

1

ASSESSMENT REPORT

ON THE

DOT COPPER PORPHYRY PROPERTY

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

REPORT ON THE 1997 EXPLORATION PROGRAM ON THE DOT PROPERTY

Nicola Mining Division N.T.S. 92I/7W

Latitude: 50 deg 20 mins North _____ Longitude: 120 deg 51 mins West

By Gary Stewart P. Geol ALHAMBRA RESOURCES LTD. Suite 400 933 - 17 th Avenue S.W. Calgary, Alberta T2T 5R6

> October 10, 1997 GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

.

1

•

.

			Page		
1.0	SUM	MARY AND CONCLUSIONS	6		
2.0	INTR	ODUCTION	8		
	2.1	Location and Access	8		
	2.2	Physiography	8		
	2.3	Claim Status	8		
	2.4	History	12		
	2.5	1997 Exploration Program	13		
3.0	PROP	PERTY GEOLOGY	13		
4.0	MINE	ERALIZATION, ALTERATION AND STRUCTURE	13		
5.0	MAG	NETIC AND VLF-EM SURVEY	17		
6.0	ASSAY PROCEDURES				
7.0	DIAMOND DRILLING 1997 SUMMARY				
8.0	SUM	MARY OF 1997 EXPENDITURES	22		
9.0	STAT	EMENT OF QUALIFICATIONS	23		
10.0	REFE	RENCES	24		
11.0	DRIL	L HOLE COMPILATION MAPS	25		
12.0	GEOI	LOGICAL CROSS SECTIONS	26		
13.0	GEOP	PHYSICAL MAPS (ENCLOSURE)			

LIST OF TABLES

No.	Table	Page					
I	Mineral Claim Status - Dot Property	10					
П	Summary of the Dot Property Assay Results						
ш	1997 Dot Project - Drill Hole Technical Data						
	LIST OF APPENDICES						
Appendix	I 1997 Diamond Drill Core Logs						

Appendix II 1997 Ecotech Labs Assay Results

-

:

LIST OF FIGURES

Figure No.	Title	Scale	Page
1	Location Map & Claim Map	(1:31680)	09
2	Drill Hole Compilation Map	(1:4000)	25
3	Drill hole 97C-01	(1:1000)	26
4	Drill hole 97C-02	(1:750)	27
5	Drill hole 97C-03	(1:750)	28
6	Drill hole 97C-04	(1:750)	29
7	Drill hole 97C-05	(1:750)	30

1.0 SUMMARY AND CONCLUSIONS

The Dot project consists of 68 claim units comprising 1700 hectares and is located 15 km. southeast of the Highland Valley porphyry copper district in southern British Columbia. The Claims lie 25 km. northwest of Merritt B.C. at 50 deg 20 mins North latitude and 120 deg 51 mins west longitude, NTS 92I/7W (see figure 1 for location).

The property is underlain by the Guichon Batholith which is host to numerous porphyry copper deposits, including Lornex and Valley copper.

The copper mineralization lies within a north northwest trending zone of altered intrusive containing disseminated, fracture and vein controlled copper minerals. The mineralized zones occurs within an area which is approximately 340 meters wide and 1000 meters in length.

Alhambra Resources Ltd. has earn 51% interest in the Dot claims through an option agreement signed in May, 1996 with the owner of the claims, Larry Ovington.

The 1997 exploration program was operated and funded by Alhambra Resources Ltd., expending a total of \$156,326.81 during the period between June 06 to October 10, 1997.

The Company undertook a exploration program of geophysics and drilling. Five out of six diamond drill holes were completed totaling 1290 meters. Diamond drill hole 97C-06, located south of 97C-03 did not reach bedrock, due to difficulties encountered in overburden. This program tested the east and west extension of the existing Southeast Zone which was discovered in the 1996 (Assessment Report No: 24884). Four of the diamond drill hole intersected some degree of copper mineralization. Some of the most significant grade intercepts of the program includes 92 meters of 0.26% Cu in DDH 97C-02 and 45 meters of 0.24% Cu in DDH 97C-04.

The Geophysical survey consisted of 11 kilometers of Magnetic and VLF-EM. The reasons for completing this survey prior to 1997 drilling was to a) better define drill targets, b) delineate regional structures associated with the known mineral occurrences and c) locate other mineralized structures that may be covered in overburden. The magnetic survey may not indicate the presence or absence of mineralization, but will be able to define shear zones that could host mineralization. The intense alteration associated with these shear zones, causes the absence or alteration of Magnetite and other ferromagnesian minerals. The Arial extent of which can be delineated along with bedrock lithologies and associated structures by a magnetometer survey.

The mineralization within the Dot Claim group is hosted in a series of steeping dipping north and northwest striking faults. These faults are assumed to have existed prior to mineralization and to have played a role in initiating the many fractures which were subsequently mineralized. The better mineralization occurs in a mass of fine grained granodiorites of unknown size which intrudes coarser, dark granodiorites. Aplite dykes are elongated subparallel to the mineralization and appear to intrude the younger granodiorite. The mineralization extends into these Aplite dykes. The new zone of copper mineralization discovered in the 1997 exploration program, patterns the same structural trend as the Northwest and Southeast zones. Block faulting after mineralization formed grabens, which were infilled with immature sediments, this is evident in drill hole 97C-03. The lithologies in this hole consisted of sedimentary sandstones, conglomerates and breccias. Faulting has helped shape the existing outline of the mineralized zones.

It is believed that the copper mineralization in the new zone was formed by supergene enrichment. A result of aerated ground water channeled downward through the intensely fractured hypogene zone and caused coincident oxidation of magnetic to hematite and reduction of bornite and chalcopyrite to metallic copper. Excess sulphur and soluble salts were removed by departing ground water, together with a fraction of the copper in the effected zone. The native copper in this zone occurs as thin fracture fillings, disseminations and lining fracture planes.

The granodiorite in the mineralized zone appears impregnated with hematite, which occurs on fractures plane and stains altered feldspars. Alteration patterns vary from potassic to argillic with flaky sercite occurring locally along fractures. Plagioclase is variably altered to sercite, clay minerals, carbonate, chlorite and epidote. Epidote occurs in veins and as fracture coating in the more mafic granodiorites.

Further exploration on the Dot property should include an Induced Polarization survey to delineate other mineralized zones. A Diamond drill program to undercut the existing holes and test the structural parameters of the mineralized zones at depth. Drill test the chargeability anomalies highlighted in a 1981 induced polarization survey conducted by Lawrence Mining Corp. Conduct a drilling program to test the mineralization on the Lower Vimy showing and to delineate the copper mineralization reported in percussion drill holes P81-10 and P81-25 (assessment report 9699).

Respectfully submitted.

Dam Stewart

Gary Stewart P. Geol October 10, 1997

2.0 INTRODUCTION

The primary objective of 1997 Dot Exploration Program was to increase the known width of the mineralization discovered in the Southeast Zone. This was accomplished by drilling to the immediate east and west of the Southeast Zone. In completing this phase of exploration, the results have proven that the mineralization within the Dot Claim group is not high grade veins type as previously though , but is consistent with true Porphyry style mineralization. This program was funded and operated by Alhambra Resources Ltd.

2.1 LOCATION AND ACCESS

The Dot Property is located in south central British Columbia, approximately 25 kilometers northwest of Merritt, B.C., latitude 50 deg 20 mins, longitude 120 deg 51 mins, NTS 921/7W. Access is via highway #8, 7 kilometers northwesterly from Merritt to lower Nicola, then by good pavement 6 kilometers northerly to the Craigmont Mine site, at which point the "Aberdeen Mine Road" gives way to an upgraded gravel road. At kilometer "marker 7" northwest from Craigmont, access to claims is gained by traveling northerly an additional 5 kilometers via a unmaintained dirt road.

2.2 PHYSIOGRAPHY

The area of drilling on the Southeast Zone is centered on a rather flat bench in a logged over area. Elevations in this area range from 1000 meters in the southern portion of the property to 1375 meters at the northern end of the Claim group. The majority of the property is overburden cover terrain with scattered outcrops of Granodiorite exposed to the north and west of the property. An esker ridge located north of the drill area gives local relief of 10-15 meters. A tributary to Broom creek traverses the southwestern portion of the claims.

2.3 CLAIM STATUS

The Dot Property consists of 52 mineral claims, the Dot I to X claims and Dot 11 to Dot 28 claims, Dot claims 29A, 30A, 31A, 32A, 13A, 14A, 19A, 20A and Dot 40 to Dot 55 claims comprising a total of 68 units. The Claims are currently free and clear of all liens and held in good standing. The Registered owner of the claims is Larry Ovington of Kamloops, B.C.. Refer to table I for the record numbers and specific expiry dates.

MINERAL CLAIM STATUS - DOT PROPERTY

C <u>laim Name</u>	No of Units	Record No:	Expiry Date
DOT I	12 (4NX3W)	312518	August 16, 2007
DOT II	6 (3SX2W)	312519	August 18, 2007
DOTIII	1 (2 Post)	312733	August 24, 2007
DOT IV	1 (**)	312734	
DOT V	1 (**)	312735	
DOT VI	1 (**)	312736	*
DOT VII	1 (**)	312737	August 31, 2007
DOT VIII	I (")	312738	**
DOT IX	I (")	312739	~
DOT X	l (")	312740	
DOT 11	1 (**)	314782	November 17, 2007
DOT 12	1 (**)	314783	44
DOT 13	l (")	314784	E
DOT 14	l (``)	314785	66
DOT 15	1 (``)	314786	66
DOT 16	l (")	314787	56
DOT 17	1 (")	314788	November 18, 2007
DOT 18	1 (")	314789	ç¢
DOT 19	1 (")	314790	**
DOT 20	1 (")	314791	66
DOT 21	1 (**)	314792	~~
DOT 22	1 (**)	314793	44
DOT 23	1 (")	314794	November 17, 2007
DOT 24	1 (")	314795	<u>"</u>
DOT 25	1 (")	314796	**
DOT 26	1 (")	314797	55
DOT 27	1 (")	314798	November 18, 2007
DOT 28	1 (")	314799	••
DOT 29A	1 (")	3344 52	March 27, 2007
DOT 30A	l (")	334453	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DOT 31A	1 (**)	334454	
DOT 32A	1 (")	334455	**
DOT 13A	1 (")	351878	October 05, 2007
DOT 14A	1 (**)	351879	<u>دد</u>
DOT 19A	1 (")	351880	**
DOT 20A	1 (*)	351881	دد
DOT 40	1 (``)	351882	October 09, 2007
DOT 41	1 (**)	351883	u
DOT 42	1 (**)	351884	~
DOT 43	1 (")	351885	**

Table I

.

MINERAL CLAIM STATUS - DOT PROPERTY

Claim Name	No of Units	Record No:	Expiry Date
DOT 44	1 (**)	351886	October 19, 2007
DOT 45	1 (")	351887	66
DOT 46	1 (")	351888	**
DOT 47	1 (*)	351889	"
DOT 48	1 (")	351890	ĸ
DOT 49	1 (")	351891	<u>ب</u>
DOT 50	1 (")	351892	u
DOT 51	1 (")	351893	**
DOT 52	1 (")	351894	October 17, 2007
DOT 53	1 (")	351895	**
DOT 54	1 (")	351896	54 5
DOT 55	1 (")	351897	46

Table I

2.4 HISTORY

Two old mine workings, the Aberdeen and Vimy are located within the Dot property claim groups. Approximately 111,709 Kg of Copper, 24,321 grams of Silver and 280 grams of Gold were recovered from the Aberdeen, with the Vimy producing 8,409 Kg of Copper and 1,866 grams of silver. The Vimy workings are adjacent to the area drilled on the Northwest zone. During 1956-57 Kennco Exploration completed various surveys including trenching and 3,652 meters of drilling in 30 holes.

From 1965 to 1981 exploration programs were completed on prior claims which are now covered by the present Dot property. This work is summarized below:

1.	1960-67	Chattaway - line cutting, trenching, approximately 50 diamond drill holes (3,658m)
2.	1960-67	Bralorne - Pioneer Mines - line cutting and magnetic surveys, trenching, geochemical surveys, 7 diamond drill holes (341 meters) and 20 percussion drill holes.
3.	1970	Asarco - trenching, 148 percussion holes (5,166m on a 610m grid)
4.	1972	Aselo Industries - Induced Polarization survey.
5.	1979-81	Lawrence Mining - Induced Polarization survey, 30 diamond drill holes (5,387m) and 30 percussion holes (2,288m)
6.	1982	Lawrence Mining - 3 diamond drill holes of which the location, results and total meterage is unknown.
7.	1992	Zappa Resources Ltd 6 reverse circulation drill holes totaling 638.5m.
8.	1996	Alhambra Resources Ltd 16 diamond drill holes totaling 3109 meters.

2.5 1997 EXPLORATION PROGRAM

The 1997 Exploration program on the Dot Property consisted of a combination of Geophysics and diamond drilling. In June of 1997, 11 kilometers of grid was cut and a Magnetic and EM-VLF survey was completed. A total of 1290 meters in 6 diamond drill holes were completed on the Dot property from July to August 1997. Drill hole 97C-01 was drilled east northeast of the Southeast zone, to try and extend the mineralization in that direction. Drill holes 97C-02 to 97C-05 were drilled west of the Southeast zone to test an Induced Polarization anomaly which parallels the existing mineralization. Diamond drill hole 97C-06 was located south of 97C-03 and due to difficulties encountered in overburden never reached bedrock.

3.0 PROPERTY GEOLOGY

The Dot property is located within the eastern portion of the upper Triassic Guichon Creek Batholith. The property in underlain by the Guichon variety Highland valley phase intrusive rock, comprised of fine to medium grained hornblende monzodiorite to granodiorite. Outcrops of a coarser grained granodiorite possibly Chataway variety and younger porphyry intrusives are also noted in the literature.

4.0 MINERALIZATION, ALTERATION AND STRUCTURE

The mineralization delineated in the 1997 exploration program consists mainly of native copper with very minor amounts of bornite and chalcopyrite. This new zone of native copper occurs in DDH97C-02 and DDH97C-04 which in located 34 meters to the south. This occurrence of native copper differs from the mineralization found in the Southeast zone which was predominately bornite and chalcopyrite. The mineralization which occurs on the Dot property appears to be a product of both Supergene and Hypogene events. The mineral assemblage found in the Northwest zone was described in the 1992 Zappa Report as a combination of Supergene enrichment and Hypogene with the Southeast Zone believed to be of hypogene origin. The Native copper occurs in veinlets, disseminations and fracture filling. This zone formed as a result of oxygenated ground water channeled downward through the intensely fractures hypogene zone and caused coincidental oxidation of the magnetic to hematite and reduction of bornite and chalcopyrite to metallic copper. Limited zones of high grade bornite and chalcopyrite still occur within this supergene zone. Due to the absence of pyrite, it is possible that the excess sulphur and soluble salts were removed by the departing ground water, together with a fraction of the copper in the affected zone. This could explain the lower copper values (0.23%) reported from this zone when compared to the copper grades of 0.44% from the Southeast and 0.50% from the Northwest zones. The disseminated nature of the native copper over long intervals suggests the style of mineralization characteristic of true copper porphyries.

Drill hole 97C-01 was collared in mineralization consisting of bornite, chalcopyrite, native copper and azurite. This mineral assemblage is consistent with the mineralogy found in the Southeast zone and is believed to be an extension of that mineralization. Since this hole was collared in mineralization and drilled toward the east, the western extent of the mineralization adjacent to this hole is not known at this time.

The rock in the native copper zones appears locally impregnated with hematite, which occurs in fractures and stains the altered feldspars. Weak to strong potassic alteration occurs throughout this zone with partially overlapping and pervasive argillic alteration. Hematite staining tends to mask the intensity of potassic alteration, making the degree of alteration hard to determine. Potassic alteration also appears vein controlled and radiates out from fractures. Argillic alteration is fracture controlled with the most intense alteration occurring along fractures, faults and highly brecciated zones. Flaky sericite alteration ranges from thin coatings on fractures to replacement of whole feldspar grains adjacent to the fractures. In the area of mineralization, plagioclase is variably altered to sericite, clay minerals, carbonate, chlorite and epidote. Chlorite vein alteration coats fracture planes, forms veinlets and replaces mafic minerals. Epidote occurs in veins and as fracture coating in the more mafic granodiorites. These veins appear to consist of epidote, carbonate and clay minerals. epidote distribution seems more closely associated with rock type and geological setting then to the grade of mineralization.

Regional geology and bedrock geometry suggest that a series of steeply dipping north and northwest striking faults comprise the framework of the mineralization. The Guichon Creek Batholith is a composite Batholith with different phases of intrusion. The better mineralization occurs in a mass of finer grained granodiorite of unknown size which intrudes coarser dark granodiorite. It is likely that more than one episode of hydrothermal activity deposited the Copper sulphides in the faults and fractures associated with this system. These faults were assumed to have existed prior to mineralization and provided the original conduits for the copper mineralization. Pressure generated during the influx of the hydrothermal fluids could re-open preexisting fractures and create new fractures. These processes helped create the many fractures which were subsequently mineralized to form this geological resources. The mineralization appears to occur in three fracture sets. In outcrop these strike at N25E, -35 to -50 S.E.; N65E, -30S.E. and N8E, -70E. After implacement of the mineralization, movement along a large east west fault truncated the native copper zone. This zone which is well defined in drill hole 97C-02 does not occur in drill hole 97C-05, which was drilled to the north. Block faulting during Tertiary times formed grabens which were partly infilled by immature sediments. This is evident in drill hole 97C-03 which was drilled south of 97C-04 and intersected sedimentary sandstones, conglomerates and breccias.

DDH#	FROM (m)	TO (m)	INTV. (m)	INTV. (ft)	Cu (%)	Ag (g/t)	Au (g/t)	Mo (%)
							:	
97C-01	28.20	46.20	18.00	59.00	0.59	11.00	0.001	0.01
	205.20	217.20	12.00	39.30	0.50	2.40	0.001	0.01
97C-02	89.20	181.20	92.00	301.80	0.29	0.20	0.001	0.01
970-03								
010-00			ł			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
97C-04	61.00	106.00	45.00	147.60	0.24	0.27	0.001	0.01
970-05	161 30	170 30	9.00	29.50	0.31	0.50	0.001	0.01
070-00	101.00	170.00	3.00	23.30	0.01	0.50	0.001	0.01
	97C-03 was no	t assayed fo	r copper					

;

DDH NO:	EASTING	NORTHING	DIP	AZIMUTH	TOTAL	HORZ	VERTICAL	CORE
	(m)	(m)	DEGREES	DEGREES	LENGTH	PROJ (m)	PROJ (m)	SIZE
97C-01	5117.6	5326.1	-45	55	306,90	217.00	217.00	NQ
97C-02	4986.6	5176.4	-50	250	297.80	191.40	228.12	NQ
97C-03	5025.2	4993.6	-50	250	157.60	101.30	120.70	NQ
97C-04	4990.9	5142.8	-50	250	206.30	132.60	158.00	NQ
97C-05	4989.3	5236.2	-50	235	261.20	167.90	200.10	NQ
97C-06	Not surveyed	Not surveyed	-45	235	59.40	41.70	41.70	NQ
	97C-06 did no	t reach bedroc	! :k					

:

5.0 MAGNETIC AND VLF-EM SURVEY

The magnetic and VLF-EM surveys were carried out using a GEM System GSM-19 proton precession Overhauser magnetometer/VLF-EM unit with reading taken every 12.5 meters on 11 lines for a total survey length of 11.0 kilometers. A base station was used in order to monitor the diurnal variation of the magnetic field. For the VLF-EM readings , three transmitter stations were read which were Seattle (24.8 kHz), Annapolis (21.4 kHz) and Cutler (24.0 kHz).

The corrected magnetic total field readings were plotted and contoured on a base map labeled GP-1 as well as profiled on a second base map labeled GP-2. For the VLF-EM survey, only the Seattle data was used because of its strength and because its anomalies were more pronounced. The in-phase and quadrature data were each profiled on the base map GP-3 and in addition, the in-phase data were 4 point Fraser filtered and then plotted and contoured onto base map GP-4. The scale of each base map is at 1:2,000.

For ease of discussion, the writer has labeled the Fraser filtered anomalies, which are reflecting conductors, by lower case letters 'a' to 'd'. Because of the excellent correlation between the two surveys, the following discussion involves both surveys in relation to the VLF-EM labeling.

The strength of the magnetic field over the survey area varies from a low of 55,580 nT (nano Teslas) to s high of 56,730 nT to give a range of 1,150 nT. This would be considered to be a moderate range and certainty is typical of intrusive rock-types. Both surveys have revealed strong and /or prominent geophysical features that are undoubtedly reflecting geology, most probably structure.

The most prominent feature is a magnetic/VLF-EM correlation labeled as <u>conductor 'a'</u>. Conductor 'a' extends from the southwest corner of the survey in a northwesterly direction to the baseline at 900N where it changes direction to northerly up to the edge of the survey area at 1100N, 300E.

The magnetic feature that correlates with conductor 'a' is a dipole-like anomaly which in this case consists of a sharp change from higher magnetic readings to the southwest, to a magnetic low to the northeast. The sharp change to a low in a northeasterly direction gradually increases back to background. The causative source of this feature may be a fault contact, which is reflected by the VLF-EM conductor, between two phases of the Guichon Creek Batholith, which is reflected by the magnetics. That is, the phase to the southwest and to the west contains more magnetite than that to the northeast and to the east. Another possible explanation of the magnetic low is that it is reflecting an alteration zone perhaps as wide as that between conductors 'a' and 'b'.

<u>Conductor 'b'</u> extends from L-100N, 75E in a northeasterly direction parallel to the baseline and thence northerly to about L-1100N, 300E. To the east and northeast of this conductor, the magnetic field becomes a noisy high, that is the readings are by and large higher in value but also vary considerably. It is probable, therefore, that conductor 'b' is reflecting a contact between two different rock types of the Guichon Creek Batholith with the rock type to the east and northeast of conductor 'b' containing more magnetite. <u>Conductor 'c'</u> is a VLF-EM anomaly that occurs sporadically along the baseline. The prime reason for mentioning it is that the main exploration target, which apparently is associated with much alteration occurs here. The conductivity would be due to the alteration.

<u>Conductor 'd'</u> occurs at the northeastern edge of the survey area within the noisy magnetic rock type, It strikes north northerly and has a minimum strike length of 900 meters being open to the north. It may be a fault or shear zone.

Two additional conductors that may be of exploration interest are located at L-700N, 300E and at L-1000N, 425E. They may be reflecting faults or possibly alteration associated with mineralization.

It is recommended that the VLF-EM and magnetic survey results be reviewed by those familiar with the geology of the property, including Larry Ovington, the owner, who undoubtedly knows the property geology well. The purpose would be to improve on the geophysical interpretation and perhaps come up with drill hole targets. If the VLF-EM and magnetic survey results are found to be useful to the understanding of the property, than the surveys should be continued. It is recommended to carry out induced polarization (IP) and resistivity surveys across the property. Geotronics carried out IP and resistivity surveys in 1981. However present day IP would be done in greater detail to a greater depth using modern instrumentation and better data reduction. It is expected that better drill targets would result. Merritt is only three hours from Vancouver and thus it would be relatively inexpensive to do test lines. If the IP/resistivity survey would prove to be useful, than the survey could be continued.

6.0 ASSAY PROCEDURES

The mineralization discovered in the 1997 drilling program consists mainly of native copper. The standard metallic copper assays completed by EcoTech Labs of Kamloops consisted of crushing the sample and then splitting this sample several times, until the sample weighs approximately 250 grams. This 250 gram sample is pulverized to 150 mesh and then screened to remove the coarse fraction (-150 mesh). The entire coarse fraction is weighed and then digested in a acid solution and analyzed for the copper content. The +150 mesh sample is weighed and mixed to homogenize the sample consistency. Approximately 1 gram of this sample is digested in acid solution and analyzed for it's copper content. The weights and grades of the individual samples are averaged to equate the percentage of copper for that sample.

After compiling the assay results and comparing them to the drill core intervals, it became apparent that the assay grades did not reflect the true copper content of the core. Ten (10) consecutive samples were chosen from the mineralized interval in drill hole 97C-02 and reassayed by CanTech Labs of Calgary using a different method. The new method consists of pulverizing the entire sample and then screen for metallic copper. The -150 mesh fraction was entirely digested in acid and analyzed for copper and two (2) grams of the +150 mesh sample was digested and analyzed for copper and averaged as to weight and grade. The digestion time for the copper in these assays was twelve (12) hours.

EcoTech Labs values (% Cu)	CanTech Labs values (% Cu)
0.16	0.175
0.81	0.849
0.05	0.180
0.02	0.071
0.08	0.425
0.06	0.120
0.06	0.128
0.09	0.087
0.07	0.090
0.56	0.367
0.03	0.028
	EcoTech Labs values (% Cu) 0.16 0.81 0.05 0.02 0.08 0.06 0.06 0.09 0.07 0.56 0.03

A comparison of the results, from the two methods are listed below.

The results from these assays show a significant increase in copper values from the samples where visible copper is the predominate mineral. Where bornite and chalcopyrite appear in the core the assay results are similar as in 94329 and 94337. The most noticeable difference occurs in samples 94331 to 94334 where the copper grade increases from 200 to 500 percent and only native copper is present in the core. This difference in assay results necessiates the reassaying of the mineralized sections of drill holes 97C-02, 97C-04 and 97C-05 to calculate a true copper grade for the new zone of mineralization.

7.0 DIAMOND DRILLING PROGRAM (1997) RESULTS

A summary of the 6 hole program is given below:

Drill Hole DDH 97C-01 was drilled northeast of the southeast zone (refer to figures 2 for location and figure 3 for sectional views) to test the eastern extension of the mineralization. Drill hole 97C-01 was collared in mineralization consisting of bornite, chalcopyrite, native copper and azurite. This mineral assemblage is consistent with the mineralogy found in the Southeast zone and is believed to be an extension of that mineralization. Since this hole was collared in mineralization and drilled toward the east, the western extent of the mineralization adjacent to this hole is not known at this time. Two zones of mineralization occur in this hole 1) 28.2m to 37.2m with an average grade of 0.59% Cu and 2) 205.2m to 217.2m averaging 0.50% Cu.

Drill Hole DDH 97C-02 was drilled approximately 50m South of DDH 96C-06 on a azimuth of 250 degrees and dip of -50 degrees (refer to figure 2 for location and figure 4 for sectional views). This drill hole intersected a new zone of copper mineralization consisting of disseminations, veinlets and fractures filled with native copper and very minor amounts of bornite and chalcopyrite. At 178.7 meters this drill hole intersected a major cross fault delineated in DDH 96C-13, (assessment report 24884) which effectly sheared off the mineralization. The mineralized section in this hole has characteristic hematite, which occurs as streaks on fracture planes and stains the altered feldspars. Average grade for this hole is 0.26% Cu over 92 meters.

<u>Drill Hole DDH 97C-03</u> was drilled west of the Southeast zone to test the western limit of the existing copper mineralization (refer to figure 2 for location and figure 5 for sectional views). This drill hole intersected Tertiary sediments varying from coarse grained sandstone to conglomerates and breccias. The core exhibited poorly formed graded bedding and sedimentary laminations. Block faulting during Tertiary times is believed to have formed grabens which were subsequently infilled with immature sediments. This hole has penetrated one of these grabens to a depth of approximately 121 meters without intersecting granodiorite. Trace amounts of Pyrite were noted in the core from this hole.

Drill Hole DDH 97C-04 was drilled 34 meters to the south of DDH 97C-02, to try and determine the strike of new zone of copper mineralization (refer to figure 2 for location and figure 6 for sectional views). The mineralization occurred from 61 meters to 106 meters with an average grade of 0.23% Cu over 45 meters. The strike of this zone appears to be northwest and consistent with the structural orientation of the northwest and southeast zones (figure 2), The copper mineralization in this new zone appears to be the result of supergene enrichment.

Drill Hole DDH 97C-05 was collared 60 metres north of DDH 97C-02 (refer to figure 2 for location and figure 7 for sectional view) to try and intersect the mineralization delineated in drill holes 97C-02 and 97C-04. Trace amounts of native copper with very minor amounts of bornite and chalcopyrite were logged from 117.2 meters to 195.7 meters. It is believed that with a slight change in azimuth when setting up the diamond drill, that this hole could have been drilled on the north side of the major fault delineated in 96C-13 (Assessment Report 24884). This major northeast trending fault has truncated the southern portion of the mineralization. The copper mineralization is believed to exist on the north side of this fault and could be delineated with further drilling.

<u>Drill Hole DDH 97C-06</u> never reached bedrock due to difficulties encountered in overburden and had to be abandoned.

SUMMARY OF EXPENDITURES, DOT PROPERTY 8.0

Exploration Function	Expenditure
Diamond Drilling	\$78,623.92
Assays (metallic copper)	\$14,565.64
Project Supervision	\$7,393.89
Geological Supervision	\$7,500.00
Day Labor	\$400.00
Line Cutting (Geophysical survey)	\$4,550.00
Geophysical Survey (Mag/VLF-EM)	\$4,012.50
Core Splitting	\$4,818.00
Core Storage	\$6,110.24
Core Racks	\$997.93
Transportation & Hauling	\$7,523.80
Subsistence	\$1,549.38
Accommodations	\$1,626.05
Survey Drill Hole Locations	\$321.00
Drafting - Maps & Cross Sections	\$1,064.65
Office Supplies	\$74.90
Field Supplies	\$170.56
Printing	\$793.39
Courier Services	\$19.44
Subtotal:	\$142,115.29
	

10% Contingencies	\$14,211.52
TOTAL:	\$156,326.81

(for the period June 06, 1997 to October 10, 1997)

Bary Stewart P Geol.

9.0 STATEMENT OF QUALIFICATIONS

I, Gary G. Stewart of 155 Ranch Estates Rd N.W. Calgary, Alberta, do hereby certify that:

- 1. I am a graduate of the Acadia University with a B.Sc in geology, (1976) and presently employed by Alhambra Resources Ltd.
- 2. I am a registered Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of the Province of Alberta (APEGGA) since 1985.
- 3. I am a registered Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (APEGBC) since 1997.
- 4. I have actively practiced my profession as a Geologist for the past 21 years.
- 5. I have personally supervised the fieldwork on the Dot property for Alhambra Resources Ltd. between June 06, 1997 until October 10, 1997.
- 6. This assessment report is based on a study of the field data and literature accumulated during the period from June 6, 1997 until October 10, 1997.

Gary GStewart P. Geol

10.0 REFERENCES

- Casselman, M. J., Mcmillan, W. J., Newman, K. M. (1996): Highland valley porphyry copper deposits near kamloops, British Columbia: A review and update with emphasis on the Valley deposit.
- Minfile, (1972): Vimy, Vimy Mine, Upper Vimy, Lower Vimy, IXL, Vimy Ridge, Mine file No. 0921SE023
- Norman, G. E., (1992): Report on the 1992 Exploration Program on the Dot Property, prepared for Zappa Resources Ltd.
- Porphyry Deposits of the Canadian Cordillera (1976): special volume 15 by the Canadian Institute of Mining and Metallugry.
- Porphyry Deposits of the Canadian Cordillera (1996): special volume 46 by the Canadian Institute of Mining and Metallurgy.
- Seraphim R.H. (1980): Report on the Vimy group of claims, prepared for Lawrence Mining Ltd. (private report)
- Stewart, G. G., (1997): Assessment Report on the Dot Copper Property, Dot Claims Nicola Mining Division, Assessment Report No. 24884.
- Wells, R. A., (1981): Assessment Report for the Vimy Property Mineral claims in the Nicola Mining Division, Percussion and Diamond Drilling reports, Assessment Report No. 9699.

11.0 DRILL HOLE COMPILATION MAP

12.0 GEOLOGICAL CROSS SECTIONS

[Legen	<u>d</u>		
ি	0/B - 0v	er Burden					w bn.cc,she,py
X	GRDR -	Jranodiori	te				(Visual estimate of Mineralization)
	APLD - A	plite / Fel:	sic Dyke				
	MAFD - N	Aafic Dyke				0.03/5.10	% Copper over Core interval in metres
\boxtimes	GOUG - F	ault Goug	e				
	FLTZ - Fa	ult Zone				bn	- bournite
	FRC - Fra	cture Zone				CC -	chalcocite
R C	SKGR - S	trong Potas	ssically Ai	tered Gra	nodiorite	she	- specular hematite
	MKGR - I	Moderate F	otassically	Altered	Granodiorit	е ру	- pyrite
	WKOR -	Weak Pota	ssically Al	tered Gra	nodiorite	сp	- chalcopyrite
	SAGR - S	trong Argi	llically Al	tered Gra	nodiorite	. 102	- magnetite
	MAGR	Moderately	/ Argillical	ily Altere	d Granodio	ite	
17	WAGR -	Weak Argi	llically Al	tered Gra	nodiorite	mo	- molybdenite
	KAGR -	vioderate T	o Strong	Potassica	lly &	cu	- Native Copper
	Argillical	ly Altered	Granodion	ite		τ.	trace
	SPGR - N	foderate To transdignit	o Strong F	hyllically	/	w	weak
		20		40	50	n	- moderate
	10	20				S -	strong
		M	eires				
1							

. ~

Alhambra Resources Ltd.

Dot Project DDH # 97C-03

Fig#:5	Scale 1:75	60	NTS: 921/7W					
Date: Oct 2. 1	997		Author: GS					

	Legend	
ૼ૾ૢ	O/B - Over Burden	w bn,cc,she,py
× ×	GRDR - Granodiorite	(Visual estimate of Mineralization)
$\overline{\mathbf{G}}$	APLD - Aplite / Felsic Dyke	
	MAFD - Mafic Dyke	% Copper over Core
	GOUG - Fault Gouge	
2	FLTZ - Fault Zone	bn - bournite
	FRC - Fracture Zone	cc - chalcocite
^k k ^k i	SKGR - Strong Potassically Altered Granodiorite	she - specular hematite
K K	MKGR - Moderate Potassically Altered Granodiorite	py - pyrite
k K	WKGR - Weak Potassically Altered Granodiorite	cp - chalcopyrite
	SAGR - Strong Argillically Altered Granodiorite	me - magnetite
<u>2</u> 2	MAGR - Moderately Argillically Altered Granodiori	te ing magnetic
	WAGR - Weak Argillically Altered Granodiorite	mo - molybdenite
23	KAGR - Moderate To Strong Potassically &	cu - Native Copper
	Argillically Altered Granodiorite	tr - trace
	SPGR - Moderate To Strong Phyllically Altered Granodiorite	w - weak
0	10 20 30 40 50	m - moderate
		s - strong
	Metres	

-, **-**•-.

.-

-100				Legend								
					O/B - Over Burdenw bn,cc,she,py (Visual estimate of Mineralization)GRDR - GranodioriteMineralization)APLD - Aplite / Felsic Dyke% Copper over Core interval in metresMAFD - Mafic Dyke0.0345.10GOUG - Fault Gougebn - bournite cc - chalcociteFLTZ - Fault Zonebn - bournite cc - chalcociteFRC - Fracture Zonecc - chalcocite she - specular hematiteMKGR - Moderate Potassically Altered Granodioriteshe - specular hematite							
Alhambra Resources Ltd.			rces Ltd.		WKGR - Weak Potassically Altered Granodiorite py - pyrite WKGR - Weak Potassically Altered Granodiorite cp - chalcopyrite SAGR - Strong Argillically Altered Granodiorite mg - magnetite MAGR - Moderately Argillically Altered Granodiorite mg - magnetite							
Dot Project DDH # 97C-04					WAGR - Weak Argillically Altered Granodioritemo - molybdeniteKAGR - Moderate To Strong Potassically &cu - Native CopperArgillically Altered Granodioritetr - traceSPGR - Moderate To Strong Phyllicallyw - weakAltered Granodioritew - weak							
Fig#:6	Scale 1:750	NTS: 921/7W		0	10 20 30 40 50 m - moderate s - strong							
Date: Oct 2	1997	Author: GS			Metree							

Dot Project DDH # 97C-05

Scale 1:750

Fig#:7

Date: Oct 2. 1997

NTS: 921/7W

Author: GS

				Legend			
ૼ	O/B - O	ver Burder	3				w bn,cc,she,py
× × × ×	GRDR -	Granodior	ite				(Visual estimate of Mineralization)
	APLD -	Aplite / Fe	lsic Dyke				
122	MAFD -	Mafic Dyk	æ			0.03/5.10	% Copper over Core interval in metres
	GOUG - I	Fault Gou	ge				
3	FLTZ - F	ault Zone				bn	- bournite
	FRC - Fra	acture Zon	e			cc -	- chalcocite
(kk)	SKGR - S	Strong Pot	assically A	ltered Gran	odiorite	she	- specular hematite
K K	MKGR -	Moderate	Potassicall	y Altered C	Branodiorite	е ру	- pyrite
K K	WKGR -	Weak Pot	assically A	ltered Gran	odiorite	cn	- chalcopyrite
	SAGR - S	Strong Arg	illically Al	ltered Gran	odiorite	-r	magnetite
<u>//</u>	MAGR -	Moderatel	y Argillica	dly Altered	Granodiori	ite	- magnetite
2.4	WAGR -	Weak Arg	gillically A	ltered Gran	odiorite	mo	- molybdenite
8(2K)	KAGR -	Moderate '	To Strong	Potassicall	у &	cu	- Native Copper
iesie	Argillical	lly Altered	Granodio	rite		tr -	trace
	SPGR - N Altered (vioderate I Granodiori	To Strong	Phyllically		w -	- weak
o	10	20	30	40	50	m	- moderate
]	s -	strong
			Metres				· · · · · · · · · · · · · · · · · · ·

APPENDIX I 1997 Diamond Drill Core Logs

.

DDH 97C-01

.

n de la companya de l

•

FROM	то	DESCRIPTION	SAMPLE	FROM	TO	M	Cu (%)	Au (g/t)	Ag (g/t)	Mo (%)
0m	22.3m	mOverburden: Casing set at 22.25m								
22.3m	37.7m	Granodiorite: Oxidized zone, yellow rust color with	94201	22.2	25.2	3.0	0.03	0.001	0.1	0.01
	· · · · · · · · · · · · · · · · · · ·	red Hematite staining. Potassic alteration with	94202	25.2	28.2	3.0	0.06	0.001	0.8	0.01
		argitlic overprinting. flaky sericite developed along	94203	28.2	31.2	3.0	0.19	0.001	4.2	0.01
		fractures, fractures dip at 90, 70, 45 & 15 degrees.	94204	31.2	34.2	3.0	2.13	0.002	53.8	0.01
		Moderate Bornite with very minor Chalcopyrite &	94205	34.2	37.2	3.0	0.42	0.001	4.7	0.01
		Azurite.								
							· · · ·			
37.7m	41.8m	Granodiorite: light grey with pink tint, medium	94206	37.2	40.2	3.0	0.11	0.001	1.5	0.01
		grained, weak potassic alteration, hematite stain.	94207	40.2	43.2	3.0	0.11	0.001	0.1	0.01
		Limonite staining along fractures, pale green	1							
		epitode/carbonate veintets lining fractures.				l				
								[
41.8m	44.8m	Granodiorite: red pink color with mottled white,	94208	43.2	46.2	3.0	0.63	0.001	1.8	0.01
		hematite staining giving core red/pink color,				· · · · · · · · · · · · · · · · · · ·	1		-	
	1	localized argillic alteration along fracture, abundan	t				1			
		liminite and hematite staining, weak Native Copper	r							ļ
		mineralization, 3cm vein of specular hematite.								
			-							
44.8m	50.9m	Granodiorite: light grey color, weak with scattered	94209	46.2	49.2	3.0	0.07	0.001	0.1	0.01
		localized strong potassic or hematite staining of	94210	49.2	52.2	3.0	0.09	0.001	0.1	0.01
		feldspars, pale green epidote/carbonate veinlets								
		lining fractures, biotites starting to alter to chlorite,				L				
		trace magnetite.	ļ	L						
			ļ	I						
<u>50.9m</u>	<u>56.2n</u>	Granodiorite: red pink to mottled white color,	94211	52.2	55.2	3.0	0.03	0.001	0.1	0.01
		strong potassic alteration with localized argillic	94212	55.2	58.2	3.0	0.05	0.001	0.1	0.01
		overprinting, feldspars bleached white, biotite alt								
		to chlorite, scattered chlorite veins, predominate								
		fractures dip at 90 and 45 degrees, weak								
	ļ	disseminated Native Copper.								
							[ļ		
<u>56.2m</u>	<u> 93.2п</u>	Granodiorite: fresh appearance, medium grained,	94213	58.2	61.2	3.0	0.03	0.001	0.1	0.01
		weak potassic alteration, pale green epidote veins	94214	61.2	64.2	3.0	0.03	0.001	0.1	0.01
	ļ	lining fractures, scattered hematite staining on	94215	64.2	67.2	3.0	0.01	0.001	0.1	0.01
		fractures, minor magnetite, fracture dip 25 to 90	94216	67.2	70,2	3.0	0.04	0.001	0.1	0.01

		degrees, trace Native Copper along fracture planes	94217	70.2	73.2	3.0	0.04	0.001	0.1	0.01
. [·		94218	73.2	76.2	3.0	0.01	0.001	0.1	0.01
			94219	76.2	79.2	3.0	0.02	0.001	0.1	0.01
			94220	79.2	82.2	3.0	0.02	0.001	0.1	0.01
			94221	82.2	85.2	3.0	0.03	0.001	0.1	0.01
			94222	85.2	88.2	3.0	0.09	0.001	0.1	0.01
			94223	88.2	91.2	3.0	0.02	0.001	0.1	0.01
					-					
93.2m	96.6m	Granodiorite: white color, pervasive argillic	94224	91.2	94.2	3.0	0.08	0.001	0.1	0.01
		alteration overprinting strong potassic alteration,	94225	94.2	97.2	3.0	0.06	0.001	0.2	0.01
		Fault zone, brecciated section of core.								
		trace Chalcopyrite mineralization.								
96.6m	128.6m	Granodiorite: medium grey, medium grained,	94226	97.2	100.2	3.0	0.03	0.001	0.1	0.01
		rock appears fresh and unaltered, increase in	94227	100.2	103.2	3,0	0.02	0.001	0.1	0.01
		mafic minerals, pale green epidote veinlets lining	94228	103.2	106.2	3.0	0.05	0.001	0.1	0.01
		fractures, magnetite content appears to increase.	94229	106.2	109.2	3.0	0.02	0.001	0.1	0.01
		scattered calcite veins.	94230	109.2	112.2	3.0	0.03	0.001	0.1	0.01
112.4m	113.1m	Strong potassic alteration.	94231	112.2	115.2	3.0	0.03	0.001	0.1	0.01
			94232	115.2	118.2	3.0	0.02	0,001	0.1	0.01
			94233	118.2	121.2	3.0	0.03	0.001	0.1	0.01
			94234	121.2	124.2	3.0	0.01	0.001	0.1	0.01
	-		94235	124.2	127.2	3.0	0.01	0.001	0.1	0.01
128.6m	132.2m	Granodiorite: pale green color, strong potassic	94236	127.2	130.2	3.0	0.01	0.001	0.1	0.01
		alteration with pervasive argillic overprinting, trace	94237	130.2	133.2	3.0	0.02	0.001	0.2	0.01
		quartz veins, trace disseminated specular hematite								
		and Chalcopyrite stringers.								
132.2m	139.2m	Granodiorite: grey color, medium grained, core	94238	133.2	136.2	3.0	0.02	0.001	0.1	0.01
		appears fresh and unaltered, increase in mafic	94239	136.2	139.2	3.0	0,03	0.001	0.1	0.01
		minerals, pale green epidote veinlets lining fracture	S							
		scattered chlorite veins, 3cm thick calcite veins.								
139.2m	<u>142.7</u> π	Granodiorite: beige to off-white color, strong	94240	139.2	142.2	3.0	0.03	0.001	0.1	0.01
		potassic with pervasive argillic overprinting, commo	on]							
		calcite veins 1 to 4cm thick, trace disseminated								
		Chalcopyrite.								

DDH 97C-01

•••• • • • • • • • • • • • •

DDH 97C-01

							· ·		· · · · · · · · · · · · · · · · · · ·	
142.700	100.0-	Creandiarthau annu anlar madium arainad, agus		4 40 0	445.0	0.0		0.004		
142.711	100.30	Granodionie, grey color, medium grained, core	94241	142.2	145.2	3.0	- 0.03	0.001	0.2	0.01
		appears tresh and unaltered, pare green epidote	94242	145.2	148.2	3.0	0.02	0.001	0.1	0.01
		veinlets lining fractures, trace calcite and chlorite	94243	148.2	151.2	3.0	0.02	0.001	0.1	0.01
		veins.	94244	151.2	154.2	3.0	0.02	0,001	0.1	0.01
			94245	154.2	157.2	3.0	0.01	0.001	0.2	0.01
		· · · · · · · · · · · · · · · · · · ·	94246	157.2	160.2	3.0	0.02	0.001	0.2	0.01
			94247	160.2	163.2	3.0	0.03	0.001	0.1	0.01
			94248	163.2	166.2	3.0	0.03	0.001	0.2	0.01
			94249	166.2	169.2	3.0	0.03	0.001	0.1	0.01
			94250	169.2	172.2	3.0	0.05	0.001	0.5	0.01
			94251	172.2	175.2	3.0	0.04	0.001	0.2	0.01
			94252	175.2	178.2	3.0	0.04	0.001	0.2	0.01
			94253	178.2	181.2	3.0	0.11	0.001	0.6	0.01
			94254	181.2	184.2	3.0	0.02	0.001	0.1	0.01
			94255	184.2	187.2	3.0	0.02	0.001	0.1	0.01
186.3m	217.3m	Granodiorite: red pink color with mottled white	94256	187.2	190.2	3.0	0.05	0.001	0.1	0.01
		patches, core varies from fresh to slightly potassic	94257	190.2	193.2	3.0	0.06	0.001	0.2	0.01
		altered to pervasive argillic alteration, alteration	94258	193.2	196.2	3.0	0.02	0.001	0.1	0.01
		associated with fractures, common pale green	94259	196.2	199.2	3.0	0.02	0.001	0.1	0.01
		epidote veins, large 10cm thick calcite vein at 187.	94260	199.2	202.2	3.0	0.02	0.001	0.1	0.01
		meters, scattered smaller veins up to 1cm thick,	94261	202.2	205.2	3.0	0.03	0.001	0.2	0.01
		trace to weak disseminated and thin stringers of	94262	205.2	208.2	3.0	0.13	0.001	1	0.01
		Chalcopyrite.	94263	208.2	211.2	3.0	0.03	0.001	0,1	0.01
			94264	211.2	214.2	3.0	0.37	0.001	1.4	0.01
213.4m	215.8m	strong disseminated and veinlets of Bornite.	94265	214.2	217.2	3.0	1.47	0.002	7.1	0.03
									······································	
217.3m	235.2m	Granodiorite: grey color, medium grained, core	94266	217.2	220.2	3.0	0.02	0.001	0.2	0.01
		appears fresh and unaltered, common pale green	94267	220.2	223.2	3.0	0.01	0.001		
		epidote veinlets lining fracture.	94268	223.2	226.2	3.0	0.00	0.001		·····
			94269	226.2	229.2	3.0	0.00	0.001		
			94270	229.2	232.2	3.0	0.01	0.001		
			94271	232.2	235.2	3.0	0.02	0.001		
235.2m	242.6m	Granodiorite: red pink to pale green color, strong	94272	235.2	238.2	3.0	0.02	0.001		
		potassic alteration with arcillic alteration along	94273	238.2	241.2	30	0.02	0.001		
		fractures, minor bleaching of feldspars, biotites	94274	241.2	244.2	3.0	0.02	0.001		
		altered to chlorite, trace calcite veins 0.5 to 2cm					0,00	0.001		
	· .		<u>.</u>	L	I	I 1			· ···	
		thick, weak disseminated Chalcopyrite and stringers							[
--------	--------	--	-------	-------	---------------------------------------	-----	------	-------	-----	--
	·	of Chalcopyrite assocaited with calcite veins.								
242.6m	247.1m	Granodiorite: grey color, medium grained, pale	94275	244.2	247.2	3.0	0.03	0.001		···· · · · · · · · · · · · · · · · · ·
		green epidote veins, trace hematite streaks, weak								
		potassic alteration along fractures.			· · · · · · · · · · · · · · · · · · ·					
247.1m	249.7m	Granodiorite: red pink color, strong potassic	94276	247.2	250.2	3.0	0.00	0.001		
		alteration, quartz rich zone.			1			·		
					t		-			
249.7m	269.9m	Granodiorite: grey color, medium grained, core	94277	250.2	253.2	3.0	0.11	0.001	0.4	0.01
		appears fresh and unaltered, trace calcite veinlets,	94278	253.2	256.2	3.0	0.05	0.001	0.2	0,01
		pale green epidote veinlets, trace disseminated and	94279	256.2	259.2	3.0	0.04	0,001	0.1	0.01
		stringers of Chalcopyrite.	94280	259.2	262.2	3.0	0.03	0.001	0.2	0.01
			94281	262.2	265.2	3.0	0.05	0.001	0,1	0.01
			94282	265.2	268.2	3.0	0.13	0.001	0.3	0.01
269.9m	274.6m	Granodiorite: red pink to mottled white color, strong	94283	268.2	271.2	3.0	0.09	0.001	0.1	0.01
		potassic with localized pervasive argillic	94284	271.2	274.2	3.0	0.04	0.001	0.1	0.01
		alteration along fracture planes, weak mineralization	1							
		stringers of Chalcopyrite associated with calcite								
		veins.								
274.6m	278.8m	Granodiorite: grey with pink tint, scattered pale	94285	274.2	277.2	3.0	0.07	0.001	0.1	0.01
		green epidote veinltes, trace hematite streak along	94286	277.2	280.2	3.0	0.09	0.001	0,1	0.01
		fracture planes, weak potassic alteration, trace								
		Chalcopyrite mineralization along the surfaces of								······································
		fractures.								· ·
278.8m	284.8m	Granodiorite: beige to white color, intense argillic	94287	280.2	283.2	3.0	0.04	0.001	/	
		alteration, feldspars bleached white and altered to	94288	283.2	286.2	3.0	0.05	0.001		·
		clay, soft, friable, high fracture density, brecciated								
		section of core, fault zone.								
284.8m	306.9m	Granodiorite: grey with red pink patches and pale	94289	286.2	289.2	3.0	0.02	0.001		
		green color, mostly unaltered granodiorite with	94290	289.2	292.2	3.0	0.02	0.001		
		localized strong potassic alteration with argillic	94291	292.2	295.2	3.0	0.02	0.001		
		overprinting, common pale green epidote veins,	94292	295.2	298.2	3.0	0.01	0.001		
		trace Chalcopyrite mineralization along fractures.	94293	298.2	301.2	3.0	0.03	0.001		

	94294	301.2	304.2	3.0	0.02	0.001	
	94295	304.2	306.9	2.7	0.02	0.001	
			Ī				
END OF HOLE							

FROM	ТО	DESCRIPTION	SAMPLE	FROM	TO	М	Cu (%)	Au (g/t)	Ag (g/t)	Mo (%)
0	19.8m	Overburden: casing set at 19.8 meters.				,			2 .12 2	· · · · · · · ·
			· · · ·							
19.8m	30.6m	Granodiorite: Oxidized zone, yellow iron staining,	94301	29.2	32.2	3.0	0.08	0.001	0.5	0.01
		strong potassic alteration, feldspars showing argillic								
		alteration, biotites altered to chlorite, argillic overprinti	na							
			2			•••• <u>-</u> ••				
30.6m	57.0m	Granodiorite: beige to dark grey with patches of red	94302	32.2	35.2	3.0	0.05	0.001	0.6	0.01
		pink color, dark grey granodiorite has slickensides and	94303	35.2	38.2	3.0	0.06	0.001	0.4	0.01
		10cm bands of clay (fault gouge), fractures appear to	94304	38.2	41.2	3.0	0.05	0.001	0.2	0.01
		dip at 80 to 90 degrees, trace disseminated Native	94305	41.2	44.2	3.0	0.05	0.001	0.3	0.01
		copper and Chalcopyrite.	94306	44.2	47.2	3.0	0.03	0.001	0.3	0.01
			94307	47.2	50.2	3.0	0.65	0.001	2.4	0.01
			94308	50.2	53.2	3.0	0.09	0.001	0.4	0.01
			94309	53.2	56.2	3.0	0.06	0.001	0.3	0.01
								•		
57.0m	70.7m	Granodiorite: pink to pale grey color, strong potassic	94310	56.2	59.2	3.0	0.01	0.001	0.1	0.01
		alteration with pervasive argillic overprinting, majority	94311	59.2	62.2	3.0	0.01	0.001	0.3	0,01
		of feldspars bleached white, biotites altered to chlorite	94312	62.2	65.2	3.0	0.03	0.001	0.1	0.01
		trace calcite and chlorite veins, muscovite along	94313	65.2	68.2	3.0	0.03	0.001	0.2	0.01
		fracture planes, high fracture density, brecciated	94314	68.2	71.2	3.0	0.02	0.001	0.1	0.01
		core, weak disseminated Native Copper with strong								
		Native Copper mineralization along fractures.								
70.7m	118.4m	Granodiorite: brick red to pale green color, hematite	94315	71.2	74.2	3.0	0.02	0.001	0.2	0.01
		staining causing red color, red brown to rust colored	94316	74.2	77.2	3.0	0.03	0.001	0.1	0.01
		hematite streaks along fracture, slickensides, localized	94317	77.2	80.2	3.0	0.03	0.001	0,2	0.01
		phyllic alteration, weak to localized intense argillic	94318	80.2	83.2	3.0	0.03	0.001	0.1	0.01
		alteration, biotites altered to chlorite, high fracture	94319	83.2	86.2	3.0	0.03	0.001	0.1	0.01
		density, common chlorite veins, weak disseminated	94320	86.2	89.2	3.0	0.12	0.001	0.1	0.01
		Native Copper, trace Chalcopyirte associated with	94321	89.2	92.2	3.0	0.26	0.001	0.2	0.01
		calcite veins, trace blebs of Bornite associated with	94322	92.2	95.2	3.0	0.49	0.001	1.5	0.01
		phyllic alteration.	94323	95.2	98.2	3.0	0.21	0.001	0.3	0.01
		fractures dip at 90, 45 & 15 degrees.	94324	98.2	101.2	3.0	0.12	0.001	0,1	0.01
	104.6m	Trace Molybdenum associated with Native Copper.	94325	101.2	104.2	3.0	0.05	0.001	0.1	0.01
		Native Copper is the dominate Copper mineral and	94326	104.2	107.2	3.0	0.33	0.001	0.3	0.01
	ļ	occurs as disseminations and fracture filling.	94327	107.2	110.2	3.0	0.09	0.001	0.2	0.01
			94328	110.2	113.2	3.0	0.18	0.001	0.3	0.01
113.5m	<u>114.2m</u>	Fault Zone: Clay fault gouge, slickensides, dk grey	94329	113.2	116.2	3.0	0.81	0.002	0.2	0.01

DDH C97-02

. . .

	color,	94330	116.2	119.2	3.0	0.18	0.001	0.1	0.01
118.4m	123.7mGrapodiarite: dark grey green color, common chlorite	04221	110.2	172.2	2.0	0.07	0.000	0.2	0.04
110.4111	veinlets scattered calcite veins common rust colored	0/332	100.2	122.2	2.0	0.07	0.002	0.2	0.01
	hematite streaks along fractures, slickensides, biotites	34332	122.2	123.2	<u> </u>	0.45	0.001	0.1	0.01
	altered to chlorite, potassic alteration with phyllic								
	alteration along fractures, moderately disseminated								
	Native Copper mineralization								
123.7m	143.5mGranodiorite: red pink color, strong potassic alteration	94333	125.2	128.2	3.0	0.12	0.001	0.1	0.01
	argillic alteration along fractures, feldspars altered to	94334	128.2	131.2	3.0	0.13	0.001	0.2	0.01
	clay, biotites altered to chlorite, scattered chlorite	94335	131.2	134.2	3.0	0.09	0.001	0.1	0.01
	veins, fractures dip at 15, 45 & 90 degrees.	94336	134.2	137.2	3.0	0.09	0.001	0.2	0.01
138.2m	139.2m Quartz vein with Bornite and Chalcopyrite.	94337	137.2	140.2	3.0	0.56	0.001	0.5	0.01
	weak to moderate disseminated Native Copper.	94338	140.2	143.2	3.0	0.03	0.001	0.2	0.01
143.5m	149.0m Aplite Dyke: salmon color, composed of quartz and	94339	143.2	147.2	4.0	0.03	0.001	0.1	0.01
	feldspars, potassic alteration, hematite staining along	94340	147.2	150.2	3.0	0.11	0.006	0.1	0.01
	fractures, fractures dip at 45 & 90 degrees.								
· · · · ·	weak disseminated Native Copper.								
149.0m	163.7m Granodiorite: red pink with pale grey tint, strong	94341	150.2	153.2	3.0	0.19	0.001	0.3	0.01
[potassic alteration, feldspars starting to show argillic	94342	153.2	157.2	4.0	0.18	0.002	0.1	0.01
	alteration, strong hematite staining along fractures,	94343	157.2	160.2	3.0	0.08	0.001	0.2	0.01
	strong disseminated Native Copper with trace	94344	160.2	163.2	3.0	0.06	0.001	0.5	0.01
	Chalcopyrite.								
100 7									
163./m	175.9mGranodiorite: pale grey color, strong potassic alteratio	94345	163.2	166,2	3.0	0.07	0.001	0.1	0.01
	with pervasive argillic overprinting, strong hematite	94346	166.2	169.2	3.0	0.05	0.001	0.2	0.01
	staining, high fracture density, fault breccia, large faul	94347	169.2	172.2	3.0	0.05	0.001	0.1	0.01
ļ	appears to dip at 45 degrees, weak disseminated	94348	172.2	175.2	3.0	0.06	0.001	0.1	0.01
	Native Copper.								
175.0	194 1m Cronodiation and red to anti-		498.5	175.6					
1/5.90	altoration alighancidae abundant hamatite string	94349	175.2	178.2	3.0	0.20	0.001	0.1	0.01
	alleration, slickensides, abundant nematite staining	94350	1/8.2	181.2	3.0	2.47	0.001	0.1	0.01
<u> </u>	along fractures, rault 178.7m to 180.0m clay fault	94351	181.2	184.2	3.0	0.05	0.001	0.2	0.01
<u> </u>	gouge and sickensides, fractures dip at 45 & 90 deg							⊢↓	
	puong nauve copper mineralization in tractures.							 	
L								1	

DDH C97-02

184.1m	236.9m Granodiorite: grey color, fine to medium grained, trace	94352	184.2	187.2	3.0	0.02	0.001	0.1	0.01
	magnetite, core appears fresh with potassic alteration	94353	187.2	190.2	3.0	0.01	0.001	0.1	0.01
	along fractures, trace epidote and calcite veintets,	94354	190.2	193.2	3.0	0.01	0.001	0.1	0.01
	trace chlorite veins, fractures dip at 45 & 90 degrees.	94355	193.2	196.2	3.0	0.01	0.001	0.1	0.01
		94356	196.2	199.2	3.0	0.01	0.001	0.1	0.01
		94357	199.2	202.2	3.0	0.01	0.001	0.1	0.01
		94358	202.2	205.2	3.0	0.01	0.001	0.1	0.01
		94359	205.2	208.2	3.0	0.01	0.001	0.1	0.01
		94360	208.2	211.2	3.0	0.01	0.001	0.1	0.01
		94361	211.2	214.2	3.0	0.01	0.001	0.1	0.01
		94362	214.2	217.2	3.0	0.02	0.001	0.2	0.01
		94363	217.2	220.2	3.0	0.01	0.001	0.1	0.01
		94364	220.2	223.2	3.0	0.01	0.001	0.2	0.01
		94365	223.2	226.2	3.0	0.01	0.001	0.2	0.01
		94366	226.2	229.2	3.0	0.02	0.001	0.1	0.01
		94367	229.2	232.2	3,0	0.02	0.001	0.1	0.01
		94368	232.2	235.2	3.0	0.01	0.001		· · · · · · · · · · · · · · · · · · ·
<u>236.9m</u>	297.8m Granodiorite: light grey color, fine grained, trace	94369	235.2	238.2	3.0	0.01	0.001		
	magnetite, core appears to be mostly unaltered with	94370	238.2	241.2	3.0	0.01	0.001		
	slight potassic alteration along fractures, biotite show	94371	241.2	244.2	3.0	0.00			
	weak alteration, chloritized along fractures, fractures	94372	244.2	247.2	3.0	0.01			
	appear to dip at 50 & 90 degrees, trace Chalcopyrite	94373	247.2	250.2	3.0	0.01			
	mineralization.	94374	250.2	253.2	3.0	0.00			
		94375	253.2	256.2	3.0	0.01			
		94376	256.2	259.2	3.0	0.01			
		94377	259.2	262.2	3.0	0.02			
		94378	262.2	265.2	3.0	0.00			
		94379	265.2	268.2	3.0	0.01			
		94380	268.2	271.2	3.0	0.02			
		94381	271.2	274.2	3.0	0.03			
		94382	274.2	277.2	3.0	0.02			
		94383	277.2	280.2	3.0	0.02			
· · · · · · · · · · · · · · · · · · ·		94384	280.2	283.2	3.0	0.01			
		94385	_283.2	286.2	3.0	0.01			
		94386	286.2	289.2	3.0	0.01			
		94387	289.2	292.2	3.0	0.01			·····
		94388	292.2	295.2	30	0.01			
		94389	_295.2	297.8	2.6	0.01			

FROM	TO	DESCRIPTION	SAMPLE	FROM	то	М	Cu (%)	Au (g/t)	Ag (g/t)	Mo (%)
0m	21.3m	Overburden: casing set at 21.3 meters					1	Y 		······
21.3m	32.6m	Conglomerate: dark grey color, coarse grained, poorly sorted					· · ···			
		rounded grains, matrix supported, clay matrix, slightly								
		calcareous, interbedded large volcanic clasts, trace pyrite.	••••							
										,
32.6m	33.3m	Breccia: grain supported, angular rock fragments,								
		matrix infilled with calcite.								
				· · · · · ·						
33.3m	38.9m	Conglomerate: dark grey color, coarse grained, poorly sorted	<u>J</u>	1				·		
		rounded grains, matrix supported, clay matrix, slightly							• • • • • • • • • • •	
		calcareous, interbedded large volcanic clasts, trace pyrite.		1						
						·				
38.9m	42.8m	Breccia: grain supported, angular rock fragments,	94402	39.8	42.8	3	0 006	0.001		
		matrix infilled with calcite.						0.001		
42.8m	61.5m	Conglomerate: sandy, matrix supported, large interbedded								
		volcanic boulders.								
61.5m	63.9m	Breccia: very coarse grained, grain supported, sandy	94403	61.8	64.3	2.5	0.005	0.001	!	
		clayey matrix, calcite infilling of matrix between rock							1	
		fragments.		· · · · · · · · · · · · · · · · · · ·						
							······			
63.9m	69.2m	Conglomerate: dark grey to black color, matrix supported				· ···				
		rock fragments composed of quartz and feldspars, matrix								
		composed of sandy clay.								
69.2m	75.6m	Conglomerate: varies from dark grey to black and grey								
		green, grain supported, clay matrix, rounded rock fragments								·
		under 5mm in diameter.								
75.6m	90.5m	Interbedded Breccia and Sandy Conglomerate:								
		interbedded large volcanic boulders, sandy conglomerate								
		is grain supported with a soft clay matrix, trace calcite veins	I							
		trace graded bedding and laminations, trace slickensides,								
···		trace Pyrite,								
90.5m	98.6m	Sandstone: coarse grained, well sorted, rounded grains,								

DDH 97C-03

		grain size less then 2mm in diameter, graded bedding and]			
		aminations.	 				
98.6m	<u>135.4π</u>	Interbedded Sandstones, Breccias and Conglomerates:					
		interbedded volcanic and granodiorite boulders, trace					
		slickensides and clay seams.					
<u>135.4m</u>	157.6n	Breccia: large interbedded boilders with clay and coarse				·····	
j		sand matrix, poorly sorted, matrix is grain supported,					
		scattered calcite infilling of matrix, core interval becoming					
·							
		END OF HOLE					

FROM	то	DESCRIPTION	SAMPLE	FROM	TO	М	Cu (%)	Au (g/t)	Aa (a/t)	Mo (%)
0	28.3m	Overburden: Casing set at 28.04 meters.								
								· · · · · _ ·		
28.3m	29.2m	Granodiorite: Oxidized zone, limonite staining, intense	94451	28.0	31.0	3.0	0.11	0.001	0.5	0.01
		argillic alteration, feldspars bleached white, flaky					1			
		sericite along fractures.								
29.2m	<u>38.7m</u>	Granodiorite: light grey to grey green, brecciated	94452	31.0	34.0	3.0	0.05	0.001	0.6	0.01
		section of core, slickensides (fault zone), biotites	94453	34.0	37.0	3.0	0.04	0.001	0.3	0.01
		altered to chlorite, clay matrix, trace disseminated	94454	37.0	40.0	3.0	0.04	0.001	1.2	0.01
		Chalcopyrite.								
							1			·····
<u>38.7m</u>	49.0m	Granodiorite: grey with pink tint, moderate potassic	94455	40.0	43.0	3.0	0.07	0.001	0.4	0.01
		alteration, localized argillic alteration, feldspars starting	94456	43.0	46.0	3.0	0.02	0.001	0.3	0.01
		to bleach white, fractures appear to dip at 30 & 90 deg	94457	46.0	49.0	3.0	0.03	0.001	0.2	0.01
48.5m	49.0m	Strong Native Copper showing, mineralization confined								
		to a emerald green band of feldspar.								
<u>49.0m</u>	53.5m	Granodiorite: salmon color, strong potassic alteration,	94458	49.0	52.0	3.0	0.05	0.001	0.2	0.01
ļ		weak argillic overprinting, strong hematite staining,	94459	52.0	55.0	3.0	0.05	0.001	0.2	0.01
		brecciated rock fragments, fracture zone.				<u> </u>				
<u>53.5m</u>	61.3m	Granodiorite: pale grey color, pervasive argillic alteration	94460	55.0	58.0	3.0	0.05	0.001	0.1	0.01
		hematite staining on fractures, high fracture density,	94461	58.0	61.0	3.0	0.10	0.001	0.3	0.01
		very rubbly section of core, weak disseminated Native			_					
		copper mineralization,								
04.0	C4 0									
61.3M	61.8m	Aplite Dyke: red pink color, composed of quartz and	94462	61.0	64.0	3.0	0.18	0.001	0.4	0.01
		reidspar, nigh fracture density, slickensides, some								
		rractures filled with pale green clay, open vugs lined								
		with calcile and Native Copper, edges of fractures has								
		moderate Native Copper mineralization.								
61.8-	65.0~	Cranadiarita: colmon color, year atrong actors	04400							
	05,211	atteration localized argillic alteration close fraction	94463	64.0	67.0	3.0	0.12	0.001	0.1	0.01
¦ł		strong hematite staining on fractures, brossisted asstan								
	_	of core Fault zone trace discominated Native Concern	1	·····		,				
	<u>-</u>	or coro, r aut zone, trace disseminated Native Copper.								
65.2m	75.3m	Granodiorite: light grey, weak to moderate potassic	01161	67.0	70.0	20	0.42	0.004		0.04
	10.011	peranodionice light groy, weak to moderate polassic	34404	07.0	10,0	3.0	0.13	0.001	0.2	0.01

DDH 97C-04

alteration with localized intense argillic alteration, high	94465	70.0	73.0	3.0	0.21	0.001	0.3	0.01
fracture density, limonite staining on fractures, commo	or 94466	73.0	76.0	3.0	0.19	0.001	0.4	0.01
chlorite veinlets, slickensides, moderate Native Coppe	er 🛛							
mineralization occurs as disseminations and fracture								
fillings.								
75.3m104.1m Granodiorite: salmon color, strong potassic alteration	94467	76.0	79.0	3.0	0.15	0.001	0.2	0.01
weak argillic alteration, feldspars starting to bleach	94468	79.0	82.0	3.0	0.08	0.001	0.3	0.01
white, localized moderate argillic alteration, flaky	94470	82.0	85.0	3.0	0.09	0.001	0.2	0.01
Sericite occuring along fractures, common chlorite	94471	85.0	88.0	3.0	0.12	0.001	0.2	0.01
veinlets trace Specular Hernatite, moderate	94472	88.0	91.0	3.0	0.10	0.001	0.2	0.01
disseminated Native Copper mineralization distribute	d 94473	91.0	94.0	3.0	0,08	0.001	0.4	0.01
throughout this core interval, mineralization associated	94474	94.0	97.0	3.0	0.26	0.001	0.4	0.01
with potassic alteration.	94475	97.0	100.0	3.0	0.06	0.001	0.2	0.01
	94476	100.0	103.0	3.0	0.29	0.001	0.3	0.01
104.1m/111.9m/Granodiorite: Fault Zone, brecciated rock fragments,	94477	103.0	106.0	3.0	1.45	0.001	0.3	0.01
dark grey color, slickensides, fault appears to be	94478	106.0	109.0	3.0	0.09	0.001	0.2	0.01
dipping at 50 degrees,	94479	109.0	112.0	3.0	0.03	0.001	0.2	0.01
							· · · · · · · · · · · · · · · · · · ·	
111.9m 130.9m Granodiorite: salmon with patchy pale green color,	94480	112.0	115.0	3.0	0.06	0.001	0.2	0.01
strong potassic alteration, localized intense argillic	94481	115.0	118.0	3.0	0.04	0.001	0.2	0.01
overprinting, decrease in mafic content, high fracture	94482	118.0	121.0	3.0	0.05	0.001	0.1	0.01
density, shear zones, hematite staining along fracture	5, 94483	121.0	124.0	3.0	0.05	0.001		
fractures dip at 40 & 90 degrees, trace Bornite and	94484	124.0	127.0	3.0	0.04	0.001		
Chalcopyrite mineralization.	94485	127.0	130.0	3.0	0.06	0.001		
130.9m/145.2m/Granodiorite: light grey with pink tint, weak to moderate	e 94486	130.0	133.0	3.0	0.07	0.001		
potassic alteration, trace magnetite, slickensides,	94487	133.0	136.0	3.0	0.09	0.001		
strong hematite staining along fractures, trace large	94488	136.0	139.0	3.0	0.03	0.001		
calcite vein, fractures appear to dip at 30, 50 & 90	94489	139,0	142.0	3.0	0.01	0.001		
degrees, trace Chalcopyrite and Bornite mineralization	1. 94490	142.0	145.0	3.0	0.01	0.001		
145.2m 176.1m Granodiorite: light grey with slight pink tint, localized	94491	145.0	148.0	3.0	0.03	0.001		
patchy salmon color, weak with moderate localized	94492	148.0	151.0	3.0	0.02	0.001		
potassic alteration along fractures, trace intense argill	c 94493	151.0	154.0	3.0	0.01	0.001		
alteration along fractures, fine grained granodiorite wit	h 94494	154,0	157.0	3.0	0.01	0.001		
trace magnetite, scattered chlorite veinlets, hematite	94495	157.0	160.0	3.0	0.03	0.001		
staining along tractures, trace calcite veins,	94496	160.0	163.0	3.0	0.03	0.001		

slickensides, trace disseminated Chalcopyrite.	94497	163.0	166.0	3.0	0.02	0.001		
	94498	166.0	169.0	3.0	0.01	0.001		
	94499	169.0	172.0	3.0	0.02	0.001		
	94500	172.0	175.0	3.0	0.00	0.001		
176.1m206.3mGranodiorite: light grey, fine grained, core appears fres	94501	175.0	178.0	3.0	0.10	0.001		
slight potassic alteration with moderate potassic	94502	178.0	181.0	3.0	0.01	0.001		
alteration along fractures, trace chlorite veinlets and	94503	181.0	184.0	3.0	0.00	0.001		
magnetite, hematite staining along fracture planes,	94504	184,0	187.0	3.0	0.02	0.001		
fractures appear to dip at 40 & 90 degrees, trace	94505	187.0	190.0	3.0	0.08	0.001		
disseminated Chalcopyrite mineralization.	94506	190.0	193.0	3.0	0.11	0.001		
	94507	193.0	196.0	3.0	0.01	0.001		
	94508	196.0	199.0	3.0	0.04	0.001		
	94509	199.0	202.0	3.0	0.03	0.001		
	94510	202.0	206.3	4.3	0.05	0.001		
								1

FROM	то	DESCRIPTION	SAMPLE	FROM	TO	М	Cu (%)	Au (q/T)	Aq (q/T)	Mo (%)
0	32.3m	Overburden: Casing set at 32.3 meters						¥/	-v (v (<u>`</u>
32.3m	33.4m	Granodiorite: Oxidized zone, yellow rust color, strong	94551	32.3	35.3	3	0.07	0.001	0.1	
		hematite streaks, friable, weathered appearence, feldspars								
		altered to clay.								
33.4m	38.7m	Granodiorite: light grey, coarse grained, weak potassic	94552	35.3	38.3	3	0.05	0.001	0.1	
		alteration, biotities starting to alter to chlorite, high fracture			···· ··· ··· ··· ··· ···					
		density, rubbly section of core.								
							-			
38.7m	61.4m	Granodiorita: light gray, coarse grained, weak optassio	04552	38.3	41.2		0.06	0.004	0.1	
30.7M	01.411	alteration with localized moderate to strong potassic	94555	30.3	41.3	2	0.00	0.001	U.I	
		alteration slickensides trace chlorite and quartz voine	94004	41.3	44.0	<u> </u>		0.001	0.1	
		scattered calcite vointer, this alow costing fracture planes.	04556	44.0	47.3	2	0.09	0.001	0.1	
		fractures appear to dip at 20, 50 8, 90 dogroos, trace	04667	47.3	50.5	<u> </u>	0.02	0.001	0.1	· · · · · · · · · · · · ·
		disseminated Chalconvrite	94558	52.2	55.3	2		0.001	0.1	
			04550	56.2	50.3	3	0.03	0.001	0.1	
			94559	50.5	623	2	0.04	0.001	0.1	
			34300	00.0	02.3		0.08	0.001	0.1	
61.4m	66.7m	Granodiorite: grey color, fine grained, strong potassic	94561	62.3	65.3	3	0.04	0.001	0.1	
		alteration with localized intense argillic alteration.	94562	65.3	68.3	3	0.02	0.001	01	
		Fault zone, brecciated rock fragments, clay bands coating				·	0.02	0.001		
		fractures.	<u> </u>					<u>.</u>		
					·					
66.7m	93.4m	Granodiorite: salmon to dark grey color, the fine grained	94563	68.3	71.3	3	0.01	0.001	0.1	
		granodiorite has strong potassic alteration with weak to	94564	71.3	74.3	3	0.02	0.001	0.1	
		moderate argillic overprinting, slickensides, scattered	94565	74.3	77.3	3	0.03	0.001	0.1	
		1cm thick calcite veins, high fracture density, trace	94566	77.3	80.3	3	0.02	0.001	0.1	
		Chalcopyrite mineralization.	94567	80.3	83.3	3	0.05	0.001	0.1	0.01
			94568	83.3	86.3	3	0.11	0.001	0.1	0.01
			94569	86.3	89.3	3	0.03	0.001	0.1	0.01
			94570	89,3	92.3	3	0.02	0.001	0.1	0.01
				······						
93.4m	105.4m	Granodiorite: mottled dark grey and offwhite color, dark	94571	92.3	95.3	3	0.03	0,001	0.1	0.01
		grey color associated with clay fault gouge, potassic	94572	95.3	98.3	3	0.01	0.001	0.1	0.01
ļ		alteration with pervasive argillic overprinting, feldspars	94573	98.3	101.3	3	0.01	0.001	0.1	0.01
		bleached white, slickensides, trace 1cm thick calcite veins.	94574	101.3	104.3	3	0.01	0.001	0.1	0.01

DDH 97C-05

	r I						T		· · · · · · · · · · · · · · · · · · ·	
			·		107.0			0.004		0.04
105.4m	117.2m	Granodiorite: alternating light and dark grey color, pervasiv	94575	104.3	107.3	-3	0.01	0.001		0.01
		argilisc alteration, scattered precciated rock tragments,	94576	107.3	110.3	3	0.01	0.001	0.1	0.01
		Fault zone, slickensides.	945//	110.3	113.3	3	0.01	0.001	0.1	
			94578	113.3	116,3	3	0.02	0.001	0.1	0.01
			0.4570					0.004		
117.2m	139.3m	Granodionte: salmon to red color, fine grained, strong	94579	116.3	119.3	3	0.02	0,001	0.2	0.01
		potassic alteration with localized argillic alteration along	94580	119.3	122.3	3	0.02	0.001	0.1	0.01
		fracture planes, strong hematite staining on fractures,	94581	122.3	125.3	3	0.03	0.001	0.1	0.01
		trace disseminated Native Copper mineralization.	94582	125.3	128.3	3	0.02	0.001	0.1	0.01
			94583	128.3	131.3	3	0,06	0.002	0.1	0.01
			94584	131.3	134.3	3	0.03	0.001	0.1	0.01
			94585	134.3	137.3	3	0.04	0.001	0.1	0.01
			94586	137.3	140.3	3	0.04	0.001	0.1	
139.3m	160.6m	Granodiorite: grey with pink tint, fine grained, weak to mod	94587	140.3	143.3	3	0,04	0.001	0.1	
		localized potassic alteration, feldspars have pink tint,	94588	143.3	146.3	3	0.04	0.001	0.1	
		biotites show alteration to chlorite, high fracture density,	94589	146.3	149.3	3	0.03	0.001	0.1	
		hematite streaks on fracture planes.	94590	149.3	152.3	3	0.01	0.001	0.1	
	1	trace disseminated Native Copper.	94591	152.3	155.3	3	0.01	0.001	0.1	
			94592	155.3	158.3	3	0.05	0.001	0.1	
160.6m	195.7m	Granodiorite: salmon to red/pink color, fine grained	94593	158.3	161.3	3	0.07	0.001	0.1	0.01
		moderate to strong potassic alteration with weak argillic	94594	161.3	164.3	3	0.48	0.001	0.3	0.01
		overprinting, hematite streak on fracture planes, scattered	94595	164.3	167.3	3	0.26	0.001	0.8	0.01
		pale green epidote veinlets, weak disseminated Native	94596	167.3	170.3	3	0.20	0.002	0.4	0.01
		Copper, Chalcopyrite and Bornite mineralization, ratio of	94597	170.3	173.3	3	0.10	0.001	0.3	0.01
		Chalcopyrite to Bornite is 2 to 1.	94598	173.3	176.3	3	0.13	0.001	0.1	0.01
			94599	176.3	179.3	3	0.06	0.001	0.1	0.01
			94600	179.3	181.3	2	0.08	0.001	0.1	0.01
			94601	181.3	184.3	3	0.08	0.001	0.1	0.01
			94602	184.3	187.3	3	0.07	0.001	0.1	0.01
	1		94603	187.3	190.3	3	0.06	0.001	0.1	0.01
			94604	190.3	193.3	3	0.07	0.001	0.1	0.01
195.7m	213.0m	Granodiorite: grey color, fine grained, blocky, localized	94605	193.3	196.3	3	0.07	0.001	0.2	0.01
	1	weak potassic alteration, trace hematite streak on	94606	196.3	199.3	3	0.03	0.001	0.1	0.01
	1	fracture planes, scattered pale green epidote veinlets.	94607	199.3	202.3	3	0.02	0.001	0.1	0.01
			94608	202.3	205.3	3	0.02	0.001	0.1	0.01

]		94609	205.3	208.3	3	0.01	0.001	0.1	
			94610	208.3	211.3	3	0.02	0.001	0.1	
213.0m	218.5m	Granodiorite: grey color, fine grained, weak with localized	94611	211.3	214.3	3	0.03	0.001	0.1	
		strong potassic alteration, strong hemaitite staining on	94612	214.3	217.3	3	0.03	0.001	0.1]
		fractures, slickensides, scattered epidote veinlets, fractures	94613	217.3	220.3	3	0.02	0.001	0.1	
\ \		appear to dip at 20, 50 & 90 degrees, trace disseminated								
		Native Copper.								
218.5m	261.2m	Grapodiorite: grey color, core appears fresh and unaltered	94614	220.3	223.3	3	0.01	0.001	0.1	
210.011		weak potassic alteration along fracture planes, hematite	94615	223.3	226.3	3	0.01	0.001	0.1	
	<u> </u>	staining on fractures, scattered chlorite and epidote veins.	94616	226.3	229.3	3	0.01	0.001	0.1	
		slickensides.	94617	229.3	232.3	3	0.01	0.001	0.1	
			94618	232.3	235.3	3	0.01	0.001	0.1	
			94619	235.3	238.3	3	0.02	0.001	0.1	
			94620	238.3	241.3	3	0.02	0.001	0.1	
···			94621	241.3	244.3	3	0.01	0.001	0.1	
			94622	244.3	247.3	3	0.01	0.001	0.1	
			94623	247.3	250.3	3	0.01	0.001	0.1	
			94624	250.3	253.3	3	0.02	0.001	0.1	
			94625	253.3	256.3	3	0.02	0.001	0.1	
	1		94626	256.3	259.3	3	0.01	0.001	0.1	
			94627	259.3	261.2	1.9	0.01	0.0005	0,1	
									;	
		END OF HOLE								

•

APPENDIX II 1997 EcoTech Labs Assay Results

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2. Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ASSAY AK 97-712

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 18-Jul-97

ATTENTION: GARY STEWART

No. of samples received: 65 Sample type: Core PROJECT: # not given SHIPMENT: # not given Samples submitted by: TARCO

				Ag	Ag	Cu	Mo	
ET #.	Tag #	Hole #	Meterage	(g/t)	(oz/t)	(%)	(%)	
1	94201	C97-01	22.25-25.25	0.1	<.01	0.02	<.01	. <u></u> .
2	94202	C97-01	25.25-28.25	0.8	0.02	0.05	<.01	
3	94203	C97-01	28.25-31.25	4.2	0.12	0.16	<.01	
4	94204	C97-01	31.25-34.25	53.8	1.57	2.11	<.01	
5	94205	C97-01	34.25-37.25	4.7	0.14	0.36	<.01	
6	94206	C97-01	37.25-40.25	1.5	0.04	0,10	< 01	
7	94207	C97-01	40.25-43.25	0.1	<.01	0.11	< 01	
8	94208	C97-01	43.25-46.25	1.8	0. 05	0.31	< 01	
9	94209	C97-01	46.25-49.25	0.1	<.01	0.07	<.01	
10	94210	C97-01	49.25-52.25	0.1	<.01	0.09	<.01	
11	94211	C97-01	52.25-55.25	0.1	<.01	0.03	<.01	
12	94212	C97-01	55.25-58.25	0.1	<.01	0.05	0.01	
13	94213	C97-01	58.25-61.25	0.1	<.01	0.03	<.01	
14	94214	C97-01	61.25-64.25	0.1	<.01	0.03	<.01	
15	94215	C97-01	64.25-67.25	0 .1	<.01	0.01	<.01	,
16	94216	C97-01	67.25-70.25	0.1	<.01	0.04	<.01	
17	94217	C97-01	70.25-73.25	0.1	<.01	0.04	<.01	
18	94218	C97-01	73.25-76.25	0.1	<.01	0.01	<_01	
19	94219	C97-01	76.25-79.25	0.1	<.01	0.02	< 01	
20	94220	C97-01	79.25-82.25	0.1	<.01	0.02	<.01	
21	94221	C97-01	82.25-85.25	0.1	<.01	0.03	<.01	
22	94222	C97-01	85.25-88.25	0.1	<.01	0.09	<.01	

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

TARCO OIL & GAS AK 97 - 712

18-Jui-97

				Ag	Ag	Cu	Мо	
<u>ET #.</u>	Tag #	Hole #	Meterage	(<u>g/t</u>)	(oz/t)	(%)	(%)	
23	94223	C97-01	88.25-91.25	0.1	<.01	0.02	<.01	
24	94224	C97-01	91.25-94.25	0.1	<.01	0.08	<.01	
25	94225	C97-01	94.25-97.25	0.2	0.01	0.06	<.01	
26	94226	C97-01	97.25-100.25	0.1	<.01	0.03	<.01	
27	94227	C97-01	100.25-103.25	0.1	<.01	0.02	<.01	
28	94228	C97-01	103.25-106.25	0.1	<.01	0.05	<.01	
29	94229	C97-01	106.25-109.25	0.1	<.01	0.02	<.01	
30	94230	C97-01	109.25-112.25	0.1	<.01	0.03	< 01	
31	94231	C97-01	112.25-115.25	0,1	<.01	0.03	< 01	
32	94232	C97-01	115.25-118.25	0.1	<.01	0.02	<.01	
33	94233	C97-01	118.25-121.25	0.1	< 01	0.03	<.01	
34	94234	C97-01	121.25-124.25	0.1	<.01	0.01	<.01	
35	94235	C97-01	124.25-127.25	0.1	<.01	0.01	<.01	
36	94236	C97-01	127.25-130.25	0.1	<.01	0.01	<.01	
37	94237	C97-01	130.25-133.25	0.2	0.01	0.02	<.01	
38	94238	C97-01	133.25-136.25	0,1	<.01	0.02	<.01	
39	94239	C97-01	136.25-139.25	0.1	<.01	0.03	0.01	
40	94240	C97-01	139.25-142.25	0.1	<.01	0.03	<.01	
41	94241	C97-01	142.25-145.25	0.2	0.01	0.03	<.01	
42	94242	C97-01	145.25-148.25	0.1	<.01	0.02	<.01	
43	94243	C97-01	148.25-151.25	0.1	<.01	0.02	<.01	
44	94244	C97-01	151.25-154.25	0.1	<.01	0.02	<.01	
45	94245	C97-01	154.25-157.25	0.2	0.01	0.01	<.01	
46	94246	C97-01	157.25-190.25	0.2	0.01	0.02	<.01	
47	94247	C97-01	160.25-163.25	0.1	<.01	0.03	0.01	
48	94248	C97-01	163.25-166.25	0.2	0.01	0.03	<.01	
49	94249	C97-01	166.25-169.25	0.1	<.01	0.03	<.01	
50	94250	C97-01	169.25-172.25	0.5	0.02	0.05	<.01	
51	94251	C97-01	172.25-175.25	0.2	0.01	0.04	<.01	
52	94252	C97-01	175.25-178.25	0.2	0.01	0.04	<.01	
53	94253	C97-01	178.25-181.25	0.6	0.02	0.11	<.01	
54	94254	C97-01	181.25-184.25	0.1	<.01	0.02	<.01	
55	94255	C97-01	184.25-187.25	0.1	<.01	0.02	<.01	
56	94256	C97-01	187.25-190.25	0.1	<.01	0.05	<.01	
57	94257	C97-01	190.25-193.25	0.2	0.01	0.06	<.01	

ECD-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

TARCO OIL & GAS AK 97 - 712

•

	- "	11.1.1.H		Ag	Ag	Cu	Mo	
	<u>ag #</u>		Meterage	<u>(9/()</u>	(02/()	(70)	(70)	
58	94258	C97-01	193.25-196.25	0.1	<.01	0.02	<.01	
59	94259	C97-01	196.25-199.25	0.1	<.01	0.02	<.01	
60	94260	C97-01	199.25-202.25	0.1	<.01	0.02	<.01	
61	94261	C97-01	202.25-205.25	0.2	0.01	0.03	0.01	
62	94262	C97-01	205.25~208.25	1.0	0.03	0.13	<.01	
63	94263	C97-01	208.25-211.25	0.1	<.01	0.03	<.01	
64	94264	C97-01	211.25-214.25	1.4	0.04	0.37	0.01	
65	94265	C97-01	214.25-217.25	7.1	0.21	1.47	0.03	
<u>QC/DAT</u> Resplit:	<u>A:</u>							
R/S 1	94201	C97-01	22.25-25.25	0.1	<.01	0.02	<.01	
R/S 36	94236	C97-01	127.25-130.25	0.1	<.01	0.01	<.01	
Repeat:								
1	94201	C97-01	22.25-25.25	0.1	<.01	0.02	< 01	
37	94237	C97-01	130.25-133.25	0.1	<.01	-	< 01	
39	94239	C97-01	136.25-139.25	-	-	0.03	-	
Standar MPI-a	d:			70. 0	2.04	0.25	0.029	

ECO-TECH LABORATORIES LTD. Erank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/97tarco

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Karmoops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ANALYSIS AK 97-712

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received: 65 Sample type: Core PROJECT #: not given SHIPMENT #: not given Samples submitted by: TARCO

				Au	
ET #.	Tag #	Hole #	Meterage	<u>(ppb)</u>	
1	94201	C97-01	22.25-25.25	5	
2	94202	C97-01	25.25-28.25	5	
3	94203	C97-01	28.25-31.25	10	
4	94204	C97-01	31.25-34.25	15	
5	94205	C97-01	34.25-37.25	10	
6	94206	C97-01	37.25-40.25	5	
7	94207	C97-01	40.25-43.25	5	
8	94208	C97-01	43.25-46.25	5	
9	94209	C97-01	46.25-49.25	5	
10	94210	C97-01	49.25-52.25	5	
11	94211	C97-01	52.25-55.25	5	
12	94212	C97-01	55.25-58.25	5	
13	94213	C97-01	58.25-61.25	5	
14	94214	C97-01	61.25-64.25	5	
15	94215	C97-01	64.25-67.25	5	
16	94216	C97-01	67.25-70.25	5	
17	94217	C97-01	70.25-73.25	5	
18	94218	C97-01	73.25-76.25	5	
19	94219	C97-01	76.25-79.25	5	
20	94220	C97-01	79.25-82.25	5	

18-Jul-97

TARCO OIL & GAS LTD. AK 97-712

.

	_ "	•• • ··		Au
<u>ET #.</u>	Tag #	Hole #	<u>Meterage</u>	(add)
21	94221	C97-01	82,25-85.25	5
22	94222	C97-01	85.25-88.25	5
23	94223	C97-01	88.25-91.25	5
24	94224	C97-01	91.25-94.25	5
25	94225	C97-01	94.25-97.25	5
26	94226	C97-01	97.25-100.25	5
27	94227	C97-01	100.25-103.25	5
28	94228	C97-01	103.25-106.25	5
29	94229	C97-01	106.25-109.25	5
30	94230	C97-01	109.25-112.25	5
31	94231	C97-01	112.25-115.25	5
32	94232	C97-01	115.25-118.25	5
33	94233	C97-01	118.25-121.25	5
34	94234	C97-01	121,25-124.25	5
35	94235	C97-01	124.25-127.25	5
36	94236	C97-01	127.25-130.25	5
37	94237	C97-01	130.25-133.25	5
38	94238	C97-01	133.25-136.25	5
39	94239	C97-01	136.25-139.25	10
40	94240	C97-01	139.25-142.25	5
41	94241	C97-01	142.25-145.25	5
42	94242	C97-01	145.25-148.25	5
43	94243	C97-01	148.25-151.25	5
44	94244	C97-01	151,25-154,25	5
45	94245	C97-01	154.25-157.25	10
46	94246	C97-01	157.25-190.25	5
47	94247	C97-01	160.25-163.25	5
48	94248	C97-01	163.25-166.25	5
49	94249	C97-01	166,25-169,25	5
50	94250	C97-01	169.25-172.25	5
51	94251	C97-01	172.25-175.25	5
52	94252	C97-01	175.25-178.25	5
53	94253	C97-01	178.25-181.25	10

.

.

TARCO OIL & GAS LTD. AK 97-712

				Au
ET #.	Tag #	Hole #	Meterage	(ppb)
54	94254	C97-01	154.25-157.25	5
55	94255	C97-01	184.25-187.25	5
56	94256	C97-01	187.25-190.25	5
57	94257	C97-01	190.25-193.25	5
58	94258	C97-01	193.25-196.25	10
59	94259	C97-01	196.25-199.25	5
60	94260	C97-01	199.25-202.25	5
61	94261	C97-01	202.25-205.25	5
62	94262	C97-01	205.25-208.25	5
63	94263	C97-01	208.25-211.25	5
64	94264	C97-01	211.25-214.25	5
65	94265	C97-01	214.25-217.25	20
QC DAT	Ά:			
Resplit;				
R/S 1	94201	C97-01	22.25-25.25	5
R/S 36	94236	C97-01	127.25-130.25	5
Repeat:				
1	94201	C97-01	22.25-25.25	5
10	94210	C97-01	49.25-52.25	5
19	94219	C97-01	76.25-79.25	5
36	94236	C97-01	127.25-130.25	5
45	94245	C97-01	154.25-157.25	10
54	94254	C97-01	154.25-157.25	5
63	94263	C97-01	208.25-211.25	5

Standard:

GEO'97

130

ECO-TECH LABORATORIES LTD. β - Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/97Tarco

.

30-Jul-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

	••																								-				147	~	70
F 4 #	Tao #	Hole #	Meterage	Aq	AI %	As	Ba	Bi	Ca %	Cd	Co	Çr	Cu	Fe %	الما	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	11%	Ų	<u>v</u>	<u></u>	1	
El#.	149 #		220.25.222.25	< <u>-02</u>	0.72	<5	95	<5	1.38	<1	8	79	65	2.25	<10	0.49	273	13	0.05	5	450	-2	10	<20	37	0.06	<10	60	<10	23	13
2	94267	C97-01	220.23-223.25	~0.2	0.72	-5	105	<5	1 42	<1	9	66	40	2.29	<10	0.51	267	10	0.05	6	490	2	<5	<20	30	0.06	<10	61	<10	19	16
3	94268	C97-01	223.25-226.25	<0.Z	0.07	~5	80		1 30	ح1	ā	68	42	2.34	<10	0.49	297	3	0.05	6	520	2	5	<20	33	0.05	<10	60	<10	16	17
4	94269	C97-01	226.25-229.25	<0.2	0.77	~0	400	~5	1.50	~1	õ	77	101	2.28	<10	0.52	367	5	0.06	7	480	2	10	<20	42	0.02	<10	49	<10	25	20
5	94270	C97-01	229.25-232.25	<0.2	0.71	<5	120	~D	1.59	-	D	~ ~ ~	101	2.20	~10	0.52	301	•	0.00		100	-	••								
								_				-				0.62	440	7	0.04	6	490	2	5	~20	31	0.03	<10	50	<10	22	17
6	94271	C97-01	232.25-231.25	<0.2	0.67	<5	65	<5	1.35	<1	9	76	229	2.27	<10	0.53	410		0.04	0	480		10	~20	40	~0.01	-10		<10	23	77
7	94272	C97-01	231.25-238.25	0.6	0.52	<5	85	<5	2.58	<1	8	86	170	2.18	<10	0.46	1240	6	0.05	3	400	~~	10	~20	40	-0.01	~10	22	~10	25	32
	04773	C97-01	238 25-241.25	<0.2	0.54	<5	70	<5	2.63	<1	9	74	209	2.23	<10	0.62	704	4	0.05	6	460	<2	10	<20	54	<0.01	~10	33	~10	21	22
°	04274	007-01	741 25-244 25	<0.2	0.77	<5	110	<5	1.80	<1	12	69	308	3.00	<10	0.72	395	2	0.06	8	600	<2	10	<20	52	0.07	<10	10	~10	22	20
9	94214	097-01	241.20 247.20	<0.2	1 17	<5	125	<5	2.00	<1	17	71	299	3.90	<10	0.91	372	1	0.05	12	760	2	10	<20	44	0.17	<10	117	<10	34	29
10	94275	C81-01	244.20-241.20	-U.L	• • • •	•																									
					0.80	~5	65	~5	1 65	<1	8	77	36	1.98	<10	0.45	225	13	0.05	4	350	<2	<5	<20	37	0.02	<10	40	<10	24	14
11	94276	C97-01	247.25-250.25	<0.2	0.60	- 0	00	~5	0.00	- 1	7	75	425	2 21	10	0.37	276	11	0.08	4	500	2	<5	<20	67	0.01	<10	55	<10	29	13
22	94287	C97-01	280.25-283.25	<0.2	0.57	<5	90		0.55		<i>.</i>	70	520	2.48	10	0.67	455	15	0.06	Â	490	<2	10	<20	63	0.01	<10	51	<10	35	18
23	94288	C97-01	283.25-286.25	<0.2	0.53	<5	75	<5	2.10	12	0	/0	520	2.40	40	0.49	316	10	0.00	č	490	2	5	-20	45	0.03	<10	60	<10	30	16
24	94289	C97-01	286.25-289.25	<0.2	0.65	<5	65	<5	1.54	<1	9	81	241	2.40	10	0.40	310		0.00	, v	500	~ 7	40	-20	28	0.00	- 10	62	<10	27	20
25	94290	C97-01	289.25-292.25	<0.2	0.68	<5	55	<5	1.41	<1	9	68	181	2.37	10	0.58	330	3	0.05	þ	500	~2	ιų.	~20	50	0.04	~10	~			
20	<u> </u>																			_		-		~-	~	0.07		60	~10	23	19
-	04204	CO7 01	292 25-295 25	<0.2	0.77	<5	60	<5	5 1.36	<1	10	75	158	2.43	<10	0.58	315	2	0.05	7	510	2	10	<20	34	0.07	<10	00	~10	20	17
26	94291	007.01	206 25 208 25	<02	0.72	-5	60	<5	1.35	<1	10	66	139	2.46	<10	0.64	317	2	0.04	5	480	<2	5	<20	34	0.06	<10	66	<10	20	47
27	94292	Cay-01	293.23-230.23	-0.2	0.71	-5	55	<5	5 2 32	<1	9	74	253	2.29	<10	0.55	355	- 4	0.04	6	490	<2	10	<20	42	0.03	<10	55	<10	28	17
28	94293	C97-01	298.25-301.25	≺U.Z	0.71	-5	75	25	2 2 2 1	<1	, Ģ	76	247	2.37	10	0.65	465	8	0.05	8	530	2	10	<20	63	0.01	<10	42	<10	32	18
29	94294	C97-01	301.25-304.25	<0.2	0.64	50	75		, 2.2.1 : 0.29	~1	а С	90	216	2.20	10	0.60	456	15	0.06	6	510	<2	5	<20	61	0.01	<10	53	<10	37	17
30	94295	C97-01	304.25-306.25	<0.2	Q.70	<5	65	<:	2.03	~1	9	03	210	2.00	10	0.00			<i></i>	Ŭ	510	-	-								

ICP CERTIFICATE OF ANALYSIS AK 97-722

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received: 100 Sample type: Core PROJECT: # not given SHIPMENT: # not given Samples submitted by: not given

Et #.	Tag #	Hole #	Meterage	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	\$b	Sn	5r	Ti %	U	V	W	¥	Zn
98	94368	C97-02	232.2-235.2	<0.2	0.84	5	260	<5	1.02	<1	7	94	163	2.21	10	0.49	246	3	0.08	5	500	4	5	<20	67	0.02	<10	58	<10	28	12
99	94369	C97-02	235.2-238.2	<0.2	0.84	<5	160	<5	1.19	<1	8	71	72	2.28	10	0.57	279	3	0.08	6	510	2	5	<20	62	<0.01	<10	54	<10	26	18
100	94370	C97-02	238.2-241.2	<0.2	0.90	<5	400	<5	0.88	<1	6	75	56	2.39	<10	0.48	231	3	0.08	4	510	2	10	<20	73	0.02	<10	61	<10	22	18
OC DA Repeat 2 11 30	TA: t: 94267 94276 94295	C97-01 C97-01 C97-01	220 25-223.25 247.25-250.25 304.25-306.25	<0.2 <0.2 <0.2	0.69 0.5 9 0.70	<5 <5 <5	85 65 70	<5 <5 <5	1.36 1.66 2.52	<1 <1 <1	8 8 9	76 77 88	64 40 217	2.18 1.97 2.39	<10 <10 10	0.48 0.46 0.60	271 223 455	11 14 14	0.05 0.05 0.06	5 4 6	480 360 500	2 2 <2	5 10 <5	<20 <20 <20	33 37 62	0.06 0.02 0.01	<10 <10 <10	58 39 53	<10 <10 <10	23 25 37	14 11 16

ECO-TECH LABORATORIES LTD.) · · · Frank J. Pezzotti, A Sc.T. B.C. Certified Assayer

df/732A XLS/97

TARCO OIL & GAS

ICP CERTIFICATE OF ANALYSIS AK 97-722

ECO-TECH LABORATORIES LTD.

31-Jul 97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 97-712

TARCO OIL & GA5 500-717 7th AVE SW CALGARY, AB T2P 023

ATTENTION: GARY STEWART

No. of samples received: 65 Sample type: Core PROJECT # not given SHIPMENT #: not given Samples submitted by: TARCO

Values in ppm unless otherwise reported

V W V 7n
<u>V W 1 Zi</u>
71 10 35 50
71 <10 30 31
68 10 39 28
41 <10 39 44
60 10 32 39
71 10 25 23
78 <10 30 24
79 <10 29 25
79 <10 31 23
81 10 27 21
82 <10 24 32
77 <10 25 3
75 <10 26 4(
72 ×10 33 2
76 (10 43 20
70 110 10 2
70 - 10 - 92 - 7
72 -10 -26 -2
50 KIO 20 2
58 <10 26 5
93 <10 30 0
128 <10 39 3
117 10 50 4
132 <10 42 5

ICP CERTIFICATE OF ANALYSIS AK 97-712

ECO-TECH LABORATORIES LTD.

TARCO OIL & GAS

								_		,	A -1	<u></u>	÷-	C	Ee N.	1 - 1	Ma %	U n	No	Na %	NL	Р	Pb	Sb	Sn	Sr	Ti %	U	v	W	<u>Y</u>	Zn
Et #	Tao #	Hole #	Meterage	Au(ppb)	Ag	AI %	As	Ba	BIC	a %		UQ.	Cr	Cu	F0 74		19 74	000		0.00	10	1020	<u> </u>	10	<20	68	011	<10	151	<10	20	55
	04230	C97-01	109 25-112 25	5	<0.2	1.54	<5	105	<5	3.06	<1	21	56	308	4.75	<10	1.40	000	4	0.00	10	000	B	10	<20	55	0.13	<10	134	<10	29	66
20	94230	097-01	112 25,115 25	5	06	1.59	<5	175	<5	2.50	<1	21	86	303	4.53	<10	1.29	741	1	0.08	17	090	9	10	~20	48	0.10	~10	139	<10	25	38
31	94231	097-01	115 25-118 25	5	<0.2	1 39	<5	195	<5	1.48	<1	18	108	174	3.98	<10	0.94	396	<1	0.09	13	850	6	10	~20	40	0.22	-10				
32	94232	Car-or	110.20-110 40	-																				_	~~		0.77	. 10	170	210	32	43
		~~~ ~		5	<0.2	1.35	<5	195	<5	1.54	<1	18	64	210	4.10	<10	0.99	419	<1	0.07	13	890	8	<5	<20	41	0.22	- 10	100	~10	78	36
33	94233	C97-01	110.20-121.20	5	-0.2	1 19	<5	170	<5	1.50	<1	14	70	79	3.28	<10	0.92	421	<1	0.07	10	760	6	10	<20	43	017	<10 10	-102	~10	17	29
34	94234	C97-01	121.25-124.25	ບ ເ	-0.2	1.00	-5	120	s5	1 30	<1	12	78	57	2.77	<10	0.84	379	2	0.07	8	680	6	15	<20	41	0.13	<10		~10	76	44
35	94235	C97-01	124,25-127.25	5	-02	0.00	-5	115	<5	3 76	<1	13	49	88	2.96	<10	0.81	993	4	0.06	11	670	4	5	<20	62	0.03	<10	62	<10	25	44
36	94236	C97-01	127.25-130.25	5	<0.2	0.90		160	- 6	3.87	<1	18	56	268	3.72	<10	1.36	1644	4	0.06	13	850	6	15	<20	65	0.06	<10	100	<10	30	/9
37	94237	C97-D1	130.25-133.25	5	<0.2	0.84	10	100	~	<b>9.01</b>	.,				•																	
							-	450		2.40	2	21	61	155	4 15	<10	1.18	1823	6	0.07	16	800	4	10	<20	82	0.06	<10	102	<10	30	158
38	94238	C97-01	133 25-136.25	5	<0.2	1.06	<5	190	-0	3.49	J - 4	40	87	765	4 08	<10	1 04	1305	12	0.07	15	750	6	10	<20	61	0.11	<10	117	<10	28	53
39	94239	C97-01	136.25-139.25	10	<0 2	1.11	<5	360	<5	2.00		137	62	200	4.13	~10	1 00	1778	12	0.11	16	770	4	20	<20	118	0 02	<10	63	<10	31	64
40	94240	C97-01	139.25-142.25	5	<0.2	1.16	<5	210	<5	5.69	<1	19	33	200	9.10	~10	1.04	400		0.11	1.4	830	6	5	<20	64	0.13	<10	130	<10	19	34
44	04241	C97-01	142.25-145.25	5	<0.2	1.16	<5	225	<5	1.61	<1	15	76	240	3.07	~10	4.49	400		0.03	18	700	ă	15	<20	46	0.14	<10	117	<10	22	41
40	04242	C97-01	145 25-148 25	5	< 0.2	1.33	<5	185	<5	2 24	<1	18	- 17	119	3.00	< (Q	1.10	320		0.07	,0	130					÷					
42	34242	031 01																			45	770	c	20	~20	65	0.04	<10	92	<10	26	12
	04040	C07 01	148 25,151 75	5	<0.2	1.47	<5	255	<5	3.51	<1	18	63	106	3.92	<10	1.88	940	4	0.07	16	770	0	20	~20	60	0.04	<10 <10	102	<10	31	368
43	94243	007-01	161 36 164 24	. 5	<0.2	1.23	<5	195	<5	2.82	5	19	86	187	3.92	<10	1.33	1123	3	0.07	14	720	8	10	N20	50	0.16	210	107	<10	39	49
44	94244	007-01	151.25-154.25	. <u>.</u>	<0.2	1 10	<5	150	<5	1.90	<1	17	82	94	3.62	<10	0.92	698	2	0.07	12	690	6	<0	<20	29	0.10	~10	143	<10	28	35
45	94245	C97 U1	104.23-137.24	. 5	<0.2	1 15	<5	135	<5	1.47	<1	17	87	128	3 47	<10	0.84	394	<1	0.06	13	680	8	<5	<20	44	0.22	-10	113	~ 10	26	43
46	94246	C97-01	157.25-160.23	, ,	-0.2	174	<5	155	<5	1.64	<1	19	80	277	3.79	<10	0.95	443	5	0.06	13	700	8	15	<20	38	0.23	<10	122	~10	55	40
47	94247	C97-01	160.25-163.23		NU.4	1.24		,																							26	22
					-07	15	<5	205	<5	1.95	<1	16	67	224	3 37	<10	0.77	403	2	0.06	14	830	8	5	<20	46	0.17	<10	111	<10	30	33
48	94248	C97-01	163.25-166.2	) )	0.	1.10	- 5	200	<5	1 78	<1	16	64	263	3.47	<10	0.80	377	<1	0.06	12	720	8	5	<20	38	0.20	<10	113	<10	40	37
49	94249	C97-01	166.25-169 2	5 5	0.	2 1.20	~5	470	<5	1.88	<1	17	72	459	3.79	<10	0.87	481	4	0.06	13	700	10	10	<20	42	0 21	<10	120	<10	43	37
50	94250	C97-01	169.25-172.2	5 5	<0.4	2 1.12	~ 5	105		2.11	<1	16	72	299	3.39	<10	0.92	420	2	0.06	13	730	8	10	<20	45	0.16	<10	105	<10	31	43
51	94251	C97-01	172.25-175.2	55	i <0.1	2 1.23	- 0	105	~5	2 2 2 2	- 1	19	71	376	3.83	<10	1.11	532	7	0.05	14	740	8	10	<20	41	0.17	<10	114	<10	36	46
52	94252	C97-01	175.25-178.2	5 5	i <0.1	2 1.30	<5	105	10	2.25		10	• •																			
										4 00	- 4	10	RE	000	3 7 4	<10	1.03	447	3	0.06	15	790	10	10	<20	41	0.20	<10	118	<10	32	38
53	94253	C97-01	178.25-181.2	5 10	0.3	2 1.43	<5	90	<0	1.90		10	74	10	ידי	<10	0.82	349	~ <1	0.06	13	720	6	5	<20	39	0.21	<10	109	20	27	31
5.4	94254	C97-01	181.2-184 2	5	i <0.1	2 1.22	<5	115	<5	1.60	~ 1	10	14	10	• J.2.4 • J.2.4	~ ~ 19	1.05			0.07	12	620	6	10	<20	66	007 ز	<10	80	<10	36	45
50	04255	C97-01	184.25-187.2	6 É	5 <0.	z 0.92	<5	385	<5	3.25	<1	13	80	1 194	5 3.24	10	+ 1.00	, <del>04</del> 0		0.01	12	710	4	15	<20	78	0.06	<10	76	<10	35	63
50	04256	C97-01	187 25-190.2	5 5	5 <0	2 0.94	<5	340	<5	5.01	<1	13	54	41	1 3.41			1700			14	7 410	6	-5	< 20	59	1 0.02	<10	40	< 10	25	329
20	94230	C97.01	190 25-193 2	5 5	5 0.	2 0.67	<5	275	<5	3.20	5	7	84	539	9 2.10	1 16	) U.GZ	1 1 3 2 6	4	0.05	· ,	410	0		~20		0.02					
57	94237	031-01	, 199.20 .00	-																				- 6	<20	20	1 <0.01	<10	g	<10	15	679
		007.01	453 26 105 7	s 1(	n 0	2 0.37	<5	45	<5	2.05	9	4	· 96	3 12	9 1.06	s <10	1 0.24	1338	, 4	L U.U3	•	5 200	4	~ 0	-20	50	1 20.01	<10	7	<10	22	482
58	94258	097-01	106 75,100 2	ы н Б	5 0	2 0.37	<5	60	<5	3.86	7	6	i 126	18	9 1.31	<1(	0.90	3 1585	5 6	5 0.03		4 190	2	15	<20	3	1 -0.01	<10	1.4	< 10	13	19
59	94259	C97-0	1 196.40-199.4		ς Ο.	4 0.48	<5	75	<5	1 03	<1	3	118	3 10	5 111	<10	0.29	9 276	5 7	7 0.06	5 3	3 220	4	<5	<20	44	: <0.01	~ 10	20	10	29	15
60	94260	C97-01	1 199.25-202.2		5 V 5 V	2 0.10	<5	75	<5	1.42	<1	e	i 112	2 19	4 1.70	) 10	0.4	5 283	3 23	3 0.06	3!	5 330	4	<5	<20	4.	2 0.01	<10	02		20	17
61	94261	C97-01	1 202 25-205 2		5 NU. F 1	2 0 20		100	<5	1 90	<1	6	6 98	8 118	5 1.76	3 10	0.64	0 40	i e	5 0.07	r -	4 310	4	10	<20	61	<0.01	<10	28	<10	20	.,
62	94262	C97-01	1 205.25-208.2	5	5 1	∠ U.00	~ 3	, 100			,																					

TARCO OIL & GAS

ICP CERTIFICATE OF ANALYSIS AK 97-712

ECO-TECH LABORATORIES LTD.

Et#.	Tag #	Hole #	Meterage	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	Lal	Ag %	Mn	Mo	Na %	Ni	Р	РЬ	8b	Sn	Şr	TI %	U	۷	w	<u>Y</u>	Zn
<u>QC DAT/</u> Resplit: R/S 36	<u>N:</u> 94236	C97-01	127.25-130.25	5			-	-		-		-	-	-		-	-	-		-	-	-	-	-	•		-	-	-	-	-	-
<i>Repeat:</i> 7 10 19	94207 94210 94219	C97-01 C97-01 C97-01	40 25-43.25 49.25-52 25 76 25-79.25	- 5 5	<0.2 - -	1.01 - -	<5 -	110 - -	<5 -	2.43	<1 - -	13 - -	79 - -	717	3.05 -	10 - -	0.70 - -	522	4 -	0.03	12 - -	560 - -	6	10 -	<20 - -	34	0.03 -	<10	71	<10	34 - -	33 - -
36 45 46 54	94236 94245 94246 94254	C97-01 C97-01 C97-01 C97-01	127.25-130.26 154.25-157.25 157.25-160.25 181 2-184.2	5 5 5 10 5 - 5	- - <0 2	- 1.18 -	- - <5 -	- 135 -	<5	1.50	<1	17	- 90 -	- 134 -	3.48	- <10	0.85	397 -	<1	- 0.06 -	- 11	- 660 -	8	- 10	- <20	- 43 -	0.22	- <10 -	114	- <10 -	33	- 36 -
Standar GEO'97 GEO'97	d:			130	1.2 1.2	1.77 1.78	65 70	165 165	10 10	1.78 1.76	<1 <1	19 19	61 62	84 81	3.98 3.95	<10 <10	0.93 0.98	653 649	<1 <1	0.02 0.02	22 22	670 650	24 26	15 10	<20 <20	60 60	0.13 0.13	<10 <10	79 79	<10 <10	10 12	70 69

ECD-TECH LABORATORIES LTD. - Frank J Pezzotti, A Sc T. B.C. Certified Assayer por

df/712f XLS/97





10041 E. Trans Canada Hwy., R.R. #2. Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# CERTIFICATE OF ASSAY AK 97-722

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 23-Jul-97

### ATTENTION: GARY STEWART

No. of samples received: 100 Sample type: Core PROJECT: # not given SHIPMENT: # not given Samples submitted by: not given

				Ag	Ag	Cu	Mo
<u>E</u> T #.	Tag #	Hole #	Meterage	(g/t)	(oz/t)	<u>(%)</u>	<u>(%)</u>
1	94266	C97-01	217.25-220.25	0.2	0.01	0.02	<.01
12	94277	C97-01	250.25-253.25	0.4	0.01	0.11	<.01
13	94278	C97-01	253.25-256.25	0.2	0.01	0.05	< 01
14	94279	C97-01	256.25-259.25	0.1	<0.01	0.04	<.01
15	94280	C97-01	259.25-262.25	0.2	0.01	0.03	<.01
16	94281	C97-01	262.25-265.25	0.1	<0.01	0.05	<.01
17	94282	C97-01	265.25-268.25	0.3	0.01	0.13	<.01
18	94283	C97-01	268.25-271.25	0.1	<0.01	0.09	<.01
19	94284	C97-01	271.25-274.25	0.1	<0.01	0.04	<.01
20	94285	C97-01	274.25-277.25	0.1	<0.01	0.07	< 01
21	94286	C97-01	277.25-280.25	0.1	<0.01	0.09	<.01
31	94301	C97-02	29.2-32.2	0.5	0.02	-	<.01
32	94302	C97-02	32.2-35.2	0.6	0.02	-	<.01
33	94303	C97-02	35.2-38.2	0.4	0.01	-	<.01
34	94304	C97-02	38.2-41.2	0.2	0.01	-	<.01
35	94305	C97-02	41.2-44.2	0.3	0.01	-	<.01
36	94306	C97-02	<b>44.2-4</b> 7.2	0.3	0.01	-	<.01
37	94307	C97-02	47.2-50.2	2.4	0.07	-	<.01
38	94308	C97-02	50.2-53.2	0.4	0.01	-	<.01
39	94309	C97-02	53.2-56.2	0.3	0.01	-	<.01
40	94310	C97-02	56.2-59.2	0.1	<0.01	-	<.01
41	94311	C97-02	59.2-62.2	0.3	0.01	-	<.01
					٨		

**FCO-TECH LABORATORIES LTD.** 

B.C. Certified Assayer

## TARCO OIL & GAS AK 97 - 722

				Ag	Ag	Cu	Mo
ET #.	Tag #	Hole #	Meterage	(g/t)	(oz/t)	(%)	(%)
42	94312	C97-02	62.2-65.2	0.1	<0.01		< 01
43	94313	C97-02	65.2-68.2	0.2	0.01	-	< 01
44	94314	C97-02	68.2-71.2	0.1	<0.01	-	< 01
45	94315	C97-02	71.2-74.2	0.2	0.01	-	<.01
46	94316	C97-02	74.2-77.2	0.1	<0.01	-	<.01
47	94317	C97-02	77.2-80.2	0.2	0.01	•	<.01
48	94318	C97-02	80.2-83.2	0.1	<0.01	•	< 01
49	94319	C97-02	83.2-86.2	0.1	<0.01	•	< 01
50	94320	C97-02	86.2-89.2	0.1	<0.01	•	< 01
51	94321	C97-02	89.2-92.2	0.2	0.01	-	<.01
52	94322	C97-02	92.2-95.2	1.5	0.04	-	<.01
53	94323	C97-02	95.2-98.2	0.3	0.01	-	<.01
54	94324	C97-02	98.2-101.2	0.1	<0.01	-	<.01
55	94325	C97-02	101.2-104.2	0.1	<0.01	-	<.01
56	94326	C97-02	104.2-107.2	0.3	0.01	-	0.01
57	94327	C97-02	107.2-110.2	0.2	0.01	-	<.01
58	94328	C97-02	110.2-113.2	0.3	0.01	-	<.01
59	94329	C97-02	113.2-116.2	0,2	0.01	-	<.01
60	94330	C97-02	116.2-119.2	0.1	<0.01	-	< 01
61	94331	C97-02	119.2-122.2	0.2	0.01	-	<.01
62	94332	C97-02	122.2-125.2	0.1	<0.01	-	<.01
63	94333	C97-02	125.2-128.2	0.1	<0.01	-	<.01
64	94334	C97-02	128.2-131.2	0.2	0.01	-	<.01
65	94335	C97-02	131.2-134.2	0.1	<0.01	-	<.01
66	94336	C97-02	134.2-137.2	0.2	0.01	-	<.01
67	94337	C97-02	137.2-140.2	0.5	0.02	-	<.01
68	94338	C97-02	140.2-143.2	0.2	0.01	-	<.01
69	94339	C97-02	143.2-147.2	0.1	<0.01	-	<.01
70	94340	C97-02	147.2-150.2	0.1	<0.01	-	<.01
71	94341	C97-02	150.2-153.2	0.3	0.01	-	<.01
72	94342	C97-02	153.2-157.2	0.1	<0.01	-	<.01
73	94343	C97-02	157.2-160.2	0.2	0.01	-	<.01
74	94344	C97-02	160.2-163.2	0.5	0.02	-	<.01
75	94345	C97-02	163.2-166.2	0.1	<0.01	-	<.01

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

### TARCO OIL & GAS AK 97 - 722

				Ag	Ag	Cu	Mo
ET #.	Tag #	Hole #	Meterage	(g/t)	(oz/t)	(%)	(%)
76	94346	C97-02	166.2-169.2	0.2	0.01	-	< 01
77	94347	C97-02	169.2-172.2	0.1	<0.01	-	<.01
78	94348	C97-02	172.2-175.2	0.1	<0.01	-	< 01
79	94349	C97-02	175.2-178.2	0.1	<0.01	-	<.01
80	94350	C97-02	178.2 <b>-18</b> 1.2	0.1	<0.01	-	<.01
81	94351	C97-02	181.2-184.2	0.2	0.01	-	<.01
82	94352	C97-02	184.2-187.2	0.1	< <b>0</b> .01	-	<.01
83	94353	C97-02	187.2-190.2	0.1	<0.01	-	<.01
84	94354	C97-02	190.2-193.2	0.1	<0.01	-	<.01
85	94355	C97-02	193.2-196.2	0.1	<0.01	-	<.01
86	94356	C97-02	196.2-199.2	0.1	<0.01	-	<_01
87	94357	C97-02	199.2-202.2	0.1	<0.01	-	<.01
88	94358	C97-02	202.2-205.2	0.1	<0.01	-	<.01
89	94359	C97-02	205.2-208.2	0.1	<0.01	•	<.01
90	94360	C97-02	208.2-211.2	0.1	<0.01	-	<.01
91	94361	C97-02	211.2-214.2	0.1	<0.01	-	<.01
92	94362	C97-02	214.2-217.2	0.2	0.01	-	<.01
93	94363	C97-02	217.2-220.2	0.1	<0.01	-	<.01
94	94364	C97-02	220.2-223.2	0.2	0.01	-	<.01
95	94365	C97-02	223.2-226.2	0.2	0.01	-	<.01
96	94366	C97-02	226.2-229.2	0.1	<0.01	-	<.01
97	94367	C97-02	229.2-232.2	0.1	<0.01	-	<.01
<u>QC/DAT</u> Resplit:	<u>A:</u>						
R/S 1	94266	C97-01	217.25-220.25	0.1	<0.01	0.02	-
R/S 36	94306	C97-02	44.2-47.2	0.3	0.01	-	<.01
R/S 71	94341	C97-02	150.2-153.2	0.2	0.01	-	<.01
Repeat:							
1	94266	C97-01	217.25-220.25	0.2	0.01	-	<.01
36	94306	C97-02	44.2-47.2	0.3	0.01	-	<.01
73	94343	C97-02	157.2-160.2	0.1	<0.01	-	<.01
Standar	d:						
Mp-IA				70	2.04	-	0.03

ECO-TECH LABORATORIES LTD. PG Renk J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/97tarco



#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamioops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## CERTIFICATE OF ANALYSIS AK 97-722

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

### ATTENTION: GARY STEWART

No. of samples received: 100 Sample type: Core PROJECT: # not given SHIPMENT: # not given Samples submitted by: not given

				Au	
ET #.	Tag #	Hole #	Meterage	(ppb)	
1	94266	C97-01	217.25-220.25	5	
2	94267	C97-01	220.25-223.25	5	
3	94268	C97-01	223.25-226.25	5	
4	94269	C97-01	226.25-229.25	5	
5	94270	C97-01	229.25-232.25	5	
6	94271	C97-01	232,25-235.25	5	
7	94272	C97-01	235.25-238.25	5	
8	94273	C97-01	238.25-241.25	5	
9	94274	C97-01	241.25-244.25	5	
10	94275	C97-01	244.25-247.25	5	
11	94276	C97-01	247.25-250.25	5	
12	94277	C97-01	250.25-253.25	5	
13	94278	C97-01	253.25-256.25	5	
14	94279	C97-01	256.25-259.25	5	
15	94280	C97-01	259.25-262.25	5	
16	94281	C97-01	262.25-265.25	5	
17	94282	C97-01	265.25-268.25	5	
18	94283	C97-01	268.25-271.25	5	
19	94284	C97-01	271.25-274.25	5	
20	94285	C97-01	274.25-277.25	5	
21	94286	C97-01	277.25-280.25	5	
22	94287	C97-01	280.25-283.25	5	
23	94288	C97-01	283.25-286.25	5	
24	94289	C97-01	286.25-289.25	5	
25	94290	C97-01	289.25-292.25	5	

23-Jul-97

23_hik	17

				Au	
ET #.	Tag #	Hole #	Meterage	(ppb)	
26	94291	C97-01	292.25-295.25	5	
27	94292	C97-01	295.25-298.25	5	
28	94293	C97-01	298.25-301.25	5	
29	94294	C97-01	301.25-304.25	5	
30	94295	C97-01	304.25-306.25	5	
31	94301	C97-02	29.2-32.2	5	
32	94302	C97-02	32.2-35.2	5	
33	94303	C97-02	35.2-38.2	5	
34	94304	C97-02	38.2-41.2	5	
35	94305	C97-02	41.2-44.2	5	
36	94306	C97-02	44.2-47.2	5	
37	94307	C97-02	47.2-50.2	5	
38	94308	C97-02	50.2-53.2	5	
39	94309	C97-02	53.2-56.2	5	
40	94310	C97-02	56.2-59.2	5	
41	94311	C97-02	59.2-62.2	5	
42	94312	C97-02	62.2-65.2	5	
43	94313	C97-02	65.2-68.2	5	
44	94314	C97-02	68.2-71.2	5	
45	94315	C97-02	71.2-74.2	5	
46	94316	C97-02	74.2-77.2	5	
47	94317	C97-02	77.2-80.2	5	
48	94318	C97-02	80.2-83.2	5	
49	94319	C97-02	83.2-86.2	5	
50	94320	C97-02	86.2-89.2	5	
51	94321	C97-02	89.2-92.2	5	
52	94322	C97-02	92.2-95.2	5	
53	94323	C97-02	95.2-98.2	5	
54	94324	C97-02	98.2-101.2	5	
55	94325	C97-02	101.2-104.2	5	
56	94326	C97-02	104.2-107.2	5	
57	94327	C97-02	107.2-110.2	5	
58	94328	C97-02	110.2-113.2	10	
59	94329	C97-02	113.2-116.2	15	
60	94330	C97-02	116.2-119.2	10	
61	94331	C97-02	119.2-122.2	20	
62	94332	C97-02	122.2-125.2	5	
63	94333	C97-02	125.2-128.2	5	

## TARCO OIL & GAS LTD. AK 97-722

				Au	
ET #.	Tag #	Hole #	Meterage	(ppb)	
64	94334	C97-02	128.2-131.2	10	
65	94335	C97-02	131.2-134.2	10	
66	94336	C97-02	134.2-137.2	5	
67	94337	C97-02	137.2-140.2	10	
68	94338	C97-02	140.2-143.2	5	
69	94339	C97-02	143.2-147.2	5	
70	94340	C97-02	147.2-150.2	60	
71	94341	C97-02	150.2-153.2	5	
72	94342	C97-02	153.2-157.2	15	
73	94343	C97-02	157.2-160.2	5	
74	94344	C97-02	160.2-163.2	5	
75	94345	C97-02	1 <b>63.2-166</b> .2	5	
76	94346	C97-02	166.2-169.2	5	
77	94347	C97-02	169.2-172.2	5	
78	94348	C97-02	172.2-175.2	5	
79	94349	C97-02	175.2-178.2	5	
80	94350	C97-02	178.2-181.2	10	
81	94351	C97-02	181.2-184.2	5	
82	94352	C97-02	184.2-187.2	5	
83	94353	C97-02	187.2-190.2	5	
84	94354	C97-02	190.2-193.2	5	
85	94355	C97-02	193.2-196.2	5	
86	94356	C97-02	196.2-199.2	10	
87	94357	C97-02	199.2-202.2	10	
88	94358	C97-02	202.2-205.2	10	
89	94359	C97-02	205.2-208.2	10	
90	94360	C97-02	208.2-211.2	5	
91	94361	C97-02	211.2-214.2	5	
92	94362	C97-02	214.2-217.2	5	
93	94363	C97-02	217.2-220.2	5	
94	94364	C97-02	220.2-223.2	5	
95	94365	C97-02	223.2-226.2	5	
96	94366	C97-02	226.2-229.2	5	
97	94367	C97-02	229.2-232.2	5	
98	94368	C97-02	232.2-235.2	5	
99	94369	C97-02	235.2-238.2	5	
100	94370	C97-02	238.2-241.2	5	

## TARCO OIL & GAS LTD. AK 97-722

"		55-1- <i>4</i>		Au	
E1#.	lag #	Hole #	<u>Meterage</u>	(ppb)	
QC DAT	<u>'A:</u>				
Resplit:					
R/S 1	94266	C97-01	217.25-220.25	5	
R/S 36	94306	C97-02	44.2-47.2	5	
<b>R/S</b> 71	94341	C97-02	150.2-153.2	5	
Repeat:					
1	94266	C97-01	217.25-220.25	5	
10	94275	C97-01	244.25-247.25	5	
15	94280	C97-01	259.29-262.25	5	
30	94295	C97-01	304.25-306.25	5	
39	34309	C97-02	53.2-56.2	10	
48	94318	C97-02	80.2-83.2	5	
65	94335	C97-02	131.2-134.2	5	
74	94344	C97-02	160.2-163.2	5	
83	94353	C97-02	187.2-190.2	10	
`tandar	d:				
EO'97ن				125	
GEO'97				135	
GEO'97				125	
GEO'97				135	

ECO-TECH LABORATORIES LTD. per Mank J. Pezzotti, A.Sc.T. B.C. Continent 1 B.C. Certified Assayer

XLS/97Tarco



### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2. Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## CERTIFICATE OF ASSAY AK 97-712S

TARCO OIL & GAS

500-717 7th AVE. SW CALGARY, AB T2P 0Z3 24-Jul-97

## ATTENTION: GARY STEWART

No. of samples received: 65 Sample type: CORE PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN Samples submitted by: TARCO

				COPPER SCREENS	
				Cu	
ET #.	Tag_#	Hole #	Meterage	(%)	
1	94201	C97-01	22.25-25.25	0.03	-
2	94202	C97-01	25.25-28.25	0.06	
3	94203	C97-01	28.25-31.25	0.19	
4	94204	C97-01	31.25-34.25	2.13	
5	94205	C97-01	34.25-37.25	0.42	
6	94206	C97-01	37.25-40.25	0.11	
8	94208	C97-01	43.25-46.25	0.63	

QC/DATA:

Standard: CPB-1

0.25

O-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/97tarco

## TARCO OIL & GAS AK - 722

				Copper Screens	
				Cu	
ET #.	Tag #	Hole #	Meterage	(%)	
54	94324	C97-02	98.2-101.2	0.12	
55	94325	C97-02	101.2-104.2	0.05	
56	94326	C97-02	104.2-107.2	0.33	
57	94327	C97-02	107.2-110.2	0.09	
58	94328	C97-02	110.2-113.2	0.16	
59	94329	C97-02	113.2-116.2	0.81	
60	94330	C97-02	116.2-119.2	0.05	
61	94331	C97-02	1 <b>19.2-122.2</b>	0.02	
62	94332	C97-02	1 <b>22.2-125.2</b>	0.08	
63	94333	C97-02	125.2-128.2	0.06	
64	94334	C97-02	128.2-131.2	0.06	
65	94335	C97-02	131.2-134.2	0.09	
66	94336	C97-02	134.2-137.2	0.07	
67	94337	C97-02	137.2-140.2	0.56	
68	94338	C97-02	140.2-143.2	0.03	
69	94339	C97-02	143.2-147.2	0.03	
70	94340	C97-02	147.2-150.2	0.11	
71	94341	C97-02	150.2-153.2	0.19	
72	94342	C97-02	153.2-157.2	0.18	
73	94343	C97-02	157.2-160.2	0.08	
74	94344	C97-02	160,2-163.2	0.06	
75	94345	C97-02	163.2-166.2	0.07	
76	94346	C97-02	166.2-169.2	0.05	
77	94347	C97-02	169.2-172.2	0.05	
78	94348	C97-02	172.2-175.2	0.06	
79	94349	C97-02	175.2-178.2	0.20	
80	94350	C97-02	178.2-181.2	2.47	
81	94351	C97-02	181.2-184.2	0. <b>05</b>	
82	94352	C97-02	184.2-187.2	0.02	
83	94353	C97-02	187.2-190.2	0.01	
84	94354	C97-02	190.2-193.2	0.01	
85	94355	C97-02	193.2-196.2	0.01	
86	94356	C97-02	196.2-199.2	0.01	
87	94357	C97-02	199.2-202.2	0.01	
88	94358	C97-02	202.2-205.2	0.01	

 $\sim$ 

ECO-TECH LABORATORIES LTD. P∽ Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

### TARCO OIL & GAS AK - 722

### 24-Jul-97

				Copper Screens	
				Cu	
<u>ET #.</u>	Tag #	_Hole #	Meterage	(%)	
89	94359	C97-02	205.2-208.2	0.01	
90	94360	C97-02	208.2-211.2	0.01	
91	94361	C97-02	211.2-214.2	0.01	
92	94362	C97-02	214.2-217.2	0.02	
93	94363	C97-02	217.2-220.2	0.01	
94	94364	C97-02	220.2-223.2	0.01	
95	94365	C97-02	223.2-226.2	0.01	
96	94366	C97-02	226.2-229.2	0.02	
97	94367	C97-02	229.2-232.2	0.02	

ECO-TECH LABORATORIES LTD. per Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/97tarco



### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# CERTIFICATE OF ASSAY AK 97-722M

24-Jul-97

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

## ATTENTION: GARY STEWART

No. of samples received: 100 Sample type: CORE PROJECT: # NONE GIVEN SHIPMENT: # NONE GIVEN Samples submitted by: NOT INDICATED

			Copper Screens		
				Cu	
ET #.	Tag #	Hole #	Meterage	(%)	
31	94301	C97-02	29.2-32.2	0.08	
32	94302	C97-02	32.2-35.2	0.05	
33	94303	C97-02	35.2-38.2	0.06	
34	94304	C97-02	38.2-41.2	0.05	
35	94305	C97-02	41.2-44.2	0.05	
36	94306	C97-02	44.2-47.2	0.03	
37	94307	C97-02	47.2-50.2	0.65	
38	94308	C97-02	50.2-53.2	0.09	
39	94309	C97-02	53.2-56.2	0.06	
40	94310	C97-02	56.2-59.2	0.01	
41	94311	C97-02	59.2-62.2	0.01	
42	94312	C97-02	62.2-65.2	0.03	
43	94313	C97-02	65.2-68.2	0.03	
44	94314	C97-02	68.2-71.2	0.02	
45	94315	C97-02	71.2-74.2	0.02	
46	94316	C97-02	74.2-77.2	0.02	
47	94317	C97-02	77.2-80.2	0.03	
48	94318	C97-02	80.2-83.2	0.03	
49	94319	C97-02	83.2-86.2	0.03	
50	94320	C97-02	86.2-89.2	0.12	
51	94321	C97-02	89.2-92.2	0.26	
52	94322	C97-02	92.2-95.2	0.49	
53	94323	C97-02	95.2-98.2	0.21	
				ECO.TECH LABORATORI	

ECO-TECH LABORATORIES LTD.

B.Č. Certified Assayer
28-Jul-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 97-743

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

#### ATTENTION: GARY STEWART

No. of samples received: 19 Sample type: Core PROJECT #: not given SHIPMENT #: not given Samples submitted by: Tarco

Et #.	Tag #	Hole #	Meterage	Au(ppb)	Ag	A1 %	As	Ba	Bi (	Ca %	Cd	Co	Ċr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	u	V	W	Y	Zn
1	94371	C97-02	241.2-244.2	5	<0.2	0.81	<5	420	×5	1.86	<1	8	46	44	2.46	<10	0.60	361	3	0.07	8	530	8	5	<20	106	0.01	<10	51	<10	39	25
2	94372	C97-02	244.2-247.2	5	<0.2	0.65	10	255	~5	0.98	<1	9	7D	67	2.61	<10	0.48	212	3	0.06	7	560	8	5	<20	54	0.03	<10	59	<10	28	20
3	94373	C97-02	247.2-250.2	5	<0.2	0.84	5	190	<5	1.20	<1	10	66	88	2.60	<10	0.48	211	2	0.05	6	570	10	5	<20	54	0.05	<10	58	<10	28	21
4	94374	C97-02	250 2-253.2	5	<0.2	0.76	5	250	<5	1.19	<1	7	67	49	2.21	10	0.39	203	3	0.06	6	530	6	10	<20	56	0.02	<10	49	<10	28	17
5	94375	C97-02	253 2-256 2	5	<0.2	0 80	5	140	<5	1.25	<1	8	91	130	2.33	10	0.43	213	2	0.05	6	500	8	10	<20	40	0.05	<10	53	<10	33	17
_		007.00	055 0 050 0	-	c0.2	0 77	<b>c</b> 5	100	<5	1 10	<1	9	75	138	2 38	<10	0.44	199	3	0.05	A	500	8	5	<20	48	0.04	<1Ĥ	53	s10	26	19
6	94376	C97-02	200.2-209.2	) (	-0.2	0.77		195	-5	1.47	<1	ŏ	43	166	2 20	10	0.59	338	ž	0.07	B	500	8	15	-20	66	<0.01	<10	41	<10	34	27
7	94377	C97-02	259.2-262.2	5	- 02	0.02	<b>NO</b>	100		1.41	24	- -	74	40	2.20	10	0.50	260	-	0.07	7	500			~20	20	0.01	<10	40	~10	34	2,
8	94378	C97-02	262.2-265.2	5	<0.2	U.74	< <b>5</b>	00	-0	1.34			14	40	2.22	10	0.52	200	4	0.05		220		5	~20	34	0.01	- 10	40	~10	21	27
9	94379	C97-02	265.2-268.2	5	<0.2	0.85	10	110	<5	1.68	<1	10	54	107	2.25	10	0.57	356	3	0.06		600	10	10	<20	62	0.01	<10	47	<10	37	42
10	94380	C97-02	268.2-271.2	5	<0.2	1.03	5	170	<5	1.14	<1	10	56	209	2.46	10	0.54	271	3	0.08	6	580	14	5	<20	59	0.02	<10	52	<10	32	26
	04381	C97-02	271 2-274 2	5	<0.2	1.12	10	140	<5	1.54	<1	8	48	275	2.14	10	0.47	240	2	0.09	5	470	10	10	<20	48	0.02	<10	42	<10	31	20
10	04387	007-02	274 2-277 2	5	<0.2	1 01	<5	150	<5	1.21	<1	9	79	168	2.33	10	0.46	217	4	80.0	6	510	10	15	<20	46	D.03	<10	52	<10	30	22
40	04202	007.02	277 2.390 2	5	<0.2	0.93	<5	220	<5	1 27	<1	9	75	155	2.40	10	0.48	198	2	0.07	6	500	10	15	<20	64	0.05	<10	56	<10	33	1B
13	94303	007.02	277.2-200.2	5	<0.2	0.00	<5	105	<5	1.37	<1	9	66	135	2,39	10	0.56	239	3	0.06	7	580	10	10	<20	43	0.02	<10	53	<10	31	23
14	94384	097-02	260.2+203.2		~0.2	0.02		86	- 65	1.05	<1	à	54	127	2 32	10	0.59	222	,	0.06	ż	540	B	10	<20	43	0.01	<10	51	≤10	27	22
15	94385	097-02	283 2-200.2	. 5	~V #	0.00		Ų.J	-5	1.00		v	0.1				4.04		-	0.00		040	Ū	10	-20		0.01	.10	31	.10	<b>L</b> ,	
16	94386	C97-02	286.2-289.2	5	<0.2	0.83	10	105	<5	1.50	<1	9	44	147	2.23	10	0.60	342	3	0.08	7	530	10	10	<20	62	<0.01	<10	45	<10	37	26
17	94387	C97-02	289.2-292.2	5	<0.2	0.79	<5	155	<5	1.35	<1	7	48	91	2.08	10	0.55	234	2	0.07	7	550	а	5	<20	61	0.01	<10	45	<10	27	19
18	94388	C97-02	292.2-295.2	5	<0.2	0.83	5	235	<5	1.17	<1	7	70	74	2.25	10	0.44	176	2	0.07	6	530	8	5	<20	61	0.04	<10	53	<10	30	17
19	94389	C97-02	295.2-297.8	5	<0.2	0.96	<5	135	<5	1.91	<1	9	45	93	2.26	10	0.48	192	2	0.08	6	540	10	15	<20	52	0.03	<10	52	<10	29	19

TARCO OIL & G	)AS									K	CP ČEI	RTIFIC	CATE Ó	FANA	LYSIS	AK 97-	743								ECO-TE	ECH LA	BORA	TORIES	S LTD.	
Et#. Tag#	Hole # Meterage	Au(ppb)	Ag	A1 %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	w	<u>Y</u>	Zn
<u>QC DATA:</u> Resplit: R/S 1 94371	C97-02 241.2-244 2	5	<0.2	0.80	10	380	<5	1.94	<1	9	51	44	2.45	<10	0 58	375	2	0 07	8	570	8	5	<20	95	0 01	<10	51	<10	39	25
<b>Repeat:</b> 1 94371 10 94380 19 94389	C97-02 241 2-244.2 C97-02 268 2-271.2 C97-02 295.2-297.8	5	<0.2 <0 2 <0.2	0.78 1.01 0.98	10 <5 5	410 170 135	<5 <5 <5	1.84 1.12 1.92	<1 <1 <1	8 9 9	46 55 47	46 214 98	2.41 2.39 2.26	10 10 10	0.58 0.54 0.49	377 265 192	2 3 2	0.06 0.08 0.08	8 6 6	580 550 520	12 10 10	<5 <5 5	<20 <20 <20	95 60 53	0.01 0 02 0 03	<10 <10 <10	49 50 53	<10 <10 <10	39 31 30	30 25 20
<b>Standerd:</b> GEO'97		145	1.2	1.72	65	165	<5	1.86	<1	21	62	76	4.25	<10	1.00	672	<1	0.02	22	760	24	15	<20	53	0.12	<10	74	<10	10	76

ECO-TECH LABORATORIES LTD. Hank J. Pezzatti, A Sc.T B.C. Certified Assayer . t.

df/741 XES/97



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## CERTIFICATE OF ASSAY AK 97-744

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

#### ATTENTION: GARY STEWART

No. of samples received: 32 Sample type: Core PROJECT: # not given SHIPMENT: # not given Samples submitted by: not given

				Ag	Ag	Мо	
ET #.	Tag #	Hole #	Meterage	(g/t)	(oz/t)	(%)	
1	94451	C97-04	28.0-31.0	0.5	0.02	0.01	
2	94452	C97-04	31.0-34.0	0.6	0.02	0.01	
3	94453	C97-04	34.0-37.0	0.3	0.01	<.01	
4	94454	C97-04	37.0-40.0	1.2	0.04	<.01	
5	94455	C97-04	40.0-43.0	0.4	0.01	<.01	
6	94456	C97-04	43.0-46.0	0.3	0.01	<.01	
7	94457	C97-04	46.0-49.0	0.2	0.01	<.01	
8	94458	C97-04	49.0-52.0	0.2	0.01	<.01	
9	94459	C97-04	52.0-55.0	0.2	0.01	<.01	
10	94460	C97-04	55.0-58.0	0.1	<.01	<.01	
11	94461	C97-04	58.0-61.0	0.3	0.01	<.01	
12	94462	C97-04	61.0-64.0	0.4	0.01	<.01	
13	94463	C97-04	64.0-67.0	0.1	<.01	<.01	
14	94464	C97-04	67.0-70.0	0.2	0.01	<.01	
15	94465	C97-04	70.0-73.0	0.3	<b>0</b> .01	<.01	
16	94466	C97-04	73.076.0	0.4	0.01	<.01	
17	94467	C97-04	76.0-79.0	0.2	0.01	<.01	
18	94468	C97-04	79.0-82.0	0.3	0.01	<.01	
19	94469	C97-04	NO SAMPLE				
20	94470	C97-04	82.0-85.0	0.2	0.01	<.01	

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

25-Jul-97

#### TARCO OIL & GAS AK 97-744

				Ag	Ag	Мо	
ET <u>#.</u>	Tag #	Hole #	Meterage	( <u>g/t)</u>	(oz/t)	(%)	
21	94471	C97-04	85.0-88.0	0.2	0.01	<.01	
22	94472	C97-04	88.0-91.0	0.2	0.01	<.01	
23	94473	C97-04	91.0-94.0	0.4	0.01	<.01	
24	94474	C97-04	94.0-97.0	0.4	0.01	<.01	
25	94475	C97-04	97.0-100.0	0.2	0.01	<.01	
26	94476	C97-04	100.0-103.0	0.3	0.01	<.01	
27	94477	C97-04	103.0-106.0	0.3	0.01	<.01	
28	94478	C97-04	106.0-109.0	0.2	0.01	<.01	
29	94479	C97-04	109.0-112.0	0.2	0.01	<.01	
30	94480	C97-04	112.0-115.0	0.2	0.01	<.01	
31	94481	C97-04	115.0-118.0	0.2	0.01	<.01	
32	94482	C97-04	118.0-121.0	0.1	<.01	<.01	
<u>QC/DA</u> Resplit	<u>TA:</u>						
R/S 1	94451	C97-04	28.0-31.0	0.4	0.01	0.01	
Repeat	-						
1	94451	C97-04	28.0-31.0	0.4	0.01	0.01	
Standa	rd:						
Mp-IA				70.0	2.04	0.03	

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/97tarco

.



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### CERTIFICATE OF ASSAY AK 97-744S

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3 28-Jul-97

#### ATTENTION: GARY STEWART

No. of samples received: 32 Sample type: Core PROJECT: # not given SHIPMENT: # not given Samples submitted by: not given

				Cu	
ET #.	Tag #	Hole #	Meterage	(%)	
1	94451	C97-04	28.0-31.0	0.11	
2	94452	C97-04	31.0-34.0	0.05	
3	94453	C97-04	34.0-37.0	0.04	
4	94454	C97-04	37.0-40.0	0.04	
5	94455	C97-04	40.0-43.0	0.07	
6	94456	C97-04	43.0-46.0	0.02	
7	94457	C97-04	46.0-49.0	0.03	
8	94458	C97-04	49.0-52.0	0.05	
9	94459	C97-04	52.0-55.0	0.05	
10	94460	C97-04	55.0-58.0	<u>_</u> 0.05	
11	94461	C97-04	58.0-61.0	0.10	
12	94462	C97-04	61.0-64.0	0.18	
13	94463	C97-04	64.0-67.0	0.12	
14	94464	C97-04	67.0-70.0	0.13	
15	94465	C97-04	70.0-73.0	0.21	
16	94466	C97-04	73.076.0	0.19	
17	94467	C97-04	76.0-79.0	0.15	
18	94468	C97-04	79.0-82.0	0.08	
19	94469	C97-04	NO SAMPLE	-	
20	94470	C97-04	82.0-85.0	0.09	
				$\wedge$	

METALLIC SCREENS

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ECO-TECH LABORATORIES LTD.

#### **TARCO OIL & GAS AK 97 - 744**

#### **METALLIC SCREENS** Cu (%) ET #. Tag # Hole # Meterage C97-04 0.12 21 94471 85.0-88.0 22 94472 C97-04 88.0-91.0 0.10 0.08 23 94473 C97-04 91.0-94.0 24 C97-04 0.26 94474 94.0-97.0 C97-04 0.06 25 94475 97.0-100.0 26 94476 C97-04 100.0-103.0 0.29 27 94477 C97-04 103.0-106.0 1.45 94478 C97-04 0.09 28 106.0-109.0 0.03 29 94479 C97-04 109.0-112.0 30 C97-04 112.0-115.0 0.06 94480 31 C97-04 0.04 94481 115.0-118.0 32 94482 C97-04 118.0-121.0 0.05

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/97tarco

ESC- TES' LABORATORIES LTD. Page 2

28-Jul-97



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### CERTIFICATE OF ANALYSIS AK 97-744

TARCO OIL & GAS LTD. 500-717 7TH AVE. S.W. CALGARY, ALBERTA T2P 0Z3

#### ATTENTION: GARY STEWART

No. of samples received: 60 Sample type: Core PROJECT #: not given SHIPMENT #: not given Samples submitted by: not given

				Au	
ET #.	Tag #	Hole #	Meterage	(ppb)	
1	94451	C97-04	28.0-31.0	5	
2	94452	C97-04	31.0-34.0	5	
3	94453	C97-04	34.0-37.0	5	
4	94454	C97-04	37.0-40.0	5	
5	94455	C97-04	40.0-43.0	5	
6	94456	C97-04	43.0-46.0	5	
7	94457	C97-04	46.0-49.0	5	
8	94458	C97-04	49.0-52.0	5	
9	94459	C97-04	52.0-55.0	5	
10	94460	C97-04	55.0-58.0	5	
11	94461	C97-04	58.0-61.0	5	
12	94462	C97-04	61. <b>0-64.</b> 0	5	
13	94463	C97-04	64.0-67.0	5	
14	94464	C97-04	67.0-70.0	5	
15	94465	C97-04	<b>70</b> .0-73.0	5	
16	94466	C97-04	73.076.0	5	
17	94467	C97-04	76.0-79.0	5	
18	94468	C97-04	79.0-82.0	5	
19	94469	C97-04	NO SAMPLE	-	
20	94470	C97-04	82.0-85.0	5	
21	94471	C97-04	85.0-88.0	5	
22	94472	C97-04	88.0-91.0	5	
23	94473	C97-04	91.0-94.0	5	
24	94474	C97-04	94.0-97.0	5	
25	94475	C97-04	97.0-100.0	5	

29-Jul-97

#### TARCO OIL & GAS LTD. AK 97 - 744

				Au	
ET #.	_Tag #	Hole #_	Meterage	(ppb)	
26	94476	C97-04	100.0-103.0	5	
27	94477	C97-04	103.0-106.0	5	
28	94478	C97-04	106.0-109.0	5	
29	94479	C97-04	109.0-112.0	5	
30	94480	C97-04	112.0-115.0	5	
31	94481	C97-04	115.0-118.0	5	
32	94482	C97-04	118.0-121.0	5	
33	94483	C97-04	121.0-124.0	5	
34	94484	C97-04	124.0-127.0	5	
35	94485	C97-04	127.0-130.0	5	
36	94486	C97-04	130.0-133.0	5	
37	94487	C97-04	133.0-136.0	5	
38	94488	C97-04	136.0-139.0	5	
39	94489	C97-04	139.0-142.0	5	
40	94490	C97-04	142.0-145.0	5	
41	94491	C97-04	145.0-148.0	5	
42	94492	C97-04	148.0-151.0	5	
43	94493	C97-04	151.0-154.0	5	
44	94494	C97-04	154.0-157.0	5	
45	94495	C97-04	157. <b>0-160.</b> 0	5	
46	94496	C97-04	160.0-163.0	5	
47	94497	C97-04	163.0-166.0	5	
48	94498	C97-04	166.0-169.0	5	
49	94499	C97-04	169.0~172.0	5	
50	94500	C97-04	172.0-175.0	5	
51	94501	C97-04	175.0-178.0	5	
52	94502	C97-04	178.0-181.0	5	
53	94503	C97-04	181.0-184.0	5	
54	94504	C97-04	184.0-187.0	5	
55	94505	C97-04	187.0-190.0	5	
56	94506	C97-04	190.0-193.0	5	
57	94507	C97-04	193.0-196.0	5	
58	94508	C97-04	196.0-199.0	5	
59	94509	C97-04	199.0-202.0	5	
60	94510	C97-04	202.0-206.3	5	

.

#### TARCO OIL & GAS LTD. AK 97 - 744

ET #.	Tag #	Hole #	Meterage	Au (ppb)	
QC DATA			<u>*                                     </u>		
Resplit:					
R/S 1	94451	C97-04	28.0-31.0	5	
R/S 36	94486	C97-04	130.0-133.0	5	
Repeat:					
1	94451	C97-04	28.0-31.0	5	
10	94460	C97-04	55.5-58.0	5	
20	94470	C97-04	82.0-85.0	5	
36	94486	C97-04	130.0-133.0	5	
45	94495	C97-04	157.0-160.0	5	
54	94504	C97-04	184.0-187.0	5	
Standard:					
GEO'97				130	
				135	

.

ECO-TECH LABORATORIES LTD. Prank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/97Tarco

30-Jul-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 97-744

TARCO OIL & GAS 500-717 7th AVE. SW CALGARY, AB T2P 0Z3

ATTENTION: GARY STEWART

No. of samples received: 32 Sample type: Core PROJECT: # not given SHIPMENT: # not given Samples submitted by: not given

Values in ppm unless otherwise reported

E+ #	Tao #	Hole #	Meterage	Aq	AI %	As	Ba	Bi C	a% (	d	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	<u></u>	Y	Zn
22	04483	C97-04	121 D-124 0	<0.2	0.41	<5	55	<5	0.65	c1	4	70	405	1.33	<10	0.26	203	3	0.05	4	300	2	<5	<20	30 <	0.01	<10	16	<10	25	10
33	04494	C07-04	124.0-127.0	<0.2	0.28	<5	35	<5	0.25	<1	3	102	445	0.93	<10	0.14	118	5	0.03	3	140	<2	<5	<20	13 <	0.01	<10	8	<10	13	6
24	04495	C07.04	127.0-130.0	<0.2	0.30	10	40	<5	0.70	<1	3	63	618	0.98	<10	0.16	137	4	0.03	4	150	<2	<5	<20	14 <	0.01	20	11	<10	24	6
30	04496	C07-04	130.0-133.0	<0.2	0.45	20	70	≺5	2.92	c1 👘	7	67	723	1.49	20	0.30	332	6	0.04	4	290	<2	5	<20	34	0.02	<10	23	<10	26	12
30	94400 94487	C97-04	133.0-136.0	<0.2	0.52	<5	80	<5	0.30	< 1	8	72	860	1.68	10	0.35	146	5	0.05	5	360	<2	<5	<20	24	0.02	<10	29	<10	8	11
	QQ-								_		_													-20	47		-10	16	~10	Q	11
38	94488	C97-04	136.0-139.0	<0.2	0.34	<5	45	<5	0.22	<1	5	67	256	1.21	<10	0.20	15/	3	0.04	4	320	<2	<0	~20	17 5	0.01	<10 <10	10	~10	0	6
39	94489	C97-04	139.0-142.0	<0.2	0.29	<5	40	<5	0.31	<1	4	79	89	1.19	<10	0.18	1/1	4	0.04	3	290	<2	<5	<20	15 4	0.01	< 10	17	~10	7	12
40	94490	C97-04	142.0-145.0	<0.2	0.36	<5	50	<5	0.20	<1	4	69	93	1.02	<10	0.21	87	3	0.05	3	220	<2	<5	<20	19 4	0.01	<10	11	~10	14	10
41	94491	C97-04	145.0-148.0	<0.2	0.55	<5	215	<5	0.59	<1	4	72	301	1.50	<10	0.31	127	4	0.06	3	350	<2	<5	<20	41 4	Q.Q1	<10	20	~10	214	40
42	94492	C97-04	148.0-151.0	<0.2	0.53	<5	120	<5	0.59	<1	6	89	196	1.87	<10	0.30	255	4	0.06	5	400	<2	<5	<20	35 4	0.01	<10	25	×10	21	13
					0.00	.5	75	c5	0.28	1	7	99	125	2 13	<10	0.37	221	5	0.06	5	410	2	<5	<20	32 •	0.01	<10	25	<b>~</b> 10	14	23
43	94493	C97-04	151 0-154.0	<0.2	0.00	~5 .5	75	-5	0.20	<u>-1</u>	g	73	79	2.25	<10	0.36	281	Ă	0.06	6	410	2	<5	<20	35 -	0.01	<10	21	<10	21	26
44	94494	C97-04	154.0-157.0	<0.2	0.63	<0 	10	~U ~E	1.04	~1	6	87	273	1 84	<10	0.35	200	5	0.05	٨	390	<2	<5	<20	34	0.01	<10	31	<10	21	12
45	94495	C97-04	157.0-160.0	<0.2	0.57	<5	90	~0 ~6	0.44	21	e e	81	282	1 84	<10	0.00	171	3	0.08	5	430	4	<5	<20	29 -	<0.01	<10	31	<10	15	12
46	94496	C97-04	160.0-163.0	<0.2	0.52	<5	62	5	0.76	~1	ں د	90	104	173	<10	0.20	211	1	0.00	Å	370	<2	<5	<20	28	<0.01	<10	21	<10	19	14
47	94497	C97-04	163.0-166.0	<0.2	0.45	<5	60	-5	0.70	~1	v	00	104	1.70	-10	V.6.V		-	0.00	-	0.0	-		-20	20	0.01					
		007.04	166 D 169 Û	<0 2	0.46	<5	55	<5	0.43	<del>&lt;</del> 1	6	80	137	1.85	<10	0.29	204	4	0.05	5	380	<2	<5	<20	24	<0.01	<10	25	<10	16	13
48	94498	097-04	160.0-103.0	<0.2	0.43	<5	65	<5	0.63	<1	5	96	156	1.59	<10	0.25	166	4	0.06	4	360	<2	<5	<20	28	<0.01	<10	26	<10	17	9
49	94499	007-04	172.0 175.0	-0.2	0.40	<5	65	<5	0.43	<1	4	63	47	1.44	<10	0.24	134	3	0.05	4	340	<2	<5	<20	22	0.01	<10	26	<10	12	10
50	94500	097-04	175.0 178.0	<0.2	0.40	<5	80	<5	0.78	<1	6	95	1022	1.77	<10	0.36	194	5	0.06	5	370	2	<5	<20	30	0.01	<10	35	<10	18	12
51	94501	097-04	470.0-170.0	~0.2	0.66	~5	90 90	<5	0.78	<1	5	63	66	1.75	<10	0.31	183	3	0.06	6	420	<2	<5	<20	38	<0.01	<10	33	<10	16	11
52	94502	C97-04	1/8.0-161.0	~Ų.Z	0.00		50		··· ·	,	-		•••																		

TARCO OIL & GAS

ICP CERTIFICATE OF ANALYSIS AK 97-744

ECO-TECH LABORATORIES LTD.

Ft #	Tad #	Hole #	Meterage	Ag	Al %	As	Ba	Bi i	Ca %	Cd	Co	Cr	Cu	Fe %	اها	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
= 52	04503	0.97-04	181 0-184 0	<0.2	0.71	<5	160	<5	1.12	<1	6	85	40	1.95	<10	0.35	203	4	0.06	6	420	2	<5	<20	37	0 02	<10	38	<10	21	11
54	04504	007-04	184.0-187.0	<0.2	0.69	<5	200	<5	0.82	<1	6	80	172	1.91	10	0.49	220	3	0.07	6	440	4	-5	<20	45	0.02	<10	41	<10	16	14
55	94505	C97-04	187 0-190.0	<0.2	0.53	<5	60	<5	1.85	<1	6	114	768	1.91	10	0.53	436	6	0.05	4	400	<2	5	<20	34	<0.01	<10	25	<10	29	18
56	94506	C97-04	190 0-193.0	0.4	0.62	<5	80	<5	0.93	<1	6	69	1110	1.70	<10	0.35	208	4	0.06	5	360	<2	<5	<20	34	0.01	<10	35	<10	23	12
57	94507	C97-04	193.0-196.0	<0.2	0.57	<5	75	<5	0.83	<1	6	83	70	1.90	<10	0.32	209	5	0.06	5	420	<2	<5	<20	32	0.01	<10	34	<10	22	12
	54507	001-04																											_		
68	94508	097-64	196 0-199 0	<0.2	0.76	<5	120	<5	0.81	<1	7	75	438	1.89	<10	0.42	170	3	0.06	6	370	2	<5	<20	29	0.02	<10	41	<10	16	12
50	04500	C97-04	199 0-202 0	<0.2	0.68	<5	85	<5	0.80	<1	7	84	263	1.88	<10	0.39	190	4	0.06	5	390	<2	5	<20	31	0.02	<10	40	<10	16	13
60 60	94510	C97-04	202 0-206.3	<0.2	0.93	<5	160	<5	1.18	<1	7	73	520	2.10	<10	0.48	165	2	0.06	6	420	2	<5	<20	38	0.04	<10	50	<10	<b>Z</b> 3	15
00	54515	•••																													
OC DA Respli 36	T <b>A:</b> !: 94486	Ç97-04	130 0-133.0	0.2	0.48	15	70	<5	3.15	<1	7	64	766	1.53	20	0.31	345	10	0.05	4	300	<2	10	<20	40	0.02	<10	24	<10	30	14
Repea	tr											~~	~~ .					-								-0.04	-40	15	-10	2	5
33	94483	C97-04	121.0-124.0	<0.2	0.38	<5	50	<5	0.62	<1	4	67	394	1.27	<10	0.25	193	3	0.05	4	300	<2	<5	<20	20	<0.01	<10	10	~10	20	10
42	94492	C97-04	148 0-151.0	<0 2	0.48	<5	115	<5	0.56	<1	5	84	187	1.77	<10	0.28	244	4	0.05	5	380	~2	<>	<20	32	SU.UT	<10	20	<10	18	12
51	94501	C97-04	175.0-178.0	<0.2	0.66	<5	75	<5	0.76	<1	6	93	1078	1.73	<10	0.30	189	2	0.05	2	360	2	50	<20	29	0.01	~10	50	~10	22	15
60	94510	C97-04	202.0-206.3	<0.2	0.93	<5	160	<5	1.19	<1		(4	529	2.11	\$10	0.48	101	2	0.06	0	420	2	<0	420	30	0.04	~10	50	~10	**	10
<b>Stand</b> GEO'9	ard: 7			1.2	1.75	65	165	<5	1.80	<1	19	62	93	4.08	<10	0.96	674	<1	0.02	24	660	20	15	<20	59	0.11	<10	78	<10	10	74

**ECO.TECH LABORATORIES LTD.** Fank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/7**4**2B XLS/97



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## CERTIFICATE OF ASSAY AK 97-766

#### TARCO OIL & GAS LTD. 400-933 17TH AVE SW CALGARY, ALBERTA T2T 5R7

# ATTENTION: GARY STEWART

No. of samples received: 79 Sample type: Core PROJECT #: Not given SHIPMENT #: Not given Samples submitted by: Not given

				Ag	Ag	Mo	
ET #.	Tag #	Hole #	Meterage	(g/t)	(oz/t)	(%)	
19	94567	C97-05	80.3-83.3	<.1	<.01	<.01	
20	94568	C97-05	83.3-86.3	0.1	<.01	<.01	
21	94569	C97-05	86.3-89.3	0.1	<.01	<.01	
22	94570	C97-05	89.3-92.3	<.1	<.01	<.01	
23	94571	C97-05	92.3-95.3	<.1	<.01	<.01	
24	94572	C97-05	95.3-98.3	<.1	<.01	<.01	
25	94573	C97-05	98.3-101.3	<.1	<.01	<.01	
26	94574	C97-05	101.3-104.3	<.1	<.01	<.01	
27	94575	C97-05	104.3-107.3	<.1	<.01	<.01	
28	94576	C97-05	107.3-110.3	< 1	<.01	<.01	
29	94577	C97-05	110.3-113.3	0.1	<.01	<.01	
30	94578	C97-05	113.3-116.3	0.1	<.01	<.01	
31	94579	C97-05	116.3-119.3	0.2	0.01	<.01	
32	94580	C97-05	119.3-122.3	0.1	<.01	<.01	
33	94581	C97-05	122.3-125.3	<.1	<.01	<.01	
34	94582	C97-05	125.3-128.3	0.1	<.01	<.01	
35	94583	C97-05	128.3-131.3	<.1	<.01	<.01	
36	94584	C97-05	131.3-134.3	0.1	<.01	<.01	
37	94585	C97-05	134.3-137.3	<.1	<.01	<.01	
45	94593	C97-05	158.3-161.3	0.1	<.01	<.01	

Prank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

13-Aug-97

#### TARCO OIL & GAS LTD. 97 - 766

				Ag	Ag	Mo	
ET #.	Tag #	Hole #	Meterage	(g/t)	(oz/t)	(%)	
46	94594	C97-05	161.3-164.3	0.3	0.01	<.01	
47	94595	C97-05	164.3-167.3	0.8	0.02	0.01	
48	94596	C97-05	167.3-170.3	0.4	0.01	0.01	
49	94597	C97-05	170.3-173.3	0.3	0.01	<.01	
50	94598	C97-05	173.3-176.3	0.1	<.01	<.01	
51	94599	C97-05	176.3-179.3	<.1	<.01	<.01	
52	94600	C97-05	179.3-181.3	<.1	<.01	<.01	
53	94601	C97-05	<b>181.3-184.3</b>	<.1	<.01	<.01	
54	94602	C97-05	184.3-187.3	0.1	<.01	<.01	
55	94603	C97-05	187.3-190.3	0.1	<.01	<.01	
56	94604	C97-05	190.3-193.3	0.1	<.01	<.01	
57	94605	C97-05	193.3-196.3	0.2	0.01	<.01	
58	94606	C97-05	196.3-199.3	<.1	<.01	<.01	
59	94607	C97-05	199.3-202.3	<.1	<.01	<.01	
60	94608	C97-05	202.3-205.3	<.1	<.01	<.01	
QC/DATA	<u>í</u>						
Resplit:			404 0 404 0		. 01	- 04	
R/S 36	94584	C97-05	131.3-134.3	0.1	<.01	<.01	
Repeat:							
19	94567	C97-05	80.3-83.3	<.1	<.01	< 01	
Standard:							
Mp-IA				70.0	2.04	0.03	

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/97tarco



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### CERTIFICATE OF ASSAY AK 97-766M

TARCO OIL & GAS LTD. 400-933 17TH AVE SW CALGARY, ALBERTA T2T 5R7 13-Aug-97

.

#### ATTENTION: GARY STEWART

No. of samples received: 79 Sample type: Core PROJECT: # Not given SHIPMENT: # Not given Samples submitted by: Not given

				Screen Assay	
				Cu	
ET#.	Tag #	Hole #	Meterage	(%)	
19	94567	C97-05	80.3-83.3	0.05	
20	94568	C97-05	83.3-86.3	0.11	
21	94569	C97-05	86.3-89.3	0.03	
22	94570	C97-05	89.3-92.3	0.02	
23	94571	C97-05	92.3-95.3	0.03	
24	94572	C97-05	95.3-98.3	0.01	
25	94573	C97-05	98.3-101.3	0.01	
26	94574	C97-05	101.3-104.3	0.01	
27	94575	C97-05	104.3-107.3	0.01	
28	94576	C97-05	107.3-110.3	0.01	
29	94577	C97-05	110.3-113.3	0.01	
30	94578	C97-05	113.3-116.3	0.02	
31	94579	C97-05	116.3-119.3	0.02	
32	94580	C97-05	119.3-122.3	0.02	
33	94581	C97-05	122.3-125.3	0.03	
34	94582	C97-05	125.3-128.3	0.02	
35	94583	C97-05	128.3-131.3	0.06	
36	94584	C97-05	131.3-134.3	0.03	
37	94585	C97-05	134.3-137.3	0.04	
45	94593	C97-05	158.3-161.3	0.07	

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

#### TARCO OIL & GAS LTD. AK 97 - 776M

13-Aug-97

				Screen Assay
				Cu
ET #.	Tag #	Hole #	Meterage	(%)
46	94594	C97-05	161.3-164.3	0.48
47	94595	C97-05	164.3-167.3	0.26
48	94596	C97-05	167.3-170.3	0.20
49	94597	C97-05	170.3-173.3	0.10
50	94598	C97-05	173.3 <b>-1</b> 76.3	0.13
51	94599	C97-05	176.3-179.3	0.06
52	94600	C97-05	179.3-181.3	0.08
53	94601	C97-05	181.3-184.3	0.08
54	94602	C97-05	184.3-187.3	0.07
55	94603	C97-05	187.3-190.3	0.06
56	94604	C97-05	190.3-193.3	0.07
57	94605	C97-05	193.3-196.3	0.07
58	94606	C97-05	196.3-199.3	0.03
59	94607	C97-05	199.3-202.3	0.02
60	94608	C97-05	202.3-205.3	0.02

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/97tarco

.



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

### CERTIFICATE OF ANALYSIS AK 97-766

TARCO OIL & GAS LTD. 400-933 17TH AVE SW CALGARY, ALBERTA T2T 5R7 13-Aug-97

#### ATTENTION: GARY STEWART

No. of samples received: 79 Sample type: Core PROJECT #: Not given SHIPMENT #: Not given Samples submitted by: Not given

				Au	
ET #.	Tag #	Hole #	Meterage	(ppb)	
1	94402			5	
2	94403			5	
3	94551	C97-05	32.3-35.3	5	
4	94552	C97-05	35.3-38.3	5	
5	94553	C97-05	38.3-41.3	5	
6	94554	C97-05	41.3-44.3	5	
7	94555	C97-05	44.3-47.3	5	
8	94556	C97-05	47.3-50.3	5	
9	94557	C97-05	50.3-53.3	5	
10	94558	C97-05	53.3-56.3	5	
11	94559	C97-05	56.3-59.3	5	
12	94560	C97-05	59.3-62.3	5	
13	94561	C97-05	62.3-65.3	5	
14	94562	C97-05	65.3-68.3	5	
15	94563	C97-05	68.3-71.3	5	
16	94564	C97-05	71.3-74.3	5	
17	94565	C97-05	74.3-77.3	5	
18	94566	C97-05	77.3-80.3	5	
19	94567	C97-05	80,3-83.3	5	
20	94568	C97-05	83 3-86.3	5	
21	94569	C97-05	86.3-89.3	5	
22	94570	C97-05	89.3-92.3	5	
23	94571	C97-05	92.3-95.3	5	
24	94572	C97-05	95,3-98.3	5	

				Au
ET	#. Tag #	Hole #	Meterage	(ppb)
25	94573	C97-05	98.3-101.3	5
26	94574	C97-05	101.3-104.3	5
27	94575	C97-05	104.3-107.3	5
28	94576	C97-05	107.3-110.3	5
29	94577	C97-05	110.3-113.3	5
30	94578	C97-05	113.3-116.3	5
31	94579	C97-05	116.3-119.3	5
32	94580	C97-05	119.3-122.3	5
33	94581	C97-05	122.3-125.3	5
34	94582	C97-05	125.3-128.3	5
35	94583	C97-05	128.3-131.3	15
36	94584	C97-05	131.3-134.3	5
37	94585	C97-05	134 3-137.3	5
39	04586	C97-05	137 3-140 3	5
30	04587	C97-05	140 3-143 3	5
25 A0	, 04288	C97_05	143 3-146 3	5
40	04580	C97-05	146 3-149 3	5
40	04500	C97-05	140.3-152.3	5
42	04501	C97-05	149.0-152.0	5
-40	04502	C97-05	155 3 158 3	5
44	94092	C97-05	100.0-100.0	5
45	94593	097-05	100.0-101.0	U E
45	94594	C97-05	101.3-104.3	0 40
47	94595	C97-05	104.3-107.3	10
48	94596	097-05	107.3-170.3	15
49	94597	C97-05	170.3-173.3	5
50	94598	C97-05	1/3.3-176.3	10
51	94599	C97-05	1/6.3-1/9.3	5
52	94600	C97-05	179.3-181.3	5
53	94601	C97-05	181.3-184.3	5
54	94602	C97-05	184.3-187.3	5
55	94603	C97-05	187.3-190.3	5
56	94604	C97-05	190.3-193.3	5
57	94605	C97-05	193.3-196.3	5
58	94606	C97-05	196.3-199.3	5
59	94607	C97-05	199.3-202.3	5
60	94608	C97-05	202.3-205.3	5
61	94609	C97-05	205.3-208.3	5

				Au	
ET #	Tag #	Hole #	Meterage	(ppb)	
62	94610	C97-05	208.3-211.3	5	
63	94611	C97-05	211.3-214.3	5	
64	94612	C97-05	214.3-217.3	5	
65	94613	C97-05	217.3-220.3	5	
66	94614	C97-05	220.3-223.3	5	
67	94615	C97-05	223.3-226.3	5	
68	94616	C97-05	226.3-229.3	5	
69	94617	C97-05	229.3-232.3	5	
70	94618	C97-05	232.3-235.3	5	
71	94619	C97-05	235.3-238.3	5	
72	94620	C97-05	238.3-241.3	5	
73	94621	C97-05	241.3-244.3	5	
74	94622	C97-05	244.3-247.3	5	
75	94623	C97-05	247.3-250.3	5	
76	94624	C97-05	250.3-253.3	5	
77	94625	C97-05	253.3-256.3	5	
78	94626	C97-05	256.3-259.3	5	
79	94627	C97-05	259.3-216.2	5	
C DATA:					
Respirt:	0.1.400			F	
R/S 1	94402	007.05	101 0 101 0	5	
R/S 36	94584	C97-05	131.3-134.3	5	
R/S /1	94619	C97-05	235.3-238.3	5	
Repeat:					
1	94402			5	
10	94558	C97-05	53.3-56.3	5	
19	94567	C97-05	80.3-83.3	5	
36	94584	C97-05	131.3-134.3	5	
45	94593	C97-05	158.3-161.3	5	
54	94602	C97-05	184.3-187.3	5	
71	94619	C97-05	235.3-238.3	5	
Standard:					
GEO'97				130	
GEO'97				130	

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

1

LS/97Tarco

GEO'97

130

14-Aug-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

			•																		_			•	<u> </u>	<b>T</b> . B.			14/	v	Zn
E+ #	Tao #	Hole #	Meterage	Ag	AI %	As	Ba	B	Ca %	Cd	Co	Cr	Cu	Fe %	اها	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	<u>sn</u>	51	11 76	- 10	<u></u>		37	72
<u> </u>	04402			04	1.08	165	110	<5	3.09	<1	39	51	58	8.88	<10	1.41	1364	8	Q.1Q	56	1240	<2	<5	<20	148	0.01	<10	ວ <b>ວ</b> 75	~10	20	04
2	94402			<0.2	1.29	15	90	10	3.45	<1	40	45	51	7.40	<10	1.91	1192	4	0.20	55	1540	10	10	<20	162	0.07	<10	10	~10	24	24
2	94403	007.05	27 3.35 3	<0.2	0.82	<5	105	<5	2.92	<1	13	45	704	3.08	<10	0.65	564	100	0.03	13	620	6	10	<20	43	0.01	<10	59	~10	34	20
3	94551	097-05	35 3 38 3	<0.2	0.83	<5	410	<5	2.39	<1	12	68	542	3.18	<10	0.90	547	181	0.03	13	570	6	10	<20	51	0.05	<10	79	-10	20	44
4	94552	097-03	30 3 41 3	0.4	0.92	<5	535	<5	8.51	<1	23	51	635	5.53	<10	3.58	1798	72	0.04	19	400	2	25	<20	192	0.02	<10	64	<10	οų	
5	94553	C81-05	30.3-41.3	0.4	v	-																						76		47	20
		007.05	41 3 44 3	<0 2	1.09	5	115	<5	6.12	<1	17	66	556	3.93	<10	2.62	1053	39	0.04	14	550	4	25	<20	152	0.01	<10	75	<10	4/	39 39
6	94554	007.05	41.3-44.3	-0.4	1.20	<5	255	<5	3.95	<1	16	66	929	3.71	<10	1.92	769	14	0.04	16	580	4	25	<20	122	0.03	<10	76	<10	35	30
7	94555	097-05	44.3-47.3	~0.7	1 1 9	<5	215	<5	3.18	<1	17	68	199	3.66	<10	1.07	613	39	0.04	18	730	6	10	<20	75	0.04	<10	100	<10	40	41
8	94556	C97-05	47.3-50.3	~0.2	0.01	×5	145	<5	2.24	<1	13	70	241	2.98	<10	0.94	435	18	0.05	- 14	710	4	20	<20	67	0.03	<10	85	<10	28	31
9	94557	C97-05	50.3-53.3	<0.Z	0.91	-5	115	<5	2 17	<1	13	92	340	3.04	<10	0.78	409	22	0.05	12	680	4	5	<20	58	0.03	<10	84	<10	41	29
10	94558	C97-05	53.3-50.3	≺∪.∡	Ų.ar	-0				-																					
				-0.2	1 1 4	25	125	<5	2 73	<1	16	68	362	3.59	~10	1.24	619	32	0.05	15	730	6	10	<20	- 77	0.01	<10	85	<10	32	45
11	94559	C97-05	56.3-59.3	<0.2	1.14	~5	140	<5	4 09	<1	15	76	901	3.40	10	1.04	776	93	0.05	16	630	8	10	<20	86	<0.01	<10	69	10	45	44
12	94560	C97-05	59.3-62.3	0.4	1.03	~5	110	-0 -6	3.76	<1	8	88	420	1,91	10	1.02	528	20	0.05	10	520	4	20	<20	90	<0.01	<10	28	<10	42	23
13	94561	C97-05	62.3-65.3	0.6	Q.74	~ə ~5	105	-0	2.56	<1	Å	59	169	2.16	10	0.66	398	62	0.05	8	480	4	10	<20	71	<0.01	<10	36	<10	33	19
14	94562	C97-05	65.3-68.3	<0.2	0.66	×5 	05	-5	2.00	~1	Ř	76	71	2.10	10	0.53	377	3	0.05	8	430	4	10	<20	59	<0.01	≺10	41	<10	35	17
15	94563	C97-05	68.3-71.3	<0.2	0.61	<0	90	~.,	2.20	-,																					
							100	-5	2 28	~1	R	77	163	2.24	10	0.45	510	з	0.05	8	440	4	10	<20	56	<0.01	<10	43	<10	38	17
16	94564	C97-05	71.3-74.3	<0.2	0.58	<5	100	<0 25	4.04	~1	ŏ	126	285	2.35	10	0.66	430	2	0.04	9	470	4	10	<20	45	<0.01	<10	42	<10	23	24
17	94565	C97-05	74.3-77.3	0.4	0.72	<5	90	50 e	0.46	-1	7	85	215	1 80	10	0.92	528	3	0.04	6	460	4	15	<20	69	< 0.01	<10	24	<10	30	19
18	94566	C97-05	77.3-80.3	0.2	0.60	<5	90	< 5	3.10	51	r e	00	410	1 64	<10	0.82	234	2	0.06	5	330	2	15	<20	45	<0.01	<10	26	<10	27	11
38	94586	C97-05	137.3-140.3	<0.2	0.63	<5	85	<5	1.90	- 51	6	80	361	1 80	210	0.41	207	, ,	5 D DR	6	360	4	10	<20	47	0.01	<10	- 34	<10	23	9
39	94587	C97-05	140.3-143.3	<0.2	0.68	<5	140	<5	1.04	<1	b	02	301	1.08	~10	0.41	202		. 0.00		••••										

ICP CERTIFICATE OF ANALYSIS AK 97-766

TARCO OIL & GAS LTD. 400-933 17TH AVE SW CALGARY, ALBERTA T2T 5R7

ATTENTION: GARY STEWART

No. of samples received: 79 Sample type: Core PROJECT #: Not given SHIPMENT #: Not given Samples submitted by: Not given TARCO OIL & GAS LTD.

#### ICP CERTIFICATE OF ANALYSIS AK 97-766

ECO-TECH LABORATORIES LTD.

	<b>-</b> - 4	klala#	Motoraga	۸n	A1 %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La I	Ng %	Mn	Mo	Na %	Ni	Р	Pb	Sb	\$n	Sr	ΤΙ %	U	V	W	Y	Zn
	1ag #	Hole #	14221462	-02	0.66	<5	120	<5	0.83	<1	6	100	441	1.86	<10	0.38	185	3	0.07	6	370	4	5	<20	42	0.01	<10	36	<10	17	9
40	94588	C97-05	143.3-140.3	~0.2	0.00	<5	75	<5	1.55	<1	6	103	334	1.84	<10	0.38	221	5	0.07	7	400	2	<5	<20	42	<0.01	<10	35	<10	19	14
41	94589	C97-05	140.3-149.3	NU.Z	0.03	25	75	s5	1.50	<1	7	90	74	2.03	10	0.39	229	3	0.06	8	450	4	5	<20	38	<0.01	<10	47	<10	21	14
42	94590	C97-05	149.3-152.3	NU.Z	0.04	-5	80	<5	0.91	<1	7	109	55	2.10	10	0.32	245	6	0.07	7	480	4	<5	<20	39	0.01	<10	51	<10	22	17
43	94591	C97-05	152.3-155.3	<0.2	0.30	~6	80	<5	1 42	<1	11	100	483	2.11	10	0.38	312	6	0.06	8	440	2	<5	<20	39	0.01	<10	45	<10	29	19
44	94592	C97-05	155.3-158.3	<0.∡	0.57	~0	00	-0	1.14	-	••																				
				.0.2	0.60	<u>ح</u> 5	275	<5	2.74	<1	6	85	125	1.94	10	0.37	497	4	0.05	6	440	4	5	<20	39	<0.01	<10	29	<10	27	14
61	94609	C97-05	205.3-208.3	-0.2	0.05	~5	105	<5	3.46	<1	6	71	152	1.61	<10	0.32	408	3	0.05	6	440	2	5	<20	42	<0.01	<10	15	<10	33	14
62	94610	C97-05	208.3-211.3	-0.2	0.00	~0	65	<5	2.55	<1	7	103	326	1.84	<10	0.42	432	6	0.05	7	450	4	10	<20	39	<0.01	<10	26	<10	30	13
63	94611	C97-05	211.3-214.3	<u.z< td=""><td>0.00</td><td>~0</td><td>90</td><td>&lt;5</td><td>1.61</td><td>&lt;1</td><td>.7</td><td>72</td><td>296</td><td>1.90</td><td>&lt;10</td><td>0.46</td><td>275</td><td>3</td><td>0.05</td><td>6</td><td>430</td><td>4</td><td>5</td><td>&lt;20</td><td>38</td><td>&lt;0.01</td><td>&lt;10</td><td>35</td><td>&lt;10</td><td>19</td><td>15</td></u.z<>	0.00	~0	90	<5	1.61	<1	.7	72	296	1.90	<10	0.46	275	3	0.05	6	430	4	5	<20	38	<0.01	<10	35	<10	19	15
64	94612	C97-05	214.3-217.3	<0.Z	0.71	~0	50	ي. ح5	1 19	<1	6	81	156	1.78	<10	0.43	190	3	0.06	6	430	4	10	<20	35	0.01	<10	38	<10	17	11
65	94613	C97-05	217.3-220.3	<0.2	Q.67	~0	05	-0	1.15	-,	-	σ.																			
					0.74	~6	285	<5	1 10	2	6	72	146	1.98	<10	0.41	199	9	0.06	13	420	2	60	<20	38	0.01	<10	45	<10	29	9
66	94614	C97-05	220.3-223.3	<0.Z	0.71	~0	200	-0	2.26	3	7	68	129	2.13	10	0.47	384	11	0.06	17	410	<2	85	<20	51	<0.01	<10	44	<10	32	12
67	94615	C97-05	223 3-226.3	<u.z< td=""><td>0.03</td><td>~0 ~£</td><td>65</td><td></td><td>2 34</td><td>1</td><td>9</td><td>66</td><td>56</td><td>2.24</td><td>10</td><td>0.66</td><td>464</td><td>6</td><td>0.04</td><td>13</td><td>460</td><td>4</td><td>45</td><td>&lt;20</td><td>34</td><td>&lt;0.01</td><td>&lt;10</td><td>42</td><td>&lt;10</td><td>23</td><td>23</td></u.z<>	0.03	~0 ~£	65		2 34	1	9	66	56	2.24	10	0.66	464	6	0.04	13	460	4	45	<20	34	<0.01	<10	42	<10	23	23
68	94616	C97-05	226.3-229.3	<0.2	0.78	~0	20	~5	2.04	à	ă	87	85	2.40	10	0.68	529	14	0.05	20	430	4	95	<20	46	<0.01	<10	43	<10	28	25
69	94617	C97-05	229.3-232.3	<0.2	0.84	~0	76	-5	2.80	4	11	70	113	2.61	<10	0.90	630	13	0.05	20	400	<2	105	<20	44	<0.01	<10	36	<10	24	32
70	94618	C97-05	232.3-235.3	<0.2	0.90	~0	13	-0	£.00	•	,,																				
			005 0 000 0	0 7	0.90	<b>c</b> 5	160	<5	2.15	<1	8	81	173	2.22	10	0.50	381	5	0.06	8	470	4	10	<20	52	0 02	≺10	49	<10	29	20
71	94619	C97-05	230.3-230.3	~0.2	0.81	<5	190	<5	1.20	<1	9	70	171	2.46	<10	0.59	302	4	0.06	8	500	4	5	<20	44	0.01	<10	49	<10	25	23
72	94620	C97-05	238.3-241.3	~0.2	0.01	~5	240	<5	1.26	<1	7	64	89	2.20	10	0.43	240	2	0.06	7	510	4	<5	<20	56	0.02	<10	53	<10	26	15
73	94621	C97-05	241.3-244.3	-0.2	0.73	-5	365	<Š	1.33	<1	6	68	68	2.10	<10	0.48	246	4	0.05	7	490	4	5	<20	50	0.02	<10	52	<10	26	16
74	94622	C97-05	244.3-247.3	NU.Z	0.74	-5	95	<5	1 27	<1	8	69	81	2.07	<10	0.44	220	3	0.06	7	510	4	5	<20	47	0.01	<10	50	<10	23	14
75	94623	C97-05	247.3-250.3	<0.Z	0.71	~0				•	_		-																		
		000 05	050 0 050 0	-0.2	0.69	<5	265	<5	1.70	<1	6	71	177	2.13	<10	0.48	281	4	0.07	7	490	4	<5	~20	53	<0.01	<10	48	<10	28	14
76	94624	097-05	200.3-253.3	~0.2	0.03	<5	355	<5	7.64	<1	11	52	224	2.95	10	1.26	1241	3	0.07	8	510	2	20	<20	111	<0.01	<10	34	<10	61	22
77	94625	097-05	203.3-200.3	~0.2	0.01	~5	210	<5	1.19	<1	7	70	105	2.09	<10	0.47	235	i 4	0.07	8	520	4	5	<20	60	0.02	<10	54	<10	22	12
78	94626	C97-05	255.3-209.3	~0.Z	0.11		250	<5	1.30	 <1	6	65	75	2.12	<10	0.42	202	: 2	0.07	6	530	4	<5	<20	61	0.02	<10	55	<10	24	11
79	94627	C97-05	259.3-216.2	<0.Z	0.04	~.	200			•	-																				

TARCO OIL & GAS LTD. ICP CERTIFICATE OF ANALYSIS AK 97-768											E	ECO-TECH LABORATORIES LTD.																			
<u>Et #.</u>	Tag #	Hole #	Meterage	Ag	AI %	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	W	<u>Y</u>	Zn
<u>OC DATA</u>	<b>L</b> :																														
<b>Resplit:</b> R/S 1 R/S 71	94402 94619	C97-05	235.3-238.3	0.2 <0 2	1.12 0.78	180 5	105 150	5 <5	3.12 2.19	<1 <1	39 8	50 74	59 157	8.76 2.16	<10 10	1.41 0.49	1345 383	8 4	0.10 0.05	55 7	1320 450	2 4	10 5	<20 <20	142 48	0.01 0.02	<10 <10	53 47	<10 <10	38 29	76 22
<i>Repeat:</i> 1 10 36 71	94402 94558 94586 94619	C97-05 C97-05 C97-05	53.3-56.3 137.3-140.3 235.3-238.3	0.2 <0.2 <0.2 <0.2	1 18 1.01 0.66 0.81	165 <5 <5 <5	110 120 90 155	5 <5 <5 <5	3.12 2.20 1.98 2.11	<1 <1 <1 <1	39 13 6 7	53 95 96 81	59 348 450 165	8.86 3.09 1.68 2.20	<10 <10 <10 10	1.43 0.79 0.62 0.49	1355 420 238 369	8 21 3 4	0.10 0.05 0.06 0.06	55 13 5 8	1290 690 350 460	2 6 2 4	5 5 10 10	<20 <20 <20 <20	145 60 48 48	0.01 0.03 <0.01 0.02	<10 <10 <10 <10	56 87 27 49	<10 <10 <10 <10	39 42 26 29	72 29 11 18
<b>Standar</b> GEO'97 GEO'97	d;			1.4 1.4	1.82   1.87	70 65	185 170	<5 <5	1.7€ 1.81	;; 2 I≺1	20 19	60 62	85 90	4.04 4.13	<10 <10	0.98 0.99	665 686	2 <1	0.02 0.02	25 23	680 720	18 24	5 5	<20 <20	64 65	0.08 0.13	<10 <10	82 81	<10 <10	6 10	66 72

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/832c XLS/97

## APPENDIX III 1997 CanTech Labs Assay Results

.

CanTech Laboratories Inc.

### ALHAMBRA RESOURCES LTD.

Suite 400, 933 - 17th AVenue S.W. Calgary, Alberta T2T 5R6 Attention: Gary Stewart

# Certificate of Analysis

Work Order: 97190 Date: September 24, 1997

Sample No.	(+150 mesh) %	(+150 mesh) 9	(+150 mesh) Weight grams	(-150 mesh) %	(-150 mesh) g	(-150 mesh) Weight grams	Total Weight) grams	Cu: Cal g/t	Cu:Cal %
94328	0.47	2.260	4.836	0.175	1225	7000	7005	1752	0.175
R9717554	0.03	0.154	4.836	0.660	1518	2300	2305	6587	0.659
94330	0.28	0.720	2.568	0.180	1152	6400	6403	1800	0.180
94331	0.14	0.150	1.098	0.071	451	6350	6351	710	0.071
94332	0.65	2.100	3.212	0.425	2837	6675	6678	4251	0.425
94333	0.23	0,540	2.324	0.120	882	7350	7352	1200	0.120
94334	0.39	0.700	1.789	0.128	873	6850	6852	1276	0.128
94335	0.50	1.350	2,726	0.087	592	6825	6828	869	0.087
94336	0.20	0.644	3.273	0.090	664	7375	7378	900	0.090
94337	0.02	0.082	3.611	0.368	2738	7450	7454	3673	0.367
94338	0.03	0.068	2.342	0.028	120	4300	4302	280	0.028
ABC	0.03	0.076	2.473	0.850	3103	3650	3652	8494	0.849

CanTech Laboratories, Inc.

 Page 1 of 1

 4200B - 10 Street N.E.

 Calgary, Alberta

 Canada T2E 6K3

 Tel (403) 250-1901

 Fax (403) 250-8265

• .

Certified://





SURVEY LEGEND Instrumentation: GEM System Inc. Magnetometer/VLF-EN, Model GSM-19 Survey Date: June 1997 Surveyed by: Andrew Molnar Profiles: 100 nT:cm

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

Geotronics Surveys Ltd. ALHAMBRA RESOURCES LTD. DOT CLAIM GROUP Craigmont Nine Area Nicola Wining Division, B.C. MAGNETIC SURVEY (2)PROFILE PLAN Date Nap No. June 97 GP-2 Drawn by: Job No. NTS RTN 97-13 921/7W



Drawn by: RTM	Job No. 97-13	NTS 921/7W	Date JUNE 97	Map No. 6P-3
	VLF- PR0F	EM SUI ILES	RVEY PLAN	3)
	DOT ( Craig Nicola Min	CLAIM Common t Mine	ROUP Area ion, B.C.	
ALH	AMBRA	RESOUR	CES L1	D.
	Geotron	ics Surve	ys Ltd.	

Instrumentation: GEM System Inc. Magnetometer/VLF-EN, Model GSN-19 Survey Date: June 1997 Transmitter: Jim Creek, Washington (24.8 kHz) Bearing: S.W. Data reduction: Geotronics Surveys Ltd. Surveyed By: Andrew Molner VLF Profiles & Vertical Scale: ______ Tilt angle (10 deg per cm) _____ Quadrature (10 deg per cm)

25,286

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT





GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

25,286

Instrumentation: GEM System Inc. Magnetometer/VLF-EM, Model GSM-19 Survey Date: June 1997 Transmitter: Jim Creek, Washington (24.8 kHz) Bearing: S.W. Data reduction: Geotronics Surveys Ltd. Surveyed By: Andrew Molnar Contour Interval: 5 deg.

	Geotron	ics Surve	ys Ltd.										
ALHAMBRA RESOURCES LTD.													
DOT CLAIM GROUP Craigmont Nine Area Nicola Wining Division, B.C.													
VLF-EM SURVEY FRASER-FILTERED CONTOUR PLAN													
Drawn by: RTM	Job No. 97-13	NTS 921/7W	Date JUNE 97	Nap No. GP-4									
		هـ ۲	<b>)</b>										