NOV 20 KOZ

it wert ward the

ţ

Sold Commissioner's Offic Report of 1997 Exploration VALUE 0. on the Kingpin and Kingpin Extension Mineral Claims

KAM 97-0300509-710

Clinton/ Cariboo Mining Division

NTS 92P-15E / 93A-2E

Lat. 51° 59' Long. 120° 37'

Owned and operated by Herb Wahl

Prepared by:

H. Wahl, P.Eng. B.C. RR 4, S-12, C-4, Gibsons, B.C. VON 1VO November, 1997/FOLOGICAL SERMEN READED

LIST OF FIGURES

- FIG. 1 KINGPIN CLAIMS, GENERAL LOCATION, 1:500,000
- FIG. 2 KINGPIN CLAIMS LOCATION MAP, 1:50,000
- FIG. 3 KINGPIN CLAIMS, RESULTS OF 1997 EXPLORATION 1:10,000
- FIG. 4 KINGPIN CLAIMS, GEOCOMPOSITE, UPDATED SEPT.-OCT.1997 1:2,500

APPENDICES

- 1. ROCK SAMPLE DESCRIPTION LIST, 01-08 SEPT. 1997
- 2. ROCK SAMPLE DESCRIPTION LIST, 08-13 OCT. 1997
- 3. ASSAY REPORT, ACME 97-3362
- 4. ASSAY REPORT, ACME 97-5256, 57
- 5. ASSAY REPORT, ACME 97-6131
- 6. ASSAY REPORT, ACME 97-6132,33

SUMMARY

The Kingpin Mineral Claims totalling 36 units (900 ha./ 2223 ac.) are located within the Clinton/Cariboo Mining Divisions some 75 km east of 100 Mile House, B.C. The property is sited on industrial logging lands within the Quesnel Trough volcanic subdivision of the Intermontane Belt.

This is the third report of work on the claims, and was occasioned by a new outcrop discovery of leached, oxidized gossan material uncovered by recent Ministry of Forests road building activity. The new zone is exposed for some 350 meters in the ditch of Burtt Creek Road, where bedrock comes within 2 meters of surface.

Samples of goethite-limonite boxworks material have returned values to 713 Mo. 1125 Cu, 465 Pb, 2039 Zn, 13.9 Ag, 120.3 Cd, and 1450 Au (ppb). The zone trends northerly within silicified, pyritized, and skam-altered argillites. Ultimate dimensions could exceed 1.5 km in strike, with a width of 3-400 meters. The new discovery is one of three targets (I.P.+ geochem) lying within a northerly trending, metal anomalous, calcic-tuff argillite belt some 5 km long x 1 km wide. The belt is sandwiched between the 'TK' stock on the west which has contributed the skarn alteration effects and mafic volcanics on the east.

Expanded gridwork and trenching are recommended.

Costs of current work are \$15,460.15 with total costs to date being \$41,720.78, exclusive of fees.

INTRODUCTION

The report documents on-going work on the Kingpin mineral claims covering the periods 27-30 June 1997, 01-08 September 1997, and 08-13 October 1997.

Expanded work was occasioned by a brand new, sheared, oxidized gossan zone uncovered by recent Ministry of Forests road-building activity (Burtt Creek Road).

The gossan zone is exposed for 350 meters along the west side of the road where it traverses the Kingpin No. 6 and 9 claims. In addition, the M.O. F. dug two test pits 15 meters west of the ditch to 4 meter depth, which failed to reach bedrock. Material encounted was all orangey-red gossan soil containing some larger pieces of gossan boxworks. Bedrock of silicified heavily pyritized argillites was located 15 meters east of the road and a borrow pit some 20 X 80 meters wide was established here.

Details of previous work can be found in references (1) and (2).

WORK PERFORMED

27-30 June: Examination and preliminary sampling of new road zone exposure.

- Stake Kingpin 11-17
- 1 rock sample
- 4 soil samples
- 4 silt samples
- <u>01-08 September:</u> Line cutting, soil sampling, and more detailed rock sampling 970 meters line cutting
 - 39 soil samples
 - 19 rock samples

<u>08-13 October</u> Stake Kingpin 17-36 claim and soil sample location lines.

- 7 ea rock samples
- 7 ea silt samples
- 76 soil samples
- 5 km geology, outcrop checks

Project Totals:

970 meters line cutting

- 119 soil samples
- 11 silt samples
- 27 rock samples
- 5 km. geology

LOCATION AND ACCESS (FIGS. 1& 2)

The property is located 75 km east of 100 Mile House, B.C., or 20 km east of Eagle Creek. Access is via industrial logging roads, being east from Eagle Creek on the 6000 Rd. to the 7000 Rd., then 2 km east to the Burtt Creek Road (new) then 4-5 kilometers easterly to the approximate center of the property.

Specific location details are:

NTS 92P - 15E Clinton/ Cariboo Mining Division Latitude 51° degrees 59' Longitude 120° degrees 37'

The claims are situated within the drainage basin of Art Creek. Current land use is zoned industrial logging, with active operations underway.

PROPERTY

The property consists of 36 2-post mineral claims as follows:

		Record Date/	
<u>Claims(s)</u>	<u>Tag/No</u> .	Date Staked	Record Nos.
Kingpin-1	659852M	18 Oct. 1994	332091
Kingpin-2	659853M	18 Oct. 1994	332092
Kingpin-3	659854M	18 Oct, 1994	332093
Kingpin-4	659855M	18 Oct. 1994	332094
Kingpin-5	614592M	18 Oct. 1994	332095
Kingpin-6	614593M	18 Oct. 1994	332096
Kingpin-7	655834M	02 Sept. 1995	33977 9
Kingpin-8	655835M	02 Sept. 1995	33 9 780
Kingpin-9	655836M	02 Sept. 1995	339781
Kingpin-10	655837M	02 Sept. 1995	339782
Kingpin-11	660997	04 July 1997	357204
Kingpin-12	660998	04 July 1997	357205
Kingpin-13	660999	04 July 1997	357206
Kingpin-14	661000	04 July 1997	357207
Kingpin-15	640608	04 July 1997	357208
Kingpin-16	640609	04 July 1997	357209
Kingpin Extension			
Kingpin-17	640610	21 October 1997	359802
Kingpin-18	640611	21 October 1997	359803
Kingpin-19	640612	21 October 1997	359804
Kingpin-20	640613	21 October 1997	359805
Kingpin-21	640614	21 October 1997	359806
Kingpin-22	640615	21 October 1997	359807
Kingpin-23	640616	21 October 1997	359808
Kingpin-24	640617	21 October 1997	359809
Kingpin-25	640618	21 October 1997	359810
Kingpin-26	640619	21 October 1997	359811
Kingpin-27	640620	21 October 1997	359812
Kingpin-28	640621	21 October 1997	359813
Kingpin-29	640622	21 October 1997	359814

7 359815
7 359816
7 359817
7 359818
7 359819
7 359820
7 359821

The above are all staked in accordance with current provincial mining regulations. The total area claimed amounts to some 900 ha. (2223 acres).

The location line for Kingpin 31-36 intended as a 360° Azimuth, deviated some 12° westerly: this was apparently caused by a 5000 ∂ magnetic high.

An annual assessment expenditure of \$100/ claim is required during the first 3 years of tenure, increasing to \$200/ claim/ year thereafter.

TERRAIN/TOPOGRAPHY

The property lies at elevations of 39-4500 feet ASL, spanning the drainage basin of Art Creek. Terrain west of the creek is flattish to gently sloping, with little outcrop, while ground to the east consists of rocky hummocks with interspersed swampy areas, and a more open timber cover. The West side of Art Creek is underlain by argillite strata which are more recessive weathering as opposed to the harder, more resistant mafic volcanics to the east.

GEOLOGY (FIG. 3, 4, Ref. 2)

The Kingpin Claims lie within the Quesnel Trough volcanic-sedimentary belt of Triassic-Jurassic age, a subdivision of the Intermontane Belt.

Fieldwork over the past several years including current work has outlined the following geologic scenario.

An argillite/ mafic volcanic sequence has been intruded by a later stock ('TK' stock). Whether these strata were folded prior to intrusion is not known, however dips are vertical to steep near the contact, flattening-out towards the east.

Regional aeromagnetics suggest a southeasterly plunging anticlinal structure, cored by the biotite, homblende quartz monzonite stock.

Argiilite Unit (Fig. 3)

The argillite unit (No. 4/Fig. 3) is the primary rock sequence of interest on the property. It forms a zone about 1 km in width being sandwiched between the overlying (?) mafic volcanic unit on the east, and the 'TK' stock on the west. New exposure in the M.O.F. borrow pit show the beds as steeply to vertically dipping close to the intrusive contact, with flatter dips towards the mafic volcanic contact.

Given the extensive mantle of glacial drift, the overall nature of the argillite unit is unknown. Scattered observations to date indicate the following. Exposures near the east side show dark and light colored beds (grey tones) with drag folded interbeds to ½ meter of cherty siliceous material (chemical sediment). Black colored beds are also present, but are not graphitic. Lighter colored banding is also present due to quartz carbonate layers. The beds overall carry abundant iron sulphides of pyrite and pyrrhotite, approaching near massive concentrations at some locales. Proximity to the 'TK' stock shows an increase in thermal alteration with the development of strong silicification and pyritization, and the conversion of quartz-carbonate layers to gamet, epidote, actinolite, calcsilicate skarn.

Th new road cut zone is essentially a heavily sheared sulphide-rich zone developed in argillites proximal to the 'TK' stock. While most of the material at the M.O.F. test pit sites was gossan soil, samples KSX-1R to 3R (Appendix 1) were all examples of strong skarn alteration. Within the borrow pit, the argillites are intensely silicified and fractured, with 10-30% Po-py content. Thus, the road appears to follow a contact between strong (borrow pit) and intense (road ditch) sulphide mineralization.

In the borrow pit, weathering effects extend to 5-7 m below surface (punky, soft rock) while oxidized shears carry no fresh sulphides, and extend below the pit floor (10 m).

GEOCHEMSTRY/ SAMPLING

Standard procedures were employed in collecting both soil and silt samples, i.e. intrenching tool, kraft bags. Average sample depth was 20 cm. The collected samples

were shipped to Acme Analytical Laboratories for analysis. Details are:

Kingpin 6/9 Area (Discovery Zone) (Fig. 3,4)

The sheared gossan zone is exposed for some 350 meters in the road ditch (west side) of the new M.O. F. road. An apparent bedrock roll brings this feature within 2 m. of surface. Overburden is a dark grey, clayey, stony glacial drift. Samples of gossan soil at random intervals returned variable results with maximums of 738 Cu, 315 Zn, 2.5 Ag, 6.8 Cd, (ppm) and 24 ppb Au.

Silts from seepages crossing the zone and probable extensions, contain low anomalous values for Zn to 422 ppm. Soil sample results for new lines 7.5 and 8.5 N, plus base line extension returned indifferent results. High silver/ cadmium results from the north end of the grid (Ref. 2) were closed off by the current sampling. Low silver values at the west end of L8.5N appear to correlate with the covered extension of the new gossan zone.

Kingpin Extension Claims (KP-17 to 36) (Fig. 3)

Soil samples were collected at measured intervals of 50 and/or 100 m. at stations marked on nearby tree blazes. All outcrops encountered were checked for rock type and mineralization.

Line KPA (2 km)

 Results are generally low. Anomalous sites are:

 800 NW
 254 Cu, 3.1 Ag, 6.3 Cd

 400 NW
 141 Zn, 4.8 Cd

 350 NW
 127 Zn, 7.5 Cd

 300 NW
 220 Zn, 4.3 Cd

Due to good soil development west of Art Creek, most of the collected samples were B horizon material. A silt sample @ 1446 NW returned negligible values.

Line KPB (1.5 km)

Results again, are generally low. Outcrops of mafic volcanics are relatively abundant, overburden is thinner and the soil profile poorly developed Most samples were drift or organic muck due to numerous swampy areas. Noteworthy results are:

<u>110 NW</u> 163 Zn, 10.2 Cd One silt sample @ 915N returned negligible values.

Line KPC

Outcrop is abundant and soil cover poorly developed. Noteworthy results are:

1.9 Ag
2.0 Ag
2.3 Ag
175 Cu, 2.1 Ag, 10 Cd

Two silt samples at 200 N and 300N returned anomalous values for Cu (234, 260 ppm) plus anomalous values for Ag (2.7,3.3 ppm). The anomalous seep trends north-westerly and may mark the eastern argillite/volcanic contact. Some 700 meters northwest of this site (Ref 2, Fig. 7) a previous silt returned 798 Cu close to the argillite volcanic contact.

MINERALIZATION (Fig. 3,4)

Rock samples collected from the gossan zone and borrow pit are tabulated in Fig. 4, and described in Appendices 1 and 2.

A preliminary evaluation suggests that strata bound mineralization of py-po-cuzn-ag-cd has been sheared and thermally metamorphosed by intrusions of the 'TK' stock, with the addition of skam alteration, quartz veining, and Pb-Au values. Intense oxidization extends to depths of plus 4 meters, and it is assumed that the limonitegoethite-boxworks chunks now lying on the back-fill surface of the M.O. F. test pits came from depth.

The best values from 4 individual samples of this material are:

713 Mo, 1125 Cu, 465 Pb, 2039 Zn, 13.9 Ag, 120.3 Cd, and 1450 Au (ppb)

Leaching effects are evident, and there is a good chance to locate multi-metal ore grade values at depth.

Grid information to date, which is incomplete in the discovery area, suggests a 1.5 km. long zone (open at both ends) based upon Cd-Ag soil anomalies. A zone width of 400 meters is possible, lying between the road and the intrusive contact.

CONCLUSIONS:

A fortuitious discovery of a multi-metal bearing gossan has been located on the Kingpin claim group by recent M.O.F. road building. The discovery outcrop is 350 meters long and open, and situated within 3-400 meters of an intrusive contact, which has thermally metamorphosed (skarn) metal-anomalous calcic-tuff-argillite stratigraphy. The zone of sulphide-rich stratigraphy bounds the 'TK' stock on the east, with a strike length of some 5 km. Two other targets are present on the claims being a strong soil geochem anomaly (850 X 200 m.) with values to 12 Ag, 1693 Cu, and 71.4 Cd., and a I.P. anomalous zone (+30 mv) 500 m x 200 m and open.

Preliminary soil sampling on the Kingpin extension claims did not locate any soil values of pressing interest, however this work was not comprehensive. Geological work was of value in firming the lithologic picture in this extensively covered area.

RECOMMENDATIONS

Expanded grid work (line cutting, geochem, IP. Survey) in the Kingpin 6-8-9-10 area is required to define the extent of mineralization identified to date. The results of this work should be evaluated by trenching and drilling.

Prepared by

Herb Wahl, P.Eng. B.C.

PERSONNEL EMPLOYED AND STATEMENT OF COSTS

H. J. Wahl, P.Eng. B.C. RR4, S12, C-4, Gibsons, B.C. VON IVO Field work, supervision, and reporting

Michael W. Unger, Environmental Technologist, 4501 West 8th Ave., Vancouver, B.C. V6R 2A4 Field Assistant, surveying and soil sampling

Period: 27-30 June 1997

H. Wahl, 3 days @ \$500/day, geology and sa	ampling	\$1500.00
Travel expense incl. road meals		237.29
Field Supplies		119.79
Field Vehicle 1996 Dodge 4X4		
Lic. No. 4086PP, 3 days @ \$110./day		330.00
Acme 97-3362		135.52
Freight on samples		<u>5.08</u>
	Sub Total	<u>\$2,327.68</u>

Period 01-08 September 1997

H. Wahl, 8 days @\$500/day, field work		\$4000.00
Travel Expense		166.68
Accommodation – Rainbow Resort		368.00
Field Supplies		401.75
Freight, postage, permits		13.42
Maps, prints, xerox		22.91
Field Vehicle 8 days @ \$110/day 1996 Dodge	4X4,	880.00
Assavs, Acme 97-5256.5257	·	6 <u>63.98</u>
· · · · · · · · · · · · · · · · · · ·	Sub Total	<u>\$6,516.74</u>

Period 08-13 October 1997

H Wahl 6 days @ \$500/day, Field Work	\$3000.00
H webl A days reporting @300/day	1500.00
M. Unger, contract, 6 days survey @\$200/day plus expenses	1000.00
Travel Expense	194.61
Field Sunnlies	376.52
Accommodation Rainbow Resort	368.00
Mans prints verox	36.10
Freight nostage fees	27.74
Field Vehicle 1996 Dodge 4X4 @ \$110/day, 6 days	660.00
Assavs Acme 97-6131 32 & 33	870.55
Report preparation (prints_maps_xerox)	\$300.00
Sub Total	<u>\$8,333.52</u>

Grand Total \$17,177.94

Recapitulation

Total Program Costs	\$17,177.94
Less 10% for ground acquisition	<u>1,717.79</u>
Net Applicable to Assessment Work	<u>\$15,460,15</u>

Certified True and Correct

Nahl

H. Wahl, P.Eng. B.C.

REFERENCES

- (1) <u>H. Wahl, P.Eng. BC</u>, Report of Preliminary Exploration on the Kingpin Mineral Claims, September 1995
- (2) <u>H. Wahl, P.Eng. B.C.</u>, Report of Follow-up Grid Work on the Kingpin Mineral Claims, December 1996.

APPENDIX - 1

Kingpin-Rock Sample Description List

01-08 September 1997

- KO2S-IR Grab, chloritic gouge ++ pyrite. Small fragment of quartz and qtz. carbonate has clots and disseminations of silvery py. Possible trace dissm; ZNS
- KO2S-2R Grabs, limonitic, rusty gouge. Total Feox.
- KO2S-3R Oxidized shear zone, punky FeOx. Vestige shearing strikes 348° dip 55° E
- KO2S-4R Oxidized rock, blue green color on fresh surface. Very fine grained crystalling qtz. plus 15% fine dissem. Py. Original carbonate may be leached out.
- KO2S-5R Rusty zone, from ditch. Pale grey qtz-carb rock, 1-5% dism. Py, 1-2% dism ZnS.
- KO2S-612 Rusty gouge.Odd harder fragment is quartz vein material with 10-15% very fine dissem. zns & py.
- KO25-7R Argillite, highly silic.15% plus py, 1-2% ZnS, 0.5% cpy.
- KO2S-8R Milky and grey quartz vein material, coarse clots py, some assoc. with actinolite.
- KO2S-9R Rusty "clinkers". Total limonite --goethite mateirals, porous, vuggy.

- KO2S-10R Back-fill, top surface M.O.F. test pit. Orange-brown gossan material, odd harder piece is "clinker" similar to 9 R.
- KO2S-11R Sheared, bleached, heavily oxidized Rx. Abundant brown and red oxides of Zns?? As disseminations and streaks conformable with foliation.
- KO5S-1R Intensely silicified argillite. Possible abundant dissem. To heavily dissem ZNS? (darker brown color)
- KO5S-2R Large boulder, 0.75m, buff colored, prominent orangey-yellow stain calamine sheeted faric, light colored slightly pinkish-white quartz, very fine grained. Scattered clots and sparse disseminated red-brown Feoxides along foliation planes. Moderately weathered.
- KO5S-3R Grabs, rusty oxidized shear zone 10m wide. Mostly rusty gouge. Harder pieces: No. 1 cellular buff, fine-grained weathered quartz. Very fine dissem py & zns. No. 2 quartz vein material, py, zns.
- KSX-1R Skarned argiilite, quartz, epidote, garnet, 1-5%py vicinity KO2S-8R/9R area.
- KSX-2R Hi-silica skarn rock, 10-15% py. Some Si has patchy, cherty appearance.
- KSX-3R Fine grained sugary skarn rock (intensely altered argillite) actinolite, calcsilicates, 15-20% fine, disseminated po (magnetic).
- ACS-1R 7005 Cut block, grabs, 4 m rusty interstratal shear zone, outcrop moderately skarned argillite
- ACS-2R 7005 cut block, grabs over 10 m, 8m, NW of 1R. Rusty shear. Larger fragments quartz-garnet rich 10-15% po, odd red-brown speck of oxidized zns??

Appendix 2

Sample Description List Trip of 08-13 Oct. 1997 Project: Kingpin and Kingpin Extension

- 970-1R New Block Road ENE of final post KP 29/30, west termination of road. Dark colored mafic volcanic, magnetic (Po 10-15%) disseminated, traces cpy. Strong Si alteration.
- 970-2R Borrow Pit, East Side road KP-6. Large blocks, angular rubble from excavator. Rusty, light grey fresh surface with color banding. Intensely fractured and altered argillite with criss-cross sulphide (silvery py) fracture fillings. Secondary vein textures, some seams to several millimeters. Rich Py.
- 970-3R Borrow pit. Punky, heavily-oxidized, soft, chocolate --brown rock. Odd, py harder, less oxidized pieces have heavy stringers and disseminations silvery py & po? Slightly magnetic. Rare speck Cpy, harder pieces largely Si, probably more sulphide- rich variety of 2R.
- 970-4R Borrow Pit. Light grey fresh surface. Total Si Rock with micro Si banding. 20-40% Py. Non-magnetic. Traces red-brown zns? Overall VFG texture.
- 970-5,6,7R From September location KO2S-8,9R. M.O. F. test pit. Gossan boxworks.
- 970-8R Grabs. 10 m Qtz/solid Rusty zone. New Borrow pit exposure 6000 Rd. 100 m SW of new Weldwood operation.

PHONE (604) 253-3158 FAX (604) 253-1716 852 E. HASTINGS ST. VANCOUVER BC VGA 1R6 A THE ANA TICAL LABORATORIES LTD. GEOCHEMICAL ANAL.SIS CERTIFICATE Herb PROJECT KINGPIN File # 97-3362 Page 1 Wahl. R.R. -4 S12 C4, Gibson BC VON 1V0 Submitted by: Herb Wahl ĸ ₩ Au* Na Ba Τi В Αl Сг Mg Сa P La Şb Bi ٧ Cd Th Sг ppm ppb Co Mn Fe As U Au % X % ppm Cu Pb Zn Aq Ni X X ppm SAMPLE# Mo * X ppm % ppm ppm ppm ppm ppm ppm ppm ppm ppm 16 <3 .81 .02 .07 <2 8 13 .57 111 .03 <3 51 18.25 .091 <2 1219 249.6 4 8 1618 1.38 40 <8 <2 76 68 1991 16.4 34 KP5-1R 176 ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. Roc.K-THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 SOIL P3 SILT AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF AA FINISHED.(10 GM) DATE RECEIVED: AFFENDIX 3 Data 🕂 FA All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

	Wahl, Herb PROJECT KINGPIN FILE # 97-3362 Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba 1 ppm ppm																														
44						Ţ	Wah	1, 3	Herb	5 Pl	ROJI	ECT	KII	NGP	IN	FII	LE \$	¥ 97	7-33	362]	Page	e 2			
ACHE ANALYTICAL												A 11	Th	Sr	Cd	Sb	B i	v	Ça	P	La	Cr	Mg	Ba	Ti	В	Al	Na %	K %	₩ DOM	Au*
SAMPLE#	Mo DOM	Cu MCa	Pb ppm	Zn. ppm	Ag ppm	ווא הוקוק	ço pom	ppm	7e %	р р ш мэ	ppm	ppm	ppm	ppm	ррп	ppm	ppm	ррт	*		ppm	ppm	7	ppm	7	ppm	A				<u></u>
KP5-254 KP5-380 KP5-409 KP5-630N	9 8 9 9	738 61 139 24	21 3 123 4	158 286 315 240	2.5 .5 1.3 <.3	78 23 25 24	88 12 32 17	1993 483 1294 359 381	3.90 3.91 5.98 4.34 4.59	19 168 166 53 60	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 <2 3 2 2	3313 78 43 20 22	6.8 5.2 2.2 1.7 2.0	8 64 √2 √2	<2 2 5 2 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2	169 92 119 209 221	2.43 .58 .47 .48 .51	.143 .147 .144 .052 .056	12 12 21 6 6	66 33 23 56 59	.88 .17 .11 1.72 1.81	272 34 26 208 222	.13 .01 <.01 .26 .28	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	5.89 .60 1.79 1.72 1.83	.02 .01 .01 .01 .01	.96 .05 .03 .73 .77	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	24 8 17 3 2

Sample type: SOIL. Samples beginning (RE) are Reruns and (RRE) are Reject Reruns.

APPENDIX 3

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖡 FA

ה

44		<u> </u>				Wa		Нез	rb I	PRO	JEC.	гĸ	ING	PIN	F	ILE		97-:	336	2	<u></u>		<u></u>			Pag	ge :	3	ACH	E ANALYT	TICAL
ACHE ANALYTICAL	Mo	Ĉu	Pb	Zn	Ag	N i DOM	Co DOM	Mn pom	Fe %	As ppm	U D	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V PPm	Ca X	P %	La ppm	Cr ppm	Mg X	Ba ppm	⊺i X	B Ppm	Al %	Na %	K X	V ppm	Au* ppb
KP-5 0+453 KP IP 13/14 0+214 KP IP 13/14 +455 KP 15/16 +192	ppm 10 5 4 2 2	75 28 62 75 72	рэл 19 13 12 8 4	301 140 233 422 409	.8 <.3 .7 <.3 <.3	52 64 89 71 69	22 28 29 20 19	991 / 1422 / 862 / 578 / 557 /	4.78 4.75 4.26 4.19 4.05	30 30 24 12 14	<5 <5 <5 <5 <5	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 2 2 3 4	77 40 45 28 27	7.4 .7 3.1 .5 <.2	<2 <2 <2 <2 <2 <2 <2 <2	2 <2 <2 3 <2	161 128 144 304 292	1.06 .51 .57 .75 .72	.120 .123 .093 .176 .169	11 12 17 14 13	42 98 101 100 95	.71 1.29 1.39 2.05 2.00	211 212 240 333 323	. 10 . 14 . 18 . 3 0 . 29	ও ও ও ও ও	1.53 1.86 2.27 2.03 1.97	.02 .03 .02 .02 .02	.18 .28 .37 .86 .84	<2 <2 <2 <2 <2 <2	6 3 6 4 5

Sample type: SILT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

APPENDIX 3

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data |- FA

							_	G	EOCI	HEM	1C	AL	AN	ALY	SIS	CE	RTI	FI.	CATE	- 		·	н 1 ¹ 1								A
WARL, Hero Project Religion BC VON 1V0 Submitted by: Hero Wahi SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn ppm ppm ppm ppm ppm ppm ppm ppm ppm pp																															
SAMPLE#	Mo	Cu วpm	Pb ppm	Žn ppm	Ag ppm	Nī ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	\$r ppm	Cd ppm	Sb ppm	Bi ppmp	V pm	Ca %	P % (La opm p	Cr pm	Mg %	Ba ppm	Ti %	B ppm	AL %	Na %	К %	W Mqq	Au* ppb
ACC-10	5 3	244	4	80	2.5	57	24	337	4.25	<2	<8	<2	2	206	5.0	5	<3 1	76	1.47	. 146	10	74 1	.72	250	.27	<3 7	2.08	.07	.71	4	10
ACC 2D	5	145	13	305	2 8	44	19	287	3.99	<2	<8	<2	<2	519	18.9	8	<31	60	1.50	.139	10	57 1	.23	589	.25	، <u>د</u> >	2.21	.00	./>	10	6
ALD-CK	10 :	72	Ŕ	113	2.3	62	28	129	3.92	7	<8	<2	3	35	17.6	<3	<31	99	.89	. 189	19	50	.49	22	.05	2	1.05	.03	.20	~2	2
KUC3" (A	3	84	ž	241	.3	47	23	404	4.63	7	<8	<2	2	45	13.4	<3	<3 1	13	.87	.175	20	43	.31	38<	.01	2	. 75	.02	.07	~2	11
KD2S-3R	14	152	10	405	2.3	85	34	909	6.20	22	<8	<2	3	62	17.8	<3	<32	45	.94	.170	18	54	.35	92	.01	9	1.30	.02	109	~2	
			.7		~ /	75	1.7	188	5 54	7	8	<2	0	111	2.6	<3	<3	88	1.54	. 142	10	27 1	1.03	46	.08	5	1.47	.06	.07	2	14
K025-4R	14/	102	<>	90 4770	2.4	72	43	1525	3 07	21	<8	2	~2	148	144.3	5	<31	23	18.43	.075	31	30 2	2.26	5<	.01	5	.23	.03	.01	<2	5
KOZS-5R	84	28		13/0	11.0	23	- 24	/20	3.81	42	- 28	ō	~	337	62.5	29	<3 1	132	1.33	.136	11	33	.71	78	.11	3	1.59	.08	.20	<2	87
KO2S-6R	50	00	214	107	12.7	27	76	190	3.01	59	- 28	2	<2	17	72.4	31	<3	96	.68	.142	9	27	.43	20	.13	<3	.57	.05	.14	<2	83
K025-7R K025-8R	4	26	215	825 48	۵.۵ 8.	18	14	4822	3.89	16	<8	<2	-2	72	2.4	5	3	49	6.34	.099	12	15	.50	31<	.01	8	.48	.01	. 19	2	48
	11/2	/ 7C	272	015	85	16	1	243	22 67	215	8	2	<2	4	50.3	69	23	13	.07	. 105	2	5	.02	11<	.01	19	- 14-	<.01	. 10	2	310
KU25-9K	70	43J 769	10	521	Å 0	00	12	6449	17.29	81	<8	<2	2	219	133.5	4	<3.5	573	.46	.091	51	44	.22	1625<	.01	3	.97	.02	.10	<2	17
KOZS-TUK	1 12	220	15	119	8.4	61	30	720	4.34	13	<8	<2	<2	2024	9.2	10	<3 2	217	1.74	. 162	14	84	.70	173	.17	<3	3.24	.04	.56	<2	21
KUZSTIIK	12	400	17	110	8.8	60	31	707	4.36	12	<8	<2	<2	2069	8.9	10	<3 a	219	1.76	.164	14	84	.71	172	.17	<3	3.32	.05	.58	<2	21
K055-1R	81	42	32	645	8.2	18	8	4007	14.80	23	<8	<2	<2	131	54.6	<3	<3 '	197	11.77	.038	28	18	2.81	32<	.01	<3	.54	.03	-05	<2	ŢŲ
	1	207		/0	07	7	4	462	3 14	20	я	<2	2	155	1.5	8	<3 2	234	.49	.183	6	50	2.19	75	.28	<3	1.66	.11	1.09	2	47
K055-2R	20	20/	12	48	9.1	د ۸۸	27	1366	3,19	14	<8	ō	<2	2431	14.3	<3	उ	128	3.46	.142	13	32	.63	295	.12	4	3.79	.20	.34	<2	10
KOSS-SR	12	209	42	2002	0.0 7 n	44 50	20	345	2.07	12	<r <<="" td=""><td>\sim</td><td><2</td><td>67</td><td>2.3</td><td><3</td><td><3</td><td>170</td><td>1.76</td><td>.155</td><td>12</td><td>45</td><td>1.09</td><td>53</td><td>.20</td><td>5</td><td>1.41</td><td>.10</td><td>.22</td><td>4</td><td>21</td></r>	\sim	<2	67	2.3	<3	<3	170	1.76	.155	12	45	1.09	53	.20	5	1.41	.10	.22	4	21
KSX-1R	470	485	2	1001	2.0	00	20	517	2.73	214		. 0	0	93	146.5	6	<3	63	4.59	.140	14	23	.23	72	.13	4	1.01	. 19	.06	<2	8
KSX-2R	117	- 63	14	1071	ا . د غ	. 171	2/	150	3.32	304	<8	<2	2	31	7.1	10	<3	144	.81	.161	15	43	.77	47	.15	3	1.00	.12	.27	2	10
KSX-5R	2	14		200	.0		64	1.13	3.36		-0	•	-			. •															

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM) - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 10 1997 DATE REPORT MAILED:

APPENDIX 4

ACME	ANA	VICAL	LAI	BORA	TORI	ES 1	LTD.		85	2 B	HAS	STIN	GS E	T. 1	7 7	OUV	BR B	IC 1	76A	1R6		PHO	NE (6	504)	253-	3158	3 P	AX (6	C	253-	1716
										GEC	CHE	MIC	AL	ANA	LYS	IS	CER	ETIF	ICA	TE							. `				
						M	<u>ahl</u>	<u>, H</u>	leri R.R	<u>) PF</u>	OJE \$12	CT C4, 1	<u>KIN</u> Gibso	IGPI n BC	<u>IN</u> Von 1	Ε11 V0	.∈ † Submi	tted	-52 by:H	57 erb V	lah l	age	! 1								
SAMPLE#	SAMPLE# Mo Cu Pb Zri Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W SAMPLE# ppm %															W ppm															
K L8.5N 500W 2 13 3 105 .6 22 8 148 3.56 5 <8															2 <2 <2 <2 <2 <2																
K L8.5N 420W 6 89 3 51 1.5 25 4 128 2.11 6 58 52 53 56 1.20 1.20 1.10 53 1.10 <td><2 <2 <2 <2 <2 <2</td>															<2 <2 <2 <2 <2 <2																
K L8.5N K L8.5N RE K L8 K L8.5N K L8.5N	K L8.5N S80W 4 65 9 120 5.0 57 6 251 5.0 17 50 52 17 50 17 100 12 71 182 96 14 <3 2.00 .01 .10 <2 K L8.5N 360W 1 21 4 166 1.5 43 13 333 3.39 10 <8 <2 3 31 3.3 <3 95 .21 .083 10 73 .81 123 .16 5 1.62 .02 .08 <2 K L8.5N 320W <1 16 <3 124 .6 41 10 203 3.09 4 <8 <2 2 22 1.3 ·3 ·3 ·3 19 .26 .089 12 107 1.29 130 .16 6 2.64 .01 .17 ·2 K L8.5N 260W 1 17 5 53 .7 25 15 498 2.															<2 <2 <2 2 2 <2															
K L8.5N K L8.5N K L8.5N K L8.5N K L8.5N	200W 180W 160W 140W 120W	<1 1 1 <1 <1	14 1 8 14 20 24	4 4 9 6 <3	42 50 76 194 251	.6 1.1 .8 1.0 .6	27 33 36 30 56	6 7 7 11	163 172 216 489 638	2.34 2.48 3.08 2.76 3.42	4 5 8 4 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 3 4 3 3	14 15 19 25 20	.5 7. 8. 1.0 1.1	ও ও ও ও ও ও ও	<3 <3 4 <3 <3	60 61 77 133 208	.12 .12 .18 .13 .19	.054 .055 .091 .085 .096	10 13 15 10 12	51 60 64 60 85	.50 .67 .66 .72 1.20	81 82 100 153 137	.10 .12 .12 .19 .22	<3 <3 4 <3 <3	1.38 1.60 1.68 1.69 2.08	.01 .02 .01 .02 .01	.08 .10 .09 .08 .09	<2 <2 <2 <2 <2 <2
K L8.5N K L8.5N K L8.5N K L8.5N K L8.5N	100W 80W 60W 40W 20W	1 1 1 1 1 1 1 1 1	15 12 9 21 24	4 9 6 3 4	158 123 49 81 88	1.2 .9 1.0 .5	38 26 17 43 41	7 8 6 15 10	193 213 136 395 221	4.16 3.58 2.24 3.55 3.49	6 7 5 11 9	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	6 4 3 4 2	16 17 15 19 21	1.1 1.7 .8 1.1 1.3	ও ও ও ও ও	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	143 97 52 83 93	.18 .23 .20 .20 .23	.359 .217 .074 .093 .046	14 12 11 13 11	83 71 38 72 78	.82 .71 .37 .88 1.15	121 149 65 100 112	. 16 . 14 . 09 . 14 . 16	4 <3 <3 5 <3	2.39 2.36 1.33 2.32 2.27	.01 .01 .02 .01 .01	-09 -08 -07 -12 -14	3 <2 <2 <2 <2 <2
K L7.51 K L7.51 K L7.51 K L7.51 K L7.51	4 300W 4 280W N 260W N 240W N 220W	2 1 1 1 1 1	39 26 44 44 28	5 8 6 <3	89 103 71 71 71	.9 .5 .9 1.5	54 65 73 64 43	18 13 22 13 14	725 321 679 313 529	3.27 3.08 3.68 3.40 3.16	10 13 17 13 6	<8 9 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 4 2 2 2 2	29 18 24 24 18	4.6 1.1 2.1 1.7 1.4	ব্য ব্য ব্য ব্য ব্য	5 3 8 3 3	83 108 88 76 68	. 22 . 22 . 19 . 22 . 15	2 .072 2 .053 9 .062 2 .077 5 .071	13 17 14 17 12	88 127 130 104 70	.80 1.16 1.10 1.01 .63	133 106 154 130 119	.11 .14 .10 .09 .11	<3 4 <3 6 3	1.72 1.68 2.33 2.24 1.97	.02 .02 .01 .02 .02	. 13 . 16 . 18 . 15 . 13	<2 <2 <2 2 <2
K L7.5 K L7.5 K L7.5 K L7.5 K L7.5 K L7.5	N 200W N 180W N 160W N 140W N 120W	<1 <1 1 <1 2	17 27 33 22 18	6 6 10 3	5 78 5 88) 71 5 172 5 168	3 .6 3 .4 1 .8 2 1.1 3 .3	42 48 59 51 51	9 11 13 10 7 9	245 281 285 196 244	3.21 3.56 3.54 3.85 3.85 3.85	4 9 10 7 3 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2	5 5 5 5 5	17 19 13 27 19	-5 -9 -4 -9		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	80 85 77 135 104	. 15 . 16 . 10 . 27	5 .063 5 .049 0 .046 7 .208 7 .074	17 17 13 13 13	70 77 97 82 66	.82 1.01 .92 .98 .68	121 123 111 172 123	.14 .13 .13 .16 .14	<3 <3 7 4 <3	1.82 2.07 2.48 2.12 2.03	01. 01. 02. 01.>	.12 .17 .16 .10 .08	<2 <2 <2 <2 <2 <2
STANDA	RD C3	26	61	31	1 152	2 5.8	3 36	5 12	76	3.55	i 54	34	2	21	30	23.5	i 15	5 24	86	.5	9 .090	19	178	.62	149	. 10	20	1.94	.04	. 16	20
		1	ICP THIS - SAM	500 LEACI MPLE	Ó GRAI H IS I TYPE:	M SAMP PARTI/ SOIL	AL FOR	S DIGE MN I Sample PEP	ESTED FE SR Es be	WITH CA P ginnig MATI	3ML 3 LA CR <u>ng 'RE</u> LED-	-1-2 MG B <u>' are</u>	HCL-H A TI Reru	IN03-H B W A <u>Ins_an</u>	20 AT ND LI I <u>II (RF</u>	195 (MITE(<u>E'a</u>) SI)EG. () FOR <u>re Re</u> GNEL	CFOR NAK jectf DBY	one h and a <u>Repuis</u>	IOUR	AND IS	6 DILL	ITED 1	10 10	ML WI <u>AP</u> IG, J.	TH WA	TER.		<u>+</u> в.с.	 ASŞA	YERS
DA	TE REC	EIVEI): : 	SEP 1	U 199	u u	AIE	KGP		an ak				11/4	7/ .c. the	سس امز ز	nilit.	ies fr	or act	tual	cost	of the	e anal	lysis	only.				Dat	:a_()	FA
	results	are cor	nside	red ti	ne co	nfidel	ntial	ргор	егту			A			a (116													_		 Ŧ	

Wahl, Herb PROJECT KINGPIN FILE # 97-5257

ACHE ANALYTICAL																	· · · · · · · · · · · · · · · · · · ·														
SAMPLE#	Mo moro	Cu	Pb ppm	Zn ppm	Ag ppm	Nii ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	sr ppm	Ċd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ті %	ppm	AL %	Na %	К — %	ррл	
K 975N 100W K 950N 100W K 925N 100W K 900N 100W K 970N 100W	1 2 1 2	10 29 27 3 0 6	8 8 9 8 8	31 106 79 62 32	.6 .4 .6 .7 <.3	11 48 41 37 6	4 12 10 14 3	274 272 259 621 335	1.30 5.46 5.16 2.60 1.48	3 10 8 6 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<>> <> <> <> <> <> <> <> <> <> <> <> <>	11 20 21 22 12	.4 .8 1.1 .8 .4	3 3 3 3 3 3 3	ব্য ব্য ব্য ব্য ব্য	39 91 82 69 45	.10 .20 .24 .16 .12	.031 .084 .072 .049 .092	10 17 14 20 8	26 82 65 61 21	.21 .99 .87 .75 .15	66 125 118 120 82	.10 .15 .13 .09 .10	८ ८ ८ ८ ८ ८ ८ ८ ८ ८	.77 2.21 2.20 1.76 .48	.01 .01 .01 .01 .01	.06 .13 .14 .12 .06	<2 2 2 2 2 2 2 2 2 2 2	
RE K 870N 100W	1	5	10	30	.3	7	3	3 30 '	1.47	<2	<8	<2	<2	12	.6	<3	<3	44	.12	.094	8	21	. 15	82	.10	<3	.49	.02	.06	<2	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

APPENDIX 4

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 👫 🗛

ACME AND TICAL LABORATORIES LTD. 852 E. HASTINGS ST. V COUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (67 253-1716 GEOCHEMICAL ANALYSIS CERTIFICATE														. v	.COJ	UVER	BC	V6	A 11	R6	Ţ	HON	E (60	4)2	53-3	158	FA	K (61	25	3-1'	716
					•				G	EOC	HEM	ICA	LA	NAL	YSI	s c	ERT	IFI	CAT	È							-			A	
	. <u>.</u>				·	·· .	<u>Wa</u>	<u>ahl,</u>	He	rb	PRO R.R	<u>JEC</u>	T K \$12	INC ¢4,	PIN Gibso	F n BC V	ile /ON 1	₩ ¥9	97-	613	1						· .				
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N İ ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Şr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Тi %	B ppm	AL 	Na %	к %	W PPM	Au* ppb
KPAS 1446NW KPB 915N KPC 200N KPC 250N KPC 300N	5 29 3 4 4	32 13 224 38 260	7 12 14 13 19	65 24 106 76 153	<.3 .4 2.7 .5 3.3	45 20 125 51 205	34 11 19 11 26	1284 43145 1658 266 808	3.74 3.84 3.51 3.84 5.52	26 38 26 10 40	<8 <8 14 <8 <8	< < < < < < < < < < < < < < <><><><><><	2 <2 2 2 5	34 125 160 25 79	.3 1.5 5.4 1.1 4.1	୍ଞ 5 3 3 3	⊲ ⊲ ⊲ ⊲ ⊲	111 6 93 151 121	.44 2.83 2.67 .33 1.06	.095 .174 .123 .038 .070	9 <1 28 5 30	85 2 111 117 166	1.00 .04 .73 .94 1.02	145 1469 386 97 623	.14 <.01 .07 .25 .11	3 9 7 3 3	1.70 .11 2.82 1.50 4.28	.02 .02 .03 .02 .04	.19 .06 .27 .11 .40	<2 <2 <2 <2 3	5 <1 2 1 14
КРС 1040N Re крс 300N	1 3	15 257	8 15	27 150	.5 3.1	8 202	8 26	1390 767	1.46 5.39	5 44	<8 <8	<2 <2	<2 5	92 77	.7 4.2	<3 <3	<3 <3	35 119	2.89 1.01	.176 .068	2 29	11 162	.09 1.00	370 615	.01 .11	5 4	.27 4.11	.01 .05	.03 .40	<2 <2	<1 4
DATE RE(CEIV	IC TH Sa	P IS LE SAMPL mples	500 G ACH I E TYP begi	RAM S S PAR E: SI nning	AMPLE TIAL LT LT DAT	IS D FOR M AU* are	IGESTE N FE S - AQU Reruns	D WIT R CA MA-REG and C MA	H 3ML P LA IA/MI <u>'RRE'</u> IILED	3-1- CR MG BK EX are	2 HCL BA T TTRACT Rejec	- HNO3 I B W , GF/ <u>t Rer</u> - 27/	- H20 AND AND FI	AT 95 LIMIT INISHE	DEG. ED FO D.(10	C FO R NA GM)			2 3	15 01	LUTEC) ТО 1	O ML	WITH	G; CE	RTIFI	EÐ B.C	. AS	SAYER	5

APPENDIX 5

Data____FA

					W	ahl	<u>, F</u>	leri	> PR	OJE R	CT .R4	KIN S12	GPI 2 64,	<u>N</u> , Gibe	Fil	.e ⋕ c von	97 1v0	-61	.32		'age	<u> </u>					<u></u>			
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn. ppm	Ag ppm	Nī ppm	Со ррпі	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mpm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B PPm	Al %	Na %	К %	₩ ppm
PA 1985NW PA 1950NW PA 1900NW PA 1850NW PA 1850NW PA 1800NW	5 2 4 3 2	112 66 90 91 42	9 6 8 8 6	94 91 114 95 54	.3 <.3 .3 <.3 <.3	111 119 101 94 54	30 28 33 28 14	776 577 945 549 334	4.99 4.41 5.06 4.45 3.57	20 14 19 23 14	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	41 31 29 24 20	.9 .5 .8 .9	3 <3 4 4 3	ব্য ব্য ব্য ব্য	142 115 137 125 101	.38 .45 .29 .27 .26	.042 .056 .051 .044 .033	12 11 10 13 10	185 199 170 149 102	1.97 2.21 1.81 1.62 1.20	185 151 174 151 89	.24 .23 .22 .24 .19	ও ও ও ও ও ও ও	3.49 3.56 3.63 3.43 2.41	.02 .03 .02 .02 .03	.36 .32 .28 .29 .12	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <
PA 1750NW PA 1700NW PA 1650NW PA 1600NW PA 1550NW	2 4 2 2 1	42 40 30 39 20	9 7 11 6 7	54 80 30 7 21	.7 .3 .9 .5 <.3	43 66 27 12 16	13 16 14 7 5	437 499 699 219 134	2.31 3.18 1.12 .69 1.12	7 7 2 6 2	<8 <8 <8 8 <8	<>> < < < < < < < < < < < < < < < < <><><><><><><><><><><><><><><><><><><><>	< < < < < < < < < < < < < < < < < < <	36 25 56 34 29	.3 .4 .7 .3	ও ও ও ও ও	ও ও ও ও ও ও ও ও	70 92 23 18 38	.37 .30 .52 .37 .32	. 108 . 039 . 145 . 158 . 093	11 9 16 9 7	83 157 55 17 48	.89 1.66 .37 .06 .36	119 90 153 69 80	.08 .20 .02 <.01 .07	<उ <उ	1.96 2.40 1.35 .50 .96	.02 .02 .02 .01 .02	.11 .13 .08 .03 .05	<2 <2 <2 <2 <2 <2
PA 1500NW PA 1400NW PA 1350NW PA 1300NW E KPA 1300NW	<1 2 3 3	29 53 44 62 61	5 8 6 9 8	8 44 51 31 31	1.3 .5 <.3 1.4 1.3	13 42 44 41 41	5 9 12 7 7	90 260 271 146 142	.99 1.94 2.66 1.92 1.92	2 10 6 5	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < < < < <	~~~~ ~~~~~	58 32 31 36 36	.8 .7 .5 1.3 1.4	3 3 3 3 3 3	८३ ८२ ८२ ८२ ८२ ८२	11 61 84 43 42	.56 .31 .35 .58 .58	. 158 .078 .049 .156 .156	7 14 9 12 12	13 92 89 85 82	.08 .68 1.02 .46 .46	112 153 105 131 132	.01 .10 .15 .03 .03	3 3 3 3 3 3	.58 2.17 1.84 2.23 2.22	.01 .01 .02 .02 .02	.03 .15 .14 .17 .17	<2 <2 <2 <2 <2 <2 <2
(PA 1250NW (PA 1200NW (PA 1150NW (PA 1100NW (PA 1050NW	2 2 1 1	63 57 77 72 39	7 8 8 12 9	54 84 84 74 85	.5 .6 1.7 1.0 .4	44 61 56 57 31	12 23 23 28 12	309 736 1052 1093 497	3.48 3.96 3.46 2.54 3.68	9 13 12 7 11	<8 <8 <8 <8 <8	<>> < < < < < < < < < < < < < < < < <><> <>	< < < < < < < < < < < < < < < < < < <	13 30 41 36 18	.7 1.0 1.3 .8 .7	3 3 3 3 3 3 3	3 3 3 3 3 3 3 3	92 113 104 68 117	.12 .36 .56 .50 .27	.051 .078 .109 .110 .114	8 10 10 11 6	88 110 96 91 85	.92 1.22 1.11 .99 .86	68 103 144 130 96	.12 .16 .08 .08 .20	⊲ ⊲ 4 ⊲ ⊲	2.33 2.24 2.26 2.15 1.49	.02 .02 .02 .03 .02	.11 .16 .20 .19 .11	<2 <2 <2 <2 <2 <2
(PA 1000NW (PA 950NW (PA 900NW (PA 850NW (PA 850NW	2 3 3 1 9	49 33 58 47 254	10 9 9 8 9	92 66 48 112 41	.4 <.3 .3 .4 3.1	84 52 38 38 43	16 16 12 22 40	347 523 326 621 1778	3.81 3.47 3.99 5.32 2.84	15 13 16 18 24	<8 <8 <8 <8 10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	27 28 13 18 56	.7 .4 .7 .5 6.3	3 <3 <3 <3 4	ব ব ব ব ব ব	103 94 121 177 96	.34 .46 .18 .33 1.36	.058 .233 .043 .152 .227	11 6 8 6 42	105 106 80 82 63	1.06 .91 .83 1.40 .56	111 203 58 159 154	.23 .14 .23 .28 .04	ব্য ব্য ব্য ব্য ব্য	1.92 1.63 2.05 2.22 2.74	.02 .02 .02 .02 .02	.16 .13 .12 .21 .11	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <
(PA 750NW (PA 700NW (PA 650NW (PA 600NW (PA 550NW	4 2 2 2 2 2	142 33 27 35 59	10 10 8 7 6	104 93 71 136 110	.8 <.3 .5 .3 .4	68 34 30 45 53	36 14 11 17 22	1181 595 362 582 466	4.09 3.56 3.76 3.95 4.18	26 12 11 15 19	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	27 17 34 21 23	1.2 .6 .5 .7	3 3 3 3 3 3 3	८३ ८३ ८३ ८३ ८३	116 111 121 113 152	.64 .29 .51 .30 .40	.071 .052 .062 .161 .161	14 8 7 7 7	93 70 69 94 88	1.06 .81 .91 1.18 1.53	156 167 135 107 96	.15 .19 .22 .17 .26	<3 <3 <3 <3 <3	2.59 1.66 1.67 2.12 2.83	.02 .02 .03 .02 .02	.17 .08 .11 .08 .39	<2 <2 <2 <2 <2 <2 <2 <2
KPA 500NW KPA 450NW KPA 400NW KPA 350NW KPA 300NW	2 1 1 3 2	51 52 38 58 41	8 10 9 12 8	111 92 141 127 220	.3 .7 .5 1.0 .4	71 37 51 31 49	17 16 19 13 18	312 635 762 997 509	4.03 3.39 3.53 2.80 3.33	18 17 21 12 10	<8 <8 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	< < < < < < < < < < < < < < < < < < <	26 34 31 34 28	1.6 1.1 4.8 7.5 4.3	4 <3 <3 <3	ও ও ও ও ও ও ও	116 114 113 123 149	.41 .61 .51 .81	.136 .079 .104 .076 .085	8 8 7 9	114 72 91 54	1.32 .92 1.13 .96 1.02	114 129 145 93 105	.20 .18 .16 .14		2.58 1.64 2.00 1.60 1.60	.03 .02 .02 .02 .02	.09 .08 .10 .10 .10	<2 <2 <2 <2 <2 <2
STANDARD C3 STANDARD G-1	25	63 4	37 6	153 39	5.4 <. 3	37 7	12	748 530	3 3.31 5 2.11	53 <2	23 <8	2 <2	19 4	29 75	22.4 <.2	16 <3	21 < 3	80 43	.58	3.084 7.086	20 10	170 60	.59	141 224	. 10	20) 1.89 5 1.01	. 04 . 09	. 16 .47	17 3
DATE DECE		ICP - THIS - SAM	.500 LEACH PLE T	GRAM IS P YPE:	SAMP ARTIA SOIL	LE IS L FOR <u>S</u> ATE	DIGE MN F ample REP(STED E SR S be	WITH CA P ginnic MAIL	3ML 3 LA CR <u>9 'RE</u> ED:	-1-2 MG B/ are	HCL-HI A TI I <u>Reru</u> £ 2	NO3-H B W A ns an 4/4	20 AT ND LII <u>d 'RR</u> ' 7	95 D MITED <u>E' ar</u> SI(EG. C FOR e Rej GNED	FOR NA K ect R BY.	ONE H AND A		ND 15	DILU .D.TO	YE, C	0 10	ML WI <u>APP</u> G, J.	TH WA	TER.	<u>< 6</u>		ASSA	YERS

Wahl, Herb PROJECT KINGPIN FILE # 97-6132

Page 2

SAMPLE#	Mo	Cu	Рb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	\$r	Cd	\$b	Bi	V	Ca %	P	La	Сг	Mg %	Ba	Ti %	8	Al %	Na %	K %	W
KPA 250NW KPA 200NW KPA 150NW KPA 100NW KPA 50NW	ррт 5 2 1 4 3	ррт 112 49 42 63 37	10 10 3 5 6	251 113 72 77 3 0	ppm 1.8 1.0 .6 1.2 .7	68 43 43 51 19	22 18 18 15 12	602 (565) 699) 544) 522)	5.02 3.80 3.37 4.54 2.30	16 16 17 23 8	<pre></pre>	<pre></pre>	2 <2 <2 <2 2 <2	26 33 25 26 28	3.2 2.4 .7 .7 1.2	<3 3 <3 <3 <3 <3	3 3 3 3 3 3 3 3 3 3 3 3 3	164 124 101 126 65	.30 .39 .25 .24 .24	.094 .095 .088 .090 .089	8 13 10 11 11	120 82 85 97 40	1.37 1.19 1.10 1.23 .38	156 138 95 114 58	.20 .18 .13 .19 .07	<3 <3 4 <3 3	2.65 2.12 2.20 2.87 1.47	.02 .02 .02 .02 .02 .02	.15 .13 .15 .19 .07	<2 <2 <2 <2 <2 <2 <2 <2 <2
KPA ONW KPB 1500N KPB 1400N KPB 1300N KPB 1200N	4 1 2 1 2	53 30 25 55 34	14 <3 5 7 6	44 99 178 47 81	.7 .3 .5 .3 2.0	25 42 41 11 26	61 26 21 6 9	2408 653 407 227 676	2.82 6.97 5.30 2.81 2.53	11 11 15 7 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	31 16 28 22 72	1.6 .3 .8 2.3 2.9	<3 4 <3 <3 <3	3 3 3 3 3 3 3	72 234 180 98 96	.23 .48 .33 .41 .32	. 144 . 139 . 098 . 042 . 068	16 4 6 4	48 103 102 44 40	.48 1.82 1.48 .38 .72	101 56 110 46 202	.03 .32 .36 .24 .24	उ उ उ उ	2.11 2.13 2.70 .76 1.30	.01 .03 .02 .01 .03	.07 .21 .18 .05 .18	<2 <2 <2 <2 <2 <2
KPB 1100N KPB 1050N RE KPB 1050N KPB 1000N KPB 950N	5 1 2 1 2	75 8 7 4 4	9 8 7 <3 6	163 20 20 6 16	1.2 <.3 .5 <.3 <.3	60 5 4 2 3	18 2 2 1	1562 483 467 34 73	3.82 .52 .52 .10 .26	17 <2 <2 <2 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	46 112 111 91 75	10.2 .8 .8 <.2 .5	5 3 3 3 3 3 3 3	⊲ ⊲ ⊲ ⊲ ⊲ ⊲	114 6 5 1 3	.93 3.09 3.11 3.23 2.36	.094 .118 .117 .098 .116	10 <1 <1 <1 <1	86 6 7 1 1	1.12 .10 .10 .07 .05	193 140 138 26 53	.14 <.01 <.01 <.01 <.01	4 7 7 12 8	2.73 .15 .14 .06 .07	.02 .01 .01 .02 .01	. 18 . 05 . 05 . 03 . 04	<2 <2 <2 <2 <2 <2 <2
KPB 900N KPB 800N KPB 700N KPB 600N KPB 500N	3 1 2 3 4	14 37 11 51 44	10 8 4 7 9	50 33 15 111 98	.5 1.1 <.3 <.3 .3	18 15 68 54	6 5 4 21 15	142 189 1343 486 307	2.60 1.30 .63 5.11 5.38	5 2 2 10 12	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 22 22 2 2 4	15 59 96 25 14	.4 .7 .3 .3	उ उ उ उ उ	८३ ८३ ८३ ८३ ८३	78 47 10 130 163	.13 1.88 3.75 .37 .19	.053 .099 .110 .230 .100	9 5 <1 9 13	52 37 3 145 118	.46 .43 .06 1.63 1.13	66 150 180 190 123	.15 .07 <.01 .21 .23	3 3 6 3 3 3	1.74 1.01 .11 2.94 2.96	.02 .02 .01 .02 .01	.05 .04 .02 .17 .10	<2 <2 <2 <2 <2 <2 <2 <2
KPB 400N KPB 300N KPB 200N KPB 100N KPB 00N	2 2 3 6 2	15 16 57 35 41	5 6 10 10 3	16 56 79 65 106	<.3 <.3 .3 .3 .3	6 25 68 62 51	2 9 18 13 17	162 179 340 246 406	.39 2.59 4.57 4.31 3.80	<2 4 16 12 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 2 2 2 2 2 2 2	60 13 22 16 21	.4 <.2 .3 .3	<3 <3 <3 <3 <3	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	9 81 121 122 97	1.71 .21 .27 .25 .43	.106 .087 .093 .068 .136	1 5 11 11 5	3 64 133 132 105	.05 .68 1.50 1.06 1.91	141 55 111 66 272	<.01 .18 .17 .19 .35	7 3 3 3 3 3	.16 1.49 2.40 1.91 2.36	.01 .02 .01 .01 .02	.02 .07 .13 .13 .19	<2 <2 <2 <2 <2 <2 <2 <2
KPC 1500N KPC 1400N KPC 1250N KPC 1200N KPC 1150N	3 2 2 <1 2	21 64 36 7 82	11 13 6 10	80 119 101 18 80	<.3 .3 <.3 <.3 1.9	44 53 79 6 62	12 17 23 2 9	200 399 476 104 385	3.14 3.72 4.80 .73 2.50	13 5 9 <2 8	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 3 2 <2 <2	13 18 29 7 59	.3 .5 .3 <.2 .5	उ उ उ उ उ	⊲ ⊲ ⊲ ⊲	87 98 162 26 69	.17 .35 .45 .08 1.84	.086 .161 .117 .026 .164	12 7 9 6 15	92 109 175 23 77	.79 1.22 1.91 .22 .63	99 1 38 200 92 359	.15 .22 .32 .08 .06	उ उ उ उ र	1.63 2.42 2.85 .46 2.21	.02 .02 .02 .02 .02	.07 .12 .25 .04 .15	<2 <2 <2 <2 <2 <2 <2
KPC 1100N KPC 1000N KPC 950N KPC 900N KPC 850N	2 3 3 1	52 17 95 14 16	11 12 5 5	62 50 69 8 18	1.1 .3 <.3 <.3 <.3	64 28 45 6	15 8 25 2 8	797 157 666 116 1008	3.12 3.35 5.15 .32 .52	7 9 7 3 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 3 2 <2 <2	47 20 36 49 77	1.2 <.2 .4 .2	ও ও ও ও ও ও	<3 <3 <3 <3 <3	75 93 161 10 13	.95 .22 .81 1.09 2.37	.049 .087 .154 .157 .090	17 13 9 1	99 64 85 4 3	.66 .64 1.80 .05 .07	459 142 142 149 179	.11 .16 .28 <.01 <.01	<उ <उ <उ <उ 5	2.22 1.46 2.82 .21 .22	.02 .01 .03 .01 .01	.17 .07 .28 .05 .01	<2 <2 <2 <2 <2 <2 <2 <2
STANDARD C3 Standard G-1	26 1	65	37 <3	158 41	5.7 <.3	38 6	13 5	773 569	3.52 2.19	55 <2	18 <8	<2 <2	21 6	31 79	23.1 <.2	15 < 3	20 <3	82 43	.60 .68	.087	21 10	182 16	.61 .61	150 253	. 10 . 15	20 3	1.95 1.07	.04 .10	.16 .52	17 4

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

APPENDIX 6

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 1 FA

Wahl, Herb PROJECT KINGPIN FILE # 97-6132

Page 3

ACHE ANALYTICAL															·																
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn. ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cdi ppm	Sb ppm	Bi ppm	v ppm	Ca X	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	в ppm	Al %	Na %	к %	W ppm	
KPC 800N KPC 700N KPC 650N KPC 600N KPC 500N	3 3 2 <1 <1	37 40 12 34 5	11 8 10 8 7	65 128 42 86 15	2.0 .3 .6 <.3 <.3	58 73 18 52 7	12 21 5 17 3	484 2 336 4 145 1 434 4 71 1	2.75 .81 .98 .14 .24	7 7 5 11 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 3 2 2 2 2 2	32 22 6 21 10	.6 .5 .3 .3 .3	ও ও ও ও ও ও	⊲ ⊲ ⊲ ⊲ ⊲ ⊲	52 154 57 105 45	.61 .31 .05 .32 .09	. 126 . 173 . 039 . 082 . 021	16 12 9 14 7	65 140 34 97 31	.54 1.36 .24 .95 .12	341 1 3 6 91 166 49	.05 .18 .11 .17 .10	4 : 6 : 3 : 4 : 3 :	3.07 2.76 .96 1.99 .39	.03 .02 .02 .02 .02	. 28 . 11 . 05 . 13 . 04	<2 <2 <2 <2 <2	
KPC 450N KPC 400N RE KPC 400N KPC 100N Standard C3	2 3 2 25	30 81 81 175 61	8 14 15 7 34	98 115 116 106 156	.3 2.3 2.3 2.1 5.7	65 130 132 106 37	24 25 25 10 12	340 4 1608 5 1641 5 292 2 767 3	4.41 5.10 5.15 2.07 5.44	13 25 25 12 53	<8 <8 <8 <8 19	< < < < < < < < < < < < < < < < < < <	3 <2 <2 <2 17	22 60 61 241 30	.6 2.1 2.3 10.0 22.6	<3 4 3 <3 15	<3 <3 <3 <3 22	87 99 99 48 83	.36 1.25 1.27 3.47 .59	.069 .092 .091 .125 .085	17 28 28 18 20	137 137 139 71 175	1.10 .91 .92 .48 .60	189 508 519 242 145	.16 .09 .09 .04 .11	5 / 4 / 5 / 14 / 20	2.17 4.18 4.21 1.63 1.95	.02 .03 .03 .02 .04	.09 .33 .33 .16 .16	<2 <2 <2 <2 17	
STANDARD G-1	<1	3	4	40	<.3	6	5	567 2	2.19	<2	<8	<Ż	5	80	<.2	<3	<3	46	.70	.089	11	17	.60	239	.16	4	1.06	.10	.50	4	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

APPENDIX 6

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

XCME	ANA	TTCA	L. L.A	BOR	ATOR	IES	LTD	 	85	2 E.	HAS	TIN	'S S'	r. v		UVER	BC	V6	A 18	:6		HON	S (60	4)25	53-3	158	FAX	(60	25	3-1	716
AA	n n#							<u>Wah</u>	1, H	GEOG Ierb	CHE PR R.	MIC OJE R4	AL 1 CT 1 S12	ANA) <u>KIN(</u> 64,	GrSI GPIN Gibso	SC F nBC	ERT	'IFI # V0	CAT 97-	E 613	3					· · · · · ·				A	A
SAMPLE#	Mo	Cu	Pb	Zn	Ag ppm	Ni	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Сг ррт	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	W PPm	Au* ppb
970-1R	4	157	3	40	4	28	24	549	4.74	6	<8 <8	<2 <2	2 3	44 32	<.2 2.8	<3 <3	ও ও	171 151	1.15	. 175 . 136	6 8	29 37	1.32	108 65	.25 .24	31 51	.49 .56	.14 1	.08 .51	34	2 17
970-28 970 -3 R 970-4R	4	203 400	5 <3	114 24	1.7	26 10	27	523 118	5.94	8	<8 <8	<2 <2	3 4 4	48 16 7	3.6 .4 120 3	<3 <3 133	<3 4 36	174 102 20	.87 .54 .09	.133 .124 .058	14 10 4	53 28 9	1.16 .51 .04	111 25 29	.26 .22 <.01	<3 1 <3 10	.40 .73 .29	.07 .01	. 27 . 18	2 <2	6 1450
970-5R 970-6R	713	977 633	465 301	2039 1522	15.5 9.8	60 29	18 3	343	20.58	194	<8	<2	4	5	78.7	102	15	18	.08	.106	2	5	.03 04	19 26	<.01 <.01	12 10	.24	.01 .01	. 18	<2 <2	77 118
970-7R RE 970-7 970-88	137 R 137 4	1125 1117 93	425 415 20	1153 1150 78	13.9 13.9 <.3	41 41 19	10 9 24	1656 1654 1179	14.64 14.54 7.23	112 115 19646	<8 <8 <8	<2 <2 <2 <2	4 4 2	7 121	78.0	167 168 677	11	18 58	.07 1.94	.109	4 3	9 20	.04	33 136	<.01 <.01	9	.32 .70	.01 .02	.25 .26	<2 <2	105 80
270 01	I																														

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

APPENDIX 6

* GOSSAN BOXWORKS SAMPLES

+ GOSSAN 'SOIL' SAMPLES

RESISTIVITY CONTOUR \$ 2000 OHM METERS

10-15-20-30 mV/VOLT

_**39**.0

KINGPIN CLAIM GROUP C-2AG SILVER ≥ 2 PPM GEO-COMPOSITE PLAN A FLOAT CU-ZN-Ag-Cd Cd-AG GEOCHEM VS I.P. SURVEY

OCT.- NOV. 1996

Wahl H. WAHL, P.ENG. B.C.

X OUTCROP _ do -

