
RICHARDSON GEOLOGICAL CONSULTING LTD.

4569 WEST 13TH AVENUE, VANCOUVER, B.C. V6R 2V5 TELEPHONE: (604) 224-4272

THE JAJAY PROJECT

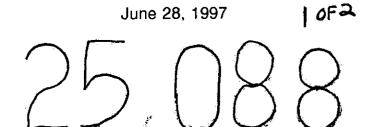
DESCRIBING THE

1996 GEOLOGICAL, GEOCHEMICAL AND DRILLING PROGRAMS

ON THE

LORRAINE, STEELHEAD, DOROTHY AND BOOT STEELE PROPERTIES AND THE PAL CLAIMS

OMINECA MINING DIVISION, BRITISH COLUMBIA


NTS 93N/14 and 94C/3

Latitude 55°55' N ; Longitude 125°20' W

for

LYSANDER GOLD CORPORATION

ÔF P.W. RICHARDSO! by BRITISH \$ of Vichard PAUL W. RICHARDSON, Ph.D., P.Eng.

Vancouver, B.C.

TABLE OF CONTENTS

SUMMARY	i
INTRODUCTION	1
LOCATION AND ACCESS	3
CLAIMS	4
HISTORY	8
GEOLOGY	
MINERALIZATION	11
THE 1996 PROGRAM	
COSTS OF THE 1996 PROGRAM	
CONCLUSIONS	
RECOMMENDATIONS	
REFERENCES	
STATEMENTS OF QUALIFICATIONS	21

APPENDIX 1 - Geochemical Report by John Gravel
APPENDIX 2 - Diamond Drill Logs
APPENDIX 3 - Assay Certificates
APPENDIX 4 - Rock Descriptions
APPENDIX 5 - Cost Statement and Time Distribution

LIST OF ILLUSTRATIONS

		<u>FOLLOWING</u>
	<u>SCALE</u>	PAGE
FIGURE 1 - LOCATION MAP		2
FIGURE 2 - ACCESS MAP	1:250,000	2
FIGURE 3 - CLAIM MAP	1:50,000	In Pocket
FIGURE 4 - LORRAINE CLAIMS	1:20,000	2
FIGURE 5 - GEOCHEMISTRY AND DRILL HOLES	1:2,500	In Pocket

SUMMARY

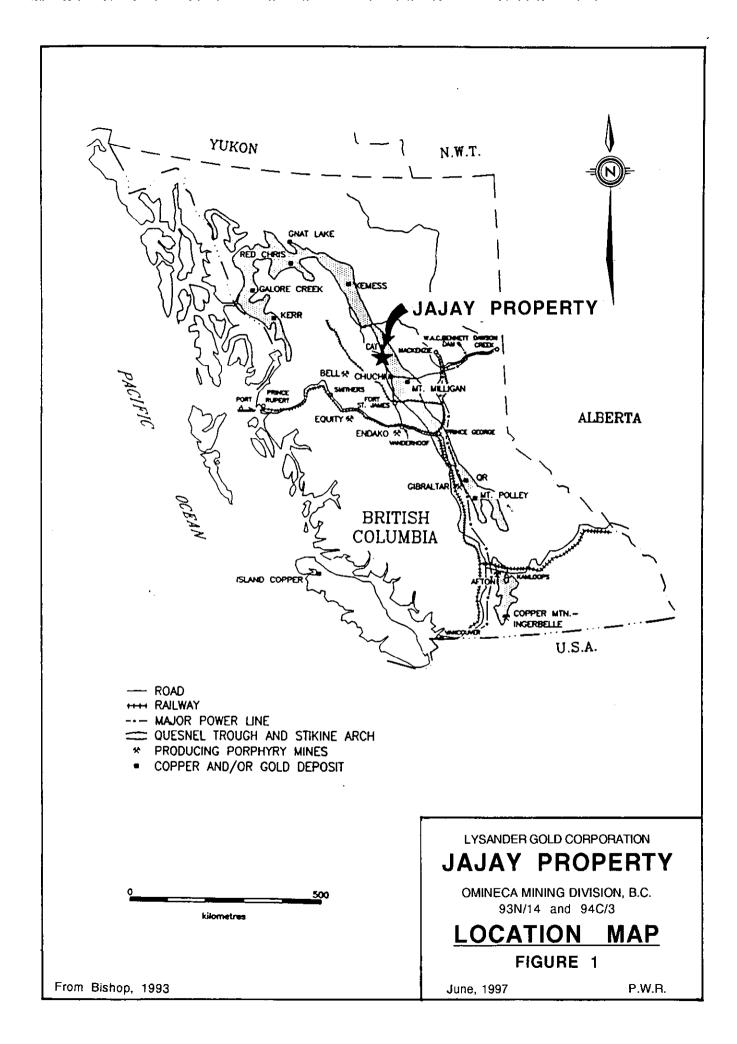
The Jajay Project, which is made up of the Lorraine, Steelhead, Dorothy and Boot Steele properties and the PAL claims, is in the Omineca Mining Division of British Columbia. The property is underlain by intrusive rocks of the Duckling Creek Syenite Complex, an alkaline phase of the Hogem Batholith. Two substantial zones of copper-gold mineralization with some silver, the Main Zone (Upper and Lower deposits) and the Bishop Zone, have been discovered to date on the Lorraine property. The Main Zone deposits were estimated earlier to contain a geological resource of 10 million tonnes averaging 0.67% Cu and between 0.10 and 0.34 g/t Au. The Bishop Zone is still at the early drilling stage: tonnage and grade are not yet defined, but, in general, the grade is similar to that of the Main Zone. Both these zones have portions that are higher than their average grades. Less is known about the Steelhead, Dorothy and Boot Steele properties, but each contains known copper mineralization, especially the Dorothy.

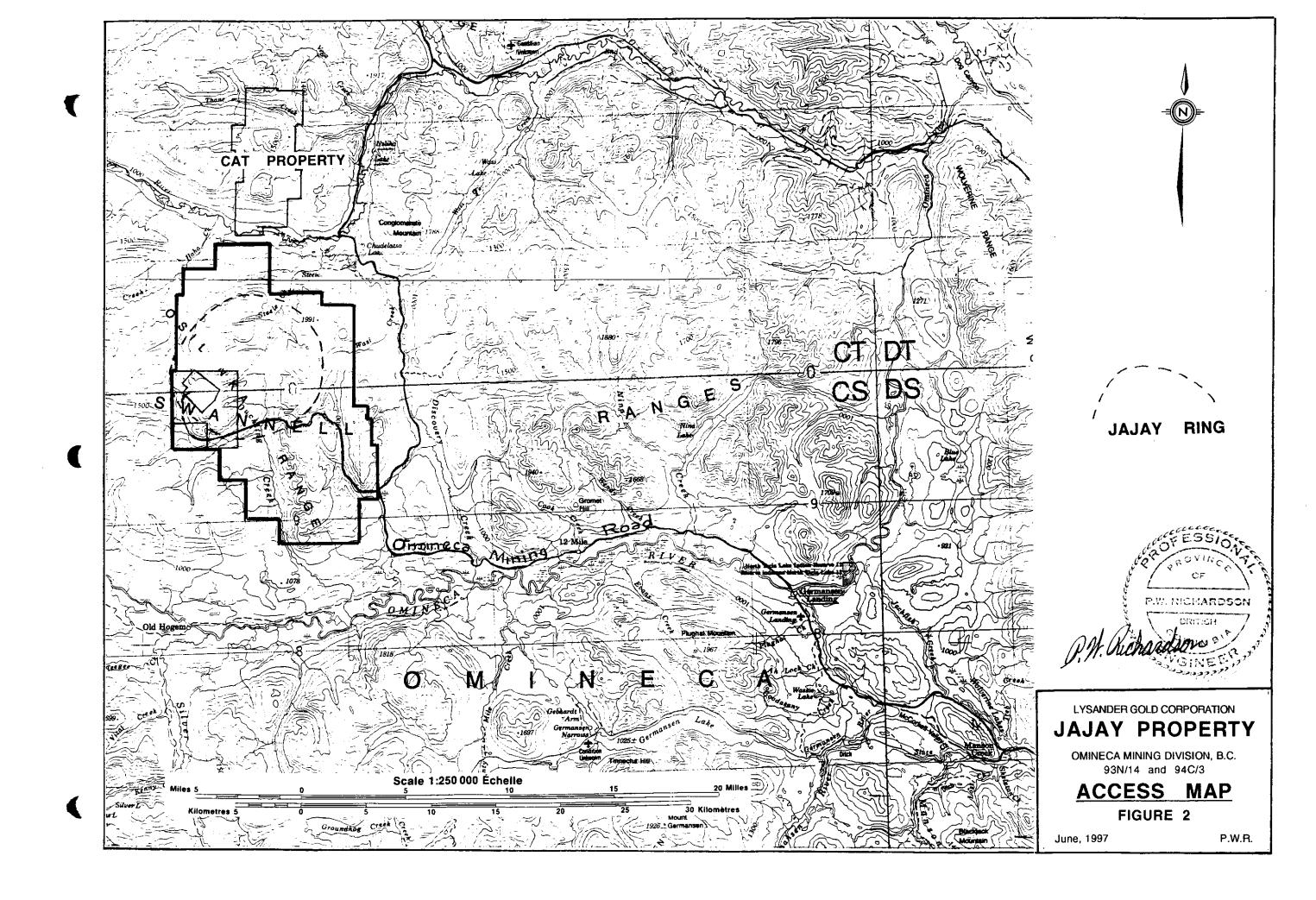
In early 1996, an annular magnetic structure, the Jajay Ring, was recognized. Most of the known copper mineralization in the area lies along the perimeter of this structure. Based on the potential of the Jajay Ring, Lysander assembled a land package by acquiring two existing properties additional to the Lorraine and Boot-Steele properties and by staking claims.

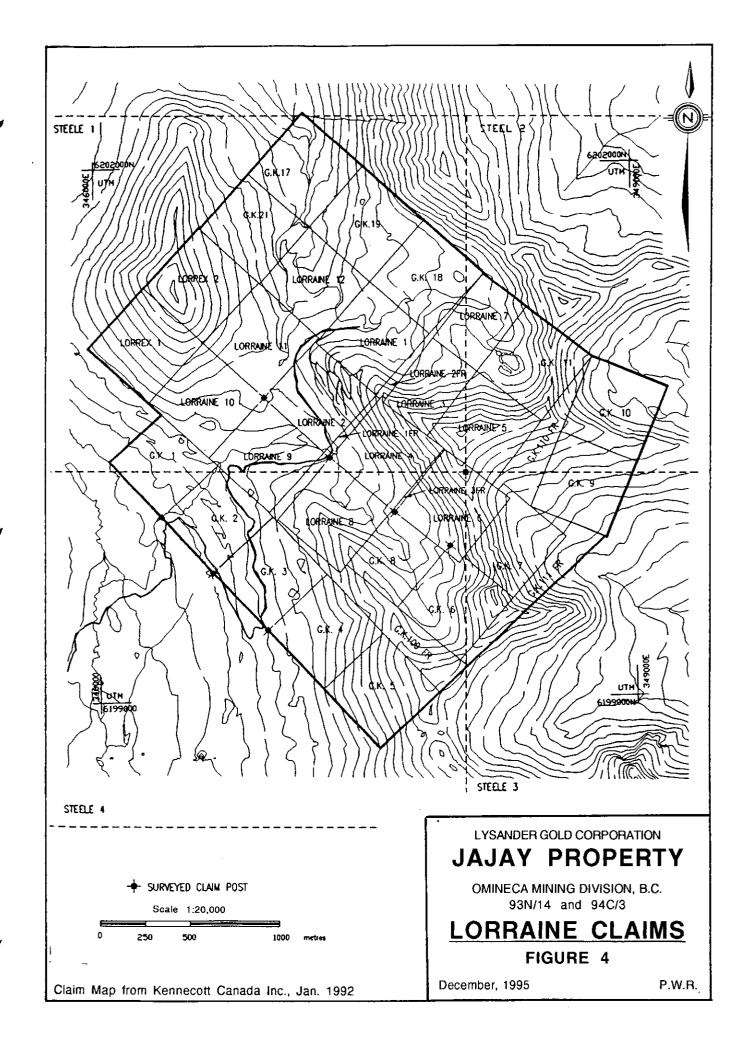
In 1996, a program of 10 diamond drill holes totaling 1422.2 m was drilled on the Lorraine property to test and extend known copper mineralization. In addition, a geochemical program consisting of 756 seepage sediments, 718 talus fines, 206 soil samples and 49 rock samples was done mostly over the western third of the much enlarged property to begin the investigation of the Jajay Ring. Examination of mineral showings was done concurrently with the drilling and geochemical programs. The programs were made possible by the extensive use of helicopters because of the absence of ground access to most of the property.

The diamond drilling program of 1422.2 m cost \$216,389, including direct drilling costs of \$141,797 and helicopter costs of \$17,680. The geochemical program cost a total of \$185,994. This included helicopter costs of \$49,215.

INTRODUCTION


In 1994, Lysander Gold Corporation optioned the Lorraine copper-gold property from Kennecott Canada Ltd. The Lorraine property had been owned by Kennecott and by a predecessor company for many years, but apparently the deposit was not large enough to meet that very large company's corporate requirements. Data describing the property were examined by Lysander, and there appeared to be the potential both for smaller but higher grade portions within the known mineralized areas and for additional deposits between the Main Zone and the Bishop Zone as well as elsewhere on the property. A diamond drilling program was done in 1994 to begin to test these possibilities, and another, larger drilling program was done in 1995 to continue the investigation.


In 1968, while doing regional geological mapping in the area, Dr. Jahat Koo had recognized that migmatitic rocks in the area are fenites. A fenite is a quartzo-feldspathic rock that has been altered by alkali metasomatism at the contact of a carbonatite intrusive complex. He postulated that, in this case, the fenitisation was caused by a buried alkalic complex. In early 1996, Dr. C. Jay Hodgson pointed out an annular magnetic anomaly about 10 km in diameter with its western edge lying just west of the Lorraine property (Figures 2 and 3). This anomaly, now termed the Jajay Ring, is thought to be caused by Dr. Koo's postulated buried alkalic complex. Most of the known copper mineralization in the area lies around the perimeter of this structure. Based on the potential of the Jajay ring, Lysander assembled a land package by acquiring existing properties additional to the Lorraine and Boot-Steele properties and by staking the PAL claims.


The 1996 program consisted of two parts. A diamond drilling program was carried out to continue to test the known copper zones on the Lorraine property (Figure 4), and a geochemical program was begun with the object of exploring for additional mineralization around the perimeter of the Jajay Ring.

In 1996, the geochemical sampling crews were accomodated at a farm 10 km west of Germansen Landing along the Omineca Mining Road. For the diamond drilling, the old campsite on the Lorraine property was reoccupied September 22 and, upon the completion of the drilling, the camp was removed October 6.

The dirt access road from the Omineca Mining Road to the camp did not allow the use of a large truck, and, consequently, transportation of the drill and other heavy equipment was by truck to a gravel pit 40.8 km west of Germansen Landing and then by helicopter to the Lorraine property. Personnel and light supplies were taken to the Lorraine Camp by 4-wheel drive pickup. Logging and splitting of the core was done at the camp, and the core is stored there (Figure 3).

LOCATION AND ACCESS

The Jajay Project area is 250 km NW of Prince George (Figure 1). It is in the Omineca Mining Division, British Columbia, at latitude 56°55' N, longitude 125°20'W on NTS Map 93N/14 and 94C/3 (Figure 2). The access road to the Lorraine camp begins 40.8 km west of Germansen Landing along the Omineca Mining Road (Figure 2). The access road is a four-wheel drive dirt road 32.1 km long, and at present takes two to three hours to drive, depending on conditions and the vehicle.

The project area is in the Omineca Mountains, and has moderate to steep relief with elevations ranging from 1050 m in the valleys up to peaks of 2000 m. The valleys are U-shaped, and are blanketed by glacial till. There are talus-covered slopes and sharp ridges above the valleys. Coniferous forests occur up to the 1600 m elevation with alpine shrubs and grasses at higher elevations.

CLAIMS

The Jajay Project consists of four optioned properties and the PAL claims. There is a total of 110 claims made up of 1081 units (Figures 3 and 4).

Lorraine Property

<u>Name</u>	<u>Tenure No.</u>	<u>Units</u>	Record Date	Expiry Date*
Lorraine No. 1	243499	1	Sept 17, 1947	Sept 17, 2006
Lorraine No. 2	243500	1	Sept 17, 1947	Sept 17, 2006
Lorraine No. 3	243501	1	Sept 17, 1947	Sept 17, 2006
Lorraine No. 4	243502	1	Sept 17, 1947	Sept 17, 2006
Lorraine No. 5	243503	1	Sept 17, 1947	Sept 17, 2006
Lorraine No. 6	243504	1	Sept 17, 1947	Sept 17, 2006
Lorraine No. 7	243505	1	Sept 17, 1947	Sept 17, 2006
Lorraine No. 8	243506	1	Sept 17, 1947	Sept 17, 2006
Lorraine No. 9	243507	1	June 22, 1948	June 22, 2006
Lorraine No 10	243508	1	June 22, 1948	June 22, 2006
Lorraine No 11	243509	1		June 22, 2006
Lorraine No 12	243510	1	June 22, 1948	June 22, 2006
Lorraine #1 FR	245449	1	May 31, 1972	May 31, 2006
Lorraine #2 FR	245450	1	May 31, 1972	May 31, 2006
Lorraine #3 FR	245451	1	May 31, 1972	May 31, 2006
Lorrex No 1	243646	1	Sept 4, 1961	Sept 4, 2006
Lorrex No 2	243647	1	Sept 4, 1961	Sept 4, 2006
GK #1	245043	1	July 3, 1970	July 3, 2006
GK #2	245044	1	July 3, 1970	July 3, 2006
GK #3	245045	1	July 3, 1970	July 3, 2006
GK #4	245046	1	July 3, 1970	July 3, 2006
GK #5	245047	1	July 3, 1970	July 3, 2006
GK #6	245048	1	July 3, 1970	July 3, 2006
GK #7	245049	1	July 3, 1970	July 3, 2006
GK #8	245050	1	July 3, 1970	July 3, 2006
GK #9	245051	1	July 3, 1970	July 3, 2006
GK #10	245052	1	July 3, 1970	July 3, 2006
GK #11	245053	1	July 3, 1970	July 3, 2006
GK #18	245054	1	July 3, 1970	July 3, 2006
GK #19	245055	1	July 3, 1970	July 3, 2006
GK #20	245056	1	July 3, 1970	July 3, 2006
GK #21	245057	1	July 3, 1970	July 3, 2006
GK #109 FR	245452	1	May 31, 1972	May 31, 2006

4

<u>Name</u>	<u>Tenure No.</u>	<u>Units</u>	Record Date	Expiry Date*
GK #110 FR	245530	1	July 25, 1972	May 31, 2006
GK #111 FR	245453	1	May 31, 1972	
GK #112 FR	245531	1	July 25, 1972	

- -

Boot-Steele Property

- - - - . .

<u>Name</u>	<u>Tenure_No.</u>	<u>Units</u>	Record Date	Expiry Date*
Steele 1	240496	20	Apr 29/89	Apr 29/03
Steele 2	240497	20	Apr 29/89	Apr 29/03
Steele 3	240498	20	Apr 29/89	Apr 29/03
Steele 4	240499	20	Apr 29/89	Apr 29/03
Boot 6	242900	15	Apr 29/89	Oct 30/01
Boot 10	303913	20	Sept 5/91	Sept 5/02

Steelhead Property

<u>Name</u>	<u>Tenure No.</u>	<u>Units</u>	<u>Complet.Date</u>	Expiry Date*
Steelhead 1	334766	8	Apr 6/96	Apr 6/01
Steelhead 2	334767	8	Ħ	Apr 6/01
SH 8	334773	1	11	Apr 6/01
SH 9	334774	1	11	Apr 6/01
SH 10	334775	1 .	N	Apr 6/01

Dorothy Property

<u>Name</u>	<u>Tenure No.</u>	<u>Units</u>	Record Date	Expiry Date*
Dorothy 1	241431	12	Nov 20/89	Nov 20/00
Dorothy 2	241432	12	Nov 20/89	Nov 20/00
Dorothy 3	241432	12	Nov 20/89	Nov 20/00
Dorothy 4	241434	12	Nov 20/89	Nov 20/00
Dorothy 5	241961	12	May 14/89	May 14/00
Dorothy 6	241962	1 5	May 14/89	May 14/00
Dorothy 7	241963	1 8	May 14/89	May 14/00
Dorothy No. 1	243511	1	Jul 16/48	Jul 16/00
Dorothy No. 3	243512	1	Jul 16/48	Jul 16/00
Elizabeth No. 3	243513	1	Aug 27/48	Jul 16/00

PAL Claims

<u>Name</u>	Tenure No.	<u>Units</u>	Record Date	Expiry Date*
PAL 1	346810	6	1996	May 31/01
PAL 2	346811	20	и	May 30/01
PAL 3	346812	20	**	June 1/98
PAL 4	346813	20		June 11/98
PAL 5	346814	20	11	June 11/97
PAL 6	346815	20	11	June 11/98
PAL 7	346816	20	11	June 11/98
PAL 8	346817	15	R	June 9/98
PAL 9	346818	20	¥7	June 9/98
PAL 10	346819	20	11	June 9/99
PAL 12	346820	15	и	June 10/99
PAL 13	346821	20	и	June 12/99
PAL 14	346822	15	()	June 12/99
PAL 15	346823	20	**	June 6/01
PAL 16	346824	20	11	June 7/01
PAL 17	346825	20	11	June 7/01
PAL 18	346826	20	**	June 6/01
PAL 19	346827	20	19	June 5/01
PAL 20	346828	8	11	June 2/01
PAL 21	346829	20	91	May 31/01
PAL 22	346830	8	н	June 7/01
PAL 23	346831	20	17	June 7/00
PAL 24	346832	20	"	June 6/00
PAL 25	346833	20	11	June 4/00
PAL 26	346834	20	11	June 4/99
PAL 27	346835	20	It	June 2/00
PAL 28	346836	12	n	June 1/99
PAL 29	346837	12	n	June 1/99
PAL 30	346838	20	11	June 2/0
PAL 31	346839	20	R	June 3/00
PAL 32	349774	20		Aug 11/01
PAL 33	349775	12		Aug 16/98
PAL 34	349776	8	81	Aug 26/01
PAL 35	349777	10	"	Aug 14/98
PAL 36	349778	20	11	Aug 17/98
PAL 37	349779	20	17	Aug 17/98
PAL 38	349780	20	*	Aug 17/98
PAL 39	349781	20	71	Aug 17/99

<u>Name</u>	Tenure No.	<u>Units</u>	Record Date	Expiry Date*
PAL 40	349782	15	1996	Aug 16/99
PAL 41	349783	15	**	Aug 20/99
PAL 42	349784	12	**	Aug 18/99
PAL 43	349785	20	11	Aug 21/98
PAL 44	349786	20	91	Aug 20/98
PAL 45	349787	9	11	Aug 21/97
PAL 46	349788	12	11	Aug 20/97
PAL 47	350425	15	11	Aug 24/01
PAL 48	350016	12	11	Aug 23/00
Bobino #1	346808	10	И	June 7/01
Bobinette	346809	10	11	June 8/97
Marcha	352234	1		Oct 9/97
Fiona	352235	1	H	Oct 9/97
Isabelle	352236	1	11	Oct 9/97
Suzanne	352237	1	F#	Oct 9/97

*Expiry date when the credits applied for, supported by this report, have been approved.

All claims are owned by Lysander Gold Corporation. The Lorraine and Dorothy properties are subject to agreements with Kennecott Canada Inc.; the Boot-Steele property is subject to an agreement with Richard Haslinger and Larry Hewitt and the Steelhead property is subject to an agreement with Alvin Jackson. The remainder of the claims were staked by Lysander, and are unencumbered. 7

<u>HISTORY</u>

Malachite-stained bluffs on Lorraine Mountain were brought to the attention of prospectors by local Indians during World War 1. However, the showings were not staked until 1931. Consolidated Mining and Smelting Company Limited acquired the Lorraine property in 1943, took some surface samples and allowed the claims to lapse in 1947 (Wilkinson et al, 1976). Later in 1947, a predecessor company to Kennecott Canada Inc. staked the Lorraine showings. In 1948 and 1949, the surface showings were mapped and sampled, and five widely-spaced AX diamond drill holes were drilled to test the Upper Main Zone. In 1961, Kennco enlarged the property, conducted geochemical and geophysical surveys and drilled two holes totalling 118 m. In 1970, Granby Mining Corporation optioned the property from Kennco, and, from 1970 to 1973, further enlarged the property and did geological mapping, soil and rock sampling, trenching and a total of 3992 m of diamond drilling and 2470 m of percussion drilling. The Lower Main Zone was discovered by this work. The property lay dormant from 1975 to1990. Kennecott then began a program to assess the tenor of the gold associated with the known copper mineralization and to explore the property for additional copper and gold mineralization. The work consisted of geological, geophysical and geochemical surveys and 12 diamond drill holes totalling 2392 m. The Bishop Zone was discovered by this program.

In 1994, Lysander Gold Corporation optioned the property and investigated the higher grade portions of the known mineralization

in the Upper Main and Bishop zones with a 10-hole diamond drilling program totalling 1,221.3 m.

Subsequent to the 1994 drilling, five adjacent Boot-Steele claims of 20 units each were optioned in order to protect both the southeastern extension of the Bishop Zone and other prospects near the presently known Lorraine deposits. Recently, the Boot 6 claim was included in the Boot-Steele option agreement.

The Lorraine property was described in CIM Special Volume 15 (1976): Porphyry Deposits of the Canadian Cordillera. That description was updated in CIM Special Volume 46 (1995): Porphyry Deposits of the Northwestern Cordillera of North America.

The recognition of the importance of the Jajay Ring structure led to Lysander's optioning the Dorothy and Steelhead properties and staking the PAL claims in 1996 to protect the area of the Jajay Ring.

GEOLOGY

The area of the Jajay Project lies entirely within the Hogem Batholith, a Late Triassic to Middle Jurassic multiphase intrusion of calc-alkaline to alkaline composition, which is intruded by Early Cretaceous granitic bodies. The batholith intrudes the Takla Group to the east and is bounded by the northerly-trending Pinchi Fault to the west. The Takla Group is composed mostly of fragmental rocks with lesser amounts of flow rocks. The group forms the northern part of the Quesnel Trough, and is similar and probably equivalent to the Nicola Group of southern British Columbia. Several gold and alkalic copper-gold porphyry deposits are hosted in the rocks of the Quesnel Trough (Figure 1).

MINERALIZATION

In the project area, the greatest concentrations of mineralization discovered to date are on the Lysander property, and occur in svenitic rocks and, locally, in biotite pyroxenite in the Main and Bishop zones (Bishop, 1994). Additional mineralization occurs in the Eckland, Weber and North Cirgue zones (Figure 5) and on the Boot Steele, Dorothy and Steelhead properties (Figure 3). Copper sulphides that occur at Lorraine include chalcopyrite, bornite and rare covellite. Pyrite occurs in amounts of less than 1%, and is erratically distributed throughout the property. Malachite, azurite and chrysocolla occur in oxidized portions of the copper-bearing Sulphides are fine- to medium-grained, and are disseminated zones. throughout the host rocks, or are concentrated along fractures and in narrow guartz veinlets. Total sulphide abundance ranges from trace amounts to greater than 7%.

A potential resource, calculated in 1975 for the two Main Zone deposits, was reported as 4.5 million tons of 0.75% Cu and 0.34 g/t Au in the Upper Deposit and 5.5 million tonnes of 0.60% Cu and 0.10 g/t Au in the Lower Deposit, based on a cutoff grade of 0.4% Cu (Wilkinson et al, 1976). Gold grades were estimated based on a limited number of assays.

Prior to the 1994 drilling, it was thought that the copper-gold mineralization in the Upper Main Zone was confined to a NWstriking, SW-dipping layer of mostly K-feldspar-altered rock. It was implied that the Lower Main Zone was similar but, in addition, was cut by several faults. The 1994 drilling indicated that the Upper Main Zone extends much deeper than was previously thought, and this was confirmed by the 1995 and 1996 drilling programs.

Less is known about the mineralization on the other optioned properties. The Dorothy property has been explored using geological, geophysical and geochemical surveys, but only six diamond drill holes have been drilled to date. These had moderate success. The Steelhead property was explored earlier by Cyprus Exploration using geochemistry and airborne and ground geophysics, but the property has not been drilled.

THE 1996 PROGRAM

The 1996 program consisted primarily of two parts: a diamond drilling program and a geochemical survey.

(1) The 1996 Diamond Drilling Program (Figure 5; Appendices 2 and 3; Table page 14)

In order to define in more detail the higher grade copper- and gold-bearing portions of the Upper Main and Bishop zones and to begin testing the Eckland and North Cirque zones, a diamond drilling program consisting of 10 holes totalling 1422.2 m was carried out. The program was designed to have each hole either start in or drill toward known high grade copper mineralization and to drill to the boundaries of the higher grade sections. All the holes required helicopter support, so a helicopter-portable drill, similar to a J.K. Smit 300, was used. DDH L96-37, the Upper Main Zone hole, was drilled from a platform secured to the hillside by rockbolts. The contractor was Falcon Drilling Ltd. of Prince George, B.C.

DDH L95-36, on the Bishop Zone near Kennecott DDH L91-7, was deepened, and two additional holes were drilled near the same section (Figure 5; Appendices 2 and 3). The area of the copper mineralization in the Bishop Zone was extended, but is still not well enough defined to allow the calculation of reserves.

The core was split at the Lorraine Camp, and the samples were shipped to Acme Analytical Laboratories Ltd. where they were dried, weighed and analysed for copper and other elements by ICP and for gold by fire assay with an ICP finish (Appendix 3). The core is stored at the Lorraine Camp (Figure 3).

follows	:					
D	OH No.	From	То	Length	Cu(%)	<u>Au(oz/t)</u>
	95-36 and	169.8 212.4	197.2 242.9	27.4 30.5	0.721 0.431	0.002 0.003
L9	96-37	84.4	151.4	67.0	1.450	0.012
LS	96-39	3.0	11.3	8.3	2.057	0.027
L9	96-41	1.5	29.8	28.3	0.277	0.001
L9	96-42	1.5	17.4	15.9	0.285	0.002
-	96-43 and	130.2 185.0	154.5 203.9	24.3 18.9	0.766 1.212	0.005 0.010
	96-44 and	120.1 210.7	147.5 242.9	27.4 32.2	1.070 1.516	0.003 0.004
LS	96-45	26.5	30.9	4.4	0.914	0.010

A summary of the more significant 1996 intersections is as follows:

THE 1996 DIAMOND DRILL RESULTS

Upper Main Zone

DDH L96-37 was drilled to test for the downward extension of the +1% Cu mineralization occurring at the bottom of DDH 95-32. DDH L96-37 intersected 67.0 m averaging 1.450% Cu and 0.012 oz/t Au. The hole increased the thickness of the highgrade Cu mineralization by 11 m.

Bishop Zone

DDH L96-36 Extension was drilled to deepen DDH L95-36 which had been stopped short of the target. As planned, the lengthened hole intersected the area of highgrade Cu mineralization encountered earlier in DDH L91-7. It should be noted here that DDH L <u>95-36</u> had intersected a new zone near its collar.

DDH L96-43 was drilled to test the eastern margin of the Cu mineralization intersected by DDH L91-7 with the object of

outlining the shape of the mineralization on the section of the holes. Two sections of good grade were intersected.

DDH L96-44 was drilled to continue to test the section. The hole intersected the new zone seen in DDH L <u>95-</u>36 and, importantly, increased its grade. DDH 96-44 also intersected the known zone seen in DDH 96-36, and, again, had a higher grade. These intersections appear to confirm the prediction that the grades in the Bishop Zone could be as high as those in the Upper Main Zone. <u>Eckland Zone</u> (Figure 5)

The Eckland Zone was previously undrilled. The rocks are not well-exposed, and the area of pink feldspathization is not as large as those areas related to the more explored zones. However, the presence of intense feldspathization and good rock geochemistry warrented testing,

DDH L96-38 intersected no commercial values.

DDH L96-39 intersected 8.3 m of 2.057% Cu near its collar. The mineralization was oxidized, and appears to be secondary, but contains some chalcopyrite.

DDH L96-40 intersected scattered, partly oxidized, low grade Cu mineralization near its collar

DDH L96-41 intersected low grade Cu mineralization near its collar. Again, the mineralization was mostly malachite and azurite, but it also included fine-grained bornite and chalcopyrite.

DDH L96-42 intersected mineralization similar to that in DDH L96-41

North Cirque Zone

Kennecott DDH L91-12 had intersected 40m of 0.35% Cu and 0.09 g/t Au near a mineralized outcrop in the North Cirque area. DDH L96-45, which was drilled to attempt to confirm and extend the mineralized area, intersected only low grade mineralization. However, the geochemical results and the mineralized outcrops indicate that a detailed study of the area should be done.

(2) <u>The 1996 Geochemical Survey</u> (Figure 5; Appendices 1 and 3) The geochemical survey was designed to test the effectiveness of measuring the metal content of seepage sediments, talus fines, soil samples and rock samples in detecting the known mineralization in the Main and Bishop zones and then to test for extensions of those zones and the Eckland and North Cirque showings and for other mineralization elsewhere around the perimeter of the Jajay Ring on the much enlarged property. Most of the 1996 samples were collected on the western third of the property. The results of the geochemistry are described in detail in a report by John Gravel (Appendix 1). 16

COSTS OF THE 1996 PROGRAMME

Mincord Exploration Consultants were contracted to establish and maintain the camp, to locate the proposed diamond drill holes on the ground, to construct any necessary drill platforms and drillsites, to supervise the drilling and to log the drill core and to support the geochemical program. The diamond drilling program of 1422.2 m cost \$216,389, including direct drilling costs of \$141,797 and helicopter costs of \$17,680. The geochemical program cost a total of \$185,994. This included helicopter costs of \$49,215. A detailed breakdown of the costs and time distribution is attached as Appendix 5.

CONCLUSIONS

(1) The highgrade copper mineralization in the Upper Main Zone was shown to extend 11 m deeper than was previously known.

(2) Drilling on the Bishop Zone has demonstrated that the Cu mineralization is very intense near the southeastern boundary of the Lorraine property with some sections averaging above 1% Cu.

(3) Additional drilling must be done on the Bishop Zone before reserves can be calculated.

(4) The additional drilling will probably find that the good grades encountered on the section of DDH's L94-1 to 3 will be continuous to the section drilled in 1996.

(5) Intensely anomalous, copper-bearing seepage sediments and talus fines occur on the slopes below the Upper Main Zone, near the Bishop Zone and elsewhere on the property.

(6) The geochemical program covered only the western third of the Jajay property in any detail.

RECOMMENDATIONS

(1) All the available diamond drilling data should be correlated on plans and sections. This study should include the Lower Main Zone.

(2) A drill program should be designed to extend the Upper Main and Bishop zones and to test the best parts of the Lower Main Zone.

(3) The geochemical survey should be completed over the eastern two-thirds of the property

(4) A program to measure the extent and thickness of the mineralized talus below the Upper Main Zone should be designed.

P.W. RICHARDS

<u>REFERENCES</u>

There are numerous reports and articles describing the area of the present Jajay property. The writer has used information mostly from the following reports and articles:

- Bishop, Sandra T., 1994: 1993 Geochemical and Diamond Drilling Report on the Lorraine Property. Private Report to Kennecott Canada Inc.
- Bishop, Sandra T., Heah, T.S., Stanley, C.R. and Lang, J.R., 1995:
 Alkalic intrusion hosted copper-gold mineralization at the Lorraine deposit. In Canadian Institute of Mining, Metallurgy and Petroleum. Special Volume 46, pp. 623-629.
- Peatfield, Giles R., 1995: Technical Report on the Lorraine and Boot-Steele Copper-Gold Properties. Private Report to Lysander Gold Corporation.
- Price, B.J. and Rebagliatti, C.M., 1991: 1990 Exploration Report, Dorothy Property, Duckling Creek. Private Report to Kennecott Canada Inc.
- Richardson, Paul W., 1994: Proposed Drilling Programme on the Lorraine Property. Private Report to Lysander Gold Corporation.
- Richardson, Paul W., 1995: Assessment Report Describing the 1994 Drilling Programme, Lorraine Property. Assessment Report to the British Columbia Ministry of Energy, Mines and Petroleum Resources.

- Richardson, Paul W., 1996: Assessment Report Describing the 1995 Drilling Programme, Lorraine Property. Assessment Report to the British Columbia Ministry of Employment and Investment.
- Stevenson, R.W., 1974: Compilation Report on the Dorothy Property. Private Report Report to Kennco Explorations, (Western) Limited.
- Wilkinson, W. J., Stevenson, R. W. and Garnett, J. A., 1976: Lorraine. In Canadian Institute of Mining and Metallurgy, Special Volume 15, pp. 397-401.

RICHARDSON GEOLOGICAL CONSULTING LTD. 4569 WEST 13TH AVENUE, VANCOUVER, B.C. V6R 2V5 TELEPHONE: (604) 224-4272

STATEMENT OF QUALIFICATIONS

The writer is a graduate of the University of British Columbia with B.A.Sc.(1949) and M.A.Sc.(1950) degrees in Geological Engineering and a Ph.D.(1955) degree from the Massachusetts Institute of Technology in Economic Geology and Geochemistry.

The writer has done fieldwork in mines and on exploration programmes, except during periods at university, since 1945, and has participated in numerous programmes which included geochemistry since 1953. He has a working knowledge of the major types of geophysics based on fieldwork in the Maritimes, Northern Ontario and Quebec and British Columbia. He has carried out or supervised many diamond drilling programmes since 1950.

The writer has been a Member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia since returning in 1966 to live in British Columbia.

The writer has consulted on this project since 1994.

Elsewhere in the Quesnel Trough, the writer has worked on other copper-gold properties associated with alkalic porphyry systems, particularly on the QR Gold Deposit in the early stage of exploration.

P.M. Michardson

21

QUALIFICATIONS OF PROJECT GEOLOGISTS

J.W. Morton of North Vancouver, B.C.

- (1) Graduate of Carlton University, Ottawa (1971) with a B.Sc. in Geology.
- Graduate of the University of British Columbia (1976) with an M.Sc. in Soil Science.
- (3) Member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- (4) Supervised the work described in this report.

J.E.L.(Leo) Lindinger of Kamloops B.C.

- (1) Graduate of the University of Waterloo (1980) with a B.Sc. in honours Earth Sciences.
- (2) Has practised his profession as an exploration and mine geologist continuously for the past 16 years.
- (3) Fellow in good standing with the Geological Association of Canada (1987).
- (4) Member in good standing as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- (5) He participated in the work program described in this report.

APPENDIX 1

Soil, Talus Fines and Seepage Geochemistry of the Jajay Project by John Gravel, M.Sc. (Maps in Separate Cover)

١

SOIL, TALUS FINES AND SEEPAGE GEOCHEMISTRY OF THE JAJAY PROJECT NTS 94N 13/14 GERMANSEN LANDING AREA, BRITISH COLUMBIA

for Lysander Gold Corp.

by

John Gravel, M.Sc., P.Geo. Prime Geochemical Methods Ltd.

SUMMARY

An innovative program of reconnaissance talus fines and seepage sediment sampling was conducted over the Lysander claims during August and September, 1996. These media, collected in parallel traverses, test for mechanical and hydromorphic dispersion trains from outcropping, buried or blind deposits. Initial sampling over the principle deposits on the Lorraine claims characterized the geochemical signatures of mineralization, alteration and bedrock geology. Expansion of these traverses tested the potential of the Lorraine - Boot Steele mountain range in the west half of the JAJAY project area. Limited traverses evaluated selective areas in the east half including the known mineralization at the ATO and Dorothy occurrences. Extension of the soil grid at the ATO occurrence demonstrated the continuity of mineralization. In total, 756 seepage sediments, 718 talus fines and 206 soil samples were collected.

Anomalous talus fines and seepage sediments highlight all the major deposits (Lower Main, Upper Main, Eckland, Bishop and North Cirque) and most of the minor occurrences. Concentrations of Cu and Au in talus fines (up to 1.7 % and 780 ppb respectively) approach levels observed in mineralized bedrock. Pathfinder elements defining moderate to weakly anomalous patterns over mineralization include: Ag, As, Cd, La, Mo, Pb and Zn. A broad halo surrounds the cluster of deposits. Phosphorus is most prominent ranging from weakly anomalous in the mineralized zones to highly anomalous levels peripheral to them. Similar halos of varying intensity and thickness are defined by: K, Fe, Mg, Ni, Co, Cr and Ti. Phosphorus and K probably define alteration enrichment, whereas Fe, Mg, Ni, Co, Cr and Ti may be related to the mafic phase of the Duckling Creek Syenite Complex.

Three potential targets are identified in the northern half of the property. The most promising lies in the headwaters of Steele Creek where sporadic high anomalous Cu in talus fines and seepage sediments indicate a buried deposit. Associated anomalous pathfinders and major elements indicate a Lorraine-like occurrence.

Talus fines and soil samples indicate a continuity of mineralization past the current limits of sampling over the ATO deposit.

RECOMMENDATIONS

- 1. Lithogeochemical sampling program conducted in conjunction with any future mapping program to help resolve geology.
- Expansion of the talus fines and seepage sediment sampling program to cover the eastern half of the JAJAY project.
- 3. Detailed soil and talus fines sampling of the Steele Creek headwaters area.
- 4. Expansion of talus fines and soil sampling near the ATO occurrence.
- 5. Field testing of seepage samples using the Bloom Test to permit rapid follow up of anomalies.

INTRODUCTION

The Lorraine deposits (Lower Main, Upper Main, Bishop, Eckland, Weber and North Cirque) comprise high grade Cu (1 to 3%) and Au (0.23 to 0.50 gm/t) in potassically altered intrusive rocks of the Duckling Creek Syenite Complex, an alkaline phase of the Hogem Batholith in northwestern British Columbia. Through property options and claim staking, Lysander Gold Corporation compiled the PAL Project, an extensive land package in which the Lorraine deposits lie along the southwest margin. Reconnaissance talus fines and seepage sediment sampling probed the Lorraine - Boot Steele mountain range testing for hidden mineral occurrences similar to the Lorraine deposits. Sampling conducted in August and September, 1996 gathered a total of 206 soil, 718 talus fines and 756 seepage sediment samples. Hoffman (1977) developed the method of talus fines sampling for reconnaissance surveying in mountainous terrain. Ideally, anomalies detected in talus fines are sourced from mineralization in bedrock either exposed or underlying the talus fan above the sample site. Seepages are sites of upwelling ground water that can potentially carry dissolved and complexed metals derived from mineral deposits lying within the catchment area. Sampling talus fines and seepage sediments along parallel contour traverses optimizes the chance of detecting mechanical and hydromorphic anomalies from blind or buried deposits. Initial sampling focused on the Lorraine deposits to determine the effectiveness of the method and establish a characteristic geochemical signature. Subsequently, the traverses were extended to circumscribe the mountain range. The following report evaluates the results of this survey.

METHODS

Sampling

Two man crews were trained to recognize, document and sample talus fines and seepage sediments. Samples of talus fines are collected at sites spaced 100 metres apart along a line that traverses the lower third of the talus fan. This material is believed to be compositionally representative of bedrock above the site. The sampler excavates talus blocks by shovel and hand, typically to a depth of 30 to 100 cm where a sufficient quantity of fines (0.5 to 1 Kg) has accumulated by downward percolating surface waters. At overgrown talus fan sites, the sampler

digs below the B soil horizon to collect talus fines unmodified by soil forming processes. Seepage samples are collected at 100 metre intervals along a traverse that follows the break in slope below the talus fan. Site selection focuses on active springs. Where active springs are absent, areas of recent spring activity or abundant hydrophilic vegetation are chosen. The sampler augers to a depth of between 20 to 100 cm to recover 0.5 to 1 Kg of seepage sediment that is free of organic matter. Ideally the material is gray to brownish gray indicating minimal oxidation because of water saturation during most of the year.

Site observations regarding location, sample texture and colour, slope angle and direction and evidence of mineralization are noted on field forms. Florescent orange painted wooden pickets, bearing the site coordinates and sample number, mark the sample locations.

<u>Analysis</u>

Samples were analysed at Acme Analytical Laboratories Ltd. of Vancouver, British Columbia. The author and Acme cooperatively developed an analytical method for seepage sediments that optimizes anomaly contrast using the Mn and Fe hydroxide specific hydroxylamine hydrochloride leach (Chao, 1984) coupled with a state-of-the-art ultrasonic nebulizer ICP. Samples are sieved to -20 mesh then a 50 gm split is leached in 200 mL of hydroxylamine hydrochloride for 1 hour. An aliquot of the solution is analyzed directly by inductively coupled plasma emission spectroscopy (ICP) to determine the lithophile and siderophile elements (Al, B, Ba, Ca, Co, Cr, Fe, K, La, Mg, Mn, Na, Ni, P, Sr, Th, Ti, U, V and W). A second aliquot is extracted using an organic solution of MIBK and Aliquat 336 and analysed by ultrasonic nebulizer ICP to determine the chalcophile elements (Ag, As, Au, Bi, Cd, Cu, Ga, Hg, Mo, Pb, Sb, Se, Te, Tl and Zn). Au was not determined from these solutions on the assumption that the leach would be ineffective. Hydroxylamine hydrochloride readily digests secondary oxides and hydroxides of iron and manganese that scavenge metal ions mobilized by groundwater. Although absolute concentrations are lower compared to hot acid digestions, anomaly to background contrast is greater.

Talus samples were sieved to -10 +80 mesh and to -80 mesh. A 0.5 gm split of the finer fraction is digested in aqua regia (3:1 HCl to HNO₃) at 95°C for 1 hour. The solution is analyzed directly by ICP to determine Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W and Zn. A second 10 gm split is ignited and digested in aqua regia. The solution is extracted using MIBK to recover Au that is determined by graphite furnace atomic absorption spectroscopy. The coarse fraction of the talus was washed and mounted on pebble cards (Hoffman, 1974) to provide a readily accessible record of talus composition.

Data Presentation

Results for each element are spatially presented as a dot plot wherein dot sizes are scaled to seven concentration intervals. These intervals are the 50th, 68th, 80th, 90th, 95th, 97.5th and greater than 97.5th percentile concentrations. Although this is a coarse means of dividing the data, it has proven effective in a multi-element evaluation for attributing geochemical features to mineralization, lithology or background variation. In a plot containing two or more media types, shapes of the dots reflect media types in the following manner: circles represent seepage sediment, diamonds indicate talus fines and triangles are soils. North arrows indicate UTM north.

DESCRIPTION OF RESULTS

Lower Main and Upper Main Zones (Figures 1 to 24)

- Cu: Talus and seepage samples collected below the Upper Main Zone exhibit very high concentrations of Cu (Fig. 3) with maximum concentrations in excess of 1.7% and 1.2%, respectively. Concentrations at the Lower Main Zone are up to 0.3% in talus and 0.1% in seepage. Talus containing over 0.25% Cu and seepage sediment with over 400 ppm Cu outline a continuous 800 metre long anomaly stretching northeast from the Upper Main Zone to the Lower Main Zone.
- Au: Gold (Fig. 1) displays a direct correlation with elevated Cu in talus fines at both the Lower Main and Upper Main zones. Sites containing over 1% Cu have corresponding Au concentrations of 250 to 530 ppb (0.25 to 0.53 gm/t).
- Ag: Although less well defined, Ag (Fig. 2) displays a pattern sympathetic to Cu and Au with maximum concentrations of 7.2 ppm and 983 ppb in talus and seepage sediment, respectively. Individual anomalies define separately the Lower Main and Upper Main zones.
- **Pb:** Lead (Fig. 5), weakly anomalous in talus at the Upper Main (11 to 27 ppm), is highly anomalous in the seepages further downslope (up to 46.1 ppm) while at the Lower Main Zone, Pb is anomalous in talus (72 ppm) and weakly anomalous in the seepage.
- **Zn:** Zinc (Fig. 6) displays a pattern similar to Pb, however the anomaly in talus extends an additional 500 metres to the southwest.
- As: Arsenic (Fig. 7) defines essentially background concentrations in talus (< 8 ppm) below the Upper Main Zone but is highly anomalous in the seepages (3.2 to 14.3 ppm) further downslope. As is highly anomalous in a talus fines site (89 ppm) and a seepage site below the Lower Main Zone.
- *Cd:* Cadmium (Fig. 9) defines a contiguous anomaly extending well beyond the Lower Main and Upper Main zones. Talus fines contain up to 4.7 ppm Cd while seepage sediments have up to 0.63 ppm.
- La: Lanthanum (Fig. 17) is highly anomalous (49 to 73 ppm) in talus fines immediately below the Upper Main Zone corresponding to the most Cu rich samples. Seepage's downslope also report anomalous La (25 to 33 ppm). Talus fines and seepages near the Lower Main Zone are weakly anomalous in La.
- Mo: Molybdenum (Fig. 4) defines low but clearly discernible anomalies in talus fines at the Lower Main and Upper Main zones. Background concentrations are noted in all seepage sites except for one below the Upper Main Zone that contains 0.6 ppm Mo.
- P: Phosphorus (Fig. 16) in weakly anomalous (0.38% to 0.63%) in talus fines below the Upper Main and Lower Main zones but increases to highly anomalous concentrations peripheral to the mineralized areas. Similarly, concentrations in seepage sediment are generally weakly anomalous within the mineralized area but moderately to strongly anomalous adjacent to mineralization.
- **K:** Potassium (Fig. 14) in talus fines exhibits background concentrations within the Lower Main and Upper Main zones but anomalous concentrations (0.65 to 1.07%) immediately adjacent to these areas. Seepage's report uniformly low K concentrations.

Other Elements:

Iron (Fig. 11), Mg (Fig. 13), Ni (Fig. 20), Co (Fig. 21), Cr (Fig. 22) and Ti (Fig. 23) all display geochemical patterns similar to K with background to lowly anomalous

concentrations within the Main and Upper Main Zones and anomalous concentrations peripheral to the deposits.

North Cirque, Bishop and Eckland Zones (Figures 1 to 24)

- Cu, Au, Ag, Pb, Zn, As, Cd, La, Mo: Mineralization at North Cirque, Bishop and the Eckland zones produce geochemical expressions in talus fines and seepage sediment that are essentially identical to that seen at the Lower Main and Upper Main zones. In terms of relative size of the anomalies, North Cirque rivals the Upper Main Zone, Bishop is slightly smaller while Eckland is more restricted. Concentrations for most of the commodity elements at North Cirque match those at the Upper Main with Cu > 1.4%. Highest Au concentration is noted at the Eckland (796 ppb). Cadmium effectively describes a continuous anomaly joining North Cirque, Lower Main, Upper Main, Bishop and Eckland zones.
- P, K, Fe, Mg, Ni, Co, Cr, Ti: Similar to Main and Upper Main, the major lithophile and trace siderophile elements describe an outer halo that surrounds the mineralization at North Cirque, Bishop and Eckland zones. Halo width varies from element to element, Cr displays the broadest enrichment while Ti is the most restricted.

DISCUSSION OF RESULTS

Lower Main, Upper Main, North Cirque, Bishop and Eckland Zones

Mineralized fragments incorporated in the talus fines (and some seepage sediments collected below the Upper Main and North Cirque deposits) are the source of highly anomalous Cu, Au and Ag concentrations proximal to the deposits. Concentrations in seepage sediments due solely to groundwater mobilization are significantly lower. Sediment samples containing 892 and 1092 ppm Cu collected in active seepages below the Lower Main Zone may be due in good part to ground water transport. Copper concentrations in seepage sediments of 100 ppm or higher are considered significant and likely due to a mineral occurrence. Meanwhile Cu up to 650 ppm in talus fines are attributed to locally high background. Metal zonation within and surrounding the deposits is indicated by the broader anomalies defined by elements like Cd. The mineralized host rock, inferred to be a pink to gray syenite, may likely be a potassically altered mafic intrusion. Aqua regia (3:1 Hydrochloric acid to Nitric acid) leachable concentrations of P, K, Fe, Mg, Ni, Co, Cr and Ti are quite low. The sharp increase in leachable concentrations of these elements peripheral to mineralization correlates in part to an increase of biotite pyroxenite in the bedrock. Both the commodity suite and host rock suite of elements are useful guides to identifying other mineral occurrences.

Restricted mineral occurrences mapped on both faces of Jeno Ridge are expressed by minor anomalies in Cu, Au, Mo, Ag, Zn, As and La. Anomalous concentrations of K, P, Ca, Mg, Fe, Ti and Co correspond to the presence of various syenite phases and "spotted" (K-spar porphyroblastic) pyroxenite.

North Steele Creek Anomaly (Figures 1B to 24B)

A favourable geochemical pattern indicating mineralization is noted in the headwaters of Steele Creek. Talus fines collected at the 1600 m level on the north side of a ridge report up to 0.5% Cu (Fig. 3B). A talus sample 1 kilometre to the west reports 0.25% Cu while seepage sites 1.2 kilometres to the southeast contain up to 0.13% Cu. Notable is the lack of anomalous Cu concentrations in talus fines collected 300 metres upslope of the anomalous seepages sites. This suggests that the mineralization either a) lies between the talus and seepage sites, b) is buried by barren talus or c) is blind. Au (Fig. 1B), Ag (Fig. 2B), Pb (Fig. 5B), Zn (Fig. 6B), As (Fig. 7B), Cd (Fig. 9B), La (Fig. 17B) and Mo (Fig. 4B) define moderate to weak anomalies coincident to Cu. Locally elevated Fe (Fig. 11B), K (Fig. 14B), Mg, Ti (Fig. 23B) and Co (Fig. 21B) suggests a favourable host lithology although the lack of anomalous Cr (Fig. 22B) argues against a basic intrusive. Although P (Fig. 14B) is not particularly anomalous, the style of mineralization is interpreted to be similar to the Upper Main deposit.

PAL 24 Anomaly (Figures 1B to 24B)

Within claim PAL 24, anomalous Au and moderately anomalous Cu indicate mineralization. Anomalous Mo, Pb, As and Sb and weakly anomalous Zn, Ag, K and Ti would appear to preclude a Lorraine type occurrence.

PAL 19 Anomaly (Figures 1B to 24B)

Moderately anomalous Cu indicates a potential for mineralization in the PAL 19 Claim block. Associated anomalies in Ag, Mo, Pb, Zn, K, Ti, P and Mg imply a Lorraine like occurrence.

ATO Anomaly (Figures 1C to 24C)

The ATO Claims (now known as the Bobinette, PAL 19 and PAL 42 claims) are the site of high grade Cu mineralization (ATO occurrence). Talus fines and seepage sediment were collected over the mineralization to determine it's geochemical signature. In addition, nine soil lines spaced 100 metres apart with sample sites every 25 metres extended the existing soil grid to ascertain the continuity of mineralization.

Talus fines collected directly over mineralization report anomalous levels of Cu (8073 ppm), Co (128 ppm), Cr (309 ppm) and Ni (132 ppm) with moderately anomalous Au, Ag and Zn and weakly anomalous Mo, Sb, Cd, Mg and Ti. Notably P, K and La are not anomalous at regional concentration levels, however soil samples collected in parallel to the talus fines suggest that these element are anomalous at a local level. Anomaly patterns for Cu, Mo, Zn, Mg, Ni, Co, Cr and Ti in talus fines and seepage sediments indicate a continuity of the mineralization striking to the southeast. The style of mineralization is suspected to be similar to the Lorraine prospects.

Soil sampling indicates significant mineralization underlying the grid extension. Highly anomalous soils (up to 0.7% Cu) define a northwest - southeast trend for a band of mineralization laying near the southwest margin of the grid. Restricted but highly anomalous Au (up to 1080 ppb), Ag (2.3 ppm) and Mo (up to 132 ppm) are associated with Cu. Elevated Au and Mo suggests a style of mineralization different from the Lorraine deposits A second band of mineralization appears along the northeast margin of the grid with anomalous levels of Au (up to 250 ppb), Pb (up to 56

ppm), Zn (up to 264 ppm), As (up to 250 ppm) and Ni (up to 182 ppm). The element association indicates a base metal occurrence.

Dorothy Anomaly (Figures 2C to 24C)

An exploratory seepage traverse was run along the base of the hillside hosting the Dorothy showings. A notable anomaly was detected near the southern end of the traverse with anomalous concentrations of Cu (244 ppm), Zn (36.7 ppm) and Ag (253 ppb). The remainder of the traverse reported background concentrations for all elements.

PAL 36 & 39 Anomaly (Figures 1DC to 24D)

Widely spaced talus fines samples (250 to 500 metres) collected on PAL 36 & 39 are regionally anomalous in As, Co, Ni, Al and Sr. However, closely spaced talus fines samples collected over PAL 36 display background concentrations for these elements. The pattern suggests the anomalies are the result of locally higher background concentrations in bedrock. Mineralization is indicated in the southern half of these claims as evidenced by anomalous concentrations of Au (up to 259 ppb), Cu (up to 595 ppm), Mo (up to 18 ppm), Pb (up to 96 ppm) and Zn (up to 338 ppm). Sparse sampling precludes further evaluation however, a Lorraine style mineral occurrence is not indicated by the anomalous element suite.

PAL 44 Claim (Figures 1E to 4E)

Talus fines samples collected over the PAL 44 claims display predominantly background values for most elements including Au and Cu. However, the first sample in the traverse does contain highly anomalous levels of As (up to 71 ppm) and Sb (up to 75 ppm). This sample is also anomalously depleted in the major rock forming elements suggesting a silica-rich sample. Taken together, the anomalous association may reflect the upper extremity of an epithermal system.

CONCLUSIONS

- 1. The talus fines and seepage sediment sampling program succeeded in defining all known mineral occurrences on the PAL claims. Rapid anomaly follow-up by field crews is plausible using a field test for labile metals such as the Bloom test (Bloom, 1955).
- 2. Lorraine style mineralization (Upper Main, Lower Main, Bishop, North Cirque and Eckland deposits) is characterized by highly anomalous Cu and moderately to weakly anomalous Au, Ag, As, Cd, La, Mo, Pb and Zn.
- 3. Talus geochemistry indicates a correlation between a mafic lithology as defined by elevated Co, Cr, Fe, K, Mg, Ni, P and Ti and the mineral deposits. Definition of mineralization targets is aided by the development of extensive halos for these elements surrounding the occurrences.
- 4. Three targets with favourable geochemical signatures lay in the Steele Creek area north of the Lorraine claims.

5. Soil and talus fines anomalies indicate that mineralization extends past the sampling grid over the ATO deposit.

REFERENCES

- Bloom, H. (1955) A field method for the determination of ammonium citrate-soluble heavy metals in soils and alluvium. *Econ. Geol.* Vol. 50, pp 533-541.
- Chao, T.T. (1984) Use of partial dissolution techniques in exploration geochemistry, *Journal of Exploration Geochemistry*, Vol. 20 (1), pp 101-135.
- Hoffman, S.J. (1974) Pebble Cards a record of the coarse fraction of stream sediments for geochemical exploration, *Journal of Geochemical Exploration*, Vol 3 (4), pp 387-388.
- Hoffman, S.J. (1977) Talus fine sampling as a regional geochemical exploration technique in mountainous regions, *Journal of Geochemical Exploration*, Vol 7 (3), pp 349-360.

APPENDIX 2 - DIAMOND DRILL LOGS

.

Location: Bishop Zone	Co-ordinates: 348504.7E G199637.7N	Hole No: L - 95 - 36 Extension	(Page 1 of 3)
Bearing: -055°	drilled deepened from 1362 to 2429 = 106.7m	Property: Lorraine	Sampled by: L. Lindinger
Inclination:	Length: 242.9 m (797 ft)	Elevation: 1728m	Claim #: GK 111 FR
Started: Scpt 27, 1996	Core Size: BQ TW		Section:
Completed: Sept 28, 1996	Dip Tests: -46° @ 242.9m (797 ft)	Recovery:	Logged By: L. Lindinger
Purpose: To test for mineralization intersected in ho			

METRES From	to	DESCRIPTION	SAMPLES #	6 (metre from		length m	Cu ppm	Au Oz/t	Ag ppm	Other ppm	Recov %
136.2	137.6	Biotite Porphyroblastic Pyroxene Schist, foliation 20° to C.A., highly magnetic, intrusive contact 20°. to T.C.A.		136.2	139.3	3.1	831	.001	0.7		
137	140.5	Megacrystic Feldspar Porphyry, with chloritized hornblende, coarse grained magnetite associated with hornblende, 139.0 - 139.5 trace finely disseminated bornite and chalcopyrite, 139.5 - 140.3 ⁻ 1.2% chalcopyrite 0.5% bornite.		139.3	142.3	3.0	1923	.001	1.4		
140.5	147.1	Biotite Porphyroblastic Pyroxenite , as above, numerous leucocratic albite Megacrystic dykes 90 - 30° to C.A., contact - 55° to C.A.		142.3 145.4	145.4 148.4	3.1 3.0	256 721	.001 .001	0.5 1		
147.1	150.3	Coarse Grained Salt & Pepper Diorite, 75% pale plagioclase with biotitized hornblende and chloritized pyroxene or hornblende, random syenitic stockwork dykes with associated potassic flood zones with epidote and clay halos, 0.5% fine to medium grained disseminated bornite and trace chalcopyrite, intrusive contact 40° to C.A.		148.4	151.5	3.1	2050	0.001	1.4		
150.3	151.2	Tonalite ? Dyke , potassic felspathic flood zones, trace finely disseminated pyrite with more distal chalcopyrite and bornite, intrusive contact 35° to T.C.A.		151.5	154.5	3.0	1065	.001	0.9		; [
151.2	154.6	Coarse Grained Salt & Pepper Diorite, as above, syeite dykes common & coarse segregated biotite, late blue carbonate shear zones and veins.		154.5	157.6	3.1	9886	0.004	9.9		
154.6	156.2	Albitic & Silicified Flood Zone, 3% very fine grained disseminations and stringers of chalcopyrite, up to 1% bornite associated with fine potassic veinlets and felted secondary biotite, gradational contact.									

156.2	163.0	Heterogenous Migmatite Zone, mm by 3 - 15 mm biotite porphyroblasts pseudomorphing after hornblende, and white and pink anhedral feldspar and quartz aggregates,(dykes?) in a highly heterogeneous ground mass, ~ 2% free interstitial quartz protoliths, may have been a breccia, local epidote replacing plagioclase, trace	157.6	160.6	3.0	2978	0.001	3.1	
		to very fine grained 1% bornite and chalcopyrite, associated with epidote and more importantly biotite. 160.0 - 161.3 more felspathic zone 161.3 - 163.0 1 to locally 4% chalcopyrite and trace to locally 3% bornite 161.85 - 1cm white and blue carbonate with 25% bornite and 5% chalcopyrite, gradational contact over 25 cm	160.6	163.7	3.1	10445	0.002	12.4	
163.0	164.7	Mafic Diorite, medium grained, melanocratic, weakly foliated 65° to T.C.A., 40% anhedral plag and 25% biotitized hornblende phenocrysts in a medium green chloritic groundmass, occasional mafic-felsic segregations (mafic uphole), trace copper mineralization, gradational contact.	163.7	166.7	3.0	682	.001	0.9	
164.7	165.3	Heterogeneous Migmatite ?, as above, quartz dioritic in composition, cross cut by late syenite dykes with associated potassic alteration of plagioclase, epidote distal to potassic alt, possible traces of extremely fine bornite.							
165.3	176.8	Biotite Porphyroblastic Gabbro , 10-15% black 3-7mm loose aggregates of biotite pseudomorping after hornblende or pyroxene in a dark green chloritic ground mass, 10% interstitial plag as embayed masses up to 0.5 cm x 1.0 cm. 169.9 - 170.1 - 5% cpy 3% bornite fine grained net textured. 170.5 - 175.0 feldspathic segregations. 176.3 - 176.7 and granitic dyking 45° to C.A. with 0.5 - 2% bornite and trace - 4% chalcopyrite as blotches stringers and fine to medium grained segregations, average	166.7 169.8 172.8 175.9	169.8 172.8 175.9 178.9	3.1 3.0 3.1 3.0	52 7082 3328 6292	.001 0.002 0.001 0.001	0.4 6 3.5 5.5	
		2% copper sulphides, intrusive contact sharp with calcite-chalcopyrite-molybdenite vein 30° to C.A.							
176.8	183.1	Quartzo-Feldspathic-Porphyritic Rock, (meta dacite ?), foliated or recrystallized flow banded siliceous rock invaded by numerous granitic and earlier syenitic dykes and flood zones, 1-3% finely disseminated chalcopyrite and trace bornite throughout foliated lithologies, locally breccia textures suggestive of a crystal tuff, sharp contact intrusive 35° to C.A.	178.9 182.0	182.0 185.0	3.1 3.0	6934 5150	0.001 0.002	6 4.7	
183.1	184.2	Coarse Grained Granodiorite , 70% white grey plag, 10% kspar, 6% 3-6mm black biotite porphyoplasts, minor chloritic masses associated with biotite, locally heterogeneous suggestive of relict fragments, trace bornite and chalcopyrite in what appears to be a xenolith of felsite.	185.0	187.1	3.1	6832	.001	4.9	
184.2	191.5	Felsite, (dacite ?), fine grained feldspar porphyritic rock with siliceous vitreous groundmass comprising 50% of the rock, 5% fine to medium grained biotite and 3% indistinct masses of chlorite in a fime matric, 1-2% very fine grained evenly disseminated chalcopyrite throughout rock, trace associated bornite, copper sulphides are associated with fine grained magnetite, rock is weakly potassically altered to 185.0, increasingly pink potassic flooding to contact with megacrystic syenite dyke	188.1	191.1	3.0	15585	0.005	13.1	

		 (@ 185.95 - 186.1m 1.5cm thick ~ 5° to C.A. (enlarging apparent alteration zone) 179.8 - 7mm bornite bronze tetrahedrite vein (hand specimen) one of several veins throughout holes. 190.0 - 191 several 0.5 - 3mm massive chalcopyrite - bornite ankerite veins. 190.7 - 191.5 increasingly coarser grained bornite. Contact intrusive 35° T.C.A. 	191.1	194.2	3.1	5741	.001	4.6	
191.5	199.3	Biotite Porphyroblastic - Gabbro , (basalt), similar to above gabbro except massive feldspar porphyritic 20% in felted green groundmass with biotite porphyroblasts, numerous potassic dykes with later quartz-calcite-chalcopyrite-bornite veins 70-90° to C.A., rock contains trace to 2% very fine to locally medium grained bornite, rock locally epidotized, recrystallized areas of biotite and epidote often with white feldspar (plag?), erratically distributed very fine grained bornite associated with biotite, and chalcopyrite in fractures shears and related calcareous veins ⁻ 65° to CA. 1- 300mm thick, intrusive contact 70° to GA	194.2 197.2	197.2 200.3	3.0 3.1	8164	0.004 .001	6.3	
199.3	199.7	Coarse Grained Biotite Granite Dyke, 50% white plag to 1cm, 25% pink orthoclase,20% 5-10mm biotite aggregate masses, coarsely disseminated magnetite associated with orthoclase, intrusive contact 45° to GA		-					
199.7	205.4	Gabbro, (basalt) as above, felspathic segregations of white with minor pink plag with disseminated coarse biotite magnetite and epidote, no Cu mineralization noted, contact 60° to CA.	200.3 203.3 206.4	203.3 206.4 209.4	3.0 3.1 3.0	139 93 809	.001 .001 .001	0.4 0.4 0.8	
205.4	207.0	Coarse Grained Potassically Altered Quartz Diorite, similar to granodiorite above, (may be recrystallized potassic flooding of basalt ?). Gradational contact to above @ about 207m.							
207.0	209.8	Gabbro, (basalt), biotite porphyroblastic rock with variable 0-20% white plag grading to altered dacite ? @ 209.8m	209.4	212.5	3.1	80	.001	0.5	
209.8	211.0	Green Chloritic Rock, (dacite?) with 75% interstitial quartz, gradational contact to (andesite?)							
211.0	215.7	Medium Green Chloritic Rock, (andesite), with 3-10% biotite porphyroblasts and 25-35% grey plag., possible minor interstitial quartz. 212.5 - 213.7 intrusive textured rock of similar composition (diorite) with ~1% irregularly disseminated bornite, locally 5% over 10cm.	212.4	215.4	3.0	5782	0.004	4.7	
215.7	242.9	Ultramafic, (basalt), as above, trace to 1% very fine grained disseminated bornite, bornite chalcopyrite veins ~ 217m on, increasingly mafic down hole. 222.0 - 0.5 -1% + bornite to 228.5m 233.5 - 235 1-2% irregularly disseminated bornite	215.5 218.5 221.6	218.5 221.6 224.6	3.0 3.1 3.0	2011 1120 10395	0.003 .001 0.004	1.6 1.1 7.4	
		242.9 = last 2cm 5% bornite 242.9 END OF HOLE.	224.6 227.7 230.7 233.8 236.8	227.7 230.7 233.8 236.8 239.9	3.1 3.0 3.1 3.0 3.1	7388 2914 3067 6247 537	0.004 0.002 0.003 0.006 .001	4.7 2.3 2.7 4.4 0.8	
			230.8 239.9	239.9	3.1	3958	0.001	2.8	

DRILL HOLE RECORD

Location: Lorraine - Upper Main	Co-ordinates: UTM NAD 27 347765.0E 6200414N	Hole No: L - 96 - 37	(Page 1 of 5)
Azimuth: -135°		Property: Lorraine	Sampled by: L. Lindinger
Dip: -50°	Length: 233.8m (767 ft)	Elevation: 1836m	Claim #:
Started: Sept 19, 1996	Core Size: BQTW		Section:
Completed: Sept 21, 1996	Dip Tests: 097' -50°	Recovery:	Logged By: L. Lindinger
Purpose: Extend 1% + Cu Mineralization :	found in hole 95-32		

METRES From	5 to	DESCRIPTION	SAMPLES #	(metres) from		length	Cu ppm	Au Oz/ton	Ag ppm	Other ppm	Recov %
0	1.2	Casing no recovery		1.2	5.1	3.7	3142	0.001	2		
1.2	5.10	Mottled Pink & Grey Syenite, Fine to medium grained 40% feldspar 20-30% plag 30-35% biotite as secondary replacement. Minor chlorite as rims around biotite and epidote in fractures. Rock has been intruded by pink kspar ppy leuco syenite dykes - 0.5 - 2cm thick. 0-30° to C.A. Cu mineralization Tr to locally 2% Cu oxides & sulphides associated with dyking and in fractures. Mal, Az & chalcocite common in fractures. Moderate magnetic intrusive contact 45° to C.A.									
5.10	5.6	Black & Pink Biotite - Kspar Porphyry Dyke, mottled appearance 50% biotite as 4-7mm clots surrounding embayed anhedral kspar. Kspar 20-40% - 15-25% anhedral intrusive plag. Locally semi-massive epidote esp from 5.3-5.6m,non magnetic, trace cpy & mal dissem, intrusive contact ~ 45°T.C.A.		5.2	8.2	3.0	1455	.001	0.8		
5.6	6.3	Pink Coarse Grained Kspar Porphyry Dyke, local aggregates of biotite psvedomorphs after hornblende @ 5.60 & 6.1m, trace Cu min, intrusive contact @ 6.3m ~ 50°T.C.A. indistinct.			1						
6.3	39.1	Pink & Grey Syenite , as above locally bleached and altered by leuco syenite dykelets, and flood zones unit contains finely disseminated, and flood zones unit contains finely disseminated chalcopyrite Tr - 1% Cu $^{\circ}$ 0.4% and Tr 0.5% Cu 0.2% bornite mineralization + additional 0.25% Cu sulphosales as malacite & chalcocite in fractures, 7.1m - large magnetite aggregate @ biotite & epidote in Kspar flood zone.		8.2 11.3 14.3 17.4	11.3 14.3 17.4 20.4	3.1 3.0 3.1 3.0	4440 4451 3097 3092	0.003 0.003 0.002 0.004	2.3 2.9 1.9 2.4		
		12.9 - 16.5 random plag pophyroblasts rounded @ indistinct boundaries 14.0-16.0		20.4 23.5	23.5 26.5	3.1 3.0	2141 2629	0.002 0.003	1.3 1.5		

		 moderate potassic alteration increasing down hole, Cu min coming increasingly dominant in fractures ~ 0.40° to C.A. and localised @ rebut biotite in less altered zones. 16.0 strong kspar flooding decreasing Cu min. Style as above. Biotite increasingly segregated irregular entrained aggregates. 25.5 - 28.0 plag altered to clays and silicified zones @ FG sericite plag chlorite up to 5% coarse cpy @ magnetite xcut by pink kspar dyklets ~ 45° to C.A. 28.0 - 39.1 pink leucocratic kspar dyke swarm (holofelsic syenite dyke?) 	26.5 29.6 32.6 35.7	29.6 32.6 35.7 38.7	3.1 3.0 3.1 3.0	5641 8875 9859 4917	0.006 0.012 0.011 0.005	3.6 5.9 5.6 3.4		
39.1	47.2	Pink Massive Crowded Fspar Porphyry Syenite, Fine to medium grained with locally 10% anhedral biotite and chloritized biotite aggregates, localised zones and smaller xenoliths of variably and partially digested grey & pink syenite with coarse aggregates of chloritized hornblende/biotite + magnetite, trace disseminated cpy and 0.5% Cu min in malachite - chalcocite coated fractures, intrusive contact ~ 15° to C.A.	 38.7 41.8 44.8	41.8 44.8 47.9	3.1 3.0 3.1	5174 1542 3181	0.009 0.002 0.005	3.7 1.1 2.4		
47.2	54.92	Pink Leucocratic Megacrystic Syenite , local medium to coarse grained magnetite associated with chloritized mafic minerals, localised late stage bull quartz veins 10-20° to C.A. with partially resorbed fspars hematite associated with quartz, Intrusive contact $\sim 5^{\circ}$ to C.A.	 47.9 50.9	50.9 53.9	3.1 3.0	47 48	.001 .001	0.5		
54.9	70.4	Diorite - Red and Green , potassic altered diorite called syenite as above 4-7 x 2- 4mm subhedral kspar porphyroblasts in a generally clay altered matrix, unit contains highly variable and partially resorbed earlier foliated phases, trace cumin - fine dissem and on fractures, unit has coarse aggregate to semi massive up to 30cm thick magnetite - chloritized mafics accumulations which are cut by syenitic stock work, dykelets and late calcite quartz veins especially from 54.9 - 59.0m.	54.0 57.0 60.0	57.0 60.0 61.1	3.1 3.0 3.1	931 3654 6763	0.002 0.002 0.006	0.8 2.6 4.6		
		 59.0 - 59.6 decreasing potassic alteration. 59.6 - 62.3 foliated biotite fspar ppy diorite gneiss breccia fol 35-45° to C.A. Trace to 2% F.G. bornite associated with white plag (albite?) Dykelets and flooding. Sulphides associated @ mafics, breccia textures are primary - heterolithic rounded fragments, granodiorite stockwork and related syn and post deformational breccia are present. 62.3 - 63.8 moderate pink potassic alteration 1-3% bornite finely disseminated as 05-2mm fracture coatings, minor cpy, potassically altered diorite contd. 63.8 - 68.4 weak to moderate kspar alteration. Flooding and stockwork dyking. Biotization locally strong @ later epidote @ Cu sulphide mineralization bornite. Local later holofelsic granite? stockwork. 68.4 strong kspar alt associated @ crowded fspar porphyry dyke from 68.4 - 69.1m 45° to C.A. Cu min assoc @ potassic dyking (kspar biotite ppy) intrusive contact ⁻30° to C.A. 69.6 decreasing Cu min. 	63.1 66.1 69.2	66.1 69.2 72.2	3.0 3.1 3.0	5970 2978 742	0.007 0.003 .001	4.1 1.9 0.5		
70.4	73.3	Pale Brown Crowded Fspar Porphyry Dyke - Leucocratic Potassic Altered Diorite, chilled contact 70.4 - 71.0 disseminated hematite throughout, intrusive contact 73.3m - 35° to C.A.	72.2	75.3	3.1	97	.001			
73.3	77.0	Pink Megacrystic Pegmatitic Syenite Dyke, kspar 65% plag 30% mafics 5% -	75.3	78.3	3.1	827	0.001	0.8	1	

ł

		mostly magnetite. Irregular intrusive contact 76.1 - 78.60 - 10° to C.A.								
77.0	117.5	Diorite, as above, locally diorite fine grained foliated rock (appears to be a meta	78.3	81.4	3.1	3964	0.004	2.7		
//.0	117.5	andesite?) Intruded to medium grained syenite dykes up to 30cm thick stockworks,	81.4	84.4	3.0	2935	0.002	1.7		
		andesne:) initiated to mean and systeme alocas ap to soon and hospita with	84.4	87.5	3.1	2935 8957	0.004	4.5		
	1	and pink potassic alteration. 0.5% -2% disseminated chalcopyrite and bornite with	87.5	90.5	3.0	10496	0.006	8.7		1
		0.5 - 1.5mm malachite - chalcocite coated fractures. Unit is moderately magnetic.	90.5	93.6	3.1	26232	0.024	23.2		1
		92.0 - 95.0 coarse magnetite, chloritized amphibole disseminations @ minor (to 5%)								
		irregularly disseminated chalcopyrite, concentrated in fragments in strong syenite	93.6	96.6	3.0	15392	0.010	9.9		
		stockwork. 25% mag 35% chlorite 5% mag remainder host rock.	96.6	99.7	3.1	16544	0.009	23.8		
		99.0 - 102.8 increasing potassic alteration and synitic dyke stock work swarming to	99.7	102.7	3.0	17353	0.011	19.5	1	
		99.0 - 102.8 increasing potassic anciation and synthet wirk such work swittining to	102.7	105.8	3.1	15697	0.01	15.1	1	
		strong & locally moderate kspar alt, relic host rock @ disseminated Cu min	102.7 105.8	105.8	3.0	17314	0.013	16.5		1
		remainder with intense fracture (calcocite - malachite) min. ~1-3% locally 5%	105.8	108.8	3.0	1/314	0.015	10.5		
		chalcopyrite, intrusive contact 102.8 - 104.7m, syenite dyke with partially resorbed	108.8	111.9	3.1	10193	0.001	6.1		
	1	host rock frags, weak to locally moderate Cu min (disseminated) and intense fracture	108.8	111.9	3.1	10195	0.001	1 0.1		
		mineralization.	111.9	114.9	3.0	16074	0.004	9.5	1	
	1		111.5	114.2	5.0	100/1	0.00	1		
		108.7 - 109.1 - Syenodiorite dyke medium grained gradational contact.			1					
		111.0 - 114.5 strong kspar flooding								
		114.5 - 115.2 malachite fracture zone clay alt.	Į			1	1			
		,intrusive contact 117.5m 45° to C.A.				<u> </u>	<u> </u>			- <u>-</u>
117.5	120.5	Pink Megacrystic Kspar Plag Quartz Dyke, 4% coarsely disseminated magnetite	114.9	118.0	3.1	19345	0.005	8.1		
117.5	120.5	late interstitial biotite, muscovite chalcopyrite (trace) bornite (trace), chalcocite	118.0	121.0	3.0	5513	0.004	3.5	1	
			121.0	124.1	3.1	12319	0.011	8		
	_	fracture contact & late chlorite veins, intrusive contact 120.5m.	124.1	127.1	3.0	10533	0.018	6.9	-	
120.5	154.2	Grey Green Fine Grained Chlorite Schist (meta andesite?), with numerous pink								
120.0	101.2	syenite stockwork dykes and flood zones, cumin as veins and finely disseminated	127.1	130.2	3.1	11781	0.007	7.8	1	
		sychile stockwork dykes and noor zones, cumin as tons due intery dispersion								
		chalcopyrite to 2%, trace bornite decreasing malachite, late stage magnetite					0.000	20.9		Į
		chloritised amphibole granodioritic dykes common in late brittle fracture zones.	130.2	133.2	3.0	23799	0.022	8.1		1
		125.7 - 127.2 intense kspar flooding decreasing Cu mineralization.	133.2	136.3	3.1	11987	0.003	10.9		
		128.5 - 128.8 kspar pegmatite dyke 30 [∞] to C.A. cut by late quartz clay calcite by	136.3	139.3	3.0	15950 23939	0.011	20.2		
		vein with remobilised Cu mineralization, cpy-mal-az-chalcocite.	139.3	142.3 148.4	3.0	23939	0.040	15.1	1	
		129.0 - 150.5 Cu (0.5 - 3% over 0.3m [*] Aug 1.0%) min dominantly chalcopyrite	142.3	148.4	3.1	20030	0.037	13.1	Í	
						1				
		finely disseminated @ magnetite near kspar alteration and syenite dyking.				1				
		136.8 - 137.1 Cpy with late quartz calcite veinlets various orientations.	148.4	151.4	3.0	8426	0.011	5.8		
		140.5 - 142.5 - 3% Cpy 0.5% bornite.	140.4	151.4	3.0		-	1.0		1
		145.4 - 146.2 syenodiorite dyke 40 [™] to C.A. ~ 3-5% Cpy at contacts.								
		146.2 - 147 - 3% cpy locally 2% bornite in less intense altered zones.								
									1	
		148.0 - 149.1 late ankerite @ quartz breccia frag veinlets ~ 20° to C.A. veins to 1cm								
		magnetite destruction bleaches rock.				1				
		Intrusive contact 154.2 - 55° to C.A. magnetite epidote rich contact.		<u> </u>		+			<u> </u>	
154.2	165.3	Grey Feldspar Porphyry Syenodiorite Dyke, rare euhedral plag porphyroblasts in a	154.5	157.6	3.1	268	.001	0.3		4
1.07.6	100.0	medium grained anhedral plag (kspar?) porphyry. 5% anhedral quartz in chlorite	157.6	160.6	3.0	273	.001	0.3	1	
	1									1
		biotite felspathic sucrosic matrix, pink potassic dyking (syenite) and flooding as		1	1	1				
		above.	160.6	163.7	3.1	626	0.01	0.4		1
	1	Locally well developed heterolithic intrusion breccia textures @ 17m angular cherty,	163.7	166.7	3.0	829	.001	0.4	1	1

		to dioritic frags (160.0 - 161.0) and more dominant monolithic breccias evident as indistinct zones of differing grain sizes and phenocryst composition. Very weak Cu min slight increase from 162.5 - 165.3 intrusive contact - 165.3 50° to C.A.								
165.3	172.2	Grey Fine Grained Foliate, (meta andesite ?), as above and grey feldspar porphyry syenodiorite dyke swarm, (meta andesite ?), contains up to 2% chalcopyrite 0.5% bornite + 5% magnetite Various intrusive phases contain little to no Cu mineralization. Irregular brecciated intrusive contact $^{-}$ 65° to C.A. 172.2	166.7 169.8	169.8 172.8	3.1 3.0	3039 2652	0.003 0.003	2.1		
172.2	194.1	As Above Syenite Dyking & Kspar Flooding, late chlorite and epidote stockwork with biotite as retrograde alt, magnetite common. 172.2 weak Cu min Cpy finely diss 189.4 - 189.7 50% semi massive magnetite 194.0 - 194.3 strong magnetite @ 2% diss py 189.7 - 193.0 magnetite veining common contact 194.1 ~ 45° to C.A.	172.8 175.9 178.9 182.0 185.0 188.1	175.9 178.9 182.0 185.0 188.1 191.1	3.1 3.0 3.1 3.0 3.1 3.0	1113 1237 1908 1992 1142 3032	.001 0.002 0.003 0.005 0.002 0.009	0.3 0.8 1.2 1.4 0.8 1.8		
194.1	194.7	Biotite Feldspar Porphyoblastic Chloritised Hornblende Pyroxenite, dark green & black, secondary biotite pseudomorphing hornblende. Intrusive contact 194.7 35° to C.A.	191.1 194.2	194.2 197.2	3.1 3.0	2454 646	0.002 0.002	1.3 0.5		
1 94.7	196.3	Grey Leucocratic Granodiorite Dyke, 85% fine to medium grained fspars (white) and 5% biotite in a siliceous groundmass, no Cu min. Intrusive contact 30° to C.A. 196.3.								
196.3		Diorite (Syenodiorite?) Grey , medium grained plagioclase, chloritized hornblende with minor biotite foliated diorite. Unit is brecciated and intruded by pink leucosyenitic stockwork dykes and flood zones. Numerous leucogranodiorite dykes precede potassic phase. Late biotite epidote veining and alteration with variable amount of magnetite 5%, chalcopyrite + 1% - 5% epidote 2% biotite. Irregular intrusive contact 201.7 ~ 10° to C.A.	197.2 200.3	200.3 203.3	3.1 3.0	856 3003	.001 0.009	0.8		
201.7	206.3	Dark Green Biotite Porphoryblasic Pyroxenite, as above only trace to 10% plag. Where intruded by felspathic breccia dykes is enriched in Cu sulphides to 5% + over 1 metre and 5% coarse blocky magnetite. Malachite on some oxidized surfaces. 203.9 - 206.3 albitic? breccia dyke 0-5% to C.A. 3cm thick with locally coarsely disseminated and stockwork chalcopyrite ~ 10% over 10cm, associated blue copper carbonate mineral as late fillings in dyke, strong magnetite min in adjacent flow banding of dyke up hole, hematite in dyke.	203.3	206.4	3.1	2576	0.003	1	-	
206.3	207.3	Diorite (Syenodiorite) As Above , intruded and seared by felspathic breccia dyke described above. Some fabric textures suggest diorite is the source of the bx dyke. Intrusive contact ~ 5° to C.A. over 206.9 - 207.3	206.4	209.4	3.0	1552	0.002	1.1		
207.3	220.6	Biotite Porphroblastic Pyroxenite As Above, crosscut by erratic blue carbonate	209.4 212.4	212.4 215.5	3.0 3.1	2213 4508	0.003 0.009	1.6 2.4		

		felspathic veins 0-40° to C.A. Also random biotite fspar phanaritic granitic dykes ~ 20-25° to C.A. 3-12cm thick. Trace 2% fine diss and fracture (later) 1% bornite in px adjacent to dyking, associated with disseminated magnetite. Dyke mag cpy bornite carbonates. 216.5 cpy min and blue carb shear. 217.0 - 220.0 - 0.5% diss cpy, 0.2% bornite. Intrusive contact 220.6 - 45° to C.A. brecciated.	215.5 218.5	218.5	3.0 3.1	2169 2490	0.003	1.6	
220.6	233.8	Meta Diorite? (andesite?) as above, moderate to strong potassic altered & moderate syenite stockwork dyking, retrograde chlorite epidote flooding and veining common followed at white calcite quartz fracture fillings tracts of Cu min to 222m.	221.6 224.7 227.7	224.7 227.7 230.8	3.1 3.0 3.1	652 776 962	.001 0.004 0.003	0.5 0.7 0.6	
		Magnetite veining common to 223m. 223m increasing pink potassic flooding decreasing chlorite epidote, magnetite and Cu min increasing hematite pyrite min rock is more brittle dominant shear dir ⁻ 25° to C.A., late quartz carb (ankerite) Bx veins - well oxidised. Relict bx textures locally common. 230.0 - 233.8 retrograde chlorite epidote flooding after kspar flooding common coarsely disseminated magnetite ⁻ 5% throughout. 233.8 END OF HOLE	230.8	233.8	3.0	427	0.003	0.5	

LYSANDER GOLD CORPORATION DRILL HOLE RECORD

Location: Ekland Zone	Coordinates; 20407E 18923N	Hole No: L-96-38	(Page 1 of 3)
Azimuth: -120°		Property: Lorraine	Sampled by: L. Lindinger
Dip: -45°	Length: 106.7m	Elevation: 1700m	Claim #: GK4
Started: Sept , 1996	Core Size: BOTW		Section:
Completed: Sept , 1996	Dip Tests: 106.7m	Date Logged: Sept 24-25, 1996	Logged By: L. Lindinger
Purpose: To test for Cu mineralization			

METRES	s to	DESCRIPTION	SAMPLI #	ES (metres) from		ength	Cu ppm	Au Oz/ton	Ag ppm	Other ppm	Recov %
0	3.1	Casing.no recovery.									
3.1	8.0	Green Foliated Meta Diorite (andesite ?), generally strong pink potassic flooding, 3.1 - 7.7 well oxidized and sheared rock, large fault zone - slickenslides average 45° to C.A. less weakly oxidized sections have malachite filled fractures ~ 0-70° to C.A. 5.0-5.3.0 chalcedonic quartz breccia vein swarm. Magnetite fragments and veining common. 7.5-8.0 80% core loss - foliation stops		3.1 6.4	6.4 10.2	3.3 3.8	529 644	.001 .001	<.3 <.3		80 75

8.0	14.0	Diorite, very strong pink potassic alteration, brittle sheared rock, 60% core loss, later ankeritic alt & shearing 50° to C.A.	10.2 13.4		3.2	261 143	.001 .001	<.3 <.3		30 60
	1	14.9 core recovery improved	14.6	17.1	2.5	123	.001	<.3		
		15.9-16.2 potassically altered and argillically altered megacrystic syenite dyke	17.1	19.8	2.7	138	.001	<.3	} /	
		14.0-42.9 melanocratic diorite black & white variably medium grained mafic diorite	19.8	23.8	4.0	282	.001	<.3		
		40-55% hornblende? 45-60% plagioclase, approaches gabbro in composition. Unit is								
		variably potassically altered.	23.8	26.7 29.5	2.9	185 1283	0.009	<.3		
		22.0-24.0 moderate kspar flooding. Negligible visible Cu mineralization.	20.7	29.5	2.8	1283	0.003	0.8	1	
		24.0-27.6 very strong syenite stockwork with green chloritized wallrock remnants	29.5	32.9	3.4	1685	0.01	1.4		
		1-6cm angular to subrounded late carbonate I quartz hematite veins.	i						1	
		27.6 moderate to weak syenite stock dyking 2 stages 70° to C.A., 45° to C.A., 45°	32.9	36.0	3.1	2249	0.01	1.5		
		from stage 1. Chlorite developed with stage 1 (stage 2 - kspar megacrystic phase)	36.0	39.0	3.0	2501	0.003	2.1		
		27.6-29.5 shear zone ~ 30° to C.A. healed by calcite flooding and veining.	39.0		3.9	969	.001	0.8		
		29.5-31.0 weak cu min very fine grained chalcopyrite with bornite associated with						0.0		
		magnetite, epidote and quartz calcite stockwork veining.	Ì				i i		I I	
	ļ	31.0-36.0 moderate cu min ~ 1% very finely disseminated chalcopyrite (locally 5%)		j j	
		over 10cm) lots of free calcite in rock.				1				
		36.0-42.9 rock fabric destroyed chloritization very weak cu min 5% magnetite								
		42.1 fracturing @ blue copper carbonate veining intrusive contact 42.9 30° to C.A.								
42.9	43.4	Pink Kspar Megacrystic Syenite Dyke, 5% coarse magnetite. Rock is broker and	42.9	45.0	2.1	101	.001	<.3	ľ	
·		oxidized. Intrusive contact 43.4 irregular ~ 20° to C.A.						_ _	ļļ	
43.4	44.3	Leucocratic White Fine Grained Quartzofeldspathic Granite Dyke, 1% fine grained disseminated pyrite < 0.5 mm throughout, no Cu min, foliated felsite at lower contact, intrusive faulted contact 25° to C.A.	1		-					
44.3	45.0	Bink Kenny Magagwertia Supplie Date on shows introduce sectors them 20% to		-1		1				· ·
44.5		Pink Kspar Megacrystic Syenite Dyke, as above, intrusive contact sharp 30° to C.A.								<u> </u>
45.0	47.0	Diorite, as above, moderately potasically altered and stockwork strong chlorite	45.0	48.0	3.0	122	.001	<.3		
	1	epidote retrograde alteration with finely disseminated pyrite cpy with hematite,								
_		numerous fractures with oxidation. Intrusive contact 47.0 25° to C.A.								
47.0	47.8	Loucogratia White Fine Crained Falsis Dubran shares the state	ļ							
47.0	47.8	Leucocratic White Fine Grained Felsic Dyke, as above, sheared intrusive contact ~ 35° to C.A.	ĺ							
_		<u>35° 10 C.A.</u>				+			╂───╉	
47.8	50.2	Diorite, as above, kspar stockwork and moderate flooding with strong chlorite	48.0	50.2	2.2	424	.001	0.3	1	
		alteration + or - clay also aplite stockwork and quartz veining from 47.8-48.1, no Cu				1	1			
	<u> </u>	min noted.	1		1					
50.2	57.2		50.2			1.00			1 1	
50.2	57.2	Medium to Coarse Grained Leucocranitic Granite Dyke, as above, coarser variant	50.2	53.7 57.2	3.5	28	001 .001	<.3 <.3	1	
		of felsite, the only matic mineral coarsely disseminated clots associated with late	55.7	57.2	1.0	1 "		`		
		stage quartz segregations, intrusive contact ~ 35° sharp				ł				

.

57.2	63.4	 Diorite, as above localised moderate syenite stockwork dyking and kspar flooding. Chlorite with lesser epidote with hematite mineralization, leucocratic contact ~ 30cm, disseminated magnetite. No Cu min noted. 61.0-61.3 semi massive magnetite 60.0-63.3 5% irregularly spaced magnetite veins in (smeared) rock ~ 75° to C.A. Distal from syenite dykes hematite more distal. Late Quartz- carb veining common through out. 10cm smeared leucogranite dyke 45° to C.A. @ 63.35 - 63.45 	57.2 60.4		3.2 3.0	223 287	.001 .001	<.3 0.3		
63.4	70.9	Gabbro, plagioclase porphyroblastic with chloritized mafic (hornblende), potassic altered, 15% biotite, 65% chloritized groundmass, 10% kspar, 5% plag, 5% magnetite. Xcut by late quartz calcite gash veins ~ 30-60° to C.A. Intrusive contact 25° to C.A.	63.4 66.4		3.0 3.1	10 5	.001 .001	<.3 <.3	-	
70.9	72.3	Megacrystic Syenite Dyke, moderately hybridized with absorbed syenogabbro. Coarsely disseminated hematite throughout no Cu min. Intrusive contact $\sim 10-15^{\circ}$ to C.A.	69.5	72.5	3.0	8	.001	<.3		
72.3	81.8	Fine Grained Holofelsic Leucogranite, as above 72.8-73.3 megacrystic syenite xenolith late quartz stockwork common throughout with calcareous zone containing weak stockwork chalcopyrite. (76.0-77.0) 79.0-80.0 decreasing grain size to felsic. 8.0-81.8 felsitic phase very fine grained to cherty matrix with 1mm plag phenos. Late shears and fractures with malacite and chalcocite staining intrusive contact 81.8 70° to C.A. silicified and quartz bx veined.	72.: 75.: 78.0	78.6	3.1 3.0 3.6	5 92 65	.001 .001 .001	< 3 < 3 < 3 < 3		
81.8	82.2	Megacrystic Syenite Dyke, as above, intrusive contact sharp 35° to C.A.								
82.2	85.7	Biotite Porphyroblastic Pyroxenite, more mafic than gabbroic rock, above 5-10% round plag masses, kspar with later potassic dyking. Strongy magnetic, 15% biotite, 80% green mafic matrix no Cu min 83.1 10 cm kspar megacrystic dyke. 83.4 - 83.7 f grained leucogranite dyke 45° to C.A. 84.5 Q carb shear vein 1cm 7mcm 25° to C.A. 85.7 intrusive contact 40° to C.A.	82.3	2 85.7	3.5	5	.001	<.3		
85.7	86.1	Kspar Megacrystic Syenite, as above, no Cu min, intrusive contact silicious Q jasper 40° to C.A.	85.7	89.2	3.5	11	.001	<.3		
86.1	95.0	Pale Tan Leucogranite, as above, trace Cu min in fracturing, numerous fractures - argillic clay from altered plag, random hematite interstatia numbered felsic zones. Flow banded 70° to C.A. 89-90m Occasional quartz kspar veins and alteration intrusive contact 40° to C.A. sheared silicious @ 95.0	89. 92.		3.5 3.2	31 21	.001 .001	<.3		
95 .0	95.9	Pink Megacrystic Syenite, as above, Plag clay altered. Clay altered intrusive contact sheared 45°								

95.9	106.7	Pyroxenite, as above, random hematite porpyroblasts, megacrystic dykes 97.8-98.1 45° to C.A. 106.1-106.4 50° to C.A. 106.7 END OF HOLE	95.3 99.3 103	.5	99.2 103.1 106.7	3.6 3.5 3.6	10 37 53	.001 .001 .001	<.3 <.3 <.3			Anna an Anna an Anna an Anna an Anna
------	-------	---	---------------------	----	------------------------	-------------------	----------------	----------------------	-------------------	--	--	--------------------------------------

) , 1

Location: Lorraine - Ekland Zone	Coordinates: 20408E 18925N	Hole No: L-96-39	(Page 1 of 2)
Azimuth: -030°		Property: Lorraine	Sampled by: L. Lindinger
Dip: -45°	Length: 350' 106.7m	Elevation: \$1700m	Claim #: GK 4
Started: Sept 22, 1996	Core Size: BQTW	<u></u>	Section:
Completed: Sept 23, 1996	Dip Tests: 347'	Recovery:	Logged By: L. Lindinger
Purpose: To test the Ekland zone for coppe	r mineralization at depth		

METRE From	S to	DESCRIPTION	SAMPLE #	S (metres) from	to l	ength	பே நறங	Au Oz/ton	Ag ppm	Other. ppm、	Recov %
0	3.0	Casing, no recovery.									
3.0	12.9	Dark Green Foliated Diorite, (meta andesite?), Xcut by numerous oxidized malachite - chalcocite bearing fractures, average 2% chalcopyrite, malachite, azurite and chalcocite, possibly lesser amounts of bornite 3.0 - 10.0. 10.0-12.9 decreasing Cu min ?, highly oxidized and fractured, strong chlorite brecciated contact, QBX veining 35° to C.A.		3.0 6.0 8.5 11.3	6.0 8.5 11.3 14.6	3.0 2.5 2.8 3.3	21760 30473 10443 396	0.048 0.028 0.005 .001	17.2 35.4 4.6 0.4		90 95 25 65
12.9	68.0	Diorite, medium grained, mottled hornblende plagioclase rock, 55-70% mafic porphyoblasts of chloritized hornblende and 30-75% plag interstitial to hornblende rock. Xcut by numerous syenite stockw dykes and minor flooding. Late quartz		14.6 17.6 20.7	17.6 20.7 23.7	3.0 3.1 3.0	912 206 430	0.001 .001 .001	0.4 <.3 0.4		95 95 30
		 carbonate fracture veins, local vuggy chlorite-epidote + or- cpy with possible very wk copper mineralization. 22.2 - 23.1 mottled green (meta basalt ?), weak potassic alteration. 23.1 - 26.0 Strong to moderate pink to rod potassic stockwork syenite and flooding 25.5 - 46.0 Moderate chlorite + or - epidote + or - clay alteration. Hematitic fracture veins, calcite coatings common. 44.0 - 48.5 Strong chlorite alt, crumbly rock. 49.5 - Kspar flooding strong to 50.8 with retrograde potassic alt. 53.0 - 58.0 med grey feldspar ppy diorite indistinct plag 25% of rock in intermediate matrix. 58.0 - 68.0 increasing pink potassic alteration with moderate syenite stock veining. Gradational contact ⁻ 40° to C.A. 		23.8 26.8 29.9 32.9 36.0 39.0 42.1 45.1 45.1 48.2 51.2 54.3 57.3 60.4 63.4	26.8 29.9 32.9 36.0 39.0 42.1 45.1 48.2 51.2 54.3 57.3 60.4 63.4 66.4	3.0 3.1 3.0 3.0 3.1 3.0 3.0 3.0 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	280 307 606 1590 653 871 802 555 249 751 370 209 526 943 201	.001 0.002 .001 0.011 .001 0.001 .001 .0	<.3 <.3 0.6 1.2 0.4 0.6 0.5 0.5 <.3 0.7 0.3 <.3 0.5 0.9 0.2		
68.0	68.7	Megacrystic Pink Syenite Dyke, 80% Kspar, 15% plag, 5% coarsely disseminated		66.4 69.5	69.5 72.5	3.0	<u>391</u> 43	.001	0.3 <.3		

68.0	68.7	Megacrystic Pink Syenite Dyke, 80% Kspar, 15% plag, 5% coarsely disseminated interstitial magnetite. 68.7 - 68.9 sheared intrusive contact chlorite fault gouge 20-30° to C.A.	69.5	72.5	3.0	43	<.001	<.3		
68.7	75.0	Biotite Porphyorblastic Gabbro, melanocratic, hornblende content 70% with 20% biotite porphroblasts, 5% magnetite and 5-10% 0-12 mm irregular to secondary spherical Kspar porphyro blasts, biotite 3-9 mm, phenocrystic rock also contains random xenoliths of diorite, leucogranite and syenite. Rock is generally massive with weakly developed foliation 80° to C.A., random syenite dykes 0.5 - 10cm thick & 10% hornblende interstitial. Gradational contact over 2m.	72.5	75.6	3.1	54	(< .001	<.3		
75.0	86.0	Biotite Porphyoblastic Pyroxenite , negligible feldspar, 25% coarse biotite porphyoblasts in a dark green chloritized mafic groundmass. Random angular to rounded angular clast chert breccia type appearing xenoliths. Myrmekitic texture ? Xcut by random late bluish carbonate veins 0-20° to C.A., followed by white carb veins 70-90° to C.A. Rock has 2 to 4% 1-3mm rounded hematite phenocrysts. No Cu min noted Gradational; contact.	75.6 78.6 81.7 84.7	78.6 81.7 84.7 87.8	3.0 3.1 3.0 3.1	50 45 51 74	<.001 <.001 <.001 <.001	<.3 <.3 <.3 <.3		
86.5	106.7	Gabbro, as above except with small 5-10% 2-7mm rounded Kspar porphyroblasts and 3% hematite porphyroblasts. Locally ultramafic - no feldspar. Fspars increasing in size down hole. No Cu min noted.	87.8 90.8 93.9 96.9 100.0 103.0	90.8 93.9 96.9 100.0 103.0 106.7	3.0 3.1 3.0 3.1 3.0 3.7	48 54 43 45 104 61	<.001 <.001 <.001 <.001 <.001 <.001 <.001	<.3 <.3 <.3 <.3 <.3 <.3 <.3	, , ,	

LYSANDER GOLD CORPORATION DRILL HOLE RECORD

Location: Ekland Zone	Co-ordinates: 20459E 19906N	Hole No: L-96-40	(Page 1 of 3)
Azimuth: -180°		Property: Lorraine	Sampled by: L. Lindinger
Dip: -45°	Length: 367 ft 110.0m	Elevation: 1750m	Claim #: G.K.B
Started: Sept 23, 1996	Core Size: BQTW		Section:
Completed: Sept 24, 1996	Dip Tests:	Recovery:	Logged By: L. Lindinger
Purpose: To test the Ekland zone from the	he NW towards the south		

METRE from	S to	DESCRIPTION	SAMPLI #	S (metres) from		kenyth	Cu ppm	Au Oz/ion	Ag ppm	Other ppm	Recov %
0	3.7	Casing no recovery									
3.7	52.9	Foliated Diorite, (ameta andesite ?) or diorite breccia, 25-30% 2-4mm subhedral plagioclase in a dark green chlorite altered hornblende groundmass, foliation 65-70° to C.A. to semi massive. Moderate to locally strong potassic stockwork dyking 65%		3.7 5.2	5.2 8.2	1.5 3.0	402 261	0.005 0.016	0.5 <.3		95 95
		to C.A and flood zones. Late white quartz calcite fracture veins. Moderate to strong weathering along fracture 1-3mm thick vuggy Fe oxides and quartz. Faint breccia		8.2	11.3	3.1	695	0.009	0.8		95
		textures 3.7, - 15.1. 3.7 hematile in fracturing no Cu min .		11.3	14.3	3.0	3194	0.030	3.3		90
		10.4 quartz ankerite vein in ankerite shear zone. 80-85% to C.A. healed any alt		14.3	17.4	3.1	1620	0.011	1.3		
		 11.3 - 15.1 - 0.5-1.0% finely disseminated bornite min & occasional very broken malachite staining, core well oxidized. 12.0-13.5 sheared brecciated rock ~ 45° to C.A Highly oxidized carbonate clay 		17.4 20.4	20.4 23.5	3.0	5345 1123	0.027 0.009	3.8 0.8		
		oxidation zone. 15.1-22.0 chlorite carbonate alteration zone. Plag to carbonate, mafic to chlorite		23.5	26.5	3.0	703	0.004	0.7		ļ
		magnetite and hematite and 1-2% widely spaced 1-7mm aggregates of bornite.	l.	26.5 29.6	29.6	3.1 3.0	828 998	<.001	0.7		
		Primary heterolithic breccia textures evident. Random banded cherty casts, mostly intrusive fragments secondary Kspar not significantly altered.		32.6	32.6 35.7	3.0	689	0.004	1 0.7		
		21.0-22.5 rock comprised coarsely segregated plag and hornblende aggregates. Grade to breccia textures at either end.		35.7	38.7	3.0	1326	0.002	1.3		
		19.5-19.9 felsitic leulcograndodiorite dyke. 5% disseminated hematite 35° to C.A. Fault zone intrusive centred 22.5, plagioclase hornblende porphyry andesite or diorite		38.7 41.8	41.8 44.8	3.1 3.0	3419 1994	0.003 0.004	3.1 1.9		
		similar to 3.7-5.1, 30% magnetite, 20% hornblende in intermediate felspathic matrix. 26.0-26.25 dark blue plagioclase pegmatite dyke. Hornblende porphyroblasts.		44.8 47.9	47.9 50.9	3.1 3.0	4779 1846	0.012 0.004	4.3 1.5		
		34.8-35.8 increased potassic alternation associated syenite dyke 35.2-35.5 35° to C.A.		50.9	53.0	3.1	1875	0.011	1.7		

		 35.6-52.9 moderate to strong potassic alteration biotite Kspar chlorite with very finely disseminated bornite (malachite stain) 37.4 ankerite shear zone 30° to C.A. 37.2-40.1 chlorite clay alteration rock altered to green sandy material ??? quartz carbonate & malachite strong breccia veins 0-30° to C.A. 44.2-45.0 quartz ankerite hematite veining! 48.0-52.9 strong potassic alteration and chlorite epidote alteration with bornite mineralization. 50.6-50.8, 52.1-52.4 Kspar megacrystic syenite intrusive contact irregular ~ 25° to C.A. 								
52.9	53.0	Kspar Megacrystic Syenite Dyke								
53.0	54.9	Pale Grey Leucocratic Granite Dyke, very fine grained locally flow banded felsite 70° to C.A., 1-3% disseminated hematite, intrusive contact.	5	3.0	54.9	1.9	126	<.001	<.3	
54.9	77.9	Diorite , as above, moderate to strong potassic alteration with moderate epidote alteration, very wk copper mineralization. Very heterogenous unit (andesite ?) to coarse hornblende plagioclase phanerites, potassic alt decreasing downhole, late quartz ankerite carbonate veining throughout \sim 70° to C.A. 59.7 - 61.0 oxidized ankeritic rock with multi episode quartz-ankerite veining. 64.2-68.3 oxidized ankeritic rock with chalcedonic quartz breccia veining. 72.9-75.5 trace Cu mineralization	5 6 6 6 7	4.9 7.0 3.1 6.1 9.2 2.2 5.3	57.0 60.0 63.1 66.1 69.2 72.2 75.3 78.3	2.1 3.0 3.0 3.1 3.0 3.1 3.0 3.1 3.0	479 262 315 530 666 1030 445	<.001 <.001 0.002 <.001 0.001 0.002 0.006 0.002	0.4 0.3 0.5 <.3 0.4 0.7 0.9 0.5	70
77.9	89.4	 Gabbro, fine grained hornblende Kspar phenocrysts are 20% (biotized) hornblende and70% pink Kspar in a green chloritic groundmass. Locally Kspar megacrystic porphyroblasts, unit may be gradational from above unit intruded by many syendiorite dykes with potassic alteration haloes. 79.6-80.1 fault zone gauge highly oxidized rock, 50% core loss. 80.1-81.3 felsite dyke 50[∞] to C.A. 81.3-83.2 intense potassic alteration. 84.2-84.7 leucogranite flow banded felsite dyke, 2% finely diss hematite. 20° to C.A. 86.8 strong potassic alteration, rock has a Kspar biotite phaneritic appearance, intrusive contact 38° to C.A. 	8	8.3 41.4 44.4 47.5	81.4 84.4 87.5 90.5	3.1 3.0 3.1 3.0	1025 679 42 34	0.004	1.2 0.6 <.3 <.3	
89.4	90.3	Kspar Megacrystic Syenite Dyke					<u> </u>			
90.3	91.9	Leucocratic Gey Fine Grained Granite Felsitic Dyke, flow banded, with late chalcedonic banded veining ~ 20° to C.A., coarsely and finely disseminated hematite throughout.	9		93.6	3.1	23	<.001	0.3	
91.9	93.5	Kspar Megacrystic Syenite Dyke, tourmaline veining @ 93.4m., intrusive contact 45° to C.A.								
93.5	105.9	Diorite, plagioclase porphyritic diorite ~ 25% plag in an intermediate matrix. Strong to locally intense synite stockwork and flooding, followed by biotite chlorite stock		93.6 96.6	96.6 99.7	3.0 3.1	214 177	< .001	0.3 0.3	

ĺ

		 work veining with possible disseminated bornite. 94.2-94.6 pink & white Kspar flood zone with relict ??plagioclase alteration to calcareous clay. Trace remnant biotite. 103.2-105.0 pervasively silicified rock finely disseminated chlorite gives rock a felted green appearance. 105.0-105.8 faltered sheared oxidized contact late ankerite veining. Intrusive contact 20° to C.A. brecciated. 	99.7 102.7	102.7 105.8	3.0 3.1	186 144	<.001 <.001	0.3	
105.9	110.0	 Pale Grey Coarse Grained Leuco Granite Dyke, 10% late interstitial coarse grained vitreous quartz, 5% late interstitial hematite, post dyke shears contain talc and clay??, no Cu mineralization. 110.0 END OF HOLE 	105.8 108.8	108.8 110.0	3.0 1.2	11 40	<.001 <.001	<.3 <.3	

Location: Ekland Zone	Coordinates: 20475E 18725N	Hole No: L-96-41	(Page 1 of 2)
Azimuth: -360°		Property: Lorraine	Sampled by: L. Lindinger
Dip: -45°	Length: 350ft (106.7m)	Elevation: 1702m	Claim #:
Started: Sept 24, 1996	Core Size: BQTW		Section:
Completed: Sept 25, 1996	Dip Tests:	Recovery:	Logged By: L. Lindinger
Purpose: To test the South West extensi	on of the Ekland zone		

METRE From	S to	DESCRIPTION	SAMPLE #	S (metres) from	to	length	Cu ppm	Au Oz/ton	Ag ppm	Other ppm	Recov %
0	1.5	Casing, no recovery					ļ		<u> </u>		
1.5	36.9	Breccia dark Grey-Green, (meta andesite ?), breccia gives impression of rounded fragments of type fine grained locally aphanatic units, foliation ~65-70° to C.A., tock is pervasively potassically altered with fine felted biotite, and syenite stockworked with pink Kspar flooding, finely disseminated bornite in black fractures, fractures are numerous and many orientations and invariably malachite coated, strongly magnetic, intrusive contact fractured 50° to C.A.		1.5 4.8 8.2 11.3 14.6 17.4 20.6 23.5 26.8 29.8 32.9 35.7	4.8 8.2 11.3 14.6 17.4 20.6 23.6 26.8 29.8 32.9 35.7 38.7	3.3 3.4 3.1 3.3 2.8 3.2 2.9 3.1 3.0 3.1 2.8 3.0	2906 3170 4471 2375 2882 2973 1591 1847 2800 1002 647 727	.001 .001 .001 .001 .001 .001 .001 .001	1.6 1.8 3.1 1 1.8 2 0.9 1.8 2.1 0.8 0.6 1.4		
36.9	37.3	Pink Megacrystic Syenite Dyke, 80% orthoclase as euhedral grains, 10-15% anhedral plagioclase, remainder coarsely disseminated anhedral magnetite quartz and occasional large aggregates of tourmaline.									
37.3	37.6	 Breccia, host lithology may have been similar, rock has been intensely potassically altered with a pink and late intense argillic alteration of plagioclase and mafic minerals. 37.3-37.6 silicified cataclasite 65° to C.A. with potassic altered silicified rock rebrecciated and sheared chloritic biotic stockwork dykes followed by late white calcite stockworking. 37.1 potassic silicia plagioclase flood zone with numerous megacrystic syenite dykes and stockwork plag gone to calcite, rock was a coarse mottled texture & inter joined with interstitial spherical plagiclase with interstitial dark pink - orange orthoclase, 		38.7 41.8 44.8 47.9 50.9 54.0 57.0 60.0	41.8 44.8 47.9 50.9 54.0 57.0 60.0 63.1	3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0	374 47 44 40 67 62 50 45	.001 .001 .001 .001 0.002 .001 .001	0.5 <.3 0.3 <.3 <.3 <.3 <.3		

		gradational contact over 10cm with later faulting, oxidized.		ļ	<u> </u>	_		_		
37.6	97.0	Biotite Porphyroblastic Pyroxenite (Oikocrystic), melanocratic black biotite porphyroblasts in a dark green chloritic ground mass, rock contains white and pink mottled spherulitic feldspar masses associated with syenitic dyking, potassic megacrysts are secondary up to 50% of rock. 66.1 quartz Kspar dykelets in smear zone 40° to C.A. 66.7-66.95 Kspar silica flood zone 55° to C.A. pale grey & pink mottled altered dyke? 69.0-70.0 Kspar porphyroblasts decreasing in size and abundance to $< 5\%$ of rock. <5mm Average 3mm 70.0-79.1 Kspar phenocrysts down to $< 3mm < 4\%$ of rock. 79.1-79.2 white plag dyke & interstitial biotite localised disseminated hematite. 89.0-97.0 increasing white plag spherulitic associated with leucocratic felsite and gramte dyking $^{-}$ 60° to C.A. white ones appear to be later than pink orthoclase, intrusive contact silicified 60° to C.A.	63.1 66.1 69.2 72.2 75.3 78.3 81.4 84.4 87.5 90.5 93.6 96.6	66.1 69.2 72.2 75.3 81.4 84.4 87.5 90.5 93.6 96.6 99.7	3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1	227 40 52 35 57 35 33 33 26 26 24 26	.001 .001 .001 .001 .001 .001 .001 .001	<pre>< 3 < 3</pre>		
97.0	98.5	Leucocratic Fine Grained Holofelsic Diorite or Tonalite, chilled felsitic contact, 90% plagioclase, 5% quartz and 5% fine grained blades of biotite, fine grained disseminated pyrite at contacts, intrusive contact 98.5 50° to C.A.								
98.5	105.5	Melanocratic Biotite Porphyroblastic Pyroxenite, as above, numerous porphyroblastic feldspar masses associated with granite dyking and stockwork, intrusive contact 105.8 50° to C.A. sharp.	99.7 102.8	102.8 105.8	3.1 3.0	37 80	.001	0.3 0.4		
105.5	105.9	Leucocratic Grey Fine Grained Granite Dyke, as above, cross cut by sericite pyrite vein with potassic alteration zone, intrusive contact 40° to C.A.		E 1						
105.9	106.7	Melanocratic Biotite Feldspar Porphyry, porphyritic pyroxene, as above. 106.7m END OF HOLE	105.8	106.7	0.9	40	.001	<.3	 	

.

DRILL HOLE RECORD

.

Location: Ekland Zone	Coordinates: 20473E 18728N	Hole No: L-96-42	(Page 1 of 2)
Azimuth: -090°		Property: Lorraine	Sampled by: L. Lindinger
Dip: -45°	Length: 300ft (90.5)	Elevation: 1702m	Claim #: GK 4
Started: Sept 25, 1996	Core Size: BQTW		Section:
Completed: Sept 26, 1996	Dip Tests: 300ft (90.5m) -45°	Recovery:	Logged By: L. Lindinger
Purpose:			

METRE: from	5 to	DESCRIPTION	SAMPLES #	6 (metres) from		length	Cu ppm	Au Oz/ton	Ag ppm	Other ppm	Recov %
0	1.5	Casing, no recovery.									
1.5	16.9	Breccia , dark green, fine grained foliated to gneissic (meta andesite ?),heterolithic breccia & tuff, locally dioritic, small angular cherty larger coarser grained rounded fragments throughout, rock has been pervasively potassically altered with fine biotite and pink syemtic stockwork dykes with pink potassic alteration halos, biotite alt is dark grey mottled, very fine grained disseminated bornite 0.5% and lesser very fine grained chalcopyrite with weathered halos of malachite and azurite throughout rock and in multi oriented veins in fractures. 15.8-16.9 increasing sheared texture 65° to C.A., faulted intrusive contact.		1.5 5.2 8.2 11.3 14.3	5.2 8.2 11.3 14.3 17.4	3.7 3.0 3.1 3.0 3.1 3.0 3.1	2417 3568 3101 2923 2352	.001 0.002 .001 0.001 0.003	1.6 2.8 1.9 1.8 1.3		98
16.9	36.3	Coarse Grained White Pink & Black Granite Dyke, extensively potasically altered by pink syenitic stock work, grades into a intensely feldspathically altered and bleached rock characterized by tan silicious flooding with deep pink red orthoclase mottles which contain argillically altered plagioclase porphyroblasts, rock has textures of overlying unit and locally extensive biotite porphyritic pegmatite, tan silicious material is massive amorphous opaque with hackly fracture, fractures contain black oxides, no Cu noted, late Quartz calcite veinlets throughout, 23.8m dark brown basalt?, breccia frags in ankeritic matrix 15° to C.A., gradational contact 36.3 80° to C.A. wavy.		17.4 20.4 23.5 26.5 29.6 32.6 35.7	20.4 23.5 26.5 29.6 32.6 35.7 38.7	3.0 3.1 3.0 3.1 3.0 3.1 3.0	98 185 204 72 38 22 13	.001 .001 .001 0.001 .001 .001 .001	0.3 <.3 0.3 <.3 0.3 <.3 <.3 <.3		
36.3	37.1	Biotite Porphyroblastic Pyroxenite, pink then white porphyroblastic feldspar masses to 1.5cm diametrer, traces fine to coarsely disseminated biotite, gradational alteration contact.									
37.1	37.9	Pink (Orthoclase) Megacrystic Syenite And Later Black Magnetite Porphyry, and									

		pink potassic mottled potassic flooding of biotite porphyry pyroxenite, sharp gradational contact.		-	<u> </u>	ļ			<u> </u>
37.9	39.9	Biotite Porphyrobalstic Pyroxenite, isolated round orthoclase porphyroblasts.					_		<u> </u>
39.9	42.8	Pink & White Mottled Felspathic Flood Zone, as above. 42.2 - 42.8 grey anorthosite plagioclase porphyroblasts ?, intrusive contact.	41.8	44.8	3.0	183	.001	0.4	<u> </u>
42.8	84.2	Fine to Medium Grained Quartz Diorite, 20% biotite, 70% plag, 10% interstitial quartz and 5% magnetite, weakly to locally heavily potasically and altered with secondary biotite (10%) and by pink syenite stockwork with weak cpy mineralization and with late chlorite epidote magnetite alteration of biotite. Quartz epidote calcite stockwork locally appears to host copper mineralization. 73.0 - 73.25 pale white to pink felspathic dyke altered by white leucogranite dyke 73.25 -73.40 73.0-0.3cm pyrite vein pink potasically at altered dyke wallrock contact. 77.6-78.5 massive epidote grading to felted biotite magnetite alteration zone. 80.1-80.25, 80.45-80.75, 80.75-81.1 leucocratic fine grained granite tonolite to felsite dyke chilled flow banded margins common, contact 70° to C.A.	44.8 47.9 50.9 54.0 57.0 60.0 63.1 66.1 69.2 72.3 75.3 78.4 81.4	47.9 50.9 54.0 57.0 60.0 63.1 66.1 69.2 72.3 75.3 75.3 78.4 81.4 84.1	3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.1 3.1 3.0 3.1 3.0 3.1 3.0 2.7	89 84 593 42 16 181 9 13 180 159 76 75 44	.001 .001 .001 .001 .001 .001 .001 .001	 < .3 0.4 0.7 < .3 0.3 0.4 < .3 < .3 < .3 < .3 < .3 < 0.3 	
84.2	90.5	Melanocratic Green Black Biotite Pyroxenite, 10-25% black biotite pseudorphing after hornblende in a felted chloritic groundmass with 5-15% irregularly shaded anhedral interstitial felspathic masses (plag), plags altered to clay and calcite, rock is strongly magnetic. Unit cross cut by random synite dykes 0.5-2cm thick with haloes of potasically altered interstitial felspathic masses. 90.5 END OF HOLE	84.1 87.2	87.2 90.5	3.0 3.3	39 42	.001 .001	<.3 <.3	

.

Location: Bishop Zone	Coordinates: 348575E 6199673N UTM NAD27	Hole No: L-96-43	(Page 1 of 5)
Azimuth: 055°		Property: Lorraine	Sampled by: L. Lindinger
Dip: -50°	2)2-4 Length: 697ft (242.4m)	Elevation: 1711	Claim #: GM 111 FR
Started: Sept 27, 1996	Core Size: BQTW		Section:
Completed: Sept 28, 1996	Dip Tests: 697ft (242.4m) -46-	Recovery:	Logged By: L. Lindinger
Purpose: To test for mineralization interse	ected in Hole L-91-7 (99m of 1% Cu)		

METRE. From	S to	DESCRIPTION	SAMPLI #	ES (metres) from	to	length	Cu ppm	Au Oz/ton	Ag ppm	Other ppm	Recov %
0	1.5	Casing, no recovery		1.5	2.2	NS	-				0
1.5	17.6	Red & Black Biotite Syenite, pale to dark red, orthoclase 70%, 25% 3-8mm angular biotite pseudo morphs after hornblende?, random clots to 2cm of soft talcose clay with hematite grains (3mm), 2% medium grained disseminated magnetite, no Cu mineralization noted, faulted contact 17.6-17.8 40° to C.A., quartz veining & box work.		2.2 4.9 8.2 11.3 14.3 17.4	4.9 8.2 11.3 14.3 17.4 20.4	2.7 3.3 3.1 3.0 3.1 3.0	341 355 415 304 333 227	.001 .001 .001 .001 .001 .001	<3 <3 <3 <3 <3 <3 <3		90 100 100 100 100 100
17.6	37.1	 Pale Green Diorite, (or andesite ?), fine to medium grained feldspar porphyry, 50% phenocrysts in a intermediate matrix, local breccia texture and tuffaceous ?, very weakly foliated, numerous syenite dykes similar to above. 18.8-18.9 fault quartz chlorite 60° to C.A. 17.6-18.7 strong chlorite carbonate flooding with diss veins. Disseminated hematite throughout. 18.9-19.7 chlorite carbonate alt, increasing pink potassic alt, increasing secondary biotite. Disseminated hematite associated with chlorite secondary biotite ? in more strongly potassic zones. 19.7 strong potassic zones. 19.7-21.5 disseminated hematite 2%. 21.5-37.1 trace disseminated chalcopyrite within widely spaced very large blotches of magnetite and as erratically spaced fine grained dissemination 28.5-35.5 trace to locally 1% cpy 5% magnetite. 35.7-scant traces of magnetite with chloritic siliceous web like stock work veining. 		20.4 23.5 26.5 29.6 32.6 35.7	23.5 26.5 29.6 32.6 35.7 38.7	3.1 3.0 3.1 3.0 3.1 3.0	1103 1853 1620 3341 3662 990	.001 .001 .001 0.002 0.002 0.002	0.7 1.4 1.2 2.6 3.4 3.3		

	Intrusive contact silicified 75° to C.A.		-						
38.1	Felsite Dyke, leucocratic pale grey felsite with 5% 0.5-1mm evenly disseminated chlorite porphyroblasts, 1-2% finely disseminated pyrite throughout late hematitic hydrothermal breccia veins. 37.8-38.1 shear brecciated rock ~ 45° to C.A. faltered contact.								
39.0	Potassically Altered Diorite, (andesite ?), as above, late brittle fracturing calcite- hematite, hydrothermal breccia veins, in shears - 60° to C.A. throughout, disseminated 5% fine grained magnetite throughout. 38.4-38.5 1% disseminated chalcopyrite trace bornite. 39.0 faulted intrusive contact 45° to C.A.								
39.35	Felsite Dyke, as above, intrusive contact ~ 65-70° to C.A. silicified.	38.7	41.8	3.1	1425	0.004	0.8		
42.00	Diorite , (andesite ?), strongly potassically altered, as above, numerous late chloritic hematite shears 65° to C.A. trace to 1% chalcopyrite associated with potassic feldspar alteration, faulted contact 50° to C.A. @ 42.0.	41.8	44.8	3.0	601	0.004	0.8		
42.15	White Bull Quartz Vein, late chlorite filled fractures.			<u> </u>					
50.0	 Red and black Syenite, as above. 42.15-45.0 strongly sheared fabric and numerous fault zones with hematite coatings and veins and later calcite breccia veins + or - chlorite. 43.8-44.4 shear zone 60° to C.A. with chloritic calcite heterolithic hydrothermal breccia vein. Preceded by hematite stock work vein. 44.4 decreasing shearing and hematite veining fine diss py in silicified zones @ 43.0m. 45.9-1.5cm thick feldspar porphyry chloritized andesite dyke ? & calcite veining 45° and 55° to C.A. 45.0 tr 1% finely pyrite in quartz veins and potassic zones. 	44.8	47.9	3.1	442	.001	<.3		
85.0	 Crowded Feldspar Porphyry Leucodiorite, 10-15% mafics (interstitial) suggesting the above syenite may be a pervasively potassic altered diorite, mafics biotitized hornblende altering to chlorite with 2 - 4% magnetite. 58.4 chlorite stock work veining 35° to C.A. 68.6-68.8 silicia potassium flood zone associated with multi generational quartz-pyrite and quartz -chalcopyrite-pyrite chalcedonic quartz veining 30° and 60° to C.A. 69.0 silicia chlorite potassium (kspar) flooded near obliteration of intrusive textures. 69.0-69.5 silicified @ chloritic shear 40° to C.A. with late covellite chalcocite coatings. 70.0-76.5 tr-1% disseminated chalcopyrite in felted chlorite argillic ? Zones within generally strongly potassically silica altered rock. 71.5-74.2 2% chalcopyrite finely disseminated and in chlorite magnetite chalcopyrite fracture fillings, late crackle breccia with open vugs and fractures, dilational ?. 	47.9 50.9 54.0 57.0 60.0 63.0 66.1 69.2 72.2 75.3 78.3 81.4 84.4	50.9 54.0 57.0 60.0 66.1 69.2 72.2 75.3 78.3 81.4 84.4 87.5	3.0 3.1 3.0 3.0 3.0 3.1 3.1 3.0 3.1 3.0 3.1 3.0 3.1	700 275 304 376 294 298 326 6358 6946 675 430 90 170	.001 .001 .001 .001 .001 .001 .001 .001	0.4 < .3 < .3 < .3 < .3 < .3 < .3 < .3 < .1 < .3 < .3 < .3 < .3 < .3 < .3		
	39.0 39.35 42.00 42.15 50.0	 38.1 Felsite Dyke, leucocratic pale grey felsite with 5% 0.5-1mm evenly disseminated chlorite porphyroblasts, 1-2% finely disseminated pyrite throughout late hematitic hydrothermal breccia veins. 37.8-38.1 shear brecciated rock ~ 45° to C.A. faltered contact. 39.0 Potassically Altered Diorite, (andesite ?), as above, late brittle fracturing calcite-hematite, hydrothermal breccia veins, in shears - 60° to C.A. throughout, disseminated 5% fine grained magnetite throughout. 38.4.38.5.1% disseminated chalcopyrite trace bornite. 39.0 fotalted intrusive contact 45° to C.A. 39.35 Felsite Dyke, as above, intrusive contact ~ 65-70° to C.A. silicified. 42.00 Diorite, (andesite ?), strongly potassically altered, as above, numerous late chloritic hematite shears 65° to C.A. trace to 1% chalcopyrite associated with potassic feldspar alteration, faulted contact 50° to C.A. @ 42.0. 42.15 White Buil Quartz Vein, late chlorite filled fractures. 50.0 Red and black Syenite, as above. 42.15-450 strongly sheared fabric and numerous fault zones with hematite coatings and veins and later calcite breccia veins + or - chlorite. 43.8-44.4 shear zone 60° to C.A. with chloritic calcite heterolithic hydrothermal breccia vein. Preceded by hematite stock work vein. 44.4 decreasing shearing and hematite veining fine diss py in silicified zones @ 43.0m. 45.9-1.5cm thick feldspar porphyry chloritized andesite dyke ? & calcite veining 45° and 55° to C.A. 45.0 tr 1% finely pyrite in quartz veins and potassic zones. 85.0 Crowded Feldspar Porphyry Leucodiorite, 10-15% mafies (interstitial) suggesting the above syenite may be a pervasively potassic altered diorite, mafies biotitized horbherde altering to chlorite with 2.4% magnetite. 58.4 chlorite stock work veining 35° to C.A. 69.0 69.5 silicia potassium flood zone associated with multi generational quartz-pyrite and quartz -chalcopyrite-pyrite cha	38.1 Felsite Dyke, leucocratic pale grey felsite with 5% 0.5-Imm evenly disseminated chlorite porphyroblasts, 1-2% finely disseminated pyrite throughout late hematitic hydrothermal breccia veins. 37.8-38.1 39.0 Potassically Altered Diorite, (andesite ?), as above, late brittle fracturing calcite-hematite, hydrothermal breccia veins, in shears - 60° to C.A. throughout, disseminated 5% fine grained magnetic throughout. 38.4-38.51% disseminated chalcopyrite trace bornite. 39.0 Potassically Altered Diorite, (andesite ?), as above, late brittle fracturing calcite-hematite, hydrothermal breccia veins, in shears - 60° to C.A. throughout, disseminated 5% fine grained magnetic throughout. 38.4-38.51% disseminated chalcopyrite trace bornite. 39.0 felsite Dyke, as above, intrusive contact ^{-65-70°} to C.A. silicified. 38.7 42.00 Diorite (andesite ?), strongly potassically altered, as above, numerous late chloritic hematite shears 65° to C.A. trace to 1% chalcopyrite associated with potassic feldspar alteration, faulted contact 50° to C.A. @ 42.0. 41.8 42.15 White Buil Quartz Vein, late chlorite filled fractures. 44.8 50.0 Red and black Syenite, as above. 42.15-45.0 strongly sheared fabric and numerous fault zones with hematite coatings and veins and later calcite breccia veins + or - chlorite. 43.8-44.4 shear zone 60° to C.A. with chloritic calcite heterolithic hydrothermal breccia vein. Preceded by hematite stock work vein. 44.8 45.0 tr 1% finely pyrite in quartz veins and potassic zones. 65.0 <t< td=""><td>38.1 Felsite Dyke, leucocratic pale grey felsite with 5% 0.5-Imm evenly disseminated chlorite porphyroblasts, 1-2% finely disseminated pyrite throughout late hematitic hydrothermal breecia veins. 37.8-38.1 share breeciated rock ' 45° to C.A. faltered contact. 39.0 Potassically Altered Diorite, (andesite ?), as above, late brittle fracturing calcite-hematite, hydrothermal breecia veins, in shears - 60° to C.A. throughout, disseminated 5% fine grained magnetite throughout. 38.4-38.5 1% disseminated chalcopyrite trace bornite. 39.0 Felsite Dyke, as above, intrusive contact - 65-70° to C.A. silicified. 38.7 41.8 42.00 Diorite, (andesite ?), strongly potassically altered, as above, numerous late chloritic hematite shears 65° to C.A. trace to 1% chalcopyrite traces of the dispar alteration, faulted contact 50° to C.A. d#2.0 41.8 44.8 42.00 Diorite, (andesite ?), strongly potassically altered, as above, numerous late chloritic hematite shears 65° to C.A. trace to 1% chalcopyrite associated with potassic feldspar alteration, faulted contact 50° to C.A. d#2.0 41.8 44.8 42.15 White Bull Quartz Vein, late chlorite filled fractures. 44.8 47.9 50.0 Red and black Syenite, as above. 44.8 47.9 43.9.1 tr 1% finely pyrite in quartz veins and potassic zones. 44.8 47.9 50.0 Crowded Feldspar porphyry Leucodiorite, 10-15% mafics (interstitial) suggesting the above syenite may be a pervasinety potassical traits o</td><td>38.1 Felsite Dyke, leucocratic pale grey felsite with 5% 0.5-1mm evenly disseminated chlorite porphyroblasts, 1-2% finely disseminated pyrite throughout late hematitic hydrothermal breecia veins. 37.8</td><td>38.1 Felsite Dyke, leucocratic pale grey felsite with 5% 0.5-1mm evenly disseminated chlorite porphyroblasts. 1-2% finely disseminated pyrite throughout late hematitic hydrothermal breecia vins. 37.8-38.1 sheat protectiater for 0K * 45° to C.A. faltered contact. 39.0 Potassically Altered Diorite, (andesite 7), as above, late brittle fracturing calcite-hematite, hydrothermal breecia vins. 38.7 41.8 3.1 1425 39.0 Potassically Altered Diorite, (andesite 7), as above, late brittle fracturing calcite-brenatice, hydrothermal breecia veins, in shears - 60° to C.A. throughout, disseminated 5% fine grained magnetice throughout. 38.7 41.8 3.1 1425 39.35 Felsite Dyke, as above, intrusive contact 55-70° to C.A. silicified. 38.7 41.8 3.0 601 42.00 Diorite, (andesite 7), strongly potassically altered, as above, numerous late chloritic fieldspar alteration, faulted contact 50° to C.A. ca. 42.0. 41.8 44.8 3.0 601 42.15 White Bull Quartz Vein, late chlorite filled fractures. 44.8 47.9 3.1 442 50.0 Red and black Syenite, as above. 44.8 47.9 3.1 442 43.8-44.8 thear zone 60° to C.A. with chloritic calcite heterolithic hydrothermal breecia vein. Treecoded by hematite stock work vein. 44.8 47.9 3.1 442 50.</td><td>38.1 Felsite Dyke, lencocratic pale grey felsite with 5% 0.5-1mm evently disseminated chlorite porphyroblass, 1-2% finely disseminated pyrite throughout late hematicic hydrothermal breccia veins. </td><td>38.1 Felsite Dyke, leucocratic pale grey felsite with 5% 0.5-1mm eventy disseminated pyrite throughout late hematitic hydrothermal breccia veice avens. 37.8-38.1 shear brecciated rock * 45° to C.A. faltered contact. 39.0 Potassically Altered Diorite, (andesite ?), as above, late britle fracturing calcite-hematic, hydrothermal breccia veins, is haves. Go' to C.A. throughout, disseminated 3% fibe grained magnetic throughout. 38.7 41.8 3.1 1425 0.004 0.8 39.0 Diorite, (andesite ?), as above, late britle fracturing calcite-hematic, hydrothermal breccia veins, is haves. Go' to C.A. throughout, disseminated dateopyrite trace bornite. 39.0 1.8 3.1 1425 0.004 0.8 39.35 Felsite Dyke, as above, intrusive contact * 50° to C.A. silicified. 38.7 41.8 3.0 601 0.04 0.8 42.00 Diorite, (andesite ?), strongly potassically altered, as above, mamerous late chloritic feldogar alteration, faulted contact 50° to C.A. with chloritic calcite heterolithic hydrothermal breccia vein. Preceded by Menatics and mamerous fault zones with hematite coatings and veins and later calcite herecia weins + or - chlorite. 44.8 47.9 3.1 442 .001 <.3</td> 45.0 To C.A. with chloritic calcite heterolithic hydrothermal breccia weins preceded by Menatics took work veing 43° and 55° to C.A. 45.0 3.0 2.1 44.8 47.9 3.1<td>38.1 Felste Dyke, leucocratic pale grey felsie with 5% 0.5-1mm evenly disseminated chlorite portpytroblass, 1-2% finely disseminated pytie throughout late hematitic hydrothermal brecia view. </td></t<>	38.1 Felsite Dyke, leucocratic pale grey felsite with 5% 0.5-Imm evenly disseminated chlorite porphyroblasts, 1-2% finely disseminated pyrite throughout late hematitic hydrothermal breecia veins. 37.8-38.1 share breeciated rock ' 45° to C.A. faltered contact. 39.0 Potassically Altered Diorite, (andesite ?), as above, late brittle fracturing calcite-hematite, hydrothermal breecia veins, in shears - 60° to C.A. throughout, disseminated 5% fine grained magnetite throughout. 38.4-38.5 1% disseminated chalcopyrite trace bornite. 39.0 Felsite Dyke, as above, intrusive contact - 65-70° to C.A. silicified. 38.7 41.8 42.00 Diorite, (andesite ?), strongly potassically altered, as above, numerous late chloritic hematite shears 65° to C.A. trace to 1% chalcopyrite traces of the dispar alteration, faulted contact 50° to C.A. d#2.0 41.8 44.8 42.00 Diorite, (andesite ?), strongly potassically altered, as above, numerous late chloritic hematite shears 65° to C.A. trace to 1% chalcopyrite associated with potassic feldspar alteration, faulted contact 50° to C.A. d#2.0 41.8 44.8 42.15 White Bull Quartz Vein, late chlorite filled fractures. 44.8 47.9 50.0 Red and black Syenite, as above. 44.8 47.9 43.9.1 tr 1% finely pyrite in quartz veins and potassic zones. 44.8 47.9 50.0 Crowded Feldspar porphyry Leucodiorite, 10-15% mafics (interstitial) suggesting the above syenite may be a pervasinety potassical traits o	38.1 Felsite Dyke, leucocratic pale grey felsite with 5% 0.5-1mm evenly disseminated chlorite porphyroblasts, 1-2% finely disseminated pyrite throughout late hematitic hydrothermal breecia veins. 37.8	38.1 Felsite Dyke, leucocratic pale grey felsite with 5% 0.5-1mm evenly disseminated chlorite porphyroblasts. 1-2% finely disseminated pyrite throughout late hematitic hydrothermal breecia vins. 37.8-38.1 sheat protectiater for 0K * 45° to C.A. faltered contact. 39.0 Potassically Altered Diorite, (andesite 7), as above, late brittle fracturing calcite-hematite, hydrothermal breecia vins. 38.7 41.8 3.1 1425 39.0 Potassically Altered Diorite, (andesite 7), as above, late brittle fracturing calcite-brenatice, hydrothermal breecia veins, in shears - 60° to C.A. throughout, disseminated 5% fine grained magnetice throughout. 38.7 41.8 3.1 1425 39.35 Felsite Dyke, as above, intrusive contact 55-70° to C.A. silicified. 38.7 41.8 3.0 601 42.00 Diorite, (andesite 7), strongly potassically altered, as above, numerous late chloritic fieldspar alteration, faulted contact 50° to C.A. ca. 42.0. 41.8 44.8 3.0 601 42.15 White Bull Quartz Vein, late chlorite filled fractures. 44.8 47.9 3.1 442 50.0 Red and black Syenite, as above. 44.8 47.9 3.1 442 43.8-44.8 thear zone 60° to C.A. with chloritic calcite heterolithic hydrothermal breecia vein. Treecoded by hematite stock work vein. 44.8 47.9 3.1 442 50.	38.1 Felsite Dyke, lencocratic pale grey felsite with 5% 0.5-1mm evently disseminated chlorite porphyroblass, 1-2% finely disseminated pyrite throughout late hematicic hydrothermal breccia veins.	38.1 Felsite Dyke, leucocratic pale grey felsite with 5% 0.5-1mm eventy disseminated pyrite throughout late hematitic hydrothermal breccia veice avens. 37.8-38.1 shear brecciated rock * 45° to C.A. faltered contact. 39.0 Potassically Altered Diorite, (andesite ?), as above, late britle fracturing calcite-hematic, hydrothermal breccia veins, is haves. Go' to C.A. throughout, disseminated 3% fibe grained magnetic throughout. 38.7 41.8 3.1 1425 0.004 0.8 39.0 Diorite, (andesite ?), as above, late britle fracturing calcite-hematic, hydrothermal breccia veins, is haves. Go' to C.A. throughout, disseminated dateopyrite trace bornite. 39.0 1.8 3.1 1425 0.004 0.8 39.35 Felsite Dyke, as above, intrusive contact * 50° to C.A. silicified. 38.7 41.8 3.0 601 0.04 0.8 42.00 Diorite, (andesite ?), strongly potassically altered, as above, mamerous late chloritic feldogar alteration, faulted contact 50° to C.A. with chloritic calcite heterolithic hydrothermal breccia vein. Preceded by Menatics and mamerous fault zones with hematite coatings and veins and later calcite herecia weins + or - chlorite. 44.8 47.9 3.1 442 .001 <.3	38.1 Felste Dyke, leucocratic pale grey felsie with 5% 0.5-1mm evenly disseminated chlorite portpytroblass, 1-2% finely disseminated pytie throughout late hematitic hydrothermal brecia view.

÷.

		 75.6-75.9 - 2% finely dissem & coarse faulty hosted chalcopyrite, moderate irregular potassic alteration as above. 80.5 increasing biotite alteration rock becoming coarser grained and migmatitic textures are common, and increasing mafic decreasing felspathic content - 50% to less than 10%, biotite from 15% to 35-70%, gradational contact from 83.0 - 85.0. 								1
85.0	88.9	 Biotite Porphyroblastic Rock, (basalt ?), melanocratic dark green mottled rock with 5-8mm black sharp to defuse secondary biotite and dark green chlorite in matrix, 5% magnetite, local syenitic dyke and flood zones of potassic and distal chlorite epidote alteration. 87.9-88.2 blue & pink megacrystic felspathic pegmatitic dyke with partially digested wall rock. 88.2-88.3 leucodiorite dyke precedes above dyke 65° to C.A. Contact 45° to C.A. 88.9. 	87.5	90.5	3.0	2441	0.001	1.7		
88.9	89.5	Crowded Medium Grained Foliated Biotite Pyroxenite, 60% foliated ~ 70° to C.A., black biotite in a chloritic groundmass, 5-10% feldspars as interstitial aggregates. Contact irregular 70° to C.A.						_		
89.5	97.0	As Above, (meta basalt), as above but less mafic, locally potassically altered with pink flooding * 20-25% white plagioclase locally replaced by orthoclase. 89.5-89.9 seminal silver metallic material may be tetrahedrite or resembles native silver, streak redish hue under hand lens, * 2% of rock possibly hematite but doubtful. 95.7-95.9 felsite dyke.	90.5 93.6	93.6 96.6	3.1 3.0	67 1019	.001 .001	<.3 1.7		-
97 .0	165.6	Biotite Rich Gabbro Pyroxenite, with numerous white and pink zoned felspathic porphyroblasts,	96.6 99.7	99.7 102.7	3.1 3.0	17 903	.001 .001	<.3 1		
		average 40% to 70% biotite, randomly disseminated and segregated hematite. 100.2-102.8 andesite ?to basalt ? section, chlorite hornblende porphyry, trace bornite	102.7	105.8	3.1	2053	.001	1.6		
		throughout as medium grained disseminations. 102.8 trace 1% bornite and trace silvery metallic mineral - tetrahedrite ?? 105.7-106.0 megacrystic grey pink pegmatite dyke as above with dark green chloritic	105.8 108.8	108.8 111.9	3.0 3.1	2577 41375	.001 0.015	2.2 26.1		
		masses.	111.9	114.9	3.0	6226	0.002	4.4		
		166.0-100.0 trace 1% bornite	114.9	118.0	3.1	5669	0.002	3.9		
		108.0-108.9 2% bornite	118.0	121.0	3.0	2675	.001	2.1		
	ł	108.8-109.1 4% chalcopyrite 1% bornite as net textured surrounding stubby	121.0	124.1	3.1	3553	0.001	2.6		
		porphyroblasts.	124.1	127.1	3.0	5831	0.003	4.1		
		109.1-109.5 10-75% chalcopyrite 10-25% bornite spectacular semimassive	127.1	130.2	3.1	260	.001	0.5		
		mineralization from 109.2-109.4	130.2	133.2	3.0	14120	0.003	8.9		
	1	109.5-109.8 8% chalcopyrite 3% bornite.	133.2	136.3 139.3	3.1	4506 532	0.001	3		
		108.8-109.5 hydrothermal breccia texture of siliceous silicates with sulphide	139.3	142.3	3.0	3641	.001	2.7		
		stockwork, stringer and breccia veining.	142.3	145.4	3.1	11637	0.006	7.2	1	
		109.7-110.1 3% chalcopyrite 2% bornite.	145.4	148.4	3.0	6751	0.005	4.3		
		110.1-110.8 4% bornite trace chalcopyrite	148.4	151.5	3.1	13749	0.008	8.8		1
		110.8-118.5 average 1 % bornite	151.5	154.5	3.0	6078	0.012	3.9	1	1

		 118.5-127.0 trace 1% bornite irregular disseminations. 119.8-120.7 syenodiorite migmatite zone or altered diorite, nice euhedral pyroxenes (augite), random late quartz calcite veins 40-90° to C.A. 127.0-131.3 30% coarse biotite evenly disseminated. 131.3-135.0 andesite basaltic looking fine grained rock locally gabbroic trace to locally 5% bornite. 131.9- 5cm quartz chalcopyrite vein mutiepisodic, late calcite phases. 135.5-151.0 coarse biotite pyroxenite. 141.5-153.0 1-2% disseminated bornite and trace chalcopyrite. 	154.5 157.6 160.0 163.7	157.6 160.0 163.7 166.7	3.1 3.0 3.1 3.0	4927 1053 1434 2363	0.006 0.001 .001 0.002	3.1 0.8 1.2 1.7	
		 153.0-157.0 1% disseminate bornite. 159.0-163.5 basaltic loking fine grained mafic rock, tr bornite, secondary biotite in ultramafic sections (biotite pyroxene rich), no px euhedra visible, random potassically altered feldspars in more felsic sections. 165.6 contact 50° to C.A. gradational over 1cm 							
165.6	183.9	Grey Foliated Leuco Diorite, locally with utffaceous like breccia textures (meta dacite ?), foliation 40-70° average 55° to C.A., 80% plagioclase. 3-15% biotite Au 5% as fine 2m to 10mm blades (pseudomorphed hornblende), other mafics have been chloritized (5%), associated with biotite, locally intruded by quartz rich leucogranite dykes, locally magnetic, copper mineralization trace to locally 1.5%, fine to medium chalcopyrite and rare traces of bornite associated with mafic lenses (relic frags ?), chalcopyrite bornite magnetite. 170.2-171.5 10% magnetite as 1-2cm lenses 5% chalcopyrite in magnetite. 175.0-180.0 102% fine disseminated chalcopyrite. 180.0-183.0 trace to locally 1% chalcopyrite. 183.0-183.7 numerous clear round quartz ? balls with felspathic rims random open vugs segregated mafics. Gradational contact oven 5cm.	166.7 169.8 172.8 175.9 178.9 182.0	169.8 172.8 175.9 178.9 182.0 185.0	3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0	3957 4941 9397 3235 3223 936	0.003 0.004 0.006 .001 0.001 .001	2.4 3.2 4.5 0.8 2 1.2	
183.9	184.6	Biotite Porphyoblastic Gabbro, 60% biotite, 20% other mafics, 20% fspars, medium grained wavy foliated rock, 2-3% finely disseminated magnetite, trace very fine grained bornite, intrusive contact 80° to C.A.							
184.6	190.7	Leucocratic to Mesocratic Diorite, (dacite ?), as above. 184.6-184.8 coarse grained leucosyenite dyke, 1-2% finely disseminated chalcopyrite, 184.8 leuco diorite. 184.8-1-2% finely disseminated chalcopyrite throughout contact 60° to C.A.	 185.0	188.1	3.1	10482	0.003	6.5	
190.7	192.2	Oval Clast Flow Banded Rock, (lapilli tuff ?), may be welded banding 55° to C.A.	 188.1 191.1	190.1 194.7	3.0 3.6	6230 13252	0.003 0.014	8.4 12.5	
192.2	203.9	Leucocratic Rock, (mesocratic dacite ?), slightly more mafic than leucocratic rock, 15% biotite rock is in part migmatizied as up to 3cm coarse black biotite chalcopyrite throughout, 3% magnetite, 2-3%. finely disseminated chalcopyrite and 2% coarse up to 3cm by 1cm by 1cm stringer of chalcopyrite. 195.65 - 2cm fault zone 10% chalcopyrite -80° to C.A. 197.7-200.3 tr -1% disseminated chalcopyrite. 200.3-203.4 2-3% fine and coarse grained chalcopyrite locally 5% 20cm.	194.7 197.7 200.6	197.7 200.6 203.9	3.0 2.5 3.6	14273 14394 14299	0.017 0.019 0.007	10.1 12.3 8.9	

		203.4-203.9 ~ 1% finely disseminated cpy contact silicified medium textured potassic pegmatite 80° to C.A., dyke 203.8-203.9 late hematite chalcopyrite veins 60° to C.A.					Ţ		
203.9	208.0	Biotite Porphyroblastic Pyroxenite , as above, medium grained, 35% black biotite and 5-20% grey plagioclase in a green chloritic matrix, local felspathic segregations, random syenitic dykes 55° to C.A., trace finely disseminated chalcopyrite, intrusive contact 35° to C.A	203.9 206.4	206.4 209.4	2.5 3.0	1944 456	0.001 .001	1.3 0.3	
208.0	208.8	Pink and White Syenite Dyke, 10% coarse grained chlorite, tr to 2% magnetite. 208.2-208.25 grey leucodiorite dyke 50° to C.A. intrusive contact 25° to C.A.							
208.8	210.5	Biotic Porphyroblastic Pyroxenite, as above, gradational contact.	209.4	212.4	3.0	556	0.001	0.3	
210.5	212.4	Mesocratic Fine Grained Grey Felted Feldspathic Rock, (meta andesite - dacite ?), 25% mafics, chloritized, crosscut by numerous small synite dykes and flood zones with retrograde epidote zones. 212.4 END OF HOLE							

Location: Bishop Zone	Co-ordinates: 3485005E 6199572N UTM NAD27	Hole No: L-96-44	
Azimuth: 050°		Property: Lorraine	Sampled by: L. Lindinger
Dip: _45	Length: 797ft 242.9m	Elevation: 1736m	Claim #: GK 111 FR
Started: Sept 29, 1996	Core Size: BQTW	,,,	Section:
Completed: Sept 30, 1996	Dip Tests: 797ft (242.9m)	Recovery:	Logged By: L. Lindinger

METRE: fromto	s	DESCRIPTION	SAMPLES #	5 (metre from	s) to	length	Cu ppm	Au Oz/ton	Ag Ppm	Other ppm	Recov %
0	0.6	Casing, no recovery.									
0.6	1.2	Diorite , medium grained phanerite, 75% feldspar, 50% biotite, 6% magnetite, 7% chloritized mafics, cross cut by syenitic dykelets with moderate flooding, trace very fine grained granite, intrusive contact-digested 50° to C.A.		0.6	4.6	4.0	93	0.002	<.3		80
1.2	8.1	Coarse Grained Leucodiorite, 85% plagioclase, 5% magnetite, remainder chloritized mafics, cross cut by 1-2mm syenite dykelet swarm & 3mm kspar alteration haloes 50° to C.A., very broken core.		4.6 4.6 7.0	7.0 8.2 8.2	NS 3.6 NS	92	0.002	<.3		70 20
8.1	26.3	Diorite, as above, alteration as above 16.5 increasing mafic ⁻ 25% mafics from 15-20%, 22.5 - 23.5 foliated 55° to C.A.		8.2 11.3 14.3 17.4 20.4 23.5	11.3 14.3 17.4 20.4 23.5 26.5	3.1 3.0 3.1 3.0 3.1 3.0	271 104 92 147 170 234	.001 .001 .001 .001 .001 .001	<.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3		
26.3	41.3	Fine Grained Leucodiorite, < 10% mafics in plagioclase groundmass, 29.4 - 30.1 moderately silicified, 41.8 intrusive contact 60° to C.A.		26.5 29.6 32.6 35.7 38.7	29.6 32.6 35.7 38.7 41.8	3.1 3.0 3.1 3.0 3.1	15 7 8 9 7	.001 .001 .001 .001 .001	<.3 <.3 <.3 <.3 <.3 <.3		
41.3	43.5	Diorite, as above, gradational contact to flow.		41.8	44.5	2.7	82	.001	<.3	 	
43.5	45.5	Banded Leucodiorite and Diorite, sheared and silicified, 45.2 - 45.4 silicified chloritized fault zone, 44.5-45.6 2% finely disseminated pyrite.		44.5	45.7	1.2	451	.001	0.4		
				45.7	47.9	2.1	83	.001	<.3		

45.5	96.6	Leucodiorite, as above, coarse grained gradational contact to diorite.		_	_+				ļ	
46.6		Diorite, as above at start but becoming increasingly mafic downhole. 46.5 25% mafics 49.0 ² 50% mafics 51.0 ² 60% mafics 51.2 - 51.7 dark grey feldspar pegmatitic dyke (anorthosite) 51.7 fault - 15° to C.A.	47.9	50.9	3.0	139	.001	<.3		
51.7	52.0	Dark Green Chlorite Schist, (basaltic ?), with ~ 10-15% black biotite porphyroblasts, trace to 2% chalcopyrite -(fine disseminations).	50.9	54.0	3.0	524	.001	0.3		
52.0	52.3	Dark Grey Pegmatitic Feldspar Dyke, (anorthosite ?).								
52.3	68.4	 Diorite, mafic variety 35% to locally 60% mafic content, medium grained plagioclase, biotite and magnetite, phaneritic to slightly porphyritic rock with chloritized pyroxenes and ground mass. 55.3-55.45 grey leucogranite foliated felsite dyke, clay altered 60-75° to C.A 53.0-57.2 increasing potassic alteration down hole, pink orthoclase alteration, minor secondary biotite & magnetite. 60.1-60.5 clay & potassium pale bleached. 64.0-67.4 silicified zone, breccia textures and or migmatite zones. 3% medium grained disseminated pyrite with trace accompanying chalcopyrite, sulfides associated with biotite magnetite segregations. 67.4-67.2 coarse grained feldspar biotite porphyry local pink potassic epidote alt. 	54.0 57.0 60.0 63.1 66.1 69.2	57.0 60.0 63.1 66.1 69.2 72.2	3.1 3.0 3.1 3.0 3.1 3.0	158 63 58 1744 427 11	.001 .001 .001 .001 .001	< 3 < 3 < 3 1.1 < 3 < 3		
68.4	73.6	Melanocratic Diorite, (basaltic ?), feldspar porphyroblastic rock, random felspathic segregations with 5% quartz, occasional syenitic and granodiorite pegmatitic dykes, moderate secondary magnetite, no Cu min noted, intrusive contact @ $73.6~35^{\circ}$ to C.A								
73.6	74.5	Leucocratic Gradational Felsite Dyke, pale grey, semi aphamtic flow banded contact @ 73.6 with increasing grain size down hole ~ fine grained Fspar porphyry, 5% fine grained biotite (only mafics), intrusive contact welded.	72.2	75.3	3.1	17	.001	<.3		
74.5	84.3	 Biotite Porphyroblastic Rock, as above, (basaltic). 81.6-83.0 increasing random feldspar segregations up to 1.5cm start out as plagioclase rich but increasing orthoclase down hole. 83.0-84.5 erratic felspathic segregations. 84.2-84.4 shear zone 35° to C.A. 	75.3 78.3 81.4	81.4	3.0 3.1 3.0	82 119 130	.001 .001 .001	<.3 <.3 0.3		
84.3	87.3	Potassic Migmatite Syenitic Dyke Zone , leucocratic pink pale green coarse grained, 80% feldspars, 60% kspar, 20% chloritic altered plagioclase, 10-20% mafics, 10% biotite, 0-5% magnetite, random xenoliths of pink & black altered basalt ?, trace fine grained pyrite.	84.4	87.3	2.9	144	.001	0.6		
87.3	107.5	Dark Grey Fine Grained Diorite, (or andesite ?), potassically altered with fine grained brown to coarse biotite, 15-50% mafics are biotitzed, random relict	87.3 90.5		3.2 3.1	866 761	.001 .001	11.8 14.1		

						·	r		1	
		fragments are mineralized, 5-2% fine to locally coarse grained pyrite, trace Cu,	93.6	96.6	3.0	928	.001	10.3		
	i	locally 1% chalcopyrite, trace specularite, in tetrahedrite, trace - 0.5% bornite.	96.6	99.7	3.1	1081	.001	4.9		
		87.5-87.7 graphitic shear, sulfides associated with brown secondary biotite, alteration	99.7	102.7	3.0	729	.001	5.5		
	1		102.7	105.8	3.1	536	.001	4.7		
		contact gradational.	105.8	107.5	1.7	566	.001	6.1	<u> </u>	
107.5	109.0	Pink & White Potassic Felspathic Replacement Zone, intense potassic alteration, places alt to clay, magnetite destroyed, several blue carbonate altered shear veins, no Cu or metallic mineralization, gradational contact	107.5	111.0	3.5	118	.001	0.3		
109.0	109.5	Melanocratic Foliated Diorite, 70% dark plagioclase, 75% black biotite, 10% green chlorite matrix, 5% fine grained magnetite, foliation 75° to C.A., no Cu mineralization noted.								
109.5	110.0	Potassic Replacement Zone and Syenitic Pegmatite Dyke, as above, 60° to C.A., no Cu mineralization, gradational contact.								
110.0	112.6	Biotite Porphyroblastic Pyroxenite, melanocratic dark green rock with black biotite pseudomorphs of subhedral hornblende laths, gradational contact, no Cu min noted.	111.0	114.5	3.5	59	0.002	<.3		
112.6	113.7	Coarse Grained Diorite, medium coarse grained feldspar biotite porphyry, no Cu min noted, rock is strongly potassically altered with pink orthoclase and black secondary biotite 20% late epidote alt throughout, gradational contact.								
113.7	114.3	Potassic Migmatitic Syenite Dyke Zone, as above, no Cu min noted, altered intrusive contact ~ 55° to C.A								
114.3	117.0	Pyroxenite, as above, variable grain size. 114.3-114.6 fine grained.								
		114.6-115.4 Shear zone 25° to C.A. with syenite followed by quartz carbonate hematite then white carbonate fracture veins, trace fine grained pyrite, intrusive contact 45° to C.A	114.5	118.0	3.5	119	.001	<.3		
117.0	118.1	Diorite Dyke, medium grained, highly altered with potassic flooding, trace coarse magnetite. 118.1-118.8 Chlorite, magnetite with disseminated epidote.	118.0	120.1	2.1	1732	.001	1.8		
118.8	120.1	Syenite Pegmatite Dyke, 55% kspar, 20% plagioclase feldspar, 20% biotite, 5% magnetite, plagioclase altered to clay calcite, 120.0-120.5 2% fine disseminated pyrite, trace chalcopyrite.	120.1	123.6	3.5	5051	.001	6		
120.1	147.4	 Dark Grey Fine Grained Diorite, as above. 120.1-120.8 albite dyking followed by syenite dykes, wall rock altered to felted chlorite magnetite epidote rock. 120.8-122.5 dark strong biotite alt. 1-2% very fine grained chalcopyrite mineralization. 122.5-124.7 pink potassic flooding associated with syenite trace Cu mineralization dyking 75° to C.A. 	123.6 127.1 130.2 133.2 136.2 139.3 142.3 145.4	127.1 130.2 133.2 136.2 139.3 142.3 145.4 147.5	3.5 3.1 3.0 3.0 3.1 3.0 3.1 2.1	5875 9909 10807 8528 6683 12730 21993 18687	0.002 0.006 0.002 0.001 .001 0.002 0.007 0.005	5 6.8 7.6 5.8 2.7 6 14.9 14.4		

<u></u>		 124.7 as 2% cpy throughout, locally silicified - pale grey - pink rock very brittle similar to Lorraine alteration and mineralization, numerous pink syenite dykes, locally 5% pyrite. 145.0-145.4 random massive chalcopyrite veins with strong orthoclase alteration, intrusive contact mineralized 80° to C.A 								
147.2	148.2	Pink Medium Grained Syenite Dyke, composition as above, trace to 0.5% medium disseminated chalcopyrite.								
148.2	156.8	Biotite Porphyroblastic Pyroxenite , as above. 148.2-149 strong pink potassic alteration with semi massive epidote bands, trace chalcopyrite mineralization and pyrite associated with potassic zones. 155.2-155.6 pink & grey leucocratic megacrystic syenite dyke. 70-75° to C.A., intrusive contact at156.8.	147.5 151.0 154.5	151.0 154.5 157.6	3.5 3.5 3.1	1721 199 597	.001 .001 .001	0.6 <.3 <.3		2 2 2
156.8	159.4	Pink Megacrystic Leucosyenite Dyke, 75% orthoclase, megacrystic, (to 3 cm), 20% plagioclase, green chlorite clay alt, 5% chloritized biotite books, intrusive contact irregular.	 157.6	160.6	3.0	96	.001	<.3		
159.4	160.35	Leucocratic Felsite Dyke, as above, 2% fine medium disseminated hematite core and chloritic clots cross cut by late chlorite hematite, no Cu min noted, faulted intrusive contact 55° to C.A						ļ		
160.35	160.85	Megacrystic Syenite Dyke, as above, faulted contact 60° to C.A.,	 160.6	163.7	3.1	217	.001	<.3	1	
160.85	161.9	Fault Zone, [•] 45° to C.A., slips from 15-60° to C.A., sheared coarse grained red & black syenite with late stage quartz chlorite slip veining and gouges, trace pyrite and chalcopyrite.								
161.9	186.9	Red & Black Syenite, medium to coarse grained rock, 75% orthoclase and chloritic & biotitic mafic zones, numeral late hematite veins and slips cover rare zones and faults ⁻ 50° to C.A., trace disseminated pyrite and chalcopyrite. 171.0-172.5 calcite breccia veins becoming more competent down hole, gradational contact banded 40° to C.A	163.7 166.7 169.8 172.8 175.9 178.9 182.0 185.0	166.7 169.8 172.8 175.9 178.9 182.0 185.0 188.1	3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1	492 285 214 509 333 358 340 477	.001 .001 .001 .001 .001 .001 .001 .001	<.3 <.3 <.3 0.3 <.3 <.3 <.3 <.3 <.3 <.3		
186.9	189.8	Diorite - Gabbro , melanocratic, fine grained, 50% fspars, 25% biotite & magnetite, remaining mafic minerals chloritized, random pegmatite (granite & syenitic) throughout with secondary feldspar biotite growths, trace chalcopyrite in shear zones, 189 rock is gabbroic $< 10\%$ fspars.	 188.1	191.1	3.1	2830	0.001	2.4		
189.8	201.7	 Grey Fine Grained Leucodiorite, as above, appears silicified grading to diorite as above. 190.3-190.9 2% fine grained chalcopyrite associated with chloritic quartz flooding associated with syenite dyke? 191.2-193.0 irregular meta basalt ? zones. 193.2-193.7 brown siliceous quartz breccia fault zones and multi generational breccia 	191.1 194.2 197.2 200.3	194.2 197.2 200.3 203.8	3.1 3.0 3.1 3.5	602 978 2381 3309	.001 .001 .001 0.001	0.4 0.5 2 2.2		

ł

		veins 50° to C.A., no Cu min noted. 195.9-196.3 leucosyenite breccia dyke with angular wall rock fragments trace cpy. 196.9-201.7 migmatitic zones associated with syenite migmatite dykes. 200.4-200.5 5% cpy in mafic xenoliths? Increasing mafic content down hole.		-						
201.7	203.2	Pegmatite Dyke & Migmatite Zone, "35° to C.A., no Cu mineralization noted.	20)3.8	207.3	3.5	414	.001	0.3	
203.2	209.6	Biotite Porphyroblastic Pyroxenite , (basalt ?), as above, strong potassic alteration, 10-25% kspar, ~10-15% biotite as secondary minerals and segregations, highly variable between diorite to pyroxenite, epidote as irregular disseminations, contact intrusive 45° to C.A. irregular.	20)7.3	210.7	3.4	961	.001	0.8	
209.6	210.8	Fine Grained Diorite Dyke, ~ 10% mafics, extensively pink potassic alteration with late chlorite and epidote, no Cu min noted, intrusive contact 25° to C.A.								
210.8	213.4	Biotite Porphyroblastic Pyroxenite , numerous syenite dyklets to 2cm and random pink potassic & black biotite segregations and flood zones, trace - locally 2% bornite, trace - 3% chalcopyrite as irregular dissemination and web textured aggregates associated with secondary biotite, rock is quite chloritic with late calcite gash veins, intrusive contact ? 25° to C.A.		10.7 12.4	212.4 215.5	2.7 3.0	9942 8703	0.005 0.002	7.4 5.5	
213.4	222.5	Red and Back Syenodiorite, medium coarse grained, as above 1 to locally 13% chalcopyrite as fine to medium grained dissemination and wispy stringers ~ 45° to C.A. and loose aggregates in semi massive magnetite zones, at 218.8-222.5 trace 1% dies bornite & cpy 214.0-216.0 basaltic zone ~ 20% fspars. 222.5 intrusive contact ? 80° to C.A.		15.5 18.9	218.9 222.5	3.3 3.7	11804 29635	0.002 0.002	7.1 5.6	
222.5	230.7	Grey Leucodiorite, (dacite), fine grained extensions potassically altered with pink kspar, black biotite aggregates (pseudomorphing hornblende), fragmental textures common, epidote zones common, trace 1% disseminated and net-textured zones of chalcopyrite throughout. 225.2-226.5 albitic migmatite & pegmatite zone, locally 5% medium disseminated hematite 230.0-230.7 1-3% chalcopyrite.	2:	22.5 24.6 27.6	224.6 227.6 230.7	2.1 3.0 3.1	11800 10818 26748	0.003 0.005 0.006	7.9 8 27.1	
230.7	242.9	 Biotite Porphyroblastic Pyroxenite, as above, melanocratic, irregular biotite aggregates 10-40% of rock, <5% feldspars, locally massive fine grained chloritic rock. 230.7-237.21 locally 3% fine grained bornite and trace to locally 3% chalcopyrite as disseminations and irregular aggregates. 237.2-242.9 trace - 1% fine grained disseminated bornite. 242.9-247.9 1% bornite erratic pink potassic flood zones 242.9 END OF HOLE - OUT OF RODS 	2 2	30.7 33.7 37.2 39.9	233.7 237.2 239.9 242.9	3.5 2.7 3.0 3.0	20720 17699 2983 5836	0.009 0.008 0.002 0.004	21 11.6 1.9 3.8	

1

÷.

Location: North Cirque, 80m @ 260° from	91-12 Co-ordinates: 348040 620065 70 N	Hole No: L-96-45	
Azimuth: 010°		Property: Lorraine	Sampled by: L. Lindinger
Dip: -45°	Length: 105.8 m	Elevation: 1733m	Claim #:
Started: Oct 1, 1996	Core Size: BQTW		Section:
Completed:	Dip Tests:	Recovery:	Logged By: L. Lindinger
Purpose: To intersect ~ 30m 0.3% Cu inters	ected in hole 91-12 plus surface Cu min		

METRE From	S to	DESCRIPTION	SAMPLE #	S (metres) from		ength	Cu ppm	Au Oz/ton	Ag ppm	Other ppm	Recov %
0	7.0	Casing ,no recovery.		0	1.5	NS					0
7.0	8.2	Boulders.		7.0	8.2	NS					0
8.2	14.1	Green & Grey Banded Epidote Meta Diorite, (or andesite ?), foliation 80° to C.A., rock heavily sheared. 10.2-14.1 magnetite vein breccia zone, in fault zone with angular 1cm-1.5 cm x 2-3 cm fragments of massive magnetite, minor late fracture controlled hematite, 1 cm syenite dykes cross cut faulting, no Cu mineralization noted, brecciated contact.		8.2 11.3	11.3 14.3 .	3.1 3.0	3166 6109	0.002 0.003	2 3.5		
14.1	14.6	Medium Grained Syenodiorite Dyke, fault contact 65° to C.A.		14.3	17.4	3.1	1244	0.002	0.8		
14.6	15.5	Chloritic Fault Zone, - 70° to C.A		17.4	20.4	3.0	1619	0.002	0.8		
15.5	18.4	Biotite Porphyroblastic Pyroxenite , black, biotite 20-50% of rock in chloritic groundmass. 16.3-16.5 3% chalcopyrite in fine grained chlorite rock, fault contact 80° to C.A		_							
18.4	21.0	Shear Zone, sheared diorite and pyroxenite. 18.4-19.4 70° to C.A. 19.4-20.0 pyroxenite 20.0-21.0 30° ∞ to C.A.		20.4	23.5	3.1	1549	.001	0.5		
21.0	23.8	Biotite Porphyroblastic Coarse Grained Pyroxenite , distinct biotitic pseudomorphing after hornblende in chloritic matrix with pink orthoclase flooding, hematite in late fractures 40° to C.A., fault contact 23.0		23.5	26.5	3.0	1000	.001	0.9		

23.85 24.8	Syenodiorite, medium grained phaneritic rock that contains pink syenite stockwork dykes and peripheral chlorite epidote flooding, no Cu min noted. Fault zone 20° to C.A.						-	
24.8 26.5	Fine Grained Melanocratic Rock, (basalt ?), intensely chloritized & sheared, no Cu min noted. Intrusive contact - 26.5 ~ 20° to C.A	26.5	29.6	3.1	6572	0.008	5.6	
26.5 26.9	megacrystic Syenite Dyke, pink and grey megacrystic fspars 90%, 5% biotite pseudomorphing hornblende, 5% chloritized rock, faulted brecciated contact, hematitic.							
26.9 30.1	Banded Syenodiorite , as above, extensively sheared 80° to CA. with sheared out magnetite veins with later fine dissemination and stringers of trace to 2% chalcopyrite, sheared contact 65° to C.A.	29.6	30.9	1.3	15253	0.014	10.8	
30.1 91.5	 Biotite Porphyroblastic Pyroxenite, similar to above except more mafic, ^{-50%} biotite, 45% chlorite groundmass, 5% disseminated magnetite, moderate foliated local magnetite segrecations. 30.2-30.3 5% diss chalcopyrite 30.3-30.9 ⁻1% diss chalcopyrite 37.4-37.6 1% diss chalcopyrite 37.4-37.6 1% diss cry & magnetite aggregates and blue carbonate, chalcopyrite pyrrhotite veins 2-6 mm thick. 37.6-39.5 trace 1% finely disseminated chalcopyrite with biotite. 48.9-3cm magnetite band @ 2% diss cpy. 52.5-7cm magnetite clot @ 5% chalcopyrite. 66.3-67.7 quartz veining next to chlorite gouge fault zone 55° to C.A. minor syenitic dyking erasers - 2% diss py and cpy & veining. 91.5-93.0 white carbonate magnetite zone white carbonate & pyroxene porphyroblasts with 1% fine diss py throughout. 93.0-94.5 potassic flood zone, migmatite, with late epidote flooding, no visible Cu min. 95.8-97.0 gradational contact feldspar porphyry gabbro. 3-6mm subhedral plagioclase in mafic groundmass, no preferred orientation, gradational contact, biotite & locally epidote, more pyroxenitic, as above. 	30.9 32.7 35.7 37.4 39.5 41.8 47.9 50.9 54.0 57.0 60.0 63.1 66.1 69.2 72.2 75.3 78.3 81.4 84.4 87.5 90.5 93.6 96.6 99.7 102.7	32.7 35.7 37.4 39.5 41.8 47.9 50.9 54.0 57.0 60.0 63.1 66.1 69.2 72.2 75.3 78.3 81.4 84.4 87.5 90.5 93.6 96.6 99.7 102.7 105.8	1.8 3.0 1.4 2.7 3.1 3.0 3.0 3.1 3.0 3.1 3.0 3.0 3.1 3.0 3.0 3.1 3.0 3.0 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	753 139 274 6615 1011 312 847 1887 205 249 72 776 933 153 11 7 7 126 5 5 37 606 153 416 15	0.001 .001 0.001 0.006 0.002 .001 .001 0.001 0.001 0.001 0.002 0.003 .001 0.001 0.001 0.001 0.009 0.001 0.001 0.001 0.001 0.001 0.001	0.5 <.3 <.3 5.7 0.7 0.3 0.7 0.9 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3	

APPENDIX 3 - ASSAY CERTIFICATES

~ - - - · ·

,

ć

AA				31 01	100	LTD.		0.	-	· ·	3. j	·	gar -	(\cdot,\cdot)	SIS	1 - S	yeter (IR6 ATE										253	N J	N ational American Strength S
ft		200			Ly	sand	ler	Go	<u>1</u> d						AL Vanco					557		Pag	e 5							Ľ	Ľ
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppn	Mn ppm	Fe %	As ppm	U mara	Au ppm	Th ppm	Sr ppm	Cd ppm	Sło ppm	Bi ppm	V ppm	Ca %	P 7.	La pon	Cr ppm	Mg %	Ва ррт	Ti X	B ppm	Al %	Na %	К %		Au* ppb
01001 -80 01002 -80 01003 -80 01004 -80 01005 -80	3	13014 17516 12714 2645 713	16 22 18 18 9	217 247 225 305 163	5.1 7.2 6.6 .4 <.3	24 20 13 11 12	23 16 25	1679 1829 1227 2362 1734	4.36 3.51 4.93	7 4 5 2 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	14 4 15 2	197	3.5 3.0 2.2 2.4 1.4	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	184 145 181	2.17 1.50 1.64 2.30 .92	.476 .449 .370	73 58 60 49 24	21 18 10	1.42 1.18 1.02 2.01 1.24	151 99 82 89 99	. 14 . 08 . 06 . 08 . 05	<3 3 <3	1.65 2.19 1.59 2.18 2.22	.02 .02 .02 .02 .02	.29 .16 .10 .11 .05	3 2 2 2 2 2 2 2 2	530 521 322 94 47
01006 -80 01007 -80 01008 -80 01009 -80 01010 -80	3 <1 8 3 <1	583 428 28 3383 104	5	162 213 236 525 139	<.3 <.3 <.3 .8 <.3	23 27 11 24 118	46 21 43	1648 2684 3631 3539 1321	4.71 3.93 6.02	2 <2 <2 3 <2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 11	228 150 130 58 132	1.3 3.3	<2 <2 <2 <2 <2 <2 <2	< < < < < < < < < < < < < < < < < < < <	186 112 217	1.40 1.74 1.63 3.35 1.42	.364 .133 .213	25 33 19 40 17	26 13 24	1.55 2.01 1.62 3.13 3.43		.09 .10 .03 .17 .28	র জন্ড জ	2.20 1.68 3.15 3.26 2.36	.01 .02 .01 .01 .02	. 14 . 23 . 10 . 16 . 65	<2 <2 3 <2 <2	18 20 16 64 21
01011 -80 04001 -80 04002 -80 04003 -80 04003 -80	<1 <1 4 3 <1	313 124 221 294 576	40004	205 158 96 125 264	<.3 <.3 <.3 <.3 <.3	80 70 90 69 50	57 32 33	1489 1289 962 1276 1876	9.50 6.89 6.40	2 <2 <2 <2 2 2	হ হ হ হ হ হ	<2 <2 <2 <2 <2	6 2 ~2 2 2 2	202 67 144	1.9 1.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	330 255 214	2.30 2.55 .94 1.00 1.50	.806 .201 .256	19	80 224 171	2.10 2.76 2.40	111 88 120 192 146	.17 .13 .26 .24 .19	⊲ ⊲ ⊲	1.79 1.66 2.10 2.14 2.37	.03 .02 .01 .03 .03	.52 .56 .08 .50 .67	<2 <2 <2 <2 <2 <2	10 1 3 6 10
04005 -80 04006 -80 04007 -80 104008 -80 104008 -80	<1 <1 <1 <1 1	102 95 69 78 109	र उ र उ र र र र	109 133 140 132 175	<.3 <.3 <.3 <.3 <.3	80 92 78 105 79	44 44 49	1238 1277 947 1630 1518	6.95 7.15 5.86	<2 <2 <2 2 2 2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 2 4 2	224 170 343 163 191	1.8 2.0 2.3 2.1 1.9		<2 <2 <2 <2 <2 <2	205 219 149	1.71 1.35 2.58 1.58 1.70	.304 .678 .394	20 44	76 304	2.53 2.68 2.47 5.59 2.53	150 157 31 178 117	.16 .19 .13 .18 .13	<3 <3 <3	1.89 2.08 2.21 2.54 2.18	.02 .02 .01 .02 .02	.43 .48 .12 .70 .37	<2 <2 <2 <2 <2	3 2 5 3 6
104010 -80 104011 -80 104012 -80 RE 104012 -80 104013 -80	<1 <1 1 1 <1	223 161 274 276 51	5 <3 8 7 <3		<.3 <.3 <.3 <.3 <.3	68 86 37 38 84	42 19 19	1793 1130 688 697 1178	7.58 5.05 5.17	5 2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	5 3 <2 <2 2 2	122 150 186 194 298	2.5 2.5 .8 .9 1.9	<2 2 <2 <2 <2 <2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	234 195 200	1.77 1.71 1.13 1.14 1.68	. 332 . 135 . 136	27	228 129 131	2.00 2.56 1.22 1.23 2.70	71 85 69 71 147	. 12 . 21 . 10 . 10 . 17	<3 <3 <3	1.92 2.06 1.48 1.50 1.92	.02 .02 .01 .01 .02	.20 .31 .06 .06 .39	<2 2 2 2 2 2 2 2 2	41 10 41 32 8
104014 -80 104015 -80 104016 -80 104017 -80 104017 -80 104018 -80	<1 <1 <1 1 <1	729 360 95 77 547	11 4 <3 <3	106 156 185	<.3 <.3 <.3 <.3 <.3	83 60 84 28 86	33 4 3	1244 844 1451 1246 894	7.58 6.84 6.28	<2 <2 <2 <2 <2 <2	\$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 2 2 3 2 2 3	157 143 29 183 149	2.5 2.0 2.1	<2 <2 <2 2 2 2	<>> <> <> <> <> <> <> <> <> <> <> <> <>	254 198 206	1.18 1.69 .61 1.15 1.52	.466 .112 .138	20 25 9 11 25	139 355 86	1.72 1.46 2.89 1.94 2.12	55 72 47 91 77	- 17 - 16 - 26 - 18 - 19	<3 <3 <3	1.91 1.57 2.37 2.78 1.89	.02 .02 .02 .01 .01	.21 .27 .34 .17 .42	<2 <2 <2 <2 <2 <2 <2	6
104019 -80 104020 -80 104021 -80 104022 -80 104023 -80	4 2 <1 5 3	1661 184	3 10 <3 22 15	119 261 140	<.3 1.1	12 35 92 105 157	17 34 32	2491 873 1652 745 1234	3.50 6.32 7.03	<2 <2 6 <2 <2	<5 <5 <5 <5 <5	<2 <> 5 <> 2 <>	<2 <2 4 <2 2	225 78 667 33 41	1.9 2.4	<2 <2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2 2 2	110 235		.116	13 12 41 8 18	80 383 232	1.66 1.58 2.44 2.57 2.96	55 273 106	.04 .12 .19 .26 .25	ব ব্য ব্য	3.74 2.26 2.62 2.40 2.57	.01 .02 .02 .03 .02	.13 .06 .40 .17 .83	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	796 252 5
STANDARD C2/AU-S	22	64	36	145	6.4	76	38	1192	3.91	43	21	8	39	53	20.4	17	20	77	54	.097	43	68	1.03	211	.08	27	2.11	.07	. 15	11	50
DATE REC	ינייי	TKIS - SA <u>Sam</u> co	LEACI MPLE	K IS K TYPE: eginn	TALUS	PLE IS NL FOR FINE RE' ar ATE	MN S e Re	FE SR AU* runs	CAP - IGI an <u>d 'l</u>	LA CH HITED, RRE' A	MG B AQUA Are Re	A TI -REGI	BWA A/MII <u>Rerur</u> /	ND L. SK EX <u>SS.</u>	T 95 D IMITED TRACT, SI	for GF//	NA K VA FII	AND	AL. D)							TIFIED	B.C.	ASSA	YERS	

				Lу	sar	ıde	r G	old	1 Co	rp.	. F	RO	JĒC	T I	PAL	E	FILE	# 9	6-35	557							Pa	ge	6	ACHE ANNA
SAMPLE#	Mo ppm			Zn ppm		Ni ppm	Co ppm	Mn. ppm.		As ppm	-		Th ppn			Sb ppm	Bi V ppmrppm		P %	ia ppm	Cr ppm		Ba ppm		B	Al X	Na %	к х	N N ppm p	
104024 -80	2	7550	14	303	1.3	42	42 3	263	6.66	6	<5	<2	3	288	2.3	<2	<2 235	.77	.222	14	38	2.65	225	.23	33	5.47	.01	.76	<2 '	91
104025 -80	1 1	3061	4	200	.3	46	23 1	171	5.93	4	<5	<2	Z	269	1.2	<2	<2 248	.82	.177	9	184	2.81	145	.32	32	2.64	.02	.82	<2	39
104026 -80	2	204		109					3.01	<2	<5	<2	<2	117	.3	<2	<2 141	.35	.057	5	31	1.06	60	.17	उ द	2.08	.01	.05	<2	14
104027 -80	13	3303									<5						<2 329												<2.2	63
104028 -80	1	1843							6.72							2	<2 226	1.47	.380	23	91	1.86	94	. 17	ও 2	2.30	.02	.32	<2	70
104029 -80	2	408	10	137	<.3	35	27 1	295	5.81	<2	<5	<2	<2	712	.5	<2	<2 203	1.10												34
104030 -80	<1	1588	6	275	.4	69	64 Z	262	7.22	2	<5	<2	2	258	2.6	<2	<2 251	3.17	.715	38	89	4.87	715	. 16	33	5.77	.02	1.07	<2	49
104031 -80	<1	402	3	177	<.3	69	41 1	648	7.01	2	<5	<2	2	115	1.4	<2	<2 232	1.65	.397	23	167	2.45	127	. 18	ব ট	2,34	.01	.33	<2	17
104032 -80	<1	512	<3	155	<.3	103	50 1	096	7.48	2	<5	<2	3	215	1.9	<2	<2 191	2.12	.561	- 36	255	3.20	87	.23	33	2.68	.02	.58	<2	8
104033 -80	Z	447	17	160	<.3	58	36 1	137	6.62	4	<5	<z< td=""><td><2</td><td>149</td><td>1.1</td><td><2</td><td><2 223</td><td>1.51</td><td>.361</td><td>20</td><td>139</td><td>2.53</td><td>183</td><td>.17</td><td>37</td><td>2.20</td><td>.02</td><td>- 44</td><td><2</td><td>25</td></z<>	<2	149	1.1	<2	<2 223	1.51	.361	20	139	2.53	183	.17	37	2.20	.02	- 44	<2	25
104034 -80	4	2705	16	449	.7	75	53 Z	231	7.58	<2	<5	<2	3	144	4.4	<2	<2 242	2.14												42
RE 104034 -80	(s	2588	20	437	.8	73	53 2	184	7.54	4	<5	<2	- 4	141	3.6	<5	<2 239	2.18										.97	<2	35
104035 -80	3	14456	22	385	3.3	57	43 2	369	7.82	3	<5	<2	4	194	4.2		<2 293		.354										2 3	85
104036 -80	10	1474	<3	151	<.3	75	58	936	10.36	<2	<5	<2	<2	418	3.6	<2	<2 370	4.05											<2	44
104037 -80	4	3276	Z0	309	1.0	27	32 2	325	5.99	3	<5	<2	5	260	1.9	<2	<2 212	1.88	.226	23	42	2.27	113	.12	ও	2.33	.04	.32	<2	04
104038 -8D	5	2859	14	267	<.3	90	45 1	913	5.95	<2	<5	<2					<2 177													
104039 -80	1 1	657	7	191	<.3	57	48 1	517	7.86	<2					1.8		<2 278												2	
104040 -80	5	7198		368					6.27						2.6		<2 205											.55		
STANDARD C2/AU-S	22	61	41	140	6.4	72	37 1	203	3.95	46	21	8	37	50	19.5	16	18 74	.56	. 097	- 41	69	. 99	198	.07	25	1.99	.06	- 13	12	44

· · .

.

1

÷

T T

14 A. 1

										<u>Co</u> 117	20	355	Burr	rard	St.	, Va	กรอบ	verd	SC V6	C 2G8	l Sizie				<u></u>				949 -				· · ·		<u>i</u>
AMPLE#	Mo ppm	Cu ppm	Pb ppm						Fe %	As ppm	U ppa	Au ppm	Th ppm	Sr ppm	Cd PPm	Sb ppm	Bi PPm	V ppm	Ca X	P X	La	Cr ppm	Mg %	Ba ppm	Ti X	B	Al 2	Na X	к % г	W ppm p	rt p <u>m p</u>	rig S pol pr	se pra p	pun p	Ga Spm
01012 -20 01013 -20 01014 -20 01015 -20 01016 -20	<.1 <.1 .1 <.1	39.7 9.6 15.4 26.3 19.2	1.1 1.2 4.9	8.6 8.2 9.9	53 48 154	3 4 4 3 1	4 4 3	126 154 190	.16 .16 34	<.5 <.5	ণ্ড ৎ ণ্ড	<.1 <.1 < 1	<1 <1 <1	125 68 42	-01 -04 -08	<.2 <.2 <.2	<.1 <.1	13 15 25	.55 .42 .40	.025 .050 .038	2 4 8	5 7 17	-13 -10 -03	131< 92< 138<	.01 .01 .01	<2 <2 <2	.14<. .16<. .24<.	01 . .01 . .01 .	.01 .01 .01	<2 < <2 < <2 < <2 < <2 < <2 <	.2 .2 .2	<2 <. 3 <. 3 <.	.3 < .3 < .3 <	.2 < .2 <	<.5 <.5 <.5
01017 -20 02001 -20 02002 -20 02003 -20 02003 -20	.1	12.4 1135.4 424.1 12759.1 566.9	3.8	11.6	339 198	2	4 4 20 3	357	.28 .21	3.4	<5 <5	.1 <.1	<1 <1	58 40	.24	<.2 <.2	.5 <.1 8	11 9 71	.38 .28	.050	5 5 25	4 2 5	.07 .05 .17	37< 21< 94<	.01 .01	<2 <2 9	.11<. .09<. .72	.01 .01<. .01	.01 .01 .01	2 <	.2	12 <. <2 <. 32 <	.3 .3 .3 3	• 6. • 2. • 2.	<.5 <.5 .6
102005 -20 102006 -20 102007 -20 RE 102007 -20 102008 -20	.1 .1 .1 .1 .1	51.4	3.0 3.4	16.1	136 148	1 8 7	3 8 7	287 888	.41	<.5 .5	<5 <5	<.1 <.1	<1 <1 -1	83 150 145	.07	<.2 <.2	<.1 < 1	9 34 32	-84 -83 -81	.009	7 8 7	2 11 12	.03 .18 .17	40< 119< 112<	.01 .01	<2 <2 <2	.27<. .42<. .39<.	.01 .01 .01	.01 .01 .01	<2 <	:.2 :.2 :.2	4 < 4 < 7 <	3 < 3 < 3 <	: 2 : 2 : 2	<.5 <.5 .5
102009 ~20 102010 ~20 102011 ~20 102012 ~20 102012 ~20 102013 ~20	<.1 <.1 <.1 <.1	185.8 7.7 23.5 70.2 125.7	1.0 1.2 1.3	7.4 8.3 16.4	46 161 138	4 3 3	3 3 3	233 142 260	.16 .18 26	<.5 <.5	<5 <5	<.1 <.1	<1 <1 <1	73 67 57	.04 .04 .08	<.2 <.2	<.1 <.1	8 13 9	.43 .31 .42	.026	2 3	6 4 5	.13 .08 .12	105< 30< 38<	:.01 :.01 :.01	<2 <2 <2	.13<. .11<. .21<	.01 .01 .01	.01 .01 .01	<2 < <2 < <2 < <2 < <2 <	<.2 <.2 <.2	<2 < 4 < 7 <	:.3 < :.3 < :.3 <	< 2 · < 2 · < 2 ·	<.5 <.5 <.5
102014 -20 102015 -20 102016 -20 102017 -20 102018 -20	<.1 <.1 <.1 <.1		2.7 .9 .9	12.7 9.1 5.8	255 <30 <30	1 3 2	532	110 133 94	.11 .12	.5 <.5	<5 <5	<.1 <.1 < 1	<1 <1 <1	35 44 47	.25	<.2 <.2 <.2	2 <.1 2 <.1 2 <.1	5 5 4	.28 .34 .32	.071 .051 .079	4 3 3	2 3 2	.04 .09 .07	16< 24< 16	<.01 <.01 <.01	<2 <2 <2	.10< .08<	.01 .01 .01	.01 .02 .01	<2 < <2 < <2 < <2 < <2 <	<.2 <.2 <.2	3 < 2 < <2 <	:.3 < :.3 < :.3 <	< 2 < 2 < 2	<.5 <.5 <.5
102019 -20 102020 -20 102021 -20 102022 -20 102022 -20 102023 -20	·<.1 ·<.1 ·<.1 ·<.1 ·<.1	35.1 11.7 35.7	1_1 .6 <.3 5.4 2.4	16.9 13.9 7.2	390 <30 98	1 2 1	2 2 4	179 224 728	.16 .10 .22	<.5 <.5 <.5 <.5 <.5	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	80 50 45	16. 01.> 15.	<.2 <.7 <.2	2 <.1 2 <.1 2 <.1	9 8 11	.46 .35 .24	.030 .061	1 4 1 5 5 7	9 4 3	.05 .05 .03	40• 15• 95•	<.01 <.01 <.01	<2 <2 <2	.15< .10< .28<	.01 .01 .01	.02 .01 .01	<2 < <2 < <2 < <2 < <2 <	<.2 <.2 <.2	> د 4 < 8 <	۰ د.› • 3.› • 3.›	<.2 <.2 <.2	<.5 <.5 <.5
102024 -20 102025 -20 102026 -20 102027 -20	.1 .1 <.1 .1	135.5 13.8 4.5 2027.9	1.2 4.2	20.7 10.7	7 48 96	3	3	216	-21	<.5 <.5 <.5 <.5	<5 -5	<.1	<1	57	.09	<	2 <.1	20 10	. 47	.044	; 5 ; 3	8	.08 07	28- 33-	<.01	<2 <2	.16<	.01 .01<	.01	<2 <2 <2 <2	<.2 <.2	6 < 8 <	<.3 · <.3 ·	<.2 <.2	<.5
E09	MN FE	RAM SAMI SR CA P ND GA A YPE: SE	LA C	R MG	BA T	1 B V 1 T H M	I AND	EIMU	TED JAT 3	FOR N. 36 ANI	A K DAN	GA A: ALYS	ND A ED B	1. S 7 IC	IDLUT	ION	ANAL ATED	YSED DETEI	DIRE CTION	CTLY I LIM	BY I ITS F	CP. OR S	MO AMPL	cu pi Es ci	DNTA	in a	J,P8,	ZN,A	(S>15	SUU PI	PM,Þ	e>207	٤.		

A AMI YTICA					Ly	sar	ide:	r G	old	ıc	orp.	PF	OJI	ECT	PA	L.	F	ILF	5 #	96	-35	57						P	ag	≥ 8		A	
SAMPLE#	Mo		Pb ppm								U Au pom popr												Ba Ti pon X										
102028 - 20	1.1	406.9	3.7	16.2	126	Z	11	1078	.25	<.5	<5 <	. 1	66	.43	<.2	.1	17.	.34	.012	5	3.	03	99<.01	<2	. 15<.	01.	01	<2 <	.2	3 <	3 <.	2 <.5	5
102029 - 20		1189.5									<5 <																						
102030 -20		207.6				1	1	108	.07	<.5	<5 <.	<1	31	.13	<.2	.1	2.	.20	.066	3	2.	03	23<.01	<2	.05<.	01 .	01	<2 <	.2	<5 <	.3 <.	2 <.!	5
102031 -20	<.1	148.8	2.3	9.7	155	Z	2	82	- 12	<.5	<5 <.	<1	36	.20	<.2 <	. 1	3.	.33	. û37	2	Ζ.	60	31<.01	<2	.09<.	01 .	01	<2 <	.2	<2 <	.3 <.	2 <	5
102032 -20	1	1091.7	3.8	7.8	161	1	3	320	. 15	2.2	<5 <.	<1	23	.39	<.2	.2	5.	.20	.067	6	2.	01	24<.01	<2	.08<.	01<.	01	<2 <	.2	3 <	.3.	4 <.	5
102033 -20		492.2	.	17 7	11/	,	2	104	10	5	<5 <.	1	34	30		< 1	٦	74	050	٦	,	n4.	27<.01	0	.06<	01	n 1	<2 <	.2	2 <	3	2 <	5
102033 -20		931.8									<5 <.												37<-01										
102035 -20		65.3				_					<5 <												33<.01										
102036 -20		179.5				1					<5 <.												49<.01										
102037 -20		193.5				4					<5 <.												58<.01										
102038 -20		324.4	7 4	0.7	318	•	7	207	18	~ <	< 5 <.	1 -1	59	nσ	< 7 e	e 1	4	31	n 2 8	6	3	06	57<.01	. ≺ 2	14<	01	01	~ ~	2	5 <	3 <	2 <.	5
102038 -20		24.4			83		1				<5 <.								.078				51<.01										
RE 102039 -20				6.4			÷				<5 <.			•			-		.072				47<.01										
102040 -20		47.9					i				<5 <.												20<.0										
102040 -20		13.1				-					<5 <.												14<.0										
			-	. /	74	-	,				. .		/0	10			ε	75	-019	2	7	10	56<.0°		174	01	01	~ · ·	~	· · · ·	z .	· ·	5
102042 - 20		29.4									<5 <.								-019				50<.U										
102043 -20		235.2									<5 <.								-037				65<.01										
102044 -20		446.6				-					<5 <.								.035				39<.0										
102045 -20		3518.3									<5 <. <5 <.								.035				35<.0										
102046 -20	<.1	453.5	d.U	15.8	249	1	4	421	• • •	`. >	~ J ~ .	1 < 1	44	.24	1.2	` .'	0	تعد	.040	د	2.	.00	JJ ~ . U	1 ~4	.07				• ←	- `			-
102047 -20	<.1	685.1	10.9	22.0	904	2	6	788	.25	<.5	<5 <.	1 <1	109	.47	<.2 <	<.1	9	.43	-035														
102048 - 20		145.8					4	227	.14	<.5	<5 <.	1 <1	46	.12	<.2 <	<.1	9	.30	.038				57<.0										
102049 -20		190.5					2	112	.10	<.5	<5 <	1 <1	39	.08	<.2	.1	5	.35	.060				33<.0										
102050 -20		16.5				2	3	137	.10	<.5	<5 <.	1 <1	34	.04	<.2 <	<.1	7	24	.056	2	2.	.06	53<.0	1 <2	.07<	.01 .	.01	<2 <	.2	3 <	.3 <	.2 <.	5

EE	- 20 142 142				<u>Lys</u>				<u>.</u>	_112	ю 20-	355	Bur	rard	St.	, Var	ncour	/er	9C V6	C 268	<u>آ</u>				ige										
 MPLE#	Mo ppm		Pb ppm		Ag ppb				Fe X	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V PPm	Ca %		La ppm				ті *			Na %			Τί ppm				
01012 -80 01013 -80 01014 -80 01015 -80 01015 -80 01016 -80	.1 .2 .6 .2 .5	381.6 76.6 84.9 164.7 172.1	4.5 6.9	51.5 58.2	182 222	37 32	22 19	698 607	1.53	<.5 1.4	<5 8	.1 <.1	<1 <1	334 241	.03	<.2 <.2	.3 .1 .7	75 98 120	1.38	.320	22	55 61 103	.86 .85	23Z 410<	.01 .01 .01	<2 <2 <2	.06	.01	.05	<2 <2	<.2 <.2 <.2	25 29	.3	<.2 <.2 <.2	2.
01017 -80 02001 -80 02002 -80 02003 -80 02003 -80 02004 -80	.5	5044.6	13.3 10.6 25.4	64.2 144.1	1078 750 604	18 13 6	16 12	1184 914	1.71	3.3 2.6	<5 <5	.2	<1 <1	213 130	.63 .37	<.2 <.2	.2	68 51 75	1 4 1	.344	31 25 27	29 17 10	.58 .49 .51	57	.01 .01 <.01	<2 <2 <2	.64 .62 .92	.01	.04 .03 .02	<2 <2	<.2 <.2 <.2	21 40	<.3 <.3	.5 3.8	5 1 3 1
02005 ~80 02006 ~80 02007 ~80 02008 ~80 E 102008 ~80	.5 .3 .2 .5 .3	138.7	10.1 7.4 6.9	46.6 69.5 52.5	256 294 89	6 29	6 12	414 567	1.16	1.4	6	<.1 <.1	<1 <1	135 241 121	.13	<.2	<.1 .3	74 125 73	1.07	.130 .049 146	26	17 60 31	.25 .94 .40	156	<.01 .01 <.01	<2 <2 <2	.99 1.37 .67	_01 _01	.02 .02 .03	<2 <2 <2	<.2 <.2 <.2	16 <10	<.3 .3	<.2 <.2	2 2 2
02009 -80 02010 -80 02011 -80 02012 -80 02013 -80	.3 .1 .3 .1 .2	57_6 184.0	4_2 7.5	110.1 55.4 73.5 85.5 89.2	193 1215	39 28	22 20	962 715	1.41	.9 2.0	<5 10	<.1	<1 <1	277 273	.12	<.2	<.1 .4	58 83 54	1.68	.340 .382. 141	21 29 40	64 41 33	1.19 .88 75	228 95 82	.01 .01 <.01	<2 <2 <2	.98 1.06	.01	.05	<2 <2	<.2	20	<.3 <.3	<.2	2 2 2
02014 -80 02015 -80 02016 -80 02017 -80 02018 -80	<.1 .1 <.1 .1 <.1	927.2	10.6	50.3 75.1 59.8 38.1 83.2	555 62	17 27	17 16	438 572	1.12	2.2	<5 <5	<.1 <.1	<1 <1	155 189 270	.64 .14	<.2 <.2	.2 .2	36 32 22	1.63 1.11 1.39 1.46 1.45	.440	1 21 1 24 7 30	21 30 21	.48	52 66 36	.01	<2 <2 <2	.92	.01	.09	<2 <2 <2	<.2 <.2 <.2	<10 27	<.3 <.3 <.3	< 2	2 1 2 1 2 1
02019 -80 02020 -80 02021 -80 02022 -80 02023 -80	.1 <.1 .1 .2 .2	225.5 107.0	5.0 8.5	73,5 57,1 76,3 73,3 90,8	2454 340	16 23	10 14	394 724	1.57	7 2.9	<5 <5	<.1 <.1	<1 <1	251	.41	<.2 <.2	<.1	56 55 60	1.11	275	5 24 1 31 5 22	85 39 24	.61 .72 59	105	<.01 2.01 <.01	<2 2 <2	.86 .86	.01	.04	<2 <2 <2	<.2 <.2 <.2	17	<.3 <.3	s < s <	2 1 2 1
02024 -80 102025 -80 102026 -80 102027 -80	.4 .6 <.1 .4		5.9	58.3 90.9 89. 99.	205	22	16	802	1.89	99.6	7	<.1	<' <'	201	.33	<.2	.2	. 111 64	1.44	2.284	+ 20	5 03 5 41	.92	77	7 .02	12	1.15	.01	.02	<2	<.2	<10) <.3	s <	2 3
FOR HG	MIN F	GRAM SAU E SR CA AND GA TYPE:	P LA ARE E	CR MG	DA T1	(6 W (тн м	AND	LIMI ALIQU	TED AT 3	FOR N 36 AN	A K D AN	GA / IALYS	AND / SED I	AL. 9 37 10	SOLU1 CP. 6	ION ELEVA	ANAL ATED	DETE	CTIO		BT	L.P.	- 5 U U	.U PE	3 ZN . DNTAI	AG AS N CU,	S AU ,PB,Z	CD S N,AS	38 BI S>150	TL O PP	'n,Fe	ל20:	٤.		

. T

HE ANALYTICAL					Lу	san	de:	r G	old		prp	. 1	PRC	JE	CT	PA	L	FII	ĿE	# 9	6-3	55' 	7						Pa	ge	10			
AMPLE#	Mo IPPm	Cu ppm	Pb ppm		Ag ppb										Cd ppm				Ca X		La ppm p			Ba 1 ppm										
02028 -80	.7	1341.1	14.2	56.4	418	11	24	2036	1.62	4.8	<5	<.1	<1	160	1.07	<.2	.1	90	.79	.172	18	20	.30	191<.(01	4.5	9.0	1.04	4 <7	2 <.2	27	i .3	.6	٤.
02029 -80	2	4976 N	68	77.7	1087	21	13	800	1.22	6.9	<5	<.1	<1	176	.79	<.2	.8	- 34 - 1	1.05	.270	30	20	.59	134 .(01	2.5	9.0	1.04	4 <2	2 <.2	2 45	5 <.3	1.8	۲.
02030 -80	.1	1430.4	7.7	38.6	936	10	7	340	.64	6.1	<5	<.1	<1	190	.64	<.2	< 1	18	1.20	.551	27	15	.38	8/<.(31 <	د. ک	5.0	1.0	• < / /		1	د.> ، 7 ، ،	.ŏ.	٠,
02031 -80	<.1	959.2	11.3	57.0	723	Z2	12	479	1.32	2.6	<5	<.1	<1	141	.96	<.2	<.1	20	1.32	.336	15	17	.0/	914 0	U I 0.1	2.0	7 .U 7 .U	1.0	+	· · · ·	2 75	s <.3 8 <.3	1 6	1.
02032 -80	1.1	4491.5	8.5	48.8	479	8	1	803	1.00	٥.د	<>	<.1	<1	108	1.00	<.2	. 2	Эł	.00	, 200	20	15	.21	017.1		2 .4	4.0	1.0	* *	1 144		,	1.0	
02033 -80	2	2554.5	10 7	137 4	615	18	11	488	1.09	3.3	<5	<.1	<1	134	1.58	<.2	<.1	30	1.04	.340	20	21	.46	84<.1	01 <	2.4	5.0	1.0	3 <	2 <.1	2 25	i <.3	1.4	1.
02034 -80	र	3616 5	0 N	156.1	859	23	13	62D	1.19	2.2	- 5	<.1	<1	144	1.78	<.2	<.1	- 34 - 1	1.12	.317	25	24	.49	- 99< .1	01	3.5	Ζ.0	n .u	5 <i< td=""><td>2 <.2</td><td>2 40</td><td>1 <.3</td><td>1.0</td><td>1.</td></i<>	2 <.2	2 40	1 <.3	1.0	1.
02035 -80	.2	468 5	01	65.7	529	17	19	808	1.13	1.9	<5	<.1	<1	130	.45	<.2	<.1	35 1	1.36	.411	17	19	.77	99 .1	01 <	2.6	0.0	1.5	Z <	2 <.2	2 12	2 <.3	.2	1.
02036 -80	.2	607 3	13 3	53 0	1392	12	12	796	1.25	3.2	<5	<.1	<1	100	.56	<.2	<.1	37	.92	.277	29	23	.39	100<.0	01 <	2.5	9.0	1 .0	5 <7	z <.2	2 33	5 <.3	.2	1.
02037 -80	.1	488.0	5.9	86.3	839	25	22	1217	2.09	2.3	<5	<.1	<1	134	.52	<.2	<.1	54	1.30	.215	23	32	.80	94<.1	01 <	2.6	3<.0	1.0	4 <	2 <.7	2 30	\$ <.3	<.2	1.
		798.1		E7 0	047		15	422	1 7 1	7 /	5		~1	1/2	76		1.0	1.1	50	263	24	22	70	100	01 <	2.6	8 1	0. 1	4 <	2 <.'	2 2/	4 < 3	.5	2
02038 -80 02039 -80		171.5	0.0 / D	52 6	376	18	12	740	1 20	17	-5	< 1	<1	126	.15			38	1.14	.359	19	22	.67	133	01 <	2.7	0.0	1 .0	2 <	2 <.	z ži	3.3	<.2	2.
02039 -80		373.6				9	•	451	1.24	3.7	<5	<.1	<1	90	.21	<.2	<.1	49	.75	.325	15	16	.26	65<.	01 <	Ζ.3	6.0	01 .0	3 <	2 <.2	2 <10	0 <.3	<.Z	
E 102040 -80	1	348 8	11 8	32.1	240	9	0	456	1.21	3.3	<5	<.1	<1	89	.20	<.2	<.1	48	.73	.311	14	16	.26	_65<.I	01 <	2.3	is .C	1 .0	3 <	2 <.2	21'	1 <.3	-4	- 2.
02041 -80	.1	144.6	12.7	60.5	255	12	10	524	1.12	2.2	<5	<.1	<1	84	.10	<.2	.5	38	.69	.302	14	14	.44	70 .	01 <	2.6	8.0	11 .0	2 <	2 <.7	2 <10) <.3	<.2	1.
	1	159.6			77		• 4	104	1 40	1 0	-6	. 1		115	10		2	30	0/.	167	12	20	1 17	118	n1 .	2.5	1 > חו	11 .0	- 13 <	2 <	2 <1	a د.?	i <.7	• •
02042 -80 02043 -80	<.	1028.4	10.2	20.5	530	20	16	500	1 38	2 n	-5	< 1	<1	218	.80	<.2	<.1	44	1.23	.267	21	23	.83	146<.	01 <	2.6	6.0	0. 10	3 <	2 <.	2 10	5 < 3	4	2.
02044 -80	i 1	2082.9	34 5	132 3	1016	22	74	1186	1 88	3.0	<5	1	<1	148	1.03	<.2	. 4	50	1.18	.243	- 16	24	.95	153<.	01 <	2.6	9.0	01.0	15 <	2 <	2 2	9 <.3	5.8	51.
02045 -80	< 1	12707 6	77 2	133 4	6812	9	16	1636	1.44	2.3	<5	- 9	<1	114	2.87	1.1	.2	- 36 -	.70	.251	15	- 9	.53	- 94<.	01	25	ı, γ	ก.0	10 <	21.	4 SI	8 <.1) 9.6	╯<.
02046 -80	< 1	2800.2	25.2	91.8	942	10	12	941	1.26	2.4	<5	<.1	<1	110	.88	<.2	<.1	38	.68	.218	15	13	.54	81<.	01	7.5	i6 .(01 .0	3 <	2 <	2 <1	0 <.3	1.4	2.
	1.	2741.3	~ 4		17/0	15	1/	9/6	1 /5	17	~5	. 1	c1	10/	97	. ,	4	۷.	76	143	12	17	79	189	ถา 🔹	2.1	9.6		16 <	2 <.	2 1	7 <.?	i 1.5	i 1.
02047 -80 02048 -80	1.1	2/41.3 943.5	4.0	57 3	505	15	15	658	1 28	1 7	~5	< 1	<1	122	.36	<.2	< 1	56	1.02	.291	14	25	.63	120	01 4	2	4<.1	1 .0	4 <	2 <.	2 <1	0 <	7	1
02048 -80	1 1	1186.7	7 1	54.7	327	15	11	387	1.00	1.3	<5	<.1	<1	118	.37	<.2	<.1	33	1.11	.340	12	Z6	.6Z	79.	01 •	Ζ.	51 .0	31.0	14 <	:2 <.;	2 <1	0 <	5.4	× 1,
02050 -80	1	192.2	8.8	40.0	204	14	14	541	1.00	1.1	<5	<.1	<1	124	. 15	<.2	.4	41	.99	.361	15	22	.59	141 .	01 •	2.4	÷2 .I	01_0	i5 <	2 <.	2 <1	0 <.3	\$ <.7	2 1.

Sample type: SEEPAGE, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

.

• • •

•

T

1

		Lys	and	er (GEOC <u> Cor</u> 11	p	PRC	JEC	יין י <u>ר</u> י	PAL	승규요	'il(e #	9.6	-3.	127		Pa	ge	13							Ê
SAMPLE#			Zn Aş opm ppm			Min i ppm						Cd Ppm (р Х (Na 7		N Net	
TF01 103001 -80 TF01 103002 -80 TF01 103003 -80 TF01 103004 -80 TF01 103005 -80	4 10086 <1 50 <1 30	ও 7 ও 1 ও 1	727 <.3 129 <.3 128 <.3	135 120 106	71 1 57 1 48	248 9.1 526 7.1 037 7.1 889 7.4 455 8.1	35 1 26 1' 44 !	3 <5 1 5 5 <5	<2 <2 <2	4 7 2	424 71 197	1.7 <.2 <.2	<2 2 ~2	2 2 <2 ' <2 '	230 2. 158 1. 181 2.	.34 . .58 . .16 .	.453 .276 .591	35 2 20 4 33 2	209 2 80 3 266 2	2.44 3.73 2.81	144 122 103	.21 .20 .20	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.13 2.50 2.00	.02 .02 .02	.46 1.03 .43	<2 2 <2	22 3 3
TFD1 103006 -80 TFD1 103007 -80 TFD1 103008 -80 TFD1 103009 -80 TFD1 103010 -80	<1 72 <1 44 <1 42	ব্র 1 7 ব্য	123 <.3 94 <.3 94 <.3	98 90 90	46 44 43	864 10.1 851 7.1 747 10.1 737 8. 911 10.	89 < 09 < 48 <	2 <5 2 <5 2 <5	<2 <2 <2	2 <2 2	341 345 306	<.2 .2 .4	<2 <2 <2	2 7 <2 7 <2 7	216 2. 280 2. 258 2.	.05 . .46 . .51 .	.499 .677 .685	27 2 35 3 33 2	288 2 315 - 202 -	2.44 1.50 1.71	154 90 113	.20 .14 .18	থ ও ও	2.09 1.76 1.88	.02 .02 .01	.45 .37 .46	<2 <2 <2	1 2 1 8
TF01 103011 -80 TF01 103012 -80 TF01 103013 -80 RE TF01 103012 -80 TF01 103014 -80	<1 87 <1 55 <1 89	4 1 4 1 4 1	131 <.3 138 <.3 133 <.3	5 81 5 89 5 81	47 1 49 1 47 1	800 10. 029 7. 242 8. 043 7. 846 7.	60 < 08 7 79 <	2 <5 2 <5 2 <5	i <2 i <2 i <2	2 <2 2	216 148 220	<.2 <.2 <.2	<2 <2 <2	<2 7 2 7 <2 7	233 2. 242 2. 240 2.	.58 .54 .67	.675 .626 .687	30 29 33	172 222 171	2.30 2.59 2.29	127 149 127	.20 .21 .19	<उ <उ <उ	2.35 2.23 2.36	.02 .02 .02	.40 .50 .40	<2 <2 <2	7 5 2 7 5
TF01 103015 -80 TF01 103016 -80 TF01 103017 -80 TF01 103018 -80 TF01 103018 -80	1 198	ও 1 - ড - ড - ড	118 <.3 159 <. 111 <	59 536 590	35 26 1 35	965 7. 903 8. 074 7. 875 5. 817 6.	39 03 < 86 <	2 <9 2 <5 2 <5	5 <2 5 <2 5 <2	<2 2 3	142 74 86	<.2 <.2 <.2	<2 <2 2	<2 : <2 : <2	313 1. 265 1 191 1	.97 .64 .30	.365 .433 .373	21 22 24	183 76 204	1.99 1.87 2.36	181 139 125	.24 .19 .27	<3 <3 <3	2.05 3.25 2.51	.02 .01 .01	.28 .56 .55	<2 <2 <2	4
TF01 103020 -80 TF01 103021 -80 TF01 103022 -80 TF01 104041 -80 TF01 104042 -80	3 486	13 2 <3 1 37 2	228 < 3 166 < 3 287 - 5	5 30 5 31 7 28	65 5 42 2 38 2	826 6. 574 8. 304 7. 005 8. 428 7.	03 2 89 1 40 2	1 7 2 <9 7 <9	7 <2 5 <2 5 <2	<2 <2 5	196 155 324	<.2 <.2 <.2	<2 2 <2	2 <2 2	305 2 338 2 209 1	.97 .86 .60	.544 .600 .431	30 36 32	36 61 57	2.08 1.72 1.84	571 162 154	.25 .16 .26	<3 <3 <3	2.87 2.55 2.49	01 01 07	.47 .43 .78	<2 <2 <2	18 8
TF01 104043 -80 TF01 104044 -80 TF02 103023 -80 TF02 103024 -80 TF02 103024 -80 TF02 103025 -80	4 1310 2 207 19 937 2 554 2 313	5 · 37 · 14 ·	161 <. 162 102 <.	5 136 5 3 3 6	50 1 21 3 15 1	134 7. 407 6. 286 6. 663 4. 825 5.	83 17 96 <	2 <	5 <2 5 <2 5 <2	4 <2 <2	110 43 55	.4 <.2	2 3 2	<2 <2 <2	217 2 211 166	.20 .70 .73	.550 .148 .270	35 24 14	248 7 12	4.32 63. 62.	123 148 61	.34 .03 .05	<3 <3 <3	2.99 1.58 1.71	.02 .01 .03	1.27 .07 .06	<2 <2 <2	5 51 13
TF02 103026 -80 TF02 103027 -80 TF02 103028 -80 TF02 103028 -80 TF02 103029 -80 TF02 103030 -80	3 481 2 231 2 349 6 182 6 124	9 <3 8	99 < 117 < 85 <	531 567 510	22 1 37 27 1	853 7. 000 7. 803 8. 331 5. 902 4.	18 < 42 < 29 <	2 <5 2 <5 2 <5	5 <2 5 <2 5 <2	<2 <2 2	80 118 30	<.2 <.2 <.2	<2 2 2	<2 <2 <2	269 290 1 147	.80 .33 .60	.211 .371 .190	12 20 13	114 198 16	1.18 2.02 1.05	70 84 115	.18 .18 .12	<3 <3 <3	2.05	.01 .01 .01	.08 .15 .20	<2 <2 <2	14 17 29
THIS - SAM	20 56 500 GRA LEACH IS MPLE TYPE: les beginn	M SAMS PARTI/ TALUS	PLE IS AL FOR S FINE	DIGE MN F	STED W E SR C AU* -	A P LA IGNITE	3-1- CR MG D, AQ	2 HCI BA 1 UA-RE	-HNO FIB GIA/I	3-H20 / ANI / IBK	D AT D LIM EXTR	95 DE	G. C FOR	FOR	ONE AND	HOUR AL	AND				-					.13	16	46

A	Lysander Gold Corp. PROJECT PAL FILE # 96-3940 Page 14
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th Sr. Cd Sb Bi V Ca. P La Cr. Mg Ba Ti B. Al Na K. W.Au* Ippm ppm ppm ppm ppm ppm ppm ppm % ppm ppm
TF02 103031 -80 TF02 103032 -80 TF02 103033 -80 TF02 103034 -80 TF02 103035 -80	3 229 <3
TF02 103036 -80 TF02 103037 -80 TF02 103038 -80 TF02 103039 -80 TF02 103040 -80	1 600 5 119 <.3
TF02 103041 -80 TF02 103042 -80 TF02 103043 -80 TF02 103044 -80 TF02 103045 -80	<1 380 <3 89 <.3 16 23 857 5.49 4 <5 <2 4 37 .3 <2 <2 180 .65 .192 10 21 1.84 122 .17 <3 3.57 .01 .17 <2 8 1 276 11 93 <.3 22 19 673 4.72 7 <5 <2 3 51 .3 2 2 143 .65 .186 13 32 1.19 65 .10 <3 2.94 .01 .06 <2 21 7 413 4 77 .4 10 25 1145 5.61 11 <5 <2 2 56 .3 <2 3 171 .64 .224 14 14 1.03 101 .05 <3 2.59 .01 .06 <2 85 1 158 <3 72 <.3 14 16 552 4.68 2 <5 <2 3 27 <.2 <2 <2 141 .52 .174 12 19 1.13 57 .07 <3 2.87 .01 .04 <2 55 1 134 7 85 <.3 9 17 796 5.85 <2 <5 <2 3 29 <.2 <2 3 158 .43 .252 11 17 1.09 52 .04 <3 3.98 .01 .08 <2 50
TF02 103046 -80 RE TF02 103047 -80 TF02 103047 -80 TF02 103048 -80 TF02 103048 -80	3 158 12 82 <.3 10
TF02 103050 -80 TF02 103051 -80 TF02 103052 -80 TF02 103053 -80 TF02 103054 -80	1 187 7 123 .7 8 18 1071 5.26 <2
TF02 103055 -80 TF02 103056 -80 TF02 103057 -80 TF02 103058 -80 TF02 103059 -80	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
TF02 103060 -80 TF02 103061 -80 TF02 103062 -80 TF02 103063 -80 TF02 103064 -80	2 204 14 92 .4 6 14 1174 4.83 2 <5
STANDARD C2/AU-S	19 59 35 131 6.0 70 34 1108 3.73 40 19 8 34 49 19.0 17 18 69 .54 .102 39 64 .90 195 .08 26 1.86 .06 .13 16 48

| |-|

A A L L L L L L L L L L L L L L L L L L	Lysander Gold Corp. PROJECT PAL FILE # 96-3940 Page 15
SAMPLE#	No Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th Sr Cci Sb Bi V Ca. P La Cr Ng Ba Ti B. Al Na K W Au* ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm
TF02 103065 -80 TF02 103066 -80 TF02 103067 -80 TF02 103067 -80 TF02 103068 -80 TF02 103069 -80	2 313 5 97 <.3
TF02 103070 -80 TF02 103071 -80 TF02 103072 -80 TF02 103073 -80 TF02 103073 -80 TF02 103074 -80	1 1928 14 129 2.2 35 25 755 5.49 <2
TF02 103075 -80 TF02 103076 -80 TF02 103077 -80 RE TF02 103077 -80 TF02 103078 -80	2 594 20 212 .3 17 85 2804 7.46 9 <5
TF02 103079 -80 TF02 103080 -80 TF02 103081 -80 TF02 103082 -80 TF02 103083 -80	10 612 63 140 .9 9 35 2271 7.24 9 <5
TFD2 103084 -80 TFD2 103085 -80 TFD2 103086 -80 TFD2 103087 -80 TFD2 103088 -80	6 487 11 107 .3 10 29 1866 6.17 4 <5
TF02 103089 -80 TF02 103090 -80 TF02 103091 -80 TF02 103092 -80 TF02 103093 -80	5 757 13 116 .3 18 25 1346 5.52 <2
TF02 103094 -80 TF02 103095 -80 TF02 103096 -80 TF02 103097 -80 TF02 103098 -80	15 674 4 107 .3 8 29 1631 5.51 5 <2
STANDARD C2/AU-S	20 58 36 139 6.3 72 36 1131 3.88 44 17 8 34 50 20.0 16 19 71 .54 .105 40 64 .95 193 .08 26 1.96 .06 .13 16 41

1

AAA NOT MALTICAL	Lysander Gold Corp. PROJECT PAL FILE # 96-3940 Page 16
SAMPLE#	No Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th Sr. Cd Sb Bi V Ca. P LB Cr. Mg Ba Ti B Al Na K W Au* ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
TFD2 103099 -80 TFD2 103100 -80 TFD2 103101 -80 TFD2 103102 -80 RE TFD2 103103 -80	3 662 10 121 <.3
TFD2 103103 -80 TFD2 103104 -80 TFD2 103105 -80 TFD2 103106 -80 TFD2 104045 -80	1 515 15 131 .8 7 23 1950 5.82 5 <2
TF02 104046 -80 TF02 104047 -80 TF02 104048 -80 TF02 104049 -80 TF02 104050 -80	19 2519 27 205 .7 32 41 1278 9.07 7 <5
TF02 104051 -80 TF02 104052 -80 TF02 104053 -80 TF02 104054 -80 TF02 104055 -80	10 225 <3
TF02 104056 -80 TF03 104057 -80 TF03 104058 -80 TF03 104059 -80 TF03 104060 -80	4 1907 20 114 1.7 7 20 1838 6.02 4 -5 -2 -2 54 2 -2 194 .92 .242 16 10 .69 70 .05 <3
TF03 104061 -80 TF03 104062 -80 TF03 104063 -80 TF03 104064 -80 TF03 104065 -80	3 330 13 120 <.3
1F03 104066 -80 TF03 104067 -80 TF03 104068 -80 TF03 104068 -80 TF03 104069 -80 TF03 104070 -80	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
STANDARD C2/AU-S	20 55 33 137 6.2 72 35 1124 3.85 45 16 6 35 50 19.7 16 20 72 .54 .101 40 66 .94 197 .08 27 1.94 .06 .13 15 44

÷

		_	Ly	/sai	nder	: Go	old	Co:	rp.	PF	20J.	ECI	[P]	AL	FI	LE	#	96-	394	0							Pag	e :	17	A A
SAMPLE#	Mo ppm			-	lg Ni mappπ								Sr ppm	Cd IPPM (V	Ca %		La ppm p			8a ppm_		8 ppm		Na %	к %		
TF03 104071 -80 TF03 104072 -80 TF03 104073 -80 TF03 104073 -80 TF03 104074 -80 TF03 104075 -80	1	211 315 319	12 2 11 1 5 1	201 <. 196 <. 150 .	.3 13 .3 9 .3 13 .4 12 .3 15	19 21 14	1054 1389 714	5.45 5.58 4.62	3 6 7	<5 <5 <5	<2 <2 <2	<2 <2 2	41 43 107	<.2 .2	<2 <2 2	<2 2 <2 2 <2 7	279 293 199	.70 .83 .69	.201 .229 .221	8 11 13	24 13	1.69 1.54 1.12	75 93 80	.23 .19 .13	<37 <37 <37	2.21 2.05 2.07	.03 .03 .02	.15 .24 .10	<2 <2 <2	56 2 1 2 8
TF03 104076 -80 TF03 104077 -80 TF03 104078 -80 TF03 104079 -80 TF03 104080 -80	1 1 1	164 874 954	11 1 11 1 9 1	159 <. 141 - 1 142 < 1	.4 16 .3 10 .3 21 .3 22 .4 12	21 27 25	811 916 696	5.67 5.96 5.75	<2 7 5	<5 <5 <5	<2 <2	<2 4 4	67	2. <.2 3.	<2 3 2	<2 2 <2 2 <2 2	269 251 234	.68 .67 .67	.244 .207 .232 .203 .293	9 17 16	7 16 18	1.51 1.76 1.64	99 99 123	.25 .19 .19	ଏ : ଓ : ଓ : ଓ :	2.31 3.35 3.16	.02 .01 .01	-26 -26 -16	<2 <2 <2	6 1 2 1 1
RE TFD3 104081 -80 TFD3 104081 -80 TFD3 104082 -80 TFD3 104083 -80 TFD3 104083 -80 TFD3 104084 -80	বা বা বা	137 602	11 1 15 1 7 1	119 <. 172 <. 118 <.	.3 14 .3 13 .3 19 .3 18 .3 20	31 48 26	1124 1543 928	7.51 8.55 6.88	8 6 \$2	-5 -5 -5	<2 <2 <2	4 5 4	39 23 64	<.2 .4 <.2	<2 <2 <2	<2 : 2 / <2 :	300 1 403 1 337	1.15 1.30 .79	.322 .309 .390 .259 .336	17 17 13	9 6 14	4.31	69 62 67	.28 .33 .26	ব ব ব	3.78 4.09 3.55	.01 .01 .01	.11 .40 .11	<2 <2 <2	1 1 1 1
TF03 104085 -80 TF03 104086 -80 TF03 104087 -80 TF03 104088 -80 TF03 104088 -80	<1 <1	723 947	<3 ' <3 ' 12 '	130 <. 131 <. 105 <	.3 10 .3 28 .3 39 .3 10 .3 10	33 41 25	808 916 586	6.64 7.43 6.83	<2 5 9	ৎ ৎ ৎ	<2 <2 <2	4 4 2	30 33 33	<.2 <.2	<2 <2 <2	<2 <2 2	272 [•] 307 • 344 •	1.20 1.48 1.02	-283 .416 .476 .345 .493	15 18 13	25 30 8	3.26 4.03 2.82	83 106 33	.37 .40 .32	ব্য ব্য ব্য	3.62 3.88 3.41	.01 .01 .01	.52 .86 .14	<2 <2 2	1 <1 <1
TF03 104090 -80 TF03 104091 -80 TF03 104092 -80 TF03 104093 -80 TF03 104093 -80	1 1 <1 1	154	11 13 8	79 < 110 < 164	.3 12 .3 12 .3 14 .4 12 .3 19	i 12 25 38	500 841 1780	5.92 6.34 7.92	12 <2 37	<5 <5 <5	<2 <2 <7	<2 3 5	26 33 160	<.2 <.2	3 <2 12	<2 <2 2	258 256 375	.40 .60 1.16	.172 .213 .321	11 16 19	18 11 6	.68 1.05 2.10	43 92 111	.10 .11 .23	<3 <3 <3	2.18 3.27 4.21	.01 .01 .01	.06 .13 .34	<2 <2 <2	<1 1 62
TF03 104095 -80 TF03 104096 -80 TF03 104097 -80 TF03 104098 -80 TF03 104099 -80	<1 1 <1	637 694	10 4 8	123 < 127 < 113 <	.3 1 .3 10 .3 1 .3 1 .3 1	22	1073 888 1117	6.69	9 5 4	5 <5 <5	<2 <2	3 <2 2	124 97 612	<.2 <.2 <.2	<2 <2 <2	<2 <2 <2	308 287 282	.72 .78 .62	.338 .209 .318 .119 .133	12 11 7	4 7 4	.86	72 46 85	.17 .14 .11	ও ও ও	3.27 2.85 3.30	02. 03 0.03	.30 .14 .10	<2 <2 <2	1 1 1 1 <1
TF03 104100 -80 TF03 104101 -80 TF03 104102 -80 TF03 104103 -80 TF03 104103 -80	1	435 491	15 15 15	140 < 141 <	.4 .3 .3 .3	9 21 9 17 7 24	1198 1200 1910	6.60 5.66 6.40	10 3 13	<5 5 6	<2 <2 <2	4 <2 2	72 109 105	.2 <.2 .2	2 <2 <2	<2 <2 <2	334 251 296	1.11 .78 1.17	.193	16 13 12	11 11 8	1.17 .99 1.22	55 62 155	.12 .08 .14	⊲ ⊲ ⊲	2.51 3.25 1.92	04. 04 5 .02 2 .02	.13	<2 <2 <2	1
STANDARD C2/AU-S	19	57	40	130 6	.0 6	3 33	1070	3.67	39	17	6	32	47	18.4	17	17	69	.54	.099	38	59	-90	185	.08	27	1.85	.06	.12	15	44

:

1

		Lysand	er Gold	Corp.	PROJ	ECT P	AL F	ILE #	96-3940			Page 18	AA ADE AMENTIC
SAMPLE#		Pb Zn Ag ppm ppm ppm p		Fe As % ppm	U Au pom pom (Th Sr openppen		Bi V pprnpprn	Ca PLa % % ppm		_	Na K VA % % ppm p	
TF03 104105 -80 TF03 104106 -80 TF03 104107 -80 TF03 104108 -80 TF03 104108 -80	<1 334 1 282	<pre><3 120 <.3 7 128 <.3 6 103 <.3 16 115 <.3 7 183 <.3</pre>	8 27 1433	7.20 6 7.57 2 7.15 7	<5 <2 <5 <2	364 381	.4 <2 <.2 <2 7 7	<2 292 <2 338 3 340	.88 .275 17 .75 .327 16 .82 .286 18	9 2.37 165 .3' 5 1.70 108 .19 7 1.00 64 .1' 11 1.03 66 .1' 23 2.33 94 .2'	<pre><3 3.19 1 <3 2.27 1 <3 2.34</pre>	.01 .06 <2 .01 .09 <2	2
TF03 104110 -80 TF03 104111 -80 TF03 104111 -80 TF03 104112 -80 TF03 104113 -80 TF03 104114 -80	3 332 6 436 2 657 1 279 2 230	6 123 <.3 5 98 <.3 3 71 <.3	7 13 532 14 21 800 9 26 1664 7 16 890 9 14 334	6.99 3 6.65 8 5.17 5	<5 <2 <5 <2 <5 <2	<pre><2 44 7 33 2 36</pre>	<.2 <2 <.2 2 <.2 <2	<pre><2 238 3 230 <2 194</pre>	.37 .175 10	10 .67 55 .0 17 .51 121 .0 11 .69 140 .0 8 .62 74 .1 13 .48 75 .0	7 <3 2.90	.01 .09 <2	2 2 3 1 2
TF03 104115 -80 TF03 104116 -80 TF03 104117 -80 TF03 104117 -80 TF03 104118 -80 TF03 104119 -80	4 473 2 179 2 150 2 210 2 253	5 95 <.3 5 92 .3 <3 90 .6	11 29 1517 9 14 1386 8 14 1846 9 15 412 8 15 439	5.38 2 5.62 2 6.80 6	<5 <2	<2 58 <2 57 3 39	<.2 2 <.2 <2 <.2 <2	2 214 2 230	.30 .138 9 .32 .140 8 .46 .434 10	15 .51 57 .0 13 .52 122 .0 12 .42 133 .0 14 .49 69 .0 11 .37 51 .0	5 <3 2.62 5 3 4.81	2.01.04 <2	3 3 2 4 2
TF03 104120 -80 TF03 104121 -80 RE TF03 104121 -80 TF03 104122 -80 TF03 104123 -80	2 782 3 843 4 848	<3 89 .5 <3 171 <.3 4 170 <.3 <3 114 .4	10 17 383 9 20 607 8 19 600 11 20 758 15 16 366	5.70 4 5.64 6 5.44 4	<5 <2 <5 <2 <5 <2 <5 <2 <5 <2 <5 <2	2 77 4 77 3 41	<.2 <2 .3 2 <.2 <2	<2 174 3 173 3 156	.73 .305 12 .89 .254 10 .88 .247 11 .59 .195 13 .65 .226 15	8.70110.1	2 <3 2.90 2 <3 2.90 2 <3 4.00	6 .01 .06 <2 6 .01 .06 <2 0 .01 .13 <2	6
TF03 104124 -80 TF03 104125 -80 TF03 104126 -80 TF03 104127 -80 TF03 104128 -80	2 312 3 397 3 307 2 461	<3 94 <.3 <3 113 .7	15 25 692 17 16 433 14 18 480 16 18 411	6.32 4 6.14 8 5.13 4 6.22 9	<5 <2	4 28 3 37	<.2 <2 .2 <2	<2 199 <2 168	.63 .374 20 .70 .229 15 .71 .257 12	15 .77 95 19 .66 84 17 .62 82 14 1.04 113 17 .79 84	10 34.4 11 33.1 15 33.9	9 .01 .09 <2 2 .01 .07 <2	3 18 4 2 2
TF03 104129 -80 TF03 104130 -80 TF03 104131 -80 TF03 104131 -80 TF03 104132 -80	1 305 3 221	<3 95 .3 <3 111 <.3 <3 81 <.3 <3 127 .4	16 15 358 9 14 406	4.23 4 6.21 5 9.33 <2 6.67 10	<5 <2 <5 <2	<2 51 <2 102	<.2 3	2 229 2 <2 227 3 191	.53 .285 14 .45 .153 4 .33 .324 13	17 .80 110 . 12 .56 58 . 3 4 1.09 278 . 3 16 .65 113 . 1 14 .69 60 .	17 <3 4.3 14 <3 6.6	8 .02 .28 <2 0 .01 .05 <2	5 2 2 4 3
TFD3 104134 -80 Standard C2/AU-S	3 317 19 56				<5 <2 18 8	<2 59 35 51	<.2 <2 20.1 17	2 3 179 7 18 71	.48 .195 1 .57 .101 4	5 11 .72 72 . 0 62 .92 199 .	09 <3 2.8 08 27 1.9	8 .01 .07 <2 3 .06 .14 15	4

Sample type: TALUS FINES. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ſ

					Lys	san	der	G	210											# v6C 2		-39	4⊥. 	: F	'ag	e :	ц 								L
SAMPLE#	M <i>a</i> Ippm	Си ррт	РЬ ppm			Ni PPm 1											b Bi sppm							Ba ppm											
SE03 101026 SE03 101027 SE03 101028 SE03 101029 SE03 101030	.1	3.9	6.6 .8 1.3	8.3 16.8 8.0	247 66 66	2 5 2	374	330 256 134	.26 .30 .26	<.5 <.5 <.5	<5 <5 <5	<.1 <.1 <.1	ব ব ব	45 103 42	. 13 .06	<.2 <.2 <.2	2 <.1 2 <.1 2 <.1	22 18 15	.38 .73 .48	.031 .050 .096	10 6 8	8 4 7	.03 .16 .07	15<. 36<. 18<. 31<. 11<.	01 01 01	<2. <2. <2.	21<, 22<, 15<,	01 . 01 . 01 .	01 01 03	<2 · <2 · <2 ·	<.2 <.2 <.2	4 <2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 .5 <.5
SE03 101031 SE03 101032 SE03 101033 SE03 101034 SE03 101035	< 1 < 1 < 1	2.0 11.5 26.7 12.9 8.1	1.6 1.8 2.2	7.2 8.8 5.3	<30 75 57	2 2 1	3 3 2	141 118 75	.27 .14 .26	.5 ,9 .7	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	66 46 33	.02 .02 .02	<.2 <.2 <.2	2 <.1 2 <,1 2 <,1	17 9 12	.53 .42 .32	.077 .066	11 6 8	11 9 8	.05 .09 .03	11<. 24<. 12<. 13<. 18<.	01 01 01	<2 . <2 . <2 .	15<. 11<. 12<.	.01 . .01 .	.01 .01 .01	<2 <2 <2	<,2 <.2 <.2	<2 2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5
SE03 101036 SE03 101037 SE03 101038 SE03 101039 SE03 101040	<.1 .1 .1	53.5 5.5 36.3 17.8 10.1	1.6 14.0 3.8	4.9 13.6 36.7	<30 133 94	2 5 4	2 5 10	115 595 847	.10 .24 .40	.5 <.5 <.5	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	43 54 29	.02 .25 .71	<.; <.;	2 <.1 2 <.1 2 <.1	5 16 14	.29 .62 .29	.048 .015 .013	3 3 3	3 5 8	.07 .12 .11	37<. 25<. 58<. 88<. 31<.	01 01 01	<2 . <2 . <2 .	.08<. .18<. .19<.	.01 . .01 . .01 .	.01 .01 .01	<2 10 <2	<.2 <.2 <.2	<2 <2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 .5
SE03 101041 SE03 101042 SE03 101043 SE03 101044 SE03 101045	<.1	6.3 4.5 26.9 3.3 3.7	2.6 2.4	8.1 13.6 6.8	<30 231 <30	1 4 1	2 5 2	150 374 98	.18 .26 .15	<.5 .5 <.5	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	41 58 20	.06 .08 .03	< <	2 <.1 2 <.1 2 <.1	8 20 6	. 34 .49 .30	.046	3 4 4	3 11 2	.05 .13 .07	36<. 37<. 33<. 29<. 99<.	01 01 01	<2 . <2 . <2 .	. 15<. . 16<. . 12<.	.01 . .01 . .01 .	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	<2 4 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5
SE03 101046 SE03 101047 RE SE03 101047 SE03 101048 SE03 101049	1<.1		.9	12.0 11.5 4.7	51 54 40	3 3 3	4 4	204 205 174	.20 .19 .17	<.5 <.5 <.5	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	52 53 105	.09 .09 .04) <.;) <.;	2 <.1 2 <.1 2 <.1	8 8 7	.45 .47 .61	.036 .030 .029 .131 .019	3 3 5	6 6 10	. 13 . 13 . 16	63<. 76<. 78<. 243<. 26<.	01 01 01	<2 . <2 . <2 .	. 16<. . 16<. . 12<.	.01 . .01 .	.01 .01 .02	<2 <2 <2	<.2 <.2 <.2	<2 <2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5
SE03 101050 SE03 101051 SE03 101052 SE03 101053 SE03 101054	<.1 <.1 <.1	14.3 17.2 12.3 2.4 12.8	7.4 2.4 1.7	4.4 5.3 10.4	247 164 41	2 3 2	4 4 4	221 238 279	.19 .24 .20	<.5 <.5 .5	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	33 36 21	.07 .07 .06	' < ' < - <	2 <.1 2 <.1 2 <.1	8 15 18	47 .51 .31		4 5 2	3 13 4	.11 .11 .11	73<. 40<. 114<. 74<. 101<.	01 01 01	<2 . <2 . <2 .	.16<. .19<. .20<.	.01 . .01 . .01	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	<2 <2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5
SE03 101055 SE03 101056 SE03 101057 SE03 101058	<.1 <.1	105.1 2.4 2.5 3.0	2.3 1.8	3.6 10.1	5 153 89	1 1	1 <1	47 22	.34 .29	6. 5.>	<5 <5	<.1 <.1	<1 <1	5 4	.05 .08	; <. ; <.,	2 <.' 2 <.'	11 5	.05 07 07	.019 .013 .015 .050	1	2 4	.03 .02	211<. 16<. 11<. 19<.	01 D1	<2 <2	.37<. .38<.	.01< .01<	.01 .01	<2 <2	<.2 <.2	<2 2	<.3 <.3	<.2 <.2	.8
ICP - 5 For MN Hg se 1 - Sampi	FE SE	L CA P GA A	LA C RE EX	R MG TRACI	BA T TED W	IBV	∤ AND 1IBK-	LIM ALIQ	I TED JAT	FOR 336	NA AND	K GA Anal	AND YSED	AL. BY	SOLL ICP.	ELE	N AN/ VATE	LYSE) DE1	D DI ECTI	RECTL ON LI	Y BY	I CP	. M	O CU P	BZ) Cont/	IAG AIN (AS A CU, PE	AU CI B,ZN	D SB ,AS>	81 1500	TL I PPM	l,Fe	20%	-	

AAA TICAL					L	ysa	nde	er	Go]	.d	Cor	Þ٠	PF	ROJ	ECI	Γ P)	AL	F	ILE	#	96-	394	41						P	age	≥ 2		2	
SAMPLE#	Ma		РЪ ррт													Sb ppm			Са %					Bartí ppm %										
SE03 101059 SE03 101060 SE03 101061 SE04 102052 SE04 102053	<.1		1.0 12.9	3.1 12.7 12.7	42 45 163	<1 <1 3	1 3	20 66 409	.10 .11 .29	<.5 <.5 <.5	<5 - <5 -	<.1 <.1 <.1	<1 <1 <1	15 15 54	.04 .05 .23	<.2 <.2 <.2	<.1 <.1 <.1	4 5 9		.022 .023 .046	5 4 1	2. 2. 4.	.01 .01 .11	64<.01 17<.01 18<.01 72<.01 94<.01	<2 <2 <2	.24< .25< .13<	.01 .01 .01	<.01 <.01 .02	<2 <2 <2	<.2 <.2 <.2	5 2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5
SE04 102054 SE04 102055 SE04 102056 SE04 102057 SE04 102058	<.1 <.1 <.1	143.6 17.9 35.4 70.9 39.2	5.4 .7 .5	9.7 8.0 6.7	<30 133 110	3 2 1	4 3 3	212 231 130	,16 .17 .12	<.5 <.5 .5	<5 - <5 -	<.1 <.1 <.1	<1 <1 <1	37 69 74	.05 .07 .04	<.2 <.2 <.2	<.1 <.1 <.1	7 1∵ ט	.63 .33 .54 .54 .67	.037 .059 .065	2 2 2	2. 5. 1.	. 11 . 10 - 1 . 09	210<.01 31<.01 123<.01 34<.01 178<.01	<2 <2 <2	.11< .13< .10<	:.01 :.01 :.01	4.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	<2 <2 2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5
SE04 102059 SE04 102060 SE04 102061 RE SE04 102064 SE04 102062	.1	84.9 58.9 338.4 39.2 28.9	<.3 4.1 2.3	11.1 17.3 8.0	127 292 90	3 3 3	6 6 5	405 670 642	.18 .33 .25	<.5 .6 <.5	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	80 50 41	.13 .14 .13	<.2 <.2 <.2	<.1 <.1 <.1	15 9 16	.74 .57 .50 .46 .49	.057 .022 .049	2 5 4	3. 5. 8.	.12 .14 .08	179<.01 90<.01 121<.01 119<.01 68<.01	<2 <2 <2	11< 13< 13<	:.01 :.01 :.01	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	2 3 <2	<.3 <.3 <.3	<.2 .2 <.2	<.5 <.5 <.5
SE04 102063 SE04 102064 SE04 102065 SE04 102066 SE04 102067	.3	309.1 38.3 59.5 8.5 29.7	2.2 2.0 .3	8.6 13.1 7.7	85 196 124	3 2 2	5 3 2	658 322 172	.25 .21 .17	<.5 .7 <.5	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	40 59 54	.12 .06 .03	<.2 <.2 <.2	<.1 .1 <.1	16 12 5	.46 .57 .46	.049 .044 .036	4 4 2	7. 2. 5.	.08 .10 .10	137<.01 116<.01 40<.01 131<.01 21<.01	<2 <2 <2	11< 15< 12	<.01 <.01 <.01	.01 01.> 03.	<2 <2 <2	<.2 <.2 <.2	2 4 3	<.3 <.3 <.3	<,2 <.2 <.2	<.5 <.5 <.5
SE04 102068 SE04 102069 SE04 102070 SE04 102071 SE04 102072	<.1 <.1 <.1	28.7 13.8 52.8 9.3 230.5	2.2 2.9 1.8	7.3 7.3 21.8	310 354 95	1	2 2 6	194 496 498	.14 .38 .28	<.5 <.5 <.5	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	36 19 39	.11 .16 .08	<.2 <.2 <.2	<.1 <.1 <.1	5 20 9	.75 .42 .19 .50 .93	.029 .003 .018	5 5 2	3. 6. 7.	.08 .04 .11	31<.0' 72<.0' 124<.0' 124<.0' 105<.0'	<2 <2 <2	2 .13· 2 .16· 2 .17·	<.01 <.01 <.01	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	3 3 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 .6 <.5
SED4 102073 SE04 102074 SE04 102076 SE04 102077 SE04 102078	_1 _1 _1	95.6 128.7 49.6 57.7 139.8	4. 12.0 13.3	34.2 10.7 14.0	621 223 177	1 2 1	2 2 5	925 126 1050	.21 .22 .30	<.5 <.5 <.5	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	234 71 20	2.94 11. 15.	<.2 <.2 <.2	<.1 .1 .1	1 10 9	2.50 .47 .32	.004 .028 .038	1 3 8	3 6 2	.05 .08 .04	142<.0 122<.0 56<.0 81<.0 100<.0	<2 <2 <2	2 .03 2 .13 2 .16	01. 01.> 01.>	01. 01.> 20.	<2 <2 <2	<.2 <.2 <.2	3 2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5
SE04 102079 SE04 102080 SE04 102081	.5	20.0 33.4 21.4	4.5	22.2	172	1	2	146	.36	<.5	-5	<.1	<1	40	.26	<.2	<.1	32	.60 .37 .29	.034	5	3	. 05	75<.0 60<.0 59<.0	2> ۱	2 .22	<.01	.01	<2	<.2	<2	<.3	<.2	<.5

÷

AA E ANNLYTICU				Lys	san	deı	c Go	old	1 C	orp	. PI	ROJ	EC	T PZ	AL	F	ILI	2 #	96	- 3 9	941						Pa	ag:	e 3		ACHE	AMALYTIC
SAMPLE#	Mo Cu ppm ppm	ם Pb קרוניים קרוניים	Zn ppm	Ag ppb j	Ni ppm p	Co pm	Mn ppm	Fe %	As ppn p	A U Aprimaç	u Th m ppm	Sr ppm	Cc ppn	i Sb ippnij	Bi ppm		Ca %	P %	La ppm p	Cr pm	Mg % j	Sa T pom	i B % ppa	Al %	Na %	K X	Y 1 ppm pt	ri Zmi p	Hg Ipb p	Se pm p	Te G prin pp)a)m
SE04 102082 SE04 102083 SE04 102084 SE04 102085 SE04 102085 SE04 102086	.2 35.0 .4 41.7 .1 23.4 .1 132.4 .1 14.8	7 5.2 4 2.2 4 6.2	12.2 10.1 16.4	139 51 135	2 2 4	4 3 4	219 186 48	.40 .22 .35	<.5 <.5 1.1	13 <. <5 <. <5 <.	1 <1 1 <1 1 <1	53 43 49	. 15 . 04 . 15	<.2 <.2 <.2 <.2 <.2	<.1 <.1 <.1	22 9 20	.59 .44 .55	.028 .051 .102	6 3 5	4 5 6	.08 .12 .12	77<.0 65<.0	1 <2 1 <2 1 <2	.28< .13< .14<	:.01< :.01 :.01	.01 .01 .01	<2 <. <2 <. <2 <.	.2 .2 .2	3 < 2 < 4 <	> 3 < > 3 < .3 <	.2 <. .2 <. .2 <.	.5 .5 .5
SE04 102087 SE04 102088 SE04 102089 SE04 102090 SE04 102090 SE04 102091	.1 21.2 <.1 17.0 <.1 36.7 .1 19.9 <.1 14.3	02.5 72.3 92.9	18.3 8.2 10.0	168 79 67	3 1 1	5 2 2	355 201 189	.31 .23 .20	<.5 .5 <.5	<5 <. <5 <. <5 <.	1 <1 1 <1 1 <1	46 14 7	16. 06. 30.	2 <.2 5 <.2 5 <.2 3 <.2 3 <.2	1. <.1 <.1	13 7 6	.60 .19 .14	.031	4 3 3	5 1 1	.13 .03 .06	92<.0	11 <2 11 <2 11 <2	2 .19< 2 .10< 2 .16<	<.01< <.01< <.01<	<.01 <.01 <.01	<2 < <2 < <2 <	.2 .2 .2	<2 < 3 < 2 <	:.3 < :.3 < :.3 <	.2 <, .2 <, .2 <,	.5 .5 .5
SE04 102092 SE04 102093 RE SE04 102098 SE04 102094 SE04 102095	<.1 8.1 .1 39.0 .1 33.1 .1 36.9 .1 24.1	0 2.9 7 2.6 9 3.6	16.1 9.0 15.2	133 85 126	3 2 3	4 2 4	275 94 296	.25 .19 .25	<.5 <.5 .6	<5 < <5 <, <5 <	1 <' 1 <' 1 <'	53 30 42	.1 .04	3 <.2 1 <.2 4 <.2 0 <.2 9 <.2	<.1 <.1 .1	9 8 8	.60 .35 .52	.037 .043 .045	4 5 3	4 2 3	14 .11 .13	71<.0 61<.0 32<.0 52<.0 115<.0)1 <i)1 <i)1 <i< td=""><td>2 .19 2 .14 2 .15</td><td><.01< <.01< <.01</td><td><.01 <.01 <.01</td><td><2 < <2 < <2 <</td><td>.2 .2 .2</td><td>4 < <2 < 2 <</td><td>:.3 < :.3 < :.3 <</td><td>.2 < .2 < .2 <</td><td>.5 .5 .5</td></i<></i </i 	2 .19 2 .14 2 .15	<.01< <.01< <.01	<.01 <.01 <.01	<2 < <2 < <2 <	.2 .2 .2	4 < <2 < 2 <	:.3 < :.3 < :.3 <	.2 < .2 < .2 <	.5 .5 .5
SED4 102096 SE04 102097 SE04 102098 SE04 102099 SE04 102100	.1 11.0 .1 44.1 .1 31.0 .2 76.9 .7 94.9	8 2.0 8 2.6 9 3.9	12.7 8.2 12.5	131 90 147	3 2 3	5 2 5	288 88 415	.22 .19 .30	.9 .9 2.2	<5 <. <5 <. <5 <	1 < 1 < 1 <	1 54 1 27 1 39	.1 .0	8 <.2 3 <.2 4 <.2 3 <.2 3 <.2	<.1 <.1 <.1	7 7 10	.60 .30 .50	.031 .037 .049	3 4 5	2 3 4	.14 .10 .13	85<.0 50<.0 28<.0 62<.0 124<.0)1 <)1 <)1 <	2 .16 2 .13 2 .17	<.01< <.01< <.01	<.01 <.01 <.01	<2 < <2 < <2 <	.2 .2 .2	2 < 4 <	:.3 · :.3 · :.3 ·	.2 < .2 < .2 <	.5 .5 .5
SED4 102101 SE04 102102 SE04 102103 SE04 102104 SE04 102105	.3 66. .2 43. .1 27. .1 33. .3 21.	2 3.7 5 2.8 1 2.8	9.9 9.6 15.4	114 118 118	2 2	3 3 4	341 328 572	.23 .21 .25	.5 7. <.5	<5 < <5 < <5 <	.1 < .1 < .1 <	1 22 1 28 1 28	2 . 1 3 . 2 3 . 1	0 <.2 3 <.2 0 <.2 8 <.2 8 <.2	.1 <.1 <.1	7 5 11	33 .33 .37	.043 .045 .027	7 6 8	2 3 4	.06 .07 .09	41<.()1 <)1 <)1 <	2 .13 2 .11 2 .16	<.01 <.01 <.01	<.01 <.01 <.01	<2 < <2 < <2 <	.2 .2	2 < 2 <	<.3 < <.3 < <.3 <	<.2 < <.2 < <.2 <	.5 .5 .5
SE05 101018 SE05 101019 SE05 101020 SE05 101021 SE05 101022	.1 297. <.1 37. .1 88. .1 170. <.1 48.	73.3 5.7 63.5	10.9 5.4 6.7	112 131 148	2 1 2	3 2 5	260 195 241	.18 .13 .29	.5 .6 <.5	<5 < <5 < <5 <	.1 < .1 < .1 <	1 43 1 57 1 43	0.8 0.7 3.0	8 <.2 8 <.2 4 <.2 7 <.2 6 <.2	<.1 <.1 <.1	7 7 12	.31 .38 .32	.059	4 4 6	4 3 6	.07 .05 .07	69<.1 64<.1 61<.1 41<.1	01 < 01 < 01 <	2.11 2.09 2.11	<.01 <.01 <.01	.02 .01 .01	<2 < <2 < <2 <	.2	2 .	<.3 · <.3 · <.3 ·	<.2 < <.2 < <.2 <	.5 .5 .5
SE06 102106 SE06 102107 SE06 102108 SE06 102108 SE06 102109	.1 4. <.1 2. <.1 1. .1 24.	0 2.3	17.3	217 175	<1 <1	<1 <1	16 15	.20	<.5 <.5	<5 < <5 <	.1 < .1 <	1 4 1 .3	4 .0 3 .0	6 <.2 3 <.2	<.1 <.1	5	.08 .04	.030	1 1	1 <1	.01 .01	42<. 18<. 12<. 66<.	01 < 01 <	2.56 2.49	<.01 <.01	.01 .01	<2 < <2 <	.2 .2	2 - 2 -	<.3 · <.3 ·	<.2 < <.2	.5 .8

		Lysander Gold Corp	. PROJECT PAL FILE # 96-3941	Page 4
SAMPLE#	Mo Cu Pb ppm ppm ppm p	Zn Ag Ní Co Mn Fe As U A pom pob pom		BAL Na K. W. TL Hg. Se Te Ga n. %. %. % ppm ppm ppm ppm ppm ppm
SE06 102110 SE06 102111 SE06 102112 SE06 102112 SE06 102113 SE06 102114	<pre><.1 9.0 3.2 9 .1 157.0 2.8 10 <.1 17.9 1.8 12 .1 10.9 2.2 14 .1 26.9 2.8 15</pre>).4 244 2 5 430 .32 <.5 <5 <. 2.1 72 1 2 137 .21 <.5 <5 <. 5 5 4 2 3 244 18 < 5 <5 <.	1 <1	2 .14<.01 .01 <2 <.2 12 <.3 <.2 <.5 2 .12<.01<.01 <2 <.2 <2 <.3 <.2 <.5 2 .14<.01<.01 <2 <.2 2 <.3 <.2 <.5 2 .14<.01<.01 <2 <.2 2 <.3 <.2 <.5
SEO6 102115 SEO6 102116 SEO6 102117 SEO6 102118 RE SEO6 102119	.1 19.4 2.1 10	5.5 181 <1 <1 22 .20 <.5 <5 <. 0.6 101 1 2 127 .21 <.5 <5 <. 0.8 87 2 2 223 .14 <.5 <5 <.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 .30<.01 .01 <2 <.2 <2 <.3 <.2 .6 2 .10<.01<.01 <2 <.2 <2 <.3 <.2 <.5 2 .08<.01 .01 <2 <.2 <2 <.3 <.2 <.5
SE06 102119 SE06 102120 SE06 102121 SE06 102122 SE06 102123	<.1 1.7 2.0 1 <.1 1.3 1.7 9	3.1 133 <1 <1 16 .18 <.5 <5 <. 9.4 95 1 <1 19 .17 <.5 <5 <. 7.6 33 1 1 66 .15 <.5 <5 <.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 .29<.01 .01 <2 <.2 2 <.3 <.2 .7 2 .19<.01<.01 <2 <.2 <2 <.3 <.2 .9 2 .25<.01<.01 <2 <.2 2 <.3 <.2 .9
SE06 102124 SE06 102125 SE06 102126 SE06 102127 SE06 102128	21 28101	4.2 80 1 1 47 .21 <.5 <5 <. 8.3 105 <1 <1 10 .14 <.5 <5 <. 7 2 44 1 2 277 .22 <.5 <5 <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 .25<.01 .01 <2 <.2 3 <.3 <.2 .8 2 .55<.01<.01 <2 <.2 2 <.3 <.2 <.5 2 .21<.01<.01 <2 <.2 <2 <.3 <.2 <.5
SE06 102129 SE06 102130 SE06 102131 SE06 102132 SE06 102133	<.1 2.0 2.0 5 <.1 3.0 1.8 10 < 1 53 0 2.8	5.4 97 <1 <1 15 .16 <.5 <5 < 0.3 75 <1 1 48 .16 <.5 <5 < 8 7 351 <1 1 60 .16 7 6 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 .24<.01<.01 <2 <.2 2 <.3 <.2 .7 2 .20<.01<.01 <2 <.2 <2 <.3 <.2 1.1 2 .16<.01<.01 <2 <.2 3 <.3 <.2 <.5
SE06 102134 SE06 102135 SE06 102136 SE06 102137 SE06 102138	21 56131	5.5 40 <1 2 244 .11 <.5 <5 < 1.1 103 <1 1 132 .14 <.5 6 < 4 5 62 <1 <1 63 .11 < 5 <5 <	.1 <1 36 .16 <.2 .1 17 .36 .003 3 5 .06 146<.01 < .1 <1 15 .08 <.2 <.1 6 .18 .023 4 2 .04 60<.01 < .1 <1 63 .08 <.2 <.1 6 .18 .023 4 2 .04 60<.01 < .1 <1 63 .08 <.2 <.1 4 .62 .010 4 4 .02 146<.01 < .1 <1 2 .02 <.2 <.1 2 .03 .016 1 <1<.01 11<.01 < .1 <1 2 .02 <.2 .1 9 .02 .022 <1 1 .05 15<.01 <	2 .09<.01<.01 <2 <.2 <2 <.3 <.2 <.5 2 .38<.01<.01 <2 <.2 <2 <.3 <.2 <.5 2 .42<.01<.01 <2 <.2 2 <.3 <.2 <.5
SE06 102139 SE06 102140 SE06 102141 SE06 102142	.1 39.3 3.5 <.1 27.4 4.2 .1 20.0 3.7 1 .3 31.5 5.0 1	5.1 88 1 4 259 .28 <.5 <5 < 0.8 138 1 4 401 .25 <.5 <5 <	.1 <1 28 .19 <.2 <.1 21 .41 .028 5 4 .05 126<.01 < .1 <1 22 .06 <.2 <.1 9 .40 .047 5 4 .07 116<.01 < .1 <1 70 .24 <.2 .1 9 .40 .030 10 5 .10 165<.01 < .1 <1 54 .49 <.2 <.1 14 .64 .033 6 4 .07 125<.01 <	2 .15<.01 .01 <2 <.2 2 <.3 <.2 <.5 2 .21<.01 .01 <2 <.2 <2 <.3 <.2 <.5

. .

.

!

	Lysander Gold Corp. PROJECT PAL FILE # 96-3941 Page 5
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Ti Hg Se Te Ga ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
SE06 102143 SE06 102144 SE06 102145 SE06 102145 SE06 102146 SE06 102147	.1 15.9 3.6 7.9 105 1 4 357 .23 .5 7 .1 150 .24 .2 .1 11 .55 .027 4 3 .05 108<.01
SE06 102148 SE06 102149 SE06 102150 RE SE06 102150 SE06 102151	.1 17.1 4.5 3.2 121 <1
SE06 102152 SE06 102153 SE06 102154 SE06 102155 SE06 102156	.1 40.7 3.6 5.4 147 1 4 247 .35 <.5
SE06 102157 SE06 102158 SE06 102159 SE06 102160 SE06 102160 SE06 102161	<.1 1.7 1.4 <1 155 <1 <1 7 .26 <.5 <5 <.1 <1 1 .02 <.2 <.1 13 .02 .010 1 <1<0.01 7<.01 <2 .29<.01<01 <2 <.2 <2 <.3 <.2 .5 <.1 2.0 .9 1.5 77 <1 <1 12 .23 <.5 <5 <.1 <1 2 .02 2.4 <.1 7 .02 .032 1 <1<0.01 11 1.5 1.4 1.2 158 <1 <1 17 .12 <.5 <5 <.1 <1 3 .04 <.2 <.1 4 .05 .011 2 <1.01 17<.01 <2 .27<.01<01 <2 .22 <2 <.3 <.2 .5 <.1 30.1 2.2 5.3 219 <1 2 143 .30 <.5 <5 <.1 <1 4 .03 <.2 <.1 9 .15 .045 3 <1.04 14 1.5 1.4 1.5 3 219 <1 2 143 .30 <.5 <5 <.1 <1 4 .03 <.2 <.1 9 .15 .045 3 <1.04 14 1.5 .045 3 <1.04 14<.01 <2 .21<.01 .01 <2 .22 <2 <.2 <.3 <.2 <.5 .1 35.6 1.8 15.0 312 <1 <1 16 .41 <.5 <5 <.1 <1 95 .38 <.2 <.1 9 1.04 .010 2 2 .03 89<.01 <2 .14
SE06 102162 SE06 102163 SE06 102164 SE06 102165 SE06 102166	(1 1.0 1.1 16.9 169 <1 <1 5 .05 <.5 <5 <.1 <1 99 .25 <.2 <.1 2 .99 .003 <1 1 .03 61<.01 <2 .05<.01 .01 <2 <.2 <2 <.3 <.2 <.5 .1 10.8 .8 21.6 226 <1 4 818 .21 <.5 <5 <.1 <1 189 .68 <.2 <.1 2 2.41 .009 3 2 .07 125<.01 2 .12<.01 .01 <2 <.2 <2 <2 <.3 <.2 <.5 <1 2.02 2.3 9.4 139 <1 <1 16 .26 <.5 <5 <.1 <1 2 .03 <.2 <.1 14 .01 .009 <1 <1 .01 16<.01 <2 .22<.01 .01 <2 <.2 <2 <2 <.3 <.2 <.5 <1 1.5 1.5 8.7 105 <1 <1 200 .23 .5 <5 <.1 <1 3 .03 <.2 <.1 8 .04 .023 1 <1 .02 18<.01 <2 .32<.01 .01 <2 <.2 <2 <.3 <.2 1.2 .1 19.2 1.8 11.8 <30 <1 1 113 .28 <.5 <5 <.1 <1 37 .04 <.2 <.1 16 .34 .026 2 <1 .07 27<.01 <2 .12<.01
SE06 102167 SE06 102168 SE06 102169 SE06 102170 SE07 101001	<pre><.1 46.3 3.1 16.7 246 1 5 535 .28 <.5 <.1 <1 86 .22 <.2 .1 9 .67 .014 4 3 .10 85<.01 <2 .21<.01 .01 <2 <.2 <2 <.3 <.2 <.5 <.1 3.6 1.3 4.4 46 <1 <1 13 .12 <.5 <5 <.1 <1 3 .02 <.2 <.1 4 .05 .026 2 <1 .01 28<.01 <2 .34<.01<.01 <2 <.2 2 .2 .2 .2 <.3 <.2 <.5 <.1 3.5 2.6 8.4 159 <1 1 81 .44 <.5 <5 <.1 <1 46 .04 <.2 <.1 24 .51 .008 1 1 .04 38<.01 <2 .21<.01 .01 <2 <.2 <2 .2 <.2 <.3 <.2 <.5 .1 13.2 1.2 9.4 158 <1 2 202 .23 <.5 <5 <.1 <1 43 .05 <.2 .1 16 .54 .023 4 1 .06 29<.01 <2 .15<.01 .01 <2 <.2 <2 .2 <.2 <.3 <.2 <.5 <.1 4.7 1.5 7.6 89 1 2 139 .30 <.5 <5 <.1 <1 20 .07 <.2 <.1 11 .20 .036 4 6 .04 55<.01 <2 .20<.01 .01 <2 .22 <.2 <.3 <.2 <.5 <.1 4.7 1.5 7.6 89 1 2 139 .30 <.5 <5 <.1 <1 20 .07 <.2 <.1 11 .20 .036 4 6 .04 55<.01 <2 .20<.01 .01 <2 .22 <.2 <.2 <.3 <.2 <.5 <.1 4.7 1.5 7.6 89 1 2 139 .30 <.5 <5 <.1 <1 20 .07 <.2 <.1 11 .20 .036 4 6 .04 55<.01 <2 .20<.01 .01 <2 .22 <.2 <.2 <.3 <.2 <.5 <.1 4.7 1.5 7.6 89 1 2 139 .30 <.5 <5 <.1 <1 20 .07 <.2 <.1 11 .20 .036 4 6 .04 55<.01 <2 .20<.01 .01 <2 <.2 <2 <.2 <.3 <.2 <.5 </pre>
SE07 101002 SE07 101003 SE07 101004 SE07 101005	<.1

. .

.

1

	Lysander Gold Corp. PROJECT PAL FILE # 96-3941 Page 6
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K. W Tl Hg Se Te Ga ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
SE07 101006 SE07 101007 SE07 101008 SE07 101009 SE07 101010	<.1
SE07 101011 SE07 101012 SE07 101013 SE07 101014 SE07 101015	<.1 30.0 2.5 19.5 167 4 3 1892 .36 <.5 <5 <.1 <1 47 .43 <.2 <.1 37 .32 .020 6 7 .04 136<.01 <2 .10 .10 .01 .01 .02 .2<
SE08 101001 SE08 101002 SE08 101003 SE08 101004 SE08 101005	.2 7.7 1.8 1.8 98 <1
SE08 101006 SE08 101007 SE08 101008 SE08 101009 SE08 101010	.2 33.0 2.8 6.8 118 1 2 32 .46 <.5
SE08 101011 SE08 101012 SE08 101013 RE SE08 101015 SE08 101014	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SE08 101015 SE08 101016 SE08 101017 SE08 101018 SE08 101019	<pre><.1 1.6 1.9 3.0 70 <1 <1 8 .13 <.5 <5 <.1 <1 3 .04 <.2 <.1 5 .05 .025 1 1</pre> <.1 26.2 1.4 5.9 214 <1 2 98 .28 <.5 <5 <.1 <1 34 .08 <.2 <.1 13 .35 .008 4 4 .02 67<.01 <2 .22<.01<.01 <2 <.2 3 <.3 <.2 <.5 .1 10.1 3.6 15.1 383 1 1 37 .46 <.5 <5 <.1 <1 80 .18 <.2 <.1 15 .64 .010 2 4 .05 128<.01 <2 .23<.01 .01 <2 <.2 <3 <.3 <.2 <.5 .1 9.4 1.7 16.1 329 <1 1 51 .30 <.5 <5 <.1 <1 27 .08 <.2 <.1 13 .35 .002 3 <1 .02 35<.01 <2 .23<.01<.01 <2 <.2 <.2 <.3 <.2 <.6 .1 3.4 1.5 16.6 164 <1 1 64 .12 <.5 <5 <.1 <1 33 .12 <.2 <.1 4 .44 .005 1 <1 .02 27<.01 <2 .13<.01 .01 <2 <.2 <.2 <.3 <.2 <.8 <.1 <1 .01 2.4 <.005 1 <.01 <1 .02 27<.01 <2 .23
SE08 101020 SE08 101021 SE08 101022 SE08 101023	.1 9.5 1.2 8.2 43 <1

• • •

T T

		Lysander Go	ld Corp. PROJECT PAL	FILE # 96-3941	Page 7
SAMPLE#	Mo Cu Pb Zn ppm ppm ppm ppm		As U Au Th Sr Coi Sb Bi V ppm ppm ppm ppm ppm ppm ppm ppm ppm	Ca P La Cr Mg Ba Tỉ B % % ppm ppm % ppm % ppm	Al Na X W Ti Hg Se Te Ga X X ppm ppm ppb ppm ppm
SE08 101024 SE08 101025 SE09 101001 SE09 101002 SE09 101003	1 47.5 1.7 12.3	237 <1 3 180 1.22 131 <1 1 78 .29	<pre><.5 <5 <.1 <1 49 .20 <.2 <.1 14 <.5 5 <.1 <1 10 .18 <.2 <.1 27 <.5 <5 <.1 <1 10 .18 <.2 <.1 27 <.5 <5 <.1 <1 26 .07 <.2 .1 9 <.5 <5 <.1 <1 24 .05 <.2 .1 11 <.5 <5 <.1 <1 7 .01 <.2 <.1 4</pre>	.11 .018 12 8 .01 93<.01 <2 .38 .004 5 <1 .03 22<.01 <2 .30 .008 4 1 .01 27<.01 <2	.72<.01 .01 <2 <.2 <.3 <.2 <.5 .19<.01<.01 <2 <.2 <2 <.3 <.2 <.5 .32<.01 .01 <2 <.2 <2 <.3 <.2 <.5
SE09 101004 SE09 101005 SE09 101006 SE09 101007 SE09 101008	<.1 11.7 1.1 12.1 .1 10.0 1.7 3.2 1 12 2 1.2 10.6	317 <1 2 237 .24 121 <1 1 156 .26 254 <1 2 88 .31	<pre><.5 <5 <.1 <1 12 .02 <.2 <.1 11 <.5 <5 <.1 <1 65 .15 <.2 <.1 5 <.5 <.5 <.1 <1 10 .04 <.2 .1 14 <.5 <5 <.1 <1 10 .04 <.2 .1 14 <.5 <5 <.1 <1 31 .07 <.2 <.1 11 <.5 <5 <.1 <1 9 .02 <.2 <.1 5</pre>	1.37 .006 7 2 .06 82<.01 <2 .16 .006 5 <1 .01 26<.01 <2 .58 .015 7 <1 .03 34<.01 <2	.13<.01
SE09 101009 SE09 101010 SE09 101011 SE09 101011 SE09 101012 SE09 101013	<.1 2.3 .6 3.3 <.1 3.3 1.6 6.4 <.1 2 0 1.0 4.5	30 <1 <1 76 .07 94 <1 <1 7 .26 88 <1 <1 15 .12	<pre><.5 <5 <.1 <1 4 .03 <.2 <.1 2 <.5 <5 <.1 <1 6 .04 <.2 <.1 8 <.5 <5 <.1 <1 6 .04 <.2 <.1 8 <.5 <5 <.1 <1 1 .03 <.2 <.1 5</pre>	.09 .042 2 <1<.01 8<.01 <2 .13 .005 1 <1<.01 10<.01 <2 .02 .013 2 <1<.01 18<.01 <2	.20<.01
SE09 101014 RE SE09 101009 SE09 101015 SE09 101016 SE09 101017	<pre><.1 2.3 .7 2.3 <.1 1.8 1.3 13.3 <.1 18 2 1.6 23.3</pre>	i <30 <1 <1 20 .11 i 46 <1 <1 30 .18 i 224 1 1 8 .35		.06.039 3 <1.01 11<.01 <2 .04.040 1 <1.03 17<.01 <2 1.78.005 4 <1.06 41<.01 <2	1.40<.01
SE09 101018 SE09 101021 SE09 101022 SE09 101023 SE09 101024	.2 40.6 3.4 21.3 <.1 3.9 1.9 22.4 <.1 1.7 1.4 24.2	8 809 1 7 554 .56 1 124 <1 2 207 .39 2 70 <1 1 79 .17	<.5 <5 <.1 <1 15 .09 <.2 <.1 4	.73.042 4 <1.09 30<.01 <2 .12.042 2 <1.06 34<.01 <2 .29.008 <1 <1.07 22<.01 <2	.40<.01
SE09 101025 SE09 101026 SE09 101027 SE09 101028 SE09 101029	 <.1 2.1 1.5 19.1 <.1 7.1 .8 6.1 <.1 5.4 .8 7.1 	5 152 <1 1 118 .29 2 117 <1 2 85 .15 5 156 <1 <1 32 .24	> <.5	.07 .022 1 <1 .06 14<.01 <2 .08 .029 2 <1 .01 19<.01 <2 .02 .027 1 <1 .01 8<.01 <2	.18<.01 .01 <2 <.2 <2 <.3 <.2 <.5 .34<.01 .01 <2 <.2 <2 <.3 <.2 1.3 .60<.01<.01 <2 <.2 <2 <.3 <.2 1.3 .62<.01 .01 <2 <.2 <2 <.3 <.2 .5 .62<.01 .01 <2 <.2 <2 <.3 <.2 .5 .54<.01 .01 <2 <.2 <2 <.3 <.2 .5
SE09 101030	<.1 3.0 1.3 6.	3 115 <1 <1 14 .21	1 <.5 <5 <.1 <1 3 .04 <.2 <.1 6	.05.029 1 1.01 17<.01 <2	.50<.01<.01 <2 <.2 <2 <.3 <.2 .6

and the second second

1

PHONE (604) 253-3158 FAX (604) 253-1716 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 ACME ANALYTICAL LABORATORIES LTD. GEOCHEMICAL ANALYSIS CERTIFICATE Lysander Gold Corp. File # 96-3942 1120 - 355 Burrard St., Vancouver BC V6C 2GB ¥ Au** Mo Ba ⊺i B AL Na ĸ Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca Ρ La Cr SAMPLE# * ppm * * X ppm ppb 7 % ppm ppm % ppm <2 131 13.45 .292 16 169 3.66 91 .03 <3 1.04 .01 .35 2 18 42 1471 5.52 <5 <2 4 480 1.3 <2 82 .3 8 E 125101 <1 82 8 80 3 <2 172 16.25 .188 11 126 2.92 142 .06 <3 .66 .01 .25 4 7 6 <5 <2 6 197 2.1 72 7 99 <.3 66 41 2461 6.72 E 125102 1 <2 18 <.2 <2 <2 6 .33 .008 6 7 .07 364 <.01 <3 .25 .05 .09 <2 20 <2 E 125103 33 7 4 7 .3 3 2 51 .36 6 <5 6 .06 351 <.01 <3 .24 .04 .08 <2 12 5 .30 .008 5 17 <.2 <2 <2 31 3 .4 2 47 .34 7 <5 <2 <2 RE E 125103 6 6 4 ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. 44 SIGNED BY. JD. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: AUG 23 1996 DATE REPORT MAILED:

AMPLE#	Mo	Cu	Pb	Žn	Ag	Ni	Co	Mn		1120 As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	 8a	Ti	B	Al	Na	ĸ		Au [*]
	ppm	ppm	ppm	ppm	ppm	ppm	mqq	ppm	<u>%</u>	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm 	ppm (00			mqq	ppm	1 71	174			× 7 /5	% 01		ppm <2	ppt 13
3107 -80 3108 -80 3109 -80 3110 -80 3111 -80	4 1 6 2	332 209 285 177 178	6 4 3 4 7	175 164 91 124 92	<.3 <.3 <.3 <.3 <.3	38 28 36 25 31		974		37 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2	3 3 2 2 3	192 170 243 133 252	<.2 .2 <.2 <.2 <.2 <.2	2 <2 <2 3 <2	<2	353 266 196	2.38 2.96 1.25 1.17 1.65	.725 .404 .263	46 43 28 20 34	45 67 34	1.31 2.14 .79 1.10 .74	136 106 83 90 115	,13 ,17 ,12 ,11 ,11	<3 3 <3	2.45 3.38 3.11 2.75 2.34	.01 .01	.32 .19 .11 .08 .11	<2 <2 <2 <2 <2 <2	1
13112 -80 13113 -80 103113 -80 13114 -80 13114 -80 13115 -80	2 1 1 1 <1	174 181 181 170 238	6 5	118 106 104 111 121	<.3 <.3 <.3 <.3 .3	29 30 28 30 26	19 18 18		5.81 5.38 5.76	<2 <2 <2 <2 <2 <2 <2	ও ও ও ও	<2 <2 <2 <2 <2 <2	2 3 2 3 3	160 198 197 159 136	<.2 <.2 <.2 <.2 <.2	2 5 ~2 ~2 ~2	<2 <2 <2 <2 <2 <2	236 217 229	1.16 1.44 1.38 1.17 1.29	.406 .399 .348	26 31 30 26 25	42 46 42 47 34	.70 .84 .88 .81 .95	94 100 100 92 115	.09 .10 .11 .10 .11	3 <3 <3	3.48 2.48 2.53 2.67 3.37	.01 .01 .01 .01 .01	.07 .09 .09 .08 .11	<2 <2 <2 <2 <2 <2	
D3116 -80 D3117 -80 D3118 -80 D3119 -80 D3120 -80	1 2 <1 <1 1	313 128 136 148 162	3 <3 <3 15	100 101 118 115 123	<.3 <.3 <.3 <.3 <.3	28 27 30 31 37	21 23	610 703 1134 1106 895	5.68 5.91	3 <2 <2 <2 2	<5 <5 <5 <5 <5	~~~~~ ~~~~~~	3 3 2 3 3 3	146 84 67 91 106	<.2 <.2 <.2 <.2 <.2	2 2 <2 <2 <2	<2 <2	211 230 221	2.00	.456 .191 .253	27 21 12 15 18	43 42 46	.74 1.00 2.02 1.90 1.63	105 74 57 65 66	.11 .14 .26 .23 .21	<3 <3 <3	2.56	.02 .02 .01 .01 .01	.13 .11 .65 .58 .51	2 <2 <2 <2 <2 <2 <2 <2 <2	1 <
03121 -80 03122 -80 03123 -80 03124 -80 03125 -80	1 1 4 <1	125 150 277 112 271	<3 4 3 13 <3	107 109 139 189 156	<.3 <.3 <.3 <.3 <.3	36 38 34 33 44	19 24 33	1032 822 1263 1085 1299	5.32 5.75 5.74 7.29 7.73	4 2 15 10	ৎ ২ ২ ২ ২ ২ ২ ২ ১	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 3 4 3	94 77 82 95 84	<.2 <.2 _3 _3 <.2	<2 2 <2 3 <2	<2	221 213 273	2.23 .98	.191 .210 .305 .349 .284	15 14 18 34 19	54 48 41	1.93 1.40 2.26 1.89 2.25	35 103 60 79 160	.23 .20 .22 .18 .30	<3 <3 <3	2.71 2.50 3.25 2.75 3.33	.01 .01 .02 .01 .02	.46 .35 .56 .80 .85	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1
03126 -80 03127 -80 03128 -80 03129 -80 03130 -80	<1 1 1 1 <1	131 313 343 383 246		122 117 106 141 146	<.3 <.3 <.3 <.3 <.3	32 29 26 35 34	23 24 26		5.64 5.21 6.41 6.43 7.57	2 4 <2 5 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 3 3 3 3 3 3	67 87 142 90 144	.3 <.2 .3 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 2	205 309 256	1.33 1.69	.241	14 18 31 20 27	38 47 47	1.82 1.64 1.31 1.83 1.99	81 100 249 152 476	.22 .20 .14 .20 .17	3 उ उ	2.83 3.71 5.94 3.72 5.24	.03 .03 .02 .02 .02	.39 .46 .11 .24 .16	<2 <2 <2 <2 <2 <2 <2	1
03131 -80 03132 -80 03133 -80 03134 -80 03135 -80	1 1 <1 1	206 268 168 163 90	3 <3 <3 <3 56	152 157 121 196 161	<.3 <.3 <.3 <.3 <.3	30 29 28 26 36	25 24 24		6.98 5.70 6.70 6.05 6.35	<2 3 <2 2 <2 <2	<5 <5 <5 <5 <5	< < < < < < < < < < < < < < < < < <	3 4 3 2 3	116 86 86 97 98	.2 <.2 <.2 <.2 <.2	2 <2 <2 4 <2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	229 284 269	1.57 1.19 1.28	.409 .337 .377 .519 .365	32 21 23 25 23	42 52 41	1.60 1.58 1.22 1.23 1.72	204 202 151 249 174	. 18 . 17 . 14 . 14 . 12	<3 <3 3	3.05 3.71 3.79 4.57 3.89	.03 .03 .03 .03 .03	.34 .28 .12 .14 .12	<2 <2 2 2 2 2 2 2	1
03136 -80 03137 -80 03138 -80 03139 -80 03140 -80	1 1 <1 1	276 95 85 115 102	<3 <3 <3 <3 7	196 115 121 86 99	<.3 <.3 <.3 <.3 <.3	31 64 41 20 25	21 26 20 15 13	720 584	5.84 6.37 6.10 4.62 4.35	<2 <2 <2 2 3	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	4 4 3 5 5	89 69 86 45 36	<.2 <.2 <.2 <.2 <.2	<2 <2 3 4 <2	<2 <2 <2 <2 <2 <2	259 251 187	.91 1.20 .70	.503 .298 .457 .181 .208	25 19 22 16 18	135		128 111 113 83 61	.12 .24 .18 .11 .10	<3 3 4	4.39 3.05 2.64 2.24 2.66	.03 .04 .04 .05 .03	.15 .29 .12 .07 .08	<2 <2 <2 <2 <2 <2	11 1
TANDARD C2/AU-S	21	59	41	140	6.7	73	35	1170	3.91	37	22	8	37	52	20.4	17	19	73	.53	.109	42	65	1.00	194	.08	Z8	2.04	.06	.14	11	. 4
		THIS - SA	LEAC	CH [\$		AL FO	DR MN	FE SF	WITH CAP - IG	LA CR	t mg e	IT A	8 W A	AND LI	IMITEC	FOR	NA K	AND .	AL.	AND IS	S DILL	ITED	TO 10	ML WI	TH W	ATER.					

T

A MULTICAL	Lysander Gold Corp. PROJECT PAL FILE # 96-4267 Page 12
SAMPLE#	Mo Cu Pb Zh Ag Ni Co Mn. Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au* ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
103141 - 80 103142 - 80 103143 - 80 103144 - 80 103145 - 80	<1
103146 -80 RE 103146 -80 103147 -80 103148 -80 103148 -80 103149 -80	2 383 5 143 .3 31 19 710 5.91 3 <5
104135 -80 104136 -80 104137 -80 104137 -80 104138 -80 104139 -80	3 62 5 71 <.3
104140 -80 104141 -80 104142 -80 104142 -80 104143 -80 104144 -80	<pre><1 605 5 193 <.3 38 39 1844 6.57 <2 <5 <2 3 277 .5 <2 2 243 1.94 .487 35 53 2.68 221 .18 3 2.33 .05 .40 <2 15 1 372 15 157 <.3 36 33 1664 6.49 <2 <5 <2 3 266 .7 2 <2 240 2.42 .439 33 61 2.48 113 .18 3 2.57 .12 .39 <2 11 4 357 7 176 <.3 32 42 2173 8.30 8 <5 <2 3 182 .7 <2 <2 303 2.33 .579 38 52 1.97 136 .15 4 1.94 .02 .40 <2 5 <1 171 <3 131 <.3 36 31 1072 7.14 <2 <5 <2 3 258 .5 <2 2 296 2.76 .514 32 72 2.78 62 .22 4 3.33 .01 .31 <2 6 5 522 13 201 <.3 47 48 2371 10.14 16 <5 <2 3 282 1.0 <2 <2 382 3.16 .731 41 99 2.10 339 .19 4 2.22 .02 .66 <2 24</pre>
104145 -80 104146 -80 104147 -80 104148 -80 104148 -80 104149 -80	1 342 11 199 <.3
104150 -80 104151 -80 104152 -80 104153 -80 104153 -80 104154 -80	<pre><1 207 8 243 <.3 47 30 2043 8.18 <2 <5 <2 3 126 .7 3 <2 311 1.12 .299 19 137 1.64 90 .20 4 2.16 .03 .27 <2 9 <1 36 <3 136 <.3 79 45 1520 9.98 3 <5 <2 6 210 1.0 <2 <2 321 2.76 .790 41 229 2.42 47 .16 6 1.70 .02 .30 <2 2 <1 261 4 118 <.3 73 45 1104 9.78 2 <5 <2 3 265 1.0 2 <2 323 3.34 .764 40 150 2.06 53 .17 5 2.21 .01 .29 <2 36 78 272 352 139 1.8 142 107 \$684 14.65 63 <5 <2 4 247 2.2 16 <2 780 1.95 .727 36 250 2.16 282 .08 4 1.61 .01 .25 <2 470 <1 803 5 105 <.3 75 41 1072 12.50 <2 <5 <2 5 243 1.3 <2 <2 415 2.44 .732 37 225 1.31 98 .13 6 1.27 .02 .36 <2 39</pre>
104155 -80 104156 -80 104157 -80 104158 -80 104158 -80 104159 -80	1 381 6 138 <.3
STANDARD C2/AU-S	21 60 38 142 6.8 74 35 1181 3.96 38 17 8 37 54 20.8 18 19 75 .55 .106 43 66 1.03 202 .09 30 2.11 .06 .15 11 45

A]	Lys	an	der	Go	old	Cor	p.	PF	OJ	ECI	Pi	AL	F	ILE	# 9)6-4	26	7				<u> </u>		Pag	je	13	
SAMPLE#	Mo ppm						Co ppm			As ppm							Bi ppn pp		a %		La (pon_pp		Mg Ba %_ppr		B				W ppm	
104160 -80 104161 -80 104162 -80 104163 -80 104163 -80 104164 -80	<1 <1 1 <1 <1	876 118	⊲ ⊲ ⊲	160 135 125	<.3 <.3 <.3	76 92 77	46 1 49 1 43 1	819 060 1 076 1	8.92 8.79 10.09 10.21 8.21	<2 7 <2	<5 <5 <5	<2 <2 <2	31 52 62	51 83 79	.6 1.1 .9	<2 <2 <2	2 29 <2 32 <2 32	14 3.4 78 1.7 29 2.4 29 2.1 34 2.1	7.5 0.6 9.6	14 92 95	26 19 40 29 40 19	292. 272. 211.	07 195 20 168 90 93	5 .20 3 .19 5 .18	4 4 <3	2.41 1.98 2.07 1.74 3.04	.02 .03 .02	.38 .61 .57	<2 <2	10 25 9
104165 ~80 104166 ~80 104167 ~80 104168 ~80 104168 ~80 104169 ~80	-	624 897 1580 298 349	21 3 24	224 303 167	.4 <.3 .8	55 57 23	37 ° 54 ° 16 °	1800 1566 1901	7.23 6.89 9.85 6.84 6.78	2 2 <2	<5 <5 <5	<2 <2 <2	4 1 5 2 4 4 2 2	43 18 56	1.1 2.3 .5	<2 <2 <2	<2 23 <2 38 <2 26	91 2.1 36 1.9 81 3.8 63 .5 30 .4	4 .4 4 1.0 1 .2	29 37 14	28 1 [°] 55 ° 11	13 2. 77 2. 73 1.	71 250 74 13 07 11	3 .21 7 .16 3 .17	5 3 <3	2.20	.02 .02 .01	.53 .43 .22	<2 <2	36 14 24
104170 -80 104171 -80 104172 -80 104173 -80 RE 104173 -80	3 <1 3	917 6607 153 2106 2239	10 <3 4	387 199 243	3.6 <.3 <.3	33 82 34	34 3 66 3 33 3	3264 1 194 1925	8.36 6.32 14.92 7.48 6.75	6 <2 3	<5 <5 <5	<2 <2 <2	4 1	132 18 130	1.9 1.9 .7	3 <2 <2	<2 2 <2 4 <2 2	31 2.7	4.22 23.1.5 85.5	25 04 1 35	29 108 1 42	68 Z. 46 Z. 66 1.	72 114 35 8 68 114	6 .15 1 .06 8 .12	<3 3 3	3.33	.01 .04 .02	.25 .39 .24	<2 <2 <2	80 3 51
104174 -80 104175 -80 104176 -80 104177 -80 104177 -80 104178 -80	2	1717 1680 264 353 558	4 7 3	168 192 146	<.3 <.3 <.3	33 17 43	24 30 : 21	991 3135 1357	6.44 5.69 6.81 5.03 4.70	<2 <2 <2	<5 <5 <5	<2 <2 <2	13 6 2 2 6	90 65 71	.5 .6 .4	2 4 <2	<2 2 <2 2 2 1	09 1.4 03 1.2 17 .9 80 .4 51 .4	25 .3 59 .2 58 .2	23 172 204	24 14 15 1	46 Z. 36 1. 13 1.	12 9 38 10 66 6	9 19 9 09 9 15	3 4 3	2.33 2.68 3.15 2.68 1.90	.02 .01 .01	.25 .11 .11	<2 <2 <2	40 24 12
104179 -80 104180 -80 104181 -80 104182 -80 104183 -80	2 <1 1 2	296	থ থ থ	113 111 103	.3 <.3 <.3	53 39 13	27 23 22	786 1052 1122	6.79 7.94 7.05 7.38 3.38	<2 <2 <2	<5 <5 <5	<2 <2	6 -	67 69	.6 .3	4 4 <2	<2 2 <2 2 4 3	95 .1 67 1.2 39 .9 66 .9 68 .1	21 .4 93 .3 98 .4	22 40 08	24 1 19 1 25	73 1. 27 . 15 2.	28 10 96 8 94 25	0.16 5.12 7.33	4 4 3	2.24	.02 .01 .02	.19 .11 .75	<2 <2 <2	9
104184 -80 104185 -80 104185 -80 104186 -80 104187 -80 104188 -80	<1 <1 <1 <1 <1 1	547 64 7	ও ও ও	109 94	<.3 <.3	48 108 87	27 35 32	969 796 808	7.65 7.87 7.27 5.71 5.94	<2 <2 <2	<5 <5 <5	<2 <2 <2	4 4	111 154 104	.5 .6 .3	<2 <2 2	<23 <22 <21	89 . 04 1. 21 1. 61 1. 42 .	38 .4 51 .4 43 .4	64 25 74	24 1 28 3 32 2	44 1. 96 2. 29 2.	.76 21 .60 38 .11 12	9.23 0.27 5.22	<3 <3 <3 3	2.81 2.13 2.13	.02 .03 .02	.50 .95 .68	<2 <2 <2	20 2
104189 -80 104190 -80 104191 -80 104192 -80 104193 -80	1 <1 1 2 <1	234 196	<3 <3 6	130 110 148) <.3) <.3 } .7	38 61 29	30 38 24	1084 1079 1152	7.00 7.20 11.24 8.47 8.24	<2 3 <2	<5 <5 <5	<2 <2 <2	4 3	100 177 693	.4 1.0 .6	<2 <2 2	22 23 23	73 1. 84 1. 84 2. 23 1. 09 1.	35 .4 35 .1 07 .4	462 716 480	30 33 2 24	89 1. 47 1. 70 1.	.53 6 .68 15 .30 19	9 .18 3 .10 4 .13	3 <3 5 <3 5 <3	2.13 1.78 3.25	02. 02. 02 02. 0	.23 .42 .08	<2 <2 <2	3 19 133
STANDARD C2/AU-S	21	58	35	140	6.8	72	35	1186	3.89	41	19	9	36	53	20.6	22	19	74	54	105	42	63 1	00 19	8.08	3 29	2.06	.06	. 15	12	52

Т 1

					L	ува	nde	r G	old	Co	rp.	PR	OJE	СТ	PAL	F	ILE	#	96-	426	7					P	age	14	4	E ANALYT	TOL
SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppni	U ppm	Au ppm	⊺h pprn	Sr ppm	- Cd ppn	Sb ppm	Bi ppm	V ppm	Ca %	P X	La	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	At %	Na %	K %		Au* ppb
104194 -80 104195 -80 104196 -80 104196 -80 104196A -80 104197 -80	2 1 1 1 2	363 148 113 142 39	8 4 <3 6 5	164 164 128 185 149	<.3 .4 <.3 .3 .3	44 21 10 26 20	18 29	1639 156 3	5.60 7.88	5 <2 <2 <2 <2 <2 <2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	~~ ~~ ~~ ~~ ~~ ~~	32542	73 128 91 131 87	.8 .6 .9 .9	5 <2 <2 <2 <2 <2	<2 <2	162 160 249 269 251	.48 .55 1.31	.121 .418 .229 .398 .217	15 12 26 26 15	38 17 45	1.54 .90 .46 1.61 .91	119	.16 .11 <.01 .13 .10	ব ব ব	3.91 3.04 3.67 2.56 2.16	.02 .02 .01 .03 .02	.10 .08 .01 .17 .06	2 2 2 2 2 2 2 2 2 2 2	13 9 25 12 6
104199 -80 104200 -80 104201 -80 104202 -80 104202 -80	<1 <1 <1 2 <1	77 130 137 37 75		133 113 120 107 88	<.3 <.3 <.3 .4 <.3	25 25 23 10 19	12	747 753 2725	8.87 8.89 8.18 5.36 9.78	<2 <2 <2 <2 <2 <2	৩ ৩ ৩ ৩ ৩ ৩ ৩	<2 <2 <2 <2 <2 <2 <2 <2	4 4 3 3 3	135 184 205 276 179	.7 1.1 .9 .2 1.1	<2 <2 <2 5 <2	<2 <2	394 387 347 233 434	1.51 1.24 .36	.440	19 25 21 10 16	59	1.11 1.15 1.25 .44 .81	66 67 77 107 161	.16 .16 .16 .12 .13	ও ও ও	1.94 1.95 2.43 2.31 1.76	.03 .04 .04 .03 .02	.08 .08 .08 .06 .07	<2 <2 <2 3 <2	5 11 8 9 5
104204 -80 104205 -80 104205 -80 104207 -80 104208 -80	<1 1 2 3 1	212 80 56 94 73	6 <3 5 6 7	109 120 70 80 98	<.3	18 25 13 20 20	23 20 8 12 17	764 357 410	9.75 6.67 5.16 5.16 6.84	2 <2 <2 3 <2	ৎ ১ ১ ১ ১ ১ ১	<2 <2 <2 <2 <2 <2	6 5 16 6 3	78 117 173 71 129	1.0 .5 <.2 <.2	3 <2 2 4 4	< < < < < < < < < < < < < < < < < <> </td <td>189 185</td> <td>1.07 .32 .44</td> <td>.300 .411 .191 .209 .262</td> <td>17 16 12 14 13</td> <td>70 33 37</td> <td></td> <td>173 235 111 80 111</td> <td>.18 .21 .09 .09 .19</td> <td><3 <3 <3</td> <td>2.71 2.23 1.74 2.15 2.75</td> <td>.01 .02 .01 .01 .02</td> <td>.20 .29 .05 .06 .08</td> <td><2 <2 <2 2 2 <2</td> <td>18 8 27 16 7</td>	189 185	1.07 .32 .44	.300 .411 .191 .209 .262	17 16 12 14 13	70 33 37		173 235 111 80 111	.18 .21 .09 .09 .19	<3 <3 <3	2.71 2.23 1.74 2.15 2.75	.01 .02 .01 .01 .02	.20 .29 .05 .06 .08	<2 <2 <2 2 2 <2	18 8 27 16 7
104209 -80 104210 -80 104211 -80 104212 -80 RE 104212 -80	2 2 2 3 3	209 29 149 86 92	9 7 3 <3 <3	82	.3 <.3 <.3	30 8 23 15 15	4 14 13	266 424 341	5.02 3.21 5.12 5.11 5.37	<2 2 <2 <2 <2	ৎ ২ ২ ২ ২ ১	<2 <2 <2 <2 <2 <2	7 7 5 4 4	63 23 72 36 37	.3 <.2 .3 <.2 .2	<2 6 5 3 <2	<2 <2 <2 <2 <2	163 144	. 14 .51 .52	.166 .078 .151 .209 .218	16 7 16 16 16	60 25 43 25 26	.85	90 46 126 88 94	.11 .07 .09 .04 .04	<3 <3 <3	3.02 1.04 2.73 3.43 3.70	.01 .01 .01 .01 .01	.06 .04 .04 .04 .03	<2 <2 <2 <2 <2	44 5 14 26 10
104213 -80 104214 -80 104215 -80 104216 -80 104217 -80	2 2 2 1 1	97 91 92 73 72	<3 <3 <3 <3	140 77 103	<.3 <.3 <.3	14 19	12 12 14	515 379 421	5.39 5.01 5.97 5.17 7.86	4 <2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	6 3 2 5 5	176	_4	<2 <2 <2 <2 <2 <2	<2	132 201 149	.42 .42 .28	.191 .139 .185 .152 .245	14 10 10 10 13	26 27 42 41 105	.99 .74 .95	98	.05 .09	<3 <3 <3	4.36 3.94 3.26 4.48 3.44	.01 .01 .01 .01 .01	.04 .04 .04 .05 .06	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	9 5 11 8 5
104218 -80 104219 -80 104220 -80 104221 -80 104222 -80	1 2 2 1 3	39 68	4 <3 <3 <3 5	62 59 47	2.3 > <.3 ? <.3	11 10 11	10 10 11	386 543 339	1.55 4.89 6.02 4.52 4.52	<2 <2 <2 <2 <2	<5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 3 5 3 <2	40 28 34	<.2 .4 .2	2 <2 <2 <2 4	<2 <2	157 189 152	.36 .37 .38	.146 .137 .243 .119 .165	5 11 11 10 9	8 33 38 23 11	.63 .34 .66		.05 .06 .06	<3 <3 <3	1.23 3.34 5.37 2.78 3.01	.01 .01 .01 .01 .01	.05 .03 .02 .02 .03	<2 2 <2 <2 <2 <2	6 8 4 8
104223 -80 104224 -80 104225 -80 104225 -80 104226 -80 104227 -80	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	85 20	5 6 4	7: 10: 4	5 <.3 5 <.3 4 <.3	12 12	2 15 2 15 7 6	972 2129 211	5.18 5.54 4.61 4.74 5.14		<5 6 <5	<2 <2 <2 <2 <2	2 3 <2	46 64 271	.2 .5 <.2	<2 <2 <2 <2 <2	<2 <2 2	140	.48 .52 .23	219 241 2.341 .045 .161	9 13 13 6 10	28 23 31	.83 1.21 .18	79 150 240	.05 .06 .05	<3 <3 <3	3.38 2.84 3.04 1.14 2.53	.01 .01 .01 .02 .01	.04 .06 .08 .04 .07	<2 <2 <2 <2 <2 <2	16 29 21 7 61
STANDARD C2/AU-S	21	59	41	143	3 6.4	. 74	35	1178	3 3.94	43	16		36	54	21.1	19	19	73	.56	5.102	42	65	1.04	207	. 09	29	2.06	.06	.14	12	45

ACHE ANALYTICAL	Lysander Gold Corp. PROJECT PAL FILE # 96-4267 Page 15
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au* ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
104228 -80 104229 -80 104230 -80 104231 -80 104232 -80	2 30 9 51 .4 8 9 596 4.99 <2
104233 -80 104234 -80 104235 -80 104236 -80 104237 -80	2 477 9 172 <.3 27 37 2046 9.83 9 <5 <2 4 237 .2 <2 <2 423 1.93 .544 34 73 1.59 214 .14 <3 1.53 .02 .28 <2 13 <1 250 6 146 <.3 26 32 1869 8.71 5 <5 <2 3 209 <.2 <2 4 425 1.83 .578 34 68 1.35 145 .17 3 1.50 .02 .20 <2 7 <1 176 7 97 <.3 40 28 1053 8.85 <2 <5 <2 6 168 <.2 <2 2 366 1.69 .551 30 132 1.14 185 .16 <3 1.39 .02 .32 <2 7 <1 158 3 109 <.3 73 37 1002 9.03 <2 <5 <2 4 176 <.2 <2 <2 309 1.68 .586 31 263 2.20 199 .24 <3 1.87 .02 .54 <2 6 <4 212 5 144 <.3 56 40 1659 6.46 <2 6 <2 3 167 <.2 <2 2 253 1.62 .494 26 112 2.59 269 .23 <3 2.13 .02 .49 <2 33
104238 -80 104239 -80 104240 -80 104241 -80 104242 -80	<1 219 <3 130 <.3 68 39 1454 6.85 9 <5 <2 3 181 <.2 <2 <2 263 2.21 .369 24 167 2.96 155 .23 <3 2.46 .01 .59 <2 19 1 453 7 147 <.3 62 38 1651 6.68 2 <5 <2 4 166 <.2 3 <2 251 1.75 .367 26 176 2.84 130 .21 <3 2.52 .03 .50 <2 91 3 430 6 130 <.3 33 23 1326 8.27 <2 <5 <2 3 81 <.2 <2 <2 371 1.21 .366 19 102 2.27 349 .38 <3 2.49 .02 .60 <2 12 1 375 5 130 <.3 63 35 1418 8.62 <2 <5 <2 3 76 <.2 <2 3 337 1.22 .289 13 165 4.22 717 .51 <3 3.02 .02 1.39 <2 9 <1 162 <3 117 <.3 76 43 1143 11.16 <2 <5 <2 5 85 <.2 <2 <2 441 1.21 .348 21 219 1.99 123 .27 <3 1.53 .02 .39 <2 11
104243 -80 104244 -80 104245 -80 104245 -80 104246 -80 104247 -80	<1 592 5 161 <.3 61 48 1536 9.00 <2 6 <2 5 154 <.2 2 2 334 1.67 .504 28 103 2.54 237 .29 <3 1.95 .02 .52 <2 127 4 389 10 181 .3 42 42 2315 5.86 <2 <5 <2 3 283 .3 <2 <2 190 2.15 .603 39 54 3.06 512 .14 3 2.72 .02 .42 <2 29 2 313 9 163 <.3 108 55 1510 7.45 3 <5 <2 5 155 .2 2 3 208 1.81 .465 26 254 3.90 283 .33 <3 2.87 .02 .84 <2 7 <1 353 6 155 <.3 91 46 1336 7.42 <2 <5 <2 4 121 .4 <2 <2 207 1.56 .388 22 188 3.01 148 .28 <3 2.02 .02 .54 <2 38 1 90 5 179 <.3 123 54 1775 7.21 2 <5 <2 4 256 .6 3 <2 234 2.05 .660 40 272 3.84 380 .30 <3 2.97 .02 1.15 <2 7
104248 -80 104249 -80 104250 -80 104251 -80 RE 104251 -80	2 567 <3 166
104252 -80 Was-1 -80 Was-2 -80 Was-3 -80 Was-3 -80 Was-4 -80	5 163 4 92 .3 15 13 1148 4.79 <2
WAS-5 -80 WAS-6 -80 WAS-7 -80 WAS-8 -80 WAS-8 -80 WAS-9 -80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
WAS-10 -80 WAS-11 -80 Standard C2/AU-S	3 156 7 153 <.3

				er er Verster				~ <u>~</u>										ncou					e e								а 1. Х. Н 1.		s e sp sterne		
SAMPLE#	Mo ppm	Cu ppm	Pb ppn			Ni ppm												V ppm	Ca %		ia ppm														
108001 108002 108003 108004 108005	<.1 <.1 <.1	8.7 5.4 3.6 16.4 31.1	1.5 1.1 2.1	7.5 4.8 16.8	129 117 443	1 <1 <1	<1 <1 2	15 8 262	.19 .24 .19	<.5 <.5 <.5	<5 < <5 < <5 <	< 1 < 1 < 1	<1 <1 <1	11 66 346	.03 .03 .11	<.2 <.2 <.2	<.1 <.1 <.1		.12 .18 .64	.026 .014 .024	4 3 7	4 2 2	.01 .01 .07	37- 58- 177-	<.01 <.01 <.01	<2 <2	.32< .28< .36	.01 .01 .05	<.01 <.01 <.01	<2 <2 <2	<.2 <.2 <.2	2 2 4	<.3 <.3 <.3	<.2 <.2	<.5 <.5 <.5
108006 108007 108008 108009 108010	<.1 <.1 <.1	13.0 4.5 21.8 35.4 12.1	1.6 10.5 2.1	9.8 20.0 13.8	39 199 179	1 2 2	1 3 4	56 139 395	.21 .24 .28	.5 .6 .5	<5 - <5 - <5 -	<.1 <.1 <.1	<1 <1 <1	26 305 161	.03 .14 .15	<.2 <.2 <.2	<.1 <.1 <.1		.10 .67 .46	.021 .034 .018	1 6 7	1 2 2	.03 .10 .07	63 79 76	<.01 <.01 <.01	<2 <2 <2	.14< .21< .19<	:.01 :.01 :.01	-01 -01 -01	<2 <2 <2	<.2 <.2 <.2	<2 <2 3	<.3 <.3 <.3	<.2 <.2	<.5 <.5 <.5
108011 108012 108013 RE 108013 108014	<.1 <.1 <.1	123.9 22.3 32.4 32.4 19.8	1.7 2.2 2.1	17.7 9.6 8.4	147 315 308	1 1 1	5 2 2	582 381 388	.22 .25 .24	.6 <.5 <.5	<5 · <5 · <5 ·	<.1 <.1 <.1	<1 <1 <1	93 60 58	.11 .17 .17	<.2 <.2 <.2	<.1 <.1 <.1	7	.58 .29 .27	.054 .013 .012	8 20 21	2 2 1	.09 .02 .02	96 98 95	<.01 <.01 <.01	<2 <2 <2	.19< .26< .26<	<.01 <.01 <.01	01. 01.	<2 <2 <2	<.2 <.2 <.2	<2 <2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5
108015 108016 108017 108018 108019	<.1 <.1 <,1	16.2 26.7 25.8 6.1 1.9	1.7 3.2 2.3	5.8 29.0 5.0	62 311 <30	<1 1 <1	1 4 3	117 1188 357	.31 .47 .23	.6 .5 .7	<5 · <5 ·	<.1 <.1 <.1	<1 <1 <1	95 262 28	.08 .78 .06	<.2 <.2 <.2	<.1 <.1 <.1	19 19	.22 .63 .15	.009 .006 .018	3 7 3	5 7 3	.02 .04 .01	67 221 50	<.01 <.01 <.01	<2 <2 <2	.13< .33< .31<	<.01 <.01 <.01	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	2 2 <2	<.3 <.3 <.3	<,2 <.2 <.2 <.2 <.2	<.5 <.5 <.5
108020 108021 108022 108023 108024	<.1 <.1 <.1 <.1 <.1	3.7	1.5 1.0 1.3	3.3 4.8 4.1	64 63 <30	<1 <1 <1	1 1	119 25 11	.13 .17 .20	<.5 <.5 <.5	<5 <5	<.1 <.1 <.1	<1 <1 <1	27 38 8	.03 .02 .02	<.2 <.2 <.2	<.1 <.1 <.1	6	.07 .09 .03	<.002	<1 6 3	1 2 1	.01 .01 .01	45 40 24	<.01 <.01 <.01	<2 <2 <2	.11< .08< .17<	<.01 <.01 <.01	01. 01. 01.>	<2 <2 <2	<.2 <.2 <.2	3 4 2	<.3 <.3 <.3	<.2 <.2	<.5 <.5 <.5
108025 108026 RE 108026 108027 108028	<.1 <.1 <.1		1.0	3.8 4.1 12.2	<30 <30 62	<1 <1 1	<1 <1 4	8 7 287	.14 .13 .31	<.5 <.5 .8	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	3 3 20	.01 .01 .06	<.2 <.2 <.2	<.1 <.1 <.1	12 4 11 7	.02 .02 .23	.035 .034 .066	1 1 7	1- 1- 2	<.01 <.01 .05	12 12 54	<.01 <.01 <.01	<2 <2 <2	.37 .36 .13	<.01 <.01 <.01	01. 01.> 01.	<2 <2 <2	<.2 <.2 <.2	3 3 2	<.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2	6۔ 6، 5.>
108029 108030 111001 111002 111003	<.1 <.1	17.5 17.1 41.2 2.9 .6	5.3 4.0 4.2	11.0 12.5	55 136 182	2 2 1	5 3 1	382 337 37	.32 .22 .20	<.5 1.1 <.5	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	47 61 11	.07 .10 .03	<.2 <.2 <.2	<.1 .1 <.1	13 13 9 6 8	.47 .47 .20	.077 .044 .112	8 11 4	3 5 2	.07 .09 .02	147 262 23	<.01 <.01 <.01	<2 <2 <2	.17• .15• .55•	<.01 <.01 <.01	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	<2 <2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5
FOR	MN FE Se te	GRAM S SR CA AND GA TYPE:	A P L A ARE	A CR Extr	MG BA	TI B With	B W A H Mit	ND L BK-AL	IMITE IQUAT	ED F(1 336	OR NA 5 AND	K G ANA	GA AN	ID AU ID BY	Si (IC	OLUT P. E	ION LEVA	ANALY	'SED IETEC	DIREC TION	TLY I	BY I	CP.	MO	CU P								'e>2()%.	

ANALYTICA.						L	ysa	ind	ler	Go	51 0	1 C	or	р.	PF	20J	EC'	T P	AL	F	ILE	#	96	5-4	268							Pag	je	2		AA LL MALYTIC
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm		j N j pp	i C m pp	o m p	Mn xpm	Fe % p	As	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppn	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	8a ppm	Ti %	8 ppm	AL I	Na %	K % pp	w ⊺i nsppnn	Hg ppb	Se ppm	Te ppm	Ga PPM	
111004 111005 111006 111007 111008	<.1 <.1	15.0 1.6 5.1	3.6 2.4 2.8	5.0	176 <30	5] < 5 <	2 1 < 1	37 1 11	'52 . 16 . 107 .	. 22 . 16 . 28	.6 .6 .5	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	73 11 49	.33 .04 .05	<.2 <.2 <.2	<.1 <.1 <.1	8 5 9	.57 .11 .25	.037 .029 .010	6 2 1	1 1 1	.09 .01 .03	91<. 20<. 58<.	.01 .01 .01	<2 . <2 . <2 .	.15<.1 .17<.0 .13<.1	01 .0 01<.0 01 .0	1 < 1 < 1 <	2 <.2 2 <.2 2 <.2 2 <.2 2 <.2 2 <.2	2 2 2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5	
111009 111010 111011 111012 RE 111011	<.1 <.1	6.7 .9 8.6	3.9 1.1 5.5	9.8 3.4 14.1	100 <30 329	5) < ?	1 1 1 1	1 32 44	81 . 242 . 62 .	.20 ′ .10 .34 ′	1.0 .9 1.4	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	55 11 135	.14 .05 .23	<.2 <.2 <.2	< 1 < 1	21 4 12	.36 .16 .67	.025 .053 .012	4 3 6	1 1- 2	.03 01.> 07.	66<. 23< 126<	.01 .01 .01	<>>. <>>. <>>...	.16<.1 .27<.1 .27	01 .0 01<.0 01 .0	11 < 11 < 12 <	2 <.2 2 <.2 2 <.2 2 <.2 2 <.2 2 <.2	23	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5	
111013 111014 111015 111016 111017	<.1 <.1	.8 4.3 2.3	2.4 2.9 2.7	7.6 2.7 10.4	5 85 35 101	5 < 5 < 3 <	1 < 1 1	1 1 2 2	65 87 94	.18 .11 .22	.7 1.4 .7	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	13 78 39	.07 .02	<.2 <.2 <.2	< 1 <.1 <.1	6 6 8	.07 .30 .20	.027 .075 .016	1 6 2	1 1 1	.01 .03 .04	57< 68< 66<	.01 .01 .01	<2 <2 <2	.40<.1 .24<. .20 .	01 .0 01 .0 01 .0	1 < 1 < 1 <	2 <.2 2 <.2 2 <.2 2 <.2 2 <.2	2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5	
111018 111019 111020 111021 111022	<.1	10.8	3.6	12.1	1 3! 3 13! 2 5:	5 5 1	2 1 1	5 8 2 1 3 3	576 130 593	.17 .27 .16	<.5 .7 1.6	<5 <5 <5	<.1 <.1 < 1	<1 <1 <1	52 38 109	.12 .08 .11	<.2 <.2 <.2	<.1 <.1 <.1	9 14 16	.40 .24 .68	.033 .017 .017	4 3 2	1 2 1	.07 .03 .06	58< 62< 76<	.01 .01 .01	<2 <2 <2	.14 . .19<. .13<.	01<.0 01 .0 01 .0)1 <)1 <)1 <	2 <.2 2 <.2 2 <.2 2 <.2 2 <.2 2 <.2	<2 <2 2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5	
111023 111024 111025 111026 111027	<.1 <.1	2.2	3.1	12.1 7.9 13.7	1 12 9 21 7 7	1 < 0 3	1 1 1	4 2 2 4 2	230 227 776	.16 .15 .20	1.9 1.7 .9	<5 <5 <5	<.1 <.1 <.1	<1 <1 1	22 137 60	.06 .21 .19	> <.2 <.2 > <.2	2 <.1 2 <.1 2 <.1	8 9 12	.20 .72 .31	.052 .010 .006	3 3 3	1 1 1	.02 .04 .05	40< 128< 80<	.01 .01 .01	<2 <2 <2	.25<. .20 .17<.	01 .0 01 .0 01 .0)1 <)1 <)1 <	<pre><2 <.2 <2 <.2 </pre>	2 2 2 2 2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5	
111028 111029 111030 111031 111032	<.1 <.1	19.3 16.6 11.9	i 2.5 i 3.1 i 5.5	10.1 16.1 16.9	1 11 7 17 9 91	8 3 3	1 1 2	2 3 3 3	321 735 79	.20 .21 .77	1.0 1.1 1.2	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	27 40 110	.05 .11 .55	i <.? <.?	2 <.1 2 <.1 2 <.1	11 13 25	.22	.026	4 4 8	2 2 3	.05 .05 .08	30< 31< 100<	.01 .01 .01	<2 <2 <2	.19<. .18<. .54 .	01 .0 01 .0 01 .0)1 <)1 <)2 <	<pre><2 <.2 <2 <.2 </pre>	2 Z 2 <2 2 7	<.3 <.3 <.3	<.2 <.2 <.2	.6 <.5 .6	
111033 111034 111035 111036	<.1	1.7	7.9 21.5	13.2	56 2<3	2 •	:1 ৰ :1	<1 1	<5 37	-17 -19	.6 .9	<5 <5	<.1 <.1	<1 <1	16 25	.04 .02	< 2 <	2 < 1 2 < 1	6 14	.12	.004	2	<1 1	.01 .04	29< 42<	:.01	<2 <2	.23.	.01<.(01<.(01 • 01 •	<2 <.2 <2 <.2 <2 <.2 <2 <.2	2 <2 2 <2	<.3 <.3	<.2	<.5 <.5	

ANALYTICAL						Lys	and	ler	Gc	ld	Co	rp	• 1	PRC	ĴĴĒ	ECT	PI	AL	F	ILE	#	96	-42	268	3						P	ag	e 3	3	×	
SAMPLE#	Мо ррп		Pb ppm	Zn ppm	Ag ppb						ppm p																Al %									
111037 111038 111039 111040 111041	<.1 <.1 <.1	11_3 49_4 34_2 31_7 8.6	2.3 2.1 1.6	10.4 14.0 12.3	100 98 71	2 2 1	3	411 151 79	.35 .28 .31	<.5 <.5 <.5	<5 < <5 < <5 <	:.1 :.1 :.1	<1 <1 <1	35 29 22	.12 .09 .05	<.2 <.2 <.2	.1 <.1 <.1	22 21 34	.58 .52 .44	.067 .014 .038 .044 .086	4 2 2	2 2 2	.08 .07 .05	135 82 72	<.01 <.01 <.01	<2 <2 <2	.19< .16< .15<	.01 .01 .01	.02 .01 .01	<2 <2 <2	<.2 <.2 <.2	2 <2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5	
111042 111043 111044 111045 111045 111046	<.1 <.1 <.1	8.2 4.2 1.9 2.1 3.6	1.4 1.2 1.0	10.7 10.9 9.4	78 70 106	1 2 1	3 1 1 1 1	8 23 9	.33 .25 .21	<.5 <.5 <.5	<5 < <5 < <5 <	.1 .1	<1 <1 <1	16 18 14	.17 .08 .10	<.2 <.2 <.2	<.1 <.1 <.1	13 7 9	.25 .21 .23	.035 .014 .066 .047 .046	1 1 1	6 3 3	.02 .05 .02	46 42 40	<.01 <.01 <.01	<2 <2 <2	.37 .39< .40<	.01 .01 .01	.02 .02 .02	<2 <2 <2	<.2 <.2 <.2	<2 <2 <2	<.3 <.3 <.3	<.2 <.2 <.2	.5 6. 5.>	i
111047 111048 111049 111050 111051	<.1 <.1 <.1	17.1 16.8 4.5 25.2 3.6	.7 .7 1.4	11.0 6.5 30.2	129 108 67	2 <1 3	3	32 16 253	.30 .14 .30	<.5 <.5 <.5	<5 < <5 <	:.1 :.1 :.1	<1 <1 <1	17 13 18	.07 .04 .22	<.2 <.2 <.2	<.1 <.1 <.1	8 5 12	.25 .21 .37	.011 .010 .036 .041 .037	1 1 3	2 2 2	.02 .01 .07	29 19 51	<.01 <.01 <.01	<2 <2 <2	.50 .35< .21<	.01 .01 .01	.02 .02 .03	<2 <2 <2	<.2 <.2 <.2	<2 <2 <2	<.3 <.3 <.3	< < <	<.5 <.5 <.5	
RE 111051 111052 111053 111054 111055	<.1 <.1	3.6 12.0 244.0 8.9 19.7	1.5 2.0 1.2	7.7 18.0 12.9	58 253 117	3 4 3	1 4 2	40 395 61	.26 .60 .35	<.5 .9 <.5	<5 < <5 < <5 <	: 1 : 1 : 1	<1 <1 <1	21 34 25	.04 .16 .07	<.2 <.2	<.1 <.1 <.1	9 18 13	.25 .73 .37	.037 .052 .039 .023 .026	1 4 1	343	.09	36 45 31	i<.01 i<.01 i<.01	<2 <2 <2	.22< .22< .22	:.01 :.01 .01	.01 .02 .01	<2 <2 <2	<.2 <.2 <.2	<2 <2 3	<.3 <.3 <.3	<.? <.?	<.5 <.5 <.5	
111056 111057 111058 111059 111060	<.1 <.1 <.1	4.6 21.5 22.9 52.3 29.9	1.7 1.8 2.9	16.3 9.5 18.2	55 104 81	4 2 5	6 3 10	334 202 704	.39 .81 .54	<.5 <.5	<5 < <5 <	<.1 <.1	<1 <1 <1	64 30 80	.03	<.2 <.2 <.2	<.1 <.1 <.1	14 26 17	.51 .21 .53	.018 .064 .027 .069 .059	5 6 4	4	. 15	49 29 97	><.01 ><.01 ><.01	<2 <2 <2	.20< .24< .15<	:.01 :.01	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	2 3 <2	<.3 <.3 <.3	< < <	? <.5 ? <.5 ? <.5	
111061 111062 111063 131064 111065	<.1 <.1 <.1	74.8 56.9 51.8 38.1 26.2	1.1 3.4 1.2	16.7 29.0 18.2	213 581 88	10 15 4	12 24 7	1072 1734 525	.53 .77 ,75	<.5 <.5 <.5	<5 - <5 - <5 -	<.1 <.1 <.1	<1 1 <1	120 148 176	.15 .41 .06	<.2 <.2 <.2	<.1 	17 30 38	.71 .65 .56	.031 .029 .025 .013 .062	4 6 3	5	-18 -11 -19	233	S<.01 S<.01 S<.01	<2 <2 <2	.15< .12< .16<	<.01 <.D1 <.01	.01 .02 .01	<2 <2 <2	<.2 .2 <.2	4 3 <2	<.3 <.3 <.3	<. <.	2 <.5 2 <.5 2 <.5	5
111066 111067 111068 111069	<.1 <.1	16.9 38.4 90.0 37.9	2.6	17.2	77 111	6 2	6 4	424 203	.36 .25	.5 .6	<5 · <5 ·	<.1 <.1	<1 <1	87 71	.11	<.2 <.2	.1 	8 11	.51 .53	.048	2	! <u>3</u>	.20	88 44	3<.01 \$<.01	<2 <2	.11 .13<	01. 01.>	.02 .02	<2 <2	<.2 <.2	<2 2	<.3 <.3	<. <.	2 <.5 2 <.5	i i

. . .

.

Т

ANALYTICAL						Lys	san	der	Go	old	Co	orp	.]	PRO	JE(CT	PA	L	FI	LE	# !	96-	42	68							Pa	ge	4		ADE ANI	
SAMPLE#	Mo ppm	Cu ppm	РЬ ppm	Zi	n A m pp	g N b ppr	i C n pp	o Min mippon	Fe %	As ppm	U PPm (Au	Th xpm	Sr ppm	Cd ppm	Sb ppm	Bí ppm	V ppm	Ca %	P %							 A{ %									
111070 111071 111072 111073 111074	<.1 <.1 <.1 <.1 <.1		6.1	4. 7. 15.	7 <3 0 <3	0 1	2 : 2 4	6 378 2 109 1 80 5 490 3 116	.09 .08 .31	<.5 <.5 <.5	<5 - <5 - <5 -	<.1 <.1 <.1	<1 <1 <1	36 48 55	.02 .07 .58	<.2 <.2 <.2	<.1 <.1 <.1	5 3 12	.29 .39 .55	.080 .084 .039	4 2 5	2 2 6	.07 .07 .12	28<. 53<. 49<.	.01 .01 .01	<2 <2 <2	.07<.(.08<. .13<.	D1 . D1 . D1 .	.01 .01 .01	<2 · <2 · <2 ·	<.2 <.2 <.2	2 2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5	
111075 111076 111077 111078 111079	1 1	4.6 5.6 31.6 104.2 34.8	1.2	6. 8. 12.	03 715	0 6 4	2 3 3	3 110 2 62 2 55 3 364 8 639	.11 .21 .25	.5 <.5 8	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	35 51 56	.02 .02 .11	<.2 <.2 <.2	<.1 <.1 <.1	9 11 13	.28 .40 .43	.074 .093 .083	4 5 5	2 6 4	.05 .08 .08	10< 19< 29<	.01 .01 .01	<2 <2 <2	.06<.0 .09<.0 .12<.0	01 . 01 . 01 .	.01 .01 .01	<2 · <2 · <2 ·	<.2 <.2 <.2	<2 <2 3	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5	
111080 111081 111082 111083 111083	<.1 .1 .1 <.1	30.6 17.1 29.4	1.4 2.9 3.3	9. 14. 16.	546 730 78	1 5 2	2 2 4	6 521 3 244 7 606 3 95 7 901	.19 .40	.9 .6 .7	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	114 114 56	,07 .13 .05	<.2 <.2 <.2	<.1 <.1 <.1	6 18 43	.57 .60 .42	067 020	4 5 7	2 4 8	.12	28< 71< 31<	.01 .01 .01	<2 <2 <2	.16<. .20<. .24<.	01<. 01 . 01<.	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	4 3 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5	
111085 111086 111087 111088 111088	<.1 <.1 <.1 <.1 <.1	5.9 14.0 3.7	1.6	18. 11. 16.	2 11 7 7 9 4	5 0 9	3 2 3	2 96 6 488 3 221 8 566 5 570	.26	<.5 1.0 <.5	₹5 ₹5 ₹5	<.1 <.1 <.1	<1 <1 <1	29 70 68	.07 .05 .06	<.2 <.2 <.2	<.1 <.1 <.1	9 11 18	.31 .43 .44	.038 .059 .016	3 4 3	3 5 5	.11 .09 .11	49< 50< 93<	.01 .01 .01	<2 <2 <2	.18<. .15<. .18<.	01<. 01 01	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	2 3 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5	
111090 111091 111092 RE 111092 111093	101		22	11. 10.	6 6 2 6 9 6	5 4	3 2 2	2 57 2 86 4 242 4 230 3 91	.29 .27	<.5 .7	<5 ≺5 ≺5	<.1 <.1 <.1	<1 <1 <1	8 107 105	.08 .04 .04	<.2 <.2 <.2	<.1 <.1 <.1	9 18 17	.11 .42 .41	.019 .040 .040	2 5 5	4 6 6	.08 09 09	9< 35< 34<	.01 .01	<2 <2 <2	.25<. .16<. .16<.	01<. 01 01	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	2 3 3	<.3 <.3 <.3	<.2 <.2 <.2	.6 <.5 <.5	
111094 111095 111096 111097 111098	.1	112.5 47.3 149.9 1130.5 612.4	3.9 10.9 5 5	14. 35. 73.	.1 9 .7 7 .5 12	10 3 19	3 3 3	4 329 4 293 5 817 5 426 5 787	.27 .43 .52	.5 <.5 3.8	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	85 71 179	15. 64. 1.01	<.2 <.2 <.2	<.1 .1 .1	12 15 13	.45 .48 .77	.033 .042 .037	6 5 6	5	.10 .15 .14	58< 78< 98<	.01 .01	<2 <2 <2	.18<. .19<. .17<.	01 01 01	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	<2 <2 5	<.3 <.3 <.3	<.2 <.2 .4	<.5 <.5 <.5	
111099 111100 111101 111102	1< 1	80.4 25.1 115.2 51.1	11 2	2 10.	2 5	i9 21	1 4	4 653	.20	.9 1.0	<5 <5	<.1 <.1	<1 <1	82 40	.14	<.2 <.2	! . .1	22 12	.57	.045	8 3	3	.04 .14	39< 25<	.01 .01	<2 <2	.21<.	.01 .01<	.01 .01	<2 <2	<.2 <.2	<2 4	<.3 <.3	<.2 <.2	<.5 <.5	

						1	Lys	san	der	Go	ld	Co	rp.	. F	RO	JEC	T	PAL	F	TL.	S #	96	-4	268	}				<u> </u>	P	'ag	e	;	20	
SAMPLE#	Mo ppm					Ag opb p			Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppn	Sb ppm	Bi ppm	V mqq	Ca X	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti % pp	B/ xm	AL Na % %	K 1 X	ppar p	Tl pm	Hg ppb p	Se pmt p	Te	Ga opm
111103 111104 111105 111105 111106 111107	<.1 <.1	42.4 12.4 6.8 1.4 656.3	4. 2.	1 34 9 11 5 19	4.3 1.1 7.6	<30 107 <30	2 1	2 2 1 3 6	298 123 96	.17 .27	<.5 <.5	<5 <5 <5	<.1 <.1 <.1	ব ব ব	33 3 57	.04 .07 .03	<.2 <.2 <.2	<.1 <.1 <.1	10 8 6	.34 .07 .54	.038 .015 .159	6 2 6	3 2 1	.09 .02 .10	63<. 14<. 120<.	.01 < .01 < .01 <	2. 2. 2.	26<_01 24<_01 33<_01 14<_01 13<_01	i<.01 .01 <.01	<2 < <2 < <2 <	<.2 <.2 <.2	<2 · 2 · <2 ·	:.3 · :.3 · :.3 ·	<.2 <.2 <.2	<.5 .6 <.5
131108 111109 111110 RE 111110 131111	.1	175.0 3354.7 158.8 165.2 6.9	26.	4 22 5 14 7 14	2.7 4.6 4.9	837 106 110	5 4 3		957 662 631	.68 .26 28	1.9 <.5	<5 <5 <5	<.1 <.1	<1 <1 <1	94 79 79	1.50	<.2 <.2	.1	18 16 16	.54 .60 .62	.041 .073 .078	9 4 5	14 4 5	.09 .10 .10	93<. 45<. 44<.	.01 < .01 < .01 <	<2. <2. <2.	12<.01 19<.01 13<.0 13<.0 21<.0	.01 .01 .01	<2 · <2 · <2 ·	<.2 <.2 <.2	39 · <2 · <2 ·	<.3 <.3 <.3	<.2 <.2	<.5 <.5 <,5
111112 111113 111114 111115 111115 111116	_1 <.1 <.1	49.4 21.5 6.9 374.6 21.2	2.	1 6 10 9 2	7.4 6.7 7.3	65 68 50	2 1 4	3 3 40	143 252 755	.27 .20 38	<.5 <.5	ৎ ২5	<.1 <.1	<1 <1 <1	43 32 44	.04 .10 34	<.2 <.2	<.1 <.1	40 12 13	.32 .33 .54	.026	5 3 3	11 3 7	.05 .04 .10	33<. 51<. 58<.	.01 < .01 < .01 <	<2. <2. <2.	19<.01 14<.01 16<.01 14<.01 17<.01	1 .01 1 .01 1 .01	<2 · <2 · <2 ·	<.2 <.2 <.2	<2 · <2 · <2 ·	<.3 <.3 <.3	<.2 <.2 .3	<.5 <.5 <.5
111117 111118 111119 111120 111121	<.1 <.1 <.1 <.1 <.1	59.1 6.6 18.1	1. 1.	7 8 1 9	9.0 0.9 9.5	43 92	1 2 2	4 2 5	243 273 93 204 96	.36 .21 .33	<.5 <.5 <.5	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	54 17 33	.05 .04 .07	<.2 <.2 <.2	2 <.1 2 <.1 2 .1	20 9 26	.37 .19 .38	.018 .027 .014	5 2 3	5 2 4	.05 .07 .09	55<. 29<. 113<	.01 · .01 ·	<2 . <2 . <2 .	15<.0 17<.0 19<.0 14<.0 11<.0	1 .01 1<.01 1 .01	<2 <2 <2	<.2 <.2 1.4	2 <2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 .6 <.5
111122 111123 111124 111125 111126	<.1 <.1	36.9) 1. 1 1. 2 2.	.6 1 .2 .0 2	1.9 5.7 3.5	122 152	3 2 3	5 2 6	258 561	.30 .18 .25	<.5 <.5 1.6	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	72 57 39	. 13 . 10 . 09	5 <.2) <.2 7 <.2	2 .1 2 <.1 2 <.1	19 11 12	.61 .46 .42	.036 .041 .019	4 1 4	5 5 5	.12 .12 .12	186< 214< 167<	.01 · .01 · .01 ·	<2 . <2 . <2 .	17<.0 13<.0 12<.0 16<.0 19<.0	1 .01 1 .02 1 .01	<2 <2 <2	<.2 <.2 <.2	2 3 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5
111127 111128 111129 111130 111131	<.1 <.1 <.1 <.1 <.1	9.(2. 1.	7 1. 0 1. 1 1. 1 1.	.3 1 .4 1 .2 1	1.7 4.0 3.3	93 115	1 1 1	5 1 1	746 63 30	.40 .24 22	<.5 <.5	<5 <5	<.1 <.1	<1 <1 <1	69 11 9	. 14 . 08	4 <.2 3 <.2 3 <.2	2 <.1 2 <.1 2 <.1	21 9 8	.45	.006	4	3 2 1	.06 .07 .05	73< 26< 15<	.01 .01 .01	<2 . <2 . <2 .	.14<.0 .22<.0 .21<.0 .33<.0 .16<.0	1 .01 1<.01 1<.01	<2 <2 <2	<.2 <.2 <.2	2 <2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 1.2 ,8
111132 111133 111134 111135	.6 <.1 <.1	6) 1. P 1	.5 1	2.6	127	2	3	13448 91 635 24	.37	<.5	<5 <5	<.1	<1 <1	67 25	- 12 - 00	2 < 6 <	2 <.1 2 <.1	28 10	.50	.008	4	1 2	.10	61< 55<	.01	<2 . <2 .	.40<.0 .15<.0 .19<.0 .45<.0	1<.01 1<.01	<2 <2	<.2 <,2	<2 <2	د.> <.3	<.2 <.2	<.5 <.5

. . .

.

					I	Гув	and	ler	Go	lđ	Co	orp	•	PR)J.	EC'	r e	AL	F	TLE	2 #	96	-42	268	-					Pag	ge	6		
SAMPLE#	Mo ppm	Cu ppm	Рb ppm						Fe , % p															Ba Ti opmi X										
111136	.1	15.9	2.2	18.5	325	1	9	820	.44	.5	<5 <	.1 <	(1 1	43	.36	<.2	<.1	15	.76	. 002	6	3	.05	85<.01	<2	.20<.0	01 .0	1 <	2 <.2	<2	<.3	· <,	2 <.	5
111137	<.1	2.2	2.0	14.0	126	1	1	35	.23 <	.5	<5 <	.1 <	<1	13	.04	<.2	<.1	11	.22	.057	4	1	.07	21<.01	<2	.23<.0	01<.0	1 <2	2 <.2	2	. <.3	, <,	2.	7
	<.1	2.1	3.2	11.6	121	1	1	38	.18 <	.5	<5 <.	.1 <	:1	24	.05	<.2	<.1	11	.25	.039	- 5	1	.08	24<.01	<2	.21<.0	01 .O.	1 <2	2 <.2	. 2	<.3	i <	Ζ.	5
		2.8				1	2	132	.17 <	.5	<5 <	.1 <	<1	15	.04	<.2	<.1	- 9	.22	.061	- 4	1	.05	22<.01	<2	.18<.0	01 .0	1 <2	2 <.2	. 2	<.3	5 <	Ζ.	5
		1.4				<1	1	63	.15 <	.5	<5 <	.1 <	<1	7	.05	<.2	<.1	7	.12	.042	3	1	.01	17<.01	<2	.34<.0)1<.0	1 <	2 <.2	2	<.3	, <	2 <.	5
111141	21	1.3	21	85	219	<1	1	680	.19 <	.5	<5 <	.1 <	1	6	.03	<.2	<.1	9	.11	.049	3	1<	. 01	12<.01	<2	.41<.0	0. 10	1 <2	2 <.2	. 2	<.3	i <.1	2.	6
111142	24	1.6	2.2	0 4	352	~1	<1	55	.19 <	5	5 <	1 4	<1	7	.03	<.2	<.1	7	.11	.031	2	1	.01	11<.01	<2	.34<.0	01<.0	1 <2	2 <.2	. 2	<.3	i <.'	2 <.	5
		2.1					4	443	21 <	ŝ	5 <	1 4	<1	14	.04	<.2	<.1	12	18	.032				18<.01										
		2.8							,18 <											.030		1	06	14<.01	<2	.22<.0	31<.0	1 <	2 <.2	. Ż	: <.3	s <.	2.	7
		2.4							.18 <									-		.015	_			20<.01										
111145	5.1	2.4	2.3	14.1	132		•	100	、	• •	•••	• • •	• •	2		- • 6		v			-				-					-		-		
		3.2	5 3	17 0	200	4	2	/ 72	.24 <	5	-5 c	1.	-1	6	01	< 2	1	11	08	.019	2	1	07	22<.01	<2	18<.0	<u>1</u> 1_0	1 <	2 < 2	3	<.3	\$ <.	2 1.	1
111146									.21 <								< 1			.017				20<.01										
		3.0				l r			.20 <								<.1			.010				12<.01										
		2.9				1			.15 <								<.1			.021				13<.01										
		2.6				1														.012				39<.01										
111149	<.1	1.6	5.1	10.2	107	I	4	400	.21 <	. >	0.	• • •	•	0	.01	1.4				.012	,		.04	573.01		. 10						, .,		
								-	34	-			- 1	~	~~			1/	47	075	7	2	06	12×.01	.7	204	n1< 0	1 - C	2 < 2	, ,	< < 7	ξ ε	,	8
		2.4				Ţ								7	.02	24		14	- 14	. 017	2	1	.04	36<.01		21 - 1	n1< n		2 < 2	, 7		 	· ·	õ
		2.1				1			.31 <											.017				22<.01										
		1.8				1			.17 <											.039														
		4.7				1			.17								· <.			.020				18<.01										
111154	<.1	4.7	1.8	13.7	110	1	2	504	.14 <	.5	<5 <	.1	<1	36	.09	<.2		6	.31	.018	13	1	- 04	29<.01	<2	.20<.	01<.0	II <	د <.2	. 4	, <.2	، <	2 <.	2
1																								11<.01										

. . .

1

1

1

AA					Ly	<u>san</u>	der	Gc	GE 1d	Cor	EMI p. 0 - 35	PRO	JEC	T <u>P</u>	AL	Fi	le	# 9	6-4	459		Pag	e 5							M	
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	.Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb 1707	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppn	Mg %	Ba ppm	⊺í %	8 ppm	Ai %	Na %	к %	پ موم	Au* ppb
04253 -80 04254 -80 04255 -80 04256 -80 04257 -80	7 2 1 2 1	97 148 214 346 161	12 9 9 9 4	118 105 135 102 88	.3 .3 <.3 <.3 .3	11 9 28 22 17	24 21 21	2918 3219 906 1203 1124	5.21 5.76 5.04	.9 4 5 6 4	<5 <5 <5 <5 <5 <5	2 2	<2 <2 <2 2 2 2 2	60 29 53 67 66	<.2 <.2 <.2 .7 <.2	<2 2 2 2 2 <2 2 2 2	<2 <2 3 <2 4	175 125 170 138 147	.30 .66 .58	.188 .209 .252 .217 .195	17 12 12 15 11		.76 .80 1.30 1.07 .96	177 102 94 131 139	.03 .05 .12 .11 .08	ব ব্য ব্য	2.51 2.41 3.01 2.38 2.45	<.01 .01	.06 .10 .09 .12 .08	<2 4 <2 <2 <2 <2	23 6 304 11 6
04258 -80 04259 -80 04260 -80 04261 -80 04262 -80	2 5 1 1 2	70 107 49 85 43	11 7 6 6	77 94 54 86 97	<.3 <.3 <.3 <.3	8 5 10 9	17 7 17	1173 390	3.18 4.10 2.27 5.34 4.47	<2 2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	44 43 52 79 44	<.2 <.2 .2 <.2 <.2	<2 <2 <2 4 <2	<2 <2 <2 3 2	76 98 68 131 101	.39 .13 .30	.405 .335 .108 .147 .170	6 11 5 8 6	13 13 12 21 16	.55 .84 .40 .72 .58	142 108 106 165 114	.04 .02 .03 .06 .05	र् उ र3	2.49 2.09 1.87 3.83 1.96	.01 .01 .01 .01 .01	.08 .09 .05 .06 .05	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 4 2 4 2
04263 -80 04264 -80 04265 -80 04266 -80 04266 -80 04267 -80	<1 <1 1 2 2	50 55 66 100 132	6 7 4 7 6	149 184 110 95 87	<.3 <.3 1.9 <.3 <.3	9 10 14 12 17	14 17 16 9 17	817 680 406	6.25 7.82 6.53 3.27 4.93	<2 <2 <2 2 <2	5 5 5 5 5	<2 <2 <2 <2 <2 <2 <2	4 6 2 2 2 2	248 281 52 47 67	<.2 <.2 .3 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 <2 4 <2 <2	115 147 155 81 122	.48 .40 .43	.166 .260 .413 .236 .146	9 13 8 12 11		1.02 1.06 .77 .63 .90	553 590 130 145 240	.03 .02 .04 .04 .04	ব্য ব্য ব্য	4.23 5.26 2.92 3.26 3.49	.01 .01 .01 .01 .01	.05 .05 .05 .03 .07	<2 <2 <2 5 <2	10
104268 -80 104269 -80 104270 -80 RE 104270 -80 104271 -80	2 1 1 1	129 75 62 64 99	11 12 5 6 5	91 94 81 81 75	<.3 .3 <.3 <.3 <.3	16 14 13 14 17		386 482 484	4.23 4.93 4.75 4.97 4.97	2 2 <2 3 2	5 5 5 5 5	<2 <2 <2 <2 <2 <2	3 4 2 3 6	73 57 57 53 47		<2 3 <2 2 <2 <2	3 2 <2 <2 <2 <2	111 131 103 111 122	.32 .19 .20	. 158 . 172 . 144 . 146 . 142	12 10 9 12	26 20 20 21 22	.61 .77	185 166 142 142 152	.06	ও ও ও	3.02 3.17 3.60 3.56 3.09	.01 .01 .01 .01 .01	.04 .05 .05 .05 .06	<2 <2 <2 <2 <2 <2	1
104272 -80 222021 -80 222022 -80 222023 -80 222023 -80 222024 -80		120 15285 15638 77 18	7 21 44 3 <3	70 990 871 160 156	<.3 1.0 2.5 <.3 <.3	14 152 97 116 114	88 119 55	2128 2929 918	4.83 7.77 7.54 8.20 9.12	2 8 10 5 11	ৎ জ জ জ	<2 <2 <2 <2 <2 <2	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	40 270 124 127 164	4.3	<2 3 3 <2 <2	<2 5 <2 <2 <2 <2	240 178	1.69 1.13 1.73	.177 .383 .288 .434 .805	12 33 23 28 55	167 124 151	.72 2.79 2.12 3.17 2.94	112 89 54 46 53	. 19 . 18 . 25	<3 <3 <3	2.85 3.20 2.49 2.53 2.33	.01 .01 .01 .01 .02	.04 .39 .29 .19 .68	<2 <2 <2 <2 <2 <2	13
222025 -80 222026 -80 IF Was 12 -80 IF Was 13 -80 IF Was 14 -80	1 1 - 3 - 1	11373 5093 351 189 153	15 16 9 6 15	189 226 65 119 82	<.3 <.3	65 78 69 65 13	35 67 76	1803 1162 1933	4.00 5.16 4.91 6.90 4.35	3 10 19 52 2	ণ ব ব ব ব ব ব ব	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	630 167 176	9. 2.> 2.>	<2 <2	<2 2	163 89 113	2.46 2.69 2.98	.384 .423 .067 .094 .233	3D 32 3 4 11	133 46 32	.68	44 53	.07 .04 .05	ব্য ব্য ব্য	3,26 3,06 5,07 5,53 2,91	.01 .01 .05 .02 .01	.06 .08	<2 <2 <2 <2 <2 <2	39 3 3
TF WAS 15 -80 TF WAS 16 -80 WAS MTF 104 -80 WAS MTF 105 -80 WAS MTF 105 -80	3 1 <1 1	287 256 155 151 126	13 7 40 4 11	87 60 225 180 78		5 6 63 13	15 14 47	1114 1762 1216	4.23 4.87 4.49 4.67 4.21	3 4 <2 34 <2	5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2		150 124 154	.5 .4 <.2	<2 <2 <2	<2 <2 <2	152 129 114	1.26 .97 1.53	.203 .274 .223 .077 .241	11 17 15 2 12	56	.99 1.01 1.57	138 329 60	.09 .03 .15	3	3.68 2.07 2.52 4.82 3.29	.01 .01 .02 .05 .02	.10	<2 <2 <2 <2 <2 <2	1 4
STANDARD C2/AU-S DATE REC	EIVE	THIS - SA <u>Samo</u>	LEAC MPLE	D GRAI H IS TYPE: eginn	PARTI TALU: ing (AL FO S FIN RE' a	S DIG R MN ES re Re	ESTED FE SR AU* runs	CA P - 1G	3ML LA C NITED RRE'	3-1-2 R MG I , AQU	HCL-I BA TI A-REG	KNO3- B W IA/MI <u>Reru</u>	H2D A AND L BK EX	IMITE TRACT	DEG. D FOR , GF/	C FOR NA K AA FI	ONE AND NISHE	HOUR AL.	. 106 AND IS	5 DIL	UTED	TO 10	ML W	ITH W	ATER.	I.92		.14 ASSAY	15	5

SAMPLE#	Mo Cu Pb ppm ppm ppm i	Zn Ag Ni Co Mn ppm ppm ppm ppm	Fe As U Au Th Sr Cd % ppm ppm ppm ppm ppm		Mg Ba Tì B Al Na % ppm % ppm % %	K ¥Au* %ippnippb
WAS MTF 107 -80 WAS MTF 108 -80 WAS MTF 109 -80 WAS MTF 109 -80 no	1 175 6 1 188 8 1 595 4	83 <.3 15 9 445 3. 85 <.3 15 14 1454 4. 79 <.3 12 17 1597 4.	94 2 <5 <2 <2 71 <.2 79 <2 <5 <2 <2 77 <.2 83 2 <5 <2 <2 303 .2	<pre><2 <2 121 .54 .176 10 26 <2 <2 172 .67 .265 10 33 <2 <2 173 2.10 .260 17 29 1.</pre>	.75 128 .07 <3 3.44 .02 .29 232 .08 <3 3.70 .03	.16 <2 12
WAS MTF 111 -80	18 283 13	56 <.3 17 15 664 5.	63 4 <5 <2 <2 104 <.2	<2 <2 278 .44 .128 4 94 1.	.18 94 .24 <3 2.47 .02	.05 <2 11
	<u>Sample</u>	type: TALUS FINES.				

					.:	Ī	ува	and	er	Go	1d (1120	<u>Cor</u> 3	р. 55 в	PI	ROU	JEC St.,	Yan	PAI	≓ er E	Fil SC V60	е : 268	# . B	96-	44	60				:							
SAMPLE#	Mo ppm	Cu ppr	i Pb ippni	Zn ppn/	Ag ppb	Ni ppm	Co ppm	Mn ppn	Fe % (As opm	U ppm pg	∖u T mapp	h S xn pp	Sr i Sn p	Cd pm p	Sb pom p	Bi opmip	V	Ca %	P %	1.a ppn⊓	Cr ppm	Mg %	Ba ppm	Ті %	B	Al %	Na %	к % (W ppm y	Tl pm (Hg ppb	Se ppm	ĩe ppn:	Ga ppm	
111126 111127 111128 111129 111129 111130	<.1	97.5 108.8 11.9	2.3 5.3 71.6	16.2 16.3 10.8	885 423 127	3 6 <1	6 6 1	646 1432 91	.30 .38 : .28 ·	.5 3.3 <.5	<5 < <5 < <5 < <5 < <5 <	.1 < .1 < .1 <	:1 6 :1 7 :1 7	54 . 74 . 11 .	14 < 33 < 05 <	<.2 < <.2 <	<.1 <.1 <.1	21 35 9	.59 .62 .19	.072 .044 .038 .045	7 8 3 2	13 9 3 1	.11 .10 .01 .01	76• 158• 17• 35•	<.01 <.01 <.01 <.01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. 15<. . 17<. . 19<. . 56<. . 59<.	.01 .01 .01< .01	.01 .01 .01 .01	<2 <2 <2 <2 <2	<.2 <.2 <.2 <.2	6 50 3 2	<.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5	
111131 111132 111133 111134 RE 111135	<.1 <.1	7.9 121.8 7.1	9.9 31.7 11.2	13.4 15.6 21.8	148 410 310	<1 1	1 3 3	120 575 334	.18 .27 .31	1.8 3.6 1.9	<5 < <5 < <5 < <5 <	.1 • .1 • .1 •	<1 / <1 1 <1 /	43 . 73 . 86 .	03 · 15 · 10 ·	<.2 < <.2 <	<.1 _1 <.1	15 29 40	.61 .57 .84	.080 .069 .038	5 7 5	3 6 3	.04 .07	12- 33- 31-	<.01 <.01 <.01	<2 <2 <2	.13<. .19<. .17< .17< .51<	.01 .01 .01	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	5 9 2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5	
111135 111136 111137 111138 111139	<.1 <.1	4.0 3.1 2.0	5 1.7 5 2.3 7 1.4 5 1.1 2 1.7	7.4 6.8 10.3	35 93 83	1 1 1	1 1 1	111 45 206	.16 .10 .12	.9 1.1 .8	<5 < <5 < <5 < <5 <	.1 · .1 · .1 ·	<1 <1 <1	7. 5. 6.	.03 · .04 · .05 ·	<.2 · <.2 · <.2 ·	<.1 <.1 <.1	5 4 4	.11 .14 .14	.049 .040 .050 .042 .042	5 3 3	1 1 1	.01 .01 .01	22 21 15	<.01 <.01 <.01	<2 <2 <2	.52< .47< .51< .59< .41<	.01 .01 .01	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	2 <2 2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5	
111140 111141 111142 111143	<.1 <.1 <.1	8.I 3.I	0 2.2	8.8 9.0	167 238	1 <1	1 2	148	.18	1.4	<5 < <5 < <5 <	.1	<1 ~1	8.	10 ·	<.2	<.i	5	.19	.057	5	1	.01	24 116	<.01	<2 <2	.55<	.01 .01	.01 .01	<2 <2	<.2 <.2	3 <2	<.3 <.3	<.2 <.2	.7 <.5	
ICP - FOR MI HG SE - SAMI DATE RECE	N FE S TE AN PLE T	SR CA ND GA YPE:	P LA ARE SEEPA	CR M EXTRA GE	IG BA CTED Sa	Tl WIT mole	BWA HMIE Sbeg	ND L SK-AL Jinnij	MITE QUAT	D FC 336 <u>E'</u> a	DR NA 5 AND are Re	K GA ANAL runs	AND YSED and	AL. BY	. SO 1CP RE'	LUTI . EL are_	ON A EVAT Reje	ED D	SED ETEC erur	DIRE(CTION <u>ns.</u>			ICP. FOR	MO SAMP	LES	CONT.	AIN C	υ, Ρο	5,2N	,452	1900	rrn				ERS

ACME ANALY	TICA	L L	ABOR	ATOR	IES	LTD	•	8	52 E	. HA	STI	NGS .	ST.	VAN	com	TER 1	BC	V6A	186	5	PH	ONE	(604)	253	-31	58	FAX	(604)	253	-171	16
AA									GE	OCH	EMI	CAL	AN	ALY	SIS	CE	RTI	FIC	ATE			u Sta 1944 -									
T	•		Ľ	<u>ysa</u>	nde	r G	old	Co	<u>rp.</u>	PR	<u>OJE</u>) - 35	CT 5 Bur	PAL rrard	/AT St.,	O G. Vanco	RID ouver	F BC V	ile SC ZG	`# 8	96-	446	1	Pa	ge	3 · ·		÷÷ .				[
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	2n ppm	Ag ppm	Ni ppm	Co ppm	Mri ppm	Fe X	As ppm	U D	Au ppm	ኘክ ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm	Au' ppì
103152 -80 103153 -80 103154 -80 103155 -80 103155 -80 103156 -80	5 9 5 64 30	234 497 239 425 412	4 5 5 11 3	63 58 45 48 61	<.3 <.3 <.3 <.3 <.3	16 46 24 28 7	21 17 23	1196 1027 995 852 1333	6.81 7.57 8.04	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<5 <5 5 5 6	<2 <2 <2 <2 <2	2 3	159 249 252 492 608	<.2 .3 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 3	~2 ~2	269 264 245	1.06 2.67 3.13 1.83 2.66	.208 .189 .206	12 14 13 11 13	39 39	.86 1.67 1.08 .91 1.03	116 129 96 212 187	.09 .10 .09 .08 .10	<3 <3 <3	6.90 4.73 4.34 3.12 4.47	.01 .04 .04 .03 .10	.04 .09 .11 .15 .13	<2 <2 <2 <2 <2 <2 <2 <2 <2	
03157 -80 03158 -80 03159 -80 03160 -80 03161 -80	15 21	533 561 1010 1080 263	3 3 3 3 3 3 3 3	64 41 66 59 58	<.3 <.3 <.3 <.3 <.3	28 46 65 116 26	55 58 153	784 821 891 1118 959	6.98 6.51 8.09	5 21 4 19 <2	ৎ ২5 ২5 ২5	<2 <2 <2 <2 <2 <2	2 <2 <2 2 2 2 2	87 193 69 107 139	.2 .3 <.2 .8 <.2	<2 <2 2 6 <2	<2 <2	161		.134	6 5 9 10 6	69 93 195	2.59 1.14 1.88 3.23 1.14	185 36 83 170 52	.30 .14 .20 .22 .09	े ८३ ८३	4.06 5.08 3.98 6.02 4.44	.03 .05 .02 .04 .02	.68 .16 .20 .33 .05	<2 <2 2 <2 <2 <2	
03162 -80 TO-1 -80 TO-2 -80 TD-3 -80 TO-3 -80 TO-4 -80	5 15 11 9 6	648	<3 <3 6 3 <3	50 76 59 63 60	<.3 <.3 <.3 <.3 <.3	17 59 24 17 20	74 32 17	859 1116 655 563 602	7.02 6.60 6.78	<2 4 <2 <2 <2 <2	<5 <5 <5 5 5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	551 75 119 76 32	.2 .3 .2 <.2 .5	<2 3 2 2 2 2 2 2	☆☆☆☆	248 259 296	1.91 1.74 1.23 .78 1.06	.178 .186 .237	4 8 9 4	68 58 42	.99 1.76 1.26 .99 2.02	115 76 99 92 89	.14 .17 .16 .12 .36	3 <3 <3	5.97 3.51 3.10 3.74 2.96	.05 .02 .02 .02 .02 .03	.14 .07 .09 .06 .28	<2 <2 <2 <2 <2 <2	
TO-5 -80 E ATO-5 -80 TO-6 -80 TO-7 -80 TO-8 -80	10 18 14	1110 1064 1764 715 8027	<3 <3 5 3 <3	58 57 71 50 217	.5 <.3	24 24 43 30 132	36 61 41	754	7.74 6.54 5.01	3 <2 <2 3 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2	85 82 122 125 122	.5 .5 <.2 1.4	4 <2 <2 2 5	<2 <2 <2 <2 <2 <2 <2	339 211 192	1.21 1.09 1.24	.259 .255 .133 .162 .090	13 13 6 7 4	60 111 68	1.10 1.07 1.79 1.24 2.72	102 98 90 103 73		<3 <3 <3	2.25 2.17 3.40 2.47 3.44	.02 .02	.08 .08 .12 .11 .25	<2 <2 <2 4 <2	
TD-9 -80 TD-10 -80 TANDARD C2/AU-S	1	1642	<3 <3 40	54 45 145	<.3 <.3 7.0	36 39 75	55	713 754 1211	6.91	<2 <2 39	6 <5 17	<2 <2 8	<2 <2 38	169 153 53	.3 .4 19.5	<2 <2 18	<2 <2 18	239	1.31	.177 .138 .108		112	2.37 1.98 1.07	88	.28 .22 .09	<3	3.91 3.90 2.13	.02	. 14 . 12 . 14	<2 <2 10	
DATE REC	EIVEI	THIS - SA	LEACH	I IS I TYPE:	TALUS	L FOR	MN A	FE SR AU*	CA P • IGN	LA CR	MG B	A TI -REGI	B W / A/MIE	ND L BK EX	IMITED TRACT,) FOR GF/A	NA K VA F∏	AND 41 SHE	AL. D.	AND IS							IFIED	B.C.	ASSAY	ERS	

SAMPLE#	Mo		Pb	75	An	Ni	<u> </u>	Mo	50 A		A.)	75 5		d Sb	Bi		BC V			Ma	Ba T	B	AL	Na	ĸ	νT	l Hg	Se	īe	Ga
SAMPLE#	ppm													m ppm							ipm 1					pm pp	-			
111101	1.1	12.2	1.4	3.9	67	<1	2	301	.12 <.	5 <5	<.1	<1 3	34 .0	5 < .2	<.1	9.4	. 023	4	<1	.01	84<.0	<2	-43	.01	.01	<2 <.	2 2	<.3	<.2	.5
111102 111103	.1	37.2	5.3	14.1	124 333	<1	22	1287 202	38 2.	2 <>> 4 <5 ·	<.1 <.1	<1 4	42 .U 41 .2	6.2 7<.2	.1 <.1	5.9	2 .008	2	<1	.02	41<.0 55<.0	l <2	.53	.02	.02	<2 <.	2 <2	<.3	<.2	<.5
111104	<.1	27.1	1.2	6.9	268	<1	9	239	.13 <.	5 <5	<.1	<1 2	25 .0	6 <.2	<.1	3.5	5 .012	- 3	<1	.01	31<.0	1 <z< td=""><td>.69</td><td>.01</td><td>.01</td><td><2 <.</td><td>25</td><td>د.></td><td><.2</td><td><.></td></z<>	.69	.01	.01	<2 <.	25	د.>	<.2	<.>
111105	<.1	15.7	.9	31.1	131	<1	<1	13	.45 1.	2 <5	<.1	<1 1	13.1	3 <.2	<.1	4.0	8 .014	1	2<	.01	23<.0	1 <2	2.14	.01	.01	<2 <.	22	<.3	<.2	.7
111106	1.1	50.8	.6	11.5	108	<1	5	117	.47 <.	5 <5	<.1	<1	5.1	5 <.2	<.1	3.0	7 .009	<1	3<	.01	14<.0	1 <2	.98<	.01	.01	<2 <.	2 3	<,3	<.2	<.5
111107	<.1	18.3	.7	13.4	31	<1	_5	103	. 18 <.	5 <5	<.1	<1 1	14.0	3 <.2	<.1	3.3	5.009	1	2	.01	16<.0	1 <2	1.71	.01 b1	.U1 .02	<2 <.	2 < 2 2 L	<.3 < 7	<.2	- 1
RE 111113 111108	<.1	146.8	-8	14.4	90	1	27	191	.26 .	5 <5	<.1	<1 2	24 .1 17 N	7 <.2 4 <.2	.1 - 1	8.5 31	5 ,010 R 004	2	<1	.05 ກາ	22<.0	1 <2	-631	.01<	.02	<2 <.	2 <2	<.3	<.2	<.5
111100	<.i	28.7	.5	8.6	176	<1	14	274	. 17 <.	ऽ उ	<.1	<1 2	28 .0	16 <.2	<.1	5.5	B .004		<1	.02	17<.0	1 <2	.39	.01	.01	<2 <,	2 4	<.3	<,2	<.5
111110	ļ													13 <.2					1	. D5	22<.0	1 <2	.36	-02	.01	<2 <.	2 2	<.3	<.2	<.5
111111	1	4.2		15.6	285	<1	2	143	11 <.	5 <5	<.1	<1	5.2	20 < 2	<.1	2.0	3 .007	<	1<	.01	15<.0	1 <2	.98	-01<	.01	<2 <,	2 <2	<.≾	<.2	<.5
111112		7.0				1	2	89	.43 <.	5 <5	<.1	<1	9.2	21 <.2	<.1	4.1	1 .005	<1	- 3	.01	26<.0	1 <2	.93	.01	.01	<2 <,	2 4	<.১	<.2	<.>
111113 111114	<.1	132.0	7	12.8	94	1	26	176	.20 <.	5 <5	<.1	<1 2	21 .1	6 <.2 3 <.2	-2	7.5	2 .012	: 1	2	-04	16<.0	1 <2	.31	.01	.02	<2 <.	2 4	<.5 < 7	<.2	<.5 < 5
FOR MI KG SE	FE S	SR CA ND GA	P LA ARE E	CR M XTRA	G BA CTED	TI B WITH	W A MIB	ND LJ K-ALI	MITED QUAT 3	FOR NA 36 AND	K GA	A AND LYSED	AL. BY I	DEG. (SOLUTI ICP. EL	ON AN EVATE	ALYSE D DET	D DIRE ECTION	CTLY LIMI	BY I ITS F	CP. OR S/	MÓ CU AMPLES	PB ZI	VIN C	J,PB,	ZN,A	s>1500) PPM,	Fe>2	0%.	
FOR MI KG SE	FE S	SR CA ND GA	P LA ARE E	CR M XTRA	G BA CTED	TI B WITH	W A MIB	ND LJ K-ALI	MITED QUAT 3	FOR NA 36 AND	K GA	A AND LYSED	AL. BY I	SOLUTI CP. EL	ON AN EVATE	ALYSE D DET	D DIRE ECTION	CTLY LIMI	BY I ITS F	CP. OR S/	MÓ CU AMPLES	PB ZI	VIN C	J,PB,	ZN,A	s>1500) PPM,	Fe>2 B.C	0%. , AS:	SAYERS
EOR M	FE S	SR CA ND GA	P LA ARE E	CR M XTRA	G BA CTED	TI B WITH	W A MIB	ND LJ K-ALI	MITED QUAT 3	FOR NA 36 AND	K GA	A AND LYSED	AL. BY I	SOLUTI CP. EL	ON AN EVATE	ALYSE D DET	D DIRE ECTION	CTLY LIMI	BY I ITS F	CP. OR S/	MÓ CU AMPLES	PB ZI	VIN C	J,PB,	ZN,A	s>1500) PPM,	Fe>2 B.C	0%. , AS	SAYERS
FOR MI KG SE	FE S	SR CA ND GA	P LA ARE E	CR M XTRA	G BA CTED	TI B WITH	W A MIB	ND LJ K-ALI	MITED QUAT 3	FOR NA 36 AND	K GA	A AND LYSED	AL. BY I	SOLUTI CP. EL	ON AN EVATE	ALYSE D DET	D DIRE ECTION	CTLY LIMI	BY I ITS F	CP. OR S/	MÓ CU AMPLES	PB ZI	VIN C	J,PB,	ZN,A	s>1500) PPM,	Fe>2 B.C	0%. . AS	GAYERS
FOR MI KG SE	FE S	SR CA ND GA	P LA ARE E	CR M XTRA	G BA CTED	TI B WITH	W A MIB	ND LJ K-ALI	MITED QUAT 3	FOR NA 36 AND	K GA	A AND LYSED	AL. BY I	SOLUTI CP. EL	ON AN EVATE	ALYSE D DET	D DIRE ECTION	CTLY LIMI	BY I ITS F	CP. OR S/	MÓ CU AMPLES	PB ZI	VIN C	J,PB,	ZN,A	s>1500) PPM,	Fe>2 B.C	0%. . AS	SAYERS
FOR MI KG SE	FE S	SR CA ND GA	P LA ARE E	CR M XTRA	G BA CTED	TI B WITH	W A MIB	ND LJ K-ALI	MITED QUAT 3	FOR NA 36 AND	K GA	A AND LYSED	AL. BY I	SOLUTI CP. EL	ON AN EVATE	ALYSE D DET	D DIRE ECTION	CTLY LIMI	BY I ITS F	CP. OR S/	MÓ CU AMPLES	PB ZI	VIN C	J,PB,	ZN,A	s>1500) PPM,	Fe>2 B.C	0%. , AS	GAYERS
FOR MI KG SE	FE S	SR CA ND GA	P LA ARE E	CR M XTRA	G BA CTED	TI B WITH	W A MIB	ND LJ K-ALI	MITED QUAT 3	FOR NA 36 AND	K GA	A AND LYSED	AL. BY I	SOLUTI CP. EL	ON AN EVATE	ALYSE D DET	D DIRE ECTION	CTLY LIMI	BY I ITS F	CP. OR S/	MÓ CU AMPLES	PB ZI	VIN C	J,PB,	ZN,A	s>1500) PPM,	Fe>2 B.C	0%. . As:	GAYERS
FOR MI KG SE	FE S	SR CA ND GA	P LA ARE E	CR M XTRA	G BA CTED	TI B WITH	W A MIB	ND LJ K-ALI	MITED QUAT 3	FOR NA 36 AND	K GA	A AND LYSED	AL. BY I	SOLUTI CP. EL	ON AN EVATE	ALYSE D DET	D DIRE ECTION	CTLY LIMI	BY I ITS F	CP. OR S/	MÓ CU AMPLES	PB ZI	VIN C	J,PB,	ZN,A	s>1500) PPM,	₽e>2 B.C	0%. . AS	SAYERS
FOR MI KG SE	FE S	SR CA ND GA	P LA ARE E	CR M XTRA	G BA CTED	TI B WITH	W A MIB	ND LJ K-ALI	MITED QUAT 3	FOR NA 36 AND	K GA	A AND LYSED	AL. BY I	SOLUTI CP. EL	ON AN EVATE	ALYSE D DET	D DIRE ECTION	CTLY LIMI	BY I ITS F	CP. OR S/	MÓ CU AMPLES	PB ZI	VIN C	J,PB,	ZN,A	s>1500) PPM,	fe>2 B.C	0%. . AS	GAYERS
FOR MI KG SE	FE S	SR CA ND GA	P LA ARE E	CR M XTRA	G BA CTED	TI B WITH	W A MIB	ND LJ K-ALI	MITED QUAT 3	FOR NA 36 AND	K GA	A AND LYSED	AL. BY I	SOLUTI CP. EL	ON AN EVATE	ALYSE D DET	D DIRE ECTION	CTLY LIMI	BY I ITS F	CP. OR S/	MÓ CU AMPLES	PB ZI	VIN C	J,PB,	ZN,A	s>1500) PPM,	fe>2 B.C	0%. . As	SAYERS
FOR M) KG SE	FE S	SR CA ND GA	P LA ARE E	CR M XTRA	G BA CTED	TI B WITH	W A MIB	ND LJ K-ALI	MITED QUAT 3	FOR NA 36 AND	K GA	A AND LYSED	AL. BY I	SOLUTI CP. EL	ON AN EVATE	ALYSE D DET	D DIRE ECTION	CTLY LIMI	BY I ITS F	CP. OR S/	MÓ CU AMPLES	PB ZI	VIN C	J,PB,	ZN,A	s>1500) PPM,	Fe>2 B.C	0%. . AS	SAYERS

£ £		·	Ŀ	ysa	nde	r G	old	Cc	GE Orp.		EMI(OJE() - 35	CT 1	PAL	/AT	<u>o g</u>	RID	F	ile	#	96-	446	3	Pa	ge	1					e f	È
AMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	р %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к %	₩ ppm	Au* ppb
01001 01002 01003 01004 01005	4 3 3 2 3	372 261 293 321 246	<3 <3 <3 <3 <3 6	61 57 68 56 61	<.3 <.3 <.3 <.3 <.3	43 15 36 40 25	32 24 34 41 34	586 424 594	6.38 4.66 6.27 6.22 5.41	4 <2 6 43	5 5 5 5 5	<2 <2 <2 <2 <2 <2	< < < 2 2 2 2 2 2 2	85 116 105 173 289	<.2 <.2 <.2 <.2 .2	2 <2 <2 <2 <2 <2 <2		151 113 157 149 123	.78 .78		5 4 5 4 5	25 49 49	2.05 .72 2.02 2.01 1.67	144 126 125 93 52	.15 .05 .15 .16 .11	<3 <3 <3	6.28 4.91 6.20 6.71 5.38	.04 .04 .03 .03 .03	.07 .05 .11 .10 .07	3 <2 3 <2 <2	9 10 14 9 33
01006 E 201006 01007 01008 01009	2 2 2 3	143 136 203 115 232	<3 <3 <3 <3 3	64 62 69 75 55	<.3 <.3 <.3 <.3 <.3	21 20 22 20 32	17 15 25 15 28	321 462 391	4.75 4.39 5.59 5.04 5.39	<2 <2 <2 <2 <2 <2 <2 <3	<5 6 5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 2 <2 2 2	126 119 213 198 205	<.2 <.2 <.2 <.2 <.2	<> < < < < < < < < < < < <	<2 <2 <2 <2 <2 <2	111	.71 1.31	.102	5 5 4 4 5	32 31 31	1.01 .96 1.33 1.20 1.65	117 110 96 124 94	.12 .11 .12 .13 .16	<3 <3 <3	6.76 6.22 7.06 6.51 7.06	.04 .04 .02 .05 .06	.05 .05 .11 .04 .06	2 2 2 2 2 2 2 2	26 26 7
01010 01011 01012 01013 01014	2 2 1 3 2	154 134 131 162 103	3 5 3 3 3 3	66 59 63 114 111	<.3 <.3 <.3 <.3 <.3	25 23 22 26 40		427 441 2441	4.78 4.55 4.85 4.94 7.94	3 2 2 5 2 2 5 2	5 7 9 8 7	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2	180 186 172 245 125	<.2 .2 <.2 .3 .7	<2 <2 <2 3 <2	<2 <2 <2 <2 <2 <2	99 106 149	1.13 1.07 1.09 2.07 1.95	.119 .108 .080	4 4 5 5 5	33 34 52	1.29 1.12 1.24 1.83 3.84	101 119 148 113 54	. 14 . 12 . 14 . 11 . 11	<3 <3 <3	6.33 7.47 7.28 5.87 6.53	.05 .04 .04 .05 .03	.05 .07 .05 .08 .07	<2 <2 <2 <2 <2 <2	4.
01015 01016 01017 01018 01018 01019	2 2 2 1 2	152 147 170 254 183	<3 3 <3 <3 23	65 48 64 58 264	<.3 <.3 <.3 <.3 <.3	22 24 31 182 64		457 674 2876	5.47 4.82 5.54 5.63 6.64	<2 <2 156 149	<5 7 5 6 8	<2 <2 <2 <2 <2	<2 <2 2 2 2 2 2 2	144 135 170 280 148	<.2 <.2 <.2 <.2	<2 <2 3 <2 2	<2 <2 <2 2 2	123 141 112	2.12 1.17 1.32 1.22 1.11	.078 .085 .155	2 3 4 13 6	41 48 139	1.46 1.50 1.85 1.74 1.87	58 84 138 95 112	.12 .14 .14 .01 .09	<3 <3 <3	8.06 6.55 8.04 3.12 6.45	.03 .04 .04 .01 .03	.07 .04 .07 .03 .06	<2 2 2 <2 <2 <2	1 5 1
01020 01021 01022 01023 01024	2 2 2 2 4	90 120 126 176 207	35 <3 <3 <3 <3	211 55 46 49 54	<.3 <.3 <.3 <.3 <.3	53 18 19 27 26	12 14 21	488 385 445	6.42 3.36 3.73 4.91 5.88	252 <2 <2 2 10	<5 8 7 <5 6	<2 <2 <2 <2 <2 <2	2222222	154 152 133 275 221	.5 <.2 <.2 .2 .3	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 2		.86 .77 1.27		5 6 7 6	30 31 35	1.47 .66 .84 1.02 1.37	117 139 94 138 182	.05 .11 .11 .15 .15	⊲ ⊲ ⊲	6.10 9.50 8.69 7.05 6.40	.02 .04 .04 .06 .05	.05 .06 .03 .08 .09	<2 <2 <2 <2 <2 <2	
01025 01026 01027 01028 01028 01029	3 1 4 2 4	82 101 228 117 433	<3 <3 4 5 4	80 64 31 58 39	<.3 <.3 <.3 <.3 <.3	23 21 16 27 24	13 19 21	502 1892 577	7.74 4.73 3.03 5.47 9.62	11 <2 21 8 68	9 <5 5 5 9	<2 <2 <2 <2 <2	<2 <2 <2 2 2	32 200 29 313 20	.2 <.2 <.2 .2 <.2	3 <2 2 <2 <2 <2	<2 <2 <2 <2 <2 <2	174 117 73 129 106	.84 .34 1.25	.123 .108 .048 .113 .044	7 5 6 10	37 33	1.10	198	.05 .11 <.01 .13 <.01	<3 <3 3	5.75 6.95 2.43 8.51 1.66	.01 .03 .01 .05 <.01	.04 .08 .04 .08 .02	<2 <2 <2 2 2	
01030 01031 01032 01033 01033 01034	2 <1 1 2 2	96 145 79 247 171	7 <3 <3 <3 <3	68 43 45 44 60	<.3 <.3 <.3 <.3 <.3	28 26 22 26 21		680 1864 1453	4.38 5.40 5.34 7.39 6.37	<2 <2 <2 <2 <2	<5 8 7 10 <5	<2 <2 <2 <2 <2 <2	3 2 2 2 2 2	85 202 109 425 252	<.2 <.2 <.2 .3 .4	3 3 <2 <2 3	<2 <2 <2 <2 2	163 187	1.15 2.05	.093 .068 .048 .102 .087	11 4 3 5 5	29 47 40	1.05 2.08 2.13 1.83 1.38	145 124 40 149 118	.09 .05 .19 .18 .13	<3 <3 <3	4.58 8.33 4.49 6.98 6.39	.03 .08 .04 .08 .08	.06 .04 .03 .13 .07	2 <2 <2 <2 2	1
STANDARD CZ/AU-S	19	THIS - SAM	LEACH IPLE T	GRAN	PARTI/ SOIL	PLE IS	SDIGE EMN E	ESTED FE SR 1gni	3.67 WITH CA P TED, J	LA CR	MG B EGIA/	A TI MIBK	NO3-H B W A EXTRA	120 AT AND LI	IMITED	DEG. (D FOR	C FOR NA K	ONE 1	HOUR	.104 AND IS		59 ITED		182 ML W	08. ודא W	<u> </u>	1.89	.06	.13	10	4

		Ŀ	ysa	and	ler	Go	14	Co	np.	PR	OJI	CT	Ρ.	AL/	ATO	GF	RID	FI	LE	#	96-	-44	63						ag	e 2	AC	
SAMPLE#	Мо ррл				Ag ppm			Mn ppm		As ppm							Bi ppm pp		a %		La (om pş		Mg %p			B ppm	Al %	Na %		W ppm	Au* ppb	
201035 201036 201037 201038 201038 201039	1 1 2 1 1	91 292 230 198 130	3 <3 <3 4 <3	45 44 49	<.3 <.3 <.3 <.3 <.3	14	23 33 35 30 20		4.25 4.61 4.47 5.20 4.57	4	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2	146 249 184 310 221	.3 .3 .2 .4 .2	2 2 <2 2 2 2	<2 14 <2 15 <2 14	17 1.6 0 2.3 1 2.6 4 2.6 8 1.4	8.0 3.1 0.1	90 10 26	3 2 4 7 3 7	20 1 24 1 14 1 19 1 23 1	.46 .25 .16	74 99 44 96 89	. 17 . 25 . 13	<3 4 <3	6.41 7.60 11.46 8.07 6.14	.04 .06 .04	. 13 . 14 . 20	3 <2 2	6 10 27 30 8	
201040 201041 201042 201043 201044	1 2 7	195 76 129 218 312	22 4	139 90 59	<.3 .3 .9 <.3	48 27 29 22 25	25 23 24	3836 1424 522	6.10 6.53 6.60 6.13 6.83	47 151 <2	<5 <5 <5	<2 <2 <2	<2 <2 <2	216 119 340 86 127	.2 1.3 .8 .5 .2	<2 2 4 3 2	4 14 <2 9 3 18	1 2.1	8.1 9.0	84 2 95 71 ⁻	9 2 16 4	42 1 29 49 1	.81 .81		.01 .02 .11	<3 3 <3	7.58 5.44 4.99 5.49 7.86	.01 .07 .02	.13 .15 .05		16 28 18 5 19	
RE 201044 201045 201046 201047 201047 201048	7 27 9	324 691 537 372 616	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	78 46 52	<.3 <.3 <.3	39 25 31	46 93 46	726 1162 640	7.09 10.27 8.84 6.55 8.23	<2 3 <2	<5	<2 <2 <2 <2 <2 <2	<2 <2 <2	207	.2 <.2 .4 <.2		<2 20 <2 10 <2 11	97 .6 51 .1 51 1.1 51 1.2	D.0 9.0 9.1	83 93 10	4 11 5 1 5 1	04 2 38 1 53 1	.53 .07 .83 .65 .40	67< 132 125	.01 .08 .13	<3 <3	8.06 4.95 5.71 7.09 6.57	.01 .05 .04	.04 .07 .08	<2 <2 <2	7 12 23 8 22	
201049 201050 201051 201052 201052 201053	22 18	254 588 539 202 179	<3 4 <3 <3 3 3	63 43 38	<.3 <.3 <.3 <.3 <.3		45 60 77 41 26	508 859 530	7.06 7.75 7.68 6.76 5.22	3 2 <2	<5 <5 6	<2 <2 <2 <2 <2 <2	<2 <2 2	172 383		2 <2 <2 <2 <2 <2 2	2 1 <2 1 3 1	59 1.0 55 .8 64 .9 71 1.5 26 1.0	17 .1 18 .0	25 99 73	6 6 6	27 1 33 1 35 1	.70 .28 .23 .23 .23 .12	117 106 129	.05 .06 .13	3 3 3	6.72 6.07 5.69 5.59 5.31	.03 .03 .07	.05	2 3	7 42 22 8 3	
201054 201055 201056 201057 201057 201058	2 7 2	191 136 108 553 158	ও ১ ৩ ৩ ৩ ৩ ৩	77 40 45	<.3 <.3 <.3 <.3 <.3	28	87	354 1167	4.54 4.64 4.37 8.43 4.38	<2 <2	<5	<2 <2 <2 <2 <2 <2 <2	2 <2 2	237 32			2 9 <2 10 2 2		6.0	23 65 91	10 (2 (17)	34 37 1 43 2	.83 .93 .15 .11 .23	130 117 78	.06 .11 .01	<3 3 <3	5.58 5.20 8.14 5.91 6.27	03. 09. 01.>	.05 .18 .04	<2 <2 <2	3 3 4 19 5	
201059 201060 201061 201062 201063	1 1 2 8		<3 <3 <3 <3 <7	54 47	.3 <.3 <.3 <.3 <.3	29	25 20 25	428	3.98 3.95 4.37 4.40 6.27	3 <2 5	<5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 2	176 224 319 216 131	<.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 11 <2 11	2 2.2 3 1.8 9 1.7	26 .0 12 .1 21 .0	80 32 81	4 . 4 . 6	53 1	.08 .24 .24	110	.12 .16 .14	<3 3	8.29 7.19 8.35 7.26 5.09	.08 .13 .06	.13 .07 .12	<2 <2 <2	14 14 7 12 25	
201064 201065 201066 201067 201068	9 7 132	464 174 294 7126 1000	< <> <> <> <> <> <> <> <> <> <> <> <> <> <	53 43 80	<.3 <.3 <.3 2.3 <.3		95	_	4.74 6.13 6.32 11.14 8.21	<2 <2 9	5		<2 <2 2	107 157 140 167 163	<.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 1 <2 1 <2 1	5.8 9.9	50 .0 5 .1 97 .1	97 20 15	4 5 4	37 38 1 29 1	.20 .94 .20 .25 .25	108 103	.10 .13 .07	<3 <3	6.33 5.59 6.42 6.42 7.65	.03 .02 .04	.04 .05 .08	<2 <2 <2	7 4 10 1040 26	

Т

÷ 1 :

ADE ARLYTICAL				Ly	san	der	Go	ld	Cor	p.	PRO	JEC	T P	al/	ATO	GR	ID	FI	LE	# 9	6-4	463					Pag	e 3	ACI		FI CAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	v ppm	Ca %	P %	La ppm	٦2 mqq	Mg %	ва рря	Ti %	B PPM	Al %	Na %	К %	W ppm	Au* ppb
201069 201070 201071 201072 201072 2010 73	11 8 5 4 4	341 316 249 328 278	उ उ उ उ उ	62 37 50 42 52	.8 <.3 <.3 <.3 <.3	26 18 21 20 20	29 31 39	1413 290 333 315 423	5.36 6.22 5.63	<2 <2 <2 <2 <2 <2 <6	<5 <5 <5 5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	61 156 171 188 194	.8 <.2 .2 .2 <.2	<> <> <> <> <> <> <> <> <> <> <> <> <> <	<2 <2 <2 <2 <2 <2 <2	133 151 119	2.62 1.34 .85 1.06 1.13	.108 .089	5 3 3 4 4	25 36 34	1.55 1.17 1.15 1.12 1.07	17 83 126 110 120	.35 .13 .12 .12 .09	ও ও ও	7.91 7.10 5.64 5.11 5.52	.01 .04 .04 .04 .04	.10 .08 .06 .07 .06	8 9 <2 3 10	29 4 7 49 10
201074 201075 RE 201075 201076 201077	5 4 5 2	254 170 170 249 230	< 3 3 3 3 3 3 3 3	36 60 60 51 53	<.3 <.3 <.3 <.3 <.3	25 23 23 35 27	72 30 29 52 26	298 292 509	6.26 5.03 5.02 6.59 5.19	4 2 <2 10 16	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	153 133 134 106 127	.3 <.2 .3 .4 .2	<2 ~ 2 <2 ~ 2 <2 ~ 2	<2 <2 <2 <2 <2 <2 <2 <2	135 117 116 160 131	.66	.067 .099 .099 .065 .082	4 4 4 5	39 40 60	1.35 1.03 1.03 1.47 1.31	96 135 137 192 102	.09 .11 .11 .09 .08	<3 <3 <3	5.00 5.42 5.42 5.25 6.01	.03 .04 .04 .03 .03	.06 .04 .03 .04 .07	19 3 4 <2 <2	15 6 7 15 9
201078 201079 201080 201081 201082	1 2 <1 <1 2	99 95 98 214 233	5 3 3 3 3	43 51 58 71 59	<.3 <.3 <.3 <.3 <.3	13 17 9 11 20	16 13 28 23 26	447 1440 558	4.27 3.93 4.59 5.14 4.92	<2 <2 <2 11 14	৩ ৩ ৩ ৩ ৩ ৩	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	214 118 242 120 208	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 2 2	<2 <2 <2 <2 <2 <2	102 101 101		.102 .116	3 6 4 5	12	.86 .84 1.08 .98 1.27	175 114 135 116 172	.05 .09 .02 .03 .08	3 <3 <3	6.57 5.43 5.64 5.74 6.41	.04 .03 .02 .03 .04	.03 .04 .04 .03 .06	2 <2 <2 <2 <2 <2 <2	242 18 250 14 18
201083 201084 201085 201086 201087	13 14 10 14 64	379 459 203 167 1070	3 3 3 3 3	52 49 29 39 51	<.3 .3 <.3 <.3 <.3	23 16 6 11 32	30 38 38 21 34	857 538 395	5.00 5.06 3.16 5.38 5.86	<2 2 <2 <2 <2 <2	৩ ৩ ৩ ৩ ৩ ৩	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	125 102 116 72 137		<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2	198 96 156	1.63 1.42 1.84 1.46 2.41	.135 .136 .115	6 11 7 5 5	40 38 4 24 30	1.04 .91 .96	184 170 53 59 37	.12 .08 .03 .07 .11	<3 <3 <3	3.78 2.32 2.96 5.70 8.85	.03 .03 .02 .01 .02	.09 .08 .11 .05 .06	<2 <2 <2 <2 <2 <2	16 25 8 5 17
201088 201089 201090 201091 201092	17 20 11 11 10	840 862 749 812 293	<3 3 <3 <3 3	33 55 49 60 60	<.3 <.3 <.3 <.3 <.3	33 35 39 32 22	102 52 46 51 26	538 752 1509	4.23 5.93 5.98 6.81 5.87	<2 <2 <2 2 2 <2	<5 5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	64 104 149 129 134	<.2 .5 .6 <.2	3 <2 <2 2 <2	<2 2 <2 <2 <2	165 162	2.60 1.26 1.58 2.23 .73	.107 .105	3 7 7 12 6	40 44 58	1.73	11 67 75 39 115	.12 .09 .08 .07 .10	<3 <3 <3	2.77 5.33 5.79 4.46 6.03	.01 .02 .04 .05 .02	.05 .08 .07 .08 .06	<2 <2 <2 <2 2 2	17 16 10 23 15
201093 201094 201095 201096 201097	6 6 11 17	185 216 218 290 613	<3 <3 <3 <3 <3	40 62 40 45 52	<.3 <_3 .3	14 19 15 16 23	17 57 48 32 41	1629 893 593	5.39 9.87 6.14 5.95 7.37	<2 27 6 23 89	জ জ জ জ জ জ জ	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	100 66 148 87 198		<2 <2 <2 4 3	2 <2 <2 3 <2	131 162 142 89 132	.32 .65 .56	.111 .131 .123 .164 .105	4 6 7 4 9	32 23 22 22 24	2.37 .97 .61	111 137 155 77 167	.10 .02 .07 .08 .11	<3 <3 <3	6.47 5.62 5.38 5.45 6.18	.02 .01 .03 .02 .05	.04 .05 .04 .04 .05	<2 <2 <2 9 5	7 4 7 59
201098 201099 201100 201101 201102	9 7 10 23 4	236 218 1393 392 341	<3 3 <3 3 <3	51 53 38 56 53	<.3 .5 <.3	26 13 24 10 15	23 19 34 13 19	515 319 382	6.25 4.79 5.36 5.56 5.40	18 15 27 5 10	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	145 127 115		3 <2 4 5 <2	<2 <2 <2 <2 <2	109	1.12 1.74 1.15	.070 .095 .100 .129 .113	4 3 5 5	34 16 25 18 18	.76 .58	89 98 65 93 153	.03 .09 .13	<3 4 <3	5.38 5.49 8.77 6.85 5.80	.02 .02 .03 .02 .04	.05 .08 .08 .06 .06	<2 <2 5 2 <2	10 7 46 14 11
STANDARD C2/AU-S	21	63	39	144	7.1	72	35	1210	3.73	37	14	8	36	53	19.8	16	18	73	.58	.109	43	64	1.06	205	.08	28	2.05	.06	. 14	11	45

ACHE ANALYTICAL				Ly	san	der	Go	ld	Cor	р.	PRO	JEC	ΤP	AL/	ATO	GR	ID	FI	LE	# 9	6-4	463					Page	e 4	AC		TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb pptn	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppM	Mg %	Ba ppm	Ті %	B ppm	Al %	Na %	K %	W ppm	Au* ppb
201103 201104 201105 201106 201107	6 3 4 2 5	482 241 391 513 313	<3 <3 <3 <3 3	32 37 45 87 56	.7 .5 .3 <.3 1.3	12 12 22 17 12	20 13 36 21 13	343 220 549 665 600	4.54 5.73 7.87	8 <2 3 <2 <2		<2 <2 <2 <2 <2 <2 <2 <2	<2 2 2 3 2 3	224 127 195 54 71	.3 .4 <.2 <.2 .2	5 2 2 2 2 2 2 2	<2 <2 <2 <2 <2 <2 <2 <2 <2	108 148	1.51 1.09	.097 .135	4 5 12 9		.54 .47 1.04 1.35 .85	164 126 104 83 84	.02 .14 .11 .20 .10	<3 <3 <3	6.55 6.86 5.83 4.94 4.90	.04 .04 .04 .01 .01	.10 .05 .09 .10 .06	4 2 <2 <2 <2	26 30 11 17 9
201108 201109 201110 201111 201111	14 6 4 17 18	1198 238 97 323 116	<3 3 <3 3 4	49 56 60 49 46	<.3 <.3 <.3 <.3 .4	27 18 12 21 12	34 15 11 21 14	527 417 467 390 685	5.95 6.29 5.57	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	102 71 66 50 32	<.2 <.2 <.2 <.2 <.2	2 \$2 2 2 \$2 \$2	<2 <2 <2 <2 <2 <2	223 219 259 142 223	.83 .57 .48	.185 .267 .299 .163 .214	7 9 7 5 6	43 35	1.01 1.13 .88 1.18 .93	79 80 102 130 74	.10 .12 .15 .06 .11	<3 <3 <3	2.75 4.58 2.83 5.89 2.86	.01 .01 .01 .02 .01	.07 .06 .06 .05 .11	2 <2 <2 4 <2	41 10 4 10 10
201113 201114 201115 201116 201117	23 17 7 12 24	400 254 61 182 183	<3 3 3 <3 <3	40 34 27 30 44	<.3 <.3 <.3 <.3 <.3	16 17 10 16 21	25 17 7 17 25	388 332 192 305 526	5.55 4.18 4.72	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	37 26 34 68 54	<.2 <.2 <.2 .3 .3	2 2 2 2 2 2 2 3	<2 2 <2 <2 <2 <2	146 146 178 122 191	.31 .30 .86	.129 .081 .110	6 4 3 3	47 36 44	1.07 .71 .44 1.00 1.66	80 53 54 90 76	.04 .07 .12 .08 .11	<3 <3 <3	4.77 3.64 1.73 5.87 6.55	.01 .01 .01 .01 .01	.04 .04 .03 .04 .04	3 2 <2 2 3	15 10 9 11 11
201118 201119 201120 201121 201122	9 5 7 41 10	333 377 346 452 427	<3 <3 <3 5 8	31 42 43 46 56	<.3 <.3 <.3 .3 .4	18 27 23 12 13	30 29 24 30 48	422 471 355 506 779	4.92 5.61 9.29	<2 <2 50 55	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 2 <2	73 57 61 49 75	<.2 <.2 <.2 <.2 <.2	5 <2 <2 <2 <2 <2	2 <2 <2 2 <2		.64		6 4 7 5	51 46	1.04 1.36 1.11 1.01 .98	143 113 102 80 153	.11 .11 .12 .09 .02	<3 <3 <3	2.58 4.99 6.53 8.58 6.98	.02 .02 .02 .02 .02	.09 .06 .05 .04 .09	2 2 5 <2 3	21 12 10 93 13
201123 201124 201125 201126 RE 201126	9 8 10 10	217 463 424 202 202	२ २ २ २ २ २ २ २	37 47 44 39 39	<.3 <.3 <.3 <.3 <.3	18 28 27 33 34	20 30 28 23 23	292 325 333 355 348	6.18 6.39 6.22	3 7 7 3 <2	<5 <5 <5 <5 5	<2 <2 <2 <2 <2 <2	<2 2 <2 <2 <2 <2	61 78 74 71 71	<.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2	<2 2 <2 <2 <2	122 137 141 133 133	.63 .75 .65	.136 .108 .127 .118 .120	5 5 5 4 4	37 69	.72 1.09 1.12 1.10 1.10	87 86 82 130 138	.12 .11 .10 .12 .13	<3 <3 <3	8.43 6.14 6.22 5.97 6.02	.01 .02 .02 .02 .02	.04 .04 .04 .05 .06	15 11 7 2 <2	11 22 23 14 5
201127 201128 201129 201130 201131	5 3 5 10 11	266 777 668 341 420	<3 <3 <3 <3 <3	26 35 37 41 36	<.3 <.3 <.3 <.3 <.3	21 35 27 17 17	29 28 49 14 36		4.11 5.33 6.74	<2 <2 16 <2 5	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 ~2 ~2	48 37 57 41 62	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 2 5	<2 <2 <2 <2 <2	1 12 121 161 198 133	.71 1.14 .61	.118 .082 .118 .215 .141	5 14 7 6	47 56 61 62 36	.90 1.41 1.07 .72 .98	96 199 72 84 82	.09 .21 .13 .11	<3 <3 <3	2.53 2.29 1.78 5.90 3.47	.02 .02 .03 .02 .02	.06 .21 .08 .04 .05	2 <2 3 2 3	134 15 57 15 28
201132 201133 201134 201135 201136	8 5 7 25 23	530 327 437 257 473	<3 <3 5 <3	38 69 74 54 101	<.3 <.3 <.3 <.3 <.3	19 17 24 13 61	17 23 20		6.69 6.19 4.95	<2 <2 <2 <2 <2 <2	ব্য ব্য ব্য ব্য	<2 <2 <2 <2 <2 <2	<2 <2 2 <2 <2	76 58 65 24 48	.2 <,2 <,2 <,2 <,2	3 <2 <2 4 <2	<2 <2 <2 <2 <2 <2	120 245 216 122 155	.93 .88 .31	. 164 . 346 . 201 . 123 . 120	7 10 8 6 7	50 32	.86 1.30 1.29 1.00 1.27	110 87 98 90 64	.07 .13 .12 .04 .07	<3 <3 <3	2.75 4.45 4.21 4.37 2.82	.02 .01 .02 .01 .01	.08 .07 .06 .05 .04	4 <2 <2 3 <2	34 8 15 15 23
STANDARD C2/AU-S	20	58	38	127	6.7	67	32	1114	3.79	35	17	9	33	49	18.6	17	18	64	.51	.107	38	56	.92	186	.07	26	1.81	.06	. 12	11	45

				Ly	san	der	Go	ld	Cor	р.	PRO	JEC	ΤP	AL/	ATO	GR	ID	FI	LE	# 9	6-4	463					Pag	e 5	ACP	E ANALY	TICA:
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppn	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppn	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm	Au* ppb
01137 01138 01139 01140 01140	9 5 3 5 13	117 710 351 420 448	5 4 6 7 <3	26 42 43 53 53	<.3 <.3 <.3 <.3 <.3	17 21 13 21 23	25 14 23	155 452 399 626 1032	6.17 5.15 8.87	<2 <2 <2 <2 <2 3	<5 <5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 2 2 3 <2	35 70 69 72 36	<.2 .4 <.2 .7 .2	2 2 2 2 2 2 2 2 2	<2 <2 <2 2 2 2	273 231	.38 1.33 1.03 1.22 .64	.215 .263	4 11 11 12 9	59 49 35 61 35	.66 .76 .63 1.03 .85	47 64 54 76 109	.15 .10 .09 .14 .04	<3 <3 <3	2.63 2.08 1.85 2.97 2.96	.02 .02 .02 .02 .02	.04 .04 .05 .07 .11	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	29 12 7
101142 101143 101144 101145 101145	18 6 4 4 3	533 642 486 780 567	<3 <3 6 3 6	97 87 69 60 63	<.3 <.3 <.3 <.3 <.3	21 19 17 19 16	24 20 27	1548 861 665 709 746	7.92 8.18 7.49	<2 2 <2 2 2 2 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 3 2 3 4	70 96 71 98 84	.3 .2 .5 .2	2 <2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	369 389 329	1.00 1.60 1.29 1.38 1.36	.311 .344 .295	11 16 15 14 15	47 48 45	1.34 1.59 1.09 1.19 1.17	80 160 90 130 100	-08 -18 -13 -16 -16	ও ও	3.17 2.75 2.07 2.34 2.53	.02 .02 .02 .02 .02	.06 .18 .11 .12 .11	<2 <2 <2 <2 <2 <2	10 11 11
E 201146 201147 202001 202002 202002	3 4 1 2 1	548 649 199 173 166	7 <3 <3 <3	61 54 32 41 57		17 19 28 35 34	23 22 31 29 24	720 639 409 523 659	7.17 4.82 4.50	3 <2 <2 <2 28	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 2 2 3	81 89 218 176 201	.3 .5 <.2 .2 <.2	4 <2 <2 <2 <2	2 <2	328 129 110	1.33 1.28	.268	15 12 5 8	60 48 51	1.15 1.07 1.55 1.69 1.42	98 92 102 146 132	.16 .15 .18 .17 .15	<3 <3 <3	2.47 1.91 4.65 6.18 6.18	.02 .02 .07 .06 .06	.11 .11 .16 .18 .09	<2 <2 <2 <2 <2 <2 <2	1
202004 202005 202006 202007 202008	2 2 2 2 2 <1	266 113 79 138 158	9 <3 <3 <3 23	59 55 56 73 69	<.3 <.3 <.3 <.3 <.3	47 20 11 25 24	3 7 27 25	919 967 2007 453 549	4.06 7.01 5.42	54 13 <2 27 16	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 2 <2 2 2 2	222 402 160	.2 .3 .3 <.2 .2	3 3 2 <2 2	<2 <2 <2 <2 <2 <2	90 112 104	1.73 2.46 1.97 1.10 1.04	.092 .114 .103	9 4 6 4	22 15 32	1.22 .93 .80 1.18 1.84	100	.14 .11 .15 .11 .09	<3 <3 <3	5.93 7.53 7.99 8.10 7.83	.07 .10 .12 .05 .05	.08 .11 .10 .05 .06	<2 <2 <2 2 2 2	1
202009 202010 202011 202012 202012 202013	<1 1 1 <1	210 217 142 117 139	<3 <3 <3 <3 <3	51 58 42 77 61	<.3	30 34 25 22 28	45	1561 1475 1685 781 408	6.32 4.79 5.36	17 11 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 ~2 ~2 2		<.2 .2 .3 <.2	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	160 111 141	1.96 1.70 2.73 1.54 1.00	.072 .067 .111	5 3 4 4 6	49 31 32	1.68 2.12 1.63 1.08 1.37	127 183 89 126 171	.14 .25 .08 .14 .14	<3 <3 <3	6.11 6.89 6.89 7.43 6.92	.07 .07 .05 .03 .03	.11 .20 .15 .08 .09	<2 <2 <2 <2 <2 <2	•
202014 202015 202016 202017 202018	<1 1 1 <1 2	124 144 110 78 100	<3 <3 <3 <3 <3	60 56 62 48 92	<.3 <.3	22 27 20 31 26		671 389 405 1004 433	4.83 5.46 5.05	9 <2 <2 <2 18	ৎ ২ ২ ২ ২ ২ ২	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2	155 174 194	.2 .2 <.2 .4 .2	2 <2 <2 <2 4	<2 2 2 2 2 2 2	125 131 138		.082 .110 .081	4 6 4 8	39 28 47	1.31 1.41 1.15 1.34 1.00	117 112 112 50 117	.17 .17 .16 .20 .09	<3 <3 <3	6.96 6.93 8.31 9.55 9.25	.05 .05 .03 .04 .03	.07 .06 .07 .10 .04	<2 <2 <2 3	5
202019 202020 202021 222001 222002	1 1 2 3 3		3 <3 10 5 6	59 59 137 78 84	<.3 <.3	20 22 38 18 24	10 18 24 10 15	646	4.66 6.14 6.43	2 41 227 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 2	212 166 140	.2 .3 .6 .3 <.2	<2 <2 6 <2 <2	<2 <2 3 <2 <2	119 142 248	2.96 1.90 .73	.115 .080 .077 .253 .328	4 6 8 11	48 35	.62 1.05 1.39 .97 1.12	129 87 91 130 148	.07 .01 .09 .11 .13	ব ব ব	6.32 6.48 7.17 4.59 5.66	.03 .04 .04 .02 .02	.08 .10 .07 .02 .04	<2 <2 2 <2 <2 <2	
STANDARD C2/AU-S	20	58	37	136	6.9	69	34	1186	3.84	40	16	8	36	53	19.4	18	18	71	.55	. 107	42	63	1.00	194	.08	27	2.01	.06	.13	11	

Cu pm 1 51 49 85 72 28 18 18	00000	92 89 113 100 75	Ag ppm .5 <.3 <.3 .3 <.3	Nî ppm 17 18 22 22 31		501 489 797	9.92	As ppm <2 <2 3 <2 3 <2 3	U ppm <5 <5 6 6 5	Au ppm <2 <2 <2 <2 <2 <2 <2	Th ppm <2 <2 2 2 2 2	Sr ppm 118 119 86 152 201	Cd ppm 3 <.2 .4 .7 .5	Sb ppm <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Bi ppm <2 <2 <2 <2 2 2 <2	236 353 449	Ca % 1.00 1.00 1.26 1.45	.204 .294	La ppm 8 9 13 12	Cr ppm 36 36 36 36 49	Mg % .97 .96 1.79 1.28	Ba ppm 110 108 84	Ii % .12 .12 .20	<3 <3	Al % 4.72 4.58 4.37	Na % .02 .02 .02 .02	K % .04 .04 .08 .08		Au* ppb 1 3 1 4
49 85 72 28 18	0 0000	89 113 100 75	<.3 .3	18 22 22 31	34 30	489 797 825	6.49 8.47 9.92	<2 3	<5 6	<2 <2 <2	<2 2 2	119 86 152	<.2 .4 .7	<2 <2	<2 <2 2	236 353 449	1.00 1.26 1.45	.204 .294	9 13	36 36	.96 1.79	108 84	.12	<3 <3	4.58 4.37	.02 .02	.04 .08	<2 <2	1 3 1 4
85 72 28 18	5 5 5	113 100 75	<.3 .3	22 22 31	34 30	797 825	8.47 9.92	3	6	<2 <2	2	86 152	.4 .7	<2	<2 2	353 449	1.26 1.45	.294	13	36	1.79	84	.20	<3	4.37	.02	.08	<2	3 1 4
85 72 28 18	33	113 100 75	<.3 .3	22 31	34 30	825	9.92	3 <2 3		<2	Ž	152	.7		2	449	1.45												1 4
72 28 18	دغ دع	75	.3	31	30			<2 3	6 5	_	2			<2 2	2			265	12	40	1 28	00	47	-7	0 70	02	08	<2	4
28 18	دغ دع	75						3	5	<2	2	201	.5	2	0	101				- 7	1.20	98	.17	~>	2.72	.02			
	-	105	~ 7	~~										-	-	404	1.89	.362	14	46	1.20	125	- 14	<3	4.08	.02	.10	<2	2
				35	55	1032	7.59	3	<5	<2	z	207	.6	4	<2	290	1.91	.283	13	31	1.58	129	.14	3	4.19	. 02	. 10	<2	5
	<3	81	<.3	17		648		3	<5	<2	2	102	.3	<2	<2	313	1.10	.334	12	36	1.25	74	.12	<3	4.40	.01	.03	<2	2
33	<3	61	<.3	10		1089		<2	<5	<2	<2	259	.4	8	2	213	1.77	.258	12	12	1.01	206	.10	<3	5.39	.02	.08	<2	2
	<3	58	< 3	13				2	8	<2	<2	73	.2	<2	<2	341	.58	,207	6	48	.96	73	.17	<3	2.61	.02	.04	<2	2
72	<3	68	<.3	20	20	586	6,85	<2	<5	<2	2	184	.5	4	<2	233	1.50	.240	8	40	1.39	174	.16	<3	5.75	.03	.05	<2	11
85	<3	40	<.3	11	9	291	6.34	<2	8	<2	<2	112	.4	7	<2	231	.88	,231	6	39	.73	118	. 13	<3	5.25	.02	.03	<2	2
83	<3	56	.4	20	17	669	6.46	5	7	<2	<2	88	<.2	<2	<2	238	.59	.301	4	82	1.04	76	.12	<3	2.16	.02	.06	<2	20
13	<3	82	<.3	32	16			3	<5	<2	<2	70	.4	<2	<2	252	.71	.121	5	122	1.58	57	.20	<3	3.73	.02	.04	2	9
92	<3	45	<.3	30	26			2	<5	<2	<2	118	.4	<2	<2	222	1.11	.168	7			102	.15	<3	3.14	.02	.07	<2	13
09	<3	51	.5	25	12	397	5.40	4	8	<2	<2	69	.4	3	<2	176	.61	.108	4	120	1.51	46	.23	<3	2.90	.03	.05	<2	11
85 83 13 92		3 3 3 3 3 3 3 3 3 3 3 3 3 3	<3 68 <3 40 <3 56 <3 82 <3 45	 <3 <3 <3 <40 <3 <56 <4 <3 <2 <3 <3 <51 <51 	 <3 <3 <68 <.3 <3 <40 <3 <11 <3 <56 <4 <20 <3 <3 <56 <3 <3 <3 <51 <55 	 <3 <3 <3 <40 <.3 <3 <3 <40 <3 <3 <4 <20 <20 <3 <21 <21 <21 <23 <23 <21 <22 <23 <23 <24 <23 <25 <25 <25 <25 <25 <25 <25 <25 <26 <27 <28 <28 <29 <29 <21 <21 <22 <21 <22 <23 <24 <24 <25 <26 <27 <28 <28 <29 <29 <20 <21 <21 <22 <23 <24 <24 <25 <25 <25 <25 <26 <26 <27 <28 <28 <28 <28 <28 <29 <21 <21<!--</td--><td><3</td> 68 <.3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3

.

	TTTTT	CAL	LABC	RAT(ORIE	S LI	D.		852	E. H	AST:	INGS	ST.	VA	NCOU	IVER	BC	V62	A IF	26	P	HONE	(604	1)25	3-31	.58	FAI	C (60	4)25	3-1'	716
AA								Ī	G] IYBA1	EOCI ndei 112	r Go	old	3 S S S	<u>р.</u>	F	ile	#	96-	446	3 B L 2										Æ	A L
AMPLE#	Mo	Cu ppm	Pb ppm	Žn ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe %		U ppn	Au ppm	Th ppm	Sr ppm	Cd ppm	Şb ppm	Bi ppm	V mqq	Ca %	р %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	AL %	Na %	к %	W ppm	
TO-MF-001 TO-MF-002 TO-MR-004 TO-MR-005 TO-MR-006	252 4	20999 1908 99999 6422 1609	4 5 <3 4 6	49 356 104		87 40 137 37 33		548 77 354	7.10 32.85 27.54 4.14 3.07	<2 <2 <2 25 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 5 3 <2 2	71 46	1.6 <.2 13.1 1.2 _2	<2 <2 <2 <2 <2 <2 <2	10 <2 <2 <2 <2	557 20 92		.001	5 2 2 3 11	63 25 128	1.02 .38 .10 1.39 .51	54 70 6 34 59	.20 .13 .04 .22 .30	5 <3 3	1.09	<.01 .07	.30 <.01 .10	8 <2	405 31
TO-MR-103 AS-MR-101 AS-MR-102 AS-MR-103 E WAS-MR-103	57 8 3 2 2	1876 241 180 44 43	<3 6 16 3 5	51 49 49 29 26	1.4 .4 <.3 <.3 <.3	35 75 18 11 10	27 18	215 292 234	8.41 3.38 4.98 2.12 2.05	2 13 8 2 <2	<5 <5 <5 5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 <2 <2 11 10	64 93 75 50 49	.3 <.2 <.2 <.2 <.2	7 5 2 <2 <2	<2	87 111	.62		3 3 2 9	87 27 18	.59		.25 .21 .21 .19 .18	<3 4 <3	1.54 3.08 3.13 .70 .68	.15 .04	.04 .05 .10	2 2 <2 3 3	
AS-MR-105 AS-MR-110 AL-32-P4N	2 2 3	134 223 23	<3 9 5	23 73 9	<.3 .3 <.3	28 8 6	13 10 1	314 605 79	2.06 3.78 .61	<2 2 4	ৎ ক ক	<2 <2 <2	<2 6 <2	101 46 10	.2 <.2 <.2	7 2 <2	<2 <2 <2	147		.060 .180 .011	2 17 <1		.88 .90 .01	52	.12 .19 <.01	6	4.25 1.44 .12	.06		2 2 7	
		ASS - S	AY RE	COMME	NDED	FOR R	AU*	ND CO - IGN	RE SAN	IPLES AQUA-	IF CU REGIA	I PB Z	N AS Extr	> 1%, ACT,	GF/AA	30 P FINI	SHED.	AU >	1000							I ATER					
DATE RE	CEIV	ΑSS - S <u>Saπ</u>	AY RE AMPLE Iptes	COMME	NDED	FOR R	AU*	ND CO - IGN	RE SAN HITED,	IPLES AQUA-	IF CU REGIA	I PB Z	N AS Extr	> 1%, ACT,	AG > GF/AA	30 P FINI	SHED.	AU >	1000		.D.TC	DYE, C	LEON	G, J.	WANG;) B.C.	. ASSA	YERS	
DATE RE	CEIV	ΑSS - S <u>Saπ</u>	AY RE AMPLE Iptes	COMME TYPE begin	NDED	FOR R	AU*	ND CO - IGN	RE SAN	IPLES AQUA-	IF CU REGIA	I PB Z	N AS Extr	> 1%, ACT,	AG > GF/AA	30 P FINI	SHED.	AU >	1000		.D.TC	DYE, C	LEON	IG, J.	WANG;) B.C.	. ASSA	YERS	
DATE RE	CEIV	ΑSS - S <u>Saπ</u>	AY RE AMPLE Iptes	COMME TYPE begin	NDED	FOR R	AU*	ND CO - IGN	RE SAN	IPLES AQUA-	IF CU REGIA	I PB Z	N AS Extr	> 1%, ACT,	AG > GF/AA	30 P FINI	SHED.	AU >	1000		.D.TC	DYE, C	LEON	IC, J.	WANG;) B.C.	. ASSA	YERS	
DATE RE	CEIV	ΑSS - S <u>Saπ</u>	AY RE AMPLE Iptes	COMME TYPE begin	NDED	FOR R	AU*	ND CO - IGN	RE SAN	IPLES AQUA-	IF CU REGIA	I PB Z	N AS Extr	> 1%, ACT,	AG > GF/AA	30 P FINI	SHED.	AU >	1000		.D.TC	DYE, C	LEON	G, J.	WANG;) B.C.	. ASSA	YERS	
DATE RE	CEIV	ΑSS - S <u>Saπ</u>	AY RE AMPLE Iptes	COMME TYPE begin	NDED	FOR R	AU*	ND CO - IGN	RE SAN	IPLES AQUA-	IF CU REGIA	I PB Z	N AS Extr	> 1%, ACT,	AG > GF/AA	30 P FINI	SHED.	AU >	1000		.D.TC	ŊYE, Ω	LEON	G, J.	WANG;) B.C.	. ASSA	YERS	

ÎÎ	89 				<u>Ly</u>	san	der	Gc	ld		р. 0-35		JEC		AL	Fi				491		Pag	е 9							Ľ	Ĉ
AMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	∦i ppml	Co ppm	Min ppm	Fe X	As ppm	U ppm		Th PPm	Sr ppm	Cd ppm	d2 mqq	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к %	ы ррт	Au* ppb
04273 -80 04274 -80 E 104274 -80 04275 -80 04276 -80	1 2 1 1	85 96 98 68 92	<3 6 3 4 3	97 81 83 66 54	<.3 <.3 <.3 <.3 <.3 <.3	19 24 24 15 17	13 15 15 10 16	514 522 345	5.25 6.75 6.77 4.79 5.36	44242		<2 <2 <2 <2 <2 <2 <2 <2	7 7 7 6 4	63 45 46 79 47	.2 .3 .5 <.2 <.2	;- 3 <2 <2 2 <2	3 <2 <2 <2 <2 <2	129 198 198 138 165	.47 .49 .59	.215 .139 .141 .217 .191	14 19 19 75 14	30 42 42 26 31	.83 .88 .89 .68 .70	141 117 121 125 79	.09 .11 .11 .08 .07	<3 <3 <3	4.93 2.76 2.80 3.04 2.48	.01 .01 .01 .01 .01	- 04 - 04 - 05 - <i>0</i> 3 - 05	<2 <2 <2 <2 <2 <2 <2 <2	4 32 9 13 4
04277 -80 04278 -80 04279 -80 04280 -80 04281 -80	1 3 2 1 2	81 94 93 96 71	5 <3 <3 3 4	71 66 80 44 44	<.3 <.3 <.3 .4 <.3	19 14 19 9 11	10 12 9 8 10	425 324 472	3.63 5.51 3.94 3.21 4.50	3 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	ৎ ২5 ২5 ২5 ২5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 3 <2 <2	36 42 36 72 44	.2 .2 .2 .2 .2 .2	<2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2 2 2 2	102 169 104 105 148	.53 .47 .31	.211 .228 .234 .141 .149	15 12 16 7 6	26 27 28 15 30	.69 .68 .65 .48 .49	68 82 70 94 80	.08 .08 .07 .05 .07	<3 <3 <3	2.80 3.59 4.83 2.49 2.62	.01 .01 .01 .01 .01	.04 .02 .03 .02 .03	<2 <2 <2 <2 <2 <2	4 7 3 3 4
04282 -80 04283 -80 04284 -80 04285 -80 04285 -80	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	152 100 146 197 70	5 3 5 5 3 5 5 3	111 78 74 141 54	<.3 .6 <.3 <.3 <.3	21 10 16 12 9	9 16	1131 4418	5.21 3.56 4.97 7.30 4.78	2 <2 <2 3 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 3 3 2 2	47 20 80 355 37	.2 .3 .2 .5 <.2	3 \$2 \$2 4 \$2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	137 84 122 206 135	. 19 .50	.262 .253	14 11 14 15 7	20 28	1.06 .70 .92 1.51 .67	121 67 200 402 92	.09 .06 .07 .07 .06	<3 <3 <3	4.10 5.13 4.37 4.90 2.84	.01 .01 .01 <.01 .01	.04 .08 .04 .07 .03	<>> <> <> <> <> <> <> <> <> <> <> <> <>	31
04287 -80 04288 -80 04289 -80 04290 -80 04291 -80	2 4 3 5 10	104 140 246 186 376	6 4 5 4 9	55 76 59 58 79	<.3 <.3 <.3 <.3	9 9 7 7 10	21 17 17	1675 1398 1421	3.92 5.50 4.43 4.70 6.55	<2 3 <2 4 2	5 \$5 \$5 \$	<2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 6	214 68 204 175 116	<.2 .2 .2 .3 .2	<2 4 2 4 2 4 2	<2 <2	123 142 119 116 146	.37 .67 .82	.096 .145 .135 .216 .161	8 10 12 12 24	12 12 11	.52 1.24 1.19 1.52 1.25	161 310 407	.05 .06 .04 .03 .04	<3 <3 <3	2.45 3.01 3.85 4.69 2.78	.01 .01 .01 .01 .01	.03 .12 .06 .04 .14	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 1 2
04292 -80 04293 -80 04294 -80 04295 -80 04295 -80	2 18 14 12 14	66 1269 604 315 168	<3 4 9 26 7	98 119 127 118 167	<.3 .6 .7 .3	11 10 11 8 11	34 45 23	2946 4205 3855	8.20 7.20 7.54 5.20 5.70	<2 12 29 11 4	\$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2	5 6 7 5 8	78 62 100 149 30	5 6 6 3	10 7 16 10 2	<2 <2 <2 <2 <2 2	198 122 139 91 101	.75 .92 .56	.161 .151 .209 .111 .169	12 22 25 21 18		.79	353 1297	.18 .05 .04 .04 .01	<3 <3 <3	5.05 3.07 2.24 2.42 2.23		.24 .32 .15 .20 .13	ᡧ᠉᠉᠉᠉᠉	< 2 5 2 2
04297 -80 04298 -80 04299 -80 04300 -80 04301 -80	11 3 4 2	165 320 347 341 234	24 5 23 <3 3	88 87 132 115 126	.8 .3 .3 <.3 <.3	7 8 12 10 11	21 23 24	2916 2556 2415	5.30 4.89 6.11 6.15 5.92	8 4 <2 <2 <2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2	4 5 5 3	55 105 98 109 76	.4 .2 .8 .3 .3	5 2 2 3 2 3	<2 <2 <2 3 <2	113 114 148 129 119	_97 .77 .58	. 129 . 158 . 204 . 174 . 166	20 19 21 20 17	15 12	.81 1.18 1.28 1.75 1.56	309 301	.01 .03 .09 .12 .08	<3 <3 <3	2.48 2.58 3.49 4.43 3.92	.01 .01 .01	.09 .12 .13 .30 .18	<2 <2 <2 <2 <2 <5	1
04302 -80 04303 -80 04304 -80 04305 -80 04305 -80	14 9 4 9 4	426 291 170 375 159	20 4 <3 14 <3	126 113 142 116 79	.7 .6 <.3 1.5 <.3	10 12 11 9 10	20 30 26	3794 4759 3023	6.24 5.49 7.55 6.13 5.13	2 2 2 2 2 2 2 2	√5 15 √5 √5 √5	<2 <2 <2 <2 <2 <2	5 3 5 5 3	156 241 216 97 97	.6 .5 .4 .5 .2	2 <2 3 2 2	<2 <2 <2 <2 <2 <2	153	1.18 .84 1.04	. 173 . 165 . 172 . 190 . 206	21 29 26 26 12	15 11 11	1.63 1.76 1.87 1.34 1.17	514 624 206	.09 .05 .05 .07 .09	<3 <3 <3	3.35 4.89 4.27 2.44 3.50	.01 .01 .01 .01 .01	.16 .09 .20 .07 .09	<2 <2 <2 <2 <2 <2	2 1 3
STANDARD CZ/AU-S	21	ICP - THIS - SAM	5DC LEACH	IS F YPE:	A SAMP PARTIA TALUS	AL FOR	DIG MN I S	STED E SR AU*	4.01 WITH CA P - IGP and 'P	LA CH	R MG B	A TI -REGI	B W A A/Mie	120 A1	IMITED	FOR	NA K	ONE H	IOUR	.109 AND IS	41 5 DILL		1.06 10 10		.09 ITH W		2.15	. 06	.15	11	41

AAA ACME ANALYTICA					L	ysa	nde	r G	old	Co	rp.	PR	OJE	CT	PAL	F	ILE	#	96-	449:	1					P	age	10	ACH		TICAL
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppo	Mn ppm	Fe X	As ppm	U ppm	Au ppili	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	Р %	La ppm	Cr ppm	Mg %	Ва ррп	Ti %	B ppm	Al %	Na %	к %		Au* ppb
04307 -80 04308 -80 04309 -80 04310 -80 04311 -80	7 5 19 25 3	228 194 86 777 220	4 <3 4 4 <3	81 99 111 149 119	<.3 <.3 <.3 .4 <.3	6 16 6 12 51	20 11 32	2675 1952 1305 4288 2568	6.02 5.69 7.79	<2 <2 <2 <2 4 2	হ হ হ হ হ	<2 <2 <2 <2 <2 <2	3 <2 <2 4 3	269 176 108 47 120	<.2 <.2 <.2 .3 .7	<2 <2 <2 <2 3 <2	<2 2 2	145 193 150 206 254	-87 .77 .66 .62 2.01	.243 .144 .214	18 20 16 21 28	28 17	1.70	369 229 115 138 338	.04 .09 .05 .07 .23	4 <3 <3	3.52 2.93 1.75 2.93 2.03	.01 .01 .01 .01 .01	.09 .10 .05 .10 .35	8~880	9 7 8 43 14
04312 -80 04313 -80 04314 -80 04315 -80 04315 -80	2	121 240 455 133 224	ଏ ଏ ଏ ଏ ଏ	86 91 101 108 102	<.3 <.3 .5 <.3 .4	9 18 10 6 8	33 31 17	1832 2385 3502 3139 2122	9.90 7.92 6.83	2 <2 <2 <2 <2 <2 <2 <3	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2 2 2 2	57 95 104 51 70	<.2 .2 .8 <.2 <.2	4 <2 <2 3 <2	<2	328	.50 1.90 1.69 .44 .62	.451 .310 .217	12 24 27 10 11	28	1.32 2.83 1.62 .66 .50	121 378 287 85 87	.12 .24 .07 .06 .02	ও ও ও	3.05 2.59 2.32 2.36 2.27	.01 .01 .01 .01 .01	.12 .24 .17 .04 .04	~~~~~	4 2 4 1 3
04317 -80 04318 -80 04319 -80 04320 -80 04321 -80	5 4 6	227 209 242 184 1060	6 7 8 7 33	118 99 97 92 180	<.3 <.3 .5 <.3	10 13 15 11 6	10 16 13	1009 1015 1855 1629 2540	4.11 4.79 4.43	<2 4 2 3 6	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <3	36 43 25 23 29	<.2 .2 .3 <.2 .4	<2 <2 3 2 4	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	153 133 143 145 176	.54 .36 .39		12 17 24 13 21	16 19 18 16 7	.53 .60 .93 .77 .57	61 93 144 58 74	.04 .05 .07 .07 .05	<3 <3 <3	2.43 2.20 2.50 2.40 2.29	.02 .01 .01 .01 .01	.03 .05 .12 .12 .07	<br <br <br <br </td <td></td>	
04322 -80 04323 -80 04324 -80 04325 -80 04325 -80	10 5 17 5 4	590 608 202 204 273	3 8 7 <3 14	106 96 79 86 81	<.3 <.3 <.3 <.3 <.3	13 16 9 8 7	17 16 25	1502 1044 1012 2223 685	4.86 4.82 7.78	<2 <2 <2 <2 <2 <2	\$ \$ \$ \$ 5 5 5	<2 <2 <2 <2 <2 <2 <2	4 2 2 5 4	45 34 34 15 14	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <3	<2 <2 <2 3 2	161 143 159 174 207	.53 .54 .55	.137 .206 .167 .259 .279	19 18 11 18 11	24	1.31 1.23 1.22 .99 .79	151 73 78 61 55	.13 .10 .10 .07 .09	<3 <3 <3	2.40 2.56 2.98 3.69 5.28	.01 .01 .01 .01 .01	.13 .11 .08 .08 .14	<2 <2 <2 <2 <2 <2 <2 <2	
E 104327 -80 04327 -80 04328 -80 04329 -80 04329 -80	6 2 18	483 475 367 172 557	17 15 <3 <3 17	93 90 77 58 133	<.3	15 15 8 7 12	18 23 8	1009 975 2052 281 3142	5.53 6.78 4.24	<2 4 <2 <2 2	くう くう くう 17	<2 <2 <2 <2 <2 <2	3 2 7 <2 6	21 21 11 21 42	.4 <.2 <.2 <.5	<2 4 <2 4 <2	<2 <2 <2	171 165 209 108 176	.52 .56 .26	.211 .211 .238 .106 .240	15 14 14 10 21	20 8 16	1.15 1.12 1.63 .50 1.24	58 57 46 89 233	.09 .05 .04	<3 <3 <3	2.90 2.83 4.97 3.86 2.09	.01 .01 .01 .01 .01	.09 .09 .05 .04 .25	<2 <2 <2 <2 <2 <2 <2	
04331 ~80 04332 ~80 04333 ~80 04333 ~80 04334 ~80 04335 ~80	14 10	614 222 184 149 89	8 7 3 3 3	160 82 82 101 48		12 12 9 8 4	20 14	2968 2093 1400 4026 815	5.01 4.90	5 4 <2 3 <2	19 <5 <5 <5	<2 <2 <2 <2 <2 <2	5 3 <2 <2 <2	61 29 20 19 20	1.1 <.2 <.2 <.2 <.2	<2 <2 2 2 2 2		159 111 130 114 91	.42 .27 .19	.181 .189 .191 .224 .144	22 20 11 8 7	13 17 12	.40	283 199 143 288 99	.04 .02 .01	<3 <3 <3	2.80 2.40 2.72 2.22 1.98	.01 .01 .01 <.01 .01	-29 -13 -06 -07 -04	<2 <2 <2 2 <2	
104336 -80 104337 -80 104338 -80 104339 -80 104339 -80	4 5 17 4 6	49 71 128 77 121	<3 5 5 3 5	62 36 104 68 66	<.3	3 6 11 9 16	9 17 12		4.18 4.88 3.65	<2 <br 3 <2 4	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 5	7 16 40 26 27	.3	3 12 3 <2	2 <2 <2 <2 <2	58 123 149 95 135	.10 .68 .31	.158 .081 .195 .215 .288	3 6 25 11 19		.36 1.21 .59	110 43 219 98 108	.06	<3 <3 <3	2.53 2.30 2.84 2.75 2.39	.01 .01 .01 .01 .01	.04 .04 .10 .07 .09	<2 <2 <2 <2 <2	
STANDARD C2/AU-S	20	56	33	133	6.7	70	34	1173	3.80	40	17	8	34	51	19.1	19	17	69	.54	.106	37	60	1.00	196	.08	27	1.99	.06	. 13	12	

Sample type: TALUS FINES. Samples beginning (RE) are Reruns and (RRE) are Reject Reruns.

LL ADE AKLYTICA					\mathbf{L}_{i}	ysa	nde	r G	old	Co	rp.	PR	OJE	СТ	PAL	F	ILE	#	96-	449:	i					P	age	11			TICAL
AMPLE#	Mo ppm	Cu ppn	Pb ppm	Zn ppm	Ag ppm	i¥ ppnn	Co ppm	Mri ppm	Fe %	As ppm	υ ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	SD ppm	8i ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B ppm	Al %	Na %	к %	¥ مرح	Au* ppb
04341 -80 04342 -80 04343 -80 04344 -80 04344 -80	3 4 3 4 5	105 92 151 114 108	4 5 4 7 5	74 82 75 53 65	<.3 1.1 <.3 .3 .3	13 12 17 10 18	9 16	454 393 917 573 817	4.25 4.95 4.69	4 <2 4 2 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 3 3 3 3 3	26 34 40 73 110	.2 .4 <.2 <.2 <.2	4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<2 2 2 2 2 2 2 2 2 2 2 2 2 2	128 106 142 133 113	.29 .53 .42	.165 .270 .214 .154 .164	13 11 17 12 18	18 20 25 14 21	.76 .59 .92 .70 .86	84 93 128 215 270	.08 .06 .08 .06 .05	<3 <3 <3	2.66 5.27 2.76 2.32 2.16	.01 .01 .01 .01 .01	.05 .02 .07 .06 .05	<2 <2 <2 <2 <2 <2 <2	19 8 34 15 38
04346 -80 04347 -80 04348 -80 04349 -80 04350 -80	6 3 11 5 2	139 102 141 175 108	5 4 3 3 3	66 69 80 86 59	<.3 <.3 .3 <.3 <.3	18 16 9 15 17	10 26	569 468 3068 565 536	4.43 7.28 5.80	3 <2 2 <2 <2 <2	৩ ৩ ৩ ৩	<2 <2 <2 <2 <2 <2	4 2 13 2 5	49 50 75 118 86	<.2 .2 <.2 .2 .2	<2 3 <2 5 <2	<2 <2 <2 <2 <2 <2	109 119 127 157 108	.36 .80 .39	.173 .142 .188 .148 .148	19 18 41 12 17	23 23 9 21 20	.79 .80 1.31 .90 .91	178 204 220 149 139	.06 .06 .01 .08 .07	<3 <3 <3	2.19 2.68 3.45 3.68 2.67	.01 .01 .01 .01 .01	.03 .03 .04 .04 .04	<2 <2 <2 <2 <2 <2	3:
04351 -80 04352 -80 04353 -80 04354 -80 04355 -80	2 1 2 5 2	223 121 123 322 594	3 3 5 3 3 3	79 67 58 79 127	<.3 <.3 <.3 <.3 <.3	12 21 9 15 11		718 400 358 572 937	4.20 3.55 4.92	<2 2 <2 <2 2 2	ও ও ও ও ও	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	33 264	57 31 62 64 100	2. 2. 2.> 2.> 2.>	<2 4 2 4 2 4 2 4 2 4	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	160 119 108 139 264	.42 .17 .39	.182 .145 .073 .167 .272	13 16 9 16 19	28 15 20	1.32 .82 .50 .96 1.02	165 79 77 119 105	.11 .07 .07 .10 .10	3 3 3	4.96 2.53 2.63 3.73 3.00	.01 .01 .01 .01 .01	.03 .03 .01 .02 .01	<2 <2 <2 <2 <2 <2	1
104356 -80 104357 -80 104358 -80 104359 -80 RE 104360 -80	2 2 3 2 3	133 175 190 487 619	उ उ उ े उ	55 56 65 85 96	<.3 <.3 <.3 <.3 <.3	8 8 9 11	15	739 599 501 1200 2313	4.65 3.93 4.76	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	হ হ হ হ হ	~~~~~	5 <2 <2 <2 5	26 212 95 129 135	<.2 <.2 <.2 .2 .5	5 6 2 3 3	<2 <2 <2 <2 <2 <2 <2 <2	182 181 138 168 190	.37 .28 .43	.135 .150 .148 .192 .195	9 9 13 20		.40 .78 .91 1.30 1.51	91 116 87 164 170	.08 .08 .06 .12 .06	<3 <3 <3	2.16 2.45 2.67 3.03 3.39	.01 .02 .01 .01 .01	.05 .03 .03 .12 .06	<2 <2 <2 <2 <2 <2 <2	
04360 -80 104361 -80 104362 -80 104363 -80 104363 -80	2 2 3 1 5	618 615 330 171 251	<3 <3 <3 <3 <4	96 98 91 92 94	<.3 <.3 <.3 <.3 <.3	11 11 9 10 13	28 25 22	2311 2259 2593 1864 2538	6.88 6.37 6.05	<2 <2 <2 <2 <2	<5 <5 <5 <5	~~~~~	6 5 6 3	135 134 97 146 145	.2 <.2 <.2 <.2	4 3 <2 <2 3	<2 <2 <2 <2 <2 <2	139 152	1.06 1.29 1.10	.196 .214 .162 .212 .204	19 20 18 20 19	17 10 9	1.52 1.48 1.95 1.74 1.25	173	.06 .06 .02 .02 .10	<3 <3 <3	3.44 3.28 4.18 4.23 3.86	.01 .01 .01 .01 .02	.07 .07 .11 .04 .12	<2 <2 <2 <2 <2 <2	
104365 -80 104366 -80 104367 -80 104368 -80 104368 -80 104369 -80	10 3 2 8 8	410 414 57 210 159	14 8 3 6 9	123 65 56 78 84	<.3 .4 <.3 <.3 <.3	8 6 4 7 8	Z2	2450 2294 1045 803 745	4.28 2.84 4.91	3 <2 <2 <2 <2 2	<5 <5 <5 <5 <5	< < < < < < < < < < < < < < < < < < <	2 8 4 <2 2	71 28 21 160 130		<2 2 <2 4 4	<2 <2 <2 <2 <2 <2 <2	135 75 49 141 184	.53 .28 .50	.183 .114 .074 .159 .142	24 16 23 11 9	3 4 10		513 100 286		<3 <3 <3	2.30 2.16 1.33 4.04 3.36	<.01 .01 .01	.11 .12 .07 .03 .04	<2 <2 <2 <2 <2 <2	3
104370 -80 104371 -80 104372 -80 104373 -80 104373 -80 104374 -80	8 26 8 6 14	141 100 149 109 150	6 5 3 3 3	82 50 80 50 120		8 7 9 5 11	9 14 10	1251 501 976 1061 1399	4.42 5.67 2.91	2 2 2 2 2 2 2	<5 <5 <5 8	<2 <2 <2 <2 <2 <2	<2 <2 2 3 <2	81 113	<.2	4 3 <2 2 <2	2 <2 <2 <2 3		.21 .40 .30	.163 .189 .180 .112 .152	11 7 11 7 11	11 16 6	.81	130 128 46	.04 .08	<3 <3 <3	4.09 2.44 2.48 1.27 4.44	.01	.04 .05 .06 .05 .10	<2 <2 <2 <2 <2 <2	
STANDARD C2/AU-S	20	58	38	135	6.6	70	<u> </u>	1158	3.86	40	19	8	34	50	18.7	15	19	70	.53	.103	37	62	.99	190	.08	28	2.02	.06	.13	11	

.

ACHE ARREYTICA						Lys	and	er	Gol	d C	orp	. F	ROJ	ÉCT	' PA	Ŀ	FIL	E #	96-44	91						Pag	e 1	2		
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	v ppm	Ca P % %	ia ppm	Cr ppm	Mg %	Ba ppm	Ti %	B Ppm	Al X	Na %	к %		Au* ppb
104375 -80 104376 -80 104377 -80 104378 -80 104378 -80 104379 -80	7 5 2 2 2	300 91 408 75 434	3 4 6 4 5	92 59 91 103 98	<.3 .3 .3 <.3 <.3	15 4 8 5 15	17 23 16	3630 2687 2100	5.19 3.47 4.72 4.78 5.67	<2 <2 <2 <2 <2 <2 <2	7 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 <2 4 2 <2	110 30 31 26 42	.2 .2 .2 <.2 <.2	<2 <2 <2 <2 <2 <2	3	156 114 128 176 212	.91 .178 .13 .198 .42 .155 .20 .198 .48 .181	18 6 20 8 11	7	.35	192 134 354 102 98	.09 .01 .03 .02 .08	33 37 37 37 37 37 37 37 37 37 37 37 37 3	.85 .80 2.74	.01	.08 .12 .15 .07 .06	<2 <2 <2 <2 <2 <2 <2 <2	9 14 5 8 14
104380 -80 RE 104380 -80	1 1	78 76	6 6		<.3 <.3	5 5			2.92 2.99	<2 <2	<5 <5	<2 <2	<2 <2	53 54	.3 <.2	<2 <2		154 157	.10 .070 .10 .070	5 5	16 17	.22 .22	90 88	.07 .07	ও ও	. 98 . 96	.01 .01	.05 .05	<2 <2	3 1

					Ŀ	ysa	ind	er	<u>Gol</u>	d	<u>Согр</u> 1120											449	2	Pag	e 1							2 2	
SAMPLE#	Mo Joponi	Cu ppm		Zn ppm	Ag Ppb	Ni ppm	Co ppm	Mri ppni	Fe %	As ppm	U Au ppm ppm	ו Th ויף סות	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %		La ppm	Cr ppm	Mg X	Ba Ti ppm %	B	Al %	Na %	к % р	N National P	Tl ponip	Hg xpb F	Se pon_p	Te spin	Ga ppm
111144 111145 111146 111147 111148	< 1 < 1	9.0 2.9 1.9	37.9 26.1 1.9	14.7 5.5 15.1	291 108 41	<1 <1 <1	1 1 1	140 163 155	.42 .20 .23	<.5 <.5 .7	<5 <.1 <5 <.1 <5 <.1 <5 <.1 <5 <.1	া ১ ১	7 3 6	.03 .11 .03	<.2 <.2 <.2	.5 .1 .1	7 3 3	.16 .06 .09	.046 .019 .053	1 1 1	<1 1< <1	.04 .01 .01	44<.01 23<.01 13<.01 23<.01 37<.01	<2 <2 <2	.97< .64<	-01<. -01<.	.01 .01 .01	<2 < <2 < <2 <	<.2 <.2 <.2	<2 < 3 <	.3 « .3 «	<.2 · <.2 · <.2	<.5 <.5 .6
111149 111150 111151 111152 111153	<.1 <.1 <.1	12.1 9.1 3.3	2.2 .6 1.9	16.4 10.5 6.3	270 30 107	1 2 <1	1 3 1	465 259 144	.34 .20 .41	3.1 1.4 1.5	<5 <.1 8 <.1 <5 <.1 <5 <.1 <5 <.1	<1 <1 <1	42 49 12	.10 .02 .07	<.2 <.2 <.2	<.1 <.1 : <.1	27 16 13	.54 .59 .20	.025 .061 .058	11 4 3	5 2 2	.03 .14 .02	84<.01 25<.01	<2 <2 <2	.20 .63	<.01 <.03< <.01<	.01 .01 .01	<2 < <2 < <2 <	<.2 <.2 <.2	2 < 3 <	<.3 < <.3 <	<.2 <.2 <.2	-9 <.5 .5
111154 111155 111156 RE 111153 111157	< 1 <.1 < 1	23.2 256.5 10.0	1.1 5.1 .6	19.1 28.4 15.9	59 239 30	2 3 2	4 9 3	650 1228 448	.32 .52 .26	.6 2.5 5.	<5 <.1 <5 <.1 <5 <.1 <5 <.1 <5 <.1	i <1 <1 <1	64 46 44	.07 .43 .04	' <.2 i <.2 i <.2	<.1 .2 1	18 14 14	.73 .81 .61	.103 .091 .060	6 5 5	1 1 2	. 15 . 18 . 14	49<.01 44<.01 140<.01 12<.01 128<.01	<2 <2 <2	. 17 . 20 . 22	<.01 .01 <.01<	.01 .02 .01	<2 · <2 · <2 ·	<.2 <.2 <.2	4 < 22 < 2 <	<.3 · <.3 · <.3 ·	<.2 <.2 <.2	<.5 <.5 <.5
111158 111159 111160 111161 <i>11116</i> 2	<.1 <.1 .2	5.3	1.4 1.3 1.9	9-8 6-7 9-6	<30 <30 675	3 2 2	2 5 34	97 293 770	.36 .27 .81	<.5 .6 .5	<5 <. <5 <. <5 <. <5 <. <5 <.	1 <1 1 <1 1 <1	15 48 89	5 .01 3 .02 7 .07	<.2 ? <.2 ? <.2	2 <.1 2 <.1 2 <.1	11 13 68	.22 .52 .64	.063 .107 .040	4 7 7	4 6 8	.10 .08 .08	115<.0' 16<.0' 66<.0' 112<.0' 172<.0'	<2 <2 <2	. 16	<.01< <.01 <.01	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	4 · 5 ·	<.3 <.3 <.3	<.2 <.2 <.2	.5 <.5 <.5
111163 111164 111165 111166 111167		89.4 23.2 69.3	1.4 .9 1.5	12.0 11.4 6.6	124 61 58	7 6 4	8 5 5	2523 225 279	.75 .36 .30	1.5 <.5 <.5	<5 <. <5 <. <5 <. <5 <. <5 <.	1 <1 1 <1 1 <1	114 210 100	27. 20.05 20.04	7 <.2 5 <.2 5 <.2	2 <.1 2 <.1 2 .1	38 34 12	.59 .68 .73	.041 .044 .083	5 3 4	11 8 8	.08 .20 .18	129<.0 102<.0 188<.0 115<.0 64<.0	1 <2 1 <2 1 <2	.29 .19 .20	<.01 <.01 <.01	.01 .02 .01	<2 <2 <2	<.2 <.2 <.2	13 · 4 · 4 ·	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5
111168 111169 111170 111171 111172	: 1 :<.1	44.1 25.4	1.7	10.0 9.8 17 5	60 142	3	5 5 3	318 225	.26 .26 .26	8. אלי -8	<5 <. <5 <. <5 <. <5 <. <5 <.	1 <1 1 <1 1 <1	i 82 103 1 20	2,04 3,04 9,01	- <.2 - <.2 7 < 2	2 <.1 2 <.1 2 <.1	13 18 17	.62 .57 59	.084 .055	5 4 6	5 6 4	.15	90<.0 45<.0 88<.0 79<.0 106<.0	1 <2 1 <2 1 <2	.19 .17 .14	<.01 <.01 <.01	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	4 3 3	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5
111173 111174 111175 111176		49.7 25.3 29.7 9.9	1.1	12.7 9.0	7 183) 444	3	33	294	.22	.7	<5 <. <5 <. <5 <. <5 <.	1 <' 1 <'	1 39	7.00 7.11	5 < B <	2 <.1 2 <.1	i 11 I 30	.62	.074	4 8	2	.15	119<.0 82<.0	1 <2 1 <2	.18	<.01 <.01	.01 ,01	<2 <2	<.2 <.2	3	<.3 <.3	<.2	<.5 <.5
FOR 1 HG S	MN FE E TE	SR CA	. P LA . ARE	CR N EXTR/	AG BA ACTED	TI I WIT	BW/ Kmi	AND L BK-AL	I M I TE I QUAT	ED Fi 133	XIALMIN OR NA K 6 AND A <u>are Rer</u>	GA / NALY:	AND . Sed i	AL. S BY I	SOLU CP.1	TION Elev#	ANAL	Y SED DETE	DIRE	CTLY	ВΥ	ICP.	MO CU	PB Z	N AG AIN C	AS AL U,PB,	I CD .ZN,A	SB 8 .S>15	81 TL 500 P	ΡM,F	e>2(冼.	

ACHE ANEXTICA		Lysander Gold Corp.	PROJECT PAL FILE # 96-4492	Page 2
SAMPLE#	Mo Cu Po Zn Ag ppni ppni ppni ppni ppb	Ni Co Min Fe As U Au Th ppm ppm ppm % ppm ppm ppm ppm		Al Na K W TI Hg Se Te Ga % % % ppm ppm ppb ppm ppm ppm
111177 111178 111179 111180 111181	.1 53.9 4.2 19.7 94 .1 54.9 2.3 18.2 292 <.1 31.5 2.4 15.3 127 .1 18.6 2.1 12.2 159 <.1 40.6 3.6 17.9 170	2 3 4 170 .24 .7 <5 <.1 <1 2 3 159 .23 .5 <5 <.1 <1 2 3 342 .19 .5 <5 <.1 <1		27<.01 .01 <2 <.2 2 <.3 <.2 <.5 .15<.01 .01 <2 <.2 <2 <.3 <.2 <.5 .18<.01 .01 <2 <.2 <2 <.3 <.2 <.5
111182 111183 111184 111185 111186	.1 28.6 3.6 25.4 292 <.1 20.4 2.7 11.7 54 <.1 21.8 3.6 19.2 79	2	39 .06 <.2 <.1 9 .62 .122 5 1 .10 99<.01 <2 . 41 .08 <.2 <.1 18 .73 .081 4 2 .16 91<.01 <2 .	10<.01 .01 <2 <.2 2 <.3 <.2 <.5 .26<.01 .01 <2 <.2 <2 <.3 <.2 <.5 .14<.01 .01 <2 <.2 <2 <.3 <.2 <.5 .19<.01 .01 <2 <.2 <2 <.3 <.2 <.5 .19<.01 .01 <2 <.2 2 <.3 <.2 <.5 .13<.01 .01 <2 <.2 3 <.3 <.2 <.5
111187 111188 111189 111190 111191	<.1 13.8 2.1 12.8 83	7 3 4 123 .19 <.5 <5 <.1 <1 9 3 3 112 .19 <.5 <5 <.1 <1	37 .07 <.2	21<.01 .01 <2 <.2 2 <.3 <.2 <.5 .18<.01 .01 <2 <.2 3 <.3 <.2 <.5 .16<.01 .01 <2 <.2 <2 <.3 <.2 <.5 .16<.01 .01 <2 <.2 <2 <.3 <.2 <.5 .13<.01 .01 <2 <.2 <2 <.3 <.2 <.5 .15<.01 .01 <2 <.2 2 <.3 <.2 <.5
111192 111193 111194 111195 111196	<.1 46.3 3.1 14.3 211		55 .16 <.2 <.1 16 .75 .016 8 4 .17 203<.01 <2 . 39 .13 <.2 <.1 12 .48 .035 6 2 .07 62<.01 <2 . 37 .08 <.2 <.1 10 .52 .078 7 2 .11 81<.01 <2 .	.22<.01 .01 <2 <.2 <2 <.3 <.2 <.5 .24<.01 .02 <2 <.2 < 4 <.3 <.2 <.5 .23<.01 .01 <2 <.2 3 <.3 <.2 <.5 .23<.01 .01 <2 <.2 3 <.3 <.2 <.5 .20<.01 .01 <2 <.2 3 <.3 <.2 <.5 .36<.01 .01 <2 <.2 3 <.3 <.2 <.5
RE 111195 111197 111198 111199 111200	<.1 12.3 2.2 8.8 63 .1 5.4 2.3 18.8 349	9 1 3 369 .37 <.S 5 <.1 <1 5 1 4 339 .25 .6 5 <.1 <1	31 .05 <.2 <.1 10 .50 .085 7 2 .09 69<.01 <2 75 .13 <.2 <.1 17 .90 .007 4 3 .06 94<.01 7 47 .07 <.2 <.1 11 .51 .021 7 2 .04 73<.01 <2	.21<.01 .01 <2 <.2 3 <.3 <.2 <.5 .17<.01 .01 <2 <.2 <2 <.3 <.2 <.5 .30 .01 .01 <2 <.2 <2 <.3 <.2 <.5 .28<.01 .01 <2 <.2 3 <.3 <.2 <.5 .35<.01 .01 <2 <.2 3 <.3 <.2 <.5
111201 111202 111203 111204 111205	.1 26.3 2.9 28.4 114 <.1 1.7 1.4 7.6 141 <.1 .7 .7 5.6 77	0 <1	50 .09 <.2 <.1 24 1.01 .035 2 <1 .10 23<.01 <2 2 .07 <.2 <.1 4 .03 .026 1 <1<.01 18<.01 <2 2 .02 <.2 <.1 3 .05 .031 1 <1<.01 26<.01 <2	.52<.01<.01 <2 <.2 2 <.3 <.2 .6 .26 .01 .02 <2 <.2 <2 <.3 <.2 <.5 .79<.01 .01 <2 <.2 3 <.3 <.2 <.5 .97<.01<.01 <2 <.2 3 <.3 <.2 <.5 .97<.01<.01 <2 <.2 2 <.3 <.2 <.5 .69<.01<.01 <2 <.2 2 <.3 <.2 <.5
111206 111207 111208 111209	<.1 2.1 1.0 11.1 81 <.1 1.5 1.0 10.8 46	i 1 <1 31 .19 <.5 <5 <.1 <1 5 <1 <1 25 .16 .6 <5 <.1 <1		.99<.01<.01 <2 <.2 2 <.3 <.2 <.5 .06<.01 .01 <2 <.2 <2 <.3 <.2 <.5

					<u> </u>									<u></u>														_	<u> </u>		
AA LL CHE ANNU YTICAL]	Lys	and	ler	Gol	.d (Cor	p.	PRO	OJE	CT	PAI	••	FIL	E #	96	5-4	492]	Pag	je 3	3	
SAMPLE#	Mo	Cu	Pb	Žn ppm	Ag ppb	Ni	Co ppm p	Min	Fe As % ppc	i U appm	Au ppm	Th ppong	Sr ppm p	Cd ppm p	Sb 1 Spm pi	Bi pm pp	V Ci m 1	a F X 7	> La ¢ppm	Cr ppm	Mg %	Ba T ppm	`i ₿ %ippm	AL Na %	a K % %	W ppm	Tl ppm	Hg ppb	Se ppm p	Te G open pp	a m
111210 111211 111212 111213 111214	<.1 <.1 <.1	2.5 3.0 3.2	1.2 .9 4.5	24.6 14.8 11.3	99 140 108 121	<1 <1 <1	1 1 <1 <1		28 1.5 .34 1.1 .26 1.4	<5	<.1 <.1 < 1	ব ব ব ব	8 6 3 36	.08 < .06 < .04 <	 .2 < 	.1 .1 .1	7 .14 4 .11 4 .04 1 .8	4 .039 0 .035 8 .027	2 1 5 1 7 1 2 1	<1 1 <1• <1	.02 .01 <.01	34<.0 20<.0 22<.0 38<.0	01 <2 01 <2 01 <2 01 <2	.62<.0 .94<.0 .97<.0 .25<.0 .52<.0	1 .01 1 .01 1 .01 1 .01	<2 <2 <2 <2	<.2 <.2 <.2 <.2	<2 2 3 2	<.3 < <.3 < <.3 < <.3 <	<.2 . <.2 <. <.2 <. <.2 <.	5 5 5 5
									EPAGE																						

	iya i N				<u>Ly</u>	san	<u>ide</u>	r	<u> 0</u>	<u>d</u>										GRI BC V			le	# 9	6-4	493	i.	-						Ľ
SAMPLE#	Мо ррл		Pb ppm																					Ba Ti ppm %										
201148																								25<.01										
201149	.1	51.8	1.8	7.7	184	1	5	712	.09	<.5	<5	<.1	<1	56	.34	<.2	· <. 1	6	.64	.033	10	1.	.04	125<.01	3	.99	.01	.01	<2	<.2	4 <	۰ <u>،</u> ۹	:.2	.6
201150																								40<.01										
201151																								51<.01										
201152	<.1	12.0	1.1	< 1	107	<1	I	32	.20	<.5	<>	<.1	<1	2	.05	<.2	<.1	4	.07	. 022	1	١٢.	. U I	17<.01	52	.91	<.UI	(101	<2	¢.2	2 4	·•> <		••
201153	1 1	22 N	1 2	22	134	د1	2	78	18	~ 5	<5	< 1	<1	4۵	20	< 2	· < 1	R	56	018	5	<1	05	65<.01	2	31	ពា	01	0	< 2	<2 <		c 2	5
201154																								107<.01										
201155																								54<.01										
201156																								33<.01										
RE 201156																																		
201157	1	75 0	1 /	5 8	104	21	,	47	74	. 5	~5	z 1		0	00	~ 7	1	4	67	070	1	2-	nt	31<.01		1 7.9	< 01.	r 01	-2		2.			7
201158																								76<.01										
201159																								26<.01										
201160																								111<.01										
201161																								78<.0										
201162	1 1	5 0	0	10	88	د1	<1	13	16	~ 5	<5	د 1	د1	1.	02	. 7	· e 1	4	10	£14	2	1-	D1	18<.01	<u>د</u> ، ا	70	01	c.01	<2	< 2	3.	ζζ.,	c.2 .	<.5
201163																								24<.01										
201164																								17<.01										
201165																								57<.0										
201166	<.1	18.0	.6	4.4	60	<1	2	73	.11	<.5	<5	<.1	<1	6	.02	<,Ž	2 <.1	2	.07	.015	1	1<	.01	23<.0	1 <2	.79	.01	<.01	<2	<.2	2 <	·.3 ·	<.2 ·	<.5
201167	i<.1	7.5	1.2	9.0	276	<1	<1	40	.20	<.5	<5	<.1	<1	4	.08	<.Z	! <.1	5	.04	.028	1	Ζ.	.01	16<.01	<2	.83	.01	<.01	<2	<,2	<2 •	<.3 ·	<.2	.9
																								20<.0										

HG SE TE AND GA ARE EXTRACTED WITH MIBK-ALIQUAT 336 AND ANALYSED BY ICP. ELEVATED DETECTION LIMITS FOR SAMPLES CONTAIN CU, PB, 2N, AS>1500 PPM, Fe>20%. - SAMPLE TYPE: SEEPAGE Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ł

				:	<u> </u>	san	der		10		p. 0 - 39									664		Pag	e 🤉								
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min. ppm	Fe %	As ppm	ប ppm	Au 1991	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi pp∩n	۷ مرم	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	τi %	B Ppm	Al X	Na %	к %	₩ ppm	Au ppi
03163 -80 03164 -80 03165 -80 03166 -80 03167 -80	1 2 3 1 <1	53 58 53 23 62	17 9 16 10 9	116 116 163 102 150	<.3 <.3 .7 <.3	21 20 18 9 20	14 20 15	1388 1189 1996 2526 2114	5.15 7.39 5.10	<2 <2 4 <2 <2 <2 <2		<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	46 66 80 36 133	<.2 <.2 <.2 <.2 <.2	<2 2 <2 <2 <2 <2	<2 <2 3 <2 2 <2	200 195 265 181 272	-68 -89 -40	.224 .226 .241 .169 .409	19 21 27 12 36	37 37 37 19 39	.70 .71 .51 .34 1.64	53 54 88 51 182	.07 .06 .05 .05 .09	ব্য ব্য ব্য	1.29 2.20 1.16 1.37 2.14	.04 .02 .02 .01 .04	.07 .04 .05 .02 .19	<2 <2 <2 <2 <2 <2 <2	3) 4) 19) 4) 5)
03168 -80 03169 -80 03170 -80 03171 -80 03172 -80	5 3 1 1 2	77 130 58 15 11	12 14 18 4 7	101 109 143 108 76	.8 .4 .8 <.3 .4	12 23 21 9 14	16 24 10	1212 1287 3526 1169 727	4.49 5.46 5.53	9 M M Q 2 V 2 V	8 5 5 5 5 5	<2 <2 <2 <2 <2 <2 <2	2 3 5 2 3	133 80 43 26 63	<.2 <.2 <.2 <.2 <.2	<2 3 <2 3	<2 <2 <2 <2 <2	181 215	-62 -99 -42	. 195 . 146 . 221 . 127 . 387	30 21 41 10 28	29 38 30 19 36	.52 .95 .48 .22 .41	75 110 83 41 22	.03 .09 .03 .01 .10	ব ব ব	1.28 2.26 1.18 .85 1.33	.02 .02 .01 .01 .03	.03 .05 .04 .03 .02	<2 <2 <2 <2 <2 <2	14
03173 -80 03174 -80 03175 -80 03176 -80 03177 -80	<1 1 3 1 <1	36 24 275 148 123	7 10 4 11 10	161 136 123 95 130	.3 <.3 .5 .4	18 12 12 17 11	15 17 16	1048 2809 2257 2013 2010	6,34 5.81 5.17	25 13 15 <2 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	4 3 5 6 <2	303 60 82 379 73	<.2 <.2 <.2 <.2 <.2	<2 <2 4 <2 3	<> <> <> <> <> <> <> <> <> <> <> <> <> <	223 215 224	.22 1.23 .95	.170 .176 .320 .212 .185	23 13 43 22 16	40 29 28 35 21	.65 .23 .38 .92 .87	146 62 54 53 66	.03 .02 .01 .07 .03	থ ও ও	3.65 1.70 1.35 1.49 1.75	.01 .01 .01 .04 .03	.04 .03 .03 .09 .05	<2 <2 <2 <2 <2 <2 <2	1 3 1 10 4
03178 -80 03179 -80 03180 -80 03181 -80 03182 -80	5 3 2 3 4	564 339 276 364 291	15 8 10 7 10	121 77 78 106 123	.7 <.3 .6 .3 <.3	9 7 5 9 8	16 10 19	1898 1284 1562 1539 1303	5.77 3.60 6.77	3 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	5 <2 <2 2 <2	33 28 40 43 37	<.2 <.2 <.2 <.2 <.3	14 3 5 <2	3 <2 <2 <2 2 2	134 279	.32 .29 .62	-204 -192 -328 -249 -268	20 11 10 17 13	13 12 8 14 10	.89 .79 .58 .88 1.43	112 87 121 108 159	.02 .05 .03 .06 .05	থ ও থ	2.26 2.12 2.60 2.38 3.37	.01 .01 .01 .01 .01	.04 .04 .06 .09 .08	<2 <2 <2 <2 <2 <2	1 3 1 1 2
03183 -80 E 103192 -80 03184 -60 03185 -80 03185 -80	5 2 3 2 3	211 407 487 319 464	14 8 7 8 15	166 78 101 90 120	.5 <.3 <.3 <.4	10 13 10 8 8	16 15 13	3066 818 889 467 4568	5.39 8.55 6.29	<2 4 <2 <2 <2	<5 <5 9 6 <5	<2 <2 <2 <2 <2 <2	2 4 2 2 <2	34 42 36 21 38	.6 .3 .6 .5 .3	<2 3 3 <2 2	< < < < < < < < < < < < < < <	479 265	.54 .67 .41	.281 .196 .438 .299 .340	16 18 78 11 13	21	1.44 1.09 1.05 .80 .67	184 99 65 75 195	.06 .14 .08 .07 .05	থ থ থ	3.77 2.08 2.87 3.39 3.08	.01 .01 .01 .01 .01	.06 .06 .08 .05 .07	<2 <2 <2 <2 <2 <2	9
03187 -80 03188 -30 03189 -80 03190 -80 03191 -80	2 2	785 844 1220 352 200	9 12 18 16 6	106 113 137 118 92	.7 .5 .6 .3 .3	7 10 11 7 9	33 30 17		7.29	2 <2 <2 <2 <2	\$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2	<2 4 5 <2 <2	28 61 55 44 48	.3 .9 .3 .3	2 <2 5 <2 2 2	<2 <2 5 3 2	306 345 282	.91 .71 .37	.354 .273 .244 .238 .255	16 37 31 12 10		1.86 1.90 .73	103 369 300 229 115	.05 .13 .14 .04 .11	<3 <3 <3	2.90 2.35 2.43 2.05 1.89	.01 .01 .01 .01 .01	.07 .10 .15 .07 .05	2 <2 <2 <2 <2 <2	2 2
03192 -80 03193 -80 03194 -80 03195 -80 03196 -80	2 2 2 1	395 398 187 326 611	6 29 9 7 8	76 189 113 74 108	<.3 .6 <.3 <.3 .4	12 9 8 10 11	21 11 12	4867 636 806	5.69	<2 <2 <2 <2 <2 <2	か か う い う い	<2 <2 <2 <2 <2	5 2 2 3	40 64 34 41 64	.4 1.6 .2 .3 .6	<2 <2 <2 <2 4	3 6 <2 <2 <2 <2	299 338 371	.62 .49 .51	. 195 . 187 . 184 . 187 . 281	17 22 9 14 21	13 15 17	.77	95 383 67 79 125	. 14 . 10 . 11 . 12 . 15	<3 <3 <3	2.02 1.70 1.51 1.37 1.52	.01 .01 .01 .01 .01	.07 .18 .04 .05 .16	<2 <2 <2 <2 <2 <2	1 9 1
STANDARD C2/AU-S	20	ICP THIS - SAM	500 LEACI	GRAM	PARTI/ TALUS	PLE IS	DIG MN S	ESTED FE SR AU*	3.70 WITH CA P - IGN and /1	3ML 3 LA CR HITED,	MG B	A TI REGI	INO3-H BW/	120 AT	IMITE	DEG. (D FOR	C FOR NA K	ONE I AND J	HOUR	.109 AND 11		62 UTED 1					1.91	.06	. 14	13	

AA	,				I	Бува	and	er (Gold	Co	rp.	PR	OJE	CT	PAL	F	ILE	#	96-	466	4					P	age	10	AD		
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	2n ppm	Ag ppm	Ni ppm	Co ppm	Ma ppm	Fe %	As ppm	U ppm	Au ppm	Th pom	Sr ppm	Cd ppm	Sb ppm	₿i ppna	v ppm	Ca %	Р %	<u>L</u> a ppm	Cr ppm	Mg X	Ва ррп	Ti %	6 ppm	Al 7	Na %	к %	₩ PPm	Au* ppb
103197 -80 103198 -80 103199 -80 103200 -80 103201 -80	1 1 4	348 688 1065 643 1262	8 13 11	156 132 165 114 100	<.3 .5 .7 .5 .6	10 10 9 10 6	17 28 18	1781 1054 1791 1234 991	6.63 5.61 7.99 6.33 6.80	<2 <2 4 3 2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 2 3 3 3	80 39 71 71 74	<.2 <.2 .5 .2 <.2	<2 3 11 6 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	437 343 445 350 260	.89 1.22 .76	.219 .263 .322 .225 .161	16 18 23 17 13	17 7 12	1.47 1.56 2.06 1.17 1.13	102 88 120 78 240	. 17 . 14 . 21 . 18 . 07	<3 <3 <3	1.98 1.80 2.26 2.08 2.97	.01 .01 .01 .01 .01	.08 .18 .40 .11 .07	<2 <2 <2 <2 <2 <2 <2 <2 <2 2	15 92 47 50 48
103202 -80 103203 -80 103204 -80 103205 -80 103206 -80	18 9 18 8 6	2500 818 764 844 520	11 11 12 11 7	99 106 114 101 85	.3 .6 .5 .3 .4	13 15 7 11 9	18 19	1439 737 1176 1017 517	8.16 7.99 6.65 8.69 7.03	4 2 2 2 2 2 2 2 2 2 2 2 2 2		<2 <2 <2 <2 <2 <2	3 3 <2 4 2	104 59 57 88 62	.8 .2 <.2 .4 .3	5 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	363 246 432	.73 1.07	.267 .304	22 18 16 21 16	28 8	1.14 1.21 1.12 1.04 .88	94 58 59 109 63	.14 .19 .15 .15 .15	<3 <3 <3	2.88 2.91 3.05 2.41 2.54	.01 .01 .01 .01 .01	.09 .06 .09 .14 .07	₹2 ₹2 ₹2 ₹2 ₹2	32 21 10 9 4
103207 -80 103208 -80 103209 -80 103210 -80 103211 -80	6 2 3 <1 2	340 357	12 9 10 12 11	63 71 109 148 167	.3 <.3 <.3 .6 .4	7 10 11 9 11		477 553 695 2534 1938	5.62 7.10 6.37 10.05 7.72	<2 <2 <2 <2 <2 2	\$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 2 3 4	101 39 34 295 211	<.2 <.2 <.2 .7	5 <2 <2 <2 <2 5			.73 .66	.242 .390	12 15 15 31 24		.69 .64 .87 1.85 2.37	78 50 49 349 171	.13 .11 .11 .14 .23	<3 <3 <3	2.34 2.05 2.99 2.61 2.33	.01 .01 .01 .01 .01	.05 .06 .06 .24 .48	<2 <2 <2 <2 <2 <2	8 75 7 10 18
103212 -80 103213 -80 103214 -80 103215 -80 103215 -80 103216 -80	1 <1 <1	1379 1232 988 893 1090	15 17 11 14 8	174 171 175 198 119	.6 .6 .4 .3 .8	10 11 13 107 15	29 29 31	2316 2066 2330 2395 1772	8.83 9.57 8.48 7.50 7.67	<2 <2 <2 <2 3	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	5 4 3 4 3	489 378 485 298 615	.7 .9 .4 .8	<2 <2 <2 <2 7	<2 <2 <2 <2 <2 <2	431 334 300	1.72 1.54 1.63	.308 .369 .308 .265 .343	26 27 22 22 18	9 7 118	2.64 2.30 2.87 4.25 2.46	236	.24 .21 .24 .26 .19	<3 3 <3	3.50 2.64 3.90 3.77 3.67	.01 .01 .01 .02 .02	.35 .49 .46 .61 .27	<2 <2 <2 <2 <2 <2 <2	12 19 4 12 15
103217 -80 RE 103218 -80 103218 -80 103219 -80 103220 -80		368	8 10 11 10 11	132 120 129 124 119	.6 .7 .6 .6	9 23 21 15 11	29 29 32		9.00 7.41 7.43 7.06 8.19	3 <2 3 7 5	৩ ৩ ৩ ৩ ৩	<2 <2 <2 <2 <2 <2	5 4 4 4 4	98 162 164 275 315	.5 .3 .5 .4 .7	<2 <2 <2 4 2	<2 <2 <2 <2 <2 <2	353 354 305	1.29 1.28 1.40	.273 .137 .141 .214 .303	29 17 18 18 18	29 28 14	2,25 2,79 2,75 1,73 1,92	158 126 132 222 256	.10 .14 .15 .15 .16	3 <3 <3	3.17 3.05 3.09 2.49 2.74	.01 .02 .01 .02 .02	.07 .06 .06 .17 .16	<2 <2 <2 <2 <2 <2	16 5 21 26
103221 ~80 103222 ~80 103223 ~80 103223 ~80 103224 ~80 103225 ~80	15 22	825 606 624 3309 5003	8 10 12 16 11	116 133 113 139 145	.5 .5 .4 1.9 1.6	10 14 9 9	35 21 36	2230	6.82 7.44 7.69 7.07 7.40	2 6 <2 4 <2	ふ ふ ふ ふ	<2 <2 <2 <2 <2	5 4 5 7	141 120 252 470 507	.6 .6 .4 .8 .7	<2 2 2 14 <2		253 265 214	.94 .60 .94	.224 .198 .136 .231 .228	16 17 9 14 22	14 5 5	1.27 1.12 1.36 1.70 1.35	127 211	. 15 . 16 . 25 . 20 . 15	<3 <3 <3	2.81 2.44 3.31 3.99 3.04	.01 .02 .01 .01 .01	.17 .13 .06 .15 .20	<2 <2 2 <2 <2	11 8 5 36 24
103226 -80 103227 -80 103228 -80 103229 -80 103230 -80	8 13 7 8 16	1010 781 534 671 742	29 9 10 8 8	92 145 94 112 138	.8 .5 .3 .7 .5	9 13 15 11 14	49 31 27	984	6.51 9.78 5.96 6.75 8.49	<2 3 <2 <2 4	<5 6 <5 <5 5	<2 <2 <2 <2 <2 <2 <2	2 5 4 5	218 71 67 70 80	.4 .9 .3 <.2 .6	2 <2 <2 <2 <2 <2	<2 <2	359 199 208	1.17 .65	. 192 .350 .216 .296 .227	12 18 18 18 20	14 12	.92 2.07 1.05 1.14 1.30	166 99 75	.11 .16 .15 .14 .17	<3 <3 <3	2.39 3.52 3.12 4.22 3.06	.01	.06 .13 .10 .11 .10	<2 <2 <2 <2 <2 <2	11 2 6 5 7
STANDARD C2/AU-S	22	62	39	155	7.5	77	38	1278	4.05	41	18	9	40	56	21.2	19	20	78	.60	.106	42	71	1.08	216	.09	31	2.21	.07	. 15	10	46

1

Sample type: TALUS FINES. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

AA ADE ANALYTICA					I	.ys:	and	er (Gold	Co	rp.	PR	OJE	СТ	PAL	F	ILE	#	96-	466	4					P	age	11	40		T)CAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	ת2 ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As Pipen	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	B ppm	Al X	Na %	К %		Au* ppb
103231 -80 103232 -80 103233 -80 103234 -80 103235 -80	15	648 719 1109 694 689	5 3 3 5 8	113 166 245 182 137	.5 .4 .6 .5	12 11 14 11 13	50 57 33	1866 2437 2395 2688 2538	7.72 7.76 7.21 8.30 8.14	<2 <2 <2 <2 <2 <2 <2 <2	ব্য ব্য ব্য ব্য	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4 7 4 6 7	87 120 87 154 198	<.2 .4 .9 .4 .4	6 <2 6 2 3	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	211 327	.71 1.45 .84 1.49 1.52	.336 .258 .259	15 25 22 26 24	5 7 9	1.53 1.82 1.47 1.79 1.56	93 111 114 145 132	. 19 . 18 . 15 . 19 . 19	<3 <3 <3	3.27 2.72 2.97 2.92 2.92 2.57	.01 .01 .02 .03 .02	.24 .35 .35 .34 .25	<2 <2 2 <2 <2 <2	9 7 13 6 10
103236 -80 103237 -80 RE 103261 -80 103238 -80 703239 -80		691 404 132 608 1543	<3 <3 <3 32 9	83 114 76 88 124	.4 .5 ₹.3 .4 .8	12 12 25 7 9	23 15 49	1406 1501 380 1369 2252	6.86 6.22 3.94 8.02 10.31	<2 <2 <2 28 3	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	<br <br <br <br </td <td>6 6 4 6 9</td> <td>123 74 40 55 195</td> <td>.2 <.2 <.2 <.2 <.2</td> <td><2 3 6 4</td> <td><2 <2 <2 <2 <2 <2</td> <td>224 114 113</td> <td>.40</td> <td>.221 .121 .132</td> <td>20 23 17 24 28</td> <td>8 27 5</td> <td>1.26 1.27 1.04 .65 2.00</td> <td>75 116 84 320 141</td> <td>.15 .13 .11 .02 .20</td> <td><3 4 3</td> <td>3.21 3.67 2.75 2.47 3.16</td> <td>.01 .01 .01 .01 .01</td> <td>.13 .11 .06 .06 .40</td> <td><2 <2 <2 <2 <2 <2 2</td> <td>11 4 25 35</td>	6 6 4 6 9	123 74 40 55 195	.2 <.2 <.2 <.2 <.2	<2 3 6 4	<2 <2 <2 <2 <2 <2	224 114 113	.40	.221 .121 .132	20 23 17 24 28	8 27 5	1.26 1.27 1.04 .65 2.00	75 116 84 320 141	.15 .13 .11 .02 .20	<3 4 3	3.21 3.67 2.75 2.47 3.16	.01 .01 .01 .01 .01	.13 .11 .06 .06 .40	<2 <2 <2 <2 <2 <2 2	11 4 25 35
103240 -80 103241 -80 103242 -80 103243 -80 103244 -80	30 16 19 14 7	366 928	11 7 7 19 <3	112 105 83 151 95	.5 .3 .5 .5 ×.3	9 10 8 19 7	104 95	1608 1389 1215 4049 795	8.38 7.92 6.30 7.75 6.63	4 <2 3 <2 <2	8 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	8 2 2 2 2	213 286 97 224 117	、2 <.2 <.2 <.2 <.2	6 <2 5 4 3	4 <2 <2 <2 <2 <2	215 210 155 197 211	1.13 .45 .62	.278 .271 .169 .236 .172	23 23 15 14 9	4 7 23	1.54 1.66 .82 1.37 1.26	128 163 137 468 162	.18 .17 .06 .09 .13	<3 <3 <3	3.65 3.33 2.43 4.46 3.95	.02 .02 .02 .01 .02	.33 .31 .08 .05 .05	2 <2 <2 <2 <2 <2	31 10 44 20 9
103245 -80 103246 -80 103247 -80 103248 -80 103249 -80	5 2 6	1120 1648 583 329 734	10 15 14 7 8	94 147 152 86 121	.7 1.4 .6 <.3 .3	8 15 8 9 10	85	1682 5341 3695 505 905	6.88 9.10 8.51 6.13 6.84	<2 5 3 2 3	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	4 11 18 2 4	114 148 722 101 74	<.2 .5 <.2 .2	2 <2 3 5	<2 <2 2 <2 <2 <2 <2		1.86 2.93 .38		21 48 55 12 18	5 12	.87 2.16 1.35 .86 1.11	105 155 109 60 78	.10 .06 .11 .13 .11	ব ব ব	2.87 3.84 4.27 3.06 3.76	.01 .01 .02 .01 .01	.07 .08 .19 .08 .08	<2 <2 <2 <2 <2 <2	10 15 4 3
103250 -80 103251 -80 103252 -80 103253 -80 103254 -80	7 7 17 16 8	664 684 551 737 916	4 <3 <3 4 5	73 96 67 121 76	<.3 <.3 .3 .5 .3	8 16 13 14 19	40 28 25 25 16	404 978 740 818 351	7.99 7.31 6.64 8.37 5.62	2 <2 8 16 6	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	7 3 6 8 7	57 83 46 71 32	.3 <.2 <.2 .2 .2	2 <2 3 2 4	<2 <2 2 3 <2	354 264 190 191 136	.61 .65 .38	.256 .219 .219 .277 .165	17 16 19 23 24		.72 1.22 .81 .84 .80	67 103 83 178 68	.13 .11 .12 .05 .08	<3 <3 <3	2.59 4.10 3.21 4.36 2.68	.01 .01 .01 .01 .01	.07 .09 .07 .07 .05	<2 <2 2 3 <2	37 6 20 10 27
103255 -80 103256 -80 103257 -80 103258 -80 103259 -80	6 2 <1 2 3	299 309 58 206 428	3 <3 <3 7 <3	67 55 56 99 75	<.3 <.3 <.3 <.3 <.3	14 4 16 19	28 8 30 19 35	756 839 1259 783 869	6.52 5.09 8.28 5.18 4.64	4 <2 <2 <2 <2 <2	<5 8 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	8 14 3 4	90 154 78 81 237	<.2 .4 .2 <.2 .3	5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	171 125 141 144 124	1.22 .67 .68	.179 .173 .115 .187 .150	25 19 9 18 16	2 20	.92 1.97 1.90 1.07 1.02	93 155 128 132 292	.13 .25 .09 .13 .09	<3 <3 <3	3.20 4.64 4.56 3.46 3.50	.01 .01 .01 .01 .01	. 10 .67 .44 .13 .07	3 <2 <2 <2 <2 <2 <2	14 9 1 3 5
103260 -80 103261 -80 103262 -80 103263 -80 103264 -80	2 1 2 4 <1	214 133 264 492 1239	<3 5 <3 <3 <3	68 72 87 90 174	<.3 <.3 <.3 .3 <.3	21 26 19 13 16		564 1086	5.07 3.99 4.75 7.12 9.55	3 2 2 2 2 2 2 2 2 2		<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	5 4 5 8 9	52 40 32 59 73	<.2 <.2 .2 1.1	2 2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	157 118 133 221 388	.40 .50	.182 .119 .184 .246 .508	18 17 20 23 31	22 12	.90 1.02 1.09 1.21 2.77	85 84 78 101 206	.11 .11 .12 .15 .22	<3 <3 <3	2.50 2.56 3.19 3.41 4.30	.01 .01 .01 .01 .01	.05 .05 .07 .24 .97	<2 <2 <2 <2 <2 <2 <2	3 2 3 2 2
STANDARD C2/AU-S	20	58	37	139	6.8	69	35	1121	3.70	36	19	7	36	52	19.0	16	18	73	.53	.104	39	_62	.97	199	.09	28	1.98	.06	. 15	10_	42

. .

Sample type: TALUS FINES. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

															<u></u>			
AA ADE MULTICA		L	ysa	and	ler	Gold	Corp	. PR	OJEC'	I PA	L FI	LE #	96	-4664				
SAMPLE#							n Fe As n %ippm									Mg %	Ba ppm	Ti % p

					_																									
SAMPLE#	Mo ppm	Cu ppm			Ag ppm		Co pptn	nM maqa		As ppm						Sb ppm	Bi V ppnippni	Ca %		La pomp		lg Ba %ippn		B ppm		Na X	K %	v₩ ppm j		
														74		•						/ 450	24	τ.	4.38	01	55	<2	2	1
103265 -80	2	277	<3	109	.3	16	32	1281	9.75	<2	<>	<2	Ŷ	51	<.2			.57				6 159							<u></u>	
103266 -80	1	271	9	131	.3	16	20	1402	6.38	5	<5	<2	- 5	43	.2	- 3	<2 368	.68	.ZZ9	20	15.7	8 120	.10	4 :	3.07	-01	, 16	<2	1	
103267 -80	2	262	8	116	.4	18	17	935	5.71	2	<5	<2	4	43	<.2	4	<2 289	.64	.240	20	21.8	39 87	.12	4 3	3.11	.01	.10	<2	2	
103268 -80		613	ž	130	1	15	21	1448	7.35	0	<5	<2	8	47	4	<2	<2 357	.78	.294	30	13 1.2	23 222	.23	<3 2	3.02	.01	.34	<2	3	
			-		• •							_						.43				37 75			3.51	.01	no	<2	3	
103269 -80	6	431	2	103	- 4	19	1.9	404	5.40	×2	<2	×2	o	27	×.2	~2	12 200	.45	. 171	20	17 .1		• • •			•••			-	
			_		_					_	_	_			_	_							47		- - -	0.1	00		2	1
RE 103269 -80	1 1	404	- 3	98	.3	19	15	483	5.30	<2	<5	<2	8	28	<.Z	<2	<2 197		. 196			33 75	-		3.33			-	4	
103270 -80	1	684	<3	119	<.3	16	25	885	7.30	<2	<5	<2	10	43	<.2	<2	<2 227	.57	,227	22	14 1.1	35 102	- 29	3.	3.68	.01	.35	<2	2	
103271 -80	1 1	792	<3	144	<.3	11	24	974	8.18	3	<5	<2	11	36	.3	<2	<2 245	.76	.313	25	7 1.	74 132	.34	<3 /	4.25	.01	-54	<2	3	
103272 -80	1 2	319	<3	96	.4	17	11	357	5.73	<2	<5	<2	7	26	< 2	<2	<2 186	.58	.326	22	20 .	70 67	.11	3	3.62	.01	.07	<2	2	1
		1369	-		• •												<2 158					38 88		4	3.82	- 01	. 18	<2	3	
103273 -80	2	1304	~>	122	<.>	10	63	012	2.34	-2	5	~2	0			2	~2 .50		.205	••									-	
			_		_		• •				_	-		-	_				30/	-					- //	01	75	-2	,	1
103274 -80	4	464	<3	127	.3	15	20	641	7.89	<2	<5	<2		-				.66					-	<3					-	
103275 -80	1	198	<3	115	<.3	19	10	373	3.76	- 3	<5	<2	- 5	33	<.2	- 4	<2 104	.33	. 195	14	22.	79 88	.09	-	3.90				د	
111365 -80	4	762	5	112	.5	15	35	1586	7.46	<2	6	<2	6	123	<.2	<2	<2 286	1.00	.275	Z4	9 1.	25 8.	. 15	<3	2.75	.01	. 17	<2	14	4
LORR LL-96-012 -80	5	5909	62	651	3.4	57	31	5299	6.49	32	9	<2	16	103	3.7	23	<2 228	2.58	.508	92 1	17 2.	01 124	. 14	4	2.37	.02	.24	<2	165	
STANDARD C2/AU-S	-								3.83		22	_			19.3						64 .	98 193	80.3	29	1.97	.06	. 14	10	40	
STANDARD CZ/AUTS	1 21	22	- 27	142	U.7			1.01		-+ 1	~~			20		. /	12 12													

Sample type: TALUS FINES. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 12

ACHE ANALYTICAL

ACME ANALY	TICA	L LZ	BOR	ATOI	RIES	LTD	,	8	52 B				÷., .	- 10,7	20.01			V6A		4. L	PH	ONE	(604) 253	-31!	58	FAX (604)	253	-17	16
<u> </u>			Ī	ysa	inde	<u> </u>	old	<u>Cc</u>		PR	OJE	<u>CT</u>	PAL	(LO	SIS RRA Vanc	INE)	Fil	e #	96	-48	52	P	age	3				7		Ē
SAMPLE#	Mo ppm	Cu ppn	Pb ppm	Zn ppm	-	Ni ppm	Co ppm	Min Pipm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr PPm	Cd ppm	Sb Ppm	Bi ppm	V ppm	Ca %	Р %	La ppn	Cr Ppm	Mg %	Ba	Ti %	B Ppm	Al X	Na X	K %	W PPM	Au* ppb
666001 -80 666002 -80 666003 -80 666004 -80 666004 -80	2 2 2 <1 <1	179	7 7 17 8 6	71 74 91 72 64	<.3	19 11 12 11 10	9 11 13	421 615 533 653 418	3193 4.64 5.63	11 3 9 8 8	<5 <5 5 14 6	₹2 ₹2 ₹2 ₹2 ₹2	<2 <2 4 4 6	111 151 148 125 77	.2 .3 .5 .7 .6	645 22 2	<2	154 220	.51 1.17 1.29	.191 .269 .321	11 12 19 19 17	19	1.04 .90	84	.12 .11 .05 .08	<3 <3 <3	3.19 2.79 3.13 2.56 2.11	.02 .01 .02 .02 .02	.03 .05 .06 .09 .05	<2 <2 <2 <2 <2 <2	7
666006 -80 666007 -80 666008 -80 666009 -80 666010 -80	1 2 1 2 2	514 144 139 278 325	6 4 8 6	79 70 76 81	<.3 .3 .4 <.3 <.3	9 10 19 17 7	9 10 13	539 504 399 692 1072	4.58 3.96 4.13	3 6 3 6 7	9 7 11 <5 <5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 2 3 5 5	163 91 87 152 259	.5 .3 .4 .3	3 <2 <2 5 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	130 150 110 120 165	.66 .53 .93	.202 .164 .102 .188 .248	11 13 17 18 18		.69	240 122 165 193 109	.07 .05 .06 .14 .12	ব ব্য ব্য	3.50 2.20 3.10 2.82 3.16	.02 .01 .02 .02 .02	.05 .05 .05 .07 .11	<2 <2 <2 <2 <2 <2	10 6 5
RE 666010 -80 666011 -80 666012 -80 666013 -80 666014 -80	1 1 2 3	329 257 269 181 374	6 10 16 11 6	82 90 99 83 67	.3 <.3	7 3 7 5 9	14 17 16	1087 1275 1636 1524 1338	5.12 7.38 5.65	4 9 5 7	11 5 16 <5 <5	< < < < < < < < < < < < < < < < < < < <	4 7 5 4 <2	267 186 273 182 97	.3 .5 .8 .3 .2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 4 2	167 238 173	1.79 2.29 1.34	-249 -199 -262 -221 -174	17 15 21 16 17	5 11	1.15 1.20 1.36 1.20 .78	186 198 309	.13 .11 .13 .07 .03	<3 3 <3	3.22 3.06 4.04 2.54 2.22	.02 .02 .03 .01 .01	.13 .16 .16 .11 .08	<2 <2 <2 2 3	5 4 2
666015 -80 777001 -80 777002 -80 777003 -80 777004 -80	4 4 5 3 3	162 368 323 159 193	5 7 3 3 3	136 80 53 73 58	<.3 <.3 <.3	8 5 22 17 19	15 32 16	1572 803 960 1079 401	3.41 4.49	5 71 9 4 <2	ৎ ১১ ১১ ২১ ২১	२२२ २२२२ २२	3 <2 <2 <2 <2	86 16 198 169 103	.2 .2 <.2 .5 .3	2 75 5 4 <2	<2 2 <2 <2 <2 <2	140 32 94 66 84	.18 1.26 .72	. 194 . 068 . 120 . 221 . 130	9 3 5 6 6	3 28 27	1.13	179 111	.02 <.01 .10 .05 .07	<3 <3 <3	4.72 1.60 5.05 5.69 5.27	<.01	.05 .06 .08 .03 .02	2 <2 5 5 2	5 5 1
777005 -80 Standard C2/AU-S	3 19	199 56	<3 38	57 131	.3 6.6	23 69			4.20 3.64	6 35	<5 20	<2 7	2 34	196 47	.3 18.2	<2 14	<2 18			.112 .101	7 37	31 61	.89 .96		.08 .08	-	4.45 1.89	.03 .05	.03 .12	<2 10	-
DATE RECE		THIS - SAM <u>Sampi</u>	LEACH IPLE 1 Les be	I IS I YPE: ginn	A SAMP PARTIA TALUS ing 'R	L ⊁OR FINS <u>E'</u> ar	₹MN Í ES <u>re Re</u> s	E SR AU*	CA P - IGN and <u>/</u> F	LA CR (ITED, (RE' a	MG B AQUA I <u>re Re</u>	A TI -REGI <u>iect</u>	B W A A/MIB <u>Rerur</u>	ND LI IK EXT <u>IS.</u>	IMITED FRACT,	FOR	NA K UA FIN	AND /	AL.	AND 15							TIFIED	B.C.	ASSA	YERS	

1

T T

1

1

• b •		<u> </u>									_					St.,					·	Cr	Ma	Ba	Ti	B	Ai	 Na	ĸ	ų	<u>т</u>	Hg	Se	Te	Ga
SAMPLE#	Mo	ppm	ppm	ррп	s ppb	ррт	ppm	ρρπ	*	ppm	ppm	ppm	ppm	ppnt	ppm	ppn	ppn	ppm		7.	ppm /	opm_	/6	pon	/4	opiii	<i>/•</i>		<u>^</u>	D pair		لمربر			ppin
111215 111216 111217 111218 111219	2.1 .1 <.1	1.7 59.6 6.9 2.0	.8 2.2 4.5 3.0	13.5 28.6 17.8 18.0	5 56 5 543 3 132 3 164	<1 1 <1 <1	1 6 1 †	56 2621 140 50	.18 .40 .35 .25	<.5 .7 1.1 1.9	<5 11 <5 <5	<.1 <.1 <.1 <.1	<1 <1 <1 <1	2 79 21 4	.06 .65 .04 .03	<.2 .2 <.2 <.2	<,1 <,1 ,1	3 8 11 7	.81 .15 .03	.007 .012 .004 .006	33 2 <1	2 1 1	.03 .08 .06	93< 82< 29<	.01	<2 <2 <2 <2	.45<. .54<.	01 01 01	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	5 <2 <2	<.3 <.3 <.3	.2 <.2 <.2	<.5 1.9 1.9
111220 111221 111222 111223 111223 111224	.5	188.4 114.4 5.0 20.1 32.1	7.3	17.2	2 351 9 <30 3 131	<1 <1	6 1 5	2102 62 820	.50 .20 31	8.2 1.3 3.0	13 <5 5	<.1 <.1 <.1	1 <1 <1	219 54 42	.27 .01 .24	<.2 <.2 <.2	د. ۲.۱	19 6 8	1.22 .31 .57	.021	1 6	2 1 2	.06	50< 104<	.01 .01	<2 <2 <2	.18<.	01< 01<	.01 .01	<2 <2	<.2 <.2 <.2	<2 <2	<.3 <.3	<.2 <.2	<.5 <.5
111225 111226 111227 111228 111229	.3 .2 .2 .8	56.3 17.4 29.3 81.8 31.1	2.7 3.7 2.1 6.7	9. 7. 13. 14.	1 256 4 105 7 162 3 207	<1 1 2 <1	9 8 15 8	1215 861 2614 2075	.32 .19 .55 .54	1.2 2.5 1.2 4.6	<5 <5 <5 5	<.1 <.1 <.1 <.1	ং ং ং ং	38 22 39 83	.09 .06 .19 .20	<.2 <.2 .6 .3	.1 .1 .1	2 5 7 11	.60 .51 .64 .75	.031 .027 .007 .009	7 12 13 18	1 1 1 ?	.09 .09 .07 .06	185 • 176 • 177 • 178 •	<.01 <.01 <.01 <.01	<2 <2 <2 3	.71	.01 .01 .01< .01	.01 .01 .01 .01	<2 <2 <2 <2	<.2 <.2 <.2 <.2	4 2 15 3	<.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2	<.5 <.5 <.5 .5
111230 RE 111236 111231 111232 111233	.2 .1 .1 .2	4.5 11.5 11.3	13.8 4.3 7.7 6.2	16. 28. 24. 38.	3 322 2 122 0 214 6 260	2 <1 <1 <1	6 2 3 3	657 206 637 1225	.44 .63 .44 .74	4.3 1.9 1.6 2.5	<5 <5 <5	<.1 <.1 <.1 <.1	<1 <1 <1	25 7 55 63	.63 .10 .25 .41	<.2 <.2 .2 <.2	.2 .1 .1	13 12 20	.34 .06 .67 .82	.008 .008 .004 .008	13 11 11	2 1 1 1	. 14 . 08 . 08 . 05	44- 179- 159-	<.01 <.01 <.01	<2 <2 3	.20<. .79< .44	.01 .01 .01	.01 .02 .01	<2 <2 <2 <2	<.2 <.2 <.2 <.2	<2 <2 <2 <2	<.3 <.3 <.3	<.2 <.2 <.2	1.4 .5 <.5
111234 111235 111236 111237 111238	.2 .1 .1 .2	11.0 14.9 23.8 19.0 53.6	11.4 8.8 5.2 9.5	10. 311. 29. 58.	5 111 0 256 8 417 6 106	<1 1 <1	5 5 12 3	463 601 866 81	.30 .28 .39 .30	1_3 .5 <.5 .6	ৎ ৎ ৎ ৎ	<.1 <.1 <.1 <.1	<1 <1 <1 <1	20 21 23 15	.12 .57 .21 .24	<.2 <.2 <.2 <.2	.1 .1 .2	8 5 9 20	.28 .31 .30	.004	9 18 6	1 1 1	.05 .08 .02 .05	89 135 47	<.01 <.01 <.01	<2 <2 <2 <2	.16< .33< .20<	.01< .01 .01	.01 .01 .01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<.2 <.2 <.2 <.2	<2 <2 <2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5
111239 111240 111241 111242 111242 111243	.2	59.1 27.7 19.8 26.8 62.4	9. 4.	54. 29.	6 99 1 97	· <1	75	472 631	.31 .28	8. 8.	<5 <5	< 1	<1 <1	44 30	.10) <.2 5 <.2	.1	7 6 22	.53 .44 .47	.039	5 (5 4 5 8	1	.04	70 66	<.01 <.01	<2	.17<	.01	.01	<2 <2	<.2 <.2	<2 <2	<.3 <.3	< .2 < .2	<.5
111244 111245 111246 1 <i>11247</i> 111248	1.1	19.9 14.4 9.0 37.4 78.5	12. 9.	46. 27.	7 145	5 <1 5 <1	4	425 184	.34	<.5 <.5	<5 <5	<.1 <.1	<1 <1	38 34	. 13	5 <.2 5 <.2	.2	6	.40	5 .03. 5 .02 5 .02	5 6 4 7 37	1	.06 .04 16	69 124	<.01 <.01	<2 <2 <2	.25<	.01	01.> 01.>	<2 <2	<.2	<2 <2 <2	<.3 <.3	5 <.2 5 <.2	<.5
FO) HG	P - 50 R MN F SE TE SAMPLE	E SR (AND (CA P GA AR	LA CR	R MG E	BA TI ED WI	(B W	AND 18K-A	LIMIT	ED FO T 336	R NA	K G	A AN Lyse a ar	D AL	. SC 1C) 857	DLUTI P, EL	EVAT	ED D	SEÐ (ETEC erun	TION	LIMIT		DR SA	MPLE	S CO	NIAII	i cu,r	ч, <i>с</i>	n, 73	P 120	vo rr				

HALYTICAL						Ly	san	lder	Go	ld	Cor	p.	PR	OJE	ECT	PA	L	FII	LE	# 9	6-4	665	5					Pag	ge :	2	ACHE ANA
SAMPLE#	Mo (ppm								Fe # % pp						Sb ppm			Ca %					a Ti m %		AL N X						
111249 111250 111251 111252 111253	.1	34.4 75.5 7.3	15.5 4.7 3.5	12.4 24.0 9.1	69 402 98	1 <1 <1	6 5 2	638 875 147	.44 <. .33 <. .39 <.	.5 < .5 <	5 <.1 5 <.1 5 <.1	<1 <1 <1	27 52 2	.20 .22 .06	<.2 <.2 <.2	.1 .2 <.1	10 4 4	.38 .54 .12	.030 .004 .032	8 37 2	1.1	.1 15 16 24 11 2	3<.01 3<.01 6<.01	<2 <2 <2	.80<.0 .31<.0 .31<.0 .62<.0 .53<.0	1 .01 1 .01 1 .01	1 <2 1 <2 1 <2	<.2 <.2 <.2	<2 < 2 < 3 <	.3 <. .3 <. .3 <.	2 .5 2 <.5 2 <.5
111254 111255 111256 111257 111258	.1	8.4 25.5 7.0	4.0 3.0 2.1	10.2 11.9 10.9	92 144 79	<1 <1 1	3 5 6	350 688 871	.28 <, .31 <, .23 <,	.5 < .5 <	5 <.1 5 <.1 5 <.1	<1 <1 1	30 47 49	.11 .15 .22	<.2 <.2 <.2	<.1 <.1	14 13 7	.42 .57 .59	.024 .014 .034	4 11 3	1 .1 1 .0 1 .1	1 10 18 18 13 17	4<.01 5<.01 7<.01	<2 <2 <2	.18<.0 .18<.0 .20<.0 .17<.0 .18<.0	1<.01 1 .01 1 .01	1 <2 1 <2 1 <2	<.2 <.2 <.2	<2 < 2 < <2 <	.3 <. .3 <. .3 <.	2 <.5 2 <.5 2 <.5
111259 111260 111261 111262 111263	<.1 <.1 <.1	23.9	26.5 3.1 1.6	49.0 12.1 11.6	161 141 82	<1 1 <1	6 5 1	635 626 70	.25 <. .31 <. .24 <.	.5 < .5 <	5 <.1 5 <.1 5 <.1	<1 <1 <1	20 33 26	2.64 38 07.	<.2 <.2 <.2	<_1 1 <_1	7 9 6	.42 .46 .32	.034 .019 .013	4 9 2	1 .1 1 .0 <1 .0	107) 197) 144	'9<.01 '5<.01 .5<.01	<2 <2 <2	.44<.0 .18<.0 .17<.0 .28<.0 .33<.0	1 .0 1<.0 1 .0	1 <2 1 <2 1 <2	<.2 <.2 <.2	3 < 2 < <2 <	.3 <. .3 <. .3 <.	2 <.5 2 <.5 2 <.5
111264 111265 111266 111267 111268	<.1 <.1	2.0 21.1 6.6	1.2 10.3 5.0	5.4 13.4 5.1	51 989 206	<1 <1 <1	<1 3 1	41 184 17	.18 < .47 < .22 <	.5 < .5 <	5 <.1 5 <.1 5 <.1	<1 <1 <1	3 5 4	.02 .08 .09	<.2 <.2 <.2	<.1 <.1 <.1	4 11 3	.02 .11 .07	.021 .086 .017	<1 2 2	<1.0 1.0 1.0	01 1 03 3 01 6	19<.01 2<.01 6<.01	<2 <2 <2	.54<.0 .24<.0 .96<.0 1.00<.0 .74<.0	1<.0 1<.0 1<.0	1 <2 1 <2 1 <2	<.2 <.2 <.2	<2 < <2 < <2 <	.3 <. .3 <. .3 <.	2 1.0 2 .8 2 <.5
111269 RE 111267 111270 111271 111272	<.1 <.1 <.1	2.2 6.1 2.2 2.1 4.3	4.3 1.0 .9	3.2 6.7 3.2	175 75 87	<1 <1 <1	1 1 1	14 44 82	.21 < .23 < .21 <	.5 × .5 ×	5 <.1 5 <.1 5 <.1	<1 <1 <1	3 2 2	.08 .04 .08	<.2 <.2 <.2	<.1 <.1 <.1	3 3 3	.05 .03 .03	.015 .030 .031	2 1 1	1 .(1<.(1<.(01 4 01 1 01 1	7<.01 6<.01 5<.01	<2 <2 <2	.55<.0 .75<.0 .66<.0 .62<.0 .53<.0	1 .0 1<.0 1<.0	1 <2 1 <2 1 <2	< 2 < 2 < 2	<2 < <2 < <2 <	.3 <. .3 <. .3 <.	2 <.5 2 <.5 2 <.5
111273 111274 111275 111276 111277	<.1 .1	19.7 10.2 288.6	2.4 2.8 9.6	14.3 6.4 15.9	106 151 370	1 <1 1	3 1 13	121 295 1681	.19 .43 2 .89 2	.9 4 .5 4 .3 4	5 <.1 5 <.1 5 <.1	<1 <1 1	17 5 74	.06 .09 .58	<.2 <.2 <.2	<.1 <.1 .3	5 10 16	.46 .07 1.19	.030 .050 .038	6 2 12	1. 1.0 3.0	11 12 01 2 04 12	23<.01 28<.01 20<.01	<2 2 <2	.30<.0 .21<.0 1.39<.0 .54<.0 .34<.0	1<.0 1<.0 1.0	1 <2 1 <2 1 <2	<.2 <.2 <.2	<2 < 3 < <2 <	.3 <. .3 <. .3	2 <.5 2 1.6 2 <.5
111278 111279 111280 111281 111282	<.1	8.0 38.8 43.5	2.7 3.5 3.5	8.3 12.0 9.8	31 122 37	<1 <1 1	2 5 2	315 675 72	.30 < .33 < .61	.5 · .5 ·	5 <.1 5 <.1 5 <.1	<1 <1 <1	4 33 16	.02 .08 .05	<.2 <.2 <.2	<.1 .1	5 7 11	.09 .42 .36	.022 .014 .047	2 20 17	1 . 2 . 1 .	ן וכ זב 12 זב 25	16<.01 70<.01 53<.01	<2 <2 <2	.34<.0 .67<.0 .56<.0 .27<.0 .37<.0)1<.0 1<.0)1<.0	1 <2 1 <2 1 <2	2 <.2 2 <.2 2 <.2	<2 < 3 < <2 <	.3 <. .3 <. .3 <	2 .6 2 <.5 2 <.5

.

Sample type: SEEPAGE. Samples beginning (RE' are Reruns and (RRE' are Reject Reruns.

/

. .

Т

ANALYTICA						Lув	ano	ler	Go	ld	Co	rp	. F	RO	JEC	CT	PAI	L 	FĪI	LE	# 9	6	466	5						Pa	age	: 3		40ME	
SAMPLE#	Мо ррп.		Pb ppm	Zn ppm				Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cď ppm	Sb pom	Bí ppm	V mqq	Ca %	Р %	La ppm	Cr ppm	Mg %	Ba 1 opm	'i i %ippr	3 A n	i Na % %	K %	¥ ppri	זז ppm	рр dqq	Se ppm	ĩe ppm	Ga ppm	
111283 111284 111285 111286 111287	.3 .2	51.6 41.3 37.8 26.6 18.4	4.3	10.7 9.2	163	<1 <1	3	269 397 351	.33 .30 25	<.5 <.5	<5 <5 15	<.1 <.1 < 1	<1 <1 <1	29 30 59	.12	.2 <.2 <.2	.1 <.1 .1	5 6 7	.39 .40 .77	.010 .007 .024	13 7 16	1 1 1	.02 .04 .08	47<.0 83<.0 48<.0)1 <)1 <)1 :	2.4 2.2 2.4	5<.01 8<.01 7<.01	<.01 .01 <.01	<2 <2 <2	<.2 <.2 <.2	8 3 4	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5	
111288 111289 111290 111291 111292	.1	31.1 40.1 26.1 4.6 8.5	2.7	13.7 8.6	50 50 55	1 1 <1	5 3 <1	539 256 46	.32 .28 .26	.7 8. 1.0	6 <5 <5	<.1 <.1 <.1	<1 <1 <1	29 34 2	.14 .11 .06	<.2 <.2 <.2	.1 .1 <.1	7 11 5	.40 .60 .05	.012 .013 .012	6 8 1	2 1 1<	.09 .08 .01	84<.(95<.(18<.(01 < 01 < 01 <	2.2 2.2 2.2	57<.01 22<.01 24<.01 52<.01 58<.01	<.01 <.01 <.01	<2 <2 <2	<.2 <.2 <.2	د 2 2>	<.3 <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5	
111293 RE 111293 111294 111295 111296	<.1	28.1 27.3 198.9 31.3 54.5	4.1	8.0) 100) 525) 51	<1 1	5 11 4	523 1214 1064	.36 .40 25	2.2	<5 <5 <5	<.1 <.1	<1 <1 <1	3 14 2	.05	<.2 .4 <.2	.1 .1 <.1	7 8 5	.09 .39 .08	.030 .073 .039	2 12 5	1 1 1<	.02 .04 .01	، >29 ا >210 ا _>30	01 < 01 < 01 <	2.2	54<.01 21<.01 39<.01	.01 <.01 .01	<2 <2 <2	<.2 <.2 <.2	<2 5 4	د.> <.3 <.3	<.2 <.2 <.2	<.5 <.5 <.5	
111297 111298 111299 111300 111301	.1	97.1 102.0 46.2 44.4 97.2	4.8 8.6 4.7	22.5	5 306 5 125 3 121	<1 <1 <1	6 3 2	842 513 187	.37 .58 .41	2.6 1.3 1.2	<5 <5 7	<.1 <.1 <.1	<1 <1 <1	46 26 42	.37 .22 .17	<.2 <.2 <.2	-1 -2 -2	11 28 17	.48 .28 .40	.024 .022 .024	11 2 5	1 1 1	.05 .09 .06	113<. 78<. 80<.	01 < 01 < 01 <	2 .	29<.01 16<.01 29<.01 21<.01 16<.01	.01 .01 	<2 <2 <2	<.2 <.2 <.2	3 <2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 .9 .6	
111302 111303 111304 111305 111306	.2	116.2 94.2 125.9 125.5 84.6	4.8 3.0 2.9	3 17.1 5 14.4 7 11.4	1 285 4 214 4 198	1 <7 1	8 4 6	602 665 299 693 542	.68 .45 .44	9. 9. 5.>	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	40 29 31	.30 .19 .37	<.2 <.2 <.2	.2 .2 .1	21 15 22	.49 .45 .45	.042 .023 .021	13 9 8	1 1 1	.06 .D5 .06	94<. 67<. 90<.	01 < 01 < 01 <	2.2.2.	22<.0' 25<.0' 13<.0' 14<.0' 13<.0'	1 .01 1 .01 1 .01	<2 <2 <2	<.2 <.2 <.2	5 3 5	<.3 <.3 <.3	<.2 <.2	<.5 <.5 <.5	
111307 111308 111309 111310 111310 111311	.1 <.1	97.2 65.0 6.1 8.6 7.1	13.0 3.0	6 15.4 8 17.4 7 9	4 110 4 190 3 144) 1) <1 . <1	5 1 1	57	1.13	<.5 <.5 <.5	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	11 5 3	.09 .04 .04	2.> <.2 <.2	.3 <.1 <.1	40 10 6	.27 .05 .08	.034 .014 .036	6 1 1	1 <1 <1	.09 .03 .01	48<. 43<. 11<.	01 < 01 < 01 <	2.2	18<.0 34<.0 21<.0 35<.0 41<.0	1 .01 1 .01 1 .01	<2 <2 <2	<.2 <.2 <.2	<2 <2 <2	<.3 <.3 <.3	<.2 <.2 <.2	<.5 .9 . <.5) i
111312 111313 111314 111315 111316	<.1 <.1	8.2 5.4 101.8 5.6 7.7	1.4 4.4	88. 411. 811.	1 471 9 164 3 545	i <1 ; 1 ; <1	<1 12 <1	37 658 13	.15 .22 .21	.6 7. 2.>	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	4 14 4	.05	<.2 <.2 <.2	<.1 <.1	5 7 8	.11 .24 .10	.040 .067 .025	2 5 2	1- <1 1-	<.01 .04 <.01	10<. 52<. 11<.	01 < 01 < 01 <	2. 2.	30<.0 55<.0 29<.0 45<.0 81<.0	1<.01 1<.01 1<.01	<2 <2 <2	2 <.2 2 <.2 2 <.2	<	? <.3 ? <.3 ? <.3	s <.: s <.: s <.:	2 <.5 2 <.5 2 <.5	5 5 1

ACKE ANULYTICAL					L;	ysa	inder	Go	1d	Corr	þ.	PRO)JE	CT	PA	L	Fl	LE	#	96-	-46	65						Pa	age	4		A NOE 1	A L MALYTICAL
SAMPLE#	Mo ppm		₽b ppm				Co Mri pprn pprn															Ba Ti opm 🕺											
111317 111318 111319 111320 111321	<.1 <.1 .1 <.1 <.1	50.6 134.7 12 3	2.2 3.1	9.2	53 114 45	1 <1 <1	1 210 5 359 4 316 1 72 1 74	.20 < .26 .16 <	.5 .7 .5	<5 <.1 <5 <.1 <5 <.1	<1 <1 <1	12 17 3	.05 .16 .02	<.2 <.2 <.2	.1 .1 .1>	6 17 7	.28 .36 .11	.039 .042 .032	4 3 2	1 <1 <1	.07 .08 .01	90<.01 29<.01 11<.01	<2 <2 <2	.15< .12< .38<	.01 . .01 . .01<.	01 .01 .01	<2 < <2 < <2 <	:.2 :.2 :.2	2 < 2 < <2 <	<.3 < <.3 < <.3 <	.2 .2 .2	<.5 <.5 <.5	
111322 111323 111324 111325 111325 111326	<.1 <.1 <.1 <.1 <.1	15.1 10.9 12.8	3.D 1.4 2.8	5.0 10.5 15.0	122 35 74	<1 <1 <1	3 348 2 267 3 447 2 340 2 309	.20 < .12 < .26 <	.5 .5	<5 <.1 <5 <.1 <5 <.1	<1 <1 <1	4 7 6	.03 .03 .07	<.2 <.2 <.2	<.1 <.1 <.1	6 7 15	.08 .21 .10	.031 .066 .026	1 4 2	1< <1 <1	.01 .01 .01	19<.01 13<.01 9<.01 13<.01 10<.01	<2 <2 <2	.46< .25< .30<	.01<. .01<. .01<.	.01 .01 .01	<2 < <2 < <2 <	<.2 .2 .2	<2 + 2 + <2 +	<.3 < <.3 < <.3 <	.2 .2 .2	<.5 <.5 .5	
111327 111328 111329 RE 111338 111330	<.1 <.1 <.1 .1 <.1	8.2 40.0	2.0 2.6 2.0	9.0 11.3 6.3	90 69 66	र1 र1 र1	2 444 1 142 <1 66 3 251 3 304	.16 < .18 < .20 <	.5 .5	<5 <.1 <5 <.1	<1 <1 <1	3 4 11	.03 .04 .06	<.2 <.2 <.2	<.1 <.1 .1	6 7 8	.08 .08 .21	.040 .024 .025	2 1 4	<1 <1 <1	.01 .01 .02	12<.01 7<.01 8<.01 42<.01 36<.01	<2 <2 <2	.40< .43< .18<	:.01<. :.01<. :.01<.	.01 .01 .01	<2 · <2 · <2 ·	<.2 <.2 <.2	<2 < <2 < 2 ·	<.3 < <.3 < <.3 <	.2	<.5 <.5 <.5	
111331 111332 111333 111334 111335	<.1 <.1 <.1 <.1 <.1	8.5 6.3	1.1 1.6 2.8	7.5	130 67 94	<1 <1 <1	1 90 2 223 1 87 3 397 2 257	.20 < .28 <	: 5 : 5 .8	<5 <.1 <5 <.1 <5 <.1	<1 <1 <1	3 1 16	.04 .03 .05	<.2 <.2 <.2	<.1 <.1 <.1	5 10 12	.09 .03 .29	.028 .011 .017	1 1 5	<1< <1 <1	.01 .04 .02	11<.01 9<.01 28<.01	<2 <2 <2	.533421 -	<.01<. <.01<. <.01	.01 .01 .01	<2 · <2 · <2 ·	<.2 <.2 <.2	2 · <2 · 2 ·	<.3 < <.3 < <.3 <	.2	<.5 .5 <.5	
111336 111337 111338 111339 111340	<.1 .1 .1 .1 .1 <.1	8.2 39.4 36.8	2.2	5.7 6.4 8 0	78 48 59	<1 <1 <1	1 128 2 110 3 259 9 533 5 678	.23	.8 : 5 : 5	<5 <.1 <5 <.1	<1 <1 <1	9 9 2	.06 .05	<.2 <.2 <.2	<.1 <.1 <.1	12 8 11	.18 .19 .07	.042 .024 .031	3 4 5	1 1 1<	.01 .02 .01	49<.01 36<.01 34<.01	<2 <2 <2	.59 18 .62	<.01 <.01< <.01	.01 .01 .01	<2 · <2 · <2	<.2 <.2 <.2	<2 · 3 · <2 ·	<.3 < <.3 < <.3 <	:.2 :.2 :.2	د. <.5 د.	
111341 111342 111343 111344 111344 111345	1.1	29.8	2.0	9.3 14.9	136 261 43	<1 <1 <1	6 220 4 365 2 97 1 41 7 885	.23	<.5 <.5	<5 <.1 <5 <.1	<1 <1 <1	12 29 12	.05 .10 .04	<.2 <.2 <.2	.1 <.1 .1	10 20 17	.26 .55 .31	.031 .025 .052	5 3 3	<1 1 <1	.05 .07 .08	44<.01 49<.01 30<.01	1 <2 1 2 1 <2	. 12- . 21 . 18-	<.01< .01 <.01<	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	2 - 2 2	<.3 · <.3 · <.3 ·	<.2 <.2 <.2	<.5 .7 .7	
111346 111347 111348 111349 111350	.1	108.4 271.9	2.3	17.8 18.4	89 200 82	<1 1 <1	7 654 5 428 7 584 4 251 9 960	.31 .43	<.5 .5	<5 <.1 <5 <.1 <5 <.1	<1 <1 <1	17 14 10	.17	<.2 <.2 <.2	.2 .1 <.1	13 21 13	.39 .34 .25	.052 .026 .032	5 9 4	1 1 1	.08 .07 .07	49<.0 38<.0 26<.0	1 <2 1 <2 1 <2	16 12 11	<_01 <.01 <,01<	.01 .01 .01	<2 <2 <2	<.2 <.2 <.2	<2 10 <2	<.3 · <.3 · <,3 ·	<.2 <.2 <.2	.5 <.5 <.5	

. .

.

:

AAA HOR ANALYTICA		Lysander Gold Corp.	PROJECT PAL FILE # 96-4665	Page 5 AA
SAMPLE#	Mo Cu Pb Zn Ag ppm ppm ppm ppm ppb	Ní Co Mn Fe As U Au Th ppm ppm ppm % ppm ppm ppm ppm ppm ppm pp		Na K W TL Hg Se Te Ga % % ppm ppm ppb ppm ppm ppm
111351 111352 111353 111354 111355	<.1 4.9 1.1 15.2 100 <.1 2.6 .5 8.9 125	1 1 55 .18 <.5	9 .04 <.2	01<.01 <2 <.2 <2 <.3 <.2 .0 01<.01 <2 <.2 <2 <.3 <.2 <.5 01 .02 <2 <.2 <2 <.3 <.2 1.3
111356 111357 111358 111359 111359 111360	<.1 2.3 .9 18.0 54 <.1 3.5 .7 7.7 74	<pre>, <1 1 226 .15 <.5 <5 <.1 <1 , <1 1 86 .11 <.5 <5 <.1 <1 , <1 1 86 .09 < 5 <5 <.1 <1 , <1 1 66 09 < 5 <5 < 1 <1 </pre>	4 .07 <.2	.01<.01 <2 <.2 <2 <.3 <.2 <.5 .01<.01 <2 <.2 <2 <.3 <.2 <.5 .01<.01 <2 <.2 2 <.3 <.2 <.5
111361 111362 111363 111364 111366	<.1 11.9 1.1 5.8 <30 <.1 8.4 1.9 7.9 132) <1 3 137 .08 <.5 <5 <.1 <1 5 <1 1 30 .15 <.5 <5 <.1 <1 1 7 777 38 < 5 <5 <.1 <1	3.03 .02 .1 6.09 .023 2 1<.01	.01<.01 <2 <.2 2 <.3 <.2 <.5 .01<.01 <2 <.2 2 <.3 <.2 <.5 .01 .01 <2 <.2 5 <.3 <.2 <.5
111367 111368 111369 RE 112012 112001	1211281517 20	3 <1 8 481 .20 <.5 <5 <.1 <1 1 <1 5 418 .08 <.5 <5 <.1 <1 2 <1 6 375 07 < 5 <5 <.1 <1	5 .07 .2 .1 4 .09 .030 1 1<.01	.01 .01 <2 <.2 <2 <.3 <.2 <.5 .01 .01 <2 <.2 <2 <.3 <.2 <.5 .01 <.01 <2 <.2 <2 <.3 <.2 <.5 .01<.01 <2 <.2 <2 <.3 <.2 <.5
112002 112003 112004 112005 112006	<.1 3.1 .6 5.4 11 <.1 5.2 1.9 14.6 5	2 <1 <1 7 .15 <.5 <5 <.1 <1 5 <1 2 616 .37 <.5 <5 <.1 <1 0 <1 3 127 04 <5 <5 <.1 <1	24 .07 <.2	.01 .01 <2 <.2 <2 <.3 <.2 <.5 .01 .01 <2 <.2 <2 <.3 <.2 .9 .01<.01 <2 <.2 <2 <.3 <.2 .9
112007 112008 112009 112010 112011	<pre><.1 1.6 .6 8.4 5 <.1 4.8 2.1 12.5 15 <.1 1.6 4 11.6 3</pre>	7 <1 <1 34 .12 <.5 <5 <.1 <1 6 <1 1 171 .27 <.5 <5 <.1 <1 2 <1 <1 26 10 < 5 <5 < 1 <1	2 .05 <.2	.01 .01 <2 <.2 2 <.3 <.2 1.1 .01<.01 <2 <.2 <.2 <.3 <.2 1.1
112012 112013 112014 112015	1. 1 / 1 0 5 4 7	8 <1 5 473 .09 .6 <5 <.1 <1	3 .04 .2 .1 1 .13 .050 2 1<.01	.01 .01 <2 <.2 <2 <.3 <.2 <.5

· · ·

i . . .

						г у ——	sar	nde:	r G	010	1 C	orj	p.	PR	OJI	ÉCI	ГР. 	AL	F	TLE	#	96	-46	565						P	age	6		ADVE AWALYT
SAMPLE#	Mo ppm							Mn ppm																					₩ T ppm pp					
112016 112017 112018 112019 112020	<.1 <.1 <.1	10.6 9.7 4.6	1.9 2.2 2.1	12.5 7.7 12.5	<30 <30 71	<1	5 3 <1	289 229 29	.09 .10 .17	<.5 <.5 <.5	<5 <5 <5	<.1 <.1 <.1	2 1 <1	3 5 4	.04 .03 .03	<.2 <.2 <.2	<.1 <.1 <.1	3 5 4	.13 .12 .07	.058 .044 .026	3 2 1	1 1 1<.	.01 .01 .01	27<.0 24<.0 26<.0	1 <2 1 <2 1 3	.40 .38 .63	i<.01< i<.01< i<.01<	.01 .01 .01	5 <. <2 <. <2 <. <2 <. <2 <. <2 <.	2	3 <. <2 <. <2 <.	3 <. 3 <. 3 <.	2 <. 2 <. 2 <.	.5 .5 .5
112021 112022 112023 112024 112025	<.1 <.1 <.1	5.5 12.6 11.7	1.0 1.2	13.2 9.8	75 39 39	<1 <1 <1	<1 2 2	45 114 98	.13 .10 .09	<.5 <.5 <.5	<5 <5 <5	<.1 <.1 <.1	<1 <1 <1	2 3 3	.04 .04 .03	<.2 <.2 <.2	<.1 <.1 <.1	5 3 3	.02 .10 .10	.008 .038 .037	1 2 2	1<. 1<. 1<.	.01 .01 .01	11<.0 22<.0 20<.0	1 <2 1 <2 1 <2	.55 .48 .45	<.01< <.01< <.01<	.01 .01 .01	<2 <. <2 <. <2 <. <2 <. <2 <.	.2 .7 .2	3 <. 2 <. 3 <.	3 <. 3 <. 3 <.	2 <. 2 <. 2 <.	.5 .5
RE 112027 112026 112027 112028 112028 112029	<.1 < 1	6.4 64.1 54.1	1.7	10.8 9.7 14.2	129 55 87	<1 <1 <1	1 12 6	77 720 543	.18 .12 .25	<.5 <.5 <.5	ري دي دي	<.1 <.1 <.1	<1 <1 <1	1 6 7	.02 .06 .04	<.2 <.2 <.2	<.1 <.1 <.1	3 3 6	.01 .12 .11	.015 .031 .039	1 4 3	<1<. 1<. 1<.	.01 .01 .01	9<.0 28<.0 26<.0	1 <2 1 <2 1 <2	.40 .38 .33)<.01< }<.01< §<.01<	.01 .01 .01	<2 <. <2 <. <2 <. <2 <. <2 <.	.2 .2 .2	<2 <, 2 <. <2 <.	3 <. 3 <. 3 <.	2 . 2 <. 2 <.	.5 .5 .5
112030 112031																													<2 <. <2 <.					

	<u> </u>	sanc	ler				PRC Burrard						- 05	400								
	SAMPLE#	Mo %	Cu %	Pb %	Zn %	Ag oz/t		o Mn % %	Fe %		U %		Cd X	Sb %			Pt** P oz/t d					
	96-FR-01	.001	.014	< .01	.01	.01 .	.001 .00 .001<.00	1 .04	5.24	<.01	<.01	<.01<	.001	.001	<.01<	.001	-	-				
	96-FR-02	Ł.001	.070	<.01	.02	.04<.	.001 .00	1.13	3.77	<.01	<.01	<.01<	:.001<	.001	<.01<	.001	-	-				
	LORR L1-96-003	.d01	.843	.01	.06	. 18 .	.005 .00 .001<.00	2.11	2.92	<.01	<.01	<.01<	:.001	.001	<.01	.006	-	:				
	LORR LL-96-004																_					
	LORR LL-96-006	4.001	1.097	.02	.06	.39	.002 .00	2.25	4.31	<.01	<.01	<.01<	.001	.001	<.01	.042	:	-				
	LORR 11-96-007	<.001	1.039	<.01	.02	.29 .	.012 .00	13.12	4.51	<.01	<.01	<.01<	<.001<	.001	<.01	.004	-	-				
	LORR LL-96-009	.d01	.176	<.01	.01	.04	.002<.00	1 .06	1.22	<.01	<.01	<.01<	<.001<	.001	<.01	.005	-	-				
	LORR LL-96-010	₹.001	.439	<.01	.01	.13	,003<.00	11 .06	1.80	<.01	<.01	<.01<	.001	.001	<.01	.005	-	-				
		4.001	.437	<.01	.01	. 13	.002 .00	1 .06	1.80	<.01	<.01	<.01<	<.001	.001	<.01	.006	•	-				
	LORR LL-96-011 LORR LL-96-013	.001	-019	<.01	.01 .03	.03	.001 .00)2.09 10 21	2.95	<.01	<.01 <.01	<.01<	<.001< <.001<	.001	<.01	.008	-	-				
	LORP 11-96-014	√อกร	.570	<.01	.03	.41	.002 .00	12 .11	3.92	<.01	< 01	<.01<	<.001<	:.001	<.01	.014		-				
	1000 11 04 015	2 001	.430	<.01	.03	.21	.006 .04	.17	12.39	<.01	<.01	<.01<	<.001<	.001	<.01	.007<	.001	.001				
	LORR LL-96-015	1.001																				
	STANDARD R-1	.088 GM SAMPL	MPLE I	LEACHE	ED IN CK	50 ML AU**	.025 .03 AQUA - PT** &	REGIA, PD** B	DILUT Y FIRE	E TO ASSA	100 M Y FRO	L, ANA M 1 A.	ALYSIS	5 BY 1	ICP.	_	•	-				
DATE RECEIVED:	STANDARD R-1	GM SA SAMPL amples	MPLE E TYP begin	LEACHE E: ROO	ED IN CK 'RE'	50 ML AU** are R	AQUA - PT** & eruns al	REGIA, PD** B rd 'RRE	DILUT Y FIRE ' are	E TO ASSA <u>Rejec</u>	100 M Y FROI t Rer	L, AN/ M 1 A. <u>uns.</u>	ALYSIS	BY I	ICP.	C.LE	- ONG,		CERTIF	IED B.C	. ASSAY	ERS
DATE RECEIVED:	STANDARD R-1 1 - S	GM SA SAMPL amples	MPLE E TYP begin	LEACHE E: ROO	ED IN CK 'RE'	50 ML AU** are R	AQUA - PT** & eruns al	REGIA, PD** B rd 'RRE	DILUT Y FIRE ' are	E TO ASSA <u>Rejec</u>	100 M Y FROI t Rer	L, AN/ M 1 A. <u>uns.</u>	ALYSIS	BY I	ICP.	C.LE	- Ong, .		CERTIF	IED B.C	. ASSAY	ERS
DATE RECEIVED:	STANDARD R-1 1 - S	GM SA SAMPL amples	MPLE E TYP begin	LEACHE E: ROO	ED IN CK 'RE'	50 ML AU** are R	AQUA - PT** & eruns al	REGIA, PD** B rd 'RRE	DILUT Y FIRE ' are	E TO ASSA <u>Rejec</u>	100 M Y FROI t Rer	L, AN/ M 1 A. <u>uns.</u>	ALYSIS	BY I	ICP.	C.LE	- ONG,		CERTIF	IED B.C	. ASSAY	ERS
DATE RECEIVED:	STANDARD R-1 1 - S	GM SA SAMPL amples	MPLE E TYP begin	LEACHE E: ROO	ED IN CK 'RE'	50 ML AU** are R	AQUA - PT** & eruns al	REGIA, PD** B rd 'RRE	DILUT Y FIRE ' are	E TO ASSA <u>Rejec</u>	100 M Y FROI t Rer	L, AN/ M 1 A. <u>uns.</u>	ALYSIS	BY I	ICP.	- C.LE	- ONG,		CERTIF	IED B.C	. ASSAY	ERS
DATE RECEIVED:	STANDARD R-1 1 - S	GM SA SAMPL amples	MPLE E TYP begin	LEACHE E: ROO	ED IN CK 'RE'	50 ML AU** are R	AQUA - PT** & eruns al	REGIA, PD** B rd 'RRE	DILUT Y FIRE ' are	E TO ASSA <u>Rejec</u>	100 M Y FROI t Rer	L, AN/ M 1 A. <u>uns.</u>	ALYSIS	BY I	ICP.	- C.LE	- ONG,		CERTIF	IED B.C	. ASSAY	ERS
DATE RECEIVED:	STANDARD R-1 1 - S	GM SA SAMPL amples	MPLE E TYP begin	LEACHE E: ROO	ED IN CK 'RE'	50 ML AU** are R	AQUA - PT** & eruns al	REGIA, PD** B rd 'RRE	DILUT Y FIRE ' are	E TO ASSA <u>Rejec</u>	100 M Y FROI t Rer	L, AN/ M 1 A. <u>uns.</u>	ALYSIS	BY I	ICP.	c.le	- DNG, .		CERTIF	IED B.C	. ASSAY	ERS
DATE RECEIVED:	STANDARD R-1 1 - S	GM SA SAMPL amples	MPLE E TYP begin	LEACHE E: ROO	ED IN CK 'RE'	50 ML AU** are R	AQUA - PT** & eruns al	REGIA, PD** B rd 'RRE	DILUT Y FIRE ' are	E TO ASSA <u>Rejec</u>	100 M Y FROI t Rer	L, AN/ M 1 A. <u>uns.</u>	ALYSIS	BY I	ICP.	C.LE	-		CERTIF	IED B.C	. ASSAY	ERS
DATE RECEIVED:	STANDARD R-1 1 - S	GM SA SAMPL amples	MPLE E TYP begin	LEACHE E: ROO	ED IN CK 'RE'	50 ML AU** are R	AQUA - PT** & eruns al	REGIA, PD** B rd 'RRE	DILUT Y FIRE ' are	E TO ASSA <u>Rejec</u>	100 M Y FROI t Rer	L, AN/ M 1 A. <u>uns.</u>	ALYSIS	BY I	ICP.	c.le	-		CERTIF	IED B.C	. ASSAY	ERS

SAMPLE#	Mo			Zn	Ag		Co								Cd ppm p				Ca %		La pom p				⊺i %ç				к 7 г		u** SA z/t	MPLE lb
L-37 130.2-133.2 L-37 133.2-136.2 L-37 136.2-139.3 L-37 139.3-142.3 L-37 142.3-145.4	2 5 3 2	23799 11987 15950 23939 20858	11 7 6 10	93 86 141 122	20.9	8 7 9 11	8 9 12 14	318 554 835 788	2.08 2.41 4.31	9 11 3 4	5 <5 <5	<2 <2 <2 <2	6 3 3 4	81 139 110 123	2.6 .9 1.1 1.9	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	94 112 227 192	2.21	.386 .185 .220 .300 .210	27 17 17 27	18 15 18 13	.37 .45 .80	139 50 54	.08 .13 .12	4 <3 <3	.53 .60 .84	.03 .04 .05	.29 .29 .38	3. 3. 4. 2. 2.	003 011 040	14 13 12 15 13
L-37 145.4-148.4 L-37 148.4-151.5 L-37 151.5-154.5 Ł-37 154.5-157.6 RE L-37 154.5-157.6	<1 1	12197 8426 6274 268 264	6 3 6	89		11 8 9 6 6	12 10 9	893 697 700	5.06 4.81 4.21 3.85 3.79	<2	<5 <5 <5	<2 <2 <2	4 2	348 85 130	.3 .4 <.2	<2 <2 <2	<2 <2 <2	213 252 172	2.80 1.07 1.36	110	15 10 9	9 16 12	.03 .81 .46 .46 .45	200 43 36	.11 .14 .15	<3 <3 <3	.72 .68 .97	.05 .04 .07	.29 .27 .25	3 . 2 . 3 . 2<. 2<.	011 008 001	14 14 13 12
RRE L-37 154.5-157.6 L-37 157.6-160.6 L-37 160.6-163.7 L-37 163.7-166.7 L-37 166.7-169.8		273	<3 4 7	89 110 116	.3	9 9	8 12 10	693 782 655	3.64 3.67 4.72 4.59 3.73	<2 2 2	<5 <5 <5	<2 <2 <2	3 3 3	117 112 94	<.2 .2 <.2	<2 2 <2	<2 <2 <2	158 236 250	1.39 1.59 1.82 1.26 1.15	.104 .127 .073	8 8 5	13 13 14	.46 .47 .56 .39 .59	33 39 43	.15 .13 .12	3 <3 15	.98. 1.04 .85	.06 .05 .05	.24 .18 .20	2<. <2 2<.	001 001 009 001 003	14 12 13 13
L-37 169.8-172.8 L-37 172.8-175.9 L-37 175.9-178.9 L-37 178.9-182.0 L-37 182.0-185.0	1 4 1	2652 1113 1237 1908 1992	3 7 3	124 110 133	1.9 _3 _8 1.2 1.4	9	21 11 10	802 882 889	2.74 6.35 3.93 3.69 3.44	2 <2 <2	<5 <5 <5	<2 <2 <2	4 3 3	76 130 141	.2 <.2	<2 <2 <2	<2 <2 <2	322 203 185	2.43	.231	15 10 11	12 12 14	.77 .77	40 41 43	. 16 . 14 . 15	⊲ ⊲ ⊲	.88 .92	.04 .04 .05	.32 .28 .30	2<. 2 2	003 001 002 003 005	12 14 12 12 13
L-37 185.0-188.1 L-37 188.1-191.1 L-37 191.1-194.2 L-37 194.2-197.2 RE L-37 194.2-197.2	1	2454	10 3 <3	203	1.8 1.3 .5	19 17	27 19 8	1443 1226 530	4.56 10.14 6.33 2.38 2.33	<2 <2 <2	<5 <5 <5	<2 <2 <2	3 2 4	185 158 539	.3 <.2 <.2	<2 <2 <2	<2 <2 <2	484 282 96	2.18 1.56 1.31	.272 .157 .106	18 11 8	28 42 36	.62 .96 .93 .57 .55	47 34 99	.16 .18 .10	13 15 16	1.15 1.15 .88	.05 .04 .13	-36 .37 .41	4 <2 3	.002 .009 .002 .002 .002	14 14 14 14
RRE L-37 194.2-197.2 L-37 197.2-200.3 L-37 200.3-203.3 L-37 203.3-206.4 L-37 206.4-209.4	1	856 3003	11	6.8	.8 1.7 1.0	43 42	12 26 15	936 902 658	1.94 4.13 7.88 4.11 2.65	<2 <2 <2	<5 <5 <5	<2 <2 <2	<2 3 6	491 163 140	<.2 <.2 <.2	2 <2 <2	2 <2 <2	192 357 184	1.54 1.95 2.99	.381	6 21 13	15 45 51	.53 .90 1.36 1.16 1.33	143 100 121	.16 .19 .12	14 12 16	1.22 1.19	.08 .05 .06	.68 .75 .58	2< 2 3	.001 .001 .009 .003 .002	12 13 16 13
L-37 209.4-212.4 L-37 212.4-215.5 L-37 215.5-218.5 L-37 215.5-218.6 L-37 218.5-221.6 L-37 221.6-224.7	1 2	2213 4508 2169 2490 652	11 7 12	94 37	2.4	45 43 30	23 9 16	667 379 549	2.66 6.77 1.46 4.34 5.39	3 <2 2	<5 <5	<2 <2 <2	6 4 4	195 137 150	<.2 <.2	<2 <2 <2	<2 <2 <2	300 50 193	3.40 2.85 2.22	.274	35 16 15	99 61 29	1.20 1.28 1.19	73 35 66	.16 .12 .15	14 18 14	.90 .67 .95	08. 06. 06.	.55 .50 .47	3 <2 2	.003 .009 .003 .003 .001	13 15 14 12 11
L-37 224.7-227.7 STANDARD C2/AU-1	5 19	776	23	110 132	.7 6.9	6 72	10 35	859 1173	3.41 3.90	2 38	<5 23	<2 8	3 35	204 51	.3 20.1	<2 12	<2 14	174 71	3.35 .53	.121	10 38	9 67		54 191	.08 .08	13 26	.83 2.05	.05 .06	.24 .15		.004 .101	12

		ander											·				Page		ADE A
SAMPLE#	Mo Cu Pb Zn ppm ppm ppm ppm	Ag Ni ppm ppm j	Co Min opmi ppm	Fe As % ppm	U A ppntpp	u Th S mippinipp	r Col Sb m ppm ppm	Bi V ppnippn	Ca %	P La % ppm	Cr N ppm	lg Ba % ppm	Ti %_pp	BAL xm %	Na %	К % р	¥Au* prioz/	* SAMF (t	PLE 15
L-37 227.7-230.7 L-37 230.7-233.8	2 962 10 126 3 427 4 124	.6 7 .5 7	12 856 3 12 796 3	.68 <2 .70 <2	8 < <5 <	2 2 16 2 6 17	6 .2 <2 1 <.2 <2	2 166 3 165	1.52 . 1.83 .	. 115 9 . 218 <u>1</u> 7	8.7 7.5	2 43 7 66	.11 < .09 <	3.94 3.75	.04 .03	.22 .21	<2 .00 2 .00	13 13	13 11
	Sa	mple_type	<u>CORE.</u>																
										• -									

i 🗖 🖉 🗖 👘 👘	ALYTI	CAL	LABOI	RATOR		LTD.	•		2 E. GEO			$(1,2) \in \mathbb{N}$		1. A.				- 1.93	동지의		РНО	NF (504)		.) 191	э г 2000 2000	AA ((5041	253.	
££		an ta Vila			Lysa	1.1.	11 C	11.11	l Co	rD.	PR	OJE	ICT		' (TC	RRA	INE	<u>)</u>	Fil	.e #	96	5-48	351						Ĕ	<u>בן</u>
SAMPLE#	Мо ррп	Cu ppnt	Pb Z opm pp	ກ Ag m ppa		Со ррпі	Mn ppm		As ppm	U ppm	Au ppn	Th ppm	Sr ppm	Cd ppm	Şb ppm	Bí ppm		Ca %		La ppon	Cr Ppm	Mg %	Ba ppm	Tí %	B	Al %	Ka %	K X		Au* ppb
TRJ-001 TRJ-002 TRJ-003 TRJ-004 TRJ-005		30 54 37 129 249	6 3 3 3 8 4	2 <.3 3 .3 51 <.3 58 .3 26 .5	3	7 8 11		3.12 3.35 4.13	5 7 4 8 10	<5 9 <5 5 9	<2 <2 <2 <2 <2 <2	5 11 4 3 <2	31 63 33 117 82	.5 _2 <.2 .5 _4	<2 <2 <2 <2 3	<2 <2 <2	119 115 177	.84 .97 .74 1.78 1.97	.154 .131 .137	9 11 9 8 3	7 7 6	.36 .41 .58 .50 1.50	64 59 110		4 <3 <3	.71 1.94		.10 .21 .11	2 2 2 <2 <2	<1 1 1 <1 3
TRJ-006 RE TRJ-006		187 176		5 < 3			180 175		5 <2	<5 <5		<2 <2		.4 <.2	<2 <2	<2 3		1.51 1.47		4		.33 .32	46 44	. 14 14		1.84 1.77			2 2	1 <1

:

SAMPLE#	Mo ppna	Cu ppm		Zn ppm	_	Ni ppm			Fe X						Cd ppm (Ca X		La ppm				Tí X			Na %		₩A ppnc		SAMPLE lb
37 1.5-5.2 37 5.2-8.2 37 8.2-11.3 37 11.3-14.3 37 14.3-17.4	2 1 2	3142 1455 4440 4451 3097	5 5 9	83	2.0 .8 2.3 2.9 1.9	12 11 10 9 7	6 8 9	467 568 522	3.29 1.25 3.25 2.71 1.50	2 <2 2	6 <5 <5	<2 <2 <2	3 8 5 6 4	73 67 106	.4 .8 .9	<2 3 <2	<2 <2 <2	77 220 172	- 96 - 88	.232 .178 .283	19 16 23	16 13 12	1.04 .30 .44	95 45 47	.20 .14 .13	3 <3 <3	.89 .59 .82	.05 .05 .04	.78 .20 .19	<2 . <2<. <2 . <2 . <2 .	001 003 003	11 11 12 11 12
37 17.4-20.4 37 20.4-23.5 37 23.5-26.5 37 26.5-29.6 37 29.6-32.6	2 2 2	3092 2141 2629 5641 8875	4 6 6	83 46 55	2.4 1.3 1.5 3.6 5.9	8 6 5 6 9	5	410 202 252	1.59 1.79 .89 1.23 1.23	<2 <2	<5	<2 <2 <2	2 3 5	69 52	.3		<2 <2 <2	100 41 59	.92 .38	.034 .103	8 7 12	10 11 16	.20	53 64 46	.12 .14 .12	<3 <3 <3	.72 .41 .38	.04 .04 .05	.22 .23 .24	<2 . <2 . <2 . <2 . <2 .	002 003 006	12 12 11 12 12
37 32.6-35.7 RE 37 32.6-35.7 RRE 37 32.6-35.7 37 35.7-38.7 37 38.7-41.8	2 2 2	9859 9634 9693 4917 5174	7	82 82	5.6 6.0 5.5 3.4 3.7	13 13 13 8 6	7 7 7	454 464 478	2.19 2.14 2.18 1.95 1.34	<2 <2 <2	<5 <5	<2 <2 <2	3	51 58 102	1.2 1.2 .8	2 <2	<2 4 2	101 104 89	.61 .63	.123 .123 .349	12 13 25	25 27 22	.38 .38 .52	69 79 66	. 13 . 14 . 13	ব ব্য ব্য	.46 .50 .61	.04 .05 .04	.33 .37 .32	<2 . <2 . <2 . <2 .	.010 .010 .005	13 - 14 12
37 41.8-44.8 37 44.8-47.9 37 47.9-50.9 37 50.9-54.0 37 54.0-57.0		48	5 8 5 4 7	28 9	1.1 2.4 <.3 .5 .8		2 1 1	298 187 128	.93 1.11 .75 .52 4.44	<2 <2 <2	<5 <5 <5	<2 <2 <2	4	64 22 16	.4 <.2 <.2	≺2 <2 ≺2	<2 <2 <2	50 29 14		.118 .004 .005	13 7 4	26 9 7	.20 .03 .01	61 50 224	.12 .02 .01	<3 <3 <3	.34 .18 .18	.06 .06 .06	.25 .12 .12	<2 2 2< 2< 2< <2	.005 .001 .001	12 13 12 12 13
37 57.0-60.0 37 60.0-63.1 37 63.1-66.1 37 66.1-69.2 37 69.2-72.2	5 4 2	3654 6763 5970 2978 742	7 6 5	113	2-6 4-6 4-1 1-9 -5	9 10 9	8 10 8	613 793 716		<2 <2 <2	<5 <5 <5	<2 <2 <2	2 2 2	534 504 137	1.3 1.0 .4	3 <2 <2	<2 <2 <2	155 163 141		.092 .070 .052	11 9 8	17 16 14	.45 .68 .61	47 44 61	.14 .14 .12	3 <3 <3	1.38 1.41 .89	.29 .16 .08	.36 .33 .28	<2 3 2 <2 3<	.006 .007 .003	11 11 12 12 13
RE 37 69.2-72.2 RRE 37 69.2-72.2 37 72.2-75.3 37 75.3-78.3 37 78.3-81.4	2	707 97	444	55 54 9 35 151	.5 .7 <.3 .8 2.7	5	4 1 3	382 142 317	1.68 1.57 .66 1.55 3.54	<2 <2 <2	<5 <5 <5	<2 <2 <2	4	73 20 58	.2 2.> 2.	<2 <2 <2	<2 <2 <2	64 18 71	.56 .53 .23 .60 1.12	.026 .004 .028	8 5 5	16 14 10	.26 .25 .03 .15 .75	44 35 35	.07 .01 .06	ব ব ব	.46 .20 .36	.06 .08 .06	.18 .14 .12	3< 4<,	.001 .001 .001 .001 .001	13 13 14
37 81.4-84.4 37 84.4-87.5 37 87.5-90.5 37 90.5-93.6 37 93.6-96.6	324	2935 8957 10496 26232 15392	5 13 14	146 148 217	23.2	12 10 18	10 18	863 719 834	3.23 6.16	3 <2 <2	<5 <5 <5	<2 <2 <2	3 4	106 87 88	3.5	3 <2 <2	<2 <2 <2	215 173 352	1.00 .94 .86	.088 .042 .071	10 6 9	16 14 14	.43 .47 .48	41 35 33	. 16 . 15 . 18	<3 <3 <3	.90 .98 .79	.07 .05 .05	.22 .19 .19	<2 <2 <2 <2 <2 <2 <2	.004 .006 .024	13 13 12 12 13
37 96.6-99.7 STANDARD C2/AU-1		16544 64			23.8																											12

		-	L	ys	and	er	Go	ld	Coi	тр .	PF	२०७	EC:	ΓĻ	ORR	AII	ΙE	F	LE	#	96-	-49	31						Pa	ige	2	
SAMPLE#	Mo		Pb ppra		Ag		Co ppm	Min ppm	Fe %	As ppm	U ppm			Sr ppm	Cd ppm	Sb ppm		V pma	Ca %		La ppm		_	Ba ppm	Ti X	в	Al %	Na %	K %		Au** oz/t	SAMPLE Lb
37 99.7-102.7		17353	12	128	19.5	10	10	769	2.57	<2	<5	<2	3	73	1.3	2	<2 ·	120	.69	.034	10	15	.62	66	.13	3	.84				.011	13
37 102.7-105.8	-	15697			15.1	8	6		1.47	_		<2	3	50	.3	<2	2	59		.028	9	19	.25		.14	<3	.51			-	.010	12
37 105 8-108.8	-	7314			16.5	10	10	542	2.52	<2	<5	<2	2		<.2	5	2 :			.089	9	18	.66		. 15	3		.05		-	.013	12 13
37 108.8-111.9	1 1	10193	9	119	6.1	10	10		3.25		<5	<2	2	75	.6	~ 2	2 '			.095		24	.46		.14	<3 <3	.67 .53			-	.001	12
37 111.9-114.9	3	16074	9	71	9.5	6	7	591	1.73	<2	<5	<2	3	53	<.2	<2	2	90	.40	.065	10	17	.33	59	. 12	<3	. >>	-04	،د.	2	.004	12
			~	407		0	11	701	2.37	2	<5	<2	2	89	.5	٦	<2	119	.58	.064	9	16	.49	63	.10	<3	.79	.05	.36	5	.005	
37 114.9-118.0	1 -	19345 5513		103	8.1	2	7		2.79		<5	<2	-	109	<.2					.059		-			.04	<3	.43	.07	. 22	-	.004	
37 118.0-121.0	1 .	12319		133	8.0	11	13		4.36		<5			157	.3					.103		20	.81				1.03			-	.011	12
37 121.0-124.1 RE 37 121.0-124.1	1 .	12571		135	8.1	11	14		4.49		<5	-		163	.3	<2				.104	9		.83				1.08			-	.013	
RE 37 121.0-124.1		12144		131	7.9	10			4.37		<5	<2		157	<.2			215	1.51	.109	10	15	.83	54	.16	<3	1.04	.07	.46	4	.012	<1
ARE \$1 121.0 (24.1	1		-	/											_		_				_					.7	<u>ر ج</u>	AE	75	7	.018	13
37 124.1-127.1	1	10533	7	89	6.9	8	9		2.95		<5	-			<.2					.069		18			.13		.65 .76			-	.010	
37 127.1-130.2	1	11781	8	110	7.8	9	12		3.82		<5				<.2					-083		14	.59 1.01		.14		2.11			-	.094	
STANDARD C2/AU-1	19	63	42	137	7.4	72	38	1163	3.94	40	22	7	- 35	53	20.9	_1/	14	12	. 24	.110	39	00	1.01		.00	24						

٠

.

SAMPLE#	Mo	Cu	Pb pom s					Mn ppm				Au pom p			Cd ppa	Sb ppm p			Ca %		La ppm		Mg %	8a ppm	Ti %		Al %	Na %	X %	₩ Au** ppm oz/t	SAMPLE Lb
L-38 3.1-6.4 L-38 6.4-10.2 L-38 10.2-13.4 L-38 13.4-14.6 L-38 13.4-14.6	2 1 <1 1	529 644 261 143 123	8 9 8 7	98 121 87 70 65	<.3 <.3 <.3 <.3	7	11 10 9 7	1321 1296 1055 741	2.55 2.47 2.03 1.30 1.61	24 19 <2 <2	<5 <5 <5 5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 - 3 - 4 -	122 138 190	<.2 <.2 <.2 <.2	7 4 <2 2	2 <2 <2 <2	82 68 69 45	4.03 2.31 1.84	.062 .086	13 18 11	9 8 8	.73 .65 .41	47 40 47	.05 .09 .11	<3 <3 4	.86 1.04 1.00 .78 .90	.03 .04 .03	.15 .11 .12	2<.001 2<.001 2<.001 2<.001 2<.001	10 12 8 4 9
L-38 17.1-19.8 L-38 19.8-23.8 L-38 23.8-26.7 L-38 26.7-29.5 L-38 29.5-32.9	1 2 2	138 282 185 1283 1685	4 7	235	<.3 <.3 .8	27	5 13 18	880 1797 1960	1.60 1.56 3.17 3.65 3.25	2 2 5	<5 <5	<> <> <>	3 5 6 8 4	158 220 278	<.2 <.2 .2	<2 <2 <2	<2 <2 <2	60 93 123	2.99 4.83 5.80	.078 .122 .134 .226 .209	18 19 30	8 10 18	.40 .41 1.49 1.86 1.79	48 40 39	.12	4 <3 <3	1.19 1.28 1.81 1.81 2.33	.09 .08 .03	.12 .10 .10	2<.001 <2<.001 2<.001 4 .009 3 .003	11 15 12 10 15
L-38 32.9-36.0 RE L-38 32.9-36.0 RRE L-38 32.9-36.0 L-38 36.0-39.0 L-38 39.0-42.9	2 1 5	2249 2224 2451 2501 969	18 18 13	299 315 241	1.8 1.8 2.1	47 51 50	22 24 21	2138 2246 1587	3.59 3.60 3.93 3.37 4.08	<2 <2 2	<5 <5	<2 <2 <2	3 4 3 6 3	267 290 429	.5 .6 .5	<2 <2 <2	<2 <2 <2	102 112 102	4.58 4.96 4.19	.163 .164 .172 .217 .080	18 20 25	32 33 24		65 71 112	.12 .13 .10	<3 <3 <3	2.37 2.35 2.54 2.34 2.10	.04 .05 .09	.54 .54 .58 .55 .58	4 .010 3 .010 3 .010 4 .016 3 .003	12
L-38 42.9-45.0 L-38 45.0-48.0 L-38 48.0-50.2 L-38 50.2-53.7 L-38 53.7-57.2	1	101 122 424 28 27	8 6 5	130 150 12	<.3		15 14 1	1700	1.07 3.28 2.81 .71 .72	<2 <2 2	<5 <5 <5 <5 <5	<2	3 3 4	238 249 46	<.2 <.2 <.2	<2 <2 <2	<2 <2 <2	108 87 10	4.67 4.37 .82	.009 .017 .048 .003 .001	6 11 7	23 20 13	.09 1.44 1.49 .09 .08	90 77 27	.09 .10 .01	<3 3 <3	.26 1.31 1.99 .27 .25	.04 .10 .05	.11 .42 .38 .11 .10	3<.001 2<.001 <2<.001 4<.001 4<.001	10
L-38 57.2-60.4 L-38 60.4-63.4 L-38 63.4-66.4 L-38 66.4-69.5 L-38 69.5-72.5		5	< <u>3</u> 7	267 71 73	<.3 <.3	62 74 67	39 39 33	2534 991 886	4.58 15.58 7.05 5.69 4.05	<2 <2 <2	<5 <5 <5	<z <2 <2</z 	<2 2 <2	328 952 825	<.2 <.2 <.2	<2 <2 <2	<2 <2 <2	518 184 139	3.16 3.78 2.48	.028 .286 .178	5 15 10	31 148 190	1.69 2.05 2.65 2.70 1.61	207 235 459	.20 .20 .23	⊲ ⊲ ⊲	1.63	.04 .05 .05	.35 1.09 1.23	<2<.001 <2<.001 <2<.001 <2<.001 2<.001	16 15 13
L-38 72.5-75.6 L-38 75.5-78.6 RE L-38 75.5-78.6 RRE L-38 75.5-78.6 L-38 78.6-82.2	1 1 1 1		3 5	3 3 2	<.3 <.3 <.3 .3 <.3	3 4 3 3 4	1 1 1	108 120 115 115 119		<2 <2 <2	6 <5	<2	2 2 3	83 83 81	<.2	<2 <2 <2	<2 <2	3 2 2	.31 .31 .31	.004 .002 .003 .003 .004	3 3 3	13 11 12	.08 .07 .07 .06 .04	27 27 24	<.01 <.01 <.01 <.01 <.01	4 4 6	.33	.01 .01 .01	.11 .15 .17 .16 .13	2<.00 3<.00 3<.00 3<.00 3<.00	12 - -
L-38 82.2-85.7 L-38 85.7-89.2 L-38 89.2-92.7 L-38 92.7-95.9 L-38 95.9-99.5	<1 1 1 1 <1	11 31 21	7 6 3	5 5 6	<.3 <.3 <.3	4 3	1 <1 1	139 74 130		<2 <2 <2	<5 5 <5	<2 <2 <2	2 3 2	56 44 68	<.2 <.2 <.2	<2 <2 <2	~2 ~2 ~2	11 8 19	.47 .19 .54	. 107 . 004 . 001 . 006 . 089	4 5 7	17 16 12	2.49 .05 .03 .04 2.74	46 25 69	<.01 <.01 <.01	<3 <3 3	.21 .17 .19	.05 .05 .04	.13 .11 .13	<2<.00 2<.00 2<.00 3<.00 <2<.00	12 14 11
L-38 99.5-103.1 STANDARD C2/AU-1	<1 19	37 62	6 39	55 133	<.3 7.1	78 73	33 37	633 1196	4.76 3.99	<2 40	5 19	<2 8	<2 35	525 54	<.2 20.5	<2 17	<2 14	116 72	.92 .54	.091 .109	5 - 39	244 •65	2.76	310 187	.24 .07	<3 25	1.60 2.07	.07 .08	1.08	<2<.00 11 .09	16

AA DIE ANALYTICAL				Ly	san	der	G	old	Co	rp.	PF	OJ	ECT :	LORI	RAI	NĒ	F	ILE	#	96	-51	61						Pa	ge 2		E MILYTIC
SAMPLE#	Mo ppm		Pb ppm		-	Ni ppm		Mn ppm	Fe %				Th Sr ppm ppm		Sb ppm		V ppm	Ca %		La ppm		_		Ti %			Na %		W Au ppm o:		IPLE Lb
L-38 103.1-106.7 L-39 3.0-6.0 L-39 6.0-8.5 L-39 8.5-11.3 L-39 11.3-14.6	8 5	30473	40 149 15	175 171	35.4 4.6	76 46 46	18 15 25	1831 1720 3118	4.76 3.87	3889 3484 188	<5 <5 <5	<2 <2 <2	<2 307 12 137 8 268 4 175 5 270	2.7 4.3 1.8	190 369 7	<2 <2 <2	152 345 387	4.57 3.87 5.27	.590 .603 .273	71 74 38	136 64 55	.45 .32 1.67	76 178 73	.02 .02 .11	<3 <3 <3	.68 .30 1.47	.05 .10 .08	.28	<2<,0 <2 ,1 <2 ,0 2 ,0 2<,0	148 128 105	16 9 9 3 6
L-39 14.6-17.6 L-39 17.6-20.7 L-39 20.7-23.8 L-39 23.8-26.8 L-39 26.8-29.9	1 2 1 2 1	280	10 10 7	177	<.3	21 14	18 18 16	1885	3.29 3.06	3 17 2	<5 <5 <5 <5 <5	<2 <2 <2	16 289 10 348 10 209 5 222 6 386	<.2 <.2 <.2	<2 4 <2	2 <2 <2	102 102 117	4,50 5,03 5,05	.280 .150	35 39 21	27 33 27	1.92 2.01 1.53	66 112 160	.09 .11 .15	3 3 <3	2.73 2.35 1.82	.19 .10 .09		2 .1 4<.1 2<.1 2<.1 3 .1	001 001 001	52 10 9 13 11
L-39 29.9-32.9 L-39 32.9-36.0 RE L-39 32.9-36.0 RRE L-39 32.9-36.0 L-39 36.0-39.0	3 3	606 1590 1606 1702 653	12 5 12	117	1.2 1.0 1.1	18 18 18	10 10 11	870 848 886	1.48	<2 <2 3	<5 5 <5 5 5	<2 <2 <2	8 659 5 760 5 751 6 785 2 900	.3 .3 .2	<2 <2 2	<2 <2 <2	47 45 47	4.31 4.24 4.42	.265 .253 .250 .275 .030	31 29 33	22 20 20	1.07 1.06 1.12	152 150 154	.08 .07 .07	4 <3 <3	4.07 3.99 4.18	.86 .88 .89	.64 .36 .37 .37 .41	4<.1 3 .1 3 . 3 . 4<.	011 010 007	13 13 - 13
L-39 39.0-42.1 L-39 42.1-45.1 L-39 45.1-48.2 L-39 48.2-51.2 L-39 51.2-54.3	3 2 2 4 6	249	20 13 5	207 198 195 102 78	.5 .5 < .3	26 31	16 24 24	1460 1740 920	2.73 2.53 4.33 4.98 1.25	<2 <2 <2	<5	<2 <2 <2	2 548 2 558 <2 623 3 553 2 558	.4 .2 <.2	~ ~ ~ ~ ~ ~	<2 <2 <2	75 109 144	4.59 4.79 3.14	.025 .024 .104 .239 .100	7 8 15	26 22 82	2.20 1.37	93 184 181	. 13 . 16 . 15	⊲ ⊲ ⊲	3.59 2.99	.59 .24 .37	.42 .38 .83 .68 .25	4<. 3 . 3<. 2<. 3 .	001 001 001	13 13 14 13 13
L-39 54.3-57.3 L-39 57.3-60.4 L-39 60.4-63.4 L-39 63.4-66.4 L-39 66.4-69.5	8 5 6 1 4	526 943	9 14	131	.5	4 6 6	8 10 11	910 1116 1152	.67 1.91 1.87 1.70 3.35	<2 <2 <2	<5 <5	<2 <2 <2	2 692 3 729 4 530 5 465 2 475	<.2 <.2 <.2	د ح ح	<2 <2 <2	65 62 56	4.08 3.81 4.19	.100	14 17 23	10 13 9	1.16	45 46 48	.09 .10 .08	4 <3 <3	1.84 1.64	.32 .25 .12	.29 .35 .50	4. 3.	001 001 003	13 12 12 13 13
L-39 69.5-72.5 L-39 72.5-75.6 L-39 75.6-78.6 RE L-39 75.6-78.6 RRE L-39 75.6-78.6	<1 <1 <1 <1 1	48	5	60 59 59	<.3 <.3 <.3	76 82 81	34 35 35	647 641 649	6.44 6.03 5.79 5.84 5.77	<2 <2 <2	<5	<2 <2 <2		<.2 <.2 <.2	<2 <2 <2	<2 <2 <2	155 152 152	1.37 1.21 1.21	. 126 . 125 . 125	7 8 7	230 228 230	2.12 2.28 2.26	211 244 250	.25 .25 .26	<3 <3 <3	1.46 1.67 1.67	.06 .14 .15	1.33 1.23 1.28 1.35 1.26	<2<. 2<. <2<.	001 001 001	14 15 15 -
L-39 78.6-81.7 L-39 81.7-84.7 L-39 84.7-87.8 L-39 87.8-90.8 L-39 90.8-93.9	<1 1 <1 1 2	51 74 48	7 9 1 4	58 56 45	<.3 <.3 <.3	77 74 81	34 32 32	676 648 560	5.65 5.80 5.08 5.46 4.95	<2 <2 <2	<s <s <s< td=""><td><2 <2 <2</td><td><2 154 <2 165 <2 212 <2 337 2 449</td><td><.2 <.2 <.2</td><td><2 <2 <2</td><td><2 <2 <2</td><td>141 120 144</td><td>1.70 2.52 1.10</td><td>.098 .097 .093</td><td>7 8 6</td><td>249 200 245</td><td>2.34</td><td>235 213 234</td><td>.25 .24 .23</td><td><3 <3 <3</td><td>1.48 1.41 1.60</td><td>.08 .08 .20</td><td>1.30</td><td><2<. <2<. <2<. <2<. <2<.</td><td>001 001 001</td><td>15 12 12 15 15</td></s<></s </s 	<2 <2 <2	<2 154 <2 165 <2 212 <2 337 2 449	<.2 <.2 <.2	<2 <2 <2	<2 <2 <2	141 120 144	1.70 2.52 1.10	.098 .097 .093	7 8 6	249 200 245	2.34	235 213 234	.25 .24 .23	<3 <3 <3	1.48 1.41 1.60	.08 .08 .20	1.30	<2<. <2<. <2<. <2<. <2<.	001 001 001	15 12 12 15 15
L-39 93.9-96.9 L-39 96.9-100.0 STANDARD C2/AU-1	1	4	i 6	48	<.3	72	30	548	5.20 5.19 3.93	<2	<5 <5 22	<2	2 479 <2 267 35 54	<.2	<2	<2	140	.99	.095	7	Z47	2.03 1.98 1.02	191	.23	<3	1.64	.30	1.07	<2<. <2<. 10 .	001	16 15 -

AA LL Xe Multicu				r)	/sa	nde	r	Gol	d C	orp	•	PRO	JECI	LO	RR	AIN	E	FI	LĒ	# \$	96-	516	1					Pa	.ge 3	
SAMPLE#		Cu _ppm						Mn ppm					Th Sr open ppm					Ca %		La ppm		Mg %	Ba Ppm	⊺i %	B ppril	Al %	Na %		₩ Au** ppm oz/t	SAMPLE Lb
L-39 100.0-103.0 L-39 103.0-106.7 L-40 3.7-5.2 L-40 5.2-8.2 L-40 8.2-11.3	1 2 2	104 61 402 261 695	6 10 4	56 103 92	<.3 .5	70 5 5	32 11 11	679 2273 2174	4.80 4.31 4.06	<2 3 5	<5 <5 <5	< < < < < < < < < < < < <	<2 217 <2 254 5 271 5 312 2 127	<.2 .2 <.2	<2 <2 <2	<2 <2 <2	103 166 166	1.97 5.40 5.75	.112	7 33 35	230 50 59	2.66 .84 .95	144 1457 1762	.17 .12 .13	<3 <3 <3	1.60	.08 .08 .10	1.02 .23 .21	2<.001 2<.001 3 .005 2 .016 2 .009	
L-40 11.3-14.3 L-40 14.3-17.4 L-40 17.4-20.4 L-40 20.4-23.5 L-40 23.5-26.5	3 5 6	3194 1620 5345 1123 703	<3 7 5	51 27 47	1.3 3.8 .8	8 12	10 9 6	599	2.54 1.93 1.46	<2 <2	<5 <5 <5	<2 <2 <2	8 101 5 549 3 497 3 591 4 407	<.2 .2 <.2	<2 <2 <2	3 <2 2	69 49 43	5.46 3.61	.480 .824 .308	47 42 21	13 27 11	.71 .89 .37	77 144 26	.05	<3 <3 6	1.49 3.68 3.80 4.19 2.44	-89 1.01 1.09	.27 .25 .19	4 .030 3 .011 5 .027 3 .009 4 .004	13 11 14
L-40 26.5-29.6 L-40 29.6-32.6 L-40 32.6-35.7 L-40 35.7-38.7 RE L-40 35.7-38.7	6 3 1	828 998 689 1326 1357	<3 4 4	77 88 47	.7 1.0 .7 1.3 1.4	3 3 3 6 6	5 6 8	1428 1223 672	2.27 2.32 1.79 1.23 1.25	2 <2 <2	5 <5 <5	<2 <2 <2	4 413 5 474 5 352 3 644 3 649	.2 <.2 <.2	<2 <2 2	<2 <2 <2	89 61 35	4.55 4.16	.141 .137 .211	28 21 17	13 8 11	.33 .57	33 46 37	.08 .02	<3 4 <3	2.86 2.93 1.96 3.67 3.73	.71 .36 .59	.26 .25 .20	5<.001 4 .004 3 .002 3 .002 3 .002	12 10
RRE L-40 35.7-38.7 L-40 38.7-41.8 L-40 41.8-44.8 L-40 44.8-47.9 L-40 47.9-50.9	2	1349 3419 1994 4779 1846	22 7 12	111 77 130		4 5	10 8 9	870 1052 1432	1.16 1.50 1.89 2.19 2.92	<2 2 <2	<5 <5 <5	<2 <2 <2	3 633 4 537 6 316 7 161 2 150	1.0 .4 .7	<2 <2 2	<2 <2 2	40 60 69	4.42	.257 .223 .235	21 28 37	9 10 12	1.24	63 63 60	.03 .06 .08	<3 <3 <3	3.55 3.08 1.63 1.16 1.07	-32 -15 -05	.20 .22 .20	5 .012	11 12 9
L-40 50.9-53.0 L-40 53.0-54.9 L-40 54.9-57.0 L-40 57.0-60.0 L-40 60.0-63.1	<1 2	1875 126 479 262 822	<3 7 5	21 79	<.3 .4 .3	255	3 11 10	511 1247 1062	2.80	<2 <2 <2	<5 <5 <5	<2 <2 <2	4 195 4 52 3 167 3 231 4 212	<.2 <.2	<2 <2 <2	<2 <2 <2	23 70 74	1.36 4.37 4.05	.053	10 11 14	9 11 11	.12 .74 1.16	57- 96 128	<.01 .05 .03	<3 <3 <3	1.18 .39 1.00 1.62 1.17	.03 .03 .06	.18 .24 .24	3<,001	9 7 14
L-40 63.1-66.1 L-40 66.1-69.2 L-40 69.2-72.2 RE L-40 69.2-72.2 RRE L-40 69.2-72.2	22	315 530 666 639 646	5	72	<.3 .4 .7 .7	4 6 5	10 11 11	1366 711 676	2.75	<2 <2 <2	<5 <5 <5	<2 <2 <2	3 206 3 166 <2 246 2 239 2 246	.3 <.2 <.2	<2 <2 <2	2 <2 <2	45 63 59	5.31 2.35 2.20	.122	: 11 - 8 - 8	6 11 11	.86 1.02 .97	102 203 196	.01 .07 .06	<3 <3 <3	1.22 1.26 1.32 1.25 1.28	.02 .07 .07	.29 .37 .36	3 .002 3 .001	11 10 -
L-40 72.2-75.3 L-40 75.3-78.3 L-40 78.3-81.4 L-40 81.4-84.4 L-40 84.4-87.5	1 4 4	1030 449 1029 679	i 9 i 18	8 77 5 87	5 1.2	14 27 31	14 24 17	944 1133 908	4.60	<2 <2 <2	<5 <5 <5	<2 <2	3 98 3 107 3 151 3 158 3 101	<.2 <.2 <.2	<2 2 <2	<2 3 <2	75 107 125	3.51 3.73 2.77	131 - 144 - 118 - 118	i 11 i 13 i 12	44 68 90	1.73	78 117 92	.04	<3 <3 3	1.03	.03 .03 .05	.38 .60 .59	2 .002 3 .004 3 .001	2 12 10 13
L-40 87.5-90.5 L-40 90.5-93.6 STANDARD C2/AU-1	1		ι 4	\$ 22	ז כ	3	3	354	1.12	<2	<5	<2	3 112 3 40 35 55	<.2	<2	<2	22	.76	.008	37	12	. 13	36	.01	<3	.81 .34 2.10	.05	. 13	4<.00 4<.00 12 .097	12

.

	Lysander Gold Corp. PROJECT LORRAINE FILE # 96-5161 Page 4
SAMPLE#	Mo Cu Pb Zn Ag Ní Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Tí B Al Na K W Au** SAMPLE ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
L-40 93.6-96.6 L-40 96.6-99.7 L-40 99.7-102.7 L-40 102.7-105.8 L-40 105.8-108.8	1 214 5 78 .3 5 7 799 1.30 <2
L-40 108.8-110.D L-41 1.5-4.8 L-41 4.8-8.2 L-41 8.2-11.3 L-41 11.3-14.6	1 40 3 19 <.3
RE L-41 11.3-14.6 RRE L-41 11.3-14.6 L-41 14.6-17.4 L-41 17.4-2D.6 L-41 20.6-23.5	2 2 2413 15 409 1.2 23 18 1063 4.33 6 <5
L-41 23.5-26.8 L-41 26.8-29.8 L-41 29.8-32.9 L-41 32.9-35.7 L-41 35.7-38.7	4 1847 34 254 1.8 19 14 1035 2.99 4 <5
L-41 38.7-41.8 L-41 41.8-44.8 L-41 44.8-47.9 RE L-41 44.8-47.9 RRE L-41 44.8-47.9	1 374 5 59 .5 6 4 286 .92 <2
L-41 47.9-50.9 L-41 50.9-54.0 L-41 54.0-57.0 L-41 57.0-60.0 L-41 60.0-63.1	1 40 5 27 .3 4 3 158 .67 <2
L-41 63.1-66.1 L-41 66.1-69.2 L-41 69.2-72.2 L-41 72.2-75.3 L-41 75.3-78.3	2 227 8 113 <.3
L-41 78.3-81.4 L-41 81.4-84.4 STANDARD C2/AU-1	2 35 9 59 <.3 83 34 720 4.78 <2 <5 <2 2 185 <.2 <2 <2 110 1.37 .207 11 257 2.57 140 .17 <3 1.51 .06 1.16 <2<.001 14 2 33 8 57 <.3 90 39 795 5.40 <2 <5 <2 <2 233 <.2 <2 2 118 1.31 .162 9 328 2.80 83 .18 <3 1.47 .06 1.17 2<.001 15 20 59 42 130 6.8 68 36 1144 3.79 38 19 8 34 51 20.1 18 14 69 .52 .104 37 61 .98 189 .07 22 2.00 .07 .15 11 .098

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE#	Mo	Çu ppm							Fe *						Cd ppm				Ca %		La ppm ș				Ti % p			Na %		W Au** ppm oz/t	
	ppm	ppii	ppiii.	ppm	ppiii		Jhin	ppii			PP			<u> </u>								<u> </u>									
L-41 84.4-87.5	2	33							5.88						<.2													-		<2<.001	
L-41 87.5-90.5	<1	26							6.60						<.2						18 2						.91			2<.001	
L-41 90.5-93.6	<1	26	<3			82									<.2																
L-41 93.6-96.6	<1	24	<3												<.2															<2<.001 <2<.001	
L-41 96.6-99.7	9	26	3	52	<.3	45	25	(20	4.30	20	<2	<2	~2	128	۰.۲	<۷	~2	122	2.44	. 121	11	07	1.42	143	- 12	4	• 4 2	.09	-05	NZN.001	15
L-41 99.7-102.8	1	37	<3	61	.3	64	33	788	6.47	2	<5	<2	<2	216	.3	4	<2	212	2.80	.247	13	124 :	2.01	182	.21	6 2	2.12	.34	.96	2<.001	13
-41 102.8-105.8	1	80	3			62			6.08		5				<.2											7 :	.70	.22	.91	2<.001	14
L-41 105.8-106.7	1	40	3	68	<.3	80	39	777	6.21						<.2											<3 '	.97	.08	1.25	<2<.001	6
RE L-41 105.8-106.7	<1	39	3	69	<.3	80	38	793	6.26	2	<5	<2	2	255	<.2	<2	<2	171	2.92	.216	12	187 :	2.69	222	. 18	4 '	.96	.08	1.26	<2<.001	-
RRE L-41 105.8-106.7	<1	41	<3	72	<.3	86	40	828	6.64	<2	<5	<2	<2	271	<.2	<2	<2	181	3.07	.227	12	198	2.84	241	. 19	<3 7	2.06	,08	1.34	<2<.00	-
L-42 1.5-5.2	2	2417	21	375	1.6	23	15	1027	4.02	5	<5	<2	3	190	3.5	<2	<2	201	1.48	. 164	12	45	. 98	38	. 14	6 '	.38	.07	.44	<2<.001	13
L-42 5.2-8.2		3568								7		<2			3.1				1.09				.82			-			.38		
L-42 8.2-11.3	1	3101		290					3.81	8					3.7						11	44	.73	49	. 15	<3	1.13	.04	.34	<2<.001	12
L-42 11.3-14.3				328					4.97						3.7														.40	2 .001	10
L-42 14.3-17.4	2	2352	15	343	1.3	37	20	1062	4,62	<2	<5	<2	<2	152	3.7	<s< td=""><td><2</td><td>200</td><td>1.22</td><td>. 185</td><td>13</td><td>53</td><td>1.28</td><td>58</td><td>. 13</td><td><3</td><td>1.31</td><td>.03</td><td>.47</td><td><2 .00;</td><td>2 11</td></s<>	<2	200	1.22	. 185	13	53	1.28	58	. 13	<3	1.31	.03	.47	<2 .00;	2 11
L-42 17.4-20.4	1	98	<3	74	٦	8	4	252	.89	<2	<5	<2	<2	44	2.1	<2	<2	16	.78	. 103	5	5	. 10	27	.01	7	.44	.01	.31	<2<.001	11
L-42 20.4-23.5	1	185		164		-			.85						2.3					.060			.20							<2<.00	
STANDARD C2/AU-1	19								3.82											.102	36	62	.97	186	.08	22	1.97	.06	. 14	11 .09	5 -
Sample_type:_CO	RE.	Samol	es l	begin	ning	<u>'RE</u>	<u>' ar</u>	<u>e Re</u> r	<u>uns</u>	and_	<u>'RRE</u>	<u>are</u>	Re	ect	<u>Rerun</u>	<u>s.</u>															

•

. . . .

. .

SAMPLE#	Mo	Cu ppm			Ag ppm				Fe %				ĩh. ⊃pom po						Ca %		La ppm		Mg %		Ti X			Na %		₩ Au*' ppm_oz/'	SAMPLE
36 136.2-139.3 36 139.3-142.3 36 142.3-145.4 36 145.4-148.4 36 148.4-151.5	1	831 1923 256 721 2050	12 5 5	103 107	1.4 .5	48 70 62	33 51 42	815 814 806	4.29 6.54 6.73	<2 <2 <2	12 <5 <5	<2 <2 <2	<23 <24 23	16 44 31	.3 2. <.2	<2 <2 2	6 <2 3	131 212 215	3.73 3.21 2.82	.324 .365 .390	22 28 23	79 101 78	2.79 3.70 2.82	882 1491 700	.17 .13 .17	5 3 <3	1.84 2.52 1.98	.05 .07 .05	1.69 2.38 1.77	<2<,00 <2<.00 <2<.00 <2<.00 2<.00 2 .00	14 15 11 17
36 151.5-154.5 36 154.5-157.6 36 157.6-160.6 36 160.6-163.7 36 163.7-166.7	2 1 2	1065 9886 2978 10445 682	8 16	120 129	9.9 3.1 12.4	32 68 81	15 32 30	540 839 953		2 <2 <2	<5 <5 <5	<2 <2 <2	<21	28 56 13	1.8 .2	<2 2 <2	6 4 57	128 218 194	2.46 1.61 2.71	.327	35 17 20	47 133 150	1.03 2.20 2.34	163 361 271	.16 .29 .28	4 <3 <3	1.10 1.80 1.83	.06 .05 .05	.62 1.46 1.54	<2<.00 <2 .00 <2 .00 <2 .00 <2 .00	4 14 1 15 2 15
36 166.7-169.8 RE 36 166.7-169.8 RRE 36 166.7-169.8 36 169.8-172.8 36 172.8-175.9	1 .	52 47 43 7082 3328	3 <3 12		.5	55 51 64	34 35 40	711 732 946	7.34 7.24 7.50 8.63 8.73	<2 <2 <2	<5	<2 <2 <2	31 21 21	50 54 91	<.2 <.2 1.5	<2 <2 <2	<2 4 12	231 239 283	2.13 2.19 3.08	.492	23 23 27	129 132 104	1.47 1.51 1.99	143 134 282	.17 .15 .15	<3 3 <3	1.11 1.12 1.53	.04 .04 .05	1.00 1.02 1.27	<2<.00 <2<.00 <2<.00 <2<.00 <2 .00 <2 .00	1 - 1 - 2 16
36 175.9-178.9 36 178.9-182.0 36 182.0-185.0 36 185.0-188.1 36 188.1-191.1		6292 6934 5150 6832 15585	13 21 22	295 238 332	6.0 4.7 4.9	10 20 10	18 16 16	665 750 841	5.30 4.54 4.11 4.57 3.69	<2 <2 13	<5	<2 <2 <2	3	89 13 99	3.1 2.0 2.9	2 <2 <2	2 <2 <2	226 192 233	.67 .94 .93	.222 .068 .113 .053 .032	5 7 4	20 36 21	.95 .28 .66 .28 .54	49 45	. 13 . 17 . 13	<3 6 3	.45 .90 .52	.03 .05 .04	.19 .41 .19	<pre><2 .00 <2 .00 <2 .00 <2 .00 <2<.00 <2<.00 <2<.00</pre>	1 14 2 14 1 14
36 191.1-194.2 36 194.2-197.2 36 197.2-200.3 36 200.3-203.3 36 203.3-206.4	1 1		7 <3 3	112	6.3 1.0 .4	58 61	29 42 42	1024 958 985	7.49 7.73 8.42 8.91 6.63	7 4 2	<5 <5 <5 <5	<2 <2 <2	11 1 2 1 2 1	145 19 121	.5 <.2 <.2	4 2 <2	<2 2 <2	257 274 277	4.02 2.08 1.88	.149 .364 .318 .330 .314	25 17 18	123 123 96	1.74 1.99 2.05	47 167 141	.14 .25 .24	<3 <3 <3	1.15 1.46 1.54	.05 .06 .05	.63 1.16 1.27	<2<.00 <2 .00 <2<.00 <2<.00 <2<.00	4 14 1 16 1 16
RE 36 203.3-206.4 RRE 36 203.3-206.4 36 206.4-209.4 36 209.4-212.4 36 212.4-215.5	<1 1 <1 <1 1	85 809	<3 <3	115 109 126 98 56	.3 .8 .5	46 51	31 35 29	720 805 682	6.48 6.39 7.56 7.16 5.64	2 <2 3	<5 <5 <5	<2 <2 <2	2	87 87 84	<.2 <.2 <.2	2 <2 <2	5 <2 <2	208 258 276	1.45 1.48 1.85	.315 .300 .265 .406 .562	15 14 19	84 91 74	1.48 1.54 1.09	62 78 65	.21 .23	<3 3 <3	1.23 1.19 .77	.06 .04 .05	1.00 1.02 .64	<2<.00 <2<.00 <2<.00 <2<.00 <2<.00	1 - 1 15 1 15
36 215.5-218.5 36 218.5-221.6 36 221.6-224.6 36 224.6-227.7 36 227.7-230.7	<1 <1 <1	2011 1120 10395 7388 2914	<3 6 <3	95	1.1 7.4 4.7	69 62	32 33 23	669 724 536	6.78 8 77	<2 2 <2	<5 <5 <5	<2 <2 <2		66 81 64	.2 .8 <.2	<2 <2 <2	<2 2 <2	258 298 178	1.54 2.24 1.55	-486 -348	16 25 15	123 115 167	1.51 1.27 1.27	190 154 175	.21 .14 .20	<3 <3 <3	1.09 .86 .88	.05 .05 .04	1.00 .72 .80	<2 .00 <2<.00 <2 .00 <2 .00 <2 .00 <2 .00	1 17 4 17 4 15
36 230.7-233.7 STANDARD C2/AU-1	<1 19	3067 66	<3 38	120 136	2.7 7.5	66 72	35 37	774 1137	7.37 3.73	<2 38	6 16	<2 8	<2 36	74 50	.4 19.5	<2 18	<2 16	253 70	1.86	.400	18 37	113 60	1.84	265 191	.27 .07	<3 28	1.36	.05 .06	1.20 .14	<pre>>> .00 >> .00 >> .00</pre>	3 16 7 -

ANALYTICAL				Lу	ъа	nde	er	Gol	.d C	lorj	2.	PR	OJE	ECT	LC	RR	AIN	νE	FI	LĒ	#	96-	516	52		,				Paç	je 2	1	
SAMPLE#	1 -	Cu ppm			•										Cd ppn				Ca %		La ppm	Cr ppm			Ti %	B ppm		Na %			Au** S oz/t	AMPLE lb	
36 233.7-236.8 36 236.8-239.9 36 239.9-242.9 42 23.5-26.5 42 26.5-29.6	<1 <1 1	6247 537 3958 204 72	⊲ ⊲ ⊲	110 114 73	.8 2.8 .3	73 67 6	30 28 1	752 811 112	7.56 .44	<2 2 <2	<5 5 <5	<2 <2 <2	2 3 <2	73 95 32	<.2 .7	<2 <2 2	6 3 <2	213 280 6	1.62	.341 .529 .046	15 23 3	180 128 3	1.71	191 202 43	28. 24. 01.>	3 3 3	1.19 1.10 .43	.06 .06 <.01	.98 1.09 .92 .31 .32	<2 <2 <2	<.001 .004 <.001	17 15 16 9 12	
42 29.6-32.6 42 32.6-35.7 42 35.7-38.7 42 38.7-41.8 42 41.8-44.8	-		<3 <3 3	11 62	<.3 .4	2 61 36	2 25 15	148 760 567	2.92	3 2 <2	<5 9 <5	<2 <2 <2 <2	<2 <2 <2	37 146 116	.2 <.2 <.2	2 2 <2	<2 2 5	4 120 103	.73	.073	5 4 5 11 7 7	2 122 78	.13 1.97 1.21	15 265 82	01.> 19 11.	<3 <3 4	.43 1.35 .90	01 01 02	.31 .32 1.19 .72 .41	<2· 2· <2·	<.001 <.001	13 10 15 14 12	
RE 42 41.8-44.8 RRE 42 41.8-44.8 42 44.8-47.9 42 47.9-50.9 42 50.9-54.0	1 1 2	191 189 89 84 593	- 5 4 4	54 47 55	<.3 .4	9 10 14	12 13 14	632 529 567	3.22 3.98 5.11	<2 <2 <2	7 <5 9	<2 <2 <2	2 ~2 ~2	196 292 427	<.2 .2 .4	3 <2 <2	<2 2 2	114 164 208	2.01 1.84	.166	5 10 7 11 7 15	15 19 24	.74 .65 .62	58 59 69	.08 .10 .14	4 <3 <3	.80 1.17 1.59	'.19	.41 .31 .36	<2- 2- 2-	.001 <.001 <.001 <.001 <.001 <.001	- 12 13 13	
42 54.0-57.0 42 57.0-60.0 42 60.0-63.1 42 63.1-66.1 42 66.1-69.2	1 1 2 2 1	42 16 181 9 13	3 <3 3	46 43	<.3 .3 .4	9 9 8	11 10 11	550 590 537	4.13 3.80 3.84	<2 <2 <2	<5 6 <5	<2 <2 <2	2 2 2	404 839 540	<.2 <.2 <.2	<2 <2 <2	4 3 <2	175 171 150	2.36 1.33 2.24 1.57 2.60	. 164 . 145 . 156	; 12 ; 11 ; 12	23 19 22	.42 .53 .44	54 45 50	. 13 . 11 . 11	<3 <3 4	1.26 1.52 1.35	.36 .21 .39	.26 .27 .23	2 2 2	<.001 <.001 <.001 <.001 <.001	12 14 14 12 11	
42 69.2-72.2 42 72.2-75.3 RE 42 72.2-75.3 RRE 42 72.2-75.3 42 75.3-78.4	444	180 159 165 143 76	3 4 3	55 57 56	<.3 <.3 <.3 <.3 .3	8 6 7	11 10 11	692 710 713	3.22 3.31 3.33	<2 <2 <2	5 <5 <5	<2 <2 <2	<2 <2 <2	234 239 2 33	<.2 <.2	<2 <2 <2	<2 8 5	127 132 131	2.01	.129	2 11 1 12 2 11	18 20 19	.65 .67 .66	41 33 44	.13 .13 .13	<3 3 6	.84 .89 .83	09	.29 .29 .28	N N N N	<.001 <.001 <.001 <.001 <.001	12 11 - 12	
42 78.4-81.4 42 81.4-84.1 42 84.1-87.2 42 87.2-90.5 STAHDARD C2/AU-1	3 1 <1 <1 20	44 39 42	<3 <3 <3	53 70 59	.3 <.3 <.3	11 82 73	12 32 30	534 640 592	3.82 5.60 5.05	2 <2 <2	<s 5 <5</s 	<2 <2 <2	<2 2 2	516 197 263	<.2 <.2	2 <2 <2	6 <2 <2	159 145 125	1.32	.165 .110 .095	5 13 1 9 5 8	21 225 209	.58 2.13 2.07	80 182 208	.13 .23 .21	<3 6 9	1.04 1.48 1.55	. 12 3 .08 5 .15	1.21	\$ \$ \$	<.001 <.001 <.001 <.001 <.009	13 12 21 11	

.

.

1

1

.

Sample_type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

PHONE (604) 253-3158 FAX (604) 253-1716 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 ACME ANALYTICAL LABORATORIES LTD. GEOCHEMICAL ANALYSIS CERTIFICATE Lysander Gold Corp. PROJECT PAL File # 96-5163 1120 - 355 Burrard St., Vancouver BC V6C 2G8 P La Cr Mg Ba Ti B Al Na K ₩ Au* Mo Cu Pb Zn Ag Ni Co Mn Fe As U AU TH Sr Col Sb Bi V Сa SAMPLE# % ppm % ppm X X % ppm ppb % ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm 2 2 .32 3 2.95 .17 .43 <2 217 2.39 .118 5 106 1.65 66 13 321 5.02 2 90 <2 JR-001 56 4 30 <.3 25 <2 <5 <2 .2 2 5 2.94 .23 .11 2 5 6 32 .43 36 .2D .3 <2 2 157 .2 <2 <2 154 2.79 .125 4 355 6 16 <.3 22 26 231 4.90 `<5 JR-002 4 74 1.65 135 .31 3 2.36 .10 .65 <2 3 1 112 <3 24 <.3 46 21 354 3.43 <2 <5 <2 2 18 <.2 <2 <2 125 1.90 .116 JR-003 2 29 .17 9 .40 <3 1.12 .01 <.01 <2 8 5 7 .6 21 17 210 10.13 <2 174 1.70 .071 2 364 <2 <5 <2 2 160 .7 <2 JR-004 8 23 .08 .039 10 19 .03 1115 .01 <3 .26 .01 .12 62 7 16 32 130 15 1.2 8 5 371 2.49 <5 <2 <2 43 .2 4 <2 JR-005 16 32 131 14 1.4 8 5 364 2.45 <2 <5 <2 2 41 <.2 4 8 23 .08 .038 10 18 .03 1092 .01 <3 .26 .01 .12 7 62 RE JR-005 ICP - .50D GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. DATE RECEIVED: DCI 7 1996 DATE REPORT MAILED: O_{cf} 18/96

SAMPLE#	Mo		Pb Z	A	la N	i [10	Fe						St., Cd						La	Cr	Mg	Ba	<u></u> ті	В	AL	Na	ĸ	W Au**	SAMPLE
	ppn	ppm f	pa pp	n pp	m pp	m pp	an p	m	× 1	ppm (ppm	pp n	ppn	ppm	ppm	ppm	ppa	ppm	%		ppm	<u> </u>		ppm			• •.	<u>×</u>		ppm oz/1	
43 2.2-4.9 43 4.9-8.2		341 355	69 311	0 <. 8 <.	.3 1) .3 1/	2 1	16 71 22 101	314 345	.44 .19	<2 <2	<5 <5	<2 <2	<2 <2	151	.6	<2	<2	171	4.07	.188	- 14 -	- 17 -	1.23	221	.09	<3	1.29	.03	.41	<2<.00' <2<.00'	13
43 8.2-11.3	1	415	3 11	2 <.	3 1	4 7	20 10	394	.69	<2	<5	<2	<2	186	.6	<2	<2	170	2.88	.180 .163	12	16	1.54	223	.14	<3	1,29	.06	.57	<2<.00 <2<.00	14
43 11.3-14.3 43 14.3-17.4	1 1		4 10 5 8	14 <. 12 <.	.3 1	0 1	16 8	78 4 79 3	.51	<2 <2	<5	<2 <2	<2	172	.2	<2 <2	<2	95	3.85	.159	11	9	.64	214	.02	उ	,99			<2<.00	
43 17.4-20.4	1	227					27 16															84	1.67	104	.08	ও	1.65	.02	.58	<2<.00 <2<.00	1 14 1 13
43 20.4-23.5 43 23.5-26.5		103 853					19 16 16 14							442 325						.032	5	14	1.15	47	.13	<3	1.66	.29	.22	<2<.00	1 15
43 26.5-29.6 43 29.6-32.6	•	620 341	3 9	94 1. 94 2.	.2 .6	6 9 ·	9 7 11 10	05 4 92 4	.13 .30	<2 <2	<5 <5	<2 <2	2 4	392 445	.7 1.3	<2 <2	<2 <2	180 167	1.72	.038 .073	5 10	12 13	.27 .62	21 25	.08 .10	<3 <3	2.71 2.77	.75 .68	.10 .15	<2<.00 <2.00	1 14 2 14
43 32.6-35.7		662	6 39																	.061	10	18	.98	57	. 12	<3	1.68	.25	.40	<2.00	2 13
RE 43 32.6-35.7	63	494	6 38	333.	.31	0 '	13 15	364	. 19	2	<5	<2	4	380	1.3	<2	<2	173	2.10	.057	9	17	.93	53	,12	<3	1.60	.24	.37	<2,00 <2,00	
RRE 43 32.6-35.7 43 35.7-38.7	5	990	6 38 <3 25	57 1.	.1	8	13 15	4D 3	-88	<2	<5	<2	2	217	.5	<2	<2	142	3.49	.027	7	12	1,13	75	- 08	<3	1,00	.05	.28	<2.00	1 12
43 38.7-41.8	21	425	4 28																	.017									.22		
43 41.8-44.8 43 44.8-47.9		601 442	<3 9	25 K.	3 1	6 3	22 ID	16 5	. 18	2	<5	<2	<2	352	.8	2	<2	170	3.13	.208	14	- 17	1.64	274	.14	<3	1.28	.06	.67	<2 .00 <2<.00	1 12
43 47.9-50.9	1	700	5 9	22.	.4 1	4 7	20 7	71 4	.51	<2	<5	<2	<2	283	.7	<2	<2	161	1.52	. 198	11	14	1,25	299	. 18	<3	1,08	.08	.78	<2<.00 <2<.00	1 13 1 13
43 50.9-54.0 43 54.0-57.0		275 304	<3 10)2 <.	.3 1	5	21 7	95 4	.67	<2	<5	<2	<2	235	.4	<2	<2	171	1.28	.221	14	13	1.15	283	. 19	उँ	1.08	.07	.87	<2<.00	1 13
43 57.0-60.0	1	376	3 10)3 <.	.3 1	5	21 8	89 4	.77	3	<5	<2	<2	335	.5	<2	<2	161	1.90	.217	14	14	1.37	513	.20	<3	1.25	.08	1.01	2<.00	
43 60.0-63.1 43 63.1-66.1	2 1	298	<3 9	25 <.	.31	6	218	11 5	.05	3	<s< td=""><td><2</td><td><2</td><td>298</td><td>.6</td><td><2</td><td><2</td><td>191</td><td>1.42</td><td>.226</td><td>14</td><td>- 16</td><td>1.18</td><td>: 352</td><td>.21</td><td>< 5</td><td>1.09</td><td>.07</td><td>- 94</td><td><2<.00</td><td>1 15</td></s<>	<2	<2	298	.6	<2	<2	191	1.42	.226	14	- 16	1.18	: 352	.21	< 5	1.09	.07	- 94	<2<.00	1 15
43 66.1-69.2 RE 43 66.1-69.2	25 24	326 315	3 9	95 <. 91 <.	.3 1 .3 1	4 3	198 198	54 4 41 4	.55	<2 <2	<5 <5	<2 <2	2 2	454 441	.5 .6	<2 <2	<2 <2	158 157	1.93	,226 ,220	15 14	13 13	1.23	535 512	.20 .19	<3 <3	1.01	.07 .06	.89 .86	<2<.00 <2<.00	1 12 1 -
RRE 43 66.1-69.2	26	333	4 0	96 <.	.3 1	5	20 8	774	.70	3	<5	<2	<2	458	.6	2	<2	163	1.94	.230	15	14	1.25	554	.20	<3	1.03	.06	.90	<2<.00	1 -
43 69.2-72.2 43 72.2-75.3	26	\$358	17 1	38 L.	. 1	9	11 6	19 2	. 15	- 3	<5	<2	5	173	2.9	<2	<2	- 73	1.59	. 115	13	13	.53	175	.11	د>	.63	.04	. 59	<2 .00 <2<.00	1 14
43 75.3-78.3	4	675	<3 4	> 09	3 1	3	15 8	05 3	. 35	<2	<5	<2	4	216	. 5	<2	<2	115	2.01	.212	16	- 14	1.21	190	. 18	<3	.96	.06	.76	<2<.00	1 15
43 78.3-81.4	;																													<2<.00	
43 81.4-84.4 43 84.4-87.5	1	170	<3 12	27 <	.3 4	4	32 11	01 6	. 99	2	<5	<2	2	198	1.1	2	<2	Z21	2.87	.409	21 Z	78	2.17	225 '	.26	<3	1.53	.06	1.31	<2<.00	1 16
43 87.5-90.5 43 90.5-93.6	1 1 2	2441	<3.1	10 1	.7 5	in (32 9	13 5	.47	<2	<5	<2	<2	668	1.1	<2	<2	169	2.68	.486	25	- 79	2.65	527	.31	د>	2.24	- 17	1./>	<2 .00 <2<.00	11 36
43 93.6-96.6	1 1	1019	<3	93 1.	.7 4	4	31 8	04 6	.56	<2	5	<2	<2	616	1.0	<2	<2	202	2.43	.476	23	81	1.70	220	.23	<3	1.86	.33	1.09	<2<.00	1 16
43 96.6-99.7	<1	17	<3 1	10 <	.3 6	9	44 9	37 8	.58	<2	<5	<2	<2	453	1.4	<2	<2	268	2.91	.613	34	98	2.79	626	.21	<3	2.03	.08	1.95	<2<.00	1 15
STANDARD C2/AU-1																														11.05	· <u>·</u>
	1CP -	.500	GRAM IS P.	SAM	PLE I	S D	IGEST	ED W		3ML	3-1- р ма	2 80	L-HN	ю3-н	20 AT	95 MTTE	DEG. D FC	C FI	OR DN	IE HOU	IR AN	DIS	DILL	JTED	TO 1	D ML	WITH	I WAT	ER.		

					Ly	sai	nde	r G	old	l Co	orp	. I	PRC	JE	CT (LOF	RA	INE	2 F	TLĒ	#	96	5-52	274						Pa	ge	2	ACHE AN	
SAMPLE#	Mo		-	_	Ag Maqaj										63 mqq	Sb ppm			Ca %		La ppn			Ba ppm		B	Al %					oz/t		SAMPLE Lb
43 99.7-102.7 43 102.7-105.8 43 105.8-108.8 43 105.8-111.9 43 111.9-114.9	1	903 2053 2577 41375 6226	<3 <3 19	157 137 172	1.0 1.6 2.2 26.1 4.4	63 59 76	36 33 34	1026 861 661	8.14 7.59 9.12	2 <2 6	<5 <5 <5	<2 <2 <2	3 2 6	159 152 151	<.2 .2 6.0	<2 <2 <2	<2 <2 <2	265 251 : 294 :	2.83 2. <i>66</i> 4.69	.415 .497 .559 1.190 .659	24 26 62	155 129 97	2.44 2.03 .98	332 267 110	.31 .28 .10	ব্য 1 ব্য 1 ব্য	1,80 1,49 .58	.07 .07 .06	1.60 1.32 .42	<2<. <2<. <2	.001 .001 .015	- - - 001	- - - - -	15 14 19 16 16
43 114.9-118.0 43 118.0-121.0 43 121.0-124.1 43 124.1-127.1 43 127.1-130.2	1 <1 <1	5669 2675 3553 5831 260	ব ব্য ব্য	107 125 143	2.6	51 49 66	27 32 42	745 833 960	6.07 7.16 9.83	<2 <2 2	<5 <5 <5	<2 <2 <2	2 2 3	125 120	<.2 .3 .8	<2 2 <2	<2 <2 <2	192 230 338	2.41	.666 .493 .527 .517 .443	24 27 26	143 127 135	1.97 1.99 2.32	380 350 609	.27 .27 .28	<3 <3 <3	1.62 1.55 1.70	.08 .07 .06	1.24 1.32 1.60	<2<. <2 <2	.001 .001 .003			15 15 14 13 14
43 130.2-133.2 43 133.2-136.2 43 136.2-139.3 RE 43 136.2-139.3 RRE 43 136.2-139.3	<1 <1 <1	14120 4506 532 550 522	4 <3 <3	137 161 169	.6 .6	74 82 85	36 48 50	888 1085 1128	8.77 8.22 9.55 9.86 9.56	<2 <2 <2	<5 <5 <5	<2 <2 <2	2 <2 2	95 97 101	,4 .4 .6	2 <2 <2	2 2 2	279 333 344	2.19 1.81 1.90	.587 .473 .393 .414 .406	25 20 21	160 153 159	2.23 3.32 3.47	469 893 943	.27 .38 .39	<3 <3 <3	1.67 2.66 2.79	.06 .07 .07	2.69	<2 <2< <2<	.001 .001 .001		- - -	15 16 16
43 139.3-142.3 43 142.3-145.4 43 145.4-148.4 43 145.4-151.5 43 151.5-154.5	<1 <1 <1	3641 11637 6751 13749 6078	3 4 6	147 107 123	2.7 7.2 4.3 8.8 3.9	79 61 71	39 27 31	958 754 774	8.96 7.09 7.35	2 <2 <2	<5 <5 <5	<2 <2 <2	2 2 3	136 123 127	1.3 .9 1.1	<2 <2 <2	2 2 3	306 224 238	2.99 2.76 2.78	.373 .592 .466 .607 .591	31 22 32	137 154 170	2.35	381 256 271	.28 .22 .21	ব্য ব্য ব্য	1.62 1.14 1.27	.06 .08 .07	1.48 .99 1.08	<2 <2 <2	.005 .005 .008	- - -	- - -	15 13 15 17 15
43 154.5-157.6 43 157.6-160.6 43 160.6-163.7 43 165.7-165.7 43 166.7-169.8	<1 <1	4927 1053 1434 2363 3957	<3 <3	85 105 152	1.2	39 53 51	22 26 24	709 898 886	6.23 8.17 7.29	<2 <2 <2	ৎ ক হ	<2 <2 <2	2 2 3	127 189	<.2 .5	<2 <2 <2	<2 <2 <2	228 307 281	2.43 2.62 2.05	.566 .455 .477 .352 .024	22 24 17	96 142 97	1.33	212 172 207	.21 .22 .28	3 <3 <3	1.01 .97 1.51	.10 .10 .13	.72. 78. 1.02	<2 <2< <2	.001 .001 .002	- -	-	15 13 14 13 13
43 169.8-172.8 RE 43 169.8-172.8 RRE 43 169.8-172.8 43 172.8-175.9 43 175.9-178.9	3 3 3	4941 4813 4647 9397 3235	32 33 108	458 427 534	3.1 3.0 4.5	9 10 19	15 14 28	1488 1337 1419	8.29 7.88	2 2 2 3	<5 <5 <5	<2 <2 <2	<2 <2 <2	110 104 93	7.2	<2 <2 2	<2 <2 <2	505 467 337	.70 .66		2 2 2	22 25	.36 .32 .93	65 60 103	.22 .20 .31	<3 <3 <3	.84 79. 1.23	.08 .07 .07	.35 .34 .31 .88 1.49	<2 <2 <2	.004 .004 .006	-	-	15 - 14 15
43 178.9-182.0 43 182.0-185.0 43 185.0-185.1 43 188.1-191.7 43 191.7-194.7	2	3223 936 10482 6230 13252	5 17 2 111 2 85	7 331 487 344	6.5 8.4	51 11 7	20 16 11	1045 1095 553	6.58 5.58 3.97	3 3 2 7 2	<5 <5 <5	<2 <2 <2	5 2 2	161 89 235	.9 7.9 4.8	2 <2 <2	<2 2 2	266 258 170	1.75 .54 1.24	.155 .018 .011	9 2 3	106 26 16	1.63 .34 .22	181 63 70	.26 19 10, 1	5 <3 <3	1.76 .74 1.14	.10 .06 .09	.82 1.08 .44 .37 .55	<2< <2 <2	001 003 003			12 13 12 14 14
43 194.7-197.7 43 197.7-200.6 STANDARD C2/AU-1	2 1 22	14273 14394 61	12	289	12.3	17	18	846	7.31	<2	<5	<2	<2	159	2.7	<2	3	398	.43	.018 .021 .109	2	27	. 95	138	.29	<3	1.14	.08	. 99	<2	.019	-	-	14 12

i

1

÷.

ļ

÷

Sample type: CORE. Samples beginning /RE/ are Reruns and /RRE/ are Reject Reruns.

				Lyı	sar	ıde	r G	olo	1 C	orp	. I	PRO	JE(СТ	LOF	RRA	IŃI	2	FIL	E #	9	6-5	274	4					Pa	age 3		
SAMPLE#	Mo ppm														Cd ppm				Ca X		La ppm	Cr ppn		Ba ppm			Al %			₩ Au* opm oz/	* SAMPL	
43 200.6-203.9 43 203.9-206.4	3	14299 1944	43 25	590 179	8.9 1.3	16 87	21 28	730 721	5.46 5.67	<2 <2	হ হ	<2 <2	3 4	147 217	1.3	<2	<2	160 1	1.43	.186	11	224 🔅	2.43	203	.25	- 3	1.92	.07	1.46	<2 .00 <2 .00	1 1	1
43 206.4-209.4	1 ·	456	8	116	.3	94	26	619	4.99	<2	<5	<2	3	140	-2	<2	<2	145	.07	.106	8	252	2.48	250	.25	্র	1.90	.06. 08	1.51	<2<.00	1 1: 1 1:	-
43 209.4-212.4 44 0.6-4.6	1	556 93	8 8	24	د. 3.>	46 17	15 10	572 214	3.68	<2 <2	<5 <5	<2 <2	۵ 2>	229 71	-4 <_2	<2	<2	128	.54	. 124	8	40	.63	100	.17	<3	.67	.08	.49	<2 .00	2 1	
44 4.6-8.2	1,	92	8	23	<.3	ç	7	260	2.70	<2	<5	<2	<2	81	<.2	<2	<2	98	.72	. 103	7	16	.42	59	. 12	ও	.49	.07	.27	<2.00		7
44 8.2-11.3	1	271	9	53	<.3	32	12	468	3.73	<2	<5	<2	2	102	<.2	<2	<2	137	.62	.125	9	66	.91	97	.20	<3	.93	.07	.71	<2<.00	1 1	
44 11.3-14.3	1		6	86	<.3	50	17	726	4.31	<2	<5	<2	2	72	<.2	<2	<2	134	.87	.155	11	103	1.57	122	.25	<5 -7	1.44	-05	1.17	<2<.00	1 1	
44 14.3-17.4 44 17.4-20.4	1	92 147	6	52 59	<.3 <.3	46 64	14 19	531 594	3.94 5.18	<2 <2	<5 <5	<2 <2	<2 <2	123	<.2 <.2	<2 <2	<2 <2	138	1.05	.145	11	154	1.89	185	.31	<3	1.49	.09	1.21	<2<.00 <2<.00		
44 20.4-23.5	1	170	8	63	<.3	63	20	641	5.32	<2	<5	<2	<2	140	<.2	<2	<2	181	1.21	. 169	12	149	1.98	196	.35	<3	1.55	.08	1.23	<2<.00	1 1	-
44 23.5-26.5		234	8	61	<.3	43	14	606	4.31	3	<5	<2	<2	123	<.2	<2	<2	162	.92	. 150	10	97	1.29	139	.29	<3	1.23	.10	.91	<2<.00	1 1	4
RE 44 23.5-26.5		232	9	59	<.3	41	14	596	4.21	5	<5	<2	<2	123	<.2	<2	<2	159	.90	.148	10	95	1.25	138	.28	<3	1.21	-10	- 89	<2<.00	17	:
RRE 44 23.5-26.5 44 26.5-29.6	2	242 15	8 5	67 65	<.3 <.3	44 7	14 9	625 981	4.55	2 12	<5 <5	<2 <2	<2 <2	120 124	.2 <.2	<2 <2	<2 <2	172	.92 1.05	.150	13 13	16	.32	140 54	. 15	<3 <3	.62	.12	.25	<2<.00 <2<.00	1 1	4
44 29.6-32.6	1	7	5	63	<.3	2	9	872	3.98	6	<5	<2	<2	122	<.2	<2	2	97	.96	. 172	11	6	.33	50	. 13	<3	.75	.12	.30	<2<.00		5
44 32.6-35.7	1 1	Ś				Ž			4.67	4	<5	<2	<2	131	5.2	<2	<2	119	. 99	. 154	12	4	.45	65	, 18	<3	.89	. 13	.42	<2<.00)1 1	6
44 35.7-37.8	1	9			<.3		7	731	4.66	6	<5	<2	<2	118	<.2	<2	<2	97	1.03	.202	12	5	-28	50	. 15	্র	.66	.13	.26	<2<.00	1 1	6 6
44 37.8-41.8 44 41.8-44.5	1	7 82				8 47			4.52	5	<5 <5	<2 <2	<2 2	126 121	<.2 <.2	<2 <2	<2 <2	113 141	1.03	.202	12 10	19 113	.54 1.48	78 132	. 17	<3 <3	1.32	.08	1.25	<2<.00 <2<.00	01 1	5
44 44.5-45.6	15	451	8	50	.4	20	27	461	4.39	<2	<5	<2	<2	112	.2	<2	<2	8 2	- 82	.122	7	39	1.19	99	.23	<3	1.44	. 13	.97	<2<.00	•	5
44 45.6-47.9	2	83							4.04		<5	<2	<2	160	<.2	<2	~ 2	135	-96	. 155	11	102	1.36	142	.24	<3	1.26	-11	1.03	<2<.00		1
44 47.9-50.9		139	<3	147	<.3	74	24	895	6.10	3	<5	<2	<2	214	<.2	3	2	188	1.35	.192	13	158	2.28	177	.34	<3	2.10	.16	1.54	<2<.0	ר רו	4 6
44 50.9-54.0 44 54.0-57.0	24	524 158	7	84 92	.3 <.3	64 56	22 18	752 768	5.17	<2 <2	<5 <5	<2 <2	<2 2	273 278	<.2 <.2	<2 <2	2	172 158	1.57	. 181	13	142	1.76	201	.20	<3	1.92	.21	1.21	<2<.0	01 3	4
44 57.0-60.0	: . 2	63																												<2<.0	01 1	4
44 60.0-63.1	4	58							3.01		<5	<2	<2	382	<.2	<2	<2	88	1.78	.111	8	112	1.53	293	.15	- 3	1.81	.Z4	1.03	<2<.0	1 .	15
44 63.1-66.1		1744												315						.043										<2<.0		16
RE 44 63.1-66.1	12	1869	14	108	1.2	26	26	603	4.16	6	<5	<2	<2	338						.046										<2<.0		-
RRE 44 63.1-66.1	12	1851	14	107	1.3	27	28	595	4.19	7	<5	<2	<2	338	.6	<2	<2	70	1.25	.045	4	41	.83	113	. 14	د>	1.18	.15	.73	2<.0	- ,	
44 66.1-69.2	4	427							5.87						.3	2	<2	137	1.53	.120 .204	8 17	52	1.28	236	.20					<2<.0 <2<.0		15 15
44 69.2-72.2 44 72.2-75.3	4	11 17	4	64	<.5	01 5 8	20	5/.0	0,U5 7, 10	~2	<5 75	~27	2 7	168	<.2 < 2	~2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100	1.140	.158	11	130	1 74	278	.27					<2<.0		14
44 75.3-78.3	3	82							6.29						.4	<2	2	178	2.24	. 226	15	180	2.75	5 327	.30	<3	2.32	.21	1.57	<2<.0	01 .	16
44 78.3-81.4	1								6.27						.3	<2	<2	182	1.57	. 195	16	175	2.39	531	.30	<3	2.38	.36	1.45	<2<.0	01	15
44 81.4-84.4	20									<2	<5	<2	2	344	.3	<2	<2	113	2.58	. 138	13	14	.62	197	.06	<3	.88	.04	.59	<2<.0		14
44 84.4-87.3	3	144	25	119	.6	80	- 26	859	5.35	2	<5	<2	3	519	<.2	<2	<2	156	1,64	.140	13	201	2.59	> 343	.28	- 3	Z.86	41	1.55	<2<.0 100	u1 '	15

i I

÷.

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACT ME TIEL		Lysander Gold	Corp. PROJ	ECT LORRAINE FILE #	96-5274	Page 4
SAMPLE#	Mo Cu Po Zr ppm ppm ppm ppm	n Ag Ni Co Min Fe n ppm ppm ppm \$		Sr Cd Sb Bi V Ca P La pom pom pom pom z % pom		W AU** Pt** Pd** SAMPLE ppm oz/t oz/t oz/t 1b
44 87.3-53.5 44 90.5-93.6 44 93.6-95.6 44 96.6-99.7 44 99.7-102.7	163 866 451£ 5372 8 761 5128 3818 4 928 2085 1986 6 1081 197 1602 129 729 173 803	B 14.1 12 15.5949 5.36 B 10.3 13 16 5072 5.48 2 4.9 14 13 4043 4.30	- 6 - <5 <2 2 1 <2 <5 <2 <2 1 <2 <5 <2 <2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 39 1.59 102 .22 <3 1.49 .07 1.21 5 28 1.23 99 .19 <3	<2<.001 14 <2<.001 - 15 <2<.001 - 14
44 102.7-105.8 44 105.6-107.5 44 107.5-111.0 44 111.0-114.5 44 114.5-118.0	45 535 770 906 144 566 1836 889 3 118 22 83 5 59 <3 139 3 119 4 164	9 6.1 12 14 8508 5.35 3 .3 34 19 1069 4.24 9 <.3 79 35 1362 6.53	18 <5 <2 <2 <2 <5 <2 <2 < <2 <5 <2 <2 < <2 <5 <2 2 10		2 28 2.04 77 ,26 <3 1.76 .05 1.46	<2<.001 13 <2<.001 15 <2.002 - 16
RE 44 114.5-118.0 RRE 44 114.5-118.0 44 118.0-120.1 44 120.1-123.6 44 123.6-127.1	3 124 6 173 4 122 <3 170 31 1732 12 293 4 5051 30 338 3 5675 35 208	3 1.8 14 18 1954 5.37 5 6.0 9 12 1464 2.39	<pre><2 <5 <2 2 4 6 <5 <2 2 4 3 6 <2 2 1 </pre>		6 12 .92 56 .08 4 1.91 .23 .22	<2<.001 11 <2<.001 - 11 <2<.001 - 18
44 127.1-130.2 44 130.2-133.2 44 133.2-135.2 44 135.2-139.3 44 139.3-142.3	4 9909 32 410 3 10807 12 610 4 8528 20 5803 12 6653 14 596 2 12730 45 550	6 7.6 14 14 578 2.04 5 5.8 14 44 1040 4.11 8 2.7 20 57 926 5.54	2 <5 <2 2 <2 <5 <2 2 5 <5 <2 3		2 24 .29 41 .09 <3 .71 .03 .15	<2
44 142.3-145.4 44 145.4-147.5 44 147.5-151.0 44 151.0-154.5 RE 44 151.0-154.5	21 18657 128 193 3 1721 17 100 3 199 6 103		20 <5 <2 2 3 <5 <2 2	195 5.6 3 <2 61 3.17 .131 10 321 .3 <2	5 103 3.22 207 .22 <3 2.05 .05 1.12) <2 .005<.001<.001 8 ? <2<.001 - 17 ? <2<.001 - 16
RRE 44 151.0-154.5 44 154.5-157.6 44 157.6-153.6 44 160.6-163.7 44 163.7-166.7	3 204 E 10 2 597 E 7; 2 96 <3 3; 34 217 36 10; 2 492 7 10;	3 <.3 67 27 1103 3.97 6 <.3 19 11 734 1.99 1 <.3 23 19 1117 3.66	<2 <3 <2 5 2 6 <2 5 <2 <3 <2 2		9 183 2.93 184 .11 <3 1.89 .03 1 12 7 45 1.19 162 .05 5 1.03 .03 .44 11 33 1.48 497 .07 <3 .98 .05 .33	2 <2<.001 - 14 2 2<.001 - 12 7 2<.001 - 13
42 165.7-169.8 44 165.8-172.8 44 172.8-175.9 44 175.9-178.9 44 178.9-182.0		1 <.3 13 18 824 4.44	<2 <5 <2 <2 <2 <5 <2 2 <2 <5 <2 2 <2 <5 <2 2	250 <.2	11 29 .99 366 .02 <3 .94 .01 .27 11 16 1.26 960 .03 <3 1.12 .04 .53 12 11 1.13 538 .14 <3 .96 .05 .73	7 5<.001 13 3 <2<.001 13 3 <2<.001 15
44 182.1-185.0 44 185.0-188.1 STANDARD C2/AU-1	2 340 4 114 5 477 <3 107 21 58 45 14		<2 <5 <2 2		13 14 1.35 558 19 <3	5 2<.001 14

Sample type: CORE. Samples beginning [RE] are Renuns and [RRE] are Reject Renuns.

		-		<u> </u>	L3	/6a)	nde	r (Jold	L Co	prp	. P	ROJ	JEC	TL	ORF	RAI	NE	F	ILE	 #	96-	- 52'	74					I	Page	5	4		1CAL
SAMPLE#	Мо ррп	Cu Reqq	Pb ppn	Zri pom	-	Ni ppm	Ca ppm	Min ppm	-	As pom	-	Au ppm	Th ppm	Sr ppm	Cď pom	So ppm	Bi port	V pom	Ca گ		La ppm		Mg Z	ва ррт		B	A] %	Na X	K X	k' Au' ppm oza			* SAMF t	IPLE 15
44 188.1-191.1 44 191.1-194.2 44 194.2-197.2 44 197.2-200.3 44 200.3-203.8	63556	2830 602 978 2351 3309	7 5 8 6 9	111 95 101 75 114	2.4 .5 2.0 2.2	33 51 14 21 29	21 22 20 12 23	934 765 535	5.01 4.50 4.50 2.91 5.13	<2 <2 <2 <2 <2 <2	5 <5 <5 7 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	2 2 2	595 446 392 683 715	.3 * 2 * 2 4 .7	2 <2 <2 <2 <2 2	<2 <2 <2	141 167 103	1.90 2.81 1.69 1.40 2.19	.162 .192 .154	24 12 11 10 17	156 12 46	1.31 2.08 1.08 .95 1.39	143 168 334 91 168	.21 .22 .18 .12 .17	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.24 1.65	. 30	.80 1.10 .75 .64 .72	<2 .01 2<.01 <2<.01 <2<.01 <2<.01 <2 .01	01 D1 D1	- - -	-	14 15 14 16 15
44 203.8-207.3 44 207.3-210.7 44 210.7-212.4 44 212.4-215.5 44 215.5-218.6	1	414 951 9942 8703 11804	<3 10 6			44 48 52 40 50	37 34 30	1028 1048 961	8.02 7.18 6.78 6.07 7.36	2 <2 <2 2 <2	ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა	<2 <2 <2 <2 <2 <2	3 4 4	166 163 208 192 173	.4 .3 2.1 1.6 3.9	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 3 <2	254 220 189	2.93 2.29 4.11 3.92 2.83	.403 .475 .398	23 20 25 21 25	95 119 117	2.16 2.09 1.69 1.49 1.66	184 120 151	.24 .27 .18 .16 .25	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.16	.05		<2<.01 <2<.01 <2.01 <2.01 <2.01 <2.01	01 05 02	-	-	17 18 10 15 13
44 218.6-222.5 44 222.5-224.6 44 224.6-227.7 44 227.7-230.7 R5 44 227.7-230.7	2 1 1	29635 11800 10818 26748 26050	7 15 20 31 32	177 256 245	5.6 7.9 8.0 27.1 26.3	70 23 11 25 25	114 26 10 18 18	535 367 527	2,21 3.50	3 <2 <2 <2 <2 <2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<2 <2 <2 <2 <2 <2 <2	10 3 4 2 2	251 132 126 91 88		<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 3	175		.141	5B 8 3 2 2	83 47 22 24 24	.92 .57 .29 .35 .34	87 103 24 41 40	.17 .15 .09 .14 .13	66666	.88 .71 .79 .57 .55	.04 .04 .03 .04 .03	.42 .40 .12 .17 .17	<2 .0 <2 .0 <2 .0 <2 .0 <2 .0 <2 .0	05 06 13<.0	01 .00	- 01	19 15 15 16
RRE 44 227.7-230.7 44 230.7-233.8 44 233.8-237.2 44 237.2-239.9 44 239.9-242.9	<1 <1 <1	26285 20720 17699 2983 5836	10 13 <3	126 136 145	27.0 21.0 11.5 1.9 3.8	27 68 63 48 52	35 35 41	713 779 1045	3.57 8.07 6.52 8.73 8.27	<2 2 <2 2 2	\$ \$ \$ 5 \$ 5 \$ 5	<2 <2 <2 <2 <2 <2	2 4 2 2	142 218	5.1 3.6 2.8 .4 .7	<2 4 2 2 2	<2 <2 <2	305 200 318		. 497	2 25 28 28 24	132 84	.35 1.05 1.73 1.78 2.05	41 73 196 222 463	.14 .17 .23 .25 .31	2 2 2 2 2	.57 .58 1.07 1.27 1.57	.03 .05 .05 .05 .05		<2 0 <2 0 <2 0 <2 0 <2 0 <2 0	094.0 08 02	01 .00	12	17 20 14 17
45 8.2-11.3 45 11.3-14.3 45 14.3-17.4 45 17.4-20.4 45 20.4-23.5	2	3166 6109 124 1619 1549	$\nabla \omega \omega \omega v$	592 275 263 163	2.0 3.5 .8 .9	28 30 80 78 105	37 35 35	2367 1515 1675	12.92 13.87 7.61 9.73 7.23	41 45 3 2 <2	ŵ ŵ ŵ ŵ	<2 <2 <2 <2 <2 <2 <2 <2	6 9 <2 <2 <2	253 227 244		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2	736 268 404	2.23 2.14	.815 .288	70 96 19 16 12	71 168 164	2.15 1.78 3.05 2.95 3.51	98 426 312	.20 .19 .38 .38 .36	∾ ⇔	1.91 1.63 2.50 2.25 2.35	.04 .04 .06 .04 .05		<2 .0 <2 .0 <2 .0 <2 .0 <2 .0 <2< .0	63 62 02	•	- - -	13 14 15 16 14
45 23.3-26.5 45 26.5-29.6 45 29.5-30.9 RE 45 29.6-30.9 RRE 45 29.6-30.9	4 - 6 - 15	1555 6872 18283 14788 14728	S CH CH C	434	.9 5.6 10.8 10.6 9.6	67 41 63 67 6 4	34 44 41	1771 1680 1621	8.82 11.37 9.79 9.49 10.10	2 10 2 <2 <2	<5 <5 √7 7 5	< 2 2 2 2 2 2 2	3 <2 <2		3.2 5.1 4,9	~~~~~	000 000 000	552 378 367	3.53 2.32 2.22	.526 .776 .448 .438 .461	20	54 134 129	2.66 1.93 2.79 2.67 2.76	166 172 72 81 79	.29 .21 .42 .42 .42	$\Diamond \Diamond \Diamond$	1.79 1.72 2.39 2.30 2.35	.05 .05	1.04 .96 1.59 1.51 1.58	<.0<br 0<br 0<br 0<br 0<br 0</td <td>08 14 13</td> <td>•</td> <td>•</td> <td>13 15 7</td>	08 14 13	•	•	13 15 7
45 30,5-32,6 45 32,6-35,7 45 35,7-37,4 45 37,4-39,5 45 39,5-44,8	<] <] <] <] <]	783 139 221 6216 1511	00000 0000		<.3	140 88 80 71 62	44 34 42	1032 947 1116	7.66 9.09 8.51 10.72 11.01	<2 <2 <2 <2 <2	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2	178 220 128 179 244	2 .5	$\otimes \otimes \otimes \otimes \otimes \otimes$	2 4 V 2 4 V	281 299 413	1.91 1.70	.332 .447 .315 .450 .467		Z38 205 167	4.20 3.10 2.22 2.61 2.20	941	.51 .40 .36 .42 .33	$\Diamond \Diamond \Diamond$	3.23 2.35 1.68 2.09 1.59	.08 .07	2.92 1.98 1.29 1.63 1.21	<2 .0 <2<.0 <2 .0 <2 .0 <2 .0	101 101 106			10 15 9 12 29
45 44.8-27.9 45 47.9-50.9 STANDARD C2/AU-1	<1 1 20	312 21. 39		137	.3 .7 6.7	51 126 72	49	1015	11.21 9.49 4.09	<2 <2 38	<5 <5 16	<2 <2 7	<2			<2 2 18	<2	302	1.48	.525 .318 .107	21 14 39	281	1.89 3.67 .99	992	. 30 . 40 . 08	<3	1.36 2.72 2.07		.98 2.25 .13	<2<.0 <2<.0 11 .0	101	-		17 16

Sample type: COPE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

		1

A A A A A A A A A A A A A A A A A A A				L	ува	and	er	Gol	ld C	orŗ		PRO	JJE	CT	LOF	RA	INE	FI	LE ‡	‡ 9	6-52	274		_		_		Pa	ige 6	
SAMPLE#	Mo	Cu ppm				Ni ppm		Mn ppm		As ppm				Sr ppm		Sb ppm	Bi \ ppm ppm	Ca X		La ppm	-	-	Ba ppm	Ti % p	B xpm	Al %	Na %		W Au** ppm oz/t	
		1007	-7	457		133	54	1120	14.55	-2	-5	0	~	136	2.1	<2	<2 32	1.00	. 187	9	313 3	.84 1	124	.40	<3 :	2.85	.08	2.34	<2 .001	16
45 50.9-54.0 45 54.0-57.0		1887	-						8.51						4	<2	<2 26	2.09	.393	18	255 3	.08 1	162	.35	<3 :	2.21	.09	1.75	<2<.001	10
						69	12	746	10.10		š	<2	<2	274			<2 339			18	198-2	.45	781	.27	ও	1.67	.08	1.31	<2 .001	18
45 57.0-60.0						65	42	781	10.12	<2	<5	<2	<2	527			<2 344			19	163 2	.47	946	.27	<3	1.70	.08	1.30	<2<.001	17
45 60.0-63.1 45 63.1-66.1	<1	776	3	115	.5	61	48	911	11.69	<2	<5	<2	<2	600			<2 39				138 2	.69 1	020	.26	ও	1.91	.08	1.51	<2 .002	16
15 11 1 10 2	-1	933	7	17/	.9	70	43	1206	9.03	ð	4 5	<2	<2	373	1.1	<2	<2 29	5.53	.378	16	191 3	.32	932	.31	3	2.12	.07	1.69	<2 .002	16
45 66.1-69.2		153				69			10.12					263	. 9	<2	<2 34	2.53	.457	- 22	205 2	.69 1	1019	.31	<3	1.94	.08	1.49	<2<.001	10
45 69.2-72.2 45 72.2-75.3		11						9n1	11.24	<2	<5	<2	<2		1.0	<2	3 36	2.39	.536	25	190 2	.89 1	1040	.30	ও	2.13	.07	1.64	<2<.001	18
45 75.3-78.3			*			80	2.1	811	9.44	2	<5	0	<2	203	.7	<2	<2 27	2.13	. 423	17	212 2	.58	779	.28	ও	1.80	.07	1.35	<2<.001	17
45 78.3-81.4	<1								9.89					211	.8		<2 29	5 2.15	.414	16	212 2	.83 1	1033	.32	<3	2.06	.07	1.62	<2<.001	17
					. 7	87	.,	005	9.74	~2	~5	-2	~2	211	7	<2	<2 20	2.10	. 414	16	211 2	.83 .	1025	.33	ব	2.05	.07	1.60	<2 .008	3 -
RE 45 78.3-81.4		118							9.68					214	7	2	<2 20	2.10	-431	16	208 2	.86 1	1063	.35	<3	2.11	.07	1.67	<2<.001	-
RRE 45 78.3-81.4														149	2	02	<7 72	2 1 7	3 712	13	252 2	.60	710	.32	<3	1.82	-05	1.49	<2<.001	17
45 81.4-84.4		2	(5)	102	5.3	07	29	000	8.37 8.20						7	<2	<2 21	5.2.50	3.323	12	261 Z	-82	869	.34	<3	1.92	.05	1.64	<2<.001	1 16
45 84.4-87.4 45 87.4-90.5	1 <1	5 37	14 <3	114	<.3 <.3	90 72	50 43	1066	9.22	<2	<5	<2	<2	1253	.9	<2	<2 27	5 2.9	.382	14	184 3	.14	1315	.34	<3	2.20	.07	1.83	<2<.001	1 17
			-	445	,	4 0		1270	• •	<2	~5	-2	,	577	0	<2	<2 36	1 2.8	3.375	14	100 5	.09	1366	.54	<3	4.40	.30	2.64	<2<.00	
45 90.5-93.6	-	606	5	115	.4	60	44	12/0	8.99							-2	<2 32	6 2 2	5 .346	10	104 5	.56	2572	.63	<3	4.84	.22	3.47	<2<.00	
45 93.6-96.6	5	153	<5	152	د.>	- 63 70	43	1242	8.46 10.68	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	258		~2	<2 37	1 3.2	2 324	11	148 5	.20	1879	.49	<3	4.13	.09	3.26	<2<.00	
45 96.6-99.7	1	416					23	1217	9.90	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	284			<2 71	2 3 0	4 366	15	211 2	.95	1023	34	3	2.23	.07	1.75	<2<.00	1 17
45 99.7-102.7 45 102.7-105.8	<1 <1	15 15				78 58			9.90	2	\$	<2	<2	260 921		3	<2 27	4 2.8	,469	20	152 2	.68	1003	.27	<3	1.90	.06	1.41	<2<.0D	1 18
STANDARD C2/AU-1						_	- /		4.14		55				10.4	4.4	10 7		5 100	. 79	41	00	180	08	25	2 09	.06	- 14	10 .09	7 -

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ſ

<u></u>	BORATORIES LTD.	ASSAY CER	NCOUVER BC V6A 1R6		FAX (604) 253-1716
	<u>Lysander G</u>	ld Corp. PROJECT LOR		274R Page 1	<u>e</u> e
	- 12 Million & M	SAMPLE#	Pt** Pd** oz/t oz/t		
		$\begin{array}{r} 45 & 8.2 - 11.3 \\ 45 & 11.3 - 14.3 \\ 45 & 14.3 - 17.4 \\ 45 & 17.4 - 20.4 \\ 45 & 20.4 - 23.5 \end{array}$	<.001<.001 <.001<.001 <.001<.001 <.001<.001		
		45 23.5-26.5 45 26.5-29.6 45 29.6-30.9 RE 45 29.6-30 RRE 45 29.6-30	<pre>.001<.001 4.001 .001 4.001 .001 4.001 .001 9 4.001 .001 0.9 4.001 .001</pre>		
		45 30.9-32.6 45 32.6-35.7 45 35.7-37.4 45 37.4-39.5 45 39.5-44.8	<pre><.001<.001 <.001<.001 <.001 .001 .001 .003 <.001 .001</pre>		
		45 44.8-47.9 45 47.9-50.9	<.001<.001 <.001<.001		
		- SAMPLE TYPE: ROCK PULF <u>Samples beginning (RE' a</u> /	are Reruns and 'RRE' are Reject		ERTIFIED B.C. ASSAYERS
DATE RECEIVED: N	NOV 6 1996 DATE REPO	ort mailed: $Nov 13/96$	SIGNED BY	ZD.TOYE, C.LEONG, J.WANG; C	
DATE RECEIVED:)	NOV 6 1996 DATE REPO	ort mailed: $Nov 13/96$	SIGNED BY	ZD.TOYE, C.LEONG, J.WANG; C	
DATE RECEIVED:)	NOV 6 1996 DATE REP(DRT MAILED: NOV 13/96	SIGNED BY	ZD.TOYE, C.LEONG, J.WANG; C	
DATE RECEIVED:)	NOV 6 1996 DATE REPO	DRT MAILED: NOV 13/96	SIGNED BY.	ZD.TOYE, C.LEONG, J.WANG; C	
DATE RECEIVED:)	NOV 6 1996 DATE REP(DRT MAILED: NOV 13/96	SIGNED BY	ZD.TOYE, C.LEONG, J.WANG; C	
DATE RECEIVED:)	NOV 6 1996 DATE REP(DRT MAILED: NOV 13/96	SIGNED BY.	ZD.TOYE, C.LEONG, J.WANG; C	
DATE RECEIVED:)	NOV 6 1996 DATE REP(DRT MAILED: NOV 13/96	SIGNED BY.	ZD.TOYE, C.LEONG, J.WANG; C	

Lysander Gold	Corp. PROJECT LORR.	AINE FILE # 96-5274R	Page 2	ACHE ANALYTICAL
	SAMPLE#	Pt** Pd** oz/t oz/t		
	45 50.9-54.0 45 54.0-57.0 45 57.0-60.0 45 60.0-63.1 45 63.1-66.1	<.001 .001 <.001 .001 .001 .002 <.001 .001 <.001 .001		
	45 66.1-69.2 45 69.2-72.2 45 72.2-75.3 45 75.3-78.3 45 78.3-81.4	.001 .002 <.001 .001 <.001 .001 <.001 .001 <.001<.001 <.001 .001		
	RE 45 78.3-81. RRE 45 78.3-81 45 81.4-84.4 45 84.4-87.4 45 87.4-90.5	4 <.001<.001 .4 <.001 .001 <.001<.001 <.001<.001 <.001<.001		
	45 90.5-93.6 45 93.6-96.6 45 96.6-99.7 45 95.7-102.7 45 102.7-105.8	<pre><.001 .001 <.001 .001 <.001 .001 <.001 .001 <.001<.001 <.001<.001 <.001<.001</pre>		
Sample type: ROCK_PULP.			are Reject Reruns.	

J

APPENDIX 4 - ROCK DESCRIPTIONS

,

Rock Descriptions (Morton, Lindinger)

. .

WAS-MR-101	Pal 36 Claim Subcrop 1950 m elevation, gossanous, strong pyrrhotite2-5% by volume, fine grained, foliated 010,080°E,underlain by biotite-hornblende mafic intrusive.	Cu 241 ppm	Au 12 ppb
WAS-MR-102	Pal 36 claim Outcrop, elevation 1770 m, (old sample AS-89-27), pyritic gossan, sheared chlorite altered,some argillization, rock is best classified as as diorite, some shearing 340, 080 W.	180 ppm	8 ррb
WAS-MR-103	Pal 36 claim elevation 1770 m Subcrop, porphyritic syenite, minor magnetite, mafics predominantly epidote altered augite.	44 ppm	3 ррb
WAS-MR-110	Pal 36 claim elevation 1700 m 26 metres south along valley bottom from talus fine sample WAS-MTF-109, grey-pink syenite, abudant magnetite, possible trace bornite.	223 ppm	Зррb
ATO-MF-001 (Ato Grid)	Float, very high sulfide boulder approximately 20 kg, approximate location at grid 9990N, 10135 E.	2.100%	453 ppb
ATO- MF-002 (Ato Grid)	massive magnetite-chalcopyrite boulder, approximately 10 kg, approximate location 9990N, 9965E.	0.191%	29 ppb
ATO-MR-003 (Ato Grid)	Subcrop, large talus slab appx. 1 ton, very magnetic pyroxenite with sections of massive magnetite, kspar veinlets and pegmatitic sections, moderate to strongly mineralized by disseminated and bleby chalcopyrite, minor bornite.	0.188%	91 ppb
ATO-MR-004 (Ato Grid)	Massive sulfide pod or vein, strike 012 075NE, at grid location 10072N, 9995E.	10.000%	4059 ppb
ATO-MR-005 (Ato Grid)	High sulfide biotite pyroxenite host to the massive sulfide pod.	0.642%	317 ppb

_

ATO-MR-006 (Ato Grid) EC-MR-01	Volcaniclastic, best guess rhyodacite, banded, approx. 2% pyrrhotite. Talus sample 103002 133+00 (1996 Gravel grid).	Cu 0.161%	Аи 64 ррb
Seepage site 111097	Immediately downslope from L-96-36.		
LL-96-002	Gossanous fine grained pyritic syenite, from fault bound block halfway up cliff, above Webber Zone (Kennecott 1991 sample 103317).	0.070%	<.001 oz/t
LL-96-003	50m at 160 from (C.E.C 1990 sample 943343). (on chimney 260 from hole L-95-36).	0.843%	0.006 oz/t
High grade shear 040 .			
LL-96-004	In fault zone, somewhat chalcedonic.	1. 99 4%	0.021 oz/t
LL-96-005	In fault zone (045,̈́70-̊80 ̂SW), somewhat chalcedonic.		
Kennecott 130340			
LL-96-006	In fault zone.	1.097%	0.042 oz/t
LL-96-007 LL-96-008 LL-96-009	these grabs are taken perpendicular to the gully forming the fault zone from a point starting 15 m North of the gully.		
ŁL-96-007		1.039%	0.006 oz/t
LL-96-008		0.849%	0.004 oz/t
LL-96-009		0.176%	0.005 oz/t
LL-96-010	Foliated syenite from the fault zone below LL-956-009. (pyroxenite in vicinity).	0.439%	0.005 oz/t

LL-96-011 LL-96-012	Chip sample taken over 20 m of of a quartz stockwork in the shear zone, quartz veins to 10 cm. (veins 090, 080) Talus fine sample taken	Cu 0.019%	Au 0.006 oz/t
	at the foot of the exposed fault zone 20 m SE. of 1996 grid 109+00 sample 101010.		
LL-96-013	Talus fines sample ? Taken above sample -035 (Kennecott 1991 sample # 130035 ?).	1.728%	0.008 oz/t
LL-96-14	85 m at 275 From L-91-12	0.570%	0.014 oz/t
LL-96-15	approx. 30 m at 360 from LL-96-14, magnetite rich pyroxenite with disseminated chalcopyrite.	0.430%	0.007 oz/t
Samples from above talus sample TF03 49+400 103231 Steel 3 claim Where the crew believed a new breccia had been located 96-FR-01 96-FR-02			
96-FR-01	Equigranular,hornblende granodiorite, some sericite, greater than 5% pyrite.	0.014%	<.001 oz/t
96-FR-02	Feldspar porphyry, fine grained green groundmass, 2-5% tarnished pyrite.	0.006%	<.001 oz/t
Pal 32 -P4N	No description, post 4 north on Pal 32 claim line.	23 ppm	73 ppb

_ _ _

APPENDIX 5 COST STATEMENTS AND TIME DISTRIBUTION

 $\{2_1, \dots, 2_{n+1}, \dots, 2_{n+1}, \dots, 2_n\}$

Date	Crew Members See Code	Crew Charges	Helicopter Hours	Helicopter Costs	Camp Costs R&B	Camp Rental	Satalite Costs	Vehicle Costs
Aug-01							1183	2000
Aug-02	M,JP	\$450			\$100	\$70		
Aug-03	M,JP,D	\$675			\$150	\$70	\$100	
Aug-04	M,JP,D	\$675			\$150	\$70	\$100	
Aug-05	M,JP,D,R,JG	\$1,250			\$250	\$70	\$100	
Aug-06	M,JP,D,R,JG	\$1,250			\$250	\$70	\$100	
Aug-07	M,JP,D,R,JG	\$1,250			\$250	\$70	\$100	
Aug-08	M,JP,D,R,JG	\$1,250			\$250	\$70	\$100	
Aug-09	M,JP,D,R,JG	\$1,250			\$250	\$70	\$100	
Aug-10	M,JP,D,R,JG	\$1,250			\$250	\$70	\$100	
Aug-11	M,JP,D,R,E	\$1,300			\$250	\$70	\$100	
Aug-12	M,JP,D,R,E	\$1,300	5.6	\$4,760	\$250	\$70	\$100	
Aug-13	M,JP,D,R,E	\$1,300	5.3	\$4,505	\$250	\$70	\$100	
Aug-14	M,JP,D,R,E	\$1,300	2	\$1,700	\$250	\$70	\$100	
Aug-15	M,JP,D,R,E	\$1,300	2	\$1,700	\$250	\$70	\$100	
Aug-16	M,JP,D,R,E	\$1,300	2.3	\$1,955	\$250	\$70	\$100	
Aug-17	M,JP,D,R,E	\$1,300	0.8	\$680	\$250	\$70	\$100	
Aug-18	M,JP,D,R,E	\$1,300	1.5	\$1,275	\$250	\$70	\$100	
Aug-19	M,JP,D,R,E	\$1,300	0.7	\$595	\$250	\$70	\$100	
Aug-20	M,JP,D,R,E	\$1,300	1.7	\$1,445	\$250	\$70	\$100	
Aug-21	M,JP,D,R,E	\$1,300		\$0	\$250	\$70	\$100	
Aug-22	M,JP,D,R,J,E	\$1,550		\$0	\$250	\$70	\$100	
Aug-23	M,JP,D,R,J,E	\$1,550	1.4	\$1,190	\$250	\$70	\$100	
Aug-24	M,JP,D,R,J,E	\$1,550	2	\$1,700	\$250	\$70	\$100	
Aug-25	M,JP,D,R,J,E	\$1,550	2.4	\$2,040	\$250	\$70	\$100	
Aug-26	M,JP,D,R,J,E	\$1,550	1.7	\$1,445	\$250	\$70	\$100	
Aug-27	M,JP,D, J,E,BM,JG	\$2,025	2.2	\$1,870	\$450	\$70	\$100	
Aug-28	M,JP,D, J,E,BM,JG	\$2,025	1.5	\$1,275	\$400	\$70	\$100	
Aug-29	M,JP,D, J,E,BM,JG	\$2,025		\$0	\$400	\$70	\$100	
Aug-30	M,JP,D, J,E,BM,JG	\$2,025		\$0	\$400	\$70	\$100	\$1,978
Aug-31	M,JP,D, J,E,BM,JG	\$2,025					\$1,183	
Sep-01	G,J,D,E	\$1,100		\$0	\$100	\$70		
Sep-02	G,J,D	\$700		\$0	\$100	\$70	\$100	
Sep-03	G,J,D	\$700		\$0	\$100	\$70	\$100	
Sep-04	G,J,D	\$700	2.5	\$2,125	\$100	\$70	\$100	
Sep-05	G,JP,J,D,Jn	\$1,165	2.3	\$1,955	\$200	\$70	\$100	
Sep-06	G,JP,J,D,Jn,F	\$1,390	2.5	\$2,125	\$250	\$70	\$100	
7-Sep	G,JP,J,D,Jn,F	\$1,390		\$0	\$250	\$70	\$100	
8-Sep	G,JP,J,D,Jn,F	\$1,390	2.3	\$1,955	\$250	\$70	\$100	
9-Sep	G,JP,J,D,Jn,F	\$1,390	2.9	\$2,465	\$250	\$70	\$921	
10-Sep	G,JP,J,D,Jn,F	\$1,390	2.5	\$2,125	\$250	\$70	\$100	
11-Sep	G,JP,D,Jn,F	\$1,140	2.5	\$2,125	\$200	\$70	\$100	
12-Sep	G,JP,D,Jn,F	\$1,145	2.6	\$2,210	\$200	\$70	\$100	
13-Sep	G,JP,D,Jn,F	\$1,145	2.5	\$2,125	\$200	\$200	\$100	
14-Sep	G,JP,D,Jn,F	\$1,145	. -	\$0	\$200	\$200	\$100	
15-Sep	G,JP,D,Jn,F	\$1,145	2.2	\$1,870	\$200	\$200	\$100	

	16-Sep	G,JP,D,Jn,F,B,Jt	\$1,550		\$0	\$200	\$200	\$100	
	17-Sep	G,JP,D,Jn,F,B,Jt	\$1,550		\$0	\$200	\$200	\$100	
	18-Sep	G,JP,D,Jn,F,B,Jt	\$1,550		\$0	\$200	\$200	\$100	
	19-Sep	G,JP,D,Jn,F,B,Jt	\$1,550		\$0	\$200	\$200	\$100	
	20-Sep	G,JP,D,Jn,F,B,Jt	\$1,550		\$0	\$200	\$200	\$100	
	21-Sep	G,JP,D,Jn,F,B,Jt	\$1,550		\$0	\$200	\$200	\$100	
	TOTALS		\$67,810	57.90		\$11,600		\$7,987	\$3,978
	Assay	717 Talus Fine Sam	ples @ \$14.86		\$10,655				
		776 Seapage Samp	les @ \$17.30		\$13,425				
		209 Soil Samples @	\$12.71		\$2,656				
		49 Rock Samples @	\$15.41		\$755				
	Report pro	eparation			\$5,000				
	TOTAL	\$185,994	L .						
	M (Mike N	/lustard)		\$225.00					
	•	Pierre Charbonneau)		\$225.00					
	D (Del We	ebb)		\$225.00					
	R (Ron Ve	edd)		\$225.00					
	J (Jim Gre	een)		\$225.00					
	G (George	e Charbonneau)		\$250.00					
	F (Franco	is Larocque)		\$225.00					
	JC (John	Campbell)		\$240.00					
	B (JW.(Bi	II) Morton P.Geo)		\$350.00					
	JG (John	Gravel P.Geo)		\$350.00					
1	E (EriK O	stensoe P.Geo)		\$400.00					

. ____.

ATV Rental Mincord	Rental	Commer Airline	Fixed Wing	Freight	Equipment Purchase and Maps
		\$285		1200	2000 \$2,945

- - - --

\$570

\$540

\$290

\$855 \$800

\$313

\$638

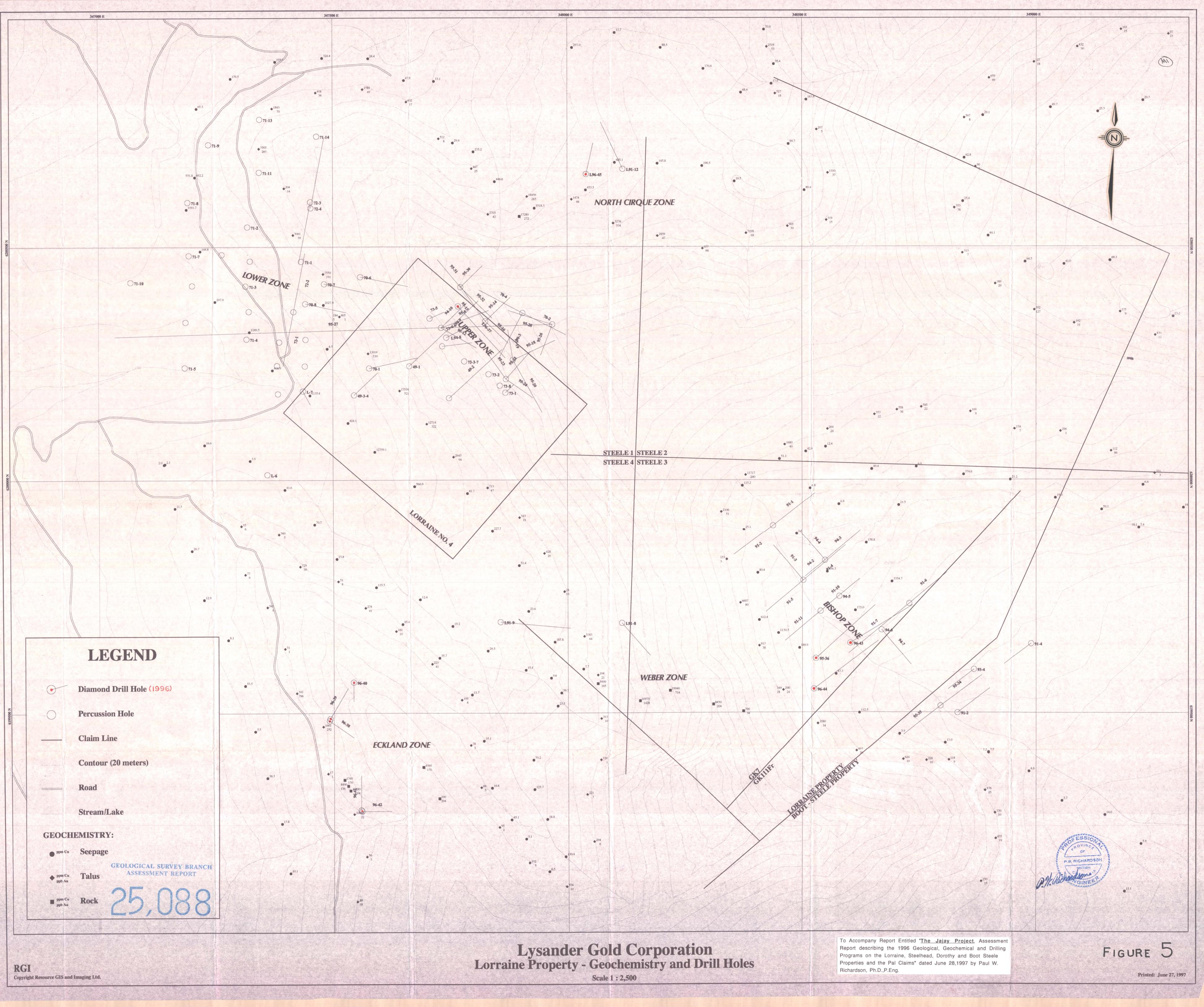
\$150 \$50 \$150 \$50 \$150 \$50

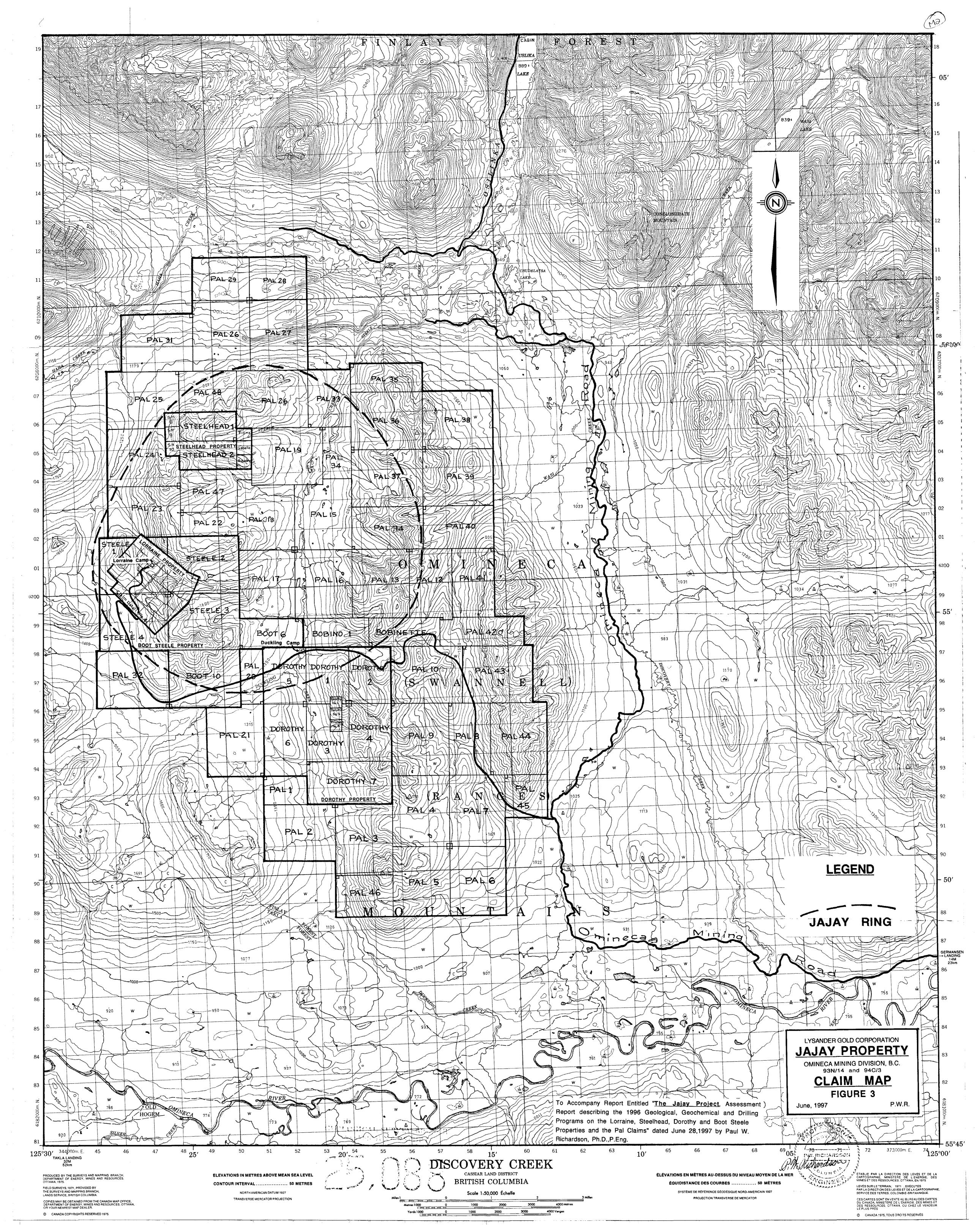
\$1,350	\$450	\$3,491	\$1,696	\$1,200	\$4,945
\$150	\$50				
\$150	\$50				
\$150	\$50				
\$150	\$50				
\$150	\$50				
\$150	\$50		\$896		

Date	Satalite Costs	Vehicle Costs	ATV Rental Mincord	ATV Rental Georg <i>e</i>	Commer. Airline	Charter Fixed Wing	Freight	Equipment Purchase and Maps
22-Sep	\$100		\$150	\$50				
23-Sep	\$100		\$150	\$50				\$747
24-Sep	\$100		\$150	\$50				
25-Sep	\$100		\$150	\$50				
26-Sep	\$100		\$150	\$50				
27-Sep	\$100		\$150	\$50				
28-Sep	\$100		\$150	\$50				
29-Sep	\$100		\$150	\$50				
30-Sep	\$1,140	\$1,710	\$150	\$50			\$278	
1-Oct	\$200		\$150	\$50				
2-Oct	\$200		\$150	\$50				
3-Oct	\$200		\$150	\$50				
4-Oct					\$982			
5-Oct								
6-Oct								
12-Oct		\$1,789					\$1,789	
31-Oct	\$1,030		\$531					
	\$3,570	\$3,499	\$2,331	\$600	\$982		\$2,067	\$747

A set of the set of

.


TOTAL \$216,389


JP (Jean Pierre Charbonneau) \$225	5.00
D (Del Webb) \$225	5.00
G (George Charbonneau) \$250	00.(
F (Francois Larocque) \$225	5.00
JC (John Campbell) \$240	00.0
Jn Janet McConville) \$350	00.0
BW (Barb Webb) \$250	00.0
B (JW.(Bill) Morton P.Geo) \$350	00.0
LL (Leo Lindinger P.Geo.) \$350).00

1996 Diamond Drill Program Costs

...

Date	Crew	Crew	Helicopter	Helicopter	Camp	Camp
	Members	Charges	Hours	Costs	Costs	Rental
	(see code)				R&B	
22-Sep	G,JP,D,JC,F,BW	\$1,365		\$0	\$200	\$200
23-Sep	G,JP,D,JC,F,BW	\$1,365		\$0	\$200	\$200
24-Sep	G,JP,D,JC,F,BW	\$1,365		\$0	\$200	\$200
25-Sep	G,JP,D,JC,F,BW	\$1,365		\$0	\$200	\$200
26-Sep	G,JP,D,F,JC,Jn,BW,BM,LL	\$2,415	0.8	\$680	\$200	\$200
27-Sep	G,JP,D,F,JC,Jn,BW,BM,LL	\$2,415	3.5	\$2,975	\$200	\$200
28-Sep	G,JP,D,F,JC,Jn,BW,BM,LL	\$2,415	1.7	\$1,445	\$200	\$200
29-Sep	G,JP,D,F,JC,Jn,BW,LL	\$2,065	1.9	\$1,615	\$200	\$200
30-Sep	G,JP,D,F,JC,Jn,BW,LL	\$2,065	0.7	\$595	\$200	\$200
1-Oct	G,JP,D,F,JC,Jn,BW,LL	\$2,065	2.8	\$2,380	\$200	\$200
2-Oct	G,JP,D,F,JC,Jn,LL	\$1,840	2.8	\$2,380	\$200	\$200
3-Oct	G,JP,D,F,JC,Jn,LL	\$1,840	6.6	\$5,610	\$200	\$200
4-Oct	G,JP,F	\$675			\$100	\$200
5-Oct	G,JP,F	\$675			\$100	\$200
6-Oct	G,JP,F	\$675			\$100	\$200
12-Oct						
31-Oct	G	\$450			\$446	
		\$25,055	20.80	\$17,680	\$3,146	\$3,000
Contract Diamond Drilling			141,797			
412 core Samples @ \$25.82			10,638			
Report Preparation			2,000			

