

Assessment Report On Geochemical Work On The Following Claim

Maxwell Smart 5268

Statement Of Exploration #3102245

located 65 Km Northwest of Stewart, British Columbia Skeena Mining Division

56 degrees 25 minutes latitude 130 degrees 40 minutes longitude

N.T.S. 104B/7E

Project Period: September 29, 1996

On Behalf Of Teuton Resources Corp. Vancouver, B.C.

Report By

E.R. Kruchkowski, B.Sc., P.Geol.

Date: May 15, 1997

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

		<u>Page</u>							
SUMMAI	RY	1							
INTROD	UMMARY NTRODUCTION Location and Access Physiography and Topography Personnel and Operations Property Ownership Previous Work FEOLOGICAL SURVEYS Regional Geology Local Geology Mineralization FIEDCHEMICAL Introduction Field Procedure and Laboratory Technique Statistical Treatment Anomalous Zones CONCLUSIONS REFERENCES FTATEMENT OF EXPENDITURES								
	Location and Access	3							
	Physiography and Topography	3							
	Personnel and Operations	3							
	Property Ownership	4							
	Previous Work	4							
GEOLOO	GICAL SURVEYS	6							
	Regional Geology	6							
	Local Geology	7							
	Mineralization	8							
GEOCHI	11								
	Introduction	10							
	Field Procedure and Laboratory Technique	10							
	Statistical Treatment	11							
	Anomalous Zones	11							
CONCLU	USIONS	11							
RECOM	12								
REFERE	Regional Geology Local Geology Mineralization FOCHEMICAL Introduction Field Procedure and Laboratory Technique Statistical Treatment Anomalous Zones FONCLUSIONS RECOMMENDATIONS REFERENCES TATEMENT OF EXPENDITURES								
STATEN	IENT OF EXPENDITURES	14							
SUMMARY INTRODUCTION Location and Access Physiography and Topography Personnel and Operations Property Ownership Previous Work GEOLOGICAL SURVEYS Regional Geology Local Geology Local Geology Mineralization GEOCHEMICAL Introduction Field Procedure and Laboratory Technique Statistical Treatment Anomalous Zones CONCLUSIONS REFERENCES STATEMENT OF EXPENDITURES STATEMENT OF EXPENDITURES		15							

LIST OF FIGURES

After Page

Figure 1	Location Map	3
Figure 2	Claim Map 1:50,000	4
Figure 3	Rock Geochemical Sample Plot 1:5,000	In Back Pocket

LIST OF APPENDICES

APPENDIX I Sample Description with Indicated Anomalous Values for Au, Ag, As and Cu

APPENDIX II Analysis Results

Page1

<u>SUMMARY</u>

The Maxwell Smart property, owned by Teuton Resources Corp. is located about 65 kilometers northwest of Stewart, British Columbia in the Skeena Mining Division. The property covers an area of Triassic Stuhini and/or Hazelton pyroclastic volcanic rocks in contact with intrusive plutons associated with the main Coast Range Batholith.

The property lies within a belt of Jurassic volcanic rocks extending from the Kitsault area, south of Stewart, to north of the Stikine River. This belt and minor Triassic Stuhini sediments and volcanics is host to numerous gold deposits, in a variety of geological settings, including the producing Snip, Eskay Creek and Premier-Big Missouri properties. Reserves have been reported from a number of other properties including Red Mountain, the Brucejack Lake area and Georgia River. In addition numerous gold-silver showings have been reported by exploration companies along this belt of rocks. At least three porphyry type deposits with either Cu-Mo, Cu-Mo-Au or Cu-Au mineralization are also present.

The property hosts the Max skarn deposit containing magnetite, chalcopyite, pyrrhotite and pyrite mineralization located at the contact of limestone intruded by diorite. Diamond drilling to date has indicated 10.8 million tons of material grading 45% iron and 0.75% copper. The deposit has been outlined by magnetometer surveys conducted in the 1950's and 1970's. Some magnetic anomalies detected in these surveys remain to be tested by further exploration work.

During September 1996 an exploration program consisting of reconnaissance geochemical rock sampling in conjunction with prospecting was conducted on the property to primarily evaluate the gold and copper potential. A total of 27 rock samples were collected on the property and analyzed for metal content by ICP analysis (29 element package). Rock samples collected varied from selective grab samples of both outcrop and float material.

Geological observations taken during the geochemical survey from 1994 to 1996 indicate that the property lies along an intrusive/volcanic and sedimentary rock contact. A large granodiorite stock lies in the southwest portion of the property while andesites and argillite lie in the northeast portion. The andesites are intruded by generally flat-lying, brick red granite dykes in the eastern part of the survey.

Sampling was conducted in the northwest portion of the claim area to follow up on gold-cobalt anomalies in shear zones diuscovered in 1991 surveys. Results of the 1996 geochemical program indicated a few samples anomalous in gold, copper and arsenic with one weakly anomalous in silver. Sampling has indicated vlaues up to 610 ppb gold, 670 ppm arsenic, 603 ppm copper and 18.6 ppm silver. Of particular interest was sample A96-732 which had low gold, copper, arsenic and silver values but assayed 0.02% Co.

Ť

Page2

The presence of favorable geology, anomalous geochemical and assay results for gold, anomalous arsenic and copper values during surveys in 1994 to 1996 make this property an excellent exploration target. An exploration program involving possible geological mapping, and further geochemical sampling is recommended for the property as a follow-up to the 1995 results. Expected cost of the above program is approximately \$25,000.

Page3

INTRODUCTION

This report is primarily based on geochemical results of a exploration program conducted by Teuton Resources on the property during the period July-October, 1995. Work was conducted by Alex Walus and Dave Hick, employed as consulting geologists.

The report was prepared on data accumulated by Mr. Hick and Mr. Walus during the work program, data contained in an assessment report on the property prepared by Mr. Cremonese as well as data obtained by the author from other surveys in the general area.

Location and Access

The property is located about 65 km northwest of Stewart, British Columbia. Access is presently limited to helicopter, either from the base of Stewart (Vancouver Island Helicopters), from Bell II on Highway 37 (Northern Mtn. Helicopters), or from the end of the Eskay Creek access road into the Eskay Creek Mine in the Tom McKay Lakes area, 30 km NNE (Northern Mtn. Helicopters).

Physiography and Topography

The Maxwell Smart property covers the entire drainage area of Cebuck Creek located on the west side of McQuillan Ridge. This creek, formerly known as Barclay Creek is a northwest flowing tributary of the Unuk River.

The terrain is typical of the Coast Range region of British Columbia. The upper portion of Cebuck Creek consists of a cirque covered by small hanging glaciers. Just above the glaciers, thick morainal debris obscures the underlying geology. Precipitous cliffs and steep valley walls are common along the entire length of Cebuck Creek. Slopes range from moderate to steep for streams and gullies draining into Cebuck Creek. Elevations vary from approximately 250 meters ASL. at the legal cover of the Maxwell Smart claim along Cebuck Creek to more than 1700 meters along McQuillan Ridge.

Vegetation in the area consists of mountain hemlock, balsam and spruce with dense alder, willow and devil's club growth along avalanche paths as well as along creek bottoms.

Climate features year round precipitation with abundant snowfall in the winter months.

Personnel and Operations

Page4

Personnel involved during the exploration program are listed below:

Dave Hicks--Consulting GeologistAlex Walus--Consulting Geologist

Personnel mobilized out of Stewart, British Columbia to the job site utilizing a Bell 206 helicopter, provided by Vancouver Island Helicopters, based in Stewart.

Personnel used a rented house in Stewart for accommodation and acquired meals at local restaurants.

All samples were prepared by Echo-Tech Laboratories in Stewart, pulps were then sent by bus to Kamloops for final analysis by Echo-Tech's main facility.

Property Ownership

Relevant claim information is summarized below:

Name	Record No.	No. of Units	Record Date						
Maxwell Smart	5268	20	April 1, 1986						

Claim location is shown on Fig. 2 after N.T.S. map 104B/7E. The claim is owned by Teuton Resources Corp. of Vancouver, British Columbia.

The author did not examine the claim posts and cannot verify the quality and accuracy of the staking. The exact location of these claims would be subject to further surveys.

Previous Work

Mr. Cremonese describes the previous work on the area of the Maxwell Smart claim as follows:

"Records indicate that the Max property was originally staked by Granduc Mines Ltd. in 1960. Anomalies discovered during an airborne magnetometer survey led to ground follow-up including further magnetometer surveys, geological mapping and prospecting. This resulted in the discovery of the Max skarn deposit containing massive magnetite, chalcopyrite, pyrrhotite and pyrite mineralization. The Max deposit was subsequently explored by 5,450 meters of diamond drilling which reportedly outlined 10.8 million tons of material grading 45 % iron and 0.75 % copper.

Page5

In 1968, Granduc completed another regional airborne survey which included mapping the distribution of subsurface conductors in the area of the Max property. A program of mapping, linecutting and detailed ground magnetometer work in 1975 confirmed results of earlier work and expanded previous coverage. No previously undetected mineralized outcrops were noted, but disseminated pyrite and/or pyrrhotite were described as common in rocks adjacent to the Barclay Creek fault. In 1977, magnetometer surveys were extended to cover the western and northern portions of the property and more detailed mapping was completed. A small hand trenching program in an area of iron-staining and disseminated pyrite just north of the present claim boundary reportedly provided values of 0.042 oz/ton gold and 0.30 oz/ton silver."

Subsequently, the claims were allowed to lapse and Teuton Resources acquired the Max Iron ore deposit by staking of the Maxwell Smart claims. Mr. Cremonese goes on to describe subsequent work below:

"In 1989, the property was optioned by Teuton to Goodgold Resources Ltd. after which the latter commissioned a regional airborne geophysical survey which included the Maxwell Smart claim. Nominal line spacing was 100 meters and the flight direction was west-east. This EM-Magnetometer survey disclosed several dyke-like magnetic highs oriented north-south to slightly NNE and NNW within an overall complex magnetic contour pattern. Analysis of the magnetic contours showed numerous NNE to NNW trending offsets, terminations and breaks. Apparent resistivities within the property area were generally very high except for two areas of low resistivity coincident with conductive zones: the first of these was estimated at 250 meters by 400 meters in extent and encapsulating the Max deposit, the second, shaped like a boomerang cuts across the southeast corner of the claim block.

In 1991, Goodgold carried out a program of property wide rock, silt and soil geochemical sampling resulting in the discovery of several sites anomalous in copper and, to a much lesser extent, gold. In the northwest portion of the property, three samples from vein occurrences returned anomalous to highly anomalous values in gold, some accompanied by unusually anomalous levels of cobalt. Soil geochem lines emplaced northeast of the Max iron-copper deposit disclosed a number of copper anomalies and one high gold anomaly of 530 ppb. Several streams reported anomalous to highly anomalous copper levels in sediment samples. Float boulders carrying Ni-Cu mineralization were also discovered in the southwestern portion of the claim."

During 1994, Teuton conducted geochemical rock and silt sampling to follow up on the 1991 results. Sampling indicated anomalous copper and gold values in float rocks along Cebuck Creek and some of its tributaries.

Page6

In 1995, Teuton conducted geochemical rock sampling on the Chief and Agent 99 claims just south of the Maxwell Smart claim. This survey indicated a variety of mineralization types as well as gold values up to 0.1 opt in brecciated argillite.

GEOLOGICAL SURVEYS

Regional Geology

The Maxwell Smart property lies in the Stewart area, east of the Coast Crystalline Complex and within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic Stuhini Group, Hazelton Group and Bowser Lake Group that have been intruded by plugs of both Cenozoic and Mesozoic age.

At the base of the Hazelton Group is the lower Lower Jurassic Marine (submergent) and nonmarine (emergent) volcaniclastic Unuk River Formation. This is overlain at steep discordant angles by a second, lithologically similar, middle Lower Jurassic volcanic cycle (Betty Creek Formation), in turn overlain by an upper Lower Jurassic tuff horizon (Mt. Dilworth Formation). Middle Jurassic non-marine sediments with minor volcanics of the Salmon River Formation unconformably overlie the above sequence.

The lower Lower Jurassic Unuk River Formation forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, volcanic conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.

In the property area, the Unuk River Formation is unconformably overlain by middle Lower Jurassic rocks from the Betty Creek Formation. The Betty Creek Formation is another cycle of troughfilling sub-marine pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, with self erosional conglomerate, sandstone and siltstone and minor crystal and lithic tuffs, chert, limestone and lava.

The upper Lower Jurassic Mt. Dilworth Formation consists of a thin sequence varying from black carbonaceous tuffs to siliceous massive tuffs and felsic ash flows. Minor sediments and limestone are present in the sequence. Locally pyritic varieties form strong gossans.

The Middle Jurassic Salmon River Formation is a late to post volcanic episode of banded, predominantly dark colored siltstone, greywacke, sandstone, intercalated calcarenite, minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows.

Page7

According to E.W. Grove, the majority of the rocks from the Hazelton Group were derived from the erosion of andesitic volcanoes subsequently deposited as overlapping lenticular beds varying laterally in grain size from breccia to siltstone.

D. Aldrick's work to the north of Stewart has shown several volcanic centers in the surveyed area. Lower Jurassic volcanic centers in the Unuk River Formation are located in the Big Missouri Premier area and in the Brucejack Lake area. Volcanic centers within the Lower Jurassic Betty Creek Formation are in the Mitchell Glacier and Knipple Glacier areas.

There are various intrusives in the area. The granodiorites of the Coast Plutonic Complex largely engulf the Mesozoic volcanic terrain to the west. East of these (in the property area), smaller intrusive plugs range from quartz monzonite to granite to highly felsic. Some are likely related to the late phase offshoots of the Coast plutonism, other are synvolcanic and tertiary. Double plunging, northwesterly - trending synclinal folds of the Salmon River and underlying Betty Creek Formations dominate the structural setting of the area. These folds are locally disrupted by small east-overthrusts on strikes parallel to the major fold axis, cross-axis steep wrench faults which locally turn beds, selective tectonization of tuff units and major northwest faults which turn beds.

Local Geology

During the 1994 geochemical sway and 1991 programs, it was indicated that the Maxwell Smart Claim area is underlain by Triassic metasediments and volcanics intruded by a diorite stock and associated gabbro and diabase dykes.

Work on the Maxwell Smart claim during 1994 was primarily in the southwest corner, approximately 1.5 km south of the Max Fe-Cu deposit. This deposit is a skarn type located within limestones along it's contact with a diorite stock. The 1994 work indicated a sequence of argillites intruded by diabase dykes in the extreme southwest corner of the claim. It also located numerous types of mineralized float boulders along the Cebuck Creek bed.

The argillites are thinly bedded, black and highly brecciated at approximately 022 degrees. Diabase stringers and small dykes are found within clay rich breccia zones within the argillites. The diabase is fine grained, black and contains 1-2 % fine pyrrhotite mineralization along fractures. Abundant calcite veinlets are found along fractures both in the diabase and the surrounding argillite. Minor epidote is also found in the vicinity of the diabase dykes.

Page8

Along the bed of Cebuck Creek, diabase dykes 3-4 meters in width intrude andesitic tuffs. These dykes are in a north-south direction and consist of medium grained diabase with 50 % mafic minerals. Calcite veinlets are abundant at the contact zones.

A variety of mineralized float boulder were located along Cebuck Creek. The majority of the boulders were weakly hornfelsed altered andesites with pyrite, pyrrhotite and occasionally chalcopyrite occurring as disseminated grains, stringers and in semi-massive form. Sulfides can form from 2-50 % of the rock. In addition, silicified volcanic float contains greyish quartz carrying sparse pyrite cut by later barren quartz veins.

During the 1995 survey, work at the headwaters of Cebuck Creek indicated the presence of a large medium grained granochorite stock located at the extreme south western part of the property. The intrusive is light grey, with fractures containing epidote and chlorite. Along the eastern contacts of the intrusive, numerous gossaned zones were noted.

In the eastern portion of the survey, andesites and argillites have been brecciated, locally hornfelsed and mineralized with pyrrhotite, pyrite and locally chalcopyrite. The andesites appear to be lapilli tuffs and are locally intruded by a medium grained, generally flat lying, brick red granite. The granite contains fractures that may have up to 1 % flaky specularite.

It appears that contact areas of these dykes may have sericite-chlorite and/or carbonate alteration, particularly along zones of shearing.

Mineralization

The Maxwell Smart property contains the Max Fe-Cu deposit which has a drill indicated 10.8 million tons of 45 % Fe and 0.75 % Cu. It occurs within a skarn assemblage along the contact between intrusive rocks and limestones. In addition to the above mineralization (massive magnetite, chalcopyrite, pyrrhotite and pyrite) the work during 1995 indicated other types of mineralization.

Mineralization in bedrock and/or float rocks consist of five different varieties. These are summarized below:

1. Sericite altered rocks with pyrite up to 25 % as coarse blebs and seams.

2. Brecciated argillite with galena, sphalerite, chalcopyrite and pyrite within quartz-calcite veining cementing argillite clasts.

Page9

3. Brecciated argillite with pyrrhotite and pyrite representing up to 20-30 % of the rock.

4. Massive pyrrhotite and pyrite with or without chalcopyrite. Occasionally magnetite is found along with the massive pyrrhotite.

5. Fractured granodiorite or diorite contains fine grained pyrite and chalcopyrite.

Sericite altered rocks noted consisted of two types. The first type appeared to be related to sericite alteration along northeast trending shear zones. The shears were up to 0.5 meters in width and carried abundant pyrite as coarse blebs and seams parallel to overall schistosity. Pyrite content was locally up to 25 % of the zones. The sericite alteration also appeared to pinch and swell along the strike of the zone.

The second type of sericite alteration was noted in dacitic rocks. Pyrite in amounts up to 2-3 %, occurred as fine disseminated grains in the above rocks. These rocks may be from the contact areas of granodiorite intrusives noted in the vicinity.

Several different types of mineralization was noted in brecciated argillites cemented by quartzcalcite. The best type consisted of a rusty brecciated argillite boulder containing clasts cemented by approximately 20 - 30 % quartz-carbonate veins and veinlets. The boulder has approximately 2-3 % galena with 1 % coarse pale green sphalerite blebs, minor pyrite and traces malachite. Some brecciated argillite boulders contained 40-50 % quartz-carbonate veining cementing the clasts. The veins contained up to 15 % fine argillite clasts. These boulders contained minor chalcopyrite, pyrite and malachite stain. Some argillite boulders contained coarse cube pyrite and/or pyrite and pyrrhotite. Sulfides may be up to 15 % in these latter type of argillite boulders.

Massive pyrrhotite and pyrite lenses and stringers were noted in the eastern portion of the survey area. These lenses are generally 1-5 meters in width and appear to have strike lengths from 30-50 meters. Chalcopyrite and occasionally magnetite occur along with the massive pyrrhotite and pyrite. Strong chlorite alteration is also present within these zones which form prominent gossans.

The last type of mineralization occurred within a granodiorite float boulder. The rock consisted of a fine grained chloritic granodiorite or diorite. The intrusive was grey with malachite stain on fractures as well as contained traces of chalcopyrite.

Page10

GEOCHEMISTRY

Introduction

Reconnaissance rock geochemical samples were taken from mineralized boulders and outcrops within the property area. A sample location map is shown in figure 3 in relation to the claim lines, prepared at a scale of 1:5,000. Icefield boundaries have been taken from government topographic maps, however, these are often inaccurate: pronounced ablation in Stewart during the past years has exposed much new rock outcrop and reduced the size of snow and icefields considerably.

Altogether 27 rock grab samples were taken; both from outcrops and mineralized float boulders. The A and D sample series were located by reference to a base map prepared from a topographic map.

Field Procedure and Laboratory Technique

Rock samples were taken in the field with a prospector's pick and collected in standard plastic sample bag. Grab samples were taken to ascertain character of mineralization at any specific locality. These samples consisted generally of three to ten representative pieces with total sample weight ranging between 0.5 to 2.0 kgs. Chip samples were taken across the strike of mineralized structures and generally weighed about 1.0 to 2.0 kgs. Interval samples from chip lines were carefully taken to ensure a balanced weighting of sub-samples along the interval length. Complete descriptions of the rock samples, in terms of type, noted mineralization and relationship to nearby features are located in Appendix I. In addition, any determined anomalous values are noted along with the descriptions.

All rock samples were analyzed at the Eco-Tech facilities in Stewart and Kamloops, British Columbia. Rock samples were first crushed to minus 10 mesh using jaw and cone crushers. Then 250 grams of the minus 10 mesh material was pulverized to minus 140 mesh using a ring pulverizer. For the gold analysis a 10.0 gram portion of the minus 140 mesh material was used. After concentrating the gold through standard fire assay methods, the resulting bead was then dissolved in aqua regia for 2 hrs at 95 degrees Celsius. The resulting solution was then analyzed by atomic absorption. The analytical results were then compared to prepared standards for the determination of the absolute amounts. For the determination of the remaining trace and major elements Inductively Coupled Argon Plasma (ICP) was used. In this procedure a 1.00 gram portion of the minus 140 mesh material is digested with aqua regia for 2 hours at 95 degrees Celsius and made up to a volume of 20 mls prior to the actual analysis in the plasma. Again the absolute amounts were determined by comparing the analytical results to those of prepared standards.

Page11

Statistical Treatment

As in other small-scale geochemical surveys, a cumulative frequency plot to determine background and threshold values (greater than threshold is considered anomalous) was not deemed practical. Generally, gold values greater than 100 ppb gold, silver values greater than 3.6 ppm, arsenic values greater than 110 ppm and copper values greater than 360 ppm may be anomalous in the Stewart area. Figure 3 shows the location plot for all sampling conducted with the values for Au, Ag, As and Cu listed in a table for the appropriate samples.

Anomalous Results

Results of the survey indicate few anomalous samples. Results as high as 610 ppb Au, 670 ppm As, 18.6 ppm Ag and 603 ppm Cu were obtained in the survey. Of particular interest is A96-732, chich contained 0.02% Co with no other anomalous metals (Au, Ag, As and Cu).

CONCLUSIONS

1. The property lies within a belt of Jurassic volcanic and Triassic Stuhini sedimentary and volcanic rocks that is host to numerous gold deposits and which extends from the Kitsault area, south of Stewart, to north of the Stikine River.

2. The property hosts the Max skarn deposit comprised of magnetite, chalcopyrite, pyrrhotite and pyrite containing 10.8 million tons of 45 % iron and 0.75 % copper.

3. During September 1996, an exploration program consisting of reconnaissance geochemical rock sampling with prospecting was conducted on the property. A total of 27 rock samples were collected on the property and analyzed for metal content.

4. Geological observations taken during the geochemical survey indicate that the property lies along an intrusive/volcanic and sedimentary rock contact. A large granodiorite stock lies in the southwest portion of the property while andesites and argillites lie in the northeast portion. The andesites are intruded by generally flat-lying, brick red granite dykes in the eastern part of the survey.

5. Results of the geochemical program indicated anomalous gold, silver, arsenic and copper. Sampling has indicated values up to 610 ppb Au, 18.6 ppm Ag, 670 ppm As and 703 ppm Cu.

Page12

The presence of favorable geology as well as geochemical and assay results for gold, 6. silver, arsenic, copper, lead and zincin 1994 to 1996 surveys make this property an excellent exploration target.

An exploration program consisting of prospecting and geochemical sampling should be 7. conducted on the property to further test its gold potential. This program should be carried out at a cost of \$25,000.

RECOMMENDATIONS

The recommended program is outlined as follows:

Prospecting 1.

Prospecting should be conducted in order to locate any massive pyrrhotite, pyrite and chalcopyrite mineralization. Particular attention should be paid to any sulfide bearing sericite schists. All mineralized float boulders should be sampled and possibly traced to their source areas.

2. **Geochemical Surveys**

Further rock geochemistry is recommended particularly rock chip sampling in areas of outlined mineralization.

Estimated Cost of the Program

Geochemical Survey

- 250 Rock Samples @ \$100.00 All Inclusive \$25,000.00 (Based on 1995 Costs)

Total \$25,000.00

Page13

<u>REFERENCES</u>

- 1. AI.LDRICK, DJ (1984); "Geological Setting of the Precious Metals Deposits in the Stewart Area", Paper 84-1, Geological Fieldwork 1983, B.C.M.E.M.P.R.
- 2. ALLDRICK, D.J. (1985); "Stratigraphy and Petrology of the Steward Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
- 3. CREMONESE, D. (1995), "Assessment Report on Geochemical Work on the Maxwell Smart Claim
- 4. GREIG, C.J., ET AL (1994); "Geology of the Cambria Icefield: Regional Setting for Red Mountain Gold Deport, Northwestern British Columbia", p. 45, Current Research 1994-A, Cordillera and Pacific Margin, Geological Survey of Canada.
- 5. GROVE, E.W. (1971); Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- 6. GROVE, E.W. (1982); "Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 7. GROVE, E.W. (1987); Geology and Mineral Deposits of the Unuk, River-Salmon, River-Anyox, Bulletin 63, B.C.M.E.M.P.R.
- 8. KRUCHKOWSKI, E.R. (1996), Assessment Report on Chief and Agent 99 Claims.
- 9. WALUS, A; KRUCHKOWSKI E.R., KONKIN, K.; Fieldnotes and Maps Regarding 1994 Exploration on the Red 1 3 Claims.
- 10. WALUS, A; KRUCHKOWSKI E. R.; Fieldnotes and Maps Regarding 1995 Exploration on the Maxwell Smart Claim
- 11. WALUS, A; HICK, D., 1996; Fieldnotes and Maps Regarding 1996 Exploration.

Page14

STATEMENT OF EXPENDITURES

Field Personnel Sept. 29, 1996:		
Alex Walus, Geologist		
1 day @ \$225/day	\$	225
Dave Hicks, Geologist		
1 day @ \$200/day		200
Helicopter Vancouver Island Helicopters (VIH)		
Crew drop-offs/pick-ups:		
VIH: 2.0 hrs. @ \$792/hr.		1,584
Food/Accomodation/Support Costs		
2 man-days @ \$100/day		200
Mob/demob Costs		
Prorated % of share of total field program costs		120
Assay costs Eco-Tech Labs		
Au geochem + 30 elem. ICP + rock sample prep		
27 @ \$19.5275/sample		527
Co assay: 1@ \$10.70		11
Report Costs		
Report and map preparation, compilation and research		
E. Kruchkowski, P. Geol, 3 days @ \$300/day		900
Draughting RPM Computer		180
Copies, report, jackets, maps, etc.		_120
Total	• • •	\$4,067
Allocation:		
To Statement of Exploration #3102245 \$ 3,100		

Balance Remaining \$ 967

۲.

* Please credit balance to PAC account of Teuton Resources Corp.

Page15

CERTIFICATE

I, Edward R. Kruchkowski, geologist, residing at 23 Templeside Bay, N.E., in the City of Calgary, in the Province of Alberta, hereby certify that:

- 1. I received a Bachelor of Science degree in Geology from the University of Alberta in 1972.
- 2. I have been practicing my profession continuously since graduation.
- 3. I am a member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 4. I am a consulting geologist working on behalf of Teuton Resources Corp.
- 5. This report is based on a review of reports, documents, maps and other technical data on the property area and on my experience and knowledge of the area obtained during programs in 1974 1994 and work done by myself on the property.
- 6. I hold no securities of Teuton Resources Corp. and do not expect to receive any.
- 7. I authorize Teuton Resources Corp. to use information in this report or portions of it in any brochures, promotional material or company reports.

E.R. Kruchkowsky B.Sc.

APPENDIX I

SAMPLE DESCRIPTIONS WITH INDICATED ANOMALOUS VALUES FOR AU, AG, AS, CU

A96-723	Grab from andesite with limonite on fractures.
A96-724	Same as 723.
A96-725	Grab from aphonitic andesite with minor disseminated pyrite.
A96-726	Float of slightly limonitic quartz vein.
 A96-727	Grab from strongly limonitic andesite.
A96-728	Grab from andesite with limonite on fractures.
A96-729	Grab from limonitic andesite.
A96-730	Grab from chloritized andesite with 0.5% pyrite.
A96- 7 31	Grab from chlorite-carbonate altered rock with minor pyrite.
A96-732	Grab from limonitic andesite.
A96-733	Same as 732.
A96-734	Grab from chloritized andesite with 1% pyrite.
A96-735	Same as 734.
A96-736	Grab from limonitic andesite.
A96-737	Grab from chloritized andesite with minor pyrite.
D96-491	Small quartz-calcite veins in green andesite.
D96-492	Outcrop of quartz, siliceous andesite and minor CaCo3. 1 inch thick, rusty and vuggy quartz vein.

Au	-	135 ppb	Ag	-	3.0 ppm
As	-	10 ppm	Cu	-	3 ppm

- cyn

Page2

D96-493 Same as 492, very rusty and siliceous andesite right beside quartz vein.

Au	-	610 ppb	Ag	-	2.8 ppm
As	-	15 ppm	Cu	-	2 ppm

- D96-494 "Dead" sandy textured volcanic tuff.
- D96-495 Volcanic tuff with approximately 3% pyrite.
- D96-496 From very large and mineralogically deadbeat cliff of andesite.
- D96-497 Large volcanic outcrop of a few specks of pyrite.
- D96-498 Large outcrop on last major slope, same rock as 497.
- D96-499 Float boulders (small) from stream, rusty. Contain minor sulphide (mostly pyrite, 5-10%).
- D96-500 Same as 499.
- D96-501 Same as 499.

Au	~	5 ppb	Ag	-	2.8 ppm
As	-	670 ppm	Cu	-	58 ppm

D96-502 Same as 499.

Au	-	5 ppb	Ag	-	18.6 ppm
As	-	170 ppm	Cu	-	17 ppm

APPENDIX II

ANALYSIS RESULTS

ECO-TECH KAM.

Q1001

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ASSAY AS 96-5412

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

16-Oct-96

4.46

ATTENTION: DINO CREMONESE

- No. of samples received:232 Sample Type:ROCK PROJECT #:NONE GIVEN SHIPMENT #:NONE GIVEN P.O.#: NONE GIVEN
- Samples submitted by:DAVID HICK

	ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Co (%)	Zn (%)
, iina	10	D96-485		······································	97.7	2.85	<u> </u>	<u>_</u>
-	11	D96-486	2.02	0.059				
	12	D96-487	3.52	0.103				
الأسلار	55	D96-530			124.2	3.62		
	64	E96-7						5.22
	66	E96-9	2.49	0.073				
	69	E96-12	2.24	0.065				
	76	CK-003	2.96	0.086				
	86	CK-013			55.5	1.62		
	117	A96-718	2.96	0.086				
	131	A96-732					0.025	
	000	T .						

QC/DATA:

- Standard: CPb-I SUI-a

XLS/96Teuton#12

Fax to Dino Vancouver 604-682-3992

EQO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. por B.C. Certified Assayer

0.041

Page 1

630.0

18.37

16-Oct-96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4 .

Phone: 604-573-5700 Fax : 604-573-4557

T.

T

1.1.1.1.1.1.1

ICP CERTIFICATE OF ANALYSIS - AS-5412

TEUTON RESOURCES COPPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

No. of samples received:232 Sample Type:ROCK PROJECT #:NONE GIVEN SHIPMENT #:NONE GIVEN P.O.#: NONE GIVEN Samples submitted by:DAVID HICK

Values in ppm unless otherwise reported

Et #.	125	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na %	Ni	P	_ Pb	Sb	Sл	Sr	TI %	U	<u>v</u>	W	Y	Zn
1	D96-476	125	0.6	0.05	<5	1175	<5	0.02	<1	<1	16	5	0.19	<10	0.02	25	<1 <0.01	<1	20	8	<5	<20	83	<0.01	<10	2	<10	<1	<1
2	D96-477	105	0.8	0.16	35	580	<5	<0.01	<1	<1	118	18	0.68	10	<0.01	26	3 < 0.01	3	190	734	<5	<20	2	<d.01< td=""><td><10</td><td>2</td><td><10</td><td><1</td><td>9</td></d.01<>	<10	2	<10	<1	9
3	D96-478	. 10	<0.2	0.07	<5	1730	<5	0.02	<1	<1	188	3	0.38	<10	0.03	46	<1 <0.01	3	80	4	<5	<20	8	<0.01	<10	1	<10	<1	3
4	D96-479	560	3.2	0.42	410	50	10	0.05	<1	8	26	12	7.26	<10	0.05	104	4 <0.01	1	1370	110	<5	-20	2	0.05	<10	31	<1D	<1	79
5	D96-480	270	2.6	1.07	280	30	10	0.23	<1	13	31	6	6.26	<10	0.50	336	3 <0.01	4	1480	106	<5	<20	3	0.06	<10	49	<10	<1	163
6	D96-481	330	2.4	0.59	280	35	ta	1,13	<1	11	24	6	4.96	<10	0.12	696	1 <0.01	2	930	94	<5	<20	12	0.07	<10	39	<10	2	96
7	D96-482	325	1.8	0.17	110	110	<5	<0.01	<1	2	95	7	4.33	<10	<0.01	31	3 < 0.01	2	270	62	<5	<20	2	0.01	<10	11	<10	<1	<1
8	D96-483	260	1.0	0.31	80	20	<5	0,07	<1	10	85	18	6.30	<10	0.02	40	4 <0.01	3	870	56	<5	<20	2	0.01	<10	1,5	<10	<1	32
9	D96-484	170	2.6	0.93	190	30	20	0.13	<1	16	30	21	>10	<10	0.38	437	9 <0.01	4	930	86	<5	<20	<1	0.04	<10	66	<10	<1	113
10	D96-485	610	>30	0.23	435	220	<5	0,01	<1	5	120	200	6.86	<10	<0.01	114	9 <0.01	2	330	262	155	<20	4	0.02	<10	20	<10	<1	118
11	D96-486	>1000	7.4	0.19	540	510	<5	0.01	<1	11	72	333	>10	<10	<0.01	457	14 <0.01	1	160	330	<5	<20	32	0.02	<10	101	<10	<1	428
12	D96-487	>1000	6.4	0.12	115	20	<5	0.02	<1	6	140	92	2.84	<10	<0.01	41	3 < 0.01	4	190	456	<5	<20	1	<0.01	<10	6	<10	<1	102
13	D96-488	290	7.2	0.19	365	35	10	1.87	5	15	65	46	>10	<10	<0.01	593	10 <0.01	- 4	50	308	<5	<20	21	<0.01	<10	8	<10	<1	945
14	D96-489	5	0.6	0.32	95	100	<5	0.11	<1	7	35	12	3.23	<10	0.01	156	6 < 0.01	2	770	24	<5	<20	5	<0.01	<10	8	<10	<1	40
15	D96-490	5	0.6	0.16	45	135	<5	<0.01	<1	<1	79	9	1,16	20	<0.01	46	7 <0.01	1	40	36	<5	<20	<1	<0.01	<10	<1	<10	<1	16
16	D96-491	5	<0.2	0.45	<5	215	<5	3.85	<1	2	151	132	1.09	<10	0.27	407	<1 <0.01	7	100	4	<5	<20	49	<0.01	<10	16	<10	<1	4
17	D96-492	135	3.0	0.38	10	25	<5	0.04	<1	2	145	3	1,14	<10	0.14	62	124 <0.01	5	250	14	<5	<20	<1	<0.01	<10	25	<10	<1	1
18	D96-493	610	2.8	0.61	15	45	<5	0.04	<1	2	120	2	2.00	<10	0.26	69	167 <0.01	5	460	14	<5	<20	<1	<0.01	<10	30	<10	<1	3
19	D96-494	5	<0.2	2.27	<5	50	10	1.28	<1	25	63	18	4.89	<10	2.15	778	<1 0.02	10	2770	22	<5	<20	165	0.22	<10	68	<10	<1	85
20	D96-495	5	<0.2	0.96	<5	70	5	0.28	~1	6	71	5	2.43	<10	0.37	203	<1 0.02	2	540	10	<5	<20	19	0.05	<10	10	<10	2	7

TEUTON RESOURCES CORPORATION								ICP CERTIFICATE OF ANALYSIS AS-5412 COMPLETATION											ECO-TECH LABORATORIES LTD.											
Et #.	125	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Ŝп	Sr	<u>n%</u>	υ	V:	w	Y	Zn
21	D96-496	5	<0.2	1.65	<5	75	10	2.34	<1	11	24	4	3.12	<10	1.03	734	<1	0.02	<1	780	18	<5	<20	55	0.09	<10	275.	<10	Ż	29
22	D96-497	15	<0.2	1.37	<5	35	<5	0.61	<1	11	50	5	2.94	<10	0.87	1314	<1	0.03	2	840	14	<5	<20	32	0.08	<10	39	<10	3	22
23	D96-498	55	<0.2	1.18	<5	40	<5	1.40	<1	5	44	9	2.36	<10	0.65	600	1	0.03	1	750	12	<5	<20	19	<0.01	<10	21	<10	<1	12
24	D96-499	5	<0.2	1.91	<5	15	<5	2.58	<1	20	67	603	5.18	<10	0.76	277	5	0.03	43	1600	18	<5	<20	17	0.19	<10	68	<10	<1	33
25	D96-500	5	<0.2	1.32	<5	35	15	1.27	5	48	113	53	4.92	<10	0.93	84	<1	0.04	107	1340	15	<5	<20	19	0.42	<10	18	<10	<1	270
26	D96-501	5	2.8	0.39	670	345	5	0.11	<1	14	58	58	9.77	<10	<0.01	621	10	<0.01	3	1080	236	<5	<20	12	⊲0.01	<10	14	<10	<1	669
27	D96-502	5	18.6	0.28	170	335	<5	0.01	<1	<1	34	17	1.76	<10	<0.01	57	2	<0.01	1	1220	2042	55	<20	9	<0.01	<10	5	<10	<1	85
28	D96-503	5	12.6	0.13	80	30	<5	0.55	24	7	71	17	3.32	<10	<0.01	903	22	<0.01	3	350	790	<5	<20	59	0.02	<10	61	<10	<1	1169
29	D96-504	5	<0.2	2.73	5	50	<5	1.78	<1	25	39	156	5.37	<10	2.21	768	<1	<0.01	9	1530	28	<5	<20	17	0.43	<10	102	<10	<1	29
30	D96-505	390	2.8	0.11	120	30	<5	0.51	<1	6	163	8	1.73	<10	0.01	56	29	<0.01	17	410	18	<5	<20	6	<0.01	<10	16	<10	<1	2
31	D96-506	5	0.6	0.44	10	75	<5	0.18	<1	12	78	26	1.25	<10	0.13	529	3	0.01	3	710	14	<5	<20	9	<0.01	<10	11	<10	3	17
32	D96-507	5	<0.2	2.04	<5	40	10	0.03	<1	11	123	10	8.11	<10	0.50	176	5	<0.01	18	20	18	<5	<20	<1	<0.01	<10	143	<10	<1	80
33	D96-508	5	0.2	0.11	120	65	<5	<0.01	<1	2	107	25	0.47	<10	<0.01	297	1	<0.01	2	20	18		<20	<1	<0.01	<10	<1	<10	<1	35
34	D96-509	5	0.4	0.19	15	105	<5	<0.01	<1	<1	130	9	0.66	20	<0.01	36	<1	<0.01	3	30	16	<5	<20	<1	<0.01	<10	<1	<10	<1	4
35	D96-510	5	0.2	0.14	10	115	<5	<0.01	<1	<1	75	20	0.92	20	<0.01	19	3	<0.01	1	40	26	<5	<20	<1	<0.01	<10	<1	<10	<1	17
36	D96-511	15	2.8	0.13	30	205	<5	<0.01	<1	<1	141	18	1.00	20	<0.01	23	10	<0.01	3	30	86	20	<20	2	<0.01	<10	<1	<10	<1	8
37	D96-512	5	<0.2	0.12	5	195	<5	<0.01	<1	<1	109	9	0.45	10	<0.01	11	4	<0.01	2	10	18	<5	<20	<1	<0.01	<10	<1 -1	<10	<1	<1
38	D96-513	5	0.8	0.20	10	55	<5	<0.01	<1	<1	93	5	0.54	20	<0.01	19	3	<0.01	2	40	12	<5	<20	<1	<0.01	<10	<1	<10	<1	< }
39	D96-514	5	0.8	0.41	15	175	<5	<0.01	<1	<1	41	4	0.41	40	0.01	8	5.	<0.01	<1	50	14	<5	<20	<1 40	≺U.U1	<10	<1 F	<10	<1	<1
40	D96-515	5	4.8	1.27	60	95	ຸ<5	0.16	4	10	45	306	5.38	<10	0.14	847	. 5	<0.01	3	820	26	10	<20	10	<0.01	<10	5	<10	<1	814
41	D96-516	5	0.8	0.18	25	200	<5	<0.01	<1	<1	62	8	0.97	20	<0.01	28	8	<0.01	1	60	14	<5	<20	3	<0.01	<10	<1	<10	<1	17
42	D96-517	5	0.6	0.14	45	170	<5	< 0.01	<1	<1	103	4	0.93	10	<0.01	27	6	<0.01	2	30	162	<5	<20	<1	≺0.01	<10	<1	<10	<1	1
43	D96-518	5	3.4	0.23	15	25	15	<0.01	<1	13	46	12	>10	~10	<0.01	8	13	<0.01	2	40	54	<5	<20	<1	≺0.01	<10	13	<10	<1	11
44	D96-519	5	3.2	1.00	30	30	15	0.24	1	36	71	47	>10	<10	0.26	428	g .	<0.01	7	1030	50	<5	<20	7	≂0.01	<10	129	<10	<1	323
45	D96-520	5	9.0	0.33	45	30	<5	0.21	134	34	67	50	3.62	<10	0.03	314	5	<0.01	5	1000	7208	<5	<20	10	*0.01	<10	19	<10	<1	6049
46	D96-521	5	2.2	0.19	30	25	<5	<0.01	<1	12	76	14	2.86	< 10	<0.01	25	з.	<0.01	3	150	86	<5	<20	3	*0.01	<10	8	<10	<1	50
47	D96-522	240	8.2	0.25	200	30	<5	0,11	<1	46	50	3375	>10	<10	0.03	26	12 -	<0.01	10	300	104	<5	<20	6	≺0.01	<10	6	<10	<1	15
48	D96-523	5	0.8	0.19	10	160	<5	2,50	<1	6	126	46	5.46	<10	0.10	1646	4 ·	<0.01	4	260	28	<5	<20	97	+0.01	<10	10	<10	<1	92
49	D96-524	10	0.B	0.28	190	35	<5	5.38	<1	26	37	119	4.32	<10	0.07	2503	4	<0.01	4	800	38	<5	<20	137	<0.01	<10	8	<10	<1	29
50	D96-525	545	4.8	0.28	500	40	30	0.11	<1	167	58	82	>10	<10	0.02	221	16 -	<0.01	18	<10	104	<5	<20	4	≺0.01	<10	15	<10	<1	59
51	096-526	45	38	0.22	<5	40	<5	0.02	<1	8	29	447	>10	<10	<0.01	29	26 ·	<0.01	8	<10	34	<5	<20	<1	⊲0.01	<10	3	<10	<1	2
52	D96-527	40	24	0.28	145	40	<5	0.11	<1	49	39	374	>10	<10	0.15	778	23 .	<0.01	8	160	24	<5	<20	5	<0.01	<10	4	<10	<1	12
53	096-528	170	78	6 21	650	30	$\widetilde{\mathbf{x}}$	0.98	<1	55	60	125	>10	<10	0.19	1109	15 -	<0.01	2	<10	80	<5	<20	25	<0.01	<10	1	<10	<1	37
54	D96-529	65	10	0.15	305	40	15	0.00	<1	44	87	104	>10	<10	0.07	762	13 .	<0.01	5	60		<5	<20	20	<0.01	<10	2	<10	<1	80
55	096-530	275	>30	0.45	260	40	250	0.91	24	15	38	391	>10	<10	0.03	131	12	<0.01	<1	<10	3346	<5	<20	11	<0.01	<10	4	<10	<1	2491
~	000-000	A	~~~	v. v	200	76	200	0.00	A 7		~~				4.00				,			-					·			

.

Page 2

					:					i																					
	TEUTO	N RESOUR	RCES COF	IPORA	TION					ICP CE	RTIFIC	ATE O	F ANA	LYSIS -	AS-54	12						ECO-TE	ECH L	ABORA	TORIE	SLTDA	លេខទេ	(the)	/4 %	. 44 2	Ŷ
	Et #.	125	Au(ppb)	Ag	A! %	As	Ba	81	Ca %	Cd	Co	Cr	Cu	<u>Fe %</u>	Le	Mg %	Mn	Ma	Na %	N	<u>م</u>	Pb_	Sb	Sn	\$r	TI %	υ	<u>v</u>	w	Y	Zn
	56	D96-531	50	1.8	0.29	425	20	15	0.03	i <1	24	43	69	8.27	<10	<0.01	17	63	<0.01	4	290	60	- <5	20	13	<0.01	<10	9	<10	<1	75
	57	D96-532	5	3.4	0.11	105	15	5	<0.01	_; <1	67	107	97	5.41	<10	<0.01	16	102	<0.01	4	<10	52	<5	<20	3	<0.01	<10	2	<10	<1	31
	58	E96-1	5	0.6	1.19	45	35	5	2.25	i <1	20	23	48	4.35	<10	0.83	444	<1	0.02	6	2160	18	<5	<20	47	0.13	<10	83	<10	4	33
	59	E96-2	5	0.4	1.29	15	40	5	0.48	i <1	13	54	38	3.77	<10	1.22	383	<1	0.02	5	1770	38	<5	<20	11	0.09	<10	105	<10	2	61
	60	E96-3	5	<0.2	3,14	<5	20	<5	4.01	<1	11	75	73	2.86	<10	0.65	237	7	0.01	20	820	32	<5	<20	6	0.10	<10	123	<10	2	6
	61	E96-4	5	<0.2	2.33	<5	50	<5	3.05	<1	15	44	79	3.35	<10	0.63	190	11	0.01	15	1200	28	<5	<20	9	0.13	<10	87	<10	3	9
	62	E96-5	10	0.2	2.01	<5	20	5	0.54	32	18	85	96	5.96	<10	1.40	607	5	0.02	27	870	28	<5	<20	39	0.09	<10	98	<10	<1	1498
	63	E96-6	5	1.4	2.06	<5	60	<5	0.48	2	51	17	608	>10	<10	1.81	718	17	<0.01	34	<10	16	<5	<20	10	0.02	<10	93	<10	<1	110
	64	E96-7	5	<0.2	1.67	<5	45	<5	2.01	465	39	43	275	>10	<10	1.45	1959	<1	< 0.01	5	850	62	<5	<20	30	0.06	<10	46	<10	<1	>10000
	65	E96-B	30	3.4	0.83	115	40	<5	0.30	<1	50	28	849	>10	<10	0.26	158	13	<0.01	7	1120	40	<5	<20	2	<0.01	<10	26	<10	<1	63
)	66	E96-9	>1000	12.4	0.61	615	50	<5	0.11	<1	66	36	2395	>10	<10	0.30	344	15	<0.01	7	260	26	<5	<20	4	<0.01	<10	24	<10	<1	40
	67	E96-10	75	6,9	0.46	45	75	<5	0.24	2	78	2	705	>10	<10	0.05	165	22	<0.01	5	450	6	<5	<20	5	0.02	<10	12	<10	<1	58
	68	E96-11	10	4.8	0.35	<5	60	<5	0.28	<1	45	28	1102	>10	<10	<0.01	33	17	<0.01	5	990	<2	<5	<20	5	<0.01	<10	11	<10	<1	29
	69	E96-12	>1000	8.0	0.09	665	35	<5	0,18	<1	32	41	649	>10	<10	<0.01	64	12	<0.01	9	60	20	<5	<20	4	<0.01	<10	3	<10	<1	38
	70	E96-13	\$15	5.0	0.47	10	40	20	0.62	2	110	52	127	>10	<10	0.15	366	12	<0.01	15	710	390	<5	<20	. 33	0.04	<10	29	<10	<1	106
	71	E95-14	5	12,8	0.05	95	75	<5	0.11	<1	65	<1	3698	>10	<10	<0.01	131	23	<0.01	6	<10	<2	<5	<20	<1	<0.01	<10	3	<10	<1	44
	72	E96-15	5	2.4	0.74	<5	40	<5	0.30	<1	51	32	558	>10	<10	0.14	157	11	<0.01	4	850	12	<5	<20	5	0.03	<10	22	<10	<1	25
	73	E96-15	4D	6.6	0.28	<5	80	<5	0.04	2	102	22	868	>10	<10	0.02	72	23	<0.01	12	<10	14	<5	<20	2	< 0.01	<10	15	<10	<1	42
	74	CK-001	5	0.6	1.31	25	35	<5	0.18	<1	8	34	10	4.42	<10	1.64	281	3	0.01	<1	850	24	<5	<20	8	<0.01	<10	56	<10	<1	33
	75	CK-002	105	0.6	1.28	30	55	<5	0.65	<1	19	34	74	3.42	<10	0.99	371	<1	0.01	7	2070	18	<5	<20	8	0.13	<10	81	<10	4	38
	76	CK-003	>1000	9.0	0.33	300	35	<5	<0.01	<1	37	32	595	>10	<10	0.19	103	12	<0.01	1	<10	32	<5	<20	<1	-<0.01	<10	19	<10	<1	20
	77	CK-004	25	0.2	1.10	15	30	<5	0.86	<1	21	19	62	4.43	<10	0.76	298	<1	0.02	7	2250	16	<5	<20	11	0.17	<10	81	<10	5	47
	78	CK-005	5	<0.2	2.12	<5	30	<5	1.78	<1	17	63	94	4.57	<10	1.19	262	4	0.02	19	1440	24	<5	<20	13	0.12	<10	152	<10	3	11
	79	CK-006	5	<0.2	1.67	<5	30	<5	0.64	<1	16	42	7 9	4.68	<10	1.29	371	15	0.03	29	1200	20	<5	<20	18	0.10	<10	118	<10	<1	24
	80	CK-007	5	<0.2	2.63	<5	110	10	0.45	<1	11	45	52	5.21	<10	2.09	621	17	<0.01	13	920	64	<5	<20	16	0.18	<10	163	<10	3	31
)	61	CK-008	5	<0.2	1.49	<5	30	<5	0.54	<1	17	47	69	4.63	<10	1.05	376	2	<0.01	15	960	20	<5	<20	16	0.12	<10	72	<10	<1	34
	62	CK-009	5	<0.2	1.78	10	55	<5	0.52	3	18	55	130	5.82	<10	1.44	370	8	<0.01	30	1150	24	<5	<20	10	0.02	<10	178	<10	<1	144
	83	CK-010	5	<0.2	1.55	15	30	<5	4.38	<1	11	34	51	4.36	<10	1.37	973	3	0.02	6	1710	22	<5	<20	192	<0.01	<10	137	<10	3	23
	84	CK-011	80	3.0	1.33	70	50	<5	0.38	<1	60	18	547	>10	<10	0.49	253	14	< 0.01	3	1080	22	<5	<20	11	<0.01	<10	43	<10	<1	23
	85	CK-012	75	5.6	0.43	245	70	<5	0.56	<1	79	9	5B3	>10	<10	0.05	205	21	<0.01	6	110	12	<5	<20	14	<0.01	<10	16	<10	<1	25
	86	CK-013	130	>30	2.12	215	30	55	0,46	29	34	85	112	>10	<10	1.73	1127	7	<0.01	82	40 0	5998	<5	<20	31	<0.01	<10	66	<10	<1	1853
	87	CK-014	5	0.6	0.47	40	65	<5	0.11	1	6	42	28	3.64	<10	0.51	69	33	0.01	24	1150	46	<5	<20	9	< 0.01	<10	63	<10	<1	192
	88	CK-015	135	1.8	1.74	20	35	<5	0.47	<1	17	30	206	7.06	<10	0.97	278	6	<0.01	14	1980	40	<5	<20	11	<0.01	<10	84	<10	<1	32
	89	CK-016	25	4.8	0.40	85	35	10	0.14	<1	45	62	124	>10	<10	0.13	180	14	<0.01	16	80	50	<5	<20	12	0.03	<10	10	<10	<1	253
	90	D96-533	- 5	<0.2	0.02	<5	355	<5	1.19	<1	1	131	3	0.62	<10	0.42	1013	<1	<0.01	1	120	10	<5	<20	88	<0.01	<10	2	<10	<1	161
								-														-		-							

.

:

Page 3

тенто	N RESOUR	CES COS	2024	, KOI			,		CPCER		ልተር ሰነ	. aniai	Vele-	45.54	12					•		ድርጉ		TODIS	e.uma					
		125 Au(ppb) Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % D96-534 5 0.6 0.08 135 10 <5																		UQUA	IONE		, e	e de test	12.5					
Et #.	125	Au(ppb)	Ag	AI %	As	Ba	Bi	<u>Ca %</u>	· Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	<u>Pb</u>	Sb	Sn	Sr	П%	<u> </u>	<u> </u>	<u></u>	Y	Zn
91	D96-534	5	0.6	0.08	135	10	<5	2.05	<1	3	112	5	1.38	<10	0.27	585	<1	0.02	4	640	20	<5	<20	130	<0.01	<10	3	<10	<	9
92	D96-535	20	1.2	0.26	25	15	<5	0.05	22	14	17	25	4.34	<10	<0.01	11	9	<0.01	5	220	516	<5	<20	3	<0.01	<10	4	<10	<1	3837
93	D96-535	90	1.6	0.26	75	15	5	0.02	10	16	31	17	6.42	<10	<0.01	8	7	<0.01	2	60	138	<5	<20	<1	< 0.01	<10	3	<10	<1	1540
94	D96-537	15	2.0	0,27	15	20	<5	2.27	8	6	58	37	2.95	<10	0.50	3293	11	<0.01	1	660	228	<5	<20	103	<0.01	<10	8	<10	<1	1161
95	D96-538	70	2.6	0.21	5	10	<5	0.03	<1	4	54	53	2.78	<10	<0.01	19	2	<0.01	<1	40	246	5	<20	15	<0.01	<10	4	<10	<1	104
96	D96-539	5	0.4	0.27	<5	35	<5	8.31	<1	7	54	4	3.41	<10	0.38	1759	2	<0.01	2	580	6	<5	<20	846	<0.01	<10	8	<10	<1	41
97	D96-540	30	0.4	0.04	<5	270	<5	7.64	<1	<1	100	35	2.47	<10	0.93	1361	2	<0.01	2	160	104	15	<20	238	<0.01	<10	2	<10	5	48
98	D96-541	5	<0.2	0.21	5	ťŨ	<5	2.07	<1	2	151	19	0.79	<10	0.17	306	<1	<0.01	11	140	4	< 5	<20	120	<0.01	<10	6	<10	1	26
99	D96-542	5	<0.2	0.07	<5	25	<5	6.06	<1	2	96	5	2.46	<10	1.53	1179	2	<0.01	11	220	<2	5	<20	269	<0.01	<10	3	<10	<1	3
100	D96-543	5	<0.2	1.77	<5	85	10	6.11	<1	11	11	5	4.90	<10	1.67	1881	3	0.01	1	1140	12	<5	<20	163	<0.01	<10	71	<10	<1	29
101	D96-544	5	4.8	0.99	15	75	<5	0.13	<1	7	130	788	3.48	<10	0.60	262	7	<0.01	27	600	16	<5	<20	11	<0.01	<10	20	<10	<1	8
102	D96-545	5	0.4	0.04	<5	25	5	>10	<1	3	4	3	5.39	<10	4.92	2366	- 4	<0.01	10	530	<2	10	<20	123	<0.01	<10	16	<10	<1	<1
103	D96-546	5	<0.2	1.74	<5	55	<5	>10	<1	41	367	63	4.28	<10	1.59	938	<1	<0.01	186	260	12	<5	<20	81	0.12	<10	66	<10	3	22
104	D96-547	10	<0.2	0.06	25	15	15	>10	<1	4	12	1	4.62	<10	5.23	2106	3	<0.01	19	660	<2	20	<20	106	<0.01	<10	24	<10	10	<1
105	D96-548	5	4.0	0.54	10	25	<5	0.23	<1	7	91	46	2.82	<10	0.26	67	12	<0.01	43	430	12	<5	<20	13	<0.01	<10	48	<10	<1	60
106	A96-707	5	2.2	0.39	<5	100	<5	1.10	2	11	39	6	2.21	<10	0.06	748	2	0.01	2	1310	1126	<5	<20	11	<0.01	<10	8	<10	2	505
107	A96-708	5	<0.2	0.27	<5	95	<5	0.76	<1	2	109	3	0.88	<10	0.02	432	<1	0.01	3	960	6	<5	<20	13	<0.01	<10	5	<10	<1	99
108	A96-709	5	0.6	0.15	20	255	<5	0,01	<1	<1	108	1	D.54	<10	<0.01	29	<1	<0.01	1	110	18	<5	<20	5	<0.01	<10	2	<10	<1	<1
109	A96-710	5	0.2	0.05	20	85	30	3.34	<1	17	70	5	>10	<10	<0.01	2027	16	<0.01	1	10	70	<5	<20	70	0.03	<10	104	<10	<1	79
110	A96-711	140	1.6	0.04	105	995	10	0.04	<1	<1	77	32	7.34	<10	<0.01	194	11	<0.01	2	<10	186	5	<20	24	<0.01	<10	28	<10	<1	38
111	A96-712	5	0.6	0.06	<5	1325	10	5.94	<1	<1	62	10	7.58	<10	0.03	3312	6	<0.01	1	<10	36	<5	<20	172	<0.01	<10	35	<10	<1	79
112	A96-713	45	<0.2	<0.01	<5	<5	<5	<0.01	<1	<1	<1	<1	0.02	<10	<0.01	9	<1	<0.01	<1	<10	~2	<5	<20	<1	<0.01	<10	<1	<10	<1	<1
113	A96-714	5	1.4	0.07	<5	1560	<5	5.09	<1	<1	94	8	5.52	<10	0.12	9574	5	< 0.01	1	20	84	<5	<20	138	0.02	<10	37	<10	<1	60
114	A96-715	305	1.6	0.03	30	15	<5	1.07	<1	3	147	7	4.00	<10	<0.01	364	3	<0.01	4	<10	12	<5	<20	35	<0.01	<10	34	<10	<1	<1
115	A96-716	5	0.4	0.27	5	510	<5	>10	<1	1	36	4	1.41	<10	0.15	2967	<1	<0.01	2	180	8	<5	<20	14 1	0.02	<10	16	<10	<1	23
116	A96-717	5	0.2	0.14	<5	895	<5	7.66	<1	<1	32	1	2.13	<10	0.02	3350	<1	<0.01	1	1320	4	<5	<20	443	0.04	<10	31	<10	6	<1
117	A96-718	>1000	1.6	0.72	15	20	<5	2.76	<1	13	66	36	4.72	<10	0.33	2182	3	<0.01	4	440	40	<5	<20	30	0.01	<10	25	<10	<1	61
118	A96-719	20	8.2	0.12	55	225	<5	3.34	4	19	90	684	1.98	<10	0.03	2007	ā	<0.01	5	180	118	<5	<20	40	<0.01	<10	В	<10	<1	329
119	A96-720	230	1.2	0.06	35	135	<5	0.07	<1	9	128	79	1.00	<10	<0.01	471	4	<0.01	3	90	34	<5	<20	1	< 0.01	<10	2	<10	<1	160
120	A96-721	5	<0.2	0.57	15	325	<5	0.24	<1	8	138	7	2.43	<10	0.40	948	2	<0.01	6	730	10	<5	<20	21	<0.01	<10	15	<10	<1	225
121	A96-722	155	2.2	0.46	100	160	<5	0.14	<1	6	53	14	3 88	<10	0.13	161	з	<0.01	3	1100	52	<5	<20	9	<0.01	<10	31	<10	<1	84
122	A96-723	5	<0.2	0.87	<5	30	<5	0.03	<1	ā	118	18	2.01	<10	0.59	290	<1	<0.01	11	70	12	<5	<20	<1	<0.01	<10	27	<10	<1	18
123	A96-724	5	<0.2	1.03	<5	20	<5	0.14	<1	16	168	10	2 27	<10	0.73	455	<1	0.01	19	190	14	<5	<20	2	0.06	<10	36	<10	2	23
124	A96-725	5	<0.2	1.66	<5	60	<5	0.10	<1	10	72	67	3.50	<10	1.05	561	2	0.01	14	250	20	<5	<20	2	<0.01	<10	32	<10	<1	36
125	A96-726	5	<0.2	0.31	<5	10	<5	0.05	<1	3	164	5	0.77	<10	0.14	100	<1	<0.01	5	70	6	<5	<20	<1	<0.01	<10	9	<10	<1	<1
					-	· -	-		•	-								÷·• ·	-		-	-								

Page 4

TEUTO	N RESOU	RCES COR	PORA							RTIFIC	ATE OF	ANA	LYSIS	AS-54	12 005	PORAY	ión				ECO-TE	СНЦ	BORA	Torie	SLTDIA	বাংমান্ড	n Áfri i	1.0.9	· · · • · į •	2
Et #.	125	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mo	Мо	Na %	NI	Р	Pb	SЬ	Sn	Sr	Ti %	ับ	v	W	Y	Zn
126	A96-727	5	<0.2	2.14	<5	35	15	1,25	<1	23	18	18	6.77	<10	1.56	914	<1	0.02	2	4510	22	<5	<20	49	0.14	<10	23	<10	6	41
127	A96-728	5	0.2	1.76	<5	35	<5	0.14	<1	14	96	10	3.53	<10	1.21	467	2	<0.01	11	590	20	<5	<20	<1	<0.01	<10	37	<10	<1	34
128	A96-729	10	<0.2	1,30	<5	25	<5	0.13	<1	10	77	5	2,73	<10	1.12	371	<1	0.02	7	420	16	<5	<20	5	0.03	<10	36	<10	3	27
129	A96-730	5	<0.2	1.94	<5	45	10	1.19	<1	14	34	6	3.87	<10	1.41	1013	<1	0.02	1	1630	22	<5	<20	49	0.09	<10	54	<10	<1	33
130	A96-731	5	<0.2	2.62	<5	25	10	0.84	<1	9	26	1	5.63	<10	1.88	661	2	0.02	1	1200	26	<5	<20	10	0.05	<10	57	<10	<1	21
131	A96-732	5	<0.2	1.86	<5	30	10	0.29	<1	202	36	18	6.47	<10	1.19	493	3	0.02	3	1240	20	<5	<20	4	0.04	<10	44	<10	<1	15
132	A96-733	5	<0.2	1.88	<5	25	5	0.48	<1	17	33	26	4.01	<10	1.22	1070	<1	0.02	ſ	1340	20	<5	<20	23	0.07	<10	42	<10	2	37
133	A96-734	5	<0.2	1.87	<5	35	5	2.44	<1	12	26	2	3.84	<10	1.22	730	2	0.03	<1	1520	20	<5	<20	46	<0.01	<10	43	<10	<1	30
134	A96-735	5	<0.2	2.16	<5	30	15	1.97	<1	13	23	1	4.32	<10	1.45	713	3	0.03	1	1580	20	<5	<20	32	<0.01	<10	52	<10	<1	36
135	A96-736	5	<0.2	1.61	<5	60	<5	2.47	<1	11	16	24	4.03	<10	0.91	744	3	0.03	1	1430	16	<5	<20	17	<0.01	<10	31	<10	<1	36
136	A96-737	5	<0.2	3.59	<5	35	10	3.88	<1	27	130	. 4	5.41	<10	3.64	1300	<1	⊲0.01	54	2480	30	<5	<20	49	D.14	<10	134	<10	<1	46
137	A96-738	5	2.0	0.24	<5	20	10	0.02	<1	7	24	6	6.08	<10	0.01	16	6	<0.01	2	60	46	<5	<20	2	<0.01	<10	8	<10	<1	22
138	A96-739	10	4,4	0.12	<5	30	15	0.01	5	11	40	13	>10	<10	<0.01	19	15	<0.01	3	<10	160	<5	<20	4	<0.01	<10	4	<10	<1	452
139	A96-740	5	3.6	0.22	25	25	5	0.01	<1	10	54	7	>10	<10	<0.01	13	15	⊲0.01	3	20	160	<5	<20	5	< 0.01	<10	12	<10	<1	16
140	A96-741	5	1.4	0.39	35	20	<5	0.38	12	13	51 j	14	3.42	<10	<0.01	52	3	<0.01	4	1720	64	<5	<20	12	<0.01	<10	18	<10	2	997
141	A96-742	. 5	3.2	0.13	75	145	<5	<0.01	<1	<1	61	4	1.15	<10	<0.01	27	2	<0.01	1	900	202	<5	<20	6	<0.01	<10	9	<10	<1	10
142	A96-743	5	5.2	0.13	110	145	<5	< 0.01	<1	3	63	29	1.62	<10	< 0.01	17	7	<0.01	2	100	178	10	<20	4	<0.01	<10	7	<10	<1	79
143	A96-744	10	0,6	0.11	10	190	<5	<0.01	<1	<1	49	2	0.67	10	< 0.01	17	7	<0.01	1	110	38	<5	<20	5	<0.01	<10	<1	<10	<1	2
144	A96-745	5	1.2	0.09	20	100	<5	<0.01	<1	<1	53	5	1.10	<10	<0.01	22	4	<0.01	Ť	110	56	<5	<20	4	<0.01	10	<1	<10	<1	4
145	A96-746	5	0.6	0.40	5	85	5	0.04	<1	2	36	5	2.14	10	0.07	94	9	<0.01	<1	450	18	<5	<20	6	<0.01	<10	2	<10	<1	68
146	A96-747	5	0.6	0.09	<5	75	<5	<0.01	<1	<1	69	2	0.65	10	<0.01	16	7	<0.01	2	190	104	<5	<20	6	<0.01	<10	<1	<10	<1	6
147	A96-748	5	0.6	0.15	<5	125	<5	<0.01	<1	2	30	7	2.71	<10	<0.01	59	5	<0.01	<1	450	50	<5	<20	8	<0.01	<10	<1	<10	<1	236
148	A96-749	5	1.0	0.12	5	70	<5	<0.01	<1	<1	41	5	1.51	<10	<0.01	17	10	<0.01	4	140	80	<5	<20	3	<0.01	<10	<1	<10	<1	15
149	A96-750	5	1.0	0.18	<5	45	<5	0.02	<1	4	59	7	2.21	<10	<0.01	34	2	<0.01	2	400	300	<5	<20	4	<0.01	<10	4	<10	<1	136
150	A96-751	5	<0.2	0,70	<5	50	10	3.45	<1	17	35	9	5.01	<10	0.35	1472	2	<0.01	6	1110	16	<5	<20	26	0.09	<10	87	<10	1	144
151	A96-752	5	0.8	1.23	<5	55	10	0.04	<1	5	41	5	5.27	<10	0.32	436	14	<0.01	1	320	148	<5	<20	2	<0.01	<10	. 9	<10	<1	153
152	A96-753	5	6.6	0.23	160	40	<5	0.12	2	20	79	113	2.15	<10	0.01	71	5	<0.01	5	1010	424	<5	<20	5	<0.01	<10	20	<10	<1	318
153	A96-754	5	1.4	0.11	35	220	<5	0.93	<1	36	19	6	2.26	<10	<0.01	1457	3	0.01	3	2890	20	<5	<20	67	<0.01	<10	4	<10	3	215
154	A96-755	5	<0.2	1.73	<5	140	10	2 09	<1	13	38	6	3.33	<10	1 71	569	<1	0.04	Ā	1140	20	<5	<20	69	0.09	<10	64	<10	1	40
155	A96-756	5	0.2	0.31	5	75	<5	1.99	<1	8	32	7	1.97	<10	0.07	690	3	<0.01	3	550	12	<ã	<20	28	<0.01	<10	6	<10	2	37
156	A96-757	5	<0.2	0.29	<5	đ۵	<5	0.85	<1	2	105	٦	0 00	<10	ሰ ሰዳ	484	2	<0.04	A	540	д	6 5	<20	18	<0.01	<10	3	<10	2	23
157	A96-758	10	0.2	0.56	5	95	~5	2.06	21	Â	25	10	1 05	10	0.00	787	2	-0.01	7	660	14	-5	<20	18	0.03	<10	16	<10	2	30
158	A96-759	.5	0.6	0.15	<5	70	رب. جاج	0.70	~1	6	70	10	1.55	-10	0.14	706	2	-0.01	4	780	10	~0 ~6	~20	10	<0.03	<10	, , , , , , , , , , , , , , , , , , ,	<10	2	30
159	A96-760	5	0.2	0.67	<5	100		2.56	21	10	10	19	1.01	<10	0.01	1244	7	-0.01	3	100	10	~5	~20	14	0.02	<10	13	<10	2	97
160	496-761	ی ج	2.0	1.05	50	325	10	1.00	40	24	23		2.00	~10	0.13	1670	~ ~ 1	~0.01	2	1900	10	~0 ~6	~20	04	0.34	<10	0,4	<10	Ā	940
100			Z. U	1.00	50	323	IU.	(.2)	10	21	20	41	2.13	<10	U.97	1010	<1	~U.U1	0	1000	102	<0	~ <u>2</u> 0	94	0.91	~10	74	-10		

٠

тс	N RESOUF	CES COR	PORAT	NOC	ţ			, I	CP CEI	RTIFIC	ATE O	ANAL	YŞIS -	AS-54	300P	PORAT	16171			i	ECO-TI	ECH LA	BORA	Iorie	S LTD.	an ta an	24 - 19		15.5	±
l#	. 125	Au(ppb)	Ag	AI %	As	Ba_	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Nř	P	Pb	Sb	Sn	Sr	TI %	U	v v	W	γ	Zn
1	A96-762	5	1.6	1.36	20	780	10	2.03	9	. 20	20	37	3.45	<10	0.93	2013	<1	0.01	6	1730	198	<5	<20	163	0.25	<10	116	<10	7	764
i2	A96-763	5	<0.2	0.06	<5	60	-5	2.05	<1	3	66	2	1.28	<10	0.03	990	3	<0.01	2	1200	10	<5	<20	50	<0.01	<10	2	<10	2	40
i3	A96-764	340	13.0	0.09	255	70	<5	0.30	4	12	72	1250	3.44	. <10	<0.01	2156	4	<0.01	3	1520	136	1380	<20	27	<0.01	<10	2	<10	3	508
i4	A96-765	5	0.4	0.25	<5	45	<5	0.05	<1	1	98	7	1.77	<10	0.06	466	4	<0.01	3	100	40	<5	<20	3	<0.01	<10	2	<10	<1	19
i5	A96-766	5	0.2	0.35	<5	35	<5	0.40	<1	4	128	8	1.74	<10	0.10	629	1	<0.01	3	440	4	<5	<20	10	<0.01	<10	7	<10	<1	42
i6	A96-767	5	2.0	0.04	<5	15	<5	>10	12	3	14	4	3.29	<10	1.83	8421	6	<0.01	<1	210	194	10	<20	274	0.01	<10	3	<10	<1	1130
i7	A96-768	5	0.2	0.08	10	30	<5	0.11	<1	3	119	4	1.04	<10	<0.01	661	<1	<0.01	3	210	16	<5	<20	4	<0.01	<10	1	<10	<1	41
18	A96-769	5	0.4	0.34	<5	70	<5	1.27	<1	4	31	3	1.87	10	0.33	1203	1	<0.01	1	1680	22	<5	<20	74	0.02	<10	31	<10	3	102
9	A96-770	5	0.4	0.09	<5	1350	<5	3.44	<1	<1	88	11	0.62	<10	0.09	1119	<1	<0.01	2	320	94	<5	<20	409	<0.01	<10	1	<10	3	98
10	A96-771	5	0.2	0.39	<5	240	<5	3.60	<1	4	13	<1	2.04	10	0.64	2052	2	<0.01	1	1450	4	5	<20	85	<0.01	<10	9	<10	2	51
11	A96-772	10	0.4	0.34	<5	230	<5	4.49	<1	4	32	<1	2.14	<10	0.49	2677	2	<0.01	1	1060	4	<5	<20	127	<0.01	<1 0	6	<10	2	49
12	A96-773	305	3.2	0.10	10	25	<5	4.00	49	6	59	1589	7.29	<10	1.14	3433	5	<0.01	1	140	482	<5	<20	105	<0.01	<10	4	<10	<1	6087
i3	A96-774	5	0.4	1.10	5	55	<5	4.85	<1	11	27	34	3.64	<10	0.97	1917	З	0.01	8	1100	10	<5	≺20	141	<0.01	<10	42	<10	2	51
14	A96-775	10	0.4	0.25	90	50	<5	4.29	<1	14	42	19	4.33	<10	0.94	1436	4	<0.01	14	780	4	<5	<20	204	<0.01	<10	10	<10	2	32
15	A96-776	5	0.6	0.13	35	45	<5	2.27	<1	4	104	41	1.37	<10	0.51	412	4	0.01	26	250	26	5	<20	189	<0.01	<10	7	<10	1	77
i6	A96-777	5	0.2	0.41	<5	90	<5	2.64	<1	5	46	11	1.56	<10	0.09	537	1	<0.01	1	1380	10	<5	<20	88	<0.01	<10	4	<10	3	31
17	A96-778	10	0.2	0.26	<5	15	10	>10	<1	3	11	Э	4,24	<10	6.08	1902	6	0.01	18	60	<2	10	<20	267	<0.01	<10	21	<10	7	6
8	A96-779	5	<0,2	3.11	<5	25	5	0,78	<1	47	204	53	5.35	<10	3.77	642	<1	0.03	182	320	24	<5	<20	10	Q.15	<10	45	<10	2	36
í9	A96-780	5	<0.2	1.89	<5	40	5	3.16	<1	58	673	74	7.01	<10	2.05	773	<1	0.03	240	260	14	<5	<20	. 26	0.19	<10	87	<10	2	37
0	A96-781	5	6.4	0.33	810	40	5	8.86	<1	29	16	23	4.81	<10	2.32	2559	3	<0.01	43	580	32	35	<20	152	<0.01	<10	22	<10	. 7	230
1	A96-782	10	<0.2	1.28	10	<5	<5	>10	<1	15	223	32	2.05	<10	1.33	89 t	<1	<0.01	50	90	4	5	<20	525	0.02	<10	53	<10	4	9
2	A96-783	5	<0.2	3.76	50	40	5	1.51	<1	44	146	54	7.90	<10	3.38	1179	6	0.02	69	890	24	<5	<20	27	0.05	<10	227	<10	6	61
3	A96-784	10	1.4	0.98	<5	60	<5	0.31	<1	5	57	23	2.08	<10	1.09	97	1	<0.01	16	1160	18	<5	<20	29	<0.01	<10	27	<10	<1	30
4	A96-785	5	<0.2	1.46	<5	10	5	>10	<1	8	186	3	2,39	<10	1.81	633	<1	<0.01	22	320	34	10	<20	294	0.05	<10	72	<10	<1	17
5	A96-786	5	<0.2	0,17	5	10	<5	1.95	6	12	169	42	1.16	<10	0.15	914	2	<0.01	64	40	<2	<5	<20	200	<0.01	<10	9	<10	6	215
6	A96-787	10	<0.2	0.72	15	125	<5	3.36	25	9	120	70	1.53	<10	0.71	1403	25	0.01	107	9300	10	20	<20	156	0.01	<10	620	<10	30	939
17	A96-788	5	<0.2	0.31	70	50	<5	0.17	<1	з	133	20	1.88	<10	0.05	25	76	0.01	50	970	8	15	<20	10	<0.01	<10	209	<10	4	185
8	A96-789	5	0.6	0.20	25	30	<5	0.04	<1	З	161	93	3.23	<10	<0.01	44	30	<0.01	39	1090	2	<5	<20	6	<0.01	<10	69	<10	<1	160
: 9	MM96-071	5	<0.2	1.91	45	55	15	1.30	<1	35	35	14	8.30	<10	1.35	932	<1	0.03	6	1090	18	<5	<20	23	0.34	<10	166	<10	15	90
0	MM96-072	5	<0.2	2.32	5	50	20	1.29	<1	32	37	16	6.90	<10	1.50	754	<1	0.08	7	950	22	<5	<20	20	0.40	<10	167	<10	15	72
94	MM96-073	5	<0.2	1.98	<5	55	20	1.32	<1	31	28	17	6.90	<10	1.29	738	<1	0.06	5	1110	16	<5	<20	19	0.44	<10	142	<10	13	71
22	MM96-074	10	0.6	0.92	65	95	<5	3.47	1	12	29	17	3.81	<10	0.44	745	4	<0.01	4	740	154	<5	<20	61	<0.01	~10	21	<10	<1	144
03	MM96-075	5	0.6	2.10	<5	60	<5	1.94	<1	23	36	109	5.92	<10	1.29	887	5	<0.01	24	1400	30	<5	<20	56	0.01	<10	63	<10	<1	100
14	MM96-076	5	1.2	0.49	410	175	10	4.48	5	14	26	6	5.82	<10	0.28	3266	4	0.01	3	980	364	<5	<20	87	<0.01	<10	26	<10	12	1190
5	MM96-077	5	<0.2	2,23	<5	130	<5	5.13	<1	21	17	78	5.35	<10	1.36	1270	3	0.01	7	1780	16	<5	<20	140	0.01	<10	108	<10	1	60

.

									i																				
								·									1												
																	• •												
TEUTO	N RESOUR	CES COR	PORAÍ	TION				J	CP CE	RTĮFICA	TE OF	ANAL	YSIS	AS-541	2 <i>ç</i> 087	NORAT	ION		I	ECO-TE	CHLA	BORA	TORIES	LTD.		3 - 17,	÷	r. 4 . 5	
Et#	. 125	Au(ppb)	Ag	AI %	As	Ba	B	Ca %	Cd	ç Ca	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	NI	P	Pb	Sb	Sп	Sr	11%	U	v	w	Ŷ	Zn
196	MM96-078	5	<0.2	1.57	25	130	<5	3.81	<1	12	25	72	3.66	<10	0.85	955	3 0.02	18	1260	28	<5	<20	172 <	<0.01	<10	33	<10	2	97
197	MM96-079	10	0.4	1.92	5	60	-5	0.35	≺1	22	27	104	6.18	<10	1.12	427	5 0.01	29	1120	60	<5	<20	15 <	<0.01	<10	41	<10	<1	89
198	MM96-080	5	0.6	1.55	55	155	<5	0.81	<1	14	25	71	5.80	<10	0.87	640	6 0.02	17	1070	60	<5	<20	28 <	< 0.01	<10	40	<10	<1	100
199	MM96-081	5	0.4	2.30	10	100	<5	8.66	1	17	19	98	4.74	<10	1.63	1881	3 < 0.01	6	1600	18	<5	<20	329 <	<0.01	<10	92	<10	2	149
200	MM96-082	5	<0.2	2.08	<5	60	<5	4.93	<1	16	25	58	4.53	<10	1.44	1218	3 <0.01	14	1350	24	\$	<20	204 <	\$0,01	<10	. 65	<10	<1	45
201	MM96-083	5	0.2	1 85	5	55	<5	8.78	<1	17	18	67	5.48	<10	1.27	1832	4 < 0.01	8	1730	22	<5	<20	414 <	<0.01	s10	74	<10	2	33
202	MM96-084	5	<0.2	1.94	<5	95	<5	6.63	<1	23	17	73	4.49	<10	1.20	1133	3 < 0.01	8	2000	16	<5	<20	26 6	0.01	<10	f07	<10	2	36
203	MM96-085	5	0.4	1.10	<5	60	<5	3.58	<1	26	16	98	4.42	<10	1.16	880	3 <0.01	11	2080	10	<5	<20	144 <	0.01	<10	41	<10	2	30
204	MM96-086	10	0.6	0.84	10	635	<5	>10	<1	3	16	25	2.25	<10	0.56	4345	2 <0.01	8	730	8	<5	<20	692 <	0.01	<10	28	<10	10	30
205	MM96-087	5	<0.2	1.97	<5	80	5	5.B4	<1	23	21	69	5.76	<10	1.50	1201	4 ⊲0.01	9	1780	14	<5	<20	227	0.02	<10	105	<10	2	37
206	MM96-088	5	<0.2	2.30	10	75	5	4.83	<1	25	15	59	5.83	<10	1,73	1282	4 0.01	7	2260	20	<5	<20	138	0.01	<10	161	<10	2	4 4
207	MM96-089	5	<0.2	2.38	<5	115	<5	6.02	<1	22	14	66	5.94	<10	1.91	1412	4 <0.01	7	2050	22	<5	<20	214	0.01	<10	152	<10	1	50
208	MM96-090	5	<0.2	1.74	<5	105	10	6.55	<1	18	14	21	5.70	<10	1.64	1353	4 <0.01	6	1960	20	<5	<20	175 <	0.01	<10	85	<10	t	44
209	MM96-091	10	0.4	2.23	<5	65	<5	4.74	<1	24	21	70	6.37	<10	2.44	1445	4 <0.01	5	2070	18	1U - E	<20	80	0.02	<10	200	<10	5	79
210	TP96-175	5	<0.2	1.69	5	80	4	2.46	<1	14	34	55	4.24	<10	1,09	/24	3 0.02	26	1330	32	<a< td=""><td><20</td><td>41 5</td><td>-0.01</td><td><10</td><td>61</td><td><10</td><td>2</td><td>82</td></a<>	< 20	41 5	-0.01	<10	61	<10	2	82
211	TP96-176	5	<0.2	2.48	<5	190	<5	4.15	<1	19	28	56	5.14	<10	1.67	1175	2 0.01	10	1760	22	<5	<20	100	0.05	≺10	159	<10	2	64
212	TP96-177	35	0.4	1.34	25	80	<5	>10	<1	15	11	34	2.80	<10	0.77	1858	2 < 0.01	5	1390	14	<5	<20	4/6 <	0.01	<10	41	<10	4	33
213	TP96-178	5	<0.2	2.00	15	85	<	4.96	<1	14	25	58	4.19	<10	1.25	1033	3 0.01	40	1,350	28	40	<20	100 4	0.01	<10	66	<10	2	75
214	TP95-179	5	0.4	0.54	140	120	<0 -5	3.31	9	11	44	402	4.UZ	<10	0.04	1262	4 < 0.01	13	2440	190	10 <5	<20	187 <	0.01	~10	10	<10	3	709
215	182-100	5	1.0	0.51	10	90	5	4.30	2	14		102	0.57	~10	0,02	1302	3 -0.01	J	2440	02	-5	-20	107	0.07	510	13	10	4	102
216	TP96-181	10	<0.2	1.59	5	80	<5	7.55	<1	8	20	71	3.14	<10	0.97	1215	2 < 0.01	9	1170	20	<5	<20	149 <	0.01	<10	48	<10	4	100
217	TP96-182	5	<0.2	1.97	<5	75	<5	5.27	<1	12	11	38	3.95	<10	1.24	1319	3 0.02	7	1510	14	<5	<20	170	0.01	<10	64	<10	2	83
218	TP96-183	5	<0.2	3.08	<5	165	15	4.03	<1	27	9	7	7.28	<10	1.92	1269	<1 0.01	1	1110	24	<5	<20	101	0.26	<10	218	<10	6	77
219	TP96-184	5	0.2	1.59	30	105	5	3.64	<1	11	11	56	4.40	<10	1.03	1137	4 < 0.01	8	1660	15	<5	<20	/J <	0.01	<10	51	<10	3	94
220	TP96-185	5	<0.2	1.91	15	95	<5	6.04	<1	16	15	65	4.51	<10	1,34	1681	3 <0.01	10	1460	24	2	~20	209 ~	0.01	\$10	64	<10	2	152
221	TP96-186	40	<0.2	2.37	30	120	5	5.71	<1	15	19	44	4.51	<10	1.50	1354	3 <0.01	6	2240	18	<5	<20	210 <	0.01	<10	94	<10	2	52
222	TP96-187	525	0.4	1.70	275	300	<5	0.25	<1	11	18	101	4.07	<10	1.07	322	5 < 0.01	12	1890	38	<5	<20	72 <	0.01	<10	61	<10	2	89
223	TP96-188	10	<0.2	2.00	20	80	<5	4.61	<1	18	18	63	4.81	<10	1.08	1078	4 0.01	6	1850	18	<5	<20	123 <	0.01	<10	103	<10	1	37
224	TP96-189	5	0.6	0.06	10	15	<5	>10	<1	<1	2	45	0.22	<10	80.0	2051	<1 0.01	<1 1	40	<2	10	<20	406 4	0.01	<10 ct0	2	<10	<1	11
225	i P96-190	5	<0.2	2.34	<5	120	5	1.26	<1	12	30	â	0./5	<10	1.51	0/4	1 0.05	2	1000	213	~3	~ ∡ U	23	u.UZ	~10	133	<1U	ŧΦ	98
226	TP96-191	5	<0.2	3.24	<5	70	15	1.41	·<1	33	23	11	8,75	<10	2.58	991	7 0.01	7	1270	26	<5	<20	34	0.01	<10	225	<10	10	76
227	TP96-192	5	<0.2	2.98	<5	45	10	3.00	<1	31	23	12	7.95	<10	2.34	1255	6 0.02	8	740	22	<5	<20	(5 9	0.01	<10	307	<10	7	74
228	TP96-193	5	<0.2	1.93	160	70	10	1.45	<1	23	26	13	7.01	<10	1.66	1221	6 0.02	5	990	30	<5 /5	<20	კე.≪ ვე -	0.01	<10	137	<10	6	292
229	TP96-194	5	<0.2	1.95	5	140	<5	3.07	<1	21	26	70	4.83	<10	1.50	641	<1 0.03	4 40	1980	18	~ð ~5	<20 ∡20	102 -	0.20	510	202	<10	5	40
230	1/295-195	5	<0.2	2.38	10	75	<5	5.45	<1	21	27	54	5,24	<10	1.50	1040	4 <0.01	JU.	1540	10	~2	~2U	103 1	ų.U I	N90	123	- 10	2	49

	_		_	_	_	_		_						_		_	_		_	_	_		_		_		_		-	
					i i	, B													_ L											Ę
									•																					
10000 L 190			DOD 4-	TION					CB CE5	วราธิเคย		= A NI Ŭ I	VSIS -	45.541	12						ECO-TE	FCHLA	BORA	TORIE	S LTD.		e			
1601	ON RESUU	KUES UVK	PURA	101						CTIPIO C		20105	งพิสษณ	u.c.	100R	PORATI	ON)737(D)	47517	e shark	· · · · · · · · ·			· •'	-
Et	#. 125	Au(pob)	Aq	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Сц	Fe %	La	Mg %	Mя	Mo Na	a %	NE	Р	Pb	Sb	Sn	Sr	T1 %	. U	<u> </u>	W	Y	Zn
231	TP96-198	3 5	<0.2	1.95	10	135	5	3.03	<1	20	25	71	4.69	<10	1.49	826	<1 0	0.04	5	1890	14	<5	<20	89	0.26	<10	202	<10	6	36
232	TP96-197	7 5	0.8	1.65	40	125	<5	1.62	<1	17	58	61	3.67	<10	0.83	620	<1 0	.02	20	670	24	<5	<20	53	0.12	<10	73	<10	3	50
	ATA:	-																												
Repe	at:	· · · · ·			_						47		0.04	-10	0.01	06	-1 -0		- 4	20		~5	~ 20	63	<0.01	~10	,	~10	~1	-1
1	D96-476	160	0.4	0.06	<5	1095	<5	0.02	<1	<1	1/	404	0.21	<10	0.03	20	<1 <u< td=""><td>1.01</td><td><1 A</td><td>20</td><td>259</td><td>150</td><td><20</td><td>203</td><td>0.07</td><td><10</td><td>21</td><td><10</td><td><1</td><td>118</td></u<>	1.01	<1 A	20	259	150	<20	203	0.07	<10	21	<10	<1	118
10	D96-465	630	>30	0.24	435	230	<5	0.01	<1	20	117	194	0.11	<10	<0.01 2.40	785	21 0	101	10	2810	200	<5	<20	178	0.02	<10	70	<10	<1	87
19	D96-494	-	<u.2< td=""><td>2.34</td><td><0</td><td>50</td><td>10</td><td>1.34</td><td></td><td>20</td><td>04</td><td></td><td>4.37</td><td>510</td><td>2.10</td><td>755</td><td></td><td>-</td><td>10</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td></td><td>•.</td></u.2<>	2.34	<0	50	10	1.34		20	04		4.37	510	2.10	755		-	10		-	-		-	-			-		•.
20	D90-493	5	•	-	-	-	-	-		-	-		-	_	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	•
24	D30-423	J J	•	-	•																•									
28	D96-503	-	13.4	0.14	80	30	<5	0.56	24	7	74	18	3.35	<10	<0.01	906	22 <0	.01	4	350	804	<5	<20	62	0.02	<10	64	<10	<1	1185
31	D96-506	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-
36	D96-511	-	2.6	0.13	25	210	<5	<0.01	<1	<1	144	18	1.01	20	<0.01	22	10 <0	.01	3	20	84	20	<20	<1	<0.01	<10	<1	<10	<1	8
40	D96-515	5	-	-	-	-	-	-	-	•	•	-	-	-	-	-	-	-	-	-			-	-	-	-	-		-	-
45	D96-520	-	8.4	0.32	50	25	<5	0.20	128	32	63	47	3.40	<10	0.03	290	5 <0	.01	5	950	6862	<5	<20	a	<0.01	<10	19	<10	<1	5/48
	000 505															_	_			-	_			-	-	-	-	•	-	-
50	D90-323	333	14	0.16	-	35	15	0.42	<1	44	87	104	>10	<10	0.07	767	12 <0	.01	4	50	6	<5	<20	18	<0.01	<10	2	<10	<1	60
· 04	D06-525	305	1.4	0.10		-		0.42	-	-	-		- 14		-	-		-	_	-	_	-	-	-	-	-	-	-		-
55 61	F96-4			-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-
63	E96-6	-	1.0	2.08	<5	55	<5	0.48	2	51	17	624	>10	<10	1.81	722	17 <0	.01	34	10	18	<5	. <20	6	0.02	<10	94	<10	<1	106
70	E96-13	110	-	-	-	-	-	-	-	•	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	
71	E96-14	-	12.8	0.05	85	65	<5	0.12	1	59	1	3752	>10	<10	<0.01	138	20 <0	.01	6	<10	<2	<5	<20	<1	<0.01	<10	2	<10	<1	43
75	CK-002	100	-	-	-	-	-		-	-	-	-	-	-		-		-	-	- 87A	-	~5	- 20	20	0.16	<10	152	- - 10	,	20
80	CK-007	•	<0.2	2.47	<5	125	<5	0.41	<1	10	42	50	4.87	<10	1.95	204	10 10	.01	12	0/0	02		-20	20	0.,0			-10	-	-
. 85	CK-012	105	-	-	-	-	-	-	-	•	-	-	-	•	•	-	-	•	•	•	-									
80	CK-016		4 8	030	80	35	10	0.14	<1	45	63	126	>10	<10	0.13	180	13 <0	.01	16	70	54	<5	<20	11	0.03	<10	9	<10	<1	255
91	D98-534	5	4.0	0.55		-	-	-	-	-	-	-			-	-	-	-	-	•	-		-	-	-	-	•	-	-	-
98	D96-541		<0.2	0.22	<5	10	<5	2.10	<1	2	154	20	0.80	<10	0.18	308	<1 <0	.01	11	150	4.	<5	<20	123	<0.01	<10	6	<10	1	25
100	D96-543	5	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	•	-	-	-	•	-	-	-
105	D96-548	5		+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	•	-	-	-	-	•	-	-
																	~			40.00					-0.04	~10		~10	•	604
106	A96-707	+	2.0	0.39	<5	100	<5	1.12	2	12	39	6	2.25	<10	0.06	757	2 0	.01	1	1340	1160	<5 ~F	<20	13.9	-0.01	<10	0 16	<10	2 c1	020 23
115	A96-716	5	<0.2	0.27	5	505	5	>10	1	<1	34	3	1.39	<10	Q.15	2927	<1 <0	.01	Z	190	Ø	-5	~20	100	0.02	-10		- 10	-	25
121	A96-722	135			•	-	-	-	مر	-	-	-	252	~ 10	4 05	501	- 2 - 1	- 01	- 1 A	- 250	20-	<5	<20	1	<0.01	<10	32	<10	<1	38
124	A96-725	-	<0.2	1.65	<5	55	<5	0.09	<1	10	70	۵ï	3.52	~10	1,00	- 00	2 ~U	.v.	-	200	- 12				-	-	-		-	•
130	A96-731	5	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	_	-	-	-									

Page 8

1

;

TEUT	on resour	RCES CORI	PORAT	NON				· 1	ICP CEF	RTIFIC	ATE OF	ANAL	YSIS N KESI	AS-541	2 5 0043	PORATI	l()H			1	ECO-TE		BORA	TORIE	S LTD.	- -			•	
Et	. 125	Au(ppb)	Ag	AI %	As	Ba	Bł	Ca %	Cd	Ċo	Gr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	W	Y	Zn
133	A96-734	-	0.4	1.86	- 45	35	5	2.45	<1	12	26	2	3.79	<10	1.23	733	1	0.03	<1	1520	18	<	<20	45	<0.01	<10	42	<10.J	_	31
139	A96-740	5	-		-	_	-		-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	•	•			-
141	A96-742		3.2	0.13	80	150	<5	<0.01	<1	<1	62	4	1.17	<10	<0.01	27	2	<0.01	1	930	208	<5	<20	· 5	<0.01	< 1 0	9	<10 S	: <1	10
150	A96-751	5	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	• •	-	-
151	A96-752	5	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-
159	A96-760	-	<0.2	0.70	<5	55	15	3.52	<1	17	35	9	5.01	<10	0.36	1491	2	<0.01	6	1120	16	<5	<20	27	0.09	<10	86	<10	1	148
160	A96-761	5	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-
168	A96-769	-	0.4	0.48	<5	85	5	1.64	<1	6	30	5	2.02	<10	0.23	1224	2	<0.01	2	1620	20	<5	<20	65	0.02	<10	24	<10	2	99
169	A96-770	5	-	•	-	-	•	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	•	-
178	A96-777	-	0.4	0.32	<5	75	<5	2.24	<1	4	41	13	1.83	10	0.12	454	1	<0.01	1	1280	12	<5	<20	81	0.02	<10	6	<10	3	41
180	A96-781	5	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	`-	-	-	-	•	-	-	-	-	-
181	A96-782	5	-	-	-	-	-	-	-	-	-	-	-	٠	-	-	-	-	-	~	-	-	-	-			-	-	_	-
185	A96-786	-	0.2	0.23	<5	15	<5	1.71	4	10	148	32	1.61	<10	0.10	750	<1	<0.01	62	80	- 4	<5	<20	192	<0.01	<10	8	<10	3	192
190	MM96-072	2 5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	•	-	-	-	-	-		-	-
194	MM96-076	i -	1.0	0.37	310	115	<5	3.94	6	12	32	8	4,16	<10	0.25	3116	2	<0.01	10	840	310	<5	<20	80	<0.01	<10	16	<10	10	1014
200	MM96-082	5	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-
220	TP96-185	5	0.2	1.84	15	95	<5	5.83	<1	16	14	65	4.35	<10	1.28	1621	3	<0.01	9	1420	22	<5	<20	204	<0.01	<10	52	<10	2	145
Stand	ard:																													
GEO'9	6	140	1.0	1.80	70	165	<5	1.77	<1	18	64	78	3.86	<10	0,98	671	<1	0.02	21	670	20	<5	<20	56	0.10	<10	80	<10	7	74
GEO'9	6	150	0.B	1.69	70	170	<5	1.90	≺1	20	60	82	3.70	<10	1.04	720	<1	0.02	21	640	18	<5	<20	52	0.13	<10	75	<10	6	74
GEO'9	6	140	1.2	1.82	60	160	<5	1.90	<1	22	66	84	3.82	<10	0.96	710	<1	0.02	19	630	20	<5	<20	56	0.12	<10	71	<10	5	72
GEO'9	6	145	1.0	1.80	65	165	<5	1.89	<1	20	62	76	`4.04	<10	1.02	700	<1	0.02	20	690	20	<5	<20	60	0.11	<10	79	<10	5	70
GEO'9	6	150	1.0	1.80	70	160	<5	1.89	<1	20	. 65	82	4.02	<10	1.02	710	<1	Q.02	20	660	26	<5	<20	- 58	0.12	<10	70	<10	5	70
GEO'9	6	140	1.0	1.80	65	165	<5	1.90	≺1	21	64	80	3.68	<10	0.96	715	<1	0.02	20	690	22	<5	<20	60	0.12	<10	72	<10	7	72
GEO'9		145	1.2	1.85	70	165	5	1.91	1	21	68	80	4.01	10	1.03	710	1	0.01	22	710	20	5	20	60	0.10	10	81	10	7	74
GEO'9	5	150	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-

.

FCO-TECH LABORATORIES LTD. . Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

1

. :

dl/5412/5413 XLS/96Teuton#11 *Fax to Dino Vancouver 604-682-3992*

