
GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

on the

92H-7E, 8W (49° 18' North Latitude, 120° 28' West Longitude)

for

MORELEIGH MINERALS CORPORATION

6976 Laburnum Street Vancouver, BC V6P 5M9 (Operator)

and

GRANT F. CROOKER Box 404 Keremeos, BC V0X 1N0 (Owner)

by

GRANT F. CROOKER, P.Geo., CONSULTING GEOLOGIST

May 1997

TABLE OF CONTENTS

		177
1.0	SUMMARY AND RECOMMENDATIONS	1
2.0	INTRODUCTION	3
	2.1 GENERAL	3
	2.2 LOCATION AND ACCESS	3
	2.3 PHYSIOGRAPHY	3
	2.4 PROPERTY AND CLAIM STATUS	3
	2.5 AREA AND PROPERTY HISTORY	4
3.0	EXPLORATION PROCEDURE	8
	3.1 GRID PARAMETERS	8
	3.2 GEOCHEMICAL SURVEY PARAMETERS	8
	3.3 GEOPHYSICAL SURVEY PARAMETERS	9
4.0	GEOLOGY AND MINERALIZATION	10
	4.1 REGIONAL GEOLOGY	10
	4.2 STRUCTURAL GEOLOGY	10
	4.3 CLAIM GEOLOGY	11
	4.4 ALTERATION	13
	4.41 Pervasive Alteration	13
	4.42 Structurally Controlled Alteration	15
	4.5 MINERALIZATION	16
5.0	GEOCHEMISTRY	18
	5.1 SOIL GEOCHEMISTRY	18
	5.11 Inter-Element Association	18
	5.12 Geochemical Anomalies	18
	5.13 Geochemical Response	21
6.0	GEOPHYSICS	22
	6.1 MAGNETIC SURVEY	22
	6.2 VLF-EM SURVEY6.3 GEOPHYSICAL RESPONSE	22
	6.3 GEOPHYSICAL RESPONSE	22
7.0	CONCLUSIONS	25
8.0	RECOMMENDATIONS	27
9.0	REFERENCES	28
10.0	CERTIFICATE OF QUALIFICATIONS	31

PAGE

FIGURES

		PAGE
Figure 1.0	Location Map	follows 2
Figure 2.0	Claim Map	follows 3
Figure 3.0	Compilation of Previous Work	follows 4
Figure 4.0	Copper Mountain Geology	follows 10
Figure 5.0	Claim Geology	pocket
Figure 6.0	Soil Geochemistry - Cu & Au	pocket
Figure 7.0	Soil Geochemistry - Zn & Ag	pocket
Figure 8.0	Compilation	pocket
Figure 9.0	Proposed Exploration - Target Areas	pocket
Figure G1	Ground Total Field Magnetic Contours	pocket
Figure G2	Ground Total Field Magnetic Profiles	pocket
Figure G3	NLK, Seattle, WA, VLF EM Profiles	pocket
Figure G4	Geophysical Interpretation Map	pocket

TABLES

Table 1.0	Claim Data	3
Table 2.0	Anomalous Rock Geochemical Values	16
Table 3.0	Soil Geochemical Inter-Element Correlation Matrix	18
Table 4.0	Anomalous Soil Geochemical Values	19
Table 5.0	Proposed Exploration Target Areas	26

APPENDICES

-Certificates of Analysis

Appendix I
Appendix II
Appendix III
Appendix IV
Appendix V
Appendix VI
Appendix VII
Appendix VIII

.

-Magnetic and VLF EM Data -Geophysical Equipment Specifications -Geophysical Interpretation

-Report on Thin Sections

-Rock Sample Descriptions

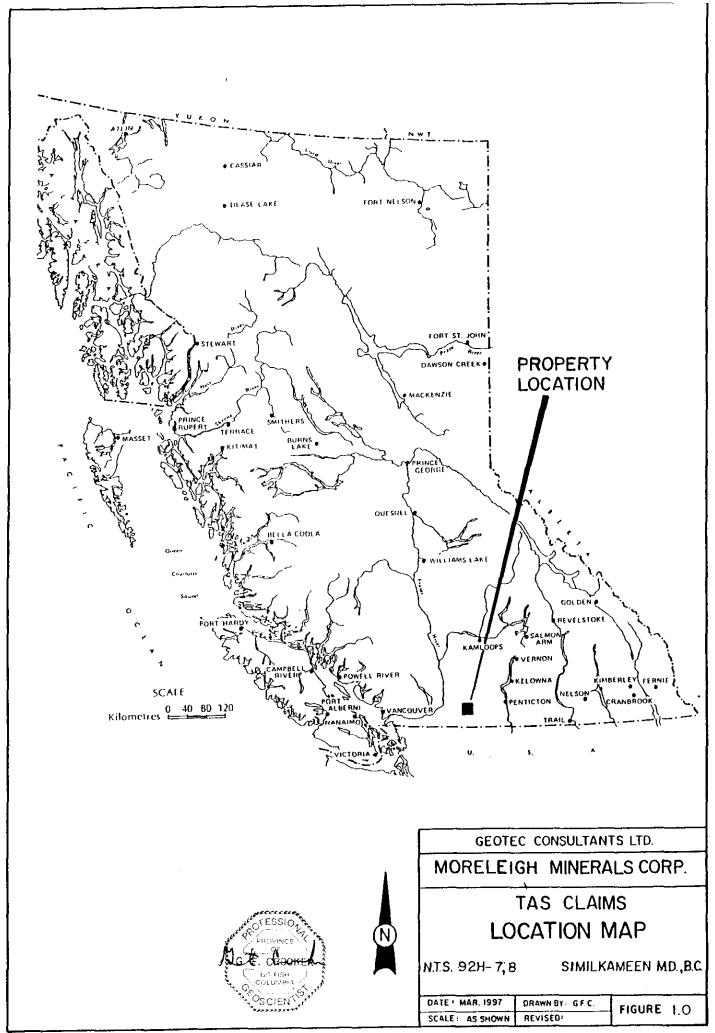
-Summary of 1996 Work

-Cost Statement

1.0 SUMMARY AND RECOMMENDATIONS

The Tas mineral claims are located approximately 17 kilometres south of Princeton and 3 kilometres east of Copper Mountain in southern British Columbia. The property consists of three four-post mineral claims covering 60 units in the Similkameen Mining Division, and is owned by Grant Crooker of Keremeos, BC. Moreleigh Minerals Corporation of Vancouver, BC has an option to purchase the claims.

The Copper Mountain area has been the scene of copper exploration since the 1880's and has been a significant producer of copper, gold and silver. Copper Mountain was operated as an underground mine by the Granby Consolidated Mining, Smelting and Power Company Limited during two periods, from 1926 to 1930, and from 1937 to 1957. During this time 34,775,101 tons of ore were processed producing 613,139,846 tons of copper, 187,294 ounces of gold and 4,384,097 ounces of silver.


The camp lay dormant until 1966 when Granby resumed exploration at Copper Mountain and Newmont Mining Corporation initiated exploration at the Ingerbelle property on the west side of the Similkameen River. In 1967 Newmont purchased Copper Mountain from Granby and by 1969 had outlined two ore bodies at Copper Mountain and the Ingerbelle orebody. Mining by open pit methods commenced in 1972, and has been almost continuous since then. Production has been approximately 20,000 tons of ore per day at a grade of 0.44% copper, with recoverable values in gold and silver. The mine closed in November of 1996 due to low copper prices. However, an aggressive exploration program is planned at Copper Mountain to outline 10 years of ore reserves.

The most important ore deposits at Copper Mountain and Ingerbelle are spatially and, it is believed genetically associated with late phases of the Copper Mountain intrusions, the most productive of which are the Lost Horse suite. The ore deposits, whether in volcanic or intrusive rocks are associated with zones of extensive and locally intense wallrock alteration that includes development of biotite, albite, epidote, pyroxene, actinolite, potash feldspar and scapolite (sodic and potassic alteration). Mineralization varies from massive to semi-massive sulphide (+/- magnetite) veins and vein stockworks to microveins and fracture fillings to disseminated.

Many faults cut intrusive and volcanic rocks at Copper Mountain. It is believed these faults originated before the main period of mineralization and played an important part as ore controls, probably acting as avenues along which ore bearing solutions moved. The most important structural orientations for mineralization are east-west, northeast and northwest.

A considerable amount of work has been carried out on the area covered by the Tas claims by previous operators. During the early 1970's, two grids were established and geological mapping, prospecting, soil geochemical sampling and magnetic and induced polarization geophysical surveying were carried out. These programs outlined several copper soil geochemical anomalies, induced polarization chargeability anomalies and sulphide showings. Minor amounts of chalcopyrite were found at several locations. The geological mapping showed a large portion of the area is underlain by diorite of the Copper Mountain intrusive complex. This intrusive complex is a favorable environment for copper mineralization.

The present owner staked the Tas claims in 1991 and has conducted several exploration programs since (silt sampling, establishing grid lines, soil geochemical sampling, magnetic and VLF EM geophysical surveying, geological mapping and prospecting) that have yielded positive results. These positive results include: silt samples anomalous in copper collected from creeks that drain the north-central portion of the Tas-1 claim, geological mapping and magnetic surveys (magnetic highs) indicating the central portion of

CHONG

the area to be underlain by monzonites of the Copper Mountain stock, and copper soil geochemical anomalies.

The success of the earlier exploration programs led to the more extensive program undertaken in 1996. This program included establishing grid lines, conducting soil geochemical sampling, magnetic and VLF EM geophysical surveying, geological mapping and prospecting. The exploration results from this program are encouraging as supported by favorable geology, copper-silver soil geochemical anomalies, potassic alteration associated with small showings of copper (chalcopyrite) and magnetic linears (faults) and VLF EM conductors along favorable structural orientations.

A combination of several coincidental geological, geochemical and geophysical anomalies has delineated 6 target areas warranting follow-up exploration. The exploration program should be conducted as follows:

-continue to evaluate the property through geological mapping and prospecting
-establish I.P. grid over target areas 1 to 5
-conduct I.P. survey over target areas 1 to 5
-conduct trenching over target areas and I.P. anomalies
-conduct reverse circulation/core drilling over favourable targets

Respectfully situated. Grant Crookers P.Geo.,

Grant Crooker, P.Geo. Consulting Geologist

2.0 INTRODUCTION

2.1 GENERAL

Field work was carried out on the Tas claims by Moreleigh Minerals Corporation personnel from July 15 to October 28, 1996. Personnel consisted of Lee Mollison, Mike Harris, Reg Barber and Jaimee Barber, field assistants. Grant F. Crooker, P. Geo., consulting geologist supervised the work program.

This program consisted of establishing grid lines and carrying out soil geochemical sampling, magnetic and VLF-EM geophysical surveying, geological mapping and prospecting over the grid.

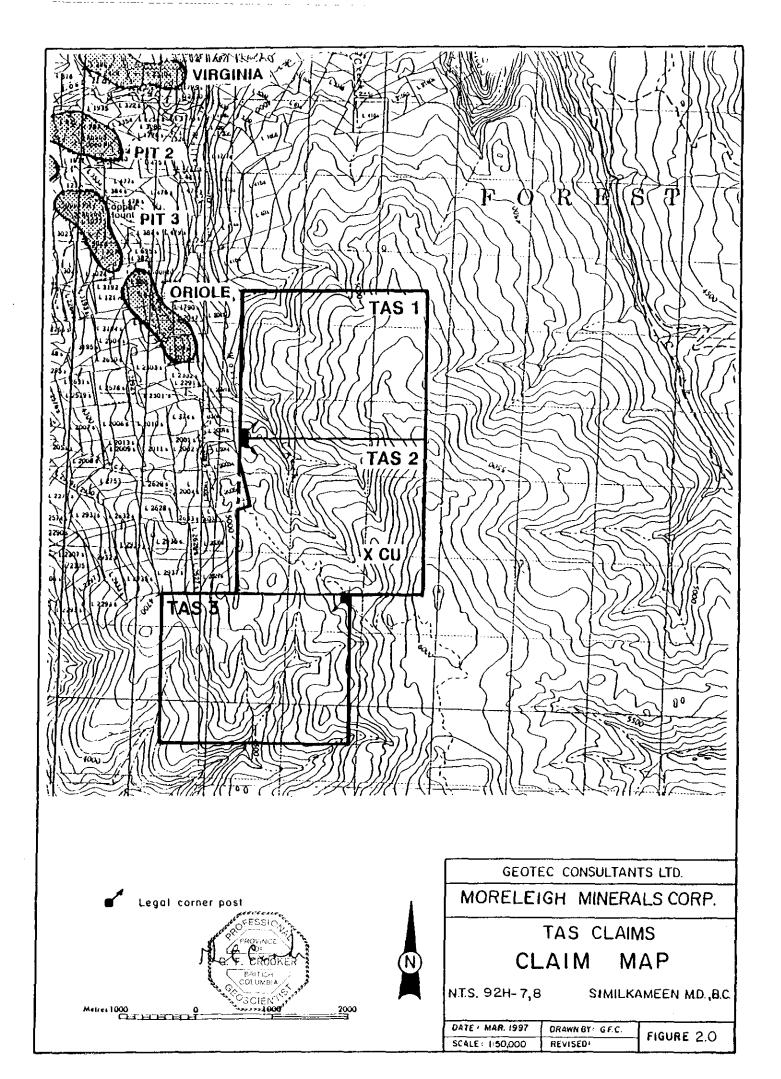
2.2 LOCATION AND ACCESS

The property (Figure 1.0) is located approximately 17 kilometres south of Princeton and 3 kilometres east of Copper Mountain in southern British Columbia. The property lies between 49° 51' 45" and 49° 18' 55" north latitude and 120° 27' 30" and 120° 30' 30" west longitude (NTS 92H-8W).

Access to the property is via the paved Copper Mountain road, turning south off Highway 3 at Princeton. From the Copper Mountain road, one turns onto the Wolfe Creek or Belgie Creek Forest Access roads that give good access to all areas of the property. The logging roads are good, all weather gravel roads.

2.3 PHYSIOGRAPHY

The Tas claims lie within the Thompson Plateau. Elevation is quite high, varying from 1220 to 1830 metres above sea level. Topography is generally moderate to steep although it becomes gently rolling along the ridges.


Wolfe Creek flows in a northerly direction through the claims and has a good flow of water year round. Several branches of Wolfe Creek drain the property from the east. Vegetation consists mainly of mature jack pine with some spruce and fir. Heavy deadfall is prevalent in many areas and a significant portion of the area has been clear-cut.

2.4 PROPERTY AND CLAIM STATUS

The Tas claims (Figure 2.0) are owned by Grant Crooker of Keremeos, BC and are under option to purchase by Moreleigh Minerals Corporation, 6976 Laburnum Street, Vancouver BC. The property consists of three four-post mineral claims covering 60 units located in the Similkameen Mining Division.

TABLE 1.0 - CLAIM DATA									
Claim	Units	Mining Division	Tenure No.	Record Date m/d/y	New Expiry Date				
Tas-1	20	Similkameen	250128	05/24/99	05/24/07*				
Tas-2	20	Similkameen	250129	05/25/99	05/25/07*				
Tas-3	20	Similkameen	349137	07/27/97	07/27/02*				

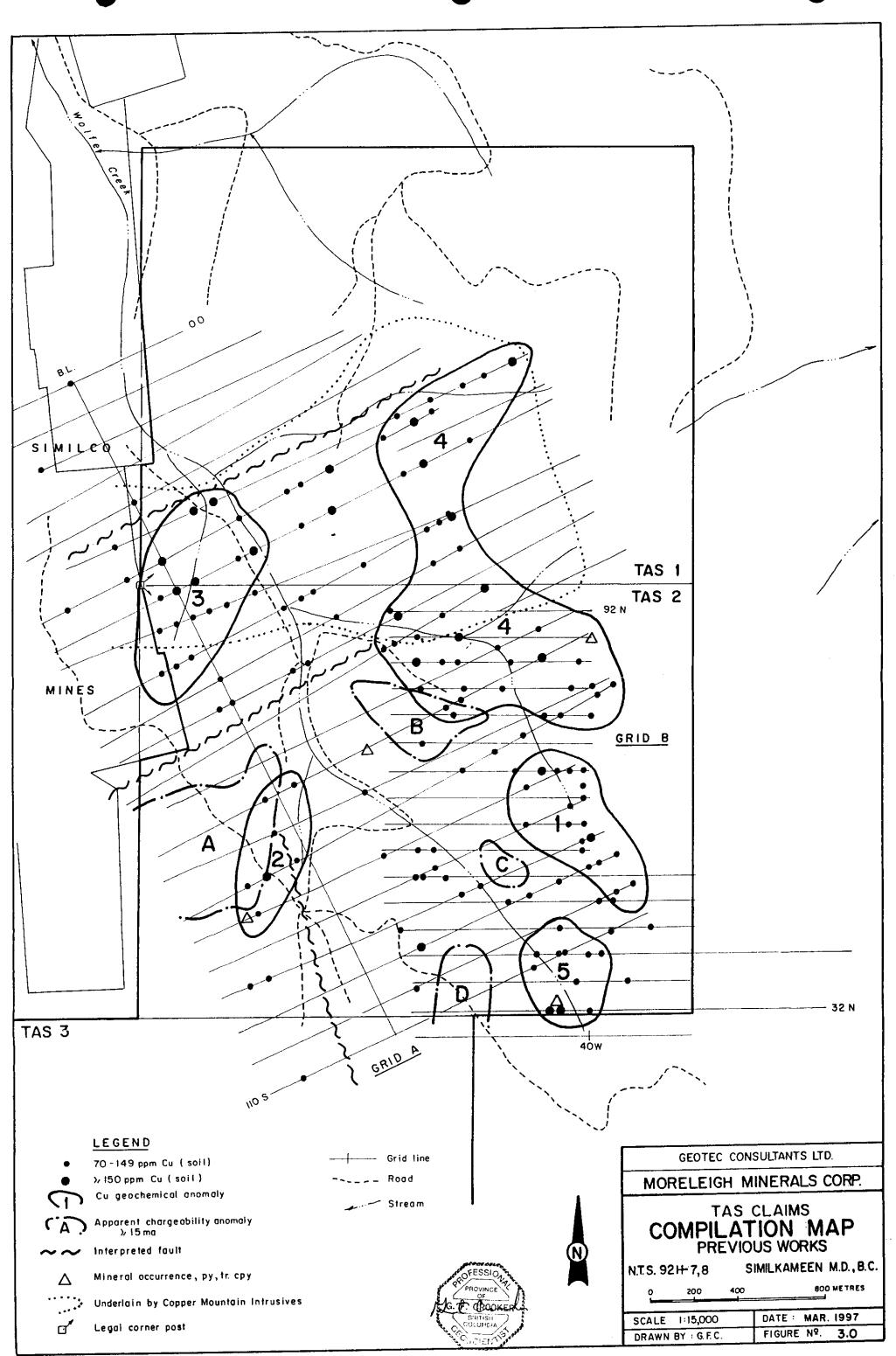
* Upon acceptance of this report.

2.5 AREA AND PROPERTY HISTORY

The Tas claims are located approximately 3 kilometres southeast of the Copper Mountain mining camp in southern British Columbia. Open pit production from Copper Mountain to the end of 1993 was 136,119.622 tonnes of ore milled with a head grade of 0.432% copper (recovered grade 0.358%), and a recovered grade of 0.113 grams per ton gold and 1.121 grams per ton silver. Total production of metals from both open pit and underground mining through 1993 was 764,964 tonnes copper, 21,185.404 kilograms gold and 288,884.260 kilograms silver.

Copper was first discovered at Copper Mountain in 1884 by a trapper named Jameson. However little work was carried out in the area until Volcanic Brown located the Sunset claim in 1892. From 1892 until 1923 exploration was carried out in many areas of the Camp. During the latter stages of World War I a concentrator was built at Allenby and a rail line was built from Princeton to Allenby and thence to Copper Mountain. However, no copper was produced during this time.

In 1923 The Granby Consolidated Mining, Smelting and Power Company Limited acquired the property and reorganized the concentrator and mine plants. Production did not begin until early in 1926 and continued until 1930. The mine was shut down until 1937 when production resumed and continued until 1957 when the mine was again closed. To the end of 1957 the concentrator treated 31,547,476 tonnes of ore producing 278,116 tonnes of copper, 5,825,405 kilograms gold and 152,525,691 kilograms of silver. Most of this production was from underground operations.


Little work was carried out in the area from 1957 to 1965. However in 1966, extensive trenching and drilling was carried out by The Granby Mining Company Limited at Copper Mountain. Newmont Mining Corporation of Canada Limited on the Ingerbelle property west of the Similkameen River, and Cumont Mines Limited on its holdings near Copper Mountain.

In December 1967, Newmont purchased all of the Granby holdings in the Copper Mountain area and carried out large scale exploration on both properties. By the end of 1969, one large scale zone of low grade copper mineralization was outlined on the Ingerbelle property and two zones on Copper Mountain. In June 1970 Newmont gave official notice of its intention to put the properties into production.

The property entered production by open pit methods in 1972 and has been in almost continuous production since then. Cassiar Mining Corporation (now Princeton Mining Corporation) purchased the Copper Mountain property from Newmont in June of 1988. The production rate has been approximately 20,000 tonnes of ore per day with a mill head grade of 0.44% copper and recoverable gold and silver values.

The Similco Mine closed in November of 1996 due to low copper prices and an exhaustion of low stripping ratio ore reserves. A diamond drilling program is presently underway to outline a ten years mining plan for the high stripping ratio ore reserves. These high stripping ratio ore reserves are in the order of 83 million tonnes grading 0.413% copper, 0.111 g/t gold and 3.798 g/t silver with a bulk stripping ratio of 2.26.

Alpaca Resources Corp. announced on December 6, 1996 that it had optioned the Oriole prospect (also known as the Rifle property) from Princeton Mining Corporation. This prospect is the closest of the prospects/deposits at Copper Mountain to the Tas claims (Figure 4.0), being 700 to 1000 metres west of the northern portion of the Tas 1 claim. Proven and probable reserves on the Oriole prospect are reported

CHONG

as 2,923,000 short tons with a cut off grade of 0.23% copper and an average grade of 0.44% copper. The estimated replacement cost of the work on the prospect to date is approximately \$ 1,800,000.

A considerable amount of work was carried out in the area covered by the Tas claims during the early 1970's. This work consisted of geological mapping, prospecting, geochemical soil sampling and geophysical surveying (magnetometer and induced polarization). Bulldozer trenching by previous operators is mentioned in the assessment reports from the early 1970's but no information is available on that work.

During 1971 Coin Canyon Mines Ltd. carried out soil geochemical sampling and magnetometer and induced polarization geophysical surveying on the "Y" claims. The work was carried out over the area shown by grid A on Figure 3.0. Approximately 149,000 feet of grid was blazed and surveyed. The baseline runs in a north northwesterly direction with 23 crosslines at right angles to the baseline. Lines are 500 feet apart with stations marked every 100 feet along the lines.

Soil samples were collected every 250 feet along the lines and the samples were analyzed for copper. The frequency distribution showed background to be 50 ppm copper and values 75 ppm and greater were considered anomalous. Four general copper anomalies were outlined by the survey (Figure 3.0, Anomalies 1 to 4).

It should be pointed out at this time that most of the property is overlain by a mantle of glacial drift. Preto examined 26 drill holes from the Copper Mountain area and found the glacial drift to have an average thickness of 14.5 feet with a maximum of 33 feet. Clay layers several feet in thickness are often intercalated with various other types of drift.

Anomaly #1 is 2500 feet long by 1000 feet wide and values range from 70 to 315 ppm copper. The Phelps Dodge geochemical survey also confirms this anomaly. Follow up prospecting found the anomaly coincidental with a swampy area and no outcrop was found in the area.

Anomaly #2 is a linear shaped anomaly 2000 feet long by 800 feet wide with values ranging from 70 to 190 ppm copper. The western portion of the geochemical anomaly overlaps induced polarization chargeability anomaly A. Old bulldozer trenches at the south end of the anomaly exposed outcrop of bedded andesite volcanics composed of massive fragmentals, crystal tuffs and tuffaceous argillites. Large portions of the volcanics have been silicified and chloritized. From 2% to 5% finely disseminated pyrrhotite and pyrite with trace amounts of chalcopyrite are found throughout this altered zone.

Anomaly #3 is some 2500 feet long by 1500 feet wide with values ranging from 70 to 275 ppm copper. Outcrop exposed along the baseline is altered diorite related to the Copper Mountain intrusives. The intrusive is only weakly mineralized with less than 1% pyrite.

Anomaly #4 is a large anomaly 5500 feet long and up to 3000 feet wide with values ranging from 70 to 850 ppm copper. The southern portion of this anomaly is also outlined by the Phelps Dodge geochemical survey. Trace amounts of chalcopyrite along with 1% to 2% pyrite were found associated with chloritic and feldspathic alteration at the southeastern corner of the anomaly and west of the anomaly. A large portion of this anomaly appears to be underlain by diorite of the Copper Mountain intrusive complex.

Magnetometer and induced polarization surveys were also carried out over portions of the grid. The magnetometer survey was carried out over 16 line miles of the grid with readings taken every 100 feet on

every second line (1000 foot spacing). Several magnetic highs and lows were outlined and further information can be obtained from the pertinent assessment report.

The induced polarization survey was carried out over 6.7 line miles of the grid with the lines spaced 1000 feet apart. The survey was only carried out over the southern portion of the grid and not over the northern portions underlain by the Copper Mountain intrusions. Four areas (Figure 3.0, A, B, C, D) showed chargeability responses greater than 15 milliseconds.

Anomaly A is a broad anomaly showing peak responses of 36 and 35 milliseconds and overlaps the western section of geochemical anomaly #2. The apparent resistivity values range from 175 to 1000 ohms metres with the largest portion lying within the 400 to 600 ohm metre range.

Anomaly B is partially outlined by the 15 millisecond contour and was not closed off to the north and east. It occurs along the southern portion of geochemical anomaly #4 and appears to be striking in a northerly direction into the geochemical anomaly. Disseminated pyrite was observed in an outcrop west of the anomaly. A low to intermediate range of apparent resistivity values correlate with the chargeability anomaly.

Anomaly C is a small three station anomaly occurring west of geochemical anomaly #1. No further information is available on this anomaly.

Anomaly D is also a small anomaly occurring along the most southerly line surveyed and open to the south. This anomaly was confirmed by the limited amount of induced polarization survey carried out by Phelps Dodge. Resistivity values are in the order of 500 to 1350 ohm metres. Bulldozer trenching has been carried out in this area by previous operators and exposed highly fractured, broken and bleached andesite. Approximately 1000 feet east of the anomaly two soil samples gave 340 and 440 ppm copper, and subsequent prospecting located an outcrop with finely disseminated chalcopyrite. An assay of this material gave 697 ppm copper.

During 1973, Phelps Dodge Canada Ltd. carried out geological mapping, prospecting, soil geochemical sampling and a limited amount of magnetometer and induced polarization surveying on the "Rb, Tas and Tat" claims. The soil sampling and geophysics were carried out over the area indicated by Grid B while the geological mapping was carried out over both grids.

Approximately 19.5 miles of grid were cut and flagged on grid B. The baseline runs north-south and 16 crosslines were ran at right angles to the baseline. Lines are 400 feet apart with stations marked at 200 foot intervals.

Soil samples were collected every 200 feet along the lines and analyzed for copper. The most highly anomalous values from the soil geochemical survey came from the area of anomaly #5 with values of 340 and 414 ppm copper. This anomaly is about 1500 feet long by 1500 feet wide. Copper mineralization consisting of finely disseminated chalcopyrite (697 ppm copper) was found in this area.

Only 1.3 miles of Induced polarization surveying was carried out over the grid. A small chargeability high was located at Anomaly D. This anomaly was found by both of the induced polarization surveys.

Geological mapping was carried out over both grids by Phelps Dodge. This mapping indicated an area 8000 feet long by 4500 feet wide is underlain by diorite of the Copper Mountain intrusions. Many areas shown on Figure 3 show varying degrees of alteration and pyrite with minor amounts of chalcopyrite.

The 1991-1992 program carried out by the present owner of the Tas claims consisted of silt sampling of all drainages, establishing a small grid and carrying out geological mapping, prospecting and a magnetic surveying over the grid.

A number of anomalous silt samples were taken, mainly from the north central portion of the Tas 1 claim, and geological mapping showed the four grid lines that were established to be underlain by diorite of the Copper Mountain intrusives. The magnetic survey indicated many magnetic highs that may be caused by magnetic minerals such as magnetite and pyrrhotite.

A second exploration program was undertaken by the present owner in 1994 with the assistance of funding from a Ministry of Energy, Mines and Petroleum Resources "Prospecting Grant". The program consisted of establishing 14 grid lines and carrying out soil geochemical sampling, magnetic geophysical surveying, geological mapping and prospecting. Areas shown to have anomalous copper soil geochemical values from the 1970's work were targeted.

Six weak to moderate copper soil geochemical anomalies and a number of zones of high magnetism were outlined by the work program. In several cases the geochemical and geophysical anomalies are coincidental, showing an association of copper mineralization with magnetic minerals such as magnetite. Geological mapping also showed significant portions of the Tas claims are underlain by intrusives of the Copper Mountain stock. Recommendations were made to establish grid lines over the remaining areas of the property and carry out geochemical, geophysical and geological surveys to determine the dimensions of the anomalous zones.

3.0 EXPLORATION PROCEDURE

The grid coordinate system established in 1992 was used for the 1996 program.

3.1 GRID PARAMETERS

-baseline direction N-S -survey lines perpendicular to baseline -survey line separation 50 and 100 metres -survey station spacing 25 metres, slope corrected -survey total -88.55 - kilometres -declination 21°

3.2 GEOCHEMICAL SURVEY PARAMETERS

-survey line separation 50 and 100 metres
-survey sample spacing 25 metres
-survey totals - 1349 soil samples
-20 rock samples
-1117 soil samples analyzed by 32 element ICP and for gold (10 gram)
-20 rock samples analyzed by 32 element ICP and for gold (10 gram)
-sample depth 10 to 20 centimetres
-samples taken from brown or orange B horizon

All samples were sent to Chemex Labs Ltd., 212 Brooksbank Ave., North Vancouver, B.C., V7J 2C1 for analysis. Laboratory technique for soil samples consists of preparing samples by drying at 95° C and sieving to minus 80 mesh. Rock samples were crushed, and split, with one split then ring ground to minus 150 mesh.

A 32 element ICP analysis and gold analysis (fire assay, atomic adsorption finish) were then carried out on the samples.

The soil geochemical data is plotted on Figures 6.0 and 7.0 and the certificates of analysis listed in Appendix I.

3.3 GEOPHYSICAL SURVEY PARAMETERS

_ -

TOTAL FIELD MAGNETIC SURVEY

-survey line spacing 50 and 100 metres
-survey station spacing 25 metres
-survey total - 61.0 kilometres
-instrument - Scintrex MP-2 magnetometer
-measured total magnetic field in nanoteslas (gammas)
-instrument accuracy ± 1 nanotesla
-operator faced north for all readings

Readings were taken along the baseline to obtain standard readings for all baseline stations. All loops ran off the baseline were then corrected to these standard values by the straight line method. Values taken in 1996 were corrected to the 1992 values.

The ground total field magnetic contours are plotted on Figure G1, the ground total field magnetic profiles on Figure G2 and the magnetic data listed in Appendix 11.

VLF-EM SURVEY

-survey line spacing 50 and 100 metres -survey station spacing 25 metres -survey total - 79.75 kilometres -transmitting station - Seattle - 24.8 KHz -direction faced - southeasterly -instrument - Geonics EM-16 -in-phase (dip angle) and out-of-phase (quadrature) components measured in percent at each station

The VLF-EM profiles are plotted on Figure G3 and the VLF EM data listed in Appendix II.

The geophysical interpretation is shown on Figure G4.

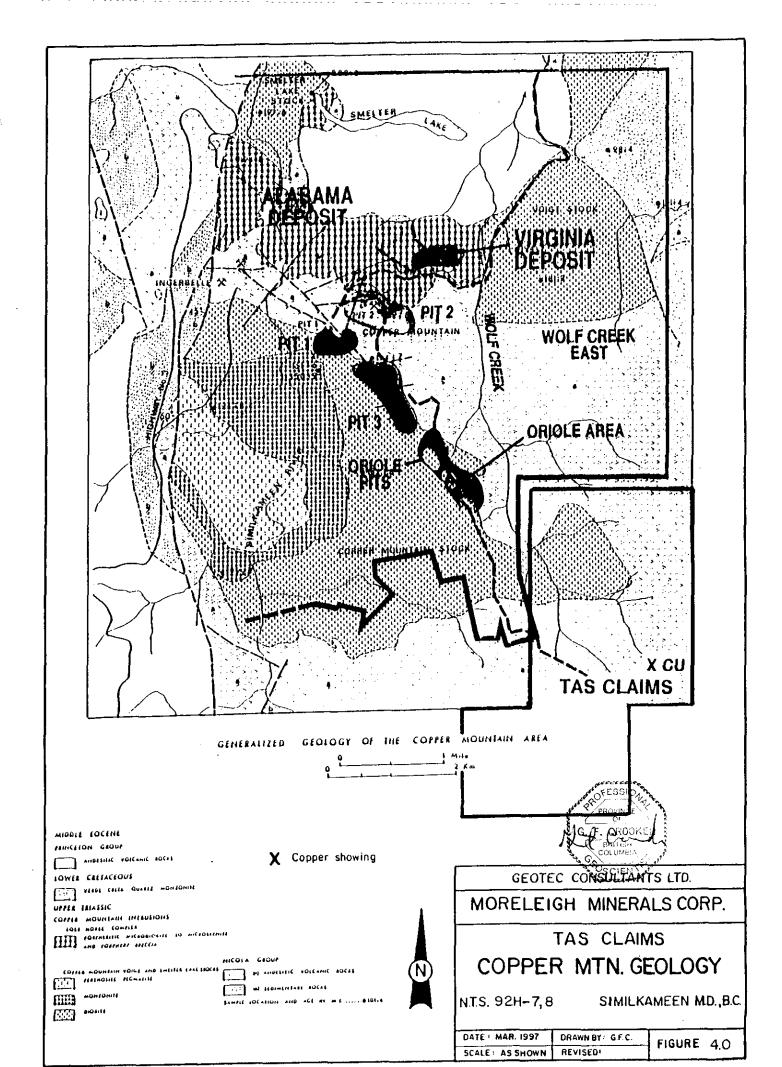
4.0 GEOLOGY AND MINERALIZATION

4.1 REGIONAL GEOLOGY

The Copper Mountain alkalic porphyry copper-gold camp (Figure 4.0) lies within the Intermontane Belt of southern British Columbia and is part of Quesnellia, a northerly trending, Mesozoic tectono-stratigraphic terrane. Here, Nicola Group volcanic rocks are intruded by a suite of Early Jurassic alkalic plutons, dykes, sills and irregular plugs of the Copper Mountain suite. The Tas claims cover the eastern portion of the Copper Mountain camp.

The oldest rocks in the area are Upper Triassic Nicola Group volcanic and sedimentary rocks. The Nicola Group has been divided into four lithologic assemblages, and in this area are part of the westerly dipping, "eastern volcanic belt". The eastern volcanic belt consists predominantly of subaqueous and subaerial alkalic intermediate and mafic volcanic flow, fragmental and epiclastic rocks deposited on and between several well defined emergent volcanic edifices.

There are two types of Jurassic intrusions within the Copper Mountain camp. The first type is diorite-tomonzonite and syenite of the Copper Mountain, Smelter Lake and Voigt stocks. The Copper Mountain stock bounds the belt of Nicola Group rocks on the south and covers approximately 6.5 square miles. It is a concentrically differentiated intrusion, elliptical in plan, the long axis of which strikes north 60° west and is approximately 4 miles long. The Smelter Lake and Voigt stocks occur on the north edge of the belt of Nicola Group rocks. Both stocks are smaller (Smelter Lake less than one square mile, Voigt 3.2 square miles) than the Copper Mountain stock in plan and do not exhibit any mapped concentric zoning.


The Lost Horse intrusive complex is the second type of Jurassic intrusion. It lies immediately north of the belt of Nicola Group rocks and is a multi-phase suite of diorite to monzonite and minor syenite. They are believed to have been emplaced after the Copper Mountain, Smelter Lake and Voigt stocks and occur as a complex of dykes, sills and irregular bodies.

To the northeast of the Copper Mountain camp a body of Lower Cretaceous quartz monzonite and granodiorite of the Verde Creek intrusion cuts the Viogt stock. All of the above intrusive, volcanic and sedimentary rocks are cut and unconformably overlain by intrusive, volcanic and sedimentary rocks of the Middle Eocene Princeton Group.

4.2 STRUCTURAL GEOLOGY

Many faults occur in the Copper Mountain-Ingerbelle area and the orientation, amount of displacement and timing of movement of the faults are very important because the faults have either localized mineralization or displaced it. They have been divided into four main sets, 1) northerly trending faults (Boundary fault) 2) east-west faults. 3) northwest faults (Main fault) and 4) northeast to east northeast (Mine Breaks).

Northerly trending faults of which the Boundary fault system is the best example are found in the western part of the map area. The Boundary fault dips approximately 65° to the west and has dip slip movement that post dates the Eocene Princeton Group. Late movement on the Boundary fault is likely related to east-west extension during the Eocene, as indicated by the northerly trending mine dykes.

East-west faults, that dip steeply south appear to be the locus for much of the mineralization at many of the deposits in the camp. These include the Gully fault that hosts the Ingerbelle deposit, Pit fault in Pit 2 and the structure that hosts the Virginia mineralization.

The Main fault is the most important structure of the northwest trending faults and it probably has a long and complex history. It closely parallels the northern contact of the Copper Mountain stock and has the same trend as the major regional faults in the Princeton area. The Main fault extends through the Oriole mineralized zone. Pits 3 and 1, Ingerbelle East and Ingerbelle deposits and appears to be one of the dominant controls of mineralization in the camp. The Alabama fault parallels the southeast contact of the Voigt stock and hosts much of the Alabama mineralization.

The northeast to east northeast trending faults appear to have localized mineralization in many areas at Copper Mountain. The "Mine Breaks" are a system of faults that belong to this group, and occur near the old Copper Mountain mine area. Though unmineralized themselves they have been considered ore controls by mine staff and are probably related to old structures as suggested by their relation to mineralization. These faults may be related to the east-west faults, although they are of slightly different attitude.

No major structural features were noted on the Tas claims from the geological mapping. However, a number of magnetic lineaments that probably represent faults were interpreted from the ground magnetic survey (Figure G4).

The magnetic lineaments have three orientations; northwesterly to northerly, northeast to east northeast and north northeast. These are generally the same orientations observed within the mineralized zones at Ingerbelle and Copper Mountain.

The north northwest trending lineament near the legal corner post of the Tas 1 and 2 claims may represent an extension of the Main fault that passes through the Oriole mineralized zone, Pits 3 and 1, Ingerbelle East and Ingerbelle deposits.

4.3 CLAIM GEOLOGY

All rock units (Figure 5.0) that are believed to underlie the Tas claims are described below. The classification of the units is taken from Preto (1972) to provide continuity with known geological information on the Copper Mountain camp. Figure 5.0 includes geological information gathered on the property during 1996 and previous years. Outcrop is scarce over much of the property, and road cuts show thick accumulations of overburden in many areas.

The oldest rocks underlying the claims belong to the Upper Triassic Wolfe Creek Formation of the Nicola Group. They are primarily volcanic in origin and deposition and have been divided into five units. four of which occur on the Tas claims. These include massive andesite (Unit 2a), volcanic breccia and agglomerate (Unit 2c), and tuff and tuff breccia (Unit 2d). Unit 2e consists of undifferentiated material.

Unit 2a is generally a massive, fine to medium grained porphyritic pyroxene-hornblende-plagioclase andesite, in part agglomeratic. The rock is in places extensively saussuritized, with replacement of plagioclase phenocrysts by epidote and sericite, and strong replacement of pyroxene by a light green amphibole. This unit was mapped in the southern part of the Tas 2 claim. Rocks of unit 2c are coarse fragmental volcanic rocks that may be described as volcanic breccia and/or agglomerate. All rocks are dense, massive and, dark green or brownish in color. The fragments in the breccia vary from andesitic volcanic rocks to fine grained tuff and, locally limestone. Fragments generally vary in size from 1 to 10 centimetres, although occasionally blocks of 25 centimetres or more occur. In the area of the Tas claims the rocks are irregularly distributed in the volcanic succession of unit 2 as relatively small lenses associated with tuff or massive andesite. The unit was again mapped in the southern part of the Tas 2 claim.

Unit 2d is mainly greenish grey and green crystal tuff and lithic crystal tuff and, locally volcanic siltstone. These rocks are generally well and thinly bedded and at several locations show graded bedding and poorly developed crossbedding. They are characterized by beds of very fine grained silt alternating with beds of slightly coarser, sand sized material consisting of mainly broken plagioclase and some pyroxene crystals. Most rocks are of andesitic composition and the amount of quartz present varies from nil to a significant constituent. The unit is prevalent in the northern portion of the Tas I claim.

Two rock types of the Jurassic Copper Mountain stock underlie the claims, diorite (Unit 6) and microdiorite and latite porphyry dykes (Unit 10).

Unit 6 underlies the southern portion of the Tas 1 claim and covers an area approximately 1500 metres wide by 2000 metres long. It has been traditionally mapped as a fine to medium grained, light to dark green, massive augite diorite. However five thin sections submitted for petrographic examination during 1996 indicated these specimens to have the composition of a monzonite. They are described as fine grained, sub-porphyritic, quartz free igneous rocks. They consist predominantly of feldspars, being aggregates of subhedral prismatic plagioclase, in the size range 0.2 to 1.5 millimetres, intergrown with interstitial K-feldspar. Mafics are typically pyroxene and/or amphibole.

The monzonite also occurs as dykes, sills and possibly small igneous bodies in an area between lines 11000N and 11500N from 9700E to 10650E. It has intruded tuffaceous Wolfe Creek Formation rocks. A number of northerly trending Mine dykes also occur in this area. Due to the difficulty in recognizing the different intrusive rocks in the area, the dykes and sills may be part of the Lost Horse intrusive complex.

Unit 10 consists of dykes that range in composition from andesite to acid basalt and range in texture from dark grey, fine grained, trachyoid, latite porphyry with phenocrysts of plagioclase and pyroxene to massive fine to medium grained pyroxene microdiorite. The dykes range in width from one metre to 100 metres, cut all Nicola volcanic rocks and trend north northeast. This unit outcrops along line 11500N from 11300E to 11500E.

The Lost Horse intrusions have been divided into units 11 and 12. Unit 11 includes all rocks which do not form obvious dykes while unit 12 consists of well defined dykes up to 30 meters wide that cut unit 11 and rocks of the Nicola Group. Most rocks of the Lost Horse intrusions have a porphyritic texture and contain disseminated apatite crystals.

Rocks of unit 11 are fine to medium grained, almost invariably porphyritic and range in composition from diorite to monzonite or syenite. They are light grey green in color and are composed of intermediate plagioclase, clinopyroxene and varying amounts of potash feldspar. A few scattered outcrops of what is believed to be unit 11 (monzonite?) were found during the 1992 mapping along the baseline from 10350N to 10650N.

Unit 12 consists of latite and trachyte in approximately equal amounts and is invariably porphyritic. Texturally they range from latite or trachyte porphyry to porphyritic micromonzonite or microsyenite. They are mainly composed of plagioclase, pyroxene, biotite and potash feldspar.

The Upper Lower Cretaceous Verde Creek quartz monzonite (Unit 13) occurs along the eastern boundary of the Tas claims. It is usually medium grained, grey to pinkish grey and porphyritc. White plagioclase phenocrysts up to 5 millimetres long occur within a matrix of plagioclase, grey quartz and interstitial potash feldspar. Brown biotite forms up to 10% of the rock while lesser dark green or black hornblende is found in phases which contain less biotite. This unit has not been found in outcrop on the property.

Two types of post Lower Cretaceous dykes (Units 14 and 15) occur within the area. The Mine dykes (Unit 14) are a swarm of northerly trending, very steep to vertically dipping, buff to cream colored dykes of felsite, quartz porphyry and feldspar porphyry. The dykes range in composition from trachyte to rhyolite and vary in width from less than one metre to more than sixty metres. These felsite dykes occur at a number of locations including: between lines 10500N and 11500N from 10000E to 10300E, between lines 11100N and 11400N from 10700 to 10950E and between lines 7600N to 8300N from 10400E to 10600E.

Unit 15 consists of fine grained grey andesite dykes up to a few metres wide, or larger dykes of grey plagioclase, hornblende or pyroxene andesite porphyry. These dykes cut the mine dykes and their texture and composition suggest they are related to the Tertiary rocks of the Princeton Group. Outcrops of this unit occur at 12000E on lines 7600N and 8300N.

The youngest rocks in the area belong to the Lower Volcanic Formation of the Middle Eocene Princeton Group (Unit 17). This unit (17d) occurs as sparse, isolated, generally small dykes of fine grained, grey, flaggy andesite. Unit 17 has not been found in outcrop on the property.

4.4 ALTERATION

The Copper Mountain area does not display a typical style and distribution of alteration and mineralization as observed in many porphyry copper deposits. However, the alteration and mineralization do share some common features of alkalic porphyry deposits such as those associated with the Iron Mask batholith near Kamloops.

Hypogene alteration in the Copper Mountain camp consists of both pervasive alteration (metasomatism) and structurally controlled (vein type) alteration. The variety of volcanic and intrusive lithologies, the overprinting of alteration assemblages and the poor exposure makes the recognition of property scale alteration zones difficult.

4.41 Pervasive Alteration

The four most important pervasive assemblages in the camp are: 1) hornfels, 2) propylitic, 3) sodic, and 4) potassic. Early hornfels alteration was followed by slightly later, pervasive propylitic, and then sodic and potassic alteration.

Hornfels

Hornfels alteration of Nicola Group volcanic rocks occurs primarily between the northern margin of the Copper Mountain stock and the Lost Horse intrusive complex. Hornfels preceded all other alteration events and was caused by heat from the Copper mountain stock and related intrusions.

Hornfels consists of the recrystallization of predominantly andesite flows and coarse fragmental volcanic rocks to a competent, dark purple, dark grey or black, fine grained matte of diopside or biotite, plagioclase and magnetite.

Pervasive Propylitic

Pervasive propylitic alteration occurs locally throughout the camp but is most abundant at the margins of the camp. The alteration is typically dark to light green, selectively pervasive and not texturally destructive. It is characterized by patches of chlorite, actinolite, epidote and calcite replacements of mafic minerals and oligoclase/albite, epidote and calcite replacements of plagioclase and potassium feldspar. Pyrite and hematite with subordinate magnetite are also important alteration products.

Pervasive Sodic

Pervasive sodic alteration typically occurs within Lost Horse dykes and the immediately adjacent hornfelsed zones on their margins. It is most common along the northern margin of the Copper Mountain stock in the central portion of the camp. This type of alteration is widespread, affecting portions of Pits 1, 2, 3, the Ingerbelle Pit and the Oriole zone.

Sodic alteration (Na metasomatism) bleaches Lost Horse dykes and relatively fresh or hornfelsed volcanic rocks to a pale green or mottled white and grey color. The Na metasomatism involves the albitization of feldspar and the chloritization or epidotization of ferromagnesium minerals and the destruction of primary magnetite.

Pervasive Potassic

Pervasive potassic alteration also typically occurs within Lost horse dykes and the immediately adjacent hornfelsed zones on their margins. This type of alteration is widespread, representing the predominate pervasive alteration assemblage in the northern portion of Pit 2, the Virginia Pit, portions of the Ingerbelle Pit and the Alabama, Oriole and Voigt zones.

Pervasive potassic alteration locally crosscuts zones of earlier sodic alteration. Lost Horse dykes and volcanic rocks are typically a pinkish color. Plagioclase is replaced with potassium feldspar and ferromagnesium minerals with chlorite, biotite, epidote and calcite.

The sodic and potassic styles of alteration are similar in that they are characterized by replacement of feldspars and ferromagnesium minerals. They are also similar in that both assemblages are largely cut by sulphide bearing veins and occur within and immediately adjacent to Lost Horse dykes that intrude Nicola Group rocks north of the Copper Mountain stock.

Ore zones within the sodic alteration generally consist of sulphide vein stockwork zones, that is probably a result of the more brittle nature of the altered rock. Disseminated epidote and chalcopyrite are commonly

associated with potassic alteration. Most sulphide and nonsulphide bearing veins appear to be associated with the late stages of potassic alteration.

Propylitic alteration occurs within Nicola Group volcanic rocks over much of the Tas property. The alteration usually consists of widely spaced fractures with epidote and pyrite.

Three areas of weak to strong pervasive potassic alteration were found on the Tas claims. The largest zone (target T-3, Figures 8.0 and 9.0) shows weak to strong potassic alteration of monzonite of the Copper Mountain stock over an area approximately 600 metres long by up to 300 metres wide. This zone is along strike with the northwest-southeast striking Main fault that runs parallel to the north contact of the Copper Mountain stock.

Two thin sections from target T-3 show the potassium feldspar to be interstitial to the plagioclase, and occasionally ophitic, incorporating smaller prismatic grains of plagioclase. Mafics show weak to strong alteration to biotite and chlorite. Epidote forms local segregations as well as thin, multidirectional fracture fillings. The alteration is strongest along variously oriented fractures.

Target T-2 shows weak to moderate potassic alteration of monzonite/microdiorite breccia over an area approximately 300 metres long by 200 metres wide. The area may be larger, but thick accumulations of overburden cover possible extensions of the zone.

A thin section from target T-2 shows a heterogeneous distribution of potassium feldspar, suggesting a form of breccia. A thin section shows potassic altered areas representing monzonite fragments in a matrix of diorite. Potassium feldspar also occurs as prominent, sharply defined veinlets up to 2 millimetres wide. Mafics consist of pyroxene, partly modified to amphibole and moderately to strongly altered to chlorite. Epidote occurs predominately as infilling of narrow fractures.

Target T-1 is underlain by volcanics of the Wolfe creek Formation that have been intruded by dykes and sills of monzonite the Copper Mountain stock. Potassium feldspar occurs interstitial to the plagioclase and plagioclase shows mild to moderate alteration to fine-grained sericite and clays. Mafics show minor alteration to epidote. Opaques (mainly pyrite) are estimated at 9% and occur with the interstitial feldspar.

One thin section was also prepared from a small outcrop of monzonite from the north end of target T-4. This rock consists of a blocky to meshwork textured intergrowth of plagioclase, potassium feldspar and mafics. The potassium feldspar interstitially cements the plagioclase grains. The plagioclase shows mild dustings of fine-grained sericite, and is also commonly flecked and core replaced by microgranular epidote.

4.42 Structurally Controlled Alteration

The second important alteration style in the Copper Mountain camp consists of structurally controlled fractures with varying amounts of vein material. These veins can be divided temporally into early, intermediate and late stage varieties. Early veins are predominantly premineralization, intermediate veins predominately postmineralization and late veins postmineralization. Mineralized veins are represented by the latest early veins of which "Pegmatite-textured Veins" are the most important. Pegmatite-textured veins can be divided into several groups based on mineralogy: 1) barren veins; 2) bornite-chalcopyrite-(magnetite)-bearing veins.

4.5 MINERALIZATION

.

The Copper Mountain area does not display a typical style and distribution of mineralization as observed in many porphyry copper deposits. Mineralization at Copper Mountain is related to strong structural controls. The three dominant structural orientations controlling the distribution of deposits within the area, as well as mineralization within the deposits is, northwest, northeast and east-west.

Mineralization varies from massive to semi-massive sulphide (+/- magnetite) veins and vein stockworks to microveins and fracture fillings to disseminated. While the relative proportion of mineralization type varies from deposit to deposit, all types of mineralization occur in each deposit.

Pyrite, chalcopyrite and bornite are the major sulphide minerals, with other sulphide minerals occurring in only trace amounts. Gangue minerals include (in order of abundance), magnetite, calcite, potassium feldspar, albite, epidote and chlorite. Bornite:chalcopyrite, silver:gold and copper:gold ratios are zoned from north to south, with higher ratios in the south that decrease northwards.

Seven small showings of copper mineralization have been found on the Tas claims (Figures 6.0 and 8.0). The showings generally consist of pyrite, chalcopyrite and malachite and assay results from the showings are given in Table 2.0.

TABLE 2.0 - ANOMALOUS ROCK GEOCHEMICAL VALUES									
Sample No.	Target	Au ppb	Ag ppm	As ppm	Cu ppm	Mo ppm	Pb ppm	Zn ppm	
1-211	T-2	<5	2.0	<2	1855	3	4	126	
1-214	T-1	<5	1.2	2	1370	6	4	72	
1-223	T-1	20	4.2	<2	3980	<1	36	86	
1-224	T-1	15	0.2	<2	199	1	12	321	
1-225	T-1	15	<0.2	12	135	1	<2	48	
1-218	T-3	45	2.2	<2	3050	1	<2	108	
1-220	T-3	<5	0.4	<2	307	<[<2	90	
1-221	T-3	25	2.0	<2	1335	1	2	118	

Two small copper showings were found within target T-1. Sample 1-214 was collected from rusty, fractured, intrusive float at 11300N & 9815E. Pyrite concentrations along fractures and as disseminations range between 1% and 2%, while chalcopyrite concentrations range between 1/4% and 1%. A grab sample of the float gave a weakly anomalous copper value of 1370 ppm and a weakly anomalous silver value of 1.2 ppm.

A second copper showing was found at 11225N & 10135E within target T-1. Sample 1-223 was taken from an approximately 0.5 metre wide zone of moderately fractured Wolfe Creek Formation volcanic rocks. Epidote, potassium feldspar, magnetite, malachite, pyrite and chalcopyrite occur along the fractures. The fracture containing the strongest concentrations of chalcopyrite (up to 2%) is oriented at 060° vertical, with a secondary fracture direction of 030° dip 70° east. Sample 1-223 (grab) gave a moderately anomalous copper value of 3980 ppm and weakly anomalous gold and silver values of 20 ppb and 4.2 ppm respectively.

Two shallow shafts located at 11060N & 10025E and 11205N & 10000E have exposed strong concentrations of disseminated and fracture controlled pyrite (5-20%). Moderate amounts of epidote, magnetite, and lesser potassium feldspar occur along fractures. Two grab samples (1-224 and 1-225) gave weakly anomalous copper (199 and 135 ppm) and gold (15 ppb) values.

One small copper showing was found at 9800N & 11050E within target T-2. Fractures contain epidote, potassium feldspar, magnetite, malachite and from a trace to 1% chalcopyrite. Alteration is strongest along fractures, but also shows weak pervasive alteration throughout the outcrop. The orientation of the fracture containing the chalcopyrite is 309° dip 45° southwest, with other fracture orientations at 104° dip 75° south and 030° dip 78° northwest. A grab sample of the showing (1-211) gave a weakly anomalous copper value of 1855 ppm and a weakly anomalous silver value of 2.0 ppm.

Three small copper showings were found within target T-3. The first showing is located at 9485N & 10050E and consists of epidote, potassium feldspar, pyrite, malachite and chalcopyrite occurring along fractures and as disseminations. The mineralization is exposed in an outcrop approximately three metres square and pyrite and chalcopyrite concentrations average about 1% each. A grab sample (1-218) gave 3050 ppm copper, 2.2 ppm silver and 45 ppb gold.

A second showing occurs at 9875N & 10100E and consists of weak to moderate potassic alteration along rusty fractures. Pyrite concentrations are about 1% with traces of chalcopyrite. A grab sample (1-220) gave 307 ppm copper.

The third showing is located at 9405N and 9950E and consists of epidote, potassium feldspar, pyrite and chalcopyrite occurring along fractures. Chalcopyrite concentrations range up to 1/2% and are associated with the strongest potassic alteration. A grab sample (1-221) gave 1335 ppm copper, 25 ppb gold and 2.0 ppm silver.

The most prominent fracture orientations within target T-3 are 330° to 350° and 270° to 290°.

5.0 GEOCHEMISTRY

5.1 SOIL GEOCHEMISTRY

5.11 Inter-Element Association

The soil geochemical inter-element correlation for the Tas claims is shown in Table 3.0.

ТА	BLE 3,	0 - SO	IL GE	OCHE	MICA	L INTI	ER-EL	EMEN	T COF	RELA	TION	MAT	RIX	
ELEMENTS	INTER	-ELEME	NT COF	RELAT	ION CO	EFFICIE	NTS					<u> </u>		
	Au	Ag	As	Bi	Co	Cr	Cu	Fe	Hg	Mo	Ni	<u>Pb</u>	Sb	Zn
Au	1.000	.058	.061	.049	.071	.014	.111	.047	016	-,014	.021	001	.019	.002
Ag	058	1.000	.032	151	.184	131	.640	.186	022	.138	.082	.184	.227	.118
As	.061	.032	1.000	.011	.201	.135	.020	.240	037	.132	.087	.098	.035	0.52
Bi	.049	.151	.011	1,000	.018	026	.266	.115	022	.003	.006	.013	.213	057
Со	071	.184	.201	.018	1.000	448	.337	.738	.017	.116	.531	.259	.086	.192
Cr	014	.131	.135	.026	.448	1.000	.243	.498	001	.253	.448	.209	.159	.028
Cu	111	.640	.020	.266	.337	.243	1.000	.354	012	.133	.250	.159	.306	.067
Fe	047	186	240	.115	.738	498	.354	1.000	.009	.167	429	.258	.128	.203
Hg	016	022	- 037	022	.017	-,010	012	.009	1.000	009	- 006	004	004	- 063
Mo	-014	138	.132	.003	.116	.253	.133	.167	009	1.000	.173	.170	.006	.076
Ni	.021	.082	087	.006	.531	448	.250	.429	006	.173	1.000	.274	.073	.157
Pb	- 001	.184	.098	.013	.259	.209	.159	.258	004	.017	.274	1,00	.056	153
Sb	019	.227	.035	.213	.086	159	.308	.128	- 004	.006	.073	.056	1.00	.717
Zn	.002	.118	.052	.057	.192	028	.067	.203	063	.076	.157	.153	.018	1.00

The inter-element association indicates a positive correlation in decreasing order with the following elements:

Au:Cu, Co, As, Ag, Bi, FeCu:Ag, Sb, Fe, Co, Bi, Cr, Mo, AuAg:Cu, Sb, Fe, Co, Pb, Bi, Mo, CrMo:Cr, Ni, Pb, Fe, Ag, Cu,

Gold shows a moderate correlation with copper. cobalt, arsenic and silver, while copper shows a strong correlation with silver, antimony, iron and cobalt. Silver shows a strong correlation with copper, antimony and iron.

5.12 Geochemical Anomalies

The background and anomalous values were determined by statistical methods and are represented in Table 4.0.

TABLE 4.0	- ANOMALOUS SOI	L GEOCHEMICAL VAL	UES
ELEMENT	RANGE	BACKGROUND	ANOMALOUS
Au ppb	5-190	6	20
Ag ppm	0.2-3.2	0.2	0.4
As ppin	2-26	3	6
Bi ppm	2-12	2	4
Co ppm	1-36	7	15
Cr ppm	2-113	13	25
Cu ppin	3-1685	55	90
Fe %	0.12-5.95	2.2	4
Hg ppin	1-5	1	2
Moppm	1-8	1	2
Ni ppm	1-57	8	15
Pb ppm	2-82	7	15
Sb ppm	2-10	2	4
Zn ppm	10-942	109	220

Gold

Gold values ranged from <5 to 190 ppb (Figure 6.0) with background established at 6 ppb and anomalous values 20 ppb and greater. Fifteen samples were considered anomalous and all are single station anomalies.

Silver

Silver values ranged from <0.2 to 3.2 ppm (Figure 7.0) with background established at 0.2 ppm and anomalous values 0.4 ppm and greater. Five weak to moderate silver soil geochemical anomalies were outlined.

Silver anomaly Ag-1 is a weak to moderate, linear anomaly extending over a strike length of 500 metres. It occurs coincidentally with the eastern portion of copper anomaly Cu-2 and anomalous zinc values. Most of the area is overburden covered although the area is believed to be underlain by monzonites of the Copper Mountain stock.

Silver anomaly Ag-2 is a small, moderate anomaly occurring in the southwestern portion of copper anomaly Cu-3.

Silver anomaly Ag-3 is a small, weak to moderate anomaly occurring coincidentally with part of zinc anomaly Zn-2. The northern portion of the anomaly also occurs coincidentally with an induced polarization chargeability anomaly.

Silver anomalies Ag-4 and Ag-5 are two weak to moderate, linear, parallel anomalies with no other elements coincidentally anomalous. Anomaly Ag-4 is the largest, approximately 900 metres long by 100 to 200 metres wide, while Ag-5 is approximately 500 metres long by 50 to 100 metres wide. The anomalies are 50 to 75 metres apart and could be interpreted as one large anomaly. These two anomalies occur south of copper anomaly Cu-4 and may be along a common structural feature. The southern portion of anomaly Ag-5 occurs coincidentally with a chargeability anomaly.

Copper

Copper values ranged from 3 to 1685 ppm with the background established at 55 ppm and anomalous values 90 ppm and greater. Five, weak to strong copper soil geochemical anomalies of variable dimension were outlined.

Copper anomaly Cu-1 is a weak to strong anomaly 500 metres long by approximately 300 metres wide. The two highest copper soil geochemical values of 1100 and 1600 ppm occur within this anomaly as well as a number of weakly to moderately anomalous silver values. Two copper showings (chalcopyrite) were also found within the anomaly. The area is mainly underlain by tuffaceous sediments of the Wolfe Creek formation that have been intruded by dykes and irregular shaped bodies of the Copper Mountain stock.

Copper anomaly Cu-2 is a weak to strong anomaly 500 metres long by 350 metres wide. Copper values range up to almost 600 ppm within the anomaly, and silver anomaly Ag-1 and anomalous zinc values occur along the eastern (upslope) margin. Almost all of the anomaly is covered by overburden although potassic altered Copper Mountain monzonite outcrops along the southern edge. One copper showing (chalcopyrite) was found within the anomaly.

Copper anomalies Cu-3 and Cu-4 are two weak to moderate anomalies covering an area approximately 700 metres by 700 metres. Copper values range up to 369 ppm within the anomaly and a number of silver values are weakly to moderately anomalous. The area is underlain by potassic altered Copper Mountain intrusives and three copper showings (chalcopyrite) were found adjacent to anomaly Cu-3. Road cuts in the area indicate thick accumulations of overburden, and this may be masking the geochemical response.

Copper anomaly Cu-5 is a small, weak to moderate anomaly 300 metres long by 150 metres wide. Copper values range up to 359 ppm and several silver values are weakly anomalous. Several other small areas also show weakly to moderately anomalous copper values. Andesites of the Wolfe Creek formation underlie the anomaly.

Zinc

Zinc values ranged from 10 to 942 ppm (Figure 7.0) with the background established at 109 ppm and anomalous values 220 ppm and greater. Two linear, weak to moderate zinc soil geochemical anomalies were outlined.

Zinc anomaly Zn-1 is a weak to moderate linear anomaly 700 metres long by 200 metres wide. Several weakly anomalous silver values occur within the anomaly. Copper anomaly Cu-2 and silver anomaly Ag-1 occur 100 metres down slope from the anomaly.

Zinc anomaly Zn-2 is a weak linear anomaly 700 metres long by 100 metres wide. Silver anomaly Ag-3 occurs coincidentally with the central portion of the zinc anomaly, as does a chargeability anomaly.

5.13 Geochemical Response

The soil geochemical response over the property varied greatly. Copper (five anomalies) and silver (five anomalies) gave the strongest geochemical responses and also showed strong inter-element correlation. Gold values were weak over the entire property.

Multi-element soil geochemistry has been used with limited success on the Copper Mountain mineral deposits. Much of the property is covered by a variable thickness of glacial overburden soil development is poor. In many cases "A" horizons are developed directly on unweathered glacial till or desegregated bedrock. As a result, in areas of thick overburden (>2 metres) anomalous geochemical values are isolated and erratic. Any anomalous soil geochemical values in these areas must be examined very carefully as much of the response may be masked by the overburden.

A considerable thickness of overburden was noted within and adjacent to the geochemical anomalies on the Tas claims. As in other portions of the Copper Mountain Camp, the overburden may be masking the geochemical response on the Tas claims.

6.0 GEOPHYSICS

6.1 MAGNETIC SURVEY

A total of 61.0 kilometres of total field magnetic survey was carried out on the Tas survey grid during 1996. Magnetic data collected in previous surveys was incorporated with the 1996 data, giving a total of 89.5 kilometres of total field magnetic data that were interpreted. Survey lines were spaced at 50 metre intervals between lines 11000N & 11500N, and 100 metre intervals over the remainder of the grid. Station spacing was 25 metres on all lines. Magnetic contours are displayed on Figure G1 and magnetic profiles, at a profile scale of 1 centimetre = 1000 nT, are displayed on Figure G2. Interpretex Resources Ltd provided an interpretation of the results (Appendix IV).

With reference to mapped geology, magnetic results were used to predict general geologic domains within the survey grid. Magnetic lineaments suggests faults trending northerly, northwest and northeast as shown on Figure G4.

6.2 VLF-EM SURVEY

A total of 79.75 kilometres of VLF EM survey were carried out on the Tas survey grid during 1996. VLF EM data collected in previous surveys was incorporated into the 1996 data, giving a total of 89.5 kilometres of VLF EM data that were interpreted. VLF EM profiles show a moderate to strong response to widespread conductivity as displayed on Figure G3. Topographic bias, due to up and down slope VLF instrument orientation, can be seen in VLF EM profiles on all survey lines. Topographic bias in rugged terrain can provide profile characteristics that resemble real conductors although they are usually broad and follow the topographic contours. A number of these characteristics can be seen in the present data. These features are not interpreted as VLF anomalies. Those anomalies that are considered bonafide. in many cases, form conductor systems that trend north-south, northeast and sometimes northwest as shown on the interpretation map, Figure G4.

6.3 GEOPHYSICAL RESPONSE

General local surface rock types predicted from magnetic data are believed to be intrusive rocks, probably of the Copper Mountain stock, that have intruded older volcanic rocks. The intrusive bodies, as suggested by magnetic data, appear to be broken up by faults and occur in sections or pods suggesting that they may be apopheses of the main intrusion. Magnetic profile character indicates that there are four separate areas of intrusive rock type that have large extent or deep "roots". These areas are shown on Figure G4.

Other magnetic highs seem to show a smaller base and less depth extent suggesting they represent dykes or sills. Magnetic lows, that are lower than the low magnetic background of the volcanic rocks have been interpreted as alteration zones. These alteration zones may be due to alteration in faults and fault intersections, and are believed to be important areas for additional exploration. It must be remembered that both magnetic highs and lows are associated with mineralization that can be both magnetite stable and magnetite destructive.

Surface geological mapping concurs with the magnetic interpretation that the broad magnetic high in the central portion of the claim group is caused be intrusive rocks of the Copper Mountain stock. The geological mapping also indicates the magnetic highs in the northeast, southeast and southwest portions of the claims are underlain by volcanic rocks of the Wolfe Creek Formation. However, sparse outcrop over these areas does leave open the possibility some of the areas are underlain by intrusive rocks.

.

Regions that contain VLF EM conductors, interpreted faults and conductive faults associated with the magnetic intrusive have been interpreted as geophysical targets that may contain economic concentrations of sulphides. These geophysical target areas have been labeled with priority numbers for follow-up exploration on Figure G4.

Geophysical Target 1

A linear north northwest trending magnetic high, that includes a number of stronger, wider highs, is interpreted as a dyke of the intrusive material that has intruded along a structure. This dyke, shown on Figure G4 as "Dyke-Intrusive Rock Type" correlates with VLF conductivity in the northern third of the survey grid. The conductive portion of this dyke, especially the part above 5465000N, is assigned priority 1. Both the conductive dyke, as well as a north northeast conductive fault splaying off the dyke are considered good exploration targets.

Geophysical Target 2

The area described as geophysical target 2 is mainly north of the Tas 1/Tas 2 claim line. Geophysical target 2 falls within one of the interpreted intrusive rock zones that magnetic profiles indicate has a large depth extent or "root". Northerly trending conductive faults, fault intersections and conductivity within this region are second priority follow-up targets.

Geophysical Target 3

Target-3 is an intrusive with a deep root, consists of conductive faults and a fault intersection that may contain sulphide mineralization.

Geophysical Target 4

The two southern survey lines, separated by 300 metres from the main grid, show one of the strongest VLF EM conductors on the property. This northwest trending conductor falls within the most southerly deep rooted magnetic high outlined by the present grid. Conductivity coincides with lower magnetism that may indicate sulphide conductivity within a fault.

Geophysical Target 5

This target is in the region of the legal corner post and the claim line between the Tas 1 and 2 claims. Target 5 includes conductivity in rocks interpreted as volcanics, but that is associated with an interpreted north northwest fault that continues from the volcanics southeast into the intrusive rock. A fault, that seems to be partly conductive, appears to splay off to the northeast into the volcanic rocks. The conductive portion of this fault, near the intersection with the main north northwest fault, is also considered part of target 5, although VLF EM profiles indicate the conductivity is narrow and has limited depth extent.

Geophysical Target 6

Target 6 is near the northern claim boundary in the vicinity of Tie Line 11200E. The target consists of three short, moderate to weak conductors within the intrusive rock type.

Geophysical Target 7

Strong north-south VLF EM conductors in the northeast corner of the survey area are associated with edges of small patches of intrusive rocks. These conductors may represent conductive sulphides within short faults and are considered priority 7.

7.0 CONCLUSIONS

7.1 Based on the Copper Mountain porphyry copper-gold-silver model and the encouraging exploration results, the Tas property has the potential for the discovery of Copper Mountain porphyry type deposits. There is sufficient and favorable geological, geochemical and geophysical evidence to support this potential.

7.2 Within the Copper Mountain camp, copper-gold-silver mineralization occurs predominantly within bornite-chalcopyrite-pyrite-magnetite bearing veins associated with high temperature sodic and potassic alteration. Structure is the most important overall ore control, with easterly, northeasterly, northwesterly and northerly striking structures most important. Most of the deposits and prospects occur along, or at intersections of these macrostructures. Mineralization is related to late phases of the Copper Mountain stock.

7.3 The Tas claims are underlain by volcanic and sedimentary rocks of the Wolfe Creek Formation (Nicola Group) that have been intruded by monzonites of the Copper Mountain stock. The Copper Mountain stock occupies an area of about three square kilometres along the boundary of the Tas I and 2 claims. Dykes and sills of the Lost Horse intrusive complex may intrude Wolfe Creek Formation in the northwest corner of the claim group.

7.4 Targets T-1, T-2 and T-3 all show varying amounts of potassic alteration and small copper showings have been found within each target.

7.5 The soil geochemical response on the Tas claims is very favorable, with four significant, weak to strong copper anomalies outlined on the property. Silver shows good correlation with copper, while gold values are erratic. Production from the Copper Mountain camp has shown silver:gold and copper.gold ratios are zoned from north to south with higher ratios in the south. Thus silver values are higher in the Pit 3 and Oriole zones nearest the Tas claims. Tas geochemistry bears this out with a strong correlation between copper and silver. The soil geochemical responses are very significant considering much of the property is underlain by variable thicknesses of glacial overburden and soil development is poor. As a result, soil geochemical responses over these areas are isolated and erratic with the response reduced or masked entirely.

7.6 The magnetic and VLF EM surveys were successful in defining a number of significant geophysical features. The magnetic survey outlined a broad magnetic high that outlines the Copper Mountain stock. A number of magnetic lineaments were outlined suggesting faults trending northerly, northwesterly and northeasterly. VLF EM anomalies, in many cases form conductor systems that trend north-south, northeast and northwest. As the mineralization within the Copper Mountain camp exhibits strong structural control, these structural features are of paramount importance. The magnetic lineaments and VLF EM conductors occurring in areas of anomalous copper soil geochemistry and/or potassic alteration are especially important.

7.7 Traditional exploration techniques were used through the 1970's to discover most deposits and prospects at Copper Mountain. Surface prospecting for mineralization in the Copper Mountain camp is severely limited by scarcity of outcrop and thick accumulations of glacial overburden. The overburden has generally prevented surface prospecting from being a successful tool for discovering additional mineralization within the camp. In the 1980"s and 1990's the most productive exploration techniques have

been those that identify specific geological features associated with the mineralization (such as structures controlling mineralization or alteration facies) rather than the mineralization itself.

7.8 The exploration results on the Tas property are encouraging. A combination of several coincidental geological, geochemical and geophysical anomalies, has delineated 6 target areas warranting follow-up exploration. Table 5.0 lists the targets and prioritizes the areas for detailed evaluation. The target areas (T-1 to T-6) are located on the Compilation Map (Figure 8.0) and the Proposed Exploration - Target Areas (Figure 9.0).

7.9 It is concluded that the Tas property contains favorable exploration targets to host Copper Mountain type porphyry copper-gold deposits. It is recommended that further exploration be conducted on the property. The exploration results are encouraging as supported by favorable geology, copper-silver soil geochemical anomalies, potassic alteration associated with small showings of copper (chalcopyrite), and magnetic linears (faults) and VLF EM conductors along favorable structural orientations. The discovery of potential economic copper targets on the property is complicated by thick accumulations of overburden that mask geochemical response and limit outcrop exposure.

T	ARGETS	EX	PLORAT	ION INDICA	TORS		ORATIC JUATIC	
ID AREA (KM sq)		GEOLOGY GEOCHEMISTRY ROCK SOIL		GEOPHYSICS	PROGRAM	RAT ING	PRIORI TY	
T-1	.35	OB CM?, LH? WC K, ep, py, mag, cpy	Cu:W-M Au:W Ag:W	Cu:W-S Ag:W	MagH CS MagLi-NNE, N, NNW	P, IP, TR, CR]	Second
T-2	.60	OB Cu:W Cu:W-S MagH CM Ag:W Ag:W-M CS WC Zn:W-M MagLi-NNW K, py, mag, cpy Cu:W-M Cu:W-S OB Cu:W-M Cu:W-S CM Au:W Ag:W K, ep, py, mag, cpy Ag:W CS MagLi-N, Ni NNW NNW OB Cu:nil Cu:W CH Ag:W CS	Cu:W Cu:W-S I Ag:W Ag:W-M G Zn:W-M Zn:W-M I Cu:W-M Cu:W-S I Au:W Ag:W I Ag:W Cu:W-S I Ag:W Cu:W I Cu:nil Cu:W I Ag:W Cu:W I			P, IP, TR, CR	I	Third
T-3	.69				MagLo CS MagLi-N, NNE,	P, IP, TR, CR		First
T-4	.33				,	P, IP, TR	11	First
T-5	.77	0B WC cp, py, cpy	Cu; W	Ag:W-M Zn:W	CH MagH MagLi-NNW	P, IP, TR	11	Second
Т-6	.21	OB WC	Cu:nil	Cu:W Ag:W	MagH CS MagLi-N, NE	Р	II	Third
GEOLOGY OB-Overburden LH-Lost Horse Complex CM-Copper Mountain Intrusive WC-Wolfe Creek Fm K-Pofassic Alteration cpy-chalcopyrite mag-magnetite py-pyrite, ep-epidote		GEOCHEMISTRY W-Weak M-Moderate S-Strong N-none Cu-copper Ag-silver Au-gold Zn-zinc	GEOPHYSICS MagH-Magnetic High MagLo-Magnetic Low CH-Chargeability CS-Conductor System MagLi-Magnetic Linear NNE-North Northeast NNW-North Northwest NE-Northeast, N-North NW-Northwest, E-East		PROGRAM P-Prospecting G-Geology GC-Geochemistry GP-Mag/VLF IP-IP Survey TR-Trenching CR-Core Drilling	RATING I-High II-Medium III-Low	PRIORITY First Second Third	

26

8.0 RECOMMENDATIONS

The 1996 exploration yilded positive results and further work is warranted on the property. The exploration program should be conducted as follows:

- -continue to evaluate the property through geological mapping and prospecting
- -establish I.P. gridover target areas 1 to 5
- -conduct I.P. survey over target areas 1 to 5
- -conduct trenching over target areas and I.P. anomalies
- -conduct reverse circulation/core drilling over favourable targets

Respectfullesubilitted. FROVINCE CROOKER 5.1, 29/97 Grant Crooker, P.Geo., Consulting Geologist

9.0 REFERENCES

B.C.M.M., GEM 1973 p 133.

B.C.M.M., Minfile; 92H-SE-132.

Allen, A.R. (1971): Geophysical Magnetometer Survey, Ilse Claim Group for Aurus Mines Ltd. Assessment Report # 3088.

Ashton, A.S. (1970): Geophysical Report on a Ronka 16 Survey, Ilse and Sob Claim Group for Aurus Mines Ltd. Assessment Report # 2451.

Barr, D.A., Fox, P.E., Northcote, K.E. and Preto, V.A.G. (1976): The alkaline suite of porphyry deposits - A summary. In Porphyry Deposits of the Canadian Cordillera. Edited by A. Sutherland Brown. Canadian Institute of Mining and Metallurgy, Special Volume 15, p. 359-367.

Crooker, G.F. (1992): Geological, Geochemical and Geophysical Report on the Tas 1 and 2 Claims, Copper Mountain Area, Similkameen Mining Division, for Grant Crooker. Assessment Report # 22427.

Crooker, G.F. (1994): Geological, Geochemical and Geophysical Report on the Tas 1 and 2 Claims, Copper Mountain Area, Similkameen Mining Division, for Grant Crooker. Assessment Report # 23649.

Dolmage, V. (1934): Geology and ore deposits of Copper Mountain, British Columbia. Geological Survey of Canada, Memoir 171.

Fahrni, K.C. (1951): Geology of Copper Mountain, Canadian Institute of Mining and Metallurgy Bulletin 44. No. 469, p. 317-214.

Fahrni, K.C., Macauley, T.N. and Preto, V.A.G. (1976): Copper Mountain and Ingerbelle, In Porphyry Deposits of the Canadian Cordillera. Edited by A. Sutherland Brown, Canadian Institute of Mining and Metallurgy, Special Volume 15, p. 368-375.

George Cross News Letter: December 9 1996, Alpaca Resources Corporation News Release.

Gutrath, G.C. (1971): Report on Geochemical Survey "Y" Claim Group, Copper Mountain Area, B.C., for Coin Canyon Mines Ltd. Assessment Report # 3188.

Gutrath, G.C. and Neilson, P.P. (1973): Geophysical Report of the Induced Polarization Survey on the Tas-Tat Claim Group on behalf of Phelps Dodge Corporation of Canada Limited. Assessment Report # 4526.

Holbek, P. and Blower, S.J. (1995): Summary Report on a Reverse Circulation Drilling Program on the Westmin Group at the Similco Mine Property for Similco Mines Ltd. and Westmin Resources Ltd. Assessment Report # 24041.

MacQuarrie, D.R. and Ager, C.A. (1975): Copper Project-Phase Three, Diamond Drilling for Aquitane Company of Canada Ltd. on the CMAG Claims and Sundry Crown Grants. Assessment Report # 5768.

Meyers, R.E. (1982): Report on Geological and Geochemical Surveys on the CMAG - 82 Group for Kidd Creek Mines Ltd. Assessment Report # 10956.

Montgomery, J.H. (1968): Petrology, structure and origin of the Copper Mountain intrusions near Princeton, British Columbia, Unpublished Ph.D. thesis. The University of British Columbia, Vancouver, British Columbia, 175 pages.

Morris, A. (1973): Summary Geological, Geochemical and Geophysical Report on the Tas and Tat Group of Claims for Phelps Dodge Corporation of Canada Limited. Assessment Report # 4380.

Morris, A. (1973): Geological Report Project 137 - Copper Mountain Area, for Phelps Dodge Corporation of Canada Limited. Assessment Report # 4806.

Neilson, P.P., (1971): Report on Induced Polarization and Ground Magnetometer Surveys, "Y" Claim Group for Coin Canyon Mines Ltd. Assessment Report # 3187.

Preto, V.A.G. (1972): Geology of Copper Mountain, British Columbia Department of Mines and Petroleum Resources Bulletin 59.

Preto, V.A.G. (1977): The Nicola Group: Mesozoic volcanism related to rifting in southern British Columbia. In Volcanic Regimes in Canada. Edited by W.R.A. Baragar, L.C. Coleman, and J.M. Hall. Geological Association of Canada, Special Paper No. 16, p. 39-57.

Preto, V.A.G. (1979): Geology of the Nicola group between Merritt and Princeton. British Columbia Ministry of Energy, Mines and Petroleum Resources, Bulletin 69, 90 pages.

Read. W.S. (1968): Geochemical - Geophysical Report, Azurite Group, Cas 1-32 and Adjoining Mineral Claims for Sinmax Mines Ltd. Assessment Report # 1785.

Read, W.S. (1970): Geochemical - Geophysical Report, Azurite Group, Cas 1-32 and Adjoining Mineral Claims for Sinmax Mines Ltd. Assessment Report # 2892.

Read, W.S. (1973): Geophysical Report, Azurite Group, Cas 1-32 and Adjoining Claims for Sinmax Mines Ltd. Assessment Report # 4372.

Rice, H.M.A. (1947): Geology and Mineral Deposits of the Princeton Map-Area, B.C., Geological Survey of Canada, Memoir 243.

Schroeter, T.G.: Porphyry Deposits of the Northwestern Cordillera of North America. Special Volume 46, Canadian Institute of Mining, Metallurgy and Petroleum.

Tulley, D.W. (1973): Report on an Induced Polarization Survey on the llse Claims 1 - 12 and Sob Claims 1 - 8 for Aurus Mining Ltd. Assessment Report # 4376.

Wilson, E.M. (1969): Geophysical and Geochemical Report on Claims Ilse #I - # 12 for Aurus Mines Ltd. Assessment Report # 1904.

Wilson, E.M. (1969): Geophysical and Geochemical Report on Sob #1 - #8 for Aurus Mines Ltd. Assessment Report ft 2032.

Wilson, E.M. (1970): Geochemical Report on Claims Sob #3 - #8 for Aurus Mining Ltd. Assessment Report # 2558.

Wojdak, P., Jones, M.I. (1992): Geological Report on the Wes 1-3, Wes 8-14 and WR 1-6 Claims for Westmin Resources. Assessment Report # 22534.

10.0 CERTIFICATE OF QUALIFICATIONS

I, Grant F. Crooker, of Upper Bench Road. P0 Box 404, Keremeos, British Columbia, Canada, VOX INO do certify that:

3

I am a Consulting Geologist registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (Registration No.18961);

I am a Fellow of the Geological Association of Canada (Registration No.3758) and I am a Member of the Canadian Institute of Mining and Metallurgy and Petroleum;

1 am a graduate (1972) of the University of British Columbia with a Bachelor of Science degree (B.Sc.) from the Faculty of Science having completed the Major program in Geology;

I have practiced my profession as a geologist for over 20 years, and since 1980, I have been practicing as a consulting geologist and, in this capacity, have examined and reported on numerous mineral properties in North and South America;

I have based this report on field examinations within the area of interest and on a review of the technical and geological data

I am the owner of the Tas claims:

Respectfully submitted,

FSSIO,

5-14 21/17

Grant, & Crooker, P. Geo., GFC Consultants inc.

APPENDIX I

-

-- --

-- -- -- --

-- - - -

CERTIFICATES OF ANALYSIS

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GEOTEC CONSULTANTS LTD

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Comments: ATTN: L.W SALEKEN

CERTIFICATE

A9618157

(LOY) - GEOTEC CONSULTANTS LTD.

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 22-MAY-96.

SAMPLE PREPARATION CHEMEX NUMBER DESCRIPTION 205 6 Geochem ring to approx 150 mesh 226 0-3 Kg crush and split 6 3202 6 Rock - save entire reject 220 2 Transferring charge 222 2 Drving charge (0-3 Kg) 229 6 ICP - AQ Digestion charge * NOTE

The 32 element ICP package is suitable for trace metals in soil and rock samples. Blements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
983	6	Au ppb: Puse 30 g sample		5	10000
2118	6	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
2119	6	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	6	As pom: 32 element, soil & rock	ICP-AES	2	10000
2121	6	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	6	Be pom: 32 element, soil & rock	ICP-ARS	0.5	100.0
2123	6	Bi ppm: 32 element, soil & rock	ICP-ABS	2	100.0
2124	6	Ca %: 32 element, soil & rock	ICP-ABS	0.01	15.00
2125	6	Cd pom: 32 element, soil & rock	ICP-AES	0.01	100.0
2126	6	Co ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2127	6	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	6	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
2150	6	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
2130	6	Ga ppm: 32 element, soil & rock	ICP-ARS	10	10000
2130	6	Hg ppb: HNO3-HC1 digestion	AAS-FLAMELESS	10	100000
2132	6	K %: 32 element, soil & rock	ICP-ARS	0.01	10.00
2151	6	La ppm: 32 element, soil & rock	ICP-AES	10	10.00
2134	6	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135		Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	6	Mo ppm: 32 element, soil & rock	ICP-AES	5	10000
2137	6	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
2138		Ni ppm: 32 element, soil & rock	ICP-ARS	1	10000
2139		P ppm: 32 element, soil & rock	ICP-ABS	10	10000
2140		Pb ppm: 32 element, soil & rock	ICP-ARS	2	10000
2141		Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142		Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143		Sr ppm: 32 element, soil & rock	ICP-ARS	1	10000
2144		Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
2145	-	Ti ppm: 32 element, soil & rock	ICP-ABS	10	10000
2146		U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147		V ppm: 32 element, soil & rock	ICP-ARS	10	10000
2148	1 -	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149		Zn pom: 32 element, soil & rock	ICP-AES	2	10000
				-	

A9618157

-

Chemex Labs Ltd. Anaytical Chemists ' Registered Astayets 212 Brookshank Ave. North Vancouver Brittin Columbis, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD. 6978 LABURNUM ST. VANCOUVER, BC V6P 5M9

Total Pages 1 Certificate Date 30-SEP-96 Invoice No. 19632972 P.O. Number 02 Account LOY

Project : TAS Comments: ATTN:L.W.SALEKEN CC:GRANT CROOKER

.

				KER	IL CHOC	C:GRAN	EN (SALEK	TTN:L.W	nents: /	Com			84-0218	X: 604-9	0221 FA	04-984-(PHONE: 6			
		972	9632	A	/SIS	NAL	OF A	CATE	RTIFIC	CE											
4 17	Hg	La FPM	K	Fig ppm	Ga ppm	70 2	Cu ppm	Cr pp=	Co ppm	Cđ pp a	Ca ¥	Bi PP#	Be ppm	Ba ppm	λ∎ ppa	A1 *	Ag ppm	Au ppb FA+AA		PRI COL	SAMPLE
100 124 159 103	0.03 1.53 1.38 1.68 1.20	< 10 < 10 < 10 < 10 < 10 < 10	0.23 1.09 0.15 0.11 0.16	<pre>< 1 < 1</pre>	< 10 < 10 < 10 < 10 < 10	1.57 3.56 3.60 4.77 4.86	13 355 81 66 122	127 28 29 39 33	1 20 13 14 21	< 0.5 < 0.5 1.0 < 0.5 0.5	1.40 1.1#	< 2 < 2 < 7 < 7 < 2 < 2 < 2 < 2 < 2	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	70 40 30	24 6 10 12 10	0.62 1.98 2.28 2.07 1.94	0.2 0.6 0.2 0.4 0.6	< 5 < 5 < 5 < 5 < 5	226	205 205 205	026405062610206 026410063150207 028400063992208 028399563991209 028399563991209
46 136 55 22	0.79 0.57 0.99 1.32	↓ 10 ↓ 10 ↓ 10 ↓ 10 ↓ 10	0.19 0.01 0.13 9.32	< 1 < 1 < 1 < 1	< 10 < 10 < 10 < 10	4.66 7.85 3.40 2.24	1855 26 188 1370	33 151 20 105	13 21 17 16	< 0.5 0.5 < 0.5 < 0.5	0,75 1.61 1.21 1.23	< 2 < 2 < 2 < 2	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	30 50	< 1 2 4 1 2	0,97 1,64 1,27 1,53	2,0 < 0.2 < 0.2 1.2		326 326 326	205 205 205	028335961986311 028335263945312 028222163960313 028218065380314
	5 9	5	्चः[1.1.							<u> </u>	. <u>.</u>					.				

Chemex Labs Ltd. Analylical Chemists ' Geochemists ' Registared Assayors 212 Brooksbank Ave., North Vancouver British Columbia, Cenarda V7J 2C1 PHONE: 604-584-0221 FAX: 604-984-0218

7o:	GEOTEC CONSULTANTS LTD.
	6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number I B Trial Pages 1 Certificate Pate 30-SEP-96 Invoine No 19512972 F O Number 02 Account LOY

Project : TAS Comments: ATTN:L.W.SALEKEN CC:GRANT CROOKER

.

		PHONE: 6	304-584-0	1221 FA	UC 604-9	94-0218			Com	nente:	ATTN:L.	W.SALEH	(EN -	CC:GHAI	IT CROOK		
										CE	RTIF	ICATE	OF 4	NAL	(SIS	A9632972	
SAMPLE	PREP CODE	Mo Ppm	Na 3	Nİ PPR	p ppu	Pb ppa	sb ppn	Sc PP=	Sr p p n	ti X	T] ppm	U ppm	v PP	W ppm	în ppa		
26405062610206 26410063150207 28400063992208 28399563992209 28399063985210	205 226 205 226 205 226	9 3 < 1 < 1 1	0.04 0.04 0.04 0.03 0.03	3 5 4 11 5	200 1700 1090 1020 1300	4 12 2 4 6	< 2 < 2 < 2 < 2 < 2 < 2	1 7 5 6 6	21 107 61 30 28	0.01 0.16 0.20 0.20 0.20	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	10 123 121 143 123	< 10 < 10 < 10 < 10 < 10 < 10	10 138 126 156 162		
28335963986211 28325263945712 28222163960213 28218065380214	205 226	3 5 4 1 6	0.04 (0.01 0.04 0.08	9 6] \$6	990 500 1070 930	4 18 5 4	< 1 < 1 < 2	4] 5 6	68 55 127 61	0.10 0.14 0.11 0.15	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	151 66 93 65	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	126 468 40 72		
Í																	
ł																	

CERTIFICATION $\lim_{k\to\infty} \mathbb{P}_{k-1} = \{\mathbf{x}_k\}_{k=1}^{\infty} = \mathbb{P}_{k} \oplus \mathbb{P}_{k} \ge \mathbb{P}_{k}$

•

Chemex Labs Ltd. Analylicat Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave. British Columbia: Canada V7J 2C1 PHONE: 604-984-0221 FAX: 804-984-0218

To: GEOTEC CONSULTANTS LTD. 8976 LABURNUM ST. VANCOUVER, BC V6P 5M9 .

Page Number::1-A Total Pages::1 Centificate Date:14-OCT-96 Invoice No.:19634935 P.O. Number::D2 Account::LOY

Project ; TAS Comments: CC; GRANT CROOKER 🗡

			_								CE	RTIF	CATE	OF /	NAL	YSIS		49634	935		
SAMPLE	PREP	λυ p 7λ+		λg ppm	۸1 م	Ka Ppa	Ва ррш	Be ppm	81 ppm	Ca N	Cđ ppm	Co pps	Cr pp=	Си ррш	70	Ga pp=	Bg pp n	K ¥	La ppm	Hg X	Min ppm
1028228965324225 1028238063490221 1028238565103224 1028238565103224 1028241563455218 1028247063470220	205 22	6 6 6	15 25 15 45 5	< 0.2 2.0 0.2 2.3 0.4	1.90 1.74 1.11 1.65 1.67	12 < 1 < 1 < 2 < 2	60 30 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	* 1 1 13	1.82 1.50 1.08 1.04 1.35	< 0.5 < 0.5 < 0.5 < 0.5 0.5	63 37 36 19 16	70 33 50 27 34	135 1339 199 3050 307	5.11 4.29 5.35 5.11 4.11	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.20 0.29 0.13 0.42 0.33	< 10 < 10 < 10 < 10 < 10	1.22 1.31 0.36 1.14 0.92	390 605 165 610 520
102#348465346723 3028349365416233 102#356063475219 102#3516337217 102#395163317217 102#395163317215	205 22 205 22 205 22	6 4 6 4	20 5 5 5 5	4.2 0.3 1.0 0.6 0.2	1.08 1.69 1.74 2.44 2.54	< 2 < 2 4 < 2 < 2	30 100 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 + 2 + 2 + 2 + 2	1.28 1.67 2.16 1.77 1.40	2.5 0.5 < 0.5 9.0 0.5	13 24 17 27 18	24 33 37 37 31	3980 381 359 84 19	2.67 4.03 3.30 5.88 5.23	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.07 0.10 0.41 0.23 0.11	< 10 < 10 < 10 < 10 < 10	0.53 0.67 0.63 1.56 1.69	310 245 165 1890 845
1038413062540216	205 22	" ~	5	0.2	2.65	ĩ	30	< 0.5	< 2	1.49	< 0.5	16	30	17	1.16	< 10	1	0.10	< 10	1.60	1085
	ĺ																				
																					j
	ĺ																				
																		-		22	

CERTIFICATION: Jourt such les

C

Chemex Labs Ltd. Anaylicat Chamişta * Geochemista * Pedistard Assayera 212 Brocksbank Ave. North Vancouver Britsh Columbia. Canada V7J 2C1 PHONE: 504-984-0221 FAX: 504-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9 Page Number 1-B Total Pages :1 *Certilicate Date:* 14-007-96 Invoice No. :19634935 P.O. Number :02 Account :02

Project : TAS Comments: CC: GRANT CROOKER

											CE	RTIF	CATE	OF /	NAL	/SIS	A9634935
SAMPLE	PRI COI		No ppn	Na X	Nİ ppm	p ppm	₽b pp∎	Sb pp=	Sc ppm	Sr pp a	Tİ N	T1 ppm	U ppa	V ppm	H ppta	Zn pp=	
C28228965334225 D28238D63490231 D28238565103234 O28238565103234 O38241563455218 C2824706347022C	205 205 205	226 226 236	1 1 1 1 < 1	0.15 0.03 0.07 0.04 0.04	23 5 6 1	1310 1290 1190 1470 1380	<pre></pre>	2 2 4 2 6 4 2	5 1 2 2	81 109 45 55 60	0.17 0.14 0.13 0.12 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	111 168 64 197 151	< 10 < 10 < 10 < 10 < 10	48 118 32 108 90	
024344465366223 028249565416233 038254063475219 028295163317217 028385062470315	205 205 205	236 226 226	< 1 < 1 1 < 1 < 1	0.04 0.08 0.03 0.04 0.01	3 5 5 5	1170 1460 1570 1690 1530	36	12 < 2 < 2 < 2 < 2 < 2)) 7 6 5	68 73 122 31 131	0.10 0.21 0.09 0.23 0.23	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	\$4 129 106 165 173	< 10 < 10 < 10 < 10 < 10 < 10	16 66 70 1905 88	
028412062540216	205	336	 < <u>1</u>	0,02	1	1650	4	< 2		73	0.21	* 10	< 10	221	< 10	64	
			 												ERTIFIC		Hart Suchler

C		Cher natylkał Che 212 Brool British Co PHONE:	misis Ge ksbank A Jumbia, C	ochemists ve., Canada	• Register North Va	ed Astey лсоцует V7J 2C1	979		Proje	6976 LA VANCO V6P 5M	BURNUN UVER, BI 9 7AS ATTN:L.V	1 ST.		C:GRAM		/		fotat Pr Certilica Invoice P.O. Nu Account	tie Date No Imber	16-SEP-96 19631220 LOY
		-								CE	RTIFI	CATE	OF /	NAL	YSIS		A963	220		
SAMPLE	PREP	Au ppb 7A+AA	Ag ppm	A1	λ. Ppm	Ва ррж	Be ppu	ai ppm	Ca N	cd þp∎	Со ррн	Cr ppm	Cu ppm	74 \	Ga Ppe	Ну рри	K S	La ppm	жq	Mn ppm
5000 10000E 5000 10050E 54000 10100E 66000 10150E 56000 10150E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	• 0.2 0.2 0.2 0.2 0.2 0.4	1.07 2.43 1.71 1.53 1.80	5 10 5 7 30	110 90 90 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	+ 2 + 3 + 3 + 3 + 3 + 3 + 3	0.34 0.22 0.14 0.29 0.41	< 0.5 2.5 < 0.5 0.5 < 0.5	7 10 6 6	10 10 10 10 10	24 20 17 22 40	1.97 1.36 1.92 1.81 2.43	< 10 < 10 < 10 < 10 < 10 < 10	1 1 < 1 < 1 < 1	D.04 0.05 0.04 0.04 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.29 0.30 0.23 0.18 0.13	1095 715 500 630 165
8600H 10250E 8600H 10300E 8600H 10350E 8600H 10350E 8600H 10400E 8600H 10450E	201 202 201 202 201 203 201 203 201 203 201 203	<pre></pre>	0.4 0.8 0.5 < 0.2 0.2	2.09 2.07 1.90 1.36 1.73	4 4 8 2 6	40 60 40	< 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5	< 1 < 1 < 1 < 1 < 2	0.68 0.98 0.93 0.63 0.25	< 0.5 0.5 < 0.5 < 0.5 < 0.5	7 13 7 8 7	10 13 13 7	\$4 105 90 29 15	2.05 2.74 2.44 1.69 1.74	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.03 0.03 0.05 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.24 0.44 0.41 0.34 0.13	615 345 305 185 225
6600# 10500# 8600# 10550# 8600# 10500# 8600# 10500# 8600# 10500# 8600# 10700#	201 202 201 202 201 203 201 203 201 203 201 203	<pre>< 5 < 5 </pre>	0.4 0.3 0.2 < 0.2 < 0.2	1.39 1.74 1.73 1.37 1.17	6 6 6	70 10 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.41 0.36 0.38 0.43 0.36	< 0.5 < 0.5 0.5 < 0.5 < 0.5	5 7 5 5	7 11 9 7 6	21 29 24 27 21	1.75 2.14 1.85 1.90 1.78	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.03 0.05 0.05 0.06 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.21 0.24 0.10 0.23 0.19	250 185 550 325 390
6600H 10750E 6600H 10800E 6600H 10800E 6600H 10800E 8600H 10800E 8600H 10800E	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.33 1.70 1.36 1.62 1.89	6 6 10 10	100 110 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 2	0.23	< 0,5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3767	7 6 6 6	28 26 21 26 23	1.73 2.07 1.76 1.86 1.88	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.08 0.05 0.04 0.04 0.04	< 10 < 10 < 10 < 10 < 10	0.33 0.30 0.16 0.16 0.15	450 585 1335 995 1345
8600H 11000E 8600H 11050E 8600H 11100E 8600H 11150E 8600H 11150E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 3 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	< 0.2 0.2 0.2 < 0.2 < 0.2	1.33 2.62 3.94 1.60 2.29	< 2 10 12 10 4	10 110	< 0.5 < 0.5 1.0 < 0.5 0.5	< 2 < 1 < 2 < 2 < 2	0.31 0.45 0.39	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 7 10 8 7	3 8 15 9	15 41 100 56 72	0.01 3.10 3.45 2.43 2.17	<pre>* 10 * 10 * 10 * 10 * 10 * 10 * 10</pre>	< 1 1 < 1 < 1	0.01 0.05 0.08 0.04 0.04	< 10 < 10 < 10 < 10 < 10	0.10 0.23 0.44 0.34 0.17	60 290 775 350 355
6000 112502 6000 113002 6000 113002 6000 113502 6000 114502	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5 < 5	0.4 < 0.1 0.2 < 0.2 < 0.2	1.61 1,10 1.87 1.01 1.77	2	30 50 50	< 0.5 < 0.5 < 0.8 < 0.8 < 0.5		0.49 0.35 0.59	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 5 7 10 5	13 8 7 7 7	100 30 20 49 15	2.38 1.87 1.86 2.45 1.87	< 10 < 10 < 10 < 10 < 10 < 10	<pre> 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1</pre>	0.05 0.04 0.04 0.12 0.03	< 10 < 10 < 10 < 10 < 10	0.27 0.31 0.10 0.15 0.13	285 240 145 810 155
86000 115008 86000 115508 86000 115508 86000 116508 86000 116508	201 202 201 202 201 202 201 202 201 202 201 202	< 5	< 0.2 < 0.2 < 0.1 0.3 0.2	1.38 1.29 1.09 2.10 1.60	2 2 2 2 6 2 2	70 40 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1 < 2	0.19 0.13 0.45	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5	1 6 11 12	10 16 10 39 40	1.73 1.83 1.55 2.36 2.09	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.04 0.04 0.03 0.05 0.05	<pre>< 10 < 10</pre>	0.17 0.19 0.15 0.30 0.30	240 470 735 205 530
8600N 31750E 8600N 31800E 8600N 31850E 8600N 31850E 8600N 31850E	201 202 201 202 201 202 201 202 203 203 201 203	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 2.2 0.2 < 0.2	1.53 2.90 2.21 4.43 1.66	6 6 1 6 4 2	100 150	< 0.5 0.5 < 0.5 0.5 < 0.5	< 1 < 1 < 2 < 3 < 3	0.57 0.36 9,43	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12	9 31 23 30 13	15 114 44 162 29	1.76 3.39 2.31 3.06 1.97	< 10 < 10 < 10 10 10 < 10	< 1 1 < 1 1 < 1	0.04 0.09 0.08 0.07 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.11 0.80 0.54 0.63 0.30	220 690 385 365 695

CERTIFICATION: Stenti Buchler

•

Chemex Labs Ltd. Analylical Chambis * Ceochemisis * Registered Assayers 212 Brooksbark Ave, North Vancouver Brieber Columbie, Canada V7J 201 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number 18 Total Pages 5 Certificate Date 16-SEP-96 Invoice No 19531220 P.O. Number Account LOY

Project : TAS Comments: ATTN:L.W. SALEKEN CC:GRANT CROOKER

.....

.....

.

										CE	RTIF	CATE	OF /	NAL	(SIS	A9631220
SAMPLE	PREP CODE	Ma ppi	-	Ni ppm	p pm	Pb ppm	SP PD8	Sc ppm	Sr ppn	Tİ X	T1 ppm	U Pp n	v ppa	w ppm	ža ppe	
600N 10000E 600N 10050E 600N 10160E 600N 10150E 8600N 10200E	201 202 201 202 201 202 201 202 201 202 201 202		0.01 0.01 0.01	7 14 7 13	1090 1260 1170 1110 1430	6 12 10 10 10	<pre>< 1 < 2 < 2 < 2 < 2 < 3 < 4 </pre>	2 3 1 1 3	32 24 23 26 39	0.00 0.00 0.00 0.00 0.00	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	45 53 50 47 56	< 10 < 10 < 10 < 10 < 10 < 10	114 238 100 93 100	
8600H 10230E 8600H 10300E 8600H 10350E 8600H 10600E 8600H 10650E	201 202 201 202 201 202 201 202 201 202 201 202		0.01 0.01 0.01	13 10 6	640 400 620 320 1910	10 8 11 6 10	<pre> < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 3 </pre>	2 4 4 3 2	28 48 69 55 27	0.09 0.11 0.10 0.17 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	\$2 77 74 64 48	< 10 < 10 < 10 < 10 < 10 < 10	97 80 104 82 554	
500W 10500E 500W 10550E 500W 10500E 500W 10550E 500W 10550E 500W 10700E	201 202 201 202 201 202 201 202 201 202 201 202	1 1	0.01 0.02 0.01	3 8 9 9 5	1110 1270 1360 487 460	10 10 10 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 1 2 2 2	39 36 29 42 34	0.08 0.10 0.08 0.10 0.10 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 20 < 10	54 52 51 50 50	< 10 < 10 < 10 < 10 < 10	140 206 206 136 128	
600N 107502 6600N 10800E 6600N 108502 6600N 108502 8600N 109502	201 202 201 202 201 202 201 202 201 202 201 203	1 1 1 1 1	0.01	6 8 7 7	620 680 1870 1660 1350	8 10 9 6	<pre></pre>	2 1 1 1 1	24 22 23 24 20	Q.09 Q.08 Q.08 Q.06 Q.07 Q.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	46 52 40 68 69	< 10 < 10 < 10 < 10 < 10 < 10	160 140 134 152 152	
400N 11000 400N 11050 400N 1100E 400N 11100E 400N 11150E 400N 11200E	201 202 201 203 201 203 201 203 201 202 201 203	1	0.01 0.03 0.01	1 7 10 6 10	120 1250 1010 1050 1710	13 12 10 1	<pre>< 2 < 2</pre>	1 2 5 3	33 10 52 37 17	0.07 0.10 0.06 0.09 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	29 57 61 69 51	< 10 < 10 < 10 < 10 < 10 < 10	28 96 130 99 114	
600N 11250E 1600N 11300E 1600N 11350E 1600N 11400E 1600N 11450E	301 202 301 202 301 202 201 202 201 202 201 203	2	< 0.01 0.03 < 0.01	7 3 6 4 3	280 440 1680 760 2030	4 5 5 5	<pre>< 2 < 3 < 3 < 3 < 3 < 4 </pre>	4]]]]	19 47 18 52 22	0.08 0.09 0.09 0.07 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	60 63 46 66 50	< 10 < 10 < 10 < 10 < 10 < 10 < 10	45 33 88 45 45	
600H 1150E 600H 11550E 600H 11550E 600H 11650E 600H 11650E	201 202 201 202 201 202 201 202 201 202 201 202	1 1 1 1 1 1 1 1 1	0.01 0.01 0.01 0.01 0.01	5 6 3 8 6	770 1050 860 970 1290	6 6 6 8	<pre>< 3 < 3 < 4 3 < 4 3 < 4 3 < 4 3 < 3 </pre>	1 1 1 2 1	19 17 11 31 30	0.06 0.08 0.10 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	45 46 43 59 59	< 10 < 10 < 10 < 10 < 10 < 10	18 53 61 186 98	
600N 117508 600N 11800R 600N 11800R 600N 11900E 600N 11950E	201 302 201 207 201 302 201 302 201 302 201 202	* 1 1 * 1 2	0.03 0.01 0.01 0.01 0.01 0.01	5 15 15 16 7	1200 430 1250 1470 770	6 10 6 13 6	< 1 < 2 < 2 < 2 < 2	1 5 2 5 2	14 45 32 50 22	0.09 0.15 0.12 0.16 0.10	< 10 < 10 < 10 < 10 < 10 < 20	< 10 < 10 < 10 < 10 < 10 < 10	49 103 61 64 57	< 18 < 10 < 10 < 10 < 10 < 20	50 86 103 60 72	
	<u>. 1</u>			<u></u>									c	ERTIFIC		A allow a him in

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver Britsh Columbia Canada V7J 2C1 PHONE: 604-984-0221 FAX 604-964-0218

16 GEOTEL CONSULTANTS CIV 6976 LABURNUM ST. VANCOUVER, ØC V6P 5M9

Total Pages 6 Centric the Istone 16-SEP 36 Inverse No. 19531220 P.O. Number Account LOY

Project: TAS Comments: ATTNLW SALEKEN CC.GRANT CROOKER

		PHONE.	004-904-0		× 004-3				Comn	10/113 /		V SALER								
										CE	RTIF	CATE	OF A	NAL	(SIS	/	19631	220		
SAMPLE	PREP	λυ ppb βλ+λλ	Ag ppa	A1 1	λø pp∎	Ba pp=	Be ppm	Bİ PP m	Ca.	cd pps	Со ррш	Cr pp=	Cu pps	76 X	Ga ppm	Eg ppm	K	La ppm	Ng X	Min pps
500N 12000E 500N 12050E 500N 12100E 700N 12025E 700N 10025E	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	0.1 0.1 0.3 0.2 0.4	3.87 2.08 1.67 1.81 1.16	2 6 6 6 6	70 50 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 3 < 3 < 3 < 3 < 3 < 4 </pre>	0.33 0.20 0.20 0.27 0.86	< 0.5 < 0.5 < 0.5 0.5 1.0	11 6 6 7	27 9 9	173 22 21 29 42	3,03 1,86 1,96 3,14 1,84	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.03 0.03 0.03 0.04 0.06	< 10 < 10 < 10 < 10 < 10	0,72 0,20 0,20 0,26 0,37	475 560 325 380 620
700W 10123E 700W 10175E 700W 10225E 700W 10275E 700W 10375E 700W 10325E	201 202 201 202 201 202 201 203 201 203 201 203	= 5 < 5 < 5 < 5 < 5 < 5	0.3 0.6 0.6 0.8	1.47 2.08 3.22 3.13 2.09	2 2 4 6 1	70 70 60	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	< 1 < 1 < 2 < 2 < 2	0.34	0.5 0.5 < 0.5 0.5 < 0.5	† 0 3 1 7	10 13 13 9	23 24 42 32 20	2.00 2.13 2.40 2.16 1.97	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	< 1 < 1 < 1 < 1 < 1	0.04 0.03 0.04 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.23 0.20 0.13 0.26 0.19	500 415 585 460 245
700H 103758 700H 104258 700H 104758 700H 105258 700H 105758	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5	0.8 < 0.3 0.3 0.3 0.3	1.03 1.34 1.44 1.50 1.84	4 1 2 2 4	30 40 40	< 0,5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	1.50 1.06 0.71 0.79 0.41	1.0 0.5 0.5 0.5	10 1 9	11 10 10 9 10	82 55 38 44 31	2.39 2.36 2.36 2.34 2.34 2.36	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre> < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 </pre>	0.10 0.08 0.06 0.09 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.41 0.55 0.36 0.44 0.26	625 575 260 335 610
700N 10625E 700N 10675E 700N 10775E 700N 10775E 700N 10835E	201 202 201 202 201 202 201 202 201 202 201 202	< 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.60 1.64 1.56 1.57 1.77	5 9 2 16 17	90 90 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 4 </pre>	0.28 0.27 0.28 0.35 0.32	0,5 0.5 0.5 0.5 < 0.5	7 8 8 8	7 8 7 7	19 71 25 43 33	1.90 3.16 3.19 3.49 2.01	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.04 0.07 0.06 0.04 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.19 0.28 0.29 0.28 0.23	405 710 725 450 460
700N 108758 700N 109358 700N 109758 700N 110358 700N 110758	301 303 301 303 301 303 301 303 301 202 201 202	<pre>< 5 < 5</pre>	< 0.1 < 0.2 0.2 0.2 0.2	1.80 1.96 1.93 2.15 1.89	10 10	60 70 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5		0.32	0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 8 9 7 8	7 8 8 8	33 22 41 49 24	2.22 2.11 2.24 2.13 2.03	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.05 0.06 0.04 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.23 0.20 0.23 0.25 0.25	650 965 900 170
00H 111258 00H 111758 00H 112258 00H 112758 00H 112758	301 202 201 202 201 203 201 203 201 202 201 202	r \$ < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	1.13 0.64 1.16 1.99 1.48	2 < 2 1 6 10	20 40 60	< 0.5 < 0.5 < 0.5 < 0.3 < 0.5	<pre>< 1 < 1 < 2 < 2 < 2 < 7</pre>	0.15 0.26 0.12	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 3 6 6	7 5 7 7 6	27 12 47 24 23	1.30 1.03 1.70 1.75 1.72	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.03 0.01 0.04 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.25 0.11 0.26 0.16 0.13	185 95 920 525 660
ODN 11375E CON 11425E CON 11475E CON 11475E CON 11525E CON 11573E	201 202 201 202 201 202 201 202 201 202 301 202	< 5 < 5 < 5 < 5 < 5	0.3 0.3 < 0.3 < 0.2 < 0.2 < 0.2	1.99 1.49 1.25 1.97 1.47	< 1 6 1 2	60 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 2 < 2 < 2 < 2	0.35	< 0.3 < 0.3 < 0.5 < 0.5 < 0.5	7 5 6 8 7	7 6 10 14 10	43 12 26 48 27	1.99 1.03 1.98 2.67 2.11	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.03 0.04 0.07 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.36 0.13 0.23 0.37 0.71	425 190 395 310 180
DON 11613E DON 11675E DON 11725E CON 11775E DON 11825E	301 302 301 302 301 303 301 303 301 303		0.2 0.2 0.3 < 0.3 < 0.3	1.68 1.58 2.31 2.29 2.05	6 < 2 < 2 < 2 2	70 70 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.16 0.41 0.45	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 7 9	10 12 14 21 15	19 14 66 56 26	3.02 1.84 3.18 3.35 2.05	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.06 0.04 0.06 0.09 0.05	< 10 < 10 < 10 < 10 < 10	0.24 0.10 0.36 0.50 0.12	485 133 400 485 1275

CERTIFICATION:_

Chemex Labs Ltd. Analytical Chemistis ' Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number 2 B Tolai Pages 6 Centicate Date: 16:SEP-96 Invoice No : 19631220 P.O. Number Account : LOY

-1

Project : TAS Comments: ATTN:U.W. SALEKEN CC:GRANT CROOKER

										CE	RTIF	CATE	OF A	NAL	SIS	A9631220
SAMPLE	PREP CODE	No ppm	Na	Ni Pp m	P PPm	Pb ppm	Sb ppm	Sc pp=	Sr pp=	Tİ N	71 pp=	D D D D	V DDm	W ppa	žn pp n	
00N 12000E	301 303	< 1	0.01	17	1110	14	< 2		27	0.15	< 10	+ 10	93 51	< 10 < 10	80 60	
CON 120508 CON 121008	201 202	<pre>< 1 < 1</pre>	0.01	5	1300		4 2	1	1	0.10	< 10 < 10	< 10 < 10	56	< 10	60	
00N 10025E	201 202	1	0.01	÷	1600	- i	< 2	Ī	26	0.09	< 10	< 10	56	< 10	110	
00N 10075E	201 202	1	< 0.01	6	1020	10	* 3	3	62	0.09	∢ 10	* 10	\$7	< 10		
00N 10125E	201 202	i	0.01	,	930	16	< 1	2	34	0.09	< 10	< 19	59	< 10 < 10	104	
00N 10175E 00N 10225E	201 202	1	0.01	10	1510	10		2	33 28	0.11	< 10 < 10	< 10 < 10	70	< 10	92	
OCH 10275E	201 202		0.01	10	1470	ï		1	26	0.10	< 10	< 10	60	< 10	110	
DON 103358	201 202	< i	0.04	6	360	4	< 2	t	49	0.12	< 10	< 10	- 13	< 10	46	
OON 103758	201 202	1	0.03	3	1740	12	< 2	4	91	0.09	< 10	< 10	63	< 10	110	
CON 10435E	201 202		< 0.01	;	1300	:	< 2 < 2	5	83 68	0.11 0.13	< 10 < 10	< 10 < 10	71	< 10 < 10	258	
CON 10475E Don 10525E	201 202		< 0.01 < 0.01	- 2	480	10		- 1	74	0.15	10	4 10	91	< 10	148	
00H 10375E	301 202	1	0.01	•	1270	12	< 2	3	40	0.10	< 10	< 10	66	< 10	334	
00N 10625x	301 303	1	0.01		#10		< 1	2	27	0.09	< 10	< 10	55	< 10	138	
00M 106752	201 202	< 1	0.01		1250			2	26	0.08	< 10 < 10	< 10 < 10	55 56	< 10	216 292	
00N 107358 00N 107758	201 202	11	0.01	- 1	760 530	12	< 1	1	37	0.11	< 10	< 10	47	< 10	132	
DON 108258	201 202	- i i	0.01	10	830	6	< 3	à	33	0.09	< 10	< 10	53	< 10	140	
ON 10875E	201 202	< 1	0.01	,	1260		< 2	i	36	0.11	< 10	< 10	63	< 10	148	
0CH 10925E	201 202	1	0.01		1570		< 2	3	27	0.10 0.10	< 10 < 10	< 10 < 15	58 61	< 10 < 10	144 104	
00H 109752 00H 11025E	201 202 202 201 202	< 1 < 1	0.01	-	1570 950		< 2		27	0.09	10	< 10	0	< 10	98	
DON 11075E	201 202	1	0.02	,	1590	i.	< 3	3	38	0.10	< 10	< 10	51	< 10	96	
ON 111258	201 202	< 1	0.01		300	1	< 2	2	29	0.09	< 10	+ 10	40	< 10	60	
OW 11175E	301 302	< 1	0.01	1	160	1		1 2	12	0.07	< 10 < 10	< 10 < 10	33	< 10 < 10	42 56	
DOM 11225# DOM 11275#	201 202	1	0.01	57	390 1430			1	10	0.07	< 10	÷ 10	ü	< 10	90	
ON 113258	201 202	< i	0.01	ŝ	1970	Ū.	< 2	1	10	0.06	< 10	< 10	41	4 10	70	
ON 111758	201 202	< 1	0.01		2110	6	< 2	1	11	0.07	< 10	< 10	43	< 10	91	
ON 11425E	201 202	< 1	0.01	;	1900	•	< 2	1	15	0.05	< 10 < 10	< 10 < 10	44 60	< 10 < 10	60 54	
ON 11475E	201 202	< 1 < 1	0.01	-	1230		< 2	5	ä	0.13	< 10	< 10	73	< 10	54	
ON 115758	201 202	ì	0.01	i	970	ě.	< 2	à	29	0.09	< 10	< 10	59	< 10	54	
ON 11625E	201 202	1	0.01	1	1100		< 2	2	29	0.09	< 10	< 10	56	< 10	110	
DOM 116758	301 303	< 1	0.03		1950	1	• 2	1	14	0.09	< 10 < 10	< 10 < 10	46	< 10 < 10	122	
00M 11725E Dom 11775E	201 202	< 1	0.03	13	990 620	- 2	< 1	3	17	0.16	< 10	< 10	- 61	< 10	95	
00N 118358	201 202	٠i	0.01	11	1240	Ť	< 1	2	26	0.11	< 10	< 10	55	< 10	106	
				· .												
													~	ERTIFIC	ATION	

To: GEOTEC CONSULTANTS LTD. 6978 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number 3 A Total Pages 6 Certificate Date 16-SEP-96 Invoice No. 19531220 P.O. Number LOY Account

alylical Chemists " Geochemists " Registered Assayets 212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 804-984-0221 FAX: 604-984-0218

Project: TAS Comments: ATTN:L.W. SALEKEN CC:GRANT CROOKER

1 Same and a start									COIII			. once								···
-										CE	RTIF	CATE	OF	ANAL	YSIS		A9631	220		जे
SANPLE	PREP	Ац ррб Гл+лл	λg ppm	81 X	As ppm	Ba pp s	Be ppm	Bi gpm	Ce N	Cđ pp≡	Co ppm	Cr pp u	Cu ppu	Pa 3	Ge pps	Hg pp s	R %	La ppu	Hg X	Mn pp=
9700N 11975E 9700N 11925E 9700N 11925E 9700N 11975E 9700N 12025E 9700N 12075E	201 202 201 202 201 202 201 202 201 202 201 202		* 0.2 * 0.2 0.2 0.2 0.4	2.55 2.54 2.37 2.46 3.26	4 6 7 10 4	80 100 70 80 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.30 0.47 0.21 0.28 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 10 7 9	21 33 19 18 16	202 44 11 53 73	2.80 2.55 2.32 2.44 2.70	< 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1	0,06 0,05 0,03 0,03 0,04	< 10 < 10 < 10 < 10 < 10	0.44 0.53 0.31 0.49 0.48	415 390 400 210
8800H 10000E 8800H 10050E 8800H 10100E 8800H 10100E 8800H 10150E	201 202 201 202 201 202 201 202 201 203 201 203		0.4 0.4 0.6 0.4 0.2	1.97 2.10 2.22 2.63 1.68	4	60 50 50 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 3 < 3 < 3 < 3	0.73 0.93 0.54 0.62 0.40	0.5 < 0.5 < 0.5 0.5 < 0.5	10 10 11	9 12 11 15 1f	24 130 52 54 34	2.10 3.47 2.65 3.10 2.2#	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 < 1 < 2	0.04 0.08 0.07 0.05 <i>0.05</i>	< 10 < 10 < 10 < 10 < 10 < 10 < 10	0.28 0.44 0.43 0.40 0.38	445 360 200 265 415
8800N 10350E 8800N 10300E 8800N 10350E 8800N 10450E 8800N 10450E	201 202 201 202 201 202 201 202 201 202 201 202		0.7 0.8 0.4 0.4 0.2	1.43 1.66 1.79 1.89 1.78	< 1 1 6 < 3 2	110 60 60 50 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 2 < 2	0.44 0.96 1.25 0.55 0.25	0.5 < 0.5 0.5 1.0 0.5	13 7	11 7 13 12	23 24 96 64 31	2.05 1.90 2.00 2.10 1.00	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.01 0.01 0.14 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0,24 0.32 0.66 0.38 0.17	015 315 938 205 630
800N 10500E 800N 10550E 800N 10550E 800N 10600E 800N 10650E 800N 10700E	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	0.4 < 0.2 < 0.2 0.6 0.2	1.74 1.26 1.46 2.26 2.16	< 1 1 6 8	80 50 70 100 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.37 0.26 0.10 0.30 0.53	0.5 0.5 1.5 1.5 < 0.5	7 5 5 7 9	10 7 7 9	37 16 10 33 79	2.03 1.73 1.67 2.13 2.56	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 1	0.04 0.04 0.04 0.04 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.23 0.14 0.14 0.27 0.43	240 445 500 675 285
8000 10750E 81009 10800E 8009 10800E 8009 10850E 8009 10950E 8009 10950E	201 202 201 202 205 202 201 202 201 202 201 202	<pre></pre>	0.2 < 0.2 0.2 0.2 0.2	1,30 1,54 3,10 1,68 1,90	4 16 18 12 12	100	< 0.3 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2 < 1 < 2 < 2 < 4 </pre>	8.26 8.22 8.40 9.40 9.29	< 0.5 0.5 < 0.5 0.5 < 0.5	5 10 10 10	, , ,	13 27 43 39 41	1.00 2.20 2.51 2.51 2.51 2.60	< 10 < 10 < 10 < 10 < 10 < 10	<pre> < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0.04 0.04 0.05 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.17 0.19 0.27 0.27 0.22	765 1740 1035 1045 815
8000N 11000E 8000N 11050E 8000N 11100E 800N 11150E 800N 11150E	201 202 201 202 201 202 201 202 201 202 201 202		0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	1.83 3.00 3.03 1.10 1.39	6 6 3 2 4 2	60 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7	8.28 6.76 0.28 0.52 0.36	0.5 < 0.5 0.5 < 0.5 < 0.5	10 10 8 8 6	9 10 8 10	23 68 31 38 35	2.10 2.73 2.32 2.05 3.26	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre></pre>	0.04 0.05 0.03 0.05 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.20 0.56 0.24 0.26 0.23	560 545 300 620 275
800N 11350E 800N 11300E 800N 11300E 800N 11450E 800N 11450E	201 202 201 202 201 203 201 203 201 203 201 303	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.3 0.2 0.2	1.79 1.51 1.65 1.79 2.60	6 8 2 4 2	60 50 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.21 0.19 0.16 0.34 0.75	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	0 7 5 6	9 7 21 13	19 20 14 25 127	1.94 1.99 1.79 2.25 2.31	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.03 0.03 0.03 0.01	< 10 < 10 < 10 < 10 < 10 < 10	0.14 0.15 0.11 0.23 0.31	690 345 565 250 785
800N 11600E 800N 11650E	201 202 201 202 201 202 201 202 201 202 201 202	< 5	< 0.2 < 0.2 0.3 0.3 < 0.3	1.72 1.36 1.51 1.70 1.90	2 < 2 < 4 < 2 < 1	40 90 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.10 0.39 0.17	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 8 9 5 8	11 0 11 10 15	34 9 16 9 26	2.14 1.63 2.09 1.93 1.98	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0.01 0.03 0.05 0.01 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.37 0.10 0.31 0.15 0.41	375 175 380 180 570
														ERTIFIC	ATION:_	19	ait	المحد	Ale	~

Chemex Labs Ltd. Analytical Chemists ' Geochamists ' Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia: Canada V73 201 PHONE: 604-984-0221 FAX: 804-984-0218

Te: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9 Project : TAS Comments: ATTNLIW, SALEKEN CC:GRANT CROOKER Page Number 3 B Total Pages 6 Certificate Date 18:SEP-96 Invoice No 19631220 P.O. Number Account LOY

										CE	RTIFI	CATE	OF A	NALY	SIS	A9631220
SANP LE		ji de la composición de la composi Composición de la composición de la comp	-	Ni DDE	P ppm	Pb pp a	SD PD	Sc pps	Sr ppm	Tİ X	71 pp=	0 9PE	y ppm	H Båd	în ppa	
		+			1230		< 1		21	0.14	< 10	< 10		< 10	101	
ON 119258	201 20		0.01	11	580		< 2	3	39	0.15	< 10 < 10	< 10 < 10	63	< 10 < 10	16	
01 119758	201 20		0.01		1390	10	< 1	2	19	0.12	10	< 10	71	< 10	16	
ON 120251	201 20			10	1210	20	- 2.2	i	21	0.13	< 10	< 10	87	< 10	58	
ON 12075E	201 20:		V.V.						- 12	0.09	¢ 10	* 10	55	< 10	192	
ON 10000E	201 20			2	\$40 490	10	< 2	1	ä	0.11	10	< 10	90	< 10	108	
ON 100508	201 20			2	110		- 25	i	54	0.13	< 10	< 10	76 87	< 10 < 10	116	
ON 10100E ON 10150E	201 20			- ÷	460	10	< 2	5	54 36	0.15	< 10 < 10	< 10 < 10		10	100	
ON 10200E	201 30	2 < 3	0.02		1460	•	< 1							< 10	116	
ON 102508	201 20		0.01	7	1460	10	< 2	i		0.10	< 10 < 10	< 10 < 19	4	< 10	152	
OM 10300E	201 20		0.03	4	1160	14		3	48	0.12	< 10	< 10		< 10	132	
ON 10150E	201 20			7	1480 1710	1	21	- i	44	0.09	< 10	< 10		< 10 < 10	228 172	
ON 10400E ON 10450E	201 20 201 20		0.01		1890	i.	< 2	1	24	0.08	< 1D	< 10	47	4 10		
		1			1030		• 7	1	35	0.10	10	< 10	11	< 10	176	
ON 105502 ON 105502	201 20				1030	11		t	27	0.07	+ 10	< 10	50	< 10 < 10	153	
ON 105508	201 20		0.03	- i	1840	4		1	10	0.07	< 10 < 10	< 10	36	< 10	342	
ON 10650E	201 20	al < 3		1	1350	12	< 2	- 1	54	0.13	< 10	< 10	81	< 10	116	
CN 10700E	201 20	1	0.01	•		-					< 10	< 10		< 10	116	
DN 10750E	201 20	2 4		7	1330			1	25 23	0.09	< 10	< 10	ä	× 10	140	
ON 10800E	201 20	2 <			2270 1450	:			60	0.10	< 10	e 10	61	< 10	130	
ON 108501	201 20		1 0.03	,	1260		< 1	1	40	0.11	< 10	< 10	71 71	< 10 < 10	128	
ON 109002 ON 109502	201 20		0.01	. j	1210	6	< 2	3	29	0.11	< 10	< 10	/1			····· ···· ···· ····
	1-1		0.01	7	1900		< 2		21	0.09	< 10	< 10	59	< 10	152	
ON 11000E ON 11050E	201 20		1 0.01	÷	910	i	- e 3	5	72	0.16	< 10 < 10	< 10	103	< 10 < 10	136	
ON 11100E	201 20	5 ×	1 0.01	. <u> </u>	2300		1	1	29 47	0.09	< 10	< 10		< 10	70	
ON 11150E	201 20		1 < 0.01		930 1310		< 7	ś	27	0.08	< 10	< 10	55	< 10	76	
ON 11200E	201 20	4	1 0.01				<u> </u>			0.08	< 10	< 10	53	< 10	84	
ON 11250E	201 20			!	1570			1	19	0.08	< 10	< 10	\$7	e 10	60	
ON 11300E	201 20		1 0.01	5	1070		- 21	i	15	0.08	< 10	< 10	46	< 10	74	
ON 113502 ON 114002	201 20				1590	É.	< 2	,		0.09	< 10 < 10	< 10 < 10	66 50	< 10	66	
CH 11450H	201 20		1 0.03	10	850	6	< 2	,	48	0.09						
	- 	i - i	0.01	1	690	4	< 2	3	30	0.11	< 10	< 10	64	< 10	48 30	
ON 11500E	201 20			- i	1650		< 2	1	14	6.00	< 10 < 10	< 10 < 10	44 62	< 10	112	
CN 11600E	201 20	i <	0.01	÷.	1450	10	< 1	1	38 14	0.10	< 10	< 10	51	< 10	94	
ON 11650E	201 20				2700	:		3	40	0.13	4 10	< 10	57	< 10	108	
ON 11700E	201 20	2 <	1 0.04	,		•	=									tail Price

Analytikal Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave. North Vancouver British Columbis, Canada V7J 2C1 PHONE: 604-984-0221 FAX. 604-984-0219

To: GEOTEC CONSULTANTS CID. 8976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Total Pages 6 Certificate Date 16-SEP-96 Invoice No 19531220 P.O. Number Account LOY

Project : TAS Comments: ATTN:L.W. SALEKEN CC:GRANT CROOKER

										CE	RTIF	CATE	OF /	NAL	/SIS	-	A9631	220		
SAMPLE	FREP CODE	Au ppb FA+AA	Ag ppm	31 X	λ. ppm	Ba ppz	Be ppm	Bi pp∎	Ca N	cd ppm	Со рря	Cr ppm	Cu ppm	74 X	Ga ppm	Bg ppm	R N	Le ppe	Mg %	No ppi
800W 1175CE	201 202	< 1	. 0.2	2.11	< 1	10	< 0.5	< 1	0.37	< 0.5	!	19	56	2.31	< 10	< 1	0.04	< 10	0.44	190
500M 11800R 800m 11850g	201 202	< 5 < 5	0.2	1.77	1	€0 €0	< 0.5 < 0.5		0.19	< 0.5	5	10	24	1.73	< 10 < 10		0.04 0.03	< 10 < 10	0.20 0.15	500 500
800N 11900E	201 202	2.5	< 0.1	2.14	- i	70	< 0.5	< 2	0.21	0.5	ĩ	11	36	2.05	< 10	< 1	0.03	< 10	0.23	525
11950E	201 203	< 5	0.2	2.36	4	50	< 0.5	< 2	0.32	< 0.5	+	21	56	2.24	< 10	< 1	0.03	< 10	0.50	395
800N 13000K	201 203	< 5	< 0.2	1.86	6	60	< 0.5	< 2	0.20	< 0.5	?	16	36	2.22	< 10	< 1	0.03	< 10	0.36	375
100N 12050E 100N 12100E	201 202	< 5	< 0.2 < 0.3	2.33	÷.	50 76	< 0.5		0.29 0.33	< 0.5		17	50 125	2.40	< 10 < 10	- 1	0.04 0.05	< 10 < 10	0.44	395 250
900N 10025N	2011 202	< 5	0.1	1.50	< 2	120	< 0.5	1	0.52	0.5	;	ii	- 11	2.00	< 10	- 24	0.05	¥ 10	0.27	11
900N 10075N	201 202	< İ	< 0.2	2.24	4	50	< 0.5	< 2	0.37	0.5	,	14	67	2.92	< 10	< 1	0.08	< 10	0.41	541
0CH 10125H	201 202	< 5	0.2	1.00	4	170	< 0.5	< 3	0.40	1.5	11	11	32	2.55	< 10	< 1	0.06	< 10	0.20	1665
00W 10175W	201 202	45	< 0.2 0.4	1.66	5		< 0.5		0.60 0.36	0.5		13	19	2.11	< 10 < 10	<1 <1	0.00	< 10 < 10	0.36	520
900m 10375m	201 202		0.4	1.94	ì		< 0.5		0.55	0.5	10	10	50	1.39	< 10	- i	0.07	< 10	0.36	415
00N 10325N	201 202	< 5	0.8	1.53	10	10	< 0.5	< 1	1.12	1.0	17	12	134	3.37	< 10	∢ 1	0.09	< 10	0.62	669
CON 103758	201 202	< 1	0.8	2.26	12		e 0.5	< 2	0.48	0.5	!	12	75	3.22	< 20	< 1	0.04	e 10	0.29	401
00H 10425H 00H 10475H	201 202 201 202	< 5	1.2	1.57	< 2		< 0.3 < 0.5	< 1	0,20 0,23	0.5	5	2	32	1.72	< 10 < 10	< 1 < 1	0.05	< 10 < 10	0.17 0.19	265
00W 10525W	201 202		< 0.2	1.20	i		4 0.5	11	0.27	< 0.5	i i		25	1.56	< 10	-i	0.05	< 10	0.33	480
00W 10575M	301 202	< 5	0.6	3.05	3	60	< 0.5	< 2	0.20	< 0.5	7	,	119	2.31	< 10	< 1	0,03	< 10	0.22	410
00N 10625N	301 202	< 1	0.3	1.67	26	30	0.5	< 2	0.48	0.5	;	11	76	4.02	< 10	< 1	0.07	30	0.18	430
OON 10675N	201 202	< 5	0.2	1.69	10		< 0.5 < 0.5	< 2 < 2	0.25 0.39	0.5	7 10	7	18	2.04	< 10 < 10	< 1 < 1	0.03	< 10 < 10	0.27	715
00W 10775M	201 202	< 5	0.2	3.36	20	70	0.5	< 2	0.57	< 0.5	15	- 11	127	4.09	< 10	1	0.07	< 10	0.65	679
00N 10835N	201 201	_ < \$	« 0.2	3.04	10	80	< 0.5	< 2	0.28	< 0.5	12	10	35	2.52	< 10	• ۱	0.04	< 10	0.31	1345
00H 10875N 00H 10925N	201 202	< 5	0.2	1.92	16		< 0.5 < 0.5	< 2	0.36	0.5	10		43	2.34	< 10 < 10	< 1 < 1	0.04	< 10 < 10	0.29	695 1005
00W 10975H	201 202		0.2	1.63	- 2		< 0.5			1.3	7			1.06	< 10		0.04	< 10	0.24	145
00w 11025N	201 202	< 5	0.2	3.31			< 0.5	< 2		< 0.3	7	10	46	2.47	< 10	< 1	0.04	< 10	0.27	155
00# 11075N	201 202	_ < \$	0.2	1.07	4	50	< 0.5	< 2 .	0.46	< 0.5	10	11	73	3.35	< 10	< 1	0.05	< 10	0.36	511
DOM 11125W	201 202 101 202		< 0.2	1.00	2	60 60	0.5		0.44	< 0.5 0.5		11	61 39	3.56	< 10 < 10	< 1 < 1	0.05	< 10 < 10	0.37	675 665
DOW 11375N	201 202		< 0.2	2.82	14		1.0			< 0.5	÷	15	100	2.47	< 10	21	0.06	20	0.34	1305
CON 11275W	301 201		e 0.1	1.42	3	60	< 0.1	< 3	0.15	< 0.5	- È	1	22	1.71	< 10	< Î	0.03	< 10	0.11	235
00N 11335N	201 202	< 5	0.3	1.84	< 2	60	< 0.5	< 1	0.33	< 0.5	7	11	34	1.89	< 10	< 1	0.05	< 10	0.23	280
DON 11375N	201 202		0.2	3.26	2		< 0.5	1		< 0.5	10	:	37	3.05	< 10 < 10	1	0.03	< 10 < 10	0.19	520 570
ON 11475N	201 202	< 5 <	0.2	1.56			< 0.5			< 0.5 < 0.5	10	12	108	2.64	< 10		0.10	< 10	0.59	655
00# 11525#	201 202		0.2	1.71	4	60	< 0.5	< 2	0.44	< 0.5	1	12	31	2.31	< 10	< 1	0.05	< 10	0.29	355
OON 11575N	201 202	< 5	0.2	2.19	2	60 -	< 0.5	< 2	0.59	< 0.5		17	119	2.50	< 10	<1	0.06	< 10	0.30	640

Lat. . . CERTIFICATION:

Chemex Labs Ltd.

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project TAS Comments: ATTNLLW SALEKEN CC.GRANT CROOKER

Page Number 4 8 Total Pages 5 Certificale Date 16-SEP-94 Invoice No 19631220 P.O. Number Account LOY

7

ŧ

CERTIFICATE OF ANALYSIS A9631220 PREP Xo NI P Pb бЪ Sc Sr 11 ¥ τ1 σ ٧ Ħ Zn Na N SAMPLE CODB ppm ppm pps ppu pps **pp**m ppm ppm pps ppe pps pç# 8800N 11750E 8800N 1180DE 8800N 1180DE 8800N 11850E 8800N 11900E 8800N 11950E 201 202 201 202 201 202 201 202 201 202 201 202 < 10 < 10 < 10 < 10 < 10 < 10 < 1 0.01
< 1 0.03
< 1 0.03
< 1 0.01
< 1 0.02
< 1 0.02
< 1 < 0.01</pre> 340 1400 1580 1220 1020 < 10
< 10
< 10
< 10
< 10
< 10
< 10</pre> 82 64 70 56 96 ~ ~ ~ ~ ~ ~ ~ 0.13 0.09 0.09 0.11 0.12 < 10 < 10 < 10 < 10 < 10 < 10 69 50 46 57 64 10 6 5 6 13 3 33 16 10 16 21 1 1 2 201 302 301 302 301 202 301 202 301 302 301 302 0000N 12000E 0500N 12050E 0000N 12100E 0900N 10075N 0900N 10075N 0.09 0.12 0.12 0.12 0.13 < 1 < 0.01
< 1 < 0.01
< 1 < 0.01
< 1 < 0.01
< 1 < 0.01
< 1 < 0.01
1 < 0.01</pre> 1140 1100 1060 190 390 < 10 < 10 < 10 < 10 < 10 < 10 < 50 < 10 < 10 < 10 < 1 < 1 < 1 < 1 < 1 < 1 < 10 < 10 < 10 < 10 < 10 60 10 7 70 79 79 65 96 ----17 25 29 54 58 13324 82 46 100 94 900H 10135H 900H 10175H 900H 10175H 900H 10235H 900H 10275H 900H 10325H 201 202 201 202 201 202 201 202 201 202 201 202 * 10
* 10
* 10
* 10
* 10
* 10 < 10 < 10 < 10 < 10 < 10 < 10 0.01 0.01 0.01 0.01 0.01 960 880 1450 1290 900 < 1
< 2
< 2
< 2
< 2
< 2
< 3
< 3
< 4
</pre> 0.11 0.13 0.09 0.11 0.10 < 10 < 10 < 10 < 10 < 10 < 10 < 1 1 < 10 36 54 40 49 70 17776 69 63 57 68 90 192 33337 111 162 236 8900N 10375N 8900N 10425N 8900N 10425N 8900N 10525N 8900N 10525N 201 202 201 202 201 203 201 303 201 303 201 202 < 1 0.01
1 0.01
1 < 0.01
1 < 0.01
< 1 < 0.01
< 1 < 0.01
1 0.01</pre> 1450 1110 870 870 1300 1 6 6 16 0.03 0.07 0.07 0.06 0.09 < 10 < 10 < 10 < 10 < 10 < 10 \$5 19 49 45 59 < 10 < 10 < 10 < 10 < 10 < 10 204 123 126 66 116 < 2 < 2 < 2 < 2 < 2 < 2 < 2 79 17 25 23 19 < 10 < 10 < 10 < 10 < 10 < 10 7 8 3 5 6 31113 500N 10625N 500N 10675N 500N 10725N 500N 10775N 500N 10775N 201 202 201 202 201 202 201 202 201 202 201 202 3 < 0.01 < 1 0.03 < 1 0.01 1 < 0.01 1 0.01 \$70 960 830 \$20 28 6 6 6 < 2 < 2 < 2 < 2 < 2 < 2 < 2 8.08 0.11 0.12 0.16 0.11 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 194 190 276 166 140 ¢ 6 12 10 14 57 63 58 66 30 23 28 54 26 71353 1420 0.03 0.03 0.03 0.01 0.01 8900M 10875N 8900M 10925M 8900M 10925M 8900M 10975M 8900M 11025M 8900M 11075M 201 202 201 202 201 202 201 202 201 202 201 202 10 7 \$ 7 7 182 194 300 152 88 1 4 1 5 4 1 1 2030 0.09 0.10 0.30 0.09 0.10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 61 60 62 66 73 < 10 < 10 < 10 < 10 < 10 < 10 10 33234 38 40 33 30 43 920 2440 1270 8300H 11125H 8900H 11175H 8900H 11225H 8900H 11225H 8900H 11225H 8900H 11225H 201 202 201 202 201 202 201 202 201 202 201 202 0.02 0.01 0.01 0.03 0.03 480 1210 500 980 1330 1) 1) 1 < 1 < 2 < 1 < 2 < 2 < 2 < 2 0.09 0.09 0.10 0.08 0.08 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 100 122 178 48 92 1 1 1 1 7 5 12 5 67 67 60 43 30 4 > 41 36 28 16 25 12 8900H 11375H 8900H 11425H 8900H 11475H 8900H 11525H 8900H 11525H 8900H 11575H 201 202 201 202 201 202 201 202 201 202 201 202 < 10 < 10 < 10 < 10 < 10 < 10 1 < 1 < 1 1 1 0.03 0.02 0.01 0.01 0.01 3 5 5 10 1210 2120 1010 1250 260 < 1 < 2 < 2 < 2 < 2 < 2 0.10 0.09 0.11 0.13 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 \$3 \$1 70 71 70 80 76 61 76 12 3 32 33 60 45 1 5 3 4 (southickler

CERTIFICATION:

Anafylical Chemisis * Geochemisis * Registered Assayers 212 Brooksbenk Ave., North Varicouver British Columbia, Careda PHONE: 604-984-0221 FAX: 604-984-0218 To: GEOTEC CONSULTANTS LTU. 6978 LABUANUM ST VANCOUVER, BC V6P 5M9

nage compar Total Pages	é
Certificate Date:	
Invoice Na	19631220
P.O. Number	
Account	FOA

Project : TAS Comments: ATTN:L.W. SALEKEN CC:GRANT CROOKER

									CE	RTIFI	CATE	OF /	NAL	SIS	/	49631	220		
FREP CODS	λα ppb Ρλ+λλ	λ д ppm	۸۱ ۲	λø 9pm	Ba ppm	Be	di ppm	Ca N	Cđ ppe	Co ppm	Cr pp=	Ce ppm	74 X	Ga pp s	Eg ppm	<u></u> қ	La pp=	Hg N	Kn ppw
201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	' 0.4 0.3 0.8 0.2 < 0.2	2.41 1.10 1.33 0.97 1.96	* 2 * 2 * 2	50	< 0.5	<pre></pre>	0.37 0.26 0.17 0.15 0.34	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	L 5 1	17 16 9 16	183 36 23 13 44	2.63 1.78 1.66 1.55 2.19	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.05 0.05 0.03 0.03 0.03	< 10 < 10 < 10 < 10 < 10	0.37 0.23 0.16 0.14 0.40	370 270 143 130 415
201 202 201 202 201 202 201 202 201 202 201 202	* * * * * * * * *	0.2 0.2 0.2 < 0.2 0.2	1.39 2.41 2.30 1.89 2.35	4 1 2 4 4	70	< 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.30 0.25 0.21 0.16 0.20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 8 6 7	14 15 11 8 13	29 155 43 91 64	1.85 7.17 1.13 1.14 7.07	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0.04 0.04 0.03 0.03 0.04	< 10 < 10 < 10 < 10 < 10	0.36 0.36 0.36 0.19 0.27	405 540 495 520 195
201 202 201 203 201 203 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5	0.2 0.2 0.4 0.2	2,23 2,29 1,50 1,26 1,99	< 2	90 100 70	< 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1	0.33 0.33 0.74 0.41 0.33	1.5 0.5 < 0.5 < 0.5 < 0.5	6 13 7 10	10 12 20 9 11	39 49 95 37 41	1.80 2.30 2.97 1.09 2.34	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.05 0.06 0.09 0.05 0.05	<pre>< 10 < 10 < 10 < 10 < 30 < 10 < 10</pre>	0.10 0.31 0.71 0.19 0.27	210 450 615 660 715
301 202 201 203 201 203 201 203 201 203 301 203		0.4 0.2 0.2 < 0.2 < 0.2	1.77 1.75 2.09 1.28 1.15	< 2 < 2 < 2 < 2	60 60	< 0.5 < 0.5 < 0.5	<pre> < 1 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 3 < 3 < 4 </pre>	0.40 0.33 0.24 0.58 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 7 5	17 13 14	18 39 37 50 19	2.29 2.13 1.97 2.10 1.78	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.05 0.04 0.04 0.06 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.23 0.22 0.14 0.31 0.31 0.17	305 395 205 215 230
201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.2 0.3 0.3	1.33 1.36 1.63 1.73 2.05	(() (50 60	< 0.5	< 1 < 1 < 1 < 1 < 1 < 1	0.00 0,77 0.43 0.24 0.33	0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 9 7 5 6	14 16 10 8 10	97 79 49 23 34	1.75 2.63 2.13 1.91 2.14	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.13 0.07 0.07 0.03 0.05	< 10 < 10 < 10 < 10	0.42 0.30 0.18 0.21	660 460 300 340 740
301 202 201 303 201 202 201 202 301 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5	1.0 0.3 < 0.3 < 0.3 < 0.3 < 0.2	2.70 2.01 1.45 0.95 1.19	5 3 4 6	40	< 0.5	< 1 < 1 < 1 < 1 < 2 < 2	0.86 0.83 0.46 0.62 0.34	1.5 0.5 < 0.5 < 0.5 < 0.5	11 10 7 6 7	15 13 12 9 ¢	252 121 87 39 46	1.13 2.59 2.39 1.95 2.05	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1 < 1 < 1 < 1 < 1</pre>	0.09 0.07 0.06 0.06 0.06	10 < 10 < 10 < 10 < 10 < 10	0.54 0.50 0.31 0.22 0.25	035 630 240 320 195
201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	0.2 0.2 0.3 0.3 0.2	1.66 1.84 1.27 1.95 1.10	1 4 4 2 2 2	100 60 100	< 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1			6 1 7 9 5	9 9 11 11 7	43 44 90 51 18	2.00 2.26 2.25 2.31 1.70	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1	0.05 0.06 0.05 0.07 0.06	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	0.22 0.33 0.32 0.35 0.14	260 350 295 375 565
201 203 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.3 < 0.2 < 0.2	1.05 1.01 1.25 1.55 1.46	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	50 50 60	< 0.5 < 0.5 < 0.5	* 2 < 2 < 2 < 1 < 2	0.17	< 0.5	6 5 7 7 7	0 7 10 10 10	37 14 33 42 35	7.10 1.86 2.22 2.04 2.18	< 10 < 10 < 10 < 10 < 10 < 10	<pre></pre>	0.04 0.02 0.04 0.04 0.04 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.75 0.16 0.26 0.26 0.26	450 410 290 225 205
	CODE 201 207 201 CCDB FA-AA 201 202 9 201 202 9 201 202 9 201 202 9 201 202 9 201 202 9 201 202 9 201 202 9 201 202 9 201 202 9 201 202 9 201 202 9 201 202 9 201 202 9 201 202 9 201 202 9 201 202 5 201 202 5 201 202 5 201 202 5 <td< td=""><td>CODB FA-AA pps 101 202 < \$</td> \$ 0.4 101 202 < \$</td<>	CODB FA-AA pps 101 202 < \$	CODB PAAA pps % 201 202 < 5	CODB PAAA pps % pps 201 202 $<$ 5 0.4 7.41 9 201 202 $<$ 5 0.4 7.41 9 201 202 $<$ 5 0.4 7.41 9 201 202 $<$ 5 0.2 1.10 2 201 202 $<$ 5 0.2 1.31 $<$ 2 201 202 $<$ 5 0.2 1.35 $<$ 3 201 202 $<$ 5 0.2 1.35 $<$ 3 201 202 $<$ 5 0.2 1.35 $<$ 3 201 202 $<$ 5 0.2 1.35 $<$ 3 201 202 $<$ 5 0.2 1.45 3 201 202 $<$ 5 0.2 1.45 3 201 202 $<$ 5 0.2 1.55 3 201 202 $<$ 5 0.2 1.75 2	COD8 FA-AA ppm % ppm ppa 101 202 < 5	CODB TA-AA ppm % ppm >CODE PA+AA ppm % ppm ppm<!--</td--><td>CODE PA+AA ppm qpm ppm ppm</td><td>PREP CODE Aq pp Aq Ai As Ba Be hi Ca Cd 201 202 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9<td>PREP CODE Aq pp Aq Aa Ba Ba</td><td>PREF Aq pp Aq Ai As Ba Ba Bi Ca Cd Co Cr 201 202 4 9 0.4 2.41 8 B0 0.5 4 0.37 0.5 8 17 201 202 4 5 0.4 2.41 8 B0 0.5 2 0.37 4 5 14 201 202 4 5 0.4 2.41 9 80 0.5 2 0.37 4 5 14 201 202 4 5 0.2 1.35 4 2 70 0.5 2 0.14 0.5 4 17 201 202 4 5 0.2 1.35 4 2 70 0.5 2 0.14 0.35 13 16 0.5 13 16 13 16 13 16 10 12 16 0.5</td><td>FREP CODE Au ppb Ag Ai Au Ba Ba Ba Ba Bi Ca Cd Co Cx Ca 201 202 < 3 0.4 2.41 8 Bb < 0.5 < 2 0.27 < 0.1 6 14 35 201 202 < 5 0.3 $$</td><td>FREP CODE As ppb Ag Ai As Ba Be Bi Ca Cd Co Cr Ca Ca Cd Co Cr Ca Ca Cd Co Ca <thca< th=""> Ca Ca</thca<></td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>PHEP As ppb Ag Ai As Ba Ca Cd Ca <thca< th=""> Ca Ca <</thca<></td><td>PREP CODE As ppb Ag Ai As Ba CODE Ca Cd Ca <thca< th=""> Ca <thca< th=""></thca<></thca<></td><td>PREF CODE Au ppb Ag As Ba Fe Au Ca Cd Co Cr Cu Fe Ca Bg K Dpm 201 202 c s 0.4 2.41 0 0 0.5 c 2 0.27 0.51 6 1 1 1 0.0 c 1 0.0 c 1 0.0 c 1 0.05 c 1 0.05 c 2 0.28 c 0.5 c 2 0.28 c 0.5 c 1 0.5 c 1 0.0 c 1</td><td>PETP As ppb Ag Ai Ba Bi Ca Cd Co Cd Fe Ga Bg R La Mg 201 202 4 0.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 1.1 3.1 3.1 1.1 3.1 2.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 1.1 3</td></td></td>	CODE PA+AA ppm % ppm >CODE PA+AA ppm qpm ppm ppm</td> <td>PREP CODE Aq pp Aq Ai As Ba Be hi Ca Cd 201 202 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9<td>PREP CODE Aq pp Aq Aa Ba Ba</td><td>PREF Aq pp Aq Ai As Ba Ba Bi Ca Cd Co Cr 201 202 4 9 0.4 2.41 8 B0 0.5 4 0.37 0.5 8 17 201 202 4 5 0.4 2.41 8 B0 0.5 2 0.37 4 5 14 201 202 4 5 0.4 2.41 9 80 0.5 2 0.37 4 5 14 201 202 4 5 0.2 1.35 4 2 70 0.5 2 0.14 0.5 4 17 201 202 4 5 0.2 1.35 4 2 70 0.5 2 0.14 0.35 13 16 0.5 13 16 13 16 13 16 10 12 16 0.5</td><td>FREP CODE Au ppb Ag Ai Au Ba Ba Ba Ba Bi Ca Cd Co Cx Ca 201 202 < 3 0.4 2.41 8 Bb < 0.5 < 2 0.27 < 0.1 6 14 35 201 202 < 5 0.3 $$</td><td>FREP CODE As ppb Ag Ai As Ba Be Bi Ca Cd Co Cr Ca Ca Cd Co Cr Ca Ca Cd Co Ca <thca< th=""> Ca Ca</thca<></td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>PHEP As ppb Ag Ai As Ba Ca Cd Ca <thca< th=""> Ca Ca <</thca<></td><td>PREP CODE As ppb Ag Ai As Ba CODE Ca Cd Ca <thca< th=""> Ca <thca< th=""></thca<></thca<></td><td>PREF CODE Au ppb Ag As Ba Fe Au Ca Cd Co Cr Cu Fe Ca Bg K Dpm 201 202 c s 0.4 2.41 0 0 0.5 c 2 0.27 0.51 6 1 1 1 0.0 c 1 0.0 c 1 0.0 c 1 0.05 c 1 0.05 c 2 0.28 c 0.5 c 2 0.28 c 0.5 c 1 0.5 c 1 0.0 c 1</td><td>PETP As ppb Ag Ai Ba Bi Ca Cd Co Cd Fe Ga Bg R La Mg 201 202 4 0.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 1.1 3.1 3.1 1.1 3.1 2.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 1.1 3</td></td>	CODE PA+AA ppm qpm ppm r>CODE Aq pp Aq Ai As Ba Be hi Ca Cd 201 202 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <td>PREP CODE Aq pp Aq Aa Ba Ba</td> <td>PREF Aq pp Aq Ai As Ba Ba Bi Ca Cd Co Cr 201 202 4 9 0.4 2.41 8 B0 0.5 4 0.37 0.5 8 17 201 202 4 5 0.4 2.41 8 B0 0.5 2 0.37 4 5 14 201 202 4 5 0.4 2.41 9 80 0.5 2 0.37 4 5 14 201 202 4 5 0.2 1.35 4 2 70 0.5 2 0.14 0.5 4 17 201 202 4 5 0.2 1.35 4 2 70 0.5 2 0.14 0.35 13 16 0.5 13 16 13 16 13 16 10 12 16 0.5</td> <td>FREP CODE Au ppb Ag Ai Au Ba Ba Ba Ba Bi Ca Cd Co Cx Ca 201 202 < 3 0.4 2.41 8 Bb < 0.5 < 2 0.27 < 0.1 6 14 35 201 202 < 5 0.3 $$</td> <td>FREP CODE As ppb Ag Ai As Ba Be Bi Ca Cd Co Cr Ca Ca Cd Co Cr Ca Ca Cd Co Ca <thca< th=""> Ca Ca</thca<></td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>PHEP As ppb Ag Ai As Ba Ca Cd Ca <thca< th=""> Ca Ca <</thca<></td> <td>PREP CODE As ppb Ag Ai As Ba CODE Ca Cd Ca <thca< th=""> Ca <thca< th=""></thca<></thca<></td> <td>PREF CODE Au ppb Ag As Ba Fe Au Ca Cd Co Cr Cu Fe Ca Bg K Dpm 201 202 c s 0.4 2.41 0 0 0.5 c 2 0.27 0.51 6 1 1 1 0.0 c 1 0.0 c 1 0.0 c 1 0.05 c 1 0.05 c 2 0.28 c 0.5 c 2 0.28 c 0.5 c 1 0.5 c 1 0.0 c 1</td> <td>PETP As ppb Ag Ai Ba Bi Ca Cd Co Cd Fe Ga Bg R La Mg 201 202 4 0.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 1.1 3.1 3.1 1.1 3.1 2.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 1.1 3</td>	PREP CODE Aq pp Aq Aa Ba Aq pp Aq Ai As Ba Ba Bi Ca Cd Co Cr 201 202 4 9 0.4 2.41 8 B0 0.5 4 0.37 0.5 8 17 201 202 4 5 0.4 2.41 8 B0 0.5 2 0.37 4 5 14 201 202 4 5 0.4 2.41 9 80 0.5 2 0.37 4 5 14 201 202 4 5 0.2 1.35 4 2 70 0.5 2 0.14 0.5 4 17 201 202 4 5 0.2 1.35 4 2 70 0.5 2 0.14 0.35 13 16 0.5 13 16 13 16 13 16 10 12 16 0.5	FREP CODE Au ppb Ag Ai Au Ba Ba Ba Ba Bi Ca Cd Co Cx Ca 201 202 < 3 0.4 2.41 8 Bb < 0.5 < 2 0.27 < 0.1 6 14 35 201 202 < 5 0.3 $$	FREP CODE As ppb Ag Ai As Ba Be Bi Ca Cd Co Cr Ca Ca Cd Co Cr Ca Ca Cd Co Ca h=""> Ca Ca</thca<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PHEP As ppb Ag Ai As Ba Ca Cd Ca h=""> Ca Ca <</thca<>	PREP CODE As ppb Ag Ai As Ba CODE Ca Cd Ca h=""> Ca <thca< th=""></thca<></thca<>	PREF CODE Au ppb Ag As Ba Fe Au Ca Cd Co Cr Cu Fe Ca Bg K Dpm 201 202 c s 0.4 2.41 0 0 0.5 c 2 0.27 0.51 6 1 1 1 0.0 c 1 0.0 c 1 0.0 c 1 0.05 c 1 0.05 c 2 0.28 c 0.5 c 2 0.28 c 0.5 c 1 0.5 c 1 0.0 c 1	PETP As ppb Ag Ai Ba Bi Ca Cd Co Cd Fe Ga Bg R La Mg 201 202 4 0.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 1.1 3.1 3.1 1.1 3.1 2.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 1.1 3			

CERTIFICATION: ATTA ADD ...

A9631220

To: GEOTEC CONSULTANTS LTD.

Page Number 5 8 Total Pages 5 Certificate Date 16:SEP.96 Invoice No 19531220 P.O. Number Account LOY

Analytical Chemists * Geochemists * Registered Assuyers 212 Brooksbank Ave. North Vancouver British Columbia, Canada V7/2C1 PHONE: 604-984-0221 FAX: 804-984-0218

Chemex Labs Ltd.

6976 LABURNUM ST. VANCOUVER, BC VAP 5M9 Project: TAS Comments: ATTNLW, SALEKEN CC.GRANT CROOKER

			Comm	ents: /	AT TNUE Y	Y. SALER	(EIN C	C.GHAO	Cho
				CE	RTIFI	CATE	OF A	NALY	SIS
Pb	sъ	\$c	Sr	71	T 1	U	v	×	រោ
					-			D.D.B.	10 To 10

	PREP	No	Na	NÌ	p	Pb	sb	3c	9r	71	71	ដ	v	×	រភ	
SAMPLE	CODE	pp≊	4 1	pps	ppm	pp a	ppm	ppm	ppm		ppe	ppm	ppm	ppa	pp=	
900N 11625N	201 202	٤ 1	0.03	15	980	•	< 2	3	25	0,11	< 10	< 10	63	< 10	86	
900N 11675N	201 202	1	0.02	7	980	6	< 2	1	21	0.10	< 10	< 10	52	< 10	62	
8900N 11725N	201 202	< 1	0.02	5	1450		< 2	1	15	0.01	< 10	< 10	45	< 10 < 10	74	
8900N 11775N	201 202	< 1	0.01	:	820		< 1	1	13	0.09	< 10 < 10	< 10 < 10	64	< 10	10	
8900N 11825N	201 202	< 1	0.01	•	1200		< 1			0.11						······································
8900N 11875W	201 202	< 1	0.01	7	1420		< 1	1	35	0.00	< 10	< 10	\$1	< 10	.72	
8900N 11925N	301 302	د ۱	0.01	10	790		< 1	2	11	0.11	< 10	< 10	60 57	< 10 + 10	168	
8900N 11975N	201 202	1	0.01		2060		1	1	19	0.10	< 10 < 10	< 10	51	< 10	50	
8900N 12025N	201 202	< 1	0.02	ş	910 1330	1	< 2	i	17	0.10	< 10	< 10		10	66	
900N 12075N	201 202	< 1	0.01	,	1430	•		•								
9200W 10000E	201 202	1	6.03		870	:	12	3	30	0.10	< 10 < 10	< 10 < 10		< 10	206	
9200H 10050E	201 202	1	0.02	15	1500		< 2		43	0.17	< 10	< 10		< 10	164	
9300N 101008 9300N 101508	301 303	3	0.01		790		- 24	ī		0.01	< 10	< 10	52	10	90	
9300N 10300E	201 202	< i	0.01	i	1410	54	1	i		0.10	4 10	< 10	63	< 10	116	
200N 10250B	201 202	1	0.01		1620		< 1	,		0.10	< 10	< 10	69	< 10	90	
9200W 10300B	201 202		0.01		1100			i	37	0.01	4 10	4 10	ö	e 10		
9200N 10350E	201 202	- i	0.02	i	2120	i	< 2	i	28	0.10	< 10	< 10	\$3	< 10	68	
9300W 10400E	201 202	ī	0.01	6	900	6	< 2	3	69	0.10	< 10	< 10	73	< 10	52	
9200N 10450#	301 303	< 1	0.01	4	1420	•	< 3	1	22	0.01	< 10	< 10	52	< 10	70	
9200N 10500m	201 202	< 1	0.01		1250	•	< 2	5	67	6.01	< 10	< 10	101	+ 10	82	
200N 10550E	201 202	1	0.01	7	1180	•	< 1	5	69	0.10	< 10	< 10	104	< 10	80	
9200N 10600x	201 202	1	0.01	•	1340	•	< 2	2	42	0.05	< 10	< 10	66	< 10	150	
	201 202	1	0.02		1910		< 1	1	32	0.01	< 10	< 10	54 61	< 10 < 10	244	
9200N 10700E	201 202	۰ ۱	0.02	5	2150	•	< 3	2	33	0.08	< 10	< 10	•1	< 10		
9200N 10750R	201 202	1	0.03	13	970	6	< 2	1	73	0.05	< 10	4 10	17	4 10	150 100	
9300N 10900E	301 202	1	0.01		530		< 2		80	0.12 0.09	< 10	< 10 < 10	79	< 10	126	
	201 202	< 1 1 -	0.01	1	1310		< 2	1	48	0.01	< 10	< 10	70	< 10	- 11	
	301 202 301 202		r 0.01 c 0.01		630	- 2	23		37	0.06	< 10	4 10	72	4 10	66	
				,				,	30	0.09	< 10	< 10		< 10	68	
	201 202	1	0.01	10	1440	- 1	< 1		36	0.11	< 10	< 10	70	< 10	112	
	201 202	- i	0.01	1	\$30			;		0.09	< 10	10	79	4 10	16	
	101 102		0.01	;	730	- i	÷ 3	ī	41	0.11	< 10	4 10	74	< 10	116	
	201 202	< i	0.01	5	1470	6	< 3	1	20	0.07	< 10	< 10	- 49	< 10	108	
200M 11250E	201 202	< i	0.01		1510	4	< 2	1	11	0.06	< 10	< 10	72	< 10	120	
	201 202		0.01	i	780	i	÷ 2	ī	16	0.09	< 10	4 10	57	< 10	- 11	
	201 202	41	0.01	Ē	1190	i	< 1	ā	29	0.08	< 10	4 10	78	< 10	334	
	301 303	< 1	0.01	i	1120	Ē	4.1	i	29	0.09	< 10	4 10	- 65	< 10	136	
	201 202	< 1	0.01	,	1150	4	< 1	3	33	0,09	< 10	< 10	73	< 10	272	
1																

CERTIFICATION: 1.1. 2. 2. P.M.

Ĵ

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number 6-A Total Pages 6 Certificate Date 16-SEP-96 Invoice Na 19631220 P.O. Number Account LOY

Ċ		i	212 Broo British Co	ksban Numbi	ik Av ia, C		North Va	ncouver V7J 2C1			Proje Com	V6P 5M ect : ments:	TAS ATTN:L.V	V. ŠALEI						P.O. Nu Account		LOY
											l_	CE	RTIF	CATE	OF A	NAL	YSIS		49631	220		.
BANPLE	PREP		Au ppb PA+AA		λg pm	AL N	A. ppm	Ba ppu	Бе ррч	si ppm	Ca N	cd pp=	Co pps	Cr PP=	Cu ppm	70 X	Ga ppa	Hg ppu	R N	La ppm	Mg X	Ma P p a
DON 11500E DON 11550E DON 11600E DON 11650E DON 11700E	201 20 201 20 201 20 201 20 201 20 201 20	02 02 02	< 5	< 0	.2	1.50 1.53 1.76 1.43 1.10	2 4 1 3 4 1 3	70 50 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.39	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 9 8 7	8 4 1 3 2	61 29 55 34 27	2,10 1,81 1,99 1,63 1,49	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.05 0.00 0.06 0.07 0.08	< 10 < 10 < 10 < 10 < 10	0.25 0.24 0.33 0.36 0.26	320 760 330 575 445
CON 117508 CON 118008 CON 118508 CON 119008 CON 119008	201 20 201 20 201 20 201 20 201 20	02	< 5 < 5 < 5	< 0 < 0 < 0 < 0	.2	0.77 0.94 1.13 0.09 1.07	< 2 2 < 2 < 2 4	30 30 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.29	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 6 7 6 6	4	29 21 43 13 19	1.71 1.75 1.98 1.80 1.80	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 1	0.06 0.04 0.06 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.23 0.16 0.27 0.20 0.20	205 100 200 155 180 220
IGN 12100E	201 20 201 20 201 20	02	< 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5 < 7 5 5	0 < 0 < 0 < 0	. 2	1.33	67	50	< 0.5 < 0.5 < 0.5		0.67	< 0.5 < 0.5 < 0.5	6 6 7 7	12	81 19 36	2.13 1.66 2.55	< 10 < 10 < 10	< 1 < 1	0.03	< 10 < 10	0.33	100 235

CERTIFICATION: Grant Buckles

Chemex Labs Ltd. Analytical Chemists ' Geochemists ' Registered Assayers 212 Brooksbank Ave. North Vancouver British Columbia, Canada V7/2 C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number : 6-8 Total Pages : 6 Certificate Date : 16-SEP-96 Invoice Na. : 19631220 P.O. Number : Account : LOY

Project : TAS Comments: ATTN:L.W. SALEKEN CC:GRANT CROOKER

										CE	RTIF	CATE	OF A	NALY	SIS	A9631220
SANPLE	PREP	No Pp n	Ka t	Ni ppm	P ppm	РЬ ррш	sb ppm	Sc ppm	Sr ppm	ti X	ti ppm	0 Rqq	T PP#	N Ppz	Zn pp n	
0000 115000 0000 115500 0000 116000 0000 116500 0000 116500	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	0.01 0.01 0.01 < 0.01 < 0.01	4 7 7 6	820 710 560 770 540	1 1 1 1	< 2 < 2 < 2 < 2 < 2 < 2) 1 2 1	51 37 47 47 31	0.10 0.10 0.13 0.11 0.00	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	48 49 58 53 38	< 10 < 10 < 10 < 10 < 10 < 10	102 130 122 162 118	
000 11750 000 11800 000 11850 000 11850 000 11900 000 11950	201 202 201 202 201 202 201 202 201 202 201 202	<1 <1 <1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01		710 990 740 810 1020	4 2 4 4	< 2 < 2 < 2 < 2 < 2 < 2	1 1 2 2	28 21 27 35 38	0.06 0.05 0.07 0.06 0.07	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	52 50 61 56 53	< 10 < 10 < 10 < 10 < 10 < 10	46 52 74 43 61	
2004 12000 2006 22050 3006 12100	201 202 201 203 203 203 203 203	< 1	< 0.01 0.03 < 0.01	6 5 5	230 170 820	E E E	< 2 < 2 < 2 < 2	3	\$1 \$3 \$1	0.14	< 10 < 10 < 10	< 10 < 10 < 10	63 60 103	< 10 < 10 < 10	64 36 50	
								<u>.</u>								Harri Prichler

CERTIFICATION: 15772

.

Chemex Labs Ltd.
Analylical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD.

8976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Total Pages 16 Cartificate Date: 16-SEP-96 Invoice No. 19631222 P.O. Number 1 Account LOY

									[CE	RTIFI	CATE	OF A	NAL	/SIS	1	9631	222		_
SAMPLE	PREP	Au ppb Fl+AA	Ag ppin	A1	λı ppn	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ pp=	Co ppm	Cr ppm	Ca ppm	10 3	Ca. ppm	Hg pp m	K N	La. ppin	Hg N	M PP
8701 55	1									< 0.5		11	33	3.15	< 10	< 1	0.05	< 10	0.23	20
ON 100255	201 202	< 5	0.2	1.11		100	< 0.5 < 0.5	< 2 < 2		< 0.5	÷		11	2.14	< 10	< 1	0.03	< 10	0.19	32
ON 100752	201 202	- 5	0.2	1.45	< 2	50 70	< 0.5	2.2		< 0.5	7	11	24	3.01	< 10	1	0.04	< 10	0.18	2
ION 10125E	201 202		-0.2	1.77	;		2 0.5	- 2 ž		< 0.5	7	10	33	2.10	< 10	< 1	0.06	< 10	0.21	1
ON 10175E	201 202		0.2	1.60	- 1	50	4 0.5	4 2		< 0.5	7	10	37	2.03	< 10	< 1	0.04 .	< 10	0,20	
ON 10225E	201 202		0.4	1.00											< 10	1	0.06	< 10	0.22	1
ON 102758	201 202	< 5	0.2	1.90	6	60	4 0.5	< 2	0.24	< 0.5			.0	2.05 2.41	< 10	- i -	0.04	< 10	0.33	
ON 10325E	201 202	< 5	0.0	2.22	2	10	< 0.5	< 2		< 0.5	10	10 10	108	2.25	< 10	21	0.04	< 10	0.14	1
ON 10375E	201 202	< 5	0.2	1.59	4	60	< 0.5	< 2	0.12	1.5	4	10	- 41	2.07	< 10	- i i	0.04	< 10	0.14	1
ON 10425E	201 202	< 5	0.2	1.40	2	50 60	< 0.5 0.5	< 2 < 2		< 0.5	- 11	14	242	2.99	< 10	< 1	0.10	10	0.64	
ON 104758	201 202	< 5	0.2	2.06	6	•U	0.5		1.07											
	1			1.38		70	< 0.5	< 2	0.41	< 0.3	6		30	1.88	< 10	< <u>1</u>	0.06	< 10	0.73	1
ON 10525E	201 202		< 0.3	1.24	10	sõ	2 0.5	- è è :		4 0.5		5	51	2.16	< 10	< 1	0.09	< 10	0.17	
ON 10575E	201 202		< 0.2	1.68	< 1	90	< 0.5	< 2	0.51	< Q.S	•		46	2.19	< 10	1	0.00	< 10 < 10	0.22	- 1
ION 10625E	201 202		< 0.2	1.26	6	60	< 0.5	< 1		< 0.5		1	26	1.11	< 10 < 10		0.09	< 10	0.20	
ON 10725E	201 202		. 0.1	1.30	. i	90	< 0.5	< 1	0,39	< 0.5	6	7	24	1.83	« IV	•••	0.03	· ••	•	
IN LUXING													28	1.94	< 10	1	0.05	< 10	0.23	
ON 10775E	201 202	< 5	0.1	1.60	1	90	< 0.5	< 1		< 0.5			27	1.10	¥ 10	- 4 3	0.07	< 10	0.20	•
ON 108258	201 202		< 0.2	1.14	3	80	< 0.5	< 1	0.62	< 0.5		12	144	2 67	< 10	< 2	0.65	< 10	0.35	1
ON 10875E	201 203	< 5	0.2	2.24	< 1	100	< 0.5	< 1 < 1	0.39	< 0.3			- 39	1.91	< 10	< 1	0.04	< 10	0.11	- 1
ON 10925E	201 202	< 5	0.2	1.54	1	70 110	2 0.3	- 21	0.38	0.5	7	10	46	2.26	< 10	< 1	0.05	< 10	0.19	
ON 10975E	201 202	< 5	< 0.2	1.34	•	*1.4											0.07	< 10	0.21	
	201 202	< 5	0.1	1.31	6	90	< 0.5	< 1	0.46	1.5	6		29	1.47	< 10		0.10	< 10	0.31	
ON 110258 ON 110758	201 202	< 5	0.2	1.64	1	120	< 0.5	< 3	0.49	0.5		11	40 53	1.37	< 10 < 10	- Ai	0.09	< 10	0.31	
ON 111258	201 202		< 0.1	\$. 49	2	110	< 0.5	- e 4		< 0.5			30	1.03	< 10		0.06	< 10	0.31	
ON 11175E	201 202	< Š	< 0.2	1.13	2		< 0.5	1	0.34	< 0.5	•		36	3.10	< 10		0.05	< 10	0.26	
ON 112258	201 202	< 5	0.2	1.67	2	10	< 0.5	< 1	0.19	« U. S	•	•								
	I I					90	¢ 0.5	< 1	0.27	< 0.3	7	,	33	1.95	< 10	< 1	0.05	< 10	0.20	
ON 11275E	201 202	< 5	0.2	1.37	2	50	< 0.5		0.50	< 0.5	j,	10	57	3.21	< 10	< 1	0.05	< 10	0.35	
ON 11375E ON 11375E	201 202		< 0.2	1.29			< 0.5	< 2	0.23	< 0.5	7		12	1.93	< 10	< 1	0.04 0.05	< 10 < 10	0.16	
ON 11375E	201 202		< 0.3	1.74	< 2 -	70	< 0.5	< 2	0.36	0.5		10		2.14	< 10 < 10	< 1	0.05	< 10	0.34	
ON 114755	201 202		< 0.2	1.57	4	60	< 0.\$	< 2	0.46	< 0.5	7	11	63	2.26	. 10	• •				
	1								0.49	< 0.5		11	64	2.23	< 10	1	0.06	< 10	0.36	
ON 11525E	201 202		4 0.2	1.64	< 1		< 0.5	< 2		< 0.5	7	` ;	36	2.33	10	ī	0.01	< 10	0.19	
ON 11575E	201 202	< 5	0.2	1.27	< 2		< 0.5	- 1		< 0.5	10	10		2.30	< 10	< 1	0.05	< 10	0.55	-
ON 11625E	201 202		< 0.2	1.46	4		< 0.5	~		0.5	- i		15	1.85	< 10	< 1	0.05	< 10	0.10	1
ON 11675E	201 202	< 3 < 3	0.4	2.09			< 0.5	÷ 1		< 0.5		10	35	2.19	< 10	۰۱ -	0.05	< 10	0.34	
ON 11725E	1 101 101	• •	v.•														0.03	< 10	0.17	
ON 11775E	201 202	< 5	< 0.2	1.57	2		< 0.5	< 2		< 0.5	?		10	2.01	< 10 < 10	~ 1	0.03	< 10	0.12	- 5
ON 119255	201 202	< 5	0.2	1.73	2		< 0.5	< 2	0.23	< 0.5	?		23 27	2.38	< 10		0.05	< 10	0.10	- 3
ON 118758	301 302		< 0.2	1.37	4		< 0.5	< 1		< 0.5		10	17	2.14	< 10		0.06	< 10	0.13	
ON 11935E	305 202		< 0.2	1.71	. <u>F</u>		< 0.5		0.42	< 0.5	;	14	3	2.44	4 10	ī	0.06	< 10	0.12	1
ON 11975E	201 202	< 5	< 0.2	1.57	3	\$0	< 0.5	• •	3.33		•									

Sant Brichle CERTIFICATION:

Chemex Labs Ltd. Analylical Chemistis ' Bergistered Assayers 212 Brooksbank Ave., North Vancouver Brittsh Columbia, Canada V73 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

TO: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number: :1-8 Total Pages :8 Certificate Date: 18-SEP-96 Invoice No. : 19631222 P.O. Number : Account :LOY

Project : TAS Comments: ATTN1.W.SALEKEN CC:GRANT CROOKER

										CE	RTIF	CATE	OF A	NAL	/SIS	A9631222
SAMPLE	PREP	Мо ррш	Na X	Ni PP n	P 9 Pm	Pb ppa	Sb ppm	Sc pps	St ppn	ti *	T1 ppm	U ppm	V Ppm	n Pŷn	2a pp=	
300N 10025E	201 202	2	0.01		1110	6	< 2	1	36	0.10	< 10	< 10		< 10	. 44	
300N 100752	201 202	1	0.03	5	730	•	< 2	1	30 37	0.12	< 10 < 10	< 10	62 58	< 10 < 10	100	
300N 10125E 300N 10175E	201 202	< 1 1	0.02	7	670 890	1	< 2	2	36	0.10	< 10	< 10	£3	< 10	76	
300N 10175E	201 202	< î	9.01	;	1100	é	< 2	2	29	0.08	< 10	< 10	54	< 10	90	
300N 10275E	201 202	1	0.01	,	1400	6	< 1	2	23	0.09	< 10	< 10	53	< 10	118	
300N 10325E	201 302	< 1	0.02	•	610		< 3	4	36	0.10	< 10 < 10	< 10	- 63 17	< 10 < 10	124 450	
300N 10375E	201 202	< 1	0.01		3180 950	6	< 1	1	40	0.09	< 10	< 10	71	< 10	52	
300N 10425E 300N 10475E	201 202	1	0.01	;	840	ě	< 1	ī	78	0.10	< 10	< 10	47	< 10	41	
100N 10525E	201 202	i	0.01	í.	1010	6	< 1	- 2	41	0.08	< 10	< 10	59	< 10	61	
105752	201 202		< 0.01	5	570	۰.	< 1	1	66	0.09	< 10	< 10	74 69	< 10 < 10	58 104	
300N 10625E	201 202	< 1	0.01		940 610			1	\$2 50	0.11	< 10 < 10	< 10		< 10	80	
300N 106758 300N 107358	201 202	1	0.01 0.01	÷	370	-	< 2	:	41	0.10	< 10	< 10	58	< 10	90	
00N 107758	201 202	< 1	0.01	7	640	1	< 2		38	0.09	< 10	4 10	63	< 10	16	
300N 10825E	201 202	ì	0.01	÷.	740	4	< 2	1	39	0.09	< 10 < 10	< 10	67	< 10 < 10	11 94	
300N 10875E	201 202	1	0.01	;	1100	1		1	35 29	0.10	< 10	10	6 1	< 10	10	
10925E 10975E	201 202	< 1 < 1	0.01		700 -	- 2	2 I	ī	37	0.10	< 10	< 10	83	< 10	106	
100N 11025E	201 202	< 1	0.01	;	930	6	~ i	1	36	0.09	< 10	< 10	57	< 10	214	
300N 11075E	201 202	< 1	0.01	'n	860	i i	< 2	3	44	0.10	< 10	4 10	78	< 10 < 10	130	
00N 11125E	201 202	< 1	0.01		530 900		< 2 < 2	1	41	0.11 0.10	< 10 < 10	< 10 < 10	64	< 10		
00N 11175E	201 202	< 1 < 1	0.02	- 1	690	- 2	-	2	40	0.11	< 10	- 10	71	< 10	111	
	201 202	< 1	0.01		90	2	< 1	1	21	0.10	< 10	< 10	63	< 10	104	
11275E 100N 11225E	201 202		0.01	ï	610	Ē	4.2	Ĵ	\$1	0.12	< 10	< 10	60	< 10	82 154	
CON 111758	301 302	< 1	0.02	5	3180			1	23	0.01	< 10 < 10	< 10 < 10	60 67	< 10 < 10	268	
00N 114258 00N 114758	201 202	< 1 < 1	0.01	1	1450	ŝ	< 1		46	0.11	× 10	< 10	81	< 10	138	
UUN 114758										0.11	< 10	< 10	79	< 10	103	
00W 11525E	201 202	<pre>< 1 < </pre>	0.01	- t	790 1290	Ē	< 1 < 1	1	49	0.11	< 10	< 10	71	< 10,	80	
100N 11575E	201 202		0.01	í	1320	- i	< 2	ā	40	0.11	< 10	< 10	74	< 10		
00N 11675E	201 202	< 1	0.01	•	1350		< 2	1	27	0.00	< 10 < 10	< 10 < 10	55 61	< 10 < 10	138	
00N 11725E	201 202	< 1	0.01	•	1290		· · ·									
00N 11775E	201 202	٢ 1	0.01	?	1450	-	< 2	1	26	0.08 0.09	< 10 < 10	< 10 < 10	61 61	< 10 < 10	138	
00M 11825E	201 202	< 1 < 1	0.02	2	1310			2	13	0.08	< 10	< 10	74	< 10	126	
00N 11875E	201 202	` i	0.01	7	1080	10	< 1	2	(1	0.11	< 10	< 10	67	< 10 < 10	168 68	
DON 119758	201 203		0.01	7	960	10	< 1	3	47	0.11	< 10	< 10		< 10	••	

CERTIFICATION: Str. 3. Bredden

TO: GEOTEC CONSULTANTS LTD.

Total Pages 6 Cartilicate Date: 16-SEP-96 Invoice No. 19631222 P.O. Number Account LOY

Analytical colorinatia Coloration		
212 Brocksbank Ave.	North	Vancos V7.J
British Columbia, Canada PHONE: 604-984-0221 F	AX: 60	

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

										CE	RTIFI	CATE	OF A	NAL	/SIS		A9631	222		
SAMPLE	PREP	λα ppb Pλ+λλ	λg ppm	Al \$	٨s ppu	ðu ppm	Be ppn	Bİ ppm	Ca N	Cđ ppm	Co pps	Cr ppa	Ca pps	70 \	Ca ppa	Eg ppw	K	La ppm	Mg X	Ma ppi
				1.94	< 2	70	< 0.5	< 1	0.36	< 0.5	,	11	21	3.11	< 10	< 1	0.05	< 10	0.25	450
00N 120255 00N 120755	201 202	< 5	< 0.3	1.45		40	< 0.5	1	0.62	< 0.5		11	29	2.23	< 10 < 10	< 1 < 1	0.05	< 10	0.35	215
DON 100008	201 202	< 5	0.2	2.18	< 2		< 0.5	1	0.31	< 0.5	7	1	54	3.61	< 10		0.06	< 10	0.26	205
OON 100508	201 202		4 0.3	1.74	1		< 0.5		0.51	< 0.5		11	40	2.26	< 10	- ÷ 1	0.05	< 10	0,23	175
CON 10100E	201 202	< 5	< 0.2	1.23	•	••											0.11	< 10	1.11	325
00N 10150E	201 202	< 5	0.6	2.42	3	60	t.5	< 1	0.62	< 0.5	16	10	276	4.07 3.53	< 10 < 10	<1 <1	0.05	4 10	0.42	200
DON 10300E	201 202	< 5	0.2	1.81	< 2		< 0.3			< 0.5			39	1.75	4 10	< 1	0.04	< 10	0.15	- 110
DOM 10250E	201 202	< 5	0.2	1.73	< 3		< 0.5 < 0.5		0.16	< 0.5 < 0.5		- i	39	1.85	< 10	< 1	0.05	< 10	0.14	169
CON 10300E	201 202		< 0.2	1.00	< 2	30	0.5	1	1.14	< 0.5	- ÷	- 11	304	2.67	< 10	< 1	0.00	10	0.64	193
CON 10350E	101 101	,,,											35	1.98	< 10	< 1	0.06	< 10	0.23	\$2
000 104001	201 202		4 0.2	1.37	2		< 0.5	;	0.30	< 0.5	1	;	ñ	3.09	< 10	41	0.13	< 10	0.20	60
00N 10650E	201 202		< 0.2	1.1	. 4		< 0.5	- 4		< 0.5	;	- i	54	2.19	< 10	< 1	0.10	< 10	0.21	23
00N 10500E	201 202		< 0.2 < 0.2	1.17	< 2		< 0.3	1		< 0.5	7	÷	63	3.14	< 10	< 1	0.05	< 10	0.21 0.24	200
00N 10550R 00N 10600E	201 202		< 0.2	1.71	2		< 0.5	1	0.35	< 0.5	7	,	38	2.10	< 10	< 1	0.00	4.10		
OUN TOBOUL							• • •		0.36	< 0.5	6		36	2.06	< 10	< 1	0.09	< 10	0.21	23
OON 10650E	201 202		< 0.3	1.59	2		< 0.5 < 0.5	;		< 0.5		- í	- 24	1.87	< 10	< 1	0.09	< 10	0.20	231
00N 10700E	201 202	< 5 < 5	0.2 < 0.2	1.50	. 2		< 0.5			< 0.5	7		40	3.12	< 10	< 1	6.09 0.13	< 10 < 10	0.23 0.21	749
00% 10750E	201 202		< 0.2	1.60	< 2		< 0.5	1		< 0.5	<u> </u>	7	34	1.76	< 10 < 10	< 1 < 1	0.09	< 10	0.10	150
OCH 108508	101 202		4 0.2	1.39	< 2	60	< 0.5	3	0.39	< 0.5	6	•	**	1.43	• 10					
	J					10	< 0.5		D.20	< 0.5	5	6	34	1.36	e 10	< 1	0.07	< 10	0.17	22
CON 10900E	201 202		< 0.2 < 0.2	1.11	< 2		< 0.5		0.26	< 0.5	4	Ż	42	1.79	< 10	< 1	0.06	4 10	0.21	201
DON 10950E	201 202 201 202		< 0.2	1.53	22		< 0.5	3	0.29	< 0.5	•		- 49	1.76	< 10 < 10		0.04 0.11	< 10 < 10	0.27	670
CON 110008 CON 110508	201 202		0.2	1.25	< 2		< 0.5	< 2	0.98	0.5	- f		58	1.45	< 10	- 21	0.06	< 10	0.14	151
CON 11100E	201 202	< 5	< 0.2	1.17	< 2	80	< 0.5	< 2	0.33	< 0.9	,	•								
		< 5	< 0.2	1.32	< 2	90	< 0.5	< 1	0.31	< 0.5	5	7	29	1.56	< 10	< 1	0.05	< 10 < 19	0.18	289
00N 11150E 00N 11200E	201 202		< 0.2	1.14	22		e 0.5	< 2	0.41	e 0.5	7	11	66	3.10	< 10 < 10	< 1 < 1	0.12	< 10	0.30	- 98
OCN 112508	201 202		4 0.2	1.44	2		< 0.5	< 2	0.43	< 0.5	7	10	10	2.15	< 10		0.05	< 10	0.14	\$05
00N 11300E	201 202		₹ 0.3	0.91			< 0.5	2	0.22	0.\$ < 0.5	ŝ	- i	26	1.66	< 10	< 1	0.05	< 10	0.15	233
00N 11350K	201 202	< 5	< 0.2	1.14	< 2	60		-	*1**									< 10	0.15	10
OON 11400E	201 202	< 5	< 0.2	1.43	< 2	70	e 0.5	- ÷ ż		< 0.5		1		1.58	< 10 < 10	< 1	0.05	2 10	0.19	- 110
00N 11450E	201 202	< 5	< 0.2	1.60	< 3		< 0.8	< 1		< 0.5	5		53	1.70	< 10		0.05	< 10	0.10	350
CON 11500E	201 202		< 0.2	1.16	< 1		< 0.5 < 0.5	< ;	0.35	< 0.5 < 0.5	1	;	ü	1.61	< 10	- i i	0.08	< 10	0.70	70
OON 11550E	201 202	< 5	0.2	1.94			< 0.5	< 1		2 0.5	· · i	j.	43	1.92	< 10	< 1	0.06	< 10	0.32	690
DON 11600E	201 202	~ >	u.1	1.37											< 10	< 1	0.04	< 10	0.23	750
00N 11650E	201 202		< 0.2	1.24	< 2		< 0.3	< 1		< 0.5 < 0.5	7	;	34	1.75	< 10		0.04	< 19	0.32	710
OON 11700E	201 202		< 0.2	1.02	2		< 0.5 < 0.5		0.34	< 0.5		÷	- 13	1.57	< 10	< 1	0.04	< 10	0.19	641
00N 11750E	201 202		< 0.2	1.50	1 2		< 0.1		0.25	< 0.5	7		24	1.70	< 10	< 1	0.05	< 10	0.25	370
DON 11800E Don 11850E	201 202		< 0.2	1.71	2		< 0.5	1	0.10	< 0.5	6	7	11	1.71	< 10	< 1	0.06	< 10	4.14	-01

-300 CERTIFICATION:

Chemex Labs Ltd.

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Pege Number :2-8 Total Peges :6 Centificate Date: 16:SEP-96 Invoice No. : 19631222 P.O. Number : Account :LOY

<u>11 _</u>___

i

Inalylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 504-594-0221 FAX: 604-984-0218

Project: TAS Comments: ATTN:L.W.SALEKEN CC:GRANT CROOKER

										CE	RTIF	CATE	OF A	NAL	rsis	A9631222
SANPLE	PREP	No FPE	Na X	Ni ppm	P pps	Pb pp#	S'b ppm	Sc pp=	8r ppm	fi %	Ť1 ppm	U ppm	¥ ppe∎	W ppm	In ppm	
300N 12025E	201 202	< 1	0.03	,	1790	10	< 2	3	31	0.10	< 10	< 10 < 10	61 84	< 10 < 10	118 54	
300N 12075E	201 202		< 0.01	5	520 720		< 1 1	3 2	43	0.15	< 10 < 10	< 10	75	~ 10	90	
CON 100008	201 202	1	0.02		950		~ i	Ĵ	47	0.12	< 10	< 10	85	< 10	46	
100N 10100E	201 202	î	0.01	6	730	4	< 1	2	37	0.10	< 10	< 10	74	< 10		
00N 10150E	201 202		< 0.01	6	1260	< 1	4	4	57	0.19	< 10 < 10	< 10 < 10	109 58	< 10 < 10	84 54	
CON 10300E	201 202	1	0.01	1	140		4 2	3	- 14	0.08	< 10	1 10	- 44	< 10	58	
00N 10350K 00N 10300E	201 202 201 202	- 1	0.01	é	1170	i	< 1	1	17	0.09	< 10	< 10	50	< 10	52 110	
00N 103508	201 202	1	0.01	,	1050	4	1	6	75	0.10	< 10	< 10	74	< 10		
00N 10400E	301 202	. < 1	0.01	6	1400	4	< 2	2	40	0.08	< 10 < 10	< 10	61 70	< 10 < 10	96 74	
OON 10450E	201 202		< 0.01	- f	£70 580	- 1	< 2 1	3	61 59	0.11	< 10	< 10	26	< 10	49	
CON 10500E	301 302 203	1	0.01	i	130		< ī	Ĵ.	40	0.11	< 10	< 10	60	< 10	56 100	
CON 10600E	201 202	1	0.01	i.	1110		< 2	3	33	0.10	< 10	< 10	61	< 10		
00N 10650B	201 202	٠ 1	0.01		1300	1	3	2	36	0.09	< 10 < 10	< 10 < 10	59 34	< 10 < 10	68 100	
00N 10700E	201 202	< 1 < 1	0.01	10	1300 770	1	2	1	36	0.11	< 10	< 10	63	< 10	94	
00N 10750E 00N 10890E	201 202 201 202		< 0.01	6	380	j.	< 2	ī	45	0.10	< 10	< 10	95 60	< 10 < 10	68 52	
00N 10850E	201 202	< 1	0.01	•	320	2	< 2	3	41	0.10	< 10	< 10				
00N 10900E	201 202	1	0.01	7	\$70	4	< 2	1	21	0.06	< 10	< 10 < 10	43 54	< 10 < 10	64 74	
00M 10950E	201 202	< 1	0.01		1000	2	< 2	1	26	0.07	< 10 < 10	< 10	54	< 10	150	
CON 11000E	201 202	< 1	0.01		8€0 1790	- 1	< 2	i		0.05	e 10	< 10	40	< 10	76	
CON 11050E CON 11100E	201 203	< 1	0.03	Ē	1070	2	3	1	31	0.09	< 10	< 10	47	< 10	116	
OCN 11150E	201 202	< 1	0.01	7	820	6	< 2	1	33	0.09	< 10 < 10	< 10 < 10	49	< 10 < 10	103	
00N 11200E	201 202	1	0.01	11	730	2	< 1 < 1	2	41	0.11 0.08	< 10	< 10	69	< 10	96	
00N 11250E 00N 11300E	201 202	< 1 · < 1	< 0.01 0.01	7	1090			ī	23	0.01	< 10	< 10	48	< 10	145	
00N 11350E	301 203	21	0.01	ŝ	950	1	4 2	1	37	0.08	< 10	< 10	\$2	< 10	94	
00N 11400F	201 202	< 1	0.01		1430	3	< 2	2	33	0.08	< 10	< 10 < 10	44	< 10 < 10	76	
00M 11450E	201 202	< 1	0.01	- <u>f</u>	400 1240		< 2	1	34	0.10	< 10 < 30	< 10	\$7	< 10	106	
CON 115008 Con 115508	201 202	< 1	0.01	;	690	1	`;	3	66	0.13	< 10	< 10	74	< 10	116	
DON 116008	201 202		0.01	÷.	1140	•	< 2	3	35	0.08	< 10	< 10	58	< 10	173	······································
ON 11650E	201 202	< 1 4	0.01	F	1580	•	2	1	22	0.07	< 10	< 10 < 10	48 63	< 10 < 10	163	
OON 11700E	201 202		¢ 0.01		1020 1370	÷	< 2	1	23 10	0.08 0.07	< 10 < 10	< 10		< 10	170	
00N 11750E 00N 11800E	201 202	< 1	0.01		1400	- 2	1	2	26	0.07	< 10	< 10	54	< 10	148	
DON 118508	201 202	ì	0.01	š	1570	Ē.	< 1	1	19	0.01	< 10	< 10	41	< 10	169	

CERTIFICATION: Start Suchles

(<u></u>		PHONE: 6	sbank Av umbia, C 04-984-0	ve., M Lanada	North Vay	/7J 2C1	ar a		Proje Com	VANCOU V6P 5M		;	EN CO	CIGRANT	CROOK	(EA	<u> </u>	Invoice I P.O. Nu Account	mber :	19631222 LOY
										CE	RTIFI	CATE	OF A	NAL	(SIS	1	A9631	222		
SAMPLE	PREP CODE	Au opb FA+AA	Ag ppm	л1 Х	ka ppm	Ba Spr	Be pps	B1 ppm	Ca 3	Cđ ppa	Co ppm	Cr pps	Cu ppa	70 2	Ga ppm	Hg ppm	X N	La ppm	Ma	Nin ppm
9400N 12000E 9400N 12050E	201 202 201 207 201 203 201 203 201 203 201 203	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	< 0.2 < 0.2 0.2 0.2 0.2 0.2	1.84 1.73 1.82 1.90 1.83	< 2 < 2 < 7 < 2 < 2 < 2 < 2	50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	0.43 0.34 0.21 0.24 0.41	< 0,5 < 0.5 < 0.5 < 0.5 < 0.5	9 6 7 7	* 7 12 14)) 29 13 13 15	2.10 2.21 1.78 3.06 1.99	10 10 10 10 10 10	<1 <1 <1 <1 <1 <1	0.06 0.05 0.04 0.05 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.31 0.37 0.20 0.26 0.29	415 260 825 770
9500N 10075E 9500N 10125E 9500N 10175E	201 201 201 202 201 202 201 202 201 202 201 202	<pre></pre>	< 0.2 0.4 < 0.2 0.2 < 0.2	2.38 2.33 1.72 2.19 1.76	< 2 < 2 < 2 < 2 < 2 < 2 < 2	70 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 1 < 2	0.68 0.17 0.35 0.48 0.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 7 7 6	14 10 9 13 7	143 75 44 98 13	2.50 2.03 2.01 2.33 1.78	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.05 0.06 0.05 0.06 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.17 0.16 0.23 0.12	165 600 170 285
9500N 10325E 9500N 10375E 9500N 10425E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5 < 5	0.3 < 0.3 < 0.3 < 0.3 < 0.3	1.38 1.43 1.15 1.83 1.63	< 2 < 2 < 3 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	40 20 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 1 1 1 1 1	1.24 0.31 0.37 0.46 0.41	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 6 5 8 6	10 8 9 10 9	158 22 40 63 21	1.90 1.84 1.79 3.11 1.94	+ 10 + 10 + 10 + 10 + 10 + 10	<1 <1 <1 <1 <1	0.03 0.05 0.03 0.09 0.09	< 10 < 10 < 10 < 10 < 10 < 10	0.15 0.15 0.26 0.18	223 145 975 430
9500N 10575E 9500N 10625E 9500N 10675E	201 202 201 202 201 202 201 202 201 202 201 202	* * *	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.73 1.76 3.18 1.73 1.57	1 1 1 1	50 80 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	נ נ נ נ נ	0.38 0.56 0.46 0.46 0.36	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 7 7 7	9 6 9 9	42 44 59 43 42	3.14 3.23 3.32 3.19 3.40	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.07 0.09 0.08 0.09 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.19 0.36 0.35 0.21 0.21	585 710 165 725 750
9500N 107755 9500N 109355 9500N 109355 9500N 109355 9500N 109355	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.59 0.99 1.51 1.46 1.46	6 () () () ()	50 70 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 2 2 2	0.38 0.28 0.54 0.62 0.29	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 5 7 4 4	9 7 9 10 9	59 25 50 32 27	3.22 1.51 3.27 2.36 2.00	< 10 + 10 + 10 + 10 + 10 + 10	< 1 < 1 < 1 < 1 < 1	0.08 0.06 0.09 0.09 0.09	< 10 < 10 < 10 < 10 < 10	0.35 0.11 0.31 0.21 0.19	160 150 230 265 125
9500N 11025E 9500N 11075E 9500N 11125E 9500N 11125E	201 202 201 202 201 202 201 202 201 202 201 202	< 5	< 0.1 0.2 < 0.3 < 0.2 < 0.2	1.67 1.93 1.45 1.87 1.67	< 7 < 2 < 7 < 2 < 2 < 2	10 70 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 2 2	0.52 0.59 0.14 0.49 0.57	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 6 7 7	11 12 1 11 10	121 95 37 66 69	2.26 2.60 1.88 2.35 2.18	10 10 10 10 10	<1 <1 <1 <1 <1 <1	0.01 0.07 0.05 0.07 0.06	< 10 < 10 < 10 < 10 < 10	0.37 0.35 0.31 0.31 0.31	310 215 300 420 310
9500N 11275E 9500N 11325E 9500N 11375E 9500N 11375E 9500N 11425E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.3 < 0.3 < 0.2 < 0.2	1.67 1.17 1.30 1.21 1.57	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	120 70 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 1 2 2 2 4 2 2 4 2 1 4 2 1 4 1 4 1 2 1 4 1 1 1 1	0.41 0.38 0.22 0.44 0.35	< 0.9 < 0.5 0.5 < 0.5 < 0.5	7 9 5 6	9 10 9 10 9	33 65 68 66 21	2.14 3.32 1.70 1.91 3.11	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.06 0.05 0.05 0.06 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.31 0.40 0.31 0.39 0.32	570 890 735 310 175
9500N 11525E 9500N 11575E 9500N 11625E 9500N 11625E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.3 < 0.2 < 0.2 < 0.2 < 0.2	1.32 1.69 1.32 1.76 1.79	< 3 4 < 3 < 3 < 3	40 40 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	(> (> (> (> (>	0.38 0.43 0.36 0.50 0.38	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 6 7 7	10 9 12 11	17 39 15 29 16	1.70 1.90 2.07 2.32 2.14	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.05 0.06 0.05 0.06 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.20 6.20 0.13 0.37 0.37	225 235 220 135 265

Seril red Van CERTIFICATION:

٠

.

TO: GEOTEC CONSULTANTS LTD. 6976 LABURNUM 9T. VANCOUVER, 8C V6P 5M9

Page Number : 3-8 Total Pages : 8 Certificate Date: 16-SEP-96 Invoice No. : 19631222 P.O. Number : Account : LOY

Chemex Labs Ltd. Analytical Chemists * Registered Assayses 212 Brooksberk Ave. British Columbia, Canada V71 2C1 PHONE; 604-984-0221 FAX: 804-984-0218

Project : TAS Comments: ATTN:L.W.SALEKEN CC:GRANT CROOKER

And the second second second second second second second second second second second second second second second																
										CE	RTIFI	CATE	OF A	NAL	ISIS	A9631222
SAMPLE	PREP	Мо ррша		Ni PD m	p ppm	Pb ppm	st.	Sc pp=	Sr ppa	Tİ X	T1 ppm	U Spa	y ppu	¥ ppa	Zn pps	
					_		1	1		0.10	< 10	< 10	66	< 19	166	
DON 119008	201 202		0.01 0.01	2	1650		< i	;	32	0.11	< 10	4 10	68	< 10	152	
00W 12000E	201 202			Ē	1210	í.	< 1	1	20	0.09	< 10	< 10		< 10 < 10	114	
00H 12050E	201 202	1		1	1480	10	< 1 < 1	2	25	0.10	< 10 < 10	< 10	54	< 10	126	
00N 17100E	301 202	< 1	0.01	•	1170	10										
00N 10025E	301 202	< 1	0.01	,	430	6	3		64	0.18	< 10 < 10	< 10 < 10	- 89 51	< 10	\$6 90	
OON 100758	201 207			2	610	6		2	19	0.12	< 10	< 10	56	< 10	62	
00N 10125E 00N 10175E	201 202			;	1410			5	51	0.13	< 10	< 10	73	< 10	48	
CON 10225E	201 202			5	2210	6	< 2	1	26	0.09	< 10	< 10	49	< 10	177	
00N 10275E	201 202	1	0.01		580	1	2	3	61	0.10	< 10	< 10	51	< 10	74	
CON 103358	201 202		0.01	- i	1020	4	2	2	11	0.10	< 10 < 10	< 10 < 10	511 62	< 10	80 56	
00W 10375x	201 202	< 1	0.01		450	;	< 2 < 2	2	19	0.11 0.13	< 10	< 10		< 10	124	
00N 10425E	201 202	< 1	0.01	7	510 860		٠ <u>÷</u>	1	42	0.11	< 10	< 10	59	< 10	114	
00N 104758	201 202	• •	0.04									< 10	65	< 10	127	
CON 105258	201 202	1	0.02	10	1250	- 1		;	61 60	0.11	< 10 < 10	< 10	ö	< 10	76	
00N 10575E 00N 10625E	301 302	< 1 1		2	650 240	- 2			49	9.11	< 10	< 10	67	< 10		
00N 10675E	2011 202	< î		i	1730	1	2	2	43	0.09	< 10 < 10	< 10 < 10	67 74	< 10	188 136	
CON 10725E	201 207	1	0.01		1310	•	< 3	3	36	0.10	< 10	• 10				
00N 10775E	201 202	1	0.01	,	1250	1	3	3	38	0.09	< 10	< 10	68 50	< 10	174	
00N 10835E	201 202	1	0.01		210	1	< 1	1	28 57	0.09	< 10 < 10	< 10 < 10	29	< 10	60	
00N 10075E	201 202	< 1	< 0.01 0.01	7	730 920	2	< 1	;	- 61	0.11	< 10	10	10	< 10	98	
00N 10925E 00N 10975E	201 202			÷	1300	;	5	i	13	0.10	< 10	< 10	63	< 10	90	
	I I - +					2	1		- 19	0.11	< 10	< 10	76	< 10	138	
CON 11025E	201 202	< 1 1	0.01 < 0.01	;	710 670	÷.	< 1	i	59	0.14	< 10	< 10	97	4 50	64	
CON 110758 CON 111258	201 202	< i	0.03	- í	750	- i	4.2	1	35	0.11	< 10	< 10	61	< 10	110	
00N 11175E	201 202	< 1	0.01	i.	610	4	2	1	50 63	0.11	< 10 < 10	< 10 < 10	#3 77	< 10 < 10	106	
00N 112258	201 202	< 1	0.01	,	1000	4	< 2	3	•3	0.11	• 10	<u> </u>				
00N 112758	201 202	• 1	0.01	7	650	1	1	2	45	0.14	< 10	< 10	68 74	< 10 < 10	308 184	
00M 11325E	301 202		< 0.01		160	;		1	41 25	0.12	< 10 < 10	< 10 < 10	- 4	< 10	314	
DON 11375E	201 202	41	0.01 < 0.01		750 360			j	4	0.11	< 10	10	71	< 10	84	
DON 114758 DON 114758	201 202	< 1		i	1300	- i	1	i	37	0.11	< 10	< 10	67	< 10	136	
					1410	< 2	< 2	1	39	0.01	< 10	< 10	58	< 10	242	
DON 115258	201 202 201 202	< 1 < 1	0.01	3	1610	1	1	5	41	0.11	< 10	4 10	- 44	< 10	276	
CON 11625E	201 202	1	0.01	ŝ	1420	i i	ī	3	37	0.09	< 10	< 10	13	< 10 < 10	170 168	
00N 11675E	301 202	< 1	0.01	1	990	2	< 2	3	47	0.11	< 10 < 10	< 10 < 10	70	< 10	364	
00N 117258	201 202	< 1	0.01	7	830	6	2	4		3.13			••			
												<u> </u>				

Chemex Labs Ltd. Analylical Chemists * Geochemists * Geochemists * Geochemists * Geochemists * Morth Vancouver Brößen Columbia, Canada V7J 201 PHONE: 604-984-0221 FAX: 604-984-0218

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Iotal Pages .9 Certificale Date: 16-SEP-96 Invoice No. : 19631222 P.O. Number : Account : LOY

Project: TAS Comments: ATTN:L.W.SALEKEN CC:GRANT CROOKER

		r nome.	004.004	1221 FA					Comr		AT 119-12-1	1.04461		w:unan						
<u></u>										CE	RTIFI	CATE	OF	NAL	YSIS		49631	222		
SAMPLE	PREP	Au ppb FA+AA	λg ppm	л1 Х	λs ppt	Ba pp n	Be ppm	Bi ppm	Ca X	cd ppm	Co ppm	Cr pps	Ca pps	70 3	Ga. pşm	Eg ppm	K N	La ppa	Ng X	No pym
	201 202	<u> </u>	< 0.1	1.59	< 1	60	< 0.5	< 1	0.39	4 0.3	6	10	20	2.21	< 10	- 1 - 1	0.06	< 10	0.15	310
500N 11775E 500N 11825E	201 202		< 0.2	1.54	21	50	4 0.5	- 63	0.42	< 0.5	7		32	2.16	< 10	11	0.03	< 10 < 10	0.29 0.20	275
500H 11075E	201 202	1 65	< 0.2	1.66	< 1	60	< 0.1	< 1	0.37	< 0.5	f.		22	2.14	< 10 < 10		0.05	< 10	0.33	375
500N 11925E	201 202		< 0.2	1.84	< 1	60 50	< 0.5 < 0.5	< 1	0.49	< 0.5	i i	- ïi	16	3.01	< 10	<1	0.04	< 10	0.19	7\$3
50DN 11975E	201 203	< 5	< 0.2	1.69												·				740
500N 120238	201 202	< 5	< 0.2	1.16	< 3	\$0	e 0.5	< 1		< 0.5	5		16	1.89	< 10 < 10	<1 <1	0.04 0.03	< 10 < 10	0.30	330
500N 12075E	201 202	< \$	< 0.2	1.87	< 7	60	< 0.5	< 1	0.24	< 0.5	5	11	60	2.39	< 10	- 21	0.05	10	0.22	230
600N 09700E	201 203		< 0.2	1.35	< 2	50	< 0.5 0.5			< 0.5 < 0.5		15	199	2.11	< 10	- 21	0.05	10	0.35	425
600N 09750E	201 202		0.2	2.50 1.35	< 2 < 2	70 50	4 0.5		0,31	< 0.5	i i	ü	- 65	3.33	< 10	< 1	0.04	< 10	0.17	135
FOON OPECCE	201 202	< 3	< v.4	1.35															0.15	250
000N 09850E	201 202	< 5	0.2	1.40	< 2	60	< 0.5	< 2	0.29		5		11	2.03	< 10 < 10		0.04	< 10 < 19	0.21	201
500N 09900E	201 202	< 5	< 9.2	1.54	< 2	60	< 0.8	< 2		< 0.5		14	57 231	2.19	< 10	- 21	0.05	10	0.11	703
500% 09950E	201 202	< 3	0.4	2.60	< 2	80	0.5	< 2	0.96	< 0.5	- 1	15	- 11	2.14	< 10	- 21	0.04	< 10	0.23	145
00N 10000E	201 202		< 0.2	1.72		60 70	< 0.5	< 2		< 0.5		12	35	2.29	< 10	< 1	0.07	< 10	0.26	195
00N 10050E	201 202	< 3	< 0.2	1.43	< 4		• •									···				
OON 10100E	201 202	< 3	< P.2	2.54	< 2	60	< 0.5	< 2		< 0.5	•	12	17	2.09	< 10	< 1	0.05 0.06	+ 10 + 10	0.22	145
LOON 101500	201 202		< 0.2	1.38	< 2	30	< 0.5	< 2		< 0.5	5	10	41 109	1.00	< 10 < 10		0.04	10	0.24	285
OON 10200E	201 202		< 0.2	2.66	< 2	70	0.5	< 2		< 0.5		11 14	104	2.02	< 10	- 21	0.06	10	0.50	460
500N 10250E	201 202		< 0.2	1.89	< 2	40 60	< 0.5	2		< 0.5 < 0.5		15	154	3.16	10	< 1	0.11	10	0.53	470
500N 10300E	201 202	< 5	1.0	3.77	< <i>1</i>	60	1.0	•												
OON 10350E	201 202	< 3	0.9	3.40	2	40	0.5	6		< 0.5		15	161	3.66	< 10	- 1	0.10	< 10 < 10	0.45 0.31	480 920
OON 10400E	201 202	< 5	< 0.2	2.55	6	120	0.5	< 2		< 0.5	11	10	76	2.94	< 10 < 10		0.09	2 10	0.33	370
DOM 10450E	201 202		< 0.2	1.61	4	50	< 0.1	2		< 0.5		11	41	1 11	e 10	- 24	0.07	< 10	0.28	200
CON 10500E	201 202		< 0.2	1.37	< 2	30 90	< 0.5 < 0.5			< 0.5	i	- i	22	3.09	< 10	< 1	8.08	< 10	0.17	440
CON 10550E	201 202	< 5	< 0.2	1.30	• •															
OON 10600E	201 202	< 5	0.2	1.13	< 1	50	< 0.5	1	0.26		5	1	30	1.96	< 10	< 1	0.06	< 10 < 10	0.17	410
DON 10650E	201 202	< 5	0.2	2.05	< 1	90	0.5	7		< 0.5	1	10		2.65	< 10 < 10	< 1 < 1	0.05 0.06	< 10	0.23	\$75
OON 10700E	201 202		< 0.2	1.30	2	10	< 0.3	< 2		< 0.5	2	10 10	25 37	2.40	< 10	- 24	0.01	2 10	0.23	390
CON 10750E	201 202		< 0.2	1.74	< 1	90 110	< 0.5	< 1		< 0.5	;			2.09	10	- è i -	0.07	< 10	0.25	1020
CON 10800E	201 202	< 5	0.2	1.31	· •	110														
00N 10850E	201 202	< 5	< 0.2	1.66	< 2	100	< 0.5	3		< 0.5	•		14	2.10	< 10	1	0.05 0.08	< 10 < 10	0.25 0.24	345
ODN 10900E	201 202	< 5	< 0.2	1.54	2		< 0.5	1	0.41	0.5		10	36 105	2.17	< 10 < 10	< 1 < 1	0.00	< 10	0.55	370
00N 10950E	201 202		< 0.2	1.55	< 2		< 0.5	3		< 0.5 < 0.5	- 1	11	71	2.21	< 10	~ 1	0.06	< 10	0.24	350
00N 11000E	201 202		< 0.2	1.63	< 1		< 0.5 < 0.5	3	0.33	0.5			67	2.19	< 10	2 i	0.06	< 10	0.25	430
00N 11050E	201 202	< 5	0.2	1.45	< 2			4	0.33	*.*										
00N 11100E	201 202	< 5	0.2	1.26	< 2	60	< 0.5	1	0.38	< 0.5	5	,	63	1.98	< 10	< 1	0.06	< 10	0.18	115
OON 11150E	201 202		0.0	2.33	< 1	60	0.5	1	0.50	0.3	7	17	274	2.37	4 10		D.05 0.05	< 10 < 10	0.57	635
00H 11200E	201 202	< 5	0.4	2.00	< 1	110	0.5	1	0.36	0.5	7	11	155	2.45	< 10 < 10	< 1 < 1	0.05	< 10	0.36	105
OCN 112502	201 202		< 0.2	2.67		110	< 0.5	1	0.46	< 0.5 0.5	;	ii	100	2.48	< 10	- i	0.06	< 10	0.43	715
00N 11300E	301 202	< 5	< 0.2	2.19	•	100	- 0.3	~ 4	****		,					-				

CERTIFICATION: Start Buchler

.

.

Chemex Labs Ltd. nayikal Chemisis "Geochemisis "Registered Assayen 212 Brooksbank Are. North Vancouver Britsh Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Commente: ATTN:L.W.SALEKEN CC:GRANT CROOKER

Page Number: :4-8 Total Pages :8 Cartificate Onte: 18-3EP-98 Invoice No. : 19631222 P.O. Number : Account : LOY

		PHONE: 6	04-984-0	221 FA	A: 004-90	34.0210			Comr	nents:	ALLNEL	IT.SAUCH		u, Grinnin	CHOOKE	
										CE	RTIFI	CATE	OF A	NAL	rsis	A9631222
SAMPLE	PREP	Mo pp=	Na. X	NI PP=	P	Pb ppm	ab pp=	Sc ppm	Sr ppn	Tİ \$	T1 pp n	U ppm	T ppm	N DDm	In ppe	
SOON 11775E	201 202	< 1	0.02		1620	2	< 1	1	29	0.11	< 10	< 10	67	< 10	330	
500N 11825E	201 202	1	0.01	ě.	1630	2	1	2	40	0.10	< 10 < 10	< 10 < 10	70 65	< 10 < 10	206	
11875E	201 202	1	0.03	5	1310 1090	4	1	2	35	0.11 0.12	< 10	< 10	ü	~ 10	104	
500N 11935E 500N 11975E	201 202 201 202	1	0.01	- 1	1210	i	;	i	ii	0.11	< 10	< 10	61	< 10	112	
DON 12025E	201 207	< 1	0.01	5	670	4	< 2	1	23	0.11	< 10	< 10	57 55	< 10 < 10	86 83	
00N 120758	201 202	< i	0.02	5	1470	2	< 2	2	22	0.20 0.09	< 10 < 10	< 10 < 10	96	< 10	ü	
500N 09700E	201 202	< 1	0.01		930 380	;	2		só	0.11	< 10	< 10	ä	2 10	74	
500N 09750E 500N 09800E	201 202	1	0.01	1	1150	2	< 2	j	33	0.08	< 10	< 10	76	< 10	54	
OON 098508	201 202	i	0.01	7	1070	2	< 1	1	29	0.08	< 10	< 10	72	< 10 < 10	38	
800N 09900B	201 202	1	0.01	?	1450	1		1	40 58	0.09	< 10 < 10	< 10 < 10	66	< 10	16	
600N 09950E	201 202	1	0.01 0.01	- 1	730 1220		1	- i	52	0.13	< 10	< 10	71	< 10	80	
00N 100008	201 202	• i	0.01	- 6	770	i	ĩ	i	51	0.13	< 10	< 10	78	< 10	36	
DON 101008	201 202	• 1	0.01		1140	1	< 1	;	41	0.11	4 10 4 10	< 10	70	< 10 < 10	34	
CON 1015CE	201 202	< 1	0.01		230 910	6 2	< 1 < 1	2	39	0.12	< 10	< 10 < 10	56	< 10	56	
CON 10300E	201 202	< 1 1	0.01	÷	580		`i	7	82	0.13	€ 19	< 10	92	< 10	14	
DON 10300E	201 202	ī	0.02	11	430	4	4	11	54	0.04	< 10	< 10	73	< 10	160	
CON 10350E	201 203	< 1	0.03	11	370		4	7	51 48	0.10	< 10 < 10	< 10 < 10	72	< 10 < 10	138 202	
DON 104002	201 202	1	0.01		1450 650	# 2	1	- 1	52	0.11	< 10	< 10	97	< 10	174	
500N 10450E 500N 10500E	201 202	< 1 < 1	0.01	- 1	240	:	÷	ī	40	0.12	< 10	< 10	71	< 10	106	
GON 105508	201 202	1	0.02		1050	2	2	2	31	0.09	< 10	< 10	55	< 10	130	
00H 106008	201 202	1	0.01	5	670	2	3	2	26	0.08	< 10	< 10	57 75	< 10 < 10	62 114	
00N 10550E	201 202	< 1	0.01		830 980	4	4	2	38 33	0.10 0.10	< 10 < 10	< 10 < 10		< 10	132	
00N 107008	201 202	< 1 < 1	0.01	1	830		;	2	21	0.10	< 10	< 10	- 59	< 10	110	
OCN 107508	201 202	` i	0.02	÷	660	ē	κā	2	46	0.11	< 10	< 10	63	< 10	300	
00N 10850E	201 202	< 1	0.02	1	1000	2	2	3	40	0.11	< 10	< 10	66 74	< 10 < 10.	124	
00N 10900E	201 202	< 1	0.02		1060		1	3	45	6.10 0.15	< 10 < 10	< 10 < 10	117	< 10.	80	
00N 10950E	201 207	<1<	0.01	;	500 770	2	;	i	33	0.12	< 10	< 10	- 64	< 10	102	
00N 11000E 00N 11050E	201 202		0.02	ć	\$30	2	< ž	ĩ	34	0.13	< 10	< 10	66	< 10	218	
00# 11100E	201 202	< 1	0.03	5	000	4	7	i	60	0.10	e 10	< 10	64 59	< 10 < 10	110	
00N 11150E	201 202	< 1	0.03		380		2		41 38	0.11 0.14	< 10 < 10	< 10 < 10		< 10 < 10	178	
00N 11200E	201 202	!	0.01 0.01	- 1	1290 810	2	2	1	52	¢.15	< 10	< 10	76	< 10	131	
00N 11250E	201 202	- 1 - 1	0.01	,	460	i	2	i	55	0.13	< 10	< 10	- 11	< 10	243	
																•

CERTIFICATION: SOUNT & Chiler

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brookabank Ave., North Vancouver British Columbia, Canada V/J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Te: GEOTEG CONSULTANTA LTD.

Project : TAS Comments: ATTN:L.W.SALEKEN CC:GRANT CROOKER

Total Pages :6 Certificate Date: 16-SEP-96 Invoice No, :19631222 P.O. Number : Account :LOY

-

											CE	RTIF	CATE	OF /	ANAL	YSIS		A963	222		
SAMPLE		EP DE	ли ррб Рл+лл				Ba ppn	Be Brite	Bi ppm	Ca.	Cđ ppm	Co ppe	Cr ppu	Cu ppm	Pe N	Ga. ppu	Eg ppm	K N	La ppu	Ng N	Ma PP1
600N 11350E	201	202	< 5	د.0.3	1.67	< 1	90	< 0.5	1	0.66	0.5	,	,	15	1.90	< 10	<1	0.06	< 10	0.17	H
600H 11400E		202	< 5	0.2	3.00		100	0.5	< 1	0.31	< 0.5		14	102	2.64	< 10	< 1	0.07	< 10 < 10	0.38	719
600N 11450E		203	< 5	0.1	1.90		120	< 0.5		0.30	0.5 < 0.5	5		14	1.74	< 10 < 10		0.05	< 10	0.19	- 463
600N 11500E 600N 11550E		202	< 5		1.54 1.80		70 60	< 0.5 < 0.5	2	0.74	0.5	Ţ	13	50	2,52	< 10		0.08		0.39	159
600N 11600E	201	202	< 5	< 0.2	1.19	< 3	70	< 0.5	< 2	0.35	< 0.5	6	,	15	1.80	< 10	<1	0.05	< 10	0.23	515
600N 11650E		202	< 5	< 0.2	1.39	< 2	60	< 0.5	< 2	0.29	0.5	•		1	2.06	< 10	< 1	0.03	< 10 < 10	0.26 0.26	580
600N 11700E		303	< 5		1.42		110	< 0.5	< 1	0.34	0.5		10	19	1.98	< 10	<1 <1	0.04	< 10	0.16	700
600N 11750B 600N 118002		202	< 5 < 5	¢ 0.3	1,14	<pre>< 1 </pre>	90 60	< 0,5 < 0,5	< 1 1	0,27	< 0.5 < 0.5	ï	10	12	1.90	< 10	- 21	0.05	< 10	0.23	\$30
6409 11880F	201	10.7	< 5	< 0.2	1.97	2	60	< 0.5	2	0.35	< 0.5	7	11	22	2.76	< 10	< 1	0.05	< 10	0.36	290
600N 11850E 600N 11900E	201			0.2	2.72		60	0.5		0.16	< 0.5	i.	1		1.99	< 10	- či	0.03	< 10	0.14	905
600N 11950E	201			0.2	2.33	< 2	70	< 0.5	< 2	0.26	< 0.5	7	11	17	2.04	< 10	< 2	0.04	< 10	0.20	480
600N 12000E	201			0.2	1.00	2	\$0	< 0,5	< 2	0.20	< 0.5	5	•	11	1.11	< 10	< 1	0.03	< 10	0.1)	220
600N 12050B	201	202	< 5	0.2	1.72	< 2	60	< 0.5	3	0.31	< 0.5	5	•	13	1.14	< 10	< 1	0.03	< 10	0.15	290
400H 121008	201	303	< 5	0.2	1.73	< 1	60	< 0.5	3	0.44	< 0.5	4	10	29	2.27	< 10	<1	0.03	< 10	0.10	260
700N 09735E	301	202	< 5	0.2	1.44	< 1	50	< 0.5	1	0.34	< 0.5		10		1.97	< 10 Noted 1	< 1	0,03	< 10	0.13 NotRed 1	NotRed
700N 09750E	1 1	::. !		NotRed						O.41	NotRed P	INTREG R	iotseq N	lotRođ 173	iotRed : 2.50	< 10	юскса і < 1	10.04	10	d. 11	405
700N 09775± 700N 098252	201 201	202	< 5 < 5	0.4 < 0.2	2.60	< 1 6	80 60	¢.5	;	0.35	< 0.5		14	37	3.77	< 10	2 i	0.03	< 10	0.23	170
700N 09873E	201	202	< 1	0.4	2.79	< 2	100	< 0.5	1	0.49	< 0.5	,	15	59	2.84	< 10	< 1	0.04	< 10	0.41	100
700H 09935E		202		4 0.2	1 41		50	< 0.5	< 2	0.83	< 0.5	7	14	74	2.45	< 10	< 1	6.07	< 10	0.39	315
700N 099758		202	< 5	0.2	1.62	2	10	< 0.5	3		< 0.5	1	14	39	2.44	< 10	< 1	0.04	< 10	0.22	405
700N 10035E		202	< 5	0.2	1.97	< 2	60	< 0.5	< 2	0.16	< 0.5	2	20	21	2.11	< 10	< 1	0.04	< 10	0.16	420
700N 10075E	201	202	< 5	< 0.2	1.45	* 3	50	< 0.5	< 2	0.61	< 0.3	,	14	41	2.61	< 10	< 1		< 10		
700N 101252	201		< 5	< 0.2	1.97	(70	4 0.5	< 2	0.63	< 0.5		19	103	1.61	< 10	41	0.04	< 10 < 10	0.30	150
700N 10173E		202	< 5	< 0.2	2.30	< 1	90	< 0.5	< 2	0.52	< 0.5	.]	15	12	1.60 J.36	< 10 < 10	< 1 < 1	0.05	41	0.66	744
00N 103338		303	< 5	0.6	2.78	2	70 50	< 0.5	;	1.11	0.5	10	17	54	2.50	< 10		0.01	< 10	0.20	355
700N 10275E 700N 10325E	201 201	102	< 3 < 5	4 0.2	3.02	é	120	0.5	2	0.50	< 0.5	10	ii	91	2.94	< 10	<1	0.08	< 10	0.51	400
00N 10375E	201	202	< 5	0.2	2.74	18	120	0.5	4 2	0.49	0.5	13	10	162	3.34	* 10	< 1	0.10	< 10	0.32	735
DON 10425E	201	202	< 5	0.2	2.02	2	70	< 0.5	4	0.69	< 0.5		11	71	3.75	< 10	< 1	0.09	< 10	0.13	475
CON 10475E		202	< 5	0.2	3.83	< 3	100	0.5	2	0.91	0.5	11	13	118	3.71	< 10	1	0.19	< 10 < 10	0.66	760 370
OON 105258	201	202	< 5	0.2	0.96	< 2	100	< 0.5	< 2	0.38 0.31	< 0.5 < 0.5	5	10	26	1.03	< 10 < 10		0.07	< 10	0.31	710
DON 10625m				0.1	1.60	< 2	160	< 0.5	1	0.84	1.0	7		30	2.11	< 10	<1	0.13	< 10	0.36	1040
DON 10625E	201		< 5	< 0.1	2.17			< 0.5	1		< 6.5	i i	ni –	11	2.64	< 10	- i	0.07	< 10	0.27	123
CON 10735E		202		0.2	1.11			< 0.5	< 2		× 0.3	- i	1	ü	2.61	< 10	- 4 I	0.11	< 10	0.28	815
CON 10775m	201			0.2	1.14			< 0.5	< 2		< 0.5	7	•	27	3.00	< 10	< 1	0.07	< 10	0.17	1103
00W 10825m	201		6.5	0.6	2.10	í.	120	< 0.8	3	0.26	< 0.5	7	,	109	1.37	< 10	< 1	0.06	< 10	0.25	\$63

No. 1. Parka CERTIFICATION:

_

Chemex Labs Ltd. Analytical Chemisis ' Geochemist's ' Registered Assayers 212 Brooksbank Ave., North Vancouver Bridsh Columbia, Canada V73 2C1 PHONE: 604-984-0221 FAX: 804-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number: 5-9 Total Pages: -6 Certificate Date: 16-SEP-96 Invoice No. : 19631222 P.O. Number: Account: : LOY

ş

Project : TAS Comments: ATTN:L.W.SALEKEN CC:GRANT CROOKER

----- - -

1												OTIC	IC AT	E OF /		VEIS	A9631222
														017		1013	AJOUTILE
SAMPLE	PRE		Мо ррш			P PPm	₽b pp∎	Sb PS=	Sc ppm	Sr ppm	Tİ.	71 PDW	U PPR	V DDM	W ppm	2n ppm	
	· • • • •	-				1030	1	2		52	0.11	< 10	< 10		< 10	324	
9600N 11350E 9600N 11400E	201		< 1 < 1	0.02	13	1580	2	2	i	33	0.13	< 10	< 10	66	< 10	278	
600N 11450E	201	202	< 1	0.03	6	2060	÷	2	1	30	0.09	< 10	< 10	- 44	< 10	332 160	
9600N 11500E	201		4.1	0.03	5	1460 710	4	< 2	1	31 69	0.10	< 10 < 10	< 10 < 10	53	< 10 < 10	264	
600N 11550E	201	* **	< 1	0.01	,	/10		<u> </u>									
9600N 11600E	201		< 1	0.01	3	950	•	< 2	2	34	0.09	< 10	< 10	61 61	< 10 < 10	196 330	
9600N 11650E		202	< 1	0.01	5	1750		2	2	24 32	0.09	< 10 < 10	< 10 < 10	56	< 10	378	
9600N 11700E 9600N 11750E	201	102		0.02	ś	1500	- 1	2	ī	26	0.08	¥ 10	< 10	53	< 10	184	
9600N 11800E	201		- 21	0.01	7	840	i i	2	ĩ	24	9.11	< 10	< 10	54	< 10	164	
	201	202	• 1	0.01		1140		2	2	32	0.11	< 10	< 10	66	< 10	122	
9600N 11900g	201		ìi	0.02	5	1970		< 2	1	15	0.11	< 10	< 10	48	< 10	106	
9600N 11950E	201		< 1	0.01	7	2160	4	2	3	25	0.10	< 10	< 10 < 10	60 41	< 10	82 76	
9600M 12000E 9600N 12050E	201		< 1 < 1	0.02		1840		2	1	19	0.10	< 10 < 10	< 10	54	< 10	70	
BOOM INOSOE	101		• •														
500N 12100E	201		< 1	0.01	5	1230		2	1	37	0.11	< 10 < 10	< 10 < 10	71 59	< 10 < 10	56	
700H 09725E	201	207	< 1	0.02	Nothed	1130 Notled R		fotRed N					NotRed		NotRed		
700N 09775g	201		< 1	0.03	11	550	11	6	-	- 49	0.12	< 10	< 10	60	< 10	194	
700N 09835E	201 2	102	1	0.02	8	950	6	4	,	38	0.12	< 10	< 10	93	< 10	44	
700N 09875E	201 2	0.1	< 1	0.01	,	990	14	2	i	59	0.14	< 10	< 10	19	< 10	91	
700N 09925E	201 2		- i	0.01	- i	1070	1	2	5	82	0.11	< 10	< 10	91	< 10	\$2	
700N 09975E	201 2		۲ ،	0.02	7	1240		2	3	56	0.11	< 10	< 10	11	< 10 < 10	4	
700N 10025E	301 3		< 1	0.03	11	1450	1	2	2	35 56	0.10	< 10 < 10	< 10 < 10	60 93	2 10	ä	
700N 10075g	201 2	02	< 1	0.01		1110	•										
700N 10125E	201 2		1	0.01		900	•	2	1	60	0.13	< 10	< 10	93 76	< 10 < 10	33 52	
700N 10175E	201 2		1	0.02		1400		2		48	0.17 0.11	< 10 < 10	< 10 < 10		< 10	124	
700N 10223E	201 2		< 1	0.01	11	1090		1	;	64	0.09	< 10	< 10		~ i0	62	
700N 10375E	201 2			0.01	- 11	1530	i	5	i	51	0.14	< 10	< 10	73	< 10	224	
700N 10375E	201 2		< 1	0.02	12	990				56	0.13	< 10	< 10	17	< 10	768	
700W 10425E	201 2		< 1	0.01	10	340	•	- 1	- i	66	0.14	< 10	< 10	- 16	< 10	160	
700N 10475m	201 2	02	< 1	0.01	,	470	4	2	£	36	0.19	< 10	< 10	114	< 10	120	
700H 10525E	201 2		< 1	0.03	<u>+</u>	1340	2	2	1	15 28	0.09	< 10 < 10	< 10 < 10	50 70	< 10 < 10	124	
700N 10575E	201 2	07	1	0.01	•	290	2	2		40	3.10	. 19					
700N 10625E	201 2		1	0.01		170	6	2	3	75	0.09	< 10	< 10	55	< 10	122	
700N 10675E	201 2		1	0.02	11	1000	2	2	2	41 30	0.10	< 10 < 10	< 10 < 10	74	< 10 < 10	140	
700H 10725E	201 2		< 1	0.01	2	990 970	4	2	3	35	0.08	< 10	< 10	56	< 10	76	
700N 10775E 700N 10825E	201 2		< i	0.01	- i	1320	:	2		27	0.10	< 10	< 10	ä	< 10	110	
																	-
· · · · · · · · · · · · · · · · · · ·															EDTIFU		Start Prickle

Chemex Labs Ltd. Analylical Chemidals ' Nerd Steed Assayin 212 Brooksbank Ave., North Vencouver Brilish Columbia, Canada V7J 201 PHONE: 604-984-0221 FAX: 604-984-0218

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

10: GEOTEL CONSULTAINS CID.

Project: TAS Commente: ATTN:L.W.SALEKEN CC:GRANT CROOKER

			inone.							Com	nents	NE UTAL	T.MALEP		v.unnin						
											CE	RTIF	CATE	OF /	NAL'	YSIS		A9631	222		
SAMPLE	PRE		λυ ppd 7λ+λλ	λg ppm	A1 %	مر ppa	84 pps	Be ppn	B1 ppm	Ca k	Cđ ppm	Co PPIL	Cr pp=	Ca pps	14 3	Ga ppa	Eg ppm	<u>т</u> %	La ppu	Hg N	Nin; ppm
9700N 108752 9700N 109252 9700N 109252 9700N 109752 9700N 110252 9700N 110752	201 201 201 201 201	202 207 207	45 45 45 45 45	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.62 1.76 1.45 2.26 1.76	< 1 < 2 3 3 4 3	120 80 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 7 7 4 1 7 7 7	0.19 0.35 0.25 0.59 0.28	< 0.5 0.5 < 0.5 < 0.5 < 0.5	5 6 6	14	23 36 29 460 55	1.77 2.24 1.82 2.81 2.04	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.05 0.06 0.05 0.08 0.08	< 10 < 10 < 10 < 10 < 10	0,15 0.39 0.20 0.48 0.23	410 795 515 365 390
9700N 11125E 9700N 11175E 9700N 11225E 9700N 11225E 9700N 11235E 9700N 11335E	201 201 201 201 201	202 202 202	< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	0.4 < 0.2 0.6 0.2 0.2	1.84 1.44 2.19 1.48 1.95	< 1 < 1 < 1 < 1 < 1 < 1	100 60 80	< 0.5 < 0.5 0.5 < 0.5 < 0.5	1 1 1 1 1 1 1		< 0.5 0.5 0.5 < 0.5 < 0.3	5 5 7 9	10 9 11	104 31 127 40 55	2.04 1.89 2.38 3.03 2.12	< 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	0.05 0.01 0.07 0.05 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.21 0.17 0.43 0.39 0.34	190 799 740 730 490
9700N 11375E 9700N 11425E 9700N 11425E 9700N 11475E 9700N 11525E 9700N 11575E	201 201 201 201 201 201	102 102 102		< 0.3 0.2 0.2 < 0.3 < 0.2	2.43 2.12 2.07 1.87 3.71	< 2 < 3 < 2 < 3 < 2 < 2	70	< 0.5 < 0.5 < 0.5 < 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		< 0.5 < 0.5 < 0.5 0.5 0.5	7 7 10 12	17 11 11 15 19	71 44 33 79 150	2.82 2.30 2.31 3.26 4.23	< 10 < 10 < 10 < 10 < 10 10	<pre>< 2 < 1 < 1 < 1 < 1 < 1 < 1</pre>	D.07 0.07 0.06 0.09 0.13	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	D.39 0.34 0.29 0.55 0.74	585 306 630 883 660
9700N 11625E 9700N 11675E 9700N 11675E 9700N 11735E 9700N 11735E 9700N 11835E	201 2 201 2 201 2 201 2 201 2	202 202 202	< 5 < 5	0.3 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.85 1.61 1.56 1.90 2.28	<pre></pre>	80 110 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 2 2 4 2	0.35 0.45 0.53	< 0.5 < 0.5 0.5 < 0.5 < 0.5	9 7 7 10 8	13 10 11 14 13	42 15 16 37 11	2.76 1.17 1.23 2.63 1.79	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 </pre>	0.07 0.06 0.07 0.05 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.43 0.24 0.24 0.37 0.29	760 700 1565 535 515
9700N 11875E 9700N 13935E 9700N 11975E 9700N 12035E 9700N 12075E	201 2 201 2 201 2 201 2 201 2	102 102 102	< 5 < 5 < 5 < 5 < 5 < 5	0.2 < 0.2 0.4 0.2 0.2	2.20 3.92 1.94 2.06 1.83		80 50 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 1 2 2 < 7	0.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 6 5 4	13 12 11 10 #	26 17 22 19 14	2.35 2.19 2.26 2.05 1.91	< 10 < 10 < 10 < 10 < 10 < 10	<pre> < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0,04 0,03 0,03 0,03 0,03	< 10 < 10 < 10 < 10 < 10 < 10	0.24 0.20 0.22 0.21 0.14	870 785 200 165 100
																					-

Hart Paraller CERTIFICATION:_

.

-

Chemex Labs Ltd.

.

To: GEOTEC CONSULTANTS LTD.

.....

Page Number : 6-6 Total Pages : 6 Certificate Date: 18-SEP-96 Invoice No. : 19631222 P.O. Number : Account : LOY

Analytical Chemists " Beochemists " Begistered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0216

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9 Project : TAS Commenta: ATTN:L.W.SALEKEN CC:GRANT CROOKER

										CE	RTIF		OF A	NAL	SIS	A9631222
SAMPLE	PRE	Мо Ррв	Na 1	Ní pp=	ppm	Pb pp=	Sb ppa	Sc ppm	8r ppm	†1 3	72 pp=	n Dù	7 pp u	N ppa	Za PPN	
700N 10875E	201	1	0.03	7	1620	4	3	1	19	0.08	< 10	< 10	46	< 10	185	
700N 10925E	201	< 1	0.03	;	890 580	1	3	2	34	0.11 0.10	< 10 < 10	< 10 < 10	61 53	< 10 < 10	110	
700N 10975% 700N 11025%	201		0.01	- í	500	;	- 1	ż	51	0.16	< 10	< 10	95	< 10	18	
700N 11075E	201	< 1	0.03	;	1100	ż	2	1	26	0.12	< 10	< 10	54	< 10	102	
00N 11125E	201	< 1	0.03	6	860	2	2	3	29	0.11	< 10	< 10 < 10	64 54	< 10 < 10	70	
7008 11175E	201	< 1	0.03	-	1280 940	-	< 2 < 2	1	39	0.10	< 10	< 10	53	< 10	176	
700N 11335E 700N 11375E	201	1	0.02	,	1380		12	;	34	0.08	< 10	< 10	54	< 10	182	
00N 11335E	201	< i	0.01	÷	1430	i	2	ē	34	0.09	< 30	< 10	59	< 10	134	
00N 113758	201 2	< 1	¢.02	11	1150	1	1	;	46	0.14	< 10	< 10 < 10	86 73	< 10 < 10	198	
100N 11425E	301 2	* 1	0.03	2	580 2550	, i	- 4 1	;	47	0.15 0.10	< 10 < 10	< 10	- 4	< 10	222	
TOON 114758	201 2		0.03	11	850		1	5	ŝ	0.19	< 10	< 10	108	< 10	264	
00N 11575E	201	ì	0.01	,	690	12	· ī	ĩ	86	0.20	< 10	< 10	144	< 10	206	
00N 116258	201 2	< 1	0.01		1560	í.	3	1	43	0.13	< 10	< 10 < 10	89	< 10 < 10	278	
00N 11675E	201 2	1	0.01 0.01	7	1400	-	1	2	30 42	0.09	< 10	< 10		< 10	111	
11735E 100N 11775E	201	< 1 < 1	0.01	÷	1110		5	î	- 17	0.12	< 10	< 10	17	< 10	226	
CON 118255	201 2	< 1	0.02	ŧ.	1500		4	3	38	0.13	< 10	< 10	16	< 10	104	
OON 11875E	201 2	< 1	0.02		1560		2	?	27	0.11	< 10 < 10	< 10 < 10	70 61	< 10 < 10	120	_
CON 119252	201 2	< 1	0.01	75	1430		< 2 2	1 2	24	0.11	< 10	4 10	69	< 10	- 63	
CON 11975E	201 2	< 1 < 1	0.02	5	670	- 2	;	i	17	0.11	< 10	4 10	\$2	< 10	84	
00N 12075E	201 2	< i	0.03	í	940	é	i	i	16	0.11	< 10	< 10	\$3	< 10	40	
																·
	L_!	 												EATIFIC		Hantitsichler

Total Pages :6 Cartificate Date: 16-SEP-96 Invoice No. : 19631222 P.O. Number : Account : LOY

Chemex Labs Ltd. Analylical Chemiels * Geochemiels * Registered Assayin 212 Brooksberk Ave., Worth Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LID.

6976 LABURNUM ST. VANCOUVER, BC V8P 5M9

Project : TAS Comments: ATTN:L.W.SALEKEN CC:GRANT CROOKER

Total Pages :7 Cartificate Date: 16-SEP-98 Invoice No. : 19631223 P.O. Number : Account : LOY

		PHONE:	004-304-						•••••	nenna										~~~~
للمستقر فكالمسادر										CE	RTIFI	CATE	OF A	NAL	/SIS	1	49631	223		
SAMPLE	PREP	ли ррб Рд+дд	λg pps	A1 X	As ppa	Ba ppa	Be ppm	B1 ppn	Ci t	cd ppm	Co ppn	Cr ppm	Ca ppm	7. \	Ga. ppm	Eg ppn	R X	La ppm	Ng X	Kn ppm
	201 202		0.2	1.42	• 2	40	< 0.5	< 2	0.37	< 0.5	•	11	103	3.19	< 10 < 10		0.04	< 10 < 10	0.30 0.13	175
9100N 09700E 9100N 09750E	201 202		0.2	0.95	< 2	40	< 0.5	< 2	0.23	< 0.3		12	61 36	2.59	< 10	- i	0.05	< 10	0.20	190
3100H 09800E	201 202		< 0.2	1.47	4 2	€0	< 0.5	< 2	0.50	< 0.5 < 0.5	;	12	ö	1.51	< 10	< 1	0.04	< 10	0.25	285
9100M 09150E	201 202		< 0.2	2.51	< 2	90 110	< 0.5		0.35	4 0.5	Ì	12	111	3.47	< 10	< 1	0.06	< 10	0.23	605
9100N 09900E	201 202	< 5	< 0.3	3.10	• •	110										1	0.04	< 10	0.11	190
9800N 09950E	201 202		< 0.2	2.02	< 2	60	< 0.5	€ 2	0.21	< 0.5			106	1.91	< 10 < 10	< 1	0.05	10	0.35	405
NACON 10000E	201 202		< 0.2	1.19	< 2	40	< 0.5	< 2	5.93	< 0.5	11	19	111	1.37	10		0.23	< 10	0.86	430
9100N 10050E	201 202	< 5	< 0.2	1.91	< 2	60	< 0.5	< 2	0.10	< 0.5	17	12	35	2.11	< 10	< 1	6.05	< 10	0.20	260
9800N 10100E	201 202		< 0.2	1.59	< 2	60	< 0.5 0.3		1.40	< 0.5	. j	11	223	2.47	< 10	< 1	0.07	10	0.51	960
9800N 10150E	301 202		0.6	2.28	< 2	100	0.9		1.40									10	0.24	630
			< 0.2	1.71	< 2	50	< 0.5	e 2	0.55	< 0.5	7	10	73	2.01	4 10		0.07 0.05	< 10	0.11	105
9400N 10200E 9400N 10250E	201 202		< 0.2	1.61	4.2	10	< 0.5	< 2	0.21	< 0.5	•	1	29	1.69	< 10 < 10	- 21	0.14	× 10	0.21	460
9100W 10300X	201 202		< 0.2	1.73	< 2	90	< 0.5	4.2	0.41	< 0.5		10	111	1.15	10	1	0.13	< 10	0.55	1325
10350E	201 202	< 5	< 0.2	2.63	< 2	140	0.5	< 2	0.47	< 0.5	14	17	194	3.72	10	- + ī	0.24	< 10	4,93	625
9100N 10400E	201 202		< 0.2	2.35	< 2	110	0.5	< 3	0.61	< U.3	13									
					< 2	10	4 0.5	< 2	0.33	< 0.5	5	•	45	1.94	< 10	< 1	0.11	< 10	0.16	330
980CN 10450K	201 202	< 5	< 0.2	1.74		90	< 0.5		0.11	< 0.5	÷ .		48	2.31	< 10	< <u>1</u>	0.11	< 10 < 10	0.15	1100
9800W 10500E	201 202		< 0.2 0.2	2.05	4 2	120	4 0.5	< 2	0.31	< 0.5	7	1	40	2.14	< 10 < 10	< 1	0.00	< 10	0.15	690
9100M 10550E 9100M 10600E	201 202 202		< 0.2	1.93	÷ 2	100	< 0.5	< 2	0.40	< 0.5			23	1.30	< 10		0.00	< 10	0.15	1255
9100N 10650E	201 202	< 5	< 0.1	1.55	< 2	130	< 0.5	< 2	0.45	< 0.5	5	'	1.	1.00						
								12	0.25	< 0.5			11	1.79	< 10	< 1	0.07	< 10	0.15	950
9100N 10700E	201 202	< 5	0.3	1.64	1	120	< 0.5	. 2	0.50	< 0.5	10	10	190	3.93	< 10	<1	0.16	< 10	0.41	735
9100W 10750E	201 203	< 5	0.3	1.67	< 2	50	1.0	12	1.08	< 0.5	18	- 4	105	\$.63	< 10	< 1	0.52	< 10 < 10	1.03	1010
9100N 10500E	201 202		< 0.2 0.2	2.40	< 2	120	< 0.5	< 2	0.36	< 0.5	10	7	135	1.11	< 10	< 1 < 1	0.11 0.01	< 10	0.27	520
9400H 10850E	301 203	1 23	< 0.2	1.51	2.2		< 0.5	< 2	0.34	< 0.5	7	•	\$0	1.93	< 10	٠1	¥.01		••••	
9800N 10900E	101 101												38	1.16	< 10	< 1	0.07	< 10	0.39	700
9100N 10950E	201 202	< 5	< 0.2	1.44	< 2	120	< 0.5	2	0.35	0.5		11	117	2.13	< 10	< 1	0.05	< 10	0.41	380
9400W 11000E	201 202	< 5	< 0.2	2.19	< 2		< 0.5	< 2	0.24	2 0.5		10	100	2.11	< 10	< 1	0.04	< 10	0-18	260
9100W 11050E	201 202	< 5	< 0.2	2.10	1	70 60	< 0.5		0.17	< 0.5	i i	- <u> </u>	53	1.96	< 10	< 1	0.03	< 10	0.18	285
9800N 11100E	201 202		< 0.6	2.00	< 2	60	< 0.5	. 2	0.18	< 0.5	5	•	24	1.92	< 10	∢ 1	0.04	< 10	0.14	472
9800N 11130E	201 203	< 3	< 0.3	4.14											< 10	< 1	0.07	< 10	0.15	345
100H 11200K	201 202	< 5	0.3	1.78	< 1	60	< 0.5	- 2	0.16	< 0.5	1	7	15 157	1.90	< 10		0.04	< 10	0.39	560
100M 11250E	201 202		0.4	1.70	< 2	50	0.5	< 2	0.10	0.5	ŝ		20	1.61	à 10	41	0.02	< 10	0.11	610
11300m	201 202	< 5	0.1	1.90	< 2	50	< 0.1	< 2 < 2	0.11	< 0.5	;		59	1.11	< 10	- < İ	0.05	< 10	0.30	533
400H 11350E	201 202	< 5	< 0.1	2.01	1	70	< 0.5	- 2	0.40	< 0.5	÷	11	54	2.36	< 10	4 1	0.06	< 10	0.33	715
9600N 11400E	201 202	30	0.2	2.34	< 3	30	- 0.3	•••										. 10	0.28	1313
			< 0.2	2.10	< 2	70	< 0.5	42	0.11	< 0.5	7	13	23	2.41	< 10	1	0.05	< 10 < 10	0.27	505
9100N 11450E	201 202		< 0.2	1.99	2.2	70	< 0.5	< 2	0.41	< 0.5	2		42	3.10	< 10 < 10	< 1 < 1	0.05	< 10	0.11	1500
9100N 11500E 9100N 11550E	201 202	1	< 0.2	1.92	4 2	160	< Q.	< 2	0.37	< 0.5	?	10		2.23	4 10	< 1	0.05	< 10	0.17	\$40
9100x 11600x	201 202	र्द	< 0.2	1.69	< 1	70	< 0.5	< 2	0.32	< 0.5	5	;	30	2.14	< 10	- i	0.04	€ 10	0.22	625
				1.68	< 1	50	< 0.5													

CERTIFICATION:

.

.....

HantBuchler

Chemex Labs Ltd. Anaylcal Chemists ' Geocherrets' Registered Assay#3 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHCNE: 604-964-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

.....

Page Number :1-8 Total Pages :7 Cerblicate Date: 16:SEP-96 Involce No. :19631223 P.O. Number : Account :LOY

ł

Project: TAS Commente: ATTN:L.W.SALEKEN CC:GRANT CROOKER OF DISIGATE OF ANALYSIS Г

		FROM	1C. U.	24-304-0						0.000							
											CE	RTIF	CATE	OF A	NALY	/SIS	A9631223
SAMPLE	PREP		Mo	Na X	Ni ppm	P pp=	Pb pp=	sb pp	8c ppm	Sr ppa	Tİ X	T1 978	U PP m	¥ ppm	N Bûdd	In pps	
	+	·						2	3	31	0.09	< 10	< 10	63	< 10	66	
SOON 09700E	201 202		1	0.01		380	2	< 2	;	20	0.05	10	< 10	54	< 19	52	
100N 09750E	201 202		1	0.01		1260	10	2.2	ī	54	0.09	< 10	< 10		< 10	56	
DON 09800E	201 202 203		i	0.01	10	820		< 2	1	42	0.13	< 10	< 10 < 10	79 72	< 10 < 10	41	
100N 09900E	201 203		î	0.02	- ÷	1650		2	4	36	0.13	< 10	< 10				
	-		1	0.03	7	2570	10	< 2	1	20	0.09	< 10	< 10	\$1	< 10	54	
CON 09950E	201 202		i.	0.01	. j	1290	12	< 2	5	70	0.09	< 10	< 10	140	< 10 < 10	10	
100N 10000E 100N 10050E	201 202		-i -		15	1240	•	< 2	5	72	0.13	< 10 < 10	< 10 < 19	72	< 10	ŝi	
100N 10100E	201 202		1	0.01		1330		4 2	3	48	0.10	< 10	< 10	73	< 10	102	
DON 10150E	201 207		1	0.01	12	20	10	< 2	,	34	0.10						
		I		0.01		420	1	< 1	3	43	0.10	< 10	< 10	\$7	< 10	42	
00N 10200E	201 202		1	0.01	· .	1340	10	- ÷ 1	1	20	0.08	< 10	< 10	39	< 10	112	
DON 102508	201 202		î	0.01	i	200		< 2	1	()	0.00	< 10	< 10	51 83	< 10 < 10	200	
100N 10350E	201 202			0.01	13	830	10	< 1		32	0.12	< 10 < 10	< 10 < 10	119	< 10	111	
DON 104002	201 202		1 <	0.01		849	38	3	5	71	0.17						
	201 202	<u> </u>	1	0.01		370		< 1	i	34	0.09	< 10	< 10	48	< 10 < 10	142	
00N 106501	201 202		i	0.01	i	320		- * ž	3	39	0.08	< 10 < 10	< 10 < 10	ŝĭ	< 10	110	
DON 10550E	201 202		5	0.01	10	1480		< 1	2	31 43	0.09	< 10	2 10	ö	< 10	119	
00N 10600E	201 202		1	0.01		420			1		0.09	< 10	< 10	46	< 10	314	
00N 10650E	201 202]	4	0.01	,	810		< 4	1								· · · · · ·
	201 202	ł	3	0.01		1660	6	< 2	1	28	0.08	< 10	< 10	41	< 10 < 10	110	
00N 10700E 100N 10750E	201 202	1	í	0.01	i i	910	6	< 3	\$	47	0.09	< 10	< 10 < 10	- 133	< 10	310	
DON 10500E	201 202		3 <	0.01		1320	10		11	97 37	0.04	< 10	× 10	70	₹ 10	310	
00N 10850E	201 202	<	1	0.01	10	580	•	. 1	1	29	0.10	< 10	< 10	34	< 10	154	
00N 10900E	201 202	4	1	0.01	7	720			•								
	201 202	<u> </u>	1	0.01	7	1060	6	1	1	10	0.09	< 10	< 10	\$1	< 10 < 10	110	
00N 10950E	201 202		î	0.02	10	\$20	É.	2	1	28	0.17	< 10	< 10	90 65	< 10	60	
OON 11050E	201 202		ī	0.03	7		6	1	3	21	0.11	< 10	< 10	54	< 10	110	
DON 111008	201 202	• •	1	0.02		890		1	1	15	0.10	< 10	< 10	si	< 10	14	
OON 11150E	201 202		1	0.02	6	1240	•	< 1	•								· · · · · · · · · · · · · · · ·
	201 202	I	1	0.02	5	960	1	< 1	1	15	0.10	< 10	< 10	51	< 10	114 114	
DON 11200E	201 202		1	0.02	÷	400	ż	- < ž -	2	25	0.08	< 10	< 10	47	< 10. < 10	326	
DON 112502	201 202		î.	0.03	4	1080	- i	< 2	1	10	0.09	< 10	< 10 < 10	4	< 10	134	
CON 11350#	201 202		ī	0.01	7	1310	4	< 1		35	0.10	< 10 < 10	< 10	74	4 10	226	
CON 11400E	201 202	<	1	0.02	,	1590	4	3	3		4.13						
	1 201 203	- :	1	0.01	3	1160		< 2	1	25	0.13	< 10	< 10	74	< 10	310	
CON 11450E	201 202		i	0.01	÷	1610	4	2	2	41	0.11	< 10	< 10	66	< 10 < 10	412	
11500K	201 202		i	0.01	÷ 1	1460		< 2		- 24	0.11	< 10	< 10 < 10	71 62	< 10	180	
DON 115002	201 202		î	0.03	6	1350	4	< 2	1	26 21	0.11 0.11	< 10 < 10	< 10		₹ 10	174	
DON 116508	201 202		1	0.01	6	900	4	< 2	1	#1	0.11	- 10			/		
																. <u> </u>	
	. 	<u> </u>							_		_						11 311 50

CERTIFICATION: Standise la

212 Brocksbank Ave., North Vancouver Britsh Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0216

10: BEUTED CONSULTATIO ----

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Comments: ATTN:L.W.SALEKEN CC:GRANT CROOKER

Total Pages 17 Cartificate Date: 18-SEP-96 Invoice No. : 19631223 P.O. Number : Account : LOY

		PHUNE: T	004-904-	V221 1 F	V. 004-8				COUR	11 0 1163. /										
المرجوعة المراجع والمراجع										CE	RTIFI	CATE	OF A	NAL	YSIS		49631	223		
SAMPLE	PREP	Au ppb FA+AA	Ag spa	A1	λ. ppm	Ba ppm	Be ppn	Bi ppm	Ca N	Cđ ppm	Со	Cr ppu	Ca pps	70 X	Ga. ppu	Rg ppm	R N	La pp=	Mg X	Ma pp a
SARIF LIS										< 0.5	•	25	66	3.95	< 10	< 1	0.07	< 10	0.17	760
9800N 11700E	201 202	< 5	< 0.2	2.17	10	100	< 0.5 < 0.5	< 1	0.33	0.5		ii	19	2.23	< 10	< 1	0.06	< 10	0.22	790
9800N 11750E	201 207	< 5	4 0.2	1.94	< 1		< 0.5		0.11	< 0.5	5		14	1.95	< 10	< 1	0.03	< 10 < 10	0.15	415
5800N 11800E	201 202	< 5	< 0.2	2.13 1.89		70	. 0.8		0.19	< 0.5	1	11	10	3.30	< 10 < 10	< 1 < 1	0.04 0.04	< 10	0.23	143
9800N 11850E 9800N 11900E	201 202	< 5	4 0.2	1.85	< 2	\$0	< 0.5	< 1	0.29	< 0.5	5	10	24	3.03	• 10	••	•••••			
111000								• 1	1.66	< 0.5	1	1	19	0.16	< 10	< 1	0.06	< 10	0.17	75
9800N 11950E	201 202	< 5	0.4	0.45	< 2	30 40	< 0.5 < 0.5		0.59	< 0.5	ī	i i	18	1.01	< 10	< 1	0.03	< 10	0.23	150
9800N 12000E	201 202	< 5	0.2	1.27	< 2	140	1.0	23	1.30	0.5	12	15	63	3.26	10	< 1	0.07 D.07	20 < 10	0.51 0.23	640
9800N 12050E	201 202	< 5	1.2	0.42		70	< 0.5	< 2	4.92	1.0	< 1	2	65	0.24	< 10 < 10	< 1	0.00	< 10	0.30	705
9800N 13100E 9900N 09735E	201 202	25	0.2	1.78	2	70	< 0.5	< 2	0,72	< 0.5	13	11	75	3.93	4 14	••				
3300W 031335												1	54	1.94	< 10	< 1	0.03	< 10	0.14	103
9900N 09775E	201 202	< 5	0.2	1.54	2		4 0 5		0.30	< 0.5		i	14	1.73	< 10	1	0.05	< 10	0.09	310
9900N 09825E	201 202	< 5	0.2	1.90	< 2		< 0.5 < 0.5		0.54	4 D.B	÷	21	51	1.96	< 10	< 1	0.06	< 10	0.36	185
9900N 09875E	201 202	< 5 < 5	< 0.2	1.31		40	4 0.5	< 1	0.89	< 0.5	11	15	109	3.29	< 10		0.00	< 10	0.34	300
9900N 09925E	201 202		0.4	2.60	< 2	80	0.5	< 3	0.81	< 0.5	,	15	313	3.90	4 10	•••	4.07			
9900N 09975E	1.00											1	27	1.50	< 10	< 1	0.03	< 10	0.15	225
900N 10025E	201 202	< 5	< 0.3	1.22	< 3		< 0.5	1	0.37	< 0.5	11	- 11	70	3.31	< 10	1	0.16	< 10	0.61	1070
900N 10075E	201 202		< 0.2	1.14	< 1		< 0.1	< 1 < 1	1.43	₹ 0.5	i,	•	21	1.44	< 10	1	0.04	< 10	0.16	195
900N 10125E	201 202	< 5	< 0.2	1.04		50 50	< 0.5		0.44	< 0.5	i	10	60	3.44	< 10	1	0.05	< 10 < 10	0.30	225
900N 10175E	201 202	4 5	< 0.2	1.40	< 1		< 0.5		0.40	< 0.5		11	19	2.12	< 10	< 1	0.06	< 10	0.10	•
9900N 10225E	201 202		C 0.4										28	1.16	< 10	< 1	0.00	< 10	0.16	810
9900N 10375E	201 202	< 5	< 0.2	1.64	< 1		< 0.5	< 1	0.38	< 0.5	1	7		2.10	- 10	- 21	0.06	< 10	0.34	435
9900N 10335E	201 202	< 5	< 0.2	2.06	< 3		< 0.5	< 2	0.30 0.37	< 0.5		÷	15	1.78	< 10	< 1	0.05	< 10	0.13	443
9900N 10375E	201 202	< 5	< 0.2	1.79	< 1		< 0.1 < 0.5	1	0.52	< 0.5	. i	11	95	2.65	< 10	1	0.13	< 10	0.35	463
9900N 10435E	201 202	< 5	< 0.3	2.56	< 1 < 1	100	< 0.5		0.25	< 0.5			23	2,05	< 10	< 1	0.05	< 10	0.17	
9900N 10475E	201 202	< 5	< 0.3	4.44	•							<u> </u>	16	1.11	< 10	<1	0.03	< 10	0.09	\$25
9900N 10525E	203 202	< 5	< 0.2	1.17	< 3	50	< 0.5	< 1	0.15	< 0.5	;		10	1.15	< 10	- 21	0.05	< 10	0.11	1290
900N 10575Z	201 202	< 1	< 0.2	1.26	3	70	< 0.5	1	0.29	< 0.5 0.5	2	i	23	1.69	< 10	< 1	0.06	< 10	0.16	1295
900N 10635E	201 202	< 5	< 0.3	1.66	< 1		< 0.5		0.37	< 0.5			10	1.78	< 10	< 1	0.05	< 10	0.16	410
900N 10675E	201 202	< 5	< 0.2	1.76		70	< 0.5		0.28	< 0.5	- i	i	40	1.63	< 10	< 1	0.04	< 10	0.19	150
900N 10725E	201 202	< 5	0.2	1.06	< 1	30	• • • • •							_			0.07	< 10	0.28	205
	201 202	< 5	0.6	2.24	< 1	40	0.5	< 3	0.39	< 0.5		11	233	2.16	< 10 < 10	1	0.04	< 10	0.10	480
900N 10775E 1900N 10835E	201 202	25	< 0.3	1.6	< 2	60	< 0.5	- A B	0.14	< 0.5		7	27	1.92	< 10	< î	0.05	< 10	0.13	715
900N 10873E	201 202	< 5	< 0.1	1.93	1		< 0.1	< 1	0.31 0.33	< 0.5			10	2.15	< 10	< 1	0.06	< 10	0.40	310
90DN 109258	201 202	< 5	< 0.2	2.05	< 1	50	< 0.5		0.29	< 0.3	;	10	64	1.97	< 10	1	0.05	< 10	0.22	205
900N 10975E	201 202	< 5	0.2	1.91	3	70											0.06	< 10	6.26	365
	201 202	< 5	< 0.2	1.69	< 1	60	< 0.5	< 1	0.31	< 0.5	!	13	167	2.09	< 10 < 10	< 1	0.04	< 10	0.15	105
900N 11035E 900N 11075E	201 202		0.2	1.91	4	70	< 0.5	< 1	0.19	0.3		11	85 235	2.68	< 10	- 1	0.07	< 10	0.53	410
900N 11125E	201 202	< 5	0.2	2.75	< 2	60	0.5	< 1	0.45	0.1 < 0.5	11		115	1.87	< 10	< 1	0.03	< 10	0.17	170
900N 11175E	201 202	e \$	0.2	1.17	< 1		< 0.5		0.22	< 0.5	÷.	10	167	2.33	< 10	< 1	0.01	4 10	0.23	\$39
9900N 11225E	201 202	< 5	< 9.2	3.00	< 2	60	- 4.3	• •	*		•									
														<u> </u>						
	A second second					_														1

CERTIFICATION:

. <u>P.</u>.

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbark Ave. British Columbie, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number : 2-B Total Pages : 7 Certificate Date: 16-SEP-96 Invoice No. : 19631223 P.O. Number : Account : LOY

Project : TAS Comments: ATTN:L.W.SALEKEN CC:GRANT CROOKER

SAMPLE CODE P 9800H 11700E 201 202 9800H 11700E 201 202 9800H 11800E 201 203 4 9800H 11850E 201 203 4 9800H 11850E 201 203 4 9800H 1203 201 203 4 9800H 12030E 201 203 4 9800H 12030E 201 203 4 9800H 12032E 201 202 4 9800H 1203E 201 202 4 9800H 0913E 201 202 4 9900H 1035E 201 202 4 9900H 1035E 201 202 4 9900H 1035E 201 202 4 9900H 1035E 201 202 4 9900H 1035E 201 202					CERTIFICATE OF ANALYSIS	A9631223
50000 137502 201 202 202 50000 118502 201 202 4 50000 118502 201 202 4 50000 118502 201 202 4 50000 118502 201 202 4 50000 120002 201 202 4 50000 12002 201 202 4 50000 12002 201 202 4 50000 92752 201 202 4 50000 92752 201 202 4 50000 92752 201 202 4 50000 92752 201 202 4 50000 92752 201 202 4 50000 100752 201 202 4 50000 101752 201 202 4 50000 10252 201 202 4 <	No Na pp n %				Sr Ti Ti U V W Zn ppm % ppm ppm ppm ppm ppm	
BIOOR 110 50E 201 202 203 <	1 0.01		101 202 1 0.01 1 1520	12 4 2 1	19 0.16 < 10 < 10 136 < 10 346 11 0.10 < 10 < 10 75 < 10 196	
BOON 11850E 201 202 <	1 0.01		201 202 1 0.01 6 140		18 0.10 < 10 < 10 S9 < 10 114	
8000 11900E 201 202 9000 11950E 201 202 9000 1205E 201 202 9000 09735E 201 202 9000 09735E 201 202 9000 09735E 201 202 9000 09735E 201 202 9000 09735E 201 202 9000 09735E 201 202 9000 0973E 201 202 9000 0975E 201 202 9000 10235E 201 202 9000 10235E 201 202 9000 10235E 201 202 9000 10235E 201 202 9000 10235E 201 202 9000 10235E 201 202 9000 10235E 201 202 9000 10235E 201 202 9000 10235E 201 202 9000 10235E 201 202 9000 10235E 201 202 99000 10235E	<1 0.03 <1 0.02	.			27 0.10 < 10 < 10 71 < 10 193	
0000 11300 100 0000 11300 101 100 0000 12000 101 100 0000 12000 101 100 0000 10732 101 100 0000 097352 101 100 0000 097352 101 100 0000 098358 101 100 0000 098358 101 100 9000 098358 101 100 90000 098358 101 100 90000 10358 101 100 90000 10358 101 100 90000 10358 101 100 90000 10358 101 100 00 90000 10358 101 100 00 90000 103578 101 100 00 90000 105758 101 100 00 90000 106758	<1 0.03				27 0.12 < 10 < 10 47 < 10 40	
10 mt 12000 mt 201 102 10 mt 1200 mt 201 102 10 mt 120 mt 201 102 10 mt 120 mt 201 102 10 mt 120 mt 201 102 10 mt 121 02 4 10 mt 121 02 4 10 mt 121 02 4 10 mt 121 02 4 10 mt 121 102 4 10 mt 121 102 4 10 mt 121 102 4 10 mt 121 102 4 10 mt 121 102 4 10 mt 121 102 4 10 mt 121 102 4 10 mt 121 102 4 10 mt 121 102 4 10 mt 121 102 4 10 mt 121 102 4 10 mt 121 102 4 10 mt 121 102 4 10 mt 121 102 4 10 mt 121 102				• • 7 • 1	\$6 0.01 < 10 < 10 10 < 10 85	
000 100502 201 201 000 100502 201 202 900 097255 201 202 4 900 097255 201 202 4 900 097255 201 202 4 900 092725 201 202 4 900 092725 201 202 4 900 092755 201 202 4 900 992755 201 202 4 900 99755 201 202 4 900 99755 201 202 4 900 99755 201 202 4 900 101255 201 202 4 900 101255 201 202 4 900 101755 201 202 4 900 104755 201 202 4 900 104755 201 <t< td=""><td>2 0.01 1 0.03</td><td></td><td>1 202 202 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td></td><td>37 0.11 < 10 < 10 30 < 10 52</td><td></td></t<>	2 0.01 1 0.03		1 202 202 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		37 0.11 < 10 < 10 30 < 10 52	
0:00:10:10:00:10:00 20:10:00 20:10:00 20:10:00 0:00:00:00:00:00 20:10:00 4 40:00 40:00 0:00:00:00:00:00 20:10:00 4 40:00 40:00 40:00 0:00:00:00:00:00 20:10:00 40:00 40:00 40:00 40:00 40:00 0:00:00:00:00:00 20:10:00 40:00	6 0.02			14 2 3	71 0.09 4 10 4 10 10 10 10 10	
0000 007235 201 202 0000 007735 201 202 0000 007735 201 202 0000 008735 201 202 0000 008735 201 202 0000 008735 201 202 0000 007355 201 202 0000 007375 201 202 0000 10735 201 202 0000 10735 201 202 0000 10735 201 202 0000 10735 201 202 0000 10735 201 202 0000 106355 201 202 0000 106355 201 202 0000 106355 201 202 0000 106355	7 0.01		201 202 7 0.01 3 1240		190 < 0.01 < 10 < 10 20 < 10 74 76 0.12 < 10 < 10 101 < 10 104	
900m 097755 201 102 <	< 1 0.01			j 10 ∢2 4		
0000 058255 1001 1002 0000 058255 101 100 0000 059755 101 1007 0000 059755 101 1007 0000 059755 101 1007 0000 100755 101 1007 0000 100755 101 100 0000 100755 101 100 0000 100755 101 100 0000 100755 101 100 0000 100755 101 100 0000 100755 101 100 00000 100755 101 100 00000 100755 101 100 00000 100755 101 100 00000 100755 101 100 00000 100755 101 100 00000 100755 101 100 00000 100755 101 100 <td>< 1 0.02</td> <td></td> <td>201 202 (1 0.02 4 330</td> <td>1 1 1</td> <td>37 0.10 < 10 < 10 65 < 10 50</td> <td></td>	< 1 0.02		201 202 (1 0.02 4 330	1 1 1	37 0.10 < 10 < 10 65 < 10 50	
0000 090758 201 202 0000 090758 201 202 0000 090758 201 202 0000 090758 201 202 0000 090758 201 202 0000 100758 201 202 0000 101258 201 202 0000 101258 201 202 0000 101258 201 202 0000 101258 201 202 0000 101258 201 202 0000 101258 201 202 0000 104758 201 202 00000 104758 201 202 00000 104758 201 202 00000 104758 201 202 00000 104758 201 202 00000 104758 201 202 00000 104758 201 202 <	< 1 0.03) (<)	10 0.00 10 10 10 10	
900m 09975% 201 202 900M 99975% 201 202 900M 9975% 201 202 900M 10075% 201 202 900M 10075% 201 202 900M 10175% 201 202 900M 10175% 201 202 900M 10175% 201 202 900M 10175% 201 202 900M 10175% 201 203 900M 10175% 201 202 900M 10075% 201 202 900M 10075% 201 202 900M 10075% 201 202 900M 10075% 201 202 900M 10075% 201 202 900M 10075% 201 202 900M 10075% 201 202 900M 10075% 201 202	1 0.01		201 202 1 0.01 7 540		53 0.11 c 10 c 10 123 c 10 60	
000% 100258 201 202 000% 100758	< 1 0.01		201 202 < 1 0.01 6 140		57 0.09 < 10 < 10 69 < 10 64	
000 10075E 1001 1002 000 10075E 1001 1002 000 10175E 1001 1002 000 10175E 1001 1002 000 10175E 1001 1002 000 10175E 1001 1001 000 10175E 1001 1002 0000 10075E 1001 1002 0000 10075E 1001 1002 0000 10075E 1001 1002 0000 10075E 1001 1002 0000 10075E 1001 1002 0000 10075E 1001 1002 0000 10075E 1001 1002 0000 10075E 1001 1002 0000 10075E 1001 1002 0000 10075E 1001 1002 0000 10075E 1001 1002 00000 10075E 1001 <td< td=""><td>1 0.01</td><td>. </td><td>201 202 1 0.01 11 60</td><td></td><td>77 0 08 < 10 < 10 51 < 10 44</td><td></td></td<>	1 0.01	.	201 202 1 0.01 11 60		77 0 08 < 10 < 10 51 < 10 44	
900x 10075x 201 202 900x 10135x 201 302 900x 10135x 201 302 900x 10135x 201 302 900x 10335x 201 202 900x 10335x 201 203 900x 10335x 201 203 900x 10335x 201 203 900x 1035x 201 203 900x 1035x 201 203 900x 10425x 201 203 900x 10425x 201 203 900x 10425x 201 203 900x 10425x 201 203 900x 10425x 201 203 900x 10725x 201 203 900x 10725x 201 202 4 900x 10725x 201 202 4 900x 10725x 201	< 1 0.02				23 0.08 < 10 < 10 51 < 10 44 77 0.07 < 10 < 10 59 < 10 168	
900% 10375 201 302 900% 10325 101 202 900% 10325 201 202 900% 10325 201 203 900% 10325 201 203 900% 10325 201 203 900% 10325 201 203 900% 10325 201 203 900% 10325 201 203 900% 10325 201 203 900% 10325 201 203 900% 10325 201 203 900% 10425 201 203 900% 10425 201 203 900% 10425 201 202 900% 10725 201 202 900% 10725 201 202 900% 1075 201 202 900% 1075 201 202 900%	1 < 0.01		201 202 1 < 0.01 7 155		28 0.06 < 10 < 10 54 < 10 28	
0000 10225# 201 202 0000 10225# 201 202 0000 10275# 201 202 0000 10275# 201 202 0000 10275# 201 202 0000 10575# 201 202 0000 10575# 201 202 0000 10575# 201 203 0000 10575# 201 202 0000 10575# 201 202 0000 10575# 201 202 0000 10575# 201 202 0000 10575# 201 202 0000 10575# 201 202 00000 1057# 201 202 00000 1057# 201 202 00000 1057# 201 202 000000 1057# 201 202 000000000000000000000000000000000000	< 1 0.01 1 < 0.01				42 0.09 < 10 < 10 13 < 10 54	
0000 10075£ 201 203 <	1 0.01				37 0.10 < 10 < 10 64 < 10 52	
900# 10325 201 102 900# 10325 201 102 900# 10425 201 102 900# 10425 201 102 900# 10425 201 102 900# 10425 201 102 900# 10425 201 102 900# 10425 201 102 900# 10425 201 102 900# 10425 201 102 900# 10425 201 102 900# 10425 201 102 900# 10425 201 102 900# 10425 201 102 900# 10425 201 102 900# 10425 201 102 900# 10475 201 102 900# 10475 201 202 900# 10475 201 202		•		6 6 2 1	35 0.10 < 10 < 10 49 < 10 132	
000 00375 201 1027 000 10375 201 1027 000 10475 201 202 000 10475 201 203 000 10525 201 203 000 10525 201 203 000 10525 201 203 000 10525 201 203 000 10525 201 202 000 10755 201 202 000 10755 201 202 000 10755 201 202 000 10755 201 202 000 10755 201 202 0000 10755 201 202 0000 10755 201 202 0000 10275 201 202 0000 100755 201 202 0000 10075 201 202	< 1 0.02				10 0.11 < 10 < 10 59 < 10 132	
00000 1004258 201 202 90000 1004258 201 202 90000 1005358 201 202 90000 105358 201 203 90000 106358 201 203 90000 106358 201 203 90000 106758 201 202 90000 106758 201 202 90000 106758 201 202 90000 106758 201 202 90000 106758 201 202 90000 106758 201 202 90000 106758 201 202 90000 106758 201 202 90000 106758 201 202 90000 107578 201 202	<1 0.04 <1 0.03		1401 401			
0000 10.0758 201 202 0000 10.0758 201 203 0000 10.0758 201 203 0000 10.0758 201 203 0000 10.0758 201 202 0000 10.0758 201 202 0000 10.0758 201 202 0000 10.0758 201 202 00000 10.0758 201 202 00000 10.0758 201 202 000000 10.0758 201 202 000000 10.0758 201 202 000000 10.0758 201 202 000000 10.0758 201 202 000000 10.0758 201 202 000000 10.0758 201 202	< 1 0.01		201 202	0 10 < 2 ³	31 0.14 310	
900W 10575# 201 202 900W 10575# 201 203 900W 10575# 201 203 900W 10675# 201 203 900W 10675# 201 203 900W 10725# 201 202 900W 10725# 201 202 900W 10725# 201 202 900W 10725# 201 202 900W 1075# 201 202 900W 1075# 201 202 900W 1075# 201 202 900W 1075# 201 202 900W 1075# 201 202 900W 1075# 201 202 900W 1075# 201 202 900W 1075# 201 202	3 0.02			0 6 < 2 1	26 0.10 < 10 < 10	
sobe 10575E 201 102 sobe 10575E 201 102 sobe 10575E 201 102 sobe 10725E 201 102 sobe 10725E 201 102 sobe 10725E 201 202 sobe 101 202 4 sobe 1025E 201 102 sobe 1075E 201 202 sobe 1075E 201 202 sobe 1075E 201 202 sobe 1075E 201 202 sobe 1075E 201 202 sobe 1075E 201 202 sobe 1025E 201 202 sobe 102E 201 202			201 202 1 0.02 4 32		15 0.06 < 10 < 10 33 < 10	
SOUR 10625E 201 202 SOUR 10725E 201 202 SOUR 10725E 201 202 SOUR 10725E 201 202 SOUR 10725E 201 202 SOUR 10725E 201 202 SOUR 10275E 201 202 SOUR 10275E 201 202 SOUR 10275E 201 202 SOUR 10275E 201 202 SOUR 10275E 201 202 SOUR 10275E 201 202 SOUR 10275E 201 202	1 0.02					
9008 1067358 201 202 900N 107358 201 202 900N 107358 201 202 900N 107358 201 202 900N 107358 201 202 900N 108758 201 202 900N 108758 201 202 900N 108758 201 202 900N 108758 201 202 900N 108758 201 202 900N 108758 201 202 900N 108758 201 202	1 0.01		1 404 404		40 0.V/ 10 10 10 10 10 10	
900k 107258 201 202 <	1 0.01		201 202 1 0.01 7 163		19 0.08 < 10 < 10 46 < 10 132 36 0.09 < 18 < 10 53 < 10 46	
900H 10825E 201 202 <	< 1 0.01		201 202 < 1 0.01 4 27	1		
900N 10825E 201 202 <	e 1 0.02	_	101 202 4 1 0.02 10 51		27 0.08 < 10 < 10 47 < 10 144	
900N 10875E 201 202 900N 10925E 201 201 900N 10975E 201 202 900N 11025E 201 202 900N 11025E 201 202 900N 11025E 201 202	< 1 0.01		201 202 < 1 0.01 8 137		14 0.10 < 10 < 10 54 < 10 120 19 0.11 < 10 < 10 48 < 10 136	
900N 10975E 201 202 900N 11025E 201 202 900N 11075E 201 202	1 0.02		201 202 1 0.02 6 98		28 8.11 < 10 < 10 SE < 10 96	
900N 11025E 201 702 900N 11075E 201 202	1 0.03				28 0.10 < 10 < 10 62 < 10 FB	
900N 11075E 201 202		r I	201 202 2 0.00 2 121		20 0 12 4 10 4 10 60 4 10 110	
900N 11075E 201 202	1 0.01	-			16 0.09 < 10 < 10 49 < 10 134	
	2 0.02		201 202 2 0.02 6 134		46 0.16 < 10 < 10 02 < 10 330	
	< 1 0.01 1 0.03				20 0.11 < 10 < 10 50 < 10 76	
900N 11175E 201 202 900N 11225E 201 202	1 0.03				23 6.11 < 10 < 10 70 < 10 100	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•				
						1

Chemex Labs Ltd. Analytical Chemists ' Registered Asseyers

212 Brooksbank Ave., North Vancouver British Columbia, Ceneda V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

10: GEOREG CONSULTANTA CID.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project TAS Comments: ATTN:L.W.SALEKEN CC:GRANT CROOKER

Total Pages :7 Certificate Date:16-SEP-96 Invoice No. :19631223 P.O. Number : Account :LOY

		PHONE, C	JU4-304 1																	
and the second s										CE	RTIFI	CATE	OF /	NAL	YSIS		A9631	223		
SAMPLE	PREP	λu ppb F1+λλ	Ag ppil	۸۱ ۲	ks pps	3a ppm	8e ppm	Bi ppm	Ca %	Cđ ppn	Co ppm	Cr ppm	Ca P p m	7a X	On ppm	Bg ppa	K N	La ppu	Hg X	Kn ppa
									0.66	0.5	7	11	426	2.35	e 10	< 1	0.09	10	0.17	680
9900N 11275E	201 202	< 5	0.6	3.71	< 2	50 60	0.5 < 0.5		0.20	0.5		ij	71	1.72	e 10	2	0.04	< 10	0.18	435 525
9900N 11325X	203 202	< 3	< 0.2 < 0.2	3.23	1		< 0.5		0.31	< 0.5		11	- 99	2.36	< 10	< 1	0.05	< 10 < 10	0.30	350
9900N 11375E	201 202 201 202	< 5	0.2	1.90	22		< 0.8	< 1	0.32	4 0.5	5	,	34	1.87	< 10 < 10	<1	0.06	< 10	0.39	390
9900N 11435E 9900N 11475E	201 202		0.6	2.16	< 2	70	< 0.5	< 3	0.33	0.5	6	12	- 48	2.30	. 10	• •				
	I /							< 1	0.31	< 0.5	1	11	35	2.12	< 10	< 1	0.04	< 10	0.17	495
9900W 11525E	201 202	< 5	< 0.2	2.14	< 2		< 0.5 < 0.5		0.31	4 0.5	÷.	- ī,	21	2.02	< 10	< 1	0.04	< 10	0.10	530 715
9900N \$1575E	201 202	< 5	< 0.2	1.81	1		< 0.5	- 21	0.25	1.0	ŝ	12	22	2.03	< 10	< 1	0.04	< 10 < 10	0.14	760
9900N 11625#	201 202 201 202		< 0.2	1.62	< 2		¢ 0.5	< 3	0.37	< 0.5	•	10	19	1.17	4 10	< 1 1	0.04	< 10	0.24	265
9900N 11675E 9900N 11725E	201 202		< 0.3	1.59	< 2		e 0.5	< 2	0.40	< 0.5	•	11	32	2.27	< 10	•	0.03			
5,000 II.									0.27	. 0.5	5	10	16	2.04	e 10	< 1	0.03	< 10	0.18	405
9900N 11775E	201 202	< 5	< 0.2	1.85	< 2		< 0.5 < 0.5		0.30	< 0.5	1	ij	10	1.39	< 10	< 1	0.03	< 10	0.19	135
8900N 11825E	201 202	< 5	< 0.1	0.99			< 0.5		0.25	4 0.5	5	i.	30	1.61	< 10	< 1	0.04	< 10	0.30	140
9900N 11875E	201 202	< 5	0.3	1.11	- 25		< 0.5	÷ 2	0.44	< D.3	3	,	39	1.22	< 10		0.03	< 10 < 10	0.14	70
9900N 11975E 9900N 11975E	201 202	< 5	0.1	0.92	< 1	30	< 0.5	< 2	0.30	< 0.5	1	4	33	0.72	< 10	< 1	¥. 04			
SADON IIS.OF										< 0.5			38	1.84	e 10	1	0.05	< 10	0.37	195
9900N 12025E	201 202	< 5	0.2	1.73	< 1		< 0.3	< 2	0.36	< 0.5	- i	-	14	1.02	e 10	- e İ.	0.03	< 10	0.18	105
9900N 12075E	201 207	< 5	< 0.2	1.24	< 2		< 0.5 < 0.5		0.22	< 0.5	- i	- i	15	1.55	< 10	< 1	0.07	< 10	0.17	£05 440
10500N 10025B	201 202	< 5	< 0.2	1.29	÷2	130	0.5		0.16	< 0.5	ŝ	1	15	1.18	< 10	1	0.03	< 10 < 10	0.15	450
10500N 10075E 10500N 10125E	201 202 201 202	< 5	0.2	0.97	€ 2	50	< 0.5	< 2	0.21	0.5	3	*	11	1.16	< 10	3	0.05	• ••		
LOJOON LOIADE											6	10	17	2.10	(10	< 1	0.03	10	0.16	520
10500N 10175E	201 202	< 5	< 0.2	2.85	< 2	120	0.5 < 0.5	< 1	0.15	< 0.5 0.5	7	-ï,	20	1.11	c 10	< 1	0.05	< 10	0.16	1660
10500N 10225x	201 202	< 5	< 0.1	1.47	< 2		< 0.5		0.40	0.5	. j	j	- 14	2.15	e 10	< 1	0.06	< 10	0.16	755
10300N 10375E	201 202	< 5	< 0.3	1.73	1		4 0.5		0.14	0.5	6	,	17	1.96	< 10	< 1	0.04	< 10 < 10	0.13	145
10500N 10325E 10500N 10375E	201 202		< 0.1	1.91	< 2		e 0.5	< 1	0.37	< 0.5	7	•	12	1.91	e 10	< 1	0,05	4 10		
LOSODA LOSTSE							- : -			< 9.5	7		6	2.18	e 10	< 1	0.03	< 10	0.19	865
10500N 10435E	301 302	< 5	< 0.2	1.77	1		< 0.5	< 1	0.27	< 0.5	- i	;	· · ·	1.62	< 30	< 1	0.03	< 10	0.13	485
10500N 10475E	301 202	< 5	< 0.1	1.43	< 1	90	0.5		0.93	< 0.5	Ť	- 11	36	3.08	< 10	< 1	0.05	10	0.34	1278
10500N 10525K	201 202 203	< 5	0.4 < 0.3	1.12			< 0.5	< 1	0.78	< 0.5		11	19	3.06	< 10	< 1 < 1	0.05	< 10 < 10	0.10	690
10500N 10575E 10500N 10425E	201 202	2 5	9.2	1.78	< 1	110	< 0.5	< 1	0.32	< 0.5	•	1	14	2.02	₹ 10	• •	0.05			
10300N 100155								< 1	0.33	< 0.5	1	1	14	2.09	< 10	< 1	0.03	< 10	0.30	185
10500N 106758	201 202	< 5	< 0.2	1.00	< 1		< 0.5 < 0.5	< 2	0.21	4 0.5	1	i		1.60.	e 10	< 1	0.03	< 10	0.12	250
10500N 107256	201 202	< 5	< 0.2 < 0.2	3.05			< 0.5	- 2 2	0.19	4 0.5	ŝ	10	11	2.09	< 10	< 1	0.04	< 10 < 10	0.20 0.27	790 290
10500N 10775E 10500N 10825E	201 202		< 0.2	2.10	1		< 0.5	< 2	0.34	< 0.5	1	- 13	22	2.36	< 10 < 10		0.05	< 10 < 10	0.13	780
10500N 108758	201 202	- 5	< 0.2	1.17	- ÷ i		< 0.5	< 2	0.14	< 0.5	5	1	•	1.75	4 10	• •	0.00			
								< 2	0.27	< 0.5	6	11	18	3.96	7 10	< 1	0.04	< 10	0.20	210
10500N 109258	201 202		< 0.2	1.63	< 2		< 0.5	~ ~ 2	0.14	< 0.5	i	· 7	3	3.01	< 10	< 1	0.03	< 10	0.10	345
10500N 10975E	201 202 202		< 0.3	1.56			< 0.5	- 22	0.17	< 0.5	5	1	10	1.77	< 10	< 1	0.03	< 10 < 10	0,13	530
10500N 11025E 10500N 11075E	201 202		< 0.2	1.62	12	90	< 0.5	< 2	0.36	< 0.5	5	10	13	1.83	< 10 < 10	- i -	0.65	e 10	0.19	545
10500N 11125E	201 201	< 5	< 0.2	2.06	< 2	80	< 8.5	< 2	0.37	< 0.5	•	10	17	4.11		••				
				_																

CERTIFICATION:___

.

Chemex Labs Ltd. Anstylical Chemisis "Geochemisis" Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V73 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD. 8978 LABURNUM ŠŤ. VANCOUVER, BC V6P 5M9

Page Number : 3-B Total Pages :7 Centificate Date: 16-SEP-96 Invoice No. : 19631223 P.O. Number : Account : LOY

į

Project : TAS Comments: ATTN:L.W.SALEKEN CC:GRANT CROOKER Г CERTIFICATE OF ANALYSIS

											CE	RTIF	CATE	OF A	NAL	/SIS	A9631223
Sample	PREP		Mo P n	Na.	Ni ppa	P ppm	Pb pp≡	Sb ppm	Sc ppm	8r ppm	71 %	T1 ppm	D D	¥ PDM	H ppm	2n pp n	
8900N 11275E 8900N 11325E 8900N 11325E 9900N 11375E 9900N 11475E 9900N 11475E	201 20 201 20 201 20 201 20 201 20 201 20	2 × 2 ×	1 1	0.03 0.03 0.01 0.02 0.02	1 5 5 6	630 900 750 930 1050	6 8 6 1 1	2 4 2 4 2 4 2 4 2	3 1 2 1 1	44 17 30 20 31	0.00 0.09 0.13 0.13 0.13	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	61 46 78 54 72	< 10 < 10 < 10 < 10 < 10 < 10	286 650 208 692 534	
9900N 11535E 9900N 11575E 9900N 11625E 9900N 11675E 9900N 11675E	201 20 201 20 201 20 201 20 201 20 201 20	2 4 2 4 2 4	1 1	0.01 0.01 0.02 0.01 0.01	6 4 7 5 5	1250 1020 1210 1270 870	4 10 6 4 2	<pre> < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2</pre>	1 1 1 1 2	29 28 22 21 35	0.13 0.10 0.11 0.09 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	72 64 59 66 87	< 10 < 10 < 10 < 10 < 10 < 10	202 133 414 76 63	
9900N 11775E 9900N 11875E 9900N 11875E 9900N 11875E 9900N 11975E	201 20 201 20 201 20 201 20 201 20 201 20	2 c 2 c 2 c	1 1	0.02 0.02 0.03 0.01 0.01	5 3 1 1	1200 260 770 240 190	(6 6 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 1 2	27 25 24 39 23	0.10 0.11 0.11 0.13 0.09	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	68 52 50 51 25	< 10 < 10 < 10 < 10 < 10 < 10	270 08 172 41 31	
9900N 13035E 9900N 13035E 10500N 10035E 10500N 10035E 10500N 10125E	201 20 201 20 201 20 201 20 201 20 201 20	2 e 2	1 1	0.01 0.03 0.02 0.03 0.03	4] 9 L0 3	510 150 700 1560 250	5 8 10	< 1 < 1 < 2 < 2 < 2	2 1 1 4 1	29 21 21 16 14	0.13 0.09 0.07 0.09 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	89 31 47 44 33	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	54 36 194 266 98	
10500N 101758 10500N 102358 10500N 102758 10500N 10258 10500N 10258	201 20 201 20 201 20 201 20 201 20 201 20	2 4	1 0	0.03 0.01 0.01 0.03	8 7 7 6 3	1470 830 850 410 219	4 6 6 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 1 2 1 3	14 25 43 23 32	0.12 0.10 0.10 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	\$2 \$6 \$6 \$4 \$1	< 10 < 10 < 10 < 10 < 10	162 132 114 150 70	
10500N 10425B 10500N 10475E 10500N 10525E 10500N 10575E 10500N 10675E	201 20 201 20 201 20 201 20 201 20 201 20	2 2 2	1 0	0.01 0.02 0.03 0.02	3 6 7 4 4	450 510 330 970 690	6 6 1 1	< 1 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 6 5 2	19 10 72 68 34	0.05 0.05 0.05 0.05 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	47 45 43 64 44	< 10 < 10 < 10 < 10 < 10 < 10	106 82 58 56 98	
0500N 10675E 0500N 10725E 0500N 10775E 0500N 10825E 0500N 10825E 0500N 10875E	201 20 201 20 201 20 201 20 201 20		j (1 (1 ().03).03).03).02).01	4 6 7 5	170 1670 1290 840 1230	< 2 7 10	< 7 < 7 < 7 < 7 < 7	1 1 1 7	32 24 18 30 15	0.12 0.09 0.11 0.12 0.00	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	50 40 55 78 61	< 10 < 10 < 10 < 10 < 10 < 10	43 54 86 90 82	
10500N 10925E 10500N 10975E 10500N 11025E 10500N 11025E 10500N 11025E	201 20 201 20 201 20 201 20 201 20 201 20			.01 .03 .03 .01	7 3 5 6	620 990 1440 900	4 4 1 10	< 1 < 1 < 1 < 1 < 1	1 < 1 1 1 1	24 11 17 32 25	0.10 0.10 0.10 0.09 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	61 57 49 50 64	< 10 < 10 < 10 < 10 < 10 < 10	40 62 73 71 12	
			-								_						

CERTIFICATION:____ Hout Buchlen

10. GC0120 CONSTENSIO 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Total Peges :/ Certificate Date: 18-SEP-96 Invoice No. : (19631223 P.O. Number ; Account : LOY

Ì	
	R J

valytical Chemists ' Geochemists ' Registered Assayers 212 Grocksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-964-0221 FAX: 604-964-0218

Project : TAS Commonits: ATTN:L.W.SALEKEN CC:GRANT CROOKER

have not and the second										CE	RTIFI	CATE	OF A	NAL	YSIS		49631	223		
SAMPLE	PREP	λu ppb PA+AA	Ag ppm	41 N	¢۶ مور	Ba ppa	Be ppn	Bİ PPM	Ca %	Cđ pp∎	Со ррт	Cr ppm	Ca ppm	7# 2	Qa. ppm	Eg ppm	R N	La ppn	Mg X	Mn ppm
10500N 11225E	301 302	< 5 < 5	< 0.2 < 0.2	1.73	< 2 < 2	60 10	< 0.5	< 1 < 1	0,33	< 0.\$ < 0.5	4 5	;	11 11	1.96	< 10 < 10		0.04 0.03 0.05	< 10 < 10 < 10	0.14 0.13 0.28	225 380 110
10500N 11275E 10500N 11325E 10500N 11375E	201 202 201 202 201 202	< 5 < 5 < 5 < 5	< 0.2 0.1 < 0.1	1,10	< 2 < 2 < 2	50 40 60	< 0.5 < 0.5 < 0.5		0,33 0,30 0,11	< 0.5 < 0.5 < 0.5	4	15 11 9	17 21 14	2.33 1.63 1.78	< 10 < 10 < 10	< 1 < 1 < 1	0.03	< 10 10	0.21 0.11	135 115
10500N 11475E	201 202	< 5	< 0.1	0.71		30	< 0.5 0.5	< 1	0.13	< 0.5	i	5 13	7	0.84	< 10 < 10	< 1 1	0.01	< 10 < 10	0.01	50 430 290
10500N 115258 10500N 115752 10500N 116252 10500N 116252	201 202 201 202 201 202 201 202 201 203	< \$ < \$ < \$ < \$	< 0.1 < 0.1 < 0.2 < 0.3	2.47 1.46 1.40 1.62		60 60 60	< 0.5 < 0.5 < 0.5		0.57 0.65 0.47	< 0.5 < 0.5 < 0.5	0 7 7	15 17 12	33 39 34	2.54 2.70 2.11	< 10 < 10 < 10	< 1 < 1 < 1	0.06 0.06 0.05	< 10 < 10 < 10	0.37 0.35 0.39	200
10500N 117258	201 202 201 202			1.11	< 1 < 1	70	< 0.5 0.5	< i 1	8.35	< 0.5 < 0.5	:	10 10	16 17	3.62	< 10 < 10		0.04	< 10 < 10 < 10	0.14 0.11 0.11	340 259 475
10500N 11775E 10500N 11825E 10500N 11875E	201 202 203 201 202 201 202	- 5	< 0.1 < 0.1 < 0.1	1.73 2.14 2.15		80 60 60	< 0.5 < 0.5 < 0.5		0.31 0.36 0.15	< 0.5 < 0.3 < 0.5	3 6 5	9 11 10	11 22 21	1.99 3.16 1.07	< 10 < 10 < 10	< 1 < 1 1	0.04 0.03	< 10 < 10	0.14 0.14	405 145
10500N 11925E 10500N 11975E	201 202		< 0.3	1,18	< 1	60 60	< 0.5	< 1 < 1	0.13	< 0.5 < 0.5	2	;	1)	1.73	< 10 < 10	e 1	0.03	< 10 < 10 < 10	0.11 0.08 0.10	\$70 375 155
10500N 12025E 10500N 12075E 10700N 10025E 10700N 10075E	201 202 201 202 201 202 201 202	- 5	< 0.3 < 0.3 < 0.2	2,04		60 100 90	< 0.5 < 0.5 < 0.3	< 2 < 2 < 2	0.13 0.37 0.39	< 0.5 < 0.5 < 0.5	11	12 16	11 20 51	1.74 2.17 3.22	< 10 < 10 < 10	< 1 < 1 < 1	0.03 0.06 0.08	< 10 < 10	0.17 0.37	320 500
10700N 10175E	201 202	4 5	< 0.2	1.17	1 1	50 110	0.5	< 1	0.74	< 0.5 < 0.5	11	21	140	3.94 1.57 2.25	< 10 < 10 < 10	<1	0.06	20 < 10 < 10	0.61 0.09 0.19	355 605 725
10700N 10225E 10700N 10275E 10700N 10325E	201 202 201 202 201 202	- 5	0.1 0.1	2.63 1.16 1.49	< 2 2 4 2	120 00 130	< 0.5 < 0.5 < 0.5		0.24 0.20 0.25	0.5 4.5 1.3	7 7 7	9 9 12	21 27 13	1.72	< 10 < 10		0.04	< 10 < 10	0.11 0.11	1343 1085
10700N 10375E	201 202	< 5	< 0.3 < 0.3	1.95	< 2 < 2	90 180	< 0.5 < 0.5	< 1	0.20	0.5	10	10 12 10	20 36 25	1.13 1.72 1.15	< 10 < 10 < 10	<1 <1	0.03 0.09 0.05	< 10 < 10 < 10	0.17 0.33 0.16	810 950 160
10700N 10475E 10700N 10525E 10700N 10575E	201 202 201 202 201 202	< 5 < 5 < 5	< 0.1 < 0.1 < 0.2	1.60 2.28 1.64	< 2 < 2 < 2	60 90 80	< 0.5 0.5 < 0.5	< 1 < 1 < 1	0.37 0.77 0.32	< 0.5 0.5 < 0.5	7	15	44 15	3.40 1.98	< 10 10	4 I 4 I	0.06	10 • 10	0.11	1095
10700N 10625B	201 202 201 202	< 5 < 5	< 0.2 < 0.2	2.22 1.10	< 3 < 3		< 0.5 < 0.5	< 1 < 1	0.37	0.5	7	11 7 15	31 14 45	2.11 1.20, 2.69	< 10 < 10 < 10	<1 <1 1	0.04 0.03 0.06	< 10 < 10 < 10	0.20 0.12 0.30	120 175 210
10700N 10725E 10700N 10775E 10700N 10825E	201 202 201 203 201 203 201 202	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2	1,90 3,10 1,54	< 2 < 1 < 2	80	< 0.5 < 0.5 < 0.5		0.52 0.45 0.30	< 0.5 < 0.5 < 0.3	i	ij	30	1.18 1.70	< 10 < 10	< 1 < 1	0.05	< 10 < 10	0.19	375
10700N 10875E	201 202 201 202	< 5 < 5	< 0.1 < 0.1	1.17	1		< 0.5 < 0.5 < 0.5	< 1 < 1 < 2	0.72 0.38 0.43	< 0.5 < 0.5 < 0.5	6 1 10	15 13 18	39 25 40	2.17 2.21 2.93	< 10 < 19 < 10		0.07 0.95 0.99	< 10 < 10 < 10	0.34 0.32 0.41	243 263 1080
10700N 109758 10700N 110258 10700N 110758	201 202 201 202 201 202		< 0.3 < 0.3 < 0.3	2.71 2.32 1.44	< 2 < 2 < 2	70	< 0.5 < 0.5 < 0.5		0.60	< 0.3 < 0.3	2	13 12	43 33	2.01	< 10 < 10	< 1 < 1	0.05	< 10 < 10	0.31 0.21	130 195
								··						~			•	10	2.0	i

the AP - 220 CERTIFICATION:....

.....

. .

Chemex Labs Ltd.

• • • •

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number : 4-8 Total Pages :7 Certificate Date: 18-SEP-96 Involce No. : [9531223 P.O. Number : Account : LOY

halylical Chemists " Geochemists " Begislered Assayers 212 Brooksbank Ave., North Vancouver Brilish Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : TAS Commenta: ATTN:L.W.SALEKEN CC:GRANT CROOKER

-																
										CE	RTIFI	CATE	OF /	NAL	ISIS	A9631223
SAMPLE	PREP	No pp=	Na	Ni 97=	ppm P	Pb pp=	<i>в</i> ъ ррж	Bc ppm	9r pp n	Tİ ¥	Tl pp#	U ppm	V ppm	W ppm	Za ppm	
500N 11225E	201 202	< 1	0.03	6	1000		< 1	1	21	0.10	< 10	< 10	€0	< 10	4	
500N 11275E	201 202		0.03	Ē	1310	Ē.	< 1	1	17	0.10	< 10	< 10	56 70	< 10 < 10	52 66	
500N 11325E	201 302	< 1	0.01	,	1750	!	< 3		29	0.08	< 10 < 10	< 10 < 10	51	2 10	52	
500N 11375E 500N 11425E	201 202	< 1 < 1	0.02	-	270 1910		< 2 < 2	1	12	0.07	< 10	< 10	47	< 10	68	
500N 114256	101	· · ·									< 10	< 10	21	< 10	21	
500N 11475E	201 202	< 1	0.02	1	130	1	< 2 < 2	< 1	11 32	0.07	< 10	< 10	ä	2 10	ii ii	
500N 11525E	201 202	1	0.02 0.01	1	370		2	;	40	0.11	< 10	< 10	100	< 10		
500N 11575X 500N 11625E	201 202	1	0.01	6	990	i	< 1	3	46	0.10	< 10	< 10	109	< 10	38 50	
500N 11675E	201 202	ī	0.01	Ē.	720	1	< 2	3	42	0.10	< 10	< 10	75	< 10	50	
500N 11725E	201 202	1	0.03	6	1110	4	< 2	1	21	0.10	< 10	< 10	59	< 10	61	
500N 117758	201 202	ī	0.03	i i	1740		< 2	1	16	0.11	< 10	< 10 < 10	54 60	< 10 < 10	84 51	
500N 11825E	201 202	< 1	0.02	5	1190		< 1	1	19	0.10	< 10 < 10	4 10	66	< 10	51	
500N 11875E 500N 11925E	201 202 202	, 1 , 1	0.03	2	1200			i	ii	0.09	< 10	< 10	50	< 10	54	
SUON 119396	1									0.09	< 10	< 10	46	< 10	12	
500N 11975E	201 202	< 1	0.01		1210			< 1	11	0.07	< 10	< 10		< 10	92	
500N 13035K 500N 13075K	201 202	1	0.01		1050		< 1	1	12	0.01	< 10	< 10	68	< 10		
700N 10025E	201 202	i	0.01	i	360	â		1	22	0.09	< 10	< 10 < 10	68 115	< 10 < 10	70 50	
700N 10075E	201 202	1	0.01	,	490	• •	6	3	37	0.09	< 10	4 10	117			
700N 10125E	201 202	3	P. 01	11	1120	4	< 2	7	62	0.08	< 10	< 10	137	< 10	38 178	
700N 10175E	201 202	1	0.03		2050		< 2	< 1	19	0.12	< 10 < 10	< 10 < 10	41	< 10 < 10	126	
700N 10325E	201 202	1	8.02	2	590 910	10	< 2 < 2	1	25 14	0.09	< 10	< 10	ä	< 10	222	
700N 102758 700N 103252	201 202		0.02	;	1380			ī	21	0.10	< 10	< 10	43	< 10	103	
10323E										0.10	< 10	< 10	61	< 10	119	
TOON 103758	201 202	4 1	0.03		810 790	10	- 1	1	19	0.13	< 10	< 10	71	< 10	130	
700N 10425E	201 202	1 < 1	0.01		250	ŝ	-	i	29	0.09	< 10	< 10	51	< 10	40	
00N 104758 100N 105358	201 202		0.02	- i	580	i.	< 2	3	41	0.09	< 10	< 10	59	< 10 < 10	120	
00N 10575E	301 302	< 1	0.01		1840	•	< 2	1	25	0.08	< 10	< 10	**	< 10		
00N 106258	201 202	< 1	0.03	10	1460	1	< 2	3	32	0.09	< 10	< 10	60	< 10	56	
200W 10675E	201 202	1	0.01	3	310	2	2	1	19	0.08	< 10	< 10 < 10	38 90	< 10. < 10	28 56	
700N 10725E	201 202	< 1	0.01	2	1250	1	< 2	3	46	0.10	< 10 < 10	< 10	ö	< 10	60	
700N 10775E 700N 10825E	201 202	1	0.01	75	1300		4 2	1	28	0.07	< 10	< 10	50	< 10	11	
UVN 100436		·						_				< 10	102	< 10	32	· · · · · · · · · · · · · · · ·
700H 10275E	201 202	< 1	0.01	1	650 1780		42	1	60 34	0.11	< 10 < 10	< 10	67	< 10	74	
700N 10925E 700N 10975E	201 202	< 1 1	0.01	10	1150	12	21	;	- 11	0.12	< 10	< 10	94	< 10	90	
700N 1103758	201 202	< i	0.04	ĩ	300	6	< 3	Ĵ	49	0.10	< 10	< 10	42	< 10	46	
100N 11075E	201 202	₹1	0.01	5	136	•	< 3	1	29	0.10	< 10	< 10	59	< 10	**	
																1.1.

CERTIFICATION:

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Iotai Pages I/ Certificate Date: 18-SEP-96 Invoice No. : 19631223 P.O. Number : Account : EOY

Analytical Chemisis "Geochemists" Registered Assayors 212 Brocksbank Ave., North Vancouver Bridish Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : TAS Comments: ATTN:L.W.SALEKEN CC:GRANT CROOKER

										CE	RTIFI	CATE	OF	ANAL	YSIS		A9631	223		
SAMPLE	PREP	λα ppb 7λ+λλ	Ag ppm	A1 \$	X∎ ppar	Ba pp#	Be pp#	si pp e	Ca 3	Cđ ₽₽#	Co ppm	Cr pp=	Cu ppu	76 2	Ce pps	Ng ppn	R X	La ppn	Hg N	No. ppa
10700N 11125E	201 202	< 5	< 0.1	1.27	< 2	70	4 0.5	< 2	0.38	4 0.5	5	10	27	1.57	< 10	< 1	0.06	< 10	0.30	245
10700N 11225E	201 202	< 3	< 0.2	1.49	< 2	70	< 0.5	< 2	0.33	< 0.5		11	20	1.15	< 10	< 1	0.07	< 10	0.19	290
10700W 11275E	201 202		< 0.2	1.31	< 2	90	< 0.5	< 2	0.30	< 0.5	4	11	21	1.44	< 10	1	0.04	< 10 10	0.32	305 505
10700N 11325E 10700N 11375E	201 202		< 0.2 < 0.2	2.02	< 2 < 2	130 50	0.5 < 0.5	< 2 < 2	0.38 0.27	< 0.5 < 0.5	7	11 9	37 23	2.10	< 10 < 10	< 1	0.04 0.03	< 10	0.19	95
0700N 11425E	203 202	< 5	< 0.2	3.42	< 2	100	0.5	< 2	0.32	< 0.5	10	13	43	2.42	< 10	<1	0.04	< 10	0.33	640
0700N 11475E	201 202	< 5	< 0.2	0.87	< 2	40	< 0.5	< 2	0.15	< 0.5	3	•		1.34	< 10	< 1	0.03	< 10	0.07	105
10700N 11325E	201 202		< 0.2	1.15	< 2	40	< 0.5	< 2	0.36	< 0.5	4	11	14	1.65	< 10	< 1	0.03	< 10	0.32	115
10700N 11575E	201 203		< 0.2	1.93	< 2	70	< D.5	< 2	0.41	< 0,5	5	- 11	24	1.95	< 10	1	0.01	< 10	0.31	260
10700N 11625E	201 203	< 5	< 0.2	1.15	3	40	¢ 0.5	< 3	0.16	< 0.5	3	6	10	1.16	< 10	• 1	0.02	< 10	0.11	
0700N 11675E	201 202	< 5	< 0.2	3.00	< 2	50	10.5	< 2	0.19	< 0.5		9	26	1.98	< 10	4 1	0.05	< 10	0.1)	
10700N 11725E	201 202	< 3	e 0.2	1.10	< 3	40	4 0.5	< 2	0.32	< 0.5	1	,	10	2.25	< 10	- 1	0.03	< 10	0.15	90
10700# 11775E	201 203	< 5	< 0.2	1.27	< 2	60	< 0.5	< 2	0.33	< 0.5	,	•	26	1.34	< 10	< 1	0.02	< 10	0.15	90
10700N 11825E	201 202	< 5	< 0.2	1.02	< 3	50	< 0.5	4 2	0.34	< 0.5			11	1.11	< 10	< 1	0.06	< 10	0.14	315
10700N 11875E	201 202	< 5	4 0.2	1.67	< 2	50	4 0.5	< 2	0.13	< 0.5	,	7	13	3.46	< 10	1	0.02	< 10	0.09	60
0700# 11925E	201 202	< 5	< 0.2	1.64	< 2		< 0.5	< 2	0.15	< 0.5	;		13	1.51	< 10 < 10	< 1 < 1	0.03	< 10 < 10	0.09	130 110
0700N 11975B	201 202	< 5	< 0.2	1.10	< 2	50	4 0.5	< 2	0.20	< 0.5	- 1	10	13	1.71	< 10	- i	0.01	< 10	0.13	350
0700N 12025E	201 202	< 5	< 0.2	3.04	< 2	40 40	< 0.5		0.21	< 0.5			- 11	1.90	< 10	- 21	0.03	< 10	0.11	195
0700N 12075E	201 202	< 5	< 0.2 < 0.2	3.11 1.66	< 2	70	< 0.5		0.31	< 0.5	10	15	ii	2.04	2 10	- i	0.10	< 10	0.24	200
0800N 10050E	201 202	< 5	< 0.2	1.0	<1		< 0.5	< 1	0.45	0.5	1	17	43	1.96	< 10	<1	0.00	< 10	0.16	1710
0800N 10100E	201 202		< 0.2	1.85	ć i		4 0.8	< 2	0.30	< 0.5	7	15	49	2.10	< 10	< 1	0.07	< 10	0.23	270
0800N 10150E	201 202		< 0.2	1.42	< 1	60	< 0.1	< 3	0.37	1.5			17	1.14	< 19	1	0.04	< 10	0.11	335
0800N 10200E	201 202	< 5	4 0.2	1.91	< 1	60	4 0.8	< 2	9.29	1.5		15	\$1	2.17	< 10	4 1	0.05	< 10	0.20	310
0800N 10250E	301 202	< 3	< 0.2	1.40	< 3	70	< 0.5	< 2	0.26	0.5	3	5	,	1.59	< 10	< 1	6.05	< 10	0.09	ា
0800H 10300E	201 202	< 3	4 0.2	1.93	< 2		e 0.5	< 2	0.29	2.0		•	11	2.10	4 10	3	0.05	< 10	0.17	760
0800N 10350E	201 202	< 3	< 0.2	3.16	< 3		< 0.8	< 3	0.48	1.5	10	11	21	1.17	< 10	< 1	0.10	< 10	0.17	725
0800N 10400E	101 202	< \$	0.2	1.86	- e 1 -		< 0.5	< 2		< 0.5	<u> </u>		16	1.71	< 10 < 10	< 1 < 1	6.D6 0.06	< 10 < 10	0.14	220
0800N 10450E	201 202	< 3	< 0.2	1.45	1		< 0.5	< 3		< 0.5	- 1	10	17	1.16	< 10	- 21	0.03	< 10	0.12	105
CROON 10500E	201 302	< 5	0.2	3.03	< 2	70	< 0.5	< 2 				<u> </u>								
0000N 10550E	301 202	< 5	< 0.2	1.70	< 2 < 2		< 0.5	< 2 < 2		< 0.5 < 0.5	5 7	11	24 51	1.93	< 10 < 10	< 1 < 1	0.03 0.09	< 10 < 10	0.21 0.34	225
0800N 10600R	201 202	< 5	< 0.2	1.05	- 22		0.5	22		< 0.5	4	17	41	2.75	< 10	<u></u>	6.05	< 10	0.30	195
0800N 10650E 0800N 1070DR	201 202 201 202	< 3	0.3	1.62	< 2	60	0.5	2		< 0.5	;	15	108	2.31	< 10	< 1	0.04	10	0.36	370
0800N 10750E	201 202		4 0.3	1.49	÷ 2		< 0.3	÷ 2		< 0.5	Ś	īī	25	2.03	< 10	< 1	0.05	< 10	0.22	315
0800H 19800E	301 202	< 5	< 0.2	1.42	< 2	50	< 0.5	< 2	0.16	< 0.5	4	6		1.46	* 10	11	0.03	< 10	0.09	235
0800N 10850E	201 202		< 0.2	t.60	2.2		0.5	< 2		< 0.8	i i	i	25	1.67	< 10	2	8.05	4 10	0.15	250
	201 202		< 0.2	1.80	4.2		- 0.5	< 2	0.22	0.5	5	,	21	1.01	< 10	٤ 1	0.04	< 10	0.18	525
	201 202		4 0.2	1.20	< 2		4 0.5	< 7	0.33	0.5	4	10	14	1.79	< 10	< 1	0.05	< 10	9.16	165
0800N 11000E	201 202	< 8	< 0.2	2.56	< 2	80	< 0.5	< 2	0.42	0.5		11	26	1.84	< 10	< 1	0.05	< 10	D.22	260

-

CERTIFICATION:_

13......

•

Chemex Labs Ltd.

_...

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number (S.B) Total Pages (P) Certificate Date: 18-SEP-96 Invoice No. (19631223) P.O. Number (C) Account (LOY)

,

Analytical Chemists * Geochemists * Registered Assayara 212 Brooksbank Ave., North Vancouver British Columbie, Canada V/J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : TAS Comments: ATTN:L.W.SALEKEN CC:GRANT CROOKER Г

				_						CE	RTIF	ICATE	OF /	NAL	/SIS	A9631223
SAMPLE	PREP CODE	No Ppm		Ni ppm	p ppm	Pb pp=	sb opn	Sc ppm	Sr ppm	71	tl ppm	D D	A Dom	W ppm	2n ppm	
0700N 13125E	201 202		0.01		750	ţ	< 2	1	31	0.07	< 10 < 10	< 10 < 10	46	< 10 < 10	31 51	
0700N 11325E 10700N 11375E	301 202		0.01	7	1650		< 1	1	26	0.07	< 10	< 10	54	< 10	40	
0700N 11325E	201 202	1	0.01	7	530 290	4	< <u>1</u>	1	36	0.08	< 10 < 10	< 10 < 10	59 49	< 10 < 10	34	
					410					0.10	< 10	< 10	70	< 10		
10700N 11425E	201 202		0.03	7	770		< 2	< i	11	0.08	< 10	< 10	56	< 10	24	
0700N 11525E	201 202		0.01	4	370	4	3	1	30	0.12	< 10	< 10		< 10	30	
10700N 115758 10700N 11625E	201 202 201 202		0.03	4	220	4	< 2 < 2	< 1 < 1	33 14	0.09 0.06	< 10 < 10	< 10 < 10	54 29	< 10 < 10	30 14	
0700N 11675E	201 202		0.02	6	1690	4	< 1	1	18	0.08	4 10	< 10	55	4 10	24	
0700N 11725E 0700N 11775E	201 202 201 202		0.03	1	260		~ 1	< 1 1	24	0.08	< 10 < 10	< 10 < 10	37	< 10 < 10	16 16	
0700N 11025E	201 202	1 21	0.06	;	350			î		0.00	< 10	< 10	12	< 10	26	
0700N 11873E	201 202	< ī	0.03	4	1320	2	< 1	< 1	13	0.68	< 10	< 10	25	< 10	20	
0700N 11935E 0700N 11975E	201 202	1	0.01	ť	1620	4 2	< 1 < 3	< 1 1	18 19	0.08	< 10	< 10 < 10	29 56	< 18 < 10	24	
0700H 12025E	201 102	< 1	0.03	Ġ	1080	4	< 2	1	20	0.10	< 10	< 10	52	< 10	64	
0700M 120752 0800M 10000E	301 302 301 202	1	0.02	ì	1110		< 2	1 2	16 33	0.10	< 10 < 10	< 10 < 10	85 87	< 10 < 10	48 66	
0800N 10050E	301 202		0.02	10	450		< 1	1	27	0.09	< 10	< 10	49	< 10	164	
0800N 10100E	201 202	< 1	0.03	11	170	, i	< 1	1	24	0.10	< 10	< 10	56	< 10 < 10	252 172	
0800N 10150E 0800N 10200E	201 202 201 202	< 1 1	0.02	11	380 560	36	< 1 < 1	< 1	18	0.06 0.10	< 10 < 10	< 10	49	< 10	396	
0800N 10250E	201 202	i	0.07	· · ·	300		< 1	< 1	16	0.05	< 10	< 10	31	< 10	158	
0100N 10300E	301 303	1	0.02		1260	6	< 3	1	22	0.09	< 10	* 10	45	< 10	276	
0400N 10350E 0400N 10400E	201 202	' • 1 1	0.05 0.01		1120	5	< 1	1	24	0.09 0.01	< 10 < 10	< 10	48	< 10 < 10	228	
	201 202	< i	9.01	1	450	10	22	ī	27	0.08	< 10	< 10	56	< 10	64	
0800N 105002	201 202	* 1	0.02	6	620	6	< 2	1	16	0.08	< 10	< 10	40	< 10	152	
0800N 19550E	201 202	< 1 < 1	0.02		290	< 1	< 2	1	28	0.10	< 10 < 10	< 10 < 10	5 i 1 c	< 10 < 19	128	
0800N 10650E	201 202	ì	0.01	;	600	- i	< 1	- í	52	0.11	< 10	< 10	113	< 10	33	
0800N 10700E	201 202	1	0.02	2	570		< 2	4	76	0.07 0.05	< 10 < 10	< 10 < 10	62 67	< 10 < 10	52 56	
0800N 19750E	201 202	< 1	0.01		1130		< 2 									
0800N 10800E	201 202	< 1 < 1	0.02	6 7	1650		< 2		14	0.07	< 10 < 10	< 10 < 10	39	< 10 < 10	54 51	
200001 10900E	201 202	< 1	0.02	ŝ	1200	- i	41	Ī	18	0.10	< 10	< 10	n	< 10		
	201 202	1	0.01	1	1590	12	< 2	1	31 38	0.09	< 10 < 10	< 10 < 10	56 57	< 10 < 10	58 70	
0800W 11000E	201 202	< 1	9.94	•	1190	14		•					~•	- **		
_																

Chemex Labs Ltd. Anaytical Chemists ' Begistered Assayers 212 Brooksbank Ave. British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 804-984-0218

To GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Total Pages S Certificate Date: 30-SEP-96 Invoice No 19633000 P.D. Number Account LOY

Project : TAS Commente: ATTN: L.W. SALEKEN CC: GRANT CROOKER

.

		PHONE: 6	504-984-0	0221 FA	X: 604-98	94-0216			Com	nents: A	ATTN: U.V	N. SALE	KEN CO	C GHAN						
										CE	RTIFIC	CATE	OF A	NAL	rsis	/	49633	000		
SAMPLE	PREP	λα ppb Ρλ+λλ	λg ppz	A1 *	Ae pps	Ba ppm	Ba pp n	Bi PPM	Ca N	cđ pps	Со ррт	Cr pps	Cu pps	70 X	Ga. ppa	Bg pps	я Х	Le pp∎	Mg	ŗ
					6	90	< 9.5	2	0.41	< 0.5		14	52	2.28	< 10	< 1	0.09	< 10 < 10	0.27	4
150N 9675E	201 202		0.2	2.02		60	< 0.5	< 2	0.59	< 0.5	10	21	94	3.51	< 10	< 1 < 1	0.09	4 10	0.52	- 7
150N 9725E	201 202		0.7	2.34	2	80	< 0.5	< 2	0.65	1.5	11	12	109	1.11	< 10 < 10	- 21	0.15	10	0.44	
150N 9775E	201 202		0.4	2.65	2	110	< 0.5	2	Q. SL	0.5	15	28	224	4.24	< 10	21	0.24	10	0.65	
150N 98232 150N 98752	201 202		0.6	3.46	2	110	< 0.5	3	0.66	0.5	21	38	110		• ••	•••				
150A 98755												51	133	3.56	< 10	< 1	0.10	10	0.47	
150N 99258	201 202	< 5	< 0.2	1.67	•	40	< 0.5		0.51	< 0.5	15	20	17	3.49	< 10	< 1	0.13	< 10	0.33	1
150N 9975E	201 202	< 5	0.2	2.23	₹2	150	< 0.3	2	0.67	0.5 < 0.5	14	27	24	1.00	< 10	< 1	0.11	< 10	0.45	
150N 10025E	201 202	< 5	< 0.2	1.91	- e 2	70	< 0.5	ţ	0.53	0.5	14	22	528	3.01	< 10	< 1	0.10	20	0.34	1
150N 10075E	201 207		Ū.8	2.49	2	60	1.5	1	0.31	< 0.5	12	36	370	3.04	< 10	< 1	0.06	< 10	0.20	
150N 10125E	201 202	< 5	0.6	3.26	< 3	110	0.5		0.31											ī
						110	< 0.5	2	0.25	0.5	12	10	\$3	2.23	< 10	< 1	0.04	< 10	0.16 0.21	•
ISON 101758	201 202	< 5	0.4	2.11	< 2	100	< 0.5	;		e 0.5	1	13	41	3.07	< 10	< 1	0.05	< 10 < 10	0.1	
SON 102250	201 202	< 5	0.2	2.35	1	100	< 0.5			< 0.5	7	10	30	1.93	< 10	4.1	0.04 0.03	10	0.11	
LSON 102758	201 202	< 3	0.3	1.71	~ 2	60	< 0.5	ā	0.18	< 0.5	5	7	10	1.71	< 10	< 1 < 1	0.03	10	0.10	
SON 103258	201 202	< 5	< 0.3	1.14		20	< 0.5	< 3	0.30	< 0.5	1	13	29	2.57	< 10	< 1	0.04	• 10		
150W 1037 5 K	201 202	• •	• • • •	1.1.	•										< 10	< 1	0.05	10	0.22	
50N 10425K	201 202	< 5	< 0.2	1.38		60	< 0.5	< 2		< 0.5		13	26 11	2.36	4 10	- i	0.05	10	0.16	
150N 10425E	201 203	< 5	4 0.2	1.39	< 2 -	60	< 0.5	3	0.36	< 0.5	5	10	11	1.45	< 10	< 1	0.06	4 10	0.13	
150N 10525E	201 202		< 0.2	1.20	e 1	110	< 0.5	2	0.33	0.5	57	13	24	2.11	< 10	41	0.09	4 10	0.33	
150W 10575E	201 202	< 5	0.2	3.67	< 2	120	< 0.5		0.50	0.5	- i	11	15	2.21	< 10	< 1	0.06	• 10	0.18	
50N 10635E	201 202	< 5	0.2	2.51	e 2	180	< 0.5	2	0.27	< 0.5	•		•							
									0.21	0.5	5	,	13	1.99	< 10	< 1	0.05	4 10	0.16	
150W 10675E	201 203	< 5	< 0.2	1.97	4	110	< 0.5	< 2	0.20	0.5	í	10	10	1.86	< 10	< 1	0.05	• 10	0.19	
50# 10725m	201 202	< 5	< 0.2	2.09	< 2	130	< 0.5	1	0.20	0.5		- i	14	1.61	< 10	< 1	0.05	4 10	0.14	
150W 10775E	201 202		< 0.1	1.73	< 2	100	< 0.5	1		< 0.5	i	7	17	1.81	< 10	1	0.0)	+ 10	0.11	
SON 108258	201 202	< 5	0.2	2.14	4 2	120 110	< 0.5	· 2	0.17	4 0.5	i	i i	15	1.91	< 10	< 1	6.04	• 10	0.14	
LSON 10875E	201 202	< 5	< 0.2	2.13	•	110		•••										+ 10	0.21	1
				2.49	4	120	< 0.5	2	0.19	0.5	,	10	33	2.10	< 10	11	0.04	10	0.13	
30H 10935E	201 202	< 5 < 5	< 0.1 0.4	2.19		70	< 0.5	< 2		< 0.5	4	2	22	1.59	10	< 1 < 1	B.02	4 10	0.13	
50N 10975E	201 202		4 0.2	2.07	22	60	< 0.5	2		< 0.5	5	.!	14	1.83	< 10 < 10	- 1	0.06	10	0.22	
150W 11025E 150W 11075E	201 202		0.2	3.61	2	100	0.5	2		< 0.5	5	11	69 12	1.55	< 10		0.04	< 10	0.10	
150W 11175W	201 202		< 0.3	1.64	ż	70	< 0.5	< 2	0.15	< 0.5	,	•		4.55	• ••					
TACK TITLES											5	1	13	1.81	< 10	< 1	0.03	4 10	0.13	
50H 11175E	201 202	< 5	< 0.3	1.97	< 2	70	< 0.5	< 2		< 0.5	5	10	19	2.00	< 10	< 1	0.05	+ 10	0.16	
50N 112238	301 202	4 5	< 0.2	1.69	4	90	< 0.5	< 2		< 0.5		11	ň	3.33	< 10	۲ ۱	0.07	× 10	0.41	
508 11275# A	301 202	< 5	0.3	2.70	•	90	0.5			< 0.5	- i	ii		3.27	< 10	< 1	0.07	< 10	0.41	
50# 11275E B	201 202	< 5	< 0.2	2.63	< 2	10	0.5			< 0.5	÷	ii	40	2.13	< 10	4 1	0.05	< 10	0.30	
50H 11375E	201 202	< 5	0.2	2.09	•	90	< 0.3	• •	3.31										0.21	
	I					10	< 0.5	< 2	0.25	< 0.5	6	11	30	2.03	< 10	< 1	0.05	< 10	0.21	
30H 11375E	201 202	< 5	< 0.2	3.09	2	10	< 0.5			e 0.5	5	11	39	1.00	< 10	< 1	0.05	< 10 < 10	0.17	
50N 11425E	201 202	< 5	< D.2	1.56	- 1	60	< 0.5	1		< 0.5		11	20	2.00	< 10	1	0.04	< 10	0.31	
50N 11475E	201 202	< 5	0.2	1.36		60	< 0.5	÷ 1	0.51	< 0.5	6	14	31	1.12	< 10	< 1 1	0.05	10	0.15	
50N 115258	201 202 201 202		< 0.2	1.77	< 1	40	< 0.5	< 2	0.19	< 0.5	5	11	31	3.17	< 10	*	0.04			
50N 11575B	401 404																			

CERTIFICATION:

- ---

Chemex Labs Ltd. Analytical Chemists - Beochemists - Registered Assuyets 212 Brooksbark Ave. British Columble, Canada V7/20C1 PHONE: 664-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTO. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

.....

Fage Number 1-8 Total Pages 5 Certificate Date: 30-5EP-96 Invoice No. : 19433000 F.O. Number Account LOY

Project : TAS Comments: ATTN: L.W. SALEKEN CC: GRANT CROOKER

		•	HONE. 0	04-984-0	221 FA	N. 004 00				001111	1911.3.						
											CE	RTIFI	CATE	OF A	NALY	'SIS	A9633000
SAMPLE	PREI		Жо ррш	Na .X	Ni ppm	P ppa	Pb p pm	ap Pom	Sc ppm	Sr PP#	Tİ X	T1 ppm	U ppm	₽	W PP=	2n pp e	
150N 9675E 150N 9725E 150N 9775E 150N 9775E	201 2 201 2 201 2 201 2 201 2	102	• 1 • 1 • 1 • 1	0.03 0.04 0.01 0.02 0.03	9 11 11 17 17	1670 1190 560 580 930	8 13 16 10 50	<pre></pre>	3 4 4 4	42 48 19 62 13	0.10 0.09 0.13 0.14 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	65 47 77 84 87	< 10 < 10 < 10 < 10 < 10	94 130 356 159 218	
150N 9975E 150N 9975E 150N 9975E 150N 10025E 150N 10075E 150N 10125E	201 201 201 201 201 201	102	1 1 < 1 3 < 1	0.01 0.03 0.01 0.02 0.02	16 20 14 25 14	770 770 580 460 630	14 14 10 18 14	< 3 < 3 < 3 3 3	7 2 3 6 3	65 70 56 56 37	0.08 0.11 0.14 0.08 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	94 52 95 59 68	< 10 < 10 < 10 < 10 < 10 < 10	68 126 60 494 148	
30W 101758 30W 102358 50W 102358 50W 102758 50W 103258 50W 103258	201 201 201 201 201	102 202 202	< 1 < 1 < 1 < 1 < 1	0.03 0.03 0.03 0.04 0.02	3 13 11 6 8	1520 930 2080 1630 2350	8 2 6 1	< 2 < 2 < 2 < 2 < 2 < 2	1 2 1 1 2	31 38 22 18 37	0.10 0.10 0.09 0.08 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	50 55 69 64 80	< 10 < 10 < 10 < 10 < 10 < 10	249 120 90 58 99 44	
SON 10435E SON 10475E SON 10535E SON 10535E SON 10535E SON 10535E	201 201 201 201 201 201	102	< 1 < 1 < 1 < 1 < 1	0.01 0.03 0.03 0.03 0.03	10 9 13 12	930 750 700 250 470	8 2 6 10 10	< 2 < 2 < 2 < 2 < 2	2 1 1 3 3	61 36 38 51 33	0.00 0.10 0.01 0.13 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	82 51 39 48 59	< 10 < 10 < 10 < 10 < 10	76 153 144 214 272	
150N 10675E 150N 10725E 150N 10775E 150N 10825E 150N 10825E 150N 10875E	201 201 201 201 201	102	< 1 < 1 1 1	0,03 0.03 0.03 0.02 0.02	11 12 1 7 9	790 1180 1150 600 1310	14 1 1 1 1	< 2 < 3 < 3 < 3 < 3	1 3 1 1	29 37 36 12 20	0,10 0.09 0.09 0.09 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	54 46 41 42 43 57	< 10 < 10 < 10 < 10 < 10	310 146 176 162	
50N 109258 50N 109758 50N 110358 50N 110358 50N 110758	201 201 201 201 201 201	102 103 102	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.03 0.03 0.03 0.03 0.03	10 6 5 12 6	780 1200 1030 940 1560	10 8 6 8	< 1 < 1 < 1 < 1	2 1 1 1 1	26 16 15 51 19	0.14 0.11 0.11 0.10 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	37 45 47 33	< 10 < 10 < 10 < 10 < 10	66 61 98 70 54	
SON 111758 Son 112258 Son 112758 A Son 112758 U Son 112758 U Son 113258		202	<pre> < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0.03 0.01 0.01 0.01 0.01 0.02	7 6 7 8 7	1170 1380 980 900 1720	6 6 6 6 6	< 2 < 2 < 2 < 2 3 2 3	1 3 5 3	20 31 50 56 39	0.10 0.09 0.06 0.05 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	48 62 96 97 61	< 10 < 10 < 10 < 10 < 10	46 74 76 76	
50N 11375E 50N 11425E 50N 11425E 50N 11475E 50N 11525E 50N 11575E	201 201 201 201 201	102 202 202	1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	7 6 7 6 6	1550 1110 1620 720 1680	10 6 6 6) 2 2 1 1	28 40 35 84 30	0,10 0,09 0.69 0.10 0.09	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	53 57 60 73 61	< 10 < 10 < 10 < 10 < 10 < 10	64 50 36 36 32	

Auflicat Chemists ' Geochemists ' Registered Assurers 212 Brooksbank Ave... North Vancouver British Columbia, Canada V7J 2C1 PHQNE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD.

Project : TAS Comments: ATTN: L.W. SALEKEN CC: GRANT CROOKER

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Flight Remote E. F. Total Pages 5 Certificate Date: 30-SEP-96 Invoice No. 19533000 P.O. Number Account :LOY

_,		There.	-										_							
		<u> </u>								CE	RTIF	CATE	OF /	NAL	YSIS		49633	000	·····	
SAMPLE	PREP	λα ppb Σλ+λλ	Ag ppm	A1 X	Å. ppu	Ва. ррш	Be	Bi pp∎	Cu N	Cđ ppm	Со ррж	Cr ppa	Cu ppm	74 X	Ge ppe	Bg ppn	X Z	La ppm	Mg N	H PP
			. , .									11	47	2.13	< 10	1	0.03	< 10	0.28	14
1150N 11625E	201 202		< 0.2	2.51	6	100	< 0.5	< 2	0.22	< 0.5		19	295	2.66	10	< i	0.06	50	0.44	56
1130N 11675E	201 202		0.8	3.87	< 1	360	1.5	- 11	0.21	< 0.5	i		16	1.25	< 10	< 1	0.03	< 10	0.14	13
1150N 11725E	201 202		< 0.2	1.43	< 1	40	< 0.5		0.19	< 0.5	i	,	10	1.60	< 10	< 1	0.03	< 10	0.10	
1150¥ 11775E	201 202		< 0.2	1.15	1	90	< 0.5		0.11	0.5	i	7	6	1.34	e 10	< 1	0.03	< 10	0.04	1
1150H 11825E	101 104			0.47														< 10	0.09	ĩ
150N 11875E	201 202	< 5	0.7	2.33	< 1	70	< 0.5	1	0.10	< 0.5	3	1	13	1.59	< 10	< 1	0.03	< 10	0.13	1
150N 11935E	201 202		0.2	2.71	< 2	70	< D.5	2	0.15	< 0.5	5		16	1.72	< 10	< 1 < 1	0.03	2 10	0.15	- 1
150N 11975E	201 202		0.2	1.71	< 1	50	< 0.5	< 2	0.18	0.5	5	10	14	1.89	< 10 + 10	1	0.04	< 10	0.15	i
150H 12025E	201 202		< 0.2	3.19	1	60	< 0.5	< 3	0.20	< 0.5		10	15	1.99	< 10		0.04	2 10	0.10	5
150N 12075E	201 202		0.2	1.94	< 2	60	< 0.5	< 1	0.13	< 0.5	5	,	13	1.40	4 IU	• •	0.04			
											6	11	61	1.95	< 10	< 1	0.05	< 10	0.17	
250H 9675B	201 202		0.1	2.01	< 1		< 0.5	< 1	0.18	< 0.5 1.5	11	11		2.56	10	< î	0.09	< 10	0.27	- 6
250N 97252	201 202		< 0.2	1.94	< 2		< 0.5	< 2		< 0.5	10	11	155	2.09	< 10	< 1	0.05	< 10	0.20	- 4
250# 9775#	201 202		0.6	1.77	< 2		< 0.5	1	0.41	< 0.5	27	111	1105	4.74	< 10	1	0.58	< 10	3.03)
250H 9825E	201 202		0.2	3.44	< 3		< 0.5	< i		< 0.5	- i	26	112	2.19	< 10	< 1	0.09	< 10	0.32	2
250H 98758	201 202	< 5	0.3	1.68			< 0.3	•••			•									
			0.2	3.00	6	130	< 0.5	2	0.50	< 0.5	25	19	256	3.44	e 10	< 1	0.08	* 10	0.47	2
250N 9925K	201 202		0.3	2.78			< 0.5	2	0.29	< 0.5	14	13	293	3.27	< 10	< 1	0.10	< 10	0.40	5
250H 9975E	201 202		0.2	2.20	;		< 0.5	< 3	0.35	< 0.5	,	11	107	2.21	< 10	< 1	0.06	< 10	0.23	30
250N 100258 250N 100758	201 202		< 0.2	1.71	ž		< 0.5	< 2	0.64	< 0.5	11	15	136	2.38	< 10	< 1	0.07	10	0.33 0.41	
250N 10125E	201 202		< 0.2	1.50	< 2		< 0.5	2	0.52	< 0.5	10	19	246	3.03	e 10	< 1	0.00	10	V . • I	,
ADON LOTADE														1.98	1 10	< 1	0.05	< 10	0.71	6
250H 10175E	201 202	< 5	0.2	1.83	< 1		< 0.5	< 2		< 0.3	10	12	60 50	2.67	< 10	- 21	0.04	4 10	0.21	2
250W 10225E	201 202	< 5	< 0.2	2.41	< 1		< 0.5	< 2		< 0.5	2	10	19	1.76	< 10	- i	0.05	4 10	0.11	5
250H 10275E	201 202	< 5	0.2	1.44	2		< 0.5	< 1	0.24	< 0.5	5		15	1.63	÷ 10	- È Î	0.04	< 10	0.11	5
250N 10325E	201 202	< 5	0.2	1.51	2		< 0.5	< 3		< 0.5	;	12	24	3.10	< 10	i	0.04	< 10	0.20	- 4
250N 10375E	201 202	< 5	< 0.2	1.20	3	90	< 0.5	< 2	0.36	< 0.5	'									
	· · · · · · · · ·							< 2	0.31	< 0.5	6	17	23	3.07	< 10	< 1	0.05	< 10	0.20	3
250N 10425E	201 202	< 5	< 0.2	1.51	< 1	90 70	< 0.5	1	0.31	< 0.5	-	ii	21	1.11	4 10	< 1	0.06	< 10	0.21	3
250N 10475E	201 202	< 5	< 0.2	1.41	< 1		< 0.5	. 1	0.10	0.5	i	- i	9	1.71	< 10	< 1	0.04	< 10	0.11	
250H 10525E	201 202	< 5	< 0.2	3.24		190	0.5	1	0.30	0.5	15	14	85	2.79	< 10	+ 1	0.04	< 10	0.21	10
150N 10575E	201 202	< 5 < 5	< 0.2 0.3	1.74	-		< 0.5	j	0.16	0.5	12	11	69	2.54	< 10	< 2	0.00	* 10	0.11	
250N 10635E	201 202	* 9	0.4	1.14	•	34		-												
250N 106758	201 202	< 5	< 0.2	1.64	2	90	< 0.5	< 1	0.16	< 0.5	5	L.	10	1.61	< 10	< 1	D.04	< 10 < 10	0.11 0.13	12
250H 105/55 250H 10725E	201 202		20.2	1.44	- i		e 0.5	< 1	0.14	e 0.5	5		10	1.54	< 10	- 1	0.04 0.05	< 10	0.17	1
350N 10775E	201 202	1	< 0.2	2.37	< 2	150	< 0.5	< 1		< Q.5	•	11	1.	2.18	< 10	< 1	0.05	< 10	0.14	11
250H 10125E	201 202		< 0.1	1.68	3		< 0.5	1	0.19	0.5	<u></u>	2	12	1.88	< 10 < 10		0.05	- 10	0.15	
350W 10875E	201 202	4.5	0.2	2.23	< 3	170	< 0.5	< 2	0.18	0.5	5	9	20	1.59		•••	0.00			
										0.5	5	6	6	1.44	< 10	< 1	0.03	+ 10	0.01	
250N 10925E	201 202	× 5	< 0.2	1.44	< 2		< 0.5	< 1	0.13	4 0.5			19	1.79	4 10	÷ 1	0.03	< 10	0.15	5
250N 10975E	201 202	< 5	0.2	2.14	- < <u>1</u>		< 0.5	< 1			ś	i	72	1.97	< 10	< 1	0.03	< 10	0.14	30
250N 11023E	201 202	< 5	D.6	2.18	< 1		< 0.5			< 0.5 < 0.5	i	÷		1.41	< 10	<1	0.03	< 10	0.10	70
2508 110755	201 202	۲ ۵	0.2	1.72	1 1		< 0.5			< 0.5	5	÷	21	1.64	< 10	< 1	0.04	< 10	0.16	61
250H 11125K	201 202	5	< 0.3	1.35	< 2	60		•••												

CERTIFICATION: Hart Prickles

.

Chemex Labs Ltd. Analylical Chemisis * Geochemisis * Registered Assayers 212 Brocksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTO. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number 2-8 Total Pages 5 Certificate Date 30-SEP-96 Invoice No. (19633000 P.O. Number Account LOY

Project : TAS Comments: ATTN: L.W. SALEKEN CC: GRANT CROOKER

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											CE	RTIF	CATE	OF A	NAL	rsis	A9633000
3100 1107 14035 201 100 14035 140 100 100	SANPLE			-													
11 or 11 or 11 or 51 201 202 <1 0.00 3 13 or 11 or 11 13 or 11 or 11 14 or 10 10 10 11 or 11 11 or 11 10	1130N 11625E 1130N 11675E 1130N 11723E 1130N 11723E 1130N 11773E 1130N 11825E	201 202 201 202 201 202	1 < 1 < 1	0.01 0.03 0.01	19 5 4	810 230 1030	10	< 1 < 1 < 1	8 1 1	144 27 23	0.03	< 10 < 10 < 10	< 10 < 10 < 10	43 10 48	< 10 < 10 < 10	44 18 20	
320m #975# 201 202 1 0.01 10 1370 10 1370 10 1370 10 1370 10 1370 10 1370 10 1370 10 1370 10 1370 10 10 11 10 10 11 10 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 <td>1150N 11075E 1150N 11975E 1150N 11975E 1150N 12025E 1150N 12025E</td> <td>201 202 201 202 201 202</td> <td><1 <1 <1</td> <td>0.01 0.02 0.02</td> <td>4 5 6</td> <td>630 1210 1020</td> <td>10</td> <td>< 1 < 1 < 2</td> <td>1</td> <td>19 20 21</td> <td>0.10 0.10 0.11</td> <td>< 10 < 10 < 10</td> <td>< 10 < 10 < 10</td> <td>47 51 35</td> <td>< 10 < 10 < 10</td> <td>48 90 54</td> <td></td>	1150N 11075E 1150N 11975E 1150N 11975E 1150N 12025E 1150N 12025E	201 202 201 202 201 202	<1 <1 <1	0.01 0.02 0.02	4 5 6	630 1210 1020	10	< 1 < 1 < 2	1	19 20 21	0.10 0.10 0.11	< 10 < 10 < 10	< 10 < 10 < 10	47 51 35	< 10 < 10 < 10	48 90 54	
350m 9735m 201 300m 9735m 201 300m 9735m 201 300m 9735m 201 300m 9735m 201 300m 9735m 201 300m 9735m 201 300m 9735m 201 300m 9735m 201 300m 9735m 201 300m 9735m 201 300m 9735m 201 300m 9735m 201 300m 9735m 201 300m 9735m 201 300m 400m 410	250# 9725# 250# 9775# 250# 9825#	201 202 201 202 201 203	< 1 < 1 1	0.01 0.01 < 0.01	12 15 57	810 830 360	18	< 1 < 1 < 2	2 1 6	45 34 89	0.11 0.09 0.34	< 10 < 10 < 10	< 10 < 10 < 10	61 46 136	< 10 < 10 < 10	100 98	
350x 10075x 201 202 1 0.01 11 1300 0 4 2 5 5 0.11 c.10 c.10 10 0 350x 10075x 201 202 <1	130W 99758 750N 100752 150W 100752	201 202 201 202 201 202	1 • 1 1	0.01 0.01 0.01	10 10 10	750 1230 720	12	< 2 < 2 < 2	3 3 5	84 39 68	0.13 0.11 0.10	< 10 < 10 < 10	< 10 < 10 < 10	76 61 72	< 10 < 10 < 10	78 70 106	
2500 104258 201 200 < 1	250N 10225E 250N 10275E 250N 10325E	201 202 201 202 201 202	< 1 < 1 < 1	0.01 0.03 0.03	11	1310 1700 2660	10 4 6	< 2 < 2 < 2	3 1 1	32 27 24	0.11 0.08 0.07	< 10 < 10 < 10	< 10 < 10 < 10	69 48 41	< 10 < 10 < 10	80 62 76	
1350r 105758 101 200 1 1000 1 17 0.05 10 10 14 1560r 10758 101 200 1 17 0.05 10 10 14 1560r 10758 101 200 1 17 0.05 10 10 14 1560r 10758 101 200 1 0.02 9 700 8 2 1 15 0.10 10 54 10 144 1550r 100258 201 202 1 0.03 9 100 4 2 1 15 0.10 4.0 54 10 128 1550r 100758 201 202 1 0.03 9 180 4 2 1 15 0.10 4.0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1	250N 10475E 250N 10525E 250N 10575E	201 202 201 202 201 202	* 1 * 1 * 1	0.01 0.03 0.01	22	190 920 1030	5 7 8) 1)	39 35 44	0.13 0.09 0.15	< 10 < 10 < 10	< 10 < 10 < 10	65 47 72	< 10 < 10 < 10	78 106 58	
300 109258 201 202 1 0.03 6 1840 6 4 1 16 0.11 - 10 4 10 94 500 109758 201 202 4 1 0.03 9 1160 6 4 1 16 0.10 4 10 4 10 12 500 110758 201 202 4 1 0.03 7 1030 10 4 2 1 21 0.10 4 10 4 10 16 4 10 12 500 110758 201 202 4 1 0.02 6 1630 2 4 2 1 10 0.08 4 10 4 10 76	50N 10725E 50N 10775E 150N 10925E	201 202 201 202 201 202	4 i 4 1 4 1	0.03 0.02 0.03	9 9 1	800 730 1160	10	< 2 < 2 < 2	1 3 1	17 26 19	0.09 0.10 0.10	< 10 < 10 < 10	< 10 < 10 < 10	39 56 51	< 10 < 10 < 10	144 148 128	
	750N 10975E 150N 11025E 150N 11075E	201 202 201 202 201 202	< 1 < 1 < 1	0.03 0.03 0.02	9 7 6	1160 1030 1630	10 2	< 2 < 2 < 2	1 1 1	14 21 10	0.11 0.10 0.00	< 10 < 10 < 10	< 10 < 10 < 10	47 46 34	< 10 < 10 < 10	94 113 78	

CERTIFICATION: SULLING STATISTICS

-

Chemex Labs Ltd. Analytical Chemists' Geochamists' Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canda V71 201 PHONE; 604-964-0221 FAX: 604-994-0218

TO: GEOTEC CONSULTANTS LTD, B976 LABURNUM ST. VANCOUVER, BC V6P 5M9 Project : TAS Comments' ATTN: L.W. SALEKEN CC: GRANT CROOKER

										CE	RTIFI	CATE	OF	ANAL	YSIS	·	A963:	3000		
SAMPLE	PREP CODE	Au ppb PA+AA	λg pps	۸1 م	λs ppm	Ba ppm	Be pps	Bi ppm	Ca t	Сб ррв	Co pp	Cr Dpm	Cu PP=	76 3	Ga pp≡	Ħg pp=	R %	La Oper	Mg t	Mn ppe
11250N 11175E 11250N 11225E 11250N 11225E 11250N 11375E 11250N 11375E 11250N 11375E	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0.1 < 0.1 0.3 0.2 < 0.3	1.41 1.56 1.55 1.59 1.54	4 3 6 4 10	50 40 50 60	< 0.5 < 0.5 < 0.3 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2</pre>	0.24 0.23 0.29 0.47 0.31	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 4 6 6 5	8 10 10 10	19 25 36 55 23	2.12 1.63 2.30 1.91 1.92	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 3 < 1	0.03 0.04 0.05 0.05 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.19 0.18 0.20 0.37 0.17	130 135 200 170 210
11250H 11425E 11250H 11475E 11250H 11475E 11250H 11525E 11250H 11575E 11250H 11625E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 3 < 3 < 3	< 0.2 < 0.2 0.2 0.2 0.2 0.2	1.43 3,55 2.82 2.98 3.42	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	90 60 100 90 120	< 0.5 < 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 1 < 2	0.45 0.63 0.78 0.45 0.73	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 7 6 6	11 14 15 17 10	28 45 73 41 80	2.23 2.32 2.70 3.00 3.19	< 10 < 10 < 10 < 10 < 10 < 10	< 1	0.06 0.06 0.06 0.04 0.05	< 10 < 10 10 < 10 10	0.23 0.34 0.29 0.25 0.27	355 255 265 180 235
21250N 31675E 11350N 11725E 11350N 11725E 11350N 11775E 11350N 11025E 11250N 11075E	201 202 201 202 201 202 201 202 201 202 201 202	< 3	0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.29 1.92 1.06 1.06 1.86	<pre>< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 3 </pre>	50	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 2	0.59 0.11 0.16 0.25 0.13	< D.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 3 4 1 5	20	35 11 7 12	3.45 1.70 1.75 6.93 3.10	< 10 < 10 < 10 < 10 < 10 < 10	1 2 1 < 1 2	0.05 0.04 0.03 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.30 0.31 0.00 0.10 0.13	345 85 195 65 295
1250W 11925# 31250W 11975# 11250W 12025# 11250W 12025# 11250W 12075# 11350W 9675#	201 202 101 202 201 202 201 202 201 202 201 203	< 5 < 5 < 5	< 0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	1.67 1.20 2.63 2.17 1.04	< 2	70 50 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 2 < 2	0.09 0.11 0.15 0.23 0.90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 7 6 <i>6</i>	7 7 10 11 13	8 15 17 27	1.91 1.60 3.13 2.11 2.00	< 10 < 10 < 10 < 10 < 10 < 10	2 • 1 1 1 1	0,03 0,03 0,03 0,04 0,06	< 10 < 10 < 10 < 10 < 10 < 10	0.07 0.07 0.14 0.17 0.21	250 165 445 140 135
1350H 9725E 1350H 9775E 1350H 9775E 1350H 9825E 1350H 9875E 1350H 9825E	201 203 201 203 201 203 201 202 201 203 201 203	< 5 < 5 < 5 < 5 < 5	6.0 6.0 6.0 6.0 6.0	1.41 1.54 3.71 1.73 2.24	4 2 2 2 2 2 2 2	90 110 60	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 2 < 3 < 3 < 3 < 4 </pre>		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 8 24 9 10	13 9 20 20	34 30 315 74 49	2.38 1.74 4.10 2.66 2.48	< 10 < 10 10 < 20 < 10	5 2 4 1 1 3	0.09 0.05 0.05 0.05 0.07 0.04	<pre>* 10 * 10 * 10 * 10 * 10 * 10 * 10 * 10</pre>	0.21 0.14 0.29 0.24 0.17	660 395 575 280 825
11350N 9975E 11350N 10025E 11350N 10075E 11350N 10125E 11350N 10125E 11350N 10175E	201 202 201 202 201 202 201 203 201 203 201 203 201 203		0.3 < 0.3 < 0.3 0.3 < 0.3	1.91 1.49 2.17 2.00 1.95	< 1 < 1 < 1 < 1 < 1	80 70 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 2	0.35 0.69 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 9 9 9 9	12 10 10 11 11	83 45 61 101 37	3.34 2.03 2.67 2.31 2.43	< 10 < 10 < 10 < 10 < 10 < 10	<pre></pre>	0.07 0.06 0.07 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.10 0.10 0.30 0.10 0.21	670 930 305 695 635
11350H 10325H 11350H 10375H 11350H 10375H 11350H 10375H 11350H 10375E 11350H 10425E	201 202 201 202 201 202 201 207 201 203 201 203 201 203		0.3	1.94 3.28 1.42 1.21 1.88	4 < 1 < 2 < 2	90 90 40	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 2 < 2 < 2	1.31 0.34 0.50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 11 6 8 6	13 20 10 15 11	118 139 20 30 11	2.65 3.35 2.03 2.52 2.13	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 4 < 1 < 1 < 1	0.06 0.10 0.08 0.06 0.07	10 J0 < 10 < 10 < 10	0.30 0.51 0.18 0.35 0.35	365 800 250 255 470
1350N 10525E 1350N 10575E 1350N 10625E	201 203 201 203 201 203 201 203 201 203 201 203	< 3	0.2 0.2 0.2 0.2 0.2 0.2	1.09 3.31 2.63 1.54 1.74	< 2 < 3 < 2 2 < 2	320 110 40	c 0.5 1.5 c 0.5 c 0.5 c 0.5	<pre>< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2</pre>	0.96 0.26 0.15	< 0.5 2.0 < 0.5 0.5 < 0.5	1 35 1 5 5	10 16 11 6 7	14 173 35 13 10	1.97 3.36 2.30 1.62 1.57	< 10 10 < 10 < 10 < 10 < 10	1 5 < 1 < 1 < 1	0.08 0.06 0.02 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.19 0.46 0.20 0.09 0.10	1005 4440 440 960 860

٠

C

Chemex Labs Ltd. Analyled Chemists ' Geochemists ' Registered Assayers 212 Brooksbank Ave. North Vancouver British Columbia, Canade V7J 2C1 PHONE: Gol-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD.

.....

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9 Page Number 3-9 Total Pages 5 Certificate Date 30-SEP-96 Invoice No. 19633000 P.O. Number Account :LOY

Project : TAS Comments: ATTN: L.W. SALEKEN CC: GRANT CROOKER

				_ .							CI	ERTIF	ICATE	OF	ANAL	YSIS	A9633000
BANPLE	PREP CODE		Мо ррн	Na X	xi ppm	p ppa	Pbpp=	SP Ppm	Sc ppm	Sr pp a	Tİ A	Ti ppm	U Dom	Y PDM	W ppm	Zn pp e	
13750# 11175# 11750# 11725#	201 2		< 1 < 1	0.01	;	450 500	;	÷ ;	1	24	9.10 0.08	< 10 < 10	< 10 < 10	83 15	< 10 < 10	44	
11250# 11275#	201 2	02	< 1	0.01	1	1210	- i	;	2	31	0.08	< 10	< 10	21	< 10	50	
11250W 11325E 11250W 11375E	301 2			0.03	E E	460 1320	2	2	3	50 33	0.00	< 10 < 10	< 10 < 10	53 57	< 10 < 10	46	
11250H 11425H 11250H 11475H	201 2		< 1	0.01	:	2230 510	< 2	• 2	1	45	0.07	< 10	< 10	66 13	< 10 < 10	40	
11250W 11525W	201 20	12	41	0.02	;	410	÷1	* 2 * 2	- 1	61	0.12 0.10	< 10 < 10	< 10 < 10	34	< 10	36	
11250N 11575E 11250N 11625E	201 20		< 1 < 1	0.04	11	190	2	* 7 * 7	1	19 59	0.11 8.10	< 10 < 19	< 10 < 10	53 40	< 10 < 20	36 26	
11350W 11675E	201 20		< 1	0.02	,	250	4	• 2	5	49	0.10	< 10	< 10	60	< 10	26	
112508 117238 112508 117758	201 20		< 1	0.02	6	1480	2	4 2	1	19	0.08	< 10 < 10	< 10 < 10	- 19	< 10 < 10	26	
12508 114258	201 20	2	< ī	0.03		130		< 2	1	23	0.08	< 17	< 10	24	< 10	10	
11350H 11875E	201 20	<u> </u>	< 1	0.01	5	950		3	1	13	0.10	< 10	< 10	54	< 10	46	
1250W 11925E	201 20 201 20		< 1 < 1	0.02	;	1130		< 1 < 1	- 1	10	0.09	< 10 < 10	< 10 < 10	49 38	< 10 < 10	32	
1250W 120238	201 20	2	< 1	0.01	i	1290	- 1	• •	2	24	0.10	< 10	< 10	31	< 10	70	
1350H 12075E 1350N 9675E	201 20 201 20		< 1 < 1	0,01 0,01	7 5	180	2	< 2 < 2	1	22 43	0.10	< 10 < 10	< 10 < 10	60 41	< 10 < 10	48 18	
1350B 9725E	201 20		< 1	0.02	10	1710	6	< 1	i	30	0.08	< 10	< 10	66	< 10	£1	
13502 97758 13508 91258	201 20 201 20		< } }	0.03 0.01	12	1520	2	< 2	2	28 41	0.07	< 10 < 10	< 10 < 10	41	< 10 < 10	44 100	
1350H 9075E	201 20	i i	٠i ا	0.01	14	1340	i	< 3	- <u>i</u>	45	0.09	< 10	< 10	- 61	< 10	66	
1350H 9925E	201 20	۱	1	0.01	10	800	10	< 2	<u>د</u>	25	0.11	< 10	< 10	59	< 10	*1	
1350N 9975E 1350N 10025E	201 20 201 20		< 1 < 1	0.01	10	820	11	< 2	2 1	32	0.10	< 10 < 10	< 10 < 10	62 51	< 10		
1350W 10075B	301 20:	n -	21	0.01		460		21	÷	63	0.11	< 10	< 10	- 40	< 10	112	
1350W 10125E 1350W 10175E	201 201 201		< 1 < 1	0.01 0.01	12	610 960	1	* 2	1	25 27	0.10	< 10 < 10	< 10 < 10	36 44	< 10 < 10	76 85	
	201 303		e 1	0.02	17	1310	< 2	3	1	36	0.08	< 10	< 10	67	< 10	166	
	201 202		< 1 < 1	0.01 0.01	17	860 1210	10	< 1 < 1		96 33	0.07	< 10 < 10	< 10 < 10	73	< 10 < 10	102	
1350B 10375E	201 202		e i e	0.01	10	550	- i	< 1	i	- 44 -	0.11	< 10	< 10	91	< 10	40	
1350W 10425E	101 201	L '	< 1	0.03	17	190	•	< 2	1	17	0.11	< 10	< 10	54	< 10	114	
	201 202		¢ 1	0.02	11	640		< 2	1	41	0.11	< 10	< 10		< 10	106	
	201 202 201 202		(1) (1)	0.01	23	1360	13	< 2 < 2	5	171	0.15	< 10 < 10	< 10 < 10	79 60	< 10 < 10	146	
350W 10625#	201 202		1 i -	0.01	6	1060	j.	< 2	i	16	0.08	< 10	< 10	39	< 10	116	
350# 10675E	101 202		1	0.02	•	1110	6	< 2	1	14	0.08	< 10	< 10	31	< 10	134	•

CERTIFICATION Horast Pouchles

Avidal Chemists "Geochemists " Registered Assayes 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 201 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Tatal Pages 5 Certificate Date 30-SEP-96 Invoice No. : (1953300) P.O. Number : Account LOY

Project : TAS Comments: ATTN: L.W. SALEKEN CC: GRANT CROOKER

.

		Phone.								CE	RTIFIC	CATE	OF A	NAL	ISIS		49633	000		
SAMPLE	PREP	Au ppb FA+AA	Ag DDB	A1	As ppm	B4 FP2	Be ppm	Bi ppm	Ca.	cđ pp∎	Co 997	Cr ppm	Cu pp∎	Fe X	Ga ppm	Hg ppm	X	La pp o	Hg	Kn ppm
8700 000					2	100	< 0.5	< 2	0.19	< 0.3	1		20	2.01	< 10 < 10		0.04 0.05	< 10 < 10	0.13	1095
11350H 10725E	201 202		< 0.2	1.82	2	100	< 0.5	÷ 1	0.1	< 0.5	!	10	19	1.93	< 10	ì	0.02	< 10	0.10	570
11350N 10775E	201 202		4 0.3	1.94	< 1	60	< 0.5	< 2	0.11	< 0.3	5 10	16		2.96	e 10	4	0.07	10	0.41	475
11350N 108758	201 203	< 5	0.3	1.94	< 1	60	4 0.5	< 2	0.20	2 0.3	•••	Ĩ.	15	1.65	< 10	1	0.04	< 10	0.13	
11350N 109358	201 202	< 3	0.2	1.60	•	• •					6		29	1.62	< 10	1	0.04	< 10	0.14	580
	201 202	5	0.3	1.51	< 2	.0	¢ 0.5	< 2	0.31	< 0.5	- 1	10	ö	1.91	< 10	< 1	0.04	< 10	0.25	375 520
11350N 10975E 11350N 11035E	201 202		0.3	1.80	2	50	< 0.5 < 0.5	< 2	0.10	< 0.1	i	1	6	1.71	< 10	. 1	0.02	< 10 < 10	0.20	310
11350N 11075E	201 202		< 0.1	1.50	< 2	50 50	4 0.5	- 24	0.36	< 0.1		•	37	1.59	< 10 < 10	1	0.04	< LO	0.15	480
11350N 11135E	201 202		< 0.2	2.04	÷ 2	70	4 0.5	< 2	0.20	< 0.5	7	,	19	1.07						230
11350N 11175E	101 102							< 1	0.32	< 0.5	· · · · · ·	13	39	2.66	e 10	- 1	0.05	< 10 < 10	0.25	120
11350N 11225E	201 202		< 0.2	1.01	< 2	70 50	< 0.5		0.43	4 0.5	6	11	37	2.15	< 10	3 4 1	0.07	< 10	0.15	100
11350N 11275E	201 202		0.2 < 0.2	1.68	~ 1	70	4 0.5	< 2	0.24	< 0.5	5	10	32 50	1.96	< 10 < 10	, î	0.05	< 10	0.21	215
11350N 113252	201 202		< 0.3	1.76	1	50	< 0.5	< 2	0.16	< 0.5 < 0.5	5	11	17	1.92	e 10	- î	0.04	< 10	0.12	110
11350N 11375F 11350N 11435F	201 202		< 0.2	1.36	< 2	40	< 0.5	< 3	0.29	< U.S	, 						0.04	< 10	0.12	215
	I_I				< 2	50	< 0.5	< 1	0.23	< 0.5	5	•	12	1.91	< 10 < 10		0.04	- 10	0.17	300
11350H 11475E	201 202		< 0.2	1.31	1	60	< 0.5	< 2	0.29	< 0.5		11	20	1.86	< 10	- i	0.06	< 10	0.18	280
11350N 11525E	201 202		< 0.2	1.51	- e 3 -	60	< 0.5	< 3	0.36	< 0.5	5	ii	21	2.04	< 10	1	0.05	< 10	0.10	250
11350N 115758 11350N 116358	201 202		< 0.2	1,33	6	50	< 0.5	< 2	0.33	< 0.5			10	1.06	< 10	3	0.03	< 10	0.10	
11350N 116758	201 202	< 3	< 0.2	1.37	3	50	< U. 5							2.17	< 10	j	0.04	< 10	0.16	260
	1	3	< 0.2	1.98	< 2	70	< 0.5	< 2	0.23	< 0.5	1	11	15	2.36	e 10	- i	0.04	< 10	0.10	365
11350N 11725E	201 202			1.79	< 2	60	< 0.5	< 2	0.25	< 0.5	s	11	Ĵ.	1.25	< 10	< 1	0.04	< 10	0.20	565
11350N 11825E	201 202		< 0.2	1.66	< 2	60	< 0.5		0.10	< 0.5	š		11	3.03	< 10		0.03	< 10 < 10	0.09	170
11350N 11875E	201 202		0.3	1.39	4 1	50 40	< 0.5	23	0.17	< 0.5	4		•	1.71	< 10	< 1	0.07			
11350N 11925E	201 203	. < 5	< 0.2	1.1.							5	•	11	1.07	< 10	3	0.03	< 10	0.12	115
11350H 11975E	201 202	< 5	0.2	1.77	< 2	40	< 0.5	< 2	0.16 0.11	< 0.5 < 0.5	1	j,	ii	1.96	< 10	1	0.03	< 10 < 10	0.11	115
11350H 12025E	201 202	. < 5	< 0.2	1.33	< 2	60 60	< 0.5	- 23	0.13	4 0.5	-		10	1.00	< 10	· 1	0.03	< 10	0.14	215
11350W 12075E	201 202		< 0.2 < 0.2	1.30	< 2	50	< 0.5	< 2	0.24	< 0.5	5	11	16	2.03	< 10 < 10	1	0.05	e 10	0.14	660
11450N \$675E	201 202 202		0.1	1.07	2	110	× 0.5	< 1	0.20	< 0,5	6	n						· ::	0.14	260
11450N 9725E	101	í					4 0.5	< 2	0.18	< 0.5	5		20	1.75	< 10		0.05	< 10 < 10	0.19	725
11450N 9775E	201 202		< 0.2	1.78		130	4 8.5	2	0.35	< 0.5		11	50	2.09	< 10 < 10	< 1 < 1	0.10	< 10	0.45	\$75
11450H 9825E	201 202		0.3	2.30	~ 1	90	< 0.5	< 2	0.43	0.5	13	32 11	100	2.33	< 10	+ 1	0.05	< 10	0.19	\$15 470
11450M 9875X 11450M 9925X	201 202 202		0.3	2.61	< 2	90	0.5	< 2	0.23	< 0.5			50	3.75	< 10	5	0.09	< 10	0.34	470
11450H 9975E	201 202		0.3	L.49	< 1	70	< 0.5	< 3	0.33						< 10	- 1	- ñ. 07	* 10	0.29	450
L	I		< 0.2	1.60	2	70	4 0.5	< 2	0.44	< 0.5		10	49	2.33	< 10 < 10	1	0.05	+ 10	0.25	625
1450N 10025T	201 202		< 0.3 0.3	1.31		120	< 0.5	< 2	0.25	0.5	13	15	373	4.55	< 10	- < Î	0.13	< 10	0.54	405
11430N 10075E	201 202		0.4	1.17	•	50	0.5	< 2	0.55	< 0.5	13	14	51	1.07	< 10	1	0.05	< 10 10	0.12	1805
11450# 10125E	201 202		0.3	1.37	< 2	50	< 0.5		0.69	0.5	13	11	83	3.61	< 10	,	0.10			
11450W 10225E	201 203	i < 5	0.1	1.23	• •	, ,	,												•	
		J					 .									1.	1.	1.12	e de la	8-2

CERTIFICATION Javil Bridden

Chemex Labs Ltd. Analytical Chemists " Geochemists " Registered Assayem 212 Brooksbank Ava., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number 4-8 Talal Pages 5 Certificate Date 30-SEP-96 Invoice No. : 19633000 P.O. Number : Account : LOY

Project : TAS Comments: ATTN: L.W. SALEKEN CC: GRANT CROOKER

		PHONE: 0	DU4-904-L	221 17	IN. 004 31				Conno							
										CE	RTIFI	CATE	OF A	NALY	'SIS	A9633000
SMPLE	PREP	No ррш	Xa X	ni ppm	P ppa	Pb ppm	Sp DD m	Sc ppm	8r pp=	71 %	T1 ppm	D D	P P R	₩ PP=	Zn ppm	
1350N 10725E 1350N 10775E 1350N 10775E 1350N 10875E 1350N 10875E 1350N 10925E	701 202 201 202 201 202 201 202 201 202 201 202 201 202	1	0.03 0.01 0.03 0.01 0.03	10 12 7 10 10	700 1650 1040 850 1240	8 6 2 9 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 5 1	19 19 11 46 24	0.10 0.09 0.09 0.10 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	50 48 39 91 40	< 10 < 10 < 10 < 10 < 10 < 10	142 200 118 102 134	
1350N 10975E 1350N 11035E 1350N 11075E 1350N 11175E 1350N 11135E 1350N 11175E	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0.01 0.02 0.02 0.01 0.01	9 6 3 8 7	950 210 1930 480 1390	4 4 1 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 2 1 2 1	24 32 9 33 19	0.08 0.09 0.08 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	60 69 39 51 50 74	< 10 < 10 < 10 < 10 < 10	56 64 74 44	
1350N 112358 1350N 112752 1350N 113752 1350N 113758 1350N 113758 1350N 114358	201 203 201 203 201 202 201 202 201 202 201 202	<pre></pre>	0.01 0.01 0.02 0.02 0.01	8 5 7 5 5	1000 850 840 260 1260) 	1 4 1 4 1 4 1 4 1 2	3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32 37 33 40 34	0.11 0.09 0.09 0.10 0.00	< 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	69 41 60 52	< 10 < 10 < 10 < 10 < 10	42 26 24 26 26	
1350N 11475E 1350N 11535E 1350N 11575E 1350N 11575E 1350N 11675E	301 202 201 302 301 202 201 203 201 203 201 203	<pre></pre>	0.01 0.01 0.01 < 0.01 < 0.01 0.01	8 7 7 6 5	1310 990 780 950 1130)]] 3 6	<pre>< 2 < 2 < 2 < 2 < 2 < 2 < 2 </pre>	1 2 1	20 24 32 29 12	0.0 0.0 0.0 0.0 0.0 0.0	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	52 51 63 47 60	< 10 < 10 < 10 < 10 < 10	26 20 20 36 44	
1350H 11725E 1350H 11775E 1350H 11825E 1350H 11875E 1350H 11925E	201 202 201 202 201 202 201 202 201 202 201 203	<pre></pre>	0.01 0.01 0.01 0.01 0.01	7 7 5 4	1560 1310 270 1550 770	(>) ((((() () () () () () () (2 < 1 < 1 < 1	1 1 1 1	32 32 35 10 15	0.10 0.10 0.12 0.09 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	65 36 45 47	< 50 < 10 < 10 < 10	78 86 44 31	
350H 11975E 350H 12035E 350H 12035E 350H 12075E 450H 9675E 450H 9725E	201 202 201 202 201 202 201 202 201 202 201 202	1 1 4 1 4 1	0.01 0.01 0.01 0.01 0.01	4 6 5 5	1000 1120 1310 2260 3390	1 6 1 1 6	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	1 1 1 1 1	14 11 11 19 19	0.10 0.10 0.08 0.07 0.07	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	57 41 43 52 47 47	< 10 < 10 < 10 < 10 < 10 < 10	60 112 72	
450M 97752 450M 99252 450M 98752 450M 98752 450M 99252 450M 99752	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 1	0.01 0.01 0.01 0.01 0.01	10 10 23 16 11	2000 1200 1180 820 850	2 6 1 8 6	< 1 < 1 < 1 < 1 < 2	1 2 1 1	13 30 46 29 59	0.07 0.08 0.14 0.10 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	63 54 73 59 95 75	< 10 < 10 < 10 < 10 < 10	56 100 102 50	
450N 10025E 450N 10075E 450N 10125E 450N 10125E 450N 10125E	201 202 201 202 201 202 201 202 201 202 201 203 201 202	< 1 < 1 5 1	0.01 0.01 0.01 0.01 0.01 < 0.01	11 25 13 22 10	970 1150 1030 900 1330	4 54 22 30	< 2 < 2 < 2 < 2 < 2	3 2 6 3 4	46 36 95 26 51	0.10 0.09 0.05 0.03 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	59 100 205 64	< 10 < 10 < 10 < 10 < 10	133 116 60 136	
					_											11 J.R. Ala

CERTIFICATION: ftent Buchler

Chemex Labs Ltd. natylical Chemisis - Geochemista - Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : TAS Comments: ATTN: L.W. SALEKEN CC: GRANT CROOKER

.

To: GEOTED CONSULTANTS LTD

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Parja Number 5-0 Total Pages 5 Certificate Date 30-SEP-95 Invoise No 19533000 P.O. Number Account "LOY

									Γ	CE	RTIFI	CATE	OF /	ANAL	ISIS		A9633	000		
SAMPLE	PREP CODE	λα ppb γλ+λλ	, Ag ppu	A1	As ppu	Ba ppm	Ве ррш	si ppa	Ca X	Cđ ppm	Co ppm	Cr ppa	Cu. pp∎	70 X	Ga ppm	Hg ppm	K Z	Le ppm	Ng N	N PD
1450N 10275E	201 202	< 5	e 0.2	1.38	4	60	< 0.5	< 1	0.29	4 0.3	10	11	33	3.01	< 10 < 10	< 1	0.05	<pre></pre>	0.14	16 85
1450W 10325E	201 202	- 5	< 0.2	2.00	< 2	130	< 0.5	< 1	0.36	< 0.3		13	26	2.43	< 10	< i	0.09	< 10	0.15	12
1450N 10375E	201 202	< 5	< 0.2	2.26	< 2	110	< 0.5	< 2	0.40	< 0.5			1	1.59	10	< 1	0.05	< 10	0.12	58
1450N 10425E	201 202	< 5	< 0.1	1.48	< 2 2	90 140	< 0.5 < 0.5	< 2	0.37	0.5	11	12	n	3.66	< 10	< 1	0.11	< 10	0.16	135
1450N 10475E	301 202	< 5	¢ 0.4	4.01	-											< 1	0.04	< 10	0.10	11
1450N 10525E	301 202	< 5	< 0.2	2.00	< 2	130	< 0.5	< 2	0.24	0.5	;	10	17 41	1.15	< 10 < 10	- 2 1	0.05	< 10	0.11	
1450N 10575E	201 202	e \$	< 0.2	3,06	< 2	80	< 0.5	< 2	0.31 0.22	< 0.5 0.5	ś	19	11	3.45	10	i	0.03	< 10	0.14	61
1450N 10625E	201 202	< 5	< 0.2	1.60	< 2	50 130	< 0.5 < 0.5	< 2	0.12	0.5	ŝ	15	- 1ē	1.74	< 10	< 1	0.04	< 10	0.20	5
1450N 106752	201 202		< 0.2	2.63	< 2	120	0.3		0.25	1.5	ż	19	40	2.25	< 10	< 1	0.05	10	0.20	11
1450N 10725E	201 202													1.98	10	< 1	0.04	< 10	0.17	6
1450H 10775E	201 202	c 5	< 0.2	2.16	< 2	90	< 0.5	< 2	0.25	< 0.5	7	10 6	1	1.59	10	÷i	0.03	< 10	0.07	- Ú
450H 10825E	201 202	< 5	< 0.3	1.35	< 2	80	< 0.5	< 2	0.14	< 0.5 0.5	i		34	1.55	10	< 1	0.09	< 10	0.19	12
450H 10875E	301 202	< 5	0.1	1.19	< 2	60 60	< 0.5	- 22	0.24	0.5	;	,	- 15	1.99	< 10	< 1	0.05	< 10	0.10	21
1450H 10925E	301 302	< 5 30	< 0.2	1.15		60	< 0.5	÷ 2		< 0.5	6		12	1.70	< 10	< 1	0.03	< 10	0.12	
450N 10975E	101 101	30	•										7	1.12	10	< 1	0.02	/ 10	0.00	2
450N 11025E	201 202	(\$	< 0.2	1.43	< 1	SD	< 0.5	< 1	0.13	< 0.5		11	- ní	2.24	< 10	- i	0.05	< 10	0.23	3
450N 11075E	301 203	c 5	< 0.2	2.03	< 3	60	< 0.5	< 2	0.13	< 0.5 < 0.5		- 1	- 69	1.23	< 10	< 1	0.03	< 10	0.41	9
1450N 111258	201 202	< 5	0.2	0.70	< 1	6 D 9 D	< 0.5 < 0.5	< 2		< 0.5	i	- 11	14	2.08	< 10	< 1	0.05	< 10	0.23	2
450N 11175E	201 202 201 202	5	< 0.2	3.05	1.1	30	4 0.5	< 2	0.44	< 0.5	8	13	47	2.00	< 10	× 1	0.07	< 10	0.33	•
450N 112252	101 101	•••											10	2.05	< 10	< 1	0.04	< 10	0.17	2
450N 11275E	201 202	< 5	< 0.1	1.16	< 2		< 0.5	< 2		< 0.5 < 0.5		10	10	2.01	< 10	- 21	0.06	< 10	0.18	5
450N 113258	301 302	< 5	< 0.3	1.46	< 2	**	< 0.5	< 1 < 1	0.37	< 0.5		iĭ	17	1.86	< 10	< 1	0.08	< 10	0.21	3
450N 11375E	201 202	4.5	0.2	1.47	< 2	110	< 0.5	< 1		< 0.5	7	12	11	2.00	< 10	< 1	0.06	< 10	0.21	49
450N 11425E	201 202 201 202	< 5 < 5	< 0.2	1.93	2	60	< 0.5	- 22	0.47	< 0.5	7	14	15	2.13	< 10	< 1	8.05	< 10	0.21	
1450N 11475E	201 201	• •										10	13	1.81	(10	< 1	0.06	< 10	0.19	
1450N 11525E	201 201	< 5	< 0.3	1.44	3	70	< 0.5	< 1	0.20	< 0.5	5	10	11	1.94	< 10	× 1	0.04	< 10	0.13	30
450W 11575E	201 202	< 5	< 0.3	1.01	< 1	60 50	< 0.5	< 2		< D.5	í	÷ ;	10	1.72	< 10	< 1	0.03	< 10	0.10	24
450N 11625B	201 202	< 5	< 0.2 < 0.2	1.85	< 1	40	< 0.5	- 2.5	0.19	< 0.5	ŝ		13	1.92	4 10	< 1	0.04	< 10 < 10	0.12	11
450N 116758 450N 11725E	201 202 201 202	< 5	0.2	3.09	< 2	60	< 0.5	< 2	0.17	< 0.5	6	,	19	2.04	10	< 1	0.04	< 10	0.10	
430N 217275								<u> </u>			7	13	32	2.15	+ 10	< 1	0.05	< 10	0.24	64
650N 11775E	201 202	< 5	< 0.1	2.62	2	100	< 0.5		0.22	< 0.5 < 0.5	4	- 14	ii	2.15	10	< 1	0.07	4 10	0.33	71
450N 118258	201 202		< 0.3	1.46	< 2	60 76	< 0.5		0.21	4 0.5	i i	10	17	2.15	4 10	< 1	0.04	< 30	0.17	
450W 11875X	201 202		< 0.2 < 0.2	2.03			< 0.5		0.23	< 0.5	2	7	17	1.00	4 10	< 1	0.01	< 10 < 10	0.11	52
450N 11925E 450N 11975E	201 202 201 202		0.1	2.07	1		< 0.5	< 2	0.26	< 0.5	5	10	14	2.14	< 10	3	0.04	* 10	0.1.	
1,000 11,000										< 0.5		1	7	1.84	10	• i	0.03	10	0.11	15
450N 12025E	201 202		< 0.2	3.06	< 1		< 0.5	< 2	0.16	< 0.5		11	20	3.12	< 10	< 1	0.05	< 10	0.20	31
1430N 13075E	201 202	()	< 0.2														. 1		<u>-5</u> n	
			-										_	ERTIFIC	ATION	- IS	sai	1 3	- 1	¢

-

Chemex Labs Ltd. Analytal Chemisis * Geochemisis * Registered Assayers 212 Brooksbank Alex ... North Vancouver British Columbia, Canada... V71 2C1 PHONE: 804-984-0221 FAX: 804-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number : 5-8 Total Pages : 5 Certilicate Date: 30:SEP-96 Invoice No : 19633000 P.O. Number : Account : LOY

Project: TAS Comments: ATTN: L.W., SALEKEN CC: GRANT CROOKER

			PHONE: @	504-984-0	1221 FA	X: 604-9	54-0210			Comf	nents:	ATTN: L.	W, JALC				
											CE	RTIFI	CATE	OF A	NALY	SIS	A9633000
SAMPLE	PREI		No ppm		Ni ppu	P ppa	Pb ppm	Sb ppm	Sc ppa	Sr ppm	Tİ X	T1 ppm	U PPM	¥ PD M	N ppm	In pp=	
			< 1	0.01	10	1190		2	3	31	0.09	< 10	< 10	109	< 10	64	
450N 10275E 450N 10325E	201 2		< 1	0.01	12	500	i	< 2	1	46	0.11	< 10	< 10	17	< 10	96 120	
450N 10375E	1 201		~ 1	0.01	10	370	6	< 2	,		0.11	< 10 < 10	< 10 < 10	74	< 10 < 10	72	
SON 10435E	201 2		< 1	0.02	10	570	1	< 2	1	24	0.09	< 10	< 10	10	× 10	120	
450N 10475E	201	102	1	¢.01	13	750	•	•••	•								
450N 10525E	201 2	102	1	0.01	11	850	1	11	1	28	0.10	< 10	< 10	53 53	< 10 < 10	114	
450N 10575E	201		< î	6.03	15	1100	6	< 2	3	44	0.09	< 10 < 10	< 10 < 10	40	< 10	110	
450N 10625E	201 2		< 1	0.03	,	1170		< 2	1	26	0.10	< 10	4 10	- ii	< 10	160	
450N 10675E	201 2		< 1	0.03	15	1120	:	4 1	3		0.11	< 10	< 10	54	< 10	306	
450N 10725E	201 2	202	1	0.02		1,00									< 10	176	· · · · · · · · · · · · · · · · · · ·
450N 10775E	201 2	102	1	0.03	11	1210	2	4	1	27	0.10	< 10 < 10	< 10	59 41	< 10	140	
450N 10835B	201 2		< 1	0.02		1100		< 3	< 1	14	0.10	< 10	< 10	19	< 10	268	
450M 10875K	201 2		1	0.01		\$30 1490	10 6	1	2	24	0.09	< 10	< 10	54	< 10	160	
450N 10925E	201 2		1	0.02	11	1990	- i		i	15	0.00	< 10	< 10	43	< 10	48	
450N 10975E	1 101	10.4	-	0.03									< 10	39	< 10	46	
450H 11035E	201 2	103	< 1	0.02		1740	1	< 1	1	15	0.07	< 10 < 10	< 10	73	< 10	60	
450W 11075E	201 2		1	0.01	10	1410	< 1	- 1	1	249	0.01	< 10	< 10	50	< 10	50	
450N 111258	201 2		2 < 1	0.01		1560	1	÷ 1	2	34	0.08	< 10	< 10	56	< 10	44	
4508 111758 4508 112258	201		< 1	0.01	ŝ	990	< 1	2	•	55	0.09	< 10	10	113	< 10	34	
										27	0.09	< 10	< 10	59	< 10	- 11	
450H 11275E	201 2		< 1	0.01		1540	2		2	39	0.10	< 10	4 10	58	e 10	82	
450N 11325E	201 2		< 1	0.01	11	1420	1	21	2	47	0.10	< 10	< 10	51	< 10	12	
450N 11375E	201 2		< 1 < 1	0.03		660	< i	1	i i	53	0.13	< 10	< 10	- 62	< 10 < 10	65 45	
450N 11425E 450N 11475E	201		- i	0,01	7	310	ā	< 1	3	51	0.16	< 10	< 10	79	< 10	••	
								< 1	1	27	0.11	< 10	< 10	56	< 10	72	
450N 11525E	201 2		< 1	0.01		590 1510	1		i	- ii	0.09	< 10	< 10	55	< 10	63	
450N 11575E	201 2		< 1 1	0.01		1760	- 1	12	1	13	0.00	< 10	< 10		< 10	56 46	
450N 11635E 450N 11675E	201 2		- e î	0.01	i	930	< 1	6	1	10	0.09	< 10	< 10	58 38	< 10 < 10	60	
450W 11725E	201 2		< 1	0.02	7	1120	< 3	< 2	1	10	0.10	< 10	< 10				
	1 - + -				10	830	6	< 2	1	25	0.10	< 10	< 10	54	< 10	84	
50W 11775E	201 2		< 1 1	0.02	10	460		2.2	2	35	0.12	< 10	< 10		< 10		
450W 13925# 450W 11975#	201 2		< 1	0.01	ī	1280	j.	< 2	1	32	0.11	< 10	< 10	62 10	< 10	102	
450H 11925E	201 2		< 1	0.04	Ś	180	- <u>+</u>	< 2	1	20 28	0.00	< 10 < 10	< 10 < 10	62	< 10	92	
450N 11975R	201 2		< 1	0.01	6	1090	3	2	1	36	0.10	- 10	. 10				
	1 	-		0.02		1090	4	< 2	1	1)	0.09	< 10	< 10	49	< 10	6	
650N 12025B	201 2			0.02	;	1090		4	i	32	0.11	∢ 10	< 10	63	< 10	74	
450N 120758	1		••		-												
						<u></u>											11
	_	_															· · · · · · · · · · · · · · · · · · ·

CERTIFICATION

.

-

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vencouver British Columbia, Canada VXJ 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Τσ:	GEOTEC CONSULTANTS LTD.
	6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number 1 A Total Pages 5 Certificate Date 30-SEP-96 Inverse No 10132982 P.O. Number Account 'LOY

- ----- - ------

Project : TAS Comments: ATTN: L.W. SALEKEN CC: GRANT CROOKER

·

<u> </u>											C	ERTIF	ICAT	E OF	ANAL	YSIS		A963	2982		
SAMPLE	PR CC	ep De	λυ ppb \$λ+λλ	Ag ppm	A1 %	As ppu	Ва ррш	Be ppm	B] ppa	Ce 1	cđ ppm	Co PPE	Cr pp a	Cu ppm	Te N	Ga ppm	Bg ppn	K N	La ppm		
400M 9650E	1		NotRed	Noted	NotRed	Notacd	NotRed	Notred	NotRed	NotRed	NotRed	NotRed					NotRed		NotAcd		
400N 9700E		202	< 5	0.3	2.20		80	0.5	11	0.27	< 0.5	2	10	103	1.21	< 10 < 10	< 1 < 1	0.05	10		
400M 9750E		202	< 5 < 5	0.3	1.54	< 2	70 50	0.5		0.42	3.0 < 0.5	- 1	;	17	1.66	× 10	- 21	D.04			
400H 9850E		202	< 5	0.1	1.52	< 1	50	< 0.5	< 1	0.45	4 0.5	6	11	55	2.21	< 10	• 1	0.03	< 10	9.23	53
400N 9900E		202	. 5	0.3	2.29	< 1	80	< D.5	< 3	0.61	4 0.5	5	,	103	1.85	< 10	< 1	0.04	• 10	0.17	
400N 9950E		303	< 5	< 0.1	1.11	1	70 50	< 0.5	< 1 2	0.23	< 0.5	75	10	44	2.09	< 10 < 10		0.01 0.03	< 10 < 10	0.19	11
500N 9725E 500N 9775E		202	< 5 < 5	0.4	1.70	< 1	100	< 0.5	- 11	0.59	+ 0.5	i	15	150	3.02	< 10	- 21	0.05	10	0.33	47
500N 9825E		202	< 5	0.2	1.60	2		< 0.5	- 21	D.27	4 0.5	i.	10	45	2.91	< 10	< 1	0.03	< 10	0.13	10
500N 98752		202	< 1	0.2	1.14	2	60	< 0.5	1 2	0.36	\$ 0.5	5	10	52	1.55	× 10		0.03	< 10	0.17	
500N 9925E		202	< 5	0.4	3.00	< 2	110	< 0.5	< 2	0.26	4 0.5	?	;	95 115	1.17	< 10 < 10	- + 1 1	0,03 0,03	< 10 < 10	0.17	34
500M \$9758 600M 96502	201	202	< 5 NotRed	0.2	3.03	< 3 NotRed		< 0.5	< 2 Not Ecd	0.37	< 0.5 NotRed	5 NotRed	NotRed						NetRed		
0400W 9650E		202	< 5	< 0.3	1.32	2	70	< 0.5	< 3	0.20	< 0.5	5	7	7	1.41	< 10	< 1	0.04	< 10	0.07	49
1400H 9700E	201	202	< 5	4 0.1	1.65	2	70	1 0.5	< 2	9.24	< 0.5	7	10	19	1.49	< 10	< 1	0.06	< 10	0.14	27
0400N 9750E		202	< 5	< 0.2	1.72	4	80	< 0.5	< 3	0.52	< 0.5	11	21	67	1.11	< 10 < 10	< 1	0,12	< 10 < 10	0.37	23
0400N 98002 0400N 98502	201	202	< 5	0.2	2.95		280 110	0.5	< 2	0.47	< 0.5	13	14	30	2.09	< 10	- < î	0.09	< 10	0.23	75
400N 9900E	201			0.2	1.78	i	360	< 0.5	÷ i	0.39	3.5	5	10	12	1.64	10	× 1	0.07	< 10	n.14	1+1
	201		< 5	< 0.3	1.15	1	120	< 0.5	< 1	0.11	1.5	5		11	1.51	< 10	1 >	0.06	< 10	0.13	106
400N 10000E	201		< 5	4 0.2	1.37	2	140 150	< 0.5	< 2	0.31	0.5	7	13	28	1.91	< 10		0.06	< 10	0.15	51
400N 10100E	1 201			< 0.2	2.36		230	< 0.5		0.31	1.0	÷	10	12	1.99	< 10	< 1	0.07	< 10	0.26	112
400N 10150E	201		< 5	< 0.2	1.46	< 2	160	< 0.5	< 3	0.33	0.5	4	7	•	1.69	< 10	< 1	0.05	< 10	0.12	78
400H 10200E	301		< 3	< 0.2	1.27	< 2	100	< 0.5	< 3	0.19	< 0.5	5	11	14	1.86	< 10 < 10		0.06	< 10 < 10	0.12	58
400M 10250E	201		< 5	0.2	1.76	< ?	190	< 0.5	< 2	0.33	0.5 < 0.5	2			1.76	< 10	- ĉi	0.06	< 10	0.14	143
400N 10350E	201		< 1	< 0.2	1.47	< 1	80	< 0.5	< 2	0.35	< 0.5	ŝ	ī	15	1.15	< 10	< 1	0.06	< 10	0.11	61
400N 10400E	201	202	< 5	∢ 0.2	1.59	1	100	< 0.5	< 1	0.25	< 0.5	4	,	13	1.63	< 10	< 1	0.04	< 10	0.13	11
400# 10450#	201			< 0.2	1.25	< 1		< 0.5	< 3	0.15	< 0.5	5	1	7	1.47	< 10 < 10	< i < 1	0.03	< 10 < 10	0.10	1250
400H 10500K	201			< 0.2	1.35	3		< 0.5		0.20	< 0.5			11	2.04	< 10	~ 1	0.04	< 10	0.10	101
400N 10600E	201			< 0.1	2.22	5		< 0.5	- 23	0.27	4 0.5	i i	10	14	1.84	< 10	< 1	0.05	< 10	0.10	643
400N 10650E	201			< 0.2	1.98	< 2	120	< 0.5	< 2	0.25	< 0.5	4	10	17	1.77	< 10	< 1	0.05	< 10	0.18	33
400N 10700E	201			< 0.2	1.78	2		< 0.5	< 2	0.20	< 0.5	Ę	10	20	2.02	< 10	< 1 < 1	0.04	< 10 < 10	0.20	735
600m 10750# 600m 10800#	201			< 0.2 < 0.2	2.01 1.53	< ۽		< 0.5	< 2	0.21	< 0.5	;		10	1.61	4 10	~ 1	0.04	< 10	0.16	663
400H 10850E	201	202	- È Ś	0.2	1.84	1	130	< 0.5	< 2	0.35	< 0.5	÷.		19	1.11	4 10	< 1	0.05	< 10	0.17	\$75
400N 10900E	201	202	< 5	< 0.2	1.83	3	90	< 0,5	< 2	0.23	< 0.5	4	'	5	1.47	< 10	< 1	0.04	< 10	0.07	919
	ĻĹ.										·						- 11		<u>\</u>	5 7	· — · <u> </u>
																	_	trs . 1	H1	لالات	0.

Chemex Labs Ltd. Analylical Chemists "Geochemists "Registered Assayers 212 Brooksbank Ave. North Vancouver British Columbie, Canada V7J 2C1 PHONE: 504-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number 1-8 Total Pages 5 Certilicate Date 30-5EP-96 Invoice No. 19632982 P.O. Number Account :LOY

Project : TAS Comments: ATTN: L.W. SALEKEN CC: GRANT CROOKER

										CI	EATIF	ICATE	E OF /	NAL		A9632982
SAMPLE	PREP	Но ррш	· · · ·		P PPm	Pb pp∎		8c PP=	Sr pp=	Tİ X	ti pps	U ppw	t bba	¥ ppm	Zn ppm	
9400N 9650E 9400N 9700E 9600N 9750E 9600N 9800E 9400N 9850E	201 20 201 20 201 20 201 20 201 20		₹ 0.01	NotAcd 7 3	NotRed \$70 270 300 320	NotRed 6 6 6	NotRed < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	NotRad 2 2 3 3	NotRcđ 28 37 58 46	NotRed 0.11 0.08 0.11 0.12	NotRed < 10 < 10 < 10 < 10	NotRcd < 10 < 10 < 10 < 10 < 10	NotRed 55 42 50 67	Notred < 10 < 10 < 10 < 10 < 10	604 652 88 108	
9400N 9900E 9400N 9950E 9500N 9725E 9500N 9775E 9500N 9825E	201 20 201 20 201 20 201 20 201 20 201 20	1 <1 <1 <1		7 6 5 12 7	330 1120 1300 310 1430	6 5 1 1 5	<pre></pre>	2 2 1 4 2	31 20 17 46 30	0.11 0.11 0.09 0.10 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	44 39 43 60 61	< 10 < 10 < 10 < 10 < 10 < 10	38 58 48 74 34	
95000 98758 95000 99258 95000 99758 95000 96508 104000 96508	201 202 201 202 201 202 201 202 201 202	< 1 < 1 NotRdd 1	0.03	5	1530	NotRud 2	< 2	3 1 2 NotRed N 1	37 26 27 RotRed 1 18 26	0.09 0.11 0.11 NotRod 0.07	< 10 < 10 < 10 NotRed < 10 < 10	< 10 < 10 < 10 NotRed < 10 < 10	54 48 42 16 16 36	< 10 < 10 < 10 fotRcd 2 < 10 < 10	76 76 40 10tRcd 28 60	
10400N 97002 10400N 97302 10400N 98008 10400N 98508 10400N 99508 20400N 99508	203 203 201 202 201 202 201 202 201 202 201 202	1 1	0.02 < 0.01 0.03 < 0.02 0.01 0.01	11 11 11 11	1270 700 1690 740 520	12		6 4 1 2 	58 56 40 41 	0.13 0.13 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	103 75 59 40	< 10 < 10 < 10 < 10 < 10	60 82 84 328	
10400N 100002 10400N 100502 10400N 100502 10400N 101002 10400N 101502	201 202 201 202 201 203 201 203 201 203	1 < 1 < 1	0.01 0.03 0.01 0.03	10	740 1170 700 720			1 1 1	34 35 31 39 21	0.08 0.10 0.09	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	51 40 47 35 50	< 10 < 10 < 10 < 10 < 10	103 110 332 174	
10400N 10250E 10400N 10350E 10400N 10350E 10400N 10350E 10400N 10400E	201 202 201 202 201 202 201 202 201 202	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.01 0.01 0.01 0.01 0.01	75	1040 950 480 360			j 1 2	25 37 24 26	0.07 0.08 0.09 0.10 0.28	< 10 < 10 < 10 < 10 < 20	< 10 < 10 < 10 < 10 < 10	31 43 36 41 38	< 10 < 10 < 10 < 10 < 10	192 150 86 82 80	
0400N 105008 0400N 105508 0400N 104008 0400N 104508	201 202 201 202 201 203 201 202 201 202	i	0.01 0.01 0.01 0.01 0.01		2050 430 700 870	1 1 1 1 1		i 1 1	30 31 28 25	0.07 0.11 0.10 0.09	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	41 45 45 45 	< 10 < 10 < 10 < 10 < 10	64 64 114 76	·····
0400N 10700E 0400N 10750E 0400N 10800E 0400N 10830E 0400N 10800E	201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	5666	1330 730 1860 2170	2 6 4 6		1 1 1 1	34 22 33 26	0.10 0.09 0.08 0.08	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	48 45 44 35	< 10 < 10 < 10 < 10 < 10	66 72 52 72	
			<u> </u>													11 4 1 3 4 190

CERTIFICATION_ Starting

.

-

Chemex Labs Ltd. Analytical Charmists ' Barchenridgs ' Registered Assaypts 212 Brooksbank Ave. Brisba Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

10. GEOTEO CONSCENTICE ----

Total Hages D Certificate Date 30-SEP-96 Invoice No. 1.9532982 P.O. Number Account LOY

8776 LABURNUM ST. VANCOUVER, BC V6P 5M9 Project : TAS Comments: ATTN: L.W. SALEKEN CC: GRANT CROOKER

										CE	RTIFI	CATE	OF A	NAL	rsis		49632	982		
SAMPLE	PREP	Au ppb FA+AA	lg ppa	AI ¥	λe pp=	3a ppm	Be ppa	91 ppm	Ca N	Cđ ppm	Co ppn	Cr pp=	Cu. ppul	7+ 1	Ga ppm	8g pp n	R X	La ppm	Mq	P
										< 0.5	5	1	11	1.61	< 10	< 1	0.03	< 10	0.13	1
400N 10950E	201 202	< 5	10.2	1.67	2	70	< 0.5	< 2	0.16	0.5	ŝ	;	14	1.71	< 10	< 1	0.04	< 10	0.11	3
400N 11000E	201 202	< 5	< 0.2	1.65	< 2	10 70	< 0.5	1	0.23	4 0.5	i i	10	10	2.03	< 10	< 1	0.04	< 10	0.13	4
400N 11050E 400N 11100E	201 202 201 202	< 5	< 0.2 < 0.2	1.65	2	60	. 0.5	- 22	0.33	0.5	4	11	\$3	3.00	< 10	< 1	0.04	< 10 < 10	0.17	- 1
400N 13150E	201 202		< 0.2	1.94	2		< 0.5	< 2	0.23	< 0.5	8	13	17	2.04	< 10	۲ ،	0.04			
						70	< 0.5	< 2	0.61	< 0.3		13	26	2.18	< 10	11	0.05	< 10	0.20	
400N 11200E	101 202		< 0.2	1.30	< 2	40	< 0.5	2		0.5	4	,	15	1.48	< 10	< 1	0.03	< 10	0.17	1
400N 11250E	201 202		< 0.2 < 0.2	1.29	1	60	e 0.5			< 0.5	3	11	20	1.51	< 10	< 1	0.04	< 10	0.28 0.37	-
400N 11300E	201 202		< 0.2	1.6	~ 1		e 0.5	÷ 2	0.44	< 0.5	•	14	26	1.81	< 10	1	0.0S 0.02	< 10 < 10	0.13	
400N 11350E 400N 11400E	201 202		< 0.2	1.49	1		< 0.5	< 2	0.28	< 0.5	4	10	24	1.59	< 10	< 1	0.02	< 10	Q. 43	
									D. 26	< 0.5	ì	1	16	1.35	< 10	< 1	0.02	< 10	0.20	
100N 11450E	301 303	< 5	< 0.2	1.25	< 2	30	< 0.5	< 2	0.24	0.5	-	11	38	1.94	< 10	< 1	0.17	< 10	0.32	
400H 11500E	201 202	< 5	0.2	1.35	< 2		< 0.5		0.50	< 0.5	i	· · · ·	28	1.79	< 10	< 1	0.04	< 10	0.24	
400m 11550m	201 202		< 0.2 < 0.2	1.25	1	60	< 0.5	2.2		< 0.5	5	12	37	2.00	< 10	< 1	0.05	< 10	0.24	
00N 11600E	201 202		< 0.2	1.31	5	60	< 0.5	1	0.32	< 0.5	5	,	15	1.74	< 10	< 1	0.03	< 10	0.14	
									0.24	< 0.5	3	10	17	2.01	< 10	< 1	0.04	< 10	0.15	
DOM 11700E	201 203	< 5	0.2	1.92	2		< 0.5		0.25	< 0.5		10	32	1.96	< 10	< 1	0.04	< 10	0.17	
DOM 11750E	201 202		< 0.3	1.17	2	80 70	< 0.5		0.18	< 6.3	i	10	15	2.24	< 10	∢ 1	0.03	< 10	0.16	
DOM 11800K	201 202		< 0.2	1.71	;		< 0.5	2		< 0.5	5	10	15	2.10	< 10	< 1	0.03	< 10	0.14	
OCN 11850F	201 202 201 202		< 0.2	2.43	< i		< 0.5	÷ 1	0.13	< 0.5	5		12	1.79	< 10	< 1	9.03	< 10	0.10	_
CON TIVECH									0.12	< 0.5		1	10	1.70	< 10	41	0.03	+ 10	0.10	
OCH 11950#	201 202		< 0.2	1.79	< 2		< 0.5	< 2	0.33	< 0.5	-	10	15	2.05	< 10	< 1	0.04	< 10	0.14	
DON 12000E	201 302		< 0.2	1.85	< 2 < 2		< 0.5			< 0.5	5	ii	15	1.68	< 10	1	0.04	< 10	0.25	1
DON 12050E	201 202	< 5	< 0.1 0.1	1.71	1	70	0.5	1		< 0.5	,	- i	32	1.98	< 10	< 1	0.04	< 10	0.39	
CON 121005 CON 96752	201 202		< 0.2	1.31	2		< 0.5	< 1		< 0.5	•	16	34	2.68	< 10	< 1	0.04	< 10	0.40	
									0.30	< 0.3			12	1.74	< 10	• 1	0.05	< 10	0.14	1
CON 37355	201 202		< 0.2	1.17	< 2	130	< 0.5			< 0.5	14	ú	ii ii	3.31	< 10	< 1	6.08	< 10	0.39	
DON 97758	201 202		< 0.2	1 80			< D.5	23		e 0.5	10	12	32	2.27	< 10	× 1	0.09	< 10	0.74	
	201 202 201 202		< 0.2	1 71	~ 2		< 0.5			< 0.5		,	19	1.83	< 10	< 1	0.05	< 10 < 10	0.13 0.37	
00N 99752 00N 99252	201 202		< 0.3	2.24	2.2	100	4 0.5	÷ ā	0.41	e 0.5	10	19	56	2.90	< 10	< 1	0.06	< 10	0.37	
									0.34	< 0.5	1	21	29	2.61	+ 10	< 1	8.07	× 10	3.30	
	201 202		< 0.2	2.10	< 2		< 0.5	< 2 < 2		< 0.5		ii	32	2.27	< 10	< 1	0.07	< 10	0.26	1
	201 303		< 0.2	3.07	1		< 0.5			< 0.5	ĩ	13	29	2.17	< 10	< 1	0.08	< 10	0.33	
	201 302		< 0.3 < 0.1	2.44	< 2	170	< 0.5	25		4 0.5	,	12	17	1.62	e 10	< 1	0.09	< 10	0.10	1
	201 202		4 0.3	1.49	1		0.5	< 2	0.35	< 0.5	E	11	23	1.79	< 10	< 1	0.10	< 10	0.19	
DON SEVEN												17	31	1.10	₹ 10	< 1	0.12	< 10	0.31	-
00N 9850E	201 202		< 0.3	1.53	< 2	200	< 0.5	< 2	0.36	< 0.5		15	51	1.65	× 10	< 1	0.09	< 10	0.36	
00M 9900K	201 202		< 0.3	1.65	2	90 40	< 0.5	< 2	0.61	< 0.5	10	16	63	2.16	× 10	< 1	0.11	10	0.30	
	201 202		40.3	1.92	2		< 0.5	1	0.57	e 0.1	6	13	52	3.32	< 10	1	0.09	< 10	0.23	1
003 30000E	201 202	< 5	< 0.3	1.12			. 0. 5	4 2	0.25	< 0.5	•	•	7	1.73	< 10	< 1	0.07	< 10	0.17	

CERTIFICATION:__

.

.

.

Chemex Labs Ltd. Analytical Chemisis * Genecheniksis * Registered Asternet 212 Brooksbark Ave. Brisbis Columbia, Carada V7J 20C PHONE: 604-984-0221 FAX: 804-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number 2 B Total Pages 5 Certificate Date: 30-SEP-96 Invoice No. 19632982 P.O. Number Account LOY

.

Project : TAS Commenta: ATTN: L.W. SALEKEN CC: GRANT CROOKER

										ÇE	RTIF	CATE	OF A	NAL)	SIS	A9632982
SAMP LE	PREP	Ио рри	Ka	NI pp=	P ppm	Pb pp=	5b ppm	Sc pp=	Sr pp m	71 N	T1 ppm	0 90=	V ppm	¥ ppa	Zn ppm	<u></u>
400N 10950E	201 202	< 1	0.02		1410		< 2	1	19	0.09	< 10	4 10	41	< 10 < 10	41 53	
0400N 11000E	301 202	< 1	0.01		1530	E.	< 1	1		0.09	< 10 < 10	< 10 < 10	47	< 10	12	
0400W 11050E	301 203	< 1	0.01	5	2010 1110		< 2	1	22 32	0.03	10	< 10	ä	< 10	58	
1400W 11100E	201 202	< 1 < 1	0.01		1590	-	22		32	0.10	< 10	< 10	62	< 10	90	
400N 11130E										8.09	< 10	< 10	71	< 10	61	
0400H 11200E	201 202	< 1	0.01	- <u>+</u>	1860		< 2	3	10 25	0.10	< 10	< 10	- 44	< 10	20	
400W 11250B	201 202		0.01		360			÷	ä	0.14	< 10	< 10	59	< 10	28	
400W 11300E	201 202		0.01	- 2	500	1	< 3	1	40	0.13	< 10	< 10	63 46	< 10 < 10	61 73	
400N 11400E	201 202	< i 1	0.03	i i	160	"	< 3	1	25	0.11	< 10	< 10	4.5	< 10		
	201 202	< 1	0.02		130		< 1	1	23	0.10	< 10	< 10	39	< 10	48	
0400N 11450E	201 202		0.02	÷ .	250	i	< 1	2	21	0.09	4 10	< 10	- 41 54	< 10 < 10	104	
D400H 11550E	201 202	< 1	0.03	5	730	•	< 1	1	46	0.09	< 10 < 10	< 10 < 10	74	~ 10	31	
0400N 11600E	301 202	< 1	0.01		68D 1310	1		1	21	0.00	< 10	< 10	52	< 10	78	
0400N 11650E	201 202	< 1	0.01	,	1910			-			··			< 10	60	
400H 11700E	201 202	< 1	0.01	7	1250	6	< 1	2	24	0.10	< 10 < 10	< 10 < 10	\$7	< 10	120	
400W 11750E	201 202	< 1	0.01		1210		< 2 < 3	2	17	0.13	< 10	e 10	60	< 10	94	
0400N 11800E	201 202	1	0.01		1210		- 25	ĩ	21	0.11	< 10	< 10	55	< 10	64 64	
1190DE	201 202	< î	0.03	i.	1290	6	< 1	1	13	0.10	< 10	< 10	43	< 10	••	
					1250	6	< 2	i	14	0.10	< 10	< 10	46	< 10	50	
0400N 11950E 0400N 12000E	301 202 301 203		0.03		1210		1	i	24	0.10	< 10	< 10	58	< 10	70	
0400W 12050E	201 202		0.03		400	34	< 2	3	28	0.10	< 10	< 10	41	< 10 < 10	110 94	
0400# 12100E	201 202	< Ī	0.01	5	1130	1	< 2 < 3	3	32	0.13 0.06	< 10 < 10	- 10	- ii	× 10	<u></u>	
500W 9673K	201 207	1	< 0.01	,	820	•	~ /	•								
500W 9725E	201 202	< 1	0.01	i	790		< 2	1	21	0.00	< 10	< 10	48	< 10 < 10	76	
500W 9775E	201 103	1	< 0.01	53	930			;	41	0.09	< 10 < 10	< 10 < 10	60	2 10	12	
0500N 9835E	201 202	1	0.01	17	710 1730	- 1	< 2	i	20	0.08	< 10	< 10	47	< 10	102	
0500N 9875E 0500N 9925E	201 202	< 1 1	< 0.01		540	- i	÷ 2	i	49	0,13	< 10	< 10	63	< 10	106	
300A 33236									36	d.11	< 10	< 10	45	< 10	150	
500N 9975E	201 202	< 1	0.01	14	\$00 1720	1	< 7	1	31	0.10	4 10	< 10	59	< 10	110	
500N 9650E 5600N 9700E	201 202	1 4 1	0.01	12	580	i	22	i	34	0.13	< 10	< 10	56	< 10	69	
5600N 9750E	201 202	1	0.01		1130	6	< 2	1	38	0.09	< 10 < 10	< 10 < 10	50 46	< 10 < 10	76	
SCON SECOE	201 202	4 I	0.01	10	1060	6	< 2	2	31	0.08	- 10	. 10				
	201 202	- <u>- (</u> 1	0.01	11	1690	6	< 2	- 2	30	0.06	< 10	< 10	53	< 10	80 69	
600N 9850E	201 202	21	0.01	ii	940	1	< 2	3	38	0.09	< 10	< 10	45	< 10 < 10	54	
600N 9950E	201 202	< 1	0.01	12	220		< 2 < 2	4	51 47	0.11 0.10	< 10 < 10	< 10 < 10	ii	< 10	ä	
600N 10000E	201 202		< 0.01 0.01		440 270	10	< 2	i	ž	0.09	< 10	< 10	43	< 10	232	
0600N 10050E	201 202	< 1	0.01	•		•		-								
<u></u>		<u> </u>]
															ATION	

To: GEOTEC CONSULTANTS LTD

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number 3 A Total Pages 5 Centiticate Date 30-SEP-96 Invoice No. 19532982 P.O. Number Account LOY

Chemex Labs Ltd. Analylical Chemists ⁻ Geochemists ⁻ Registered Assayers 212 Brooksbank Ave. North Vancouver British Columbia: Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : TAS Commenta: ATTN: L.W. SALEKEN CC: GRANT CROOKER

										CE	RTIFI	CATE	OF /	ANAL	YSIS		A9632			2 <u></u>
SAMPLE	PREP	ха ррб Рх+хх	Ag ppe	A2 %	λs ppm	82 ppn	3e ppm	91 ppm	Ce N	cđ ppm	Co pp u	Cr ppm	Co ppm	74 \	Ca ppa	Bg pp m	ĸ	L.	Hg X	Mn ppm
10600N 10100x 10600N 10150x 10600N 10200E 10600N 10250E 10600N 10300E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5	< 0.2 < 0.2 0.2 < 0.2 < 0.3 < 0.3	3.07 2.01 1.56 1.76 1.72	< 2 2 1 1 1	200 140 60 99 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 3 < 3 < 2 < 2 < 2	0.32 0.36 0.37 0.36 0.25	0.5 3.5 < 0.5 < 0.5 < 0.5	7 7 4 6 3	10 11 7 9 7	18 24 62 28 9	3.08 1.97 1.55 2.71 1.64	< 10 < 10 < 10 < 20 < 10	< f < 1 < 1 < 2 < 1	0.06 0.06 0.02 0.05 0.04	< 10 < 10 10 \$ 10 \$ 10 \$ 10	0.19 0.22 0.10 0.15 0.11	995 775 480 850 1380
20600N 10250E 10600N 10400B 10600N 10450E 10600N 10500E 10600N 10550E	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.88 2.45 2.00 2.03 2.50	4 2 4 4 < 2	120	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	< 1 < 1 < 1 < 1 < 1	D.17 0.19 0.14 0.21 0.73	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 7 4 5 4	7 10 7 8 9	12 23 11 11 14	1.59 1.97 1.67 1.84 1.84	< 10 < 10 < 10 < 10 < 10 < 10	<pre></pre>	0.05 0.05 0.04 0.05 0.03	< 10 + 10 < 10 < 10 + 10	0.12 0.17 0.12 0.13 0.13	580 605 1515 900 150
10600N 10600B 10600N 10650B 10600N 10700B 10600N 10750B 10600N 10750B	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.17 2.13 1.26 2.26 1.99	2 2 2 4 2	70 90 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5		0.79 0.16 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 10 6 5 6	9 11 9 9	12 47 7 16 24	2.15 1.51 1.62 1.95 1.41	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < t	0.03 0.05 0.03 0.05 0.05	< 10 10 < 10 < 10 - 10	0,15 0.55 0.00 0.15 0.17	585 470 135 1025 520
10600N 10850E 10600N 10900E 10600N 10950E 10600N 11050E 10600N 11050E	201 202 201 203 201 203 201 203 201 203 201 203	< 5 < 5 < 5	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.69 1.96 1.57 2.12 2.99	2 2 2 2 4 2	70 80 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.26 0.20 0.44 0.34 0.30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 5 7 6 7	10 10 10 11 13	12 27 21 23 25	1.79 1.89 1.69 2.06 2.18	< 10 < 30 < 10 < 10 < 10 < 10	< 1 + 1 + 1 + 1 + 1	0.05 0.04 0.05 0.05	< 10 < 38 < 10 < 10 < 10	0.15 0.17 0.19 0.21 0.23	535 200 345 335 480
10600N 11100E 10600N 11150E 10600N 11200E 10600N 11250E 10600N 11250E	201 202 201 202 201 202 201 202 201 202 201 203	< 3 < 5	< 0.3 < 0.3	1.95 1.79 1.43 1.73 2.31	< 1 4 2 4	100 70 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 3 < 3 < 2 < 2 < 2 < 2	0.23 0.25 0.18	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 6 5 3	\$ 10 10 \$	16 19 25 14 15	1.50 1.97 1.95 1.71 1.64	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.04 0.05 0.04 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.15 0.17 0.21 0.14 0.00	200 475 425 505 100
10400N 11350E 10600N 11400E 10600N 11400E 10600N 11650E 10600N 11550E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.3 < 0.3	2.31 1.70 3.20 1.19 1.37	< 1 < 1 < 1 < 1 < 1	70 80 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1 < 1	0.34 0.14 0.27	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 6 6 6 4	14 11 11 8 9	29 18 22 15 19	2.49 2.07 2.17 1.36 1.56	< 10 < 10 < 10 < 10 < 10 < 10		0.04 0.04 0.03 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.26 0.16 0.13 0.17 0.16	170 335 375 145 90
0600N 11600E 0600N 11650E 0600N 11750E 0600N 11750E 0600N 11800E	201 202 201 202 201 202 201 202 201 202 201 202		< 0.3 < 0.3 0.3 < 0.3 < 0.3	1.14 1.46 2.36 1.83 1.83	< 1 1 1 1 1	70 100 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 2 < 2 < 2 < 2 < 2	0.30 0.17 0.31	< 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5	3 5 6	6 10 10 12 11	11 25 28 27 24	1.13 1.96 1.97 2.33 1.90	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.01 0.05 0.03 0.04 0.03	< 10 < 10 < 10 < 10 < 10	0.30 0.17 0.13 0.18 0.18	55 160 100 100 190 375
0600N 11950E 0600N 11900E 0600N 11930E 0600N 12030E 0600N 12050E	201 202 201 202 201 202 201 202 201 202 201 202		0.3 0.3 0.2 0.2	2.38 1.73 2.14 J.1J 1.96	2 2 3 6 1	60 70 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 1 < 1 < 1 < 1	0.17 0.17 0.17	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 5 5 5 4	14 11 9 20 8	15 21 17 16 9	2.41 2.30 1.84 2.03 1.67	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 2 < 1 < 1 < 1	0.03 0.03 0.03 9.03 0.02	< 10 + 10 < 10 + 10 + 10 + 10	0.14 0.15 0.13 8.12 0.08	220 245 320 365 485
	╘_┈┸╶╼┚					<u> </u>	<u> </u>							ERTIFIC					, <u> </u>	J

.

To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number 3-B Total Pages 5 Centificate Date 30-SEP-96 Invoice No. 19632982 P.O. tiumber 5 Account LOY

Chemex Labs Ltd. Analyles Chemiste ' Goodenrists' Registered Assayers 212 Brooksbank Ave. British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0216

Project : TAS Comments: ATTN: L.W. SALEKEN CC: GRANT CROOKER

												CI	RTIF	ICATE	OF	ANAL	YSIS	A9632982
SAMPLE		re P Ode	H PP		Na ,¥	ni PP#	e pps	\$р рр л	sb ppm	St. ppa	Sr pp=	Tİ V	T1 ppm	т ррж	¥ ppm	W ppz	2п рре	
LOSDON 101002		1 20			0.01		540		< 3	1	24	0.09	< 10	< 10 < 10	51 49	< 10 < 10	176	
10600W 10150E		1) 20 11 20			0.01	7	130	30	* 2	1	38 20	0.10	< 10 < 10	< 10		< 10	16	
0600H 10250E	20	1 20.	2	1	0.01	- ÷	760	É.	< 2	1	30	0.09	< 10	+ 10	44	< 10	141	
10600W 10300E	20	1 20	2 *	1	0.02	7	440	•	e 2	1	31	9.09	< 10	< 10	40	< 10	206	
0600y 10350g	20				0.02	.7	800	ś	< 2	1	17	0.09	< 10	< 10	60 67	< 10 < 10	142	
0600m 10400m		20:			0.02 0.01	10	1060	2	< 2	1	29	0.10	< 10	< 10	15	< 10	145	
0600H 10500S	201	202	i (È I	0.01	- i	1300		< 1	ĩ	11	0.01	< 10	< 10	44	< 10	74	
0600m 10550g	303	202) <1	1	0.03	•	1910	6	< 1	1	27	0.08	< 10	< 10	34	< 10	98	
0600W 10600E		202			0.01	7	1480	4	< 2	2	16	0.09	< 10	< 10	47	< 10	110	
0600w 10650g		202			0.01 0.01		1250 2430	•		4 1	62 37	0.09 0.07	< 10 < 10	< 10 < 10	73 39	< 10 < 30	66 61	
0400M 1075CE		202			1.01	- 7	1470			í	21	0.09	< 10	< 10	43	4 10	106	
0600N 10800E	201	202	() ()		9.01	7	740	6	4 3	1	31	0.09	< 10	< 10	44	< 10	74	
0600W 108508		202	1		0.01	7	1590	4	< 2	1	26	0.00	< 10	< 10	47	< 10	76	
0600m 10900m 0600m 10950m		202			5.02 5.01		1250	1	< 2 < 2	2	32	0.09	< 10 < 10	< 10 < 10		< 10 < 10	94 44	
0600M 11000g		202			.02	ŕ	\$10	-	22	i	ñ	0.11	< 10	< 10	56	< 10	52	
0600M 11050%	301	202	< 1		. 01	•	1540	6	< 2	3	33	0.10	< 10	< 10	60	< 10	76	
0600# 11100x	201	202	< 1	0	. 02		840		e 2	1	17	D. 98	+ 10	+ 10	36	4 10	31	
0600m 11150m		302	< 1		.01		1770		4.1	2	22	0.07	< 10 < 10	< 10 < 10	45 56	< 10 < 10	86 60	
0600g 11200g 0600g 11250g		202	< 1).01 1.01		1020			1	17	0.05	< 10	< 10	44	< 10	12	
0600W 11300E		103			.01	5	1810	ē	43	2	ii	0.08	< 10	< 10	- 44	< 10	36	
0600m 11350s	201	202	- 1	. 0	.01	· ;	1190	6	1 2	3	24	0.10	< 10	+ 10	73	< 10	54	
0600N 11400E		202	< i		. 01	£	1160	+	< 2	1	27	0.09	< 10	< 10	63	< 10	52 62	
0600N 11450X 0600W 11500X	201				.01	7	1560	:	< 2 < 2	2	15	0.10	< 10 < 10	< 10 < 10	43	< 10 < 10	26	
500N 11550E		202	< i		01	ŝ	330	Ğ	€ 2	ī	18	0.09	< 10	< 10	46	< 10	28	
600m 11600m	201	202	• 1	0	.02	•	480	4	4 2	1	15	0.07	< 10	+ 10	36	< 10	21	
500# 11650#	202		× 1		. 01	- 5	\$70		< 2	1	39	9.08	* 10	* 10	52	4 10	32	
600m 11700m	201		< 1		.02	1	1180 1370	- 1	< 1 < 1	1	20 32	0.10	< 10 < 10	< 10 < 10	31 70	< 10 < 10	36	
\$00m 11800g	203				.01	ŝ	\$00	Ē	< 1	ï	32	0.11	< 10	< 10	57	< 10	62	
600m 11850m	101	202	1	< 0	. 01	7	780	4	< 1		24	0.13	< 10	< 10	74	< 10	11	
600W 11900E	201	202	< 1	0	. 01	- i	1130	i	4 3	2	26	0.11	< 10	< 10	63	< 10	66	
600m 11950m 600m 13000m	201		< 1 1		.01 .01	Ē	1060 1320		< 2 < 2	1	11	0.10	< 10 < 10	< 10 < 10	51 56	< 10 < 10	42 61	
600m 13050g	201		- 1		.01	5	\$20	-		1	10	0.09	< 10	< 10	44	< 10	60	
	11		-			-												
	<u> </u>															RTIFICA		Hart Por aller

CERTIFICATION:_

TO: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P SM9 Project : TAS

Fage Number 4-5 Total Pages 5 Certificate Date 30-SEP-96 Invoice No - (-06.72982 P.O. Number -Account - LOY

Chemex Labs Ltd. Analytical Chambis ' Goochambis' Registered Assayers 212 Birooksbank Ave. British Columbia, Canada V7J 201

.

		British C PHONE:	olumbia, 604-984	Canada -0221 F/	AX: 604-1	V7J 2C1 984-0218			Proje Com	ct : ments:	TAS ATTN: L.	W, SALE	KEN C	C: GRAN		OKER				
										C	RTIFI	CATE	OF	ANAL	YSIS		A9632	2982		
SAMPLE	PREP	λυ ppb Γλ+λλ	Ag ppa		ji ji ji ji ji ji ji ji ji ji ji ji ji j	Ва ррж	Ва ррж	Bi pp∎	Ca N	cđ ppm	Co pp	Cr pp	Cu ppm	70 t	Ga ppu	Rg ppa	к 	La ppm	Mg	Nn pps
10600N 12100E 10700N 9675E 10700N 9735E 10700N 9735E 10700N 9775E 10700N 9825E	201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5	< 0.1 < 0.2	1.91 2.04 2.42 1.93 1.51	6 1 7 7 2	90 100 140 160 320	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5		0.16 0.10 0.30 0.13 0.47	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 7 7 8	9 10 13 14 15	16 12 41 39 39	1.80 1.80 2.40 3.15 3.18	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.03 0.06 0.05 0.01 0.01	< 10 < 10 < 10 < 10 < 10	0.12 0.15 0.32 0.23 0.23	140 320 570 390 285
10700N 9875E 10700N 9925E 10700N 9975E 10800N 9650E 10800N 9700E	201 202 201 202 201 202 201 202 201 202 201 202	(3) (5)	< 0.2 0.2 < 0.2	1.42 1.63 2.02 1.55 1.57	< 2 < 2 6 6 2	100 130 110 70 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 2 < 2 < 2	0.33 0.47 0.46 0.69 0.43	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 11 8 7	12 18 15 19 15	18 44 49 56 24	1.85 2.47 3.86 3.08 2.25	< 10 < 10 < 10 < 10 < 10 < 10	<pre> { 1 { 1 } } }</pre>	0.08 0.07 0.11 0.09 0.79	< 10 < 10 < 10 < 10 < 10	0.17 0.27 0.27 0.31 0.31	215 460 390 315 595
DECON 97502 08009 98002 08009 98502 08009 98502 08009 99502	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>		1.74 1.45 2.11 1.76 1.61	2 7 2 2 6 4	100 120 120 120 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 2 < 2	0.48 0.45 0.66 0.39 0.70	0.5 0.5 < 0.5 < 0.5 0.5	1 7 5 11 13	16 13 22 16 17	42 31 44 44 49	2.54 3.37 3.31 3.00 2.42	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 2 < 1 < 1	0.12 0.10 0.09 0.12 0.10	< 10 < 10 30 < 10 < 10	0.24 0.18 0.26 0.22 0.25	1065 725 765 470 620
0900N 9675E 0900N 9725E 0900N 9775E 0900N 9825E 0900N 9875E	201 202 201 202 201 202 201 203 201 203 201 203		< 0.1 < 0.2 < 0.2	1.53 1.70 2.43 2.04 1.75	4 2 4 2 6	50 90 110 120 120	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	<pre> < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 </pre>	0.48 0.43 0.56 0.41 0.51	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 7 9	14 13 21 19 27	76 36 66 35 53	2.28 2.24 3.27 2.27 2.27 2.69	< 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0.05 0.08 0.15 0.12 0.17	< 10 < 10 < 10 < 10 < 10 < 10	0.25 0.21 0.34 0.25 0.33	360 385 310 380 545
0500M 5935E (A) 0900N 9935E(B) 0900N 9975E 1050N 9675E 1050N 9735E	201 202 201 202 201 202 201 202 201 202	NotRed < 5	< 0.2	1,95 1.47 NotRed 1 1.50 1.41	6 2 NotRed 6 2	90 NotRed 1 130	< 0.5 < 0.5 NotRcd < 0.5 < 0.5	< 2 < 2 NotHed H < 2 < 2	0.46 0.99 fotRcd 1 0.30 0.62	0.5 0.5 NotRed < 0.5 0.5	y SotRed N ? Q	17 15 15 10 10 12	41 46 Introd 1 20 23	1.77	< 10 < 10	< 1 < 1	0.15 0.12 NotRed : 0.06 0.11	< 10 - 10	0.17	530 975
1450N 9775E 1550N 9825E 1550N 9875E 1650N 9975E 1650N 9975E	701 207 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	< 0.3 0.2 < 0.2 < 0.3 < 0.4	1.74 0.85 2.38 1.65 2.50	2 2 2 4 1 6	160 50 190 110 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1 < 1	0.39 0.33 0.54 0.31 0.34	0.5 < 0.5 0.5 < 0.5 < 0.5	6 4 11 7 36	20 9 43 26 26	43 29 97 32 278	2.35 1.18 2.96 2.18 3.19	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 2 < 1	0.11 0.07 0.15 0.15 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.23 0.12 0.49 0.20 0.37	770 150 1000 410 795
050N 10025E 050N 10075E 050N 10125E 050N 10125E 050N 10175E 050N 10225E	201 202 201 202 201 202 201 202 201 202 201 202	25 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 0.2 0.2 0.2	2.39 2.44 1.86 2.68 2.29	4 8 3 6 10	150 220 00 130 170	< 0,5 < 0,5 < 0.5 0.5 < 0.5 < 0.5	<pre> < 1 < 2 < 4 < 5 < 5 < 6 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7</pre>	0.52 0.43 0.35 0.26 0.25	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	17 10 7 9	25 14 13 15 14	90 69 58 64 36	3.04 2.46 1.94 2.76 2.59	< 10 < 10 < 10 < 10 < 10 < 10	<pre></pre>	0.10 0.07 0.04 0.05 0.07	<pre>* 10 * 10 * 10 * 10 * 10 * 10 * 10</pre>	0.51 0.33 0.32 0.33 0.21	710 1185 500 415 480
1050N 10275E 1050N 10325E 1050N 10375E 1050N 10425E 1050N 10475E	301 202 301 202 301 303 301 302 201 302 201 202	* \$ \$ \$ \$ \$	< 0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	1.83 1.57 2.75 2.36 3.38	f 1 1 2	140 90 100 100 140	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 1.0</pre>	< 1 < 1 < 1 < 1 < 1 < 1	0.33 0.36 1.00 0.73 1.81	<pre></pre>	1D 9 9 6 7	53 13 20 15 19	38 39 152 66 281	2.23 2.35 3.59 2.75 3.00	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.05 0.05 0.09 0.07 0.09	< 10 < 10 10 < 10 \$0	0.10 0.10 0.47 0.39 0.54	1035 520 460 470 620

Ser Spect 11. CERTIFICATION:___

.....

-

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Asseyers 212 Brockvbank Ave North Vancouver British Columbia, Canada V7J 2C1 PHONE: 504-984-0221 FAX: 504-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Fage Number 4 B Total Fages 5 Certificate Date 30-SEP-96 Invoice No 19532982 P.O. Number Account LOY

Project : TAS Comments: ATTN: L.W. SALEKEN CC: GRANT CROOKER

											CE	RTIF	CATE	OF A	NAL	YSIS	A9632982
SATE	PRI		Мо рря				2P PD2			Sr ppa	Tİ X	T1 ppm	U ppm	v pp n	W Spa	Zo ppm	
0600N 12100E	201	202	1	0.01	5	720		< 2	1	19	0.09	< 10	< 10	50	< 10	42	
0700N 9675E	701		i		1 1	1330	i i			19	0.09	< 10	< 10 < 10	65	< 10 < 10	54	
700N 9735E	201		< 1							32	0.11	< 10 < 10	< 10	57	< 10	106	
7008 97752 7008 98352	201		< 1			720				43	0.10	< 10	< 10	63	< 10	"	
700N 9875E	201	20.2	1	0.01	7	470		< 2	1	30	0.10	< 10	< 10	41	< 10	50	
700N 9925E	201		- i					< 1		41	0.09	< 10	< 10 < 10	69 76	< 10 < 10	72	
700N 9975E	201		< 1			510				42 68	0.12	< 10 < 10	< 10	101	< 10	50	
BOON 9650E	201		< 1 < 1			430				39	0.13	< 10	< 10	64	< 10	54	
BOOM 97508	201	101	< 1	0.01	11	680		< 1	4	67	0.12	< 10	< 10	70	< 10	128	
BOOM BROOM	201		- 41		12	650	ſ			38	0.10	< 10 < 10	< 10 < 10	59 85	< 10 < 10		
BOOM SESOE	201				11	320 920	10			42 35	0.13	< 10	< 10	72	< 10		
800N 3900E 800N 3950E	201 201		< 1 1			1090	i			51	0.08	< 10	< 10	65	< 10	5 8	
900W \$675E	201	101	< i	0.01	11	260		4 2		45	0.13	< 10	< 10	61	< 10	\$0 114	
900N 9725E	201	303	* 1	0.02	12	690				46	0.11	< 10 < 10	< 10	6)	< 10 < 10	134	
900H 9775E 900H 9825E	201		• 1			540 360	10			43	0.11	< 10	< 10	55	< 10	238	
9000 98752	202			0.01	- 11	1520	i.	< 3	. 4	54	0.10	< 10	< 10	73	< 10	124	
900N 9925E (A)	201	202	< 1	0.01	15	1190		< 1		50	0.11	< 10	< 10	72	< 10 < 10	216	
900N 9925E(B)	201		< 1	0.01		1030		< 1	3 Noted N	76 6-844 4	0.09 NotRed N	< 10 Interd 1	< 10 NotRed N		otred 1		
900N 3975E			WatRed < 1	NotRed 0.01	NotRed	NotRed 1800	NOTRCO	NOLKCO < 3	2	31	0.09	< 10	< 10	50	< 10	92	
050N 9675E 050N 9725E	201		1		í	1110	ě		i	63	0.11	< 10	< 10	80	< 10		
050N 9775E	201	202	< 1	0.01		530	10			34	0.12	< 10	< 10	63 33	< 10 < 10	144	
050N 9825E	201	202	< 1	0.03	.7	360	22			24 40	0.07 0.15	< 10 < 20	< 10 < 20		4 10	156	
050N 9875E 050N 9925E	201 201		< 1 < 1	0.01	21	410 770	- 11			15	0.10	< 10	< 10	51	< 10	140	
050N 9975E	201		ì	0.03	24	710	22	< 1	4	39	0.13	< 10	< 10	78	< 10	114	
050H 100258	201	202	1	0.01	19	870	16	< 2		56	0.14	< 10	< 10		< 10	98 136	
050N 10073E	301	202	< 1	0.01	12	1060	12	< 1		42	0.10 0.11	< 10 < 10	< 10	64 53	< 10 < 10	122	
050N 10125E	201		<1 <1	0.03	11	230 1330			3	37	0.13	2 10	< 10	11	< 10	102	
050N 10175# 050N 10325#	201		1	0.02	11	1080	20	< 2		31	0.10	< 10	< 10	68	< 10	216	
50N 10375E	201	202	< 1	0.02	13	1380	6	< 2	3	24	0.05	< 10	< 10	62 71	< 10 < 10	166	
050N 10335E	201	202	< 1	0.02		920		< 2	1	13 67	0.10	< 10 < 10	< 10 < 10	93	< 10 < 10	156	
	201			0.01	13	540		< 2	5	54	0.11	< 10	< 10	72	< 10	19\$	
	201			0.01	16	750	14	< 2	11	147	0,07	< 10	< 10	62	< 10	194	
																	······································

CERTIFICATION _____

To: GEOTEC CONSULTANTS LIV.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Anaylical Chemists' Geochemists' Registered Assayers 212 Brocksbank Ava., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : TAS Commenta: ATTN: L.W. SALEKEN CC/ GRANT CROOKER

											[CI	RTIF	CATE	OF A	ANAL.	YSIS		A9632	2982		
ANPLE	PREF		Au ppb 7A+AA	<i>.</i>	Ag ppm	A1 X	Хя pp e	Ba ppn	Be		Ca N	cd pp∎	Со ррш	Cr pps	Cu ppm	Fo X	Ga ppa	8g pps	R 1	La ppm	H9 \	Hn ppw 415
		+		;	0.2	1.47	4	50	c 0.5	< 1	9.67	< 0.5	13	21	95 14	3.60	< 10 < 10	< 1 < 1	0.09	< 10 < 10	0.44 0.15	325
1050N 10533E 11050N 10575E	201 2				0.2	1.32	2	80	< 0.5		0.28	< 0.5	5	;	13	1.70	< 10	< 1	0.05	< 10	0.13	590 380
1030W 10435E	101 1	02	< 5	<	0.3	1.50		100	E 0.5		0.34	< 0.5	ŝ	10	13	1.91	< 10	1 1	0.05	< 10	0.17	110
11050W 10675E	201 2				0.2	1.36	- 21	50	< D.5		9.37	< 0.5	3	10	24	1.85	< 10				.	
11050N 10725E	201 2	1	• •	<u> </u>							9.19	< 0.5		7	11	1.66	< 10	< 1	0.04	< 10	0.10	295
1050H 10775E	201 2	102		۲	0.2	1.58	2		< 0.5		0.25	< 0.5	i	12	23	1.11	< 10	1	0.06	< 10 < 10	0.10	470
1050W 10825E	201 2		< 5		0.3	2.08			0.5		0.22	< 0.5	5	10	20	1.93	< 10 < 10	<pre></pre>	0.04		0.11	535
1050W 10875E	101 2		< 5	٠	0.2	1.66	- 2	90	< 0.5		0.18	0.5	1	.!	13	1.60	< 10	- 21	0.04	e 10	0.20	305
11050N 10925E 11050N 10975E	201 2				0.3	2.06	i	40	0.5	< 3	D.26	< 0.5	4	10	• • •							
11050N 10975E										< 2	0.32	< 0.5	6	11	19	2.10	< 10	1	0.04	< 10		510
1050H 11025E	301 2			۲	0.2	2.18	4		< D.1		0.24	< 0.5	5	11	40	1.96	< 10	< 1 < 1	0.05	< 10		2110
11050N 11075B	201 2		< 5		0.4	2.65		110	0.5	< 2	0.23	< 0.5	5		14 HotRed	1.63	< 10 Not Red		Notred		Nothed	NotRed
1050W 11125W	701	10.2	NotRed				NotRed	NotRed				Nothed	Mothed I	NOTREA B	12	1.49	e 10	٤ ه	0.04	< 10	0.12	630
1050# 11175# 11050N 11225E	201				0.3	1.49	4	150	< 0.5	i ∢ ≱	1.17	< 0.5	•							< 10	0.23	370
								120	< 0.5	• • 1	0.27	< 0.5	6	12	21	2.09	< 10	< 1	0.06 0.06	< 10	0.23	325
1050N 11275E	201 2		< 5		0.2	2.35	2	70	0.1		D.44	< 0.5	5	12	38	2.32	< 18 < 18	- 1	0.07	4 10	0.30	195
1050N 11325E	201 2				0.2	1.61	2	100	< 0.5		0.49	< 0.5	7	17	50 52	2,15	~ 10	- È Î	0.07	× 10		105
1050N 11375E 11050N 11435E	201		- 23			1.99	4	230	< 0.1		0.43	< 0.5	- 11	15	103	2 72	< 10	< 1	0.05	20	0.47	1860
1050N 11475E	101		< 5			3.14		210	1.0) < 2	0.75	C 0, 3							0.04	< 10	0.22	235
	I	-+				1.34	2	70	< 0.1	4 2	0.41	< 0.5	5	10	27	1.72	< 10 < 10	<pre>4 1 4 1</pre>	0.04	< 10		325
1050N 11525B	201 2		< 5		0.2	2.73		100	0.1		0.19	< 0.5	?	12	12 21	2.33	< 10		0.04	< 10	0.16	260
1050N 115758	201 2				0.2	2.41	- i		< 0.3		0.19	< 0.5		11	14		4 10	< 1	0.03	< 10		115
1050N 11635E 11050N 11675E	101				0.3	1.74	3	70	< 0.		0.14	< 0.5	i	,	21	1.82	< 10	< 1	0.03	< 10	0.10	130
1050N 11725E	701 3		< 5	۲	0.2	2.16		60	< 0.1									4 1	0.03	< 10	0.15	105
	l	_			0.3	1.53	1	0	< 0.5	< 3	0.26		4		19	1.36	< 10 < 10	• i	0.05	10		485
1050N 11775E	201 2	10.2	< 5	۲	0.3	2.74	Ē	270	0.5	5 < 3	0.57	< 0.5	75	16	10	.07	e 10	< i 1	0.03	< 10		245
11050H 11825E 11050H 11875E	201 2				0.3	2.01	6		< 0.1		0.17	< 0.5	i	í,	10	1.76	< 19	< 1	0.03	< 10		260
11050W 11935E	101		< 5	٠	0.2	1.74	4	280	< 0.5		0.21	< 0.5	i i	10	19	1.92	< 10	4 ۱	0.04	< 10	0.14	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1050N 11975E	201 2	202	< 5		0.2	2.06	2	90	< u.:								< 10	- 1	0.04	< 10	0.13	1095
1050N 12025E		102	< 5		0.1	1.67	2		< 0. 0.		0.19		5	10	10 13	1.62	< 10		0.03	< 10		810
1050N 12075E	201	103	< 5		0.1	2.36	•		~ •••													
																			1.1			
					_														1 1	1. A		
																CENTIF		h				

Į(

•

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Asseysts 212 Brooksbank Ave., North Vancouver British Columbia: Canede V71 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number : 5:8 Total Pages : 5 Certificate Date: 30-SEP-96 Invoice No. : 19632982 P.O. Number : Account : LOY

1

Project : TAS Comments: ATTN: L.W. SALEKEN CC: GRANT CROOKER

											CE	ATIF	CATE	OF A	NAL	/SIS	A9632982
SAMPLE	FRZ		No PDB		Nİ PP R	P ppm	Fb ppm	Sb ppw	Se pp=	Sr ppm	Tİ X	ti ppm	pp m	T ppm	a dd	ln pp=	
	201			< 0.01	10	520	10	< 2	6	62	0.16	< 10 < 10	< 10 < 10	115	< 10 < 10	60 120	
1050N 10535E 1050N 10575E	201	202	< 1	0.03	10	910 870	:		1	31	0.09	10	< 10	67	< 10	140	
1050N 10625E	201		< 1 < 1	0.03		\$30		< 2	2	34	0.10	< 10 < 10	< 10 < 10	59 58	< 10 < 10	110	
1050W 10675E 1050W 10725E	201		, ki	0.01	5	150	•	< 2	2	34	0.12					170	
1050N 10775E	201	202	< 1	0.02	5	430	6	< 2	1	10	0.08	< 10 < 10	< 10 < 10	17 53	< 10 < 10	213	
10500 10075E	201	202	1	0.03	10	1320	12	< 2	;	13	0.10	< 10	< 10	\$1	< 10	202	
L050W 10075K	201		1	0.01	;	1360	· ·	- 23	1	19	0.09	< 10	< 10 < 10	40	< 10 < 10	- 11	
1050H 10925E 1050H 10975E	201		- 21	0.03	÷	230	6	< 1	3	30	0.09	e 10	< 10	. <u> </u>			
				0.01	1	1000		< 2	3	32	0.12	< 10	< 10 < 10	60 45	< 10	+2 98	
1050H 11025E 1050H 11075E	201		<1 <1	0.01	10	1320		< 2	?	26	0.10	< 10 < 10	< 10	45	< 10	117	
10508 11125E	201		1	0.01		1380	RotRed 1	< 2 Int≣rd 1	1 NotRed N		NotRed	NotRed	NotRed 1	intled I		NotReđ 74	
1050# 11175m	101		NotRed < 1	NotRed 0.01	NotRed	1370	4	< 2	1	30	0.08	< 10	< 10	37	< 10		
1050N 11225E	101	101	• •						3	17	D.11	< 10	< 10	59	< 10	58	
050N 11375E	201		< 1	0.01		1010	-		5	39	0.09	< 10	< 10	72	< 10 < 10	16 50	
1050N 11335E	201		< 1 < 1	0.01		640	i	< 2		43	0.10	< 10 < 10	< 10 < 10	59	< 10	- 14	
1050N 11375# 1050N 11435#	201			0.01	.1	410	:	~ 1	4	44	0.08	¥ 10	< 10	66	< 10	78	
1050N 11475E	201	202	1	0.01	11	010							< 10	51	< 10	54	
1050H 11525E	201	202	< 1	0.01	5	\$70	6	< 1	1	37	0.10	< 10 < 10	< 10	51	2 10	50	
1050N 11575E	201		< 1	0.03	7	1520	÷.	< 1 < 1	2	20	0.11	< 10	< 10	53	< 10	18 32	
1050H 11625E	201		< 1	0.03	;	1730		< 2	1	16	0.00	< 10 < 10	< 10 < 10	15 45	< 10 < 10	ii	
1050N 11675E 1050N 11725E	201 201		- 21	0.03		2160	6	< 2	3	13	0.09	< 10					
						950	5	< 1	1	23	0.09	< 10	< 10	41 61	< 10 < 10	40 56	
1050N 11775E	201		<1 <1	0.01	,	330	i	< 2	5	50	0.10 0.10	< 10 < 10	< 10 < 10	50	< 10	16	
1050N 11825E 1050N 11875E	201			0.01	6	1150	:	< 2	1	14	0.09	< 10	< 10	45	< 10		
1050H 11925E	201		< 1 < 1	0.01		810		- 23	i	19	0.11	< 10	< 10	53	< 10	116	
1050N 11975E	201	302	• 1	0.02					1	30	0.09	< 10	< 10	61	< 10	168	
1050N 12025B		203	< 1		1	1600	÷		1	13	0.11	< 10	< 10	51	< 10	300	
1050N 12075E	201	302	1	0.02	•	1344	-	_									
	1																L • '
														1	CENTIFI	CATION	

-

Chemex Labs Ltd.

nalytical Chemiata "Geochemiata" Registered Assayera 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 804-984-0218

To: GEOTEC CONSULTANTS LTD.

Project : TAS Comments: CC: GRANT CROOKER

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number 11-A Total Pegns 12 Certificate Date: 12-OCT-96 Invoice No. 19634939 P.O. Number 102 Account 102

										CE	RTIFI	CATE	OF A	NAL	SIS	1	A9634	939		
SAMPLE	PREP	Ац ррБ 7А+АА	, Ag ppm	A1 *	λs ppm	Ba ppn	Be ppn	BÍ POM	Ca *	Cd ppu	Co ppm	Cr ppm	Cu ppa	76 X	Ga. Ppil	Ag ppu	r L	La ppu	Hg 1	Ma P9M
76000 100502 76000 101002 76000 101502 76000 101502	201 202 201 202 201 202 201 202 201 202 201 202		0.4 < 0.2 0.2 < 0.3 < 0.3	2.64 2.20 1.95 2.39 1.97	1 2 2 4 4 4	60 90 100 100	0.5 < 0.5 < 0.5 < 0.5 < 0.5		0.67 0.43 0.50 0.30 0.39	< 0.5 0.5 < 0.5 < 0.5 < 0.5	9 9 7 1 7	13 11 10 11 11	63 48 31 41 31	2.74 2.55 2.09 2.37 2.07	10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.06 0.05 0.05 0.01 0.04	< 10 < 10 < 10 < 10 < 10	0,30 0.33 0,25 0.25 0.25	490 663 585 1075 760
7600N 10250E 7600N 10300E 7600N 10350E 7600N 1040DE 7600N 10500E 7600N 10500E	201 202 201 202 201 202 201 202 201 202 201 202	<	0.3 < 0.2 0.2 < 0.2	2.02 2.05 2.09 2.04 2.09	10 < 2 < 2 < 2 < 2	40 100 110 60 80	0.5 < 0.5 0.5 < 0.5 0.5	< 1 < 2 < 2 < 2 < 2	1.07 0.39 0.19 0.13 0.23	< 0.5 < 0.3 < 0.5 < 0.5 < 0.5	14 6 7 5	24 9 10 16	108 13 15 10 37	3.13 2.05 2.15 2.10 2.16	10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.04 0.05 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.60 0.10 0.13 0.13 0.24	835 1395 1140 315 620
600H 10550E 600H 10550E 600H 10650E 600H 10550E 600H 10700E 600H 10750E	201 202 201 202 201 202 201 202 201 202 201 202	C 1 C 1 C 1	< 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3	1.87 1.94 1.94 1.33 2.33	() () () ()	\$0 100 \$0 \$0 \$0	< 0.5 < 0.5 < 0.5 < 0.5 0.5	1	0.37 0.30 0.46 0.31 0.71	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 10 6 18	10	16 15 65 13 123	1.96 2.11 2.41 1.13 4.00	< 10 < 10 < 10 < 10 < 10 10	<pre></pre>	0.04 0.04 0.07 0.03 0.05	< 10 < 10 < 10 < 10 < 10	0.20 0.10 0.38 0.14 0.64	795 935 445 1820 940 740
600N 10800E 600N 10850E 600N 10900E 600N 10900E 600N 11000E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5	0.2 0.2 0.2 0.2	2.44 2.79 2.06 1.73 2.40	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	70 70 50 40 60	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.39 0.23 0.43 0.57 0.44	< 0.3 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 7 1 6 6	10 10 10 13	56 33 45 48 32	2.72 2.43 2.36 2.07 2.11	10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.05 0.06 0.04 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.42 0.23 0.27 0.31 0.29	1070 715 263 210
600N 11050E 600N 11100E 600N 11150E 600N 11200E 600N 11250E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5	< 0.2 0.4 0.2 0.3 0.2	2.85 1.70 1.93 2.18 1.88	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	70 50 40 60 30	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1	0.43 0.31 0.10 0.33 0.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 6 8 4	13 9 11	54 25 35 28 20	3.27 1.77 1.82 2.29 1.62	10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.03 0.04 0.03 0.03 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.32 0.16 0.16 0.23 0.14	350 345 140 260 115
GOON 11300E GOON 11350E GOON 11400E GOON 11450E GOON 11450E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5	< 0.2 < 0.3 0.3 0.4 0.2	1.03 1.44 1.70 1.50 1.43	< 1 < 2 < 2 < 2 < 2	40 60 50 70 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5		0.40 0.20 0.36 0.35 0.36	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 6 7 8	7 9 9	19 18 25 37 21	1.38 1.77 1.94 2.09 1.91	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1	0.04 0.04 0.05 0.06 0.06	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	0.30 0.19 0.30 0.36 0.19	900 285 390 340
600N 11550E 600N 11550E 600N 11600E 600N 11650E 600N 11700E 600N 11750E	201 202 201 202 201 202 201 202 201 202 201 202	<pre> < 5 < 5 < 5 < 5 < 5 </pre>	0.3 < 0.2 0.2 0.2 0.2	1.03 1.65 1.56 3.15 1.42	< 1 < 2 < 2 < 2 < 2 < 2		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5		0.65 0.38 0.30 0.26 0.21	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 8 10	13 10 13	67 29 60 143 20	2.78 2.14 2.19 2.74 1.89	10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.09 0.05 0.07 0.06 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.50 0.25 0.21 0.33 0.11	275 275 455 715 745
600N 118008 600N 11850E 600N 11850E 600N 11950E	201 202 201 202 201 202 201 202 201 202 201 202	<td>< 0.2 0.2 < 0.2 < 0.3 < 0.3 < 0.3</td> <td>2.14 1.69 1.61 1.56 1.89</td> <td>< 2 < 2 < 2 < 2 < 2 < 2 < 2</td> <td>60 50</td> <td>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5</td> <td>1 < 2 < 2 < 2 < 2 < 2</td> <td>0.21 0.41 0.53 0.40 0.21</td> <td>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5</td> <td>7 8 8 8</td> <td>17 21 14 12</td> <td>21 39 41 29 24</td> <td>3.31 3.13 1.94 2.30 2.07</td> <td>< 10 10 < 10 < 10 < 10 < 10</td> <td><1 <1 <1 <1 <1 <1</td> <td>0.03 0.05 0.04 0.06 0.04</td> <td>< 10 < 10 10 < 10 < 10</td> <td>0.29 0.57 0.33 0.29 0.24</td> <td>020 270 495 055 535</td>	< 0.2 0.2 < 0.2 < 0.3 < 0.3 < 0.3	2.14 1.69 1.61 1.56 1.89	< 2 < 2 < 2 < 2 < 2 < 2 < 2	60 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 < 2 < 2 < 2 < 2 < 2	0.21 0.41 0.53 0.40 0.21	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 8 8 8	17 21 14 12	21 39 41 29 24	3.31 3.13 1.94 2.30 2.07	< 10 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.03 0.05 0.04 0.06 0.04	< 10 < 10 10 < 10 < 10	0.29 0.57 0.33 0.29 0.24	020 270 495 055 535
7600H 12000B		<u> </u>												ERTIFIC		19	out.	Psi	علاك	<u>لم</u>

0

Chemex Labs Ltd. Analytical Chamilata * Geochemilata * Registered Assatyere 212 Brocksbank Ave, British Columbia, Canada V732C1 PHONE: 604-084-0221 FAX: 804-084-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P SM9

Project : TAS Comments: CC: GRANT CROOKER

- ----

Page Number : 1-8 Total Pages : 2 Certificate Date: 12-OCT-95 Invoice No. : 19534939 P.O. Number : 02 Account : LOY

											CE	ATIF	CATE	OF A	NAL	SIS	A9634939
SAMPLE	PRE	. 1	Mo ppa	Na.	Nİ PP=	P pp=	Pb ppm	8P Bb	Sc pp=	Sr ppu	ti X	T1 ppm	ρpm. U	¥ pp#	W ppa	to ppa	
500N 10050E	201	101	1	0.02	10	\$70	10	· < 1	f	69	0.16	< 10	< 10	88 73	< 10 < 10	100 170	
600N 10100E	201		í	0.02		1970	10	2		47	0.11	< 10	< 10 < 10	6	< 10	108	
600N 10150E	201		1	0.03		1330	10	1		61	0.13	< 10 < 10	< 10	64	< 10	112	
600N 10200E	201		ī	0.02	7	1330				33	0.11	< 10	< 10	61	< 10	114	
600N 10250E	201	202	1	0.02	7	820	L.	< 3	3							104	
600N 10300E	201	202	i	0.01	11	1060	14	2	ļ	90 31	0.16	< 10	< 10 < 10	107	< 10 < 10	92	
400N 10350E	201		3	0.03	2	710		< 1	i	25	0.00	< 10	< 10	46	< 10	149	
500N 10400E	201		4	0.03		1050	10	<1	i	15	0.11	< 10	e 10	51	< 10	156	
1600N 10450E	201		5	0.03		840 1140		- 24		25	0.07	< 10	< 10	53	< 10	142	
500N 10500E	201	202	3	0.03	11	1140								55	< 10	144	
FOON 10550E	201	202	1	0.02		980		< 1	2	26	0.11	< 10	< 10 < 10	50	< 10	111	
400N 10600E	1 201		ĩ	0.02	5	890		< 2	2	31	0.10	< 10 < 10	< 10	74	10	111	
10650E	201		ī	0.02		950				48	0.11	< 10	< 10	50	< 10	114	
50CN 1070CE	201		Í	0.03	5	1000		2	1	20	0.13	< 10	< 10	125	< 10	100	
600N 10750E	201	202	1	0.01	•	1240	•		,							116	
	201	202	3	0.03	7	1030	4	2		41	0.14	< 10	< 10 < 10	77	< 10 < 10	114	
600N 10850E	201		ï	0.03	E	1680		< <u>2</u>	,	21 50	0.13	< 10	< 10	71	< 10	106	
600M 10900M	201	203	1	0.03		1320		2		59	0.14	< 10	< 10	69	< 10	84	
600N 10950E	301		1	0.03		630		2			0.12	< 10	< 10	56	< 10	52	
7600N 11000B	201	202	1	0.03	•		· ·							56	< 10	80	
600H 11050E	201	202	~ 1	0.03	10	550		< 2	?	34	0.12	< 10 < 10	< 10 < 10	ü	4 10	70	
600H 11100E	201	202	1	0.03	5	1070		4.4	1	16	0.10	< 10	< 10	46	< 10	54	
600N 11150E	201	302	< 1	0.01		1140	+	< 2	5		0.12	4 10	< 10	63	< 10	52	
600N 11200E	201		1	0.01	?	950 1420		- 2.1	i	20	0.09	< 10	< 10	50	4 10	34	
600N 11250E	201	202	< 1	0.01	•	1420	•								< 19	28	
CON 111000	201	202	< 1	0.01	3	580	•	2	3	57	0.10	< 10	< 10	49	< 10	76	
600N 11300E	203			0.02	ŝ	1250	•	< 2	3	35	0.10	< 10 < 10	< 10 < 10	55	< 10	12	
600M 11400E	201		1	0.02	1	1390	•	2		(5	0.10	< 10	< 10		4 10		
600N 11450E	201		1	0.02	7	1300		< 2	3	47 50	0.10	< 10	4 10	55	10	- 66	
600N 11500E	201		< 1	0.03	5	1390	1	< 2	3	30						72	
600N 11550K	201	202	< 1	0.01	7	730	4	2	5	.7	0.11	< 10 < 10	< 10	100	< 10 < 10	94	
600N 11600E	201		1	0.02		1300	•	< 2		44	0.11 0.09	< 10	< 10	ö	< 10	114	
600N 11650E	201		1	0.02	7	1660	4	2	3	34	0.07	< 10	2 10	67	< 10	178	
600N 11700E	201	202	1	0.02	- 14	\$10	1	< 1	1	22	0.09	< 10	< 10	50	< 10	102	
600N 11750E	201	202	1	0.01	5	1090	•		1								
400N 11800E	201	202	1	0.02	11	1360	10	< 1	1	24	0.11	< 10 < 10	< 10 < 10	55	< 10 < 10	118	
600R 11850E	201		ī	0.03	11	450	4	1		76 53	0.14	< 10	4 10	60	< 10	- 64	
600N 11900E	201	202	Ĵ	0.01	10	380	. <u>F</u>	< 1	3	53	0.11	< 10	< 10	- 11	< 10	122	
600H 11950E	201		1	0.01	•	1080	4			24	0.12	e 10	< 10	\$7	< 10	78	
600N 12000B	201	303	1	0.02	4	1010	•	•	•								•
								<u> </u>									HartBuchler
																	11- 4134Chles

4

-

Chemex Labs Ltd. Analytical Chemiets * Geochemiets * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Centade V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABUBNUM ST.

Project : TAS Comments: CC: GRANT CROOKER

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9 Total Pages :2 Certificate Date: 12-OCT-96 Invoice No. : 19634939 P.O. Number : 02 Account :LOY

BARTLE PREP CODE As ppb FAAA Ap Ai As Ba<									[ÇE	RTIFI	CATE	OF	NAL	YSIS	 A9634	939		
	SAMPLE	λα ppb γλ+λλ																	pp∎
	7600M 12050E	 ·	`+ 0.1	1.40	< 1	50	< 0.5	< 2	0.34	< 0.5 < 0.5	3	:	34 43	9.37 1.31	4 10 6 10	0.03	< 18 10	0.26 0.34	380 745

C	C	her her byrkar Char 212 Brook British Col PHONE: C	nita ' Geo Isbank Av	e. I anada	" Aegister North Ver	ed Assays Noouver /7J 2C1	td.			GEOTE 8976 LA VANCO V6P 5M cl : nents:	C CONS BURNUI UVER, B J TAS CC: GR/		S LTD.		*		Page Number Total Pages Certificate Date Invoice No. P.O. Number Account	:2-B :2 :12-OCT :196349 :02 :LOY
SAMPLE	PREP	No ppm	, Na	R] PDM	P	₽Ъ ₽₽■	8b ppm	Sc.	8r pp#	CE 11	RTIFI T1 ppm	CATE	OF A	NALY #	SIS In ppm	A9634	4939	
600N 12050E	201 202 201 202	< 1 2	0.01	5	880	;	< 1 < 1	3	37 41	0.12 0.06	< 10 < 10	< 10 < 10	64 33	< 10 < 10	66 70			
													,					

1

Chemex Labs Ltd. Analylical Chemista * Geochemista * Registered Assayura 212 Brooksbark Ave. British Columbia, Canada V7/201 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD.

Project : TAS Comments: CC: GRANT CROOKER

Total Pages 2 Certificate Date: 12-OCT-96 Invoice No. 19634940 P.O. Number : 02 Account : LDY

٦

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

										CE	RTIF	CATE	OF A	NAL	/SIS	/	A9634	940		
SAMPLE	PREP	Au ppb FA+AA	Ag pyn	A1 %	ka ppm	3a ppa	le ppn	Bi P p m	Ca \$	Cđ pp	Co ppm	Cr ppm	Cu pps	74	Ga ppa	Rg pp n	R N	La ppo	Hg 	Na 998
		f				50	< 0.5	< 2	1.66	0.5		1)	46	1.48	< 10	< 1	6.03	< 10	0.20	1013
8100N-955CE	201 202		0.1	1.25	< 2	60	0.5	22	1.50	0.5	5	7	- 16	1.42	< 10	< 1	0.04	< 10 < 10	0.15	545
200N-9600E	201 202		0.3	1.49	1	90	4 0.5	< 2	0.32	< 0.5	1	10	10	1.85	< 10	41	0.03	~ 10	0.31	225
200M-9650E	201 203		< 0.3	1.00	1	50	0.5	< 2	0.43	< 0.5	1	14	- 24	2.41	< 10 < 10	< 1	0.05	4 10	0.43	1340
300N-37002	201 202		2 0.3	2.10	÷.	130	0.5	< 2	0.62	0.5	11	16	37	3.74	< 10	•••	0.00			
1200N-9750E	101 20.	1 7			•							11	18	2.11	< 10	11	0.05	< 10	0.32	460
200N-9800E	201 202	4 5	< 0.2	1.91	6	90	< 0.5	< 2	0.34	< 0.5	1	11	34	3.29	¥ 10	< 1	0.05	< 10	0.39	1095
1200N-9850E	201 20		< 0.3	2.01	6	100	< 0.5	< 3	0.51	0.5		11	ii	3.25	< 10	< Ī	0.05	< 10	0.30	1333
300N-9900E	201 201		0.3	1.79		110	4 0.5	- + 1	0.65	2.0	;	11		1.25	< 10	< 1	0.04	< 10	0.36	785
200H-9950E	201 20		0.2	1.97	3	10	< 0.5	< 2	0.24	< 0.3	í	17	ij	3.00	< 10	< 1	0.05	< 10	0.30	1230
B300N-9550E	201 20:	2 < 5	< 0.1	2.11	1	110	< 0.5	< 2	0.41	4 0.3	•	• ·								385
		L	-					< 1	0.26	< 0.5		13	19	3.07	< 10	< 1	0.04	< 10	0.35	665
300N-9600E	201 20:		0.2	1.85	< 1	100	< 0.5	- 24	4.49		i	15	- 17	3.52	< 10	< 1	0.05	< 10	0.35	1260
300N-9650E	201 203		0.3	2.62		100	0.5		0.33	0.5	ī	10	35	3.05	< 10	< 1	0.04	< 10	0.19	910
300H-9700E	201 203		< 0.2	1.59		120	< 0.5	- 24	0.00	0.1	ŝ		F4	1.44	< 10	< 1	0.03	< 10	0.13	460
300H-9750E	201 203		0.2	1.35	2	70	0.5		0.31	< 0.5	11	14	47	3.83	< 10	< 1	0.03	< 10	0.10	
2008-9800E	201 20	i] <\$	0.2	2.53	•	,,		••	****								0.04	< 10	0.23	945
	╂╼┊┼╼			2.46	2	80	< 0.5	< 1	0.31	0.5	17	14	12	3.19	< 10	<1 <1	0.00	< 10	0.26	1320
300H-9850E	201 20		0.2	1.96	10	80	0.5	4 2	0.37	< 0.5	11	13	14	2.56	< 10	1	0.04	< 10	0.30	470
300H-3900E	201 20		0.4	3.08	1	10	< 0.5		0.41	0.5	,	17	- 16	2.37	< 10	- t 1	0.08	< 10	0.28	520
300N-9950E	201 20		< 0.2	2.07	< 1	80	. 0.5	< 1	0.64	< 0.5	7	12	12	3.52	< 10 < 10		0.05	< 10	0.25	555
600N-9600E	201 20:		< 0.2	2.18		140	< 0.5	- < ž	0.25	< 0.5	6	10	17	2.17	4 10	••	0.03			
600N-9650E	201 20.	"											15	1.93	< 10		0.04	< 10	0.19	1290
\$ 600N-9700E	201 203		< 0.3	1.70	2	170	< 0.5	< 2	0.26	< 0.5	- E	10	10	2.31	< 10	< i	0.00	< 10	0.31	600
600N-9750E	201 203		< 0.2	3.03	< 1	100	< 0.3	< 3	0.42	0.5		10	ĩ	1.80	< 10	41	0.05	< 10	0.20	860
600N-9800E	201 20		< 0.2	1.43	3	110	< 0.5	< 2	0.34	< 0.5	;	10	ñ	1.0	< 10	< 1	0,03	< 10	0.31	670
8600N-9850E	201 203		D.6	1.82	1	60	< 0.5	< 2	0.64	< 0.5	2			2.22	< 10	< 1	0.03	< 10	0.21	745
600N-9900E	201 20		0.6	2.16	4	90	< 0.5	< 2	0.24	0.5	•	,								
								< 1	0.31	0.5	11	10	39	3.47	< 10	< 1	0.04	< 10	0.35	735
600N-9950E	201 20:	1 43	0.2	1.91	6	70	< 0.5		0.34	< 0.5		11	17	2.17	< 10	< 1	0.04	< 10	0.33	1115
700N-9625E	201 20		< 0.2	1.99	4	120	< 0.5		0.35	< 0.5	÷		19	1.89	< 10	1	D.04	< 10	0.11	¢45 695
700N-9675E	201 20:		< 0.2	1.13	< 2	130	< 0.5	~ 1	0.37	2 0.5	ĩ	j.	13	3.07	< 10	< 1	0.04	< 10	0.12	425
700N-9725E	201 20:		< 0.2	1.00	< 1	100	< 0.5 < 0.5		0.34	< 0.5	ż	13	40	2.38	< 10	< 1	0.04	< 10	0.39	4/3
700N-9775E	201 20:	2 < 5	0.2	2.31	2	730		•••										< 10	0.30	1300
	II	ł			2	150	< 0.5	< 1	0.32	< 0.5	7	10	15	1.89	< 10	< 1	0.05	< 10	0.36	910
8700N-982\$8	201 203		0.1	1.65	1	90	< 0.5	1	0.26	< 0.5	9	11	16	2.22	< 10	<1	0.05	< 10	0.60	505
100N-3875E	201 203			1.85	2	110	0.5	- 23	0.45	< 0.5	11	20	- 17	3.12	< 10	< 1 1	0.05	< 10	0.42	850
700N-9925E	201 20		0.4	1.64		160	< 0.5		0.35	< 0.5	10	13	- 63	2.73	< 10 < 10	- i	0.03	2 10	0.23	655
7008-9975E	201 203		< 0.3	2.31	< 2	10	< 0.5	< 2	0.24	< 0.5	7	11	29	2.43	< 10	~ 1				
800N-9800E	201 20:	1 .,											44	2.17	< 10	< 1	0.03	< 10	0.20	1555
	201 202	1 4 5	0.2	1.96	2	90	< 0.3	< 2	0.34	< 0.5			20 32	2.49	< 10	1 i	0.04	< 10	0.15	1300
8800X-9850E	201 202		6.2	1.11	Ē	110	< 0.5	< 2	0.25	< 0.5		10		2.30	< 10	- î	0.03	< 10	0.13	265
100H-9900E	201 202		0.2	1.07	< 2	80	< 0.5	< 2	0.27	< 0.3		11	20	2.00	< 10	- i	0.03	< 10	0.32	1090
800N-9950E	201 202		0.2	1.59	2	80	4 0.5	< 2	0.17	< 0.5			17	1.09	< 10	- à î	0.05	< 10	0.37	535
900x-9835E			0.6	1.87	< 2	120	< 0.3	< 2	0.24	< 0.3	•	•			• ••					
8900N-9875E	201 202		0.6	1.8/	• •	120														

CERTIFICATION: Htenthesachler

. . –

1.000 - 12 -----

Chemex Labs Ltd. Analylical Chemists * Geochamists * Registered Assayers 212 Brooksbank Ave., Worth Vancouver Bridish Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number :1.8 Total Peges :2 Certificate Date: 12-OCT-96 Involce No. :19534940 P.O. Number :D2 Account :LOY

1

Project : TAS Comments: CC: GRANT CROOKER

		110															
			CERTIFICATE OF ANALYSIS						/SIS	A9634940							
AMPLE	PREP]	Ио ррш	Na	Ni ppm	P ppa	2D ppm	gp ppm	Sc ppB	Sr ppe	ri N	T1 ppm	U PPE	v ppm	W Ppu	52 pp=	
		╂───			-	610	4	< 1	,	61	0.08	< 10	< 10	45	< 10	52	
200N-9550E	201 202		1	0.01		620	- 2			53	0.06	< 10	< 10	46	< 10	50 124	
200N-9600E 200N-9650E	101 102		< í	0.01	;	1660	14	< 1	2	71	0.10	< 10	< 10	45 70	< 10 < 10	78	
200N-9700E	201 202			0.01	10	690		< 1		38	0.13	< 10 < 10	< 10	73	< 10	144	
200N-9750E	201 202	4	1 -	0.01	13	680	10	< 1	,		0.15	• ••					
		. 	1	0.01	- ;	770		< 1	3	27	0.12	< 10	< 10		< 10	96 168	
200N-9800E 200N-9850E	201 202 201		i	0.01	13	810	6	< 2	1	44	0.11	< 10	< 10	41 17	< 10 < 10	220	
200N-3900E	201 202		< 1	0.01	13	1360	•	< 2	;	17	0.10	< 10 < 10	< 10 < 10	10	< 10	124	
200N-9950K	201 202		1	0.01	13	1800		< 1	1	21	0.10	2 10	< 10	91	< 10	132	
300N-9550E	201 202	1	< 1	0.01	14	880	•								_ ::-	120	
100N-9600F	201 202	,† t	< 1	0.01	10	1470	6	< 2	1	31	0.09	< 10	< 10 < 10	12	< 10 < 10	110	
300N-96508	201 202		֔.	0.02	15	410		< 2	4	40	0.11 0.10	< 10 < 10	< 10	й	< 10	154	
300N-9700E	201 202		< 1	0.01	10	1470			1	19	0.07	¥ 10	2 10	ij	< 10	161	
300N-9750E	201 202		< 1	0.02	12	490 1010	:		j	27	0.13	< 10	< 10	68	< 10	124	
300N-9800E	201 202	4	< 1	0.01	1.	1010								62	< 10	266	
100N-9850E	201 202	it	3	0.01	21	1080	10	< 2	2	17	0.14	< 10 < 10	< 10 < 10	ö	4 10	115	
300M-\$\$00E	201 202		1	0.01	13	1570	10	< 2	1	25	0.11	< 10	< 10		4 10	98	
300H-9950K	201 202		. 1	0.01 0.01	12	1250 330			- i	51	0.12	< 10	< 10	74	< 10	. 62	
400N-9400E	201 202			0.01		1070		- 21	i	21	0.09	< 10	< 10	90	< 10	106	
600N-9630E	1 201 202	'	•••		+							< 10	< 10	()	< 10	104	
600H-9700E	201 202	r i	< 1	0.01		1230	<u> </u>	< 1	1	19	0.08	< 10	< 10	-	< 10	123	
600H-9750Z	201 202			0.01	10	530		< 1 < 1	- í	10	0.07	< 10	< 10	47	< 10		
500N-9200E	201 202			0.01	2	1320			î	30	0.08	< 10	< 10		< 10	74	
600N-9850E 600N-9900E	201 202		<1.	0.01	;	1260	Ē	÷ i	â	21	0.10	< 10	< 10	54	< 10	170	
800N-9900E	101	1	••								0.10	< 10	< 10	62	< 10	150	
600N-9950E	201 202			0.01	10	1150		< 2	1	31 19	0.10	< 10	< 10	60	10	100	
700%-96258	101 202			0.01	10	890		< 1	i	31	0.07	< 10	< 10	- 45	< 10	90	
700N-9675E	201 202		<u>< 1</u>	0.01	;	1330		22	;	26	0.09	< 10	< 10	55	< 10	116	
700N-9725E 700N-9775E	201 202			0.01		620	i i	< 2	3	41	0.11	< 10	< 10	46	4 10		
1008-31135	101 101	·									0.08	< 10	< 10	30	< 10	36	
700H-9825E	201 202		< 1	0.01	.!	1030	- <u>+</u>	< 2	1	30 32	0.00	< 10	< 10	55	÷ 10	218	
700H-9875E	201 202		< 1	0.01	11	1180		~ 1	í	37	0.10	< 10	< 10	80	< 10	. 92	
700N-9925R	201 202		< 1	0.01	14	1260	i		- i	33	0.10	< 10	< 10	60	< 10	116	
700N-99755 800N-99005	201 202			0.01	ĩ	790	i	< 2	3	24	0.11	< 10	< 10	61	< 10	730	
800H- 7400B		1								29	0.10	< 10	4 10	54	< 10	106	
800M-9850E	201 202		1	0.01	!	1410			3		0.10	< 10	< 10	60	< 10	120	
800H-9900K	201 302			0.01		1090		21	5	25	0.10	< 10	< 10	59	< 10	100	
\$00N-9950E	201 202			0.01 0.01		1050	i	21	ĩ	16	0.09	< 10	< 10	40	< 10	170	
900N-98258 900N-98758	201 202			0.01	i	110	13	< 1	3	21	0.09	< 10	4 10	30	< 10	-	
30011-38138	1	1														1_	attender-
		<u> </u>								-							mun a man

CERTIFICATION:

C		Chemex Labs Ltd Analytical Chemists * Geochemists * Rogistered Asaryers, 212 Brookabank Ave., North Vencouver British Columbia, Canada V712C1 PHONE: 604-984-0221 FAX: 804-984-0218							Project :: TAS Comments: CC: GRANT CROOKER								Total Pa Certifica Invoice	rage Number		
		·····								CE	RTIFI	CATE	OF A	NAL	SIS	1	A9634	634940		
SAMPLE	PREP	Au ppb FA+AA	λg ppm	81 *	λø ppm	te. Ppu	Be ppm	ai ppm	Ca.	cđ ppm	Со рры	Cr ppm	Cu Ppu	70 3	Ge ppe	Bg ppm	K X	La ppm	Hg X	Na ppa
8900H-9975H 8900H-9975H 8300H-99750H 8300H-9750H 9300H-9850H 9300H-9850H	201 202 201 202 201 302 201 302 201 302 201 302	C 5 C 5 C 5 C 5	0.4 0.6 0.2 0.8 < 0.2	3.03 1.01 1.69 3.06 1.35		120 60 120	< 0.5 < 0.5 < 0.5 0.5 < 0.5	<pre>< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 3 </pre>	0.27 0.24 0.19 1.16 0.25	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 7 5 7	7 14 9 13	22 42 24 196 24	1.95 2.11 1.00 2.02 1.01	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	1 < 1 < 1 < 1 < 1	0.04 0.05 0.05 0.05 0.09	< 10 < 10 < 19 30 < 10	0.34 0.36 0.16 0.46 0.16	2010 1015 105 305 170
200N-9900K 200N-9950K 300N-9775K 300N-9775K 300N-9875K	201 202 201 202 201 202 201 202 201 202 201 202		0.6 0.2 0.8 0.6 0.4	2.26 1.60 2.34 2.53 1.14		130 90 140	< 0.5 < 0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.37 0.19 0.90 0.90 1.39	1.0 1.5 1.5 0.5 1.5	6 7 9 1	f 1 11 11	48 10 132 317 342	2.22 1.95 2.14 1.00 1.37	<pre></pre>	< 1 < 1 < 1 < 1 < 1	0.05 0.06 0.05 0.06 0.06	* 10 * 10 10 10 10	0.33 0.36 0.43 0.38 0.38	365 735 630 1005 640
300 0 - 93 35 300 0 - 93 75 200	201 202 301 203		0.2 6.2	1.#3	~ 1 ~ 2		< 0.5 < 0.5			4 0.5 7 0.5		•,	147 39	1.91 2.07	< 10 < 10	~1	0.03	< 10	0.19	490

. CERTIFICATION:_

Chemex Labs Ltd. Anaytical Chemists * Geochamistas * Registered Assayers 212 Brocksbank Ave. British Columbie, Canada PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOTEC CONSULTANTS LTD. 6976 LABURNUM ST. VANCOUVER, BC V&P 5M9

T-96 940

H

	212 Brocksbank Ave., North Vancouver British Columbie, Canada V7J 201 PHONE: 604-984-0221 FAX: 604-984-0218							Project : TAS Comments: CC: GRANT CROOKER CERTIFICATE OF ANALYSIS						Account :LOY		
									CE	RTIF	ICATE	OF /	INAL	/SIS	A9634940	· · · · · · · · · · · · · · · · · · ·
SAMPLE	PREP	No Na ppu s	Ni ppu	7 DDm	Pb Pp=	Sb ppa	Sc ppz	Sr ppm	71 *	T1 ppn	D D	y ppa	W ppm	Sn. ppm	<u></u>	
900N-99352 900N-99752 200H-97502 200N-95002 200N-95502	201 202 201 202 201 202 201 202 201 202 201 202	1 0.01 < 1 0.01 < 1 0.01 < 1 0.01 < 1 0.01 < 1 < 0.01	6 13 5 11 5	1200 950 2010 560 1570	4 4 10 4	< 2 < 2 < 7 < 2 < 2 < 2 < 2	1 2 2 6 1	18 25 20 69 23	0.09 0.12 0.00 0.07 0.07	< 10 < 10 < 12 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	43 52 45 37 47	< 10 < 10 < 10 < 10 < 10	84 132 96 52 38		
GON-99008 GON-99502 GON-97752 GON-97752 GON-98752	201 202 201 202 201 202 201 202 201 202 201 202 201 202	1 0.01 1 < 0.01 < 1 0.01 2 0.02 1 0.03	7 6 10 6	400 1640 530 430 400	40 10 10 20	<pre>< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 </pre>	3 1 5 5 2	24 10 53 51 41	0.10 0.09 0.05 0.05 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	44 46 53 41 30	< 10 < 10 < 10 < 10 < 10 < 10	736 354 388 56 132		
1008-99238 1000-99738	201 202 201 202	< 1 0.01 1 < 0.01	77	320 1330	:	< 2 < 2	2	25 19	0.08	< 10	< 10	81	< 10	76		
					<u>. </u>		• <u> </u>					c	EATIFIC		tart si	dler

APPENDIX II

.

MAGNETIC AND VLF-EM DATA

		1						2	
Moroloigh M	inerals Corporation	Line and Station	+=Northine/Easting		1500	10725		25	0
Muterengii M	interais corporation	Ente und Station	-=Southing/Westing		1500 1500	10750 10775		24 24	-2 -7
Area: Tas C	laims			1	1500	10800		28	-8
Grid: Tas		File Name: mmge()196.xyz		1500	10825		32	-8
Date: Nove	mber, 1996	-			1500 1500	10850		3 E 3 2	-6 -7
Instrument T		Details:			1500	10900		31	-6 U
Scintrex MP			eld Magnetic Values		1500	10925		36 26	0 -+
Geonics EM		In-Phase and Quad			1500	10950		20	-+
Station:	-10	Seattle, Facing Ea		1	1500	11000		20	-1
Data Types:	#1	Corrected Total Fi	ield Magnetic Values (nanoteslas)		1500	11025		17 10	3 -2
Data Types.		VLF-EM In-Phase			1500	11075		6	ō
	#2		ure Values (percent)		1500	11100		3	1
	#3	ALL-EMI Grantan	ure values (percent)		1500	11125 11150		5	0 0
	- 414	¥2 #3			11500	11175		24	8
N/3	E/W #1	#2 #3			11500	11200		17 20	3
lune 11500					11500 L1500	11225		23	5
11500	9675 9700	-2 12 -6 10			11500	11275		23	5
11500 11500	9725	-9 10			E1500 E1500	11300		14 22	4
11500	9750	-2 5			11500	11350		25	6
11500 11500	9775 9 800	-2 I 1 3			11500	11375		33	8
11500	9825	8 4			11500- 11500	11425		23 21	2
11500	9850	9 3			11500	11450-		22	-1
L1500 L1500	9875 9900	16 2 20 3			11500- 11500	11475 11500		18 20	-7 -6
11500	9925	21 4			11500	11505		25	
11500	9950 9975	25 9 18 5			11500	11550		36	0
11500 11500	10000	16 j			11500	11575 11600		24 22	-7 -7
11500	10025	15 5			11500	11625		23 27	-3
E1500 11500	10050	11 I 20 2			11500	11650		27 18	3
11500	10100	25 3			11500	11675 11700		4	2
11500	10125	25 6 17 8			11500	11725		-12	.3
11500 11500	10150 10175	17 8			11500 11500	11750		-17 -8	.9 -3
11500	10200	18 2			11500	11800			-4
11500 11500	10225 10250	22 4			11500	11825		-1	-1
11500	10275	33 5	•		11500	11850 1875		1	- 8 -6
11500	10300	35 2 28 7			11500	11900		10	-3
11500 11500	19325 10350	28 / 32 -2			11500	11925		12	-1 .7
11500	10375	33 3	3		11500 11500	11950 11975		-2	.9
11500	10400 10425	24 3 19			11500	12000		6	•1
11500 11500	10425	19 6			11500 11500	12025		11 -30	6 -12
11500	10475	18 :			11500	12075		-38	-11
11500 11500	10500 10525	16 - 20 U			11500	12100		-42	-12
11500	10550	25	2		lune 11450 11450	9650	56591	+	7
11500	10575	- 26			11450	9675	56593	2	10
11500 11500	10600 10625	27 - 27 -			11450 11450	9700 9725	56543 56533	1 0	4 5
11500	10650	24 -	1		11450	9750	56518	3	ŝ
11500	10675		4		E1450	9775	56741	5	0
11500	10700	.,	-						

			3	i		4	4
11450	9800	56754	12	8		10	
11450	9825	56854	20	10	11450 11400 58071 11450 11425 57712	29 23	
11450	9850	57894	24	8		-3	
11450	91175	57761	29	7	11450 11450 57838 11450 11475 58523	31	
(1450	9900	57163	33	7	11430 11473 38323 11450 11500 56990	33	
11450	9925	56982	30	6		38	
11450	9950	56861	26	6		25	
11450	9975	56770	20	6		10	
11450	10000	56960	14	2		30	
11450	10025	57115	13	4		34	
11450	10050	56645	22	1		16	
11450	10075	56718	26	7		10	
11450	10100	56640	33	9	11450 11675 56996 [1450 11700 5702]	-7	
11450	10125	56635	29	5			
11450	10150	56723	21	2	11450 1(725 57060	-6	
11450	10175	56936	16	0	11450 11750 57499	-2	
11450	10200	56699	16	-3	11450 11775 56640	-2	
	10225	\$6545	24	-3	11450 11800 \$7568	-2	
11450		56687		2	11450 11825 56785	2	
11450	10250		31	2	11450 11850 57060	3	
11450	10275	56931	36		11450 11875 S8195	9	
11450	10300	56853	36	-1	11450 11900 56810	9	
11450	10325	56811	37	3	11450 11925 56803	13	
11450	10350	56829	29	4	11450 11950 \$7024	7	
11450	10375	56846	24	3	11450 11975 5 69 13	3	
11450	10400	56821	18	6	11450 12000 56945	•	
11450	10425	56930	24	6	11450 12023 57050	3	
11450	10450	57027	16	4	11450 12050 56960	-29	
11450	10475	56937	20	6	11450 12075 57015	-35	
11450	10500	57031	19	8	11450 12100 56828	-36	
11450	10525	56801	19	4	ium: 11400		
11450	10550	56803	24	4	11400 9675	+	
11450	10575	56845	23	3	11400 9700	,	
11450	10600	56658	24	6	11400 9725	5	
11450	10625	56638	20	2	11400 9750	9	
11450	10650	56727	18	2	1400 9775	16	
11450	10675	56716	15	U	1450 9800	21	
11450	10700	56714	16	ł	11400 9825	24	
11450	10725	56622	10	-	11400 9850	34	
11450	10750	56657	16	2	1400 9875	25	
11450	10775	56630	18	-3	11400 9900	17	
11450	10800	56675	19	-4	11400 9925	23	
11450	10825	56640	23	-7	11400 9950	21	
11450	10850	56592	36	0	1400 9975	15	
11450	10875	56767	37	-2	11400 (0000	29	
11450	10900	56542	22	-6	11400 10025	25	
11450	10925	56589	27	-2	11400 10050	37	
11450	10950	56639	25	0	1440 19075	39	
11450	10975	56630	23	0	11400 10100	29	
11450	11000	56641	23	õ	11400 10100	27	
11450	11025	56832	18	ō	11400 10150	29	
11450	11050	57067	16	-2	11400 10175	34	
11450	11075	57115	15	-3		24	
11450	11100	57020	21	2	11400 10200 11400 10225	33	
11450	11125	57295	15	-2	11400 10225	29	
11450	11150	57195	1	-2	11400 10275	41	
11450	11175	56880	12	-3		15	
11450	11200	56355	12	-2	11400 10300		
11450	11225		26		11400 10325	1 <u>1</u>	
		56519		0	11400 10350	29	
11450 11450	11250 11275	56695	26		11400 :0375	27	
		56745	25	-	114400 10460	26	
	11300	56990	23	-2	11401/ 10425	31	
11450							
11450 11450	11325	5688D	27	-	1448) 10450	27	
11450		56880 57603 58365	33 42	-2	14400 10475 11400 10475 11400 10560	13 27	

11400 11400
11400
L1400 L1400
11400 11400
11400 (1400
11400
11400
11400
11400 11400
11400 11400
11400 E1400 []400
11400 11400
1400
11400 11400 11400
11400
11400 11400
11400
11400
11400
11400 11400
11400 11400
11400 11400
11400 11400
1400
11400 11400
11400 11400
11400 11400
11400
11400
11400 11400
11400 11400
11400 11400
11400 11400
11400
11400
11400

29	
28	
.10	
29	
29	
31	
30	
29	
30	
27	
34	
21	
21	
26	
29 23 30 29 28 29 31 33 29 27 34 51 21 26 22 12 20 18 45 24 1 25 20 18 45 24 12 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	
22	
20	
18	
5	
2	
12	
34	
41	
5 2 4 1 12 34 41 30 4 26 22 18 19 20 7 32 16 20 7 20 14 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
26	
22	
18	
14	
20	
27	
32	
20	
37	
20	
14	
4	
-2	
Ę	
13	
6	
7	
8	
.9	
10	
7-2-2-7-13-6-7-14-8-9-10-1-3-2-2-0-1-3- 	
-12	
-27	
-40	
-33	

5

ĥ

4

4

0

0

-1

-1

Ô.

 $\cdot 1$

4

-1

-6 .7

-3

-7

•7

-6

.,

-2

lune 11350			
11350	9650	56729	8
11350	9675	j6179	2
11350	9700	56606	5
11350	9725	56608	7
11350	9750	56448	6
11350	9775	56579	7
11350	9900	56558	16
11350	9825	57017	28
11350	9850 9875	57051 56985	43 47
11350	9900	>6985 17089	47
11350	9925	56949	14
11350	2950	56917	14
11350	9975	56941	14
11350	10000	57191	19
11350	10025	57267	26
[1350	10050	57447	33
1 (350	10075	\$7179	19
11350	10100	56615	23
11350	10125	56638	20
11350	10150	56641	20
11350	10175	36586	20
11350	10200	\$6487	25
11350	10225	56613	17
11350	10250	56845	9
11350	10275	56515	17
11350	10300	36666	17
11350	10325	56839	18
11350	10350	56733	24
11350	10375	56662	24
11350 11350	10400	56880 57060	27 26
11350	10425 10450	56695	26
11350	10450	56905	24
11350	10500	56865	24
11350	10525	56903	22
11350	10550	56975	26
11350	10575	56824	24
11350	10600	56915	3
11350	19625	56894	26
11350	10650	57002	24
11350	10675	57092	26
11350	10700	56845	27
11350	10725	56463	26
11350	10750	36407	25
11350	10775	56882	23
13500	10800	56573	30
11350	10825	56607	36
11350	10850	\$6620	24
11350	10875	56623	15
11350	10900	56602	17
11350 11350	10925	56653 56917	12
	10950		13
11350	(1000	57282 57088	18 15
11350	11000	57139	17
11350	11050	57777	13
11350	11075	57325	9 13
:1350	EB00	\$7290	
11350	11125	58178	-4
11390	11150	58205	-
11350	11175	57315	3
11350	11200	56796	10

.

6

-

•

i 4

4

1

- 9 ÷

3

10

×

9

R

8

2

ō.

-2

4

-4

4

.5

-7

-5

-2 0

s

я

8

3

6

1

υ

0

13

-4

-2

-1

.j

2

4

5

4

4

4

2

-1 :

.

			-				
			7				
50	11225	56889	18	0	11300	10325	15
50	11250	56649	24	-1	11300	10350	1
ō	11275	56907	22	-*	11300	10375	
õ	11300	57539	19	-8	:1300	10400	
50	11325	57638	18	-7	11300	10425	
0	11350	57598	17	-6	11300	10450	
,	11375	57901	21	-6	11300	10475	
õ	11400	57963	17	-5	1100	10500	
ó	11425	57601	17	-4	11300	10525	
õ	11450	57443	14	-5	11300	10550	
õ	11475	57545	15	4	11300	10575	
0	11500	57170	19	-6	11300	10600	
0	11525	57180	21	-6	11300	10625	
0	11550	57167	16	-8	11300	10650	
D	11575	57357	19	-10	11300	10675	
) }	11600	57243	25	-7	11300	10700	
	11625	57069	16	-9	11300	10725	
	11625	56779	9	-9	11300	10750	
		56864	-1	-10	1300	10775	
	11675	56529	- - N	-10	11300	10800	
	11700		-	-9	11300	10825	
	11725	56820	7	-) -)	11360	10850	
	11750	56986			11300	10875	
	11775	56994	8	-3	11300	10900	
	11800	57035	19		11300	10925	
	11825	56796	11	-5	11300	10950	
	11850	57083	8	-7	1300	10975	
	11875	56780	13		11300	11000	
	E1900	56673	81	-6	11300	11025	
)	11925	56823	6	_7	17300	11050	
)	11950	56898	9	-6		1075	
	11975	56979	5	-5	11300		
	12000	57043	6	-Z	11300	11100	
	12025	56829	-8	1	11300	11125	
)	12950	56775	-25	-2	11300	11150	
)	12075	56870	0	-6	11300	11175	
ł	12100	57487	-37	-2	11300	11200	
1300					11300	11225	
	9650		3	3	11300	11250	
	9675		7	0	11300	11275	
5	9700		12	0	11300	11300	
1	9725		14	3	11300	11325	
	9750		15	4	11300	11350	
,)	9775		21	5	11300	11375	
5	9900		30	4	11300	1400	
	9825		19	2	11300	11425	
	9850		45	-2	11300	11450	
0	9875		60	ι	11300	11475	
Ś	9900		24	-1	11300	11500	
õ	9925		13	3	11300	11525	
o o	9950		13	1	11300	11550	
ů.	9975		20	9	11300	11575	
õ	10000		27	9	11300	11600	
,	10025		29	7	11300	11625	
,	10050		38	2	11300	11650	
	10075		32	2	11300	11675	
	10100		24	1	11300	11700	
D n	10125		20	-1	11300	11725	
10 X0	10150		20	-1	11300	11750	
00	10175		20	-2	(1300	11775	
10 20	10200			-	11300	(1800	
00	10200		20	.7	11300	11825	
00 20			21	-1	11300	E1850	
	10250			-2	11300	11875	
))	10.345						
	10275		11 14	-	:1300	11900	

			ç)
11300	11925		6	-6
11300	11950		5	
11300	11975		2	0
11300	12000		-31	-4
	12025		-11	-9
11300				
11300	12050		-40	4
11300	12075		-38	-2
11300	12100		-28	-2
line 11250				
11250	9650	56904	5	4
11250	9675	56877	ŝ	0
11250	9700	56550	10	L
11250	9725	56765	[3	-5
11250	9750	56715	27	-7
11250	9775	56746	29	-6
11250	9900	56703	60	-14
11250	9825	56855	43	4
		57129	51	
11250	9850			-2
11250	9875	56868	59	0
11250	9900	ST763	29	-15
11250	9925	57485	30	-16
11250	9950	57151	32	-16
11250	9975	57441	37	-17
	10000	57643	30	
11250				6
11250	10025	58455	39	8
11250	10050	57320	35	2
11250	10075	57310	32	2
11250	10100	58186	29	3
11250	10125	57033	23	ō
	10150	57273		
11250			24	0
11250	10175	57215	26	-1
11250	10200	57169	23	-4
11250	10225	57860	23	-5
11250	10250	\$6766	24	-5
11250	10275	56953	18	-2
11250	10300	56850	15	2
11250	10325	57074	5	3
11250	10350	57065	7	7
11250	10375	56933	6	7
11250	10400	57076	7	8
11250	10425	57055	15	В
11250	10450	57058	20	Ř
11250	10475	57107	26	8
11250	10500	57163	23	3
11250	10525	57132	23	1
11250	10550	57207	22	2
11250	10575	57178	21	0
11250	10600	57292	22	-1
	10625	57303	14	
11250			28	-2
11250	10650	57243	22	-4
11250	10675	57282	27	-2
11250	10700	57162	27	0
11250	10725	57100	27	-1
11250	10750	57095	25	.3
11250	10775	57145	20	-6
11250	10900	57059	25	-+
11250	10825	57027	38	4
11250	10850	56974	21	.3
11250	10875	56921	35	i
11250	10900	57030	19	9
11250	10925	56981	16	2
11250	10950	56922	17	4
11250	10975	57283	12	2
11250	11000	57228	11	2

11250	11025	56835	13
11250	11050	57252	15
11250	11075	58889	14
11250	11100	57377	×
11250	11125	57501	-1
11250	11150	58678	.5
11250	11175	57684	6
E1250	11200	57545	12
11250	11225	57566	16
11250	11250	57313	30
11250	11275	57012	29
11250	11300	56953	25
11250	11325	57226	23
11250	11350	57359	20
11250	11375	57585	22
			15
11250	11400	57073	
11250	11425	57206	11
11250	11450	57379	13
1250	1475	56975	18
11250	11500	56912	17
11250	11525	56859	16
11250	11550	56986	13
11250	11575	\$7061	13
11250	11600	57243	15
11250	11625	57039	13
11250	1650	56961	8
11250	11675	56998	-2
1250	11700	57232	0
11250	11725	56894	9
11250	11750	57072	21
11250	11775	57468	22
11250	11800	57028	26
11250	11825	57205	26
11250	11850	57410	20
11250		57268	16
	11875		
11250	11900	56986	18
11250	11925	56997	16
11250	11950	57248	14
11250	11975	57192	17
11250	12000	5 7062	9
11250	12025	57168	-18
11250	12050	57087	-26
12.50	2075	57358	-25
11250	12100	58119	-22
line 11200	14100		
11200	9675		16
11200			35
	9700		
11200	9725		32
11200	9750		30
11200	9775		32
11200	9800		35
11200	9825		+3
11200	9830		45
i 1200	9875		52
11200	9900		15
11200	9925		8
11200	9950		17
11200	9975		19
11200	LOOND		25
11200	10025		27
11200	10050		31
11200	10075		25
11200	10100		1 Ĵ
:1200	10125		13

22254212070

010+42247

+ -15 -11 -5 + -2 -0

Ú

-6

-6

-1

-3 υ -5 -1 -2 -6 ٠j ۰.5 ÷, -3 я .4 -4 a -Z Ð -3 - 9 - (1 -2 $^{-2}$ -j -

11150

Û

-1

-6

.,

-4

-3

-2

-2

ព

Û

-2

-1

-3

.4

-17

-20

-17

-14

-8,

-5

U

-3

-11

-12

+

-1

-1

- 3

-2

-3

-2

-5

-2

-3

-4

-8

-3,

-8

-5

.7

-2

11150	10850	56985	18
11150	10875	57009	18
11150	10900	57142	15
11150	(0925	57170	3
11150	10950	\$7360	8
11150	10975	57238	9
11150	11000	57339	12
11150	11025	57373	12
11150	11050	57482	16
E1150	11075	58217	14
11150	11100	58098	15
11150	11125	\$7740	13
11150	11150	57765	-2
11150	11175	58105 58265	6
11150	11200	57852	15
11150	11225	57483	19
11150	11275	57760	21
11150	11273	\$7257	17
11150	11325	57990	ii
11150	11350	57230	20
11150	11375	56940	15
11150	11400	56996	10
11150	11425	56911	22
11150	11450	56784	21
11150	11475	56857	14
11150	11500	56805	10
11150	11525	57014	17
11150	11550	57273	17
11150	11575	\$7363	17
11150	11600	\$7010	16
11150	11625	56874	10
11150	11650	56760	7
11150	11675	57117	6
11150	11700	57459	14
11150	11725	57244 57425	19 30
11150	11750	57253	29
11150	11775	57175	29
11150	L1800 11825	57522	9
11150 11150	11850	57912	, 4
11150	11875	57235	10
11150	11900	56898	13
11150	11925	56980	12
11150	11950	57071	3
11150	11975	57284	-2
11150	12000	56983	1
11150	12025	\$7052	7
11150	12050	57241	-18
11150	12075	57606	-16
11150	12100	58185	-13
line 1100			
11100	9675		31
11100	9700		47
11100	9725		47
11100	9750		49
11100	9775		55
11100	9800 982.5		52 43
11100	9825 9850		43
11100	9875		10
11100	9900		43
11100	9925		18
11100	······································		24

n.

- 1

-5-40

-}

⊣ 0

Û

-1

-2

-6

-5

-2 -2 -2 -3 -2 IO

-1 5 0

-10 -24 -23 -20 -16 -12 -5 -5 -5 -4 -12 -5 -5 -4 -10

9975	
10000	
10025	
10050	
10075	
10100	
10150	
10175	
10200	
10225	
102,50	
10275	
10300	
10325	
10350 10375	
10400	
10425	
10450	
10475	
10500	
10525	
10550	
10575 10600	
10600	
10650	
10675	
10700	
10725	
10750	
10775	
10800	
10823	
10875	
10900	
10925	
10950	
10975	
11000	
11025	
11075	
11100	
11125	
11150	
11175	
11200	
11225	
11250	
11300	
11325	
11350	
11375	
11400	
1425	
11450 11475	
11500	
11525	
11550	

- 5

-1

13

-13

Ð

-1

-1

Ű

-1

-4

-3

-4

-4 -3

t

-10 -10 -*

-6 0

-6

-2 -3

;

÷

÷

i

			15
11100	11575		16
11100	11600		10
11100	11625		6
11100	11650		9
11100	11675		10
11100	11700		12
11100	11725		13 9
11100 11100	11750		9 9
11100	11800		6
11100	1825		8
11100	11850		10
11100	11875		13
11100	11900		10
[1100	11925		-2
11100	11950		0 8
11100	12000		-2
11100	12025		-20
11100	12050		-20
11100	12075		-21
11100	12100		-11
lime 11050			
11050	9650 9675	56639 56636	18 33
11050 11050	9700	56900	43
11050	9725	56690	43
11050	9750	57049	34
11050	9775	57448	33
11050	9800	57115	43
11050	9825	56966	34
11050	9850	57230	47
11050	9875 9900	57050 59821	47 45
11050	9925	59028	14
11050	9950	57553	17
11050	9975	57244	22
11050	10000	57503	31
11050	10025	58388	35
11050	10050	57295	25
11050	10075	57123 577 5 6	24 19
11050	10125	57421	23
11050	10150	57161	23
11050	10175	57108	19
11050	10200	57144	18
11050	10225	56990	14
11050	10250	57019	16
11050	10275	57173	16
11050 11050	10300	5698 <u>2</u> 57229	17 18
11050	10350	57353	19
11050	10375	56874	17
11050	10400	56852	15
11050	10425	57006	16
11050	10450	57103	23
11050	10475	56783	33
11050	10500	56757 56872	31 29
11050	10525	57232	31
11050	10575	57433	25
1 1050	10600	57474	24
11050	10625	57006	23
11050	10650	57317	20

٠ł

I

-2

-2

-4

-4

Ũ

-2

-3

٠j

-2 -4

-0

-3 -4

-3

-4

-6

-1

-1

Ð

-Z

-3

-3

-3

7

L

11050	10675	57089	14
11050	10700	57051	24
11050	10725	57214	27
11050	10750	57142	29
11050	10775	57261	34
11050	10800	56997	39
11050	10825	56799	19
11050	0850	56680	17
11050	10875	56996	15
11050	10900	56869	15
11050	10925	36967	10
11050	10950	57135	6
11050	10975	56998	10
11050	11000	57054	12
[1050	11025	56991	12
11050	11050	57121	14
11050	11075	57051	14
11050	11100	58152	19
11050	11125	58881	25
11050	11150		
11050	11175		
11050	11200	58136	25
11050	11225	37486	14
11050	11250	58544	13
11050	11275	58042	19
11050	11300	57794	20
11050	11325	57050	19
11050	11350	57100	17
11050	13375	\$7170	19
11050	11400	56858	9
11050	11425	56606	15
11050	11450	56734	17
11050	11475	56676	20
11050	11500	56754	17
11050	11525	56617	14
11050	11550	56700	14
11050	11575	56864	10
11050	11600	56779	6
11050	11625	56839	15
11050	11623	56908	26
11050	11675	56714	20
11050	11700	56843	15
11050	11725	56771	8
11050	11750	57025	ů
11050	11730	57191	15
11050	11800	56915	16
11050	11825	57186	13
11050	11850	57267	15
t 1050	11875	57065	14
11050	11900	57483	11
11050	11900	56897	10
11050	11950	56833	16
11050	11975	56784	18
11050	12000	56806	2
11050	12000	56851	ī
11050	12050	56998	5
11050	12050	57184	14
11050	12073	56878	2
Line 11000	12100	70870	,
11000	9675		46
1000	9700		46
11000	9725		24
1000	4750		25
	9750		43
1000	9175		• ?

-8 -7 -7

-\$.7

-4

-6

ī

-1

-2

-1 -2 -3 -3 - 1 -3

-2

-2

+1

.3

-2 0

ž 6 ž

.9 -i2

¥925 -1975 :1375

- 5 -2 ж. Ŕ -2 -1 a. , -1 -2 -5 -3 -2 --1 -3 -5 -2 -2 - 1 -2 - E -2 -2 -2 -4 -K -1 .1 U U) υ -3 -6 · 5 .5 --1 -i

H475 :1750 lape 10900 **650 9700 -9950 LONG 0.000 0.0900

£1000

i9300

-2

- 1

•

-2

-2

-2

-2

-2

-4

-2

-2

-l 2

-1

-5

•1

-9

-8

クイ

-+

-iU

-2

Ú

-2

-2

-2

-2

1)

ų

υ

-2

R,

-2

 \sim

-2

-1

-2

30

!4 17

17

7

17

33 38

29

			.,	
10900	10500	56834	23	-2
10900	10525	56799	22	-2
10900	10550	56882	20	4
10900	10575	57145	20	- 4
10900	10600	57565	34	.3
10900	10625	\$6994	28	-2
10900	10650	57502	30	9
10900	10675	56689	20	-4
10900	10700	56458	18	-2
10900	10725	56463	22	-2
10900	10750	56459	19	0
10900	10775	36433	20	2
10900	10800	56456 56346	8	6
10900	10825	56130	6	5
10900 10900	10875	56225	4	ŝ
10900	10900	56387	1	6
10900	10925	56858	i.	6
10900	10950	56985	3	4
10900	10975	57245	6	3
10900	11000	57162	9	t
10900	11025	57180	11	-1
10900	11050	56797	10	-3
10900	11075	56739	21	-1
10900	11100	56965	22	-2
10900	11125	57337		
10900	11150	57495 56961	17	-3
10900	11175	57207	13	
10900 10900	11200	57153	, J 9	-6
10900	11250	57918	17	-6
10900	11275	58227	24	-2
10900	11300	56972	19	-3
10900	11325	57032	н	-6
10900	11350	56980	-11	-}
10900	11375	58180	6	-1
10900	11400	57027	12	0
10900	11425	57190	12	0
10900	11450	57451	9	्म - 1
10900	11475	57410 56927	21	-1
10900	11500	56718	25	ō
10900 10900	11550	56689	20	-1
10900	11575	56449	18	-1
10900	11600	56679	15	o
10900	11625	56511	14	0
10900	11650	56561	17	-1
10900	11675	56582	15	0
10900	11700	56634	10	0
0900	11725	56706	9	1
10900	11750	56672	9 12	0
10900	11775	56795 56 95 0	12	÷ 0
10900 10900	11900 11825	36639	10	Ű
10900	11850	56702	12	-1
10900	11875	56819	14	- 2
10900	11900	56697	16	-1
10900	11925	56851	•	-
10900	11950	56907	4	
10900	11975	56789	5	
10900	12000	56805	;	-
10900	(2025	57218	-1	
10900	12050	56751	2	-
10900	12075	56613	5	

19

-1 2 0

-1

0 0

-1

ė

0

Û

-1 -2 -3 -4 -2 -2 -2 -2 -3

-2

ų.

12100	56674	3
9650	566.53	26
9630	56615	23
9700	56635	18
9725	564 30	20
9750	56670	+0
9775	56689	34
9600	56690	30
9825	56734	20
9850	56794	23
9875	57035	31
9900	5628 L	31
9925	58655	46
9950	\$7835	24
9975	57311	19
10000	\$7784	14 14
10025	56848 56817	14
10050	56853	10
10100	57220	5
10125	56757	12
10150	56885	17
10175	56775	18
10200	56651	10
10225	56720	12
10250	56707	19
10275	56825	18
10300	56574	16
10325	57674	16
10350	56609	3
[0375	56494	23 28
10400	56408 56469	23
10425	56715	27
10450	56750	28
10500	56880	27
10525	56794	14
10550	56740	24
10575	56893	29
10600	56608	27
10625	57327	29
10650	56826	25
10675	56587	23
10700	56423	21
10725	56313	19
10750 10775	56411 56324	4
10800	56135	5
10825	56060	â
10650	58040	11
10875	59895	9
10900	58249	5
10925	58245	10
10950	56721	13
10975	57700	13
11000	57189	15
11025	5680 Z	18
11050	57116	12 [4
11075	56832 59496	-12
11100	0.000	-12
11125		
11175		
111.2		

10800

20

-3

-5 -6 -8 -8 -12

-8

-6

-4

-4

-3

- 1

0

1

-2

4

1

3

20

2 0

4

4

2

3

2 4 2

2 Ó

ł

-3 2

2

2 2

5

;

4 7

4

4022202

,

ł

÷

1

			-	•
10800	11200	59024	22	
10800	11225	57111 57563	26	-4
10800	11250	5794H	26	4
10800	11300	58005	21	
10800	11325	57945	22	-
10800	11350	58714	23	-4
10800	11375	57322	3	-1
10800	11400	56957	23	-1
10800	11425	57047	12	5
10400	11450	56528	14	-3
10500	11475	56850	16	4
10800	11500	56915	24	2
10800	11525	56982	19	-2
10800	11550	56581	16	4
10900	11575	56523	16	-1
10800	11600	56682	14	-2
10800	11625	56636	15	-2
10200	11650	56692	14	-2
10800	11675	56676	7	0
10900	11700	56637	. 5	0
10900	11725	56880	6	2
10800	11750	56863	0	2
10800	11775	56664	0	2
10100	1800	56685	0	2 1
10800	11825	56526	2	1
10800	11850	36695	-1	3
10800	11875	56829	-1	4
10800	11900	56756	-1	4
10900	11925	\$6685	-1	3
10800	11950	56526	3	4
10800	11975		-1	3
10800	12000	57110	-4	L
10800	12025	56690	0	2
10800	12050	56992	-1	-3
10800	12075	\$6570	1	-!
10800	12100	56701	7	4
time 10700				
10700	9650	56589	14	-4
10700	9675	56690	19	-5
10700	9700	56684 56710	19	-6 -1
10700	9725 9750	56619	19 26	
10700				
10700	9775 9800	56561 56660	19 32	-2 -6
10700	9825	56625	26	-3
10700	9850	56764	26	-j
10700	9875	56718	30	-1
10700	9900	56972	34	1
10700	9925	57478	30	2
10700	9950	58498	10	-
10700	9975	57094		-6
10700	10000	57031	13	4
10700	10025	56870	20	5
10700	10050	56809	18	5
10700	10075	56827	21	5
10700	10100	56815	19	õ
10700	10125	56783	24	
10700	10150	56801	27	1
10700	(0175	56612	22	ð
10700	10200	56827	13	
10700	10225	56957	17	0 : U
10700	10250	56801	14	
10700	10275	57035	[4	-6

10700	10300	57465	10
10700	10325	57126	!#
10700	10350	57305	11
10700	10375	58195	14
10700	10400	58687	17
10700	10425	58335	17
10700	10450	56980	18
10700	10475	57332	12
10700	10500	57421	8
10700	10525	56286	0
10700	10550	57050	_}
10700	10575	57470	-2
10700	10600	57136	-2
10700	10625	57004	-4
10700	10650	57138	i
10700	10675	56855	R
10700	10700	57195	16
10700	10725	56815	-3
10700	10750	57094	
10700	10775	\$7220	2
10700	10800	56795	4
10700	10825	56605	ŭ
10700	10850	57045	19
10700	10875	57435	14
10700	10875	58139	20
10700	10925	58139	28
10700	10925	56350	30
			28
10700 10700	10975	57605 57191	24
	11000		19
10700	11025	57771	19
10700	11050	57166	.,
10700	11075	57544	19 21
10700	11100	57450	21
10700	11125	\$9035	
10700	11150		
10700	11175		
10700	11200	57214	23
10700	11225	5714L	16
10700	11250	57147	17
10700	11275	57352	18
10700	11300	57517	22
10700	11325	57405	22
10700	11350	57326	19
10700	11375	57018	27
10700	11400	56913	22
10700	11425	57014	8
10700	11450	57170	14
10700	11475	57318	16
10700	11500	57100	14
10700	11525	57523	22
10700	11550	56875	п
10700	11575	56537	14
10700	11600	56669	15
10700	11625	56629	15
10700	11650	56679	14
10700	11675	56.521	6
10700	i 1700	56722	•1
10700	11725	57919	o
10700	11750	\$6716	-
10700	11775	56562	-2
10700	11800	56672	+
10700	11825	56685	-2
10700	11850	\$6723	-10
10700	11875	36928	3

-2 -1 -4 -2 0

-2 - 2 - 2 - 1 - 2 - 1 - 2 - 4 - 7 - 1 - 0

-2 -1 -1 0

:

Q

-4

.

÷

-

10700	11900	56786	19	
10700	11925	56951	-1	9
10700	11950	56827	7	10
10700	11975	56739	-6	0
10700	12000	56720	-8	-2
10700	12025	56747	-6	+ł
10700	12050	56721	-4	-1
10700	12075	56757	1	-)
10700	12100	56704	6	0
line 10600				
10600	9650	56530	8	l
10600	9675 9700	56549 56623	9	2
10600	9725	56666	19	4
10600	9750	56723	24	2
10600	9775	56620	24	2
10600	9800	36642	22	Ĩ
10600	9825	56680	24	3
10600	9850	56707	16	í
10600	9875	56601	12	0
10600	9900	56653	. 5	9
10600	9925	56654	8	2
10600	9950	56720	19	9
10600	9975	58012	13	4
10600	10000	59338	6	-2
10600	10025	58040	13	27
10600	10050	57276	28	
10600	10075	57053	28	3
10600	10100	56883	28	-2
10600	10125	56885	26	0
10600 10600	10150	568,59 56880	21	-1
10600	10175	56702	23 20	-4
10600	10225	56812	20	-5
10600	10250	56813	16	-5
10600	10275	56756	18	-1
10600	10300	57054	21	.7
10600	10325	56755	28	-2
10600	10350	57078	18	ō
10500	10375	57234	-1	ő
10600	10400	57173	-3	0
10600	10425	\$6665	0	0
10600	10450	57026	3	-2
10600	10475	57108	4	-5
10600	10500	57020	16	-1
10600	10525	56810	17	-2
10600	10550	\$7086	12	-1
10600	10575	57104	0	-
19600	10600	56955 56828	14	-2
10600	10650	56880	24 30	-1 -2
10600	10675	56726	4	-2
10600	10700	56862	39	4
10600	10725	57205	37	1
10600	10750	56366	19	9
19600	10775	56956	23	10
10600	10800	56759	15	7
10600	10625	56970	ti	6
10600	10850	57432	7	5
10600	10875	57338	7	
10600	10900	57899	÷	8
10600	10925	57662	-1	5
10600	10950	57693	-si	2
10600	10975	57630	-8	2

10500	11000	58588	-3
10600	11025	58570	ĩ
10600	11050	58289	່ວ
10600	11075	57939	ý
10600	11100	56993	9
10600	11125	56944	13
10660	11150	57223	9
10600	11175		
10600	11200	56823	I.
10600	11225	57636	6
10600	11250	58145	10
10600	11275	57957	14
10600	11300	57290	11
10600	11325	58395	5
10600	11350	56905	9
10600	11375	56525	-2
10500	11400	56340	-1
10600	11425	56658	13
0600	11450	56882	17
10600	11475	56792	20
10600	11500	56791	14
10600	11525	56725	11
10600	11550	56565	20
10600	11575	56745	25
10600	11600	56561	17
10600	11625	56880	14
10600	11650	56712	10
10600	11675	56612	14
10600			-3
	11700	56533	-9
10600	1725	56537	
10600	11750	57025	0
10600	11775	57100	5
10600	11800	57310	-1
10600	11825	57095	t
10600	11850	56692	6
10600	11875	>6625	12
10600	11900	56579	5
10600	1925	56455	2
10600	11950	56690	3
10600	11975	\$6488	4
10600	12000	56807	0
10600	12025	56603	-2
10600	120.0	500%	0
10600	12075	56628	5
19600	12100	56633	11
line 10500			
10500	9650	56807	13
10500	9675	56914	20
10500	9700	56840	ji ji
10500	9725	\$6422	34
10500	9750	56886	25
10500	9775	56839	18
10500	9700	56937	21
10500	9825	\$7021	21
10500	9850	56915	25
10500	9875	56929	3
10500	9900	56908	42
10500	9925	56995	51
10500	9950	57147	51
10500	·×975	57993	55
10500	10000	57850	23
10500	10025	57329	:5
10500	10050	57258	12
10500	10075	57106	•

24

Ĵ.

7

Å б 3 -1 - 2 Ĩ. 4 2 ū 2 23.0 -1 -2 -3 õ 3 623 3 h 2 5 6 я 3 1 0

-1 -2 -3 -5 -5 -2

.7 -2 -1 -1 0 0

+ -2 -2 -2 -2 -4 -13 -13 -11

.

			2:	5
0500	10100	57086	×	4
0500	10125	57189	6	3
.0500	10150	57142	2	1
0500	10175	57099		3
10500 10500	10200	57030 57115	-11	4
0500	10225	57186	-11	-1
0500	10275	57065	1	-i
0500	10300	57488	7	-t
10500	10325	57430	y	0
0500	10350	57225	9	-1
10500	10375	58559	12	0
10500 10500	10400 10425	58457 57598	18 23	3 0
10500	10425	57598	25	-3
10500	10475	57475	20	-5
10508	10500	57385	15	-5
10500	10525	57165	4	-5
10500	10550	57370	-2	5
10500	10575	57338	-16	Û
10500	10600	57451	-16	1
10500	10625 10650	57690 57763	-10 6	4
10500	10675	57022	4	5 11
10500	10700	58103	-21	ő
10500	10725	57959	-16	6
10500	10750	58076	~*	10
10500	10775	58283	-2	10
10500	10800	57060	5	12
10500	10825	57786 58014	12	10
10500	10875	57982	14	11
10500	10900	57921	14	6
10500	10925	58070	13	5
10500	i0950	58185	to	2
10500	10975	58199	11	3
10500	11000	58011	16	5
10500	11025	57927 57222	16 20	4
10500	11075	58136	16	1
10500	11100	57792	6	-6
10500	11125	58000	q	-4
10500	11150	58126		
10500	11175			
10500	11200	57768		
10500 10500	11225	58041 57907	15 22	.3 -2
10500	11275	59124	28	0
10500	11300	57255	35	ž
10500	11325	56891	17	-5
10500	11350	59284	10	-8
10500	11375	57459	13	-6
10500	11400	57559	18	-4
10500	11422	57877 57337	26 30	0 2
10500	11475	57282	15	U 2 -2
10500	11500	57219	17	-3
10500	11525	571.30	1	-4
10500	11550	57089	7	-2
10500	11575	570+0	12	-1
10500	11600	57233 57218	13	9
10500	11625	57218	:0 8	0
10500	11675	57336	-1	
				.,

1500	11700	57662	1
15041	11725	5761/6	7
500	11750	57520	9
0500	11775	57367	-3
0500	11800	\$6700	-5
0500	11825	56507	n
0500	11850	57056	5
0500	11875	56901	8
0500	11900	56966	-3
0500	11925	56852	-2
0500	11950	56871	:
0500	11975	56683	6
0500	12000	56833	9
0500	12025	56842	7
0500	12050	56730	6
0500	12075	56870	3
0500	12109	56910	10
ine 10400			
0400	9650	56777	15
0400	9675	56974	12
10400	9700	56778	15
10400	9725	3677 ()	13
10400	9750	56763	t6
19400	9775	56802	13
10400	7800	56809	21
10400	9825	56963	28
10400	9850	57008	28
10400	9875	56867	15
10400	9900	56839	15
10400	9925	56879	22
10400	9950	56948	19
10400	9975	\$6920	18
10400	10000	57318	23
10400	10025	58732	14
10400	10050	57410	10
10400	10075	57397	12
10400	10100	\$7327	9
10400	10125	57351	13
10400	10150	57325	15
10400	10175	57293	14
10400	10290	57760	24
10400	10225	\$7\$47	9
10400	10250	57529	11
10400	10275	57768	25
10400	10300	57456	12
10400	10325	57320	4
10400	10350	\$7398	0
10400	10375	57288	-12
10400	10400	57454	-5
10400	10425	57381	-1
10400	10450	57343	-3
10400	10475	37460	0
10400	10500	57281	11
104(x)	10525	57714	13
10400	10550	57245	-5
10400	10575	57007	-4
10400	10600	58034	13
11444.001	10625	58378	24
10400	10650	57800	31
10400	10675	57147	4
10400	10700	57975	
10400	0725	57897	6
(044 R)	10750	58214	13
10400	10775	58021	25

10277206

0 0 -2 -1 5 -3 -2 -2 0 , 2 -2 -5 0 1 -2 0 ۲ 10 ٠.

			23	,
10400	10800	57960	29	4
10400	10825	58112	40	,
14400	10850	57992	41	3
10400	10875	58054	38	-1
10409	10900	58084	49	0
10400	10925	57900	38	-
10400	10950	57801 57840	30	-5
10400 10400	11000	57848	18 19	-6 -6
10400	11025	57960	16	-5
10400	11050	57824	17	-5
10400	11075	57954	23	.9
10400	11100	\$7843	19	-4
10400	11125	57963	20	-3
10400	11150	57657	24	-2
10400	11175	C 102	30	o
10400 10400	11200	57482 57466	38	1
10400	11250	58035	39	ů.
10400	11275	58079	40	-2
10400	11300	58905	21	-6
10400	11325	63971	18	-7
10400	11350	61462	16	÷
10400	11375	58819 57301	9	-6 5
10400 10400	11400	57387	16	-2
10400	11450	\$7390	10	-2
10400	11475	57180	4	.,
10400	11500	57178	5	-3
10400	11525	57142	7	-2
10400	11550	56955	12	-1
10400 10400	11575	57260 57141	16 18	0 - L
10400	11600	57208	20	
10400	11650	57172	12	Q
10400	11675	57268	8	3
10400	11700	56400	12	6
10400	11725	57520	17	8
10400- 10400	11750	57815 57785	13	6 7
10400	11775	57719	2	
10400	11825	57445	ī	2
10400	11850	57324	6	2
19400	11875	57309	-1	-1
10400	11900	57145	-7	-2
10400 10400	11925	57434 57458	->	
10400	11975	57845	-5	-8
10400	12000	57422	2	-6
10400	12025	57471	8	-6
10400	12050	57245	12	-4
10400	12075	56956	7	-1
10400 line 9900	12100	56840	0	-2
9900	9700	56695	8	3
9900	9725	56689	6	3
9900	9750	56621	10	2
9900	9775	56522	11	-1
9900 9900	9800 9825	56874 57027	11	1
9900	9850	57027 56547	18 21	2
9900	9875	36432		
9900	9900	56617	18	5
9900	9925	56117	15	5

ーントゥークチャーシン

32.1

.9

9950	56059
9975	56774
10000	57163
10025	56418
10050	56313
	56344
10075	
10100	56554
10125	56760
10150	56731
10175	56932
10200	56530
10225	57053
10250	\$6775
10275	56690
10300	56680
10325	56795
10350	56670
10375	56733
10400	56718
10425	56850
10450	56855
10475	56728
10500	56750
10525	56630
10550	56612
10575	56529
10600	56775
10625	56732
10650	56803
10675	56846
10700	56820
10725	56875
10750	56804
10775	55940
10800	57295
10825	57485
10850	57702
10775	57481
10900	57187
10925	57673
10950	57020
10975	57520
11000	\$7427
11025	57697
11050	58579
11075	57564
11100	58621
11125	58563
11150	58276
11 175	68451
11200	58495
11225	59025
11250	58265
11275	57961
11300	57865
11325	57391
11350	57211
11375	58304
11400	57800
11425	57744
11450	57423
11475	57203
11500	57304
11525	57081

••

> i.

-ì -1

......

-8

-2 -2 -11 -18 -4

ñ

8

14

!6 !5

			3()
9800	10700			
9800	10700	57014 57096	9 17	0
9800	10750	57065	30	4
9800	10775	57055	27	L.
9800 9800	10600	57036	28	2
9800 9800	10825	57026 57051	14	2 3
9800	10875	57180	22	3
9900	10900	57570	28	*
9800	10925	57299	19	4
9900	10950	57877	13	4
9800 9800	10975	58450 59192	12	1
9900	11025	59714	18	7
9800	11050	59572	18	6
9800	11075	58484	13	2
9800 9800	11100	58700	12	0
9800 9800	11125	58905 58587	16 17	0
9800	11175	57811	5	-8
9800	11200	58332	12	-6
9800	11225	58760	29	-2
9900	11250	58045	30	0
9800 9800	11275	57632	6	-5
9800	11300	57371 58094	-1	-4 -1
94900	11350	57906	÷	4
9800	11375	57921	3	2
9900	[1400	57559	1	2
9800	11425	57 92	2	2
9800 9800	11450	56996 57055	6	3
9800	12500	56813	9	∔ 0
9800	11525	56684	-3	-2
9800	11550	58044	-9	-4
9800	11575	57720	-5	-
9900 9900	11600	56769 56908	-1 2	-5 -4
9800	11650	\$6921	10	ີ ບ
9800	11675	56925	9	i
9800	11700	56990	-2	-3
9800	11725	\$7071	ņ	-2
9800 9800	11750	56927 56840	1	-l -2
9800	11800	56990	2	-4 -2
9800	11825	56852	3	-1
9800	11850	56924	6	0
9800	11875	56785	4	-1
9800 9800	11900	56745 56655	3-7	0 0
9800	11950	56787	-2	0
9800	11975	56819	0	0
9800	12000	\$6710	2	1
9800 9800	12025	56588	L	2
9800	12050	56645 56715	-1 -1	2
9800	12100	56641	•। स	4
lana 9700			•	-
9700	9700	57243	27	-5
9700 9700	9725 9750	56893	19	-1
9700	9750	56639 56170	-3 -9	
9700	9800	56882	-11	-8
9700	9825	58312	-5	۰, ۸
			-	

2900	11550	57220	9
2900	11575	\$7093	7
9900	1600	57270	5
9900	11625	j6943	7
9900	11650	56951	?
9900	11675	57102	3
9900	11700	57240	4
9900	11725	57118	v
9900	11750	57039	-2 2 5
9900	11775	57068	2
9900	i 1800	57038	2
9900	11825	56992	3
9900 9900	11850 11875	56907 56883	4
9900	11900	57058	4
9900 9900	11900	56927	j
9900	11950	56838	5
9900	11975	56847	•
9900	12000	56841	12
9980	12025	56922	16
9900	12050	57112	ü
9900	12075	56901	1
9900	12100	56922	8
1000 9900			
9800	9700	56740	17
9900	9725	56985	14
9800	9750	57035	27
9800	9775	56539	38
9800	9800	56400	22
9800	9825	56546	-13
9800	9850	56929	.9
9800	9875	\$7725	-9
9800	9900	57287	Ü
9800	9925	57371	01
9900	9950	57129	14
9800	9975	56963	9
9800	10000	56484	7
9800	10025	56940	-6
9900	10050	56904	-7
9800	10075	56912	·1
9900	(0100	56901	-1
9800	10125	56384	4
9800	10150	56437	1
9800	10175	56650	2
9900	10200	56519	4 7
9800	10225	57218	
9800	10250	57422	6 1
9800	10275	56664 56666	9
9900 9900	10300	56603	15
9900		57027	19
9800	10350	36953	22
9800	10375	56903	28
9800	10425	56682	26
9800	10450	56630	24
9800	10430	56704	17
9800	10500	56826	16
	10525	57187	20
9800	10525	56967	12
-1800	10550	56776	14
1900	19600	56725	16
28(3)	19625	5688 X	18
9900)	10650	56863	9
-1100	10675	57040	14

-3 -1 -1 -3 -4 -2 -2 -4 -5 -7 -7

ゆおよう

-5 -1 -1 -2 -2 .

i I

ł

9700	9850	58034	L	+
9700	9875	57391	\$	1
9700	9900	\$7300	8	l
9700	9925	56417	15	6
9700	9950	\$7020	12	12
9700 9700	9975 10000	57244	14	14
9700	10005	57322 57192	14 6	12 3
9700	10050	57040	6	2
9700	10075	57056	10	;
9700	10100	57313	u	-í
9700	10125	57429	10	2
9700	10150	5709 t	7	-1
9700	10175	56720	11	-1
9700	10200	56816	14	2
9700	10225	57230	1 6	1
9700	10250	56756	19	2
9700	10275	56991	12	-2
9700 9700	10300	56730 57215	9 15	-1
9700 9700	10325	56930	18	4
9700	10375	56735	14	-1
9700	10400	56846	16	-2
2700	10425	56750	18	-2
9700	10450	56718	24	.,
9700	10475	36683	33	-1
9700	10500	57650	26	-4
9700	10525	5689 i	24	-6
9700	10550	56953	28	-4
9700	10575	56870	31	-3
9700 9700	10600	56964	24	-4
9700 9700	10625	56938 37035	20 20	-3 -2
9700	10675	57344	19	-2
9700	10700	57130	22	1
9700	10725	57055	21	ì
9700	10750	57234	9	ż
9700	10775	57310	5	-1
9700	10800	\$7240	6	-3
9700	10825	57220	10	2
9700	10850	57145	18	0
9700	10875	\$7160	13	3
9700 9700	10900 10925	57204 57294	7	3
9700 9700	10923	57573	6 10	2
9700	10975	57632	8	
9700	11000	59350	6	-1
9700	11025	59090	2	-2
9700	11050	59874	\$	-2
9700	11075	58713	9	-3
9700	11100	59190	4	-7
9700	11125	58582	Ŷ	-6
9700 9700	11150	58184	-4	-12
9700	11175	58620 59074	10 15	.7 .5
9700	11200	58078		-3
9700	11250	57333	-1	-7
9700	11275	57440	-1	-~ U
9700	11300	57444	-3	
9700	11325	57287	.5	i
9700	11350	58025	;	2
9700	11375	58171		3
9700	11400	58135	-12	-6
9700	11425	59500	<i>ډ</i> .	*

9700	11450	58172	2
9700	11475	57186	3
9700	11500	58218	-5
9700	11525	58563	-)
9700	(1550	58180	-2
9700	11575	58985	10
9700	11600	57323	11
9700	11625	57177	12
9700	11650	57163	10
9700	11675	57138	12
9700	11570	57154	8
9700	11725	57284	3
9700	11750	57100	9
2700	11775	57070	9
9700	11800	56996	3
9700	11825	56925	,
9700	11825	57302	-1
		56890	0
9700	11875	56950	-2
9700	11900		
9700 9700	11925	57340	-1
	11950	57147	
9700	11975	\$7320	6
9700	12000	57230	8
9700	12025	56943	11
9700	12050	56915	11
9700	12075	57155	6
9700	12100	57082	7
lipe 9600			
9600	9700	56929	28
9600	9725	56980	13
9600	9750	56534	-9
9600	9775	57079	-15
9600	9900	57114	-7
9600	9825	58743	I
9600	%850	57545	\$
9600	9875	59017	0
9600	9900	56695	ó
9600	9925	56114	5
9600	9950	36884	0
9600	9975	57361	3
9600	10000	57226	10
9600	10025	57350	ŝ
9600	10050	57233	10
9600	10075	57452	10
9600	10100	57214	8
9600	10125	57524	5
9600	10150	58037	9
9600	10175	57820	9
9600	10200	57230	13
9600	10225	57006	25
9600	102,50	56720	17
9600	10275	57480	20
9600	10300	57070	25
9600	10325	56990	26
9600	10350	56900	16
9600	10375	56880	29
9600	10400	56840	27
9600	10425	57000	14
9600	10450	5682.5	33
9600	10475	56849	ני
*600	10500	\$7020	21
9600	10525	56930	16
3600	10550	56850	27
9600	0575	57001	26

-3 -3 -2 -4 -2 -3 -2 -1

-1

۰İ

•2

-i -2

9600	10600	57000	18	Û
9600	10625	56992	11	-1
9600	10650	56945	6	-2
9600	10675	57104	6	2
9600	10700	57380	13	5
9600	10725	\$7095	5	2
9600	10750	57170	-1	-2
9600	10775	57321	-1	-2 0
9600	10800	57330 57117	4 10	1
9600	10825 10850	57238	5	-2
9600	10850	57334	3	
9600 9600	10900	57281	,	-z
9600	10925	57454	6	ĩ
9600	10950	59055	3	-2
9600	10975	58513	1	0
9600	11000	58827	6	i
9600	11025	59240	2	1
9600	11050	58808	13	2
9600	11075	58610	8	-3
9600	11100	59556	5	-4
9600	11125	58320	5	1
9600	11150	58400	16	0
9600	11175	57804	22	4
9600	11200	58527	2	:
9600	11225	57810	-3	2
9600	11250	57233	-11	0
9600	11275	59230 59195	-15 -13	4
9600	11300	57814	-13	-5
9600 9600	11350	57576		-5
9600	11375	59362	-2	-5
9600	11400	58310	4	-6
9600	11425	58260	-1	-6
9600	11450	58445	9	4
9600	11475	58188	0	-8
9600	11500	58035	-?	.9
9600	11525	58931	6	-6
9600	11550	5 8568	6	-9
9600	11575	58590	9	-7
9600	11600	58056	14	-9
9600	11625	57323	15	-7
9600	11650	57143	18	-9
9600	11675	57050	22	-!
9600	11700	57055 57140	21 16	1 2
9600	11725 11750	56968	5	-1
9600 9600	11775	57355	3	2
9600	11773	57200	ò	ī
9600	11825	57087	-5	ò
9600	11850	56960	ő	3
9500	11875	57179	1	-1
9600	11900	56944	2	2
9600	11925	57040	7	2
9600	11950	57160	11	
9600	1 975	57370	8	1
9600	12000	\$7200	12	4
9600	12025	57050	12	5
9600	12050	57042	14	5
9600	12075	57130	10 9	1
9600	12100	57100	4	2
lana 9500	9700	56872	2	-12
9500	9700 9725	57611	ŝ	21- k-
9500	9723	2/01	,	-4

9500	9750	57305	4
9500	9775	57099	4
9500	9800	57445	-7
			-1
9500	9825	57127	
9500	9850	57321	0
9500	9875	56647	2
9500	9900	57393	-6
9500	9925	\$7730	-1
	9950	57939	i
9500		57349	5
9500	9975		3
9500	10000	57451	,
9500	10025	57894	11
9500	10050	56614	8
9500	10075	57071	7
9500	10100	57932	2
7500	10125	57441	5
		57852	6
9500	10150		9
9500	10175	57541	
9500	10200	57365	7
9500	10225	57506	6
9500	10250	36867	4
9500	10275	57574	4
9500	10300	56861	0
	10325	37321	ĩ
9500			14
9500	10350	57349	
9500	10375	57155	16
9500	10400	57324	20
9500	10425	57071	18
9500	10450	56921	16
9500	10475	57011	16
9500	10500	57136	16
	10525	57217	19
9500			25
9500	10550	57156	
9500	10575	57045	13
9500	10600	57028	11
9500	10625	5688.5	ġ.
9500	10650	56882	1
9500	10675	57115	4
9500	10700	57302	7
	10705	57009	11
9500			8
9500	10750	56975	
9500	10775	56995	2
9500	10800	57189	3
9500	10825	\$7122	1
9500	108.50	57291	1
9500	10675	\$7332	-7
9500	10900	57152	-17
9500	10925	57299	-20
			-20
9500	10950	57282	
9500	10975	57606	-12
9500	11000	58092	-20
9500	11025	58227	-12
9500	11050	58410	-5
9500	11075	58525	3
9500	11100	58915	3
		58306	มด์
9500	11125		-2
9500	11150	58273	
9500	11175	58498	-5
9500	11200	58324	-4
9500	11225	57960	-11
9500	11250	57949	-12
9500	11275	5946()	×.
9500	11300	58112	4
9500	11325	58407	-6
7500	(1)*2	30407	~

-2

42.1.2.6.5.6.5.4.5.2.2.1.200

-2 -2 0

-2

•

			35	
9500	11350	57880	-J	-11
9500	11375	57736	2	-3
9500	11400	58402	4	-10
9500	11425	58462	6	-12
9500	11450	58146	3	-12
9500	11475	57770	3	A
9500	11500	58110	1	-#
9500	11525	57627	4	 -8
9500	11550	57580	10	
4500	11575	57503 57588	16 20	.,
9500	11600	57102	14	ด้
9500	11625	57060	11	ï
9500	11675	57044	8	;
9500 9508	11700	\$7005	5	3
9500	11725	56944	5	5
9500	11750	56761	6	4
9500	11775	56821	6	j
9500	11800	56818	8	5
9500	11825	56869	7	2
9500	11850	56762	7	5 2 1
7500	11875	56757	10	
9500	11900	56917	12	:
9500	11925	57090	14	:
9500	11950	57185	12	
9500	11975	57170	14	
9500	12000	57055	18	
9500	12025	57069	21	
9500	12050	57271	14	
9500	12075	57047 57209	5	
9500	12100	57209	- 11	-
tane 9400 9400	9700	57183	-4	
9400	9725	57272	2	
9400	9750	57126	-3	
9400	9775	57160	-2	
9400	9800	57170	ō	
9400	9825	57323	6	
9400	9850	57040	8	
9400	9875	57198	0	
9400	9900	57956	10	
9400	9925	57977	12	
9400	9950	57954	11	
9400	9975	58264	12	
9400	10000	58074	12	
9400	10025	5809 L	12	
9400	10050	58546	14	
9400	10075	58010	15	
9400	10100	57249	12	
9400	10125	57659 57312	8	
9460	10150	57379	• •	
9400 9400	10175	57536	2	
9400	10225	37847	ĩ	
9400	10225	57655	s	
9400	10275	57787	6	
9400	10300	57469	10	
9400	10325	58029	13	
9400	10350	57090	17	
9400	10375	57065	25	
9400	10400	57158	12	
9400	10425	57262	2	
9400	10450	57185	5	
9400	10475	57294	7	

2 4 -1 -8 -2 -4 -1 -4 -4 2

> 6 4 2 2 -1 -1 -2 -2 -5 -9 -4 -5 -7

1

シャーマ

10500	57308	11
10525	57285	17
10550	57190	13
	57130	11
10575		11
10400	57064	
10625	57108	10
10650	57126	6
0675	57148	6
10700	57078	5
10725	57204	L
10750	57199	1
10775	57238	-4
10800	57188	-10
10825	\$7139	-15
		-12
10850	57170	
19875	57155	-14
10900	57456	-21
10925	\$7588	-21
10950	57373	-19
10975	57598	-14
11000	57595	-8
11025	57382	0
14050	57764	-1
11075	57916	-1
11100	58410	2
	58735	5
11125		8
11150	59008	7
11175	58353	
11200	58301	-3
11225	58216	-2
11250	57888	-1
11275	58341	-4
1300	58163	-2
1325	58413	-2
11350	58306	5
1375	57970	5
11400	58035	13
	57948	ű
11425		6
11450	57659	7
11475	57424	
11500	57403	6
11323	57299	7
11550	\$7137	10
11575	56913	3
11600	56824	4
11625	56664	5
11650	56708	6
11675	\$6670	LÌ
11700	56618	13
11725	56531	10
11750	56570	ü
	56598	12
11775		12
11800	56652	10
11825	56719	
11850	56989	13
11875	57183	13
11900	57260	15
11925	57411	16
11950	57358	16
11975	57417	19
12000	57381	18
12025	57416	12
12050	\$7623	13
12075	57272	12
12072	37171	· -

36

-2

۰.

-ń

-6 -5 -6 -8 4 -5 -8

834612322328368441131131140

1

4

3 ; 5

9400	12100	57167	4	4
line 9300				
9300	9750	57349	8	-7
9300	9775	57404	9	-2
9300	9800	57529	18	6
9300	9825	57227	2	2
9300	9850	57344	1	4
9300	9875	57502	12	23
9300	9900	57700	2	3
9300	9925	\$7936	12	0
9300	9950	58325	14	2
9300	9975	58267	15	-2
9300	10000	58349	15	1
9300	10025	58196	13	-2
9300	10050	58028	17	-3
9300	10075	57437	19	-2
9300	10100	57385	16	÷
9300	10125	57467	9	-6
9300	10150	57550	5	-4
9300	10175	57531	+	-6
9300	10200	57466	7	4
9300	10225	57810	3	-5
9300	10250	57290	0	÷
9300	10275	57226	0	4
9300	10300	57103	2	-3
9300	10325	57363	1	-3
9300	10350	\$6925	4	-4
9300	10375	56728	١	-5
9300	10400	56863	9	1
9300	10425	57053	11	2
9300	10450	56748	9	0
9300	10475	56847	7	-1
9300	10500	57012	?	-2
9300	10525	57105	8	4
9300	10550	57220	5	-4
9300	10575	57179	5	-4 -3
9300	10600	57224	3	
9300	10625	57135	3	
9300	10650	57141	-1	-3
9300	10675	57091	-2	-1
9300	10700	57140	-	-6
9300	10725	57125	-3	-5
9300	10750	57140 57108		-,
9300	10775	57047	-10	
9300	10900	57116	-14	
9300	10825	57190	-13	-2
9300	10875	57715	5	-2
9300	10900	57714	-2	0
9300 9300	10900	57346	-4	-2
9300	10950	57825	-i	.]
9300	10975	57645	3	.j
9300	11000	57590		-2
9300	11025	57715	6	-2
9300	11050	57870	7	-1
9300	11075	58548	5	-2
9300	11100	58624	é	-3
9300	11125	58769	ú	-1
9300	11120	58557	-3	-6
9300	11175		2	.)
9300	11200		ī	4
9300	11225	58348	-1	-6
9300	11250	58217	-2	-8
9300	11275	58347		<i>•</i> -

9300	11300	5R587	-3
9300	11325	58603	-1
9300	11350	58035	-5
9300	11375	57504	-3
9300	11400	57990	*
9300	11425	57685	17
9300	11450	57503	9
9300	11475	57324	10
9300	11500	57189	
9300	Lt525	56911	-6
9300	11550	56780 \$7030	-3
9300	11575	56878	3
9300	11600 11625	56474	4
9300 9300	11650	56646	8
9300	11675	56727	12
9300	11700	56725	10
9300	11725	56823	6
9300	11750	56757	5
9300	11775	56870	\$
9300	11800	56941	8
9300	11825	57363	16
9300	11850	57389	17
9300	11875	57665	2
9300	11900	\$76.\$7	14
9300	1925	57680	12
9300	11950	57640	10
9100	11975	57441	6
9300	12000	57748	9
9300	12025	57258	9
9300	12050	57001	.}
9300	12075	57095	1 6
9300	12100	57181	0
line 9200		57186	-5
9200	9750	57318	.7
9200	9775 9 8 00	57272	.5
9200 9200	9825	57261	-2
9200	9850	57230	5
9200	9875	57344	5
9200	9900	57324	I
9200	9925	57458	3
9200	9950	57385	9
9200	9975	57753	13
9200	10000	57452	13
9200	10025	57616	12
9200	10050	57115	13
9200	10075	57655	16
9200	10100	57850	26
9200	10125	57499	15
9200	10150	57497	+ 16
9200	10175	57687	4
9200	10200	57621 57949	5
9200	10225	57644	-5
9200	10250	57380	-5
9200	10275	57380	-1
9200	10325	57373	
9200 9200	10323	57281	6
9200	10375	57343	1
9200	10400	57074	7
1200	10425	\$7135	18
9200	10450	57417	16
9200	10475	57465	15

-9 -14 -14 -9 -1

ŝ

> > Û

-1 -6 -2 -6 ò

÷

.

÷

÷

i.

			39	
9200	10500	57304	11	1
9200	10525	57354	11	2
9200	10550	57368	10 16	2
7200	10575 10600	57118 57036	10	÷.
9200 9200	10625	57090	4	ů.
9200	10650	57230	4	2
9200	10675	57089	7	3
9200	10700	57036	4 5	02
9200 9200	10725	57174 57033	J	ĩ
9200	10775	57047	-Z	4
9200	10900	57038	-4	4
9200	10825	57170	-3	4
9200	10850	57233	÷	2
9200	10875 10900	57352 57425	2 3	2
9200 9200	10925	57722	Ű	ĩ
9200	10950	57682	4	-1
9200	10975	57594	5	-1
9200	11000	57718	6	4
9200	1025	57820	5 4	-1 -3
9200	11050	57720 57642	+ -1	-3
9200 9200	11100	57824	.,	š
9200	11125	57960	-2	-
9200	11150	58314	-3	-2
9200	11175	58415	-4	-) 6
9200	11200		-3	7
9200 9200	11225 11230	\$7860	-3	6
9200 9200	11230	58135	-10	3
9200	11300	58049	-8	L
9200	11325	57950	-5	- 3
9200	11350	57772	3	-4
9200	L1375 11400	57594 57262	11	1
9200 9200	11425	57270	20	2
9200	11450	56072	0	1
9200	11475	56887	-10	4
9200	11500	56861	-12	6 \$
9200	11525	56683 56961	-10	10
9200 9200	11550	57805	-3	10
9200	11600	58643	8	12
9200	11625	57164	8	7
9200	11650	57879	9	6
9200	11675	58257 58153	14 19	4
9200 9200	11725	58045	17	
9200	11750	57704	15	0
9200	11775	579R1	19	1
9200	11800	58102	22	1
9200	11825	57494	22	2
9200 9200	1850	57586 57781	1	3
9200	11900	57868	· <u>-</u>	3
9200	11925	58380	11	1
9200	11950	58564	17	1
9200	11975	58856	22 23	4
9200	12000 12925	58560 58166	13	
9200 9200	12025	57989	1	2
9200	12075	58141	6	2
		•		

9200	12100	58104	×	4
9200 line 9100	12100	20104		
9100	9875		15	5
9100	9900		16	6
9100	9925		17	R
9100	9950		18	9
9100	9975		3	4
9100	10000		1	5
9100	10025		5	5
9100	10050		6	;
9100	10075		2	2
9100	10100		-j	-2
9100	10125		-6	-4
9100	10150		-3	-3
9100	10175		-10	-8
9100	10200		-13	-10
9100	10225		-41	-10
9100	10250		-8	-10
9100	10275		-9	-10
9100	10300		-11	¥.
9100	10325		-10	-6
9100	10350		-5	-2
9100	10375		-2	-1
9100	10400		13	3
9100	10425		14	9
9100	10450		14	я
9100	10475		13	8
9100	10500		17	9
9100	10525		20	8
9100	10550		23	*
9100	10575		21	4
9100	10600		22	
9100	10625		21	23
9100	10650		21	3
9100	10675		18	2
9100	10700		20	4 6
9100	10725		19	
9100	10750		15	ë A
9100	10775		16	4
9100	10800		14	
9100	10825		17	
9100	10850		24	
9100	10900		24	
9100 9100	10925		24	
9100	10950		19	
9100	10975		14	
9100	11000		19	
9100	11025		15	
9100	11050		4	
9100	11075		8	
9100	11100		15	
9100	11125		21	
9100	11150		20	
9100	11175		9	
9100	11200		-2	
9100	11225		1	
9100	11250		6	
9100	11275		8	
9100	11300		Ð	
9100	11325		18	
9100	11350		17	
9100	11375		ì X	
9100	11400		10	

,

ĸ

- 2

- 4

-1

t

б

E1 н . . Ð ۰l .3 -7 -11 -13 -14 -15 -16 -18 -16 -13 -12 -6 -1 - 7 - 7 -2 Ú.

9000 9000

57251

ų

н

Δ.

.

.1

-2

ō

-2

-2

-2 -4

-7

-1

-2

.

q

14

,

,

L.

υ

-1

22

16

			43
8900	10000	\$7132	-6
8900	10025	57364	-1
8900	10050	57352	-3
8900	10075	57495	-3 -2
8900 3900	10100	56869 57229	-2
8900	10150	57346	0
8900	10175	57406	2
8900	16200	57345	0
8900	10225	57376	2
8900 8900	10250	57346 57406	8
8900	10300	57409	7
8900	10325	57296	ъ
8900	10350	57273	8
8900	10375	56956	*
8900	10400	57058 57033	18
8900 8900	10450	57064	14
8900	10475	56971	20
8900	(0500	57178	21
8900	10525	57038	25
8900	10550	57018	26
8900	10575	56929	27
8900 8900	10600	56975 56924	27
8900	10620	56954	31
8900	10675	56985	26
8900	10700	56997	20
8900	10725	57012	15
8900	10750	57028	11
8900 8900	10775 10800	57063 57046	13 13
8900	10825	56994	15
8900	10850	57016	15
8900	10875	57008	11
8900	10900	57006	R.
8900	10925	\$6979 \$6990	7
8900 8900	10950 10975	56977	;
8900	11000	57029	11
8900	11025	\$7068	13
1900	11050	\$7060	14
8900	11075	57246	17
8900 8700	11100	56939 56930	18 21
8900 8900	11150	57021	29
8900	11175	57044	30
8900	11200	57100	27
8900	1225	56900	21
8900	11250	56768 56849	15
8900 8900	11275	2684.9 56778	21 22
1900	11325	56726	13
8900	11350	56716	n
8900	11375	56695	16
\$900	11400	56586	10
8900	11425	56600 56620	25 (B
8900 1900	11450	56505	12
3900	11500	56514	10
8900	11525	56700	9
8900	11550	56843	14
8900	11575	57608	13

-8

-10 -18 -18 -18 -20 -18 -16 -12 -7 -7

-4 -2

4.3

-1

a.

.1

.3 -1

-5

Ô.

,

n ō U

23-2446725434

8900	11600	57771	20
8900	11625	57301	11
8900	11650	\$7695	12
8900	11675	57604	17 23
8900 8900	11700	58280 58027	28
896X)	11725	58009	25
8900	11775	58350	10
8900	11800	57890	30
8900	11825	57655	26
8900	11850	\$7370	23
8900	1 1875	56882	21
8900	11900	57302	8
8900	11925	57279	10
8900	11950	57 (88) 57990	16
8900 8900	11975 12000	58140	20
8900	12025	58200	25
3900	12050	58488	34
8900	12075	58524	41
8900	12100	58530	46
has \$300			
8800	9900	\$7235	13
3800	9825	57220	01 K
8800 8800	9850 9875	57311 57468	
5800 5800	9873	57047	5
3800 89900	9925	57144	ŝ
8800	9950	57108	1
8800	9975	57144	:
8800	10000	56904	*
8800	10025	56955	-11
8800	10050	56940	-20
8800	10075	56992	-19 -10
8800 8800	10100	56985 57060	-10
8800	10123	57028	
8800	10175	57172	2
8800	10200	57121	
3800	10225	57113	
8800	10250	57414	
8800	10275	57580	
5800	10300	57560	
8800 8800	10325	57294 57091	,
8800	10350	56870	1
8600	10400	56812	
8800	10425	56934	
1900	10450	56895	:
8800	10475	56933	
8800	10500	56942	:
8800	10525	56957	
8800	10550	56867 56816	
8800 5800	10575 10600	56809	
S800	10625	56827	
8800	10650	56845	
8800	10675	56859	
8800	10700	57059	
3800	10725	56837	
3800	10750	56871	
8800	10775	56813	
3800	10800	56806	
1800	10825	56402	

T

-ĩ

-2 -2 -2 -5 -8 -9 -6 -2 -3 -5 -12 0 -4 -2 -2 -3

-2

.3

-2

-2 -3 -4

-**4** 0

-1 ŋ ;

\$

-8 -12 -19 -16 -13 -9 -7

Ó

17

			45	
8800	10850	56808	18	3
8800	10875	56825	17	1
8800	10900	56837	13	-]
8800	10925	56752	15	-
8800	10950	56746	14	۲. الا
8800	10975	56968	15	*
8800	11000	56806 56834	24 31	-2
8800	11025	56887	31	-5
5800 8800	11030	56832	33	4
8800	1100	56815	31	-+
8800	11125	56816	26	-4
8800	11150	56770	15	.7
8800	11175	56735	15	-+
8800	11200	56799	17)
8800	11225	56693	24] 0
8800	11250	56630	19 17	0
8800	11275	56583 56550	14	0
8800	11300 11325	56544	.6	2
8800 8800	11323	56493	2	2
8800	11375	56345	3	8
8800	11400	56302	4	9
3900	11425	56484	-2	3
8800	11450	\$7056	1	*
8800	11475	57064	2	8
\$800	11500	56987	11	7 8
8800	11525	56987	16	8
8800	11550	57640 57093	24	3
8900 8900	11575 11600	57411	17	4
8800	11625	57253	25	5
8800	11650	57329	31	6
8800	11675	57325	20	9
8800	1700	5773 (22	0
SROO	11725	57562	27	2
8800	11750	57514	28	-1
8800	11775	57154 57190	22 18	-7
8800 3800	11800 11825	57332	23	Ď
8800	1820	56786	24	-5
5800	11875	57535	12	-1
8800	11900	57 6 73	15	2
3800	11925	58278	ມ	4
RADO	11990	57810	21	4
8800	11975	\$7898	24	0
8900	12000	57557 57430	29 36	3
8900 8900	12025	57555	51	6
8900	12075	57263	31	3
8800	12100	57371	22	2
line 8700				
8700	9600	57306	1	4
\$700	9625	57411	5	4
8700	9650	57399	9	5
8700	9675	57518 57367	11 16	3
5700 8700	9700 9725	57832	18	3
8700	9750	37185	12	i
8700	9775	58605		1
1700	9900	55584	9	l
1700	9825	57570	-1	0
8700	9650	56986	-11	-4
8700	9875	56152	-10	-1

	777144
9900	57148
9925	57434
9950	56885
2975	57121
10000	56962
10025	57017
10050	57075
10075	56940
10100	57036
10125	57107
10150	57202
10175	57120
10200	57565
10225	57217
10250	57271
10275	57286
10300	57514
10325	57499
10350	57325
10375	57203
10400	57180
10425	57220
10450	57280
10475	56986
10500	57045
10525	56948
10550	56974
10575	56917
10600	56879
10625	56899
10650	56865
10675	56806
10700	56903
	56818
10725	56858
10750	
10775	56861
00801	55849
10825	\$6346
10850	56633
10875	568.57
10900	56863
10925	56823
10950	56618
10975	56845
11000	56847
11025	56822
11050	56831
11075	56818
11100	56828
11125	56814
11150	56863
11175	56820
11200	56771
11225	\$6742
11250	56688
11275	56627
11300	56644
11325	56673
11350	56560
11375	56700
11440	56536
11425	56588
11450	56571
11475	57135

46

¢ŀ.

-2 -2 -2 -2 -2 -2 -2 0

1020

202

2

| -3

02

2

0

-2

ī

Q

-2 0 -2

1

÷

i.

:

-15 -18 -11 -9 -4 -2 -2

1

R

-i -9 -12 -i1 -7 0 10 8

5

12

14

10

Q

11 13 14

			47	
8700 8700 8700 8700 8700 8700 8700 8700	11500 11525 11535 11575 11600 11625 11675 11675 11725 11750 11750 11775	57036 56881 56775 56883 56583 56583 56583 56583 56583 57457 58135 57457 58135 57910 56813	21 27 31 27 22 25 14 21 29 26 14 15	7 6 3 2 4 0 1 2 0 -2 -3
8700 8700 8700 8700 8700 8700 8700 8700	11800 11825 11850 11875 11900 11925 11950 11975 12000 12025 12050 12075 12050 12075 12100	57062 57325 56969 57294 57377 58308 57967 59192 57967 59192 56934 56934 58048 58298	13 20 28 19 17 21 25 27 33 37 18 12 20	-2 -1 5 0 0 -1 0 0 2 1 -2 0 5
8600 8600 8600 8600 8600 8600 8600 8600	9600 9625 9650 9673 9700 9775 9775 9800 9875 9825 9850 9875 9900 9925 9925 9950 9975 10000 10025 10059	57266 57308 57282 57283 57330 57365 57329 57384 57417 57072 57176 57072 57176 57135 57135 57229 57204 57199 56856 56739 56855 56739	11 98 7 7 7 1 -1 -2 2 5 4 3 2 -5 -5 -5 -5 -2 0	5 3 2 2 2 3 0 -1 4 4 4 2 4 2 2 1 2 0 -1 4 4 4 2 2 2 2 0 -1 2 2 2 0 -1 4 4 4 2 2 2 2 0 -1 2 0 -1 2 0 -1 2 0 -1 2 0 -1 2 0 -1 2 0 -1 2 0 -1 2 0 -1 2 0 -1 2 0 -1 2 0 -1 2 0 -1 2 0 -1 2 0 -1 2 0 -1 2 0
8600 8600 8600 8600 8600 8600 8600 8600	10100 10115 10150 10175 10220 10225 10320 10325 10300 10325 10350 10425 10450 10425 10450 10425	57097 56806 56902 57047 57046 57106 57106 57410 57410 57410 57425 57123 57144 57118 57085 57028 57028	0 2 1 3 11 9 10 4 1 5 1 1 0 2 2 3 1	-2 0 -1 1 1 3 8 10 5 5 5 4 4 4

8600	10550	57130	3
8600	10575	57038	9
8600	10600	56980	16
8600 8600	10625 10650	57015 56995	10 8
8600	10675	57026	1
8600	10700	57006	-4
8600	10725	56958	-3
8600	10750	56969	1
8600	10775	57004	4
8600	10800	56980	5 X
8600 8600	t0825 10850	56914 56938	10
8600	10875	56927	15
8600	10900	56949	ü
8600	10925	56914	8
8600	10950	56931	0
8600	10975	56890	4
8600	11000	56929	8
8600	11025	56947 569729	8 14
8600 8600	11050	56886	14
8600	11100	56864	ü
8600	1125	56849	8
8600	11150	56912	10
8600	11175	56860	11
8600	11200	56899	15
A600	11225	56751 56722	18
8600 8600	11250	56730	-6
\$600	11300	56707	-10
8600	11325	56738	-8
8600	11350	56787	1
8600	11375	\$6797	10
8600	11400	56615	10
8600	11425	56645 56825	11 15
8600 3600	11450	56894	17
8600	11500	36996	22
8600	11525	57410	26
8600	11550	57227	26
8600	11575	56843	16
8600	11600	57612	16
8600 8600	11625	59500 57675	23 27
8600	11675	57741	15
5600	11700	57778	12
8600	11725	57376	13
8600	11750	57839	15
8600	11775	57434	21
5600	11800	57480 56625	26 19
\$600 \$600	11825 i1850	57951	25
8600	11875	58044	28
8600	11900	58376	31
3600	1925	\$7316	23
8600	11950	56972	9
8600	11975	57572	13
\$600 \$600	12000	59049 57253	22 15
9600 9600	12025	57143	18
N600	12075	57077	18
1600	12100	57522	20
5um \$300			

コージョー

31021002112

.

8300	9550	57194	8	-11
\$300	9575	57123	21	1
8300	9600	57063	13	3
8300	9625	57236	5	3
83(10	9650	57157	4	5
8300	9675	57159	i i	-
8300	9700	57438	~I	3
8300	9725	57482	1	4
x300	9750	57365 57426	•	6 3
8300	9775 9800	37555	1 2	4
8300 8300	9825	57712	-	;
8300	9850	57914	-	2
8300	9875	57695	7	ō
8300	9900	57751	12	ō
8300	9925	57886	12	-1
8300	9950	57594	11	-2
8300	9975	57704	12	-2
8300	10000	57494	14	-2
8300	10025	37303	10	-2
8300	10050	\$7203	3	-6
8300	10075	57320	1	-5
8300	10100	57299	-1	-4
8300	10125	57129	5	1
8300	10150	57149	3	0
8300	10175	57280	o	0
8300	10200	57339 57084	2	3
8300	10225	57084	1	ر 4
8300 8300	10230	56982	16	+ 6
8300	10275	56982	20	5
8300	10325	57352	24	ĩ
8300	10350	57023	20	2
8300	10375	\$7067	16	2
8300	10400	57001	12	0
8300	10425	57035	8	0
8300	10450	56996	-2	
8300	10475	56975	-1	(
6300	10500	56816	4	(
8300	10525	57101	10	
8300	10550	\$7369	22	1
8300	10575	57100 56830	32 17	
8300	10600	57063	-	
8300	10645	56852	15	•
8300	10675	56918	10	-
8300	10700	57092		-
8300	10725	57050	9	
8300	10750	56962	n	
8300	10775	56892	t2	
8300	10800	5704Z	11	
8300	10425	56984	16	
8300	10050	56949	14	
8300	10875	57039	17	
8300	10900	\$7005	4	
\$300	10925	56974	2	
8300	10950	56994	-!	
8300	10975	57064 56969	1 0	
8300 8300	11025	56908	1	
8300	11025	36965	8	
8300	11075	56887	- -	
8300	11100	57006	ц	
8300	11125	57217	12	
4200				

-1 -2 -2 -2 -2 -6

-5 -4

Ô.

0 2

ч

ð

U

÷

	11000	13
11150	56882	
11175	56927	18
11200	57049	23
11225	56972	25
11259	56864	12
11275	56906	19
11300	57088	21
11325	57024	28
11350	57319	24
	57114	24
11375		
11400	56897	18
11425	56727	6
11450	\$6665	-2
11475	56558	0
11500	56884	š
11525	57445	11
11550	57567	16
11575	58150	16
11600	57990	25
11625	58080	26
11650	58646	36
11675	58011	43
11700	58180	55
11725	57753	50
(1759	57195	18
11775	57387	3
11800	57706	10
11825	57045	22
11850	58125	20
11875	58448	25
11900	59080	26
11925	58826	22
11950	58415	19
11975	58604	17
12000	58433	13
12025	58615	14
12050	58512	8
12075	57940	-4
[Z100	57878	-12
9550	57304	0
9575	57225	4
¥600	57201	ŝ
962.5	57259	2
9650	57283	11
9675	57242	12
9700	57294	10
9725	57340	7
9750	57312	11
9775	57442	14
9800	57521	17
9825	57854	20
9850	57765	21
9875	57600	22
9900	\$7595	19
9925	57529	18
9950	57520	15
9975	57661	16
10000	57503	
		12
10025	57442	,
10050	57365	6
10075	57307	-
10100	57349	5
10125	37416	4
(0125	1/410	•

D

ú

-1

-4 -8

.7

-6

-2

7

オウキオオ

-2 4

-5

2 2

-1

.

i

			51	
8200	10150	57454	4	4
8200	10175	57364	4	4
8200	10200	57502	6	6 5
8200	10225	57392 57134	2	6
8200	10250 10275	57010	13	10
8200 8200	10300	57012	13	8
8200	10325	57166	ü	4
BZOO	10350	57107	10	4
8200	10375	57070	13	5
8200	10400	57007	11	ŝ
8200	10425 10450	57026 57034	0	2 4 5
8200 8200	10475	57067	0	5
8200	10500	57045	-2	4
8200	10525	57028	-1	3
8200	10550	\$6993	0	1
8200	10575	57054	0	0
8200	10600	57012	2	-1
8200	10625	56970	5	1
8200	10650	56980	11 20	-1
8200	10675	56878 56985	20	-1
#200 #200	10700	57397	20	-6
8200	10750	57175	29	-5
8200	10775	\$7013	27	-6
8200	10800	56897	31	-5
3200	10825	56924	35	-8
8200	10850	56843	33	-5
8200	10875	56951	n i	-1
\$200	10909	57012 56961	-2 -2	2 5
8200 8200	10925 10950	56880	.2	4
8200	10975	56978	ī	2
8200	11000	56929	2	4
8200	11025	57040	5	2
4200	11050	56965	4	
8200	11075	56909	11	0
\$200	11100	57175	17 16	3
8200	11125	57382 57073	16	i
8200 8200	11150 11175	56926	15	-2
8200	11200	36990	17	-4
8200	11225	57026	t6	-1
8200	11250	56919	20	-1
8200	11275	56962	20	0
8200	11300	56882	17	0 -1
\$200	11325	56977 56850	13	-1 -2
8200 8290	11350 11375	57024	14	-2
8200	11400	56726		, i
\$200	11425	56840	4	-2
8200	11450	56872	2	0
8200	11475	56767	5	3
8200	11500	56456	9	7
8200	11525	56819	13	11
8200	11550	57176 57298	it 9	3
8200 8200	11575	57921	14	, 0
\$200 \$200	11625	58099	24	-1
\$200	11650	57971	29	-5
8200	11675	58399	37	-ń
4200	11700	58505	47	-5
8200	11725	57868	-15	-7

-2 -2 -4 -2 0 7 インチャン

-6

,

APPENDIX HI

GEOPHYSICAL EQUIPMENT SPECIFICATIONS

MP-2 PROTON PRECESSION MAGNETOMETER

- -

Resolution:	1 gamma
Total Field Accuracy:	± gamma over full operating range
Range:	20,000 to 100,000 gammas in 25 overlapping steps.
Internal Measuring Progra	am: A reading appears 1.5 seconds after depression of Operate Switch & remains displayed for 2.2 secs. Recycling feature permits automat- ic repetitive readings at 3.7 sec. intervals.
External Trigger:	External trigger input permits use of sampling intervals longer than 3.7 seconds.
Display;	5 digit LED readout displaying total magnetic field in gammas or normalized battery voltage.
Data Output:	Multiplied precession frequency and gate time outputs for base station recording using interfac- ing optionally available from Scintrex.
Gradient Tolerance:	Up to 5,000 gammas/meter.
Power Source:	8 size D cells ≈25,000 readings at 25° C under reasonable conditions.
Sensor:	Omnidirectional, shielded, noise- cancelling dual coil, optimized for high gradient tolerance.
Harness:	Complete for operation with staff or back pack sensor.
Operating Temperature Ran	ge: -35 to +60° C.
Size:	Console, 8 x 16 x 25 cm; Sensor, 8 x 15 cm; Staff 30 x 66 cm;
Weights:	Console, 1.8 kg; Sensor, 1.3 kg; Staff, 0.6 kg;
Manufacturer:	Scintrex 222 Snidercroft Road Concord, Ontario

GEONICS LIMITED VLF EM 16

_

Source of Primary Field	VLF transmitting stations
Transmitting Stations Used:	Any desired station frequency can be supplied with the instrument in the form of plug-in tuning units. Two tuning units can be plugged in at one time. A switch selects either station.
Operating Frequency Range:	About 15-25 Hz.
Parameters Measured:	1- The vertical in-phase component (tangent of the tilt angle of the polarization ellipsoid). 2- The vertical out-of-phase (quad -rature) component (the short axis of the polarization ellipsoid com- pared to the long axis).
Method of Reading:	In-phase from a mechanical inclin- ometer and quadrature from a cali- brated dial. Nulling by audio tone
Scale Range:	In-phase ± 150%; quadrature ±40%
Readability:	±1%
Operating Temperature Range:	-40 to 50° C.
Operating Controls:	ON-OFF switch, battery testing push button, station selector, switch, volume control, quadrat- ure dial ±40%, inclinometer ± 150%
Power Supply:	6 size AA alkaline cells ≈ 200 hrs.
Dimensions:	42 x 14 x 9 cm (16 x 5.5 x 3.5 in)
Weight:	1.6 kg. (3.5 lbs)
Instrument Supplied With:	Nonotonic speaker, carrying case, manual of operation, 3 station selector plug-in tuning units (ad- ditional frequencies are optional) set of batteries.
	Geonics Limited 1745 Meyerside Drive/Unit 8 Mississauga, Ontatio L5T 1C5

4

. .

 $(1-e_{ij})^{k} = (1-e_{ij})^{k} + (1-e_{ij})^{k}$

APPENDIX IV

GEOPHYSICAL INTERPRETATION

COPPER MOUNTAIN AREA, TAS CLAIMS GEOPHYSICAL INTERPRETATION SUMMARY MORELEIGH MINERALS CORPORATION

Discussion of Results

A total of 89.5 km. of total field magnetic survey and VLF EM survey were carried out on the TAS claims survey grid. Survey lines were spaced at 50 meter intervals in the northern quarter of grid and at 100 meter intervals in the rest of the grid. Station spacing was 25 meters on all lines. Magnetic contours are displayed on Figure # G1 and magnetic profiles, at a profile scale of 1 cm. = 1000 nT, are shown on Figure # G2.

VLF EM profiles show a moderate to strong response to widespread conductivity as displayed on Figure # G3. Topographic bias, due to up and down-slope VLF instrument orientation, can be seen in VLF EM profiles on all survey lines. Topographic bias in rugged terrain can produce profile characteristics which resemble real conductors although they are usually broad and follow the topographic contours. A number of these characteristics can be seen in the present data. These features were not interpreted as VLF anomalies. Those anomalies which are considered bona fide, in many cases, form conductive systems which trend north-south, north-east and sometimes north-west as shown on the interpretation map, Figure # G4. With reference to mapped geology, magnetic results were used to predict general geologic domains within the survey grid. Magnetic lineaments suggest faults trending northerly, north-west and north-east as shown on Figure #G4.

Conclusions

General local surface rock types predicted from magnetic data are believed to be intrusive rocks, probably of the Copper Mountain Stock, which have intruded older volcanic rocks. The intrusive bodies, as suggested by magnetic data, appear to be broken up by faults and occur in sections or pods suggesting that they may be apopheses of the main intrusion. Magnetic profile character indicates that there are four separate areas of the intrusive rock type that have large depth extent or deep "roots". These areas are shown on Figure # G4. Other magnetic highs seem to show a smaller base and less depth extent suggesting that they represent dykes or sills. Magnetic lows, which are lower than the low magnetic background of the volcanic rocks, have been interpreted as alteration zones. These alteration zones may be due to alteration in faults and fault intersections, and are believed to be important areas for additional exploration. Regions which contain VLF EM conductors, interpreted faults and conductive faults associated with the magnetic intrusive have been interpreted as target areas which may contain economic sulphides. These target areas have been labeled with priority numbers for follow-up exploration.

Target 1

A linear north north-west trending magnetic high, which includes a number of stronger wider highs, is interpreted as a dyke of the intrusive material, which has intruded along a structure. This dyke, shown on the Geophysical Interpretation Map as "Dyke - Intrusive Rock Type" correlates with VLF conductivity in the northern third of the survey grid. The conductive portion of this dyke, especially the part above 5465000N, is assigned priority 1. Both the conductive dyke as well as a north north-east conductive fault splaying off from the dyke are considered good exploration targets.

Target 2

The area described as target 2 is mainly north of the TAS 1/TAS 2 claim line. Target area 2 falls within one of the interpreted intrusive rock zones which magnetic profiles indicate has a large depth extent or "root". Northerly trending conductive faults, fault intersections and conductivity within this region are second priority follow-up targets.

Target 3

Target 3, also in an intrusive with a deep root, consists of conductive faults and a fault intersection which may contain sulphide mineralization.

Target 4

The two southern survey lines, separated by 300 meters from the main grid, show one of the strongest VLF EM conductors on the property. This northwest trending conductor falls within the most southerly deep rooted magnetic intrusive outlined by the present grid. Conductivity coincides with lower magnetism which may indicate sulphide conductivity within a fault.

Target 5

This target is in the region of the legal corner post and the claim line between the TAS 1 and 2 claims. Target 5 includes conductivity in rocks interpreted as volcanics but which is associated with an interpreted north north-west fault which continues from the volcanics south-east into the intrusive rock. A fault, which seems to be partly conductive, appears to splay off to the north-east into volcanic rocks. The conductive portion of this fault, near the intersection with the main north north-west fault, is also considered part of target 5, although VLF EM profiles indicate that conductivity is narrow and has limited depth extent.

Target 6

Target 6 is near the northern claim boundary in the vicinity of Tie Line 11200. The target consists of three short, moderate to weak conductors within the intrusive rock type.

Target 7

Strong north-south VLF EM conductors in the north-east corner of the survey area are associated with edges of small patches of intrusive rocks. These conductors may represent conductive sulphides within short faults and are considered priority 7.

Other conductors

Other conductive features, especially those associated with structure, warrant consideration for additional exploration. Exploration priorities or priority changes of the above targets should be based on supporting geochemical and geological information.

Recommendations

Based on the present geophysical interpretation, additional geological and geochemical investigations should be carried out on specific conductors in order to test for the presence of economic sulphides. Additional electromagnetic surveys, such as horizontal loop, should be considered for targets 1 through 7 as well as other conductors that exhibit positive geochemical and geological attributes in order to more accurately define target depth, geometry and conductance. This data coupled with geological and geochemical information should then be used to plan drill priorities.

STATEMENT OF QUALIFICATIONS

I Edwin Ross Rockel, Geophysicist of Surrey, British Columbia, Canada, hereby certify that:

- 1. I received a B.Sc. degree in Geophysics from the University of British Columbia in 1966.
- 2. I currently reside at 13000 54A Avenue, in the Municipality of Surrey, in the Province of British Columbia.
- 3. I have been practicing my profession since graduation.
- 4. I am a Professional Geoscientist registered in the Province of British Columbia.
- 5. I am a Professional Geoscientist registered in the Province of Newfoundland.
- 6. I am a Professional Geoscientist registered in the Northwest Territories.
- 7. I hold no direct or indirect interest in, nor expect to receive any benefits from, the mineral property or properties described in this report.
- 8. This report may be used for the development of the property, provided that no portion will be used out of context in such a manner as to convey meanings different from that set out in the whole.
- 9. Consent is hereby given to the company for which this report was prepared to reproduce the report or any part of it for the purposes of development of the property, or facts relating to the raising of funds by way of a prospectus and/or statement of material facts.

Dated: Signed: Edwin Ross Rockel, B.Sc., P. Geo.

Surrey, British Columbia

.

APPENDIX V

REPORT ON THIN SECTIONS

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

Report for: Grant F. Crooker, GFC Consultants Inc., P.O. Box 404, KEREMEOS, B.C. VOX 1N0

Job 960893

January 9, 1997

SAMPLES:

5 rock samples, numbered TS 102-1 through 102-5, from the Copper Mountain area were submitted for thin sectioning and petrographic examination.

SUMMARY:

All these rocks are of closely similar general type, being rather fine-grained, sub-porphyritic, quartz-free, igneous rocks having the composition and textural aspect of intrusive monzonites.

In all cases they consist predominantly of feldspars, being aggregates of subhedral prismatic plagioclase, in the size range 0.2 1.5 mm, intergrown with interstitial K-feldspar. Mafics are typically pyroxene and/or amphibole.

Sample 102-1 shows mild sericitization of the plagioclase. Mafics (clino-pyroxene plus minor biotite) are notably fresh.

Sample 102-2 is similar, but contains amphibole as the mafic accessory. It contains abundant, randomly disseminated sulfides (pyrite plus possible chalcopyrite).

Sample 102-3 is distinctive in showing a heterogenous distribution of K-feldspar. It may be a breccia of monzonite in microdiorite, or a product of patchy K-feldspathization related to a vein of Kspar which cuts the sectioned portion. Mafics (pyroxene partially modified to hornblende) show more or less strong chloritization. Plagioclase is weakly epidotized, and the rock is cut (as are most of the suite) by hairline veinlets of epidote.

Sample 102-4 is distinctive for its high content of epidote, as fracture fillings and clumpy replacements. The host rock is a rather leucocratic monzonite.

Sample 102-5 resembles 102-1, but is somewhat more altered. The plagioclase shows mild sericitization and epidotization. The sectioned area is cut by a prominent thin veinlet of epidote.

J.F. Harris Ph.D. (929-5867)

- - - - -

SAMPLE: TS 102-1

MONZONITE

Estimated mode

Ρ

Plagioclase	42
K-feldspar	24
Sericite	8
Pyroxene	17
Biotite	3
Chlorite	2
Epidote	0.5
Apatite	0.5
Opaques	3

This rock consists essentially of an intergrowth of plagioclase and K-feldspar which forms a matrix to individual vari-sized grains of mafics.

The plagioclase is in the form of an aggregate of subhedral to anhedral, stumpy to elongate, prismatic grains, 0.5 - 1.5 mm in size, locally showing a weak preferred orientation.

K-feldspar, as anhedral grains and microgranular aggregates, typically in the size range 0.2 - 0.5 mm, occurs in interstitial relation to the plagioclase, occasionally concentrating as pockety segregations.

The plagioclase shows a fairly even, light to moderate, pervasive dusting of sericite. The K-spar is fresh.

The principal mafic is a pale green clinopyroxene, which occurs as rather evenly scattered, subhedral, sometimes skeletal/poikilitic grains, 0.1 - 1.5 mm in size. Brown biotite is a minor accessory, as sporadic clumps of similar grain size to the pyroxene but generally independent of it.

The sectioned area also includes one or two coarser mafic phenocrysts, 3 - 4 mm in size, consisting of intimate lamellar intergrowths of pyroxene and biotite, in which the latter is clearly a modification (magmatic reaction product) of original pyroxene.

For the most part the pyroxene is fresh, but it sometimes shows localized mild chloritization, as does the biotite.

Granular opaques (probably a mixture of Fe oxides and sulfides) are rather abundant, and show a close association with the mafic silicates. Some dispersed limonite staining occurs around the opaques, suggestive of incipient oxidation of the sulfides. They form equant grains 0.05 - 0.5 mm in size, occasionally aggregated as clumps. Apatite is a more minor, but nevertheless widespread minor constituent, as individual tiny euhedra.

The rock is cut by a bi-directional system of hairline fractures

Sample TS 102-1 cont.

which are sometimes partially infilled by epidote. Some also show local concentrations of sulfides.

This rock has the typical petrographic features of a fine to mediumgrained intrusive monzonite.

SAMPLE: TS 102-2

MONZONITE

Estimated mode

40
25
9
5
16
0.5
0.5
trace
9

This rock is of similar general lithology to 102-1, but differs slightly in texture and mafic mineralogy.

It consists predominantly of feldspars, as an aggregate of grain size 0.2 - 1.0 mm. Plagioclase forms a meshwork to sub-oriented aggregate of euhedral/subhedral prismatic grains, with K-feldspar in interstitial mode. The plagioclase shows mild to moderate pervasive alteration to very fine-grained sericite and/or clays.

The mafic component in this sample is hornblende, as euhedral/ subhedral individuals, 0.2 - 2.0 mm in size, sometimes aggregated as small clumps. Some of the amphibole is of fibro-acicular habit, and it may, in part, represent a late magmatic modification of original pyroxene. A few clumps show minor alteration to epidote.

The distribution of mafics through the rather fine-grained feldspar matrix constitutes a sub-porphyritic texture. There are also rare coarser (strongly elongate) plagioclase grains to 2.0 mm or more which are of sub-phenocrystic character.

Amphibole also occurs in fine-grained flecks, as a minor accessory constituent interstitial to the feldspars of the matrix.

Opaques - as abundant equant grains, 0.05 - 0.2 mm in size, often aggregated as coarser clumps and loose clusters - are the principal matrix accessory. These appear (from observations of the off-cut) to be mainly pyrite. Interestingly, the sulfides show no preferential association with the hornblende but, rather, occur with the interstitial K-feldspar. Their distribution does not seem structurally controlled, and they have the appearance of a primary constituent.

SAMPLE: TS 102-3

Estimated mode

Ρ

lagioclase	43
K-feldspar	30
Epidote	3
Pyroxene	5
Hornblende	9
Chlorite	6
Biotite	trace
Apatite	trace
Rutile)	Λ
Opagues)	4

The stained off-cut of this sample displays a notably heterogenous distribution of K-feldspar (yellow stain) which, in part, suggests a form of breccia - the potassic areas representing monzonite fragments in a matrix of diorite. The sectioned area is cut by a prominent, sharply defined veinlet of K-feldspar.

In thin section, the postulated two lithotypes appear very similar, consisting of rather fine-grained aggregates of plagioclase, of grain size 0.2 - 0.5 mm (locally to 1.0 mm) with - in the case of the monzonitic variant - a more or less abundant component of interstitial microgranular K-feldspar.

Mafics consist of pyroxene, partly modified to amphibole and more or less strongly altered to chlorite. This component occurs as ragged, small, randomly disseminated grains, plus occasional coarser skeletal clumps.

In the potassic assemblage, remnants of pyroxene are typically preserved, but in the dioritic areas pyroxene is typically absent, and hornblende is the norm.

The feldspars (both plagioclase and K-spar) in this rock are largely fresh (but for an overall turbidity). However, scattered grains of plagioclase show partial replacement by epidote. The predominant mode of occurrence of epidote is as infillings of hairline fractures.

The K-feldspar veinlet is 1.5 - 2.0 mm in thickness and has a feathery to fine-grained meshwork texture. It is possible that the patchy K-feldspar distribution in the rock at large is a form of irregular K-metasomatism marginal to the veinlet; however, such a relationship is not clearly indicated.

An irregular, greenish patch, 0.5 - 1.0 cm in size, with a high concentration of opaques is readily apparent from macroscopic examination of the thin section. This is partly composed of compact secondary biotite, and appears to be a modified mafic-rich xenolith.

Accessory opaques in this rock appear to be mainly Fe-Ti oxides.

Estimated mode

Plagioclase 30 K-feldspar 35 Epidote 27 Chlorite 4 Limonite 3 Apatite trace Opaques 1

.

The stained off-cut clearly indicates that this is another monzonitic rock, composed essentially of an intimate intergrowth of plagioclase and K-feldspar. Its distinctive dark blotched appearance is caused by localized segregations of epidote.

The primary lithology in this case is that of a rather leucocratic monzonite, consisting of a blocky anhedral aggregate of feldspars of grain size 0.1 - 2.0 mm. To some extent the K-spar component is ophitic, incorporating smaller prismatic grains of plagioclase.

Both feldspar species appear essentially fresh but for diffuse turbidity.

Minor accessory mafics occur throughout as irregular flecks, clumps and networks interstitial to the feldspar aggregate. They consistently show strong alteration to chlorite and limonitic secondary products (and occasional epidote), and their original mineralogy is indeterminate. The prevalence of lamellar textures suggests, however, that they may, in part, be of biotite ancestry. Opaques are notably less abundant than in previous samples.

Epidote forms thin, multidirectionsl fracture fillings, 0.05 -0.5 mm in thickness, and prominent, sporadic, vari-granular (partly radiate/acicular) masses up to 5 mm or so in size. The control on the latter is unclear, but they generally seem to be related to (connected by) the epidote fractures, and they appear to be replacements of the host rock, independent of its mineralogy. In some cases the epidote masses have fringes or interstitial pockets of limonitic material, possibly derived from the assimilation of primary mafics.

SAMPLE: TS 102-5

Estimated mode

Plagioclase	42
K-feldspar	20
Sericite	5
Pyroxene	9
Hornblende	14
Epidote	7
Apatite	trace
Rutile)	2
Opaques)	2
Limonite	1

Comparison of the stained off-cuts suggests that this sample is very similar to 102-1.

In thin section it is found to be a monzonite of similar grain size (0.2 - 1.0 mm) to 102-1, but of a more "messy" appearance - resulting from pervasive alteration.

It is composed essentially of a blocky to meshwork-textured intergrowth of plagioclase, K-feldspar and mafics. The K-spar interstitially cements the dominantly subhedral prismatic plagioclase grains, and the relatively abundant mafics occur throughout as evenly disseminated individuals of similar grain size to the feldspars, plus a few coarser phenocrysts up to 3 mm in size.

The plagioclase shows mild dustings of fine-grained sericite, and is also commonly flecked and core-replaced by microgranular epidote. The K-spar is fresh.

Mafics are partly recognizable as clinopyroxene, but show all stages of modification to amphibole, as networks, rims and total pseudomorphic replacements. This is probably a late magmatic reaction effect.

Sporadic disseminated opaques may be partly sulfides - now apparently more or less strongly oxidized. Derived limonite forms pervasive flecks and hairline wisps in grain boundaries and incipient microfractures throughout the rock.

The sectioned portion is cut by a prominent veinlet or fracturecontrolled replacement zone, 1 - 1.5 mm in thickness, composed of compact, microgranular epidote.

APPENDIX VI

ROCK SAMPLE DESCRIPTIONS

ROCK SAMPLE DESCRIPTIONS

. . .

Sample No.	Grid Coord	Description
1-206	08800N 11425E	-float, felsic dyke? fight grey matrix, fractured, 5% disseminated pyrite, Cu 12 ppm, Au <5 ppb, Ag 0.2 ppm
1-207	09100N 11675E	-float, weakly bleached andesite, manganese stain, traces of pyrite on fractures. Cu 355 ppm, Au \leq 5 ppb, Ag 0.6 ppm
1-208	09810N 11715E	-grab, light grey felsic intrusive, 1-5% pyrite disseminated and along fractures, Cu 81 ppm, Au <5 ppb, Ag 0.2 ppm
1-209	09805N 11712E	-grab from old hand trench, dark grey-green volcanic, 5% + pyrite disseminated and along fractures, Cu 66 ppm, Au <5 ppb, Ag 0.4 ppm
1-210	09800N 11714E	-grab, intrusive, weak pink potassic alteration around pyrite disseminations, 5-10% pyrite disseminated and along fractures, Cu 122 ppm, Au <5 ppb, Ag 0.6 ppm
1-211	09800N 11050E	-grab, intrusive, traces of pyrite, malachite, magnetite and chalcopyrite? on fractures, manganese stain, moderate epidote and K-spar, Cu 1855 ppm, Au \leq 5 ppb, Ag 2.0 ppm
1-212	09800N 10975E	-float, strong epidote, silicified, 10-15% magnetite, 3% boxworks, Cu 26 ppm, Au <5 ppb, Ag <0.2 ppm
1-213	09800N 09875E	-grab, diorite, epidote and K-spar along fractures and disseminated, manganese stain, < 1 mm magnetite veinlets, Cu 188 ppm, Au <5 ppb, Ag <0.2 ppm
1-214	11300N 09815E	-float, rusty, fractured, intrusive? 1-2% pyrite along fractures and disseminated, 1/4% chalcopyrite along fractures and disseminated, Cu 1370 ppm, Au ,5 ppb, Ag 1.2 ppm
1-216	08300N 11200E	-grab. dark green andesite, 1-3% pyrite along fractures and disseminated, Cu 77 ppm, Au <5 ppb, Ag 0.2 ppm
1-217	09200N 10475E	-grab, massive green andesite, 2-4% pyrite along fractures and disseminated, Cu 84 ppm, Au <5 ppb, Ag 0.6 ppm, Zn 1905 ppm
1-218	09485N 10050E	-grab, moderately epidote and K-spar altered diorite, 1% pyrite disseminated and along fractures, 1% chalcopyrite and traces of malachite along fractures, Cu 3050 ppm, Au 45 ppb, Ag 3.2 ppm

Sample No.	Grid Coord	Description
1-219	09390N 10100E	-grab, intrusive, epidote and K-spar on fractures with $1/2\%$ pyrite, Cu 359 ppm, Au <5 ppb, Ag 1.0 ppm
1-220	09875 10010E	-grab, diorite, K-spar along fractures, rusty fractures with 1% pyrite, 1-3 mm cavities may have had chalcopyrite, Cu 307 ppm, Au <5, Ag 0.4 ppm
1-221	09405N 09950E	-grab. diorite, epidote and k-spar along fractures, 1/2% chalcopyrite on fractures, mainly with K-spar, Cu 1335 ppm, Au 25 ppb, Ag 2.0 ppm
1-222	11390N 10150E	-grab, fine-grained tuff, manganese stain, rusty fractures, 10-15% disseminated pyrite, Cu 381 ppm, Au <5 ppb, Ag 0.2 ppm
1-223	11225N 10125E	-grab, fine-grained tuff, fracturing with epidote, K-spar, magnetite, malachite, fine-grained chalcopyrite, Cu 3980 ppm, Au 20 ppb, Ag 4.2 ppm
1-224	11040N 10025E	-grab dump, coarse-grained tuff, 10-25% pyrite, epidote on fractures, Cu 199 ppm, Au 15 ppb, Ag 0.2 ppm
1-225	11205N 10000E	-grab, dump, coarse grained tuff, 5-20% pyrite along fractures. Cu 135 ppm, Au 15 ppb, Ag <0.2 ppm

-

- -----

APPENDIX VII

SUMMARY OF 1996 WORK

Moreleigh Minerals Corp

Tas Claims, Grid Work, 1996

line	station to-from	grid	soils	mag	vlf
		m	no.	m	m
10000E	11500N-7700N	3800	-	-	-
11200E	11500N-8600N	2900	•	-	-
BL 11500N	10000E-12100E	2100	-	-	2100
BL 11500N	10000E-9675E	325	~	~	325
BL 11450N	10000E-12100E	2100	85	2100	2100
BL 11450N	10000E-9650E	350	14	350	350
BL 11400N	10000E-12100E	2100	•	~	2100
BL 11400N	10000E-9675E	325	-	~	325
BL 11350N	10000E-12100E	2100	84	2100	2100
BL 11350N	10000E-9650E	350	14	350	350
BL 11300N	10000E-12100E	2100	~	-	2100
BL 11300N	10000E-9675E	325	-	~	325
BL 11250N	10000E-12100E	2100	85	2100	2100
BL 11250N	10000E-9650E	350	14	350	350
BL 11200N	10000E-12100E	2100	-	-	2100
BL 11200N	10000E-9675E	325	-	-	325
BL 11150N	10000E-12100E	2100	85	2100	2100
BL 11150N	10000E-9650E	350	14	350	350
BL 11100N	10000E-12100E	2100		-	2100
BL 11100N	10000E-9675E	325	-	-	325
BL 11050N	10000E-12100E	2100	83	2100	2100
BL 11050N	10000E-9650E	350	14	350	350
BL 11000N	10000E-12100E	2100	-	-	2100
BL 11000N	10000E-9675E	325	-	-	325
BL 10900N	10000E-12100E	2100	83	2100	2100
BL 10900N	10000E-9650E	350	14	350	350
BL 10800N	10000E-12100E	2100	82	2100	2100
BL 10800N	10000E-9650E	350	14	350	350
BL 10700N	10000E-12100E	2100	83	2100	2100
BL 10700N	10000E-9650E	350	14	350	350
BL 10600N	10000E-12100E	2100	-84	2100	2100
BL 10600N	10000E-9650E	350	14	350	350
BL 10500N	10000E-12100E	2100	83	2100	2100
BL 10500N	10000E-9650E	350	14	350	350
BL 10300N	10000-12100E	2100	84	2100	2100
	10000-121001	2100	70	2100	2100

line	station to-from	grid	soils	mag	vlf	
		m	no.	m	m	
BL 10400N	10000E-9650E	350	14	350	350	
BL 9900N	10000E-12100E	2100	84	2100	2100	
BL 9900N	10000E-12100E	300	12	300	300	
BL 9800N	10000E-12100E	2100	84	2100	2100	
BL 9800N	10000E-9700E	300	13	300	300	
BL 9700N	10000E-12100E	2100	84	2100	2100	
BL 9700N BL 9700N	10000E-12100E	300	12	300	300	
BL 9700N BL 9600N	10000E-12100E	2100	85	2100	2100	
BL 9600N BL 9600N	10000E-12100E	300	12	300	300	
BL 9500N	10000E-12100E	2100	85	2100	2100	
BL 9500N BL 9500N	10000E-12100E	300	12	300	300	
BL 9300N BL 9400N	10000E-12100E	2100	85	2100	2100	
BL 9400N BL 9400N	10000E-12100E	300	12	300	300	
BL 9400N BL 9300N	10000E-12100E	2100	84	2100	2100	
BL 9300N BL 9300N	10000E-12100E	250	9	250	250	
BL 9300N BL 9200N	10000E-12100E	230	85	2100	230	
BL 9200N BL 9200N	10000E-12100E	250	10	250	250	
			10	250		
BL 9100N	10000E-12100E	2100	-	-	2100	
BL 9100N	10000E-9875E	125	-	125	125	
BL 9000N	10000-12100E	2100	-	-	2100	
BL 9000N	10000E-9875E	125	-	125	125	
BL 8900N	10000E-12100E	2100	84	2100	2100	
BL 8900N	10000E-9800E	200	8	200	200	
BL 8800N	10000E-12100E	2100	85	2100	2100	
BL 8800N	10000E-9800E	200	8	200	200	
BL 8700E	10000E-12100E	2100	85	2100	2100	
BL 8700N	10000E-9600E	400	16	400	400	
BL 8600N	10000E-12100E	2100	85	2100	2100	
BL 8600N	10000E-9600E	400	16	400	400	
BL 8300N	10000E-12100E	2100	-	2100	2100	
BL 8300N	10000E-9550E	450	18	450	450	
BL 8200N	10000E-12100E	2100	-	2100	2100	
BL 8200N	10000E-9550E	450	18	450	450	
BL 7600N	10000E-12100E	2100	-	-	-	
Totals (all pa	ges)	88,550	2,349	61,000	79,750	

- - - --

Analyzed

1117 soils 20 rocks ICP and Au ICP and Au

3

c:\WPWIN60\WPDOCS\TAS\GRIDST%.WPD

APPENDIX VIII

COST STATEMENT

COST STATEMENT

SALARIES

Grant Crooker, Geologíst	
July 15, 1996-February 28, 1997 48 days @ \$ 400.00/day	\$ 19,200.00
Bill Botel, Geologist	
October 24, 1996	
1 day @ \$ 400.00/day	400.00
Lee Mollison, Field Assistant	
July 15-August 31, 1996	
15 days @ \$ 200.00/day	3,000.00
Mike Harris, Field Assistant	
July 15-October 28, 1996	
39 days @ \$ 200.00/day	7,800.00
Reg Barber. Field Assistant	
July 15-October 28, 1996	
39 days @ \$ 200.00/day	7,800.00
Jaimee Barber, Field Assistant	
July 15-November 30, 1996	
25 days @ \$ 150.00/day	3,750.00
MEALS AND ACCOMMODATION	
Grant Crooker - 33 days @ \$ 50.00/day	1,650.00
Bill Botel - 1 day @ \$ 50.00/day	50.00
Lee Mollison - 15 days @ \$ 50.00/day	750.00
Mike Harris - 39 days @ \$ 50.00/day	1,950.00
Reg Barber - 39 days @ \$ 50.00/day	1,950.00
Jaimee Barber - 21 days @ \$ 50.00/day	1,050.00

TRANSPORTATION

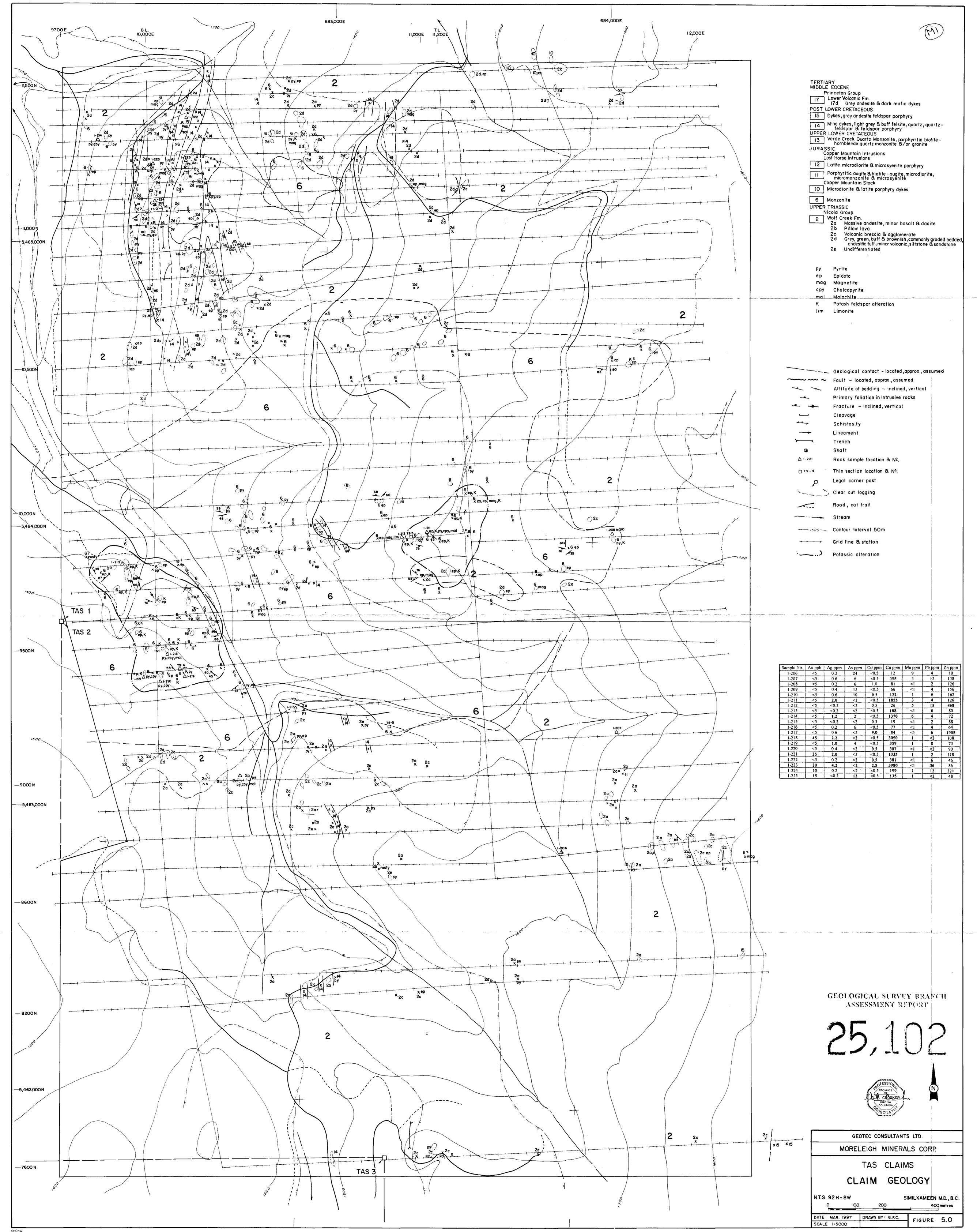
Vehicle Rental (Chev 3/4 ton 4x4)	
July 15-October 28, 1996 33 days @ \$ 60.00/day	1,980.00
Vehicle Rental (Ford $3/4$ ton $4 \ge 4$)	
July 15-October 28, 1996	
39 days @ \$ 60.00/day	2,340.00
Gasoline	1,408.25
EQUIPMENT RENTAL	
Magnetometer Rental, (Scintrex MP-2) July 15-October 28, 1996	
39 days @ \$ 25.00/day	975.00
VLF-EM (Geonics EM-16)	
July 15-October 28, 1996	
39 days @ \$ 25.00/day	975.00
GPS Unit (Micrologic)	100.00
GEOCHEMICAL ANALYSIS	
1117 soil samples - 32 element ICP, Au FA+AA	
@\$17.92	20,016.64
20 rock samples - 32 element ICP, Au FA+AA	
@\$22.04	440.80
SUPPLIES	1,550.72
FREIGHT	54,69
TELEPHONE	100.30
TOPOGRAPHIC MAP	4,500.00
THIN SECTIONS	566.93
GEOPHYSICAL INTERPRETATION	1,500.00

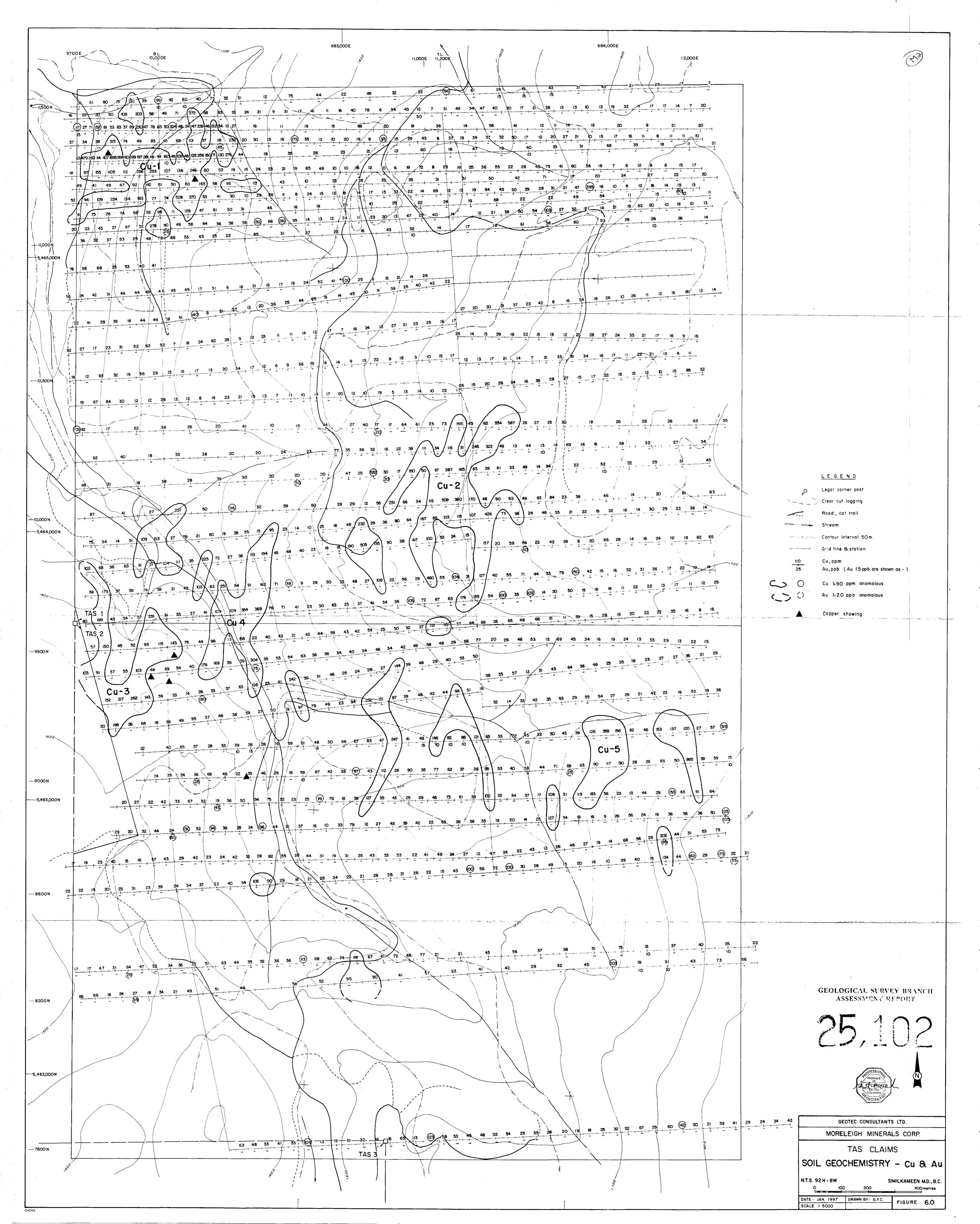
· · - - · - - - · ·

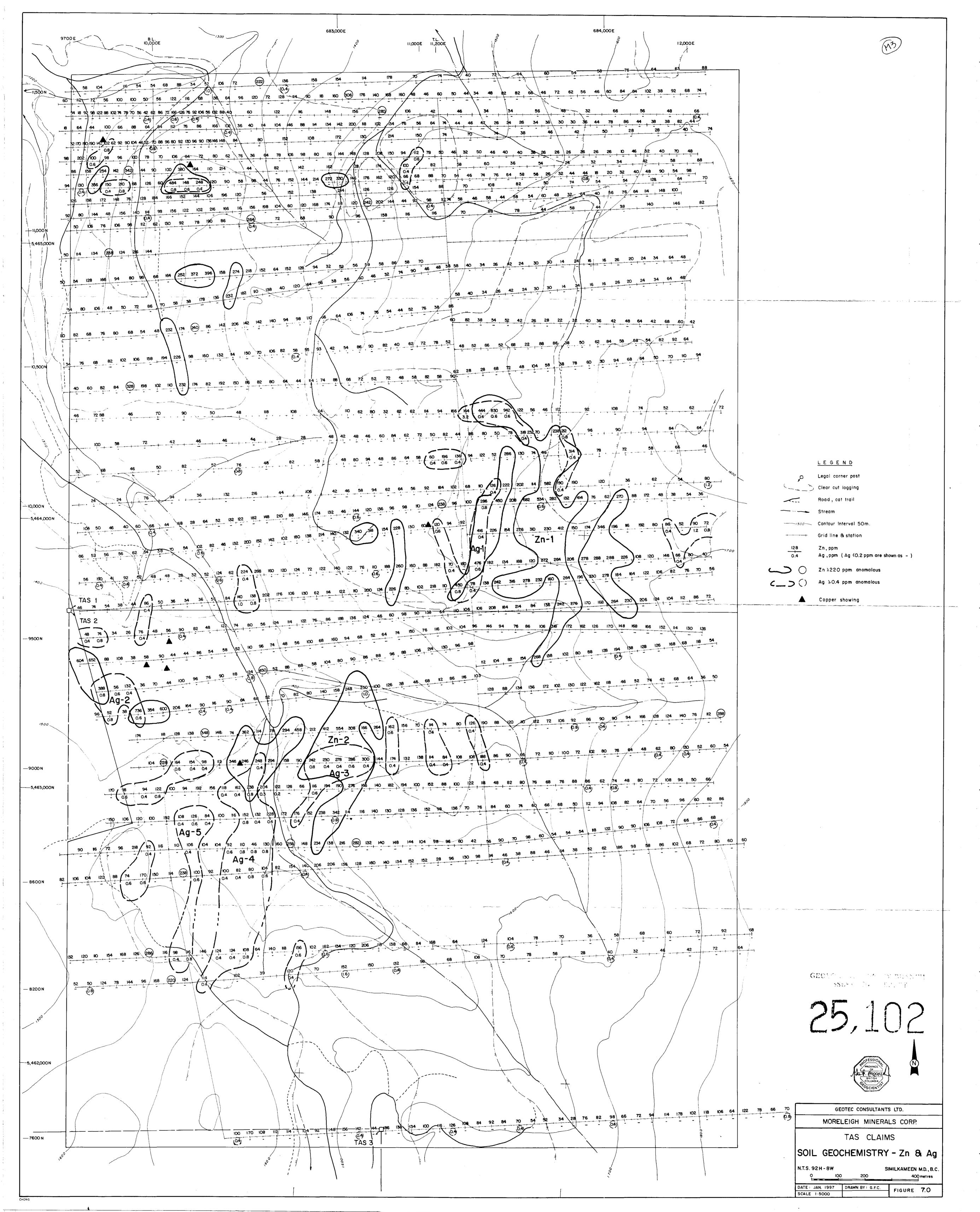
DRAFTING	

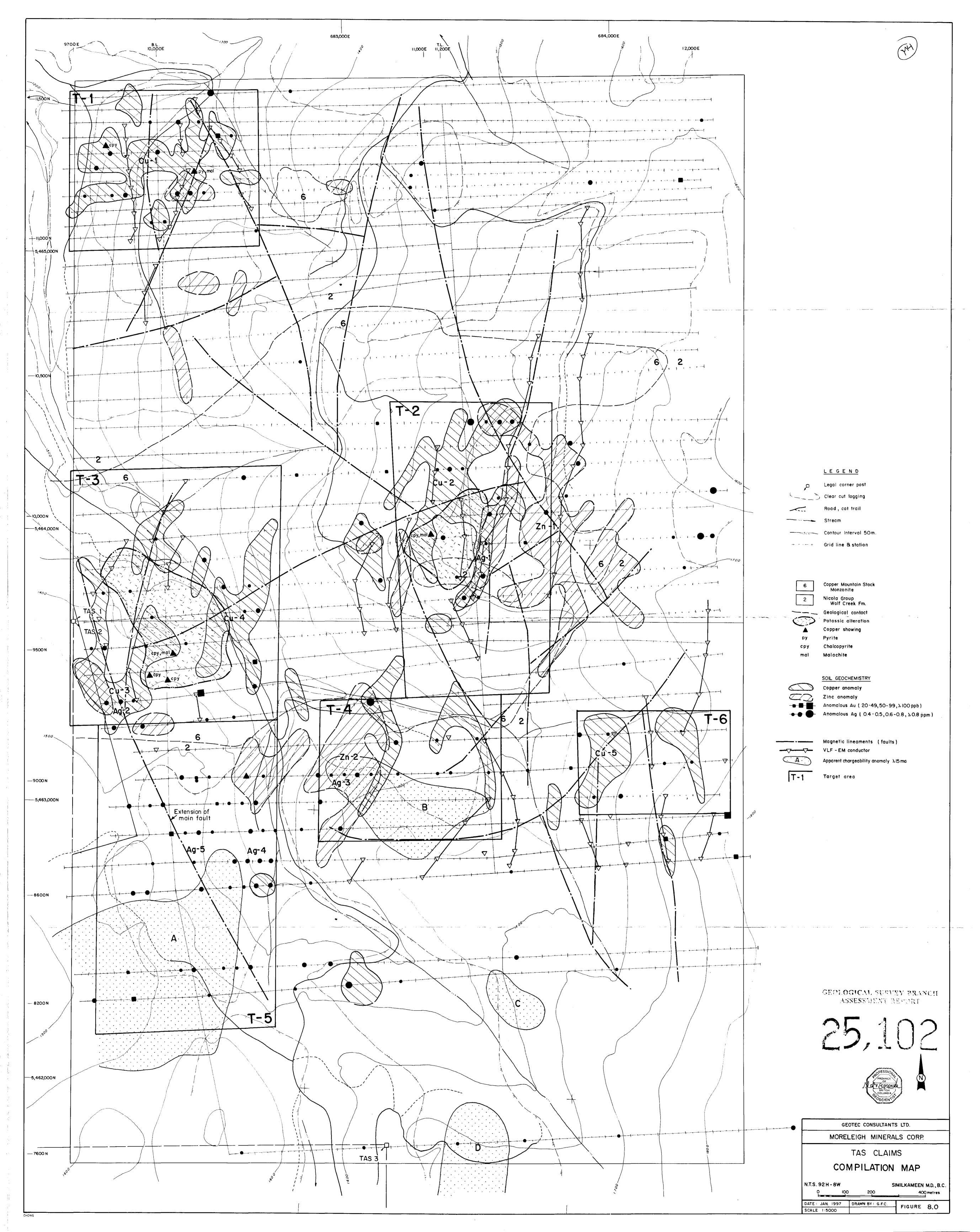
350.00

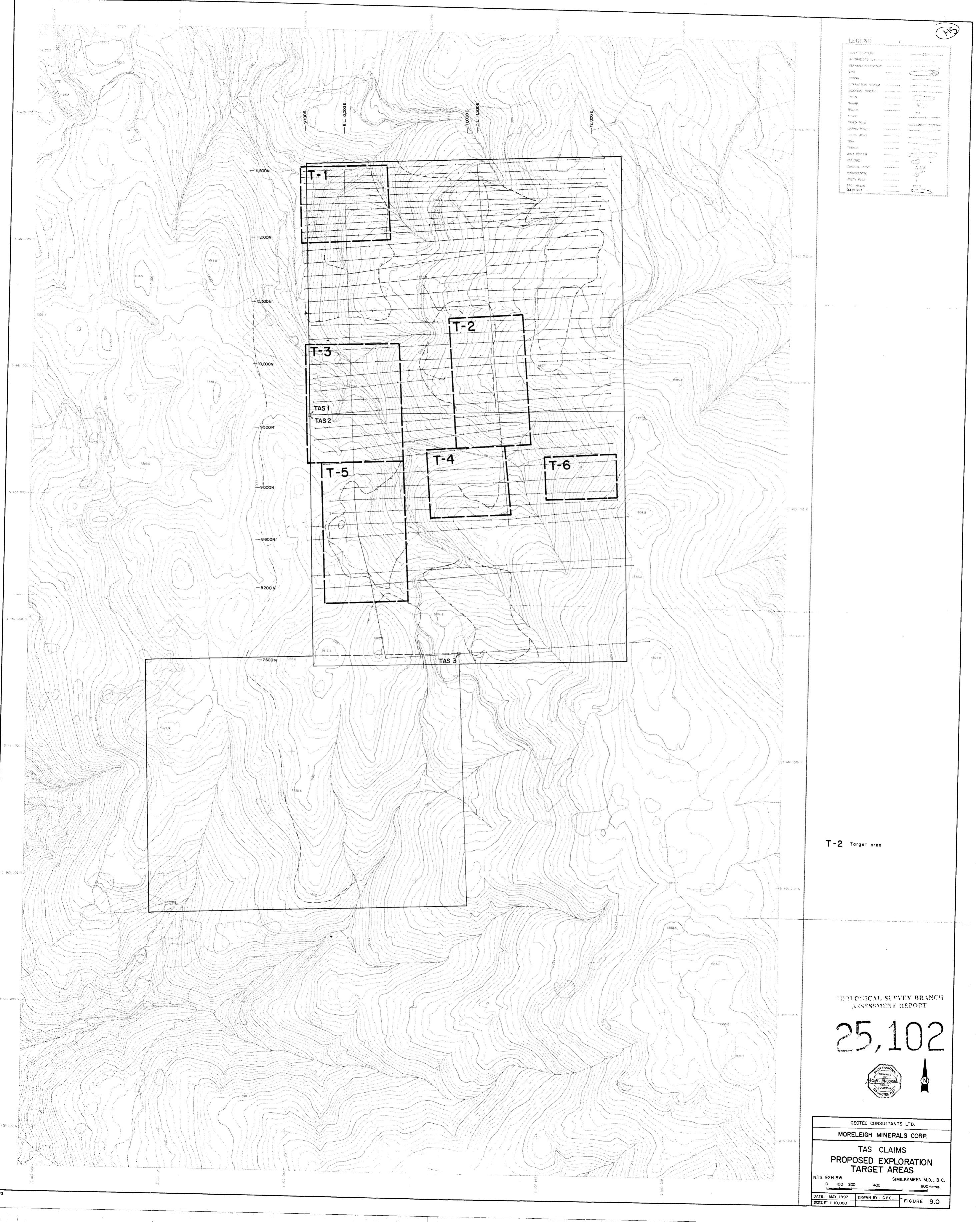
PREPARATION OF REPORT

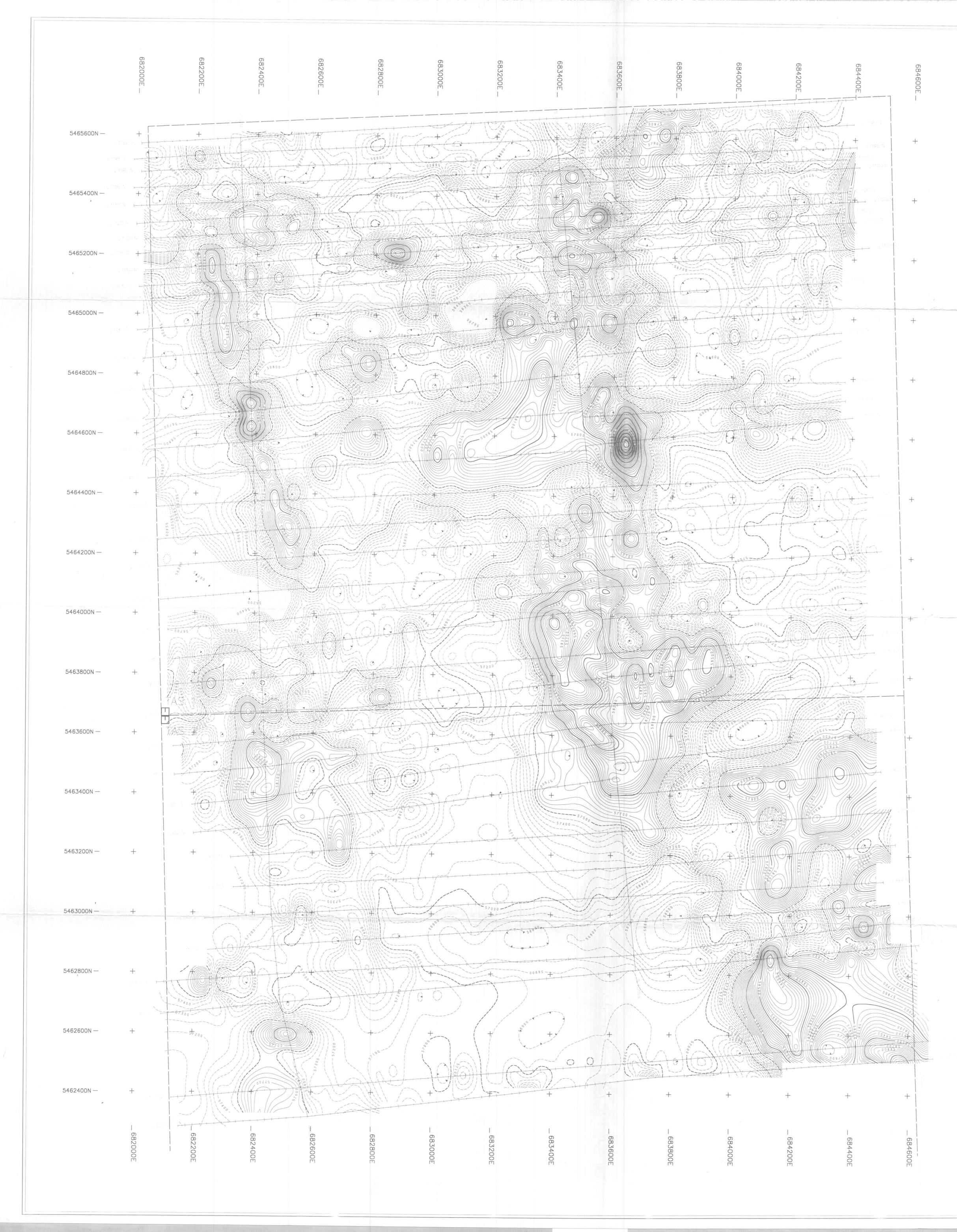

,

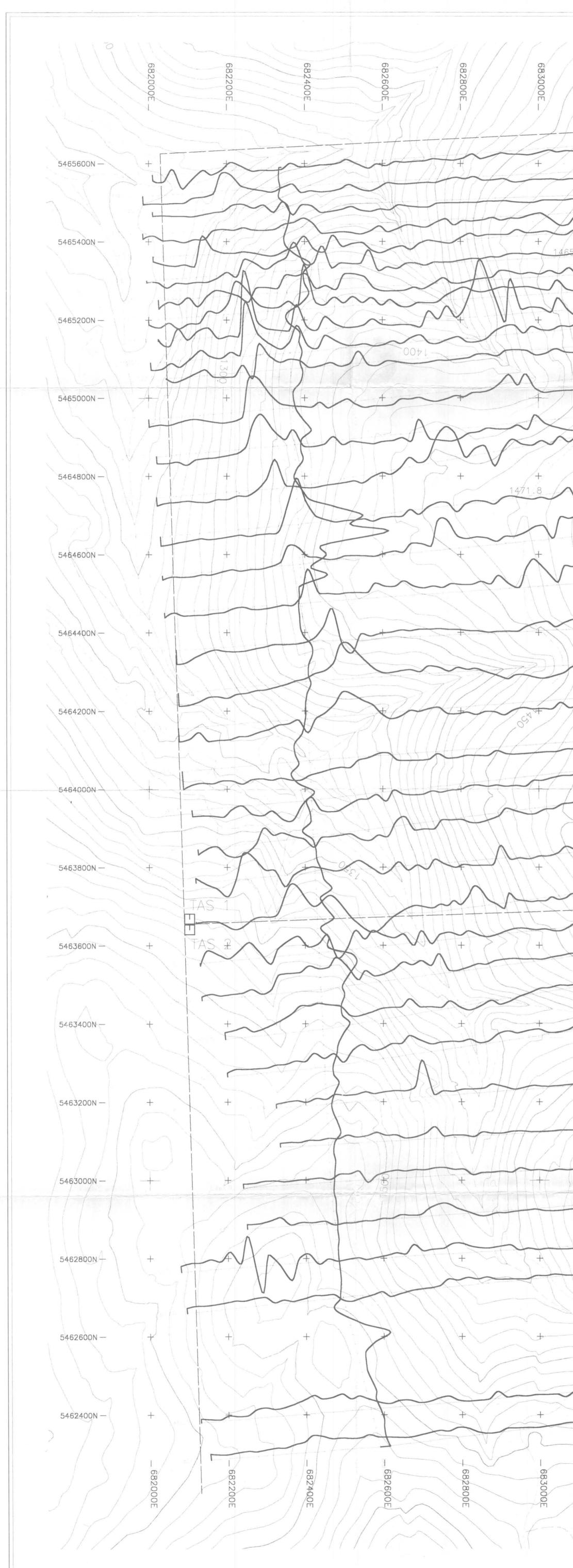

.

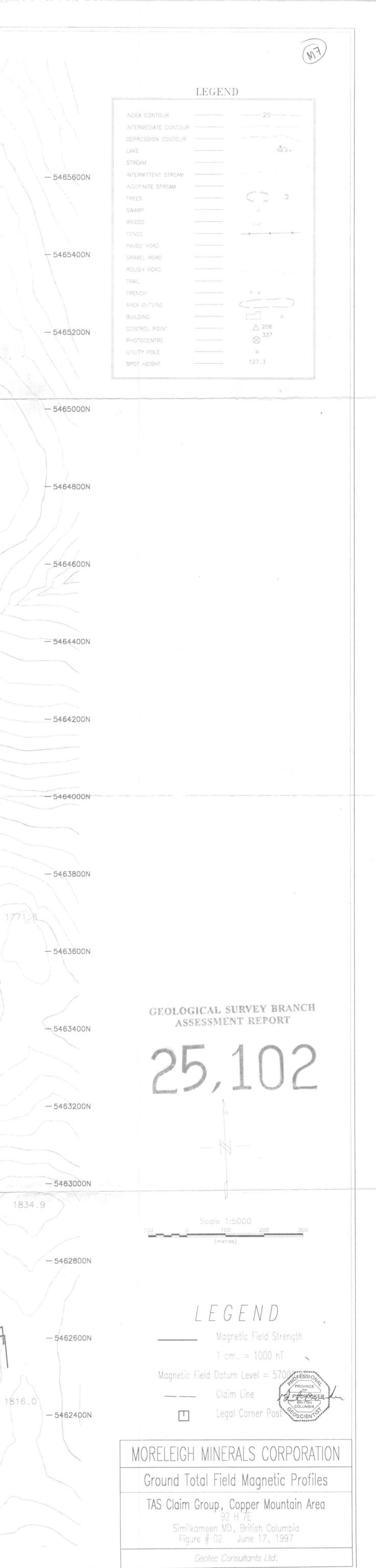

.

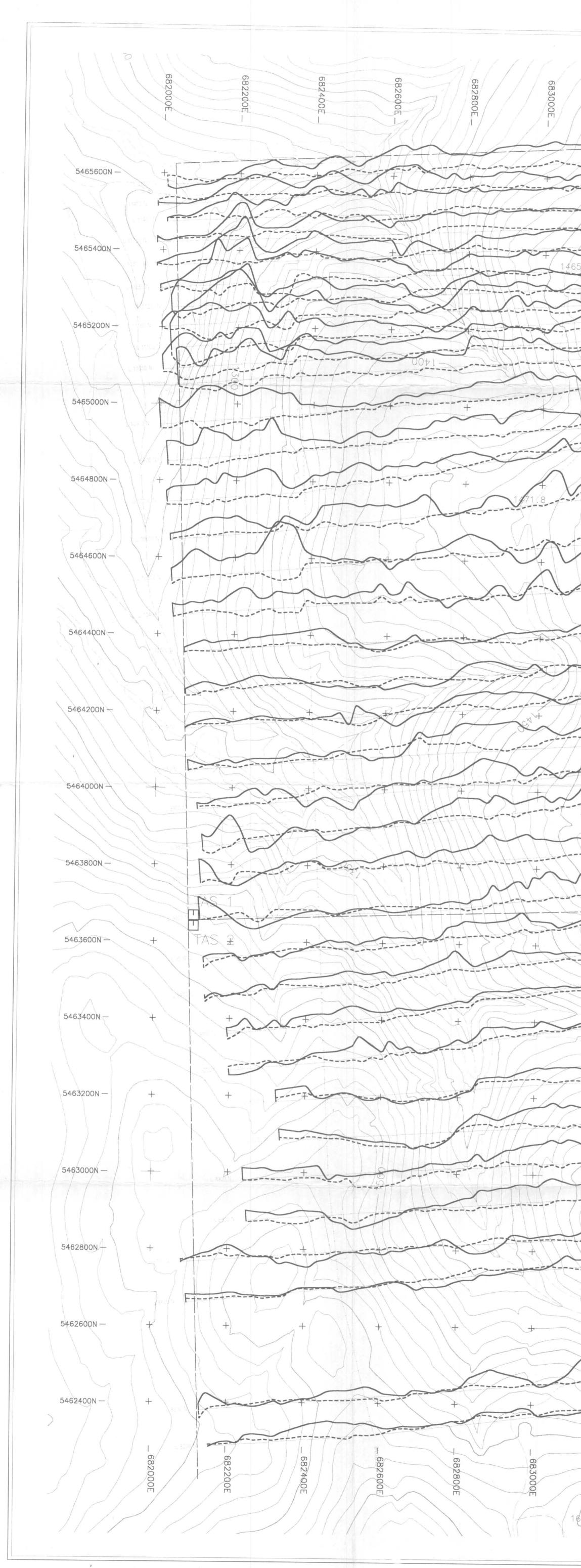

PARALION OF KEPUKI		1 000 00
copying, reproduction, office overhead		<u> </u>
copying, reproduction, ornee or entrance	TOTAL	\$ 87,208.33

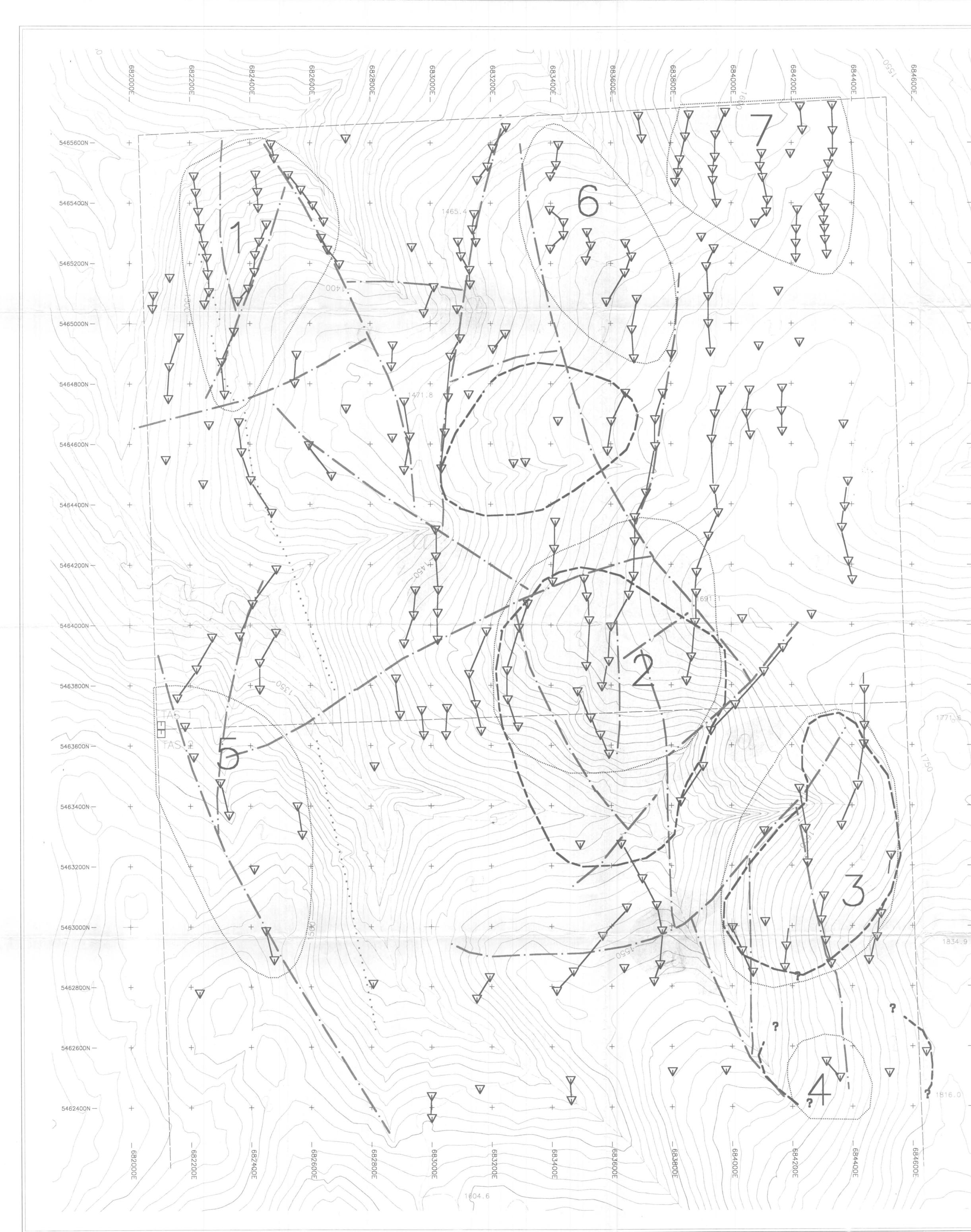

5





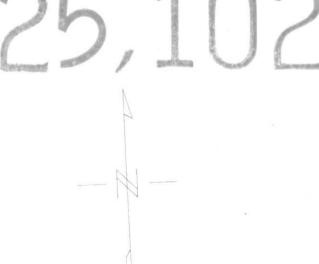





V \\ 68460 1604.6

-----Same and ---------10.00.00 00 70 mil ---and -------------------------8----******* 4---_____ ------ 75 ------------------+---------------------------------------1-----------------6838 684600E 20 1604.6

()			M	19)
		LEGENI	D	
			105	
<i>ZC</i> ,	INDEX CONTOUR		25	
1.5	INTERMEDIATE CONTOUR			
	LAKE		W.L. 102.3 ±	
	STREAM			
- 5465600N	INTERMITTENT STREAM			
	INDEFINITE STREAM		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	TREES			
	SWAMP			
	BRIDGE		\succ	
	FENCE POAD			
- 5465400N	PAVED ROAD GRAVEL ROAD			
	ROUGH ROAD			
1	TRAIL			
/	TRENCH		\succ \prec	
	AREA OUTLINE		$\langle \rangle$	
	BUILDING			
- 5465200N	CONTROL POINT		△ 208 337	
11	PHOTOCENTRE		\otimes	
$f = f \cdot x$	UTILITY POLE		0	
	SPOT HEIGHT		127.3	
			N. 4	
- 5464600N - 5464400N				i.
- 5464600N - 5464400N				Ĩ
- 5464400N				
				ĩ
- 5464400N				·
- 5464400N				i
- 5464400N				i i
- 5464400N				
- 5464400N				
- 5464400N				
- 5464400N				
- 5464400N				
- 5464400N				
- 5464400N - 5464200N				
- 5464400N - 5464200N				
- 5464400N - 5464200N				
- 5464400N - 5464200N				
- 5464400N - 5464200N				
- 5464400N - 5464200N	GEOL	DGICAL	SURVEY BRAN	
- 5464400N			SURVEY BRAN	
- 5464400N				
- 5464400N - 5464200N				
- 5464400N - 5464200N				
- 5464400N - 5464200N				
- 5464400N - 5464200N				


- 5463200N

- 5463000N

- 5462800N

- 5462600N

- 5462400N

INTERPRETATION LEGEND

V

Intrusive Rock Type (i) 🔹 🔹 🔹 Dyke – Intrusive Rock Type Alteration Zone (a) VLF EM Conductor Claim Boundary Legal Corner Post Valcanic Rock Type

MORELEIGH MINERALS CORPORATION

GEOPHYSICAL INTERPRETATION MAP

TAS Claim Group, Copper Mountain Area

Similkameen MD, British Columbia Figure # G4 June 17, 1997

Geotec Consultants Ltd.

S.F. OROOKER SCIEN