

— · ·

GEOLOGIC REPORT ON THE MINERAL RIDGE PROPERTY

HORSEFLY AREA, BRITISH COLUMBIA, CANADA

CARIBOO MINING DIVISION NTS 93A/5,6

Prepared for

WHITE CHANNEL RESOURCES CORPORATION Suite 1400 - 355 Burrard Street Vancouver, British Columbia Canada V6C 2G8

January, 1997

C.H.B. Leitch, Ph.D, P.Eng. Salt Spring Island, B.C.

> AND ANOTAL SURVEY BRANCH ANTRASMED F REPORT

-5.115/

Amendment to -Geologic Report(s) on the Mineral Ridge Property, Horsefly Area, British Columbia, Canada, Cariboo Mining Division, NTS93A/5,6. Prepared for White Channel Resources Corporation, January, 1997 by C.H.B. Leitch, Ph.D., P.Eng.

_

Detailed Cost Statement

October 16th - 29th, 1996; Thirteen (13) days; Overburden Drilling; 163 feet @ \$24.50/foot - Totaling \$4000.00

Page 2

TABLE OF CONTENTS

	SUMMARY		Page 3
-	INTRODUCTION Terms of Re Property Lo Physiograph Climate and History of P	eference cation and Access ny and Topography Local Resources revious Work	4 4 4 5 5
	GEOLOGY Regional Geolo Local Geolo Alteration a	eology gy nd Mineralization	7 7 7 9
	CONCLUSIONS A	ND RECOMMENDATIONS	12
			15
	CERTIFICATE		17
	APPENDICES		18
		FIGURES	
	FIGURE 1	LOCATION MAP	
	FIGURE 2	CLAIM LOCATION MAP 1:50 000	
-	FIGURE 3	AEROMAGNETIC MAP 1:63 360	
-	FIGURE 4	DIAMOND DRILL HOLE SECTION	
	FIGURE 5	ASSAY PLAN, WHITE CHANNEL GRAVELS	
-		APPENDICES	
	APPENDIX 1	DRILL LOGS DDH WC109601 TO 03 (W.E. Wiley, QUICK LOG, DDH WC109603 (C.H.B. Leitch	1996) n, 1996)
	APPENDIX 2	GEOCHEMICAL RESULTS	

SUMMARY

The Mineral Ridge Claims are located approximately 8 kilometers west of Horsefly, B.C., in the Cariboo Mining Division. Prospecting in the area resulted in the discovery of a coppersilver bearing quartz-carbonate vein cutting Triassic basalts in the canyon of Gravel Creek near the highway from Williams Lake to Horsefly. Gold bearing fossil placer deposits related to a Tertiary river channel are also known nearby on the banks of Gravel Creek. The channel deposits, known as the White Channel gravels, are normally overlain by Tertiary lava flows and Recent glacial deposits.

During October 1996, a drilling and sampling program was completed. Drilling did not reach Treassic bedrock in the first two holes, which were triconed, but in the third drilled near Gravel Creek, diamond drill core intersected a series of epithermal quartz-carbonate veins in chlorite-carbonate altered Triassic basalts. A total of 805 meters (2640 feet) was completed in the three holes.

Significant copper and silver results were obtained from surface sampling of the veins in Gravel Creek. The nearby drill hole WC109603, drilled vertically, appears to have intersected the fringe of an epithermal vein system with only low base and precious metal values; this could be the same system as exposed in the canyon of Gravel Creek. Highly anomalous silver and tungsten values in the cuttings of hole WC109601, 250 meters southwest of WC109603, appear to be due to contamination from the drill bit and do not merit further follow-up. Hole WC109601, drilled a further 1900 m southwest of WC109601, appears to have intersected only overburden. Surface sampling of the White Channel gravels indicates anomalous gold.

Further work is recommended on the Property to explore and define the epithermal vein system in Gravel Creek, to sample the Tertiary gravels for potentially economic concentrations of gold, and to test a magnetic anomaly for a buried stock hosting porphyry copper-gold mineralization. Such a program would include drilling at least two short holes from the same set-up near the Gravel Creek showings, angled underneath the vein exposed in the creek bed, a total of three separate fences of reverse circulation drill holes to test the Tertiary channel gravels, and three fences of reverse circulation drill holes to sample basal tills over the downice area of the magnetic anomaly.

INTRODUCTION

Terms of Reference

The author was engaged in December of 1996 to examine the drill core and cuttings from a three hole diamond drill program carried out in October of 1996. Subsequent petrographic examination of alteration and mineralization in both drill core and surface samples has been incorporated into this Report. Assay data has all been provided by the Company (White Channel Resources Corporation); no samples for assay or geochemistry were taken by the writer. The reported gold occurrences in Tertiary gravel deposits are taken from the literature with the exception of assaying done by White Channel Resources Corporation.

Drilling was done by Connors Drilling Ltd. of Kamloops, B.C. over the period October 16-29, 1996 including mobilization.

Property Location and Access

The Horsefly Property of White Channel Resources Corporation is centered at approximately 52° 18' latitude and 121° 32' longitude, about 8 kilometers west of Horsefly, B.C. in the Cariboo Mining Division (Figure 1). The Property consists of a total of 200 claim units in 10 claims staked in accordance with the Modified Grid System. The Mineral Ridge 1-10 Claims are part of a contiguous block extending from the headwaters of China Cabin Creek on the east to Wiggins Creek on the west to Beaver Creek on the north (Figure 2). The following claims make up the Property (two Groups, Mineral Ridge 1,3,4,5,6 and Mineral Ridge 2,7,8,9,10):

<u>Claim</u>	Units	Record Nos.	Expiry Date
 Mineral Ridge 1	20	343061	Jan. 19. 1998
Mineral Ridge 2	20	341689	Oct. 21, 1997
Mineral Ridge 3	20	341690	Oct. 25, 1997
Mineral Ridge 4	20	341691	Oct. 25, 1997
Mineral Ridge 5	20	342369	Nov. 14, 1997
Mineral Ridge 6	20	342370	Nov. 16, 1997
 Mineral Ridge 7	20	342903	Dec. 23, 1997
Mineral Ridge 8	20	342904	Dec. 29, 1997
 Mineral Ridge 9	20	347101	June 19, 1997
Mineral Ridge 10	20	347102	June 20, 1997
-			

Access to the Property is by paved highway that runs from 150 Mile House, 20 kilometers east of Williams Lake on Highway 97, to Horsefly. This highway cuts through the center of the Property; numerous gravel roads and dirt tracks provide access to the rest of the Property.

Physiography and Topography

The area of interest is situated in rolling terrain typical of the Interior Plateau of south central British Columbia, with generally subdued topography. Much of the Property is poorly drained with swampy depressions, small lakes and intermittent streams located on the flat lying Tertiary basalt. Steeper slopes are located in the northern portion of the Property where tributary streams of the Horsefly River have eroded the basalt cap to expose the Tertiary gravel deposits and the underlying Triassic basalts.

Elevations in the Property area range from 800 to 1000 meters above sea level. Local relief in the southwest portion of the claims is less than 25 meters, while relief in the northern portion is up to 120 meters.

Evidence of glaciation is extensive; large areas of the Property are covered with deep fluvioglacial deposits, till sheets and moraines (apparently up to 165 meters in drill hole WC109602). Northwesterly to westerly glacial transport directions (at about 305^o azimuth) are dominant throughout the area (Panteleyev et al., 1996). Outcrop is scarce, and presently developed soils cannot be expected to bear a close relation to underlying bedrock except locally; thus soil sampling is not appropriate. Instead, sampling of basal till or weathered bedrock by "overburden drilling" is necessary.

Climate and Local Resources

The Horsefly area has a dry Interior climate, with hot summers and cold winters. The Property sees moderate precipitation, and is accessible from April through October.

Forested low hills with intervening broad valleys are typical of the region. Vegetation varies from pine forest to scrubby hardwood stands, commonly with interspersed grasslands and marshy ponds. The extensive cover of glacial, fluvioglacial and fluvial deposits support forest resources of good quality; timber has been extensively harvested throughout much of the area.

Power is available along the main transportation corridor from Highway 97 to Horsefly. Water is abundant at most times of the year in the many small streams that cross the area.

History of Previous Work

Most recent exploration in the Property area has been for alkalic porphyry-hosted (bulk tonnage, low grade) copper-gold deposits like the Mount Polley (Cariboo-Bell) deposit located 25 kilometers to the northwest of the Property, or like the QR "propylite gold" deposit located 35 kilometers to the northwest. Exploration for these deposit types has focussed on identification of prominent magnetic anomalies from airborne surveys followed by ground surveys. One such anomaly located on the Property, immediately northwest of Bells Lake (Figure 3), was the focus of earlier exploration by Utah Mines Ltd. in 1984.

The producing Gibralter Mine, a large porphyry copper (+/-silver-gold-molybdenum) deposit associated with calc-alkaline intrusive rocks, is located about 60 kilometers to the westnorthwest of the Property. The former Boss Mountain mine exploited a porphyry molybdenum deposit associated with a calc-alkaline stock about 35 kilometers southeast of the Property.

Volcanic-hosted copper occurrences of native copper and chalcocite have long been known hosted in both the Triassic and the Tertiary basalts; two such occurrences, in Tertiary basalts, lie just east of the Mineral Ridge Property, in the headwaters of China Cabin Creek and Moffat Creek (B.C. MINFILE numbers 093A-064 and -075 respectively: Pantelyev et al., 1996, figure 8-7).

Possible epithermal-vein type targets (vuggy, chalcedonic quartz-carbonate veins with elevated values of silver, lead, arsenic, mercury, barium and antimony) have recently been discovered in three locations ranging from 10 to 20 kilometers to the north of the Property (Pantelyev et al., 1996, figure 8-7).

Placer gold was discovered in the Horsefly area during the 1860's and resulted in several successful placer operations. Extensive mining operations had stopped by 1902 and subsequent investigations for placer deposits have been sporadic. The postulated position of the gold-bearing Tertiary channels containing the fossil placer deposits has been well documented by D. Lay in British Columbia Minister of Mines Report for 1931, and are further described in Levson and Giles (1993), and summarized in Panteleyev et al. (1996). In 1972, El Paso Mining and Milling Company staked claims in the area of Moffat Creek to the southeast of the Mineral Ridge Property on the basis of native copper potential in basalt; three short x-ray diamond drill holes were completed in 1974 (Kruchkowski, 1978). In addition to minor specks of native copper in the Tertiary basalt capping, traces of gold were found in quartz pebble gravel (the White Channel gravel) intersected by these holes. This gold is likely to be from the Gravel, Mussel/Moffat Creeks paleochannel which is postulated to run under the edge of the Tertiary basalt capping (Panteleyev et al., 1996, figure 8-9). Accumulated radon gas was detected in one hole, leading to speculation that uranium could also be present in the gravels.

Drilling of three holes to 30-80 meters depth by Silver Acorn Developments Limited in 1978 intersected similar units, namely Tertiary basalts underlain and intercalated with White Channel gravels and layers of blue clay, possibly representing decomposed volcanic ash (Kruchowski, 1978). Significant quantities of fine gold were found to occur in all holes; downhole gamma ray logging encountered no significant radioactivity. Attempts to improve the poor recovery under these difficult drilling conditions by using rotary and hammer drilling, were largely unsuccessful (Kruchowski, 1978), leading to the conclusion that drill testing of the White Channel gravels has posed, and will likely continue to pose, significant problems.

A further attempt to test the gold potential of the White Channel gravels was made in 1981-1984, with prospecting (Bragg, 1982) and diamond drilling by Pacific Ridge Resources Corporation/Ark Energy Ltd. of two holes (84-1 and 84-2) to 75-80 meters depth on the east side of Gravel Creek, 100-300 meters northeast of WC109603 (Figure 2). However, both holes intersected only ?Triassic basalt (containing traces of native copper), below the postulated White Channel gravel horizon (Figure 4).

GEOLOGY

Regional Geology

Bedrock in the Horsefly area generally consists of a block faulted and essentially unmetamorphosed assemblage of Mesozoic volcanic rocks and related sediments of the Quesnel Trough, part of the Quesnel Terrane (Panteleyev et al., 1996). These rocks form a regional synclinal structure formed within a Triassic continent-margin basin, infilled first with Triassic sediments and then Triassic to Jurassic volcanic rocks.

Upper Triassic subaqueous volcanic rocks are mainly volcanic flow and breccia units, locally interfingered with maroon water-lain volcanic detritus, and intruded by Early Jurassic plutons to form the extensive magmatic edifice that defines the medial axis of the Quesnel Trough. Submarine lavas at the base of the sequence, mainly olivine and pyroxene basalts of alkalic basalt to basaltic trachyandesite composition, are overlain by subaqueous and subaerial, dark green-grey to maroon feldspathic lavas and pyroclastic deposits of trachybasalt to trachyandesite composition, characterized by analcite phenocrysts. Modal quartz does not occur in any of the arc rocks; normative nepheline is common (Panteleyev et al., 1996).

Metamorphic grade in the volcanic rocks is subgreenschist, consistent with burial metamorphism. Commonly there is extensive chloritization of mafic minerals; zeolite and calcite fill amygdules and occur in fractures in rocks throughout the region. Some zones of epidote, chlorite, tremolite, calcite and minor quartz represent locally developed propylitic alteration that can be related to nearby intrusive activity. Copper-gold and gold mineralization is associated with a number of the Early Jurassic diorite and zoned alkali gabbro to monzodiorite or syenite stocks (latite to syenite where hypabyssal) that are intruded along the axis of the volcanic arc at intervals of about 11 kilometers (Panteleyev et al., 1996).

Eccene extensional faulting and magmatism disrupted the Quesnel Trough following a period of deep tropical weathering. Graben development, with attendant ash-flow eruptions and lacustrine sediments, characterizes this time period. Hydrothermal activity, possibly related to subvolcanic intrusions at this time, may be responsible for epithermal quartz-carbonate veining noted in the area.

Mid-Miocene and younger basalts covered parts of the Eocene grabens and older arc rocks of the Quesnel Terrane; in places the basalt flows cap older Miocene fluvial systems that contain fossil placer gold deposits. Post-glacial rivers and creeks have locally redistributed and concentrated gold from some of the older placer deposits. Since 1859 the Quesnel Trough region has been the site of significant placer gold production including some very large-scale mining operations.

Local Geology

Triassic volcanics on the property belong to unit 2a and 2c of Panteleyev et al. (1996). These units are described as green and grey alkali pyroxene-phyric olivine pyroxene basalt and alkali basalt flows, breccia and minor pillow basalt (unit 2a) and polylithic grey and maroon mafic breccia (unit 2c). Drill hole WC109603, the only hole to penetrate the Triassic succession, cored approximately 370 meters of basalts similar to those of Unit 2a (see petrographic reports by Harris, 1996; Northcote, 1996; Leitch, 1996). These basalts generally consist of prominent phenocrysts of clinopyroxene and lesser altered olivine relics plus minor magnetite in a groundmass of fine plagioclase microlites and dust-like opaques plus (in places) significant interstitial K-feldspar. In places, especially associated with fracturing and shearing, magnetite is oxidized to hematite, imparting a reddish hue to the basalts. Minor amounts of reddish or maroon to greenish-grey pyroxene crystal wacke and tuffaceous wacke are intercalated with the basalts. These local water-lain beds of volcanic detritus are clearly derived by weathering and erosion of adjacent basalts; lower contacts commonly appear to be cross-cutting due to infilling of cracks in the underlying ?brecciated flow tops, whereas upper contacts tend to be conformable. These rocks are part of a maroon to grey polylithologic breccia sequence that is part of unit 2c according to Panteleyev et al. (1996).

Two samples of angular intrusive float found in an area a few hundred meters northeast of Gravel Creek canyon were examined. They are similar in composition (latite to latite porphyry, with relict phenocrysts of plagioclase, hornblende, ? olivine, magnetite and apatite in an aphanitic to fine-grained groundmass rich in K-feldspar (Leitch, 1996). Minor alteration is to clay-sericite-carbonate-limonite; rare pyrite is present. The alkalic nature of these intrusives, which are likely close to outcrop, is typical of intrusive stocks associated with porphyry coppergold deposits in the Quesnel Trough. No copper-gold porphyry-style mineralization is presently known on the property, but the presence of one of the typical "bull's-eye" magnetic anomalies commonly associated with such stocks, near Bells Lake - 2 kilometers to the southwest of the intrusive float exposures, suggests the potential for discovery of such mineralization. Magnetic anomalies suggesting buried intrusives were also found to the north and northeast of the property on the Beaver 2 and China 3 claims (Jones, 1984 a,b).

Soil sampling by Utah Mines Ltd. in 1984 over the area of the magnetic anomaly showed no anomalies, but the depth of overburden here may preclude a response from any mineralization, even although the till was sampled at widely spaced intervals of 1.6 kilometers in the down-ice direction. Drill hole WC109602 on the northern side of the magnetic anomaly failed to penetrate the overburden at a depth of 166 meters. Although pebbles of felsic intrusive (albite, megacrystic perthite, amphibole and sphene, in places with minor pyrrhotite) and propylitic (clay-sericite-carbonate-chlorite) altered volcanic rocks were found in the overburden of WC109602 (Leitch, 1996), the source of such pebbles in the glacial overburden could be from a location or locations far removed from the Property.

Gravity data acquired from ground surveying by the Property owners over the area of this magnetic anomaly needs further evaluation by a qualified geophysicist to determine its significance. The magnetic anomaly is located along a significant northwest linear magnetic trend that could indicate a regional structural feature; this would also require evaluation by a geophysicist.

Work by El Paso Mining and Milling Company in 1974 and Silver Acorn Developments in 1978 just to the southeast of the Mineral Ridge Property suggests that numerous flows of Miocene olivine basalt underlie the broad plateau region west of Horsefly. The basalts apparently flooded a well developed pre-Miocene drainage system and topographic depressions covering regolithic clays, sandstones, coaly material and conglomerates. The flat lying basalts in the valley of Moffat Creek just to the east of the Mineral Ridge Property occupy a westward draining pre-Miocene valley and closely reflect the present day drainage system (Kruchowski, 1978). The Miocene basalt is a vesicular, dark grey, fine grained rock with zeolite, calcite and native copper amygdaloids; the base of the basalt consists of angular and weathered basalt fragments within a blue clay matrix possibly representing weathered pyroclastic debris from an eruptive vent (Kruchowski, 1978) or lacustrine sediments (Panteleyev et al., 1996).

The underlying conglomerates, a potential host for fossil placer gold deposits, have been termed the "White Channel gravels". These partly cemented gravels consist of poorly sorted, resistant, well-rounded white quartz and minor grey sericite schist pebbles generally from 1 to 10 cm in diameter within a sandy clay matrix.

Small fragments of decomposed wood, in places replaced by marcasite, were recovered from the gravels during sluicing operations by Silver Acorn Developments Ltd. Pitted pyrite/marcasite fragments indicate the possibility of circulating hydrothermal waters; sulfurous waters were detected in early drilling of the gravels in the Horsefly area (Kruchowski, 1978).

A distinctive cohesive blue clay underlies the quartz gravels, and it is underlain by a second basalt unit, a second blue clay, and a basal basalt pebble gravel containing 20% well rounded quartz pebbles that passes downwards into a well sorted and rounded coarse quartz sand containing chips of weathered green chloritic altered ?Triassic volcanic rock (Kruchowski, 1978).

Prospecting of the White Channel gravel exposures in Gravel Creek by Frank Onucki and Don Bragg in 1981-1982 (Bragg, 1982) led to subsequent testing in two diamond drill holes by Pacific Ridge Resources Corporation/Ark Energy Ltd. The holes, to depths of 81.7 and 76.8 meters, intersected only basalts (containing traces of native copper with values up to 600 ppm Cu over 1.5 meters); the auriferous gravels were not penetrated (Cooke, 1984). This suggests the holes penetrated only basement Triassic basalts, although the holes were drilled on the east side of Gravel Creek, where an outlier of the Miocene basalts is mapped by Panteleyev et al. (1996). Assays of grab samples from surface and 3' depth (A and B samples, respectively, on Figure 5) by White Channel Resources Corporation and Performance Minerals of Canada Ltd. ranged from 1 to 516 ppb (0 to 0.5 g/t) Au, and averaged 70 ppb (0.07 g/t) Au (Appendix 2: Certificates 95-1847 and A9535493). A single whole-rock sample of the White Channel gravel showed background amounts of rare-earth elements (Appendix 2: File # 95-2846); inter-pebble sulfide scrapings from the gravel contain anomalous As (400 ppm), Hg (730 ppb), Mo (48 ppm), Pb (42.5 ppm) and Sb (5.2 ppm) (Appendix 2: Certificate A9614482).

A sequence of alternating basalt and quartz pebble gravels, intercalated with mudstone, was encountered from 42.7 - 65.5 meters of DDH WC109601 in the current program, drilled on the west side of Gravel Creek (Appendix 1). These units are similar to those recovered by El Paso Mining and Milling Company in 1974, and Silver Acorn Developments Ltd. in 1978, and fit the description of the Tertiary basalts and gravels described by Panteleyev et al. (1996) for the Gravel-Mussel/Moffat Creeks paleochannel, in which the White Channel gravels lie between a Miocene basalt capping and underlying Eocene lacustrine sediments that rest on Triassic basement in Gravel Creek.

Alteration and Mineralization in the Triassic Basalts

Minor amounts of native copper are scattered throughout the Triassic and Miocene basalts; the grains are mainly less than 0.7 mm in diameter and form less than 1% of the rock where best developed (Northcote, 1996). Assays of the best intervals in both recent drilling by White Channel Resources Corporation and in drilling by Silver Acorn Developments Ltd. on adjacent showings are of the order of a few hundred ppm. Cu (rarely to 1300 ppm: Appendix 2, Certificate A9639331) over 1.0 - 1.5 meters. Although the native copper is clearly widespread (recent prospecting to the northeast of Abbot Lake revealed more than a dozen previously unrecorded occurrences, grab samples from which assay up to 0.25% Cu: Appendix 2, Certificate A9220727), it does not appear likely that the native copper mineralization in these rocks is of significant exploration interest; many other companies have previously come to the same conclusion in this area.

Extensive chlorite and carbonate alteration of pyroxene and in places of the groundmass, seen in the Triassic basalts in the upper part of Hole WC109603 (Leitch, 1996; confirmed by X-ray diffraction analysis, see McLeod, 1996) appear to be over and above the normal chloritization of mafics and calcite-zeolite filling of amygdules seen in these rocks on a regional basis, described by Panteleyev et al. (1996). Intensification of the carbonate alteration near swarms of epithermal-looking quartz-carbonate-minor pyrite veins up to 10 cm thick, especially in the upper part of the hole between 50 and 200 meters depth, suggests that the alteration is related to these incipient epithermal vein systems. Minor copper mineralization (chalcopyrite, bornite, chalcocite) and rare sphalerite is found in some of these veins, which have a banded white (due to fine fluid inclusions), grey (clear), reddish (due to hematite) or greenish (due to sericite) appearance with chalcedonic, cockscomb and minor vuggy textures (Leitch, 1996). The veins contain apparently low temperature fluid inclusions, primary in quartz, pseudosecondary in carbonate (Leitch, 1996).

Banded chalcedonic quartz-carbonate-chalcopyrite veins from surface exposures in the canyon of Gravel Creek, just northeast of WC109603, are better mineralized than the veins in WC109603 with chalcopyrite that contains inclusions of bornite and is extensively replaced by chalcocite, both coarse-grained (? hypogene) and fine-grained along fractures (? supergene), plus minor covellite-digenite. Bornite is replaced by digenite and covellite; minor pyrite is present in places. The veins were not seen in outcrop by the writer due to snow cover at the time of the property examination in December, 1996, and so the strike and dip and extent of the veins are not precisely known; however, the veins are reported to strike northwesterly (310 degrees azimuth) and dip 35 degrees west (Wiley, 1997). Samples examined from the exposures are up to 10 cm. in true thickness.

Similarity of quartz-carbonate veining in Hole WC109603 to quartz-carbonatechalcopyrite veining exposed in the nearby bed of Gravel Creek suggests that an epithermal vein system may be present near Gravel Creek, mainly buried under overburden. Significant copper and silver assays were obtained from grab samples taken by the property owners, not the writer, from the surface exposures of veins in Gravel Creek (up to 20% Cu and 645 g/t Ag; gold values were less than 0.55 g/t: Appendix 2, Certificates A9620163, 20802; A9220727, 20729). Trace amounts of other significant epithermal indicator elements such as As (170 ppm), Sb (130 ppm), Bi (40 ppm), and Hg (50 000 ppb) were also contained in the grab samples; however, barium, lead and zinc were only present in background quantities, and thallium and tungsten were both below 20 ppm (Appendix 2, Certificate A9620163).

The attitude of the vein system in and under Gravel Creek is not determinable with certainty at present given the abundant overburden and the limited data. Since the wellmineralized veins were not intersected in DDH WC109603, it is possible that the system dips vertically or steeply to the east, instead of to the west as postulated before drilling WC109603. Detailed structural mapping of the vein exposure at surface, combined with ground VLF-EM (very low frequency-electromagnetic) surveying, may help to better define the orientation of the vein system and locate extensions to the system. It is possible that airborne surveying, including magnetometer and VLF-EM techniques, would reveal further structures of similar character on the rest of this heavily overburden-covered Property. Any such targets so located could possibly be further evaluated using ground-based resistivity surveys; areas of higher resistivity along the structures may indicate areas of increased silicification, commonly associated with mineralization in epithermal systems (e.g., in the Toodoggone area of British Columbia).

Drill hole WC109601, located about 250 meters southwest of WC109603 at the top of the hill, was logged as intersecting only clay overburden from 65.5 meters to the final depth of 230 meters. The section from 42.7 to 65.5 meters, as described above under Local Geology, probably represents the Tertiary section of basalt and White Channel gravels. Assays of the returned mud from tricone drilling from 65.5 to 230 meters (below the Tertiary section), at intervals of 3 to 33 meters, showed highly anomalous silver and tungsten, particularly between 68.5 and 77.7 meters (values up to 773 g/t Ag and 0.77% WO3: Appendix 2, Certificates A9643911, 43914, 42828). However, petrographic and SEM (scanning electron microscope). analysis of this material showed that the silver and tungsten, together with copper and nickel, was present in what appear to be metal shards (McLeod, 1997) and therefore are likely to be due to contamination from the drill bit or other parts of the drill string (Leitch, 1997). Abundant tramp iron is also present in the sample (McLeod, 1996), also likely from the drill string (Leitch, 1997). Significantly, the copper analyses are of the same order of magnitude (to 2000 ppm, i.e. 2000 g/t) as the silver, strengthening the case for metal contamination (normally occurring natural mineralization would tend to have copper much higher than silver, as in the Gravel Creek vein exposures). Also, the fact that tungsten values are higher than copper or silver suggests that a hard metal composed principally of tungsten has been alloyed with minor Cu and Ag to make it more malleable. The source of the outstanding silver and tungsten anomalies in WC109601 is therefore considered to be an artifact of drilling and not worthy of further follow-up.

CONCLUSIONS AND RECOMMENDATIONS WITH COST ESTIMATES

PHASE 1: HIGHEST PRIORITY (EPITHERMAL VEINS)

Evidence for the presence of an epithermal vein system on the property, in and near Gravel Creek, includes:

- 1) Banded, chalcedonic quartz-carbonate veining with cockscomb texture and minor vugs, in places containing significant chalcopyrite, chalcocite, bornite, digenite and covellite plus significant values in silver;
- 2) Presence of typical epithermal indicator elements (As, Sb, Bi, Hg) in addition to significant copper, silver, and trace gold;
- 3) Low-temperature fluid inclusions in quartz and carbonate.

It is recommended that this target be followed up by detailed structural mapping of the vein exposures, magnetic and VLF-EM surveying, and tested by further drilling in at least two diamond drill holes to a total depth of at least 300 meters each. The holes should be from closer to the Gravel Creek vein exposures than hole WC109603 if possible, or (less desirable) from the same site as WC109603, and angled to the east to pass below the veins exposed in the creek. Results of the first hole may dictate turning from the same set-up and drilling a second hole of similar depth.

The estimated costs of such a program are as follows:

1)	Diamond Drilling of 600 meters at \$100/meter (including mobilization costs)	\$ (60,000
2)	Geologic Services Consultant 4 days at \$500/day = \$2,000 Geologist 10 days at \$300/day = \$3,000 Assistant(s) 10 days at \$200/day = \$2,000	\$	7,000
3)	Assaying	\$	5,000
4)	Accomodations for 2 @ \$100/day for 10 days 1 @ \$100/day for 4 days	\$ \$	1,000 400
5)	Travel (airfare, vehicle rental)	<u>\$</u>	1,800
GRAND T	Total Estimated Cost Contingency (10%) OTAL	\$ \$ \$ \$	75,200 7,500 32,700

PHASE 2: LOWER PRIORITY (WHITE CHANNEL GRAVELS)

Gold mineralization is known to occur in the White Channel gravels that occur under a Miocene basalt cap just west of the highway on the northern part of the Property. The White Channel gravels are likely part of an extensive pre-Miocene fossil placer deposit intermittently exposed along the scarp marking the edge of the Miocene basalts. However, this target has been the object of several prior drill programs that have so far failed to locate significant reserves. Also, poor recovery during drill testing may make this target difficult to evaluate; the previous work in the immediate area confirms that many difficulties have to be overcome in order to reliably estimate the extent and grade of such occurrences. To test the fossil placer gold potential, a program would have to include a total of three separate fences of reverse circulation drill holes to test the Tertiary channel gravels, with one fence across the known outcrop of White Channel gravels near the highway, one fence 300 meters southeast of the outcrop, and one fence 300 meters northwest of the outcrop. A maximum depth of 100 meters per hole would be required and hole spacing should be 100 meters along the fence over 500 meters. or 1800 meters total. The services of a consultant and geologist familiar with the recovery and evaluation of gold (from the drill cuttings) would be essential to the success of the test program.

The estimated costs of such a program are as follows:

1)	Reverse Circulation Drilling of 1800 meters @ \$100/meter (including mobilization costs)	\$180,000
2)	Geological Services Consultant @\$ 500/day for 5 days = \$ 2,500 Geologist @ \$300/day for 50 days = \$15,000 Assistant(s) @ \$200/day for 50 days = \$10,000	\$ 27,500
3)	Equipment Rentals (sluice, goldpans, etc.)	\$ 10,000
4)	Assaying	\$ 18,000
5)	Accomodation for 2 people for 50 days @ \$100/person/day 1 person for 5 days	\$ 10,000 \$ 500
6)	Travel (airfare, vehicle rental)	<u>\$5,000</u>
GRAND TO	Total Estimated Cost Contingency (10%) TAL	\$251,000 <u>\$_25,100</u> \$276,100

PHASE 3: LOWER PRIORITY (PORPHYRY COPPER-GOLD)

There is a potential for porphyry-style (bulk-tonnage) copper-gold mineralization on the Property, particularly in the vicinity of the magnetic anomaly near Bells Lake. Depending on the recommendations from a qualified geophysicist on the gravity and aeromagnetic data, it may be considered worthwhile to test the area in the down-ice direction to the northwest of the magnetic anomaly. To reliably test this area would require sampling the basal overburden immediately above bedrock, probably by reverse-circulation drilling, in fences of drill holes spaced 0.5 kilometer apart along fences 1 kilometer apart. Three fences of 5 holes each, to an average depth of 100 meters, would require a total of 1500 meters of drilling.

The estimated costs of such a program are as follows:

1)	Reverse Circulation Drilling of 1500 meters @ \$100/meter (including mobilization costs)	\$150,000
2)	Geological Services Consultant @ \$ 500/day for 2 days = \$ 1,000 Geologist @ \$300/day for 40 days = \$12,000 Assistant(s) @ \$200/day for 40 days = \$ 8,000	\$ 21,000
3)	Assaying	\$ 1,000
4)	Accomodation for 2 people for 40 days @ \$100/person/day 1 person for 2 days	\$ 8,000 \$ 200
5)	Travel (airfare, vehicle rental)	<u>\$ 5,000</u>
	Total Estimated Cost Contingency (10%)	\$185,200 <u>\$_18,500</u>
GRAND TO	TAL	\$203,700

Report By

C.H.B. Leitch, Ph.D, P. Eng.

REFERENCES

Bragg, D.K. (1982):	Prospecting Report on the Gold 1-3 Mineral Claims (Unpublished Report, 5 pp.)
Cooke, D.L. (1984):	Report on Drilling, Gold 1-3 Mineral Claims near Horsefly, B.C. (Unpublished Report to Pacific Ridge Resources Corp. and Ark Energy Ltd., 3 pp. & appendices).
Harris, J.F. (1996):	Petrographic Examination of Core Samples from the Horsefly area, B.C. (Unpublished Report 96-123 of Harris Exploration Services, 6 pp.)
Jones, H.M. (1984a):	Report on Magnetometer Survey on the China 3 Claim, Horsefly area, Cariboo Mining Division N.T.S. 93A/6W (Unpublished Report to La Teko Resources Ltd., 8 pp.)
(1984b);	Report on Magnetometer-VLF Survey on the Beaver 2 Claim, Horsefly area, Cariboo Mining Division N.T.S. 93A/5E,6W (Unpublished Report to Redford Resources Inc., 8 pp.)
Kruchowski, E.R. (1978):	Drill Report, the Malcolm 1 and Sam Claims, Horsefly area, Cariboo Mining Division N.T.S. 93A/3 (Unpublished Report to Silver Acorn Developments Ltd., 19 pp.)
Lay, D. (1931):	North-Eastern Mineral Survey District (No. 2), Horsefly Section; B.C. Ministry of Mines Annual Report 1931, pp. A96-A101.
Leitch, C.H.B. (1996):	Petrographic Report on 14 Samples from Horsefly Project, B.C. (Unpublished Report 960898, Vancouver Petrographics Ltd., for White Channel Resources Corporation, 16 pp.)
(1997):	Petrographic Report on 1 Sample from Horsefly Project, B.C. (Unpublished Report 970023, Vancouver Petrographics Ltd., for White Channel Resources Corporation, 2 pp.)
Levson, V.M and Giles, T.R. (1993):	Geology of Tertiary and Quarternary Gold-Bearing Placers in the Cariboo Region, British Columbia (93A,B,G,H); Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 89, 202 pp.
McLeod, J.A. (1996):	X-Ray Diffraction Report on One Sample from Drill Hole WC109603- 207.5 m (Unpublished Report Cominco Exploration Research Laboratory X96-266, 1 p.)
(1997):	Scanning Electron Microscope Report on One Sample from Drill Hole WC109602-68.5 m (Unpublished Report Re: A9644415 Reject, Cominco Exploration Research Laboratory V97-76R, 1 p.)
Northcote, K.E. (1996):	Petrographic Report on Orlon Native Copper Sample (Unpublished Report Job #23, Vancouver Petrographics Ltd., for Orlon Resources Limited, 3 pp.)

Panteleyev, A., Bailey, D.G., Bloodgood, M.A. and Hancock, K.D. (1996):

- Geology and Minerals Deposits of the Quesnel River Horsefly Map Area, Central Quesnel Trough, British Columbia (Bulletin 97, B.C. Ministry of Employment and Investment, Energy and Minerals Division, Geological Survey Branch, 156 pp.)
- Wiley, W.E. (1996): Diamond Drill Hole Logs for Holes WC109601-03, October 17 October 31, 1996.
- _____(1997): Diamond Drill Report on the Mineral Ridge 1 and 7 Claims, Cariboo Mining Division, N.T.S. 93A/5 and 6 (Assessment Report for White Channel Resources Corporation, 7 pp. + Appendix).

Page 17

CERTIFICATE OF QUALIFICATION

- I, Craig H.B. Leitch, of 492 Isabella Point Road, Salt Spring Island, in the Province of British Columbia do hereby certify that:
 - 1) I am a Professional Engineer registered with the Association of Professional Engineers and Geoscientists of British Columbia.
 - 2) I am a 1971 graduate of Queen's University with a B.Sc. Degree in Geological Engineering, a 1975 graduate of Imperial College of Science and Technology (University of London) with a M. Phil. Degree in Mining Geology, and a 1989 graduate of The University of British Columbia with a Ph.D Degree in Geological Engineering.
 - 3) This Report is based on my personal examination of core, hand samples and thin sections from the Mineral Ridge Property, and on perusal of assay data supplied by the property owners and previous reports on the Property and surrounding area.
 - 4) This Report is supported by examination made intermittently between December 2, 1996 and January 21, 1997.
 - 5) I do not have, nor do I expect to recieve, any interest, direct or indirect, in the Mineral Ridge Property of the Issuer or any affiliate; I do not benefically own, directly or indirectly, any securities of the issuer or any affiliate.

APPENDIX 1: DIAMOND DRILL LOGS, WC109601-WC109603

--- -- -- -- --

-- -- -- --

PROPERTY - White Channel Mineral Rid	ae DISTRICT: - Horsefly B.C.	Page 1 of
START October 17 1996-	FINISH - October 17, 1996	
LOCATION - Horsefly B.C.		<u>,</u>
CLAIM - Mineral Ridge#1		
COORDINATES - 5797250N, 600450E U	TM grid	
DIRECTION - Vertical	DIP90	
ELEVATION - 810 meters	LENGTH - 39.6 meters	
HOLE SIZE: HW 3 and 7/8 inch tricon		<u></u>
LOGGED BY - W. E. Wiley	DATE - October 17 1996	
PURPOSE OF HOLE - To intersect Tertia	ary Plateau Basalts, "White Channel" gravels ar	id Triassiic Volcani
	ASSAY SAMPLE # LENGTH ALL AG CU	·····
The hole was abandoned when an attempt to get	the tricone No sample taken.	
out of the hole failed and the tricone bit broke off	F.	
No core was recovered.		
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·		•
· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	

PROP		Million Alexand Deserves	ana Minanali	Dialaa Die	etolo:	·			Bee	- 4 -8
	PERTY	• White Channel Resource	ces mineral	Riage Dis	SIRICI	- Morseti	у в.с.		Pag	e 1 or
SIAN		(oper 17, 1990	F II	NISH - UCTODE	er 21, 1	220				
	ATION .	Horsetly B.C.				·····				
	M - Min	eral Ridge # 1								
COOP	RDINA	ES - 5797250N, 600450	E UTM grid 1	I meter north	of WC	10-96-1a				
DIRE	CTION	- Vertical		DIP90						
ELEV	ATION	- 810 meters	LE	NGTH - 229.8	meter	5			<u></u>	
HOLE	E SIZE	3 7/8 inch tricone								
LOGO	GED BY	- W. E. Wiley	DA	TE - October	18, an	d Nov. 2.	1996	<u> </u>		<u> </u>
PURP	POSEO	F HOLE - To intersect T	ertiary "Plate	au" . "White (Channe	d" gravel	and Tris	assic V	olcanic	<u></u>
				,						
METE	RAGE			,		ASSA	/			
METE FROM NOTE overbu	RAGE	DESCRIPTION scriptions after 65.5 meters a aterial. From the presence of the driller of the drilled materi	re of the materia grey clay in the ial as clay, it is r	Fro al recovered from bit from the botto nost probable the	om to n the ret om of th at the ov	ASSAN sample A urn water ar e hole, the f	Augrm/t A and represe act that th aterial fro	Ag ppm ent the co ere was	<u>Cu ppm</u> parser fra a good w o 229 8 m	ction of ater ret
METE FROM NOTE overbu descrij	RAGE 1 TO 	DESCRIPTION scriptions after 65.5 meters a aterial. From the presence of the driller of the drilled materi	re of the materia grey clay in the ial as clay, it is r	Fro al recovered from bit from the botto nost probable tha	om to n the ret om of th at the ov	ASSAN sample A urn water ar bole, the f erburden m	d represe act that th aterial fro	Ag ppm ent the co ere was m 65.5 t	Cu ppm Darser fra a good w o 229.8 m	ction of ater ret neters is
METE FROM NOTE overbu descrij	RAGE 1 TO : The de urden ma ption by 42.7	DESCRIPTION scriptions after 65.5 meters a aterial. From the presence of the driller of the drilled materi HW Casing - Overburden	re of the materia grey clay in the ial as clay, it is r	Fro al recovered from bit from the botto nost probable tha	om to n the ret om of th at the ov	ASSAN sample A urn water ar e hole, the f rerburden m	d grm/t <u>A</u> nd represe act that th aterial fro	Ag ppm ent the co ere was im 65.5 t	Cu ppm barser fra a good w o 229.8 n	ction of ater ret neters i
METE FROM NOTE overbu descrij 0 42.7	RAGE 1 TO : The de urden mi ption by 42.7 44.8	DESCRIPTION scriptions after 65.5 meters a aterial. From the presence of the driller of the drilled materi HW Casing - Overburden Basalt: agglomeritic	re of the materia grey clay in the ial as clay, it is r	Fro al recovered from bit from the botto nost probable the	om to n the ret om of th at the ov	ASSAN sample A urn water ar e hole, the f rerburden m	nd represe act that th aterial fro	Ag ppm ent the co ere was im 65.5 t	<u>Cu ppm</u> barser fra- a good w o 229.8 n	ction of ater ret neters i
METE FROM NOTE overbu descrij 0 42.7 44.8	RAGE 1 TO :: The de urden ma ption by 42.7 44.8 45.8	DESCRIPTION scriptions after 65.5 meters a aterial. From the presence of the driller of the drilled materi HW Casing - Overburden Basalt: agglomeritic Basalt: massive, uniform, gr	re of the materia grey clay in the ial as clay, it is r rey to black.	Fro al recovered from bit from the botto nost probable tha	om to n the ret om of th at the ov	ASSAN sample A urn water ar e hole, the f erburden m	d represe act that th aterial fro	Ag ppm ent the co ere was m 65.5 t	Cu ppm Darser fra a good w o 229.8 m	ction of ater ret neters i
METE FROM NOTE overbu descrij 0 42.7 44.8 45.8	RAGE 1 TO 2 The de urden ma ption by 42.7 44.8 45.8 50.5	DESCRIPTION scriptions after 65.5 meters a aterial. From the presence of the driller of the drilled materi HW Casing - Overburden Basalt: agglomeritic Basalt: massive, uniform, gr Unconsolidated gravel, app	re of the materia grey clay in the ial as clay, it is r rey to black. roximately 40%	Fro al recovered from bit from the botto nost probable tha	om to n the ret om of th at the ov	ASSAN sample A urn water ar e hole, the f rerburden m	d represe act that th aterial fro	Ag ppm ent the co lere was m 65.5 t	Cu ppm Darser fra a good w o 229.8 m	ction of ater ret neters i
METE FROM NOTE overbu descrij 0 42.7 44.8 45.8	RAGE 1 TO :: The de urden ma ption by 42.7 44.8 45.8 50.5	DESCRIPTION scriptions after 65.5 meters a aterial. From the presence of the driller of the drilled materi HW Casing - Overburden Basalt: agglomeritic Basalt: massive, uniform, gr Unconsolidated gravel, appr quartz. Semi-consolidated f	re of the materia grey clay in the ial as clay, it is r rey to black. roximately 40% rom 48.2 with da	Fro al recovered from bit from the botto nost probable the ark	om to n the ret om of th at the ov	ASSAN sample A urn water ar e hole, the f rerburden m	nd represe act that th aterial fro	Ag ppm ent the co ere was m 65.5 t	Cu ppm Darser fra a good w o 229.8 m	ction of ater ret neters is
METE FROM NOTE overbu descrij 0 42.7 44.8 45.8	RAGE 1 TO : The de urden ma ption by 42.7 44.8 45.8 50.5	DESCRIPTION scriptions after 65.5 meters a aterial. From the presence of the driller of the drilled materi HW Casing - Overburden Basalt: agglomeritic Basalt: massive, uniform, gr Unconsolidated gravel, appl quartz. Semi-consolidated f basaltic matrix. Clasts appe	re of the materia grey clay in the ial as clay, it is r rey to black. roximately 40% rom 48.2 with da ar to have a	Fro al recovered from bit from the botto nost probable that ark	om to n the ret om of th at the ov	ASSAN sample A urn water ar e hole, the f erburden m	nd represe act that th aterial fro	Ag ppm ent the co lere was m 65.5 t	Cu ppm Darser fra a good w o 229.8 m	ction of ater ret neters i
METE FROM NOTE overbu descrij 0 42.7 44.8 45.8	RAGE 1 TO The de urden ma ption by 42.7 44.8 45.8 50.5 52.2	DESCRIPTION scriptions after 65.5 meters a aterial. From the presence of the driller of the drilled materi HW Casing - Overburden Basalt: agglomeritic Basalt: massive, uniform, gr Unconsolidated gravel, app quartz. Semi-consolidated f basaltic matrix. Clasts appe reaction rim.	re of the materia grey clay in the ial as clay, it is r rey to black. roximately 40% rom 48.2 with da ar to have a	Fro al recovered from bit from the botto nost probable that ark	om to n the ret om of th at the ov	ASSAN sample A urn water ar e hole, the f rerburden m	nd represe act that th aterial fro	Ag ppm ent the co lere was m 65.5 t	Cu ppm Darser fra a good w o 229.8 m	ction of ater ret neters i
METE FROM NOTE overbu descrij 0 42.7 44.8 45.8 50.5 52.3	RAGE <u>1 TO</u> The de urden minimized ption by 42.7 44.8 45.8 50.5 52.3 53.0	DESCRIPTION scriptions after 65.5 meters a aterial. From the presence of the driller of the drilled materi HW Casing - Overburden Basalt: agglomeritic Basalt: massive, uniform, gr Unconsolidated gravel, appr quartz. Semi-consolidated f basaltic matrix. Clasts appe reaction rim. Mudstone: black, fine, unifo Gravel: with quartz pebbles	re of the materia grey clay in the ial as clay, it is r rey to black. roximately 40% rom 48.2 with da ar to have a rm. Bedding is f	Fro al recovered from bit from the botto nost probable that ark	om to n the ret om of th at the ov	ASSAN sample A urn water ar e hole, the f rerburden m	nd represe act that th aterial fro	Ag ppm ent the co rere was rm 65.5 t	Cu ppm Darser fra a good w o 229.8 m	ction of ater ret neters i
METE FROM NOTE overbu descrij 0 42.7 44.8 45.8 50.5 52.3 53.0	RAGE TO The de urden mi ption by 42.7 44.8 45.8 50.5 50.5 53.0 54.4	DESCRIPTION scriptions after 65.5 meters a aterial. From the presence of a the driller of the drilled materi HW Casing - Overburden Basalt: agglomeritic Basalt: massive, uniform, gu Unconsolidated gravel, appr quartz. Semi-consolidated f basaltic matrix. Clasts appe reaction rim. Mudstone: black, fine, unifo Gravel: with quartz pebbles.	re of the materia grey clay in the ial as clay, it is r rey to black. roximately 40% rom 48.2 with da ar to have a rm. Bedding is f	Fro al recovered from bit from the botto nost probable that ark	om to n the ret orn of th at the ov	ASSAN sample A urn water ar e hole, the f rerburden m	nd represe act that th aterial fro	Ag ppm ent the co ere was im 65.5 t	Cu ppm Darser fra a good w o 229.8 m	ction of ater ret neters i
METE FROM NOTE overbu descrij 0 42.7 44.8 45.8 50.5 52.3 53.0 54.4	RAGE 1 TO : The de urden mi ption by 42.7 44.8 45.8 50.5 52.3 53.0 54.4 65.5	DESCRIPTION scriptions after 65.5 meters a aterial. From the presence of of the driller of the drilled materi HW Casing - Overburden Basalt: agglomeritic Basalt: massive, uniform, gr Unconsolidated gravel, appi quartz. Semi-consolidated fi basaltic matrix. Clasts appe reaction rim. Mudstone: black, fine, unifo Gravel: with quartz pebbles. Vesicular Basalt	re of the materia grey clay in the ial as clay, it is r rey to black. roximately 40% rom 48.2 with da ar to have a rm. Bedding is f	Fro al recovered from bit from the botto nost probable that ark	om to the ret om of th at the ov	ASSAN sample A urn water ar e hole, the f erburden m	nd represe act that th aterial fro	Ag ppm ent the co ere was m 65.5 t	Cu ppm Darser fra a good w o 229.8 m	ction of ater ret neters is
METE FROM NOTE overbu descrij 0 42.7 44.8 45.8 50.5 52.3 53.0 54.4	RAGE TO The de urden mi ption by 42.7 44.8 45.8 50.5 52.3 53.0 54.4 65.5	DESCRIPTION scriptions after 65.5 meters a aterial. From the presence of the the driller of the drilled materi HW Casing - Overburden Basalt: agglomeritic Basalt: massive, uniform, gr Unconsolidated gravel, app quartz. Semi-consolidated f basaltic matrix. Clasts appe reaction rim. Mudstone: black, fine, unifo Gravel: with quartz pebbles. Vesicular Basalt Gravel. Several very hard b pebbles. Quartz pebbles	re of the materia grey clay in the ial as clay, it is r rey to black. roximately 40% rom 48.2 with da ar to have a rm. Bedding is f	Fro al recovered from bit from the botto nost probable that ark	om to n the ret orn of th at the ov	ASSAN sample A urn water ar e hole, the f rerburden m	nd represe act that th aterial fro	Ag ppm ent the co lere was m 65.5 t	Cu ppm Darser fra a good w o 229.8 m	ction of ater ret neters i
METE FROM NOTE overbu descrij 0 42.7 44.8 45.8 50.5 52.3 53.0 54.4	RAGE TO The de urden ma ption by 42.7 44.8 45.8 50.5 52.3 53.0 54.4 65.5	DESCRIPTION scriptions after 65.5 meters a aterial. From the presence of the driller of the drilled materi HW Casing - Overburden Basalt: agglomeritic Basalt: massive, uniform, gr Unconsolidated gravel, appi quartz. Semi-consolidated f basaltic matrix. Clasts appe reaction rim. Mudstone: black, fine, unifo Gravel: with quartz pebbles. Vesicular Basalt Gravel. Several very hard b pebbles. Quartz pebbles.	re of the materia grey clay in the ial as clay, it is r rey to black. roximately 40% rom 48.2 with da ar to have a rm. Bedding is f	Fro al recovered from bit from the botto nost probable that ark	om to n the ret om of th at the ov	ASSAN sample A urn water ar e hole, the f rerburden m	nd represe act that th aterial fro	Ag ppm ent the co rere was rm 65.5 t	Cu ppm Darser fra a good w o 229.8 m	ction o ater re neters

I

<u>65.5</u>	83.8	Light Grey Sand - Mostly quartz, some quartz		· · · · · · · · · · · · · · · · · · ·				Page 2 of 2
		rusty. a pale blue translucent mineral is present.						••••
		Some flakes attracted to magnet. Some very						
		small magnetite grains. Quartz 70%. No calcite.						
83.8	89.9	Grey Sand - Similar to above - less quartz.						
89.9	108.2	Brown Sand - Fine grained - silt size. More	89.9 93.0	0 #1-30 5		19	55	
		rusty material than above. Quartz 70%.						
		Occasional pale green olivine crystal.						
		From 96.0 to 99.1 reacts strongly with H CI.						
		Metal flakes and magnetite.						
108.2	117.3	Grey to Dark Grey Sand - More grains of						
		basalt than quartz. Uniform grain size.						••
		Very little carbonate. Metal as flakes.						· · · ·
117.3	132.6	Brown Sand. Fine grained. Some oxidized	120.4 123	3.4 #1-405		11	85	
		material. Mostly quartz (60%). Some mica?						
		Metal flakes (probably from bit).						
132.6	178.3	Grey Sand Mostly quartz (>50%).	150.9 153	3.9 #1-505		3	40	
		Less oxidized material than above. Flakes						
· · ·	• • • • • • •	of metal and magnetite grains.	· · · · ·					
178.3	181.3	Sand or silt - very fine grained quartz. Rich	175.3 178	8.3 #1-585		5	50	
		in oxidized material.					•	
181.3	208.8	Sand or silt - very fine grained, grey, quartz	178.3 181	1.4 #1-595		3	55	
		about 40%. Many dark grains. Large	181.4 184	4.4 #1-605		6	50	
		percentage of pale blue translucent grains	187.4 190	0.5 #1-625		2	50	
		at 187.4 to 190.5. Epidote from 205.7 to						· · · · · · · · · · · · · · · · · · ·
		208.8. Most grains are sub-angular.						
		Reacts to H CI at 193.5 to 196.6.						
208.8	211.8	Silt - brown.						
211.8	229.8	Grey Sand - Quartz about 40%. Grains of epidote.	211.8 214	4.9 #1-705		4	65	
		Pink and pale blue translucent minerals.						
END C	F HOLE							
							· · ·	
		A grey sticky clay was recovered from the tricone	229.8	119950	0.004	<1	100	
		bit when it was finally pulled. (A sample was taken).						
		This and the presence of quartz convinces me that					• • • •	
		overburden was encountered the entire length of						
		the hole. The hole was stopped at this depth for		· · · · · · · · · · · · · · · · · · ·				
		economic reasons.	·····					

.

.

R

DOADEDTY					<i></i>			
	- White Channel - Mineral Ridge	DISTR	RICT -	Hor	sefly B.C			Page 1 of 1
START - Oct	tober 22 1996 F	INISH - Oct	ober 2	24 1	996			
LOCATION -	Horsefly B.C.							
CLAIM - Min	eral Ridge #7							
COORDINAT	FES - 5796000N, 599980E UTM grid	estimated.						
DIRECTION	- Vertical	DIP - ·	-90					
ELEVATION	- 820 meters	ENGTH - 16	35.8 m	ete	rs (544 f	eet)		······································
HOLE SIZE .	- HQ 3 7/8inch tricone							
LOGGED BY	- W. E. Wiley	DATE	- Nove	emb	er 1, 19	96		
PURPOSE O	F HOLE - To intersect Tertiary Plat	eau Basalts	s, "W hi	ite (Channel"	gravel	s and Ti	iassic Volcanic
METERAGE	<u></u>				ASS	AY	<u> </u>	
FROM TO	DESCRIPTION		from	to	sample	Au grm	Ag ppm	Cu ppm
165.8	Overburden - No return of water,	-			· · · · · · · · · · · · · · · · ·			
·	therefore no sample except off the tricon	9				••••••		
	from the bottom of the hole.							
	Also some material was recovered							
	from inside the bottom drill rod when pulle	ed						
	at 88.4 m (290 feet).							
	Drill rod material is gravel to 1.5 cm size	with						
	about 20% quartz. The other pebbles are	a fine						
	grained black volcanic and a fine grained	grey						
	rock. There is very minor iron oxides.							
	Bit material is grey clay - non calcareous.		88.4		111551	0.004	<1	40
	E The hole was stopped because of lack of							
	drill water return and an excessive denth	•• ••						

.

B

HOLE	NUMB	ER - WC109603					Page 1 of 8
PROP	ERTY -	White Channel - Mineral Ridge	DISTRIC	T - Horse	fly B.	C.	
STAR	T - Oct	ober 25 1996 FINIS	H - Octob	oer 28 199	6		
LOCA	TION -	Horsefly B.C., West side of Gravel Cree	k				
CLAIN	A - Min	eral Ridge # 1			<u> </u>	<u></u>	
COOR	DINAT	ES - 5797470N, 600570E UTM grid. esti	mated				
DIREC	TION	• Vertical	DIP90)			
ELEV	ATION	- 740 meters LENG	TH - 367.	.9 meters	(1207	' feet)	
HOLE	SIZE -	HQ to 9.1m NQ to 367.9m			<u>.</u>	······································	
CORE	RECO	VERY - 99.1%			<u> </u>		<u> </u>
LOGG	ED BY	- W. E. Wiley	DATE -	October 2	9 to 3	1 1996	<u> </u>
PURP	OSE O	F HOLE - To test Tertiary Volcanics coll	laring ab	ove a know	wn m	ineralized shea	r
							······································
METER		DECORIDITION		# E	ASS	SAY	0
FROM	9.6		SAMPLE		Lgth	Au grm Ag ppm	Сиррт
<u> </u>	9.0	Overbuiden no recovery.		· • • • • • • • • •			
9.6	41.0	Volcanics - Tertiary Amygdaloidal Basal	119903	16.4 17.4	1.0	<1	90
		Basalt is soft and altered.	119904	32.3 32.7	0.4	<1	45
		Amygdules mostly rounded (5 mm.), filled with	119905	39.0 40.0	1.0	<1	20
		white calcite. Matrix dark. Some altered Olivine					
		Core coated with hematite mud.					
		Shearing and slips at 23.5m slickenside 30° to 4	45°				
		28.0m hematite mud 45&9	90°				
		32.4 to 32.7m CO3 gouge slip at	45°	·····			
41.0	44.5	Sheared Volcanics - Probably sheared		= .==,			
		amyodaloidal basalt. Mostly healed with calcite.			-		
		Fracturing at 30° to core (with slickensides).	· · · · · · · · · · · · · · · · · · ·	· · · ·			· · · · · · · · · · · · · · · · · · ·
••		This section is solid core but with white calcite					
		stringers and an amorphous look.					
44 5	53.9	Volcanics Amyodaloidal basalt attered soft	110006	49.0 50.0	10		125
<u></u>	00.0	with calcite filled amyodules. Also calcite	110000	-0.0 50.0	1.0	<u> </u>	123
		as stringers and bands cutting core similar					
							· · · · · · · · · · · · · · · · · · ·

		to section above but Basalt less amorphous.						Page 2 of 8
		Sections of maroon basalt.						
		Sections with fewer amygdules. Sections with						
		large (up to 2 cm) filled amygdules.						
<u>53.9</u>	60.0	Volcanic - Basalt with pale green clasts - many	110007	59.0 60.0	1.0			5
	· · · · · ·	angular, some partly rounded. Not calcareous.						
		Hematite dispersed in the matrix. Hematite						
		mud for 3 cm. at upper contact. Overall the						
		unit is fairly uniform with some calcite as		· • •				
		stringers and fracture filling.						
60.0	61.3	Basalt - massive. A few large amyodules				-		
		filled with calcite. Calcite stringers.					•	
							• • • • •	· · · ·
61.3	63.8	Volcanic - Basalt with pale green clasts, calcite	1		<u> </u>			
		filled amygdules - drawn out and aligned						
		at +/- 40° to core. A 2 cm. calcite band at		· · · · · · · · · · · · · · · · · · ·				
		15° to core at base.						
63.8	64.3	Volcanic - Basalt, massive with calcite	· · · · · · · · · · · · · · · · · · ·	·				· ·
		stringers.						
		· · · · · · · · · · · · · · · · · · ·						
64.3	65.1	Possible felsic intrusive with calcite.	119908	64.3 65.1	0.8	<1	95	
		a speck of chalcopyrite was seen.						• • • •
								· · · · · · · · · · · · · · · · · · ·
<u>65.1</u>	74.8	Volcanic - Basalt, dark, sections with varying	119909	<u>69.0</u> 70.0	1.0	<1	45	
		amounts of pale green clasts (probably						
		altered olivine). Multiple calcite stringers.						
	· · · · · · · · · · · · · · · · · · ·	Hematite rich section 66.0 - 69.0. From						
		72.0 to 72.8 the core is broken and sheared.						
74.8	85.9	Volcanic - Basalt, hard, less altered. Distinct	119910	79.0 80.0	1.0	<1	15	
		olivine and altered olivine. Other altered						
		crystals are reddish-brown. Some small						
		black crystals are probably magnetite						· · · · ·
		Unit is very hard and less altered from		· · · -		·		
		81.4. Calcite stringers throughout Possible		·				· · · · · · · · · · · · · · · · · · ·

. .

.

R

		Agglomerate from 74.8 to 79.0.				Page 3 of 8
<u>85.9</u>	88.5	Sandstone or siltstone - Calcareous,				
		hematite soaked. Upper contact at 70°.				
		Bedding also at 70° to core. Lower contact				
		irregular penetrating the lower basalt.				· · · · ·
						-
88.5	95.5	Major Sheared Zone in basalt. Lots of	119911 89.0 90.0 1.0	1	205	
		calcite healing the breaks plus some				
		mud and gouge. The zone is more				
		pronounced 88.5 to 92.8. From this point				
		it is partly broken amygdaloidal basalt				
		with calcite stringers. The angle of				
		faulting /shearing is 45° to core.				
		A speck of pyrite occurs at 89.5 m.				
95.5	98.1	Siltstone/sandstone - calcareous and				
		hematite soaked. Bedding 55°.				
		Lower contact is 65°.				
<u>98.1</u>	105.6	Volcanic - probably a basaltic agglomerate.	119912 99.0 100.0 1.0	<1	115	
		Altered. Pale green inclusions are probably				
		altered olivine. Calcite as bands and				
		stringers. I suspect it is an agglomerate				
		from a lack of uniformity in spite of being				
		a similar composition.				
105.6	110.6	Volcanic - Basalt fairly massive and dark.	119913 109.0 110.0 1.0	<1	20	
		Many calcite stringers, mostly at 50°,				
<u> </u>		some at 80°.				
·				·		
110.6	112.0	Siltstone - calcareous, hematite soaked.	119914 110.6 111.1 0.5	<1	5	
		Intermixed with amygdaloidal basalt,				
		possibly as bombs.				
112.0	115.7	Volcanic - amygdaloidal basalt. White				·····
		calcite filling amygdules. Calcite in				
		fractures at 35° to core.				

Page 4 of 8

									Page 4 01 6
115.7	117.2	Sandstone/siltstone - calcareous and hematitic.							
117.2	121.7	Volcanic - amvodaloidal basalt.	119915	119.0	120.0	1.0	<1	20	
		Calcite stringers.							···· · · · · · · · · · · · · · · · · ·
121 7	124.0	Mixed Pock - calcite, possibly issper	110016	121 7	1227	10	<1	00	
121.1	124.0	(reddish and hard) mostly as fragments	110017	121.7	122.7	0.5		50	
		The unit has a broken and healed look.	119918	123.2	123.2	0.8	1	120	
124.0	130.8	Volcanic - Tuff, dark, fine grained and massive.	110019	129.0	130.0	1.0	<1	25	
		Calcite stringers. Hematitic mud at							
	,,	124.6 to 124.9.							
130.8	134.9	Volcanic - amygdaloidal basalt - rounded to							
		angular amygdules (some drawn out), some							······································
		pale green (altered olivine). Unit is calcareous			-				· ·
		including matrix.							
134 0	136.4	Broken Basalt - Some slickensides so probably		··· · · · · · · · · · · · · · · · · ·					
104.0	100.4	a fault zone							
								. <u> </u>	· · · · ·
136.4	138.3	Mostly calcite - possibly with some silica. Simila	r						
		to mixed zone from 121.7 to 124.0 but without							
<u></u>		jasper-like material. Probably a healed fault zon	ie.						
		Lower contact at 60°.							· · · · · · · · · · · · · · · · · · ·
138.3	145.4	Volcanic - amvodaloidal basalt, Amvodules	119920	139.0	140.0	1.0	<1	45	
		are 1 mm, to 10 mm., filled with calcite.							
		Where amyodules are larger they are few							
		in quantity.							
145 4	160.0	Volonia Amustalaidal basalt datu laas	440004	140.0	450.0	4.0	-4		
145.4	100.0	ottored then provide upits Magnetic	119921	149.0	150.0	1.0	<1	20	<u></u>
		Amyodulos are coloito filled. Some are	119922	159.0	100.0	1.0	<u> </u>	230	
		Annygoules are calcile filled. Some are							
		with alteration decreasing. Dinkish crange		••••				· · · · · · ·	
		calcite toward base				··· ·· -		• • • •	
									· · · · ·

160.0	188.1	Volcanic basalt. Few amygdules. Olivine	119923	168.6	170.0	1.4	<1	40	Page 5 of 8
	·	less altered to unaltered after 175.0 m.	119924	179.0	180.0	1.0	<1	65	
		Magnetic. Calcite healed fracture @ 2 cm.							
		wide at 22° to core at 184.5 m.							
188 1	191 1	Volcanic - amvodaloidat basalt. Calcite filled	119925	189.0	190.0	1.0	<1	10	
		amygdules. Magnetic. Olivine partly altered.							
191.1	200.7	Similar to above with few amyodules. Calcite	119926	199.0	200.0	1.0	<1	15	
		blebs and stringers, mostly white some pinkish-							
		orange.							
200.7	205.0	Similar to section 188 1 to 101 1							
200.7	203.0	Volcanic - basalt Partly altered	119927	207.0	208.0	10	<1	120	
200.0	217.7	blue /green mineral at 207.5 is probably	TTOOL	207.0	200.0	1.0		120	
		serpentine or actinolite. Magnetic to 216.8.							
-		Occasional calcite filled amyodules. Minor							······
		hematite. Hematite in a shear at 50° to core							
		at 213.3 m.							
									······································
217.7	219.7	Mixed zone - probably intrusive siliceous							
		material, intermixed with altered basalt							
		calcite and a soft grey amorphous rock that							
		reacts to H CI. Also contains minor jasper-like							
		mineral.							
219.7	233.4	Volcanic - basalt. Lots of olivine in various	119928	220.0	221.0	1.0	<1	35	
		stages of alteration from glassy to greenish clay	.119929	225.0	226.0	1.0	<1	25	
		Places with the matrix mostly hematite.	119930	230.0	231.0	1.0	<1	240	
		Hematite mud at 224.3 to 224.6. Hematite					···· · ·····		
		increases with depth. Heavy hematite from 231.							
		Petrographic sample at 219.75 = Altered							
		Porphyritic Basalt.							
233.4	233.8	Hematite mud and calcite.							
233.8	242.6	Volcanic - hasalt with lots of olivine (enidote	119931	230 0	240.0	10	<1	45	· · · · · · · · · · · · · · · · · · ·
200.0	272.0	colour) and hematite. White calcite blebs	10001	200.0	240.0	1.0	<u> </u>		
		Non or low magnetic Eairly soft unit							

B

18

Ì.

8

Ê

Page 6 of 8

242.6	246.8	Volcanic - similar to above with less olivine.							
		Magnetic. Shearing with slickensides near							
		parallel to core. Dark green glassy material							
		on slickensides is likely actinolite.							
246.8	248.0	Soft muddy basalt - gouge. Fault near parallel							
		to core.							
248.0	261.5	Volcanic - Basalt, dark basic rock. Lots of	119932	249.0	250.0	1.0	<1	80	
		coarse dark crystals probably Horneblende.	119933	257.9	258.4	0.5	<0.005 <1	40	
		Minor calcite as blebs and stringers.	119934	258.4	258.9	0.5	<0.005 <1	1315	
		Native copper at 258.6 (several specks).	119935	258.9	259.4	0.5	<0.005 <	1 45	· · · · · · · · · · · · · · · · · · ·
									······································
261.5	261.7	Probable unconformity with 10 cm. of hematitic							
		mud underlying angular white calcite clasts							
		for the top 10 cm.				=.			
<u>261.7</u>	275.7	Volcanic - mafic rock medium grained, massive	.119936	269.0	270.0	1.0	<1	30	
		Abundant olivine crystals. Calcite as blebs afte	r						
		269.0 m.							
076 7	070.0								
2/5./	2/6.6	Voicanic - Matic rock with hematitic sitistone							
		пјестео, 60% тапс госк.							
276.6	281.0	Volcanic - Dark mafic rock with olivine	119937	277.3	278.3	10	<1	150	
210.0	201.0	Magnetic Calcite blebs Some marcon	110001	211.0	270.0	1.0			
		siltstone infiltrating. Native copper at 277.5							
		onotono minuality. Harvo coppor at Errici				· · ·			
281.0	304.0	Volcanic - Dark mafic rock with 20 to 30%	119938	301.5	302.0	0.5	<1	40	· · · · · · · · · · · · · · · · ·
		olivine crystals (have an epidote - pistachio	119939	302.0	303.0	1.0	<1	100	
		colour), Calcite blebs, Native copper at 302.5.							
		Petrographic sample at 281.5 = Vesicular					· · ·		
		Basalt Autobreccia. (the olivine above was		• •					
		probably Augite).							
		na da na antiga da	119940	303.0	304.0	1.0	<1	20	<u> </u>
304.0	306.0	Volcanic - Basalt, fine grained, massive.	119941	304.0	305.0	1.0	<1	150	
		Dark crystals may be olivine or homblende.	119942	305.0	306.0	1.0	<1	320	
		Native copper at 305.6.							

Page 7 of 8 119943 306.0 307.0 1.0 15 Volcanic - Amygdaloidal basalt, dark. Round <1 306.0 323.8 amyodules filled with orange and white calcite. 215 Dark glassy shards are probably Augite. 119944 316.0 317.0 1.0 <1 Some amygdules filled with white calcite and a green alteration mineral. Injected silt (maroon) at 307.0 to 307.2. Magnetic. Native copper at 316.6. Petrographic sample at 316.0 = Amygdaloidal Porphyritic Basalt. 70 119945 326.0 327.0 1.0 <1 323.8 342.9 Volcanic Basalt similar to above with fewer amygdules, but quite a few calcite blebs. 119946 336.0 337.0 1.0 Colour varies from maroon to green to black. 175 <1 Olivine crystals are common. Maroon siltstone band 335.0 to 335.3 with bedding at near 90° 119947 341.9 342.9 1.0 <1 285 to core. Native copper at 342.7 along a fracture surface with a green carbonate. Shear contact at 80°. 342.9 346.3 Silltstone - maroon. Likely hematite soaked. Non-calcareous but soft (scratches). Upper contact is a shear. Lower contact of 30 cm. has siltstone with included pebbles of volcanic material. Unit is slightly magnetic. 346.3 363.5 Volcanic - dark with maroon hematite rich 119948 352.0 353.0 1.0 100 <1 patches. Blebs of white and pink calcite. Olivine crystals (pistachio color). Magnetic. Maroon siltstone intrudes in patches. The siltstone is very uniform with no bedding. Calcite as blebs and filling a few amygdules and fractures. 363.5 367.9 Volcanic - Basalt dark green with darker 119949 365.0 366.0 1.0 <1 430 green round filled amygdules. A few calcite filled amygdules. Olivine (pistachio colour) is in varying amounts. Petrographic sample at 367.0 = Porphyritic Trachybasalt. Phenocrysts are fresh clinopyoxenes (Augite).

and plagioclase.

Page 8 of 8

.

i

i

.

Т

1

1

8

END OF HOLE Hole stopped at 367.9 (1207 feet) for

economic reasons

NOTE The hole was left with the casing in it, so that it might be accessed at a future date if required.

Ē

QUICK LOG, DIAMOND DRILL HOLE WC109603 (C.H.B. Leitch, Dec. 3 1996)

Underlined depth indicates sample selected for petrography (Leitch, 1996; Harris, 1996).

BOX 1-8: Magnetic throughout. Variable, dark green basalt, major abundant calcite (+/- ?quartz) veinlets, vesicle, relict phenocrysts. At 28.5 m, calcite after ?feldspathoids; chloritized mafics; hematitzed matrix (petrography shows essentially fresh basalt, with calcite-zeolite amygdules). Brown Fe-calcite at 40 m.

BOX 9-16: Variable, almost "aphanitic" (60-61 m), to crowded porphyritic to vesicular. Hematitic matrix between dark green mafic relics (petrography indicates these are pyroxene, not olivine); veining contains crystalline quartz as well as calcite. Minor pale green ?celadonite or clay along slips (53.0 m) turns out to be chloritecalcite by petrographic examination. Minor pervasive calcite-chlorite alteration, confirmed by petrography, blurs primary textures, makes the rock look "sedimentary" in places. Major veins, some banded, with more quartz than calcite (assay at 63.5 m, petrography at 65.0 m) contain minor sericite-chlorite-hematite-pyrite-chalcopyrite(+/-bornite) and trace sphalerite. Rusty shear at 69.0 m. Magnetism variable; perhaps less magnetic where altered.

BOX 17-24: "Sandstone" intervals, 86-88.3 (top contact looks conformable, but lower (<u>88.3</u> m) is cross-cutting, faulted. Sample for assay from 89-90 m is of quartz-calcite-trace pyrite veining, pervasive calcite alteration and chlorite fracturing (only 205 ppm Cu, 1 ppm Ag). From 91-93 m, major breccia zone (white quartz-calcite marix to dark calcite-altered fragments). From 95.6-98, "sandstone" or sedimentary ?dyke interval (top and bottom contacts look cross-cutting, but could be juggled by faulting). Still good-looking quartz-calcite veins, banded and reopened (<u>100.5</u> m: petrography indicates traces sericite, hematite, pyrite, sphalerite, bornite).

BOX 25-32: Major vein zones, 112-114 (banded, chalcedonic, epithermallooking); 121.7-124.0 (up to 90 ppm Cu; petrography at <u>123.0</u> indicates quartz-calcite-sericite-hematite-pyrite but no base metal sulfides); 137-140 (no visible sulfides). Fine-grained unit, 116-118 m, could be sedimentary interval at flow top.

BOX 33-40: Banded, chalcedonic/epithermal veining (petrography at 137.5 indicates quartz-calcite-sericite-trace hematite-pyrite +/-?chalcocite-bornite), but drops off rapidly after 146-148 m. Thereafter, white planar calcite-only veins to 150-152 m; then only white calcite vugs, coincident with strong increase in magnetism of the core. Darker green colour of basalts also indicates drop in alteration (actually quite hematitic; not so porphyritic). Two altered mafic phenocryst relicts, one yellowish ?epidote and one greenish ?chlorite turn out in petrographic examination (<u>169.6</u> m) to be respectively pyroxene (relatively fresh; minor carbonate alteration) and chlorite (after olivine). Traces native Cu, 159-160 m, gives 230 ppm Cu.

BOX 41-48 (labelled 47): Few well-banded, chalcedonic quartz-calcite veins 183-186 (sample for assay at 184 m). Basalt is strongly magnetic, dark green, white calcite vugs/veins and hematitic slips/shears. Also green ?chloritic sips/shears (petrography at 207 m confirms chlorite, and X-ray diffraction analysis 207.5 identifies calcite and chlorite: McLeod, 1996). Veining very weak to 215 m.

BOX 49-56: More thin calcite/quartz veining, then major zone 218-220 (with bleached alteration envlopes) followed by 5 m of white calciteonly fracturing (219.75 m: petrography shows strong carbonate alteration and carbonate-quartz veining). Mainly pyroxene-phyric basalt (dark green) turning strongly hematitic-matrix to 228 m. Soft, gougey, broken to 236 m; intensely chlorite(+/- calcite) fractured to 245, then gouge again (Chloritic Fault Zone).

BOX 57-64: Continuing fault zone to 250 m; soft, hematitic to 260m; harder, chloritic to 265 m (rare calcite-quartz vein at 262 m). Fresher, black (but probably still strongly chloritized) pyroxene to 270 m. Rare "sandstone" breccia matrix to volcanics (280 m). Pyroxene phenocrysts at <u>281.5</u> m are fresh; groundmass contains scattered Kfeldspar; rock is an auto-breccia cemented by carobnate, albite and chlorite filling a network of interconnected vesicles.

BOX 65-72: Abundant calcite varioles/vesicles to 286 m; calcite-quartz vein 296 m. Chloritic; minor native Cu 300-306 m (average 125 ppm Cu). Rare "sandstone" 298.5-299 m (+/- zeolite-calcite 306-307 m). Banded hematitic veining is rare (304 m), assays less than 150 ppm Cu. Petrography at <u>316.0</u> m shows amygdules (albite, carbonate, chlorite, and epidote) are larger and more discrete than at 281.5 m; pyroxene phenocrysts are fresh.

BOX 73-80: Pink ?zeolite-white calcite amygdules to 319 m; calcite only to 330 m. Green, chloritic to 335 m; reddish hematitic "sandstone" 336-337, 343-346 m (top contact faulted, lower shows a "breccia matrix" relation with basalt). White calcite-buff ?zeolite varioles, 349-355 m.

BOX 81-84: Rare, thin chalcedonic quartz-calcite veining 355 m; maroon "siltstone" cross-cutting 354-364 m. Then dark green to black basalt to E.O.H. 367.9 m (petrography at 367.0 m indicates a prominently porphyritic basalt with substantial K-feldspar in the groundmass, and is overall the freshest of the suite examined.

Page 19

APPENDIX 2: GEOCHEMICAL RESULTS

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

A9639331

Comments: ATTN: JEFF MORRISON CC: W.E. WILEY CC: RUDY RIEPE

ANALYTICAL PROCEDURES

Γ-	WORNISO	C. WILEI	CC HUDT	RIEPE	

CERTIFICATE

A9639331

(OHX) - WHITE CHANNEL RESOURCES

Project: HORSEFLY P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 14-NOV-96.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
208 226 222 3202 233	57 57 1 57 57 57	Assay ring to approx 150 mesh 0-3 Kg crush and split Drying charge (0-3 Kg) Rock - save entire reject Assay AQ ICP digestion charge
* NOTR	1.	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

494		DESCRIPTION	METHOD		UPPER LIMIT
	3	Au g/t: Fuse 30 g sample	FA-AAS	0.005	12.00
4001	57	Ag ppm : A30 ICP package	ICP-AES	1	200
4002	57	A1 %: A30 ICP package	ICP-AES	0.01	15.00
4003	57	As ppm: A30 ICP package	ICP-AES	10	50000
4004	5/	Ba ppm: A30 ICP package	ICP-AES	20	200000
4005	57	Be ppm: A30 ICP package	ICP-AES	5	100
4005	5/	B1 ppm: A30 ICP package	ICP-AES	10	50000
4009	57	Ca %: ASU ICP package	ICP-AES	0.01	30.0
4008	57	Co ppm: A30 ICP package	ICP-ARS	5	1000
4010	57	Cr prm: 330 ICP package	ICP-AES	5	50000
4011	57	Cu ppm: \$30 ICP package	ICP-AES	10	20000
4012	57	Te k: 130 ICP package	ICF-ABS	3	50000
4013	57	Ho DDm: A30 ICP Dackage	TCP-NES	10	30.0
4014	57	K %: A30 ICP package	TCP-ARS	0 01	20.0
4015	57	Mg %: A30 ICP package	ICP-ARS	0.01	30.0
4016	57	Mn ppm: A30 ICP package	ICP-AES	10	50000
4017	57	Mo ppm: A30 ICP package	ICP-AES	5	50000
4018	57	Na %: A30 ICP package	ICP-AES	0.01	20.0
4019	57	Ni ppm: A30 ICP package	ICP-AES	5	50000
4020	57	P ppm: A30 ICP package	ICP-AES	100	10000
4021	57	Pb ppm: A30 ICP package	ICP-AES	5	50000
4022	57	Sb ppm: A30 ICP package	ICP-ARS	10	10000
4023	57	Sc ppm: A30 ICP package	ICP-AES	5	10000
4024	57	Sr ppm: A30 ICP package	ICP-AES	5	10000
4025	57	T1 %: AJU ICP package	ICP-AES	0.01	10.00
4026	57	TI ppm: A30 ICP package	ICP-ABS	20	10000
4029	57	U DDM: AJU ICP package	ICP-ABS	20	10000
4029	57	V ppm: A30 ICP package	ICP-AES	20	50000
4030	57	7 ppm: 330 ICP package	ICP-AKS	20	10000
975	3	Au ppb: ICP-fluoregeance package	PA-JOD ARG	Š	50000
976	3	Pt ppb: ICP-Fluorescence package	FA-ICP-AFS	4	10000
977	3	Pd ppb: ICP-fluorescence package	FA-ICF-AFS	3	10000

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Page Number : 1-A Total Pages :2 Certificate Date: 14-NOV-96 Invoice No. : 19639331 P.O. Number : Account OHX

1

A9639331

=

Project : HORSEFLY Comments: ATTN: JEFF MORRISON CC: W.E. WILEY CC: RUDY RIEPE

CERTIFICATE OF ANALYSIS

SAMPLE	PREP CODE	Aug/t FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	Mg %	Mn ppm	Mo ppm	Na %
119903	208 22	6	< 1	1.93	20	40	< 5	< 10	3.72	< 5	30	220	90	5.43	< 10	0.04	2.10	1190	< 5	0.29
119904	208 22	16	< 1	1.74	10	720	< 5	< 10	8.44	< 5	30	130	45	3.57	< 10	0.07	2.22	1890	5	0.35
119905	208 22	6	< 1	1.06	40	20	< 5	< 10	10.25	< 5	30	170	20	4.20	< 10	0.05	2.32	1580	< 5	0.06
119906	208 22	16	< 1	0.45	50	20	< 5	< 10	10.30	< 5	30	50	125	4.78	< 10	0.47	4.43	3020	< 5	0.04
119907	208 22	16	< 1	1.20	40	40	< 5	< 10	9.35	< 5	35	90	5	5.21	< 10	0.22	3.19	2350	< 5	0.06
119908	208 22	6	< 1	0.38	70	20	< 5	< 10	8.75	< 5	30	40	95	3.61	< 10	0.35	2.63	3170	< 5	0.04
119909	208 22	6	< 1	1.75	30	60	< 5	< 10	10.75	< 5	40	150	45	5.04	< 10	0.11	3.72	2420	< 5	0.13
119910	208 22	6	< 1	1.39	< 10	80	< 5	< 10	7.61	< 5	30	110	15	4.02	< 10	0.05	3.73	1200	< 5	0.09
119911	208 22	6	1	0.63	40	20	< 5	< 10	13.15	< 5	25	50	205	2.41	10	0.31	0.52	2810	< 5	0.05
119912	208 22	6	< 1	0.73	30	20	< 5	< 10	7.16	< 5	25	BO	115	4.80	< 10	0.56	2.07	3410	< 5	0.05
119913	208 22	6	< 1	1.74	< 10	60	< 5	< 10	12.00	< 5	40	150	20	6.21	< 10	0.15	2.28	1960	< 5	0.10
119914	208 22	6	< 1	0.87	30	40	< 5	< 10	7.65	< 5	25	90	5	5.77	< 10	0.53	2.16	2020	< 5	0.06
119915	208 22	6	< 1	1.05	30	40	< 5	< 10	13.65	< 5	15	220	20	4.71	< 10	0.18	1.03	2000	< 5	0.08
119916	208 22	6	< 1	0.32	30	< 20	< 5	< 10	10.40	< 5	25	60	90	3.56	< 10	0.18	2.99	3660	< 5	0.05
119917	208 22	6	< 1	0.33	30	< 20	< 5	< 10	13.30	< 5	35	50	50	4.71	< 10	0.15	4.88	5220	< 5	0.04
119918	208 22	6	1	0.65	40	< 20	< 5	< 10	9.54	< 5	30	60	1.20	3.79	< 10	0.31	2.80	3190	< 5	0.07
119919	208 22	6	< 1	0.67	30	20	< 5	< 10	11.80	< 5	35	120	25	6.10	< 10	0.31	4.24	4250	< 5	0.06
119920	208 22	6	< 1	2.53	10	60	< 5	< 10	11.45	< 5	55	260	45	6.97	< 10	0.27	2.17	1940	< 5	0.09
119921	208 22	6	< 1	1.63	< 10	20	< 5	< 10	7.17	< 5	35	240	20	5.43	< 10	0.06	3.77	1480	< 5	0.12
119922	208 22	6	< 1	3.75	20	20	< 5	< 10	2.41	< 5	40	270	230	6.52	< 10	0.07	5.23	950	< 5	1.04
119923	208 22	6	< 1	2.06	< 10	20	< 5	< 10	2.49	< 5	30	250	40	5.42	< 10	0.01	4.41	890	< 5	0.11
119924	208 22	6	< 1	2.02	10	20	< 5	< 10	3.36	< 5	30	260	65	5.66	< 10	0.05	4.21	970	< 5	0.31
119925	208 22	6	< 1	2.22	< 10	20	< 5	< 10	2.80	< 5	35	260	10	5.66	< 10	0.04	4.57	1280	< 5	0.40
119926	208 22	6	< 1	1.94	< 10	< 20	< 5	< 10	4.70	< 5	35	250	15	5.69	< 10	0.04	4.65	1300	< 5	0.12
119927	208 24	b	< 1	2.13	10	20	< 5	< 10	3.24	< 5	35	270	120	5.76	< 10	0.03	5.44	1370	< 5	0.14
119928	208 22	6	< 1	2.95	40	20	< 5	< 10	7.09	< 5	55	280	35	7.17	< 10	0.09	2.94	1080	< 5	0.56
119929	208 22	5	< 1	1.97	10	20	< 5	< 10	9.52	< 5	50	290	25	6.19	< 10	0.07	3.63	1650	< 5	0.14
119930	208 22	2	< 1	1.55	20	20	< 5	< 10	9.41	< 5	30	210	240	5.42	< 10	0.08	2.21	1610	< 5	0.13
119931	200 22	2	< 1	1.59	30	20	< 5	< 10	4.69	< 5	35	240	45	5.21	10	0.04	4.03	1130	< 5	0.14
			< 1	1.00	10	< 20	< >	< 10	4.38	< 5	30	200	80	4.68	< 10	0.04	3.71	1030	< 5	0.22
119933	208 22	6 < 0.005	< 1	1.90	< 10	20	< 5	< 10	3.62	< 5	35	280	40	5.87	< 10	0.03	4.44	1100	< 5	0.13
119934	208 22	6 < 0.005	< 1	1.63	10	< 20	< 5	< 10	6.30	< 5	40	290	1315	5.79	< 10	0.02	3.45	1300	< 5	0.13
119935	208 22	6 < 0.005	< 1	1.57	10	20	< 5	< 10	5.08	< 5	30	270	45	5.45	< 10	0.05	3.46	1110	< 5	0.13
119936	208 22	6	< 1	1.34	< 10	< 20	< 5	< 10	5.04	< 5	30	230	30	4.78	< 10	0.03	3.16	970	< 5	0.12
119937	208 22	6	< 1	1.85	40	20	< 5	< 10	1.93	< 5	30	290	150	5.09	< 10	0.07	3.52	940	< 5	0.22
119938	208 22	6	< 1	1.78	< 10	< 20	< 5	< 10	2.82	< 5	35	310	40	5.02	< 10	0.03	4.46	870	< 5	0.13
119939	208 22	6	< 1	1.81	10	20	< 5	< 10	2.75	< 5	35	320	100	4.99	< 10	0.05	4.00	850	< 5	0.25
119940	208 22	6	< 1	1.37	10	20	< 5	< 10	4.47	< 5	35	290	20	4.76	< 10	0.05	3.63	880	< 5	0.14
110013	208 22	2	< 1	1.63	< 10	60	< 5	< 10	4.38	< 5	40	280	150	5.01	< 10	0.04	3.87	97 0	< 5	0.24
117784	408 22	•	< 1	2.13	10	20	< 5	< 10	2.13	< 5	40	310	320	5.47	< 10	0.05	4.46	1000	< 5	0.41
	<u> </u>																		N	

CERTIFICATION:_

) · L

÷.

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Page Number : 1-B Total Pages :2 Certificate Date: 14-NOV-96 Invoice No. : 19639331 P.O. Number : Account : OHX

Project : HORSEFLY Comments: ATTN: JEFF MORRISON CC: W.E. WILEY CC: RUDY RIEPE

CERTIFICATE OF ANALYSIS A9639331

SAMPLE	PR CO	ep De	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn Au ppb Pt ppb Pd ppb ppm AFS AFS AFS
119903	208	226	55	1800	5	< 10	5	60	0.17	< 20	< 20	200	< 20	90
119904	208	226	50	1400	< 5	< 10	15	165	0.12	< 20	< 20	120	< 20	75
119905	208	226	60	1600	10	< 10	20	100	0.13	< 20	< 20	120	< 20	90
119906	208	226	25	1200	< 5	< 10	20	150	0.02	< 20	< 20	100	< 20	95
119907	208	226	45	1200	20	20	25	165	0.06	< 20	< 20	160	< 20	195
119908	208	226	25	900	5	< 10	15	105 -	< 0.01	< 20	< 20	60	< 20	140
119909	208	226	75	900	25	10	20	215	0.07	< 20	< 20	140	< 20	205
119910	208	226	50	1100	< 5	< 10	20	160	0.11	< 20	< 20	180	< 20	130
119911	208	226	25	600	10	10	15	130	0.01	< 20	< 20	60	< 20	120 16 < 5 8
119912	208	226	30	1100	5	< 10	30	120	0.01	< 20	< 20	100	< 20	150
119913	20B	226	60	1100	5	20	30	240	0.08	< 20	< 20	180	< 20	145
119914	208	226	20	1600	25	10	15	170	0.09	< 20	< 20	60	< 20	110
119915	208	226	40	1000	15	< 10	35	250	0.04	< 20	< 20	180	< 20	50
119916	208	226	35	100	10	< 10	5	120 <	0.01	< 20	< 20	60	< 20	115
119917	208	226	45	200	5	< 10	5	140	: 0.01	< 20	< 20	60	< 20	155
119918	208	226	40	600	< 5	< 10	20	155 <	: 0.01	< 20	< 20	60	< 20	115
119919	20B	226	70	700	10	< 10	25	150	0.06	< 20	< 20	140	< 20	130
119920	208	226	125	1000	20	< 10	25	230	0.04	< 20	< 20	160	< 20	175
119921	208	226	65	1200	5	< 10	15	180	0.17	< 20	< 20	200	< 20	45
119922	208	226	90	1100	< 5	< 10	15	150	0.22	< 20	< 20	220	< 20	60
119923	208	226	70	1300	< 5	< 10	10	130	0.17	< 20	< 20	220	< 20	70
119924	208	226	75	1300	5	< 10	15	150	0.18	< 20	< 20	200	< 20	50
119925	208	226	75	1300	5	20	10	160	0.19	< 20	< 20	220	< 20	125
119926	208	226	70	1200	< 5	10	15	155	0.18	< 20	< 20	200	< 20	60
119927	208	226	75	1300	5	10	15	195	0.18	< 20	< 20	220	< 20	175
119928	208	226	90	1200	< 5	< 10	20	285	0.05	20	< 20	200	< 20	90
119929	208	226	95	1200	15	< 10	30	240	0.17	< 20	< 20	220	< 20	85
119930	208	226	70	1200	< 5	< 10	30	270	0.11	< 20	< 20	200	< 20	55
119931	208	226	65	1200	< 5	10	15	165	0.19	< 20	< 20	200	< 20	50
119954	∡ ∪B	446	60	1200	< 5	< 10	5	135	0.16	< 20	< 20	180	< 20	50
119933	208	226	80	1300	20	< 10	10	145	0.21	< 20	< 20	200	< 20	60
119934	208	226	75	1300	15	10	15	150	0.22	< 20	< 20	220	< 20	65
110030	208	226	BO	1200	5	< 10	10	140	0.21	< 20	< 20	200	< 20	55
417730 110037	208	120	65	1200	5	10	5	130	0.18	< 20	< 20	180	< 20	50 +
113337	408	440	80	1300	2	< 10	< 5	115	0.10	< 20	< 20	180	< 20	50
119938	208	226	105	1200	5	10	5	125	0.16	< 20	< 20	160	< 20	45
119939	208	226	100	1200	< 5	10	5	165	0.14	< 20	< 20	160	< 20	45
110011	208	226	95	1000	< 5	10	< 5	145	0.13	< 20	< 20	160	< 20	45
110042	108	440	100	1300	< 5	< 10	5	155	0.14	< 20	< 20	180	< 20	45
117786	108	440	140	1400	10	< 10	5	180	0.12	< 20	< 20	180	< 20	55
													·	

CERTIFICATION:_

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Page Number :2-A Total Pages :2 Certificate Date: 14-NOV-96 Invoice No. 19639331 P.O. Number • Account :OHX

HORSEFLY Project :

Comments: ATTN: JEFF MORRISON CC: W.E. WILEY CC: RUDY RIEPE

											CE	RTIF		OF A	NAL	YSIS	/	49639	331		
SAMPLE	PR CO	ep De	Au g/t FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	Mg %	Mn ppm	Mo ppm	Na %
119943	208	226		< 1	2.06	< 10	20	< 5	< 10	3.38	< 5	35	320	15	5.02	< 10	0.05	3.74	860	< 5	0.31
119944	208	226		< 1	1.77	< 10	< 20	< 5	< 10	2.83	< 5	35	320	215	5.10	< 10	0.01	3.83	780	< 5	0.11
119945	208	226		< 1	1.85	10	< 20	< 5	< 10	3.44	< 5	30	290	70	4.92	< 10	0.05	4.05	890	< 5	0.22
119946	208	226		< 1	1.85	< 10	< 20	< 5	< 10	3.46	< 5	40	190	175	5.12	< 10	0.03	4.69	910	< 5	0.15
11994/	208	446		< 1	2.14	10	< 20	< 5	< 10	3.19	< 5	45	180	285	5.16	< 10	0.04	5.44	1010	< 5	0.23
119948	208	226		< 1	2.25	< 10	< 20	< 5	< 10	2.37	< 5	40	210	100	4.96	< 10	0.07	4.19	970	< 5	0.29
119949	208	226		< 1	2.33	< 10	< 20	< 5	< 10	3.15	< 5	35	260	430	4.79	< 10	0.03	3.69	780	< 5	0.12
119950	20B	226		< 1	2.61	< 10	60	< 5	< 10	2.84	< 5	35	200	100	5.25	< 10	0.10	3.97	930	< 5	0.17
111551	208	226		< 1	1.96	10	100	< 5	< 10	1.40	< 5	25	70	40	4.54	< 10	0.16	2.56	660	< 5	0.26
1-305	208	226		19	1.09	10	100	< 5	< 10	0.97	< 5	10	90	55	2.87	10	0.12	0.85	410	< 5	0.10
1-405	208	226		11	1.25	< 10	260	< 5	< 10	0.94	< 5	15	110	85	3.49	< 10	0.13	0.79	590	< 5	0.10
L-505	208	226		3	1.88	10	140	< 5	< 10	1.13	< 5	25	80	40	5.10	< 10	0.17	0.93	1770	< 5	0.20
L-585	208	226		5	1.65	10	160	< 5	< 10	1.01	< 5	20	BO	50	4.65	< 10	0.16	0.93	960	< 5	0.18
L-595	208	226		3	1.79	30	300	< 5	< 10	1.86	< 5	20	170	55	5.45	< 10	0.15	1.12	1160	< 5	0.10
L-6U5	208	226		6	1.40	< 10	100	< 5	< 10	1.66	< 5	15	170	50	4.91	< 10	0.11	1.14	860	< 5	0.09
1-625	208	226		2	1.52	< 10	180	< 5	< 10	2.09	< 5	20	210	50	4.58	< 10	0.09	1.45	760	< 5	0.09
L-705	208	226		4	1.64	10	100	< 5	< 10	1.66	< 5	15	130	65	3.76	< 10	0.13	1.24	660	< 5	0.14

CERTIFICATION:__

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Page Number :2-B Total Pages :2 Certificate Date: 14-NOV-96 Invoice No. : 19639331 P.O. Number : Account :OHX

Project : HORSEFLY Comments: ATTN: JEFF MORRISON CC: W.E. WILEY CC: RUDY RIEPE

CERTIFICATE OF ANALYSIS A9639331

SAMPLE	PREP CODE	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W mqq	Zn Au ppb Pt ppb Pd ppb ppm AFS AFS AFS
119943 119944 119945 119946 119947	208 226 208 226 208 226 208 226 208 226 208 226	90 95 95 110 150	1200 1200 1100 1000 1000	5 < 5 15 5 < 5	< 10 < 10 < 10 10 < 10	5 5 5 5 5	135 115 115 130 205	0.19 0.19 0.18 0.18 0.17	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	180 180 180 180 200	< 20 < 20 < 20 < 20 < 20	65 65 40 45 55
119948 119949 119950 111551 1-305	208 226 208 226 208 226 208 226 208 226 208 226	80 80 75 90 35	1200 1200 1200 1200 500	< 5 5 5 10 5	< 10 < 10 < 10 10 < 10	5 5 5 < 5 < 5	110 100 130 130 55	0.18 0.15 0.12 0.34 0.15	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	180 160 180 60 60	< 20 < 20 < 20 < 20 < 20 80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1-405 1-505 1-585 1-595 1-605	208 226 208 226 208 226 208 226 208 226 208 226	50 40 40 40 40	600 1200 1000 1000 900	5 25 20 15 20	< 10 < 10 < 10 < 10 < 10 < 10	< 5 5 5 5 5	55 70 70 115 90	0.19 0.23 0.16 0.16 0.15	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	60 80 80 100 100	160 < 20 < 20 < 20 < 20 < 20	55 75 75 75 55 45
L-625 L-705	208 226 208 226	45 45	900 900	5 15	< 10 < 10	55	85 90	0.16 0.19	< 20 < 20	< 20 < 20	120	< 20 < 20	55

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

A9640805

.

T

Comments: ATTN: JEFF MORRISON CC: W.E. WILEY CC: RUDY RIEPE

с	ERTIF	ICATE	A9640805					ANALYTICA	L PROCEDURES		
(OHX) - V Project:	White Ch Horse	ANNEL RESOURCES		CHE	MEX NUME DE SAMF	BER LES		DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
Samples This rej	submitt port was	ed to our lab in printed on 21-MK	Vancouver, BC. DV-96.		20	Hg I	ppb: HNO3-F	IC1 digestion	àas-¥lameless	10	100000
	SAM	PLE PREPAR/	ATION								
CHEMEX	NUMBER SAMPLES	D	ESCRIPTION								
244	3	Pulp; prev. pre	pared at Chemex								
								•			
L,	[]										1
				Ĺ							

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Page Number :1 Total Pages :1 Certificate Date:21-NOV-96 Invoice No. :19640805 P.O. Number : Account :OHX

1

1

1

Project : HORSEFLY Comments: ATTN: JEFF MORRISON CC: W.E. WILEY CC: RUDY RIEPE

CERTIFICATE OF ANALYSIS A9640805

SAMPLE	PRI COI	ep De	Hg ppb					
119911 119931 1-305	244 244 244		275 < 10 23					
			:					

CERTIFICATION:_

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

A9640806

To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

A9640806

Comments: ATTN: JEFF MORRISON CC: W.E. WILEY CC: RUDY RIEPE

ANALYTICAL PROCEDURES

10	OHX Y	 WHITE	CHANNEL	RESOURCES
1	21 in 1		OLIVIALE	HEOCOHOLO

CERTIFICATE

Project: HORSEFLY P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 27-NOV-96.

	SAM	PLE PREPARATION	
CHEMEX	NUMBER SAMPLES	DESCRIPTION	
244 216	2 2	Pulp; prev. prepared at Chemex sieve to -150 mesh	

HEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
881 879 885 883 887 886 889 888	222222222222222222222222222222222222222	Au g/t: Total, metallics calc. Ag g/t: Total, metallics calc. Au-g/t: Metallics calc. Ag-g/t: Metallics calc. Au+ mg: Metallics calculation Ag+ mg: Metallics calculation Weight-g: Metallics calculation Weight+g: Metallics calculation	FA-AAS/GRAV FA-AAS/GRAV FA-AAS/GRAV FA-AAS/GRAV FA-AAS/GRAV FA-AAS/GRAV BALANCE BALANCE	0.07 3 0.07 3 0.002 0.01 1 0.01	500.00 500.00 500 9999.00 50.00 N/A N/A

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Page Number :1 Total Pages :1 Certificate Date: 27-NOV-96 Invoice No. : 19640806 P.O. Number Account :OHX

Project : HORSEFLY

Comments: ATTN: JEFF MORRISON CC: W.E. WILEY CC: RUDY RIEPE

CERTIFICATE OF ANALYSIS A9640806 PREP Au tot Ag tot Au -Ag -Au + Wt. -Wt. + Ag + SAMPLE CODE g/t g/t g/t g/t mg grams mg grams 1-305 244 216 < 0.07 23 17 < 0.07 21 < 0.002 0.81 237 11.24 1-405 244 216 < 0.07 < 0.07 10 < 0.002 1.70 224 9.82 Junk Vmh

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers North Vancouver 212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

A9642829

To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Comments: CC:R.C.RIEPE CC:C.LEITCH

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit									
494	10	Au q/t: Fuse 30 q sample	FA-AAS	0.005	12.00									
4001	10	Ag ppm : A30 ICP package	ICP-AES	1	200									
4002	10	Al %: A30 ICP package	ICP-AES	0.01	15.00									
4003	10	As ppm: A30 ICP package	ICP-AES	10	50000									
4004	10	Ba ppm: A30 ICP package	ICP-AES	20	200000									
4005	10	Be ppm: A30 ICP package	ICP-AES	5	100									
4006	10	Bi ppm: A30 ICP package	ICP-AES	10	50000									
4007	10	Ca %: A30 ICP package	ICP-AES	0.01	30.0									
4008	10	Cđ ppm; A30 ICP package	ICP-AES	5	1000									
4009	10	Co ppm: A30 ICP package	ICP-AES	5	50000									
4010	10	Cr ppm: A30 ICP package	ICP-AES	10	20000									
4011	10	Cu ppm: A30 ICP package	ICP-AES	5	50000									
4012	10	Fe %: A30 ICP package	ICP-AES	0.01	30.0									
4013	10	Hg ppm: A30 ICP package	ICP-AES	10	10000									
4014	10	K 3: AJU ICP package	ICP-AES	0.01	20.0									
4015	10	Mg %: A30 ICP package	ICP-AES	0.01	30.0									
4010	10	Ma ppm: A30 ICF package	ICP-ALS	10	50000									
4019	10	No ppu: Abo for package	TCP-AES		20.0									
4010	10	Ni nnm. 130 ICP nackage	TCP-AFS	5	50000									
4019	10	P ppm: A30 TCP package	TCP-AES	100	10000									
4021	10	Ph ppm: A30 ICP package	TCP-AES	±00 5	50000									
4022	10	Sh ppm: A30 ICP package	TCP-AES	10	10000									
4023	10	Sc ppm: A30 ICP package	ICP-AES	5	10000									
4024	10	Sr ppm: A30 ICP package	ICP-AES	5	10000									
4025	10	Ti %: A30 ICP package	ICP-AES	0.01	10.00									
4026	10	T1 ppm: A30 ICP package	ICP-AES	20	10000									
4027	10	U ppm: A30 ICP package	ICP-AES	20	10000									
4028	10	V ppm: A30 ICP package	ICP-AES	20	50000									
4029	10	W ppm: A30 ICP package	ICP-AES	20	10000									
4030	10	Zn ppm: A30 ICP package	ICP-AES	5	50000									

(OHX) - WHITE CHANNEL RESOURCES

CERTIFICATE

Project: HORSEFLY P.Ó. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 15-DEC-96.

HEMEX NUMBER	
CODE SAMPLES	DESCRIPTION
208 10	Assay ring to approx 150 mesh
226 10	0-3 Kg crush and split
3202 10	ROCK - Save entire reject
	mony my for argonetic charge

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

A9642829

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers 212 Brooksbank Ave.. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To. WHITE CHANNEL BESOURCES

CERTIFICATE OF ANALYSIS

1400 - 355 BURRARD ST VANCOUVER, BC V6C 2G8

Page Number : 1-A Total Pages :1 Certificate Date: 15-DFC-96 Invoice No. : 19642829 P.O. Number Зонх Account

Project : HORSEFLY Comments: CC:R.C.RIEPE

CC:C.LEITCH

8

A9642829 PREP Ca Al Ba Bi Cđ Со Au g/t Aα As Be Cr Cu Fe Нα K Mα Mn Мо Na SAMPLE CODE 8 °s 8 8 FA+AA ጜ ppm ъ 69201 208 226 0.180 20 7 0.28 < 5 (10 13.30 < 5 25 40 40 130 2.69 < 10 0.25 2.23 4620 < 5 0.06 69202 208 226 0.030 < 1 0.46 < 10 40 < 5 10 14.80 < 5 40 50 25 5.36 < 10 0.30 5,24 5530 5 0.06 69203 208 226 0.025 < 1 0.99 40 60 (5 < 10 8.00 < 5 25 80 6.00 < 10 1,35 < 5 10 0.48 1040 0.09 69204 208 226 0.030 12 1.04 < 10 40 < 5 < 10 5.23 < 5 15 40 < 5 5.71 < 10 0.81 1.39 3180 < 5 0.07 69205 208 226 0.025 < 1 1.06 10 60 < 5 10 7.74 < 5 20 200 45 4.16 < 10 0.73 2.71 1650 0.08 < 5 208 226 0.045 1.33 69206 1 10 20 < 5 10 < 5 8.09 25 200 40 4.49 < 10 0.88 1.87 2800 < 5 0.07 208 226 < 0.005 69207 < 1 1.49 < 10 20 < 5 10 12.10 < 5 20 160 5 3.13 < 10 0.11 3.10 2950 < 5 0.22 69208 208 226 < 0.005 20 < 1 0.48 < 10 < 5 < 10 15.30 < 5 30 < 10 90 15 3.27 0.09 3.42 3980 < 5 0.05 69209 208 226 < 0.005 20 < 1 4,88 < 10 < 5 < 10 4.41 < 5 35 400 35 5.81 < 10 0.13 3.77 1360 < 5 2.28 208 226 < 0.005 69225 < 1 2.38 < 10 200 < 5 < 10 2.33 < 5 20 70 50 3.76 < 10 0.22 1.46 840 < 5 0.15

To: WHITE CHANNEL RESOURCES

> 1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

畫

Page Number : 1-B Total Pages : 1 Certificate Date: 15-DEC-96 Invoice No. : 19642829 P.O. Number Account OHX

-

Proiect :

HORSEFLY Comments: CC:R.C.RIEPE CC:C.LEITCH

> CERTIFICATE OF ANALYSIS A9642829

		_													 	
SAMPLE	PR CO	EP DE	Ni ppm	P pp n	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl pp∎	U PPm	v ppm	W Pp m	Zn ppm		
69201 69202 69203 69204 69205	208 208 208 208 208 208	226 226 226 226 226 226	25 40 30 20 35	400 600 1800 1600 1500	<pre>< 5 15 5 < 5 < 5 < 5</pre>	<pre>< 10 < 10 10 < 10 < 10 < 10 < 10</pre>	5 10 5 15 15	150 175 150 155 215	<pre> 0.01 0.01 0.13 0.05 0.03 </pre>	<pre>< 20 < 20</pre>	<pre>< 20 < 20</pre>	20 80 60 80 80	<pre>< 20 < 20</pre>	155 225 50 95 50		
69206 69207 69208 69209 69225	208 208 208 208 208 208	226 226 226 226 226 226	35 45 65 80 45	1500 600 100 1500 1000	<pre>< 5 < 5</pre>	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	15 15 15 5 5	185 290 320 185 150	0.03 0.03 0.01 0.22 0.30	<pre>< 20 < 20</pre>	<pre></pre>	100 100 80 220 100	<pre>< 20 < 20</pre>	100 40 195 65 80		
									,							
													_			

Chemex Labs Ltd.

A9642828

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Comments: CC: R.C.RIEPE

CC:C.LEITCH

		ANALYTICAI			
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030	22 22 22 22 22 22 22 22 22 22 22 22 22	Ag ppm : A30 ICP package Al %: A30 ICP package As ppm: A30 ICP package Ba ppm: A30 ICP package Be ppm: A30 ICP package Ca %: A30 ICP package Ca %: A30 ICP package Cd ppm: A30 ICP package Cr ppm: A30 ICP package Cr ppm: A30 ICP package Cr ppm: A30 ICP package Fe %: A30 ICP package Hg ppm: A30 ICP package Mg %: A30 ICP package Mg %: A30 ICP package Mn ppm: A30 ICP package Mn ppm: A30 ICP package Mn ppm: A30 ICP package Mn ppm: A30 ICP package Sh ppm: A30 ICP package Na %: A30 ICP package Na %: A30 ICP package Na %: A30 ICP package Sh ppm: A30 ICP package Sb ppm: A30 ICP package Sc ppm: A30 ICP package Sc ppm: A30 ICP package Ti %: A30 ICP package Ti %: A30 ICP package Y ppm: A30 ICP package Mn A30 ICP package Sc ppm: A30 ICP package	ICP-AES ICP-AES	$ \begin{array}{c} 1\\ 0.01\\ 10\\ 20\\ 5\\ 10\\ 0.01\\ 5\\ 0.01\\ 10\\ 0.01\\ 10\\ 5\\ 0.01\\ 10\\ 5\\ 0.01\\ 10\\ 5\\ 0.01\\ 20\\ 20\\ 20\\ 20\\ 5\\ 5\\ 0.01 $	$\begin{array}{c} 200\\ 15.00\\ 50000\\ 20000\\ 100\\ 50000\\ 30.0\\ 1000\\ 50000\\ 20000\\ 50000\\ 20.0\\ 30.0\\ 50000\\ 20.0\\ 50000\\ 20.0\\ 50000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 50000\\ 10000\\ 50000\\ 50000\\ 10000\\ 5000\\ 500\\ 500\\ 5000\\ 5000\\ 5000\\ 5000\\ 5000\\ 5000\\ 5000\\ 5000\\ 50$

(OHX) - WHITE CHANNEL RESOURCES

CERTIFICATE

Project: HORSEFLY P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 15-DEC-96.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
201 202 220 222 233	22 22 22 22 22 22 22	Dry, sieve to -80 mesh save reject Transferring charge Drying charge (0-3 Kg) Assay AQ ICP digestion charge

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

A9642828

C

1.2.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Page Number :1-A Total Pages :1 Certificate Date: 15-DEC-96 Invoice No. : 19642828 P.O. Number : Account :OHX

Project : HORSEFLY Comments: CC: R.C.RIEPE

RSEFLY : R.C.RIEPE CC:C.LEITCH

СН

CERTIFICATE OF ANALYSIS A9642828 PREP Ag Al As Ba Be Bi Ca Cđ Со Cr Cu Ħд K Mg Mn Na Ni Fe Mo SAMPLE CODE 8 pp∎ ppm pp∎ 8 ppm Ł z 8 Å ppm pp∎ ppm ppm ppm pp∎ ppm ppm pp∎ **h-100** 201 202 < 1 0.77 < 10 20 < 5 10 1.35 < 5 20 50 3.96 0.07 590 75 60 (10 1.53 < 5 0.06 1-110 201 202 < 1 1.02 < 10 40 < 5 < 10 1.05 < 5 25 50 35 4.12 < 10 0.10 1.77 520 < 5 0.07 85 1-120 201 202 < 1 1.00 < 10 40 < 5 < 10 1.16 < 5 25 60 40 4.06 < 10 0.09 1.69 600 < 5 0.06 95 1-130____ 201 202 < 10 80 25 70 < 1 0.97 < 5 < 10 1.38 < 5 35 4.71 < 10 0.09 2.41 720 < 5 0.07 110 1-225 201 202 >200 0.56 < 10 80 < 5 < 10 0.66 < 5 15 40 2100 4.33 < 10 0.06 0.57 370 5 0.03 100 1-235 201 202 >200 0.67 20 120 < 5 < 10 0.79 < 5 20 1455 3,93 40 < 10 0.07 0.78 5 450 0.03 110 -245 201 202 >200 0.63 30 80 < 5 < 10 0.58 < 5 10 20 415 3.28 0.06 < 10 0.47 290 5 0.04 50 -255 201 202 145 0.36 < 10 60 < 5 < 10 0.38 < 5 5 10 270 2.77 < 10 0.04 0.29 230 5 0.05 35 -265 201 202 40 0.32 < 10 20 < 5 < 10 0.39 < 5 5 10 110 1.50 < 10 0.04 0.29 180 < 5 0.03 30 1-275 201 202 42 0.51 < 10 100 < 5 < 10 0.46 < 5 5 20 90 2.04 < 10 0.06 0.34 240 < 5 0.04 30 1-285 201 202 34 0.53 < 10 100 < 5 < 10 0.51 < 5 5 10 90 0.06 2.14 < 10 0.37 240 < 5 0.05 35 1-295 201 202 0.93 < 10 < 5 -14 80 < 5 < 10 0.88 10 30 45 2,94 < 10 0.09 0.75 430 5 0.08 35 201 202 < 5 1-315 17 0.78 < 10 80 < 5 < 10 0.80 10 30 55 2.55 < 10 0.08 0.61 410 < 5 0.07 35 201 202 1-325 73 0.87 < 10 80 < 5 < 10 1.11 < 5 10 40 155 2.89 < 10 0.08 0,85 500 < 5 0.07 50 1-335 201 202 0.71 < 10 80 11 < 5 < 10 0.81 < 5 5 30 35 3.06 < 10 0.07 0.56 480 < 5 0.06 30 1-345 201 202 8 0.78 < 10 500 < 5 < 10 0.74 < 5 5 20 45 2.58 < 10 0.07 0,50 400 < 5 0.06 30 1-355 201 202 10 0.80 10 0.96 80 < 5 (10 < 5 5 30 45 2.96 < 10 0.07 0.67 480 < 5 0.07 35 1-365 201 202 60 0.92 < 10 80 < 5 < 5 < 10 0.91 10 30 130 3.46 < 10 0.08 0.67 540 < 5 0,08 45 < 5 1-375 201 202 130 0.84 < 10 60 < 5 < 10 0.91 10 30 245 3.10 < 10 0.07 0.62 480 < 5 0.07 40 1-385 201 202 1.09 < 10 43 80 < 5 < 10 1.17 < 5 15 40 110 < 10 0.10 3.76 0.09 0.87 670 < 5 45 1-395 201 202 49 0.78 < 10 80 < 5 < 10 0.88 < 5 10 30 105 3.37 < 10 0.07 0.61 580 < 5 0.07 35 1-415 201 202 29 0.88 < 10 80 < 5 < 10 0.72 < 5 10 30 75 3.55 < 10 0.08 0.62 740 < 5 0.06 40

CERTIFICATION:

1.1

Ē

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WHITE CHANNEL RESOURCES

> 1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Page Number : 1-B Total Pages : 1 Certificate Date: 15-DEC-96 Invoice No. : 19642828 P.O. Number : Account :OHX

Project : HORSEFLY Comments: CC: R.C.RIEPE

CC:C.LEITCH

CERTIFICATE OF ANALYSIS A9642828

	PR	EP	Р	I	2p	Sb	Sc	Sr	Тì	ተገ	п	v	W	7.n	
CANDLE	001	DP													
SAMPLE	0	DE	Pbm	PF		ppm	ЬБш	ppm	- 6	pp∎	pp	ppm	pp∎	pp	
1-100	201	202	800	<	5	< 10	< 5	65	0.18	< 20	< 20	80	< 20	65	
1-110	201	202	800	 	5	< 10	< 5	60	0.20	< 20	< 20	60	< 20	65	
1-120	201	202	900	<	5	< 10	< 5	60	0.22	< 20	< 20	60	< 20	65	
1-130	201	202	900	<	5	< 10	< 5	70	0.30	< 20	< 20	60	< 20	75	
1-225	201	202	400	<	5	< 10	< 5	35	0 09	(20	< 20	20	3800	95	
				-	-	• ••			0.05			20	3000	0.5	
1-235	201	202	500	<	5	< 10	< 5	45	0.11	< 20	< 20	40	3220	100	
1-245	201	202	400	<	5	(10	< 5	15	0 09	(20	(20	20	960	45	
1-255	201	202	200		5	(10	<u>,</u>	25	0 07	(20	2 20	20	560	20	
1-265	201	202	200	1	5	2 10		25	0.07	2.00	(10	/ 20	330	30	
1-275	201	202	200	`	ç.	/ 10		2.5	0.00	(20	(20	× 20	220	30	
-!7	201	202	300		5	10	()	20	0.08	C 20	< 20	20	140	30	
1-285	201	202	300	<	5	< 10	< 5	30	0.08	(20	< 20	20	220	35	
1-295	201	202	500	è	5	< 10	25	50	0 13	2 20	2 20	Â0	10	45	
1-315	201	202	500	ì	5	< 10	25	45	0 11	2 20	(20	20		45	
1-325	201	202	600		5	< 10	25	45	0.11	< 20	1 20	20	200	42	
1_225	201	202	500		5	(10	<u> </u>	00	0.13	1 20	< 20	40	280	60	
T-333	201	202	200	``	3	(10	()	40	0.11	(20	< 20	20	40	40	
1-345	201	202	400		5	(10	(5	45	0.11	(20	(20	10	10	40	
1-355	201	202	500	1	5	(10	25	50	0.12	(20	< 20	20		40	
1-365	201	202	500	``	5	(10		50	0.13	(20	< 20	40	00	40	
1_275	201	202	500	,	э е	(10		50	0.13	(20	(20	60	220	50	
1-365	201	202	500		2	(10		50	0.13	(20	< 20	60	380	50	
T-303	201	202	700	``	þ	(10	()	62	0.17	< 20	< 20	60	140	60	
1-395	201	202	600	(5	< 10	(5	50	0.12	/ 20	/ 20	40	160	50	
1-415	201	202	700	ì	5	< 10	25	40	0.12	/ 20	< 20	30	100	50	
			100	``		· 10	` .	10	V.12	1 20	1 40	20	00	20	
	ļ														
i	1														
		1													
		l I													
	1														
	· · · · ·				· · ·										

Chemex Labs Ltd.

Ē

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WHITE CHANNEL RESOURCES

> 1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Comments: CC: R.C.RIEPE CC:C.LEITCH

A9643914

UPPER

LIMIT

100.0

100.0

1000

÷ .

.

DETECTION

LIMIT

2

0.1

0.01

c	ERTIF	ICATE	A9643914				ROCEDURES
(OHX) - ' Project: P O. # :	WHITE CH HORSE	IANNEL RESOURCES	}	 CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD
Samples This re	submitt port was	ed to our lab in printed on 24-D	Vancouver, BC. EC-96.	339 19 54	18 1 1	WO3 %: Phosphoric-HCl-HF Sn ppm: NH4I sublimation, extrac Te ppm: HBr-Br2 digest, extrac	COLOR AAS AAS-BKGD CORR
	SAM	PLE PREPAR	ATION				
CHEMEX	NUMBER	C	DESCRIPTION				
244	18	Pulp; prev. pre	pared at Chemex				
L		· ·					
				L	<u> </u>		

Chemex Labs Ltd.

Ë

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8 Page Number : 1 Total Pages : 1 Certificate Date: 24-DEC-96 Invoice No. : 19643914 P.O. Number : Account : OHX

.

ł

Project : HORSEFLY Comments: CC: R.C.RIEPE

CC: R.C.RIEPE CC:C.LEITCH

CERTIFICATE OF ANALYSIS

A9643914

SAMPLE	PREP CODE	WO3 %	Sn ppm	Te ppm						
1-225 1-235 1-245 1-255 1-265	244 244 244 244 244	0.77 0.60 0.17 0.13 0.04	< 2 	< 0.1						
1-275 1-285 1-295 1-315 1-325	244 244 244 244 244	0.04 0.03 0.01 0.02 0.06								
1-335 1-345 1-355 1-365 1-375	244 244 244 244 244	0.01 0.03 0.01 0.07 0.07								
1-385 1-395 1-415	244 244 244	0.04 0.02 0.02								
					i					
						C	ERTIFICATION	Sar	Lein	ad the second

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

A9643911

Comments: CC: R.C.RIEPE CC:C.LEITCH

8

CERTIFICATE

A9643911

(OHX) - WHITE CHANNEL RESOURCES

Project P.O. # : HORSEFLY

Samples submitted to our lab in Vancouver, BC. This report was printed on 2-JAN-97.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
244 205 216	18 18 18	Pulp; prev. prepared at Chemex Geochem ring to approx 150 mesh sieve to -150 mesh

ANALYTICAL PROCEDURES

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
881 879 885 883 887 886 889 886 889 888	18 18 18 18 18 18 18 18	Au g/t: Total, metallics calc. Ag g/t: Total, metallics calc. Au- g/t: Metallics calc. Ag- g/t: Metallics calc. Au+ mg: Metallics calculation Ag+ mg: Metallics calculation Weight- g: Metallics calculation Weight+ g: Metallics calculation	FA-AAS/GRAV FA-AAS/GRAV FA-AAS/GRAV FA-AAS/GRAV FA-AAS/GRAV FA-AAS/GRAV BALANCE RALANCE	$\begin{array}{c} 0.07 \\ 3 \\ 0.07 \\ 3 \\ 0.002 \\ 0.01 \\ 1 \\ 0.01 \end{array}$	500.00 500 500.00 500 9999.00 50.00 N/A N/A

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Page Number :1 Total Pages :1 Certificate Date: 02-JAN-97 Invoice No. :19643911 P.O. Number Account :OHX

:

.

.

.

Project : HORSEFLY Comments: CC: R.C.RIEPE

CC:C.LEITCH

CERTIFICATE OF ANALYSIS A9643911

.

R

			T	r	r			· · · · · · · · · · · · · · · · · · ·	rinia di stata		
SAMPLE	PREP CODE	Au tot g/t	Ag tot g/t	Au - g/t	Ag - g/t	Au + mg	Ag + mg	Wt grams	Wt. + grams		
1-225 1-235 1-245 1-255 1-265	244 205 244 205 244 205 244 205 244 205 244 205	0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07	773 665 159 129 36	0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07	662 586 134 110 34	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002	17.08 22.16 4.14 3.14 0.71	124 148 120 122 123	4.28 15.68 7.01 6.73 11.93		
1-275 1-285 1-295 1-315 1-325	244 205 244 205 244 205 244 205 244 205 244 205	< 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07	26 37 12 11 71	< 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07	24 34 10 10 69	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002	0.43 0.79 0.27 0.18 0.35	111 123 91 103 94	6.88 10.04 5.72 4.88 2.22		
1-335 1-345 1-355 1-365 1-375	244 205 244 205 244 205 244 205 244 205 244 205	< 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07	10 12 11 80 65	< 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07	10 10 10 51 48	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002	0.10 0.18 0.14 3.08 2.15	150 66 97 95 10 4	14.24 2.60 5.25 4.46 6.51		
1-385 1-395 1-415	244 205 244 205 244 205	< 0.07 < 0.07 < 0.07	30 31 19	< 0.07 < 0.07 < 0.07	21 24 14	< 0.002 < 0.002 < 0.002	1.42 0.68 0.56	123 86 103	9.73 2.25 3.14		
	<u> </u>								. Jan	a v.	المعلمة المسلمة

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Comments: CC: R.C.RIEPE CC:C.LEITCH A9644415

C	ERTIF	CATE	A9644415			
(OHX) - \ Project: P.O. # :	WHITE CH. HORSE	ANNEL RESOU	RCES	CHEME		3
Samples This re	submitt port was	ed to our la printed on	b in Vancouver, BC. 3-JAN-97.	44	5 4	We
	SAM	PLE PREP	ARATION			
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION			
203 204 202	1 1 3	Dry, sieve Dry, sieve save reject	to -35 mesh to -60 mesh			
	<u> </u>					-

ANALYTICAL PROCEDURES												
HEMEX	NUMBER SAMPLES))	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT						
445	4	Weight g		BALANCE	0.001	N/A						

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8 Page Number :1 Total Pages :1 Certificate Date: 03-JAN-97 Invoice No. :19644415 P.O. Number : Account :OHX

Project : HORSEFLY Comments: CC: R.C.RIEPE

CC: R.C.RIEPE CC:C.LEITCH

CERTIFICATE OF ANALYSIS

A9644415

SAMPLE	PREP CODE	Weight grams					
1-225+35 1-225-35+60 1-225-60 1-225 TOTAL	203 202 204 202 202 	55.10 178.90 122.30 356.3					
		- -					

Chemex Labs Ltd.

Analytical Chemists " Geochemists " Registered Assayers North Vancouver 212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

A9710015

To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Comments: CC:RUDY RIEPE CC:C.LEITCH

A9710015

(OHX) - WHITE CHANNEL RESOURCES

CERTIFICATE

Project: P.O. # : **BJ EXCAVATION**

Samples submitted to our lab in Vancouver, BC. This report was printed on 9-JAN-97.

SAMPLE PREPARATION										
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION								
201 202 233	1 1 1	Dry, sieve to -80 mesh save reject Assay AQ ICP digestion charge								

The 32 element ICP package is suitable for trace metals in soil and rock samples. Blements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

HEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	Upper Limit
4001	1	Ng mmm + N30 TCP package	TCP-AKS	1	200
4002	1 i	A1 k: A30 TCP package	TCP-ARS	0.01	15.00
4003	1 ī	As DDM: A30 ICP Dackage	ICP-AES	10	50000
4004	1	Ba DDm: A30 ICP package	ICP-AES	20	200000
4005	1	Be ppm: A30 ICP package	ICP-AES	5	100
4006	1	Bi ppm: A30 ICP package	ICP-ARS	10	50000
4007	1	Ca %: A30 ICF package	ICP-AES	0.01	30.0
4008	1	Cd ppm: A30 ICP package	ICP-AES	5	1000
4009	1	Co ppm: A30 ICP package	ICP-ARS	5	50000
4010	1	Cr ppm: A30 ICP package	ICP-AES	10	20000
4011	1	Cu ppm: A30 ICP package	ICP-AES	5	50000
4012	1	Fe %: A30 ICP package	ICP-AES	0.01	30.0
4013	1	Hg ppm: A30 ICP package	ICP-ARS	10	10000
4014	1	K %: A30 ICP package	ICP-AES	0.01	20.0
4015	1	Mg %: A30 ICP package	ICP-AES	0.01	30.0
4016	1	Mn ppm: A30 ICP package	ICP-AES	10	50000
4017	1	Mo ppm: A30 ICP package	ICP-AES	5	50000
4018	1	Na %: A30 ICP package	ICP-AES	0.01	20.0
4019	1	Ni ppm: A30 ICP package	ICP-AES	5	50000
4020	1	P ppm: A30 ICP package	ICP-AES	100	10000
4021	1	Pb ppm: A30 ICP package	ICP-ARS	5	50000
4022	1	Sb ppm: A30 ICP package	ICP-AES	10	10000
4023	1	Sc ppm: A30 ICP package	ICP-AES	5	10000
4024	1	Sr ppm: A30 ICP package	ICP-AES	5	10000
4025	1	Ti %: A30 ICP package	ICP-AES	0.01	10.00
4026	1	T1 ppm: A30 ICP package	ICP-AES	20	10000
4027	1	U ppm: A30 ICP package	ICP-ARS	20	10000
4028	1	V ppm: A30 ICP package	ICP-AES	20	50000
4029	1	W ppm: A30 ICP package	ICP-AES	20	10000
4030	1	Zn ppm: A30 ICP package	IC P-AES	5	50000

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Project : BJ EXCAVATION Comments: CC:RUDY RIEPE CC:C.LEITCH Page Number :1-A Total Pages :1 Certificate Date: 09-JAN-97 Invoice No. :19710015 P.O. Number : Account :OHX

.

CERTIFICATE OF ANALYSIS A9710015 PREP **A1** Ni λg λs Ba Be Bi Ca Cđ Co Cr Cu Fe ∃g K Mg Mn Mo Na SAMPLE CODE % % % % % ppm ppm ppm ppm ррш ppm ppm ppm ppm ppm ppm ppm % ppm 69210 201 202 25 0.76 380 55 < 1 2.14 30 160 < 5 50 55 7.33 0.12 < 5 < 10 0.40 < 10 < 5 0.10

Chemex Labs Ltd.

Ē

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Project : BJ EXCAVATION Comments: CC:RUDY RIEPE CC:C.LEITCH 8

Page Number : 1-B Total Pages : 1 Certificate Date: 09-JAN-97 Invoice No. : 19710015 P.O. Number : Account : OHX

.

.

.

.

r											CE	RTIFI	CATE	OF ANALYS	IS	A9710015	
SAMPLE	PR	VEP DDE	l ppr	e ph ppn	s Sb 1 ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm				
SAMPLE 69210	201		7 00	a ppa	1 ppm) < 10	<u>ppn</u> 5	<u>ррш</u> 75	0.06	ppm < 20	ppm < 20	<u>ppm</u> 60	ppm < 20	 110				

··· .

1.15

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers North Vancouver 212 Brooksbank Ave.. V7J 2C1 British Columbia, Canada PHONE: 604-984-0221 FAX: 604-984-0218

To: WHITE CHANNEL RESOURCES

> 1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Comments: CC: R.C.RIEPE CC:C.LEITCH

A9710718

(OHX) - WHITE CHANNEL RESOURCES

CERTIFICATE

Project: P.O. # : HORSEFLY

Samples submitted to our lab in Vancouver, BC. This report was printed on 31-JAN-97.

SAMPLE PREPARATION										
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION								
244 238 288	22 4 3	Pulp; prev. prepared at Chemex Nitric-aqua-regia digestion NAA encapsulation/irradiation								

ANALYTICAL PROCEDURES CHEMEX NUMBER UPPER DETECTION CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT 384 21 Ag g/t: Gravimetric FA-GRAVIMETRIC 1000 З Cu ppm: HNO3-aqua regia digest 2 4 1 10000 AAS 21 3 F ppm: Carbonate-nitrate fusion SPECIFIC ION 20 10000 154 3 Br ppm: Trace rock, soil NAA 0.5 10000 155 3 Cl ppm: Assay trace NAA 100 10000

A9710718

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: WHITE CHANNEL RESOURCES

1400 - 355 BURRARD ST. VANCOUVER, BC V6C 2G8

Page Number : 1 Total Pages : 1 Certificate Date: 31-JAN-97 Invoice No. : 19710718 P.O. Number : :OHX Account

Project : HORSEFLY Comments: CC: R.C.RIEPE

		CERTIFIC	ATE OF A	NALYSIS	A97	A9710718					
L	Br NAA ppm	C1 NAA ppm									

CC:C.LEITCH

SAMPLE	PREP CODE	Ag FA g/t	Cu ppm	F ppm	Br NAA ppm	Cl NAA ppm					
1-100 1-110 1-120 1-130 1-225	244 244 244 244 244 238	<pre>< 3 < 3 < 3 < 3 < 3 620</pre>	 1100	 110	2.0	 < 100					
1-235 1-245 1-255 1-265 1-275	244 238 244 238 244 238 244 244 244	579 130 130 34 24	1000 236 240 	130 120 	4.0 2.5	< 100 < 100 					
1-285 1-295 1-315 1-325 1-335	244 244 244 244 244	34 7 7 69 7		 		 			1		
1-345 1-355 1-365 1-375 1-385	244 244 244 244 244	7 10 not/ss 45 14								• • • • • • • • • • • • • • • • • • •	•
1-395 1-415	244 244	21 10									
							-				
											-
								1 4.75		and a	

CERTIFICATION: