

GEOCHEMICAL AND RECLAMATION REPORT

LS #1 GROUP (SUMMIT LAKE PROPERTY)

Latitude 56°11'N Longitude 130°7'30"W

NTS Sheet 104 B 1

By D.A. Visagie, P. Geo.

Owner: Tenajon Resources Corp. 860-625 Howe Street Vancouver, B.C. V6C-2T6

Operator: Arakaroola Mining Ltd. Richmond, B.C.

> GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

25,225

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	LOCATION AND ACCESS	1
3.0	PHYSIOGRAPHY, VEGETATION AND CLIMATE	1
4.0	CLAIM STATUS	1
5.0	PROPERTY HISTORY	5
6.0	REGIONAL GEOLOGY	5
7.0	PROPERTY GEOLOGY AND MINERALIZATION	5
8.0	1997 WORK PROGRAM	7
9.0	SAMPLING PROCEDURE	7
10.0	SAMPLE ANALYSIS	7
11.0	RESULTS	10
12.0	SUMMARY AND CONCLUSIONS	10
13.0	RECOMMENDATIONS	10
14.0	COST STATEMENT	11
15.0	STATEMENT OF QUALIFICATIONS	12

APPENDICES

1.0	SAMPLE DESCRIPTIONS	13
2.0	ASSAY CERTIFICATES	14-17

LIST OF FIGURES

.

1	GENERAL LOCATION	2
2	STEWART LOCATION	3
3	CLAIM MAP	4
4	REGIONAL GEOLOGY	6
5	SAMPLE LOCATION	8
6	GOLD ASSAY RESULTS	9

Summit Lake #7 Fr (C.G.)	1	L6405	July 1, 1998
Summit Lake # 8 (C.G.)	1	L6406	July 1, 1998
Scot #3	5	250850	Feb 13, 1998
Scot #4	15	250851	Feb 13, 1998
Scot #5	16	250855	Feb 25, 1999
Scot #6	12	251024	Sept 25, 1998
Scot #7	5	251025	Sept 25, 1998
Tide #83	1	255019	Feb 27, 1998
Tide #85	1	255020	Feb 27, 1998
Tide #89	1	255022	Feb 27, 1998
Tide #91	1	255023	Feb 27, 1998
Sum #1	20	338685	Aug 4, 1998

The property totals 92 units in size. All of the claims occur within the Skeena Mining Division.

5.0 PROPERTY HISTORY

The property has been intermittently evaluated since 1928 when gold was located on the Salmon Gold (Summit Lake Gold Mine) prospect. Mining, completed between October 1981 and February 1985 by Scottie Gold Mines Ltd., resulted in the milling of 203,504 tons averaging 0.468 opt Au. In 1985, the mine was shut down due to high interest costs. Since then, limited exploration has been completed on the property with the purpose of locating additional reserves. In 1997, soil sampling was completed approximately 200 metres to the west of an area sampled in 1994. The 1994 program showed moderately anomalous, up to 60 ppb Au, values to occur on the east side of Morris Lake.

6.0 REGIONAL GEOLOGY (Figure 4)

The property occurs within what Grove (1986) has termed the Stewart Complex. This complex is situated within the Intermontaine Belt occurring on the western edge of Stikinia Terrain. It is immediately adjacent to the eastern margin of the Coast Plutonic Complex. Stikinia Terrain is composed primarily of Upper Triassic to Middle Jurassic Hazelton Group rocks consisting of partially subaerial, differentiated, andesitic to dacitic, calc-alkaline volcanics, coeval intrusions and interbedded sediments. The Terrain is thought to represent an island arc sequence that extends 150 km from south of Stewart, near Anyox, north to the Iskut River. This belt is highly mineralized throughout, hosting several past and present producers and major occurrences including Anyox, Premier, Red Mountain, Sulphurettes and Eskay Creek.

Middle to Late Jurassic Bowser sediments consisting primarily of chert pebble conglomerate and siltstone unconformably overlie Hazelton Group rocks to the northeast while to the southwest Upper Triassic to Lower Jurassic Texas Creek Granodiorite plutons intrude Hazelton Group rocks. Cretaceous-Tertiary, Coast Range Plutonic Complex granodiorite and quartz monzonite and variably composed dyke swarms intrude all rocks.

7.0 PROPERTY GEOLOGY AND MINERALIZATION

The property is underlain by steeply dipping Hazelton Group andesitic flows and tuffs along with intercalated sediments that have been intruded by hornblende quartz monzonite and granodiorite. Mapping by Grove (1981) indicates that a north-south striking synclines pass just to the east and west of Summit Lake. In addition an east-west striking syncline passes just north of the Berendon Glacier, paralleling the trends of both the granodiorite and the major showings in the area. Faulting is pronounced on the property, being in part largely related to the emplacement of the Summit Lake stock. However the north trending, west dipping, Morris Fault which passes through the property is unrelated to the others as it is post mineral. Alteration consists primarily of the propylization of andesites.

-7-

Where the alteration is intense, as near thestock contacts or within the ore zones, epidote and chlorite replace the matrix of the andesite lapilli tuff.

Pyrrhotite, pyrite and trace amounts of chalcopyrite are associated with intense alteration while fracture coated and disseminated pyrite are pervasive throughout the area. Gold occurs in association with pyrrhotite and on occasion with arsenopyrite. However not all pyrrhotite or arsenopyrite is auriferous.

8.0 1997 WORK PROGRAM

The purpose of the 1997 exploration program was :

- i) to complete a second soil line above an area of anomalous values located along the east side of Morris Lake in 1994 and
- ii) to collect rock chip samples of gossanous zones and quartz veins to the south of the Scottie Gold Mine workings.

The exploration work resulted in the collecting of 30 soil and twelve rock chip samples. The samples were analyzed by Chemex Labs, 212 Brooksbank Avenue, North Vancouver for gold. In addition all samples were analyzed using the 32 element package.

The crew completing the sampling were based in Stewart. The following is a listing of the crew and the days worked on the property.

Dave Visagie	Senior Geologist	July 14, 22, 23, 25
Jareb Sims	Labourer	July 22, 23, 25

Not included in the above are two days worth of travel time assigned to Dave Visagie. One day was lost due to weather for both Visagie and Sims

In addition to the above, minor reclamation was completed along the west side of Morris Lake, by Arkaroola Mining Ltd. The cost of the reclamation is included as part of the assessment. The reclamation was undertaken on the western side of Morris Lak at the portal entrances, and to the south of camp near the lakeshore. This involved the collecting and removal of garbage located in the area. Scrap timber was burnt. The program was supervised by Don Alarie of Stewart, B.C. an employee of Arkaroola Resources. Throughout the reclamation program Mr Alarie stayed on site at the Summit Lake camp. The clean-up lasted approximately one month.

9.0 SAMPLING PROCEDURE (Figure 5)

Soil samples were collected at 100 metre intervals along a road that parallels the 1994 sampling approximately 200 metres to the west. All samples were taken from the "B" horizon, using a mattock, stored in Kraft Paper Bags, identified and dried. Rock chip samples were taken over a measured width, stored in plastic bags and identified. The sample locations are plotted on Figure 5. The sample descriptions are located in Appendix 1.

10.0 SAMPLE ANALYSIS

All of the soil and rock chip samples were initially dried and then sent to Chemex Labs, North Vancouver, B.C. for analysis. The following is an outline of the procedure used for the preparation and analysis of the samples.

-10-

Samples dried (if necessary), crushed or sieved to pulp size and pulverized to approximately -140 mesh.

For the 32 element I.C.P. analysis, a 10 gram sample is digested with 3 ml of 3:1:3 nitric acid to hydrochloric acid to water at 90°C for 1.5 hours. The sample is then diluted to 20 mls with demineralized water and analyzed. The leach is partial for Al, B, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, Sb, Ti, U and W.

For gold determination by atomic absorption a 10 gram sample that has been ignited overnight at 600° C is digested with hot dilute aqua regia and the clear solution obtained is extracted with Methyl Isobutyl Ketone (MIBK). Gold is determined in the MIBK extract by atomic absorption using a background detection (detection limit 5 ppb).

11.0 RESULTS (Figure 6)

Gold assay results for both the soil and rock chip samples are plotted on Figure 6

Soil sample results show several high values to occur along the road cut. Several of these anomalies correspond with areas of gossanous staining within argillites and mafic volcanics in which minor pyrite was observed. At the north end of the sampled line, individual erratics assayed up to 470 ppb Au. In the southern third of the line, sites 22+300, 22+400 and 22+500 returned values of 260, 70 and 280 ppb Au. A scan of the LC.P. data shows anomalous gold values to, in general, correspond with anomalous, >100 ppm, arsenic values. Lead and zinc values are highly anomalous with maximum values respectively being 1480 and 1525 ppm.

Rock chip values are largely negative for both base and precious metals.

12.0 SUMMARY AND CONCLUSIONS

Six man-days were spent collecting soil and rock chip samples from the LS #1 Group of claims located 50 km north of Stewart, B.C. The soil samples were collected from off the Granduc road, on the east side of Morris Lake. The samples are located approximately 200 metres to the east of a line of sampling completed in 1994 from which anomalous values were obtained. In addition rock chip sampling of gossanous and veined areas located to the south of the main workings on the property was completed.

Rock chip sample results did not identify any zones of interest. The soil sample results showed several areas of anomalous gold, arsenic, lead and zinc geochemistry to occur on the east side of Morris Lake. The cause of these anomalies is not known.

13.0 RECOMMENDATIONS

It is recommended that the east side of Morris Lake be prospected and that additional soil and rock chip sampling be undertaken with the purpose of possibly determining the source of the anomalous geochemistry.

-11-

14.0	COST	STATEMENT
14.0	COSE	SIAIEMENT

А.	Exploration			
1.	Labour D. Visagie	Senior Geologist 7 days @ \$370/day (3 days on property, 2 days travel, 1 day lost to weather)	\$.	3190
	J. Sims	Labourer4 days @ \$150/day(1 day lost to weather)		
2.	Room & Board D. Visagie only	4 days @ \$100/day	\$	400
3.	Transportation i) Truck I ii) Airfare- to Stev	Rental: 4 days @ 100/day -Vancouver wart Return	\$	800
4.	Supplies Includes field eq sample bags, flag	uipment zging etc.	\$	50
5.	Freighting Equipment equip	oment and samples to Vancouver	\$	100
6.	Assaying Total of invoices	from Chemex	\$	885
7.	Report 1 day Visagie La 1 day Draftsman	bour @ \$370/day time @ \$225/day	\$	600
	Actorning	Sub-Total	\$0	6025
8.	Management Fee @ 10%	es Total Exploration Costs	\$ 50	603
R	Reclamation (F	rom Arkaroola Mining)		
D .	Actiamation (F	I'UII ATRALUUTA MIHINGI		
1.	Labour Don Arlie	20 days between June 28-July 27 @ \$ 100/day	\$2	2000
2.	Room & Board		\$	800
		Total Reclamation Costs	\$2	2800
		Total of A and 1	B\$9	9428

15.0 STATEMENT OF QUALIFICATIONS

I David A. Visagie do hereby certify

- 1. I graduated in 1976 from the University of British Columbia with a Bachelor of Science Degree Majoring in Geology.
- 2. That since graduating I have continuously been employed in the mining industry.
- 3. I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. For the last eight years I have been employed by The Northair Group as Senior Geologist.
- 4. I supervised the exploration program completed on the LS #1 Group.

Dave Visagie, P. Geo.

Dave Visagie, P. Geo. Senior Geologist, The Northair Group

Dated 101 16/9/at Tonopah, Nevada

SUMMIT L	AKE GOLD	PROPERT	Y		
Sample #	From	То	Int (m)	Au (opt)	Description
330024	0	1	1	<5	Andesitic tuff, thin limonite skin
330025	1	2	1	10	As above, minor dissem. Py.
330026	2	3	1	<5	As above
330027	0	1	1	10	As above
330028	1	2	1	10	As above
330029	0	1	1	15	As above, 5% dissem. Py.
330030	0	1.4	1.4	10	Qtz-carb. vein.
330031	0	0.3	0.3	<5	Qtz-carb. vein
330032	0	1	1	<5	Qtz-carb. vein, minor Py.
330033	1	2	1	<5	As above
330034	0	1	1	<5	Andesitic volc. cong?, thin lim. stain
330035	1	2	1	<5	As above

Analytical Chamists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ARKAROOLA MINING LTD.

9100 VAN HORNE WAY RICHMOND, BC V6X 1W3 Page Number : 1-A Total Pages : 1 Certificate Date: 14-AUG-97 Invoice No. : 19736308 P.O. Number : Account :NVU

- I

1

Project : SUMMIT Comments: ATTN: ROD SALFINGER CC: D. VISAGIE

...

CERTIFICATION:_

											Cł	ERTIF	ICATE		A9736308						
SAMPLE	PR CO	HP DB	An Ppd Pa+aa	Ag ppm	la f	yar Dar	Ba ppa	Be	Bi PP n	Ca Y	¢d ppm	Co pp e	Cr ppa	Cu ppm	Fe %	Ga ppm	hbw Hd	X S	La ppm	Hg t	pps Ma
CNB 22-00+00S CNB 22-00+100S CNB 22-00+200S CNB 22-00+300S CNB 22-00+300S CNB 22-00+400S	201 201 201 201 201 201	202 202 202 202 202 202	215 20 20 < 5 470	0.2 < 0.2 2.6 1.4 3.2	2.93 2.22 2.57 2.33 1.60	270 32 24 32 912	50 30 30 40 170	0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	26 < 2 < 2 < 2 < 2 < 2 < 2	0,15 0.28 0.04 0.08 0.15	1.5 1.5 < 0.5 < 0.5 7.5	50 33 11 5 34	73 47 56 34 28	403 344 125 119 415	14.05 6.03 7.72 5.81 14.45	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.04 0.05 0.06 0.12	< 10 10 < 10 < 10 10	0,78 1,47 0,67 0,35 0,51	2230 1215 1165 320 3490
CHB 22-00+5005 CHB 22-00+6005 CHB 22-00+7005 CHB 22-00+8005 CHB 22-00+9005	201 201 201 201 201 201	202 202 202 202 202 202	(5 { 5 { 5 } 20 { 5	0.2 < 0.2 < 0.2 0.6 < 0.2	2.90 3.72 3.19 3.72 3.47	170 24 6 88 48	40 70 50 50 50	0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.01 0.\$2 0.08 0.07 0.17	< 0.5 1.0 < 0.5 < 0.5 < 0.5	81 35 24 10 15	85 121 164 89 82	355 578 219 308 72	14.10 6.07 5.17 7.73 6.21	< 10 < 10 10 < 10 < 10	<pre>(1</pre>	0.07 0.05 0.07 0.07 0.07	10 10 < 10 10 10	1.26 1.44 1.13 0.86 0.85	4630 825 865 555 1155
CMB 22-01+000S CMB 22-01+100S CMB 22-01+200S CMB 22-01+300S CMB 22-01+400S	201 201 201 201 201 201	202 202 202 202 202 202	<pre>< 5 70 30 50 </pre>	0.6 0.8 0.8 0.2 0.2	4.04 3.26 3.24 2.51 2.71	40 40 130 170 44	40 90 50 110 40	<pre>< 0.5 0.5 0.5 < 0.5 < 0.5 < 0.5</pre>	<pre></pre>	0.11 0.34 0.08 0.42 0.17	<pre>< 0.5 1.0 < 0.5 0.5 < 0.5 < 0.5</pre>	8 44 39 33 11	92 94 93 84 39	93 1130 114 309 107	7.07 5.62 6.17 5.30 4.31	10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1	0.06 0.09 0.05 0.05 0.06	< 10 10 < 10 10 10	0.70 1.19 1.29 1.68 0.84	450 3230 1385 1635 495
DHB 22-01+500S CMB 22-01+600S CMB 22-01+700S CMB 22-01+800S CMB 22-01+800S	201 201 201 201 201 201	202 202 202 202 202 202	<pre>< 5 35 90 30 </pre> <pre>< 5</pre>	< 0,2 0,2 5,8 0,6 < 0,2	2.72 2.48 3.09 2.93 3.75	40 144 66 30 12	40 50 90 60	< 0.5 < 0.5 0.5 < 0.5 0.5	<pre>< 2 < 2</pre>	0.04 0.38 0.12 0.46 0.34	< 0.5 5.0 10.0 < 0.5 < 0.5	32 25 70 46 89	65 25 22 45 89	78 184 826 1000 305	5.05 7.60 8.35 7.78 12.25	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	< 1 < 1 < 1 < 1 < 1	0.05 0.04 0.08 0.06 0.01	10 < 10 10 < 10 < 10	1.03 0.86 0.83 1.92 1.99	2270 3510 2240 3620
CMB 22-02+000S CMB 22-02+100S CMB 22-02+200S CMB 22-02+300S CMB 22-02+300S CMB 22-02+400S	201 201 201 201	202 202 202 202 202	< 5 20 NotRed 260 70	< 0.2 1.0 RotRed 3.4 1.2	4.15 3.17 RotRod 3.39 3.47	62 60 Notecd 500 130	20 80 BotRed 1 90 80	0.5 0.5 EotEcd 0.5 0.5	<pre> < 2 </pre> KotEcd	0.11 0.24 NotRcā 0.25 0.42	(0.5 2.0 NotRed 19.0 1.5	15 37 NotRed 74 49	38 24 Notred 48 34	79 587 RotRcā 291 752	7.99 6.87 NotRed 9.84 7.82	10 { 10 NotEcd < 10 < 10	<pre> < 1 </pre> NotRed 1 1 1 1	0.05 0.10 KotRed 0.08 0.09	10 10 Notrod 10 < 10	0.49 0.79 RotRcd 1.60 1.50	1555 3120 NotRed 6560 3040
CHE 22-02+500S CHE 22-02+600S CHE 22-02+700S CHE 22-02+800S CHE 22-02+800S CHE 22-02+900S	201 201 201 201 201 201	202 202 202 202 202 202	200 < 5 20 60 35	0.8 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.70 3.00 3.25 2.20 3.76	116 12 66 130 84	50 70 40 330 40	0.5 < 0.5 < 0.5 1.5 0.5	<pre>< 2 < 2</pre>	0.50 0.32 0.29 0.29 0.31	1.5 < 0.5 < 0.5 2.5 < 0.5	71 49 30 42 31	28 32 43 24 43	400 214 122 223 230	9.48 7.63 0.36 11.80 7.55	< 10 < 10 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.07 0.06 0.06 0.13 0.05	10 < 19 < 10 20 10	1.44 0.93 1.20 0.73 1.32	2980 3930 2100 6020 2520
CHG 22-03+000S CHB 22-03+100S	201	202	15 Rotacd	< 0.2 NotEcd	3.03 Notked	116 Notroi	40 NotEcd	0.5 NotRcd	< 2 NotRed	0.43 Notrod	< 0.5 NotRed	59 Rotled	27 Notecd	323 Rotred	9.10 RotEcd	< 10 NotEcd	< 1 NotEcd	0.06 NotRed	< 10 Notrcd	1.26 NotRed	2160 Notiecă

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vencouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ARKAROOLA MINING LTD.

9100 VAN HORNE WAY RICHMOND, BC V6X 1W3 Page Number :1-8 Total Pages :1 Certificate Date: 14-AUG-97 Invoice No. :19736308 P.O. Number : Account :NVU

٠

Project : SUMMIT Comments: ATTN: ROD SALF/NGER CC: D. VISAGIE

CERTIFICATE OF ANALYSIS A9736308

...

CERTIFICATION:

	Invoice No. P.O. Number Account	:19736 : :NVU
GIE		
	·······	

	מיזונר	Mo	Ma	Wi	τ	Ph	Sh	Sc	Sr	Ti	Tl	ប	v	К	Zo	
SAMPLE	CODE	ppm	лц. g	ppa	ppm	ppe	65 8	ppe	ppe_	<u></u>	ppm	pp	pp	pp	bba	
8 22-00+00S	201 202	7	0.04	91	1200	58	6	6	11	0.05	< 10	< 10	58	< 10	354	
8 22-00+1005	201 202	5	0.01	86	1260	30	2	5	11	0.10	< 10		52	(10	200	
B 22-00+200S	201 202	4	0.03	21	1090	604	4	2	4	0.01	< 70	< 10 < 10	21	< 10	114	
B 22-00+300S	201 202	3	0.01	21	900	40	2	د	13	0.11	< 10 < 10	4 10	52	< 10	864	
8 22-00+400S	201 202		0.05		160		<u> </u>		**		· 10					/-
8 22-00+500S	201 202	3	0.03	249	1980	146	2	6	4 ·	< 0.01	< 10	< 10	45	< 10	278	
3 22-00+600S	201 202	3	0.02	172	680	32	2	6	35	0.10	< 10	< 10	24	< 10	117	
8 22-00+700S	201 202	3	0.01	40	660	20	2	د	1	0.13	< 10	10	100	< 10	112	У У
B 22-00+800S	201 202	5	0.01	40	//0	28	-	D E	15	0.05	2 10	< 10	70	< 10	110	
3 22-00+900S	201 202	4	0.01	36						U.	<u> </u>	· 10				
22-01+000S	201 202	3	0.02	33	710	20	4	4	n	0.05	< 10	< 10	84	< 10	9 P	
22-01+1005	201 202	6	0.02	83	1380	48	2	6 F	40	0.03	< LV / 10	2 10	47	2 10	116	
3 22-01+200S	201 202	2	0.02	100	450 1060	20	•	3	28	0.01	2 10	2 20	44	(10	172	
8 22-01+300S	201 202	3	0.02	144	2000	20	5		15	0.10	< 10	< 10	48	< 10	116	•
8 22-0144005	201 202															
22-01+500S	201 202	5	0.01	36	1090	26	2	2	4	0.01	< 10	< 10	44	< 10	110	
22-01+600S	201 202	5	0.06	15	2150	172	6		14	0.09	(10)	< 10	53	(10	1525	
22-01+7005	201 202	6	0.07	22	1240	48	e	11	30	0.00	2 10	2 10	115	2 10	180	
3 22-01+800S	201 202	4	0.01	34	1250	30	1	1	10	6 21	2 10	(10	267	< 10	166	
22-01+900S	201 202	5	V.V1	25	3120	10	Z	J4		V. 21						
22-02+000S	201 202	7	0.02	18	930	34	2	7	8	0.13	< 10	< 10	79	< 10	124	
8 22-02+100S	201 202	5	0.03	18	1090	210	2		1 9	0.14	< ⊥ ∪ • ≣	91 > • 6084-0	93 Bot Dođ 1	LIV Act Dod 1	VEC 6-5402	
22-02+2005		NotRed 1	iotRed N	iotlicd I	iotiked 1	HOLECA N	OTECC N	OLECC N	OCKCG 1	NOLECG	KOCKCU I		1002200	10022001	1660	
3 22-02+300S	201 202	5	90.0	26	1510	1480	ь Э	17	70	0,00	(10	(10	111	< 10	344	
22-02+400S	201 202	>	0.03	17	1300	200				V.V3	·					
22-02+5005	201 202	5	0.02	22	1020	208	4	14	24	0.14	< 10	< 10	131	< 10	276	
22-02+600S	201 202	3	0.01	13	3450	26	2	8	22	0.11	< 10	< 10	195	< 10	125	
22-02+7005	201 202	3	0,01	17	1590	112	4	9	16	0.21	(10	< 10 < 10	198	(10	210	
22-02+800S	201 202	6	0.03	30	1060	42		2D 10	10	0.03	2 10	2 10	123	2 10	747	
22-02+9005	201 202	3	0.01	21	1500	94	2		15	V.13	× 1V	× 10		<u> </u>		
22-03+0005	201 202	5	0.01	21	1630	16	2	16	9	0.12	< 1D	< 10	164	< 10	150	
1 22-03+100S		NotRed 1	Notecd F	(otmed 1	fotEcd 1	Rotled H	otled R	otecd N	otRcd 1	NotRed	NotRod	Notecd 1	Rotled 1	HotRcd]	RotRod	
ļ																
		1														

Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ARKAROOLA MINING LTD.

9100 VAN HORNE WAY RICHMOND, BC V6X 1W3 Page Number : 1-A Total Pages : 1 Certificate Date: 13-AUG-5 Invoice No. : 19736307 P.O. Number : Account : NVU

• :-

CERTIFICATION:

۰. م

Project: SUMMIT Comments: ATTN: ROD SALFINGER CC: D. VISAGIE

								.			CE	RTIF	CATE	OF	INAL'	YSIS		A9736	6307		
SAMPLE	PRE	19 18	Au ppb FA+bA	Ag ppm	λ1 1	р <u>г</u> а.	Ba. Pru	Be ppm	Bi ppn	Ca %	Cd Ppm	Co P p m	Cr ppm	Cu	Pe 4	Ge. Prom	lg ppa	K %	La ppm	Ng *	Ma PPm
2330024 2330025 2330026 2330026 2330027 2330028	205 205 205 205 205 205	126 126 226 226 226 226	< 5 10 < 5 10 10	< 0.2 < 0.2 < 0.2 0.2 0.2 0.2	3.41 3.14 3.23 1.50 1.61	10 8 6 22 28	60 40 30 70 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3.99 4.79 3.39 1.37 1.97	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	23 21 21 20 23	31 33 33 23 34	68 72 82 67 121	6.23 6.54 6.58 5.57 7.42	10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.11 0.07 0.18 0.23	< 10 < 10 < 10 < 10 < 10 < 10	2.94 2.71 2.73 1.18 1.18	1365 1425 1265 680 795
1330029 1330030 1330030 1330031 1330032 1330033	205 205 205 205 205 205	226 226 226 226 226 226	15 10 < 5 < 5 < 5 < 5	< 0.2 1.4 < 0.2 < 0.2 0.2 0.2	0.72 0.76 0.42 0.26 1.78	34 44 2 4 8	50 10 20 10 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 < 2 < 2 < 2 < 2	0.27 9.79 0.65 0.13 0.34	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 43 2 4 16	36 53 186 249 167	36 590 34 28 231	7.81 6.81 0.88 1.06 5.64	< 10 < 10 < 10 < 10 < 10 < 10	3 < 1 < 1 < 1 < 1 < 1	0.23 0.09 0.09 0.05 0.08	< 10 < 10 < 10 < 10 < 10 < 10	0.41 0.21 0.04 0.05 1.36	295 305 45 40 350
k330034 2 k330035 2	205	226	< 5 < 5	< 0.2 < 0.2	2.17 1.94	38 26	50 80	< 0.5 < 0.5	< 2 < 2	0.94	< 0.5 < 0.5	11 15	60 52	109 205	5.03 5.45	10 10	<1<1	0.17 0.23	< 10 < 10	1.57	265 285

Analy! cal Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARKAROOLA MINING LTD

9100 VAN HORNE WAY RICHMOND, BC V6X 1W3

Page 1-A nber. Total Pages :1 Certificate Date: 13:AUG-97 Invoice No. :19736307 P.O. Number : Account NVU

SUMMIT Project

Comment: ATTN: ROD SALFINGER CC: D VISAGIE

SAMPLE											CE	CERTIFICATE OF ANALYSIS								49736 307			
	PREP CODE		Au ppb FA+BA	A,- ppa	Ā. 4	As ppm	Ba. ppm	Be ppm	Bi ppm	Ce %	Cđ nga	Co ppm	Cr ppm	en Di	P :	Ge Pirm	Eg Ppa	K %	La ppm	Ng 2	Mo ppn		
1330026 1330025 1330026 1330026 1330027 1330027	205 203 205 205 205 205	22. 226 226 226 226 226	; 10 5 10 10	< 0.2 < 0.2 < 0.2 < 0.2 0.2 0.2	3.41 3.14 3.23 1.50 1.61	10 8 6 22 28	60 40 30 70 50	< 0.5 < 9.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 3 < 3 < 3 < 4 </pre>	3.99 4.79 3.39 1.37 1.97	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	23 21 21 20 23	31 33 33 23 34	68 72 82 67 121	6.25 6.54 6.58 5.57 7.42	10 10 10 10	< 1 < 1 < 1 < 1 < 1	0.09 0.11 0.07 0.18 0.23	< 10 < 10 < 10 < 10 < 10 < 10	2.94 2.73 2.73 1.18 1.18	1365 1425 1265 680 795		
x(30029 136029 133003 133003 133003	205 205 205 205 205 205	226 226 226 226 226	15 10 < 5 < 5 < 5 < 5	< 0.2 1.4 < 0.2 < 0.2 0.2	0.72 0.76 0.42 0.26 1.78	34 44 2 4 6	50 10 20 10 30	< 0.5 < 3.5 < 0.5 < 0.5 < 0.5	< 1 2 < 2 < 2 < 2 < 2 < 2	0.17 9.79 0.65 0.13 0.34	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 43 2 4 16	36 53 186 249 167	36 590 34 26 231	7.81 6.81 0.58 1.06 5.64	< 10 < 10 < 10 < 10 10	3 < 1 < 1 < 1 < 1 < 1	0.23 0.09 0.09 0.05 0.05 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.41 0.21 0.04 0.05	350		
1330034 1330035	205 205	226 226	< 5 < 5	< 0.2 < 0.2	2.17 1.94	38 26	50 80	< 0.5 < 0.5	< 2 < 2	0.84	< 0.5 < 0.5	11 15	60 52	109 205	5.03 5.45	10 10	< 1 < 1	0.17 0.23	< 10 < 10	1.14	265 285		

ſ

. .