

and

SOIL SAMPLING PROGRAM

on the

BAM PROPERTY

MORE 1 AND 2 MINERAL CLAIMS

ARCTIC LAKE AREA

LIARD MINING DIVISION, B.C.

NTS: LATITUDE: LONGITUDE: OWNER: OPERATOR: AUTHOR: DATE: 104G/2W 57°11' N 130°52' 30" W W.R. Gilmour Discovery Consultants (COCCA), SURVEY BRANCH Tom Carpenter, P.Geo. ANS X555 AND NO REPORT October 28, 1997

TABLE OF CONTENTS

Summ	ary			Page	1
Introd	uction			Page	2
Locati	on and	Access		Page	2
Topog	raphy			Page	2
Proper	ty			Page	4
Previo	us Exp	loration		Page	5
Regio	nal Geo	logy		Page	7
Property Geology				Page	10
Work Program				Page	12
	1. Geo a) b)	ochemical Soil Survey Program Parameters Program Results		Page	12
	2. Dia a) b)	mond Drilling Program Parameters Program Results		Page	13
Concl	usions			Page	16
Recommendations				Page	16
Refer	ences			Page	17
Statement of Costs				Page	18
Statement of Qualifications					19

LIST OF TABLES

Table 1	Claim Status	Page 2
Table 2	Significant Au Intersections	Page 15

LIST OF FIGURES

Figure 1	Property Location		Following Page 1
Figure 2	Claim Location	(1:50,000)	Following Page 2
Figure 3	Drill Hole and Soil Locations	s (1:5000)	In Pocket
Figure 5	Soil Survey: Gold Values	(1:5000)	In Pocket

APPENDICES

- APPENDIX A Analytical Procedures and Soil Sample Results
- APPENDIX B Analytical Procedures and Core Sample Analyses
- APPENDIX C Drill Logs

SUMMARY

The Bam property is host to vein gold mineralization within quartz diorite intrusions of Jurassic age. The property is located south of Arctic Lake in north-central B.C. Exploration has been carried out in the area since the 1950's, primarily for porphyry copper style mineralization. In 1986, Chevron Resources Limited discovered vein type gold mineralization on the property. Gold occurs in late stage quartz veins within a Jurassic quartz diorite.

An August 1996 exploration program consisted of a geochemical soil sampling survey and a diamond drilling program. A total of 362 soil samples was collected and analysed for gold. Six diamond drill holes totalling 603.34 m were drilled. The best gold intercepts were 0.55 g Au/t across 5.65 m and 0.29 g Au/t across 18.29 m. Soil sampling resulted in the discovery of a large anomalous gold zone containing values to 2550 ppb Au.

DWG-627-005

INTRODUCTION

This report describes the results of a soil sampling and diamond drilling program carried out on the Bam property. The objective was to test for gold in soils along the contact zone between the Jurassic quartz diorite intrusions and the Permian(?) limestones and to test the depth extension of the gold-bearing vein system within the quartz diorite intrusions.

LOCATION AND ACCESS

The Bam property is located in the Liard Mining Division of northwestern British Columbia. The property is approximately 80 km south of Telegraph Creek, B.C., near the headwaters of Mess Creek. The central part of the property occurs at latitude 57°11' N and longitude 131°52' W, located within National Topographic System (NTS) map sheet 104G/2 (Figure 1).

Access is by helicopter from Tatogga Lake or Bob Quinn Lake. Previous exploration in the area was carried out in part by float equipped aircraft into Arctic Lake, 7 km north-northeast of the claims. The nearest airstrip is at Schaft Creek, twenty-two kilometres northwest of the property.

TOPOGRAPHY

The Bam property is situated between the Coast Range Mountains to the west and the Mount Edziza Plateau to the east. Elevation ranges from 820 m in the Mess Creek valley to 1,620 m in

2

DWG-627-006

the claim area. The property is relatively flat while rugged mountainous terrain exists on the east, west and south flanks. Drainage is via tributaries to Mess Creek in the west, as well as to the south and to the east. Forest cover is sparse as the majority of the property is alpine meadow. Forest cover thickens towards Mess Creek on the western boundary.

PROPERTY

The BAM property is situated in the Liard Mining Division (Figure 2). It consists of six two-post claims, which were staked on May 21, 1995 by Thomas Carpenter as agent for W.R. Gilmour, and recorded in Vernon on June 1, 1995. W.R. Gilmour holds the claims in trust for the Phoenix Syndicate. On August 10, 1996, John Beggs, as agent for W.R. Gilmour staked two 4 post claims called the More 1 and More 2. The six Bam claims have since been included within the More claims. Table 1 summarizes the claim information.

<u>Table 1</u>

Claim Name	Record. No.	No. of Units	Owner of	Anniversary
			Record	Date*
Bam 1	336319	1	W.R. Gilmour	2001.8.22
Bam 2	336320	1	W.R. Gilmour	2001.8.22
Bam 3	336321	1	W.R. Gilmour	2001.8.22
Bam 4	336322	1	W.R. Gilmour	2001.8.22
Bam 5	336323	1	W.R. Gilmour	2001.8.22
Barn 6	336324	1	W.R. Gilmour	2001.8.22
More 1	349524	16	W.R. Gilmour	2002.8.10
More 2	349525	16	W.R. Gilmour	2002.8.10

Claim Status

*Pending acceptance of this report.

PREVIOUS EXPLORATION

Exploration in the Mess Creek area was first carried out in the 1950's with the discovery and delineation of the Schaft Creek porphyry copper deposit containing published reserves of one billion tons of 0.30% Cu, 0.035% MoS2, 0.004 oz/t Au and 0.035 oz/t Ag (Canadian Mines Handbook, 1986).

In 1964 Hudson Bay Exploration and Development Company Limited carried out a limited drill program on copper mineralization on the Jan property, north of the present BAM claims.

Kennecott Copper carried out a regional copper exploration program in the area in 1965.

In 1967 Shawinigan Mining and Smelting Company Limited drilled 3532 metres in 31 holes on several targets in the Arctic Lake area and outlined a deposit of 330,000 tons of 0.76% Cu within brecciated carbonates on the Jan property.

Mitsui Mining carried out a regional mapping and silt sampling program over the area in 1968.

Phelps-Dodge completed a program of geological mapping, silt and soil sampling in the area of the Jan deposit in 1972.

In 1983 Nairobi Industries undertook a prospecting program on the Jan claims. Up until this time the exploration emphasis was on copper mineralization in the area.

In 1984 Homestake Mineral Development Company carried out a reconnaissance mapping, prospecting and sampling program to assess the precious mineral potential of the Bam area.

Chevron Canada Resources discovered significant gold mineralization on the Barn claims in 1986 during a program of mapping, soil sampling, geophysics and trenching.

In 1987 Radcliffe Resources carried out a program of backhoe trenching (1000 metres), rock and soil sampling, a small IP program and 837 metres of diamond drilling in 9 holes over the area of the present BAM claims. Assays to 0.4 oz/tonne Au over 2.4 metres were discovered.

Work was focussed on an area of quartz veining containing 212.9 g/t and 15.6 g/t Au in chip samples.

REGIONAL GEOLOGY

The BAM property is situated within the Intermontane belt of the Canadian Cordillera along the east flank of the Coast Mountains. The tectonic setting of the area is described in G.S.C. Paper 71-44 (Souther, 1972).

The Mess Creek valley lies within the Stikine terrane (Monger, 1984), which includes the Stikine Arch, comprising crystalline and metamorphic rocks. The Stikine Arch is thought to have been relatively static during the Mesozoic, but exerted strong influence on Mesozoic structures and sedimentation around its margins.

Normal faulting on north-south faults in the Tertiary produced the Mess Creek valley. Movement occurred on the same fault surfaces as reverse faulting during the Mesozoic. Recent movement along Tertiary fault structures is recorded by progressive overlapping of lavas from the Mount Edziza complex where volcanic activity has occurred as recently as a few hundred years ago.

The stratigraphy in the area has been broken down by Souther (1971) into six tectonostratigraphic packages as follows:

- 1. Mississippian to Middle Triassic: Carboniferous rocks that were deformed and regionally metamorphosed during the early to mid-Triassic Tahltanian orogeny.
- 2. Upper Triassic: Unmetamorphosed, moderately deformed volcanic and sedimentary rocks. This package is separated from overlying strata by a disconformity representing the latest Triassic to earliest Jurassic Inklinian uplift and contemporaneous emplacement of granitic rocks.

- Lower to Middle Jurassic: Mainly clastic sedimentary rocks derived in part from (2) above and separated from overlying strata by a disconformity representing the mid Jurassic Nassian uplift.
- 4. Middle to Upper Jurassic: Clastic sediments derived in part from (1), (2), (3) above and separated from overlying strata by an angular unconformity that truncates decollement folds formed during the Columbian orogeny.
- 5. Cretaceous Tertiary: Acid volcanic rocks, related intrusions, and contemporaneous clastic sediments separated from overlying strata by an angular unconformity related to early Tertiary extension and block faulting.
- 6. Late Tertiary Quaternary: Lava flows and pyroclastic rocks.

The earliest known intrusive activity is the post Upper Triassic to pre-Lower Jurassic Hickman batholith, a biotite-hornblende quartz monzonite to quartz diorite, exposed at the north end of Schaft Creek.

A young group of equidimensional K-spar porphyry plutons occur throughout the area. Jurassic (Cretaceous?) medium to coarse grained quartz monzonite occurs along the Mess Creek valley.

Ultramafic rocks of undetermined age (possibly pre-Lower Jurassic) occur throughout the map area, as mostly small serpentinized units associated with fault structures.

Twenty kilometres north-northwest of the BAM property, the Liard Copper (Schaft Creek) deposit contains 330,000,000 tonnes with 0.3% Cu, 0.02% Mo and 0.32 ppm Au. Within the More 1 claim, the Jan deposit contains 330,000 tons of 0.76% Cu. Eskay Creek, located 66

8

kilometres south-southeast has combined proven and probable reserves of 10,900,000 tonnes containing 0.77% Cu, 5.6% Zn, 65 g/t Au and 2,950 g/t Ag,

Thirty-five kilometres to the west-southwest, the Central zone at Galore Creek contains unclassified reserves of 125,000,000 tonnes of 1.06% Cu including 27,232,000 tonnes at 0.97% Cu, 7.5 g/t Ag and 0.37 g/t Au.

PROPERTY GEOLOGY

The property geology is described by Diner (1987) in B.C. Assessment Report 17,570.

The oldest rocks exposed on the BAM property are Permian volcanics and volcaniclastics, which include massive greenstones, chloritic phyllites, schists and minor greywackes. The rocks are massive to well foliated, and can be placed in the greenschist metamorphic facies. At least two metamorphic deformation events can be recognized in outcrop. Near the contact with the granite, the unit is sericitized and Fe carbonated. Xenoliths of the volcanics are abundant throughout the granite. This unit bounds the discovery area to the west and seems devoid of any economic mineralization.

Overlying this unit is a thick sequence of limestone, dolomites and minor chert. The dolomites are locally silicified and Fe carbonated and form large orange coloured cliffs on the west side of the property. This unit hosts most of the copper mineralization on the Jan claim. Locally abundant fossils of corals, crinoids and molluscs show this unit to be Mississippian in age.

The carbonate unit is overlain be Lower Jurassic polymictic pebble conglomerate, arkosic sandstone and argillites.

Noted in the 1987 program were serpentinite bodies, which have been extensively carbonated. They are associated with finely laminated carbonaceous siltstone, greywackes and intermediate composition volcanics. The serpentinites seem to be intrusive near fault zones.

Highly anomalous gold values near the serpentinites are notable, and may have to do with the tectonism accompanying emplacement of these bodies. The age is tentatively assigned to pre Lower Jurassic (following Souther, 1972).

10

A Jurassic (?) quartz diorite to granite intrusion underlies most of the east portion of the property. It shows considerable variation in composition in composition and texture, being overall more felsic-alkalic to the west. The intrusive hosts the gold mineralization on the property. In the discovery area it is granitic, red to flesh coloured, with moderate grain size and locally porphyritic. Also noted are some aplite bodies and a microgranite which seems to be associated with the anomalous outcrops. It has conspicuous 1-2 mm size quartz eyes. The youngest rocks on the property are the Arctic Lake olivine basalts. They are glacially polished and have preceded the last glaciation. Abundant Quaternary glacial tills cover a significant part of the property.

A host of north-east to north-northeast trending structures are evident on airphotos and on the ground. All of these structures are altered, and must have preceded the alteration event, although movement on them may have continued to the present. Gold mineralization seems to be controlled by some of these structures. In addition, trenching and drilling have established the presence of moderate to low angle faults that locally separate the granites and the phyllites. These faults appear to postdate mineralization.

Drilling has established a 35-60 degree dip for the contact between the granite and the phyllites. The shallow contacts are tectonic in part.

WORK PROGRAM

Work carried out on the property in 1996 comprised geochemical soil sampling and diamond drilling. The program was initially supported by a Hughes 500D helicopter based at Bob Quinn Lake. However, due to uncertainties with weather the helicopter was eventually based at the BAM campsite.

Details of the soil sampling and drilling programs are discussed below.

1. Geochemical Soil Survey

a). Program Parameters

A geochemical soil survey was conducted on More 1 and More 2 claims on a grid tied in to a grid establishment by Chevron in 1986. The grid was established to the east of the Chevron grid to test for continuation of high Au values in soils obtained during the Chevron program.

Soil sampling by Chevron at 100 metre spacings on lines 500 metres apart had shown an area of anomalous gold values to 330 ppb immediately to the south of the Jan 1 claim.

Detailed soil sampling over this area was planned but never carried out due to early completion of the drill program.

The eastern halves of the More 1 and 2 claims were sampled however. This grid, as noted, was located east of the Chevron grid. Lines were established at 200 metre intervals using compass and hip chain.

Samples were collected at 50 metre intervals along the east-west lines. Soil was collected by shovel from the "B" horizon at depths ranging from 15 to 50 cm. Soil was placed in kraft sample bags and shipped to Min-En Laboratories in Smithers for analysis.

12

At Min-En the samples were dried, sieved to -80 mesh and analyzed for gold using standard 30g Fire Assay/Atonic Absorption techniques.

A total of 362 soil samples was collected.

b) Program Results

Significant gold anomalies were detected in soil samples to the east and northeast of the Jan 1 claim. Values up to 2550 ppb were obtained.

These anomalies are located north-northeast of previous anomalous samples collected by Chevron to the south of the Jan claim.

Combined results from the present survey and Chevron data suggest anomalies over an area some 1600 metres in length and up to 1000 metres in width trending north to northeasterly.

Complete gold results in soils are shown on Figure 3 and contained in Appendix A.

2. Diamond Drilling

a) Program Parameters

Between August 6 and August 18, 1996, six diamond drill holes containing 630.34 m of BQ core were completed on the property. Work was carried out on a 24 hour basis by Aggressive Diamond Drilling Ltd. of Peachland, B.C. using a Longyear 38 drill.

Drill hole data and alteration features (Diner, 1987) indicated two alteration corridors on the claims in the area of previous drilling. These were labeled the Northern and Southern Trends.

The Northern Trend represents a northeast trending alteration zone intercepted in holes 87-5 and 6 and marked by silicified granite. Additional drill holes were recommended along this corridor to intersect the extension of mineralization found in drill hole 87-6 (0.325 opt Au/0.91m and 0.8 opt Au/0.77m).

The Southern Trend was interpreted to extend east-northeasterly from the vicinity of trenches 87-4 & 4A and 87-5. Drilling was recommended to test this trend to the east.

The 1996 drill hole locations were largely based on the recommendations of the 1987 program.

A total of 147 samples was collected from drill core and shipped to MinEn Labs in Smithers, B.C. for analysis. At MinEn the samples were crushed to -150 mesh and analyzed using standard 30 gram F.A./A.A. (Fire Assay/Atomic Absorption) methods.

Complete assay results are contained in Appendix B.

b) Program Results.

Anomalous gold values were detected in all holes drilled but none were of economic grade.

Significant intersections occurred in five holes and are listed in Table 2.

TABLE 2 - SIGNIFICANT AU INTERSECTIONS

Hole #	Metreage	Sample Interval in Metres	Au gm/tonne
96-1	42.34-43.74	1.40	0.36
	43.74-44.81	1.07	0.26
	44.81-46.94	2.13	0.61
	46.94-52.06	5.12	0.15
	52.06-53.87	1.81	0.34
	53.87-55.23	1.36	0.24
96-2	44.80-47.85	3.05	1.03
	47.85-50.90	3.05	0.14
	50.90-53.94	3.04	0.21
	53.94-56.99	3.05	0.13
	56.99-60.04	3.05	0.06
	60.04-63.09	3.05	0.14
96-4	8.73-10.48	1.75	0.56
	10.48-11.19	0.71	0.45
	11.19-13.41	2.22	0.67
	13.14-14.38	0.97	0.34
96-5	69.19-72.24	3.05	0.10
	72.24-75.29	3.05	0.12
	75.29-78.33	3.04	0.11
	78.33-81.38	3.05	0.22
	81.38-84.43	3.05	0.18
	84.43-86.40	1.97	0.36
96-6	53.62-56.0	2.38	0.21

Complete assay results are contained in Appendix B. Drill logs are contained in Appendix C. Drill hole locations are shown on Figure 3.

CONCLUSIONS

Diamond drilling on the BAM property failed to define significant gold mineralization along strike from previous intersections.

Soil sampling however has detected significant anomalies to 2550 ppb gold over an area some 1600 metres in length and 1000 metres in width at the north end of the claims.

These anomalies represent a large, as yet untested zone of gold mineralization.

RECOMMENDATIONS

Additional gridding and soil sampling should be carried out to further define the gold anomalies in soils.

A magnetometer/VLF survey should be undertaken to aid in defining zones of alteration commonly associated with mineralization.

At the same time an Induced Polarization program should be conducted to delineate areas of mineralization and/or alteration.

Trenching should be carried out on targets defined by the geochemical and geophysical surveys.

Further diamond drilling would be subsequently undertaken in any mineralized areas defined by the above programs.

Respectfully submitted,

Thomas H. Carpenter, P.Geo.

REFERENCES

Dearin, C.,1983	Evaluation of the Arctic Lake Property for Nairobi Industries Limited. Assessment Report 11,515
Diner, Y., 1987	Geological, geochemical and geophysical report on the BAM claims for Radcliffe Resources Ltd. Assessment Report 17,570.
Gillan, J.F., 1984	Geological and geochemical evaluation of the BAM claims for Homestake Mineral Development Company. Assessment Report 12,561
Hewgill, W. and Walton, G., 1986	Geological, geochemical and geophysical report on the BAM claims for Chevron Canada Resources Limited. Assessment Report 15,827
Monger, J.W.H., 1984	Cordilleran Tectonics: A Canadian Perspective. Bull. Soc. Geol. France. No. 2, pp. 255-278.
Souther, J.S., 1971	Geology and Mineral Deposits of Tulsequah Map Area, B.C. G.S.C. Memoir 362.
Souther, J.S., 1972	Telegraph Creek Map Area. G.S.C. Paper 71-44.
Walton, G., 1986	Geochemical Survey, BAM claims for Chevron Canada Resources Limited. Assessment Report 14,859

.

STATEMENT OF COSTS

Professional Services		
M. Dittrick (P.Geo.)		
(Aug. 11-23, 25 & 26, Sept. 9 &	& 10)	
15 days @ \$450/day	\$ 6,750.00	
T. Carpenter (P.Geo.)		
(Aug. 31, Sept. 1 & 2)		
3 days @ \$450/day	_1,350.00	\$ 8,100.00
Field Personnel		
Core Splitting		
C. Woolverton (Aug. 19-22)		
4 days @ \$231.12/day	924.48	
D. Hepting (Aug. 12-18)		
7 days @ \$214.00/day	1,498.00	2.422.48
Cook		-,
G. Pickton (Aug. 11-24)		
14 Days @ \$299.60/day	,	4,194,40
Camp Demobilization		.,
C. Woolverton (Sept. 1 & 2)		
$2 \text{ days } (a) = \frac{1}{2} $	462.24	
M. Beenen (Sept. 1-3)		
3 days @ \$231.12/day	693.36	
D. Orme (Sept. 1-3)	0,0,00	
3 days @ \$171.20/day	513.60	<u>1,669.20</u> 8,286.08
Fynenses		
Analyses	4 224 25	
Lodging & Meals	11 089 74	
Communications	2 729 96	
Field Supplies	1 323 47	
Fauinment Rental	131.46	
Drilling	63 685 92	83 184 80
Diming	05,005,72	05,104.80
Т	otal Exploration Expenditures:	\$ 99,570.88
Transportation		
Vancouver Island Uslicenters	\$50 277 81 @ 500/ of Ema	ndituras 10 705 11
vancouver Island Hencopters	\$39,522.81 (@ 50% of Expe	manures <u>49,785,44</u>
Ť	atal Costs of Exploration	\$149 356 37
1	via cosis of Exploration.	<u>417,000000</u>

STATEMENT OF QUALIFICATIONS

I, THOMAS H. CARPENTER of 3902 14th Street, Vernon, B.C., V1T 3V2, DO HEREBY CERTIFY that:

- 1. I am a consulting geologist in mineral exploration associated with Discovery Consultants, Vernon, B.C.
- 2. I have been practicing my profession for 26 years.
- 3. I am a graduate of the Memorial University of Newfoundland with a Bachelor of Science degree in geology.
- 4. I am a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. This report is based upon knowledge of the Bam property gained from field work and supervision.
- 6. I hold no interest either directly or indirectly in the Bam property.

T.H. Carpenter, P.Geo.

October 28, 1997 Vernon, B.C.

APPENDIX A

ANALYTICAL PROCEDURES

Geochemical Analysis

by TSL Laboratories:

		LOWER	EXTRACTION	
ELEM	ENT	DETECTION LIMIT	TECHNIQUE	METHOD
Au	Gold	5 ppb	fire assay	A.A.
Ag	Silver	1 ppm	HNO ₃ -HCI (1:3)	ind. coupled plasma
Al*	Aluminum	0.01 %	HNO3-HCI	ind. coupled plasma
As	Arsenic	5 ppm	HNO3-HCI	ind. coupled plasma
В	Boron	10 ppm	HNO3-HCI	ind. coupled plasma
Ba*	Barium	1 ppm	HNO₃-HCI	ind. coupled plasma
Be*	Beryllium	1 ppm	HNO3-HCI	ind. coupled plasma
Bi	Bismuth	5 ppm	HNO3-HCI	ind. coupled plasma
Ca*	Calcium	0.02 %	HNO3-HCI	ind. coupled plasma
Cd	Cadmium	1 ppm	HNO₃-HCI	ind. coupled plasma
Co	Cobalt	1 ppm	HNO ₃ -HCI	ind. coupled plasma
Cr*	Chromium	1 ppm	HNO3-HCI	ind. coupled plasma
Cu	Copper	1 ppm	HNO3-HCI	ind. coupled plasma
Fe	Iron	0.01 %	HNO3-HCI	ind. coupled plasma
Mg*	Magnesium	0.01 %	HNO3-HCI	ind. coupled plasma
Mn	Manganese	0.01 %	HNO3-HCI	ind. coupled plasma
Мо	Molybdenum	2 ppm	HNO ₃ -HCI	ind, coupled plasma
Na*	Sodium	0.01 %	HNO ₃ -HCI	ind. coupled plasma
Ni	Nickel	1 ppm	HNO3-HCI	ind. coupled plasma
Ρ	Phosphorus	2 ppm	HNO₃-HCl	ind. coupled plasma
Pb	Lead	2 ppm	HNO₃-HCI	ind. coupled plasma
Sb	Antimony	5 ppm	HNO ₃ -HCI	ind. coupled plasma
Sc*	Scandium	1 ppm	HNO3-HCI	ind. coupled plasma
Sn	Tin	10 ppm	HNO3-HCI	ind. coupled plasma
Sr*	Strontium	1 ppm	HNO₃-HCl	ind. coupled plasma
Ti*	Titanium	1 ppm	HNO3-HCI	ind. coupled plasma
V	Vanadium	1 ppm	HNO₃-HCI	ind. coupled plasma
W*	Tungsten	10 ppm	HNO3-HCI	ind. coupled plasma
Y	Yttrium	1 ppm	HNO3-HCI	ind. coupled plasma
Zn	Zinc	1 ppm	HNO₃-HCI	ind. coupled plasma
Zr	Zirconium	1 ppm	HNO3-HCI	ind. coupled plasma

* incomplete digestion

Date of Report: 96-09-04

Project 636

٠

٠

Bam

file: 636\Soil_96.wk1

Soil Sample Analyses (ICP) 1996

Reference : TSL-s3745, s3748, s3756 _____

Sample ID	Ац ррђ	Au g/t	Sample ID	Au ppb	Au g/t	Sample ID	Au ppb	Au g/t
 001	5		065			131	<5	
002	.<5		066	5		132	<5	
003	5		067	5		133	<5	
004	5		068	10		134	<5	
005	5		009	<0 <5		135	25	
607	15		070	<5		130	10	
008	5		072	5		138	35 45	
009	10		073	5		139	30	
010	5		074	20		140	5	
011	<5		075	10		141	<5	
012	5		076	15		142	10	
013	<5		077	10		143	<5	
014	<5		078	5		- 144	<5	
015 016	<5		080	<5 <5		145	<5 <5	
017	<5		087	~5 <5		140	<0 25	
018	<5		083	10		149	<5	
019	<5		084	<5		150	<5	
020	<5		085	10		151	<5	
021	20		086	<5		152	<5	
022	<5		087	<5		153	<5	
023	<5		088	<5		154	<5	
024	<5		089	<5		155	<5	
023	<0		090	<5		156	5	
040 077	<5		091	<		15/	10	
028	<5		092	15		150	35	
029	<5		094	15		160	10	
030	<5		095	20		161	10	
031	<5		096	5		162	15	
032	<5		097	15		163	<5	
033	<5		098	10		164	30	
034	<5		099	5		165	<5	
035	<5		100	<5		166	10	
030 637	-5		101	<0 <5		16/	<0	
038	<5		103	<5		169	<5	
039	<5		104	<5		170	<5	
040	15		105	5		171	<5	
041	10		106	<5		172	<5	
042	50		107	<5		173	30	
043	10		108	<5		174	<5	
044	10		109	<5		175	<5	
043 046	<5		114	<5		177	<5	
040 047	<5		111	<0 *5		179	<5 10	
048	<5		113	<5 <5		181	5	
049	<5		114	30		182	<5	
050	5		115	10		183	30	
051	<5		116	20		184	55	
052	<5		117	>1000	1.21	185	<5	
053	<5		118	60		186	<5	
U34	<5		119	5		187	<5	
055	<0		120	60 50		188	<5	
657	<5 ~5		121	500 560		189	10	
058	<5		122	15		191	30 30	
059	<5		124	10		193	10	
060	<5		125	5		194	<5	
061	<5		126	>1000	1.50	195	<5	
362	<5		127	20		196	<5	
J63	<5		128	20		197	<5	
064	<5		129	85		198	<5	

Date of Report: 96-09-04

Project 636

.

•

Bam

file: 636\Soil_96.wk1

Soil Sample Analyses (ICP) 1996

Reference : TSL-s3745, s3748, s3756

Sample ID	Au ppb	Au g/t	Sample ID	Au ppb	Au g/t	Sample ID	Au ppb	Au g/t
100		<u> </u>				136		
200	110		269	10		337	<5	
200	10		205	<5		338	-5	
202	<5		271	<5		339	10	
203	<5		272	15		340	10	
204	<5		273	25		341	5	
205	5		274	<5		342	10	
206	<5		275	5		343	5	
207	<5		276	<5		344	15	
208	5		277	5		345	10	
209	5		278	<5		346	5	
210	10		279	<5		347	<5	
211	5		280	10		348	<5	
212	<5		281	10		349	5	
213	15		282	<5		350	5	
214	30		283	<5		351	5	
215	65		284	5,		352	<5	
217	15		285	40		353	5	
218	30		286	50		354	<5	
219	10		287	30		355	5	
220	20		288	20		356	5	
221	70		292	710		357	<5	
222	40		293	45		358	<5	
223	370		294	80		359	<5	
224	10		295	30		360	<5	
225	10		296	<5		361	<5	
226	<5		297	5		362	<5	
227	<5		298	<5			•	
228	<5		299	<5				
229	<5		300	<5				
230	<5		301	<5				
231	<5		302	5				
232	15		303	<5				
234	10		304	<5				
235	20		305	<5				
236	90		306	5				
237	25		307	280				
238	35		308	>1000	1.08			
239	140		309	5				
240	95		310	280				
241	35		311	5				
242	20		312	<5				
243	15		313	20	*			
244	25		314	<5				
245	<5		315	<5				
246	90		316	<5				
247	20		317	<5				
248	55		318	5				
251	<5		319	5				
252	85		320	<5				
253	20		321	<5				
254	65		322	<5				
255	25		323	5				
256	20		324	5				
257	10		325	5				
258	5		326	10				
259	370		327	270				
260	>1000	2.55	328	<5				
261	15		329	<5				
263	20		330	5				
264	50		331	5				
265	170		332	<5				
266	370		333	5				
267	5		335	5				

Date of Report: 96-09-04

Project 636

• • •

Bam

file: 636\Soil_96.wk1

Soil Sample Analyses (ICP) 1996

Reference : TSL-s3745, s3748, s3756

Sample ID	Au ppb	Au g/t	Sample ID	Au ppb	Au g/t	Sample ID	Au ppb	Au g/t
Duplicate:								
005	5							
015	<5							
025	<5							
035	<5							
046	<5							
055	<5							
066	<5							
074	10							
086	<5							
096	20							
106	<5							
117		1.58						
122	530							
126		1.65						
128	25							
139	35							
152	<5							
161	10							
170	<5							
182	<5							
193	5							
213	15							
224	10							
235	15							
247	10							
257	10	• •						
260	_	2.49						
267	5							
277	5							
28/	30							
274	/60							
300	<0 020							
370	230							
J£8 197	<j 250</j 							
32/	250							
339	10							
J744	10							

APPENDIX B

ANALYTICAL PROCEDURES

Geochemical Analysis

by Mineral Environments Laboratories

		LOWER	EXTRACTION	
ELEM	ENT	DETECTION LIMIT	TECHNIQUE	METHOD
Ag	Silver	1 ppm	aqua-regia digestion	ind. coupled plasma
Aľ*	Aluminum	0.01 %	aqua-regia digestion	ind. coupled plasma
As	Arsenic	5 ppm	aqua-regia digestion	ind. coupled plasma
Ba*	Barium	10 ppm	aqua-regia digestion	ind. coupled plasma
Be*	Beryllium	0.5 ppm	aqua-regia digestion	ind. coupled plasma
Bi	Bismuth	5 ppm	aqua-regia digestion	ind. coupled plasma
Ca*	Calcium	0.01 %	aqua-regia digestion	ind. coupled plasma
Cd	Cadmium	1 ppm	aqua-regia digestion	ind. coupled plasma
Co	Cobalt	1 ppm	aqua-regia digestion	ind. coupled plasma
Cr*	Chromium	1 ppm	aqua-regia digestion	ind. coupled plasma
Cu	Copper	1 ppm	aqua-regia digestion	ind. coupled plasma
Fe	Iron	0.01 %	aqua-regia digestion	ind. coupled plasma
Ga*	Gallium	10 ppm	aqua-regia digestion	ind. coupled plasma
κ	Potassium	0.01 %	aqua-regia digestion	ind. coupled plasma
Li	Lithium	1 ppm	aqua-regia digestion	ind. coupled plasma
Mg*	Magnesium	0.01 %	aqua-regia digestion	ind. coupled plasma
Mn	Manganese	5 ppm%	aqua-regia digestion	ind. coupled plasma
Мо	Molybdenum	2 ppm	aqua-regia digestion	ind. coupled plasma
Na*	Sodium	0.01 %	aqua-regia digestion	ind. coupled plasma
Ni	Nickel	1 ppm	aqua-regia digestion	ind. coupled plasma
Р	Phosphorus	10 ppm	aqua-regia digestion	ind. coupled plasma
Pb	Lead	2 ppm	aqua-regia digestion	ind. coupled plasma
Sb	Antimony	5 ppm	aqua-regia digestion	ind. coupled plasma
Sn	Tin	10 ppm	aqua-regia digestion	ind. coupled plasma
Sr*	Strontium	1 ppm	aqua-regia digestion	ind. coupled plasma
Th	Thorium	1 ppm	aqua-regia digestion	ind. coupled plasma
Ti*	Titanium	0.01 %	aqua-regia digestion	ind. coupled plasma
U	Uranium	5 ppm	aqua-regia digestion	ind. coupled plasma
V	Vanadium	1 ppm	aqua-regia digestion	ind. coupled plasma
W*	Tungsten	10 ppm	aqua-regia digestion	ind. coupled plasma
Zn	Zinc	1 ppm	aqua-regia digestion	ind. coupled plasma

* incomplete digestion

Project 636

file: 636/geodata/ddi01_96.wkl

Bam

DDH-01 Drill Sample Analyses 1996

Reference : MinEn 6s0097

					FA	FA
Sample ID	lab	from	to	length	Au	Au
	Rpt#	m	ш	m	g/t	oz/t
19501	6s0097	2.13	5.18	3.05	0.01	
19502	6s0097	5.18	7.92	2.74	0.19	
19503	660097	7.92	10.97	3.05	0.20	
19504	660097	10.97	13.11	2.14	0.02	
19505	6s0097	13.11	14.32	1.21	0.02	
19506	6s0097	14.32	15.85	1.53	0.11	
19507	6s0097	15.85	17.37	1.52	0.04	
19508	6s0097	17.37	20.42	3.05	0.05	
19509	660097	20.42	23.47	3.05	0.26	
19510	6s0097	23.47	25.86	2.39	0.03	
19511	6s0097	25.86	26.92	1.06	0.37	
19512	6e0097	26.92	29.56	2.64	0.03	
19513	6s0097	29.56	30.57	1.01	0.02	
19514	6s0097	30.57	32.61	2.04	0.05	
19515	6s0097	32.61	35.66	3.05	0.06	
19516	6s0097	35.66	38.02	2.36	0.04	
19517	6 s00 97	38.02	39.26	1.24	0.01	
19518	6s0097	39.26	40.74	1.48	0.04	
19519	6e0097	40.74	42.34	1.60	0.07	
19520	660097	42.34	43.74	1.40	0.36	
19521	6e0097	43.74	44.81	1.07	0.26	
19522	6e0097	44.81	46.94	2.13	0.61	
19523	660097	46.94	52.06	5.12	0.15	
19524	660097	52.06	53.87	1.81	0.34	
19525	6s0097	53.87	55.23	1.36	0.24	
19526	6e0097	55.23	58.58	3.35	0.04	
19527	660097	58.58	60.96	2.38	0.01	
19528	6e0097	60.96	62.64	1.68	0.01	
19529	6s0097	62.64	64.62	1.98	0.01	
19530	6s0097	64.62	66.14	1.52	0.01	
19531	6s0097	66.14	69.19	3.05	0.01	
19532	660097	106.98	108.81	1.83	0.01	
19533	6s0097	108.81	110.13	1.32	0.02	
19534	660097	110.13	111.86	1.73	0.01	
19535	6c0097	111.86	114.91	3.05	0.01	

Project 636

Sir: 636'grodazidda02_Miwk!

Bam

DDH-02 Drill Sample Analyses 1996

Reference : MinEn 6s0098, 6s0111

				FA	FA
Sample ID lab	from	to	length	Au	Au
Rpt#	m	m	m	g/t	oz/t
19536 6±0098	2.13	5,18	3.05	0.01	
19537 660098	5.18	8.23	3.05	0.01	
19538 660098	8,23	10.05	1.82	0.01	
19539 660098	10.05	13.11	3.06	0.04	
19540 6:0098	13.11	15.85	2.74	0.01	
19541 6s0098	15.85	17.37	1.52	0.02	
19542 6s0098	17.37	19.86	2.49	0.01	
19543 660098	19.86	21.03	1.17	0.05	
19544 640098	21.03	22.26	1.23	0.07	
19545 660098	22.26	24.60	2.34	0.02	
19546 660098	24.60	26.32	1.72	0.01	
19547 660098	26.32	28.65	2.33	0.03	
19548 660098	28.65	32.08	3.43	0.08	
19549 650098	32.08	34.09	2.01	0.01	
19550 660098	34.09	35.66	1.57	0.07	
19551 6+0098	35.66	38.71	3.05	0.13	
19552 6#0098	38.71	41.75	3.04	0.05	
19553 660098	41.75	44.80	3.05	0.04	
19554 640098	44.80	47.85	3.05	1.03	
19555 6#0098	47.85	50.90	3.05	0.14	
19556 660098	50.90	53.94	3.04	0.21	
19557 6#0098	53.94	56.99	3.05	0.13	
19558 660098	56.99	60.04	3.05	0.06	
19559 6s0098	60.04	63.09	3.05	0.14	
19560 660098	63.09	66.14	3.05	0.04	
19561 6e0111	66.14	69.19	3.05	0.02	0.001
19562 6e0111	69.19	72.23	3.04	0.01	0.001
19563 6#0111	72.23	74.21	1.98	0.02	0.001
19564 660111	74.21	75.28	1.07	0.01	0.001
19565 6#0111	75.28	77.14	1,86	0.02	0.001
19566 66011)	77.14	78.33	1.19	0.01	0.001
19567 660111	78.33	81.38	3.05	0.01	0.001
19568 6#0111	81.38	84.12	2.74	0.09	0.003
19569 6e0111	84.12	87.17	3.05	0.02	0.001
19570 600111	87.17	90.37	3.20	0.02	0.001
19571 6#0111	90.37	93.57	3.20	0.01	0.001
19572 6s0111	93.57	94.30	0.73	0.04	0.001
19573 6s0111	94,30	97.54	3.24	0.01	0.001

,

-

Project 636

file: 636\geodata\ddb03_96.wk1

Bam

DDH-03 Drill Sample Analyses 1996

Reference : MinEn 6s0111

						FA
Sample ID	lab	from	to	length	Au	Au
	Rpt #	m	m	m	g/t	oz/t
19574	660111	69.19	72.24	3.05	0.01	0.001
19575	6¢0111	72.24	75.28	3.04	0.01	0.001
19576	660111	75.28	78.33	3,05	0.02	0.001
19577	6s0111	78.33	81.65	3.32	0.03	0.001
19578	660111	81.65	82.55	0.90	0.01	0.001
19579	6s0111	82.55	83.91	1.36	0.07	0.002
19580	660111	83.91	85.00	1.09	0.01	0.001
19581	6s0111	85.00	87.04	2.04	0.01	0.001
19582	6s0111	91.04	91.91	0.87	0.04	0.001
19583	6s0111	96.20	97.44	1.24	0.03	0.001
19584	6e0111	97.44	98.92	1.48	0.01	0.001
19585	6e0111	98.92	100.51	1.59	0.09	0.003
19586	6s0111	100.51	103.40	2.89	0.01	0.001
19587	6s0111	103.40	104.53	1.13	0.01	0.001
19588	600111	104.53	107.24	2.71	0.03	0.001
19589	6s0[[]	107.24	109.58	2.34	0.04	0.001
19590	6e0111	109.58	112.20	2.62	0.02	0.001
19591	6e0111	112.20	114.91	2.71	0.03	0.001
19592	660111	114.91	116.74	1.83	0.01	0.001

Project 636

file: 636\geodata\ddb04_96.wkj

Bam

DDH-04 Drill Sample Analyses 1996

.

.

Reference : MinEn 6s0106, 6s0111

	· ·				FA	F/
sample ID	lab Dub #	trom	to	length	Au -*	Au
	Rpt #		m	m	g/t	oz/
19593	660111	2.13	4.27	2.14	0.04	0.001
19594	650111	4.27	7.31	3.04	0.06	0.002
19595	6s0[1]	7,31	8.73	1.42	0.06	0.002
19596	6s0111	8.73	10.48	1.75	0.56	0.016
19597	6s0111	10.48	11.19	0.71	0.45	0.013
19598	660111	11.19	13.41	2.22	0.67	0.02
19599	6s0111	13.41	14.38	0.97	0.34	0.01
19600	6s0111	14.38	17.00	2.62	0.01	0.001
19601	6s0111	17.00	18.02	1.02	0.01	0.001
19602	6e0111	18.02	20.42	2.40	0.01	0.001
19603	6s0111	20.42	23.00	2.58	0.01	0.001
19604	660111	35,66	37.00	1.34	0.01	0.001
19605	6s0111	37.00	37.54	0.54	0.01	0.001
19606	6s0111	37,54	39.65	2.11	0.01	0.001
19607	6s0106	39.65	41.76	2.11	0.01	0.001
19608	6s0106	41.76	44.72	2.96	0.01	0.001
19609	6e0106	44.72	45.73	1.01	0.01	0.001
19610	6s0106	45.73	47.85	2.12	0.01	0.001
19611	6¢0106	47.85	50.90	3.05	0.01	0.001
19612	660106	50.90	52.20	1.30	0.01	0.001

_ ...

Project 636

-

file: 636\geoduta\ddb05_96.wkl

Bam

- -

DDH-05 Drill Sample Analyses 1996

Reference : MinEn 6s0106

	******************	***************			RER BEZ 222 - 프 # # # # #	***********
Sample ID	tab	from	to	length	FA Au	FA Au
	Rpt #	m	m	m	gл	02/0
19613	6-0106	63.09	66 14	3.05	0.02	0.001
10614	6-0106	66 14	69.19	3.05	0.03	0.001
19615	640106	69 19	72.24	3.05	0.10	0.003
19616	660106	72.24	75.29	3.05	0.12	0.004
19617	660106	75.29	78.33	3.04	0.11	0.003
19618	6s0106	78.33	81.38	3.05	0.22	0.003
19619	6s0106	81.38	84.43	3.05	0.18	0.005
19620	680106	84.43	86.40	1.97	0.36	0.011
19621	660106	86.40	87.71	1.31	0.03	0.001
19622	6s0106	87.71	90.53	2.82	0.02	0.001
19623	660106	105.77	106.50	0.73	0.01	0.001
19624	6s0106	106,50	108.81	2.31	0.01	0.001
19625	6s0106	108.81	111.14	2.33	0.01	0.001
19626	6s0106	111.14	114.40	3.26	0.02	0.001
19627	6s0106	114.40	117.96	3.56	0.01	0.001

Project 636

file: 636'grodataid@06_96.wki

Bam

DDH-06 Drill Sample Analyses 1996

.....

Reference : MinEn 6s0106

			······································		FA	FA
Sample ID	lab	from	to	length	Au	Au
	Rpt#	m	m	m	g/t	oz/t
19628	650106	21.73	23.93	2.20	0.02	0.001
19629	6s0106	23.93	26.51	2.58	0.03	0.001
19630	660106	26.51	27.68	1.17	0.02	0.001
19631	6s0106	27.68	29.56	1.88	0.01	0.001
19632	640106	29,56	31.72	2,16	0.04	0.001
19633	6s0106	31.72	33.91	2.19	0.01	0.001
19634	660106	33.91	35.66	1.75	0.03	0.001
19635	6s0106	35.66	38.71	3.05	0.01	0.001
19636	660106	38.71	41.16	2.45	0.01	0.001
19637	6e0106	41.16	43.00	1.84	0.01	0.001
19638	660106	43.00	44.80	1.80	0.01	0.001
19639	660106	44.80	47.85	3.05	0.02	0.001
19640	6e0106	47.85	50.90	3.05	0.01	0.001
19641	6e0106	50.90	53.62	2.72	0.01	0.001
19642	6e0106	53.62	56.00	2.38	0.21	0.006
19643	660106	56.00	57.00	1.00	0.02	0.001
19644	6s0106	57.00	58.52	1.52	0.07	0.002
19645	6e0106	58.52	60.04	1.52	0.01	0.001
19646	6e0106	70.10	72.23	2.13	0.01	0.001
19647	6s0106	72.23	75.28	3.05	0.01	0.001

APPENDIX C

	INTERV	ÁL .	DESCRIPTION	SAMPLE No.:	SAMPLE I	NIERVAL 1 to	LENGTH	% RECOVERY		1964 - 1964 -		10	
88	an ang ang ang		87.71-106.50 m Aranite is less silicified ->		and the second								
90			pole green hiff in colour -> mod to locally								erse pares		
92			Strong set all a pation we history?								No.		
94 -			K-spar + Li incr after 93.40m; min/2/13										
96 -			weak (Ru <1 % as disting your arrow at fres)										
98							e ghage						
100			WER- III 14 m Nat-stre K-spar alt ? -> arriver in flock								Sec.		
102			Night a stand in calour fait aming texture										
104 -			print po create the color , with a grant is the										
106			Per 0.5-1% : sharp motat a Phullite #45°	19623	105.77	106.50	0.73	Sec. 10					
108			(Je ere) chinip contait ar grin e in	19624	106.50	108.81	2.31						
110 -450	11/14	117.96	PHYLLITE - mls area to buff areas i medicate sor	19625	105.81	111.14	2.33						
112			altor stars bla sin a 25-35° x - out he	19626	111.14	114.40	3.26				a Sunghay		
114			number fine On Ich waiter for fillings porthe	19627	114.40	117.96	3.56				1.00		
116			aluna bidal fatti access alongated at a klebs in	11-01									
m			Pir direct ater ate / Br filled fors (Pir to 12)	1.10					. 27		1. San 2. Ch		
, F			in door) · lowersport to an is somewhat	1.0									
F			channel + li stained (fult? zone)		C. Star								
.													
F													
					1.1								
F				2 (V 18)	a serie a se								
F								1		-	100		
F	diff.								1	-			
								1.1.1					
							-						
The sea of										a and a state	1. (

Sheet No .: ____

CO-ORDS:	DISCOVERY Consultants	HOLE No.: B96-5
AZIMUTH: 344°	DRILL LOG GEOLOGICAL SURVEY BRANCH	PROPERTY: BAM
	ASSESSMENT REPORT	LOCATION:
DIP: -50°	DRILL TYPE & SIZE: FASSE/SSHALENT I INFORM	
DIP: -50° ELEVATION: ~ 4580 ft,	DIP TESTS:	DATE STARTED: Aug. 14, 1996 DATE COMPLETED: N II 1996

	from (m)	RVAL to (m)	DESCRIPTION	SAMPLE No.:	SAMPLE from	INTERVAL to	LENGTH	% RECOVERY			
2	0.00	2.13 m	CASING								+
+ 4	2.13	111.14 m	GRANITE - m's grangers; mod set alt? to and subject?								t
8			plag is pale green ser and, matics and to huff ser								
			accase grey to green grey fine ground son alt ?								$\left \right $
+ 14			Unic xendiths? that are manacly strongly fred in Chilar infillings: hi stain common along fred zone								+
16			N/a faults; Py puble? is usk in the upper	i dhe ya Al							+
+ 20			but increases after ~ 67 m (see description or 12)								Ŧ
24			Manual - Foult - soft chu att chumble in miner anne								+
+ 26			24.27-45.60 m Mod-Str. Li Stained zone - brokm fry zones								 +
30			Common ; accas faults; accas chil fic fillings;				1	<u></u>	 <u> </u>	Shoot Nr	 T

SAMPLE INTERVAL % RECOVERY SAMPLE No.: LENGTH DESCRIPTION INTERVAL from to to from + Vole Xichol Vole Verolith - heavy Listoin, fig to perplusition 31 -2-33.52 m texture; green-buff where not Listained; Ry < 1% 33.52 35.66-35.90 m Fre Zone/Faut? - core broken, reground a 38 crumbly 42 43.63-43.66 m Fault- gauge, Li stained, 50° 7. 43.63-44 45.60 46 48 49.29-49.78 m Uble Kenolith - grey, f.gr. is numerous. Cb filled fres; 49.29 Vac. Kere 50 no significant Py mintan (2100) 52 54 56 58 60 61.23-62.68 m Nole Kenolith - as above 1.23 Voc. Xero 62 66.14 3.05 63.09 19613 62.48 69.19 3.05 64 19614 60.14 66 3.05 HT Sice + -12.21 19615 19.19 67.00 - 86.40 . Cranite is more grey in colour (+ silicif") 67.00 68 75.29 3.05 at has an increase in grey gtz filled fres; 72.24 19616 70 Py occurs as fine diss & within grey 9tz fres + has incr to 2-370 78.33 3.04 75.29 19617 3.05 72 78.33 81.38 19618 + 8A.43 81.38 3.05 74 19619 + 84.43 86.40 1.97 76 19620 87.71 19621 1.31 78 96.40-87.71 m Brecciated Granite - pink Kicpa finded \$6.40 + 80 90.53 2.82 granite fragment in a med graen 19622 87.71 + 82 frogmental (2mm) volc matrix; By < 1% + 84 . 86

14.

r.

Sheet No .: ____

B96-5

P32

	CO-ORDS:				DIS	COVER	Y Cor	nsulta	nts				HOLE	No.: 196-6	>
	AZIMUTH:	344 °			0	DRIL GEOLOGI	L LOG	URVE	Y BRA	NCĦ	PROPERTY: BAM				
	DIP:	-50°		DRILL	TYPE & SIZE:	ASSI	LSSME	NT RE	PORT		LOCATIO	ON:			
	ELEVATION	1: ~ 46	00 Ft	DIP TI	ESTS:	25)	2	4	2	DATE ST DATE CO LOGGED	TARTED: OMPLETED D BY:	Aug D: Aug	g 16, g 18,	1996 1996
	SECTION:	304 11	(92.00 m)				//	Construent	and the second		DATE LO	OGGED:	Aue	g. 21,	1996.
	PURPOSE:	To int betw	een granite c	romaly /Shear + phyllite .	Alteration Fill in	Trend o	ion be	tween	B96-	- de -4 q	B96-	zeologi 5.	cal c	iontact	15
	o from INTE	ERVAL to		DESCRIPT	TION		SAMPLE No.:	SAMPLE from		LENGTH	RECOVERY			<u> </u>	
:	2 0.00 7	4.57 m													
	2 0.00 y 4 4.57	4.57 m	GRANITE - D	ale areen arey i	The pink to cran	ne scottered									
	2 0.00 7 4 6 4.57	4.57 m 81.38 m	<u>GRANITE</u> - po K-spar; or	ile green grey i	The pink to crange	ge scottered d ser alt?									
	2 0.00 17 4 4 4.57 8	4.57 m 81.38 m	<u>GRANITE</u> - pr K-spar; or with possi	ule green grey i iginal texture app ble wk silicific	The pink to crack correct; wk-mode ; plag alter to c	green ser;									
	2 0.00 17 4 6 4.57 8 10	4.57 m 81.38 m	<u>GRANITE</u> - pr K-spar; or with possi mofilis al	ale green grey i iginal texture app ble wk silicific t ^d / to buff a gr	The pink to crack correct; wk-mode ; plag altd/ to g ren ser + chl;	ge scottered d ser alt? green ser; gtz + Kspor									
	2 0.00 7 4 6 4.57 8 10 12	4.57 m 81.38 m	<u>GRANITE - pr</u> K-spar; or with possi matrics all stable; ch	ale green grey i iginal texture app ble wk silicific t ^d / to buff " gr 1+ gtz os occos	The pick to crack correct; wk-max ; plag alt to g ren ser + chl; fre fillings; Py	green ser; gtz + Kspor <0.5% as									
+ + 	2 0.00 7 4 4.57 8 10 12 12	4.57 m 81.38 m	<u>GRANITE</u> - po K-spar; or with possi matrics all stable; ch V. occas die	ule green grey i iginal texture option ble wk silicific t ^d to buff a gr 1+gtz os occos s ; hi stain co	The pink to crange correct; wk-mox ; plag alt to c ren ser + chl; fre fillings; Py mman along fre	ge scottered d set alt? green set; gtz + Kspor <0.5% as s; occas grey									
	2 0.00 7 4 4.57 8 10 12 12 4 10 12 12	4.57 m	<u>GRANITE - p</u> <u>K-spar; or</u> <u>with possi</u> <u>mafiks all</u> <u>stable; ch</u> <u>v. occas dis</u> <u>vok xenali</u>	ale green grey i iginal texture opp ble wk silicifics to to buff a gr 1+ gtz os recos is j hi stain co this in mod-str.	The pink to crange correct; wk-mox ; plag alt to g een ser + chl; fre fillings; fy mman along fre chlaz filled free	ge scottered) set alt? green set; gtz 4 K-spor <0.5% as s; occas grey s.									
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 0.00 7 4 4.57 8 10 12 12 4 10 14 10 12 10 14 10 15 10	4.57 m	<u>GRANITE - p</u> <u>K-sparjor</u> <u>with possi</u> <u>mafiks all</u> <u>stable</u> ; ch <u>v. occas dis</u> <u>vok xenali</u>	ale green grey i iginal texture opp ble wk silicifics to to buff a gr 1+ gtz os roccos is j hi stain co this in mod-str.	The pink to crange correct; wk-mox ; plag alt to g even ser + chl; fre fillings; fy mman along fre chlaz filled free	ge scottered d set alt? green set; gtz 4 Kspor <0.5% as s; occas grey s.									
	2 0.00 7 4 4.57 8 10 10 12 4 6 7 8 10 12 12 12 12 12 12 12 12 12 12	4.57 m	<u>GRANITE - po</u> <u>K-sparjor</u> uxith possi mafiics all stable; ch v. occas dis vok xencli	ale green grey i iginal texture opp ble wk silicifics t ^d to buff a gr 1+ gtz os occos s j hi stain co this in med-str.	The pink b crang correct; wk-mode ; plag alt to g een ser + chl; fre fillings; By mman along fre cb/02 filled fre	ge scottered) ser alt? green ser; gtz + Kspor <0.5% as s; accas grey s.	19628	21.73							
	2 0.00 7 4 4.57 6 4.57 8 10 10 12 14 6 16 7 10 12 12 10 14 10 12 10 14 10 15 7 16 10 17 10 17 10 18 10 19 10 19 10	4.57 m	<u>GRANITE - pr</u> <u>K-sparj or</u> <u>uxith possi</u> <u>mafiics all</u> <u>stable; ch</u> <u>v. occas dis</u> <u>vok xencli</u> 23.93-27.68 m E	ale green grey i iginal texture app ble wk silicifics t ^d to buff a gr 1+ gtz os occos is ; Li stain co this in mod-str.	The pink to crank correct; wk-max is plag alt to construct en ser + chl; free fillings; By mman along free cb/az filled free cb/az filled free	ge scottered d ser alt? green ser; gtz + K=par <0.5% as s; accas grey s. Stain; accas	19628	21.73 23.93	23.93						
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.57 m	<u>GRANITE</u> - pr K-spar; or uxth possi matris al stable; ch v. occas dis Vok xenoli 23.93-27.65 m <u>F</u> gougry fai	alle green grey i iginal texture app ble wk silicific t ^d to buff a gr 1+ gtz as access is ; hi stain co this is mod-str: auth/Frc Zonia atts is solid	The pink to crange carent; wk-mode i plag alt to generate free fillings; By more olong free cb/02 filled free <u>cb/02 filled free</u> <u>cb/02 filled free</u> <u>cb/02 filled free</u> <u>cb/02 filled free</u> <u>cb/02 filled free</u>	ge scottered d ser alt? green ser; gtz + Kspor <0.5% as s; orcas grey s. <u>Stain</u> ; occas pite between	19628 19629 19630	21.73 23.93 26.51	23.93 26.51 27.68						

Sheet No.: ____

B96-6 B22

	Г	INTER	RVAL to		SAMPLE No.:	SAMPLE IN from	to	LENGTH	RECOVERY			120		
-	30-	IIOII			19/32	31.72	33.91	and the second	- Andrews	•				
olc 1	32-				11600									
172	34	and the second second			19/21	22 91	25.66						1. 1. 1. 1.	
44	36	•		+	116.54		30.00			-				
J.	38 -	<u>. A. S</u>		+	1010-	0711	38 71		100		. deste			
	40-			F	19635	35.66	30.11							
	42			+	19636	38.11	41.16							
	44				19637	41.16	43.00							
	46				19638	43.00	44.80				i se			
+	48													海
	5				19639	44.80	47.85			1				
	52				19640	47.85	50.90		-				-	+
	-				196AL	50.90	53.62							+
12	-				,						Se Para			+
	56			÷		1		1		1	- Collector			+
+	58			i			* .						-	-
	60		· · ·									-	1	+
+	62												-	-
	64		1	I.	19642	53.62	5600							-
	66			-D	19643	56.00	57.00							+
	68			FIG	19644	57.00	58.52							
- 17-1- 1	70			lings	19645	58 57	60.05	4						
	72			-	19015		10010							
	74			pe	19641	70 10	72 73							
	76			-	11010	17.7.2	75.20	2	1.10					
Kenduth	78				1967/	12.2	5 10 200		1. 1. 1. 1. 1.					
Kasper	80			-								2		
++	273			-			-							
	84	81.38	92.66 m	-		~	-							T
	86	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	·	403	5	-			-		· · ·			-
10	84			1-0	A									

and the second second ,

B96-6 B 3

INTERVAL to	DESCRIPTION	SAMPLE No.:	SAMPLE INT	to	LENGTH	% RECOVERY		et a		
8	volts/fre fillings mostly along bdg/foly but									
90	access cutting across : noticy WK K-spar									
92	alty: mintzy is <120 w Py as fine diss.		E ST					120	Sandra Araba	
66 m	within eccas are otz units /fre fillings,				ar a chair					
. н.		÷					et seeke			
							1.11			
		·			P					•
									terre terretet	
								the general section of		
				199 ° 10						
							1.			
		an ann an Arra								
							-			
								-		
· ·							•			-
		1. (S*								
									190	

.

14

Sheet No .: ____

CO-ORDS:		DISCOVER	Y Con	sultar	nts				B	16 -1		
A 744 AL 171 L.	295° -50° N: ~4750 ft. 387 ft (117.96 m) To intersect NE trendin ERVAL	DRIL	L LOG				PROPER	TY: r	34.64			-
AZIMUTH:	295°	GEOLOG	SICAL	SURVE	VRDA	NCH						-
		DRILL TYPE & SIZE: ASS	SESSME	INT RE	PORT	uten.	LOCATIO	N:				- 1.2
	-50°				- CALL							
ELEVATION:	~ 4750	C+ DIP TESTS:				-	DATE ST	ARTED:	Aug. 6	, 1996		
	150				1	\cap	DATE CO	MPLETED	: Aug 9	, 1996		
ENGTH:	207 6	(117.91 m))	And the second second	biene n	X	LOGGED	BY:	Maggie	Dittric	د	
SECTION:	<u>301 fl</u>		1				DATE LO	GGED:	Aug. 17-	18/96		
PURPOSE:	T. it	ment NE tradica Gold Acomaly/Shear/Alteration	n Trend.	and an other states of the second s	STORES .				5	1		
		TSECT NE TREBAINS CIUS FICTURY CIES / MISTARE	, ,					Ч., С.,				
							ev 1				1	-
INTER	to to	DESCRIPTION	SAMPLE No.:	from (m)	to (m)	LENGTH	RECOVERY					-
0.00	2.13 m	CASING			(i).	-						+
												+
2.13	58.58 m	GRANITE - mottled pole green, white, + buff -> mod to	19501	2.13	5.18	3.05						+
		strong ser 4- gtz alt"; gtz. + stable, plag	19502	5.18	7.92	2.74						+
		altor to pale waxy green ser, matics altor	19503	7.92	10.97	3.05		8				+
		to green chi/ser + buff ser; wk-mod	19504	10.97	13.11	2.14						+
		ch filled fres; Py mintz" is patchy +	19505	13.11	14.32	1.21						+
		wk -> fine fre fillings > diss + blebs, to ~	19506	14.32	15.85	1.53		2			1	+
		0.5% to occas areas to 1%; rusty ki	19507	15.85	17.37	1.52						1
		stain is common along numerous tres	19508	17.37	20.42	5.05			19 1			+
			M509	20.42	23.41	129						
		26.92-3057 m Andesite? Dike - f.gr volc rock - andesite?	9510	23.47	21.92	1.01						1
		dk green remont areas in a dominatly	19511	2000	29.51	211	1.1.1.1.23					T
		grey-butt colour due to strong ser/	19512	29.51	30.57	1.01		5				
		Carb alt" : cut by numerous cream	11515	101.06	100.01						e o esegué	

15

1

Rectanged

N. 1 - 10

100 (S. 100 (S. 10)

20	INTI	ERVAL to	DESCRIPTION	SAMPLE No.:	SAMPLE I from (m)	NTERVAL to (m)	LENGTH	% RECOVERY				
~	2.13	58.58 m	GRANITE continued	19514	30.57	32.61	2.04					
2				19515	32.61	35.66	3.05				1	
4			39.26-40.74m Andesite Dike? - strong sor/cb altd ->	19516	35.66	38.02	2.36			10000		
36			buff arey in colour; similar to previous	19517	38.02	39.26	1.24	transfer and				a san
30			dike: U.C. @ 50° x: LC. @ 55° X; W.Wk	19518	39.26	40.74	1.48			Constanting of the		
40			Pu ding ->~ 0.3 %; tr CP.	19519	40.74	42.34	1.60					
42				19520	42.34	43.74	1.40			1.1.1	-	
44				· 19521	43.74	44.81	1.07		۹.29 (10.			* <u>* 191</u>
4			42.34-53.87 m Fault Zone - highly broken in upper	195:22	44.81	46.94	2.13			1	Sec. Sec.	
48			~3 m, becoming softery sheared w acas	19523	46.94	52.06	5.12	*				and the
50			gougen areas down sertion; granite is	19524	52.06	53.87	1.81					
52			bleached a light arey/white w accas	19525	53.87	55.23	1.36				1.15%	
54	1.67		rusty Li stained zones: miniz" of Py occurs	19526	55.23	58.58	3.35					
56			as fre fillings, diss. + gras blebs, + querages									
58			2-3% over foult zone (some areas							1.000		
60			locally up to 3-4%)		C. States							1
62			Mislatch 154-164 (46.94-49.99 m) > 35 cm recovered									
64			T									
66												
68	58 58	110.13	PHYLL ITE - buff to pale area-buff -> mod to strong	19527	58.58	60.96	2.38					
70	00.00		set alt? : cut by pumerous QZ upits 4	19528	60.96	62.64	1.68					
72	2		fre fillings > local wk-mod Qz alt?	19529	62.64	64.62	1.98				1	
74			cut by occas cream Ch Upits: folia?/bla	19530	64.62	66.14	1.52					
76		- 63) 6 - 74	varies throughout: occas de areco "zones"	19531	66.14	69.19	3.05		1.1			
78			that appear to be upaltered phullite, yet			1.1.1.1				1	-	
80.93			in other places appear to be possible upl									
82			(andesite?) dikes · mintz? is v. wk ->									
64			Ry < 0.5% as accas blebs "stretched" along									
86			folia? : tr CP as fine dice in Q2 walte 8564						¥		- Anna	

upper thost ~ 4 m is ~ 20% by diss + fine lams.

.

F

.

Sheet No .: ____

Pg 2

-

1-96-1

-				SAMPLE	SAMPLE IN	TERVAL	IFNOTH	%	Т	Т	- *T	
	INTE from	RVAL to	DESCRIPTION	No.:	from (m)	10/m)	(m)	RECOVERY				
	58.58	110.13 m	PHYLLITE - continued									
			84.07-84.90 m Med-dk green unalth phyllite? pr									
			volen dite?; folia" some as phyllite									
			but appears upleance; min12% &			<u> </u>						
			· · ·									
			89.07-90.68 m As above, but for Cp within Oz/ch	1								
			units,									
104												
				<u>. 1 </u>								
10%	44 A.			19532	106.98	108.81	1.83					
				19533	108.81	110.13	1.32					
	110.13	117.96 m	GRIT ?/META SEDS ? - buff-grey to pak green-grey;	19534	110.13	111.86	1.73					
114			appears to be a metamorphesed silty sandstore?	19535	111.86	114.91	3.05					
			fine grains of quartiz in a foliated ser that all?									
118			"ground mes"; folia" @ ~ 50-70° 4; occas small									
		•	flesh coloured zones (K-spor?); cut by numerous,									
			fine QZ/Cb Units + fre fillings @ various									
L			angles T.C.A; miniz' occurs dominantly in									
L			uppermost 2 m with Py as diss within			· ·						
	•		small (2-3 mm) elongated (stretched gitz blebs.									
L	a ta angles		Py < 0.5% (sampled over phyllite/grit antat									
F			remaining interval is nil to to Py.		-							
											-	
				1.1.1.1								
			1.									

.

1. V. C. .

.

Sheet No .: ____

.

OR DRILL L	00	
GEOLOGIC	CAL SURVEY BRANCH	PROPERTY: BAM
RILL TYPE & SIZE:	STREET MET OKT	LOCATION:
	210	DATE STARTED: Aug. 9, 1996 DATE COMPLETED: Aug. 11, 1996
formed month	1600	LOGGED BY: Maggie Dittrick DATE LOGGED: Aug. 18, 1996
	ASSES	ASSESSMENT REPORT P TESTS: 0 10 Gold Acomula (Shear (Alteration Trend

	INTE from	RVAL to	DESCRIPTION	SAMPLE No.:	SAMPLE from (m)	NTERVAL	LENGTH	%RECOVERY			
	0.00	2.13 m	CASING								-
$\left \right $	2.13	97 54 m	GRANITTE - Dale aternish area to unhite-area.	19536	8.13	5.18	3.05				
T			mod-strong set alt? with mod to locally	19537	5.18	8.23	3.05				
			strong silicification; plag alt to green	19538	5.23	10.05	1.82				
			+/a cream set; motics alt to buff	19539	10.05	13.11	3.06		 		 L
			ser + minor chlorite; gtz stable; cut	19540	13.11	15.85	2.74		 	1.1.1.1.1.1	 1
			by numerous fine cream coloured Cb	19541	15.85	17.37	1.52		 		1
			Volts y fre fillings; Li common on fre surfaces	19542	17.37	19.86	2.49				
			& occas hi staired zones glong larger	19543	19.86	21.03	1.17		 		 \downarrow
	0		fres; unit contains a few large (-3m)	19544	21.03	22.26	1.23		 		\downarrow
			green-buff ser alto voic dikes (or xerolith?)	19545	22.26	24.60	2.34				\downarrow
			that often contain fine Py diss (+03% in places	19546	24.60	26.32	1.74		 		 1
	5		overall ave mineral " in granite is	19547	26.32	28.65	2.33				 1
			Py diss ~1-2% with some areas 2-3%.	19548	28.65	32.08	3.43				L

Sheet No .: __

SAMPLE No.: SAMPLE INTERVAL % RECOVERY LENGTH INTERVAL DESCRIPTION from to to from 2.01 30 34.09 32.08 19.86 - 21.03 m Buff-green-grey wold dike for xerolith 19549 32 1.57 34.09 35.66 19550 22.26-24.60m As above 34 19551 35.66 38.71 3.05 24.75 - 26.32 m Granite + Vole dike! > heavy Li stain, uk 36 3.04 19552 38.71 41.75 brecciated w Ch infilling 38 32.08-34.09 m Vole dike (xerolith?) as above w a 40cm 19553 41.75 44.80 3.05 40 wide Li stained zone along fra @ 10°x 42 44 19554 44.80 47.85 3.05 46 19555 47.85 50.90 3.05 48 50 19556 50.90 53.94 3.04 52 52.30-52.81 Listoin along fre zone (52.41-52.69 m); 19557 53.94 56.99 305 54 Qz + Ry soon to iver slightly (Ry 2-3%) 56 60.04 3.05 19558 56.99 58 60 19559 60.04 63.09 3.05 62. A 19560 63.09 66.14 3.05 66 . . 680 3.05 19561 66.14 69.19 . 70 3.04 19562 69.19 72.23 .98 72 19563 72.23 74-21 19564 74.21 .07 75.28 74.21-77.14 m Green-buff ser alt Vok dike (kenolith?); fred to 1.96 19565 75.28 77.14 heavy Li stain to 75.41 m; Ry diss I to 2% in 80'4 1.19 78 19566 77.14 78.33 lowermost - 20 cm @ contact to granite. 80 .19 19567 78.33 81.38 82 \$3.30-83.60 m Granite highly fred w grey 02/By infilling 19568 \$1.38 \$4.12 84 3.05 19569 84.12 87.17 Py 3-4%; core broken crushed @ 83.54-8360m 86 3.20 19570 87.17 90.37

Sheet No .: _

B96-2

Fg 2

FRE

	INTERVAL to		DESCRIPTION	SAMPLE No.:	SAMPLE	to (m)	LENGTH	% RECOVERY					
+ 90 -			90,97-91,24 Fault - broken to gougey to Li stain; no significant change in mineralz?	10-771	0.07	02 57	210						
H 92			and the second states and the states	1957	92.57	94 30	0.73						
100-94 -00-94	•		94.30-97.12 m Lt. green grey voic dike ; set 100 all ; marcan wile? xendiths (< 3cm) <1% Pu	19573	94.30	97.54	3.24						
BILL M 35" 96			5			10					an g		
1.54 m						and the second		-					
±0.#,					· ·			· ·			•		
									i.				
							1			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
3													
		·		-									
	•							-				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
										1.15			

.....

14

.

Sheet No.: ____

Pg 3.

B96-2

CO-ORDS:			DISCO	VERY Cor	nsultan	its			B	96-3	b
AZIMUTH:	295°		GEO	DRILL LOG	SURVEY	BRAN	CH	PROPERTY:	ВАМ		
DIP:	-50°		PRILL TYPE & SIZE:	ASSESSME	NT REI	PORT		LOCATION:			
ELEVATION:	~ 474	10 ft. •			9	10	2	DATE STARTE		ug 11, tug 12,	1996
LENGTH: SECTION: PURPOSE:	383. F	t (116.74 m) tersect NE tr	ending Gold Are	omaly /Shear	/ Attere	tion T) Fend	LOGGED BY: DATE LOGGE	M D: A	aggie I ugust 1	2: 111 :ck 9, 199
INTERVAL	. to	DESCF	RIPTION	SAMPLE No.:	SAMPLE IN from	ITERVAL to	LENGTH RI	% ECOVERY			
0.00 2.	13 m _ C	LASING									
2.13 10	.94 m DI	ORITE ? dominantly buff green less alt ^d	arey ser/ch alt w occas	dk							
		numerous Cb/Qz	units the tillings; my diss < 1								
10.94	5.00 m /42	"fresh" andesite du Ser 1/- chi alto, u	ikes; granite is mostly. 5 mod to locally strong si	mod licifz;							
		cut by occas fine orange to flesh (Li stain along f	Qz+1-Ch units/fiz fillings; (K-spon?) coloured zones + rrs: Py averages ~ 0.5-19	potchy Do W							
		accas zones to 2	ħ.			-					
	24	90 - 30 EL 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	- 1 - 1 - its (man). Pu	(12)							

Sheet No .: _

.

1

213 m.

10.94

24.90

		T	INTE	RVAL	DESCRIPTION	SAMPLE No.:	SAMPLE IN	TERVAL to	LENGTH	% RECOVERY					
30.5	6 🛨 🗆	30	Irom	11/ 7/			(m)	(m)	(m)						5 - 64 A A
31.14		32	10.94	116.74 m	GPANITE - Continued 1.11	a the second a						e e e			
		34			On 12 111 and all safet and									the other second	
	+	36-	• •		31.14-31.58 m Hodesite alle, pale green, Str Strich all 3										
20.01		38 -			porphyritic to 2-3 to ry alss; He also common										
37.0		40													
רישר		42			39.08-40.93 m Li stained granite -> we tre zone; Py .5-170										
•	4 the	44													
•	M +	46													
		48												and the second second	
	内土	50													
5207	53.97-	52											-		
5-11	SEC	54			52.97-57.06 m Andresite dike? - looks porphyritic in places a tinely										
	+ V	56			vtalline (diorite?) in others; U.C. bleached pale green,					-					
J1-06	57.04	58			dire is med green to five de chi atter matics; L.C. Li										
		60	<u></u>		alter is Ch Un @ 15-20°7; Py<190.										
		62								-			1.1.1		
	+	64													1
		66	1.		57.00-85.00 m Granite -> as previous -> mod ser/chl att?										
÷.	+	68			mod silicification; By ave 0.5-192, up to 2%										
69. Am	*	70	•		in places										
Dampics	1.11	72				19574	69.19	72.24	3.05			1			
		74	1			1.5									
		76				19575	72.24	75.28	3.04						
	T +	78				19576	75.28	78.33	3.05						
	+	80				19577	78.33	81.65	3.32						
	+	42	1. 1. 1. X.		81.65-82.55 m Volc dike (xenolith?) - green buff, serkbaltd); fire	19578	81.65	82.55	0.90						
	+	84			Qz/Cb units/fre fillings; Py <170	19579	82.55	83.91	1.36						
85.00	85.68 m	86			82.55-85.00 m Granite - 1 sil + Ry filled fires (Ry 2-3%)	19580	83.91	85.00	1.09						
	4 V	88	Sec. 1			19581	85.00	87.04	2.04		10 E E		<u> </u>		

.

Sheet No.: _____

B96-2 Pg 2.

B96-3 Pg 3.

_	INTE	ERVAL	DESCRIPTION	SAMPLE No.:	SAMPLE I from		LENGTH	% RECOVERY				1
88	85.00	98.92 m	ANDESITE ? OR DIORITE DIKE - dk gray, finaly stalling to									 +
90	e e		finally porphyritic; relatively "fresh" with 2 zones of granite	19582	91.04	91,91	0.87			-		+
or	•		@ 91.04-91.91 m + 96.20-97.44 m; fairly messive w only	· # 19 1	-							+
91			a few co fre fillings / units; to Py diss; Lic chy alt + soft.			1. 1. 1. 1. 1.				and the second second		+
ae				19583	96.20	97.44	1.24					+
BENERS	98.92	116.74 m	GRAVITE - cross-gray to pink-gray; wk-mod sor att? To	19584	97.44	98.92	1.48			and the second s		+
100			mod to locally strong silic?; + K-span in pint/orange zero;	19585	98.92	100.51	1.59		and and a second			4
103	1. A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A		Pu ~ 2-3% as fine diss within fine grey gts fre	19586	100.51	103.40	2.89					 4
104			fillings: green-buff ser/cb alt uple xenoliths?	19587	103.40	104.53	1.13					4
106			common, but have < 190 Py diss.	19588	104.53	107.24	2.71			and the second second		-
108				19589	107.24	109.58	2.34	1				 _
110			100.51-103.40 m Volc. Xenolith? (Dike?); rumerous or /ch units	19590	109.58	112.20	2.62				1	_
			104.53 - 107.24 m " 11	19591	112.20	114.91	2.71					 _
114			109.58-112.02m	19592	114.91	116.74	1.83.					
116												
m												
t.												-
				~					1.00			
	1.											
				17	1.1.1.1							
				Ľ							-	
											1.1.1	
						•						

•

Sheet No.: ____

CO-ORDS:	DI	SCOVERY Con	sultants		HOLE No.: B96-4
AZIMUTH: 344.°		DRILL LOG GEOLOGICAL S	URVEY BRANCE	PROPERTY: B	AM
DIP: -50°	DRILL TYPE & SIZE:	ASSESSMEI	NT REPORT	LOCATION:	
ELEVATION: ~ 4620 ft			010	DATE STARTED: DATE COMPLETED	Aug. 13, 1996 : Aug. 14, 1996
LENGTH: 287 Ft (87.48 m)		C),1	± 0	LOGGED BY: DATE LOGGED:	Maggie Dittrick Aug. 20, 1996
PURPOSE: To intersect "Gold !	Anomaly /Shear/ Al	Iteration Trend" c	on southern zor	<u>ne.</u>	

		from (m)	RVAL to (m)	DESCRIPTION	SAMPLE No.:	SAMPLE I from (m)	NTERVAL	LENGTH	%RECOVERY			
213	2	0.00	2.13 m	CASING			inia Na Talangga Na				 	
+					19593	2.13	4.27	2.14			 -	
	+	2.13	14.38 m	GRANITE - strong silicit? aurprinting possible ser alt?;	19594	4.27	7.31	3.04			 	
+				original texture is faint but mostly obliterated; dominantly	19595	7.31	8.73	1.42			 	
73 200	+ 8			Listained w or cas It areconarey to buff-grey patches:	19596	8.73	10.48	1.75				
1.19	× "			ourserous fire chypits/frefillings: Py 1-2% as small blebs	19597	10,48	11.19	17.0				
+	+ 12			1. as diss within f. arey atz wits/fre fillings : 2 Li stained faults	19598	11.19	13.41	2.22				
35 %	+ 14				19599	13.41	14.38	0.97				
Set	16	14.38	45.73 m	PHYLLITE	19600	14.38	17.00	2.62				
B.02	18			14.35-18.02 m pak aren-buff: str Ser alt ?. fol " 0.50-654: Py4/10"	19601	17.00	18.02	1.02		1		
Aut	20			18.02-23.00 m orange/areen/aree: str QZ/K-spar-flooding: wk	19602	18.02	20.42	240				
3.00	22	2.1		Cb units/for fillings; Pu 1-2% as fine diss + within	19603	20.42	23.00	2.58				
38	24			fine at units /fre fillings mostly along for / Ida.	ℓ If \$1 is		and as			2.1.1	· · · · ·	
anter	x x			23 00 25 28 - Parchivity Anderite dike - Fine D- there in It an								
AIIA	30			matrix: fine Cb volts: Py 2.5% as fire diss						141 141		

-

		IVAL to	DESCRIPTION	SAMPLE No.:	SAMPLE I from	NTERVAL to	LENGTH	%RECOVERY			<u> </u>		
3 0			25.38-37.00 m K-spar, Qz, of Ser alt? -> phyllite is pole green-										
52			pick grey in colour: folia"/bdg still quite apparent; occas										
िंग			broken hi stained fre zones; Py diss ~ 1% average	19604	35.66	37.00	1.34						
0% 50°4			37.00-37.54 m Fault - intersely Li stained to gtz att? pieces	P605	37.00	37.54	0.54						
. 40*2			within gaugey clay alto phyllite; str Cb throughout; 50%	19606	37.54	39.65	2.11	2					
			37.54-39.65 m Grit? - str ser alt to a pale buff grey, fine grained	19607	39.65	41.76	2.11						
			almost sindy to sitty texture now metamorphosed a displaying	19608	41.76	44.72	2.96						
4			a use folion; patchy we-mad cb; Py 1% as fine blebs + diss;	19609	44.72	45.73	1.01						in a series of the series of t
46			Str patchy Li stain.	19610	45.73	47.85	2.12						
48			39.65-44.72 m Strongly silicified sheared phyllite? -> original	19611	47.85	50.90	3.05	<u> </u>		1			
			texture obliterated; "crackle-brecciated" in part; chl common	19612	50.90	52.20	1.30						
32			as fine fre fillings; fine gray gtz fre fillings occas to fine										-
34		ē.,	Py diss (Py 0.5-170); accas Li stain in fred areas.										-
	, 		44.72-45.73 Breccia Zone- It grey frogs of v.f. gr volcs? -> sor/Az		1								-
5%			alt ? in a white matrix of Cb/az; strong patchy Li										-
6		. · · · ·	- stain: < 0.5% Py in free within Li stained zons.		1	i na					1		-
63	2												-
6	45.73	52.20 m	SHEAPED QZ FLOODED MARDON TUFFS - dk mardon +							I			-
	6		buff grey finely laminated tuffs?, strongly Oz flooded +								-		
"	в .		partially sheared ; strong folia"/bdg apparent; numerous						· .				
	0 .(\$*)		Qz units + accas wk fine Cb fre fillings; accas Li on fres										-
7	2		Py <1% as fine diss.										-
A A	f							-					-
	52.20	97.48 m	FINELY LAMINATED MARCON & GREEN TUFFS - W DUMETOUS								-	-	
poper 1	6		white Chlaz units luns of fre fillings mostly along					-					
1 - ²			bdg which is @ 50-60° &: occas Li on fres:			-							
8			Pu diss < 0.5%: bright green epidote? common				-					-	
8	4	1 2 a a •	from ~ 76 m down to end of hole; occas fre/fourt	t l							-		
1 8	6			8 . 1 S . m		1 1 1 ¹² 11		A Sector					

