GEOLOGICAL AND ROCK CHIP GEOCHEMICAL REPORT

Deer Bay Property, Albernie M.D.

NTS: 092F/4, 092/F5

Lat: 49° 14';

· - · · · — · · · · · ·

Long: 125° 35'

Report By

Arne O. Birkeland, P. Eng.

Arnex Resources Ltd,

July 28, 1997

dbpassrpt1997tp

A state of the sta

>5,

TABLE OF CONTENTS

1.0	Intro	duction	1
	1.1	General	1
	1.2	Property Description	1
	1.3	Location and Access	2
	1.4	History	2
2.0	Geol	ogy	5
	2.1	Regional Geology and Statigraphy	5
	2.2	Property Geology and Lithologic Descriptions	5
	2.3	Drill Site Geology and Rock Chip Geochemistry	10
3.0	Conc	lusions	16
4.0	Reco	mmendations	17

Dbpassrpt1997tp2

منتع

1

ثقد

1

÷

LIST OF FIGURES

Figure	NTS	Title	Scale	Page
1	92F	Location Map	1:250,000	3
2	92F/4, F/5	Claim Location Map	1:50,000	4
3	92F/4, F/5	Drill Site Plan	1:200	11
4A	92F/4, F/5	Drill Site Cross Section A-A'	1:200	12
4B	92F/4, F/5	Drill Site Cross Section B-B'	1:200	13
5	92	Regional Geological Map	1:1,000,000	6
6	92	Geotectonic Correlation Chart		7,8

LIST OF TABLES

Table No	Title	Page
1	Deer Bay Property – Mineral Tenure	2
2	Stratigraphy and Lithology	9
3	Legend for Drill Site Plan And Cross Sections	14
4	Rock Chip Results – Key Elements	15

<u>APPENDIX</u>

Appendix	Description
Ι	Statement of Expenditures
II	Statement of Qualification
III	Geochemical Data Sheets
IV	Analytical Certificates
v	Bibliography

....

أثلته

Geological and Rock Chip Geochemical Report

Deer Bay Property

1.0 Introduction

1.1 General

Drill site mapping and engineering geology were completed at the Main Showing Area on the Deer Bay Property. Four person days of field-work were conducted by A. Birkeland, P. Eng., and S. Vergottini during the period April 5th to 7th, 1997. A limited amount of rock chip sampling was also completed by taking six samples from the footwall and southeast extension of the Main Showing.

The principle objective of the fieldwork was to establish two drill sites targeting the outcropping mineralization on the Main Zone. Establishing the grade and making an estimate of the thickness of the mineralized footwall was also a secondary objective.

A total Expenditure of \$3,100 was incurred as itemized in Appendix 1, Statement of Expenditures. This report is submitted conforming to sections 5 through 8 under section 12, Part C, of the Regulations and is filed in conjunction with a Statement of Work dated May 6, 1997, Event No 3103874. No Notice of Work and Reclamation Permit was filed as there was no surface disturbance caused by the work which was done.

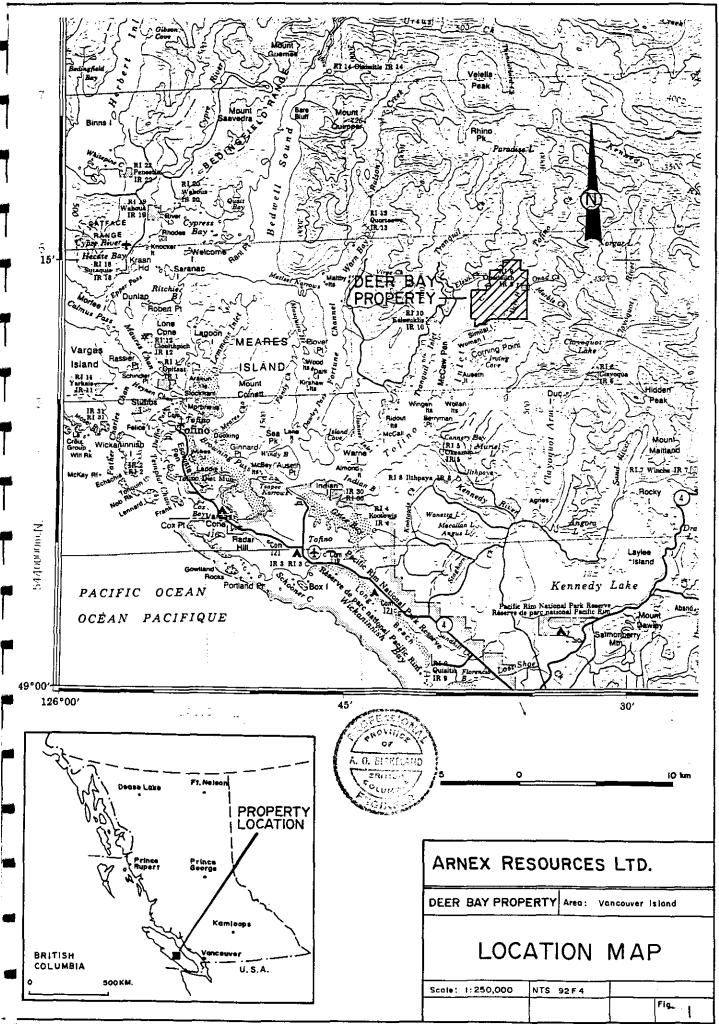
1.2 Property Description

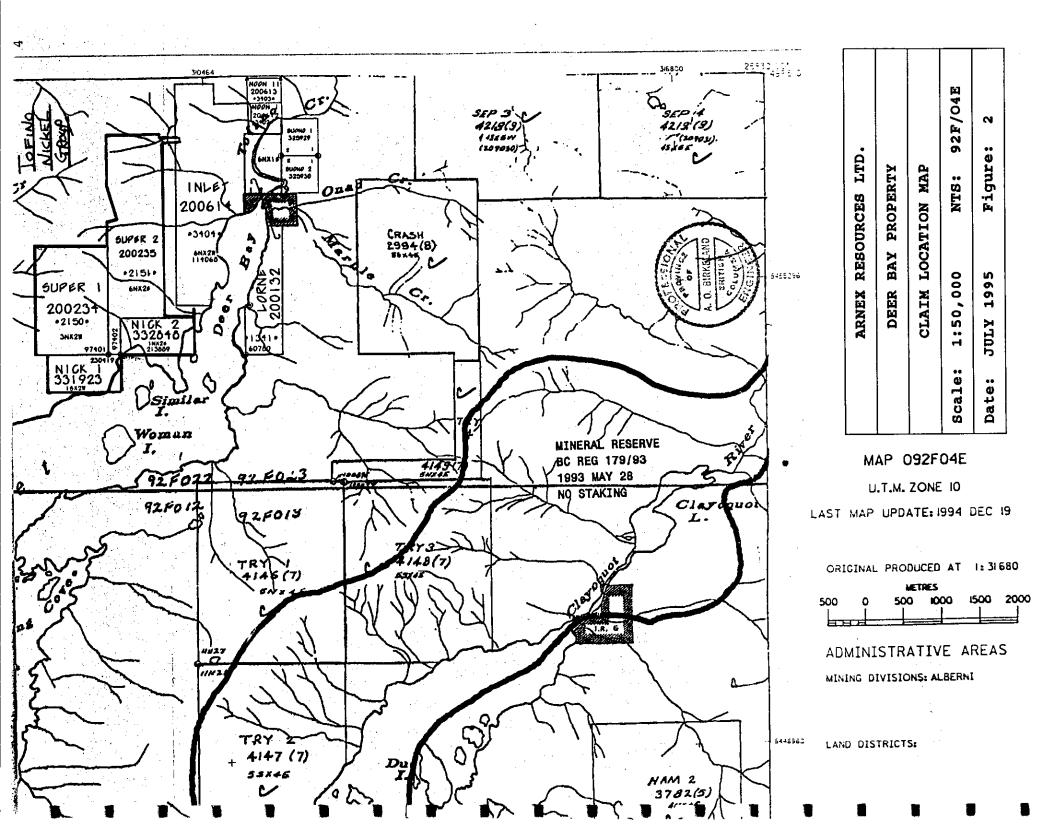
The Deer Bay Property (formerly known as the Tofino Nickel Property), Mineral Inventory Minfile Number 092F 029, is comprised of 4 contiguous mineral claims owned by Peter Buckland of Boat Basin, B. C. and by A. O. Birkeland of North Vancouver, B. C. (see Table 1, Figure 2).

Deer Bay Property Table 1 Mineral Tenure

<u>Claim Name</u>	Record No	<u>No Units</u>	Date of Expiry
Nick 1	331923	2	May 10, 1998
Nick 2	332848	2	May 10, 1998
Super 1	200234	6	Oct 25, 1998
Super 2	200235	12	Nov 13, 1998

1.3 Location and Access


The Deer Bay Property is located in the Alberni Mining Division 25 km ENE of Tofino near the head of Tofino inlet on the west central coast of Vancouver Island (Figure 1). The center of the property is located at approximately 49° 14' north latitude and 125° 35' east longitude in NTS 092F/4,5. The Main Showing is located on a steep timbered hillside 0.5 km north of Similar Island at an elevation of approximately 295 m.


Access is by logging road (70 km from Tofino via Kennedy Lake Bridge) or by boat (30 km from Tofino). Access for the April 1997 program was by boat and then by hiking up the hillside by trail.

1.4 History

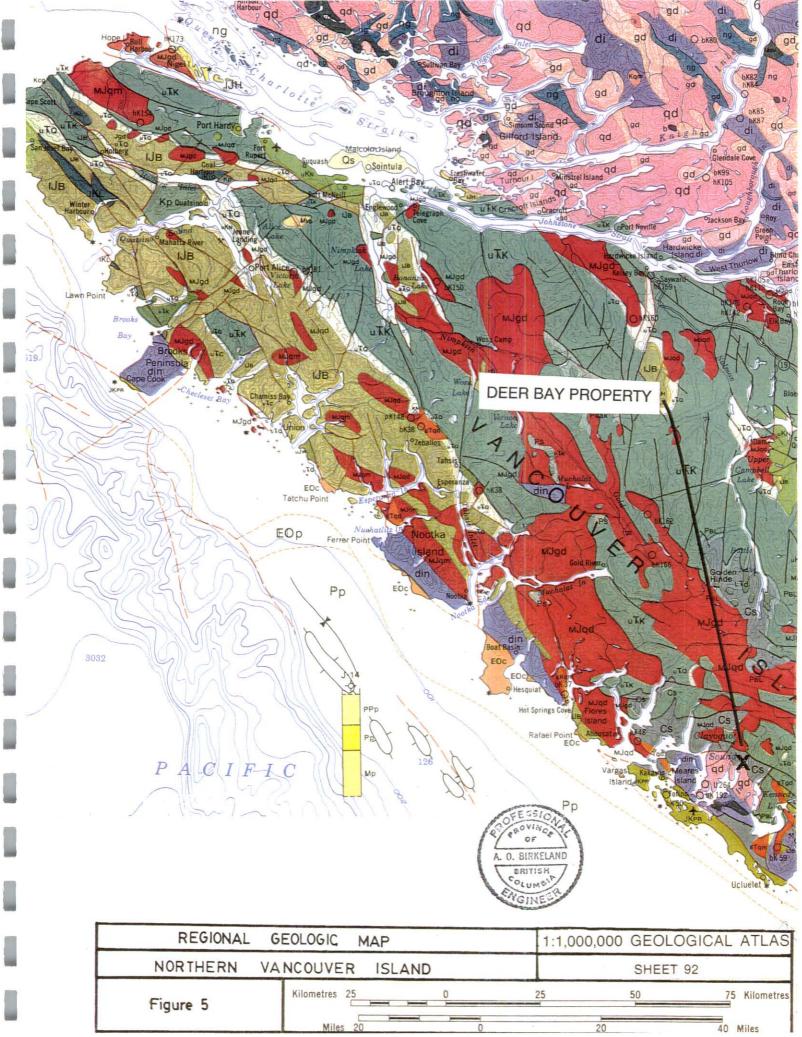
Exploration activity on the Deer Bay property dates back to the late 1890's when hand cobbed ore was produced from shafts and adits dug on small quartz veins along Tofino Creek. Between 1953 and 1984 the property was explored for its skarn and porphyry Cu-Mo potential associated with an Island Intrusive Stock at the head of Tofino Bay.

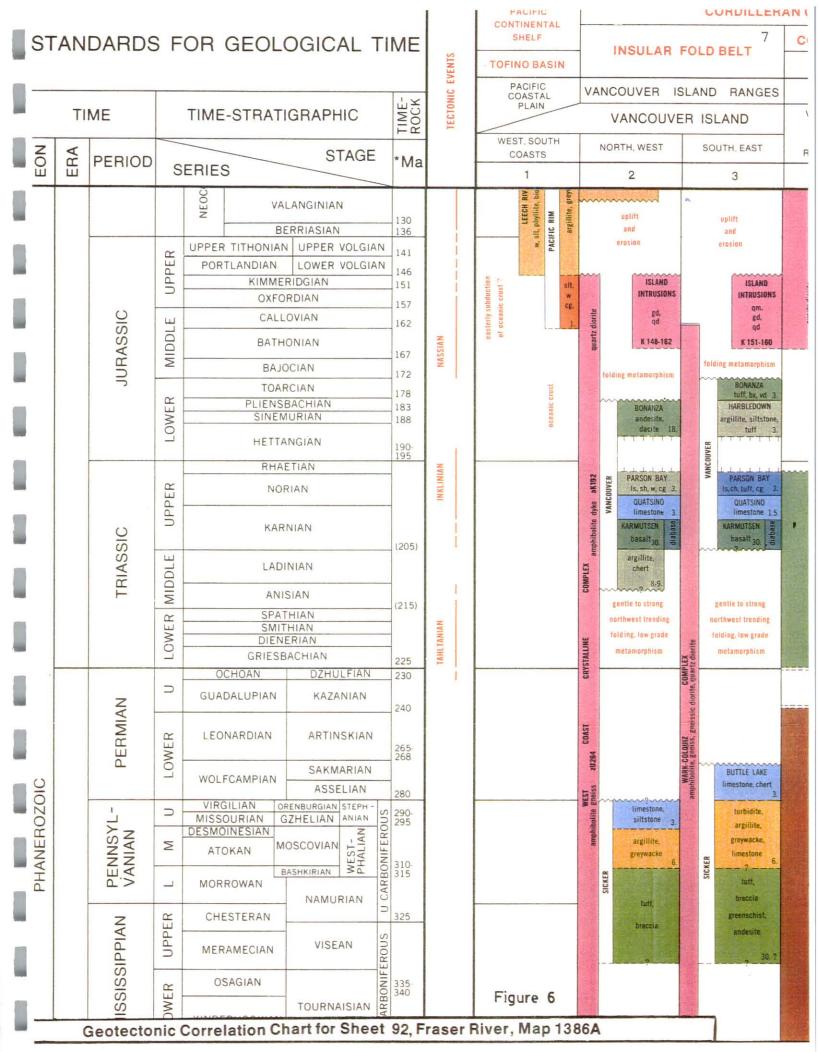
In 1984, Cominco examined the Cu-Ni-PGE Main Showing and optioned the property in 1985. Detailed geologic mapping, soil sampling, limited geophysics and trenching was carried out. Cominco concluded that PGE bearing Cu-Ni

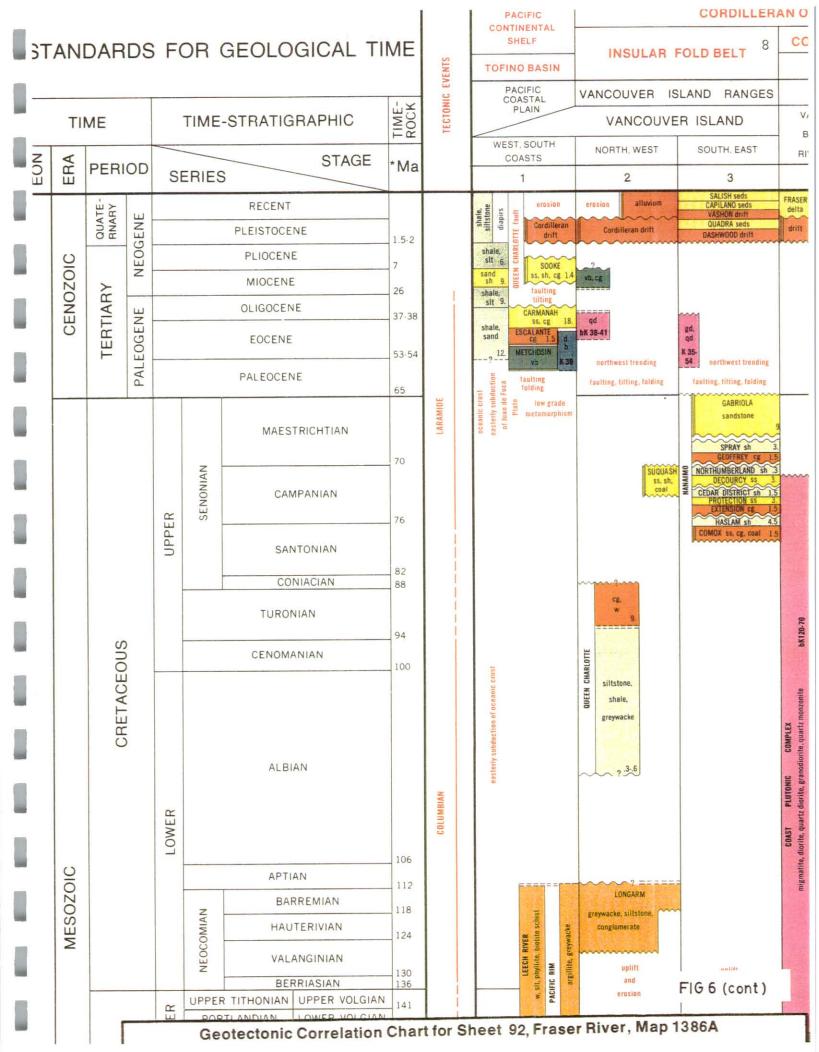
mineralization may have been emplaced as an immiscible liquid at the same time of injection of the ultrabasic host, demonstrating a potential for size and continuity of mineralization. A report by Mason, July 1986 states: "While the isolated outcrop (Main Showing) is only 30 m by 10 m, the associated rock types (altered ultramafics and anorthosite) and the Cu-Ni sulfide bands suggest that it is part of a much larger body... the property has both demonstrated grades and potential for significant tonnage." Additional work was recommended but was not carried out by Cominco.

Reconnaissance geological mapping and geochemical surveys were conducted by Stag Explorations during 1988. Soil geochemistry was somewhat effective in delineating anomalous zones around the Main Showing. In 1992, reconnaissance soil and moss mat stream sediment sampling along new road-cuts above the Main Showing detected anomalous Cu, Ni, Co, Au and PGM extending the prospective mineralized strike length up to 2 km beyond the areas previously explored.

Recent orientation soil and stream sediment sampling conducted in 1995 defined geochemical anomalies up-drainage from the Main Showing. These results confirm earlier reports of anomalies up-slope and indicate additional undiscovered mineralization is present. Petrographic examination of specimens of host rock from the Main Showing indicated that the mineralization is hosted in a zoned ultramafic intrusion complex and the occurrence was classified as belonging to the economically important gabbroid Cu-Ni-Co deposit type.


2.0 Geology


2.1 Regional Geology and Statigraphy

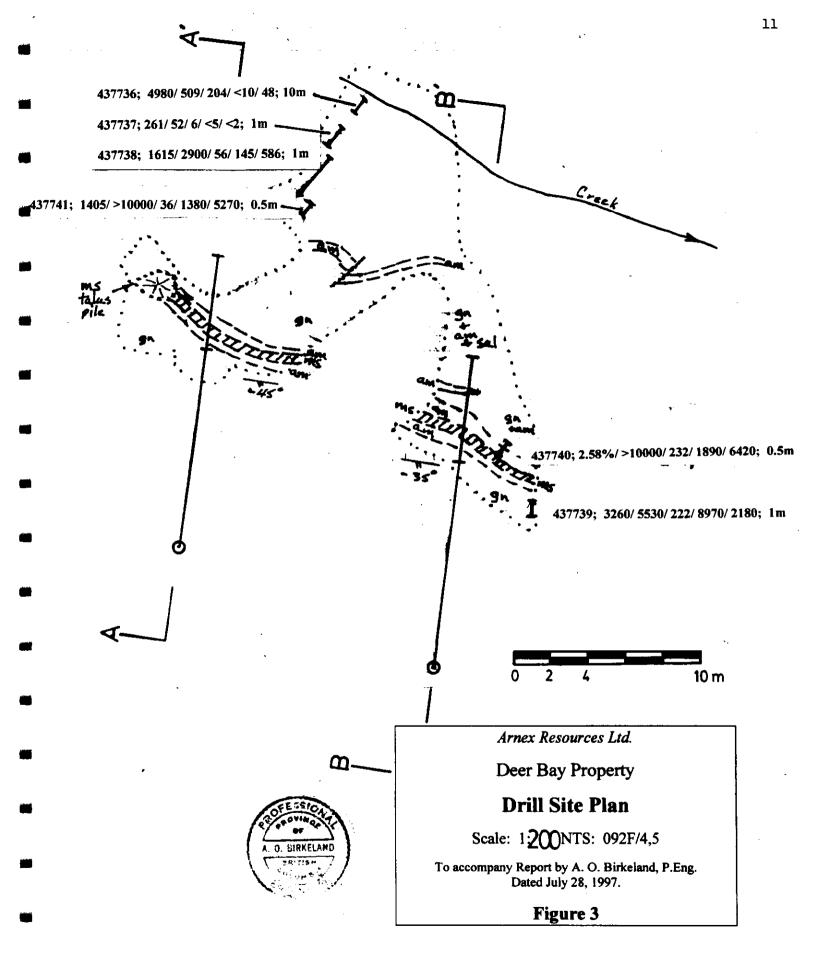

Vancouver Island lies within the Canadian Cordillera within terrain classified as Wrangellia. Central and western Vancouver Island is predominantly underlain by Paleozoic and Mesozoic strata intruded by Jurassic and Tertiary Intrusions (See Figures 5, 6).

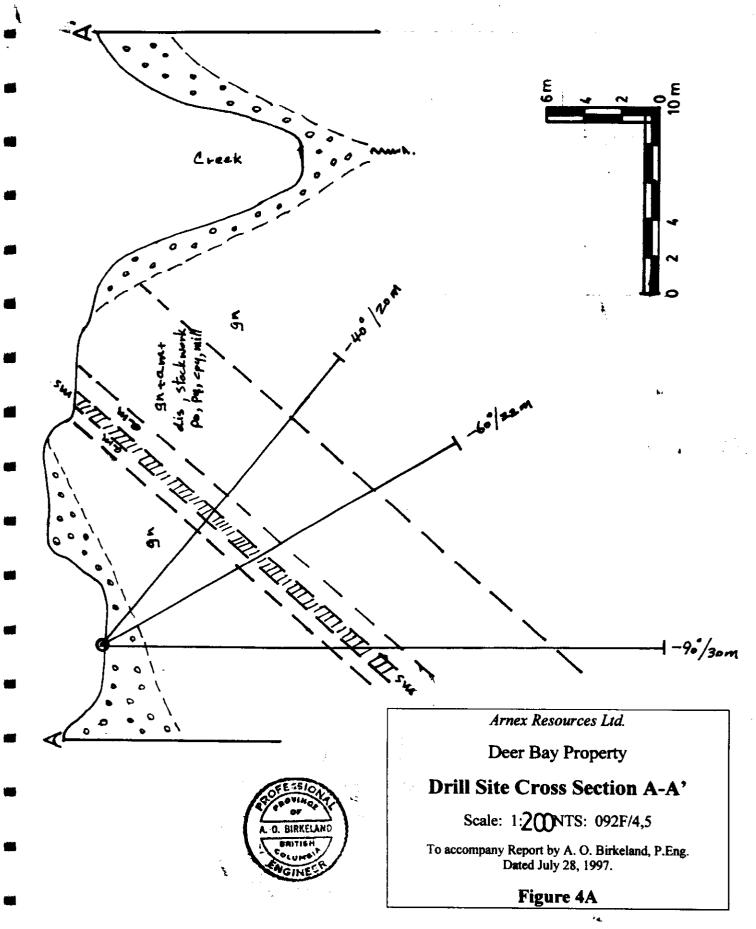
2.2 Property Geology and Lithologic Descriptions

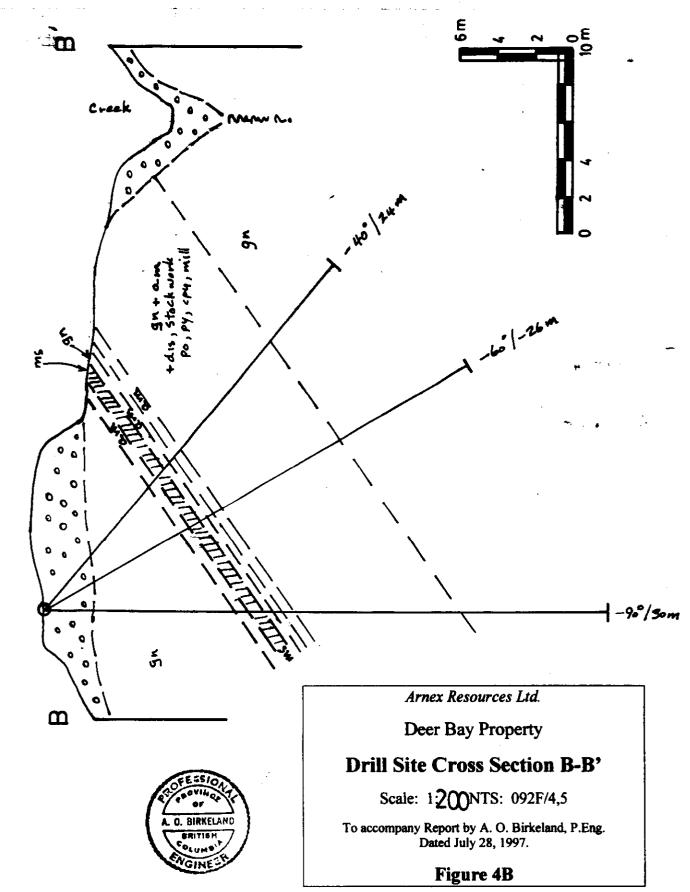
The Deer Bay property is underlain by a northwesterly striking easterly dipping stratigraphic sequence comprised of the West Coast Crystaline Complex (map unit din) on the western portion of the property and Paleozoic Sicker group rocks in the eastern part of the claims. Intruding the Paleozoic strata to the southwest and northeast respectively are intrusive stocks of Tertiary Catface Intrusions and Jurassic Island Intrusions. Stratigraphic and Lithologic descriptions are summarized as Table 2.

Stratigraphy and Lithology

Catface	Intrusives	(Tg)
Tgć	lio -	light grey medium to coarse grained quartz diorite.
Island]	Intrusives ((Jg)
Jgd	lio -	grey medium to coarse grained diorite; granodiorite.
Sicker @	Froup (CPs)	
1st	: -	grey medium grained massive bioclastic limestone; marble locally.
arg	g –	alternating light, dark grey thin bedded argillite; pyrite.
and	a –	green, grey fine grained massive andesite; chlorite.
bas	5 –	dark green, grey basalt; calcite epidote veinlets, local py+/-cpy.
met sec		layered dark grey silicified argillite, chert, greywacke.
met bas	:a -	dark green basalt; epidote, calcite; amphibolite gneiss.
West Coa	ast Crystal]	line Complex (WC3)
gab	o –	massive medium grained dark grey-green hornblend gabbro.
amp	o –	medium to coarse grained black amphibolite.
gns	5 –	pale green, grey fine to medium grained quartzo-feldspathic gneiss; amphibolite layers common; quartz, feldspar, muscovite chlorite veins.


The principal rock type underlying the Main Showing area consists of quartzofelspathic gneiss containing foliated amphibolite lenses and numerous thin amphibolite bands. Gneiss's are characteristically fine to medium grained and are pale green to grayish in colour with moderately well developed foliation. Dark green chlorite rich bands and amphibolite dykes and sills are common within the gneissic and mafic zoned intrusive complex. Chalky white feldspar, light coloured muscovite and disseminated pyrite often occur at contacts between gneiss and amphibolite.


The principal rock type hosting the mineralization at the Main Showing is described as dark gray to black medium to coarse grained amphibolite. Previous petrographic analysis of the amphibolite indicates that it is part of a differentiated-zoned ultramafic intrusion complex. It appears that the amphibolite dykes sills and lenses are related to a major hornblende gabbro intrusive body, which outcrops 400 m southwest of the Main Showing. A genetic relationship between the gabbro intrusive and the Cu-Ni-Co-PGE bearing amphibolite at the Main Showing is indicated by the fact that the gabbro intrusive is geochemically anomalous in the same metals.


2.3 Drill Site Geology and Rock Chip Geochemistry

Engineering geology and mapping at the Main Showing are presented as Figures 3, 4A and 4B, Drill Site Plan and Cross Sections. Results from a limited amount of rock chip sampling of the footwall and southeast extension of the mineralized zone are described in Appendix III, Geochemical Data Sheets and results are included as Appendix IV, Analytical Certificates and Rock Chip Results, Key Elements are tabulated in Table 4. Results for key elements are plotted on the Drill Site Plan according to the format contained in Table 3, Legend For Drill Site Plan and Cross Sections.

The most significant realization from the recent mapping is that, although strikes and dips are variable, the overall geometry of the mineralized zone appears to dip moderately to the southeast (-45° near Section A-A', -35° near Section B-B') rather than vertically as previously thought. Consequently, significant disseminated and stockwork sulphide mineralization occurs in approximately a 7 to 10 m thickness in the footwall of the massive sulphide zone. Sample 437736 which was a representative chip sample of disseminated mineralization over 10 m, returned values of 4980 ppm Cu, 509 ppm Ni and 204 ppb Au representing the average grade of the mineralized footwall. Higher grade values were obtained from footwall stockwork sulphides in sample 437738 and particularly from

Table 3

LEGEND FOR DRILL SITE PLAN AND CROSS SECTIONS

gn	Gneiss
am	Amphibolite
ms	Massive Sulphide
sul	Sulphide
ро	Pyrrhotite
ру	Pyrite
сру	Chalcopyrite
pt	Platinum
pd	Pladium
mill	Millerite
	Outcrop
	Contact
	Foliation; Strike and Dip
	Fault
	Rock chip sample 437736; 4980/509/204/<10/48; 10m Sample #; ppm Cu (or%) / ppm Ni/ ppb Au/ ppb Pt/ ppb Pd ; width m
	Proposed Drill Hole
	Overburden

Dbpassrpt1997legend

Table 4

Rock Chip Results Key Elements

Sample No; ppm Cu (or %)/ ppm Ni/ ppb Au/ ppb Pt/ ppb Pd; width m

437736; 4980/ 509/ 204/ <10/ 48; 10m

437737; 261/ 52/ 6/ <5/ <2; 1m

437738; 1615/ 2900/ 56/ 145/ 586; 1m

437739; 3260/ 5530/ 222/ 8970/ 2180; 1m

437740; 2.58%/ >10000/ 232/ 1890/ 6420; 0.5m

437741; 1405/ >10000/ 36/ 1380/ 5270; 0.5m

Dbpassrpt1997results

sample 437741 which returned values of 1405 ppm Cu, >10000 ppm Ni, 1380 ppb Pt and 5270 ppb Pd from a semi-massive sulphide lens in the footwall.

The massive sulphide zone was also extended to the southeast. Sample 437740 returned 2.58% Cu, >10000 ppm Ni, 232 ppb Au, 1890 ppb Pt and 6420 ppb Pd over a 0.5 m true width. Sample 437739, the furthest sample taken to the southeast, returned 3260 ppm Cu, 5530 ppm Ni, 222 ppb Au, 8790 ppb Pt and 2180 ppb Pd over 1 m.

Co values are also associated with both the massive sulphide mineralization (maximum value of 624 ppm) and the footwall sulphide lenses (maximum value of 846 ppm Co).

Two convenient drill site locations were spotted on sections approximately 15 m apart. The drill sites are relatively flat and require that only a very few trees would have to be cut to sling in a lightweight diamond drill by helicopter. A chain and compass survey was completed and profiles plotted on Sections A-A' and B-B'. Drill holes were spotted at -40°, -60°, and -90° respectively. If projected dips are accurate, then 72 m of drilling on Section A-A' and 80 m of drilling on Section B-B' for a total of 152 m is required to sample six intersections of the massive sulphide and mineralized footwall zone. The proposed drilling would intersect the massive sulphide at depths of 10 to 14 m vertical depth and up to 20 m down dip from surface.

3.0 Conclusions

From previous exploration work in the vicinity of the Main Showing, the following is concluded:

- Ni-Cu-Co-PGE sulphide mineralization occurs in outcrop at the Main Showing area. The massive sulphide zone appears to have a strike length of 22 m and is continuously exposed over 11 m. The best channel sample intercept was 2.2 m of approximately 2% Ni, 2% Cu, 0.05 oz/T Pt, 0.2 oz/T Pd with good Au credits.
- Drainage sampling indicates that the creeks up-slope north and south of the Main Showing are anomalous. Historical soil sampling also indicates the presence of mineralization, primarily to the northwest.
- The Deer Bay property is associated with an altered, metamorphosed highlevel, subvolcanic zoned ultramafic intrusive complex. The deposit is classified as a Gabbroid Ni-Cu-Co-PGE occurrence.

The current engineering geology and rock chip sampling concludes the following:

- > The massive sulphide showing dips moderately to the southwest
- Disseminated and stockwork mineralization occurs over a 7 to 10 m width in the footwall.
- High-grade Cu-Ni-Au-Pt-Pd values occur in stockwork lenses in the footwall over widths of up to 1 m and as disseminations of up to 10 m.
- > The massive sulphide zone was extended along strike to the southeast.
- Two convenient drill sites have been located with azimuth 007° with three proposed holes each at dips of -40°, -60° and -90°.
- If projected dips are accurate, approximately 152 m of diamond drilling on two parallel section lines 15 m apart will sample the down dip projection of the massive sulphide and footwall zones in six drill intersections.

4.0 **Recommendations**

It is recommended that up to a 200 m drill program be conducted on the massive sulphide and mineralized footwall zone which has never been drilled. The drill program should be helicopter supported by long line sling and access for personnel should be by boat, then hiking up the trail to the Main Showing at the 595 m elevation.

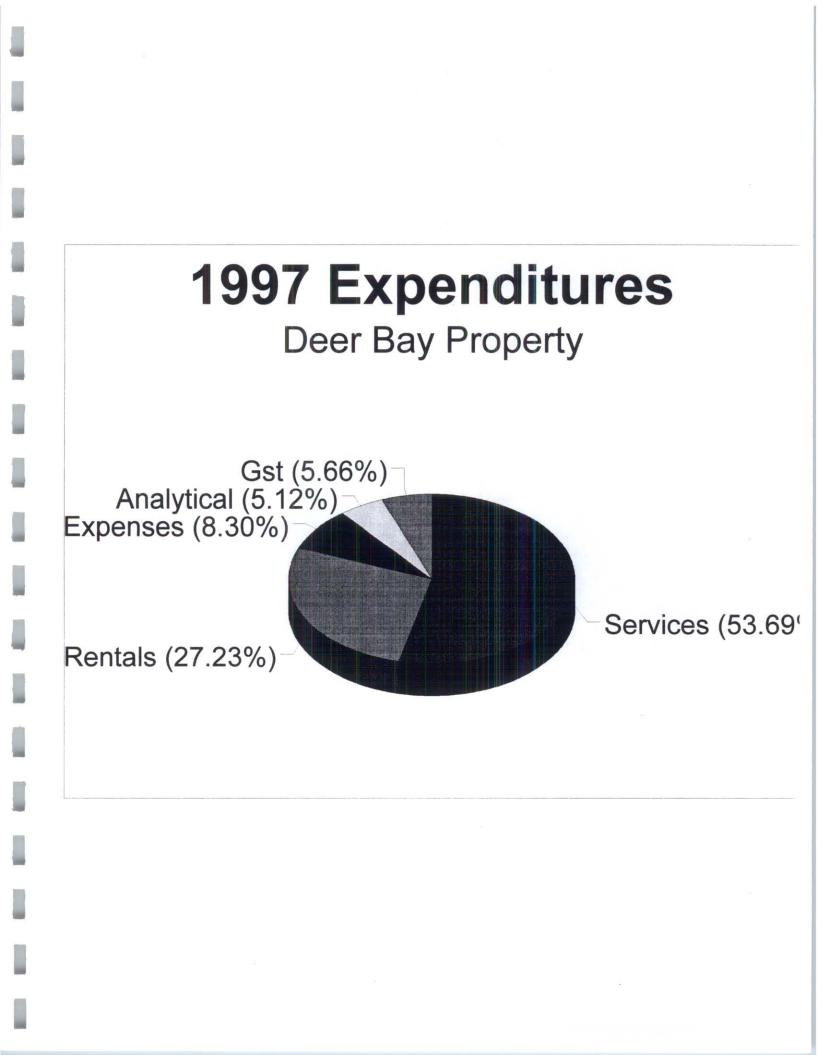
A Notice of Work should be filed with accompanying Reclamation Plan. Only a minimum number of trees would need to be cut (some of which are dead snags) and a Cutting Permit should be acquired. Cut trees and snags should be used for drill site cribbing.

Subsequent recommendations for work on the property should be based on the results of the six hole program. The comprehensive drill program offers the advantages of a quick yes-no evaluation for the future of the property while keeping the next phase of exploration expenditures to a minimum.

Dated this 28th day of July, 1997 0. SIRKELAND BRITISH By:

Arne O. Birkeland, P. Eng.

Dbpassrpt1997d2


Appendix I

Deer Bay Property Statement of Expenditures

	Statement of Expenditures	i		c:\dbpexp	1997.wb3		
Description	1 0.119-9-	Cost/unit		April units		Amount	Total
Services	Professional Engineer, P. Eng. Geotech - Assistant	\$454.75 \$150.00	•		day day	\$1,364 \$300	
	Subtotal Services	<i>•·•••••••••••••••••••••••••••••••••••</i>	, ,	_	,		\$1,664
Rentals	F250 4X4 Camper Cope Boat Zodiac Boat ICH18 Radios (2) Field Equipment Rock Trim Saw Rock Slab Saw Binoc microscope NB Computer	\$80.25 \$32.10 \$142.67 \$107.00 \$267.50 \$16.05 \$8.03 \$5.35 \$120.00 \$214.00	/day /day /day /mo /mday /day /hr /mo	2 2 0.133333 4 0.016667	mday day hr mo	\$161 \$64 \$285 \$214 \$36 \$64 \$0 \$11 \$2 \$7	
	Subtotal Rentals						\$844
GST Service	8						\$176
Expenses	Groceries Meals Gas, Truck, Boat Copying, Printing					\$94 \$30 \$53 \$80	
	Subtotal Expenses						\$257
	Analytical - Rocks gchm Analytical - Rocks assay					\$152 \$6	
	Subtotal Analytical						\$159
TOTAL							\$3,100

=========

=======

Appendix II

CERTIFICATE OF QUALIFICATION

I, Arne O. Birkeland, do hereby certify that:

- 1. I am a Geological Engineer in the employ of Arnex Resources Ltd. with offices at 1632 Riverside Drive, North Vancouver, British Columbia.
- 2. I am a 1972 graduate of the Colorado School of Mines with a Bachelor of Science Degree in Geological Engineering.
- 3. I have been a registered Professional Engineer with the Association of Professional Engineers Association of British Columbia since 1975.
- 4. My primary employment since 1966 has been in the field of mineral exploration and development, namely as a Geological Engineer.
- 5. My experience has encompassed a wide range of geological environments including extensive experience in classification of deposit types as well as considerable familiarization with geochemical and geophysical survey techniques and diamond drilling procedures.
- 6. I have conducted a two field day mapping and sampling program on the subject property. This report is based on observations and sample results obtained during the field program.

Dated at North Vancouver, British Columbia,

28 th day of This 1997

Arne O. Birkeland, P. Eng. President, Arnex Resources Ltd.

C:\mydocs\dbpassrpt1997certofqual

Appendix III

CHEMICAL DATA SHEET - ROCK CHIP SAMPLING

•)JECT: DBP		NTS: 092F/4	, F5		REF. MAP:	FIGURE 3	SCALE: 1:200	C:\DBPASSRPT1997GCHMRXDS\W83
	APLE NO.	LOCATION	ROCK TYPE	Туре	Width	Alteration	DESCRIPTIC Weathering	ON Minearalization	ADDITIONAL OBSERVATIONS
	736	Main Showing	Amphibolite	Rep Chip	AW 10m	Magmatic	Fresh	cpy, millerite, po, py	10 m apparent thickness of mineralized amphibolite
;	737	Main Showing	Amphibolite	Rep Chip	AW 1 m	Magmatic	Fresh	minor py cpy	
-	738	Main Showing	Gneiss, Amphibolite	Rep Chip	AW 1 m	Magmatic	Fresh	dis. + stockwork cpy, py	footwall
:	'739	Main Showing	Amphibolite	Rep Chip	AW 1 m	Magmatic	Fresh	5% - 10% des py, po, millerite	southeast extension of Main Sowing
	'740	Main Showing	Amphibolite	Rep Chip	TW 0.5 m	Magmatic	Fresh	massive sulphide lens - stringer, py, po, millerite	southeast extension of Main Sowing
	7741	Main Showing	Amphibolite	Rep Chip	AW 0.5 m	Magmatic	Fresh	py, po, millerite	sulphide rich amphibolite, locally +50% sulphide over 10 - 20 cm

.

APPENDIX IV

ANALYTICAL CERTIFICATES

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

1632 RIVERSIDE DR. N.VANCOUVER, BC V7H 1H7

Ľ.

.

Comments: ATTN:ARNE BIRKLAND

SAMPLE PREPARATION CHEMEX Sources CODE NUMBER SAMPLES DESCRIPTION DETECTION METHOD DETECTION LIMIT Stamples submitted to our lab in Vancouver, BC. This report was printed on 7-MAY-97. 975 6 Pt ppb: ICP-Fluorescence package 976 FA-ICP-AFS 2 PA-ICP-AFS 2 PA-ICP-AFS	LIMIT LIMIT 2 10000 5 10000 2 10000 0.2 100.0 01 25.0 0.5 1000 2 10000 01 25.0 0.5 500 1 10000 1 10000 1 10000
Samples submitted to our lab in Vancouver, BC. this report was printed on 7-MAY-97.9756Au ppb: ICP-fluorescence package Pt ppb: ICP-fluorescence package PA-ICP-APS29766Pt ppb: ICP-fluorescence package Pt ppb: ICP-fluorescence package PA-ICP-APSFA-ICP-APS29776Pd ppb: ICP-fluorescence package Pt ppb: ICP-fluorescence package PA-ICP-APSFA-ICP-APS29776Pd ppb: ICP-fluorescence package Ppb: ICP-fluorescence package PA-ICP-APSFA-ICP-APS29776Pd ppb: ICP-fluorescence package PA-ICP-APSFA-ICP-APS29786Al %: 24 element, rock & core PackageICP-AES0.015656Ba ppm: 24 element, rock & core PackageICP-AES0.015656Bi ppm: 24 element, rock & coreICP-AES0.015666Cd ppm: 24 element, rock & coreICP-AES0.55616Cd ppm: 24 element, rock & coreICP-AES15626Cd ppm: 24 element, rock & coreICP-AES15636Co ppm: 24 element, rock & coreICP-AES156460-3 Kg crush and split5546Mn ppm: 24 element, rock & coreICP-AES32026Rock - save entire reject5546Na % 24 element, rock & coreICP-AES132026ICP - HF digestion charge5546Ni ppm: 24 element, rock & coreICP-AES132026ICP - HF digestion charge5646<	5 10000 2 10000 0.2 100.0 01 25.0 10 10000 .5 1000 2 10000 0.5 500 1 10000 1 10000 1 10000
SAMPLE PREPARATION5626Cd ppm: 24 element, rock & coreICP-AES0.5CHEMEX CODENUMBER SAMPLESDESCRIPTION5626Cd ppm: 24 element, rock & coreICP-AES15696Cr ppm: 24 element, rock & coreICP-AES15606Fe %: 24 element, rock & coreICP-AES0.015646K %: 24 element, rock & coreICP-AES0.015706Mg %: 24 element, rock & coreICP-AES0.015706Mn ppm: 24 element, rock & coreICP-AES522660-3 Kg crush and split5646Mn ppm: 24 element, rock & coreICP-AES32026Rock - save entire reject5836Na %: 24 element, rock & coreICP-AES12856ICP - HF digestion charge5646Ni ppm: 24 element, rock & coreICP-AES15596P ppm: 24 element, rock & coreICP-AES1	5 500 1 10000 1 10000 1 10000 1 10000
CHEMEX CODENUMBER SAMPLESDESCRIPTION5636Co ppm: 24 element, rock & coreICP-AES15696Cr ppm: 24 element, rock & coreICP-AES15696Cr ppm: 24 element, rock & coreICP-AES15696Cr ppm: 24 element, rock & coreICP-AES15616Fe %: 24 element, rock & coreICP-AES0.015626Geochem ring to approx 150 mesh5686Fe %: 24 element, rock & coreICP-AES0.012056Geochem ring to approx 150 mesh5686Mn ppm: 24 element, rock & coreICP-AES0.0120560-3 Kg crush and split5546Mn ppm: 24 element, rock & coreICP-AES132026Rock - save entire reject5836Na %: 24 element, rock & coreICP-AES12856ICP - HF digestion charge5596P ppm: 24 element, rock & coreICP-AES15596P ppm: 24 element, rock & coreICP-AES1	1 10000 1 10000 1 10000
2056Geochem ring to approx 150 mesh5706Mg %: 24 element, rock & coreICP-AES0.012056Geochem ring to approx 150 mesh5686Mn ppm: 24 element, rock & coreICP-AES522660-3 Kg crush and split5546Mo ppm: 24 element, rock & coreICP-AES132026Rock - save entire reject5836Na %: 24 element, rock & coreICP-AES0.012856ICP - HF digestion charge5596P ppm: 24 element, rock & coreICP-AES1	
5826Sr ppm: 24 element, rock & coreICP-AES15796Ti %: 24 element, rock & coreICP-AES0.01	5 10000 1 10000 01 10.00 1 10000 10 10000 2 10000 1 10000
5726V ppm: 24 element, rock & coreICP-AES15566W ppm: 24 element, rock & coreICP-AES105586Zn ppm: 24 element, rock & coreICP-AES2	10 10000

A9722152

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers North Vancouver 212 Brooksbank Ave... British Columbia. Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

1632 RIVERSIDE DR. N.VANCOUVER, BC V7H 1H7

Page Number :1-A Total Pages :1 Certificate Date: 07-MAY-97 Invoice No. : 19722152 P.O. Number : AN Account

Project : DBP Comments: ATTN:ARNE BIRKLAND

PLEASE NOTE								CERTIFICATE OF ANALYSIS A9722152							
	EP DE	Au ppb AFS	Pt ppb AFS		Ag ppm AAS	Al % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)
205 205 205	226 226 226	204 6 56 222 232	<pre>< 10 < 5 145 8970 1890</pre>	48 < 2 586 2180 6420	1.8 < 0.2 < 0.2 < 0.6 2.6	9.46 8.01 10.05 7.08 3.48	160 190 4 90 90 < 10	0.5 0.5 1.0 0.5 0.5	6 < 2 < 2 4 Intf*	2.99 3.56 5.75 3.79 2.51	1.0 < 0.5 < 0.5 0.5 < 0.5	17 16 94 248 624	37 89 71 87 1495	4980 261 1615 3260 >10000	4.64 4.30 5.66 14.30 18.90
205	226	36	1380	5270	< 0.2	5.54	30	0.5	Intf*	2.25	< 0.5	846	135	1405	18.50
													-		:
															-
	CO 205 205 205 205 205 205	205 226 205 226 205 226 205 226 205 226 205 226 205 226 205 226	CODE AFS 205 226 204 205 226 6 205 226 56 205 226 222 205 226 232	CODE AFS AFS 205 226 204 < 10	CODE AFS AFS AFS 205 226 204 < 10	CODE AFS AFS AFS AAS 205 226 204 < 10	CODE AFS AFS AFS AAS (ICP) 205 226 204 < 10	CODE AFS AFS AFS AAS (ICP) (ICP) 205 226 204 < 10	PREP CODE Au ppb AFS Pt ppb AFS Pd ppb AFS Ag ppm AFS Al % (ICP) Ba ppm (ICP) Be ppm (ICP) 205 226 204 < 10	PREP CODE Au ppb AFS Pt ppb AFS Pd ppb AFS Ag ppm AAS Al % (ICP) Ba ppm (ICP) Be ppm (ICP) Bi ppm (ICP) 205 226 204 < 10	PREP CODE Au ppb AFS Pt ppb AFS Pd ppb AFS Ag ppm AAS Al % (ICP) Ba ppm (ICP) Be ppm (ICP) Bi ppm (ICP) Ca % (ICP) 205 226 204 < 10	PREP CODE Au ppb AFS Pt ppb AFS Pd ppb AFS Ag ppm AS Al % (ICP) Ba ppm (ICP) Be ppm (ICP) Bi ppm (ICP) Ca % (ICP) Cd ppm (ICP) 205 226 204 < 10	PREP CODE Au ppb AFS Pt ppb AFS Pd ppb AFS Ag ppm AS Al % (ICP) Ba ppm (ICP) Be ppm (ICP) Bi ppm (ICP) Ca % (ICP) Cd ppm (ICP) Co ppm (ICP) 205 226 204 < 10	PREP CODE Au ppb AFS Pt ppb AFS Pd ppb AFS Ag ppm AFS Al % (ICP) Ba ppm (ICP) Bi ppm (ICP) Ca % (ICP) Cd ppm (ICP) Co ppm (ICP) Cr ppm (ICP) 205 226 204 < 10	PREP Au ppb Pt ppb Pd ppb Ag ppm Al % Ba ppm Be ppm Bi ppm Ca % Cd ppm Co ppm Cr ppm Cu ppm 205 226 204 < 10

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

1632 RIVERSIDE DR. N.VANCOUVER, BC V7H 1H7

Page Number :1-B Total Pages :1 Certificate Date: 07-MAY-97 Invoice No. : 19722152 P.O. Number : Account :AN

Project : DBP Comments: ATTN:ARNE BIRKLAND

* PLEASE NOTE

PLEASE NOTE			_						CERTI	FICATE	OF AN	ALYSIS		497221	52	
SAMPLE		REP DE	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)	
437736 437737 437738 437739 437739 437740	205 205 205 205 205 205	226 226 226	0.34 0.62 1.13 0.29 0.08	1.75 1.80 3.94 2.37 6.99	1290 1310 1155 1320 935	<pre></pre>	3.82 3.11 1.97 1.98 0.58	509 52 2900 5530 >10000	1040 600 300 460 Intf*	<pre></pre>	274 274 293 547 51	0.44 0.32 0.20 0.28 0.15	43 104 36 117 115	<pre> < 10 < 10 < 10 < 10 < 10 < 10 < 60</pre>	86 82 50 80 294	
437741	205	226	0.25	1.71	1045	< 1	1.51	>10000	Intf*	< 2	204	0.25	102	10	70	
									, , , , , , , , , , , , , , , , , , ,							
								i						i		
	<u> </u>		<u></u>	3	1	<u> </u>		_L	1	1	LCEI		DN:	. <u> </u> .		

G

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ABNEX RESOURCES LIMITED

1632 RIVERSIDE DR. N.VANCOUVER, BC V7H 1H7

Comments: ATTN:ARNE BIRKLAND

CERTIFICATE A9723048					ANALYTICAL PROCEDURES					
(AN) - AF Project: P.O. # :	RNEX RES	OURCES LIMITED		CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT	
Samples	submitte bort was	ed to our lab in \ printed on 7-MAM	/ancouver, BC. (-97.	301	1	Cu %: Conc. Nitric-HCL dig'n	AAS	0.01	100.0	
	SAM	PLE PREPARA	TION							
CHEMEX CODE	NUMBER	DE	SCRIPTION							
244	1	Pulp; prev. prep	ared at Chemex	-						

A9723048

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ARNEX RESOURCES LIMITED

1632 RIVERSIDE DR. N.VANCOUVER, BC V7H 1H7 Page Number :1 Total Pages :1 Certificate Date: 07-MAY-97 Invoice No. :19723048 P.O. Number : Account :AN

Project : DBP Comments: ATTN:ARNE BIRKLAND

A9723048 **CERTIFICATE OF ANALYSIS** PREP Cu SAMPLE CODE % 437740 244 - -2.58

CERTIFICATION:

APPENDIX V

BIBLIOGRAPHY

SELECTED REFERENCES

Birkeland, A.O. (Dec 12, 1992): Geochemical and Geological Assessment Report, Deer Bay Property. Birkeland, A.O. (Jan 15, 1994): Geochemical and Geological Assessment Report, Deer Bay Property. Carsan, D.J.T. (1973): Plutonic Rocks of Vancouver Island, GSC Paper 72-44. EMPR MINFILE, (1990): 092F - Albernie. EMPR AR 1898, 1899, 1902, 1916,1955, 1961, 1966, 1967. EMPR GEM 1969. EMPR EXPL 1972, 1973, 1974, 1980, 1986, 1987. EMPR ASS RT 8106, 8138, 14807, 16220, 17284, 18751. Lamb, J. (1981): The Island Copper Mine, CIM District 6 Paper. Matysek, P.F., Gravel, J.L. Jackanun, W., Feulgen, S., (1990): NTS 92F - Albernie, MEMPR BC RGS 25, GSC 0.F. 2183. Muller, J.E. (1977): Geology of Vancouver Island, GSC O.F. 463. Muller, J.E. (1980): The Paleozoic Sicker Group of Vancouver Island, GSC Paper 79-30. Muller, J.E., Carson, D.J.T., (1968): Geology and Mineral Deposits of Albernie Map Area, GSC Paper 68-50. Roddick, J.A., Muller, J.E., and Okulitch, A.V. (1979): Frazer River, Sheet 92, GSC Map 1386A. Sutherland Brown, A., (1988): Mineral Inventory of the Albernie Region, EMPR OF 1988-24. Walker, R.R., (1980): Western Mines - Lynx, Myra and Price Deposits, CIM Bulletin Vol. 73, No. 824.

Wheeler, J.O., McFeely, P., (1991): Tectonic Assembledge Map, GSC Map 1712A.