
Hunter Exploration Group

001 05 1997

Gold Commissioner's Office VANCOUVER, B.C.

Located in the Major Hart River Area Liard Mining Division NTS 1041/6W British Columbia, Canada

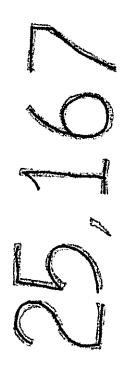
> 58° 49' North Latitude 128° 28' West Longitude

> > -prepared for-

HUNTER EXPLORATION GROUP

#860-625 Howe Street Vancouver, B.C., Canada V6C 2T6

-prepared by-


Jason S. Weber, B.Sc. &
Jim Lehtinen, P. Geo.

EQUITY ENGINEERING LTD.

#207-675 West Hastings Street, Vancouver, B.C., Canada V6B 1N2

September 1997

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

SUMMARY

The Major Hart Project is located in the Major Hart River area, in the Liard Mining Division of north-central British Columbia. The project area lies approximately 105 kilometres northeast of the town of Dease Lake, British Columbia. The Ram property is centred at 58° 47' north latitude and 128° 28' west longitude, and the MH 2 and Major are located eight kilometres north at 58° 52' north and 128° 27' west. The Major Hart project is comprised of three properties (Major 1, MH 2, and Ram), made up of 8 non-contiguous claims totalling 126 units. The properties are located within the Liard Mining Division of north-central British Columbia. The claims were staked in the summer of 1996 to cover an area of anomalous silver and base metal in silt samples from the 1996 BC Regional Geochemical Survey Cry Lake Release (RGS 44)

The paved Stewart-Cassiar Highway passes through Dease Lake as does the rail-bed for the unfinished B. C. Rail northern line. Access to the property is by helicopter from Dease Lake, BC.

Amoco Canada Petroleum Company Ltd. conducted a mapping and soil and silt geochemistry program in 1982 in the area of what is now the Ram property. This program outlined two areas of very anomalous lead and zinc soil geochemistry with values as high as 3320 ppm lead and 4600 ppm zinc. No further work was conducted by Amoco on the property. There is no record of previous work completed on the MH 2 and Major 1 properties. In 1995, a Regional Geochemical Survey (RGS) program was completed in the Cry Lake map area (Jackaman, 1996). Stream sediment and water samples were collected, and field observations recorded from 1159 sites in the survey area, and were released in early July of 1996 as Open File BC RGS 44. The Major Hart properties were staked to cover the possible source areas for anomalous silver and base metal anomalies identified in the RGS survey.

A total of six mandays were spent mapping, prospecting and sampling the Major 1 and MH 2 properties by a crew consisting of a geologist and a sampler. This work program was focused primarily on mapping/prospecting, and silt sampling the major drainages as the steep topography limited access to higher elevations on the property. Three rock samples, 10 silt samples, and six soil samples were collected from the Major 1 property, and five rock samples and five silt samples were collected from the MH 2 property. Six mandays were spent on the Ram property by a crew of one geologist and one sampler. The program consisted of reconnaissance mapping, prospecting, and rock, silt, and soil sampling, concentrating on the southern portion of the Ram 7 claim, where Amoco conducted its 1982 program. Twenty-nine rock samples, 11 silt samples, and 12 soil samples were collected in the course of the 1997 program.

Regional mapping by Gabrielse (1994), shows the three Major Hart properties to be located near the boundary of the Slide Mountain Terrane with the Ancestral North America (ANA) Terrane. The Slide Mountain Terrane has been thrust onto the ANA Terrane along the north to northwest trending Nahlin Fault. The Slide Mountain Terrane(Mississippian to Triassic), generally east of the ANA, is composed dominantly of tholeitic basalt, chert, argillite, slate, and quartz to feldspathic arenite. The Ancestral North American Terrane (Upper Proterozoic to Mississippian) is dominantly clastic sediments, siltstone, shale, and slate of the Road River Formation, Earn and Kechika groups, with minor dolostone and limestone of the McDame and Rosella Formations.

Multi-station lead, zinc, silver and molybdenum values were identified in silt samples on the Major 1 property. Anomalous silts remain unexplained as rock samples collected from altered or mineralized float did not account for metal concentrations returned from silt sampling. Follow-up of the anomalies by silt and soil sampling, as well as prospecting, is recommended.

Owing to the extremely steep terrain on the MH 2 property, it is recommended that the property should be examined with a follow-up survey conducted later in the summer at a time when all snow and ice has melted, and access to the creeks is safer. The program should consist of soil and silt geochemistry carried out in conjunction with prospecting and mapping.

The 1997 program on the Ram property confirmed the anomalous lead and zinc soil geochemistry defined by Amoco in 1982. Prospecting in the lower elevations around the Amoco grid uncovered one sphalerite-galena vein that may be responsible for some of the anomalous soil geochemistry in the area. Soil geochemistry for lead and zinc indicate that background levels for the two are quite high, but large areas of very anomalous lead and zinc soil geochemistry exist. Encouraging results from silt, soil and rock analyses requires that a program of systematic prospecting and sampling be conducted on the Ram property. A majority of the property remains untested and requires prospecting and sampling. In the same program, sampling and prospecting of the northern section of the property should be undertaken to investigate unexplored areas, as well as additional areas of anomalous soil geochemistry defined by Amoco in 1982.

1997 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE MAJOR HART PROJECT, BRITISH COLUMBIA

TABLE OF CONTENTS

4.0 PROPERT 5.0 1997 EXP 6.0 REGIONA 7.0 PROPERT 7.1 Major 7.2 MH 2 7.3 Ram F 8.0 GEOCHE 8.1 Major 8.2 MH 2	CTION CLAIMS N, ACCESS AND GEOGRAPHY TY EXPLORATION HISTORY LORATION PROGRAM L GEOLOGY TY GEOLOGY 1 Property Geology Property Geology Property Geology MISTRY 1 Property Geochemistry Property Geochemistry Property Geochemistry	Page .i11223333445.
APPENDICES	3	
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F	Bibliography Statement of Expenditures Rock Sample Descriptions Certificates of Analysis List of Personnel Geologist's Certificate	
LIST OF TAB	ELES	<u>Page</u>
Table 2.0.1 Table 2.0.2	Claim Data - Major 1 and MH 2 Properties Claim Data - Ram Property	.1. .1.
LIST OF FIGI	URES	Following
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5	Location Map Claim Map Regional Geology Geology and Geochemistry - Major 1 and MH 2 Properties Geology and Geochemistry - Ram Property	Page -1- -1- -3- -Pocket- -Pocket-

1.0 INTRODUCTION

The Major Hart Project is located in the Major Hart River area, in the Liard Mining Division of north-central British Columbia (Figure 1). The project area lies approximately 105 kilometres northeast of the town of Dease Lake, British Columbia. The claims were staked in the summer of 1996, to cover an area of anomalous silver and base metal values from the 1996 BC Regional Geochemical Survey Cry Lake Release (RGS 44). This report details the 1997 program, summarizing geological and geochemical findings.

2.0 LIST OF CLAIMS

The Major Hart project is comprised of three properties (Major 1, MH 2, and Ram), made up of 8 non-contiguous claims totalling 126 units. The property is located within the Liard Mining Division of north-central British Columbia (Figure 2). Claim details are summarized in Table 2.0.1. Records of the British Columbia Mineral Titles Branch indicate the claims are wholly owned by John Robins, Lawrence Barry, and Watershed Resources Limited; separate documents indicate that they are held for Hunter Exploration Group.

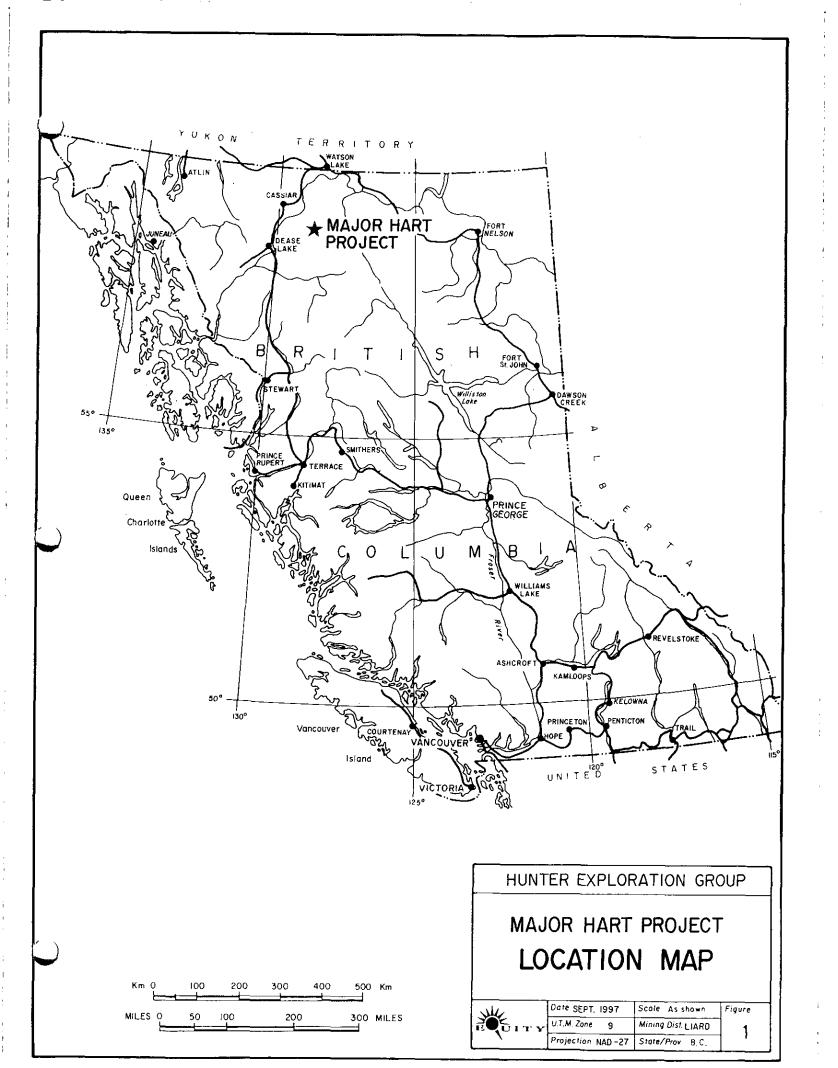
TABLE 2.0.1
CLAIM DATA - MAJOR 1 & MH2 PROPERTIES

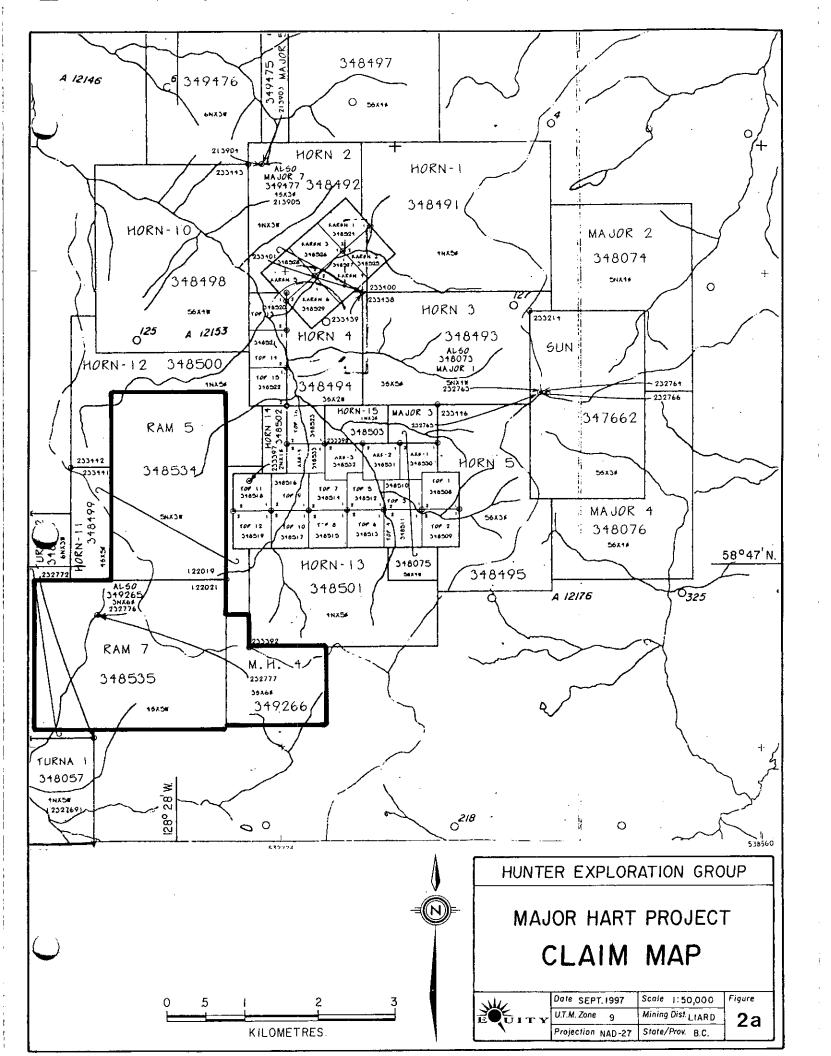
Claim Name	Tenure Number	No. of Units	Record Date`	Expiry Date
Major 1	348536	15	July 5, 1996	1998*
MH 2	349264	20	July 29, 1996	1998*

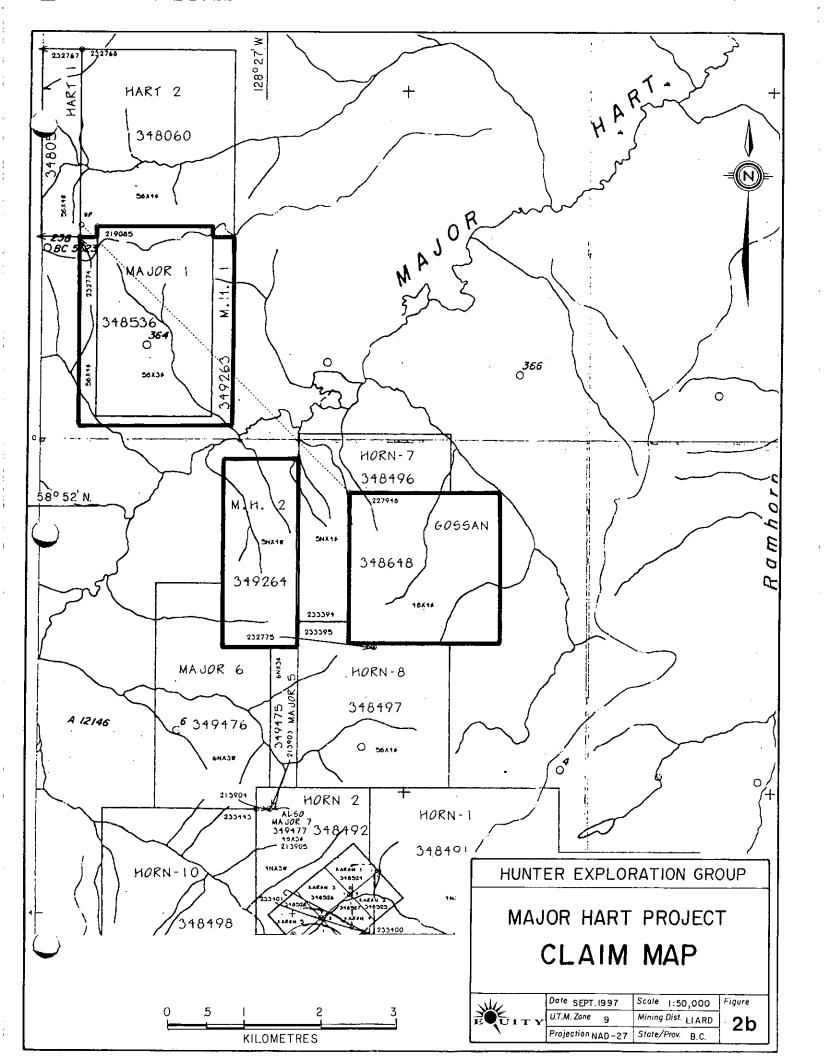
Subject to approval of work covered by this report.

TABLE 2.0.2
CLAIM DATA - RAM PROPERTY

Claim Name	Tenure Number	No. of Units	Record Date`	Expiry Date
Ram 5	348534	20	July 5, 1996	1998*
Ram 7	345835	15	July 5, 1996	1998*
MH 3	349265	20	August 1, 1996	1998*
MH 4	349266	20	August 1, 1996	1998*
	<u> </u>	· 75		· ···· · · · · · · · · · · · · · · · ·


Subject to approval of work covered by this report.


3.0 LOCATION, ACCESS, AND GEOGRAPHY


The Major Hart project is located approximately 105 kilometres northeast of Dease Lake in northwestern British Columbia. The Ram property is centred at 58° 47' north latitude and 128° 28' west longitude, and the MH 2 and Major are located eight kilometres north at 58° 52' north and 128° 27' west.

The paved Stewart-Cassiar Highway passes through Dease Lake as does the rail-bed for the unfinished B. C. Rail northern line. Access to the property is by helicopter from Dease Lake, BC.

Topography is mountainous, characterized by steep terrain. Elevations range from 800 metres to 2276 metres above sea level. The Major Hart project area is subject to a continental climatic regime, with moderate summers and cold winters. Vegetation is varied, consisting of willows and buckbrush with minor coniferous growth in lower elevations and drainages, and sub-alpine to alpine meadows above treeline.

estada esta funda estada estada estada estada estada estada estada en estada estada estada estada estada estad

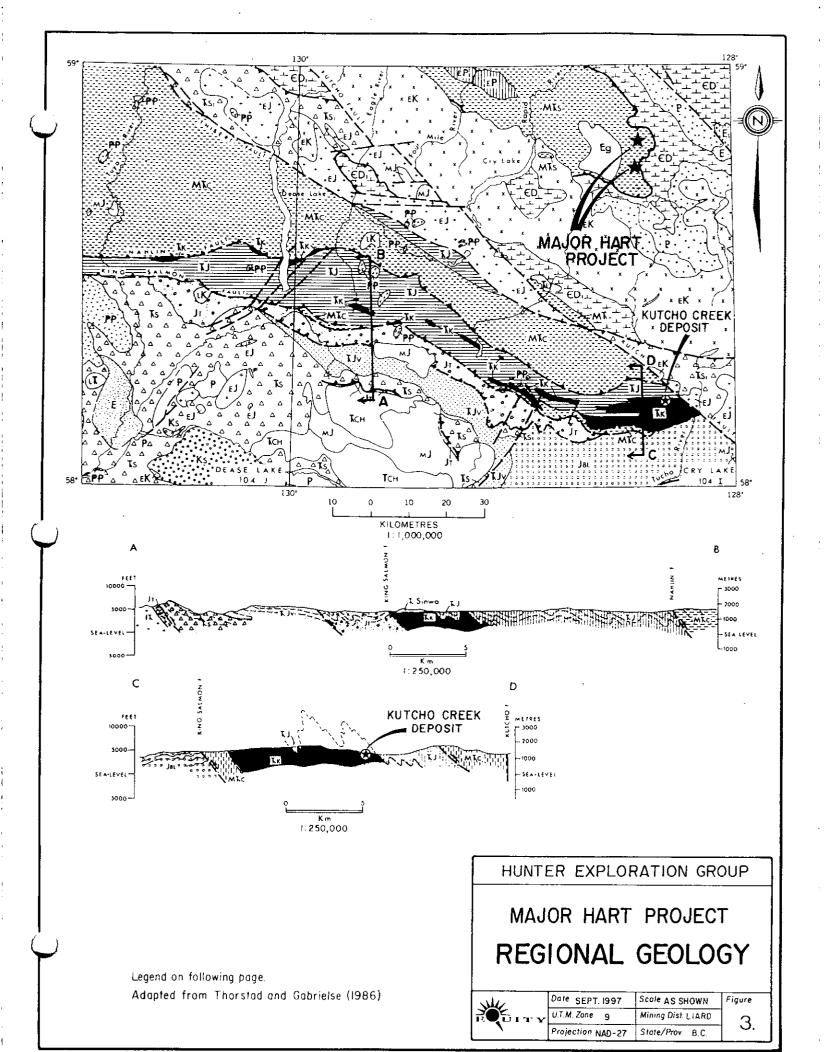
4.0 PROPERTY EXPLORATION HISTORY

Amoco Canada Petroleum Company Ltd. conducted a mapping, and soil and silt geochemistry program in 1982 in the area of what is now the Ram property (Miller, 1983). This program outlined two areas of very anomalous lead and zinc soil geochemistry with values as high as 3320 ppm lead and 4600 ppm zinc. There is no record of follow-up program work on the property. During the staking program in 1996, two float samples where collected from the northeastern corner of the Ram 7 claim. One of these returned a value of 1900 ppm copper. There is no record of previous work completed on the MH 2 and Major 1 properties.

In 1995, a Regional Geochemical Survey (RGS) program was completed in the Cry Lake map area (Jackaman, 1996). Stream sediment and water samples were collected, and field observations recorded from 1159 sites in the survey area, and were released in early July of 1996 as Open File BC RGS 44. Numerous base and precious metal anomalies throughout the Cry Lake map sheet were the impetus for the staking of approximately 1400 units in the study area immediately after the release (Cook et al, 1996). The Major Hart properties were staked to cover the possible source areas for anomalous silver and base metal anomalies identified in the RGS survey.

5.0 1997 EXPLORATION PROGRAM

A total of six mandays were spent mapping, prospecting and sampling the Major 1 and MH 2 properties by a crew consisting of a geologist and a sampler. This work program was focused primarily on mapping/prospecting, and silt sampling the major drainages as the steep topography limited access to higher elevations on the property. The Major 1 property was investigated primarily by silt sampling the southeast draining creeks on the east side of the property. The MH 2 property was investigated by silt and rock sampling two north flowing drainages. Owing to the extremely steep terrain, only lower elevations were examined. Three rock samples, 10 silt samples, and six soil samples were collected from the MH 2 property.


Six mandays were spent on the Ram property by a crew of one geologist and one sampler. The program consisted of reconnaissance mapping, prospecting, and rock, silt, and soil sampling. Exploration concentrated on the southern portion of the Ram 7 claim, where Amoco conducted its 1982 program. Twenty-nine rock samples, 11 silt samples, and 12 soil samples were collected in the course of the 1997 program.

All samples were analyzed for gold geochemically and for 32 additional elements by ICP at Chemex Labs in North Vancouver. Rock sample descriptions are found in Appendix C, and analytical certificates are in Appendix D.

6.0 REGIONAL GEOLOGY

Regional mapping by Gabrielse (1994), shows the three Major Hart properties to be located near the boundary of the Slide Mountain Terrane with the Ancestral North America (ANA) Terrane (Figure 3). The Slide Mountain Terrane has been thrust onto the ANA Terrane along the north to northwest trending Nahlin Fault. The Slide Mountain (Mississippian to Triassic), generally east of the ANA, is composed dominantly of tholeitic basalt, chert, argillite, slate, and quartz to feldspathic arenite. The Ancestral North American Terrane (Upper Proterozoic to Mississippian) is dominantly clastic sediments, siltstone, shale, and slate of the Road River Formation, Earn and Kechika groups, with minor dolostone and limestone of the McDame and Rosella Formations.

Mapping by Gabrielse (1994), shows the Nahlin thrust fault cutting through the southwestern corner of the Ram property with a northerly trend. It crosses the MH 2 claim with a north-northwesterly trend where it is truncated by a northwesterly trending unnamed normal fault. Movement along this fault

LEGEND

(to accompany Figure 3)

PLIOCENE AND PLEISTOCENE

PP Basaltic flows, ash

EOCENE

Eg Granite, locally miarolytic

E Conglomerate, shale, siltstone, coal

E₁ Rhyolite

CRETACEOUS

uK Granite

LOWER AND MIDDLE CRETACEOUS

Ks Sustut Group: sandstone, shale, conglomerate; nonmarine

LK Granite

MIDDLE JURASSIC

JBL Bowser Lake Group: pebble conglomerate, sandstone, shale; in part nonmarine; includes andesitic volcanic rocks in eastern part

MJ Granodiorite, monzodiorite, monzonite

LOWER JURASSIC

JT Takwahoni Formation: greywacke, shale, conglomerate; minor sandstone, limestone

LJ Granodiorite, diorite, monzodiorite

UPPER TRIASSIC AND LOWER JURASSIC

TJ Sinwa and Inklin Formations: Sinwa limestone; Inklin greywacke, phyllitic slate, conglomerate

TJv Andesitic volcanics, flows, breccia

UPPER TRIASSIC

TK Kutcho Formation: basaltic to rhyolitic schists (flows, breccia, crystal tuff); fine-grained volcanic sediments, basic schist; conglomerate, may be basal Inklin Formation, in part

LT Monzodiorite, granodiorite

MIDDLE AND UPPER TRIASSIC

Ts Stuhini Group and unnamed rocks: andesite, tuff, breccia, volcanic sandstone

Tu Peridotite, dunite, pyroxenite

Ts includes Upper Triassic limestone and Lower Jurassic shale, greywacke, conglomerate

MISSISSIPPIAN TO TRIASSIC

MT Greenstone, rhyolite, chlorite phyllite, tuff; age uncertain

MTs Sylvester Group: chert, argillite, basalt, limestone, ultramafic rocks, tonalite, diorite

MTc Cache Creek Group: chert, argillite, ultramafic rocks, gabbro, basalt, limestone

PERMIAN

P Limestone, greenstone, phyllite, chert

LP Diorite, granodiorite

LP₁ Granite; age uncertain

CAMBRIAN TO UPPER DEVONIAN

CD/CD₁ Atan, Kechika, Sandpile and McDame Groups: sandstone, siltstone, shale, limestone, dolomite

CD Mainly shelf and platform facies

CD₁ Mainly off-shelf facies

UPPER PROTEROZOIC

P Ingenika Group: metamorphosed siltstone, sandstone, shale; limestone, dolomite

Geology taken from Thorstad and Gabrielse (1986).

has resulted in a downthrown southwest block. This normal fault likely crosses the Major Hart River to the northwest, but is buried by Quaternary sediments of glacial, glacio-fluvial, and fluvial origin. The Major property to the northwest hosts the continuation of the normal fault where it shown to truncate the Nahlin fault.

7.0 PROPERTY GEOLOGY

7.1 Major 1 Property Geology

Geology of the property from Gabrielse (1994) indicates that the Major property is dominantly underlain by Slide Mountain Terrane sedimentary rocks cut by a normal fault with has a southwest down thrown side (Figure 4). On the northeast side of the normal fault, the rocks consist of Slide Mountain chert thrust over McDame Formation limestone and Earn Group shale and argillite. The southwest side of the normal fault is completely underlain by Slide Mountain Terrane cherty sediments. Field mapping on the property encountered limestone, argillite, phyllite, shale and chert of the Slide Mountain Terrane, Earn Group and McDame Formation rocks. Prospecting discovered two major silicified zones in the McDame Formation limestone. One of the zones displayed erratic, patchy aggregations of tetrahedrite which was selectively sampled (316623). Overall the concentration of tetrahedrite would be of trace amounts. Quartz float was prevalent in both creeks, although only one float sample displayed azurite stain.

7.2 MH 2 Property Geology

Geology of the MH 2 property is taken from Gabrielse (1994) as little outcrop mapping was conducted during the 1997 program. Gabrielse indicates the dominant lithology on the property to be Paleozoic tholeitic basalt with the McDame Formation limestone and Earn Group shale and argillite underlying the northeast corner. A reconnaissance helicopter survey of the gossan located on Cottonwood Creek indicates a sequence of thinly bedded, black, fine-grained sediments which are likely Slide Mountain Terrane rocks or alternatively, Earn Group sediments. These sediments host minor quartz veining and iron stain which is producing the highly visible gossan on the north facing slope. Numerous volcanic float blocks in the creek suggest the presence of the tholeitic basalt unit above the area investigated.

7.3 Ram Property Geology

The Ram property is almost completely within the Slide Mountain Terrane, according to regional mapping (Gabrielse, 1994). The southwestern corner is shown to be underlain be lithologies of the ANA terrane. Lithologies observed on the Ram property include mafic volcanic flows and tuffs, as well as chert and argillite. All units correspond to Slide Mountain Terrane rocks mapped by Gabrielse. Previous mapping by Amoco in 1982 (Miller, 1983), describes volcanics, chert, and argillite, as well as sill-like mafic to ultramafic intrusives. Similar ultramafic units were encountered southeast of camp in the 1997 program. Numerous small-scale faults exist on the property. Miller describes silicification associated with faulting in his 1983 report, possibly referring to a silicified knob between lines 6+00 S and 8+00 S, approximately 200 metres east of the baseline. A number of faults host gossans, and in the case of one cutting the silicified knob, sphalerite-galena veins were discovered.

8.0 GEOCHEMISTRY

8.1 Major Property Geochemistry

A total of 10 silt samples were taken during the course of prospecting the two drainages of the property. Results indicate that all the zinc and molybdenum values returned are ranked as high anomalies relative to the RGS statistical data. Also 80% of the silver values returned are ranked in the

moderate to high range while lead values are ranked as moderate anomalies. Elevated silver values in silts can be explained by the minor silicified and stringered zones which host minor concentrations of tetrahedrite.

A total of six soil samples from a single soil line returned metal values which were comparable to the silt values obtained from the two major drainages.

Three rock samples were taken during the course of the program. Rock sample 316623 selectively sampled tetrahedrite in quartz veining in a silicified zone hosted in limestone, returning 14.6 ppm silver, 458 ppm copper, 1310 ppm lead, and 44 ppm zinc. Sample 316622 was taken in a silicified, weakly gossanous zone along a thrust fault, returned low values. No significant mineralization was recognized other than the silicified limestone, and minor quartz veining.

8.2 MH 2 Property Geochemistry

Sampling on the property was restricted to the lower reaches of the creeks. A total of five silt samples were taken from Cottonwood and Anson Creeks. Relative to the RGS survey statistical data all the metal values for the five samples returned high ranking zinc (>218 ppm), molybdenum (>10 ppm) and silver (> 0.5 ppm) with moderate to high lead and moderate to high copper.

A single float sample (316624) with pyrite, sphalerite, and galena hosted in quartz returned 29.8 ppm silver, 2210 ppm lead and 2320 ppm zinc. The vein quartz may have originated from the veining observed in the black gossanous sediments viewed during the helicopter reconnaissance of the upper reaches of the creeks.

8.3 Ram Property Geochemistry

Rock, silt, and soil geochemical sampling was concentrated on the Ram 7 claim in the southern portion of the property. It is in this area that Amoco defined anomalous soil and silt geochemistry in their 1982 program. Soil development in the grid area is poor at the higher elevations due to steep terrain with active talus slopes. At lower elevations, vegetated areas concentrated near the stream roughly parallel to the baseline, have better soil development. A contour line starting near the southern property boundary, ending approximately 100 metres east of the end of line 8+00 S, was able to confirm and extend the lead-zinc anomalies defined by Amoco (Figure 4). Analyses of sample MH 1700 800N returned values of 2600 ppm lead and 2630 ppm zinc. Two other samples from this line (stations 500N, and 700N) returned values of greater than 300 ppm lead and 500 ppm zinc. Three samples returned values of greater than 200 ppm copper. Grab soils MH97JW-1 and MH7600FT returned values 237 and 320 ppm copper, and MH 1700 500 N returned 238 ppm copper. The two grab soil samples likely consist of talus fines rather than B-horizon soil, and may be reflecting copper concentrations in the bedrock. Sample MH 1700 700N returned a value of 950 ppm for lead.

Silt geochemistry for the Ram property confirms the results of the soil geochemistry. All but three samples would classify as first rank zinc anomalies (>218 ppm zinc) for the 1996 RGS release dataset. Of the three below this threshold, two are second rank (157-217 ppm zinc), and the other is a third rank (93-156 ppm zinc) anomaly. Every analysis for lead in silt from the property qualifies as a first rank anomaly (>25 ppm lead) for the complete RGS dataset, and only one copper analysis fails to qualify as a top rank copper anomaly (>99 ppm).

Twenty-nine rock samples from the Ram property were collected and analysed. Sample 316677 was taken from a narrow fault zone hosting a heavily oxidized sphalerite-galena. The fault cuts through a resistant knoll between lines 6+00 S and 8+00 S, approximately 200 metres east of the baseline. The knoll may be silicified basalt. This sample assayed 4.8% zinc and 3.62% lead, with 88.8 g/t silver. The trend of the fault extends to the southeast, intersecting the opposite side of the valley. The strike extension of this vein may be in part responsible for anomalous lead-zinc soil geochemistry at MH1700 800N. A small gossan is visible upslope of the line in that area. Another fault cutting the knoll, except

with a northwest trend, was sampled (316674). Analyses returned a value of 215 ppb gold, with low base metal values. Sample 2744 was taken from the northeast corner of the Ram 7 claim, from a very rusty horizon exposed in a cliff. Partially obscured by snow and talus, it had a true width of at least three metres. Due to accessibility problems, only lower portions could be sampled. Analysis returned values of 1240 ppm copper and 1.4 ppm silver.

9.0 DISCUSSION

The source of multi-station lead, zinc, silver and molybdenum values returned from silt sampling on the Major 1 property were not found during the course of the reconnaissance program. Rock sampling of altered or mineralized float did not explain the metal concentrations returned from silt sampling. Follow-up of the anomalies by silt and soil sampling, as well as prospecting, is recommended.

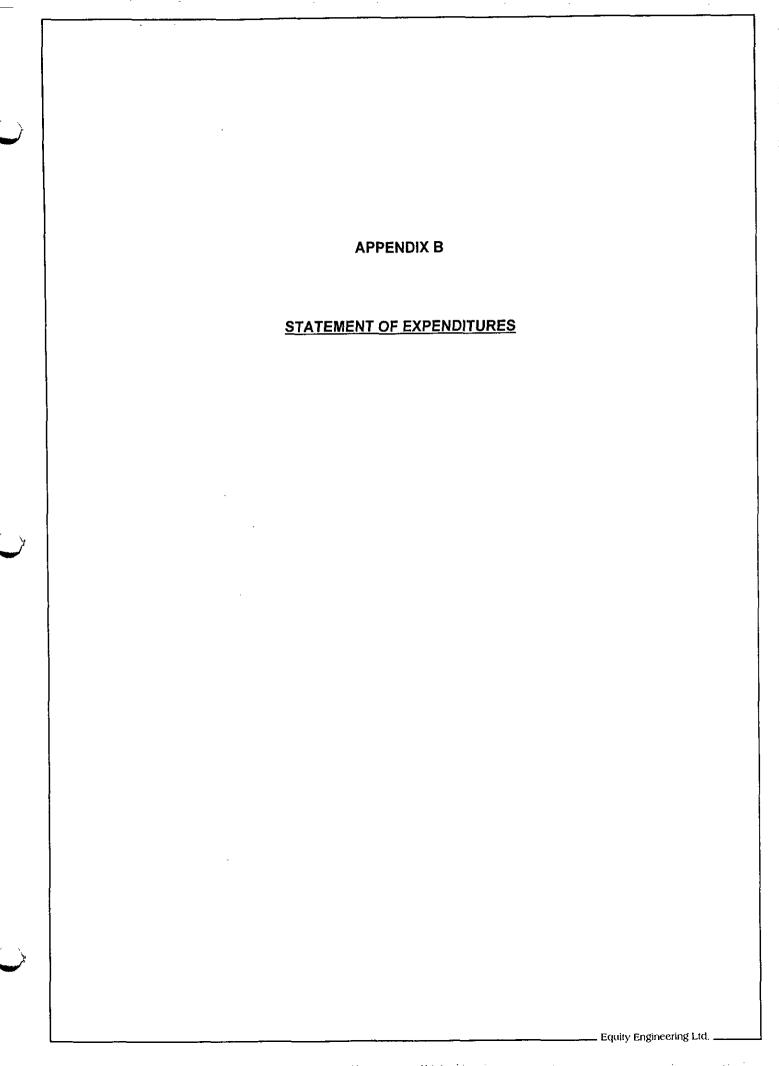
Owing to the extremely steep terrain on the MH 2 property, it is recommended that the property should be examined with a follow-up survey conducted later in the summer at a time when all snow and ice has melted, and access to the creeks is safer. The program should consist of soil and silt geochemistry carried out in conjunction with prospecting and mapping.

The 1997 program on the Ram property confirmed the anomalous lead and zinc soil geochemistry defined by Amoco in 1982. Prospecting in the lower elevations around the Amoco grid uncovered one sphalerite-galena vein that may be responsible for some of the anomalous soil geochemistry in the area. Numerous small gossans are apparent in the area, especially at the higher elevations. Assessment reports from the Amoco work do not indicate that prospecting, mapping, or sampling was conducted outside of the area of the grid. Soil geochemistry for lead and zinc indicate that background levels for the two are quite high, but large areas of very anomalous lead and zinc soil geochemistry exist.

A majority of the property remains untested and requires prospecting and sampling. Encouraging results from silt, soil, and rock sampling require a follow-up program of systematic prospecting and sampling be conducted on the Ram property. Numerous gossans existing in the higher elevations require follow-up sampling, as does the gossanous horizon tested by samples 2744 and 2745. Work conducted later in the summer (July or August) would allow an adequate survey of the higher elevations, as snow cover during the 1997 program proved frustrating. This is especially important in the areas east of lines 8+00 S, 9+00 S, and 10+00 S where soil geochemistry remains unexplained. In the same program, sampling and prospecting of the northern section of the property should be undertaken to investigate unexplored areas, as well as additional areas of anomalous soil geochemistry defined by Amoco in 1982.

Respectfully submitted,

Jason Weber, B.Sc. EQUITY ENGINEERING LTD.


Jim Lehtinen, P. Geo.

Vancouver, British Columbia October, 1997

APPENDIX A BIBLIOGRAPHY ____ Equity Engineering Ltd. _

BIBLIOGRAPHY

- Cook, S., Jackaman, W., Lett, R., and Sibbick, S. (1997): Regional Geochemical Survey Program: Review of 1996 Activities. Ministry of Employment and Investment
- Gabrielse, H.G., (1994): Geology of Cry Lake (104I) and Dease Lake (104J/E) Map Areas, North Central British Columbia; Energy, Mines, and Resources Canada, Open File 2779; Sheet 2 Settea Lake; 104I/2.
- Jackaman, W. (1996): British Columbia Regional Geochemical Survey Cry Lake (104l); British Columbia Ministry of Employment and Investment, BC RGS 44.
- Miller, P. (1983): Range Group: Soil Geochemistry, Liard Mining Division, Range 1. Ministry of Employment and Investment Geological Branch, Assessment Report No. 11,182.
- Thorstad, L.E. and Gabrielse, H. (1986): The Upper Triassic Kutcho Formation, Cassiar Mountains, North-Central British Columbia; Geological Survey of Canada Paper 86-16, 53 pp.

STATEMENT OF EXPENDITURES MAJOR HART PROJECT - RAM PROPERTY June 1997

Ju	116 1337			
*Pro-rated based on actual number of mandays s	pent on l	Ram Property	'.	
PROFESSIONAL FEES AND WAGES				
*Henry J. Awmack, P. Eng.				
0.375 days @ \$425/day	\$	21.73		
*Stewart Harris, Project Geologist	•			
1.5 days @ \$425/day		86.93		
*Jason Weber, Geologist		00.00		
3.629.days @ \$350/day		1,270.15		
*Dirk Moraal, Prospector		.,		
3.272 days @ \$300/day		981.60		
*Clerical				
32 hours @ \$25/hour		109.09	\$	2,469.51
EXPENSES			•	•
*Accommodation	\$	84.50		
*Aircraft Charters		278.78		
*Automobile Fuel		65.05		
*Bulk Fuel		183.23		
*Camp Food		90.60		
*Camp Supplies		6.87		
*Chainsaw Rental		8.18		
Chemical Analyses		800.40		
*Courier		4.51		
*Fax Charges		0.12		
*Ferries		10.70		
*Helicopter Charters		1,333.75		
*Maps and Publications		62.96		
*Materials and Supplies		243.15		
*Meals		51.19		
*Parking		0.26		
*Printing and Reproductions		87.47		
*Radio Rental		69.06 59.40		
*Satellite Phone Rental		58.49 12.19		
*Telephone Distance Charges *Truck Rental		396.98	\$	3,848.44
HUON NEHIOI	,	000.00	Ψ	0,040.44
EQUIPMENT RENTALS				
Fly Camp				
6 mandays @ \$25/manday	\$	150.00	\$	150.00
o manago & vzornanady	*	. 23.33	•	. 55.00
REPORT				
Drafting	\$	500.00		
Printing and Reproductions	•	166.67		
Time		1,333.33	\$	2,000.00

__ Equity Engineering Ltd. _

SUBTOTAL	\$ 8,467.95
PROJECT SUPERVISION CHARGE 12% on sub-total (\$8467.95)	 1,016.15
SUBTOTAL	9,484.10
GST 7.0 % on subtotal (including project supervision charges)	663.89
TOTAL	\$ 10,147.99

STATEMENT OF EXPENDITURES MAJOR HART PROJECT - MAJOR 1 PROPERTY June 1997

*Pro-rated based on actual number of mandays	spent on i	Major 1	Property.
--	------------	---------	-----------

	ONAL FEES AND WAGES				
*	Henry J. Awmack, P. Eng.	•	44.40		
	0.375 days @ \$425/day	\$	14.49		
•	*Stewart Harris, Project Geologist		57.95		
•	1.5 days @ \$425/day		57.55		
	*Jim Lehtinen, P. Geo. 2.68 days @ \$425/day		938.00		
,	*Rory Edwards, Sampler		950.00		
	2.36 days @ \$225/day		708.00		
' 	*Clerical		, 00.00		
	32 hours @ \$25/hour		72.73	\$	1,791.17
EXPENSES	_			•	•
	*Accommodation	\$	56.33		
	*Aircraft Charters		185.85		
	*Automobile Fuel		43.37		
	*Bulk Fuel		122.15		
1	*Camp Food		60.40		
	*Camp Supplies		4.58		
	*Chainsaw Rental		5.45		
	Chemical Analyses		275.36		
	*Courier		3.00		
	*Fax Charges		0.08		
1	*Ferries		7.14		
	*Helicopter Charters		889.17		
l l	*Maps and Publications		41.97		
	*Materials and Supplies		162.10		
	*Meals		34.13		
	*Parking		0.17		•
3	*Printing and Reproductions		58.31 46.04		
l .	*Radio Rental				
i	*Satellite Phone Rental		38.99 8.13		
1	*Telephone Distance Charges *Truck Rental		264.65	\$	2,307.39
	Huck Remai	<u></u>	204.00	•	2,007.00
EQUIPME	NT RENTALS				
	Fly Camp				
	4 mandays @ \$25/manday	\$	100.00	\$	100.00
REPORT					
}	Drafting	\$	500.00		
	Printing and Reproductions		166.67		
]	Time		1,333.33	_\$	2,000.00
L					Equity Engineering L

SUBTOTAL	\$ 6,198.56
PROJECT SUPERVISION CHARGE	
12% on sub-total (\$6198.56)	 743.83
SUBTOTAL	6,942.39
GST	405.07
7.0 % on subtotal (including project supervision charges)	485.97
TOTAL	\$ 7,428.36

STATEMENT OF EXPENDITURES MAJOR HART PROJECT - MH 2 PROPERTY June 1997

*Pro-rated based on actua	number of mandays s	pent on the MH 2 Property
---------------------------	---------------------	---------------------------

DD05500	NONAL PERCAND WACES		·		
PROFESS	IONAL FEES AND WAGES				
	*Henry J. Awmack, P. Eng.	•	7.04		
	0.375 days @ \$425/day	\$	7.24		
	*Stewart Harris, Project Geologist		00.00		
	1.5 days @ \$425/day		28.98		
	*Jim Lehtinen, P. Geo		F00 F0		
	1.34 days @ \$425/day		569.50		
	*Rory Edwards, Sampler				
	1.18 days @ \$225/day		265.50		
	*Clerical		22.02	•	007.50
EVERNOE	32 hours @ \$25/hour		<u> 36.36</u>	\$	907.59
EXPENSE		_			
	*Accommodation	\$	28.17		
	*Aircraft Charters		92.93		
	*Automobile Fuel		21.68		
	*Bulk Fuel		61.08		
	*Camp Food		30.20		
	*Camp Supplies		2.29		
	*Chainsaw Rental		2.73		
	Chemical Analyses		152.63		
	*Courier		1.50		
	*Fax Charges		0.04		
	*Ferries		3.57		
	*Helicopter Charters		444.58		
	*Maps and Publications		20.99		
	*Materials and Supplies		81.05		
	*Meals		17.06		
	*Parking		0.09		
	*Printing and Reproductions		29.16		
	*Radio Rental		23.02		
	*Satellite Phone Rental		19.50		
	*Telephone Distance Charges		4.06		
	*Truck Rental		132.33	\$	1,168.64
EQUIPME	NT RENTALS				
	Camp Rental				
	2 days @ \$25/day		50.00		
	Handheld Radios				
	1 days @ \$5/day		5.00	\$	55.00
REPORT	(estimated)				
	Drafting	\$	500.00		
<u> </u>					Equity Engineering Ltd

Printing and Reproductions 166.67 Time 1,333.33	\$ 2,000.00
SUBTOTAL	\$ 4,131.22
PROJECT SUPERVISION CHARGE	
12% on sub-total (\$4,131.22)	 495.75
SUBTOTAL	4,626.97
GST 7.0 % on subtotal (including project supervision charges)	323.89
TOTAL	\$ 4,950.86

APPENDIX C

ROCK SAMPLE DESCRIPTIONS

MINERALS AND ALTERATION TYPES

ΑZ	azurite	Bl	biotite	во	bornite
CA	calcite veining	CB	carbonate	CC	chalcocite
CL	chlorite	CP	chalcopyrite	CU	native copper
CV	covellite	CY	clay	DI	diopside
EΡ	epidote	FM	ferromolybdite	FP	feldspar
GΑ	garnet	GE	goethite	GL	galena
ΗE	earthy hematite	HS	specularite	JA	jarosite
KF	K-feldspar	MC	malachite	MG	magnetite
MN	Mn-oxides	MO	molybdenite	MS	sericite
MU	muscovite	NE	neotocite	PΥ	pyrite
QV	quartz veining	SI	silica	SP	sphalerite

ALTERATION INTENSITY

			_	_	
m	moderate	S	strong	tr	trace
VC	very strong	\A/	weak		

	Project Na	<u>ime</u>	:Cry Lake Reg	ional	Project:	HEG97-01	NTS:	1041/16			
Sample Number:	Grid North:	N	Grid East:	Ε	Type: Select	Alteration:		Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
316621	UTM 6526610	N	UTM 530910	E	Strike Length Exp: 2	m Metallics: trPY		<5	1.2	90	487
Мајог	Elevation 915	m	Sample Width: 15	cm	True Width: 15 cm	Secondaries: MC		Mo (ppm)		Pb (ppm)	
•	Orientation 045°/90° partz sweat in shale. Irre		Vein width 5-15cm. Minor ma	alachite.	Host : Black-grey shale	e		2	11	<2	106
Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration:		Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
316622	UTM 6527280	N	UTM 530730	E	Strike Length Exp:	m Metallics:		<5	<.2	320	3
	Elevation 1170	m	Sample Width: 5	m	True Width:	Secondaries:		Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Major	Orientation		Vein		Host: Silicified limesto	one		1	5	4	16
Comments: Str	inger (tension gash?) z	one in	silicified limestone. Vei	ining oc	cupying 030/45 and appro	eximately 145/30 direction.	No sulphide,	, lots of rust.		,	
Sample Number:	Grid North:	N	Grid East:	Ε	Type: Select	Alteration: wSI		Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
316623	UTM 6526910	N	UTM 531160	E	Strike Length Exp: 1	m Metallics: trTT		<5	14.6	40	458
	Elevation 1015	m	Sample Width: 10	cm	True Width: 10 cm	Secondaries: wMA		Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Major	Orientation 060°/90°	X			Host: Limestone			<1	3	1310	44
Comments: Str	inger zone with patchy,	rare te	trahedrite and malachi	te abou	t 4m. 25% quartz over 1m	n in highest vein density. Zo	ne width ab	out 25m.			

	<u>Project Na</u>	ame:	Cry Lake Reg	ional	<u>Project:</u>	HEG97-01 <u>NTS:</u>	1041/16			
Sample Number:	Grid North:	N	Grid East:	Е	Type: Float	Alteration: wCL,sMS	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm
316624	UTM 6525410	N	UTM 531530	E	Strike Length Exp:	m Metallics: trCP,trPO,trPY,1%Sl	P <5	29.8	330	24
	Elevation 870	m	Sample Width:		True Width:	Secondaries:	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm
MH 2	Orientation				Host: Sericite altered v	olcanic	<1	4	2210	2320
Comments: Min	nor rusting +/- quartz ve	ining ir	n strongly altered volca	nic; pate	chy sulphide within poorly	defined, vein oriented bands.				
Sample Number:	Grid North:	N	Grid East:	E	Type: Float	Alteration: mCL,mMS	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm
316625	UTM 6525260	N	UTM 531650	E	Strike Length Exp:	m Metallics:	<5	<.2	10	105
	Elevation 910	m	Sample Width:		True Width:	Secondaries:	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm
MH 2	Orientation				Host: Volcanic breccia		<1	59	6	80
Comments: Nu	merous float blocks with	h rusty	surfaces. No visible su	ulphides	. Crackle textured.				,	
Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration: mSI	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm
316626	UTM 6525310	N	UTM 531620	E	Strike Length Exp: 3	m Metallics:	<5	0.2	120	<1
•	Elevation 900	m	Sample Width: 20	cm	True Width: 20 cm	Secondaries:	<u>Mo (ppm)</u>	Ni (ppm)	Pb (ppm)	Zn (ppm
MH 2	Orientation		Vein		Host: Limestone		<1	5	14	36
Comments: Qu	artz stockwork zone in	limesto	one.							
Sample Number:	Grid North:	N	Grid East:	E	Type: Float	Alteration:	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm
316627	UTM 6525310	N	UTM 531610	E	Strike Length Exp:	m Metallics: trPY	<5	<.2	390	8
	Elevation 900	m	Sample Width:		True Width:	Secondaries:	<u>Mo (ppm)</u>	Ni (ppm)	Pb (ppm)	Zn (ppm
MH 2	Orientation				Host:		1	10	8	32
Comments: Sa	mpled below first major	falls -	pyrite in quartz and in	shale fra	igments.					
Sample Number:	Grid North:	N	Grid East:	Е	Type: Float	Alteration:	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm
316628	UTM 6525220	N	UTM 531920	Ε	Strike Length Exp:	m Metallics:	<5	1	130	172
	Elevation 940	m	Sample Width:		True Width:	Secondaries:	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
MH 2	Orientation				Host: Black shale		10	15	4	92
Comments: Fig	oat at base of falls. Qua	rtz veir	ning in black shale. No	visible s	ulphides. No sample flags	left in field.				

	<u>Project</u>	<u>Name</u>	Cry Lake	Regiona	l <u>Project:</u>	HEG97-01 <u>NTS:</u>	1041/16			
Sample Number:	Grid North:	N	Grid East:	Ē	Type: Grab	Alteration: mGL	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2730	UTM 6514770	N	UTM 529700	E	Strike Length Exp: 4	m Metallics: 1-3%PY	<5	<.2	30	35
D	Elevation 1670	m	Sample Width:	30 cm	True Width: 30 cm	Secondaries: mHE,wJA	<u>Mo (ppm)</u>	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation 152°/3	5° SW	Joint		Host: Andesite tuff		1	31	20	46
Comments: Py	ritic altered andesite	tuff. Pyrit	e as stringers and	d blebs and	as minor dissemination.					
Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration: wCL,wQZ	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2731	UTM 6514830	N	UTM 529740	Ε	Strike Length Exp: 5	m Metallics: trPY	<5	<.2	140	48
	Elevation 1685	m	Sample Width:	5 cm	True Width: 5 cm	Secondaries: mHE,wJA	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation 010°/4	0° SE	Joint		Host: Argillite		2	14	18	40
Comments: Ru	usty weathered black	argillite c	ut by 2-7mm qua	rtz veinlet wi	th brown pyrite.					
Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration: wCL	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2732	UTM 6514920	N	UTM 529830	E	Strike Length Exp: 5	m Metallics: trPY	<5	<.2	430	147
	Elevation 1705	m	Sample Width:	20 cm	True Width: 20 cm	Secondaries: trHE,trJA	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation 115°/5	4° SW	Bedding		Host: Chert		1	15	12	62
Comments:										
Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration: wCL,?St	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2733	UTM 6515490	N	UTM 529885	Ε	Strike Length Exp: 40	m Metallics: tr-0.3%PY	<5	<.2	30	64
	Elevation 1820	m	Sample Width:	15 cm	True Width:	Secondaries: wHE,trJA	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation				Host: Andesite tuff		1	14	<2	28
Comments: Po	ssibly on/near a sma	ill fault. Di	sseminated pyrite	€.						
Sample Number:	Grid North:	N	Grid East:	E	Type: Float	Alteration: wCL,wQZ	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2734	UTM 6515565	N	UTM 529910	E	Strike Length Exp:	m Metallics: 0.5%PY	<u></u> <5	<.2	<10	107
2.04	Elevation 1845	m	Sample Width:	5 cm	True Width:	Secondaries: wHE,wJA	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation				Host: Tuff? (andesitic)		<1	13	<2	28
Comments: Ve	ry rusty rind to rock (float) but	fresh inside, very	fine dissem	nated pyrite, as well as py	rite in quartz vein/silica rich laminae.			_	
Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration: sSI	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2735	UTM 6515580	N	UTM 529940	E	Strike Length Exp: 40	m Metallics:	<u></u>	<.2	130	2
,	Elevation 1845	m	Sample Width:	20 cm	True Width: 20 cm	Secondaries:	Mo (ppm)			Zn (ppm)
Ram	Orientation				Host: Chert & andesite	e tuff or flow	1	32	<2	14
Comments: Sili	icification due to thrus	st fault?							-	• •

	<u>Project I</u>	Name:	Cry Lake I	Region	al <u>Project:</u>	HEG97-01 <u>NTS:</u>	1041/16			
Sample Number:	Grid North:	N	Grid East:		Type: Grab	Alteration: ?MS,sSI	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2736	UTM 6515660	N	UTM 529780	E	Strike Length Exp: <25	m Metallics: tr-0.5%PY	<5	<.2	180	3
2.00	Elevation 1910	m	Sample Width:	25 cm	True Width: 25 cm	Secondaries: sHE,mJA	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation 140°/6-	4° \$W	Bedding		Host: Chert,andesite+/	-siltstone/tuf	<1	3	<2	<2
Comments: Pa	tchy disseminated py	rite.								
Sample Number:	Grid North:	N	Grid East:		Type: Grab	Alteration:	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2737	UTM 6515535	N	UTM 529710	· E	Strike Length Exp: 300	m Metallics: trPY	<5	<.2	170	41
2.07	Elevation 1900	m	Sample Width:	40 cm	True Width: 35 cm	Secondaries: wHE,wJA	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation 174°/6	0° SW	Bedding		Host: Argillite w/ min c	hert laminae	1	18	34	38
Comments: Cl	eavage 250/35 degre	es (fault?)).						•	
Sample Number:	Grid North:	N	Grid East:		E Type: Float	Alteration: ?CA,mCL,wQZ,?ZE	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2738	UTM 6514880	N	UTM 530355	E	Strike Length Exp:	m Metallics: ?PY	<5	<.2	80	15
2130	Elevation 1775	m	Sample Width:	10 cm	True Width:	Secondaries: wHE,trJA	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation				Host: Tuff?		<1	8	16	44
Comments: Ru	sty weathering with s	soft white	mineral (rotten ca	alcite or ze	olite) as veinlets and quartz v	reinlets. No visible pyrite or other sulp	hide. Chlorite altere	d?		
Sample Number:	Grid North:	N	Grid East:		∃ Type: Float	Alteration: ?CL,?EP	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2739	UTM 6515060	N	UTM 530700	E	Strike Length Exp:	m Metallics:	<5	<.2	420	45
21 55	Elevation 1895	m	Sample Width:	5 cm	True Width:	Secondaries:	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation				Host: Porphyritic flow?		<1	36	<2	62
Comments: Pla	agioclase laths altere	d to bright	t green mineral -	fairly soft.	Chlorite or epidote?					
Sample Number:	Grid North:	N	Grid East:		E Type: Float	Alteration: sQZ	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2740	UTM 6515105	N	UTM 530745	Ε	Strike Length Exp:	m Metallics:	<5	<.2	30	3
2140	Elevation 1935	m	Sample Width:	15 cm	True Width:	Secondaries: trHE	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation				Host: Quartz vein		2	11	<2	12
Comments: Qu	uartz vein - Bull white	with inclu	isions of host roc	k - andesit	e tuff.					
Sample Number:	Grid North:	N	Grid East:		E Type: Grab	Alteration: sCA,sCB,sDO?,wQ2	Z Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2741	UTM 6515120	N	UTM 530865	Ε	Strike Length Exp: 3	m Metallics:	<5	<.2	50	<1
£171	Elevation 1935	m	Sample Width:	30 cm	True Width: 30 cm	Secondaries:	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation 120°/8	o° sw	Vein		Host: Volcanics (tuff?)		3	<1	8	<2
Comments: Fa	ult cuts quartz vein. I	Botryoidal	, calcite and eith	er dolomite	or iron carbonate.					

	Project N	<u>lame:</u>	Cry Lake I	Regional	Project:	HEG97-01	NTS:	1041/16			
Sample Number:	Grid North:	N	Grid East:	E	Type: Float	Alteration: v	vCL,wQZ	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2742	UTM 6515310	N	UTM 530270	E	Strike Length Exp:	m Metallics:		<5	<.2	330	16
	Elevation 1835	m	Sample Width:	5	True Width:	Secondaries:	mGE,mHE,trJA	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation				Host: Argillite?			<1	18	2	28
Comments: Bla	ck boulder with heavy	y iron oxi	de staining. Argill	lite? with qua	rtz veinlets. No sulphide vi	sible.					
Sample Number:	Grid North:	N	Grid East:	E	Type: Float	Alteration: v	vCL	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2743	UTM 6515620	N	UTM 531460	E	Strike Length Exp:	m Metallics:	tr?CP,1.0%PY	<5	<.2	70	419
2143	Elevation 1720	m	Sample Width:	5	True Width:	Secondaries:	wGE,sHE,trJA	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation				Host: Diorite?			2	1	<2	36
	sty boulder with abou ce chalcopyrite (or w			plagioclase?	and hornblende. Chlorite	altered diorite horn	blende. Plagioclase	with green cast to	it. 10m norti	h of 4222 (s	ilt).
Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration: v	vQZ	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2744	UTM 6515120	N	UTM 531590	E	Strike Length Exp: >100	m Metallics:		<5	1.4	30	1240
2144	Elevation 1990	m	Sample Width:	30	True Width:	Secondaries:	wGE,sHE,wJA	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation				Host: Argillite			5	50	<2	122
Comments: Ver	ry rusty outcrop on st	eep cliffs	. Access difficult	due to snow.							
Sample Number:	Grid North:	N	Grid East:	E	Туре:	Alteration: v	vQZ	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
2745	UTM 6515120	N	UTM 531590	E	Strike Length Exp: <100	m Metallics:		<5	0.6	20	342
	Elevation 1990	m	Sample Width:	65 cm	True Width: 65 cm	Secondaries:	wGE,sHE,sJA	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation				Host: Argillite			5	21	<2	74
Comments: Wh	ite and whitish-yellow	v coating	built up on outer	op. Some loo	ks frothy. Most heavily oxi	dized outcrop too I	high to reach.				
Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration:		Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
316671	UTM 6514480	N	UTM 530130	E	Strike Length Exp: 2	m Metallics:	PY	<5	5.6	10	312
310071	Elevation 1700	m	Sample Width:		True Width:	Secondaries:	JA,Limonite	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation 020°/05	5° E	Joint		Host: Argillite			1	38	1010	368
Comments: At:	site of MH1700-800N	l.									
Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration: (CL,mSI	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
316672	UTM 6514770	N	UTM 629885	E	Strike Length Exp: 1	m Metallics:	3%PY	<5	0.2	10	768
310072	Elevation 6675	ft	Sample Width:	50 cm	True Width:	Secondaries:	mGE,mJA	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation 160°/90	0° X	Fault		Host: Altered intermed	liate rock		2	67	50	252
Comments: Sili	cified? pyritic rusty?	?? in plac	es indurated "and	desite"?							

	Project	Name:	Cry Lake R	egional	Project:	HEG97-01 NTS: 10	41/16			
Sample Number:	Grid North:	N	Grid East:	Е	Type: Float	Alteration: CI, serpentine	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm
316673	UTM 6514770	N	UTM 529885	E	Strike Length Exp:	m Metallics:	<5	<.2	60	24
•	Elevation 6670	ft	Sample Width: 5	0 cm	True Width:	Secondaries:	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm
Ram	Orientation 160°/9	90° X	Fault		Host: Ultramafic		1	37	22	76
Comments: Sa	me location as 3166	72. Not lo	cal - probably come	s from sou	th.					
Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration: mCL,trEP,mSI	Au (ppb)	Ag (ppm)	Ba (ppm)	Си (ррт
316674	UTM 6514670	N	UTM 529980	E	Strike Length Exp: 30	m Metallics: trPO,2%PY	215	<.2	110	160
	Elevation		Sample Width:		True Width:	Secondaries:	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm
Ram	Orientation 160°/9	90° X	Fault		Host:		<1	59	10	38
Comments: Sa	me fault as 316672?	but 100m	to southeast.						,	
Sample Number:	Grid North:	N	Grid East:	Ε	Type: Grab	Alteration: SI	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm
316675	UTM 6514630	N	UTM 529860	Ε	Strike Length Exp: >30	m Metallics: 1%PO,3%PY	15	<.2	50	118
	Elevation 6600	ft	Sample Width:		True Width:	Secondaries: mGE,mJA,mLimonite	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm
Ram	Orientation 020°/9	90° X	Fault		Host: (Intermediate)al	tered andesite	1	33	16	34
Comments: Py Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration: wCL,wCY,wSI	Au (ppb)	Ag (ppm)		Cu (ppm
316676	UTM 6514570	N -	UTM 529930	E	Strike Length Exp: 10	m Metallics:	10	0.2	60	48
Ram	Elevation 5980	ft	Sample Width:		True Width:	Secondaries: JA	Mo (ppm)		Pb (ppm)	
	Orientation 010°/9	90° SE	Joint		Host: Alt'd grey siliced	ous andesite	1	14	82	46
Comments: Sn	nall sheared zone									
Sample Number:	Grid North:	N	Grid East:	E	Type: Select	Alteration: QZ	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm
316677	UTM 6514605	N	UTM 529950	E	Strike Length Exp: 30	m Metallics: 2%GL,2%PO,2%PY,SP	<5	88.8	10	650
_	Elevation 6590	ft	Sample Width: 1	5 cm	True Width: 20 cm	Secondaries: wGE,sJA,trMN,sLimoni	te <u>Mo (ppm)</u>	Ni (ppm)	Pb (ppm)	Zn (ppm
Ram	Orientation 030°/7	′5° W	Joint		Host: Siliceous andes	itic unit	3	18	3.62%	4.80%
	om major fracture wit omaly.	th a set of	parallel fractures -	other minor	ones also have small am	ounts of metallics: boxwork, drusy quartz, c	alcite druse. F	ossible sou	rce of lead,	zinc
Sample Number:	Grid North:	N	Grid East:	Е	Type: Chip	Alteration:	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm
316678	UTM 6514580	N	UTM 530010	E	Strike Length Exp:	m Metallics: PY	<5	1.8	40	724
	Elevation 6580	ft	Sample Width: 2	0 cm	True Width: 20 cm	Secondaries: HE,JA,MN	Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm
Ram	Orientation 340°/9	0° X	Fault		Host: Siliceous andes	itic unit	1	89	400	264
Comments: Sa	me fault as 316672-3	316674								

	Project Na	ıme	: Cry Lake Re	gional	Project:	HEG97-01	NTS:	1041/16			
Sample Number:	Grid North:	N	Grid East:	Е	Type: Float	Alteration: CL		Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
316679	UTM 6514475	N	UTM 531030	Ε	Strike Length Exp:	m Metallics:		<5	0.2	120	39
	Elevation 7500	ft	Sample Width:		True Width:	Secondaries:		Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation				Host: Interbedded che	erty shale		<1	30	92	120
Comments: Gre	een chloritic intermediat	e intru	ision?								
Sample Number:	Grid North:	N	Grid East:	Е	Type: Grab	Alteration: QZ,SI	·	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
316680	UTM 6515080	N	UTM 530460	Ε	Strike Length Exp: 1.0	m Metallics:		65	1.6	570	90
_	Elevation 7060	ft	Sample Width: 10	cm	True Width: 20 cm	Secondaries: JA		Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation 330°/64° \	N	Joint		Host: Black siliceous?	? shaly phyllit		1	13	108	84
Comments: Bo	xwork. Rusty zone high	on a s	slope.								
Sample Number:	Grid North:	N	Grid East:	E	Type: Float	Alteration:		Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
316681	UTM 6514870	N	UTM 530590	Ę	Strike Length Exp: 40	m Metallics:		30	2.2	60	769
_	Elevation		Sample Width: 24	cm	True Width:	Secondaries:		Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation 325°/65° \	N			Host:			3	48	84	480
Comments: Fro	om huge quartz vein - qu	artz i	n fractured, milky whit	e, with o	ccasional pyrite where it c	ontacts wallrock - sample is	s from float i	below vein.			
Sample Number:	Grid North:	N	Grid East:	Ε	Type: Grab	Alteration:		Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)
316682	UTM 6514845	N	UTM 530395	Ε	Strike Length Exp:	m Metallics:		<5	0.2	100	4
	Elevation 6780	ft	Sample Width: 30	cm	True Width: 30 cm	Secondaries:		Mo (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
Ram	Orientation 245°/90°	(Vein		Host: ? Intermediate ((andesite?)		<1	3	10	4
Comments: On	south side of fault, 2 pa	rallel	lenses. Brown, quartz	, siderite	? barite? calcite vein.						

APPENDIX D CERTIFICATES OF ANALYSIS SOIL, SILT, AND ROCK SAMPLES

_ Equity Engineering Ltd. .

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

EQUITY

EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9732374

Comments: ATTN: J. WEBER/J. LEHTINEN CC: J. ROBBINS/L. BARRY

CERTIFICATE

A9732374

(EIA) - EQUITY ENGINEERING LTD.

Project: P.O. #: HEG97-01

Samples submitted to our lab in Vancouver, BC. This report was printed on 21-JUL-97.

	SAMPLE PREPARATION								
CHEMEX	NUMBER SAMPLES	DESCRIPTION							
244	5	Pulp; prev. prepared at Chemex							

		ANALYTICA	AL PROCEDURES		
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPÉR LIMIT
383 312 316	1 2 5	Ag oz/T Pb %: Conc. Nitric-HCL dig'n Zn %: Conc. Nitric-HCL dig'n	FA-GRAVIMETRIC AAS AAS	0.1 0.01 0.01	30.0 100.0 100.0
				•	
	-				

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Pag nber :1
Total rages :1
Certificate Date: 21-JUL-97
Invoice No. :19732374
P.O. Number :

Account :EIA

Project: HEG97-01 Comments: ATTN: J. WEBER/J. LEHTINEN CC; J. ROBBINS/L. BARRY

					С	ERTIFIC	ATE OF A	NALYSIS	A97	32374	
SAMPLE	PREP CODE	Ag FA oz/T	Pb %	Zn %							
		•	•	, ,		·					
316677	244		3.62	4.80		····					
				`							
		ĺ									
					1						
	LL										

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9730654

Comments: ATTN: J. WEBER/J. LEHTINEN CC: J. ROBBINS/L. BARRY

CERTIFICATE

A9730654

(EIA) - EQUITY ENGINEERING LTD.

Project:

HEG97-01

P.O.#:

Samples submitted to our lab in Vancouver, BC. This report was printed on 12-JUL-97.

	SAMPLE PREPARATION									
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION								
205 226 3202 229	88 88 88 88	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge								
* NOTE	1:									

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mq, Na, Sr, Ti, Tl, W.

ANALYTICAL PROCEDURES

2118 88 Ag ppm: 32 element, soil & rock ICP-AES 0.2 100. 2119 88 Al %: 32 element, soil & rock ICP-AES 0.01 15.0 2120 88 As ppm: 32 element, soil & rock ICP-AES 2 1000 2121 88 Be ppm: 32 element, soil & rock ICP-AES 10 1000 2122 88 Be ppm: 32 element, soil & rock ICP-AES 0.5 100. 2123 88 Be ppm: 32 element, soil & rock ICP-AES 0.5 100. 2124 88 Ca %: 32 element, soil & rock ICP-AES 0.01 15.0 2125 88 Cd ppm: 32 element, soil & rock ICP-AES 0.5 100. 2126 88 Cc ppm: 32 element, soil & rock ICP-AES 1 1000 2127 88 Cr ppm: 32 element, soil & rock ICP-AES 1 1000 2128 88 Cu ppm: 32 element, soil & rock ICP-AES 1 1000 2128 88 Cu ppm: 32 element, soil & rock ICP-AES 1 1000 2130 88 Fe %: 32 element, soil & rock ICP-AES 1 1000 2131 88 Hg ppm: 32 element, soil & rock ICP-AES 1 1000 2131 88 K %: 32 element, soil & rock ICP-AES 1 1000 2151 88 K %: 32 element, soil & rock ICP-AES 1 1000 2151 88 La ppm: 32 element, soil & rock ICP-AES 1 1000	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
2135 88 Mn ppm: 32 element, soil & rock ICP-AES 5 1000 2136 88 Mo ppm: 32 element, soil & rock ICP-AES 1 1000 2137 88 Na %: 32 element, soil & rock ICP-AES 0.01 5.0 2138 88 Ni ppm: 32 element, soil & rock ICP-AES 1 1000 2139 88 P ppm: 32 element, soil & rock ICP-AES 1 1000 2140 88 Pb ppm: 32 element, soil & rock ICP-AES 2 1000 2141 88 Sc ppm: 32 element, soil & rock ICP-AES 2 1000 2142 88 Sc ppm: 32 element, soil & rock ICP-AES 1 1000 2143 88 Sr ppm: 32 element, soil & rock ICP-AES 1 1000 2144 88 Ti %: 32 element, soil & rock ICP-AES 1 1000 2145 88 Tl ppm: 32 element, soil & rock ICP-AES 1 1000 2146 88 U ppm: 32 element, soil & rock ICP-AES 1 1000 2147 88 V ppm: 32 element, soil & rock ICP-AES 1 1000 2147 88 V ppm: 32 element, soil & rock ICP-AES 1 1000 2148 88 W ppm: 32 element, soil & rock ICP-AES 1 1000	983 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2150 2131 2132 2151 2134 2135 2136 2137 2138 2139 2140 2141 2144 2145 2144 2145 2144	SAMPLES 88 88 88 88 88 88 88 88 88 88 88 88 8	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock My s: 32 element, soil & rock My ppm: 32 element, soil & rock My ppm: 32 element, soil & rock My ppm: 32 element, soil & rock No ppm: 32 element, soil & rock No ppm: 32 element, soil & rock No ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock U ppm: 32 element, soil & rock	FA-AAS ICP-AES	S 0.2 0.01 2 10 0.5 2 0.01 0.5 1 1 1 0.01 10 0.01 5 1 0.01 10 2 2 1 1 0.01 10 10 10 10 10 10 10 10 10 10 10 10 1	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Pag nber :2-A Total es :3 Certificate Date: 12-JUL-97

invoice No. P.O. Number : 19730654 : :EIA Account

Project: HEG97-01

Comments:	ATTN: J. WEBER/J. LEHTINEN	CC: J. ROBBINS/L. BARRY

										COIII	nems. ,	A 1 1 14. J.	WEDER	J. LEMI	INEN C	и: J. НО	BRINZ	BAHHY	ľ		
<u>,</u>	···	 1		·-					<u></u>		CE	RTIFI	CATE	OF A	NAL'	YSIS		A9730	654		
SAMPLE	PRE		Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	PI
16621 16622	205 205	226 226	〈 5 〈 5	1.2	0.07 0.12	116 2		< 0.5 < 0.5	〈 2 〈 2		3.5 < 0.5	1 (1	207 235	487 3	0.43 0.33	< 10 < 10	< 1 < 1	0.01 0.05	< 10 < 10	0.02 0.01	S 1
16623 16624 16625 16626 16627	205 205 205 205 205 205	226 226 226	< 5	14.6 29.8 < 0.2 0.2 < 0.2	0.01 0.34 4.38 0.12 0.32	58 92 < 2 < 2 18	120	< 0.5 5.0 < 0.5 < 0.5 < 0.5			< 0.5	1 3 28 < 1 2	102 39 184 < 1 167	458 24 105 < 1 8	0.14 0.90 5.10 0.10 0.48	< 10 < 10 10 < 10 < 10	< 1 < 1 < 1 < 1	<pre>0.01 0.32 0.01 0.01 0.05</pre>	< 10 < 10 < 10 < 10 < 10	4.81 3.43 2.59 8.48 0.51	140 66 20
16628	205	226	< 5	1.0	0.15	48	130	< 0.5	⟨ 2	0.36	1.0	1	274	172	0.59	< 10	1	0.10	< 10	0.14	3

har in the work they CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

.ges Certificate Date: 12-JUL-97 Invoice No. : 19730654 P.O. Number :

Account :EIA

Project: HEG97-01 Comments: HEG97-1 ATTN: J. WEBER/J. LEHTINEN CC: J. ROBBINS/L. BARRY

		_										CE	RTIF	CATE	OF A	ANAL	YSIS	A9730654	
SAMPLE	PREP		Мо ррш		Na %	Ni ppm	P Ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	ppm W	Zn ppm		
																		· -	
316 621	205 226	-1	-	< 0	01	••	140		_		20.4								
316622	205 226			ζ 0		11 5	140 10	〈 2 4	6 < 2	< 1 < 1	79 〈 4 〈	0.01	< 10 < 10	< 10 < 10	90 3	< 10 < 10	106 16		
316623	205 226			< 0		3	10	1310	328	< 1	143 <		< 10	< 10 .	4	< 10	44		
316624 316625	205 226		< 1		.01	- 4	< 10	2210	< 2	< I	91 (< 10	< 10	7	< 10	2320		
316626	205 226 205 226			< 0		59 5	320	6 14	(2	11		0.40	(10	< 10	146	< 10	80		
316627	205 226			< 0		10	< 10 80	8	< 2 < 2	< 1 < 1	231 < 24 <		< 10 < 10	< 10 < 10	5 6	10 < 10	36 32		
316628	205 226	1	10	< 0	.01	15	80	4	20	〈1	13 <	0.01	< 10	< 10	21	< 10	92		
																			1

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page er :3-A Total R :3 :3 Certificate Date: 12-JUL-97

Invoice No. :19730654 P.O. Number :

: :EIA Account

Project: HEG97-01 Comments: ATTN: J. WEBER/J. LEHTINEN CC: J. ROBBINS/L. BARRY

											CE	RTIFI	CATE	OF A	ANAL	YSIS		49730	654		
SAMPLE	PRI		Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	ppm Cd	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
316675 316676 316677 316678 316679	205 205 205 205 205 205	226 226	10 〈 5 〈 5	<pre></pre>	4.02 2.67 2.08 1.91 3.72	32 48 32 6 14	60 10 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2 166 12 < 2</pre>	1.60	< 0.5 < 0.5 >100.0 2.0 0.5	18 4 59 72 22	44 155 93 150 23	118 48 650 724 39	3.25 6.90 8.93 12.20 4.61	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1	0.04 0.16 < 0.01 0.14 0.03	< 10 < 10 < 10 < 10 < 10	0.64 0.66 0.88 0.94 1.70	155 195 5770 875 845
316680 316681 316682	205 205 205	226	30	1.6 2.2 0.2	0.75 0.26 0.05	1150 158 < 2	60	< 0.5 < 0.5 < 0.5	< 2 < 6	0.04 0.09 >15.00	2.0	5 7 2	227 217 11	90 769 4	3.47 2.35 1.30	< 10 < 10 < 10	< 1 < 1 < 1	0.13 0.01 < 0.01	< 10 < 10 < 10	0.16 0.11 5.39	315 395 >10000

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE; 604-984-0221 FAX: 604-984-0218

to: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Total Certificate Date: 12-JUL-97 Invoice No. P.O. Number :19730654

:EIA Account

Project: HEG97-01 Comments: ATTN: J. WEBER/J. LEHTINEN CC: J. ROBBINS/L. BARRY

		· · · · · · · · · · · · · · · · · · ·								CE	RTIF	ICATE	OF A	NALY	'SIS	A9730654	
SAMPLE	PREP CODE	Мо ррт		Ni ppm	P Ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	ppm W	Zn ppm		
L6675 L6676 L6677 L6678 L6679	205 226 205 226 205 226 205 226 205 226	1		33 14 18 89 30	420 220 < 10 340 410	16 82 >10000 400 92	<pre>< 2 < 2 < 2 < 2 < 2 < 2</pre>	3 4 6 12 3	82 42 31 7 6	0.07 0.12 0.01 0.30 0.27	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	56 70 81 152 92	< 10 < 10 < 10 < 10 < 10	34 46 10000 264 120	-	
16680 16681 16682	205 226 205 226 205 226	3	< 0.01 < 0.01 < 0.01	13 48 3	110 60 < 10	108 84 10	12 22 < 2	1 1 < 1	4 3 421	0.05 < 0.01 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	31 10 2	< 10 < 10 < 10	84 480 4		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number :1-A Total P :3

_ate: 12-JUL-97 Certifica Invoice No. : I P.O. Number :

:EIA Account

Project: HEG97-01 Comments: ATTN: J. WEBER/J. LEHTINEN CC: J. ROBBINS/L. BARRY

		•			<u> </u>					CE	RTIF	CATE	OF A		SIS	A	9730	654		
SAMPLE	PREP CODE	Au ppb FA+AA	ppm ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga pp m	рр ш	K %	La ppm	Мg	Mn ppm

2730	205 22	26	Č 5		0.2	2.84	6	30	⟨ 0.5	2	1.33	(0.5	14	94	. 35	3.25	< 10	< 1	0.10	< 10	0.93	295
2731	205 22	26	< 5	<	0.2	3.52	14	140	0.5	〈 2	1.95	⟨ 0.5	7	101	46	1.66	< 10	(1	0.58	< 10	0.89	210
2732	205 22	26	< 5	<	0.2	3.59	2	430	< 0.5	< 2	1.20	< 0.5	1.3	59	147	4.00	10	(1	0.96	< 10	1.43	510
2733	205 22	26	< 5	<	0.2	3.65	< 2	30	< 0.5	⟨ 2	2,11	(0.5	12	22	64	1.98	< 10	< 1	0.03	< 10	0.49	290
2734	205 22	26	< 5	(0.2	3.69	6	< 10	(0.5	2	1.84	< 0.5	32	21	107	4.92	< 10	< 1	< 0.01	< 10	2.36	460
2735	205 22	26	< 5	<	0.2	1.40	< 2	130	₹ 0.5	< 2	0.45	(0.5	9	101	2	1.40	< 10	< 1	0.18	< 10	1.06	370
2736	205 22	26	₹ 5	<	0.2	0.44	8	180	⟨ 0.5	〈 2	0.05	(0.5	1	60	3	1.40	⟨ 10	〈 1	0.22	< 10	0.14	45
2737	205 22	26	< 5	<	0.2	2.72	64	170	0.5	< 2	0.34	< 0.5	5	83	41	3.41	< 10	< I	0.57	10	0.76	275
2738	205 22	26	< 5	(0.2	3.07	⟨ 2	80	< 0.5	〈 2	2.22	(0.5	6	67	15	0.91	< 10	< 1	0.05	< 10	0.21	265
2739	205 22	26	< 5	< □	0.2	3.46	2	420	< 0.5	< 2	1.96	< 0.5	21	67	45	4.65	< 10	1	0.01	< 10	1.56	595
2740	205 22	26	< 5	<	0.2	0.50	14	30	< 0.5	< 2	0.03	< 0.5	4	267	3	1.18	< 10	< 1	0.03	< 10	0.44	170
2741	205 22	26	< 5	<	0,2	0.07	〈 2	50	< 0.5	⟨ 2	>15.00	⟨ 0.5	(1	3	〈1	1.11	⟨ 10	〈 1	⟨ 0.01	₹ 10	1.98	785
2742	205 22	26	< 5	< 1	0.2	0.33	64	330	< 0.5	ζ 2	0.33	< 0.5	3	270	16	2.04	⟨ 10	< 1	0.10	₹ 10	0.10	510
2743	205 22	26	< 5	(0.2	2,16	(2	70	< 0.5	〈 2	1.03	(0.5	53	6	419	7.19	< 10	(1	< 0.01	< 10	1.30	850
2744	205 22	26	< 5		1.4	2.54	< 2	30	< 0.5	< 2	2.08	< 0.5	7	191	1240	6.66	< 10	< 1	< 0.01	10	2.23	2260
2745	205 22		< 5		0.6	1.97	24	20	< 0.5	〈 2	1.80	(0.5	5	133	342	8.53	< 10		< 0.01	< 10	1.73	1540
2746	205 22	16	〈 5	1	0.4	2.06	16	120	⟨ 0.5	(2	1.18	⟨ 0.5	8	212	404	6.44	10	(1	< 0.01	10	1.86	1665

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Invoice No. P.O. Number

Account

Page nber 175 Total es :3 Certificaté Date: 12-JUL-97 Proise No. :19730654 :EIA

Project: HEG97-01
Comments: ATTN: J. WEBER/J. LEHTINEN CC: J. ROBBINS/L. BARRY

			,	-	٠					CE	RTIFI	CATE	OF A	NALY	'SIS	A9730654
SAMPLE	PREP CODE	Mo ppm	Na %	иі ppm	Pbm b	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U PPm	V ppm	W PPm	Zn ppm	
•										•						

2730	205 226	1	0.31	31	570	20	〈 2	4	34	0.24	< 10	< 10	75	< 10	46		_
2731	205 226	2	0.39	14	510	18	⟨ 2	7	85	0.04	< 10	< 10	77	< 10	40		
2732	205 226	1	0.32	15	600	12	< 2	9	90	0.14	< 10	< 10	110	< 10	62		
2733	205 226	1	0.48	14	450	< 2	< 2	4	105	0.16	< 10	< 10	40	< 10	28		
2734	205 226	< 1	0.03	13	< 10	< 2	< 2	5	12	0.21	< 10	< 10	187	< 10	28		
2735	205 226	1	0.05	32	180	< 2	< 2	5	10	0.19	< 10	< 10	55	< 10	14		
2736	205 226	< 1	< 0.01	3	100	〈 2	⟨ 2	1	1	0.08	< 10	< 10	13	< 10	(2		
2737	205 226	1	0.05	18	600	34	< 2	5	28	0.06	< 10	< 10	44	< 10	38		
2738	205 226	(1	0.20	8	160	16	< 2	1	39	0.15	< 10	(10	25	< 10	44		
2739	205 226	< 1	< 0.01	36	450	< 2	(2	4	12	0.31	< 10	< 10	155	₹ 10	62		
2740	205 226	2	< 0.01	11	40	< 2	< 2	1	(1	0.01	< T0	< 10	19	< 10	12		
2741	205 226	3	< 0.01	< 1	20	8	〈 2	< I	593 ((0.01	< 10	< 10	6	< 10	< 2		
2742	205 226	< 1	< 0.01	18	320	2	< 2	3		(0.01	< 10	₹ 10	30	< 10	28		
2743	205 226	2	0.01	1	630	⟨ 2	〈 2	2	12	0,26	< 10	₹ 10	136	< 10	36		
2744	205 226	5	< 0.01	50	1530	< 2	⟨ 2	3	25	0.03	< 10	< 10	80	< 10	122		
2745	205 226	5	< 0.01	21	1700	⟨ 2	〈 2	2	24	0.06	< 10	₹ 10	61	₹ 10	74		
2746	205 226	8	< 0.01	25	3300	⟨ 2	₹ 2	3	21	0.03	< 10	< 10	63	< 10	66		

CERTIFICATION:

PREP

Au ppb

Chemex Labs Ltd.

ΑŢ

Aς

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

Ασ

Вi

Сa

ca

Re

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Par imber :2-A To ges :3 Certificate Date: 12-JUL-97 Invoice No. :19730654 P.O. Number :

:EIA

P.O. Numb Account

A9730654

Project: HEG97-01
Comments: ATTN: J. WEBER/J. LEHTINEN CC: J. ROBBINS/L. BARRY

CERTIFICATE OF ANALYSIS

SAMPLE	CODE	Au ppb FA+AA	ppm ppm	Al %	As ppm	Ва ppm	ррм Ве	ррш В1	Ca %	ppm Cd	ррш Со	Ст ррш	Cu ppm	Fe %	Ga ppm	ББш Hd	K %	La ppm	Mg %	Mn ppm
•																				
											,									
						•														
5671 5672 5673	205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5 215	5.6	3.16 2.68	6 16	10 10	< 0.5 < 0.5	8 2	0.17 0.56	3.0	17 32 15 24	118 122	312 768	8.21 5.90	10 10	< 1 < 1	0.04 0.09	< 10 < 10	1.39 1.46	5680 255

CERTIFICATION:_

March March Mary

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Pag mber :2-B Tota jes :3 Certificate Date: 12-JUL-97 Invoice No. :19730654

P.O. Number : Account :EIA

Project: HEG97-01

Comments: ATTN: J. WEBER/J. LEHTINEN CC: J. ROBBINS/L. BARRY

										CE	RTIFI	CATE	OF A	NALY	'SIS	A9730654
	PREP	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	Ü	٧	W	Zn	
SAMPLE	CODE	ppm	¥	ppm	ppm	ppm	ppm	ppm	ppm	8	ppm	ppm	ppm	ppm	ppm	

205 226 205 226 1010 10 0.03 < 10 < 10 107 < 10 368 316671 0.03 38 170 ⟨ 2 252 96 < 10 316672 2 0.12 67 220 50 < 2 7 25 0.08 < 10 < 10 316673 205 226 1 0.30 < 10 22 < 2 139 0.01 < 10 < 10 61 < 10 76 37 78 < 10 3 B 316674 205 226 0.28 400 10 < 10 < 10 < 1 59

CERTIFICATION: tanks

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

o: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9730699

Comments: ATTN: J. WEBER/J. LEHTINEN CC: J. ROBBINS/L. BARRY

CERTIFICATE

A9730699

(EIA) - EQUITY ENGINEERING LTD.

Project: P.O. #: HEG97-01

Samples submitted to our lab in V

Samples submitted to our lab in Vancouver, BC. This report was printed on $10\text{-}\mathrm{JUL}\text{-}97$.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
201 202 229	152 152 152	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge
* NOTE_	1	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

ANALYTICAL PROCEDURES

Au ppb: Fuse 30 g Ag ppm: 32 element Al %: 32 element Al %: 32 element Ba ppm: 32 element Be ppm: 32 element Bi ppm: 32 element Ca %: 32 element Cd ppm: 32 element Ct ppm: 32 element Cr ppm: 32 element Cu ppm: 32 element Express Cu ppm: 32 element Cu ppm: 32 element Express Express Cu ppm: 32 element Fe %: 32 element Fe %: 32 element	, soil & rock soil & rock , soil & rock , soil & rock , soil & rock , soil & rock soil & rock , soil & rock	FA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 0.2 0.01 2 10 0.5 2 0.01	10000 100.0 15.00 10000 10000 100.0 10000
Ag ppm: 32 element Al %: 32 element, As ppm: 32 element Ba ppm: 32 element Be ppm: 32 element Bi ppm: 32 element Ca %: 32 element, Cd ppm: 32 element Co ppm: 32 element Cr ppm: 32 element Cr ppm: 32 element Cr ppm: 32 element Fe %: 32 element,	, soil & rock soil & rock , soil & rock , soil & rock , soil & rock , soil & rock soil & rock , soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.2 0.01 2 10 0.5 2 0.01	100.0 15.00 10000 10000 100.0 10000 15.00
Al %: 32 element, As ppm: 32 element Ba ppm: 32 element Be ppm: 32 element Bi ppm: 32 element Ca %: 32 element, Cd ppm: 32 element Co ppm: 32 element Cr ppm: 32 element Cr ppm: 32 element Cu ppm: 32 element Fe %: 32 element,	soil & rock , soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.01 2 10 0.5 2 0.01 0.5	15.00 10000 10000 100.0 10000 15.00
Ba ppm: 32 element Be ppm: 32 element Bi ppm: 32 element Ca %: 32 element, Cd ppm: 32 element Co ppm: 32 element Cr ppm: 32 element Cu ppm: 32 element Cu ppm: 32 element Fe %: 32 element,	, soil & rock , soil & rock , soil & rock soil & rock , soil & rock , soil & rock , soil & rock , soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	10 0.5 2 0.01 0.5	10000 100.0 10000 15.00
Be ppm: 32 element Bi ppm: 32 element Ca %: 32 element, Cd ppm: 32 element Co ppm: 32 element Cr ppm: 32 element Cu ppm: 32 element Cu ppm: 32 element Fe %: 32 element,	, soil & rock , soil & rock soil & rock , soil & rock , soil & rock , soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.5 2 0.01 0.5	100.0 10000 15.00
Bi ppm: 32 element Ca %: 32 element, Cd ppm: 32 element Co ppm: 32 element Cr ppm: 32 element Cu ppm: 32 element Fe %: 32 element,	, soil & rock soil & rock , soil & rock , soil & rock , soil & rock , soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES	0.01 0.5	10000 15.00
Ca %: 32 element, Cd ppm: 32 element Cc ppm: 32 element Cr ppm: 32 element Cu ppm: 32 element Fe %: 32 element,	soil & rock , soil & rock	ICP-AES ICP-AES ICP-AES	0.01 0.5	15.00
Cd ppm: 32 element Co ppm: 32 element Cr ppm: 32 element Cu ppm: 32 element Fe %: 32 element,	, soil & rock , soil & rock , soil & rock , soil & rock	ICP-AES ICP-AES	0.5	
Co ppm: 32 element Cr ppm: 32 element Cu ppm: 32 element Cu ppm: 32 element Fe %: 32 element,	, soil & rock , soil & rock , soil & rock	ICP-AES		
Cr ppm: 32 element Cu ppm: 32 element Fe %: 32 element,	, soil & rock			100.0
Cu ppm: 32 element Fe %: 32 element,	, soil & rock	ICP-AES	1	10000
2 Fe %: 32 element,			1	10000
		ICP-AES	1	10000
2 iGa pom: 32 element		ICP-AES	0.01	15.00
		ICP-AES	10	10000
2 Hg ppm: 32 element		ICP-AES	1	10000
		ICP-AES	0.01	10.00
				10000
				15.00
				10000
			_	5.00
				10000
				10000
				10000
				10000
				10000
			-	10000
				5.00
				10000
				10000
				10000
			_	10000
				10000
	La ppm: 32 element Mg %: 32 element, Mn ppm: 32 element Mo ppm: 32 element Na %: 32 element Ni ppm: 32 element P ppm: 32 element P ppm: 32 element Sb ppm: 32 element Sc ppm: 32 element Ti %: 32 element Ti %: 32 element U ppm: 32 element U ppm: 32 element V ppm: 32 element V ppm: 32 element U ppm: 32 element V ppm: 32 element W ppm: 32 element, U ppm: 32 element,	La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mm ppm: 32 element, soil & rock Mm ppm: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock P ppm: 32 element, soil & rock P ppm: 32 element, soil & rock P ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti %: 32 element, soil & rock U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock V ppm: 32 element, soil & rock	La ppm: 32 element, soil & rock ICP-AES Mg %: 32 element, soil & rock ICP-AES Mm ppm: 32 element, soil & rock ICP-AES Mm ppm: 32 element, soil & rock ICP-AES Na %: 32 element, soil & rock ICP-AES Ni ppm: 32 element, soil & rock ICP-AES P ppm: 32 element, soil & rock ICP-AES P ppm: 32 element, soil & rock ICP-AES P ppm: 32 element, soil & rock ICP-AES Sc ppm: 32 element, soil & rock ICP-AES Sc ppm: 32 element, soil & rock ICP-AES Ti %: 32 element, soil & rock ICP-AES Ti %: 32 element, soil & rock ICP-AES U ppm: 32 element, soil & rock ICP-AES	La ppm: 32 element, soil & rock ICP-AES 10 Mg %: 32 element, soil & rock ICP-AES 0.01 Mm ppm: 32 element, soil & rock ICP-AES 5 Mo ppm: 32 element, soil & rock ICP-AES 1 Na %: 32 element, soil & rock ICP-AES 1 Ni ppm: 32 element, soil & rock ICP-AES 1 P ppm: 32 element, soil & rock ICP-AES 10 Pb ppm: 32 element, soil & rock ICP-AES 2 Sb ppm: 32 element, soil & rock ICP-AES 2 Sc ppm: 32 element, soil & rock ICP-AES 1 Ti %: 32 element, soil & rock ICP-AES 1 Ti %: 32 element, soil & rock ICP-AES 1 Ti %: 32 element, soil & rock ICP-AES 1 U ppm: 32 element, soil & rock ICP-AES 1 U ppm: 32 element, soil & rock ICP-AES 10 U ppm: 32 element, soil & rock ICP-AES 10 U ppm: 32 element, soil & rock ICP-AES 10 U ppm: 32 element, soil & rock ICP-AES 10 U ppm: 32 element, soil & rock ICP-AES 10 U ppm: 32 element, soil & rock ICP-AES 10 U ppm: 32 element, soil & rock ICP-AES 11 W ppm: 32 element, soil & rock ICP-AES 11

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To:

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Pag nber :3-A Tota es :4 Certificate Date: 10-JUL-97

Certificate Date: 10-JUL-97 Invoice No. : 19730699 P.O. Number : Account : EIA

Project: HEG97-01

Comments: ATTN: J. WEBER/J. LEHTINEN CC: J. ROBBINS/L. BARRY

<u> </u>											С	ERTIF	ICAT	E OF	ANAL	YSIS		A973	0699		
SAMPLE	PRE COD		Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %			Cr ppm	Cu ppm			-			-	
-	···I	-									•										
0.0M	201		⟨ 5	0.8	0.95	60	430	0.5	⟨ 2				27								
0100M			NotRed	NotRcd	NotRcd	NotRed	NotRcd	NotRcd	NotRcd	Notrcd	NotRcd	NotRcd			NotRed	NotRed					
0200M 0300M	201 201		(5 (5	0.6 1.0	0.54 0.48	106 94	530 640	< 0.5 < 0.5	〈 2 〈 2	1.95 6.32			19 13	47 42					< 10 < 10		
0400M	201	202	⟨ 5	0.8	0.53	88	640	< 0.5	· 〈 2	4.48	6.5	9	14	33	1.75	< 10	(1	0.08	< 10	1.38	4
																				-,	
0500M	201		< 5	2,8	0.56	40	610	< 0.5	< 2	7.82	3.0	В	18	27	1,60	< 10	· < 1	0.06	10	2.70	

CERTIFICATION: Ktart Buchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project: HEG97-01 Comments: ATTN: J. WEBER/J. LEHTINEN C

CERTIFICATE OF ANALY

	PREP	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti.	Tl	U	V	W
SAMPLE	CODE	ppm	8	ppm	ppm	$\mathbf{p}\mathbf{p}\mathbf{m}$	ppm	ppm	ЬЬш	8	ppm	ppm	ppm	ppm

- 1	1 0,000				:					_					. 10		/ 10	
H)	t O.OM	201	202			0.01	136	1170	. 16	•	4	28	0.02	< 10	< 10	58	< 10	
H)	0100M			Notrcd	No	otRcd	NotRcd	NotRed	NotRcd	NotRcd	NotRcd	N						
100	0200M	201	202	11	<	0.01	101	1110	12	4	2	51	< 0.01	< 10	< 10	23	< 10	
HI.	M0000	201	202	10	<	0.01	93	780	12	6	1	80	< 0.01	< 10	< 10	20	< 10	
HI	0400M	201	202	9	〈	0.01	59	1120	12	4	2	68	0.01	< 10	< 10	22	< 10	
E	t 0500M	201	202	13		0.01	67	1010	12	8	3	109	0.01	< 10	< 10	41	< 10	ł
E3	0600M	201	202	9	(0.01	126	960	14	6	3	47	0.01	< 10	< 10	29	< 10	i

CERTIFIC.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9730669

Comments: ATTN: J. WEBER/J. LEHTINEN CC: J.ROBBINS/L. BARRY

CERTIFICATE

A9730669

(EIA) - EQUITY ENGINEERING LTD.

Project: P.O. #:

HEG97-01

Samples submitted to our lab in Vancouver, BC. This report was printed on 13-JUL-97.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
201 202 229	134 134 133	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge
*_NOTE	1:	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

ANAL	YTICAL	PROCE	DURES
-------------	--------	-------	-------

3 Ag ppm: 32 3 Al %: 32 e As ppm: 32 3 Be ppm: 32 3 Be ppm: 32 3 Be ppm: 32 3 Ca %: 32 e Cd ppm: 32 3 Cr ppm: 32 3 Cr ppm: 32 3 Cr ppm: 32 3 Cr ppm: 32	se 30 g sample element, soil & rock lement, soil & rock element, soil & rock	PA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 0.2 0.01 2 10 0.5 2	10000 100.0 15.00 10000 10000
3 A1 %: 32 e 3 As ppm: 32 3 Be ppm: 32 3 Be ppm: 32 3 Bi ppm: 32 3 Ca %: 32 e 6 Cd ppm: 32 3 Co ppm: 32 3 Cr ppm: 32 3 Cr ppm: 32 3 Cr ppm: 32	lement, soil & rock element, soil & rock element, soil & rock element, soil & rock element, soil & rock lement, soil & rock element, soil & rock element, soil & rock element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.2 0.01 2 10 0.5 2	100.0 15.00 10000 10000 100.0
3 As ppm: 32 3 Ba ppm: 32 3 Be ppm: 32 3 Bi ppm: 32 3 Ca %: 32 e 3 Co ppm: 32 3 Cr ppm: 32 3 Cr ppm: 32 3 Cr ppm: 32 3 Cr ppm: 32	element, soil & rock element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	2 10 0.5 2	10000 10000 100.0
3 Ba ppm: 32 3 Be ppm: 32 3 Bi ppm: 32 3 Ca %: 32 e 6 Cd ppm: 32 3 Cc ppm: 32 3 Cr ppm: 32 3 Cu ppm: 32	element, soil & rock element, soil & rock element, soil & rock lement, soil & rock element, soil & rock element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES	10 0.5 2	10000 100.0
3 Be ppm: 32 3 Bi ppm: 32 3 Ca %: 32 e 3 Cd ppm: 32 3 Co ppm: 32 3 Cr ppm: 32 3 Cr ppm: 32 3 Cu ppm: 32	element, soil & rock element, soil & rock lement, soil & rock element, soil & rock element, soil & rock	icp-aes icp-aes icp-aes	0.5 2	100.0
3 Bi ppm: 32 3 Ca %: 32 e 3 Cd ppm: 32 3 Co ppm: 32 3 Cr ppm: 32 3 Cu ppm: 32	element, soil & rock lement, soil & rock element, soil & rock element, soil & rock	ICP-AKS ICP-AES	2	
3 Ca %: 32 e 3 Cd ppm: 32 3 Co ppm: 32 3 Cr ppm: 32 3 Cu ppm: 32	lement, soil & rock element, soil & rock element, soil & rock	ICP-ARS		
3 Cd ppm: 32 3 Co ppm: 32 3 Cr ppm: 32 3 Cu ppm: 32	element, soil & rock element, soil & rock			10000
3 Co ppm: 32 3 Cr ppm: 32 3 Cu ppm: 32	element, soil & rock	ICP-AES	0.01	15.00
3 Cr ppm: 32 3 Cu ppm: 32			0.5	100.0
3 Cu ppm: 32		ICP-AES	1	10000
	element, soil & rock	ICP-AES ICP-AES	1	10000
	lement, soil & rock	ICP-AES	1 0.01	10000 15.00
	element, soil & rock	ICP-AES	10	10000
	element, soil & rock	ICP-AES	1	10000
			· · ·	10.00
		ICP-AES		10000
		ICP-AES	0.01	15.00
		ICP-AES	5	10000
- 1		ICP-AES	1	10000
				5.00
				10000
- - F F				10000
. 25				10000
				10000
4-4			-	10000
				10000 5.00
				10000
	element, soil & rock			10000
			- -	10000
				10000
				10000
	3 K %: 32 eli 3 La ppm: 32 3 Mg %: 32 el Mn ppm: 32 3 Mo ppm: 32 3 No %: 32 el No ppm: 32 3 No %: 32 el P ppm: 32 5 Pp ppm: 32 3 Sb ppm: 32 3 Sc ppm: 32 3 Sc ppm: 32 3 Sr ppm: 32 5 Ti %: 32 el Ti %: 32 el Ti %: 32 el W ppm: 32 6 W ppm: 32 7 W ppm: 32 7 W ppm: 32 7 W ppm: 32 8 W ppm	3 K %: 32 element, soil & rock 3 La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock P ppm: 32 element, soil & rock Pb ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sr ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Tl ppm: 32 element, soil & rock U ppm: 32 element, soil & rock V ppm: 32 element, soil & rock V ppm: 32 element, soil & rock V ppm: 32 element, soil & rock	3 K %: 32 element, soil & rock ICP-AES 3 La ppm: 32 element, soil & rock ICP-AES 4 Mg %: 32 element, soil & rock ICP-AES 5 Mn ppm: 32 element, soil & rock ICP-AES 6 Mn ppm: 32 element, soil & rock ICP-AES 7 Na %: 32 element, soil & rock ICP-AES 8 Ni ppm: 32 element, soil & rock ICP-AES 8 Ni ppm: 32 element, soil & rock ICP-AES 8 P ppm: 32 element, soil & rock ICP-AES 8 Pb ppm: 32 element, soil & rock ICP-AES 8 Sc ppm: 32 element, soil & rock ICP-AES 8 Sc ppm: 32 element, soil & rock ICP-AES 8 Ti %: 32 element, soil & rock ICP-AES 8 Ti %: 32 element, soil & rock ICP-AES 8 Ti ppm: 32 element, soil & rock ICP-AES 8 Ti ppm: 32 element, soil & rock ICP-AES 8 Ti ppm: 32 element, soil & rock ICP-AES 8 U ppm: 32 element, soil & rock ICP-AES 8 U ppm: 32 element, soil & rock ICP-AES 8 U ppm: 32 element, soil & rock ICP-AES 8 U ppm: 32 element, soil & rock ICP-AES 8 U ppm: 32 element, soil & rock ICP-AES 8 U ppm: 32 element, soil & rock ICP-AES 8 U ppm: 32 element, soil & rock ICP-AES	3 K %: 32 element, soil & rock ICP-AES 0.01

Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

mber :2-A Certificate Date: 13-JUL-97 Invoice No. :19730669

P.O. Number :EIA Account

Project: HEG97-01 Comments: HEG97-01 ATTN: J. WEBER/J. LEHTINEN CC: J.ROBBINS/L. BARRY

						· ·					C	ERTIF	ICAT	E OF	ANAL	YSIS.		A973	0669		
SAMPLE	PR		Au ppb FA+AA	Ag ppm			Ba. ppm	Be ppm	Bi ppm	Ca.	Cd ppm	Co ppm		Cu ppm	Fe %	Ga ppm	-	_		Mg %	Mn ppm
												FF		F F -					77-		PP.
004191M	201	202	< 5					0.5	< 2	0.32		16		42	2.92			0.07	10	1.21	435
004192M			Notred	NotRed	NotRcd	NotRcd	NotRcd	NotRcd	NotRed	NotRcd	NotRed	NotRed	NotRed	NotRed	NotRcd	NotRed	NotRcd	NotRed	NotRed	NotRed	NotRed
004193M					NotRcd								NotRed						NotRed		NotRed
004201M	201	202	< 5	< 0.2	1.82	26	120	0.5	< 2	0.60	< 0.5	21	46	53	4.36	< 10	1	0.10	10	1.84	620
004202M	201	202	< 5	0.2	2.02	22	110	0.5	< 2	0.72	0.5	21	37	141	4.71	< 10	< 1	0.07	30	1.22	830
004203M	201	202	< 5	< 0.2	1.82	14	80	< 0.5	2	0.73	< 0.5	31	530	53	3.43	< 10	< 1	0.08	< 10	4.52	575
004204M	201	202	< 5	0.2	2.30		120	0.5	< 2	1.28	0.5	26	403	49	3.50	< 10		0.07	10	3.19	930
004205M	201	202	< 5	0.4	2.19		80	0.5	< 2	1.03	< 0.5	29	479	224	3.97	< 10		0.06	30	4.66	835
004206M	201		< 5	< 0.2		2	140	1.5	< 2		0.5	- 3	- î	3	1.63	< 10		0.13	10	0.11	845
004207M	201	202	< 5	< 0.2		2	150	1.5	< 2		0.5	5	15	9	2.08	< 10	< 1	0.14		0.39	755
004208M	201	202	< 5	0.8	0.65	4	620	< 0.5	< 2	0.86	5.5	5	14	34	1.86	< 10	< 1	0.07	10	0.25	635
004209M		202	< 5	0.6		14	850	< 0.5	₹ 2	1.14	4.0	š	îî	34	1.87	< 10		0.10	< 10	0.21	350
004210M		202	< 5	1.0		16	830	< 0.5	< 2	1.42	10.5		13	41	1.65	< 10	_	0.10	< 10	0.23	950
004211M		202	₹ 5	0.2		< 2	730	< 0.5	< 2	5.01	14.0	9	9	22	1.54	< 10	< 1	0.06	< 10	1.02	1140
004212M		202	< 5	0.2		₹ 2	610	< 0.5	_	>15.00	4.5	1	4	17	0.72	< 10	< 1	0.05	< 10	0.51	100
004213M	201	202	< 5	< 0.2	0.47	< 2	60	< 0.5	< 2	0.35	1.0	2	3		1.09	< 10	< 1	0.11	10	0.19	505
004214M	201	202	< 5	0.8	0.72	30	70	0.5	₹ 2	0.45	3.0	7	11	7	1.66		< 1	0.11	10	0.35	1680
004215M	201	202	< 5	< 0.2	0.72	20	70	0.5	₹ 2	0.39	< 0.5	3		3	1.3B	< 10	₹ 1	0.11	10	0.35	410
004216M	201		< 5	0.8	1.23	26	120	4.0	2	0.29	14.0	3.	3	18	1.87	< 10	< 1	0.12	30		5310
004217M		202	₹ 5	0.2	0.59	< 2	120	0.5	14	0.40	< 0.5	3	3	4	1.53	< 10	< 1	0.12	20	0.23 0.21	550
004218M	201	202	< 5	< 0.2	2.90	< 2	210	2.5	< 2	0.38	< 0.5	8	28	12	3.52	< 10	< 1	0.22	40	0.65	780
004219M	201		< 5	< 0.2	0.76	` 6	120	0.5	₹ 2	0.30	< 0.5	2	40	2	1.40	< 10		0.16	20	0.24	620
004220M	201	202	< 5	0.2	1.10	8	240	1.5	< 2	0.35	0.5	5	7	6	2.16	< 10	< 1	0.10	20	0.27	1245
004221M	201		₹ 5	0.2	2.80	30	330	0.5	< 2	0.55	0.5	24	86	121	3.60	< 10	< 1	0.17	10	1.39	1742
004222M		202	< 5	0.2	2.27	34	280	< 0.5	< 2	0.55	0.5	28	72	157	4.57	< 10	< 1	0.05	20	1.24	2080
004223M	201	202	< 5	0.6	3.23	42	220	0.5	< 2	0.91	1.0	34	92	228	5.68	< 10	< 1	0.06	10	1.75	1275

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Pag mber :2-B
Tot ges :4
Certificate Date: 13-JUL-97
Invoice No. : 19730669
P.O. Number :
Account :EIA

Project: HEG97-01

Comments: ATTN: J. WEBER/J. LEHTINEN CC: J.ROBBINS/L. BARRY

			,								CI	ERTIF	ICATI	E OF A	NAL'	YSIS	A9730669
SAMPLE	PR		Mo ppm			ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V mqq	W	Zn ppm	
	_								PP-			PP	PPM	УРШ	ррш	. P.P.m.	
004191M		202		< 0.01		500	28	< 2	5	21	0.12	< 10	< 10	59	< 10	110	
004192M			NotRed	NotRed	Notred	NotRcd	NotRcd	Notrcd	NotRed N	NotRed 1	NotRcd	NotRcd	NotRcd	NotRed 1	NotRed :	NotRed	
004193M	[NotRcd	NotRcd	NotRed	NotRcd	NotRcd	NotRcd	NotRed N					NotRed 1			
004201M	201	202	1	0.01		890	6	< 2	5 `	89	0.17	< 10	< 10	43	< 10	86	
004202M	201	202	1	< 0.01	81	690	10	< 2	5	89	0.22	< 10	< 10	47	< 10	140	
004203M	201		< 1	< 0.01	450	820	2	< 2	5	84	0.11	< 10	< 10	45	< 10	78	
004204M	201	202	< 1	< 0.01	534	950	2	< 2	5	176	0.10	< 10	< 10	40	< 10	162	
004205M	201	202	< 1	< 0.01	571	640	6	< 2	7	134	0.11	< 10	< 10	46	< 10	164	
004206M	201	202	2	< 0.01	. 2	740	44	< 2	i	29 -	< 0.01	< 10	10	10	< 10	190	
004207M	201	202	5	< 0.01	13	650	30	< 2	2	27	0.03	< 10	10	19	< 10	164	
04208M		202	6	< 0.01	33	860	22	< 2	2	46	< 0.01	< 10	< 10	43	< 10	330	
004209M	201	202	7	< 0.01	35	920	18	< 2	2		< 0.01	< 10	< 10	40	< 10	304	
004210M	201	202	7	< 0.01	63	1360	18	< 2	1		< 0.01	< 10	< 10	67	< 10	616	
004211M		202	6	< 0.01	131	1100	22	< 2	1		< 0.01	< 10	< 10	19	< 10	1410	
004212M	201	202	3	< 0.01	21	430	10	< 2	1	165	< 0.01	< 10	< 10	6	< 10	332	
04213M	201		4	< 0.01	2	700	16	< 2	1	18	0.02	< 10	< 10	10	< 10	230	
04214M		202	4	< 0.01	8	820	246	< 2	1	23	0.03	< 10	10	15	< 10	756	
04215M		202	3	< 0.01	4	1030	20	< 2	1	24	0.02	< 10	10	14	< 10	90	
04216M	201		8	< 0.01	5	750	314	< 2	2	26	0.01	< 10	40	13	< 10	3890	
004217M	201	202	4	< 0.01	2	1170	18	< 2	1	28	0.01	< 10	10	13	10	108	
04218M	201		2	0.01	20	1130	36	< 2	3	39	0.06	< 10	40	40	< 10	162	
04219M		202	1	< 0.01	4	720	18	< 2	1	24	0.02	< 10	10	12	< 10	76	
04220M	201	202	4	0.01	6	780	70	< 2	2	41	0.01	< 10	40	16	< 10	284	
04221M	201		1	< 0.01	93	800	62	< 2	7	39	0.14	< 10	< 10	73	< 10	196	
04222M	201	202	5	< 0.01	89	900	34	< 2	6	19	0.09	< 10	< 10	70	< 10	198	
04223M	201	202	2	< 0.01	88	1020	90	< 2	12	22	0.12	< 10	< 10	107	< 10	304	

CERTIFICATION: Start Buchley

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

'umber :3-A To ages :4
Certricate Date: 13-JUL-97
Invoice No. : 19730669
P.O. Number :
Account :EIA

Project: HEG97-01 Comments: HEG97-01 ATTN: J. WEBER/J. LEHTINEN CC: J.ROBBINS/L. BARRY

 								<u> </u>	CE	RTIF	CATE	OF A	NALY	SIS	A	9730	669		
PREP	Au ppb	Ag	Al	ppm	Ba	Be	Bi	Ca	Cđ	Co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn
CODE	FA+AA	ppm	%	ak	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm

004735M						70	440	< 0.5	< 2	5.66	11.0	8	13	38	1.60	< 10	< 1	0.06	< 10	1.57	305
	201	202	< 5	0.4	0.49	38	640	< 0.5	< 2	5.19	6.0	7	17	28	1.59	< 10	< 1	0.06	10	1.83	295
004736M	201	202	< 5	0.4	0.46	84	590	< 0.5	< 2	5.35	8.5	و	13	36	1.68	< 10	< 1	0.06	10	1.44	310
004737M	201		< 5	0.2	0.35	66	780	< 0.5	< 2	7.66	6.0	7	9	25	1.42	< 10	< 1	0.05	< 10	2.06	295
004738M	201		< 5	0.4	0.39	90	500	< 0.5	< 2	4.77	8.0	8	11	31	1.57	< 10	< 1	0.05	₹ 10	1.13	390
004739M	201	202	< 5	1.0	0.42	72	450	< 0.5	< 2	0.57	2.0	17	10	69	2.19	< 10	< 1	0.09	< 10	0.27	515

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Number: 3-B
Jages: 4
Certificate Date: 13-JUL-97
Invoice No. : 19730669
P.O. Number:
Account: EIA

Project:

HEG97-01

Comments: ATTN: J. WEBER/J. LEHTINEN CC: J.ROBBINS/L. BARRY

											RTIFI	CATE	OF A	NALY	SIS	A9730669	
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	ppm	Pb ppm	Sb mag	Sc	Sr	Ti •	T1	Ţ	٧	W	Zn		,

004734M	201 202	19 < 0.01	125	780	12	4	1	97 0.01	< 10	< 10	33	< 10	846
004735M	201 202	14 < 0.01	70	800	12	2	1	94 0.03	< 10	< 10	40	< 10	448
004736M	201 202	17 < 0.01	107	680	12	6	1	89 0.01	< 10	< 10	32	< 10	676
004737M	201 202	15 < 0.01	60	520	12	2	ī	96 < 0.01	< 10	< 10	27	< 10	352
00473BM	201 202	20 < 0.01	78	620	12	4	1	78 < 0.01	< 10	< 10	26	< 10	388
004739M	201 202	12 < 0.01	99	390	26	< 2	1	49 < 0.01	< 10	< 10	12	< 10	268
004740M	201 202	14 < 0.01	130	500	30	2	1	64 < 0.01	< 10	< 10	15	< 10	430

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

'umber :1-A To ages :4 Certificate Date: 13-JUL-97 Invoice No. P.O. Number :19730669 Account :EIA

Project: HEG97-01 Comments: HEG97-1, LEHTINEN CC: J.ROBBINS/L. BARRY

		-								CE	RTIFI	CATE	OF A	NAL	/SIS	Α	9730	669		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga nom	Hg maa	K %	La	Mg ⋄	Mn

004184M 004185M	201 20 201 20	-	< 5 < 5	0.2	2.81 3.47	28 18	280 380	0.5 0.5	< 2 < 2	0.63 0.45	1.5 1.0	29 29	89 151	115 152	3.98 4.35	< 10 < 10	< 1 < 1	0.11 0.09	10 10	1.47 1.87	1125 1520
004186M	201 20	2	< 5	0.2	3.70	14	430	0.5	< 2	0.47	1.0	37	277	103	4.09	< 10	< 1	0.10	10	2.55	1110
004187M	201 20	12	< 5	0.2	3.02	22	380	0.5	< 2	0.71	1.5	32	123	107	3.96	< 10	₹ 1	0.13	10	1.81	1075
004188M	201 20	12	< 5	0.6	3.47	60	400	0.5	< 2	0.69	0.5	31	95	211	4.98	< 10	< 1	0.10	30	1.51	1690
004189M	201 20	12	< 5	0.4	2.97	32	390	0.5	< 2	0.57	0.5	28	74	235	4.89	< 10	~ 1	0.07	30	1.42	1485
004190M	201 20	2	< 5	0.6	2.74	56	330	0.5	< 2	0.59	1.5	43	71	282	5.45	< 10	ì	0.10	30	1.22	3020
																					-

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Page 'mber :1-B Tott jes :4 Certificate Date: 13-JUL-97 Invoice No. :19730669

P.O. Number : Account :EIA

Project: F

HEG97-01

Comments: ATTN: J. WEBER/J. LEHTINEN CC: J.ROBBINS/L. BARRY

Г	<u> </u>			·	-						CE	RTIFI	CATE	OF A	NALY	'SIS	A9730669	
	SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm		
););																	·
) i Ji Ji												•					

004184M 004185M	201 202 201 202	1 0.0 1 < 0.0		840 740	144 222	< 2 < 2	7 7 .	30 25	0.12	< 10 < 10	< 10 < 10	75 83	< 10 < 10	312 324	_
004186M	201 202	< 1 0.0	1 352	710	118	< 2	7	24	0.12	< 10	< 10	76	< 10	268	
004187M	201 202	1 0.0	2 127	770	62	< 2	7	67	0.13	< 10	< 10	80	< 10	234	
04188M	201 202	3 < 0.0	1 111	1030	110	< 2	10	28	0.11	< 10	< 10	93	< 10	300	
04189M	201 202	2 < 0.0	1 91	850	144	< 2	10	20	0.09	< 10	< 10	90	< 10	328	
004190M	201 202	3 < 0.0	1 129	1190	138	< 2	10	23	0.11	< 10	< 10	75	< 10	360	

CERTIFICATION: Con Control Con Control Con Control Con Control Control

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Number :4-A Ages :4 Certificate Date: 13-JUL-97 Invoice No. : I P.O. Number : :19730669

:EIA Account

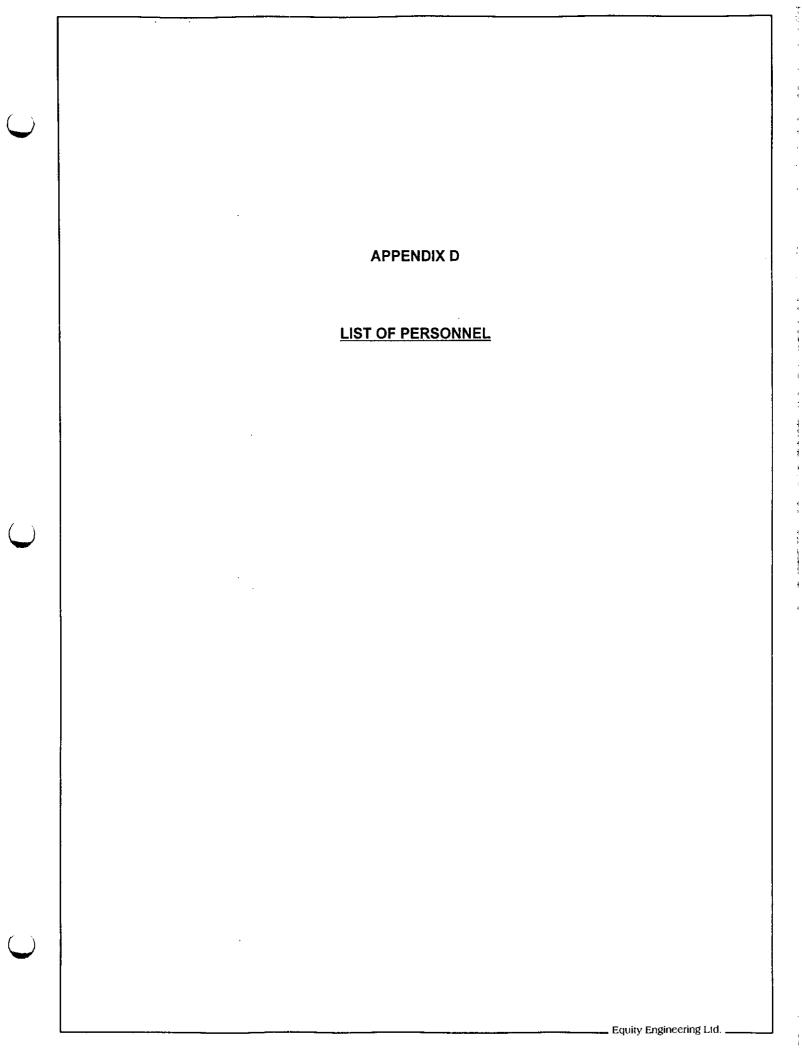
Project: HEG97-01 Comments: HEG97-01 ATTN: J. WEBER/J. LEHTINEN CC: J.ROBBINS/L. BARRY

	_		 -	****							CE	RTIF	CATE	OF A	NAL'	YSIS		49730)669		
SAMPLE		EP DE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mı ppı
N108223	l 201	202 	< 5	0.8	0.42	26	770	< 0.5	< 2	5.10	7,5	8	14		1.04	` 10		v,			
N108224	201	202	< 5	1.0	0.48	28	670	< 0.5	< 2	5.59	10.0	8	14	42	1.86	< 10	< i	0.09	10	1.44	35
N108225 N108226 N108227 N108228 N108229	201 201 201	202 202 202 202 202 202	< 5 < 5 < 5 < 5	1.0 0.2 0.4 0.6 0.8	0.50 0.32 0.51 0.51 0.62	24 24 38 36 44	650 680 610 410 360	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	4.86 7.26 5.29 5.19 1.75	12.5 9.0 9.5 8.5 7.0	7 7 8 9 25	15 11 15 18 18	34 33 37 29 85	1.64 1.73 2.02 1.89 2.57	< 10 < 10 < 10 < 10 < 10	< 1 2 < 1 < 1 < 1	0.09 0.10 0.09 0.07 0.08	10 < 10 10 < 10 < 10	1.29 2.31 1.72 1.46 0.61	300 350 310 335 560
N108230 CL1660-900M	201		< 5 NotRed N	0.8	0.67	48	450	< 0.5	< 2	1.73	8.0	27	19	99	2.58	< 10	< 1	0.09	< 10	0.62	63

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218 To: EQUITY ENGINEERING LTD.

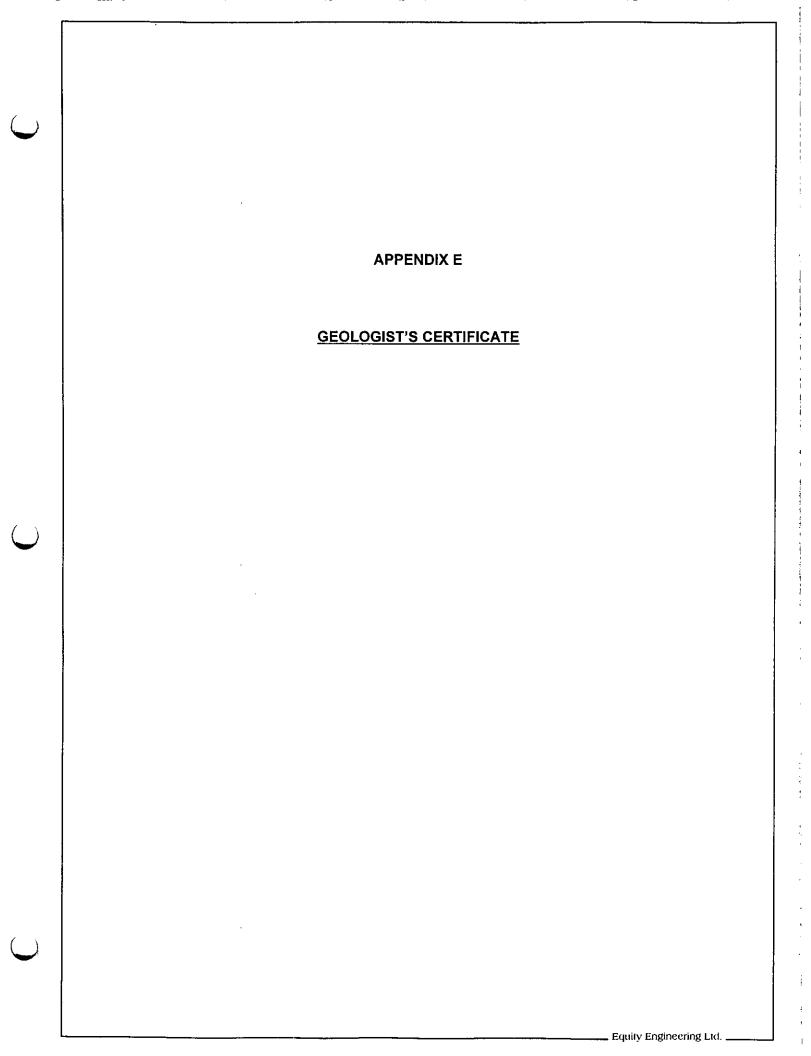

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project: HEG97-01 Comments: ATTN: J. WEBER/J. LEHTINEN CC: J.ROBBINS/L. BARRY

imber :4-B To ges :4 Certinicate Date: 13-JUL-97 Invoice No. :19730669 P.O. Number Account :EIA

										CE	RTIF	CATE	OF A	NALY	'SIS	A9730669
	PREP CODE	Mo ppm	Na %	Ni ppm	p ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	y Ppm	ррш	Zn ppm	
N108223 20 N108224 20	01 202 01 202		< 0.01 < 0.01	86 118	1010 1140	9 10	2 2	2 2	124 136	0.02 0.01	< 10 < 10	< 10 < 10	34 42	< 10 < 10	526 642	
N108225 20 N108226 20 N108227 20 N108228 20	01 202 01 202 01 202 01 202 01 202 01 202	10 < 15 < 13 < 14 <	0.01 0.01 0.01 0.01	100 80 114 102 149	1060 1000 1030 1150 980	10 10 8 8	2 < 2 2 6 4	2 2 3 3 2	112 192 < 169 146	0.03 0.01 0.02 0.02 0.02	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	41 44 43 32 23	< 10 < 10 < 10 < 10 < 10	658 516 646 560 580	
N108230 20 CL1660-900M	01 202	25 KNOTROD N	0.01 Notred P	169 NotRod 1	1010 NotRcd N	12 otRcd N	6 otrod N	2 otRođ N	67 <	O.01	< 10	< 10 Notrcd N	28 otRed N	< 10 JotRed N	650 otRcd	

CERTIFICATION:_


LIST OF PERSONNEL

Rory Edwards, Sampler 110 Park Street Iroquois Falls, Ontario

Jim Lehtinen, P. Geo. 4317 Briardale Road Royston, British Columbia

Dirk Moraal, Prospector/Sampler General Delivery Tagish, Yukon Territory

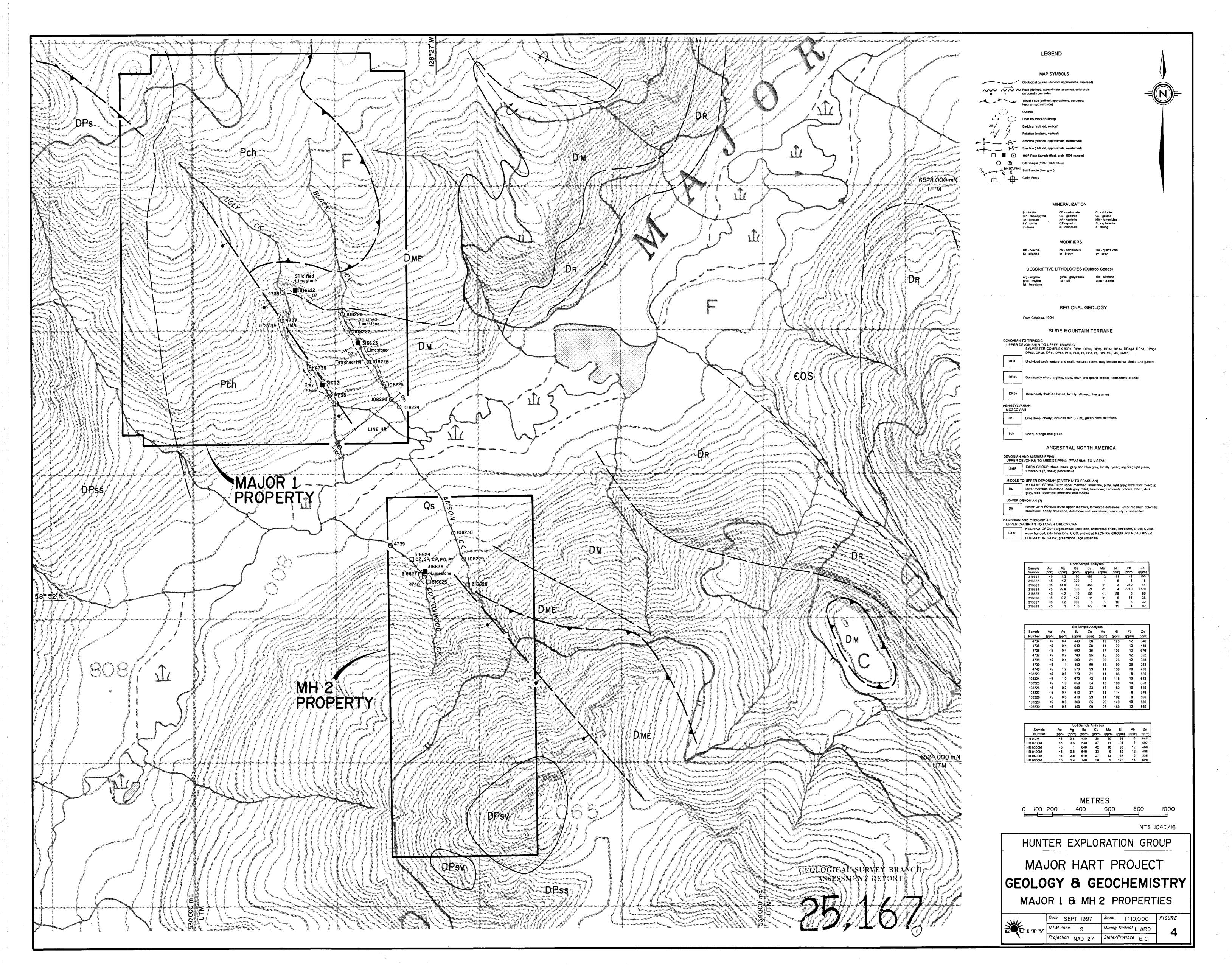
Jason Weber, B.Sc. (Geology) #309 - 250 East 2nd Street North Vancouver, British Columbia

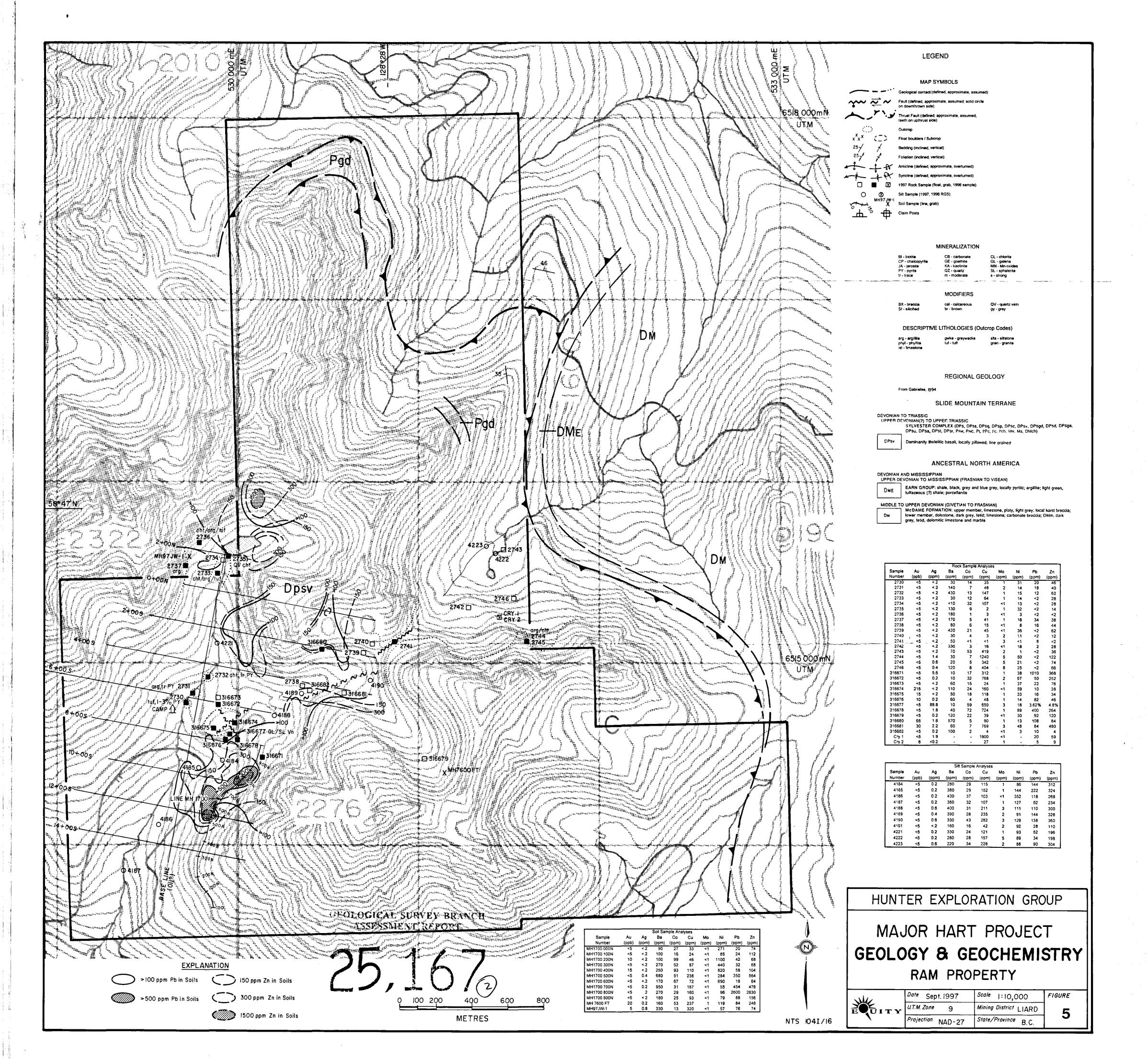
GEOLOGIST'S CERTIFICATE

- I, Jason S. Weber, of 309 250 East 2nd Street, North Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:
- 1. THAT I am a Consulting Geologist with offices at Suite 207, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of British Columbia with a Bachelor of Science degree in Geology.
- 3. THAT this report is based on fieldwork carried out by me or under my direction during June 1997, and on publicly available reports.
- 4. THAT I have no interest in Hunter Exploration Group, any of their affiliates, nor in the subject property, nor do I expect to acquire any such interest.

DATED at Vancouver, British Columbia, this___day of October, 1997.

Jason S. Weber, B. Sc.


GEOLOGIST'S CERTIFICATE


I, Jim Lehtinen, of 4317 Briardale Road, Royston in the Province of British Columbia, DO HEREBY CERTIFY:

- 1. THAT I am a Contract Geologist with Equity Engineering Ltd. with offices at Suite 207, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of British Columbia with a Bachelor of Science degree in Geology.
- 3. THAT I am a Professional Geoscientist registered in good standing with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4. THAT this report is based in part on property work I personally completed and/or directly supervised in June, 1997, and on publicly available reports.

DATED at Vancouver, British Columbia, this ____ day of October, 1997.

Jim Lehtinen, P.Geo.

