorite and biotite-bearing monzodiorite in the north, a central segment of quartz porphyritic and megacrystic feldspar porphyritic phases, and a southern segment of biotite quartz diorite. The pluton is complicated by several complex sheeted and pegmatitic dyke phases and xenoliths and rafts of biotite hornfels wallrock.


The dominant structural trend is north-northwest with most rock units subvertically oriented, probably due to block faulting and rotation. Faults and shear zones are mainly oriented northeast and northwest.

PROPERTY GEOLOGY

Prospecting on the Christina Jean claim in 1994 identified float of propylitically altered augite porphyritic volcanics of the Takla Group and potassically altered diorite. The source of the alteration appears to be related to an intrusion of diorite which forms a prominent ridge south of the core AGRS anomaly. Glaciation, determined by Plouffe and Ballantyne (1993) as generally moving in a northeast direction for the area, may have deposited the float on the surface in the west-central part of the Christina Jean claim. This float is located in the core of the "K6" potassic anomaly identified by the AGRS survey. Recent logging in the core area may be responsible for the strength of the core by producing better exposure of the float. The AGRS survey penetrates no more than one meter below surface (Shives, R.B.K., Ballantyne, S.B. and Harris, D.C., 1991) thus the disturbed soil of the clearcut may have produced a better response than uncleared areas. A halo of weaker potassium-high AGRS response includes the forest-covered diorite ridge.

Diamond drilling in 1994 (Southam, 1994) revealed the nature of the underlying bedrock as propylitically altered mafic volcanic and gabbro and silicified, potassically altered diorite. Disseminated pyrite occurred throughout most of the drill core. Pyrrhotite was often associated with the pyrite in the diorite and gabbro. Chalcopyrite occurred in quartz veins and silicified zones in the diorite and mafic volcanics and as disseminated mineralization through the gabbro. Faults in the lower part of drill hole CJ94-1 appear to be associated with a northeast-trending topographic

depression north of the drill hole collar. Drill results include 6.5 meters of 0.45 g/t gold and 4.8 meters of 0.51 g/t gold, 0.08% copper from hole CJ94-1, 51.7 meters of 0.02% copper from hole CJ94-2 and 10 meters of 0.03% copper from hole CJ94-3. These holes tested a one-kilometer length of the AGRS potassic anomaly on the property.

WORK PROGRAM

In 1996 Abitibi had 20 line kilometers of grid lines cut for an IP survey. The survey returned several moderate to strong chargeability highs in various parts of the property. In addition, 292 soil samples were collected on two separate grids (Southam, 1996). The results from the east grid on the east side of CJ lake identified strong copper mineralization, up to 1210 ppm, northwest of previously identified copper-in-soil mineralization. 80 more samples were collected to determine the extent of the mineralized zone, an anomaly which is 1.3 kilometers long by 300 - 400 meters wide and trends northeast along the northwest edge of an airborne magnetic high anomaly. The core of this anomaly, a zone averaging above 175 ppm copper-in-soil, is 500 meters by 150 - 200 meters.

In the fall of 1996 three diamond drill holes were completed on the property (figure 4). The hole location and depths are tabulated below:

Table 2 - Drill Hole Locations

Hole #	Northing	Easting	_Azimuth	Dip	Depth	Date Completed
CJ96-4	7+25 S	2+44 E	100°	-50°	125.9m	Sept. 28/96
CJ96-5	6+75 S	2+44 E	090°	-50°	138.7m	Oct. 3/96
CJ96-6	4+70 S	13+00 E	220°	-50°	177.7m	Oct. 7/96
(Hole loc	ations measur	red from the cut-	line arid)			

DIAMOND DRILLING RESULTS

The 1996 drill program returned several significant intersections of copper mineralization, but no economic intersections. Drill holes CJ96-4 and CJ96-5 tested the newly discovered soil anomaly on the west side of line 4+50 E where values of up to 1210 ppm copper were obtained. The soil anomaly is associated with a high chargeability IP response on line 4+50 E between 7+00 S and 11+00 S. CJ96-6 tested a soil anomaly with values of up to 619 ppm copper around 12+00 E, 5+00 S. The IP response on line 12+00 E has high chargeability between 1+50 S and 10+00 S.

CJ96-4 returned the best results of the program including 22.5 meters of 0.072% copper and 0.13 g/t gold and 52.5 meters of .045% copper which contained a higher grade zone of 23 meters of 0.071% copper and 0.11 g/t gold. These grades are hosted in a mix of mafic volcanics, diorite and gabbro and are associated with carbonate and/or quartz veining and alteration with up to 10% pyrite, <1% chalcopyrite and minor pyrrhotite.

Fifty meters north of CJ96-4, drillhole CJ96-5 encountered massive to foliated mafic volcanic rock with similar alteration and sulphide mineralization but less overall copper. Mineralized intervals include 14.8 meters of 0.027% copper, 10 meters of 0.037% copper and 0.12 g/t gold and 24 meters of 0.041% copper and 0.70 g/t gold.

CJ96-6 drilled 160 meters of strongly foliated mafic volcanic rock with abundant wispy carbonate veinlets, minor quartz veining, 1 - 3% pyrite and traces of chalcopyrite. Disseminated magnetite was observed in the last five meters of the hole. Copper mineralization averaged approximately 270 ppm over the 47 samples taken intermittently throughout the hole with highs of 1900 ppm, 1400 ppm, 1150 ppm and 860 ppm at various intervals. Anomalous gold was noted in samples from the last 29 meters of the hole.

SUMMARY AND CONCLUSIONS

The CJ Property is located in a prime porphyry copper-gold environment, lying just 10 kilometers southeast of Placer Dome's Mt. Milligan deposit. Previous work has defined several geophysical and geochemical anomalies on the property, including an AGRS survey potassium high and potassium/thorium ratio low, a large area of anomalous copper in soil results and significant copper and gold results from diamond drilling.

Work carried out on the property in 1996 focused on property-scale target definition by soit sampling and an IP survey. The IP survey identified several zones of high chargeability related to strong copper soil anomalies. Phase II diamond drilling tested two of these anomalies, returning significant copper and minor gold mineralization. The mineralization was hosted by mafic volcanics, diorite and gabbro with moderate carbonate-quartz-chlorite alteration. Potassic alteration is presumed to subtly overprint the entire package of rocks based on field observations and geophysical data.

The project remains a highly prospective target area with great potential for hosting a resource of copper and gold. A large area of copper mineralized soil remains untested at depth, and several IP chargeability anomalies require soil sampling and diamond drilling.

It is recommended that a phase-I program include a minimum 600 soil samples and 20 line kilometers of cut lines and IP survey work to clearly define the best drill targets on the property. The extent of phase-II road building and diamond drilling would depend upon the success of phase-I surface work. A minimum 1000 meter drilling program is recommended to further test the southern part of the large copper anomaly and the broad IP anomaly lying north and east of CJ lake.

BIBLIOGRAPHY

DUSO, G.; Property examination report on the CJ claims, Omineca/Cariboo mining divisions, BC. Internal report by Hudson Bay Exploration & Development Co. Ltd. for Pacific Mariner Explorations Ltd., 1995.

LERICHE, P.D.; Geological-geochemical-geophysical report on the Gold Power Property, Omineca mining division, BC; BC assessment report # 22011, 1991.

NELSON, J., BELLEFONTAINE, K., GREEN, K. and MACLEAN, M.; Regional geological mapping near the Mount Milligan copper-gold deposit, B.C. Ministry of Energy Mines and Petroleum Resources, Geological Fieldwork 1990, Paper 1991-1, pages 89-110.

PLOUFFE, A., BALLANTYNE, S.B.; Regional till geochemistry, Manson River and Fort Fraser area, British Columbia (93K, 93N), silt plus clay and clay size fractions; Geological Survey of Canada, Open File 2593, 1993.

ST. PIERRE, M. and CARTWRIGHT, P. A.; Pacific Geophysical Ltd. Report on the induced polarization and resistivity survey and magnetic survey on the rainbow project, Omineca mining division, BC; report for Teck Exploration Ltd., 1991.

SHIVES, R.B.K., BALLANTYNE, S.B. and HARRIS, D.C.; Gamma ray spectrometry: Applications to the search for ore; part of promotional display of Geological Survey of Canada Open File 2535 - Airbome Geophysical Survey of the Mount Milligan Area, British Columbia, Sept. 1991, NTS 93 O/4W, 93 N/1 and 93 N/2E

SOUTHAM, P.; Geochemical report on the RPF and Christina Jean claims, Omineca mining êivision, BC; BC assessment report #23453; 1994.

SOUTHAM, P.; Diamond drilling report on the RPF and Christina Jean claims, Omineca mining division, BC; BC assessment report #23970, 1995.

SOUTHAM, P.; Geochemical report on the CJ property, Omineca mining division, BC; BC assessment report #24096, 1995.

SOUTHAM, P.; Geochemical and line cutting report on the CJ property, Omineca mining division, BC; BC assessment report, Dec. 1996.

APPENDIX I

STATEMENT OF EXPENDITURES

CJ PROPERTY - EXPENDITURES

SALARIES

Phil Southam - 25 manday @ \$180/day	4500
Report preparation - P. Southam - 3 manday @ \$180/day	540
GEOCHEMICAL ANALYSIS	
128 rock samples @ \$21.70/sample	2778
DIAMOND DRILLING	
442 m @ \$60.60/m drilling costs Mobilization/Demobilization	26785 2142
LOGISTICAL COSTS	
Food and lodging Supplies Vehicle fuel and maintenance Truck rental	963 703 626 1966
SUBTOTAL	41003
Administration Fee (15%) GST on administration (#126616507)	6150 430
TOTAL	\$ 47583

APPENDIX II

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

- I, Philip James Southam of 1603 McChessney Street, Port Coquitlam, British Columbia, do hereby certify:
 - 1. I am a geologist registered with the Association of Professional Engineers and Geoscientists of British Columbia.
 - 2. I graduated from Brandon University in 1987 with a Bachelor of Science degree majoring in geology.
 - 3. I have practised my profession continuously since graduation in British Columbia, Manitoba, Yukon Territory and California in the field of mineral exploration.
 - 4. I am employed by Hastings Management Corp. to provide geological services for Abitibi Mining Corp.

5. All work completed for the purpose of this report was done under my supervision.

Philip Southan

APPENDIX III

DRILL LOGS AND SAMPLE DATA

AT IBI MINING CORP.
PROJECT: Rainbow - CJ1 claim

HOLE #:CJ96-4

DRILLING CO.: Lone Ranger Diamond Drilling

GEOLOGIST: P. Southam

NORTHING: 7+25S

DATE:Sept. 26-28/96

EASTING: 2+44E

PAGE: 1 of 2

BEARING:100° DIP:-50° DEPTH:125.9 m

FROM (M)	TO (M)	DESCRIPTION	MIN'N
0	2.1	OVERBURDEN	
2.1	16.51	MAFIC VOLCANIC Dark green with augite phenocrysts; minor carbonate (cbt) veining and weak bleaching. 12.50-12.95 m - Diorite dyke Medium grained, silicious, grey plagioclase±quartz; chloritic alteration of mafics, strongly bleached (light lime green color)	No Visible Sulphides (NVS) tr py
	1	16.10-16.51 m Carbonate veining with up to 10% disseminated pyrite (py) and trace chalcopyrite (cpy) along foliation planes adjacent to the dyke. Foliation @ 50° TCA (To Core Axis)	10% py, tr cpy
16.51	23.83	DIORITE Dark grey, medium grained, mottled texture, weak bleaching.	tr py, cpy
23.83	58.38	FOLIATED MAFIC VOLCANIC Foliation adjacent to diorite @ 38° TCA, away from the dyke @ 62° TCA. Cbt veining along foliation and crosscutting foliation. Py stringers in cbt veining.	tr-1% py, tr cpy
		Foliation @ 55° TCA @ 26.00 m	
		10 cm silicification @ 26.30 m	
		20 cm silicification with trace cpy @ 27.00 m	
		4 cm quartz vein @ 30.93 m	
		10 cm grey gouge zone @ 34.40 m. Contact @ ≈25° TCA	

HOLE # CJ96-4

FROM (M)	TO (M)	DESCRIPTION	MIN'N
		41.05-41.42 m White/light grey quartz vein with large clots of py-po (pyrrhotite) and greenish black clots of chlorite. The upper vein contact is @ 50° TCA	tr py, po
		8 to 15 cm quartz veins @ 41.72, 42.12, 42.20 and 43.70 m	tr galena (ga), py
		48.45-54.42 m Rubble and gouge fault zone	
		15 cm quartz vein with coarse py clots @ 51.51 m	tr py
58.38	125.91	GABBRO . Dark grey, medium grained, massive to weakly foliated rock with gradational contact from mafic volcanic; minor cbt veinlets and up to 2% disseminated py around contact with volcanic.	tr-2% py
		Trace cpy in split core @ 72.50 m	tr-1% py, tr cpy locally
		79.66-84.85 m Significant traces of cpy (up to 1%) in foliated gabbro.	
	i L	Coarse clots of cpy with chlorite in quartz vein @ 84.70 m	
		38 cm quartz vein with chlorite clots and minor py @ 85.00 m	
		40 cm quartz vein @ 87.07 m with 3 cm stringer zone of py and cpy @ 87.27 m	
		Soft, dark grey gouge from 103.42-104.00 m	
		20 cm fault zone @ 118.70 m	

SAMPLE RESULTS

Drill Hole CJ96-4

	Depth (meters)	Interval	Gold	Copper
Sample No.	From	To	(meters)	(ppb)	(ppm)
CJ-001	12.50	12.95	0.45	30	450
CJ-002	15.90	17.40	1.5	150	1400
CJ-003	17.40	18.90	1.5	90	580
CJ-004	20.40	22.40	2.0	165	1450
CJ-005	22.40	24.40	2.0	570	630
CJ-006	24.40	26.40	2.0	60	520
CJ-007	26.40	28.40	2.0	25	530
CJ-008	28.40	30.40	2.0	70	900
CJ-009	30.40	32.40	2.0	150	540
CJ-010	32.40	34.40	2.0	100	280
CJ-011	34.40	36.40	2.0	60	760
CJ-012	36.40	38.40	2.0	65	1050
CJ-013	38.40	40.40	2.0	25	125
CJ-014	40.40	42.40	2.0	160	166
CJ-015	42.40	44.40	2.0	55	76
CJ-016	44.40	46.40	2.0	10	78
CJ-017	46.40	48.40	2.0	15	94
CJ-018	53.00	55.00	2.0	5	141
CJ-019	57.00	59.00	2.0	<5	210
CJ-020	61.00	63.00	2.0	<5	205
CJ-021	66.00	68.00	2.0	15	550
CJ-022	71.00	73.00	2.0	55	425
CJ-023	76.00	78.00	2.0	10	510
CJ-024	78.00	79.50	1.5	15	340
CJ-025	79.50	81.50	2.0	270	2000
CJ-026	81.50	83.50	2.0	25	830
CJ-027	83,50	85.00	1.5	40	1800
CJ-028	85.00	87.00	2.0	<5	280
CJ-029	87.00	89.00	2.0	<5	420
CJ-030	89.00	91.00	2.0	320	1150
CJ-031	91.00	93.00	2.0	<5	270
CJ-032	93.00	95.00	2.0	<5	235
CJ-033	95.00	97.00	2.0	585	235
CJ-034	97.00	99.00	2.0	25	880
CJ-035	101.00	103.00	2.0	10	415
50 000	101,00	100.00	2.0	10	713

SAMPLE RESULTS (Cont'd)

Drill Hole CJ96-4

	Depth (meters)		Interval	Gold	Copper
Sample No.	From	<u>To</u>	(meters)	(ppb)	(ppm)
CJ-036	105.00	107.00	2.0	<5	170
CJ-037	107.00	109.00	2.0	15	670
CJ-038	109.00	111.00	2.0	<5	790
CJ-039	113.00	115.00	2.0	<5	275
CJ-040	115.00	117.00	2.0	<5	290
CJ-041	117.00	118.50	1.5	230	210

ABITIBI MINING CORP.

PROJECT: Rainbow - CJ1 claim

HOLE #:CJ96-5

PAGE: 1 of 1 DATE:Sept. 29-Oct. 3/96

DRILLING CO.:Lone Ranger Diamond Drilling NORTHING:6+75S EASTING:2+44E

GEOLOGIST: P. Southam

BEARING: 090° DIP: -50° DEPTH: 138.72 m

FROM (M)	TO (M)	DESCRIPTION	MIN'N
0	12.20	OVERBURDEN	
12.20	138.72	MAFIC VOLCANIC Dark green, massive to foliated, grades from very fine grained volcanic to medium grained gabbro. Local zones of carbonate (cbt) veining and alteration and epidote alteration. Generally a trace to 3% pyrite (py) and local traces of chalcopyrite.	tr-3% py, tr cpy
		48.00-52.00 m Py stringers 4-5 mm wide	
177		20 cm silicified zone with 1% py mineralization associated with gabbroic zonation @ 55.29 m	
		1 m zone same as above @ 57.56 m	
		Gradual transition from gabbro to foliated mafic volcanic @ 67.00 m. Foliation @ 65° To Core Axis (TCA)	tr-1% py
		1.8 m rubble/gouge fault zone @ 80.85 m	
		1.0 m grey gouge zone @ 87.60 m	
		22 cm quartz vein with py and cpy clots @ 90.95 m	
		3 to 15 cm quartz veins with cpy @ 95.00 m	tr-3% py
		114.00-118.50 m Local quartz veining and silicification, trace pyrrhotite.	tr-3% py, tr po

SAMPLE RESULTS

Drill Hole CJ96-5

	Depth (r	neters)	Interval	Gold	Copper
Sample No.	From	To	(meters)	<u>(ppb)</u>	<u>(ppm)</u>
CJ-089A	12.20	14.00	1.8	<5	170
CJ-089	14.00	16.00	2.0	30	630
CJ-090	16.00	18.00	2.0	<5	429
CJ-091	18.00	20.00	2.0	<5	99
CJ-092	20.00	22.00	2.0	<5	277
CJ-093	25.00	27.00	2.0	<5	444
CJ-094	30.00	32.00	2.0	<5	189
CJ-095	35.00	37.00	2.0	<5	178
CJ-096	40.00	42.00	2.0	<5	195
CJ-097	45.00	47.00	2.0	<5	158
CJ-098	47.00	49.00	2.0	150	421
CJ-099	49.00	51.00	2.0	360	538
CJ-100	51.00	53.00	2.0	15	360
CJ-101	53.00	55,00	2.0	30	234
CJ-102	55.00	57.00	2.0	45	281
CJ-103	57.00	59.00	2.0	105	93
CJ-104	59.00	61.00	2.0	<5	32
CJ-105	61.00	63.00	2.0	<5	161
CJ-106	63.00	65.00	2.0	<5	146
CJ-107	65.00	67.00	2.0	<5	44
CJ-108	67.00	69.00	2.0	<5	79
CJ-109	72.00	74.00	2.0	<5	202
CJ-110	77.00	79.00	2.0	30	796
CJ-111	82.00	84.00	2.0	495	163
CJ-112	84.00	86.00	2.0	330	118
CJ-113	86,00	88.00	2.0	300	211
CJ-114	88.00	90.00	2.0	15	355
CJ-115	90.00	92.00	2.0	7100	2100
CJ-116	92.00	94.00	2.0	30	412
CJ-117	94.00	96.00	2.0	30	272
CJ-118	99.00	101.00	2.0	60	558
CJ-119	104.00	106.00	2.0	30	179
CJ-120	109.00	111.00	2.0	<5	122
C J -121	111.00	113.00	2.0	30	441
CJ-122	113.00	115.00	2.0	<5	76

SAMPLE RESULTS (Cont'd)

Drill Hole CJ96-5

	Depth (meters)	Interval	Gold	Copper
Sample No.	From To	(meters)	(ppb)	(ppm)
CJ-123	115.00 117.00	2.0	<5	198
CJ-124	119.00 121.00	2.0	<5	139
CJ-125	124.00 126.00	2.0	<5	326
CJ-126	129.00 131.00	2.0	<5	904
CJ-127	136.00 138.00	2.0	75	178

ABITIBI MINING CORP.

PROJECT: Rainbow - CJ1 claim

HOLE #:CJ96-6

PAGE:1 of 1 DATE:Oct. 4-7/96

DRILLING CO.:Lone Ranger Diamond Drilling NORTHING: 4+70S EASTING: 13+00E

GEOLOGIST: P. Southam

BEARING: 220° DIP: -50° DEPTH: 177.74 m

FROM (M)	TO (M)	DESCRIPTION	MIN'N
0	18.29	OVERBURDEN	
18.29	177.74	FOLIATED MAFIC VOLCANIC Dark green with white wispy carbonate (cbt) veinlets along the foliation; foliation @ 10° to 40° To Core Axis (TCA). Disseminated pyrite (py) throughout volcanic, local quartz ± cbt veins occassionally with coarse clots of chalcopyrite (cpy).	1-3% py, local cpy
		20 cm quartz/cbt vein with cpy clot @ 20.33 m	
		1 m quartz vein with sparse cpy clots @ 49.40 m	
		68.47-69.53 m Light grey cbt alteration with 1-3% medium grained py	tr cpy
		69.53-75.30 m Quartz ± cbt veining; quartz is light pink, very coarse and chunky and devoid of sulphides except for a clot of cpy @ 74.25 m.	tr cpy
		1 m cbt ± quartz vein with tr py @ 80.18 m; wallrock around vein moderately bleached.	
		Foliation angle changes from ≈40° TCA to ≈10° TCA @ 141.80 m	tr-1% mag,
		Magnetite (mag) in core from ≈173.00 m to end of hole.	1% py, tr cpy

SAMPLE RESULTS

Drill Hole CJ96-6

	Depth (meters)		Interval	Gold	Copper
Sample No.	From To		(meters)	<u>(ppb)</u>	<u>(ppm)</u>
CJ-042	18.29	20.00	1.71	20	104
CJ-043	20.00	22.00	2.0	15	500
CJ-044	22.00	24.00	2.0	25	195
CJ-045	24.00	26.00	2.0	20	300
CJ-046	29.00	31.00	2.0	10	139
CJ-047	34.00	36.00	2.0	10	177
CJ-048	39.00	41.00	2.0	15	290
CJ-049	44.00	46.00	2.0	<5	128
CJ-050	49.00	51.00	2.0	35	1150
CJ-051	54.00	56.00	2.0	<5	156
CJ-052	59.00	61,00	2.0	<5	187
CJ-053	64.00	66.00	2.0	<5	230
CJ-054	67.00	69.00	2.0	<5	127
CJ-055	69.00	71.00	2.0	10	117
CJ-056	71.00	73.00	2.0	10	375
C3 030	71.00	75.00	20	10	313
CJ-057	73.00	75.00	2.0	<5	860
CJ-058	75.00	77.00	2.0	<5	111
CJ-059	77.00	79.00	2.0	<5	33
CJ-060	79.00	81.00	2.0	<5	124
CJ-061	81.00	83.00	2.0	<5	65
CJ-062	83.00	85.00	2.0	15	55
CJ-063	85.00	87.00	2.0	15	136
CJ-064	89.00	91.00	2.0	15	22
CJ- 065	94.00	96.00	2.0	<5	205
CJ-066	99.00	101.00	2.0	<5	138
CJ-067	104.00	106.00	2.0	<5	165
CJ-068	104.00	111.00	2.0	<5 <5	250
CJ-069	115.00	117.00	2.0	<5	220
CJ-070	119.00	121.00	2.0	<5	116
CJ-071	124.00	126.00		<5	
CJ-071	124.00	126,00	2.0	<>>	270
CJ-072	130.00	132.00	2.0	<5	89
CJ-073	132.00	134.00	2.0	15	110
CJ-074	136.00	138.00	2.0	10	250
CJ-075	138.00	140.00	2.0	10	380
CJ-076	145.00	147.00	2.0	<5	235

SAMPLE RESULTS (Cont"d)

Drill Hole CJ96-6

	Depth (meters)	Interval	Gold	Copper
Sample No.	From	<u>To</u>	(meters)	<u>(ppb)</u>	(ppm)
CJ-077	149.00	151.00	2.0	40	182
CJ-078	154.00	156.00	2.0	25	285
CJ-079	158.00	160.00	2.0	120	1400
CJ-080	160.00	162.00	2.0	135	1900
CJ-081	162.00	164.00	2.0	45	280
CJ-082	164.00	166.00	2.0	25	146
CJ-083	166.00	168.00	2.0	60	225
CJ-084	168.00	170.00	2.0	45	140
CJ-085	170.00	172.00	2.0	50	30
CJ-086	172.00	174.00	2.0	15	106
CJ-087	174.00	176.00	2.0	35	225
CJ-088	176.00	177.74	1.74	15	96

ABITIBI MINING CORP.

PROJECT: Rainbow - Lac 1 claim

HOLE #:LC96-1

PAGE:1 of 1 DATE: Oct. 8-10/96

DRILLING CO.:Lone Ranger Diamond Drilling NORTHING:2+00S EASTING:0+50W

GEOLOGIST: P. Southam

BEARING: 090°

DIP:-50° DEPTH:124.70 m

FROM (M)	TO (M)	DESCRIPTION	MIN'N
0	13.41	OVERBURDEN	
0 13.41	13.41	OVERBURDEN MUDSTONE Brownish grey, very fine grained, locally intermixed with sandstone; massive, poorly bedded and strongly fractured, locally brecciated. Quartz/carbonate (cbt) veining and trace to 5% disseminated and stringer pyrite (py) throughout.	tr-5% py
			!

APPENDIX IV

ASSAY RESULTS

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

INVOICE NUMBER

I9637008

BILLING	INFORMATION	
Date:	29-OCT-96	
Project: P.O. No.:	RAINBOW	
Account:	JCL	

Comments: ATTN:VERONICA MA.

Billing: For analysis performed on

Certificate A9637008

Terms: Payment due on receipt of invoice

1.25% per month (15% per annum) charged on overdue accounts

Please Remit Payments to:

CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1

	w Park		
		è	
W.			

# OF SAMPLES	ANALYSED FOR CODE - DESCRIPTION	UNIT PRICE	SAMPLE PRICE	AMOUNT
41	205 - Geochem ring to approx 150 mesh 294 - 4-7 Kg crush and split 3202 - Rock - save entire reject 983 - Au ppb FA+AA 2 - Cu ppm 238 - Nitric-aqua-regia digestion	2.50 3.50 0.50 9.75 1.25 2.00	19.50	799.50
	` '	Tota 100938885)	Cost \$ GST \$	799.50 55.97 855.47

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

A9637008

Comments: ATTN:PHILIP SOUTHAM

CERTIFICATE

A9637008

(JCL) - HASTINGS MANAGEMENT CORP.

Project: P.O. #: RAINBOW

F.O. # .

Samples submitted to our lab in Vancouver, BC. This report was printed on 28-OCT-96.

	SAMPLE PREPARATION							
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION						
205 294 3202 238	41 41 41 41	Geochem ring to approx 150 mesh 4-7 Kg crush and split Rock - save entire reject Nitric-aqua-regia digestion						

ANALYTICAL PROCEDURES									
CHEMEX CODE	NUMBER SAMPLES		DES	CRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT		
983 2	41 41	Au ppb: Cu ppm:	Fuse 30 g HNO3-aqua	sample regia digest	FA-AAS AAS	5 1	10000		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

HASTINGS MANAGEMENT CORP.

CERTIFICATE OF ANALYSIS

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

Project: RAINBOW

Comments: ATTN:PHILIP SOUTHAM

Page N :1 Total Pages :2 Certificate Date: 28-0

Account

A9637008

Certificate Date: 28-OCT-96 Invoice No. : 19637008 P.O. Number :

JCL

				 <u> </u>	 	 	
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm				
CJ-001 CJ-002 CJ-003 CJ-004 CJ-005	205 294 205 294 205 294 205 294 205 294	30 150 90 165 570	450 1400 580 1450 630				
CJ-006 CJ-007 CJ-008 CJ-009 CJ-010	205 294 205 294 205 294 205 294 205 294	60 25 70 150 100	520 530 900 540 280				
CJ-011 CJ-012 CJ-013 CJ-014 CJ-015	205 294 205 294 205 294 205 294 205 294	60 65 25 160 55	760 1050 125 166 76				
CJ-016 CJ-017 CJ-018 CJ-019 CJ-020	205 294 205 294 205 294 205 294 205 294	10 15 5 < 5 < 5	78 94 141 210 205				
CJ-021 CJ-022 CJ-023 CJ-024 CJ-025	205 294 205 294 205 294 205 294 205 294	15 55 10 15 270	550 425 510 340 2000	,			
CJ-026 CJ-027 CJ-028 CJ-029 CJ-030	205 294 205 294 205 294 205 294 205 294	25 40 < 5 < 5 320	830 1800 280 420 1150				
CJ-031 CJ-032 CJ-033 CJ-034 CJ-035	205 294 205 294 205 294 205 294 205 294	< 5 < 5 585 25 10	270 235 235 880 415				
CJ-036 CJ-037 CJ-038 CJ-039 CJ-040	205 294 205 294 205 294 205 294 205 294	<pre></pre>	170 670 790 275 290			, u especia	ستجور مع

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

: HASTINGS MANAGEMENT CORP.

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

Project: RAINBOW Comments: ATTN:PHILIP SOUTHAM

Page N 'r :2 Total Pa :2 Certificate Date: 28-OCT-96 Invoice No. : 19637008 P.O. Number :

P.O. Number : Account :JCL

			CERT					A96	A9637008		
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm								
CJ-041	205 294	230	210								
										i	
				;							
			1						J	!	

CERTIFICATION:	tritBeller	_

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

: HASTINGS MANAGEMENT CORP.

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

INVOICE NUMBER

I9637576

BILLING INFORMATION

Date: Project: 31-OCT-96 **RAINBOW**

P.O. No.:

Account: JCL

Comments: ATTN:VERONICA MA.

Billing:

For analysis performed on

Certificate A9637576

Terms:

Payment due on receipt of invoice


1.25% per month (15% per annum)

charged on overdue accounts

Please Remit Payments to:

CHEMEX LABS LTD.

212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1

# OF SAMPLES	ANALYSED FOR CODE - DESCRIPTION	UNIT PRICE	SAMPLE PRICE	AMOUNT
47	205 - Geochem ring to approx 150 mesh 294 - 4-7 Kg crush and split 3202 - Rock - save entire reject 983 - Au ppb FA+AA 2 - Cu ppm 238 - Nitric-aqua-regia digestion	2.50 3.50 0.50 9.75 1.25 2.00	19.50	916.50
	, ,	Tota 100938885)	COST \$ (CDN) \$	916.50 64.16 980.66

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

HASTINGS MANAGEMENT CORP.

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

A9637576

Comments: ATTN:PHILIP SOUTHAM

CERTIFICATE

A9637576

(JCL) - HASTINGS MANAGEMENT CORP.

Project: P.O. # :

RAINBOW

samples submitted to our lab in Vancouver, BC. This report was printed on 31-OCT-96.

	SAMPLE PREPARATION										
	NUMBER SAMPLES	DESCRIPTION									
205 294 3202 238	47 47 47 47	Geochem ring to approx 150 mesh 4-7 Kg crush and split Rock - save entire reject Nitric-aqua-regia digestion									

			1A	NALYTICAL I	PROCEDURES	\$	
CHEMEX CODE	NUMBER SAMPLES		DE	SCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
983 2	47 47	Au ppb: Cu ppm:	Fuse 30 g HNO3-aqua	sample regia digest	FA-AAS AAS	5 1	10000 10000

Analytical Chemists * Geochemists * Registered Assayers North Vancouver

212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 1: HASTINGS MANAGEMENT CORP.

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

Project: RAINBOW Comments: ATTN:PHILIP SOUTHAM Page N Total Pa Certificate Date: 31-OCT-96 Invoice No. : 19637576 P.O. Number : Account :JCL

CERTIFICATE OF ANALYSIS A9637576

						<u> </u>	71E OI 7	MALISIS		337370	
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm								
CJ 042 CJ 043 CJ 044 CJ 045 CJ 046	205 294 205 294 205 294 205 294 205 294	20 15 25 20 10	104 500 195 300 139				-				
CJ 047 CJ 048 CJ 049 CJ 050 CJ 051	205 294 205 294 205 294 205 294 205 294	10 15 < 5 35 < 5	177 290 128 1150 156								
CJ 052 CJ 053 CJ 054 CJ 055 CJ 056	205 294 205 294 205 294 205 294 205 294	<pre></pre>	187 230 127 117 375								
CJ 057 CJ 058 CJ 059 CJ 060 CJ 061	205 294 205 294 205 294 205 294 205 294	* * * * *	860 111 33 124 65		·						
CJ 062 CJ 063 CJ 064 CJ 065 CJ 066	205 294 205 294 205 294 205 294 205 294	15 15 15 4 7 5	55 136 22 205 138			i					
CJ 067 CJ 068 CJ 069 CJ 070 CJ 071	205 294 205 294 205 294 205 294 205 294	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	165 250 220 116 270								
CJ 072 CJ 073 CJ 074 CJ 075 CJ 076	205 294 205 294 205 294 205 294 205 294	10 15 10 10 < 5	89 110 250 380 235								
CJ 077 CJ 078 CJ 079 CJ 080 CJ 081	205 294 205 294 205 294 205 294 205 294 205 294	40 25 120 135 45	182 285 1400 1900 280								
				····					- 1 / 1	3.53	السيحيا

Howardswill CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

HASTINGS MANAGEMENT CORP.

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

CERTIFICATE OF ANALYSIS

Project: RAINBOW
Comments: ATTN:PHILIP SOUTHAM

Page Number : 2 Total Page : 2

Certificate Date: 31-OCT-96 Invoice No. : 19637576 P.O. Number :

P.O. Number : Account : JCL

A9637576

					 71E 01 7	 	
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm				
CJ 082 CJ 083 CJ 084 CJ 085 CJ 086	205 294 205 294 205 294 205 294 205 294	25 60 45 50 15	146 225 140 30 106				
CJ 087 CJ 088	205 294 205 294	35 15	225 96				

	11	13.00-
CERTIFICATION	1: 100	witzichler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

INVOICE NUMBER

I9637708

BILLING I	INFORMATION
Date: Project: P.O. No.:	1-NOV-96 RAINBOW
Account:	JCL
Comments:	ATTN:VERONICA MA
Billing:	For analysis performed on Certificate A9637708
Terms:	Payment due on receipt of invoice 1.25% per month (15% per annum) charged on overdue accounts
Please Rem	nit Payments to:
	CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1

# OF SAMPLES	ANALYSED FOR CODE - DESCRIPTION	UNIT PRICE	SAMPLE PRICE	AMOUNT
71	205 - Geochem ring to approx 150 mesh 294 - 4-7 Kg crush and split 3202 - Rock - save entire reject ICP-32 100 - Au ppb FA+AA	2.50 3.50 0.50 7.00 8.50	22.00	1562.00
-	, ,	Tota: 100938885)		1562.00 109.34 1671.34

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

: HASTINGS MANAGEMENT CORP.

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

A9637708

Comments: ATTN:PHILIP SOUTHAM

CERTIFICATE

A9637708

(JCL) - HASTINGS MANAGEMENT CORP.

Project: P.O. # : RAINBOW

Samples submitted to our lab in Vancouver, BC. This report was printed on 1-NOV-96.

	SAMPLE PREPARATION											
CHEMEX	NUMBER SAMPLES	DESCRIPTION										
205 294 3202 229	71 71 71 71	Geochem ring to approx 150 mesh 4-7 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge										
* NOTE	1:											

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

	ANALYTICAL PROCEDURES												
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT								
100 2119 2120 2121 2122 2123 2124 2125 2127 2133 2135 2135 2135 2135 2136 2137 2134 2144 2144 2144 2144 2144 2144 2144	71 71 71 71 71 71 71 71 71 71 71 71 71 7	Au ppb: Fuse 10 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Kg ppm: 32 element, soil & rock Kg ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Na ppm: 32 element, soil & rock Pppm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti %: 32 element, soil & rock Ti ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock U ppm: 32 element, soil & rock	FA-AAS ICP-AES	5 0.2 0.01 2 10 0.5 2 0.01 0.5 1 1 0.01 10 0.01 5 1 0.01 10 2 2 1 1 0.01 10 2 2 2 1	10000 100.0 15.00 10000 100.0 10000								

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

>: HASTINGS MANAGEMENT CORP.

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

Project: RAINBOW
Comments: ATTN:PHILIP SOUTHAM

Page N :1-A
Total Pa :2
Certificate Date: 01-NOV-96
Invoice No. : 19637708
P.O. Number :
Account :JCL

CERTIFICATE OF ANALYSIS A9637708

										CE	RTIF	CATE	OF F	INAL	YSIS		49637	708		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Ħg ppm	K %	La ppm	Mg %	Mn ppm
CJ-089A CJ-089 CJ-090 CJ-091 CJ-092	205 294 205 294 205 294 205 294 205 294	< 5 30 < 5 < 5 < 5	< 0.2 0.8 0.4 < 0.2 0.2	2.90 2.23 2.29 2.31 2.11	2 10 < 2 < 2 6	70 70 130 200 120	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 2 6	7.06 4.68 3.11 2.95 2.04	< 0.5 0.5 < 0.5 < 0.5 < 0.5	22 24 18 19 23	212 134 139 77 53	170 630 429 99 277	5.39 3.77 3.31 4.36 5.90	10 10 10 10	< 1 < 1 < 1 < 1	0.37 0.14 0.42 0.83 0.77	< 10 < 10 < 10 < 10 < 10	3.07 2.01 2.17 1.91 1.79	1135 755 630 660 575
CJ-093 CJ-094 CJ-095 CJ-096 CJ-097	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.98 2.70 3.09 3.03 2.84	< 2 2 4 6 2	310 420 510 350 330	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 2 2 < 2	1.47 1.76 1.84 2.43 2.58	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 18 20 16 14	21 17 12 35 46	444 189 178 195 158	4.13 4.03 4.82 4.62 4.15	10 10 10 10	< 1 < 1 < 1 < 1 < 1	1.25 1.42 1.54 1.90 2.03	< 10 < 10 < 10 < 10 < 10	1.53 2.11 2.44 2.20 2.06	535 655 715 755 800
CJ-098 CJ-099 CJ-100 CJ-101 CJ-102	205 294 205 294 205 294 205 294 205 294	150 360 15 30 45	0.4 2.2 0.6 0.2 0.6	3.62 3.79 3.19 3.01 1.71	238 2280 32 48 116	330 240 230 210 130	< 0.5 0.5 0.5 < 0.5 < 0.5	< 2	2.42 2.84 3.39 2.97 2.09	< 0.5 1.0 0.5 < 0.5 < 0.5	21 26 15 16 9	40 22 22 21 36	421 538 360 234 281	7.29 8.63 5.97 5.29 3.08	10 10 10 10	< 1 < 1 < 1 < 1 < 1	2.22 1.84 1.51 1.80 1.00	< 10 < 10 < 10 < 10 < 10	2.17 2.10 1.91 1.75 0.86	1165 1130 915 870 600
CJ-103 CJ-104 CJ-105 CJ-106 CJ-107	205 294 205 294 205 294 205 294 205 294	105 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.2 < 0.2 < 0.2	1.05 1.59 2.08 1.85 2.05	4 6 8 8	60 70 80 60 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.54 1.98 2.25 2.22 2.44	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 7 10 9	47 27 28 47 30	93 32 161 146 44	1.80 3.10 4.01 3.14 3.56	< 10 10 10 10 10	< 1 < 1 < 1 < 1 < 1	0.47 0.36 0.73 0.60 0.99	< 10 < 10 < 10 < 10 < 10	0.51 1.03 1.28 1.18 1.31	390 545 680 580 625
CJ-108 CJ-109 CJ-110 CJ-111 CJ-112	205 294 205 294 205 294 205 294 205 294	< 5 < 5 30 495 330	0.2 0.2 0.4 < 0.2 < 0.2	1.94 2.39 1.85 1.13 1.09	6 8 8 12 1610	110 100 80 60 70	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	3.92 1.57 1.80 3.57 2.28	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 14 12 12 12	21 19 20 29 31	79 202 796 163 118	3.77 4.10 3.18 2.79 2.27	10 10 10 < 10 < 10	< 1 < 1 < 1 < 1	0.44 1.17 0.76 0.36 0.34	< 10 < 10 < 10 20 20	1.35 1.49 1.12 0.43 0.38	750 595 465 565 390
CU-113 CU-114 CU-115 CU-116 CU-117	205 294 205 294 205 294 205 294 205 294	300 15 7100 30 30	0.2 0.4 2.8 1.6 0.6	1.50 1.32 1.20 1.22 1.39	12 14 14 14 6	80 130 90 70 70	0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2	2.29 1.79 1.59 1.66 2.55	< 0.5 < 0.5 2.0 < 0.5 < 0.5	10 8 9 9	37 26 50 35 51	211 335 2100 412 272	3.01 2.26 3.11 2.29 2.59	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.45 0.40 0.36 0.36 0.33	20 10 180 20 10	0.46 0.38 0.33 0.37 0.56	425 340 320 335 490
CJ-118 CJ-119 CJ-120 CJ-121 CJ-122	205 294 205 294 205 294 205 294 205 294 205 294	30	0.6 < 0.2 < 0.2 0.4 < 0.2	2.31 1.84 2.06 1.47 1.54	12 8 2 14 2	90 60 120 90 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 9 9 14 5	37 35 29 29 52	558 179 122 441 76	4.46 4.03 3.83 3.09 2.62	10 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	1.11 0.48 1.53 0.77 0.84	10 10 < 10 < 10 < 10	1.38 1.18 1.21 0.74 0.87	605 545 500 375 285
2J-123 2J-124 2J-125 2J-126 2J-127	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 0.6 < 0.2	1.69 1.57 1.41 2.06 2.26	10 6 8 10 < 2	100 70 70 150 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2	1.42 1.45 1.38	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 9 13 15 11	36 40 38 32 32	198 139 326 904 178	3.11 2.92 3.02 3.57 4.48	10 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.96 0.88 0.73 1.35 1.37	< 10 < 10 < 10 < 10 < 10	0.91 0.89 0.89 1.16 1.16	365 305 325 430 535

CERTIFICATION: Structure

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave.. North Vancouver British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

HASTINGS MANAGEMENT CORP.

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

Project: RAINBOW Comments: ATTN:PHILIP SOUTHAM

Page N Total Pa Certificate Date: 01-NOV-96

Invoice No. :19637708 P.O. Number : :JCL Account

										CERTIFICATE OF ANALYSIS					/SIS	A9637708
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	v mqq	W ppm	Zn ppm	
CJ-089A CJ-089 CJ-090 CJ-091 CJ-092	205 294 205 294 205 294 205 294 205 294	1 1 < 1	< 0.01 < 0.01 0.01 < 0.01 < 0.01	35 28 27 17 18	240 980 1170 1400 1920	8 6 4 4 2	4 2 2 2 6	20 10 6 4 5	290 246 165 156 126	0.21 0.19 0.16 0.19 0.18	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	242 147 114 167 216	< 10 < 10 < 10 < 10 < 10	68 50 48 52 58	
CJ-093 CJ-094 CJ-095 CJ-096 CJ-097	205 294 205 294 205 294 205 294 205 294	1 1 3 1 6	0.01 0.03 0.01 0.01 0.01	10 9 10 9	1920 2000 2140 1490 1100	< 2 2 4 2 4	2 4 2 2 4	4 5 6 6	157 181 151 198 136	0.18 0.19 0.19 0.20 0.16	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	174 153 180 141 84	< 10 < 10 < 10 < 10 < 10	54 54 44 46 42	
CJ-098 CJ-099 CJ-100 CJ-101 CJ-102	205 294 205 294 205 294 205 294 205 294	4 5	< 0.01 < 0.01 < 0.01 < 0.01 0.02	8 8 7 6 4	1140 1410 1550 1480 770	52 338 8 18 58	6 8 4 4 2	5 6 7 6 3	91 125 156 199 93	0.16 0.15 0.12 0.16 0.08	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	87 105 101 96 39	< 10 < 10 < 10 < 10 < 10	208 242 154 134 90	
CJ-103 CJ-104 CJ-105 CJ-106 CJ-107	205 294 205 294 205 294 205 294 205 294	1 5 5 1 2	0.03 0.02 0.01 0.03 0.02	4 3 4 5 5	440 710 1030 920 1020	16 4 10 2 6	< 2 2 4 2 2	1 4 4 4	97 138 154 184 146	0.05 0.03 0.11 0.10 0.08	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	27 54 72 73 67	< 10 < 10 < 10 < 10 < 10	32 50 64 56 52	
CJ-108 CJ-109 CJ-110 CJ-111 CJ-112	205 294 205 294 205 294 205 294 205 294	5 11 5 9 16	0.01 0.01 0.02 0.01 0.01	5 3 1 1	1240 1390 1240 560 590	6 2 4 4 2	2 2 < 2 < 2 2	3 4 3 < 1 < 1		0.02 0.14 0.11 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	68 77 54 16 14	< 10 < 10 < 10 < 10 < 10	56 38 40 24 20	
CJ-113 CJ-114 CJ-115 CJ-116 CJ-117	205 294 205 294 205 294 205 294 205 294		0.01 < 0.01 < 0.01 0.01 0.01	2 1 2 1 3	640 540 460 490 640	2 2 2 4 4	2 < 2 < 2 < 2 < 2	1 1 < 1 1 1	265 < 168 < 182 <	0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	16 14 12 15	< 10 < 10 < 10 < 10 < 10	30 30 82 30 32	
CJ-118 CJ-119 CJ-120 CJ-121 CJ-122	205 294 205 294 205 294 205 294 205 294	11 40 34 12 4	0.02 0.02 0.02 0.01 0.03	7 5 5 5 4	1050 910 950 820 670	< 2 2 2 6 2	2 2 2 2 2	4 4 5 1 3	149 152 167 173 102	0.10 0.04 0.13 0.05 0.07	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	76 65 62 32 43	< 10 < 10 < 10 < 10 < 10	44 36 34 32 24	
CJ-123 CJ-124 CJ-125 CJ-126 CJ-127	205 294 205 294 205 294 205 294 205 294	18 5 1 23 32	0.03 0.03 0.03 0.02 0.02	5 5 5 4 5	830 810 760 1190 1010	2 2 2 4 2 2	< 2 2 2 2 2 2	3 3 3 2 2	100 99 89 102 108	0.08 0.11 0.09 0.14 0.15	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	42 48 50 49 57	< 10 < 10 < 10 < 10 < 10	28 26 32 48 42	

CERTIFICATION: 1000