GEOCHEMICAL AND PETROGRAPHIC REPORT

_

on the

STAR CLAIMS

OMENICA MINING DIVISION

N.T.S. 94-C-5E and 94-C-12E

Lat.: 56⁰29'N Long.: 125⁰40'W

25 () 12

by

U. MOWAT, P. GEO.

February, 1997

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Location and Access	1
3.0	Claim Data	1
4.0	History	4
5.0	Regional Geology	4
6.0	Property Geology	5
7.0	Mineralization	6
8.0	Alteration	6
9.0	Work Program	7
10.0	Sample Description	7
11.0	Analytical Work	9
12.0	Analytical Results	15
12.1	Nickel	15
12.2	Cobalt	15
12.3	Copper	16
12.4	Chromium	16
12.5	Silver	16
13.0	Petrographic Work	17
14.0	Conclusions	18
15.0	Recommendations	18
16.0	References	19
17.0	Statement of Costs	21
18.0	Statement of Qualifications	23

FIGURES

Figure 🔅	1:	Location Map - Star Claims	2
Figure 2	2:	Claim Map - Star Claims	3

TABLES

Table	1	-	Nickel in PPM	10
Table	2	-	Cobalt in PPM	11
Table	3	<u></u>	Copper in PPM	12
Table	4	_	Chromium in PPM	13
Table	5	-	Silver in PPM	14

APPENDICES

Appendix I: Process Research Report Appendix II: Ashton Mining and Cominco Reports Appendix III: Geochemical Results

<u>MAPS</u>

Sample Location Map

1.0 <u>INTRODUCTION</u>

On November 1, 1996, two men collected 14 rock samples (approximately 120 kg) from selected parts of the Star Claims for geochemical and petrologic examination. Previous sampling by a variety of companies indicated the presence of Ni, Cr, Pt, Pd and Au. The 14 rock samples which were subjected to a variety of geochemical tests indicated that the Ni values from the previous work were not generated by nickel silicates but from awaruite, heazlewoodite or pentlandite. Petrologic examination of 3 selected hand specimens also confirmed the presence of nickel sulphides.

2.0 LOCATION AND ACCESS

The Star 1 - 5 claims, which are located on map sheets 94-C-5E and 94-C-12E, are 13 km northeast of Aiken Lake and 100 km almost due north of Germansen Landing.

Access to the property is by helicopter from Fort St. James. The Cheni Mine Road (Omineca Forestry Road) passes within 8 km of the property.

3.0 CLAIM DATA

Claim Name	Record Number	No. of Units
Star 1	334025	20
Star 2	334026	20
Star 3	334027	20
Star 4	334028	20
Star 5	334029	20

The property consists of 5 4-post claims, totalling 100 units. The registered owner is U. Mowat.

LOCATION MAP : STAR CLAIMS

FIGURE 1

4.0 <u>HISTORY</u>

The area of the Polaris Complex has been examined by R. G. McConnell in 1894, V. Dolmage in 1927, D. Lay in 1939 and J. E. Armstrong in 1945. The first mapping of the Polaris Complex was done by E. F. Roots in 1946, 1947 and 1948.

No geological activity is recorded until 1968 when T. N. Irvine made petrologic studies of the Polaris Complex. The area remained idle until 1974 when T. N. Irvine and F. H. Foster mapped the Polaris Complex in some detail.

In 1986, a small portion of the Polaris Complex was staked by Equinoz Resources who conducted an extensive silt and rock sampling program over their ground in a search for Pt group metals. In 1987, Lacana Mining Corporation and Esso Minerals also staked portions of the Polaris Complex for the same reason. In 1988 and 1989, the Polaris Complex was mapped and petrologically studied by the BCDM as part of a Pt-chromite study.

The Star 1 - 5 claims were staked in February, 1995 to cover a unit of the Polaris Complex lithologically similar to the Voisey's Bay nickel-cobalt discovery.

5.0 REGIONAL GEOLOGY

The Polaris Complex is located in the Omineca Crystalline Belt which is bounded on the west by Triassic Takla volcanics and sediments. The eastern side of the Omineca Crystalline Belt is separated from the Upper Proterozoic Ingenika Group and the Wolverine Metamorphic Complex, which both consist of sediments and metasediments including gneisses and schists, by the Swannell Fault.

The area immediately west of the Polaris Complex is underlain by the Lay Range Assemblage which has also been called the Slide Mountain Group and the Harper Ranch Groups by various authors. The lithologies consist of mafic tuffs, argillites, metavolcanics, metasediments and limestones and are of Middle Pennsylvanian to Permian in age. The area to the east of the Polaris Complex is underlain by shale, argillite and limestone of either Upper Devonian to Lower Permian Big Creek Group, Cooper Ridge Group of the Slide Mountain Group.

- - - -

The Polaris Complex, a crudely zoned ultramafic massif, is approximately 15 km long and 3 to 4 km wide. The core of the complex is olivine-rich rocks of dunite, peridotite and wehrlite. The outer phases become more pyroxenitic and grade from olivine clinopyroxene to pyroxenite to hornblende-magnetite pyroxenite and finally to hornblendite and metamorphosed, metasomatized volcanics and sediments. The Polaris Complex exhibits a thermal halo up to 2500 meters in width. In certain areas, the metasomatism has been so intense that hornblende crystals up to 1 meter in length have been observed.

The Polaris Complex and the surrounding area have been intruded by Late Triassic to Cretaceous syenites and diorites which are probably related to the Hogem Intrusive Complex. Potassium-argon dating of biotite forming a potassic halo around one intrusive in the Polaris Complex, yielded ages of 167 ± 9 Ma and 156 ± 15 Ma.

Mineral deposits in the vicinity of the Polaris Complex include several high grade but small gold-bearing quartz veins associated with intrusive dykes in the argillite, amphibolite containing coarsely crystalling pyrrhotite, pyrite, chalcopyrite and arsenopyrite as seams and as bodies up to 8 meters wide and 150 meters long consisting of 40% sulphide, and also shale-hosted zinc-lead sedextype mineralization.

6.0 PROPERTY_GEOLOGY

The Star 1 - 5 claims are dominantly underlain by a pyroxenitic suite of rocks of the Polaris Complex. The pyroxenitic unit varies from olivine pyroxenite to coarse-grained pyroxenite to hornblende-rich pyroxenite. The southern claims and the lower elevations of the property are more olivine-rich. The northern portion (Star 5) appears to be underlain mainly by metamorphosed basalt? and siltstones.

Several intrusives have been observed intruding the ultramafic rocks of the Polaris Complex. They range in composition from syenite to diorite to norite and occur as dykes and plugs.

7.0 MINERALIZATION

The mineralization of economic significance consists of awaruite, pentlandite and heazlewoodite which are dominantly found in the more olivine-rich phases of the Polaris Complex. The nickel mineralization appears to be rather uniformly disseminated throughout the olivine-rich units.

The pyroxenitic units are host to pyrite and chalcopyrite which occur as coarse-grained disseminations and can form up to 40% of a specimen. Previous sampling by Lacana and Equinox clearly show that the chalcopyrite in this unit carries Pt, Pd and occasionally Au. Grab samples collected in 1995 also indicate that the pyroxenite is anomalous in Pt and Pd (112 ppb Pt, 35 ppb Pd) and since no sulphides were noted in the samples, it is suggested that the PGE's occur as discrete entities probably associated with magnetite.

Pyrite forms an intense halo around several of the intrusive bodies. It also occurs as coarse-grained disseminations and forms 10 to 40% of a specimen.

Pyrite was also seen in the siltstones located on the Star 5 claim. The pyrite is fine-grained and forms 5 to 10% of the siltstone.

Pyrite and arsenopyrite were noted in some listwanite and in quartz boulders.

8.0 ALTERATION

The most obvious alteration seen on the Star claims is listwanite composed dominantly of carbonate with lesser amounts of quartz and mariposite with a trace of pyrite and arsenopyrite. The listwanite weathers to a bright orange. Extensive listwanite development occurs on the Star 3 claim. The largest body forms a linear feature 50 meters wide and at least 200 meters long. Numerous shear and fault zones in this area also contain listwanite development.

The olivine pyroxenites and to a lesser extent the dunites have undergone serpentinization of variable intensity. Specimens range from waxy green with no primary features remaining to fresh-looking.

Intrusives within the ultramafic complex have, in several locations, produced a potassic alteration halo consisting of biotite which reaches 2.5 cm in diameter and minor quartz veining with K-spar, carbonate and epidote.

The basalt and siltstones appear to be little altered save for minor hornfelsing.

9.0 WORK PROGRAM

On November 1, 1996, 2 men collected 14 rock samples (approximately 120 kg) for geochemical testing and petrological examination. The samples were subjected to a variety of tests including:

- 1) 30 element analysis by ICP using total digestion ($HC10_4-HN0_3-HC1-HF$) on both the -100 and the +100 mesh fractions
- 2) 30 element analysis by ICP using 3:1 HC1-HNO3 digestion on the -100 and the +100 mesh fractions
- 30 element analysis by ICP on the magnetic and non-magnetic portions of selected samples using 3:1 HC1-HNO3 digestion.

In addition, 3 samples were submitted for petrographic examination.

Two samples were submitted to Ashton Mining of Canada as a check test of both geochemical testing and the petrographic examination by other laboratories.

10.0 SAMPLE DESCRIPTION

Sample #	Sample Description					
11678	Black, locally fairly magnetic - over- all weak; peridotite with some c.g. phenocrysts of pyroxene and phlogopite visible; 0.5% silvery white metallic laths (awaruite); no visible sulphides					
11679	Black slightly magnetic harzburgite or olivine pyroxenite with some carbonate alteration; trace silvery white metallic pin pricks (awaruite)					

Sample #	Sample Description
11680	As Sample 11679
11681	Black, fairly magnetic olivine pyroxenite; 0.5% gold-coloured sulphide; speck of chalcopyrite; speck of gold?; weathered surface quite rusty - more than normal; rare lath-shaped silvery white metallic and pin prick silvery white metallics; trace phlogopite
11682	Migmatized norite; 60% chloritized clino- pyroxene and 40% white feldspar; cut by pinkish feldspar veinlets with minor pyrite; non-magnetic
11683	Norite; grey; 50% biotite/hornblende; trace disseminated vfg pyrite; non-magnetic
11684	C.g. porphyritic pyroxenite with white feldspar interstitially; trace sulphide; feldspar veinlets as above; non-magnetic
11685	Dunite; yellow weathering; black on fresh surface; trace white metallic pin pricks; trace yellow sulphide; not very magnetic
11686	Peridotite with c.g. pyroxene; black, locally fairly magnetic - overall weak; trace silvery white metallic pin pricks; no visible sulphides
11687	Peridotite; black, f.g.; weakly magnetic; o.5% silvery white metallic pin pricks
11688	Olivine pyroxenite; f.g.; weakly magnetic; trace silvery white metallic pin pricks
11689	Dunite; olive green intensely serpentinized; dense, vfg with 5% disseminated magnetite and occasional speck of yellow sulphide
11689A	Olivine pyroxenite
11690	<pre>??? no fresh surface; probably peridotite; non-magnetic</pre>

11.0 ANALYTICAL WORK

The first phase of the analytical work consisted of analyzing the 15 rock samples for 30 elements by ICP and Au, Pt, Pd by fire assay. Two types of digestion methods were used, total (HC104-HN03-HC1-HF) and the standard 3:1 HC1-HN03 method. Two size fractions (-100 and +100 mesh) were subjected to the 2 different digestion methods. The analyses showed that the nickel present in the samples was not nickel silicates. The nickel in the samples is either awaruite, which was seen in the hand specimens, or nickel sulphide.

The +100 fraction was analyzed in order to detect metallic particles. This size fraction would detect such minerals as native gold, platinum or awaruite which is highly malleable.

The second phase of analytical work consisted of sending the pulps and rejects from the 15 rock samples to Cominco Laboratories. An attempt to separate the samples into magnetic and non-magnetic fractions by magnetic separation/heavy mineral separation failed. Only one sample produced enough magnetic fraction residue for analysis. The magnetic separation was attempted in order to try to concentrate awaruite, which is highly magnetic, or other nickel sulphides.

The samples were then shipped to Process Research Associates for magnetic separation using a Davis Tube. Only 3 samples were selected for testing. Both the magnetic and non-magnetic fractions were then re-analysed for 30 elements by ICP and Au, Pt, Pd by fire assay.

Concurrently with the above analytical work, Ashton Mining of Canada magnetically separated 2 samples using a magnetic separator. Both the magnetic and non-magnetic fractions were then reanalysed for 31 elements by ICP. Both the magnetic and non-magnetic fractions were analyzed. A description of the magnetic separation technique is included in the summary reports in Appendix I.

The following tables 1 to 5 compare the different digestion methods of both the -100 and +100 fractions as well as the magnetic and non-magnetic fractions.

Sample Number	Rock Type	3:1 -100	3:1 +100	Total -100	Total +100	Acme N.M.	Acme Mag	IPL N.M.	IPL Mag
11678	pdt	1299	1118	1218	1255	945	1665		
11679	olpx	1189	941	1138	1128				
11680	olpx	1338	1134	1361	1202				
11681	olpx	1314	1219	1290	1222				
11682	nor	88	50	126	89				
11683	nor	31	15	55	28				
11684	pyx	40	21	65	36				
11685	dun	1558	1651	1547	1591	1222	1691	1773	1714
11686	pdt	1098	1094	1066	1099				
11687	pdt	1510	1562	1465	1586				
11688	olpx	1708	1885	1755	1850	2137	1659	2033	1954
11689	dun	1268	1327	1299	1294				
11689A	olpx	1056	1110	1437	1459				
11690	pđt	1263	1075	1249	985				

pdt	peridotite
olpx	olivine pyroxenite
nor	norite
рух	pyroxenite
dun	dunite
3:1	HC1-HNO3 digestion
Total	HC104-HNO3-HC1-HF digestion
N.M.	non-magnetic fraction
mag	magnetic fraction

.

Sample Number	Rock Түре	/3:1 -100	3:1 +100	Tota1 -100	Total +100	Acme N.M.	Acme Mag	IPL N.M.	IPL Mag
11678	pdt	103	83	86	86	65	107		
11679	olpx	96	70	82	78				
11680	olpx	100	79	91	78				
11681	olpx	109	95	94	87				
11682	nor	18	8	27	20				
11683	nor	15	8	24	14				
11684	рух	24	10	39	18				
11685	dun	117	119	104	105	80	166	109	106
11686	pdt	108	102	96	95				
11687	pdt	125	126	110	118				
11688	olpx	115	123	107	110	130	119	108	104
11689	dun	114	114	108	105				
11689A	olpx	85	83	88	88				
11690	pdt	87	71	81	64				

pat	peridotite
olpx	olivine pyroxenite
nor	norite
pyx	pyroxenite
dun	dunite
3:1	HC1-HNO3 digestion
Total	HC104-HN03-HC1-HF digestion
N.M.	non-magnetic fraction
mag	magnetic fraction

- -

---- ----

Sample Number	Rоск Туре	3:1 -100	3:1 +100	Total -100	Total +100	Acme N.M.	Acme Mag	IPL N.M.	IPL Mag
11678	pdt	11	10	13	11	9	88		
11679	olpx	7	5	9	7				
11680	olpx	5	4	7	6				
11681	olpx	13	10	14	9				
11682	nor	82	50	67	42				
11683	nor	85	54	79	56				
11684	рух	100	46	94	42				
11685	dun	5	4	6	5	ີ 5	70	30	2
11686	pdt	7	5	8	6				
11687	pdt	5	4	6	7				
11688	olpx	4	6	8	7	7	27	18	3
11689	dun	7	6	8	7				
11689A	olpx	498	493	480	473				
11690	pdt	288	82	271	69				

pdt	peridotite
olpx	olivine pyroxenite
nor	norite
рух	pyroxenite
dun	dunite
3:1	HC1-HNO3 digestion
Total	HC104-HN03-HC1-HF digestion
N.M.	non-magnetic fraction
mag	magnetic fraction
Total N.M. mag	HC104-HN03-HC1-HF digest: non-magnetic fraction magnetic fraction

•

TABLE 4 - CHROMIUM IN PPM

Sample Number	Rock Туре	3:1 -100	3:1 +100	Total -100	Total +100	Acme N.M.	Acme Mag	IPL N.M.	IPL Mag
11678	pdt	350	403	1184	1558	125	5253		
11679	olpx	470	543	1344	1953				
11680	olpx	338	360	1335	1563				
11681	olpx	312	343	1317	1495				
11682	nor	92	47	278	166				
11683	nor	50	17	101	36				
11684	рух	51	22	85	44				
11685	dun	83	94	490	481	39	969	210	93
11686	pdt	287	311	1412	1584				
11687	pdt	94	84	680	802				
11688	olpx	116	124	927	1039	62	1456	136	108
11689	dun	138	182	1010	1248				
11689A	olpx	130	125	633	394				
11690	pdt	64	50	442	255				

pdt	peridotite
olpx	olivine pyroxenite
nor	norite
pyx	pyroxenite
dun	dunite
3:1	HC1-HNO3 digestion
Total	HC104-HNO3-HC1-HF
N.M.	non-magnetic fraction
mag	magnetic fraction

Samp1e Number	Rock Type	3:1 -100	3:1 +100	Total -100	Tota1 +100	Acme N.M.	Acme Mag	IPL N.M.	IPL Mag
11678	pdt	< .3	< .3	.8	.6	< .3	. 8		
11679	olpx	< .3	< .3	1.0	<.5				
11680	olpx	<.3	.3	<.5	• 5				
11681	olpx	< .3	< .3	<.5	<.5				
11682	nor	< .3	.3	<.5	1.7				
11683	nor	< .3	<.3	₹.5	< .8				
11684	рух	.4	<.3	<.5	< .5				
11685	dun	< .3	<.3	<.5	< .5	< .3	1.9		
11686	pdt	.3	<.3	<.5	.5				
11687	pdt	< .3	<.3	< .5	< .5				
11688	olpx	< .3	<.3	< .5	< .5	<.3	.3		
11689	dun	< .3	<.3	< .5	< .5				
11689A	olpx	.3	.5	.5	< .5				
11690	pdt	.3	< .3	<.5	.5				

peridotite
olivine pyroxenite
norite
pyroxenite
dunite
HC1-HNO3 digestion
HC104-HN03-HC1-HF digestion
non-magnetic fraction
magnetic fraction

- - -- ----

12.0 ANALYTICAL RESULTS

12.1 NICKEL

- 1) All lithologies, except understandably the norite, carry elevated nickel values.
- Nickel values do not appear to favour the more olivine-rich phases. The highest value is found in olivine pyroxenite.
- 3) Higher nickel values are found in rocks digested with the 3:1 HC1-HNO₃ method. The lower nickel values in the total digestion method are believed to be caused by the loss of nickel by fuming.
- 4) There is no appreciable difference in nickel values for either the -100 mesh or +100 mesh fractions by either digestion method although the -100 mesh fraction tends to be slightly more anomalous.
- 5) All nickel values are very constant between the 3:1 and the total digestion method indicating that the nickel values are not nickel silicate but rather awaruite or nickel sulphide.
- 6) In several cases (5 out of 11) the +100 mesh fraction has higher values than the -100 mesh fraction which would indicate that at least some of the nickel value is generated by nickel metallics (awaruite).
- 7) MAgnetic separation shows some elevation in nickel values. The elevation of nickel values in the non-magnetic fraction of sample 11688 remains a mystery. Variations in nickel values in the magnetic and non-magnetic from laboratory to laboratory are believed to be due to variations in the size of the samples.

12.2 <u>COBALT</u>

- Cobalt values are fairly uniform in all lithologies, except understandably the norite, although the more olivine-rich phases have the higher cobalt values.
- In general, the -100 mesh fraction is more anomalous for cobalt values.
- 3) Cobalt values obtained from the 3:1 HC1-HNO₃ digestion method are more anomalous than the cobalt values obtained from total digestion. The lower values may reflect the loss of cobalt from fuming.

4) In 2 out of 3 samples, cobalt values increased in the magnetic fraction.

12.3 COPPER

- 1) Typically the norite has more elevated copper values than the ultramafic lithologies.
- The -100 mesh fraction is more anomalous in copper.
- 3) Copper values obtained from the 3:1 HC1-HNO3 digestion method are substantially higher than copper values obtained from the total digestion method. The lower copper values obtained from the total digestion method may be due to fuming.
- 4) The magnetic fraction shows substantial increases in copper values.
- 5) Coincident anomalous copper and nickel values in samples 11689A and 11690 may indicate the presence of massive mineralization in the sample area.

12.4 CHROMIUM

- 1) Chromium values are distributed throughout the ultramafic and much less so in the norite.
- Higher chromium values do not favour the more olivine-rich phases of the ultramafic.
- 3) Chromium values obtained from the total digestion method are substantially higher than chromium values obtained from the 3:1 HC1-HNO₃ digestion method.
- 4) Chromium values obtained from the +100 mesh fraction and using the total digestion method are substantially higher than the -100 mesh fraction.
- Understandably, the chromium values in the magnetic fraction are substantially elevated. The large discrepance between the Acme and IPL results cannot be explained.

12.5 <u>SILVER</u>

 Silver values are low and erratic but seem to prefer the norite and the +100 mesh total digestion. This suggests that metallic silver may be present. The magnetic fraction has substantially higher silver values.

13.0 PETROGRAPHIC WORK

The first stage of the petrographic work consisted of a thorough examination of approximately 120 kg of rock collected on November 1, 1996 from the Star claims. The examination (see page 8) clearly showed the presence of awaruite and a yellow metallic which was not identifiable due to the vfg nature of the mineralization although in one instance it could be determined that one of the yellow metallic pin pricks was chalcopyrite.

Three samples were submitted to Cominco's Research Laboratory for preparation of polished thin sections and their subsequent microscopic examination. The details of the examination are located in Appendix II. The examination showed the presence of pentlandite and possible heazlewoodite.

Two samples were submitted to Ashton Mining of Canada for preparation of polished thin sections. An examination of the thin sections showed trace amounts of high reflectivity Fe-Ni (awaruite) are present as disseminations. The details of the thin section examination are included in Appendix II.

At face value there appears to be a large discrepancy between the initial hand specimen description which reported up to 0.5% disseminated awaruite and the subsequent thin section examinations by both Ashton and Cominco. It should be pointed out that awaruite is extremely difficult to mistake being characterized by a brilliant silvery white metallic colour and which forms as lath shapes or as pin pricks. Usually it is vfg but against the black ultramafic background it is readily discernible. In fact in one specimen (#1) submitted to Cominco, awaruite was visible with the naked eye. Mr. C. Hood in personal communication has reported seeing the brilliant silvery white metallic.

Another discrepancy exists between the thin section work of Cominco who only report pentlandite and possibly heazlewoodite and Ashton who report awaruite. No explanation is offered for this phenomena.

14.0 CONCLUSIONS

- Analytical work has showed that the nickel values in rocks collected from the Star Claims is awaruite or nickel sulphides and not nickel silicate. This was clearly shown by comparing the nickel values obtained from total digestion with the nickel values obtained from the 3:1 HC1-HNO₃ digestion method which is too weak to attack silicates.
- Analytical work using the +100 mesh fraction for metallics strongly indicates that nickel occurs as a metallic (awaruite).
- 3) Magnetic separation may be a useful tool in the production of a Ni +/- Cu +/- Co +/- Cr concentrate. More testing is required to verify this concept. Although Pt and Pd values occur sporadically throughout the Star Claims, magnetic separation may enhance their presence as well.

15.0 RECOMMENDATIONS

Besides performing much more detailed sampling of rock on the Star Claims, it is recommended that tests of a more metallurgical nature be conducted in order to determine the economic viability of a large, low-grade, open-pittable nickel-cobaltcopper-chromite-precious metal deposit which the Star Claims appear to be.

16.0 REFERENCES

- Assessment Report 15955, Report on a Geochemical Survey of the Polaris Property Consisting of the Polaris Claim, Pole 1 and Pole 2 Claim, by Jay W. Page, 1986.
- Assessment Report 16236, Report on Geological and Geochemical Work, "Lay" Claims, Aiken Lake, by D. Johnson, 1987.
- Assessment Report 16628, Report on Prospecting and Sampling Work, Lay Property, Aiken Lake, by R. J. Johnston, 1987.
- GSC Paper 46-11, Aiken Lake (South Half) British Columbia, by J. E. Armstrong, 1946.
- GSC Paper 48-5, Geology and Mineral Deposits of Aiken Lake Map Area, British Columbia, by J. E. Armstrong and E. F. Roots, 1948.
- GSC Paper 68-1, Part A, Petrologic Studies of Ultramafic Rocks in the Aiken Lake Area, British Columbia (94-C West-Half), by T. N. Irvine, p. 110, 1968.
- GSC Paper 74-1A, Ultramafic and Gabbroic Rocks in the Aiken Lake and McConnell Creek Map Areas, British Columbia, by T. N. Irvine, pp. 149 -152, 1974.
- GSC Paper 76-1A, Alaskan-type Ultramafic-Gabbroic Bodies in the Aiken Lake, McConnell Creek and Toodoggone Map-Areas, by T. N. Irvine, pp. 76 - 81, 1976.
- BCMEMPR Bulletin 1, Aiken Lake Area, North-central British Columbia, by R. Lay, 1932.
- Open File 1989-17, Preliminary Geology and Noble Metal Geochemistry of the Polaris Mafic-Ultramafic Complex, by G. Nixon et al., 1989.
- Open File 1990-13, Geology of the Polaris Ultramafic Complex, by G. Nixon et al, 1990.
- GSC Memoir 274, Geology and Mineral Deposits of Aiken Lake Map Area, British Columbia, by E. F. Roots, 1954.

B. Sc. Thesis, U.B.C., History and Origin of the Polaris Ultramafic Complex in the Aiken Lake Area of Northcentral British Columbia, by F. H. Foster, 1974.

Assessment Report 24300, Geologic Report on the Star Claims, by U. Mowat, P. Geo., February 1996.

17.0 STATEMENT OF COSTS

.

<u>Analytical Work (Acme)</u>	
28 rock samples analysed for 30	\$ 173.60
elements by ICP at \$6.20/	
sample	
28 multi-acid digestion with 30	232.40
element ICP analysis at	
\$8.30/sample	
28 rock samples analysed for Au,	562.80
Pt, Pd by FA at $$20.10/$	
sample	57 40
14 rock sample prep at \$4.10/	57.40
sample	19 20
14 sieving -100 mesh at \$1.50/	10.20
nulverizing excess weight 3 5 kg	11 20
at \$3 20/kg	11.20
GST GST	73.89
001	/5.05
	\$1129,49
	+
Helicopter	
3.7 hours at \$715.00/hour	\$2645.50
287 liters of fuel at \$0.70/liter	201.32
100 liters of fuel at \$1.15/liter	115.00
oil - 3.7 at \$2.00/	7.40
GST	207.85
	\$3177.07
Accommodation	
2 rooms at \$51.75/room	\$ 103.50
	* ~ ~ ~ ~
<u>Freignt</u>	\$ 67.78
Analyses (Cominco)	\$ 30.00
1 heavy mineral separation at	4 30.00
\$30.00/sample	4.25
1 total digestion for cu by RA	
1 total digestion for Ni by AA	2.00
r = 100 ar urgestrom for ar sy and $r = 100 ar sy ar$	
1 total digestion for Co by AA	2.00
$a \pm $2.00/sample$	
1 total digestion for Ag by AA	2.50
at \$2.50/sample	
GST	2.85
	\$ 43.60

<pre>Analytical Work (Process Research) 3 magnetic separations at \$25.00/sample 6 samples analysed for 30 elements by ICP and Au, Pt, Pd by fire assay at \$32.61 per sample Courier GST</pre>	\$ 75.00 195.70 15.00 20.00
<pre>Petrographic Work (Cominco) 3 polished thin sections at \$24.00/section 3 SEM-EDX at \$75.00/section GST</pre>	\$ 305.70 \$ 72.00 225.00 20.79 317.79
<pre>Analytical Work (Ashton) 2 days sample prep at \$180/day 2 thin sections at \$30.00/section 2 SEM analyses at \$100/hour for 1.5 hours 4 analyses for 31 elements by ICP at</pre>	\$ 360.00 60.00 150.00 38.00 \$ 608.00
<pre>Wages 1 man for 4 days at \$400.00/day 1 man for 4 days at \$250.00/day Meals</pre>	\$1600.00 <u>1000.00</u> \$2600.00 \$ 55.36

TOTAL	\$8364.69
-------	-----------

- I am a graduate of the University of British Columbia having graduated in 1969 with a Bachelor of Science in Geology.
- I have practiced my profession since 1969 in mineral exploration, oil and gas exploration and coal exploration.
- 3. I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. I have a direct interest in the Star Claims.

FESSI Usulas POVINCE nound Ursula G. Mowat, P. U.C. MOWAT Geo. BR. ISH OLUMBIA

Dated this 14th day of 1997

O_{3CIEN}

at Vancouver, B. C.

Process Research Associates Utd. 9145 Shaughnessy Street, Vancouver, B.C. V6P 6R9 Telephone:(604)322-0118 Fax:(604)322-0181

February 19, 1997

Ms Ursala Mowat 1405 - 1933 Robson Street Vancouver, B.C. V6G 1E7

Dear Ms Mowat:

We enclose a copy of the Certificate of Analysis on samples 11678, 11685 and 11688 from Acme Analytical Lab. We will forward the original Certificate to you as soon as we receive it. The magnetic separation test results on the samples are shown below:

Sample	Weight (g)
11678	
Non-Magnetic	285.57
Magnetic	4.31
11685	
Non-Magnetic	307.18
Magnetic	4.67
11688	
Non-Magnetic	301.84
Magnetic	8.21

Bern Klein is away from the office until the first week of March and will contact you on his return.

Sincerely yours, **PROCESS RESEARCH ASSOCIATES LTD.**

Peter Tse, A.Sc.T. Laboratory Manager

MAGNETIC SEPARATION

Suite 1405, 1933 Robson Street

TEST RESULTS

Ms. Ursala Mowat

Vancouver, B.C.

V6G 1E7

Prepared for:

Prepared by:

PROCESS RESEARCH ASSOCIATES LTD. 9145 Shaughnessy Street Vancouver, B.C. V6P 6R9

PRA Project No.:

97-015

Bern Klein, Ph.D. Senior Process Metallurgist Date: May 3, 1997

1.0 INTRODUCTION

Magnetic separation tests were performed on mineral samples provided by Ms. Ursala Mowat. The objective of the test was to concentrate the precious metals and base metals into a magnetic product. This report describes the test procedures and presents the tabulated results.

2.0 PROCEDURES

Magnetic separation tests were performed on seven mineral samples. The samples were pulverized prior to being received. The samples were fed to a Davis Tube wet magnetic separator with the field strength set to 5,000 Gauss. The magnetic and non-magnetic products were dried, weighed and submitted to ACME Analytical Laboratories for analyses. The products were analyzed for Au, Ag, Pt, Pd and ICP metals.

3.0 RESULTS

The results of the analyses on the magnetic and non-magnetic test products are presented in the appended Certificates of Analyses from ACME. Metallurgical balances were produced for each of the seven tests showing product weights and the grades and distributions of selected metals. The balances are presented in the appended Magnetic Separation Test Reports.

LL				P	ro	Ces	38	Res	arc	:h	Ass	oci	lat	88	PR	2031	ECT	97	7 - 0	15	F	TLE	2 #	97-	058	39				Pag	je 2		ACHE
SAMPLEA	Mo ppm	Cu ppm	Pb ppm	2n ppm	Ag ppm	N ppr	Co n ppm	Mn ppm	Fe	A: A: PP	u Pippmi	Au ppm	Th ppm	Sr ppm p	Cdi open	sb. ppm.	Bi ppn p	v A¤ma	Ca %	Р Х	La ppm	Cr ppm	Hg X	Ba ppm	Ti % (8 ppm	AL N X	la K X X	Арт	Ag** gm/t	Au** gm/t	Pt≜± gm/t	Pd** gm/t
11678 NAG 11685 NAG 11688 HAG	30 19 6	88 70 27	57 35 34	114 59 36	.8 1.9 .3	1669 169 1659	5 107 1 166 9 119	1103 1071 941	15.78 16.24 11.49		<5 <5 <5	<2 <2 <2	<2 <2 <2	4 2 2 2 3	2.0 2.5 1.9	<2 <2 5	<2 <2 <2	157 . 18 . 14 .	12 . 11 . 06 .	005 004 004	1 <1 <1	5253 969 1456	8.90 14.29 10.80	7 4 9<	.06 .01 .01	11 11 <3	11<.0 07<.0 08.0	1<,01 1<,01	\$ \$ \$ \$	<.3 <.3 <.3	.01 <.01 .04	.01 .01 .01	<.01 <.01 .01
							<u>Şanıç</u>	<u>le ty</u>	pe: Pl	<u>ЩР.</u>																							

AA			P.t	öde) 9 9 9	R	984	arc	(14	JEO Ass	CHI 001 9145	Shal	CAI 98 Ighne	PR SSY	DJE st.,	¥S: CT Vanc	(S) 97 ouvei	-01 BC	TIF 5 V6P 3	ICA Fil	te e	# 9	7 - C	1589		Pa	ſġe	1			Ţ	200 200 200	
SAMPLE#	No ppm (Cu Spm p	Pb xpm (Zn ⊃prnp	Ag pm	Ni popom	Co ppm	Mn ppm	fe %	As ppm	U Incici	Au ppm	tîh ⊃prnn∥	Sr ppnng	Cd xprrv p	Sb l pm pl	n pp	ùiùù V Ca ∏ X	P X	La ppm	Cr ppm	M	g Ba % ppr	a Ti n %	B ppm	A1 %	Na %	к %	N N 2 mgc	lg** A m∕t g	\u** m/t	Pt** gm/t	Pd gm
11678 NON MAG 11685 NON MAG 11688 NON MAG RE 11688 NON MAG	<1 <1 <1 <1	9 5 7 9	15 4 13 10	52 < 27 < 41 < 39 <	.3 .3 .3 .3 2	945 222 137 114	65 80 130 129	711 705 1161 1142	3.92 3.39 5.86 5.78	2 2 4 4	ক ক ক ক	<2 <2 <5 <5	<2 <2 <2 <2 <2	1 1 2 2	.8 .9 .1 .4	<2 <2 <2 <2	2 2 2 2 2 2 2 4	5.10 1.04 1.06 1.06	. 004 . 003 . 004 . 004	<1 1 1	125 39 62 62	10.8 15.2 24.1 23.9	3 8 6 3	3<.01 2<.01 5<.01 5<.01	5 7 <3 <3	.06< .02< .02< .02<	.01< .01< .01< .01<	.01 .01 .01 .01	<2 <2 <2 <2 <2	1.0 1.0 .3 .8	<.01 .01 <.01 <.01	.01 <.01 <.01 <.01	<. <. <.
	ICP The	5 S LEA	500 ACH	GRAM (SPA	SAMP RT14	VLE I NL FC	IS DE DR MN	GESTE FES	D W] R CA	TH 3M P LA * 2 5	L 3- CR	12 NG 64	HICL-I	HNO3 B W	H2O AND	AT 90	5 DEG	. C F Or NA	or di Kan	ie boi Id al	JRA.	ND ES	DIL	JTED	10 10	ML	WITH	WAT	ER.				
	5. Ş <u>am</u> i	ples	beg	j <u>nni</u> r	101.P 19	<u> E'</u>	re R	eruns	and	RRE	<u>' ar</u>	e Re	ject	Reru	<u>ins</u> .	rt t 4	,	SMULL	с. ()	P	>												
DATE RECEIVE	BD:	FEB	51	99 7	DA	TE	RBP	ORT	MA	LEC	:	fel	> 1	9/9	7	s	IGNE	DB	¥	k:	**	·	0.101	(E, C	LEON	G, J	. WANG	a; CE	RT(F	IED B	s.c.	ASSAI	ER
																						ł											
																	÷																
																																1.	

MAGNETIC SEPARATION TEST REPORT

Project: 97-015

Date: 03-May-97

Test: T1 Sample: 11678

Product	We	ight			Grade	(ppm)				Distribution						
	(g)	(%)	Au	Ag	Pt	Pd	Ni	Co	Au	Ag	Pt	Pđ	Ni	Со		
Magnetic	4.3	1.5	0.01	<0.3	0.01	<0.01	1665	107	100.0	<1	1.5	N/A	2.6	2.4		
Non-magnetic	285.6	98.5	<0.01	1	0.01	<0.01	945	65	<1	100	98.5	N/A	97.4	97.6		
Total	289.9	100.0	0.0001	1	0.01	<0.01	956	66	100.0	100.0	100.0	N/A	100.0	100.0		

Test: T2

Sample: 11685

Product	Wei	ight			Grade	(ppm)					Distrit	ution		
	(g)	(%)	Au	Ag	Pt	Pd	Ni	Co	Au	Ag	Pt	Pd	Ni	Co
Magnetic	4.7	1.5	<0.01	<0.3	0.01	<0.01	1691	166	<1	<1	100.0	N/A	2.1	3.1
Non-magnetic	307.2	98.5	0.01	1	<0.01	<0.01	1222	80	100.0	100.0	<1	N/A	97.9	96.9
Total	311.9	100.0	0.01	1	0.0001	<0.01	1229	81	100.0	100.0	100.0	N/A	100.0	100.0

Test: T3

Sample: 11688

Product	Wei	ight			Grade	(ppm)					Distribu	tion (%	,)	
	(g)	(%)	Au	Ag	Pt	Pd	Ni	Co	Au	Ag	Pt	Pd	Ni	Co
Magnetic	8.2	2.6	0.04	<0.3	0.01	0.01	1659	119	100	<1	100	100	2.1	2.4
Non-magnetic	301.8	97.4	<0.01	0.3	<0.01	<0.01	2137	130	<1	100	<1	<1	97.9	97.6
Total	310.1	100.0	0.001	Ö.3	0.0003	0.0003	2124	130	100	100	100	100	100.0	100.0

MAGNETIC SEPARATION TEST REPORT

Project: 97-015

Date : 03-May-97

Test: T4 **Sample:** 11682

Product	We	ight	Gra	ade (pj	ob)	Dist	ibution	1 (%)
	(g)	(%)	Au	Pt	Pd	Au	Pt	Pd
Magnetic	0.09	0.1	99999	<1	<1	33.8	<1	<1
Non-magnetic	99.1	99.9	178	4	4	66.2	100	100
Total	99.1	100.0	269	4	4	100.0	100	100

Test: 75 Sample: 11683

roduct Weight Gra

Product	We	ight) Gra	ade (pp))	Disti	ributior	1 (%)
	(g)	(%)	Au	Pt	Pd	Au	Pt	Pd
Magnetic	0.07	0.1	94650	<1	<1	51.1	<1	<1
Non-magnetic	99.2	99.9	64	4	4	48.9	100	100
Total	99.3	100.0	131	4	4	100.0	100	100

Test: T6 Sample: 11689A

Product	We	ight	Gra	ade (pp	ob)	Dist	ibution	(%)
	(g)	(%)	Au	Pt	Pd	Au	Pt	Pd
Magnetic	0.46	0.5	39690	<1	<1	79.1	<1	<1
Non-magnetic	98.7	99.5	49	2	2	20.9	100	100
Total	99.1	100.0	233	2	2	100.0	100	100

Test: T7 Sample: 11690

Product	We	ight	Gr	ade (pp	ob)	Distr	ibutior	ı (%)
	(g)	(%)	Au	Pt	Pd	Au	Pt	Pd
Magnetic	1.58	1.6	3385	26	<1	75.3	12	<1
Non-magnetic	97.3	98.4	18	3	3	24.7	88	100
Total	98.8	100.0	72	3	3	100.0	100	100

APPENDXX II

k

N,

k

SUMMARY REPORT STAR CLAIMS/ BORNITE CLAIMS SUBMITTAL (NORTH-CENTRAL BRITISH COLUMBIA)

By: Chris Hood, M.Sc.

I.) STAR CLAIMS

Summary

Two samples (11685 and 11688) of serpentinized peridotitic rocks were selected from material from the Star claims. The samples were chosen primarily for their elevated Ni contents and presence of visible opaque phases (eg. oxides, sulfides, or metal alloys). Polished thin sections of each sample were made and subsequently analyzed by reflected and transmitted light microscopy.

In general, the rocks consist dominantly of olivine and lesser pyroxenes, with the bulk of the opaque mineralogy dominated by subhedral to euhedral chromian spinels and irregular masses of magnetite. Trace amounts of possible high reflectivity Fe-Ni phases (awaruite, josephinite?) are present as disseminations. The opaque population forms a maximum of 2-3% of the rocks (by volume). Scanning electron microscopic analysis of the opaque phases failed to identify Ni-bearing phases, although the instrument is unable to easily define the presence of Ni in amounts of less than 0.5%.

The rocks were also crushed to -1.0 mm, with the resultant material passed over a magnetic separator in an attempt to scalp a paramagnetic fraction enriched in Ni-bearing phases. Splits from both the magnetic and non-magnetic fractions were examined with a binocular microscope, with an apparent concentration of opaque phases present in the magnetic fraction. The splits were then submitted to IPL for 31 element ICP analysis (Aqua Regia digestion). Results indicate that there is little or no correlation between magnetic properties and assays for each sample, with only minor differences in Ni and Co contents noted for the individual fractions. Nickel contents were found to be about 3-4% higher in the magnetic fractions (to a maximum of 0.2% Ni), a number which does not support the sole concentration of Ni within a native metal or alloy state. The relative lack of variability could be attributed to the occurrence of Ni in a non-magnetic phase such as olivine, or a very small grain size which was not liberated by the crushing. Olivine in alpine ultramafic complexes normally contains up to 2000 ppm Ni, and an olivine-rich

rock subjected to a strong digestion may in fact contribute a geochemically significant (based on a 50-70% digestion of silicates in "strong" acids) amount of Ni to each analysis. Nickel contents for each sample would thus be sourced from a combination of Ni-bearing silicates and alloys, with only a part of the total contained metal recoverable by simple processing techniques.

The occurrence of a broad area of elevated Ni values would be of great interest if the metal could be definitively linked to alloy or sulfide phases. The presence of Nibearing alloys in the massif has been established by other investigators, but could not be verified by the author. If the alloys are in fact evenly distributed throughout the complex, then the property has significant potential for a large tonnage, low grade Ni reserve. The widespread occurrence of the metals would also imply that the magmatic system was unusually low in sulfur content; exploration for other commodities (eg. Platinum Group) would have to target changes in silicate mineralogy as well as pathfinder metals.

Type of Work	Unit Cost	Quantity	Total	
Geologist	\$250/day	6 days	\$1500	
Lab Technician	\$180/day	2 days	\$360	
Thin Sections	\$30/unit	2 units	\$60	
SEM Analysis	\$100/hour	1.5 hours	\$150	
ICP Analysis	\$9.50/analysis	4 analyses	\$38	
Overall Total			\$2108	

Cost Breakdown

II.) BORNITE CLAIMS

Summary

A sample (9612) from the Bornite claims was also evaluated through a similar process, with two polished thin sections examined for sulfide mineralogy. Host rocks were almost entirely replaced by a fibrous to radiating, low birefringence phase (probably serpentine and possibly zeolites), with original textures almost completely erased. Magnetite is the dominant (10-15% of rock) opaque phase, occurring as irregular masses and fracture infillings up to one centimeter across. Partial replacement by hematite is evident throughout the rocks. Chromite is also present, as small euhedral grains

associated with the larger magnetite aggregates. Sulfides are generally rare, consisting of very fine grained pyrrhotite disseminations or as a blebby, moderate reflectivity phase (bornite?) noted within some of the largest magnetite masses. The latter phase could account for the copper values observed in sample assays.

As for the Star claims, the material from the Bornite claims was crushed to -1.0 mm. and split into paramagnetic and nonmagnetic fractions, with each concentrate submitted to IPL for 31 element ICP analysis. Results indicate a significant concentration of Cu, Cr, and Co in the paramagnetic fraction, probably a result of the magnetite-chromite-bornite association. Nickel values remained relatively constant, suggesting that much of the element may occur in the silicate fraction as well as in the oxide/sulfide material. Copper is probably the main element of interest, with a value of 0.73% obtained for the paramagnetic fraction.

The presence of elevated Cu values is supportive of exploration for a large tonnage, low grade target on the property.

Type of Work	Unit Cost	Quantity	Total	
Geologist	\$250/day	4 days	\$1000	
Lab Technician	\$180/day	2 days	\$360	
Thin Sections	\$30/unit	2 units	\$60	
SEM Analysis	\$100/hour	0.5 hours	\$50	
ICP Analysis	\$9.50/analysis	2 analyses	\$19	
Overall Total			\$1489	

Cost Breakdown

A = magsB = non - mags

5 7

CERTIFICATE OF ANALYSIS

2036 Columbia Street

ы

Vancouver, B.C. Canada V5Y 3E1

.

iPL 96L1295

												ΤE	ц	1001	295	,									Pho	ne (60	J4) 87	9-7 87 8	1	
INTERNATIONAL	PLASMA	LABORATO	DRY LTD.																						Fax	(60)4) 87	9-(898		
Client: Asht Project: 2097	ton M 7	lining	of Ca 2 Rock	nada I	nc		iPL	: 96 L	1295		Out: In:	: De : De	ic 19 ic 17), 1996 7, 1996	[12	29513	: 34:0	F)6:691	age 21996	1 of	1	Cert	Section: Section:	on 1 BC Ass	of 1 ayer:	David	l Chiu		¥C	,
Sample Name		Ag ppm	Си ррт	РЬ ррт	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 Bi ppm ppm	Cd ppm (Co ppm	Ni ppm	Ba W ppm ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti Z	A1 X	Ca X	Fe X	Mg Z	K	Na X	P Z	
AMC-9612A AMC-9612B		2.9 1.4	7271 2522	11 11	26 29	< 29	< 5	< <	7 7	<	4.5 2.6	271 108	488 443	16 < 110 <	354 133	62 70	311 354	< 15	4 51	3 2	10 (15 ().03).04	1.88 3.21	3,84 2,12	11 7 3.53	5.09 9.53	0.09	< (0.05 (1.05 1.09	

Min Limit A Reported*

CERTIFICATE OF ANALYSIS ipl 97B0101

2036 Columbia Street Vancouver, B.C. Canada VSY 3E1 Phone (604) 879-7878 Fax (604) 879-7898

																							13)	K (OL	14) 0/	9-1990					
lient : Ashton roject: 97-NA:5	Minto; SEN			6 5:	Sa Rock	mb ³	les I=San	d					[01	10112	:02:5	i1:790	20793	7]		(Juti In s	Feb Of Feb Of	i, 199 i, 199	7 7	Pa Se	age action	1 of 1 of	f 1 F 1			
Sample Name	ple Name Ag Cu Pb Zn ppn ppm ppm ppm − 11685A ¥ 0.1 30 5 33						Hg. ppm	Mo ppm	Tl PPM	Bi ppm	Cd. ppm	Co. ppm	Ni ppm	Ba ppm p	W Pm p	Cr ppm	V PPril	Mn. ppm	La. ppm	Sr ppm	Zr ppni	Sc. ppm	Ti X	۸۱ ۲	Ca X	Fe T	Hg X	K X	Na X	P X	
APC - 11685A # APC - 11685B R APC - 11688A R APC - 11688B R	0.1 < <	30 2 18 3	5 2 3 7	33 26 31 30		< < < <	~ ~ ~ ~	8 5 5 6	<pre></pre>	<	< < < <	109 106 108 104	1773 1714 2033 1954	6 < 3 3	< 2	210 93 136 108	4 2 2 2	1000 929 1017 998	< < < <	4 2 3 3	1 < < 1	3 2 3 3	< < < <	0.06 0.03 0.03 0.02	0.10 0.05 0.06 0.05	5.98 4.90 5.50 5.18	27X 26X 25X 25X	< < < <	0.01 0.01 0.01 0.01 0.01		
									A	<u>۔</u> بر	prod prod	19-3 61-	J	نمہ ک ^ی د	ŗ⊆																•
									•																						
									· ·					<u> </u>																	

MOWAT, URSULA-X97

Job V 97-0050H

6164,11678 - 11690

Report date 23 JAN 1997

.

LAB NO FIELD NUMBER Cu(2) Ni(2) Co(2) Ag Wt HM Volume YIELD ppm ppm ppm ppm gram ml G/L H9700112 11688 13 1220 80 <0.4 2.5 150 17 I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown , results are to follow

ANALYTICAL METHODS

Cu(2) HF - HClO4 decomposition / AAS N1(2) HF - HClO4 decomposition / AAS Co(2) HF - HClO4 decomposition / AAS

Ag Aqua regia decomposition / AAS

Volume is the vol of screened -18+400 mesh material put through heavy liquid Wt HM is the weight of heavy minerals(sink) after removal of the strongly magnetic fraction Ratio G/L is the yield of heavy minerals in gram /litre Cominco Ltd./ Exploration Research Laboratory/1409 Last Fender Greek Vancouver, B.C./ Canada V5L 1V8/ Tel. (604) 685-3032/Fax. (604) 844-2686

Exploration Research Laboratory Ms. Ursula Mowat 1405 - 1933 Robson Street Vancouver, B.C. V6G 1E7

18 March, 1997

Dear Ms. Mowat: RE: E.R.L. JOB V97-103R

Three samples were submitted to Cominco's Exploration Research Laboratory for preparation into polished thin sections and subsequent microscopic examination. They are numbered as follows:

LAB NO. FIELD NO.

R97:1489	#1
R97:1490	#11678
R97:1491	#11685

Following are brief microscopic observations of each sample.

SAMPLE R97:1489.

In transmitted light the rock is seen to be intensely fractured with Fe-oxides and very fine grained carbonate developed along these fractures. The rock is nearly completely altered to serpentine with a few remnant cores of olivines (to 0.25 mm). The rock is thus a serpentinite.

In reflected light Cr-Fe spinels from 30 to 150 microns are widely disseminated and Fe-oxides are developed along fractures. A few minute grains of pentlandite are noted.

SAMPLE R97:1490.

In transmitted light olivine grains reach 5 mm in size and tend to be anhedral. They may be included entirely in pyroxene grains, some of which are up to 5 mm in length. The rock is relatively fresh with only minor serpentine development. It is a lherzolite.

In reflected light grains of Cr-Fe spinel to 0.2 mm are disseminated and account for about 1% of the section. Rare grains of pentlandite are noted. The largest grain of pentlandite is about 0.25 mm but most are much smaller:

SAMPLE R97:1491.

The host rock is dominated by olivine in grains as coarse as 5 - 7 mm on down to those of 1 mm. A few percent of pyroxene is noted interstitial to olivine. The rock is now 20% replaced by serpentine. Originally it was an dunite.

In reflected light about 1% of the section is as opaques with Cr-Fe spinels to 0.3 mm in size. These tend to be disseminated. A few grains in the 5 - 30 micron size of a nickel sulfide, possibly heazlewoodite are noted.

DISCUSSION:

A few photomicrographs have been taken to illustrate both reflected and transmitted light minerals and rock texture. These are captioned and appended.

Yours truly,

J.A. McLeod. M.A.Sc., P.Eng. E.R.L. Manager

JAM/skw App.

PHOTOMICROGRAPHS - MOWAT (V97-103R)

R97:1489. Cr-Fe spinel, trails of Fe-oxide and Fe-Ni-S opaques. Reflected light, magnification 160x.

R97:1490. Pentlandite and Cr-Fe spinel. Reflected light, magnification 160x.

45 *µm*

45 µm

R97:1491. A Ni-S, Cr-Fe spinel and Fe-oxide. Reflected light, magnification 160x.

R97:1489. Serpentine with small residual cores of olivine. Fractures have Feoxides and carbonate. Transmitted light, x-nicols, magnification 25x. 280 µm

45 µm

APPENDIX IIL

h,

ACME AN	TIC	۱L :	LAB	ORA	TOP	RIES	LT	D .		852	B.	HA	STI	NGS	ST	1	C	ουν	'ER	BC	V6A	1R(5	PHO	ONE	(604) 253	-31	58	FA	x (6	7	253	-17	16
										¢	EO	CHI	EMI	CAI	L AI	VAL	YS	IS	CE	RTI	FIC	ATE	i.			40 g.	·		1. P	. •			- 7	Á.	Â.
							U	rsu	la	Mov	nat	P	son	EC'	r s'	FAR		Fi.	le	# 90	5-6	164		Page	e 1			÷.,						1	
												1405	• 1	933 (≷obso	n St	, V	anco	uver	BC V6	G 1E	7								•			<u>.</u>		
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sг	Cd	Sb	Bí	۷	Ca	Р	La	Cr	Mg	Ba	Ti	Al	Na	ĸ	W	Zr	Sn	Ŷ	Nb	Be	Sc
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррп	%	ppm	ppm	ppm	bbw	ppm	ррп	ppm	ppm	ppm	%	%	ppm	ррп	%	ppm	%	%	%	%	ppm	ppm	ppm	ppm	bbw l	ppm	ppm
C 11678 +100	<2	11	<5	63	.6	1255	86	1167	6.54	<5	<10	<4	4	22	<.4	6	<5	69	5.68	.008	<2	1558	17.69	395	.09	.52	.09	.03	<4	4	<2	3	<2	<1	31
C 11679 +100	<2	7	10	56	<,5	1128	78	1117	6.08	<5	10	<4	3	35	<.4	<5	5	95	7.11	.007	<2	1953	16.48	18	.12	.68	.13	.04	<4	4	<2	4	<2	<1	40
C 11680 +100	<2	6	<5	50	•2	1202	78	1018	5.66	<5	<10	<4	4	21	<.4	<5	<5	65	6.07	.006	<2	1563	17.21	7	.09	.50	.08	.01	<4	3	<2	3	<2	<1	30
C 11681 +100	<2	.9	<5	57	<.5	1222	87	1138	6.56	<2	<10	<4	2	21	<.4	<>	<>	56	5.99	.006	<2	1495	17.56	10	.08	.50	.09	.02	<4	5	<2	5	<2	<1	21
C 11682 +100	<2	42	8	42	1.7	89	20	66Z	3.52	9	17	<4	(405	<.4	52	\$	92	8.36	.032	5	166	5.29	155	.18	9.49	2.25	.65	8	8	<2	9	5	<1	18
C 11683 +100	<2	56	<5	49	.8	28	14	863	4.81	<5	<10	<4	5	865	<.4	1 6	<5	193	7.94	.099	5	36	2.05	221	.43	9.54	2.63	.55	<4	8	<2	14	2	1	18
C 11684 +100	<2	42	6	51	<.5	36	18	1000	5.30	<5	21	<4	2	581	<.4	5	<5	253	7.79	-026	<2	44	2.50	233	.90	9.03	2.40	.75	<4	10	2	15	<2	<1	32
C 11685 +100	<2	5	<5	34	<.5	1591	105	957	5.54	<5	<10	<4	2	5	<.4	<5	<5	6	.26	.005	<2	481	23.28	8	.01	.11	.03	<.01	<4	<2	<2	<2	<2	<1	4
C 11686 +100	<2	6	<5	42	<.5	1099	95	1052	5.95	<5	<10	<4	3	31	<.4	<5	<5	43	3.34	.008	<2	1584	20.01	35	.07	.61	.12	.04	<4	3	<2	2	<2	<1	20
C 11687 +100	<2	7	6	42	.5	1586	118	1076	6.33	10	13	<4	3	3	<.4	7	<5	4	.24	.006	2	802	25.29	20<	<.01	.03	.02	.01	<4	<2	<2	<2	<2	<1	4
RE C 11687 +100	<2	5	6	41	<.5	1528	113	1039	6.09	5	<10	<4	3	3	<.4	7	<5	3	.23	.005	<2	809	24.34	15•	<.01	.03	.02	<.01	<4	<2	<2	<2	<2	<1	4
C 11688 +100	<2	7	6	36	<.5	1850	110	1005	5.87	6	11	<4	3	4	<.4	5	5	- 4	.12	.006	2	1039	24.27	284 <	<.01	.05	.02	.02	<4	<2	<2	<2	<2	<1	4
C 11689 +100	<2	7	11	43	<.5	1294	105	996	6.11	5	<10	<4	3	9	<.4	5	<5	12	1.96	.006	<2	1248	20.69	103	.01	.13	.03	.01	<4	<2	<2	<2	2	<1	14
C 11689(A) +100	<2 /	473	27	51	<.5	1459	88	602	3.65	<5	<10	<4	2	6	<.4	7	<5	2	. 08	.006	<2	394	20.53	581-	<.01	. 04	.03	<.01	<4	<2	21	<2	<2	<1	2
C 11690 +100	<2	69	<5	33	.5	985	64	666	4.16	<5	<10	<4	4	587	<.4	<5	<5	46	2.07	.044	3	255	12.86	1268	.07	3.65	1.76	.16	4	4	2	2	3	1	6
STANDARD CT2	18	53	44	153	5.8	76	34	1095	4.18	32	50	5	39	228	17.8	19	16	128	1.20	.111	44	123	1.26	8 50	.32	6.55	1.51	1.70	17	53	18	13	7	2	16

ICP - .250 GRAM SAMPLE IS DIGESTED WITH 10ML HCL04-HN03-HCL-HF AT 200 DEG. C TO FUMING AND IS DILUTED TO 10 ML WITH DILUTED AQUA REGIA. THIS LEACH IS PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL, ZR & MN AND MASSIVE SULFIDE SAMPLES. AS, CR, SB, AU SUBJECT TO LOSS BY VOLATILIZATION DURING HCLO4 FUMING.

- SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Ursula Mowat PROJECT STAR FILE # 96-6164

1	SAMPLE	¥	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	Al	Na	K	W	Zr	Sn	Y	Nb	Be	Sc
			ppm	ррп	ppm	ppm	ppm	ppm	ppm	ppm	- 76	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	76	~ ~ ~	ppm	ppm	76	ppm	/6	~	6	- 6	ppm	ppin	ррії	opin	ppin	ppin I	ppiii
(c 1167	8 -100	<2	13	7	60	.8	1218	86	1067	6.34	8	16	<4	5	16	<.4	6	<5	51	3.50	.008	<2	1184	16.82	6	.06	.35	.07	.03	<4	3	<2	2	2	<1	22
(c 1167	9 -100	<2	9	7	54	1.0	1138	82	979	5.80	- 7	17	<4	5	33	.5	8	<5	66	3.60	.009	<2	1344	15.22	19	.09	. 49	.10	.04	<4	- 4	<2	2	3	<1	26
	c 1168	0 -100	<2	7	8	53	<.5	1361	91	1037	6.15	<5	12	<4	3	19	<.4	<5	<5	55 0	3.92	.008	<2	1335	18.61	9	.08	.44	.09	.03	<4	3	<2	2	<2	<1	23
(C 1168	1 -100	<2	14	<5	58	<.5	1290	94	1114	6.80	6	<10	<4	3	19	.6	<5	<5	47	2.43	.007	<2	1317	18.11	307	.07	.43	.09<	:.01	<4	3	<2	2	<2	<1	15
	C 1168	2 -100	<2	67	<5	54	<.5	126	27	827	4.74	<5	<10	<4	<2 2	218	<.4	<5	<5	132	5.06	.041	<2	278	4.48	129	.27	7.27	1.76	.56	<4	9	<2	12	<2	<1	26
	c 1168	3 -100	<2	79	<5	71	<.5	55	24	1157	6.25	<5	<10	<4	3 !	569	<.4	<5	<5	266	5.60	.103	- 4	101	3.27	179	.61	7.86	2.08	.48	<4	10	<2	20	<2	<1	29
í	C 1168	4 -100	<2	94	<5	92	<.5	65	39	1542	8.70	<5	<10	<4	2	339	<.4	<5	<5	423	8.18	.069	<2	85	4.54	334	1.26	6.90	1.72	.48	<4	18	3	28	<2	<1	53
- 1	c 1168	5 -100	<2	6	<5	33	<.5	1547	104	932	5.53	<5	<10	<4	<2	3	<.4	<5	<5	6	.20	.006	<2	490	22.65	1	.01	.07	.02<	:.01	<4	<2	<2	<2	<2	<1	4
(c 1168	5 -100	<2	8	6	39	<.5	1066	96	990	5.88	<5	<10	<4	<2	28	<.4	<5	<5	35	2.21	.011	<2	1412	19.21	11	.06	.54	.12	.03	<4	2	<2	<2	<2	<1	15
i	C 1168	7 - 100	2	6	<5	39	<.5	1465	110	988	6.03	<5	<10	<4	<2	3	<.4	<5	<5	<2	. 19	.004	<2	680	23.00	6	<.01	.02	.01<	:.01	<4	<2	<2	<2	<2	<1	4
			-	-			•••					-		-	_	-		-	-																		
1	RE C 1	1687 -100	<2	11	<5	41	<.5	1471	111	994	6.03	<5	<10	<4	<2	2	<.4	<5	<5	2	.20	.005	<2	717	23.28	4	<.01	.02	.01<	<.01	<4	<2	<2	<2	<2	<1	4
i	c 1168	8 - 100	<2	8	<5	36	<.5	1755	107	974	5.71	<5	<10	<4	3	3	< 4	5	<5	4	.09	.006	<2	927	22.83	85	<.01	.03	.01<	<.01	<4	<2	<2	<2	<2	<1	4
ì	C 1168	9 - 100	<2	8	5	46	<.5	1299	108	1017	6.28	5	<10	<4	2	7	< 4	6	<5	9	1.34	.006	<2	1010	20.86	274	.01	.10	.02<	<.01	<4	<2	<2	<2	2	<1	11
ì	C 1168	9(A) -100	<2	480	33	54	.5	1437	88	619	3.79	<5	<10	<4	3	4	<.4	8	<5	3	.08	.005	<2	633	20.89	6	<.01	.03	.02<	<.01	<4	<2	23	<2	<2	<1	2
i	c 1169	D - 100	<2	271	18	57	<.5	1249	81	809	5.15	<5	<10	<4	2	219	< 4	<5	<5	50	1.26	.041	3	442	17.06	566	.08	1.73	.86	.08	<4	4	12	2	<2	<1	7

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data AF

Page 2

ACHE ANALYTICAU

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANA T	ICAL LABORAT	DRIES LTD. 852	E. HASTINGS ST.	COUVER BC V6A	1R6 PHONE (604) 253-3158 FAX (6 253-	1716
			GEOCHEMICAL/A	ASSAY CERTIFICAT	ar na anti-cheile de la seconda de la companya de 19 de la companya de l	
					1 CA Domo 1	
		Ursula MOW	AC PROJECT ST	LAR PILE # 96-6	164 Page 1	
			1705 1755 1800501			
SAMPLE#	Mo Cu Pib Zn	Ag Ni Co Mn Fe As	U Au Th Sr Col	Sb Bi V Ca P La	Cr Mg Ba Ti B Al Na K W Au** Pt** Pd** SAM	PLE
	ppm ppm ppm ppm p	pm ppm ppm ppm % ppm	bbu bbu bbu bbu bbu b	ppmppmppm%%ppm	ppm %ppm %ppm % % %ppm oz/toz/toz/t	<u>له</u>
r 11678 +100	1 10 <3 56 <	3 1118 83 975 5.64 2	<5 <2 <2 4 .5	<2 <2 19 .18 .006 1	403 15.92 13 .02 4 .16 .01 .02 <2<.001<.001<.001	16
C 11679 +100	<1 5 <3 41 <	.3 941 70 815 4.69 <2	<5 <2 <2 15 .4	<2 <2 29 .44 .004 <1	543 13.00 16 .03 18 .22 .01<.01 <2<.001<.001<.001	22
c 11680 +100	1 4 <3 43	.3 1134 79 867 5 07 <2	<5 <2 <2 2 <.2	<2 <2 17 .17 .004 1	360 16.21 5 .02 5 .17 .01<.01 <2<.001<.001<.001	18
c 11681 +100	1 10 5 53 <	.3 1219 95 1110 6.38 2	<5 <2 <2 5 <.2	<2 <2 16 .26 .005 <1	343 16.44 6 .02 <3 .16 .01 .01 <2<.001<.001<.001	20
C 11682 +100	1 50 <3 17	.3 50 8 163 1.09 <2	<5 <2 <2 29 <.2	2 <2 23 1.22 .023 <1	47 .92 17 .07 4 1.45 .06 .06 <2<.001<.001	18
C 11683 +100	<1 54 <3 27 <	.3 15 8 315 1.79 <2	<5 <2 <2 68 <.2	<2 2 76 1.29 .090 2	17 .83 26 .15 4 1.48 .07 .04 <2<.001<.001	22
C 11684 +100	1 46 <3 20 <	.3 21 10 209 1.99 <2	<5 <2 <2 36 <.2	<2 <2 98 1.23 .022 <1	22 .62 27 .16 6 1.33 .08 .06 <2<.001<.001	25
C 11685 +100	14437 <	.3 1651 119 1113 6.01 2	<5 <2 <2 2 <.2	<2 <2 5 .05 .005 <1	94 23.11 6<.01 5 .05 .01<.01 <2<.001<.001	23
C 11686 +100	<1 5 4 35 <	.3 1094 102 1040 5.70 3	<5 <2 <2 6 .5	<2 <2 12 .18 .006 <1	311 16.82 10 .01 <3 .18 .01 .01 <2<.001<.001<.001	22
C 11687 +100	1 4 6 41 <	.3 1562 126 1189 6.45 2	<5 <2 <2 2 <.2	<2 <2 3 .06 .004 <1	84 23.60 3<.01 <3 .01 .01<.01 <2<.001<.001	21
					ADV 07 7/ / 04 /7 0/ 04 04 /0 001 001 001 001	10
C 11688 +100	1 6 5 38 <	.3 1885 123 1169 6.29 <2	<5 <2 <2 2 <.2	<2 <2 3 .06 .005 <1		10
C 11689 +100	1 6 3 41 <	.3 1327 114 1074 6.22 <2	<5 <2 <2 3 <.2	<2 <2 5 .14 .005 <1	182 18.05 0<.01 51 .00 .01<.01 <2<.001<.001<.001	20
C 11689(A) +100	1 493 32 47	.5 1110 83 649 3.33 3	<5 <2 <2 4 .3	<2 <2 2 .08 .002 <1		20
C 11690 +100	<182 932 <	.3 1075 71 687 3.91 <2	6 <2 <2 103 <.2	<2 <2 20 .80 .043 1	50 15.82 59 .02 <5 1.15 .49 .05 <2<.001<.001	27

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU** PT** & PD** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

DATE RECEIVED:

ł

Data

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Ursula Mowat PROJECT STAR FILE # 96-6164

Data

	SAMPLE#		Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Са	Р	La	Cr	Mg	Ba	Ti	В	Al	Na	κ	W /	\u**	Pt*	* Pd**	SAMPLE	
			ppm	ppm	ppm	ppm	ppm	ррп	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	%	%	ррп	ррп	%	ppm	%	ppm	%	%	%	ppm (oz/t	oz/	t oz/t	lb)
							-	4.000									2				45	007	- 4	750	45 (7		01	,	11	01.4	01	-1-	001		1 - 001	147	1
	C 11678	- 100	1	11	4	65	<.5	1299	105	1185	0.51	<2	<>	<2	<2	ు	. 4	<2	<2	10	• 15	.007	<	320	12.0/		.01	4	• • • •	.01<.	01	<2<.	.001	-00	1<.001	402	
	C 11679	- 100	1	7	<3	54	<.3	1189	- 96	1043	5.75	<2	<5	<2	<2	19	.4	2	2	25	.42	.006	<1	470	15.57	18	.02	25	. 19	.01<.	U1	<2<.	001	<.UU	1<.001	428	5
;	C 11680	- 100	1	5	4	52	<.3	1338	100	1044	5.76	<2	<5	<2	<2	3	<.2	<2	<2	15	. 15	.006	<1	338	15.93	5	.01	8	. 14	.01<.	01	<2<	.001	<.00	1<.001	454	•
1	C 11681	-100	1	13	3	61	<.3	1314	109	1230	6.79	<2	<5	<2	<2	4	<.2	<2	<2	14	.21	.006	<1	312	16.80	- 4	.01	<3	.13	.01<.	01	<2<	.001	<.00	1<.001	455	
	C 11682	- 100	1	82	4	25	<.3	88	18	289	2.03	<2	<5	<2	<2	28	<.2	2	<2	42	1.51	.044	<1	92	1.74	23	.11	3	1.99	.09 .	09	<2<	.001	<.00	1<.001	446	,
	C 11683	- 100	1	85	6	40	<.3	31	15	498	2.79	<2	<5	<2	<2	83	<.2	3	3	119	1.80	.109	1	50	1.39	40	.23	<3	2.03	.11 .	08	<2<	.001	<.00	1<.001	485	,
	C 11684	- 100	1	100	<3	40	.4	40	24	426	3.82	<2	<5	<2	<2	48	<.2	3	6	198	1.91	.071	<1	51	1.36	42	.26	<3	1.98	.17 .	09	<2<	.001	.00	1<.001	456	,
	C 11685	-100	1	5	<3	36	<.3	1558	117	1083	5.59	<2	<5	<2	<2	2	.2	<2	<2	4	.05	.004	<1	83	22.34	2.	<.01	7	.03	.01<.	01	<2<	.001	<.00	1<.001	446	5
	C 11686	- 100	1	7	<3	38	.3	1098	108	1083	5.70	<2	<5	<2	<2	6	<.2	<2	<2	11	. 19	.008	<1	287	17.81	7	.01	3	.16	.01 .	01	<2<	.001	<.00 ⁻	1<.001	476	5
	C 11687	- 100	1	Ś	<3	41	< 3	1510	125	1177	6.08	2	<5	<2	<2	2	<.2	<2	<2	3	.06	.005	<1	94	23.55	2.	<.01	<3	.01	.01<.	01	<2<	.001	<.00	1<.001	448	3
		100						1210				-	-	-	-	-		-	-	-																	
	DF C 11/	587 - 100	1	3	7	38	< 3	1437	119	1110	5.73	<2	<5	<2	<2	2	.2	<2	<2	2	. 05	.005	<1	89	22.17	2.	<.01	ব	.01	.01<.	01	<2<	.001	<.00	1<.001	-	
	C 11688	- 100		ž	~	36	< 3	1708	115	1083	5 51	<2	<5	<2	<2	2	3	<2	2	3	.05	.004	<1	116	21.78	5-	<.01	<3	.02	.01<.	01	<2<	001	<.00	1<.001	460)
	0 11000	100		-	2	45	~ 7	1240	117	1001	5 95	-2	-5	~2	~2	7	2	2	~2	ž	13	004	- 1	138	18 60	6	< 01	30	05<	01<	01	<2<	001	< 00 ·	1< 001	445	
	L 11009	-100				40	`.	1200	05	1071	7 7/	2	1	2	20	7	• • •	-2	1	1	. 15	.000		170	10.07	7	- 01	20	.02	012	01	-2-	001	00	1 001	177	,
	C 11689	(A) -100	<1	498	35	49	.5	1056	5	DYY	3.34	<2	< <u>></u>	~2	<2	_4	.2	~2	2	2	.09	.001	< I	130	10.22		.01	- 22	.05	.015.		121	.001			437	,
	c 11690	-100	1	288	28	54	.3	1263	87	843	4.49	<2	5	<2	<2	53	<.2	<2	2	19	.56	.039	<1	64	19.89	23	.02	<3	.74	.53 .	04	<2<	.001	<.00	1<.001	41/	

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

