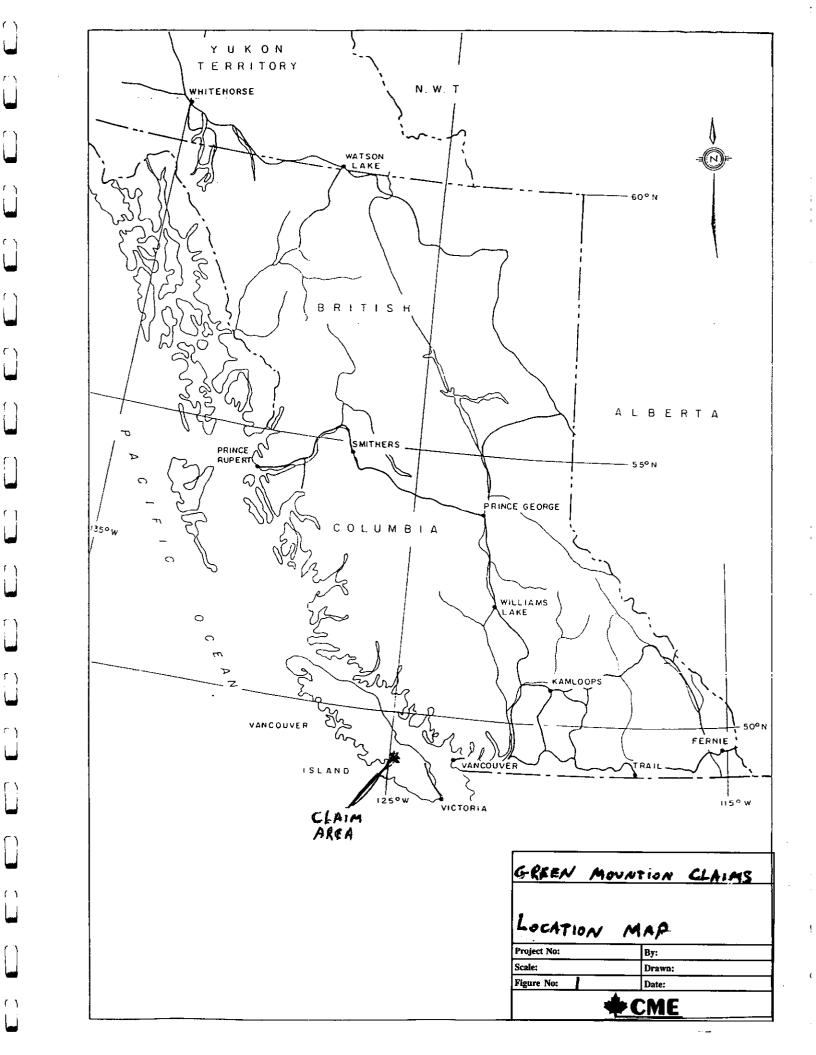
Summary report on Exploration work

Green Mt. mining claims Nanaimo mining divisions British Columbia NTS map # 92F-1 W Lat 49°03 N , Long 124°23 W For Edward Hayes


> Author Larry Crittenden October 10/97

> > GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

Table of contents

9 Sample Location Map IX

Page

1.0 summary

This report summarizes exploration work carried out on the Green Mt. Mining claims, (Terri, Nan 1, Nan 2, Trav 1 and Trav 2) located within the Nanaimo Mining Division on NTS map # 92F/01 W. As shown in figures I & II By Larry Crittenden for Edward Hayes from Jan 21 1997 to Jan 27 1997. This phase of exploration was carried out for the purposes of gathering mineralogical information and fulfilling requirements for mineral tenure act regulations for extending claim ownership forfeiture time frame. Work carried out consisted of 41 stream sediment samples and 1 rock sample.

2.0 introduction

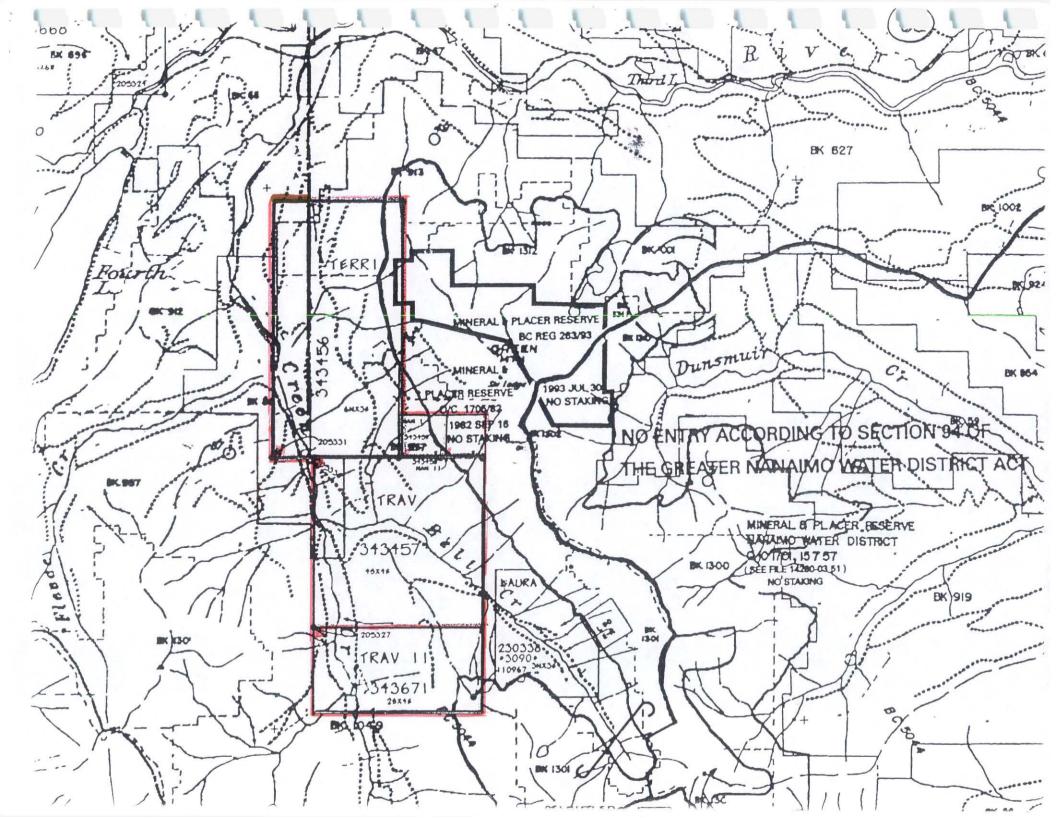
Phase 1 Exploration consisted of an extensive stream sediment sampling program, as well a few rock samples were collected from Jan 21 1997 to Jan 27 1997. As previous stream sediment sample anomalies in this area, have been recorded.(As shown figure IX)

The Green Mt. property ((1) Terri (2) Nan 1&2 and (3) Trav 1&2.) As shown in figures I & II is underlain by a westward younging succession of Paleozoic Sicker Group rocks that includes, volcaniclastic locally overlain by mafic flows; basalt's and diabasic intrusives (?). With localized zones of altered sericitic schist, and interbedded sediments as well as limestone. The succession is truncated to the west by a major body of granodiorite to quartz diorite of the Jurassic Island Intrusions and locally overlain in the south by Cretaceous Nanaimo Group sediments.

3.0 Location, access, title

4

Location


The Green Mt. claims are located 35-km southwest of Nanaimo between Fourth Lake and Green mountain. These claims are located within the Nanaimo mining division. Location of these claims is approx. 124°23N long. 49° 03W Lat on NTS map 92F/01 W (As shown in figures I,II)

<u>Access</u>

Access to Green Mt. claims is provided by the Nanaimo Lakes road, which branches West (270°) off the Number 1 (one) Island highway, approximately 300 m North (360°) of the Cassidy hotel. Permission must be obtained from Timber West Forest Products before access to proceed beyond their locked gate at Nanaimo Lakes is allowed. At the Green Creek/Nanaimo River junction, a paved road branches South (270°) and runs through the Eastern (90°) side of the Terri, Trav 1 and Trav 2 claims. Some logging roads provides reasonable access to property by 2 wheel and 4 wheel drive vehicles.

<u>Title</u>

Claim	Tenure #	units	Good To Date	Claim Type	Owner	Completion Date
Terri	343456	18	98/02/02	4 post	Edward Hayes	96/02/02
Trav 1	343457	16	98/01/31	4 post	Edward Hayes	96/01/31
Trav 2	343671	8	98/02/14	4 post	Edward Hayes	96/02/14
Nan 1	343459	1	98/01/30	2 post	Edward Hayes	96/01/30
Nan 2	343458	1	98/01/30	2 post	Edward Hayes	96/01/30

4.0 previous work

Government geological work in the Port Alberni to Nanaimo area includes mapping, done by C.H.Clapp (1912 & 1914), J.E. Muller and D.J.T. Carson (1969), J.E. Muller (1977 and 1980) Hunting Survey Corp. Ltd flew a regional aeromagnetic survey.(1962) which included the Green Mnt. Claim areas.

During the years 1963 to 1966, Gunnex Ltd, carried out a regional

mapping program with some limited prospecting and silt sampling they completed a list of all known mineral occurrences in the area. There was also a soil sample grid placed as well as a Magnetometer, and EM survey had been conducted. In addition a SP survey over the highest magnetic anomaly.

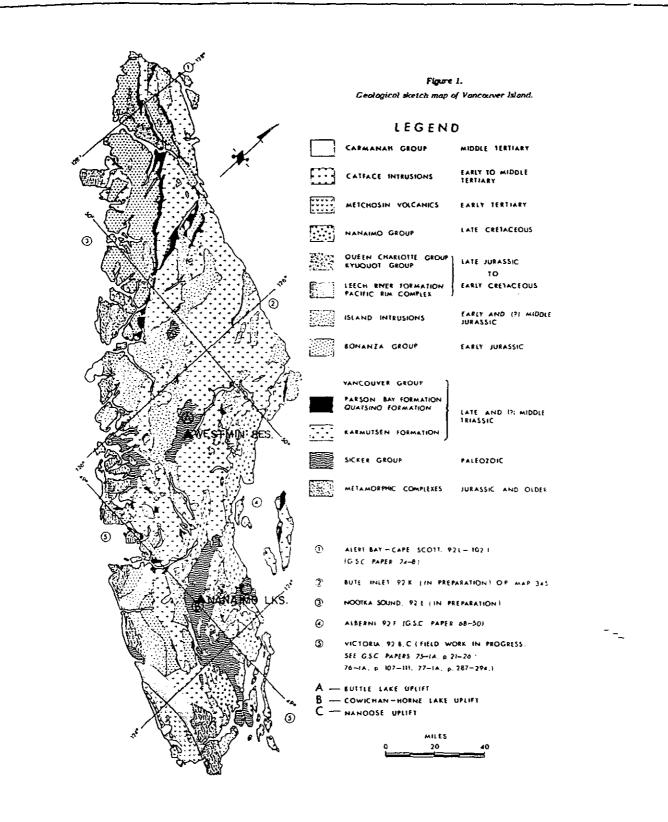
In 1981, airborne VLF-EM and magnetometer surveys were flown over the present Green Mnt. claims by Western Geophysical Aero Data Ltd. for Tarbo Resources Ltd.

In September of 1984, MPH Consulting Ltd. conducted reconnaissance geological mapping and rock sampling for Sunfeild Management Ltd. Lithogeochemical results up to 20 ppb Au, 0.6 ppm Ag and 372 ppm Cu were returned.

In June 1985, MPH Consulting Ltd. conducted detailed geologic mapping, prospecting and sampling along the M-2 road in the Northern part of the property's. In October 1986, a 3 day prospecting and soil sampling program was undertaken by MPH Consulting Ltd. for Roap Resources Inc. 14 rock and 108 soil samples were analyzed for gold and 30 additional elements by ICP analysis (Thomae and Hawkins, 1987).

Nimbus Management Ltd. conducted a field program for Roap Resources Inc. from April 27/87 to May 26/87, involving mapping and rock chip sampling (Holtby and Hardy, 1987). 146 rock samples were analyzed for Au, Ag, Cu, Pb and Zn. 856 soil samples (on 3 grids) were analyzed for Au, As, Cu and Zn. In addition there was 47 silt and 55 heavy mineral concentrate

samples were collected from steams with flowing water and analyzed for Au, As, Cu, and Zn. In July 1982, a 40.8 line-km of airborne EM and magnetometer surveys were flown over the Green Imperial claim just east (90°) of the Green Mnt. claims for Imperial Metals Corp. (Quin, 1983). Results from the magnetometer survey appeared to indicate a fault; however, only two weak EM responses were delineated from the survey.


In December though to February 1988, MPH Consulting Ltd. carried out a extensive exploration program consisting of a 21.9 km of cut line grid, (on two grids) soil geochemistry, magnetometer and VLF-EM surveys were preformed over the entire grid as well as a Induced Polarization survey was conducted on a total of 11.05 km, the two roads (M and M2) were also surveyed for 3.2 line-km. Detailed mapping (1:2500) was performed over grid A. While reconnaissance mapping (1:10,000) was carried out over selected areas of the property's, covering an area of approximately 15 km². The program was completed with 1002 m of NQ wireline diamond drilling of selected anomalies defined by selected surveys.

(Additional information also shown in following figures III though VI)

		محيكا تأل				IONS	5 OF	VANCOUVER ISLAND		15 31)			
潮 増料	· [1]		R R R R R R R		Sequential FORMATION	Layere Sym.		LITHOLOGY			Isotop	ic Age K/Ar	LITOLOGY
***	DISS		STAGE	GROUP		IJв		basoltic to rhyolitic lava, tuff, breccia, minor argillite, greywacke.	Island Intrusions	Jg FMns		141-181	granodiarite, quartz diorite, granite,quartz- monzonite quartz feldspargneiss, meta-quartzite,matele
	JURASSIC	ណ៍	PLIENSBACHAN SINE MURIAN	BONANZA	HARBLEDOWN	IJм		argillite, greywocke, tuff.	Westcoast Complex basic	 		163-192	hornblende plagioclase
ZOIC			NORIAN		PARSON BAY	uTepe	450	calcareous siltstone, greywacke, silty - limestone, minor conglomerate, breccia					
MESO	ssic	LATE	KARNIAN	VA NCOUVER	QUATSINO	uīta	400	limestone		 	4		
	TRIAS				KARMUTSEN	MURK	4500	basaltic lava, pillow lava, breccia, tuff, diobase sills		в п			
		aiw	LADINIAN			 							
	PENNSYLVANIAN AND PERMIAN				BUTTLE LAKE	СРвс	300	limestone, chert					
EOZOIC	PENNS			SICKER	SEDIMENT-SILL, UNIT	PTds	500	metagreywacke, argillite, diabase	Saltspring Intr.				
PALE	AN OR JER				MYRÂ	Рм	1000	silicic, tuff, breccia, argillite	Tyee Qtz. Porphyry	Pg	- >390		metagranodiorite, meta quartz diorite, meta- quartz porphyry
	DEVONIAN C				NITINAT	PN	2000	basic breccia, tutf, lava, greenschist	Colquitz Gneiss Wark Diorite Gneiss	P _{ns} P _{nt}	>390		quartz feldspar gneiss hornblende plagiaclase gneiss, quartz diorite, amphibolite

TABLE 2.1

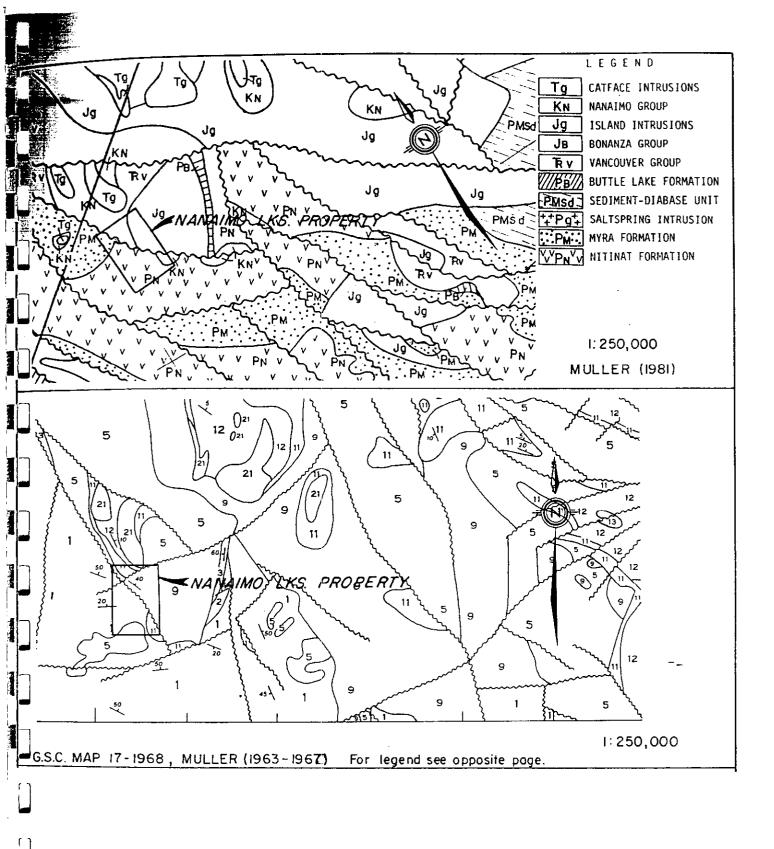
I.

	LEGEND
	QUATERNARY Pleistocene and recent
5	23 Glacial and alluvial deposits
CENOZOIC	TERTIARY 22 Rbyolitic, to dacitic tuff, breccia, ignimbrite
	21 Horablende quartz diorite, leucoquartz monzonite, porphyritic dacite, breccia
ļ	CRETACEOUS OR TERTIARY 20 Sandstone. conglomerate
	CRETACEOUS AND (?) TERTIARY UPPER CRETACEOUS AND (?) TERTIARY NANAIMO CROUP (11-19) 19 GABRIOLA FORMATION: sandstone, conglomerate, shale
	UPPER CRETACEOUS 18 SPRAY FORMATION: siltstone, shale, fine sandstone
	17 GEOFFREY FORMATION: conglomerate, sandstone
	16 NORTHUMBERLAND FORMATION: sittstone, shale, fine sandstone
	15 DE COURCY FORMATION: conglomerate, sandstone
	14 CEDAR DISTRICT FORMATION: shale, siltstone, fine sandstone
	13 EXTENSION-PROTECTION FORMATION: sandstone, conglomerate.
	12 HASLAM FORMATION: shale, siltstone. fine sandstone
	11 COMOX FORMATION: sandstone, conglomerate. shale, coal: 11s is BENSON MEMBER: mainly coarse conglomerate
MESOZOIC	UPPER JURASSIC AND/OR LOWER CRETACEOUS 'Tofino Area Greywacke Unit' Greywacke, argillite, congtomerate
MES	JURASSIC MIDDLE TO UPPER JURASSIC
	ISLAND DITRUSIONS: biolite-hornblende granodiorite, quartz diorite
	TRIASSIC AND JURASSIC LOWER JURASSIC(?) VANCOUVER GROUP (5-8) BONANZA SUBGROUP (7.8) VOLCANIC DIVISION: andesitic to latitic breccia, tuif and lava; minor
	6 greywacke, argillite and siltatone UPPER TRIASSIC AND LOWER JURASSIC
	7 SEDDMENTARY DIVISION: limestone and argillite, thin bedded, silty carbonaceous
	UPPER TRIASSIC G QUATSING FORMATION: limestone, mainly massive to thick bedded, minor this bedded limestone
	UPPER TRIASSIC AND OLDER KARMUTSEN FORMATION: pillow-basalt and pillow-breccia, massive basalt flows; minor tuff volcanic breccia. Jasperoid tuff, breccia and conglomerate at base
	TRIASSIC OR PERMIAN
	PENNSYLVANIAN, PERMIAN AND OLDER
	LOWER PERMIAN SICKER GROUP (1-3)
2010	3 BUTTLE LAKE FORMATION: limestone, chert
PALEOZOIC	MIDDLE PENNSYLVANIAN 2 Argtilite. greywacke. conglomerate; minor limestone. tuff
	PENNSYLVANIAN AND OLDER Volcanic breccia, tuff. argillite; greenstone. greenschist; dykes and sills of andesite-porphyry
	WESTCOAST CRYSTALLINE COMPLEX' (A-D) BASIC ROCKS' D Gabbro. peridolile
	TOFINO INLET PLUTON'
	C Hornblende-biotite quartz diorite, granodiorite
	'WESTCOAST DIORITES'
	B Hybrid bornblende diorite, quartz diorite, agmatite; includes masses of hornfelsic volcanic rocks
	'WESTCOAST GNEISS COMPLEX'

ī

ł

.


1

;

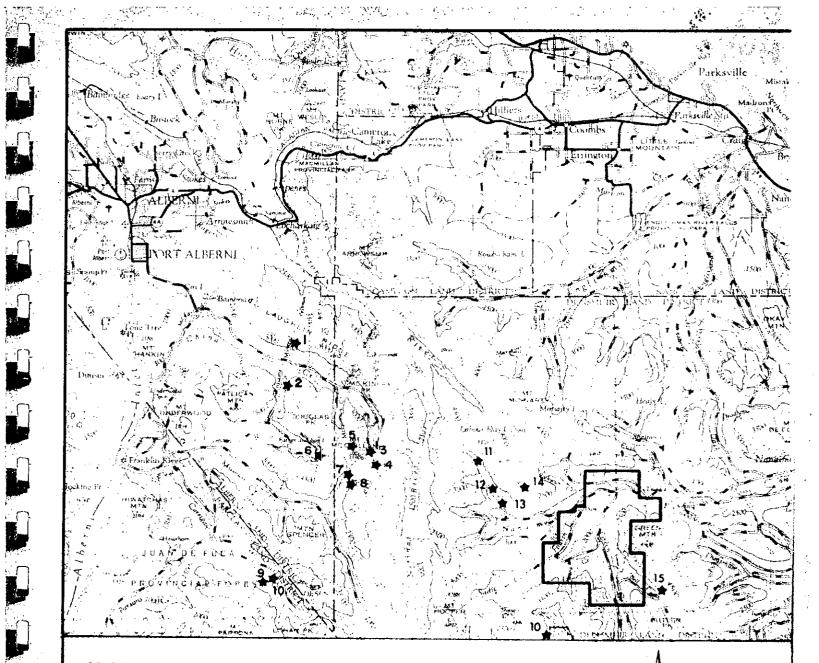
ļ

İ

5.0 economic setting

Volcanogenic massive sulphide deposits are presently the most Economically significant exploration targets within the Sicker Group volcanic rocks . Known deposits include Westmin Resources Buttle Lake mine deposits, where ore minerals include sphalerite, chalcopyrite, galena, tetrahedrite – tennantite , minor bornite and covellite hosted by pyritic rhyolitic to rhyodacitic volcanic and Pyroclastic rocks of the Myra formation. Proven reserves of the Lynx, price and Myra deposits are 926,600 t grading 1% Cu, 0.9% Pb , 7.4% Zn , 2.06 g/t au (0.06 oz / ton), 89.1 g/t Ag (2.06 oz / ton) 1983.Cut-off grades are 13,302,000 tonnes grading at 2.02 g/t Au (0.059oz/ton) 30.38 g/t Ag (0.886 oz / ton), 1.91% Cu, 0.27% Pb, 4.48% Zn (Mcknight 1987).

The Twin J Mine orebodys near Duncan on Mt.Sicker, which are approximately 46 m apart, contain pyrite, chalcopyrite, sphalerite and minor galena in a barite-quartz-calcite gangue and chalcopyrite in quartz and occur in schist's derived from the Myra formation. Total production from 1898 to 1964 was 277,400 t producing 1,383,803 g Au, 29,066,440 g Ag, 9,549,590 kg Cu, 20,803,750 kg Pb and 4.5 kg Cd.


Published reserves of the H-W mine are 13,901,000 tonnes averaging 2.2 % Cu, 5.3 % Zn, 0.3 % Pb, 2.40 g/t (0.07 oz/ton) Au and 37.7 g/t (1.1 oz/ton) Ag (Walker, 1983). In the 3 years 1980 to 1982, 811,987 tonnes of ore was milled, producing 7,306,880 kg Cu, 43,709,118 Zn, 6,455,040 kg Pb, 1,740,000 g (56,000 oz) Au, 78,630,000 g (2,528,00 oz) Ag, and 58,500 kg Cd.

On the Lara property north of Cowichan Lake, Abermin Corp. has traced the polymetallic volcanogenic massive sulphide Coronation zone along a strike Length of 1500 m, over a true width of 3.9 m published reserves are 837,000 tonnes grading 3.26 g/t au, (0.095 oz/ton), 85.9 g/t Ag (2.61 oz/ton), 3.59% Zn 0.62% Cu, and 0.81% g/t Ag. Two kilometers to the north four

diamond drill holes intersected several polymetallic horizons over a strike length in excess of 2.4-km (Northern Miner, Jan 1987)

In the Port Alberni area, five past producing mines occur. These include the Thistle Mine which contained disseminated and massive sulphide mineralization within pyritic, quartz-sericite schists and at their contact with chorite altered mafic volcanics of the sicker group. Exploration by Westmin Resources ltd. has located 16 Cu and/or Au occurrences over a strike length of 4.6 km grading up to 16.8 g/t Au 0.049 oz/ton)over 2.1 m(Benvenuto, 1984). The Havilah Mine, Vancouver Island Gold Mine, Black Panther Mine And 3-W Mine are Quartz vein deposits within Sicker Group rocks and /or Island intrusions diorite, which produced Au, Ag with or without Cu, Pb and Zn.

These and other mineral occurrences are shown in figure VII and described in detail by Neale (1984).

GOLD DEPOSITS AND OCCURRENCES

- 1. Vancouver Island Gold Mine
- 2. Regina

- 3. Golden Eagle
- 4, B 8 K
- 5. Havilah
- 6. Thistle
- 7. Black Panther
- 8. Black Lion
- 9. 3-W
- 10. Corrigan Creek
- 11. W04
- 12. Villalta

BASE METAL OCCURRENCES

Ν

Fig 7

<u>.</u>

્રેક

- 13. Skarn Group
- 14. Wolfram
- 15. Mountain

10 km

5

16. Black Prince

6.0 NEW EXPLORATION

Phase 1 Exploration

Phase one exploration consisted of a extensive silt-sampling program (41 samples in total). This program was initiated to try to reproduce a few geochemical stream anomaly's, which were discovered during earlier exploration. And to gain a better over all picture of the general area. Silt sampling proceeded by traversment of the main rivers (streams), Bell Creek and Green Creek and all flowing tributary streams. All samples have been tagged on site with corresponding sample numbers. Samples have been field sieved at 12-mesh, 1-3 kilo's per sample was taken to ensure adequate bulk for analyst. Sample location and results are plotted see included pull out (figure IX), analytical results are also included see appendix VIII.

In addition, to silt samples. Some Rock samples were taken from exposed outcropping, along same streamside, recovered samples were taken at a area of visible mineralization within volcanic / sedimentary outcropping.

7.0 ANALITICAL METHODS

All samples have been analyzed for gold and all base minerals. (Au, ICP 30 element) Rock samples have been crushed and sieved at 0.80 mesh. Silt samples were dried at 75°c. Then sieved at 0.80 mesh. Result procedure consists of 0.8 gr. digested in dilute Aqua-Regio in boiling water for up to 2 hours, balked with demineralized water and analyzed by atomic absorption. Sensitivity for such analytical results is 1 ppm.

ī.

8.0 Statement of Expenditures

ITEM	DAYS	COST PER DAY	<u>T0</u>	<u>ral</u>
Manpower				
Supervisor	6	\$ 250.00	\$	1,500.00
Local labor	6	\$ 150.00	\$	900.00
Accommodations	6	\$ 70.00	\$	420.00
Food	6	\$ 70.00	\$	420.00
Transportion	6	\$ 125.00	\$	750.00
Fuel	6	\$ 25.00	\$	150.00
Supplies	6		\$	150.00
Lab Processing		42 samples @ \$ 30.00 each	\$	1,260.00

TOTAL COSTS.....\$ 5,550.00

8.0 Specific Dates on Site

1/ January 18 1997	To get access and obtain keys
2/ January 21 1997	Start of program
3/ January 22 1997	««¯
4/ January 23 1997	"
5/ January 24 1997	66
6/ January 25 1997	66
7/ January 26 1997	66
8/ January 27 1997	End of program

ł

10.0 Conclusions

Phase 1 silt sampling geochemical exploration of the Green Mnt. claims has
resulted in the exposure of three anomalous samples above back ground Au, As
The recommendation would be a more detailed exploration to track down source of these anomalous samples.

le

1.

September 1997

Respectively Submitted by Larry Crittenden

11.0 Statement of Qualifications

I Larry Crittenden, do hearby certify:

- That I have been a professional prospector for approximately 14 years, working for numerous different company's and clients as well as for myself. I have also been employed in mineral exploration overseas as a project manager.
- 2. That the opinions and conclusions contained herein are based on fieldwork carried out by Professional consulting personal
- That I own no direct, indirect or contingent interest in the subject property's or shares or securities in any associated companies.

Vancouver B.C. October 10 1997 LARRY CRITTENDEN

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:	97015
Invoice:	50778
Date Entered:	97-02-15
File Name:	CME97015.I1
Page No.:	2

SAMPLE NAME	PPB Au AA	PPM Ag	X AL	PPM As	PPM Ba	PPM BE	PPM Bi	X CA	PPM CD	PPM CO	PPM CR	PPN Cu	X FE	х К	PPM LA	X Mg	PPN Mn	PPM Mo	X NA	PPM NI	PPM P	PPN PB	PPM SB	* SI	PPM Sr	X TI	PPM V	PPM W	PPM ZN	
 SILT 120	4		2.78	5	82	1		0.59	1	21			3.73			1.84			0.02		1292	9		0.03		0.25		1		
SILT 121	4		2.37	2	97	1		0.50	1	15	95		3.44			1.28			0.02		1052	11		0.03		0.14		1	60	
SILT 122	4		1.96	2	76	1		0.56	1	14	99		3.33			1.20			0.02		1113	9		0.02		0.21		1		
SILT 123	4		1.95	2	68	1		0.51	1		124		3.26			1.32			0.02		1032	9		0.02		0.22		1		
 SILT 124	4		2.80	12	89	1	_	0.59	1	18	97		3.66			1.48			0.02		1154	21		0.03		0.18		1	74	
SILT 125	4		2.20	20	46	1		0.55	1	18	120		3.38			1.65			0.02		1091	18		0.04		0.20		3	71	
SILT 126	4		2.24	2	90	1		0.46	1	16	89		3.08			1.15			0.02		992	4		0.03		0.13		1	58 63	
SILT 127	4		2.00	2	82	1		0.43	1	15	73		2.95			1.04			0.02		1198	4		0.03		0.12		_		
SILT 128 SILT 129	4		1.62 1.70	3 10	53 53	1		0.39	1	12 11	97 88		2.84 2.70			1.21 1.21			0.02	24 28	917 770	20 1		0.03		0.10		2 1	50 51	
 SILT 130	7		2.50	7	63	1		0.44	1	9	61		2.94			0.80			0.02		968	9		0.03		0.12		1		
SILT 131	4		1.87	2	76	1		0.45	1	16	88		3.47			1.15			0.02		1076	10		0.03		0.12		1		
SILT 132	Ă		2.69	52	54	1		0.85	1	17	67		3.53			0.95			0.02	30	949	21		0.03		0.09		i		
\$ILT 133	4		1.97	29	48	1		0.95	1	9	62		2.49			1.03			0.02		765	23		0.03		0.09		2		
ŠILT 134	4		1.83	2	73	1		0.47	1	14	75		3.17			1.15			0.02		1052	6		0.04		0.12		1	60	
SILT 135	4		1.90	8	73	1		0.45	1	14	82		3.30			1.18	869		0.02		1073	10	7	0.04	34	0.12	69	1	59	
SILT 136	4	0.1	1.80	15	57	1	5	0.39	1	13	107	59	3.28	0.08	5	0.88	680	1	0.02	21	938	8	1	0.04	23	0.09	68	1	53	
SILT 137	4	0.1	2.01	2	137	1	1	0.49	1		106	62	4.35	0.07	9	0.86	1252	1	0.02	24	758	1	1	0.03	26	0.03	68 68	1	67	
SILT 140	4	0.1	1.88	2	67	1	1	0.43	1	15	82	62	3.17	0.10	7	1.21	798	1	0.02	23	1021	9		0.04		0.12	2 67	1	58	
<u>SILT 141</u>	4	0.1	1.84	18	79	1	1	0.43	1	13	71	56	3.26	0.11	7	1.11	849	1	0.02	19	1076	4	7	0.03	32	0.12	2 69	1	58	
 																											<u>.</u>			
 						·							ì																	
												-																		
 																					·····									
 																						-						/		
																	CERT	IFIE	D B	, Y ;:		γ_{i}	1	\sim	sh	$\frac{1}{\alpha}$	A	//		

ROSSBACHER LABORATORY LTD.

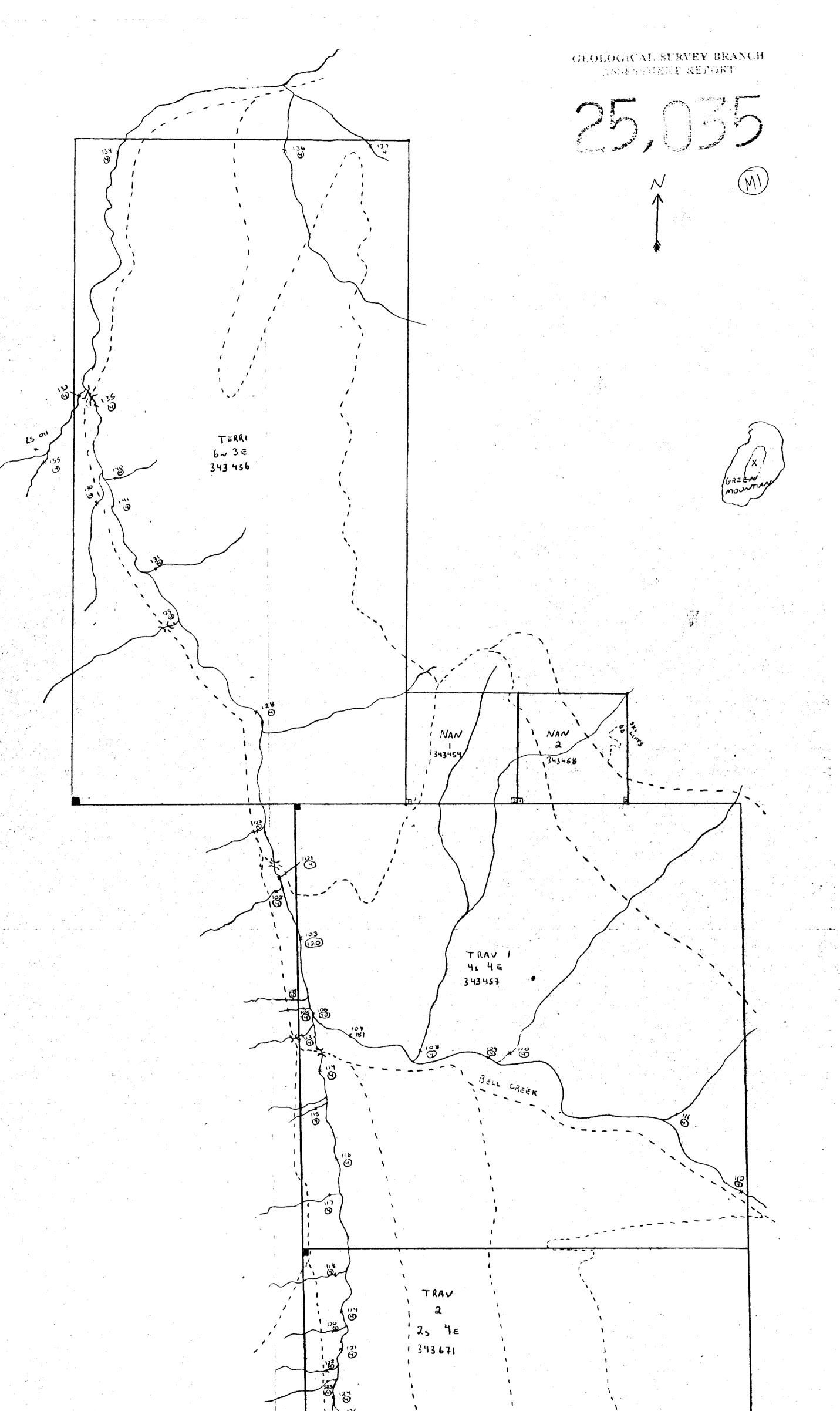
CERTIFICATE OF ANALYSIS

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

T .

F -

Certificate:	97015
Invoice:	50778
Date Entered:	97-02-15
File Name:	CME97015.I1
Page No.:	1


۲ `

۲.

	SAMPLE NAME	PP8 Au Aa	PPH Ag	X AL	PPM As	PPM BA	PPM BE	PPN BI	X Ca	PPM CD	PPM CO	PPM CR	PPH Cu	X FE	х К	РРИ LA	X MG	PPM MN	PPM MO	X NA	PPM NI	PPM P	PPM P8	PPM SB	x SI	PPM SR	х ті	PPM V	PPM W	PPM ZN	
	<u>PI00</u> 0+600	34	1.2	1.71	276	24	1	1	0.38	3	5	86	94	5.30	0.02	7	0.35	494	2	0.02	28	536	38	1	0.03	9	0.33	123	1	388	
ĥ	000+25W	56	2.5	3.05	570	26	1	1	0.24	1	1	154	125	7.28	0.01	6	0.35	472	1	0.02	19	622	35	1	0.03	5	0.67	246	3	163	
	E SOW	138	1.5	2.94	87	29	1	1	0.23	1	9	115		5.51			0.58		1	0.02	28	783	38	1	0.03		0.43	153	1	263	
	75W	106	1.2	2.89	88	27	1		0,47	1	9	123		5.73			0.71		1	0.02	30	623	7	1	0.05		0.50	165	1	165	
	0 255	28		6.52		23	1		0.23	1	10	214		5.80			0.81			0.02	49	469	16		0.03			175	1	162	
	50S	78		3.74		25	1		0.17	1	1	162		6.52			0.54			0.02	18	484	16		0.03		0.71	289	1	110	
	755	10		2.45		24	1		0.08	1	1	171		7.61			0.19	202		0.02	16	525	11		0.04		0.43	159	1	111	
	0 005	40		2.15		27	1		0.18	1	1	196		8.23						0.02	12	549	27		0.04		0.81	301	1	96	
	0 5S	82		0.89		35	1		0.41	1	16	57		4.01			0.06			0.02		1147	89		0.04		0.02	24	1	319	
	DN 5S DN DS	<u>22</u> 880		<u>1.51</u> 0.87	<u>44</u> 958	<u>24</u> 69	1		0.13	<u>1</u> 8	<u>1</u>	<u>184</u> 74		8,59 5,35			0.25			0.02		418 1308	<u>8</u> 155		0.04		<u>1.14</u> 0.02	420 28	<u>1</u>	42 921	·
	DW IS	880 12		1.90		69 43	1		0.43	8 1	9 18	74 66		5.35			0.32		-	0.02	47 37	1308 758	21	-	0.05	-	0.0∠ 0.04	28 52	1	921 421	
	DW IS	70		2.60	36	43 41	1		0.43	1	10	105		5.23				415		0.02	31	758 510	15		0.05		0.21	142	1	204	
	OW S	6		4.88	2	23	1		0.12	1	1	246		8,55			0.46			0.02	16	620	1		0.04		0.72	226	î	61	
	OW 5	6		1.98	2	24	1		0.07	1	1	185		9.29			0.34			0.02	10	373	3		0.03		0.69	294	1	49	
i	OM N	8		1.53	2	23	1		0.12	1	1	130		7.00						0.02	4	399	11		0.04		1.24	474	1	42	
	OW	8		2.90	53	22	1		0.28	1	18	121	140	5.40	0.03		0.84	871	2	0.02	32	988	13	1	0.03	8	0.45	147	1	138	
	OW	22		2.46	16	22	1		0.49	1	2	108		5.98			0.70	379		0.02	22	625	19	1	0.03	14	0.53	178	1	92	
	OW	4	1.0	2.37	17	74	1	3	0.07	1	8	142	99	4.67	0.09	22	1.25	372	1	0.02	50	786	22	1	0.03	5	0.02	35	1	109	
	OW	134	1.0	2.26	23	19	1	1	0.14	1	8	94	32	3.91	0.02	20	0.10	1161	1	0.02	32	1236	75	1	0.03	3	0.05	48	1	349	
	OW N	4	0.3	0.74	19	48	1	1	0.02	1	1	31	20	1.70	0.05	18	0.13	60	1	0.02	5	338	11	1	0.04	3	0.02	19	1	41	
Ľ	LO+001	4	0.4	0.49	11	50	1	1	0.12	1	1	20	20	1.23	0.04	7	0.06	84	1	0.02	4	251	17	1	0.03	9	0.03	22	1	39	
_	SILT 101	4	0.4	1.76	17	57	1	1	0.55	1	12	61	57	3.10	0.09	7	1.26	777	1	0.02	21	933	26	2	0.03	42	0.17	73	1	69	
	SILT 102	4	0.3	2.29	37	112	1		0.56	1	15	97	66	3.61	0.12	10	1.21	1046	2	0.02		1096	14		0.03	51	0.18	86	1	73	
	<u>SILT 103</u>	120		1.71	10	58	1		0.55	1	12	51		3.03						0.02	22	937	9		0.03	43		71	1	75	
	SILT 104	4	0.4	2.09	23	77	1		0.36	1	18	77		3,63			0.99			0.02	34	537	27		0.03	28		77	1	69	
	SILT 105	4		1.84	7	54	1		0.58	1	12	77		2.93			1.35			0.02	23	906	7		0.03		0.19	74	1	55	
	SILT 106	70		2.12		129	1		0.56	1	14	72		3.91			1.02			0.02	19		20		0.03		0.15	81	1	76	
	SILT 107	8		2.34		136	1		0.57	1	12	73		3,82			1.05			0.02		1525	23		0.03	54		79	1	81	
	SILT 109	4		2.16					0.55	1	13	61		3.90			1.05			0.02		1396	19		0.03	54		82	1	78	
	SILT 110	4		1.41	2		1		0.42	1	18	75		6.21			0.82			0.02		1415	8		0.03		0.13	110	1	81	
	SILT 111	4		1.90	16		1		0.44	1	17	72		4.07			1.00			0.02		1381	19		0.03		0.11	74	1	85	
	SILT 112	4		1.89	2	70	1		0.49	1	11	52		3.20			1.18			0.02		1171	17		0.03		0.14	68 60	1	64 57	
	SILT 113	4		1.68		39	1		0.39	1	12	78		2.94			1.27			0.02	29	816	11		0.03	27		60 70	1	57 60	
	SILT 114	<u> </u>		2.25	2 12		1		0.49	1	14 15	<u>86</u> 74		3.35			1.26	890		0.02		1066 1066	<u>6</u> 11		0.04	****	0.14	78 73	1	63	
	SILT 115	4		2.05	12	82 79	1		0.48 0.48	1	15			3.22 3.31			1.25 1.23	890 839		0.02		1065	3		0.04		0.13	73 75	1	62	
	SILT 116 SILT 117	4 A		2.01 2.71	-	113	1		0.48	1	15	84 86		3.68			1.23			0.02		1402	3 11		0.03		0.14	75 84	1	62 73	
		4			10	86	1			1	12	80 98								0.02		1558	13		0.03		0.16	87	1	65	
	SILT 118 SILT 119	4		2.56		80 81	1		0.49 0.46	1	14	98 80		3.65 3.02			1.28 1.23			0.02	23		13		0.03		0.15	72	1	57	
	3161 119		v.2	2.10		01	4	<u> </u>	0.40	-	14		03	3.02	0.10		1.23	007		0.02		1014	· · ·	4	4.00	55	v.10	16	1	x	

CERTIFIED BY :

Ambal

> Cheeks III Sample # O Au Value

Green Att Mining Claims Silt SANDIE LOCATION MAD AU. Project No: Scale: 1 - 10000 Draws: Figure No: 9 Elate: Oct 1997