

May 27 1997

Gold Commissioner's Office VANCOUVER, B.C.

ASSESSMENT REPORT

ON

CATS PROPERTY

OLIVER, BRITISH COLUMBIA

Osoyoos Mining Division

Latitude: 49 degrees 10 minutes North Longitude: 119 degrees 36 minutes West NTS: 82E/4E

FOR

Dale C. Hogg Box 141, Oliver, BC

PREPARED BY

Daria Duba, M.Sc. Consulting Geologist R.R.1, S.4, C.1 Naramata, BC V0H 1N0

May 8, 1997

OCOLOGICAL SURVEY BRANCO ASSESSMENT REPORT

25,005

TABLE OF CONTENTS

- -

Sl	UMMARY	page 1
1.	INTRODUCTION	page 1
	1.1 Location, Access and Topography	page I
	1.2 CATS Property	page 2
	1.3 Previous Work	page 2
<i>2</i> .	GEOLOGY	page 2
	2.1 Regional Geology	page 2
	2.2 Property Geology	page 3
З.	WATER -WELL DRILLING	page 3
<i>4</i> .	RESULTS	page3
5.	RECOMMENDATIONS	page 4
6.	STATEMENT OF QUALIFICATION	page 5
7.	STATEMENT OF COSTS	page 6

LIST OF FIGURES

- ---

Figure 1	Location Map	following page 1
Figure 2	Claim Map	following page 2
Figure 3	Survey Plan Showing Location of CAT 1	
	and CAT 2 Claims	in pocket

APPENDICES

Well Log Construction Record - DDH 2 Well Log Construction Record - DDH 3 Drill Log - DDH 2 Drill Log - DDH 3 Certificates of analysis

SUMMARY

An exploration drilling and sampling program was undertaken on CATS claims for Dale C. Hogg by Quality Well Drilling Ltd. between May 1 and 9, 1996. The total of 850 feet (259.1 meters) was drilled at two water-well sites.

The purpose of the drilling was to assess the underground-water capacity of two sites for the future residential development and simultaneously to test for the mineral potential of the CATS property.

Thirty-six rock-chip samples from the water-well drilling were sent for geochemical analysis. The significantly anomalous concentrations of gold were recovered in DDH 2 (35-515 ppb Au) and DDH 3 (65-135 ppb Au).

It is recommended to undertake comprehensive research and compilation of historical exploration activity on CATS property and follow-up with prospecting, geological mapping and sampling in favorable areas including localities where DDH 2 and DDH 3 were drilled.

1. INTRODUCTION

This report summarizes an exploration drilling and sampling program (May 1 to May 9, 1996) conducted on the CATS property, Fairview Mining Camp, Oliver, British Columbia. Quality Well Drilling Ltd. for Dale C. Hogg undertook the water-well drilling. The total of 850 feet were drilled at two sites. Thirty-six rock-chip samples were selected for geochemical analysis. These were sent to Eco-tech Laboratories Ltd. in Kamloops together with three handspecimens from the CATS property.

Eagle Mapping Services Ltd. completed the contour mapping at a scale of 1:3500 in May 1996. The contour interval of 1 meter was used and then condensed to 5 meters. The contour map with surveyed CAT 1 and CAT 2 claims was prepared by Lloyd and Associates and is included in this report (in the pocket).

1.1 Location, Access and Topography

The CAT 1 to CAT 6 claims lie west of Oliver, British Columbia within the Osoyoos Mining Division. They are roughly centred at latitude 49 degrees 10 minutes North, longitude 119 degrees 36 minutes West on NTS map sheet 82E/4E (Figure 1).

Access to the property from Highway 97 is westward via 7th Avenue in Oliver and then approximately 2.5 kilometers along the Fairview Road.

The elevation of CAT 1 to CAT 6 claims is about 750 meters a.s.l. The area is intermittently forested with pine, fir and spruce on semi-arid grasslands.

The water-wells DDH 2 and DDH 3 were drilled north and south of Reed Creek, respectively, on the flat plateaus on CAT 1 claim.

1.2 CATS Property

The CAT 1 to CAT 6 claims were grouped under the name CATS in February 19, 1997. The location of the CATS property is shown on the claims map in Figure 2 and their status is summarized in the Table below.

NAME OF CLAIMS	TENURE NUMBER	EXPIRY DATE	
CAT 1	343549	February 25, 2004	
CAT 2	345350	April 12, 2004	
CAT 3	345607	May 5, 2004	
CAT 4	345608	May 5, 2004	
CAT 5	345609	May 5, 2004	
CAT 6	345610	May 5, 2004	

1.3 Previous Work

The Fairview Mining Camp is one of the oldest mining camps in British Columbia where many claims were located as early as 1882. Some of the early claims that surround the drill sites were held by Homestake, Silver Crown, Ontario, Morning Star, August, Black Diamond and Elmore. Most of these properties produced small cantos of gold, silver, lead and zinc, and consequently became abandoned by 1908. There was a renewed interest and occasional activity in the Fairview camp in 1930's and 1940's and more recently in 1960's to mid-1970's but without any significant discoveries to date.

2. GEOLOGY

2.1 Regional Geology

The CAT property lies within the Intermontane Tectonic Belt and on the west side of the major, regional tectono-stratigraphic break, Okanagan Fault. The surface expression of this fault is the Okanagan Valley. The Okanagan Fault separates dominantly older, higher-grade metamorphic rocks to the east from younger, less metamorphosed volcano-sedimentary rocks to the west.

2.2 Property Geology

The exploration area is underlain dominantly by Mesozoic volcanic and sedimentary rocks including quartzite, phyllite, schist, marble and greenstone. These are intruded by weakly foliated granite and granodiorite plutons (Oliver and Fairview Plutons). The entire volcano-sedimentary sequence is cut by numerous quartz veins and stockworks. Typically these veins trend northwesterly, that is concordant with the regional foliation, and dip northeasterly. Historically, it is known that some of the quartz veins are auriferous.

3. WATER-WELL DRILLING

Two water-wells totaling 850 feet (259.1 meters) were drilled; DDH 2 (350 feet) and DDH 3 (500 feet). Both wells are situated on CAT 1 claim, north and south of Reed Creek, respectively (Figure 2). The objective of the water-well drilling was not only to test the ground-water capacity of the area for the future residential development but also simultaneously to evaluate the mineral potential of the CATS property.

Rock-chip samples were collected continuously every two feet. The author logged the rock-chips samples at 10-foot spacing from both water-wells. Detailed logs and gold values are included in the Appendix of this report. Nineteen rock-chip samples from DDH 2 and seventeen rock-chip samples from DDH 3 were sent to Eco-tech Laboratories and analyzed for gold and selected seventeen from those samples were analyzed for 30 elements using the ICP technique. The results of the analysis and the certificates are included in the Appendix.

Three rock handspecimen from CATS property were also sent to Eco-tech Laboratories for geochemical analysis (gold and 30-element ICP). The certificate of analysis is enclosed in the Appendix of this report.

4. RESULTS

Two lithotypes were dominantly encountered in DDH 2 and DDH 3. These are white to creamy to light greenish grey, calcareous quartzite with up to 10 % chloritized mafic inclusions (siliceous/silicified? marble) and dark grey, locally carbonaceous phyllite. Coarser variety of latter was identified as quartz-biotite to quartz-biotite-chlorite schist. Pyrite, trace to 1%, is ubiquitous in both lithologies and occurs as fine, rusty specks, disseminations and coarse euhedral grains.

Four samples in DDH 2 carry anomalous concentrations of gold. These occur between 62 to 124 feet and range from 35 to 515 ppb Au. Anomalous contents of gold are also encountered in DDH 3. Gold values range from 65 to 135 ppb and are found between 190 and 282 feet.

Highly auriferous sample 2-82 (515 ppb Au) has also associated anomalous contents of silver (5.2 ppm) and arsenic (30 ppm). Association of gold and arsenic would suggest possible epithermal origin for the mineralization.

One of the handspecimens caries very small quantity of gold (20 ppb). It is a sample of limonitized meta-sediment cut by Fe-oxide stained milky quartz veins.

5. RECOMMENDATIONS

Based on the encouraging results of rock-chip geochemistry from the water-well drilling in May 1996, it is recommended to follow-up with the further exploration program.

1. Research and compilation of all the historical exploration activity on CATS property including location of showings/prospects/mines/drill holes, geological mapping, lithogeochemical sampling, drilling results, geophysical and geochemical surveys, etc.

2. Based on the results of research and compilation, select favorable areas for further geological mapping/prospecting and lithogeochemical sampling.

3. Geological mapping, prospecting and lithogeochemical sampling in the areas of DDH 2 and DDH 3 to locate the source of gold mineralization.

6. STATEMENT OF QUALIFICATION

- I, Daria Duba, of R.R.1, S.4, C.1, Naramata, British Columbia, hereby certify that:
- 1. I am Consulting Geologist in mineral exploration and I have practiced my profession in Canada and in the United States for the past 20 years.
- 2. I am a graduate of Concordia University, Montreal with a B.Sc. (1978) in Geology and McGill University, Montreal with M.Sc. (1982) in Economic Geology.
- 3. I am a member of B.C. and Yukon Chamber of Mines.
- 4. This report is based on work done on CATS property in June 1995 and in March 1997.

May 8, 1997

Daria Duba, M.Sc. Consulting Geologist

COST STATEMENT SUMMARY:

1.	Eagle M	apping Services	
	a)	Black and white aerial's	
	b)	1 : 1,000 digital topo for 360 H.	
	c)	1 : 1,000 digital topo for 115 H.	
	ď)	1: 3,500 autocad files and mylar.	
	e)	1: 1,000 digital topo adding 115 H. to the mylar plot and autocad	
	f)	1: 3,500 with 5 metre index contours	
			\$11,599.17
2.	Lloyd 8	t Associates Surveyers	
	a)	GPS survey of photo controls for photogrammetric mapping, set monument and plotting of claim boundaries	ting legal survey
			\$5,264.57
3.	Quality	Well Drilling	
	a)	Drill Hole # 2	\$9,509.09
	b)	Drill Hole # 3	\$8,227.50
4.	Analysi	S	
	8)	Geologist Report - Daria Duba	\$780.35
	b)	Lab Analysis - Eco-Tech Laboratories	\$671.16
5.	Other W	/ork - Dale & Cindy Hogg	
	a)	Bob Cat Work = 10 days x 8 Hr/Day = \$40/Hr.	\$3,200.00
	b)	D 6 Cat Work	\$400.00
	c)	Management and Working - Dale Hogg = \$20/Hr.	
		x 10 days x 8 Hr/Day	\$1,600.00
	d)	Supplies (Bags for drill samples)	\$44.00
	e)	Core Storage at Douglas Road	\$500.00
	f)	Transportation Costs (15% of \$5,744.00)	\$861.60
-			
1C	ITAL OF	ALL COSTS:	\$42,657.44

6

SURVEY PLAN SHOWING LOCATION OF CAT1 AND CAT2 MINERAL CLAIMS LEGAL CORNER POST.

-310 100 E

- 309 750 F

- 309 400 E

-309 050 E

--- 308 700 E

- 308 350 E

- 308 000 E

- 307 650 E

-307 300 E

-+--

-

OSOYOOS MINING DIVISION B.C.G.S. 82 E.012

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

BEARINGS ARE GRID AND DERIVED FROM G.P.S. OBSERVATIONS AND ARE REFFERED TO THE CENTRAL MERIDIAN OF U.T.M. ZONE 11.

LLOYD & ASSOCIATES LAND SURVEYING & GEOMATICS LTD, 484 ELLIS St. PENTICTON, B.C. V2A 4M2 TEL: 492 - 7399 OUR FILE NO. P920052 FAX: 492 - 5488

FAIRVIEW HIGHLANDS

CONTOUR INTERVAL 5m SCALE 1: 3500

0 35 70 140 210 280m

PRODUCED FROM AERIAL PHOTOGRAHY FLOWN: APRIL 28 1996 PHOTO SCALE: 1:10,000 CONTROL BY: LLOYD & ASSOC. HORIZONTAL DATUM: NAD B3 VERTICAL DATUM: GEODETIC BASE COMPILED BY: EAGLE MAPPING SERVICES LTD. (96-20-1) **APPENDICES**

Hole #2 WFII CONSTRUCTION RECORD OWNER Mr. Dale Hogy Address 761 Douglas Rd. Kelowing RC. Well Location Up Fairview Rd Oliver by Loubdrate Date Completed May 3/76 Date Started ____ Mar Drilling Method Kir rotary QUALITY WELL DRI LLING LTD. Driller Don Romses Helper Rob Cranuton P.O. BOX 589 **OKANAGAN FALLS, B.C. VOH 1R0** File _____ Folio PH: (604) 497-5777 Signed by marik LOG OF FORMATIONS CASING RECORD Depth Descriptions Dia_6_ins. Wt._2/9#/ft. From_0_to/76 0_ to 2' Top 501 Dia.____ins. Wt.____#/ft. From_____to____ 2' to 6' Saula Dia.____ins. Wt.____#/ft. From_____ to auc to ____ Shoe Welded Cemented ---to _9 SCREEN RECORD Make_____ Material____ to 14 Slot opening____ Length 16' to 17'6 H. Bottom _ Тор _____ ft. to ____ Fittings Bottom_ Fittings Top 176 to 350 Gravel Pack _____ _ Natural ____ to _____ Development Method Hir lit ____ to ___ ROCK WELL DATA This to 6 ____ Dia.__ ___ ins. to linea
 Open Bore Hole_____
 Dia.____

 From ______
 Z '6'' ft. to ______
Open Bore Hole__ Puc. to protec ft. ___ to ___ 4 your pump ____ to ____ PRODUCTION DATA Static Level Flowing Cono ____ to ___ Measured from Ground ____ to __ ____ to ____ Pumping Level ______ft. at _____GPM ____ to ___ ___ to ___ ft. at GPH Bail Test ___ to __ _____ft. at____ GPH Recommended Pump Setting 330 ___ to ___ ft. ____ to __ GPM Recommended Max. Pump Output ______ _ to ___ GEE ____ to ____ Duration of Test _____2 Hrs. ___ to ____ **GENERAL REMARKS** ____ to ____ __ to ___ This well to 1 ___ to ___ ____ to ____ ____ to ____ ____ to ____

Hole #3 WELL TOG CONSTRUCTION RECORD Dale OWNER Mr. Hood elowna Down 125 Address <u>767</u> d. Oliver on north Well Location Che Fairly ride Sr. o7nox 96 91 Date Started Date Completed _ Jan Drilling Method _ QUALITY WELL DRILLING LTD. Driller Don Komser Helper Kob CrampTon P.O. BOX 589 File ___ **OKANAGAN FALLS, B.C. VOH 1R0** Falio PH: (604) 497-5777 22220 Signed by CASING RECORD LOG OF FORMATIONS Dia. 6 ins. Wt 2/2#/tt. From 0 to 1/2/2Depth Descriptions 5011 TOD Dia._____ins. Wt._____#/ft. From_____to_____ _0___to_ Fine and come to_S Dia.____ins. Wt.____#/ft. From_____to___ 8' to 13' NAUF SCREEN RECORD de to ___ - ... Materia Make____ to 142 Slot opening_____ Lenath ___ to Тор _____ ft. Bottom _ ft. 142 10500 Fittings Top _____ Fittings Bottom_ ___ to ____ Graver Pack ____ _____Natural _ ___ to __ to _ ROCK WELL DATA กรับ to ___ Dia. 🗲 _ ins. Open Bore Hole_ to From _____ _ ft. to <u>500</u> Ħ. to _ PRODUCTION DATA to Static Level 106 +T. (mar 9/96) to ft. Measured from Ersond to A ft. at GPM to Pumping Level Total air ft. at 4-4 to **C**GPM to _ ft. at_ GPH Bail Test GPH ____ to __ _ft.at_ Recommended Pump Setting <u>#35</u> ft. __ to __ to ____ Recommended Max. Pump Output _____4 GPM ___ to ___ (CBF _ to __ 2 Duration of Test Hrs. _ to __ GENERAL REMARKS _ to _ ____ to ___ __ to ___ ____ to ____ ____ to ___ in din ___ to _____ __ to ____

Drill log – DDH 2

Depth (feet)	Lithological description	Au (ppb)
0-42	Overburden	
42-44	Light green-grey quartzite, to 10% choritized mafic	5
	inclusions, weakly calcareous, rusty specks after py	
52-54	Light to medium greenish grey quartzite	1
62-64	Light grey quartite, trace to 1% py euhedra	60
72-74	The same as above 42-44, <5% chloritized	<5
	hornblende/biotite inclusions	-
82-84	Dark grey phyllite/white quartzite, trace cubic pyrite	515
92-94	Medium grey-green quartzite, chloritized fracture surfaces	<5
102-104	Light grev-green quartzite, 5-7% chloritized mafic	35
	minerals	
112-114	White quartzite, minor dark grev phyllite, trace py, weakly	<5
	calcareous	
122-124	Light grev-green granodiorite?, trace pyrite cubes	40
132-134	Light grey leucocratic granite?/quartzite	
142-144	White calcareous meta-sediment?/quartzite, 10%	5
	chloritized mafic inclusions	
152-154	Light grey-green quartzite?, calcareous, trace py euhedra	
162-164	White to light grey-green quartzite, trace py euhedra	25
172-174	The same as above 162-164, to 1 % rusty specks after	
182-184	Light grev-green quartizte to 0.5% pyrite disseminations	25
192-194	The same as above 182-184	
202-204	Weakly foliated calcareous white to greenish grey	10
	quartzite, trace cubic pyrite	10
212-214	Light grev-green quartile, trace to 0.5% py euhedra	
222-224	The same as above 212-214	5
232-234	Dark grey phyllite and white to light grey quartzite, some	
	limonitic staining, <1% py	
242-244	Dark grev phyllite/quartz-biotite schist, lesser white	5
	quartzite. <1% pv	
252-254	Dark grey phyllite and milky quartzite, to 1% py	
262-264	The same as 242-244	15
272-274	Dark grey quartz-biotite schist	
282-284	White quartzite, lesser dark grey phyllite/quartz-biotite	5
	schist, weakly calcareous	}
292-294	White to medium greenish grey quartzite/quartz-chlorite-	
,	biotite schist, trace to 0.5% py	
302-304	The same as 232-234	15
312-314	Medium grey quartz-biotite schist, locally foliated	

322-324	White quartzite, medium to dark grey phyllite/quartz- biotite schist, limonitic staining	5
332-334	White to light grey-green quartzite?/leucocratic granite, grey phyllite/quartz-biotite schist	
342-344	White marble, weakly silicified?, rusty specks and euhedral pyrite (<0.5-2%)	5
348-350	Grey quartz-biotite schist/phyllite, white quartzite, calcareous, trace py	
350	End of hole	

-

-- -

- -

330-332	White to light grayish green quartzite, some chloritic	
	inclusions	
340-342	The same as 50-52	5
350-352	The same as 50-52	
360-362	The same as 50-52	
370-372	The same as 50-52	10
380-382	The same as 50-52	
390-392	The same as 50-52	
400-402	White quartzite, moderately calcareous, trace to 0.5% rusty	5
	specks (after pyrite) and pyrite euhedra	
410-412	The same as 50-52	
420-422	The same as 50-52	
430-432	The same as 50-52	5
440-442	The same as 50-52	
450-452	Dominantly white to creamy to greenish grey quartzite,	
	calcareous, trace pyrite	
460-462	The same as 50-52	5
470-472	The same as 50-52	
480-482	The same as 50-52	
490-492	Dark grey phyllite/quartz-biotite schist, lesser white quartzite	5
498-500	White to creamy quartzite and dark grey phyllite/quartz-biotite	
	schist, trace rusty specks after pyrite	
500	End of hole	

- ----

Logged by D. Duba March 14-15, 1997

.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ANALYSIS AK 97-185

DALE HOG 761 DOUGLAS STREET KELOWNA, BC V1Z 1N7

20-Mar-97

ATTENTION: DALE HOG

No. of samples received: 33 Sample type: ROCK CHIP PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: DASHA DUBA

		Au	
ET #.	Tag #	(ppb)	
1	2-42	5	
2	2-62	60	
3	2-82	515	
4	2-102	35	
5	2-122	40	
6	2-142	5	
7	2-162	25	
8	2-182	25	
9	2-202	10	
10	2-222	5	
11	2-242	5	
12	2-262	15	
13	2-282	5	
14	2-302	15	
15	2-322	5	
16	2-342	5	
17	3-10	5	
18	3-40	5	
19	3-70	5	
20	3-100	5	
21	3-130	35	
22	3-160	5	
23	3-190	65	
24	3-220	65	

DALE HOG AK 97-185

_ _ _

20-Mar-97

		Au	
ET #.	Tag #	(ppb)	
25	3-250	135	
26	3-280	80	
27	3-310	20	
28	3-340	5	
29	3-370	10	
30	3-400	5	
31	3-430	5	
32	3-460	5	
33	3-490	5	
QC DA	<u>TA:</u>		
Resplit	:		
R/S 1	2-42	5	
Repeat	;		
1	2-42	10	
10	2-222	5	
19	3-70	5	
/ Standa	rd:		
GEO'97	,	145	

- --

_

ECO-TECH LABORATORIES LTD. Per Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/97

24-Mar-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 97-185

DALE HOG 761 DOUGLAS STREET KELOWNA, BC V1Z 1N7

ATTENTION: DALE HOG

No. of samples received: 33 Sample type: ROCK CHIP PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: DASHA DUBA

Values in ppm unless otherwise reported

	Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti%	<u> </u>	V	W	<u>Y</u>	Zn
	1	2-42	<0.2	0.84	<5	115	<5	2.49	<1	5	63	11	1.62	<10	0.61	528	6	0.03	2	500	26	15	<20	96 < 0.01	<10	13	<10	4	32
J	3	2-82	5.2	0.26	30	50	5	1.97	2	8	91	12	2.29	<10	0.53	402	8	0.03	2	310	16	5	<20	198 <0.01	<10	5	<10	2	116
	5	2-122	<0.2	0.38	<5	60	<5	3.28	<1	2	56	2	1.08	<10	0.21	430	5	0.03	1	310	<2	10	<20	129 <0.01	<10	2	20	4	15
	7	2-162	<0.2	0.50	<5	80	<5	2.08	<1	3	57	4	0.92	<10	0.29	377	4	0.02	<1	310	<2	5	<20	90 <0.01	<10	3	<10	4	17
	9	2-202	<0.2	0.61	<5	215	<5	1.90	<1	3	90	25	1.22	<10	0.39	420	9	0.03	7	490	2	10	<20	76 <0.01	<10	12	<10	6	22
	11	2-242	<0.2	0.42	70	80	<5	Ü.92	<1	7	118	48	2.28	<10	0.59	318	11	0.01	34	980	14	<5	<20	72 <0.01	<10	30	<10	5	59
	13	2-282	<0.2	0.83	<5	305	<5	0.71	<1	8	101	39	2.47	<10	0.66	836	7	0.02	21	430	6	5	<20	48 0.01	<10	40	<10	2	35
	15	2-322	<0.2	0.96	<5	325	<5	0.81	<1	10	107	24	2.92	<10	0.79	633	7	0.02	21	490	10	10	<20	62 0.06	<10	54	<10	6	43
	17	3-10	<0.2	0.66	<5	115	<5	1.27	<1	4	82	7	1.21	<10	0.39	331	6	0.03	3	460	2	5	<20	41 0.04	<10	14	<10	4	18
	19	3-70	<0.2	0.82	<5	160	<5	1.07	<1	5	76	4	1.55	<10	0.48	377	5	0.03	1	390	2	10	<20	58 0.03	<10	14	<10	5	30
	21	3-130	<0.2	0.54	<5	85	<5	2.63	<1	4	51	15	1.09	<10	0.35	479	23	0.02	<1	370	2	10	<20	63 0.02	<10	5	<10	2	17
	23	3-190	<0.2	0.52	<5	90	<5	2.15	<1	3	54	8	0.99	<10	0.31	428	5	0.02	<1	320	2	10	<20	50 <0.01	<10	5	<10	3	21
	25	3-250	0.4	0.55	<5	90	<5	2.32	2	4	61	9	1.19	<10	0.32	407	5	0.02	1	400	14	5	<20	75 <0.01	<10	5	<10	4	34
	27	3-310	<0.2	0.66	<5	95	<5	2.10	<1	4	64	15	1.48	<10	0.38	468	5	0.03	2	380	4	10	<20	60 <0.01	<10	8	<10	4	28
	29	3-370	<0.2	0.54	<5	285	<5	1.88	<1	2	71	4	1.01	<10	0.28	335	5	0.03	<1	320	6	10	<20	76 0.02	<10	7	<10	5	20
	31	3-430	<0.2	0.69	<5	130	<5	0.88	<1	3	60	2	0.95	<10	0.29	278	4	0.05	1	290	6	5	<20	54 0.04	<10	8	<10	4	27
	33	3-490	<0.2	1.34	<5	595	5	0.60	<1	8	171	41	2.95	<10	0.96	369	7	0.02	41	800	8	10	<20	36 0.09	<10	98	<10	10	72

Et #	Tag #	Ag	Al %	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	<u>Р</u>	Pb	Sb	Sn	Sr	<u>Ti %</u>	<u> </u>	<u>_</u>		<u>Y</u>	Zn
QC DAI Resplit:	A:																												
1	2-42	<0.2	0.88	<5	120	<5	2.57	<1	5	66	10	1.66	<10	0.61	546	5	0.03	1	510	20	10	<20	96	<0.01	<10	13	<10	4	40
Repeat: 1	2-42	<0.2	0.88	<5	130	<5	2.50	<1	5	68	11	1.67	<10	0.61	537	6	0.03	1	510	22	10	<20	97	<0.01	<10	13	<10	4	36
Standaı GEO'97	d:	1.0	1.80	65	170	<5	1.74	<1	19	64	77	3.94	<10	1.01	671	<1	0.02	25	620	16	15	<20	52	0.12	<10	74	<10	9	68

df/185 XLS/97

EQO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ANALYSIS AK 97-305

DALE HOGG 761 DOUGLAS ROAD KELOWNA, BC V1Z 1N7 5-May-97

ATTENTION: DALE HOGG

No. of samples received: 3 Sample type: ROCK PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: DASHA DUBA

			Au	
	ET #.	Tag #	(ppb)	
-	1	SITE 1 MAP 8	3 20	
	2	SITE 2	<5	
	3	GRANTLEE	<5	

QC DATA:	
Resplit:	
R/S 1 SITE 1 MAP 8	20
Repeat:	
1 SITE 1 MAP 8	20
Standard:	
GEO'97	140

NOTE: ICP STILL TO COME

TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/97 cc: Dasha Duba e-mail

5-May-97

ECO-1 10041 KAML V2C 6	TECH LABORA East Trans Car . OOPS, B.C. T4	T ORIES LT nada Highw	D. ay							ŀ	CP CEF	RTIFIC	ATE O	F ANAL	YSIS /	AK 97-:	305						D 7 K V	0ALE H 61 DOI (ELOW (1Z 1N)	iogg Uglas /NA, B 0 7	ROAD				
																							A	TTEN	TION: 1	DALE H	OGG			
Phone Fax Value	e: 604-573-5700 : 604-573-4557 s in com unles	s otherwis	e repo	rted																			N S S S	lo. of s Sample PROJEC SHIPME Sample:	amples type: F CT #: N ENT #: I s subm	receive ROCK VONE G NONE G itted by:	d: 3 IVEN IVEN DAS	HA DU	ВА	
-	-	A	•	A 1 D/	•-	Ba	D:	C - 9/	04	C -	C -	c	Eo %	1.0.1	Ma %	Мо	Мо	Na %	Ni	D	Ph	Sh	Sn	Sr	Ti %	U	v	w	Y	Zn
Et #.	iag #	Au(ppb)	Ag	AI %	AS		<u></u>		<u> </u>	<u></u>			0.06		Δ 10	260	0	0.01		200	-2		<20	17	<0.01	<10		<10	<u> </u>	<u> </u>
1	SITE 1 MAP 8	20	0.6	0.27	<5	60 75	<5 ~5	0.23	<1	ა ი	137	20	1.20	<10	0.10	195	07	0.01	2	290	~2	<5	<20	21	0.07	<10	3	<10	<1	5
2	SHE2	<5	<0.2	0.27	<5 <5	10	C>	0.29	<1	3 10	107	3U 71	1.00	<10	0.09	100	22	0.02		470	18	<5	<20	7	<0.02	<10	13	<10	<1	17
3	GRANTLEE	-5	0.4	0.02	-0	55	-10	0.15	- 1	12	140	,,	2.72		0.00			0.01	-			-		-						
	ATA:																													
Respi 1	SITE 1 MAP 8	20	0.6	0.25	<5	55	<5	0.21	<1	3	137	6	0.89	<10	0.18	242	8	0.01	8	250	<2	<5	<20	15	<0.01	<10	4	<10	1	9
Repea 1	at: SITE 1 MAP 8	20	0.6	0.27	<5	65	<5	0.23	<1	3	141	7	0.97	<10	0.18	263	9	0.01	7	300	<2	<5	<20	19	<0.01	<10	5	<10	1	10
Stand GEO'§	lard: 97	140	1.6	1.81	70	180	<5	1.78	<1	20	63	85	4.13	<10	1.04	708	<1	0.02	22	710	20	5	<20	67	0.12	<10	79	<10	5	76

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/313 XLS/97

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ANALYSIS AK 97-304

DALE C. HOGG 761 DOUGLAS ROAD KELOWNA, BC V1Z 1N7 5-May-97

ATTENTION: DALE HOGG

No. of samples received: 3 Sample type: ROCK/CHIP PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: DASHA DUBA

			Au	
~	ET #.	Tag #	(ppb)	**
	1	2-72	<5	
	2	2-92	<5	
	3	2-112	<5	

<u>QC DA1</u> Resplit	<u>ra:</u> :	
R/S 1	2-72	<5
Repeat . 1	2-72	<5
Standa GEO'97	rd:	140

ECD-TECH LABORATORIES LTD.

ફ⊶∕ Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/97 cc: Dasha Duba e-mail