SAIL PROPERTY

1996 ASSESSMENT REPORT

SAIL 1 TO 6 MINERAL CLAIMS

GEOLOGICAL MAPPING AND SOIL SAMPLING SURVEYS

DATES WORKED: AUGUST 24 TO AUGUST 29, 1996

LIARD MINING DIVISION
NTS MAP AREAS 1041/15
LATITUDE 58° 47'00" N, LONGITUDE 128° 45'00" W

CLAIM OWNER
WESTMIN RESOURCES LIMITED

Gold Commissioner's Office VANCOUVER, B.C.

OPERATOR WESTMIN RESOURCES LIMITED

REPORT BY MURRAY L JONES, M.Sc., P. Geo. WESTMIN RESOURCES LIMITED

APRIL, 1997

25.045

TABLE OF CONTENTS

		Pa	ge
1.0	CT TA AN	MARY	1
2.0		ODUCTION	
2.0	2.1	Geography, Physiography and Access	
	2.2	Property Description	
	2.3	Exploration History	
	2.4	Summary of the 1996 Program	
3.0	GEOL	.0GY	. 5
	3.1	Regional Geology	
	3.2	Property Geology	
	3.3	Structure	
	3.4	Mineralization	
4.0	SOIL	GEOCHEMICAL SURVEY	. 9
	4.1	Scope of Sampling.	9
	4.2	Soil Results	9
	4.3	Silt Results	. 10
5.0	CON	CLUSIONS	. 10
6.0	RECO	DMMENDATIONS	. 11
7.0	REFE	RENCES	. 12
		LIST OF APPENDICES	
Appe	endix		
	A	Statement of Qualifications	
	В	Statement of Expenditures	
	C	Rock Sample Descriptions	
	D	Analytical Results, Rock Samples	
	E	Analytical Results, Soil Samples	
	F	Analytical Results, Silt Samples	

LIST OF FIGURES

Figu	ure	Page
1	Location Map	2
2	Claim Map	4
3	Property Geology	(Back Pocket)
4	Rock and Silt Geochemistry, Sail Property	
	a) Zn Results	(Back Pocket)
	b) Pb Results	(Back Pocket)
	c) Cu Results	(Back Pocket)
5	Soil Geochemistry, Sail Property	
	a) Soil Sample Locations	(Back Pocket)
	b) Zn Results	
	c) Pb Results	
	d) Cu Results	(Back Pocket)

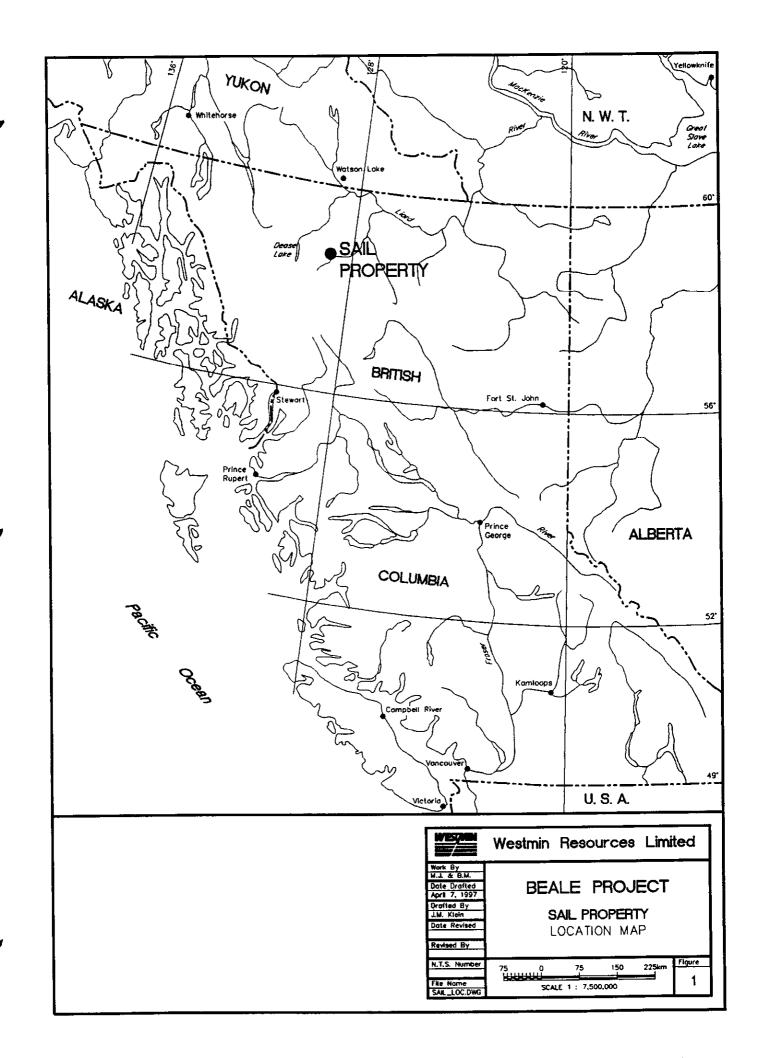
1.0 SUMMARY

A first pass exploration program was done on the Sail Property in the period August 24 to 29, 1996. This program consisted of geological mapping at a 1:10,000 scale in conjunction with extensive contour soil sampling.

The Sail Claims were staked to cover part of a supposed Devono-Mississippian package of rocks of volcanic and sedimentary origin. Moderately anomalous base metal results were detected in this area by the RGS survey done by the B.C. Geological Survey in 1995 (Jackaman, 1996). The property was examined with the intent of evaluating the potential for volcanogenic massive sulphide deposits.

The Sail Claims are underlain at least in part by the Rapid River Tectonite, part of the Sylvestor Allochthon, which is largely oceanic in character. The rocks of the Sail Property are generally gneissic to schistose and precursor lithologies are difficult to determine. For the most part the property is underlain by mafic gneiss and quartzose meta-sedimentary rocks. There is some evidence that there are felsic volcanic rocks on the property but this needs to be examined further.

Soil and rock sampling have identified two areas of anomalous base metal concentrations. A significant lead-zinc anomaly is hosted in argillaceous sediments just southeast of the Sail 4 Claim. Values of up to 4000 ppm Pb and 1375 ppm Zn are found on two soil lines about 1 kilometre apart.


The most interesting results were found in a narrow, quartz-sericite-pyrite schist in the north part of the property. This schist returned up to 5.0 g/t Au in association with anomalous zinc, lead and copper. As well, a mineralized fault in this same area is mineralized over about 3 kilometres of strike length. The mineralization associated with this fault is narrow, poddy sphalerite, galena, chalcopyrite and pyrite. Precious metal values are uniformly low.

It is recommended that additional work be done to determine the nature of the mineralized quartz-sericite-pyrite schist on the Sail 6 Claim. Mapping and whole rock sampling should be done to characterize this significant occurrence. Some work may be done on the mineralized fault in this area to determine if there is any continuity or size to the mineralization beyond what has been observed to date. Additional staking should be done to cover the lead-zinc anomaly in argillite southeast of the property. The source of the strong soil anomalies in this area should be located and evaluated.

2.0 INTRODUCTION

2.1 Geography, Physiography and Access

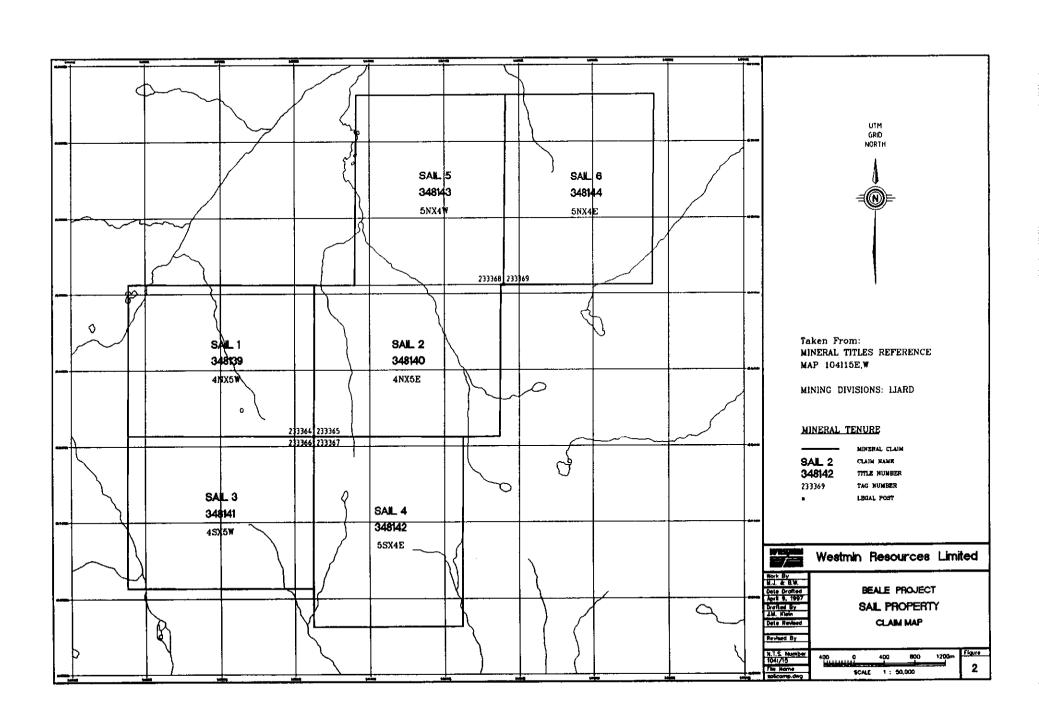
The Sail Property is located approximately 10 kilometres east of the northern section of Cry Lake, approximately 65 kilometres east-southeast of the Stewart-Cassiar Highway (#37). The nearest centre is Dease Lake B.C., located 80 kilometres southwest of the property (Figure 1). The property lies within NTS 1:50,000 map sheet 104I/15, and is centred at approximately 58° 47' N latitude and 128° 45' W longitude. Direct access to the property can be gained by helicopter.

Elevations on the property range from about 1300 metres in the valley at the north boundary of the Sail 5 Claim to over 2200 metres on one peak in the south part of the property. Generally, the terrain consists of steep ridges with long, fairly broad cirque valleys. Treeline is at approximately 1400 metres with only patches of small trees, low spruce bush and alpine vegetation above that elevation.

2.2 Property Description

The property currently consists of 6 contiguous mineral claims totalling 120 units. The claims are shown on Figure 2 and are tabulated below. The expiry dates shown are those in effect prior to the current exploration work being applied as assessment.

The 1996 exploration program was operated by Westmin Resources Limited.


Claim Name	Record No.	Expiry Date	Owner
Sail 1	348139	July 2, 1997	Westmin Resources Limited
Sail 2	348140	July 2, 1997	Westmin Resources Limited
Sail 3	348141	July 2, 1997	Westmin Resources Limited
Sail 4	348142	July 2, 1997	Westmin Resources Limited
Sail 5	348143	July 2, 1997	Westmin Resources Limited
Sail 6	348144	July 2, 1997	Westmin Resources Limited

2.3 Exploration History

Exploration has been carried out in the northern Cry Lake map sheet area since the late 1800's. Several showings are known in the Rapid River Tectonite including the Au-Zn-Ag-Cu vein-hosted Nizi Showing, a polymetallic showing on Beale Mountain, and the GB Cu-Ni asbestos showing (B.C. Minfile Map 104I).

A quick search of assessment file records did not show any previous work on the ground covered by the Sail Claims.

The Nizi Property, 22 kilometres northwest of the Sail Property, has had several serious exploration efforts dating from the early 1970's. More recently, Goldfields Canadian Mining Ltd. did geological mapping and geochemical sampling and drilled several vein showings in the period 1991-92. In the summer of 1996 Madrona Mining Limited also drilled the property. Drill intercept values have varied widely but intersection such as 13.5 g/t Au, 146.8 g/t Ag, and 2.85% Zn over 3.0 metres and 1.16 g/t Au, 733.4 g/t Ag, and 7.8% Zn over 4.5 metres indicate significant mineralization is present (Wojdak, 1997).

The area has been covered by regional stream sediment sampling (B.C.RGS-44, Jackaman, 1996) conducted by the provincial government in the 1995.

2.4 Summary of the 1996 Program

The 1996 exploration program consisted of 1:10,000 geological mapping, in conjunction with rock sampling, and contour soil sampling. This work was designed to follow up anomalous stream sediment samples from the government survey and an earlier regional sampling program conducted by Westmin Resources Limited in 1979. The program lasted from August 24-29, 1996. The program was supported by helicopter based in Dease Lake.

A total of 10 man/days were spent mapping and collecting a total of 43 rock samples (32 for Au plus multi-element geochemistry plus 4 assays, 11 for whole rock and trace element analysis) and 4 silt samples. Ten man/days were spent soil sampling collecting a total of 620 soil samples.

3.0 GEOLOGY

3.1 Regional Geology

The Sail Property is situated within the Rapid River Tectonite, part of the dominantly oceanic Sylvestor Allochthon (Gabrielse, 1994; Gabrielse and Harms, 1989). The allochthon in the area of the Sail property includes tectonized meta-volcanic and meta-sedimentary rocks, including limestone, of possibly Upper Devonian to Mississippian age (K-Ar date of 358.8+/-7.6 Ma on hornblende, Gabrielse, 1994), intruded by foliated granodiorite and gabbro bodies dated as Mississippian (K-Ar date on hornblende, 341+/-7 Ma, Gabrielse, 1994). The volcanic and sedimentary rocks have been intruded by elongate, commonly serpentinized peridotite and pyroxenite bodies. The rocks are generally characteristic of deeper oceanic environments with mafic rocks, including pillowed basalts, intermixed with chert, argillite and greywackes. Locally, there is evidence of tuffaceous, possibly intermediate to felsic, volcanic units and limestone (Gabrielse and Mansy, 1980). This package of oceanic rocks is cut by later felsic intrusions. These include possibly Cretaceous aged granite plugs, characterized by strong hornfels margins, and the Eocene Major Hart Pluton, a high level granite body.

In the area of the Sail Property, the dominant structural trend of the allochthon is northwest-southeast with variable dips. Overall, the Sylvestor Allochthon consists of complexly faulted and lithologically distinct terranes. A basal fault separates the allochthon from underlying miogeoclinal Devonian strata (Gabrielse and Harms, 1989).

Rocks of the Sylvestor Allochthon host the Nizi Occurrence which is situated 22 kilometres northwest of the Sail Property. The Nizi occurrence consists of Au-Zn-Ag-Cu mineralization hosted in quartz-barite-sphalerite veins, possibly associated with Permian igneous activity including rhyolite volcanism. Elsewhere in the Sylvestor Allochthon, minor Ni-Cu mineralization is found associated with serpentinite and peridotite bodies.

3.2 Property Geology

The restricted nature of the exploration program on the Sail Property has produced only a general picture of the local geology (Figure 3). Most mapping was done on the higher ground where the rocks were best exposed. The rocks which underlie the Sail Property are generally strongly metamorphosed. The nature of the rocks makes correlation of units and development of a stratigraphic column untenable at this early stage of work. Recrystallization has affected the appearance of most rocks. As well, the chemistry of the rocks may have been substantially altered during the metamorphic events. For this reason, most whole rock chemistry described in this section deals with elements which are relatively immobile, such as zirconium and titanium.

Fine to coarse grained gneissic and schistose textures are common north of the Major Hart Pluton with most rocks being foliated. Hornfels is common at the contact of granitic bodies but is especially well developed around the smaller (Cretaceous?) plugs. The central area of the property is dominated by mafic to chloritic gneiss, a very extensive and relatively monotonous unit. This rock is characterized by chlorite, biotite and hornblende in a feldspathic matrix and locally contains magnetite or quartz. The mafic gneiss is commonly gossanous, especially near the contact with the later intrusions.

The north part of the property, on the Sail 5 and 6 Claims is underlain by a mixture of mafic and quartz-biotite gneiss and some minor felsic volcanic units (textures?), including quartz-sericite-pyrite schist. The quartz and quartz-biotite gneiss units are likely meta-sedimentary rocks, evident in their combined low Zr and TiO₂ content. The felsic volcanic rocks have quite a different chemical signature characterized by SiO₂ in the 70 wt% range, Zr greater than 200 ppm, and low TiO₂ in the 0.3-0.4 wt% range.

The most obvious units in the north area are several elongate peridotite and serpentinite bodies. These ultramafic bodies are oriented northwest-southeast, parallel to the regional structural trend. These intrusive bodies have a cross-cutting relationship with the surrounding rocks although locally they lie sub-parallel to foliation. The peridotite is massive, weakly serpentinized, and stands out quite well in outcrop due to its orange weathering characteristics. The serpentinite bodies probably represent completely altered peridotite and are normally strongly sheared with anastomosing slickenslided surfaces throughout.

South of the Major Hart Pluton, the volcanic and sedimentary rocks are much less tectonized. A section of intermediate volcanic rocks with interlayered argillite occurs along the south contact of the pluton. Lapilli and other primary textures are easily distinguishable in these rocks despite some foliation. The chemistry of the volcanic rocks confirms their igneous character and indicates a fairly evolved unit with greater than 200 ppm Zr combined with TiO₂ greater than 1.0 wt% (unlike the felsic volcanic rocks in the north part of the property) and about 60 wt% SiO₂. This volcanic unit is bounded on the south by a wide section of argillite which is locally graphitic.

3.3 Structure

S₁ foliation measurements show that the structural orientation of rocks on the Sail Property varies from area to area. The predominant orientation in the central part of the property is consistent with the regional trend, roughly northwest-southeast with variable dips. The trend of foliation is locally disrupted, commonly around granite plugs or ultramafic bodies.

South of the Major Hart Pluton, foliation is less intense and is generally oriented in a rough east-west direction with steep to moderate north dips. The units are cut off at the pluton which has a sub-vertical contact.

Structure is much more complicated in the north part of the property with quite heterogeneous foliation orientations. The lithologic units follow a general northwest-southeast trend, with local deviations common. Measurements of minor fold hinges show several different plunge directions reflecting the structural inhomogeneity.

The major valleys on the Sail 2 and 4 Claims are likely following a set of large north-south oriented faults. The continuation of one of these faults can be seen in the far north cirque, along the boundary between Sail 5 and 6 Claims. Several small faults have been mapped on the property which have various orientations. In addition, there has been some movement along the contact of the Major Hart Pluton resulting in offset of the intrusive contact locally.

3.4 Alteration and Mineralization

Significant mineralization was located in several places on the Sail Property. The rock samples discussed below are located on Figure and their results can be found on Figures 4a to 4c.

Alteration is not obvious in the area south of the Major Hart Pluton other than gossanous hornfels along the intrusive contact. No significant mineralization was found relating to the hornfels.

South of the intrusion, stringers of galena and sphalerite were found in argillite, just southeast of Sail 4, near the contact with intermediate volcanic rocks and several hundred metres south of the contact. The mineralization to the south is traceable geochemically for over 1 kilometre (see Section 4.2 Soil results). Significant assays are summarized in the following table.

Sample	Pb	Zn	Cu	Ag	Au
530416	1.11 %	0.30 %	171 ppm	24.8 g/t	30 ppb
530417	570 ppm	0.14 %	59 ppm	1.8 g/t	<5 ppb
530418	1.68 %	0.10 %	542 ppm	47.0 g/t	<5 ppb
530519	0.65 %	0.55 %	36 ppm	10.4 g/t	<5 ppb

Mineralization in the central area of the property is quite sparse. Disseminated pyrrhotite and pyrite are common in gossanous zones with in the mafic gneiss but rarely in concentrations greater than a couple percent. Chalcopyrite is also common in localized patches, as disseminations in the gneiss and in fractures, but generally as trace to 0.5% of the rock. A sample (530526) from a gossanous fracture zone in the north part of the Sail 2 Claim returned 0.39 % Zn along with anomalous Cu.

The most interesting area for mineralization on the Sail property is at the north end on the Sail 5 and 6 Claims. A large fault traverses obliquely across the ridge north of the Legal Corner Post for these claims. The fault pinches and swells but generally hosts a metre or two of gouge and breccia material which has commonly been cemented by quartz with variable sulphides including galena, pyrite, sphalerite and chalcopyrite. The mineralized portion of the fault is commonly restricted to a narrow marginal zone. The fault has been mapped in outcrop for almost two kilometres. Several grab samples from this fault zone returned high base metal values as outlined in the table below.

Sample	Pb	Zn	Cu	Ag	Au
530528	0.48 %	758 ppm	82 ppm	0.8 g/t	<5 ppb
530534	32.4 %	1.13 %	0.25 %	90.0 g/t	<5 ppb
530535	2.03 %	0.76 %	582 ppm	30.8 g/t	<5 ppb

Another significant mineralized occurrence is located on the low ridge in the south-central part of Sail 6. Here, quartz-sericite-pyrite schist occurs in float and small outcrops. Two float samples from this area returned very significant base and precious metal values. These results are tabulated below.

Sample	Pb	Zn	Cu	Ag	Au
530425	92 ppm	0.32 %	825 ppm	9.6 g/t	5.0 g/t
530426	220 ppm	0.35 %	925 ppm	23.2 g/t	4.8 g/t
530428	260 ppm	778 ppm	745 ppm	0.4 g/t	5 ppb

Two other types of mineralization were noted in this area. Several small lenses of massive pyrrhotite-pyrite were noted in quartz-sericite gneiss at the point where the mineralized fault described above intersects a serpentinite body near the ridge top. These small lenses are anomalous in copper and nickel. Sample 530529 returned 980 ppm Ni and 809 ppm Cu. Another sample taken from a peridotite body just south of Sail 6 returned 0.19% Ni, 0.29% Cu and 100 ppb Au in pyrrhotite-chalcopyrite mineralized peridotite.

Secondly, sulphide mineralization occurs in a small lens(?) of Mn-stained Fe-carbonate, possibly a bed or replacement, in meta-sediments in the central part of Sail 5. The lens contains poddy galena, with sphalerite and pyrite, giving a total sulphide content of about 1%. The grab sample from this lens (530537) gave 0.53% Pb and 0.40% Zn.

4.0 SOIL GEOCHEMICAL SURVEY

4.1 Scope of Sampling

Contour soil sampling was done along the slopes of the ridges on the Sail Property. The samples were taken every 50 metres along contour lines located near the break in slope or close to the top of talus. Samples of B-horizon material were taken in all instances except were soil development was poor. In these instances, samples were generally of talus fines or other C-horizon type material.

Soil sample stations were marked in the field with a flag and tyvex tag with the sample number written on it. Samples were numbered sequentially by the individual sampler using the year, the sampler's first and last initial, S for sample type, followed by the sample number. For example, Jan Tindall's 200th soil sample in 1996 would be numbered: 96JTS200.

Samples were partially dried in the field and then shipped to Chemex Labs in North Vancouver, B.C. for analysis. They were subsequently dried, sieved to -80 mesh, pulverized and then analysed for 24 elements using a four acid procedure to ensure complete digestion of the sample material, followed by ICP-AES analysis. The results are found in Appendix E.

A total of 620 soil samples were collected in this exploration program. A total of 10 man/days were required for this sampling program.

4.2 Soil Results

Several anomalies (greater than the 95th percentile for any element) have been identified by the soil sampling survey (Figures 5a to d). Significant results were found primarily for zinc, lead and copper. Silver shows some association with zinc and lead. Two strong nickel anomalies were detected. Both are associated with outcrops of ultramafic bodies of either peridotite or serpentinite. Spotty anomalous values for various metals have been detected in the hornfels margins to major intrusions. No significance is attributed to these spotty anomalies.

The most significant soil anomaly on the Sail Property is situated along the boundary between the Sail 5 and 6 Claims. This coincident Zn (to 2790 ppm), Pb (to 2700 ppm), Cu (to 1370 ppm), and Ag (to 9.8 g/t) anomaly lies downslope from the outcrop of the mineralized fault zone in this area. The anomaly is present over about 1.3 kilometres, with a strong north and south node. There is anomalous bismuth associated with the north node. A subsidiary anomaly resulting from the fault zone occurs on the other side of the ridge on the Sail 5 Claim. As well, a small anomaly in the northeast part of the Sail 2 Claim may represent an extension to this mineralized fault bringing the entire strike of this zone to almost three kilometres.

Several spotty but strong zinc values (up to 2280 ppm Zn) occur in the northwest part of the Sail 5 Claim. Anomalous lead, up to 3100 ppm, is associated with the zinc anomalies. These anomalies represent a different source of mineralization than the mineralized fault described above. Mapping was

not done in this area so an explanation for the anomalies is not immediately forthcoming. The only significant mineralization noted close to this area was galena-sphalerite in a Mn-stained carbonate lens in meta-sediments.

Another significant soil anomaly occurs just southeast of the Sail 4 Claim. A strong, focused anomaly with values up to 1300 ppm Pb and 1080 ppm Zn, occurs in argillite near the south end of a ridge where bedrock disappears under overburden. About one kilometre along strike to the east, there is a similar anomaly with values up to 4000 ppm Pb and 1375 ppm Zn.

4.3 Silt Results

Only four silt samples were collected on the Sail Property during the 1996 exploration program. Their location can be found on Figure 3 and the results for zinc, lead and copper from these samples are shown on Figures 4a to 4c with the rock samples. The results have not been treated statistically due to the small size of the population.

Sample 96MJT003 is situated along strike from the mineralized fault zone in the north part of the claim group. This sample has the highest zinc (278 ppm) and lead (110 ppm) values of all the samples, possibly indicating an extension to the zone above the sample site.

5.0 CONCLUSIONS

The Sail Property is at least partially underlain by metamorphosed and deformed rocks of the Rapid River Tectonite, a fault bounded portion of the Sylvestor Allochthon (Gabrielse and Harms, 1989) which have been intruded by ultramafic and granitic bodies. North of the Major Hart granite pluton, which lies in the south-east part of the property, these rocks are generally foliated, gneissic to schistose and hornfelsed. The precursor rock types include mafic to intermediate volcanic units, argillaceous to quartzose sedimentary units and felsic volcanic units. South of the Major Hart Pluton the rocks are less tectonized with recognizable primary lithologic features. There are two main rock types in this area; intermediate volcanic tuffs and graphitic argillite.

In general, the lithologic trends on the Sail Property parallel the regional northwest-southeast trend. South of the Major Hart Pluton, foliations in the volcanic and sedimentary rocks trend more east-west. In the north part of the property there is considerably more structural complexity. This may in part be due to intrusion of ultramafic bodies in this area. Also, several major faults traverse this part of the property. Local minor folding suggests that there may be interfering, differently aged folds. Most mapped faults are small with little offset associated with them. Large faults likely occupy the bottom of the north-south valleys which cross the property.

There are several significant mineralized zones on the Sail Property. The largest of these zones is found in the north part of the property. An extensive fault with mineralized breccia and gouge is traced for almost three kilometres north-south across the Sail 5 and 6 Claims. Soil and rock samples show anomalous lead, zinc, and copper over the length of this structure. The structure is at most a few metres wide and mineralization is generally even more restricted.

The 1996 exploration program on the Sail Claims was a quick, first pass. The program was successful in confirming that there are some felsic volcanic rocks present on the claims. This conclusion does need to be investigated in more detail. Mineralization associated with the apparent felsic rocks (quartz-sericite-pyrite schist) is both base and precious metal rich. However, it is not clear whether this mineralization is part of a volcanogenic massive sulphide system.

Mineralization in argillaceous sediments south of the property is quite encouraging. There is a potential strike length of over 1 kilometre on what may be strataform (or -bound?) mineralized zone. The values of lead and zinc in soils from this zone are greater than what might be reasonably expected in sulphidic graphitic argillites.

7.0 RECOMMENDATIONS

Further work is justified on the Sail Property to investigate the significant mineralization discovered in two locations. In the north part of the property additional sampling and mapping needs to be done to determine the nature and extent of the siliceous, sericitic schist which hosts the strong base and precious metal mineralization found in samples 530426 and 530427. There may be some potential for volcanogenic massive sulphide mineralization associated with these rocks.

The mineralized fault in the north area represents a lesser target because of its narrow mineralized zones. Nonetheless, additional sampling should be done to determine if there is a significant concentration of base metal mineralization along the over 3 kilometre mineralized strike length of this fault zone. The values found in soils and rocks to date are compelling enough to justify this work.

The second area of significant mineralization southeast of the Sail 4 Claim should be staked if work is to continue in this area. The potential for Pb-Zn sedex mineralization in this area is obvious. Mapping and additional soil sampling in the area of the 1996 soil anomalies should be done.

8.0 REFERENCES

Cry Lake Mineral Occurrence Map, Minfile Map 104I, 1988, B.C. ministry of Energy Mines and Petroleum Resources.

Gabrielse, H., 1994. Geology of the Cry Lake (104I) and Dease Lake (104J east) map areas, north central British Columbia: Geological Survey of Canada, Open File 2779.

Gabrielse, H. and Harms, T.A., 1989. Permian and Devonian plutonic rocks in the Sylvestor Allochthon, Cry Lake and McDame map areas, northern British Columbia: in Current Research, Part E, Geological Survey of Canada, Paper 89-1E, pp. 1-4.

Gabrielse, H. and Mansy, J.L., 1980. Structural style in northeastern Cry Lake map area, north-central British Columbia: in Current Research, Part A, Geological Survey of Canada, Paper 80-1A, pp. 33-35.

Jackaman, W., 1996. British Columbia Regional Geochemical Survey, NTS 104/I - Cry Lake: B.C. Geological Survey Branch, B.C. RGS 44.

Wojdak, P., 1997. Summary of 1996 Exploration Activities in Northwest District, British Columbia: District Geologist's Office, Smithers, B.C..

APPENDIX A STATEMENT OF QUALIFICATIONS

Statement of Qualifications

- I, Murray I. Jones, of the City of Surrey, in the Province of British Columbia, hereby certify that:
 - 1. I am registered as a professional geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (registration #20063), residing at 8606 144A Street, Surrey, British Columbia, V3S 2Y2 with a business address at #904 1055 Dunsmuir Street, P.O. Box 49066, The Bentall Centre, Vancouver, British Columbia, V7X 1C4.
 - 2. I graduated with a B.Sc. (Honours) in Geology from the University of British Columbia, Vancouver, B.C. in 1982 and with a M.Sc. in Geology from the University of Ottawa, Ottawa, Ontario in 1992.
 - 3. I have practised geology in Canada from 1979 to 1997.
 - 4. I performed and supervised the work which is described in this report.

Murray I. Jones, M.Sc., P.Geo.

Project Geologist

Westmin Resources Limited

APPENDIX B STATEMENT OF EXPENDITURES

				<u> </u>		•		1.4		
eal	e Proje	ct - 6112	Sail	Property	<u> </u>	Stateme	nt of Expe	nditures		
1.0		PREFIELD (pre-May 13/96)		ļ						
1,0		Murray Jones - Project Geolo	niet	2	days @	\$328	\$656	-		
		Brian Wakeman - Field Geo.	9136		days @	\$328	\$328			
	-	Reproductions		'	cujo (c	4020	\$300			
	-				<u> </u>		- 0000	\$1,284	\$1,284	
2.0		FIELD PROGRAM				<u> </u>				
		PERSONNEL		ļ · · · · · ·						_
	Ì	Murray Jones - Project Geolo	gist	7	days @	\$328	\$2,296			
		Brian Wakeman - Field Geo.		8	days @	\$328	\$2,624			
		Jan Tindle, sampler		7	days @	\$200				
		Yvonne Thornton, sampler		8	days @	\$178	\$1,424		<u> </u>	
								\$7,744		
		CAMP SUPPORT			<u> </u>					
		Accomodation	ļ	6	days@	\$156	\$936			
		Belvedere	<u> </u>				\$150	ļ		
	-	Meals	<u> </u>	1		1	\$200	ļ <u> </u>		
		Groceries	ļ		 		\$265			
	 	Field Supplies -NCI		1	ļ .		\$330 \$20			
	-	Camp Supplies Radio rentals		1	ut/mo@	\$90		-		
	1	Computer Rental	 		month @		\$128			
	ļ	Delivery and Courier	 	<u> </u>	monur <u>a</u>	Ψ 2 33	\$130			
	 	Freight	-		 		\$150			
		Telephone	ļ				\$30			
	<u> </u>		 				1 700	\$2,429		
3.0	<u> </u>	GEOCHEMISTRY AND ASSA	YS					,		
	-	Drill Core, Rock Geochem		32	smpl @	\$19.00	\$608	1		
		Whole Rocks	1		smpl @	\$27.75				
		Assays			elmnts@	\$6.00				
		Soils			smpl @	\$9.45				
		Silts		4	smpl @	\$14.13	\$57			
_								\$6,865		
4.0	<u> </u>	TRANSPORTATION	<u> </u>							
	1	Travel			ļ		\$2,750			
	ļ	Truck rental (2)	ļ	7	days @	\$30				
	ļ <u>.</u> .	Fuel	<u> </u>	44.0	ļ — <u>— — — — — — — — — — — — — — — — — —</u>	0700	\$60			
	 	Helicopter	 	11.8	hrs @	\$730	\$8,614	\$11,634		
E ^	-	DIAMOND DOUGLESIC	- 	-	-	 	<u> </u>			
5.0	+	DIAMOND DRILLING Footage, 0 - 200 m		 	m @	\$48	\$0	 		
	 	Footage, 0 - 200 III	\vdash	 	1111 6	940	30	\$0	\$28,672	
	 -	1	 	+		+	 	Ψ0	\$20,072	
6.0	1	POST FIELD	+		 	+	1	1		
0.0	1	Murray Jones - Project Geold	naist	A	days @	\$328	\$1,312	<u> </u>		
	 	Drafting	1		hrs@	\$40				
	1	Maps	+			1	\$500		\$2,712	
	 	1	1				T			
7.0		SUBTOTAL		1			T			\$32,66
	T							i i		
8.0)	Seretarial, photocopying, etc							\$653	
										\$6
		TOTAL								\$33,3

APPENDIX C ROCK SAMPLE DESCRIPTIONS

ROCK SAMPLE DESCRIPTIONS

Nb: See Figure 3 for rock type and mineral abbreviations.

530414	grab, black argillite, Fe oxide stain on fractures.
530415	grab, argillite-siltstone, black, heavy Fe oxide stain, possibly felsic volcanic.
530416	select, black argillite, qz-cb veining, qz crystals?, slickenslides, Fe oxide, trace gl.
530417	15 m chip, black argillite with slickenslides, some qz-cb bands, Mn oxide, Fe oxide,
	trace gl.
530418	float, gossanous boxwork in siliceous white matrix (qz?), gossan.
530419	grab, black argillite with 5% diss,d py, siliceous, hornfels.
530420	grab, hornfels argillite, Fe oxides,.
530421	grab, hornfels argillite, some sheeted qz veining, Fe oxides.
530422	grab, intermediate volcanic, hornfels, light green, with qz veining, Fe oxides.
530423	float, hornfels volcanic, Fe oxides, trace py-cp.
530424	float, green cl gneiss, with py, Fe oxides.
530425	float, qz-cl gneiss, light green, with 3% diss'd py and cp(?).
530426	float, quartzose schist, 10% diss'd ruby sl-cp, Fe and Mn oxides.
530427	float, qz-ms-py schist, heavy Fe oxide boxwork, 5% py.
530428	float, cl gneiss, dark green, malachite stain, trace gl.
530429	grab, qz-cl gneiss (rhyolite?), trace cp.
530430	float, sugary quartzose rock, qz veins and drusy qz, reddish vugs.
530431	grab, quartzose rock, cl partings, silicified?
530432	grab, peridotite, po-cp mineralization, malachite stain.
530433	float, peridotite, 5 po, trace cp.
530434	float, white quartzose rock, cl patches, drusy qz, Fe oxides.
530435	float, serpentinite, minor po-cp, hematite stain.
530519	float, argillite, silty to graphitic, weak cb, minor py, trace gl, Mn and Fe stain.
530520	grab, intermediate lapilli tuff, cl-ms-si alt'n.
530521	grab, intermediate volcanic, sheared, si alt'n, trace py in fractures, weak patchy gossan.
530522	grab, felsic rock - rhyolite?, cl-qz alt'n, cl weak in small zones, fractures.
530523	2 m chip, intermediate volcanic, hornfels, cb-si alt'n, trace-2% diss'd po.
530524	float, intermediate volcanic, qz flooded, strong cl alt'n, weak ep, gossanous, tr-2%
	diss'd py, also in fractures, tr cp?
530525	grab, intermediate or mafic volcanic, cl-bi-qz alt'n, 2-3% diss'd po/cp along foliation,
	also blebs in fractures, appears to be small cross-cutting zone in mafic rock.
530526	grab, mafic gneiss, cl-bi in groundmass, tr-0.5% cp, tr po, in narrow gossanous band,
	quite continuous.
530527	float, qz-cl-hb gneiss, cse.gr., bi-cl-qz in matrix, 1-2% py-cp in fractures, as diss'd
	blebs.
530528	select, qz-bi gneiss, si alt'n, qz stockwork in gneiss at contact with serpentinite, trace
	gl-sl-py.
530529	grab, qz-bi gneiss, siliceous, semi-massive lens of f.gr. po-py, near serpentinite contact,
	looks like replacement in gneiss.

530530	grab, qz-cl-bi gneiss, strong cl-si, mod. bi, minor po-py, in 5 m thick zone parallel to layering.
530531	grab, qz gneiss, bi-si alt'n, no sulphides noted.
530532	grab, spotted felsic looking rock, mod si, weak cl alt'n, dark green spots to 8 mm - amygdules or altered spherules, in foliated feldspathic matrix.
530533	grab, mafic gneiss, cl alt'n, near peridotite contact, mafic gneiss is inundated by granitic dykelets.
530534	float, altered rock, strongly limonitic boulder with lenses and bands of cse.gr. gl, >5% fresh galena in sample.
530535	grab, mafic gneiss, bi-cl-qz in matrix, 1-3% total sulphides, sl>gl>cp.
530536	grab, felsic volcanic rock, weak clay alt'n.
530537	2 m chip, limy sediment - skarn?, cb-si-weak cl alt'n, coarse Fe dolomite with minor qz veins, locally 5-8% gl, generally trace to 1% sulphides (gl-sl-py), trace cp.
530538	grab, qz gneiss, siliceous, no sulphides noted.
530539	grab, qz-minor bi gneiss, silicified?, weakly Fe stained.

APPENDIX D ANALYTICAL RESULTS, ROCK SAMPLES

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

A9631721

Comments: ATTN: M. JONES

CERTIFICATE

A9631721

(GP) - WESTMIN RESOURCES LTD.

Project: P.O. #: 6112

Samples submitted to our lab in Vancouver, BC. This report was printed on 19-SEP-96.

	SAMPLE PREPARATION											
CHEMEX	NUMBER SAMPLES	DESCRIPTION										
205 226 3202 285	50 50 50 50	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - HF digestion charge										

ANALYTICAL PROCEDURES

CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
983	50	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
578	50	Ag ppm: 24 element, rock & core	AAS	0.2	100.0
573	50	Al %: 24 element, rock & core	ICP-AES	0.01	25.0
565	50	Ba ppm: 24 element, rock & core	ICP-AES	10	10000
575	50	Be ppm: 24 element, rock & core	ICP-AES	0.5	1000
561	50	Bi ppm: 24 element, rock & core	ICP-AES	2	10000
576	50	Ca %: 24 element, rock & core	ICP-AES	0.01	25.0
562	50	Cd ppm: 24 element, rock & core	ICP-AES	0.5	500
563	50	Co ppm: 24 element, rock & core	ICP-AES	1	10000
569	50	Cr ppm: 24 element, rock & core	ICP- AE S	1	10000
577	50	Cu ppm: 24 element, rock & core	ICP- AES	1	10000
566	50	Fe %: 24 element, rock & core	ICP-AES	0.01	25.0
584	50	K %: 24 element, rock & core	ICP-AES	0.01	10.00
570	50	Mg %: 24 element, rock & core	ICP-AES	0.01	15.00
568	50	Mn ppm: 24 element, rock & core	ICP-AES	5	10000
554	50	Mo ppm: 24 element, rock & core	ICP-AES	1	10000
583	50	Na %: 24 element, rock & core	ICP-AES	0.01	10.00
564	50	Ni ppm: 24 element, rock & core	ICP- AES	1	10000
559	50	P ppm: 24 element, rock & core	ICP-AES	10	10000
560	50	Pb ppm: 24 element, rock & core	AAS	2	10000
582	50	Sr ppm: 24 element, rock & core	ICP-AES	1	10000
579	50	Ti %: 24 element, rock & core	ICP- AES	0.01	10.00
572	50	V ppm: 24 element, rock & core	ICP-AES	1	10000
556	50	W ppm: 24 element, rock & core	ICP-AES	10	10000
558	50	Zn ppm: 24 element, rock & core	ICP-AES	2	10000
312	1 1	Pb %: Conc. Nitric-HCL dig'n	aas	0.01	100.0

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :1-B Total Pages :2 Certificate Date: 19-SEP-96 Invoice No. :19631721

P.O. Number : :GP Account

								CERTIFICATE OF ANALYSIS A9631721							
SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm	Sr ppm (ICP)	Ti % (ICP)	(ICP)	W ppm (ICP)	Zn ppm (ICP)	Pb		

530414	205	226	575	2	1.29	21	510	10	238	0.39	113	< 10	74		i
530415		226	255	65	0.50	78	1060	20	59	0.18	172	< 10	590		[
530416	205	226	6960	6	0.08	42	440	>10000	12	0.19	80	20	3000		
530417	205	226	2610	5	0.47	47	650	570	32	0.25	117	10	1430		
530418	205	226	675	1	0.03	4	700	>10000	8	0.14	59	20	1015		i
530419	205	226	455	10	0.58	41	710	36	108	0.38	167	< 10	116		İ
530420	205	226	675	21	0.92	34	740	20	183	0.30	156	10	94		
530421	205	226	70	3	0.05	11	120	72	12	0.12	59	< 10	58		
30422	205	226	295	3	0.15	30	410	6	34	0.44	100	< 10	62		-
530423	205	226	710	< 1	0.04	45	390	8	49	0.18	67	< 10	40		
530424	205	226	1270	< 1	1.81	51	470	< 2	156	0.35	320	20	66]
530425		226	790	6	1.61	33	420	92	269	0.30	282	20	3180		
530426	205	226	445	39	1.96	46	310	220	237	0.32	212	10	3450		
30427	205	226	405	42	2.40	34	150	10	35	0.09	327	10	174	}	ł
530428		226	2540	< 1	2.00	62	660	260	254	0.93	311	20	778		
30430		226	250	218	0.04	8	150	72	20	0.05	48	< 10	40		
30432		226	1165	< 1	0.09	1945	Intf*	< 2	5	< 0.01	70	40	82		
30433	205	226	1360	4	1.07	292	4080	16	763	0.42	275	40	54		
530434		226	1195	2	0.12	58	760	14	116	0.31	138	< 10	56		
530435		226	930	< 1	0.54	595	4010	6	147	0.58	492	60	130		

				. 1			,								
530519	205	226	>10000	10	0.17	43	1130	6500	26	0.19	144	20	5480	 l i	
530523	205	226	3640	< 1	0.59	18	300	18	238	0.25	76	40	98	 }	
			ŀ												
		L	i	j						ll				 <u> </u>	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC

CERTIFICATE OF ANALYSIS

V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :1-A Total Pages :2 Certificate Date: 19-SEP-96 Invoice No. :19631721

P.O. Number :

A9631721

1 1

0 0

SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % {ICP}	K % (ICP)	Mg % (ICP)
:					,										:
530414 530415	205 226 205 226	< 5 < 5	0.4	7.35 4.71	660 540	2.0	2 < 2	1.39 0.06	0.5	9 18	147 94	35 113	3.21 9.76	1.66 1.12	1.46 1.23
530416 530417 530418 530419 530420	205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5	24.8 1.8 47.0 0.8 0.4	5.23 6.50 3.01 6.76 7.62	180 900 320 1260 1430	< 0.5 0.5 < 0.5 0.5 0.5	2 < 2 < 2 2 < 2	0.10 0.11 0.10 0.45 1.56	5.0 15.0 5.5 2.0 3.0	12 15 2 29 10	142 150 80 208 202	171 59 542 57 81	11.65 6.12 12.15 3.28 3.87	0.33 1.53 0.91 2.45 2.09	1.24 1.37 0.23 1.34 1.27
530421 530422 530423 530424 530425	205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5	1.0 < 0.2 1.8 < 0.2 9.6	2.89 6.93 2.82 7.38 9.12	930 950 110 310 410	0.5 1.0 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.01 0.05 2.14 6.48 4.78	0.5 < 0.5 < 0.5 0.5 26.0	3 12 26 33 29	208 163 233 328 152	21 55 205 49 825	1.26 5.24 3.41 6.53 5.47	1.37 3.18 0.88 0.27 2.57	0.29 0.78 0.89 5.35 2.23
530426 530427 530428 530430 530432	205 226 205 226 205 226 205 226 205 226	60 5 < 5	23.2 0.6 0.4 1.4 < 0.2	9.18 7.01 7.63 1.78 0.49	250 310 120 160 10	< 0.5 < 0.5 < 0.5 1.5 < 0.5	2 2 < 2 4 Intf*	1.68 0.15 7.02 7.49 1.34	35.5 0.5 6.5 0.5 0.5	34 9 31 5 120	142 94 199 169 1740	925 50 745 27 2910	5.42 6.11 6.43 0.99 8.86	3.96 0.42 0.27 0.64 0.02	2.67 4.35 3.66 0.15 >15.00
530433 530434 530435	205 226 205 226 205 226	15 < 5 < 5	< 0.2 < 0.2 0.4	7.02 4.74 4.21	100 510 60	< 0.5 < 0.5 < 0.5	2 4 < 2	5.84 1.68 5.44	2.0 0.5 3.0	135 21 315	190 203 335	1190 19 1820	14.30 3.68 20.7	0.28 2.05 0.29	2.70 1.97 3.56
530519 530523	205 226 205 226	< 5 < 5	10.4	6.08 4.77	750 90	< 0.5 0.5	2 2	0.18 14.60	44.5	22 32	141 89	36 94	10.05 10.15	0.80	1.82 2.55

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :2-A Total Pages :2 Certificate Date: 19-SEP-96 Invoice No. : 19631721

P.O. Number : ∃GP Account

									CERTI	FICATE	OF AN	ALYSIS		4963172	21	
SAMPLE		REP	Au ppb FA+AA	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
530524 530525 530526 530527 530528	205 205 205	226 226 226 226 226 226	< 5 < 5 < 5 < 5 < 5	0.4 1.0 0.6 2.4 0.8	5.05 1.54 7.09 4.04 0.56	400 40 160 180 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 2 4 2	3.98 1.87 5.41 3.63 0.16	1.0 1.5 20.0 < 0.5 3.5	30 60 41 34 6	269 340 218 339 259	182 557 474 1160 82	5.12 5.81 7.90 6.78 1.24	0.41 0.08 0.58 0.56 0.01	1.73 1.26 4.42 1.68 0.48
530529 530530 530534 530535 530537	205 205 205	226 226 226 226 226 226	< 5 < 5 < 5 < 5 < 5	0.4 < 0.2 90.0 30.8 1.6	1.06 6.63 1.03 3.25 3.97	50 80 10 320 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 4 < 2 16 < 2	4.77 5.37 0.06 0.34 13.05	3.0 < 0.5 52.5 73.5 31.0	127 34 11 8 34	418 199 8 244 168	809 159 2530 582 92	15.30 6.85 >25.0 7.39 5.67	0.06 0.22 0.05 0.79 0.39	2.35 3.54 0.04 1.43 3.60
						:										
						:										

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave.. North Vancouver British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC

V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number : 2-B Total Pages : 2 Certificate Date: 19-SEP-96 Invoice No. : 19631721

P.O. Number : :GP Account

CERTIFICATE OF ANALYSIS A9631721

SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm {ICP}	Pb ppm	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm	Zn ppm (ICP)	Pb %	
530524 530525 530526 530527 530528	205 226 205 226 205 226 205 226 205 226	1535 960 1340 1315 1325	2 46 1 5	1.49 0.16 1.87 1.14 0.01	53 158 43 34 17	2130 1940 590 1860 550	94 14 6 8 4800	205 56 147 148 11	0.59 0.12 0.82 0.65 0.02	154 226 312 189 87	10 10 20 10 < 10	144 156 3870 98 758		
530529 530530 530534 530535 530537	205 226 205 226 205 226 205 226 205 226 205 226	490 1400 285 1105 >10000	2 < 1 1 1	0.66 1.34 0.06 0.08 0.37	980 72 14 10 35	5590 770 230 710 520	12 24 >10000 >10000 5300	56 261 56 7 262	0.12 0.53 0.08 0.34 0.29	483 256 19 213 175	30 10 10 < 10 10	114 96 >10000 7580 3990	31.7	
		 			li T	E	* * * * * * * * * * * * * * * * * * *	E						
					i									

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

A9633524

Comments: ATTN: M. JONES

CERTIFICATE

A9633524

(GP) - WESTMIN RESOURCES LTD.

Project: P.O. # :

6112

Samples submitted to our lab in Vancouver, BC. This report was printed on 30-SEP-96.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
244	4	Pulp; prev. prepared at Chemex

		ANALYTICAL	PROCEDURES	3	
NUMBER SAMPLES		DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
4	Pb %: Cone Zn %: Cone	c. Nitric-HCL dig'n c. Nitric-HCL dig'n	aas aas	0.01 0.01	100.0 100.0
:					
;					
	SAMPLES 4	SAMPLES	NUMBER SAMPLES DESCRIPTION 4 Pb %: Conc. Nitric-HCL dig'n	NUMBER SAMPLES DESCRIPTION METHOD	SAMPLES DESCRIPTION METHOD LIMIT

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :1 Total Pages :1 Certificate Date: 30-SEP-96 Invoice No. : I9633524 P.O. Number :

:GP Account

				CER	TIFICATE OF	ANALYSIS	A96	33524	
SAMPLE	PREP CODE	Pb %	Zn %						
530416 530418 530534 530535	244 244 244 244	1.11 1.68 32.4 2.03	1.13						
							0=	1 210	1

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

A9631722

Comments: ATTN: M. JONES

CERTIFICATE

A9631722

(GP) - WESTMIN RESOURCES LTD.

Project: P.O. # :

6112

Samples submitted to our lab in Vancouver, BC. This report was printed on 3-OCT-96.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
205 226 3202 298	24 24 24 24 24	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge

ΔΝΔΙ	YTICAL	PRO	CEDI	JRES
------	--------	-----	------	------

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LI M IT
2118	24	Aq ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2120	24	As ppm: 32 element, soil & rock	ICP-AES	2	10000
2123	24	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2128	24	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
2131	24	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2136	24	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
2140	24	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
2141	24	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2149	24	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000
902	24	A1203 %: XRF	XRF	0.01	100.00
906	24	CaO %: XRF	XRF	0.01	100.00
2590	24	Cr203 %: XRF	XRF	0.01	100.00
903	24	Fe2O3 %: XRF	XRF	0.01	100.00
908	24	K20 %: XRF	XRF	0.01	100.00
905	24	MgO %: XRF	XRF	0.01	100.00
1989	24	MnO %: XRF	XRF	0.01	100.00
907	24	Na2O %: XRF	XRF	0.01	100.00
909	24	P205 %: XRF	XRF	0.01	100.00
901	24	SiO2 %: XRF	XRF	0.01	100.00
904	24	TiO2 %: XRF	XRF	0.01	100.00
910	24	LOI %: XRF	XRF	0.01	100.00
2540	24	Total %	CALCULATION	0.01	105.00
2891	24	Ba ppm: XRF	XRF	5	50000
2067	24	Rb ppm: XRF	XRF	2	50000
2898	24	Sr ppm: XRF	XRF	2	50000
2973	24	Nb ppm: XRF	XRF	2	50000
2978	24	Zr ppm: XRF	XRF	3	50000
2974	24	Y ppm: XRF	XRF	2	50000

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

QC Page #: Tot QC Pg: Date: Invoice #: P.O. #:

00

1-A 03-OCT-96 19631722

GP

								COMMITTEE								
									QC DA	TA OF	CERTIF	ICATE		496317	22	,
STD/DUP/BLANK DESCRIPTION	QC TYPE	PAGE		As ppm	Bi ppm	Cu ppm	bbm Hg	Мо ррш	Pb ppm	Sb ppm	Zn ppm	A1203 % XRF	CaO %	Cr2O3 %	Fe203 %	K20 % XRF
G96-1GM CHEMEX MEAN	Std1	1	3, B 4.4	52 64	〈 2 〈 2	175 177	< 1 < 1	7 9	116 120	2 < 2	178 186					
GEO-90 CHEMEX MEAN	Std1	1										13.34 13.31	3.21 3.25	0.01 0.03	6.14 6.14	2.36 2.2!
SY-3 CHEMEX MEAN	std1	1														
530429	Dup Orig	L-01 L-01	0.6 0.6	< 2 < 2	< 2 < 2	49 53	< 1 < 1	< 1 < 1	22 24	< 2 < 2	98 10 4	12.80 12.85	1.55 1.59	0.01 0.01	2.59 2.63	0.34 0.36
						:										
								:					:			
						1			İ							

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

QC Page #: Tot QC Pg: Date:

03-OCT-96 Invoice #: P.O. #:

0.0

× 5 3

1 4

19631722

GP

1-B

								CONTINUENTS. AT THE MILL SOURCES											
STD/DUP/BLANK DESCRIPTION									QC DATA OF CERTIFICATE A9631722										
	QC TYPE		MgO % XRF	MnO %	Na20 %	P205 % XRF	SiO2 %	TiO2 %	LOI %	TOTAL	Ba ppm	Rb ppm	Sr ppm	Nb ppm	Zr ppm	PPm			
G96-1GM CHEMEX MEAN	Std1																		
GEO-90 CHEMEX MEAN	Std1	1	1.77 1.84	0.15 0.14	2.35 2.48	0.25 0.27	60.48 60.21	0.66 0.68	9.05 9.30	99.77 99.65									
SY-3 CHEMEX MEAN	Std1	1									465 450	204 206	304 302	192 148	333 320	71 72			
530429	Dup Orig	1-01 1-01	1.10 1.14	0.06 0.06	5.54 5.55	0.06 0.05	74.41 74.43	0.31 0.33	0.95 0.92	99.72 99.92	175 175	18 16	144 140	2 2	75 75	1			
							[ĺ		 								
			 - -																
			į																
						:													
									<u>.</u>										
				:															
													! !						

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

CERTIFICATE OF ANALYSIS

Project: 6112 Comments: ATTN: M. JONES

Page Number :1-B Total Pages :1 Certificate Date: 03-OCT-96 Invoice No. :19631722

P.O. Number : Account :GP

A9631722

							l	OLITI							
SAMPLE	PREP CODE	MgO % XRF	MnO %	Na20 %	P205 % XRF	SiO2 %	TiO2 %	LOI %	TOTAL	Ba ppm	Rb ppm	Sr ppm	рр≖ ир	Zr ppm	bbar A
530429 530431	205 226 205 226	1.14	0.06 0.12	5.55 0.32	0.05 0.05	74.43 92.82	0,33 0,11	0.92 0.41	99.92 99.16	175 2770	16 12	140 34	2 2	75 27	14

	1 55			r i ette r		ı——: ı			1	1105			30	340	
530520	205 2		0.11	3.17	0.27	60.13	1.13	3.79	99.59	1125	58	124	20	249	38
530521	205 2		0.13	3.13	0.15	66.43	0.72	2.79	99.35	440	12	48	4	105	20 22
530522	205 2		0.10	3.65	0.18	62.62	0.74	2.20	99.69	1150	28	488	8 [177 48	14
530531	205 23		0,24	0.32	0.07	88.41	0.19	0.66	99.80	815	42 48	44 220	4 2	48	20
530532	205 22	26 0.73	0.16	0.94	0.13	68.44	0.40	1.25	100.02	825	48	220	2	4.0	20
530533	205 22		0.18	4.89	0.06	54.84	0.44	1.87	98.61	90	56	166	₹ 2	30	10
530536	205 23		0.14	2.93	0.12	68.97	0.38	1.25	99.61	285	14	166	2	213	20
530538	205 22		0.11	0.08	0.02	94.73	0,10	0.63	99.95	385	12	. 8	< 2	15	2
530539	205 22	26 0.76	0.04	0.35	0.05	89.94	0,20	0.70	99.50	475	36	30	4 (36	6

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number : 1-A Total Pages :1 Certificate Date: 03-OCT-96 Invoice No. : 19631722

Invoice No. P.O. Number Account

:GP

SAMPLE								CERTI	FICATE	OF AN	ALYSIS	5 A	1963172	22		
	SAMPLE		Ag ppm	As ppm	Bi ppm	Cu ppm	Hg ppm	Mo ppm	Pb ppm		Zn ppm	A1203 % XRF	CaO %	Cr203 %	Fe2O3 %	K20 % XRF
	530429 530431	226 226	0.6 < 0.2	〈 2 2	< 2 < 2	53 63	< 1 < 1	< 1 < 1	24 8	< 2 < 2	104 32	12.85	1.59 0.27	0.01 0.01	2.63 1.62	0.36 0.46

1																
530520 530521 530522	205 205	226 226 226	⟨ 0.2 ⟨ 0.2 ⟨ 0.2	:	< 2	14 87 15	1 < 1 < 1	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10 8 4	< 2 < 2 < 2	90 84 48	16.17 12.11 15.59	1.99 1.04 4.38	< 0.01 < 0.01 < 0.01	5.22 7.56 5.87	3.10 0.92 1.57
530531 530532	205	226 226	< 0.2 < 0.2	: < 2	₹ 2	14 55	< 1 < 1	(1 (1	2 2	(2 (2	34 38	4.55 13.22	0.36 6.30	0.01 0.01	2.81 6.86	1.16 1.58
530533 530536 530538	205 205	226 226 226	< 0.2 < 0.2 < 0.2		< 2 < 2	7 31 21	(1 (1 (1	(1 (1 1	2 < 2 2	<pre></pre>	38 48 18 26	13.69 12.94 2.03 3.98	6.75 4.58 0.15 0.32	0.01 (0.01 0.01 0.01	7.46 6.61 1.11 2.25	0.71 0.45 0.49 0.90
530539	205	226	(0.2	< 2	< 2	11	(1	〈1	< 2	(2	26	3.96	0.32	0.01	2.23	0.90
														:		
						!			li .					į		
									I							
									:							
	<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>				<u> </u>	<u> </u>	. ,	. " " (

APPENDIX E ANALYTICAL RESULTS, SOIL SAMPLES

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave.. North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

A9631729

Comments: ATTN: M. JONES

CERTIFICATE

A9631729

(GP) - WESTMIN RESOURCES LTD.

Project: P.O. #: 6112

Samples submitted to our lab in Vancouver, BC. This report was printed on 19-SEP-96.

	SAMPLE PREPARATION										
CHEMEX	NUMBER SAMPLES	DESCRIPTION									
201 202 285	200 200 200	Dry, sieve to -80 mesh save reject ICP - HF digestion charge									

ANALYTICAL PROCEDURES

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
	200	24 -1	λλε	0.2	100.0
578	200	Ag ppm: 24 element, rock & core	ICP-AES	0.01	25.0
573	200	Al %: 24 element, rock & core	ICP-AES	10	10000
565	200	Ba ppm: 24 element, rock & core	ICP-AES	0.5	1000
575	200	Be ppm: 24 element, rock & core Bi ppm: 24 element, rock & core	ICP-AES	2	10000
561	200		ICP-ARS	0.01	25.0
576	200	Ca %: 24 element, rock & core	ICP-AES	0.5	500
562	200	Cd ppm: 24 element, rock & core	ICP-AES	0.3	10000
563	200	Co ppm: 24 element, rock & core Cr ppm: 24 element, rock & core	ICP-AES	1	10000
569	200	Cu ppm: 24 element, rock & core	ICP-AES	1	10000
577	200	Fe %: 24 element, rock & core	ICP-AES	0.01	25.0
566	200		ICP-AES	0.01	10.00
584	200	K %: 24 element, rock & core Mg %: 24 element, rock & core	ICP-AES	0.01	15.00
570	200	Mn ppm: 24 element, rock & core	ICP-AES	5	10000
568	200	Mo ppm: 24 element, rock & core	ICP-AES	1	10000
554	200	Na %: 24 element, rock & core	ICP-AES	0.01	10.00
583	200	Ni ppm: 24 element, rock & core	ICP-AES	0.01	10000
564	200	P ppm: 24 element, rock & core	ICP-AES	10	10000
559	1	Ph ppm: 24 element, rock & core	AAS	2	10000
560	200		ICP-ARS	1	10000
582	200	Sr ppm: 24 element, rock & core Ti %: 24 element, rock & core	ICP-AES	0.01	10.00
579	200		ICP-AES	1	10000
572	200	V ppm: 24 element, rock & core	ICP-AES	10	10000
556	200	W ppm: 24 element, rock & core		2	10000
558	200	Zn ppm: 24 element, rock & core	ICP- AES	4	10000

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number : 4-A
Total Pages :5
Certificate Date: 19-SEP-96
Invoice No. : 19631729
P.O. Number :
Account : GP

								CERTI	FICATE	OF AN	IALYSIS	S	A96317	29	
SAMPLE	PREP CODE	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)

96JTS 151 96JTS 152 96JTS 153 96JTS 154 96JTS 155	201 201 201 201 201 201	202 202 202	< 0.2 4.4 2.6 2.2 0.6	7.99 7.96 8.43 8.68 8.09	1030 870 1010 1010 990	2.5 3.0 3.0 3.0 2.5	10 10 6	1.15 0.80 0.77 0.54 1.28	< 0.5 9.5 9.5 6.5 1.5	12 35 50 63 15	61 98 107 114 72	32 149 171 168 40	3.54 7.81 8.02 8.31 4.15	1.74 1.78 1.99 2.09 1.92	1.09 1.29 1.71 1.33 1.16	2120 2730 3030 825
96JTS 156 96JTS 157 96JTS 158 96JTS 159 96JTS 160	201 201 201 201 201 201	202 202 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.6	7.33 7.31 7.01 8.01 8.28	800 830 660 870 580	2.5 2.0 2.5 2.0 2.5	10 6 6 8 6	0.99 1.02 0.76 1.12 0.90	1.5 1.0 < 0.5 < 0.5 0.5	11 13 11 13 15	64 56 62 69 86	26 32 19 21 29	4.03 3.83 4.23 4.29 5.32	1.85 1.80 1.90 2.08 1.86	0.80 0.80 0.69 1.01 0.95	850 890 995 795 945

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :4-B
Total Pages :5
Certificate Date: 19-SEP-96
Invoice No. : 19631729
P.O. Number :

:GP Account

							CERTI	FICATE	OF AN	ALYSIS	 \963172	29	
SAMPLE	PREP	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	Pb ppm	Sr ppm	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			

96JTS 151 96JTS 152 96JTS 153 96JTS 154 96JTS 155	201 201 201 201 201	202 202 202	6 45 34 44 4	1.67 1.16 1.12 1.11 1.92	28 109 173 189 46	1570 2180 1730 2410 1720	1300 904 356 58	269 190 212 146 277	0.39 0.43 0.46 0.46 0.46	117 200 183 203 113	10 10 20 10 10	108 934 1080 656 172		
96JTS 156 96JTS 157 96JTS 159 96JTS 159 96JTS 160	201 201 201 201 201 201	202 202 202	5 4 5 3 7	1.84 1.88 1.86 2.17 1.88	24 25 18 26 29	1950 1840 1900 1940 2310	76 44 34 34 36	221 249 161 250 147	0.45 0.41 0.43 0.49 0.56	102 95 89 102 109	< 10 10 10 10 10	136 106 122 118 142		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :5-A Total Pages :5 Certificate Date: 19-SEP-96 Invoice No. : 19631729 P.O. Number

:GP Account

CERTIFICATE OF ANALYSIS	A9631729
-------------------------	----------

								<u> </u>	IOAIL	<u> </u>	/\Z O \			- -	
SAMPLE	PREP CODE	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
96JTS 161	201 202	1.0	9.17	530	2.5	8	1.01	0.5	13	101	31	5.72	2.30	1.02	685
96JTS 162	201 202	< 0.2	8.17	1100	2.0	< 2	0.50	0.5	10	86	37	3.86	2.17	1.34	560
96JTS 163	201 202	< 0.2	8.58	950	3.0	2	0.71	1.5	15	85	37	5.17	2.24	1.17	940
96JTS 164	201 202	0.6	9.93	1170	3.5	8	1.03	2.5	22	135	92	5.71	2.52	1.53	1220
96JTS 165	201 202	1.4	7.11	550	2.0	6	0.66	< 0.5	17	85	22	5.06	1.91	0.77	1635
96JTS 166	201 202	0.6	8.29	960	2.0	2	0.86	0.5	15	94	59	4.89	2.11	1.53	1310
96JTS 167	201 202	0.4	7.72	1120	1.0	2	0.82	0.5	22	70	78	5.55	1.66	2.57	1605
96JTS 168	201 202	< 0.2	7.73	1010	2.5	< 2	1.54	< 0.5	13	64	28	3.63	1.89	1.34	700 715
96JTS 169	201 202	0.6	8.76	1040	2.5	2	1.45	< 0.5	17	100 85	82 37	4.34	2.04	1.68	1265
96JTS 170	201 202	0.4	8.62	810	3.0	2	1.12	0.5	18	85	L	<u> </u>			
96JTS 171	201 202	< 0.2	8.22	890	2.5	6	1.26	0.5	20	88	50	4.68	1.75	1.63	1670 710
96JTS 172	201 202	< 0.2	8.05	1110	2.5	< 2	1.95	0.5	13	62	17 47	3.34 5.16	2.07 1.97	1.33	1325
96JTS 173	201 202	< 0.2	7.98	750	2.5	< 2	1.26	0.5	16	87 64	35	4.02	1.31	1.79	995
96JTS 174	201 202 201 202	< 0.4	6.12	800 620	1.0	< 2	1.14	2.0 0.5	17 23	80	89	5.53	1.48	1.74	1910
96JTS 175	201 202	10.2	0.00	020											
96JTS 176	201 202	< 0.2	7.39	710	2.0	< 2	0.80	1.5	31	74	98	5.65	1.72	1.64	3000
96JTS 177	201 202	< 0.2	7.62	680	0.5	< 2	0.57	1.0	34	77	114	5.85	1.45	3.04	2440 2050
96JTS 178	201 202	< 0.2	7.53	670	2.0	2	1.01	0.5	27	80	163	5.61 5.71	1.63 1.71	1.99	3770
96JTS 179	201 202	0.6	7.84	920	1.5	< 2	0.82	1.0	32 34	81 78	166 99	6.14	1.94	2.74	2880
96JTS 180	201 202	< 0.2	7.74	1190	1.0	< 2	0.54	1.0	34						ļ
96JTS 181	201 202	< 0.2	6.99	610	1.5	2	0.47	0.5	40	73	61	6.14	1.37	1.77	3860
96JTS 182	201 202	0.4	7.43	710	1.0	2	0.59	0.5	34	72	100	5.56	1.40	2.33	3860 2590
96JTS 183	201 202	0.6	7.08	730	1.5	6	0.65	0.5	30	70	110 128	4.90 5.69	1.54 1.84	1.87	1695
96JTS 184	201 202	0.2	8.32	670	2.0	< 2 < 2	0.85	< 0.5 0.5	25 27	92 67	111	6.08	1.57	2.24	2280
96JTS 185	201 202	0.4	8.19	530	2.0	< <u>4</u>	0.77	0.5	41		111	0.00	ļ		
96JTS 186	201 202	< 0.2	7.21	700	1.5	< 2	0.68	1.5	24	76	79	5.65 3.74	1.57 1.33	1.77	1850 1260
96JTS 187	201 202	0.4	5.78	540	1.0	4	0.72	2.0	18	55	43 36	4.82	1.62	1.38	1150
96JTS 188	201 202	< 0.2	7.13	760	1.5	4 2	1.01	< 0.5 0.5	19 27	75 84	B6	4.84	1.96	1.84	1455
96JTS 189	201 202 201 202	< 0.2	8.18 7.46	1040 940	2.0 1.5	2	0.93	0.5	22	78	55	4.62	1.76	1.58	1575
96JTS 190	201 202	1 0.2	7.40	340	1.5										
96JTS 191	201 202	0.2	9.05	960	2.0	< 2	0.98	1.5	20 19	106 70	92 43	5.34 3.94	2.13 1.93	1.69 1.56	1015 980
96JTS 192	201 202	0.2	7.94	1180	2.0	6	1.75 1.26	0.5	14	64	18	4.14	1.92	0.97	980
96JTS 193	201 202 201 202	< 0.2	7.70 8.05	820 920	2.5 2.5	4	1.77	< 0.5	17	99	38	4.78	1.91	1.51	1030
96JTS 194 96JTS 195	201 202	₹ 0.2	8.78	1010	2.0	2	1.64	1.0	24	76	101	4.92	1.91	2.10	1455
								ļ				ļ		4 00	1505
96JTS 196	201 202	< 0.2	8.50	880	2.0	< 2	1.13	0.5	28 29	82 77	135 118	5.24 5.74	1.94 1.58	1.93	1515 1565
96JTS 197	201 202	< 0.2	8.33	820	1.5	2 2	1.56	0.5	29	86	178	5.60	2.03	2.61	1540
96JTS 198	201 202	0.4	8.94	1050 1090	1.5 1.5	2	1.51	1.5	27	80	126	5.31	1.97	2.38	1505
96JTS 199 96JTS 200	201 202 201 202	< 0.2	8.45 7.68	940	2.0	1 1	1.29	1.5	26	63	107	4.47	1.87	1.75	1260
30018 AVV	441 444	1 ` "."	1		1	1	••••		1		1				
			<u> </u>	L	<u> </u>	L	L		L	<u> </u>	L	<u> </u>	L	<u> </u>	<u></u>
												3 1			

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :5-B
Total Pages :5
Certificate Date: 19-SEP-96
Invoice No. : 19631729
P.O. Number :

÷G₽ Account

(
								CERTI	FICATE	OF AN	ALYSIS	 A963172	29	
SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
96JTS 161	201 202	7 7	2.28 1.05	34 49	2460 1220	28 46	140 130	0.60	104 137	10 10	146 214			
96JTS 162 96JTS 163	201 202	6	1.61	47	2160	42	162	0.47	123	10	278			
96JTS 164	201 202	l š	1.62	79	1840	52	219	0.51	165	10	290			
96JTS 165	201 202	4	1.77	24	2110	22	117	0.57	100	10	126			
96JTS 166 96JTS 167	201 202 201 202	5 3	1.66 1.49	41 35	2280 1350	144 204	170 129	0.53 0.54	138 199	10 20	288 328			
96JTS 168	201 202] 3	2.05	34	1570	28	307	0.44	101	10	134		ļ	
96JTS 169	201 202	3	1.63	45	2170	34	255	0.47	148	10	204			
96JTS 170	201 202	3	2.02	39	2210	80	228	0.51	112	10	322			
96JTS 171	201 202	1	1.65	42	2060	54	262	0.48	131	10	182			
96JTS 172	201 202	< 1	2.62	22	2330	20	468	0.41	89	< 10	88		i	
96JTS 173	201 202	< 1	2.00	35	2500	100	227 270	0.56	123 148	10 10	204			
96JTS 174 96JTS 175	201 202 201 202	1 1	1.54	25 38	1990 2860	20	153	0.45	138	10	138			
960TB 1/5	201 202	<u> </u>	1.21	30	2000		100					 		
96JTS 176	201 202	5	1.52	43	2490	20	148	0.44	142	10	160			
96JTS 177	201 202	< 1	1.56	40	1560	10	118	0.39	210	10	118 110			
96JTS 178	201 202 201 202	2 5	1.60	42 55	2430 1550	12 20	177 123	0.51	158 165	10 10	152			
96JTS 179 96JTS 180	201 202 201 202	1	1.16	46	1530	16	61	0.36	195	10	148			
96JTS 181	201 202	3	1.63	31	2460	24	84	0.39	148	10	162	 		
96JTS 182	201 202	3	1.79	26	3140	40	128	0.47	190	10	140	i		i
96JTS 183	201 202	2	1.51	31	2310	54	134	0.43	146	10	122	İ		
96JTS 184	201 202	4	1.86	40	2640	50	137 123	0.52	147 180	10 10	172 164	ļ		
96JTS 185	201 202	3	2.06	24	2250	108	123	0.45	160		1			
96JTS 186	201 202	3	1.59	40	2300	70	139	0.50	152	10	232			
96JTS 187	201 202	1	1.24	23	2080	34	130	0.42	107 137	< 10 10	108 96			
96JTS 188 96JTS 189	201 202 201 202	1 3	1.73 1.60	27 66	2100 1400	24 44	215 199	0.53	144	10	184			
96JTS 190	201 202	_ ž	1.35	37	1750	24	160	0.47	143	10	132			
96JTS 191	201 202	3	1.44	55	2190	40	163	0.50	159	10	296	 		
96JTS 192	201 202	3	2.04	40	1300	30	288	0.48	123	10	140			
96JTS 193	201 202	1 1	2.09	23	1970 1490	8 28	258 283	0.43	88 133	10 10	132 144			
96JTS 194 96JTS 195	201 202 201 202	3 1	1.99	47	1390	76	229	0.47	141	10	224			
	 									40	150	 		
96JTS 196	201 202 201 202	1 < 1	1.81	45	1610 1260	16 24	202 197	0.52	146 201	10	152 140			
96JTS 197 96JTS 198	201 202 201 202	< 1	1.80	49	1150	38	205	0.54	180	10	176			1
96JTS 199	201 202	`i	1.69	51	1300	48	218	0.52	167	10	192]		
96JTS 200	201 202	Ī	1.87	40	1750	42	294	0.43	127	10	156			
		1								1		1		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

A9631730

Comments: ATTN: M. JONES

CERTIFICATE

A9631730

(GP) - WESTMIN RESOURCES LTD.

Project: P.O. # :

6112

Samples submitted to our lab in Vancouver, BC. This report was printed on 20-SEP-96.

	SAMPLE PREPARATION									
CHEMEX		DESCRIPTION								
201 202 285	200 200 200	Dry, sieve to -80 mesh save reject ICP - HF digestion charge								

ANALYTICAL PROCEDURES

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
578	200	Ag ppm: 24 element, rock & core	AAS	0.2	100.0
573	200	Al %: 24 element, rock & core	ICP-AES	0.01	25.0
565	200	Ba ppm: 24 element, rock & core	ICP-AES	10	10000
575	200	Be ppm: 24 element, rock & core	ICP-AES	0.5	1000
561	200	Bi ppm: 24 element, rock & core	ICP-AES	2	10000
576	200	Ca %: 24 element, rock & core	ICP-AES	0.01	25.0
562	200	Cd ppm: 24 element, rock & core	ICP-AES	0.5	500
563	200	Co ppm: 24 element, rock & core	ICP-AES	1	10000
569	200	Cr ppm: 24 element, rock & core	ICP-AES	1	10000
577	200	Cu ppm: 24 element, rock & core	ICP-AES	1	10000
566	200	Fe %: 24 element, rock & core	ICP-AES	0.01	25.0
584	200	K %: 24 element, rock & core	ICP-AES	0.01	10.00
570	200	Mg %: 24 element, rock & core	ICP-AES	0.01	15.00
568	200	Mn ppm: 24 element, rock & core	ICP-AES	5	10000
554	200	Mo ppm: 24 element, rock & core	ICP-AES	1	10000
583	200	Na %: 24 element, rock & core	ICP-AES	0.01	10.00
564	200	Ni ppm: 24 element, rock & core	ICP-AES	1	10000
559	200	P ppm: 24 element, rock & core	ICP-AES	10	10000
560	200	Pb ppm: 24 element, rock & core	AAS	2	10000
582	200	Sr ppm: 24 element, rock & core	ICP-AES	1	10000
579	200	Ti %: 24 element, rock & core	ICP-AES	0.01	10.00
572	200	V ppm: 24 element, rock & core	ICP-AES	1	10000
556	200	W ppm: 24 element, rock & core	ICP-AES	10	10000
558	200	En ppm: 24 element, rock & core	ICP-AES	2	10000

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :1-A Total Pages :5 Certificate Date: 20-SEP-96 Invoice No. : 19631730 P.O. Number :

:GP Account

CERTIFICATE OF ANALYSIS	A9631730
-------------------------	----------

SAMPLE	PREP CODE	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
96JTS 201 96JTS 202 96JTS 203 96JTS 204	201 202 201 202 201 202 201 202	< 0.2 0.6 0.6 < 0.2	8.16 8.07 8.21 9.00	570 710 930 1280	1.0 1.0 2.5 2.5	< 2 < 2 < 2 < 2	0.89 1.12 0.82 0.63	1.0 2.5 1.0 2.5	30 29 22 30	53 54 93 105	189 194 79 98	6.04 5.90 4.83 4.97	1.62 1.53 1.97 2.32	3.72 3.26 1.41 1.84	1745 2100 1170 1445
96JTS 205 96JTS 206 96JTS 207	201 202 201 202 201 202	0.4 0.6 < 0.2	8.13 6.71 5.56	800 780	2.5 2.0 1.5	< 2 < 2 < 2	0.55 0.45	1.5 2.0 5.5	24 18 11	72 74 81	32 26	4.09 4.32 4.56	2.07 	0.85 0.55	1170 1965 1515
96JTS 207 96JTS 208 96JTS 209 96JTS 210	201 202 201 202 201 202 201 202	12.8 1.0 2.4	8.34 8.10 8.09	1680 1220 1070	2.5 2.0 3.0		0.62 0.20 0.84	9,0 2.5 5.0	31 41 38	113 132 109	170 80 111	5.44 7.12 5.60	2.16 2.33 2.16	1.65 1.02 1.22	2140 3760 1720
96JTS 211 96JTS 212 96JTS 213 96JTS 214	201 202 201 202 201 202 201 202	2.4 1.0 1.8 0.6	7.79 8.63 7.28 7.92	840 1300 980 980	3.0 3.5 2.5 2.0	〈 2 〈 2 〈 2 〈 2	0.76 0.20 0.31 0.44	1.5 3.0 3.0 2.0	23 31 29 19	96 108 97 99	63 110 75 59	4.94 5.72 5.16 4.22	1.93 2.43 1.88 1.99	1.23 1.39 1.12 1.36 1.24	1365 1250 1840 1130 515
96JTS 215 96JTS 216 96JTS 217 96JTS 218	201 202 201 202 201 202 201 202	0.4 0.4 (0.2	7.43 7.77 7.43	930 950 880	2.0 2.0 2.0 2.0	< 2 < 2 < 2 < 2	0.23 0.56 0.43 0.35	2.5 0.5 0.5 0.5	19 19 22 16	86 94 92	51 57 46	3.98 4.18 4.29	2.88 1.80 2.01 1.79	1.45 1.43 1.38	1085 1400 935
96JTS 219 96JTS 220 96JTS 221	201 202 201 202 201 202	0.2 0.2	7.78 6.59 6.82	920 740 750	2.0 1.5	< 2 < 2 < 2	0.51 0.48 0.36	0.5 0.5 0.5	19 11 15	95 90 74	53 30 43	4.10 3.93	1.80 1.66	1.53 1.19	1225 950 1185
96JTS 222 96JTS 223 96JTS 224 96JTS 225	201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 1.0	7.37 5.48 6.65 7.40	910 330 460 870	2.0 1.5 2.0 2.0		0.74 0.61 0.67 0.41	1.0 1.5 1.5 0.5	15 9 16 19	86 76 85 81	45 20 26 50	4.25 3.70 4.42 3.65	1.88 1.12 1.33 1.59	1.37 0.79 1.29 1.41	1085 965 1405 1100
96JTS 226 96JTS 227 96JTS 228 96JTS 229 96JTS 230	201 202 201 202 201 202 201 202 201 202	0.4 < 0.2 < 0.2 < 0.2 < 0.2	6.16 6.94 6.53 6.33 6.33	600 780 690 730 780	2.0 2.0 1.0 1.0	<pre></pre>	0.87 0.59 0.42 0.54 0.45	0.5 0.5 < 0.5 0.5 0.5	11 15 8 13 10	84 85 83 80 86	25 35 33 31 36	4.13 3.83 4.04 3.52 4.20	1.18 1.44 1.27 1.24 1.36	1,33 1,41 1,36 1,25 1,55	840 1130 710 1165 790
96JTS 231 96JTS 232 96JTS 233 96JTS 234 96JTS 235	201 202 201 202 201 202 201 202 201 202 201 202	(0.2 0.8 0.2 (0.2 0.4	6.51 6.66 7.81 7.69 7.82	620 650 770 700 730	1.0 1.5 1.5 1.5	(2 (2 (2 (2 (2	0.56 0.56 0.62 0.68 0.67	< 0.5 0.5 < 0.5 < 0.5 0.5	9 10 14 10 11	80 89 93 89 94	32 35 44 41 48	3.67 3.87 4.41 4.11 4.20	1.08 1.25 1.55 1.32 1.49	1.47 1.36 1.55 1.79 1.62	820 1020 1220 830 945
96JTS 236 96JTS 237 96JTS 238 96JTS 239 96JTS 240	201 202 201 202 201 202 201 202 201 202	0.6 0.4 0.4 0.6 < 0.2	7.20 7.63 7.67 7.54 6.53	540 710 850 750 770	2.0 2.0 2.0 2.0 1.5	2 2 (2 (2 (2	0.71 0.62 0.68 0.79 0.71	0.5 < 0.5 0.5 0.5 < 0.5	10 14 12 13 10	76 79 83 89 76	36 42 42 34 28	3.90 4.17 4.16 4.02 3.37	1.40 1.70 1.93 1.82 1.46	1.06 1.42 1.34 1.21 1.39	580 1025 800 955 710

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number : 1-B
Total Pages :5
Certificate Date: 20-SEP-96
Invoice No. : 19631730
P.O. Number :
Account : GP

-	CERTIFICATE	OF ANALYSIS	A9631730	<u>-</u>
=		, 		

SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)				
96JTS 201	201 202	< 1	1.51	28	1050	72	196	0.51	215	< 10	162				
96JTS 202 96JTS 203	201 202 201 202	2 8	1.54 1.53	33 59	1100 2050	350 160	222 171	0.59	218 142	10 < 10	522 320		1		
96JTS 204	201 202	5	1.27	91	1090	60	155	0.46	177	10	272	,		[
96JTS 205	201 202	5	1.93	55	1670	72	313	0.44	126	< 10	202			<u> </u>	
96JTS 206	201 202	9	1.30	30	2520	76	127	0.40	123	< 10	162				
96JTS 207 96JTS 208	201 202 201 202	7 10	1.24	23 81	3090 1310	74 4000	108 133	0.47	158 188	< 10 < 10	210 1375		1	1	ł
96JTS 209	201 202	34	0.97	71	1850	190	90	0.48	238	< 10	282				l .
96JTS 210	201 202	13	0.97	137	1540	60	136	0.40	187	< 10	488				
96JTS 211	201 202	8	1.44	62	1820	22	162	0.50	138	< 10	182				
96JTS 212	201 202 201 202	21 27	0.93	112 90	770 1930	34 20	98 116	0.42 0.40	225 194	< 10 < 10	380				
96JTS 213 96JTS 214	201 202	10	1.04	69	1160	18	122	0.41	162	< 10	220				
96JTS 215	201 202	43	1.04	116	1380	48	174	0.48	399	₹ 10	454				
96JTS 216	201 202	7	1.03	58	1310	10	146	0.39	140	< 10	138				
96JTS 217	201 202	8	1.06	63	1190	14	114	0.40	143	< 10	162			Į	
96JTS 218 96JTS 219	201 202 201 202	5 5	0.99 1.00	52 61	1150 1180	12 10	104 128	0.41 0.41	138 133	< 10 < 10	136 142			İ	ļ
96JTS 220	201 202	4	1.12	35	1960	10	103	0.48	123	₹ 10	110				
96JTS 221	201 202	5	0.72	49	1610	16	96	0.34	111	< 10	114		-		
96JTS 222	201 202	6	1.24	53	1270	12	183	0.44	133	< 10	140	İ		i	į
96JTS 223	201 202	4	1.18	18	3570	10	89	0.51	90	< 10	72				1
96JTS 224 96JTS 225	201 202 201 202	4 6	1.19 0.76	34 58	1750 1250	10 8	108 105	0.45 0.37	103 120	< 10 < 10	114 130				
96JTS 226	201 202	3	1.07	35	1550	8	154	0.43	113	< 10	96		 -		
96JTS 227	201 202	4	0.93	47	1370	6	125	0.42	118	< 10	124				
96JTS 228	201 202	5	0.76	41	1170	6	97	0.39	107	< 10	100				
96JTS 229 96JTS 230	201 202 201 202	3 5	0.79 0.73	39 45	1060 1040	10 4	119 102	0.38 0.42	104 124	< 10 < 10	96 124) 	}
96JTS 231	201 202	4	0.83	39	1000	12	110	0.42	107	< 10	118				-
96JTS 232	201 202	6	0.93	33	1600	8	107	0.47	110	< 10	125				
96JTS 233	201 202	6	1.07	49	1040	10	129	0.50	117	< 10	118		J		j
96JTS 234 96JTS 235	201 202 201 202	5 6	1.03 1.13	43 55	920 1120	8 8	142 141	0.46	105 104	< 10 < 10	106 156				1
96JTS 236	201 202	5	1.43	43	1800	6	138	0.39	83	< 1.0	130		 -		
96JTS 237	201 202	6	1.36	45	1470	8	144	0.41	102	10	122				
96JTS 238	201 202	4	1.41	48	1480	12	176	0.40	110	< 10	128		ł	}	1
96JTS 239	201 202	4	1,33	48	1880	8	142	0.43	106	< 10	148		1		
96JTS 240	201 202	2	1.17	41	1300	4	178	0.39	101	< 10	104			1	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604 984-0218 North Vancouver

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :2-A
Total Pages :5
Certificate Date: 20-SEP-96
Invoice No. : I9631730
P.O. Number :

: :GP

Account

	CERTIF	FICATE	OF AN	ALYSIS	F	19631730
Ţ			T			

			1	1		1	[1						1	1
SAMPLE	PREP CODE	Ag ppm AAS	Al %	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
	201 202	(0,2	8.41	780	2.0	< 2	1.58	1.0	38	136	237	6.33	1.78	2.39	1615
96JTS 241		⟨ 0.2	7.99	860	1.5	\ \{\frac{7}{2}	1.69	⟨ 0.5	33	133	163	6.09	1,46	2.55	1460
96JTS 242	201 202		8.67	690	3.0	₹ 2	1.31	0.5	39	128	228	6.91	1.70	2.13	1620
96JTS 243	201 202	< 0.2		840	1.5	(2	2.32	0.5	33	129	116	5.70	1.34	2.42	1430
96JTS 244	201 202	< 0.2	7.64	1			1.57	0.5	37	127	199	6.17	1.85	2.07	1620
96JTS 245	201 202	0.4	8.36	740	2.5	\ 2	1,37			12,					
96JTS 246	201 202	0.6	7.64	670	1,5	₹ 2	2.16	0.5	44	139	348	7.01	1.34	2.36 2.52	1410 2220
96JTS 247	201 202	0.4	8.76	690	2.5	 	1.83	0.5	56	153	420	7.93	1.58	2.32	1820
96JTS 248	201 202	0.4	8.28	720	2.0	< 2	2.11	< 0.5	47	143	342	6.83	1.58		1680
96JTS 249	201 202	< 0.2	7.22	640	1.0	⟨2	2.93	0.5	34	155	108	6.40	1.14	2.40	
96JTS 250	201 202	0.4	8.68	750	2.5	< 2	1.69	1.5	55	146	360	7.12	1.71	2.49	1905
067777	201 202	< 0,2	7.93	690	2.0	← 2	1.91	0.5	26	124	95	5.61	1.68	1.90	1260
96JTS 251		0.6	8.05	750	2.0	< 2	2.25	1.5	55	160	360	6.86	1.55	2.60	1875
96JTS 252	201 202			680	2.0	₹ 2	2.03	< 0.5	25	112	61	5.30	1.67	1.75	1195
96JTS 253	201 202	< 0.2	7.51	880	2.0		1.96	1.5	34	133	180	5,53	1.80	2.13	1395
96JTS 254 96JTS 255	201 202	< 0.2 0.6	8,24 8,00	600	2.5	₹ 2	2.16	1.5	43	152	348	6.51	1.58	2.33	1875
									64	187	434	6.90	1.11	2.64	2480
96JTS 256	201 202	0.6	7.49	500	2.0	< 2	3.57	2.0		129	94	5.80	1.46	1.91	1275
96JTS 257	201 202	< 0.2	6.99	610	1.5	< 2	1.67	0.5	26		271	6.89	1.09	2,69	2130
96JTS 258	201 202	0.4	7.00	500	1.5	⟨ 2	2.41	1.5	49	177	1	5.98	1.25	2.17	1400
96JTS 259	201 202	0.4	7.04	680	1.0	< 2	2.05	0.5	26	130	96 115	6.22	1.64	1.56	1635
96JTS 260	201 202	< 0.2	7.62	470	2,5	< 2	1.61	0.5	26	121	113	0.22	1.04	1.30	1033
96JTS 261	201 202	⟨ 0.2	7,16	260	2.5	⟨ 2	0.91	0.5	11	59	34	5.54	1.69	0.60	1375
96JTS 262	201 202	₹ 0.2	8.26	590	2.0	(2	1.46	0.5	43	174	415	7.20	1.37	2.45	1720
96JTS 263	201 202	₹ 0.2	7.47	460	0.5	< 2	3,56	0.5	39	204	137	6.93	0.99	2.97	2200
96JTS 264	201 202	₹ 0.2	6.72	520	2.0	⟨ 2	1.34	0.5	35	169	203	6.92	1.25	1.75	1765
96JTS 265	201 202	⟨ 0.2	7.42	610	0.5	< 2	2.70	1.5	38	179	194	6.80	1.15	2.58	2090
	- 			450	2.0	⟨ 2	2.80	0.5	29	155	169	6.69	1.76	1.85	1690
96JTS 266	201 202	0.4	8.16	450		⟨ 2	1.04	0.5	26	111	76	6.11	1.73	1.05	1250
96JTS 267	201 202	< 0.2	7.97	350	2.0	< 2	2.43	0.5	64	216	356	9.91	1.01	2.51	4190
96JTS 268	201 202	0.2	6.86	930	1.0	⟨ 2	1.79	5.0	27	171	119	7.38	1,39	1.68	1110
96JTS 269	201 202	⟨ 0.2	6.11	600	0.5	⟨ 2	1,88	1.0	32	191	119	7.75	1.24	1.58	1020
96JTS 270	201 202	< 0.2	7.27	620	0.5		1.00	1.0							
96JTS 271	201 202	< 0.2	6.29	1190	0.5	₹ 2	1.31	0.5	48	152	387	7.66	1.39	1.52	1765 1695
96JTS 272	201 202	< 0.2	7.07	790	1.0	< 2	2.40	1.5	45	300	132	7.68	1.27	3.10	
96JTS 273	201 202	< 0.2	5,65	640	< 0.5	< 2	1.33	1.5	21	146	82	6.66	1.13	1.86	3150
96JTS 274	201 202	< 0,2	6.69	590	0.5	⟨ 2	2.22	0.5	35	202	289	7.18	1.00	2.59	1460
96JTS 275	201 202	< 0.2	7.17	510	0.5	< 2	3,28	1.0	36	189	171	6,36	1.08	2.61	1500
267772 2776	201 202	(0 2	6.94	460	< 0.5	〈 2	4.25	0.5	33	194	108	6.02	0.82	2.96	1500
96JTS 276	201 202	⟨ 0.2	7.09	500	0.5		3.31	0.5	30	164	111	5.84	1.08	2.47	1405
96JTS 277	201 202	< 0.2 < 0.2	7.48	550	1.0	₹ 2	2,61	< 0.5	27	131	74	5.86	1.34	1.90	1160
96JTS 278	201 202		7.32	580	1.5	₹ 2	2.48	1.0	22	128	141	5.38	1.20	1.92	1065
96JTS 279	201 202	0.4		560	1.0	₹ 2	2.31	1.0	30	128	216	6.06	1.18	1.84	1115
96JTS 280	201 202	< 0.2	7.07	300	1.0	`~	1 2.31	1.0							
			<u> </u>	1		l		<u> </u>			<u> </u>	 	1 .1	1	
												•			*

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC

V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :2-B
Total Pages :5
Certificate Date: 20-SEP-96
Invoice No. : 19631730
P.O. Number :

GP

Account

							CERTIFICATE OF				ALYSIS		4963173	30	
SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)				
96JTS 241	201 202	1	1.72	79	1500	20	156	0.58	183	10	150		<u> </u>		
96JTS 242	201 202	3	1.43	63	1160	16	134	0.56	201 171	10	124 168				!
96JTS 243	201 202	1	1.67	69	1640	20 8	117 173	0.53	202	10	110]	İ	
96JTS 244	201 202 201 202		1.56 1.89	57 69	1080 1690	18	163	0.58	165	< 10	136				
96JTS 245	201 202		1.05		1070									 	
96JTS 246	201 202	4	1.52	81	1510	26	171	0.60	203 209	10 10	168 186				
96JTS 247	201 202	3	1.67	92	1480	36	143 179	0.63 0.62	209	10	176				
96JTS 248	201 202		1.81	77	1410 980	24	148	0.77	230	10	110				
96JTS 249	201 202		1.53	59 113	1050	52	146	0.59	188	< 10	214				
96JTS 250	201 202	3	1.76	113	10.50	32				ļ	ļ <u> </u>				
96JTS 251	201 202		1.97	54	1300	14	171	0.64	157	< 10	114				
96JTS 252	201 202		1.65	122	1350	108	166	0.61	195 147	10 < 10	276 100]	1	
96JTS 253	201 202		1.99	49	950	12 54	195 234	0.65	164	₹ 10	200]	j	
96JTS 254	201 202		1.93	108	1240 1110	234	144	0.59	176	10	510				Į
96JTS 255	201 202	1	1./4	100	1110	234							<u> </u>		 -
96JTS 256	201 202		1.61	133	1520	356	199	0.68	198	10	476				
96JTS 257	201 202		1.65	52	1250	66	140	0.60	168 188	< 10 10	182 352				
96JTS 258	201 202		1.35	112	1420 1250	200 70	133 135	0.54	196	< 10	156		}		
96JTS 259	201 202 201 202		1.34	48 49	1820	54	118	0.60	155	₹ 10	168				
96JTS 260			1,62		1023	ļ <u>-</u>	<u> </u>		ļ		 		 		
96JTS 261	201 202		2.07	16	2250	16	70	0.38	68	< 10 10	106 336				
96JTS 262	201 202		1.44	96	1240	74	115 156	0.53	191 224	30	244		1	1	
96JTS 263	201 202		1.63	83 90	870 3070	86 82	101	0.61	144	10	204		1	1	
96JTS 264	201 202 201 202		1,24	81	1120	236	160	0.69	200	20	392		1		
96JTS 265			1.73							 			 	 	
96JTS 266	201 202	3	2.14	102	1660	46	179	0.75	124	10	216 166				
96JTS 267	201 202		1.97	47	1690	22	97	0.62	96 190	10 30	352				
96JTS 268	201 202		1.06	153 74	1700 1380	120 70	147 150	0.77	142	10	154		Į.	l	
96JTS 269	201 202 201 202		1.59	94	1170	64	165	0.80	160	10	288		1		
96JTS 270	201 202		1,40		11.0		ļ				<u> </u>			 	1
96JTS 271	201 202		0.88	105	2500	52	135	0.53	155	10	260 260				
96JTS 272	201 202		1.50	124	1130	16	153	0.83	211 188	20 10	202			1	
96JTS 273	201 202		1.10	48	1380 1070	12 40	108 142	0.68	196	10	224				
96JTS 274	201 202		1.25	85 84	1210	24	160	0.72	192	20	148				
96JTS 275	201 202	1	1.70		1210	4.1		1						 	+
96JTS 276	201 202		1.62	70	880	20	181	0.78	216	20	126				
96JTS 277	201 202		1.64	66	910	22	178	0.70	189 162	20 10	142 114		i		
96JTS 278	201 202		1.93	48	990	14 130	186	0.68	170	10	240		1		
96JTS 279	201 202		1.46	56 58	1650 1140	72	158	0.57	166	10	174	1			
96JTS 280	201 202	1	1.48	38	1170	,,,									
			1	1	1	1	1	j	I		1	l	1	<u> </u>	<u> </u>

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :3-A
Total Pages :5
Certificate Date: 20-SEP-96
Invoice No. : 19631730
P.O. Number :

GP Account

								CERTII	FICATE	OF AN	ALYSIS	, A	\9631 7 3	30	
SAMPLE	PREP CODE	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K %	Mg % (ICP)	Mn ppm
96JTS 281 96JTS 282 96JTS 283 96JTS 284 96JTS 285	201 202 201 202 201 202 201 202 201 202	<pre></pre>	6.96 7.14 6.96 7.29 7.29	440 340 360 440 540	0.5 < 0.5 < 0.5 1.5 0.5	<pre></pre>	3.38 4.18 4.45 1.79 3.39	(0.5 1.5 1.0 0.5 0.5	46 42 38 29 42	168 204 184 134 173	143 212 144 205 187	5.68 6.64 6.60 6.19 6.06	0.85 0.73 0.76 1.41 1.06	2.61 3.27 3.17 1.75 2.81	1400 1680 1350 1075 1275
96JTS 286 96JTS 287 96JTS 288 96JTS 289 96JTS 290	201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.44 7.58 6.92 7.51 7.51	480 520 410 520 580	0.5 0.5 0.5 1.5 1.0	< 2 < 2 < 2 < 2 < 2	3.94 3.81 3.75 2.38 2.57	1.0 1.0 1.5 < 0.5 1.0	47 52 36 32 35	257 238 202 153 160	223 324 209 176 220	6.54 7.00 6.58 5.93 6.12	0.89 0.86 0.85 1.37 1.31	3.40 3.47 3.02 2.01 2.34	1390 1645 1445 1385 1345
96JTS 291 96JTS 292 96JTS 293 96JTS 294 96JTS 295	201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.4 < 0.2	7.31 7.55 7.81 6.72 7.58	480 650 580 1100 920	1.5 1.0 1.5 0.5 1.5	<pre></pre>	2.08 3.12 2.90 3.31 2.67	0.5 0.5 < 0.5 2.0 1.0	25 37 33 46 27	132 177 152 247 152	101 176 163 242 173	5.78 6.15 6.01 6.92 4.91	1.61 1.23 1.34 0.69 1.45	1.65 2.53 2.34 2.91 2.28	1275 1545 1315 2310 1160
96JTS 296 96JTS 297 96JTS 298 96JTS 299 96JTS 300	201 202 201 202 201 202 201 202 201 202	0.2 0.4 < 0.2 < 0.2 0.4	7.89 7.56 6.44 7.19 6.24	690 1390 470 600 540	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2	2.59 3.98 2.06 2.19 1.14	1.0 1.5 0.5 (0.5 0.5	46 51 17 32 10	184 310 132 139 123	525 203 103 303 40	7.91 7.51 5.55 5.91 6.93	1.30 0.83 1.45 1.30 1.63	3.26 3.28 1.60 1.90 0.79	1265 2120 865 990 710
96JTS 301 96JTS 302 96JTS 303 96JTS 304 96JTS 305	201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	6.25 7.55 7.55 6.93 6.95	500 760 640 630 620	< 0.5 0.5 0.5 0.5 0.5	(2 (2 (2 (2 (2	2.93 2.90 3.03 2.88 2.32	0.5 < 0.5 0.5 0.5 < 0.5	23 50 45 47 42	158 218 214 206 323	68 289 223 300 276	7.37 7.75 6.50 6.36 7.15	0.90 1.22 1.13 0.95 0.93	2.44 2.79 2.79 2.76 3.07	1365 2800 1675 1825 1520
96JTS 306 96JTS 307 96JTS 308 96JTS 309 96JTS 310	201 202 201 202 201 202 201 202 201 202	<pre></pre>	7.60 6.61 6.53 6.97 7.56	700 600 550 470 570	0.5 < 0.5 < 0.5 0.5 1.5		2.75 3.55 3.74 3.58 1.78	0.5 0.5 2.0 0.5 (0.5	56 46 57 43 29	194 202 256 191 127	431 261 248 234 134	6.87 6.48 7.09 6.19 5.88	1.19 0.79 0.77 0.93 1.57	2.72 3.03 3.41 2.92 1.80	1530 1650 2440 1595 1410
96JTS 311 96JTS 312 96JTS 313 96JTS 314 96JTS 315	201 202 201 202 201 202 201 202 201 202	<pre></pre>	6.99 6.02 7.01 6.68 6.07	560 420 470 480 650	1.5 < 0.5 0.5 1.5 0.5	< 2 < 2 < 2 < 2 < 2	1.81 3.15 3.31 1.12 2.01	<pre></pre>	15 41 40 13 17	106 197 186 104 114	25 221 323 27 91	4.90 6.02 5.96 5.25 5.73	1.67 0.72 0.98 1.68 1.11	1.28 2.95 2.76 0.87 1.64	925 1540 1625 1010 1240
96JTS 316 96JTS 317 96JTS 318 96JTS 319 96JTS 320	201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2	7.63 7.39 6.84 8.08 6.26	580 460 640 470 580	1.5 1.5 1.0 2.0 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.83 1.23 1.57 1.51 2.39	< 0.5 1.0 < 0.5 < 0.5 < 0.5	16 20 16 23 25	118 103 106 128 165	51 120 40 76 40	5.48 5.79 4.88 5.66 5.91	1.71 1.62 1.65 1.85 1.04	1.45 1.16 1.21 1.45 2.11	955 1095 1125 1065 2190

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :3-8
Total Pages :5
Certificate Date: 20-SEP-96
Invoice No. : I9631730
P.O. Number :
Account :GP

CERTIFICATE OF ANALYSIS	A9631730

						CENTIFICATE OF				OI AIV	AL I OIO	A30311	
SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)		
96JTS 281 96JTS 282 96JTS 283 96JTS 284 96JTS 285	201 202 201 202 201 202 201 202 201 202	2	1.35 1.23 1.51 1.70 1.54	65 87 74 49 75	1210 970 980 1190 1050	44 40 22 40 16	158 178 165 132 214	0.61 0.65 0.70 0.58 0.65	190 229 233 156 203	10 20 20 10 20	154 188 142 136 158		
96JTS 286 96JTS 287 96JTS 288 96JTS 289 96JTS 290	201 202 201 202 201 202 201 202 201 202	2	1.66 1.47 1.60 1.95 1.91	126 124 84 58 69	1180 990 1010 1430 1390	8 20 42 32 52	207 218 179 178 190	0.74 0.75 0.71 0.64 0.67	209 237 221 151 166	20 30 20 10 10	162 176 182 158 198		
96JTS 291 96JTS 292 96JTS 293 96JTS 294 96JTS 295	201 202 201 202 201 202 201 202 201 202	2	2.12 1.89 2.08 0.97 1.99	47 78 66 133 87	1560 1410 1220 1480 1200	42 92 24 232 56	167 227 202 224 283	0.62 0.69 0.67 0.70 0.56	131 181 168 186 147	10 40 10 20 10	144 216 154 404 166		
96JTS 296 96JTS 297 96JTS 298 96JTS 299 96JTS 300	201 202 201 202 201 202 201 202 201 202	3 3 (1	1.51 1.00 1.92 1.73 1.85	100 168 40 53 20	880 1470 1290 1370 1330	28 166 20 14 20	174 199 143 199 156	0.61 0.95 0.69 0.65 0.72	201 216 145 162 162	20 30 10 10	292 384 102 136 78		
96JTS 301 96JTS 302 96JTS 303 96JTS 304 96JTS 305	201 202 201 202 201 202 201 202 201 202	? (1 ? (1 ? 3	1.42 1.67 1.59 1.42 1.13	55 132 111 122 135	780 1670 1250 1220 1270	20 24 30 24 36	157 195 176 155 124	0.70 0.73 0.72 0.64 0.64	213 184 188 179 195	20 20 10 10 20	114 164 158 222 204		
96JTS 306 96JTS 307 96JTS 308 96JTS 309 96JTS 310	201 202 201 202 201 202 201 202 201 202	1 1	1.60 1.31 1.04 1.50 1.94	155 107 167 85 58	1230 1290 1280 1030 1620	42 34 304 44 46	180 166 143 192 172	0.65 0.77 0.70 0.74 0.57	188 205 202 211 143	10 20 30 10 10	236 164 518 174 204		
96JTS 311 96JTS 312 96JTS 313 96JTS 314 96JTS 315	201 202 201 202 201 202 201 202 201 202	1 (1)	2.16 1.23 1.59 1.92 1.39	30 113 124 22 46	1240 1190 1010 1890 1270	10 36 80 16 26	210 144 180 151 165	0.58 0.67 0.65 0.64 0.57	114 181 176 111 156	10 20 10 < 10 10	84 152 174 80 90		
96JTS 316 96JTS 317 96JTS 318 96JTS 319 96JTS 320	201 202 201 202 201 202 201 202 201 202	2 4 3 2 2	2.20 1.82 1.89 2.18 1.52	35 40 31 55 49	1710 1800 1860 1500 1250	18 36 16 18 38	215 128 199 164 161	0.65 0.58 0.64 0.66 0.67	128 122 134 117 185	10 < 10 10 10 10	108 182 92 146 110		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number : 4-A Total Pages :5 Certificate Date: 20-SEP-96 Invoice No. : 19631730

P.O. Number : GP Account

								CERTII	FICATE	OF AN	ALYSIS		\963173	30	
SAMPLE	PREP CODE	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm	Bi ppm (ICP)	Ca %	Cd ppm (ICP)	Co ppm	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
96JTS 321 96JTS 322 96JTS 323 96JTS 324 96JTS 325	201 202 201 202 201 202 201 202 201 202	1.0 < 0.2 < 0.2 < 0.2 < 0.2	7.02 7.35 7.27 6.79 6.25	530 730 750 660 530	1.5 1.5 1.0 1.5	< 2 < 2 < 2 < 2 < 2	2.28 1.46 2.35 1.72 1.39	2.5 < 0.5 0.5 1.0 < 0.5	28 9 24 17 9	136 76 131 112 91	237 16 79 46 24	5.51 4.58 5.25 5.28 4.73	1.01 1.53 1.34 1.52 1.41	1.91 0.82 2.01 1.30 0.89	1070 485 1210 910 740
96JTS 326 96JTS 327 96JTS 328 96JTS 329 96JTS 330	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	8.77 5.73 6.00 6.42 7.14	340 620 700 660 650	3.5 0.5 0.5 0.5 1.0	< 2 < 2 < 2 < 2 < 2	1.19 2.34 2.53 2.66 2.16	(0.5 1.0 2.0 0.5 1.0	22 28 28 32 30	100 262 211 233 142	76 110 109 149 169	5.61 5.45 5.86 6.57 5.20	1.96 0.67 0.73 0.71 1.16	0.97 2.87 2.69 3.00 2.10	1080 1160 1285 1385 1150
96JTS 331 96JTS 332 96JTS 333 96JTS 334 96JTS 335	201 202 201 202 201 202 201 202 201 202 201 202	0.4 0.6 0.4 0.4	6.70 6.11 7.28 6.61 6.69	670 560 810 600 640	0.5 (0.5 1.5 0.5 0.5	(2 (2 (2 (2 (2	3.54 3.09 2.73 3.16 3.52	1.5 1.0 1.5 1.0 2.5	41 31 25 40 48	330 244 136 250 214	158 151 121 250 314	6.89 6.32 5.17 6.27 7.04	0.62 0.57 1.45 0.68 0.62	3.76 2.93 2.27 3.15 2.93	1565 1520 1245 1535 1955
96JTS 336 96JTS 337 96JTS 338 96JTS 339 96JTS 340	201 202 201 202 201 202 201 202 201 202	1.0 0.8 0.6 0.6 < 0.2	6.26 7.19 6.05 6.49 7.01	540 640 510 580 550	(0.5 1.0 0.5 0.5 1.5	< 2 < 2 < 2 < 2 < 2	3.41 2.63 2.54 2.97 2.27	2.5 1.5 1.5 2.0 2.0	46 33 26 29 23	175 142 157 145 143	291 264 172 175 146	6.57 5.54 5.47 5.40 5.40	0.48 1.01 0.63 0.86 1.15	2.81 2.20 2.27 2.27 1.85	2100 1395 1260 1360 1205
96JTS 341 96JTS 342 96JTS 343 96JTS 344 96JTS 345	201 202 201 202 201 202 201 202 201 202 201 202	0.6 0.2 0.8 0.6 < 0.2	6.63 7.78 4.87 6.08 6.74	600 350 470 560 490	0.5 1.5 < 0.5 < 0.5 0.5		2.91 1.97 2.39 2.80 2.41	1.5 1.0 0.5 3.0 1.5	36 23 22 53 31	336 168 190 599 237	107 74 89 184 82	7.20 6.37 5.00 6.65 6.33	0.90 1.36 0.57 0.68 0.89	3.06 1.56 2.11 5.41 2.56	1800 945 1490 1890 1375
96JTS 346 96JTS 347 96JTS 348 96JTS 349 96JTS 350	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	5.94 5.64 6.87 7.16 6.94	470 540 520 640 530	0.5 0.5 0.5 0.5 1.5	\(2 \) \(2 \) \(2 \) \(2 \) \(2 \) \(2 \)	2.38 2.15 1.89 2.57 2.02	0.5 1.5 1.5 0.5 1.0	23 39 37 38 31	246 253 212 288 226	63 73 108 130 74	5.87 5.42 6.62 6.20 5.80	0.89 0.68 1.11 0.89 1.13	2.51 2.62 2.44 3.12 2.31	1270 2090 2310 1630 1290
96JTS 351 96JTS 352 96JTS 353 96JTS 354 96JTS 355	201 202 201 202 201 202 201 202 201 202	< 0.2 0.4 1.4 0.8 < 0.2	6.64 6.90 6.72 6.65 5.78	600 650 530 680 540	0.5 1.0 1.0 1.0 0.5		2.67 2.42 2.32 2.46 2.15	2.5 1.5 1.0 2.5 1.5	42 33 34 34 39	354 271 350 334 401	186 107 200 191 143	6.07 6.17 6.42 6.62 5.29	0.79 1.03 0.85 0.98 0.75	3.43 2.80 3.04 3.16 3.21	1610 1720 1825 2580 1575
96JTS 356 96JTS 357 96JTS 358 96JTS 359 96JTS 360	201 202 201 202 201 202 201 202 201 202	1.2 0.6 0.4 0.6 0.2	6.59 6.08 5.56 6.04 6.62	670 620 530 490 510	0.5 0.5 0.5 0.5 0.5	(2 (2 (2 (2 (2	2.79 2.00 1.80 2.13 2.18	4.5 2.0 3.0 2.0 2.5	43 37 26 26 34	475 389 269 278 283	221 72 61 87 146	6.35 6.76 5.38 5.84 5.55	0.81 0.98 1.01 0.81 0.94	4.16 2.97 2.31 2.82 3.16	2190 2360 1500 1385 1285
				1		L		<u> </u>	<u> </u>	<u> </u>	i	J	\	<u> </u>	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :4-B
Total Pages :5
Certificate Date: 20-SEP-96
Invoice No. : I9631730
P.O. Number :

Account

:GP

								CERTI	FICATE	OF AN	ALYSIS	/	4963173	30	
SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm	Ti % (ICP)	V ppm (ICP)	W ppm	Zn ppm (ICP)				
96JTS 321	201 202	4	1.37	62	1370	86	155	0.61	166	10	270	-			
96JTS 322	201 202	2	2.27	1.7	900	16	327	0.63	138	< 10	58				
96JTS 323	201 202	2	1.80	55	1320	48	204	0.65	155	10	156				
96JTS 324	201 202	5	1.95	34	1150	20	236	0.64	121	< 10	98		ļ	Į.	
96JTS 325	201 202	4	1.86	21	1920	20	200	0.51	110	< 10	64		1] !	
96JTS 326	201 202	3	2.45	43	1140	22	111	0.49	68	< 10	146				
96JTS 327	201 202	< 1	0.86	123	1380	60	134	0.67	160	10	198				
96JTS 328	201 202	< 1	1.00	94	1610	48	154	0.81	171	10	224				
96JTS 329	201 202	< 1	0.94	108	1400	70	131	0.85	189	10	244		1	[1
96JTS 330	201 202	2	1.52	68	1850	64	180	0.54	146	10	190				
96JTS 331	201 202	< 1	1.06	149	1030	96	173	0.74	217	30	300				
96JTS 332	201 202	1	1.13	117	980	86	151	0.66	202	30	316		1		
96JTS 333	201 202	1	1.99	61	1320	88	235	0.60	151	[10	198			[
96JTS 334	201 202	1	1.20	158	1160	170	169	0.65	194	20	454				
96JTS 335	201 202	1	1.10	108	890	264	175	0.65	217	30	506				
96JTS 336	201 202	(1	0.88	84	1130	370	147	0.56	196	10	572		<u> </u>		`
96JTS 337	201 202	< 1	1,54	66	1570	180	209	0.57	163	10	290		1	ľ	
96JTS 338	201 202	1	1.07	69	760	310	161	0.58	170	10	420				
96JTS 339	201 202	2	1.44	61	1120	200	211	0.59	167	10	340			1	İ
96JTS 340	201 202	3	1.61	53	1490	200	227	0.62	155	10	294		}	<u> </u>	
96JTS 341	201 202	1	1.45	147	940	150	165	0.81	211	20	400	·			
96JTS 342	201 202	2	1.83	66	1370	86	153	0.77	132	< 10	154		1	1	
96JTS 343	201 202	< 1	0.98	76	1530	124	127	0.60	156	10	218				
96JTS 344	201 202	1	1,10	412	880	214	149	0.60	177	30	476			[
96JTS 345	201 202	1	1.33	109	1110	100	131	0.76	180	10	294		ĺ		
96JTS 346	201 202	1	1.40	104	890	70	138	0.73	177	10	194		<u> </u>		
96JTS 347	201 202	1	1.13	118	1560	130	133	0.63	162	< 10	250				
96JTS 348	201 202	4	j 1.31	113	1190	86	123	0.74	183] 10] 284]		J	J l	J
96JTS 349	201 202	3	1.35	154	1170	100	151	0.67	182	20	270				
96JTS 350	201 202	2	1.62	117	930	80	135	0.62	146	< 10	234				
96JTS 351	201 202	3	1.21	206	890	192	137	0.59	196	10	388				
96JTS 352	201 202	3	1.41	132	1230	240	149	0.70	176	10	396		1		l
96JTS 353	201 202	4	1.32	172	810	752	119	0.62	171	10	676		1		
96JTS 354	201 202	3	1.29	176	1110	1000	140	0.65	161	10	936]	
96JTS 355	201 202	1	1.04	236	1070	360	128	0.45	140	< 10	440				
96JTS 356	201 202	3	1.26	303	1000	1000	176	0.59	168	10	948				
96JTS 357	201 202	4	1.31	159	800	640	131	0.59	185	10	686		1		
96JTS 358	201 202	4	1.32	113	1560	290	134	0.52	141	< 10	316				
96JTS 359	201 202	1	1.34	119	1150	340	128	0.61	153	10	474				
96JTS 360	201 202	< 1	1.52	152	1060	190	148	0.53	149	< 10	328		ļ	J :]
	ļ	l .									1				

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112

Comments: ATTN: M. JONES

Page Number :5-A Total Pages :5 Certificate Date: 20-SEP-96 Invoice No. : 19631730

P.O. Number :

:GP Account

CERTIFICATE OF ANALYSIS A9631730

SAMPLE	PREP CODE	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)		Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
96JTS 361	201 202	< 0.2	6,78	470	1.5	⟨ 2	1,37	0.5	21	184	39	5,80	1,35	1.38	1645
96JTS 362	201 202	⟨ 0.2	6.12	460	1.0	₹ 2	1.41	2.0	22	208	43	5.29	1.27	1.74	1780
96JTS 363	201 202	0.4	6.36	580	0.5	₹ 2	3.01	2.0	41	278	147	6.37	0.76	3,13	1775
96JTS 364	201 202	< 0.2	6.01	480	0.5	₹ 2	1.45	1.0	33	640	26	6.18	1.65	3,02	1160
96JTS 365	201 202	₹ 0.2	7.00	470	1.5	₹ 2	1.53	1.0	30	445	37	5.99	1.48	2,83	1115
96JTS 366	201 202	0.4	6.38	400	1.5	⟨ 2	1.09	0.5	12	167	28	4.91	1.47	1.07	755
96JTS 367	201 202	0.2	5.96	520	1.5	< 2	1.07	1.5	13	176	28	5.59	1.35	1.28	855
96JTS 368	201 202	0.6	6,01	410	2.0	< 2	0.83	3.5	25	128	58	5.28	1.46	0.97	1240
96JTS 369	201 202	< 0.2	5.01	1160	0.5	< 2	1.39	2.0	48	537	68	5.37	0.99	3.56	1825
96JTS 370	201 202	< 0.2	6.21	920	1.0	< 2	2.76	2.0	34	240	97	5.09	1.19	2.46	1440
96JTS 371	201 202	0.2	5.89	870	1.0	〈 2	2.11	4.0	29	275	52	4.85	1.18	2.37	1360
96JTS 372	201 202	0.6	6.13	700	1.0	< 2	1,83	1.0	23	202	53	4.68	1.17	1.83	1210
96JTS 373	201 202	0.2	5.79	660	1.0	< 2	1.78	3.5	26	255	} 80	5.70	1.15	2.17	925
96JTS 374	201 202	0.4	6.11	820	1.0	< 2	1.80	3.0	31	241	59	5.61	1.50	2.14	1280
96JTS 375	201 202	< 0.2	6.43	890	1.5	₹ 2	2.11	2.0	31	220	74	5,46	1.36	2.27	1430
96JTS 376	201 202	⟨ 0,2	5.89	990	0.5	⟨ 2	2.39	3.0	31	203	67	5.08	1.16	2.36	1655
96JTS 377	201 202	0.4	5.81	690	1.5	< 2	2,05	6.5	28	163	71	4.88	1.38	1.78	1545
96JTS 378	201 202	< 0.2	5.84	890	1.0	< 2	1.78	2.0	24	293	108	5.36	1.01	2.98	1140
96JTS 379	201 202	0.4	6.05	970	1.0	< 2	2,36	4.0	36	260	112	5.88	1.13	3.04	1760
96JTS 380	201 202	< 0.2	6.13	700	2.0	< 2	3.43	2.0	42	216	85	7.03	1.69	3.95	2090
96JTS 381	201 202	0.6	3.71	570	⟨0.5	₹ 2	1.43	1.5	83	1260	113	6,18	0.48	11.20	1405
96JTS 382	201 202	0.4	3.68	470	< 0.5	< 2	1.63	1.5	76	1050	95	5.70	0.53	11.00	1045
96JTS 383	201 202	< 0.2	1.54	270	⟨ 0.5	< 2	0.57	0.5	102	1300	53	5.81	0.14	>15.00	1520
96JTS 384	201 202	0.2	1.66	350	< 0.5	< 2	0.77	2.5	101	1460	73	6.49	0.15	>15.00	1469
96JTS 385	201 202	0.2	2.05	370	< 0.5	< 2	0.85	1.5	94	1280	88	5.83	0.20	14.05	1510
96JTS 386	201 202	0.6	5.69	620	< 0.5	⟨ 2	2.39	3.0	58	660	227	6,48	0.69	6.29	1595
96JTS 387	201 202	0.8	5.92	540	0.5	< 2	2.14	2.5	62	459	316	6.95	0.77	4.20	1709
96JTS 388	201 202	0.4	5.78	460	₹ 0.5	< 2	2.47	0.5	50	709	225	6.99	0.68	5.29	1350
96JTS 389	201 202	0.6	3.35	1560	< 0.5	< 2	1.47	3.0	62	677	209	5,56	0.59	6.13	1220
96JTS 390	201 202	0.6	6.19	590	0.5	₹ 2	1.91	2.5	66	580	272	7.87	0.91	5.06	1790
96JTS 391	201 202	3.0	5.99	710	< 0.5	〈 2	1.68	5.0	87	617	484	9.31	1.08	4.86	1950
96JTS 392	201 202	2.0	6.05	390	₹ 0.5	4	2.40	1.0	67	499	485	9.63	0.80	4.58	2210
96JTS 393	201 202	1.8	6.55	500	< 0.5	< 2	2.28	2.0	78	595	510	9.56	1.00	5.56	2290
96JTS 394	201 202	2.4	6.39	490	⟨ 0.5	4	2.16	2.5	78	567	600	10.95	0.96	5,15	2560
96JTS 395	201 202	0.8	6.65	320	< 0.5	2	2.94	0.5	72	584	450	7.93	0.81	5.49	2040
96JTS 396	201 202	0.6	6.62	260	< 0.5	⟨ 2	2.27	0.5	54	386	658	7.42	0.68	3.51	1120
96JTS 397	201 202	0.4	7.30	340	< 0.5	〈 2	2.12	< 0.5	68	447	512	7.50	0.79	4.29	1285
96JTS 398	201 202	1.6	6.93	400	 	2	2.46	1.5	71	497	583	8.39	0.95	4.11	2020
96JTS 399	201 202	0.8	6.87	450	(0.5	< 2	2,35	1.0	62	401	531	7.89	0.64	3,38	1925
96JTS 400	201 202	2.0	7.71	300	< 0.5	₹ 2	3.11	10.0	61	456	592	7.43	0.78	4.47	2340
		1	İ					1	1	!	1	1		· ·	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :5-B Total Pages :5 Certificate Date: 20-SEP-96 Invoice No. :19631730 P.O. Number

:GP Account

								CERTIF	ICATE	OF AN	ALYSIS	A	963173	0	
SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm	Pb ppm AAS	Sr ppm	Ti % (ICP)	V ppm (ICP)	W ppm	Zn ppm (ICP)				
96JTS 361 96JTS 362 96JTS 363 96JTS 364 96JTS 365	201 202 201 202 201 202 201 202 201 202 201 202	2 2 (1 1	1.74 1.75 1.28 1.97 1.86	66 84 179 197 254	1290 1610 890 1550 1500	154 116 180 46 24	131 134 153 125 141	0.62 0.58 0.76 0.55 0.62	122 118 188 136 111	< 10 < 10 10 10	184 216 328 136 168				
96JTS 366 96JTS 367 96JTS 368 96JTS 369 96JTS 370	201 202 201 202 201 202 201 202 201 202 201 202	3 2 2 1 1	1.81 1.58 1.61 0.77 1.43	60 76 83 277 150	1250 2060 1550 1600 1090	60 40 116 70 172	121 126 89 127 247	0.55 0.45 0.45 0.38 0.57	93 93 88 168 159	< 10 < 10 < 10 < 10 < 10	116 132 148 186 320				
96JTS 371 96JTS 372 96JTS 373 96JTS 374 96JTS 375	201 202 201 202 201 202 201 202 201 202 201 202	2 1 3 4	1.48 1.46 1.38 1.59 1.52	131 100 154 127 144	680 1530 800 940 1490	310 264 192 196 136	218 180 188 163 181	0.47 0.53 0.51 0.52 0.56	143 129 144 152 152	< 10 < 10 < 10 < 10 < 10	520 334 348 390 380				
96JTS 376 96JTS 377 96JTS 378 96JTS 379 96JTS 380	201 202 201 202 201 202 201 202 201 202 201 202	1 1 3 (1 2	1.29 1.62 0.99 1.10 0.85	121 114 187 203 142	560 1080 1240 760 2080	128 70 114 210 68	198 149 139 163 219	0.50 0.40 0.49 0.65 0.63	147 114 159 168 218	< 10 < 10 10 < 10 10	710 492 590 904 362				
96JTS 381 96JTS 382 96JTS 383 96JTS 384 96JTS 385	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 1 1 3	0.64 0.76 0.20 0.19 0.30	1240 1095 1760 1625 1495	870 690 280 670 660	220 360 190 280 260	104 101 38 47 54	0.33 0.34 0.14 0.15 0.18	134 115 83 108 110	30 20 20 10 20	398 336 246 396 308				
96JTS 386 96JTS 387 96JTS 388 96JTS 389 96JTS 390	201 202 201 202 201 202 201 202 201 202 201 202	3 3 1 7 3	1.22 1.20 1.20 0.42 0.86	516 410 457 587 467	1420 1350 1130 2300 1210	676 684 244 320 340	136 116 103 68 114	0.52 0.57 0.57 0.23 0.52	193 188 171 259 192	10 10 20 10 10	808 794 392 452 762				
96JTS 391 96JTS 392 96JTS 393 96JTS 394 96JTS 395	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 1 1 1	0.57 0.93 0.85 0.81 1.24	450 317 382 342 352	1190 860 870 830 820	560 124 90 128 52	101 160 133 129 154	0.49 0.47 0.54 0.52 0.48	196 172 198 193 204	20 20 30 30 30	1505 346 360 440 168				
96JTS 396 96JTS 397 96JTS 398 96JTS 399 96JTS 400	201 202 201 202 201 202 201 202 201 202	1 3 3 3 < 1	1.15 1.60 1.15 1.31 1.08	184 236 279 227 243	950 770 680 590 550	60 56 112 184 224	114 111 140 151 149	0.34 0.45 0.49 0.34 0.46	161 189 200 151 197	30 20 40 10 30	172 204 330 236 1345				
	1 1	1	ì	1	1	1	1	1	1 .			L . — — —	L	<u> </u>	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

A9631731

Comments: ATTN: M. JONES

CERTIFICATE

A9631731

(GP) - WESTMIN RESOURCES LTD.

Project: P.O. #:

6112

Samples submitted to our lab in Vancouver, BC. This report was printed on 15-SEP-96.

	SAM	PLE PREPARATION	
CHEMEX	NUMBER SAMPLES	DESCRIPTION	
201 202 285	111 111 111	Dry, sieve to -80 mesh save reject ICP - HF digestion charge	

ANALYTICAL PROCEDURES

HEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
578	111	Ag ppm: 24 element, rock & core	ХХS	0.2	100.0
573	111	Al %: 24 element, rock & core	ICP-AES	0.01	25.0
565	111	Ba ppm: 24 element, rock & core	ICP- AES	10	10000
575	111	Be ppm: 24 element, rock & core	ICP- ARS	0.5	1000
561	111	Bi ppm: 24 element, rock & core	ICP- AES	2	10000
576	111	Ca %: 24 element, rock & core	ICP- ae s	0.01	25.0
562	111	Cd ppm: 24 element, rock & core	ICP -aes	0.5	500
563	111	Co ppm: 24 element, rock & core	icp -ae s	1	10000
569	111	Cr ppm: 24 element, rock & core	icp- ar s	1	10000
577	111	Cu ppm: 24 element, rock & core	icp- ars	1	10000
566	111	Fe %: 24 element, rock & core	icp- ae s	0.01	25.0
584	111	K %: 24 element, rock & core	ICP- ARS	0.01	10.00
570	111	Mg %: 24 element, rock & core	icp- ars	0.01	15.00
568	111	Mn ppm: 24 element, rock & core	ICP-ARS	5	10000
554	111	Mo ppm: 24 element, rock & core	ICP- ar s	1	10000
583	111	Na %: 24 element, rock & core	ICP- ae s	0.01	10.00
564	111	Ni ppm: 24 element, rock & core	icp- ar s	1	10000
559	111	P ppm: 24 element, rock & core	ICP- ars	10	10000
560	111	Pb ppm: 24 element, rock & core	AAs	2	10000
582	111	Sr ppm: 24 element, rock & core	ICP-AES	1	10000
579	111	T1 %: 24 element, rock & core	ICP- ar s	0.01	10.00
572	111	V ppm: 24 element, rock & core	ICP-ARS	1	10000
556	111	W ppm: 24 element, rock & core	ICP-AES	10	10000
558	111	Zn ppm: 24 element, rock & core	ICP-AKS	2	10000

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number : 1-A Total Pages :3 Certificate Date: 15-SEP-96 Invoice No. : 19631731 P.O. Number :

Account :GP

	CERTIFI	CATE O	F ANALYSIS	A9631731
-				

SAMPLE	PREP	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
96JTS 401	201 202	4.8	6.64	340	0.5	16	2.46	4.0	71	487	1370	9.65	1.03	5.39	2610
96JTS 402	201 202	1.4	6.59	570	0.5	6	2.97	6.0	63	480	316	7.16	0.86	4.95	1855
96JTS 403	201 202	0.8	6.96	310	0.5	10	3.29	1.5	70 86	505 292	336 475	6.54 8.30	0.69 0.74	5.33 3.41	1465 1935
96JTS 404 96JTS 405	201 202 201 202	2.2	6.58 7.24	410 460	1.0 2.0	12 20	2,26 2,67	1.5 2.5	71	320	223	6.5B	0.93	3.40	1815
96JTS 406	201 202	1.8	6.72	410	1.5	12	2.61	3.5	48	326	210	6.55	0.74	3.45	1935
96JTS 407	201 202	7.0	7.62	350	2.5	40 12	2.03 1,51	7.0	60 29	317 220	599 137	11.25 6.34	0.53 1.37	3.24 2.28	2940 1130
96JTS 408 96JTS 409	201 202	0.8 9.8	7.26	410 740	2.0 4.0	30	1.51	12.5	66	368	408	8.38	1.20	3.12	4430
96JTS 410	201 202	0.4	6.54	470	1.0	< 2	2.47	2.0	47	590	148	5.99	0.61	5.29	1375
96JTS 411	201 202	0.4	6.40	410	0.5	10	2.38	1.5	31	391	303	6.58	0.71	3.76 2.82	980 990
96JTS 412 96JTS 413	201 202	< 0.2	6.83 7.05	380 410	1.5 1.5	2 6	2.60 3.01	0.5 0.5	32 27	225 187	93 64	5.41 5.68	0.93	2.57	1025
96JTS 414	201 202	< 0.2	6.41	410	1.5	8	2.01	0.5	27	157	92	4.95	1.00	2.00	920
96JTS 415	201 202	< 0.2	7.62	490	2.0	6	2.95	0.5	33	192	109	5.73	1.06	2.85	1215
96JTS 416	201 202	< 0.2	6.76	400	1.5	2	2.20	1.0	23	149	108	5.06	0.99	1.92	820
96JTS 417 96JTS 418	201 202 201 202	< 0.2 0.4	8.53 6.35	430 550	2.5 0.5	4 2	2.30 2.36	0.5 2.5	29 53	170 488	64 173	6.51 6.50	1.63 0.56	2.07 4.34	1235 1280
96JTS 419	201 202	< 0.2	6.49	320	1.0	< 2	4.17	1.5	39	168	107	7.09	0.63	3.30	1585
96JTS 420	201 202	0.8	7.10	390	1.0	2	3.34	1.5	47	226	245	7.33	0.72	3.52	1550
96JTS 421	201 202	0.4	7.06	430	1.5	< 2	3.02	1.0	40	185	167 368	6.54 7.69	0.84	2.91	1415 1535
96JTS 422 96JTS 423	201 202	< 0.2	6.97 7.18	410 490	0.5 2.0	2 < 2	3.14 2.92	0.5 0.5	68 32	239 198	75	5.68	1.10	3.67 2.75	1215
96JTS 424	201 202	< 0.2	6.05	360	0.5	₹ 2	2.55	3.0	46	327	141	5.69	0.66	3.80	1340
96JTS 425	201 202	< 0.2	7.06	380	1.5	< 2	2.56	0.5	41	288	115	5.69	1.00	3.49	1255
96JTS 426	201 202	0.4	7.01	500	2.0	2	2.50	1.5	39	244 233	79 69	5.43 5.49	1.16 1.12	2.90 2.93	1550 1160
96JTS 427 96JTS 428	201 202 201 202	< 0.2 < 0.2	7.12 6.29	510 570	2.0 1.5	2 2	2.80 3.66	1.5 1.5	35 36	355	81	5.63	0.97	3.74	1310
96JTS 429	201 202	< 0.2	6.51	650	1.5	< 2	2.83	1.0	35	315	82	5.50	1.10	3.21	1265
96JTS 430	201 202	< 0.2	5.85	690	1.5	< 2	2.12	0.5	19	366	30	5.19	1.23	2.25	855
96JTS 431	201 202	< 0.2	7.26	730	2.5	2	1.85	0.5	32	199	64	5.34	1.56	2.17	1170 1110
96JTS 432 96JTS 433	201 202	< 0.2 < 0.2	6.68	620 810	2.0 1.5	< 2 6	1.35 2.93	2.5 1.0	35 33	23 4 381	81 74	5.61 5.32	1.30 1.05	2.34 3.91	1375
96JTS 434	201 202	0.2	5.99	750	1.0	< 2	2.76	0.5	32	407	59	5.22	1.00	3.73	1335
96JTS 435	201 202	1.4	5.85	1140	1.5	< 2	1.89	8.0	76	593	256	7.04	0.97	5.99	2690
96JTS 436	201 202	0.2	6.34	610	1.0	< 2	2.81	2.5	70	461	152	7.19	0.85	4.59	2440
96JTS 437	201 202 201 202	0.2 < 0.2	6.30 6.45	440 580	1.0	< 2 < 2	3.78 3.23	1.5 1.0	49 54	472 416	263 269	7.11 6.45	0.72 0.97	4.49	1690 1395
96JTS 438 96JTS 439	201 202	< 0.2	5.99	570	1.5	< 2 < 2	2.29	0.5	47	697	48	5.17	1.08	6.08	1265
96JTS 440	201 202	< 0.2	7.00	470	2.0	2	1.49	0.5	19	202	35	6.28	1.55	1.59	965

3 13 00

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number : 1-B
Total Pages : 3
Certificate Date: 15-SEP-96
Invoice No. : I 9631731
P.O. Number : :

:GP Account

<u> </u>								CERTI	FICATE	OF AN	ALYSIS	 A96317	31	
SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm			
96JTS 401 96JTS 402	201 202 201 202	< 1	0.83 1.10	289 283	710 900	216 770	114 148	0.56 0.55	227 228	60 30	512 960			
96JTS 403 96JTS 404 96JTS 405	201 202 201 202 201 202	< 1 3 1	1.17 1.21 1.70	346 212 154	740 1490 1110	300 400 710	140 104 138	0.46 0.68 0.64	201 218 187	40 60 30	342 512 1340		<u> </u>	
96JTS 406 96JTS 407 96JTS 408	201 202 201 202 201 202	1 5 5	1.45 0.73 1.76	174 201 112	1070 900 1130	710 2700 420	123 66 124	0.58 0.43 0.68	201 152 150	20 40 10	1015 1960 644			
96JTS 409 96JTS 410	201 202 201 202	12	1.14	242 411	1400 850	890 220	103 91	0.71 0.47	209 193	40 20	2790 756			
96JTS 411 96JTS 412 96JTS 413 96JTS 414 96JTS 415	201 202 201 202 201 202 201 202 201 202	2 1 < 1 1 < 1	1.26 1.71 1.92 1.58 1.90	232 109 75 75 94	1160 780 700 1200 1100	170 68 50 64 66	103 128 145 131 189	0.41 0.60 0.74 0.54 0.67	156 174 196 152 193	20 10 20 10 10	330 138 132 134 178			
96JTS 416 96JTS 417 96JTS 418 96JTS 419 96JTS 420	201 202 201 202 201 202 201 202 201 202	1 3 < 1 < 1 < 1	1.68 2.36 1.12 2.08 1.54	66 79 293 87 144	1170 990 1290 950 1090	64 132 180 62 152	140 150 100 143 141	0.60 0.77 0.50 1.00 0.59	157 172 241 289 268	10 10 20 30 30	128 206 334 152 296			
96JTS 421 96JTS 422 96JTS 423 96JTS 424 96JTS 425	201 202 201 202 201 202 201 202 201 202	1 < 1 < 1 < 1 2	1.76 1.42 2.04 1.33 1.76	120 177 115 232 209	1210 1070 1100 1030 1100	100 116 48 60 46	156 131 197 126 141	0.72 0.56 0.76 0.56 0.54	232 274 194 195 169	20 30 10 20 10	218 234 128 178 144			
96JTS 426 96JTS 427 96JTS 428 96JTS 429 96JTS 430	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1	1.83 1.89 1.95 1.73 1.64	188 153 200 212 101	1420 1030 1090 1030 1020	50 44 72 92 80	167 183 201 174 191	0.61 0.64 0.70 0.62 0.74	173 185 205 183 206	10 10 10 10 10	142 120 158 208 104			
96JTS 431 96JTS 432 96JTS 433 96JTS 434 96JTS 435	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 1 < 1 3	1.95 1.51 1.52 1.43 0.86	162 223 239 246 545	1390 1600 1090 1340 1570	100 152 132 146 690	216 142 182 174 241	0.57 0.51 0.57 0.57 0.48	148 157 181 176 238	10 10 10 20 30	202 250 258 280 1020			
96JTS 436 96JTS 437 96JTS 438 96JTS 439 96JTS 440	201 202 201 202 201 202 201 202 201 202 201 202	2 < 1 < 1 1 5	0.87 1.31 1.31 1.49 1.92	384 354 293 606 92	1980 1340 1800 990 990	172 76 76 64 56	168 159 159 161 140	0.74 0.82 0.71 0.49 0.63	193 197 210 132 127	30 30 30 20 10	490 274 276 168 128			

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :2-A
Total Pages :3
Certificate Date: 15-SEP-96
Invoice No. : 19631731
P.O. Number :

Account

:GP

CERTIFICATE OF ANALYSIS A9631731

SAMPLE	PREP CODE	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	(ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
96JTS 441	201 202	0.2	6.41	610	2.0	< 2	2.18	3.0	27	282	53	5.59	1.35	2.73	1210
96JTS 442	201 202	1.2	5.72	1020	1.0	< 2	2.84	11.5	53	754	180	6.47	0.96	5.78	2040
96JTS 443	201 202	0.4	6.41	870	1.5	< 2	2.49	2.0	35	351 304	153	5.60 5.58	1.02	3.62 3.12	132! 187!
96JTS 444 96JTS 445	201 202 201 202	0.6	6.42	1060 750	1.0 2.0	< 2	2.45 2.14	1.0	39 26	186	128 76	5.08	1.33	2.22	104
6JTS 446	201 202	0.8	6.09	620	2.0	4	1.57	0.5	19	163	81	4.53	1.34	1.75	93
6JTS 447	201 202	0.8	5.45	930	0.5	6	2.72	1.0	17	242	49	5.32	1.07	2.24	83
6JTS 448 6JTS 449	201 202 201 202	0.8	5.46 6.38	710 930	1.5 1.5	< 2 4	1.25	1.0	31 35	420 289	108 130	6.55 5.27	1.03	3.18 2.54	94 133
6JTS 450	201 202	0.8	7.02	340	3.0	2	1.15	2.0	26	156	40	6.07	1.96	1.20	122
6JTS 451	201 202	0.8	8.22	1390	2.5	8	1.68	1.5	22	76	72	4.19	2.55	1.72	108
6JTS 452	201 202	0.8	7.18	1230	0.5	< 2	2.84	1.5	44	142	135 147	6.34 6.54	0.99	3.42 3.72	240 258
6JTS 453 6JTS 454	201 202	0.4	7.39 7.43	1240 900	0.5 0.5	< 2	3.28 3.05	0.5 2.0	45 46	169 183	160	6.62	0.70	3.61	248
6JTS 455	201 202	0.4	7.88	1330	1.5	₹ 2	2.93	1.5	42	177	238	6.10	1.06	2.94	258
6JTS 456	201 202	0.2	7.48	1660	0.5	< 2	2.90	2.0	36	148	183	6.37	0.80	3.15	234
6JTS 457	201 202	0.4	7.15	1610	0.5		2.42	0.5	36	133	146	6.57	0.97	3.07	260 208
6JTS 458 6JTS 459	201 202	0.4	7.47 6.98	1090 1300	1.5 0.5	4 4	2.80 2.54	1.0	38 34	160 134	114 121	6.23 5.87	1.10	3.24	224
6JTS 460	201 202	< 0.2	7.20	1130	1.0	< 2	2.87	0.5	31	123	116	5.75	0.98	3.06	188
6JTS 461	201 202	0.2	7.22	1210	1.0	< 2	3.28	1.0	31	150	99	5.83	1.01	3.11	188
6JTS 462	201 202	< 0.2	7.86	810	0.5	< 2	2.01	1.0	29	54	107 94	5.88 5.77	1.05 0.86	3.18 2.94	147 134
6JTS 463 6JTS 464	201 202 201 202	< 0.2 < 0.2	7.19 7.09	650 940	0.5 0.5	2 < 2	1.81 2.30	1.0 1.0	27 30	66 97	135	5.79	0.96	3.10	169
6JTS 465	201 202	₹ 0.2	7.16	740	1.0	₹ 2	1.64	0.5	50	453	92	6.39	1.55	3.60	203
6JTS 466	201 202	₹ 0.2	8.39	860	3.5	2	1.54	< 0.5	21	82	40	5.52	1.73	1.83	114
6JTS 467 6JTS 468	201 202	< 0.2	7.85 8.19	960 900	1.5	6	1.88 1.74	0.5	30 28	68 80	147 128	5.85 6.22	1.37	2.80 2.75	155 170
6JTS 469	201 202	< 0.2	8.01	970	1.5 1.5	< 2	1.88	< 0.5	23	87	62	5.49	1.32	2.25	130
6JTS 470	201 202	0.4	7.88	910	0.5	< 2	2.32	0.5	31	46	149	6.08	1.19	3.00	163
6JTS 471	201 202	< 0.2	7.41	900	1.0	< 2	1.68	< 0.5	26	53	106	5.45	1.21	2.32	156
6JTS 472	201 202	0.6	8.53	1490	1.5	6	1.92	< 0.5	24	56 70	50 48	5.07	1.84 1.55	2.36 1.65	158 137
6JTS 473 6JTS 474	201 202 201 202	0.2	7.77 8.65	1040 1260	2.0 2.5	8 · 2	1.45 1.33	< 0.5 < 0.5	22 24	79 75	133	4.94 5.60	2.06	2.40	147
6JTS 475	201 202	< 0.2	8.13	1320	2.0	` 1	1.35	< 0.5	19	51	54	3.88	2.05	1.49	95
6JTS 476	201 202	0.6	8.27	1240	2.0	< 2	1.40	0.5	23	64	241	4.79	1.88	1.86	138
6JTS 477	201 202	0.6	9.12	1660	2.5	2	0.95	< 0.5	24	54	140	4.66	2.29	2.02	162
6JTS 478 6JTS 479	201 202 201 202	0.2	7.68 7.57	910 1070	2.0 2.5	2 < 2	1.20 1.36	< 0.5 < 0.5	15 14	61 44	33 46	4.44 3.31	1.87 1.83	1.29 1.37	94 80
6JTS 480	201 202	0.4	8.31	1680	1.5	1	0.86	< 0.5	19	27	71	3.47	2.27	2.19	106
		\ **	"""			•		1	1 1				<i></i>	1	i

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC

V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number : 2-B Total Pages :3 Certificate Date: 15-SEP-96 Invoice No. : 19631731

P.O. Number Account

:GP

CERTIFICATE OF ANALYSIS A9631731

								J				 	
SAMPLE	PREP	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm	W ppm (ICP)	Zn ppm (ICP)		
96JTS 441 96JTS 442 96JTS 443 96JTS 444 96JTS 445	201 202 201 202 201 202 201 202 201 202	< 1 2 3 1	1.68 1.02 1.25 1.19 1.67	182 534 225 157 85	1060 1420 1180 1140 840	168 3100 184 246 60	164 177 157 172 173	0.62 0.53 0.50 0.48 0.55	154 216 212 219 173	10 30 10 10	236 2280 424 336 158		
96JTS 446 96JTS 447 96JTS 448 96JTS 449 96JTS 450	201 202 201 202 201 202 201 202 201 202	4 2 4 4 4	1.55 1.27 0.77 1.46 2.28	88 74 317 205 88	1340 780 1000 1450 780	84 100 120 136 104	141 187 177 296 86	0.41 0.64 0.52 0.42 0.40	144 265 220 185 102	< 10 10 10 10 < 10	144 140 242 278 228		
96JTS 451 96JTS 452 96JTS 453 96JTS 454 96JTS 455	201 202 201 202 201 202 201 202 201 202	7 2 2 < 1 < 1	1.71 1.35 1.32 1.76 2.24	55 65 67 71 69	850 820 760 730 730	32 18 12 10 40	218 182 161 203 205	0.45 0.68 0.75 0.68 0.55	141 227 232 237 197	< 10 20 10 10 20	142 116 94 124 132		
96JTS 456 96JTS 457 96JTS 458 96JTS 459 96JTS 460	201 202 201 202 201 202 201 202 201 202	< 1 1 4 1 1	1.74 1.35 1.77 1.64 1.70	57 60 57 57 46	890 870 890 760 770	12 16 14 12 10	180 145 235 154 187	0.61 0.62 0.72 0.58 0.61	224 236 224 216 216	10 10 20 10	106 106 106 102 102		
96JTS 461 96JTS 462 96JTS 463 96JTS 464 96JTS 465	201 202 201 202 201 202 201 202 201 202 201 202	1 2 1 1	1.70 1.44 1.54 1.49 0.72	52 30 30 44 163	780 1060 1330 870 670	8 2 12 16 28	249 155 160 179 145	0.68 0.60 0.59 0.59 0.47	219 214 224 215 173	10 10 10 10 10	106 94 94 106 162		
96JTS 466 96JTS 467 96JTS 468 96JTS 469 96JTS 470	201 202 201 202 201 202 201 202 201 202	4 < 1 3 2 1	2.10 1.81 1.73 1.85 1.52	31 40 36 32 28	1100 1100 1040 960 1170	16 16 20 20 20	178 198 184 206 219	0.60 0.60 0.62 0.68 0.58	133 190 199 161 205	10 10 10 10 10	98 120 122 106 102		
96JTS 471 96JTS 472 96JTS 473 96JTS 474 96JTS 475	201 202 201 202 201 202 201 202 201 202 201 202	3 2 5 3 1	1.34 1.63 1.80 1.65 2.34	26 19 37 38 27	1020 960 1420 1390 1120	24 28 32 32 28	188 223 189 194 244	0.52 0.55 0.51 0.54 0.44	170 140 128 158 111	10 10 < 10 10 < 10	110 82 114 146 90		
96JTS 476 96JTS 477 96JTS 478 96JTS 479 96JTS 480	201 202 201 202 201 202 201 202 201 202	4 6 4 1	1.98 1.75 2.14 2.06 1.46	30 25 22 21 14	1020 930 1390 1160 700	30 38 28 28 28	200 130 203 234 91	0.52 0.44 0.52 0.40 0.34	130 124 115 97 100	10 10 < 10 < 10 < 10	100 92 84 72 58		
							<u> </u>		<u> </u>				

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :3-A Total Pages :3 Certificate Date: 15-SEP-96 Invoice No. :19631731

P.O. Number :

GP Account

<u> </u>								CERTI	FICATE	OF AN	ALYSIS	5 /	A96317	31	
SAMPLE	PREP CODE	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	(ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm
96JTS 481 96JTS 482 96JTS 483 96JTS 484 96JTS 485	201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 0.2 < 0.2 < 0.2	9.00 7.56 8.58 8.35 7.75	1720 1310 1280 510 870	2.0 1.5 2.5 3.0 2.5	4 2 2 2 4 2	1.04 1.40 1.38 1.45 1.08	< 0.5 0.5 < 0.5 0.5 < 0.5	18 16 17 16 16	31 38 53 97 69	66 58 53 20 42	3.94 3.25 4.38 5.45 4.78	2.26 1.84 2.13 1.90 1.96	2.44 1.60 2.23 1.35 1.19	1050 850 1090 775 1110
96JTS 486 96JTS 487 96JTS 488 96JTS 489 96JTS 490	201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.43 8.83 8.26 7.91 7.47	970 1000 1300 1180 1160	2.5 3.0 2.0 2.0 1.0	6 2 2 4 2 2 2	1.30 1.29 1.47 1.49 1.38	0.5 < 0.5 < 0.5 0.5 0.5	15 21 21 19 21	42 64 51 63 72	40 68 72 71 77	3.52 5.19 4.34 4.18 4.53	1.70 1.93 1.83 2.00 1.56	1.44 1.82 2.16 2.18 2.62	745 1290 1110 975 975
96JTS 491 96JTS 492 96JTS 493 96JTS 494 96JTS 495	201 202 201 202 201 202 201 202 201 202	< 0.2 0.6 0.4 0.2 < 0.2	7.75 7.55 7.45 7.69 7.70	1020 1260 1300 1150 930	1.0 1.5 1.5 1.5 2.0	< 2 2 2 < 2 2	1.90 1.90 1.65 1.99 1.55	< 0.5 < 0.5 < 0.5 0.5 < 0.5	25 21 20 21 19	70 57 69 111 51	91 101 52 42 65	5.11 4.14 3.91 4.58 4.46	1.45 1.87 1.61 1.72 1.81	3.09 2.04 1.91 2.37 2.38	1240 1090 945 1070 1010
96JTS 496 96JTS 497 96JTS 498 96JTS 499 96JTS 500	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 0.2 0.4 < 0.2	7.84 7.95 8.81 8.08 8.02	700 950 1240 1120 1050	1.5 0.5 0.5 1.5 0.5	< 2 < 2 < 2 < 2 < 2	1.48 2.09 2.12 1.54 1.86	0.5 < 0.5 0.5 0.5 < 0.5	14 29 32 28 32	33 45 46 82 65	56 129 148 144 149	3.69 5.80 6.46 5.92 6.21	1.96 1.25 1.70 1.65 1.46	3.68 3.21 3.56 3.18 3.79	870 1425 1645 1405 1525
96JTS 501 96JTS 502 96JTS 503 96JTS 504 96JTS 505	201 202 201 202 201 202 201 202 201 202 201 202	0.6 < 0.2 1.0 0.4 0.6	6.91 6.73 6.78 7.45 7.38	1140 1050 1210 910 960	1.5 1.0 1.5 3.0 2.5	2 4 < 2 < 2 < 2	0.82 1.53 1.35 1.16 1.16	1.5 0.5 1.5 0.5 0.5	31 34 28 27 21	97 64 123 63 50	116 137 163 85 69	5.31 5.48 5.46 4.53 3.74	1.53 1.26 1.18 1.88 1.87	2.02 2.46 2.36 1.14 1.09	1780 1795 1590 985 945
96JTS 506 96JTS 507 96JTS 508 96JTS 509 96JTS 510	201 202 201 202 201 202 201 202 201 202	0.6 0.6 < 0.2 0.6 0.4	7.46 7.91 7.88 6.99 7.19	1050 940 1190 820 660	2.5 3.0 3.0 2.5 3.0	< 2 2 < 2 < 2 6	1.00 1.12 1.50 0.97 0.91	2.0 1.5 0.5 1.0 0.5	18 22 11 17 14	57 64 36 53 55	62 93 37 60 39	4.03 4.83 2.85 3.97 4.17	2.04 2.01 2.40 1.65 1.84	1.25 1.22 0.80 1.03 0.85	1050 1070 565 790 930
96JTS 511	201 202	< 0.2	7.29	1140	3.0	6	1.42	0.5	9	26	20	2.09	2.30	0.66	510
													L. 4.	2.0	7 -

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :3-B
Total Pages :3
Certificate Date: 15-SEP-96
Invoice No. : I9631731
P.O. Number :

:GP

Account

								CERTII	FICATE	OF AN	ALYSIS	-	A 963173	31	
SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm	Zn ppm				
96JTS 481 96JTS 482 96JTS 483 96JTS 484 96JTS 485	201 202 201 202 201 202 201 202 201 202	2 1 1 5 5	1.47 1.89 2.04 2.25 2.15	14 22 26 43 25	750 740 1140 1350 1410	24 16 22 10 18	114 190 207 170 204	0.38 0.41 0.45 0.59 0.55	109 103 114 97 118	10 < 10 10 < 10 10	68 58 94 82 86				5 10 10 10 10
96JTS 486 96JTS 487 96JTS 488 96JTS 489 96JTS 490	201 202 201 202 201 202 201 202 201 202 201 202	1 2 1 2 < 1	2.05 2.12 1.85 2.06 1.68	21 32 25 29 29	1360 1460 620 1060 940	22 22 22 20 12	256 210 198 245 172	0.40 0.52 0.51 0.50 0.54	104 135 131 141 158	< 10 10 10 10 10	72 102 82 80 76				
96JTS 491 96JTS 492 96JTS 493 96JTS 494 96JTS 495	201 202 201 202 201 202 201 202 201 202	3 3 2 1 2	1.72 1.99 2.08 1.78 2.14	32 30 27 31 27	1030 1020 860 1160 1060	10 22 14 14 18	193 228 215 219 295	0.58 0.50 0.50 0.51 0.43	184 132 127 135 141	10 10 10 10 10	90 88 68 88 74				
96JTS 496 96JTS 497 96JTS 498 96JTS 499 96JTS 500	201 202 201 202 201 202 201 202 201 202	< 1 2 1 4 3	1.03 1.65 1.66 1.39 1.51	23 23 33 43 35	1000 990 1130 1100 1030	16 8 12 12 4	207 217 212 167 163	0.37 0.55 0.62 0.55 0.64	110 207 232 214 214	10 10 10 10 10	70 88 102 120 98				
96JTS 501 96JTS 502 96JTS 503 96JTS 504 96JTS 505	201 202 201 202 201 202 201 202 201 202	10 4 8 7 6	0.78 0.99 1.01 1.91 1.86	73 45 76 87 70	1790 1330 1170 1380 1360	20 16 18 32 32	124 147 140 273 261	0.44 0.51 0.46 0.39 0.34	188 178 204 100 91	< 10 10 10 10 < 10	188 124 174 188 178				
96JTS 506 96JTS 507 96JTS 508 96JTS 509 96JTS 510	201 202 201 202 201 202 201 202 201 202	7 15 < 1 11 7	1.71 1.88 2.75 1.73 2.04	60 76 27 54 30	1140 1240 1290 1190 1440	64 34 32 30 20	242 259 393 243 202	0.36 0.38 0.30 0.33 0.36	123 149 73 117 82	< 10 10 < 10 < 10 < 10	212 260 80 194 104				
96JTS 511	201 202	< 1	2.63	17	1250	28	356	0.26	58	< 10	54				
			:												

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

A9631732

Comments: ATTN: M. JONES

CERTIFICATE

A9631732

(GP) - WESTMIN RESOURCES LTD.

6112

Project: P.O. #:

Samples submitted to our lab in Vancouver, BC. This report was printed on 21-SEP-96.

	SAMPLE PREPARATION										
CHEMEX	NUMBER SAMPLES	DESCRIPTION									
201 202 285	200 200 200	Dry, sieve to -80 mesh save reject ICP - HF digestion charge									

ANALYTICAL PROCEDURES

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
578	200	Ag ppm: 24 element, rock & core	AAS	0.2	100.0
573	200	Al %: 24 element, rock & core	ICP-AES	0.01	25.0
565	200	Ba ppm: 24 element, rock & core	ICP-AES	10	10000
575	200	Be ppm: 24 element, rock & core	ICP-AES	0.5	1000
561	200	Bi ppm: 24 element, rock & core	ICP-AES	2	10000
576	200	Ca %: 24 element, rock & core	ICP-AES	0.01	25.0
562	200	Cd ppm: 24 element, rock & core	ICP-AES	0.5	500
563	200	Co ppm: 24 element, rock & core	ICP-AES	1	10000
569	200	Cr ppm: 24 element, rock & core	ICP-AES	1	10000
577	200	Cu ppm: 24 element, rock & core	ICP-AES	1	10000
566	200	Fe %: 24 element, rock & core	ICP-AES	0.01	25.0
584	200	K %: 24 element, rock & core	ICP-AES	0.01	10.00
570	200	Mq %: 24 element, rock & core	TCP-AES	0.01	15.00
568	200	Mn ppm: 24 element, rock & core	ICP-AES	5	10000
554	200	Mo ppm: 24 element, rock & core	ICP-AES	1	10000
583	200	Na %: 24 element, rock & core	ICP-AES	0.01	10.00
564	200	Ni ppm: 24 element, rock & core	ICP-AES	1	10000
559	200	P ppm: 24 element, rock & core	ICP-AES	10	10000
560	200	Pb ppm: 24 element, rock & core	AAS	2	10000
582	200	Sr ppm: 24 element, rock & core	ICP-AES	1	10000
57 9	200	Ti %: 24 element, rock & core	ICP-AES	0.01	10.00
572	200	V ppm: 24 element, rock & core	ICP-AES	1	10000
556	200	W ppm: 24 element, rock & core	ICP-AES	10	10000
558	200	Zn ppm: 24 element, rock & core	ICP-AES	2	10000

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :5-A Total Pages :5 Certificate Date: 21-SEP-96 Invoice No. : 19631732 P.O. Number :

:GP Account

PREP Ag ppm Al % Ba ppm Be ppm Bi ppm Ca % Cd ppm Co ppm Cr ppm Cu ppm Fe % K % Mg % Mn ppm SAMPLE CODE AAS (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP)						CERTI	FICATE	OF AN	ALYSI	3	A96317	32	
\ <u></u>	SAMPLE		1		II.					1 -	K % (ICP)	, -	

96YTS 192 96YTS 193 96YTS 194 96YTS 195	201 202 201 202 201 202 201 202 201 202	0.4 0.1 0.2 0.4	7.19 5.58 6.54 6.69	690 530 410 740	2.5 2.0 3.0 2.5	<pre>< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 3 < 3 < 4 </pre>	1.12 0.75 0.76 1.02	< 0.5 < 0.5 0.5 1.5	12 8 11 16	69 60 68 81	22 18 24 36	4.00 3.32 4.42 3.89	1.63 1.34 1.39 1.54	0.74 0.56 0.71 0.79	740 670 755 875
96YTS 196 96YTS 197 96YTS 198 96YTS 199 96YTS 200	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 0.4 < 0.2	5.87 6.64 7.79 4.85 5.50	600 730 1030 740 750	2.5 3.0 3.0 1.5 2.0	< 2 < 2 < 2 < 2 < 2	1.16 0.81 0.88 0.60 0.41	2.5 1.5 0.5 2.0 0.5	24 15 14 9 11	114 105 93 75 90	43 41 57 27 41	4.14 4.79 4.77 2.56 4.09	1.29 1.69 1.81 1.44 1.73	0.81 0.88 1.07 0.50 0.57	3410 815 620 615 740

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number: 5-B
Total Pages: 5
Certificate Date: 21-SEP-96
Invoice No.: 19631732
P.O. Number:
Account: GP

								CERT	FICATE	OF AN	ALYSIS	A963173	32	
SAMPLE	PREP CODE	Mo ppm (ICP)	Na %	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			

96YTS 192 96YTS 193 96YTS 194 96YTS 195	201 201 201 201	202 202	5 6 7 6	1.86 1.49 1.51 1.64	27 16 27 41	2090 2330 2080 2210	12 20 16 220	219 165 114 219	0.49 0.51 0.45 0.42	89 101 80 96	< 10 < 10 < 10 < 10	90 82 110 150	1		
96YTS 196 96YTS 197 96YTS 198 96YTS 199 96YTS 200	201 201 201 201 201 201	202 202 202	16 8 11 8 20	1.22 1.52 1.61 0.94 1.11	64 64 69 32 40	3210 1960 1090 2140 2030	80 172 66 22 50	148 178 246 133 110	0.40 0.47 0.44 0.37 0.43	96 106 137 119 185	< 10 < 10 < 10 < 10 < 10	238 370 278 140 210			

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

A9631733

Comments: ATTN: M. JONES

CERTIFICATE

A9631733

(GP) - WESTMIN RESOURCES LTD.

Project: P.O. # :

6112

Samples submitted to our lab in Vancouver, BC. This report was printed on 23-SEP-96.

	SAM	PLE PREPARATION	
CHEMEX	NUMBER SAMPLES	DESCRIPTION	
201 202 285	200 200 200	Dry, sieve to -80 mesh save reject ICP - HF digestion charge	

ANAL	YTIC	AL PR	OCEDU	RES
------	------	-------	--------------	-----

CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
578	200	Ag ppm: 24 element, rock & core	AAS	0.2	100.0
573	200	A1 %: 24 element, rock & core	ICP-AES	0.01	25.0
565	200	Ba ppm: 24 element, rock & core	ICP-AES	10	10000
575	200	Be ppm: 24 element, rock & core	ICP- AE S	0.5	1000
561	200	Bi ppm: 24 element, rock & core	ICP-AES	2	10000
576	200	Ca %: 24 element, rock & core	ICP-AES	0.01	25.0
562	200	Cd ppm: 24 element, rock & core	ICP-AES	0.5	500
563	200	Co ppm: 24 element, rock & core	ICP-AES	1	10000
569	200	Cr ppm: 24 element, rock & core	ICP-AES	1	10000
577	200	Cu ppm: 24 element, rock & core	ICP- AE S	1	10000
566	200	Fe %: 24 element, rock & core	ICP-AES	0.01	25.0
584	200	K %: 24 element, rock & core	icp- re s	0.01	10.00
570	200	Mg %: 24 element, rock & core	icp- ar s	0.01	15.00
568	200	Mn ppm: 24 element, rock & core	ICP- AE S	5	10000
554	200	Mo ppm: 24 element, rock & core	ICP -ae s	1	10000
583	200	Na %: 24 element, rock & core	icp-aes	0.01	10.00
564	200	Ni ppm: 24 element, rock & core	ICP- AE S	1	10000
559	200	P ppm: 24 element, rock & core	ICP-AES	10	10000
560	200	Pb ppm: 24 element, rock & core	λλS	2	10000
582	200	Sr ppm: 24 element, rock & core	ICP- ae s	1	10000
579	200	Ti %: 24 element, rock & core	ICP- ae s	0.01	10.00
572	200	V ppm: 24 element, rock & core	ICP- ae s	1	10000
556	200	W ppm: 24 element, rock & core	ICP- ABS	10	10000
558	200	Zn ppm: 24 element, rock & core	ICP-AES	2	10000

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

QC Page #: Tot QC Pg: Date: Invoice #: P.O. #:

.

1-A 23-SEP-96 19631733

GΡ

								QC DA	TA OF	CERTIF	ICATE		196317 3	33	
STD/DUP/BLANK DESCRIPTION	QC PAGE	Ag ppm AAS	A1 % (ICP)	Ba ppm {ICP}	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
G96-TOT	Stål 1		7.76	1230	1,5	< 2	2.19	0.5	21	103	187	4.93	1.88	1.05	1100
G96-TOT	std2 1		7.77	1240	2.0	2	2.17	< 0.5	21	111	187	4.89	1.99	1.05	1130
G96-TOT	std1 2		7.80	1200	1,5	< 2	2.15	0.5	19	108	190	4.92	1.92	1.05	1055
G96-TOT	std2 2		7.49	1180	1,0	< 2	2.11	< 0.5	20	96	188	4.87	1.85	1.03	1035
G96-TOT	stål 3		10.15	1560	1.5	8	2.80	< 0.5	28	134	249	6.51	2.50	1.40	1360
496-TOT	std2 3		7.70	1180	1.5	< 2	2.12	0.5	20	101	196	4.84	1.89	1.04	1050
G96-TOT	std1 4		7.83	1200	1.5	< 2	2.17	< 0.5	20	104	186	4.92	1.92	1.06	1050
G96-TOT	std2 4		7.96	1230	1.5	< 2	2.21	0.5	20	96	193	5.04	1.95	1.09	1095
G96-TOT	std1 5	l	7.59	1190	1,5	< 2	2.14	0.5	20	92	185	4.89	1.85	1.04	1060
G96-TOT	std2 5		7.76	1190	1.0	< 2	2.12	< 0.5	19	104	187	4.96	1.77	1.06	1015
CHEMEX MEAN			7.52	1155	0.5	< 2	2.04	1.0	16	97	177	4.41	1.86	1.03	927
GEO-96	std1 1	5.2													
GEO-96	Std2 1	5.2													
GEO-96	Std1 2	5.2													
GEO-96	Std2 2	5.2													
GEO-96	std1 3	5.4			(Í		(-						
GEO-96	std2 3	6.4													
GEO-96	Std1 4	5.4													
GEO-96	std2 4	5.4		~											
GEO-96	Std1 5	5.2													
GEO-96	std2 5	5.4								-					
CHEMEX MEAN		5.5													
SIO2-G2	Blnk 1	< 0.2													
SIO2-G2	Blnk 2	< 0.1													
SI02-G2	Blnk 3	< 0.2													
SIO2-G2	Blnk 4	< 0.2													
SI02-G2	Blnk 5	< 0.2													
CHEMEX MEAN		< 0.2													
SI02-T3	Blnk 1		0.30	20	< 0.5	< 2	0.02	< 0.5	< 1	4	3	0.07	0.08	0.02	5
SIO2-T3	Blnk 2		0.29	10	< 0.5	< 2	0.01	< 0.5	< 1	5	< 1	0.04	0.03	0.01	< 5
SIO2-T3	Blnk 3		0.27	10	< 0.5	< 2	0.01	< 0.5	< 1	6	1	0.05	0.05	0.01	< 5
SIO2-T3	Blnk 4		0.30	20	< 0.5	< 2	0.02	< 0.5	< 1	< 1	< 1	0.06	0.05	0.01	5
CHEMEX MRAN			0.24	13	< 0.5	< 2	0.01	< 0.5	< 1	5	2	0.05	0.03	< 0.01	20
96YTS 201	Dup1-01	0.4	7.01	940	2.5	< 2	0.56	< 0.5	14	74	55	3.99	1.79	0.90	835
	Origi-01	0.4	6.73	920	2.5	< 2	0.54	< 0.5	14	72	53	3.79	1.74	0.87	830
96YTS 241	Dup2-01	< 0.2	8.36	1180	2.0	< 2	0.77	< 0.5	25	56	90	5.05	1.50	2.56	2900
	Orig2-01	₹ 0.2	8.17	1170	2.0	< 2	0.76	< 0.5	26	60	89	4.99	1.49	2.54	2940
96YTS 281	Dup3-01	< 0.2	7.53	1160	1.5	< 2	1.10	< 0.5	30	63	124	5.66	1.90	2.60	1780
	Orig3-01	< 0.2	7.88	1220	1.5	< 2	1.14	< 0.5	31	67	129	5.98	1.97	2.73	1840
96YTS 321	Dup4-01	< 0.2	4.34	310	1.0	< 2	1.07	< 0.5	78	1195	135	6.26	0.60	10.15	1450
				310	***										

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

QC Page #: Tot QC Pg: Date: Invoice #:

P.O. #:

1-B 23-SEP-96 19631733

GP

## 1										QC DA	TA OF	CERTIF	ICATE	<i>,</i>	1963173	33	
### Section		-									1						
## 1	G96-TOT	Std1	1	11	1.07	23	680		237	0.36	170	10	194				
## CORPORT Std1 2 11 1.11 23 650 233 0.37 165 10 190 ## GOS-TOT Std2 2 11 1.08 24 640 228 0.36 162 10 188 ## GOS-TOT Std3 3 14 1.46 26 860 301 0.48 217 20 255 ## GOS-TOT Std3 3 14 1.46 26 860 301 0.48 217 20 255 ## GOS-TOT Std3 4 1.13 25 660 230 0.35 167 10 192 ## GOS-TOT Std3 5 8 1.11 25 660 237 0.37 170 10 198 ## GOS-TOT Std3 5 8 1.10 24 630 230 0.37 164 10 194 ## GOS-TOT Std3 5 8 1.10 24 630 230 0.37 164 10 194 ## GOS-TOT Std3 5 8 1.10 24 630 230 0.37 162 10 194 ## GOS-TOT Std3 5 8 1.10 24 630 230 0.37 162 10 194 ## GOS-FOT Std3 5 8 1.10 1.10 24 630 230 0.37 162 10 194 ## GOS-TOT Std3 5 8 1.10 1.10 24 630 230 0.37 162 10 194 ## GOS-FOT Std3 5 8 1.10 1.10 1.10 1.10 1.10 ## GOS-FOT Std3 5 8 1.10 1.10 1.10 1.10 1.10 ## GOS-SOS Std3 1 1.10 1.10 1.10 1.10 1.10 1.10 ## GOS-SOS Std3 2 1.10 1.10 1.10 1.10 1.10 1.10 ## GOS-SOS Std3 3 1.10 1.10 1.10 1.10 1.10 1.10 ## GOS-SOS Std3 3 1.10 1.10 1.10 1.10 1.10 1.10 1.10 ## GOS-SOS Std3 3 1.10										0.36	174	10	196			1	ł
996-TOT							650		233	0.37	165	10	190			1	
095-TOT Std1 3 14 1.46 26 860 301 0.48 217 20 256 936-TOT Std2 3 10 1.08 24 650 229 0.36 163 10 192 936-TOT Std2 4 8 1.13 25 680 237 0.37 170 10 198 936-TOT Std2 4 8 1.13 25 680 237 0.37 170 10 198 936-TOT Std2 5 13 1.07 22 600 230 0.37 164 10 194 936-TOT Std2 5 13 1.07 22 600 230 0.37 162 10 194 936-TOT Std2 5 13 1.07 22 600 230 0.37 162 10 194 936-TOT Std2 5 13 1.07 22 600 230 0.37 162 10 194 936-TOT Std2 5 13 1.07 22 600 230 0.37 162 10 194 936-TOT Std2 5 13 1.07 22 600 230 0.37 162 10 194 936-TOT Std2 5 13 1.07 22 600 230 0.37 162 10 194 936-TOT Std2 5 13 1.07 22 600 230 0.37 162 10 194 936-TOT Std2 5 13 1.07 22 600 230 0.37 162 10 194 936-TOT Std2 5 13 1.07 22 600 230 0.37 162 10 194 936-TOT Std2 5 13 1.07 22 600 230 0.37 162 10 194 936-TOT Std2 5 10 110 110 116 936-TOT Std2 5 10 110 116 936-TOT Std2 5 10 110 116 936-TOT Std2 5 10 110 116 936-TOT Std2 5 10 110 116 936-TOT Std2 5 10 110 116 936-TOT Std2 5 10 110 110 116 936-TOT Std2 5 10 110 116 936-TOT Std2 5 10 110 116 936-TOT Std2 5 10 110 116 936-TOT Std2 5 10 110 110 116 936-TOT Std2 5 10 194 110 110 116 936-TOT Std2 5 10 194 110 116 1116 1116 1116 111							640		228	0.36	162	10	188			1	
036-TOT										0.48	217	20	256			Ì	
## 10			-	_							1		192		ĺ		
036-TOT			7					1								i	
095-TOT			7					1		1							
096-TOT			*	_				1									
SEMERIK MEAN)							ŀ	İ	
SEC Sedd 1			-					l								ļ	
OBD-96 Std1 2	CHEMEX MEAN			9	1.03	20	648		226	0.35	156	40	100				
SEC2-13 Sink 1	GEO-96	Std1	1														
SECTION SECT	GEO-96	Std2	1					136							f		
GEN-96 Std1 3 1330 130 GEN-96 Std1 3 1330 1330 GEN-96 Std1 4 1330 GEN-96 Std1 4 1330 GEN-96 Std1 4 1330 GEN-96 Std1 4 1330 GEN-96 Std1 5 128 136 GEN-96 Std1 5 128 GEN-96 Std2 5 126 GEN-96 Std2 5 126 GENEMEX MEAN 120 120 120 GEN-96 Std2 5 120 GEN-96 Std2 5 120 GENEMEX MEAN 120 GENEMEX ME	GEO-96	Std1	2					126			-						
GRO-96 Std2 3 132 130		Std2	2					130									
GRO-96 Std1 4 138 128			3					132									
SEC SET			-					130								•	
SECO_96			ĭ													[
Stolemen			ì		1									1	ł	,	
SEO2-96 CREMEN MEAN STO2-02 Blink 1 STO2-02 Blink 2 STO2-02 Blink 3 STO2-02 Blink 3 STO2-02 Blink 4 STO2-02 Blink 5 STO2-02 Blink 5 STO2-02 Blink 5 STO2-02 Blink 6 STO2-03 STO2-03 Blink 1 STO2-03 STO3-03 Blink 1 STO3-03 STO3-03 STO3-03 STO3-03 STO3-03 Blink 1 STO3-03 STO3-03 STO3-03 Blink 2 STO3-03 Blink 3 STO3-03 Blink 3 STO3-03 Blink 3 STO3-03 Blink 3 STO3-03 Blink 3 STO3-03 Blink 3 STO3-03 Blink 3 STO3-03 Blink 3 STO3-03 Blink 3 STO3-03 Blink 3 STO3-03 Blink 3 STO3-03 Blink 3 STO3-03 Blink 3 STO3-03 Blink 3 STO3-03 Blink 4 STO3-03 Blink 5 STO3-03 B			3		i	1									!		
SIO2-G2 Blnk 1			-		1	1			1	l.	1				ŀ	1	
SIO2-G2 SIO2-G2 SID1h SIO2-G2 SID2-G2 SID2-G2 SID2-G2 SID2-G2 SID2-G3 SID2-G3 SID2-G3 SID2-G3 SID2-G3 SID2-G3 SID2-G3 SID2-G3 SID2-G3 SID2-G3 SID2-G3 SID2-G3 SID2-T3 SID1h SID1h SID2-T3 SID1h SID1h SID2-T3 SID1h SID2-T3 SID1h SID1h SID2-T3 SID1h SID1h SID2-T3 SID1h SID1h SID1h SID2-T3 SID1h SI			- 1			1			1	1			1		İ		
SIO2-G2 Blnk 2 SIO2-G2 Blnk 3 SIO2-G2 Blnk 4 SIO2-G2 Blnk 5 SIO2-G2 Blnk 5	CHEREA REAN			A										!			
SIO2-02 Blnk 3	SI02-G2	Blnk	1					< 2									1
SIO2-G2								< 2								ŀ	
STO2-G2 Blnk 4								< 2									
SIO2-02 CHEMEX MEAN SIO2-T3 SIO2-T3 SIO2-T3 SID2-T3 S			-					< 2							1		
SIO2-T3 Blnk 1			- 1														
SIO2-T3 SIO2-T	CHEMEX MEAN		- 1														
SIO2-T3 SIO2-T		1				.	4.50		• • • • • • • • • • • • • • • • • • • •		ء ا	- 10	,				
SIO2-T3 SIO2-T								1	1 -		_	_		1	İ		
SIO2-T3 CHEMEX MEAN Blnk 4 < 1 < 0.01 < 1 170 136								1						1	1		
CHEMEX MEAN <-	SIO2-T3	•				1		1			_]	I		
96YTS 201	s102- T 3	Blnk	4	< 1											I	I	l
Origi-01 9 1.19 46 2050 40 166 0.34 128 < 10 160 96YTS 241 Dup2-01 3 2.68 28 1160 28 213 0.37 156 < 10 94 Orig2-01 3 2.68 29 1170 28 212 0.37 159 < 10 96 96YTS 281 Dup3-01 3 1.34 36 1000 16 121 0.55 195 < 10 110 Orig3-01 5 1.40 36 1040 12 127 0.58 203 < 10 116	CHEMEX MEAN			< 1	< 0.01	< 1	207		178	< 0.01	2	< 10	< 2		}		
Origi-01 9 1.19 46 2050 40 166 0.34 128 < 10 160 96YTS 241 Dup2-01 3 2.68 28 1160 28 213 0.37 156 < 10 94 Orig2-01 3 2.68 29 1170 28 212 0.37 159 < 10 96 96YTS 281 Dup3-01 3 1.34 36 1000 16 121 0.55 195 < 10 110 Orig3-01 5 1.40 36 1040 12 127 0.58 203 < 10 116	96YTS 201	Dupl-0	01	و	1.24	51	2160	42	169	0.34	131	< 10					
Orig2-01 3 2.68 29 1170 28 212 0.37 159 < 10 96 Pup3-01 3 1.34 36 1000 16 121 0.55 195 < 10 110 110 116 121 0.58 203 < 10 116					1.19	46	2050	40	166	0.34	128	< 10	160				
Orig2-01 3 2.68 29 1170 28 212 0.37 159 < 10 96 Pup3-01 3 1.34 36 1000 16 121 0.55 195 < 10 110 110 116 121 0.58 203 < 10 116	96V#g 241	ח-פותות	, I	7	2.68	28	1160	28	213	0.37	156	< 10	94				
Orig3-01 5 1.40 36 1040 12 127 0.58 203 < 10 116	JULIA MET		-														
Orig3-01 5 1.40 36 1040 12 127 0.58 203 < 10 116	0.CVMM 201	mm /	۱ ۱	,	1 24] 36	1000	15	121	0.55	195	< 10	110				
	701TS 401					1								•			
96YTS 321 Dup#-01 1 0.73 1010 1100 36 68 0.22 96 < 10 120			_				l								-		
	96YTS 321	Dup4-0	01	1	0.73	1010	1100	36	68	0.22	96	< 10	120				

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

QC Page #: Tot QC Pg: Date: Invoice #:

P.O. #;

2 23-SEP-96 19631733

GΡ

2-A

WO DATA OF CENTIFICATE ASSISTS	QC	DATA	OF	CERTIFICATE	A9631733
--------------------------------	----	-------------	----	-------------	----------

STD/DUP/BLANK DESCRIPTION	QC PAG	E Ag ppm . AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
	Origi-01	< 0.2	4.31	310	1.0	< 2	1.05	< 0.5	76	1215	140	6.24	0.57	10.00	1435
96YTS 361	Dup5-01 Orig5-01	< 0.2 < 0.2	7.39 7.40	400 400	1.0 1.5	< 2 < 2	2.37 2.34	< 0.5 < 0.5	54 55	397 41 6	214 214	5.94 5.91	1.14 1.20	4.84 4.72	1475 1470
	1														
									:						
															<u>'</u>
		<u> </u>													
															!
												<u> </u>	<u> </u>		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

QC Page #: Tot QC Pg: Date:

Invoice #: P.O. #:

2-B 23-SEP-96 19631733

GΡ

		_						QC DA	TA OF	CERTIF	ICATE		A96317	33	
STD/DUP/BLANK DESCRIPTION	QC PAG	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)				
	Origi-01	1	0.76	979	1040	34	67	0.22	95	< 10	118				
96YTS 361	Dup5-01 Orig5-01	3 2	1.29	346 347	820 870	336 340	135 135	0.42 0.41	151 152	< 10 < 10	420 422				
										:					
											1	10	1		
			!												
]		E										
			1												

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066. THE BENTALL CENTRE

VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :1-A
Total Pages :5
Certificate Date: 23-SEP-96
Invoice No. : I9631733
P.O. Number :

ĖG₽ Account

CERTIFICATE OF ANALYSIS A9631733

							CERTIFICATE OF ANALTSIS A9031733									
SAMPLE	PREP CODE	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm	
96YTS 201 96YTS 202 96YTS 203 96YTS 204 96YTS 205	201 202 201 202 201 202 201 202 201 202	0.4 0.4 0.6 0.8 0.8	6.73 7.66 8.23 7.61 7.85	920 970 1080 1110 830	2.5 3.0 4.0 3.0 4.0	< 2 < 2 < 2 < 2 < 2	0.54 0.78 0.90 0.87 1.00	< 0.5 1.5 2.5 0.5 1.5	14 28 35 18 48	72 83 90 83 91	53 71 90 60 110	3.79 5.09 5.80 4.28 6.22	1.74 2.05 2.14 2.02 1.94	0.87 0.93 1.19 1.07 1.04	830 1415 1570 980 1455	
96YTS 206 96YTS 207 96YTS 208 96YTS 209 96YTS 210	201 202 201 202 201 202 201 202 201 202	1.0 < 0.2 0.4 0.4	8.45 7.79 4.76 8.37 8.91	950 1310 690 1100 1370	4.0 2.5 1.0 3.5 3.5	< 2 < 2 4 < 2 < 2	0.75 0.50 0.74 0.78 1.20	1.0 1.5 3.0 < 0.5 1.0	39 37 21 34 28	96 107 41 92 95	100 67 49 60 97	5.54 5.07 3.81 5.68 5.16	2.00 2.13 1.08 2.27 2.44	1.19 1.97 1.62 1.10 1.53	2100 2620 2140 1580 1330	
96YTS 211 96YTS 212 96YTS 213 96YTS 214 96YTS 215	201 202 201 202 201 202 201 202 201 202	0.8 0.4 < 0.2 1.0 0.4	8.67 8.40 8.38 8.56 9.04	1240 1250 1310 920 1200	3.5 3.0 2.5 2.5 3.0	< 2 < 2 < 2 < 2 < 2	0.93 1.13 1.39 0.75 0.77	2.5 < 0.5 < 0.5 < 0.5	29 21 16 29 28	89 76 77 137 87	92 59 53 134 174	5.31 4.44 4.29 5.91 5.74	2.46 2.24 2.16 2.12 2.17	1.51 1.42 1.66 2.08 2.16	1820 1120 775 1825 1625	
96YTS 216 96YTS 217 96YTS 218 96YTS 219 96YTS 220	201 202 201 202 201 202 201 202 201 202	1.0 0.4 0.4 < 0.2 < 0.2	7.89 7.65 8.80 7.94 8.34	930 1020 1000 980 1130	3.0 2.5 3.0 2.0 3.0	< 2 < 2 < 2 < 2 < 2	0.85 0.93 1.05 1.12 1.29	1.5 2.5 < 0.5 < 0.5 < 0.5	55 42 34 25 26	112 92 109 110 99	181 128 108 101 85	7.21 5.73 5.96 5.48 5.18	2.11 1.99 2.18 1.83 2.13	1.78 1.81 1.92 2.04 1.83	1985 1760 1775 1300 1460	
96YTS 221 96YTS 222 96YTS 223 96YTS 224 96YTS 225	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 0.2 < 0.2 0.2	9.02 8.79 9.04 7.96 7.62	1250 1480 1170 1280 1080	3.0 2.5 3.0 2.0 2.5	< 2 < 2 < 2 < 2 < 2	1.53 1.19 1.34 1.54 1.08	< 0.5 < 0.5 0.5 < 0.5 < 0.5	26 19 28 22 22	99 75 99 88 90	102 33 84 36 43	5.36 3.93 4.68 4.43 4.66	2.11 2.01 1.81 1.81 1.72	2.05 1.83 2.20 1.75 1.61	1770 1510 2090 1370 1525	
96YTS 226 96YTS 227 96YTS 228 96YTS 229 96YTS 230	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 0.2 < 0.2 < 0.2 < 0.2	8.36 7.84 7.89 8.66 8.98	1650 1250 1170 1230 1350	2.5 2.5 2.0 3.0 3.0	< 2 < 2 < 2 < 2 < 2	2.02 1.79 1.75 1.46 1.17	0.5 < 0.5 < 0.5 < 0.5 < 0.5	20 25 23 21 23	73 92 101 90 83	27 57 42 42 59	3.90 4.68 4.96 4.71 4.65	1.91 1.73 1.77 2.28 2.20	1.81 2.07 1.88 1.52 1.72	1640 1560 1410 1100 1165	
96YTS 231 96YTS 232 96YTS 233 96YTS 234 96YTS 235	201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.70 7.45 8.22 9.81 6.27	1170 1140 1140 420 510	2.5 2.5 2.5 8.0 1.5	< 2 < 2 < 2 < 2 < 2	1.32 1.15 2.17 1.08 2.53	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 16 31 19 44	79 69 119 65 129	41 37 167 87 190	4.19 3.77 5.60 6.72 6.54	1.88 1.86 1.91 2.69 0.90	1.37 1.18 1.98 1.07 2.62	1040 870 1375 1315 1555	
96YTS 236 96YTS 237 96YTS 238 96YTS 239 96YTS 240	201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	8.26 7.25 7.98 7.49 7.25	1170 1150 930 990 1400	3.0 2.0 2.5 2.0 2.0	< 2 < 2 < 2 < 2 < 2	1.35 1.42 1.34 0.79 1.15	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 16 26 19 17	80 62 88 67 52	41 33 75 38 31	4.36 3.65 5.14 4.69 3.85	1.96 1.86 1.87 1.65 1.79	1.81 1.62 1.96 1.90	1130 865 1670 1305 850	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :1-B Total Pages :5 Certificate Date: 23-SEP-96 Invoice No. : 19631733

P.O. Number :

Account :GP

								CERTII	FICATE	A9631733					
	PREP	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sr ppm	Ti %	V ppm	W ppm	Zn ppm (ICP)				
SAMPLE	CODE	(ICP)	(ICP)	(ICP)	(ICP)	λλS	(ICP)	(ICP)	(ICP)	(ICP)	(ICF)				_
6YTS 201	201 202	9	1.19	46	2050	40	166	0.34	128	< 10	160				
6YTS 202	201 202	1.2	1.57	79	1780	88	181	0.43	127	< 10 < 10	286 632				
6YTS 203	201 202	13	1.59	108	1550	16 <u>4</u> 66	195 238	0.45 0.43	136 141	< 10	240	į			
6YTS 204	201 202 201 202	10 12	1.65	57 141	1590 1540	68	192	0.46	114	< 10	310			İ	
6YTS 205	201 202	1 12	1.70	171	1310				7.						
6YTS 206	201 202	11	1.48	94	2230	124	160	0.45	145	< 10	356				
6YTS 207	201 202	8	1.13	47	1570	100	89	0.41	191 150	< 10 < 10	202 244				
6YTS 208	201 202	5	0.86	19 76	2300 1660	520 72	87 204	0.54	148	< 10	242				
6YTS 209 6YTS 210	201 202 201 202	11 7	1.87	79	1650	160	269	0.46	160	< 10	458				
61TS 210	201 202		1.34		1000					<u> </u>	 				
6YTS 211	201 202	8	1.62	77	2120	352	193	0.42	158	< 10	538				
6YTS 212	201 202	6	1.94	50	1720	126	257	0.44	140	< 10 < 10	240 198		ŀ	ŀ	
6YTS 213	201 202	3	2.02	40	1750	48	272 106	0.46	154 173	< 10 < 10	628		ļ]	
6YTS 214	201 202	3 5	1.15 1.75	84 55	2260 1480	126	160	0.46	185	₹ 10	330				
6YTS 215	201 202	1 *	1.75	35	1480	120	100								
6YTS 216	201 202	8	1.30	105	1350	610	126	0.48	147	< 10	650	ļ			
6YTS 217	201 202	7	1.43	81	1220	220	156	0.47	142	< 10	448 298				
6YTS 218	201 202	6	1.83	66	1650	152	171 155	0.57	167 178	< 10 < 10	210				
6YTS 219	201 202 201 202	5 5	1.57	53 54	1560 1800	116 110	234	0.52	158	< 10	234				
6YTS 220	201 202	1 "	1.83	34	1000	1									
6YTS 221	201 202	3	1.65	48	2050	136	218	0.52	161	< 10	238	ļ			
6YTS 222	201 202	3	1.68	27	1330	100	228	0.47	125	< 10 < 10	176 280		l		
6YTS 223	201 202	3	1.24	39	1530 1580	170 64	195 262	0.39	139 145	< 10	136	į	l		
6YTS 224 6YTS 225	201 202 201 202	3 4	2.14 1.58	34 35	2060	106	181	0.49	151	< 10	200		İ		
61TS 245	201 202	1	1.55	35				<u> </u>		ļ					—
6YTS 226	201 202	5	1.90	29	1220	240	327	0.47	119	< 10	342				
6YTS 227	201 202	4	1.82	46	1260	152	223	0.53	146 159	< 10 < 10	290 198	1	1		
6YTS 228	201 202	4	1.94	38 50	1420 1950	9B 70	221 294	0.54	136	₹ 10	198		[
6YTS 229	201 202 201 202	6	1.95	55	1390	88	284	0.53	152	₹ 10	230			}	
6YTS 230	401 404	J*	1.33		1333						 		—— ——		—
6YTS 231	201 202	4	1.88	44	1610	68	265	0.47	130	< 10	194				
6YTS 232	201 202	4	1.82	40	1770	30	263	0.44	125 181	< 10 < 10	116 148				
6YTS 233	201 202	3	2.25	56 32	1830 950	34 10	289 98	0.62	87	< 10	216	ı	Ì	1	
6YTS 234	201 202 201 202	4	1.30	62	1000	10	149	0.70	227	₹ 10	98		1		
6YTS 235	401 404	1	1.30					<u> </u>		1	 				—
6YTS 236	201 202	3	2.02	35	1620	28	263	0.44	126	< 10	90			I	
6YTS 237	201 202	1	2.17	24	1390	16	265	0.41	114	< 10 < 10	84 112				
6YTS 238	201 202	5	2.16	47	1530 2230	16 10	217 187	0.46	146 150	10	82		1		
6YTS 239	201 202 201 202	1 2	2.22	27 27	1260	14	236	0.39	124	< 10	76				
6YTS 240	401 404	1 1	4.33	^ '		-		1		1	1			_	

Analytical Chemists * Geochemists * Registered Assayers North Vancouver V7J 2C1 212 Brooksbank Ave., British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :2-A Total Pages :5 Certificate Date: 23-SEP-96 Invoice No. :19631733

P.O. Number : :GP Account

A9631733 **CERTIFICATE OF ANALYSIS**

SAMPLE	PREP CODE	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
96YTS 241	201 202	< 0.2	8.17	1170	2.0	< 2	0.76	< 0.5	26	60	89	4.99	1.49	2.54	2940
96YTS 242	201 202	< 0.2	7.77	1320	2.0	< 2	0.98	< 0.5	61	90	199	5.52	2.13	2.22	2320 1435
96YTS 243	201 202	< 0.2	5.94	730	1.5	< 2	0.94	< 0.5	18	59	53	4.35	1.42 2.07	2.40 2.04	3480
96YTS 244	201 202	0.6	7.70	1330	2.5	< 2	0.62	0.5	39	89 48	125 67	6.63 4.22	1.35	2.27	2470
96YTS 245	201 202	< 0.2	6.78	1130	2.0	< 2	1.01	0.5	26	40	67	4.24	1.33		
96YTS 246	201 202	< 0.2	6.11	960	1.5	< 2	0.54	1.5	73	62	90	5.76 6.28	1.43 1.80	1.94 1.88	4970 3110
96YTS 247	201 202	0.2	7.66	960	2.5	< 2	0.84	< 0.5	50 16	73 58	194 25	3.66	2.03	1.62	970
96YTS 248	201 202	< 0.2	7.73	1310	2.0	< 2	0.90	< 0.5 < 0.5	26	71	97	4.84	2.13	1.94	1390
96YTS 249	201 202	< 0.2	8.22	1140	2.5	< 2	1.10	< 0.5	25	72	72	4.34	1.84	1.84	1335
96YTS 250	201 202	< 0.2	7.52	1010	2.5	•	1.02	. 0.5							
96YTS 251	201 202	< 0.2	7.86	1140	1.5	< 2	0.91	< 0.5	33	88	140 147	6.36 6.06	1.52 1.92	4.01 3.24	1460 2330
96YTS 252	201 202	< 0.2	7.84	1050	2.0	4	0.77	< 0.5	38 50	83 83	111	5.28	1.86	1.40	2250
96YTS 253	201 202	0.6	7.32	960	3.5	6 2	0.86	1.5 1.0	31	66	87	5.47	1.74	2.66	2070
96YTS 254	201 202	< 0.2 0.6	7.25 8.99	1050 1720	2.0 3.0	< 2	0.54	< 0.5	40	115	144	6.43	2.58	2.55	2320
96YTS 255	201 202	""	8.99	1720	3.0		0.51								
96YTS 256	201 202	2.0	8.46	1460	3.5	< 2	0.62	3.0	334	181	489 141	9.72	2.24	1.91 1.64	3560 2050
96YTS 257	201 202	0.4	8.83	970	3.5	< 2	1.03	1.0	43	103 103	196	6.51	2.27	1.46	1800
96YTS 258	201 202	0.6	9.03	990	3.5	< 2	0.92	< 0.5 < 0.5	57 26	66	67	4.23	1.98	1.10	895
96YTS 259	201 202	< 0.2	8.00 8.54	1040 910	3.0	< 2	1.27	< 0.5	2B	104	73	5.22	2.15	1.41	1145
96YTS 260	201 202	< 0.2	8.54	910	3.0		1.2				L				1100
96YTS 261	201 202	< 0.2	6.00	640	2.0	< 2	0.67	< 0.5	10	68	15	4.06	1.68	0.62 0.82	1125 1025
96YTS 262	201 202	< 0.2	6.92	670	3.0	< 2	0.70	< 0.5	10	60	29	4.39 5.56	1.82	1.46	1535
96YTS 263	201 202	0.2	7.41	680	2.5	< 2	0.74	< 0.5	37 31	78 79	106 124	5.50	1.64	1.42	1260
96YTS 264	201 202	0.2	7.36	730	2.5	< 2	0.81	< 0.5	27	69	104	4.31	1.68	1.37	1075
96YTS 265	201 202	< 0.2	7.27	880	4.5		1.01	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					<u> </u>		
96YTS 266	201 202	< 0.2	7.10	920	2.5	< 2	1.21	1.0	29	77	112	4.48	1.72	1.49	1145 1155
96YTS 267	201 202	0.4	5.83	610	2.0	< 2	0.74	1.5	27 55	80 103	123 152	5.60	1.28	1.86	1360
96YTS 268	201 202	0.4	6.61	740	2.0	2	0.87	2.0 2.0	38	93	193	6.27	1.74	1.61	1550
96YTS 269	201 202	0.8	7.37	930 930	3.0 2.5	< 2 < 2	0.70	2.5	47	104	204	6.96	1.93	1.66	1775
96YTS 270	201 202	1.4	7.60	330	2.5						<u></u>		ļ. <u></u>		
96YTS 271	201 202	0.4	8.20	1010	3.5	< 2	0.64	< 0.5	31	90	103	5.84	2.13	1.67	1515 1435
96YTS 272	201 202	0.4	7.43	940	2.5	< 2	1.09	1.5	31	105	106	5.40 5.04	1.81	1.89	1435
96YTS 273	201 202	0.4	7.57	910	2.0	< 2	1.44	< 0.5	22 27	99 109	92 112	5.81	2.23	1.81	1370
96YTS 274	201 202	0.4	8.62	1370	2.5	< 2	0.61	< 0.5 0.5	44	93	166	6.21	1.43	2.03	3160
96YTS 275	201 202	0.6	7.38	880	2.0	< 2	0.78	V.5							
96YTS 276	201 202	0.2	7.48	1180	1.5	< 2	1.22	< 0.5	27	85	138	5.60	1.29	2.29	1490 2540
96YTS 277	201 202	0.4	7.93	1500	1.5	< 3	1.38	1.5	38	93	175	6.27	1.56	2.64	1840
96YTS 278	201 202	< 0.2	7.71	1330	1.5	< 2	1.07	< 0.5	37	112	148	6.36	1.66	2.30	2140
96YTS 279	201 202	0.4	7.76	1210	2.0	< 2	1.34	< 0.5	33	84 79	178 146	5.90	1.46	3.04	1520
96YTS 280	201 202	0.4	6.95	920	1.5	< 2	1.61	< 0.5	1 48	/9	***	3.90	1.10		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number : 2-B
Total Pages :5
Certificate Date: 23-SEP-96
Invoice No. : I9631733
P.O. Number :

:GP Account

CERTIFICATE OF ANALYSIS	A9631733
-------------------------	----------

SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm	W ppm (ICP)	Zn ppm (ICP)				
	204 000		2.68	29	1170	28	212	0.37	159	< 10	96	_			
96YTS 241 96YTS 242	201 202 201 202	3 3	1.35	75	1260	34	158	0.37	182	< 10	156				!
	201 202	3	1.20	30	2020	24	152	0.28	123	< 10	86				
96YTS 243 96YTS 244	201 202	وً ا	1.36	59	2100	48	114	0.47	188	< 10	206		ļ		
96YTS 245	201 202	ĺź	1.26	22	1370	126	219	0.39	140	< 10	160			ł	
30113 243	201												 		
96YTS 246	201 202	6	0.95	34	2720	50	85	0.26	163	< 10	156 146				1
96YTS 247	201 202	4	1.69	51	1860	30	154	0.43	147	< 10 < 10	76			1	
96YTS 248	201 202	1	1.85	24	1200	16	206	0.40	113 144	< 10	102			1	
96YTS 249	201 202	4	1.77	41	1240	24	191	0.46	142	< 10	102			1	
96YTS 250	201 202	1	1.55	38	1640	28	167	0.41	144	. 10	102				
96YTS 251	201 202	1	1.74	38	1010	6	121	0.56	243	< 10	98				
96YTS 252	201 202	آ آ	1.40	45	1250	22	106	0.55	210	< 10	116		1		1
96YTS 253	201 202	11	1.06	95	2230	54	138	0.34	146	< 10	276				1
96YTS 254	201 202	< 1	1.50	35	1530	16	115	0.47	188	< 10	124		İ		
96YTS 255	201 202	14	1.31	80	1220	32	105	0.51	213	< 10	192		1		
055	201 202	38	0.88	471	1540	48	110	0.42	235	< 10	494		1		
96YTS 256	201 202	و ا	1.87	126	1690	32	192	0.48	141	< 10	298				
96YTS 257 96YTS 258	201 202	10	1.71	168	1790	36	189	0.46	136	< 10	302				
96YTS 259	201 202	وّ ا	1.92	88	1550	20	279	0.38	111	< 10	218				
96YTS 260	201 202	Ιí	2.07	86	1540	26	232	0.52	129	< 10	218			i	
					<u> </u>	<u> </u>		<u> </u>			76		+	-	
96YTS 261	201 202	4	1.69	14	2910	22	161	0.47	91	< 10					- [
96YTS 262	201 202	9	1.90	20	2140	28	164	0.40	90	< 10	92 330				1
96YTS 263	201 202	13	1.26	108	1140	26	177	0.38	120	< 10 < 10	342				
96YTS 264	201 202	19	1.25	96	1060	30	265	0.36	140 102	< 10	190				
96YTS 265	201 202	12	1.46	76	1010	36	337	0.34	102	\ 10	130			ļ	
96YTS 266	201 202	8	1.45	86	990	32	289	0.34	111	< 10	240				
96YTS 267	201 202	13	0.88	84	1460	42	119	0.27	109	< 10	272			1	1
96YTS 268	201 202	16	1.12	127	1440	38	147	0.30	168	< 10	36B	l		1	
96YTS 269	201 202	21	1.07	137	1200	44	127	0.34	133	< 10	378	l			1
96YTS 270	201 202	16	0.98	117	1440	352	125	0.36	140	10	410				
0.5	201 202	12	1.34	94	1050	52	145	0.43	140	< 10	224				
96YTS 271	201 202 201 202	10	1.44	83	1030	64	168	0.40	141	10	222				
96YTS 272	201 202	1 6	1.52	61	1030	50	175	0.43	148	< 10	182	İ			1
96YTS 273 96YTS 274	201 202	10	1.12	89	1570	80	130	0.44	168	10	268	ì		1	1
96YTS 275	201 202	1 7	1.41	73	1450	100	156	0.47	170	10	220	1			
		<u> </u>				ļ <u></u>	427	0.40	187	< 10	156		 	+	
96YTS 276	201 202] 5	1.36	56	1120	54 68	137 148	0.49	201	10	190		1	1	
96YTS 277	201 202	3	1.35	58	1530	48	122	0.52	205	10	168	ļ	1	1	1
96YTS 278	201 202	6	1.32	57	1720	48	121	0.45	191	10	178		1	1	1
96YTS 279	201 202	6	1.04	55 40	1380 1350	26	101	0.44	205	< 10	118			1	
96YTS 280	201 202	3	0.92	1 40	1330	1 40	1 1			'-"		1	i		

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :3-A
Total Pages :5
Certificate Date: 23-SEP-96
Invoice No. : I9631733
P.O. Number : ___

:GP

Account

CERTIFICATE OF ANALYSIS	A9631733
-------------------------	----------

			,				, <u>L</u>	1	T	Ť	T 2.2	T	T.	Ĭ	
SAMPLE	PREP CODE	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
96YTS 281	201 202	< 0.2	7,88	1220	1.5	< 2	1.14	< 0.5	31	67	129	5.98	1.97	2.73	1840
96YTS 282	201 202	0.2	7.24	770	2.0	< 2	2.43	< 0.5	41	81	79	5.29	1.83	1.90	2260
96YTS 283	201 202	< 0.2	5.88	830	1.5	< 2	0.87	< 0.5	18	76	45	4.26	1.31	1.55	1060
96YTS 284	201 202	< 0.2	7.19	1020	1.5	< 2	1.50	< 0.5	33	101	194	5.88	1.62	2.37	1555
96YTS 285	201 202	< 0.2	6.77	950	1.5	< 2	1.25	< 0.5	22	88	71	4.77	1.48	2.19	1090
96YTS 286	201 202	< 0.2	7.56	1190	2.0	< 2	1.10	< 0.5	33	84	127	5.42	1.66	2.40	1465 1440
96YTS 287	201 202	< 0.2	8.00	1220	2.0	< 2	1.35	< 0.5	29	89	100	5.20	1.86	2.47	1915
96YTS 288	201 202	< 0.2	8.20	1180	2.0	< 2	0.95	< 0.5	34	99	117	5.90	1.80	2.40	1445
96YTS 289	201 202	< 0.2	7.80	1070	2.0	2	1.51	< 0.5	32	108	145	5.70	1.70	2.36	1405
96YTS 290	201 202	< 0.2	7.68	1060	1.5	< 2	1.32	< 0.5	36	104	221	5.92	1.58	2.32	
96YTS 291	201 202	< 0.2	6.26	830	1.0	< 2	1.72	< 0.5	23	95	101 218	4.62 5.64	1.20 1.49	1.90 2.44	1105 1200
96YTS 292	201 202	< 0.2	7.61	860	1.5	< 2	2.47	< 0.5	31	118		5.55	1.57	2.15	1150
96YTS 293	201 202	< 0.2	7.78	680	2.0	< 2	2.38	< 0.5	27	121	146 202	5.62	1.46	2.32	1270
96YTS 294	201 202	0.2	7.77	720	1.5	< 2	2.11	< 0.5	28	123 130	156	5.66	1.41	2.48	1165
96YTS 295	201 202	< 0.2	7.90	750	1.5	< 2	2.70	< 0.5	31	130					
96YTS 296	201 202	< 0.2	7.48	860	1.5	< 2	1.93	< 0.5	28 30	104 106	145 182	5.52 5.28	1.42	2.14	1345 1010
96TTS 297	201 202	0.2	7.46	760	1.5	2	1.95	< 0.5		120	169	5.79	1.51	2.46	1560
96YTS 298	201 202	< 0.2	7.94	930	1.5	< 2	1.73	< 0.5	31 50	174	237	7.08	1.23	3.22	2040
96YTS 299	201 202	< 0.2	8.53	610	1.0	< 2	2.43	< 0.5	24	107	70	5.19	1.13	1.82	1245
96YTS 300	201 202	< 0.2	6.39	740	1.0	< 2	1.28	< 0.5	<u></u>			ļ			
96YTS 301	201 202	0.8	6.27	450	1.5	< 2	1.83	< 0.5	67	143	393	6.63	0.98	2.58	1550
96YTS 302	201 202	0.4	7.81	600	1.5	< 2	2.04	< 0.5	61	163	298	6.85	1.39	2.72	1225
96YTS 303	201 202	0.6	7.70	630	2.0	< 2	1.74	< 0.5	51	122	201	6.83	1.39	2.22	2020
96YTS 304	201 202	1.0	8.48	480	3.0	< 2	1.38	< 0.5	62	178	226	7.70	1.50	2.43	2130
96YTS 305	201 202	0.6	6.59	580	3.0	< 2	1.33	0.5	21	90	46	4.41	1.58	1.47	1160
96YTS 306	201 202	0.4	6.12	550	2.0	< 2	2.24	< 0.5	35	408	70	5.67	1.24 0.91	4.02 2.09	1185 2070
96YTS 307	201 202	1.4	7.23	290	1.5	< 2	3.83	< 0.5	220	113	1195	13.25			1390
96YTS 308	201 202	0.8	7.11	400	2.0	< 2	1.91	< 0.5	49	194	122	5.88	1.14	2.38 4.50	1195
96YTS 309	201 202	< 0.2	4.88	400	1.5	< 2	1.83	< 0.5	37	440	64	4.78	1.16	3.58	3070
96YTS 310	201 202	0.8	9.67	370	2.0	4	4.55	1.0	100	150	781	12.00			
96YTS 311	201 202	0.6	7.09	310	1.0	< 2	3.42	< 0.5	54	172	286	8.18 7.23	0.85	3.44	2180 1530
96YTS 312	201 202	0.4	6.46	280	1.0	< 2	3.25	< 0.5	55	123	209	7.39	0.72	2.63	1750
96YTS 313	201 202	0.8	7.33	350	1.5	< 2	3.46	< 0.5	58 51	130 152	254 294	7.36	0.95	2.76	1605
96YTS 314	201 202	0.6	7.01	520	1.5	< 2	2.91	< 0.5		1715	35	6.98	0.31	>15.00	1395
96YTS 315	201 202	< 0.2	2.32	180	0.5	< 2	0.80	< 0.5	107	1/15		ļ		ļ	ļ
96YTS 316	201 202	< 0.2	6.84	770	3.0	< 2	1.62	< 0.5 < 0.5	33 56	197 539	46 110	4.50 5.41	1.55	2.66 5.90	1045 1195
96YTS 317	201 202	< 0.2	5.55	610	2.0	< 2	1.46	< 0.5	50	629	57	5.83	1.20	5.26	1445
96YTS 318	201 202	< 0.2	6.40	560	2.0	< 2	1.37		28	232	26	5.65	1.84	2.23	1345
96YTS 319	201 202	< 0.2	7.08	480	3.5	< 2	0.89	< 0.5	79	1100	65	5.66	0.84	9.80	1470
96YTS 320	201 202	< 0.2	4.46	390	1.5	< 2	0.87	< 0.5	/9	1100		3.30	0.31	2.30	
			l			<u> </u>	I .		<u> </u>	<u> 1 </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1

PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN; M. JONES

Page Number :3-B
Total Pages :5
Certificate Date: 23-SEP-96
Invoice No. : I 9631733
P.O. Number :
Account :GP

								CERTI	FICATE	OF AN	ALYSIS	A9631733	
Sample	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm {ICP}		
96YTS 281	201 202	5	1.40	36	1040	12	127	0.58	203	< 10	116 124		
96YTS 282	201 202	3 4	0.88	48 27	1290 2050	28 12	131 123	0.36	126 141	< 10 < 10	102		ł
96YTS 283 96YTS 284	201 202 201 202		1.59	50	1280	12	168	0.61	183	< 10	124		
96YTS 285	201 202	ā	1.47	33	1050	8	145	0.53	166	< 10	98		
96YTS 286	201 202	4 3	1.55 1.64	43 41	1030 1230	12 10	144 166	0.54 0.58	182 179	< 10 < 10	124 122		
96YTS 287 96YTS 288	201 202 201 202	3	1.53	56	1600	22	133	0.55	194	< 10	144		
96YTS 289	201 202	1	1.79	54	1140	8	154	0.61	190	< 10	118		
96YTS 290	201 202	3	1.59	52	1270	12	143	0.54	193	< 10	132		<u> </u>
96YTS 291	201 202	2	1.40	33	1410	4	145	0.50	166	< 10	78		
96YTS 292	201 202	3	2.06	47	890	< 2	189 179	0.64	193 168	10 < 10	106 114		
96YTS 293 96YTS 294	201 202 201 202	1 1	2.15 1.88	46	1020 1220	2 6	177	0.59	172	< 10	122		
96YTS 295	201 202	3	2.13	48	1010	6	204	0.66	187	< 10	108		
96YTS 296	201 202	2	1.82	43	1090	8	171	0.62	176	< 10	110 134		
96YTS 297	201 202	4	1.77	51 54	1350 1220	8 44	179 168	0.58	170 183	< 10 < 10	150		1
96YTS 298 96YTS 299	201 202 201 202	3 4	1.61	69	1170	10	180	0.70	234	10	136		ĺ
96YTS 300	201 202	3	1.40	32	1230	16	131	0.54	165	< 10	88		
96YTS 301	201 202	4	1.07	101	1130	36	144	0.45	187	< 10	148 178		
96YTS 302	201 202	3	1.41	115	1400 1300	22	184 149	0.58	205 182	< 10 < 10	140		1
96YTS 303 96YTS 304	201 202 201 202	4	1.57	123	1390	46	142	0.53	179	< 10	204		
96YTS 305	201 202	4	1.43	66	1980	24	194	0.39	106	< 10	184		
96YTS 306	201 202	1	1.29	286	1550	14	229	0.55	157	< 10	118 232		
96YTS 307	201 202	5 4	1.09 1.28	187 119	1620 1410	14	188 156	0.29	152 142	10 < 10	168		
96YTS 308 96YTS 309	201 202 201 202	1 1	0.93	378	910	16	170	0.41	129	< 10	88		
96YTS 310	201 202	ī	1.59	88	1340	6	235	0.87	361	10	240		
96YTS 311	201 202	5	1.15	70	700	24	207	0.80	294	10	200 154		
96YTS 312	201 202 201 202	2 2	1.25	74 78	930 920	8 8	145 184	0.67	237 250	10 < 10	202		
96YTS 313 96YTS 314	201 202	3	1.24	109	1170	16	173	0.64	223	< 10	180		
96YTS 315	201 202	1	0.54	1555	580	10	51	0.14	77	10	102		
96YTS 316	201 202	4	2.01	439	1200	22	234	0.48	119	< 10 < 10	104 124		
96YTS 317	201 202 201 202	1 1	1.58	722 529	740 1400	38 42	201 151	0.46	122 133	< 10	166		
96YTS 318 96YTS 319	201 202		2.07	208	1260	14	118	0.51	100	< 10	116		
96YTS 320	201 202	2	1.09	1225	700	24	94	0.28	91	10	116		_
- •	1 1	1		1		1	1	1		1			` _

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number : 4-A Total Pages :5 Certificate Date: 23-SEP-96 Invoice No. : 19631733 P.O. Number :

Account

:GP

CERTIFICATE	OF ANALYSIS	A9631733

SAMPLE	PREP CODE	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
96YTS 321 96YTS 322 96YTS 323 96YTS 324	201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2	4.31 6.23 5.58 3.94	310 380 340 250	1.0 2.5 2.0 0.5	< 2 < 2 < 2 < 2	1.05 1.15 1.22 1.57	< 0.5 < 0.5 < 0.5 < 0.5	76 65 53 79	1215 630 782 1240	140 70 53 55	6.24 6.20 5.38 6.00	0.57 1.26 0.97 0.32	10.00 6.87 6.32 11.25	1435 1215 1145 1605
96YTS 325 96YTS 326 96YTS 327	201 202 201 202 201 202	< 0.2 < 0.2 < 0.2	7.86 7.03	570 450	3.0 3.0	< 2 < 2 < 2	2.21 2.33 1.28	< 0.5 < 0.5 < 0.5	40 49 73	476 287 573 1005	170 86 62 68	5.40 5.54 6.10 6.26	1.03 1.56 1.34 0.95	3.51 4.60 8.52	1275 1325 1270 1505
96YTS 328 96YTS 329 96YTS 330	201 202 201 202 201 202	< 0.2 < 0.2 < 0.2	5.80 5.15 5.15	360 330 390	2.0 1.5 2.0	< 2 < 2 < 2	1.33 1.69 0.89	< 0.5 < 0.5 < 0.5	63 14	935 196	75 40	6.12 3.76	0.63 1.04	7.56 1.71	1320 655
96YTS 331 96YTS 332 96YTS 333 96YTS 334 96YTS 335	201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	6.16 4.89 5.71 5.35 6.79	660 610 710 520 1560	1.5 2.0 2.0 7.0	< 2 < 2 < 2 < 2 < 2	1.55 1.21 0.98 0.85	< 0.5 < 0.5 < 0.5 < 0.5	20 15 9 34	150 105 97 125	34 43 54 346	3.78 3.98 3.16 5.22	1.12 1.36 1.11 1.28	1.70 1.32 1.07 1.54	1565 1460 545 2350
96YTS 336 96YTS 337 96YTS 338 96YTS 339 96YTS 340	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 < 0.2 < 0.2 < 0.2	5.86 5.83 5.74 3.75 4.00	960 1000 690 860 1000	2.5 2.5 2.5 1.0 1.5	< 2 2 < 2 8 2	1.68 1.13 1.08 1.18 1.01	< 0.5 < 0.5 < 0.5 < 0.5 3.0	26 23 18 12 14	262 107 95 116 118	119 136 106 32 44	4.35 4.84 3.98 2.68 2.79	1.00 1.25 1.28 0.82 0.99	2.49 1.38 1.24 1.26 1.14	1300 1635 1340 1185 1565
96YTS 341 96YTS 342 96YTS 343 96YTS 344 96YTS 345	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 0.4 < 0.2 < 0.2	6.06 5.18 6.01 5.98 5.35	760 690 710 710 850	2.5 1.5 2.0 2.5 2.0	< 2 < 2 < 2 2 < 2	1.68 1.31 1.26 1.49 1.19	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 15 19 18 13	126 106 113 101 87	80 69 81 56 64	4.21 3.88 4.72 4.44 3.92	1.24 0.90 1.01 1.12 1.00	1.77 1.42 1.41 1.42 1.23	1195 1135 1525 1375 1350
96YTS 346 96YTS 347 96YTS 348 96YTS 349 96YTS 350	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.51 6.48 3.63 3.86 3.93	710 560 770 850 510	1.0 2.0 1.5 1.5	< 2 < 2 < 2 < 2 < 2 < 2	1.29 1.52 0.69 1.23 0.73	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 15 6 12 6	70 98 61 90 70	17 48 14 36 17	2.61 5.10 2.89 3.23 2.61	0.83 1.40 1.06 0.72 1.24	1.02 1.34 0.61 1.23 0.59	1360 1315 520 910 605
96YTS 351 96YTS 352 96YTS 353 96YTS 354 96YTS 355	201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	5.30 5.01 7.11 4.15 4.33	610 610 690 970 960	2.0 2.0 3.5 1.5	< 2 < 2 < 2 < 2 < 2	1.24 1.43 1.29 0.93 1.46	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 22 23 12 15	118 132 113 91 113	35 61 54 53 50	5.31 4.78 5.08 4.53 4.36	1.25 0.98 1.39 0.86 0.91	1.26 1.64 1.33 1.12 1.49	1110 1725 1065 995 1045
96YTS 356 96YTS 357 96YTS 358 96YTS 359 96YTS 360	201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.91 5.23 3.90 6.91 6.13	1400 610 1050 680 630	1.0 1.5 1.5 2.5 1.5	< 2 < 2 < 2 < 2 < 2	1.42 2.07 0.87 1.83 1.94	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 24 11 29 29	137 201 85 228 267	41 85 32 125 179	3.89 4.66 3.62 5.15 5.48	0.81 0.80 1.02 1.31 1.07	1.60 2.15 0.94 2.56 2.86	905 1320 945 1255 1240

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project : 6112 Comments: ATTN: M. JONES

Page Number : 4-B Total Pages :5 Certificate Date: 23-SEP-96 Invoice No. : I 9631733

P.O. Number : Account :GP

	CERTII	FICATE	OF AN	ALYSIS	F	1963173	33	
_								

SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm	W ppm	Zn ppm (ICP)				
96YTS 321	201 202	1	0.76	979	1040	34	67	0.22	95	< 10	118 112				
96YTS 322	201 202	4	1.63	919	820	12	117	0.42	117 93	10 < 10	128		Į.	(
96YTS 323	201 202	3	1.51	847	920	14	117	0.35	121	10	88				
96YTS 324	201 202	< 1	0.70	1310	150	10 36	73 153	0.41	131	< 10	204		ŀ		į
96YTS 325	201 202	3	1.37	829	1300	36	723	0.41	131						
96YTS 326	201 202	1	2.10	407	1090	22	224	0.57 0.45	133 122	< 10 < 10	150 194				
96YTS 327	201 202	1	1.60	658	1170	40	115 87	0.45	112	10	182			ł	
96YTS 328	201 202	1 1	1.14	954	880	44 64	86	0.31	112	10	216		l	ŀ	
96YTS 329	201 202	3 5	0.90 1.15	669 113	890 1550	40	85	0.41	95	< 10	120		<u> </u>		
96YTS 330	201 202	"	1.15	113	1350		- 63	0.41							
96YTS 331	201 202	3	1.06	182	890	24	108	0.57	137 120	< 10 < 10	162 82				
96YTS 332	201 202	3	1.43	62	1540	24	144	0.47	123	< 10	126				
96YTS 333	201 202	3	1.35	39	1480	36 32	152 127	0.44	100	< 10	90				
96YTS 334	201 202	3	1.30	34 73	1420 1100	90	87	0.49	161	< 10	244				j
96YTS 335	201 202	4	1.04	13	1100	30		0.43	101						
96YTS 336	201 202	3	1.23	111	1120	34	115	0.42	140	< 10	128				
96YTS 337	201 202	3	1.29	59	1120	48	104	0.49	155	< 10	168		Į.		
96YTS 338	201 202	4	1.56	51	1380	28	121	0.37	96	< 10	120			Í	
96YTS 339	201 202	1	0.93	41	1760	12	106	0.37	116	< 10	56				
96YTS 340	201 202	1	1.09	44	1590	20	106	0.33	111	< 10	134				
96YTS 341	201 202	3	1.55	73	1400	18	142	0.49	126	< 10	120				
96YTS 342	201 202	1	1.13	51	920	12	91	0.45	114	< 10	94	ļ			
96YTS 343	201 202	2	1.25	45	1530	20	89	0.52	139	< 10	120		1		
96YTS 344	201 202	2	1.43	4.6	1600	8	117	0.47	126	< 10	124 90]		İ
96YTS 345	201 202	3	1.19	47	1040	12	89	0.40	114	< 10	30				
96YTS 346	201 202	1	0.92	22	950	16	93	0.52	117	< 10	42	:			
96YTS 347	201 202	4	1.75	33	1400	12	91	0.52	127	< 10	98		1		
96YTS 348	201 202] 3	1.04	18	580	14	76	0.60	106	< 10	34		1		
96YTS 349	201 202	1	0.85	38	750	6	67	0.36	99 86	< 10 < 10	54 44		1		
96YTS 350	201 202	3	1.40	18	1250	20	66	0.47	80	V 10	**			ļ	
96YTS 351	201 202	4	1.45	35	800	22	78	0.63	140	< 10	100				
96YTS 352	201 202	1	1.05	49	1390	24	78	0.65	175	< 10	142			1	1
96YTS 353	201 202	2	1.72	55	1050	4	93	0.55	103	< 10	162		1		
96YTS 354	201 202	3	0.88	36	610	2	57	0.43	120	< 10	90				i
96YTS 355	201 202	3	1.05	48	700	10	78	0.53	129	< 10	100				
96YTS 356	201 202	2	0.85	47	1100	10	76	0.52	133	< 10	76				
96YTS 357	201 202	5	1.18	71	2000	4	102	0.52	154	10	118		[1	1
96YTS 358	201 202	4	0.98	36	940	8	77	0.53	96	< 10	60			1	
96YTS 359	201 202	3	1.79	215	1430	42	152	0.54	135	< 10	186	ŀ			l
96YTS 360	201 202	3	1.63	183	1030	24	147	0.51	143	< 10	118				
						<u> </u>	<u> </u>	<u></u>		<u>L</u>	L	<u> </u>	<u> </u>	<u> </u>	<u> </u>

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066. THE BENTALL CENTRE

VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :5-A Total Pages :5 Certificate Date: 23-SEP-96 Invoice No. : 19631733 P.O. Number :

ĖG₽ Account

CERTIFICATE OF ANALYSIS	A9631733
QEITTINGOTTE Q. 7.0.0	

SAMPLE	PREP CODE	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm {ICP}	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
96YTS 361	201 202	< 0.2	7.40	400	1.5	< 2	2.34	< 0.5	55	416	214	5.91	1.20	4.72	1470
96YTS 362	201 202	< 0.2	6.19	550	1.5	< 2	1.65	< 0.5	58	475	218	5.86	0.96	4.88	1415
96YTS 363	201 202	< 0.2	6.34	630	2.0	< 2	2.07	< 0.5	40	337	134	5.37	1.14	3.93	1305
96YTS 364	201 202	< 0.2	7.64	790	2.5	< 2	1.95	< 0.5	44	217	285	6.24	1.52	2.80	1470
96YTS 365	201 202	< 0.2	6.49	850	2.0	. < 2	1.67	< 0.5	36	188	214	5.01	1.28	2.30	1135
96YTS 366	201 202	< 0.2	5.45	930	2.5	< 2	1.91	< 0.5	28	150	182	4.92	1.00	2.16	1285
96YTS 367	201 202	< 0.2	5.28	840	2.0	2	1.75	< 0.5	23	138	88	4.73	0.90	1.94	1215
96YTS 368	201 202	< 0.2	7.71	880	7.0	< 2	1.47	< 0.5	49	918	119	5.94	1.74	3.59	3070
96YTS 369	201 202	< 0.2	6.37	900	2.5	< 2	1.41	< 0.5	21	143	137	4.62	1.45	1.56	1135
96YTS 370	201 202	< 0.2	5.35	900	2.5	2	1.83	< 0.5	26	125	101	4.87	0.98	1.95	1295
96YTS 371	201 202	< 0.2	5.61	1120	2.5	2	1.58	< 0.5	28	139	228	5.69	1.14	2.02 1.98	1485 1495
96YTS 372	201 202	< 0.2	6.56	1120	2.5	< 2	1.50	< 0.5	31	163	131	5.72	1.53	2.19	1415
96YTS 373	201 202	< 0.2	6.03	1790	3.0	< 2	0.85	< 0.5	37	225	279	6.86	1.39	2.48	1200
96YTS 374	201 202	< 0.2	5.72	2040	2.5	< 2	1.10	0.5	26	229	161	6.28	1.38	2.92	1595
96YTS 375	201 202	< 0.2	6.27	1420	3.5	< 2	0.73	< 0.5	46	513	185	5.21	1.22		ļ
96YTS 376	201 202	< 0.2	5.75	1000	3.5	< 2	1.38	< 0.5	29	233	120	5.92	1.00 0.87	2.10 0.93	1700 2040
96YTS 377	201 202	< 0.2	3.53	1440	1.5	< 2	0.69	1.5	21	78	61	3.41		1.46	1795
96YTS 378	201 202	< 0.2	5.53	1830	2.5	< 2	0.79	< 0.5	23	102	140	5.41	1.28	1.94	1585
96YTS 379	201 202	< 0.2	5.65	1500	2.5	< 2	1.77	< 0.5	32	141	130	5.58	1.15	2.28	1550
96YTS 380	201 202	< 0.2	6.89	1510	2.5	10	1.85	< 0.5	41	192	225	6.00	1.14	2.20	
96YTS 381	201 202	< 0.2	6.88	1990	3.0	36	1.61	< 0.5	61	181	207	7.75	1.47	2.15	1770 1150
96YTS 382	201 202	< 0.2	6.62	920	3.0	< 2	1.25	< 0.5	36	153	129	6.83	1.18	2.88	1375
96YTS 383	201 202	< 0.2	6.52	440	2.5	< 2	3.30	< 0.5	30	122	60	7.38	1.01	2.89	1500
96YTS 384	201 202	< 0.2	6.72	500	2.5	< 2	3.62	< 0.5	36	142	66	7.59	1	3.32	1460
96YTS 385	201 202	< 0.2	6.74	360	2.5	< 2	3.94	< 0.5	37	127	71	8.05	0.98		<u>ļ. </u>
96YTS 386	201 202	< 0.2	7.35	430	2.0	< 2	3.88	< 0.5	38	120	67 69	8.71 7.43	1.00	3.17	1570 1190
96YTS 387	201 202	< 0.2	7.64	470	2.5	< 2	3.48	< 0.5	36	112	56	8.24	1.13	2.71	1515
96YTS 388	201 202	< 0.2	7.48	520	2.5	< 2	3.34	< 0.5	33	74	57	7.50	1.16	2.88	1245
96YTS 389	201 202	< 0.2	7.65	500	2.5	< 2	2.57	< 0.5	35 27	36	29	7.29	0.82	2.34	1455
96YTS 390	201 202	< 0.2	6.42	400	2.5	< 2	2.50	< 0.5	21						
96YTS 391	201 202	< 0.2	7.05	420	2.5	< 2	3.31	< 0.5	32	67	40	7.90	1.03	2.78	1445 1310
96YTS 392	201 202	< 0.2	7.37	450	3.0	< 2	2.99	< 0.5	34	55	42 45	7.81 6.73	1.00	2.48	1150
96YTS 393	201 202	< 0.2	7.01	440	2.5	< 2	2.86	< 0.5	29	97	37	6.96	0.69	2.29	1080
96TTS 394	201 202	< 0.2	6.10	290	1.5	< 2	2.78	< 0.5	25	102	49	7.68	0.86	2.56	1310
96YTS 395	201 202	< 0.2	7.37	420	3.0	< 2	2.36	< 0.5	31	111	49	/.00			
96YTS 396	201 202	< 0.2	7.61	400	3.0	< 2	2.45	< 0.5	32	117	53	8.07	0.97	2.61 2.97	1185 1340
96YTS 397	201 202	< 0.2	7.31	440	2.5	< 2	3.61	< 0.5	32	128	52	7.51		2.70	1150
96YTS 398	201 202	< 0.2	6.05	350	2.0	< 2	3.13	< 0.5	29	113	40	6.80	0.88	3.71	1345
96YTS 399	201 202	< 0.2	7.35	450	3.5	< 2	3.42	< 0.5	44	214	69	7.65	1.06 0.94	4.90	1320
96YTS 400	201 202	< 0.2	7.20	510	3.0	< 2	3.06	< 0.5	47	589	76	6.48	0.94	1.90	1320
								<u> </u>						<u> </u>	<u></u>

96YTS 381

96YTS 382

96YTS 383

96YTS 384

96YTS 385

96YTS 386

96YTS 387

96YTS 388

96YTS 389

96YTS 390

96YTS 391

96YTS 392

96YTS 393

96YTS 394

96YTS 395

96YTS 396

96YTS 397

96YTS 398

96YTS 399

96YTS 400

201 202

201 202

201 202

201 202

201 202

201 202

201 202

201 202

201 202

201 202

201 202

201 202

201 202

201 202

201 202

201 202

201 202

201 202

201 202

201 202

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers 212 Brooksbank Ave... North Vancouver British Columbia, Canada V7.L2C1 PHONE: 604-984-0221 FAX: 604-984-0218

0.B6

0.88

1.93

2.05

2.10

2.25

2.26

2.10

1.94

1.89

2.04

1.81

1.88

1.70

1.47

1.68

2.23

1.66

1.59

1.06

4

2

3

1

1

1

1

1

1

2

1

1

1

1

1

< 1

< 1

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066. THE BENTALL CENTRE VANCOUVER, BC

219

180

157

163

170

177

157

161

137

120

149

163

150

166

166

166

162

139

188

174

0.69

0.75

1.60

1.61

1.65

1.88

1.11

1.65

0.95

1.25

1.43

1.13

1.05

1.29

1.11

1.26

1.35

1.12

1.21

0.69

< 10

< 10

< 10

10

10

10

10

10

10

10

10

10

10

10

10

10

< 10

< 10

< 10

< 10

142

110

106

118

110

120

124

126

132

126

124

126

132

140

124

120

128

124

106

98

V7X 1C4

Project: 6112

Comments: ATTN: M. JONES

Page Number :5-B Total Pages :5

Certificate Date: 23-SEP-96 Invoice No. :19631733

P.O. Number

∹GP Account

								CERTI	FICATE	OF AN	ALYSIS		\963173	33	
SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm	Sr ppm (ICP)	Ti % (ICP)	V ppm	W ppm (ICP)	Zn ppm (ICP)				
96YTS 361	201 202	2	1.30	347	870	340	135	0.41	152	< 10	422				
96YTS 362	201 202		1.40	331	940	50	132	0.40	148	< 10	148			!	
96YTS 363	201 202] 2	1.52	319	850	32	147	0.53	147	< 10	142				
96YTS 364	201 202		1.86	148	1510	36	154	0.65	163	< 10	246				
96YTS 365	201 202	4	1.30	106	1270	46	145	0.63	158	< 10	174				
96YTS 366	201 202	1	1.25	88	1260	28	141	0.73	143	< 10	118				
96YTS 367	201 202	1	1.25	74	890	20	140	0.75	132	< 10	94	-			
96YTS 368	201 202	8	0.74	326	1320	20	81	0.61	208	10	116				
96YTS 369	201 202	1	1.65	64	1850	22	145	0.58	124	< 10	122				
96YTS 370	201 202	3	1.13	69	1520	22	130	0.78	141	< 10	116				
96YTS 371	201 202	4	1.02	75	1170	28	111	0.73	158	10	120				_
96YTS 372	201 202	5	1.56	80	1850	24	121	0.69	149	< 10	152]	
96YTS 373	201 202	5	0.53	107	1450	72	64	0.86	211	10	262			1	
96YTS 374	201 202	2	0.62	98	1390	24	71	0.70	193	< 10	148				
96YTS 375	201 202	3	0.52	195	1090	52	59	0.46	169	< 10	398				
6YTS 376	201 202	4	0.60	106	1240	82	98	0.70	146	< 10	270				
96YTS 377	201 202	1	0.46	44	2200	48	66	0.42	92	< 10	156				
96YTS 378	201 202	3	0.71	58	1670	46	92	0.70	146	< 10	160			:	
6YTS 379	201 202	2	1.06	68	1250	28	124	0.74	158	< 10	130	ļ			
96 YTS 380	201 202	3	1.09	89	1450	20	118	0.61	198	< 10	154				

117

298

319

334

382

358

341

329

290

338

286

270

214

203

235

336

326

254

168

1610

1390

2600

2690

3220

3040

2940

3130

2440

3330

3050

3170

2490

1550

2250

1840

2680

2400

2230

1330

26

8

4

< 2

< 2

< 2

< 2

4

6

10

10

20

16

12

10

6

10

4

112

90

76

82

86

79

74

50

43

26

56

53

62

60

69

71

74

61

130

246

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

A9631734

Comments: ATTN: M. JONES

CERTIFICATE

A9631734

(GP) - WESTMIN RESOURCES LTD.

Project: 6112 P.O. # ;

Samples submitted to our lab in Vancouver, BC. This report was printed on 15-sep-96.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
201 202 285	50 50 50	Dry, sieve to -80 mesh save reject ICP - HF digestion charge

ANALYTICAL PROCEDURES

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
578	50	Ag ppm: 24 element, rock & core	AAS	0.2	100.0
573	50	Al %: 24 element, rock & core	ICP-ARS	0.01	25.0
565	50	Ba ppm: 24 element, rock & core	ICP-AES	10	10000
575	50	Be ppm: 24 element, rock & core	ICP-AES	0.5	1000
561	50	Bi ppm: 24 element, rock & core	ICP-AES	2	10000
576	50	Ca %: 24 element, rock & core	ICP-AES	0.01	25.0
562	50	Cd ppm: 24 element, rock & core	ICP-AES	0.5	500
563	50	Co ppm: 24 element, rock & core	ICP-AES	1	10000
569	50	Cr ppm: 24 element, rock & core	ICP-AES	1	10000
577	50	Cu ppm: 24 element, rock & core	ICP-AES	1	10000
566	50	Fe %: 24 element, rock & core	ICP-AES	0.01	25.0
584	50	K %: 24 element, rock & core	ICP-AES	0.01	10.00
570	50	Mg %: 24 element, rock & core	ICP-AES	0.01	15.00
568	50	Mn ppm: 24 element, rock & core	ICP-AES	5	10000
554	50	Mo ppm: 24 element, rock & core	ICP-AES	1	10000
583	50	Na %: 24 element, rock & core	ICP-AES	0.01	10.00
564	50	Ni ppm: 24 element, rock & core	ICP-AES	1	10000
559	50	P ppm: 24 element, rock & core	ICP-AES	10	10000
560	50	Pb ppm: 24 element, rock & core	AAS	2	10000
582	50	Sr ppm: 24 element, rock & core	ICP-AES	1	10000
579	50	Ti %: 24 element, rock & core	ICP-AES	0.01	10.00
572	50	V ppm: 24 element, rock & core	ICP-AKS	1	10000
556	50	W ppm: 24 element, rock & core	ICP-AES	10	10000
558	50	Zn ppm: 24 element, rock & core	ICP-AES	2	10000

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066. THE BENTALL CENTRE

VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number : 1-A
Total Pages :2
Certificate Date: 15-SEP-96
Invoice No. : I 9631734
P.O. Number :

ĖG₽ Account

CERTIFICATE OF ANALYSIS A9631734

SAMPLE	PREP CODE	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
96YTS 401	201 202	< 0.2	5.50	640	5.5	< 2	2.25	< 0.5	25	132	45	5.13	1.26	2.12	1360
96YTS 402	201 202	< 0.2	6.57	410	3.5	< 2	3.32	0.5	46	299	86	7.41	0.87	3.99	1445
96YTS 403	201 202	0.4	7.82	900	1.5	< 2	1.57	< 0.5	32	61	133	5.83	1.22	2.71	1610
96YTS 404	201 202	0.8	7.86	1180	1.5] 2	1.41	1.5	40	57	189	6.78	1.32	4.29	2330
96YTS 405	201 202	0.8	8.13	1040	1.0	2	1.63	0.5	39	57	203	7.37	1.17	3.69	2370
96YTS 406	201 202	0.8	8.39	1020	1.5	2	1.51	3.0	47	74	257	7.35	1.49	3.60	1810
96YTS 407	201 202	0.6	8.03	1110	1.5	2	1.78	0.5	37	105	162	5.21	1.71	2.24	1505
96YTS 408	201 202	0.8	7.67	1410	1.5	< 2	1.28	0.5	27	70	107	4.52	1.89	1.79	1990
96YTS 409	201 202	0.4	6.09	880	1.0	6	0.99	1.0	17	66	60	3.92	1.27	1.06	1145
96YTS 410	201 202	0.2	7.19	980	2.0	2	1.25	< 0.5	30	85	113	5.41	1.44	1.73	1835
96YTS 411	201 202	< 0.2	5.13	870	1.0	4	2.01	< 0.5	21	52	54	3.21	1.14	1.46	1345
96YTS 412	201 202	0.4	5.16	780	0.5	< 2	1.41	0.5	33	75	55	4.13	0.97	1.24	2390
96YTS 413	201 202	0.2	6.93	870	2.0	< 2	1.42	< 0.5	31	63	48	4.21 5.24	1.24 1.03	1.38 2.07	2230 1775
96YTS 414 96YTS 415	201 202 201 202	0.6 0.6	6.25 6.84	630 510	0.5 0.5	8 4	1.54 2.15	0.5 1.5	41 43	140 208	125 203	6.65	0.96	3.14	1500
96YTS 416	201 202	0.4	6.83	450	0.5	< 2	2.47	0.5	63	233	266	7.75	0.82	3.67	2200
96YTS 417	201 202	0.4	7.15	520	1.0	₹ 2	2.25	1.0	54	148	171	8.46	1.07	2.64	1920
96YTS 418	201 202	0.8	7.10	300	0.5	< 2	2.78	2.5	64	139	280	9.05	0.92	2.96	1690
96YTS 419	201 202	0.6	7.58	730	1.5	< 2	1.83	0.5	30	91	102	5.93	1.48	1.86	1805
96YTS 420	201 202	0.4	5.72	530	1.0	< 2	2.09	1.0	31	73	99	5.42	0.96	1.79	1335
96YTS 421	201 202	0.6	7.16	510	1.0	< 2	2.04	0.5	39	108	188	7.27	1.07	2.31	1615
96YTS 422	201 202	0.6	6.54	230	< 0.5	< 2	3.14	1.0	59	119	259	10.60	0.66	3.24	1525
96YTS 423	201 202	0.4	6.13	450	0.5	< 2	1.95	1.0	29	99	109	5.94	0.99	1.97	1150
96YTS 424	201 202	0.4	7.02	400	0.5	< 2	2.85	1.0	48	132	173	7.70	0.93	2.80	1495
96YTS 425	201 202	0.6	7.44	330	0.5	2	2.48	1.0	55	134	222	7.92	0.74	2.94	1475
96YTS 426	201 202	0.2	7.29	790	1.5	< 2	1.47	< 0.5	24	83	73	5.24	1.45	1.91	1015
96YTS 427	201 202	0.8	6.30	420	0.5	< 2	1.97	1.5	38	107	162	6.74	1.01	2.37	1480
96YTS 428	201 202	0.6	7.53	450	1.0	< 2	2.56	1.0	49	91	204	8.21	1.23	2.97	1480
96YTS 429	201 202	< 0.2	6.17	280	0.5	< 2	2.81	0.5	47	113	176	7.17	0.80	2.84	1680 1970
96YTS 430	201 202	0.2	6.08	350	1.0	2	2.07	1.0	48	141	231	6.08	1.00	2.39	1970
96YTS 431	201 202	0.6	6.97	400	1.5	2	2.60	1.5	59	126	417	6.61	1.11	2.15	1460
96YTS 432	201 202	0.4	6.63	400	0.5	< 2	2.56	1.5	46	115	236	7.28	0.85	2.70	1510
96YTS 433	201 202	0.4	6.56	260	0.5	< 2	3.31	2.0	47	105	269	7.45	0.63	2.64	1540 1230
96YTS 434 96YTS 435	201 202 201 202	0.4	6.93	430 310	1.0 0.5	< 2 < 2	2.46 3.59	1.0 1.5	44 52	108 116	270 242	6.69 7.87	0.94	2.25 2.54	1345
70ITS 455	201 202	V.2	7.17	210	0.5	< <u>4</u>	3.39	1.5		110		/.5/	0.06	4.74	
96YTS 436	201 202	0.4	7.63	710	1.5	2	2.22	0.5	36	107	227	5.53	1.32	2.00 2.12	1270 1120
96YTS 437	201 202	0.4	6.58	630	1.5	4	2.33	0.5	30	117	98	5.19 4.88	1.10	1.05	730
96YTS 438	201 202 201 202	< 0.2	7.27	540	2.0	6 6	1.43 1.96	0.5 0.5	15 32	96	32 180	5.30	1.77 1.47	1.03	1135
96YTS 439 96YTS 440	201 202	0.2 0.4	7.78 7.79	740 810	2.0 2.0	< 2	2.12	0.5	34	103 104	143	5.53	1.50	2.10	1345
20113 JAN	201 202	0.4	, ,,, ,	910	1.0	` 4	4.14	0.5	,,,,	104	743	7.73	1.50	2.10	1013
									L			1 1	,		L

Analytical Chemists * Geochemists * Registered Assavers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number : 1-B
Total Pages :2
Certificate Date: 15-SEP-96
Invoice No. : I9631734
P.O. Number : _

:GP Account

								CERTI	FICATE	OF AN	ALYSIS	 A963173	34	
SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm	Pb ppm AAS	Sr ppm	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
6YTS 401	201 202	1	1.58	74	1420	12	195	1.03	121	20	80			
6YTS 402	201 202	< 1	1.41	174	2130	8	268	1.25	172	30	106			
6YTS 403 6YTS 404	201 202 201 202	3 1	1.75	36	1040 1050	28 40	175 184	0.54	193 206	10	114 124			İ
6YTS 405	201 202	i	1.57	35	1100	28	154	0.59	225	10	128			
6YTS 406	201 202	< 1	1.31	47	1200	108	131	0.60	229	10	260			
6YTS 407	201 202	3	1.69	51	780	48	143	0.55	167	10	106		Ì	1
6YTS 408 6YTS 409	201 202 201 202	3 2	1.68	29 19	1150 1910	76 40	151 121	0.46	136 128	< 10 < 10	62		j	İ
6YTS 410	201 202	5	1.56	36	1940	34	147	0.51	145	10	114			
6YTS 411	201 202	4	1.01	25	1330	20	121	0.31	92	< 10	66			
6YTS 412	201 202	1	1.15	30	2370	30	123	0.42	130	< 10	98			
6YTS 413 6YTS 414	201 202 201 202	2 2	1.25	27 64	1480 1550	30 32	109 117	0.37	118 166	< 10 10	78	1		
6YTS 415	201 202	1	1.13	118	1150	34	131	0.61	204	10	124			
6YTS 416	201 202	2	1.20	157	1210	62	163	0.67	226	20	164	 		
6YTS 417	201 202	4	1.28	80	1600	40	167	0.76	231	20	13B 182		Ī	
6YTS 418 6YTS 419	201 202 201 202	4	1.02	76 42	1150 1270	66 66	155 182	0.69	272 169	10	128		•	
6YTS 420	201 202	2	1.07	35	1510	40	160	0.56	163	10	122			
6YTS 421	201 202	5	1.24	58	1580	34	167	0.64	209	10	160			
6YTS 422	201 202	3 8	1.16	60	780	14	160	0.79	302 184	30 10	186 120		İ	}
6YTS 423 6YTS 424	201 202 201 202	3	1.18	44 60	1330 950	16 12	142 156	0.76	253	30	144			Ì
6YTS 425	201 202	5	1.03	61	1250	8	136	0.64	264	20	164			
6YTS 4 26	201 202	2	1.63	39	910	24	172	0.57	166	10	102			
6YTS 427	201 202	3 4	0.83	54 48	1480 1100	84	145 198	0.60	216 283	10 20	172 178			
6YTS 428 6YTS 429	201 202 201 202	1	1.02	50	1020	18 16	156	0.62	245	20	134			
6YTS 430	201 202	1 4	0.84	69	1450	20	144	0.56	208	10	146			
6YTS 431	201 202	3	1.54	122	1310	32	170	0.61	181	10	248			
6YTS 432 6YTS 433	201 202	1 < 1	1.23	66 53	920 930	14 30	147 144	0.62	237 251	20 20	182 232			
6YTS 434	201 202	`i	1.33	64	1090	24	144	0.59	209	10	172			
6YTS 435	201 202	i	1.28	58	1030	14	174	0.70	264	30	228			
6YTS 436	201 202	1	1.79	62	1460	28	210	0.57	174	10	122			
6YTS 437 6YTS 438	201 202	2 5	1.63	61	910 1060	16 14	187 190	0.62 0.53	177 103	10 < 10	86 78			
6YTS 438	201 202	1 1	1.84	59	1260	22	203	0.55	162	10	118			
6YTS 440	201 202	Ī	1.89	66	1320	22	208	0.59	172	10	130	ŀ		ŀ

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave.. North Vancouver British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number :2-A Total Pages :2 Certificate Date: 15-SEP-96 Invoice No. :19631734

P.O. Number :

Account ∶GP

CERTIFICATE OF ANALYSIS	A9631734
-------------------------	----------

SAMPLE	PREP CODE	Ag ppm AAS	A1 % (ICP)	Ba ppm	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
96YTS 441 96YTS 442 96YTS 443 96YTS 444 96YTS 445	201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 0.6 0.2 < 0.2	7.24 7.63 6.56 6.89 8.09	630 700 620 720 360	1.5 2.0 1.5 1.5 3.5	< 2 < 2 2 < 2 2	2.18 2.35 2.60 2.28 1.34	< 0.5 1.0 1.5 2.0 1.0	29 28 43 39 19	115 123 138 150 102	154 132 216 115 28	5.52 5.63 5.92 6.64 5.36	1.20 1.49 1.03 1.41 2.03	1.83 2.13 2.21 2.17 1.28	970 1340 1800 1325 980
96YTS 446 96YTS 447 96YTS 448 96YTS 449 96YTS 450	201 202 201 202 201 202 201 202 201 202	< 0.2 0.4 0.4 0.4 0.8	7.62 5.55 7.28 8.57 7.29	600 440 700 420 380	1.5 1.0 1.5 4.0 3.0	< 2 < 2 2 2 2	2.99 3.03 3.42 1.69 1.01	1.5 1.0 1.5 1.5	33 29 41 25 17	165 134 181 111 85	78 124 225 155 112	6.94 5.09 6.52 6.33 5.57	1.30 0.96 1.43 2.08 1.61	2.27 1.51 2.75 1.50 0.98	1260 1275 1400 1360 860
		<u></u>										<u> </u>	ļ,		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number : 2-B
Total Pages : 2
Certificate Date: 15-SEP-96
Invoice No. : I 9631734
P.O. Number :

:GP

Account

				. 004-304-0			CERTIFICATE OF ANALYSIS A9631734 Sr ppm (ICP) (ICP) W ppm (ICP) Zn ppm (ICP) (ICP)									
		CERTIFICATE OF ANALYSIS											A9631734			
SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS			V ppm (ICP)		Zn ppm (ICP)					
06YTS 441 06YTS 442 06YTS 443 06YTS 444 06YTS 445	201 202 201 202 201 202 201 202 201 202	1 1 2 < 1 3	1.71 1.92 1.30 1.49 2.31	55 64 79 89 51	890 1210 1480 2080 1220	22 64 112 80 16	208 195 188 217 139	0.64 0.69 0.59 0.78 0.57	178 168 185 166 86	10 10 10 10 < 10	102 186 218 256 130					
06YTS 446 06YTS 447 06YTS 448 06YTS 449 06YTS 450	201 202 201 202 201 202 201 202 201 202	< 1 1 1 3 4	1.75 1.31 1.83 2.48 1.83	71 78 127 69 40	1740 1800 1590 1410 1860	52 48 60 46 76	252 205 252 160 113	1.05 0.60 0.90 0.60 0.54	164 135 180 105 99	20 10 20 < 10 < 10	156 126 208 198 212					
		:														
											:					

APPENDIX F ANALYTICAL RESULTS, SILT SAMPLES

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

A9631757

2127

Comments: ATTN: M. JONES

CERTIFICATE

A9631757

(GP) - WESTMIN RESOURCES LTD.

Project: P.O. #:

6112

Samples submitted to our lab in Vancouver, BC. This report was printed on 19-SEP-96.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
201 202 229	4 4 4	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge
* NOTE	1:	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

ANALYTICAL P	ROCEDURES	S	
	METHOD	DETECTION LIMIT	UPPER LIMIT
Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cc ppm: 32 element, soil & rock Cc ppm: 32 element, soil & rock Cc ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock P ppm: 32 element, soil & rock P ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock	FA-AAS ICP-AES	5 0.2 0.01 2 10 0.5 2 0.01 0.5 1 1 0.01 10 0.01 10 2 2 1 1 0.01 1 10 2 2 2 1 1 10.01	10000 100.0 15.00 10000 100.0 10000 100.0 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
	DESCRIPTION Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cc ppm: 32 element, soil & rock Cc ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Nn ppm: 32 element, soil & rock Nn ppm: 32 element, soil & rock P ppm: 32 element, soil & rock P ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock	DESCRIPTION METHOD Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock Ba ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Ca %: 32 element, soil & rock Ca ppm: 32 element Ca ppm: 32 element Ca ppm: 32 element Ca ppm: 32 element Ca ppm: 32 element Ca ppm: 32 element Ca ppm: 32 element Ca ppm: 32 elemen	Au ppb: Fuse 30 g sample FA-AAS 5 Ag ppm: 32 element, soil & rock ICP-AES 0.2 Al %: 32 element, soil & rock ICP-AES 0.01 As ppm: 32 element, soil & rock ICP-AES 0.01 Be ppm: 32 element, soil & rock ICP-AES 10 Be ppm: 32 element, soil & rock ICP-AES 0.5 Bi ppm: 32 element, soil & rock ICP-AES 0.5 Bi ppm: 32 element, soil & rock ICP-AES 0.5 Ca %: 32 element, soil & rock ICP-AES 0.5 Co ppm: 32 element, soil & rock ICP-AES 0.5 Co ppm: 32 element, soil & rock ICP-AES 1 Cu ppm: 32 element, soil & rock ICP-AES 1 Cu ppm: 32 element, soil & rock ICP-AES 1 Cu ppm: 32 element, soil & rock ICP-AES 1 EP %: 32 element, soil & rock ICP-AES 1 EP ppm: 32 element, soil

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

Project: 6112 Comments: ATTN: M. JONES

Page Number : 1-A
Total Pages : 1
Certificate Date: 19-SEP-96
Invoice No. : I 9631757
P.O. Number :

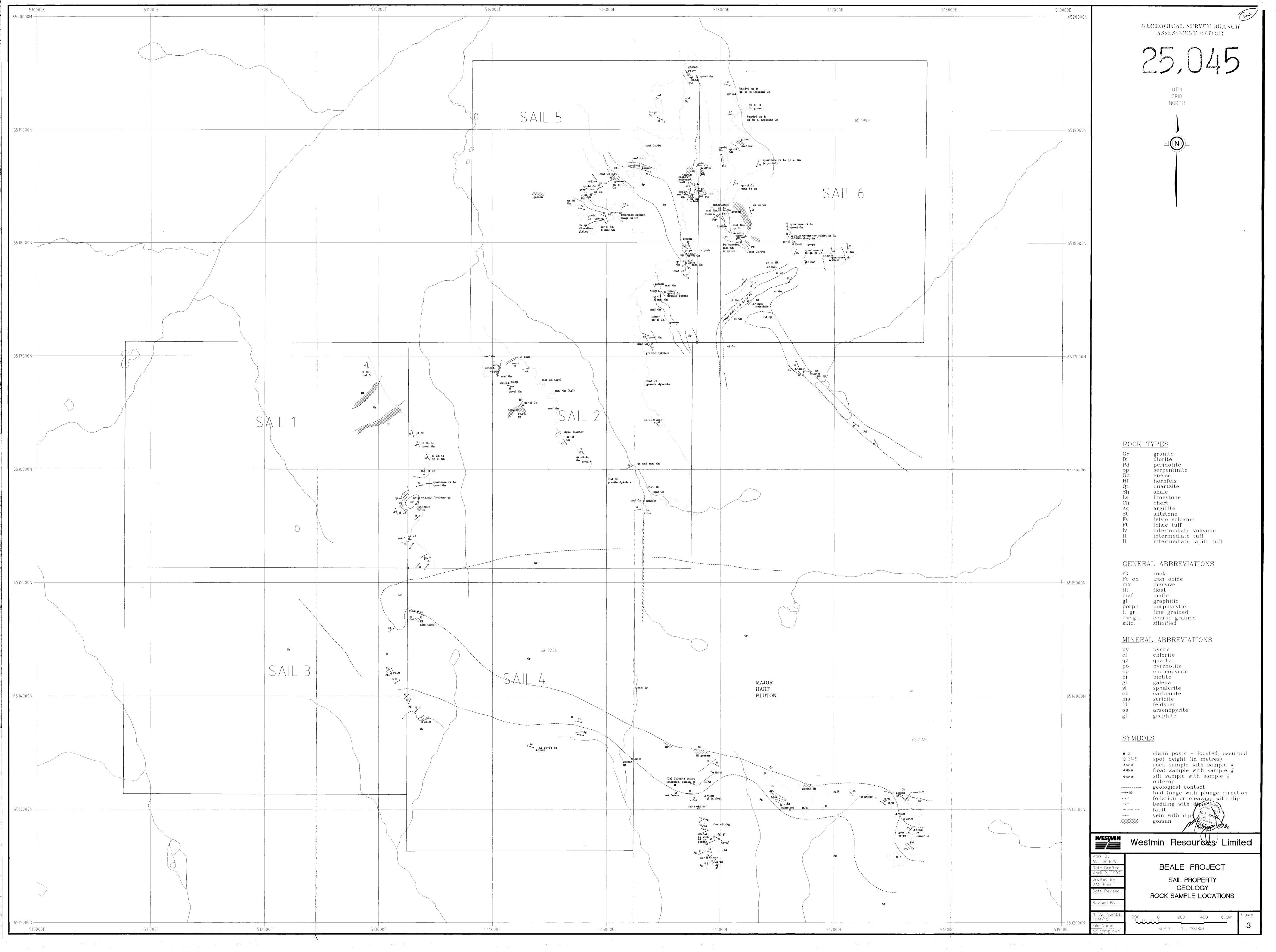
Account GP

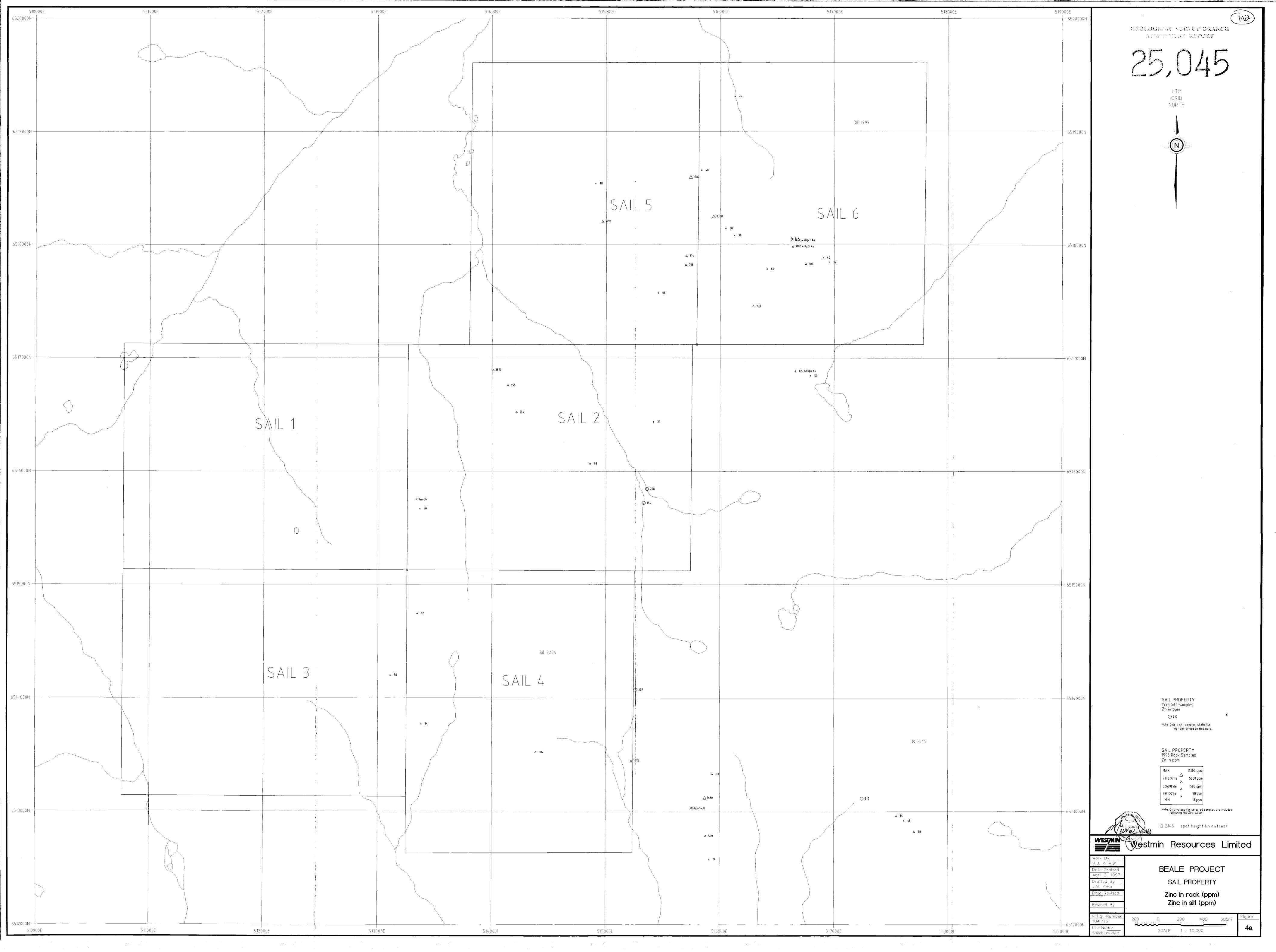
										CI	ERTIF	ICAT	E OF	ANAL	YSIS		A963	1757		
SAMPLE	PREP CODE	Au ppb FA+AA)Ag	A1 %) As	Ba ppm	Be ppm	Bi ppm	Ca %		Co ppm			Fe %		_	_		7	
96MJT 001 96MJT 002 96MJT 003 96MJT 004 96YTT 001	201 202 201 202 201 202 201 202	< 5 < 5 NotRed	0.2 < 0.2 0.4 NotRed 0.2	3.18 2.63 2.32 NotRed 1 2.60	2 14 12 Notred M	140 80 100 NotRed 140	1.0 0.5 0.5 NotRed 0.5	< 2 < 2 < 2 NotRed < 2	0.86 0.75 0.72 NotRed 0.55	1.0 1.0 2.0 NotRcd 0.5	17 40 25 Notred 22	82 64 NotRcd	187 170 Notrcd	4.44 3.23 Notred	< 10 < 10	< 1 1 NotRed	0.05	10 10 NotRed	1.71 1.21 NotRcd	1135 665 NotRcd

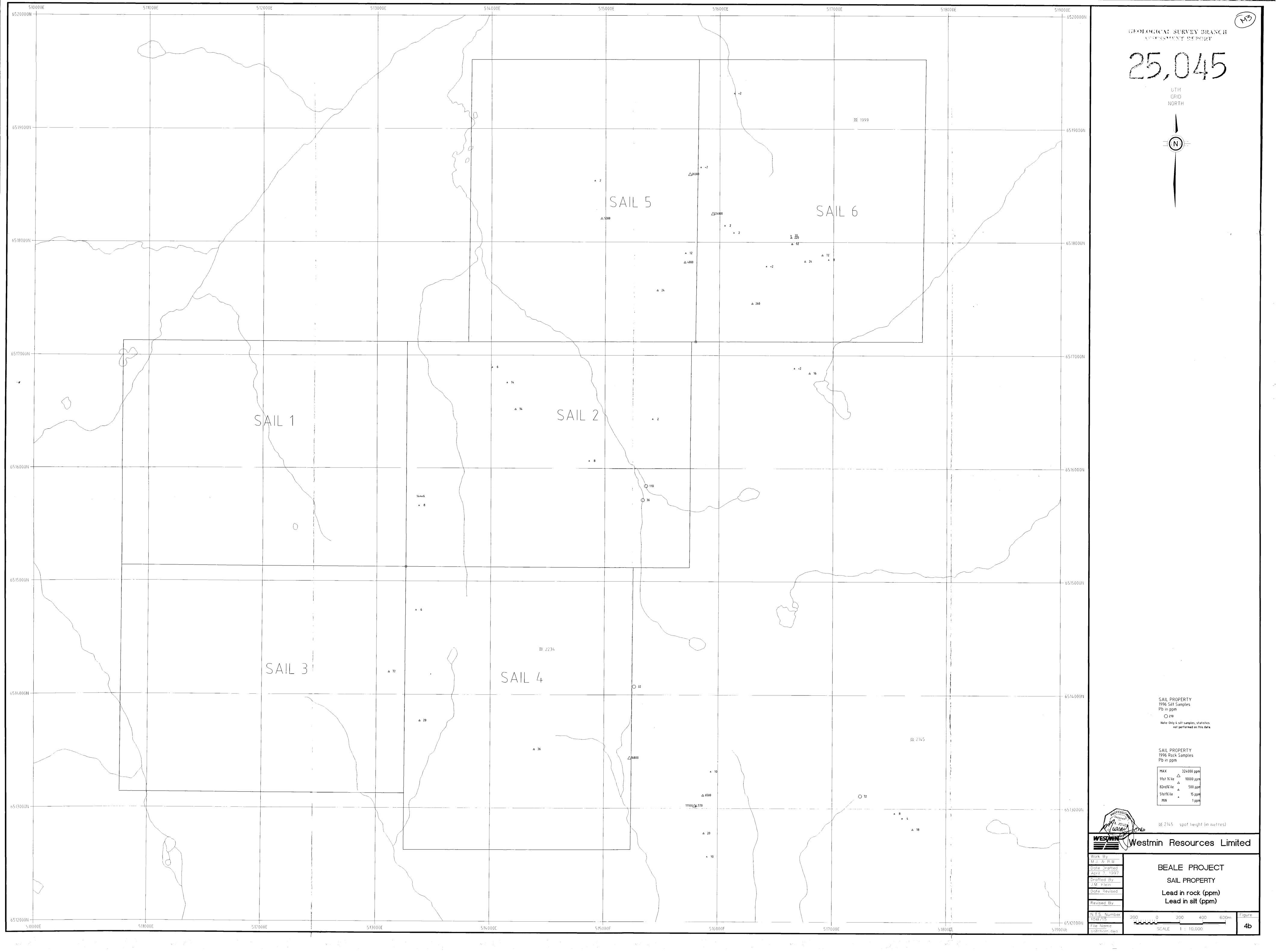
Analytical Chemists * Geochemists * Registered Assayers

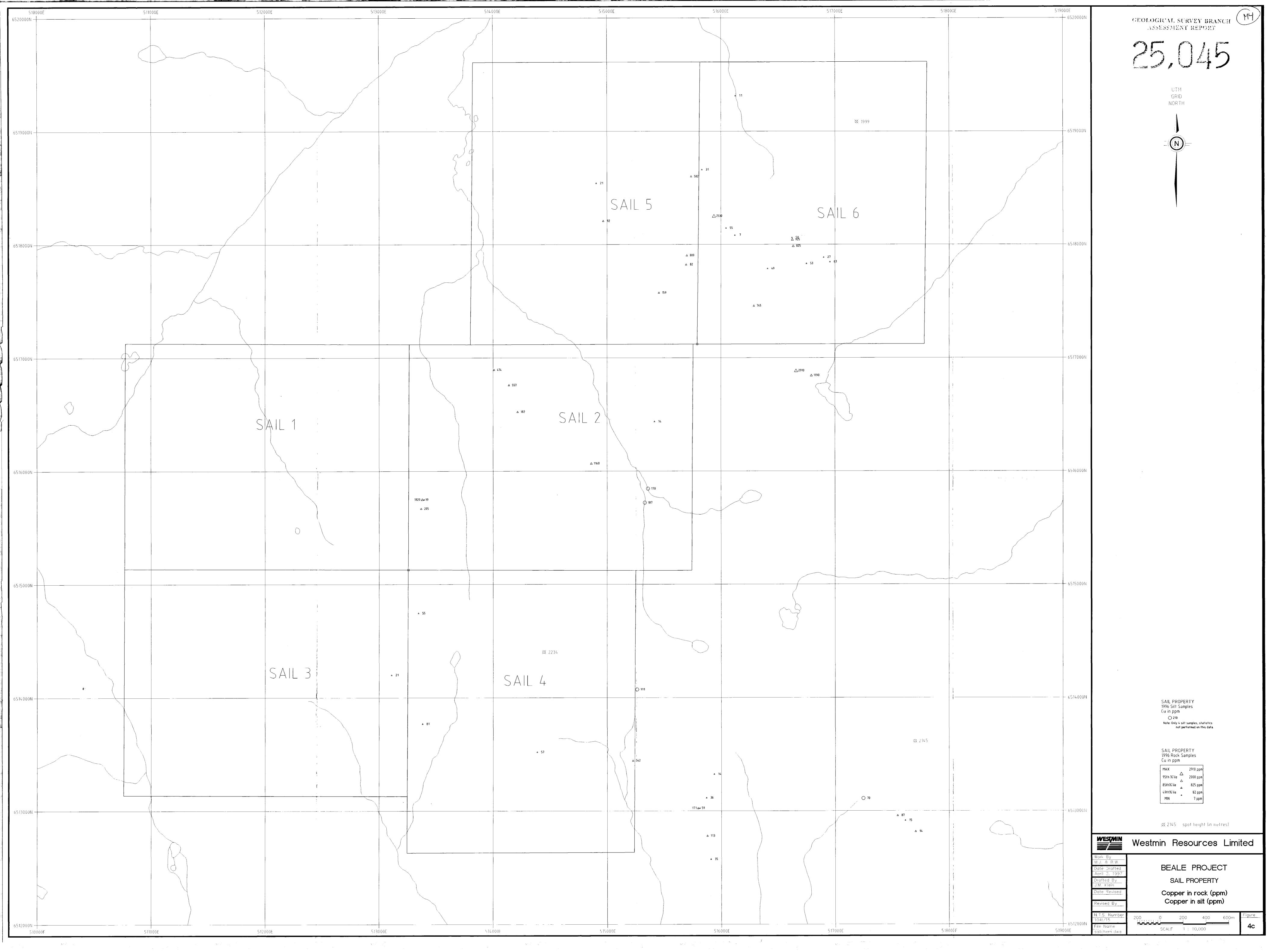
212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WESTMIN RESOURCES LTD.


P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4


Project: 6112 Comments: ATTN: M. JONES


Page Number :1-B
Total Pages :1
Certificate Date: 19-SEP-96
Invoice No. :19631757
P.O. Number :


: :GP Account

		FINANCE BON-984-0221 FMA. 604-984-0216					Comments: ATTN: M. JONES											
											CE	RTIF	CATE	OF A	NAL	YSIS	A9631757	
	PR CO		Mo ppm		Ni ppm	p pm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D ppm	V Dpm	w mqq	Zn ppm	1241	
6MJT 001 6MJT 002 5MJT 003 6MJT 004 6YTT 001	201 201	202 202 202 202	< 1 < 1 < 1 NotRed < 1	0.01	32 62 51 NotRed 40	1090 930 980 NotRcd 1 1490	72 36 110 NotRcd 32	< 2 < 2 < 2 NotRed < 2	5 9 5 NotRdd 1 7	84 36 35 NotRed 35	0.16 0.17 0.13 NotRed 1 0.14	< 10 < 10 < 10 < 10 NotRcd 1	< 10 < 10 < 10 NotRed 1	76 105 76 VotRed 1 79	< 10 < 10 < 10 NotRed < 10	210 154 278 Notred 122		

