RECEIVED

May $/ 21997$
Gold Commissioner's Office VANCOUVER, B.C.

DIAMOND DRILLING REPORT ON THE
 CJ PROPERTY

OMINECA MINING DIVISION, BC

NTS 93 O/4

Latitude: $55^{\circ} 03^{\prime} \mathrm{N}$
Longitude: $123^{\circ} 50^{\prime} \mathrm{W}$

OWNER/OPERATOR:
Abitibi Mining Corp.
\#1000-675 West Hastings Street
Vancouver, BC V6B 1N2

BY:
P. SOUTHAM, P. Geo. (B.C.)

May, 1997

LOCATION AND ACCESS 1
TOPOGRAPHY AND VEGETATION 1
PROPERTY STATUS 1
HISTORY 1
REGIONAL GEOLOGY 5
PROPERTY GEOLOGY 5
WORK PROGRAM 8
DIAMOND DRILLING RESULTS 8
SUMMARY AND CONCLUSIONS 9
LIST OF TABLES
Table 1 - Claims List 4
Table 2 - Drill Hole Locations 8

LIST OF FIGURES

Figure 1 - Location Map 2
Figure 2 - Claim Map 3
Figure 3 - Regional Geology 6
Figure 4 - Drill Hole Location Map 7
APPENDICES
AppendixI-STATEMENT OF EXPENDITURES
Appendix II - STATEMENT OF QUALIFICATIONS
Appendix III - DRILL LOGS AND SAMPLE DATA
Appendix IV - ASSAY RESULTS

LOCATION AND ACCESS

The property is located approximately 140 kilometers northwest of Prince George (figure 1) and 55 kilometers west of Windy Point, BC on the Finlay Philip Forest Service Road. The Christina Jean claim is centered on $55^{\circ} 03^{\prime}$ north latitude and $123^{\circ} 54^{\prime}$ west longitude on NTS sheet $93 \mathrm{O} / 4$. It is accessible by logging roads from spring to fall or by helicopter from Mackenzie.

TOPOGRAPHY AND VEGETATION

The topography of the area is rolling hills ranging in elevation from 980 meters (2990 ft.) above sea level (ASL) to 1250 meters (3800 ft .) ASL covered with economic stands spruce and fir and also poplar trees. The area is covered with a moderate to thick blanket of glacial till often greater than 30 meters. Outcrop exposure is limited to less than 1% with the best exposures found along road cuts and at higher elevations.

PROPERTY STATUS

The property (figure 2) consists of 6 four-post and 28 two-post mineral claims listed in Table 1.

HISTORY

The property is located 10 kilometers southeast of Placer Dome's Mt. Milligan copper/gold porphyry deposit. The southem part of the property was explored BGM Diversified Energy Inc. in 1991 (Leriche, 1991) following the exploration boom in the area associated with Mt. Milligan's discovery. An airborne magnetics and VLF survey was flown which highlighted two large east-west magnetic highs flanked by a high contrast magnetic low. Coincident with the magnetic highs are three significant copper anomalies. Although a followup program was recommended, no further work was done and the claims were allowed to lapse.

In 1991 the Geological Survey of Canada (GSC) conducted a high resolution airborne gamma ray spectrometric (AGRS) survey (Shives, R.B.K., Ballantyne, S.B. and Harris D.C., 1991) over the Mt. Milligan area. This survey delineated potassic halo "bulls-eyes" over the Mt. Milligan, Taylor, Wit, Chuchi and other known deposits and identified several new targets, one of which lies under the property (figure 3) known as the "K6" anomaly.

The property was restaked by Dave Forshaw, a local prospector, and optioned to Pacific Mariner Exploration Ltd., later renamed Abitibi Mining Corp., in February 1994. Soil sampling was completed over the heart of the potassic halo in the spring of 1994. Additional ground was staked to cover the southem part of the potassic anomaly which included the BGM copper soil anomaly. Three diamond drill holes were completed in August of 1994 to test the core of the potassic anomaly at depth. The drilling retumed low but significant values of copper and gold. Minor soil sampling was completed in 1995 for assessment work.

Table 1-Claims List

CLAIM NAME	RECORD No.	UNITS	EXPIRY DATE*	OWNER
CJ19	344196	1	March 10/2000	ABB
CJ20	344197	1	March 10/2000	ABB
CJ21	344198	1	March 10/2000	ABB
CJ22	344199	1	March 10/2000	ABB
CJ23	344200	1	March 10/2000	ABB
CJ24	344201	1	March 10/2000	ABB
CJ25	344202	1	March 10/2000	ABB
CJ26	344203	1	March 10/2000	ABB
CJ27	344204	1	March 10/2000	ABB
CJ28	344205	1	March 10/2000	ABB
CJ 1	330010	16	Aug 19/2000	ABB
CJ 2	330011	1	Aug 18/2000	ABB
CJ 3	330012	1	Aug 18/2000	ABB
CJ 4	330149	1	Aug 22/2000	ABB
CJ 5	330150	1	Aug 24/2000	ABB
CJ 6	350890	1	Sept 26/2000	ABB
CJ 789	350704	8	Sept 21/1999	ABB
B.J1	340089	1	Sept 21/1999	ABB
BJ2	340090	1	Sept 21/1999	ABB
BJ3	340091	1	Sept 21/1999	ABB
BJ4	340092	1	Sept 21/1999	ABB
BJ5	340093	1	Sept 21/1999	ABB
B. 6	340094	1	Sept 21/1999	ABB
Christina Jean	321202	12	Sept 29/1999	ABB
Ken 1	350705	12	Sept 22/1997	ABB
CJ 10	332154	20	Oct. 28/1999	ABB
CJ 11	350891	12	Sept 26/1999	ABB
CJ 12	332143	1	Oct. 27/1999	ABB
CJ 13	332144	1	Oct. 28/1999	ABB
CJ 14	332145	1	Oct. 28/1999	ABB
CJ 15	332146	1	Oct. 28/1999	ABB
C. 16	332147	1	Oct. 28/1999	ABB
CJ 17	332148	1	Oct. 28/1999	ABB
CJ 18	332149	1	Oct. 28/1999	ABB

*With acceptance of this report. ABB - Abitibi Mining Corp.

REGIONAL GEOLOGY

The following has been culled from the capsule geology on Minfile number 093N 194 of the Mount Milligan deposit:

The claims lie within the Quesnel Belt (figure 3) composed of Upper Triassic Takla Group andesitic to basaltic massive volcanic flows, sills and volcaniclastic rocks that have been metamorphosed to greenschist facies and intruded by intermediate to mafic subvolcanic and plutonic rocks. Lithologies within the Takla Group include augite and plagioclase porphyritic flows and tuffs and their subvolcanic equivalents, massive non-porphyritic flows and crystal lapilli tuffs. The intrusive suite includes a complex mix of syenite, monzonite, diorite/monzodiorite and gabbro/monzogabbro from the Late Triassic - Early Jurassic and Late Cretaceous granite.

The Mount Milligan deposit is underiain by coarse-grained labradorite diorite and biotitebearing monzodiorite in the north, a central segment of quartz porphyritic and megacrystic feldspar porphyritic phases, and a southem segment of biotite quartz diorite. The pluton is complicated by several complex sheeted and pegmatitic dyke phases and xenoliths and rafts of biotite homfels wallrock.

The dominant structural trend is north-northwest with most rock units subvertically oriented, probably due to block faulting and rotation. Faults and shear zones are mainly oriented northeast and northwest.

PROPERTY GEOLOGY

Prospecting on the Christina Jean claim in 1994 identified float of propylitically altered augite porphyritic volcanics of the Takla Group and potassically altered diorite. The source of the alteration appears to be related to an intrusion of diorite which forms a prominent ridge south of the core AGRS anomaly. Glaciation, determined by Plouffe and Ballantyne (1993) as generally moving in a northeast direction for the area, may have deposited the float on the surface in the west-central part of the Christina Jean claim. This float is located in the core of the "K6" potassic anomaly identified by the AGRS survey. Recent logging in the core area may be responsible for the strength of the core by producing better exposure of the float. The AGRS survey penetrates no more than one meter below surface (Shives, R.B.K., Ballantyne, S.B. and Haris, D.C., 1991) thus the disturbed soil of the clearcut may have produced a better response than uncleared areas. A halo of weaker potassium-high AGRS response includes the forest-covered diorite ridge.

Diamond drilling in 1994 (Southam, 1994) revealed the nature of the underlying bedrock as propylitically altered mafic volcanic and gabbro and silicified, potassically altered diorite. Disseminated pyrite occurred throughout most of the drill core. Pyrrhotite was often associated with the pyrite in the diorite and gabbro. Chalcopyrite occurred in quartz veins and silicified zones in the diorite and mafic volcanics and as disseminated mineralization through the gabbro. Faults in the lower part of drill hole CJ94-1 appear to be associated with a northeast-trending topographic

depression north of the drill hole collar. Drill results include 6.5 meters of $0.45 \mathrm{~g} / \mathrm{t}$ gold and 4.8 meters of $0.51 \mathrm{~g} / \mathrm{tgold}, 0.08 \%$ copper from hole CJ94-1, 51.7 meters of 0.02% copper from hole CJ94-2 and 10 meters of 0.03% copper from hole CJ94-3. These holes tested a one-kilometer length of the AGRS potassic anomaly on the property.

WORK PROGRAM

In 1996 Abitibi had 20 line kilometers of grid lines cut for an IP survey. The survey returned several moderate to strong chargeability highs in various parts of the property. In addition, 292 soil samples were collected on two separate grids (Southam, 1996). The results from the east grid on the east side of CJ lake identified strong copper mineralization, up to 1210 ppm , northwest of previously identified copper-in-soil mineralization. 80 more samples were collected to determine the extent of the mineralized zone, an anomaly which is 1.3 kilometers long by 300-400 meters wide and trends northeast along the northwest edge of an airborne magnetic high anomaly. The core of this anomaly, a zone averaging above 175 ppm copper-in-soil, is 500 meters by $150-200$ meters.

In the fall of 1996 three diamond drill holes were completed on the property (figure 4). The hole location and depths are tabulated below:

Table 2 - Drill Hole Locations

Hole \#	Northing	Easting	Azimuth	Dip	Depth	Date Completed
CJ96-4	$7+25 \mathrm{~S}$	$2+44 \mathrm{E}$	100°	-50°	125.9 m	Sept. $28 / 96$
CJ96-5	$6+75 \mathrm{~S}$	$2+44 \mathrm{E}$	090°	-50°	138.7 m	Oct. $3 / 96$
CJ96-6	$4+70 \mathrm{~S}$	$13+00 \mathrm{E}$	220°	-50°	177.7 m	Oct. $7 / 96$

(Hole locations measured from the cut-line grid)

DIAMOND DRILLING RESULTS

The 1996 drill program returned several significant intersections of copper mineralization, but no economic intersections. Drill holes CJ96-4 and CJ96-5 tested the newly discovered soil anomaly on the west side of line $4+50$ E where values of up to 1210 ppm copper were obtained. The soil anomaly is associated with a high chargeability $\mathbb{I P}$ response on line $4+50 \mathrm{E}$ between $7+00$ S and $11+00 \mathrm{~S}$. CJ96-6 tested a soil anomaly with values of up to 619 ppm copper around $12+00$ $\mathrm{E}, 5+00 \mathrm{~S}$. The IP response on line $12+00 \mathrm{E}$ has high chargeability between $1+50 \mathrm{~S}$ and $10+00 \mathrm{~S}$.

CJ96-4 retumed the best results of the program including 22.5 meters of 0.072% copper and $0.13 \mathrm{~g} / \mathrm{t}$ gold and 52.5 meters of $.045 \%$ copper which contained a higher grade zone of 23 meters of 0.071% copper and $0.11 \mathrm{~g} / \mathrm{t}$ gold. These grades are hosted in a mix of mafic volcanics, diorite and gabbro and are associated with carbonate and/or quartz veining and alteration with up to 10% pyrite, $<1 \%$ chalcopyrite and minor pyrrhotite.

Fifty meters north of CJ96-4, drillhoie CJ96-5 encountered massive to foliated mafic volcanic rock with similar alteration and sulphide mineralization but less overall copper. Mineralized intervals include 14.8 meters of 0.027% copper, 10 meters of 0.037% copper and $0.12 \mathrm{~g} / \mathrm{t}$ gold and 24 meters of 0.041% copper and $0.70 \mathrm{~g} / \mathrm{t}$ gold.

CJ96-6 drilled 160 meters of strongly foliated mafic volcanic rock with abundant wispy carbonate veinlets, minor quartz veining, 1-3\% pyrite and traces of chalcopyrite. Disseminated magnetite was observed in the last five meters of the hole. Copper mineralization averaged approximately 270 ppm over the 47 samples taken intermittently throughout the hole with highs of $1900 \mathrm{ppm}, 1400 \mathrm{ppm}, 1150 \mathrm{ppm}$ and 860 ppm at various intervals. Anomalous gold was noted in samples from the last 29 meters of the hole.

SUMMARY AND CONCLUSIONS

The CJ Property is located in a prime porphyry copper-gold environment, lying just 10 kilometers southeast of Placer Dome's Mt. Milligan deposit. Previous work has defined several geophysical and geochemical anomalies on the property, including an AGRS survey potassium high and potassium/thorium ratio low, a large area of anomalous copper in soil results and significant copper and gold results from diamond drilling.

Work carried out on the property in 1996 focused on property-scale target definition by soil sampling and an IP survey. The IP survey identified several zones of high chargeability related to strong copper soil anomalies. Phase II diamond drilling tested two of these anomalies, returning significant copper and minor gold mineralization. The mineralization was hosted by mafic volcanics, diorite and gabbro with moderate carbonate-quartz-chlorite alteration. Potassic alteration is presumed to subtly overprint the entire package of rocks based on field observations and geophysical data.

The project remains a highly prospective target area with great potential for hosting a resource of copper and gold. A large area of copper mineralized soil remains untested at depth, and several IP chargeability anomalies require soil sampling and diamond drilling.

It is recommended that a phase-l program include a minimum 600 soil samples and 20 line kilometers of cut lines and IP survey work to clearly define the best drill targets on the property. The extent of phase-fl road building and diamond drilling would depend upon the success of phase-I surface work. A minimum 1000 meter drilling program is recommended to further test the southern part of the large copper anomaly and the broad IP anomaly lying north and east of CJ lake.

BIBLIOGRAPHY

DUSO, G.; Property examination report on the CJ claims, Omineca/Cariboo mining divisions, BC. Internal report by Hudson Bay Exploration \& Development Co. Ltd. for Pacific Mariner Explorations Ltd., 1995.

LERICHE, P.D.; Geological-geochemical-geophysical report on the Gold Power Property,Omineca mining division, $\mathrm{BC} ; \mathrm{BC}$ assessment report \# 22011, 1991.

NELSON, J., BELLEFONTAINE, K., GREEN, K. and MACLEAN, M.; Regional geological mapping near the Mount Milligan copper-gold deposit, B.C. Ministry of Energy Mines and Petroleum Resources, Geological Fieldwork 1990, Paper 1991-1, pages 89-110.

PLOUFFE, A., BALLANTYNE, S.B.; Regional till geochemistry, Manson River and Fort Fraser area, British Columbia (93K, 93N), silt plus clay and clay size fractions; Geological Survey of Canada, Open File 2593, 1993.

ST. PIERRE, M. and CARTWRIGHT, P. A.; Pacific Geophysical Ltd. Report on the induced polarization and resistivity survey and magnetic survey on the rainbow project, Omineca mining division, BC; report for Teck Exploration Ltd., 1991.

SHIVES, R.B.K., BALLANTYNE, S.B. and HARRIS, D.C.; Gamma ray spectrometry: Applications to the search for ore; part of promotional display of Geological Survey of Canada Open File 2535 Airbome Geophysical Survey of the Mount Milligan Area, British Columbia, Sept. 1991, NTS 93 $\mathrm{O} / 4 \mathrm{~W}, 93 \mathrm{~N} / 1$ and $93 \mathrm{~N} / 2 \mathrm{E}$

SOUTHAM, P.; Geochemical report on the RPF and Christina Jean claims, Omineca mining

SOUTHAM, P.; Diamond drilling report on the RPF and Christina Jean claims, Omineca mining division, BC; BC assessment report \#23970, 1995.

SOUTHAM, P.; Geochemical report on the CJ property, Omineca mining division, BC; BC assessment report \#24096, 1995.

SOUTHAM, P.; Geochemical and line cutting report on the CJ property, Omineca mining division, $B C ; B C$ assessment report, Dec. 1996.

APPENDIX 1

STATEMENT OF EXPENDITURES

CJ PROPERTY - EXPENDITURES
SALARIES
Phil Southam - 25 manday @ \$180/day 4500
Report preparation - P. Southam - 3 manday @ \$180/day 540
GEOCHEMICAL ANALYSIS
128 rock samples @ \$21.70/sample 2778
DIAMOND DRILLING
442 m @ \$60.60/m drilling costs 26785
Mobilization/Demobilization 2142
LOGISTICAL COSTS
Food and lodging 963
Supplies 703
Vehicle fuel and maintenance 626
Truck rental 1966
SUBTOTAL 41003
Administration Fee (15\%) 6150
GST on administration (\#126616507) 430
TOTAL $\$ 47583$

APPENDIX II

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Philip James Southam of 1603 McChessney Street, Port Coquitlam, British Columbia, do hereby certify:

1. I am a geologist registered with the Association of Professional Engineers and Geoscientists of British Columbia.
2. I graduated from Brandon University in 1987 with a Bachelor of Science degree majoring in geology.
3. I have practised my profession continuously since graduation in British Columbia, Manitoba, Yukon Territory and Califormia in the field of mineral exploration.
4. I am employed by Hastings Management Corp. to provide geological services for Abitibi Mining Corp.
5. All work completed for the purpose of this report was done under my supervision.

APPENDIX III

DRILL LOGS AND SAMPLE DATA

EROM (M)	TO (M)	DESCRIPTION	MIN ${ }^{\prime}$ N
0	2.1	OVERBURDEN	
2.1	16.51	MAFIC VOLCANIC Dark green with augite phenocrysts; minor carbonate (cbt) veining and weak bleaching. 12.50-12.95 m - Diorite dyke Medium grained, silicious, grey plagioclase \ddagger quartz; chloritic alteration of mafics, strongly bleached (light lime green color) 16.10-16.51 m Carbonate veining with up to 10% disseminated pyrite (py) and trace chalcopyrite (cpy) along foliation planes adjacent to the dyke. Foliation @ $50^{\circ} \mathrm{TCA}$ (To Core Axis)	No Visible Sulphides (NVS) tr py 10\% py, tr cpy
16.51	23.83	DIORITE Dark grey, medium grained, mottled texture, weak bleaching.	tr py, cpy
23.83	58.38	FOLIATED MAFIC VOLCANIC Foliation adjacent to diorite @ $38^{\circ} \mathrm{TCA}$, away from the dyke @ 62° TCA. Cbt veining along foliation and crosscutting foliation. Py stringers in cbt veining. Foliation @ 55° TCA @ 26.00 m 10 cm silicification @ 26.30 m 20 cm silicification with trace cpy @ 27.00 m 4 cm quartz vein @ 30.93 m 10 cm grey gouge zone © 34.40 m . Contact © $\approx 25^{\circ} \mathrm{TCA}$	$\begin{aligned} & \operatorname{tr}-1 \% \mathrm{py} \\ & \operatorname{tr} \mathrm{cpy} \end{aligned}$

HOLE \# CJ96-4

FROM (M)	TO (M)	DESCRIPTION	MIN ${ }^{\prime}$ N
58.38	125.91	41.05-41.42 m White/light grey quartz vein with large clots of py-po (pyrrhotite) and greenish black clots of chlorite. The upper vein contact is a $50^{\circ} \mathrm{TCA}$ 8 to 15 cm quartz veins @ 41.72, 42.12, 42.20 and 43.70 m 48.45-54.42 m Rubble and gouge fault zone 15 cm quartz vein with coarse py clots @ 51.51 m GABBRO . Dark grey, medium grained, massive to weakly foliated rock with gradational contact from mafic volcanic; minor cbt veinlets and up to 2% disseminated py around contact with volcanic. Trace cpy in split core © 72.50 m 79.66-84.85 m Significant traces of cpy (up to 1%) in foliated gabbro. Coarse clots of cpy with chlorite in quartz vein @ 84.70 m 38 cm quartz vein with chlorite clots and minor py @ 85.00 m 40 cm quartz vein @ 87.07 m with 3 cm stringer zone of py and cpy @ 87.27 m Soft, dark grey gouge from 103.42-104.00 m 20 cm fault zone @ 118.70 m	tr py, po tr galena (ga), py tr py tr-2\% py tr-1\% py, tr cpy locally

SAMPLE RESULTS

Drill Hole CJ96-4

Sample No.	Depth (meters)		Interval (meters)	Gold (ppb)	Copper (ppm)
	From	To			
CJ-001	12.50	12.95	0.45	30	450
CJ-002	15.90	17.40	1.5	150	1400
CJ-003	17.40	18.90	1.5	90	580
CJ-004	20.40	22.40	2.0	165	1450
CJ-005	22.40	24.40	2.0	570	630
CJ-006	24.40	26.40	2.0	60	520
CJ-007	26.40	28.40	2.0	25	530
CJ-008	28.40	30.40	2.0	70	900
CJ-009	30.40	32.40	2.0	150	540
CJ-010	32.40	34.40	2.0	100	280
CJ-011	34.40	36.40	2.0	60	760
CJ-012	36.40	38.40	2.0	65	1050
CJ-013	38.40	40.40	2.0	25	125
CJ-014	40.40	42.40	2.0	160	166
CJ-015	42.40	44.40	2.0	55	76
CJ-016	44.40	46.40	2.0	10	78
CJ-017	46.40	48.40	2.0	15	94
CJ-018	53.00	55.00	2.0	5	141
CJ-019	57.00	59.00	2.0	<5	210
CJ-020	61.00	63.00	2.0	<5	205
CJ-021	66.00	68.00	2.0	15	550
CJ-022	71.00	73.00	2.0	55	425
CJ-023	76.00	78.00	2.0	10	510
CJ-024	78.00	79.50	1.5	15	340
CJ-025	79.50	81.50	2.0	270	2000
CJ-026	81.50	83.50	2.0	25	830
CJ-027	83.50	85.00	1.5	40	1800
CJ-028	85.00	87.00	2.0	<5	280
CJ-029	87.00	89.00	2.0	<5	420
CJ-030	89.00	91.00	2.0	320	1150
CJ-031	91.00	93.00	2.0	<5	270
CJ-032	93.00	95.00	2.0	<5	235
CJ-033	95.00	97.00	2.0	585	235
CJ-034	97.00	99.00	2.0	25	880
CJ-035	101.00	103.00	2.0	10	415

SAMPLE RESULTS (Cont'd)

Drill Hole CJ96-4

Sample No.	Depth (meters) From	To	Interval (meters)	Gold (ppb)	Copper (ppm)
CJ-036	105.00	107.00	2.0	<5	170
CJ-037	107.00	109.00	2.0	15	670
CJ-038	109.00	111.00	2.0	<5	790
CJ-039	113.00	115.00	2.0	<5	275
CJ-040	115.00	117.00	2.0	<5	290
				1.5	230

C
PROJECT:Rainbow - CJ1 claim
HOLE \#:CJ96-5
PAGE: 1 of 1
DATE:Sept. 29-Oct. 3/96
DRILLING CO.:Lone Ranger Diamond Drilling NORTHING:6+75S EASTING:2+44E
GEOLOGIST: P. Southam BEARING:090 DIP:-50 DEPTH:138.72 m

FROM (M)	TO (M)	DESCRIPTION	MIN ${ }^{\text {N }}$
0	12.20	OVERBURDEN	
12.20	138.72	MAFIC VOLCANIC Dark green, massive to foliated, grades from very fine grained volcanic to medium grained gabbro. Local zones of carbonate (cbt) veining and alteration and epidote alteration. Generally a trace to 3% pyrite (py) and local traces of chalcopyrite. 48.00-52.00 m Py stringers $4-5 \mathrm{~mm}$ wide 20 cm silicified zone with 1% py mineralization associated with gabbroic zonation @ 55.29 m 1 m zone same as above @ 57.56 m Gradual transition from gabbro to foliated mafic volcanic @ 67.00 m . Foliation @ 65° To Core Axis (TCA) 1.8 m rubble/gouge fault zone @ 80.85 m 1.0 m grey gouge zone @ 87.60 m 22 cm quartz vein with py and cpy clots @ 90.95 m 3 to 15 cm quartz veins with cpy @ 95.00 m 114.00-118.50 m Local quartz veining and silicification, trace pyrrhotite.	tr-3\% py, tr cpy $\operatorname{tr}-1 \% \mathrm{py}$ $\operatorname{tr}-3 \% \mathrm{py}$ tr-3\% py, tr po

SAMPLE RESULTS

Drill Hole CJ96-5

Sample No.	Depth (meters)		Interval (meters)	Gold (ppb)	Copper (ppm)
	From	To			
CJ-089A	12.20	14.00	1.8	<5	170
CJ-089	14.00	16.00	2.0	30	630
CJ-090	16.00	18.00	2.0	<5	429
CJ-091	18.00	20.00	2.0	<5	99
CJ-092	20.00	22.00	2.0	<5	277
CJ-093	25.00	27.00	2.0	<5	444
CJ-094	30.00	32.00	2.0	<5	189
CJ-095	35.00	37.00	2.0	<5	178
CJ-096	40.00	42.00	2.0	<5	195
CJ-097	45.00	47.00	2.0	<5	158
CJ-098	47.00	49.00	2.0	150	421
CJ-099	49.00	51.00	2.0	360	538
CJ-100	51.00	53.00	2.0	15	360
CJ-101	53.00	55.00	2.0	30	234
CJ-102	55.00	57.00	2.0	45	281
CJ-103	57.00	59.00	2.0	105	93
CJ-104	59.00	61.00	2.0	<5	32
CJ-105	61.00	63.00	2.0	<5	161
CJ-106	63.00	65.00	2.0	<5	146
CJ-107	65.00	67.00	2.0	<5	44
CJ-108	67.00	69.00	2.0	<5	79
CJ-109	72.00	74.00	2.0	<5	202
CJ-110	77.00	79.00	2.0	30	796
CJ-111	82.00	84.00	2.0	495	163
CJ-112	84.00	86.00	2.0	330	118
CJ-113	86.00	88.00	2.0	300	211
CJ-114	88.00	90.00	2.0	15	355
CJ-115	90.00	92.00	2.0	7100	2100
CJ-116	92.00	94.00	2.0	30	412
CJ-117	94.00	96.00	2.0	30	272
CJ-118	99.00	101.00	2.0	60	558
CJ-119	104.00	106.00	2.0	30	179
CJ-120	109.00	111.00	2.0	<5	122
CJ-121	111.00	113.00	2.0	30	441
CJ-122	113.00	115.00	2.0	<5	76

SAMPLE RESULTS (Cont'd)

Drill Hole CJ96-5

Sample No.	Depth (meters)		Interval (meters)	Gold (ppb)	Copper (ppm)
	From	To			
CJ-123	115.00	117.00	2.0	<5	198
CJ-124	119.00	121.00	2.0	<5	139
CJ-125	124.00	126.00	2.0	<5	326
CJ-126	129.00	131.00	2.0	<5	904
CJ-127	136.00	138.00	2.0	75	178

ABITIBI MINING CORP.
PROJECT:Rainbow - CJ1 claim
HOLE \#:CJ96-6
DRILLING CO.:Lone Ranger Diamond Drilling
GEOLOGIST: P. Southam

PAGE:1 of 1
DATE:Oct. 4-7/96

FROM (M)	TO (M)	DESCRIPTION	MIN ${ }^{\text {' }}$ N
0	18.29	OVERBURDEN	
18.29	177.74	FOLIATED MAFIC VOLCANIC Dark green with white wispy carbonate (cbt) veinlets along the foliation; foliation @ 10° to 40° To Core Axis (TCA). Disseminated pyrite (py) throughout volcanic, local quartz \pm cbt veins occassionally with coarse clots of chalcopyrite (cpy). 20 cm quartz/cbt vein with cpy clot @ 20.33 m 1 m quartz vein with sparse cpy clots @ 49.40 m 68.47-69.53 m Light grey cbt alteration with $1-3 \%$ medium grained py 69.53-75.30 m Quartz \pm cbt veining; quartz is light pink, very coarse and chunky and devoid of sulphides except for a clot of cpy @ 74.25 m . 1 m cbt \pm quartz vein with tr py @ 80.18 m ; wallrock around vein moderately bleached. Foliation angle changes from $\approx 40^{\circ} \mathrm{TCA}$ to $\approx 10^{\circ} \mathrm{TCA}$ @ 141.80 m Magnetite (mag) in core from $\approx 173.00 \mathrm{~m}$ to end of hole.	1-3\% py, local cpy tr cpy tr cpy tr-1\% mag, 1\% py, tr cpy

SAMPLE RESULTS

Drill Hole CJ96-6

Sample No.	Depth (meters)		Interval (meters)	Gold (ppb)	Copper (ppm)
	From	To			
CJ-042	18.29	20.00	1.71	20	104
CJ-043	20.00	22.00	2.0	15	500
CJ-044	22.00	24.00	2.0	25	195
CJ-045	24.00	26.00	2.0	20	300
CJ-046	29.00	31.00	2.0	10	139
CJ-047	34.00	36.00	2.0	10	177
CJ-048	39.00	41.00	2.0	15	290
CJ-049	44.00	46.00	2.0	<5	128
CJ-050	49.00	51.00	2.0	35	1150
CJ-051	54.00	56.00	2.0	<5	156
CJ-052	59.00	61.00	2.0	<5	187
CJ-053	64.00	66.00	2.0	<5	230
CJ-054	67.00	69.00	2.0	<5	127
CJ-055	69.00	71.00	2.0	10	117
CJ-056	71.00	73.00	2.0	10	375
CJ-057	73.00	75.00	2.0	<5	860
CJ-058	75.00	77.00	2.0	<5	111
CJ-059	77.00	79.00	2.0	<5	33
CJ-060	79.00	81.00	2.0	<5	124
CJ-061	81.00	83.00	2.0	<5	65
CJ-062	83.00	85.00	2.0	15	55
CJ-063	85.00	87.00	2.0	15	136
CJ-064	89.00	91.00	2.0	15	22
CJ-065	94.00	96.00	2.0	<5	205
CJ-066	99.00	101.00	2.0	<5	138
CJ-067	104.00	106.00	2.0	<5	165
CJ-068	109.00	111.00	2.0	<5	250
CJ-069	115.00	117.00	2.0	<5	220
CJ-070	119.00	121.00	2.0	<5	116
CJ-071	124.00	126.00	2.0	<5	270
CJ-072	130.00	132.00	2.0	<5	89
CJ-073	132.00	134.00	2.0	15	110
CJ-074	136.00	138.00	2.0	10	250
CJ-075	138.00	140.00	2.0	10	380
CJ-076	145.00	147.00	2.0	<5	235

SAMPLE RESULTS (Cont"d)

Drill Hole CJ96-6

Sample No.	Depth (meters)		Interval (meters)	Gold (ppb)	Copper (ppm)
	From	To			
CJ-077	149.00	151.00	2.0	40	182
CJ-078	154.00	156.00	2.0	25	285
CJ-079	158.00	160.00	2.0	120	1400
CJ-080	160.00	162.00	2.0	135	1900
CJ-081	162.00	164.00	2.0	45	280
CJ-082	164.00	166.00	2.0	25	146
CJ-083	166.00	168.00	2.0	60	225
CJ-084	168.00	170.00	2.0	45	140
CJ-085	170.00	172.00	2.0	50	30
CJ-086	172.00	174.00	2.0	15	106
CJ-087	174.00	176.00	2.0	35	225
CJ-088	176.00	177.74	1.74	15	96

PROJECT:Rainbow - Lac 1 claim
HOLE \#:LC96-1
DRILLING CO.: Lone Ranger Diamond Drilling
GEOLOGIST: P. Southam

PAGE:1 of 1
DATE: Oct. 8-10/96
NATE: $0+50 \mathrm{~W}$
NORTHING:2+00S EASTING:0+50W
BEARING:090 DIP:-50 0° DEPTH:124.70 m

FROM (M)	TO (M)	DESCRIPTION	MIN ${ }^{\prime}$ N
0	13.41	OVERBURDEN	
13.41	124.70	MUDSTONE Brownish grey, very fine grained, locally intermixed with sandstone; massive, poorly bedded and strongly fractured, locally brecciated. Quartz/carbonate (cbt) veining and trace to 5% disseminated and stringer pyrite (py) throughout.	tr-5\% py

APPENDIX IV

ASSAY RESULTS

HASTINGS MANAGEMENT CORP.
1000-675 W. HASTINGS
VANCOUVER, BC
V6B 1N6
INVOICE NUMBER
I 9637008

BILLING INFORMATION	
Date:	29-OCT-96
Project:	RAINBOW
P.O. No.:	
Account:	JCL
Comments:	ATTN:VERONICA MA.
Billing:	For analysis performed on Certificate A9637008
Terms:	Payment due on receipt of invoice 1.25% per month (15% per annum) charged on overdue accounts
Please Remit Payments to:	
	CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1
	\% \therefore $\%$

Chemex Labs Ltd.

Anaiytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave.,
British Columbia, Canada
PHONE: 604-984-0221 FAX: 604-984-0218

HASTINGS MANAGEMENT CORP.
1000-675 W. HASTINGS
VANCOUVER, 8 C
V6B 1N6

Comments: ATTN:PHILIP SOUTHAM

ANALYTICAL PROCEDURES					
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	$\begin{aligned} & \text { DETECTION } \\ & \text { LIMIT } \end{aligned}$	UPPER LIMIT
$\begin{array}{r} 983 \\ 2 \end{array}$	$\begin{aligned} & 41 \\ & 41 \end{aligned}$	Au ppb: Fuse 30 g sample Cu ppm: hNO3-aqua regia digest	$\begin{aligned} & \text { FA-AAS } \\ & \text { AAS } \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{aligned} & 10000 \\ & 10000 \end{aligned}$

Chemex Labs Ltd.
HASTINGS MANAGEMENT CORP.
1000-675 W. HASTINGS VANCOUVER, BC

Analytical Chemists * Geochemists * Registered Assayers

I: HASTINGS MANAGEMENT CORP.
1000-675 W. HASTINGS
VANCOUVER, BC
V6B 1N6

INVOICE NUMBER

I9637576

BILLING IN	NFORMATION
Date:	31-OCT-96
Project:	RAINBOW
P.O. No.:	
Account:	JCL
Comments:	ATtN:VERONICA MA.
Billing:	For analysis performed on Certificate A9637576
Terms:	Payment due on receipt of invoice 1.25% per month (15% per annum) charged on overdue accounts
Please Remit Payments to:	
	CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1

Chemex Labs Ltd.
Analytical Chemists * Geochemists * Reglslered Assayers
212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

HASTINGS MANAGEMENT CORP
1000-675 W. HASTINGS

Analytical Chemists * Geochemists * Reglstered Assayers
1000-675 W. HASTINGS

HASTINGS MANAGEMENT CORP
1000-675 W. HASTINGS
VANCOUVER, BC
V6B 1N6
INVOICE NUMBER
I 9637708

$\begin{gathered} \text { \# OF } \\ \text { SAMPLES } \end{gathered}$	ANALYSED FOR CODE - DESCRIPTION	UNIT PRICE	SAMPLE PRICE	AMOUNT
71	205 - Geochem ring to approx 150 mesh 294-4-7 Kg crush and split 3202 - Rock - save entire reject ICP-32 100 - Au ppb FA+AA	$\begin{aligned} & 2.50 \\ & 3.50 \\ & 0.50 \\ & 7.00 \\ & 8.50 \end{aligned}$		1562.00
(Reg\# R100938885 Total Cost $\$$ 1562.00 GST $\$$ 109.34 TOTAL PAYABLE (CDN) $\$$ 1671.34				

CERTIFICATE

A9637708
(JCL) - HASTINGS MANAGEMENT CORP.
Project: RAINBOW

Samples submitted to our lab in Vancouver, BC. This report was printed on $1-N O V-96$.

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, $\mathrm{Ba}, \mathrm{Be}, \mathrm{Ca}, \mathrm{Cr}, \mathrm{Ca}, \mathrm{K}, \mathrm{La}, \mathrm{Mg}, \mathrm{Na}, \mathrm{Sr}, \mathrm{T} 1$, ri, W.

ANALYTICAL PROCEDURES					
$\begin{aligned} & \text { CHEMEX } \\ & \text { CODE } \end{aligned}$	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
100	71	Au ppb: Fuse 10 g sample	FA-AAS	5	10000
2118	71	Ag ppm: 32 element, soil $\&$ rock	ICP-AES	0.2	100.0
2119	71	A1 \%: 32 element, soil $\%$ rock	ICP-AES	0.01	15.00
2120	71	As ppm: 32 element, soil a rock	TCP-AES	2	10000
2121	71	Ba ppmi 32 element, soil a rock	ICP-ABS	10	10000
2122	71	Be ppm: 32 element, soil \& rock	ICP-AES	0.5	100.0
2123	71	Bi ppmi 32 element, soil \& rock	ICP-AES	2	10000
2124	71	Ca \%: 32 element, soil \& rock	ICP-AES	0.01	15.00
2125	71	Ca ppmi 32 element, soil te rock	ICP-AES	0.5	100.0
2126	71	Co ppmi 32 element, soil serock	ICP-AES	1	10000
2127	71	Cr ppma 32 element, soil \& rock	ICP-AES	1	10000
2128	71	cu ppmi 32 element, soil \& rock	ICP-AES	1	10000
2150	71	Fe\%; 32 element, soll \& rock	ICP-AES	0.01	15.00
2130	71	Ga ppm: 32 element, soil \& rock	ICP-AES	10	10000
2131	71	Hg ppm: 32 element, soil \& rock	ICP-AES	1	10000
2132	71	x \%: 32 element, soil \& rock	ICP-AES	0.01	10.00
2151	71	La ppmi 32 element, soil \& rock	ICP-AES	10	10000
2134	71	Mg \%: 32 element, soil s rock	ICP-AES	0.01	15.00
2135	71	Mn ppm: 32 element, 8011 \& rock	ICP-AES	5	10000
2136	71	Mo ppm: 32 lement, soll \& rock	ICP-AES	1	10000
2137	71	Na \%: 32 element, soil \& rock	ICP-AEs	0.01	5.00
2138	71	Ni pprit 32 element, soil \& rock	ICP-AES	1	10000
2139	71	$P \mathrm{ppm}: 32$ element, soil se rock	ICP-AES	10	10000
2140	71	Pb ppm: 32 element, soil \& rock	TCP-AES	2	10000
2141	71	Sb ppm: 32 element, soil s rock	ICP-AES	2	10000
2142	71	sc ppm: 32 elements, soil \& rock	ICP-AES	1	10000
2143	71	Sr ppmi 32 element, soll \& rock	ICP-ASS	1	10000
2144	71	Ti \$: 32 element, soll \& rock	ICP-AES	0.01	5.00
2145	71	T1 ppm: 32 element, soll \& rock	ICP AES	10	10000
2146	71	U ppm: 32 element, soil \& rock	ICP-AES	10	10000
2147	71	V ppm: 32 element, soil s rock	ICP-AES	1	10000
2148	71	W ppmi 32 element, soil s rock	ICP-AES	10	10000
2149	71	$\mathrm{zn} \mathrm{ppm:} 32$ element, soil \& rock	ICP-AES	2	10000

Analytical Chemists * Geochemlsts * Registered Assayers
212 Brooksbank Ave.,
HASTINGS MANAGEMENT CORP
1000-675 W. HASTINGS
Page
P : $1-A$ Certificate Date: 01-NOV-96 VANCOUVER, BC

Cermicate Date: 01-NOV-9
invoice No.
No

VEG ING P.O. Number

Account
:JCL
RAINBOW
Comments: ATTN: PHILIP SOUTHAM

CERTIFICATE OF ANALYSIS A9637708

Chemex Labs Ltd
HASTINGS MANAGEMENT CORP
1000-675 W. HASTINGS
Page
$\sqrt{7}$
$: 1 \cdot B$
Certificate Date: 01-NOV-96
Invoice No. : 19637708
VANCOUVER, BC
voice No
Account
:JCL

HONE: 604-984-0221 FAX: 604-984-0218
Project :
RAINBOW
Comments: ATTN:PHILIP SOUTHAM

CERTIFICATE OF ANALYSIS A9637708

