

EXPLORATION

WESTERN CANADA

(1) (1) = (1) (1) (1) (1) (1)

NTS: 94L/14, 15

ASSESSMENT REPORT

GEOLOGICAL MAPPING AND GEOCHEMCAL SAMPLING

ON THE

CHIEF PROPERTY

LIARD MINING DISTRICT, B.C.

LATITUDE: 58° 52' N

LONGITUDE: 127° 01' W

WORK PERFORMED: July 10-July 17, 1996

CEOLOGICAL SURVEY BRANCH ANNERSMENT REPORT

25.012

DARIN WAGNER

May 1997

TABLE OF CONTENTS

		Page
I.	INTRODUCTION	1
II.	LOCATION AND ACCESS	1
III.	TENURE	4
IV.	PREVIOUS EXPLORATION	4
V.	GEOLOGY	4
VI.	GEOCHEMICAL SAMPLING	6
VII.	CONCLUSIONS AND RECOMMENDATIONS	7
VIII.	REFERENCES	7
	* * * * * *	

- APPENDIX I GEOCHEMICAL ANALYSIS AND METHODS
- APPENDIX II STATEMENT
- APPENDIX III STATEMENT OF EXPENDITURES
- APPENDIX IV CERTIFICATION OF QUALIFICATIONS

* * * * * * * *

FIGURES

1.	LOCATION MAP - CHIEF PROPERTY (1:250,000)	2
2.	PROPERTY MAP (1:31,680)	3
3.	GEOLOGY MAP - CHIEF PROPERTY (1:10,000)	BACK POCKET
4.	GEOCHEMICAL SAMPLE LOCATION MAP (1:10,000)	BACK POCKET

COMINCO LTD.

EXPLORATION

WESTERN DISTRICT

ASSESSMENT REPORT

GEOLOGICAL MAPPING AND GEOCHEMICAL SAMPLING

ON THE CHIEF PROPERTY

I. INTRODUCTION

Six two-post claims were originally staked as the Chief Property to cover a bedded barite showing discovered by a BCDM mapping crew during 1995 (Ferri et al. 1996). Ferri et al.'s map indicated the barite occurrence was hosted by the Devonian Earn Group which hosts Sediment-hosted Massive Sulphide (SHMS) mineralization, commonly in association with stratiform barite showings, further south within the Kechika Trough (i.e. Cirque deposit).

Additional claims were staked after follow-up stream sediment sampling returned values in excess of 1.2% Zn from the drainage hosting the bedded barite. Prospecting and mapping conducted after staking the larger property outlined a broad package of prospective black shale stratigraphy underlying the anomalous drainage and forming a north-south, thrust-bound, package.

Five man days of mapping/prospecting and four man days of contour soil and silt sampling were undertaken on the Chief property during 1996, between July 10 and July 17. The work on the Chief was part of a larger regional program in the area. Cominco geologist Darin Wagner, assisted by summer students J. Heimbach and A. Mainville conducted the mapping. Summer students R. Mann, A. Mainville and J. Schiavon conducted the soil/silt sampling.

II. LOCATION AND ACCESS

The Chief property is located along the eastern edge of the Muskwa Range of the northern Rocky Mountains approximately 22 km northwest of the north end of Netson Lake near the headwaters of Hornline Creek (Figures 1 and 2). Base camp for the July work on the Chief property was Watson Lake, Yk. Access to the property was via helicopter from Watson Lake.

62

41¹3

100

G

-Rata

127'00'

(<u>F</u>)

 ± 1

Or L

02

SOIS

Part

54

30'

NCI 112A CL

Elevation on the Chief property ranges between 3800 and 4700 feet. The entire property is below tree-line and is moderately to heavily timbered with pine, spruce and balsam. The majority of outcrop on the property is restricted to narrow creek cuts or steep local slopes. Helicopter landings are possible in natural meadows along the creek valleys and in the upper reaches of the property.

III. TENURE

The Chief property consists of 12 two-post and 3 four-post mineral claims, for a total of 70 units, 100% owned by Cominco Ltd., 700-409 Granville St., Vancouver, B.C.; V6C 1T2 (see below).

Claims	Tenure #'s	Recorded	Due		
Chief 1-6	343513-518	Feb. 06, 96	Feb. 06, 2000		
Chief 7	348368	July 10, 96	July 10, 2000		
Chief 8,9	348369,348370	July 11, 96	July 11, 2000		
Chief 10-15	348383-388	July 10, 96	July 10, 2000		

IV. PREVIOUS EXPLORATION

No previous exploration work has been reported from the area of the Chief claims.

V. GEOLOGY

The Chief property is situated within the north-central portion of the Kechika Trough, a north-west elongated Cambrian-Mississippian sediment-filled rift basin which formed as an extension of the larger Selwyn Basin to the north.

According to Ferri's map (Ferri et al. 1995) the central portion of the Chief property is underlain by a thrust-bound, synclinally folded lens of Lower Devonian Earn Group shale. The balance of the property, according to Ferri is underlain by orange-weathering Silurian-aged siltstone units of the Upper Road River Group.

Cominco's detailed mapping of the Chief property and surrounding area by in large supports Ferri et al.'s observations (Figure 3). The central portion of the claim block is underlain by a moderately to tightly folded, north-south-trending belt of siliceous Lower Earn Group shale. Locally the uppermost potion of the underlying Road River is infolded into the Earn. The Earn shales are bound on the west (up-section) by a west dipping thrust which brings a northwest-southeast oriented package of Road River and lesser Earn Group lithologies into contact. To the east a single exposure of Silurian siltstone is observed. It is unclear whether this is another infold of older strata or a stratigraphic contact as suggested by Ferri et al.

The Silurian siltstone unit comprises the majority of the western thrust panel. The Silurian Siltstone unit is typically comprised of an orange-weathering, grey, fine-grained siltstone separated by thin mudstone seams. Worm-like bioturbation features are observed locally as is minor chert and trace disseminated pyrite.

A small exposure of fissile weathering grey shale within the western thrust panel is interpreted as belonging to the Lower unit (Ordovician) of the Road River Group. The extent of this unit is unclear.

The Earn shales on the property vary from moderate to thickly bedded and tend to be strongly siliceous. Locally they weather a distinct blue-grey colour. All six barite showings on the property are hosted by Earn Group rocks.

Three styles of mineralization are observed on the property. Minor disseminated pyrite is observed in siliceous Earn shale near the north end of the property. Base metal values within what is dominantly pyritic float are negligible (Sample WR96-62, Figure 3 and Appendix I).

Stratabound massive to semi-massive barite horizons are found in four locations on the property. The Chief showing which was the initial BCDM discovery on the property consists of a 2.02 metre thick bed of massive light blue-grey weathering, black, crystalline calcareous barite/witherite. The main barite horizon is underlain by a poorly-exposed section of rusty-weathering moderately siliceous shale. A 2 metre chip sample from the Chief showing (WR96-37A) returned 36.9% Ba (Appendix I) but low base metal values (103 ppm Zn).

Approximately 5 metres east of and interpreted to directly underlay the Chief showing is a 3 metre-wide breccia zone crosscutting the rusty shale mentioned above. The breccia is comprised of angular 1-2 cm fragments of siliceous shale in a matrix (15%) of calcite, barite, limonite and quartz. Minor yellow-brown sphalerite is observed locally within the breccia. Three of five samples from the breccia returned elevated zinc values with a maximum of 5800 ppm (Appendix I, Sample WR96-37D).

Further east from the main showing within the same creek valley are two other exposures of massive barite underlain by weakly rusty shale. Based on the observed fold patterns these two are interpreted to represent the same (Chief) horizon. The two locales returned Ba values of 32.75 and 36.16% respectively.

Approximately 150 metres up hill from the Chief showing is the

Brave showing. Here a 30 metre long by five metre wide talus/kill zone exposes blocks of massive barite which returned only low base metal values (not analyzed for Ba).

The other two barite showings on the Chief property occur as finegrained, elongate crystals in a green-grey weathering unit of possible tuffaceous origin. The host rock is a soft, green-grey, thin-bedded sericitic lithology which was not observed elsewhere within the area mapped. A sample from the western of these two showings returned 7.22% Ba and 2050 ppm Zn (WR96-84).

No mineralization was identified in the western thrust panel although little in the way of mapping was completed in this area due to the presence of an overly curious black bear.

VI. GEOCHEMICAL SAMPLING

Two contour soil sampling lines were completed on the property in 1996 for a total of 71 soil samples. In addition 54 silt samples were collected from streams draining the Chief property.

Soil samples were collected by shovel from B and occasional C horizon material ranging in depth from 15 to 35 cm. Samples were collected at 100 to 200 metre intervals, as determined by hip-chain measuring, along the 1300 and 1150-1200 metre contours around the southern and eastern portion of the property (Figure 4). Silt samples were, in general, collected by hand from the central portions of silt/sand bars in the creeks sampled.

Samples were air-dried in the field, boxed and shipped to Cominco's exploration lab in Vancouver. Samples were analyzed for Cu, Pb, Zn and Ag, or just Pb and Zn, by AA after reverse aqua regia digestion. Ba was analyzed by x-ray fluorescence. Results of the geochemical sampling are appended (Appendix II) and referenced to the field sample numbers on Figure 4.

Virtually the entire length of both tributary creeks sampled returned zinc and barium values which are anomalous in a regional sense (> 1000 ppm Zn and > 3000 ppm Ba). The highest zinc values were obtained from a calcrete seep located southwest of the Chief showing (Sample 330036) which returned 1.23% Zn. The highest zinc value in a silt comes from sample 330047 which returned 3810 ppm Zn (Appendix II). The highest Ba value was 1.74% Ba from a small tributary draining the hill above the Chief (Sample 330058).

In general results from the lower of the two soil contour lines were disappointing. This may be due to the fact that the samples were obtained below the break in slope and were highly organic in nature. The upper contour line returned strongly anomalous barium values from three locations (Samples 329741, 764 and 784). Sample 329741 (1.05% Ba) is located in close proximity to the zincbearing calcrete deposit mentioned above. This white precipitate covers a 75 by 50 metres area. The Zn anomalous sample did not return high barium (825 ppm) so it may have a separate source.

Sample 329764 (1.25% Ba) is located approximately 200 metres east of and below the Brave showing and may mark the location of this massive barite mineralization along strike. Sample 329785 (1.00% Ba) is located on the east side of the main hill on the property. No barite mineralization has been discovered in this area to date. None of the strongly Ba anomalous samples returned high Zn values.

VII. CONCLUSIONS AND RECOMMENDATIONS

The 1996 program on the Chief property confirmed the presence of stratiform barite mineralization on the property. Unfortunately the barite mineralization does not appear to be related to base metal mineralization in this area. The strong Zn anomaly associated with the calcrete seep on the southwestern portion of the property is similar to values obtained from other calcrete seeps/deposits located throughout this portion of the Kechika trough and is more likely related to groundwater conditions than to proximal mineralization.

Based on the results of the 1996 program the Chief is rated as a low priority base metal target and no additional work is recommended.

VIII. REFERENCES

Ferri, F., Rees, C. and Nelson, J. (1996). Preliminary Geology of Gataga Mountain Area (94L/10,11,14 and 15). B.C.EMPR Open File 1996-3

Report By: Darin Wagner Geológist II, Western District

Endorsed By:

Ken R. Pride Exploration Manager Western Canada, P. Geo.

Approved For Release By:

D. W. Moore Manager, Western District Exploration

Distribution: Mining Recorder (2) Western District Files

APPENDIX I

ROCK SAMPLES

ANALYTICAL RESULTS and METHODS

Note: All samples are grab samples unless otherwise noted.

_...

-- --

Sheet1

							ז
	CHIEF PR	OPERTY 96	ROCK SA	MPLES			1
Lab Sample	Field Sample						
Number	Number		PD	Zn	Ag	Ba	1
- runnber	Number	ppm	ppm	ppm	ppm	ppm	ļ
R9608524	WR96-31	10	5		0.4	2002	
R9608526	WR96-32	41	9	25	0.4	5081	1
R9608527	WR96-37A	12	6	103	<0.4	368064	
R9608528	WR96-37B	57	<4	302	1 7		dism chip
R9608529	WR96-37C	18	<4	81	<0.4	2120	THE MY CALL
R9608530	WR96-37D	586	<4	5800	0.6	1/201	
R9608531	WR96-37E	98	6	720	0.0	6294	
R9608532	WR96-37F	213		1210		7527	1.5m chio
R9608533	WR96-37H	13	4	316		279546	
R9608534	WR96-38A	38	9	58	-0.4	320040	
R9608535	WR96-38B	13	5	77	<0.0	207460	
R9608536	WR96-39	10	<4	106		321400	
R9608514	WR96-76	38	20	300	0.4	301509	I
R9608515	WR96-77	75	<4	75		2000	I
R9608516	WR96-82	58	12	104		799	
R9608517	WR96-84	38	8	2050	<0.4	72177	
R9614048	JMH-291A	NA	8	173	NA	NA	
R9614050	JHM-291B	NA	15	40	NA	NA	
R9614051	JMH-291C	NA	10	44	NA	NA	
R9614049	JMH-291D	NA	5	48	NA	NA	
NA = Not Anal	yzed						
Cu, Pb, Zn, Aa	- Agua Regia Dec	composition/	AAS				
Ba - X-Ray Flo	urescence/Presse	d Pellet					

APPENDIX II

SOIL AND SILT SAMPLES

ANALYTICAL RESULTS AND METHODS

CHIEF

SELWYN/	<		CHIE	┢			
Job	V960294S	· · · · · · · · · · · · · · · · · · ·	······································	· · · · ·		· · · · ·	
·	Date	960822	· · · · · · · · · · · · · · ·				
	Field		 	Bb	75		 Do
				ГIJ	<u> </u>	Ag	Da
	L	L	ppm	ppm	ppm	ppm	ppm
		[و و ب و ب ب م م اه ما بنا بنا کا 	
S9609142	329266	AAM-3	27	7	3000	<.4	2296
S9609143	329267	AAM-3	31	7	2150	0.4	3116
S9609144	329268	AAM-3	51	13	1010	0.6	4621
S9609145	329269	AAM-3	25	<4	2520	<.4	3605
S9609146	329270	AAM-3	28	<4	1970	0.4	3969
S9609147	329271	AAM-3	29	14	1930	<.4	3870
S9609148	329272	AAM-3	24	10	339	<.4	3256
S9609149	329273	AAM-3	29	10	1120	<.4	3729
S9609150	329274	AAM-3	27	9	1480	<.4	4319
S9609151	329275	AAM-3	33	8	1510	0.4	4024
S9609152	329276	AAM-3	38	9	1760	0.5	3497
S9609153	329277	AAM-3	43	11	2040	0.5	3646
S9609154	329278	AAM-3	46	11	1730	0.6	3947
S9609155	329279	AAM-3	51	10	920	0.6	4123
S9609156	329280	AAM-3	42	13	1710	0.0	4041
S9609157	329281	AAM-3	41	11	1310	< 4	4210
S9609158	329282	AAM-3	115		1050	0.9	5697
S9609159	329283	AAM-3	48	13	1590	0.6	4167
S9609160	329284	AAM-3	46	8	1400	0.0	4462
S9609161	329285	AAM-3	75	14	840	0.7	5335
S9609162	329286	AAM-3	47	9	1370	0.0	4520
S9609163	329287	AAM-3	53	7	1090	0.0	4752
S9609164	329288	AAM-3	60	13	1230	0.6	4469
00000000		A A A A A A A					
59609669	329396	AAM-10	24	9	244	<.4	
29609670	329397	AAM-10	78	11	256	1.1	
59609671	329398	AAM-10	37	17	288	<.4	
596096/2	329400	AAM-10	42	11	212	0.6	
596096/3	329401	AAM-1U	53	13	297	1	
59609674	329403	AAM-10	100	9	152	0,4	
\$9609675	329404	AAM-10	51	12	293	1.1	
59609676	329405	AAM-10	_65	9	3660	0.5	
59609677	329406	AAM-10	90	22	465	1.9	
\$9609678	329407	AAM-10	60	11	215	0.8	
UNC00070	220408	AAM-10	83	20	128	1	

· · · ---

CHIEF

.

S9609681	329412	AAM-10	99	14	431	1.2	
S9609682	329413	AAM-10	45	10	408	1.3	
S9609683	329415	AAM-10	20	<4	89	0.8	
\$9609684	329417	AAM-10	79	14	464	0.8	

.

	•						1	
SELWYN/	K		CH	IE	F			
Jop	V960294S		· · · · · · · · · · · · · · · · · · ·	·			· • · · · · · · · · · · · · · · · · ·	
	Date	960822						
			· · · · · · · · · · · · · · · · · · ·					
Lab	Field	LINE	Cu		Pb	Zn	Ag	Ba
		·	ppm		ppm	ppm	ppm	ppm
\$9609200	330036	RKM-3		19	<4	E12300	< 4	825
S9609201	330037	RKM-3	►	13	<4	910	< 4	1526
S9609202	330038	RKM-3		21		5 1510	<.4	2039
S9609203	330039	RKM-3	·· ·· ••· ··	33	·	5 1140).4 2073
S9609204	330040	RKM-3	•••••••••••••••••••••••••••••••••••••••	27	<4	1620	<.4	1773
S9609205	330041	RKM-3		37		3 1690) C	0.5 2318
S9609206	330042	RKM-3		45		5 1750	о — — — — — — — — — — — — — — — — — — —).5 2858
S9609207	330043	RKM-3	1	490	<4	598	<.4	848
\$9609208	330044	RKM-3		57		B 1590	C).6 3489
S9609209	330045	RKM-3		50		5 1780	C).6 2646
S9609210	330046	RKM-3		61		5 3390	<.4	2556
S9609211	330047	RKM-3		76	1	1 3810		1 4520
S9609212	330048	RKM-3		58		5 2290	<u> </u>).5 2957
S9609213	330049	RKM-3		62	I	6 2790	<u> </u>).7 3251
S9609214	330050	RKM-3	·····•	64		3 1900).7 2253
S9609215	330051	RKM-3		51		9 830	<u> </u>).5 3224
S9609216	330052	RKM-3		50	······	7 840	<u> </u>).8 2379
S9609217	330053	RKM-3		52	····· · · · · · · · · · ·	<u> </u>	<u> </u>).6 4274
S9609218	330054	RKM-3		44	· · · · · · · · · · · · · · · · · · ·	9 750	j C).4 4696
S9609219	330055	RKM-3		39		9 720	<u> </u>).4 4436
59609220	330056	KKM-3		51	1	348	<u> </u>).6 4243
59609221	330057	KKM-3		58		385	C).6 4004
59609222	330058	KKM-3	·····	228		o 650	<u> </u> 1	.8 17482
59609223	330059	KKM-3		52	1	רן 100 ק	' .).7 4244
59609224	330060	ККМ-З	•. • • • • • •	56	<4	498	C).7 5139
• <u></u> •	+				···· ··· ·			
						1	1	

						····	
SELWYN/I	K		CHIE	F			
Job	V960401S						
	Date	960822	· · · · · · · · · · · · · · · · · · ·		1		
		i	· · · · · · · · · · · · · · · · · · ·	i			
Lab	Field	LINE	Cu	Pb	Zn	Ag	Ba
			ppm	ppm	ppm	ppm	ppm
	[
S9614919	329649	JLS-21	13	1	141	< 4	13/4
<u>\$9614920</u>	329650	JLS-21	36	15	337	0.6	2000
S9616745	329735	JLS-26	16	27	143	<.4	3605
S9616746	329736	JLS-26	24	13	769	0.6	1503
S9616747	329737	JLS-26	43	11	165	1.3	6470
S9616748	329738	JLS-26	12	13	82	0.4	3474
S9616749	329739	JLS-26	17	22	168	0.5	2425
S9616750	329740	JLS-26	25	18	182	0.7	4403
S9616751	329741	JLS-26	44	6	131	1.4	E10489
S9616752	329742	JLS-26	50	9	51	<.4	2192
\$9616753	329743	JLS-26	52	<4 6	300	1.4	1170
S9010/54	329744	JLS-26	<u></u>	10	140	~4	2286
59515755	329740	JL3-20	23	10 8	104	 .4 < A 	2200
0616767	229740	JL3-20	31	Q	113	0.7	2790
S9010757	329748	JLS-20	81	7	291	1	4438
90616750	329740	JL3-20	68	8	285	16	3616
S9616760	329749	JLS-20	16	4	158	< 4	1514
199616761	329751	JLS-26	8	6	101	< 4	1694
S9616762	329752	JILS-26	39	5	156	1	2025
S9616763	329753	JLS-26	16	15	79	0.4	2579
S9616764	329754	JLS-26	15	7	109	<.4	2384
S9616765	329755	JLS-26	16	11	93	0.5	2531
S9616766	329756	JLS-26	26	8	100	0.8	3107
S9616767	329757	JLS-26	21	7	112	0.4	2686
S9616768	329758	JLS-26	16	10	114	0.4	2740
S9616769	329759	JLS-26	10	<4	161	<.4	4195
S9616770	329760	JLS-26	42	13	354	<.4	4323
S9616771	329761	JLS-26	43	6	201	0.6	3668
S9616772	329762	JLS-26	14	4	210	<.4	3286
S9616773	329763	JLS-26	11	<4	150	<.4	2276
S9616774	329764	JLS-26	61	5	158	0.8	E12546
S9616775	329765	JLS-26	12	13	80	0.5	4914
S9616776	329766	JLS-26	55	12	220	5.1	6743
S9616777	329767	JLS-26	50	10	295	2.7	4330

CHIEF

S9616778	329768	JLS-26	6	10	55	0.5	4233
S9616779	329769	JLS-26	32	15	307	1.3	6205
S9616780	329770	JLS-26	15	8	208	0.4	3465
S9616781	329771	JLS-26	88	9	630	1.9	9701
S9616782	329772	JLS-26	 46	12	409	0.7	4868
S9616783	329773	JLS-26	26	7	312	0.6	5397
S9616784	329774	JLS-26	62	10	368	1.3	7046
S9616785	329775	JLS-26	59	<4	813	0.9	4835
S9616786	329776	JLS-26	14	8	260	<.4	2239
S9616787	329777	JLS-26	109	9	785	2	8953
S9616788	329778	JLS-26	43	5	296	0.9	6092
S9616789	329779	JLS-26	89	7	2070	1.5	9203
S9616790	329780	JLS-26	39	11	186	1.2	3652
S9616791	329781	JLS-26	30	<4	308	0.4	6266
S9616792	329782	JLS-26	34	12	241	0.5	3844
S9616793	329783	JLS-26	 34	9	268	0.7	7312
S9616794	329784	JLS-26	50	6	254	0.8	E10007
S9616795	329785	JLS-26	239	11	441	<.4	931

			CHIEF			
Job	V960454S					
	Date	960822				
LAB NO	FIELD	Cu	Pb	Zn	Ag	Ва
	NUMBER	ppm	ppm	ppm	ppm	ppm
S9613342	WST-13	34	8	296	<0.4	3794
S9618664	WST96-19	78	10	839	0.7	NA
S9618666	WST96-20	68	9	387	0.7	NA

~

APPENDIX III

IN THE MATTER OF THE B.C. MINERAL ACT

AND IN THE MATTER OF THE GEOLOGICAL MAPPING

AND GEOCHEMICAL SAMPLING PROGRAM

CARRIED OUT ON THE CHIEF PROPERTY,

LOCATED 22.0 KM NORTHWEST OF NETSON LAKE, B.C.,

IN THE LIARD MINING DISTRICT OF THE

PROVINCE OF BRITISH COLUMBIA,

MORE PARTICULARLY NTS 94L/14 AND 15

STATEMENT

I, Darin W. Wagner, of 12211 210th Street, in the City of Maple Ridge, in the Province of British Columbia, make oath and say:

- That I am employed as a geologist by Cominco Ltd. and, as such have a personal knowledge of the facts to which I herein-after dispose;
- That annexed hereto and marked as Exhibit "A" to this statement is a true copy of expenditures incurred during the geological mapping and geochemical sampling program on the Chief Property;
- 3. That said expenditures were incurred in July 1996 for the purpose of mineral exploration on the above noted property.

Darin W. Wagner

Geologist Cominco Ltd.

Dated this 6th day of May, 1997 at Vancouver, B.C.

APPENDIX IV- EXHIBIT "A"

STATEMENT OF EXPENDITURES

CHIEF PROPERTY - 1996

TOTAL	\$ 12,560
DRAFTING/REPORT PREPARATION	1,000
MISC. SUPPLIES/SHIPPING	600
GEOCHEMICAL ANALYSIS (125 Soils + Silts x \$9/sample) (20 Rock Samples x \$13/Sample)	1,125 260
DOMICILE/EXPENSES (5 x 100/Day x 5 Days)	2,500
HELICOPTER (crew ferrying - 8 hours @ 650/Hr incl. Fuel)	5,200
SALARIES Permanent Staff (Geological 3 Days @ 275/Day) \$ Temporary Staff (6 Days @ 175/Day)	; 825 1,050

12

-

APPENDIX IV

CERTIFICATION OF QUALIFICATIONS

I, Darin W. Wagner, of 12211 210th Street, in the City of Maple Ridge, in the Province of British Columbia, do hereby certify:

- i. That I graduated with a B.Sc. in Earth Sciences from the University of Waterloo in 1989.
- ii. That I graduated with a M.Sc. in Earth Sciences from Carleton University in 1993.
- iii. That I have been actively practising geology from 1989 to 1997 and am presently an employee of Cominco Ltd.

Darin W. Wagner, M.Sc.

May, 1997

