

LINECUTTING, GEOLOGICAL MAPPING

AND

GEOCHEMISTRY

ON THE

ELF SOUTH GROUP CLAIMS

NTS: 94F/7E&W

BY: TECK EXPLORATION LTD.

FOR: CIRQUE OPERATING CORP.

R. FARMEROLOGICAL SURVEY BRANCH OCTOBER 1997 ASSESSMENT REPORT

SUMMARY

A program comprising linecutting, geological mapping and soil geochemical sampling was carried out on the Elf South Group claims between July 14 and July 28, 1997. Claims comprising the Elf South Group represent the southeastern portion of the Elf property. The purpose of the program was to assess the on strike potential of known mineralization on the Elf Grid and, on the Joel Creek Grid, to follow-up favourable geochemistry and geology identified previously. Detailed grid controlled geological mapping and soil geochemical sampling were carried out with a view towards identifying potential drill targets.

A total of 9.6 line kilometres of linecutting was completed on two grids. On the Elf grid three lines not cut in 1995 were completed south of Elf Creek and the grid was extended 500 metres to the northwest, adding six new lines, for a total of 4.9 line kilometres. On the Joel creek Grid, only a portion of the grid is included in the Elf South Group, totaling 4.7 line kilometres. The northwestern portion is described in a separate report.

A total of 9.6 line kilometres of grid controlled geological mapping were completed on the two grids on Elf South Group claims. Siliceous, graphitic shale containing local nodular to laminated barite and pyrite was identified on the Joel Creek Grid, trending northwest. Poor exposure prevented tracing of the sequence south of Joel Creek. In the area of the helipad at the southeast end of the baseline exposure seems much better and additional grid lines should be added to the south end of the grid where the prospective sequence may once again be exposed.

On the Elf Grid, geological mapping on lines 104N to 106N has identified two parallel belts of prospective siliceous, graphitic shale. It is not clear whether these represent two horizons or a fold repetition of a single horizon, however a fold repetition is suspected. In the northwestern extension (L112N-L117N) of the grid, extensive thick overburden prevented tracing of the sequence in that direction, particularly for the southwestern band, containing the Elf showing. The more easterly band was traced as far north as L114N before disappearing beneath extensive overburden cover. Relogging of old drill core should be completed to confirm whether the two belts of siliceous shale represent limbs of a fold or separate horizons.

A total of 355 soil samples were collected during the 1997 program, 199 from the Elf Grid and 156 from the southern portion of the Joel Creek grid. The strong multielement anomaly (Pb, Zn, Ag, Ba), associated with the Elf Showing could not be traced to the northwest, with the exception of zinc, which is continuous across all lines sampled in 1997. This may be related to iron seeps issuing from the thrust fault forming the contact with Silurian siltstone. On the southeast side, lines 104-106N, Pb, Ag and to some extent Ba extend the anomaly in that direction, but Zn is not anomalous.

On the Joel Creek grid (Elf South Group portion), there is a strong Pb, Ag +/- Ba anomaly near the eastern end of lines 140N-143N which trends off the South Group claims to the northwest. A weaker Ag +/- Pb anomaly is present between 98 and 99E on lines 136N to 134N which trends southeastwards off the grid. This anomaly may reflect the prospective stratigraphy and the grid should be extended to the southeast. Zn and Ba are peripheral to Pb and Ag over the grid area.

÷

RECOMMENDATIONS

- 1. Extend the Joel Creek grid southeastwards to allow geological mapping of the Gunsteel sequence in an area of apparently good exposure.
- 2. Re-log existing drill core to provide details on stratigraphy and structure in the area of mineralization.

.

3. Upon completion of Nos. 1&2 above, diamond drill all favourable geological and geochemical targets.

TABLE OF CONTENTS

1. **1**. 1. 1.

_

Summary	i
Recommendat	ionsiii
Introduction	
Location and A	Access1
Claims	
Previous Worl	٤3
Current Progra	am3
Linecutting	
Geology	
A. Reg	ional Geology4
B. Proj	perty Geology - 1997 Work4
C. Lith	lology6
	Unit 1 - Ordovician Stratigraphy7
	Unit 2 - Silurian Siltstone7
	Unit 3 - Gunsteel Shales
	Unit 4 - Conundrum Siltstone
D. Mir	eralization9
Geochemistry	
A. Elf	Grid 11
B. Joel	Creek Grid
Conclusions	
References	

LIST OF FIGURES

Figure 1: Elf Property Location Map1
Figure 2: Claim Map2
Figure 3: Claim Map Showing Grid Locations and Elf South Group
Figure 4: Regional Geology
Figure 5: Elf Grid - Geology (1:2500) In Pocket
Figure 6: Joel Creek Grid - Geology (1:2500) In Pocket
Figure 7: Elf Grid - Geochemistry, Pb PPM (1:2500) In Pocket
Figure 8: Elf Grid - Geochemistry, Zn PPM (1:2500) In Pocket
Figure 9: Elf Grid - Geochemistry, Ag PPM (1:2500) In Pocket
Figure 10: Elf Grid - Geochemistry, Ba PPM (1:2500) In Pocket
Figure 11: Joel Creek Grid - Geochemistry, Pb PPM (1:2500) In Pocket
Figure 12: Joel Creek Grid - Geochemistry, Zn PPM (1:2500) In Pocket
Figure 13: Joel Creek Grid - Geochemistry, Ag PPM (1:2500) In Pocket
Figure 14: Joel Creek Grid - Geochemistry, Ba PPM (1:2500) In Pocket

LIST OF TABLES

Page No.

LIST OF APPENDICES

Appendix I:	Cost Statement
Appendix II:	Statement of Qualifications
Appendix III:	Certificates of Analyses
Appendix IV:	Analytical Procedures
Appendix V:	Soil Sample Descriptions

INTRODUCTION

The Elf property is located in the Akie River area, southern Kechika trough, in northeastern B.C. The property is underlain by a thick succession of black shale and chert of the Upper Devonian Gunsteel Formation, Earn Group. The Cirque deposit (30 MT @ 8% Zn, 2% Pb, 37g/t Ag), located 35 kilometres to the northwest, is hosted by these same shales. The Elf property consists of 161 contiguous units and this report describes work carried out on the southeastern portion of the property, grouped as Elf South Group (83 units).

During 1997 a program comprising linecutting, grid controlled geological mapping and soil geochemistry was carried out on the Elf South Group claims. Work was carried out on two grids; the Elf Grid and the Joel Creek Grid. The purpose of the program was; a) to fill in three lines on the Elf Grid not completed in 1995 and to extend the grid to the northwest in an attempt to trace known mineralization in that direction; b) to establish a grid in the Joel Creek area where favourable stratigraphy and baritic mineralization had been identified in 1995, to allow detailed geological mapping and soil sampling in an attempt to locate additional mineralization in this area.

This report describes the work carried out on the Elf property, Elf South Group claims, and provides an interpretation of results obtained.

LOCATION AND ACCESS

The Elf property is located on the south slope of the Akie River, approximately 45 kilometres east-southeast of the village of Fort Ware, B.C. (figure 1). The center of the claims are located at latitude 57° 18' N, longitude 124° 42' W, on NTS mapsheets 94F/7 E&W.

Access to the property is via helicopter only, with the nearest base located at the logging camp of Finbow, 40 kilometres west of the property. Assess to Finbow camp is by fixed wing aircraft or barge from the town of Mackenzie, B.C., a distance of 250 kilometres. The 1997 program was based out of the Finbow Camp located 40 km northwest of the property, utilizing helicopter transport to the property on a daily basis.

The Elf claims cover the steep south slope of the Akie River. Slopes are generally heavily timbered with spruce and fir, higher elevations on ridge tops are above tree line. Despite heavy timber, slopes are very steep (often 30-50°), with much timber on the ground. Elevations on the property vary between 930 and 1600 metres, with several steeply incised creek valleys cutting across the predominant northwest topographic alignment.

CLAIMS

The Elf property comprises 22 claims totaling 165 units (figure 2). The current registered owner of all claims is Cirque Operating Corp. This report concerns a portion of these claims, 11 claims totaling 83 units, comprising Elf South Group. Table 1 below provides a summary of claim statistics.

Claim Name	Record Number	Number of Units	Owner	Expiry Date*
Elf 1	237990	6	Cirque Operating Corp.	23 Jun 98
Elf 2•	237991	6	Cirque Operating Corp.	23 Jun 2001
Elf 3	237992	4	Cirque Operating Corp.	23 Jun 98
Elf 4∙	237993	10	Cirque Operating Corp.	23 Jun 2001
Elf 5∙	237994	4	Cirque Operating Corp.	23 Jun 2001
Elf 6	237995	10	Cirque Operating Corp.	23 Jun 98
Elf 7•	237996	4	Cirque Operating Corp.	23 Jun 2001
Elf 8●	237997	18	Cirque Operating Corp.	23 Jun 2001
Elf 9	237998	8	Cirque Operating Corp.	23 Jun 98
Elf 10●	237999	8	Cirque Operating Corp.	23 Jun 2001
Elf 11•	238000	12	Cirque Operating Corp.	23 Jun 2001
Elf 12	238001	1	Cirque Operating Corp.	23 Jun 98
Elf 13	238007	20	Cirque Operating Corp.	18 Jul 98
Elf 14	238008	20	Cirque Operating Corp.	18 Jul 98
Elf 15	238009	2	Cirque Operating Corp.	18 Jul 98
Elf 15•	238029	9	Cirque Operating Corp.	01 Aug 2001
Elf 16•	238128	5	Cirque Operating Corp.	22 Jun 2001
Elf 17	238129	3	Cirque Operating Corp.	22 Jun 98
Elf 18	238144	4	Cirque Operating Corp.	13 Aug 98
Elf 19•	238287	4	Cirque Operating Corp.	11 Jul 2001
Elf 21•	238336	3	Cirque Operating Corp.	11 Sept 2001

Table 1 Claim Statistics

Total: 83 Units

- Grouped as Elf South Group
- * Expiry of Elf South Group Claims Based on Acceptance of this Report

PREVIOUS WORK

The Elf claims were explored between 1978 and 1982 by Cyprus Anvil Mining Corporation. Work carried out during that period included, geological mapping, stream and soil geochemical sampling, linecutting, orthophoto base map construction, horizontal loop EM and diamond drilling.

l

ţ

Follow-up of stream sediment anomalies and mineralized float led to the 1979 discovery of a high grade barite-lead-zinc showing in Elf Creek. Between 1979 and 1982 a total of 26 diamond drill holes (10,500 metres) were drilled on the property, 23 in the area of the Elf Creek Showing and three to test soil anomalies in the northern portion of the claims, one of these in the area now covered by the Joel Creek Grid. Significant mineralization was intersected in eight holes directly under the Elf showing, with the best being 3.65% Pb, 10.13% Zn, 27.2 g/t Ag over a true width of 10.9 metres. A further 15 holes drilled in the vicinity of the of the showing failed to intersect the mineralized horizon due to bad drilling conditions (10 holes), or intersected a barren zone at the targeted horizon (5 holes). Three holes drilled to test soil anomalies several kilometres to the northwest, failed to intersect significant mineralization. The majority of this drilling was undertaken on what is now the Elf South Group of claims.

In 1995, a program comprising regional scale geological traverses, linecutting, soil geochemical sampling and grid controlled geological mapping were carried out by Teck Exploration Ltd.

CURRENT PROGRAM

During the period July 14 to July 28, 1997 a program consisting of linecutting, grid controlled geological mapping and soil geochemical sampling was carried out on two grids within the Elf South Group claims. On the Elf Grid, work comprised extending the grid to the northwest and completing three internal lines not completed in 1995. At Joel Creek, approximately 2 km to the northwest, a grid was established to cover an area of favourable stratigraphy containing barite mineralization identified in 1995. Only a portion of the Joel Creek grid is located on Elf South Group claims and that portion is reported on here (figure 3). The remainder of the grid will be reported on separately. The purpose of the program was to attempt to trace known mineralization on the Elf grid to the northwest, along strike and on the Joel Creek grid to attempt to locate significant mineralization or proximal stratigraphy which may warrant drill testing. A total of 9.6 line kilometres of linecutting and geological mapping, and 355 soil samples along with one moss mat stream sample and one rock chip sample were completed as part of the 1997 program. Geology and soil geochemical results are plotted on 1:2500 scale grid maps included as figures 5 to 14.

LINECUTTING

Linecutting was carried out by Twin Mountain Enterprises Ltd. of Whitehorse, YT. Linecutting in 1997 consists of a total of 9.6 line kilometres comprising 4.9 line kilometres on the Elf Grid and 4.7 line kilometres on the southern portion of the Joel Creek Grid. On the Elf grid three lines (L104N to L106N) were completed which were not run in 1995, and the grid was extended 500 metres to the northwest (6 lines). At Joel Creek a large grid was established, the portion of which that lies on the Elf South Group

3

of claims and is reported on here, comprises 1100 metres of baseline at an azimuth of 300°, 7 complete lines (L134N to L140N) and three partial lines (L141N to 143N). The boundary of the Elf South Group claims is plotted on figures 5-14. Lines were established at an azimuth of 030° and spaced 100 metres apart. All lines were cut using a power saw. Azimuths were turned off using a brunton compass and maintained utilizing sight pickets. Distances were chained and slope corrected. Stations were established every 25 metres on cross lines and the baseline and are marked by wooden pickets with metal tags. The linecutting was done from July 16 to July 25, 1997 (10 days). Grid locations are shown on figure 3 and accurate grid lines are plotted on figures 5 to 14.

GEOLOGY

A. Regional Geology (Figure 4)

The best description of the geology of the Gataga district - Akie River area, including the Elf property area is provided by MacIntyre (1981, 1992).

The Elf property is located within the Rocky Mountain Fold and Thrust belt of northeastern B.C. The property is located within Paleozoic, miogeoclinal basinal facies rocks of ancestral North America affinity (MacIntyre, 1992). These rocks were deposited in the Kechika Trough, a southeast extension of the Selwyn Basin, and are bounded to the east by platformal carbonates of the MacDONALD Platform and to the west by carbonates of the Cassiar Platform. The Kechika Trough is underlain by predominantly clastic rocks, ranging from Proterozoic to Triassic in age which form a northwest trending linear belt. The Elf property is underlain by black shale, siliceous shale and chert of the Gunsteel Formation, Lower Earn Group, of Upper Devonian age. The Stronsay (Cirque) deposit, located 30 kilometres to the northwest (38.5 mt @ 8.0% Zn, 2.2% Pb, 47.2g/t Ag), is hosted by the same Gunsteel Formation shales. Northeast directed compression has resulted in complex thrusting and related folding, resulting in difficult stratigraphic correlation.

Cyprus Anvil Mining Corporation carried out extensive work on the Elf property during the period 1978-1982, including regional and detailed mapping and diamond drilling. From this work a showing was discovered near Elf creek, consisting of laminated massive barite and galena, named the Elf Showing. This showing is associated with black, siliceous shale.

B. Property Geology - 1995 Work

Geological mapping in 1997 included, detailed grid controlled mapping on two grids, the Elf and Joel creek grids, comprising 4.9 line kilometres and 4.7 line kilometres, respectively. Mapping was facilitated by traversing grid lines and areas between lines and outcrops or other features were plotted in relation to the nearest grid station. Geological mapping was carried out between July 14 and 28, 1997. A single rock sample

AFTER MacINTYRE, 1983

and a moss mat stream sample were collected during the course of mapping. Geology for the Elf grid is plotted on figure 5 and for Joel Creek Grid, on figure 6.

The Gunsteel sequence on the property trends in a northwest - southeast manner across the claims and is bounded to the southwest by Silurian calcareous siltstone, which has been thrust northeastwards onto the younger Gunsteel shales. To the northeast the Gunsteel shales are overlain by a siltstone/shale package termed by previous operators as the Conundrum Siltstone. The nature of the contact is not clear, but likely is a fault.

Gunsteel shales form a belt several hundred metres thick on the property, however structural repetition is likely. Mapping in 1997 has recognized five distinctive subdivisions based on lithology, but relative stratigraphic relationships are unknown. The subdivisions include; silty, fissile shales (unit 3e), siltite laminated shale (unit 3d), chert (unit 3c), black "speckled" shale (unit 3b) and siliceous, graphitic shale (unit 3a). Siliceous graphitic shale of unit 3a is the host to mineralization. A description of lithological units is included in the "Lithology" section below. These different lithologies are distinctive in the field, however contacts are gradational resulting in areas with characteristics of more than one lithology, and several outcrops are often necessary to distinguish lithological units.

The shales have a general northwest strike with shallow to moderate dips to the southwest. Cleavage is generally subparallel to bedding but usually has a steeper, subvertical dip. Locally variable strikes and dips indicate complex structure, in terms of both folding and faulting. Small scale (10's of metres), tight to isoclinal, often overturned folds are common. Cliffs near the Joel Creek Showing show a variety of low to high angle faulting with offsets varying from a few centimetres to tens of metres and more. These faults are difficult to recognize anywhere other than cliff faces.

Chert is present, often as interbeds within siliceous shale, but locally forms a discrete lithological unit. Cherts are black and massive to thin bedded, are usually rusty weathering on fracture surfaces due to the presence of minor disseminated pyrite. Cherts tend to form thin, discontinuous horizons adjacent to siliceous shales but are also located in areas of generally undivided, non-siliceous shale

On the Elf grid (figure 5), mapping was carried out on the newly established lines, L104-106N, and L112N-L117N. Bedrock exposure was found to be very poor. On lines 104N-106N moderate exposure is present and a relatively narrow (approx. 250 meters wide) Gunsteel shale sequence is present with Silurian dolomitic siltstone exposed to the southwest and siltstones of unit 4 to the northeast. the contact with siltstones of unit 4 is considered to be a fault, or possibly an unconformity in this area due to a reversal in bedding dip direction across the contact. Within the Gunsteel sequence two belts of siliceous shale (unit 3a) are present separated by 200 metres of non-siliceous shale. It is not clear whether two separate horizons are present or if a single horizon has been repeated by folding. The northeastern belt trends into the faulted contact with Unit 4 near L104N, and appears to terminate against the fault. A siliceous outcrop on L104N within

the southwestern belt contains minor pyrite and nodular barite. This exposure was sampled (#51252) and sample location and results are shown on figure 5. The northeastern belt has a much shallower dip (~ 30° W) than the southwestern (~ 50° W), and this becomes more pronounced northwards. This could suggest structural repetition, as folding in the Gunsteel often displays a short steep limb-long flat limb symmetry. In the northwest area (L112N-L117N), sparse outcrop is present as far as about L114N, and no bedrock was identified beyond that. The northeast belt of siliceous shale was traced as far as L114N, where a graphitic, concretion bearing exposure with nodular barite and disseminated pyrite is present in a creek bed. Neither the southwest belt of siliceous shale nor the mineralization it is host to near L109N is exposed in the area mapped in 1997. Its potential strike extension to the northwest remains unknown. Past drilling does not extend beyond L114N.

On the Joel Creek Grid (figure 6), located approximately 2 kilometres northwest of the Elf Grid, 4.7 line kilometres of mapping were carried out over the southern portion of the grid. The Elf 8-Elf 13 claim boundary shown on figure 6, marks the northwestern boundary of the Elf South Group of claims, and only work carried out southeast of this boundary is discussed here. Results for the entire grid are shown on figure 6 for completeness however, the northwestern portion of the grid is the subject of a separate report. Mapping on the southeastern portion of the grid has identified a very narrow belt of Gunsteel shales (200 metres) bounded by Silurian siltstone to the southwest and siltstones of unit 4 to the northeast. Between L140N and L141N the Gunsteel sequence abruptly thickens to the northeast (to a 500 metre wide belt). Although the contact is not exposed, a northerly trending fault with right lateral sense of movement, is suspected, to account for this abrupt change. Exposure is very poor south of Joel Creek, and little can be discerned about the geology in this portion of the grid. A moss mat stream sample (# M51253) was collected from a small creek draining the Gunsteel sequence south of Joel Creek but results are inconclusive. Sample location and results are plotted on figure 6. North of Joel Creek exposure is much better. An exposure of siliceous shale containing laminated pyrite and nodular barite is present in Joel Creek and is described in detail as the Joel Creek Showing in a 1995 assessment report (Farmer, 1995). Mapping in 1997 shows this exposure to be part of a narrow northwest trending siliceous shale horizon (unit 3a) which continues onto the northern portion of the grid. Narrow bands of unit 3a are also present near the northeast end of line 143N, also trending onto the northern grid area. Significant mineralization was not identified on this portion of the grid, however the Gunsteel shale package is thickening northwestwards and at least two bands of favourable siliceous shales of unit 3a have been identified.

C. Lithology

The following section describes lithologic units used on geological maps included in this report. Units are numbered from stratigraphically lowest to highest, although

6

stratigraphic relationships within the Gunsteel Formation are not known at this time. Contacts between units belonging to the Gunsteel Formation (3a-3e) are gradational.

UNIT 1 - ORDOVICIAN STRATIGRAPHY

This unit includes limestone (Unit 1a) and mafic volcanic rocks of the Ospika Volcanics (Unit 1b). Unit 1a consists of massive to thick bedded grey limestone forming prominent ridges and cliffs in the southeastern portion of the property. The age of the limestone is uncertain, but because it occurs in the same thrust panel as Ospika Volcanics is considered to be Ordovician. Unit 1b consists of limonitic to ankeritic weathering, carbonate-rich, mafic volcanic flows and breccias. Rocks of Unit 1 are exposed in a thrust panel in the southeastern corner of the Elf claims, and are not exposed in the northern portion of the property, which is the subject of this report, and will not be discussed further here.

UNIT 2 - SILURIAN SILTSTONE

This is a distinctive package of rocks, including several lithologies which have not been subdivided. The most common and distinctive lithology consists of brown to buff weathering dolomitic siltstone. The siltstone varies from thin to thick bedded and locally contains thin interbeds of grey calcareous, shale. Occasionally, dark grey massive limestone is present as beds varying from a few centimetres to several ten's of metres thick. A lithology consisting of light grey calcareous mudstone containing 70% grey "pancake shaped" discontinuous limestone beds to 10 centimetres thick is also present locally. Rocks of Unit 2 have been thrust in a northeast direction over Devonian Gunsteel stratigraphy.

UNIT 3 - GUNSTEEL SHALES

Gunsteel shales are Upper Devonian in age and consist of grey to black shale, mudstone and chert. The sequence is host to Sedex Pb-Zn-Ag-Ba mineralization throughout the Kechika Trough and Selwyn Basin. Geological mapping on the Elf property has recognized five subdivisions within the Gunsteel shales, here designated as units 3a to 3e.

Subunit 3a consists of siliceous, graphitic black shale which locally contains carbonate concretions, nodular barite and/or laminated pyrite. This subunit is the direct host to mineralization on the property. Due to the very siliceous to cherty nature of these rocks they tend to be non-fissile, in spite of being intensely graphitic and strongly cleaved. In addition, when present, concretions, barite nodules and pyrite laminations make this subunit readily identifiable. Carbonate concretions vary from less than one centimetre to in excess of one metre in diameter. Subunit 3b consists of a very distinctive massive, black, silty shale containing abundant, pinhead sized grey spots, lending a speckled appearance to the lithology on fresh surface. Composition of the spots is not known. Speckled shale of subunit 3b locally seems to form a readily mappable lithological unit, but in other areas occurs only as interbeds in other units. On the Joel Creek grid, speckled or spotted texture has been identified in siltstone and shale of unit 4 locally, perhaps suggesting that the texture may be a later (alteration or metamorphic?) event.

Chert (subunit 3c) is present, locally, throughout the Elf property. It occurs as interbeds a few tens of centimeters thick within siliceous shale of subunit 3a and as a distinct lithology 10 to 20 metres thick within and adjacent to subunit 3a. Cherts are also present far removed from siliceous shale stratigraphy where they form discrete horizons within siltite laminated shales of subunit 3d or silty shales of subunit 3e. As such they do not appear to be restricted to a particular portion of stratigraphy, but rather occur throughout the Gunsteel stratigraphy. Cherts are black and vary from massive to thinly bedded. They are characteristically rusty weathered on fracture surfaces due to a minor content of disseminated pyrite. Chert horizons can seldom be traced for any distance along strike, suggesting a discontinuous nature to their presence.

Subunit 3d consists of a grey to black, siltite laminated shale. Siltite laminations are light grey in colour and a few millimetres to one centimetre thick, often imparting a striped appearance to shales, particularly on weathered surfaces. Rocks of subunit 3d are always non-siliceous, and often silty looking. They are commonly very fissile in outcrop and are generally associated with undivided shale of subunit 3e. Siltite laminated shales are always distal from mineralization and combined with silty fissile shale of subunit 3e probably form the bulk of Gunsteel stratigraphy.

Unit 3e includes silty, fissile grey to black shales to mudstones. These shales are non-siliceous and non-graphitic. They often have a "silty" appearance and may locally grade into siltstone or mudstone. A ubiquitous slaty cleavage is particularly well developed in unit 3e, producing commonly fissile shale, locally to the point of paper thin plates. Unit 3e includes all undivided Gunsteel shales.

UNIT 4 - CONUNDRUM SILTSTONE

Unit 4 overlies the Gunsteel shales but is likely still of Upper Devonian age. This unit probably correlates with the Conundrum Siltstone as described by Cyprus Anvil geologists (Roberts, 1979; Jefferson, 1980), and consists of a siltstone dominant sequence. Main rock types include; grey, brown, to black weathering, grey to black, thick bedded (2-50cm) siltstone. Locally, grey shale interbeds produce a well bedded siltstone- shale lithology. Occasional coarser, gritty beds may be present. The siltstone and shale are often, but not always, mildly calcareous. Contact relationships between units 3 and 4 are not known however, bedding reversals across the contact suggest a fault or unconformity. There is some suggestion of a broad transition between upper Gunsteel Fm. and Conundrum siltstone. This transition is in the form of increasing siltstone content towards the top of the Gunsteel Fm., becoming siltstone dominant in Unit 4. Additional work is necessary to confirm this however, if correct, may be indicative of a marine regression in the uppermost Devonian, allowing a rapid influx of coarser clastic material.

D. Mineralization

One significant showing was previously known on the Elf property, the Elf Showing discovered by Cyprus Anvil Mining Corp. in 1979. A second, baritic occurrence was discovered in Joel Creek in 1995 (Farmer, 1995). The following showing descriptions are from Farmer, 1995.

The Elf Showing, located on the Elf Grid and mapped in detail in 1995 consists of massive, well laminated barite at least four metres thick, originally exposed in three trenches and several pits. The barite is host to considerable galena as disseminations and thin (<2 cm, max 10 cm) massive laminations, as well as minor pyrite and trace sphalerite. Additional hand trenching in 1995 extended the known surface strike length of the showing to 50 metres. Mineralization is overlain and underlain by siliceous black shale. Concretion bearing shale is present in the structural hanging wall and a greenish, sericitic shale is locally present in the structural footwall. Barite nodules are also present for at least 10 metres above and below mineralization. Locally, the immediate footwall to mineralization, particularly at the northwest end, is a coarse, crystalline calcite vein, up to several metres thick, often containing patchy recrystallized galena and sphalerite. The veining may be indicative of a fault on the footwall side of mineralization. Bedding / cleavage relationships suggest the mineralization is on the west limb of an overturned antiform. To the west, within 50 metres, Silurian siltstone has been thrust over the Gunsteel package containing the mineralization. On surface, mineralization grades up to 0.22% Zn, 10.46% Pb, 22.58 g/t Ag over 4.0 metres.

The Joel Creek Showing (Figure 6) was discovered in 1995. Mineralization is exposed in a cliff on the northwest side of Joel Creek, and consists of beds of nodular to blebby barite (5-20%) and laminated pyrite (10-30%) within black, graphitic, siliceous to cherty shale. The mineralized zone is approximately 4 metres thick. Individual baritepyrite beds are 10-20 cm thick. The mineralized zone forms a gossan, enhanced by two Fe-seeps which seem to drain a high angle fault two metres into the hanging wall. The mineralized zone is also characterized by abundant hydrozincite and hemimorphite surface coatings. Bedding strikes 110° to 120° and dips 60° to the southwest. The hanging wall to mineralization consists of a thick succession of black siliceous to cherty shale containing occasional concretions to 10 cm, as well as local mm-scale pyrite laminations and barite nodules. The footwall to mineralization is a grey to black, silty, well laminated shale also containing local mm-scale pyrite laminations and barite nodules. The sequence is cut by a series of high angle faults, subparallel to either bedding or cleavage which have a west side down or, left lateral (strike slip) sense of movement.

Mapping in 1997 did not discover any new occurrences, however at Joel Creek the host sequence was traced 300 metres to the northwest where it passes onto the northern portion of the grid, described in a separate report.

GEOCHEMISTRY

A total of 355 soil samples, one rock chip and one moss mat stream sample were collected as part of the 1997 exploration program, comprising 156 soil samples and one rock sample from the Elf Grid and 199 soil samples and one moss mat stream sample form the southern portion of the Joel Creek grid. Soil samples were collected at 25 metre intervals along grid lines and at 50 metre intervals along the baseline. An attempt was made to sample the "B" soil horizon whenever possible. Soil development was generally good on the Joel Creek Grid and highly variable on the Elf Grid. Thick till with extensive calcrete development prevented the collection of quality samples in some locations on the Elf Grid. A hand type soil auger was utilized for soil collection and proved effective for penetrating talus and reaching deep "B" horizons in some areas. Sampling was carried out between July 14 and 28, 1997.

All samples were placed in Kraft paper bags and sent to Cominco laboratories in Vancouver, B.C. for analysis where all were analyzed for Pb, Zn, Ag, and total Ba. Sample locations and results for Pb, Zn, Ag, Ba are shown on figures 7-10 for the Elf Grid and figures 11-14 for the Joel Creek Grid. Complete results are listed on the Certificates of Analyses located in Appendix III. Analytical procedures are included in Appendix IV, and Soil Sample Descriptions in Appendix V.

The following section provides an interpretation and description of the geochemical results. Figures 7-14 show plotted values for the elements Pb, Zn, Ag and Ba respectively and anomalous values have been contoured. Grid station numbers are the sample numbers and as such, a separate sample location map is not included. The anomalous threshold was determined by visual examination of the plotted data. A background was estimated and the anomalous threshold was selected at two times the estimated background. Experience in the belt has shown that discrimination of anomalies by visual examination of data is an effective method of determining anomalous thresholds for soil geochemical data. Threshold values for the Elf Grid are; Pb - 100ppm, Zn - 1000ppm, Ag - 1.0ppm and Ba - 10,000ppm.

A. Elf Grid (Figures 7-10)

Soil results for the Elf Grid (figures 7-10) show a continuation of the main anomaly associated with the Elf Showing (Farmer, 1995) to the southeast for Pb and Ag. The anomalies are decreasing in size and contrast and tend to be displaced slightly from exposures of the western siliceous shale band. Pb is displaced slightly uphill to the west and Ag, though coincident, tends to crosscut stratigraphy slightly, though this may be due in part to a contouring bias. Zn and Ba are not anomalous in this area. The eastern siliceous shale band is marked by a weak Ag-Zn-Ba anomaly. Maximum values in this area are; Pb - 457ppm, Ag - 4.5ppm, Zn - 2510ppm and Ba - 16,276ppm. Mineralization has been traced by drilling as far southeast as 106+50N, and the recent soil data suggests it may extend for another 200 metres, however it may be weakening.

Northwest of the Elf Showing, on lines 111N to 117N a weak Pb anomaly (200ppm) extends as far northwest as L112N along the eastern shale band, and there is a weak Ag response coincident with it. Pb, Ag, and Ba are otherwise not anomalous in this grid extension area. Zn shows a strong, large anomaly extending from the Elf showing northwestwards across the entire grid area. Maximum values reach 5758ppm Zn, comparable to values immediately below the showing. This anomaly follows the projected trace of the thrust contact with Silurian dolomitic siltstone, along which are numerous groundwater iron seeps. Cause of the zinc anomaly is not known however, the lack of other elements, particularly Pb, suggests the anomaly may be related to the iron seeps. On the other hand, this is also the area where any strike extension of the mineralization would be expected to subcrop. Poor soil development and extensive calcrete deposits in this area may also play a role in the poor soil results.

B. Joel Creek Grid (Figures 11-14)

On the Joel Creek Grid, soil quality is generally very good, with good BF horizons developed over much of the area. The BF horizon is often found at moderate depths however, often >30cm. Where a good BF was not present samples were collected from a light to medium brown B horizon or a grey to brown C horizon with abundant locally derived fragments.

Pb geochemistry (figure 11), is dominated by a large, high contrast anomaly along the northeastern end of lines 140N to 143N. This anomaly continues to the northwest off of the Elf South Group claims, and is coincident with a weak Ag response and weak, discontinuous Ba. This anomaly coincides with a mapped lense of siliceous shale of unit 3a in the northwest portion on line 143N and passes southeastward through silty shales of unit 3e approximately parallel to strike, then crosses the interpreted contact into siltstone of unit 4 on line 140N. Maximum values are 1170ppm Pb, 3.6ppm Ag and 10,343ppm Ba. A weak Pb anomaly on lines 137N and 138N near 99E is coincident with weak Ag, as is a response at 98+25E on line 134N. Ag here is stronger (to 4.7ppm) and continues northwest to line 136N. Both of these anomalies are within Gunsteel stratigraphy in an area of very poor exposure.

A weak Pb response near the northeast end of lines 137N and 138N is coincident with weak Ag and is underlain by siltstone of unit 4, near the interpreted contact with Gunsteel shales.

A moderately strong Zn anomaly (to 3000ppm) is present near 99E on lines 140N to 143N and continues northwest off the Elf South Group claims. There is no other element association, considerable outcrop in the area is not mineralized, and the anomaly follows a small creek ravine, indicating that the anomaly is likely transported.

A Ba anomaly (figure 14) near 98E on lines 138N and 139N is located just northeast of the Joel Creek baritic showing and follows the northeastern contact of a siliceous shale horizon. A peak value of 16,506ppm which occurs on line 139N, north of the showing, may indicate additional barite in this area. A larger anomaly between 96E and 97E on lines 135N and 136N parallels the thrust contact with Silurian stratigraphy to the west and likely is related to leakage from the fault

CONCLUSIONS

A program including linecutting, geological mapping and soil geochemical sampling was undertaken on the Elf South Group claims in 1997. The program comprised 9.6 line kilometres of linecutting, and geological mapping and 355 soil samples, carried out on two grids, the Elf Grid and the southern portion of the Joel Creek Grid. Work was carried out between July 14 and 28, 1997.

Mapping on the Elf Grid has reinterpreted the sequence to include two parallel belts of siliceous shale of unit 3a, possibly representing repetition by folding. Mineralization and the siliceous shales hosting mineralization could not be traced any distance to the northwest due to extensive, thick overburden.

On the Joel Creek grid, a thin belt of Gunsteel shales bounded by Silurian dolomitic siltstone to the west and siltstones of unit 4 to the east thickens rapidly near the northern boundary of the Elf South Group claims, likely as a result of faulting. Exposure within the Gunsteel sequence is extremely poor south of Joel Creek. North of the creek, the Joel Creek Showing was found to be part of siliceous shale horizon trending northwest and extending off of the area mapped as part of the program which is the subject of this report. A second band of siliceous shale was also identified 250 metres to the northeast and, once again, trends off the area of current mapping. This area is associated with strong Pb-Ag +/- Ba soil anomaly and warrants further investigation.

Soil geochemistry on the Elf grid identified weak multielement anomalies roughly coincident with mapped siliceous shale stratigraphy south of Elf Creek on lines 104N to 106N. One of these anomalies may indicate that mineralization traced by previous drilling as far southeast as line 106N could extend an additional 200 metres to the southeast.

On the Joel Creek grid, soil geochemistry has identified a strong Pb-Ag +/- Ba associated with siliceous shales in the northeastern corner of the area surveyed, which extends off the surveyed area to the northwest. Additional work is required to explain the source of this anomaly. A small Ba anomaly is present near the Joel Creek Showing, however a lack of associated elements indicates that base metal mineralization is likely not present.

The grid should be extended to the southeast to trace small Pb-Ag anomalies located at that end of the grid. This would also allow mapping of the Gunsteel sequence in a well exposed area southeast of the present grid.

REFERENCES

.

Cecile, M.P. and Norford, B.S. (1979): Basin to platform transition, lower Paleozoic strata of Ware and Trutch map-areas, northeastern B.C.; i Current Research, Part A, GSC Paper 79-1A, Report 36.							
Farmer, R. (1995):	Geology, Geochemistry and linecutting on the Elf Property, B.C. Assessment Reports #24079 and #24101						
Jefferson, C.W. (1980):	Geological, Geochemical and Diamond Drilling Report on the Elf Group. Cyprus Anvil Mining Corporation, In-house Report.						
MacIntyre, D.G. (1981):	Geology of the Akie River Ba-Pb-Zn mineral district; B.C. Ministry of Energy, Mines and Petroleum Resources, Preliminary Map 44.						
MacIntyre, D.G. (1982):	Geologic setting of recently discovered stratiform barite- sulphide deposits in northeast B.C.; CIM Bulletin 75, No. 840.						
MacIntyre, D.G. (1992):	Geological setting and genesis of sedimentary exhalative barite and barite-sulphide deposits, Gataga District, Northeastern B.C.; Explor. Mining Geol., Vol. 1, No. 1.						
Roberts, W.J. (1979):	Geological, Geochemical and Geophysical Report on the Elf Group. Cyprus Anvil Mining Corporation, In-house Report.						
Roberts, W.J. (1979):	Geological Report on the Elf Group. Cyprus Anvil Mining Corporation, In-house Report.						
Roberts, W.J. (1981):	Diamond Drilling Report on the Elf Group. Cyprus Anvil Mining Corporation, In-house Report.						
Taylor, G.C., and MacKenzie	e, W.S. (1970): Devonian stratigraphy of northeast B.C.; GSC Bulletin 186.						
Taylor, G.C., Cecile, M.P., Jefferson, C.W. and Norford, B.S. (1979): Stratigraphy of the Ware E1/2 map area; in Current Research, Part A, GSC Paper 79-1A, Report 37.							

APPENDIX I:

:

÷

.

The second se

COST STATEMENT

COST STATEMENT

1.	Linecutting (Twin Mountain Enterprises)
	4 men for 6 days (July 17-22) @ \$260.00/man/day
	Subtotal:\$10,920.00
2.	Mobilization/Demobilization (Proportionate Share)
	1/3 of Personnel Time\$1.300.00
	1/3 of Transportation Cost (1 flight between Mackenzie and Finbow)\$1,100.00
	Subtotal\$2,400.00
3.	Geology and Geochemistry (July 20-28, 1997)
	a) Geologist (R. Farmer) (July 20-26), 7 days @ \$300.00/day\$2,100.00
	b) Geologist (S. Smith) (July 24-27), 4 days @ \$250.00/day\$1,000.00
	c) Soil Sampler (Twin Mtn)(July 20-28), 9 days @ \$260.00/day\$2,340.00
	Subtotal:\$5,440.00
4.	Analytical (Cominco Laboratories)
	a) 355 soil samples (Pb, Zn, Ag, Ba) @ \$8.00 ea\$2,840.00
	b) 1 moss mat stream sample (Pb, Zn, Ag, Ba) @ \$8.00ea\$8.00
	c) l rock sample (Pb, Zn, Ag, Ba) @ \$8.00ea\$8.00
	Subtotal:\$2,856.00

5.	Helicopter (Northern Mtn. Helicopters)						
	a) b) c)	A-Star, 15.25 hrs @ \$875.00/hr Jetranger, 0.7 hrs @ \$625.00/hr Fuel, 2981.80 liters @ \$1.15/liter	\$13,343.75 \$437.50 \$3,429.07				
		Subtotal:	\$17,210.32				
6.	Acco	emodation and Food (Finbow Camp)					
	July 62 m	14-28, 1997 nandays at \$96.30/manday	\$5,970.60				
		Subtotal:	\$5,970.60				
7.	Rep	ort and Drafting					
	a)	Report Writing and Interpretation R. Farmer, 5 days @ \$300.00/day	\$1,500.00				
	b)	Drafting, 3 days @ \$100.00/day	\$300.00				
		Subtotal:	\$1,800.00				

.

.

Total Cost of Program\$46,596.92

APPENDIX II:

;

- -----

STATEMENT OF QUALIFICATIONS

I, Randy Farmer, do hereby certify that:

e a grad

- 1) I am a geologist and have practised my profession for more than 17 years.
- 2) I graduated from Lakehead University in Thunder Bay, Ontario with an Honours Bachelor of Science degree, (Geology), in 1980.
- 3) I conducted the exploration program on the Elf Property, interpreted the results, and authored the report contained herein.
- 4) All data contained within this report and conclusions drawn from it are true and accurate to the best of my knowledge.
- 5) I hold no personal interest, direct or indirect, in the Elf Property or its results, which is the subject of this report.
- 6) I am a Professional Geoscientist registered in the Province of British Columbia (Registration No. 20192).

Randy Fattmer, P. Geo. District Manager, Kamloops October, 1997

APPENDIX III:

. •

19 M A 1

CERTIFICATES OF ANALYSES

ELF GRID

. .

TECK/BLF-X97

f., *.

Job V 97-0623S

PROJECT #1754

.

LAB NO,	FIELD NUMBER	East+	North+	Pb	Zn	λg	Ba
		West-	South-	ppm	ppm	ppm	ppm
S9713872		+9500	B106	67	362	1.8	2453
S9713873		+9525	B106	48	305	2.3	2106
S9713874		+9550	B106	59	448	1.3	3165
\$9713875		+9575	E106	53	709	.7	4976
897 13876		+9600	E106	50	366	1.3	5216
S97138 77		+9625	B106	39	237	. 9	6159
S9713878		+9650	B106	457	749	1.8	7014
S97138 79		+9675	B106	172	450	1.9	7040
S9713880		+9700	B106	153	449	2.5	6799
S9713881		+9725	B106	55	803	1.7	E13843
S9713882		+9750	B106	39	179	1.9	2681
\$9713883	•	+9775	B106	.24	97	1.5	3416
59713884		+9800	B106	29	112		3218
\$9713885		+9825	B106	49	237	1	3452
59713886		+9850	B106	43	1250	1.4	4497
59713887		+9875	B106	58	183	2 2	3014
\$9713888		+9900	8106	40	297	 6	4383
9713889		+9925	E106	36	397	. U 7 A	5369
59713890		19950	B106	19	163	4.7	3565
9713891		+9930	E106	13	103	- 4	2610
713892		+9500	8106	20	130	۲.1 د	2013
9713893		+9500	8105	20	133		3703
20713004		19565	BIOS	37	202		3/32
20713905		+9330	BIUS		11/	•*	4040
39713896		+9570	8105	33	250	. *	4042
39713897		+9600	8105	32	273	. /	4630
20713009		+9625	B105	27	207		2040
29713809		+ 96 30	B105	27	135	<.4	3300
29713900		+9873	8105	136	410	1,1	7515
39713001		+9700	E105	206	106	4.5	/212
57130A3		+3723	RIUS	91	202	. 9	0100
3713902		+9/30	BIUS	25	191	<.4	2128
9713903		+ 7773	E105	27	180	.0	2530
9713904		+9800	BIUS	30	109	1.4	3392
9713006		+9825	8105	38	155	.9	3347
3713900		+9850	RT02	21	120	<.4	3173
0712000		+98/5	B105	19	128	. 4	2809
9713908		+9900	B105	40	122	.7	3988
9713909		+9925	8105	39	200	2.5	B11496
9713910		+9950	B105	32	273	1.2	5907
9713911		+9975	B105	54	160	. 8	6924
9713912		+9500	B104	23	111	.5	3575
9713913		+9525	E104	43	168	.4	2700
9713914		+9550	B104	41	94	<.4	1531
9713915		+9575	B104	50	128	<.4	2001
9713916		+9600	E104	63	340	.5	2937
9713917		+9625	B104	42	368	1	3885
9713918		+9650	B104	29	188	1,5	5153
9713919		+9675	E104	391	678	1.3	7661
713920		+9700 _	E104	244	226	2.9	9418
9713921		+9725	E104	148	350	2.7	6752
9713922		+9750	B104	210	198	. 7	6262

97-06235 PAGE 2

LAB NO.	FIELD NUMBER	Bast+	North+	Pb	Zn	λg	B	a
		West-	South-	ppm	ppm	ppm	PP	m .
S9713923		+9775	E104	45	191	.6	2925	
S9713924		+9800	E104	34	106	.7	3250	
S9713925		+9825	2104	29	191	1.3	2492	
\$9713926		+9850	B104	44	137	2.4	2273	
S9713927		+9875	B104	5	59	1.2	886	
S9713928		+9900	B104	40	98	. 9	3022	
S9713929		+9925	B104	84	174	<.4	3162	
S9713930		+9950	B104	31	2510	1.2	B16276	
S9713931		+9975	B104	22	124	.4	2166	

 $(\overline{})$

ANALYTICAL METHODS

.....

Pb Reverse Aqua Regia / AAS Zn Reverse Aqua Regia / AAS Ag Reverse Aqua Regia / AAS Ba X-Ray fluorescence / loose powder

.

TECK/ELF-X97

References and the second second second

Job V 97-0651S

PROJECT #1754

LAB NO.	FIELD NUMBER	East+ West-	North+ South-	Pb ppm	Zn ppm	Ag Ppm	Ba ppm
89716362		+9500	×115	34	 333	<. A	3862
99716363		+9525	B115	55	598	4	3893
2971636A		+9550	12115	39	534	5	3602
89716365		+9530	8115	44	1280	.5	3583
89716366		+95/0	8115	37	1400		3505
89716367		+9625	8115	57	3250	1	3550
89716369		+9650	2115	39	1070	A	4392
89716360		+9675	1115	37	707		3336
9716370		+9700	12115	49	972		4265
99716371		+9725	2115	40	1120		3847
0716371		+9750	8115	31	1120		2079
00716372		+9775	B115	20	1130		2073
09/103/3		+9//3	B115	23	745	./	3210
89/103/4		+ 2000	3115	32	/123	.8	3643
89716375		+9625	8115	20	407	<.4	2043
89716376		+9850	8115	25	540	• 4	2988
89716377		+9875	BIIS	27	367	<.4	3205
89716378		+9900	8115	26	499	.7	4013
89716379		+9925	8115	26	402	.5	3605
89716380		+9950	8115	30	377	.4	3560
S9716381		+9975	B115	23	423	.7	4034
89716382		+10000	B115	28	418	<.4	3985
89716383		+10000	B11550	28	487	<.4	4112
89716384		+9500	B 113	30	521	<.4	5243
89716385		+9525	B113	21	340	<.4	4445
89716386		+9550	B113	29	689	.6	4695
59716387		+9575	E11 3	30	805	.6	4324
89716388		+9675	E113	20	5750	<.4	1137
S9716389		+9700	B 113	25	1 17 0	.5	3161
\$9716390		+9725	B11 3	25	1260	.6	3185
89716391		+9750	B11 3	24	1110	.5	2816
S9716392		+9775	B113	21	976	.5	2792
89716393		+9800	E113	25	430	. 7	2870
59716394		+9825	B113	70	629	.8	3872
89716395		+9850	B113	36	419	.6	3197
89716396		+9875	B113	49	746	. 8	4912
89716397		+9900	B 113	73	457	.6	3459
9716398		+9925	B113	21	328	<.4	2620
59715399		+9950	B 113	46	327	<.4	2635
39716400		+9975	B113	40	302	.7	3013
89716401		+10000	B113	33	292	<.4	3443
89716402		+10000	E11350	30	539	.5	2964
39716403		+9500	B114	51	2420	.6	3897
59716404		+9525	E114	30	583	.5	3794
89716405		+9550	B114	80	916	.8	4043
39716406		+9575	B114	36	690	.6	3251
39716407		+9600	B114	36	845	.7	4046
39716408		+9600	B114	45	1380	.7	2993
39716409		+9625	B114	51	2080	.4	2886
39716410		+9625	B114	32	436	.4	3950
89716411		+9650	B114	21	2460	.8	3945
						-	

97-06515 PAGE 2

_	LAB NO.	FIELD NUMBER	East+	North+	Pb	Zn	λg	Ba
			West-	South-	ppm	ppm	ppm	ppm
	S971641 3		+9675	B114	26	793	.5	3382
	S9716414		+9700	B114	24	546	. 5	4492
	89716415		+9725	B114	39	309	.4	2515
	S9716416		+9750	E114	29	1700	.7	3242
	89716417		+9775	E114	37	571	.5	3313
	89716418		+9800	B114	24	671	.7	3843
	89716419		+9825	8114	25	396	<.4	4101
	99716420		+9850	R114	25	277	.8	3819
	99716421		+9875	R114	31	336	r.4	3101
	99716422		+9900	B114	29	413	. 4	3192
	09716423		+9925	R114	32	437	1	3607
	00716424		+9950	2114	32	626	- 6	3306
	89710424		+9930	8447 10114	20	625		3027
	39710423		+3373	8447	36	602	.0	3008
	39/10420		+10000	8111	90 70	1050		3100
	89716427		+9800	B111	30	1100	. 4	3736
	89716428		+9025	RIII	28	1100	. 5	3440
	89716429		+9650	8111	37	1030		3870
	89716430		+9675	8111	18	1420	.1	21/1
	S9716431		+9700	RIII	46	1070	.5	2390
	89716432		+9725	RIII	22	10/0	.0	2040
	89716433		+9750	BIII	93	4L 50	4.1	3030
	89716434		+9775	K 1 1	29	32	.5	2039
	S9716435		+9800	B11 1	99	170	.5	3420
	89716436		+9825	B111	81	241	.5	3434
	3971643 7		+9850	BIII	52	152	./	1303
	89716438		+9875	BIII	240	403	2.2	2000
	\$9716439		+9900	8111	168	387	.5	38/1 4004
	89716440		+9925	8111	96	439	1.2	1071
	89716441		+9950	B111	39	344	<.4	2765
	89716442		+9975	BIII	42	435	<.4	2033
	89716443		+9600	8112	42	/8/		33/0
	89716444		+9625	B112	48	1410	. /	3230
	89716445		+9650	8112	17	1520	. 6	1937
	89716446		+98/5	BII2	34	724	. 0	2337
	39716447		+9700	B112	24	/ 4 %	• /	2120
	89716448		+9723	BIIZ BIIZ	22	05/		24/5
	89/10449		+9/30	5112	30	020	.0	2011
	89716450		+9//3	8112	20	03/	./	2033
	89716451		+9800	BT15	29	900	.0	4113 2717
	89716452		+9843	BII2	32	344	.*	2/1/
	89716453		+9850	BII2	40	/33		3000
	89716454		+9875	BII2	284	1090	.,,	3303
	89/10455		+9900	BII2	200	1080		2004
	89716456		+9925	BII2 BII2	24	20C	.9	3604
	39/1043/		+9950	BII2	34	790	. /	3332
	07/10400		+79/0	5112 5117	ں ۲د	100		3469
	37/10459		+9500	5117	у 20	129	5.1	3730
	3971040U		+9525	5117	29	430	.7	3/39
	89715461		+9550	8117	27	010	.7	3891 4414
	BY/10462		+33/2	B117	3%	020		2072
	29710403		+9600	B117	4 9 70	734		3763 4911
	39710464		+3025	5117	73	739	- -	84107
	89716465		+9650	B117	35	2575	.0	4192
	89716466		+9675	B11 7	36	921	.4	2248

The second strategy and second s
97-06518 PAGE 3

.....

LAB NO.	FIELD NUMBER East+	North+	PD	20	Ag	20
	west-	Souca-		ppm		
S9716467	+9700	B 117	37	880	.6	3922
S9716468	+9725	B117	43	730	.5	3716
S9716469	+9750	B1 17	28	324	. 5	2976
3971647 0	+9775	B1 17	42	915	. 8	4151
89716471	+9800	E1 17	33	781	.6	3818
59716472	+9825	B117	20	640	.5	3502
S971647 3	+9850	E11 7	33	556	.5	3453
59716474	+9875	B11 7	27	578	<.4	3413
89716475	+9900	E117	26	671	.5	3431
S9716476	+9925	B1 17	41	841	.6	3862
S9716477	+9950	B117	34	377	.9	3973
S9716478	+9975	B1 17	33	933	.4	3272
59716479	+10000	B117	28	749	.6	2953
S9716480	+10000	E11650	34	493	.5	3058
S9716481	+9500	B116	49	1240	.6	3596
59716482	+9525	E116	70	1030	.8	3381
59716483	+9550	E116	35	1040	.6	3449
S9716484	+9575	E11 6	29	744	.6	3340
S9716485	+9600	B116	44	1230	. 9	3350
59716486	+9625	B116	42	1030	.8	3323
\$9716487	+9650	B116	45	933	.5	3481
59716488	+9675	B116	47	924	.7	3281
S9716489	+9700	B116	37	1170	.8	3992
59716490	+9725	B116	37	766	.7	3219
S9716491	+9750	B116	39	795	.6	3361
59716492	+9775	8116	39	808	. 8	3656
9716493	+9800	R116	28	624	. 8	3997
9716494	+9825	8116	41	876	.9	3755
9716495	+9850	8116	22	588	.7	3674
59716496	+9875	E116	28	605	1	3756
\$9716497	+9900	B116	31	515	.4	4124
5971649R	19905	B116	20	803	.6	2794
99716499	+9950	E116	34	521	.5	3846
9716500	+9990	R116	37	544	.4	3377
	+33/3		20	511	· · ·	3611

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown , results are to follow

ANALYTICAL METHODS

Pb Reverse Aqua Regia / AAS

Zn Reverse Aqua Regia / AAS

Ag Reverse Aqua Regia / AAS

Ba X-Ray fluorescence / loose powder

97-06848 PAGE 8

LAB NO.	FIELD NUMBER	Bast+	North+	Pb	Zn	λg	Ba
		West-	South-	ppm	ppm	ppm	ppm
59717825		+9900	J140	49	511	.6	5903
59717826		+9925	J140	43	3040	<.4	4229
S9 717827		+9950	J14 0	26	99	. 5	2863
S9717828		+9975	J14 0	234	237	1.9	3386
S9717829		+10000	J140	332	290	1.8	3521
<i>5</i> 9717830		+10025	J140	279	283	1.3	3237
S9717831		+10050	J14 0	364	284	1.6	3697
S9717832		+10075	J14 0	259	357	1.4	4432
S971783 3		+10100	J140	22	234	<.4	1797
	•••••						

I-insufficient sample X-small sample E-exceeds calibration C-being checked R=revised If requested analyses are not shown , results are to follow

ANALYTICAL METHODS

- Pb Reverse Aqua Regia / AAS
- Zn Reverse Aqua Regia / AAS
- Ag Reverse Aqua Regia / AAS
- Ba X-Ray fluorescence / loose powder

JOEL CREEK GRID

•

TECK/ELF-X97

Transfer M. M. S. Salasian and Statistical International Control (2019) 2019 (2019).

Job V 97-06848

JOEL CR.

Report date 15 AUG 1997

· · · ----

LAB NO. FIELD NUMBER East+ North+ Pb Zn Ag Ba West- South- ppm ppm ppm ppm

59 717479	+9600	J137	41	233	<.4	3139
59717480	+9625	J137	59	139	.9	2732
S9717481	+9650	J137	48	341	<.4	3535
89717482	+9675	J137	32	448	.5	3484
\$971748 3	+9700	J137	33	511	.6	3791
89717484	+9725	J137	52	368	.8	7038
S9717485	+9750	J137	41	327	.5	3939
59717486	+9775	J137	28	140	<.4	2490
S971748 7	+9800	J1 37	38	536	.7	5405
S9717488	+9825	J137	20	363	<.4	3319
59717489	+9850	J137	33	236	.4	3134
99717490	+9875	J13 7	52	404	.7	3865
S9717491	+9900	J137	208	118	2.7	6683
59 717492	+9925	J13 7	62	39	.5	3654
89717493	+9950	J137	96	92	.4	3513
89717494	+9975	J13 7	301	116	.7	5166
S9717495	+10000	J137	200	285	3.9	3051
S97 17496	+9600	J138	51	188	.5	2713
S971749 7	+9625	J138	38	169	.5	2822
\$9717498	+9650	J138	42	198	<.4	3303
49717499	+9675	J138	37	185	.7	3219
S9717500	+9700	J138	71	503	.6	4413

97-06845 PAGE 2

. .

נ וס	λg trom	2n DDM	Pb DDM	North+ South-	Bast+ West-	FIELD NUMBER	LAB NO.
505!	.9	607	44	J138	+9725		S9717501
5603	.7	647	45	J136	+9750		S9717502
505	.9	562	57	J138	+9775		S971750 3
848	.9	459	50	J138	+9800		89717504
760	.6	460	47	J138	+9825		89717505
6609	1.1	435	53	J138	+9850		89717506
8020	.9	372	58	J138	+9875		9717507
352	.5	243	27	J138	+9900		59717508
5493	.7	396	175	J138	+9925		S971750 9
7363	.5	229	134	J138	+9950		S971751 0
3734	<.4	161	32	J138	+9975		S9717511
5776	1.4	262	152	J138	+10000		S9717512
2284	.6	226	30	J139	+9600		S9717513
2108	.4	201	31	J139	+9625		S9717514
2366	<.4	223	43	J139	+9650		59717515
245	.5	213	34	J139	+9675		S9717516
4070	. 5	565	47	J139	+9700		59717517
2573	<.4	209	46	J139	+9725		S9717518
3818	.5	273	52	J139	+9750		S9717519
5782	<.4	249	51	J139	+9775		S9717520
4849	<.4	310	55	J139	+9800		S9717521
5072	.7	374	66	J139	+9825		S9717522
B1650(<.4	493	57	J139	+9850		S971752 3
6897	.7	356	115	J139	+9875		59717524
6687	.5	268	48	J139	+9900		S9717525
4143	.7	627	84	J139	+9925		39717526
2129	<.4	623	31	J139	+9950		S9717527
3082	<.4	276	34	J139	+9975		S9717528
571	1	5550	48	J139	+10000		99717579

· +-

`,

										97-06848	PAGE	3
	LAB NO.	FIELD NO	MBER	Bast+	North+	Pb	Zn	λg	Ba			
_				West-	South-	ppm	ppm	ppm	ppm			

...

-	~
_	

89717587	+9600	+13450	23	290	<.4	4111
\$9717588	+9600	+13550	38	6 B	.4	7806
\$9717569	+9600	+13650	65	169	.4	B11908
\$9717590	+9600	+13750	29	178	<.4	2546
\$9717591	+9600	+13850	28	236	<.4	2124

.

:

. •

								97-06848	PAGE	6
LAB NO.	FIRLD NUMBER	Sast+	North+	Pb	 Zn	λg	Ba			
		West-	South-	ppm	ppm	ppm	ppm			

. ,- :

S9717751	+10150	J143	217	62	1.1	B10343
S9717762	+10175	J143	584	302	6	2348
89717763	+10200	J143	333	189	4.2	3453

97-06845	PAGE	7
----------	------	---

. _____

•

•

·

LAB NO.	FIELD NUMBER	Bast+	North+	Pb	2n	λg	Ba		
-		West-	South-	ppm	ppm	ppm	ppm		
								_ · · · · · ·	

• •

89717779	+9975	J142	19	501	<.4	4346
S9717780	+10000	J142	21	164	<.4	4718
S 9717781	+10050	J142	50	317	<.4	5680
S9717782	+10075	J142	50	387	<.4	3696
89717783	+10100	J142	380	326	1.3	3578
S9717784	+10125	J142	96	163	1.5	2297
89717785	+10150	J142	76	285	.4	2491
89717786	+10175	J142	63	308	<.4	3564
89717787	+10200	J142	44	210	<.4	2094

9717796	+9800	J141	82	485	.4	3214
	+9825	J141	73	556	<.4	3307
5971 7798	+9850	J141	93	532	<.4	2862
S9717799	+9875	J141	55	572	.4	3619
89717800	+9900	J141	80	2030	<.4	4226
S9717801	+9925	J141	38	2330	.6	4906
89717802	+9950	J141	27	588	.7	4643
S9717803	+9975	J141	25	178	<.4	3156
89717804	+10000	J141	38	365	<.4	4995
\$9717805	+10025	J141	53	556	. 5	7151
59717806	+10050	J141	163	525	.6	6217
S971780 7	+10075	J141	575	272	1.4	4634
S9717808	+10100	J141	1170	455	3.6	8510
59717809	+10125	J141	368	346	2.4	8837
S9717810	+10150	J14 1	291	378	1.5	5023
S9717811	+10175	J14 1	59	334	. 9	4130
89717812	+10200	J141	77	332	.6	5029
59717813	+9600	J140	20	222	<.4	1912
S9717814	+9625	J140	23	153	<.4	2348
S9717815	+9650	J14 0	74	294	<.4	2324
S9717816	+9675	J14 0	26	171	<.4	2696
S9717817	+9700	J140	75	335	.4	3639
S9717818	+9725	J140	79	278	<.4	4005
S9717819	+9750	J140	29	274	<.4	2146
S971782 0	+9775	J14 0	20	167	<.4	1707
S9717821	+9800	J14 0	46	289	<.4	2861
89717822	+9825	J140	35	313	<.4	4647
S9717823	+9850	J140	26	183	<.4	2829
39717824	+9875	J140	68	609	. 5	3913

08/07/97

09:42 **26**048442686

97-06525 PAGE 2

 LAN MU.	FIRID	NUMBER.	East+	North+	护	2n	λg	3a
			West-	South-	1910an	ppe.	ppm	. ppm

59716590 51253 MOSMATT

+0 .

44

675

.....

°,7

Ininsufficient sample Knownell sample Rearcoads calibration Cobeing chacked Rerevised If requested analyses are not shown , results are to follow • •

+0

AMALTTICAL METHODS

Ph Reverse Agus Legis / ALS In Reverse Aqua Regia / AAS Ag Reverse Aqua Regis / ALS Ba X-Ray fluorescence / 10058 powdar TECK/ELF-X97

Job V 97-0653R

PROJECT #1754

Report date 20 AUG 1997

LAB N	O FIELD	NUMBER	Pb	Zn	λg	Ba(4)
			ppm	ppm	ppm	ppn
R97146	60 51252		<4	169	1.2	B128465

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown ,results are to follow

ANALYTICAL METHODS

Pb Aqua regia decomposition / AAS

Zn Aqua regia decomposition / AAS

Ag Aqua regia decomposition / AAS

Ba(4) X-Ray fluorescence / pressed pellet

APPENDIX IV:

н хоман манин на так на 1963 ж., с

ANALYTICAL PROCEEDURES

COMINCO E.R. LAB +++ Teck Corp

2002/002

COMINCO EXPLORATION RESEARCH LABORATORY ANALYTICAL METHODS PERFORMED ON TECK SAMPLES

Reverse Aqua Regia / AAS (Cu, Pb, Zn analysis)

0.5 grams per sample is weighed into clean dry test tubes. 1 mL of concentrated Nitric acid and 3 mL concentrated Hydrochloric acid are added. Test tubes are placed on a sand bath at 90° - 95° for 3 hours and shaken at intervals of 20 minutes. Samples are cooled to room temperature then diluted to 20 mLs with de-ionized distilled water. Solids are given time to settle. The samples are then analyzed on a Atomic Absorption Spectrophotometer. Quality control standards are inserted every 15 samples and repeats every 10 samples.

X-RAY FLUORESCENCE / LOOSE POWDER (Ba - pressed pellet)

5 grams of 100 - 200 mesh sample are milled with 5 grams Boric acid for 3 minutes. The milled samples are then pressed at a pressure of 20 tonnes per square inch for 50 seconds to produce 40 mm pressed pellets. Different excitation X-ray tubes are employed to analyze different trace elements to try to get the maximum intensities and high resolution with overlapped element peaks. All trace element analysis calibration curves are set up by using commericial standards. Compton scattering calculation is used to compensate absorption and anhancement effects. Every 25 samples prepared includes 1 repeated sample and every 10 samples analysed includes running 1 commerical standard.

APPENDIX V:

SOIL SAMPLE DESCRIPTIONS

1989	SOIL	SAIPLI	ES		PROPERT	Y PROJECT	r _ <u>E</u>	LF			SAMPI	
 SAMPLE NO.	GRID LOCATION	DEPTH (cm)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	×	FRAGMEN	COMP	SLOPE	SEEPAGE	COMMENTS
104-N	9975-E	50		BF	BR		*	VA		.1		
104-N	9950-E	60		BF	BR.			VA				SLIGHTLY CLAFY
104-N	2925-E	50		BF	BR			VA				
104-N	3700-E	50		BF	BR	-*		V4				TON BOTTOM BM?
104-N	9875-E	60		BF	BR			VH				
104-N	9850-E	60		BE	BR			VH				
104-N	9825-E	66		BF	BR			VA				
104-N	9860-E	60		BF	BR			YA				
104-N	9775-E	60		BF	BR			VA				
104-N	9750-E	50		+	GR			VA				
104-N	9725-E	50		BF	BR			14				
104-N	9700-E	50		BF	BR			VA	_			TON BOTION BM?
104-N	9675-E	12		BF	BR			52				
104-N	9650-E	76		T	GR			¥A				
104-N	9625-E	50		BF	BR			VA				
104-N	9600-E	60		BF	BR			VA	_			
104-N	9575-E	50		8F	BR			YA				
104-N	9550-E	70		BF	BR			VA				•.
104-N	9525=E	80		T	GR			VA				HIT FROST
104-N	9500-E	80		+	GR			VA	ć			·
105-N	9500-E	60		Bt	GR			SA				
105-N	9525-E	50		BT	GR			SA				
105-N	9550-E	50		BT	GR			SA				
105-N	9575-E	60		BF	RB			VA				
105-N	9600-E	40		BP	RB			VR				
105-N	9625-E	70		BT	GR			VA				
105-N	9650-E	30		BF	RB			54				
105-N	9675-E	60		BP	RB			SA			i	
105-N	9700-E	50		BΥ	GR			SA				
105-N	9725-E	40	 	BF	RB			VA				
105-N	9750-E	40		BF	RB			VA				
105-N	9775-E	<i>द</i> 0		BF	RB			VA				

et e

.

	•				• •	r	−− ,		,				ningen ander an der eine an der eine Andere an der eine Andere an der eine Andere an der eine Andere an der ein	
	1991	SOIL	SAMPLI	ES		PROPER	TY PROJECT	r _2	ELF			SAIP		
)	SAMPLE NO.	GRID LOCATION	DEPTH (cm)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	X	ROUND	COMP	SLOPE	SEEPAGE	CONNENTS	
	E-105 N	9900-E	56		BF	RB			VA					
	E105-N	9825-E	40		RF	RB			VA					
	F-105-N	9850-E	50		BF	RB			VA	•			· · · · · · · · · · · · · · · · · · ·	
	E-105-N	9875-E	40		BF	RB			5A					
	E105-N	9900-E	40		BF	RB			VA					
	E-10FN	9925-E	50		BF	RB			VA			1		
	E-105-N	7950-E	26		BF	RB			VA					
	E-105-N	9975-E	30		BF	RB			VA					
							E-106M	,		· .				
	E-106-N	9975-E	36		BF	RB			VA					
	E-106-N	9950-E	30		BF	RB			VA					
	E-106-N	9925-5	30		BF	RB			VA					
	E-106-N	9900-E	20	 .	BF	RR			VA					
	E-106-N	9875-E	20		BF	RB			VA				POOR	
	E-106-N	9850-E	50		BF	RB			VA					
	E-106-N	9825-E	50		BF	RB			VA					
	E-106-N	9800-E	40		BF	RB			VA					
	E-106-N	9775-E	40		ŖF	RB			VA					
	E-106-N	9750-5	50		BF	RB			YA				· .	
	E-106-N	9725-E	30		BF	RB			VA					
	E-106N	9700-E	40		BF	RB			VA				CLREY	
	E-106.N	9675-E	30		βF	RB			VA		_		CLAEY	
	E-106N	9150-E	40		BT	GR			VA					
	E-106-1V	9625-E	40		BT	GR			VA					
	E-106-N	9600-E	50		BT	GR			VH				CLAEY	
	E-106-N	4575-E	60		T	GR			VA				· · · ·	•
ľ	E-106-N	9550-F	80		T	GR			VA					
ľ	E-106-N	9525-5	90		Ť	GR			VA					<u></u>
ł	E-106-N	9500.F	80		-	GR			VA				······································	
İ							E-111	./						. <u></u>
ţ	E-III-N	9975-F	40		BF	RB		2	SR				e	······································
	E-111-N	9950 E	50		BF	R B			5R				QUARTZ	

	1991	SOIL	SAMPL	ES		PROPER	TY PROJEC	т <u>Е</u>	LF			SNP	LER <u><i>BW</i></u>
J.	SAMPLE NO.	GRID LOCATION	DEPTK (cm)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	x	ROUND	COMP	SLOPE	SEEPAGE	CONVENTS
	E-IIIN	9925 E	6.0		BF 109, BF 901	RB G-R		2	V4				
	E-111-1	9900-5	30		BF	RB		25	9R				
	E-III-N	9875-E	100		8F T	RB-10%		25	SR	•			SLIGHTLY CLAEY
	E-111-N	9950-E	40		BF .	6R-90% RB 506			SR				
	E-111-N	9925-E	70		BF	RB	-	20	VA				
	E-111-N	9800-E	70		BF	RB		15	VA			1	9749E
	E-111-N	9775-E	40		BT	GR		50	VA				
	E-111-N	9750-E	60		BT	GR		7.5-	VĄ				
	E-111-N	9725-E	50		BT	GR		45	SA				•
	E-111-N	9700-E	70		ORSENIC	GRZO)	VA				POOR
	E-III-N	9675-E	60		ORGANIC	wit BL			.2				YOOR
	E-III-N	9650-E	76		BF	RB	- <u>-</u>	20	VA				POOR
	E-III-N	9625-E	60		BT	G-R		15	VA			· · · ·	
	E-IIIN	9600-E	90		BT	GR		40	SA				
							E-112	w					
١	E-112-N	9660-=	20		BF	RR		20	VA				
	E-117-N	9675-E	90		BT	GR		40	VA				
	E-117-N	9650-E	90		BT?	GR	SAAPY.						WATER SAT
	E-112-N	9675-E	90		B T	GR	SANDY		$\sqrt{4}$				WATER SAT
	E-112-N	9700-E	90		Br	60	SANDY		VA				WATER SAT
	E-112-N	9725-E	90		Bt	GR	SANDY		SA				WATER SAT
	E-117-N	4750-E	40		BT	GR		25	V4				
	E-112-N	9775-E	30		BT	GR	- •	10	SA				
	E-112-N	9800-E	40		BT	GR	FINE						SILTY
	E-112-N	9825-E	20		вт	GR	FINE	25	VA			· · · · •	
	5-112-N	9850-E	50		BT	GP		25	VA				
	E-112-N	9875-E	60		BT	GR	SLITHE	10	٧Ĥ				
	E-117-N	990-E	40		BT	GR	······································	10	SP			,	
	E-117-1	9925-E	40		BT	GR		5	5A				<u> </u>
	E-112-N	9950-E	60		BT	GR		15	VA				WATER SAT
	E-112-N	9975-F	50		Bt	GR		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3A				· · · · · · · · · · · · · · · · · · ·
						`							

...

			-	
	•			

. .

	1991	SOIL	SNPL	ES		PROPER	TY PROJEC	т <u>Е</u>	· <i>L</i> [=_			SAIP	LER <u>BW</u>
,	SAMPLE NO.	GRID LOCATION	DEPTH (CB)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	x	ROUND	COMP	SLOPE	SEEPAGE	CONNENTS
ĺ	E-113,-N	10000-Ë	60		BF	BR		30	VA				
	E-113-N	9975-E	40		BF	BR		30	SA				
	E-113-N	9950-E	20		BF=	BR		30	SA	•			
	E-113-N	9925-E	60		BE	BR		40	5A				
	E-113-H	9900-E	30		BF	BR		99	VA				
	E-U3-N	9875-E	30		T	GR		60	VA			.:	CR
	E-113-N	9850-E	50		T	GR		10	VA				
	E-113-N	9825-E	60		$\dot{\tau}$	GR		25	SR				
	E-113-N	9800-E	70		T	GR		30	5 A		i		ROUND FOCKS ON TOP
	E-113-N	9775-E	40		T	G-R		15	YA				FROST
	E-112-N	9750-E	46		Τ_	GR	SILT	5	VA	_			
	E -113-14	9725-E	30		Τ	GR		50	VA				
	E-113-N	9700-E	30		T	GR	SANDY	40	VA				· · · · · · · · · · · · · · · · · · ·
	E-113-N	967 <u>5-E</u>	60		13 F	RB		30	VA				
	E-113-N	9650-E	60		T	GR	SANDY	30	VA				·
)	5-113-N	9625-E	50		T	GR	CLAEY	30	VA				
ļ	<u>E-113-</u> N	9600-E	40		T	GR	CLAEY	40	VR				
	E-113-N	9575-E	50		T	GR		40	VA				
	E-113-N	9550-E	50		T	GR		35	VA				· · · · · · · · · · · · · · · · · · ·
ł	E-113 N	9525-E	50		T	GR		10	VA				
ļ							5-1140	ON.					4-
	E-114-N	9500 E	40		<u> </u>	GR	CLAEV	•	\sqrt{n}				
k	-114-N	9525-E	50		BF.	RB		50	SR				
ł	<u> - 114 - N</u>	9550-E	70		?								
ŀ	5-114-N	9575-E	40		BE	<u>RB</u>	SANDY		SR				
-	E-114-N	9600-E	40		T	GR			5A				<u> </u>
ł	E-114-N	9625-E	50		BF	RB			VA				
4	5-114-N	9650-E	40		BF	RB		40	VA				
4	5-114-N	9675-E	90		T	<u>G-N</u>	SAMOY	40	VA				
4	E-124-N	9700-E	60		BF	KBGR	n		9.e				POUR
4	E-114-N	9725-E	60		τ	GR			9R				WATER SAT
	E-114-N	9750-E	3		BF	RB			5 A				

.

							2.11	2		م المرب ور الموقع م		
								·.	•			
1989	SOIL	SAMPL	ES		PROPER	TY PROJEC	т_ <i>Е</i>	Z.F			SAMP	
SAMPLE NO.	GRID LOCATION	DEPTH (cm)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	x	FRAGRE	NTS COMP	SLOPE	SEEPAGE	COMMENTS
E-114-N	9775-E	40		T	GR		-	VA				
E-114-1V	9 3 00-E	70		Γ	GR		15	9A	C4			
E-114-N	9825-E	36		t	GR		15	VA			•	
=-114-1V	9850-E	40		BE	BR	<u>-</u>	10	VA				
-114-A	4875-E	20		BF	BR		5	VD				
-114-N	4900-E	40		BF	BR		15	SA	CL.			
E-114-N	9925-E	70		BF	BR		15	VA				BR ON BOTTOM
-114·N	9950-E	100		t	GR		15	VA				
-114-N	9975-E	50		Т	GR		15	VA	CL			
-114·N	10000-E	60		T	GR		30	5.4	CL			· · · · · · · · · · · · · · · · · · ·
3+50N	10000-E	100		\mathcal{T}	GR		10	SA	CL			
						E-1600	N	;				
-116-N	9500-E	60		BF	RB			54				POOR
=-116-N	9525-E	40		BT	GR			SA				· · · · · · · · · · · · · · · · · · ·
E-116-N	9550-E	56		BT	GR			3A	CL			
=-116-N	9575-E	40		BE	RB			SA				
E-116-N	9600-E	56		Bt	GR			54				
-116-N	9625-E	46		+	GR			5.9				
-116-W	9650-E	76		BF	RB		1	3A				POOR
N	9675-E	96		BF	RB			SA				POOR
-116-N	9700-E	70		BT	G-R			54				· · · · · · · · · · · · · · · · · · ·
-116-N	9725-F	160		BF	RB			VA				· · · · · · · · · · · · · · · · · · ·
-116-N	9750-E	100		BF-	RB			VA	CL		-	
-116-N	9775-1-	100		BF	RB			SA			-	PUOR
-116+571-1		80		B+	G-R		0		SL	-		
		í				<u>- ا (- ک</u> ز	N					
-,117-N	9975-E	30		BT	GR		45	VA				
E-117-N	9950-F	60		BT	GR		30	5A	сL			
5-117-N	9925-E	60		BT	GR		10	SA	CL			
E-117-N	9900-F	60		ВТ	GR		35	YA	CL			
E-117-M	9875-E	70		ВТ	GR		60	VA				FINE BROKEN
	0 5	-		~	<u> </u>		<u>~-</u>		-			

								•	· ·	. • .	-	• • •	
										-		· .	ŝ
1991	SOIL	SNPL	ES	······································	PROPER	TY PROJEC	r _£	LF			SAMPI		
SAMPLE NO.	GRID LOCATION	DEPTN (cm)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	×	ROUND	(TS COMP	SLOPE	SEEPAGE	CONNENTS	
E-117-N	9825-E	50		BT	GR		65	54				CR	
E-117-N	9800-E	40		BT	GR		50	SA				CR	
E-117-N	9775-E	30		Bt	GR		50	SR					
5-117-N	9750-E	50		BT	GR		35	SA	CL				
E-117-N	9725-E	100	:	B+	GR	.*	20	SA					
E-117-N	9700-E	80		вт	GR		45	SR			1		
E-117-N	9675-E	50		BT	GR		50	VA					
E-117-N	9650-E	50		Bt	GR		70	VA					
E-117-N	9625-E	60		BT	GR		20	VA	54			-	
E-117-N	9600-E	40		Bt	GR	-	25	VA	SA.				
E-117-N	9575-E	24		BT	GR		25-	VA	SA				
F-117-N	9550-F	60		BT	(m.R.			SA	54				<u> </u>
E-117 N	9525-1	4/1		BF	RR	·		54	517		-		
F-117-1	9500-F	76		BE	RR			50					·
	110 0												
	· · · · · · · · · · · · · · · · · · ·												
·												· · · · · · · · · · · · · · · · · · ·	
				·								· · · · · · · · · · · · · · · · · · ·	·
					·							· · ·	
						·		1				· · · · · · · · · · · · · · · · · · ·	
						·							
						<u> </u>							
				<u>.</u>									<u></u> n
	· · · · · · · · · · · · · · · · · · ·					· · · · ·		[
						·				. <u></u>			
													•••••
												· · · · · · · · · · · · · · · · · · ·	
												·	

کیونی در انداز ج

.

SAMPLE									·		. ,	
NC.	GRID LOCATION	DEPTH (cm)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	x	FRAGNE ROUND	ITS COMP	SLOPE	SEEPAGE	COMMENTS
E IIGN	-98+00E	120	10	BT	LB	sk	15	A	5#	5E		POOR CLANEY
EHGN	-98+25E	60	8	B T	LB	н	74	11	ы	1		N R
E ILLN-	98+50E	60	10	B11	LBKGy	s/c	20	Alt	11	11		Part, CLAYEY (COULD Be Lood
E 116N	-9 8175E	110	Ю	BT?C?	Y	11	v	11	¥	11		11 11 11 1
E 16N	-9940E	90	10	BF/BT	LB	s/e	90	sa/a	54	1	Ŧ	Below Lacobat Block Mind How
E 116N-	99+25E	60	10	BF/c	LB Ky	n	/1	"	11	IDE		Poor "C'on Leached? Clay
E 116N	-99+50E	110	10	8T/c?	LBK	11	<u>u</u>	4	11	15E		
E 116N	-99+75E	110	10	BTAF	LB	ĸ	п	11	n	ZŒ		BADWINER II
E 116N-	100100E	115	10	il	u	Ľ	10	11	a:	SE		Below Be SANDY Hor.
E 115+50	N-100+00E	50	10	T	Gy	\$ (5	40	A	5#	. 11		TALUS OR C NEAR BEDROCK
E IISN-	00100 C	110	15	T	н	u'	10	.76	- 11	. 11	·	TALUS OR PARENT MAT. C 7
E IISN-	99+75E	70	10	BT/8F	LB	5/c 🚽	20	SAT.	11	NE		BELOW LENCHED
E 115N-	99+50 E	110	10	BT/T?	LB/GY	s/c	25	SR/A	K	10E		Bal. Level. + MINERAL ?
E115N-	99+25E	11	Ŧ	14	æ	15	÷	Ir	£1	11	×.,	W Constants
E115N-	9900E	110	10	BT ?	18/24	sk	20	SA:	5#	5E		
E115N-	98t 75E	80	10		LGy	s/c	10.	11 2	11	11	-	POOR
EII5N-	98+50E	70	10	7/87?	LGY	10	"	лç	17	d		POOR
E115N-	98+25E	60	/0	T/BT?	LTK/BR	14	1	11	4	11		Below colerate hous
EUSN -	98+00E	30	10	BM?	MB	sls	u	ų	10	i ir		ABOUG CALERTE LARER @ 50 cm.
EH5N-	97+76C	20	10	?	A-OBA	u .	15	SA	a	4		CALCRETE @ ~ 40cm THROUGH
EIISN-	97+508	50	10	?	m BR	ju -	25	15	10	11		A Tagof Colorate layer.
EIIGN-	97+26_E	65	10	c?	D.Gy	s/c	20	SR/A	SH SLTS	*	. 1.30 0	Talus on C + + c by. Morst.
EIISN-	97 <i>+00 E</i>	50	10	BF	YB	s/c	20	II A	n	り		Below de que clour teles Mat!
EIISN-	96+75E	50	10	T	BIK	С	30	u	. ≲ H.	4	- 12	Ground up at + clay Prev- Sample
EUSN -	76+ 50C	SU	(0	T	M BR	5/5	35	5A/A	salars +	ЮE	`	Sandy / Taking Meterical
K 115N -	96+250	50	10	BF?	m BR	5/s	30	s ya	3.55/ 5/	50		Tabon 10 M E 0 /96+25 96+25
E 115N -	96400E	50	10	B ₅	mBa	11	25	SA	SLTS	1 H.		Very Poor BM?
EIISN-	95+752	40	10	B?	n	Silt	35	\$	SH:	. Х	n ser dina an s	And A construction of the
EIISNZ	95450E	50	10	BF?	LBR	5/5	20			ે મ ં પ્રાંત્ટ	ورس محمد یا دورها انکنام ایر	n an
EIISN-	96+25E	40	10	8F	н	и	K	h	ų	. H		
EllSN-	95+008	40	v	BF	и	u	25	H	SH	DE		Good hoded above.

•	• • •					. farbiar -	i un ang ang ang ang ang ang ang ang ang an					a da en se en Se as presid		
									·.			I.		
													- <u>-</u>	
	1991	SOIL	SNPL	ES		PROPER	ry project	<u> </u>	DEL			SAMP		2
)	SAMPLE NO.	GRID LOCATION	DEPTH (cm)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	X	ROUND	COMP	SLOPE	SEEPAGE	CONVENTS	,
	J-#34-N	9600-E	100		BF	RB		0	<u>ب</u> ک	316				
	J-134-N	9625-E	91		BF	RB		10	VA	512				
	J-134-N	9650-E	80		BF	BR		0	54	516			· · · · · · · · · · · · · · · · · · ·	
	J-134-N	9675-E	70		BT	GR		10	VA	SIL				
	J-134-N	9700-E	40		BF	BR	-	15	VA	cL				
	J-134-1J	9725-E	40		RT	GR GR		15	VQ	CL		T		
	J-134-N	9750-E	40		BF	BR		20	VA	·				
	1-134-N	9775-E	20		BF	BR		20	∇P	`			56SAND	
	J-134-N	9800-E	30		BF	BR		20	VA					
	J-134-N	987.5-E	40		BF	BR		60	VA					
	J-134-N	9850E	46		BT	BR	·	30	VA				POOR	
	J-134-N	9875-E	50		8F	BR		5	SA	SIL				
	1-134-N	9900-E	40		BE	RK		10	VA					
	J-134-N	9925-E	60		BT	GR		25	3R	81				
	J-134-N	9950-E	70		BT	G-R		30	VA	94				
)	1-134 N	9975-E	70		BF	BR_		10	V4	51L				
	J-134-M	10000 E	70		BR			35	VA		-			
			-				J-135-	N						
	12-135-A	9600-E	5		<u>+</u>	GR		5	VA					
	d-135-N	9625-E	0.10		Ţ	GR		95	VA				DECOMPOSED	D BEPRE
	J-135-ar	9650-E	100		<u>+</u>	GR		30	VA					
	5-135N	9675-E	100		T	GR		45	VA					
	J-135-N	9700-E	80		T?	6R	. . .	5	VĄ	SRN			POSSIANCE OL	D CHANEL
	J-135-N	9725-E	60		BF	RB		5	VA	SIL				
	J-135-N	9750-5	50		BF	RB		5	5A					
	J-135-N	9775-E	20		T-BTP			:						
	J-135-N	9800-E	40		BF	RE/OR		20	VA					
	J-135-N	9825-E	30		+	GR		35	VA	CL			DECOMPOSED	BEDROCH
	J-135-M	9850-E	30		BT BF	Rd 90) GR 62	0		VA	CL				
	J-135-M	9875-E	30		BT BF	Ra		<u>P</u> 0	SA	CL SIL				
	J-135-N	9900-E	60		BT	GRA		15	VĄ	SIL				
	J-1350	9925-E	26		BF	RB			5A					

	1991	1991 SOIL SAMPLES				PROPER	TY PROJECT	r <i>10</i>	EL			SAMPI	B <u>BV</u>
)	SAMPLE NO.	GRID LOCATION	DEPTH (cm)	THICK (cm)	HOR I ZON	COLOUR	PARTICLE SIZE	X	ROUND		SLOPE	SEEPAGE	COMMENTS
	J-135-N	9950-E	60		BT	GR		15	50				
	J-135-N	9975-E	70		BT	GR		10	3/2				
	J-135-N	100+00-E	40		BE	K.B.		15	SR				
J	9600E 134450N		70	14	BF	RR	Ċ,	10	54	212			
	135+50 M		60	· .	<u>+</u>	GR	J-136	Nz	VA				
	J-136-N	9600-E	40		BF	BR		25	YA				
	1-136-N	9625-E	80		BF	GR			54				
	1-136-N	9650-E	76		BT	GR		25-	SA				
	J-136-N	9675-E	90		Br	GR		15	VA				
	1-136-N	9700-E	56		BE	BR		10	VR				
	1-136-N	9725-E	60		BT	GR	-	25	SA				·
	J-136-N	9750-E	56		BE	BR		20	V4				
	J-136-N	9775-E						 					
	J-136-N	9800-6	40		BE	BR			34	CL			
	J-136-N	9825-E	66	BT	RB				54				
	1-136-N	9850-E	40	BF	RB				SA				······
_/	J-136-N	9875-E	50	BF	RB				59 58				
	J-136-N	9900-E	26		τ	GR		90	VA				
	J-136-N	9925-E	40		BF	BR		16	VA	C4			
	J-136-N	9950-E	60		BE	BR		10	SA				
	1-136-N	4975-E	50		BF	BR			SR				
	J-136-N	100+00E	30		BE	BR			5Å				
						·	J-137	N					
	J-137-M	9600-E	50		13E	BR		10	VA				
	J-137-N	9625-E	30		BF	BR		16	9A				
)-137+N	9650-E	56		BE	BR		10	SA				
	1-137-N	9675-E	40		BF	BR		20	SA SR				
	J+137-N	4700-E	80		BT	GR		20	5 A 5 R	SIL			
	J-137-N	9725-E	60		BT	GR		20	54	516			
	1-137-N	9750-E	50		Bt	GR		20	SR SR	SIL			
	1-137-N	9775-E	60		BF	BR		5	S A S R	516			
-	J-137-N	9800-E	50		BE	BR		25	SPA	516			

2

en an the state of
. بار

	1991	SOIL	SAMPL	ËS		PROPER	TY PROJEC	л _/	ØEL			SNP		<u> </u>
	SAMPLE NO.	GRID LOCATION	DEPTN (cm)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	×	ROLIND	ITS COMP	SLOPE	SEEPAGE	COMMENTS	
	1-137 N	9825-E	50		BF	BR	SIL	20	SA	cit.				
	J-137-N	9850-E	50		BF	BR	516	20	SA					··· · _ · · · · · · · · · · · · · ·
	J-137-N	9875-E	60	•	BF	GR	SIL	25	54	, •				
	J-187-N	9900-E	40		BE				VA SR					
	J-137#	9925-E	56		ār-	G-R m B	-		VA					
	J-137-N	9950-E	40		BT	MR			5A			I		······································
	J-137:N	9975-E	30		BF	B.R.			×4 54					
	J-137-N	160+00-E	30		₿F	BR			SA					
	137+50N	9600E	66		BT	BR	SAN			i. C				<u></u>
							J-138	N						
	J-138-N	9600E	70		BF/BT	BR	. SANDY	65	SA					
	J-138-W	9625-E	50		BT-	GY		40	SA					
	J-138-N	9650-E	30		Br	Gy		75	SAKR					
	1-138-N	9675-E	30		Br	Gy	SANO	90	SA				CKW	њн?
Ì	1-138-N	9700-5-	40		Βτ	GY		15	5A					
	1-138-N	9725-E	50		BT	GY	SAN	15	5A				CREEK	
	J-138-N	9750-E	60		BT	61	SAN	10	VA	•				
	J-138-N	9775-E	80		BT	6Y		15	SAKR					
ŀ	J-138-N	9800-E	60		BT	64		/0	SA				<u> </u>	
4	1-138-N	9825-E	50		BT	GY	CLY	20	54					
ļ	1-138-N	9850-E	40		BT	GY	CLY	25	Sale					
ŀ	1-138-N	9875-5	80		Вт	GY	CLY	15	SA					
4	1-138-N	9900-E	80		BT.	64	SAN	10	SA/S					
ŀ	1-138-N	9925-E	40		BT	GY	SAN	30	SAba				<i></i>	· · · · · · · · · · · · · · · · · · ·
ł	1-138-N	9950-E	70		BF	BR	SIL	15	54					
ķ	1-138-N	9975-E	50		8F	BR	SIL	20	SA					
Ļ	1-138N	10000 E	70		BF/BT	se/Gy	SAN/ CLY	20	54					· · · · · · · · · · · · · · · · · · ·
	J 138+50N	96+005	60		BF	RB	SILT	5	SA					
]													· • • • • • • • • • • • • • • • • • • •
													· · · · · · · · · · · · · · · · · · ·	
	Ī													<u></u>
L			[······································

.

τ.

Ś

***	in .					•							+.,		4
										·			• •		
	19919	7 SOIL	SAIPL	ES		PROPER	TY PROJEC	T	ELF	,		SAP	LER	BW	
	SAMPLE NO.	GRID LOCATION	DEPTH (cm)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	x	FRAGME ROUND	ITS COMP	SLOPE	SEEPAGE	can	ENTS	;
	J139N	96+00E	60		BF/BT	REKSY	SIL	15	SA						
		96+25E	60		BT	GY	SAULY	30	SA						
		96+50E	50	-	BF										
		96+75E													
		97100E													
		97+25E	40		BF	RB	CLY	20	VA			. 7			
		97+50E	40		BF	RB	CLY	25	VA						
		97+75E	50		8f	RB	SILT	10	VA						
		98+00E	60		87	Br	SLT KLY	10	VA		2				
		98+25E	50		Br	Br	SLT	15	VA						
		98+50E	40		Вт	67		30	VA						
		98+75E	50		Bτ	Gy.		30	VA						
		99+00E	30		Bτ	Br		60	VA						
		99+26E	40		TF/BT	BR		75	VA						
		99+50E	40		Вт	Gy		50	VA						
)		99+75E	40		TF	Gγ			VA	54				CREEK WASH?	
/	V	100+00E	100		BT	GY		50	VA						
	J140+50	N 96+00E	50		BF	RB	SILT	15	SA						
	JIHON	96t00E	40		BF	RB		40	VA						
	ľ	96+25E	40		BF	RB		20	SAKR				G	LEACHED	
		96+50E	60		BF	RB	CLY	10	SR					· · · · · · · · · · · · · · · · · · ·	
		96+75E	70		BF	RB	SILT	15	SR .						
		97+00E	60		8F	₽B	SILT	20	UAKA						
		97+25E	60		BF	ЯB	CLY	15	VA/SA						
		97+50E	60		BF	RB	SAN	15	VA						
		97+75E	60		BF	RB		85	VA				5	REEP SIDE HUL	
		98+00E	60		BF	RB	SILT	10	SA						
		98+25E	50		8F	\$₿	SILT	20	5A						
		98+50E	50		BF	RB	SILT	40	5A					<u> </u>	
		98+75E	60		BT	GY	CL4	45	5A						
		99+00E	70		BT	64	<u> </u>	65	SA			·	5	TEEP	
	¥	99+25E	40		Br?	GY	smo	90	SA				C/	REEK WAS H	

199197	SOIL	SAIPL	ES		PROPER	TY PROJECT	T	27		SAIP	<u>BR 20</u>	
SAMPLE NO.	GRID LOCATION	DEPTH (cm)	THICK (cm)	HCRIZON	COLOUR	PARTICLE SIZE	×	ROUND	SLOPE	SEEPAGE	CLIMENTS	4
5140N	99+50E	40		BF/8r	BR/Gy	SILT	25	SA				
	99+75E	50		Вт	Gy		70	SA	 -	-		
	100+00E	30		Br	Gy		90	VA				
	100+25E	60		BT/BF	^{Gγ} /RB	SILT	90	٧A				
	100+50E	50		87	G	SANDY	90	VA			Poor	
	100+75E	40		ষ্টি	Gy	SANDY	90	SA			Paak	
	101+00E	40		?	Gy		100				BOR - CREEK	~
								•				
	98100E 98125E	70 40		BT BT	88/64 Gr	Silt Silt	10 5	SA SA	 			
	98-50E	90		BF	BR		40	5A				
	98+75E	80		Вт	Gr		20	VA	 			
	99+00E	70		BF	BR	CLY	20	SA				
	99+25E	60		DE								
	· · · · · · · · · · · · · · · · · · ·	00		br		CLY	10	VA				
	99+50E	80		Br Bf	BR	CLY	10 20	VA 54	 			
	99+5DE 99+75E	80 40		BF BF	BR BR	CLY SAT	10 20 35	VA 54 54				
	99+50E 99+75E 100+00E	80 40 30		BF BF TF	BR BR Gy	CLY SINT	10 20 35 40	√A 54 54 54				
	99+50E 99+75E 100+00E 100+25E	80 40 30 70		BF BF TF BF	BR BR Gy Br	CLY SINT	10 20 35 40 50	VA 54 54 54 54 54				
	99+50E 99+75E 100+00E 100+25E 100+50E	80 40 30 70 60		BF BF TF BF TF	BR BR Gy Br GY	CLY SINT	10 20 35 40 50 40	VA 54 54 54 54 VA				
	99+50E 99+75E 100+00E 100+25E 100+50E 100+75E	80 40 30 70 60 40		BF BF TF BF TF BF	BR BR GY BR GY BR	CLY SINT	10 20 35 40 50 40 36	VA 54 54 54 54 54 54 VA VA VA				
	99+50E 99+75E 100+00E 100+25E 100+50E 100+75E 101+00E	80 40 30 70 60 40 40		BF BF TF BF TF BF TF	BR BR GY BR GY GY	CLY SINT	10 20 35 40 50 40 36 75	√A 54 54 54 54 54 ∨A ∨A ∨A ∨A ∨A ∨A ∨A				
	99+50E 99+75E 100+00E 100+25E 100+50E 100+75E 101+00E 101+25E	80 40 30 70 60 40 40 60		BF BF TF BF TF TF TF	BR BR GY BR GY BR GY GY	CLY SINT	10 20 35 40 50 40 36 75 65	VA 54 54 54 54 54 VA VA VA VA VA				
	99+50E 99+75E 100+00E 100+25E 100+50E 100+75E 101+00E 101+25E 10H50E	80 40 30 70 60 40 40 50		BF BF TF BF TF BF TF TF TF	BR BR GY BR GY BR GY GY GY GY	<u>Си</u> у <u>Snт</u>	10 20 35 40 50 40 36 75 65 70	$\begin{array}{c} \sqrt{A} \\ $				
	99+50E 99+75E 100+00E 100+25E 100+50E 100+75E 101+00E 101+25E 101+50E 101+75E	80 40 30 70 60 40 50 40		BF BF TF BF TF TF TF TF TF	BR GY BR GY BR GY GY GY GY GY GY	CLY SINT CLY	10 20 35 40 50 40 36 75 65 70 8	$\begin{array}{c} \sqrt{A} \\ $				

199197	SO 11	IL SAPLES			PROPERTY PROJECT			ELF	<u> </u>		SAIP		<u>R'M'</u>	· .	s 3 -
SAMPLE NO.	GRID LOCATION	DEPTH (cm)	THICK (cm)	HOR 1 ZOM	COLOUR	PARTICLE SIZE	x	ROUND	TS COMP	SLOPE	SEEPAGE	CONVEN	ITS	1	
5142N															
							-								
	-														
•	-														
											÷				
	1														
	-												· n.,		
	: -														
			•			<u> </u>	-	-,	.						
		·				.•		•							
· · · <u>-</u>															
	I														
	99+75E	40		BT	64	SANDY		VA	- 2000-10 - T-			4	JET		
•	110+00E	40		BF	LB	SILT	10	SA		-					—
	100+25E	30		BF	LB	SILT	10	SA							
	100+50E	30		BF	BR	SILT	15	SA							
·······	100+75E	30		BF	BR	SILT	15	SA					li		
	101+00E	40		BF	BR	CLY	40	AV							
	101+25E	50		BF	BR	CLY.	70	VA			-				
	101+50E	50		BF	BR	SILT	10	19KA			_				
	101+75E	60		BF	BR	SILT	15	SA							
	102+00E	50		BF	BR	SILT	30	SM/SR					-		
				<u> </u>		7			•						
143N	102+00E	40		BF	RB		80	VA							
	101+75E	50		BF	BR	CLY	60	VA							

-

-

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

	GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT
	25,200
	Symirols
	BEDDING inclined, vertical
	CLEAVAGE inclined, vertical
	CONTACT known, inferred
	OUTCROP
	× FLOAT — — TRAIL
	H 51253 HATT Pb/Zn/Ag/8a (ppm)
	Legend
	Upper Devonian
	CONUNDRUM SILTSTONE
	3 CUNSTEEL FORMATION
	Je Silty, locally fissile grey to black SHALE to MUDSTONE
	3d Grey to black sillite laminoted SHALE
1300	Jb Black speckled SHALE/WUDSTONE
	yrite as disseminations or laminations; Pyrite carb nods. HOST TO MINERALIZATION
	10 UMESTORE, age uncertain
	0 50 100 150 200 250
	metres
	FIGURE 6
	KAMLOOPS, BRITISH COLUMBIA
	ELF PROPERTY
	JOEL CREEK GRID
1	
1400	GKIID GEOLOGY
	DATE DRAWN: JULY 11. 1997 SCALE: 1:2,500 DWG. NAUE: CGMPILED BY: R. Farmer JOB No: 1755 DWG. NAUE:
	DRAWN BY: S.A. NTS No: 94F/7 ELF-JOEL

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

25,200

,

\backslash	
J	
	DECLINATION 25
	Legend
	100 pom Ph
	400 ppm Pb
	CREEKS
	H HELIPAD
· · · ·	0 <u>50</u> 100 metres
	01000
1300	R. D. STORER
	Participation
A	TECK EXPLORATION LTD.
۳ ۲	KAMLOOPS, BRITISH COLUMBIA
100	Soil Geochemistry
100	Pb nom
	DATE DRAWN: AUG. 25, 1997 SCALE: 1:2,500 DWC. NAME:
	DRAWN BY: S.A. NTS No: 94F/7 JOEL-PB

	GEOLOGICAL SURVEY BRA ASSESSMENT REPORT	NCH
	25,200	\mathcal{I}
	1000 ppm Zn	J
	2000 ppm Zn 4000 ppm Zn 8000 ppm Zn CREEKS	
	H HELIPAD	
	metres	
1300	D. D. D. MAR D. D. C.	
	FIGURE 12 TECK EXPLORATION LTD. KAMLOOPS, BRITISH COLUMBIA	
1400	JOEL CREEK GRID Soil Geochemistry Zn. pom	
	COMPLED BY: R. Farmer JOB No: 1755 DWC. NUE: DRAWN: BY: SCALE: 12,500 DWC. NUE: COMPLED BY: R. Farmer JOB No: 1755 DEL-ZN DRAWN: BY: S.A. NTS No: 94F/7 JOEL-ZN	

-

GEOLOGICAL SU ASSESSMEN	RVEY BRANCH REPORT
ECLINATION 25	200
Legend	
CREEKS	
0 50 100 metres	
(FR)	
Den it falliner	
FIGURE 13	
ELF PROPERTY	
Soil Geochemistry Ag ppm	
DATE DRAWN: AUG. 25, 1997 SCALE: 1:2,500 DWC. NWE COMPRIED BY: R. Farmer JOB No: 1755 JOEL-AG DRAWN BY: S.A. NTS No: 94F/7 JOEL-AG	
	GEOLOGICAL SU ASSESSMEN 25, 2 Legend 1 ppn Ag 2 ppn Ag 2 ppn Ag 4 ppn Ag CREKS (a) HELIPAD 2 g 7 FIGURE 13 FIGURE 14 FIGURE 1

