

NTS 92 H/9 E, H/16 E LAT.- 49 45' N LONG.- 120 01' W

GEOCHEMICAL & GEOLOGICAL REPORT on the DECANO 1-6 CLAIMS, CHAPMAN CK., SUMMERLAND, B.C.

Similkameen Mining Division

FOR:

Verdstone Gold Corp./ Molycor Gold Corp., 301-1959 152 nd St., Surrey, B.C. V4A 9E3

BY:

Andris Kikauka, F.G.A.C., P.Geo., 6439 Sooke Road, Sooke, B.C. VOS 1N0

Oct. 25, 1997

TABLE OF CONTENTS AND LIST OF FIGURES

		PAGE NO.
1.0	INTRODUCTION	1
2.0	LOCATION, ACCESS, PHYSIOGRAPHY	1
3.0	PROPERTY STATUS	1
4.0	AREA HISTORY	2
5.0	PROPERTY HISTORY	2
6.0	REGIONAL GEOLOGY	2
7.0	1997 WORK PROGRAM	3
7.1	METHODS AND PROCEDURES	3
7.2	PROPERTY GEOLOGY	3
7.3	SOIL GEOCHEMISTRY	3
7.4	ROCK GEOCHEMISTRY	4
8.0	DISCUSSION OF RESULTS	4
9.0	CONCLUSION AND RECOMMENDATIONS	4

FIG.1 PROPERTY LOCATION AND GEOLOGY FIG.2A CLAIM LOCATION MAP 1:50,000 FIG.2B CLAIM LOCATION MAP 1:31,680 FIG.3 Mo SOIL GEOCHEMISTRY FIG.4 Cu SOIL GEOCHEMISTRY FIG.5 Cu/Mo ROCK CHIP GEOCHEMISTRY

APPENDIX A ASSAY CERTIFICATES

1.0 INTRODUCTION

This report was prepared at the request of Verdstone Gold Corp./Molycor Gold Corp. to describe and evaluate the results of diamond drilling carried out on the Decano 1-6 claims located in the Similkameen Mining Division, 21 km. W of Summerland, B.C.

Field work was undertaken for the purpose of evaluating economic mineral potential of the Decano claims.

Field work was carried out from August 23-25, 1997 by Andris Kikauka (geologist), Marc Bombois (geotechnician), under the supervision of Larry Reaugh and John Fisher.

This report is based on published and unpublished information and maps, reports and field notes.

2.0 LOCATION, ACCESS & PHYSIOGRAPHY

The claims are located 21 km. W of Summerland, B.C. at the headwaters of Chapman Creek, a tributary of Trout Creek (Fig. 1,2).

The claims are located on Map Sheet NTS 92 H/9 E and 92 H/16 E at latitude 49 45' N and longitude 120 01' W.

Road access is via the Summerland-Princeton road and following the Camp Creek spur road (located 5 km. east of Thirsk Lake) and proceeding 4.5 km. north to Chapman Creek.

The property elevation ranges between 1,100-1,325 m. (3,608-4,346 ft.). The area is heavily forested with pine and some spruce in low lying areas. Semi-arid, cool climate conditions prevail. The recommended field season is March-December, because of snowfall accumulations January-February.

3.0 PROPERTY STATUS

The property consists of 6 claims owned by Verdstone Gold Corp./Molycor Gold Corp.(Fig.2). Details of the claims are as follows:

CLAIM		RECORD NO.	UNITS	•	RECORD DATE	EΣ	(PIRY DATE
Decano]	339860	1		Sept. 5, 95		Sept. 5, 97
Decano	2	339861	1		Sept. 5, 95		Sept. 5, 97
Decano	3	339862	1		Sept. 5, 95		Sept. 5, 97
Decano	4	339863	1		Sept. 5, 95		Sept. 5. 97
Decano	5	339864	1		Sept. 5, 95		Sept. 5, 97

Decano 6 339865 1 Sept. 5, 95 Sept. 5, 97

The claims listed above total 6 units, which are contiguous and have been grouped together to form the Decano Group. The total area covered by the claims is 150 hectares (363 acres).

The writer is not aware of any regulatory problem that would adversely affect mineral exploration and development on the Decano Claim Group.

4.0 AREA HISTORY

The Nickel Plate and Hedley-Mascot located near the town of Hedley, B.C., produced from underground workings 3,600,000 tonnes of 0.408 opt Au and from the more recent open pit, production figures were 8,250,000 tonnes of 0.080 opt Au.

The Copper Mountain/Similco-Ingerbelle Porphyry Cu-Ag-Au deposit near Princeton, B.C. has produced 173,000,000 tonnes @ 0.58% Cu and 0.005 opt Au.

The Brenda Cu-Mo porphyry deposit located 22 km. West of Peachland, B.C., milled 177,000,000 tonnes @ 0.17% Cu and 0.043% Mo. Geology and mineralization at the Hed property closely resembles Brenda (see 8.0 Discussion of Results).

The Carmi-Moly deposit is located 30 km. East of Penticton, B.C. and contains 37,000,000 tonnes @ 0.105% MoS2.

Fairfield Minerals Ltd. Elk (Siwash North) gold-quartz vein system contains approximately 121,000 tonnes @ 0.740 opt Au and 1.03 opt Ag. Huntington Res Ltd. Brett Bonanza Zone located about 22 km west of Vernon. contains an estimated 12,000 tonnes @ 1.140 opt Au.

5.1 PROPERTY HISTORY

- 1976- The property was trenched and mapped as well as some soil geochemical and magnetometer geophysical surveys were performed by Maverick Mines. Geochemical analysis was restricted to Cu-Mo and some quartz-sericite-pyrite alteration zones were identified hosted in porphyritic quartz monzonite.
- 1978- Eagle Resources acquired the property and mapped the trenches and surrounding bedrock geology. Granodiorite was the dominant rock type mapped as well as minor porphyritic quartz monzonite. Jointing was predominantly NE trending with some minor NW trends, and the major NE trending creeks that cut the property are mapped as fault zones.

6.0 REGIONAL GEOLOGY

The Decano claims are underlain by the Okanagan batholith, a composite intrusive of Jurassic/Cretaceous age comprised of quuartz diorite, diorite, granodiorite, quartz monzonite and granite (Fig. 3). The Okanagan batholith intrudes upper Paleozoic metasediments, and late Triassic volcanics and sediments of the Nicola Group. Tertiary volcanic and sedimentary rocks unconformably overlie the complex near its edges. Most of the larger mines in the region are Jurassic and/or Cretaceous age, e.g. Copper Mountain Cu-Ag-Au Early Jurassic, Hedley Camp Au Middle Jurassic, Brenda Cu-Mo Early Cretaceous ages of emplacement. Brenda is the only large scale producer within the Okanagan Batholith Complex (Fig. 3). Porphyry Cu-Mo occurs as fracture controlled sulphides at the contact of N-S trending quartz diorite and granodiorite stocks (collectively known as Brenda Stock). The ore zone is concentrically zoned by an outer pyrite shell and inner biotite alteration shell (Soregaroli, A., 1976).

Major mineral deposits within or near the Okanagan Batholith include Copper Mountain Cu-Ag-Au deposit, which is dated Early Jurassic, Hedley Camp Au Middle Jurassic, Brenda Cu-Mo dates an Early Cretaceous ages of emplacement.

7.0 1997 WORK PROGRAM

7.1 METHODS AND PROCEDURES

A total of 44 soil samples were taken along grid lines at 25 meter spacing. Soil was taken with grubhoes at adepth of 20-45 cm. In the "B" horizon of a well developed soil profile. Samples were placed into marked kraft envelopes and shipped to Chemex Labs, North Vancouver for 30 element ICP analysis. Flagging was placed at all sample sites.

A total of 4 rock chips were taken from a roadcut where mineralized bedrock was present. Rock chips were taken with hammer and chisel. An average sample size of 2.0 kilograms was placed into heavy plastic bags and shipped to Chemex Labs, North Vancouver.

7.2 PROPERTY GEOLOGY

The following lithologies were recognized at the Decano property:

UPPER JURASSIC OKANAGAN BATHOLITH

- 1c Porphyritic granodiorite, quartz-sericite-pyrite alteration
- 1b Granodiorite, original texture altered to quartz-sericite-pyrite
- 1c Granodiorite, 10% biotite, 8% hornblende

7.3 SOIL GEOCHEMISTRY

Soil samples taken over a 0.4×0.3 km. area did not identify any zones of significant copper and/or molybdenum values, i.e. the highest values were 40 ppm Cu and 6 ppm Mo (Fig. 3 & 4). Average Cu and Mo values were less than 20 ppm Cu and 2 ppm Mo. These values indicate there is little chance of an uphill extension of the Cu/Mo mineralization which occurs sporadically in the lower roadcut (Fig. 5).

7.4 ROCK GEOCHEMISTRY

A total of four samples taken across widths of 1.0 m. were taken within a zone of quartzsericite-pyrite alteration along the lower roadcut. Sample DEC-2 returned a value of 0.06% MoS2 (356 ppm Mo) hosted in altered granodiorite.

8.0 DISCUSSION OF RESULTS

The soil results show little encouragement in the immediate vicinity of the roadcut showings. The one encouraging rock chip sample (DEC-2), does not warrant further follow-up work.

9.0 CONCLUSIONS & RECOMMENDATIONS

Molybdenite mineralization is sporadically distributed in altered granodiorite. The values obtained in this survey do not justify follow-up work on the Decano 5 claim. There are 5 other claim units within the claim group which requires mapping and soil sampling to evaluate the mineral potential of the Decano Mo(Cu-Au?) prospect.

REFERNCES

Peto, P., 1997, Summary and Evaluation Report of the Hed Cu-Mo Property. Verdstone Gold Corp./Molycor Gold Corp., Internal Report

Soregaroli, A., 1976, Brenda. In Porphyry Deposits in the Canadian Cordillera, C.I.M. Special Volume 15, page 186-194. Roberts, R.G., 1988, Ore Deposit Models, G.S.C. Reprint Series #3

Schroeter, T.G., Porphyry Deposits of the NW Cordillera of North America. Special Volume 46, C.I.M.

Sillitoe, R.H., 1980, Types of Porphyry Molybdenum Deposits, Mining Magazine.. Vol. 142, p.550-553.

CERTIFICATE

I, Andris Kikauka, of Box 370, Brackendale, B.C., hereby certify that;

1. I am a graduate of Brock University, St. Catharines, Ont., with an Honours Bachelor of Science Degree in Geological Sciences, 1980.

2. I am a Fellow in good standing with the Geological Association of Canada.

3. I am registered in the Province of British Columbia as a Professional Geoscientist.

4. I have practised my profession for eighteen years in precious and base metal exploration in the Cordillera of Western Canada and South America, and for three years in uranium exploration in the Canadian Shield.

5. The information, opinions, and recommendations in this report are based on fieldwork carried out in my presence on the subject properties and on published and unpublished literature and maps.

Andris Kikauka, P. Geo.,

A. Kikah

October 25, 1997

ITEMIZED COST STATEMENT- AUGUST 23-25, 1997, DECANO CLAIM GROUP NTS 92 H/9 E, 92 H/16 E SIMILKAMEEN MINING DIVISION

FIELD CREW Geologist, Andris Kikauka, 3 days Geotechnician, Marc Bombois, 2 days	\$	500.00 300.00
FIELD COSTS: Assays 44 soil, 4 rock (30 element ICP) Report		350.00 50.00
	Total = \$	1,200.00

-

Qtz-ser.py

1c

Camp CK.

1c

=====

FESSIO

PROVINCE _OF A. KIKAUK BRITISH SCIEN

DECANO 5 DECANO 5

23.9 Km Glen Lake Rd.

===

,_____

DEC-1 16 16 16 16 VERDSTONE GOLD CORP. / MOLYCOR GOLD CORP. DECANO MO PROJECT, SUMMERLAND, B.C. Similkameen Mining Division, 92 H/9 E UPPER JURASSIC OKANAGAN BATHOLITH 1 Granodiorite, 16 Granodiorite, original texture altered to quartz-sericite-pyrite, 1c Porphyritic granodiorite, weak quartz-sericite-pyrite alteration 40 - ppm Cu in soil FIG: 4

Qtz-ser.py

Camp CK.

1c

<

FESSIO

PROVINCE A. A. KIKAUKA BRITISH SCIEN

DECANO 5 DECANO 6

23.9 Km

Glen Lake Rd.

DEC-1 16 16 16 16 VERDSTONE GOLD CORP./MOLYCOR GOLD CORP. DECANO MO PROJECT, SUMMERLAND, B.C. Similkaneen Mining Division, 92 H/9 E UPPER JURASSIC OKANAGAN BATHOLITH 1 Granodiorite, 16 Granodiorite, original texture altered to quartz-sericite-pyrite, 1c Porphyritic granodiorite, weak quartz-sericite-pyrite alteration

> Rock Chip Samples FIG. 5

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 31D SURREY, BC V4A 9E3 Page Number 1-A Total Pages 2 Certificate Date31-AUG-97 Invoice No. 1-9739227 P.O. Number : Account :

Project : DECANO Comments: ATTN: LARRY REAUGH

											CERTIFICATE OF ANALYSIS							A9739227				
SAMPLE DESCRIPTION	PR CO	BP De	Ag PPM	A1 %	As ppn	Ba ppm	Be ppn	Bi ppm	Ca	Cđ ppm	Co PPE	Cr PPN	Cu ppm	Fe L	Ga ppm	Hg ppm	K Z	La ppm	Мg	Mm P P M	мо РРш	
L1+00H 0+00B L2+00H 0+00E L3+00H 0+00E L4+00H 0+00E J.1+00H 0+00W	201 201 201 201 	202 202 202 202 202 	<pre>< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 NotRcd</pre>	1.52 1.56 1.18 1.49 NotRed	4 2 6 2 NotRed	150 170 90 140 NotRed	<pre>(0.5 (0.5 (0.5 (0.5 NotRed</pre>	< 2 < 2 < 2 < 2 NotRed	0.18 0.17 0.25 0.19 NotRed	< 0.5 < 0.5 < 0.5 < 0.5 NotRcd	4 5 4 5 NotRed	11 13 13 13 NotRed	8 9 6 11 NotRcd	1.86 2.06 1.84 1.93 NotRed	<pre>{ 10 { 10 { 10 { 10 { 10 { 10 } 10 } 10 } 000000000000000000000000</pre>	<pre>< 1 < 1 NotRed</pre>	0.08 0.07 0.11 0.06 NotRed	<pre>< 10 < 00 < 0</pre>	0.17 0.20 0.23 0.22 NotRed	210 475 410 285 NotRed	<pre></pre>	
L1+00W 0+25W L1+00W 0+50W L1+00W 0+75W L1+00W 1+00W L1+00W 1+25W L1+00W 1+50W L1+00W 1+75W L1+00W 1+75W L1+00W 2+00W L1+00W 2+25W	2D1 201 201 201 201 201 201 201 201 201	202 202 202 202 202 202 202 202 202 202	<pre>{ 0.2 < 0.2 </pre>	0.99 0.84 0.98 2.07 1.54 1.36 0.98 1.49 1.95	<pre></pre>	90 90 120 170 150 140 110 210 140	<pre>< 0.5 < D.5 < 0.5 < 0.5</pre>	<pre>< 2 < 2</pre>	0.16 0.17 0.14 0.37 0.24 D.15 0.12 0.38 0.17	<pre>< 0.5 < 0.5 <</pre>	3 3 9 5 4 3 6 5	10 10 8 24 12 13 10 14 13	5 3 39 9 8 5 23 13	1.88 1.90 1.50 3.41 1.95 2.00 1.79 2.01 2.09	<pre>< 10 < 10</pre>	<pre>(1 (1 (1 (1 (1 (1 (1 (1 (1 (1</pre>	0.07 0.14 0.06 0.20 0.09 0.12 0.06 0.12 0.06	10 10 10 < 10 < 10 < 10 < 10 < 10 < 10	0.14 0.17 0.13 0.57 0.24 0.24 0.15 0.35 0.35	170 220 155 500 535 190 220 530 275	<pre>< 1 < 1 < 1 < 1 1 < 1 < 1 < 1 < 1 < 1 <</pre>	
L1+00H 2+50W L2+00H 0+00W L2+00H 0+25W L2+00H 0+50W L2+00H 1+50W L2+00H 1+50W L2+00H 1+50W L2+00H 1+75W L2+00H 2+06W	201 201 201 201 201 201 201 201 201 201	202 202 202 202 202 202 202 202 202 202	<pre>< 0.2 WotRcd < 0.2 < 0.2</pre>	1.15 YotRcd 1.37 1.27 0.99 1.28 1.09 1.63 1.54	< 2 HotRcd 2 < 2 2 2 2 5 2 10	90 BotRcd 150 130 110 80 90 70 140 130 240	< 0.5 NotRed < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> NotRed < 2 </pre>	0.24 NotRed 0.16 0.20 0.25 0.20 0.25 0.31 0.30	< 0.5 WotlRed < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 WotRcd 4 4 4 4 3 5 8 6	12 NotRcd 11 10 12 14 12 16 22 18 32	8 JotRed 7 6 8 6 9 16 14	1.87 NotRcd 1.94 1.79 2.00 1.74 2.35 2.99 2.48 2.75	<pre>< 10 NotRcd < 10 < 10</pre>	<pre> < 1 BotRcd < 1 </pre>	0.16 NotRcd 0.07 0.11 0.18 0.10 0.10 0.10 0.10 0.28	<pre>< 10 MotRcd < 10 < 10</pre>	0.24 BotRed 0.17 0.16 0.20 0.24 0.21 0.25 0.42 0.37 0.64	190 NotRcd 215 300 270 180 220 285 505 295 860	6 NotRed < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	
L2+00M 2+50W C3+00M D+25W L3+00M D+25W L3+00M D+50W L3+00M D+75W L3+00M D+75W L3+00M L+20W L3+00M L+25W	201 201 201 201 201 201 201	202 202 202 202 202 202 202	<pre>< 0.2 MotRcd < 0.2 < 0.2</pre>	0.89 NotRed 1.15 0.98 1.33 1.49 1.26	<pre></pre>	80 NotRed 100 90 120 120	<pre>< 0.5 Notled < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 </pre>	<pre></pre>	0.17 NotRcd 0.18 0.13 0.21 0.16 0.17	<pre>< 0.5 NotHcd < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	4 NotRcd 3 5 4 3	12 NotRcd 14 10 14 12 11	6 NotRcd 15 4 11 7 5	1.79 WotRed 1.95 1.49 2.00 1.79 1.55	<pre>(10 NotBcd < 10 < 10</pre>	<pre>< 1 NotRed < 1 < 1</pre>	0.12 Notled 0.10 0.05 0.08 0.08	<pre>< 10 NotRed < 10 < 10</pre>	0.23 NotRed 0.25 0.16 0.24 0.19 0.17	200 Notked 200 365 295 205 260	<pre></pre>	
L3+00N 1+50W L3+00M 1+75W L3+00M 2+00W L3+00M 2+25W L3+00M 2+50W	201 201 201 201 201 201	202 202 202 202 202 202	<pre> < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 </pre>	1.09 0.97 1.49 1.64	< 2 < 2 2 8 2	100 80 130 130 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 < 2	0,23 0.24 0.31 0.27 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 4 6 5 5	12 13 17 16 17	9 7 14 15 12	1.83 1.72 2.68 2.55 2.59	< 10 < 10 < 10 < 10 < 10 < 10	(1 (1 (1 (1 (1	0.09 0.11 0.11 0.11	10 < 10 10	0.19 0.20 0.29 0.26 0.24	225 210 520 405 225	<pre></pre>	
L4+00N 0+00W L4+00D 0+25W L4+00N 0+50W	201 201	202 202	NotRed (0.2 (0.2	NotRcd 1.18 1.29	NotRed < 2 4	NotRed 100 110	NoL9ed < 0.5 < 0.5	Not.Red 2 C	NotRed 0.23 0.21	NotBed < 0.5 < 0.5	NotRed 5 4	NOTRed 15 12	NOLRCO 13 8	NOTRE 2.22 1.81	NOLRCH < 10 < 10	. NGLREC < 1 . < 1	0.11 0.11	NotRed 10 < 10	NotRed 0.25 0.18	NOLRCO 170 410	NOLRED < 1 1	

~*

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

North Vancouver 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Page Number 1-8 Total Pages 2 Certificate Date31-AUG-97 Invoice No. I-9739227 P.O. Number : Account :

											CE	RTIFI	CATE	OF A	NALYSIS	A9739227
SAMPLE DESCRIPTION	PRI	SP DE	Na L	Wi PPM	P ppm	Pp Pp	Sb PPm	Sc ppm	Sr PPM	Ti t	Tl ppm	p tar	ррш.	w PPm	2n ppa	
T 1 +00H 0+00P	201	202	0.02		660	6	< 2	1	24	0.07	< 10	< 10	42	< 10	98 100	
1.2+00N 0+00E	201	202	0.01	7	830	6	< 2	1	18	0.06	(10	(10	47	< 10 < 10	122	
L3+00H 0+00E	201	202	0.01	5	300	8	(2)	1	22	0,08	< 10 < 10	(10	45	< 10	116	
L4+00N 0+00E	201	202	0.01	8	730 National 1	B Wothed 1	(2) KotRedii	L RotRed I	to¶to∎	NotRed	NotRed	Nothed 1	Not.Red W	lotRed 1	lotRcd	
L1+00N 0+00W			NOTECO	NOLECO	ROEKCO	BOLICU	NOLEL.G	BODROU								
1+00¥ 0+25W	201	202	0.01	4	210	8	< 2	1	21	0.06	< 10	< 10	44	< 10	50 54	
E1+00# 0+50W	201	202	0.01	4	230	4	(2	1	19	0.07	< 10 < 10	(10	12	< 10	88	
L1+00N 0+75W	201	202	0.01	3	670	6	(2)	1 5	17	0.05	< 10	< 10	88	< 10	162	
L1+00N 1+00W	201	202	0.02	12	730	10	22	í	22	0.06	< 10	< 10	46	< 10	152	
L1+00H 1+25W	201	202	0.01	0	000	10										· · · · · · · · · · · ·
T1+00# 1+50W	201	202	0.01	7	470	10	< 2	1	19	0.07	< 10	< 10	46	< 10	116	
1.1+001 1+75W	201	202	0.01	4	640	6	< 2	L	14	0.04	< 10	< 10 < 10	42	< 10 < 10	92 190	
L1+00M 2+00W	201	202	0.01	11	980	10	< 2	2	30	0.07	< 10 < 10	(10	47	< 10	168	
L1+00# 2+25W	201	202	0.01	10	980	10	2	1	20	0.07	< 10	< 10	41	< 10	88	
L1+00# 2+50W	201	202	0.01	D	150	0		-								
T 2+000 0+00W		 	Notacd	Notled	Nothed	NotRed	Noted	NotRed	Notled	NotRed	Nothed	NotRed	NotRed	Norned :	TotRed	
C2+00N D+25W	201	202	0.01	7	900	6	< 2	1	17	0.05	< 10	(10	44	< 10 < 10	110	
1.2+00H 0+50W	201	202	0.01	6	660	2	< 2	1	18	0.05	< 10	2 10	46	< 10	96	
1,2+0.01F 0+75W	201	202	0.01	6	370	6	< 2 2 3	1	24	0.07	2 10	< in	51	< 10	64	
L2+00M 1+00W	201	202	0.01	5	440	8	` Z	1	£7							······
2.000 1.26M	301	202	0.01	6	360	4	< 2	1	20	0.07	< 10	< 10	41	< 10	92	
12+000 1+250 72+000 1+500	201	202	0.01	Ğ	490	6	< 2	1	26	0.06	< 10	(10	62	< 10	102	
1.2+00N 1+75W	201	202	0.01	. 12	590	10	< 2	3	28	0.08	< 10	(10)	81 64	7 10	122	
12+00W 2+00W	201	202	0.02	10	460	8	(2)	د ع	⊿0 ≂1	0.08	(10)	< 10	66	< ĩo	220	
1.2+00N 2+25W	201	202	0.01	. 18	55Q	10	< 2	C.		0.15						
	201	202	0.01		230	10	< 2	1	18	0.06	< 10	< 10	44	< 10	54	
1,2+008 2+00W	201	202	NotRed	NotRed	NotRed	NotRed	Nothed	Not.Rcd	E otRcd	NotRed	Notled	NotRed	Notlicd	Notled	NotRed	
L3+00N 0+25W	201	202	0.01	6	480	8	< 2	1	17	0.06	< 10	< 10	49	< 10 / 10	70	
13+00N 0+50W	201	1) 202	0.01	4	.500	4	< 2	1	14	0.05	< 10	2 10	49	< 10	B4	
1⊈3+00∎ 0+75₩	203	1 202	0,01	. 7	620	8	< म		19	0.00	10					
	-	0.00		6	560		< 2	<u> </u>	15	0.06	< 10	(10	40	< 10	96	
L3+00M L+00W	20	1 202		i 5	490	6		1	17	0.07	< 10	< 10	36	< 10	84	
L3+000 L+23W	20	1 202	0.01	Ĺ Ő	680	6	< 2	1	23	0.06	(10	< 10	44	< 10	00 46	
13+00m 1+75W	20	1 202	2 0.01	L 5	360	8	< 2	1	22	0.07	(10		43 59	< 10 2 1A	106	
C3+00E 2+00W	20	1 202	2 0.01	L 8	770	10	< 2	2	26	0.07	(10	10	00	<u>`</u>		
					940	10	()	2	25	0.07	< 10	(10	64	< 10	105	
L3+00H 2+25W	20	1 203	d 0.01	L 0	, 800 1 600	- 10 - 8	- È	2	24	0.07	< 10	(10	66	< 10	94	
1.3+000 2+50W	20		Totaci	d NotRed	Nothed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	Notred	Notled	NotRed	NotRed	
1.4+000 0+25W	20	1 20:	2 0.01	1 7	440	8	< 2	2	25	0.07	< 10		57	< 10 Z 10	0∡ 80	
14+00m 0+50W	20	1 20	2 0.0	16	5 560	10	< 2	1	21	0.06	6 (IU	, (IU	42	(10	20	
	1		1													
		_						••							-	

~*

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 Page Number 2-A Total Pages 2 Certificate Date31-AUG-97 Invoice No. I-9739227 P.O. Number : Account :

Project : DECANO Comments: ATTN: LARRY REAUGH

											CERTIFICATE OF ANALYSIS										
SAMPLE DESCRIPTION	PR: CO	EP De	Ag ppm	A1 1	As ppu	Ва ррш	Be. ppn	Bi ppa	Ca %	Cd ppm	Co p pn	Cr P PM	Cu ppm	Fe 1	Ga ppm	Hg PP n	K L	La ppm	Mg	Mn ppa	Mo ppm
L4+00W D+75W L4+00W 1+00W L4+00W 1+25W L4+00W 1+25W L4+00W 1+50W L4+00W 1+75W	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	1.29 0.84 1.32 1.29 1.13	4 2 2 2 2	110 80 110 100 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> < 2 < 2 < 2</pre>	0.17 0.13 0.19 0.18 0.20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 3 4 5 5	14 8 11 14 16	11 6 9 12 8	2.15 1.48 2.01 2.56 3.00	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 1 < 1</pre>	0.07 0.03 0.04 0.05 0.07	< 10 < 10 < 10 10 < 10	0.25 0.12 0.16 0.20 0.20	220 300 300 155 320	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>
L4+00N 2+00W L4+00N 2+25W L4+00N 2+50W L4+00N 2+75W L4+00N 2+75W L4+00N 3+00W	201 201 201 201 201 201	202 202 202 202 202 202	<pre>{ 0.2 { 0.2 { 0.2 { 0.2 { 0.2 { 0.2 { 0.2 { 0.2 } { 0.2 } { 0.2 } } } }</pre>	1.92 1.45 1.26 1.84 1.01	< 2 2 2 2 (2	190 130 110 160 130	<pre>< 0.5 < 0.5</pre>	<pre></pre>	0.20 0.28 0.17 0.20 0.43	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	5 5 4 4 4	13 15 11 12 16	11 12 5 9 14	2.11 2.48 1.83 2.11 3.05	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.06 0.09 0.05 0.07 0.08	< 10 10 < 10 < 10 40	0.23 0.25 0.15 0.19 0.21	625 345 150 155 325	<pre>< 1 < 4</pre>

_-

.

Chemex Labs Ltd.

Analytical Chemists " Geochemists " Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 Page Number 2-B Total Pages 2 Certificate Date 31-AUG-97 Invoice No. +9739227 P.O. Number : Account :

Project : DECANO Comments: ATTN: LARRY REAUGH

										CE	RTIF	CATE	OF A	NALYSIS	A9739227
SAMPLE DESCRIPTION	PRBP CODE	Ma ¥	Ni ppm	P Pro	Бbш Бр	Sb pp n	Sc ppm	Sr pp a	Ti L	Tl ppm	D D	v P ru	k bin	Zn ppm	
L4+003F0+75W L4+003F1+00W L4+003F1+25W L4+003F1+25W L4+003F1+75W L4+003F1+75W	201 20 201 20 201 20 201 20 201 20 201 20	02 <	6 5 6 5 6	490 720 750 870 410	6 2 6 8 6	< 2 < 2 < 2 < 2 < 2 < 2	1 1 1 1 1	18 13 20 17 22	0.05 0.03 0.05 0.05 0.06	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	54 36 48 64 80	< 10 < 10 < 10 < 10 < 10 < 10	80 72 98 76 78	
L4+00N 2+00W L4+00N 2+25W L4+00N 2+50W L4+00N 2+75W L4+00N 2+75W L4+00N 3+00W	201 20 201 20 201 20 201 20 201 20 201 20	02 0.02 02 0.01 02 0.01 02 0.01 02 0.02 02 0.01	8 B 5 7 5	930 600 520 500 620	8 10 6 6 10	<pre>< 2 < 2</pre>	1 2 1 1 2	23 30 22 27 64	0.08 0.07 0.07 0.07 0.07	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 10 < 10 < 10 < 10 < 10 < 10 10</pre>	47 64 42 47 73	<pre>< 10 < 10</pre>	130 96 82 102 68	

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 .. منع

_,"

Page Numbor 1-A Total Pages 1 Certificate Date 31-AUG-97 Invoice No. H9739229 P.O. Number : Account :

Project : DECANO Comments: ATTN: LARRY REAUGH

							-			CERTIFICATE OF ANALYSIS							A97 39			
SAMPLE DESCRIPTION	PREP CODE	Ag ppm	Al l	As PP n	Ba PPM	Be PPm	Bi ppm	Ca %	Cd ppm	Со ррш	Cr ppn	Cu ppm	Fe %	Ga ppu	Hg PP n	K 2	La ppm	Mg 3	Mn ppm	Mo ppm
DEC-1 DEC-2 DEC-3 DEC-4	205 226 205 226 205 226 205 226 205 226	< 0.2 < 0.2 < 0.2 < 0.2	1.03 0.90 0.72 0.61	<pre>< 2 < 2 </pre>	100 80 100 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	< 0.01 0.01 < 0.01 < 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	159 196 133 118	11 33 1 12	0_71 0_71 0.92 0.46	< 10 < 10 < 10 < 10	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0.54 0.47 0.43 0.35	< 10 < 10 < 10 < 10	0.04 0.04 0.03 0.02	15 20 15 10	34 356 34 33
													-44							

PAGE

002

SAMPLE

DESCRIPTION

DEC-1

DEC-2

DEC-3

DEC-4

PREP

CODE

205 226

205 226 205 226

205 226

Na

0.02

0.02

0.02

0.01

3

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave. North Vancouver British Columbia, Canada PHONE: 604-984-0221 F/ V7J 2G1

Ni

ppm

L

2

1

1

To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

...

_*

Total Pages 1 Certificate Date31-AUG-97 Invoice No. 1-9739229 P.O. Number Account

Page Number 1-B

Project : DECANO

1 FA)	K: 604-98	4-0218			Commonts; ATTN: LARRY REAUGH										
						CE	RTIF	CATE	OF A	NALYSIS	}	A9739229			
bbar b	Pb ppm	Sb ppm	Sc PPm	Sr ppm	Ti %	Tl ppm	b ba	v Pbur	ЪБш М	Zu ppm					
20 30 40 10	< 2 < 2 < 2 < 2	<pre>< 2 < 2 < 2 < 2 < 2 < 2</pre>	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	4 < 7 < 8 < 5 <	0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	7 10 6 4	< 10 < 10 < 10 < 10 < 10	4 6 4 2					
-															
