
Geochemical Report on the Newton Project

by:

Rudolf M. Durfeld, B.Sc., P.Geonot OCICAL SUBJENT BRANCH December 1997.

■ Table of Contents

. 1.

1. Introduction
2. Location
3. Access and Physiography
4. Ownership
5. History
6. Geology 7 6.1 Regional Geology 7 6.2 Newton Property Geology 8 Structure 8 Alteration 9 Mineralization 9
7. Geophysical Surveys 10 7.1 Induced Polarization 10 7.2 Results 10
8. Soil Geochemical Survey
9. Results
10. Cost Statement
11. Certificate

. .

Appendix I - Geochemical Procedures and Results for 1997 Soil Samples

Illustrations

ì

Fig. #	Title	Scale	Page #
1	Newton Property Location Map	1 : 750,000	4
2	Newton Property Claim Map	1 : 50,000	6
3	Newton Property Geology	1 : 5,000	*
6	Geochemical Plan - Copper (ppm)	1 : 5,000	*
7	Geochemical Plan - Gold (ppb)	1 : 5,000	*
9	Geochemical Plan - Mercury (ppb)	1 : 5,000	*

. 1

* - attached illustration

ì

■ 1. Introduction

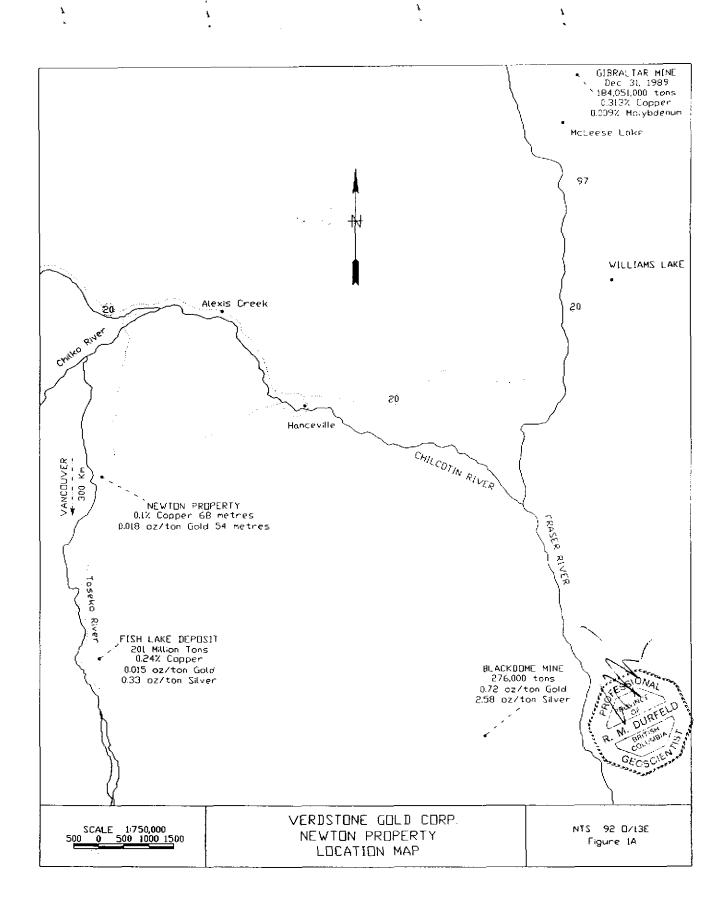
¥

This report documents fill in and expanded soil sampling conducted on the Newton I, NWT1, NWT 3, NWT5 and NWT 7 mineral claims during the period of September 8th to 12th, 1997.

\$

2. Location

The Newton claims are located (Figure 1) in the Clinton Mining Division, British Columbia, approximately 37 kilometres west-southwest of the community of Hanceville and 105 kilometres west-southwest of the city of Williams Lake. The claims are centred at 51 degrees 48 minutes north latitude and 123 degrees 37 minutes west longitude (NTS map sheet 920/13E).


3. Access and Physiography

The Newton property is readily accessible from Williams Lake by two different routes. The first follows Highway 20 to Hanceville where the Taseko Lake access road branches off to the southwest. At approximately 48 kilometres (30 miles) on the Taseko Lake road, a rough four-wheel-drive trail to Scum Lake branches northwest, and after 8 kilometres (5 miles) bisects the Newton property from the south. The second route follows Highway 20 for approximately 120 kilometres (75 miles) west from Williams Lake, where the Weldwood 7000 logging road branches off to the south, crossing the Chilko River at the Siwash Bridge. Recent extensions of the 7000 road cross the northeast of the property and end at Scum Lake. The rest of the property is readily accessible by four-wheel drive trails and a bulldozed seismic line. The physiography of the Newton property is dominated by Newton Hill, a circular hill some four kilometres in diameter, which protrudes about 150 metres (500 feet) above the surrounding Fraser Plateau. Elevations on the property range from 1200 metres (3950 feet) at Scum Lake to 1361 metres (4466 feet) at the summit of Newton Hill.

Vegetation on the Newton property is characterized by open, mature forests of Douglas fir at higher elevations and lodgepole pine at lower elevations with willow in swampy areas. The understorey consists largely of grasses with occasional juniper bushes.

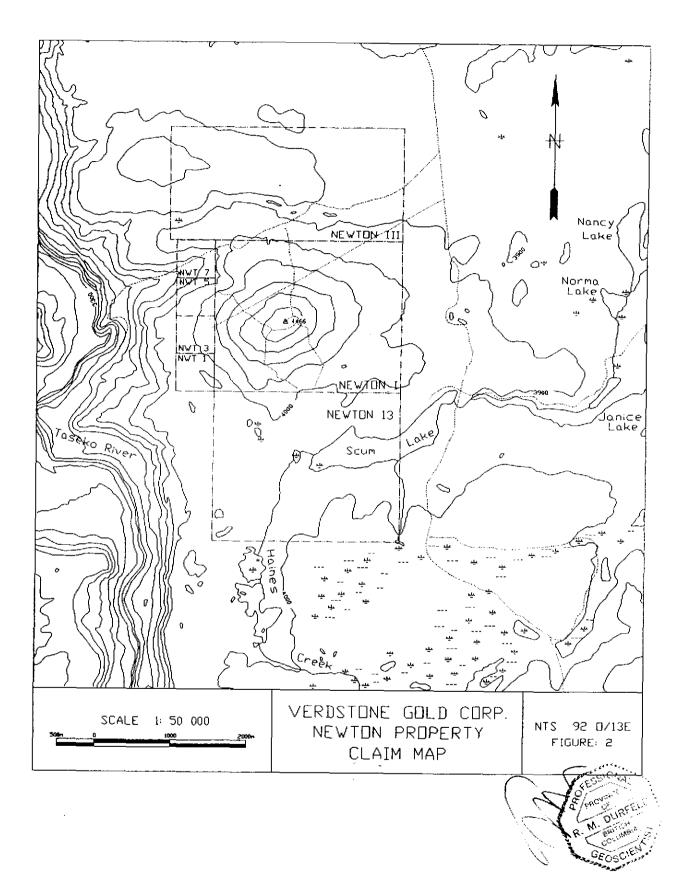
4. Ownership

The Newton property consists of 3 contiguous modified grid mineral claims and 4 2-post claims, totalling 62 units and covering 1,550 hectares (3,828 acres). The status of the claims is summarized below and the relative claim locations are outlined on the Claim Map at a scale of 1:50,000 (Figure 2). The year of expiry reflects the 'Statements of Work' applied to the claims on September 12th and 23rd, 1997.

Claim Name	Record Number	Num. of Units	Date of Record	Year of Expiry
Newton I	208327	20	09/14/87	1998
Newton 3		18	11/13/97	1998
Newton 13		20	11/13/97	1998
NWT 1	313481	1	09/25/92	1998
NWT 3	313483	1	09/25/92	1998
NWT 5	313485	1	09/25/92	1998
NWT 7	313487	1	09/25/92	1998

٢

Verdstone Gold Corporation is the registered owner of the Newton and NWT mineral claims.


As part of the 1996 survey some of the Legal Corner Posts were surveyed by differential GPS. Grid locations and roads were also mapped in conjunction with the claim survey. The surveyed roads, claims and points were transferred digitally to all of the maps.

History

٢

A description of the property area is first given in the 1916 B.C. Department of Mines report which documents a Mr. Newton working on Newton Hill and obtaining gold assays of \$1 to \$3 per ton (ie. up to 0.1 ounces per ton). His work is still evident: both the Newton Shaft, a small shaft near the top of Newton Hill, and some open cuts remain. Mr. Newton probably accessed Newton Hill from his ranch to the north, the Newton Place, which is located just north of the Siwash Bridge.

The claims on Newton Hill were held by several people after Newton's time, but the first documented work was in 1971 and 1972, was by Cyprus Exploration Corporation, who conducted geological mapping, induced polarization and magnetometer surveys followed by drilling of 10 B.Q. diamond drill holes totalling 1615 metres (5300 feet). The objective of this

6

¥

program was to explore for a supergene enriched, porphyry copper deposit. Feldspar porphyry intrusions with related hydrothermal alteration and a leached cap up to 30 metres (100 feet) thick were investigated. The induced polarization survey indicated a large zone around Newton Hill interpreted to contain 5% sulphide mineralization. The diamond drill holes were collared to test these high sulphide zones and the copper grades encountered were low and the claims were permitted to lapse.

١

In 1981, Taseko Mines Limited acquired the Ski claims, covering the Newton property and the surrounding area. In 1982, Taseko drilled 8 percussion and 4 diamond drill holes on the property. These drill holes, collared to test the outer portions of the anomalous induced polarization zones, are along the southern and western property boundary. The results of this work are discussed in Assessment Report 11,001. Diamond drill hole 82-3, just inside the southern claim boundary, showed one 3 metre (10 foot) section of core to assay 1028 ppb gold. Parts of the Ski claims subsequently lapsed and were then acquired by R. M. Durfeld in 1987 and 1988 as the Newton I, Newton #2 and Newton #3 mineral claims. Initially, 82 soil samples and 129 rock samples (outcrop and 1972 drill core) were collected and analysed for gold and pathfinder elements. This work showed two 3 metre (10 foot) sections of core in hole 72-6 to contain 2300 and 2790 ppb gold respectively. The orientation soil survey resulted in several zones which are anomalous to strongly anomalous in gold (up to 580 ppb) and mercury.

In 1989, Rea Gold Corporation entered into an option agreement with Messrs. R. M. Durfeld and A. J. Schmidt to acquire a 100% interest in the Newton property comprised of the NEWTON I, 2,3 and 5 mineral claims. Subsequent work on the property by operators Rea Gold and Verdstone Gold has consisted of geochemical (rock and soil), trenching, ground magnetic and induced polarization surveys and diamond drilling.

■ 6. Geology

6.1 Regional Geology

The regional geology of the Scum Lake area was mapped by H. W. Tipper of the Geological Survey of Canada and is published as Open File 534. This work shows the volcanic and clastic rocks of the Upper Cretaceous Kingsvale Group to be unconformably overlying a basement of Mid-Jurassic granitic rocks. Eocene felsic stocks, dykes and related volcanics intrude and overlie all rocks excepting the younger Miocene Age plateau basalts of the Chilcotin Group. The limited outcrop in the property area is masked by these Miocene plateau basalts and glacial drift of Quaternary Age.

The dominant structural trend is northwesterly, parallel to the Yalakom and Chilcotin transcurrent faults, which lie south and north of the property respectively. Emplacement of the Newton Hill intrusions was controlled by this northwesterly structure, along with weaker northeasterly, easterly and north-south structures. Strong linear features on the flanks of Newton

Hill are visual evidence for these structures. The hill is a topographic dome, probably related to the emplacement of the intrusive rocks. The Taseko River, immediately to the west of the Newton property, shows sharp northwesterly and northeasterly displacements from a regional north-south trend, further supporting the presence of strong structures in these directions.

5

Prominent grooves show the direction of glacial movement to be north-northeast.

6.2 Newton Property Geology

The initial 1:5000 scale geological mapping was done in conjunction with the grid soil sampling and is based on mapping of limited outcrop exposures and subcrop areas, as well as the prospecting of angular, local float from soil sample pits. Extensive Quaternary glacial till covers the flanks of Newton Hill and the surrounding Fraser Plateau. Mapping of surface trenches in 1991 and 1992 and diamond drilling has modified the lithological contacts on the 1:5000 Geology map (Figure 3).

All rocks mapped on Newton Hill have undergone extensive hydrothermal alteration, making recognition of primary textures and compositions difficult. The oldest rocks in the area, Mid-Jurassic granodiorite and andesite, lie immediately west of the Newton property on the banks of the Taseko River.

The Upper Cretaceous Kingsvale Group (Kv), formed by processes of continental sedimentation and volcanism, occurs on the Newton property as siltstone (SS), sandstone (SD), conglomerate (CNG) and intercalated tuffs (LAP). Positive identification of the Kingsvale Group rocks is often difficult due to strong hydrothermal alteration.

The Kingsvale rocks have subsequently been intruded by irregular dykes, sills and stocks of Eocene age (Ef). The Eocene intrusions are felsic in composition, often porphyritic in feldspar (F), quartz (Q) and/or biotite (B) showing both compositional and textural variation. These porphyries were mapped as quartz feldspar, quartz eye or granites representing a quartz saturated magma. A medium grained biotite feldspar porphyry of monzonite composition shows no free quartz.

Megascopically, the Eocene intrusions occur as east-northeasterly trending dykes, sills or stocks with interfingered bands of Kingsvale Group rocks. Detailed mapping modifies these intrusive contacts, and also shows smaller dyke swarms with northeasterly and northwesterly trends.

Structure

٢

The strongest faults and structures in the Newton property area are northwesterly (Yalakom and Chilcotin Faults), with weaker northeasterly, easterly and northerly structures. Faults and joint sets in the property area are parallel to these major structural trends. The two most prominent structures are northwesterly trending faults and joints dipping steeply to the southwest, and easterly trending faults and joints dipping steeply to the north. These are most evident in the short shaft that is located just east of the summit of Newton Hill. Here, these joint sets are associated with small-scale shears or faults indicated by slickensides and narrow, 30-centimetre, fault breccia zones consisting of subangular clasts to 1 centimetre in a fine grained strongly limonitic matrix. The east-west distribution of the Eocene feldspar porphyry intrusions suggests that their emplacement was controlled by the east-west structures. Some of the weaker joints form a more random to concentric pattern and may reflect the emplacement of the intrusives.

١

Alteration

ł

The mapped hydrothermal alteration occurs as a 1 kilometre-radius area centred on Newton Hill. The alteration products mapped were sericite, kaolinite and quartz as veining or silica flooding. Sericite and kaolinite are usually present, with sericite alteration being the most intense and extensive. Kaolinite alteration is strongest in zones of silicification and fracturing. In trenches one and two, a light green to yellow, soft, waxy mineral occurring as 1 to 2 centimetre thick veins has been identified as pyrophyllite. Secondary chlorite was noted in sections of andesitic to mafic Kingsvale rocks.

The Newton property exhibits strong surface weathering. Oxidation is present in diamond drill holes to depths of 30 metres (98 feet). This weathering is evident in surface samples as relic pyrite grains in areas of euhedral pyrite casts. Some of the bleached bedrock may be due to sulphuric acid development during the weathering of this pyrite. Evidence of this oxidation has been mapped as hematite and jarosite.

Mineralization

Pyrite was noted in only a few locations on the Newton property. Disseminated pyrite appears to comprise up to 10% of the original rock, including the pyrite casts. Drilling indicates that oxidation and leaching are almost complete to a depth of 30 metres, and that below this level, disseminated pyrite is ubiquitous, comprising from less than 1% to 10% of the rock.

The only evidence of copper mineralization noted on surface was trace turquoise. Chalcocite and malachite occur in the upper, oxidized, section of diamond drill hole 92-1 and averaged 0.28% copper over 22 metres. Below the oxide section sulphide copper occurs as chalcopyrite on quartz veins and as disseminations. Significant gold mineralization occurs with the sulphide mineralization. Gold values in the copper zone range from 100 to 1200 ppb (DDH 92-01 and TR 90-02) and on the south flank of Newton Hill form a gold zone in silicified altered rocks with values of 100 to 3300 ppb gold (DDH 92-04 and TR 90-08).

¥.

Accessory magnetite occurs as disseminations in the Biotite Feldspar Porphyry and the less altered Kingsvale volcanic lithologies. The ground magnetic survey reflects this magnetite content and shows areas of Biotite Feldspar Porphyry as local magnetic highs. The ground magnetic surveys are of assistance in mapping the extent of the Biotite Feldspar Porphyry.

7. Geophysical Surveys

7.1 Induced Polarization

Induced polarization and magnetic surveys have assisted in the interpretation of the Newton Property. Induced polarization surveys have shown a strong 2000 metre by 1200 metre chargeability anomaly on a northwest-southwest trend centred on Newton Hill. On the south side of the anomaly a low chargeability zone is indicated which is partially enveloped by high chargeability to produce a partial "donut" effect. This core area of lower chargeability corresponds with a magnetic high, and is up to 1,000 by 500 metres in area.

7.2 Results

ł

The magnetic high features at 95+00E and 100+25N, and 98+00E and 102+00N correspond to a magnetite bearing biotite feldspar porphyry. Additional magnetic-high features to the west, with a regional alignment of magnetic highs on the northwest trends. No outcrop was observed in these areas, they should be evaluated for their potential of being underlain by magnetic biotite feldspar porphyry.

8. Soil Geochemical Survey

Soil samples were collected from shovel dug pits to a minimum depth of 0.5 metres at 25 metre sample stations on fill in lines to achieve grid lines 100 metres. Analytical procedures and results are attached as Appendix I. Samples were analysed for gold by fire assay with atomic absorption finish, mercury and for 31 element ICP. Results were supplied in digital form from all surveys and used to computer generate plots for copper, gold and mercury. (Figures 6, 7 and 9).

10. Results

Previous work has identified the Newton property as a high level porphyry copper-gold system. A site visit and the compilation with previous data has outlined an excellent target that has been virtually untested by diamond drilling. Diamond drill hole 72-3, the only hole to date drilled in the target area, at the east end, and diamond drill hole 92-01 just on north side of target had some of the best results (72-3 0.31% copper over 22 metres, gold wasn't analysed and 92-01.21% copper, .006 oz/ton gold over 34 metres).

5

Recent compilation of the chargeability and magnetic data expands the interest on the south west side of Newton Hill. Previous work in the area gave weak geochemical copper and gold in soil response in this area generally devoid of outcrop. Surface evaluation of drill sites proposed by this compilation consisted of test pitting and trenching. The results showed elevated to anomalous values for copper and gold in soils at all sites.

Trenches 96-01 and 96-02 suggest that the Biotite Feldspar Porphyry continues to the south and east with anomalous copper and gold values. This work supports the target for diamond drilling as planned by a subsequent program.

The 1997 soil sampling did not expand the copper geochemical anomaly beyond line 103 east. The fill in lines confirmed and better defined the anomalous copper and gold zones in the central and northwest grid area. Inclusion of the 1996 data in the contoured data gives an expansion of the anomaly to the southwest.

Many of theses anomalous sites should be excavated to bedrock and/or a deeper soil sample followed by diamond drilling.

11. Cost Statement

٩

		Total Cost	\$6,513.61
Report Preparation and Drafting			\$800.00
Analytical Costs		181 soil samples	\$3,428.14
Field Consumables			\$150.00
Truck Fuel			\$206.90
Truck Rental		5 days @ \$60	\$300.00
Room and Board		5 days	\$316.25
Sampler	S.G. Lehman	5 days	\$912.32
Geologist - Manager	R.M. Durfeld B.Sc., P.Geo.	1 day @ \$400	\$ 400.00

Dated at Williams Lake, British Columbia this 12th day of December, 19973SIO

R.M. Durfeld, B.Sc., P.Geo

, ì

K

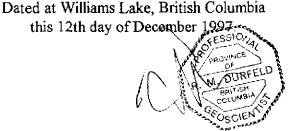
DURFELD GEOLOGICAL MANAGEMENT LTD.

■ 12. Certificate

I, Rudolf M. Durfeld, do hereby certify that:

1.) I am a geologist with offices at 1725 Signal Point Road, Williams Lake, BC.

2.) I am a graduate of the University of British Columbia, B.Sc. Geology 1972, and have practised my profession with various mining and/or exploration companies and as an independent geological consultant since graduation.


3.) I am a member of The British Columbia and Yukon Chamber of Mines and the Canadian Institute of Mining and Metallurgy.

4.) That I am registered as a Professional Geoscientist by the Association of Engineers and Geoscientists of B.C. (No. 18241).

5.) That this report is based on:

a.) my supervision and direct observations as geologist and manager of the soil sampling conducted on the Newton property during the period September 8th to 12th, 1997.

b.) my personal knowledge of the Newton property area and a review of available government maps and assessment reports.

R.M. Durfeld, B.Sc., P.Geo.

P.O. Box#4438 Station Main Williams Lake, BC V2G 2V5

Phone: (250) 392 - 4691 Cell: (250) 398 - 0353 Fax: (250) 392 - 3070 E-mail: rdurfeld@stardate.bc.ca Appendix I - Geochemical Procedures and Results for 1997 Soil Samples

s

, **,**

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA VSX 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

٤

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

PROCEDURE FOR AU GEOCHEM FIRE ASSAY

Samples are dried @ 65 C and when dry the Rock & Core samples are crushed on a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to 1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 gram sub-sample. This sub-sample is then pulverized on a ring pulverizer to 95% - 150 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

Soil and stream sediment samples are screened to - 80 mesh for analysis.

The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved with agua regia solution, diluted to volume and mixed.

These resulting solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 2 standard deviations of its known or the whole set is re-assayed.

10% of all assay per page are rechecked, then reported in PPB. The detection limit is 1 PPB

VANCOUVER OFFICE: 8282 SHERBROOKF STRFFT VANCOUVER, B.C. CANADA VSX 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR TRACE ELEMENT ICP Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sn, Sr, Th, Ti, U, W, Zn

0.50 grams fo the sample pulp is digested for 2 hours with an $1:3:4 \text{ HNO}_3:\text{HCl}:\text{H}_2\text{O}$ mixture. After cooling, the sample is diluted to standard volume.

The solutions are analysed by computer operated Jarrell Ash 9000, Jarrell Ash 975 or Jobin Yvon 38, Inductively Coupled Plasma Spectrophotometers.

PROJ: NEWTON

ATTN: Rudi Durfeld

MIN-EN LABS - ICP REPORT

FILE NO: 7V-0770-SJ1+2

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

*] * (ACT:ICP 31)

DATE: 97/10/30

ATTN: Rudi Durfeld																												-	
SAMPLE NUMBER	AG AL PPM %	AS PPM	BA PPM	BE PPM	BI PPM		CD PPM F		CR PPM P		FE C		LI PPM	7	MN I PPM PI	PM :	A NI X PPM	I PPI		SB PPM			PPM	11 % P		PM PP	M P	PM	I-fire Hg PPB PPB
L90E 103+00N L90E 103+25N L90E 103+50N L90E 103+75N L90E 103+75N L90E 104+00N	.1 1.27 .1 1.32 .1 1.21 .1 1.34 .1 1.34 .1 1.53	1 1 1 1	103 138 103 83 130	.1 .1 .1 .1	1 1 1 1	.38 .33 .37 .46 .45	.1 .1 .1 .1	7 6 6 8 8		8 2. 11 2. 10 2. 18 2. 13 2.	.60	4 .06 3 .05 3 .09 4 .09 3 .11	4	.26 .27 .34	250 522 354 313 643	1 .0 1 .0 1 .0 1 .0 1 .0	2 13 2 14 2 15	5 330 1 440 5 590) 7) 4) 5	1 1 1 1	1	27 21 24 34 37	11 11 14	10 10 10 12 11	6 46 6 46 6 44 8 57 8 51	.5 .5 .7 .3	2 1 1 2	70 87 93 73 83	5 45 1 65 8 35 7 35 6 40
L90E 104+25N L90E 104+25N L90E 104+50N L90E 104+75N L90E 105+00N L90E 105+25N	.1 1.56 .1 1.53 .1 1.48 .1 1.34 .1 1.34	31214	93 135 152 83 71	.1 .1 .1 .1	1 1 1 1 1	.45 .47 .64	.1 .3 3.0 3.4	0	30 27	18 2. 14 2. 25 2. 25 2. 21 2	.92 .68 .74 .37	5 .12 3 .10 2 .18 2 .20 4 .13	5819	.37 .39 .39 .34 .34	240 707 1350 1107 341	1 .0 1 .0 1 .0 1 .0 1 .0	3 10 3 19 3 19	6 391 9 1211 9 661) 5) 6) 6	1	1 1 1 1	36 32 43 30 33	14 14 12	.12 .11 .10 .10	9 65 8 55 8 51 7 47 9 66	.7 .9 .0	3 1 6 3 5 2 1	61 122 302 218 70	7 30 2 40 4 40 5 45 22 30
L90E 105+50N L90E 105+75N L90E 105+75N L90E 106+60N L90E 106+25N L90E 106+50N	.1 1.30 .1 1.17 .1 1.03 1.5 1.64 .1 1.34	2	79 85 62 204 73	.1 .1 .1 .4	1 1 1 1 1	.40 .40 .33 .83 .35	.3 .3 3.6 .1	9 9 11 11 10	27 27 26 34 22	18 2 19 2 21 2 21 3 31 2	.91 .99 .93 .65 .82	3.14 4.10 4.12 1.19 3.22) 5	.44	427 404 386 >10000 862	1 .0 1 .0 1 .0 1 .0 1 .0	3 1/ 2 1 4 13	4 28 9 27 7 57	0800 9090 11011	1 1 1	1 1 1 1		16 15 18 14	.10 .11 .10 .09 .09	9 62 9 64 9 67 11 49 9 63	6.6 3	2 3 19 3 19 3 19	136 128 138 212 133	5 35 37 40 9 35 29 45 27 55
L90E 106+75N L90E 107+00N L90E 107+25N L90E 107+50N L90E 107+75N	.1 1.24 .1 1.23 .1 1.34 .1 1.42 .1 1.42 .1 1.13	4242	96 91 95 84 71	.1 .1 .1 .1 .1	1 1 1 1	.42 .36 .67 .40 .42	.1 .2 .3 .1	10 10 11 10 9	26 27 28 26 24	21 2 22 3 31 3 21 3 22 2	.12	4 .12 4 .14 4 .15 4 .16 3 .15	555	.39 .44 .44 .38	452 394 411 399 449	1.0 1.0 1.0	2 1 3 1 3 1 3	3 58 3 63 9 30	0 12 0 10 0 12 0 12		1 1 1 1	36 30 49 28 30	16 17 17 16	.11	10 68 10 67 9 68	1.3 1.0 1.3 1.8	2 1 2 1 1 1	159 117 102 104 61	10 35 19 40 23 45 21 35 36 45
L90E 108+00N L90E 108+25N L90E 108+50N L90E 108+75N L90E 108+75N L90E 109+00N	.1 1.10 .1 1.06 .1 1.14 .1 1.35 .1 1.83	4 6 1 1	51 46 96 146 186	.1 .1 .1 .1 .1	1 1 1 1	.40 .37 .37 .41 .48	.2 .1 .2 .1	9 9 9 9 12	21 23 25 32	26 2	.69 .78 .54 .57 .36	3 1' 3 13 3 14 3 14 5 19	3 4 4 4 7 4 9 6	.35 .36 .39 .47	353 309 574 569 628	1.0 1.0 1.0	3 2 1 3 1 3 1		0 10 0 5 0 7 0 10		1 1 1	28 35 31 30 34	14 13 14 18	.09 .10 .10 .11 .11	10 67	.7 .4 .0 .6	2 1	59 48 70 108 143	24 40 32 45 9 40 3 35 15 45
190E 109+25N 190E 109+50N 190E 109+50N 190E 109+75N 190E 110+00N 192E 103+00N	.1 1.35 .1 1.64 .1 1.76 .1 1.59 .1 1.07	7 9 8	153 152 162 222 122	1 .1 .1 .1	1 1 1 1	.45 .49 .52 .63 .46	.1 .1 .1 .1	11 12 11 10 7	27 34 33 28 22	24 3 12 2	.54 .74 .25 .50	4 .14 5 .2 3 .2 4 .1	5 6 5 5 0 5 0 4	.46 .41 .38 .31	493 459 692 1118 331	1 .0 1 .0 1 .0 1 .0	13 1 12 1 13 1	9 52 5 52 0 3 1	0 8 0 13 0 10 0 8	5 1) 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45 55 32	18 19 17 14	.13 .13 .12 .11 .11	8 65 11 76 11 74 10 66 8 53	.9 .1 .2 .1	32	102 96 90 118 68	53 50 16 40 17 50 4 45 6 35
L92E 103+25N L92E 103+50N L92E 103+50N L92E 103+75N L92E 104+00N L92E 104+25N	.1 .98 .1 1.24 .1 1.15 .1 1.33 .1 1.33	34	146 127 136 131 174	1 .1 .1	1 1 1 1	.41 .43 .42 .40 .46	.2 .1 .1 .1	697 89	17 23 20 23 23	14 2	.39 .60	3 .00 4 .1 4 .1 4 .0 4 .0	3 5 0 4 8 5 1 5	.37 .28 .33 .31	591 243 476 258 359	1 .0 1 .0 1 .0 1 .0 1 .0	13 1 12 1 12 1 13 2	0 34 5 53 1 43 3 53 2 93		5 1 5 1	1	27 32	15 13 14 14	.10 .11	6 41 8 54 7 48 8 52 8 47	.8 3.3 2.3 7.9		75 71 79 54 142	9 40 11 35 10 35 34 30 16 30
L92E 104+50N L92E 104+75N L92E 105+00N L92E 105+25N L92E 105+25N L92E 105+50N	.1 1.45 .1 1.39 .1 1.3 .1 1.49 .1 1.49 .1 1.29	i 4 2 11 7 8 2 6		.1 .1 .1 .1	1 1 1	.45 .56 .54 .42 .42	.2	8 10 9 10	23 26 25 22 27	12 2 39 3 37 3 31 3 40 3	.40 .31 .14	4 .1 5 .2 4 .2 3 .2 5 .1	05 05 06	.43 .41 .39	472 275 351 757 352	1 .0 1 .0 1 .0 2 .0)4 1)4 1)2 1) 3 1	7 55 4 63 4 69 5 59 2 33	0 12 0 12 0 10 0 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	34 40	18 18 17 18	.11 .12 .12 .09 .10	8 55 11 71 10 67 10 59 11 68	1.1 7.9 7.2 3.6	1 2 2 1	120 55 62 115 53	13 25 68 35 30 35 7 40 304 50
L92E 105+75N L92E 106+00N L92E 106+25N L92E 106+50N L92E 106+75N	.1 1.6 .3 1.4 .1 1.5 .1 1.6 .1 1.6	4 14 2 10 3 8 5 9	154 113	.1 .8 .1 .1	1 1 1 1 1	.40 .61 .54 .51 .60	.1 12.8 2.3 .2 .1	11 17 10 12 11	28 23 23 30 31	44 4 38 4 35 3 38 3 44 3	.76	5 .1 1 .2 4 .2 5 .2	8 3 1 6 4 5	5 .41 5 .34 5 .43 5 .47 5 .47 5 .47	525 2656 681 607 720	1 .(1 .(1 .)	02 6 03 1 02 1 03 1	2 55 7 208 7 102 6 42 5 51	0 1 0 1 0 1 0 1	9 1 0 1 0 1 2 2	1 1 1	42 55	23 16 19 19	.08 .07 .08 .09 .11	13 79 15 47 9 59 10 69 11 68	7.8 2 5.1 9.8 8.8	1 2	478 115 95	8 40 5 45 2 30 16 35 56 35
L92E 107+00N L92E 107+25N L92E 107+50N	.1 1.3 .1 1.4 .1 1.5	5 10	199	.1 .1 .1	1 1 1	.48 .57 .54	.1 .1 .1	10 11 9	25 27 26	35 3 37 3 33 3	49 8.80 8.39	4 .1 3 .2 4 .1	2 5	4 .37 5 .42 5 .38	662 1058 608	1.	03 1	1 47 17 57 15 43	70 1	1 1			18 20 18	.09 .09 .09	11 70 11 71 10 61	5.1	1 1 1	101 82 68	19 45 19 40 27 40
															,														
1	L .																												

PROJ: NEWTON

ATTN: Rudi Durfeld

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7V-0770-SJ3+4

DATE: 97/10/30

* * (ACT:ICP 31)

SAMPLE NUMBER	AG AL PPM %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	ĆŘ PPM	CU PPM	FE %	GA PPM	K LI % PPM	MC 7	G MN X PPM	MO PPM		N I PPM	P PPM		SB PPM P			TH T P m	I U % PPM		W PPM I		U-fire H PPB PP
L92E 107+75N L92E 108+00N L92E 108+25N L92E 108+25N L92E 108+50N L92E 108+75N	.1 1.82 .1 1.37 .1 1.37 .1 1.54 .1 1.41	55557	106 101 87 80 96	1 .1 .1 .1	1 1 1 1	.63 .43 .43 .53 .43	.1 .1 .1 .1	13 8 9 10 7	39 27 29 33 25	11 18 11	5.60 2.71 3.07 2.90 2.86	5 .2 4 .1 4 .1 4 .0	1 4 0 4 2 4 9 4	.32 .34 .37 .31	0 549 2 436 4 268 7 494 1 234	1111	.04 .03 .02 .03 .02	23 13 14 15 14	500 330 270 280 600	76679	1 1 1 1	1	31 33 40	19 .1 14 .1 15 .1 15 .1	38 39 49	62.9 73.2 63.8 64.1	2 3 2 1 2	72 98 66 54 74	15 2 61 1 12 1 7 2 26 2
L92E 109+00N L92E 109+25N L92E 109+50N L92E 109+75N L92E 109+75N L92E 110+00N	.1 1.36 .1 1.61 .1 1.35 .1 1.61 .1 1.56	4 7 7 8	100 76 138 160 97	.1 .1 .1 .1	1 1 1 1	.48 .48 .43 .43 .51	.1 .1 .1 .1	8 10 9 8 10	25 35 30 25 29	23 21 21 38	2.86 3.27 3.68 3.12 3.18	5 .1 5 .1 5 .1 4 .1 4 .1	1 5 0 4 2 5 9 5	.38 .38 .43	6 223 9 240 8 390 8 412 3 425	1 1 1 1	.03 .02 .02 .02 .02	15 20 17 14 16	420 430 530 520 530	7 9 8 10	1 2 1	1	39 32 32	15 .1 16 .1 18 .1 15 .0	2 10 0 11)8 9	68.2 85.1 64.5 68.6	1 1 3 2 1	62 48 84 80 59	27 2 16 5 111 3 63 4 33 5
L94E 100+DON L94E 100+25N L94E 100+50N L94E 100+75N L94E 101+00N	.1 1.12 .1 1.08 .1 .99 .1 1.19 .2 1.07	3 6 8 5 2	161 245 306 206 185	.1 .1 .1	1 1 1 1	.37 .36 .39 .42 .39	.1 .1 .1 .2	7 6 5 7 7	21 17 17 21 18	22 21 14	2.70 2.96 2.97 2.92 2.92 2.05	4 .0 4 .1 3 .1 4 .1 2 .1	6 4 9 4 3 3	.24 .34 .3(2 183 6 320 4 396 4 278 0 544	33422	.04 .04 .03 .03	10 9 8 12 11	440 690 750 490 370	10 14 13 11 7	1 1 1 1	1 4	43 43 36 31)8 9)8 9 0 9 9 6	43.8 42.4 52.0 37.3	1 1 1 2 1	41 37 39 53 27	60 8 55 10 30 11 40 11 21 10
L94E 101+25N L94E 101+50N L94E 101+75N L94E 102+00N L94E 102+25N	.1 1.28 .1 1.07 .1 1.08 .2 1.14 .2 1.10	5 6 4 4 4	240 214 160 182 174	1 1 1 1	1 1 1 1	.38 .37 .44 .38 .34	.1 .1 .1 .1	7 8 7 8 7	21 22 20 21	25 24 27 25	2.65 2.86 2.69 2.61 2.77	4 .1 3 .1 4 .1 4 .1 4 .1	7 3 4 4 4 4 3 4	.30 .35 .30	5 397 4 434 6 278 5 310 6 288	2 2 1 3 3	.02 .03	12 11 12 10 11	470 450 350 550 400	9 12 9 11 12	1 1 1 1	1	37 39 38 38	14 .1 15 .1 14 .1 14 .0	10 8 18 7 18 8	44.3 51.7 49.4 44.7 49.1	1 1 2 1	23 79 62 59 54	22 12 13 11 19 17 30 11 37 12
L94E 102+50N L94E 102+75N L94E 103+00N L94E 103+25N L94E 103+50N	.1 1.11 .1 1.25 .1 1.17 .1 1.27 .1 1.27 .1 1.29	9 5 6 5 5	151 153 178 153 150	.1 .1 .1 .1	1 1 1 1	.39 .45 .47 .40 .51	.1 .1 .1 .1	8 9 7 8 8	21 26 22 24 26	25 21 22 16	2.88 2.97 2.67 2.96 3.11	4 .1 4 .1 4 .1 4 .1	5 5 4 5 8 5	.39 .39 .40 .30	4 237 9 266 5 227 0 234 6 196	22	.03 .03 .03	11 14 12 15 13	450 370 510 490 520	11 10 13 9	1 1 1 2		39 43 56 40	15 .0 16 .1 14 .1 15 .1 16 .1	08 09 39	57.6 47.1 54.1 59.9	2 1 2	52 55 54 69 53	16 14 22 9 44 8 29 90 26 5
L94E 103+75N L94E 104+00N L94E 104+25N L94E 104+50N L94E 104+75N	.1 1.50 .1 1.46 .1 1.30 .1 1.45 .1 1.26	6 3 8 7 10	167 147 122 163 103	1 1 1	1 1 1 1	.49 .50 .45 .43 .52	.2 .1 .2 .2	9 9 8 9 8	26 27 22 25 25	46 29 42	3.33 3.48 3.20 3.22 3.33	5 .1 5 .1 4 .1 4 .1	3 5 1 5 1 4	.38 .38 .39	4 250 5 250 8 231 8 368 9 302	1	.04 .03 .03	22 13 13 14	1190 1100 640 510 370	7 6 9 10 11	1 2 1 1		40 57 53 44	18 .1 18 .1 17 .1 17 .1 17 .1	1 11 2 10 1 10 1 10	62.8 67.0 62.6 64.1 67.7	2 1 1 2	29 17 61 90 59	42 50 33 45 29 40 26 40 35 80
L94E 105+00N L94E 105+25N L94E 105+50N L94E 105+75N L94E 105+75N L94E 106+00N	.1 1.31 .1 1.33 .1 1.03 .1 1.03 .1 1.19 .1 1.24	4 3 9 6 11	150 96 97 108 114	.1 .1 .1 .1	1 1 1 1	.50 .47 .51 .38 .52	2.3 .3 .6 .4	9 8 6 8 9	20 23 20 21 24	24 48 45 40	2.90 3.32 4.08 3.18 3.23	3.2 4.2 5.1 4.1 4.2	20 8 8 5 4 6 21 5	.30	3 845 6 276 9 330 3 376 9 450	1 1 2 2	.04 .02 .02	12 13 9 10 12	940 380 740 740 570	7 7 11 10 14	1 2 1 2 1 2		40 51 53 45	15 .1 17 .1 20 .0 16 .0 17 .1	1 10 7 12	53.2 59.1 65.8 59.5 61.8	5 2 2 1 2 1 2 1 1 1	29 14	32 40 16 50 73 70 42 49 39 65
L96E 95+00N L96E 95+50N L96E 95+75N L96E 96+00N L96E 96+25N	.1 1.42 .1 1.42 .1 1.33 .1 1.42 .1 1.42 .1 1.47	4 4 5 8 9	94 86 125 174 350	1 1 1 1	1 1 1 1	.53 .53 .66 .55	.2 .1 .1 .1 .2	9 10 10 9 9	29 32 31 29 26	7 13 17 36	2.61 2.62 2.62 2.71 3.14	4 .1 4 .0 4 .1 3 .1 4 .1	19 4 12 4 13 4	.33 .32 .37 .28	0 474 3 363 3 397 1 408 8 256	1 1 1 1	.04 .04 .03 .03 .03	15 16 15 14 16	400 280 320 560 760	5 9 10 15	1 1 1 2	1 1	55 57 51 50	13 .1 14 .1 13 .1 14 .1 17 .1	58 38 38 09	62.2 54.5 54.1	1	83 57 52 64 37	3 49 4 40 15 69 11 55 23 70
L96E 96+50N L96E 96+75N L96E 97+00N L96E 97+25N L96E 97+50N	.1 1.28 .1 1.31 .3 .88 .1 .95 .1 1.34	6 7 22 4 12	278 282	.1 .1 .1 .1	1 1 1 1	.44 .43 .35 .35 .42	.2 .2 .1 .2	8 7 5 6 7	25 24 20 17 21	21 26 16 20	2.64 2.52 2.42 1.81 2.53	4 .0 3 .1 3 .1 3 .0 4 .1	1 4 0 3 8 3 0 4	.20 .24 .18	7 372 6 288 4 110 8 328 8 139	1 1 3 1 3	.02 .04	14 13 10 8 16	390 530 590 340 630	12 8 30 16 35	1 5 1 3	1	58 55 44	14 .1 13 .1 13 .0 10 .0 14 .1	08 197 195 107	52.8 47.0 46.3 41.0 49.7	1 1	0 3 85 40 46 52	4 65 14 65 28 195 11 215 17 105
L96E 97+75N L96E 98+00N L96E 98+25N	.1 1.42 .1 1.34 .1 1.08	8 7 12	528 456 1046	.1 .1 .1	1 1 1	.52 .32 .33	.1 .1 .1	7 5 4	21 16 11	22	2.52 2.00 1.83	4 .0 4 .1 3 .1	1 4	. 23	3 277 3 200 4 75	2 3 7	.03 .02 .03	13 12 9	740 620 980	16 18 40	1 1 1	1 <u>4</u> 1 <u>5</u> 1 5	54	14 .1 11 .0 12 .0	0 8 97 6 15 5	47.4 37.5 26.3	2 2 1	63 84 64	306 75 12 50 13 70
										-											·								

AG PPM AL AS BA BE BI % PPM PPM PPM PPM

PROJ: NEWTON

SAMPLE

NUM8ER

ATTN: Rudi Durfeld

MIN-EN LABS - ICP REPORT

K X

FILE NO: 7V-0770-SJ5+6

DATE: 97/10/30 * * (ACT:ICP 31)

8282 SHERBROOKE ST.,	VANCOUVER,	B.C.	V5X	4E8
TEL:(604)327-3436	FAX:(604))327-:	3423	

FE GA % PPM

CU PPM

CA CD CO CR % PPM PPM PPM

																	•	
LI PPM	MG X	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SN PPM	SR PPM	TH PPM	TI X	U PPM	V PPM	₩ PPM		Au-fire PPB	Hg PPB
4 5 4	.31 .35	573 219	1	.03 .02 .03 .03 .03	12 16 13 14 13	600 560 530 380 300	15 23 15 23 14	1 1 1 1	1 1 1 1	37 35 28 32 23	12 16 12 15 11	.13 .09 .10 .11 .11	78	50.6 60.4 48.1 58.7 47.3		105 598 188 153 137	80 5 32 90 22	
5	.34	209	1	.02	20	480	12	1	1	- 30	14	.12	8	56.9	- 3	103	10	10

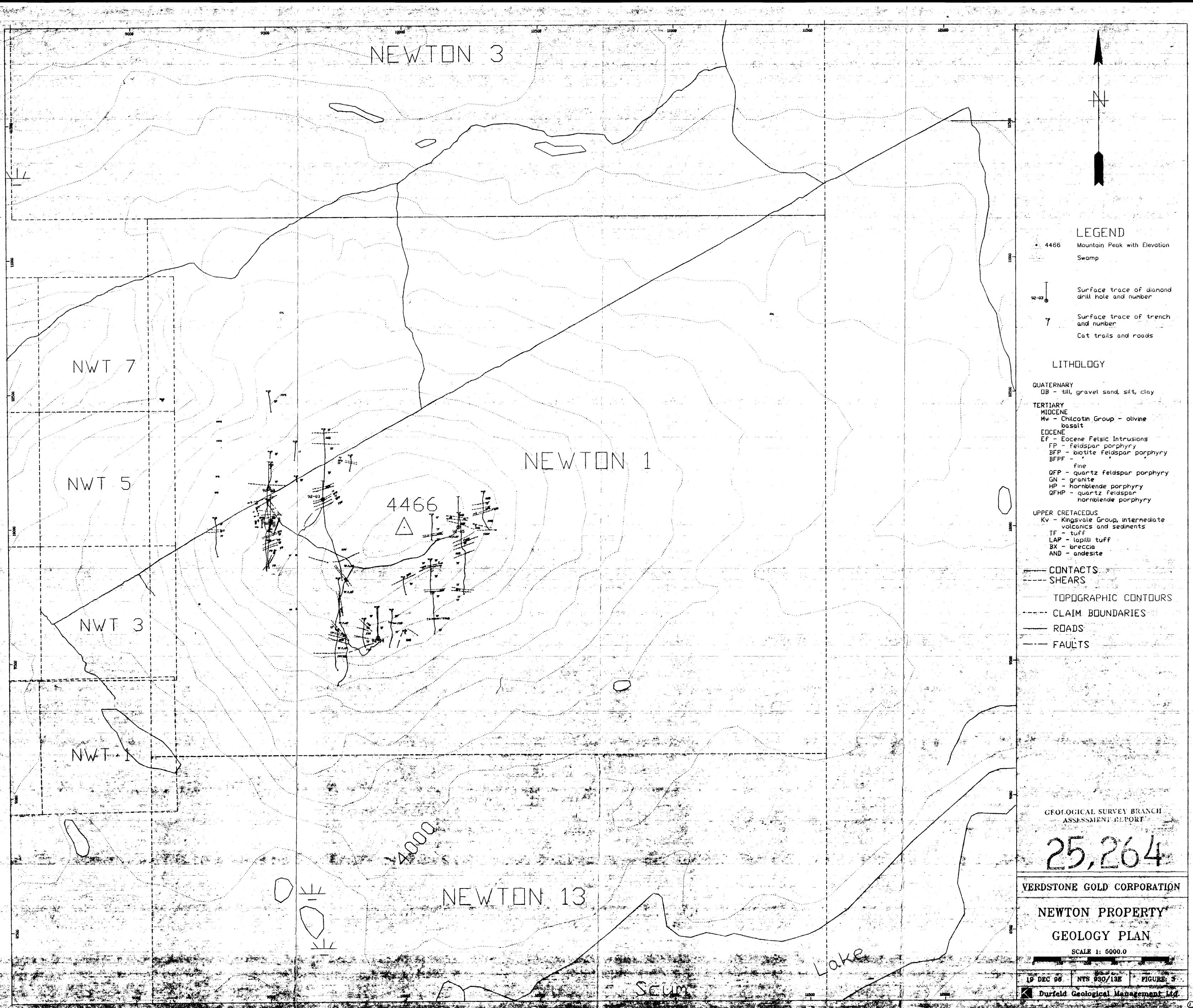
NUMBER	PPM X	PPM	PPM	PPM	PPM	7.	PPM	PPM	PPM	PPM	ኤ	PPM 7	25W	7 14	M 171	YM 74	PPM	PPM	PPM I	'PM P	PM P	rm r	PM	7 PPM	<u> 197</u>	PPM 1	PPM	PPB	
L96E 98+50N L96E 98+75N L96E 99+00N L96E 99+25N L96E 99+25N	.1 1.36 .1 1.42 .1 1.20 .1 1.22 .1 1.23	4 9 21 5	243 196 129 98 96	.1 .1 .1 .1	1 1 1 1	-40 -44 -38 -41 -35	.1 1.4 .3 .1 .2	7 9 6 7 6	24 32 23 26 21	83 2. 35 2. 40 2. 14 2.	25 65 13	4 .14 4 .11 3 .08 4 .07 4 .05	4 5 4 4	.33 18 .40 57 .31 21 .35 21 .26 23	3 9 8	3 .03 2 .02 1 .03 1 .03 1 .03	13 14 13	600 560 530 380 300	15 23 15 23 14	1111	1 1 1	35 28 32 23	12 .1 16 .0 12 .1 15 .1 11 .1	09 96 10 74 11 85 10 74	8.1 8.7	9 ! 3 · 1 ·	105 598 188 153 137	80 5 32 90 22	15 20 15 10
L96E 99+75N L96E 100+00N L96E 100+25N L96E 100+25N L96E 100+50N L96E 100+75N	.1 1.57 .1 1.27 .1 1.22 .1 1.21 .1 1.69	10 7 5 10 12	97 125 116 103 118	.1 .1 .1 .1	1 1 1 1	.43 .44 .41 .41 .82	.1 .4 .1 .1	8 7 7 7 12	27 23 20 24 33	21 2. 15 2. 8 2. 16 2. 39 3.	.37 .15 .47 .46	5 .07 3 .08 3 .08 4 .06 4 .12	4 4 7	.34 20 .30 34 .27 37 .31 21 .69 58	0 3 6 8	1 .02 1 .03 1 .03 2 .03 1 .04	13 13 13 28	480 400 300 390 580	12 13 12 13	1 1 1 1	1 1 1 1	30 27 29 50	14 .1 13 .1 12 .1 14 .1 20 .1	11 75 11 64 12 75 11 11 6	6.9 2.9 6.9 5.1 5.6		103 126 97 85 91	10 13 8 10 22	15 10 20 90
L96E 101+00N L96E 101+25N L96E 101+50N L96E 101+75N L96E 102+00N	.1 1.35 .1 1.38 .1 1.93 .1 1.60 .1 1.07	8 7 11 9 7	119 108 135 112 114	.1 .1 .1 .1	1 1 1 1	.43 .44 .74 1.00 .40	.1 .1 .1 .1 .1	7 8 14 10 7	25 27 37 27 23	15 2. 15 2. 72 4. 80 4. 18 2.	62 65 07 46	4 .08 4 .08 6 .13 5 .11 3 .11	5	.32 22 .33 21 .77 56 .61 38 .27 25	4 3	1 .03 1 .03 1 .06 1 .05 1 .03	15 31 23 9	410 330 630 550 370	18 13 11 11	1 1 2 1	1 1 1	33 74 60 30	14 .1 14 .1 26 .1 22 .0 13 .1	12 8 5			128 102 73 55 59	5 74 17 37 18	20 115 105 25
L96E 102+25N L96E 102+50N L96E 102+75N L96E 103+00N L96E 103+25N	.1 1.48 .1 .66 .1 1.31 .1 1.09 .1 1.05	13 6 12 6 5	132 65 136 138 141	.1 .1 .1 .1	1 4 2 1 1	.45 .18 .43 .36 .34	.1 .1 .1 .1	9 1 8 6 6	26 4 21 19 20	74 3. 68 2. 82 3. 12 2. 22 2.	32 54 13 51	5.11 3.05 5.09 3.08 3.09	1 4 4	.44 31 .12 3 .40 26 .25 24 .25 35	3 0 6 1	1 .03 2 .01 2 .03 2 .02 1 .02	2 15 12 11	520 310 470 380 350	14 7 13 9 10	2 1 1 1	1 1 1 1	27 54 28 30	18 .0 12 .0 19 .0 12 .1 13 .1	01 71 06 11 6 10 74 10 85	4.2 5.6	1 1 2 1	53 11 51 89 91	50 61 155 6 72	50 85 125 25
L96E 103+50N L96E 103+75N L96E 104+00N L96E 104+25N L96E 104+50N	.1 1.26 .1 1.75 .1 1.42 .1 1.02 .1 1.67	15 12 8	166 339 111 199 236	.1 .1 .1 .1	1 1 3 3	.39 .78 .28 .30 .52	.2 1.5 .2 .1 .6	9 13 8 6 9	25 23 25 17 23	38 3, 80 4, 58 4, 35 4, 48 7,	.53 .45 .81 .06	4 .13 5 .20 5 .11 6 .12 8 .19	3	.29 28 .33 74 .30 15 .17 19 .28 32	0 4	1 .03 1 .02 2 .02 2 .02 1 .02	16 10 5 11	470 1160 470 500 730	12 17 18 15 17	1 4 2 1 3		30 41	17 .1 23 .0 22 .0 22 .0 34 .0	08 14 6 08 14 7 05 15 6 08 23 8	3.2 2.4	1		920 87 62 211 317	45 60
L96E 104+75N L96E 105+00N L96E 105+25N L104E 90+00N L104E 90+25N	.1 1.25 .1 1.42 .1 1.70 .1 1.38 .1 1.54	17 11 4 1 3	115 153 147 80 105	.1 .1 .1 .1	1 1 1 1	.50 .43 .63 .69 .48	.1 .1 .1	9 9 10 11 11	24 27 34 34 39	60 5. 44 4. 13 2. 11 2. 13 2.	.31 .92 .72 .84	6 .12 5 .13 4 .19 3 .17 3 .13	5	.38 28 .33 25 .33 69 .42 63 .45 42	1 8	1 .03 1 .03 1 .03 1 .05 1 .04	20 23	800 620 440 390 460	16 14 9 6 5	1 1 1 1	1 1 1	43 45 48 42	25 .0 22 .1 15 .1 15 .1 15 .1	11 13 8 15 9 5 14 8 5 14 9 5	1.8 6.9 3.1 5.7	1 2 1 2	54 73 91 54 67	43 28 1 1 1	60 50 55 50 45
L104E 90+50N L104E 90+75N L104E 91+00N L104E 91+25N L104E 91+25N L104E 91+50N	.1 1.24 .1 1.26 .1 1.35 .1 1.20 .1 1.54	3 1 2 3	110 115 1 37 109 156	.1 .1 .1	1 1 1 1	.42 .42 .45 .42 .57	.1 .1 .2 .1 .1	11 10 13 11 14	34 32 34 31 37	7 2 8 2 11 2 15 2 14 2	.55 .67 .54 .95	3.06 3.09 2.12 3.10 3.10	- 4	.37 40 .37 50 .44 77 .43 54 .49 70	2 1 8 7	1 .04 1 .04 1 .04 1 .04 1 .05	17 20 16 22	250 330 440 330 380	46775	1 1 1 1	1 1 1	36 34 40 38 49	14 .1 13 .1 15 .1 14 .1 16 .1	15 85 14 85 13 85 14 95	2.5 3.1 2.5 6.2	1 3	51 79 103 64 98	1 1 2 3	
L104E 91+75N L104E 92+00N L104E 92+25N L104E 92+25N L104E 92+50N L104E 92+75N	.1 1.35 .1 1.62 .1 1.46 .1 1.45 .1 1.32	1	139 132	.1 .1 .1 .1	1 1 1 1	.50 55 48 53 48	.1 .2 .1 .1	14 12 12 11 10	40 38 31 32 27	9 2 13 2 12 2 10 2 6 2	.97 .79 .79 .63	3 .11 4 .20 3 .12 3 .11 3 .12	45544	.47 49 .42 52 .43 56 .39 51 .36 48	6 5 0	1 .05 1 .04 1 .04 1 .04 1 .03	21 17 15	310 420 340 370 310	67556	1 1 1 1	1 1 1	42 43 35	16 -1 17 -1 16 -1 15 -1 15 -1	1596 1496 1586 1486	1.6 2.7 2.0	2 2 2 1 2	73 90 69 66 69	1 1 2 1	45 50 65 50 45
L104E 93+00N L104E 93+25N L104E 93+50N L104E 93+50N L104E 93+75N L104E 94+00N	.1 1.12 .1 1.07 .1 1.21 .1 1.08 .1 2.16	2 1 3	85	.1 .1 .1 .1	1 1 1 1	.40 .44 .42 .45	.1 .1 .1	89693 13	23 26 20 25 44	4 2 8 2 1 1 8 2 14 3	.35 .90 .24 .44	3 .07 2 .09 3 .11 2 .21 5 .19	44537		6 4 3 9	1 .03 1 .03 1 .03 1 .03 1 .03 1 .03	11 11 13	210 250 370 400 370	5 6 6 5 8	1 1 1 1	1 1 1		11 .1 13 .1 11 .1 12 .1 19 .1	14 76 13 63 12 65	2.8	1 1 3 1 1	54 56 91 57 65	1 7 16 1	55 40 35 45
L104E 94+25N L104E 94+50N L104E 94+75N	.1 2.08 .1 1.70 .1 1.31	4 2 2	112 181 125	.1 .1 .1	1 1 1	.65 .68 .57	.1 .1 .1	13 11 8	42 34 27	173 82 52	.90	5 .16 3 .19 3 .16	6 5 4	.52 53 .40 71 .31 46	6	1 .04 1 .03 1 .03	26 20 13	410 360 290	7 9 5	1 1 1	1 1 1	50 50 40	19 .1 16 .1 13 .1	16 10 6 16 9 6 16 7 5	1.4	2 1 2	60 85 81	6 1 2	55
L																													

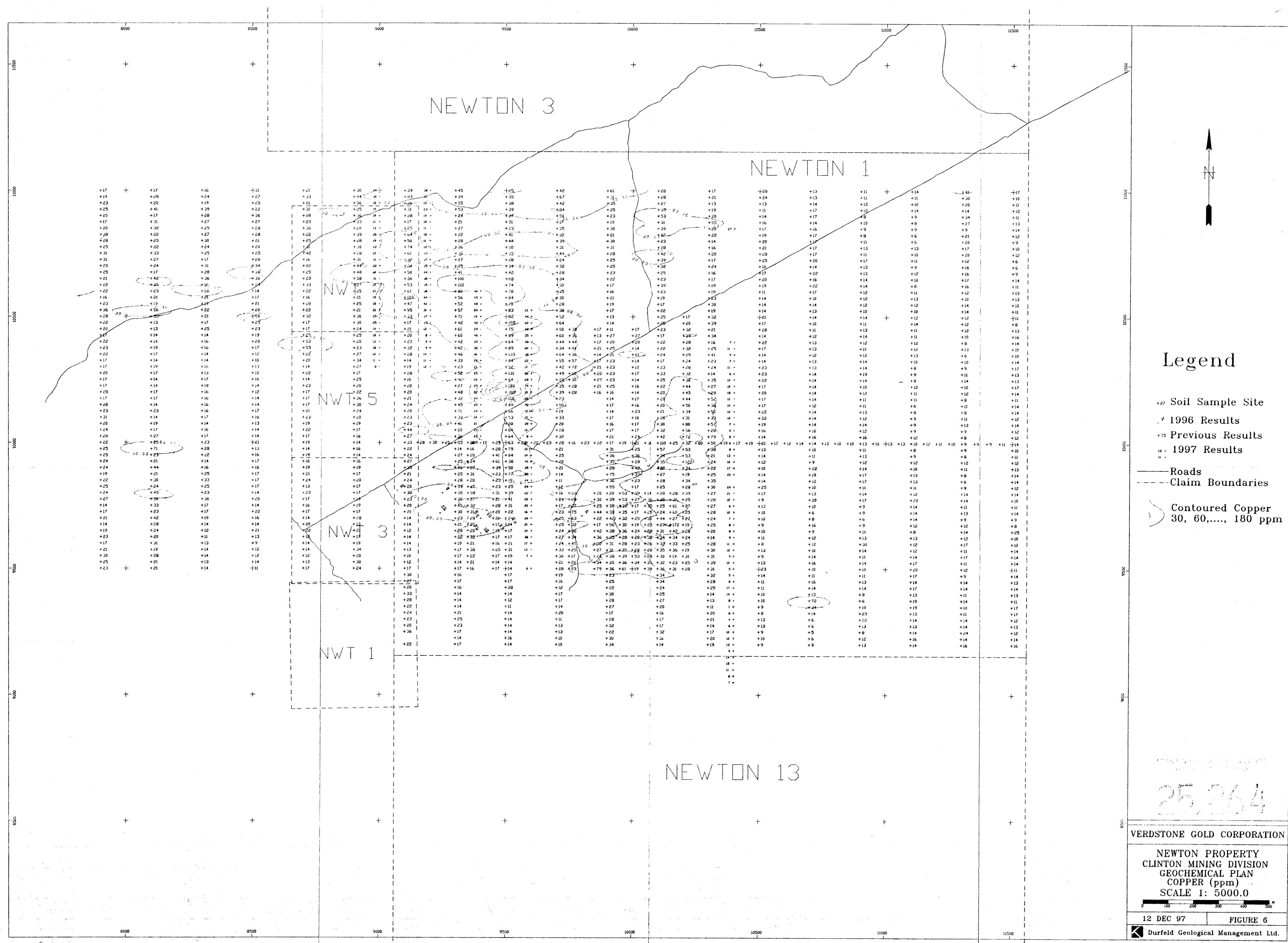
MIN-EN LABS --- ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

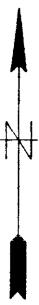
TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7V-0770-5J7+8

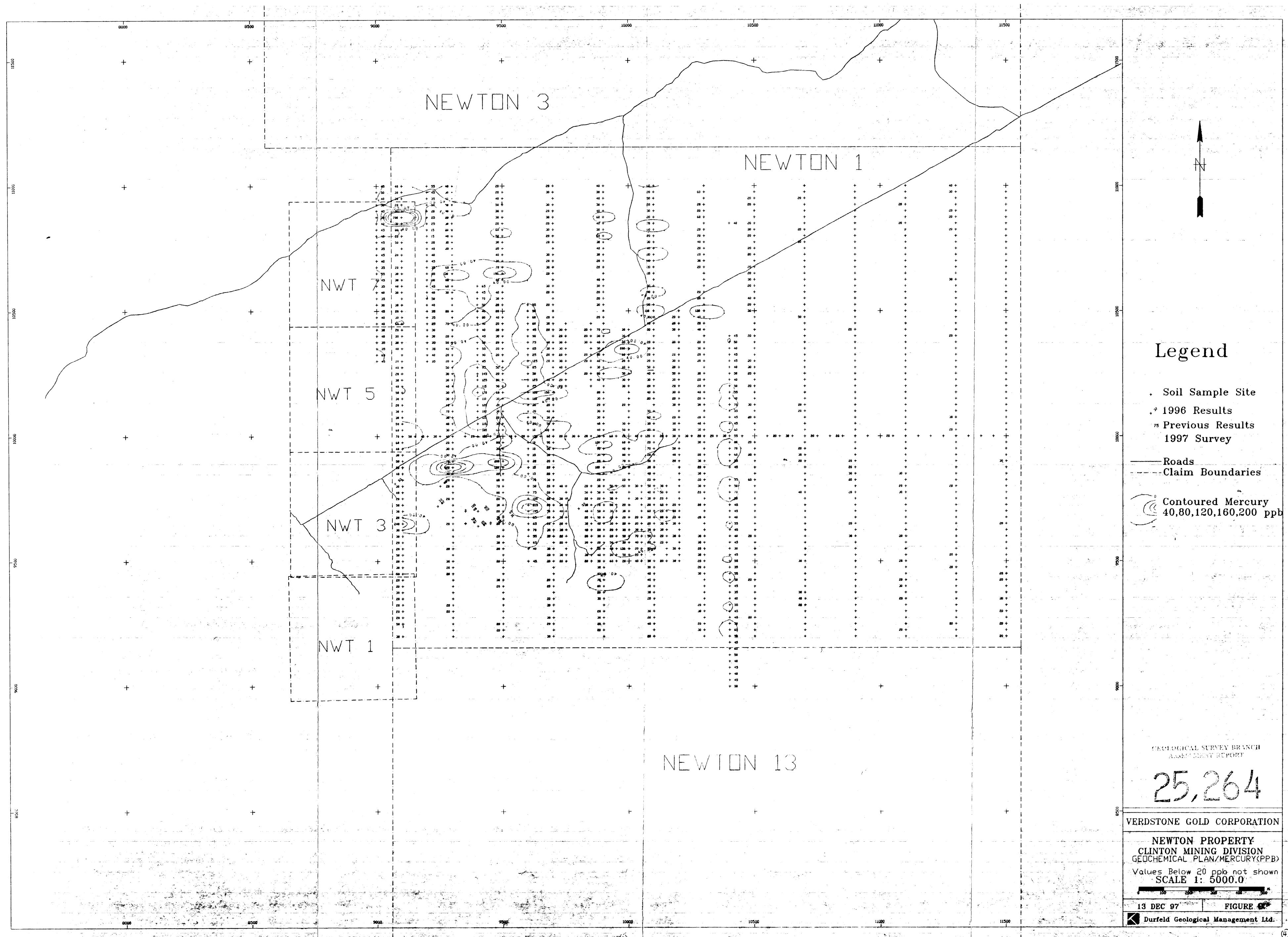
DATE: 97/10/30 * * (ACT:ICP 31)


. -


ATTN: Rudi Durfeld


PROJ: NEWTON

SAMPLE NUMBER	AG AL PPM %	AS PPM	BA PPM	BE PPM	BI	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE X	GA PPM	K LI % PPM		MN PPM I	MO	NA	NI PPM F	P PM P	PB S	SB S	SN S	RT	H TI	U PPM	V	W Z PPM PP	N Au-	fire PPB F	Hg
L104E 95+00N L104E 95+25N L104E 95+50N L104E 95+50N L104E 95+75N L104E 96+00N	.1 1.23 .1 1.39 .1 1.36 .1 1.43 .1 1.51	24244	92 115 120 108 139	.1	1 1 1 1	.49 .54 .56 .54 .57	.2	10 11 10 10 10	29 33 32 32 33	5 10 9	2.31 2.68 2.76 2.72	4 .1 4 .1 4 .1 5 .1	2 4 6 4 0 4 3 5	-33 -34 -37 -35 -35	364 434 368 380 405	1 1 1	.03 .03 .03 .03 .03	15 2 16 2 17 2 16 2 19 3	200 240 260 260	5 4 5 3 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2	7 1 0 1 9 1 8 1		7 8 8	56.6 62.6 65.3 64.7 64.3	1 6 1 6 1 6 2 6	6 5	1 1 1 18	55 45 30 45 45
L104E 96+25N L104E 96+50N L104E 96+75N L104E 97+00N L104E 97+25N	.1 1.50 .1 1.50 .1 1.60 .1 1.37 .1 1.26	32433	119 115 150 88 89	.1 .1 .1	1 1 1 1	.49 .47 .58 .51 .46	1 2 1 2	8 9 8 9 9	34 36 31 31 27	8 2 8 2	2.60 2.58 2.58 2.61 2.51	4 .1 4 .0 4 .1 4 .1 4 .0	95 15 25	-32 -32	203	1 1 1	.04 .04 .03 .03 .03	18 3	510 530 550 590	4 5 3 4 5	1 1 1 1 1	1 4	0 1 3 1 6 1 7 1	3 .17	88	58.1 58.2 54.9 61.5 59.0	1 8 2 8 3 11 1 8	3 9 4	22 1 3	45 55 40 45 45
L104E 97+50N L104E 97+75N L104E 98+00N L104E 98+25N L104E 98+75N	.1 1.23 .1 1.33 .1 1.92 .1 1.99 .1 1.99 .1 1.98	4 8 10 7	93 178 147 113 144	.1 .1 .1 .1	1 1 1 1	.50 .53 .65 .69 .76	1 4 1 2	9 10 11 12 12	29 26 32 37 35	12 2 21 3 24 3 20 3	3.20 3.47 3.08	43454	55 757 56	.40 .48 .47 .48	637 728 549 736	1	.03 .03 .03 .03 .03		20 60 00 40 60	4 5 7 11 8	1 1 1 1 1 1	$ \frac{1}{1} \frac{3}{4} $	6 1 6 1	3 - 16 5 - 14 7 - 14	7 8 10	61.0 54.7 67.8 76.6 66.5	2 8 3 13 2 8 2 8 3 10	1 5 9	11 59 1	50 70 50 55 45
L104E 99+00N L104E 99+25N L104E 99+50N L104E 99+50N L104E 99+75N L104E 100+00N	.1 1.66 .1 1.54 .1 1.56 .1 1.25 .1 1.25 .1 1.00	6 6 4 3	144 265 190 139 127	.1 .1 .1 .1 .1	1 1 1 1	.60 .56 .55 .48 .40	.1	10 10 10 10 8	30 25 29 26 22	13 2 8 2 6 2	2.59 2.93 2.65 2.21	4 .1 4 .1 4 .1 3 .1 2 .1	4 5 2 6 4 5 1 3	.39 .35 .27	439 559	1 1 1	.04 .03 .03 .03 .03	13 3 13 4 11 3 9 2	50 50	88997	11111	$ \begin{array}{c} 1 & 4 \\ 1 & 4 \\ 1 & 3 \end{array} $	3 10 2 10 8 10	5 .14 4 .14 2 .12	9 8 7	69.4 55.5 67.0 60.7 53.0	2 7 3 9 2 7 2 8	5 8 5 7 5	1 5 1 1	55 60 70 60 55
L104E 100+25N L104E 100+50N L104E 100+75N L104E 101+00N L104E 101+25N	.1 1.36 .1 1.28 .1 1.45 .1 1.45 .1 1.45 .1 1.39	5 5 4 5 6	172 122 145 193 143	.1 .1 .1 .1 .1	1 1 1 1	.53 .47 .50 .45 .36	32321	9 8 8 8	27 28 30 27 28	8 2 7 2 12 2 12 2	2.74	4 .1 3 .1 4 .1 4 .1 4 .0	3 4 3 5 3 5 9 4	.31 .31 .31 .31	681 283 40 3 204	1 1 2	.03 .03 .03 .03 .03 .02	14 4 15 4 15 4 15 4		9 7 8 13	1 1 1 1		<u>U 14</u>	4 .14 5 .15 4 .14 4 .11	888	62.3 61.0 64.7 58.4 58.6	3 10 2 9 2 10 3 12 3 9	4 1 3	37 2 9 21	60 45 45 35 70
L104E 101+50N L104E 101+75N L104E 102+00N L104E 102+25N L104E 102+50N	.1 1.18 .1 1.26 .1 1.20 .1 1.30 .1 1.59	43745	131 82 75 93 136	.1 .1 .1 .1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.38 .44 .44 .42 .49	.3 .1 .2 .2	6 7 8 7 8	20 24 26 24 23	10 2 10 2 18 2 10 2	2.32 2.57 2.34 2.42	3 .1 4 .0 4 .0 4 .0 4 .0	9 6		275	1	.02 .02 .02 .02 .02	11 4 13 3 14 4 15 3 18 6	570 530	9 13 8 8	1 1 1 1			2 .12 3 .12 2 .11 3 .10	8 7 8	48.2 55.7 61.2 55.0 51.4	3 13 3 10 2 7 3 10 4 15	4 5 5	20 17 9	40 55 50 40 50
L104E 102+75N L104E 103+00N L104E 103+25N L104E 103+50N L104E 103+75N	.1 1.16 .1 1.21 .1 1.38 .1 1.35 .1 1.37	3 5 5 3 5	99 123 144 83 113	.1 .1 .1 .1 .1	1	.36 .42 .41 .43 .50	.2	6 7 7 7 7	20 22 24 27 24	11 2 7 2 9 2 11 2	2.33 2.36 2.25	3 .04 3 .14 4 .04 4 .09 3 .09	0 5 8 5 9 5 9 5	.32 .31	450 301 206 425	1 1 1	.02 .02 .02 .02 .02	12 3 13 5 16 6 16 3 14 4	40 20 70 60	8 8 8 8 9	1 2 1 1		5 10 9 1 7 1 9 1 9 1 9 1	10 1 .10 2 .10 2 .12 1 .10	6 7 7 7 7	47.2 49.9 51.8 53.2 49.3	3 10 3 11 3 12 2 10 3 11	1 4 5	12 6 15	40 45 45 40 50
L104E 104+00N L104E 108+50N	.1 1.14 .1 1.94	4 6	125 143	.1	1	.38 .59	.3 .3	7 12	21 34	7 2 27 3	2.03	3 .00 5 .10	84	.25 .43	434 628	1	.02 .03	11 3 16 6	60 70	9 11	1	1 2	5 10 1 10	0 .10 5 .12	7 10	46.9 65.4	4 14 3 11		12 4	45 40
																		 .					-							
																					_									
														<u> </u>																


.

