

on the

MOUNT SIDNEY WILLIAMS PROPERTY

Omineca Mining Division

N.T.S. 93-K-14W

Lat.: 540 54' N Long.: 1250 24'W

by

U. MOWAT, P. Geo.

November, 1997

ť

TABLE OF CONTENTS

Introduction	1
Location and Access	1
Claim Data	3 3
History	
Regional Geology	5
Property Geology	6
Mineralization	7
Alteration	8
Sampling	8
Sample Descriptions	9
Results	24
Conclusions	26
Recommendations	27
References	28
Statement of Costs	30
Statement of Qualifications	35
	Location and Access Claim Data History Regional Geology Property Geology Mineralization Alteration Sampling Sample Descriptions Results Conclusions Recommendations References Statement of Costs

FIGURES

,

Figure 1 - Project Location Map		2
Figure 2 - Mount Sidney Williams	Claim Map	4
Figure 3 - Sample and Drill Hole		pocket
Map		

APPENDICES

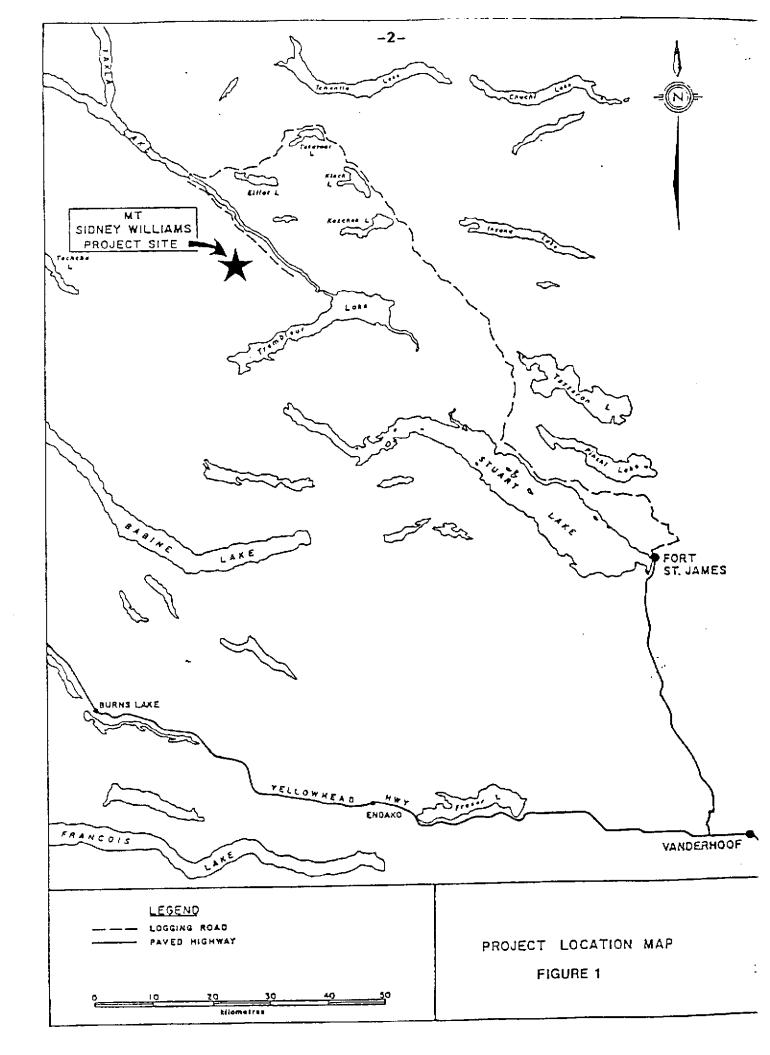
Appendix	Ι	-	Geochemical Data
Appendix	II	-	Metallurgical Data

PAGE

1.0 INTRODUCTION

From June 17 to August 18, 1997 a program of sampling and metallurgical work was performed on the Mount Sidney Williams property. The purpose of the program was to determine whether the Mount Sidney Williams property has the potential to host an awaruite and/or nickel deposit and to determine whether it is economically feasible to extract the awaruite and/or nickel.

From June 17 to July 17, 1997, 262 rock samples, 32 silt samples and 1 heavy mineral sample were collected by five men. Two hundred sixty-two rock samples, 32 silt samples and 1 heavy mineral sample were analysed for 34 elements by ICP. A total of 295 samples were analysed for Au by AA.


In addition, drill hole 94-10 which had not been split and analysed except for 2 small intervals was split. Samples were collected from 3 meter intervals regardless of alteration or lithology. Twentyfour samples were analysed for 34 elements by ICP and Au by AA.

Metallurgical tests were conducted on two samples. The tests included magnetic separation, gravity separation and sulphuric acid leach tests. A limited amount of SEM and petrographic work was also done.

2.0 LOCATION AND ACCESS

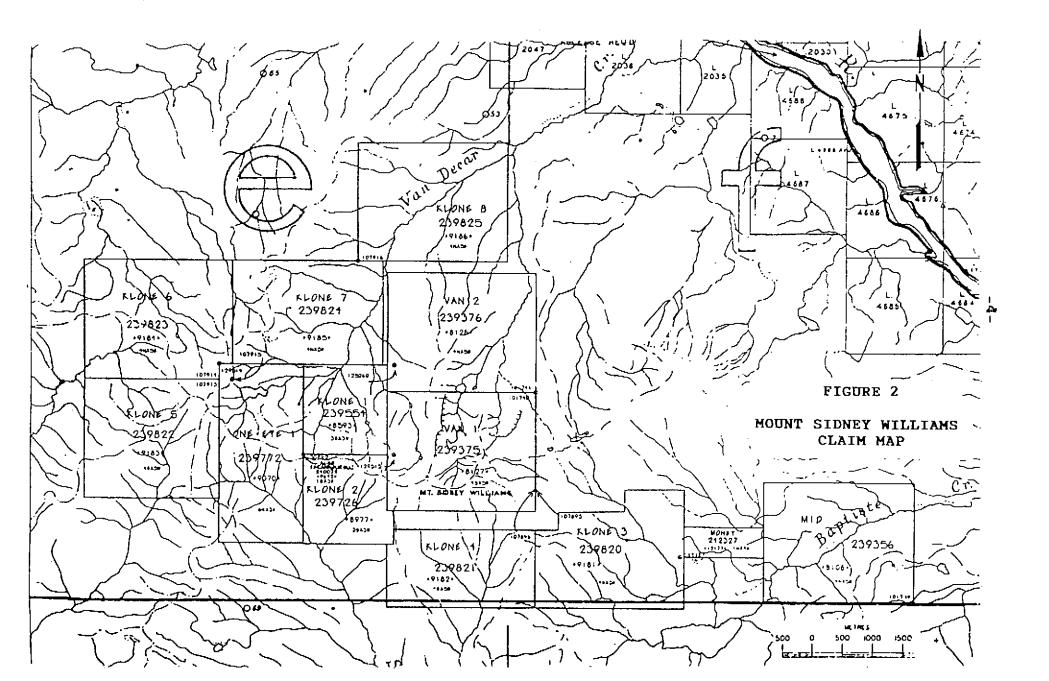
The Mount Sidney Williams property lies 87 km northwest of the town of Fort St. James and is located at co-ordinates 54° 54'N/125° 24'W on map sheet 93-K-14W.

Access to the property is at present by helicopter.

3.0 CLAIM DATA

The Mount Sidney Williams property consists of the following claims:

<u>Claím Name</u>	Record Number	<u>Number of Units</u>
Mid	239356	20
Van 1	239375	20
Van 2	239376	20
Klone 1	239554	9
Klone 3	239820	20
Klone 4	239821	20
Klone 5	239822	20
Klone 6	239823	20
Klone 7	239824	20
Klone 8	239825	20
One-Eye 1	239772	18
Terannoursus	240074	3
Money	242327	4


There are a total of 214 units. The property is 100% owned by U. Mowat.

4.0 <u>HISTORY</u>

The first known geologic record of the Mount Sidney Williams area was made in 1937 following a brief reconnaissance of the Fort St. James area by J. E. Armstrong of the Geologic Survey of Canada. In 1942, nine chromite deposits were located in the Middle River Range by the G.S.C., plus several asbestos showings of varying quality in the area of Mount Sidney Williams.

Prospectors working the region reported gold values in carbonate-quartz-mariposite and carbonatetalc rocks in shear zones in altered Trembleur Intrusions. One sample of carbonate-quartzmariposite rock high in quartz (70%) taken on Baptiste Creek returned values of 0.036 oz/t Au and 0.07 oz/t Ag.

During the late 1930's, a small placer operation was located on Van Decar Creek for a brief period. The operation was located below serpentinized peridotite and nuggets valued at \$0.50 to \$2.00 (1935 prices) were found.

Old flagging and numerous camp sites would indicate that Mount Sidney Williams has been examined in the past for its chrome, nickel and asbestos potential. No mention is made of any exploration, however, until 1962 (MMAR) when the main asbestos showing is described. Blasting caps found at this location indicate an attempt to trench the showing.

Since 1975, various groups have examined the Mount Sidney Williams area for chrome, platinum and gold.

The following work has been performed on the Mount Sidney Williams property:

1) Silt sampling - 193 samples including 10 heavy mineral samples 2) Rock sampling - 1396 samples Flagged grid - 105,790 meters 3) 4) Soil sampling - 3275 samples 5) Trenching - 52 meters 6) Magnetometer/VLF EM survey - 26,150 meters 7) IP survey - 11,450 meters 8) Drilling - 22 holes totalling 1541.4 meters

5.0 REGIONAL GEOLOGY

The area of Mount Sidney Williams is underlain by a 15 km wide belt of northwesterly-trending Pennsylvanian and Permian Cache Creek Group rocks consisting of ribbon chert, argillaceous quartzite, argillite, slate, greenstone, limestone with minor conglomerate and greywacke. The Cache Creek Group has been intruded by Upper Jurassic or Lower Cretaceous Omineca Intrusions consisting of granodiorite, quartz diorite, diorite with minor granite, syenite, gabbro and pyroxenite. As well, Post-Middle Permian, Pre-Upper Triassic Trembleur Intrusions consisting of peridotite, dunite, minor pyroxenite and gabbro with serpentinized and steatized equivalents intrude the Cache Creek Belt.

The northwesterly-trending belt of Cache Creek rocks is bordered on the east by the Pinchi Fault and Upper Triassic Takla Group andesites, basaltic flows, tuffs, breccias and agglomerates with interbedded conglomerate, shale greywacke and limestone. On the west, the belt is bounded by the Takla Fault, an east-dipping zone, up to 5 km wide, which contains a melange of serpentine and greenstone. The melange is adjacent to Triassic metamorphosed pyroclastic rocks, basalt, rhyolite, greywacke and argillite of the Sitlika assemblage.

Between the Pinchi Fault and the Takla Fault, the predominant units of the Cache Creek Group of chert, phyllite, and argillite with minor greywacke and limestone are highly deformed. Three deformational periods have been recognized in the Cache Creek Group which has been metamorphosed to lower greenschist facies with local glaucophane. The oldest structures are a prominent foliation that parallels compositional layering and trends east-west, marking the axial planes of isoclinal folds. A later structure consists of chevron folds which trend north-south with axial planes dipping moderately westwards. The youngest structures are warps and kinks, probably related to late faulting.

6.0 PROPERTY GEOLOGY

÷.

The Mount Sidney Williams property is divided into two separate geological domains by Van Decar Creek, a fault zone with a postulated 1000 meter horizontal displacement. On the west side of Van Decar Creek, the rock types dominantly consist of argillite and andesitic volcanics of the Cache Creek Group. A minor amount of ultramafic rocks have been noted. The Cache Creek Group rocks have been intruded by felsic dykes and recent volcanics of basaltic and dacitic nature.

Reconnaissance prospecting indicates that the andesitic volcanics are, at least in part, thrust over the argillites. In the vicinity of the thrusts, the argillites have been serpentinized or silicified.

On the east side of Van Decar Creek, the dominant rock type is harzburgite with lesser amounts of dunite, nodular harzburgite and altered equivalents of the Trembleur ultrmafic massif. Norite and what appears to be a very young, glassy, vuggy volcanic intrude the ultramafic.

The 1994 drilling revealed an extensive package of volcaniclastics, with minor limestone, chert and siltstone which have been thrust over the ultra-mafic. Folding appears to have affected both the

volcaniclastics, the ultramafic and possibly the West Zone listwanite. It would appear that the fold is oriented east-west. A minor amount of argillite and black basalt have been seen on the east side of Van Decar Creek.

7.0 MINERALIZATION

The previous exploration work has been focused on the mineralization within the listwanite zones. Acicular arsenopyrite and pyrite are found within the listwanite and the intensely altered phases of norite intrusives. Gold values occur with the arsenopyrite. The mineralization within the listwanites has been discussed in previous assessment reports.

Other sulphide minerals noted to date include minor chalcopyrite within the norite, basalt and volcaniclastics and stibnite which occurs in quartz veinlets and occasionally within the listwanites.

The present exploration work on the Mount Sidney Williams property is focused on nickel-cobalt mineralization, gold and chromite. The nickel occurs as awaruite, heazlewoodite, bravoite and minor pentlandite. The nickel-cobalt mineralization is generally very fine grained but has been noted to reach 5 mm in diameter in drill core. The mineralization appears to be uniformly disseminated throughout the massif and shows no preferred lithological affinity. Nickel values have also been obtained from the listwanites and also from siltstone intersected in drill hole WZ 94-3.

The gold values, excluding those found in the listwanites and altered norites, does not appear to be associated with the nickel mineralization but rather occurs in an erratic manner. There is no recognizable alteration to indicate the presence of the gold.

Chromite is ubiquitous although low grade. High grade pods of 10 to 20% are found in various locations on the Mount Sidney Williams property.

8.0 ALTERATION

The most visible alteration on the Mount Sidney Williams property consists of the red-orange weathering listwanites which are composed of ferrodolomite with lesser amounts of quartz, mariposite, talc and serpentine. The listwanite alteration has been discussed in previous assessment reports.

There is no visible alteration associated with either the nickel-cobalt mineralization or the sporadic and invisible gold values found in the ultramafic rocks. The nickel mineralization (awaruite, heazlewoodite) being native or low in sulphur does not produce any limonite staining.

Analyses of drill core and previous rock sampling indicates that certain alteration is detrimental to nickel-cobalt values. Pervasive talc alteration of the ultramafic usually results in substantially lower nickel-cobalt values whereas the carbonate alteration or listwanite is less harmful. Serpentinization does not appear to affect the nickel-cobalt values.

9.0 SAMPLING

Two hundred sixty-two rock samples were collected from a loosely based grid of dominantly a 100 meter separation or in some cases whereever outcrop was present or a drastic lithological change occurred. All rock samples are 1 meter chip samples.

Thirty-two silt samples were collected from several creeks. The samples were collected every 200 meters and sieved on site to a finer size fraction using an ordinary screen door mesh.

One hundred eighty-two rock samples, 32 silt samples and 1 heavy mineral sample were analysed for 34 elements by ICP. In addition, 123 rock samples, 32 silt samples and 1 heavy mineral sample were analysed for Au by AA.

Twenty-four samples of drill core from 94-10 were also analysed for 34 elements by ICP and Au by AA. The samples were collected from 3 meter intervals regardless of alteration or lithology.

Sample Number	Sample Description	Ni pipm
11701 11702	94-10: 7 - 20'; (2.14 - 6.1m) 94-10: 20 - 30'; (6.1 - 9.15m)	1526 1477
11702	$94-10: 20 - 30^\circ$; $(0.1 - 9.15m)$ $94-10: 30 - 40^\circ$; $(9.15 - 12.2m)$	1477
11704	94-10: 40 - 50'; (12.2 - 15.25m)	1452
11705	94-10: 50 - 60'; (15.25 - 18.3m)	1397
11706	94-10: 60 - 70'; (18.3 - 21.35m)	1474
11707	94-10: 70 - 80'; (21.35 - 24.4m)	1488
11708	94-10: 80 - 90'; (24.4 - 27.45m)	1688
11709	94-10: 90 - 100'; (27.45 - 30.5m)	1547
11710	94-10: 100 - 110'; (30.5 - 33.55m)	1463
11711	94-10: 110 - 120'; (33.55 - 36.6m)	1390
11712	94-10: 120 - 130'; (36.6 - 39.65m)	1519
11713	94-10: 130 - 140'; (39.65 - 42.7m)	1605
11714	94-10: 140 - 150'; (42.7 - 45.75m)	1625
11715	94-10: 150 - 160'; (45.74 - 48.8m)	1679
11716	94-10: 160 - 170'; (48.8 - 51.85m)	1583
11717	94-10: 170 - 180'; (51.85 - 54.9m)	1620
11718	94-10: 180 - 190'; (54.9 - 57.95m)	1731
11719	94-10: 190 - 200'; (57.95 - 61.0m)	1466
11720	94-10: 200 - 210'; (61.0 - 64.05m)	1562
11721	94-10: 210 - 220'; (64.05 - 67.1m)	1511
11722	94-10: 220 - 230'; (67.1 - 70.15m)	1438
11723 11724	94-10: 230 - 240'; (70.15 - 73.2m) 94-10: 240 - 250'; (73.2 - 76.25m)	1667 1309

10.0 SAMPLE DESCRIPTIONS

.

.

-	1	0	-		

Sample Number	Sample Description	Ni. ppm
11725	mod-weak serp'd black dense pdt; weakly magnetic; tr. vfg diss'd awaruite	1549
11726	black very alt'd (serp'd) hz with brownish patches of pyx remnants; mod. magnetic; tr vfg diss'd awaruite	1862
11727	buff carbonate list; dense; numerous quartz stringers tr. mariposite; tr white silvery metallic - asp? awaruite?	1166
11728	hz? pdt? fairly fresh looking; fresh surface appears to be pdt but weathered surface has orangey spots; black dense f.g. textureless; weak to non-magnetic; tr vfg diss'd awaruite	1791
11729	hz, fairly fresh looking with black matrix and white talcose pyx phenos 1 cm av; weak to non-magnetic; tr vfg diss'd awaruite	1679
11730 11731	dark grey serp'd hz with 1 cm pale green pyx phenos qtz-carb list, whitish to buff with bright green mariposite-rich angular patches (after pyx phenos?) cut by myriads of qtz stringers with vfg asp; minor black angular patches of unreplaced pyx?	1667 1117
11732	dark green highly serp'd hz; very sheared; pyx phenos as reddish brown patches; strongly magnetic; tr vfg diss'd awaruite	1618
11733	black dense strongly serp'd and sheared hz with very vague brownish pyx phenos; mod magnetic; tr vfg diss'd awaruite	1619
11734	extremely serp'd hz; black, dense; vague brownish pyx phenos; very weak to non-magnetic; no visible awaruite	1609
11735	strongly serp'd hz; black matrix with vague whitish pyx remnants; weakly magnetic; 0.5% diss'd vfg awaruite	1417
11736	rusty weathering black dense pdt with minor serp on fractures; mod magnetic; tr vfg diss'd awaruite	1700
11737	dark grey mod serp'd dunite; strongly magnetic; tr vfq diss'd awaruite	1647
11738	rusty weathering, strongly serp'd hz; near the contact with a norite dyke; med greenish grey matrix with ragged black and white patches of pyx phenos; weak to non-magnetic; tr vfg diss'd awaruite	1561
11739	yellow brown weathering late stage dunite; dark grey on fresh surface; weak to non-magnetic; tr vfg diss'd awaruite	2128
11740	It pink to It greenish grey weathering dunite; black on fresh surface; strongly magnetic; 0.5% vfg diss'd awaruite	1826
11741	It grey to 1t pinkish weathering dunite; dark greenish black on fresh surface; serp'd; strongly magnetic; 0.5% vfg diss'd awaruite	1621

-11-

	-11-	:
	•	
Sample Number	Sample Description	Ni ppm
11742	black dense pdt with strong antigorite veining; strongly magnetic; 0.5 - 1.0% diss'd vfg awaruite	1638
11743	dark green highly serp'd, high shattered chromite?- rich pdt; weak to non-magnetic; tr diss'd vfg awaruite	1446
11744	awaruite black highly serp'd chromite-rich pdt; black matrix with vague irreg white ragged pyx phenos; strongly magnetic; 1% awaruite, diss'd and on fractures	1615
11745	yellow green weathering strongly serp'd pdt; black on fresh surface; mod to strongly magnetic; tr to 0.5% vfg diss'd awaruite	1619
11746	black extremely serp'd hz with occasional vague white pyx pheno remnant; highly sheared; mod to strongly magnetic; tr vfg diss'd awaruite	1781
11747	pale grey with orange patches on weathered surface; black highly serp'd pdt; moderately magnetic; tr vfg diss'd awaruite	1647
11748	orange weathering black dense pdt; weak-mod magnetic; tr vfg diss'd awaruite	1639
11749	highly serp'd hz; It grey with rusty pyx phenos on on weathered surface; med greenish grey with dark patches of alt'd pyx (mag, serp); mod magnetic; tr vfg diss'd awaruite	1517
11750	c.g. orange rusty hz; dark grey highly serp'd hz on fresh surface with only vague brownish pyx phenos visible; very weakly magnetic; no visible awaruite	1558
11751	dark greenish black intensely serp'd hz with vague pyx phenos; intensely bx'd; very strongly magnetic; 0.5% vfg diss'd awaruite	1024
11752	black highly serp'd hz; pale green weathering; vague pyx phenos visible; mod magnetic; 0.5% vfg diss'd awaruite; moderately bx'd	1539
11753	intensely sheared and intensely serp'd hz with whitish green pyx phenos; weak to mod magnetic; tr vfg diss'd awaruite	1522
11754	bx'd and intensely serp'd hz; black; mod magnetic no visible awaruite	1515
11755	dark greenish black highly serp'd hz with vague pale green pyx phenos; highly sheared, platy; augen texture; mod magnetic; tr awaruite	1586
11756	pinkish buff, pale green weathering pdt; dark grey on fresh surface with occasional vague pale green pyx pheno; minor asb veining; mod magnetic; no visible awaruite	1527
11757	orange-red c.g. hz; dark greenish black on fresh surface; dense, textureless; mod magnetic; no visible awaruite	1585

Sample Number	Sample Description	Ni ppm
1 17 58	orange-red c.g. hz; dark grey dense relatively fresh looking pdt on fresh surface; strongly magnetic; tr vfg diss'd awaruite	1600
11759	dark green black highly serp'd and bx'd pdt with only vague pale green pyx phenos visible; mod magnetic; no visible awaruite	1521
11760	slightly rusty weathering dark grey serp'd hz with vague pyx phenos; highly sheared; mod magnetic; no visible awaruite	1533
11761	black highly serp'd hz with vague pale green pyx phenos; strongly magnetic; tr vfg diss'd awaruite	1562
11762	dark grey highly serp'd and highly sheared hz; pyx phenos vague; non magnetic; no visible awaruite	1477
11763	buff weathering dark grey strongly serp'd hz; pyx phenos only as irregular reddish brown cores with mag; weakly magnetic; no visible awaruite	1463
11764	orange weathering carb list with bright mariposite green patches; cut by myriads of white qtz stringers; no visible sulphides or awaruite	819
11765	black dense mod-weakly serp'd pdt with some relict pyx texture; strongly magnetic; no visible awaruite	1406
11766	c.g. porphyritic hz; black matrix with orange nodules or pyx phenos?; intensely alt'd by serp and minor carb; strongly magnetic; no visible awaruite	1684
11767	foliated black serp'd dun; strongly magnetic; 0.5% vfg diss'd awaruite	1425
11768	dark greenish black serp'd pdt; relatively fresh looking; strongly magnetic; 0.5% vfg diss'd awaruite	1346
11769	dark greenish black intensely serp'd pdt; strongly magnetic; 0.5% vfg diss'd awaruite	1402
11770	dark green to black intensely serp'd nodular hz; pyx phenos black to pale greenish; strongly magnetic; tr vfg diss'd awaruite	1440
11771	dark grey dense relatively fresh looking pdt; strongly magnetic; tr vfg diss'd awaruite	1683
11772	black nodular hz; intensely sheared; non-magnetic; 0.5% vfg diss'd awaruite	1737
11773	dark greyish green intensely serp'd hz; strongly magnetic; tr vfg diss'd awaruite	1617
11774	<pre>dark grey altered (serp'd) hz; textureless; sheared; strongly magnetic; tr vfg diss'd awaruite</pre>	1486
11775	dark blackish green highly serp'd and bx'd hz; strongly magnetic; 0.5% vfg diss'd awaruite	1496
11776	pale yellow green weathering gritty hz; very olivine rich; intensely serp'd; strongly magnetic; no visible awaruite	1379

-12-

Sample Number	Sample Description	Ni ppm
11777	black intensely serp'd c.g. hz with vague relict pyx phenos; strongly magnetic; tr vfg diss'd awaruite	1398
11778	dark grey mod serp'd hz with pale green pyx phenos; strongly magnetic; tr vfg diss'd awaruite	1221
11779	greyish green weathering highly serp'd hz; black on fresh surface; 1 cm long greyish green pyx phenos; non to weakly magnetic; no visible awaruite	1464
11780	buff weathering hz with green serp on fractures; dark grey on fresh surface; mod magnetic; tr vfg diss'd awaruite	1752
11781	dark olive green intensely serp'd hz with remnant orange pyx phenos; strongly magnetic; no visible awaruite	169 9
11782	dark grey mod serp'd pdt with occasional pyx pheno; strongly magnetic; 1% diss'd vfg awaruite	1497
11783	dark grey dense relatively fresh-looking pdt; intense green serp on fractures; mod magnetic; tr vfg diss'd awaruite	1670
11784	dark grey fresh-looking norite with 50% white f.g. feld and 50% bl opx; rust on fractures; non-magnetic; no visible sulphides	29
11785	dark grey porphyritic hz with 0.5 - 1 cm long pyx phenos; serpentine on fractures; strongly magnetic; 1% diss'd vfg awaruite	1401
11786	dark grey fresh-looking norite; 40% feld, 60* opx; non-magnetic; no visible sulphides	32
11787	dark green intensely serp'd hz with brown and white relict pyx phenos; at contact with norite; strongly magnetic; 0.5% vfg diss'd awaruite	1533
11788	dark greenish black moderately serp'd pdt; dense; mod magnetic; tr vfg diss'd awaruite	1642
11789	slightly rusty, highly serp'd black hz with orange weathering and c.g. lcm long pyx phenos; non- magnetic; no visible awaruite	1667
11790	brown weathering c.g. hz; fresh surface dark grey relatively fresh-looking with pale greyish green pyx phenos; non-magnetic; tr vfg diss'd awaruite	1542
11791	slightly rusty porphyritic hz with blackish green matrix and 1 cm long pyx phenos; strongly magnetic; tr vfg diss'd awaruite	1382
11792	yellow weathering f.g. dense late stage dunite; fresh surface dark greenish black; non-magnetic; no visible awaruite	1836
11793	yellow weathering c.g. hz; fresh surface black with brownish pyx phenos; tr extremely fine diss'd awaruite	1567
11794	black dense c.g. porphyritic hz; strongly magnetic; tr vfg diss'd awaruite	1271
11795	greenish black hz with c.g. pale green serp'd pyx phenos; strongly magnetic; tr vfg diss'd awaruite;	1380

in contact with norite

Sample Number	Sample Description	Ni ppm
11796	dark grey strongly serp'd and intensely bx' c.g. hz; strongly magnetic; no visible awaruite	1425
11797	dark grey mod serp'd hz with pale green pyx phenos; strongly magnetic; tr vfg diss'd awaruite	1376
11798	dark grey mod serp'd hz with pale green serp'd c.g. pyx phenos; strongly magnetic; 0.5% vfg diss'd awaruite	1359
11799	rusty weathering warty, fresh-looking hz; strongly magnetic; tr vfg diss'd awaruite	1338
11800	dark blackish green intensely serp'd pdt with green serp on fractures; very strongly magnetic; tr vfg diss'd awaruite	1292
11801	grey green relatively fresh-looking hz with c.g. pale green pyx phenos; very strongly magnetic; tr vfg diss'D awaruite and tr pale yellow sulphide	1459
11802	grey green relatively fresh-looking c.g. porphyritic hz with minor pale green pyx phenos; strongly magnetic; no visible awaruite	1577
11803	dark grey to black hz with black coated fractures; strongly magnetic; tr diss'd vfg awaruite	1429
11804	greenish black intensely sheared nodular hz with c.g. orange pyx phenos; highly serp'd; mod magnetic; tr vfg diss'd awaruite	1613
11805	as 11804	1460
11806	<pre>dark grey highly serp'd hz with vague pyx phenos; mod magnetic; tr vfg diss'd awaruite</pre>	1557
11807	orange weathering carb list; whitish and pale green on fresh surface; weak mariposite; cut by asp-bearing qtz stringers; tr asp	816
11808	rusty weathering c.g. porphyritic hz; intensely serp'd; relict pyx phenos; strongly magnetic; tr vfg diss'D awaruite	1509
11809	dark greenish black serp; dense; strongly magnetic; tr vfg diss'd awaruite	1347
11810	as 11809 but also with bright golden metallic needles and possibly a smear of native gold on fracture surface; no visible awaruite	1359
11811	very rusty; dark grey fresh-looking dun; intensely magnetic; tr vfg diss'd awaruite	1578
11812	rusty weathering c.g. hz; very alt'd with buff carb matrix and dark green serp'd pyx phenos; non-magnetic; tr vfg diss'd awaruite	1374
11813 11814	yellow weathering c.g. hz; same as 11812 rusty weathering c.g. hz; intensely serp'd; non- magnetic; pyx texture only visible on weathered surface; tr vfg diss'd awaruite	1457
11815	rusty weathering c.g. hz; dark grey intensely serp'd non-magnetic; no visible awaruite	1402

Sample Number	Sample Description	Ni P pm
11816	very rusty on fractures; same as 11815	1396
11817	rusty weathering; very alt'd hz with brown serp'D	1365
	matrix and dark green serp'd pyx phenos; non-magnetic;	
	tr vfg diss'd awaruite	
11818	reddish weathering; same as 11817	1337
11819	yellow weathering c.g. hz with thick 15 cm grey	148Q
	opx veinlets; same as 11817	
11820	It reddish orange weathering c.g. hz; dark grey,	1483
	dense relatively fresh-looking with pale green pyx	
	phenos; weakly magnetic; tr vfg diss'd awaruite	
11821	extremely alt'd (serp'd) c.g. hz; black matrix with	1505
	orange relicts of pyx phenos; weakly magnetic; no	
	visible awaruite	
1822	dark grey relatively fresh-looking hz with pale green	1477
	pyx phenos; non-magnetic; no visible awaruite	
11823	very alt'd hz; dark grey black serp'd matrix with	1436
	vague dark green relict pyx phenos; non-magnetic;	
	tr vvfg diss'd awaruite	
1824	dark green black serp; textureless; very strongly	1308
	magnetic; no visible awaruite	
1825	as 11824 but with tr vfg awaruite; very rusty and	1321
	patchily carb'd	1540
11826	as 11824; it mottled buff and green serp'd hz with	1546
	heavy green serp and antigorite on fractures	
L1827	slightly rusty c.g. hz; dark grey relatively fresh-	1418
	looking; mod serp'd; non-magnetic; tr vvfg diss'D	
1000	awaruite; pyx phenos rarely visible on fresh surface	1.445
1828	dark grey intensely serp'd hz with pale green pyx	1445
1000	phenos; non-magnetic; tr vvfg diss'd awaruite	000
1829	buff carb list; 0.5% diss'd vfg awaruite	903
.1830	med grey, dense, textureless strongly serp'd dun;	1562
	very strongly magnetic; cut by bl chlorite lined	
1071	fractures; tr vvfg diss'd awaruite	1449
1831	dark greenish black serp; very strongly magnetic; tr vfg diss'd awaruite	Tadà
.1832	pale green schistose volc; no visible sulphides	107
.1833	pale greenish volc with sericite alt; tr vvfg	107
1033	silvery metallic - awaruite?; rusty fractures	17
1834	talc; It grey with vivid orange limonite spots of pyx	910
1004	phenos; non-magnetic; no visible awaruite	210
1835	dark blackish green serp; textureless; very strongly	1232
1033	magnetic; tr vvfg diss'd awaruite	1232
1836	same as 11835; rare pyx pheno still visible	1289
1837	dark greenish black serp with occasional brown	1348
	weathered totally alt'd pyx pheno; mod magnetic;	1010
	no visible awaruite	
1838	dark blackish green serp; strongly magnetic; no	1338

-15-

Sample Number	Sample Description				
11839	dark blackish green serp; very strongly magnetic;	1256			
11840	tr vvfg diss'd awaruite dark grey dense textureless dun; mod magnetic; tr vfg diss'd awaruite	1504			
11841	dark greenish black serp; very strongly magnetic; no visible awaruite	1215			
1 1842	med grey dense textureless relatively fresh-looking dun; very strongly magnetic; 0.5% vfg diss'd awaruite	1738			
11843	rusty weathering, dark grey c.g. hz with rusty orange spots of relict pyx phenos; very alt'd by talc; very strongly magnetic; 0.5% vvfg diss'd pale silvery yellow sulphide	1541			
11844	very rusty orange weathering c.g. hz; dark grey relatively fresh-looking with pale green pyx phenos; strongly magnetic; no visible awaruite	1598			
11845	slightly rusty c.g. hz; buff very alt'd (talc) with black relict pyx phenos; weakly magnetic; tr vvfg diss'd awaruite	1542			
11846	slightly rusty dark greenish grey mod serp'd hz with relict pyx phenos only visible on weathered surface; weak to non-magnetic; no visible awaruite	1658			
11847	same as 11845	1572			
11848	same as 11846; tr vvfg diss'd awaruite	1651			
11849	very rusty orange c.g. hz; dark grey relatively fresh- looking with whitish green pyx phenos; very strongly magnetic; tr vvfg diss'd awaruite and yellow sulphide	1566			
11850	dark greenish black nodular hz with orange nodules; very magnetic; tr diss'd vfg awaruite	1667			
11851	dark blackish green highly serp'd pdt; no texture; dense; very strongly magnetic; 0.5% vfg diss'd awaruite	1646			
11852	dark greenish grey mod serp'd pdt; sheared; dense; textureless; very strongly magneticl tr vvfg diss'd awaruite	1676			
11853	dark green intensely serp'd pdt; at contact with norite; very strongly magnetic; tr vfg diss'd awaruite	1558			
11854	yellow weathering late stage dun; dark grey relatively fresh looking; dense, textureless; non-magnetic; no visible awaruite	1840			
11855	dark green serp; at contact with norite; very strongly magnetic; tr diss'd yellow sulphide and vvfg awaruite	1382			
11856	rusty dark grey relatively fresh-looking pdt; dense textureless; very strongly magnetic; tr vvfg diss'd awaruite	1556			
11857	dark grey mod serp'd pdt; dense, textureless; mod magnetic; tr vfg diss'd yellow sulphide	1814			
11858	dark grey to greenish black serp with pales green serp patches after pyx phenos; very strongly magnetic; no visible awaruite	1515			

 142551 buff carb list; no visible sulphides 142552 buff carb list with minor red hem patches after pyx; no visible sulphides 142553 dark greenish black very alt'd serp'd hz; highly sheared; strongly magnetic; 0.5% vfg diss'd awaruite 142554 dark grey black, very alt'd serp'd hz; strong to mod magnetic; tr vfg diss'd awaruite 142555 dark greenish black intensely serp'd hz with orange carb-replaced pyx phenos and occasional pale green talc-replaced pyx pheno; mod magnetic; tr vfg diss'd awaruite 142556 buff carb list with minor carb stringers and minor mariposite 142558 black very alt'd hz with green serp patches of former pyx phenos; weakly magnetic; tr vfg diss'd awaruite 142560 dark grey black highly serp'd nod hz; strongly magnetic; tr vfg diss'd awaruite 142560 dark grey serp with white carb? replaced pyx phenos; strong dark green serp on fractures; mod magnetic; tr vfg diss'd awaruite 142561 dark grey dense pdt; non magnetic; tr vfg diss'd awaruite 142562 dark grey dense pdt; non magnetic; tr vfg diss'd awaruite 142563 same as 142562 142564 yellow weathering late stage dun alt'd by pale greenish serp-carb; tr vfg diss'd awaruite 142564 black pdt; intensely sheared by asb vnlts; strongly magnetic; tr vfg diss'd awaruite 	1176 1350 1584 1710 1739 1142
142552buff carb list with minor red hem patches after pyx; no visible sulphides142553dark greenish black very alt'd serp'd hz; highly sheared; strongly magnetic; 0.5% vfg diss'd awaruite142554dark grey black, very alt'd serp'd hz; strong to mod magnetic; tr vfg diss'd awaruite142555dark greenish black intensely serp'd hz with orange carb-replaced pyx phenos and occasional pale green talc-replaced pyx pheno; mod magnetic; tr vfg diss'd awaruite142556buff carb list with minor carb stringers and minor mariposite142557buff quartz-carb list with trace greyish vvfg sulphide (asp?); tr mariposite142558black very alt'd hz with green serp patches of former pyx phenos; weakly magnetic; tr vfg diss'd awaruite142560dark grey black highly serp'd nod hz; strongly magnetic; tr vfg diss'd awaruite142561dark grey serp with white carb? replaced pyx phenos; strong dark green serp on fractures; mod magnetic; tr vfg diss'd awaruite142562dark grey black highly serp'd nod hz; strongly magnetic; tr vfg diss'd awaruite142563same as 142562142564yellow weathering late stage dun alt'd by pale 	1350 1584 1710 1739
142553dark greenish black very alt'd serp'd hz; highly sheared; strongly magnetic; 0.5% vfg diss'd awaruite142554dark grey black, very alt'd serp'd hz; strong to mod magnetic; tr vfg diss'd awaruite142555dark greenish black intensely serp'd hz with orange carb-replaced pyx phenos and occasional pale green talc-replaced pyx pheno; mod magnetic; tr vfg diss'd awaruite142556buff carb list with minor carb stringers and minor mariposite142557buff quartz-carb list with trace greyish vvfg sulphide (asp?); tr mariposite142558black very alt'd hz with green serp patches of former pyx phenos; weakly magnetic; 0.5% diss'd 	1710 1739
142554dark grey black, very alt'd serp'd hz; strong to mod magnetic; tr vfg diss'd awaruite142555dark greenish black intensely serp'd hz with orange carb-replaced pyx phenos and occasional pale green talc-replaced pyx pheno; mod magnetic; tr vfg 	1739
 142555 dark greenish black intensely serp'd hz with orange carb-replaced pyx phenos and occasional pale green talc-replaced pyx pheno; mod magnetic; tr vfg diss'd awaruite 142556 buff carb list with minor carb stringers and minor mariposite 142557 buff quartz-carb list with trace greyish vvfg sulphide (asp?); tr mariposite 142558 black very alt'd hz with green serp patches of former pyx phenos; weakly magnetic; 0.5% diss'd awaruite 142559 black serp; mod to strongly magnetic; tr vfg diss'd awaruite 142560 dark grey black highly serp'd nod hz; strongly magnetic; tr vfg diss'd awaruite 142561 dark grey serp with white carb? replaced pyx phenos; strong dark green serp on fractures; mod magnetic; tr vfg diss'd awaruite 142562 dark grey dense pdt; non magnetic; tr vfg diss'd awaruite 142563 same as 142562 142564 yellow weathering late stage dun alt'd by pale greenish serp-carb; tr vfg diss'd awaruite 142565 black pdt; intensely sheared by asb vnlts; strongly 	
 mariposite 142557 buff quartz-carb list with trace greyish vvfg sulphide (asp?); tr mariposite 142558 black very alt'd hz with green serp patches of former pyx phenos; weakly magnetic; 0.5% diss'd vfg awaruite 142559 black serp; mod to strongly magnetic; tr vfg diss'd awaruite 142560 dark grey black highly serp'd nod hz; strongly magnetic; tr vfg diss'd awaruite 142561 dark grey serp with white carb? replaced pyx phenos; strong dark green serp on fractures; mod magnetic; tr vfg diss'd awaruite 142562 dark grey dense pdt; non magnetic; tr vfg diss'd awaruite 142563 same as 142562 142564 yellow weathering late stage dun alt'd by pale greenish serp-carb; tr vfg diss'd awaruite 142565 black pdt; intensely sheared by asb vnlts; strongly 	1142
 buff quartz-carb list with trace greyish vvfg sulphide (asp?); tr mariposite black very alt'd hz with green serp patches of former pyx phenos; weakly magnetic; 0.5% diss'd vfg awaruite black serp; mod to strongly magnetic; tr vfg diss'd awaruite dark grey black highly serp'd nod hz; strongly magnetic; tr vfg diss'd awaruite dark grey serp with white carb? replaced pyx phenos; strong dark green serp on fractures; mod magnetic; tr vfg diss'd awaruite dark grey dense pdt; non magnetic; tr vfg diss'd awaruite same as 142562 yellow weathering late stage dun alt'd by pale greenish serp-carb; tr vfg diss'd awaruite black pdt; intensely sheared by asb vnlts; strongly 	
 142558 black very alt'd hz with green serp patches of former pyx phenos; weakly magnetic; 0.5% diss'd vfg awaruite 142559 black serp; mod to strongly magnetic; tr vfg diss'd awaruite 142560 dark grey black highly serp'd nod hz; strongly magnetic; tr vfg diss'd awaruite 142561 dark grey serp with white carb? replaced pyx phenos; strong dark green serp on fractures; mod magnetic; tr vfg diss'd awaruite 142562 dark grey dense pdt; non magnetic; tr vfg diss'd awaruite 142563 same as 142562 142564 yellow weathering late stage dun alt'd by pale greenish serp-carb; tr vfg diss'd awaruite 142565 black pdt; intensely sheared by asb vnlts; strongly 	969
 142559 black serp; mod to strongly magnetic; tr vfg diss'd awaruite 142560 dark grey black highly serp'd nod hz; strongly magnetic; tr vfg diss'd awaruite 142561 dark grey serp with white carb? replaced pyx phenos; strong dark green serp on fractures; mod magnetic; tr vfg diss'd awaruite 142562 dark grey dense pdt; non magnetic; tr vfg diss'd awaruite 142563 same as 142562 142564 yellow weathering late stage dun alt'd by pale greenish serp-carb; tr vfg diss'd awaruite 142565 black pdt; intensely sheared by asb vnlts; strongly 	1367
 magnetic; tr vfg diss'd awaruite 142561 dark grey serp with white carb? replaced pyx phenos; strong dark green serp on fractures; mod magnetic; tr vfg diss'd awaruite 142562 dark grey dense pdt; non magnetic; tr vfg diss'd awaruite 142563 same as 142562 142564 yellow weathering late stage dun alt'd by pale greenish serp-carb; tr vfg diss'd awaruite 142565 black pdt; intensely sheared by asb vnlts; strongly 	1764
 142561 dark grey serp with white carb? replaced pyx phenos; strong dark green serp on fractures; mod magnetic; tr vfg diss'd awaruite 142562 dark grey dense pdt; non magnetic; tr vfg diss'd awaruite 142563 same as 142562 142564 yellow weathering late stage dun alt'd by pale greenish serp-carb; tr vfg diss'd awaruite 142565 black pdt; intensely sheared by asb vnlts; strongly 	1643
 142562 dark grey dense pdt; non magnetic; tr vfg diss'd awaruite 142563 same as 142562 142564 yellow weathering late stage dun alt'd by pale greenish serp-carb; tr vfg diss'd awaruite 142565 black pdt; intensely sheared by asb vnlts; strongly 	1454
 142564 yellow weathering late stage dun alt'd by pale greenish serp-carb; tr vfg diss'd awaruite 142565 black pdt; intensely sheared by asb vnlts; strongly 	1478
greenish serp-carb; tr vfg diss'd awaruite 142565 black pdt; intensely sheared by asb vnlts; strongly	1311
142565 black pdt; intensely sheared by asb vnlts; strongly	2308
	1633
142566 late stage dun; it grey dense; non-magnetic; tr vfg diss'd awaruite	2353
142567 orangey weathering c.g. hz; dark grey relatively fresh-looking with pale green fresh-looking pyx phenos; non-magnetic; no visible awaruite	1476
142568 yellow weathering dark grey pdt; dense; non-magnetic; 0.5% vfg diss'd awaruite	1555
142569 same as 142568	1555
142570 dark grey dun, dense; fractures heavily serp'd; mod magnetic; 0.5% vfg diss'd awaruite	1436
142571 dark grey intensely serp'd pdt; weakly magnetic; tr vfg diss'd awaruite	1540
142572 white, buff, pale green qtz-carb list; tr pyr	874

Sample Number	Sample Description				
142573	dark grey relatively fresh-looking pdt; strongly magnetic; tr vfg diss'd awaruite	1701			
142574	black nodular hz; mod magnetic; tr vfg diss'd awaruite	1881			
142575 142576	buff, pale green carb list; 0.5% vfg diss'd awaruite grey green carb/serp list	1147 832			
142577	buff, pale green carb list; minor mariposite; minor qtz stringers	1178			
142578 142579	buff, greyish green carb-serp list black textureless ol hz?; strongly magnetic; 0.5% vfg diss'd awaruite	894 1727			
142580	dark grey nodular hz; relatively fresh-looking; strongly magnetic; tr vfg diss'd awaruite	1615			
142581	dark grey dense nodular hz; relatively fresh-looking tr vfg diss'd awaruite	1487			
142582	dark green strongly serp'd nodular hz; strongly magnetic; no visible awaruite	1284			
142583	dark grey dense relatively fresh-looking pdt; sheared; strongly magnetic; no visible awaruite	1638			
142584	dark greenish black highly serp'd nodular hz with virtually no phenos left; antigorite veinlets; strongly magnetic; tr vfg diss'd awaruite	1844			
142585	pale green qtz-carb list; much mariposite and qtz stringers with bright white silvery metallic - asp? awaruite? as needles and laths	973			
142586	mottled buff and pale green carb list; mod mariposite; tr bright white vfg diss'd metallic - asp? awaruite?	1238			
142587	sheared dark green serp cut by orange carb streaks; mod magnetic; tr vfg diss'd awaruite	1539			
142588	greyish green carb/serp list cut by carb vnlets; tr vfg diss'd awaruite	1120			
142589	dark grey dense relatively fresh-looking pdt; strongly magnetic; tr vfg diss'd awaruite	1253			
142590	buff and greyish green carb list; minor mariposite; cut by white carb stringers; tr vfg diss'd awaruite and 0.5% diss'd pyr	1239			
142591	black highly serp'd pdt; strongly magnetic; no visible awaruite	1859			
142592	dark greenish black, very sheared nodular hz; very strong magnetically; tr vfg diss'd awaruite	1927			
142593	mottled pale green and black extremely sheared intensely alt'd by talc and serp; strongly magnetic; tr vfg diss'd awaruite	1719			
142594	black very sheared hz? highly serp'd; weakly to mod magnetic; no visible awaruite	1666			

Sample Number	Sample Description			
142595	black very sheared and intensely serp'd hz; mod magnetic; no visible awaruite	1722		
142596	dark grey intensely serp'd hz with vague patches of brown of former pyx phenos; no visible awaruite	1969		
142597	dark green intensely serp'd hz; strongly magnetic; no visible awaruite	1330		
142598	<pre>med greenish grey relatively fresh-looking dun; mod magnetic; tr vvfg diss'd awaruite</pre>	1290		
142599	pale green carb list; weak mariposite; tr vfg diss'd awaruite	1254		
142600	med grey green carb/serp list and pale green carb list; tr diss'd vfg awaruite	1079		
142601	dark grey relatively fresh-looking pdt; strongly magnetic; tr vfg diss'd awaruite	1183		
142602	med greenish grey relatively fresh-looking dun; non-magnetic; tr vfg diss'd awaruite	1192		
142603	dark greenish grey mod serp'd pdt; weakly magnetic; tr vfg diss'd awaruite	1676		
142604	greenish black serp; almost jade; strongly magnetic; no visible awaruite	1520		
142605	dark black green serp; strongly magnetic; tr vfg diss'd awaruite	1492		
142606	dark blackish green serp; strongly magnetic; 0.5% both vfg diss'd awaruite and pyr?	1426		
142607	as 142606 except non-magnetic	1468		
142608	black c.g. hz with c.g. orange talc patches after pyx phenos; strongly magnetic; no visible awaruite	1697		
142609	<pre>black c.g. hz; relatively fresh-looking; strongly magnetic; tr vfg diss'd awaruite</pre>	1670		
142610	very fresh dark grey c.g. hz; strongly magnetic; no visible awaruite	1578		
142611	buff weathering dark greenish grey dun with minor c.g. pyx phenos; cut by large irregular seam of antigorite 0.6m wide; non to weakly magnetic; tr vfg diss'd awaruite	1634		
142612	orange weathering c.g. hz; dark grey relatively fresh looking with pale greenish pyx phenos; non-magnetic; no visible awaruite	1578		
142613	orange weathering dark grey hz; relatively fresh- looking; strongly magnetic; no visible awaruite	1543		
142614	as 142613	1470		
142615	yellow weathering late stage dun; dark grey relatively fresh-looking but weakly serp'd; non-magnetic; no visible awaruite	1703		

.

.

Sample Number	Sample Description rusty weathering c.g. hz; mod serp'd; strongly magnetic; no visible awaruite				
142616					
142617	dark grey black relatively fresh-looking hz with pale greenish pyx phenos; mod magnetic; no visible awaruite	1668			
142618	yellow weathering pdt and c.g. hz; differentiated layers; dark green chlorite on fractures; massive; blocky; mod serp'd; also cut by magnetite-lined fractures; mod to non-magnetic; no visible awaruite	1715			
142619	yellow weathering c.g. hz; black on fresh surface; cut by black streaks of chlorite; non-magnetic; no visible awaruite	1631			
142620	dark grey fresh-looking pdt with occasional pale green pyx pheno; strongly magnetic; tr vvfg diss'd awaruite and yellow sulphide	1503			
142621	same as 142620	1376			
142622	yellow weathering dark grey dense pdt; fresh-looking strongly magnetic; no visible awaruite	1607			
142623	serp'd hz with black matrix and orange pyx phenos; strongly magnetic; no visible awaruite	1574			
142624	same as 142622	1506			
142625	dark green serp'd ha; matrix black with orange pyx phenos; non-magnetic; at contact with norite; no visible awaruite	1578			
142626	as 142625; sheared, platy; strongly magnetic	1541			
142627	orange weathering c.g. porphyritic hz; blackish grey on fresh surface; non-magnetic; cut by black mag-coated fractures; tr vfg diss'd awaruite				
142628	buff and dark grey mottled hz; black matrix with pale green pyx phenos; strongly magnetic; no visible awaruite	1570			
142629	yellow weathering dense hz; intensely bx'd; fractures coated by green black chlorite; same as 142628	1542			
142630	yellow weathering dense c.g. hz; brown matrix with silvery pyx phenos; mod magnetic; no visible awaruite	1683			
142631	orange-brown weathered c.g. hz with pale silvery pyx phenos; non-magnetic; no visible awaruite	1697			
142632	rusty orange weathered hz; med grey fresh-looking hz; non-magnetic; tr vfg diss'd awaruite	1772			
142633	yellow weathering c.g. hz with much black chlorite on fractures; fresh-looking dark grey; strongly magnetic no visible awaruite	1694			
142634	orange rusty weathering dark grey pdt; strongly magnetic; no visible awaruite	1677			
142635	rusty weathering dark grey pdt with minor c.g. pyx	1750			

142635 rusty weathering dark grey pdt with minor c.g. pyx phenos; weak to non-magnetic; tr vfg diss'd awaruite;

..

-21	-
-----	---

Sample Number	Sample Description	Ni ppm
142636	rusty weathering c.g. hz; dark grey matrix with pale grey green pyx phenos; weak to non-magnetic; tr vfg diss'd awaruite	1735
142637	very rusty weathering c.g. hz with dark grey matrix and 1t greenish grey pyx phenos; mod magnetic; tr vfg diss'd awaruite	1689
142638	rusty weathering dark grey pdt with minor 1t grey pyx phenos; mod magnetic; no visible awaruite	1667
142639	intensely alt'd (talc) porphyritic hz; brown matrix with greyish green pyx phenos; mod magnetic; tr vvfg awaruite and yellow sulphide	1667
142640	mottled buff and it green c.g. hz; dark grey strongly serp'd with vague pyx phenos; strongly magnetic; no visible awaruite	1667
142641	greyish green and buff mottled c.g. hz with much green black chlorite on fractures; also black Mn? stain; vague pyx phenos; very strongly magnetic; tr vfg diss'd awaruite	1707
142642	<pre>black serp ; very strongly magnetic; tr vfg diss'd awaruite</pre>	1606
142643	dark green black hz intensely serp'd with pale green pyx phenos; very strongly magnetic; tr vfg diss'd awaruite	1534
142644	dark green intensely serp'd hz?; very strongly magnetic tr vfg diss'd awaruite; heavy Mn on fractures	1528
142645	dark green intensely serp'd pdt; strongly magnetic; 0.5 - 1.0% vfg diss'd awaruite and yellow needle-like metallic	1606
142646	dark greyish green strongly serp'd pdt with minor black fresh-looking pyx phenos; strongly magnetic; tr vfg diss'd awaruite	1604
142647	mottled pale grey and buff hz cut by black chlorite- lined fractures; fresh surface dark greenish black; intensely serp'd with pale green pyx phenos; strongly magnetic; tr vfg diss'd awaruite	1693
142648	dark grey c.g. hz with whitish pyx phenos; heavy black Mn stain on fractures; strongly magnetic; tr vvfg diss'd awaruite	2145
142649	dark grey relatively fresh-looking hz with whitish pyx phenos; strongly magnetic; tr vvfg diss'd awaruite	1781
142650	dark grey intensely serp'd hz; nodules pale yellow green dun; strongly magnetic; no visible awaruite	1732
142651	dark grey sheared nodular hz; intensely serp'd; strongly magnetic; tr yellow sulphide	1812

Sample Number	Sample Description				
142652	dark grey relatively fresh-looking c.g. hz; strongly magnetic; tr vfg diss'd awaruite	1740			
142653	dark grey pdt; textureless, dense; strongly magnetic; tr vfg diss'd awaruite	1766			
142654	black intensely serp'd pdt; strongly magnetic; 0.5% vfg diss'd awaruite	1701			
142655	mottled grey green and orange, rusty weathering c.g. hz with mod serp on fractures; fresh surface dark grey; mod serp'd; very strongly magnetic; 0.5% vfg diss'd awaruite	1716			
142656	very rusty red brown c.g. hz; fresh surface dark grey with pyx phenos visible only on weathered surface; mod serp'd; strongly magnetic; tr vfg diss'd sulphide	1699			
142657	black grey intensely serp'd pdt; textureless; very strongly magnetic; at contact with norite; tr vfg diss'd awaruite	1673			
142658	dark grey hz with pale greenish pyx phenos; very strongly magnetic; tr vfg diss'd awaruite	1736			
142659	yellow weathering late stage dun; dark grey fresh- looking; mod to strongly magnetic; tr vfg diss'd awaruite	1860			
142660	very rusty c.g. hz; dark grey on fresh surface with whitish pyx phenos; strongly magnetic; no visible awaruite	1718			
142661	yellow weathering late stage dun; dark grey on fresh surface; intensely serp'd with very little texture left; weakly magnetic; tr vfg diss'd awaruite	1681			
142662	dark grey mod serp'd pdt; dense; strongly magnetic; tr vfg diss'd awaruite	1026			
142663	dark green serp; very strongly magnetic; no visible awaruite	1558			
142664	same as 142663	1453			
142665	dark greenish black highly serp'd pdt?; very strongly magnetic; tr vfg diss'd awaruite	1480			
142666	same as 142665; no visible awaruite	1480			
142667	dark grey highly serp'd pdt; cut by carb vnlts; very strongly magnetic; no visible awaruite	1374			
142668	dark grey relatively fresh-looking dense norite; very strongly magnetic; tr vfg diss'd pale yellow sulphide	179			
142669	dark grey slightly serp'd norite; non-magnetic; tr vfg diss'd yellow sulphide	67			
142670	It grey relatively fresh-looking pdt?; extremely magnetic; tr of yellow green serp on fractures; no visible awaruite	1701			
142671	dark green highly serp'd pdt?; non-magnetic; no visible awaruite	969			
142672	dark green serp; very strongly magnetic; tr vfg diss'd awaruite	1482			

Sample Number	Sample Description		
142673	pale greenish grey carb/serp list with black vague areas of former pyx phenos; no visible awaruite or sulphides	951	
142674	med greenish grey serp/talc list; very strongly magnetic; tr vfg diss'd awaruite	389	
142675	dark green serp; very strongly magnetic; 0.5% vfg diss'd yellow sulphide and tr vfg diss'd awaruite; VG speck?	1446	
142676	dark yellow green serp; schistose; very strongly magnetic;; no visible awaruite	1651	
142677	very sheared dark green serp'd pdt? gbo? volc?; dense chloritic; non-magnetic; tr vfg diss'd yellow sulphide and awaruite; in sharp contact with unaltered volcanic	1537	
142678	med grey schistose talc with rusty orange spots after pyx phenos; non-magnetic; no visible sulphides or awaruite	966	

11.0 <u>RESULTS</u>

Drill Core: A visual examination of drill core from 94-10 showed that awaruite was present throughout the entire hole. Several sections were noted with an estimated 10% disseminated coarse grained awaruite averaging 2 - 5 mm in diameter. The entire hole (74.11 meters) averaged 1508 ppm nickel. The results do not reflect the visual estimate. It has been noted from past work that there appears to be significant differences in Ni/Co values from lab to lab (see Assessment Report 24906). Sample 11714 returned a value of 1625 Ni/78 Co. Previous sampling of this interval returned 2141 ppm Ni/90 ppm Co. Sample 11721 returned a value of 1511 ppm Ni/76 ppm Co. Previous sampling returned values of 2113 ppm Ni/ 84 ppm Co.

Rock sampling: Analysis of 178 rock samples showed to following results:

- The highest values were obtained from late stage dunites (2308, 2353, 2128 ppm Ni) and harzburgite (c.g. harzburgite 2145 ppm Ni, serpentinized harzburgite 1969 ppm Ni, nodular harzburgite 1927 ppm Ni).
- 2) Of 178 samples 6% (10 samples) exceeded 1800 ppm Ni. A breakdown by lithology is as follows:

	late stage dunite	4 samples
	serp'd harzburgite	e 3 samples
	serp'd peridotite	2 samples
	harzburgite	1 sample
3)	Of 178 samples 15% (26	samples) fell between
	1700 and 1799 ppm Ni.	A breakdown by lithol-
	ogy is as follows:	
	harzburgite	10 samples
	peridotite	7 samples
	serp'd harzburgite	e 5 samples
	serpentine	2 samples
	serp'd peridotite	1 sample
	dunite	l sample
4)	Of 178 samples 26% (46	
	1600 and 1699 ppm Ni.	A breakdown by lithol-
	ogy is as follows:	
	harzburgite	12 samples

ogy.	is as follows:			
	harzburgite		samples	
	serp'd harzburgite		samples	
	serp'd peridotite		samples	
	peridotite	8	samples	
	dunite	3	samples	
	serpentine	3	samples	

- 5) Forty-nine samples (28%) fell below 1500 ppm Ni. The majority of samples 61% (109 samples) fell between 1500 and 1599 ppm Ni.
- 6) The lowest nickel values were obtained from the listwanites but on occasion from serpentine or serpentinized equivalents.
- 7) The following analytical discrepancies have been noted:

1997	rock	samp	le	1994	rock	sam	ple
142556	1142	ppm	Ni	D98528	1358	ppm	Ni
142557	969	ppm	Ni	D98513	1129	ppm	Ni
142572	874	ppm	Ni	A98560	1316	ppm	Ni
142578	894	ppm	Ni	A98510	838	ppm	Ni
142588	1120	ppm	Ni	A98537	1360	ppm	Ni
142670	1701	ppm	Ni	1BMSR004	1949	ppm	Ni
142674	389	ppm	Ni	A 98052	686	ppm	Ni

The differences in nickel values range from nil to 43% and average approximately 15%. Other rock sampling shows discrepances from 25 to 30% in nickel values.

Metallurgy:

- The Knelson gravity concentrate test at a P₈₀ of 155 m resulted in 35.4% Ni recovery to the Knelson concentrate at 6.8 mass %. The pan concentrate recovery was 19.9% Ni in 0.3 mass%.
- 2) The magnetic separation test resulted in high mass recoveries with only marginal concentration ratio. The magnetics recovery (P_{80} of 1897 m) was 63.3% Ni in 53.1 mass %. The milled sample at a P_{80} of 155 m was 81% Ni in 63.4 mass %. The nickel grade was only slightly improved.
- 3) The bottle roll leach test resulted in 30% Ni dissolution in 24 hours. The tank leach test on the milled sample at P₈₀ of 78 m resulted in a Ni dissolution of 67%. The kinetic curves for both leaches indicate that longer leach times would be beneficial. The acid consumption on the unmilled sample was 63.7 kg/tonne compared to 194.4 kg/tonne for the milled sample.

4) The composite sample of 96RMB-43 and 44 (collected in 1996) was passed through a Sala WLIMS Drum Separator. Rougher and scavenger concentrates were collected and combined. The combined concentrate was given a 24 hour sulphuric acid leach at pH 1.5. The magnetic concentrate that was produced resulted in grade increases of Fe, Ni and Co with recoveries of 59%, 57% and 38% respectively. A size analysis of the leach residue showed that the grind was possibly still too coarse at a P_{80} of 113 m. The leach Ni dissolution was 46.6% after 24 hours giving an overall Test Ni recovery of 26.6%. The leach acid consumption was reduced to 144 kg/tonne by removal of some of the acid consuming minerals into the WLIMS Tests indicate that extending the leach tailing. time should result in only a small increase in acid requirement.

12.0 CONCLUSIONS

The following quotations have been taken from a petrographic report by Vancouver Petrographics in order to conclusively prove that awaruite exists other than the inclusions reported in the SEM work (1997) on the nonmagnetic portions of samples 96RMB-43 and 44.

"In places there are areas of highly reflectant opaques associated with magnetite, with cubic or triangular to lath-like or rarely rounded outlines up to 0.2mm long and apparently isotropic character. The first (with triangular shapes; most common) is confirmed by SEM analysis as Fe-Ni alloy (about 1:1 Fe to Ni; the second (irregular; rare ie one out of 6 grains analysed) is identified as Ni sulphide with Ni:S ratio 1:1." (96RMB-43)

"Rare highly reflective Fe-Ni alloy forms clusters up to 0.2mm across of needle-like crystals less than 50 microns long; by analogy with the SEM analysis done for RMB-43, subhedral crystals to 100 microns could by Ni sulphide." (96RMB-44) "Rare very fine (less than 20 micron diameter) crystals of highly reflective Fe-Ni alloy are found in the serpentine fractures, rarely aggregating to blebs 0.3 mm long, and only very rarely intergrown with magnetite. Rare aggregates of Fe-Ni alloy to 65 microns diameter are enclosed in (rimmed by) carbonate." (96RMB-45)

The discrepancies in nickel values between labs and the fact that no awaruite was noted in the magnetic fraction examined under microscope is somewhat troubling. Since awaruite tends to be malleable, it is conjectured that the finer grind (-150 mesh) used in the 1997 rock preparation versus the -100 mesh used in the 1994 work may be detrimental to awaruite recovery. If this theory is correct a coarser grind would most definitely be more beneficial to awaruite recovery.

The metallurgical work performed by Process Research indicated that the awaruite and/or nickel might be economically extractable.

13.0 <u>RECOMMENDATIONS</u>

- The drill core from 94-10 should be re-analysed selectively for nickel and cobalt by an alternative lab for the same (-150 mesh) fraction plus re-analysed for the -100 and the +100 fraction.
- Further metallurgical testing should be conducted. Process Research has suggested the following tests be performed:
 - a further bottle roll test on the unmilled sample 96RMB43/44 which should be continued for 5 days with sampling at 4, 8, 24, 72 and 96 hours.
 - b) grind sample to P_{80} of 78 m followed by gravity concentration and leaching of a Knelson concentrate.
 - c) additional tests on finer grind than P_{80} of 113 m.
 - d) optimize grind/magnetic selectivity relationship with an inclusion of a WLIMS cleaning step and optimize leach conditions.

14.0 REFERENCES

- Paper 37-13, West Half of the Fort Fraser Map-Area, B.C., by J. E. Armstrong, 1937.
- Paper 38-10, Northwest Quarter of the Fort Fraser Map-Area, B. C., by J. E. Armstrong, 1938.
- Paper 78-19, Jade in Canada, by S. F. Leaming.
- Paper 74-1, Part B, Geology of the Cache Creek Group and Mesozoic Rocks at the Northern End of the Stuart Lake Belt, Central B.C., by Ian A. Paterson, 1975.
- Memoir 252, Fort St. James Map-Area, Cassiar and Coast Districts, B.C., by J. E. Armstrong, 1949.
- Assessment Report 5648, Rock Sampling and Prospecting on the Pauline Claims, by D. Stelling, 1975.
- Assessment Report 8135, Prospecting Report on the CR Claims, by V. Guinet, 1980.
- Assessment Report 10286, Geophysical Report on the CR 1 6 Claims, by T. Pizzot, 1982.
- Assessment Report 11879, Geochemical Survey on the BAP Claims, by R. R. Culbert, 1984.
- Assessment Report 17173, Geochemical Sampling on the Van Group, Klone Group, Mid Claim, by U. Mowat, 1988.
- Assessment Report 18089, Geochemical Sampling, Prospecting and Mapping on the Van Group, Klone Group and Mid Claim, by U. Mowat, 1988.
- Assessment Report 20541, Mapping and Drilling Program on the Mount Sidney Williams Property, by U. Mowat, 1990.
- Assessment Report 21870, Drilling Program on the Mount Sidney Williams Property, by U. Mowat, 1991.
- Assessment Report 23569, Drilling Program on the Mount Sidney Williams Property, by U. Mowat, 1994.

Assessment Report 24906, A Geochemical/Petrographic Report on the Mount Sidney Williams Property, by U. Mowat, January 1997.

15.0 STATEMENT_OF_COSTS

•

.

1

Analysis	
286 rock prep at \$5.50/sample	1573.00
1410 overweight preps at \$0.50/	
sample	705.00
24 samples analysed for 34 elements	
at \$8.55/sample	205.20
262 samples analysed for 34 elements	
at \$7.27/sample	1904.74
24 samples analysed for Au at \$6.90/	
sample	165,60
262 samples analysed for Au at	1527 04
\$5.87/sample	1537.94 169.95
33 silt sample prep at \$5.15/sample 33 silt samples analysed for 34	103,30
elements at \$7.27/sample	239.91
33 silt samples analysed for Au at	200401
\$5.87/sample	193.71
GST	468.65
	\$7163.70
Helicopter .	•
37.5 hours at \$630/hour	23625.00
3.3 hours at \$640/hour	2112.00
4365.6 liters of fuel at \$0.70/	
liter	3055.92
285.0 liters of fuel at \$0.75/	
liter	213.75
GST	2030.47
	\$31037.14
Labour	6800.00
1 man at \$200/day for 34 days	1200.00
l man at \$200/day for 6 days 1 man at \$150/day for 31 days	4650.00
2 men at \$175/day for 3 days	1050.00
1 man at \$150/day for 30 days	4500.00
1 man at \$150/day for 33 days	4950.00
20% employee benefits	4630.00
GST	1944.60
	\$29724.60
1 man for 1 month at \$4003.48/	
month	4003.48
1 man at \$400/day for 34 days	13600.00
	\$17603.48
	¢6020 22
Administration	\$5939.32
	\$60.00
Expediting	400.00

Metallurgy (see invoices)	\$7393.70
Camp Rental 30 days at \$30/man/day for 6 men generator at \$30/day for 30 days core splitter GST	5400.00 900.00 150.00 451.50 \$6901.50
Truck Rental 1 truck for 6 days at \$75.00/day 1 truck for 32 days at \$50.00/day GST	450.00 1600.00 <u>143.50</u> \$2193.50
Lumber	1070.00
Airfare	1439.82
Groceries	5528.79
Telephone	391.44
Equipment	1462.08
Stove Oil	1744.77
Propane	141.21
Gas	286.13
Freight	2034.85
Courier	45.32
Accommodation 9 rooms for 17 days at \$52.90/night 2 rooms for 2 days at \$62.10/night	899.30 <u>124.20</u> \$1023.50
Meals	570.72
Taxi	53.00
TOTAL	\$129208.57

chaque (UZIZ) -32-

.*

...

INVOICE

PROCESS RESEARCH ASSOCIATES LTD.

9145 Shaugl Vancouver, Canada, V6			Phone: Fax:	• •	22-0118 22-0181 30, 1997
Project No:	97-053		Invoid	e No:	1192
TO:	First Point Minerals Corj Suite 2170 - 1050 West Vancouver, B.C. V6E 3S7				
ATTENTION:	Peter Bradshaw	$\overline{\mathcal{A}}$	JE JU	ATT IN < 0 19	11) 197
RE: Metal Recovery Study Professional Services to May 30, 1997 BY: <u>0295</u>					
Assay for Fe, Size Analysis Acid Consum Leach Tests of Assay Produc Gravity Conce Assay Produc Dry Magnetic Assay Produc Disbursement Supervision a Total GST (7%)	controlled at pH 1.5 (2 @ ets (5/test) for Fe, Ni & Co entration Scoping Test ets (3) for Fe, Ni & Co Concentration Scoping T ets (4/test) for Fe, Ni & Co ts	ICP metal analysis. \$300 ea.) & H₂SO₄ of PLS ests (2 @ \$250.00)		(\$55.00 \$65.00 \$35.00 \$35.00 \$600.00 \$330.00 \$250.00 \$240.00 \$500.00 \$500.00 \$500.00 \$240.00 \$550.00 \$194.60 2,974.60

Terms: Net 30 days. Interest @ 1% per month on overdue accounts G.S.T. Number R132440272

Winword//forms/QF-002, Revision A.

NOTES Need to subtract the \$1000 depend.

INVOICE

.

PROCESS RESEARCH ASSOCIATES LTD.

9145 Shaug Vancouver, Canada, V6			Phone: Fax:	(604) 3	22-0118 22-0181 30, 1997
Project No:	97-053		Invoic	e No:	1218
то:	First Point Minerals Corp Suite 2170 - 1050 West Pe Vancouver, B.C. V6E 3S7		TP.	3 U 19	97
ATTENTION: Mr. Peter Bradshaw				<u>}</u>	
RE:	Metal Recovery Study Professional Services to	June 30, 1997			
Assay Produc Leach Tests c		00 ea.)			\$250.00 \$60.00 \$300.00 \$165.00 \$40.00 \$200.00
Total GST (7%)				\$1	,015.00 <u>\$71.05</u>
Total amount	owing this invoice	by Mark JUL 10 199		-	,086.05
	Terms: Net 30 days. Interest @	2 1% per month on overdue	accounts		

Terms: Net 30 days. Interest @ 1% per month on overdue accounts G.S.T. Number R132440272

Winword//forms/QF-002, Revision A.

INVOICE

PROCESS RESEARCH ASSOCIATES LTD.

9145 Shaughnessy Street Vancouver, B.C. Canada, V6P 6R9			Phone: (604) 322-0118 Fax: (604) 322-0181 July 31, 1997	
Project No:	97-053	Invoic	e No: 1252	
то:	First Point Minerals Corp. Suite 2170 - 1050 West Pender Street, Vancouver, B.C. V6E 3S7	appro	oved	
ATTENTION:	Mr. Peter Bradshaw	AUG 2 5	76.6	
RE:	Metal Recovery Study Professional Services to July 31, 199			
Magnetic Sep Assays (2 @ 3 Vancouver Pe Disbursement	es (2 @ \$30.00) aration Tests (3 @ \$500.00) \$150.00/test + 1 @ \$210.00) etrographics		\$110.00 \$60.00 \$1,500.00 \$510.00 \$290.00 \$20.00 \$625.00	
Total GST (7%)			\$3,115.00 <u>\$218.05</u>	
Total amount	t owing this invoice		\$3,333.05	

Terms: Net 30 days. Interest @ 1% per month on overdue accounts G.S.T. Number R132440272

16.0 STATEMENT OF QUALIFICATIONS

- I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia.
- I am a graduate of the University of British Columbia having graduated in 1969 with a Bachelor of Science in Geology.
- 3. I have practiced my profession since 1969 in mineral, oil and gas, and coal exploration.
- I have a direct interest in the Mount Sidney Williams property.

RESSID, PROVINCE 05 U.G. MOWAT Ursula G. Mowat, BRI SH COLUMBIA Geo. OSCIEN

Dated this 10th day of <u>December</u>, 1997 at Vancouver, B. C.

I XIRNJALU

REPORT: W7-01494.0 (COMPLETE) REFERENCE: WT STOREY WILLIAMS CLIMI: FIRST POART INNERALS CORPORATION PROJECT: HT STOREY NUMBER OF AUXIESS DETECTION DUTATION NUMBER OF AUXIESS DETECTION DUTATION NUMBER STATE PRINTED: 12-NOV-97 APRICED REMEMIX MAMERS OF AUXIESS DETECTION DUTATION NETHOD DATE RECEIVED: 27-JUN-97 DATE PRINTED: 12-NOV-97 APRICED REMEMIX MAMERS OF AUXIESS DETECTION DUTATION NETHOD DATE RECEIVED: 27-JUN-97 DATE PRINTED: 12-NOV-97 APRICED COMPART: 24 1 PPH RELEMONT ON INNO. COMP. FLANK OPTIL LOSS 24 CUSSINGHI & FULL 970713 5.0 COMPART: 24 1 PPH RELEMONT ON INNO. COMP. FLANK REPORT COMPARTS 24 CUSSINGHI & FULL 970713 5.0 COMPART: 24 1 PPH RELEMONT ON INNO. COMP. FLANK REPORT COMPERTS TO: NR. FETER BADDAW INNO. COMP. FLANK 970713 5.0 COMPART: 24 1 PPH RELEMONT ON INNO. COMP. FLANK REPORT COMPERTS TO: NR. FETER BADDAW INNO. COMP. FLANK 970713 1 NO. COMP. FLANK 1 PPH RELEMONT ON INNO. COMP. FLANK REPORT ON TO: NR. FE			Interte Bondar	ek Te ^{Clegg}	sting Se	rvices					Geolliem Lab Report	ical
CLEAT: FIRST POLAT MIREALS CORPORATION SUMMITED BT: 0, MOAT PROJECT: HT STORY DATE NUMBER OF LOAGE APROVED: ELEMENT NUMBER OF LOAGE MAINTED DETECTION PETROD 070713 1 Vet AJ Partial Ext. Gold 2,4 5 PPB ASK/AD REG/DISK ATORIC ABSORPTION NUMBER ST2E FRACTIONS MAMER ST2E FRACTIONS MAMER ST2E FRACTIONS MARE ST2E FRACTIONS	REPORT: V97		- 									
PROJECT: MT SIDNEY DATE RECEIVE: Z7-JUN-97 DATE RECEIVE: Z7-JUN-97 DATE RECEIVE: Z7-JUN-97 DATE APPROVE: LENKIN MAMER OF AMALYSES DETECTION EXTRACTION METROD O RELL NUMBER SIZE FRACTIONS NUMBER SI				· · · ·								••••
DATE APPRING AMBER of APPRING LOACR MAILTSES EXTRACTION DETECTION NUMBER EXTRACTION NUMBER EXTRACTIONS NUMBER APPRING SAMPLE TYPES NUMBER SIZE FRACTIONS NUMBER APPRING SAMPLE PREPARATIONS NUMBER APPRING SAMPLE TYPES NUMBER SIZE FRACTIONS NUMBER APPRING SAMPLE PREPARATIONS NUMALTSES SA	PROJECT: MT				· · · · · · · · · · · · · · · · · · ·		DATE I	RECEIVED: 27-J	UN-97 DATE PRINT			
OP0713 2 Her Au Partial Ext. aold 24 S Partial Ext. aold 24 S Partial Ext. aold 24 CRENK/SFL1 & PULV. OVERNEIGHT/GG 970713 3 Cu 970713 Copper 24 D 2 PM MCLIND3 (51) Induc. CDP. PLASM MCPUL ABSORTION DVERLEGHT/GG DVERLEGHT/GG 970713 3 Cu 970713 Capper 24 D PM MCLIND3 (51) Induc. CDP. PLASM REPORT COPIES To: MR. PETER BMDSHAW INVOICE TO: MR. PETER BMDSHAW 970713 7 Ki Nickel 24 I PPM HCLIND3 (31) INDUC. CDP. PLASM Interport matt not be reproduced except in full. The data presented in this report is specific to those samples as received expressed on a dry basis unices 970713 6 Co 970713 A remin 24 5 PM MCLIND3 (31) INDUC. CDP. PLASM Therefore mat is applicable only to the samples as received expressed on a dry basis unices 970713 11 As Aremin 24 5 PM MCLIND3 (31) INDUC. CDP. PLASM Therewise indicated Therewise indicated 970713 13 As Aremin 24 5 PM MCLIND3 (31) INDUC. CDP. PLASM Therewise indicated			NUMBER OF	LOWER						· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Control Start Ast/Add Ref./D18K At/Add Ref./D18K At	APPROVED	ELEMENI	ANALYSES	DETECTION	EXTRACTION	METHOD				••••••		
970713 2 Ag Silver 24 0.2 PM HCL:HN03 (3:1) DUCL: COUP, PLASM DUCLEMP/CE 970713 4 Pb Lead 24 2 PM HCL:HN03 (3:1) INKUC. COUP, PLASM INKUC COUP, PLASM INKUC COUP, PLASM 970713 5 Z 2 Inc 24 1 PPM HCL:HN03 (3:1) INKUC. COUP, PLASM INKUC COUP, PLASM INKUC COUP, PLASM 970713 6 Ko McLoberun 24 1 PPM HCL:HN03 (3:1) INKUC. COUP, PLASM This report must not be reproduced except in full. The data presented in this 970713 8 Co Codebium 24 1 PPM HCL:HN03 (3:1) INUC. COUP, PLASM This report must not be reproduced except in full. The data presented in this 970713 18 Co Codebium 24 0.PM HCL:HN03 (3:1) INUC. COUP, PLASM This report must not be reproduced except in full. The data presented in this 970713 18 Co Codebium 24 0.PM HCL:HN03 (3:1) INUC. COUP, PLASM This report must not be reproduced except in full. The data presented in this 970713 18 An Arsenic 1 PPM	70713 1 W	et Au Partial Ext.	Gold 24	5 PPB	ASH/AQ REG/DIRK	ATOMIC ARSORPTION	U DRILL CORE	24	2 -150	24		
970713 3 Cu Copper 24 1 PMH HCL:HN03 (3:1) INDUC. COUP. PLASMA PERGET C0PIES TO: MR. PETER BRADSHAW INVOICE TO: MR. PETER BRADSHAW 970713 5 Zo Zinc 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA The PETER BRADSHAW INVOICE TO: MR. PETER BRADSHAW 970713 5 Zo Zinc 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA The report mat not be reproduced except in full. The data presented in this 970713 5 Co Cashit 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA The report inset not be reproduced except in full. The data presented in this 970713 8 Co Cashit 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA The report inset not be reproduced except in full. The data presented in this 970713 8 Co Cashit 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA The report inset not be reproduced except in full. The data presented in this 970713 18 Ko Arsenic 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA The report inset not be reproduced except in full. The data presented in this 970713 15 E <t< td=""><td></td><td></td><td>24</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>OVERWEIGHT/KG</td><td>55</td></t<>			24								OVERWEIGHT/KG	55
Y/1/3 2 PM HCL:HNG3 (3:1) INDUC. COUP. PLANA INDUC. DOLP. PLANA PMOTIS 5 /r INDUC. COUP. PLANA INDUC. DOLP. PLANA INDUC. COUP. PLANA INDUC. DOLP. PLANA Y70713 5 /r Mol Kydderum 24 1 PPM HCL:HNG3 (3:1) INDUC. COUP. PLANA INDUC. DOLP. PLANA Intervent met not be reprodued except in full. The data presented in this provide a continue Y70713 6 Mo Ackinstance 2.0 PPM HCL:HNG3 (3:1) INDUC. COUP. PLANA INDUC. DOLP. PLANA Intervent met not be reprodued except in full. The data presented in this provide a continue 2.0 Y70713 9 Cd Cadmiun 2.0 0.2 PPM HCL:HNG3 (3:1) INDUC. COUP. PLANA Present is specific to those samples identified under "sample Murber's and is provide a context of the presented in this provide a context of the presented in this provide a context of the context of the presented in this provide a context of the			24	1 PPM	HCL:HNO3 (3:1)							
Y00713 Y00713<							REPORT COPIES TO:	MR. PETER BRA	DSHAW	INVOTOR		,
70713 7 Ni Nickel 24 1 PPH HCL:HN03 (3:1) INDUC. COLP. PLASHA 70713 8 Co Cobit 24 1 PPH HCL:HN03 (3:1) INDUC. COLP. PLASHA 70713 8 Co Cobit 24 1 PPH HCL:HN03 (3:1) INDUC. COLP. PLASHA 70713 10 Bi Bismuth 24 5 PPH HCL:HN03 (3:1) INDUC. COLP. PLASHA 70713 12 Sb Antimony 24 5 PPH HCL:HN03 (3:1) INDUC. COLP. PLASHA 70713 13 Fe Iron 24 0.01 PCT HCL:HN03 (3:1) INDUC. COLP. PLASHA 70713 13 Fe Iron 24 0.01 PCT HCL:HN03 (3:1) INDUC. COLP. PLASHA 70713 15 Te Tellurium 24 1 PPH HCL:HN03 (3:1) INDUC. COLP. PLASHA 70713 15 Te Tellurium 24 1 PPH HCL:HN03 (3:1) INDUC. COLP. PLASHA 70713 15 Te Tellurium 24 1 PPH HCL:HN03 (3:1) INDUC. COLP. PLASHA 70713 15 No Turgstein 24 20 PPH HCL:HN03 (3:1) <td< td=""><td></td><td></td><td></td><td></td><td>,</td><td>INDUC. COUP. PLASMA</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					,	INDUC. COUP. PLASMA						
970713 8 Co Cobalt 24 1 ppin HLL.HMG2 C11 HMLCL.COUP. PLASMA PPONT 15 Specific to those samples identified under "Sample Mutber" and is 970713 10 Bi Bismuth 24 5 PPM HCL.HMG2 G11 HNUC. COUP. PLASMA approximate interval approximate interval </td <td>710713 OM</td> <td>o motypgenum</td> <td>24</td> <td>1 PPM</td> <td>HCL:HN03 (3:1)</td> <td>INDUC. COUP. PLASMA</td> <td>*****</td> <td>*****</td> <td>*****</td> <td>****</td> <td>****</td> <td>****</td>	710713 OM	o motypgenum	24	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	*****	*****	*****	****	****	****
970713 8 Co Cobalt 24 1 ppin HLL.HMG2 C11 HMLCL.COUP. PLASMA PPONT 15 Specific to those samples identified under "Sample Mutber" and is 970713 10 Bi Bismuth 24 5 PPM HCL.HMG2 G11 HNUC. COUP. PLASMA approximate interval approximate interval </td <td>270713 7 N</td> <td>i Nickel</td> <td>24</td> <td></td> <td>NCL-0007 /3-15</td> <td></td> <td>This rep</td> <td>cort must not</td> <td>be reproduced excep</td> <td>t in full. The</td> <td>data presented in thi</td> <td>is</td>	270713 7 N	i Nickel	24		NCL-0007 /3-15		This rep	cort must not	be reproduced excep	t in full. The	data presented in thi	is
970713 9 Cd Cadmium 24 0.2 ppH Bits Distribution Distrestrest and thereadd and thereadd and thereadd and							report 1	is specific to	those samples iden	tified under "	Sample Number" and is	
970713 10 Bi Bishuth 24 5 5 1 NDUC. COUP. PLASMA 970713 11 A Arsenic 24 5 5 1 NDUC. COUP. PLASMA 970713 112 Sb Antimony 24 5 5 5 1 NDUC. COUP. PLASMA 970713 13 Fe Fron 24 0.01 PCT. HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 13 Fe Fron 24 0.01 PCT. HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 15 Fe Fe(Luritum 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 16 Ba Bartun 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 19 Sn Tin 24 20 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 25 M Tingsten 24 0.01	77071 <mark>3</mark> 9 0						appuicat	ble only to the	e samples as receiv	ed expressed o	n e dry basis unless	
77013 12 5 5 5 1000C. COUP. PLASMA 970713 12 5 PMH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 12 16 Manganese 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 12 16 Manganese 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 12 16 Basium 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 12 16 Basium 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 17 17 Chromium 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 12 V Vanadium 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 12 V Tingstein 24 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 22 H Tungstein 24 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 24 A PPH HCL:HN03 (3:1)									****			
970713 12 50 Antimony 24 5 PMH HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 13 Fe Iron 24 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 15 Te Tellurium 24 10 PPH HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 15 Te Tellurium 24 10 PPH HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 16 Bastium 24 1 PPH HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 18 V Vanadium 24 1 PPH HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 18 V Vanadium 24 1 PPH HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 19 Sn Tin 24 20 PPH HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 21 La Lantharum 24 1 PPH HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 23 MG <t< td=""><td></td><td></td><td>24</td><td>5 PPM</td><td>HCL:HN03 (3:1)</td><td></td><td></td><td></td><td></td><td>***********</td><td>***************</td><td>***</td></t<>			24	5 PPM	HCL:HN03 (3:1)					***********	***************	***
970713 14 Mn Marganese 24 1 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 15 Te Tellurium 24 10 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 16 B Barium 24 1 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 17 Cr Chromium 24 1 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 18 V Vanadium 24 1 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 19 Sn Tin 24 20 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 21 La Lanthanum 24 1 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 22 La Lanthanum 24 1 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 23 Mg Magnesium 24 0.01 PCT HCL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 24 Ca Calcium 24 0.01 PCT HCL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 25 Na Sodium 24 0.01 PCT HCL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 26 K Potassi um 24 0.01 PCT	970713 12 S	b Antimony	24	5 PPM	HCL:HNO3 (3:1)							
970713 14 Mn Marganese 24 1 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 15 Te Tellurium 24 10 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 16 B Barium 24 1 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 17 Cr Chromium 24 1 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 18 V Vanadium 24 1 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 19 Sn Tin 24 20 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 21 La Lanthanum 24 1 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 22 La Lanthanum 24 1 PPM HDL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 23 Mg Magnesium 24 0.01 PCT HCL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 24 Ca Calcium 24 0.01 PCT HCL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 25 Na Sodium 24 0.01 PCT HCL:HNG3 (3:1) INDUC. COUP. PLASMA 970713 26 K Potassi um 24 0.01 PCT	270713 13 F	e Iron	3(0.01.007								
970713 15 Tetlurium 24 1 10 10.00.000P 10.00P 1												
970713 16 Ba Bartum 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 17 Cr Chromium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 18 V Vanadium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 19 Sn Tin 24 20 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 20 W Tungsten 24 20 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 21 La Lanthanum 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 22 La Lanthanum 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 23 Mg Magnesium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 24 Ca Calcium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 25 Na Sodium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 27 Sr Strontium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 27 Sr Strontium 24 0.01 PCT </td <td></td>												
970713 17 Cr Chromium 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 18 V Vanadium 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 19 Sn Tin 24 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 20 W Tungsten 24 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 21 La Lanthamun 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 22 AL Aluminum 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 22 AL Aluminum 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 25 Ca Calcium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 26 K Potessium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 27 Sr Strontium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 28 Ga Galtium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 29 Ga Galtium 24 1 PPM <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						1						
970713 18 V Vanadium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 19 Sn Tin 24 20 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 12 Lanthanum 24 20 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 12 Lanthanum 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 22 Al Aluminum 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 24 Ca Calcium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 25 Ka Sodium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 26 K Potassium 24 0.01 PCT HCL:HN03 (3:1) INDUC. <t< td=""><td>70713 17 C</td><td></td><td></td><td></td><td>• •</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	70713 17 C				• •							
970713 19 Sn Tin 24 20 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 20 W Tungsten 24 20 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 21 La Lanthanum 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 22 AL Aluminum 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 23 Mg Magnesium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 25 Na Sodium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 25 Na Sodium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 25 Na Sodium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 26 K Potassium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA </td <td>70713 18 v</td> <td>Vanadium</td> <td></td>	70713 18 v	Vanadium										
970713 20 W Tungsten 24 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 21 La Lanthanum 24 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 22 Al Aluminum 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 23 Mg Magnesium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 24 Ca Calcium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 25 Na Sodium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 26 K Potessium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 27 Sr Strontium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 28 Y Yttrium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 29 Ga Gallium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 30 Li Lithium 24 1 PPM	0.717 10 0	. .										
970713 21 La tanthanum 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 22 Al Lanthanum 24 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 23 Mg Magnesium 24 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 24 Ca Calcium 24 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 25 Na Sodium 24 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 26 K Potassium 24 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 27 Sr Strontium 24 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 27 Sr Strontium 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 28 Y Yttrium 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 30 Li Lith						INDUC. COUP. PLASMA						
970713 22 Al Aluminum 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 23 Mg Magnesium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 24 Ca Calcium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 24 Ca Calcium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 26 K Potassium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 26 K Potassium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 27 Sr Strontium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 28 Y Yttrium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 29 Ga Gallium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 31 Nb Niobium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 32 Sc Scandium 24 1 PPM												
970713 23 Mg Magnesium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 24 Ca Calcium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 25 Na Sodium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 26 K Potassium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 26 K Potassium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 27 Sr Strontium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 29 Ga Gallium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 30 Li Lithium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 31 Nb Niobium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 32 Sc Scandium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 33 Ta Tantalum 24 1 PPM <t< td=""><td>70713 27 1</td><td>a canchanum, I Aluminum</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	70713 27 1	a canchanum, I Aluminum										
970713 24 Calcium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 25 Na Sodium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 26 K Potassium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 27 Sr Strontium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 28 Y Yttrium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 29 Ga Gallium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 29 Ga Gallium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 30 Li Lithium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 31 Nb Niobium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 32 Sc Scandium 24 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 33 Ta Tantalum 24 1 PPM HCL:HN03												
970713 25 Na Sodium 24 0.01 PCT HCL: HNO3 (3:1) HDUC. COUP. PLASMA 970713 26 K Potassium 24 0.01 PCT HCL: HNO3 (3:1) INDUC. COUP. PLASMA 970713 26 K Potassium 24 0.01 PCT HCL: HNO3 (3:1) INDUC. COUP. PLASMA 970713 27 Sr Strontium 24 1 PPM HCL: HNO3 (3:1) INDUC. COUP. PLASMA 970713 28 Y Yttrium 24 1 PPM HCL: HNO3 (3:1) INDUC. COUP. PLASMA 970713 29 Ga Gallium 24 2 PPM HCL: HNO3 (3:1) INDUC. COUP. PLASMA 970713 30 Li Lithium 24 1 PPM HCL: HNO3 (3:1) INDUC. COUP. PLASMA 970713 31 Nb Niobium 24 1 PPM HCL: HNO3		- ·····										
970713 26 K Potassium 24 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 27 Sr Strontium 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 28 Y Yttrium 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 29 Ga Gallium 24 2 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 30 Li Lithium 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 31 Nb Niobium 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 31 Nb Niobium 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 32 Sc Scandium 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 33 Ta Tantalum 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 34 Ti Tantalum 24 10 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 34 Ti Titanium 24 0.01 PCT HCL:HNO						ANDOR, COUP, FLAGMA						
97071326 KPotassium240.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMA97071327 SrStrontium241 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA97071328 YYttrium241 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA97071329 GaGallium242 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA97071330 LiLithium241 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA97071331 NbNiobjum241 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA97071332 ScScandium245 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA97071333 TaTantalum2410 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA97071334 TiTitanium240.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMA97071335 TaTantalum240.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMA						INDUC. COUP. PLASMA						
97071328 YYttrium241PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071329 GaGallium242PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071330 LiLithium241PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071331 NbNiobium241PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071332 ScScandium245PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071333 TaTantalum2410PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071334 TiTitanium240.01PCTHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071335 TaTantalum240.01PCTHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071335 TaTantalum240.01PCTHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071335 TaTantalum240.01PCTHCL:HNO3 (3:1)INDUC. COUP. PLASMA	70715 26 K											:
970713 29 Ga Gallium 24 2 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 30 Lithium 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 31 Nb Niobium 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 32 Sc Scandium 24 5 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 32 Sc Scandium 24 5 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 32 Sc Scandium 24 5 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 33 Ta Tantalum 24 10 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 34 Ti Titanium 24 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 35 Ta Tantalum 24 0.01 PCT HCL:HNO3	ערוזטזי 27 Si עיפר גוילחלו	r Strontium										
970713 30 LiLithium241PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA970713 31 NbNiobium241PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA970713 32 ScScandium245PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA970713 33 TaTantalum2410PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA970713 34 TiTitanium2410PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA970713 35 TaTantalum240.01PCTHCL:HN03 (3:1)INDUC. COUP. PLASMA970713 35 TaTantalum240.01PCTHCL:HN03 (3:1)INDUC. COUP. PLASMA	70713 20 Y	TTTTIUM S Collium			HCL:HN03 (3:1)							
970713 31 Nb Niobium 24 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 32 sc Scandium 24 5 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 33 Ta Tantalum 24 10 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970713 34 Ti Titanium 24 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA												:
97071332 ScScandium245 PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071333 TaTantalum2410 PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071334 TiTitanium240.01 PCTHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071335 TaTitanium240.01 PCTHCL:HNO3 (3:1)INDUC. COUP. PLASMA			24	I PPM	nuL:MNU3 (5:1)	INDUC. COUP. PLASMA						
97071332 ScScandium245 PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071333 TaTantalum2410 PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071334 TiTitanium240.01 PCTHCL:HNO3 (3:1)INDUC. COUP. PLASMA97071335 TaTitanium240.01 PCTHCL:HNO3 (3:1)INDUC. COUP. PLASMA	70713 31 NI	o Niobium	24	1 PPM	HCL+HNO3 (3-1)							
970713 33 Ta Tantalum 24 10 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970713 34 Ti Titanium 24 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA	70713 32 50	Scandium										
970713-54 TI Titanium 24 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA		a Tantalum			HCL: HNO3 (3:1)							,
		i 1itanium			HCL:HNO3 (3:1)							
	70713 35 Zi	r Zirconium			HCL:HNO3 (3:1)							•

.

ITS	S Intertel Bondar Cl	t Testing Serv	vices		Gecemical Lab Report
CLIENT: FIRST POINT REPORT: V97-01494.D	MINERALS CORPORATION (COMPLETE)		DATE RECEIVED: 27-JUN-97	PROJECT: M DATE PRINTED: 12-NOV-97 PAGE 2 OF 3	TSIDNEY
STANDARD ELEMENT				PARE FRIMED: 12 NOV-91 FALE 2 OF 3	
NAME UNITS		o Ni Co Cd Bi As Sb. Fe M PPM PPM PPM PPM PPM PCT	Min Te ba Cr V Sn W La Al PPM PPM PPM PPM PPM PPM PPM PCT	Mg Ca Na K Sr Y Ga Li NG Sc PCT PCT PCT PCT PPM PPM PPM PPM PPM	
Gannet Standard	213				
umber of Analyses	1	• • • • • •			
lean Value	213 •	• • • • • •			
tandard Deviation		• • • •	· - · · · · · ·		
ccepted Value	202	• • • • • •			
CC Geochem STD 6	- <.2 139 18 130	1 129 32 0.4 <5 145 <5 7 31 *	1366 <10 7 167 45 <20 <20 <1 1.84	2 73 7 71 0 01 0 0/ 77 7 7 7 8	
under of Analyses	- 1 1 1 1	1 1 1 1 1 1 1			<10 <.01 6
ean Value	- 0.1 139 18 130				
tandard Deviation	• • • • • •			2.73 3.71 0.01 0.04 73 3 3 21 3 8	5.005 6
ccepted Value	- 0.2 140 18 140 4	4 135 35 0.2 1 145 1 6.50	1450 - 6 170 50 5 12 - 1.80	2.70 4.00 0.01 0.04 70 3 - 24 2 6	 1.003 5
annet Standard	409	· · · · · · · ·			
umber of Analyses	1				• • •
ean Value	409				•
tandard Deviation	• •				•
ccepted Value	405	•••••	· · · · · · · · ·		
NALYTICAL BLANK	• <.2 <1 <2 <1 <	3 <1 <.2 <5 <5 <5 <.01	<1 <10 <1 2 <1 <20 <20 <1 < 01	0.03 <.01 <.01 <.01 <1 <1 <2 <1 <1 <5 <	10
umber of Analyses	- 1 1 1 1 '				
ean Value	- 0.1 0.5 1 0.5 0.5	3 0.5 0.1 3 3 3 .005			
tandard Deviation	• •			0.03 .005 .005 0.5 0.5 0.5 1 0.5 0.5 3	5.005 0.5
ccepted Value	10.2 1 2 1	1 1 0.1 2 5 5 0.05	1.01.01 1 1.01.01.01 <.01 <	.0001 <.01 <.01 <.01 .01 .01 .01 .01 .01 .01 .01 .01 .01	 01 <.01 .01

Gec__emical

DTT	Intertek Testing Services
	Bondar Clegg

Gec hemical Lab Report

EPORT: V97-0		CONF			· · · · · • ·	•••••						• • • • • • • • • • • • • • • • • • • •				••••••	· · · · · · · · · · · · · · · · · · ·	DATE	RECE	IVED	: 27	- JUN-	-97	DATE	PRIN	TED:	12-NC	0v-97	. P/	\GE	3 0	3				
AMPLE I	LEMENT W	let A	J Ag	Cu	Pb	Zn	Mo	Ni	Co	Cđ	Bi	As	Sb	Fe	Mn	Te	Ba	Cr	. v	\$n	W	La	Al	Mg	Ca	Na	ķ	(Sr	Y	Ga	Li	Nb	Sc	Tə	Ti	71
UMBER	UNITS	PP	3 PPM	PPM	₽PM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	РСТ	PCT	PCT	PCT										
1705		<	5 <.2	6	2	24	<1	1397	73	<.2	<5	<5	<5	4.85	786	<10	2	1096	30	<20	<20	<1	0.53	>10.00	1.14	<.01	<.01	2	د1	0	-1	1	A	<10	c 01	~1
p licate		(5 <.2	6	4	24	<1	1440	71	<.2	<5	<5	<5	4.84	780	<10	2	. 1093	29	<20	<20	<1	0.52	>10.00	1.15	<.01	<.01	1	<1	<2	<1	1	8	<10	<.01	<1
1708		<	5 <.Z	9	3	26	<1	1683	76	<.2	<5	<5	<5	5.36	554	<10	2	1322	34	<20	<20	<1	0.64	>10.00	0 52	< 01	2 01	-1		~>	-1	3	•	-10		- 4
rep Duplicate	2	<	5 <.2	8	3	26	<1	1589	77	<.2	-5	<5	<5	5.18	537	<10	2	1282	32	<20	<20	<1	0.60	>10.00	0.51	< .01	<.01	<1	<1	<2	<1	<1	9	<10	<.01	<1
722		<	i <,2	7	2	26	<1	1438	78	<.2	<5	<5	<5	4.88	819	<10	2	1169	28	<20	<20	<1	0.46	>10.00	0.82	< 01	< 01	-1	<i>r</i> 1		~1	-1	0	-10	. 01	
uplicate			<.2	9	2	27	<1	1598	87	<.2	<5	<5	<5 _1	5.14	861	<10	3	1214	29	<20	<20	<1	0.48	>10.00	0.86	<.01	<.01	<1	<1	~∕ <2	<1	<1	9	<10	.01	<1
					·				•								й.		•				•		·											

9000000000000000000000000000000000000	cal	Gec hemi Lab Report					es		sting Se	k Te			ľ
CLIENT: FIST POINT MINEALS CORPORATION SUMMER OF LASE CASE FINAL POINT PAULCT: HT RIDNEY NUMBER OF LASE CASE FRANCE TYPE NUMBER OF LASE CASE FRANCE TYPE NUMBER OF LASE CASE FRANCE SAMPLE TYPES NUMBER SIZE FRACTION RAMEE SAMPLE TYPES NUMBER SIZE FRACTIONS MAMEER SAMPLE TYPES NUMBER SIZE FRACTIONS MAMEER SAMPLE TYPES NUMBER SIZE FRACTIONS NUMEENDER SIZE FRACTIONS NUMEENDER SIZE FRACTIONS <th></th>													
DATE APPROVE NUMBER DIZE FRACTION NUMBER DIZE FRACTION NUMBER SUZE FRACTION NUMER SUZE FRACTION NUMBER			17-HOV 07		Y: U. MOWA	SUBMITTED BY					RAT I ON	POINT MINERALS CORPOR. DNEY	IENT: FIRS
Var/20 1 Met Aul Part Init Ext. Bold C3 5 PP ASH/AR REPOID CMPROVED ASSOCIATION OWERWEIGHT/KG Var/20 2 Ag Silver 43 1 PPH HCLIHROS (3:1) INDUC. COUP. PLASMA INDUC. COUP. PLASMA </th <th></th> <th>SAMPLE PREPARATIONS</th> <th>NUMBER</th> <th>FRACTIONS</th> <th>MBER SIZE</th> <th>MPLE TYPES NUM</th> <th></th> <th></th> <th></th> <th>LOWER</th> <th>MBER OF</th> <th>NU</th> <th></th>		SAMPLE PREPARATIONS	NUMBER	FRACTIONS	MBER SIZE	MPLE TYPES NUM				LOWER	MBER OF	NU	
970720 3 Lu Copper 43 1 PPM HCL:NB03 (3:1) INDUC. COUP. PLASHA PTOT20 PETER BRADSHA INVOICE TO: HR. PETER BRADSHA INVOICE TO: HR. PETER BRADSHA 970720 5 Zn Zinc 43 I PPM HCL:NB03 (3:1) INDUC. COUP. PLASHA PTOT20 FILE BERORT COPIES TO: HR. PETER BRADSHA INVOICE TO: HR. PETER BRADSHA 970720 7 Ni Nickel 43 I PPM HCL:NB03 (3:1) INDUC. COUP. PLASHA PTOT20 FILE BERORT COPIES TO: HR. PETER BRADSHA 970720 7 Ni Nickel 43 I PPM HCL:NB03 (3:1) INDUC. COUP. PLASHA PTOT20 FILE BERORT COPIES TO: HR. PETER BRADSHA 970720 7 Ni Nickel 43 I PPM HCL:NB03 (3:1) INDUC. COUP. PLASHA PTOT20 FILE BERORT COPIES TO: HR. PETER BRADSHA 970720 18 K Arasinic 43 S PPM HCL:NB03 (3:1) INDUC. COUP. PLASHA PLASHA 970720 18 K Arasinic 43 D PPM HCL:NB03 (3:1) INDUC. COUP. PLASHA PLASHA 970720 14 M Magneneste <td>43 180</td> <td></td> <td>43</td> <td>- 150</td> <td>432</td> <td>ROCK</td> <td></td> <td></td> <td>HCL:HNO3 (3:1)</td> <td></td> <td>43</td> <td>Silver</td> <td>'0720 Z Ag</td>	43 180		43	- 150	432	ROCK			HCL:HNO3 (3:1)		43	Silver	'0720 Z Ag
970720 5 2n 2 inc 43 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLANM HCL:HD13 (3:1) INDUC. COUP. PLANM 970720 6 Mo Molydderun 43 1 PPH HCL:HD33 (3:1) INDUC. COUP. PLANM This report must not be reproduced except in full. The data presented in th 970720 7 Ni Nickle 43 1 PPH HCL:HD33 (3:1) INDUC. COUP. PLANM This report must not be reproduced except in full. The data presented in th 970720 8 Co Cobatt 43 5 PPH HCL:HD33 (3:1) INDUC. COUP. PLANM Those samples identified under "Sample Number" and is applicable only to the samples indicated 970720 10 EI Bisnuth 43 5 PPH HCL:HD33 (3:1) INDUC. COUP. PLANM 970720 13 Fe Fron 43 0.01 PCT HCL:HD33 (3:1) INDUC. COUP. PLANM Otherwise indicated 970720 13 Fe Fron 43 0.01 PCT HCL:HD33 (3:1) INDUC. COUP. PLANM Otherwise indicated 970720 15 Fe Toron 43 10 PPH HCL:HD33 (3:1) INDUC. COUP. PLANM							COUP. PLASMA	INDUC					
970720 6 Mo Molybdenum 43 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 7 Ni Nickel 43 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 8 Co Cobalt 43 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 8 Co Cobalt 43 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 8 Co Cobalt 43 5 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 13 Fe Bismuth 43 5 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 13 Fe Iron 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 13 Fe Iron 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 13 Fe Iron 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 14 Km Magnacee 43 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 19 Sn Tin 43 20 PPH		O: MR. PETER BRADSHAW	INVOICE T		R BRADSHAW	PORT COPIES TO: MR. PETER							
OP7020 7 Ni Nickel 43 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 8 Co Cobalt 43 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 9 CC Cadmium 43 0.2 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 10 E1 Bismuth 43 5 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 10 E1 Bismuth 43 5 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 12 Sb Antimony 43 5 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 13 Fe I ron 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 15 Te Tellurium 43 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 16 V Vanadium 43 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 17 Cr Chronium 43 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 17 Cr Chronium 43 2 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 26 V		****	*****	*****	*****	****							
Control Control <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Sport Cost Cashi Line Cashi Line <thcashi line<="" th=""> Cashi Line Cashi Li</thcashi>	5	ample Number # and is	fied under "s	e samples identi	ic to those	report is specifi							
of 0727 0 </td <td></td> <td>a dry basis unless</td> <td>l expressed on</td> <td>les as received</td> <td>to the samp</td> <td>applicable only t</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		a dry basis unless	l expressed on	les as received	to the samp	applicable only t							
970720 11 As Arsenic 43 5 PPH HCL:HN03 (3:1) HDUC, COUP, PLASMA 970720 12 Sb Antimony 43 5 PPH HCL:HN03 (3:1) HDUC, COUP, PLASMA 970720 13 Fe Iron 43 0.01 PCT HCL:HN03 (3:1) INDUC, COUP, PLASMA 970720 15 Te Tellurium 43 10 PPH HCL:HN03 (3:1) INDUC, COUP, PLASMA 970720 15 Te Tellurium 43 10 PPH HCL:HN03 (3:1) INDUC, COUP, PLASMA 970720 15 Te Tellurium 43 1 PPH HCL:HN03 (3:1) INDUC, COUP, PLASMA 970720 15 R Trin 43 1 PPH HCL:HN03 (3:1) INDUC, COUP, PLASMA 970720 15 N Tin 43 20 PPH HCL:HN03 (3:1) INDUC, COUP, PLASMA 970720 15 N Tungsten 43 0.01 PCT HCL:HN03 (3:1) INDUC, COUP, PLASMA 970720 24 La Lanthanum 43 0.01 PCT HCL:HN03 (3:1) INDUC, COUP, PLASMA 970720 25 Ma Sodium 43 0.01 PCT HCL:HN03 (3:1)					ted	otherwise indicat							
970720 12 Sb Antimony 43 5 PPN HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 13 Fe Iron 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 15 Fe TetLurium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 16 Ba Barium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 16 Ba Barium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 17 C Chromium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 18 V Vanadium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 19 Sn Tin 43 20 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 20 W Tungsten 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 22 AL Attuminum 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 24 Ca Calcium 43 0.01 PCT HCL:HNO3 (3	***	*****	********	****	**********	******************************							
970720 14 Mn Hanganese 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 15 Te TellUrium 43 10 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 16 Ba Barium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 16 K Vanadium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 19 Sn Tin 43 20 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 21 La Lantharum 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 22 La Lantharum 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 Z4 La Calcium 43 0.01 PCT HCL:HN03											43	Antimony	0720 12 Sb
970720 14 Manganese 43 1 PPM HCL:HNO3 (3:1) HNOUC. COUP. PLASHA 970720 15 Te TellUrium 43 10 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 16 Barium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 17 Chromium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 18 V Vanadium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 19 Sn Tin 43 20 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 21 Lauthanum 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 22 A Auninum 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASHA 970720 24 Ca Calcium 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASHA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>THEFT</td> <td></td> <td>0.01.001</td> <td>43</td> <td>Iron</td> <td>0720 13 Fe</td>								THEFT		0.01.001	43	Iron	0720 13 Fe
970720 15 Te Tellurium 43 10 PPH HCL:HNO3 13:1) INDUC, COUP, PLASHA 970720 17 Cr Chromium 43 1 PPH HCL:HNO3 11 INDUC, COUP, PLASHA 970720 17 Cr Chromium 43 1 PPH HCL:HNO3 11 INDUC, COUP, PLASHA 970720 18 V Vanadium 43 1 PPH HCL:HNO3 11 INDUC, COUP, PLASHA 970720 18 V Vanadium 43 20 PPH HCL:HNO3 11 INDUC, COUP, PLASHA 970720 19 Sn Tin 43 20 PPH HCL:HNO3 11 INDUC, COUP, PLASHA 970720 21 La Lantharum 43 0.01 PCT HCL:HNO3 11 INDUC, COUP, PLASHA 970720 22 AL Alumirum 43 0.01 PCT HCL:HNO3 11 INDUC, COUP, PLASHA 970720 25 Na Sodium 43 0.01 PCT HCL:HNO3													
970720 16 Barium 43 1 PPM HCL:HN03 11 INDUC. COUP. PLASMA 970720 18 V Vanadium 43 1 PPM HCL:HN03 11 INDUC. COUP. PLASMA 970720 18 V Vanadium 43 20 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 19 Sn Tin 43 20 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 20 W Tungsten 43 20 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 22 AL Aluminum 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 23 Mg Magnesium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 24 Ca Calcium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 25 Na Sodium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 25 Na Sodium												Tellurium	0720 15 Te
970720 18 V Vanadium 43 1 PPM HCL:HN03 (3:1) 1NDUC. COUP. PLASMA 970720 19 Sn Tin 43 20 PPM HCL:HN03 (3:1) 1NDUC. COUP. PLASMA 970720 20 W Tungsten 43 20 PPM HCL:HN03 (3:1) 1NDUC. COUP. PLASMA 970720 21 La Lanthanum 43 0.01 PCT HCL:HN03 (3:1) 1NDUC. COUP. PLASMA 970720 23 Al duminum 43 0.01 PCT HCL:HN03 (3:1) 1NDUC. COUP. PLASMA 970720 24 Al uminum 43 0.01 PCT HCL:HN03 (3:1) 1NDUC. COUP. PLASMA 970720 25 Na Sodium 43 0.01 PCT HCL:HN03 (3:1) 1NDUC. COUP. PLASMA 970720 26 K Potassium 43 0.01 PCT HCL:HN03 (3:1) 1NDUC. COUP. PLASMA 970720 27 S Strontium 43 1.PPM HCL:HN03 (3:1) 1NDUC. COUP. PLASMA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 PPM</td> <td>43</td> <td></td> <td></td>										1 PPM	43		
970720 19 Sn Tin 43 20 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 20 W Tungsten 43 20 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 21 La Lanthanum 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 22 AL Atuminum 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 22 AL Atuminum 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 24 Ga Catcium 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 25 Na Sodium 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 26 K Potassium 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 27 Sr Strontium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 29 Ga Gattium 43 2 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 29 Ga Gattium 43 2 PPM H							COUP. PLASMA	INDUC	HCL:HNO3 (3:1)				
970720 20 W Tungsten 43 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 21 La Lantharum 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 22 AL Aluminum 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 23 Mg Magnesium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 24 Ca Calcium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 25 Na Sodium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 26 K Potassium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 27 Sr Strontium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 28 Y Y ttrium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 29 Ga Galtium 43 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 30 Li Lithium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 32 Sc Scandium 43 1 PPM <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>COUP. PLASMA</td> <td>INDUC</td> <td>HCL:HNO3 (3:1)</td> <td>1 PPM</td> <td>45</td> <td>Vanadium</td> <td>U720 16 V</td>							COUP. PLASMA	INDUC	HCL:HNO3 (3:1)	1 PPM	45	Vanadium	U720 16 V
970720 20 W Tungsten 43 20 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 21 La Lanthanum 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 22 AL Aluminum 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 23 Mg Magnesium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 24 Ca Calcium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 25 Na Sodium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 26 K Potassium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 27 Sr Strontium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 28 Y Yttrium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 30 Li Lithium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 32 Sc Scandium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 32 Sc Scandium 43 1 PPM <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>INDUC</td> <td>HCL:HNO3 (3:1)</td> <td>20 PPM</td> <td>43</td> <td>Tin</td> <td>0720 19 Sn</td>								INDUC	HCL:HNO3 (3:1)	20 PPM	43	Tin	0720 19 Sn
970720 21 La Lanthanum 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 22 AL Aluminum 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 22 Mg Magnesium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 24 Ca Calcium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 24 Ca Calcium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 26 K Potassium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 27 Sr Strontium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 28 Y Yttrium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 29 Ga Galtium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 30 Li Lithium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 32 G Scandium 43 1 PPM												Tungsten	
970720 22 Al Aluminum 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 23 Mg Magnesium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 24 Ca Calcium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 25 Na Sodium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 26 K Potassium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 27 Sr Strontium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 28 Y Yttrium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 29 Ga Galtium 43 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 30 Li Lithium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 32 Sc Scandium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 32 Sc Scandium 43 5 PPM													
970720 24 Calcium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 25 Na Sodium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 25 Na Sodium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 26 Potassium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 27 Sr Strontium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 28 Y Yttrium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 29 Ga Gattium 43 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 30 Li Lithium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 32 Sc Scandium 43 5 PPM HCL:HN03 (3:1)<													
970720 25 Na Sodium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 26 K Potassium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 27 Sr Strontium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 28 Y Yttrium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 28 Y Yttrium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 28 Galtium 43 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 30 Li Lithium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 31 Nb Niobium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 32 Sc Scandium 43 5 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 33 Ta Tantalum 43 10 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 33 Ta Tantalum 43 0.01 PCT HCL:HN03 (3:1)												-	
970720 26 K Potassium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 27 Sr Strontium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 28 Y Yttrium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 28 Y Yttrium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 29 Ga Galtium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 30 Li Lithium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 31 Nb Niobium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 32 Sc Scandium 43 5 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 33 Ta Tantalum 43 10 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Tantalum 43 0.01 PCT HCL:H							COUP, PLASMA	INDUC	KCL:HNO3 (3:1)	U.U1 PCT	45	laicium	0720 24 Ca
970720 26 K Potassium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 27 Sr Strontium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 28 Y Yttrium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 28 Y Yttrium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 29 Ga Galtium 43 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 30 Li Lithium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 31 Nb Niobium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 32 Sc Scandium 43 5 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 32 Sc Scandium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 33 Ta Tantalum 43 10 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PCT HCL:HN03								INDUC	HCL:8NO3 (3:1)	0.01 PCT	43	Socium	0720 25 Na
970720 27 Sr Strontium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 28 Y Yttrium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 29 Ga Gallium 43 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 30 Li Lithium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 30 Li Lithium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 31 Nb Niobium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 32 Sc Scandium 43 5 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 33 Ta Tantalum 43 10 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Tantalum 43 0.01 PCT													
970720 28 Y Yttrium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 29 Ga Galtium 43 2 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 30 Li Lithium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 31 Nb Niobium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 31 Nb Niobium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 32 Sc Scandium 43 5 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 33 Ta Tantalum 43 10 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA											43	Strontium	
970720 30 Li Lithium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 31 Nb Niobium 43 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 32 Sc Scandium 43 5 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 33 Ta Tantalum 43 10 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA							COUP. PLASMA	INDUC.					
970720 31 Nb Niobium 43 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 32 Sc Scandium 43 5 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 33 Ta Tantalum 43 10 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA							COUP. PLASMA	INDUC.					
970720 32 Sc Scandium 43 5 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 33 Ta Tantalum 43 10 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA							COUP. PLASMA	INDUC.	HCL:HNO3 (3:1)	1 PPM	43	LITNIUM	0720 30 L1
970720 32 Sc Scandium 43 5 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 33 Ta Tantalum 43 10 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA								100.00	HCL+HNOX /7-11			Nichium	0720 31 NH
970720 33 Ta Tantalum 43 10 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970720 34 Ti Titanium 43 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA							COUP. PLASMA	INDUC.					0720 32 Sc
970720 34 Ti Titanium 43 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA													0720 33 Ta
							COUP. PLASMA	INDUC					0720 34 Ti
FIGIZU 55 Zr Zirconium 4.5 1 PPM HCL:HNO3 (3:1) INDUC, COUP, PLASMA									HCL:HNO3 (3:1)	1 PPM	43	Zirconium	0720 3 5 Zr

	Intertek Testing Services Geometrical Lab Report	l
	PROJECT: MT SIDNEY 77-01629.0 (COMPLETE) DATE RECEIVED: 10-JUL-97 DATE PRINTED: 12-NOV-97 PAGE 1 OF 4	
	DATE RELETCET TO GOL 77 DATE FRIATED. 12 NOV 77 PAGE UP 4	
SAMPLE NUMBER	ELEMENT Wet Au Ag Cu Pb Zn Mo Ni Co Cd Bi As Sb Fe Mn Te Ba Cr V Sn W La Al Mg Ca Na K Sr Y Ga Li Nb Sc Ta Ti Zr UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM	
	UNITS РРВ РРМ РРМ РРМ РРМ РРМ РРМ РРМ РРМ РРМ	
11750	12 <.2 10 <2 20 <1 1558 75 <.2 <5 <5 <5 4.74 725 <10 3 1199 19 <20 <20 <1 0.46 >10.00 0.04 <.01 <1 <1 <1 <2 <1 <1 6 <10 <.01 <1	
11751	6 <.2 4 <2 17 <1 1024 62 <.2 <5 <5 <5 4.14 611 <10 2 1170 29 <20 <20 <1 0.60 >10.00 0.01 <.01 <1 <1 <2 <1 <1 7 <10 <.01 <1	
11752	<5 <.2 14 <2 19 <1 1539 73 <.2 <5 <5 <5 4.39 691 <10 3 1325 29 <20 <20 <1 0.54 >10.00 0.03 <.01 <.01 <1 <1 <2 <1 <1 8 <10 <.01 <1	
11753	11 <.2 9 <2 22 <1 1522 79 <.2 <5 <5 <5 4.94 770 <10 3 1330 29 <20 <1 0.49 >10.00 0.07 <.01 <1 <1 <1 <2 <1 <1 7 <10 <.01 <1	
11754	<5 <.2 9 <2 22 <1 1515 72 <.2 <5 <5 <5 4.37 638 <10 5 1346 31 <20 <20 <1 0.58 >10.00 <.01 <.01 <.01 <1 <1 <2 <1 <1 8 <10 <.01 <.01 <1	
11755	<5 <.2 4 <2 21 <1 1586 87 <.2 <5 <5 5.13 864 <10 2 538 6 <20 <20 <1 0.06 >10.00 <.01 <.01 <1 <1 <1 <2 1 <1 <5 <10 <.01 <1 <1 <1 <2 1 <1 <5 <10 <.01 <1 <1 <1 <5 <10 <.01 <1 <1 <5 <10 <.01 <1 <1 <5 <10 <.01 <1 <1 <1 <5 <10 <.01 <1 <1 <1 <5 <10 <.01 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	
11756	Solution of the second	
11757	S < 2 10 < 2 16 < 1 1585 76 < 2 < 5 < 5 < 5 < 688 < 10 3 979 24 < 20 < 20 < 1 0.53 > 10.00 0.09 < .01 < 1 < 1 < 2 1 < 1 8 < 10 < .01 < 1 < 1 < 1 < 1 < 2 1 < 1 7 < 10 < .01 < 1 < 1 < 1 < 1 < 2 1 < 1 < 1 < 1 < 1 < 1 <	
11758		
11759	<5 <.2 11 <2 12 <1 1521 75 <.2 <5 8 <5 4.69 644 <10 3 716 22 <20 <20 <1 0.40 >10.00 0.23 <.01 <1 <1 <1 <2 1 <1 8 <10 <.01 <1	
11760	<5 <.2 8 <2 21 <1 1533 80 <.2 <5 6 <5 5.32 711 <10 17 1332 30 <20 <20 <1 0.53 >10.00 0.08 <.01 <.01 <1 <1 <2 <1 <1 8 <10 <.01 <1	
11761	<5 <.2 10 <2 13 <1 1562 76 <.2 <5 <5 <5 4.60 568 <10 12 698 18 <20 <20 <1 0.37 >10.00 0.20 <.01 <1 <1 <1 <2 <1 <1 7 <10 <.01 <1 <1 <1 <2 <1 <1 <2 <1 <1 <2 <1 <1 <1 <2 <1 <1 <2 <1 <1 <1 <2 <1 <1 <1 <2 <1 <1 <1 <1 <2 <1 <1 <1 <1 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	
11762	<5 <.2 <1 <2 13 <1 1477 76 <.2 <5 9 <5 4.89 668 <10 5 487 15 <20 <20 <1 0.32 >10.00 0.06 <.01 <.01 <1 <1 <2 <1 <1 5 <10 <.01 <1	
11763	<5 <.2 <1 <2 13 <1 1463 75 <.2 <5 7 <5 4.71 649 <10 3 497 15 <20 <20 <1 0.35 >10.00 0.07 <.01 <.01 <1 <1 <2 <1 <1 5 <10 <.01 <1	
11764	11 <.2 3 <2 4 <1 819 34 <.2 <5 109 6 3.51 541 <10 4 323 16 <20 <1 0.14 >10.00 0.73 <.01 0.02 1 <1 <2 2 <1 6 <10 <.01 <1	
11766	<5 <.2 10 <2 17 <1 1684 84 <.2 <5 <5 <5 4.80 767 <10 2 414 4 <20 <20 <1 0.05 >10.00 <.01 <.01 <.01 <1 <1 <2 <1 <1 <5 <10 <.01 <.01 <1	
11767	<5 < .2 10 <2 21 <1 1425 68 $< .2$ <5 6 <5 4.43 658 <10 4 1370 33 <20 <1 0.61 >10.00 $<.01$ $<.01$ <1 <1 <2 <1 <1 <5 <10 $<.01$ <1 <1 <2 <1 <1 <5 <10 $<.01$ <1 <1 <1 <2 <1 <1 <2 <1 <1 <2 <1 <1 <2 <1 <1 <2 <1 <1 <2 <1 <1 <1 <2 <1 <1 <1 <2 <1 <1 <1 <2 <1 <1 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1	
11768	S <. 2 8 <2 19 <1 1346 69 <. 2 <5 <5 <5 4.91 666 <10 4 1365 31 <20 <20 <1 0.48 >10.00 0.35 <.01 <1 <1 <1 <2 <1 <1 8 <10 <.01 <1	
11769		
11770	<5 <.2 6 <2 22 <1 1440 71 <.2 <5 <5 <5 4.69 694 <10 2 1347 29 <20 <20 <1 0.58 >10.00 0.09 <.01 <1 <1 <2 <1 <1 7 <10 <.01 <1	
11771	<5 <.2 <1 <2 19 <1 1683 80 <.2 <5 <5 <5 4.77 682 <10 3 133 4 <20 <20 <1 0.05 >10.00 0.02 <.01 <.01 <1 <1 <2 <1 <1 <5 <10 <.01 <1	
11772	<5 <.2 11 <2 20 <1 1737 85 <.2 <5 <5 <5 4.61 706 <10 5 646 7 <20 <20 <1 0.11 >10.00 <.01 <.01 <.01 <1 <1 <2 <1 <1 <5 <10 <.01 <1	
11773	<5 <.2 7 <2 22 <1 1517 72 <.2 <5 <5 <5 4.68 712 <10 4 1402 31 <20 <20 <1 0.60 >10.00 0.03 <.01 <.01 <1 <1 <2 <1 <1 8 <10 <.01 <1	
11774	<5 <.2 5 <2 17 <1 1486 74 <.2 <5 <5 <5 4.94 757 <10 4 1247 29 <20 <20 <1 0.53 >10.00 0.07 <.01 <.01 <1 <1 <2 <1 <1 7 <10 <.01 <1	
11775	<5 <.2 11 <2 19 <1 1496 76 <.2 <5 <5 <5 4.92 738 <10 3 1419 29 <20 <20 <1 0.59 >10.00 0.05 <.01 <.01 <1 <1 <2 <1 <1 8 <10 <.01 <1	
11776		
11777		
11778	<5 <.2 3 <2 16 <1 1398 72 <.2 <5 <5 <5 4.59 779 <10 2 1190 24 <20 <20 <1 0.50 >10.00 0.07 <.01 <.01 <1 <1 <2 1 <1 7 <10 <.01 <1	
11779	<5 <.2 27 <2 15 <1 1221 60 <.2 <5 <5 <5 4.66 467 <10 2 1299 31 <20 <20 <1 0.66 >10.00 0.07 <.01 <.01 <1 <1 <2 <1 <1 8 <10 <.01 <1 <1 <5 <.01 <1 8 <10 <.01 <1 <1 <5 <.2 10 <2 19 <1 1464 79 <.2 <5 <5 <5 4.85 796 <10 3 1317 26 <20 <20 <1 0.52 >10.00 0.07 <.01 <.01 <1 <1 <2 <1 <1 8 <10 <.01 <1 <1 <2 <1 <1 8 <10 <.01 <1 <1 <1 <2 <1 <1 8 <10 <.01 <1 <1 <1 <1 <2 <1 <1 8 <10 <.01 <1 <1 <1 <1 <2 <1 <1 8 <10 <.01 <1 <1 <1 <1 <2 <1 <1 8 <10 <.01 <1 <1 <1 <1 <2 <1 <1 8 <10 <.01 <1 <1 <1 <1 <1 <1 <2 <1 <1 8 <10 <.01 <1 <1 <1 <1 <1 <1 <2 <1 <1 8 <10 <.01 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	
11780	Solution (1) - 1 - 1 - 2 - 2 - 1 - 2 - 2 - 2 - 2 - 2	

ĺ	TS Intertek Testing Services Geometrical Lab Report
	PROJECT: MT SIDNEY 7-01629.0 (COMPLETE) DATE RECEIVED: 10-JUL-97 DATE PRINTED: 12-NOV-97 PAGE 2 OF 4
SAMPLE NUMBER	ELEMENT Wet AU Ag CU PD Zn Mo Ni Co Cd Bi As SD Fe Mn Te Ba Cr V Sn W La Al Mg Ca Na K Sr Y Ga Li ND Sc Ta Ti Zr UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM
11781 11782 11783 11784 11785	<5 < .2 9 <2 18 <1 1699 83 <.2 <5 <5 <5 5.09 860 <10 2 1179 21 <20 <20 <1 0.39 >10.00 <.01 <.01 <1 <1 <2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <10 <.01 <1 <1 <5 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <10 <.01 <1 <1 <5 <10 <.01 <1 <1 <5 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <5 <10 <.01 <1 <1 <5 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <1 <5 <10 <.01 <1 <1 <5 <10 <.01 <1 <1 <5 <.2 <1 <1 6 <10 <.01 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
11787 11788 11789 11790	<5 < .2 < 1 < 2 14 < 1 1533 75 < .2 < 5 16 < 5 4.16 638 < 10 4 980 9 < 20 < 20 < 1 0.12 > 10.00 < .01 < .01 < .01 < 1 < 1 < 2 < 1 < 1 < 5 < 10 < .01 < 1 < 1 < 5 < 10 < .01 < .01 < 1 < 5 < .2 < 5 16 < 5 4.16 638 < 10 4 980 9 < 20 < 20 < 1 0.12 > 10.00 < .01 < .01 < .01 < 1 < 1 < 2 < 1 < 1 < 5 < 10 < .01 < .01 < 1 < 5 < .0 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01
11791 11792 11793	<pre><5 <.2 <1 <2 21 <1 1382 73 <.2 <5 <5 <5 4.71 835 <10 2 1202 25 <20 <20 <1 0.50 >10.00 0.08 <.01 <.01 <1 <1 <2 <1 <1 6 <10 <.01 <1 <5 <.2 1 <2 20 <1 1836 87 <.2 <5 <5 5.31 761 <10 3 130 4 <20 <20 <1 0.09 >10.00 0.01 <.01 <1 <1 <1 <2 <1 <1 <5 <10 <.01 <1 <1 <5 <.2 12 <1 <1 5 <10 <.01 <1 <1 <5 <.2 12 <1 <1 5 <10 <.01 <1 <1 <1 <5 <10 <.01 <1 <1 <1 <5 <10 <.01 <1 <1 <1 <1 <1 <2 1 <1 <5 <10 <.01 <1 <</pre>

• .

PTT	Intertek Testing Services
	Bondar Clegg

Gec ...emical Lab Report

CLIENT: FIRST REPORT: V97-0) Rat	ION													DATE	REC	EIVE	D:	10-J	UL-97	,	DATE	PRI	NTED -	12-	มกบ-	97	P)CE	Р 3 О	ROJE	CT:	MT	SIDN	VEY	
	· · ·								••••••					·· ·	· ·· ··	•••••	•••••					••••••												• •	•••••		•••••	•••••	•••••
STANDARD NAME	ELEMENT W																								Mg			a	κ					Nb					Zr
<i>inv</i> ic	UNITS	rro	PPM PF	-m P3	PM PF	TT PP	171-	PPM	PPM I	m	PPM	PPM	PPM	PCT	PFI	1 PPM	איזיין ו	I PP	M PP	M PF	M PI	РМ Р	PM P	CT	PCT	PC1	ſ PC	ТР	CT P	PM 6	PPM	PPM	PPM	PPM	PPM	I PPI	мр	ΥCT	PPM
Gannet Standa	ard	447	-	-	-	-	-	-	-	-	-	-	-	-			. <u>-</u>			-	-	•	-	_	-			•	_	_	_	-	-				-	-	-
Number of Ana	alyses	1	-	•	-	-	-	-	-	-	•	•	· _	-	· •	•	· -		-	-	-	-		-	-	-		-		-	-	-	-	-	-	,	-	-	-
lean Value		447	-	-	•	•	-	-	-	-	-	-	-	-	-	. <u>-</u>	-		-	<u>.</u>	-	-	-	· _	-	-	-	-	-			-	-	-	-		-		-
Standard Devi	iation	-	-	-	-	-	-	-	-	٠	-	-	-	-	-	-	-		-	-	-	•	-	-	-			-	-	-	-	-	-				_	-	
ccepted Valu	æ	405	-	•	•	-	-	-		-	-	•	-	-	-	• •	•		•	- '		-	-	•	-	-		-	•	-	-	-	-	-	-		•	-	-
CC GEOCHEM S	STD 4	- 1	0.7 27	76 E	31 21	7	3	37	8 (.9	<5	25	<5 3	2.76	557	r <10	59	7	8	7 <2	0 <2	20	2 0.	79	1.20	1.37	7 0. 0	50.	14	36	3	2	6	1	₹5	<1/	0 <	01	10
lumber of Ana	alyses	-	1	1	1	1	1	1		1	1	1	1	1	1		1			1				1	1	1		1	1				1	1	1		_	1	
ean Value		- 1	0.7 27	76 3	31 21	7	3	37	8 (.9	3	25	3 3	2.76	557	5	59	7	8	71			20.	•	1.20			•	-		3	2	6	י 1	3	. ,	' 5.0	-	•
tandard Devi	ation	-	-	-	-	-	-	•	• .	-	-	-	-	-	-	-	-		-	-	-	-	-	-					-	•	-	-	-	-	ر -		, .u		-
ccepted Valu	le	-	1.6 29	ю 3	33 25	5	4	42	90	.8	1	30	1:	2.60	600	0.1	55	10	4	9	5	1	40.	77	1.34	1.43	0.0	4 O.'	14 3	39	4	z	7	1	12		1 0.	- 01	8
NALYTICAL BL	.ANK	<5	<.2 <	1.	<2 <	1 <	:1	<1	<1 <	.2	<5	<5	<5 •	:.01	<1	<10	<1	<	1 <	1 <2	0 <2	0	<1 <.4	01	<0.01	<.01	<.0	1 <.()1 .	<1	<1	0	<1	ء1	~5	<11	.	01	~1
NALYTICAL BL	.ANK	-	<.2 <	:1	2 <	1 <	1	<1	<1 <	.2	<5	<5	<5 ·	.01	<1	<10	<1	<	1 <	1 <2	0 <2	i	<1 <.0	01	<0.01	<.01	<.0	1 <.í)1 •	د1	<1	<2	<1	<1	-5	- IX	/ ••• 1 -	D1	-1
umber of Ana	lyses	1	Z	2	2	2	2	2	2	2	2	2	2	2			2		2 ;					2	2	2								2					2
lean Value		3 ().1 Q.	5	Z 0.	5 0.	5 (0.5 (0.5 C	.1	3	3	3	.005	0.5	5	0.5	0.5	5 0.!	51	0 1	0 D.	5.0		0.005	.005	.00	- 5.00	- 15 D.	5 A	5	1	05	05	7		; n	<u>د</u> دەت	<u>د</u>
tandard Devi	ation	•	-	- 1.	.0	-	-	-	•	-	-	-	-	•	-	-	-		-	-		-		-		-		-	-		-	-	-		-	-	-	-	-
ccepted Valu	ю	1 ().2	1	2	1	1	1	10	.1	2	5	5 (.05	1	.01	.01		1	1.0	1.0	1.0)1 <.1	01 ·	<.0001	<.01	<.0'	1 <.(01.0	D1.	01	.01	.01	.01	.01	.01	<,	01	.01
BCC GEOCHEM \$	STD 6		<.2 13	11 ⁻	14 12	2	z ʻ	127	29 <	.2	<5	127	<5 6	5.94	1343	<10	7	160	544	4 <2	0 <2	0 <	et 1.4	8Z	2.56	3.50	0.0	1 0.0	4 7	7	3	5	20	1	Â	<1{) с (01	5
lumber of Ana	alyses	•	1	1	ĵ	1	1	1	1	1	1	1	1	1	1	1	1		1 ·					1							1	1	1	1	1	- i Q 1		1	
ean Value		- (0.1 13	1 1	14 12	2																			2.56						•	5	20	1	י ס		.00		
tandard Devi	ation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-		-	•	•					- '	-				-	0	ر		-	, _
ccepted Valu	le	- (0.2 14	0	18 14	0	4 1	135	35 0	.2	1 :	145	16	.50	1450	-	6	170) 5()	51	2	- 1 9	หก	2.70	ፈሰሳ	0.01	וחר	<u>к</u> 7	20	7	-	2/	-	,		~	-	-
										_	-									-	- 1	-	1.6		2.70	4.00	0.0		mi /	U	د	•	24	2	¢	נ	.00	12	5

	T	5					T gg	'es	ti	ng	5,	Se	erv	vic	e	S]	Ge Lal Rej	Ś	nen rt	nica	ιl
CLIENT: FI REPORT: V9				AT I O	4											C	ATE I	RECE	I VED	: 10	- JUL	- 9 7		DATE	PRIN	TED:	12-1	10V-9	97	PA	GE	Pi 4 Oi		CT: 1	MT S!	IDNEY				
sample Number	ELEMENT UNITS							Co PPM																Mg PCT	Са РСТ			K S CTPF							Ta PPM	Ti PCT	Zr PPM			
11759 Duplicate								75 75						644 649																						<.01 <.01				
11777 Duplicate		<5						72 73																																
11783 Duplicate		୍ଚ ୧୨	<1	<2	18	<1	1670	80	<.2	<5	76	ر ه 4	.91	717	<10	3	212	5	<20	<20	<1	0.0	5 >11	0.00	0.01	<.01) <.0)1 🔹	<1	<1	<2	<1	<1	< 5	<10	<.01	<1			

REPORT: V97-01632.0 (COMPLETE) REFERENCE: MT SIDNEY WILLIAMS REPORT: V97-01632.0 (COMPLETE) REFERENCE: MT SIDNEY WILLIAMS CLIENT: FIRST POINT MINERALS CORPORATION PROJECT: MT SIDNEY DATE NUMBER OF LOWER ANALYSES DETECTION EXTRACTION METHOD P70723 1 Wet AU Partial Ext. Gold 47 5 PPB ASH/AQ REG/DIBK ATOMIC ABSORPTION 970723 3 Cu Copper 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 3 Cu Copper 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 4 Pb Lead 47 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 5 Cn Zinc 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 6 Mo Molybdenum 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 7 Ni Nickel 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 7 Ni Nickel 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 7 Ni Nickel 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 7 Ni Nickel 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 7 Ni Nickel 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 7 Ni Nickel 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 7 Ni Nickel 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 7 Ni Nickel 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 7 Ni Nickel 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 7 Ni Nickel 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 7 Ni Nickel 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 7 Ni Nickel 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 7 Ni Nickel 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 9 Cd Cachnium 47 0.2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 9 Cd Cachnium 47 0.2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 9 Cd Cachnium 47 0.2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 9 Cd Cachnium 47 0.2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 9 Cd Cachnium 47 0.2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 9 Cd Cachnium 47 0.2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 9 Cd Cachnium 47 0.2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 9 Cd Cachnium 47 0.2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 970723 9 Cd Cachnium 47 0.2 PPM HCL:HN03 (3:1) INDUC. C		Report	
Submitted by: U. MOWAT OPATE NUMBER OF LOWER OPATE NUMBER OF LOWER OPATE NUMBER OF LOWER OPATE NUMBER OF DETECTION ELEMENT ANALYSES DETECTION OPATE NUMBER OF LOWER OPATE NUMBER OF DETECTION ELEMENT ANALYSES DETECTION OPATE OPATE ANALYSES OPATE NUMBER OF LOWER OPATE NUMBER OF LOWER OPATE DETECTION EXTRACTION METHOD METHOD RETHOD OPATE ANALYSES DETECTION EXTRACTION METHOD RETHOD OPATE ATOMIC ABSORPTION REPORT COPIES TO: MR. PETER BRADSHAW OPATE 47 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA OPATE 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA This report must not be reproduced except in OPATE 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA This report must not be repr			
DATE NUMBER OF LOWER APPROVED ELEMENT ANALYSES DETECTION EXTRACTION METHOD 270723 1 Wet Au Partial Ext. Gold 47 5 PPB ASH/AQ REG/DIBK ATOMIC ABSORPTION 270723 1 Wet Au Partial Ext. Gold 47 5 PPB ASH/AQ REG/DIBK ATOMIC ABSORPTION 270723 2 Ag Silver 47 0.2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 270723 4 Pb Lead 47 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 270723 5 2n Zinc 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA REPORT COPIES TO: MR. PETER BRADSHAW 270723 5 2n Zinc 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA ************************************			
ATENUMBER OFLOWERPPROVEDELEMENTANALYSESDETECTIONEXTRACTIONMETHODR707231 Wet Au Partial Ext. Gold475 PPBASH/AQ REG/DIBKATOMIC ABSORPTION707232 AgSilver470.2 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707233 CuCopper471 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707234 PbLead472 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707235 ZnZinc471 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707236 MoMolybdenum471 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707237 NiNickel471 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707237 NiNickel471 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707237 NiNickel471 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707239 CdCobalt471 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707239 CdCadmium470.2 P			
RRCK472-150707231Wet Au Partial Ext. Gold475PPBASH/AQ REG/DIBKATOMIC ABSORPTION707232AgSilver470.2PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707233CuCopper471PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707234PbLead472PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707235ZnZinc471PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707236MoMolybdenum471PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707237NiNickel471PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707237NiNickel471PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707238CoCobalt471PPMHCL:HN03 (3:1)INDUC. COUP. PLASMAapplicable only to the samples identifie707239CdCadmium470.2PPMHCL:HN03 (3:1)INDUC. COUP. PLASMAapplicable only to the samples as received ex707239CdCadmium470.2PPMHCL:HN03 (3:1)INDUC. COUP. PLASMAotherwise indicated		SAMPLE PREPARATIONS	S NUMBER
7/0723 1 Wet Au Partial Ext. Gold 47 5 PPB ASH/AQ_REG/DIBK ATOMIC ABSORPTION 7/0723 2 Ag Silver 47 0.2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 7/0723 3 Cu Copper 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 7/0723 4 Pb Lead 47 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 7/0723 5 Zn Zinc 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 7/0723 6 Mo Molybdenum 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 7/0723 6 Mo Nolybdenum 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA ************************************			
707232 AgSilver470.2 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707233 CuCopper471 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707234 PbLead472 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707235 ZnZinc471 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707235 ZnZinc471 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707236 MoMolybdenum471 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707237 NiNickel471 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707238 CoCobalt471 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707239 CdCadmium470.2 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707239 CdCadmium470.2 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA707239 CdCadmium470.2 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA	47	CRUSH/SPLIT & PULV. OVERWEIGHT/KG	. 47 153
70723 3 Cu Copper 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 70723 4 Pb Lead 47 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA REPORT COPIES TO: MR. PETER BRADSHAW 70723 5 Zn Zinc 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA REPORT COPIES TO: MR. PETER BRADSHAW 70723 5 Zn Zinc 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 70723 6 Mo Molybdenum 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA ************************************		OVERWEIDHI/NG	661
70723 5 Zn Zinc 47 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA ************************************			
70723 6 Mo Molybdenum 47 1 PPM HCL:HN03 (3:1) INDUC, COUP. PLASMA ************************************	INVOICE 7	TO: MR. PETER BRADSHA	<i>i</i> H
707237 NiNickel471 PPMHCL:HN03 (3:1)1 NDUC. COUP. PLASMAreport is specific to those samples identifie707238 CoCobalt471 PPMHCL:HN03 (3:1)I NDUC. COUP. PLASMAapplicable only to the samples as received ex707239 CdCadmium470.2 PPMHCL:HN03 (3:1)I NDUC. COUP. PLASMAotherwise indicated			
70723 7 Ni Nickel 47 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA report is specific to those samples identifie 70723 8 Co Cobalt 47 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA applicable only to the samples as received ex 70723 9 Cd Cadmium 47 0.2 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA otherwise indicated			
70723 8 Co Cobalt 47 1 PPM HCL:HND3 (3:1) INDUC. COUP. PLASMA applicable only to the samples as received ex 70723 9 Cd Cadmium 47 0.2 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA otherwise indicated	full. The	e data presented in th	iis
70723 9 Cd Cachnium 47 0.2 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA otherwise indicated	voriancer "s	'sample Number'' and is	i
	vpressed on	A I a GIY Dasis Unitess	
	*****	*****	****
70723 11 As Arsenic 47 5 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA			
70723 12 Sb Antimony 47 5 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA			
70723 13 Fe Iron 47 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA			
770723 13 Fe Tron 47 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 770723 14 Mn Manganese 47 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA			
770723 15 Te Tellurium 47 10 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA			
77723 16 Ba Barium 47 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMÁ			
70723 17 Cr Chromium 47 1 PPM HCL:HN03 (3:1) INDUC, COUP, PLASMA			
70723 18 V Vanadium 47 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA			
70723 19 Sn Tin 47 20 PPM HCL:HN03 (3:1) INDUC, COUP, PLASMA			
70723-20 V Tungsten - 47 20 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 70723-21 La Lanthanum - 47 1 PPM HCL:HNO3 (3:1) INDUC, COUP. PLASMA			
70723 22 At Atuminum 47 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA			
70723 23 Mg Magnesium 47 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA			
70723 24 Ca Calcium 47 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA			
770723 25 Na Sociema 47 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA 770723 26 K Potassien 47 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA			
770723 27 Sr Strontium 47 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 707223 28 Y Yttrium 47 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA			
70723 29 Ga Gallium 47 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA			
70723 30 Li Lithium 47 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA			
70723 31 Nb Niobium 47 1 PPM HEL: HNO3 (3:1) INDUC. COUP. PLASMA			
70723 32 Sc Scandium 47 5 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA 70723 33 Ta Tantalum 47 10 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA			
			;
			:
70723 35 Zr Zirconium 47 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA			
			-

	Intertek Testing Services Bondar Clegg ht: first point minerals corporation rt: v97-01632.0 (complete) Date printed: 12-NOV-97																				Gec Lab Rep						
	FIRST POINT MINERALS COR V97-01632.0 (COMPLETE)		101								C	DATE RI	ECE I VED	: 10-	JUL-97	Đ	ATE PI	RINTE): 12	-NOV-9	7	PAGE			': MT S	IDNEY	
SAMPLE NUMBER	ELEMENT Wet Au Ag UNITS PPB PPM																Mg PCT		Na PCT							a Ti M PCT	
142551									<5 3.31																		
142552									<5 3.85																		
142553									<5 4.55																		
142554									<5 5.31																		
142555	11 <.2	14	5	28 <3	1739	83 <.2	<5	22	<5 4.80	687 <1	0 1	1091	20 <2	0 <20	<10	.29 >10	0.00 (0.06 •	<.01	<.01	<1 ·	<1 <z< td=""><td><1</td><td>15</td><td>8 <1</td><td>0 <.01</td><td><1</td></z<>	<1	15	8 <1	0 <.01	<1
142556	1006 0.4	6	7	9 <	1 1142	51 <.2	<5	597	18 4.03	807 <1	0 é	471	15 <2	0 <20	<1 0	.08 >10	0.00 (0.28 <	<.01	0.01	6 •	<1 <2	<1	12	6 <1	0 <.01	<1
142557	307 <.2	7	5	10 <1	I 969	49 < 2	<5	648	14 4.14	520 <1	0 - 4	674	19 <2	0 <20	<1 D	.23 >10	0.00 (0.21 <	<.01 ·	0.01	4 ·	<1 <2	3	10	6 <1	0 <.01	<1
142558	<5 <.2	6	5	36 <1	1367	75 <.2	<5	10	<5 4.42	833 <1	0 Z	1073	22 <2	0 <20	<10	.30 >10	0.00 (.46 -	< . 01	<.01 ·	<1 •	<1 <2	1	14	8 <1	0 <.01	<1
142559	<5 <.2	9	8	31 <1	I 1764	76 <.2	<5	<5	<5 5.01	900 <1	0 <1	1076	20 <2	0 <20	<1.0	.36 >10	0.00 (0.01 <	.01	<.01 ·	<1 •	<1 <2	<1	14	8 <1	0 <.01	<1
142560	<u>8</u> <.2	5	5	25 <1	1 1643	78 <.2	<5	<5	<5 4.82	826 <1	01	1075	22 <2	0 <20	<1 0,	.41 >1(0.00 (0.03 <	.01	<.01 •	<1 •	<1 <2	<1	11	6 <1	0 <.01	<1
142561	<5 <.2	8	5	25 <1	1454	62 <.2	<5	<5	<5 4.28	643 <1	0 <1	905	22 <2	0 <20	<1.0.	.39 >10	o	0.02 <	.01	<.01 •	<1 <	(1 <2	<1	12	6 <1	0 <.01	<1
142562	<5 <.2	13	5	20 <1	1478	74 <.2	<5	<5	<5 4.51	800 <1	0 6	300	9 <2	0 <20	<1 0.	.23 >10	o.oo d).05 <	.01	<.01 <	<1 <	1 <2	1	14	<5 <1	0 <.01	<1
142563	6 <.2	13	16	30 <1	1311	66 < .2	<5	<5	<5 4.19	651 <1	0 4	316	11 <2	0 <20	<1 0,	.25 >10	0.00).02 <	.01	<.01 <	<1 <	1 <2	<1	12	<5 <10	0 <.01	<1
142564	<5 <.2	1	6	28 <1	2308	79 <.2	<5	<5	<5 4.04	577 <1	0 <1	75	Z <2	0 <20	<1.0.	.01 >10).00 ×	<.01 <	.01	<.01 <	<1 <	:1 <2	<1	18	<5 <10	0 <.01	<1
142565									<5 5.13																		
142566	<5 <.2	6	7	25 <1	2353	78 <.2	<5	<5	<5 4.40	670 <1	0 <1	94	1 <2	0 <20	<1.0.	.01 >10	o.00 →	<.01 <	. Ol ·	<.01 •	<1 <	1 <2	<1	13	s5 s1(n < ∩1	x 1
142567	<5 <.2	12	4	32 <1	1476	69 <.2	<5	<5	<5 4.45	655 <1	0 3	306	10 <2	0 <20	<1 0.	.27 >10	0.00).06 <	.01	<.01 <	<1 <	1 <2	<1	13	<5 <10	0 < 01	<1
142568	<5 <.2	9	5	20 <1	1555	73 <.2	<5	<5	<5 4.58	633 <1	0 <1	190	6 <2	0 <20	<1 0.	.12 >10	0.00 0).OZ <	.01	<.01 <	<1	1 <2	<1	12	<5 <10	0 <.01	<1
142569									<5 4.42																		
142570	6 <.2	11	6	23 <′	1 1436	66 <.2	<5	15	<5 5.51	652 <1	0 Z	1238	31 <2	0 <20	<1 0.	.57 >10),00 ().04 <	.0 1 ·	<.01 <	<1 <	:1 <2	<1	11	9 <10	0 <.01	<1
142571	6 <.2	18	4	33 <	1 1540	66 <.2	<5	<5	<5 3.93	672 <1	D 4	1296	27 <2	0 <20	<1.0	46 >10) 18 a	01	e 01 e	-1 <i>-</i>	1.2	-1	12	0 -10	3 ~ 01	~t
142572									17 3.65																		
142573	6 <.2	25	7	29 1	1 1701	82 < 2	<5	<5	<5 4.77	812 <1	 0 <1	974	35 <2	0 <20	<1.0	64 ×11	,	118 -	01	c 01 .		ייי. בי וי	1	1/	0 -10	7 V.UI	<] -1
142574	<5 <.2	9	6	32 <1	1881	90 < 2	<5	<5	<5 4.89	977 <1		1209	23 < 21	n <20	<1.0	25 510	1.00 (1.00 (າມ 1 ມ1 -	01.	- 101 -	<1 2	1 - 2	-1	17	0 1/) < 01	<[]
142575	2415 0.3	10	7	21 1	1147	61 <.2	<5	1056	8 3 60	711 <1	, 11	502	16 -2	י_רי הכ>ר	<1.0	15 510) 21 -	. D1 /	∿.01 * 101	יוי די	1 -2	ו ר ר	13	7 -44	10.2	<1 .1
142576	<5 <.2	8	5	13 <1	832	58 <.2	<5	<5	<5 3.67	566 <1) 4	730	21 <20	0 <20	<1 0.	.30 >10	0.00).56 <	.01 •	<.01	1 <	1 <2	2	11	6 <10) <.01	<1
142577									<5 3.39																		
142578	<5 <.2	4	6	11 <1	894	47 <.2	<5	5	<5 3.19	662 <10	7 כ	445	11 <20	0 <20	<1 0.	.12 >10	0.00).04 <	.01	.01 <	:1 <	1 <2	2	10	6 <10) <.01	<1
142579	<5 <.2	11	5	22 1	1727	94 <.2	<5	<5	<5 5.44	1176 <1	3	831	15 <20) <20	<1 0.	. 13 >10	.00 0).04 <	.01	<.01	2 <	1 <2	Z	14	8 <10) <.01	<1
142580	<5 <.2	13	5	42 <1	1615	77 <.2	<5	<5	<5 4.26	770 <10	6 0	921	22 <20) <20	<1 0.	.26 >10	0.00 0	1.14 <	.01 •	<.01 <	:1 <	1 <2	<1	1 3	8 <10	<.01	<1

		tek Testing	Services		Geomemical Lab Report
	IRST POINT MINERALS CORPORATION 97-01632.0 (COMPLETE)	4	DATE	RECEIVED: 10-JUL-97 DATE PRINTED: 12-NOV-97	PROJECT: MT SIDNEY 7 PAGE 2 OF 4
SAMPLE	ELEMENT Wet AU Ag Cu Pb	7- N- Ni 0- Di Di	······································		
NUMBER	u		As SID Fe Min Te Ba PPM PPM PCT PPM PPM PPM P		Sr Y Ga Lí NH Sc Ta Tì Zr
NONDER			rin Frm PCI PPM PPM P	PM PPM PPM PPM PCI PCI PCI PCT PCT PF	рм ррм ррм ррм ррм ррм рст ррм
142581	<5 <.2 9 4	31 <1 1487 73 <.2 <5	<5 <5 3.49 646 <10 2 8	24 17 <20 <20 <1 0.23 >10.00 0.05 <.01 <.01 <	c1 c1 c2 c1 12 7 c10 c 01 c1
142582	<5 <.2 7 4	28 <1 1284 61 <.2 <5	<5 <5 3.39 495 <10 2 9	24 24 <20 <20 <1 0.50 >10.00 0.08 <.01 <.01 <	<1 < 1 < 2 < 1 < 2 < 1 < 4 < 10 < 01 < 1
142583	<5 <.2 11 5	30 <1 1638 70 < 2 <5	<5 <5 3.87 787 <10 <1 8	48 18 <20 <20 <1 0.28 >10.00 0.03 <.01 <.01 <	
142584	<5 <.2 14 5	32 1 1844 79 <.2 <5	<5 <5 4.26 675 <10 3 10	68 28 <20 <20 <1 0.37 >10.00 0.01 <.01 <.01 <	$c_1 = c_1 = c_2 = c_1 = 16$ $D = c_1 = c_1 = c_1$
142585	<5 <,2 8 4	14 <1 973 56 <.2 <5	<5 <5 3.34 700 <10 5 6	08 15 <20 <20 <1 0.13 >10.00 0.17 <.01 0.01	1 < 1 < 2 > 11 A < 10 < 01 < 1
142586	45 <.2 4 5	9 <1 1238 59 <.2 <5 3	516 14 3.39 593 <10 7.3	54 14 <20 <20 <1 0.10 >10.00 0.08 <.01 <.01	2 <1 <2 <1 11 5 <10 < 01 <1
142587	<5 <.2 7 5	15 <1 1539 74 <.2 <5	<5 <5 3.92 660 <10 <1 7	47 14 <20 <20 <1 0.20 >10.00 0.11 <.01 <.01 <	
142588	<5<.225	10 <1 1120 64 < 2 <5	<5 <5 3.29 583 <10 5 7	04 14 <20 <20 <1 0.16 >10.00 0.08 <.01 <.01	1 < 1 < 2 = 1 + 11 + 7 < 10 < 01 < 1
142589	< 5 <.2 12 5	25 <1 1253 68 <.2 <5	<5 <5 4.25 564 <10 10 8	41 22 <20 <20 <1 0.24 >10.00 0.06 <.01 <.01	2 < 1 < 2 < 1 = 1 = 10 = 5 < 10 < 01 = 1
142590	<5 <.2 5 5	11 <1 1239 61 <.2 <5	<5 <5 3.54 741 <10 5 4	36 13 <20 <20 <1 0.07 >10.00 0.15 <.01 <.01	1 <1 <2 <1 12 6 <10 <.01 <1
142591	6 <.2 15 4	37 1 1859 84 <.2 <5	<5 <5 3.62 780 <10 3 9	71	<1 <1 <2 <1 14 6 <10 <.01 <1
142592	<5 <.2 12 5	30 <1 1927 86 <.2 <5	<5 <5 5.23 992 <10 2 13	11 27 <20 <20 <1 0.39 >10.00 0.04 <.01 <.01 <	<1 <1 <2 <1 13 7 <10 <.01 <1
1425 93	<5 <.2 12 5	19 1 1719 75 <.2 <5	<5 <5 5.09 817 <10 2 9	14 21 <20 <20 <1 0.20 >10.00 <.01 <.01 <.01 <	<1 <1 <2 <1 14 8 <10 <.01 <1
142594	<5 <.2 3 5	19 1 1666 76 <.2 <5	<5 <5 4.39 646 <10 4 8	14 20 <20 <20 <1 0.24 >10.00 0.01 <.01 <.01	1 <1 <2 3 15 7 <10 <.01 <1
142595	<5 <.2 19 5	26 1 1722 79 <.2 <5	<5 <5 4.06 703 <10 3 11	17 27 <20 <20 <1 0.31 >10.00 0.11 <.01 <.01 <	1 <1 <2 <1 14 9 <10 <.01 <1
142596	<5 <.2 22 4	20 1 1969 90 < 2 <5	יא מי מו, דפל לל 2 2, 2,		
142597		19 21 1707 70 5.2 57	ND ND D.40 /60 KIU 2 11/ -5 -5 / 71 /40 -40 - 5 -5	41 14 <20 <20 <1 0.11 >10.00 <.01 <.01 <.01 <	1 <1 <2 <1 13 7 <10 <,01 <1
146371	N N Z 7 3	C> 2,2 0C UCCI 17 01	<> <> 4.31 412 <10 <1 51	77 19 <20 <20 <1 0.19 >10.00 <.01 <.01 <.01 <	1 <1 <2 <1 8 7 <10 <.01 <1

	ΓS						T gg		in	g (Ser	vi	ce	S]	Lat	, lemica port
CLIENT: FIRST				ATIO	N	• • • • • •		•• •• •• •										•••••••	••••••	•• ••••		** * ** *						PRO	JJECT	: MT S	IDNEY	
REPORT: V97-01	1632.0 (COMPLETE)											D	ATE R	RECEIV	/ED :	10-Jl	JL-97	• • • • • • •	DATE	PRIN	TED:	12-NO	v-97	PA	GE 4	4 OF	4			•••••••••••••••••••••••••••••••••••••••
SAMPLE E	ELEMENT W	et Au Ag) Cu	Pb	Zn	Мо	Ni	Co C	d Bi	As	sb r	e	Ma Te	e Ba	Cr	· v	Sn	W	La	AL	M	9 Ci	a. N	a i	K Sr	Y	Ga	Li	Nb	Sc Ta	a Ti	Zr
NUMBER	UNITS										PPM PC									PCT	PC	T PC	t PC	T PC	t ppm	PPM	PPM	PPM	PPM /	PPM PPM	1 РСТ	PPM
142553		11 - 3	> 11			-1	158/	75 -	, , ,		<5 4.5			ייי. ויביר		10	-20	-20	~1 O		- 10 O	• • •) ~ 0	1 . 'n	1	-11	-7		47	0 -4		
Duplicate											<5 4.3																					
																	-20				- 1010				• •		~		1.2			•1
142570											<5 5.5																					
Duplicate		<.2	2 13	6	25	- 1	1576	72 <.	2 <5	_ 17	<5 5.1	8 7	08 <10) [2	1252	34	<20	<20	<1 0	.57	>10.0	0.0	5 < 0	1 <.0	1 1	<1	<2	· <1	12	10 <10) <,01	<1
142576		<i>1</i> 5 <i>e</i> 3) e	Ę	12	-1	872	59 2	 ว.ศ.	~5	<5 3.6	7 6		.∵. • • ∧	770		-20	-20	-1 0	70	510 D			1				~	44	e		.4
Duplicate		<5	. 0	1. *	13		052	./ 04	2 5			וק או ייי	жо < н	/	i vau V		<20	<20	< U		>10.0	0.50	5 <.0	<.0		<1	<2	4	T.I	0 <10	J <.01	<1
												T												· .								
142586											14 3.3																					
Prep Duplicate	9	38 <.2	2 5	. 4	. 9	1	1242	58 <.	2 5	339	17 3.3	9 5	72 <10	7	350) 14	<20	<20	<1 0	.09	>10.00	0.0	8 <.0	1 <.0	12	<1	<2	<1	11	5 <10) <.01	<1
Prep Duplicate	_	38 <.2	2 5	4		<u>с.</u> А	10/0	50 -			47.7.7	ن بې بې	73 - 46					-70	-1 0		. 10. 0			·			_			- 4		
Prepioapricate Duplicate	÷										17 3.3																					
				-	-			·····	- 5								-60				- 10.0			1 10		~1	12	~1		2 10		NI I
142596		<5 <.2	-								<5 5.2																					
Prep Duplicate	9	<5 <.2	2 22	6	20	1	1865	89 <.	2 <5	<5	<5 5.0	97	51 <10) 2	1097	14	<20	<20	<10	.10	>10.00) <.0'	<.0	1 <.0	<1	<1	<2	<1	13	7 <10) <.01	<1
Prep Duplicate	•	65 A 3	, ,,,	۲	20	. 1	1845	RO z	2 25	~5	<5 5.0	07		; מינו ו	1007		-70	-20	-1.0	10	10 M	1 <i>- 0</i>		•	1		-0					
Duplicate	-	<5		0	20	1	1005	U7 \.	2 <u>-</u> 2		1 , 1, 1, 1		11 N.	<u>م</u> د	1097	14	×20	520	<1 U	. 10	>10.00	1 <.0	I <.U	I <.U	<	<1	<2	<1	15	7 <10	> <.01	<1
•		·																														
																				. •												

		nterte Sondar (sting Se	rvices					Gec nemi Lab Report	cal
	1659.0 (COMPLETE						FERENCE: MT SI				··· •
	POINT MINERALS CO					SUI DATE	BMITTED BY: U. RECEIVED: 14-J	Mowat UL-97 DATE PRINTE	D: 12-NOV-97		
DATE	ELEMENT	NUMBER OF	LOWER DETECTION	EXTRACTION	METHOD	SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS	
		MACTOCO	DETECTION	Children Port		R ROCK	25	2 -150	25	CRUSH/SPLIT & PULV.	25
770721 1 Wet	Au Partial Ext. 0		5 PPB	ASH/AQ REG/DIBK	ATOMIC ABSORPTION					OVERWE1GHT/KG	89
970721 2 Ag	Silver	25	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
770721 3 Cu	Copper	25	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70721 4 Pb	Lead	25	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REPORT COPIES TO:	MR. PETER BRA	DSHAW	INVOICE	TO: MR. PETER BRADSHAL	1
70721 5 Zn	Zinc	25	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					*****	
970721 6 Mo	Molybdenum	25	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
170704 7 Ni	Niekol	75	1 PPM	NCL - UNO7 (7-1)						data presented in thi Sample Number" and is	5
70721 7 Ni 70721 8 Co	Nickel Cobait	25 25	1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC, COUP. PLASMA INDUC, COUP. PLASMA					n a dry basis unless	
70721 8 Co	Cadmjum	25	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		se indicated	e samptes as receive	a expressed o	n a ony basis unless	
70721 10 Bi	Bismuth	25	5 PPN	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			*******	*********	******	***
70721 11 As	Arsenic	25	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ						
70721 12 Sb	Antimony	25	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
		~	0.01.007								
770721 13 Fe	Iron	25 25	0.01 PCT 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970721 14 Mn 970721 15 Te	Manganese Tellurium	25	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMÁ						
970721 16 Ba	Barium	25	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970721 17 Cr	Chromium	25	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
70721 18 V	Vanadium	25	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
30704 40 0		25	30 66 4	UD4 - U407 - 47.45							
970721 19 Sn	Tin	25	20 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
70721 20 W 70721 21 La	Tungsten	25 25	20 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA						
70721 21 La	Lanthanum Aluminum	25 25	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70721 22 AL	Magnesium	25	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA						
70721 24 Ca	Calcium	25	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70721 25 Na	Sodium	25	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70721 26 K	Potassium	25	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970721 27 Sr	Strontium	25	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970721 28 Y	Yttrium	25	1 PPM 2 DDM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970721 29 Ga 970721 30 Li	Gallium Lithium	25 25	2 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA						
	Ertanton		1 1 1 1 1	HORTHING COLLY							
970721 31 Nb	Niobium	25	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970721 32 Sc	Scandium	25	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970721 33 Ta	Tantalum	25	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970721 34 Ti	Titanium	25	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970721 35 Zr	Zirconium	25	1 PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA						

Geoinemical Lab Report

CLIENT: FIRST POINT MINERALS CORPORATION

REPORT: V97-01659.0 (COMPLETE)

PROJECT: MT SIDNEY
DATE RECEIVED: 14-JUL-97 DATE PRINTED: 12-NOV-97 PAGE 1 OF 3

SAMPLE	ELEMENT W	let Au 🖌	ug Cu	u Pb	Zn	Ма	Ni	Co	Cd	Bi	As	sь	۶e	Mn	Те	Ba	Çr	۷	Sn N	√ La	a Al	Mg	Ca	Na	к	\$r	Y	Ga	Lī	Nb	Sc Ta	Ti	Zr
NUMBER	UNITS	PP8 PF	M PPI	1 PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	РРМ	PPM	PPM PPI	1 PPM	1 PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM PPM	PCT	PPM
																• •																	
11725		18 <.	2 10	5 40	43	<1	1549	79	<.2	<5	<5	<5	5.36	879	<10	5	1216	24	56 <20) <1	0.44	>10.00	0.10	<.01	<.01	<1	<1	<2	1	<1	7 <10	<.01	<1
11726		6 <.	2	1 <2	26	<1	1862	79	<.2	<5	44	<5	4.90	716	<10	3	198	5	54 <20) <1	0.05	>10.00	0.03	<.01	<.01	<1	<1	<2	<1	<1	<5 <10	<.01	<1
11727		21 <.	2	23	14	<1	1166	54	<.2	<5	140	11	3.66	587	<10	. 3	140	4	49 <20) <1	0.02	>10.00	0.07	<.01	<.01	<1	<1	<2	<1	<1	<5 <10	<.01	<1
11728		9 <	2 3	32	26	<1	1791	87	<.2	<5	<5	<5	5.32	795	<10	2	171	4	67 <20) <1	0.04	>10.00	0.02	<.01	<.01	<]	<1	<2	<1	<1	<5 <10	<.01	<1
11729		<5 <.	2 1/	5 <2	20	<1	1679	79	<.2	<5	<5	<5	4.97	686	<10	2	912	26	54 <20) <1	0.56	>10.00	0.11	<.01	<.01	<1	<1	<2	1	<1	7 <10	<.01	<1
11730		<5 <	2 1																											<1	7 <10	<.01	<1
11731		18 <					1117												44 <20											<1	8 <10		
11732		21 <					1618										1509														10 <10		
11733			.2 1				1619								<10																9 <10		
11734		<5 <	.2 12	2 <2	24	<1	1609	79	<.2	<5	<5	<\$	4.97	721	<10	3	598	15	53 <20) <1	0.27	>10.00	0.06	0.01	<.01	<1	<1	<2	<1	<1	<5 <10	<.01	<1
11775		. r .	~ •		47						-													~ ~					_				
11735 11736		<5 <					1417																								7 <10		
11736		_					1700			_	-	_							61 <20												7 <10		
11738		<5 <.					1647												58 <20												8 <10		'
11736		<5 <.	_				1561												57 <20										•	•			•
4 6711		53 N	2 1	1 2	20	~1	2128	73	۰.د	- 0	0	12	4.39	125	\$10	C	102	1	00 <21	J <1	0.01	>10.00	<.01	<.01	<.01	< 1	<1	<2	.1	<1	<5 <10	<.01	<1
11740		<5 <	2	R <2	22	<1	1826	81	< 2	<5	13	6	5 41	737	<10	र	807	16	AL 20	۱.et	0.25	510 OO	0 DA	< 01	c 01	-1	-1	~2	~1	~1	7 <10	< 01	-1
11741		6 <	_				1621												50 <20												7 <10		
11742		-					1638												55 <20														
11743							1446										683		48 <20												6 < 10		
11744		24 <					1615												54 <20												7 <10		
			-			-				-		-		•.•		-	• · ·		3 17 121			- 10100	0.00	01	·.♥!	- 1		۰۲			1 10	01	~1
11745		<5 <	.2	5 Z	19	8	1619	63	<,2	<5	7	<5	4.39	440	<10	1	909	19	53 <2() <1	0.29	>10.00	0.02	<.01	<.01	<1	<1	<2	<1	<1	7 <10	<.01	<1
11746		<5 <	.2 2	0 <2	22	<1	1781	86	<.2	<5	<5	<5	4.60	836	<10																7 <10		
11747		<5 <	.2 1	1 <z< td=""><td>60</td><td><1</td><td>1647</td><td>78</td><td><.2</td><td><5</td><td>92</td><td><5</td><td>5.17</td><td>621</td><td><10</td><td></td><td></td><td></td><td>49 <20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8 <10</td><td></td><td></td></z<>	60	<1	1647	78	<.2	<5	92	<5	5.17	621	<10				49 <20												8 <10		
11748		<5 <	.2 1	0 <2	21	<]	1639	76	<.2	<5	<5	<5	5.04	734	<10				51 <20												7 <10		
11749		6 <	.2	1 <2	21	<1	1517	78	<.2	<5	<5	<5	5.21	776	<10				61 <20												7 <10		

ITS Intertek Testing Services Bondar Clegg

Gec nemical Lab Report

LIENT: FIRST POINT	MINERALS CORPO	RATION																								P	ROJE	CT: M	IT SIDN	IEY
EPORT: V97-01659.0												l 	DATE	RECE	I VED	: 14	- JUL	-97	DATE	PRI	NTED:	12-N	ov-97	' F	PAGE	2 0	IF 3			
TANDARD ELEMENT AME UNITS	Wet Au Ag Ci PP8 PPM PPI				Co Cd PPM PPM					Min PPM I							La PPM		Mg PCT	Ca PCT								Sc PPM P	Ta T PPM PC	TÎ St P
annet Standard	419 -			-		-	-	-	-		-		-	·-	-	-		-	-	-	-		-	-	-	-	-	-	-	-
umber of Analyses	1 -			-	. -	· -	-	-	-	-	-	-	-	•	•		-	· -	-	-	-	-	-	-	-	-	-	•	-	•
ean Value	419 -			-		-	-	··-	•	-	•	•	-	-	-	<u> -</u>	-	-	-	-	-	-	-	-	-	•	•	-	-	-
tandard Deviation				-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ccepted Value	405 -		• •	-	 	: .	-	-	-		-	•	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
ICC GEOCHEM STD 4	- 0.7 28	8 32 21	13	42	9 1.0	<5	29	<5 2	2.79	585	<10	58	76	7	<20	<20	3	0.78	1.17	1.33	0.06	0.14	38	3	<2	7	<1	< 5 •	<10 <.0	01
umber of Analyses	- 1	1 1	1 1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ean Value	- 0.7 28	8 32 21	13	42	9 1.0	3	29	32	2.79	585	5	58	76	7	10	10	3 (0.78	1.17	1.33	0,06	0.14	38	3	1	7	0.5	3	5.00)5
tandard Deviation				•			-	· -	-	-	-		-	-	-	-	-	-	-	-	-	•	-	*	•	•	•	-	-	•
ccepted Value	- 1.6 29	0 33 25	54	42	9 0.8	1	30	1 2	2.60	600	0.1	55	104	9	5	1	4	0.77	1.34	1.43	0.04	0.14	39	4	2	7	1	12	1 0.0	11
C GEOCHEM STD 5	9 -			-		-	-	-	-	-	-	-	-	-	-		-	-	•			•	•	•	-	•		-	-	-
umber of Analyses	1 -			-		-	-	-	-	•	-	•	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ean Value	9 -			•		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
andard Deviation			• •	-		-	-	-	-	-	-	-	-	4	-	-	•	-	•	-	-	-	-	•	-	-	•	•	-	-
cepted Value	80.79	0 11 8	0 2	40	18 0.1	1	8	14	4.74	720	0.2	200	54	133	4	2	5 (3.09	1.83	1.08	0.06	0.32	39	9	4	-	1	18	1	-
ALYTICAL BLANK	- <.2 <	1 <2 <	1 <1	1	<1 <.2	<5	<5	<5 ·	<.01	<1	<10	<1	1	<1	<20	<20	<1	<.01	<0.01	<.01	<.01	۰.01	<1	<1	<2	<1	<1	< 5 ·	<10 <.()1
umber of Analyses	- 1	1 1	1 1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ean Value	- 0.1 0.	5 10.	5 0.5	1	0.5 0.1	3	3	3	.005	0.5	5	0.5	1	0.5	10	10	0.5	.005	0.005	.005	.005	.005	Q.5	0.5	1	0.5	0.5	3	5.00	05 0
tandard Deviation				-		•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	· -		-	-	-	-	-	-	-	-
accepted Value	1 0.2	12	1 1	1	1 0.1	2	5	5 (0.05	1	.01	.01	1	1	.01	.01	.01	<.01	<.0001	<.01	<.01	<.01	.01	.01	.01	.01	.01	.01	.01 <.0	01.

ITS Intertek Testing Services Bondar Clegg

Gec_nemical Lab Report

	T POINT MINERA		t 1 on							DATE	REC	EIVE	D: 1	4-JUI	97	DAT	E PRI	NTED:	12-1	NOV-9	7	PAGE	proja Of 3	 MT :	SIDNE	ΞY	
SAMPLE NUMBER	ELEMENT Wet A UNITS PP	-														Mg PCT											
11734 Duplicate			 _	 -		 			-			1.0				>10.00 >10.00											
11741 Prep Duplica			_	 -	 					1. C			1.1			>10.00 >10.00											

Ι		Interte Bondar (sting Se	rvices				Lab Report	
REPORT: V97-	01665.0 (COMPLET	E)				RE	FERENCE: MT SIDNEY WILLIAMS			
·	T POINT MINERALS		· ··				BMITTED BY: U. MOWAT			
PROJECT: MT	SIDNEY						RECEIVED: 14-JUL-97 DATE			
DATE		NUMBER OF			••••••	SAMPLE TYPES	NLMBER SIZE FRACTI	ons number	SAMPLE PREPARATIONS	NUMBER
APPROVED	ELEMENT	ANALYSES	DETECTION	EXTRACTION	METHOD	R ROCK		19	CRUSH/SPLIT & PULV.	19
970721 1 We	et Au Partial Ext.	Gold 19	5 PPB	ASH/AQ REG/D18K	ATOMIC ABSORPTION	R ROOK	17 2 130		OVERWEIGHT/KG	268
970721 Z Ag		19	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP, PLASMA					
970721 3 Cu		19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ					
970721 4 Pb	b Lead	19	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REPORT COPIES TO:	MR. PETER BRADSHAW	INVOICE	TO: MR. PETER BRADSHAW	
970721 5 Zr	n Zinc	19	1 PPM	HCL:HNO3 (3:1)	1NDUC. COUP. PLASMÀ					
970721 6 Mc	o Molybdenum	19	1 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA		****			
							port must not be reproduced		•	5
970721 7 Ni		19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		is specific to those sample			
970721 8 Co		19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		ble only to the samples as	received expressed o	n a dry basis unless	
970721 9 Cc		19	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		se indicated			
970721 10 Bi		19	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	******	*****	*****	******	***
970721 11 As		19	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
970721 12 St	o Antimony	19	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
			0.01.007	1101 -11107 -17-15						
970721 13 Fe		19 19	0.01 PCT	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA					
970721 14 Mr 970721 15 Te		19	1 PPM 10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA					
970721 15 16 970721 16 Ba		19	10 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA					
970721 18 Ba		19	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA					
. 970721 18 V		19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
: 7707E1 10 V		17		100111103 (311)						
970721 19 Sr	n Tin	19	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					:
970721 20 W		19	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
970721 21 La		19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
970721 22 A		19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
970721 23 Mg	g Magnesium	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
970721 24 C	a Calcium	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					:
970721 25 N		19		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
970721 26 K		19		HCL:HN03 (3:1)	INDUC. COUP. PLASMA					
970721 27 s		19		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
970721 28 Y		19		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
. 970721 29 G		19		HCL:HN03 (3:1)	INDUC. COUP. PLASMA					:
970721 30 L	i Lithium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
				101 1007 17 11						
970721 31 N		19		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
970721 32 S		19		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
970721 33 T.		19		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					

Gec nemical

INDUC. COUP. PLASMA

INDUC. COUP. PLASMA

Titanium

Zirconium

19

19

0.01 PCT HCL:HN03 (3:1)

1 PPM HCL:HNO3 (3:1)

970721 34 Ti

970721 35 Zr

	Lal	port
REPORT: V	7-01665.0 (COMPLETE) DATE RECEIVED: 14-JUL-97 DATE PRINTED: 12-NOV-97 PAGE 1 OF 3	
SAMPLE	ELEMENTWet Au Ag Cu Po Zn Mo. Ni Co Cd Bi As So. Fe. Mn. Te Ba. Cn. V. Sn. W. La Al. Mg. Ca. Na. K. Sn. Y. Ga Li No. Sc. fa. Ti	Zr
NUMBER	UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM	PPM
142629	<5 <.2 5 18 38 2 1542 99 <.2 <5 <5 <5 6.06 1043 <10 11 971 17 <20 <20 <1 0.21 >10.00 0.09 <.01 <.01 <1 <1 <2 <1 8 7 <10 <.01	<1
142630	<5 0.2 3 6 63 <1 1683 84 <.2 <5 <5 <5 5.23 876 <10 5 574 9 <20 <20 <1 0.14 >10.00 0.10 <.01 <.01 <1 <1 <2 <1 8 6 <10 <.01	
142631	<5 <.2 13 4 27 <1 1697 76 <.2 <5 <5 <5 5.26 683 <10 2 305 7 <20 <20 <1 0.14 >10.00 0.04 <.01 <.01 <1 <1 <2 <1 8 <5 <10 <.01	<1
142632	<5 <.2 23 3 23 <1 1772 78 <.2 <5 <5 <5 5.24 731 <10 3 657 17 <20 <20 <1 0.31 >10.00 0.07 <.01 <.01 <1 <1 <2 1 7 8 <10 <.01	<1
142633	<5 <.2 15 3 30 <1 1694 76 <.2 <5 <5 <5 4.84 759 <10 3 824 15 <20 <20 <1 0.22 >10.00 0.05 <.01 <.01 <1 <1 <2 <1 7 8 <10 <.01	
142634	<5 <.2 11 3 26 <1 1677 78 <.2 <5 <5 <5 5.44 742 <10 3 687 17 <20 <20 <1 0.30 >10.00 0.09 <.01 <.01 <1 <1 <2 <1 8 8 <10 <.01	<1
142635	<5 <.2 12 <2 27 <1 1750 77 <.2 <5 <5 <5 5.19 747 <10 3 833 17 <20 <20 <1 0.32 >10.00 0.09 <.01 <.01 <1 <1 <2 <1 8 7 <10 <.01	
142636	<5 <.2 7 2 30 <1 1735 78 <.2 <5 <5 5.10 743 <10 2 796 14 <20 <20 <1 0.32 >10.00 0.10 <.01 <1 <1 <1 <2 <1 8 6 <10 <.01	

 142641
 <5 <.2 15</td>
 3 27
 <1 1707</td>
 80 <.2 <5</td>
 <5</td>
 <5</td>
 5.30
 761
 <10</td>
 1 1211
 23
 <20</td>
 <1</td>
 0.46
 >10.00
 0.08
 <.01</td>
 <1</td>
 <1</td>
 <2</td>
 <1</td>
 7
 8
 <10</td>
 <.01</td>
 <1</td>

 142642
 <5</td>
 <2</td>
 24
 <1</td>
 1606
 61
 <.2</td>
 <5</td>
 <5</td>
 5.24
 464
 <10</td>
 <1</td>
 1137
 28
 <20</td>
 <1</td>
 0.64
 >10.00
 0.02
 <.01</td>
 <1</td>
 <1</td>
 <2</td>
 <1</td>
 9
 <10</td>
 <.01</td>
 <1</td>

 142642
 <5</td>
 <2</td>
 24
 <1</td>
 1606
 61
 <.2</td>
 <5</td>
 <5</td>
 5.24
 464
 <10</td>
 <1</td>
 1137
 28
 <20</td>
 <20</td>
 <1</td>
 <0.01</td>
 <1</td>
 <1</td>
 <2</td>
 <1</td>
 9
 <10</td>
 <0.01</td>
 <1</td>
 <1</td>
 <2</td>
 <1</td>
 9
 <10</td>
 <0</td>
 <1</td>
 <1</td>
 <2</td>
 <1</td>
 6
 <10</td>
 <0</td>
 <1</td>
 <1</td>
 <2</td>
 <1</td>
 6
 <10</td>
 <0</td>

 142644
 <5 <.2</td>
 4 <2</td>
 20
 <1</td>
 1528
 63 <.2</td>
 <5</td>
 6
 <5</td>
 5.01
 554 <10</td>
 2
 1126
 26
 <20</td>
 <1</td>
 0.47
 >10.00
 0.68
 <.01</td>
 <.01</td>
 3
 <1</td>
 <2</td>
 <1</td>
 6
 8
 <10</td>
 <.01</td>
 <1</td>

 142645
 <5</td>
 <2</td>
 <1</td>
 1606
 69
 <.2</td>
 <5</td>
 17
 <5</td>
 4.96
 369
 <10</td>
 4
 1223
 26
 <20</td>
 <1</td>
 <11</td>
 <1</td>
 <2</td>
 <1</td>
 7
 8
 <10</td>
 <.01</td>
 <1</td>

 142646
 5
 <.2</td>
 11
 <2</td>
 26
 <1</td>
 1606
 69
 <.2</td>
 <5</td>
 <5</td>

ITS	S Intertek Bondar Cle	x Testing Serv	ices		Gec nemical Lab Report
CLIENT: FIRST POINT REPORT: V97-01665.0		- 	DATE RECEIVED: 14-JUL-97	Lab Report PROJECT: MT SIDNEY RECEIVED: 14-JUL-97 DATE PRINTED: 12-NOV-97 PAGE 2 OF 3 Cr V Sn W La Al MP PPM PPM PPM PPT Mg Ca Na K Sr Y Ga Li Nb Sc Ta Ti Zr PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PPM PPM PP	
STANDARD ELEMENT Name units	Wet Au Ag Cu Pb Zn Mo S PPB PPM PPM PPM PPM PPM		Mn Te Ba Cr V Sn W La Al PPM PPM PPM PPM PPM PPM PCT		
Gannet Standard Number of Analyses Mean Value Standard Deviation Accepted Value	375 -				
BCC GEOCHEM STD 5 Number of Analyses Mean Value Standard Deviation Accepted Value	- 0.5 83 8 68 - 1 1 1 1 - 0.5 83 8 68 	1 1 1 1 1 1 1 1 1 1 36 19 0.1 3 9 3 4.73 d	1 1 1 1 1 1 1 1 1 665 5 175 46 112 10 10 6 3.10	1 1 1 1 1 1 1.77 0.97 0.05 0.24 36 7	1 1 1 1 1 1 1 3 25 4 11 5 0.19 10
ANALYTICAL BLANK Number of Analyses Mean Value Standard Deviation Accepted Value	- <.2 <1 <2 <1 < - 1 1 1 1 - 0.1 0.5 1 0.5 0.5 1 0.2 1 2 1	<pre><1 <1 <1 <.2 <5 <5 <5 <.01 1 1 1 1 1 1 1 1 5 0.5 0.5 0.1 3 3 3.005 (</pre>	1 1 1 1 1 1 1 1 1 1 0.5 5 0.5 0.5 0.5 10 10 0.5 .005	1 1 1 1 1 1 1 0.005 .005 .005 .005 0.5 0.5 	1 1 1 1 1 1 1 1 0.5 0.5 3 5 .005 0.5

	TS Intertek Testing Services Bondar Clegg		Lab Report
	CLIENT: FIRST POINT MINERALS CORPORATION PROJECT: MT SIDNEY REPORT: V97-01665.0 (COMPLETE) DATE RECEIVED: 14-JUL-97 DATE PRINTED: 12-NOV-97 PAGE 3 OF 3 SAMPLE ELEMENT Wet Au Ag Cu Pb Zn Mo Ni Co Cd Bi As Sb Fe Mn Te Bb Cr V Sn W La Al Mg Ca Na K Sr Y Ga Li Nb Sc Ta Ti Zr NM Sc Ta Ti Zr NUMBER UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM		
SAMPLE NUMBER	IENT: FIRST POINT MINERALS CORPORATION PROJECT: MT SIDNEY PROTT: V97-01665.0 (COMPLETE) DATE RECEIVED: 14-JUL-97 DATE PRINTED: 12-NOV-97 PAGE 3 OF 3 MPLE ELEMENT Wet Au Ag Cu Pb Zn Mo Ni Co Cd Bi As Sb Fe Mn Te Ba Cr V Sn W La Al Mg Ca Na K Sr Y Ga Li Nb Sc Ta Ti Zr Mg Ca Na K Sr Y Ga Li Nb Sc Ta Ti Zr MBER UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM		
142634 Duplicate			

Co haminal

 142639
 <5 <.2</td>
 11
 <2</td>
 28
 <1</td>
 1667
 77 <.2</td>
 <5</td>
 <5</td>
 5.11
 729
 <10</td>
 1
 884
 20
 <20</td>
 <20</td>
 <1</td>
 0.39
 >10.00
 0.13
 <.01</td>
 <1</td>
 <2</td>
 <1</td>
 8
 7
 <10</td>
 <1</td>
 884
 20
 <20</td>
 <20</td>
 <1</td>
 0.39
 >10.00
 0.13
 <.01</td>
 <1</td>
 <2</td>
 <1</td>
 8
 7
 <10</td>
 <1</td>
 866
 19
 <20</td>
 <20</td>
 <1</td>
 0.38
 >10.00
 0.12
 <.01</td>
 <1</td>
 <2</td>
 <1</td>
 7
 <10</td>
 <.01</td>
 <1</td>
 866
 19
 <20</td>
 <20</td>
 <1</td>
 0.38
 >10.00
 0.12
 <.01</td>
 <1</td>
 <2</td>
 <1</td>
 7
 <10</td>
 <.01</td>
 <1</td>
 <1</td>
 <2</td>
 <1</td>
 7
 <10</td>
 <.01</td>
 <1</td>
 <1</td>
 <1</td>
 <2</td>
 <1</td>
 7
 <10</td>
 <.01</td>
 <1</td>
 <1</td>

.

		terte ndar (sting Se	rvices					Geo nemi Lab Report	ical
REPORT: V97-0'	1667.0 (COMPLETE)						ERENCE: MT SI				
· · · · · · · · · · · · · · · · · · ·	······································		•••••	•••••••••••••••••••••••••••••••••••••••		•••••••	MITTED BY: U.				
	POINT MINERALS CORPO					DATE	ECELVED: 14-J	UL-97 DATE PRINTE	D: 12-NOV-97		
PROJECT: MT SI											
	.		•	*******							
DATE		NUMBER OF	LOWER DETECTION	EXTRACTION	METHOD	SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NLIMBER	SAMPLE PREPARATIONS	NUMBER
APPROVED I		MACIOLO	DETECTION	Creation for		R ROCK	22	2 -150	22	CRUSH/SPLIT & PULV.	22
970725 1 Wet	Au Partial Ext. Gol	d 22	5 PPB	ASH/AQ REG/DIBK	ATOMIC ABSORPTION					OVERWEIGHT/KG	121
70725 2 Ag	Silver	22	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970725 3 Cu	Copper	22	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA				10000		
970725 4 Pb	Lead	22	2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA		MR. PETER BRA	DSHAW	INVUICE	TD: MR. PETER BRADSHA	W
770725 5 Zn	Zinc	22	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			**************	ى يەرىپىدى بەر	*****	****
970725 6 Mo	Mol ybdenum	22	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
										data presented in th	
70725 7 Ni	Nickel	22	1 PPM	HCL: HNO3 (3:1)	INDUC. COUP. PLASMA	report	is specific to	tnose samptes roem	d expressed o	Sample Number" and is n a dry basis unless	
970725 8 Co	Cobalt	22	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			e samptes as receive	a expressed o	in a dry basis diffess	
70725 9 Cd	Cadmium	22	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		se indicated	******	*****	*****	****
70725 10 Bi	Bismuth	22	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970725 11 As	Arsenic	22	5 PPM	HCL:HND3 (3:1)	INDUC. COUP. PLASMA						
70725 12 Sb	Antimony	22	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
		22	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70725 13 Fe	Iron	22 Z2	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
70725 14 Mn	Manganesé	22	10 PPM	HCL;HNO3 (3:1)	INDUC. COUP. PLASMA						
70725 15 Te	Tellurium Parium	22	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
770725 16 Ba	Barium Chromium	22	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70725 17 Cr 70725 18 V	Vanadium	22	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
10123 10 4	V CHICKU S CHI	22	1 1 1 1		THESE OVER INTER						
70725 19 Sn	Tin	22	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70725 19 3h	Tungsten	22	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70725 21 La	Lanthanum	22		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70725 22 AL	Aluminum	22		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
770725 23 Mg	Magnesium	22	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970725 24 Ca	Calcium	22		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
770725 25 Na	Sodium	22	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70725 26 K	Potassium	22	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
70725 27 Sr	Strontium	22	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970725 28 Y	Yttrium	22		HCL:HNO3 (3:1)	INDUC. COUP. PLASM						
770725 29 Ga	Gallium	22		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970725 30 Li	Lithium	22		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	l					
970725 31 Nb	Niobium	22	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970725 32 Sc		22		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	l					
770725 33 Ta		22		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	1					
970725 34 Ti		22		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	١					
970725 35 Zr	Zirconium	22		HCL:HNO3 (3:1)	INDUC. COUP. PLASM	l III					
					:						

:

ĺ					k To Clegg		ng	3	Serv	vice	S																La	ab	nemica ort
	RST POINT MINERALS COR 07-01667.0 (COMPLETE)		TION								DI	ATE RI	ECEIVE	D: 14	JUL-97	Di	ATE P	RINT	ED:	12-NO	v-97	PA	GE			T: MT	SIDN	IEY	· ·
SAMPLE	ELEMENT Wet Au Ag	Cu				Co Cd PPM PPM			Sb Fe PPM PCT	Mn Te PPM PPM		Cr PPM I	V S PPM PP				Mg PCT	Ca PCT	Na PCT		Sr PPM	Y PPM				Sc PPM PI			
142648	<5 <.2	16	<2	29	1 2145	85 <.2	<5	<5	<5 4.85	750 <10	1	1361	25 <2	0 <20	<1 0.4	;7 >10	.00 0). 11	<.01	<.01	<1	<1	<2	<1	15	8 <	10 <.	.01 🗸	:1
142649	<5 <.2	17	<2	28	2 1781	84 <.2	<5	<5	<5 4.79	763 <10	2	1371	23 <2	0 <20	<1 0.4	i5 >10	.00 0).14	<.01	<.01	1	<1	<2	<1	16	8 <	10 <.	01 <	:1
142650	<5 <.2	9	<2	24					<5 5.16																	7 <	10 <.	01 <	:1
142651	<5 <.2	14	<2	28	2 1812	93 <.2	<5	<5	<5 4.62	903 <10	3	1201	19 <2	0 <20	<1 0.3	37 >10	.00 0).05	<.01	<.01	<1	<1	<2	<1	15	8 <	10 <.	.01 <	:1
142652	9 <.2	10	<2	34	2 1740	86 <.2	<5	<5	<5 5.20	884 <10	5	1295	23 <2	0 <20	<1 0.4	41 >10	.00 0).05	<.01	<.01	<1	<1	<2	<1	17	8 <	10 <.	01 <	:1
142653	<5 <.2	6	<2	33	2 1766	96 <.2	<5	<5	<5 5.68	95 <u>3</u> <10	1	1264	20 <2	0 <20	<1 0.3	35 >10	.00 0	0.09	<.01	<.01	<1	<1	<2	<1	17	7 <	10 <.	01 -	1
142654	<5 <.2	5	<2	26	2 1701	80 <.2	<5	<5	<5 5.02	745 <10	<1	1341	26 <2	0 <20	<1 0.5	58 >10	.00 0	0.02	<.01	<.01	<1	<1	<2	<1	16	9 <	10 <.	.01 -	:1
142655	<5 <.2	7	<2	29	2 1716	80 <.2	<5	<5	<5 5.10	853 <10	1	1361	27 <2	0 <20	<1 0.	52 >10	.00 0	0.08	<.01	<.01	<1	<1	<2	<1	15	8 <	10 <.	01 •	:1
142656	9 <.2	16		22					<5 5.01				1														10 <.	01 •	:1
142657	<5 <.2	6	<2	25	2 1673	77 <.2	<5	<5	<5 5.03	586 <10	<1	1313	32 <2	0 <20	<1 0.4	54 >10	.00 <	s.01	<.01	<.01	<1	<1	<2	<1	15	9 <	:10 <,	01 •	1
142658	<5 <.2	42	<2	47	2 1736	71 <.2	<5	<5	<5 4.54	529.<10	1	1118	25 <2	0 <20	<1 0.4	47 >10	.00 0).03	<.01	<.01	<1	<1	<2	<1	13	8 <	10 <.	01 -	:1
142659	<5 <.2	6	<2	21					<5 4.67																				
142660	<5 <.2	16	<2	30					<5 4.71																				
142661	<5 <.2	13	<2	21	2 1681	78 <.2	<5	<5	<5 4.74	677 <10	<1	212	6 <2	0 <20	<1 0.1	11 >10	.00 0	0.03	<.01	<.01	<1	<1	<2	<1	16	<5 <	10 <.	.01 <	:1
142662	6 <.2	10	<2	23	<1 1026	47 <.2	<5	<5	9 4.50	492 <10	2	1137	28 <2	0 <20	<1 0.	54 >10	.00 0).14	<.01	<.01	<1	<1	<2	2	8	6 <	:10 <.	01	1
142663	<5 <.2	12	~2	14	1 1558	76 <.2	<5	19	<5 5.04	570 <10	4	1287	28 <2	0 <20	<1 0.	56 >10	.00 0	3.04	<.01	<.01	1	<1	<2	3	13	7 <	10 <.	.01 •	:1
142664	<5 <.2	10	<2	20	1453	76 <.2	<5	10	<5 5.24	743 <10	3	1394	34 <2	0 <20	<1 0.4	63 >10	. 0 0 C	0,39	<.01	<.01	1	<1	<2	2	14	10 <	10 <,	01 -	:1
142665	<5 <.2	36	<2	17	2 1480	73 <.2	<5	<5	<5 5.51	785 <10	<1	1285	3 0, <2	:0 <20	<1 0.	53 >10	.00 0	0.03	<.01	<.01	1	<1	<2	<1	13	9 <	10 <.	.01 •	:1
142666	. <5 <.2	31	<2	43	1 1480	72 <.2	<5	<5	<5 5.14	723 <10	7	1366	30 <2	20 <20	<1 0.	54 >10	.00 0	0.61	<.01	<.01	1	<1	<2	<1	15	9 <	10 <.	.01 ·	:1
142667	<5 <.2	8	<2	13	1 1374	63 <.2	<5	33	<5 4.39	429 <10	4	619	17 <2	20 <20	<1 D.	25 >10	.00 (0.04	<.01	<.01	2	<1	<2	3	13	6 <	:10 <.	.01 ·	:1
142668	<5 <.2	53	<2	38	<1 179	21 <.2	<5	7	<5 2.90	696 <10	188	178	39 <2	20 <20	31.	65 Z	.34 1	1.06	0.02	2 0.42	17	7	<2	14	6	<5 <	10 0.	.36	6
142 669	<5 <.2	80	<2	39	<1 67	21 <.2	<5	<5	<5 3.78	608 <10	42	142	60 <7	20 <20	<1 2.	28 Z	.01 (0.87	0.05	0.06	7	5	<2	15	3	6 <	10 0,	.26	3
· ·																													

•

ITS Intertek Testing Services Bondar Clegg

Gec_nemical Lab Report

LIENT: FJRS					RAT	ION				•		• •							ſ	ATE					97	DATE		NTED	• 1	2-NM	/-97	Þ¢	ICE	PR 2 OF		T: M	TS	IDNEY	
EPORT: V97-0	J1667.0 (: E	2			••••••	•••••	••••							····					~~~~						_ / 141							- 0,					•••••
STANDARD NAME	ELEMENT UNITS										Šo (M PF					Fe PCT				Cr PPM					AL PCT	M <u>s</u> PCT	-		Na CT		Sr PPM							T i PCT	
																	•		·																				
BCC GEOCHEM S	STD 6	-	0.5	5 13	51	14	129	- 3	12	7 2	χ ο .	.3	<5 1	36	<5 7	.14	1348	<10	5	175	45	<20	<20	3	1.85	2.7	1 3.6	5 0.	01	0.04	79	3	<2	20	4	8	<10	<.01	7
Number of Ana	alyses	-	,	1	1	1	1	1		1	1	1.	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1
Mean Value		•	0.9	5 13	51	14	129	3	12	7 2	19 0.	.3	31	36	37	.14	1348	5	5	175	45	10	10	3	1.85	2.7	1 3.6	50.	01	0.04	79	3	1	20	4	8	5	.005	7
Standard Dev	iation	-		-	-	-	•	. .		-	-	-		-	. •.	-	•	-	7	-	-	-	-	-	-	-	-	-	•	•	•	•	-	-	-	-	-	-	-
Accepted Valu	ue	-	0.2	2 14	10	18	140	4	13	53	\$5 0.	.2	11	45	16	.50	1450	-	6	170	50	5	12	-	1.80	2.70	3 4.0	00.	01	0.04	70	3	-	24	2	6	1	.003	5
Gannet Stand	ard	195		-	-		-	-		-	-		-	-	-	•	-	-	-	-		-	-	-	-		-	-	-	-	-	•	•	-	-	-	-	-	-
Number of Aria	alyses	1		•	-	-	-	-		-	•	•	•	-	-	-	-	-	-	-	-	-	-	•	-		-	•	-	-	-	-	-	-	-	-	-	•	-
Mean Value		195		-	-	-	-	-		-	-	-	-	-	-	-	-	•	-	•	-	-	-	-	-		-	-	-	-	-	-	-	-	•	-	-	-	-
Standard Dev	iation	-		•	•	•	-	-		-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-		-	•	•	-	-	-	•	-	-	-	-	-	-
Accepted Val	ue	202		-	-	-	-	-		•	-	-	-	-	-	-	-	-	. •	-	-	•	•	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
ANALYTICAL B	LANK		<.	z .	<1	<2	<1	<1	<	:1 ·	<1 <	.z	<5	<5	<5 <	.01	<1	<10	<1	<1	<1	<20	<20	<1	<.01	<0.0	1 <.0)1 <.	01	<.01	<1	<1	<2	<1	<1	<5	<10	<.01	<1
Number of An	alyses	-		1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1
Mean Value		•	0.	1 Q	.5	1	Ó.5	0.5	٥.	5 0	.5 0	.1	3	3	3.	005	0,5	5	0.5	0.5	0,5	10	10	0.5	.005	0.00	5.00)5.0	005	.005	0.5	0.5	1	Q.5	0,5	3	5	.005	0.5
Standard Dev	iation	-		-	-	-	-	-		-	-	-	-	-	-	-	•	•	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Accepted Val	. 16	1	0.	2	1	2	1	1		1	10	.1	z	5	5.0	.05	1	្មារ	.01	1	1	01	01	01	< 01	<.000	1 < 0)1 <	01	<.01	01	.01	01	01	01	01	01	< 01	_01

ITS	Intertek Testing Services La Bondar Clegg	ib port
CLIENT: FIRST POINT MI REPORT: V97-01667.0 (¥
SAMPLE ELEMENT W NUMBER UNITS	WELAU AG LU PD ZH MO NY CO CU BY HE GD TC MILLE AU CU V AN W LU HY HE DY HE DAT DOL	'i Zr TPPM
142655 Duplicate	<pre><5 <.2 7 <2 29 2 1716 80 <.2 <5 <5 <5 5.10 853 <10 1 1361 27 <20 <20 <1 0.52 >10.00 0.08 <.01 <.01 <1 <1 <2 <1 15 8 <10 <.0 6 <.2 6 <2 28 1 1619 75 <.2 <5 <5 <5 4.85 810 <10 1 1310 26 <20 <20 <1 0.51 >10.00 0.08 <.01 <.01 <1 <1 <2 <1 14 8 <10 <.0</pre>	
142662 Prep Duplicate	6 <.2 10 <2 23 <1 1026 47 <.2 <5 <5 9 4.50 492 <10 2 1137 28 <20 <1 0.54 >10.00 0.14 <.01 <.01 <1 <1 <2 2 8 6 <10 <.0 <5 <.2 <1 970 47 <.2 <5 <5 9 4.17 466 <10 4 1073 28 <20 <20 <1 0.51 >10.00 0.13 <.01 <.01 <1 <1 <2 2 7 6 <10 <.0	

Co comical

		nterte Sondar (sting Se	rvices					Lab Report	
	7-01671.0 (COMPLETE						FERENCE: MT SI			·····	
	RST POINT MINERALS CO	• • • • • • • • • • • • •				SU	BMITTED BY: U.	Mowat			•• •••
ROJECT: M					· · · · · · · · · · · · · · · · · · ·	DATE	RECEIVED: 14-J	UL-97 DATE PRINTE	D: 13-NOV-97		
ATE		NUMBER OF	LOWER					SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS	
PPROVED	ELEMENT	ANALYSES	DETECTION	EXTRACTION	METHOD	R ROCK	50	2 -150	50	CRUSH/SPLIT & PULV.	5
70727 1	Wet Au Partial Ext. G	old 50	5 PPB	ASH/AQ REG/DIBK	ATOMIC ABSORPTION					OVERWEIGHT/KG	23
70727 2	Ag Silver	50	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70727 3		50	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA			DOMAN		TO: MR. PETER BRADSHAW	
70727 4		50 50	2 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA	REPORT COPIES TO:	MR. PEIEK OKA	NAUW	INVOICE	TO: NA: FETER DAMAGNAM	
70727 5 70727 6		50	1 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA	******	******	****	******	********	**
JULL U	ng notypacitali									data presented in this	
70727 7	Ni Nickel	50	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	report	is specific to	those samples ident	ified under "	Sample Number" and is	
70727 8		50	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			e samples as receive	ed expressed o	n a dry basis unless	
70727 9		50	0.2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	otherwi	se indicated	******	*****	****	**
70727 10		50 50	5 PPM 5 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMÀ						
70727 11		50	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
	зы кистныну		2 / 111	1021103 (311)							
70727 13	Fe Iron	50	0.01 PCT	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA						
70727 14		50	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70727 15		50	10 PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA						
70727 16		50	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70727 17		50 50	1 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA						
70727 18	V Vanadium	50	1 1 1 1	HERETHIND (DITY	INDOC. GOUL. LEADIN						
70727 19	Sn Tin	50	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70727 20		50		HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
70727 21	La Lanthanum	50		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70727 22		50		HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
70727 23		50	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70727 24	Ca Calcium	50	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70727 25	Na Sodium	50	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70727 26		50		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70727 27		50	-	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
70727 28		50		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70727 29		50		HCL:KN03 (3:1)	INDUC, COUP. PLASMA						
70727 30	Li Lithium	50	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70727 24		60	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
70727 31 70727 32		50 50		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70727 33		50		HCL:HNO3 (3:1)	INDUC, COUP. PLASMA						
70727 34		50		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970727 35		50		HCL:HN03 (3:1)	INDUC, COUP, PLASMA						
-					:						

Gecinemical

Geu inemical Intertek Testing Services Lab Report Bondar Clegg PROJECT: MT SIDNEY CLIENT: FIRST POINT MINERALS CORPORATION DATE PRINTED: 13-NOV-97 PAGE 1 OF 4 DATE RECEIVED: 14-JUL-97 REPORT: V97-01671.0 (COMPLETE) K Sr Y Ga Li Nb Sc Ta Ti Zr ELEMENT Wet Au Ag Cu Pb Zn Mo Ni Co Cd Bi As Sb Fe Mn Te Ba Cr Са Na V Sn W La Al Mg SAMPLE PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM PCT PCT PCT NUMBER UNITS

<5 <.2 11 <2 31 <1 1406 73 <.2 <5 <5 9 4.51 600 <10 <1 1318 30 <20 <20 <1 0.53 >10.00 0.08 <.01 <.01 <1 <1 <2</p> 1 - 8 9 <10 <.01 2 11765 <5 <.2 25 <2 32 <1 1271 63 <.2 <5 <5 10 4.22 682 <10 <1 1345 41 <20 <20 <1 0.79 >10.00 0.28 <.01 <.01 <1 <1 <2</p> 4 <1 7 <10 <.01 -1 11794 <5 <.2 3 <2 34 <1 1380 68 <.2 <5 <5 10 4.33 648 <10 <1 1188 23 <20 <20 <1 0.55 >10.00 0.08 <.01 <.01 <1 <1 <2</p> 3 <1 6 <10 <.01 - 1 11795 <5 <.2 7 <2 33 <1 1425 74 <.2 <5 <5 9 4.73 757 <10 <1 1255 23 <20 <20 <1 0.44 >10.00 0.10 <.01 <.01 <1 <1 <2 2 <1 6 <10 <.01 1 11796 <2 30 <1 1376 71 <.2 <5 <5 9 4.75 691 <10 <1 1336 29 <20 <1 0.46 >10.00 0.14 <.01 <.01 <1 <1 <2</p> 3 <1 <5 <.2 7 8 <10 <.01 1 11797

<2 32 <1 1359 69 <.2 <5 <5 8 4.29 748 <10 <1 1169 21 <20 <20 <1 0.47 >10.00 0.12 <.01 <.01 <1 <1 <2</p> 3 <1 6 <10 <.01 - 1 11798 6 <.2 <1 <2 24 <1 1338 60 <.2 <5 <5 8 3.67 521 <10 <1 1107 20 <20 <20 <1 0.43 >10.00 0.10 <.01 <.01 <1 <1 <2</p> 2 <1 6 <10 <.01 1 11799 <5 <.2 5 <2 27 <1 1292 60 <.2 <5 <5 10 4.59 440 <10 <1 1240 28 <20 <1 0.69 >10.00 0.03 <.01 <.01 <1 <1 <2</p> 2 <1 7 <10 <.01 1 11800 6 <.2 14 9 <.2 9 <2 33 <1 1459 72 <.2 <5 <5 9 4.51 750 <10 <1 1251 22 <20 <20 <1 0.51 >10.00 0.09 <.01 <.01 <1 <1 <2 3 <1 6 <10 <.01 -1 11801 <5 <,2 8 <2 34 <1 1577 82 <,2 <5 <5 10 5.32 833 <10 <1 1211 19 <20 <20 <1 0.44 >10.00 0.03 <.01 <.01 <1 <1 <2 3 <1</p> 7 <10 <.01 1 11802

9 <2 31 <1 1429 67 <.2 <5 <5 9 4.32 594 <10 <1 1228 25 <20 <20 <1 0.50 >10.00 0.04 <.01 <1 <1 <1 <2 2 <1 7 <10 <.01 1 11803 6 <.2 <5 <.2 5 <2 32 <1 1613 78 <.2 <5 <5 <5 4.88 673 <10 <1 547 4 <20 <20 <1 0.03 >10.00 <.01 <.01 <.01 <1 <1 <2</p> 2 <1 <5 <10 <.01 - 1 11804 9 <2 31 <1 1460 71 <.2 <5 <5 9 4.47 642 <10 <1 1092 26 <20 <20 <1 0.62 >10.00 0.12 <.01 <.01 <1 <1 <2 2 <1 6 <10 <.01 1 11805 6 <.2 6 < 2 14 <2 33 <1 1557 76 < 2 <5 <5 7 4.83 728 <10 <1 1021 23 <20 <20 <1 0.57 >10.00 0.10 <.01 <.01 <1 <1 <2 2 <1 6 <10 <.01 11806 45 < 2 13 <2 14 <1 816 48 < 2 <5 131 118 3.46 618 <10 <1 561 9 <20 <20 <1 0.23 >10.00 0.05 < 01 < 01 <1 <1 <2 3 <1 <5 <10 < 01 <1 <1 11807

6 < 2 10 <2 31 <1 1509 73 < 2 <5 <5 10 4.74 684 <10 <1 1172 23 <20 <20 <1 0.51 >10.00 0.11 <.01 <.01 <1 <2 2 <1 6 <10 <.01 1 11808 8 10 4.74 691 <10 <1 1169 25 <20 <20 <1 0.52 >10.00 0.05 <.01 <.01 <1 <1 <2 2 <1 7 <10 <.01 11809 15 <.2 8 <2 26 <1 1347 67 <.2 <5 - 1 <5 <.2 5 <2 31 <1 1359 71 <.2 <5 <5 9 4.92 811 <10 <1 1233 27 <20 <20 <1 0.63 >10.00 0.06 <.01 <.01 <1 <1 <2 2 <1 7 <10 <.01 1 11810 6 35 <1 1578 78 <.2 <5 <5 5.25 651 <10 <1 100 <1 <20 <20 <1 <.01 >10.00 <.01 <.01 <.01 <1 <1 <1 <2 1 <1 <5 <10 <.01 9 < .2 2 - 1 11811 6 < . 2 9 <2 25 <1 1290 63 < . 2 <5 15 7 4.50 496 <10 <1 868 19 <20 <10 .34 >10.00 0.24 <.01 <.01 <1 <1 <2 2 <1 6 <10 <.01 1 142598

6 <. 2 2 <2 15 <1 1254 57 <. 2 <5 114 8 3.82 553 <10 7 448 12 <20 <20 <1 0.11 >10.00 0.05 <. 01 0.03 <1 <1 <2 3 <1 <5 <10 <. 01 1 142599 9 < 2 7 <2 17 <1 1079 55 < 2 <5 23 7 3.83 608 <10 8 705 20 <20 <20 <1 0.25 >10.00 0.51 0.01 0.02 3 <1 <2 142600 - 6 <1 6 <10 <.01 - 1 <5 <.2 9 <2 27 <1 1183 57 <.2 <5 <5 8 4.17 615 <10 <1 1118 24 <20 <20 <1 0.51 >10.00 0.08 <.01 <.01 <1 <1 <2 2 <1 <5 <10 <.01</p> 1 142601 <1 1192 60 <.2 <5 <5 <5 3.88 494 <10 <1 478 17 <20 <20 <1 0.34 >10.00 0.26 <.01 <.01 <1 <1 <2</p> 3 <1 <5 <10 0.03 142602 <2 23 - 1 <5 <.2 20 <5 <.2 7 <2 30 <1 1676 75 <.2 <5 15 8 4.41 707 <10 <1 1102 20 <20 <20 <1 0.43 >10.00 0.08 <.01 <.01 <1 <1 <2</p> 2 <1 6 <10 <.01 1 142603

142604 <5 <.2 1 <2 28 <1 1520 72 <.2 <5 <5 9 5.26 612 <10 <1 1280 29 <20 <20 <1 0.54 >10.00 0.01 <.01 <.01 <1 <1 <2 1 <1</p> 7 <10 <.01 1 <1 1492 73 <.2 <5 <5 10 5.16 759 <10 <1 1264 28 <20 <20 <1 0.54 >10.00 0.02 <.01 <.01 <1 <1 <2 1 <1 7 <10 <.01</p> 1 142605 <5 <.2 7 <2 28 -<1 1426 76 <.2 <5 <5 12 5.21 799 <10 <1 1342 30 <20 <20 <1 0.55 >10.00 0.17 <.01 <.01 <1 <1 <2 1 <1 7 <10 <.01</p> 1 142606 <5 <.2 6 <2 28 <5 <.2 <1 <2 23 <1 1468 74 <.2 <5 <5 8 5.31 637 <10 <1 1076 23 <20 <20 <1 0.23 >10.00 0.31 <.01 <.01 <1 <1 <2 1 <1 7 <10 <.01</p> - 1 142607 <5 <.2 16 <2 31 <1 1697 80 <.2 <5 <5 8 5.42 852 <10 <1 1108 21 <20 <1 0.28 >10.00 0.01 <.01 <1 <1 <2 1 <1</p> 142608 6 <10 <.01

	TS Int				esti	ng	5	Serv	vic	es	5												·					La	ab	nemica ort
	IRST POINT MINERALS CORPOR	ATION			4						р	ATE R	FREIN	JED •	14 - 1	UL - 97	,	DATE	PRIN	ED:	1 3 -NO	v•97	PA	GE (T: M!	I SIDNI	ΕY	
REPORT: VS	97-01671.0 (COMPLETE)					••••••						MIE N		YCU .	1-4- 0	UL 71					1.5 110	• • •				•				
SAMPLE NUMBER	ELEMENT Wet Au Ag Cu UNITS PPB PPM PPM				Co Cd PPM PPM				Mn PPM	Te PPM (Cr PPM :	-	Sn PPM			AL - CT	Mg PCT	Ca PCT	Na PCT		Sr PPM						Ta PPM Pi		
142609	<5 <.2 9	<2 2	27 <1	1670	76 <.Z	<5	<5	6 4.10	752	<10	<1	861	16 -	<20	<20	<1 0.	.21 >	10.00	0.03	<.01	<.01	<1	<1	<2	1	<1	7 -	<10 <.1	01	1
142610	<5 <.2 9							<5 4.74																	2	<1	7 •	<10 <.1	01	1
142611	<5 <.2 3	<2 2	26 <1	1634	79 <.2	<5	<5	<5 4.71	672	<10	<1	361	9 ·	<20	<20	<1 0	. 15 🤉	10.00	0.04	<.01	<.01	<1	<1	<2	2	<1	5.	<10 <.1	01	1
142612	<5 <.2 7	<2	33 <1	1578	78 <.2	<\$	<5	<5 5.06	751	<10	<1	481	14 -	<20	<20	<1 0	. 17 🤉	10.00	0.09	<.01	< 01	<1	<1	<2	2	<1	6 -	<10 <.0	01	1
142613	<5 <.2 4	<2 2	27 <1	154 3	77 <.2	<5	<5	<5 4.83	680	<10	<1	481	12	<20	<20	<1 0	. 17 🤅	10.00	0.06	<.01	<.01	<1	<1	<2	3	<1	5 •	<10 <.0	01	1
142614	6 <.2 7	<2	26 <1	1470	76 <.2	<5	<5	<5 4.68	708	<10	<1	523	13	<20	<20	<1 0	.21 🤋	10.00	0.04	<.01	<.01	<1	<1	<2	2	<1	<5	<10 <.	Q1	1
142615	<5 <.2 <i>t</i>																								Z	<1	<5 ·	<10 <.	01	1
142616	<5 <.2 < ⁴																								2	<1	<5 ·	<10 <.0	01	2
142617	<5 <.2																								2	<1	6 -	<10 <.4	01	1
142618	9 <.2 1	<2	23 <1	1 1715	71 <.2	<5	<5	5 4.30	534	<10	<1	733	12	<20	<20	<10	.29 :	>10.00	<.01	<.01	<.01	<1	<1	< 2	1	<1	6 ·	<10 <.0	01	1
142619	9 <.2	s <2	27 <1	1 1631	80 <.2	<5	<5	<5 4.97	707	<10	<1	364	9	<20	<20	<1 0	.18 :	>10,00	0.03	0.01	<.01	<1	<1	<2	2	<1	<5	<10 <.	01	1
142620	6 <.2 <	<2	36 <1	1 1503	76 <.2	<5	<5	6 4.66	744	<10	<1	806	16	<20	<20	<1 0	.28 :	>10.00	0.05	<.01	<.01	<1	<1	<2	2	<1	6	<10 <.	01	1
142621	<5 <.2 2	<2	24 <1	1 1376	62 <.2	<5	18	10 4.52	468	<10	<1	1231	24	<20	<2 0	<1 0	.46	>10.00	0.30	<.01	<.01	1	<1	<2	1	<1	7 -	<10 <.	01	1
142622	6 <.2																													1
142623	<5 <.2	5 <2	32 <1	1 1574	79 <.2	<5	<5	9 4.51	729	<10	<1	1156	20	<20	<20	<1 0	.41	>10.00	0.05	<.01	<.01	<1	<1	<2	1	<1	6	<10 <.	01	1
142624	<5 <.2	5 <2	32 <'	1 1506	80 <.2	4	<5	7 5.20	920	<10	<1	1039	23	<20	<20	<1 0	.39 :	>10.00	<.01	<.01	<.01	<1	<1	<z< td=""><td>1</td><td><1</td><td>8</td><td><10 <.</td><td>01</td><td>1</td></z<>	1	<1	8	<10 <.	01	1
142625	<5 <.2	4 <2	30 <	1 1578	80 <.2	<5		7 4.49																				<10 <.		1
142626	6 <.2 1				82 <.2																				1	<1	<5	<10 <.	Q1	1
142627	<5 <.2 1							5 4.71																	_	<1		<10 <.		
142628	<5 <.2	7 ~ 2	3 2 -	1 1570	76 2 2	~ 5	<5	8 4 56	751	<10	-1	1075	20	~20	~20	×1 0	36	>10 AO	n na	< 01	< 01	<1	<1	<2	1	<1	6	<10 <.	.01	1

Gee nemical Lab Report

CLIENT: FIRST POINT M			ORAT	ION												г	NATE	ocre		. 14-		·97	NATE	DRIN	TED :	13-N	- 1√- 97	7 p	AGE	PR 3 OF		T: M	í si	DNEY	
REPORT: V97-01671.0 (COMPLETE	:)											•••••	••••••	•••••								PAIL					'.				••••••		••••	
STANDARD ELEMENT NAME UNITS	Wet Au A PPB PF	-																					Mg PCT		Na PCT					Li PPM					
Gannet Standard	394	-	-	-	•	-	-	-	-	-		-	-	-	-	·	-		-	-	-	-	-	-		-		-	-	-	-	•	-	-	-
Number of Analyses	1	-	•	-	-	-	-	-	-	•	-	-	-	-	-	-		•	•	-	-	-	-	-	-	-		•	•	-	-	-	-	-	-
Mean Value	394	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-		-	-	-	-	-	-	-	•
Standard Deviation	-	-	-	•	-	-	-	-	-	-	•	-	-	-	-	· · -	-	-	-	•	•	-	-	-	-	-		- -	-	-	-	•	•	-	-
Accepted Value	405	•	•	-	-	-	-		•	. •	-		-	-		· 11	• -	•	-	. •	-	-	-	-	-			•	•	•	-	-	-	-	-
BCC GEOCHEM STD 6	- <,	.2 1	129	18	124	z	116	31	0.4	<5	122	<5	7.18	1346	<10) 6	169	42	<20) <20	2	1.83	2.55	3.39	0.01	0.04	4 75	i 3	2	21	<1	7 -	<10 -	<.01	7
Number of Analyses		-	•	•	•																	1				، ۱	1 1	1	1	1	1	1	1	1	1
Mean Value	- 0,	.1 1	129	18	124	2	116	31	0.4	3	122	3	7.18	1346	-	; 6	169	42	10	10	2	1.83	2.55	3.39	0.01	0.04	4 75	53	2	21	0.5	7	5	,005	7
Standard Deviation	-	-	-	•	-	-	-	-	. <u>-</u>		-	-	-	-		- :-	-		-	· -	-	•	•	-					-	-	-	-	-	-	-
Accepted Value	- 0	.2 '	140	18	140	4	135	35	5 0.2	1	145	1	6.50	1450	•	- 6	170) 50) 5	i 12	-	1.80	2.70	4.00	0.01	0.04	4 70) 3	-	24	2	6	1	.003	5
BCC GEOCHEM STD 5	12 <	.2	77	10	69	<1	34	20) <.2	<5	8	<5	4.42	677	′ <10	185	47	' 113	<20) <20	6	3.04	1.59	0.96	6 0.05	0.29	9 34	. 7	5	24	5	9	<10 /	0.20	11
Number of Analyses																						1			1				•	1	1	1	1	1	1
Mean Value	12 0	.1	77	10	69	0.5	34	20	0.1	3	8	3	4.42	677	' !	5 185	47	' 113	10) 10	6	3.04	1.59	0.96	6 0.05	0.29	9 34	7	5	24	5	9	5 (0.20	11
Standard Deviation	-	-	-	-	-	-	•	•		-	-	-	-	-		•	•	• •	•	• •	-	-	-	-					-	-	•	•	•	•	-
Accepted Value	80	.7	90	11	80	2	40	18	3 0.1	1	8	1	4.74	720	0.7	2 200	54	133	. 4	2	5	3.09	1.83	1.08	3 0.06	5 0.37	2 39	9	4	-	1	18	1	-	5
ANALYTICAL BLANK																							<0.01												
ANALYTICAL BLANK	- <	.2	<1	<2	<1	<1	<1	<	1 <.2	<5	<5	<5	<.01	<1	<10) <1							<0.01	<.0	<.0	<.0	1 <1	1 <1	<2	<1	<1	<5 ·	<10	<.01	<1
Number of Analyses														2								2			2 2				. –		-	-	-		_
Mean Value	- 0	.1																					0.005							0.5	0.5	3	5	.005	0.5
Standard Deviation	-	-	-	-	•	·	-			-	-	-	-			- -		•	•	• -	-	-	-			-			-	-	-	-	-	-	-
Accepted Value	1.0	. 7	1	2	1	1		I	101	2	, 5	5	0 05		1 11	1 61				1 01	01	< 01	<.0001	< 0	1 < 0'	1 ~ 0	1 0'	1 01	ារ	<u>01</u>	01	01	D1	< 01	01

Ι	TS Intertek Testing Services Bondar Clegg	Gec hemical Lab Report
	ST POINT MINERALS CORPORATION -01671.0 (COMPLETE) DATE RECEIVED: 14-JUL-97 DATE PRINTED: 13-NOV-97 F	PROJECT: MT SIDNEY PAGE 4 OF 4
SAMPLE NUMBER	ELEMENT WELL KUL KY LO PD ZIT NO NT LO LO DT KA OD TO THT TO BE OT TOUT IT AND TO THE THE	Y Ga Li Nb Sc Ta Ti Zr №М РРМ РРМ РРМ РРМ РСТ РРМ
11794 Duplicate	<pre><5 <.2 25 <2 32 <1 1271 63 <.2 <5 <5 10 4.22 682 <10 <1 1345 41 <20 <20 <1 0.79 >10.00 0.28 <.01 <.01 <1 << <5 <.2 25 <2 33 <1 1316 64 <.2 <5 <5 11 4.41 714 <10 <1 1402 42 <20 <20 <1 0.82 >10.00 0.28 <.01 <.01 <1 <</pre>	
142598 Duplicate	6 <.2 9 <2 25 <1 1290 63 <.2 <5 15 7 4.50 496 <10 <1 868 19 <20 <20 <1 0.34 >10.00 0.24 <.01 <.01 <1 < <.2 8 <2 25 <1 1304 64 <.2 <5 13 7 4.50 497 <10 <1 882 20 <20 <20 <1 0.34 >10.00 0.24 <.01 <.01 <1 <	
142603 Duplicate	<5 <.2 7 <2 30 <1 1676 75 <.2 <5 15 8 4.41 707 <10 <1 1102 20 <20 <20 <1 0.43 >10.00 0.08 <.01 <.01 <1 < <5	<1 <2 2 <1 6 <10 <.01 1
142617 Duplicate	<pre><5 <.2 5 <2 32 <1 1668 80 <.2 <5 <5 5.03 758 <10 <1 579 15 <20 <20 <1 0.20 >10.00 0.06 <.01 <.01 <1 < <.2 5 <2 31 <1 1607 77 <.2 <5 <5 <5 4.75 721 <10 <1 553 14 <20 <20 <1 0.19 >10.00 0.06 <.01 <.01 <1 <</pre>	
142626 Duplicate	6 <.2 15 <2 30 <1 1541 82 <.2 <5 <5 7 4.85 916 <10 <1 921 15 <20 <20 <1 0.30 >10.00 0.01 <.01 <.01 <1 <	<1 <2 1 <1 <5 <10 <.01 1

		ntert Bondar			ting Se	rvices			·			Gec hemi Lab Report	ical
	-01689,0 (COMPLETE							RENCE: MT SI					
	ST POINT MINERALS (•••••••••••••••••••••••••••••••••••••••		ITTED BY: U.					
ROJECT: MT	SIDNEY						DATE RE	CEIVED: 17-J	UL-97	DATE PRINTED	: 12-NOV-97		
	ан сайтаан алаан алаа Алаан алаан алаа					· · · · · · · · · · · · · · · · · · ·							
ATE		NUMBER (F LO	OWER	EXTRACTION	METHOD	SAMPLE TYPES	NUMBER	stz	E FRACTIONS	NUMBER	SAMPLE PREPARATIONS	
PPROVED	ELEMENT	ANALYS	5 DE	TECTION	EATRACTION	PIL TROP	S SOIL	33	1	-80	32	PULVERIZATION	1
70725 1 W	et Au Partial Ext.	Gold 3	3	5 PPB	ASH/AQ REG/DIBK	ATOMIC ABSORPTION			2	-150	1	DRY, SIEVE -80	32
70725 Z A			3 1	0.2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
70725 3 C			53	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			BOUND			ID: MR. PETER BRADSHAN	U
70725 4 P			53	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REPORT COPIES TO: I	IK. PETEK BRA	D2HAM		INVOICE	IUI MRI FEIER DRADONA	-
70725 5 Z			33	1 PPM	HCL:HN03 (3:1)	INDUC, COUP, PLASMA	*******	******	*****	***	*****	*****	****
70725 6 M	o Molybdenum		53	1 PPN	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						data presented in th	
			33	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	report i	s specific to	thos	e samples ident	ified under "	Sample Number" and is	
70725 7 N 70725 8 C			33	1 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA	amplicab	le only to th	e sam	ples as received	d expressed o	n a dry basis unless	
70725 8С 70725 9С				0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA	otherwis	e indicated					
70725 10 B			33	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	******	********	****	*****	********	*****	****
70725 11 A			33	5 PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA							
70725 12 s			53	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
70725 13 F	e Iron		33 0	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
70725 13 P			33	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
70725 15 1	· · ·		33	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
70725 16 B			33	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ							
70725 17 0	r Chramium		33	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
70725 18 \	/ Vanadium		33	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
70725 19 5	Sn Tin		33	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
70725 20 V			33	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ							
70725 21 1	-		33	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
70725 22 /			33 (0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
970725 23 H	Mg Magnesium			0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
70725 24 0	Ca Calcium		33 (0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	L						
70725 25 1	Na Sodium		33 (0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	L						
70725 26				0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASM							
70725 27			33	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
70725 28	Y Yttrium		33	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
70725 29			33	2 PPM	HCL:HND3 (3:1)	INDUC. COUP. PLASMA							
970725 30	Li Lithium		33	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	k						
070725 21	NG Nishirm		33	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM							
970725 31 970725 32			33 33	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
970725 33			33	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM							
970725 34				0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASM							
					HCL: HNO3 (3:1)	INDUC, COUP. PLASM							

			ek T Elegg		ng	<u>y</u> (Se	ervic	es					·								La	ec ab epo	iemica	1
	RST POINT MINERALS CORPORA 7-01689.0 (COMPLETE)	TION								DATE	E REC	EIVED: 17-J	IUL-97	DATE P	NINTED:	12-NOV	-97	PAGE	_		CT: MT	SIDN	ŀΕΥ		
KEPORT: VY	······································												••• ••••									 To	т;	7	
SAMPLE	ELEMENT Wet AU Ag Cu UNITS PPB PPM PPM											V SN W PPM PPM PPM		Mg PCT	Ca M PCT PC						b Sc MPPMf				
В1												59 <20 <20						5	<2 ⁻	10 <					
C1	11 <.2 40											43 <20 <20						3	-	5 <			0.02		
C2	<5 <.2 34											42 <20 <20		>10.00 (2	_		1 6 •				
C3												45 <20 <20		>10.00				3	-		16. 17.				
C4	<5 <.2 27	4 74	<1 2127	7 82 0.2	<5	11	<5	8.50 789	<10	31 1	134	40 <20 <20	2 1.03	>10.00 ().17 <.0	0.03	5	5	<2	> <	:1 7 •	10 0	.01	< j	
6 5	<5 <.2 43	z /.0	<1 1257	7 66 2 2	<5	5	<5	6.29 712	<10	69	805	56 <20 <20	1 1.50	8.61	J.28 <.0	01 0.20) 6	4	<2	7 <	1 7	<10 () . 1 0	<1	
C5 C6	6 <.2 35					9						47 <20 <20		8.94				3	-	6 <			3.08		
F1	21 <.2 36											48 <20 <20		8.82	0.49 <.0	0.04	13	4	<2	7 <	17.	<10 (0.07	<1	
G1	5 <.2 22							4.04 328	<10	54	801	34 <20 <20	2 1.28	8.70	0.18 0.4	01 0.04	6	3	<2	8 <	1 6	<10 (0.01	1	
G2	<5 <.2 18							5.81 578	<10	42	936	44 <20 <20	2 1.29	>10.00	0.13 0.0	0.02	2 6	2	<2	8 <	1 6	<10 (0.02	<1	
A7	<5 <.2 22	1. 54	5 <1 1100	n 54 e 2	5	7	<5	7 89 782	<10	40 1	304	52 <20 <20	2 1.40	8,96	0.18 0.4	01 0.04	i 6	3	<2	8 <	1 6	<10 (0.02	<1	
G3 G4	5 <.2 21					5						48 <20 <20		>10.00				3		6 <	17.	<10 (0.02	<1	
J1	277 <.2 49											65 <20 <20		4.10	0.48 <.1	01 0.05	5 1 4	8	<2	10 <	1 7·	<10 (0.12	<1	
H1	<5 <.2 21		<1 116									45 <20 <20		9.17	0.13 0.	01 0.03	56	4	<2	7 <	:1 8	<10 (0.02	<1	
н2	6 <.2 18		s <1 1319									40 <20 <20		>10.00	0.10 <.	01 0.02	24	2	<2	5 <	:17·	<10 (0.01	<1	
	<5 <.2 23	~ 7 41	. ∠1 7/. ¹	7 11 1 2	> ~5	17	-5	5 70 632	<10	30	615	55 <20 <20	2 1.29	8.85	0.28 <.	01 0.04	6	5	<2	7.	-1 7	<10 (0.11	2	
M1 M2	8 <.2 24											31 <20 <20		>10.00						4 -	1 7	<10 (0.02	<1	
™2 M3	11 <.2 11											35 <20 <20						_		4 -	<1 6	<10 (0.04	1	
M4	5 <.2 9											24 <20 <20		>10.00	0.10 <.	01 0.0	13	<1	<2	3 -	<1 <5	<10 (0.01	<1	
VD1												55 <20 <20								7 <	416	<10 (0.08	<1	
	T . 0. T		0 -4 100	7 (9 4	e	47	~5	4 99 700	~10	17	887	58 <20 <20	3 1 31	6 32	n 6ñ ≺	01.0.0	4 11	5	-2	о,	<17	<10 /	0.10	<1	
VD2												56 <20 <20													
VD3												61 <20 <20													
VD5 VD6												58 <20 <20													
VD6 VD7												57 <20 <20													
VD7	21 5.2 44	ι <u>~</u> ζ Ο	U - T 197	ורטע ט.נ		-1-2		2.04 044				5, 20 -20	- 197)					-			_				
VD22												51 <20 <20													
VD23	23 <.2 23	3 29 29	7 <1 81	5 48 <.2	2 <5	67	<5	5.23 775	<10	32	869	50 22 <20	2 1.02	7,42	0.27 0.	01 0.0	39	4	<2	7 -	<16	<10 (0.07	<1	
VD24												50 <20 <20													
VD26												63 <20 <20													
VD27	634 <.2 32	256	6 <1 61	11 40 0.3	2 <5	34	<5	5.44 776	<10	52	678	70 <20 <20	5 1.36	6 4.19	0.29 <.	01 0.0	4 13	6	<2	9 (41 6	<10 (0.11	<1	

	TS Intertek Testing Se Bondar Clegg	Gec lemical Lab Report	
	RST POINT MINERALS CORPORATION 97-01689.0 (COMPLETE)	DATE RECEIVED: 17-JUL-97 DATE PRINTED: 12-NOV-97	PROJECT: MT SIDNEY PAGE 2 DF 4
SAMPLE	ELEMENT Wet Au Ag Cu Pb Zn Mo Ni Co Cd Bi As Sb	Fe Mn Te Ba Cr V Sn W La Al Mg Ca Na K Sr	Y Ga Li ND Sc Ta Ti Zr
NUMBER	UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM	PCT PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM	РРМ РРМ РРМ РРМ РРМ РСТ РРМ
TD 1		7.41 913 <10 25 723 39 <20 <20 1 1.09 >10.00 0.19 0.02 0.02 4	2 <2 11 <1 6 <10 0.02 <1
TD2		8.76 879 <10 20 1269 42 <20 <20 <1 0.88 >10.00 0.16 <.01 0.02 3	2 <2 6 <1 7 <10 0.02 <1
M1HC		6.04 534 <10 30 915 54 <20 <20 <1 1.06 >10.00 0.43 0.02 0.04 8	4 <2 5 <1 6 <10 0.16 3

	S			nte						est	iı	ng	, (Se	erv	vic	ce	S																		L	lat		.emica rt
LIENT: FIRST PO EPORT: V97-0168					110	ł				••••								D	ATE RE		/ED:	17-			DATE		ED :	12-N	ov-9	7	PAG	E 3			: M1	T SIC	NEY		
	EMENT Wer UNITS	t Au PPB								Co PM P				SD PM				e Ba 1PPM	Сг РРМ	V PPM	Sn PPM		La PPM	• • •	Mg PC1) Ca PC1		a TP		Sr Pm F		Ga PPM (i Zr TPPN	
annet Standard Imber of Analys	ses	426 1	-	-	-	•	-		-	-		-	•	-		- ·		• •	-	- -	-	-	-	•	-	· ·		 -	- -	-	• •	- -	-	-	-	-	-		
an Value andard Deviati cepted Value	ion	426 - 405	• - -	- -	•	- -	-		• -	- - -	- - -	-	-	- -		- ·	- ·	 	-	-	-	-	- - -	-	-		•	- - -	-	- -	-	• •	-	-	•	-		 	
C GEOCHEM STD mber of Analys		-	0.7 1	261	30 1	213	i 3	5 : I	36 1	8 0 1	.9 1	<5 1	25 1	<5 1	2.7	4 52 1	D <10	D 55 1 1	68 1	7	<20 1	<20 1	1 1	0.73 1	1.14	1.2	3 0.0 1	50. 1	13 1	35 1	3 1	<2 1	6 1	<1 1	<5 1	<10 1	<.0'	1 5 1 '	a I
an Value andard Deviat		-	•	, 261 -	-	-		5 -	36	80	.9	3	25	3	2.7	•	•	5 55	· -	-	10	10	-	0.73	•	1.2	-	-	-	35 - 70	3-	1 - 5	6 - 7	0,5	3	5	.00	5 9 	
cepted Value	ĸ			290		255	; 4 <'	4 1	42 <1	90 <1 •	.8	1 <5	30 <5	. 1∶ <5	2.6 <0.0	0 60 1 <	00. 1<1	1 55 0 <1			ہ 20<	1 <20		0.77 <.01	،د.۱ «0.0	1.4 <.0				39 <1	" <1	<2	′ <1	י <1	12 <5			1 <	
mber of Analy: an Value	ses	1	1	1 0.5	1	1 Q.5	5 Q.!	1 50	1 .5 (1).5 (1 .1	1 3	1 3	1 3	0.00	1 5 0.	1 5	1 1 5 0.5	1 0.5	1 0.5	1 10	1 10	1 0.5	1 .005	0.00	1 5.00	1 5.00	1 15.0	1 105 (1).5 (1 0.5	1 1	1 0.5	1 0.5	1 3	1 5	.00'	1 5 0.!	 5
itandard Deviat Accepted Value	ion	- 1	0.2	- 1	- 2	! 1	- 1	- 1	- 1	- 1 (-).1	- 2	5	- 5	0.0	- 5	- 1.0	 1 .01	-	-	- .01	.01	.01	<.01	<.000	1 <.0	- 1 <.(-)1 <.	.01 .	.01	.01	.01	.01	.01	.01	.01	<.0	1 .0	

		[n1 301						ti	ng			erv	ic	es	5									·							Ĺ	ab	e۔ ort	emical	1
	ST POINT MINERALS (-01689.0 (COMPLET)		RATI	DN											DA	NTE RE	CEIV	/ED:	17- JI	UL-97	DATE	PRIN	TED:	12-NO	v-97	PA	GE 4			1: MT	SIDN	1EY			•••••
SAMPLE NUMBER	ELEMENT Wet Au UNITS PPB P	-				N Î PPM		Cd PPM	Bi PPM		sd PPM		Mn PPM			Cr PPM	V PPM	Sri PPM	W PPM I	La At PPM PCT	Mg PCT				K Sr TPPM	y PPM	Ga IPPM	- ·		SC PPM F	Та РРМ	ті Рст			
G2 Duplicate	<5 < <5 <		-	5 50) <1 2 <1	868 892	39 2 41		-	<5 <5	ৰ ব	5.81 6.29				936 1013				2 1.29 2 1.36						2	< <2 < <2	8 8	<1 <1	-		0.02 0.02	-		
VD23 Duplicate	23 < <	.2 2 .2 2		9 297 5 289			i 48 2 47			67 66	<5 <5	5.23 5.94					50 49		<20 <20	2 1.02 2 1.01				1 0.0 1 0.0		> 4 > 3	<2 ; <2	7 7	<1 <1	-		0.07 0.07	-		
M1HC Duplicate	<5 < <5	.2 1	3 <	2 42	2 <1	802	2 53	<.2	<5	31	<5	6.04	534	<10	30	915	54	<20	<20	<1 1.06	>10.00	0.4	3 0.0	2 0.0	4 8	3 4	<2	5	<1	6	<10 (0,16	3		

		nter Bondar			sting Se	rvices					Gec lemi Lab Report	ical
EPORT: V97-	-01690.0 (COMPLETE	•						FERENCE: MT SI				
·····		•••••			· · · · · · · · · · · · · · · · · · ·			BMITTED BY: U.			······································	
							DATE I	RECEIVED: 17-J	UL-97 DATE PRINT	ED: 13-NOV-97		
ROJECT: MT	SIDNET	·										
ATE		NUMBER	DF LÔ	WER			SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
PPROVED	ELEMENT	ANALYS		FECTION	EXTRACTION	METHOD	••••				CRUSH/SPLIT & PULV.	
							R ROCK	30	2 150	30	OVERWEIGHT/KG	168
	et Au Partial Ext.	Gold	30	5 PPB	ASH/AQ REG/DIBK	ATOMIC ABSORPTION					STERMET WILLING	100
70724 2 Ag			-	D.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
10724 3 Cu	• •		30	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA	SEDART CODIES TO-		DSHAW	INVOLCE	TO: MR. PETER BRADSHA	W
'0724 4 Pl			30	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA	KEPUKI LUPIES IU:	PR. FLIER DRA		INTOINE		
70724 5 Zr			30	1 PPM	HCL:HN03 (3:1)		******	*****	*******	****	******	****
0724 6 M	a Molybdenum		30	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					data presented in th	
				4 504	101-1007-27-13	INDUC. COUP. PLASMA	report	ie enerifir tr	those samples iden	ntified under "	Sample Number" and is	1
70724 7 N			30	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	apolica	hie only to th	ne samples as receiv	ed expressed o	n a dry basis unless	
0724 8 0			30 70 (1 PPM	HCL:HNO3 (3:1) HCL:HND3 (3:1)	INDUC. COUP. PLASMA		se indicated				
70724 9 6				0.2 PPN 5 PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA	******	****	******	*****	******	****
70724 10 B			30 30	5 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA						
70724 11 A			30	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70724 12 SI	ib Antimony		50	2 650	NCL.11100 (0.17							
70724 13 F	e Iron		30 0.	.01 PCT	HCL:HNO3 (3:1)	INDUC, COUP. PLASMÀ						
70724 14 M			30	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70724 15 T	-		30	10 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
70724 16 B			30	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ						
70724 17 C			30	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70724 18 V			30	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP, PLASMA						
70724 19 s	Sn Tin		30	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70724 20 W			30	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70724 21 L	.a Lanthanum		30	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70724 22 A				0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
970724 23 M				0.01 PCT	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA						
70724 24 0	Ca Calcium		30 0	.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
			7 ^	04 507	101-0007-77-45	INDUC. COUP. PLASMA						
70724 25 N			-	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70724 26				1 PCT	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70724 27 5			30 70	1 PPM 1 DDM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70724 28) 70724 20 (30 70	1 PPM 2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70724 29 (30 30	2 PPM 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
70724 30 ι	Li Lithium		JU	1 666	00011000 (011)	Tibes' contrictory						
· •7 \CEAC	ula Niabó er		30	1 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA						
70724 31 N			30 30	5 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA						
70724 32 9			30 30	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
970724 33 1 970724 34 1				0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
970724 34 9			30 U	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
10164 23 4	Zr Zirconium		J U	1 FER								

٦. ۰.

ITS Intertek Testing Services Bondar Clegg

Gec lemical Lab Report

PORT: V	RST POINT MINERALS COR 77-01690.0 (COMPLETE)	POR.	ATI	ON											D	ATE RE	CEIV	ÆD :	17-Ji	UL-9	7	DATE	PRIN	TED:	13-NC	ov-97	Pi	AGE	1 08			MT S		· ·····	
MPLE MBER	ELEMENT Wet Au Ag UNITS PPB PPM (Mg PCT	Ca PCT									c Ta M PPM			
	<5 <.2	c		,	71	1 1	27/.	77 4	,	-5 -	·5 •	5 4 40	707	<10	<1	427	11 <	<20 <	20	<10).32	>10.00	0.06	. <.01	<.0	1 <1	<1	<2	<1	7	< <u>"</u>	5 <10	<.0'	1 <	<1
812					21 77	1 1.) 6 7	77 2	2 2			5 4.52	606	<10 <10	۰. ۲	218	4 4	<20 <	20	<1.0). 14	>10.00	0.07	' <.01	<.0	1 <1	<1	<2	<1	6	</td <td>5 <10</td> <td><.0'</td> <td>1 <</td> <td><1</td>	5 <10	<.0'	1 <	<1
813	<5 <.2			2 2	23 21	1 1	437 /21	71 2	2		с.	5 4.32	679	<10	<1	300	7 -	<20 <	20	<1.0	1.20	>10.00	0.04	<.01	<.0	1 <1	<1	<2	<1	7	</td <td>5 <10</td> <td><.0'</td> <td>1 <</td> <td><1</td>	5 <10	<.0'	1 <	<1
814	<5 <.2				21 77	1 1	431 602	40 2	. <u> </u>		с. с.	5 4.12	676	<10	~1	270	, 5 4	<20 <	20	<1.0	1. 14	>10.00	0.05	<.01	<.0	1 <1	<1	<2	<1	6	</td <td>5 <10</td> <td><.0'</td> <td>1 <</td> <td><1</td>	5 <10	<.0'	1 <	<1
815	<5 <.2 <5 <.2		×	2	23	4 4	402 704	77 -	, <u>,</u>		- -	-5 / 53	760	<10	<1	505	11 4	<20 <	20	· - <1 0). 27	>10.00	0.03	s <.01	<.0	1 <1	<1	<2	<1	7	ŗ	5 <10	<.0'	1 <	<1
816	<2 <.2		5	2	٢٢	1 1.	070	12 7	. 2			U 1.73	140	-10	- 1	101																			
817	<5 <.2	4	. <	2	26	1 1	365	69 <	.2	۰ <u>5</u>	÷5	<5 4.35	737	<10	2	388	8 •	<20 <	20	<1 ¢),23	>10.00	0.08	5 <.01	<.0	1 <1	<1	<2	<1	6	<;	5 <10	· <.0′	1 <	<1
818	<5 <.2					2 1	337	68 <	.2	<5 •	د 5	<5 4.19	696	<10	<1	505	12 •	<20 <	20	<1 0	0.30	>10.00	0.05	5 <.01	<.0	1 <1	<1	<z< td=""><td><1</td><td>6</td><td><!--</td--><td>5 <10</td><td>· <.01</td><td>1 <</td><td><1</td></td></z<>	<1	6	</td <td>5 <10</td> <td>· <.01</td> <td>1 <</td> <td><1</td>	5 <10	· <.01	1 <	<1
819	<5 <.2					1.1	480	76 <	.2	<u>ج</u>	5 ·	<\$ 4.55	804	<10	<1	810	17 •	<20 <	20	<1 0	0.32	>10.00	0.02	2 <.01	<.0	1 <1	<1	<2	<1	7	{	8 <10	· <.0′	1 <	<1
820	<5 <.2											<5 4.61																				6 <10			
821	<5 <.2					1 1	505	73 <	.2	<5 ·	<5 ·	<5 4.18	701	<10	1	968	20 -	<20 <	20	<1 (38.38	>10.00	0.00	\$ <.0'	<.0	1 <1	<1	<2	<1	7	ſ	8 <10	. <.0'	1 (<1
021																																			
822	<5 <.2	15	5 <	Ξ	24	11	477	74 <	,2	<5 ·	<5 ·	<5 4.51	741	<10	<1	802	18 ·	<20 ×	20	<1 (0.33	>10.00	0.00	3 <.01	<.0	1 <1	<1	<2	<1	7		7 <10	· <.01	1 <	<1
823	<5 <.2			_	26	11	436	72 <	.2	<5 ·	د 5	<5 4.49	750	<10	2	546	14 -	<20 <	20	<1 (0.27	>10.00	0.0	5 <.0	<.0	1 <1	<1	<2	<1	6	- (6 <10	/ <.0 1	1 <	<1
824	<5 <.2	2	2 <	<2								<5 4.23																							
825	8 0.3	62	2 <	2								<5 4.64																							
826	<5 <.2	10	5 •	<2	24	1 1	546	71 <	.2	<5	<5	<5 4.37	722	<10	<1	841	14 -	<20 •	:20	<1 (0.28	>10.0	0.0	5 <.0	<.0	1 <	<1	<2	<1	7	6	6 <10	/ <.0	1 1	<1
827	<5 <.2		в •	<2	21	1 1	418	72 <	.2	<5	<5	<5 4.55	762	<10	2	513	15 ·	<20 ·	<20	<1 (0.44	>10.0	0.0	7 <.0	1 <.0	1 <	<1	<2	! <1	6	, !	5 <10	1 <.0	11 +	<1
1828	<5 <.2	19	9 ·	٢	24	1 1	445	74 <	.2	<5	<5	<5 4.82	2 802	<10	2	798	24	<20 ·	<20	<1 (0,56	>10.0	0 0.0	B <.O	1 <.0)1 <'	<1	<2	2 <1	7		7 <10) <.0	11 -	<1
1829	923 <.2	1	о ·	<2	13	<1	903	45 1	.4	<54	61	29 3.09	513	<10	2	216	2	<20 -	<20	<1 (0.01	>10.0	0 0.0	6 <.0	1 <.0	01	<1	<2	2 <1	5	< .	.5 <10	0.> נ	11 -	<1
1830	<5 <.2	!	5 ·	<2	20	1 1	1562	68 <	.2	<51	16	<5 4.28	3 543	s <10	<1	133	<1	<20 ·	<20	-1	<.01	>10.0	0 <.0	1 <.0	1 <.0)) <	<1	<2	? <1	5	. <'	.5 <1() <.0	11 -	<1
1831	<5 <.2	1	z ·	<2	23	1 1	1449	72 <	.2	<5	<5	<5 5.34	673	i <10	<1	1190	32	<20 -	<z0< td=""><td><1 (</td><td>0.54</td><td>>10.0</td><td>0 0.1</td><td>2 <.0</td><td>1 <.0</td><td>)1</td><td> <1</td><td> <2</td><td>2 <1</td><td>8</td><td>1</td><td>8 <10</td><td>) <.0</td><td>11 •</td><td><1</td></z0<>	<1 (0.54	>10.0	0 0.1	2 <.0	1 <.0)1	<1	<2	2 <1	8	1	8 <10) <.0	11 •	<1
																														_	_				
1832	<5 <.2																																		
1833	<5 <.2	4	4	<2	43	1	19	25 •	.Z	<5	6	<5 4.3	2 704	- <10	14	17	75	<20 ·	<20	Z	1.94	1.3	6 0.8	9 0.0	4 0.0)3 1	77		29	/ 5	, <	:5 <1(J 0.4	<i>i</i> 5	6
1834	<5 <.2	1	2	Ζ	7	1	9 10	46 •	:.Z	<5	20	<5 2.8	3 780) <10	4	624	17	<20	<20	<1	0.47	4.5	4 3.2	9 <.0	1 <.()1 9	2 1	<¦	21	. 3	1	7 <1(J <.0	л ·	<1
1835	<5 <.2		8	<2	24	1	1232	65 ·	.2	<5	<5	<5 5.04	5 584	× <10	2	1231	35	<20 ·	<20	<1	0.60	>10.0	0 0.1	2 <.0	1 <.(]1 <	1 <1	<i< td=""><td>2 <1</td><td>. 7</td><td>· .</td><td>8 <10</td><td>J <.0</td><td>л • </td><td><1</td></i<>	2 <1	. 7	· .	8 <10	J <.0	л • 	<1
1836	<5 <.2	1	7	<2	24	1	1289	68 -	:.2	<5	<5	<5 4.5	9 70'	<10	<1	1236	29	<20	<20	<1	0.53	>10.0	0 0.0	5 <.0	1 <.()1 <	1 <1	<i< td=""><td>2 <1</td><td>; 7</td><td>,</td><td>7 <10</td><td>) <.0</td><td>J1 •</td><td><1</td></i<>	2 <1	; 7	,	7 <10) <.0	J1 •	<1
																								_	_						-	• •			
1837	<5 <.2	4	7	<2								<5 4.5																							
1838	<5 <.2		8	<2	23	1	1338	72 ·	:.2	<5	<5	<5 5.2	3 72	5 <10	<1	1227	30	<20	<20	<1	0.48	>10.0	0 0.1	6 <.0 -	1 <.()1 < 	1 <		2 <1	, 7 		8<10	1 <.0	/1 + ∼	<1
1839	<5 <.2		5	<2	19							<5 5.9																							
1840	<5 <.2				22	1	1504	71 -	. 2	<5	<5	<5 4.5	4 69	1 <10	<1	139	<1	<20	<20	<1	<.01	>10.0	0 0.0	1 <.0	1 <.() 1 <	1 <1	<i< td=""><td>2 <1</td><td>. 4</td><td>· <</td><td>5 <1(</td><td>J <.0</td><td>л ·</td><td><1</td></i<>	2 <1	. 4	· <	5 <1(J <.0	л ·	<1
1841	<5 <.2	: 1	4	<2	25	1	1215	64	<.2	<5	<5	<5 4.6	6 82	5 <10	<1	1381	26	<20	<20	<1	0.56	>10.0	0 0.0	5 <.0	1 <.(J1 <	1 <1	l si	2 <1	6)	7 <10	1 <.0	л	<]

	TS			ert dar					ir	າຍ	, (Sei	V	ic	es	5]	Lal		emica t
CLIENT: FIR REPORT: V97				TION												D	ATE R	ECEI	I VED :	17	- JUL	-97	C	ATE	×R I N	TED:	13-	NOV-	97	PA	BE	PR 2 OF		T: M	и s	IDNEY		
STANDARD NAME		Wet Au Ag PPB PPM	Çu					Co (PPM PI		Bi PM P	As °PM I		_		Te PPM I		Сг РРМ	V PPM			La PPM		-	Mg PCT	Ca PCT		-			-						T I PCT		
ANALYTICAL Number of A		<5 <.2 1 1	<1 1	<2 1	<1 1	<1 1	<1 1	<1 < 1	.2 1	<5 1	<5 1	<5 <. 1	01 · 1	<1 1	<10 1	<1 1	<1 1	<1 1	<20 1	<20 1) <1 1	<.0	1 <0 1).01 1	01.ء 1	<.D'	1 ≺. 1	01 1	<1 1	<1 1	<2 1	<1 1	<1 1	<5 1	<10 1	<.01 1	<1 1	
Mean Value		3 0.1	0.5	1().5 I		0.5	0.5 D	.1	3	3	3.0	05 (0.5	5 (0.5	0.5	0.5	10	10	0.5	.00	50	005	,005	.00	5.0	05 0	.5 (0.5	1	0.5	0.5	3	5	.005	0.5	
Standard De Accepted Va		 1 0.2	- 1	- 2	- 1	- 1	- 1	- 10	.1	2	- 5	- 50.	- 05	1	.01	- .01	- 1	1	.01	- .01	.01	<.0	- 1 <.	- 0001	۔ 01.>	<.0'	- 1 <,	- 01 .	- 01 .	.01	.01	.01	.01	- -01	.01	- <.01	.01	
BCC GEOCHEN		• 0.8	294	29 2	221	3	41	90	.9	<5	25	<5 2.	55	583	<10	55	70	6	<20	<20) 7	5 0.7	2	1.13	1.28	0.0	50.	12	36	3	<2 1	4	<1 1	<5 1	<10 1	<.01	8	
Number of A Mean Value		- 1 - 0.8	1 294	1 29 :	1 221	1 3	1 41	1 90	1 .9	1 3	1 25	1 32.	1 55	ו 583	1 5	- 1 55	70	6	10	10) 3	5 0.7	2	1.13	1.28	0.0	, 5 0.	12	36	3	1	4	0.5	3	5	.005	8	
Standard De Accepted Va		 - 1.6	- 290	- 33 :	- 255	- 4	- 42	- 90	-	- 1	- 30	- 12.	- 60	600	0.1	- 55	- 104	- 9	• 5	1		6 0.7	- 7	- 1.34	1.43	0.0	- 40.	14	- 39	- 4	- 2	- 7	1	- 12	1	0.01	8	
Gannet Star	ndard	396 -	-	-	-	-	-	-	-	-	٠	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-			-	-	-	-	-	-	
Number of <i>i</i> Mean Value		1 - 396 -	-	• -	-	-	-	-	•	-	-	-	-	• -	-	-	-	-	-	-	 	-	-	-	-		• -	• -	•	• -	-	-	-	-	-	•	• -	
Standard D Accepted V	eviation		· -	-	•	· -	-	-	-	•	-	-	-	-	-	•	-	-	-	-		-	-	-	-		-	- •	-	• -	-	- -	-	-	-	-	-	

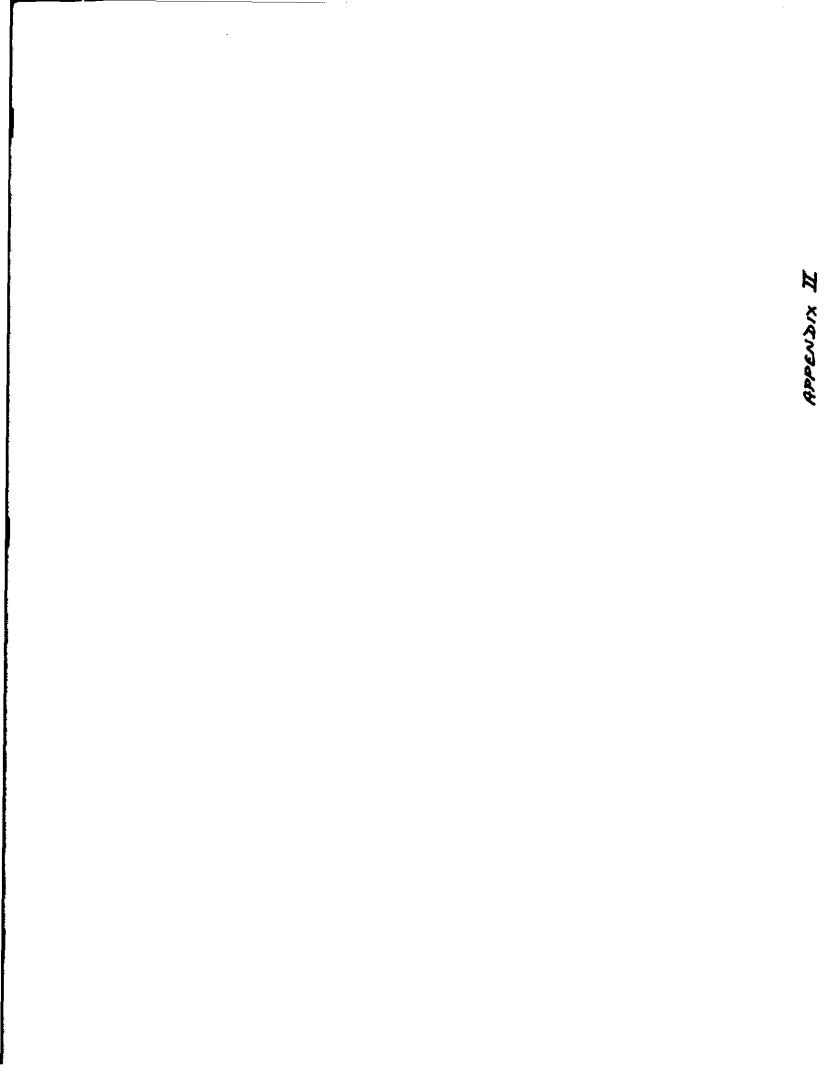
	Intertek Testing Services Gec demical Lab Report Bondar Clegg Report
	POINT MINERALS CORPORATION DATE RECEIVED: 17-JUL-97 DATE PRINTED: 13-NOV-97 PAGE 3 OF 3
SAMPLE NUMBER	ELEMENT Wet AU Ag CU PID ZO MO NI CO COL BI AS SID FE MO TE BA CO V SO W LA AL Mg CA NA K SO Y GA LI NID SC TA TI ZO UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM
11812 Duplicate	<pre><5 <.2 5 <2 21 1 1374 77 <.2 <5 <5 <5 4.40 707 <10 <1 427 11 <20 <20 <1 0.32 >10.00 0.06 <.01 <.01 <1 <1 <2 <1 7 <5 <10 <.01 <1 <1 <5 <.2 4 <2 20 1 1316 67 <.2 <5 <5 <5 4.17 679 <10 <1 411 11 <20 <20 <1 0.31 >10.00 0.05 <.01 <.01 <1 <1 <1 <2 <1 6 <5 <10 <.01 <1</pre>
11830 Duplicate	<pre><5 <.2 5 <2 20 1 1562 68 <.2 <5 116 <5 4.28 543 <10 <1 133 <1 <20 <20 <1 <.01 >10.00 <.01 <.01 <1 <1 <1 <2 <1 5 <5 <10 <.01 <1 </pre> <.2 6 <2 19 1 1532 66 <.2 <5 114 <5 4.22 535 <10 <1 130 <1 <20 <20 <1 <.01 >10.00 <.01 <.01 <.01 <1 <1 <2 <1 6 <5 <10 <.01 <1
11835 Duplicate	<5 <.2 8 <2 24 1 1232 65 <.2 <5 <5 <5 5.06 584 <10 2 1231 35 <20 <20 <1 0.60 >10.00 0.12 <.01 <1 <1 <1 <2 <1 7 8 <10 <.01 <1 <1 <5

•

 11840
 <5 <.2</td>
 9 <2</td>
 22
 1
 1504
 71 <.2</td>
 <5</td>
 <5</td>
 4.54
 691 <10</td>
 <1</td>
 139
 <1</td>
 <20</td>
 <20</td>
 <1</td>
 <.01</td>
 <.01</td>
 <.01</td>
 <1</td>
 <2</td>
 <1</td>
 4
 <5</td>
 <10</td>
 <.01</td>
 <1</td>
 139
 <1</td>
 <20</td>
 <20</td>
 <1</td>
 <.01</td>
 <.01</td>
 <1</td>
 <1</td>
 <2</td>
 <1</td>
 4
 <5</td>
 <10</td>
 <.01</td>
 <1</td>
 <10</td>
 <.01</td>
 <10</td>
 <.01</td>
 <10</td>
 <1

		nterte Bondar (sting Se	rvices						Gec liem Lab Report	ical
PORT: V97-018	18.0 (COMPLETE	:)				RE	FERENCE: MT SI	DNEY W	ILLIAMS			
	OINT MINERALS C		••••••				BMITTED BY: U.					•••••
						DATE	RECEIVED: 25-J	UL-97	DATE PRINTE	D: 12-NOV-97		
ROJECT: MT SID										and a second second	· · ·	
1. S. S. S.												
ATE		NUMBER OF	LOWER			SAMPLE TYPES	NUMBER	SIZE	FRACTIONS	NUMBER	SAMPLE PREPARATIONS	
	EMENT	ANALYSES	DETECTION	EXTRACTION	METHOD					··································		
						r rock	26	۲ ک	- 150	26	CRUSH/SPLIT & PULV. OVERWEIGHT/KG	. 20
70805 1 Ag	Silver	26	0,2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						OVERACIONITY RD	175
70805 2 Cu	Соррег	26	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
70805 3 Pb	Lead	26	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			UDSHAU		INVOLCE	TO: MR. PETER BRADSHA	۱u
'0805 4 Zn	Zinc	26	1 PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA		PIN. FLICK ONP	WOILVIE				
70805 5 Mo	Molybdenum	26	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA		******	*****	******	****	******	****
70805 6Ni	Nickel	26	1 PPM	HCL:HN03 (3:1)	INDUL. COUP. PLASMA						data presented in th	
m		77	4 DDM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA		is specific to	h those	samples ident	ified under "	Sample Number" and is	3
10805 7 Co	Cobalt	26	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	anntic	hie only to the	ie samo	les as receive	d expressed o	n a dry basis unless	
70805 8 Cd	Cadmium	26 26	0.2 PPM 5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		ise indicated	10 000.0				
70805 9 Bi	Bismuth	26	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		******	******	*****	****	******	*****
	Arsenic		2 FF19									
			5 PPM	HCL-HN03 (3-1)		١						
70805 11 sb	Antimony	26	5 PPM D 01 PCT	HCL:HN03 (3:1) HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
70805 11 Sb			5 PPM 0.01 PCT	HCL:HNO3 (3:1) HCL:HNO3 (3:1)								
70805 11 Sb 70805 12 Fe	Antimony Iron	26 26			INDUC. COUP. PLASMA	l .						
70805 10 As 70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te	Antimony Iron Manganese	26 26 26	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA	N N						
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te	Antimony Iron Manganese Tellurium	26 26	0.01 PCT 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA INDUC. COUP. PLASMA	х Х						
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba	Antimony Iron Manganese Tellurium Barium	26 26 26 26	0.01 PCT 1 PPM 10 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA INDUC. COUP. PLASMA INDUC. COUP. PLASMA INDUC. COUP. PLASMA	4 4 4						
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 16 Cr	Antimony Iron Manganese Tellurium	26 26 26 26 26	0.01 PCT 1 PPM 10 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA INDUC. COUP. PLASMA INDUC. COUP. PLASMA INDUC. COUP. PLASMA INDUC. COUP. PLASMA	4 4 4						
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 16 Cr 70805 17 V	Antimony Iron Manganese Tellurium Barium Chromium	26 26 26 26 26 26 26	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA INDUC. COUP. PLASMA INDUC. COUP. PLASMA INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 16 Cr 70805 17 V	Antimony Iron Manganese Tellurium Barium Chromium Vanadium	26 26 26 26 26 26 26 26	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 16 Cr 70805 17 V 70805 18 Sn	Antimony Iron Manganese Tellurium Barium Chromium Vanadium	26 26 26 26 26 26 26 26 26 26	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 16 Cr 70805 17 V 70805 18 Sn 70805 19 W	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum	26 26 26 26 26 26 26 26 26 26 26 26	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 15 Ba 70805 16 Cr 70805 17 V 70805 18 Sn 70805 19 W 70805 19 W 70805 20 La 70805 21 AL	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten	26 26 26 26 26 26 26 26 26 26 26 26 26	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 1 PPM 0.01 PCT	HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 16 Cr 70805 16 Cr 70805 17 V 70805 18 Sn 70805 19 W 70805 20 La 70805 21 Al 70805 22 Mg	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum Aluminum Magnesium	26 26 26 26 26 26 26 26 26 26 26 26 26 2	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 1 PPM 0.01 PCT 0.01 PCT	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 16 Cr 70805 16 Cr 70805 17 V 70805 18 Sn 70805 19 W 70805 20 La 70805 21 Al 70805 22 Mg 70805 23 Ca	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum Aluminum Magnesium Calcium	26 26 26 26 26 26 26 26 26 26 26 26 26 2	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 1 PPM 0.01 PCT 0.01 PCT	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 16 Cr 70805 16 Cr 70805 17 V 70805 18 Sn 70805 19 W 70805 20 La 70805 21 Al 70805 22 Mg 70805 23 Ca	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum Aluminum Magnesium	26 26 26 26 26 26 26 26 26 26 26 26 26 2	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 1 PPM 0.01 PCT 0.01 PCT	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 16 Cr 70805 17 V 70805 17 V 70805 18 Sn 70805 20 La 70805 21 Al 70805 23 Ca 70805 23 Ca 70805 24 Na	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum Aluminum Magnesium Calcium Sodium	26 26 26 26 26 26 26 26 26 26 26 26 26 2	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 1 PPM 0.01 PCT 0.01 PCT 0.01 PCT	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 16 Cr 70805 17 V 70805 17 V 70805 18 Sn 70805 21 Al 70805 21 Al 70805 23 Ca 70805 24 Na 70805 25 K	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum Aluminum Magnesium Calcium Sodium	26 26 26 26 26 26 26 26 26 26 26 26 26 2	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 1 PPM 0.01 PCT 0.01 PCT 0.01 PCT	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 16 Cr 70805 17 V 70805 18 Sn 70805 19 W 70805 20 La 70805 21 AL 70805 22 Mg 70805 23 Ca 70805 24 Na 70805 25 K 70805 26 Sr	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum Aluminum Magnesium Calcium Sodium Potassium Strontium	26 26 26 26 26 26 26 26 26 26 26 26 26 2	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 20 PPM 0.01 PCT 0.01 PCT 0.01 PCT 0.01 PCT 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 12 Fe 70805 12 Fe 70805 12 Fe 70805 14 Te 70805 14 Te 70805 16 Cr 70805 17 V 70805 18 Sn 70805 20 La 70805 21 AL 70805 23 Ca 70805 24 Na 970805 25 K 970805 25 K 970805 26 Sr 970805 27 Y	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum Aluminum Magnesium Calcium Sodium Potassium Strontium Yttrium	26 26 26 26 26 26 26 26 26 26 26 26 26 2	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 20 PPM 1 PPM 0.01 PCT 0.01 PCT 0.01 PCT 1 PPM 1 PCT 1 PCT 1 PCT 1 PPM 1 PPM 1 PPM 1 PCT 1 PCT 1 PPM 1 PPM 1 PPM 1 PCT 1 PPM 1 PPM 1 PPM 1 PCT 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 16 Cr 70805 18 Sn 70805 18 Sn 70805 20 La 70805 21 Al 70805 23 Ca 70805 24 Na 970805 25 K 970805 24 Na 970805 25 K 970805 26 Sr 970805 27 Y 970805 28 Ga	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum Aluminum Magnesium Calcium Sodium Potassium Strontium Yttrium Gallium	26 26 26 26 26 26 26 26 26 26 26 26 26 2	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 20 PPM 1 PPM 0.01 PCT 0.01 PCT 0.01 PCT 1 PPM 1 PPM 1 PPM 2 PPM 2 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 2 PPM 1 PPM 2 PPM 1 PPM 1 PPM 2 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 2 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 2 PPM 1 PPM 0.01 PCT 0.01 PCT 1 PPM 1 PPM 2 PPM 1 PPM 2 PPM 1 PPM 2 PPM 1 PPM 2 PPM 1 PPM 1 PPM 2 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 15 Ba 70805 16 Cr 70805 17 V 70805 19 W 70805 20 La 70805 21 Al 70805 24 Na 70805 25 K 70805 26 Sr 70805 27 Y 70805 28 Ga 70805 28 Ga	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum Aluminum Magnesium Calcium Sodium Potassium Strontium Yttrium Gallium Lithium	26 26 26 26 26 26 26 26 26 26 26 26 26 2	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 20 PPM 1 PPM 0.01 PCT 0.01 PCT 0.01 PCT 1 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 15 Ba 70805 16 Cr 70805 17 V 70805 19 W 70805 20 La 70805 21 Al 70805 24 Na 70805 25 K 70805 26 Sr 70805 27 Y 70805 28 Ga 70805 28 Ga	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum Aluminum Magnesium Calcium Sodium Potassium Strontium Yttrium Gallium	26 26 26 26 26 26 26 26 26 26 26 26 26 2	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 20 PPM 1 PPM 0.01 PCT 0.01 PCT 0.01 PCT 0.01 PCT 1 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 16 Cr 70805 16 Cr 70805 17 V 70805 17 V 70805 19 W 70805 21 Al 70805 23 Ca 70805 24 Na 70805 24 Na 70805 25 K 70805 25 K 70805 26 Sr 70805 27 Y 70805 29 Li 70805 29 Li	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum Aluminum Magnesium Calcium Sodium Potassium Strontium Yttrium Gallium Lithium Niobium	26 26 26 26 26 26 26 26 26 26 26 26 26 2	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 20 PPM 20 PPM 1 PPM 0.01 PCT 0.01 PCT 0.01 PCT 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							
70805 11 Sb 70805 12 Fe 70805 12 Fe 70805 12 Fe 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 16 Cr 70805 16 Cr 70805 17 V 70805 18 Sn 70805 20 La 70805 21 Al 70805 23 Ca 70805 24 Na 70805 25 K 70805 26 Sr 70805 28 Ga 70805 29 Li 70805 30 Nb 70805 31 Sc	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum Aluminum Magnesium Calcium Sodium Potassium Strontium Yttrium Gallium Lithium Niobium	26 26 26 26 26 26 26 26 26 26 26 26 26 2	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 20 PPM 1 PPM 0.01 PCT 0.01 PCT 0.01 PCT 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA	A A A A A A A A A A A A A A A A A A A						
70805 11 Sb 70805 12 Fe 70805 12 Fe 70805 12 Fe 70805 12 Fe 70805 14 Te 70805 15 Ba 70805 16 Cr 70805 17 V 70805 18 Sn 70805 20 La 70805 23 Ca 70805 24 Na 70805 25 K 70805 26 Sr 70805 25 K 70805 25 K 70805 24 Na 70805 24 Sa 70805 27 Y 70805 28 Ga 70805 30 Nb 70805 30 Nb 70805 31 Sc 70805 32 Ta	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum Aluminum Aluminum Magnesium Calcium Sodium Potassium Strontium Yttrium Gallium Lithium Niobium	26 26 26 26 26 26 26 26 26 26 26 26 26 2	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 20 PPM 1 PPM 0.01 PCT 0.01 PCT 0.01 PCT 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA	A A A A A A A A A A A A A A A A A A A						
70805 11 Sb 70805 12 Fe 70805 12 Fe 70805 13 Mn 70805 14 Te 70805 15 Ba 70805 16 Cr 70805 18 Sn 70805 18 Sn 70805 19 W 70805 20 La 70805 23 Ca 70805 24 Na 70805 25 K 70805 26 Sr 70805 27 Y 70805 28 Ga 70805 29 Li 70805 30 Nb 70805 31 Sc	Antimony Iron Manganese Tellurium Barium Chromium Vanadium Tin Tungsten Lanthanum Aluminum Magnesium Calcium Sodium Potassium Strontium Yttrium Gallium Lithium Niobium	26 26 26 26 26 26 26 26 26 26 26 26 26 2	0.01 PCT 1 PPM 10 PPM 1 PPM 1 PPM 1 PPM 20 PPM 20 PPM 20 PPM 20 PPM 1 PPM 0.01 PCT 0.01 PCT 0.01 PCT 1 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA							

.....


ſ	TS		I B	n	te:	rte ar (ek ⊂1	Te egg	s	tiı	ng	S	Ser	vi	CI	es																				Geo Lab Rep		mi	cal	
CLIENT: FI	IRST POINT MINER							-66																			• •		07		GE				MT	SIDNEY				:
REPORT: VS	97-01818.0 (COM	PLE	TE	>													DATE	REC	EIVE	ED: 25	- 10	L-97	۲	JAIE	PRINI	ED:	12-	NUV-	97	PA	95 		- 3				•••••			
SAMPLE NUMBER	ELEMENT Ag UNITS PPM																					Mg PCT	Ca PC1		Na CT P(Sr PM P													
11842	<.2	4		4	18	1 17	38	93 <.2	<5	<5	<55	.85	675 <1	0 <	1	18	3 <2	20 <2	20 -	<1 0.0)1 >	10.00	0.03	3 <.	01 <.(01	<1	<1	<2	<1	13	<5	<10) <.	01	<1				
11843	<.2	8			24	1 15	41	80 <.Ż	<5	9	<54	.80	938 <1	0 1	3 10	057	25 <	20 <2	20	<1 0.5	4 >	10.00	0.17	7 <.	01 <.0	01	2	<1	<2	3	12	9	<10) <,	01	<1				
11844	<.2	_		3	22	2 15	98	87 <.2	<5	<5	<5 4	.77	705 <	0 <	1 (537	16 <	20 <2	20	<1 0.3	8 >	10.00	0,0	5 <.	01 <.(01	<1	<1	<2	1	15	6	<10	Ე≺.	01	<1				
11845	<.2	ç	•	3	18	1 15	42	82 <.2	<5	<5	<54	.82	720 <	0	2	406	13 <⁄	20 <2	20 -	<1 0.3	\$5 >	10.00	0.04	4 <.	01 <,0	51	<1	<1	<2	<1	14	<5	<10	0 <.	01	<1				
11846	<.2	11		3	21	2 16	58	87 < 2	<5	<5	<54	.91	711 <	0 <	1	424	12 <	20 <2	20	<1 0.2	29 >	10.00	0.0	5 <.	01 <.(01	<1	<1	<2	1	15	<5	<1	0 <.	.01	<1				
11847	<.2	15						82 <.2																																
11848	<.2							85 <.2																																
11849	<.2	ç	,	3	14	1 15	66	80 <.2	<5	<5	<54	.89	678 <	0 4	1	649	20 📢	20, <2	20	<1 0.3	\$6 >	10.00	0.0	8 <.	01 <.0	01	<1	<1	<2	1	15	7	<1	0 <.	.01	<1				
11850	<.2			3				87 <.2																																
1 18 51	<.2	1	ł	3	21	1 16	46	78 <.2	<5	<5	<5 4	.09	679 <	0 4	:1 1	069	21 <	20 <2	20	<1 0.5	57 >	×10,00	0.0	5 <.	01 <.4	01	<1	<1	<2	<1	15	7	<1	0 <.	.01	<1				
11852	<.2	18						79 <.2																																
11853	<.2	10	5	3				75 <.2																																
11854	<.2	10	5	3				91 <.2																																
11855	<.2		9	<2				73 <.2																																
11856	<.2		9	3	23	2 15	556	86 < 2	<5	<5	<5 4	.86	676 <	10 •	<1	769	17 <	20 <	20	<1 0.1	37 >	>10.00	0,0	6 <.	01 <.	01	<1	<1	<2	1	15	6	<1	0 <.	.01	<1				
11857	<.2	z	4	3	25	2 18	314	77 <.2	<5	<5	<5 4	4.25	i 494 <	10	11	360	27 <	20 <	20	<1 0.	59;	>10.00	0.0	12 <.	01 <.	01	<1	<1	<2	<1	12	9	<1	0 <.	.01	<1				
11858	<.2	1	0	4	22	1 1	515	76 <.2	<5	29	<5 4	4.32	2 484 <									>10.00																		
142670	<.2	2	2	3	15	1 1	701	75 <.2	<5	5	<5 /	4.39	524 <									>10.00																		
142671	<.2	1						56 <.2														>10.00																		
142672	<.2		5	3	18	1 14	482	78 <.2	<5	<	<5 (3.87	7 590 <	10	2 1	030	18 <	20 <	20	<10.	45 :	>10.00	0.3	51 <	.01 <.	01	<1	<1	<2	<1	15	6	o <1	0 <	.01	<1				
142673	<.2							52 <.2																																
142674	<.2	2	9	3	23	1	389	36 <.2	<5	<5	<5	4.29	7 50 <	10	28 1	346	29 <	20 <	20	<1 0.	50	8.66	5 0.0	> 8<	.01 <.	01	<1	<1	<2	<1	5	8	3 <1	0 <	.01	<1				
142675	<.2	!	4	3	17	11	446	81 < .2	<5	38	s <5	4.85	5 437 <	10	<1 1	151	23 <	20 <	20	<1 0.	48	>10.00	0.2	20 <	.01 <.	01	<1	<1	<2	<1	13	6	i <1	0 <	.01	<1				
142676								90 <.2																																
142677	<.2	! 1	6	4	55	11	537	81 <.2	<5	i <;	i <5	4.47	7 716 <	10	17 .	1560	29 <	:20 <	20	<1 0.	65	>10.00	0.0)4 <	.01 <.	01	2	<1	<2	2	15	8	3 <1	0 <	.01	<1				
142678	<.2	2 5	3	3	17	<1	966	69 <.2	<	i t	3 <5	2.57	2 299 <	10	24	828	24 •	:20 <	20	<1 0.	58	3.17	7 0.0)6 <	.01 <.	01	2	<1	<2	4	4	6	s <1	0 <	.01	<1				

ITS	S					eł Ci			est	ir	ıg	S	le:	rv	vic	es	5																		Ge La Re	b	nica	ιl
CLIENT: FIRST POINT REPORT: V97-01818.0				ORAT	ION												D	ATE R	ECEI	VED :	25-J	ul97	C	DATE	PRIN	TED :	: 12-	NOV	97	PA	GE	Pri 2 of		T: MĬ	SIDNEY	, 	 	
STANDARD ELEMEN' Name unit:	-					Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	se Ppm	Fe PCT	Mn PPM	Te PPM	Ba PPM		. V . PPM		W PPM	La PPM	Al PCT	Mg PCT	Ca PC1			K YCTF		-		Li PPM J		SC PPM -		Ti PCT				
BCC GEOCHEM STD 5	0.4	77	12	70	1	34 1	15 1	<.2 1	<5 1	7	<5 1	4.44	665 1	<10 1	187 1	46	1 19	<20 1	<20 1	7	3.14	1.59	0.9	9 0,0 1	60. 1	29 . 1	38 .1	8 1	<2 1	23 1	3 1	10 1	<10 1	0.20 1	12 1			
Number of Analyses Mean Value	0.4	77	12	70	1	34	15	0.1	3	7	3	4.44	665 -	5	187	46	119	10	10	7	3.14	1.59	0.9	9 Q.C	6.0. 	29	38	8	1 -	23	3	10 -	5	0.20	12 -			
Standard Deviation Accepted Value	0.7	90	11	80	2	40	18	0.1	1	8	1	4.74	720	0.2	200	54	133	4	2	5	3.09	1.83	1.0	8 0.0	60.	32	39	9	4	•	1	18	1	-	9			
ANALYTICAL BLANK	<.2	<1	<2	<1	<1	<1	<1	<.2	<5	<5	<5	<.01	<1	<10						· · .	<.01	<0.01	<.0	1 <.(1 <. 1	.01	<1 1	<1 1	<2 1	<1 1	<1 1	<5 1	<10 1	<.01	<1 1			
Number of Analyses Mean Value Standard Deviation	1 0.1 -	1 0.5 -	1 1 -	1 0.5	1 0.5 -	1 0.5	1 .0.5 -	1 0.1	1 3 •	1 3 -	1 3 -	005.	0.5 0.5	1 5 -		1 0.5 -	0.5	10	10	0.5	-	0.005			-	-	-	-	-	0.5	•	3	-	.005	-			
Accepted Value	0.2	2 1	2	1	1	ຸ 1	1	0.1	2	5	5	0.05	<u> </u> 1	.01	.01	1	<u>ា</u>	.01	.01	-01	<.01	<.0001	<.0	1 <.0	1 <.	.01	.01	.01	.01	.01	.01	.01	.01	<.01	.01			

٩.

ITS	5						с Т legg		st	ir	ıg		Se	rv	ic	ce	S																			Geo e Lab Report	mical	
CLIENT: FIRST POINT I	MINER								•					• ·																			PRO	JECT	: MT	SIDNEY		:
REPORT: V97-01818.0					•												D	ATE	RECE	I VED	: 25	- JUL	-97	Ð	ATE I	RINTI	D: 1	2-N	IOV-9	7	PAG	E 3	5 OF	3				
SAMPLE ELEMENT NUMBER UNITS	· • • ₽		• -	Zn PPM					Bi PM F		SD PPM		e Mn ' PPM		8a PPM		-	-	n W M PPM				Mg PCT	Ca PCT											Ti PCT 6			
11842	<.2	4	4	18	1	1738	93 <	.2	<5	<5 [°] .	<5 5	5.85	675	<10	<1	41	3 _. 3	<2	0 <20	.:::)<]	0.0	1 >1	0.00	0.03	<.0	<.0	I .<1	<	:1 <	2	<1	13	<5 <	10 <	.01	<1		
Prep Duplicate	<.2	4	4	16	1	1733	91 <	.2	<5	<5	<5 5	5.42	679	<10	<1	37	3 3	<2	0 <20) <1	<.0	1 >1	0.00	0.02	<.0	1 <.0	1 <1	<	:1 <	2	<1	13	<5 <	:10 <	.01	<1		
11850	4. 2	13	3	23	2	1667	87 <	:.2	<5	<u>ج</u>	<u>ج</u>	5.21	929	·	<1	116	4. 27	<2	0 <20) (<1	0.5	1 >1	0.00	0.02	<.0	٥.> ۱	1 <1	<	:1 <	2	<1	16	7 <	10 <	.01	<1		
Duplicate	4.2			23	2	1690	90 <u>s</u>	:.2	<5	<5	<5 !	5.24	954	<10	<u></u> <1	116	5 27	<2	0_<20) (<u><</u> 1	0.5	1 >1	0.00	0.02	<.0	1 <.0	<u>ح</u> ا	<	(1 <	2	<1	16	7 <	10 <	.01	<1		
		67	7	17	-1	044	40 4		-5	R	~ 5	2 53	, 200	∠10	24	82	н. В 24	. 0	0 <20	-::" }_<1	 D.5	8	3.17	0.06	. <.0	1 <.0	12	2 <	4	2	4	4	6 <	:10 <	.01	<1		
142678 Duplicate	•.2 •.2	55 54				1.1	69 × 67 ×												0 <20							1 <.0						3			.01			

,

BEATTIE CONSULTING LTD.

2955 WEST 38th AVENUE VANCOUVER, B.C. V6N 2X2

TEL: (604) 283 0895 FAX: (604) 283 0895 Internet: mbeattle@sxlonet.com

MEMORANDUM

TO: Patar Bradahaim, Elect Balat Minarala

FROM: Morris Beattle

DATE: April 29, 1997

RE: Nickel Recovery Testwork

Following are my recommendations for an initial testing program on your nickel project. The program is based on testing 3 samples of drill core which will be received by the laboratory as split NQ core. From your description of the material, it seems unlikely that leaching at a coarse crush size would be successful and the proposed tests are therefore based on a fine initial crush size. Before the testing is commenced, the samples will be examined to confirm whether a fine particle size is in fact warranted.

Each sample will be crushed to minus 1/4 inch, blended and sampled for nickel content and a multiple element ICP analysis. In addition, an acid consumption test will be conducted on each sample to establish the starting conditions for the leaching tests. Two initial leaching tests will be conducted on each sample, one at minus 1/4 inch and a second following grinding to minus 100 mesh. Each test will consist of a bottle roll test with intermittent rotation of the bottle. The solution pH will be monitored and adjusted with sulphuric acid as necessary. Solution samples will be taken after 2, 6, 24, 48 and 72 hours to monitor the progress of nickel leaching and acid consumption. These tests will be used to define the amenability of the material to direct leaching. If these tests are successful, the next stage of testing will be to optimize the leaching conditions, including locked cycle leaching with solvent extraction of the pregnant solution to better define the net acid consumption.

If the initial leaching testwork is not successful (technically or economically), the next phase of testwork will be direct at preconcentration of the nickel mineral. Such preconcentration could be conducted by means of magnetic and/or gravity concentration although magnetic concentration is likely favoured due to its greater effectiveness for the recovery of fine particles. The preconcentration may result in greatly improved leaching and SXEW economics. If the preconcentration is demonstrated to result in high recoveries and ratio of concentration, additional tests will be done to produce sufficient concentrate for leaching testwork.

Upon the completion of this preliminary test program, some initial economic projections should

Page 2

be made for the project in order to justify more detailed metallurgical studies.

A sample size of 20 kg for each of the three composites will be adequate for this initial program. I would recommend that this initial work be conducted at Process Research Associates so that the progress of the work can be monitored closely and the results can be obtained in a timely manner. Once the initial sample analyses are available, I will be able to set out detailed test instructions for the lab.

FACSIMILE

PROCESS RESEARCH ASSOCIATES LTD.

9145 Shaughnessy Street Vancouver, B.C. Canada, V6P 6R9 Tel.: (604) 322-0118 Fax: (604) 322-0181 E-mail: Bryan@PRAprocess.com

PROPOSAL

Company:	First Point Minerals (Corp. Date:	May 5, 1997
Attention:	Peter Bradshaw	Fax:	Proposal 1
FAX Number:	(604) 681-8799		
From:	Bryan Tatterson	No. of pages (including this page):	3

Our proposal for conducting the initial scoping tests on your samples is attached. We are only proposing straightforward sulphuric acid leaches at present which will give the first indication of the leaching potential of the samples. The tests will indicate a maximum potential extraction's using sulphuric acid. The determined acid consumption's will likely be much higher than from leaching coarser material.

The gravity concentration test would be done using a Knelson Centrifugal Concentrator. The Knelson concentrates would be upgraded using manual panning. The three products would all be assayed.

The scoping magnetic separation test would be conducted using a Davis Tube. Only two products, a magnetic fraction and a non-magnetic fraction, would be produced.

Metallurgical balance's would be calculated for all the tests.

If you have any questions please contact me.

Regards,

Fyan

· het \$1.00 chile. • tale 2 samples have + drup off tonomer

Process Research Associates Ltd. 8145 Shaughnessy Street, Vancouver, B.C. V&P 6R9 Telephone:(604)322-0118 Fax:(604)322-0181

May 5, 1997

First Point Minerals Corp. Suite 2170 - 1050 West Pender Street, Vancouver, BC., V6E 3S7.

ATTENTION : Peter M.D. Bradshaw, President

Dear Peter,

PROPOSAL: METAL RECOVERY STUDY

I have pleasure in submitting our proposal for a laboratory study on the Ni-Co material as discussed at our meeting at the PRA offices on Friday May 2, 1997. A staged approach is recommended for the study. In Stage I, scoping tests are proposed to provide preliminary information about ultimate metal extraction's and maximum acid consumption as a function of the H_2SO_4 concentration. These tests will be conducted on the pulverised samples. Stage II bottle roll tests will be conducted using the optimum acid concentrations determined from Stage I. The objective of the bottle roll tests will be to determine the Ni and Co extraction's as a function of particle size. The information will be used to decide which crush size should be used in the column testing in Stage III.

The following is a breakdown of the costs for the initial scoping tests. As discussed the scoping tests could be done on the pulverised reject pulp samples from the assay programme. The assay of the composite head sample will be done for both total and acid soluble Ni and Co.

Our suggested program will be carried out as follows :

Receive samples and prepare composite.	\$55.00
Assay for Fe, Ni, Co and multi-element ICP metal analysis.	\$65.00
Size Analysis	\$25.00
Acid Consumption Test	\$35.00
Leach Tests controlled at pH values of 1.0, 1.5 and 2.0 (@ \$250 ea.)	\$750.00
Assay Products (3) for Fe, Ni & Co & H ₂ SO ₄ of PLS	\$105.00
Gravity Concentration Scoping Test	\$250.00
Assay Products (3) for Fe, Ni & Co	\$90.00
Magnetic Concentration Scoping Test	\$55.00
Assay Products (2) for Fe, Ni & Co	\$60.00
Disbursements	\$20.00
Supervision and Reporting	\$400.00
Total	<u>\$1,910.00</u>

First Point Minerals Corp.	PROPOSAL	May 5, 1997
	2	

P.R.A.

The total estimated cost for this proposal is \$1,910,00. This total does not include GST (7%) which would be added to all invoices. PRA's practice for extended projects is to issue monthly invoices. For new clients, it is the policy of PRA that we receive a 50% advance payment (\$1,000.00) of the total estimated cost prior to commencing the test program. This advance will be credited against the final Invoice.

The above tests would be done on the as received samples. If additional grinding of the pulverized samples is required then the per test cost would increase by \$50.00. Additional tests that are required, or requested will be recommended in a separate proposal requiring approval.

The test work can be scheduled as soon as the samples and payment are received with the first tests commencing within the first week. All procedures and results will be summarized in a report. Results will, however, be made available to you as soon as they are produced. The report will include recommendations for Stage II bottle roll tests.

At the end of the test work the remaining unused sample plus all test products can be returned, stored or disposed of. The associated costs would be for the clients account,

Thank you for the opportunity to prepare a cost proposal for your project. We await your letter of authorisation and instructions to proceed. If you have any questions concerning the procedures or the associated costs, please call Bern or me.

Sincerely,

PROCESS RESEARCH ASSOCIATES LTD.

Bryan Tatterson, P. Eng., Senior Metallurgical Engineer

FACSIMILE

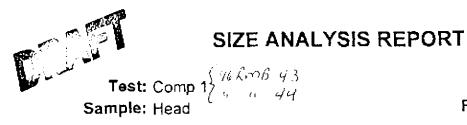
PROCESS RESEARCH ASSOCIATES LTD.

9145 Shaughn Vancouver, B. Canada, V6P	C.		4} 322-0118 4) 322-0181 rocess.com
Company:	First Point Minerals (Corp. Date: M	May 5, 1997
Attention:	Peter Bradshaw	Fax:	2
FAX Number:	(604) 681-8799	Project:	97-053
From:	Bryan Tatterson	No. of pages (including this page):	3

The results of a size analysis on the as received sample is attached together with the sample receiving sheet.

The sample is relatively coarse and has only been crushed. We have sub-divided the composite into 2 kg portions for testing and await further instructions.

If you have any questions please contact me.


Regards,

Forth

SAMPLE RECEIVING LOG

Project No.: 97-053 Received by: Jason Date received: Page: May 9, 1997 1 of 1

Count	Identification	Wet	Dry	Sample Description	Weight
	100 01010 0 00001D 11				(g)
	V96-01218-0-96RMB-44				7,080.0
	V96-01218-0-96RMB-43	<u> </u>		Reject	5,054.0
3	<u> </u>	 		l	
4	· · · · · · · · · · · · · · · · · · ·	[!		Total	12,134.0
5					
6 7					
8		 	·		
9 10		┠────			
					<u> </u>
11 12					
13		<u> </u>		<u> </u>	
14	· · · · · · · · · · · · · · · · · · ·				
15		<u> </u>	<u></u>		
16	 	<u></u>		<u></u>	
17		╀───			
		<u> </u>		<u> </u>	
18 19		<u> </u>		······	
20		{		{ - <u> </u>	
20		<u>}</u>			
22	<u> </u>	}]	
22		<u> </u>			
23		<u> </u>			
25	ļ	<u> </u>	<u> </u>		_ <u></u>
26		<u></u>			
20	<u></u>	{		[
		+	<u> </u>		
28 29	<u> </u>	<u> </u>			
30		<u>-</u>	┟┈───		
31		<u>+</u>	<u> </u>		
32	<u> </u>	+	<u></u>	+	
33	<u> </u>	}			
34			<u> </u>		
35	······································		<u>+</u>		
36	<u> </u>		<u></u>		
37			<u>†</u> ───		+
38			f		
39		+	+		
40		· · · · ·	†		

Date : May 14, 1997 Project : 97-053

Grind Time: As Received

Sieve S	Size	Individual Percentage	
Tyler mesh	Microns	Retained	Passing
6	3,360	3.4	96.6
9	2,057	14.3	82.3
14	1,190	14.4	67.9
20	840	9.3	58.6
28	590	7.2	51.4
35	420	6.4	45.0
48	297	6.0	39.0
65	210	5.4	33.6
100	149	4.7	28.9
150	105	4.2	24.7
200	74	3.5	21.2
270	53	2.9	18.3
325	44	1.0	17.3
400	37	1.1	16.1
Undersize	- 37	16.1	······
TOTAL:		100.0	

80% Passing Size (µm) = 1,897

Contar Copy \$ 001

FACSIMILE

PROCESS RESEARCH ASSOCIATES LTD.

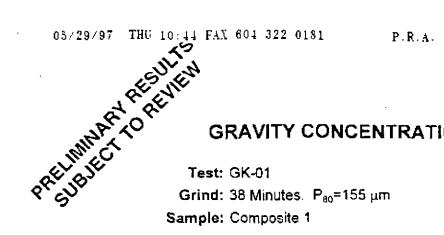
9145 Shaughr Vancouver, B. Canada, V6P	С,	•	94) 322-0118 94) 322-0181 rocess.com
Company:	First Point Minerals	Corp. Date: N	lay 29, 1997
Attention:	Peter Bradshaw	Fax:	3
FAX Number:	(604) 681-8799	Project:	97-053
From:	Bryan Tatterson	No. of pages (including this page):	10

The draft results of the test results on the Composite sample are attached.

The Knelson gravity concentration test at a P_{gg} of 155 µm resulted in 35.4% Ni recovery to the Knelson concentrate at 6.8 mass %. The pan concentrate recovery was 19.9% Ni in 0.3 mass %.

The magnetic Separation scoping tests were disappointing in that high mass recoveries were obtained with only a marginal concentration ratio. The magnetics recovery (as received P_{ao} of 1,897 µm) was 63.3% Ni in 53.1 mass %. The milled sample recovery at a P_{ao} of 155 µm was 81% Ni in 63.4 mass %. The Ni grade was only slightly improved.

The bottle roll leach test on the as received composite sample resulted in 30% Ni dissolution in 24 hours. The tank leach test on the milled sample at P_{so} of 78 µm resulted in a Ni dissolution of 67%. The kinetic curves for both leaches indicate that longer leach times would be beneficial. The acid consumption on the un-milled sample was 63.7 kg/tonne compared to194.4 kg/tonne for the milled sample. The higher consumption was probably due to the liberation of the acid consuming minerals in the sample.

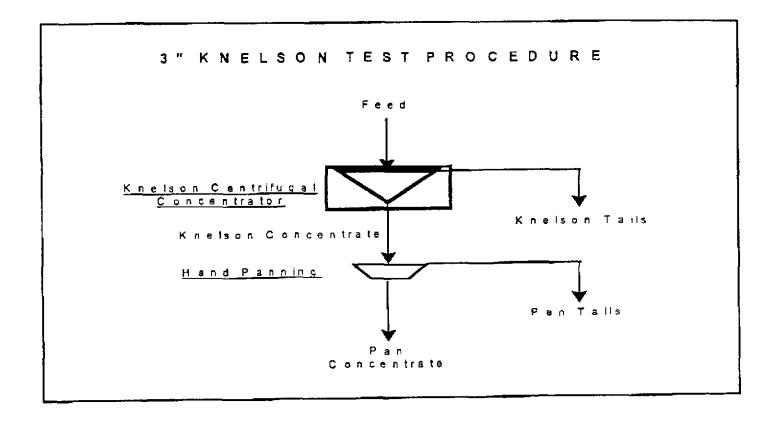

A further bottle roll test on the un-milled sample is recommended and should be continued for 5 days with sampling at 4, 8, 24, 48, 72 and 96 hours. If necessary the leach could be extended if indications are that the nickel is continuing to leach at a satisfactory rate and recovery.

A second recommendation based on the results to date would be to grind to a P_{so} of 78 μ m followed by gravity concentration and leaching of the Knelson concentrates under the same conditions as leach L-02.

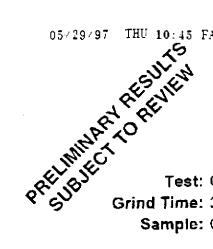
Please advise whether we should proceed as recommended. If you have any guestions please contact me.

Regards, Copy sent to/Morris Beattie

Winword//forms/Faxform QF-004, Revision E

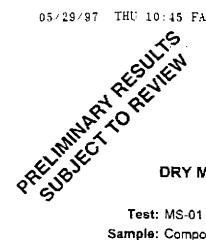

GRAVITY CONCENTRATION TEST REPORT

Sample: Composite 1


Date: May 21, 1997

Project: 97-053

Products	Weig	Weight		Assay		Distribution		
	{g}	(%)	Fe (%)	Ni (%)	Co (%)	Fe (%)	Ni (%)	Co (%)
Pan Concentrate	3.4	0.3	45.30	12.9	0.258	3.0	19,9	7.7
Pan Tails	63.9	6.4	12.60	0.535	0.020	15.4	15.5	11.2
Total Knelson Conc.	67.3	6.8	14.26	1.161	0.032	18.4	35.4	18.9
Knelson Tails	927.6	93.2	4.59	0.154	0.010	81.6	64.6	<u>81,1</u>
Total	994.9	100.0	5.24	0.222	0.011	100.0	100.0	100,0
Measured			5.20	0.228	0.01			

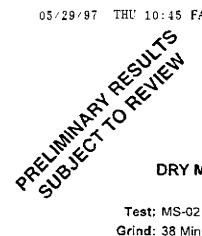

SIZE ANALYSIS REPORT

Test: GK-01 Grind Time: 38 minutes Sample: Composite 1

Date : May 21, 1997 Project : 97-053

Sieve Size		Individual Percentage	Cumulative Percentage
Tyler mesh	Microns	Retained	Passing
65	210	4.0	91.9
100	149	13.4	78.5
150	105	13.8	64.7
200	74	9.8	54.9
270	53	8.3	46.6
325	44	2.4	44.2
400	37	3.8	40.4
Undersize	- 37	40.4	
TOTAL:		100.0	

80% Passing Size (µm) = 155


DRY MAGNETIC SEPARATION TEST METALLURGICAL BALANCE

Date: May 21, 1997 roject: 97-053

Sample: Composite 1 As Received P_{ac} =1,897 μm Objective: Concentration of Awaruite (FeNi Alloy)

Products	Weight		Assay (%)			Distribution (%)		
	(g)	(%)	Fe	Ni	Co	Fe	Ni	Co
DLIMS Magnetics @ 300 rpm	543.8	53.1	6.34	0.288	0.012	67.0	63.3	59.5
DLIMS Non-Mags @ 300 rpm	247.8	24.2	3.09	0.171	0.009	14.9	37.1	20.3
	791.6	77.2	5.32	0.251	0.011	81.9	80.5	79.9
DLIMS Non-Mags @ 200 rpm	148.6	14.5	2.64	0.161	0.008	7.6	9.7	10.8
	940.2	91.7	4.90	0.237	0.011	89.5	90.1	90.7
DHIMS Non-Mags @ 300 rpm	84.8	8.3	6.34	0.288	0.012	10.5	9.9	9.3
Total	1025.0	100.0	5.02	0.241	0.011	100.0	100.0	100.0
Measured		j	5.20	0.228	0.01]		

DRY MAGNETIC SEPARATION TEST METALLURGICAL BALANCE

Test: MS-02 Grind: 38 Minutes. Pao=155 µm Sample: Composite 1 Objective: Concentration of Awaruite (FeNi Alloy)

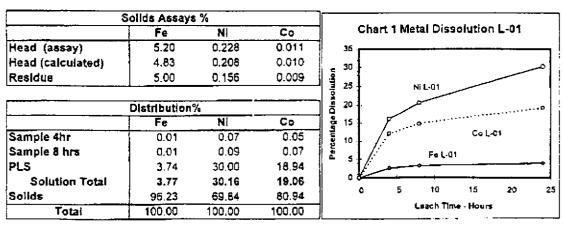
Date: May 21, 1997 roject: 97-053

Products	Weight		Assay (%)			Distribution (%)		
	(g)	(%)	Fe	Ni	Co	Fe	Ni	Co
DLIMS Magnetics @ 300 rpm	621.0	63.4	6.09	0.288	0.012	79.9	81.0	72.7
DLIMS Non-Mags @ 300 rpm	154.0	15.7	2.84	0.123	0.008	08 9.2 8.6 12.0		
	775.0	79.1	5.44	0.255	0.011	89.2	89.6	84.7
DLIMS Non-Mags @ 250 rpm	136.4	13,9	2.56	0.117	800.0	7.4	7.2	10.6
	911.4	93.0	5.01	0.235	0.011	96.5	96.8	95.3
DLIMS Non-Mags @ 200 rpm	68.1	7.0	2.40	0.103	0.007	3.5	3.2	4.7
Total	979.5	100.0	4.83	0.225	0.010	100.0	100.0	100.0
Measured			5.20	0.228	0.01			

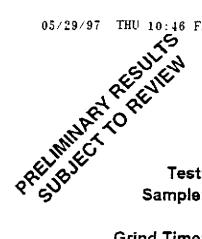
AWARUITE METAL RECOVERY STUDY

SULPHURIC ACID LEACH

Test:	L-Q1	
Sample:	Composite	1


Date :	May 18,	1997
Project:	97-053	

LEACH CONDITIONS		TEST DESCRIPTION - BOTTLE ROLL LEACH				
Solids:	250 g	-as received solids were pulped to 10% solids				
Solution :	2,308 g	-adjusted to, and maintained at pH 1.5 using 12N H2SO4.				
Solids :	10 %	-sampled at 4 and 8 hours				
Grind Size - P _{ao} :	1,897 µm	-test ended after 24 hours				
Temperature:	Ambient °C	-filtered and displacement washed with pH 1.5 solution				
pH :	1.5	followed by two hot water displacement washes				
Test Duration :	24 hours	-solution and solids fire assayed for Fe, Ni & Co content				


-test ended after 24 hours
-filtered and displacement washed with pH 1.5 solution
followed by two hot water displacement washes
-solution and solids fire assayed for Fe, Ni & Co content
-

Leaching Profile								
Time	Slurry	PLS	PLS	H ₂ SO ₄				
	Mass	Mass	Volume	Added	Temp	pН	ORP	
Hours	(g)	(g)	(mL)	(kg/tonne)	("C)		(mV)	
··			••			9,90		
0.0	2,558.0	2308.0	2204	82.3	23	1.50	476	
1.0						1.30		
2.0						1,38		
3.0						1.44		
4.0	2,563.0	2330.6	2226		19	1.53	432	
5.0				4.7		1.65		
7.0				7.1		1.62		
8.0	2,560.0	2327.6	2223		21	1.58	424	
8.3				11.8				
23.1				11.8		2.04		
24.0	2,562.0	2329.6	2225			1.80	403	
				117.6				
		H₂SO₄ Con	sumption =	63.7 k	g/tonne			

		Solut	lon Assays		
As	isay	Fe	Ni	Co	H ₂ SO ₄ (g/L)
PLS 4 hrs	mg/L	140	37.5	1.40	
PLS 6 hrs	mg/L	170	47.7	1.70	
PLS	mg/L	203	70.0	2.20	6.06
Wash	mg/L	21	16.2	0.20	

SIZE ANALYSIS REPORT

Test: Comp 1 Sample: Head

Date : May 14, 1997 Project : 97-053

Grind Time: As Received

Sieve	Size	Individual Percentage	-
Tyler mesh	Microns	Retained	Passing
6	3,360	3.4	96.6
9	2,057	14.3	82.3
14	1,190	14.4	67.9
20	840	9.3	58.6
28	590	7.2	51.4
35	420	6.4	45.0
48	297	6.0	39.0
6 5	210	5.4	33.6
100	149	4.7	28.9
150	105	4.2	24.7
200	74	3.5	21.2
270	53	2.9	18.3
325	44	1.0	17.3
400	37	1.1	16.1
Undersize	- 37	16.1	
TOTAL:		100.0	

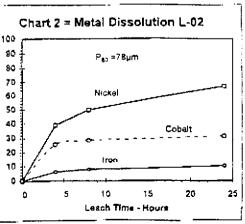
80% Passing Size (µm) = 1,897

AWARUITE METAL RECOVERY STUDY

SULPHURIC ACID LEACH

Test: L-02 Sample: Composite 1 Date : May 18, 1997 Project: 97-053

 $\begin{array}{ccc} \mbox{LEACH CONDITIONS} \\ & Solids: & 974 g \\ & Solution: & 978 g \\ & Solids: & 50 \% \\ \mbox{Grind Size - P}_{80}: & 78 \ \mu m \\ \mbox{Temperature: Ambient }^{\circ}C \\ & pH: & 1.5 \\ \mbox{Test Duration: } & 24 \ hours \\ \end{array}$


TEST DESCRIPTION - TANK LEACH -solids were ground for 48 minutes at 65% solids -repulped to 50% solids -adjusted to, and maintained at pH 1.5 -sampled at 4 and 8 hours -test ended after 24 hours -filtered and displacement washed with pH 1.5 solution followed by a hot water displacement wash.

-solution and solids fire assayed for Fe, Ni & Co content

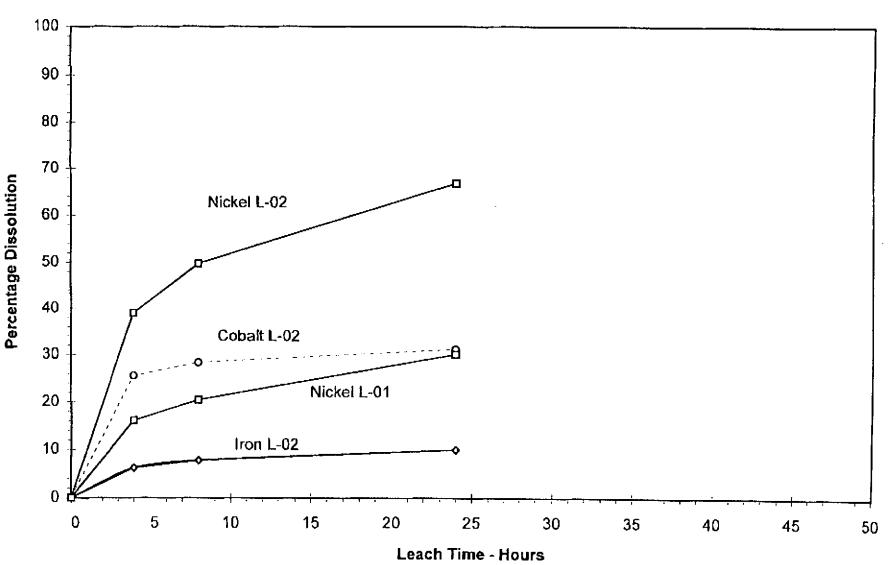
			Le	aching Profile			
Time	Sturry	PLS	PLS	H₂SO₄			
	Mass	Mass	Volume	Added	Temp	рH	ORP
Hours	(g)	(g)	(mL)	(kg/tonne)	(°C)		(mV)
0.0	1,952.0	978.0	845		15	8.40	115
0.3				60. 4	23	1.50	
4.0	2,250.3	1385.7	1197	66.4	21	1.50	326
8.0	2,356.3	1491.7	1289	24.1	21	1.50	328
24.0	2,496.3	1631.7	1410	62.8	21	1.50	334
		H₂SO₄ Con	sumption =	194.4	(g/tonne		

	Solutio	n Assays		
Assay	Fe	NI	Co	H ₂ SO₄ (g/L)
PLS 4 hrs mg/L	2,500	690	21.5	
PLS8hrsmg/L	2,900	812	22.0	
PLS mg/L	3,400	994	22.0	13.340
Wash mg/L	1,620	457	8.3	

S	olids Assays	%]
	Fe	NI	Co	Chart 2
Head (assay)	5.20	0.228	0.011	7 100
Head (calculated)	4.97	0.217	0.010	5 80 -
Residue	5.04	0.081	0.008	90 90 90 90 90 90 90 90 90 90 90 90 90 9
	Distribution ⁹	<u>/a</u>		1 10 50 1
	Fe	Ni	Co	
Sample 4hr	0.05	0.33	0.21	
Sample 8 hrs	0.06	0.38	0.22	5 20 /.0
PLS	9.90	66.21	30.83	10 1/ ~
Solution Total	10.01	66.92	31.26	0.0
Solids	89.99	33.08	68.74	٥
Total	100.00	100.00	100.00]

Test: L-02 Sample: Leach Residue

Date : May 27, 1997 Project : 97-053


Grind Time: 48 minutes

Sieve	Size	Individual Percentage	Cumulative Percentage
Tyler mesh	Microns	Retained	Passing
65	210	0.0	100.0
100	149	1.1	98.9
150	105	6.1	92.8
200	74	14.8	78.0
270	53	13.7	64.3
325	44	4.2	60.1
400	37	4.7	55.4
Undersize	- 37	55.4	
TOTAL:		100.0	

80% Passing Size (µm) = 78

2009

Chart 3 Metal Dissolution

Process Research Associates Ltd.

P.R.A.

@ 010

FACSIMILE

P.R.A.

PROCESS RESEARCH ASSOCIATES LTD.

9145 Shaughr Vancouver, B. Canada, V6P	.C.	•	4) 322-0118 4) 322-0181 rocess.com
Company:	First Point Minerals	Corp. Date: M	lay 29, 1997
Attention:	Peter Bradshaw	Fax:	4
FAX Number:	(604) 681-8799	Project:	97-053
From:	Bryan Tatterson	No. of pages (including this page):	6

The revised draft results of the test results (previously sent Fax 3) on the Composite sample are attached.

We carried out a scoping wet magnetic separation test (WHIMS) on a portion of the MS-01 magnetics fraction (as received) and obtained a concentrate of 3.7 weight % which was probably magnetite. No assays are planned for the products. The WHIMS tail still contained a significant amount of magnetic minerals possibly un-liberated awaruite (hopefully) and magnetite.

The assayer conducting assays on the previous test products had difficulty dissolving all the pan concentrate sample due to the presence of a finely divided black magnetic mineral, presumably magnetite.

Morris and 1 had a meeting today to discuss the results to date which indicated that gravity separation has a lower potential for producing a satisfactory upgrading and recovery of the awaruite into a concentrate suitable for the leach feed than WHIMS concentration. Morris therefore decided to carry out another test as follows.

A 4kg sample will be milled to 70% minus 200 mesh to liberate the awaruite and magnetite and passed through the Sala WLIMS separator. The products will be sampled for assay and the concentrate produced will be leached as in L-02. The leach acid consumption should be reduced by the removal of the para-magnetic minerals into the tailing.

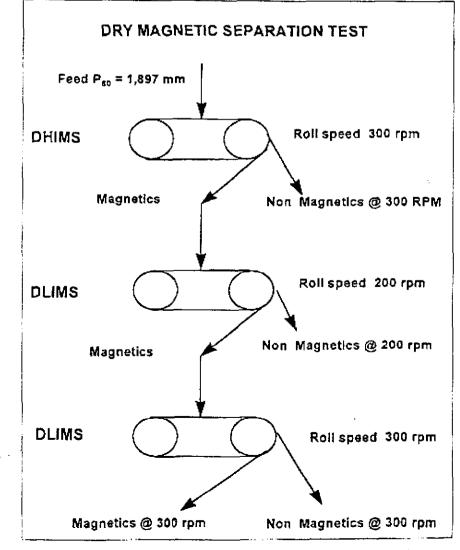
If you have any questions please contact me.

Regards,

Copy sent to Morris Beattie

Attachments:

Magnetic Separation Tests2 pagesScreen Analyses3 pages

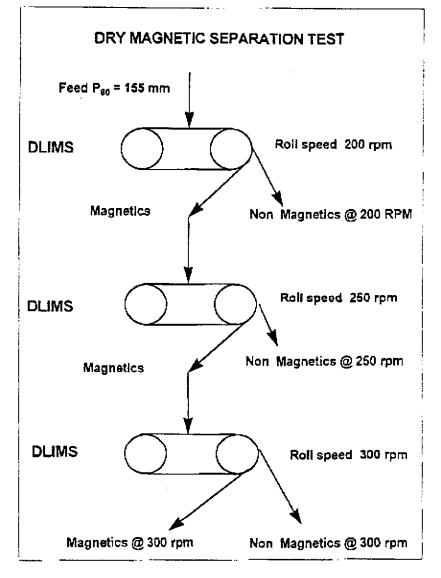

Winword//forms/Faxform QF-004, Revision E

DRY MAGNETIC SEPARATION TEST METALLURGICAL BALANCE

PRELIMINARY RESULT Test: MS-01 Grind: As Received P_{eo} =1,897 μm Sample: Composite 1 Objective: Concentration of Awaruite (FeNi Alloy)

Date: May 21, 1997 Project: 97-053

Products	We	ight		Assay (%	á)	Dis	tribution	(%)
	(9)	(%)	Fe	NI	Co	Fe	NI	Co
DLIMS Magnetics @ 300 rpm	543.8	53.1	6.34	0.288	0.012	67.0	63.3	59.5
DLIMS Non-Mags @ 300 rpm	247.8	24.2	3.09	0.171	0.009	14.9	17.1	20.3
	791.6	77.2	5.32	0.251	0.011	81.9	80.5	79.9
DLIMS Non-Mags @ 200 rpm	148.6	14.5	2.64	0.161	0.008	7.6	9.7	10.8
	940.2	91.7	4.90	0.237	0.011	89.5	90.1	90.7
DHIMS Non-Mags @ 300 rpm	84.8	8.3	6.34	0.288	0.012	10.5	9.9	9.3
Total	1025.0	100.0	5.02	0.241	0.011	100.0	100.0	100.0
Measured			5.20	0.228	0.011	1		

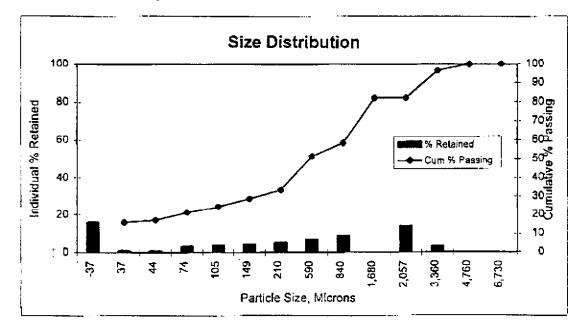


DRY MAGNETIC SEPARATION TEST METALLURGICAL BALANCE

PRELIMINARY RESULTS Test: MS-02 Grind: 38 Minutes. Peo=155 µm Sample: Composite 1 Objective: Concentration of Awaruite (FeNi Alloy)

Date: May 21, 1997 Project: 97-053

Products	We	lght		Assay (%	(i)	Dis	tribution	(%)
	(g)	(%)	Fe	Ni	Co	Fe	NI	Co
DLIMS Magnetics @ 300 rpm	621.0	63.4	6.09	0.288	0.012	79.9	81.0	72.7
DLIMS Non-Mags @ 300 rpm	154.0	15.7	2.84	0.123	0.008	9.2	8.6	12.0
	775.0	79.1	5.44	0.255	0.011	89,2	89,6	84.7
DLIMS Non-Mags @ 250 rpm	136.4	13.9	2.56	0.117	0.008	7.4	7.2	10.6
-	911.4	93.0	5.01	0.235	0.011	96.5	96.8	95.3
DLIMS Non-Mags @ 200 rpm	68.1	7.0	2.40	0.103	0.007	3.5	3.2	4.7
Total	979.5	100.0	4.83	0.225	0.010	100.0	100.0	100.0
Measured			5.20	0.228	0.011			

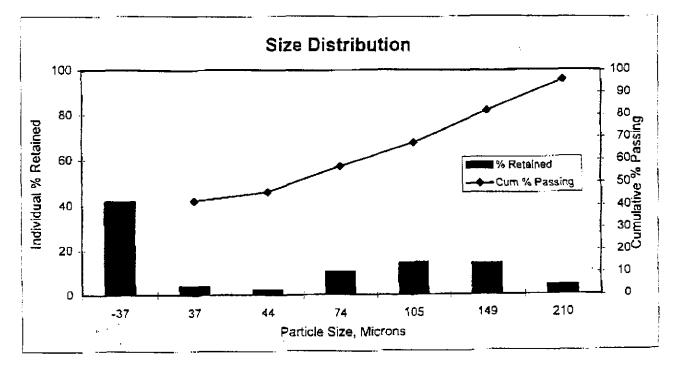


PRELIMINARY RESULTS Test: Comp 1 Grind Time: As Received Sample: Head

Date : May 14, 1997 Project : 97-053

Sieve Size		Individual Percentage	Cumulative Percentage
Tyler Mesh	Microns	Retained	Passing
6	3,360	3.4	96.6
9	2,057	14.3	82.3
14	1,190	14.4	67.9
20	840	9.3	58.6
28	590	7.2	51,4
35	420	6.4	45.0
48	297	6.0	39.0
65	210	5.4	33.6
100	149	4.7	28.9
150	105	4.2	24.7
200	74	3.5	21.2
270	53	2.9	18.3
325	44	1.0	17.3
400	37	1.1	16. 1
Undersize	- 37	16.1	
TOT	AL:	100.0	

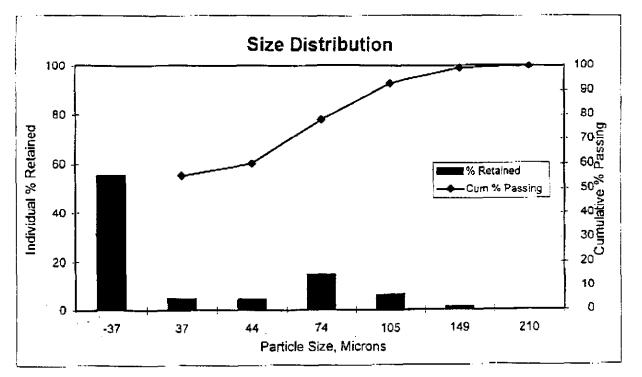
80% Passing Size (µm) = 1,897



PRELIMINARY RESULTS Test: GK-01 Grind Time: 38 minutes Sample: Composite 1

Date : May 21, 1997 Project : 97-053

Sieve	Size	Individual Percentage	Cumulative Percentage
Tyler Mesh	Microns	Retained	Passing
65	210	4.2	95.8
100	149	14.0	81.8
150	105	14.3	67.4
200	74	10.2	57.2
270	53	8.7	48.6
325	44	2.5	46.1
400	37	4.0	42.1
Undersize	- 37	42.1	
тот	AL:	100.0	



PRELIMMARY RESULTS Test: L-02 Grind Time: 48 minutes Sample: Leach Residue

Date : May 27, 1997 Project : 97-053

Sieve Size		Individual Percentage	Cumulative Percentage
Tyler Mesh	Microns	Retained	Passing
65	210	0.0	100.0
100	149	1.1	98.9
150	105	6.1	92.8
200	74	14.8	78.0
270	53	13.7	64.3
325	44	4.2	60.1
400	37	4.7	55.4
Undersize	- 37	55.4	
тот	AL:	100.0	

80% Passing Size (µm) = - 78

FACSIMILE

PROCESS RESEARCH ASSOCIATES LTD.

9145 Shaughnessy Street Vancouver, B.C. Canada, V6P 6R9		Fax: (60	Tel.: (604) 322-0118 Fax: (604) 322-0181 E-mail: Bryan@PRAprocess.com				
Company:	First Point Minerals	Corp. Date: M	lay 29, 1997				
Attention:	Peter Bradshaw	Fax:	5				
FAX Number:	(604) 681-8799	Project:	97-053				
From:	Bryan Tatterson	No. of pages (including this page):	9				

The draft results of the test results on the W.L.I.M.S./Leach Test are attached.

As mentioned in the last Fax the test was carried out as discussed with Morris Beattie. The sample was milled to about 70% minus 200 mesh to liberate the awaruite and magnetite and passed through a Sala WLIMS Drum Separator. Rougher and scavenger concentrates were collected and combined. The combined magnetic concentrate produced was given a 24 hour sulphuric acid leach at pH 1.5. All test products were sampled for assay.

Overall Balance	Weight	Assay (%)			Distribution (%)			
· · · · · <u>·</u> · · · · · · · · · · · · ·	(%)	Fe	Ni	Co	Fe	Ni	Co	
Leach Solution	1.6				2.4	26.6	7.6	
Leach Residue	16.7	20.00	0.553	0.036	56.3	30.5	29,9	
Magnetic Concentrate	18.3	18.80	0.856	0.043	58.7	57.1	37.6	
Non-Magnetics	81.7	2.96	0.144	0.016	41.3	42.9	62.4	
Total	100.0				100.0	100.0	100.0	

The magnetic concentrate produced resulted in grade increases of Fe, Ni and Co but the recoveries obtained were only 59%, 57% and 38% respectively. A size analysis of the leach residue showed that the grind was possibly still too coarse at a P_{so} of 113 µm compared to the L-02 leach residue P_{so} of 78 µm. A finer grind could possibly have resulted in greater separation selectivity with resulting higher grades. Additional tests are indicated.

The leach Ni dissolution of was 46.6% after 24 hours giving an overall Test Ni recovery of 26.6%. The leach kinetic curve indicated that, under the test conditions used, longer leach times would be beneficial. Changes to the grind and potentially higher grade of the W.L.I.M.S. concentrate would require investigation to determine the optimum leach conditions of time, temperature, pressure or pH.

The leach acid consumption was reduced to 144 kg/tonne by the removal of some of the acid consuming minerals into the W.L.I.M.S. tailing. The L-02 consumption was 194

Project: 97-053 - First Point Minerals Corp 2

kg/tonne. Improvements to the W.L.I.M.S. separation selectivity could result in a further decrease of the acid consumption. The following table shows the rate of acid addition during the test in order to maintain the required pH of 1.5.

Time Period	Actual Time (Hours)	AcId Addition (kg H₂SO₄/tonne) L-03	Acid Addition Rate (kg H ₂ SO ₄ /tonne/hr) L-03		
Initial Period	0.92	96.7	105		
Initial to 4 Hours	3.17	25.3	8.0		
4 to 8 Hours	3.67	11.5	3.1		
8 to 24 Hours	16.33	25.3	1.5		
Test Total	24.08	158.8	6.6		

Most of the acid requirement was for reducing the pH from 9.4 and stabilizing at 1.5. As can be seen from the table extending the leach time should result in only a small increase in acid requirement

The recommendations for any further tests are:

- 1. Optimize grind/magnetic selectivity relationship.
- 2. Inclusion of a W.L.I.M.S. Cleaning Step.
- 3. Optimize Leach conditions.

The core samples have arrived and I am attaching the note from Ursula Mowat which accompanied the samples.

If you have any questions please contact me.

Regards.

To Morris Beattie

Fax No. 263-0695

Attachments:

Ursula Mowat's Note Magnetic Separation Test Leach Test Report Size Analyses Size Analyses

1 page 1 page 2 pages L-02 & L-03 L-02 & L-03 Residue 2 pages Head Sample 1 pages

Process Research Associates Ltd.

June 25, 1997

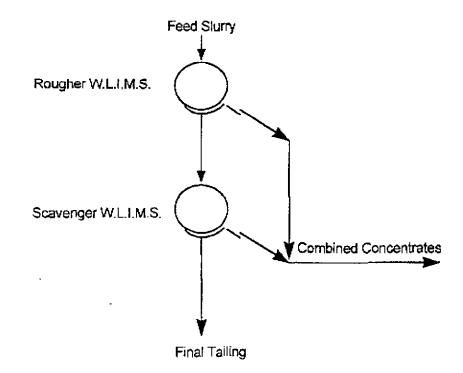
P.R.A.

WET MAGNETIC SEPARATION TEST METALLURGICAL BALANCE

Test: MS-03

.

Date: June 5, 1997 Project: 97-053


Grind: 44 Minutes. P_{so} = 113 μm **Sample:** Composite 1

Objective: Concentration of Awaruite (FeNi Alloy)

.

Products	Weight		Assay (%)			Distribution (%)			
	(g)	(%)	Fe	Ni	Co	Fe	Ni	Co	
Magnetic Concentrate	602.6	18.3	18.80	0.856	0.043	58.7	57.1	37.6	
Non-Magnetics	2,689.7	81.7	2,96	0.144	0.016	41.3	42.9	62.4	
Total	3,292.3	100.0	5.86	0.274	0.021	100.0	100.0	100.0	
Measured			5.20	0,228	0.011				
Overall Balance	Weight			Assay (%)			Distribution (%)		
	(g)	(%)	Fe	NI	Co	Fe	Ni	Co	
Leach Solution	53.5	1.6				2.4	26.6	7.6	
Leach Residue	549.0	16.7	20.00	0.553	0.036	56.3	30.5	29.9	
Magnetic Concentrate	602.6	18.3	18.80	0.856	0.043	58.7	57.1	37.6	
Non-Magnetics	. 2,689.7	81,7	2.96	0.144	0.016	41,3	42.9	62.4	
Total	3,292.3	100.0				100.0	100.0	100.0	

W.L.I.M.S. MAGNETIC SEPARATION TEST

AWARUITE METAL RECOVERY STUDY

SULPHURIC ACID LEACH

Test:	L-03
Sample:	Composite 1

Date : June 05, 1997 Project: 97-053

LEACH CONDI	TIONS	
Solids:	511	9
Solution :	678	ġ
Solids :	43	%
Grind Size - P ₈₀ :	113	μm
Temperature:	Ambient	°C
рН :	1.5	
Test Duration :	24	hours

TEST DESCRIPTION - TANK LEACH - solids were ground for 44 minutes at 65% solids

- a W.L.I.M.S Test was carried out using a SALA drum.

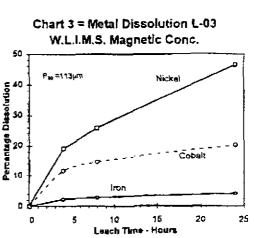
- magnetic concentrates were repulped to 50% solids

- adjusted to, and maintained at pH 1.5

- sampled at 4 and 8 hours

test ended after 24 hours

 filtered and displacement washed with pH 1.5 solution followed by a hot water displacement wash.

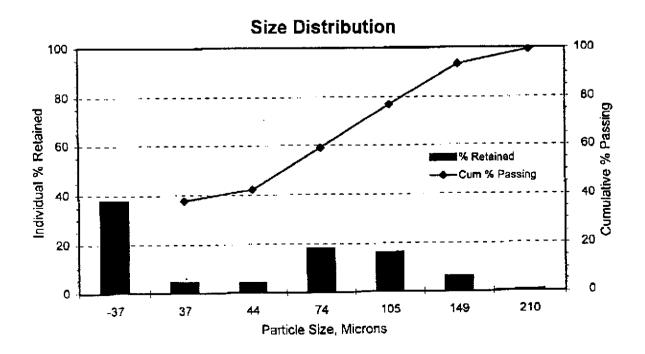

- solution and solids assayed for Fe, Ni & Co content

Leaching Profile							
Time Hours	Slurry Mass (g)	PLS Volume (mL)	H ₂ SO ₄ Added (kg/tonne)	Temp (°C)	рH	ORP (mV)	Aliquot Volume (mL)
0.0		<u>-</u>					
0.0	1,188,7	613	-	15	9.40	115	
1.0			96.7		1.50		
4.0	1,300.5	755	25.3	21	1.50	326	10
8.0	1,333.0	785	11.5	21	1.50	328	10
24.0	1,350.9	801	25.3	21	1.50	334	
			158.8				
	H _z SO₄ Cor	sumption =	144.1	kg/tonne			

Solution Assays (mg/L)					
	Fe	Ni	Co	H₂SO,	
Aliquot @ 4 hours	2,894	1,221	32.5		
Allquot @ 8 hours	3,301	1,566	38.5	2	
PLS	4,875	2,767	52.5	9,360	
Wash Solutions	609	365	7,5		

Solids Assays (%)						
	Fe	Ni	Ço			
Head (assay)	18.80	0.856	0.043			
Head (calculated)	19.00	0.943	0.041			
Residue	20.00	0.553	0.036			

Distribution (%)						
	Fe	NI	Co			
Leached @ 4 hours	2.25	19.14	11.67			
Leached @ 8 hours	2.73	26.01	14.67			
Leached @ 24 hours	4.08	46.56	20.32			
Leach Residue	95.92	53.44	79.68			
Total	100.00	100.00	100.00			


Process Research Associates Ltd.

P.R.A.

Test: L-03Date : June 9, 1997Sample: Leach ResidueProject : 97-053Grind Time: 44 minutes at 65% solids in stainless steel rod mill.

Sieve Size		Individual Percentage	Cumulative Percentage
Tyler Mesh	Microns	Retained	Passing
65	210	0.7	99.3
100	149	6.0	93.3
150	105	16.3	77.0
200	74	17.9	59.0
270	53	12.6	46.5
325	44	4.2	42.2
400	37	4.5	37.7
Undersize	- 37	37.7	
тот	AL:	100.0	

80% Passing Size (μm) = 113

Process Research Associates Ltd.

AWARUITE METAL RECOVERY STUDY

SULPHURIC ACID LEACH

Test: L-02 Sample: Composite 1

LEACH CONDITIONS

Date : May 18, 1997 Project: 97-053

LEACH CONDI	TUNS	
Solids:	974	g
Solution :	978	g
Solids :	50	%
Grind Size - P _{eo} :	78	μ m
Temperature:	Ambient	°C
рН :	1.5	
Test Duration :	24	hours

TEST DESCRIPTION - TANK LEACH

- solids were ground for 48 minutes at 65% solids

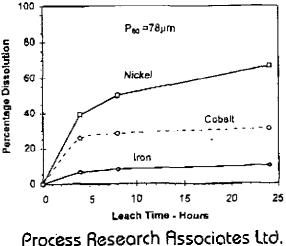
- repulped to 50% solids

- adjusted to, and maintained at pH 1.5

- sampled at 4 and 8 hours
- test ended after 24 hours

- filtered and displacement washed with pH 1.5 solution followed by a hot water displacement wash.

- solution and solids assayed for Fe, Ni & Co content


Leaching Profile								
Time	Slurry	PLS	H ₂ SO4	_			Aliquot	
	Mass	Volume	Added	Temp	pH ·	ORP	Volume	
Hours	<u>(g)</u>	(mL)	(kg/tonne)	(°C)		(mV)	(៣Լ)	
0.0	1,952.0	845		15	8.40	115		
0.3			60.4	23	1.50			
4.0	2,250.3	1197	66.4	21	1.50	326	10	
8.0	2,356.3	1289	24.1	21	1.50	328	10	
24.0	2,496.3	1410	62.8	21	1.50	334		
			213.7					
	H ₂ SO ₄ Con	sumption =	: 194.4 k	g/tonne				

	Solution A	ssays (mg/	L)	
	Fe	Ni	Co	H ₂ SO ₄
Aliquot @ 4 hours	2,500	690	21.5	
Aliquot @ 8 hours	2,900	812	22.0	
PLS	3,400	994	22.0	13,340
Wash Solutions	1,620	457	8.3	

So	ilds Assays	[%]	
	Fe	Ni	Co
Head (assay)	5.20	0.228	0.011
Head (calculated)	4.97	0.217	0.010
Residue	5.04	0.081	0.008

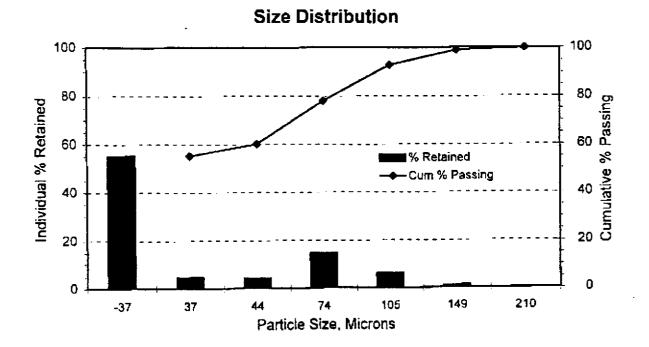
Di	istribution (?	<i>(</i> 6)	
	Fe	Ni	Co
Leached @ 4 hours	6.18	39.03	25.58
Leached @ 8 hours	7.82	50.10	28.61
Leached @ 24 hours	10.01	66.92	31.26
Leach Residue	89,99	33.08	68.74
Total	100.00	100.00	100.00

Chart 2 = Metal Dissolution L-02

P.R.A.

Test: L-02

Date : May 27, 1997

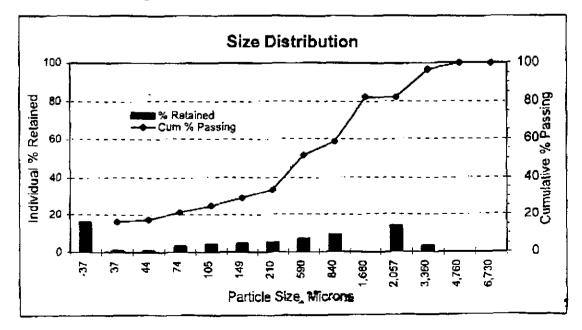

Sample: Leach Residue

Project : 97-053

Grind Time: 48 minutes at 65% solids in stainless steel rod mill.

Sieve	Size	Individual Percentage	Cumulative Percentage
Tyler Mesh	Microns	Retained	Passing
65	210	0.0	100.0
100	149	1,1	98.9
150	105	6.1	92.8
200	74	14.8	78.0
270	53	13.7	64.3
325	44	4.2	60.1
400 37		4.7	55.4
Undersize	- 37	55.4	
τότ	AL:	100.0	

80% Passing Size (µm) = 78


P.R.A

Test: Comp 1 Sample: Head Grind Time: As Received

Date : May 14, 1997 Project : 97-053

Sieve	Size	Individual Percentage	Cumulative Percentage
Tyler Mesh	Microns	Retained	Passing
6	3,360	3.4	96.6
9	2,057	14.3	82.3
14	1,190	14.4	67.9
20	840	9.3	58.6
28	590	7.2	51,4
35	420	6.4	45.0
48	297	6.0	39.0
65	210	5.4	33.6
100	149	4.7	28.9
150	105	4.2	24 ,7
200	74	3.5	21.2
270	53	2.9	18.3
325	44	1.0	17.3
400	37	1.1	16.1
Undersize	- 37	16.1	
тот	AL:	100.0	

80% Passing Size (µm) = 1,897

Excel/forms/QF-012b, Revision E.

Process Research Associates Ltd.

FACSIMILE

PROCESS RESEARCH ASSOCIATES LTD.

9145 Shaughn Vancouver, B. Canada, V6P	C.	•	4) 322-0118 4) 322-0181 rocess.com
Company:	First Point Minerals	Corp. Date: J	uly 16, 1997
Attention:	Peter Bradshaw	Fax:	6
FAX Number:	(604) 681-8799	Project:	97-053
From:	Bryan Tatterson	No. of pages (including this page):	15

The draft results of the magnetic separation test results on the composite of the core sample [94-6 (245 - 300)] are attached. The head assays for the two composites are shown in Table 1 and the test summary in Table 2.

Table 1 - Head Assays

	% Fe	% Ni	% Co
Composite 1 (94 - 6)	5.28	0.224	0.011
Composite 2 (94 - 9)	5.28	0.233	0.012

The tests were carried out as instructed by Morris Beattie. Three test portions of the composite were milled to about 80% minus 150, 200 and 325 mesh to liberate the awaruite and magnetite. Each test comprised two passes through a Sala WLIMS Drum Separator. Rougher and scavenger concentrates were collected. The WLIMS tailings were then passed twice through the Davis Tube (WHIMS) which was set at 1,000 gauss for the first pass and 5,000 gauss for the final pass. In the test at the finest grind (MS-07) the tailings from the second WHIMS pass were passed through the Davis tube a further three times at the maximum setting of 7,360 gauss, collecting an additional magnetic fraction with each pass. All test products were sampled for assay.

Table 2 - Nicke	Recovery Summary
-----------------	------------------

Test	Weight %	% Ni	% Recovery
MS-05	28.8	0.55	63.1
MS-06	21.8	0.70	59.8
MS-07	25.7	0.64	63.2

Size analysis of the feed and tails from each test indicated that the magnetic fractions recovered were mainly from the coarser particle sizes (see Table 3). The overall results indicate that the recovery is largely independent of the grind sizes tested. The WHIMS nickel grades achieved in MS-07 (0.248%) showed improvement over the other two tests (MS-06 0.172% and MS-06 0.185%) indicating improved liberation at the finer grind.

Project: 97-053 - First Point Minerals Corp

Table 3 - Comparison of Feed and Tails Size Analysis

2

P.R.A.

Test	Feed P _{sp}	Tails P _{ag}
MS-05	122	108
MS-06	89	84
MS-07	56	53

Most of the recovery took place in the W.L.I.M.S. rougher concentrate but the awaruite selectivity was poor in comparison to the gravity test. The Fe.Ni ratio's were 20.1 for the W.L.I.M.S. rougher concentrate compared to 23.6:1 in the feed and 3.5:1 in the Pan concentrate. The other magnetic concentrates all showed increasingly higher ratio's i.e., iron dilution of the concentrates.

The settling characteristics of the tails from each pass of the magnetic separation tests indicated that gravity concentration should be re-investigated in conjunction with magnetic separation. The initial test was carried out using a Knelson centrifugal concentrator which was probably an inappropriate choice of equipment. The pan concentrate (0.3 wt%) had grades of 45% Fe, 13% Ni and 0.26% Co significantly higher than in any of the other tests. The overall gravity concentrate mass recovery was 6.8% but the Ni recovery at 35.4% was low compared to the magnetic separation tests. A second scoping gravity concentration test using a shaking table is recommended.

Overall Balance		Weight	Assay (%))	Distribution (%)		(%)	
Test	Pap		(%)	Fe	NI	Co	Fe	Ni	Co
GK-01	155	Pan Concentrate	0.3	45.3	12.9	0.258	3.0	19.9	7.7
		Knelson Concentrate	6.8	14.3	1,16	0.032	18,4	35.4	18.9
MS-03	113	W.L.I.M.S Concentrate	18.3	18.8	0.856	0.043	58.7	57.1	37.6
		W.L.I.M.S Concentrate	19.9	15.5	0.719	0.031	57.2	57.0	29.9
MS-05	122	W.H.I.M.S Concentrate	9.0	4.75	0.172	0.018	7.9	6.2	7.8
		Total Concentrate	28.8	12.1	0.549	0.027	65.1	63.1	37.8
	†	W.L.I.M.S Concentrate	14.5	20.4	0.963	0.040	54.1	54.6	22.0
MS-06	89	W.H.I.M.S Concentrate	7.3	5.4	0,18 5	0.022	7.2	5.2	6.1
	1	Total Concentrate	21.8	15.4	0.704	0.034	61.2	59.8	28.2
-	+	W.L.I.M.S Concentrate	19.9	161	0.750	0.038	57.9	57.6	31.3
MS-07	56	W.H.I.M.S Concentrate	5,9	6.09	0,248	0.028	6.5	5.6	6.9
_		Total Concentrate	25.7	13.8	0.635	0.036	64.4	63.2	38.1

Table 2 - Comparison of Test Results

The recommendations for any further tests are:

- 1. Inclusion of a gravity separation step.
- 2. Inclusion of a W.L.I.M.S. Cleaning Step.
- 3. Optimize Leach conditions.

If you have any questions please contact me.

Ø 002

July 16, 1997

Project: 97-053 - First Point Minerals Corp

3

July 16, 1997

Regards,	
Kapan	
Copy to Mørris Beattie	

.

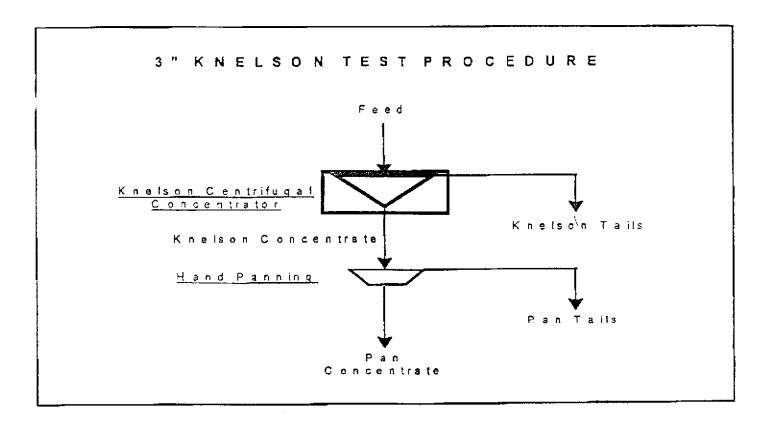
Fax No. 263-0695

Attachments:

.

1	Gravity Concentration Test Report	GK-01	1 page
2	Magnetic Separation Test	MS-03	1 page
3	Magnetic Separation Test Summary	MS-05, 06 & 07	1 page
4	Feed Size Analyses	MS-05	1 page
5	Tail Size Analyses	MS-05	1 page
6	Magnetic Separation Test	MS-05	1 page
7	Feed Size Analyses	MS-06	1 page
8	Tail Size Analyses	MS-06	1 page
9	Magnetic Separation Test	MS-06	1 pag e
10	Feed Size Analyses	MS-07	1 page
11	Tail Size Analyses	MS-07	1 page
۰ <u>بن</u> ار .	magnetic Coparation Test	MS-07	t page

Process Research Associates Ltd.


GRAVITY CONCENTRATION TEST REPORT

Test: GK-01

Grind: 38 Minutes. P₈₀=155 μm **Sample:** Composite 1 Date: May 21, 1997

Project: 97-053

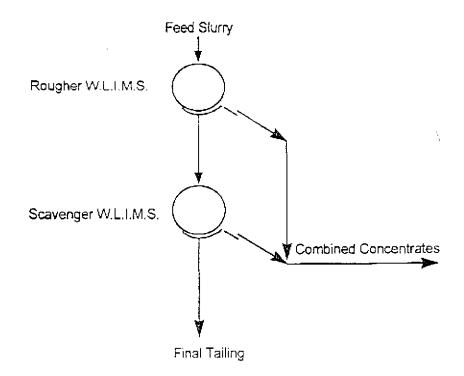
Products	Weight Assay				Distribution			
	(g)	(%)	Fe (%)	Ni (%)	Co (%)	Fe (%)	Ni (%)	Co (%)
Pan Concentrate	3.4	0.3	45.30	12.9	0.258	3.0	19.9	7.7
Pan Tails	63.9	6.4	12.60	0,535	0.020	15.4	15.5	11.2
Total Knelson Conc.	67.3	6.8	14.26	1.161	0.032	18.4	35.4	18.9
Knelson Tails	927.6	93.2	4.59	0.154	0.010	81.6	64,6	81.1
Total	994.9	100.0	5.24	0.222	0.011	100.0	100.0	100.0
Measured			5.20	0.228	0.01			

WET MAGNETIC SEPARATION TEST METALLURGICAL BALANCE

Test: MS-03

.

Grind: 44 Minutes. P_{ao} = 113 μm


Date: June 5, 1997 Project: 97-053

Sample: Composite 1

Objective: Concentration of Awaruite (FeNi Alloy)

Products	Wei	ght		Assay (%)			ribution	(%)
	(g)	(%)	Fe	NI	Co	Fe	Ni	Co
Magnetic Concentrate	602.6	18.3	18.80	0.856	0.043	58.7	57.1	37.6
Non-Magnetics	2,659.7	81.7	2.96	0.144	0.013	41.3	42.9	62.4
Total	3,292.3	100.0	5.86	0.274	0.021	100.0	100.0	100.0
Measured			5.20	0.228	0.011			
Overall Balance	Wei	ght		Assay (%	 }	Dist	ribution	(%)
	(g)	(%)	Fø	Ni	Co	Fe	Ni	Co
Leach Solution	53.5	1.6				2.4	26.6	7.6
Leach Residue	549.0	16.7	20.00	0.553	0,036	56.3	30.5	29.9
Magnetic Concentrate	602.6	18.3	18.80	0.856	0.043	58.7	57.1	37.6
Non-Magnetics	2,689,7	81.7	2.96	0.144	0.016	41.3	42.9	62.4
Total	3,292.3	100.0				100.0	100.0	100.0

W.L.I.M.S. MAGNETIC SEPARATION TEST

WET MAGNETIC SEPARATION TEST METALLURGICAL BALANCE

Test: MS-05

Grind: 23 Minutes. P_{ep} = 122 μ m

Tail: P_{ao} = 108 μm

Date: July 9, 1997 Project: 97-053

Sample: Composite 2 Objective: Concentration of Awaruite (FeNi Alloy)

Products	Wei	Weight		Assay (%)			Distribution (%)		
	(g)	(%)	Fe	NI	Ca	Fe	Ni	Co	
Sala Magnetic Concentrate 1	105.9	11.7	22.20	1.070	0.040	48.4	50.0	22.8	
Sala Magnetic Concentrate 2	73.6	8.1	5.80	0.214	0.018	8.8	6.9	7,1	
Total Sala Concentrates	179.5	19.9	15.48	0.719	0.031	57.2	57.0	29.9	
Davis Tube Magnetic Concentrate 1	2.4	0,3	3,00	0.136	0,018	0.1	0.1	0.2	
Davis Tube Magnetic Concentrate 2	78.7	8.7	4.80	0.173	0.018	7.8	6.0	7.6	
Total Davis Tube Concentrate	81.1	9,0	4.75	0.172	0.018	7.9	6.2	7.8	
Total Magnetic Concentrates	260,6	28.8	12.14	0.549	0.027	65.1	63.1	37.8	
Non-Magnetics	643.0	71.2	2.64	0.130	0.018	34.9	36.9	62.2	
Total	903,6	100.0	5.38	0.251	0.021	100.0	100.0	100.0	
Measured			5.28	0.224	0.011				

Test: MS-06

Feed Grind: 26 Minutes. Pee = 89 µm

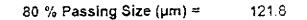
Tail: P₆₀ = 84 μm

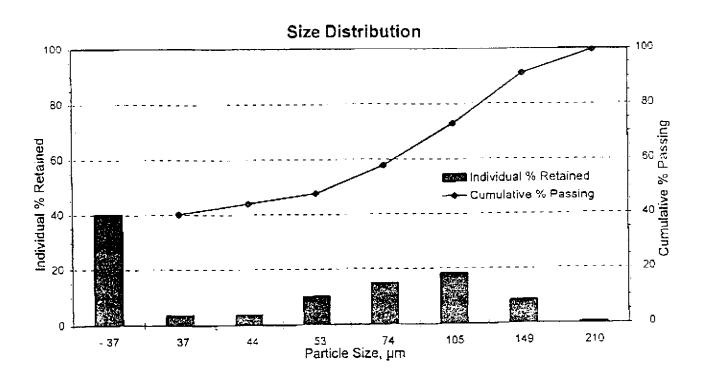
Products	Waight		Assay (%)			Distribution (%)		(%)
	(g)	(%)	Fe	NI	Co	Fe	NI	Co
Sala Magnetic Concentrate 1	116.2	12.3	22.00	1.070	0.042	69.4	51.3	19.8
Sala Magnetic Concentrate 2	21.0	2.2	11.60	0.370	0.026	4.7	3.2	2.2
Total Sala Concentrates	137.1	14.5	20.41	0.963	0.040	54.1	54.6	22.0
Davis Tube Magnetic Concentrate 1	0.0	0.0				0.0	0.0	0.0
Davis Tube Magnetic Concentrate 2	68.6	7.3	5.40	0.185	0.022	7.2	5.2	ซี.1
Total Davis Tube Concentrate	68.6	7.3	5.40	0.185	0.022	7.2	5.2	6.1
Total Magnetic Concentrates	205.7	21.8	15,40	0.704	0.034	51.2	59.8	28.2
Non-Magnetics	737.3	78.2	2.72	0.132	0.024	38.8	40.2	71.8
Total	943.0	100.0	5,49	0.257	0.026	100.0	100.0	100.0
Measured			5.28	0,224	0.011	N		

Test: MS-07

Feed Grind: 30 Minutes. P_{so} = 56 μm Tail: P_{so} = 53 μm

Products	Wei	Weight		Assay (%)			Distribution (%)	
	(g)	(%)	Fe	Ni	Ca	Fe	Ni	Co
Sala Magnetic Concentrate 1	129.7	15.5	17.80	0.864	0.040	49.9	51.6	25.7
Sala Magnetic Concentrate 2	37.1	4.4	10.00	0.350	0.030	8.0	6.0	5.5
Total Sala Concentrates	166.8	19.9	16.07	0.750	0.038	57.9	57.6	31.3
Davis Tube Magnetic Concentrate 1	0.0	0.0				0.0	0.0	0.0
Davis Tube Magnetic Concentrate 2	17.7	2.1	6.80	0,259	0.028	2.6	2.1	2.5
Davis Tube Magnetic Concentrate 3	18.7	2.2	6.00	0.253	0.030	2.4	2.2	2.8
Davis Tube Magnetic Concentrate 4	9.0	1.1	5.00	0.220	0.026	1.0	0,9	1.2
Davis Tube Magnetic Concentrate 5	3.7	0.4	5.80	0.235	0.024	0.5	0.4	0.4
fotal Davis Tube Concentrate	49.2	5,9	6.09	0.248	0.028	6.5	5.6	6.9
Total Magnetic Concentrates	215.9	25.7	13.79	0.635	0.036	64.4	63.2	38.1
Non-Magnetics	623.3	74.3	2,64	0.128	0.020	35.6	36.8	61.9
Total	839.2	100.0	5.51	0.259	0.024	100.0	100.0	100.0
Measured	1		5.28	0.224	0.011	.		


P.R.A.

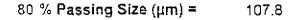

Test: MS-05

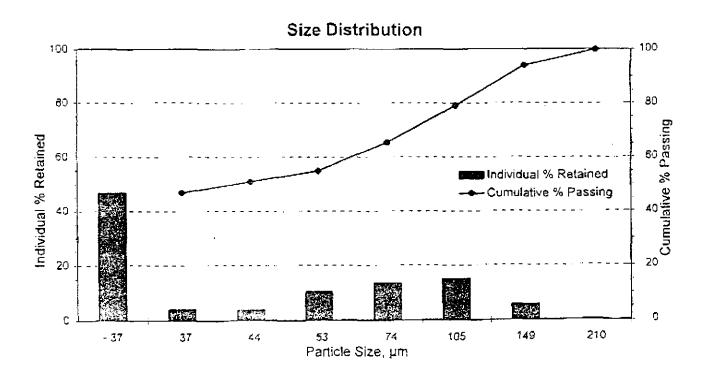
Date: July 8, 1997 Project: 97-053

Sample: Composite 2 (11691) Grind: 23 minutes at 65% solids in stainless steel rod mill.

Siev	ə Size	Individual	Cumulative
Tyler Mesh	Micrometers	% Retained	% Passing
65	210	0.6	99.4
100	149	8.4	91.0
150	105	18.2	72.8
200	74	14.9	57.9
270	53	10.2	47.7
325	44	3.7	44.0
400	37	3.8	40.2
Undersize	- 37	40.2	-
TOTAL:		100.0	

P.R.A.

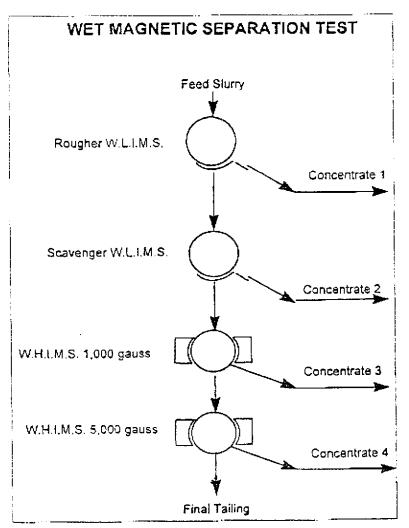



Test: MS-05 (WLIMS) Sample: Non-Magnetics

Date: July 10, 1997 Project: 97-053

Grind: 23 minutes at 65% solids in stainless steel rod mill.

Siev	e Size	Individual	Cumulative
Tyler Mesh	Micrometers	% Retained	% Passing
65	210	0.3	99.7
100	149	5.7	94.0
150	105	15.0	79.0
200	74	13.5	65.4
270	53	10.4	55.1
325	44	4.0	51.0
400	37	4.2	46.9
Undersize	37	46.9	
TOTAL:		100.0	

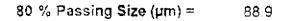


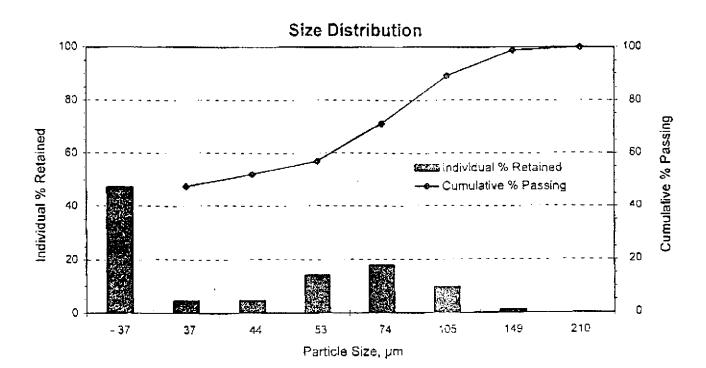
WET MAGNETIC SEPARATION TEST METALLURGICAL BALANCE

Test: MS-05 Grind: 23 Minutes. P_{e0} = 122 μm Sample: Composite 2 Objective: Concentration of Awaruite (FeNi Alloy)

د. برج م Date: July 9, 1997 Project: 97-053

Distribution (%) Assay (%) Products Weight Ċo Fe NI Ca Fe Ni (g) (%) 48.4 50.0 22.8 1.070 0.040 22.20 11.7 Sala Magnetic Concentrate 1 105.9 6.9 7.1 0.018 8.8 73.6 8.1 5,80 0.214 Sala Magnetic Concentrate 2 57.2 57.0 29.9 0.719 0.031 Total Sala Concentrates 179.5 19.9 15.48 0.1 0.2 0.018 0.1 3.00 0.136 Davis Tube Magnetic Concentrate 1 2.4 0.3 6,0 7.6 0.018 7.8 8.7 4.80 0.173 Davis Tube Magnetic Concentrate 2 78.7 7.9 6.2 7.8 4.75 0.172 0.018 81.1 9.0 Total Davis Tube Concentrate 63.1 37.8 65.1 0.027 Total Magnetic Concentrates 260.6 28.8 12.14 0.549 34.9 36.9 62.2 643.0 71.2 2.64 0.130 0.018 Non-Magnetics 100.0 100.0 100.0 903.6 100.0 5.38 0.251 0.021 Total . 0.011 Measured 5.28 0.224

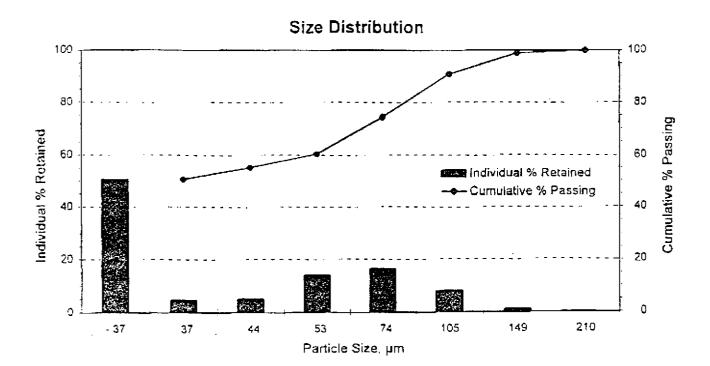




Test: MS-06 Sample: Composite 2 (11691) Date: July 8, 1997 Project: 97-053

Grind: 26 minutes at 65% solids in stainless steel rod mill.

Sieve	e Size	Individual	Cumulative
Tyler Mesh	Micrometers	% Retained	% Passing
65	210	0.0	100.0
100	149	1.2	98.8
150	105	9.7	89.1
200	200 74 17.9		71.2
270	53	14.2	57.0
325	44	4,8	52.1
400	37	4.6	47.5
Undersize	- 37	47.5	
TOTAL:		100.0	



Test: MS-06 (WLIMS) Sample: Non-Magnetics Date: July 10, 1997 Project: 97-053

Grind: 26 minutes at 65% solids in stainless steel rod mill.

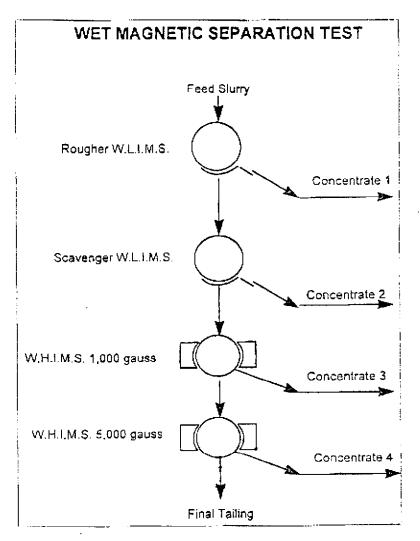
Sieve	e Şize	Individual	Cumulative
Tyler Mesh	Micrometers	% Retained	% Passing
65	210	0.1	99.9
100	149	1.0	98.9
150	105	8.1	90.8
200	74	16,5	74.3
270	53	14.0	60.4
325	44	5.1	55.2
400	37	4.6	50.6
Undersize	- 37	50.6	
TOTAL:		100,0	

^{80 %} Passing Size (µm) = 84.3

WET MAGNETIC SEPARATION TEST METALLURGICAL BALANCE

Test: MS-06

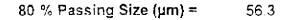
1 de

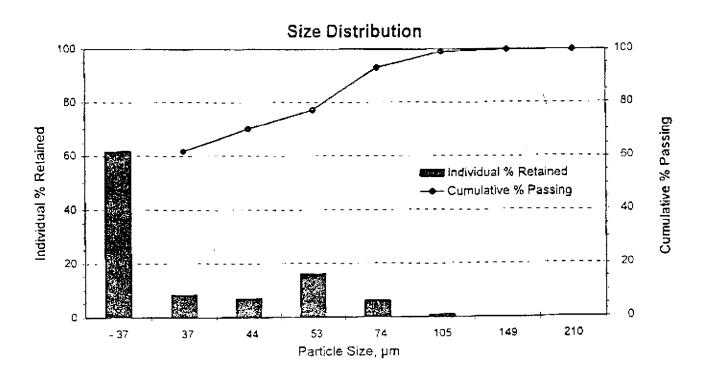

Grind: 26 Minutes. $P_{80} = 89 \ \mu m$

Sample: Composite 2

Objective: Concentration of Awaruite (FeNi Alloy)

Dato: July 9, 1997 Project: 97-053

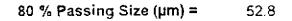

Products	Wei	Weight		Assay (%)			Distribution (%)		
	(g)	(%)	Fə	Ni	Co	Fe	Ni	Co	
Sala Magnetic Concentrate 1	116.2	12.3	22.00	1.070	0.042	49.4	51.3	19.8	
Sala Magnetic Concentrate 2	21.0	2.2	11.60	0.370	0.026	47	3.2	2.2	
Total Sala Concentrates	137.1	14.5	20.41	0.963	0.040	54.1	54.6	22.0	
Davis Tube Magnetic Concentrate 1	0.0	0.0				0.0	0.0	0.0	
Davis Tube Magnetic Concentrate 2	68.6	7.3	5,40	0.185	0.022	7.2	5.2	6.1	
Total Davis Tube Concentrate	68,6	7.3	5.40	0,185	0.022	7.2	5.2	6.1	
Total Magnetic Concentrates	205.7	21.8	15.40	0.704	0.034	61.2	59.8	28.2	
Non-Magnetics	737.3	78.2	2.72	0.132	0.024	38.8	40.2	71.8	
Total	943.0	100.0	5.49	0.257	0.026	100.0	100.0	100.0	
Measured			5.28	0.224	0.011				

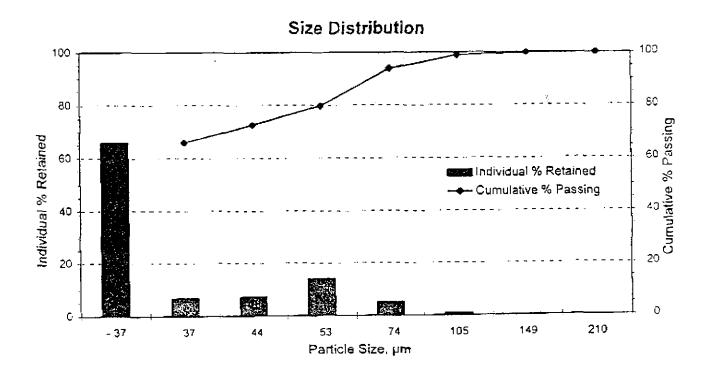


Test: MS-07 Sample: Composite 2 (11691) Date: July 8, 1997 Project: 97-053

Grind: 30 minutes at 65% solids in stainless steel rod mill.

Sieve	e Size	Individual	Cumulative
Tyler Mesh	Micrometers	% Retained	% Passing
65	210	0.0	100.0
100	149	0.1	99.9
150	105	0.9	99.0
200	74	6.1	92.9
270	53	15.9	77.0
325	44	6.9	70.1
400	37	8.3	61.8
Undersize	- 37	61.8	-
TOTAL:		100.0	





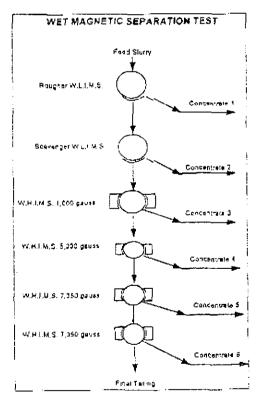
Test: MS-07 (WLIMS) Sample: Non-Magnetics Date: July 10, 1997 Project: 97-053

Grind: 23 minutes at 65% solids in stainless steel rod mill.

Siev	e Size	Individual	Cumulative
Tyler Mesh	Micrometers	% Retained	% Passing
65	210	0.0	100.0
100	149	0.2	99.8
150	105	0.9	98.9
200	74	5.1	93.8
270	53	14.0	79.8
325	44	7.1	72.6
400	37	6.7	65.9
Undersize	- 37	65.9	
TOTAL:		100.0	

WET MAGNETIC SEPARATION TEST METALLURGICAL BALANCE

Test: MS-07


Grind: 30 Minutes. P_{ag} = 56 µm

Sample: Composite 2

Objective: Concentration of Awaruite (FeNi Alloy)

Date: July 9, 1997 Project: 97-053

Products	Weight			Assay (%)			Distribution (%)		
	(g)	(%)	Fe	Ni	Co	Fe	Ni	Ca	
Sala Magnetic Concentrate 1	129.7	15.5	17.80	0.864	0.040	49.9	51.6	25.7	
Sala Magnetic Concentrate 2	37.1	4.4	10.00	0.350	0.030	8.0	6.0	5.5	
Total Sala Concentrates	166.B	19.9	16.07	0.750	0.038	57.9	57.6	31,3	
Davis Tube Magnetic Concentrate 1	0.0	0.0	1			0.0	0,0	0.0	
Davis Tube Magnetic Concentrate 2	17.7	2.1	6.80	0.259	0.026	2.6	2.1	2.5	
Davis Tube Magnetic Concentrate 3	18,7	2.2	6.00	0.253	0 0 3 0	2.4	2.2	2.8	
Davis Tube Magnetic Concentrate 4	9.0	1.1	5.00	0.220	0.026	1.0	0.9	1.2	
Davis Tube Magnetic Concentrate 5	3.7	0.4	5.80	0.235	0.024	0.5	0.4	0.4	
Total Davis Tube Concentrate	49.2	5.9	6.09	0.248	0.028	6.5	5.6	6.9	
Total Magnetic Concentrates	215.9	25,7	13.79	0.635	0.036	64.4	63.2	38.1	
Non-Magnetics	623.3	74.3	2.54	0,128	0.020	35.6	36.8	61.9	
Total	839.2	100.0	5.51	0.259	0.024	100.0	100.0	100.0	
Measured			5.28	0.224	0.011				

BEATTIE CONSULTING LTD.

2955 WEST 38th AVENUE VANCOUVER, B.C. VSN 2X2

TEL: (604) 263 0695 FAX: (604) 263 0695 Internet: mbeatlie@axlenst.com

MEMORANDUM

ΤΟ :	Bryan Tatterson, PRA
CC:	Peter Bradshaw, First Point
FROM:	Morris Beattle
DATE:	July 17, 1997
RE:	First Point Minerals - Nickel Project

Since the nickel recovery by magnetic concentration coome to be limited to about 50 - 55% (all recovery achieved after the Sala concentration was to products which assayed lower than the head grade), we would like to do some mineralogical work in order to determine the nature of the losses to the tails. The following work should be performed on the nonmagnetic fraction from test MS-05.

Two samples should be prepared for mineralogical examination, one the total nonmagnetic fraction and the second, a concentrate obtained by hand partiting a 200 gram portion of the non-magnetics to produce a heavy minerals concentrate weighing a few grams. Both should be analyzed by means of optical microscopy and SEM to determine the nature of the remaining nickel so we can assess whether secondary preconcentration methods such as gravity concentration or flutation, etc have any reasonable probability of achieving high overall recovery to a concentrate.

4	
-	
<u>, </u>	
_	
4	

Peter Ful. L

FACSIMILE

PROCESS RESEARCH ASSOCIATES LTD.

9145 Shaughnessy Street Vancouver, B.C. Canada, V6P 6R9		•	4) 322-0118 4) 322-0181 rocess.com
Company:	First Point Minerals	Corp. Date: J	uly 25, 1997
Attention:	Peter Bradshaw	Fax:	7
FAX Number:	(604) 681-8799	Project:	97-053
From:	Bryan Tatterson	No. of pages (including this page):	4

The Vancouver Petrographics Mineralogical Report on the non-magnetics from test M-5 and a pan concentrate are attached. The SEM analysis will be carried out shortly.

The nickel appears to be in the serpentine which possibly explains why the leach dissolution is limited. The SEM will confirm this observation.

If you have any questions please contact Bern Klein as I will be away until August 6, 1997...

Regards,

Copy to Morris Eeattie

Fax No.

263-0695

Attachments:

1 Mineralogical Analysis Report

3 pages

Process Research Associates Ltd. 9145 Shaughnessy Sireet, Vancouver, B.C. V6P 6R9 Telephone:(604)322-0118 Fax:(604)322-0181

September 15, 1997

First Point Minerals Corp. Suite 2170 - 1050 West Pender Street, Vancouver, B.C., V6E 3S7

Attention: Mr. Peter M.D. Bradshaw. - President

Dear Peter,

re: MINERALOGICAL AND SEM ANALYSIS REPORTS

A sample of the non-magnetic product from magnetic separation test MS-5 conducted on a milled sample of the ore and a pan concentrate produced from the same non-magnetic product were examined with a Petrographic Microscope and with a Scanning Electron Microscope plus Energy Dispersive X-ray analyzer (SEM + EDX). The objective was to identify how the Ni occurs and specifically to identify the reason for the low recovery of metallic awaruite in the samples.

The nickel in the tailings ($P_{ao} = 108 \ \mu m$) and the pan concentrates was found to be mainly in the form of awaruite inclusions (Ni₂Fe to Ni₃Fe) in some of the silicate host materials. The largest inclusions of awaruite found were about 6 to 8 μm in size but most were < 1 μm and ranged down to 0.1 μm . Similar sized particles of native iron were observed which contained little or no nickel. Not all of the silicate grains contained inclusions of awaruite and native iron. Finer grinding would be required to expose and/or liberate the awaruite particles prior to recovery. This would indicate that leaching could be more suitable at the finer grind.

The assay results from the non magnetic tailings of MS-05, MS-06 and MS-07 were all similar indicating that even the P_{ao} of 53 µm (MS-07) was still too coarse for awaruite liberation.

The presence of liberated sulphides indicates that a scoping flotation test could hold promise. The concentrates would contain copper, iron, lead and nickel sulphides. Some nickel is present in the sulphides as evidenced by the identification of a nickel iron sulphide possibly pentlandite (Fe,Ni)_sS_s.

A review of all the test product assays shows that the only significant upgrading of the nickel with regard to the iron was in the gravity test GK-1 P_{so} 143 µm which gave a Fe/Ni ratio of 3.5:1 compared to > 20:1 in the magnetic separation tests. A copy of the calculated ratios are attached. Test GK-1 unfortunately had a low nickel recovery. A finer grind may improve the

recovery but above 80% would be a prerequisite for leaching. The leach tests showed that acid consumption increased with a finer grind. This option could prove uneconomic even if successful.

Another potential option revealed by the SEM analysis is to investigate a wet high intensity magnetic separation (WHIMS) on a milled sample to concentrate the silicate grains containing magnetic awaruite/native iron inclusions. The first scoping DHIMS on the as received material gave a mass recovery of 91.7% but with poor selectivity and only minor upgrading. Process economics would still be paramount.

The petrographic analysis, scanning electron micrographs, EDX spectra and descriptions are attached.

Sincerely yours, Process Research Associates Ltd.

Bryan S. Tatterson, P.Eng. Senior Metallurgical Engineer.

Attachments

1	Mineralogical Analysis Report		3 pages
1	SEM Analysis Report		2 pages
2	EDX Analysis Report	Set 1	14 pages
3	EDX Analysis Report	Set 2	1 page
4	SEM Micrographs	Set 1	5 pages
5	SEM Micrographs	Set 2	2 page

US la

FACSIMILE

PROCESS RESEARCH ASSOCIATES LTD.

9145 Shaughn Vancouver, B. Canada, V6P	с.		(604) 322-0118 (604) 322-0181 RAprocess.com
Company:	First Point Mineral	Is Corp. Date:	August 18, 1997
Attention:	Peter Bradshaw	Fax:	8
FAX Number:	(604) 681-8799	Project:	97-053
From:	Bryan Tatterson	No. of pages (including this page):	19

re: SEM Report

The SEM Report on the non-magnetic product from test MS-5 and a pan concentrate produced from the same non-magnetic product is attached. Copies of the photographs will be forwarded.

The nickel in the tailings ($P_{80} = 108 \ \mu\text{m}$) and the pan concentrates was found to be mainly in the form of awaruite inclusions (Ni₂Fe to Ni₃Fe) in some of the silicate host materials. However, not all the silicate grains contained awaruite and native iron inclusions. The largest inclusions of awaruite found were about 6 to 8 μ m in size and ranged down to 0.1 μ m. Similar sized particles of native iron were observed which contained little or no nickel. Finer grinding would be required to expose and/or liberate the awaruite particles prior to recovery. This would indicate that leaching could be more suitable at the finer grind.

The assay results from the non magnetic tailings of MS-05, MS-06 and MS-07 were all similar indicating that even the P_{a0} of 53 µm (MS-07) was still too coarse for awaruite liberation.

The presence of liberated sulphides indicates that a scoping flotation test could hold promise. The concentrates would contain copper, iron, lead and nickel sulphides. Some nickel is present in the sulphides as evidenced by the identification of a nickel iron sulphide possibly pentlandite (Fe,Ni)₉S_a.

A review of all the test product assays shows that the only significant upgrading of the nickel with regard to the iron was in the gravity test GK-1 P_{so} 143 µm which gave a Fe/Ni ratio of 3.5:1 compared to above 20:1 in the magnetic separation tests. A copy of the calculated ratios are attached. The Test GK-1 unfortunately had a low recovery of nickel (%). A finer grind could possibly improve the recovery but above 80% would be a prerequisite for leaching which would require a high acid consumption. This option could prove uneconomic even if successful.

Another potential option revealed by the SEM analysis is to investigate a wet high intensity magnetic separation (WHIMS) on a milled sample to concentrate the silicate grains containing awaruite/native iron inclusions. The first scoping DHIMS on the as received material gave a mass recovery of 91.7% but with poor selectivity and only minor upgrading. Process economics would still be paramount.

Please advise whether further tests are to be carried out.

If you have any questions please contact me.

Regards,

Copy to Morris Beattie

Fax No.

263-0695

Attachments:

;

- 2 pages SEM Analysis Report 1 EDX Analysis Report
- 2
- EDX Analysis Report 3

- 14 pages
- 1 page

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

Report for: Bryan Tatterson, Process Research Associates, 9145 Shaughnessy St., VANCOUVER, B.C. V6P 6R9

Job 970501

July 25, 1997

SAMPLES:

Two samples from Project 97-053 were submitted for examination. Portions of each were prepared as grain-mount polished thin sections.

Sample 1 is the tailings (non-magnetic fraction) from a magnetic separation test.

Sample 2 is a pan concentrate prepared from Sample 1.

SUMMARY:

Sample 1 is very finely comminuted material consisting dominantly of serpentine. Mafic silicates (amphibole/pyroxene/olivine) amount to about 8%, and there is about 2% of carbonate. Reflective phases (sulfides or metallics) are extremely rare.

It would appear that the bulk of the analyzed Ni (0.13%) in this sample is present in silicate form (substituting for Mg in the serpentine).

Sample 2 has a somewhat coarser particle size range, and a slightly higher proportion of mafic silicates other than serpentine (estimated c.18%). Overall it appears to be essentially identical in composition to Sample 1. Very sparse reflective grains appear to be largely pyrite. Awaruite was not positively identified.

There is no optical evidence to suggest that this product should have a significantly higher Ni content than Sample 1.

Individual sample descriptions are attached.

Harris Ph.D. J.F.

(929-5867)

SAMPLE 1 TAILS

.

Estimated mode

Serpentine	90
Other silicates	8
Carbonate	2
Reflective phases	trace

This material has a particle size range of 5 - 80 microns.

It consists dominantly of serpentine.

The principal accessory is a mafic silicate mineral, or minerals, of high relief and moderate birefringence. This typically occurs as liberated grains which may include amphibole, pyroxene and/or olivine. Occasional grains of carbonate are also present.

Reflective phases are extremely rare grains of what appears to be a cream-coloured sulfide - most likely pyrite. This occurs as grains 2 - 50 microns in size - the larger ones typically liberated and the tiny specks typically locked in serpentine.

The reflectivity of awaruite is only a little greater than that of pyrite, and reliable distinction between the two (both isotropic) is not practicable by optical means at this particle size range.

SAMPLE 2 PAN CONCENTRATE

. •

Estimated mode

Serpentine		77
Other s	silicates	18.5
C	Carbonate	2.5
I	Fe oxides	1.5
	Pyrite	0.5

This sample has a particle size range of 30 - 130 microns.

It is of closely similar composition to Sample 1 except for a somewhat higher ratio of mafic silicates (olivine, etc.) to serpentine, and the presence of sporadic grains of Fe oxide.

Its principal difference from Sample 1 is in its particle size range - the panning process having removed the slimes-sized component.

The sparsely scattered reflective phases in this sample are easier to identify (being larger grains) than in Sample 1. They appear almost all to be pyrite - typically liberated.

S.E.M. ANALYSIS REPORT

Project: 97-053

Date: August 15, 1997

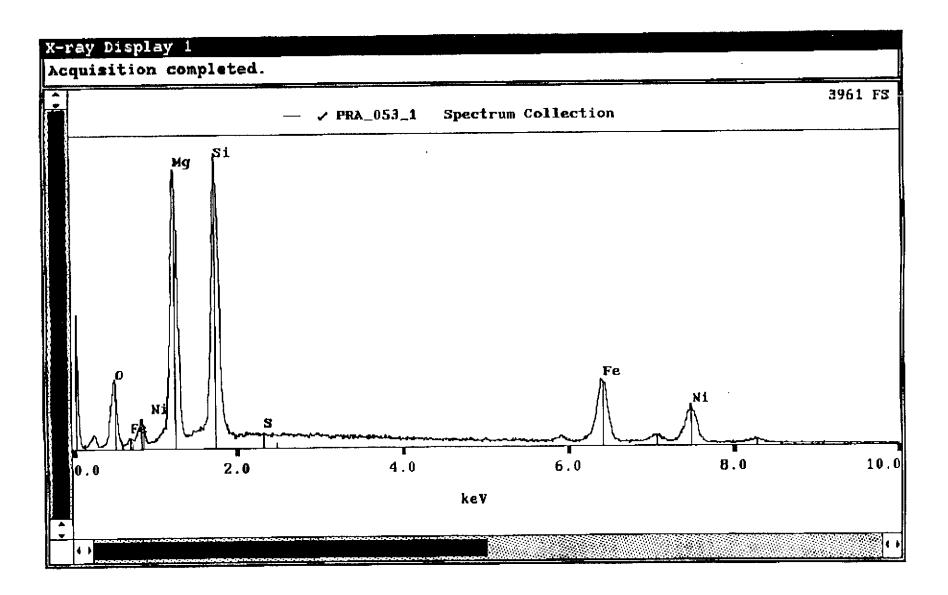
Samples of a pan concentrate and the un-leached non magnetic tailings were analyzed by Scanning Electron Microscope with Energy Dispersive X-ray Analysis (SEM+EDX).

PAN CONCENTRATE

A pan concentrate (1.67 g, 1.2 % weight) was prepared from a 139 g representative portion of Test MS-05 non magnetics with a P_{so} of 108 µm. Neither the pan concentrate nor the pan tail were submitted for assay.

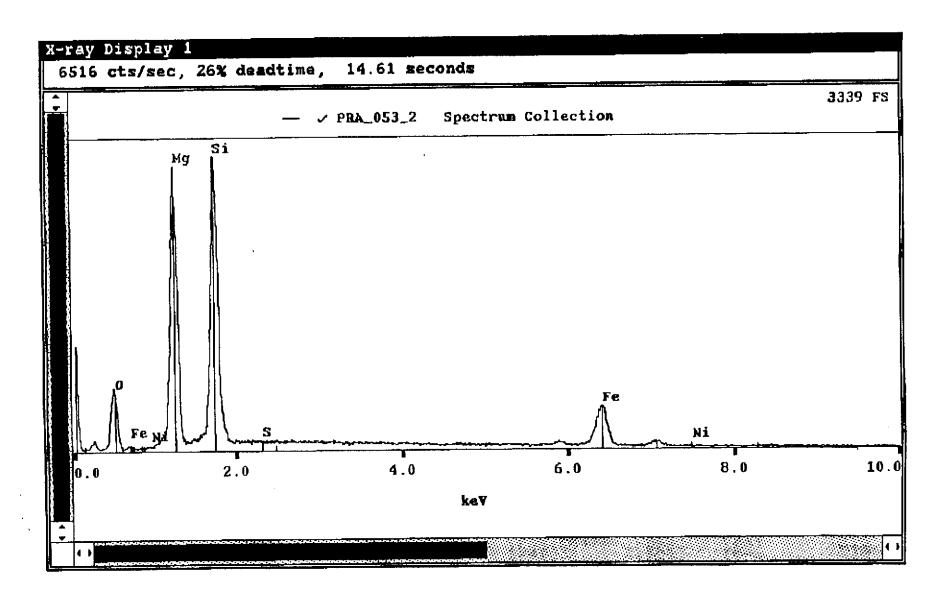
- Figure 1 Magnification 3,600X shows a 0.3 µm spherical inclusion containing nickel in an iron magnesium silicate. Numerous other similar smaller particles can also be seen. The X-ray analysis of the inclusion is shown in Spectrum 1. Comparison with Spectrum 2 of the host particle indicates that the spherical particle is awaruite (Ni₂Fe - Ni₃Fe).
- Figure 2 Magnification 1322X is an overview of the silicate particle showing numerous inclusions. The rectangular grain contains high iron with no discernible nickel content. The Spectrum was examined but not printed.
- Figure 3 Magnification 4,633X shows three < 1 µm inclusions of awaruite (Spectrum 3) in a lighter colored phase of an iron magnesium silicate (Spectrum 4). The darker phase to the right is a magnesium silicate (Spectrum 5).
- Figure 4 Magnification 905X shows an overview of the grain. The field shown in Figure 3 is to the right of centre. The inclusion in the centre is an iron chromium oxide (Spectrum 6) probably chromite.
- Figure 5 Magnification 836X shows a 80 µm particle of a chrome nickel iron alloy (Spectrum 7) possibly stainless steel grinding media.
- Figure 6 Magnification 907X shows a liberated copper sulphide grain (Spectrum 8)
- Figure 7 Magnification 442X shows a 6.2 µm inclusion of awaruite (Spectrum 9) at the upper left of the grain in a magnesium silicate. The inclusions at centre and at the bottom are native iron with no nickel.
- Figure 8 Magnification 591X shows a two inclusions of 6 and 8 µm awaruite at the upper left quadrant of the grain. The immediate background is a calcium magnesium silicate. All the other inclusions are native iron with no nickel. The two darker phases are both magnesium silicate.

A number of liberated galena particles were observed.


Figure 9 Magnification 430X shows a liberated particle which is partly oxidized. The dark phase is a copper oxide mineral (Spectrum 10) while the lighter phase is a copper iron sulphide mineral (Spectrum 11)

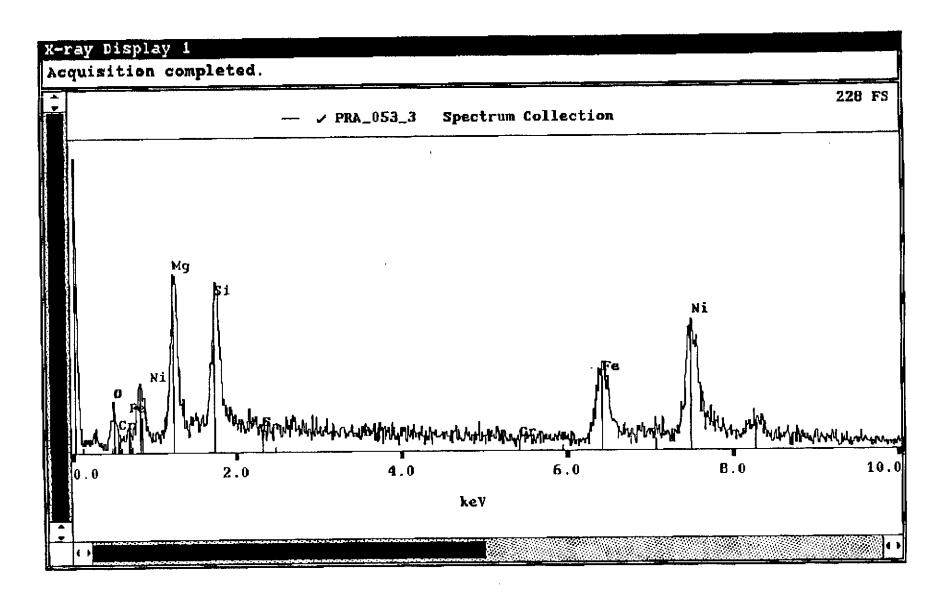
NON MAGNETIC TAILINGS

The sample was prepared from Test MS-05 non-magnetics which assayed 2.64% Fe, 0.13% Ni and 0.018% Co.

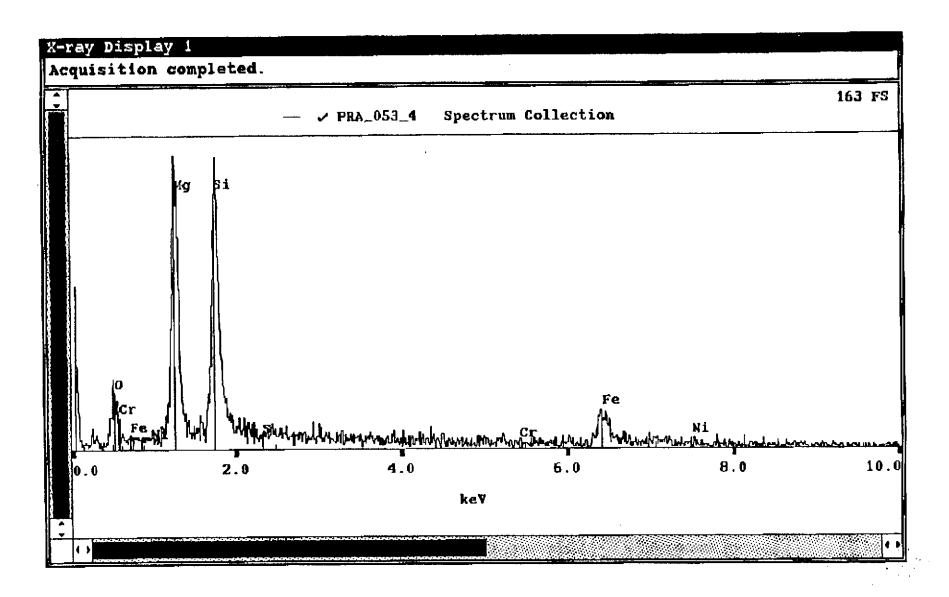

- Figure 10 Magnification 1,926X shows an elongated 2.3 x 4.7 µm inclusion of awaruite (Spectrum 12) to the left of centre of a grain of magnesium silicate. The other inclusions are native iron with no nickel.
- Figure 11 Magnification 1,915X shows an liberated 6 x 13 µm particle of a nickel iron sulphide (Spectrum 13) possibly pentlandite.
- Figure 12 Magnification 1,472X shows an inclusion of awaruite (Spectrum 14) just above centre in a grain of magnesium silicate. The other inclusions are native iron with no nickel.

Numerous other awaruite inclusions were seen but the maximum size appeared to be about 6µm.

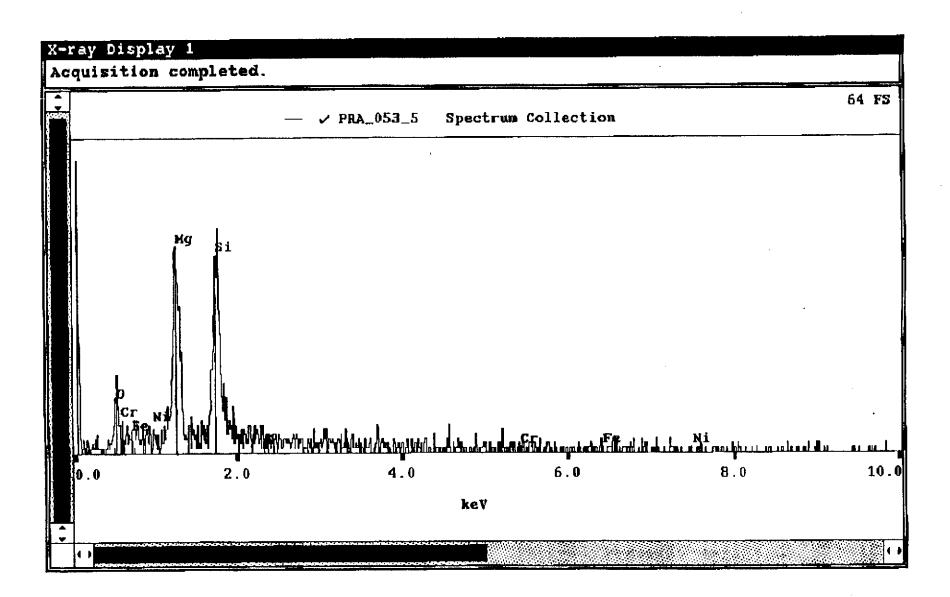
Ø 005


P.R.A.

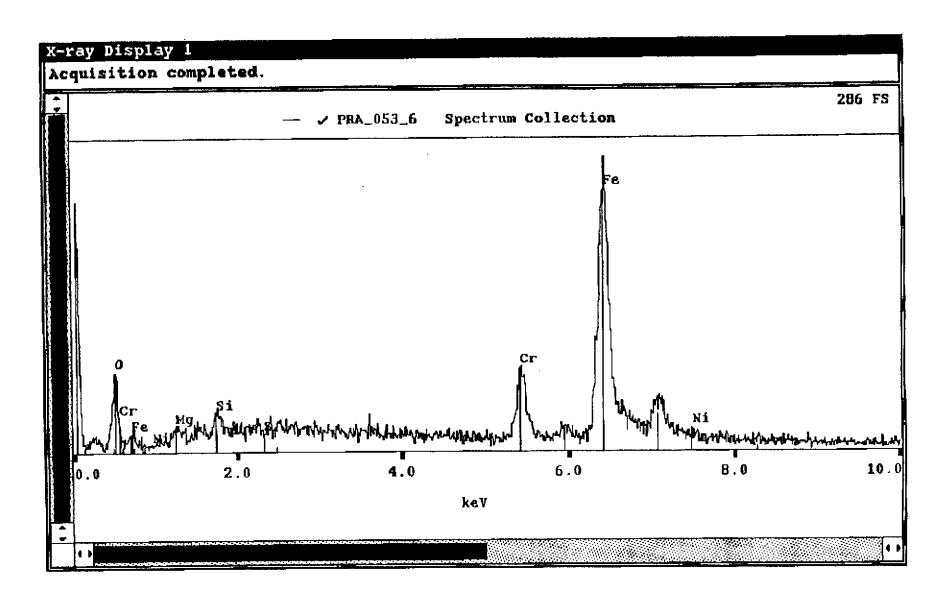
FAX 604 322 0181 P.R.A.


08/20/97

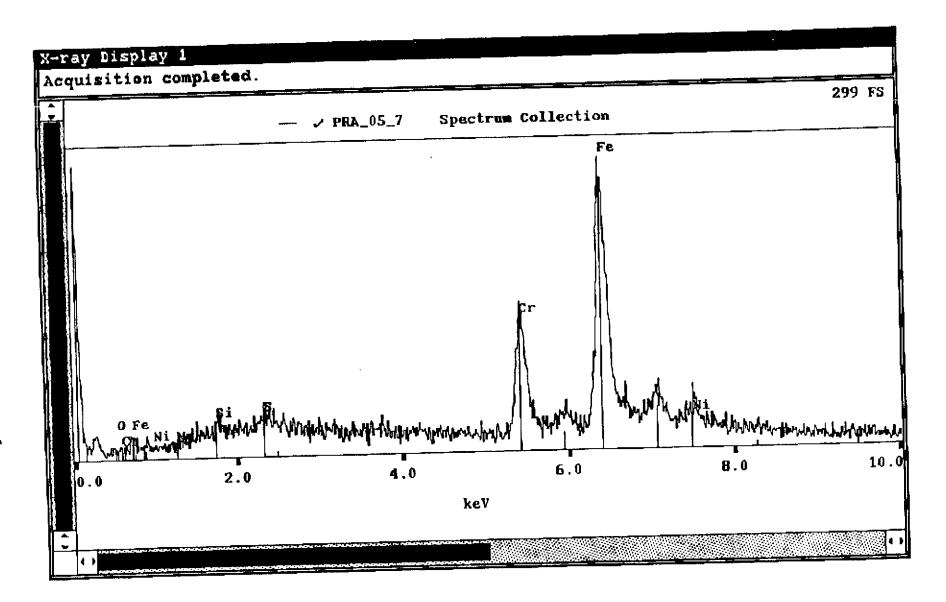
WED 14:58


007

P.R.A.

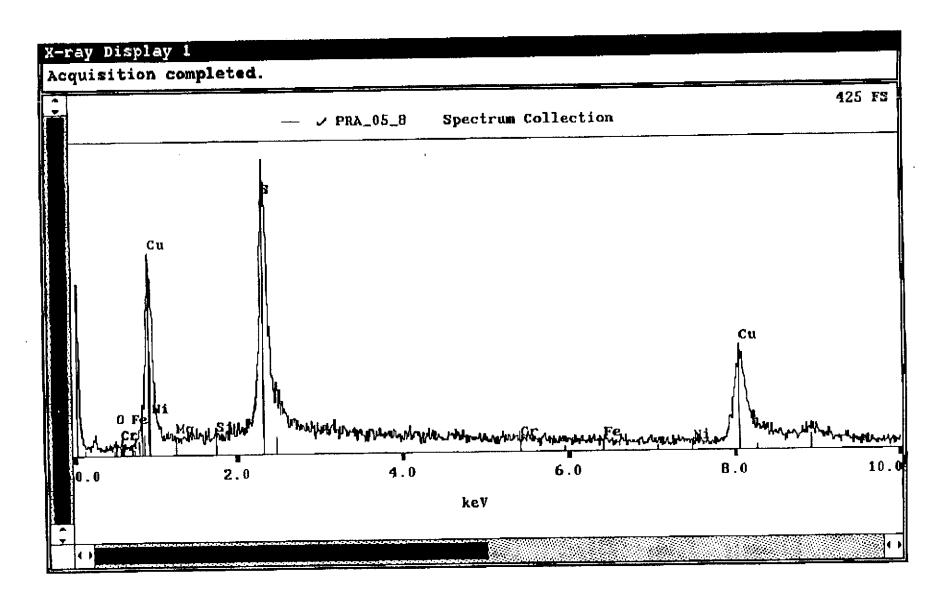

P.R.A.

6008

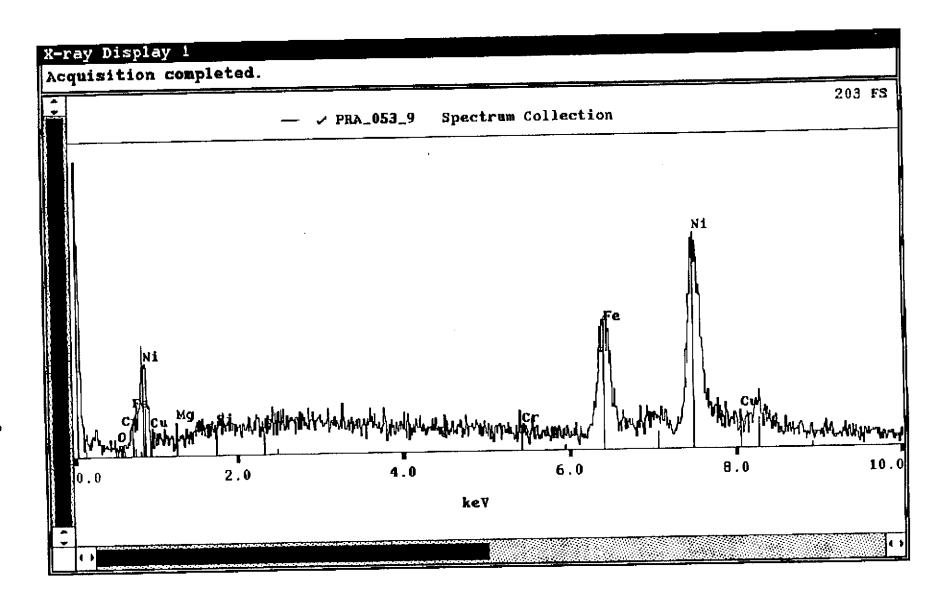


800 Ø

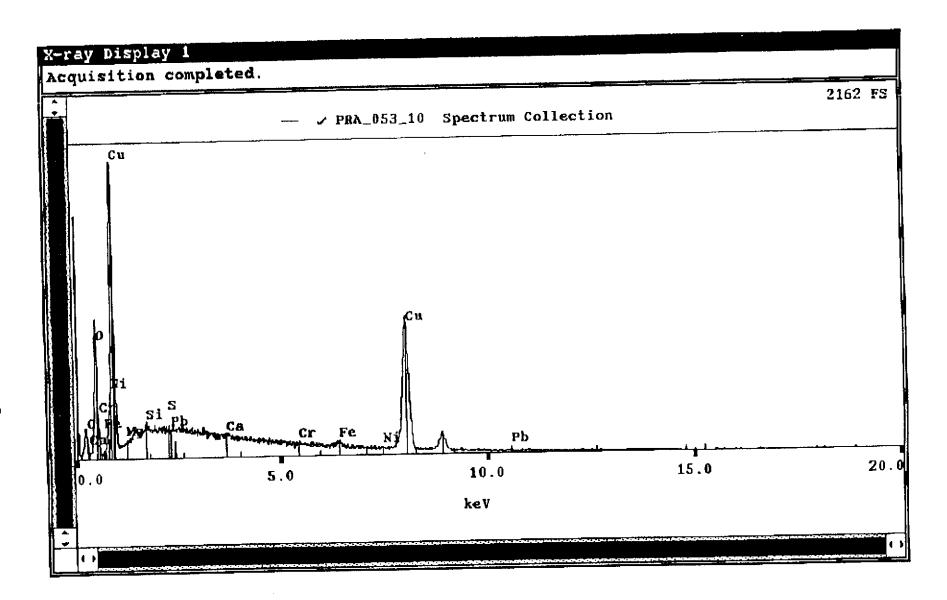
P.R.A.

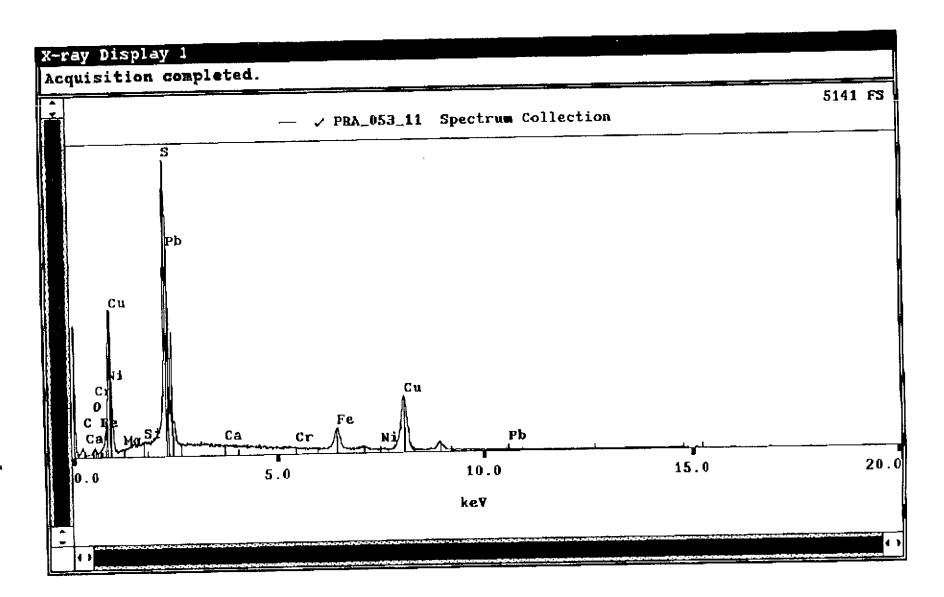


2010


ලි 011

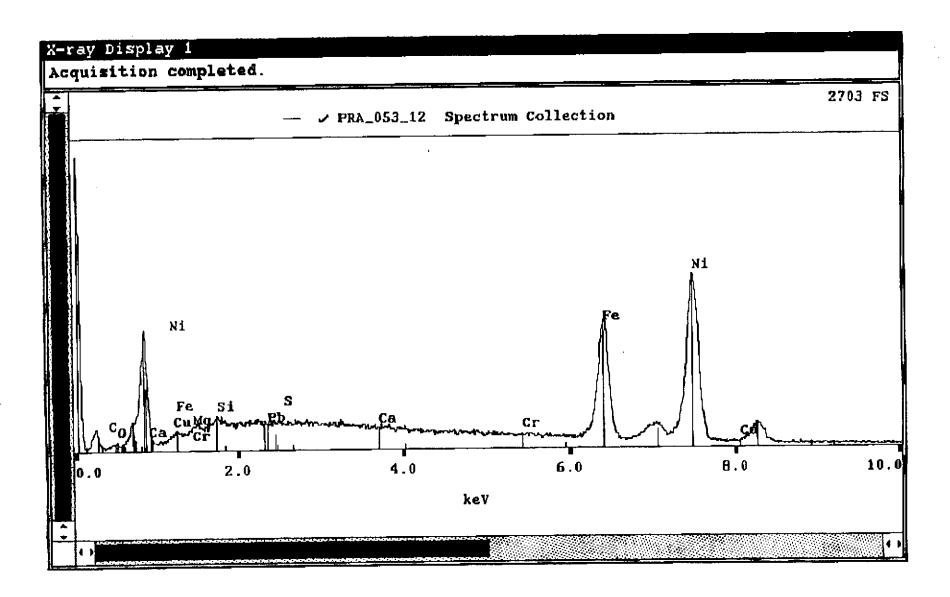
08/20/97 WED 14:59 FAX 604 322 0181



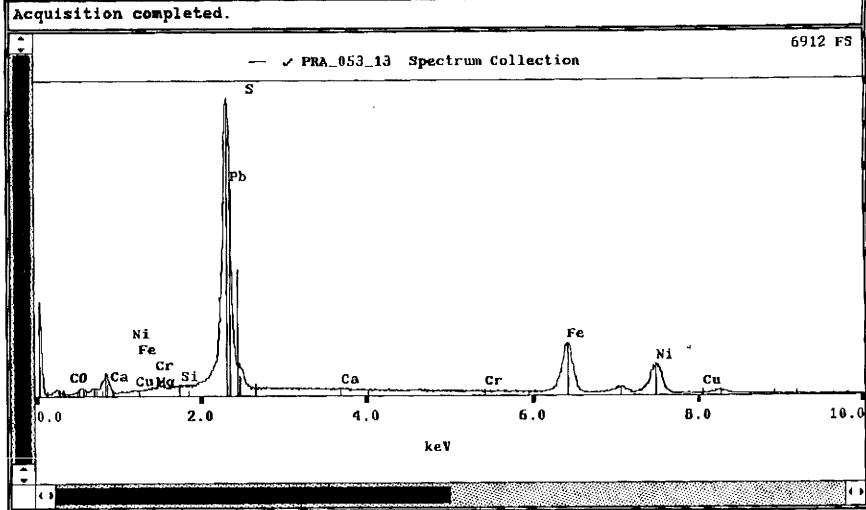

P.R.A.

Ø 01 2

Q013



Ø 015


08/20/97

WED 15:00 FAX 604 322 0181

Ø 016

X-ray Display 1

U. N. 1

3

-> -> 4

ż

X-ray Display 1 Acquisition completed. 2722 FS Ŧ ✓ PRA_053_14 Spectrum Collection Ni Fe Ni Si S Feygh PЪ Ċa Cr 2.0 6.0 8.0 10.0 0.0 4.0 keV 4. Q.

· U · U · T

1010 440 400

TU 1

22.24

1

FIRST POINT MINERALS CORPORATION

AWARUITE	RECOVERY	STUDY
----------	----------	-------

Products	Fe/Ni	Fe/Co	Ni/Co	
		GK-1		
Pan Concentrate	3.5	175.6	50.0	
Pan Tails	23.6	630.0	26.8	
Total Knelson Concentrates	12.3	444.7	36.2	
Knelson Tails	29.8	459.0	15.4	
Combined Tails	26,6	479.7	16.8	
Total	23.6	456.3	19.3	
Measured	22.8	472.7	20.7	

Test	Grind P₅₀µm	
GK- 1		- Tests GK-1 & MS-3 were done on initial sample
MS-03		
MS-05	122	- Tests MS-3, 4 & 5 were done oncomposite
MS-06	69	
MS-07	56	

1
¥,
7

Products	Fe/Ni			Fe/Co					NI/Co			
	MS-03	MS-05	MS-06	MS-07	MS-03	MS-05	MS-06	MS-07	MS-03	MS-05	MS-06	MS-07
Sala Magnetic Concentrate 1		20.75	20.56	20.60		555	524	445		27	25	22
Sala Magnetic Concentrate 2		27.10	31.35	28.57		322	446	333		12	14	12
Total Sala Concentrates	21.96	21.52	21.19	21.43	437.21	500	516	425	20	23	24	20
Davis Tube Magnetic Concentrate 1		22.06				167				8		
Davis Tube Magnetic Concentrate 2		27.75	29.19	26.25		267	245	243 📍		10	8	9
Davis Tube Magnetic Concentrate 3				23.72				200				8
Davis Tube Magnetic Concentrate 4				22.73				192				8
Davis Tube Magnetic Concentrate 5				24.68				242				10
Total Davis Tube Concentrate	i	27.61	29.19	24.58		264	245	217		10	8	9
Total Magnetic Concentrates		22.12	21.90	21.71		451	457	388		20	21	18
Non-Magnetics	20.56	20.31	20.61	20.63	185.00	147	113	132	9	7	6	6
Total	21.35	21.45	21.38	21.31	279.78	261	210	230	13	12	10	11
Measured	22.81	23.57	23.57	23.57	472.73	480	480	480	21	20	20	20

]

Figure 1 Magnification 3,600X shows a 0.3 µm spherical inclusion of Awaruite in an iron magnesium silicate.

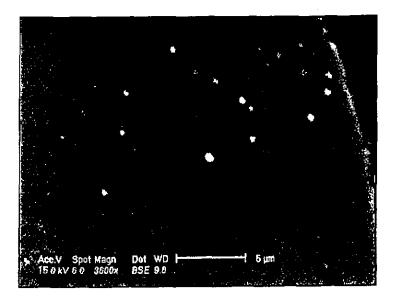


Figure 2 Magnification 1322X is an overview of the iron magnesium silicate grain showing numerous inclusions. The rectangular grain contains high iron with no discernible nickel content.

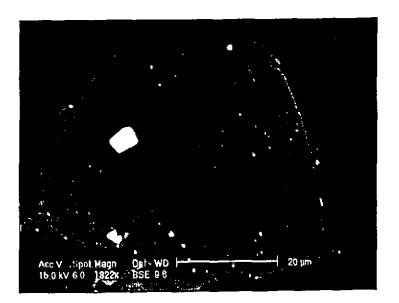
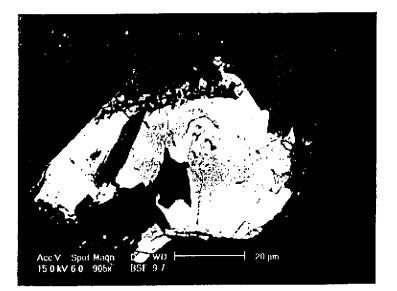



Figure 3 Magnification 4,633X Three < 1 µm inclusions of awaruite in iron magnesium silicate (lighter colored phase). The darker phase is magnesium silicate.

Figure 4 Magnification 905X Overview of the grain. The inclusion in the centre is an iron chromium oxide (possibly chromite)

*-11- **1**

.

Figure 5 Magnification 836X A 80 µm particle of a chrome nickel iron alloy (possibly stainless steel grinding media).

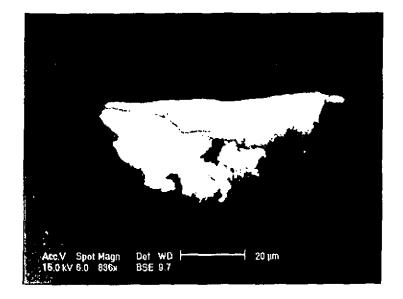
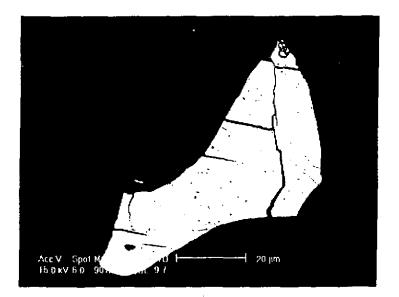



Figure 6 Magnification 907X A liberated copper sulphide grain.

___]

Figure 7 Magnification 442X A 6.2 µm inclusion of awaruite (upper left) in a magnesium silicate grain. The inclusions at centre and at the bottom are native iron with no nickel.

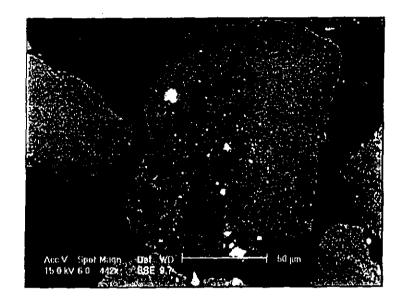


Figure 8 Magnification 591X Two inclusions of awaruite (6 and 8 µm) upper left quadrant. The immediate background is a calcium magnesium silicate. All the other inclusions are native iron with no nickel. The darker phases are a magnesium silicate.

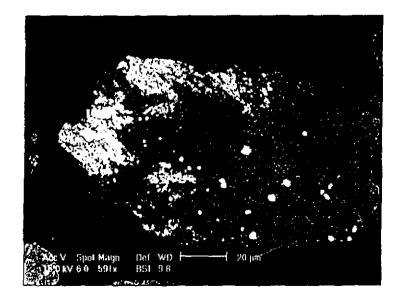
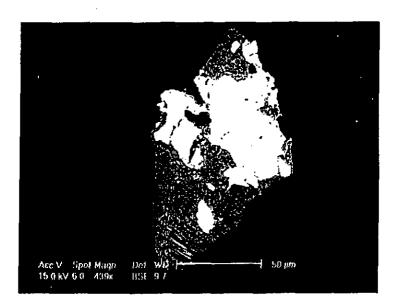



Figure 9 Magnification 430X shows a partly oxidized liberated particle. The dark phase is a copper oxide mineral. The lighter phase is a copper iron sulphide mineral.

• •

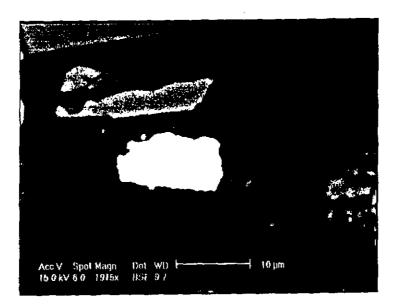
SAMPLE: NON MAGNETIC TAILINGS

1

٦

1

))


<u>'</u>]

1

Figure 10 Magnification 1,926X Elongated 2.3 x 4.7 µm awaruite inclusion to the left of centre in a magnesium silicate grain. The other inclusions are native iron with no nickel.

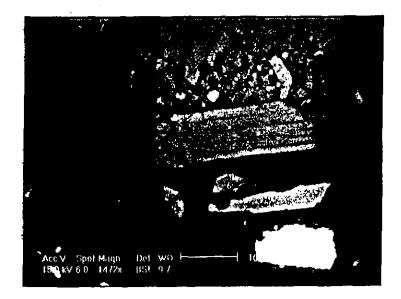
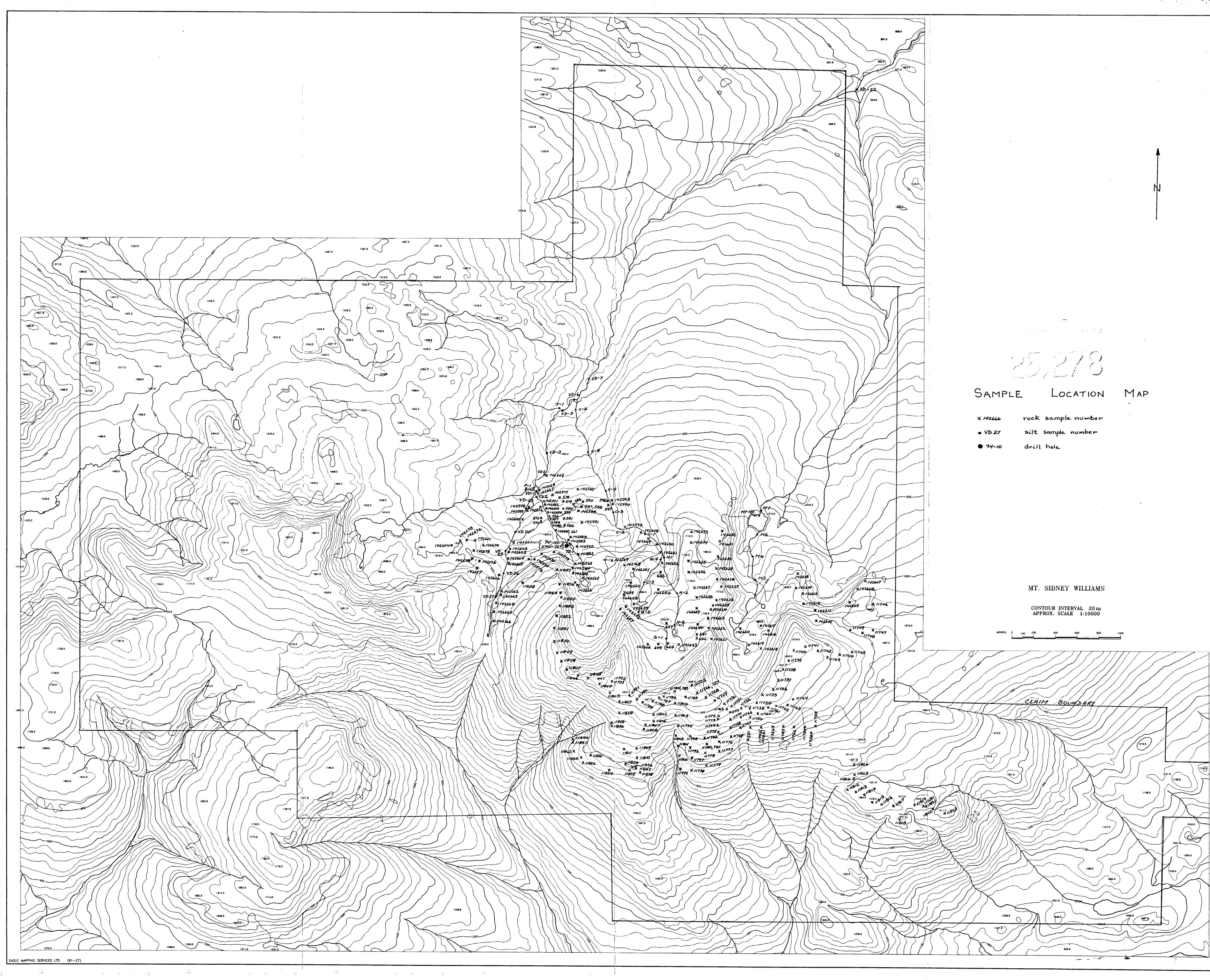


Figure 11 Magnification 1,915X Liberated 6 x 13 µm nickel iron sulphide (possibly pentlandite).



SAMPLE: NON MAGNETIC TAILINGS

Figure 12 Magnification 1,472X Awaruite inclusion of just above centre in a magnesium silicate grain. The other inclusions are native iron with no nickel.

· : .

