

NTS 92 H/9 E, 82 E/12 W LAT.- 49 30' N LONG.- 120 02' W

GEOLOGICAL AND DIAMOND DRILLING REPORT on the HED PROPERTY

Osoyoos Mining Division, British Columbia

for VERDSTONE GOLD CORP./MOLYCOR GOLD CORP. 310-1959 152 nd St., Surrey , B.C. V4A 9E3

by Andris Kikauka, F.G.A.C., P.Geo., 6439 Sooke Rd., Sooke, B.C. V0S 1N0

July 16, 1997

15

TABLE OF CONTENTS & LIST OF FIGURES

	PAGE NO.
1.0 INTRODUCTION	1
2.0 LOCATION, ACCESS & PHYSIOGRAPHY	l
3.0 PROPERTY STATUS	1
4.0 AREA HISTORY	2
5.0 PROPERTY HISTORY	2
6.0 REGIONAL GEOLOGY	4
7.0 1997 WORK PROGRAM	5
7.1 METHODS AND PROCEDURES	5
7.2 PROPERTY GEOLOGY	5
7.3 DIAMOND DRILLING	6
8.0 DISCUSSION OF RESULTS	8
9.0 CONCLUSION & RECOMMENDATION	9
REFERENCES	10
STATEMENT OF QUALIFICATIONS	
ITEMIZED COST STATEMENT	
FIG. 1 LOCATION MAP	

FIG. 2 CLAIM LOCATION MAP
FIG. 2b CLAIM LOCATION MAP (WITH TOPOGRAPHY)
FIG. 3 REGIONAL GEOLOGY
FIG. 4 CENTRAL ANOMALY AREA DRILL SITE LOCATIONS
FIG. 4b CENTRAL ANOMALY PROPOSED DRILL SITES
FIG. 5a DDH 97-1 CROSS SECTION
FIG. 5b DDH 97-2 CROSS SECTION
FIG. 5c DDH 97-3 CROSS SECTION
FIG. 5d DDH 97-4 CROSS SECTION

APPENDIX A DIAMOND DRILL RECORD APPENDIX B ASSAY CERTIFICATES

1.0 INTRODUCTION

This report was prepared at the request of Verdstone Gold Corp./Molycor Gold Corp. to describe and evaluate the results of diamond drilling carried out on the Hed 1-7 claim group in the Osoyoos Mining Division, 18 km. NNE of Hedley, B.C. and 27 km. WSW of Summerland, B.C.

Field work was undertaken for the purpose of evaluating economic mineral potential of the Hed claims.

Field work was carried out from April 4-May 15, 1997 by Andris Kikauka (geologist), Marc Bombois, and Mike Lagan (geotechnicians), Neills Mining (drill contractors) under the supervision of Larry Reaugh and John Fisher.

This report is based on published and unpublished information and maps, reports and field notes.

2.0 LOCATION, ACCESS & PHYSIOGRAPHY

The claims are located NNE of Hedley, B.C. at the headwaters of Hedley Creek, a tributary to the Similkameen River (Fig. 1,2).

The claims are located on Map Sheet NTS 92 H/9 E and 82 E/12 W at latitude 49 30' N and longitude 120 00' W.

Road access is via McNulty (Isintok) logging road which comes from Summerland. There is no road access from Hedley. The McNulty (Isintok) road is followed to km. 27 (about 1.2 km. Past Isintok Lake) where a spur road heads due south towards a rounded mountain top.

The property elevation ranges between 1,600-1,900 m. (5,248-6,232 ft.). The area is heavily forested with pine and some spruce in low lying areas. Semi-arid, cool climate conditions prevail. The recommended field season is April-December, because of snowfall accumulations January-March.

3.0 PROPERTY STATUS

The property consists of 11 claims owned 100% by Verdstone Gold Corp./Molycor Gold Corp.(Fig.2). Details of the claims are as follows:

CLAIM	RECORD NO.	UNITS	RECORD DATE	EXPIRY DATE
Hed 1	339877	1	Sept. 6, 95	Sept. 6, 98
Hed 2	339878	1	Sept. 6, 95	Sept. 6, 98
Hed 3	339879	1	Sept. 6, 95	Sept. 6, 98
Hed 4	339880	1	Sept. 6, 95	Sept. 6, 98
Hed 5	338881	1	Sept. 6, 95	Sept. 6, 98
Hed 6	338882	1	Sept. 6, 95	Sept. 6, 98
Hed 7	345 004	20	April 3, 96	April 3, 9 9
Hed NW 1	339968	1	Sept. 21, 95	Sept. 21, 97
Hed NW 2	339969	1	Sept. 21, 95	Sept. 21, 97
Hed NW 3	339970	1	Sept. 21, 95	Sept. 21, 97
Hed NW 4	339971	1	Sept. 21, 95	Sept. 21, 97

The claims listed above are contiguous and have been grouped together to form the Hed Claim Group. The total area covered by the claims is 600 hectares (1,452 acres).

The writer is not aware of any regulatory problem that would adversely affect mineral exploration and development on the Hed Claim Group.

4.0 AREA HISTORY

The Nickel Plate and Hedley-Mascot located near the town of Hedley, B.C., produced from underground workings 3,600,000 tonnes of 0.408 opt Au and from the more recent open pit, production figures were 8,250,000 tonnes of 0.080 opt Au.

The Copper Mountain/Similco-Ingerbelle Porphyry Cu-Ag-Au deposit near Princeton, B.C. has produced 173,000,000 tonnes @ 0.58% Cu and 0.005 opt Au.

The Brenda Cu-Mo porphyry deposit located 22 km. West of Peachland, B.C., milled 177,000,000 tonnes @ 0.17% Cu and 0.043% Mo. Geology and mineralization at the Hed property closely resembles Brenda (see 8.0 Discussion of Results).

The Carmi-Moly deposit is located 30 km. East of Penticton, B.C. and contains 37,000,000 tonnes @ 0.105% MoS2.

Fairfield Minerals Ltd. Elk (Siwash North) gold-quartz vein system contains approximately 121,000 tonnes @ 0.740 opt Au and 1.03 opt Ag. Huntington Res Ltd. Brett Bonanza Zone located about 22 km west of Vernon, contains an estimated 12,000 tonnes @ 1.140 opt Au.

5.0 PROPERTY HISTORY

1969- Anaconda Canada Ltd. performed regional stream geochemical surveys which outlined anomalous Cu-Mo values southwest of Isintok Lake. Geochemical anomalies up to 3,300 ppm Cu and 158 ppm Mo led to the immediate staking of this area.

2

1970-1970-72 - Anaconda options the Hed claims ((1,125 hectares) to Placer
Developments Ltd. which carries out IP and drills	s 4 percussion holes giving the
following results:	

19.10 U.S.D.					
HOLE #	FROM (m.)	TO (m.)	INTERVAL	% Cu	% Mo
1972-PD-1	8.5	11.6	3.1	0.12	0.002
40	23.7	26.8	3.1	0.10	0.002
1972-PD-2	42.0	72.5	30.5	0.11	0.003
çc	60.4	66.4	6.0	0.20	0.007
1972-PD-3	45.1	48.2	3.1	0.15	0.001
1972-PD-4	17,6	20.8	3.2	0.47	0.010
66	39.0	48.2	9.2	0.51	0.132
1972-PD-5	8.5	35.9	27.4	0.09	0.015

Placer's IP survey covers 22 line-km. over 3 Cu-Mo geochem anomalies within the claims (Central, NW, and SW Zones). A northerly trending 1.0 X 0.1 km. area of high resistivity (silicification) and anomalous chargeability (increase in sulphide content) was located in the southeast portion of the claims (Central Anomaly). The IP anomalies closely match anomalous soil values.

1981- Ananconda Canada Exploration Ltd. Carried out a program of geological mapping, soil sampling, ground magnetometer surveying, 2,805 m. percussion drilling in 34 holes and 599 m. of NO diamond drilling. Drill results are summarized as follows:

holes and 5	99 m, of NQ di	amond drilling.	Drill results a	re summarized a	as tollows
HOLE #	FROM (m.)	TO (m.)	INTERVAL	% Cu	% Mo
1981PDH-2	7.6	19.8	12.3	0.34	0.023
22	7.6	10.6	3.0	1.15	0.033
1981PDH-4	37.55	74.15	36.6	0.13	0.122
~~	61.95	74.15	12.2	0.12	0.187
22	37.55	40.60	3.05	0.33	0.380
1981PDH-6	3.05	85.40	82.35	0.09	0.014
64	3.05	51.85	48.80	0.10	0.020
1981PDH-7	6.10	70.15	64.05	0.10	0.018
ç.	15.25	21.35	6.10	0.15	0.035
~~	45.75	51.85	6.10	0.11	0.058
1981PDH-8	76.25	94.55	18.30	0.08	0.042
1981PDH-9	30.50	82.35	52.05	0.12	0.049
66	30.50	57.95	27.45	0.16	0.068
44	33.55	39.65	6.1	0.34	0.137
1981PDH11	6.10	48.80	42.70	0.28	0.032
"	30.50	48.80	18.30	0.36	0.053
1981DDH-1	24.0	30.0	6.0	0.16	0.013
**	36.0	51.0	15.0	0.13	0.022
Ç2	57.0	126.0	69.0	0.15	0.089
1981DDH-2	9.0	27.0	18.0	0.14	0.085
11	51.0	96.0	45.0	0.18	0.146
1981DDH-3	33.0	36.0	3.0	1.40	0.246
64	69.0	78.0	9.0	0.34	0.061

A value of 1,180 ppb Au was obtained from a 3.05 m. interval in 1981-PDH-34. This 3.05 m. interval returned relatively low Cu-Mo-Ag values.

A 1.5 X 0.3 km., NNW trending Cu in soil anomaly is located over the central anomaly grid. The upper half of the copper anomaly is overlapped by a Mo in soil anomaly which broadens to the NE portion of the central anomaly grid (downslope).

Magnetometer readings indicate the anomalies are preferentially oriented N-S and zones of high mag intensity in the west-central and northern portions of the central anomaly grid envelop an area of moderate mag intensity which comprises the main mineralized zone.

1991-93 - The Hed prospect is staked by Seguro Consulting Inc. and work on the claims consisted of geological mapping, rock chip sampling and petrology giving these results: SAMPLE# TYPE WIDTH m Cu ppm Mo ppm Ag ppm Au ppb 91JR-01 Chip 0.4679 907 22.9 165 91JR-02 Select 611 5 18 0.6 -44 91JR-03 1300 6 0.8 10 44 92PR-01 788 97 0.9 _ 21 44 92PR-02 1104 42 4.9 162 _

Thin section analysis of sample 91-JR-02 indicates the lithology is a quartz monzonite/ granite, texture is medium to coarse grained, holocrystalline, with the following minerals present; plagioclase (30%), orthoclase (25%), quartz (20%), hornblende (10%), altered biotite (chlorite) clusters (5%), magnetite (1-2%), chalcopyrite (0.1-0.3%) as fracture fillings, minor sericite and chlorite as an alteration assemblage, and trace amounts of ilmenite and sphene.

1995-1997- Verdstone Gold Corp./Molycor Gold Corp. acquires a 38 unit claim group and drills 3 percussion holes (a total of 900 feet/ 274.5 m.) and surveys a 1.2 X 0.3 km. grid taking 144 soil samples. The best grades intersected by percussion drill holes were 0.297% Cu and 0.03% Mo over 42.7 m. and 0.07% Mo over 70.0 m. A 3.05 m. interval grades 1.14% Cu and 0.38% Mo. Values up to 2130 ppm Cu and 96 ppm Mo occur in soil samples. Elevated Cu values occur throughout the central anomaly grid area, whereas Mo anomalies are restricted to the north and central portions of the central anomaly grid area.

6.0 REGIONAL GEOLOGY

The Hed claims are underlain by the Okanagan batholith, a composite intrusive of Jurassic/Cretaceous age comprised of quuartz diorite, diorite, granodiorite, quartz monzonite and granite (Fig. 3). The Okanagan batholith intrudes upper Paleozoic metasediments, and late Triassic volcanics and sediments of the Nicola Group. Tertiary volcanic and sedimentary rocks unconformably overlie the complex near its edges. Most of the larger mines in the region are Jurassic and/or Cretaceous age, e.g. Copper

Mountain Cu-Ag-Au Early Jurassic, Hedley Camp Au Middle Jurassic, Brenda Cu-Mo Early Cretaceous ages of emplacement. Brenda is the only large scale producer within the Okanagan Batholith Complex (Fig. 3). Porphyry Cu-Mo occurs as fracture controlled sulphides at the contact of N-S trending quartz diorite and granodiorite stocks (collectively known as Brenda Stock). The ore zone is concentrically zoned by an outer pyrite shell and inner biotite alteration shell (Soregaroli, A., 1976).

7.0 1997 WORK PROGRAM

7.1 METHODS AND PROCEDURES

A total of 773.4 m. (2,536.8 ft.) of BQTW diamond drilling from four drill sites was carried out on the claims in March, April and May of 1997. The entire length of all 4 drill holes were split in half with a core splitter at 0.9-4.1 meter intervals, and shipped to International Metallurgical and Environmental Ltd., Kelowna, B.C. for Cu-Mo assay. Split core is labeled and stored on the claim group as per regulations. A total of 333 split core samples were shipped.

7.2 PROPERTY GEOLOGY

The following lithologies were recognized at the Hed property:

JURASSIC/CRETACEOUS OKANAGAN BATHOLITH

- 6 Mafic dykes and sills
- 5 Diorite/quartz diorite
- 4 Aplite dykes and sills
- 3 Megacryst granodiorite/quartz monzonite
- 2 Biotite granodiorite/quartz monzonite
- 1 Hornblende-biotite granodiorite/quartz monzonite

Most of the property is underlain by hornblende-biotite granodiorite/quartz monzonite. Major element geochemical analysis of 20 rock chip samples from the central anomaly zone by Anaconda indicates 5 samples lie in the quartz monzonite field probably because of introduction of K during hydrothermal alteration (Riccio, 1982). Thin section analysis by Seguro confirms the presence of quartz monzonite (Leriche, 1992). Biotite granodiorite/quartz monzonite outcrops west of the central anomaly. The megacryst granodiorite is not known to outcrop on the claim, but is common as float and outcrops about 1 km. north of the claim group (Peto, personal communication). Diorite and quartz diorite outcrop northwest of the central anomaly. The above sequence is cut by narrow aplite and mafic dykes and sills (0.1-1.8 m. wide)

Alteration consists of secondary biotite replacing hornblende, widespread silicification with rare quartz vein structures, K-spar envelopes, secondary chlorite, epidote and/or clay minerals developed along fractures, shears and quartz veins. Hydrothermal biotite is ubiquitous in the central zone, and is considered weak since both fresh and biotized amphiboles coexist in nearly all observed specimens (Riccio, 1982).

Common metallic minerals at the Hed property include chalcopyrite, molybdenite, bornite, magnetite, ilmenite, and minor pyrite. Most of the Cu-Mo mineralization occurs as veinlets or fracture coatings along shear or fracture planes or as veinlets associated with quartz veins. Sulphides occurring as disseminations are relatively rare and include chalcopyrite, pyrite and molybdenite. The following assemblages have been recognized: 1) chalcopyrite-magnetite, 2) chalcopyrite-bornite-magnetite, 3) chalcopyritemolybdenite-magnetite, 4) chalcopyrite-molybdenite-bornite-magnetite, 5) molybedenite. The paragentic sequence of sulphide emplacement from drill core textures suggests initial introduction of Cu-Fe, followed by Cu-Mo and Cu, and a last event of just Mo.

7.2 DIAMOND DRILLING

The purpose of diamond drilling in the area of known Cu-Mo mineralization was to determine geological features (i.e. structure, alteration, and mineralization) and to correlate assays with geology along what is perceived to be a "Brenda-type" ore zone. Weighted averages calculated from 1-3 meter samples taken along the entire length of each of the diamond drill holes are as follows:

DDH #	FROM (m.)	TO (m.)	INTERVAL	% Cu	% MoS2
DDH 97-1	21.0	169.0	148.0 m.	0.06	0.017
"	51.0	90.0	39.0	0.10	0.033
DDH 97-2	31.0	202.5	171.5 m.	0.18	0.050
66	59.0	60.0	1.0 m.	2.40	0.038
DDH 97-3	39.0	179.0	140.0 m.	0.14	0.020
٤٤	39.0	47.0	8.0 m.	0.31	0.020
دد	90.0	98.0	8.0 m.	0.30	0.040
دد	129.0	131.0	2.0 m.	0.20	0.190
DDH 97-4	2.1	197.5	195.4 m.	0.08	0.005
66	51.0	57.0	6.0 m.	0.52	0.075
66	129.0	138.0	9.0 m.	0.43	0.028

There are very few erratic high or low grade intervals throughout each section which indicates that the distribution of Cu-Mo bearing mineralization is relatively uniform throughout this portion of the intrusive. Higher grade intervals are characterized by increased fracture filling chalcopyrite, bornite, and/or molybdenite as well as narrow quartz veinlets. Quantitative evaluation of drill assays suggest higher grade Cu-Mo (i.e. upper 25th percentile) occur as 1-40 meter wide bands within 5-40 m. wide zones of medium-low grade Cu-Mo (i.e. lower 75th percentile).

Cu/Mo ratios in the drill holes suggest that Cu is present with or without increased Mo, whereas increased Mo is marked by increased Cu values. This suggests that in the paragenetic sequence of crystallization, there is at least two Cu rich mineral assemblages, one with Mo and one without Mo.

This 4 hole drill program covers an area of 150 X 150 meters and extends to a depth of about 125 meters (Figure 4), giving a mass of approximately 7,313,000 tonnes with an average grade of 0.12% Cu and 0.023% MoS2. (Extrapolation of volume using 2.6 as specific gravity of bedrock, and DDH 97-1,2,3,4 intercepts as calculated in above chart).

GEOLOGY- The main rock type in the drill holes is a hornblende-biotite granodiorite/ quartz monzonite (unit 1), with grain size of 0.1-3.0 mm. Several 0.1-0.5 meter wide fine grained aplite and mafic sills/dykes cut the medium to coarse grained intrusive.

STRUCTURE- The orientation of shears, fractures and quartz veins are recorded in the graphic log portion of the drill logs (Appendix B). An increase in the number of shears, fractures and/or quartz veining roughly correlates with elevated Cu-Mo values, and serves as an indicator for a local increase in Cu-Mo values.. Most of these structures (shear, fractures and/or quartz veins) are oriented sub-vertical and consequently all drill holes were tilted at a 45 degree angle. The central anomaly mineral zone roughly follows a NNW trend (based on previous drill holes, geochemistry and geophysics) and the drill holes were directed NE and SE to cut parallel and conjugate structures with respect to the main trend. DDH 97-3 (the only hole drilled SE), did not cut any significantly different structures from DDH 97-1,2,4. Thus the interpretation of a strong vertical component to the shears, fractures and/or quartz veins is valid.

ALTERATION- Weak hydrothermal alteration replaces hornblende with secondary biotite. Narrow zones of silicification, K-spar replacement, biotization, chloritization, clay alteration, and epidote veining develop along fractures, shears and quartz veins.

MINERALIZATION- Alteration increases in the presence of increased sulphide mineralization, which includes chalcopyrite, molybdenite, bornite and pyrite. Molybdenite occurs alone or associated with copper sulphides. Pyrite is sparse and does not appear to exist in the presence of bornite. Bornite appears to increase at depth. Sulphide mineralization occurs mainly as fracture fillings and less commonly as disseminations. Oxidation of near surface bedrock occurs to a depth of 10-40 meters. Oxide minerals include limonite, malachite, azurite, chalcocite, and native copper.

7

8.0 DISCUSSION OF RESULTS

The geology and mineralization at the Hed property compare closely with the Brenda Cu-Mo porphyry:

FEATURE	HED	BRENDA
Lithology	granodiorite, quartz diorite, quartz monzonite, felsic-mafic dykes	granodiorite, quartz diorite, felsic- intermediate-mafic dykes
Structure	Sub-vertical shears, fractures, veins, Cu-Mo grade is a function of vein/fracture/shear density and of the thickness and mineralogy of the filling material	Sub-vertical shears, fractures, veins, Cu-Mo grade is a function of vein/fracture/shear density and of the thickness and mineralogy of the filling material
Alteration	biotite,chlorite,quartz,epidote, K-spar	biotite,chlorite,quartz,epidote, K-spar, calcite
Mineralogy	Low sulphide system of: Chalcopyrite,bornite,molybdenite, pyrite	Low sulphide system of: Chalcopyrite,bornite,molybdenite, pyrite,rare specular hematite & galena & sphalerite
Ore Zone	Preliminary estimate (based on a compilation of all data) is roughly 500 X 200 m. area to a depth of 175 meters and open in all directions, detailed drilling needed	720 X 360 m. area to a depth of 300 meters, from plan view the ore zone forms a ¹ / ₄ moon C-shape.
Grade & tonnage	Pending the completion of about 25,000 feet (7,625 m.) of core drilling, there is a possibility the grade & tonnage will closely resemble that of the Brenda Mine	177,000,000 tonnes @ 0.169 % Cu and 0.072% MoS2

Brenda Mines went into production in 1970 and closed in 1990 during which time it produced 271,983 tonnes of copper, 65,470 tonnes of molybdenum, 112 tonnes of silver and 1.8 tonnes of gold. This porphyry deposit was one of the lowest grade producers in British Columbia, but daily throughput of 30,000 tonnes/day, cost effective management and industry leading efforts in human resources led to a return of \$22,000,000.00 in dividends to the shareholders (Weeks, 1995).

Based on a complilation of previous and current work carried out by Placer, Anaconda and Verdstone/Molycor, and using traditional evaluation methods (volume using geometry of grid dimensions and grade using weighted averages), the Hed central anomaly Cu-Mo deposit has geological potential for a deposit size in the order of 25-100 million tonnes of 0.1-0.2% Cu and 0.04-0.10% MoS2. Since these figures are fuzzy, the Hed Cu-Mo property should be evaluated by geostatistical (kriging, variograms, modelling etc.) and engineering (mining methods, production rate, cut-off grades, mine plan, etc.) parameters in order to systematically delimit the deposit(s). In order to deal with relatively low Cu-Mo grade cutoffs and assay boundaries, statistical studies would have to compared closely to Brenda Mine's to establish grade, tonnage and stripping ratios for various pit section blocks. For economic considerations, a production rate of 30,000 tonnes/day may be necessary, therefore a total of 100,000,000 tonnes of ore should be designated within the category "drill indicated reserves" in order for the Hed property to sustain a 10 year mine plan.

10.0 CONCLUSIONS & RECOMMENDATIONS

The Hed property has potential to host a resource of 100,000,000 tonnes @ 0.1-0.2% Cu and 0.04-0.10% MoS2. A proposed core drilling program of 17,000 feet (5,400 m.) is recommended in order to determine ore blocks within a 1.4×0.4 km. area located within the central anomaly (Fig. 5b). A total of 27 drill holes to a depth of 200 meters (656 feet) are recommended to test this area to a depth of 140 meters. The 50 meter lateral spacing and 175 meter fence spacing of these proposed drill holes would be required for detailed grade evaluation of the central anomaly zone.

A proposed Phase 1 budget has been outlined as follows:

PROPOSED BUDGET:

FIELD CREW-	Geologist, 2 geotechnicians, 1 cook	X 120 days	\$ 69,000.00
FIELD COSTS	- Truck, transportation costs Core drilling 17,000 ft. 5,400 m.		30,000.00 540,000.00
	Assays (1,600)		32,000.00
	Equipment and supplies Communications		8,000.00 4,000.00
14	Food		13,400.00
Management REPORT			7,500.00 1,800.00
		TOTAL=	\$ 705,700.00

Contingent on the results of this diamond drilling program, a follow-up phase of bulk sampling, geostatistical evaluation of volume, mass and grade of deposit, and engineering evaluation of ore reserve, cut-off grade, mineralization lost, design dilution, etc. would be required to assess the profitability of the Hed Cu-Mo project.

1

REFERENCES

Cannon, R.W., 1972, Geophysical Report, IP survey of Hed Claim Group, Canex Aerial Exploration Ltd., Internal Report

Leriche, P., 1992, Geological and Geochemical Report on the Hed Property, Seguro Consulting Inc., Assessment Report

Nordin, G., 1971, Anaconda American Brass Limited, Report of the Geological, Geochemical and Geophysical Reconnaissance of the Hed Claim Group, Internal Report

Peto, P., 1997, Summary and Evaluation Report of the Hed Cu-Mo Property, Verdstone Gold Corp./Molycor Gold Corp., Internal Report

Soregaroli, A., 1976, Brenda. In Porphyry Deposits in the Canadian Cordillera, C.I.M. Special Volume 15, page 186-194.

Riccio, L., 1981, Anaconda Canada Explorations Ltd., 1981 Exploration Activities, Hed Claim Group, Assessment Report.

Roberts, R.G., 1988, Ore Deposit Models, G.S.C. Reprint Series #3

Schroeter, T.G., Porphyry Deposits of the NW Cordillera of North America, Special Volume 46, C.I.M.

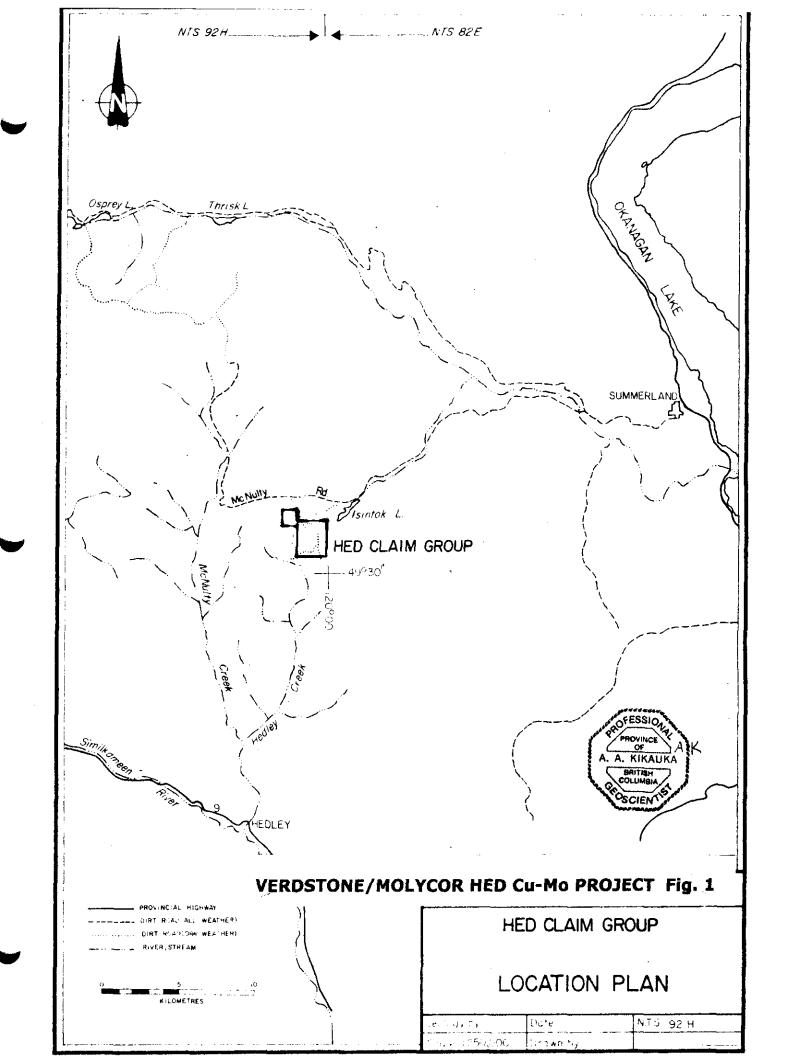
Sillitoe, R.H., 1980, Types of Porphyry Molybdenum Deposits, Mining Magazine., Vol. 142, p.550-553. Anniversary

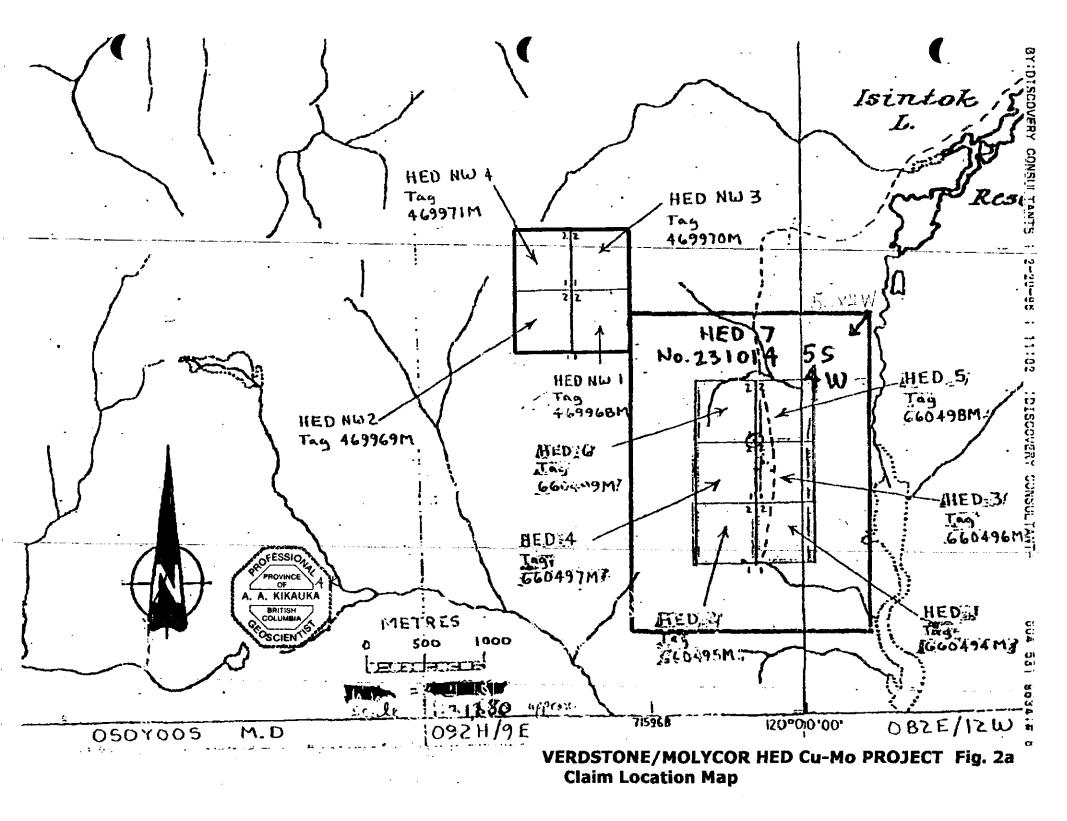
STATEMENT OF QUALIFICATIONS

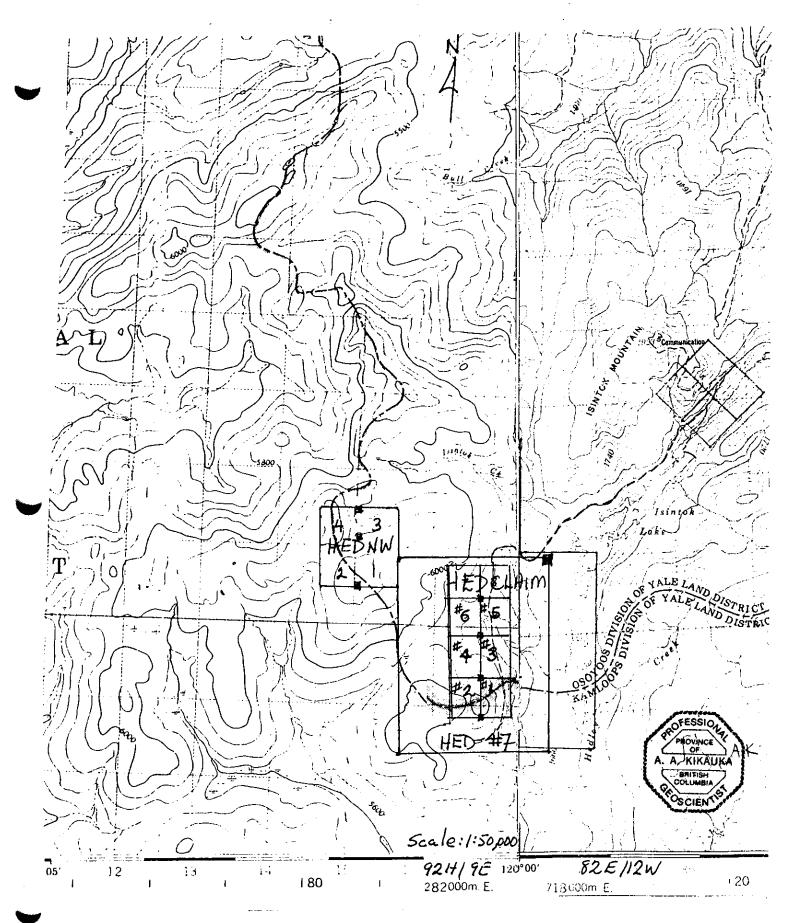
I Andris Kikauka, of 6439 Sooke Rd., Sooke, B.C., hereby certify that:

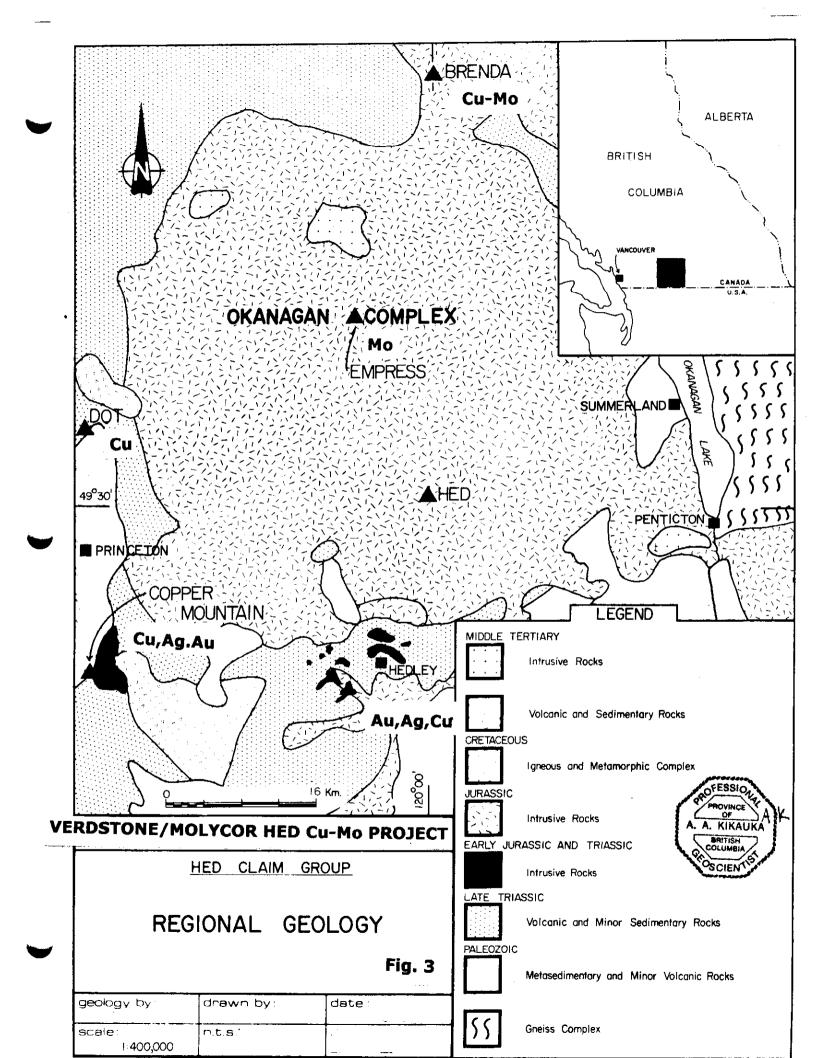
- 1) I am a graduate of Brock University, St. Catharines, Ontario, with an Honours Bachelor of Science Degree, Dept. of Geological Sciences, 1980.
- 2) I am a fellow in good standing with the Geological Association of Canada, registration # 5,717.
- 3) I am registered in the Province of British Columbia as a Professional Geoscientist, registration # 18,275.
- 4) I have practised my profession for 17 years in precious and base metal exploration in the Cordillera of North, Central and South America, and for 3 years exploring for uranium within the Canadian Shield.
- 5) The information, opinions and recomendations in this report are based on research of previous work and fieldwork carried out in my presence on the subject properties.
- 6) I have no direct or indirect interest in the holdings of Verdstone Gold Corp. or Molycor Gold Corp.

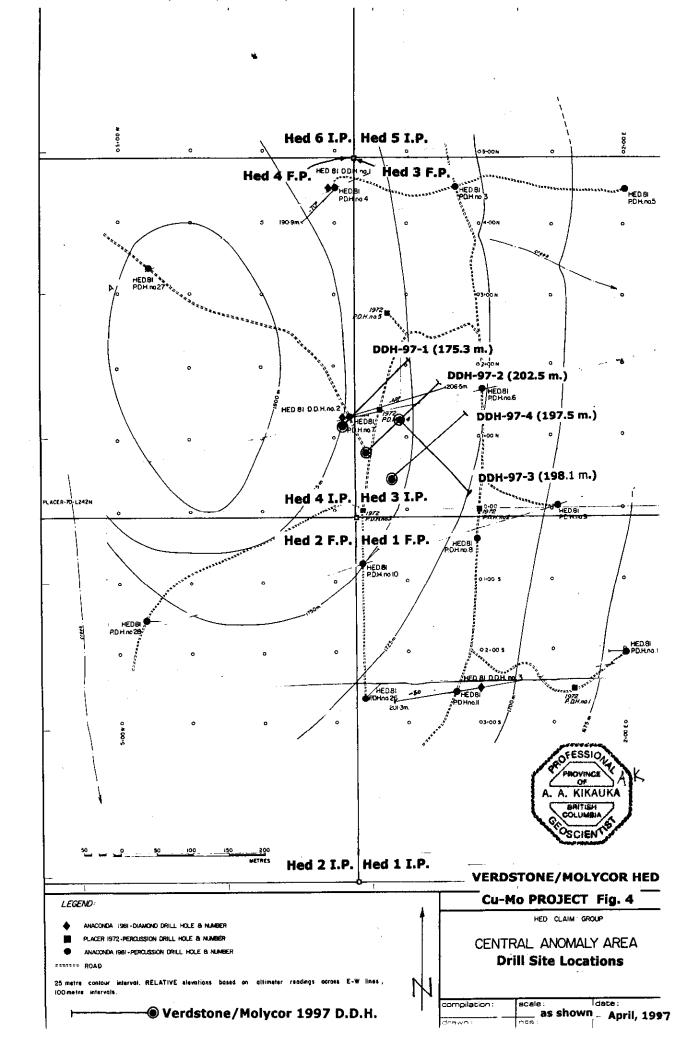
Andris Kikauka, P.Geo.

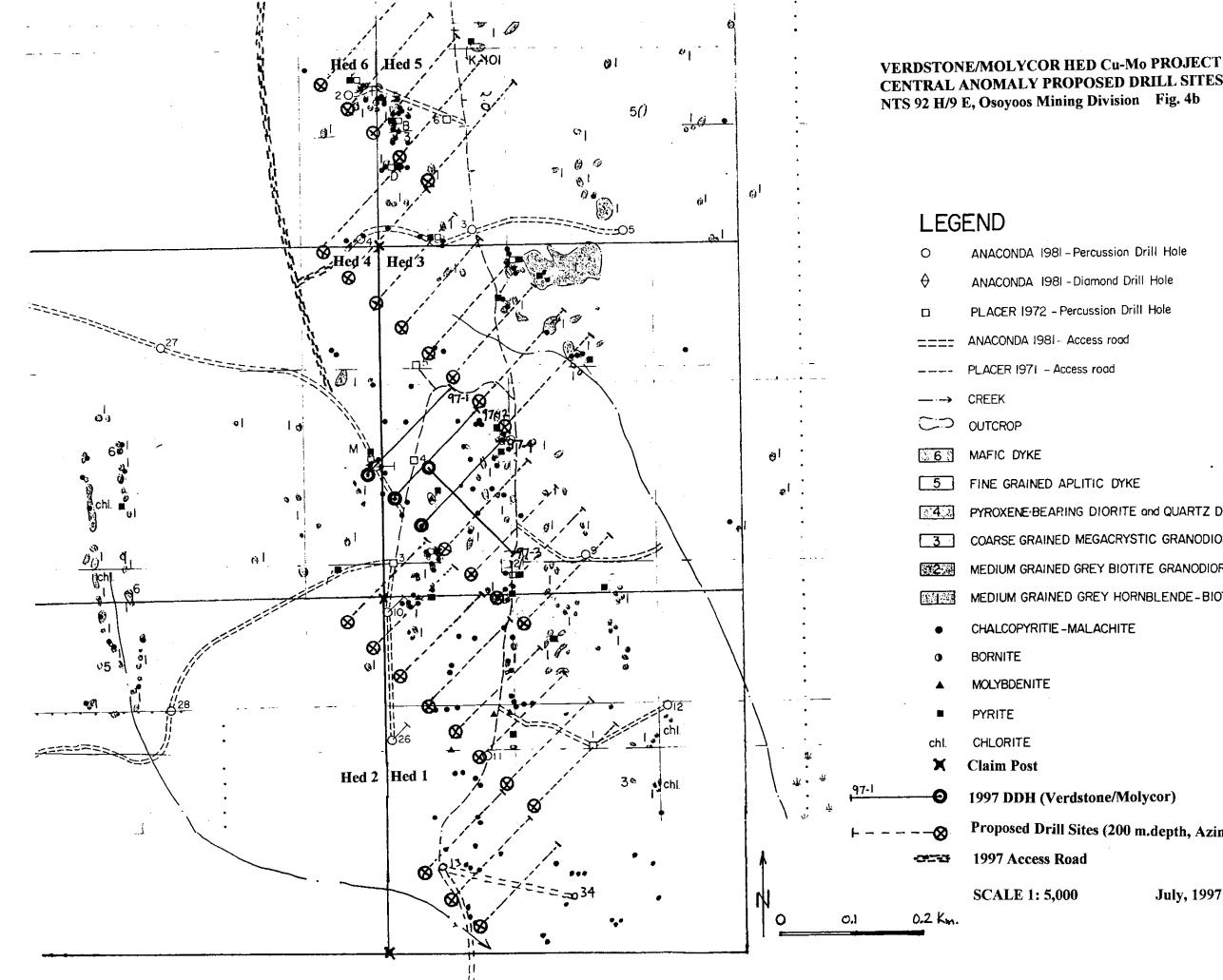

Andris Kikanhan


July 16, 1997


ITEMIZED COST STATEMENT- APRIL 4 to MAY 15, 1997, HED CLAIM GROUP NTS 92 H/9 E & 82 E/12 W, OSOYOOS MINING DIVISION


FIELD CREW:			
Geologist, Andris Kikauka, 15 days	\$	2,775,00	
Geotechnician, Marc Bombois, 40 days		6,000,00	
Geotechnician, Mike Lagan, 40 days		5,000.00	
FIELD COSTS:			
Drill contractors, Neills Mining & Drilling, 773.4 m. BQTW		77.340.00	
Truck Rental 60 days		4,075.00	
Assays, 333 core samples for Cu-Mo		5,994.00	
Communication		655.00	
Equipment and Supplies		985.00	
Food and Accommodation		7,140.00	
Report		750.00	
Total =	= \$ 1	10,714.00	





VERDSTONE/MOLYCOR HED Cu-Mo PROJECT Fig. 2b Claim Location Map (showing topography)

CENTRAL ANOMALY PROPOSED DRILL SITES

ANACONDA 1981 - Percussion Drill Hole

ANACONDA 1981 - Diamond Drill Hole

PLACER 1972 - Percussion Drill Hole

ANACONDA 1981 - Access rood

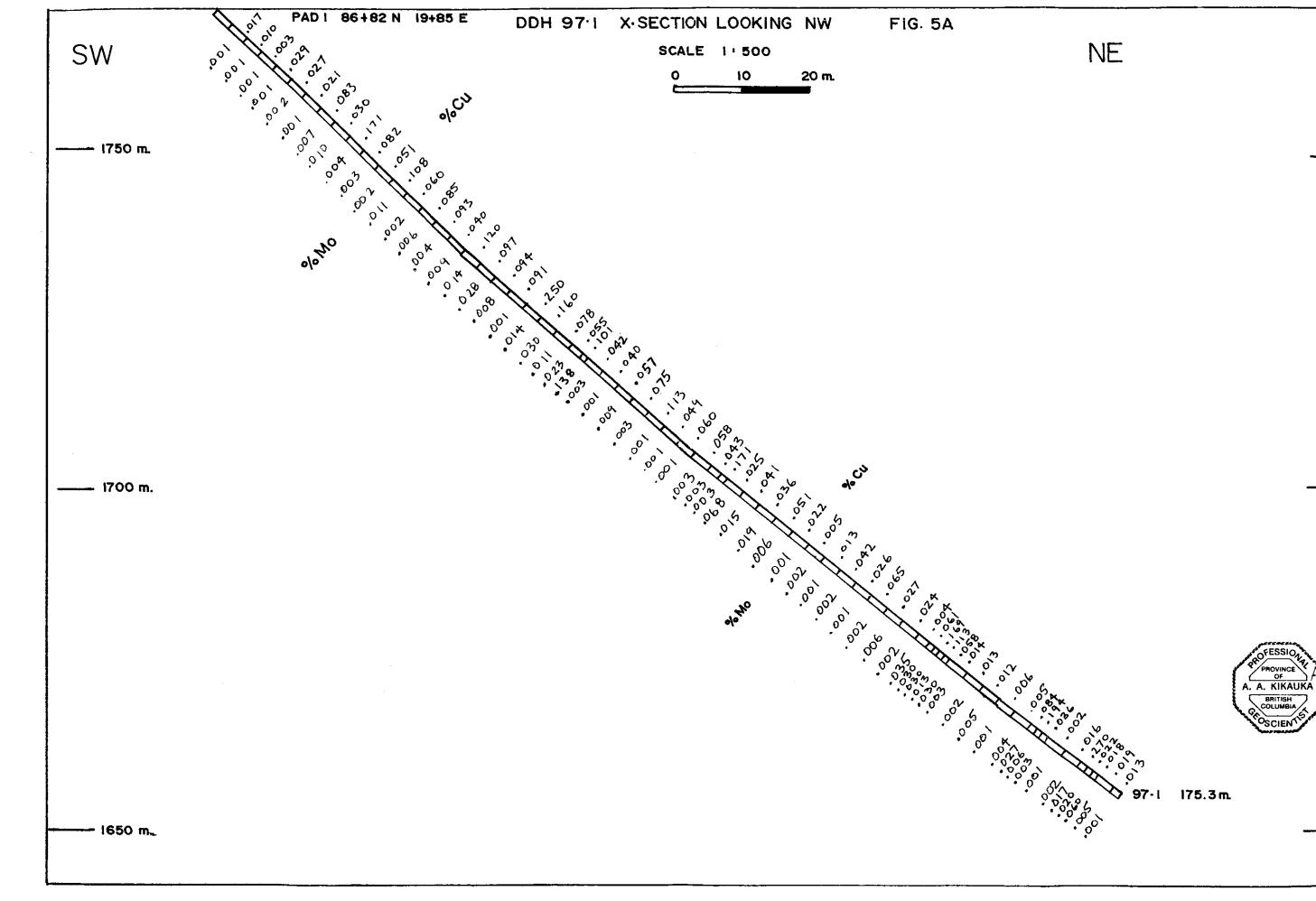
FINE GRAINED APLITIC DYKE

PYROXENE-BEARING DIORITE and QUARTZ DIORITE

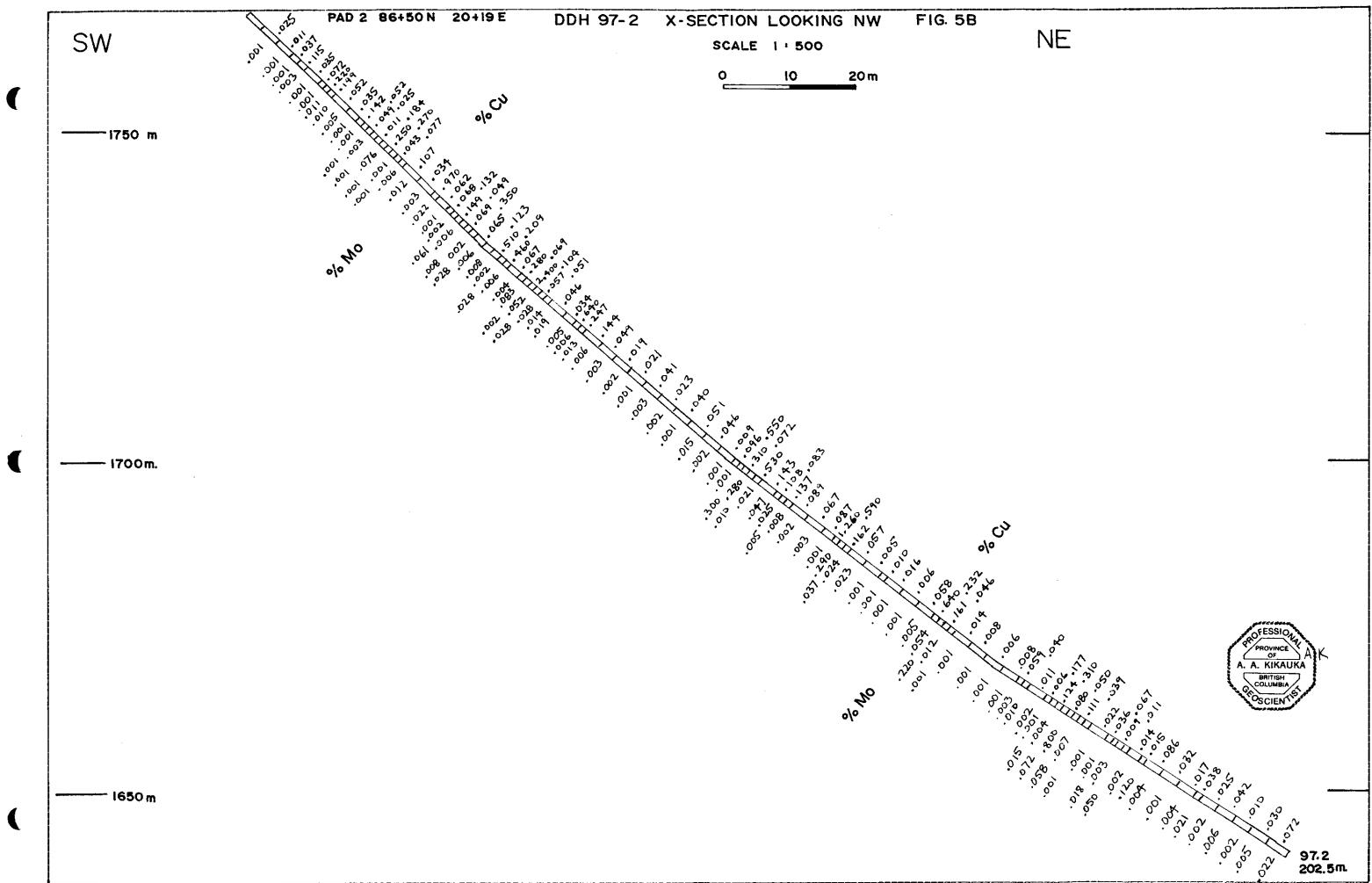
COARSE GRAINED MEGACRYSTIC GRANODIORITE

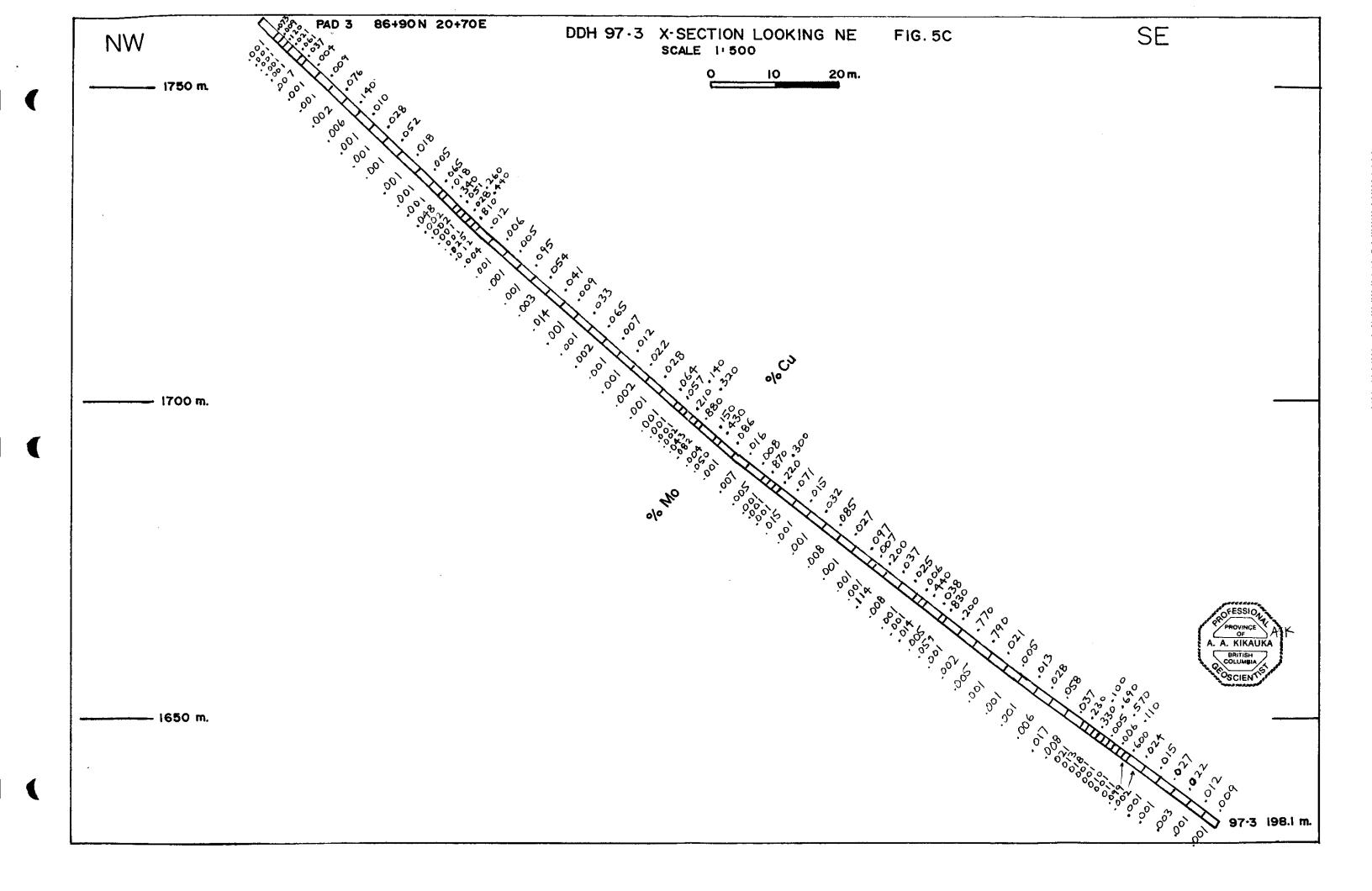
MEDIUM GRAINED GREY BIOTITE GRANODIORITE

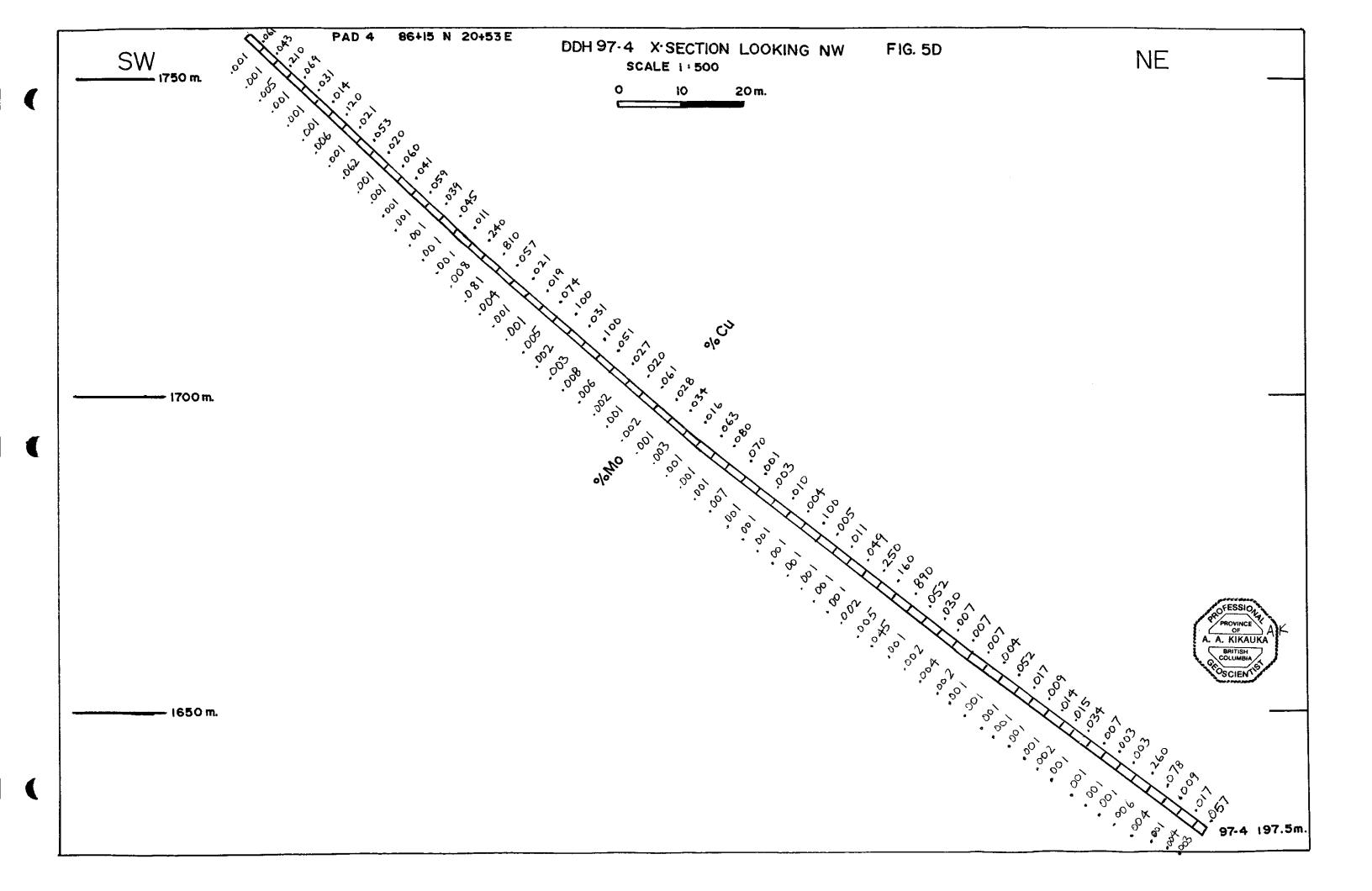
MEDIUM GRAINED GREY HORNBLENDE-BIOTITE GRANODIORITE


CHALCOPYRITIE - MALACHITE


1997 DDH (Verdstone/Molycor)


Proposed Drill Sites (200 m.depth, Azimuth 045, Dip -45)


July, 1997



€

NOTE- The following abbreviations and symbols are used:

qtz.- quartz kaol.- kaolinite ep.- epidote chl.- chlorite biot.- biotite ser.- sericite hem.- hematite K-spar- microcline anhy.- anhydrite

Diamond Drill Record	Hole No. 97-1	re size BQTW	page 1 of 5
$\begin{array}{c c} & \text{PAD ff 1} \\ \hline \text{Collar co-ord.} & \text{19+85 F} \\ \hline \text{Dip} & -45^{\circ} \\ \hline \text{Elevation 1777.0 m.} \\ \hline \text{S828.6 ff.} \\ \hline \end{array}$			Project Hed Cu-Mo Date commenced April 4,97 Date finished April 11,97

			DESCRIPTION		SA	MPLE		GRAP			ASSAYS			(increase)
FROM	TO M	RECOVY		FROM	TOM	WIDTH	No.	Structure	Altento	1 7 1			2. M.S.	
0.0	3.0	207.	Casing, some boulders in till	3.0			1001		lim		017	.00/		
3.0	175.3	999	Hornblende-biotite granodiorite/qtz. monzonite	6.0	9.0	3.0	1002	1	lim	1.	010	.001		
			10-152 homblende with up to 10% secondary hydrothe	9.0	12.0	3.0	1003	-,		11.1	.003	.001		
			mal biotite (replacing hornblande), some fresh (primary)	12.0	15.0	3.0	1004	1,	ep.	1	.029	.001		
			biotita as pseudohexagonal books, trace-1% schene	15.0	18.0	3.6	1005	1	lim	11	.027	-062		
			trace apatite, magnetite, zircon	18.0	21.0	3.0	1006	14		1	.021	001		
			Secondary Kispar and guartz as fracture infillings	21.0	2 4 .0	3.0	1007	1	gtz.	1/1	.083	007		
			associated with increased chalcopyrite.	24.0	27.0	3.0	1008	1,		11	.030	010		
			nalachite, bornite, pyrite, molybdenite,	27.0	30.0	3.0	1009	11		11.	,17]	-004		
				30.0	33.0	3.0	10 10	14	K-spar	111	.082	603		
			infillings, fracture coatings, streaks and blebs (malachite occurs @ 3.0-25.0 m. depth)	33.0	36.0	3.0	1011	"1	Kaol	11	.051	.00Z		
**	l	<u> </u>		36.0	39.0	3.0	1012	11	.tz	11	108	.011		_
				39.0	42.0	30	1013	11		1	060	.002		
		<u> </u>		4 2.0	45.0	3.0	1014	14	ste	11	.085	.006		
				45.0	48.0	3.0	1015	41	Kaol	1	.093	004		
	ļ			48.v	51.0	3.0	1016	1/1	_		.040	.009		

· · · - · · ·

ţ

Ľ	Dian	ond	Drill	Reco	ord		Hole No.	97-1		core s								2 0		
PAD Colla	ŧ.,	rd. 19	+12N	Dip	-45		Logged by	A. Kika	ika N	Сотра	ny nam	e Ver	<u>dstor</u>	e / M	lolyca	√	roject	Hed	Gu-N	٨
		,777		Azimuti	h 045	•		sed May 31		Drill	contra	actor	Neills		1	Date o	ommeric	ed Ap	cil A	97
		5828.	6 FF.				<u> </u>			Final	depth	175.	3 m.	575.0	<u> </u>	Date f	inishe	d Apri	11.9	7
ROM	то	RECOVY				DES	DESCRIPTION	<u> </u>			MPLE			HC LO		ASSAYS				
<u></u>	m		ļ					, ,,,,,		FROM	TOM	HTOIN	No.	Structure		Salahid			<u>%MS</u>	-
									_	51.0	54.0	3.0	1017	141	<u> 6:07</u>	//		.014		
-										54.0	57.0	3.0	1018	11/	biot	1	.097	.028		
-1	_	902	<u>ار ب</u>	Q 51	85	****				57.0	60.0	3.0	1019	125	kaol	1	.094	.008		
		1010	- SALLY	<u> </u>	<u></u>					60.0	63.0	3.0	1020	11		17	.091	.001		
{					- <u></u>		- <u></u>		··	63.0	66.0	3.0	1021	411	biot In	1	.250	.014		
				·····						66.0	67.0	3.0	10 22.	5%	gtz	1/	.160	.030		
				·						69.0	72.0	3.0	10 23	11	Liot	1/	078	.011		
							<u> </u>			72.0	74.0	2.0	1024	11		1	.023	.055		
										74.0	75.0	1.0	1025	1/1	eu. biot	11	161	.138		
										75.0	78,0	3.0	1026	44	gte.	1	.042	.003		
										78.0	81.0	3.0	1027	11	6:01	1	040	100		
			aelit	e duk	e 15.3 - 1	5.8 m				81.0	84.0	3.0	1028	1	biot	/	.057	.009		
			- 1							84.0	87.0	3.0	1029	/	<u> </u>	//	.075	003		
										87.0	90.0	3.0	1030	11	biot chi	1	.113	.001		
			aplite	dyke	92.8-94	.0				90.0	93.0	3.0	1031	/	chl	/	099	.00]		
					15.5-15					93.0	96.0	3.0	1032		biot	1	.060	.001		

Ľ	Dian	ond	Drill	Recor	:d	Hole No. 97-1	T core siz							page	3 of	5	
A	D # [rd. 19	+62 ~	Dip	-45	Logged by A. Kikauka	Compa	iny nam	e Ver	dstone	/Mol.	Cor	P	roject	Hed	Cu-N	40
Eleva		1770.		Azimuth		Date logged May 31,97	Drill	contr	actor	Neills	,				ed Ap		
LIQUE		582.8	.6 F+			<u> </u>	Final	depth	175.	.3 m.	(575	.o A)	Date f	inishe	d Apr	:[II,9	7
			I	<u> </u>	<u></u>		1	SA	MPLE	<u> </u>				ASSAYS			
FROM	TO M	RECOVY			·	DESCRIPTION	FROM	TOM	P	No.	Smathe	Altentio	Sight	9. Cu	9. M.	7.145	
							96.0	999.0	3.0	1033	11	٩٩	11	058	.003		
						· · · · · · · · · · · · · · · · · · ·	99.0	101.0	2.0	1034	11	bist	/	.043	.003		
							101.0	102.0	1.0	1035	11	eh(biot	1	ורו	.003		
			f. 1+	- 104	5 - 105.0		102.0	105.0	3-0	1036	11	chl	1	025	068		
			auri		<u>j - 105.0</u>	<u> </u>	105.0	108.0	3.0	1037	11	biot	7	.041	-015		
							108.0	111.0	3.0	1038	11	9	/	.036	910.		
							[]].0	114.0	3.0	1039	11	biot	~	.051	.006		
			<u> </u>				114.0	117.0	30	1040	11		-/	022	.001		
							117.0	120.0	3.0	1041	11	ep		005	.00Z		
							120.0	123.0	3.0	1042	1	biot	/	.013	.001		
		ļ					/23.0	126-0	3.0	1043	11		11	.042	.002		
			Anda	site du	1ke 126	.9.127. <u>2</u> m.	126-0	129.0	3.0	1044	12	hem	11	026	001		
		[Brec	cia tes	cture wi	th hematite infillings 127	0-132-6 129-0	32.0	3.0	1045	217	Kaol	1	.065	.002		
			<u> </u>			<u> </u>	132.0	135.0	3.0	1046	11	bist	-	027	006		
— —							135.0	138.0	3.0	1047	11	biot	. //	.02.4	00Z		
			Alit	e dyke	_ 139.4 -	140.0 m., weak fault 200	e 138.0	140.0	2.0	1048	1/3	Kaol		.004	.035		

Diamond Drill	Record	Hole No. 97-1	core size Batw	page 4 . F 5
Collar co-ord. 14 +85E	Dip -45	Logged by A. Kikanka	Company name Verdstone / Molyco	r Project Med Cu-Mu
Elevation 1770.0 m	Azimuth 045	Date logged Man 31 97	Drill contractor Neill's	Date commenced April 4 97
5828.6 ft.			Final depth 175.3 m (575.0 ft)	Date finished April 11,97

ROM	то	RECOVY	DESCRIPTION			ASSAYS								
HUM		HECUVI		FROM	то	WIOTH		Strute	Alterta	كسامذه	7.64	2. 1.	2 Mass	
				140.0	141.0	1.0	1049	11	chi Liot	1/	.061	.030		
							la 50	1	biot	Ľ	.168	.030		
				142.0	143.0	1.0	1051	1/	biot	X11	.113	.013		
				43.0	144.0	1.0	1052	1/	chl.	17	.058	.030		
-				144.0	[47. _D	3.0	1053	1	_	1	.014	. 003		
				147.0	150.0	3.0	1054	11	List	11	.013	.002		
				150.0	153.0	3.0	1055	1		11	.01Z	.005		
			fult zone 153.5-153.6 m.	153.0	156.0	3.0	1056	1.5.5 / 1.5.5	Kaol	1	. 006	.001		
				156.0	159.0	3.0	1057	11		1.	.005	.004		
				159.0	160.0	1.0	1058	11	biot	1/1	.084	•27		
			Breccia zone	160.0	161.0	1.0	1059	1	kaol	11	.194	.006		
				161.0	162.0	1.0	1066		biot	1	.036	003		
			Andesite dyke 162.1-163.0	1620	/65.o	3.0	1061	1	bist	/	.002	001		
				/65.0	168.0	3.0	106Z	11		/	.016	.002		
				168.0	169.0	1.0	1063	1	bist	J.	.270	.017		
			Fault zone 167.7-167.9 m.	169.0	170.0	1.0	1064	11		1	.022	.020		

Diamond Drill Record	Hole No. 97-1	care size Batw	page 5 . F 5
Collar co-ord. 19755 Dip -45	Logged by A. Kikanka	Company name Verdstone/Molycor	Project Hed Cu-Mo
Elevation 1770.0 m Azimuth 045	Date logged May 31,97	Drill contractor Neills	Date commenced April 4 .97
5828.6 ft		Final depth 175.3 m. (575.0 ft	Date finished April 11,97

,

• .

	то	05000	DESCRIPTION		SAI	APLE		1			ASSAYS		
FROM	10	RECOVY		FROM	то	WIDTH	No.	Structure	Alterty	Sulda	2.4	7. M.	2005
							1065	11	List			.060	
			Fault zone 174.0 m.	171.0	1740	3.0	1066	11	dl.	/	.019	.005	.
	175.3						1067	1	biof ep	1	013	.00]	
				1	[
				<u> </u>				[}		
	┨			<u> </u>	{			<u> </u>					
	}	<u> </u>		<u>[</u>				<u> </u>			{ ſ		·
	ļ					<u> </u>	/	<u> </u>			<u> </u>	i	
	ļ			<u> </u>		<u> </u>	<u> </u>	<u> </u>			┠	┢	
	<u> </u>			<u> </u>		 	ļ	ļ	<u> </u>		 	{	
				<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	 .	
													-
<u> </u>	1.	1					}.	}			1	1	÷
	┼		•	1				1					:
	 -				<u> </u>			+	1		<u> </u>	1	
		<u> </u>		<u> </u>	<u>+</u>	 		+	+	┼──			
	<u> </u>	ļ			<u>}</u>	<u> </u>		 	<u> </u>	<u> </u>	} ───		
		1		ļ					1				

Diamond Dril	l Record	Hole No. 97-2.							
PAP #2 86+50 N Collar co-ord. 20+19 5	Dip -45°	Logged by A. Kikanka	Company name Verdstone / Mol	ycor Project Hed Cu-Mo					
Elevation 1768.0 m.	Azimuth 045	Date logged May 31.97	Drill contractor Neills	Date commenced April 12,97					
5799.0 ft.			Final depth 202.5 m. (664.2	ft) Date finished April 16, 97					

				SAMPLE		GRAP			ASSAYS				
FROM	TO	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Structure	Aratia.	Sudit	2064	% No 3M.S.	
0.0	3.8		Casing	3. 8	6.0.	2.2	1068	111		1	.025	.001	<u> </u>
		992	Hurnblende-biotite granodiorite / gtz. monzonite	6.0	9.0	3.0	1069	11	lim	//.	.011	.001	
<u></u>	202.7	1 / 76	10-15% hornblende with up to 10% secondary hydro-	9.0	10.5	1.5	1070	15	472	1	.037	-001	
			thermal biotite (replacing hornblende), some fresh	10.5	12.0	1.5	1071	11,	K901 912	1/	115	.003	
			(primery) biotite as pseudohexagonal books,	/2.0	15.0	3.0	1072	/	hem	1/	035	-001	
			trace - 170 sphene, trace apatite, magnetite, zircon	15.0	16.0	1.0	1073	1	bist	11.	.072	.001	
			Secondary Kispar and guartz as fracture fillings	16.0	17.0	1.0		14	-	111	.220	.01]	
	<u> </u>		associated with increased chalcopyrite, malachite,	17.0	1B.0	1.0	1075	14	6.0t chl	11	•199	010	<u> </u>
			bornite, pyrite, molybdenite infillings, fracture	18.0	21.0	3.0	1076	1	Kaol	12	.052	.005	⊥
			coatings streaks and blebs (malachite occurs	21.0	23.0	2.0	1077	4	et.	1/	.035	.001	<u> </u>
			@ 3.0-25.0 m. depth).	23.0	24.0	1.0	1078	1.5	Giot.	1/	.142	.001	<u></u>
			Fault 2002 - 10.2 - 10.4 m.	24-0	25.0	1.0	1079	15/	Kaol	//	.05z	.001	<u> </u>
			weak foliation (sub-parallel biotite) @ 15.0-16.0 m.	25.0	26.0	1.0	1080	1/5	お	11	.049	.003	
		982	Fault zone 23.9-24.1 m	26.0	27.0	1.0	1081	1.55			.025	the second se	\perp
		•	fault zone 25.0-25.3 m	27.0	28.0	1.0	1092	11,	Kaol	11	.011	.001	
			Fault zne 26.0-26.3 m.	28.0	29.0	1.0	1083						

.

Diamond Drill Record		core size Bath	page 2 of 7
PAD # 2 BETSON Collar co-ord. 20+19E Dip -45.	Hole No. 97-2 Logged by A. Kikanka	Company name Verdstone	/Molycor Project Hed Cu-Mo
Elevation 1768.0 m. Azimuth 045	Date logged	Drill contractor Neills	Date commenced April 12,97
5799.0 ft.		Final depth 202.5 m ((664.2 ff) Date finished April 16,97
	DESCRIPTION	SAMPLE	(ASSAYS
m			rution Alterate Suppl 20 Ca 2. Mo 2 Mass
95% fault zone 27.0-5		29.0 30.0 1.0 1084 30.0 31.0 1.0 1085 5	
90% Furt zone 29.8.3	1.4 m		// biot /, .043 001
fault zne 33.3-33	4.	32.0 33.0 1.0 1087	biot ~/ .077.006
Fault zne 34.0-39			50 kaol 1. 1. 107 .012
	· 1 m.	36.0 39.0 3.0 /087	1/ / .034 .063
		39.0 40.0 1.0 1090	11/1 biot 11 .970 .022
fault zone 41.0-41.	8 m		125 Kad 11 -062.001
	·····	42.0 43.0 1.0 1092	1 biot 1 .068.002
			71 2 21 11 .132 .061
		44.0 45.0 1.0 1094	11 bist 111 .149 .006
		45.0 46.0 1.0 1095 .	/ kao/ /049.008
		46.0 47.0 1.0 1096	biot / .067.002
		47.0 48.0 1.0 1097	YY 912 11 .350 .028
Fault zone 49.8-	+9.9 m.	48.0 50.0 2.0 1098	
	51.1 m.	50.0 51.5 1.5 1099	5545 972 /1 .123 .004

t

.

Diamond Drill Record	Hole No. 97-2	core siz	a Bo	27ພິ	•			page 3 of 7							
Collar co-ord. 20tige Dip -45	Logged by A. Kikanka	Сотра	ny nam	ie Ver	dston	e Tr	10/40	er I	roiect	Hed	(4.			
Elevation 1768 m Azimuth 045	Date logged May 31,97	Drill	. contr	actor	Neil	5	·	Date o	ommenc	ed A	oriliz	7			
5799.0 ft.		Final	. depth	202	.5 m.	(664.2	. f t.)	Date f	inishe	ad A	pr,116	; ; ; ;			
	DESCRIPTION			MPLE					ASSAYS						
m m	· · · · · · · · · · · · · · · · · · ·	FROM	TOm		No.	tantes	Attent	Split		2. M.	7. Mes.				
	· · · · · · · · · · · · · · · · · · ·	51.5	53:0	1.5	1100	11	Kaol	11	.510	.083					
	······································	53.0	54.0	1.0	1101	1/1	biot chl	11	.209	.00Z					
		54.0	55.0	1.0	1102	111	qtz	11	.460	.052					
		55.0	57.0	2.0	1103	11	9 TZ	//	.067	.028					
		57.0	58.0	1.0	1104	11	biot	///	•280	.028					
		58.0	59.0	1.0	1105	14	472	7.	•069	.016					
20 cm. wide gtz. re	in with 20% chalcopyrite	59.0	60.0	1.0	11%	14	51 9 Z	14	2.400	-038					
		60.0	61.0	1.0	(107	11	Kaol	1	•104	.004					
		61.0	62.0	1.0	1108	111	biot	/	·057	<i>0</i> 10.					
	**	62.0	63.0	1.0	1109	11		//	.051	.014					
			66.0		1110	11	biot	1	.046	.019					
		66.0	68.0	2.0	111	11		//	.034	.005					
·		68.0	69.0	1.0	1112	14	2+2	14/1	.640	.006		_			
		69.0	70.0	1.0	1113	11	chl	11	.247	. 013					
		70.0	73.0	3.0	1114	1/1	kool	11	.144	.006					
		73.0	76.0	3.0	1115	11/	qtz	11	.049	.003		_			

.

. ,

•			- ~
Diamond Drill	Record	Hole No. 97-2.	page 4 of 7
Collar co-brd. 20th	Dip -45	Logged by A. Kikanca Company name Verdstone	Molycor Project Hed Cy-Mo
Elevation 768.0 m	Azimuth 045	Date logged Man 31, 47 Drill contractor Neills	Date commenced April 12,97
5799.0 Ft			4.2 ft.) Date finished April 16,97

FROM		RECOVY	DESCRIPTION			MPLE					ASSAYS						
m	<u></u>			FROM	TQ	WIDTH	No.	Structur	Abrit	Suphik	7.64	2. Mo					
				76.0	79.0	3.0	1116	11	qtz	11	.019	.002					
				79.0	82.0	3.0	<u>1117</u>	1	a, tz	/	.0ZI	.001					
				82.0	85.0	3.0	1118	/	Kad	/	<i>.</i> 041	.003					
				85.0	88.0	3.0	1119	1	gte	1	<i>0</i> 23	.00Z					
				88.0	91.0	3.0	1120	/	٩	/	.040	{00.					
				91.0	9 4 .0	3.0	1121	/	biot		.051	.015					
				94.0	97.0	3.0	1122	1	biot	/	- 046	.002					
				97.o	100.0	3.0	123	1		/	. 009	.00}					
				00-0	101.0	1.0	1124	2/1	iot Iz	11	.096	.001					
				101.0	102.0	1.0	1125	1	bigt	1	.550	.300					
\square				102.0	103.0	(.0	1 26	//	gtz chi	11	.310	.280					
				103.0	104.0	1.0	1127	11	bist	//	.072	•010+					
				ه.40	105.0	1.0	1128	11	Kaol atz	///	.530	.021					
				105.0	1080	3.0	1129	11	chi	//	-143	.047					
·	_			08-0	107.0	1.0	1 30	14	oh! Kaol	11	. (08	.025					
				109.0	110.0	1.0	1131	11/	biot	//	. 083	.005					
			•	,													

·• ·

Diamond Drill Record	Hele No.	
-		

-45

- 645

5

Dip

Azimuth

Collar co-ord. 20+195

5799.0 ft

Elevation]768.0 m

	core size BQTU	1100 5 f 7
Hole No. 97-Z		page 5 of 7
Logged by A. Kikauka	Company name Verdstone / Moly	Project Hed Cu-Mo
Date logged May 31 97	Drill contractor Neills	Date commenced April 12,97
	Final depth 202.5 m 664.2 ft.	Date finished April 16, 97

1

FROM	то	RECOVY	DESCRIPTION		SA	MPLE				ASSAYS	ASSAYS		
1 m	. M			FROM					Alectic S. Lab				
			Andesite dyke 109.1-110.1 m. @ 30° to core axis	110.0	111.0	1.0	1132	14	bist otz //	.137	. 008		
			Andesite dake 112.0-112.1 m @ 30° to coreaxis				1133			.089	.002		
				114.0	117.0	3.0	1134	1/1		.067	.003		
			fault zone 117.0-117.1 b.	(17.0	119.0	2.0	1135	as Star	bist ,	.087	.00]		
	_		0.1-5.0 cm. wide gtz. veins 119.3-120.0 \$ 120.5-122.0 m	119.0	120.0	1.0	1 36	11/1	at 1	1.260	-290		
							1137			1.590	.037		
				121.0	122.0	1.0	1138	//	it 1	.162	.024		
			Andesite dyke 124.8-128.8	122.0	1250	3.0	1139	1	bist /	.057	.023		
		_)	125.0	128.0	3.0	1140			.005	.001		
				128.0	129.0	1-0	11 41	1	biot ,	.010	.001		
				129.0	132.0	3.0	1 42	1	/	.0/6	.001		
	-			132.0	135.0	3.0	1143	1	bist ,	.006	.001		
				135.0	138.0	3.0	1/44	1	bist 11	.058	. 005		
				13 8 -0	139.0	1.0	1 45	11	ch1 //	.640	.054		
				137.0	140.0	1.0	1146	111	Kaol //	.23Z	.220		
				140.0	141.0	1.0	() 47	-//	972 11/	.161	.01Z		

Diamond Drill Re	cord	Hole No. 97-2	core size Batw	page 6 of 7				
Collar co-ord. 20 +198 Dip	-45	Logged by A. Kikanka	Company name Verdstone	Molycor Project Hed Cu-Mo				
Elevation 1768.0 m Azim	ath 045	Date logged May 31,97	Drill contractor Neills	Date commenced April 12 97				
5719.0 ft			Final depth 202.5 m. 66	4.2 ft Date finished April 16, 97				

.

ROM	то	RECOVY	DESCRIPTION		SA	MPLE		ASSAYS					
m	m			FROM TOM		WIDTH	No.	Structur	Altertic	S. L.L.	9.4	7. Mo	Τ
				141.0	142.0	1.0	1148	11	biot	1	.046	.001	ŀ
			Andesite Lyke 144.3-144.9 m, 144.9-145.0 m.	142.0	1450	3.0	1149	11	wot	/	.014	.001	
			Andesite Lyke 145.7 - 145.8 m.	145.0	148.0	3.0	1150	1/	Kaol	/	.008	.001	
				148.0	157.0	3.0	1151	11		/	.006	.001	
				151.0	154.0	3.0	แระ	11	Kad	/	.008	.001	
							1153		biot	1,	.059	.003	Τ
			Full zone 155.2-155.4 hematite Fracture filling	155.0	156.0	1.0	1154	15	hen Kael	1	.040	010	
				156.0	15 9 .0	3.0	1155	1		1	.01]	.002	Τ
				159.0	160.0	6.1	1156	1		1	.006	.001	
				160.0	161.0	1.0	1157	141	2tz	11	.177	.015	
				161.0	162.0	1.0	11 58	11	Kaol biot	11	.124	.004	
				162.0	163.0	1.0	1159.	×1	etz	11	.310	.072	
				163.0	164.0	1.0	1160	11	biot	,./	-080	. 800	
				64.0	165.0		1161		etz	//	.050	.058	Τ
			Fault zone 164.8-165.0	165.0	166.0	1.0	1162				.111	.007	
	Ţ			166.0	167.0		1163		bist	1	.039		\uparrow

Diamond Drill	Record	Hole No. 97-2	core size BATW		page 7 of 7
Collar co-ord. 2019 E	Dip -45	Logged by A. Kikanka	Company name Verdstone	/Moly cor	Project Hed Cu-Mo
Elevation 1768.0 m	Azimuth 045	Date logged Man 31, 97	Drill contractor Neills	1	Date commenced April 12 97
5799.0 ft			Final depth 202.5 m.	664.2 ft. 1	Date finished April 16,97

.

!

;

.

1 1 1

·)

.

ROM	то	RECOVY	DESCRIPTION	FROM TO MOTH NO.						Į	ASSAYS			
m	M			FROM	TO	WIDTH	No.	Structor	Attente	Sylphile	7.C.	7. M.	2 Mas	
				<u>167.</u> 0	170.0	3.0	1164	11	biot	11	.022	.001		
				170.0	171.0	1.0	1165	1	Kaol	/	.036	.001		
				171.0	172 0	1.0	1166	1		1	.067	.018		
				1720	173.0	1.0	1167	1		/	.009	.003		
				173.0	1740	1.0	1168	1		/	.011	.050		
				174.0	176.0	2.0	1169	1			41 م	.002		
				176.0	177.0	1.0	(170	1	List	<	.015	.120		
					180.0			11	272	//	.086	004		
				180.0	183.0	3.0	({ 7z	1		//	.032	.001		
				183.0	186.0	3 .o	173	1		/	.017	004		
				186.0	187.0	1.0	11 74	11		//	.038	.021		
				187.0	190.0	3.0	11 75	1	kaol	/	.025	.002		
				190.0	193.0	3.0	1176	Yy .			.042			
				193.0	196.0	3.0	1177	1	Kaol	1,	.010	.00Z		
				196.0	199.0	3.0	1178	1	gtz.	/	.030	.005		
							1179	11		/	.072	.022		

I	Dian	nond	Drill	Recor	rd	Hole No. 97	-3 00	e size	BQT	rW	,			P	ye	•F 6	•	
Colla		5 86°	F90 N +70 E	Dip	-45*		Kauka				ds ton	e/M	ما ب ج	or P	roject	Hed	Cur	Mo
Eleva	tion	1760.0	m	Azimuth	135	Date logged Ju			contra		Neilly			Date c		_ /\/	ril 17	97
		5772.1	8 ft .					Final	depth	198.	<u>l m.</u>	<u>(649.8</u>	(f4.)	Date f	inishe	A Ap	118	97
																·		
FROM	то	RECOVY			Di	ESCRIPTION		FROM	SA	MPLE	Na.	Graphi			ASSAYS	2.11		
0.0	1.8		Casin		<u> </u>			1.8	3.0	1.2	1180	1	lim	1	.073	.00/		
1.8	198.1	99%			intite an	anodiorite/qtz	monzonite	3.0	4.0	1.0	1181	14	lim	/	. 009	100.		
					~	h we to 10% sec		·	5.0	1.0	1182	14	biat	1	.012	.001		
 						ng hornblende),		5.0	60	1.0	1183	1	biot	1	.021	.001		
			7	· · · ·	—, N	endohexagonal		6.0	8.0	2.0	1184	1	kaul	11	. 061	.00/		
				7	1	trace opatite,		8.0	9.0	1.0	1185	14	ch1 g12	11	.370	.007		
	<u> </u>				1	y K-spar and	<u> </u>	9.0	12.0	3.0	1186	11	biot	/	.004	.00/		
			<u> </u>		·	ciated with i	· .	12.0	15.0	3.0	1187	11	biot	/	.009	.001		
			•	. 1	e, malac		. 1	15.0	18.0	3.0	1188	11	chl	1	.076	.002		
						g as infilling	Fracture	18.0	21.0	3.0	1189	1	212	11	.140	.006		
					nd blebs		1.8-25.0	21.0	24.0	3.0	1170	11	bist	1	.010	.001		
				5				24.0	27.0	3.0	1191	/	Kad	11	.02.8	.001		
								27.0	30.0	3.0	1/92	11	ep	1/2	.052	.001		
								30.0	34.0	4.0	1193	1	biot	/	.0/8	.001		
								34.0	37.0	3.0	1194	11		/	.005	-001		
								37.0	39.0	z.0	1195	1	biot	1	560	.001		

.. .

				Reco	rd		Hole No.	97-3		coresize	Bati	w i	•				page	2.	f6	
Colla	10 # 	<u>}.</u>	86+90N 20+70E	Dip	- 45		Logged by	A. Kik	anka \	Compa	ny nam	e Ve	rdstor	<u>e/M</u> ,	lycor	F	roject	Her	1 Cu	- Mo
Eleva	tion	176	0.0 m	Azimuth	135		Date logge	d June	1.97	Drill	contr	actor	Neills	<i>r</i>	/ -	Date c	ommenc	ed A	riln	',97
		5772	2.8 ft.							Final	depth	198	In	(649.1	r f †.)	Date f	inishe	ª Ap	-: [2.8	, 97
[mout	- 70	RECOVY	<u></u>			DESC	RIPTION	······		<u> </u>	SA	MPLE		1			ASSAYS			<u> </u>
FROM	TO M	HECOVY								FRON	TOM	WIDTH	Na.	Struter	Altenti	S. A	7.6.	7. M.		
			[39.0	40.0	1.0	1196	1.1	22	11-	.180	.048		
		·								40.0	42.0	2.0	1197	Ni	atz	11	.340	.002		
										42.0	4 3.o	1.0	1198	14	biot	11	.051	. 002		
										43.0	44 .0	1.0	1199	14	ka-1	14	260	.001		
										1 4.0	45.0	1.0	1200	14	biot	//	.028	.001		
										45.0	4 6.0	1.0	1201	1/1	2+z_	//	.440	.025		
		95%	fault	broken	ground	46.8	- 46.9 m.			46.0	47.0	1.0	1202	1/15	chl Kaol	11/1	.810	.012		
					<u> </u>					47.0	50.0	3.0	1203	4	biot		.012	.004		
										50.0	53.0	30	12.04	/		/	.006	.001		
					<u></u>	····				53.0	56.0	3.0	1205	×	6:0t	/	.005	100.]
										56.0	59.0	3.0	1206	1/1	biot		.095	. 00]		
							<u></u>			59.0	62.0	3.0	1207	11	biot	1	.054	. 003		
					<u> </u>					62.0	65.0	3.0	12.08	11	e9		.041	.0/4		
									<u>. . </u>	65.0	68.0	3.0	1209	/	<u> </u>	/	-009	.00/		
										68.0	71.0	3.0	1210	11	<u> </u>	/	·033	100.		
							<u> </u>			71.0	74.0	3.0	1211	11	Liot	\square	. 065	-002		

·····

.

.

.

Diamond Drill Record core size BQTW page 3 of 6 97-3 Hole No. Collar co-ord. 86+90 N 20+70 E -45 Ą. Company name Dip K:L Logged by Molscor Project H erdstme *ca* Cu-Mo Elevation 1760.0 m Drill contractor Azimuth 135 Date logged June | 97 Neills Date commenced 97 Apr: 17 5772.9 ft. Final depth Date finished April 13 198.1 (649.8 ft. in.

FROM	то _ /1	RECOVY	DESCRIPTION		SA	MPLE					ASSAYS		
m	M	 		FROM	TO	WIDTH	No.	Structure	Mode	Suplie	7.6	7. Mo	
	<u></u>			74.0	77.0	3.0	1212	~		<u> </u>	.007	.001	
			······································	.077	80.0	3.6	1213	1	biot	/	.012	.001	
				80.0	83.0	3.0	1214	1		/	.022	. 062	
				83.0	86.0	3.0	1215		ep	/	.028	.001	
				86.0	89.0	3.0	1216	11	biot	//	.064	-001	
				89.0	70.0	1.0	1217	1		/1	<i>.</i> 057		
				90.0	91.0	1.0	1218	مرابل	9tz biof	11	. 140	.001	
				11.0	92.0	1.0	1219	11	27	1		.002	
				92.0	93.0	1.0	1220	-41	kaol	14	.320		
		_	1-3 cm. gtz. reins with cpy. M.S2	93.0	94.0	1.0	1221	14	131	1	·880	.082	
				94.0		3.0	1222	14	etz biet	/11	.150	.004	
				97.0	98.0		1223			•	.430		
				18.0	101.0	3.0	1224		biot		.086		Í
				101.0	104.0	3.0	1225	11				.007	
				104.0	107.0	3.0	1226	11	biot .	/	.008		
		[107.0			1227	111	2-21	41	.870		

Diamond I	Drill Record	Hole No. 97-3	core size Batw	page 4 of 6
Collar co-ord.	Dip -45	Logged by	Company name Verdstone Muly	rear Project Hed Cn-Mo
Elevation	Azimuth 135	Date logged	Drill contractor Neills	Date commenced April 17, 97
			Final depth 198.1 m. (649.8	11. Date finished April 28,97

FROM	то	RECOVY	DESCRIPTION		SAI	MPLE				ASSAYS		
FHOM	10	RECOVT		FROM	10	WIDTH	No.	Structure	Attentia Sulp	il 7. C.	7. M.	
_				108.0	109.0	1.0	1228	17-	奶 //	1.300	-001	<u> </u>
				109.0	110.0	1.0	1229	11	atz 1	.220	.001	
				110-0	113.0	3.0	1230	٢	biot 1	.071	.015	
				113.0	116.0	3.0	1231	4	11	.015	.001	
				116.0	119.0	3.0	1232	11	biot /	.032	-001	
				119.0	122.0	3.0	1233	y	9tz /1	.085	.008	
				122.0	125.0	3.0	1234	11	bist /	.027	.001	<u> </u>
	<u>*</u>						1235		ch1 1	.097	.001	
							1236		/	007	.001	
							1237	20	9tz //	200	. 14	
	· · · · · ·		Failt zone, broken ground 131.0-131.1 m	131.0	134.0	3.0	1238	in the	Kaol /	.037	. 008	
			J	134.0	137.0	3.0	1239	11	biot /	.025	.001	
				137.0	138-0	1.0	1240	1		.006	.001	
				138.0	139.0	1.0	1241	14/1	qt2 /	.440	.014	
						· ·	1242	1 .	chi 7	.03g	.005	
				[42.0	143.0	1.0	1243	11/	2tz biot	.830	.059	

.....

D	iamo	ond D	rill Re	cor	d	·	Hole No.	97-3		cre	siz.	i B	ativ				ومو	e 5	•f 6	>
Collar		<u>}</u>	Dip		-45		Logged by			Compa	ny name	• V A.	detro	./M.	ly con	. P	roject	He	Cu-1	M.
Elevat			Azim	wth	135		Date logg			Drill	contra	ctor	Natls	· · · ·		Date c	onmenc	ed Ap	vil 17	97
										Final	depth	198.	<u> m.</u>	<u>(64</u>	<u>9.8 ff)</u>	Date f	inishe	nd Ap	1 28,	17
ROM I	TO B	ECOVY				DESCI					SAI	MPLE					ASSAYS		<u></u>	
										143.D	10	WIDTH 3.D	Na. 12 44	Hower and	Alterit 2t2	S. Idia	<u>7. G</u> .200	7. M.		
-+	-+									146.0	149.0	3.0	1245	141	6 int 912	11	.770			
-+								<u></u>	- <u></u>	(49.0	152.0	3.0	1246	141	chi qtz	4	.790	.005		
										152.0	155.0	3.0	1247	11	biot		.02	.001		
										155.0	158.0	3.0	1248	/		/	.005	.001		
-	-+									158.0	161.0	3.0	1249	/	 	/	-013	.001		
										161.0	164.0	3.0	1250	/	L	1/	.028	-006		
										164.0	167.0	<u>↓ </u>	1251	<u>/</u>	ep	1/	.058	017		
										167.0	170.0	3.0	1252	<i>y</i>	<u> </u>	1	.037	.008		
										170.0	171.0	1.0	1253	44	gtz.	1/1	.230	.021		
			<u>. </u>						<u> </u>	171.0	172.0	<u> </u>	12.54	1///	chl	11	f	013		
							<u> </u>			172.0	173.0	<u>+</u>	1255	17/	9 ^t z	11	.330	-018		
-+						. <u> </u>				173.0	174.0	;	1256	11	<u>qtz</u>	11/	.690	.001		
					<u></u>					174.0	175.0	 	12.57	11	<u> </u>		.005	<u>†</u>	┝╼╍╂	_
\rightarrow						- <u> </u>	·			175.0	176-0	<u> </u>	1258		g†2		.570	<u> </u>		_
										176.0	17.0	1.0	1259		ł	1	.006	.001	LI	

. **...**

			Drill	Recor			Hole No.		7-3		Comma			w erdstø					6.	
Colla		rd.		Dip	-45				<u>Kikanka</u>	N	 	contr		Neills	ne / I				= Heo	
Eleva	ion			Azimuth	135	I	ate logg	ged J _l	<u>me (,9</u>	Z.\	Final	depth	198.	1 m	(699.8	<u>, tt)</u>	Date f	inishe	ed Ap	-1
	70	050000		<u></u>		DESCR						SA	MPLE				-	ASSAYS		
FROM	10 10	RECOVY			•						FROM	TOM		No.	Spritze	Altert	5.44	i		
								,				178.0	T T	1260	M	9tzi biot		.110		
											178.0	179.0	1.0	126	11/	biot gtz-	///	.600	.09 9	
											179.0	182.0	3.0	1262	11	1.01	/	<i>.</i> 024	.002	
			<u> </u>						·		182.0	185.0	3.0	1263	1		/	.015	.001	
				<u></u>				·			185.0	188.0	3.0	1269	1	biot	1	D27	.001	
			·	···		· · ·		• •• •• •• ••			_		3.0				1.	.ozz	.003	
						<u>.</u>			<u> </u>	<u>.</u>		T	3.0			e/		.012	.001	
	· · · .					<u>.</u>				<u> </u>		198 1		1267	+······		/	.009	.001	
								<u></u>				<u>†-</u>	;							
┝──┤				<u> </u>						. <u></u>		1	Ī							
					<u></u>		·····		····		<u> </u>	<u> </u>					1			
					<u></u> .						<u> </u>									
	•									<u> </u>		┼──	┠							
							<u></u>	·			<u> </u>	<u> </u>	<u> </u>			! 			<u> </u>	
								<u> </u>		. <u>.</u>	<u> </u>	ļ	<u> </u>		<u> </u>	<u> </u>	<u> </u>	ļ		
															<u> </u>	ļ		<u> </u>	L	

.

Ī	Dian	ond	Drill	Reco	rd	Hole No.	. 97 -		core si	20	Batu	U .			۴	nge	 ، ا	4	
Colla		ord. 20	115 N	Dip	-45°	Logged 1	A.K	Kanka	Сопра	ny name	e Veri	Istone	. / M	lycor	- P	roject	Hed	Cu-1	10
		1757.0		Azimuth	045		gged Jun		Drill	contra	actor	Neills					ed Ma		17
		5763.0	ft.						Final	depth	197	.5 m.	647.	8 Ft.)	Date f	inishe	d May	<u>, 9</u> ,	97
			<u></u>			DESCRIPTION	i an			SA	MPLE]			ASSAYS		وي وزخون خطائر	
FROM	TO M	RECOVY							FROM	то	WIDTH	No.	structure	Altert	5-4-6-1	2.6	9. Mo		
0.0	2.1		Casin	g					2.1	3.0	0.9	1268	1		11	,061	.001		
2.1	197.5			2	otite gran	adiorite /	latz. mai	nzonite	3.0	6.0	3.0	1269	11	biot	11	.643	. 001		
					blende wi				6.0	9.0	3.0	12.70	11	gt2	11	.ZIO	.005		
				-	1 piatit	// .		. <u>A</u>	9.0	12.0	3.0	1271	11	chl	1	.069	.001		·
					(primary	x x x x)		12.0	15.0	30	1272	11		/	Ø31	-001		
·					pooks tra	_	. /		15.0	18.0	3.2	273	1		1	-014-	.001		
	[ary K-spo	18.0	21.0	3.0	1274	+11	912	1	.120	.006		
			and	4+z ·	as tractu	re fillin	ASSOCI	ated wit	4 21.0	2 1 .0	3.0	12.75	14		17	.021	.001		
			incre	posed	chalcopy	rite ma	lachite	bornite	24.0	27.0	30	1276	11	_	11	.053	.062		
					L /	•		infillings	27.0	30.0	3.0	1277	11		1/	.020	.001		

eyrite. molybdenite occuring as int illings, Fracture coatings and blebs (mala chite 11 .060 .001 30.0 33.0 3.0 1278 eÞ occurs 2.1-25.0 m. deoth 1 33.0 36.0 3.0 1279 .041 .001 1. 3.0 1280 36.0 39.0 051 001 39.0 42.0 3.0 12.81 1 .039 .001 42.0 45.0 3.0 282 11 .045 -001 45.0 48.0 3.0 1283 .01 .001 Y

Diam	ond	Drill Re	cord	[97-4	~~ ~	re si	ze Ba	зти				٩	age	2 •f	4	
PAD # 4 Collar co-o			-45	Hole No. Logged by	A. Kikanka	$\overline{\mathbb{N}}$	Compa	ny nam	e Ve	rdstone	/Mol		P	roject	Hed	(n-1	Mo
Collar co-o Elevation	1757.	-		1	1 June 1,97			contra	actor_	Neill	5		Date c	ommenc	ed Ma		97
<u>Bitvation</u>	5763.			<u> </u>			Final	depth	197.	5 m.	(647.8	ft .)	Date f	inishe	nd Ma	9,	17
			<u></u>				<u> </u>	SA	MPLE		1			ASSAYS			
FROM TO	RECOVY		DE	SCRIPTION			FROM	TO	WIDTH	No.	Structure	Alterty	Side	7. Cu	2. M.		\Box
		faultzon	, broken ground	50.9-51	D m		48.0	51.0	3.0	1284	133	bio		.2 10	.008		
			, 21.13			_	51.0	54.0	3.0	1285	11	25%	1	.810	.081		
							54.0	57.0	3.0	1286	11	biot		.057	.004		
							\$7.0	60.0	3.0	12.87	1/	bist	1	.021	.001		
	<u></u>	<u> </u>					60.0	63.0	3. D	12.88	11		//	.019	.001		
							63.0	66.0	3.0	12.89	141	gtz		.074	.005		
							66.0	69.0	3.0	1290	11	chl.		.100	.002		
							69.0	72.0	3.0	1291	11	biot	6	.031	.003		
				<u> </u>			72.0	75.0	3.0	1292	14	gtz	11	.100	008		
							75.0	78.0	3.0	1293	1	Kaol	12	.051	.006		
			<u></u>	<u></u>			78.0	81.0	3.0	1294			/	D27	.002		
							81.0	84.0	3.0	1295	1	biot	/	.020	- 001		
		· · ·					84.0	87.0	3.0	296	11	biot	11	<i>p</i> 61	.002		
							87.0	90.0	3.0	1297	Y		1	028	.001		L
			<u></u>	<u> </u>			90.0	93.0	3.0	1298	٢	ep		-034	.003		_
						·	93.0	96.0	3.0	1299	11		1	.016	.001		L

D	iam	iona Dr	ill Record	Hole No.	<u></u>									e 3 of	• 1
Collar	co-01	rd.	Dip	Logged by	· · · ·		ny name		rds ton			y cov P			Cu-
Elevat			Azimuth	Date logged			contra		Neil					ed May	1,0
					F	inal	depth	197.5	m	(647.8	<u> </u>	Date f	inishe	d May	9
														, 	
ROM	то и	RECOVY		DESCRIPTION		ROM		APLE	Ng.	Strutur	414		ASSAYS	7. M.	
	- +=		······································				^{то} м 99.0	3.0	1300	110000	bist		.063		+
			······································				102.0		1301	14	Kaol	17	.086		
							105,0		1302	1	biot	1,	.070	.007	T
				·····			108.0		(303	1		/	.004	.001	T
				<u> </u>			111.0	4	1304	1	ep	1		.001	
						_	114.0		13 05	· ·	biot		.010	.001	
							117.0	i	1306	~		-	.004	.001	
				· · · · · · · · · · · · · · · · · · ·			120.0		1307	14	stz	14	100	,001	
			·····				123.0		1308	1		/	.005	2001	
			<u> </u>			_	126.0		1309	1		-	• o[.001	
	<u> </u>					6.0	129.0	3.0	1310	1.	biot	1	.019	.001	
<u>†</u> .					12	19.0	132.0	3.0	13 11	111	gtz	Ø	.250	.002	
					13	2.0	135.0	3.0	1312	111	912	4	160	.005	
			·		13	5.0	138.0	3.0	1313	14	biot	1	•890	.015	
			· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	12	8.0	141.0	3.0	1314	11	biot	/	.05Z	.001	\downarrow
					14	+I.o	1440	30	1315	14		/	.030	.002	
	<u>I</u>	1			14	44.0	147.0	3.0	1316	7	1	/	.007	.004	

(

				Recor		Hole No	. 9-	7-4	core 5						·		: 4 of	
olla		4 80 ord. 20	715 N	Dip	- 45	Logged	<u>* / </u>	_Kikonka				dstone		14 cor		roject		<u>u-No</u>
leva	tion	1757.0	, m	Azimuth	045	Date lo	gged J	une 1,97	V			Neil	-				ed May	1,97
		5763.0	f ł.						Final	depth	197.	5 m_	(647.8	<u> </u>	Date f	inishe	d May	<u>1 17</u>
		[]				DESCRIPTION			• • • • • • • • • • • • • • • • • • •	SAI	MPLE					ASSAYS		
ROM	то	RECOVY				DESCRIPTION			FROM	то	WIDTH	No.	Structure	Altert	Si lelit	24	70 Mo	
							,		147.0	150.0	3.0	1317			1	.007	-002	
									150.0	153.0	3.0	13 8		eρ		.007	.001	
				<u> </u>					153.0	156.0	3.0	1319	·		1	.004	.001	
				· · · · · · · · · · · · · · · · · · ·	<u> </u>	···· ·			156-0	159.0	3.0	1320	/	biot	4	.052	.001	
	<u>.</u>								159.0	162.0	3.0	1321	/	biot	/	.017	-001	
				· · ·					162.0	165.0	3.0	1322	/		/	.009	100	
			<u></u>	<u></u>	<u> </u>			<u> </u>	i		i	1323	/	biot		.014	.001	
									168.0			1324	11		1	.015	.00Z	
. <u></u>								·	170.0	173.0	3.0	1325	/ /	eρ	1	034	.001	
		- 1	<u></u>						173.0	176.0	3.0	1326	ļ		1	207	.001	
				<u> </u>	<u> </u>			<u> </u>	176.0	<u></u>	1	1327	17	biot		.003	.001	
-								······································	179.0		T	1328	/		1	.003	.001	
								····	(82.0	185.0	3.0	1329	141	972	511	.260	.006	
								·····	185.0	188.0	3.0	1330	1	Kaol	11	.078	. 004	
					······				188-0	191.0	3.0	1331	1	bist	-	.009	.001	
	<u> </u>		. –		<u></u>					194.0	1	1332	1	biot		.017	.004	
<u> </u>	<u> </u>	<u> </u>							<u> </u>	197.5		1333	1	1		.057	.003	-

.

.

۰.

International Metallurgical and Environmental Inc. Analytical Laboratory Report

Project: Verdstone Gold Corp - Hed Project number: 9707 Purchase order number: 1694 Date: April 15, 1997

Sample	start m	end m	Length (m)	% Mo	% Cu
DDH 97-1					
1001	3	6	3.0	<.001	0.017
1002	6	9	3.0	<.001	0.010
1003	9	12	3.0	<.001	0.003
1004	12	15	3.0	<.001	0.029
1005	15	18	3,0	0,002	0.027
1006	18	21	3.0	0.001	0.021
1007	21	24	3.0	0.007	0.083
1008	24	27	3.0	0.010	0,030
1009	27	30	3.0	0.004	0.171
1010	30	33	3.0	0.003	0.082
1011	33	36	3.0	0.002	0.051
1012	36	39	3.0	0.011	0.108
1013	39	42	3.0	0.002	0.060
1014	42	45	3.0	0.006	0.085
1015	45	48	3.0	0.004	0.093
1016	48	51	3.0	0.009	0.040
1017	51	54	3.0	0.014	0.120
1018	54	57	3.0	0.028	0,097
1019	57	60	3.0	0.008	0.094
1020	60	63	3.0	0.001	0.091
1021	63	66	3.0	0.014	0.25
1022	66	69	3,0	0.030	0.160
1023	69	72	3.0	0.011	0.078
1024	72	74	2.0	0.023	0.055
1025	74	75	1.0	0.138	0.101
1026	75	78	3.0	0.003	0.042
1027	78	81	3.0	0.001	0,040
1028	81	84	3.0	0.009	0.057
1029	84	87	3.0	0.003	0.075
1030	87	90	3.0	<.001	0,113
			l		

International Metallurgical and Environmental Inc. Analytical Laboratory Report

Project: Verdstone Gold Corp - Hed Project number: 9707 Purchase order number: 1698 Date: April 21, 1997

Sample	start m	end m	Length (m)	% Mo	% Cu
DDH 97-1]		
1031	90	93	3.0	0.001	0.049
1032	93	96	3.0	0.001	0.060
1033	96	99	3.0	0.003	0.058
1034	99	101	2.0	0.003	0.043
1035	101	102	1.0	0.003	0.171
1036	102	105	3.0	0.068	0.025
1037	105	108	3.0	0.015	0.041
1038	108	111	3.0	0.019	0.036
1039	111	114	3.0	0.006	0.051
1040	114	117	3.0	0.001	0.022
1041	117	120	3.0	0.002	0,005
1042	120	123	3.0	0.001	0.013
1043	123	126	3.0	0.002	0.042
1044	126	129	3.0	0,001	0.026
1045	129	132	3.0	0.002	0.065
1046	132	135	3.0	0.006	0.027
1047	135	138	3.0	0.002	0.024
1048	138	140	2.0	0.035	0.004
1049	140	141	1.0	0.030	0.061
1050	141	142	1.0 `	0.030	0.168
1051	142	143	1.0	0.013	0,113
1052	143	144	1.0	0.030	0.058
1053	144	147	3.0	0.003	0.014
1054	147	150	3.0	0.002	0.013
1055	150	153	3.0	0.005	0.012
1056	153	156	3.0	0.001	0.006
1057	156	159	3.0	0.004	0.005
1058	159	160	1.0	0.027	0.084
1059	160	161	1.0	0.006	0.194
1060	161	162	1.0	0.003	0.036
1061	162	165	3.0	0.001	0.002
1062	165	168	3.0	0.002	0.016
1063	168	169	1.0	0.017	0.27
1064	169	170	1.0	0.020	0.022
1065	170	171	1.0	0.060	0.018
1066	171	174	3.0	0.005	0.019
1067	174	175.3	1.3	0.001	0.013

P 003

International Metallurgical and Environmental Inc. Analytical Laboratory Report

Project: Verdstone Gold Corp - Hed Project number: 9707 Purchase order number: 1699 Date: April 21, 1997

Sample	start m	end m	Length (m)	% Mo	% Cu
DDH 97-2					
1068	3.8	6	2.2	0.001	0.025
1069	6	9	3.0	<.001	0.011
1070	9	10.5	1.5	<.001	0.037
1071	11	12	1.5	0.003	0.115
1072	12	15	3.0	<.001	0.035
1073	15	16	1.0	0.001	0.072
1074	16	17	1.0	0.011	0.22
1075	17	18	1.0	0.010	0.199
1076	18	21	3.0	0.005	0.052
1077	21	23	2.0	<.001	0.035
1078	23	24	1.0	0.001	0.142
1079	24	25	1.0	<.001	0.052
1080	25	26	1.0	0.003	0.049
1081	26	27	1.C	<,001	0.025
1082	27	28	1.0	<.001	0.011
1083	28	29	1.0	0.076	0,184
1084	29	30	1.0	0.001	0.25
1085	30	31	1,0	0,001	0.27

Approved:_____

TEL:604 531 9634

.

JUN. -12' 97 (THU) 14:10 VERDSTONE GOLD

06/12/97 14:17 8

P. 004

• • •

International Metallurgical and Environmental Inc. Analytical Laboratory Report

Project: Verdstone Gold Corp - Hed Project number: 9707 Purchase order number: 1700 Date; April 23,1997

Sample	størt m	endm	Length (m)	% Mo	% Cu
DDH 97-2				· · · · · · · · · · · · · · · · · · ·	
1086	31	32	1.0	0.001	0.043
1087	32	33	1.0	0.006	0.077
1088	33	36	3.0	0.012	0.107
1089	36	39	3.0	0.003	0.034
1090	39	40	10	0.022	0.97
1091	40	42	2.0	<.001	0.062
1092	42	43	1.0	0.002	0.065
1093	43	44	1.0	0.061	0.132
1094	44	45	1.0	0.006	0.149
1095	45	46	1.0	0.008	0.049
1096	46	47	1.0	0.002	0.069
1097	47	48	1.0	0.028	0.35
1098	48	50	2.0	0.006	0.065
1099	50	51.5	1.5	0.004	0.123
1100	52	53	1.5	0.083	0.51
1101	53	54	1.0	0.002	0.209
1102	54	55	1.0	0.052	0.48
1103	55	57	2.0	0.028	0.067
1104	57	58	1,0	0.028	0.28
1105	58	59	1.0	0.016	0,069
1106	59	60	1.0	0.038	2.4
1107	60	61	1.0	0.004	0.104
1108	61	62	1.0	0.010	0.057
1109	62	63	1.0	0.014	0.051
1110	63	66	3.0	0.019	0.046
1111	66	68	2.0	0.005	0.034
1112	68	69	1.0	0.006	0.64
1113	69	70	1.0	0.013	0.247
1114	70	73	3.0	0.006	0.144
1115	73	76	3,0	0.003	0,049

1

Approved:_____

TEL:604 531 9634

06/12/97 14:17 😮

Approved:

P. 005

2006/011

International Metallurgical and Environmental Inc. Analytical Laboratory Report

Project: Verdstone Gold Corp - Hed Project number: 9707 Purchase order number: 1700 Date: April 23,1997

Sample	start m	end m	Length (m)	% Mo	% Cu
DDH 97-2					
1115	76	79	3.0	0.002	0.019
1117	79	82	3.0	0.001	0.021
1118	82	85	3.0	0,003	0.041
1119	85	88	3,0	0.002	0.023
1120	68	91	3.0	0.001	0.040
1121	91	84	3.0	0.015	0.051
1122	94	97	3.0	0.002	0.046
1123	97	100	3,0	<.001	0.009
1124	100	101	1.0	0.001	0.0 96
1125	101	102	1.0	0.30	0.55
1126	102	103	1.0	0.28	0.31
1127	103	104	1.0	0.010	0.072
1128	104	105	1.0	0.021	0,53
1129	105	108	3.0	0.047	0.143
1130	108	109	1.0	0.025	0.108
1131	109	110	1.0	0. 005	0.083
1132	110	111	1.0	C.008	0.137
1133	111	114	3.0	0.002	0.089
1134	114	117	3.0	0,003	0.067
1135	117	119	2.0	0,001	0.087
1136	119	120	1.0	0.29	1.26
1137	120	121	1.0	0.0 3 7	0.59
1138	121	122	1.0	0.024	0.162

International Metallurgical and Environmental Inc. Analytical Laboratory Report

Project: Verdstone Gold Corp - Hed Project number: 9707 Purchase order number: 1705 Date: April 25, 1997

Sample	start m	end m	Length (m)	% Mo	% Cu
DDH 97-2					
1139	122	125	3.0	0.023	0.057
1140	125	128	3.0	<.001	0.005
1141	128	129	1.0	<.001	0.010
1142	129	132	3.0	0.001	0.016
1143	132	135	3.0	<.001	0.006
1144	135	138	3.0	0.005	0.058
1145	138	139	1.0	0.054	0.64
1146	139	140	1.0	0.22	0.232
1147	140	141	1.0	0.012	0.161
1148	141	142	1.0	0.001	0.046
1149	142	145	3.0	<.001	0.014
1150	145	148	3.0	<.001	0.008
1151	148	151	3.0	<.001	0.006
1152	151	154	3.0	<.001	0.008
1153	154	155	1.0	0.003	0.059
1154	155	156	1.0	0.010	0.040
1155	156	159	3,0	0.002	0.011
1156	159	160	1.0	0.001	0.006
1157	160	161	1.0	0.015	0.177
1158	161	162	1.0	0.004	0.124
1159	162	163	1.0	0.072	0.31
1160	163	164	1.0	0.80	0.080
1161	164	165	1.0	0.058	0.050
1162	165	166	1.0	0.007	0.111
1163	166	167	1.0	0.001	0.039
1164	167	170	3.0	<.001	0.022
1165	170	171	1.0	0.001	0.036
1166	171	172	1.0	0.018	0.067
1167	172	173	1.0	0.003	0.009
1168	173	174	1.0	0.050	0.011

International Metallurgical and Environmental Inc. Analytical Laboratory Report

.

Project: Verdstone Gold Corp - Hed Project number: 9707 Purchase order number: 1705 Date: April 25, 1997

Sample	start m	end m	Length (m)	% Mo	% Cu
DDH 97-2					
1169	174	176	2.0	0.002	0.014
1170	176	177	1.0	0.12	0.015
1171	177	180	3.0	0.004	0.086
1172	180	183	3.0	0.001	0.032
1173	183	186	3.0	0.004	0.017
1174	186	187	1.0	0.021	0.038
1175	187	190	3.0	0.002	0.025
1176	190	193	3.0	0.006	0.042
1177	193	196	3.0	0.002	0.010
1178	196	199	3.0	0.005	0.030
1179	199	202,5	3.5	0.022	0.072

International Metallur Analytical I					
· · · · · · · · · · · · · · · · · · ·					
Project: Verdstone Gold Corp - H Project number: 9707	ed				
Purchase order number: 1727	l			<u> </u>	
Date: June 2, 1997					
Sample	start	end	Length	% Mo	% Cu
DDH 3-(Core)	· · · · ·		r		
1180	1.8	3	1.2	0.001	0.073
1181	3	4	1.0	<.001	0.009
1182	4	5	1.0	0.001	0.12
1183	5	6	1.0	<.001	0.021
1184	6	8	2.0	<.001	0.061
1185	8	9	1.0	0.007	0.37
1186	9	12	3.0	0.001	0.004
1187	12	15	3.0	0.001	0.009
1188	12	18	3.0	0.002	0.076
1189	18	21	3.0	0.006	0.14
1190	21	24	3.0	0.001	0.010
1191	24	27	3.0	<.001	0.028
1192	27	30	3.0	0.001	0.052
1193	30	34	4.0	0.001	0.018
1194	34	37	3.0	<.001	0.005
1195	37	39	2.0	0.001	0.065
1196	39	40	1.0	0.048	0.18
1197	40	42	2.0	0.002	0.34
1198	42	43	1.0	0.002	0.051
1199	43	44	1.0	0.001	0.26
1200	44	45	1.0	0.001	0.028
1201	45	46	1.0	0.025	0.44
1202	46	47	1.0	0.012	0.81
1203	47	50 53	3.0	0.004 0.001	0.012
<u>1204</u> 1205	<u>50</u> 53	53 56	3.0 3.0	0.001	0.005
1205	53	59 59	3.0	0.001	0.095
1200	59	62	3.0	0.003	0.053
1208	62	65	3.0	0.014	0.041
1209	65	68	3.0	<.001	0.009

~

Analytical Lab	oratory	Repo	rt		
Project: Verdstone Gold Corp - Hed	F	[
Project number: 9707	L	ļ			
Purchase order number: 1727	1				
Date: June 2, 1997	-				
	ļ				
	start	end	Length		
Sample	m	m	(m)	% Mo	% Cu
DDH 3-(Core)	··	·	1	· · · · · · · · · · · · · · · · · · ·	r
1210	68	71	3.0	0.001	0.033
1211	71	74	3.0	0.002	0.065
1212	74	77	3.0	<.001	0.007
1213	77	80	3.0	<.001	0.012
1214	80	83	3.0	0.002	0.022
1215	83	86	3.0	0.001	0.028
1216	86	89	3.0	0.001	0.064
1217	89	90	1.0	0.001	0.057
1218	90	91	1.0	0.001	0.14
1219	91	92	1.0	0.002	0.21
1220	92	93	1.0	0.043	0.32
1221	93	94	1.0	0.082	0.88
1222	94	97	3.0	0.004	0.15
1223	97	98	1.0	0.050	0.43
1224	98	101	3.0	0.001	0.086
1225	101	104	3.0	0.007	0.015
1226	104	107	3.0	0.005	0.008
1227	107	108	1.0	<.001	0.87
1228	108	109	1.0	<.001	0.30
1229	109	110	1.0	0.001	0.22
1230	110	113	3.0	0.015	0.071
1231	113	116	3.0	0.001	0.015
1232	116	119	3.0	<.001	0.032
1233	119	122	3.0	0.008	0.085
1233	122	125	3.0	<.001	0.027
1235	125	123	3.0	<.001	0.097
1236	128	129	1.0	<.001	0.007
1237	120	125	2.0	0.114	0.20
1237	129	134	3.0	0.008	0.037
	1	1		0.008	0.037
1239	134	137	3.0	0.001	0.025

_

Designet: Mondatore Cold Care Had					:
Project: Verdstone Gold Corp - Hed	T	·····			
Project number: 9707 Purchase order number: 1727					
	.		······		
Date: June 2, 1997					
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	start	end	Length		
Sample	m	m	(m)	% Mo	% Cu
DDH 3-(Core)					, <u> </u>
1240	137	138	1.0	<.001	0.006
1241	138	139	1.0	0.014	0.44
1242	139	142	3.0	0.005	0.038
1243	142	143	1.0	0.059	0.83
1244	143	146	3.0	<.001	0.20
1245	146	149	3.0	0.002	0.77
1246	149	152	3.0	0.005	0.79
1247	152	155	3.0	<.001	0.021
1248	155	158	3.0	<.001	0.005
1249	158	161	3.0	<.001	0.013
1250	161	164	3.0	0.006	0.028
1251	164	167	3.0	0.017	0.058
1252	167	170	3.0	0.008	0.037
1253	170	171	1.0	0.021	0.23
1254	171	172	1.0	0.013	0.10
1255	172	173	1.0	0.018	0.33
1256	173	174	1.0	0.001	0.69
1257	174	175	1.0	<.001	0.005
1258	175	176	1.0	0.010	0.57
1259	176	177	1.0	0.001	0.006
1260	177	178	1.0	0.011	0.11
1261	178	179	1.0	0.099	0.60
1262	179	182	3.0	0.002	0.024
1263	182	185	3.0	0.001	0.015
1264	185	188	3.0	0.001	0.027
1265	188	191	3.0	0.003	0.022
1266	191	194	3.0	0.001	0.012
1267	194	198.1	4.1	<.001	0.009

-- - - -

_ _

_

.

.

Р.	001	

International Metallurgica	l and E	nviror	mental Ir	nc.	
Analytical Labo	oratory	Repor	t	r	
Designed Mandalana Calid Care Alad					
Project: Verdstone Gold Corp - Hed Project number: 9707					
Purchase order number: 1733	1				<u> </u>
Date: June 6, 1997					
Sample	start	end	Length	% Mo	% Cu
DDH 97-4 (Core)					
1258	2.1	3	0.9	<.001	0.061
1289	3	6	3.0	<.001	0.043
1270	6	9	3.0	0.005	0.21
1271	9	12	3.0	0.001	0.069
1272	12	15	3.0	0.001	0.031
			1		
1273	15	18	3.0	<.001	0.014
1274	18		3.0	0.006	0.12
1275	21	24	3,0	<.001	0.021
1276	24	27	3.0	0.062	0.053
1277	27	30	3.0	<.001	0.020
1278	30	33	3.0	<.001	0.060
1279	33	36	3.0	<.001	0.041
1280	36	39	3.0	<.001	0.059
1281	39	42	3.0	<.001	0.039
1282	42	45	3.0	0.001	0.045
1283	45	48	3.0	<.001	0.011
1284	48	51	3.0		
			1	0.008	0.24
1285	51	54	3.0	0.081	0.81
<u>1286</u> 1287	54 57	57 60	3.0 3.0	0.004	0.057
1288	60	63	3.0	0.001	0.021 0.019
1289	63	66	3.0	0.005	0.074
1290	66	69	3.0	0.002	0.10
1281	69	72	3.0	0.003	0.031
1292	72	75	3,0	800.0	0.10
<u>1293</u>	75	78 81	3.0	0.006	0.051
1294	78 81	81 84	<u>3.0</u> 3.0	0.002	0.027
1296	84	87	3.0	0.001	0.020
1297	87	90	3.0	<.001	0.028

JUN. -17' 97 (TUE) 09:19 VERDSTONE GOLD TEL:604 531 9634

International Metallurgica	al and E	Enviror	nmental I	пс.	
Analytical Lab	oratory	Repo	rt		
Project: Verdstone Gold Corp - Hed			 		+
Project number: 9707	1	1		<u></u>	+
Purchase order number: 1733	<u>i</u>	+	+		
Date: June 6, 1997	T	+	<u> </u>		+
	+	· · · · · · · · · · · · · · · · · · ·		·	<u>†</u>
Sample	start m	end m	Length (m)	% Mo	% Cu
DDH 97-4 (Core)			·		1
1298	90	93	3.0	0.003	0,034
1299	93	96	3.0	0.001	0.016
1300	96	99	3.0	0,001	0.063
1301	89	102	3.0	0.001	0.080
1302	102	105	3.0	0.007	0.070
1303	105	108	3.0	<.001	0.004
1304	108	111	3.0	< 001	0.003
1305	111	114	3.0	0.001	0.010
1306	_114	117	3,0	0.001	0.004
1307	117	120	3.0	0.001	0.10
1308	120	123	3.0	0.001	0.005
1309	123	126	3.0	<.001	0.011
1310	126	129	3.0	<.001	0.049
1311	129	132	3.0	0.002	0.25
1312	132	135	3.0	0.005	0.16
1313	135	138	3.0	0.045	0.89
1314	138	141	3.0	0.001	0.052
1315	141	144	3.0	0.002	0.030
1316	144	147	3.0	0.004	0.007
1317	147	150	3.0	0.002	0.007
1318	150	153	3.0	<.001	0.007
1319	153	158	3.0	0.001	0.004
1320	156	159	3.0	<.001	0.052
1321	159	162	3,0	<.001	0.017
1322	152	165	3.0	<.001	0.009
1323	165	168	3.0	0.001	0.014
1324	165	170	2.0	0.002	0.015
1325	170	173	3.0	0.001	0.034
1326	173	176	3.C	<.001	0.007
1327	175	179	3.0	<.001	0.003

JUN. -17' 97 (TUE) 09:20 VERDSTONE GOLD TEL:604 531 9634

International Metallurg	ical and E	Inviron	mental Ir	10.	l
Analytical La	aboratory	Repor	t		
Project: Verdstone Gold Corp - Her	<u> </u>				
Project number: 9707					
Purchase order number: 1733					
Date: June 6, 1997					
Sample	start m	end m	Length (m)	% Mo	% Cu
DDH 97-4 (Core)					
1328	179	182	3.0	<.001	0.003
1329	182	185	3.0	0.008	0.26
1330	185	188	3.0	0.004	0.078
1331	188	191	3,0	0.001	0.009
1332	191	194	3.0	0.004	0.017
1333	194	197.5	3.5	0.003	0.057