

REPORT ON DIAMOND DRILLING

MUNRO LAKE PROPERTY, SUMMERLAND AREA, B.C.

ROSE & SUE CLAIM GROUPS

OSOYOOS & SIMILKAMEEN MINING DIVISIONS

NTS: 82E/12, 13W & 92H9E,16E

LATITUDE 49 DEGREES 44 MINUTES NORTH

LONGITUDE 119 DEGREES 59 MINUTES WEST

FOR

ALMADEN RESOURCES CORP.

COVERING FIELD WORK

FROM

SEPTEMBER 12 TO OCTOBER 27, 1997

ΒY

H.L.King, M.A., P.Geo.

December 22, 1997

CFOLOGECAL SURVEY BRANCH

NAMES STREET BUD DERE

TABLE OF CONTENTS

.

1.0	SUMMARY	1
2.0	INTRODUCTION	1
3.0	LOCATION & ACCESS	1
4.0	PROPERTY & OWNERSHIP	2
5.0	GEOLOGICAL SETTING	5
6.0	ALTERATION 6.1 Mineralogy	5 6
7.0	MINERALIZATION	6
8.0	HISTORY & PREVIOUS WORK	6
9.0	INDUCED POLARIZATION SURVEYS	8
10.0	DRILLING PROGRAM & RESULTS 10.1 General 10.2 Drill Results 10.3 Diamond Drill Log Summaries M-97-1 M-97-2 M-97-3 M-97-4 M-97-5	8 8 9 9 10 11 11 12
11.0	CONCLUSIONS	12
12.0	RECOMMENDATIONS	13
13.0	COST ESTIMATE FOR PROPOSED PROGRAM	13
14.0	STATEMENT OF EXPENDITURES	14
15.0	STATEMENT OF QUALIFICATIONS	15
16.0	BIBLIOGRAPHY	16

LIST OF TABLES

Table 1	Summary of Claim Information	2
Table 2	Diamond Drill Hole Information	8

LIST OF FIGURES

	APPENDICES	
Figure 5	Diamond Drill Hole Plan	after page 9
Figure 4	Induced Polarization & Diamond Drill Hole Plan	after page 8
Figure 3	Regional Geology	after page 5
Figure 2	Claim Map	after page 4
Figure 1	Property Location Map	after page 1

Appendix 1 Diamond Drill Hole Logs

.

.

- Appendix 2 Diamond Drill Hole Sections
- Appendix 3 Diamond Drill Core Analyses for Silver, Copper, Molybdenum, Lead & Zinc
- Appendix 4 Certificates of Analyses
- Appendix 5 I.P. Chargeability Cross-sections Showing Diamond Drill Hole Plots

1.0 SUMMARY

A diamond drilling program totalling 2042m in 5 holes was carried out during September and October, 1997 on the Munro Lake Property. The property is located in the Munro Lake area, 18 km west-southwest of Peachland, B.C. and consists of 104 contiguous claims totalling 208 units.

The program was funded by Almaden Resources who has a 100% interest in the property.

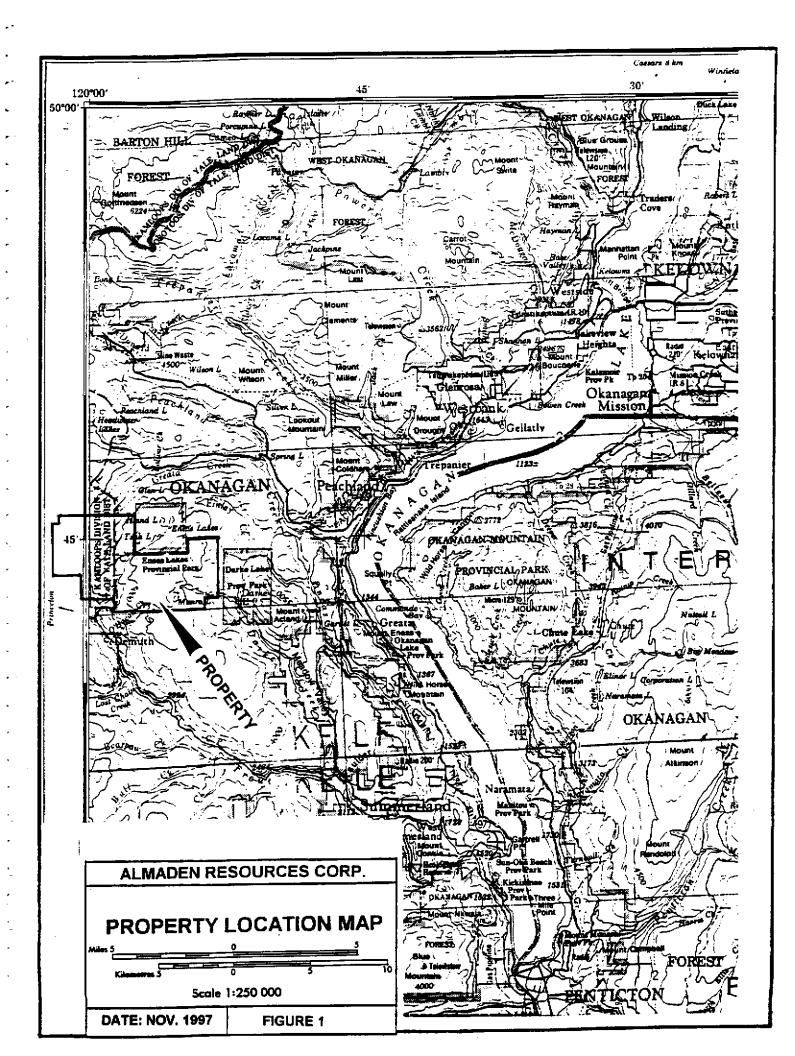
The objective of the drill program was to test the western portion of a large 4 Km-long induced polarization chargeability anomaly. The two eastern most diamond drill holes, M-97-1 and M-97-2, intersected a weakly mineralized porphyry system. The mineralization is confined to quartz-pyrite vein systems hosted in a medium to coarse-grained granodiorite. The three most westerly drill-holes intersected quartz-pyrite veining hosted in a medium to coarse grained granodiorite with only rare veins containing minor chalcopyrite and/or molybdenite.

Hydrothermal alteration is generally confined to vein margins where propylitic alteration is characterized by chlorite-sericite selvages along quartzpyrite +/- chalcopyrite veining. Potassic alteration is most noticeable as potash feldspars associated with late stage quartz veins that carry molybdenite mineralization.

The strongest anomalous copper-molybdenum-silver mineralization was intersected in the 2 eastern most holes drilled, M-97-1 and M-97-2, but values were not of economic interest.

The current drilling program and the 1996 drilling program have partially defined a large, low-grade porphyry silver-copper-molybdenum system that extends in an east-west direction over a distance of at least 2.5 km.

2.0 INTRODUCTION


The following report summarizes the results of a diamond drilling program carried out during September and October 1997, on the Munro Lake property held by Almaden Resources Corp. of Vancouver. The drill program was managed by H.L.King, P.Geo.

3.0 LOCATION AND ACCESS

The Munro Lake property is located in the Southern Okanagan region of British Columbia about 40 kilometers north-northwest of Penticton and 18 kilometers west-southwest of Peachland on the west side of Okanagan Lake (see Figure 1).

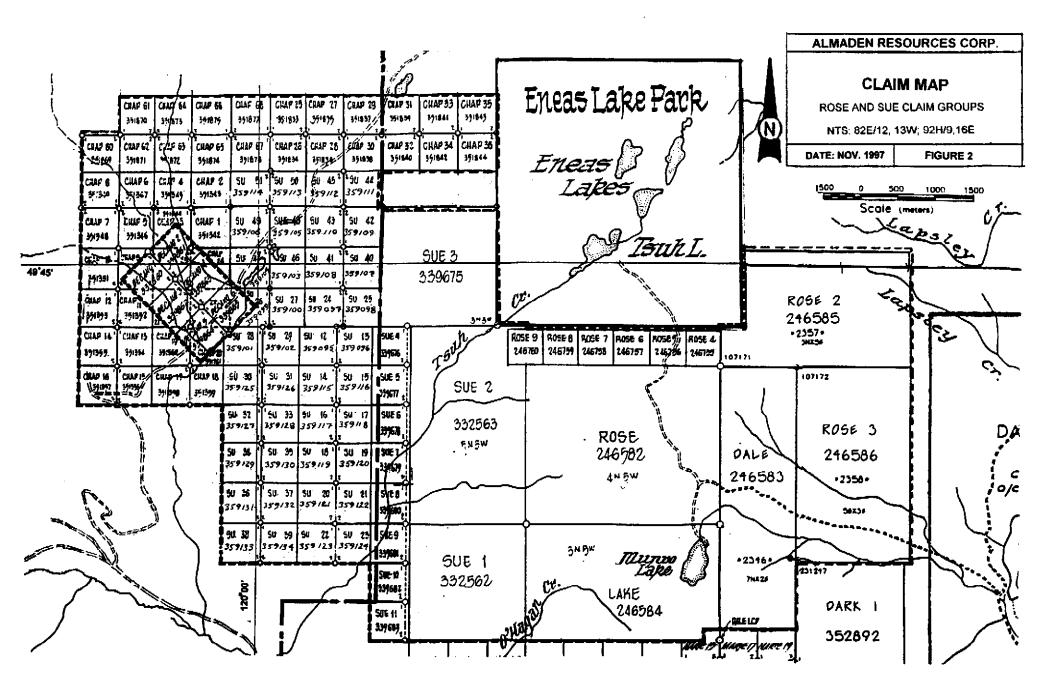
The NTS location is at the intersection of 4 NTS sheets; 82E/12, 13W; 92 H/9, 16E and the centre of the property is at latitude 49 44' N and longitude 119 59' W.

Access to the property can be gained by way of Peachland or Summerland. The best access is via Highway 97 to Peachland and then

southwest on the Brenda Mine Road for 11 km to Headwaters Road. The Headwaters Road leads west for about 8.5 km to Kathleen Main Road which leads southwest for 7.5 km to Deer Creek Road. The property can be accessed at various points along the Deer Creek Road.

An alternate route is via Summerland along the old Summerland to Princeton Highway, westerly along the Trout Creek Valley for a distance of about 27 km. to the junction of the Munro Lake Road. The junction is about 300m west of a bridge that crosses Trout Creek. The Munro Lake Road leads northerly along O'Hagen Creek for a distance of 10.9 km. At a point near the power line, just past the Km 33 marker, there is an intersection with the main haul road. Access to the east part of the property can be gained by turning right (east) onto the main haul road.

4.0 PROPERTY AND OWNERSHIP


The Rose claim group and Sue claim group are owned by Almaden Resources Corp. The Rose group and Sue claim group consist of 104 contiguous claims totalling 208 units located in the Osoyoos and Similkameen Mining Division (see Figure 2). The NTS Location is 82E/12, 13W and 92H 9, 16E. The center of the property is at Latitude 49°44' North and Longitude 119° to 59' West. The details of the claim groups are summarized in Table 1.

	TENURE #		EXPIRY DATE
Rose	24658	20	September 30, 2007
Dale	2346(11)	14	November 5, 2007
Lake	2347(11)	15	November 5, 2007
Rose 2	2357(11)	15	November 5, 2007
Rose 3	2358(11)	15	November 15, 2007
Rose 4	246755	1	November 3, 2007
Rose 5	246756	1	November 3, 2007
Rose 6	246757	1	November 3, 2007
Rose 7	247758	1	November 3, 2007
Rose 8	246759	1	November 3, 2007
Rose 9	246760	1	November 3, 2007
Sue 1	332562	9	November 4, 2007
Sue 2	332563	15	November 4, 2007
Sue 3	339675	9	August 24, 2007
Sue 4	339676	1	August 24, 2007
Sue 5	339677	1	August 25, 2007
Sue 6	339678	1	August 25, 2007
Sue 7	339679	1	August 25, 2007
Sue 8	339680	1	August 25, 2007
Sue 9	339681	1	August 25, 2007

TABLE 1: SUMMARY OF CLAIM INFORMATION

	TENURE #	UNITS	EXPIRY DATE
Sue 10	339682	1	August 25, 2007
Sue 11	339683	1	August 25, 2007
Su 12	359095	1	September 12, 2007
Su 13	359096	1	September 12. 2007
Su 14	359115	1	September 14, 2007
Su 15	359116	1	September 14, 2007
Su 16	359117	1	September 14, 2007
Su 17	359118	1	September 14, 2007
Su 18	359119	1	September 14, 2007
Su 19	359120	1	September 14, 2007
Su 20	359121	1	September 15, 2007
Su 21	359122	1	September 15, 2007
Su 22	359123	1	September 15, 2007
Su 23	359124	1	September 15, 2007
Su 24	359097	1	September 12, 2007
Su 25	359098	1	September 12, 2007
Su 26	359099	1	September 13, 2007
Su 27	359100	1	September 13, 2007
Su 28	359101	1	September 13, 2007
Su 29	359102	1	September 13, 2007
Su 30	359125	1	September 15, 2007
Su 31	359126	1	September 15, 2007
Su 32	359127	1	September 15, 2007
Su 33	359128	1	September 15, 2007
Su 34	359129	1	September 15, 2007
Su 35	359130	1	September 15, 2007
Su 36	359131	1	September 15, 2007
Su 37	359132	1	September 15, 2007
Su 38	359133	1	September 15, 2007
Su 39	359134	1	September 15, 2007
Su 40	359107	1	September 14, 2007
Su 41	359108	1	September 14, 2007
Su 42	359108	1	September 14, 2007
Su 43	359110	1	September 14, 2007
Su 44	359111	1	September 14, 2007
Su 45	359112	1	September 14, 2007
Su 46	359103	1	September 12, 2007
Su 47	359104	1	September 12, 2007
Su 48	359105	1	September 12, 2007
Su 49	359106	1	September 12, 2007
Su 50	359113	1	September 14, 2007
Su 51	359114	1	September 14, 2007
Chap 1	351342	1	September 17, 2007
Chap 2	351343	1	September 17, 2007
Chap 3	351344	1	September 17, 2007
•			•

	TENURE #		EXPIRY DATE
Chap 4	351345	1	September 17, 2007
Chap 5	351346	1	September 17, 2007
Chap 6	351347	1	September 17, 2007
Chap 7	3513 4 8	1	September 17, 2007
Chap 8	351349	1	September 18, 2007
Chap 9	351350	1	September 18, 2007
Chap 10	351351	1	September 18, 2007
Chap 11	351352	1	September 18, 2007
Chap 12	351353	1	September 18, 2007
Chap 13	351354	1	September 18, 2007
Chap 14	351355	1	September 18, 2007
Chap 19	351360	1	September 18, 2007
Chap 20	351 36 1	1	September 18, 2007
Chap 21	351362	1	September 18, 2007
Chap 22	351363	1	September 18, 2007
Chap 23	351364	1	September 18, 2007
Chap 24	351365	1	September 18, 2007
Chap 25	351833	1	October 1, 1999
Chap 26	351834	1	October 1, 1999
Chap 27	351835	1	October 1, 1999
Chap 28	351836	1	October 1, 1999
Chap 29	351837	1	October 1, 1999
Chap 30	351838	1	October 1, 1999
Chap 31	351839	1	October 2, 1999
Chap 32	351840	1	October 2, 1999
Chap 33	351841	1	October 2, 1999
Chap 34	351842	1	October 2, 1999
Chap 35	351843	1	October 2, 1999
Chap 36	351844	1	October 2, 1999
Chap 60	351869	1	October 3, 1999
Chap 61	351870	1	October 4, 1999
Chap 62	351871	1	October 4, 1999
Chap 63	351872	1	October 4, 1999
Chap 64	351873	1	October 4, 1999
Chap 65	351874	1	October 4, 1999
Chap 66	351875	1	October 4, 1999
Chap 67	351876	1	October 4, 1999
Chap 68	3518877	<u>1</u>	October 4, 1999
-		207	

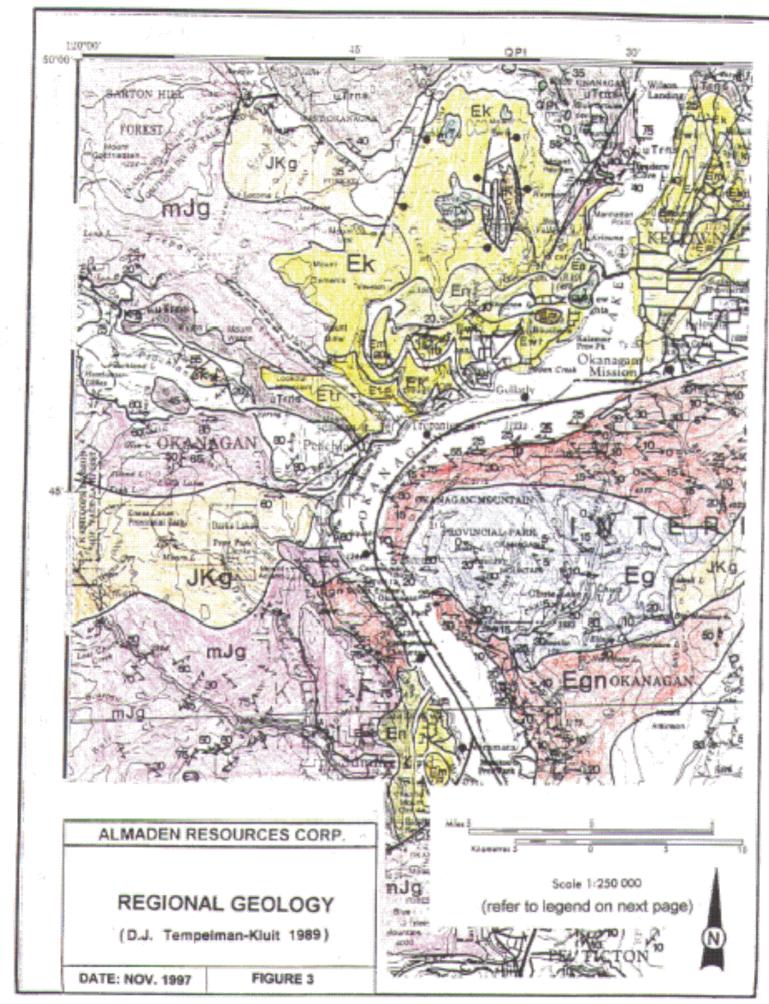
5.0 GEOLOGICAL SETTING

A geological map by D.J.Tempelman-Kluit (Figure 3) outlines the regional geology.

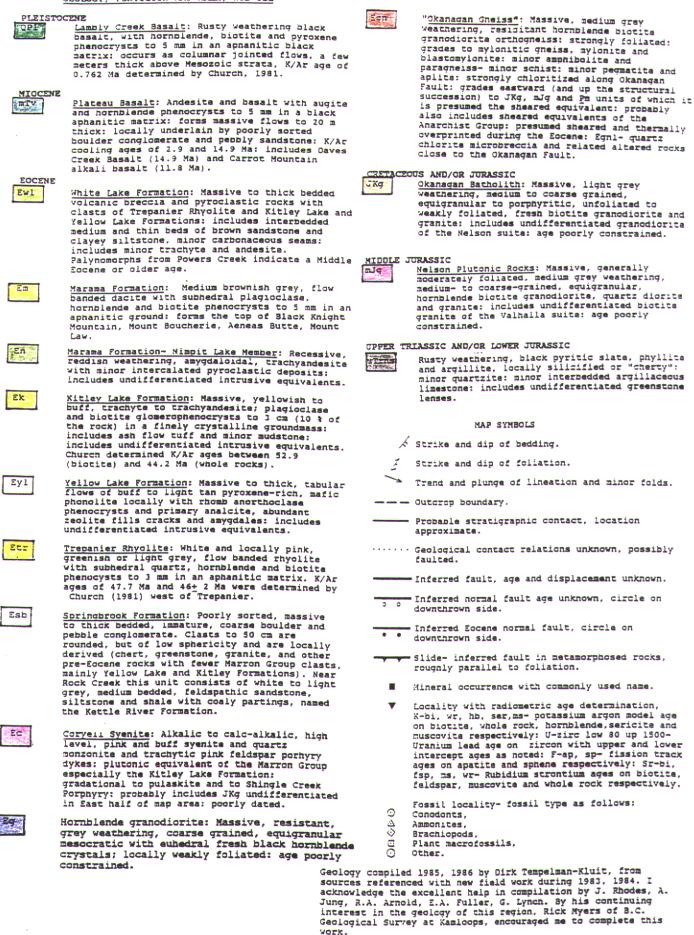
The Rose property is underlain by an intrusive mass of the Valhalla Plutonic Group of Upper Cretaceous Age (or possibly Jurassic).

This intrusive mass has been described as a "constriction zone" between two Jurassic Nelson Complex Batholiths; the Penask Batholith to the north and the Okanagan Batholith to the south. The Valhalla rocks are granodiorites to quartz monzonites in composition.

In the immediate area of the 1996 drilling and the current drilling, a medium to coarse-grained, relatively massive granodiorite is the dominant rock type. Locally, the granodiorite has a porphyritic texture due to the presence of very coarse-grained potash feldspar crystals which are inconspicuous except when the cleavage faces of the large crystals reflect sunlight.


The granodiorite is cut by quartz feldspar porphyry dikes that trend eastnortheast. The dikes are exposed on line 3172 E (old grid line 36) and 94 N, in the area of old trenches. Quartz-feldspar porphyry dikes have also been intersected in holes M-96-2 and M-96-7 and in the current drilling, a quartzfeldspar porphyry dike was intersected in hole M-97-5. A swarm of eleven andesite porphyry dikes was intersected in M-97-2. Narrow aplite veins and dikes cut the granodiorite in a number of drill holes..

6.0 ALTERATION


Zones within the granodiorite have been subjected to weak, pervasive potassic alteration. Igneous textures are generally preserved in the granodiorite and in quartz-feldspar porphyry dikes. The country rock granodiorite is composed of igneous quartz (20-25 %), K-feldspar, plagioclase and biotite. The granodiorite is commonly sheared and alteration is structurally controlled. Hydrothermal minerals are dominantly veinlet controlled in their distribution, however both pervasive and selective alteration was observed.

Two alteration assemblages were identified. Sericite-chlorite alteration is associated with early stage quartz+pyrite +/- chalcopyrite +/- sphalerite +/- hematite veining. Sericite and chlorite-rich selvages form along the veins replacing granodioritic textures over widths of up to 5 cm from vein margins. Where sections of core are highly sheared and fractured, original granitic textures have been replaced by primarily sericite, chlorite and quartz.

Potassic alteration consisting of K-feldspar, biotite, muscovite and anhydrite is associated with late stage quartz+Kspar +/- molybdenite +/- hematite veining and occurs dominantly in the selvages of these veins. Potassic alteration associated with veining was only noted in holes M-97-1 and M-97-2, the two eastern-most holes drilled during the 1997 program.

GEOLOGY, PENTICTON MAP AREA, NTS 82E

6.1 MINERALOGY

The host rock granodiorite intersected in the drilling is composed of approximately 25% igneous quartz with up to 5% hydrothermal quartz occurring in veins and veinlets. At least three episodes of quartz veining have been recognized. Early stage quartz-pyrite +/- chalcopyrite veins are dominant and are characterized by pronounced sericite-chlorite selvages up to 5 cm wide. This veining is cut by late stage quartz +/- K spar + pyrite +/- molybdenite +/- hematite veinlets. Both vein sets are crosscut by a third set of late, sparse, quartz + pyrite, +/- molbydenite veinlets present in holes M-97-1 and M-97-2.

This description of cutting relationships is in contrast to that observed in the 1996 core from drilling further to the east where quartz + K feldspar + molybdenite veins were interpreted as early stage and cut by quartz + pyrite +/chalcopyrite +/- sphalerite veining with characteristic chlorite-sericite selvages.

7.0 MINERALIZATION

Two types of mineralization have been recognized on the property. Weak, porphyry-type pyrite-chalcopyrite-molybdenite mineralization is exposed in several trenches in the north-central part of the Rose claim. The exposed mineralization is located on the south margin of a large I.P. chargeability anomaly, the target of the 1996 drilling and of the current drilling program.

The 1996 drilling, located on the eastern portion of the large I.P. chargeability anomaly, intersected chalcopyrite, molybdenite and silver values associated with several quartz-pyrite vein systems hosted in medium to coarse-grained granodiorite.

The most significant silver, copper and molybdenum mineralization was intersected in DDH M-96-3. The entire core length of 231.9m (from 18.3 to 250.2m) averaged 5.54 g/t Ag, 0.047% Cu and 0.020% Mo.

The 1997 drilling confirmed a continuation to the west of the quartz-pyrite veining hosted in medium to coarse-grained granodiorite but only weak copper-molybdenum-silver mineralization was intersected in the two eastern-most holes, M-97-1 and M-97-2.

The three western-most holes, M-97-3, M-97-4, and M-97-5, intersected moderately strong quartz-pyrite veining but only traces of chalcopyrite and minor molybdenite mineralization.

A second type of mineralization found in the northeastern part of the property, occurs as quartz veining in silicified shear zones. Sampling of a showing on the Rose 2 claim by Giroux in 1988 returned values of .132 oz/ton gold and 23.77 oz/ton silver over the 15 cm width of the vein.

8.0 HISTORY AND PREVIOUS WORK

The first documented exploration work on the Rose claim group was carried out in 1966 after the discovery of the Brenda molybdenum-copper mine located about 17 km to the north. A detailed review and summary of previous work is found in a report by J.H.Montgomery and G.H. Giroux, Montgomery Consultants, Jan. 1996.

Low grade copper-molybdenum mineralization was first discovered by Lakeland Base Metals Ltd. in 1966. An initial program of soil sampling, trenching and 2000 feet of percussion drilling by BrenMac Mines Ltd., Brenda Mines Ltd., and Lakeland Base Metals was completed in 1966. During 1966 and 1967, exploration was carried out by Koporok Mines Ltd. on the Cache showing located on the eastern portion of the Rose claim group and on several other quartz veins with pyrite, tetrahedrite and galena.

In 1973, the area underlain by the Rose claims was restaked by Canadian Occidental Petroleum Ltd. based on results of a regional stream sediment survey and in 1974 they carried out geochemical, geological and magnetic surveys. Several copper-molybdenum anomalies were identified and 3 targets tested by diamond drill holes.

In 1976 a regional geochemical program funded by the Federal and Provincial Governments identified anomalous silver values in streams draining the plateau area northwest of Munro Lake. Based on this new information, Canadian Occidental reanalyzed all soil samples and drill core for silver and found excellent correlation between silver anomalies and previously identified copper-molybdenum-zinc anomalies. The highest values obtained were 2.73 oz Ag/ton and 0.003 oz Au/ton over 2.3 feet from 124 to 126.3 feet in drill hole MUN 74-3.

In 1977 a large co-incident Cu-Mo-Zn-Ag anomaly was tested by a 562 ft. diamond drill hole (MUN 77-1) and in 1981 a total of 1300 feet of trenching was carried out to test a large silver-base metal anomaly.

In 1983 the claims lapsed and the Rose claims were staked by Almaden Resources Corp. During 1985 to 1987 Almaden conducted VLF-EM surveys followed by 15 line km of I.P. over the central and northeastern parts of the property. The area of co-incident VLF and Ag-Cu-Zn-Mo soil anomalies was then tested with a program of overburden drilling. In Sept. and Oct. 1987, a program of reverse circulation drilling was carried out to test geochemical and geophysical targets to the north of Munro Lake. This program was continued in 1988 to test a NE-trending structure. The drilling outlined a series of NE-trending, co-incident gold, silver and zinc anomalies in basal till.

During 1994, 1995 and 1996, induced polarization surveys were conducted over portions of the claim area by Delta Geoscience Ltd. A large I.P. anomaly over 4 Km long in an east-west direction and up to 800 m wide was delineated. In July and August of 1996, a 1,779.8 meter drilling program was carried out to test several I.P. chargeability anomalies. All 7 diamond drill holes intersected a weakly mineralized silver-molybdenum-copper porphyry system.

The best mineralization was intersected in hole M-96-3 where the entire 231.9 m of core averaged 0.047% Cu, 0.020% Mo, and 5.54 g/t Ag.

9.0 INDUCED POLARIZATION SURVEYS

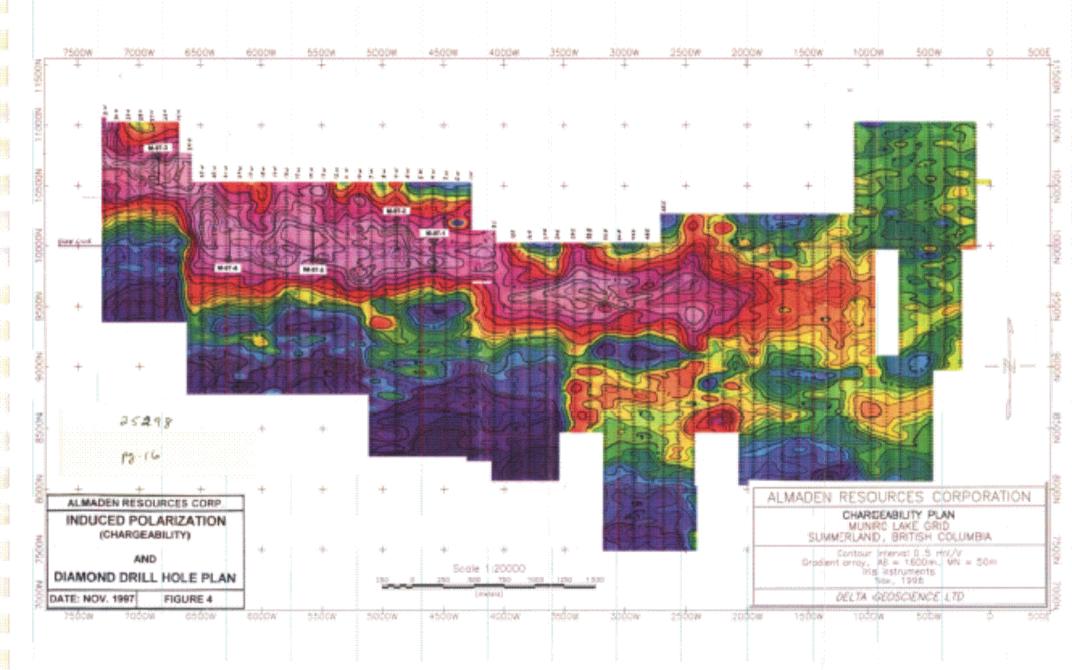
In 1994, 1995, and in 1996 induced polarization surveys were conducted over the claim area by Delta Geoscience Ltd. (Hendrickson 1995). A large I.P. anomaly with a magnitude of 15 to 20 msec above background was delineated on the northwestern part of the survey grid (see Figure 4). The anomaly extends in an east-west direction over a distance of 4 Km with an average width of about 800 m. Henderickson interpreted the anomaly as representing a large pyritic alteration zone reflecting the top of a large mineralized porphyry system.

10.0 DRILLING PROGRAM AND RESULTS

10.1 GENERAL

A diamond drilling program totalling 2042 meters in 5 holes was carried out in September and October, 1997. The drilling was carried out by Beaupre Diamond Drilling Ltd. of Princeton under the supervision of H.L.King, P. Geo. The drilling was carried out on a 2-shift basis with crews commuting to the property from Princeton. Drilling commenced on Sept.22, 1997 with one drill. A second drill was added on Oct. 5, 1997. The drilling was completed on Oct. 20, 1997. A total of 2042 m was drilled for an average drilling rate of 46.8 m per 24 hr. including moves.

The drill holes were spotted with reference to an existing metric grid. All drill core was logged and most of the core was sawn with a diamond cutting saw and one-half analyzed by multielement ICP methods. All samples were assayed for gold using a fire assay and AA finish of a 30g sample.


All ICP analyses and assaying was carried out by Chemex Labs. Ltd. in North Vancouver. Certificates of Analyses for all core sampled are shown in Appendix 4. Core logs and sample results are shown in Appendix 2. All core is stored at Summerland Mini Storage, in Summerland, B.C.

<u>Hole No</u>	<u> </u>	nates	Azimu	th Dip	Length(m)	Started	Completed
M-97-1	10,050N	400W	180 ⁰	-55 ⁰	376.7	22/9/97	29/9/97
M-97-2	10,250N	700W	180 ⁰	-55 ⁰	425.2	1/10/97	10/10/97
M-97-3	10,7 70N	2,650W	180 ⁰	-60 ⁰	432.8	5/10/97	13/10/97
M-97-4	9,900N	2,090W	0 ⁰	-55 ⁰	390.7	13/10/97	18/10/97
M-97-5	9,900N	1,400W	o°	-55 ⁰	416.7	15/10/97	20/10/97

TABLE 2: DIAMOND DRILL HOLE INFORMATION

10.2 DRILL RESULTS

The principal objective of the diamond drill program was to test the western portion of a large induced polarization chargeability anomaly. The I.P. anomaly and drill-hole locations are shown in Figure 4.

All drill holes intersected a relatively massive, medium-grained biotite granodiorite hosting 2 main quartz vein systems; an earlier quartz, + pyrite +/- chalcopyrite vein system characterized by distinct chlorite-sericite selvages and a later set of quartz, pyrite +/- molybdenite +/- sphalerite veins. A third, sparse set of quartz+pyrite +/- molybdenite was noted in holes M-97-1 and M-97-2. This may be the latest (youngest) set although relative age relationships are not certain.

The biotite granodiorite is most highly altered to chlorite and sericite in areas of more dense veining and where the rock is more highly fractured and sheared. Pervasive potassic alteration was seen in all holes. Some clay alteration of feldspar was noted, generally adjacent to shearing or fracturing.

The most significant silver, copper and molybdenum mineralization was intersected in D.D.H.s, M-97-1 and M-97-2. No significant gold values were found.

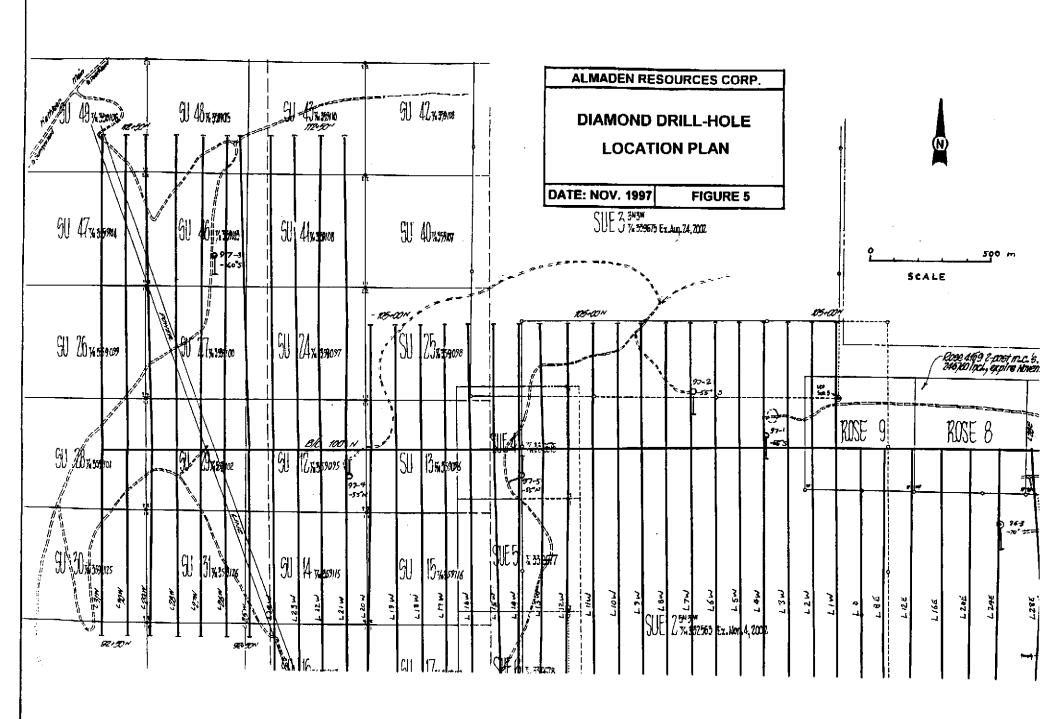
Results from the current drilling program and the 1996 drilling program have partially defined a large, low-grade porphyry silver-copper-molybdenum system that extends in an east-west direction over a distance of 2.5 Km.

10.3 DIAMOND DRILL LOG SUMMARIES

The following are summaries of drill logs for M-97-1 to M-97-5. Please see Figure 5 for drill hole locations.

Hole M-97-1

This hole was drilled to intersect the main chargeability anomaly. The hole was drilled due south at -55 on section 40 West.


The drill-hole encountered moderately altered, medium to coarse-grained biotite granodiorite hosting several vein systems.

Two main types of mineralized quartz veining were intersected; an early stage, pyrite+quartz +/- chalcopyrite veining characterized by distinct chlorite-sericite alteration selvages extending into the wall rock for up to 5 cm; and a later stage, less abundant, Kspar+quartz+pyrite-+/ molybdenite +/- chalcopyrite veining.

A third sparse set, noted in the upper 90 meters of the hole, consists of late stage quartz+pyrite +/- molybdenite +/- sphalerite veining.

Minor molybdenite mineralization is most prevalent throughout the hole in the late stage, quartz+pyrite veining and in the Kspar+quartz+pyrite veining. Molybdenite is most frequently noted in veining at low angles to the core axis. Only traces of chalcopyrite is present in both early and later stage veining.

There is a notable increase in both early chlorite+sericite+pyrite+quartz veining and later stage Kspar+quartz+pyrite veining from 240 m to 244.6 m. Associated with this increase in veining is an increase in disseminated pyrite to 10% to 15% within this more highly altered section. Pyrite, mainly within veining, ranges from 2 to 3% throughout the hole but increases to 3% to 5% from 320 m to 376.7 m (end of hole).

.

Alteration increases adjacent to major faulting and shearing where original granitic textures have been completely destroyed and replaced by pale green sericite, chlorite and quartz.

The core was sampled at 2 m intervals from 86 m to 376.7 m (end of hole). Anomalous copper values ranging up to 648 ppm over 2 m sample intervals are scattered throughout the hole. Silver values are generally low (less than 0.2g/t) but range up to 5.4 g/t over 2 m sample intervals. The higher silver values generally correlate with elevated copper values. Molybdenum values are generally low, less than 50 ppm, but range up to 641 ppm over sample intervals of 2 m. Anomalous zinc values were found throughout the drill-hole with maximum concentrations of 6310 ppm's over a 2 m sample length.

Hole M-97-2

This hole was drilled to intersect the large chargeability anomaly 300 m to the west of hole M-97-1. The hole was drilled due south at -55 on section 700 West. The drill-hole encountered a thick section of highly compacted glacial till over a core length of 86.8 m (true thickness is estimated at 70 m).

The drill-hole encountered a coarse-grained, potassic and sericitic altered biotite granodiorite containing a number of highly altered sections. Within the more highly altered sections, original granitic textures have been replaced by chlorite, sericite and quartz.

Eleven unmineralized andesite porphyry dikes cutting the granodiorite were intersected throughout the drill-hole. The dikes range in core length from 1 m to 13.7 m and are interpreted to be steeply dipping. Similar mineralized vein systems to those intersected in hole M-97-1 were recognized. There are two main vein systems;

a) An early stage, prominent pyrite+quartz+chlorite+sericite vein set with vein density of up to 7 veinlets per meter. This vein set is characterized by distinctive chlorite-sericite vein selvages. Strong quartz+pyrite veining with individual veinlets up to 2 cm wide occurs from 324 m to 326.3 m and from 325 m to 425 m. Overall pyrite content within these sections is estimated to range from 3% to 5%.
b) A late stage quartz+pyrite +/- molybdenite +/- hematite veining from 0.2 cm to 1 cm wide. Minor molybdenite was noted in at least 20 veins from 95.4 m to 116.7 m. A third, less abundant, late stage quartz+pyrite+Kspar+hematite +/- molybdenite vein set is commonly oriented at 20 to 30 to the core axis. Minor molybdenite was noted in veinlets from 124 m to 158.3 m and from 297 m to 338 m. Pyrite content throughout the hole is estimated to average 2%.

The core was sampled at generally 2 m intervals from 94 m to 220 m, from 229 m to 242 m; from 266 m to 329 m, and from 355 m to 425.2 m. A few 1 m sample lengths were chosen where there was an increase in vein density or pyrite content over short intervals.

Minor copper values ranging up to 256 ppm occur over a core length of 52 m, from 94 m to 146 m. A few silver values up to 3.6 g/t over a 2 m sample interval are present within this section but do not correlate well with the higher copper values. Significant molybdenum values ranging up to 143 ppm were

found in a14 m zone from 100 m to 114 m. In addition, a few other scattered molybdenum values greater than 100 ppm occur throughout the sampled core.

Overall, hole M-97-2 was less well mineralized than hole M-97-1 and returned generally lower copper, molybdenum and zinc values.

Hole M-97-3

This hole was drilled to test the west end of the main chargeability anomaly. The hole was drilled due south at -60 on section 2650W to a depth of 432.8 m. The drill-hole encountered pervasive weak potassic altered, medium to coarse-grained granodiorite. Similar vein systems occur in M-97-3 as those in M-97-1 and M-97-2. Both early stage chlorite-sericite-pyrite veining and late stage quartz-pyrite veining is present throughout the hole but veining is less dense than in holes M-97-1 and M-97-2. A third set of infrequent, late stage, quartz+pyrite +/- molybdenite-bearing veinlets were noted; one at 36.8 m, another at 139.7 m and a third at 252 m. Overall pyrite content is in the order of 1% with locally up to 2% pyrite from 315 m to 330 m.

The core from hole M-97-3 was sampled at 2 m intervals from 136 m to 328 m. Only 2 significant copper values were encountered. The highest value was 668 ppm Cu over a 2 m interval corresponding to a section of strong quartz+pyrite+sericite+chlorite veining. Only one significant molybdenum value of 84 ppm over a 2 m interval reflects molybdenite mineralization noted at 139.7 m in a late stage quartz+pyrite veinlet cutting an early stage quartz+pyrite+sericite+chlorite veinlet cutting an early stage quartz+pyrite+sericite+chlorite

Hole M-97-4

This hole was drilled to test the large I.P. chargeability anomaly on section 2100W. The hole was drilled due north at -55 to a depth of 390.7 m.

The drill-hole intersected relatively unaltered, medium to coarse-grained granodiorite. Minor potassic alteration was noted throughout the hole. Sericite and chlorite alteration is confined to early stage quartz+pyrite veins and veinlets and along zones of fracturing and shearing. Clay alteration of feldspars along fractures is present locally. In places hydrothermal biotite is present adjacent to veining.

Early stage, quartz+pyrite+sericite+chlorite veining is weakly developed in the upper part of the hole to a depth of 207 m. Overall pyrite content is estimated at less than 1%. From 207 m to 246 m, vein frequency increases to 4 to 5 per meter with pyrite estimated at 2% to 3%. Local highly altered sections contain up to 15% disseminated pyrite. Veining generally becomes stronger with wider chlorite-sericite alteration margins from 246 m to 283 m.

From 283 m to 382 m, veining is weaker. A few late stage quartz+pyrite +/- molybdenite veins cut chlorite+sericite+quartz+pyrite veins from 297 m to 300 m. Near the bottom of the hole, from 382 m to 390 m, quartz+pyrite+chlorite +sericite veining increases in frequency to 4 to 6 veinlets per meter along with an increase in overall pyrite to 2% to 3%.

The core from hole M-97-4 was sampled at 2 m intervals from 160 m to 390.7 m (end of hole). No significant values of silver, copper, molybdenum or

zinc were returned except for a 1 m sample of a 60 cm-wide quartz+pyrite +chlorite-sericite vein which ran 1g/t Ag and 152 ppm Cu over 1 m.

Hole M-97-5

This hole was drilled to test a wide section of the large east-west trending I.P. chargeability anomaly. The hole was drilled due north on section 1400W at -55 to a depth of 416.7 m.

The drill-hole encountered medium to coarse-grained biogranodiorite cut by a relatively strong set of early stage quartz+pyrite+sericite+chlorite veinlets. Early stage vein density is up to 7 per m. Locally veinlets are up to 2 cm wide with pyrite content as high as 50%. Overall pyrite content is estimated at 2% to 3%. Where veining becomes weaker (from 190 m to 222 m) vein frequency drops to 2 to 3 per m.

From 222 m to 260 m, veining becomes stronger with vein frequency increasing to 4 to 5 per meter. Then from 260 m to 292 m, veining is generally weak but becomes stronger from 292 m to 406 m.

Traces of molybdenite occur along infrequent late stage quartz+pyrite veinlets, commonly oriented at low angles (10 to 30) to the core axis.

The grandiorite has been subjected to moderate potassic alteration. Where core is highly sheared and brecciated, chlorite and sericite alteration is most intense and granitic textures have been completely destroyed and original minerals replaced by pale green masses of chlorite and sericite.

The core was sampled at 2 m intervals from 25 m to 346 m. No significant copper, molybdenum or silver values were intersected. The highest silver values were from a 2 m core interval (62 m -64 m) which returned 1 g/t Ag. Sericitic and chloritic alteration is most pronounced along the margins of what are interpreted to be early stage quartz-pyrite veins.

11.0 CONCLUSIONS

The western portion of a large 4 km long by up to 1 km wide I.P. chargeability anomaly was tested by 5 widely-spaced diamond drill holes. The 2 eastern-most holes, M-97-1 and M-97-2, intersected a weakly mineralized copper-molybdenum-silver porphyry system. The mineralization is similar but not as well mineralized as that encountered in the first 5 holes drilled in 1996 which tested the eastern portion of the I.P. anomaly. The anomalous coppermolybdenum and silver mineralization is confined to quartz-pyrite vein systems hosted in a medium to coarse-grained granodiorite.

The three westernmost drill holes intersected similar quartz-pyrite veining but only sparse veinlets containing chalcopyrite and molybdenite were encountered.

The 1996 and 1997 drilling programs have partially defined a large, lowgrade porphyry silver-copper-molybdenum that extends for at least 2.5 km in an east-west direction. The strongest alteration and mineralization to date was intersected in hole M-96-3. A 1 km section of the large I.P. chargeability anomaly immediately to the west of hole M-96-3 remains to be tested.

12.0 RECOMMENDATIONS

To date, the most significant copper-molybdenum-silver values were encountered in holes M-96-1, drilled on section 32 E and M-96-3, drilled on section 24 E. This drilling only tested the central portion of a 700 m wide zone of chargeability. Since both holes collared and ended in copper-molybdenum-silver mineralization, two additional holes should be drilled on each of the 2 sections (sections 24 E and section 32 E) to fully evaluate the entire width of the chargeability anomaly. Also at least 2 holes should be drilled on section 20 E or 16 E to see if significant mineralization extends to the west.

Prior to further sectional drilling, at least 1 hole should be drilled due east or due west at -60 from the collar of M-96-3 in order to determine if the molybdenum-bearing veining can be intersected at a better angle.

A minimum program of 7 holes, each 300 m in length for a total of 2,100 meters (6,900 ft.) is required to complete this recommended program.

13.0 COST ESTIMATE FOR PROPOSED PROGRAM

Based on the recently completed drilling program, the following is a cost estimate for a 2,100 m program.

Personnel

(a) Geologist 45 days @ \$400/day	\$18,000
(b) Helper 45 days @ \$140/day	6,300
Food & Accommodation	
45 days @ \$140/day	6,300
Truck Rental & fuel	
45 days @ \$90/day	4,050
Diamond Drilling	
2,100 m @ \$65/m	136,500
Analyses	
1000 samples @ \$24.50/sample	24,500
Equipment, Supplies & Services	
core rack material, core logging, facilities,	
telephone, diamond saw rental	4,000
Report Preparation	<u>4,000</u>
	203,650
Contingencies (10%)	<u>20,350</u>
Total	\$224,000

14.0 STATEMENT OF EXPENDITURES	MUNRO LAKE PROJECT
Sept. to Nov., 1997 Personnel	Total
H.L.King Work Period: Sept. 12 to Oct. 30/97 Days Worked: 41 @ \$428/day = M. Poliquin Work Period: Nov. 13 to Nov. 17, 1997	\$17,548.00
Days Worked: 5 @ \$300/day =	1,500.00
C. Lockhart Work Period: Sept. 15 - Oct. 27, 1997 Hours Worked: 350.5 hrs. X \$12.00/hr	4,206.00
Vehicle rental (includes gas & oil)	4,019.73
Food	1,698.59
Accommodation	2,415.24
Miscellaneous (includes shipping, core rack r supplies & telephone)	materials, 1,070.89
Diamond Saw rental and blades	2,038.85
Diamond Drilling (Beaupre Diamond Drilling) Meters Drilled: 2042.1 m (NQ core) at a direct cost of \$70.63/m	144,229.65
Analyses (Chemex Labs.) No. of samples: 596 at Av.cost of \$24.88/sam	iple 14,826.99
Core Storage	856.00
Report Writing: 10 days @ \$400/day To	<u>4,280.00</u> otal \$198,689.94

Respectfully Submitted

1 с́____ Н., KING H.L.King, M.A. XGeo SCIEN

November 30/97

15.0 STATEMENT OF QUALIFICATIONS

I, H.Leo King, of 4747 Marguerite Street, Vancouver, British Columbia do hereby certify that:

I am a geologist and a graduate of the University of Saskatchewan, B.A. (Geology) 1961, M.A. (Geology) 1966.

I am a member of the Association of Professional Engineers and Geoscientists of B.C. and a member of the Association of Professional Engineers of Ontario.

I am a Fellow of the Geological Association of Canada.

I have practiced my profession for over 30 years.

This report is based on personal supervision of the diamond drilling program and observations made on the mineral claims during September and October, 1997.

I am currently employed by H.Leo King and Associates as a Consulting Geologist.

H Leo King, M.A. Geo Nov.30, 1997

Appendix 1 Diamond Drill Hole Logs

.

.

.

.

					DRILL	LOG			HOLE NO. 97-/
		LOCATION SKET	CU.	1	TE	STS	DATE STARTE	D:	PROJECT:
DRILLING	τυ.	LUCATION SKEI	lun	DEPTH	DIP ANGLE	AZIMUTH	1 5.	ept 22/97	MUNRO
				COLLAR	<u></u>	180	DATE COMPLE	TED: 5207 29/97	N.T.S.: 82 E /12, 13 W
BEAUPE	25 D/Am =	m)		205/6		<u></u>	COLLAR ELEV		LOCATION:
DRILLING LTD.				405/12		-]	NORTHING:	10,050 N	
				800'(27		- [EASTING:	4700 W	
						-	AZIMUTH:	180	
				1005 (30)	<u> </u>			16.7 m (1275')	DATE LOGGED: 58PT 23 13 30/97
		I					CORE SIZE:		LOGGED BY: M.L. KING
OLE TYPE		1 7 7711		<u> </u>	ALTERATION	MINE	ALIZATION		REMARKS
INTE	ETORI)	LITHOLOGY			1		(lithology, alterati	on, mineralization, structure, age	
			COLOUR	TEXTURE				relations, etc.)	
FROM	TO	ROCK TYPE		1	<u> </u>				
	6.1	DUERBURDEN- TIL BIO Gronolioite			chlar_same		+ benetite	alteration selvas	-s along verilate us to the con wide
6.1	<u> 53 - 6</u> _	25 X gt : 151 610	+ <u>cr. 77</u>		and fine strange & er	interests and a	in in at year	to chloritic Imino	+ sericite along fract.
	_	23 4.94		100001/10		K-alth Tr e	noly v.f.g.	1 - a famat-chlor-	on vemlet, couldy hear this staining
			1	10-16-56	arras 4. Cate stag	····	minute at w	4) close trad. Av. 1 per	meter; up to 1 cm wide. Vain denity = 4 perm
	- 			++ 10	at Knowers	· · · · · · · · · · · · · · · · · · ·	to at low and	A - a few late stare	13195-K-Sper-py secolott at (an angles)
·	• •	•	1	C.A.	4.1	Yn cod	. @ /Sm.	1 To C.A. un To / cm	wide (10-20 T. CA); Av. I vember per m.
	_	- /	1	1	K-alt more pror				reinlets at 95" 7. 60" T. CA.
	_	• 			from 52.8 6.55.7.	- x2/1-19 AN	in ste (ezman) di	KAN 95-K-SPAT-P	y vehilds of 10° To 20° C. C.A.
			-			9/3-py ye	in Istra Zo.2m	- Comerally sond que	Artycore - 99% recovery.
	-	- <u> </u>	1			provela	ast. 0. 17. 27	2. Care fract e 30;	#5" + 60°.
	-		1		1			Pink, why felsie 1.	iks C 15 6 CA. From 15.7 5 +6.0m
		• 	1	1	} !			FAULT 20NOS:	2 com outdy shear e 57.8m e 70 to con
	_	•/				1			2 cm " " C55.7 m @ 60° to C.A.
55.8	565	MAJOR FAMT 2000	¢		Tale-chlor-day -	ich .		Breccisted take-a	flor-clay rich slow 3 mes
				ļ	Sheer 20055			e 60 6 c. d.	
56.5	77.4	Bin Grand inte	494	per- erg .	Katterstin ;	clay Dette	npy along	Faitly fol. 55-tes	ins or above but coss alt of
				comprend.	Talt'd foldsaars	in Carly	state Chlose Ser	-1 Chlor-ser-en-etin	+ prove case + reg. (As a vera MG/ MJ But in
				pranitic	highly freet & for	ted yours of to w	emist <u>e maker a</u>	17 To Breen from	69 £ 77. ton.
			1		cocally sections	2:51	of veinlet.	Late stage K-spor-	thomas we should we frequer at a per con
		<u> </u>			AF K- dit'n	ALSO dis	them my up to 5%	102.069.4 m	Con angle, Late stage K-spor- 25-10000
	i	i	_i	_		for Late 1.	tage K-Spar-94	py Surs early editor -	tr-gh-pausinlet.

٠

•

Contraction of the second s

•

and the second

•

,

PAGE _ OF 7

PAGE 2 OF 7

•

.

.

.

· ·

		<u> </u>			DRILL	LOG		HOLE NO. <u>97-/</u>
					TES	TS	DATE STARTE	ED: PROJECT:
DRILLING CO.		LOCATION SKE	LOCATION SKETCH		DIP ANGLE	AZIMUTH		
				DEPTH			DATE COMPLE	ETED: N.T.S.:
				COLLAR			COLLAR ELEV	
		ł					NORTHING:	
						j	EASTING:	
							AZIMUTH:	
							DEPTH:	DATE LOGGED:
		l				↓	CORE SIZE:	LOGGED BY:
OLE TYPE		· · · · · · · · · · · · · · · · · · ·		·	ALTERATION	I MINE	ALIZATION	REMARKS
INTE	RVAL.	VAL LITHOLOGY		ALTERATION	1		(lithology, alteration, mineralization, structure, age	
			COLOUR	TEXTURE				relations, etc.)
FROM	<u></u>	ROCK TYPE	-[<u>-0100R</u> _	[]		i		Kosally up to 10% of core is fig. pink telsic his grand dikes +
	·}			<u> </u>		···		100 to 15 cm with. 100 2 core recovery: Care freet. sprced free
	- <u> </u>	<u>↓</u>		<u> </u>				To 50 cm. Dominant fractures @ 60" + 70" m + 40" # 50".
	-	·						
	• <u> </u>				elan altin along cri	shed		Highly fractured and crushed zone
77.4	85.5	FART ZONE	-1		(sheared Janes.			78.8-79-1 Model shear zone : shearing & fo tso to CA.
•		·		1		· =		a char-ser gh m win density decreased to a 3 per m
	-	- 	<u>i</u>	1	·			Cate stage K-spacegting py verilet density & 1 per 2m.
		_(<u></u>						
85.5	//1.2	Big Grandforite	4++1	M- C.q.	chlor-ser alth a	long , late of	are at-pytap	plat. Pick felsin dikes upto Som wide @ to to 60' C.A.
<u> </u>	- <u>2021-</u>	0/C.0/14/04/14/18		Constrantes	" nein lat selvages	C927,	and essions.	Trace py (212) in dikes.
	-		1		facally original to	fore verital	topto I con unad	il Frequency of chlorisor- g to - Hay ve in late e 3 per on from BS
	-1	- 			plastoned for perver		A .	Frequencessing to Sperin from ye. L' Mami La Tarm
			<u> </u>		chlor-ser over up 4		- chalcopyrite g	divin from 14 & 138m; Then decreasing to 3 perm from
	-		1	1	rections Some seg		carly chlor-sor	of 138 to 183m. Cone engles 260'
			-		c. provesión K ali	in mer wer	10th @ 89.3 m	- A fair Late stage 95-py verilati (10-50° CA.
						Lote st	194 75 + K-5 per-	-py becoming yore after 90 m.
	-		1			w. Frace	s moly. @ 87.20	and overall on encourses & 22-32 from 114m x 119.5m.
	-	_ 				a 89.9 m	••	Then decreasing to 12-22 py from 19.5 to 162 m.
	-!					Frace of	17 @ 98-1 m 19 0	ello- FAULTZONE: @ 131.0 - 19.9m; She area & modey
				-+	ч.		ay residet e 7 .	· Ech. Arme N. CA. + 90° ESO.
	-				······································		c.n. eshal, in	. 0
				-1	=1=	a (at 3	27 - 280 Ca C	//30

۸

.

-

.

·

					DRILL	LOG		HOLE NO. 97-/
	<u></u>	LOCATION SKI		1	TE	STS	DATE STARTEL	D: PROJECT:
RILLING	co.	LUCATION SKI	IUN	DEPTH	DIP ANGLE	AZIMUTH	-	
]		COLLAR			DATE COMPLET	TED:N.T.S.:
						-	COLLAR ELEV.	
					· ·	-	NORTHING:	
					······		EASTING:	
							AZIMUTH	
							DEPTH:	DATE LOGGED:
· · ·]		CORE SIZE:	LOGGED BY:
OLE TYPE				·	ALTERATION	1 MINE	RALIZATION	REMARKS
INTE	RVAL	LIT	HOLOGY	1	ADILIANITON	1		(lithology, alteration, mineralization, structure, ag
								relations, etc.)
FROM	TO	ROCK TYPE	COLOUR	TEXTURE			3. maly blanite	
				} ────			fage verilet pl	
		·		<u> </u>		C-1- 020		
				<u></u>			c /cm cpq-gts	Jan 1
		ļ	1				139 m at 81 C.A	
				↓	11 2			
63.2	63.4	MATOR FAULT	ZONE	<u> </u>	modely stear : 20 C.A. 20 \$ \$ 40	Con with a start		
<u> </u>	_		. .	<u> ;</u>	C.A. 20 1. 40		tota a 2 will ch	Chlor ver-pa-gts verning lacreasing to Trems parm
163-4	191-4	Bio Grandisvile	-+ 499-	equirranda	Highly att 3m		the star is the star	
	_	·}		1	from 163.5 \$ 169	-> m fuills_ (a	C Street Amperi	At (10:464) Only a face late stage K-spar - 35- pry veriles
	_			1	replacingonising		- py - min ven	(+ from 165 \$175m) CA. # 10' 1320'.
	_	<u> </u>				granii (C e /)	- land and lat	navgias. Av. 13 Gontant 13 G 2. Z.
	_				Actin increases Fr			
-	_	.	 					
	_	·			+ 10 cm modely sheen	and and and	1 1 m + 191.7 m	
	_ ·	·		- 	@/79- Permari	- Kurdhar	<u>, , , , , , , , , , , , , , , , , , , </u>	- Another fault (crushed emoly 300) 300 from
	_!	- 			sociall's continue			189.4 \$ 190.1; CA. # 31.
	_[·			sections up to /m to			Better core - lose freetuned from 179 m \$189m
				Burnet	chlor-serielay			+ rounded off-my who matile clast within 3 one
191-4	- 24.6	MAJOR SHARE			1	I		shareda CA. P #5" EGO
				proshed you		1/1/	unit alore an	- Highly all'd, sifie gone from At.6-191.0 Original Tatur.
194.6	_ <u></u>	Bio Frandiste	<u> ft 34-955</u>	109-100-	-Jeriz. Joomes reple	al ar	water	
				_ Kacelly	64 chlor + 500 - 1960	<u> </u>		veinlats we cotally -pto 53 py in veinlats

.

.

المراجع والمراجع والمراجع

.....

•

.

replaced by chieve sor. from by chier-sor. 184.5-186.0 m.

a construction of the second second

PAGE 3 OF 7

.

PAGE 4 OF 7

					DRILL	LOG			HOLE NO. <u>97 -1</u>
				1	TE	STS	DATE STARTED	;	PROJECT:
RILLING	CO.	LOCATION SKET	CH	DEPTH	DIP ANGLE	AZIMUTH	- -		
				COLLAR			DATE COMPLETED:		N.T.S.:
				COLLAR			COLLAR ELEV.	•	LOCATION:
				ļ		·	INORTHING:	·	
						· /	EASTING:		
				l		•]	AZIMUTH:		
					\ 	- .	DEPTH:		DATE LOGGED:
							CORE SIZE:		LOGGED BY:
OLE TYPE	<u> </u>			i	ALTERATION	MINE	ALIZATION		REMARKS
INTE	RVAL	LITH	DLOGY	ļ	ALICATION			(lithology, alterat	ion, mineralization, structure, age
								relations, etc.)	
FROM	<u> </u>	ROCK TYPE	COLOUR	TEXTURE				FAULT ZONE: 196.6 1	To 1968.
	_i	· · · · · · · · · · · · · · · · · · ·	<u> </u>	T		_ ` _+		11 General Land Land	The Acade Shear Jones Control
			 	1 1	presserved from 196-	201 20 - 201 20	14 - 4 - 4	5 701 E 217	to highly alth, silicified, most of orig
	_i	İ	 	<u> </u>	strong 1cm gt-197-	mo Soveroy	75-11-95-14-12	p / and is a dedeemed. /	to stage () high and Its - Pig them varining up
		ļ		↓	usin from 210-7 - 211.9	Les veintette	Las Coult + room de la - 1 10	(applied and a free of an	
			1	 	strong alt salvage 20	21.9.1	thinking along The last	v wide; Ven frog: 1 pe	elder chlor-ser- 47-95 verinset from (9/.
	1			1	Act to ye is soverich - the chief				electron exercitor
		[margin		~ 210.7 To 211.7		niete carry maybdanite ; carlier Kapa
							() covertated along		a just see a stand of sets and
			<u> </u>				vine. C.g. diesem		its share gts- by = maly; both set set-par
	-) !	•/ •	 	l	, 		+ 201 of reas me	to core .	
	- i		1		l 	et 0 11 to	2% of vein-	<u> </u>	
				_] 	1 1		14-mourie fri		
		•	1		t 1 <u> </u>		5-9- e 10° to c.A.		11 1 4: 1/1 C . 1
217.7		Andesite dike	ct brown	Porcharitic	eut by carbonate	strs - anin	F Py dong	Lt cream colored for	Asper shower -tin et bran for matrix:
		- 			minorcart alling	and the same	veinlets.		
220.5	12340	Big Franct wite	ct qy	m. + to con.	sections highly 6	slid mol			- ser-gtg-ay) is sperse (from 1 & 2 por m
	_ <u> </u>	Vo1610: 208 95		equiz come	- to st-som-child	K-APAC	- 7t3- 24 veinlets at	' I	713- my ton veilets ov. 20.5 per me
·		_ <u>≮04 ⊐70) - ∼81 [1]</u>	1	granitic	- in places com	plately 271.5 t	231.7 and from	MATOR FAULITAU	-: 2.2.9.0-22.9.10
					replacing gran		2 - 274.0; veintete		228.19 - 22.9.9 : 50% Cast Care in Major
• <u> </u>			- 	1 soce tited		My weak 40.5	an ide and do	۰ ۱	232.0-232.1
	_!	_ <u>_</u>	···					1	
					Kett'n-	2.504.1	- 10° C.A.		

د

•

					DRILL	LOG			HOLE NO. 97-1
		LOCATION SKET	<u>си</u>	1		STS	DATE STARTED	D:	PROJECT:
RILLING	CU .	LUCATION SKET		DEPTH	DIP ANGLE	AZIMUTH			
				COLLAR		l	DATE COMPLETED:		N.T.S.:
						1	COLLAR ELEV.		LOCATION:
				[1	NORTHING:		
				ļ	<u> </u>	·	EASTING: AZIMUTH: DEPTH:		
						·[
		[ļ		·			DATE LOGGED:
			ļ		·	CORE SIZE:		LOGGED BY:	
IOLE TYPE				<u>i</u>	ALTERATION	MINER	ALIZATION		REMARKS
INTE	RVAL	LITH	OLOGY		ALICANTION			- I	tion, mineralization, structure, age
FROM	TO	ROCK TYPE		TEXTURE				relations, etc.)	the the following and
237.0	244.6	Bio Gran denvite	mal qu	folisted	unalty except for	- Miner og	along rain later 41	(m) ct 3 4 Lenco Tran	adjorite appears to est folisted and g
		foliated -10% 95	T		weak chlor solve	<u>444 </u>		1 (finer grand) me	d-dkgg green diarite.
	-l	== 7.61.		l –	along older sparce ver	inlet.		part by sport	10 early chlor-py-gtz veinlate ance for
	-		T	1	From 240 5-244.6 From		5. notable inc	ri (a a. t psc. m) lat	5 stage K spar- 75- Any verilets (up to Icm)
									· • • •
	1	Ť	ł	i	List 4 dre section	B the chlor.	-ser-py-ot vein.	A N-20 E CA	. No mely noted.
	_	ţ	 		List 4 dre section	B the chlor.	-ser-py-ot vein.	AT 2341	Mr Sch Fault @ 60° T. Cd.
· · ·					highly all section	15 12 chlor.	-ser-py-gts vein. stage Kspar-	AT 234.1, Mar	My Sem Fart 0 60° T. Cd. ally Sem Fart 0 60° T. Cd. conste dike 0236.7 T. 237.2m. Control
	-				Kithly all seeling	B in chlor. malatan e late	-ser-py-gt veia. stage Kepar- recting	AT 234.1, Mar	. No mely noted.
					highly all section	A In chlor. malety + late ti 95-my tocrese	-ser-py-qts vein stage Kepar- rening c in parite	14 0 N° - 20° E CA X T 234.1, Me Ct gy, leuce 51 0 2.5.451 MAZ	My Sem Fart 0 60° T. Cd. ally Sem Fart 0 60° T. Cd. conste dike 0236.7 T. 237.2m. Control
	-				Kithly all seeling	AS In chior contacting + Cate tic 95-104 # Therese Co 107-15	-ser-p-qt vein stage Kepar- 	AT 234.1, Me AT 234.1, Me Ct gy, leuce Se B 2.5.4.1 MAZ ajaccont E	A. No mely nord: Ily 5cm Fault @ 60° T. Cd. conite dike CE36.7 T. 237.2m. Control TOT SHOAR 20NT (3cm multip shear):
					Kithly all seeling	A 12 chlor croletan + Calc ti 95-124 to creat Co 107-15 ct 93, 6	-ser-py-qts vein stage Kepar- rening c in parite	19 0 Nº - 20° E CA AT 234.1, Me Cot gas lence se 0 2 9.4.1 mas 	A. No mely nord: Ily 5cm Fault @ 60° T. Cd. conite dike CE36.7 T. 237.2m. Control TOT SHOAR 20NT (3cm multip shear):
					Kithly all seeling	A In chion maleray & Cate The AS-AN A Therese Control Control Control Several	-ser-py-ets vein stage Kepar- restig r in pyrite diesem ry in istly althe sites of	19 (N° - 20° E CA AT 234.1, Me Ct 94. leuce 51 0 2.9.4.1 MJ 	M. No mely nord: dly Scm Fault @ 60° T. Cd. comite dike @236.7 T. 237.2m. Contest TOT SHOAR 2015 (3cm mully shear): Som q (3-py vein:
					highly all's seelin	B 12 chlor molecup + Calc 12 95-194 14 75-194 15 107-15 15 10 15 10 15 10 15 10 15 10 15	-ser-py-ets vein stage Kepar- restig c in pyrite discon cy in isily all, silie z date stage py-ets c so c. c.	AT 234.1, Mar AT 234.1, Mar Ct 94. leuce 51 0 2.9.4.1 MAI ajecent C 100 100 100 100 100 100 100 10	M. No mely nord: dly Scm Fault @ 60° T. Cd. comite dike @236.7 T. 237.2m. Contest TOP SHOAR 2010 (3cm modely shear): Som q (3-py vein: - ct, ins, miner char ser of veining
249.6	289.6	Bis Grandiente			highly all's section. chier -ser- an -sty co prolocury fol- grant t a almost rock.	B 12 chlor molecup + Calc 12 95-194 14 75-194 15 107-15 15 10 15 10 15 10 15 10 15 10 15	-ser-py-ets vein stage Kepar- restig c in pyrite discon cy in isily all, silie z date stage py-ets c so c. c.	AT 234.1, Mar AT 234.1, Mar Ct 94. leuce 51 0 2.9.4.1 MAI ajecent C 100 100 100 100 100 100 100 10	M. No mely nord: dly Scm Fault @ 60° T. Cd. comite dike @236.7 T. 237.2m. Contest TOP SHOAR 2010 (3cm modely shear): Som q (3-py vein: - ct, ins, miner char ser of veining
249.6	289.6				highly all's section chier -ser - on -sty co replacing file grant t a almost rack.	As in chion mylean + Cate i 95-my the create Co 107-15 ct 73, h seven vy 5 5cm pre, 50	-ser-py-ets vein stage Kepar- restig c in pyrite discon cy in isily all, silie z date stage py-ets c so c. c.	10 0 N° - 20° E CA AT 234.1, Me Cd gn leuce se 0 2 9.4.1 Mas = jeccat E 11944 freet se 2485 Some restrins (UN E 202 bit).	My noty note: My Som Farlt @ 60° T. Cd. comite dike CE36.7 T. 237.2m. Contect Top. SH BAR. 2005 (3cm multy sheat): Som 9 (3-24 vein: - ctims: minor char ser-po-th veining of older timer-grained, 6w rich mendels
249.6	289.6	Bis Granderite	ct 59		Kith 4 alt seelin	As in chier malany + Cate fi 95-py to 107-15 Co 107-15 ct 13, h savend we & Sem pre, 52 from	-ser-py-etty vein stage Keper- resting c in pyrite discor py in iside all's, silie z date stage ey-ety c so c. c.	10 0 N° - 20° E CA AT 234.1, Me Cd gn leuce se 0 2 9.4.1 Mas = jeccat E 11944 freet se 2485 Some restrins (UN E 202 bit).	1. No mely nord: 11. No mely nord: 11. Som Fault @ 60° T. Cd. comite dike @236.7 T. 237.2m. Contest Top SH SAR 20NT (3cm multy shear): Som 9 (3-24 vein: som 9 (3-24 vein: of older fiber grained, 600 -rich mendels 0 20051 2600-2603: 2 cm moldy shear
249.6	289.6	Bio Grandleite	ι 		Kith G all's section	B: 1xi ch/sec oralizing + Cate 95-194 til 95-194 til 95-194 til 95-194 til 105-151 ct 73, h several vg & Sem pne, 55 freq 110-23 til 110-23	-ser-py-etty vein stage Kepar- resting c in pyrite d discor py in iside all discor py in iside all discor py in iside all discord the son c.A. image py veine	19 (N° = 20° E CA AT 234.1, Me Cd qu, leuce Se @ 2.9.4.1 Maz = jaccot Ic Mighly freet se 298.5 Some sections (UN E 2016is). • MAJOR SAGA.	1. No mely nord: 1. No mely nord: 1. Jan Fault © 60° E. Cd. 1. Comite dike CE36.7 E. 237.2.m. Contexp TOP. SHOAR. 20NT (3Cm modely shear): 50m q (3-24 vein: 50m q (3-24 vein: 50m q (3-24 vein: 50m q (3-24 vein: C. 20NT: 260.0-260.3: 2 cm modely shear 50° CA. 201.8-262.3: 11946y Snowlad & Shear
249.6	289.6	Bio Grandiciite	L		Kith G all's section	B: 1xi ch/sec oralizing + Cate 95-194 til 95-194 til 95-194 til 95-194 til 105-151 ct 73, h several vg & Sem pne, 55 freq 110-23 til 110-23	-ser-py-etty vein stage Kepar- resting c in pyrite d discor py in iside all discor py in iside all discor py in iside all discord the son c.A. image py veine	19 (N° = 20° E CA AT 234.1, Me Cd qu, leuce Se @ 2.9.4.1 Maz = jaccot Ic Mighly freet se 298.5 Some sections (UN E 2016is). • MAJOR SAGA.	1. No mely nord: 1. No mely nord: 1. Jan Fault © 60° E. Cd. 1. Comite dike CE36.7 E. 237.2.m. Contexp TOP. SHOAR. 20NT (3Cm modely shear): 50m q (3-24 vein: 50m q (3-24 vein: 50m q (3-24 vein: 50m q (3-24 vein: C. 20NT: 260.0-260.3: 2 cm modely shear 50° CA. 201.8-262.3: 11946y Snowlad & Shear
249.6	289.6	Bio Granduiste	ι 		highly all's section chies - ser - on -th is reclouring foll grant t a chinad rock. Scight K alt's Highly alt'd soch in B35.8-258.5; all's chies - sor - on - th distinct shor - sor	B 12 chlor crolledy + Calc Fill 95-194 # Therest Colory + Calc Colory + Calc Colory + Calc Colory + Calc Several From From From Several	-ser-py-ets vein stage Kepar- resting c in pyrite discon py in isily all's, ville 3 date stage py veint c 50° c.A. im gt-py veint im gt-py veint for py d gt-py-hend tage 3) veins et 50	10 0 N° = 20° E CA AT 234.1, Ma Cd qu, leuce St Q 2 q.4:1 MAZ ajaccot E Highly freet se 298.5 Some sections (cre E 202 bis). - MAJOR SHAR MF # Sheening 0 30° г box & Chlor-ser 55 - 20 - Main Set 0 5	1. No mely nord: 1. No mely nord: 1. Momely nord: 1. Momely nord: 1. Momely nord: 1. Momely shear): 5. Momely vein: 5. Momely vein: 2. Moments: minor char ser post veining of older finer grained, but with models 1. Moments: 260.0-260.3: 2 cm models shear 50° ch. 200.0-260.3: 2 cm models shear 50° ch. 200.0-
249.6	289.6	Bis Grandleiste	L		Kight & all's section chight & all's section replacing file grant t astrong rack. Scight K all'a Night all'd section 255.8-258.5; all'a chior - 500-90-96 district chior - 500- 10p to 2 cm on each	AS 1xi ch/sec consisting + Cate 95-104 fill 95-104 ct 107-151 ct 107-151 ct 107-151 ct 107-151 ct 107-151 ct 107-151 scucerd vg & Secular vg & Secular vg & Secular from Scucerd scucerd Scucerd store Scucerd	-ser-py-est vein stage Keper- resting ch pyrite discer py 16 iside alle, silie 3 iside alle, silie 3 iside alle, silie 3 iside alle, silie 3 iside alle, seret e 50° C.A. imagh-py veinte imagh-py veinte imagh-py veinte (py d giz-py - hered imagh-py veinte (sec stage K zer	<u>на</u> (N° - 20° E CA <u>AT 234.1, Ма</u> <u>Ct 94. (euce 52</u> <u>Q 2.9.4:1</u> MAZ <u>ajacent E</u> <u>Ajacent E</u> <u>Highly freet se</u> <u>2785 Some sections</u> <u>(ил E 2026i)</u> . <u>мазоп 52624</u> <u>Aff # shearing 30° г</u> <u>10° с x Chlor-sor 56 ог</u> <u>10° с х Chlor - 500 с 56 ог</u> <u>10° с х Сравала</u>	1. No mely nord: 1. No mely nord: 1. Mo mely (40. 5 perm) C 20° CA. MO to / Com
249.6	289.6	Bis Grandleinte	L		Kight & all's section chight & all's section replacing file grant t astrong rack. Scight K all'a Night all'd section 255.8-258.5; all'a chior - 500-90-96 district chior - 500- 10p to 2 cm on each	AS 1xi ch/sec consisting + Cate 95-104 fill 95-104 ct 107-151 ct 107-151 ct 107-151 ct 107-151 ct 107-151 ct 107-151 scucerd vg & Secular vg & Secular vg & Secular from Scucerd scucerd Scucerd store Scucerd	-ser-py-est vein stage Keper- resting ch pyrite discer py 16 iside alle, silie 3 iside alle, silie 3 iside alle, silie 3 iside alle, silie 3 iside alle, seret e 50° C.A. imagh-py veinte imagh-py veinte imagh-py veinte (py d giz-py - hered imagh-py veinte (sec stage K zer	<u>на</u> (N° - 20° E CA <u>AT 234.1, Ма</u> <u>Ct 94. (euce 52</u> <u>Q 2.9.4:1</u> MAZ <u>ajacent E</u> <u>Ajacent E</u> <u>Highly freet se</u> <u>2785 Some sections</u> <u>(ил E 2026i)</u> . <u>мазоп 52624</u> <u>Aff # shearing 30° г</u> <u>10° с x Chlor-sor 56 ог</u> <u>10° с х Chlor - 500 с 56 ог</u> <u>10° с х Сравала</u>	1. No mely nord: 1. No mely nord: 1. Mo mely (40. 5 perm) C 20° CA. MO to / Com
249.6	289.6	Bis Grandleinte			Kight & all's section chight & all's section replacing file grant t astrong rack. Scight K all'a Night all'd section 255.8-258.5; all'a chior - 500-90-96 district chior - 500- 10p to 2 cm on each	AS 1xi ch/sec consisting + Cate 95-104 fill 95-104 ct 107-151 ct 107-151 ct 107-151 ct 107-151 ct 107-151 ct 107-151 scucerd vg & Secular vg & Secular vg & Secular from Scucerd scucerd Scucerd store Scucerd	-ser-py-est vein stage Keper- resting ch pyrite discer py 16 iside alle, silie 3 iside alle, silie 3 iside alle, silie 3 iside alle, silie 3 iside alle, seret e 50° C.A. imagh-py veinte imagh-py veinte imagh-py veinte (py d giz-py - hered imagh-py veinte (sec stage K zer	19 (N° = 20° E CA AT 234.1, Mar Cd ga, leuca Se 0 2.9.4.1 Maz = jaccat I 11/26/2 freet se 2785 Some sections (UN E 2026/2). MASON SNOA MASON SNOA MASO	1. No mely nord: 1. No mely nord: 1. Mo mely (40. 5 perm) C 20° CA. MO to / Com

٠

- -

.

- ;-

PAGE 5 OF 7

.

.

-

				_	DRILL	LOG		HOLE NO. 97-/
		ILOCATION SKET	CH CH		TES	STS	IDATE STARTED	D: PROJECT:
RILLING	.0.	LUCATION SKET	CII	I I DEPTH	DIP ANGLE	AZIMUTH	-1 -	
				COLLAR			DATE COMPLET	TED: N.T.S.:
				COLDAN		-	COLLAR ELEV.	
						 	INORTHING:	
						[LEASTING:	
		ļ					AZIMUTH:	
						1 <u></u>	DEPTH:	DATE LOGGED:
				<u> </u>			CORE SIZE:	LOGGED BY:
HOLE TYPE					ALTERATION	1 MINEE	ALIZATION	REMARKS
INTE	RVAL	LITHO	ILUG I	1	ALI LIVII I VII			(lithology, alteration, mineralization, structure, age
			COL OUT	TOVITOR				relations, etc.)
FROM	T0			TEXTURE	No Katt'n from	2 = 4 - 202 0	chlore-ser ation	
<u>289.6 3/0.0</u>	310.0		mag.	· · · · ·	- Minor Kellin from		late or blat 11-	Weininge increasing to 6 per in from 294 5 302
		more 64-rich		<u></u>	- MINDY K SKATTON	() - C	a 29/5 - /04.08	
	.	Than provise tim			200 0 of strong alt's 2.99.6 + 310. Orig.	tra gr cry	a casta t mare	
								MAJOR 25NE OF FAULTING & BROCHATION: 302-876 30
	<u> </u>					destroyed by chlar-ser-py est e = hem-gl, areac w-main 30 cm		
	.					<u>mur 30 c</u>	th	
······································			[3 one of shearing	<u></u>	2 205.4 t. 305.8	e Josi D, Zen mud thear e 70° to c.d.
	_ 	İ						
310.0	319.2	Dio Grandiorite,	Pole gener	y mottal,	Protom pale 91	sen	Lote ingo	
		Vielly ALTA.	. <u></u>		fi sar , chior replace		Keaning	verning o 10°-20° c.A. reveg. of relining is 2 0.5 per m.
	.i	İ	.		erig. granific tad			
			.	portecal by		f redo sh		
	İ	l	.[Ser	Kalt'n.			
319.2	320.0	MAJOR MUDDY FAM	<u>r</u>	.[
		ZONA @ 45 T. C.A.	.j	<u> </u>				Strong 1 1 1 1 1 1 1 1 1
320.0	353.2	Bio Grand Isrite	4 94	<u>m-c-g-</u>	Section of parce	une Amai	ir hem-stares	strong scher computer strong is 657 per m. with 2 many
			.i	prentic	Kalta (salmon pind			
			.i		serieale gosen all markering folderers most alla confi	en from	717.2 5 713.4	Alto late stage at - 49 voin pat, Av. Icon wide: 10-20" To C.A.
	- (<u> </u>	most alto confi	ned stro	ng chlor-ser-p-	of ven freq, 1 per 2me
	1			.i	to vern salvages			Tet MATOR SHEAR ZONES: 312-1-212-2 @ 70°CA
			[Act + increases de		37- overall.	34.7 - 172.4 (= 10°C2 34.7.5 - 373.6; 10 can meredy good e.
							1 in veincets).	

PG OF 7

سوسيا بالالال المانية الالتفاد تتقاد متفاد بسايا

.

-

٠

.

المراجع ومراجع المراجع المتدوية المترجع والمتعطي والمراجع

.

••

.

1

		/
•		

-

P. 7 6F 7

.

					DRILL	LOG			HOLE NO. 97-/
		LL COMPTON SYF	TCU		TE	STS	DATE STARTED):	PROJECT:
RILLING	CO.	LOCATION SKE	100	DEPTH	DIP ANGLE	AZIMUTH			
				COLLAR			DATE COMPLET	'ED:	N.T.S.:
		r		CODDAN	·		COLLAR ELEV.	•	LOCATION:
							NORTHING:		
				 		-			
		1		1	i	1	AZIMUTH:		
							DEPTH:		DATE_LOGGED:
		[CORE SIZE:		LOGGED BY:
LE TYPE	INTERVAL LITHOLOGY			ALTERATION	MINEF	ALIZATION		REMARKS	
INTERVAL			00001						n, mineralization, structure, age
		ROCK TYPE	LCOLOUR	TEXTURE				relations, etc.)	
FROM			- <u>-</u>	SHR'D FRY	n	STAnct	hemetitic t	Fault 3 me e 40	-50 G.C.A
53.2	<u> 160.7</u>	MAJOR FAULT ZON	9 I		· · · · · · · · · · · · · · · · · · ·	يزيغ سيد ا	verining Pitter	majer zone +F	Stearing + Oreccial Ion w. Murray 3.
			- 	- !		overall p	y er er ty	m 6 20 cm.	MUDRY SHARAS - 353.5 4 55 3.8
	· -		-!	-1		+ 10% he	emetite.		358.1 6 358.5
760.4					Silicified from	360.1		İ	
160.7	<u>- 26'7</u>	10 6 C 6 1 6 1 6 1 1	_ ~~,, ,=,,##	martic	363.0				
			-!		Garly pervative	K-Ser gt	-my set set	ventreg: 3 per	m from 360 to 364 m
3/6./(/2	VOJ EN	OFNOLE			alt'a (Kadia alt'd	Giller) 50	and of long chlor		n fim 369 5 376m
				_	sut in wide shler		salvages. A.	3 veri sets 1	20-530; +0 50 and 70' 5 CA
		·	-•		-11's selvages of	ma land	mate is locally	Freedore sets 1	- 70°, 40° 6.95° - 60° -70° t. CA
			-	_	unintets which a	makes c.g.	(Up E +5 Ch)	Individual veint	ets contain up to 30/ pay
			_!		up. 50% of core	vicine. * due	all py contant	- miner disses	my but marinly py in sections
<u> </u>			-	-		-+ TA	it sectionis	up to I cm	mide. (dr. O. S. Sm).
			-]		· · · · · · · · · · · · · · · · · · ·	315			
	•			-			te store pro-91	-	
				_]	·	ventet	at high angles	\$	
	-	· 	-1				at older day		
		· [[py-54	vering		
	-	-]		_			· · · · ·		· · · · · · · · · · · · · · · · · · ·
					1			1	
· · · · · · · · · · · · · · · · · · ·	-	-		i				a	
	-	 				l			

۸

.

- -

					DRILL	LOG			HOLE NO. 97-2
		LOCATION SKET			TE	STS	DATE STARTED:		PROJECT:
DRILLING	со.	LUCATION SKE	(un	DEPTH	DIP ANGLE	AZIMUTH	OCT /	,1997	
				COLLAR	-55"	180	DATE COMPLETE	D: det 10, 1997	<u>N.T.S.</u>
REAU	PRF	1		6/.0(200'			COLLAR ELEV .:		LOCATION:
_	AD DRIE	. ust					NORTHING: /	02+25N	
270.	···· (ACIE			121.9 (15)		-	EASTING:	7+00W	
<i>L, D</i> ,		ļ		182.9 (6=	-7 1		AZIMUTH: /	90°	
				2+3.8(**				25-2m (1395')	DATE LOGGED: OCT 2 to Oct 11, 1997
.				<u>304.8 (/ m</u>			CORE SIZE:		LOCGED BY: N.L.KING
HOLE TYP	2			4.19 (137	~): -48	MINE	RALIZATION		REMARKS
INT	ERVAL	LITH	OLÖGY	1	ALTERATION	1 DINE		(lithology, alteration	on, mineralization, structure, age
				-				relations, etc.)	
FROM	I TO	ROCK TYPE	COLOUR	TEXTURE					- FD TO 87 m
0	140.5	CASING CLACIAL	744	<u> </u> .				ASING CALLER IN	Till. Pettler & boulders up to 15 cm day,
40.5	86.8	acaril Till - h.	14 com	autra 1				Highly compacted	my davite boulders & pelles. A for vilcenti
	_ <u> 66-</u> ×							mainly 1 = C-9. Big. T	is It brown, clay with supporting sand op loke
				1				eggelest artig	LT CF Strain, Clay-Well, "Friding
	-!			1 1				size elestre	
86-8	75.9	Bio Grandwrite	4ton	· · · · · · · · · · · · · · · · · · ·				Highly factured suction	freferes. Sol lost core.
00.0		/ 10 G F G A G A G A G A G A G A G A G A G A		according to	wittenwar				······································
	_	Ris Grand wite	1. ale	all redress	+ Highly alter tra	stil 2 ven	typesi	Two main yei	th-py-tong train 0.2 sm to len will
95.4	180.0			Care total	tections realisted &	(, ,) a la	to at man (?) at - en	them in late stage (3) 9	th - py - tono - reist 0.2 cm to len wate
				10000	pervesing sar-ch	Vor- tonily	1 min 0 70 65 66	4. at logst 3 vel	a growtions at 90; ment 30 + one + to by the
				1 1 1 1 1	From 95.4 To 106m		doug very margins	man horse c	25-4, 79.5, 100.3, 107.2, 106.5, 108, 108.7,109,
			+		Then from lolm.		my content = 2× E	149m. 109	9. 4, 112.3, 112.4, 113.3 to 113.7, 114.2, 114.8 1158-1160
			- 		moderate Kalt'n a			116	5-1167 127 = -128-7, 1312-125, 1375.
			- †··		s. pale gen ser all'a m	anti 2) - anti	can set of Ollowse	This Moly 30	ne extends from 95.9 \$ 116.7 m (21.3 m)
									an cate stage gtg-an verain @ 20-20-cd;
	!			-	More preserved,		we late store - tr-Ks	mr. from 124 m - 1	133.5 m. Maly also & 151, 152, 1525, 1568, 1583. 133.5 m. Maly also & 151, 152, 1525, 1568, 1583. 133.5 m. La la also & 150, 150, 150, 150, 150, 150, 150, 150,
	_				the cally mate in the		20°7 C.A.	1) Fall State m	are prominent sot of chlor-ser-py-75 pering
<u> </u>	_		<u>-i</u>		destroyed granitic		- hamality along		
			_ <u>_</u>		Actin Los esterses	YUNT MA	to I have to set to	1 Each ward set	her SETVEM /m from .95 + - 149m : K 0.5 m wide
İ				i	14th Low enterses	PUEIAL DE SALE	r r / 1 from / +9	16100	
İ				_i	Autor Strong Fre	- /= 1 - / · · · · ·	H	Cate stage verning	
İ					Fo 149m . Increase	em Pres	- 100 - 166A		1.5 veins / m from 160 - 186 m
i					the on margine 17	+ chirt From	Crease in versional	· · · · · · · · · · · · · · · · · · ·	51 usa/m from 166 - 180m.

. ----

.

٠

PAGE 1 OF 5

PAGE 2 OF 5

·

• • • • •

					DRILL	LOG		HOLE NO. 97-	- 2
RILLING	CO.	LOCATION SKE	тсн		TE.	STS	DATE STARTE	D: (PROJECT:	
				DEPTH	DIP ANGLE	AZIMUTH	-	1103201.	
				COLLA	R		DATE COMPLE	TED: N.T.S.:	
		İ				1	COLLAR ELEV		
					1	· · · · · · · · · · · · · · · · · · ·	NORTHING:	BOCATION.	
		i				· [EASTING:		
							AZIMUTH:		
i					-	DEPTH:	DATE LOGGED:		
HOLE TYPE						CORE SIZE:	LOGGED BY:		
INTERVAL LI		LITH	OLOGY		ALTERATION		ALIZATION	REMARKS	
								(lithology, alteration, mineralization,	
FROM	TO	ROCK TYPE	COLOUR	TEXTURE	l			relations, etc.)	, structure, age
			1	1					
			Ţ	1				Ford quality core (up to 30 cm) Dominant fraction directions 30°, ps-	
<u> 7</u> 670 0	185-2	Codesite Perphyryd	the order	Parahurti	e unaltered	- An mins	and in all	She and trading of red mer 30, 15-	-50°
	· [l	1	i	5 F	1	v		
185.2	193.6	Bio Fransfierite	to - nide	A	Pervasia moderate			Major shear zone of contact from 1 Closer the strong story : 36 4 m	89.7-/05.2
				granitic	K alt's and chierts	and and lat		Care angles of 10°, 40-50° and	tes per tra
					ser alta. Only remm	att han set		Constraint of 10 to-50 and	78.
			1	1	(202) of original test.	res decement	Stranger for	Lato stage of py veining 1 freqs / 2.2 Core anglos , 10°, 70°, 40°50° and	Kein per m:
_				1	preserved.	187	it cais of to	Putto catet :	<u> </u>
	<u> </u>			1	both contry and lat			Parite contant in creases to 255	3 h 5 veiging (4)
	.i				shage verning has			w. c.g. parite .	Som head us in 5
	.j]		alteration selvages (Caushed & Aneurated 3me from 1	P () , and .
	İ		 	1	LSer).	1		internet a station failed for the firm /	00-1-181.5h
193.6	1943	And- soto parahyry	medgy_	Perphyritii	miner carb altin	Veining	Less	Contacts : upper 46; Lower, 60"	
·	. j	· · · ·	ļ	regioclase					
_		ļ	l 	planscrypt		1			· · · · · · · · · · · · · · · · · · ·
<u>4</u> ,3	200.00	Bio Grandiarite	pale green		Porvasion strong	Fer vein den	rits less	Vain donsite : cool store alle t	
·	.	Highly Act 'd.			- chlor atta.	1.00000000		vain density; early stere chlor- or- of gts : Lots 31-re 95-rm vering e	Yens a a / /tr.
		ļ				[Highly sheared & Crushed Zone From 1	the permanent
	ļ	ļ	·	1				- " + modey Zone from 19	7 - 7 - 75 - 5
200.5		ļ	 	· 					
· · · · ·	12	A-derite		prohyretic				sever & lover contacts at 50° to CA.	

٠

- - -

---- --- - . . .

.

.

.

-

. . .

PAGE 3 OF 5

					DRILL	LOG			HOLE NO. 97-2
DRILLING	CO.	LOCATION SKE	тсн	1	1 T	ESTS	DATE STARTE	D:	PROJECT:
			DEPTH		DIP ANGLE	AZIMUTH			
				COLLAI	R		DATE COMPLE	TED:	N.T.S.:
		İ		Í			COLLAR ELEV	'.:	LOCATION:
		İ		İ			NORTHING:		
		j		İ			EASTING:		
		Ì		İ			A2 IMUTH:	· · · · · · · · · · · · · · · · · · ·	
<u> </u>				j			DEPTH:		DATE LOGGED:
HOLE TYPE	2						CORE SIZE:		LOGGED BY:
INTE	ERVAL	LITH	OLOGY	:	ALTERATION	MINE	RALIZATION		REMARKS
					İ			(lithology, alterat	tion, mineralization, structure, age
FROM	<u></u>	ROCK TYPE		TEXTURE				relations, etc.)	
203.5 2/7	217.8	Bio Grandionte	Celegreen.	A c q.	Extensive (stron	y) strong	Late stare	- Late store remine	3 perm - veining @ 20-30 ad 40-60-60.
	-	dight Altered	w.pink_	grantic	Pale Seconary 1	Ter= 1 + 4-95	veining, veinhet	Carly chlor ser py -	to remining is weak : 162 veries per my +
	-[5 tent ins		chlor-TS alteral	Tim ve to 1	10 cm mile	over all py conto	at (mainly in late stop veriling)
	<u>_ </u>		۱ +	, 	K sper - rich rem.	nants w- up t	5 507 purite	- st. at 32	
	-	<u> </u>	 +	1	· {	hina	Carly Cher sei	Generally 2009	quality core
	_		 +	ļ				, - 1	
217.8	228.2	Indesite perphyry	mergy_	Beckyntic	/ 			Good quality core	i wate / a participa
·	_	í til strating strati	1	Trey Alense	1 4				
								<u> </u>	
7.7.9. 0	_		 -}	207; up £0.	Sta (Av- azon)			• • • • • • • • • • • • • • • • • • •	
228.9	240.3	Bio Granodiovite	texte srsen	207; up EC.	Scalarazon)		late stage	Late star veibing	
228-9	240.3	Bio Granodioiste	 -}	207; up EC.	Scalar-0.2cm) - thighly altered Parrasive print	6 K P3-95	veining	Late stage verhing - strong 10-20	Frequency: + per my weining at 10° - 30° + 400
228.9	240.3	Bio Granodiozite	teste srsen	207; up EC. A. C. g. Franitic	Stan (An O.2000) - Alighty allered Perversive print alteration + pelo	h K pg-95	stage chlor-ser	- Strong 10-200	Frequency: + per my weining at 10° - 30° + 400
228-9	240.3	Bio Granodiorite	teste srsen	207; up EO A C-q. Manitii	Stan (An O.2000) - Alighty altered Pervessive print alteration + pelo attil feldsport.	sreen carly	veining Stage chlor-ser t verning we-bl	- Strong 10-200	Frequency: A per my using at 10° 30° + 40
228.9	240.3	Bio Granodiovita	teste srsen	201; up to. A. c.g. Traniti	Stan (An O.2000) - Alighty altered Pervasive print alteration + pelo attil feldsport. (acally sections	h K pa-95 sreen sach	veining Stage chlor-sor t veining we-hl loper.	- Strong 10-200	Frequency: + per my weining at 10° - 30° + 400
2.2.8.9	240.3	Bio Granodioùite	teste srsen	201; up 20. A. C. g. granifii	Stan (An 0.2000) - thigh by allered Pervasive pint alteration + pelo attil feldsport facally sections completely replaced	h K pa-95 sreen sach	veining Stage chlor-sor t veining we-hl loper.	- Strong 10-200	Frequency: + per my weining at 10° - 30° + 400
			Bale Srsen	201; up to. A. c. g. Traniti	Stan (An O.2000) - Alighty altered Pervasive print alteration + pelo attil feldsport. (acally sections	h K pa-95 sreen sach	veining Stage chlor-sor t veining we-hl loper.	Late stase veining - strong 10-20 Carly clan second	frequency: & per my using at 10° 30° 400 rein direction with some up & 5 cm wider up =
228-9 240-3		Bio Granodiorite	1386 5r sen	207; up EO. A. C. g. Traniti Traniti Perphyritic	Stan (An 0.2000) - Chigh by allered Pervasive pint alteration + pelo attil feldsport facally sections completely replaced The and ser.	h K pa-95 sreen sach	veining Stage chlor-sor t veining we-hl loper.	- Strong 10-200	frequency: & per my using at 10° 30° 400 rein direction with some up & 5 cm wider up =
240.3	253.7	An dost for shyry	1986 5rsen - prik	207; up EO. A. C. g. Tranitic Tranitic Perphyritic May phanes 3	Stan (An 0.2000) - Chigh by allered Pervasive pint alteration + pelo attil feldsport facally sections completely replaced The and ser.	K K PA-95 Sreen sarty 	veining Stage chlor-sor t veining we-hl loper.	Late stase veining - strong 10-20 Carly clan second	frequency: & per my using at 10° 30° 400 rein direction with some up & 5 cm wider up =
228.9 240.3 253.7			1986 5rsen - prik	207; up EO. A. C. g. Tranitic Tranitic Perphyritic May phanes 3	Stan (An 0.2000) - Alighty altered Perversive print atteration + pelo attel feldsport- forcelly sections 	K K PA-95 Sreen sarty 	veining Stage chlor-sor t veining we-hl loper.	Late stase veining - strong 10-20 Carly clan second	frequency: & per my using at 10° 30° 400 rein direction with some up & 5 cm wider up =
240.3 253.7	253.7	An dost Parphyry Bis Frend insite 8.	park srsen	LoJ; up to An c-g- Tranitic Perphyritic Mag planes 3 Arresisted	Stan (An-0.200) - Alighty altered Perversive print atteration + pelo attel feldsport for ella sections completely replaced The and ser of completely alter to completely alter to atter ser-ety	K K PA-95 Sreen sarty 	veining Stage chlor-sor t veining we-hl loper.	Late stage verhing - strong 10-20 Carly clan Stocks	trequences & per my veining at 10°. 30° is a sein direction with rains up & 5 cm wide oup
Z#0.3	253.7	An dost for shyry	park srsen	LoJ; up to An c-g- Tranitic Perphyritic Mag planes 3 Arresisted	Stan (An-0.200) - Alighty altered Perversive print atteration + pelo attel feldsport for ella sections completely replaced The and ser of completely alter to completely alter to atter ser-ety	K K PA-95 Sreen sarty 	veining Stage chlor-sor t veining we-hl loper.	Late stage verhing - strong 10-20 Carly clan Stocks	frequency: & per my using at 10° 30° 400 rein direction with some up & 5 cm wider up =

٠

٠

.

PAGE + OF 5

. . .

.

					DRILL	LOG			HOLE NO. 97-2
DRILLING	co.	LOCATION SKI	ЕТСН	1	TE	STS	DATE STARTE	D:	PROJECT:
				DEPTH	DIP ANGLE	AZIMUTH	_		
				COLLA	R		DATE COMPLE	TED:	N.T.S.:
								•	LOCATION:
		Ì					NORTHING:		
		i			······		EASTING:		
		j		i			AZIMUTH:		
<u> </u>					DEPTH:		DATE LOGGED:		
OLE TYP	түре				CORE SIZE:		LOGGED BY:		
INT	INTERVAL LITHOLOGY			ALTERATION MINE		RALIZATION		REMARKS	
		<u> </u>						(lithology, alterati	on, mineralization, structure, age
FROM	<u></u>	ROCK TYPE	COLOUR		[relations, etc.)	
267.9 272.5	Bio Grandiarite	Hog- arous		Pervasiva Potessic, soi	miting Laters	tige stren vein	War freq. 3per -	, printations & along core, 75" +6" - 60"	
	<u>-</u> [Highly althe + by d	to solonia	6.14	chlight altin ong	mind sat-up	o to 1 cm wide vero	15 Anderite dita (Fr.	m Z72-1 T. 2725) with dkay I Wech
İ	-!				testines in some section			puritic chart carts	uning Stringers + dissem syl SX 1.
	_[·		Forplatty replaced by	moth of			
	_!				at 1 w chin-sor- 95		• •	ļ	
272.5		Anderite Porphyry			miner carbonate v	uning		urrer contecte 20; La	wer ct e to
2765	286.7	Bio Grandiante			Permanine pataceric	weak	915-pay-chior-sor	Hem freq. 37. 7 por n	. ven mentation at 30; porsulary 60-70"
				grecitic	f sericitic attin : or		e. chlor-ser alt n	Comple & distingaish	more than I win system since all ventets!
			· · · · · · · · · · · · · · · · · · ·		Teadures preserved	along se	lyeges of veins	bare chlo-sec-st-	an attention selvages.
					i			Highly constant & prese	ated your from 285m to 286.7m.
286.7	299.5	Andreite Porphyry_		Peropretie	; ;			Highly crushed & Sheare	d dike from 286-7 to 290.0m
	_		1	tol play phane	1	i		major shear zone	along Lower context.
10			Vian - al-he		Recvarice Potanic	<u> </u>	av that ser we	liner .	1
29+.5	326.3	Bio Grandièrite			1 .	1			
29+.5		010 (2730)9(0+.12.			alteration and ch	10 1 moly	podenite-95-py	1 The remine u. mo 11	essoe with highly she field serietie 2005
29+.5					Espicitia etteration	den moly	- 297, 297. 297.	Mo date at e	mover related to late phase of verning.
29+.5	<u> </u>				Sericitia etteration	10 1. 1204 10 1-2 10 12	104cm, 1e - 95- py - mg e 297, 297.5. .5 % 299.0	How Freq , Soor	opposer related to late phere of verining. ", dages to 4 per on from 312 to 318.
9+.5	<u>3263</u>				Sericitia etteration vernmarging up to 50 focally minor hydroth	10 1 moly along wer wigh 298	294200,12-95-194 - 1949 (2. 297, 297-5, - 5 76 299.0 	Ven price date of the	oppoar related to late phare of verining. is deaps to 4 per on from 312 to 318. consignant e 40°, Loss frequent e 10°, 20° + 30°
29+.5					Sericiti . etteration wein margins up to 50 focully minor hydroth pistite . Some section	lon make	264cmite - 95-py - mg & 297,2975, 5 % 299.0 205 - 906alerite 11 - 92 - 426ming & 300	Yen orientations - Yen orientations - 1200 Highly Freet 2	open - related to late phase of verining. -; deaps to 4 per on from 312 to 318. consistent e 40°, less forquest e 10°, 20° + 30° me: 2963 to 300
29#.5	<u>326.3</u>				Sericitic etteration wein margins up to 50 focully minor hydroth fistite. Some section #14 to gts and some	lon in the second secon	2012011/2-95-1995-1995-1995-1995-1995-1995-1995-	Yen orientofins - Yen orientofins - (200 Highly Fred 2 (200 MAJOR FAULT 2)	open - related to lot phare of verning.
29#.5	_ 7 2 6.3 				Sericiti . etteration wein margins up to 50 focully minor hydroth pistite . Some section	10 mol along view 	2012011/2-95-1995-1995-1995-1995-1995-1995-1995-	Yen orientofins - Yen orientofins - (200 Highly Fred 2 (200 MAJOR FAULT 2)	oppoar related to late phare of verining. is deaps to 4 per on from 312 to 318. consignant e 40°, Loss frequent e 10°, 20° + 30°

٠

-

.....

٠

20 to +0% within winlett; overall py content: 5\$

PAGE 5 OF 5

CON:
ON: .0GGED:
ON: .0GGED:
ON: .0GGED:
OGGED:
<u>BY:</u>
<u>BY:</u>
<u>BY:</u>
<u>BY:</u>
-
artzacion. Scructure, age
" with some at 10 and 20" and 60"
es: 725.8-7762; muldarenter 3-
737-0-337.4
1. from 376.6 6 365m.
from 365 to 38/ from 36/ to 38/ 60-70° and a few at/0°-20° foo 346 to
60-70 and + for at10 -20 from 3+6 to
2 " 6 30" w few at 40" al 64" feet 345 to
20 5 40' with - few at Daw 60-70 from 38
297. shit & roushed good; storing es
·····
······
- 40-50° with some 0° 10° + 30° 7.04.

٠

-

M. OF CASING LOF TIN HOLE .

Freetured Cor : \$ 05.9 5 407.9; maddy, that I crathed yac. Freetured Cor : \$ 05.9 5 913.0 with shearing @ 50° 5 60°.

					I	DRILL	LOG				HOLE NO. <u>97-3</u>	
RILLING (LOCATION SKE	TCH		·····	TE	STS		DATE STARTE	Di	PROJECT:	
MILLING (LOCATION DICL	1011	DEPTH	 T	DIP ANGLE	AZIM			5,1997	MUNRO	
				COLLAR		-60"	/80.			TED: 0CT 13, 1997	N.T.S.:	
				6/ - (2-		-59			COLLAR ELEV.:		LOCATION:	
				121.2 (40		-55"		i	NORTHING: 10-7+70 N			
		ſ		182.9 (60		-54.			EASTING:			
		I I		249.8 (8=		-50	 	;·	AZIMUTH:	/80'		
		1		304 8 (100		-50			DEPTH:	432.8m	DATE LOGGED: 0CT 6- Oct 13,1997	
OLE TYPE				\$26.7 (140		-#3•	 		CORE SIZE:	NP.	LOGGED BY: H.L.KING	
INTE	RVAL.		OLOGY			LTERATION	1 1	MINERA	LIZATION		REMARKS	
	m)						1			(lithology, alterati	.on, mineralization, structure, age	
FROM	T0	ROCK TYPE	COLOUR	TEXTURE						relations,_etc.)		
0	/2.9	CASING		· ··						GLACIAL TILL		
	732.8	Rio Grandivite	Lt TO-PX	M - C.P. 1	Per	Vasing K	 سردی ا	- Au_ 6	hlan - Ser-	Chlove sar - paget ve	264 per medrupping to I per por from pe	n to lá
	-			arguitin			·····		(weak)	verning is relation	ile weak an nerrow althe margins	
432.8 (1+2+1) EN	OOF HOLE	1			in-ser solu				to Veins Vin mint	tre (40, 30-10, 50-10 - 70-	
	, <u> </u>	1				veis margi	· 1				loved with sections up to 30% l.C.	
	1	ļ	1	• •		- 108 + TA. 114					- very weak; Less they / vein per Zon;	
		1				4 altered fores					Ton is 20-30° 6 CA	
	_	1	1			attened to met					- st veinlet cut by late stage questa- Egts	and
			1			chlar-ser				I ven OGTm.	Both sens at to - ar cch. but e to	» 75
		[tic terture			90 9K-Py-M			
		· · · · · ·	1	 	comp	letel, dostroy					ron 60m To 196.5m.	
			I			alvages wide			.A. c. #5	Falsic dikelpinker	(+) at 1081 to 108-4	
			[l	‡ .	ASom			-ser - py-eti		HI 01- chlor-ser-gt from 108.9-114. Ju	,
			 		i IE Consul	the only nerry	w wara	107 0 41	ot cl.	From 140m to 150	my vein privertation is 70° to 80° and from	.
		1	1	1 1 17	stater-s	er alt's selves	<u>et 1074</u>	all sy	with contantille	21. Lan dantity inc	my vein arrivation is 70° to 80° and from my damigant selectation is 40° with some 60° a carrs to 1.52 per m from 150 Flden.	70".
						s relatively					per m from 160 m to 300 m.	
				 	+-alte	red except fo	n sein	let her .	no etta selvage.	Highly Freatured fre	m 188m to 205 m.	
	İ		ļ		mode	note patersie	151	<u>حکر ا</u>	niner .	FAULTZMES: 2	01.2 to 202.3, muddy shear your ; Side	F10"#20
			1	, , 	10%		chie	apy-ite	- a stad in 95-p;			
				 	, 				en chlor selves	۶ <u>۶</u>		
		ļ							ybdenite in	 		
			.i	iİ	İ		7%/~ ~	58 1 34		220.3.	[

-

vesidet at 25" 5 5.4.

Py-epidote vein a lan vide c.g. py from 226.6-726.8mg Vein & 10 T. CA.

PAGE 1 OF 2

PAGE 2 OF 2

.

				DRILL	LOG			HOLE NO. 97-3
ILLING CO.	LOCATION S	KETCH		TE	STS	DATE STARTEL):	PROJECT:
			DEPTH	DIP ANGLE	AZIMUTH			
		•	COLLAR		[DATE COMPLET	ED:	N.T.S.:
						COLLAR ELEV.	:	LOCATION:
	1		I			NORTHING:		
			I			EASTING:		
			۱ ۱			AZIMUTH:		······
			1			DEPTH:		DATE LOGGED:
LE TYPE						CORE SIZE:		LOGGED BY:
INTERVAL	LI	THOLOGY		ALTERATION	MINER	ALIZATION		REMARKS
			i i				(lithology, altera	tion, mineralization, structure, age
FROM TO	ROCK TYPE	COLOUR	TEXTURE				relations, etc.)	
		 1			-40-07	2- VEISATIVESU	There garens	to be at least 3 95-py vein systems, with
								enning w. chlor-ser selvages
					1 -		2) Lotor Stag	se, vin Thus (2.200) at on rehs wind alt's so
I 					@ @/ta =/	og stvages	2) Lotor Stag	se, vin Thus (2.200) at on rehs wind alt's so
 				· · · · · · · · · · · · · · · · · · ·	@ @/ta =/		2) Lotor Stag	
					ventrati	ng selvages	2) Cotor Stage	serven Thei (c.200) at any reis - 10 alt a so and atting along the server along the server along the server
					pro atta at rein-fractu patage. * Stronger	ng sulvages unes epoper labe (d vering from	2) Lotor Stage 2) Loto Stage Viein Frequency	32. vin The (c. 200) affering reis - no alt's so
					pro atta at rein-fractu patage. * Stronger	ng sulvages unes epoper labe (d vering from	2) Lotor Stage 2) Loto Stage Viein Frequency	35. vin The (c. 200) af on rest - no alt's so - the man the clining of the relianting along the line of the sourc
					reisfrate reisfrate plage * Stronger over all an e acido cogo	ing sulvages res epose late (d veining from 329.55 1,425 m month 1 - 236 month 1 - 256	2) Cotor Stage	32. vin The (c. 200) affering reis - no alt's so
					ren ella el ren fracto stage el Stronger orenellaro ne for ne la constante ne for ne for ne ella ella ella ne for ne ella ella	ng sulvages unes epoper labe (d uneinnig from	2) Lotor Stage 2) Loto Stage Viein Frequency	30, 10, 74, 10 (200) qt - 0, 10, 5 - 10 all 1 50
					ren ella el ren fracto stage el Stronger orenellaro ne for ne la constante ne for ne for ne ella ella ella ne for ne ella ella	ing selvages weining from 329.50 1/22000 meant in 256 in rein hes whire-see alth neach contact	2) Lotor Stage 2) Loto Stage Wein frequency sins(w. opti202 mg)	30-316m; 1.5 5.2 per m. 727-356m; 1.5 5.2 per m. 727-356m; 1.5 5.2 per m.
					restrate restrate stage 4 Stronger 000000000000000000000000000000000000	ang sulvages uras egosor labo (d veining from 329.50 1/22000 artent - 248 parten has parten has edir-ser alth n each contact: an.	2) Lotor Stage 2) Loto Stage Vein frequency pins(w. opti201 mg)	35. vin The (c. 200) gloog reas - no alt's so
					reinfraction reinfraction stage # Stronger 13/6 - To overall for c overall for c overall for c solver for 50/00 for the solver for 51 py in m Crear II	ng selvages veining from 329.50. 1. A 2000 ment - 24	2) Color Stage 2) Color Stage 2) Color Stage 2) Color frequency 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2)	35. vin The (c. 200) gloog reas - no alt's so
					reasting reasting stage 4 Stronger 13/6 - To 000000 for 6 00000 for 6 00000 for 6 00000 for 6 00000 for 6 00000 for 6 500000 for 6 51 py in w Creasanthe Color-1000	ng selvages res expose labe (it veining from 329.50, 1.420m at ment - 24 parte to 24 parte to 24 n each contect: an	2) Color Stage 2) Color Stage Vein Frequency sins(m. eptil 202 ang) Vein Orisint Viein	36
					reasting reasting stage 4 Stronger 13/6 - To 000000 for 00000 for 0000 for 0000 for 0000 for 0000 for 0000 for 50/00000000000000000000000000000000000	ng selvages res expose labe (it veining from 329.50, 1.420m a ment - 24 parte kas parte contect: an each contect: an quanting and miss harrow (c.20m)	2) Color Stage 2) Color Stage Vein frequency sins(w. up & 208 mg) 	30, vin The (c. 200) gloon reis - no alt's so
					reaction of the advertee of th	ng selvages res expose labe (it veining from 329.50, 1.420m at ment - 24 parte to 24 parte to 24 n each contect: an	2) Color Stage 2) Color Stage Vein frequency sins(w. opti 208 mg) 	30-316m; 15 5 2 per m; 36-327m; 2 per m; 36-36m; 15 5 2 per m; 316-327m; 2 per m; 36-36m; 15 5 2 per m; 36-360m; 2 per m; 36-360m; 2 per m; 36-360m; 2 per m; 36-360m; 2 per m; 36-37; 70-50° dopsignt; a for at 2; 327-356; 20-30° and 20° and 70°
					reactions reactions	ing solvages	2) Color Stage) Color Stage Vein frequency sins(w. opt 201 mg) // // // // // // // // // // // // //	30-316m; 1.5 5 2 pr m. 30-316m; 1.5 5 2 pr m. 316-327m; 2 pr m. 36-36m; 1.5 5 2 pr m. 36-36m; 1.5 5 2 pr m. 36-360m; 2 pr m. 36-360m; 2 pr m. 36-360m; 2 pr m. 36-360m; 2 pr m. 36-360m; 4 pr m. 36-327; 70-50 donio_f; for of 2 327-356; 20-35 are to and 70° 356-362; 40° donine f 360-382; 40° and 10°
					reactions reactions	ing solvages veraining from 329.50, 1, 220, 20 and the solution of rein has a solver ser alth an each contact: a sining and mines harrow (c. 200) s. mining w. mines From 256-432; alcopgetheria	2) Color Stage) Color Stage Vein frequency sins(w. opt 201 mg) Vein Orisity[j] Vein Orisity[j] Vein Consisty[j]	30-316m; 1.5 5 2 pr. m. 30-316m; 1.5 5 2 pr. m. 316-327m; 2 pr. m. 36-36m; 1.5 5 2 pr. m. 36-36m; 1.5 5 2 pr. m. 36-360m; 2 pr. m. 36-360m; 2 pr. m. 36-360m; 2 pr. m. 36-360m; 2 pr. m. 36-327; 70-50 donio_f; for of 2: 327-356; 20-35° and to ² 327-356; 40° donina f 360-382; 40° and 10° m. 310m; usui density decordeset
					reactions rein-fractions stage et Stronger 	ng selvages veining from 329.50, 1,229 monton in 238 porton in 238 porton in 238 and contraction and contraction and contraction and contraction and contraction and contraction and contraction and contraction bacome (6.2000), thereas 256-9 32, From 356-9 32,	2) Lotor Stag) Loto Stage Vein frequency sins(w. opti202000) Vein Crisity(1) Vein Crisity(1) Vein Crisity(1) Vein Crisity(1) Control Cris	30-316m; 1.5 5 2 pr m. 30-316m; 1.5 5 2 pr m. 316-327m; 2 pr m. 36-36m; 1.5 5 2 pr m. 36-36m; 1.5 5 2 pr m. 36-360m; 2 pr m. 36-360m; 2 pr m. 36-360m; 2 pr m. 36-360m; 4 pr m. 36-327; 70-50 donio_f; for of 2 327-356; 20-35 are to and 70° 356-362; 40° donina f 360-382; 40° and 10°
					re alta el rein-fracto stage 41 Stronger 216 To To orall an to orall an to stall an to stall an stall	ing sulvages veras exposer la be let veras exposer la be let 329.5, 1, 1, 620, 10 offer 10 200 offer 10 200 offer 10 200 offer 10 200 offer 10 200 aning we miner Marcon 256-432; alcopsette in los-ser 10 10 200 of 10 40 40 40 40	2) Lotor Stag) Loto Stage Vein frequency sins(w. ept 202 mg) Vein Orisint Visi Vein Orisint Visi Vein Construction Construction Vein Construction Vein	30-316m; 1.5 5 2 per m. 30-316m; 1.5 5 2 per m. 316-327m; 2 per m. 36-36m; 1.5 5 2 per m. 36-36m; 1.5 5 2 per m. 36-360m; 2 per m. 36-360m; 2 per m. 36-360m; 2 per m. 36-370; 2 per m. 37-370; 2 per m. 36-370; 2 per m. 37-370; 2 per m. 36-370; 2 per m. 37-370; 2 per m.
					re alta el rein-fracto stage el Stronger orall an o ne di Stronger i Stronger ne di Stronger ne di Stronger stronger Stronger General Gelar-str Stronger Str	ing sulvages veras exposer la be let veras exposer la be let 329.5, 1, 1, 620, 10 offer 10 200 offer 10 200 offer 10 200 offer 10 200 offer 10 200 aning we miner Marcon 256-432; alcopsette in los-ser 10 10 200 of 10 40 40 40 40	2) Lotor Stag) Loto Stage Vein frequency sins(w. opti202000) Vein Orisinty(in Vein Orisinty(in Vein Orisinty(in Vein Construct) Vein Construct) Vein Construct) (Xer Nein Construct) (Xer	25. vin This (2.20m) algon reis - no alt's so 36 7 - 200 veining - merelly along the series 300 - 316m; 1.5 5.2 per m. 316 - 327m; 2 per m. 316 - 327m; 2 per m. 356 - 360m; 2 per m. 360 - 4320; 2 per m. 360 - 4320; 2 per m. 360 - 327; 70-50° dominant 327 - 356; 20-30° and 20° and 70° 351 - 362; 40° dominant 350 - 382; 40° and 10° m. 3200m; usin density descreases

•

.

-

..

Veme 40' P Cd.

.

-

÷

.

.

.

PAGE OF	_4
---------	----

					DRILL	LOG			HOLE NO. 97-4
RILLING		LOCATION SKE	TCH		TES	TS	DATE STARTE	D:	PROJECT:
				DEPTH	DIP ANGLE	A2IMUTH_	OCT 13, 19	997	MUNRO
				COLLAR	-55	0°	DATE COMPLET	TED: OCT 18, 1997	N.T.S.z
				61n(=	2m [*]) ~53°		COLLAR ELEV.	· -	LOCATION:
				122~(4			NORTHING :	9910N	
				182.9~(<i>(m)</i> -53*		EASTING:	20+90W	
				273.8~	ا معا		AZIMUTI:	0'	
				304.041		-	DEPTH: 39	10.7~	DATE LOGGED: 0 = 7 14 - 0= 7 18, 1997
LE TYPE				365.7.(1)			CORE SIZE:	NP.	LOGGED BY: A.L-KING
INTE		LITH	OLOGY	1	ALTERATION	MINER	ALIZATION		REMARKS
	(m)	1		1				(lithology, alterati	on, mineralization, structure, age
FROM	1 TO	ROCK TYPE	COLOUR	TEXTURE				relations, etc.)	- Bv
0	3.0	CASING 2 6			· · · · · · · · · · · · · · · · · · ·				
3.0	135:5	BIO Grandwrite	1		Thekink multonet		terson chlin an	E. 2. 5 /4- 1	Vein Freq: 1 perm.
<u></u>	<u></u>	Bro Grandone	1		minor potessia elt				Vein Orient dios: +0, 60 + 80-
			1		ser-ther vein sel				Pyrite content: LIZ
	 }		1						
	·]	· 	· • · · ·				its decreases	From 14 m to 89:	
. <u> </u>			1		shear zonen-				Vein Orientation: + 0 and 70 dominant plus 60-23
<u></u>	-	- <mark> </mark>	-i	<u></u>	Hom 94 6106m ,		from 81m 59		Py-ite: x12 py
		-	1		Levelly hydenthermal	· ·		MAJOR FRACTURE 20	
	·[-j		partite a diacout to		- to /06m	<u> </u>	+ 39.0m To \$8.0m
	· [·			perhiling.		a lackense three		502 Lost Core from 22-3 to 25.9
	·		·i · · · · ·	İ		- A Strom	7 SET of Chlorose	H FARLTZONES:	26.9-27-1; 10cm may scan (* 70°CA.
_	·[i	l	From 105.9 & 107.5,		swith highly alt	7-7-7	16.7 - 76.8; to can moly shear @ 60° CA.
	· [1	strong chlos-servertt'n		TO to c.A.		1.0 - 41.97 major 3 mic of crushed & thered
··	·[-	-{	<u> </u>	coincident with		at at very think		
			-	<u> </u>	- zone of Fracturing		e-chlor veralite_	+	9.9-67.0; highly crushed & sheared zone
		- <u> </u>	$+ \cdots$	i –	crushing + Shtaring .		chlor-son alth	1	50% Lost core.
	·		-i	i –	Considerable clay alt		veges, veins	1 100 8t - 5 1tm	1 vei fregi deeps to 0:5 parts
		·	- 	· · · ·	of toldspaces, eservill	g and in the all	60°	+	veris printation; to E 70" ered un, receved
	·]			<u> </u>	along fractures.			· · · · · · · · · · · · · · · · · · ·	Pyrite: 41%
		·	1	·i				From 99 to 106m.	Vain freq: 2/m
		<u></u>	-i	 					Van ordintations strongest set to to ; - cate set & 40 and 20
			_	.[i		FLOW / 05.5 4 135.5	red saction w. Local gones of crushed

Mighly fractived section w. Local generat crucked MARM 120-125 ml 30% Last core.

PAGE 2 OF 4

· ·

					DRILL	LOG		HOLE NO. 97-4	
RILLING	<u></u>	LOCATION SKET	СН	1	TES	TS	DATE STARTER	PROJECT:	=-
KILLING 1		LOCATION SILLI		DEPTH	DIP ANGLE	AZIMUTH			i
		<u> </u>		COLLAR			DATE COMPLET	TED: N.T.S.:	
		1		<u></u>			COLLAR ELEV.	.: LOCATION:	
				1			NORTHING:		
							EASTING:		
		1					AZIMUTH:		i
						-	DEPTH:	DATE LOGGED:	i
				ļ 			CORE SIZE:	LOGGED BY:	i
OLE TYPE		LITHO			ALTERATION	MINE	RALIZATION	REMARKS	—i
								(lithology, alteration, mineralization, structure, a) relations, etc.)	çe
FROM	TO	ROCK TYPE	COLOUR		original texture		of chlor-ser	From 1368-129-3:	—-
1355	/39.3		pula green				on cach side	ven frequency: 20.5 veint prom.	1
İ I		Highly Actored.	 	<u> </u>					
	.	<u> </u>		<u> </u>	splaced by chlor-95-ser of 1			From 139 7 159.2; Vein freg: = 0.5 veins per	
		<u>}</u>	1	 	l		60° TO C.A.	Vein grientations: 28.90 60't	
·		<u>-</u>	1 1	╞───	1		steins on 5 % Pg	Pysite : <td>ף אדיי</td>	ף אדיי
			l 1				rephite along	Pypile - mik	
	.	ļ <u>.</u>	1	ļ			n the vein .		;
	.i		 				q 1 ≤ / λ·	FAULTZONES: 1412 - 149 : molor 2000 of shear,	
/39.3	159.2	Bio Franodiorite	10-9-9-914		Pervesive mederat				
	.			presentin_	potassic and servicit	_		sections modely, bill of	1
	.	 _			alt's with highly all			SACANIN C +0+ 5 C.A.	
	.	ļ	<u> </u>		chim-ser sections -			· · · · · · · · · · · · · · · · · · ·	1
	.		·		sheared + breechtod	•	<u>. </u>		
59.2	171.0	Bis Grandiste		<u> </u>				From 159:2-171: Veinfrege 3 pr-m	!
	ļ	Highly Altered					on and weat	Via constations: 20,40,80"	
	.	<u>}</u>	+	textures	c.6/00-500-45		Versing in	Pyritain dessan Fin Stas 122.	
			i	preplement.	1		isted somes		
-	·[·	+		1 - 4 - 27		
7/.0	203.0	Bio Grandiovite	K494-9.00	<u>h ~-c-e.</u>	maderate perces			+.5cm) From 171-182 m Core, highly Frist, & crushed & sheared goes; 11 * 187:0-187:3, 196-2-1865, 137:2-	92.01
			farit	1 50 472 1	potarsiy alterationed			Vein freg: 24 sins per m.	.197
	- [•		-	ser and chan alterni		2 cm) atteration	Vein Orientations , 40', 60', 70' ; 4 faw at 20-30'.	
			_	-	along tractures and zonas of shearing .	411419	7-3.		

٠

- ----

.....

.

÷

.....

- -

PAGE 3 OF 4

.

~

					DRILL	LOG		HOLE NO. 97-4
DRILLING	CO.	LOCATION SKE	тсн	1	TES	TS	DATE STARTED	ED: PROJECT:
		I		DEPTH	DIP ANGLE	AZIMUTH		
				COLLAR			DATE COMPLET	ETED: N.T.S.:
							COLLAR ELEV.	V.: LOCATION:
					(NORTHING:	
							EASTING:	
		1					AZIMUTH:	
				1			DEPTH:	DATE LOGGED:
OLE TYPE] 			CORE SIZE:	LOGGED BY:
	RVAL	LITI	OLOGY		ALTERATION	MINER	ALIZATION	REMARKS
		ļ						(lithology. alteration, mineralization, structure, age
FROM	I TO	ROCK TYPE	COLOUR	TEXTURE				relations, etc.)
203.0	-1		Hgg-pk	- c q	Parvasia moderate	Chlor-S	er-pn-at	Relatively good core ; up to 50 cm preies, Fract @ 40-15; and
	• / • • • • • • • • • • • • • • • • • • 	 	1	granitiv ,	Potossic alt's with			
	- 	1		renigranula	generally narrow		errow alt's saly	
	-	}	1	1	chlor-ser calwages on			
-	1			• •	Wen margins .			FRom 227-246 m:
		1 1		Ĩ	From 246m verni	From 21	192-219.6 m	vain freq: 3 to 4 ser m.
	-1	1		1	graduelly becoming		ation of highly	1 this orientation: 20-30; 40°, 60° and 70- 80°
	1			1	stronger w. miler	I	-chlor-py 300	•
	-/	1	1		alteration (char-ser)	1 1 -	ey verining up to	· · · · · · · · · · · · · · · · · · ·
	- 				margins	9 ° °	. Overall paris	•
		1			Zone of frecturin			- [-
		1	1	1	and shearing form	Pror_23		Pyrite: 3%
	1				283AE 31650 W			4. MAJOR SHEAR : 276.8-277.0; muddy skeer 3me, Slow
	ĺ				clayalt's of		5-2 pywith veri	
			- 		Fell spars and clay	<u> </u>	Lighty alt a	
	i			-+	concentrated along		SCE- P3	Voin orientation: 10-30, 40, and 60-70
	i	1	 	· · · · · · ·	Frietures		confined to ve	eighte (40 + 60-70' are most d'anight direction
	1	<u>İ</u>			۱ ۲		dission.	Pyrite: 22
		<u> </u>			, 		in Veindenti	
	_i						6 5287m.	FRom 301-316.5:
		1					<u> 0.6 t. 282.8,</u>	8, vain freq.: 2 por m.
	i	i	;	i	1	2 me of - G	Hor-sergt a	estin ven Orientations: 20-40° and 20-80°

٠

......

.

. . . .

· · · • • • • •

.

PAGE 4 OF 4

·

•

					DRILL	LOG			HOLE NO. 97-4
RILLING	<u></u>	LOCATION SKE	ŤCH		TES	TS	DATE STARTED);	PROJECT:
		LOCATION		DEPTH	DIP ANGLE	AZIMUTH			İ
		 .		COLLAR			DATE COMPLET	ED:	N.T.S.:
							COLLAR ELEV.	•	LOCATION:
				1			NORTHING:		
							EASTING:		
							AZIMUTH:		
						•	DEPTH:		DATE LOGGED:
DLE TYPE							CORE SIZE:		LOGGED_BY:
INTE		*	IOLOGY		ALTERATION	MINER	ALIZATION		REMARKS
1015	KVAL		102001						, mineralization, structure, age
FROM	TŪ	ROCK_TYPE	COLOUR	TEXTURE	·			relations, etc.)	
	•					TRACE M	LYBDEWITE of 2	97.2m Vancers 61	TH mony are late stops cotting
	1			1 1		Vater 9	13-04 veine	Chlar-str-py-q	
			 			20° 5 CA.		FRom 3/6.5-	
			 	1 1		TARE M	WAGNITE AZ	992 Ven Frez :	
	1	• • • • • • • • • • • • • • • • • • •				and at 30	om in I cm aff.	My Vein Drienta	in. 30°, 40° and 60-70°
	- <u>-</u> -			1			120-30 G CA.		
	1					FRom 3	165 70 3210	MAYOR SHEAR	2011: 316.5 E 717.8; Kighly Sheer
	- /						JACTERSES.	· · · · · · · · · · · · · · · · · · ·	and told gone; shearing at a
	-			1 1-			chier-sor-py-q	FRom 321 6393	81
	• 	- -						vein freg: d	reps to 3 per m.
•	1390.7	END OF HOLE .				FROM	03 6 382,	Vein Drie tation	. 20, 70-40, 70-80; of the of 50-60
		₁- │] I		و ورز ورو	econes worker	Pyrite 115	23
	-		1			Thinner	veins and rain	FROM 7+7.8-71	32.
	-)	1				maryins	- Lass pyott.	Veinfreg.	AV. 4 (Locally ve t= 7) por M.
						+ 17 317.5	white at veins		in +0" 60-70, 90" (ster at 0-20)
						mide w. ve	my catle pro cut al	er pyrite: 22	
							my of voins.	FROM 302.0.	
		1				FRM 18	2.0-370.7	Veinfreq:	4 56 perm.
			1			be - mine	stronger, more p	yotics to orientation	- 40°, 60°, 70°-80°
							50.5 cm = 5- 10- 14	ins Pyrite: 25	3 %-
						Trere Sp	helerite of 38.	52	
						in ati-	my veince to e do'	ACA-	

۸.

.

.

.

.

PAGE 1 OF 5

•

					DRILL	LOG			HOLE NO. <u>97-5</u>
RILLING	<u></u>	LOCATION SKE	тсн	<u> </u>	TES	TS	DATE STARTED		PROJECT:
				DEPTH	DIP ANGLE	AZIMUTH	007	15,1997	MUNRO
AUPRI	E DIAMON	 10		COLLAR	-55"	0'	DATE COMPLET	ED: OCT 20, 1997	<u>N.T.S.:</u>
-	ALL LTP.			61 m (200') -5'2*		COLLAR ELEV.		LOCATION:
-		1		1/22m (NORTHING:		
				182.9m (EASTING:	4+00 W	
		ſ		243.8m (8001) -78°		AZIMUTH: _(· · · · · · · · · · · · · · · · · · ·
				307. m (-	DEPTH: 9/		DATE LOGGED: 05716/37 - 057 20/97
OLE TYPE				315.7 m (12	.od) - 46		CORE SIZE:	N.D.	LOGGED BY: N.L.KING
	RVAL I	LITI	IOLOGY		ALTERATION	HINER	ALIZATION		REMARKS
								(lithology, alteration	, mineralization, structure, age
FROM	I TO	ROCK TYPE	COLOUR	TEXTURE				relations, etc.)	
0	25.6	CASING:	GLACIAL	TILL	Limconte-hem.	25-04	chlor-ser vering	From 25.6-45	·
25.6	• · • • • ·	Big Grandiorite			staining along free				355 pro (Av-4/m)
~~~~	25.6 195.0 13/00		- <del>198</del>	an the	and vein lets of 96-	Prist From			ns : 10 - 20° 40° 60° 70° 100 (00° mistism
	-(		1		Feldsman alt'd E				
	•			<u> /≁</u> 	clay . Agortic vente			Econ 45- 72	bev
	-!! 				outried talm.			Ven freq	5 per m.
·	∎¦╾╼╍╼╌╌┼ ┨		1	1	Prevasia potassie al	1		•	1: 20' 30; 40' 60' 70: 40'
	-[  				I sovietie alt's with			1	20-30' rein sets must common)
	-[] 	-	-		pronounced chir-ser v			Pyrite: 3	x
	-!łł I		1	1	I Telvages		becoming strong	tr From 72m to/m	m note increase in vein density
	-[]		1	1			· 4 to 50% pm		627 per m
	-1			1	Veining along core to	the stars	Stor up 6 0.50	mide. Ven orient	ation: 30-90, 70-80, + Fare 660 + 4 fem
	-   			1	12.0 7 C.A. Las stre		,	Pyrite : 3	
	-				ser-chlor-g5 altin		mite noted along		784 to 79.20 Stearing & to to 60
	=    .			1	Selveges especially	frictures	parallel to core		4: 88.5 to 89.2 , From 92.0-99.5
				1	From 99.6 m To 153	m. frm 94.6	to 95.5	1 	modely crosted 3 one w. shearing C. 30" 64
	-   				Salvages consist of		mybdentte don	1 Im FROMIOS to 1:	53 ₇₂₁
	-1  				chir-ser-of and		at 95 6. C.L.	Vein densili	; drops to \$25 perm.
	-   1				dirsin PT; Locally	from 94.		Vein Orient	tim: 10-20; 30-10; 70-50; 0 fay e 50
	-   		1	1	10055%.	malybe	ate (+ 6.9) From 113	2 Pyrite: 23	t 3 2 locally up to 52.
		-			- <u> </u>	To 117.4 e	Imp 95-17 vein	0.27	ming @ 10" \$ 20" 7 C.A.
							Shear- 70ne . (.		Zava: 113.4 - 114.0 (mully) & 20° G.C.

. .... . ..

.....

....

----

.....

. . . . . . . .

_____

HOLE NO. 97-5 DRILL LOG PROJECT: TESTS DATE STARTED: LOCATION SKETCH DRILLING CO. AZIMUTH DEPTH DIP ANGLE N.T.S.: · DATE COMPLETED: COLLAR LOCATION: COLLAR ELEV .: NORTHING: EASTING: AZIMUTH: DATE LOGGED: DEPTH: LOGGED BY: CORE SIZE: HOLE TYPE REMARKS ALTERATION MINERALIZATION LITHOLOGY INTERVAL (lithology, alteration, mineralization, structure, are relations, etc.) COLOUR | TEXTURE то ROCK TYPE FROM . . . . . Trace maybdenite at MATOR SHEAR ZONE: 1459 To 1977; major crushed ( sheared 300 1531 6 184. 20 shearing e 30 to c.A. 119.2 along a 2 cm very Thomy vein) al 40 DCA. For 103-159-1 vaindonsity. 8 por m. Ver Onit dim. 30-45 and 60-70" Pyrite: 3% FROM 159-179 m. Vein density : 3 \$ \$ + perm. 1/2 in Ortent dia: 30-40 and 60=70 ( a few + 70 m 50) Fractures: 30, 45, 70-85 Parite: 2% FROM: 179-190M: STrong The py seining ___ Min freq: 5 Merm. from 179 - 190 mi Vein privatelia: 20', 40,60' 70-80 11 a to I can series w. up To Pyrite 3% 502 py ; vein erectations FRom 190-195.6mi 2 20;40 + 60-70 Vem density : 3 per m. vero Orrestolin: 40, 60-70 Pyrite : 14 to 2% STRONG SAGAR ZONEO 189.4 \$ 189.6; moll, crushed good point. STR 5006 MEAR = 198-6 to 198.0; Steamant & 30-40 GCA clay - ser- chlor in minor 95- py verying 198.0 Bio Grandiorite, Pab green Shod & brill 195.6 1000 ind terms shide but settion Histy altered; shared,

PAGE Z OF 5

.

1 brd.

destroyed.

PAGE 3 OF 5

.

				— · · · · · · ·				
RILLING	CO.	LOCATION SKE	rcii	1	TÉ	STS	DATE STARTE	D: PROJECT:
				DEPTH	DIP ANGLE	AZIM	лтн	
		I .		COLLAR	1	1	DATE COMPLE	TED: N.T.S.:
		1			 	1	COLLAR ELEV	LOCATION:
				1		1	NORTHING:	
				1	[	· ·	EASTING:	
		1				1	AZ IMUTH :	
							DEPTH:	DATE LOGGED:
OLE TYPE	,					·}	CORE SIZE:	LOGGED BY:
	TRVAL	เ เกามี	OLOGY		ALTERATION	<u> </u>	MINERALIZATION	REMARKS
1911	KYNL		02001		1	1		(lithology, alteration, mineralization, structure
FROM	   TO	ROCK TYPE		TEXTURE				relations, etc.)
198-0_		Bis Grand wite			Pervosite pinh pot	erric I (	the at an utining	From 198.0 - 204.8
///	╸╞╼ <del>╧</del> ╘┵╩╬┈╸ ┃	1-0/2-5/##98(789(102 1	12.79-200	granitic	atteration	·····		Verin freq: 3 perm.
	•¦	1	1	U		<u> </u>		Very prientation: 20, 30, 40, 60
· · · ·		·   • · · · · · · · · · · · · · · · · ·	1		<b>i</b>	- 1		pyrite: 2%
209.8	2/0-0	Ain Grandioiste	Role seren	hrescietst	anicial textures re	placed		
	1	Highly Alterd.	1		164 bill chlor-son-0	t		
Z10 0	7/7-6	Highly Altered. Bio Grandwite	Han - pick		1 Pervening moder	st 1 00	each chlor-ser- on al	From 210 - 2221
		 	1 ** *	grantis	alteration :	11000	ing from 210.0-22.2	Veinfas: 2 pen mi
			1	1	1		- /	Vain Orientation: 20: 30: 40 and 70-30
· · · · · · · · · · · · · · · · · · ·			ļ · -	1	·)	( 1		py-iter 1x
	_	· /		ļ		1	<u>m 222 297 mj</u>	FROM 222-2++m:
			1	1	, - <u></u>	540	ma delar -ser-str-pe	ventres: 4 55 pirm.
	-!	1		1			nine - sterna /0-2	0'x ce Orientations: 10-20, 40; 50-60, 70-80
	-1 !						~ CT.	Pyrite: 2%
	-    .			1	1		ace melybelonite in	FROM 244 - 249
	-1						mueinlits a to the	
·	-1	1						ren Unentations: 20, 40-50, 170
·	- i							Pyrite: 1t
	-	-r <del>-</del>	i .					
	-				1	; J Z	<u>rang (/C/hizak </u> T/m	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
				+		2 1	my veining from 9-260m.	Vein Freg: 455/mi
						2 1	9-260m. Dor Molybdenite	

- -

.

-

vein (commide) from 257.7 \$ 257.7.

PAGE 4 OF 5

. .......

DRILLING	CO.	LOCATION SKE	TCH	<u>.</u>	TEST	s	DATE STARTE	D:  PR	OJECT:
				DEPTH	DIP ANGLE	AZIMUTH	1		
		——   .		COLLAR	[[]		DATE COMPLE	TED:	T.S.:
						COLLAR		.:LO	LOCATION:
							NORTHING:		
		i i					EASTING:	· · · · · · · · · · · · · · · · · · ·	
							AZIMUTH:		
				İ			DEPTH:	DA	TE LOGGED:
IOLE TYPE	!						CORE SIZE:	:L0	GGED BY:
INTE	RVAL	LITH	IOLOGY		ALTERATION	MINER	ALIZATION		ARKS
FROM	1 TO	ROCK TYPE	COLOUR	TEXTIRE				<pre>(lithology, alteration, m { relations, etc.)</pre>	ineralization. structure, age
	-				Fl Markin In		helde ite	Ener 260-276	· · · · · · · · · · · · · · · · · · ·
	•   <u></u>	;			Clay alteration along	-11. Face . F/19	to CA Ven (10		9: ZG3 per m.
	-	r	1		224m # 287m	. @ 262m		Ven Orientation: 20, 30, 40-50, 70	
						1		1	6 30 +0; 50-50; + 70-80 Fro
	- <u> </u>		1					205-276	
		· · · · · · · · · · · · · · · · · · ·			1	1		Pyrite: 12	
		1		1		week ve	ining generally		
	i			,	1		al strong	Leis freq: 2 porm	trong shearing at 10° t 30°, changing t 3 28162
		1			1		rein s (ah-ny ve)		and D; 70-90, 60-70 from 281-2
		1	-		I I	1		Pyrite · 12 62%	
	<u> </u>	ļ	 _	[ 	l 	 		1 prom 207 6 2924	,
	.i		1	 	1 1			Ven freq: 3 per	
_	.	<u></u>		/	 			Ven Constation: 10,	
	.			 	• }	_ <u>_</u>		SHEAROD & CRUSHED ZON	288.8 \$ 290.7
·		l		· 	<b> _</b>		\$ 317.6 m.	From 292 - 317.6 mi	
	-	<u></u>			, 		Convey Stronger		per m.
	-	<u> </u>		i	, 	w. increas	e in pyrite	in Oriontation: 10-	20, 30640, 60-70', 80-
	-[	ļ		i	<u> </u>	<u> </u>		Pyrite: 21 t 32	
		BIO Granodiorite	-		1 inorddy, cruthed 3 me	- <del> </del>		A Few pink aplite vera SHEAKING C 30°-+0°; a	: (Sam 13 1000 wide) from 308 - 716 m.
317-6									

					DRILL	LOG			HOLE NO. 97-5	-
RILLING	CO.	LOCATION SKET	rCH	1	TE.	STS	DATE STARTE	D:	PROJECT:	=
				DEPTH	DIP ANGLE	AZIMUT	H_			
				COLLA			DATE_COMPLET	TED:	N.T.S.:	
					[				LOCATION:	
		Ì				 	NORTHING:			-
							EASTING:			
						1	AZIMUTH:			•  
		1				ŀ	DEPTH:		DATE LOGGED:	•
LE TYPE				1			CORE SIZE:		LOGGED BY:	•] 
INTE	RVAL,	LITH	DLOGY		ALTERATION	MI	NERALIZATION	l	REMARKS	:! 
		[						(lithology, alteratio	n, mineralization, structure, age	i
FROM	T0	ROCK TYPE	COLOUR	TEXTURE		i		relations, etc.)		Ì
329.0	406.0	Bio Grandinite	43- Pink_	Scentra	Paperesia potesti	Ch/o	-ser-gh-py verning	From 329-341	:	
	ļ	1	[ · {	alt's i and chlor-a			Vein Fregs 3	Vein freq: 3 m- m.		
	ļ <u></u>	 	· · · · ·	alt's slong very me	~1/ij		Kein aniestofin	; 20-30; 40; 60-70		
	-İ		↓ ↓	<u> </u>	·			Pyrite: 2	*	j
	<u> </u>	<u> </u>	 ;		 		<u>.</u>	A few pink felsic a	likes up to loc-wile.	į.
		ļ	 	ļ	VFrom 341 -382, m	ner STA	ang Chlor-stra	From 3+1-373		.i
			 	L	clay atteration of		to vein system	rain Freq: 5 p.		.i
	.	l	l †	ļ	foldspars and along	stra	+ 0 -20 ECA.	Ven Orient Sign: 0-2	0°, 30-+0° 60-75 + 80°	
			د <del> </del>	ļ	Fractures.		ing from 341-373			ļ
	-		• {	1	, {	Trace	mylybdenite @	MATOR SVERR:	356.2-356.5; molly, crocked gove	
	· [		 				in a chlor-ser pr-		361.6-362.0; molly, crushed shear e	
	-		1	i		75-	em e for t c-1.		x4+ chird 2010: 362.0-375.7, Se	ming @ 30
	-	]	l						- 373.0- 375.0; SUX Contant.	4
<del></del>					1		373 6 406	From 373-400		-
_			+	+			gehlop-ser-m-q	t vein freq: 7	par m.	1
				·j	1		ing.		10 - 20', 40', 60-70' (strayst rearing	20 / 10
	-		į	1	1		e molybelante	Pyrite: 31 4	· 7Z·	4
	-			<u> </u>	1		5.2 at the conduct			4
		l	<del> </del>	1	+	WITA	major Shear Jone	HI GIT ON THE	alybdowite is 30-40 cd. gt marchen sor ver	4
206.0	4/1	DEEK. B-1	4	Del 1	relationly unattered.					1
	-170.1	05-Foldson Bookyry	1-774	nentic	I TOTTING UNDETERED.	×		tohedral fullspors (2.2)	AN ALLENDER	ł

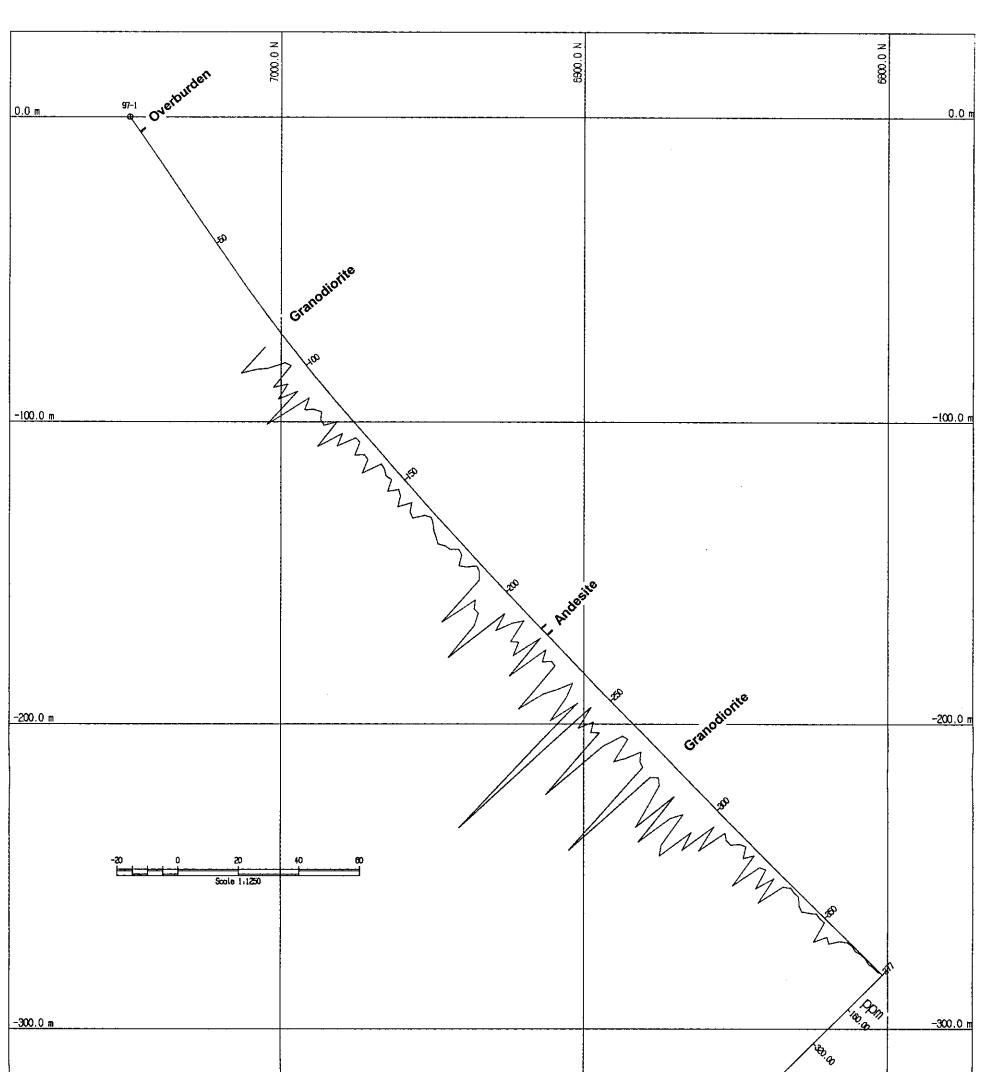
PAGE 5 OF 5

.

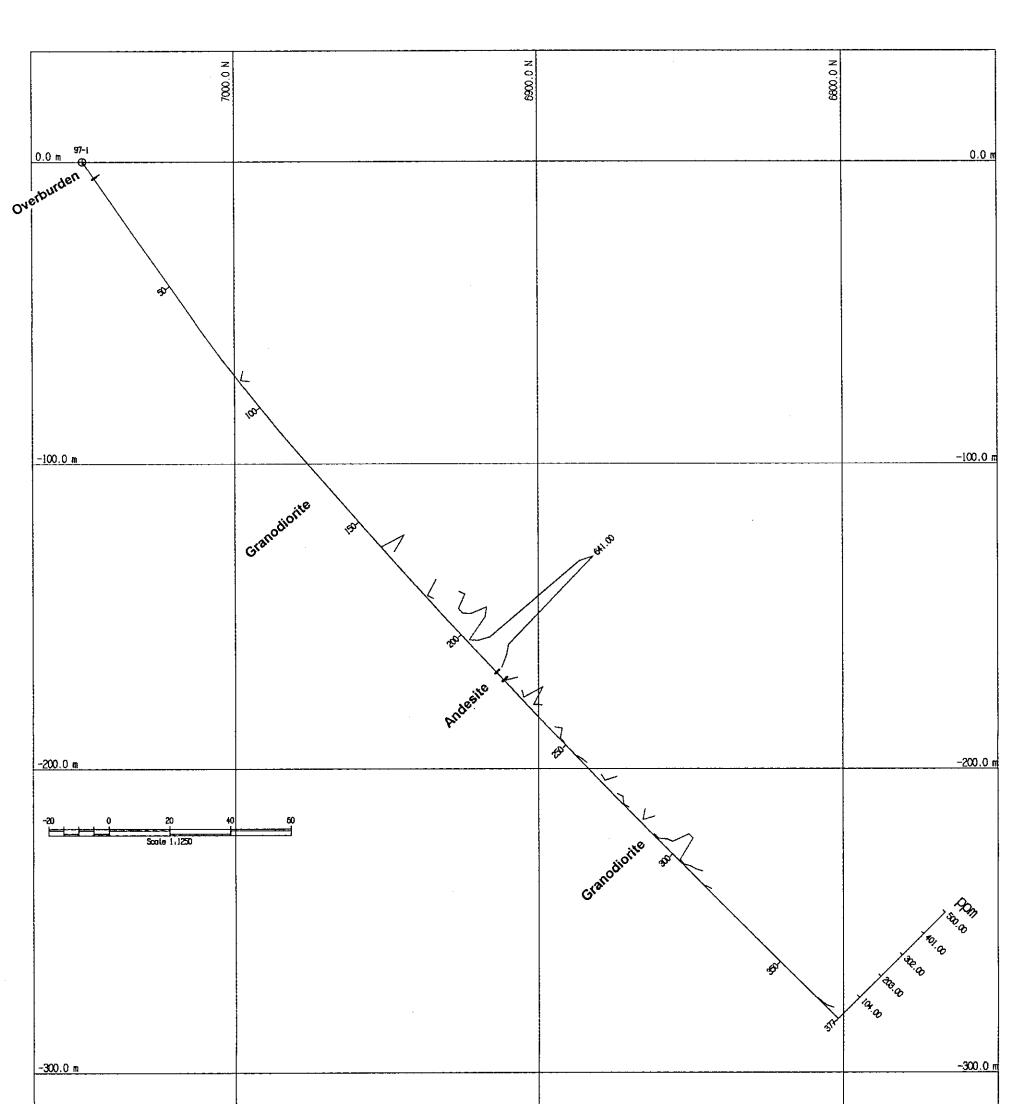
.

.

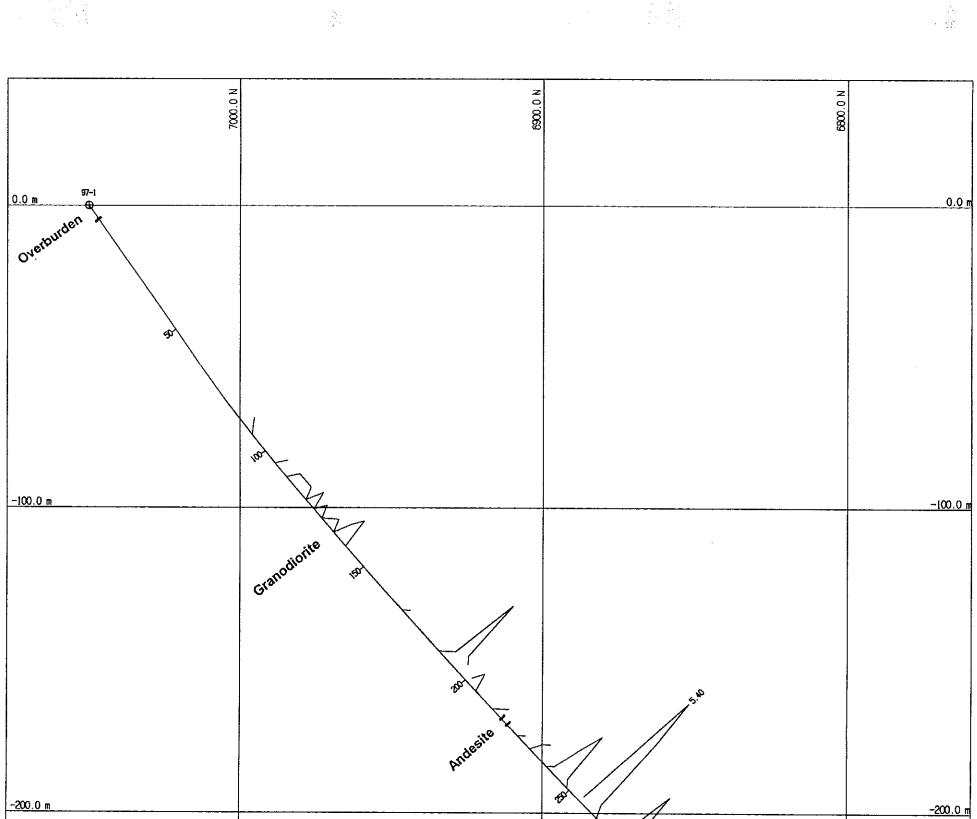
the second second second second second second second second second second second second second second second s


.

.


-----

Appendix 2 Diamond Drill Hole Sections


,



	The And And And And And And And And And And
Almaden Resources Corp. Vancouver Office Vancouver, BC 689-7644 UNITS : METRES DATE: 97/12/20 TIME: 10:50:38	North-South Section, Looking East Drillhole 97–1, Section 400 Cu Geochem Analysis(ppm) Software by (B1001 Services Inc.)



	· · · · · · · · · · · · · · · · · · ·	
Almaden Resources Corp. Vancouver Office Vancouver, BC 689-7644	North-South Section, Lo Drillhole 97–1, Sect Mo Geochem Analysi	Ion 400 w
 UNITS METRES DATE: 97/12/20 TIME: 11:2	2,03	Softwore by DEMODAL Services, Inc.





K

1

Granodiorite

<u>-300.0 m</u>

-20 11

	Almaden Resources Corp. Vancouver Office Vancouver, BC 689-7644	North-South Section, Looking Drillhole 97-1, Section 40 Ag Geochem Analysis(ppm	g East 20 W 1)
1	UNITS : METRES DATE: 97/12/20 TIME: 11:03:10		Software by GEMOM Services Inc.

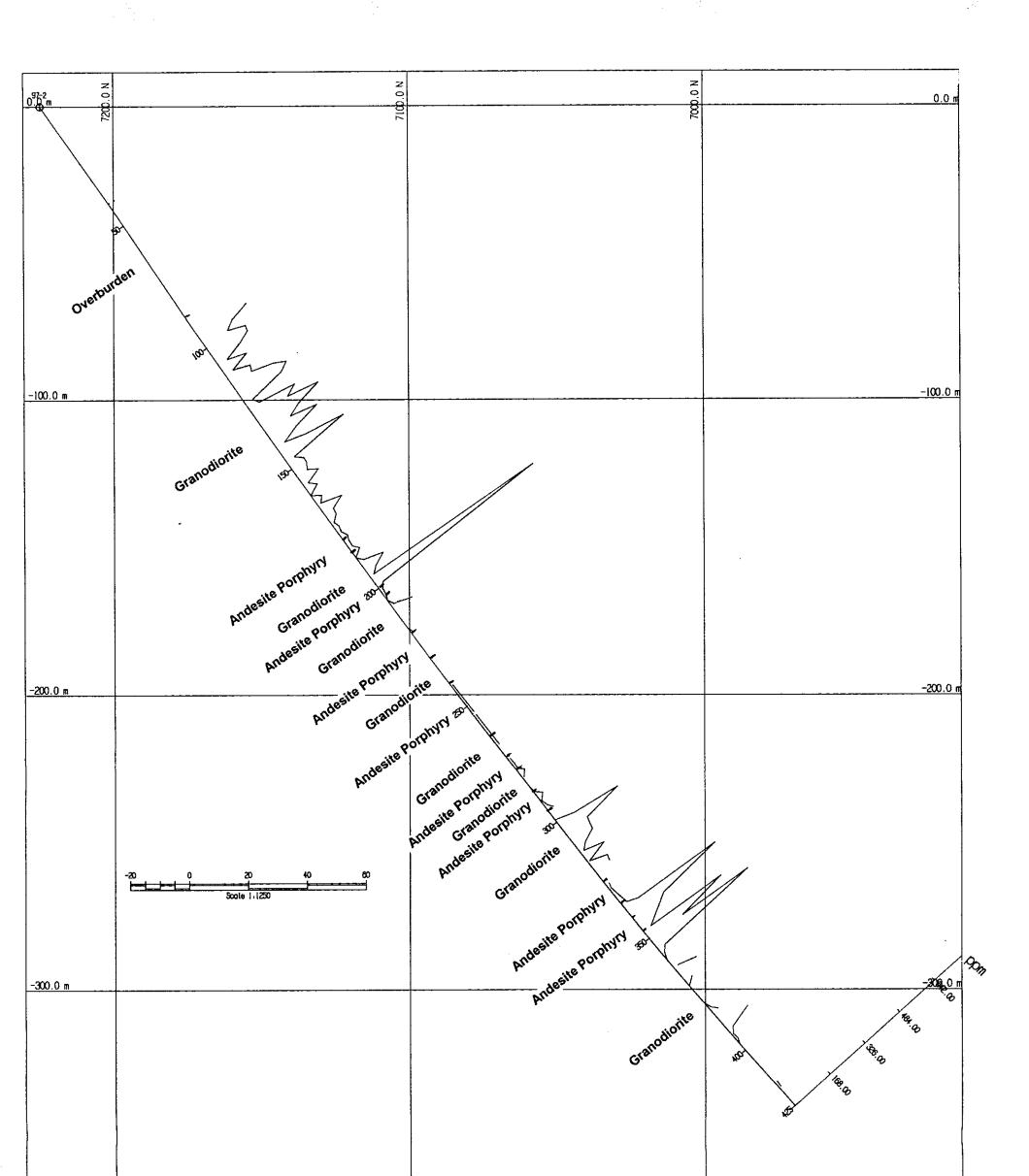
.

40

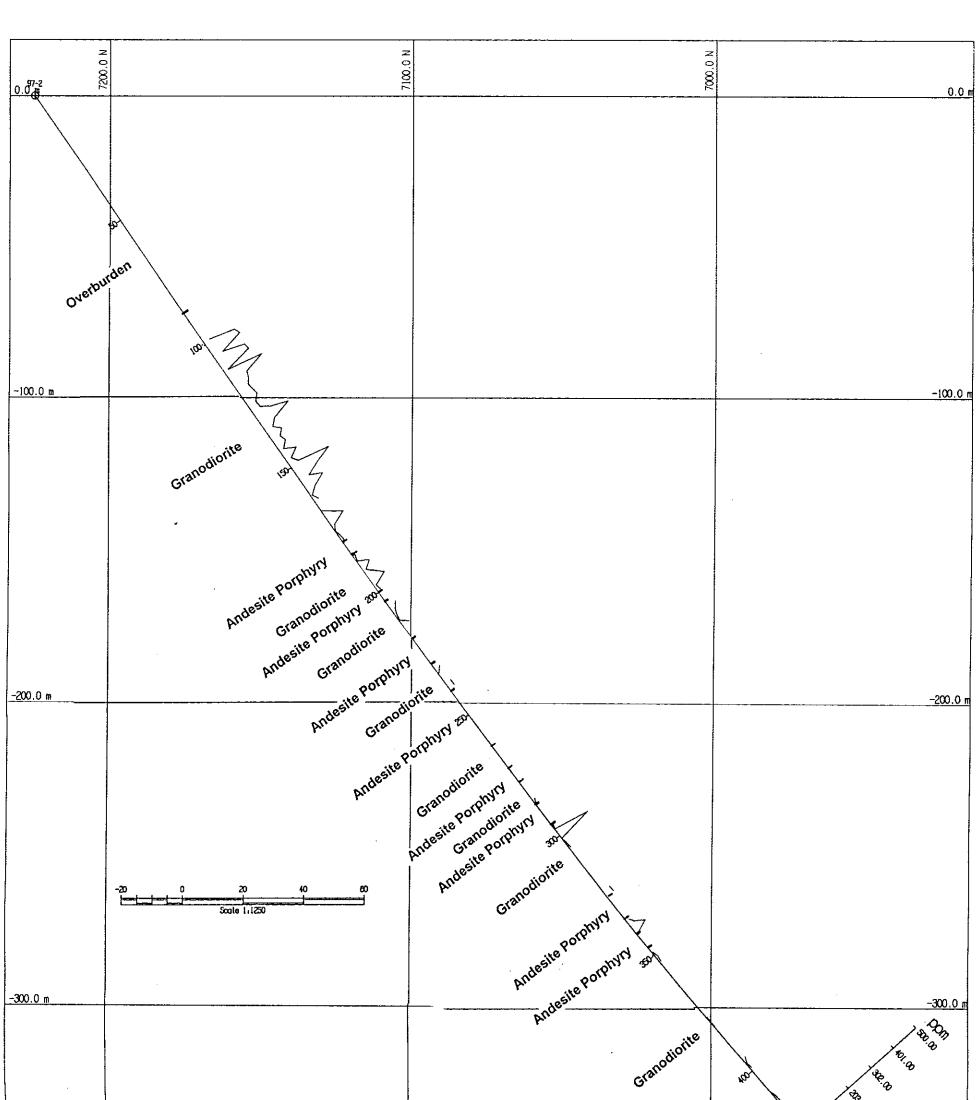
20 Scale 1,1250

80 ⊟

2011 ^{ک (}

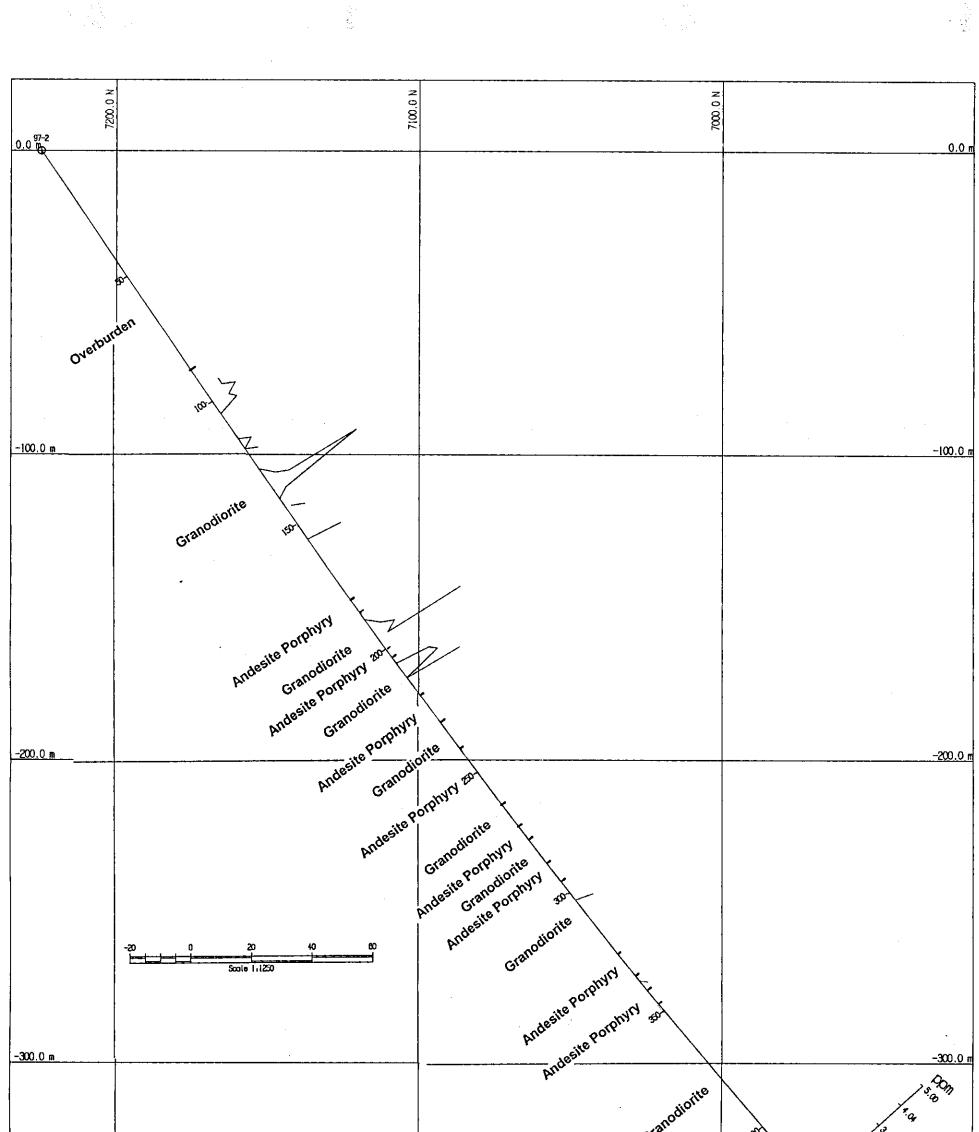

13.04 13.04

<u>-300.0 π</u>


. . . . . .

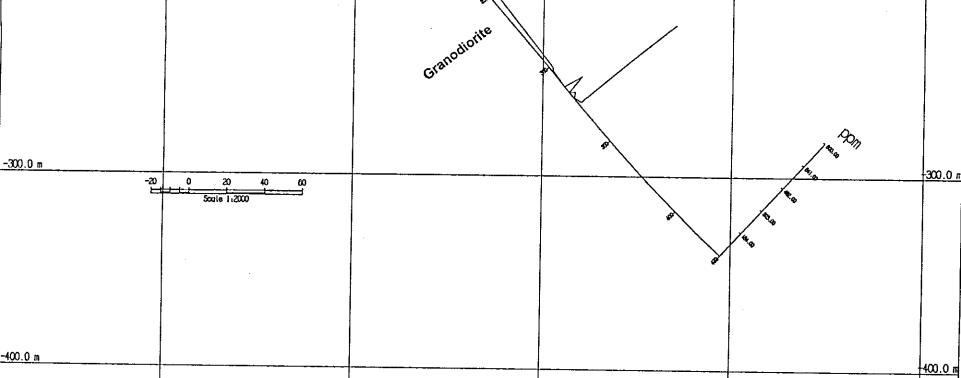
10

Ň

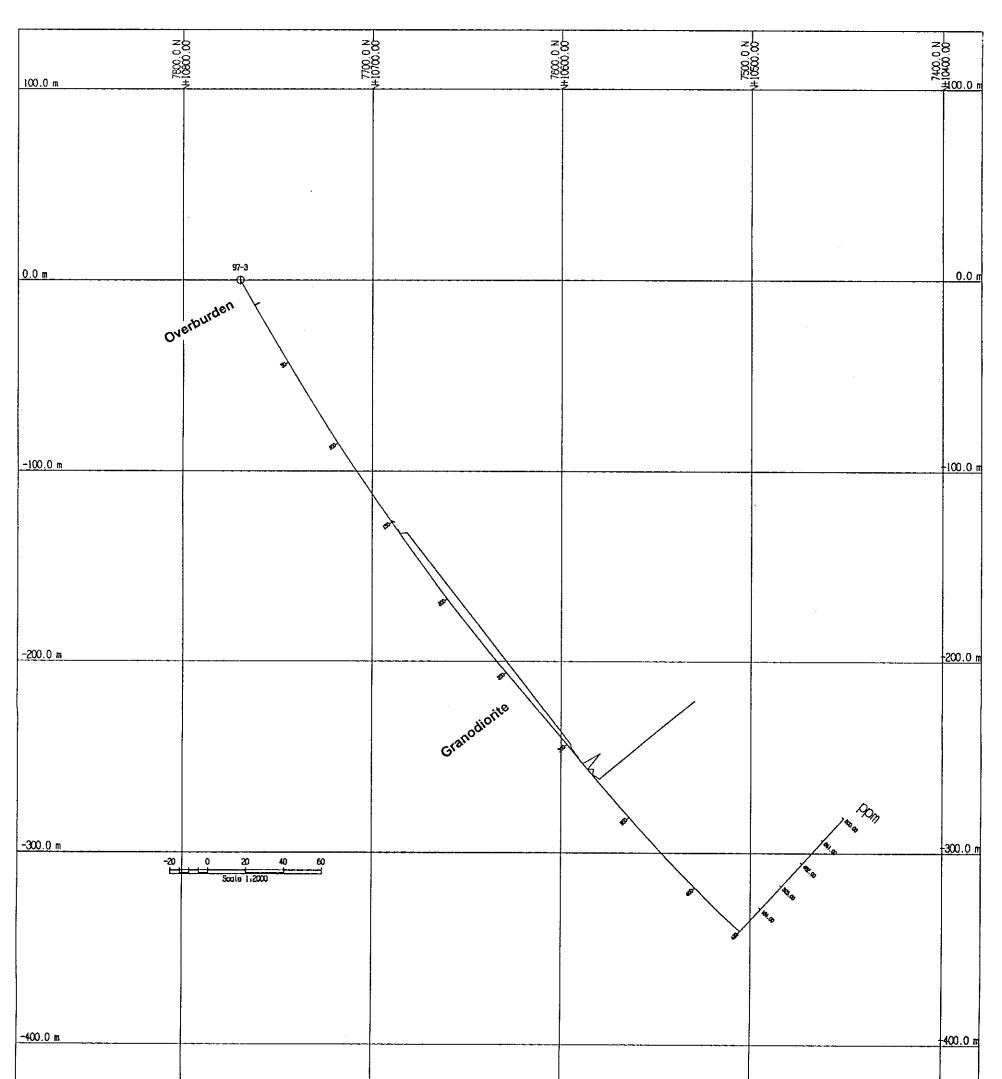



Almaden Resources Corp. Vancouver Office Vancouver, BC	North-South Section, Looking East Drillhole 97-2, Section 700 Cu Geochem Analysis(nom)
Vancouver Office	North-South Section, Looking East Drillhole 97-2, Section 700 Cu Geochem Analysis(ppm)

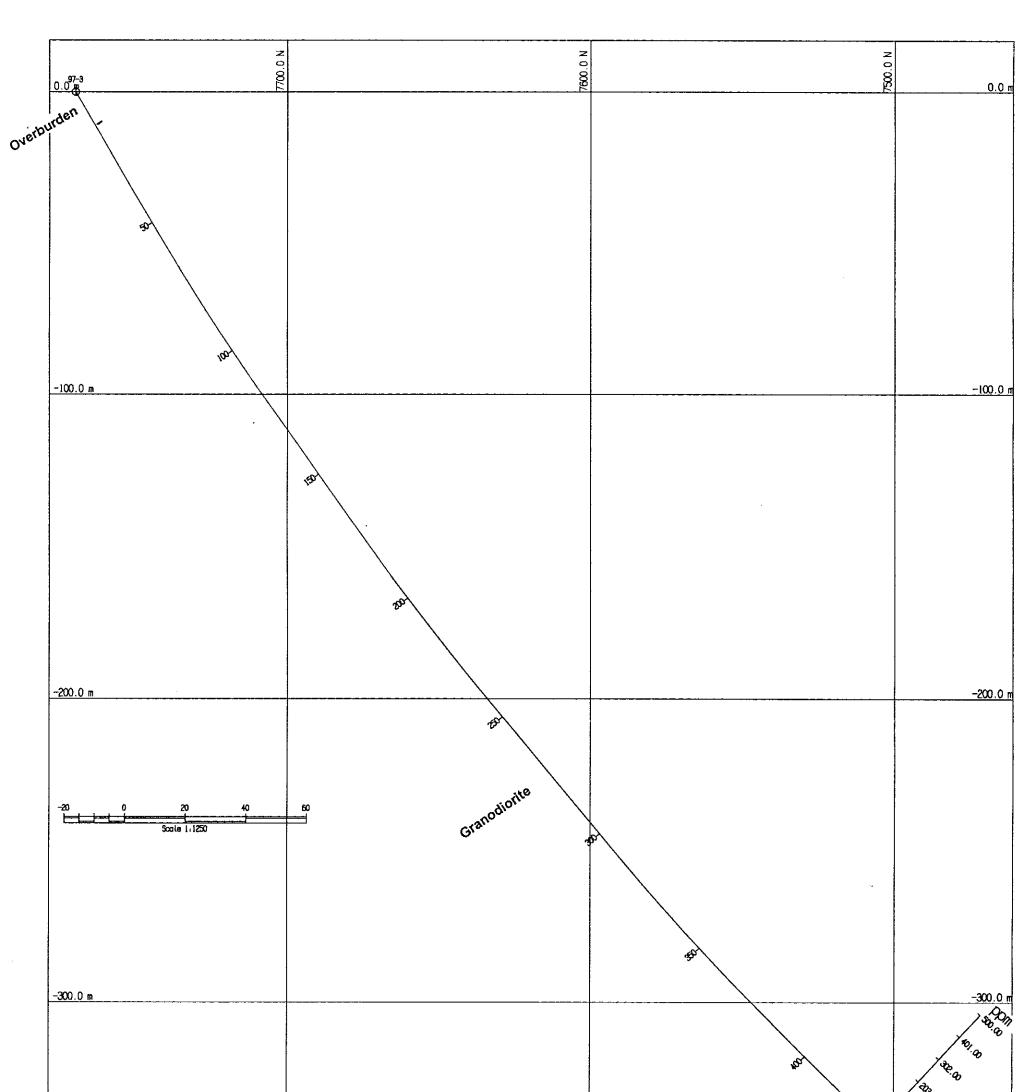



 $\frac{1}{2}$ 

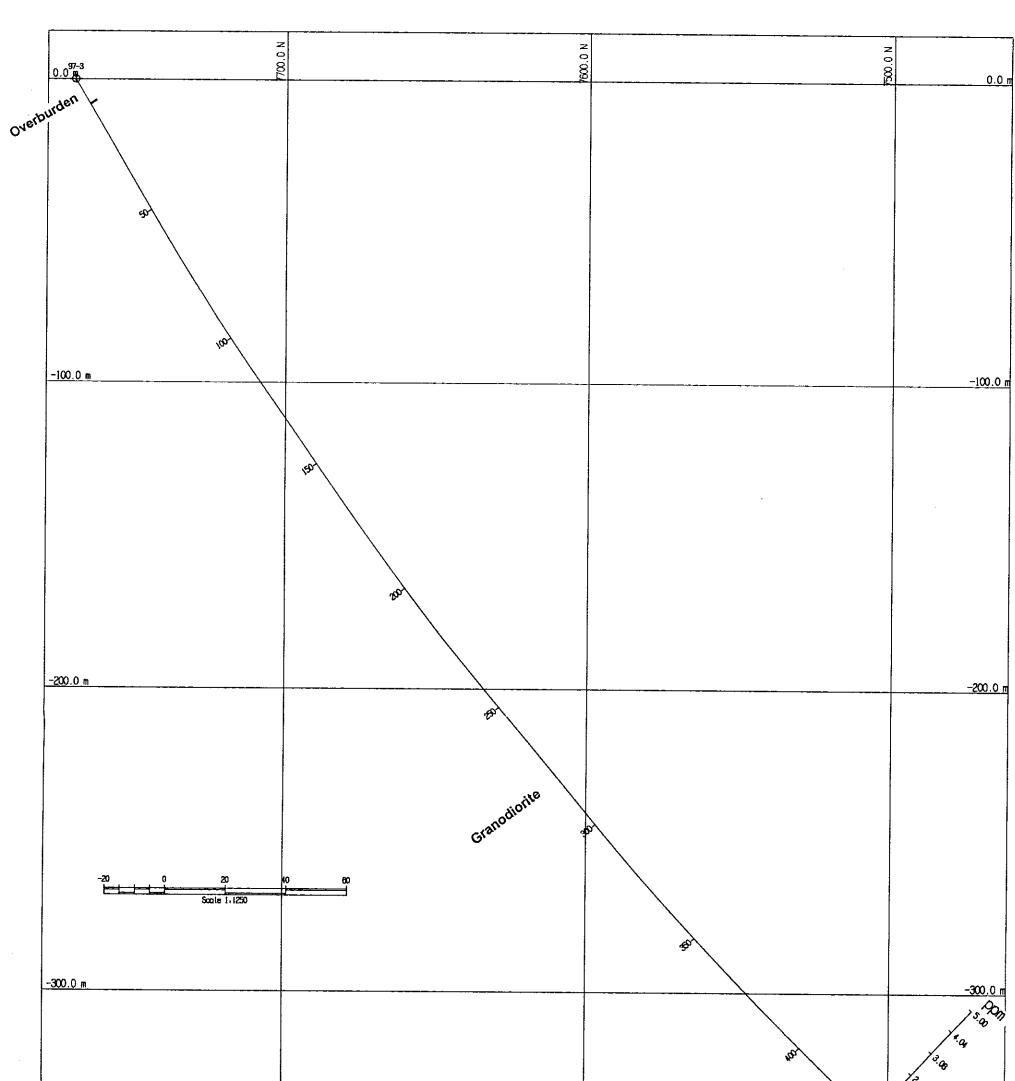
	14.00 H
Almaden Resources Corp. Vancauver Office Vancauver, BC 689-7644	North-South Section, Looking East Drillhole 97-2, Section 700 w Mo Geochem Analysis(ppm)




	Granot	12 ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·
Almaden Resources Corp. Vancouver Office Vancouver, BC 689-7644	North-Sout Drillhol Ag Geo	h Section, Looking East e 97-2, Section 700 W ochem Analysis(ppm)
UNITS : METRES DATE: 97/12/20 TIME: 11:07:26		


:




Almoden Resources Corp. Vancauver Office Vancauver, BC 689-7644	North-South Section, Looking East Drillhole 97-3, Section 2650 W Cu Geochem Analysis(ppm)
UNITS , METRES DATE, 97/12/20 TIME, 10,55,15	Software by GENON Services inc.

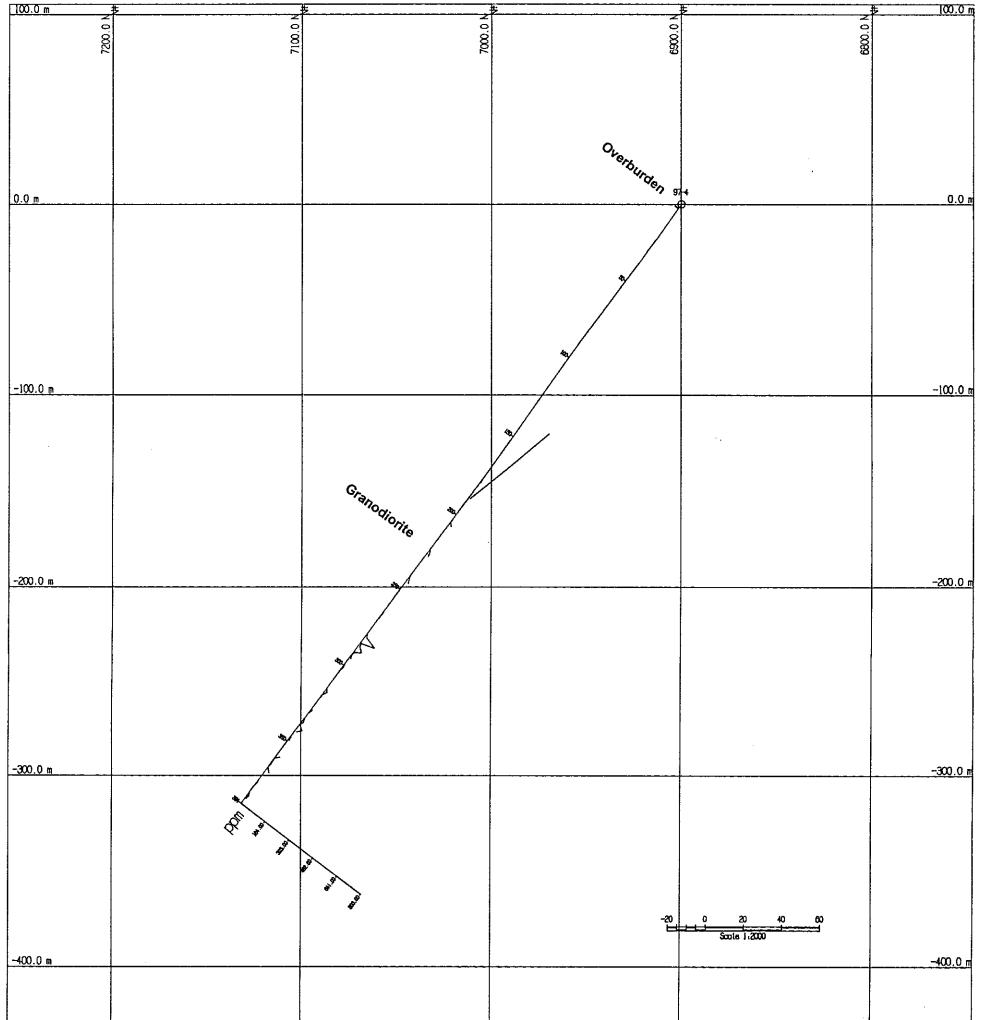


Almaden Resources Corp. Vancouver Office Vancouver, BC 689-7644	North-South Section, Looking East Drillhole 97–3, Section 2650 W Cu Geochem Analysis(ppm)
 UNITS : METRES DATE: 97/12/20 TIME: 10:55:15	Softwore by (2200) Services inc.

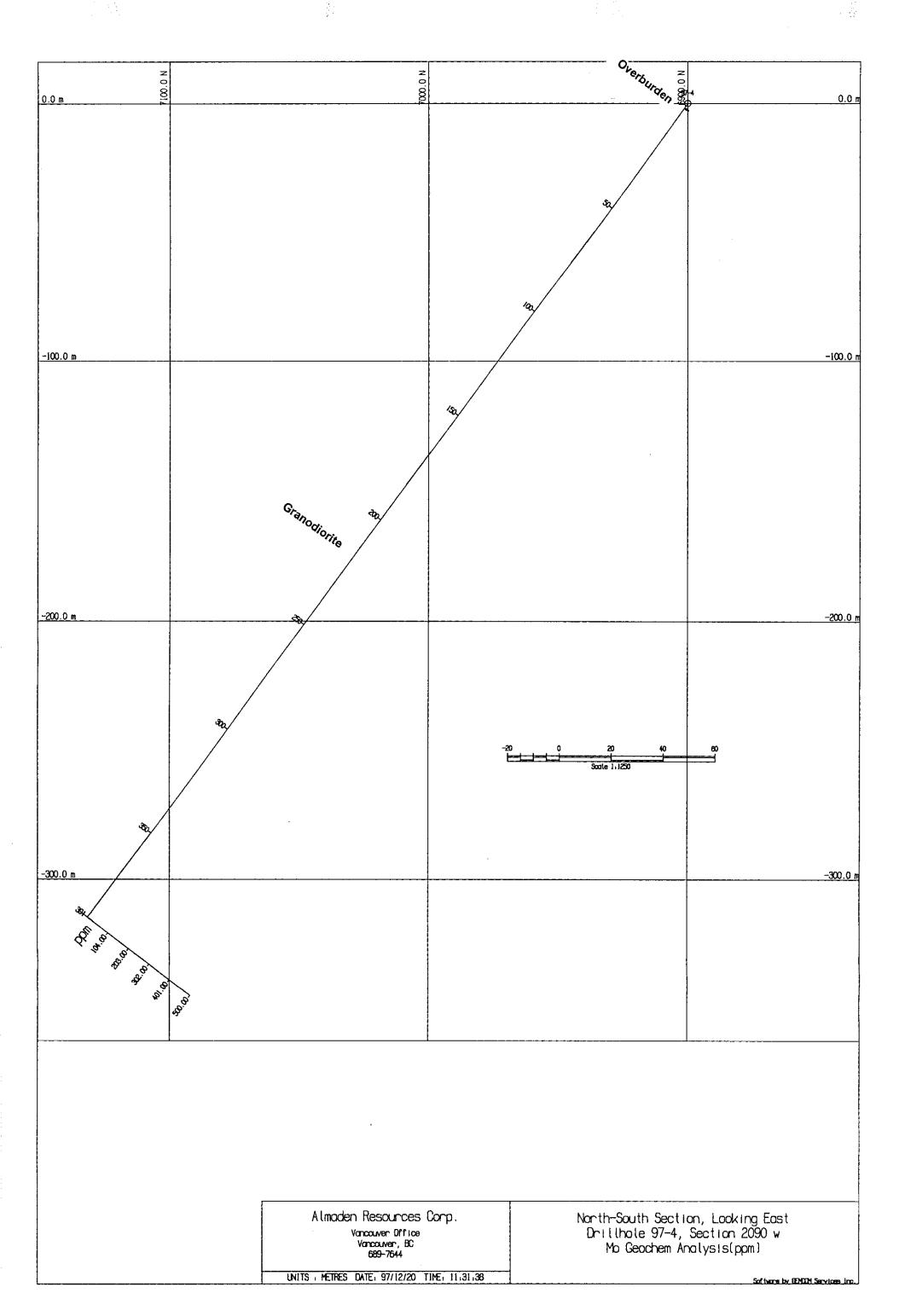


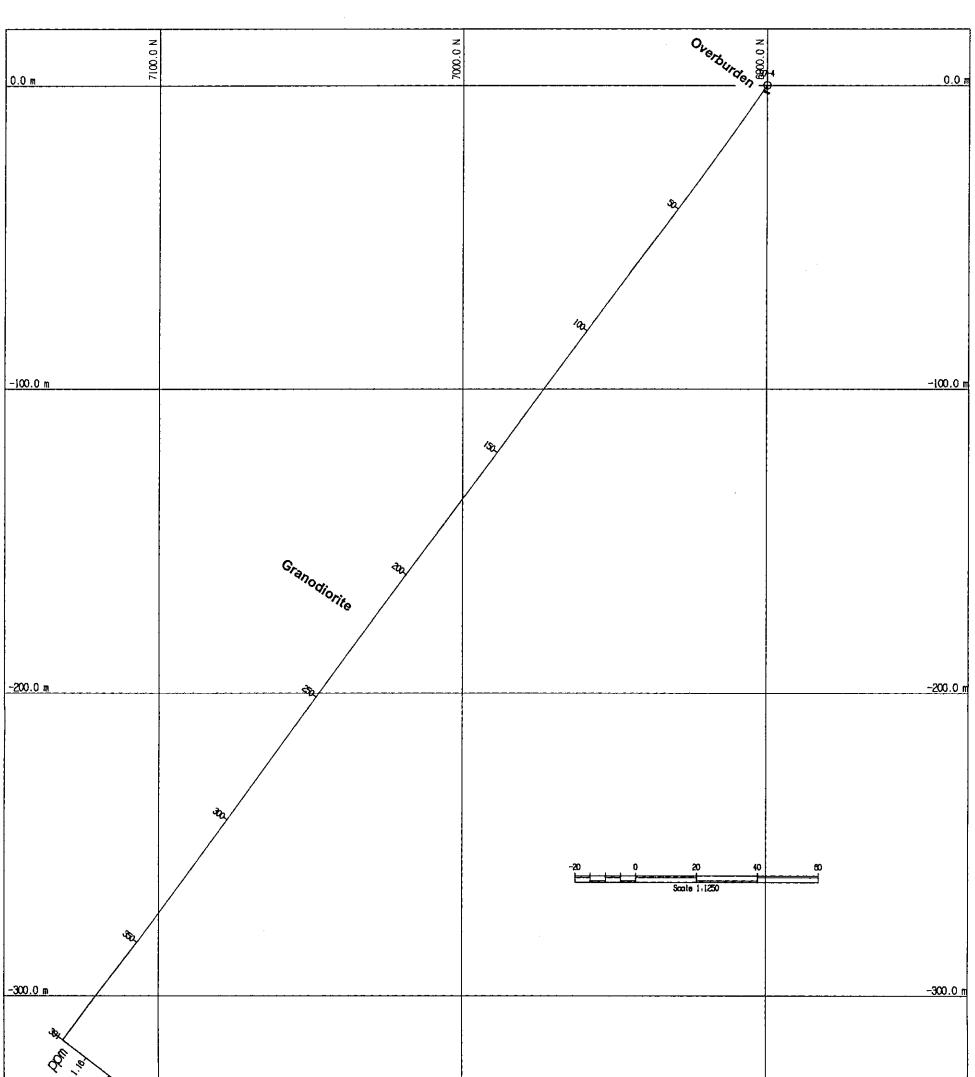
	14.0 3
Almaden Resources Corp.	North-South Section, Looking East
Vancouver Office Vancouver, BC 689-7644 UNITS : METRES DATE: 97/12/20 TIME: 11:26:47	North-South Section, Looking East Drillhole 97-3, Section 2650 w Mo Geochem Analysis(ppm) Softwore by GEMONE Services Inc.




	23 ¹ 10
ŕ	
Almaden Resources Corp. Vancouver Office	North-South Section, Looking East Drillhole 97–3, Section 2650 w
 Vancouver, BC 689-7644 UNITS : METRES DATE: 97/12/20 TIME: 11:10:10	Ag Geochem Analysis(ppm)




L

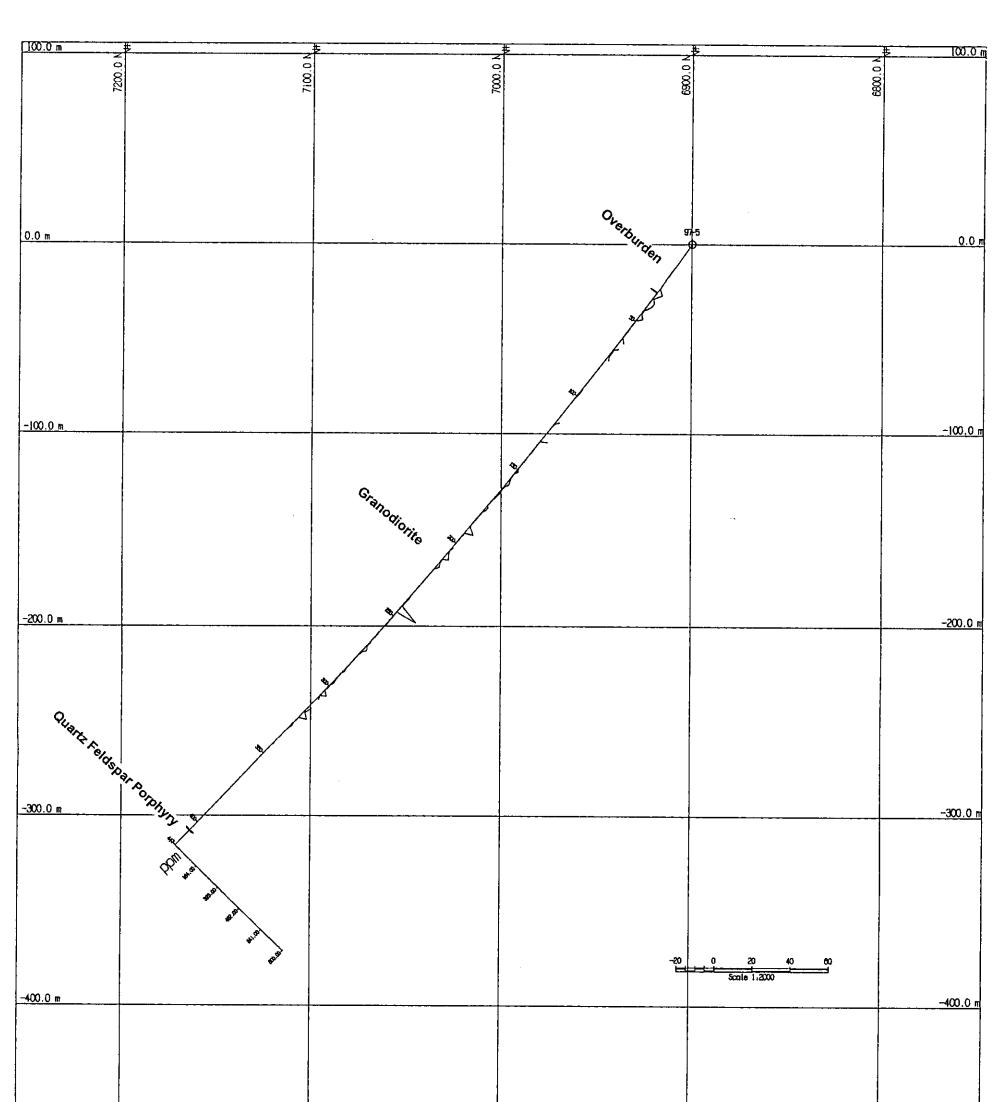







Almaden Resources Corp. Vancouver Office Vancouver, BC 689-7644 UNITS ; METRES DATE: 97/12/20 TIME: 10:57:31	North-South Section, Looking East Drillhole 97–4, Section 2090 W Cu Geochem Analysis(ppm) Servere by (2000) Services Inc.



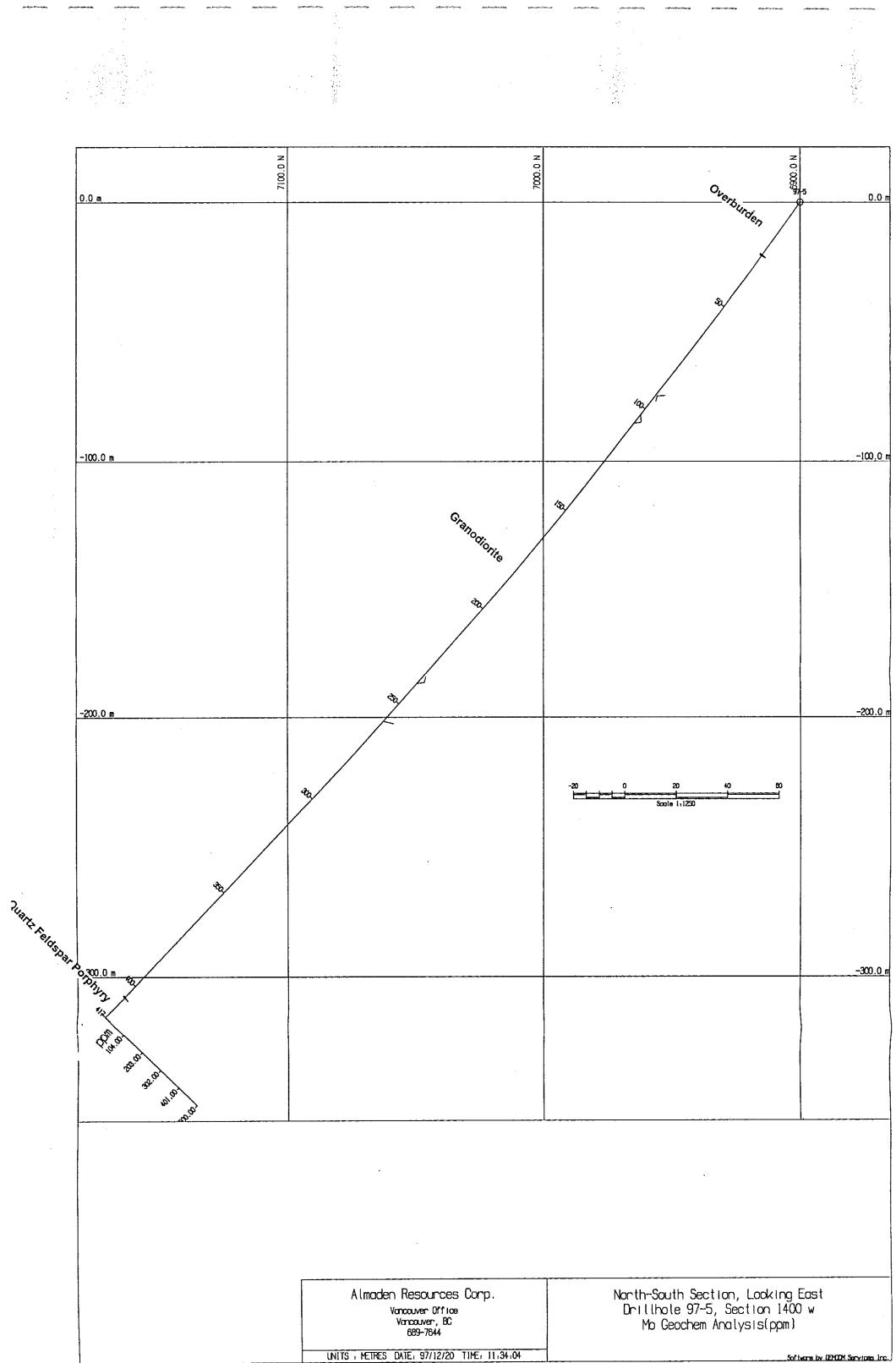



-

ċ

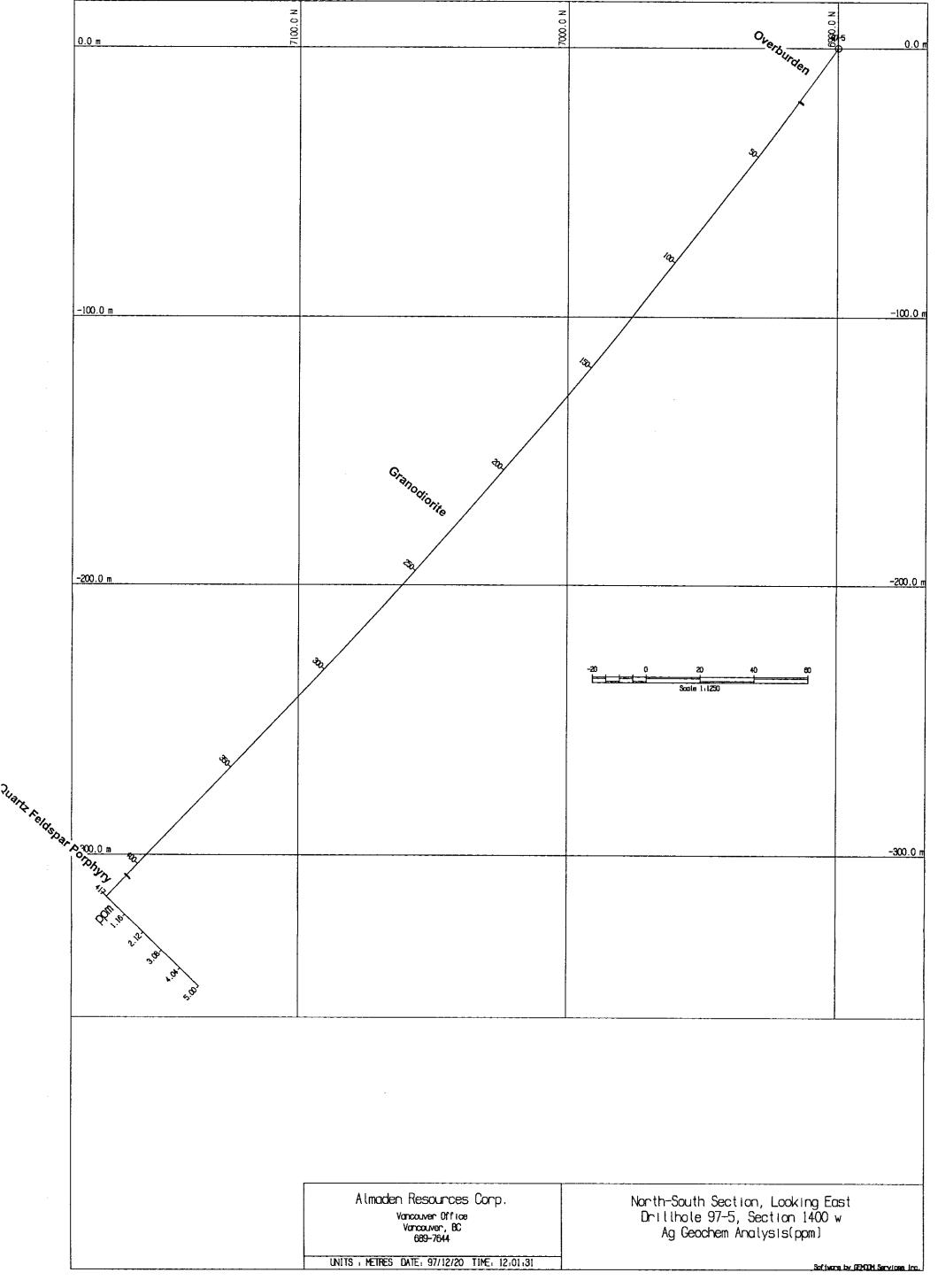
- -

20. 20. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1		
	Almaden Resources Corp.	North-South Section, Looking East
	Almoden Resources Corp. Vancouver Office Vancouver, BC 689-7644	North-South Section, Looking East Drillhole 97-4, Section 2090 w Ag Geochem Analysis(ppm)





-


----

,

	Almaden Resources Corp. Vancouver Office Vancouver, BC 689-7644	North-South Section, Looking East Drillhole 97–5, Section 1400 W Cu Geochem Analysis(ppm)
L	UNITS : METRES DATE: 97/12/20 TIME: 10:59:29	Spituore by GENCOM Services inc.







Appendix 3 Diamond Drill Core Analyses for Silver, Copper, Molybdenum, Lead & Zinc

Drill Ho	le Sample#	From (m)	To (m)	Interval (m)	Au (ppm)	Aŭ (ppm)	Cu (ppm)	Mo (nnm)	<b>D</b> b (mm)	7
97-1	M706001	86.0	88.0	2.0	0.000	0.00	70 (pp/ii)	36 wo		
97-1	M706002	88.0	90.0	2.0	0.000	0.60	184	11	4	590
97-1	M706003	90.0	92.0	2.0	0.000	0.40	137	33	8	2080
97-1	M706004	92.0	94.0	2.0	0.000	0.20	105	0	6 4	794
97-1	M706005	94.0	96.0	2.0	0.000	0.00	50	0	4	488
97-1	M706006	96.0	98.0	2.0	0.000	0.00	41	1	2	638 570
97-1	M706007	98.0	100.0	2.0	0.000	0.00	130	0	2	572
97-1	M706008	100.0	102.0	2.0	0.000	0.00	87	0	2	600 1400
97-1	M706009	102.0	104.0	2.0	0.000	0.20	142	0	6	1190
97-1	M706010	104.0	106.0	2.0	0.000	0.20	75	129		1505
97-1	M706011	106.0	108.0	2.0	0.000	0.60	224	129	14	686
97-1	M706012	108.0	110.0	2.0	0.000	0.00	61	0	10	3150
97-1	M706013	110.0	112.0	2.0	0.000	0.20	97	0	6	792
97-1	M706014	112.0	114.0	2.0	0.000	0.60	72		6	310
97-1	M706015	114.0	116.0	2.0	0.000	0.60	59	0	14	174
97-1	M706016	116.0	118.0	2.0	0.000	0.60	79	4	12	164
97-1	M706017	118.0	120.0	2.0	0.000	0.60	79 82	18	12	252
97-1	M706018	120.0	122.0	2.0	0.000	0.00	41	10 0	14	268
97-1	M706019	122.0	124.0	2.0	0.000	0.80	144		6	204
97-1	M706020	124.0	126.0	2.0	0.000	0.20	53	0	16	388
97-1	M706021	126.0	128.0	2.0	0.000	0.60	93	0	6	642
97-1	M706022	128.0	130.0	2.0	0.000	0.20	33	6 0	14	884
97-1	M706023	130.0	132.0	2.0	0.000	0.40	30		10	396
97-1	M706024	132.0	134.0	2.0	0.000	0.60	69	0	10	354
97-1	M706025	134.0	136.0	2.0	0.000	0.20	45	5	14	204
97-1	M706026	136.0	138.0	2.0	0.000	0.80	43 48	0	12	90
97-1	M706027	138.0	140.0	2.0	0.000	1.20	40 89	4	22	84
97-1	M706028	140.0	142.0	2.0	0.000	0.20		13	46	210
97-1	M706029	142.0	144.0	2.0	0.000	0.20	23	1	12	90
97-1	M706030	144.0	146.0	2.0	0.000	0.00	27	0	6	86
97-1	M706031	146.0	148.0	2.0	0.000	0.00	38	0	8	90
97-1	M706032	148.0	150.0	2.0	0.000		32	0	2	78
97-1	M706033	150.0	152.0	2.0	0.000	0.00	66	0	6	98
97-1	M706034	152.0	154.0	2.0	0.000	0.00	36	0	2	86
			1 <b>0</b> -1.0	۷.۷	0.000	0.00	45	0	8	98

Drill Hole	Sample #	From (m)	To (m)	Interval (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Zn (ppm)
97-1	M706035	154.0	156.0	2.0	0.000	0.20	75	0	12	124
97-1	M706036	156.0	158.0	2.0	0.000	0.00	31	0	6	112
97-1	M706037	158.0	160.0	2.0	0.000	0.00	56	1	8	122
97-1	M706038	160.0	162.0	2.0	0.000	0.20	63	8	28	590
97-1	M706039	162.0	164.0	2.0	0.000	0.00	28	88	16	124
97-1	M706040	164.0	166.0	2.0	0.000	0.00	16	27	8	82
97-1	M706041	166.0	168.0	2.0	0.000	0.20	26	4	24	90
97-1	M706042	168.0	170.0	2.0	0.000	0.20	41	21	24	114
97-1	M706043	170.0	172.0	2.0	0.000	0.40	49	3	44	142
97-1	M706044	172.0	174.0	2.0	0.000	0.00	59	58	14	166
97-1	M706045	174.0	176.0	2.0	0.000	0.00	46	1	12	96
97-1	M706046	176.0	178.0	2.0	0.000	0.20	43	71	14	100
97-1	M706047	178.0	180.0	2.0	0.000	0.20	21	1	16	68
97-1	M706048	180.0	182.0	2.0	0.000	0.20	26	68	12	86
<b>9</b> 7-1	M706049	182.0	184.0	2.0	0.000	0.20	56	11	10	82
97-1	M706050	184.0	186.0	2.0	0.000	0.20	41	19	8	128
97-1	M706051	186.0	188.0	2.0	0.000	0.20	14		4	98
97-1	M706052	188.0	190.0	2.0	0.000	0.40	20	96	8	102
97-1	M706053	190.0	192.0	2.0	0.000	0.60	40	104	24	550
97-1	M706054	192.0	194.0	2.0	0.000	3.00	225	56	44	1020
97-1	M706055	194.0	196.0	2.0	0.000	0.80	94	57	24	242
97-1	M706056	196.0	198.0	2.0	0.000	0.60	118	77		72
97-1	M706057	198.0	200.0	2.0	0.000	0.00	117	129	2	74
97-1	M706058	200.0	202.0	2.0	0.000	0.40	156	103	6	162
97-1	M706059	202.0	204.0	2.0	0.000	0.80	291	14	10	164
97-1	M706060	204.0	206.0	2.0	0.000	0.20	53	32	8	140
97-1	M706061	206.0	208.0	2.0	0.000	0.20	113	70	4	92
97-1	M706062	208.0	210.0	2.0	0.000	0.00	57	457	4	32 72
97-1	M706063	210.0	212.0	2.0	0.000	0.00	24	641	4 0	72
97-1	M706064	212.0	214.0	2.0	0.000	0.20	103	97	4	72
97-1	M706065	214.0	216.0	2.0	0.000	0.40	86	69	4 16	120
97-1	M706066	216.0	218.0	2.0	0.000	0.60	129	09 29	20	
97-1	M706067	218.0	220.0	2.0	0.000	0.00	23	25 1	20 6	120
97-1	M706068	220.0	222.0	2.0	0.000	0.60	183	11	28	48
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.00	103	11	∠¢	134

and the second second second second second second second second second second second second second second second

# Munro Lake Drilling

### Geochemical Analysis

.

and the second second second second second second second second second second second second second second second

Drill Hole	•	From (m)	To (m)	interval (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Zn (ppm)
97-1	M706070	224.0	226.0	2.0	0.000	0.20	73	1	8	140
97-1	M706071	226.0	228.0	2.0	0.000	0.40	51	24	8	130
97-1	M706072	228.0	230.0	2.0	0.000	0.00	53	14	4	158
97-1	M706073	230.0	232.0	2.0	0.000	0.20	237	83	6	94
97-1	M706074	232.0	234.0	2.0	0.000	0.60	143	21	4	86
97-1	M706075	234.0	236.0	2.0	0.000	0.80	99	41	4	122
97-1	M706076	236.0	238.0	2.0	0.000	0.00	50	0	0	56
97-1	M706077	238.0	240.0	2.0	0.000	0.20	<del>9</del> 9	3	2	76
<del>9</del> 7-1	M706078	240.0	242.0	2.0	0.000	0.40	189	0	4	90
97-1	M706079	242.0	244.0	2.0	0.000	1.40	84	22	6	258
97-1	M706080	244.0	246.0	2.0	0.000	2.20	648	36	8	446
97-1	M706081	246.0	248.0	2.0	0.000	0.40	61	9	4	100
97-1	M706082	248.0	250.0	2.0	0.000	0.20	140	7	8	134
97-1	M706083	250.0	252.0	2.0	0.000	0.20	90	4	4	88
97-1	M706084	252.0	254.0	2.0	0.000	0.00	121	0	10	90
97-1	M706085	254.0	256.0	2.0	0.000	0.40	101	7	4	286
97-1	M706086	256.0	258.0	2.0	0.000	5.40	367	12	42	6310
97-1	M706087	258.0	260.0	2.0	0.000	3.40	120	15	42	952
97-1	M706088	260.0	262.0	2.0	0.000	0.60	54	3	6	118
97-1	M706089	262.0	264.0	2.0	0.000	0.20	49	1	6	92
97-1	M706090	264.0	266.0	2.0	0.000	0.20	132	21	0	76
97-1	M706091	266.0	268.0	2.0	0.000	0.00	96	17	2	70
97-1	M706092	268.0	270.0	2.0	0.000	0.00	47	55	4	48
97-1	M706093	270.0	272.0	2.0	0.000	0.00	71	2	0	50
97-1	M706094	272.0	274.0	2.0	0.000	0.60	77	16	6	174
97-1	M706095	274.0	276.0	2.0	0.000	2.40	440	22	12	392
97-1	M706096	276.0	278.0	2.0	0.000	0.60	81	7	6	92
97-1	M706097	278.0	280.0	2.0	0.000	1.40	63	12	14	514
97-1	M706098	280.0	282.0	2.0	0.000	0.60	80	0	2	74
97-1	M706099	282.0	284.0	2.0	0.000	0.60	154	46	2	108
97-1	M706100	284.0	286.0	2.0	0.000	0.60	230	16	6	118
97-1	M706101	286.0	288.0	2.0	0.000	0.20	69	52	2	84
97-1	M706102	288.0	290.0	2.0	0.000	0.60	257	3	0	96

. . . . .

### Munro Lake Drilling

# Geochemical Analysis

· · · · · · ·

Drill Hole Sample # From (m) To (m) Interval (m) Au (ppm) Ag (ppm) Cu (ppm) Mo (ppm	Pb (ppm) Z	'n (ppm)
-------------------------------------------------------------------------------------	------------	----------

	•	• •	• •	• •		• • • • •				
97-1	M706103	290.0	292.0	2.0	0.000	0.20	128	8	0	74
97-1	M706104	292.0	294.0	2.0	0.000	0.00	89	8	0	74
97-1	M706105	294.0	296.0	2.0	0.000	0.80	211	25	4	206
97-1	M706106	296.0	298.0	2.0	0.000	1.40	240	34	8	372
97-1	M706107	298.0	300.0	2.0	0.000	1.00	112	89	6	96
97-1	M706108	300.0	302.0	2.0	0.000	1.40	174	89	10	276
97-1	M706109	302.0	304.0	2.0	0.000	1.40	46	9	14	1170
97-1	M706110	304.0	306.0	2.0	0.000	2.00	136	7	10	242
97-1	M706111	306.0	308.0	2.0	0.000	0.60	35	19	16	788
97-1	M706112	308.0	310.0	2.0	0.000	0.80	49	24	22	260
97-1	M706113	310.0	312.0	2.0	0.000	0.80	49	34	8	150
97-1	M706114	312.0	314.0	2.0	0.000	0.00	27	0	2	56
97-1	M706115	314.0	316.0	2.0	0.000	0.00	18	8	2	116
97-1	M706116	316.0	318.0	2.0	0.000	0.20	50	14	6	310
97-1	M706117	318.0	320.0	2.0	0.000	0.60	18	3	18	176
97-1	M706118	320.0	322.0	2.0	0.000	0.60	138	2	6	174
97-1	M706119	322.0	324.0	2.0	0.000	0.80	34	1	8	260
97-1	M706120	324.0	326.0	2.0	0.000	0.00	24	Ō	0	62
97-1	M706121	326.0	328.0	2.0	0.000	0.40	91	1	6	144
97-1	M706122	328.0	330.0	2.0	0.000	0.00	25	0	4	54
97-1	M706123	330.0	332.0	2.0	0.000	0.20	119	3	12	138
97-1	M706124	332.0	334.0	2.0	0.000	0.60	23	3	30	332
97-1	M706125	334.0	336.0	2.0	0.000	0.20	9	0	52	264
97-1	M706126	336.0	338.0	2.0	0.000	0.20	12	4	<b>6</b> 6	334
97-1	M706127	338.0	340.0	2.0	0.000	0.60	12	10	78	908
97-1	M706128	340.0	342.0	2.0	0.000	0.60	31	2	12	1355
97-1	M706129	342.0	344.0	2.0	0.000	1.20	39	5	38	182
97-1	M706130	344.0	346.0	2.0	0.000	0.20	25	1	6	92
97-1	M706131	346.0	348.0	2.0	0.000	0.80	9	0	28	152
97-1	M706132	348.0	350.0	2.0	0.000	0.00	13	0	10	186
97-1	M706133	350.0	352.0	2.0	0.000	0.40	12	5	16	152
97-1	M706134	352.0	354.0	2.0	0.000	0.80	82	1	8	70
97-1	M706135	354.0	356.0	2.0	0.000	1.20	40	22	12	68
97-1	M706136	356.0	358.0	2.0	0.000	1.80	51	4	18	68

· • • •

Geochemical Analysis

•

Drill Hole	Sample #	From (m)	To (m)	Interval (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Zn (ppm)
97-1	M706137	358.0	360.0	2.0	0.000	0.60	20	3	8	62
97-1	M706138	360.0	362.0	2.0	0.000	0.20	6	2	0	42
97-1	M706139	362.0	364.0	2.0	0.000	0.00	4	4	2	16
97-1	M706140	364.0	366.0	2.0	0.000	0.20	8	4	0	58
97-1	M706141	366.0	368.0	2.0	0.000	0.00	3	6	2	18
97-1	M706142	368.0	370.0	2.0	0.000	0.00	2	8	0	18
97-1	M706143	370.0	372.0	2.0	0.000	0.00	7	10	0	30
97-1	M706144	372.0	374.0	2.0	0.000	0.20	4	21	6	78
97-1	M706145	374.0	376.7	2.7	0.000	0.00	4	4	0	26
97-2	M706146	94.0	96.0	2.0	0.000	0.80	209	46	16	540
97-2	M706147	96.0	98.0	2.0	0.000	0.80	135	1	20	374
97-2	M706148	98.0	100.0	2.0	0.000	1.20	104	28	16	474
97-2	M706149	100.0	102.0	2.0	0.000	0.80	162	114	8	102
97-2	M706150	102.0	104.0	2.0	0.000	1.00	158	122	10	104
97-2	M706151	104.0	106.0	2.0	0.000	0.20	112	41	6	78
97-2	M706152	106.0	108.0	2.0	0.000	0.00	46	113	2	42
97-2	M706153	108.0	110.0	2.0	0.000	0.20	114	116	4	48
97-2	M706154	110.0	112.0	2.0	0.000	0.00	41	21	0	· 30
97-2	M706155	112.0	114.0	2.0	0.000	0.20	99	143	2	32
97-2	M706156	114.0	116.0	2.0	0.000	0.20	90	68	6	58
97-2	M706157	116.0	118.0	2.0	0.000	0.60	168	61	6	264
97-2	M706158	118.0	120.0		0.000	0.20	207	47	2	
97-2	M706159	120.0	122.0		0.000	0.60	172		16	92
97-2	M706160	122.0	124.0		0.000	0.00	39		4	46
97-2	M706161	124.0	126.0		0.010	0.00	53		0	
97-2	M706162	126.0	128.0		0.000	0.20	185		0	
97 <b>-</b> 2	M706163	128.0	130.0	2.0	0.000	0.40	142		4	
97-2	M706164	130.0	132.0	2.0		0,60	256		6	74
97-2	M706165	132.0	134.0	2.0			159		18	
97-2	M706166	134.0	136.0				112		180	
97-2	M706167	136.0	138.0				207		6	
97-2	M706168	138.0	140.0			0.20			0	
97-2	M706169	140.0	142.0			0.00			0	
97-2	M706170	142.0	144.0	2.0	0.000	0.40	121	21	6	94

Geochemical Analysis

Drill Hole	Sample #	From (m)	To (m)	Interval (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Zn (ppm)
97-2	M706171	144.0	146.0			0.80	262			
97-2	M706172	146.0	148.0	2.0		0.00	43			
97-2	M706173	148.0	150.0	2.0	0.000		65		2	
97-2	M706174	150.0	152.0	2.0			65		0	
97-2	M706175	152.0	154.0			0.00	52		õ	44
97-2	M706176	154.0	156.0	2.0	0.000	0.20	84	41	2	
97-2	M706177	156.0	158.0	2.0	0.000	1.40	29	81	8	38
97-2	M706178	158.0	160.0	2.0	0.000	0.00	52	37	0	38
97-2	M706179	160.0	162.0	2.0	0.000	0.00	10	10	0	30
97-2	M706180	162.0	164.0	2.0	0.000	0.00	41	20	0	38
97-2	M706181	164.0	166.0	2.0	0.000	0.00	23	0	0	28
97-2	M706182	166.0	168.0	2.0	0.000	0.00	96	6	0	38
97-2	M706183	168.0	170.0	2.0	0.000	0.00	47	34	0	34
97-2	M706184	170.0	172.0	2.0	0.000	0.00	44	65	2	44
97-2	M706185	172.0	174.0	2.0	0.000	0.00	20	17	0	40
97-2	M706186	174.0	176.0	2.0	0.000	0.00	27	5	0	44
97-2	M706187	176.0	178.0	2.0	0.000	0.00	21	11	0	38
97-2	M706188	178.0	180.0	2.0	0.000	0.00	32	13	2	52
97-2	M706189	180.0	182.0	2.0	0.000	0.00	25	1	0	40
97-2	M706190	182.0	184.0	2.0	0.000	0.00	24	1	0	42
97-2	M706191	184.0	186.0	2.0	0.000	0.00	41	13	4	54
97-2	M706192	186.0	188.0				10	8	14	176
97-2	M706193	188.0	190.0				28	43	10	146
97-2	M706194	190.0	192.0				96	16	22	294
97-2	M706195	192.0	194.0				51	39	18	538
97-2	M706196	194.0	196.0		0.000	0.60	26	61	16	404
97-2	M706197	196.0	198.0	2.0	0.000	3.40	685	13	40	2760
97-2	M706198	198.0	200.0	2.0	0.000	0.00	35	<b>1</b> 7	2	98
97-2	M706199	200.0	202.0	2.0	0.000	0.00	- 20	0	4	52
97-2	M706200	202.0	204.0	2.0	0.000	0.00	19	3	2	92
97-2	M706201	204.0	206.0	2.0	0.000	0.20	11	34	8	258
97-2	M706202	206.0	208.0	2.0	0.000	1.40	21	19	8	968
97-2	M706203	208.0	210.0	2.0	0.000	1.60	85	i 11	14	488
97-2	M706204	210.0	212.0	2.0	0.000	0.20	8	; 8	6	74

Munro Lake Drilling

Geochemical Analysis

a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l

Drill Hole	Sample #	From (m)	To (m)	Interval (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Zn (ppm)
97-2	M706205	212.0	214.0	2.0	0.000	2.20	709	32	4	32
97-2	M706206	214.0	216.0	2.0	0.000	0.00	6	0	4	44
97-2	M706207	216.0	218.0	2.0	0.000	0.00	11	23	6	180
97-2	M706208	218.0	220.0	2.0	0.000	0.00	19	2	2	36
97-2	M706209	229.0	230.0	1.0	0.000	0.00	1	0		
97-2	M706210	230.0	232.0	2.0	0.000	0.00	4	25	2	28
97-2	M706211	232.0	234.0	2.0	0.000	0.80	164		8	42
97-2	M706212	234.0	236.0	2.0	0.000	0.00	8	3	4	20
97-2	M706213	236.0	238.0	2.0	0.000	0.00			i 4	
97-2	M706214	238.0	240.0	2.0	0.000	0.00	5	26	2	30
97-2	M706215	240.0	242.0	2.0	0.000	0.00	17			
97-2	M706216	266.0	268.0							
97-2	M706217	268.0	270.0	2.0						
97-2	M706218	270.0	272.0							
97-2	M706219	272.0	274.0							
97-2	M706220	274.0	276.0	2.0						
97-2	M706221	276.0	278.0							
97-2	M706222	278.0	280.0							
97-2	M706223	280.0	282.0							2 34
97-2	M706224	282.0	284.0							2 28
97-2	M706225	284.0	286.0							5 26
97-2	M706226	286.0	288.0							6 36
97-2	M706227	288.0	290.0							5 32
97-2	M706228	290.0	292.0							) 36
97-2	M706229	292.0	294.0							2 36
97-2	M706230	294.0	296.0							2 68
97-2	M706231	296.0	298.0							2 42
97-2	M706232	298.0								D 30
97-2	M706233	300.0								2 306
97-2	M706234	302.0								6 104
97-2	M706235	304.0								
97-2	M706236	306.0								2 316
97-2	M706237	308.0								2 88
97-2	M706238	310.0	312.0	) 2.0	0.00	0.0	0 4	6	9.	4 92

Almaden f	Resources Corp.
-----------	-----------------

- ....

#### Munro Lake Drilling

Geochemical Analysis

. . . , . . .

Drill Hole	Sample #	From (m)	To (m)	Interval (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Zn (ppm)
97-2	M706239	312.0	314.0	2.0	0.000	0.00	23	4	2	56
97-2	M706240	314.0	316.0	2.0	0.000	2,40	95	3	28	62
97-2	M706241	316.0	318.0	2.0	0.000	0.00	18	1	4	44
97-2	M706242	318.0	320.0	2.0	0.000	0.00	77	0	6	192
97 <b>-</b> 2	M706243	320.0	322.0	2.0	0.000	0.00	71	0	4	102
97-2	M706244	322.0	324.0	2.0	0.000	0.20	8	33	6	26
97-2	M706245	324.0	326.0	2.0	0.000	0.00	5	34	2	16
97-2	M706246	326.0	328.0	2.0	0.000	0.00	22	1	6	40
97-2	M706247	328.0	329.0	1.0	0.000	0.00	18	1	4	42
97-2	M706248	335.0	336.0	1.0	0.000	0.00	29	16	4	22
97-2	M706249	336.0	338.0	2.0	0.000	0.20	68	25	6	48
97-2	M706250	338.0	340.0	2.0	0.000	0.40	389	57	2	42
97-2	M706251	340.0	342.0	2.0	0.000	0.00	146	9	2	36
97-2	M706252	346.0	348.0	2.0	0.000	0.00	42		6	296
97-2	M706253	348.0	350.0	2.0	0.000	0.20	333	7	2	256
97-2	M706254	350.0	352.0	2.0	0.000	0.20	149		4	108
97 <b>-</b> 2	M706255	352.0	354.0	2.0		0.20	419		6	66
97 <b>-</b> 2	M706256	354.0	356.0	2.0		0.00			2	
97-2	M706257	356.0	358.0	2.0						
97-2	M706258	358.0	360.0						2	
97 <b>-</b> 2	M706259	360.0	362.0							
97-2	M706260	362.0	364.0							
97 <b>-2</b>	M706261	364.0	366.0							
97-2	M706262	366.0	368.0							
97-2	M706263	368.0	370.0							
97-2	M706264	370.0	372.0						2	
97-2	M706265	372.0	374.0							
97-2	M706266	374.0	376.0							
97-2	M706267	376.0	378.0							
97-2	M706268	378.0	380.0							
97-2	M706269	380.0	382.0	2.0						
97-2	M706270	382.0	384.0	) 2.0						
97-2	M706271	384.0	386.0	) 2.0						
97-2	M706272	386.0	388.0	) 2.0						
97 <b>-</b> 2	M706273	388.0	390.0	) 2.0	0.000	) 0.00	) 116	5 9	) 2	2 22

Munro Lake Drilling

Geochemical Analysis

. . . . . .

Drill HoleSample #From (m)To (m)Interval (m)Au (ppm)Ag (ppm)Cu (ppm)Mo (ppm)Pb (ppm)Zn (ppm)97-2M706274390.0392.02.00.0000.00322297-2M706275392.0394.02.00.0000.00161497-2M706276394.0396.02.00.0000.001817297-2M706277396.0398.02.00.0000.001082	18 26 12 8 12 16 12 12 12
97-2         M706275         392.0         394.0         2.0         0.000         0.00         16         1         4           97-2         M706276         394.0         396.0         2.0         0.000         0.00         18         17         2	12 8 12 16 12
97-2 M706276 394.0 396.0 2.0 0.000 0.00 18 17 2	8 12 16 12
	12 16 12
	16 12
97-2 M706278 398.0 400.0 2.0 0.000 0.00 9 10 0	12
97-2 M706279 400.0 402.0 2.0 0.000 0.00 6 0 0	
97-2 M706280 402.0 404.0 2.0 0.000 0.00 3 5 2	12
97-2 M706281 404.0 406.0 2.0 0.000 0.00 3 4 2	
97-2 M706282 406.0 408.0 2.0 0.000 0.00 6 1 4	20
97-2 M706283 408.0 410.0 2.0 0.000 0.00 4 5 2	16
97-2 M706284 410.0 412.0 2.0 0.000 0.00 9 10 0	12
97-2 M706285 412.0 414.0 2.0 0.000 0.00 9 11 2	10
97-2 M706286 414.0 416.0 2.0 0.000 0.00 19 17 2	14
97-2 M706287 416.0 418.0 2.0 0.000 0.20 17 5 2	22
97-2 M706288 418.0 420.0 2.0 0.000 0.00 2 1 2	16
97-2 M706289 420.0 422.0 2.0 0.000 0.00 12 10 2	18
97-2 M706290 422.0 424.0 2.0 0.000 0.00 3 10 2	12
97-2 M706291 424.0 425.2 1.2 0.000 0.00 15 2 2	18
97-3 M706292 136.0 138.0 2.0 0.000 0.00 6 0 2	34
97-3 M706293 138.0 140.0 2.0 0.000 0.00 4 84 2	34
97-3 M706294 140.0 142.0 2.0 0.000 0.00 6 0 2	34
97-3 M706295 142.0 144.0 2.0 0.000 0.00 5 0 2	30
97-3 M706296 144.0 146.0 2.0 0.000 0.00 6 0 0	54
97-3 M706297 146.0 148.0 2.0 0.000 0.00 4 0 2	32
97-3 M706298 148.0 150.0 2.0 0.000 0.00 7 0 2	36
97-3 M706299 150.0 152.0 2.0 0.000 0.00 18 0 2	52
97-3 M706300 152.0 154.0 2.0 0.000 0.00 4 0 2	42
97-3 M706301 154.0 156.0 2.0 0.000 0.00 9 9 2	24
97-3 M706302 156.0 158.0 2.0 0.000 0.00 6 0 0	22
97-3 M706303 158.0 160.0 2.0 0.000 0.00 39 0 2	26
97-3 M706304 300.0 302.0 2.0 0.000 0.00 22 0 2	42
97-3 M706305 302.0 304.0 2.0 0.000 0.00 10 0 0	48
97-3 M706306 304.0 306.0 2.0 0.000 0.00 8 1 0	40
97-3 M706307 306.0 308.0 2.0 0.000 0.00 7 0 2	40

Munro Lake Drilling

Geochemical Analysis

Drill Hole	Sample #	From (m)	To (m)	interval (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Zn (ppm)
97-3	M706308	308.0	310.0	2.0	0.000	0.00	7	0	2	44
97-3	M706309	310.0	312.0	2.0	0.000	0.00	3	0	4	34
97-3	M706310	312.0	314.0	2.0	0.000	0.00	9	0	0	42
97-3	M706311	314.0	316.0	2.0	0.000	0.00	110	3	2	56
97-3	M706312	316.0	318.0	2.0	0.000	0.00	6	0	0	40
97-3	M706313	318.0	320.0	2.0	0.000	0.00	30	0	2	54
97-3	M706314	320.0	322.0	2.0	0.000	0.00	6	2	2	38
97-3	M706315	322.0	324.0	2.0	0.000	0.00	12	0	0	44
97-3	M706316	324.0	326.0	2.0	0.000	0.00	17	0	0	70
97-3	M706317	326.0	328.0	2.0	0,000	0.60	668	2	0	80
97-3	M706318	424.3	425.0	0.7	0.000	0.00	3	2	2	14
97-3	M706319	160.0	162.0	2.0	0.000	0.00	28	3	2	14
97-4	M706320	162.0	164.0	2.0	0.000	0.00	13	0	2	48
97-4	M706321	164.0	166.0	2.0	0.000	0.00	3	1	2	12
97-4	M706322	166.0	168.0	2.0	0.000	0.00	2	2	2	12
97-4	M706323	168.0	170.0	2.0	0.000	0.00	2	2	4	10
97-4	M706324	170.0	172.0	2.0		0.00		0	2	
97-4	M706325	172.0	174.0	2.0		0.00		1	2	
97-4	M706326	174.0	176.0			0.00		0	2	
97-4	M706327	176.0	178.0			0.00			0	
97-4	M706328	178.0	180.0			0.00				
97-4	M706329	180.0	182.0	2.0		0.00			2	
97-4	M706330	182.0	184.0							
97-4	M706331	184.0	186.0	2.0		0.00				
97-4	M706332	186.0	188.0			0.00				
97-4	M706333	188.0	190.0							
97-4	M706334	137.0	138.0							
97-4	M706335	190.0	192.0							
97-4	M706336	192.0	194.0				4	- 7	2	30
97-4	M706337	194.0	196.0				4	2	2	30
97-4	M706338	196.0	198.0							
97-4	M706339	198.0	200.0							
97-4	M706340	200.0	202.0							
97-4	M706341	202.0	204.0	2.0	0.000	0.00	5	1	2	26

Geochemical Analysis

Drill Hole	Sample #	From (m)	To (m)	interval (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Zn (ppm)
97-4	M706342	204.0	206.0	2.0	0.000	0.00	7	4	2	26
97-4	M706343	206.0	208.0	2.0	0.000	0.00	22	0	4	32
97-4	M706344	208.0	210.0	2.0	0.000	0.00	4	0	2	24
97-4	M706345	210.0	212.0	2.0	0.000	0.00	5	1	2	24
97-4	M706346	212.0	214.0	2.0	0.000	0.00	4	1	4	22
97-4	M706347	214.0	216.0	2.0	0.000	0.00	6	0	2	
97-4	M706348	216.0	218.0	2.0	0.000	0.00	6	0	0	
97-4	M706349	218.0	220.0	2.0	0.000	0.00			4	
97-4	M706350	220.0	222.0	2.0	0.000	0.00	6	0	2	
97-4	M706351	222.0	224.0	2.0	0.000					
97-4	M706352	224.0	226.0	2.0	0.000					
97-4	M706353	226.0	228.0	2.0						
97-4	M706354	228.0	230.0							
97-4	M706355	230.0	232.0							
97-4	M706356	232.0	234.0	2.0						
97-4	M706357	234.0	236.0							
97-4	M706358	236.0	238.0							
97-4	M706359	238.0	240.0							
97-4	M706360	240.0	242.0						6	26
97-4	M706361	242.0	244.0				ı 14	· 1	6	28
97-4	M706362	244.0	246.0	2.0			23	0	0	16
97-4	M706363	246.0	248.0						4	18
97-4	M706364	248.0	250.0							
97-4	M706365	250.0	252.0	2.0	0.000	0.00	) 5	i 1	2	24
97-4	M706366	252.0	254.0						2	. 22
97-4	M706367	254.0	256.0	2.0	0.000	0.00	) 5	5 2	0	) 18
97-4	M706368	256.0	258.0	2.0	0.000	0.00	) 4	L C	4	28
97-4	M706369	258.0	260.0	2.0	0.000	0.00	) 3	3 1	4	14
97-4	M706370	260.0	262.0	2.0	0.000	0.00	) 6	5 C	) (	) 18
97-4	M706371	262.0	264.0	2.0	0.000	0.00	) 4	н (	) (	) 24
97-4	M706372	264.0	266.0	2.0	0.000	0.00	) 8	3 C	) 2	22
97-4	M706373	266.0	268.0	2.0	0.000	0.00	) 6	6 C	) 2	26
97-4	M706374	268.0	270.0	2.0	0.000	0.00	) 8	3 (	) 2	2. 18
97-4	M706375	270.0	272.0	) 2.0	0.000	0.00	) 4	4 C	) C	) 22

Munro Lake Drilling

· · · ·

Drill Ho	ie Sample#	From (m)	To (m)	interval (m)	Au (ppm)	Ag (ppm)			Pb (ppm)	Zn (ppm)
97-4	M706376	272.0	274.0	2.0	0.000	0.00	5	0	2	18
97-4	M706377	274.0	276.0	2.0	0.000	0.00	4	0	2	16
97-4	M706378	276.0	278.0	2.0	0.000	0.00	3	3	8	8
97-4	M706379	278.0	280.0	2.0	0.000	0.00	5	1	4	14 18
97-4	M706380	280.0	282.0	2.0	0.000	0.00	18	0	2	18 22
97-4	M706381	282.0	284.0	2.0	0.000	0.00	81	0	0	20
97-4	M706382	284.0	286.0	2.0	0.000	0.00	11	0	0	20 18
97-4	M706383	286.0	288.0	2.0	0.000	0.00	16	0	2	
97-4	M706384	288.0	290.0	2.0	0.000	0.00	40	0	4	30
97 <b>-</b> 4	M706385	290.0	292.0	2.0		0.00	10	0	2	38
97-4	M706386	292.0	294.0	2.0		0.00	7	2	0	
97-4	M706387	294.0	296.0	2.0						
97-4	M706388	296.0	298.0	2.0						
97-4	M706389	298.0	300.0							
97-4	M706390	300.0	302.0							
97-4	M706391	302.0	304.0	2.0						
97-4	M706392	304.0	306.0	2.0						
97 <b>-</b> 4	M706393	306.0	308.0	2.0						
<del>9</del> 7-4	M706394	308.0	310.0	2.0						
97-4	M706395	310.0	312.0	2.0						2 24
97-4	M706396	312.0	314.0	) 2.(						) 22
97-4	M706397	314.0	316.0					5 (		4 24
97-4	M706398	316.0	318.0	) 2.(						2 42
97-4	M706399	318.0	320.0	) 2.0						2 24
97-4	M706400	320.0	322.0							) 14
97-4	M706401	322.0	324.0	) 2.(				-		) 16
97-4	M706402	324.0	326.0	) 2.0	0.00	0.0	0 (	5 (		3 16
97-4	M706403	326.0	328.0	) 2.0	0.00	0.0		-		22
97-4	M706404	328.0	330.0	) 2.0	0.00	0.0 C				4 24
97-4	M706405	330.0	332.0	) 2.	0.00	0.0	0	8 (		2 24
97 <b>-</b> 4	M706406	332.0	334.0	D 2.	0.00	0.0	0	4	0	2 20
97-4	M706407	334.0		0 2.	0 0.00	0.0	0	7	-	0 22
97-4	M706408				0 0.00	0.0	0 1	4		2 36
97-4	M706409				0.00	0.0	0	5	0	2 28
0, 7										

Munro Lake Drilling

Geochemical Analysis

Drill Hole	Sample #	From (m)	To (m)	Interval (m)	Au (ppm)	Aq (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Zn (ppm)
97-4	M706410	340.0	342.0	2.0	0.000	0.00	35	0	0	28
97-4	M706411	342.0	344.0	2.0	0.000	0.00	16	0	2	166
97-4	M706412	344.0	346.0	2.0	0.000	0.00	3	0	0	24
97-4	M706413	346.0	348.0	2.0	0.000	0.00	8	1	0	36
97-4	M706414	348.0	350.0	2.0	0.000	0.00	10	1	0	32
97-4	M706415	350.0	352.0	2.0	0.000	0.00	4	3	0	32
97-4	M706416	352.0	354.0	2.0	0.000	0.00	4	0	0	32
97-4	M706417	354.0	356.0	2.0	0.000	0.00	6	2	0	30
97 <b>-</b> 4	M706418	356.0	358.0	2.0	0.000	0.00	4	0	0	32
97-4	M706419	358.0	360.0	2.0	0.000	0.00	24	1	0	112
97-4	M706420	360.0	362.0	2.0	0.000	0.00	6	0	0	96
97-4	M706421	362.0	364.0	2.0	0.000	0.00	6	1	0	34
97-4	M706422	364.0	366.0	2.0	0.000	0.00	7	0	2	34
97-4	M706423	366.0	368.0	2.0	0.000	0.00	5	0	0	30
97-4	M706424	368.0	370.0	2.0	0.000	0.00	27	1	0	30
97-4	M706425	370.0	372.0	2.0	0.000	0.00	4			30
97-4	M706426	372.0	374.0	2.0					2	20
97-4	M706427	374.0	376.0	2.0						20
97-4	M706428	376.0	378.0	2.0	0.000	0.00				
97-4	M706429	378.0	380.0							32
97-4	M706430	380.0	382.0							
97-4	M706431	382.0	384.0							
97-4	M706432	384.0	386.0							
97-4	M706433	386.0	388.0							
97-4	M706434	388.0	390.0							
97-4	M706435	390.0	390.7							
97-5	M706436	25.0	26.0							
97-5	M706437	26.0	28.0							
97-5	M706438	28.0	30.0							
97-5	M706439	30.0	32.0	) 2.0						
97-5	M706440	32.0	34.0							
97-5	M706441	34.0	36.0							
97-5	M706442	36.0	38.0							
97-5	M706443	38.0	40.0	) 2.(	0.000	0.00	) 27	· (	) 8	14

#### Munro Lake Drilling

Geochemical Analysis

and the second second second second second second second second second second second second second second second

.

Drill Hole	Sample #	From (m)	To (m)	Interval (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Zn (ppm)
97-5	M706444	40.0	42.0	2.0	0.000	0.00	19	0	2	8
97-5	M706445	42.0	44.0	2.0	0.000	0.00	5	0	. 2	12
97-5	M706446	44.0	46.0	2.0	0.000	0.00	10	0	0	22
97-5	M706447	46.0	48.0	2.0	0.000	0.00	28	0	0	18
97-5	M706448	48.0	50.0	2.0	0.000	0.00	12	0	0	20
97-5	M706449	50.0	52.0	2.0	0.000	0.00	4		0	12
97-5	M706450	52.0	54.0	2.0	0.000	0.00	3		2	12
97-5	M706451	54.0	56.0	2.0	0.000	0.00	5		0	8
97-5	M706452	56.0	58.0	2.0	0.000	0.00	7		2	
97-5	M706453	58.0	60.0	2.0	0.000	0.00	3		0	
97-5	M706454	60.0	62.0	2.0	0.000	0.00	6		2	
97-5	M706455	62.0	64.0	2.0	0.000	1.00	28			
97-5	M706456	64.0	66.0	2.0			3			
97-5	M706457	66.0	68.0	2.0		0.00	26		0	
97-5	M706458	68.0	70.0	2.0		0.00	8		0	
97-5	M706459	70.0	72.0	2.0		0.00	12		0	
97-5	M706460	72.0	74.0			0.00	10		2	
97-5	M706461	74.0	76.0							
97 <b>-</b> 5	M706462	76.0	78.0							
97-5	M706463	78.0	80.0							
97-5	M706464	80.0	82.0							
97-5	M706465	82.0	84.0							
97-5	M706466	84.0	86.0							
97-5	M706467	86.0	88.0							
97-5	M706468	88.0	<del>9</del> 0.0							
97-5	M706469	90.0	92.0							
97-5	M706470	92.0	94.0					3 10		
97-5	M706471	94.0	96.0							
97-5	M7064 <b>7</b> 2	96.0	98.0							
97-5	M706473	98.0	100.0					3 4		
97-5	M706474	100.0	102.0					7 (		
97-5	M706475	102.0	104.(					4 (		
97-5	M706476	104.0	106.0					5 24		2 26
97-5	M706477	106.0	108.0	0 2.	0.00	0.00	)	5 5	5 2	2 24

Munro Lake Drilling

Geochemical Analysis

•

۰.

Aunaden in		<b>P</b> .								
Drill Hole	Sample #	From (m)	To (m)	Interval (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Zn (ppm)
97-5	M706478	108.0	110.0	2.0	0.000	0.00	3	0	0	22
97-5	M706479	110.0	112.0	2.0	0.000	0.00	3	0	2	22
97-5	M706480	112.0	114.0	2.0	0.000	0.00	3	0	0	14
97-5	M706481	114.0	116.0	2.0	0.000	0.00	4	16	2	22
97-5	M706482	116.0	118.0	2.0	0.000	0.00	22	1	2	18
97-5	M706483	118.0	120.0	2.0	0.000	0.00	7	11	0	
97-5	M706484	120.0	122.0	2.0	0.000	0.00	5	0	0	
97-5	M706485	122.0	124.0	2.0	0.000	0.00	4	1	0	26
97-5	M706486	124.0	126.0	2.0	0.000	0.00	5	3	0	
97-5	M706487	126.0	128.0	2.0	0.000	0.00	4	2	0	20
97-5	M706488	128.0	130.0	2.0	0.000	0.00	37	1	10	20
97-5	M706489	130.0	132.0	2.0	0.000	0.00	6	4	0	24
97-5	M706490	132.0	134.0	2.0	0.000	0.00	4	14	0	6
97-5	M706491	134.0	136.0	2.0	0.000	0.00	2	1	0	14
97-5	M706492	136.0	138.0	2.0	0.000	0.20	6	0	2	18
97-5	M706493	138.0	140.0			0.00	7	3	0	
97-5	M706494	140.0	142.0		0.000	0.00	) 4	. 10	0	
97-5	M706495	142.0	144.0	2.0	0.000	0.00	) 5	2		
97-5	M706496	144.0	146.0	) 2.0	0.000	0.00	) 7	' C	) 2	
97-5	M706497	146.0	148.0	2.0	0.000	) 0.00	) 4	1 3	3 4	
97-5	M706498	148.0	150.0	) 2.0	0.000	) 0.00				
97-5	M706499	150.0	152.0	) 2.0	0,000	) 0.00	) 15			
97-5	M706500	152.0	154.0	) 2.0	0.000					
97-5	M706501	154.0	156.0							
97-5	M706502	156.0	158.0							2 24
97-5	M706503	158.0	160.0							5 34
97-5	M706504	160.0	162.0							2 22
97-5	M706505	162.0								2 <b>2</b> 4
97-5	M706506	164.0	166.0							5 30
97-5	M706507	166.0								) 30
97-5	M706508	168.0								4 30
97-5	M706509	170.0								2 34
97-5	M706510	172.0								2 30
97-5	M706511	174.0	176.0	0 2.	0.00	0.0	01	3 (	0 (	0 28

Almaden R	esources Cor	p.		Munro Lake Drilling								
Drill Hole	e Sample#	From (m)	To (m)	Interval (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Zn (ppm)		
97-5	M706512	176.0	178.0	2.0	0.000	0.00	13	0	2	30		
97-5	M706513	178.0	180.0	2.0	0.000	0.00	6	1	2	22		
97-5	M706514	180.0	182.0	2.0	0.000	0.00	7	0	4	22		
97-5	M706515	182.0	184.0	2.0	0.000	0.00	6	2	2	18		
97-5	M706516	184.0	186.0	2.0	0.000	0.00	5	2	2	26		
97-5	M706517	186.0	188.0	2.0	0.000	0.00	5	3	2	22		
97-5	M706518	188.0	190.0	2.0	0.000	0.00	7	3	0	18		
97-5	M706519	190.0	192.0	2.0	0.000	0.00	45	3	2	26		
97-5	M706520	192.0	194.0	2.0	0.000	0.00	8	2	0	26		
97-5	M706521	194.0	196.0	2.0	0.000	0.00	7	0	0	22		
97-5	M706522	196.0	198.0	2.0	0.000	0.00	3	1	0	18		
97-5	M706523	198.0	200.0	2.0	0.000	0.00	15	0	4	28		
97-5	M706524	200.0	202.0	2.0	0.000	0.00	4	0	2	26		
97-5	M706525	202.0	204.0	2.0	0.000	0.00	10	4	4	26		
97-5	M706526	204.0	206.0	2.0	0.000	0.00	5	0	2	14		
97-5	M706527	206.0	208.0	2.0	0.000	0.00	14	0	4	18		
97-5	M706528	208.0	210.0	2.0	0.000	0.00	32	9	6	12		
97-5	M706529	210.0	212.0	2.0	0.000	0.00	5	1	0	22		
97-5	M706530	212.0	214.0	2.0	0.000	0.00	7	0	2	20		
97-5	M706531	214.0	216.0	2.0	0.000	0,00	20	1	4	18		
97-5	M706532	216.0	218.0	2.0		0.00		0	6	26		
97-5	M706533	218.0	220,0	2.0		0.00			2			
97-5	M706534	220.0	222.0						2			
97-5	M706535	222.0	224.0						2			
97-5	M706536	224.0	226.0									
97-5	M706537	226.0	228.0									
97 <b>-</b> 5	M706538	228.0	230.0									
97-5	M706539	230.0	232.0									
97-5	M706540	232.0	234.0									
97-5	M706541	234.0	236.0									
<del>9</del> 7-5	M706542	236.0	238.0									
97-5	M706543	238.0	240.0									
97-5	M706544	240.0	242.0									
97-5	M706545	242.0	244.0	) 2.0	) 0.000	0.00	) 9	) 3	0	30		

#### Geochemical Analysis

· · · · · ·

•

.

 A second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec

#### Munro Lake Drilling

Geochemical Analysis

.

and the second second second second second second second second second second second second second second second

Drill Hole	Sample #	From (m)	To (m)	Interval (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Zn (ppm)
97-5	M706546	244.0	246.0	2.0	0.000	0.20	119	3	2	24
97-5	M706547	246.0	248.0	2.0	0.000	0.00	12	4	0	16
97-5	M706548	248.0	250.0	2.0	0.000	0.00	4	3	2	24
97-5	M706549	250.0	252.0	2.0	0.000	0.00	7	9	2	30
97-5	M706550	252.0	254.0	2.0	0.000	0.00	5	2	0	24
97-5	M706551	254.0	256.0	2.0	0.000	0.00	9	3	6	18
97-5	M706552	256.0	258.0	2.0	0.000	0.00	5	42	4	20
97-5	M706553	258.0	260.0	2.0	0.000	0.00	6	6	4	18
97-5	M706554	260.0	262.0	2.0	0.000	0.00	6	0	4	32
97-5	M706555	262.0	264.0	2.0	0.000	0.00	7	1	4	30
97-5	M706556	264.0	266.0	2.0	0.000	0.00	7	1	4	30
97-5	M706557	266.0	268.0	2.0	0.000	0.00	5	2	4	26
97-5	M706558	268.0	270.0	2.0	0.000	0.00	9	1	6	28
97-5	M706559	270.0	272.0	2.0	0.000	0.00	9	3	2	18
97-5	M706560	272.0	274.0	2.0	0.000	0.00	21	1	0	18
97-5	M706561	274.0	276.0	2.0	0.000	0.00	11	3	4	28
97-5	M706562	276.0	278.0	2.0	0.000	0.00	6	0	0	30
97-5	M706563	278.0	280.0	2.0	0.000	0.00	4	1	2	42
97-5	M706564	280.0	282.0	2.0	0.000	0.00	3	1	4	14
97-5	M706565	282.0	284.0	2.0	0.000			12	4	20
97-5	M706566	284.0	286.0	2.0	0.000			4	2	22
97-5	M706567	286.0	288.0	2.0	0.000				2	
97-5	M706568	288.0	290.0						2	
97-5	M706569	290.0	292.0	2.0					4	
97-5	M706570	292.0	294.0						4	
97-5	M706571	294.0	296.0	2.0	0.000	0.00			2	
97-5	M706572	296.0	298.0	2.0	0.000	0.00	13	1	2	
97-5	M706573	298.0	300.0	2.0	0.000	0.00	7	1	2	24
97-5	M706574	300.0	302.0	2.0	0.000	0.00	7	0	2	18
97-5	M706575	302.0	304.0	2.0	0.000	0.00	5	i 1	2	32
97-5	M706576	304.0	306.0	2.0	0.000	0.00	31	1	2	28
97-5	M706577	306.0	308.0	2.0	0.000	0.00	6	i 0	2	24
97-5	M706578	308.0	310.0	2.0	0.000	0.00	15	i 1	2	20
97-5	M706579	310.0	312.0						2	

Almaden R	esources Cor	p.			Munr	o Lake Drill	ing			
Drill Hol	e Sample#	From (m)	To (m)	Interval (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Zn (ppm)
97-5	M706580	312.0	314.0	2.0	0.000	0.00	3	7	2	22
97-5	M706581	314.0	316.0	2.0	0.000	0.00	20	0	- 2	30
97-5	M706582	316.0	318.0	2.0	0.000	0.00	16	1	6	36
97-5	M706583	318.0	320.0	2.0	0.000	0.20	10	3	6	12
97-5	M706584	320.0	322.0	2.0	0.000	0.00	42	4	6	14
97-5	M706585	322.0	324.0	2.0	0.000	0.00	7	6	2	22
97-5	M706586	324.0	326.0	2.0	0.000	0.00	8	2	2	14
97-5	M706587	326.0	328.0	2.0	0.000	0.00	5	3	4	16
97-5	M706588	328.0	330.0	2.0	0.000	0.00	12	7	4	20
97-5	M706589	330.0	332.0	2.0	0.000	0.00	5	1	2	24
97-5	M706590	332.0	334.0	2.0	0.000	0.00	5	3	2	14
97-5	M706591	334.0	336.0	2.0	0.000	0.00	5	0	2	26
97-5	M706592	336.0	338.0	2.0	0.000	0.00	6	6	6	24
97-5	M706593	338.0	340.0	2.0	0.000	0.00	4	0	2	26
97-5	M706594	340.0	342.0	2.0	0.000	0.00	5	1	2	26
97-5	M706595	342.0	344.0	2.0	0.000	0.00	10	1	2	26
97-5	M706596	344.0	346.0	2.0	0.000	0.00	3	1	2	10

•

,

• •

• •

Geochemical Analysis

•

• • •

.

Appendix 4 Certificates of Analyses

,



CERTIFICATE

.

#### Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

A9747428

#### To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Comments: ATTN:LEO KING/MORGAN POLIQUIN

A9747428

(PFM ) - ALMADEN RESOURCES CORP. Project MUNRO P.O. # : Samples submitted to our lab in Vancouver, BC. This report was printed on 26-OCT-97. SAMPLE PREPARATION CHEMEX CODE NUMBER SAMPLES DESCRIPTION 205 160 Geochem ring to approx 150 mesh 294 160 4-7 Kg crush and split 3202 160 Rock - save entire reject 229 160 ICP - AQ Digestion charge

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Ba, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

* NOTE

			ROCEDURE	S	
	NUMBER SAMPLES	DESCRIPTION	METHOD		UPPER LIMIT
983 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2120 2130 2131 2132 2130 2131 2132 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149	160 160 160 160 160 160 160 160 160 160	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ms 2 element, soil & rock Ms 2 element, soil & rock Ms 2 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Na %: 32 element, soil & rock P ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Th ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti %: 32 element, soil & rock Ti %: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock	FA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-	5 0.2 0.01 2 10 0.5 2 0.01 0.5 1 1 1 0.01 10 10 10 2 2 1 1 0.01 10 2 2 1 1 0.01 10 2 2 2 1 1 0.01 10 2 2 2 1 1 0.01 10 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 1 1 0.01 0.5 2 0.01 0.5 1 1 0.01 0.01 0.01 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 2 2 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 10000\\ 100.0\\ 15.00\\ 10000\\ 10000\\ 10000\\ 15.00\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 1000\\ 1000\\ 1000\\ 10000\\ 10000\\ 1000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\$



. .

## **Chemex Labs Ltd.**

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6 Page Number : 1-A Total Pages :4 Certificate Date: 26-OCT-97 Invoice No. : 19747428 P.O. Number : Account : PFM

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

				<del>_</del>							CE	RTIFI	CATE	OF A	NAL	YSIS	1	<b>4</b> 9747	428		
SAMPLE	PRI COI		Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg mqq	K %	La ppn	Mg %	Mn ppm
M706001		294	< 5	< 0.2	0.86	2	80	< 0.5	< 2	0.88	1.0	3	88	70	1.38	< 10		0.39			
M706002		294	< 5	0.6	1.10	2	110	< 0.5	8	0.97	4.0	3	92	184	1.68	< 10	< 1 < 1	0.53	< 10 < 10	0.29 0.28	505
M706003		294	< 5	0.4	1.05	< 2	100	< 0.5	16	1.41	1.5	4	76	137	1.74	< 10	< 1	0.43	< 10	0.28	550 715
M706004 M706005		294	< 5	0.2	1.16	< 2	120	< 0.5	< 2	0.98	1.0	3	84	105	1.79	< 10	< 1	0.49	10	0.41	530
	205	294	< \$	< 0.2	1.02	2	130	< 0.5	2	0.95	1.5	4	81	50	1.70	< 10	ī	0.46	< 10	0.39	520
M706006 M706007	205	294	< 5	< 0.2	1.16	< 2	130	< 0.5	6	0,91	1.0	3	87	41	1.79	< 10	1	0.51	< 10	0.38	475
M706008	205	294	< 5 < 5	< 0.2	1.16	< 2	190	< 0.5	8	0.91	1.0	3	97	130	1.76	< 10	1	0.49	< 10	0.41	440
M706009		294	< 5 < 5	< 0.2 0.2	1.23	< 2	170	< 0.5	< 2	1.01	2.0	4	86	87	1.82	< 10	1	0.57	< 10	0.42	450
M706010		294	< 5	0.2	1.23	< 2 < 2	160 130	< 0.5 < 0.5	< 2	1.01	2.5	4	84	142	1.92	< 10	< 1	0.47	10	0.47	515
·······			· · ·		2.43		120	< 0.5	12	1.23	1.0	3	64	75	1.65	< 10	1	0.47	10	0.38	490
M706011 M706012		294	< 5	0.6	1.16	< 2	180	< 0.5	16	0.99	5.5	4	89	224	1.76	< 10	< 1	0.50	< 10	0.38	475
M706013		294 294	< 5	< 0.2	1.12	< 2	180	< 0.5	2	0.94	1.5	4	77	61	1.71	< 10	1	0.49	< 10	0.38	485
M706014		294	< 5 < 5	0.2	1.09	< 2	110	< 0.5	< 2	0.95	0.5	3	90	97	1,57	< 10	< 1	0.43	< 10	0.34	470
M706015	205		< 5	0.6 0.6	1.07	< 2 4	110	0.5	< 2	1.33	< 0.5	3	75	72	1.77	< 10	< 1	0.46	10	0.32	685
· · · · · · · · · · · · · · · · · · ·	<b></b>			0.0	7.41		80	0.5	4	1.18	< 0.5	3	76	59	1.80	< 10	< 1	0.47	< 10	0.28	550
M706016		294	< 5	0.6	1.18	< 2	90	0.5	2	1.23	0.5	3	78	79	2.13	< 10	1	0.63	< 10	0.21	665
M706017 M706018		294	< 5	0.6	0.92	< 2	180	0.5	10	1.24	< 0.5	3	74	82	1.88	< 10	< 1	0.48	< 10	0.17	595
M706019		294 294	< 5 < 5	0.2	0.88 0.99	< 2	60	0.5	< 2	0.94	< 0.5	1	83	41	1.14	< 10	2	0.35	< 10	0.19	450
M706020		294	< 5	0.8	1.17	< 2 < 2	90 80	0.5 0.5	4	1.35	0.5	4	80	144	1.79	< 10	< 1	0.42	< 10	0.25	595
					1.11		00	¢+5	< 2	1.74	1.0	3	83	53	1.64	< 10	< 1	0.43	< 10	0.34	730
M706021 M706022		294	< 5	0.6	1.15	< 2	70	0.5	2	1.69	1.5	4	83	93	1.69	< 10	< 1	0.49	< 10	0.28	695
M705023		294 294	< 5	0.2	1.20	< 2	120	< 0.5	< 2	1.40	0.5	4	87	31	1.61	< 10	< 1	0.50	< 10	0.29	535
M706024		294	< 5 < 5	0.4	1.20	< 2	80	0.5	< 2	1.99	0.5	3	96	30	1.50	< 10	< 1	0.44	< 10	0.32	685
M706025		294	< 5	0.2	1.11	< 2 < 2	90 90	0.5	< 2		< 0.5	4	96	69	1.60	< 10	1	0.50	10	0.33	495
	<b>_</b>				1,11		30	. 0.5	< 2	1.17	< 0.5	3	91	45	1.65	< 10	< 1	0.43	< 10	0.36	420
M706026		294	< 5	0.8	1.10	< 2	100	0.5	4	1.23	< 0.5	3	91	48	1,64	< 10	< 1	0.46	< 10	0.32	500
N706027 N706028		294	< 5	1.2	1.05	< 2	120	0.5	< 2	1.58	0.5	3	83	89	1.65	< 10	< 1	0.46	< 10	0.27	850
M706029		294 294	< 5	0.2	1.21	< 2	250	0.5	10		< 0.5	3	87	23	1.70	< 10	< 1	0.46	10	0,35	455
M706030		294	< 5 < 5	< 0.2 < 0.2	1.09 0.96	< 2	100	< 0.5	< 2		< 0.5	3	77	27	1.55	< 10	< 1	0.34	< 10	0.39	370
			· •	< 0.2	0.90	< 2	80	0.5	2	1.21	< 0.5	3	73	38	1.54	< 10	< 1	0.42	< 10	0.28	405
M706031		294	< 5	< 0.2	0.90	< 2	210	< 0.5	< 2	0.87	< 0,5	3	77	32	1.60	< 10	< 1	0.34	< 10	0.40	350
x706032		294	< 5	< 0.2	1.07	< 2	150	< 0.5	4		< 0.5	3	88	66	1.67	< 10	< 1	0.42	< 10	0.40	365
M706033 M706034		294	< 5	< 0.2	0.94	< 2	220	< 0.5	< 2		< 0.5	4	83	36	1.62	< 10	< 1	0.35	< 10	0.42	360
1706035	205	294	< 5 < 5	< 0.2	1.02	< 2	230	0.5	< 2		< 0.5	4	71	45	1.96	< 10	< 1	0.40	10	0.34	325
· · · · · · · · · · · · · · · · · · ·					1.04	< 2	240	< 0.5	4	1.17	< 0.5	4	84	75	1.70	< 10	< 1	0.37	< 10	0.38	345
1706036	205		< 5	< 0.2	1.17	< 2	150	0.5	< 2	0.94	< 0.5	4	91	31	1.88	< 10	< 1	0.40		<b>•</b> /-	
1706037		294	< 5	< 0.2	1.13	< 2	180	< 0.5	< 2		< 0.5	4	76	56	1.66	< 10	< 1	0.49 0.40	< 10 < 10	0.43	375
1706038		294	< 5	0.2	1.35	< 2	220	0.5	2	1.14	1.0	4	93	63	2.34	< 10	< 1	0.49	< 10	0.42	370 370
1706039 1706040		294	< 5	< 0.2	1.25	< 2	940	0.5	< 2	1.90	< 0.5	3	88	28	1.43	< 10	1	0.40	10	0.35	520
	205	*34	< 5	< 0.2	1.09	< 2	90	0.5	< 2	1.31	< 0.5	3	91	16	1.64	< 10	< ī	0.43	10	0.33	490
																				. •	

CERTIFICATION:

3-8-2.30



Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Page Number :1-B Total Pages :4 Certificate Date: 26-OCT-97 Invoice No. :19747428 P.O. Number : Account PFM

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

										ĊE	RTIF	CATE	OF A	NAL	YSIS	A9747428
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V mqq	W ppm	Zn ppm	
M706001 M706002 M706003 M706004 M706005	205 294 205 294 205 294 205 294 205 294 205 294	36 11 33 < 1 < 1	0.04 0.04 0.05 0.06 0.05	3 7 5 4 5	330 350 420 430 390	4 8 6 4 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 2 2 2	81 82 125 82 76	0.01 < 0.01 0.02 0.03 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 16 21 23 23	< 10 < 10 < 10 < 10 < 10 < 10	590 2080 794 488 638	
M706006 M706007 M706008 M706009 M706010	205 294 205 294 205 294 205 294 205 294 205 294	1 < 1 < 1 < 1 < 1 129	0.06 0.06 0.05 0.04 0.05	4 4 5 5 4	400 420 450 400 390	2 2 < 2 6 14	< 2 < 2 < 2 < 2 < 2 < 2	2 2 . 2 3 1	66 81 81 104 160	0.03 0.04 0.04 0.03 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	23 24 27 25 20	< 10 < 10 < 10 < 10 < 10 < 10	572 600 1190 1505 686	
M706011 M706012 M706013 M706014 M706015	205 294 205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1 < 1 4	0.05 0.05 0.05 0.03 0.03	4 7 3 4 3	380 380 330 360 410	10 6 14 12	< 2 < 2 < 2 < 2 < 2 < 2	2 2 2 1 1	113 146 141 204 149	0.03 0.03 0.01 < 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	22 22 19 15 15	< 10 < 10 < 10 < 10 < 10 < 10	3150 792 310 174 164	
M706016 M706017 M706018 M706019 M706020	205 294 205 294 205 294 205 294 205 294 205 294	1 18 < 1 < 1 < 1 < 1	0.03 0.02 0.05 0.03 0.03	3 3 3 3 4	410 360 230 400 410	12 14 6 16 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 < 1 < 1 1 1	122 120 184	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	12 10 10 13 16	< 10 < 10 < 10 < 10 < 10 < 10	252 268 204 388 642	
M706021 M706022 M706023 M706024 M706025	205 294 205 294 205 294 205 294 205 294 205 294	6 < 1 < 1 5 < 1	0.03 0.04 0.03 0.05 0.05	3 4 3 4 3	420 370 400 450 420	14 10 10 14 12	< 2 < 2 < 2 < 2 < 2 < 2	1 1 1 1 1	149 222	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	15 16 16 18 20	< 10 < 10 < 10 < 10 < 10 < 10	884 396 354 204 90	
M706026 M706027 M706028 M706029 M706029 M706030	205 294 205 294 205 294 205 294 205 294 205 294	4 13 1 < 1 < 1	0.06 0.03 0.05 0.04 0.04	3 3 4 3 3	400 400 400 390 400	22 46 12 6 8	< 2 < 2 < 2 < 2 < 2 < 2	1 1 1 1	259 148	0.01 < 0.01 0.01 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 10 19 21 15	< 10 < 10 < 10 < 10 < 10 < 10	84 210 90 86 90	
M706031 M706032 M706033 M706034 M706035	205 294 205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.06 0.06 0.06 0.05	3 4 3 3 4	420 420 420 430 420	2 6 2 8 12	< 2 < 2 < 2 < 2 < 2	2 2 2 1 2	137 96 142 263 254	0.03 0.01 0.03 0.01 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	22 22 24 18 21	< 10 < 10 < 10 < 10 < 10 < 10	78 98 86 98 124	
M706036 M706037 M706038 M706039 M706039	205 294 205 294 205 294 205 294 205 294 205 294	< 1 1 8 88 27	0.07 0.05 0.06 0.04 0.06	4 3 4 3 3	450 440 460 460 480	6 8 28 16 8	< 2 < 2 < 2 < 2 < 2	3 2 3 1 2	92 147 261 283 132	0.05 0.03 0.03 < 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	27 24 25 16 20	< 10 < 10 < 10 < 10 < 10	112 122 590 124 82	
L																



.

#### **Chemex Labs Ltd.**

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6 Page Number :2-A Total Pages :4 Certificate Date: 26-OCT-97 Invoice No. :19747428 P.O. Number : Account :PFM

. . . .

.

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

		_									CE	RTIFI	CATE	OF A	NAL	YSIS		<b>\9747</b>	428		
SAMPLE	PREP CODE		ppb \+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Мл ррш
M706041	205 29		< 5	0.2	0.88	8	80	0.5	< 2	1.20	< 0.5	4	86	26	1.73	< 10	1	0.35	< 10	0.33	465
M706042	205 29		< 5	0.2	0.96	14	210	0.5	< 2	1.31	< 0.5	3	84	41	1.79	< 10	< 1	0.43	< 10	0.30	475
M706043	205 29		< 5	0.4	0.91	4	80	1.0	< 2	1.63	< 0.5	3	93	49	1.64	< 10	< 1	0.35	< 10	0.31	485
M706044 M706045	205 29		< 5 < 5	< 0.2 < 0.2	0.95	< 2 4	180 170	0.5 0.5	< 2 < 2	1.16 1.06	< 0.5 < 0.5	3	85 69	59 46	1.60 1.51	< 10 < 10	< 1 < 1	0.38 0,35	< 10 < 10	0.32	420 435
M706046	205 29	94	< 5	0.2	0.87	4	90	0.5	< 2	1.27	< 0.5	3	91	43	1.52	< 10	< 1	0.37	< 10	0.26	490
M706047	205 29		< 5	0.2	0.93	< 2	170	0.5	< 2	1.52	< 0.5	3	92	21	1.39	< 10	< 1	0.37	< 10	0.27	685
M70604B	205 29		< 5	0.2	0.92	2	60	1.0	< 2	1.28	< Q.5	4	81	26	1.78	< 10	< 1	0.40	< 10	0.21	780
M706049 M706050	205 29		< 5	0.2	1.01 1.18	< 2	60 90	1.0	< 2	1.61	< 0.5 < 0.5	4	97 90	56 41	1.95 1.57	< 10 < 10	< 1 < 1	0.49	< 10 < 10	0.23	1495 1040
	203 43		<u> </u>		1.10	· · ·		0.5	* 4	1.33	< 0.5	6	90	+#1	1.57	K 10	< 1	0.40	< 10	0.20	1040
M706051	205 29		< 5	0.2	1.14	< 2	60	0.5	< 2	1.56	< 0.5	3	93	14	1.69	< 10	1	0.37	< 10	0.32	1085
M706052	205 29		< 5	0.4	1.03	2	60	0.5	< 2	1.54	< 0.5	3	75	20	1.51	< 10	< 1	0.41	< 10	0.26	1050
M706053	205 29		< 5	0.6	0.99	2	70	0.5	< 2	1.58	1.5	3	79	40	1.83	< 10	< 1	0.35	< 10	0.29	2270
M706054 M706055	205 29		< 5 < 5	3.0	0.97	< 2 < 2	90 60	1.0	6 2	2.16	2.5	3	84 75	225 94	2.65	< 10 < 10	1 < 1	0.37 0.35	10 10	0.19 0.13	3020 1755
	_					····			-												
M706056	205 29		< 5	0.6	1.02	< 2	70	0.5	2	1.24	< 0.5	3	75	118	1.38	< 10	< 1	0.29	10	0.27	585
M706057	205 29		< 5	< 0.2	1.01	< 2 < 2	150 90	< 0.5	< 2	0.93	< 0.5	3	80 68	117	1.39	< 10	< 1	0.30	10	0.27	400
M706058 M706059	205 29		< 5 < 5	0.4	0.85	< 2	90 70	< 0.5	< 2 < 2	1.08	< 0.5 < 0.5	د ۲	68 109	156 291	1.49 2.12	< 10 < 10	< 1 < 1	0.32	10 10	0.22 0.13	435 480
M706060	205 29		< 5	0.2	0.96	< 2	90	0.5	< 2	1.27	< 0.5	4	64	53	1.60	< 10	< 1	0.37	< 10	0.22	420
M706061	205 29	94	< 5	0.2	1.14	< 2	80	< 0.5	2	0.96	< 0.5	5	82	113	2.43	< 10	1	0.31	< 10	0.40	350
M706062	205 29		< 5	< 0.2	1.03	< 2	70	< 0.5	< 2	0,99	< 0.5	4	70	57	1.85	< 10	< 1	0.32	< 10	0.36	360
M706063	205 29	94	< 5	< 0.2	0.97	< 2	60	< 0.5	< 2	0.99	< 0.5	4	88	24	3.87	< 10	< 1	0.35	< 10	0.32	355
M706064	205 29	94]	< 5	0.2	1.15	< 2	80	0.5	2	1.18	< 0.5	4	69	103	2.01	< 10	< 1	0.39	< 10	0.36	400
M706065	205 29	94	< 5	0.4	1.09	2	250	0.5	< 2	1.31	< 0.5	Э	86	86	2.19	< 10	< 1	0,38	< 10	0.26	465
M706066	205 29		< 5	0.6	2.16	< 2	400	0.5	< 2	1.32	< 0.5	3	62	129	1.75	< 10	1	0.40	10	0.25	410
M706067	205 29		< 5	< 0.2	2.46	< 2	740	0.5	< 2	1.49	< 0.5	3	29	23	1.38	< 10	< 1	0,20	10	0.28	430
M706068	205 29		< 5	0.6	1.16	< 2	180	0.5	2	1.29	< 0.5	3	58	183	1.56	< 10	< 1	0.31	10	0.30	525
M706069 M706070	205 29		< 5 < 5	< 0.2	1.03	< 2 < 2	60 60	< 0.5 0.5	< 2	1.21	< 0.5 < 0.5	3	78 55	37 73	1.54 1.40	< 10 < 10	1 < 1	0.29 0.39	< 10 < 10	0.45 0.24	475 585
					0100	• •		0.5		7.64	~ V.J	-	24		1.40	· 10	· · ·		~ 10	V. 21	
M706071	205 2		< 5	0.4	0.72	< 2	50	< 0.5	< 2	1.09	< 0.5	2	71	51	1.35	< 10	< 1	0.26	< 10	0.23	340
M706072	205 29		< 5	< 0.2	1.07	2	60	0.5	< 2	1.34	< 0.5	3	45	53	1.65	< 10	1	0.24	< 10	0.35	365
M706073		94	< 5	0.2	0.99	< 2	70	< 0.5	< 2	1.24	< 0.5	4	81	237	2.11	< 10	< 1	0.33	< 10	0.33	405
M706074 M706075	205 29		< 5 < 5	0.6	1.05	< 2 < 2	60 80	< 0.5 < 0.5	< 2 < 2	1.02 0.74	< 0.5 < 0.5	3 4	74 52	143 99	$1.55 \\ 2.29$	< 10 < 10	< 1 < 1	0.28 0.40	< 10 10	0.32 0.37	410 295
M706076	205 2		< 5	< 0.2	0.92	< 2	100	< 0.5	< 2	0.55	< 0.5	3	72	50	1.85	< 10	<i>.</i> 1	0.37	< 10	0.44	340
M706077	205 2		< 5	0.2	1.12	< 2	90	< 0.5	< 2	0.33	< 0.5	4	87	99	1.85	< 10	< 1 < 1	0.37	< 10	0.45	375
N706078	205 2		< 5	0.4	1.06	< 2	80	0.5	< 2	0.96	< 0.5	3	80	189	2.57	< 10	< 1	0.44	< 10	0.31	525
N706079	205 2		< 5	1.4	0.68	< 2	80	< 0.5	< 2	0.50	< 0.5	2	81	84	3.81	< 10	< 1	0.36	10	0.09	490
M706080	205 2		< 5	2.2	0.65	2	50	0.5	6	1.07	1.0	2	93	648	2.38	< 10	ī	0.36	< 10	0.09	910
	_																• 1				

CERTIFICATION:_

; T



Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

 British Columbia, Canada
 V7J 2C1

 PHONE: 604-984-0221
 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186 Page Number :2-B Total Pages :4 Certificate Date: 26-OCT-97 Invoice No. :19747428 P.O. Number : Account :PFM

•

. .

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

A9747428 CERTIFICATE OF ANALYSIS Τ1 υ v W Zn PREP Mo Na Ni Р ₽b SbSc  $\mathbf{Sr}$ Тi SAMPLE CODE % % ppm ppm ppm ppm ppm ppm ррш ppm ppm ррш ppm ррш 205 294 M706041 0.04 З 24 101 0.01 < 10 < 10 18 < 10 90 4 440 < 2 1 114 M706042 205 294 21 0.04 3 440 24 < 2 157 0.01 < 10 < 10 17 < 10 1 < 10 205 294 490 0.01 < 10 < 10 15 142 M706043 3 0.03 3 44 < 2 1 153 ~ < 10 M706044 205 294 58 0.04 420 14 0.01 < 10 < 10 19 166 4 < 2 1 126 205 294 0.03 3 370 12 < 2 102 0.01 < 10 < 10 16 < 10 96 M706045 1 1 < 10 114 < 0.01 < 10 < 10 13 100 3 420 14 < 2 M706046 205 294 71 0.04 1 137 < 0.01< 10 12 < 10 68 205 294 420 16 < 2 < 10 M706047 1 0.04 3 1 < 10 11 86 M706048 205 294 68 0.04 3 440 12 < 2 1 105 < 0.01 < 10 < 10 103 < 0.01 < 10 < 10 M706049 205 294 11 0.03 з. 400 10 < 2 < 10 9 82 1 205 294 3 8 127 < 0.01 < 10 < 10 13 < 10 128 M706050 19 0.04 410 < 2 1 3 < 10 13 < 10 98 1706051 205 294 2 0.03 390 4 < 2 1 147 < 0.01 < 10 < 10 M706052 205 294 96 0.03 2 400 8 < 2 1 119 < 0.01< 10 12 < 10 102 M706053 205 294 104 0.02 З. 370 24 < 2 1 105 < 0.01< 10 < 10 10 < 10 550 M706054 5 1020 205 294 56 0.01 З 340 44 < 2 1 140 < 0.01< 10 < 10 < 10 4 242 M706055 205 294 57 0.01 з 410 24 < 2 1 161 < 0.01< 10 < 10 < 10 72 205 294 77 0.05 3 330 8 < 2 1 154 < 0.01 < 10 < 10 10 < 10 M706056 205 294 330 2 132 < 0.01< 10 < 10 11 < 10 74 M706057 129 0.04 3 < 2 1 162 205 294 0.03 3 320 108 < 0.01< 10 < 10 9 < 10 M706058 103 6 < 2 1 < 10 7 < 10 164 M706059 205 294 14 0.03 3 490 10 < 2 1 115 < 0.01< 10 3 < 10 11 < 10 140 M706060 205 294 32 0.03 510 В < 2 1 119 < 0.01< 10 92 M706061 205 294 70 0.05 З 470 4 < 2 1 167 0.01 < 10 < 10 20 < 10 M706062 205 294 457 0.05 Э 480 4 < 2 1 119 0.01 < 10 < 10 20 < 10 72 72 M706063 205 294 641 0.04 3 440 < 2 < 2 94 0.01 < 10 < 10 18 < 10 1 205 294 0.05 2 520 120 0.01 < 10 < 10 20 < 10 7B M706064 97 4 < 2 1 205 294 69 0.05 3 500 16 < 2 1 501 0.01 < 10 < 10 13 < 10 120 M706065 < 14 < 10 120 M706066 205 294 29 0.32 2 450 20 < 2 1 3280 0.01 < 10 < 10 205 294 1 0.65 3 260 6 < 2 2 4150 0.04 < 10 < 10 24 < 10 48 M706067 134 205 294 11 0.07 2 310 28 < 2 1 458 < 0.01 < 10 < 10 14 < 10 M706068 21 94 M706069 205 294 45 0.06 5 430 4 < 2 2 135 0.01 < 10 < 10 < 10 140 3 440 8 < 10 11 < 10 M706070 205 294 1 0.05 < 2 1 93 < 0.01< 10 < 10 < 10 130 84 < 0.01 12 < 10 M706071 205 294 24 0.04 2 320 8 < 2 < 1 182 < 0.01 < 10 < 10 158 M706072 205 294 14 0.04 Э 430 4 < 2 1 < 10 16 205 294 83 0.04 4 390 6 1 131 0.01 < 10 < 10 17 < 10 94 M706073 < 2 < 10 15 < 10 86 205 294 21 0.04 З 360 4 1 95 0.01 < 10 M706074 < 2 122 205 294 41 0.04 1 510 4 < 2 1 105 0.01 < 10 < 10 21 < 10 M706075 56 205 294 27 < 10 м706076 < 1 0.05 3 410 < 2 < 2 2 77 0.04 < 10 < 10 76 M706077 205 294 3 0.05 3 450 2 < 2 2 100 0.03 < 10 < 10 25 < 10 M706078 205 294 < 1 0.04 3 470 4 < 2 1 89 0.01 < 10 < 10 18 < 10 90 258 M706079 205 294 22 0.01 з 610 6 < 2 < 1 34 < 0.01< 10 10 5 < 10 446 M706080 205 294 36 0.03 3 260 8 < 2 < 1 59 < 0.01 < 10 < 10 5 < 10

de la

10

~20.



Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186 Page Number :3-A Total Pages :4 Certificate Date:26-OCT-97 Invoice No. :19747428 P.O. Number : Account :PFM

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

p											CE	RTIFI	CATE	OF A	NAL	YSIS	4	\9747	428		
SAMPLE	PRI	1	Ац ррђ FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Ве ррш	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg mqq	K %	La ppm	Mg %	Mn ppm
M706081	205		< 5	0.4	0.64	< 2	60	< 0.5	< 2	0.84	< 0.5	2	80	61	1.38	< 10	1	0.31	< 10	0.14	540
M706082	205	294	< 5	0.2	0.66	< 2	60	< 0.5	< 2	0.68	< 0.5	2	83	140	1.50	< 10	< 1	0.34	< 10	0.10	280
M706083	205	294	< 5	0.2	0.81	< 2	100	< 0.5	< 2	0.64	< 0.5	3	83	90	1.78	< 10	< 1	0.37	< 10	0.26	375
M706084 M706085	205 205	294 294	< 5 < 5	< 0.2 0.4	0.82 0.58	< 2 < 2	120 50	< 0.5 < 0.5	< 2 < 2	0.61 0.85	< 0.5 0.5	3 1	72 59	121 101	1.58 1.04	< 10 < 10	< 1 < 1	0.38 0.30	10 < 10	0.31 0.13	400 505
M706086	205	294	< 5	5.4	0.78	< 2	50	0.5	26	0.41	12.5	3	63	367	3.43	< 10	< 1	0.44	< 10	0.12	1135
M706087	205	294	< 5	3.4	0.57	< 2	50	< 0.5	22	0.74	1.5	1	55	120	2.02	< 10	< 1	0.33	10	0.09	655
M706088	205	294	< 5	0.6	0.64	< 2	150	0.5	≺ 2	1.38	< 0.5	1	B 9	54	1.11	< 10	< 1	0.37	< 10	0.08	810
M706089 M706090	205 205	294 294	< 5 < 5	0.2	0.74 0.82	< 2 < 2	60 90	0.5	< 2 2	1.13 0.60	< 0.5 < 0.5	2 3	102 107	49 132	1.40 1.60	< 10 < 10	< 1 < 1	0.33 0.37	10 10	0.15 0.18	540 260
M706091	205	294	< 5	< 0.2	0.75	< 2	80	< 0.5	2	0.70	< 0.5	3	B6	96	1.49	< 10	1	0.33	10	0.21	265
M706092	205	294	< Š	< 0.2	0.85	< 2	130	< 0.5	< 2	0.71	< 0.5	ž	95	47	1.39	< 10	i	0.33	10	0.25	285
M706093	205	294	< 5	< 0.2	0.76	< 2	80	< 0.5	< 2	0.73	< 0.5	2	100	71	1.55	< 10	< 1	0.29	10	0.21	275
M706094	205	294	< 5	0.6	0.83	< 2	BO	< 0.5	< 2	0.84	< 0.5	2	85	77	1.71	< 10	< 1	0.38	10	0.17	545
M706095	205	294	< 5	2.4	0.82	< 2	140	0.5	10	0.57	0.5	3	72	440	2.21	< 10	< 1	0,43	10	0.13	420
M706096	205	294	< 5	0.6	0.93	< 2	80	0.5	< 2	0.98	< 0.5	2	100	81	1.69	< 10	< 1	0.36	10	0.18	505
M706097	205	294	< 5	1.4	0.72	< 2	60	< 0.5	10	1.31	0.5	2	81	63	1.62	< 10	< 1	0.36	10	0.14	725
M706098 M706099	205 205	294 294	< 5 < 5	0.6	0.85 0.51	< 2 < 2	80 60	< 0.5 < 0.5	< 2 < 2	0.71 0.62	< 0.5 < 0.5	2	98 83	80 154	1.37 0.93	< 10 < 10	1	0.36 0.24	10 < 10	0.22	390 430
M706100	205	294	< 5	0.6	0.63	< 2	60	< 0.5	4	0.65	< 0.5	1	88	230	1.08	< 10	< 1 < 1	0.33	< 10	$0.12 \\ 0.10$	405
M706101	205	294	< 5	0.2	0.67	< 2	60	< 0.5	< 2	0.61	< 0.5	3	84	69	1.35	< 10	< 1	0.30	10	0.16	375
M706102	205	294	< 5	0.6	0.96	< 2	120	< 0.5	< 2	0.49	< 0.5	3	71	257	2.09	< 10	1	0.46	10	0.27	335
M706103	205	294	< 5	0.2	1.06	< 2	130	0.5	< 2	0.83	< 0.5	3	B4	128	1.82	< 10	1	0.39	10	0.30	410
M706104	205	294	< 5	< 0.2	1.09	< 2	250	< 0.5	< 2	0.79	< 0.5	4	83	89	1.75	< 10	< 1	0.43	10	0.35	395
M706105	205		< 5	0.8	0.99	< 2	210	< 0.5	20	0.77	< 0.5	3	79	211	2.27	< 10	< 1	0.42	10	0.29	415
M706106	205		< 5	1.4	0.91	< 2	120	0.5	10	1.15	0.5	3	77	240	2.14	< 10	< 1	0.41	10	0.24	610
M706107 M706108	205		< 5 < 5	1.0	0.74 0.88	< 2 < 2	80 80	< 0.5	< 2	0.95	< 0.5	3	62	112 174	1.81	< 10	< 1	0.31	10	0.22	655
M706109	205	294	< 5	1.4	0.85	< 2	60	0.5	< 2	0.91	0.5 3.0	4	88 80	46	1.94 2.96	< 10 < 10	< 1	0,48 0,35	10 10	0.17 0.16	1330 9560
M706110		294	< 5	2.0	0.82	< 2	50	0.5	4	0.71	1.5	4	132	136	4.73	< 10	2	0.37	< 10		>10000
M706111	205	294	< 5	0.6	0.63	< 2	40	0.5	< 2	1.49	1.5	2	96	35	2.51	< 10	1	0.41	< 10	0.08	4950
M706112	205	294	< 5	0.0	0.69	2	50	0.5	2	1.93	1.5	3	115	49	3.69	< 10	1	0.41	10	0.13	>10000
M706113	205	294	< 5	0.8	0.51	< 2	40	0.5	< 2	1.26	< 0.5	3	86	49	2.97	< 10	< 1	0.32	< 10	0.05	2290
M706114	205	294	< 5	< 0.2	1.01	< 2	110	0.5	< 2	1.58	< 0.5	4	104	27	2.05	< 10	< 1	0.40	10	0.23	1560
M706115	205	294	< 5	< 0.2	0.57	< 2	70	0.5	< 2	1.82	< 0.5	4	84	18	1.75	< 10	< 1	0.39	10	0.08	2240
M706116	205	294	< 5	0.2	0.70	< 2	70	< 0.5	< 2	1.20	0.5	2	97	50	2.16	< 10	< 1	0.43	10	0.08	1465
M706117	205	294	< 5	0.6	0.73	< 2	70	0.5	< 2	1.25	0.5	3	111	18	2.59	< 10	< 1	0.42	10	0.09	2320
M706118	205	294	< 5	0.6	1.01	< 2	100	0.5	< 2	1.35	0.5	j	104	138	2.60	< 10	< 1	0.45	10	0.16	1420
M706119 M706120	205	294 294	< 5 < 5	0.8 < 0.2	1.01 1.02	< 2 < 2	120 200	0.5	2 < 2	1.62	0.5 < 0.5	4	94 84	34 24	3.22	< 10	< 1	0.48	10	0.28	4800 370
2100120	<b>4</b> 43	474	~ >	<b>∼ 0.4</b>	1.01	× 4	200	~ 0.5	< <b>A</b>	0.91	< 0.5	4	64	44	4.41	< 10	< 1	0.46	10	0.32	015
L																					

CERTIFICATION:

1. S. S. 13.

'nη



PREP

Mo

Na

#### Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1

PHONE: 604-984-0221 FAX: 604-984-0218

Ni

₽

To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6 Page Number :3-8 Total Pages :4 Certificate Date: 26-OCT-97 Invoice No. :19747428 P.O. Number : Account :PFM

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

# Pb Sb Sc Sr Ti TI U V W Zn ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm p

SAMPLE	CODI	E	ppm	%	ppm	ppm	ррш	ррш	ppm	ppm %	ppm	ppm	ррш	ppm	ppn	
M706081	205 :		9	0.05	2	220	4	< 2	< 1	55 < 0.01	< 10	< 10	8	< 10	100	
M706082	205 ;		7	0.04	2	180	8	< 2	< 1	48 < 0.01	< 10	< 10	6	< 10	134	
M706083	205	294	- 4	0.04	3	440	4	< 2	1	53 0.02	< 10	< 10	20	< 10	88	
M706084	205 ;	294	< 1	0.05	З	320	10	< 2	2	54 0.03	< 10	< 10	20	< 10	90	
M706085	205	294	7	0.04	1	180	4	< 2	< 1	68 < 0.01	< 10	< 10	7	< 10	286	
N706086	205 :		12	< 0.01	3	230	42	< 2	< 1	40 < 0.01	< 10	< 10	3	< 10	6310	
M706087	205		15	0.01	3	240	42	< 2	< 1	66 < 0.01	< 10	< 10	4	< 10	952	
M706088	205 3		3	0.03	2	230	6	< 2	< 1	87 < 0.01	< 10	< 10	3	< 10	118	
M706089	205		1	0.03	3	260	6	< 2	1	93 < 0.01	< 10	< 10	7	< 10	92	
M706090	205	294	21	0.05	2	270	< 2	< 2	1	52 0.01	< 10	< 10	11	< 10	76	
N706091	205		17	0.05	2	270	2	< 2	1	47 0.01	< 10	< 10	12	< 10	70	· · · · · · · · · · · · · · · · · · ·
M706092	205		55	0.06	2	250	- 4	< 2	1	67 0.01	< 10	< 10	14	< 10	48	
M706093	205		2	0.04	2	250	< 2	< 2	1	71 < 0.01	< 10	< 10	11	< 10	50	
M706094	205		16	0.03	2	270	6	< 2	1	67 < 0.01	< 10	< 10	9	< 10	174	
M706095	205	294	22	0.01	1	300	12	< 2	< 1	49 < 0.01	< 10	< 10	6	< 10	392	
M706096	205		7	0.04	3	250	6	< 2	1	89 < 0.01	< 10	< 10	10	< 10	92	
M706097	205		12	0.03	1	260	14	< 2	< 1	79 < 0.01	< 10	< 10	7	< 10	514	
M706098	205		< 1	0.05	2	220	2	< 2	1	59 0.01	< 10	< 10	13	< 10	74	
M706099	205		46	0.04	1	160	2	< 2	< 1	49 < 0.01	< 10	< 10	7	< 10	108	
M706100	205 :	294	16	0.05	2	150	6	< 2	< 1	43 < 0.01	< 10	< 10	6	< 10	118	
M706101	205 3		52	0.04	1	220	2	< 2	< 1	56 < 0.01	< 10	< 10	9	< 10	84	
M706102	205		3	0.04	з	320	< 2	< 2	1	40 0.03	< 10	< 10	15	< 10	96	
M706103	205		8	0.05	2	330	< 2	< 2	1	94 0.01	< 10	< 10	17	< 10	74	
M706104	205		8	0.06	3	340	< 2	< 2	2	86 0.03	< 10	< 10	21	< 10	74	
M706105	205	294	25	0.04	3	350	4	< 2	1	93 0.02	< 10	< 10	17	< 10	205	
M706106	205		34	0.04	3	340	8	< 2	1	84 < 0.01	< 10	< 10	12	< 10	372	
M706107	205		89	0.03	2	330	6	< 2	< 1	74 < 0.01	< 10	< 10	10	< 10	96	
M706108	205		89	0.01	3	340	10	< 2	< 1	80 < 0.01	< 10	< 10	5	< 10	276	
M706109	205		9	0.01	3	300	14	< 2	< 1	82 < 0.01	< 10	< 10	5	< 10	1170	
M706110	205	294	7	< 0.01	4	260	10	< 2	< 1	44 < 0.01	< 10	< 10	5	< 10	242	
M706111	205		19	< 0.01	2	270	16	< 2	< 1	59 < 0.01	< 10	< 10	3	< 10	788	
M706112	205		24	0.01	3	360	22	< 2	< 1	81 < 0.01	< 10	10	4	< 10	260	
N706113	205		34	0.01	3	290	B	< 2	< 1	63 < 0.01	< 10	< 10	3	< 10	150	
M706114	205] :		< 1	0.03	4	370	2	< 2	1	129 < 0.01	< 10	< 10	11	< 10	56	
M706115	205	294	8	0.01	2	350	2	< 2	< 1	82 < 0.01	< 10	< 10	4	< 10	116	
M706116	205	294	14	0.01	3	350	6	< 2	< 1	58 < 0.01	< 10	< 10	4	< 10	310	
M706117	205		3	0.01	4	380	18	< 2	< 1	70 < 0.01	< 10	< 10	3	< 10	176	
M706118	205 3		2	0.01	3	420	6	< 2	1	110 < 0.01	< 10	< 10	9	< 10	174	
M706119	205 :	294	1	0.03	4	390	8	< 2	1	90 0.01	< 10	< 10	13	< 10	260	
M706120	205 :		< 1	0.05	3	400	< 2	< 2	ī	77 0.02	< 10	< 10	18	< 10	62	
L								-		· · · · · · · · · · · · · · · · · · ·						

Havil Southles



Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Page Number : 4-A Total Pages : 4 Certificate Date: 26-OCT-97 Invoice No. : 19747428 P.O. Number : Account PFM

.

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

r				<u></u>						CE	RTIFI	CATE	OF A	NAL	/SIS	4	<b>\9747</b>	428		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	re %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
M706121 M706122 M706123 M706123 M706124 M706125	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 </pre>	0.4 < 0.2 0.2 0.6 0.2	0.97 0.93 0.82 1.09 0.84	< 2 2 < 2 < 2 < 2 < 2	130 160 190 130 190	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 2	1.09 0.85 0.83 1.57 1.15	< 0.5 < 0.5 < 0.5 < 0.5 0.5 0.5	3 4 3 3 3	87 77 78 97 87	91 25 119 23 9	2.03 2.56 2.01 1.50 1.85	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 1 < 1 < 1	0.39 0.40 0.40 0.45 0.43	10 10 10 10 10	0.31 0.29 0.28 0.30 0.26	470 310 545 1140 600
M706126 M706127 M706128 M706129 M706129 M706130	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5 < 5	0.2 0.6 0.6 1.2 0.2	0.65 0.58 0.52 0.47 0.76	2 < 2 < 2 < 2 < 2 < 2 2	90 130 60 70 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 2 2 < 2	0.86 1.13 1.39 1.13 1.11	0.5 2.0 3.0 0.5 < 0.5	3 3 3 3 3 3	59 81 73 80 92	12 12 31 39 25	2.46 2.17 2.00 1.89 1.96	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1	0.35 0.34 0.34 0.34 0.36	10 10 10 10	0.22 0.17 0.10 0.08 0.19	575 1340 3090 3250 1275
N706131 N706132 N706133 N706134 N706135	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5 < 5 < 5	0.8 < 0.2 0.4 0.8 1.2	0.56 0.73 0.56 0.55 0.46	< 2 2 < 2 2 2 < 2 < 2	70 90 70 60 50	< 0.5 0.5 0.5 < 0.5 0.5	2 < 2 < 2 2 2 < 2	1.67 2.17 3.66 2.15 4.82	0.5 0.5 0.5 0.5 1.5	3 2 2 4 4	98 95 97 86 67	9 13 12 82 40	2.16 1.23 1.82 3.17 4.05	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 1	0,35 0.43 0.43 0.42 0.41	10 10 10 10	0.13 0.18 0.42 0.32 0.24	3570 3740 6050 6410 >10000
M706136 M706137 M706138 M706139 M706140	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5 < 5 < 5	1.8 0.6 0.2 < 0.2 0.2	0.41 0.59 0.42 0.37 0.65	4 < 2 < 2 2 < 2	40 90 60 80	< 0.5 0.5 < 0.5 < 0.5 0.5	2 2 2 < 2 < 2 < 2	4.59 1.79 0.51 0.57 0.98	1.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 1 1 1 1	94 93 78 87 98	51 20 6 4 8	4.70 2.61 3.57 2.43 3.86	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 1 < 1	0.33 0.31 0.30 0.21 0.25	< 10 < 10 < 10 < 10 < 10 < 10	0.32 0.13 0.02 0.03 0.10	>10000 4180 1635 430 1980
M706141 M706142 M706143 M706144 M706144	205 294 205 294 205 294 205 294 205 294 205 294	< 5	< 0.2 < 0.2 < 0.2 0.2 < 0.2 < 0.2	0.33 0.36 0.38 0.41 0.47	< 2 2 < 2 < 2 < 2	40 50 50 50 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.45 0.74 1.12 0.36 0.41	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 1 1 1	72 83 98 78 105	3 2 7 4 4	3.45 2.76 1.93 3.12 2.86	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 1	0.22 0.23 0.21 0.26 0.26	< 10 < 10 < 10 < 10 < 10 < 10	0.01 0.01 0.02 0.01 0.01	325 350 450 185 195
M706146 M706147 M706148 M706149 M706149	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5	0.8 0.8 1.2 0.8 1.0	1.00 0.80 0.77 0.50 0.58	< 2 2 < 2 2 2 2	140 60 70 50 50	< 0,5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 2 8	0.19 0.30 0.22 0.58 1.32	1.0 0.5 0.5 < 0.5 < 0.5	4 4 3 2	103 83 99 90 74	209 135 104 162 158	2.41 3.18 3.06 2.77 2.21	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1	0.38 0.33 0.33 0.25 0.29	10 10 10 10	0.18 0.10 0.12 0.05 0.08	260 675 550 345 435
M706151 M706152 M706153 M706154 M706155	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5	0.2 < 0.2 0.2 < 0.2 < 0.2 0.2	0.66 0.93 0.64 0.73 0.55	< 2 < 2 < 2 < 2 < 2 < 2 < 2	80 80 70 80 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.71 0.85 0.64 0.55 0.57	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 4 3 2 4	82 94 71 94 86	112 46 114 41 99	2.94 2.76 2.82 2.98 3.20	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.33 0.43 0.31 0.33 0.28	10 10 10 10 10	0.13 0.20 0.10 0.11 0.09	250 240 155 115 160
N706156 N706157 N706158 N706159 N706159	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5	0.2 0.6 0.2 0.6 < 0.2	0.60 0.58 0.81 0.77 0.94	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	70 40 80 50 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 16 < 2	0.44 2.04 0.57 0.68 0.84	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 3 4 4	70 97 88 92 90	90 168 207 172 39	2.77 2.01 2.40 2.33 2.24	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.26 0.27 0.34 0.35 0.37	10 10 10 10	0.13 0.14 0.20 0.14 0.28	165 815 225 285 265

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN Page Number :4-8 Total Pages :4 Certificate Date: 26-OCT-97 Invoice No. :19747428 P.O. Number : Account :PFM

and the second second second second second second second second second second second second second second second

										CE	RTIFI	CATE	OF A	NALY	'SIS	A9747428	
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W mqq	Zn ppm		
M706121	205 294	1	0.04	4	410	6	< 2	1	96	0.02	< 10	< 10	17	< 10	144		
M706122	205 294	< 1	0.03	4	400	4	< 2	1	67	0.02	< 10	< 10	17	< 10	54		
M706123	205 294	3	0.03	4	390	12	< 2	1	59	0.02	< 10	< 10	17	< 10	138		
M706124	205 294	3	0.04	3	400	30	< 2	1	121	0.01	< 10	< 10	17	< 10	332		
M706125	205 294	< 1	0.03	3	380	52	< 2	1	66	0.01	< 10	< 10	15	< 10	264		
M706126	205 294	4	0.03	3	340	66	< 2	1	51	0.01	< 10	< 10	12	< 10	334		
M705127	205 294	10	0.01	3	390	78	< 2	1		0.01	< 10	< 10	9	< 10	908		
M706128	205 294	2	0.01	2	380	12	< 2	< 1		0.01	< 10	< 10	5	< 10	1355		
M706129 M706130	205 294 205 294	5 1	0.01 0.03	2	360 410	38 6	< 2 < 2	× 1 1		0.01 0.01	< 10 < 10	< 10 < 10	4 10	< 10 < 10	182 92		
M708130	205 254	±	0.03		410	•	~ 4				<u> </u>	·	10	· • •	24		
M706131	205 294	< 1	0.01	3	380	28	< 2	< 1		0.01	< 10	< 10	5	< 10	152		
M706132	205 294	< 1	0.01	3	400	10	< 2	1		0.01	< 10	< 10	7	< 10	186		
M706133	205 294		< 0.01	2	380 350	16 8	< 2	< 1		0.01	< 10	< 10	5	< 10	152 70		
M706134 M706135	205 294 205 294		< 0.01 < 0.01	3	320	12	< 2 < 2	< 1 < 1		(0.01) (0.01)	< 10 < 10	< 10 < 10	4	< 10 10	68		
M/00133	403 434	~~ `	• •••	2				<b>`</b> +		, O.OT	4 10	4 IV			~~~		
M706136	205 294	4 -	< 0.01	3	160	18	< 2	< 1		0.01	< 10	< 10	3	< 10	68		
M706137	205 294	3	0.02	2	200	8	< 2	< 1		0.01	< 10	< 10	3	< 10	62		
M706138	205 294		< 0.01	1	150 150	< 2	< 2 < 2	< 1		0.01	< 10	10	1	< 10	42 16		
M706139 M706140	205 294 205 294	4	0.01 0.02	1 1	230	2 < 2	< 2	< 1 < 1		< 0.01	< 10 < 10	< 10 10	2 4	< 10 < 10	58		
M706141 M706142	205 294 205 294	6 · 8	< 0.01 0.01	1 1	170 140	2 < 2	< 2 < 2	< 1 < 1		< 0.01 < 0.01	< 10 < 10	< 10 < 10	1 1	< 10 < 10	18 18		
M706143	205 294	10	0.01	1	90	< 2	< 2	< 1		< 0.01	< 10	< 10	1	< 10	30		
M706144	205 294	21	0.01	i	100	6	< 2	< 1		< 0.01	< 10	< 10	1	< 10	78		
M706145	205 294	-4	0.01	ī	100	< 2	< 2	< 1		< 0.01	< 10	< 10	ĩ	< 10	26		
> M706146	205 294	46	0.01	3	440	16	< 2	1	74	< 0.01	< 10	< 10	13	< 10	540		
2 M706146 M706147	205 294	1	0.02	3	400	20	< 2	< 1		< 0.01	< 10	< 10	8	< 10	374	97 -Z	
M706148	205 294	28	0.01	3	350	16	< 2	< 1		< 0.01	< 10	< 10	8	< 10	474		
M706149	205 294	114	0.01	Э	270	8	< 2	< 1	36	< 0.01	< 10	< 10	4	< 10	102		
M706150	205 294	122	0.02	3	280	10	< 2	< 1	60 ·	< 0.01	< 10	< 10	5	< 10	104		
M706151	205 294	41	0.02	4	310	6	< 2	< 1	54	< 0.01	< 10	< 10	8	< 10	78		
M706152	205 294	113	0.03	3	300	2	< 2	1	60	0.01	< 10	< 10	12	< 10	42		
N706153	205 294	116	0.01	3	260	4	< 2	< 1		< 0.01	< 10	< 10	ę	< 10	48		
M706154	205 294	21 143	0.02	3	270 310	< 2	< 2 < 2	< 1 < 1		< 0.01 < 0.01	< 10 < 10	< 10 < 10	76	< 10 < 10	30 32		
M706155	203 294	143	0.01	د 	310	<u> </u>	~ 4	<u> </u>		- 0.01	~ 10	< IV		~ 10			
M706156	205 294	68	0.01	3	310	6	< 2	< 1		< 0.01	< 10	< 10	8	< 10	58		
M706157	205 294	61	0.01	3	290	6	< 2	< 1		< 0.01	< 10	< 10	5	< 10	264		
M706158	205 294	47	0.02	4	340	2	< 2	< 1	50	0.01	< 10	< 10	11	< 10	74		
M706159	205 294	51	0.02	3	340 360	16	< 2	< 1 1	39 53	< 0.01 0.01	< 10 < 10	< 10 < 10	8	< 10 < 10	92 46		
M706160	205 294	54	0.03	3									15	< 10	46		

.



97-

#### **Chemex Labs Ltd.**

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 North Vancouver V7J 2C1 To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Page Number : 4-A Total Pages :4 Certificate Date: 26-OCT-97 Invoice No. : 19747428 P.O. Number : PFM Account

97-2

•

,

A9747428

Project :	MUNRO
Comments:	ATTN:LEO KING/MORGAN POLIQUIN
l c	ERTIFICATE OF ANALYSIS

									L											
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mr. ppm
M706121 M706122	205 294 205 294	l < 5	0.4 < 0.2	0.97 0.93	< 2	130 160	< 0.5 < 0.5	< 2 < 2	1.09	< 0.5	3	87 77 78	91 25 119	2.03 2.56 2.01	< 10 < 10 < 10	< 1 1 1	0.39 0.40 0.40	10 10 10	0.31 0.29 0.28	470 310 545
M706123 M706124 M706125	205 294 205 294 205 294	L < \$	0.2 0.6 0.2	0.82 1.09 0.84	< 2 < 2 < 2	190 130 190	< 0.5 0.5 < 0.5	< 2 < 2 2	0.83 1.57 1.15	< 0.5 0.5 0.5	3 3 3	97 87	23 9	1.50	< 10 < 10 < 10	< 1 < 1	0.45	10 10 10	0.30	1140
M706126 M706127 M706128	205 294 205 294 205 294	< 5	0.2 0.6 0.6	0.65 0.58 0.52	2 < 2 < 2	90 130 60	< 0.5 < 0.5 < 0.5	2 < 2 2	0.86 1.13 1.39	0.5 2.0 3.0	3 3 3	59 81 73	12 12 31	2.46 2.17 2.00	< 10 < 10 < 10	1 1 < 1	0.35 0.34 0.34	10 10 10	0.22 0.17 0.10	579 1340 3090
M706129 M706130	205 294 205 294		1.2	0.47	< 2 2	70 110	< 0.5 < 0.5	< 2	1.13	0.5 < 0.5	3	80 92	39 25	1.89 1.96	< 10 < 10	< 1 < 1	0.34	10 10	0.08	3250
M706131 M706132 M706133 M706134	205 294 205 294 205 294 205 294	L < 5 L < 5 L < 5	0.8 < 0.2 0.4 0.8	0.56 0.73 0.56 0.55	< 2 < 2 < 2	70 90 70 60	< 0.5 0.5 0.5 < 0.5	2 < 2 < 2 2	1.67 2.17 3.66 2.15	0.5 0.5 0.5	3 2 2 4 4	98 95 97 86 67	9 13 12 82 40	2.16 1.23 1.82 3.17 4.05	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 1	0.35 0.43 0.43 0.42 0.41	10 10 10 10 10	0.13 0.18 0.42 0.32 0.24	357( 374( 605( 641( >1000(
M706135 M706136 M706137	205 294 205 294 205 294	4 < 5 4 < 5	1.2	0.46	< 2 4 < 2	50 40 90	0.5 < 0.5 0.5	< 2 2 2	4.82	1.5	4 3 1 1	94 93 78	51 20 6	4.03	< 10 < 10 < 10 < 10	< 1 1 1	0.33 0.31 0.30	< 10 < 10 < 10 < 10		>1000 >1000 418 163
M706138 M706139 M706140	205 294 205 294 205 294	4 < 5	0.2 < 0.2 0.2	0.42 0.37 0.65	< 2 2 < 2	60 60 80	< 0.5 < 0.5 0.5	2 < 2 < 2	0.51 0.57 0.98	< 0.5 < 0.5 < 0.5	1 1	87 98	4 8	2.43 3.86	< 10 < 10	1 < 1	0.21 0.25	< 10 < 10	0.03	43 198
M706141 M706142 M706143 M706144 M706144 M706145	205 29- 205 29- 205 29- 205 29- 205 29- 205 29-	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 0.2	0.33 0.36 0.38 0.41 0.47	< 2 < 2 < 2 < 2 < 2	40 50 50 50 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.45 0.74 1.12 0.36 0.41	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 1 1	72 83 98 78 105	3 2 7 4 4	3.45 2.76 1.93 3.12 2.86	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 1	0.22 0.23 0.21 0.26 0.26	< 10 < 10 < 10 < 10 < 10	0.01 0.01 0.02 0.01 0.01	32 35 45 18 19
M706146 M706147 M706148 M706149 M706150	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	0.8 1.2 0.8	1.00 0.80 0.77 0.50 0.58	< 2 2 < 2 2 2 2	140 60 70 50	0.5 < 0.5 < 0.5	< 2 2 < 2 8	0.19 0.30 0.22 0.58 1.32	1.0 0.5 0.5 < 0.5 < 0.5	4 4 3 2	103 83 99 90 74	209 135 104 162 158	2.41 3.18 3.06 2.77 2.21	< 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1	0.38 0.33 0.33 0.25 0.29	10 10 10 10	0.18 0.10 0.12 0.05 0.08	26 67 55 34 43
N706151 N706152 N706153 N706154 N706155	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.2 0.2 < 0.2	0.66 0.93 0.64 0.73 0.55	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	80 80 70 80 70	< 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.71 0.85 0.64 0.55 0.57	< 0.5 < 0.5	3 4 3 2 4	82 94 71 94 86	112 46 114 41 99	2.94 2.76 2.82 2.98 3.20	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1 < 1	0.33 0.43 0.31 0.33 0.28	10 10 10 10	0.13 0.20 0.10 0.11 0.09	25 24 15 11 16
M706156 M706157 M706158 M706159 M706159	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	0.6	0.60 0.58 0.81 0.77 0.94	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	70 40 80 50 120	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2 16 < 2	0.44 2.04 0.57 0.68 0.84	0.5 < 0.5 < 0.5	4 4 3 4 4	70 97 88 92 90	90 168 207 172 39	2.77 2.01 2.40 2.33 2.24	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.26 0.27 0.34 0.35 0.37	10 10 10 10	0.13 0.14 0.20 0.14 0.28	16 81 22 28 26
																		-		

CERTIFICATION:

4 ---<u>--</u>--

17.1

•

A9747498

•



#### **Chemex Labs Ltd.**

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186

CEDTIFICATE OF ANALVSIS

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN Page Number :4-B Total Pages :4 Certificate Date: 26-OCT-97 Invoice No. :19747428 P.O. Number : Account :PFM

												CE	RTIF	CATE	OF A	NALY	SIS	A9747428	) 	
SA	MPLE	PREP CODE		Mo ppm	Na %	Ni ppm	P mqq	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W	Zn ppm			
M706121		205 29	4	1	0.04	4	410	6	< 2	1	96	0.02	< 10	< 10	17	< 10	144			
M706122		205 29	94	< 1	0.03	4	400	4	< 2	1	67	0.02	< 10	< 10	17	< 10	54			
M706123		205 29		3	0.03	4	390	12	< 2	1	59	0.02	< 10	< 10	17	< 10	138			
M706124		205 29		3	0.04	3	400 380	30 52	< 2 < 2	1	121 66	0.01 0.01	< 10 < 10	< 10 < 10	17 15	< 10 < 10	332 264			
M706125	,	205 29	⁴	< 1	0.03	3	380	22	× 2	1	00	0.01	× 10	× 1V		~ + 0		L		
M706126		205 29		4	0.03	3	340	66	< 2	1	51	0.01	< 10	< 10	12	< 10	334			
M706127		205 29		10	0.01	3	390	78	< 2	1		< 0.01	< 10	< 10	9 5	< 10 < 10	908 1355			
M706128		205 25		2	0.01	2	380 360	12 38	< 2 < 2	< 1 < 1		< 0.01 < 0.01	< 10 < 10	< 10 < 10	2 4	< 10	182			
M706129 M706130		205 29		5 1	0.01 0.03	23	410	30 6	< 2	1		< 0.01	< 10	< 10	10	< 10	92			
M708130	,	<u>403</u> 43	⁷ 2		0.03		410													
M706131		205 29		< 1	0.01	3	380	28	< 2	< 1		< 0.01 < 0.01	< 10 < 10	< 10 < 10	5 7	< 10 < 10	152 186			
M706132		205 29		< 1	0.01	3	400 380	10 16	< 2 < 2	1 < 1		< 0.01	< 10	< 10	5	< 10	152			
M706133 M706134		205 29			< 0.01	3	350	8	< 2	$\overrightarrow{1}$		< 0.01	< 10	< 10	4	< 10	70			
M706135		205 29			< 0.01	ž	320	12	< 2	< 1		< 0.01	< 10	< 10	4	10	68			
													< 10	< 10	3	< 10	68		<u> </u>	
M706136		205 29		43	< 0.01	3 2	160 200	18 8	< 2 < 2	< 1 < 1		< 0.01 < 0.01	< 10	< 10	3	< 10	62			
M706137 M706138		205 29		-	< 0.01	1	150	< 2	< 2	< 1		< 0.01	< 10	10	1	< 10	42			
M706139		205 2		4	0.01	1	150	2	< 2	< 1		< 0.01	< 10	< 10	2	< 10	16			
M706140		205 2		4	0.02	1	230	< 2	< 2	< 1	109	< 0.01	< 10	10	4	< 10	58			
M706141	1	205 2	94	6	< 0.01	1	170	2	< 2	< 1	25	< 0.01	< 10	< 10	1	< 10	18			
M706142			94	B	0.01	ī	140	< 2	< 2	< 1	35	< 0.01	< 10	< 10	1	< 10	18			
M70614		205 2	94	10	0.01	1	90	< 2	< 2	< 1		< 0.01	< 10	< 10	1	< 10	30			
M706144		205 2		21	0.01	1	100	6	< 2	< 1		< 0.01	< 10	< 10	1	< 10	78			
M70614	5	205 2	94	4	0.01	1	100	< 2	< 2	< 1	25	< 0.01	< 10	< 10	1	< 10	26			
Z N70614	6	205 2	94	46	0.01	3	440	16	< 2	1		< 0.01	< 10	< 10	13	< 10	540	97 -Z		
M706143		205 2	94	1	0.02	3	400	20	< 2	< 1		< 0.01	< 10	< 10	8	< 10	374	97 -Z		
M70614			94	28	0.01	3	350	16	< 2	< 1		< 0.01	< 10	< 10	8	< 10	474 102			
M70614		205 2		114	0.01 0.02	3	270 280	8 10	< 2	< 1 < 1		< 0.01 < 0.01	< 10 < 10	< 10 < 10	4 5	< 10 < 10	102			
M70615	U	205 2	94	144	0.02	\$	400	10		· · ·				· 10		-				
N70615		205 2		41	0.02	4	310	6	< 2	< 1		< 0.01	< 10	< 10	8	< 10	78 42			
M70615		205 2		113	0.03	3	300	2	< 2	1	60	0.01 < 0.01	< 10 < 10	< 10 < 10	12 6	< 10 < 10	48			
M70615 M70615		205 2 205 2		116 21	0.01	3	260 270	4 < 2	< 2 < 2	< 1 < 1		< 0.01	< 10	< 10	7	< 10	30			
M70615		205 2		143	0.01	Ĵ	310	2	< 2	< 1		< 0.01	< 10	< 10	6	< 10	32			
N70615	· 	205 2	40	68	0.01		310	6	< 2	< 1	47	< 0.01	< 10	< 10		< 10	58			
M70615		205 2		61	0.01	3	290	ě	< 2	< 1		< 0.01	< 10	< 10	5	< 10	264			
M70615		205 2		47	0.02	4	340	2	< 2	< 1	50	0.01	< 10	< 10	11	< 10	74			
M70615		205 2	94	51	0.02	3	340	16	< 2	< 1		< 0.01	< 10	< 10	8	< 10	92			
M70616	0	205 2	94	54	0.03	3	360	4	< 2	1	53	0.01	< 10	< 10	15	< 10	46			
		•																		

. . . . . .

97.2



## Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Page Number 11-A Total Pages 15 Certificate Date: 27-OCT-97 Invoice No. : 19747430 P.O. Number : PFM Account

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

										CEI	RTIFIC	CATE	OF A	NALY	(SIS	A	97474	130		]
SAMPLE	PREP CODE	Ац ррb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn mqq
M706161 M706162 M706163	205 294 205 294 205 294	10 < 5 < 5	< 0.2 0.2 0.4	0.90 0.83 0.81	< 2 < 2 < 2	170 70 90 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0,61 0.72 0.45 0.69	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 3 6 6	99 87 83 102	53 185 142 256	2.19 2.32 2.62 3.22	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.38 0.32 0.31 0.35	10 10 10 10	0.31 0.27 0.19 0.20	215 230 225 380
M706164 M706165	205 294 205 294	5 10	0.6 1.0	0.84 0.82	< 2 < 2	60	0.5	2	0.05	< 0.5	4	82	159	2.35	< 10	< 1	0.29	10	0.18	505
M706166 M706167 M706168 M706169 M706169 M706170	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5	3.6 0.6 0.2 < 0.2 0.4	0.53 0.76 0.73 0.78 0.73	< 2 < 2 < 2 < 2 < 2 < 3	120 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 6 < 2 < 2 6	0.83 1.00 0.67 0.70 1.16	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 3 4 4	67 98 80 68 103	112 207 106 44 121	2.48 1.98 2.16 2.23 1.91	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 1	0.29 0.30 0.31 0.31 0.30	10 10 10 10 10	0.09 0.21 0.32 0.31 0.21	675 480 240 210 395
M706171 M706172 M706173 M706173 M706174 M706175	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5	0.8 < 0.2 0.2 < 0.2 < 0.2	0.68 0.89 0.98 0.98 1.03	< 2 < 2 < 2 < 2 < 2 < 2 < 2	70 130 100 140 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 < 2 4 < 2 < 2 < 2	0.73 0.84 0.64 0.63 0.80	1.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 4 4 3 4	82 87 109 86 84	262 43 65 65 52	3.09 2.17 2.53 2.58 2.66	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1	0.30 0.34 0.34 0.42 0.40	10 10 10 10 10	0.13 0.30 0.27 0.29 0.32	300 255 195 165 220
M706176 M706177 M706178 M706178 M706179 M706180	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5	0.2 1.4 < 0.2 < 0.2 < 0.2 < 0.2	0.97 0.84 1.00 0.93 0.88	< 2 2 < 2 < 2 < 2 < 2	90 100 90 110 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.41 0.88 1.58 0.67 0.67	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 3 3 3 3	89 87 81 111 85	84 29 52 10 41	1.96 1.95 1.99 2.80 2.99	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 1	0.34 0.30 0.27 D.36 0.34	10 10 10 10 10	0.24 0.25 0.25 0.26 0.26	310 220 335 155 170
M706181 M706182 M706183 M706184 M706185	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; &lt; 5 &lt; &lt; 5 &lt; &lt; 5 </pre>		0.69 0.92 0.77 0.85 0.75	2 < 2 2 2 < 2 2 < 2	80 100 100 130 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.56 0.72 0.56 0.71 0.68	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 3 3 3 3	58 97 83 91 111	23 96 47 44 20	3.11 2.18 2.11 1.68 1.91	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.28 0.33 0.30 0.31 0.31	10 10 10 10	0.23 0.34 0.29 0.40 0.34	135 225 175 225 240
M706186 M706187 M706188 M706188 M706189 M706190	205 294 205 294 205 294 205 294 205 294 205 294	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2	0.75 0.70 0.91 0.69 0.83	< 2 < 2 < 2 < 2 < 2 < 2	130 120 160 100 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.61 0.82 0.97 0.73 0.63	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 4 3 4 3	104 104 122 43 30	27 21 32 25 24	1.66 1.83 1.87 1.45 1.47	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.32 0.29 0.31 0.12 0.12	10 10 10 10 10	0.38 0.33 0.35 0.41 0.47	235 260 310 360 375
M706191 M706192 M706193 M706194 M706195	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	0.2 0.4 0.6	1.36 0.71 0.65 0.72 0.82	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	150 60 70 60 70	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 6 < 2	0.80 0.98 0.76 1.12 1.13	< 0,5 < 0.5 < 0.5 0,5 1,0	4 3 3 5	57 119 56 85 123	41 10 28 96 51	2.17 2.44 2.18 2.41 3.56	< 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 1	0.23 0.38 0.31 0.42 0.30	10 10 10 10 10	0.42 0.13 0.17 0.12 0.16	285 255 250 475 575
M706196 M706197 M706198 M706199 M706199 M706200	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	3.4 < 0.2 < 0.2	0.68 0.60 0.79 1.66 0.49	< 2 4 < 2 < 2 < 2 < 2	100 50 90 850 60	< 0.5 < 0.5 < 0.5 0.5 < 0.5	2 22 < 2 < 2 < 2 < 2 < 2	1.18 1.24 0.97 0.89 0.90	0.5 5.5 < 0.5 < 0.5 < 0.5	5 3 4 3 3	99 131 122 26 43	26 685 35 20 19	2.48 2.48 2.16 1.28 1.36	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.25 0.29 0.32 0.15 0.17	< 10 10 10 10 10	0.11 0.13 0.26 0.25 0.16	555 655 495 635 855
L			<u></u>											CERTIE			•••		•	

CERTIFICATION

.



#### **Chemex Labs Ltd.**

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN Page Number : 1-B Total Pages : 5 Certificate Date: 27-OCT-97 Invoice No. P.O. Number :19747430 ; PFM Account

										CE	RTIF	CATE	OF A	NALY	SIS	A9747430	
SAMPLE	PREP CODE	Мо ррш	Na %	Ni ppm	P ppm	Pb mqq	Sb ppm	Sc ррт	Sr ppm	Ti %	т1 ррт	U ppm	V PPm	W ppm	Zn ppu		
M706161 M706162 M706163 M706164	205 294 205 294 205 294 205 294 205 294 205 294	37 66 125		333	330 350 330 380 340	< 2 < 2 4 6 18	< 2 < 2 < 2 < 2 < 2	1 1 1 1	44 45 62 < 56 < 70 <	0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 17 11 13 11	< 10 < 10 < 10 < 10 < 10 < 10	50 56 44 74 88		
M706165 M706166 M706167 M706168 M706169 M706169 M706170	205 294 205 294 205 294 205 294 205 294 205 294	34 55 36	< 0.01 0.02 0.03 0.03	2 3 3 3 3 3	310 340 330 340 350	180 6 < 2 < 2 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 1 1 1	49 <		< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	5 12 17 16 13	< 10 < 10 < 10 < 10 < 10 < 10	370 82 42 40 94		- <del> </del>
M706171 M706172 M706173 M706174 M706175	205 294 205 294 205 294 205 294 205 294 205 294	1 24 1 38 1 146	0.04	3 3 4 3 3	350 360 350 350 360	8 < 2 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2	< 1 1 1 1	63 < 66 73 34 53	0.01 0.01 0.01 0.02 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	7 16 14 17 18	< 10 < 10 < 10 < 10 < 10 < 10	838 44 40 38 44		
M706176 M706177 M706178 M706179 M706179 M706180	205 294 205 294 205 294 205 294 205 294 205 294	4 81 4 37 4 10	0.03 0.03 0.03	3 3 3 4 3	340 340 340 350 380	2 8 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 1 1 1	92 83 125 < 46 44	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	15 15 14 14 13	< 10 < 10 < 10 < 10 < 10 < 10	46 38 38 30 38		
M706181 M706182 M706183 M706184 M706184 M706185	205 29 205 29 205 29 205 29 205 29 205 29	4 3 4 3 4 6	5 0.04 0.03 5 0.04	3 3 3 3 3 3	350 340 320 330 360	< 2 < 2 < 2 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 1 1 2	31 59 48 65 53	0.01 0.01 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	11 18 16 21 21	< 10 < 10 < 10 < 10 < 10 < 10	28 38 34 44 40		
M706186 M706187 M706188 M706188 M706189 M706189	205 29 205 29 205 29 205 29 205 29 205 29	4 1 4 1 4		3 4 4 3 3	340 330 360 310 300	< 2 < 2 2 < 2 < 2 < 2	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	2 1 1 2 2	42 47 152 < 80 125	0.04 0.03 0.01 0.05 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	22 18 17 28 28	< 10 < 10 < 10 < 10 < 10 < 10	44 38 52 40 42		
M706191 M706192 M706193 M706194 M706195	205 29 205 29 205 29 205 29 205 29 205 29	4 4 4 4 1	8 0.03 3 0.02 6 0.01	3 3 1 2 3	320 300 330 340 290	4 14 10 22 18	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 < 1 < 1 < 1 < 1 < 1 < 1	46 47 42	<pre>c 0.01 c 0.01 c 0.01 c 0.01 c 0.01 c 0.01 c 0.01</pre>	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	16 6 10 7 8	< 10 < 10 < 10 < 10 < 10 < 10	54 176 146 294 538		
M706196 M706197 M706198 M706199 M706199 M706200	205 29 205 29 205 29 205 29 205 29 205 29	4 1 4 <	3 0.02 7 0.04	432	230 290 310 260 280	16 40 2 4 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 1 2 1		<pre>&lt; 0.01 &lt; 0.01 0.01 0.01 0.01 0.01</pre>	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	6 6 13 15 14	< 10 < 10 < 10 < 10 < 10 < 10	404 2760 98 52 92		

CERTIFICATION: 1000000



Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Page Number :2-A Total Pages :5 Certificate Date: 27-OCT-97 Invoice No. : 19747430 P.O. Number : PFM Account

- , ,

•

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

											CE	RTIFI	CATE	OF A	NALY	'SIS	F	9747	430		
SAMPLE	PRE		Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
M706201	205	294	< 5	0.2	0.68	< 2	90	< 0.5	< 2	1.68	< 0.5	3	125	11	2.15	< 10	< 1	0.38	10 < 10	0.14 0.06	1235 685
M706202	205		< 5	1.4	0.53	4	50	< 0.5	2	0.74	1.0 0.5	4	77 91	21 85	3.46 3.34	< 10 < 10	< 1 < 1	0.34 0.38	< 10	0.06	810
M706203	205	294 294	< 5 < 5	1.6 0.2	0.51 0.49	< 2 < 2	40 50	< 0.5 < 0.5	< 2	0.64	< 0.5	1	109	8	2.11	< 10	< 1	0.31	< 10	0.04	545
M706204 M706205	205		< 5	2.2	0.42	4	40	< 0.5	4	0.43	< 0.5	6	84	709	4.17	< 10	< 1	0.28	< 10	0.04	240
M706206	205	294	< 5	< 0.2	0.44	2	50	< 0.5	< 2	0.69	< 0.5	2	97	6	1.92	< 10	< 1	0.29	< 10	0.06	415
M706207		294	< 5	< 0.2	0.57	< 2	90	< 0.5	< 2	0.78	< 0.5	5	97	11	2.00	< 10 < 10	< 1 < 1	0.27 0.16	< 10 10	0.08 0.26	435 445
M706208	205		< 5	< 0.2	0.54	< 2	110	< 0.5	< 2	0.81 0.17	< 0.5 < 0.5	3	33 92	19 1	2.67	< 10	< 1	0.18	< 10	0.05	65
M706209 M706210	205		< 5 < 5	< 0.2 < 0.2	0.39 0.60	2 < 2	40 70	< 0.5 < 0.5	< 2 < 2	0.17	< 0.5	2	101	4	1.48	< 10	< 1	0.32	< 10	0.12	260
M706211	205	294	< 5	0.8	0.49	< 2	50	< 0.5	6	0.46	< 0.5	3	85	164	2.47	< 10	< 1	0.28	< 10	0.07	285
M706212	205		< 5	< 0.2	0.42	< 2	50	< 0.5	< 2	0.44	< 0.5	4	96	8	2.58	< 10	< 1	0.25	< 10	0.05	195
M706213	205	294	< 5	< 0.2	0.36	< 2	50	< 0.5	< 2	0.60	< 0.5	3	98	12	1.68	< 10	< 1 < 1	0.24 0.23	< 10 < 10	0.08	290 195
M706214	205		< 5	< 0.2	0.33	< 2	40	< 0,5	< 2	0.48	< 0.5	3	71 54	5 17	1.85 1.39	< 10 < 10	< 1	0.17	10	0.23	335
M706215	205	294	< 5	< 0.2	0.64	< 2	400	< 0.5	< 2	0.77	< 0.5										
M706216		294	< 5	< 0.2	0.62	< 2 < 2	90 50	< 0.5 < 0.5	< 2 < 2	1.53 0.55	< 0.5 < 0.5	3	42 72	19 5	1.44 3.27	< 10 < 10	< 1 < 1	0.15 0.25	10 < 10	0.23 0.06	335 125
M706217 M706218		294 294	< 5 < 5	< 0.2	0.44	< 2	50 60	< 0.5	< 2	1.02	< 0.5	3	94	5	2.24	< 10	< 1	0.31	< 10	0.07	330
M706219	205		< 5	< 0.2	1.51	< 2	160	0.5	2	1.03	< 0.5	3	64	18	1.80	< 10	< 1	0.24	10	0.19	285
M706220	205		< 5	< 0.2	2.30	< 2	880	0.5	< 2	1.59	< 0.5	3	14	19	1.25	< 10	< 1	0.17	20	0.31	475
M706221	205	294	< 5	< 0.2	0.75	< 2	230	< 0.5	< 2	0.82	< 0.5	1	70	17	1.37	< 10 < 10	< 1 < 1	0.24	10 < 10	0.13 0.09	295 265
M706222	205	294	< 5	< 0.2	0.41	< 2	50	< 0.5	< 2	0.62	< 0.5 < 0.5	6 4	103 63	35 16	1.63	< 10	< 1	0.26	< 10	0.05	215
M706223	205		< 5	< 0.2	0.40	< 2 < 2	50 60	< 0.5 < 0.5	< 2 < 2	0.68 0.71	< 0.5	2	92	6	1.49	< 10	< 1	0.23	< 10	0.13	205
M706224 M706225	205	294 294	< 5 < 5	< 0.2 < 0.2	0.40	2	50	< 0.5	< 2	0.56	< 0.5	3	79	10	1.70	< 10	< 1	0.20	< 10	0.11	140
M706226	205	294	< 5	< 0.2	0.55	< 2	50	< 0.5	< 2	0.90	< 0.5	4	40	13	1.55	< 10	< 1	0.12	< 10	0.16	290
M706227	205	294	< 5	< 0.2	0.58	6	60	< 0.5	< 2	1.31	< 0.5	3	46	35	1.55	< 10	< 1	0.16	< 10	0.17	380 405
M706228	205	294	< 5	< 0.2	0.68	< 2	70	< 0.5	< 2	1.43	< 0.5	3	44	14 19	1.35	< 10 < 10	< 1 < 1	0.11 0.12	10 10	0.21 0.21	435
M706229	205	294	< 5	< 0.2	0.69	2	80 50	< 0.5	< 2	1.20	< 0.5 < 0.5	2	28 93	35	1.58	< 10	< 1 < 1	0.21	10	0.14	225
M706230	205	294	< 5	< 0.2	0.59	< 2	50	< 0.5	· · · · ·	0.14											
M706231			< 5	< 0.2	0.43	< 2	70		< 2	0.40	< 0.5	1	89	7	1.28	< 10 < 10	< 1 < 1	0.21 0.24	< 10 < 10	0.15	170 105
M706232	205	294	< 5	< 0.2	0.39	< 2	50		< 2 2	0.35 0.46	< 0.5 0.5	23	76 86	11 78	2.01 1.88	< 10	< 1	0.24	< 10	0.08	130
M706233	205			< 0.2	0.40	2 < 2	40 40	< 0.5 < 0.5	26	0.46	< 0.5	2	80	249	2.15	< 10	< 1	0.20	< 10	0.09	190
M706234 M706235	205			0.8	0.38	< 2	40		12	1,46	0.5	2	81	103	1.95	< 10	< 1	0,20	< 10	0.09	385
M706236	205	294	< 5	< 0.2	0.54	< 2	50		2	0.75	< 0.5	1	103	96	1.79	< 10	< 1	0.23	< 10	0.14	215 205
M706237	205			< 0.2	0.46	< 2	40		< 2	0.76	< 0.5	1	99	93	1,80	< 10 < 10	< 1 < 1	$0.22 \\ 0.22$	< 10 < 10	0.10	195
M706238	205	294	< 5		0.47	< 2	40		< 2	0.86	< 0.5	1	76 110	46 23	1.78 1.40	< 10 < 10	< 1	0.22	< 10	0.19	270
M706239	205 205				0.63	< 2 < 2	80 40		< 2 22	0.77		1	112	95	2.01	< 10	< 1	0.24	< 10	0.07	365
M706240	105	479											· · · · · · · · · · · · · · · · · · ·				<u></u> .			<b>.</b>	
																	1	:			





Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Page Number :2-8 Total Pages :5 Certificate Date: 27-OCT-97 Invoice No. : 19747430 P.O. Number : PFM Account

Project ; MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

									CE	RTIF	CATE	OF A	NALY	SIS	A9747430
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr Ti ppm %	T1 ppm	U ppm	V mqq	M Tedd	Zn ppm	
06201	205 294	34	0.02	4	370	8	< 2	1	65 < 0.01	< 10	< 10	. 8	< 10	258 968	
06202	205 294	19	0.01	4	320	B	< 2	< 1	30 < 0.01 20 < 0.01	< 10 < 10	< 10 < 10	4	< 10 < 10	488	
06203	205 294	11	0.01	1	190 180	14 6	< 2 < 2	< 1 < 1	20 < 0.01 28 < 0.01	< 10	< 10	3	< 10	74	
06204 06205	205 294 205 294	8 32	0.01 0.01	2	160	4	< 2	< 1	18 < 0.01	< 10	< 10	3	< 10	32	
06206	205 294	< 1	0.03	1	230	4	< 2	< 1	28 < 0.01	< 10	< 10	4	< 10	44	
06207	205 294	23	0.04	2	190	6	< 2	< 1	221 < 0.01	< 10	< 10	5	< 10	180	
06208	205 294	2	0.09	з	290	2	< 2	3	57 0.04	< 10	< 10	23	< 10	36 8	
06209	205 294	< 1	0.01	3	200	2	< 2	< 1	18 < 0.01	< 10	< 10	3 5	< 10 < 10	28	
06210	205 294	25	0.03	1	210	2	< 2	< 1	48 < 0,01	< 10	< 10			_	
06211	205 294	8	0.02	2	150	8	< 2	< 1	33 < 0.01	< 10	< 10	4	< 10	42 20	
06212	205 294	3	0.01	3	170	4	< 2	< 1	29 < 0.01	< 10	< 10	3	< 10 < 10	∡0 36	
06213	205 294	26	0.03	2	200	4	< 2	1	27 < 0.01 22 < 0.01	< 10 < 10	< 10 < 10	é	< 10	30	
06214	205 294	26	0.02	1 3	210 300	2 4	< 2	< 1	332 0.02	< 10	< 10	18	< 10	36	
06215	205 294	4	0.13	3	300	*									· · · · · · · · · · · · · · · · · · ·
06216	205 294	3	0.09	3	300	2	< 2	3	59 0.03 23 < 0.01	< 10 < 10	< 10 < 10	23 4	< 10 < 10	38 34	
06217	205 294	9	0.02	3	240 240	6 6	< 2 < 2	< 1 < 1	54 < 0.01	< 10	< 10	4	< 10	22	
06218	205 294	1 4	0.03	2	220	10	< 2	2	1005 < 0.01	< 10	< 10	10	< 10	30	
06219	205 294	< 1	0.92	1	280	10	< 2	3	2280 < 0.01	< 10	< 10	15	< 10	44	
08440		· •		_								8	< 10	40	
706221	205 294	< 1	0.11	1	230	6	< 2	1	536 < 0.01 32 < 0.01	< 10 < 10	< 10 < 10	8 6	< 10	42	
706222	205 294	< 1	0.04	2	230	4	< 2 < 2	< 1 < 1	31 < 0.01	< 10	< 10	4	< 10	34	
706223	205 294	44	0.02	2	210 240	2	< 2	<b>1</b>	37 < 0.01	< 10	< 10	8	< 10	28	
706224 706225	205 294	1	0.03	3	230	6	< 2	< 1	40 < 0.01	< 10	< 10	6	< 10	26	
/06115	203 29	17	V.05									10	- 10	36	
706226	205 294	6	0.06	2	240 260	6 6	< 2 < 2	1	95 < 0.01 104 < 0.01	< 10 < 10	< 10 < 10	10 10	< 10 < 10	38	
706227	205 294	1	0,06	2	<b>270</b>	< 2	< 2	1	104 < 0.01 107 < 0.01	< 10	< 10	16	< 10	36	
706228 706229	205 294 205 294	4	0.06	1	280	2	< 2	2	100 0.01	< 10	< 1	18	< 10	36	
706230	205 294	12	0.05	3	240	2	< 2	1	58 < 0.01	< 10	< 10	10	< 10	68	
706231	205 294	6	0.04	1	200	2	< 2	1	18 < 0.01	< 10	< 10	10	< 10	42	
706232	205 294	128	0.02	ī	170	< 2	< 2	< 1	15 < 0.01		< 10	6	< 10	30	
706233	205 294	5	0.03	2	210	2	< 2	< 1	22 < 0.01		< 10	6	< 10	306	
06234	205 294	8	0.02	2	200	6	< 2	< 1	48 < 0.01		< 10	45	< 10 < 10	104 468	
706235	205 294	11	0.02	2	180	46	< 2	< 1	56 < 0.01	< 10	< 10	5	< 10	400	
706236	205 294	3	0.04	2	220	2	< 2	< 1	47 < 0.01		< 10	8	< 10 < 10	316 88	
706237	205 294	1	0.03	2	220	2	< 2	< 1	42 < 0.01		< 10 < 10	6 6	< 10	88 92	
706238	205 294	9		1	200	42	< 2	< 1 1	44 < 0.01 42 0.01		< 10	12	< 10	56	
706239	205 294			3	240 200	28	< 2 < 2	< 1	57 < 0.01		< 10	4	< 10	62	
706240	205 294	، ا	V. UA		AVV				••••••						



97-2

. .

.



#### Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6 Page Number :3-A Total Pages :5 Certificate Date: 27-OCT-97 Invoice No. :19747430 P.O. Number : Account :PFM

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

										CE	RTIFI	CATE	OF A	NALY	SIS	F	9747	430		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bİ ppm	Ça %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	re %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
M706241 M706242 M706243 M706244 M706244 M706245	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 0.2 < 0.2	0.39 0.49 0.58 0.53 0.49	< 2 < 2 < 2 < 2 < 2 < 2	30 40 50 40 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.35 1.01 0.75 0.89 0.47	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 2 3 2 1	83 105 123 125 126	18 77 71 8 5	1.31 1.75 1.70 1.98 1.77	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.21 0.25 0.32 0.24 0.31	< 10 < 10 < 10 < 10 < 10	0.07 0.08 0.11 0.09 0.05	280 210 215 240 165
M706246 M706247 M706248 M706249 M706249	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>	< 0.2 < 0.2 < 0.2 0.2 0.2	0.76 0.67 0.71 0.65 0.54	< 2 2 2 < 2 < 2 < 2	80 80 50 60 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.17 0.98 0.87 2.01 0.50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 4 2 2 2	63 58 88 94 102	22 18 29 68 389	1.39 1.48 2.24 2.42 2.27	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.20 0.14 0.33 0.32 0.35	10 10 < 10 < 10 < 10	0.32 0.45 0.12 0.12 0.06	345 305 200 510 240
x706251 x706252 x706253 x706254 x706255	205 294 205 294 205 294 205 294 205 294 205 294	< 5	< 0.2 < 0.2 0.2 0.2 0.2	0.60 0.66 0.40 0.36 0.47	< 2 2 < 2 2 2 < 2	50 60 50 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 16 2 12	0.53 1.39 0.78 0.79 0.71	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 2 1 1 3	84 85 100 63 112	146 42 333 149 419	2.22 1.42 1.88 1.78 2.24	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.27 0.27 0.29 0.25 0.31	10 10 < 10 < 10 < 10	0.15 0.15 0.06 0.06 0.07	185 240 200 280 155
N706256 N706257 N706258 N706259 N706259 N706260	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.54 0.43 0.50 0.62 0.55	< 2 2 < 2 2 2 < 2	60 60 70 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.72 0.87 0.59 0.64 0.73	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 1 1 2 1	124 98 78 100 98	36 19 11 5 27	1.63 1.55 1.64 2.10 1.73	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.31 0.26 0.26 0.33 0.29	< 10 < 10 < 10 < 10 < 10	0.08 0.08 0.12 0.09 0.09	145 160 135 135 120
M706261 M706262 M706263 M706264 M706265	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 </pre>		0.58 0.55 0.35 0.45 0.52	< 2 2 < 2 < 2 < 2 < 2	60 80 50 60 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.63 0.72 0.67 0.54 0.51	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 1 1	114 137 64 99 116	93 5 40 11 3	1.78 1.73 1.48 1.26 1.56	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.30 0.30 0.25 0.26 0.29	< 10 < 10 < 10 < 10 < 10 < 10	0.09 0.10 0.05 0.11 0.13	125 170 155 155 155
M706266 M706267 M706268 M706269 M706269 M706270	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2	0.40 0.77 1.06 0.43 0.50	< 2 2 < 2 2 2 < 2	50 90 220 50 60	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.41 0.97 1.35 0.70 0.42	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 2 2 1 1	85 76 99 82 104	2 8 10 18 35	1.74 2.75 1.42 1.71 2.20	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.25 0.23 0.23 0.27 0.31	< 10 < 10 10 < 10 < 10 < 10	0.07 0.14 0.19 0.08 0.10	85 160 225 180 125
M706271 M706272 M706273 M706274 M706275	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2	0.65 0.52 0.55 0.54 2.26	< 2 < 2 < 2 < 2 < 2 < 2	90 80 60 50 220	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.08 0.50 0.87 0.51 1.15	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 2 1 < 1 1	125 83 88 117 49	8 4 116 32 16	1.58 1.29 1.58 1.19 1.19	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.34 0.28 0.28 0.24 0.29	< 10 < 10 < 10 < 10 10	0.16 0.16 0.12 0.09 0.24	210 170 190 125 115
M706276 M706277 M706278 M706279	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2	0.51 0.49 0.44 0.60 0.48	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	110 50 60 80 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.64 0.44 0.67 0.38 0.28	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 2 1 1	113 120 83 131 93	18 10 9 6 3	1.68 2.06 1.58 1.64 2.14	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.28 0.29 0.25 0.34 0.28	< 10 < 10 < 10 < 10 < 10 < 10	0.08 0.05 0.09 0.13 0.10	95 55 100 110 85

CERTIFICATION:

......

97-2

.

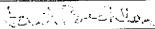
A9747430



#### Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6


Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

CERTIFICATE OF ANALYSIS

Page Number :3-B Total Pages :5 Certificate Date: 27-OCT-97 Invoice No. :19747430 P.O. Number : Account :PFM

. . . .

										UE	RIIFI				212	A9747450
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P mqq	тад д	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	M Mđđ	Zn ppm	
N706241 N706242 N706243 N706244 N706244 N706245	205 294 205 294 205 294 205 294 205 294 205 294	1 < 1 < 1 33 34	0.02 0.02 0.03 0.03 0.03	2 2 2 2 2	190 200 230 160 160	4 6 4 6 2	< 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	66 < 0 49 < 0 36 < 0 51 < 0 17 < 0	0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	4 5 7 6 4	< 10 < 10 < 10 < 10 < 10 < 10	44 192 102 26 16	
M706245 M706245 M706247 M706248 M706249 M706250	205 294 205 294 205 294 205 294 205 294 205 294	1 1 16 25 57	0.14 0.11 0.03 0.03 0.01	3 4 2 3 2	290 300 190 170 170	- 6 4 6 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 3 < 1 < 1 < 1 < 1	66	0.03 0.04 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	25 30 4 3 3	< 10 < 10 < 10 < 10 < 10 < 10	40 42 22 48 42	
M706251 M706252 M706253 M706253 M706254 M706255	205 294 205 294 205 294 205 294 205 294 205 294	9 4 7 13 9	0.05 0.08 0.01 0.02 0.03	2 2 1 2 3	210 240 190 180 190	2 6 2 4 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 < 1 < 1 < 1	30 < 60 32 < 34 < 44 <	0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	10 13 4 4	< 10 < 10 < 10 < 10 < 10 < 10	36 296 256 108 66	
M706256 M706257 M706258 M706259 M706259 M706260	205 294 205 294 205 294 205 294 205 294 205 294	3 4 16 4 2	0.04 0.03 0.03 0.03 0.03	3 3 1 2 2	200 180 190 210 180	2 2 2 < 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 1 < 1 < 1 < 1	50 < 39 < 36 < 45 < 55 <	0,01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	6 6 8 6 6	< 10 < 10 < 10 < 10 < 10 < 10	46 36 24 12 20	
M706261 M706262 M706263 M706264 M706265	205 294 205 294 205 294 205 294 205 294 205 294	6 3 3 1 1	0.03 0.03 0.02 0.03 0.04	3 2 1 2 2	200 210 200 170 200	2 2 2 2 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 1 1	49 < 67 < 29 < 30 < 29 <	0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	5 6 4 7 8	< 10 < 10 < 10 < 10 < 10 < 10	30 18 10 20 20	
M706266 M706267 M706268 M706268 M706269 M706270	205 294 205 294 205 294 205 294 205 294 205 294	4 8 6 8 1	0.02 0.26 0.31 0.03 0.03	1 3 2 2 2	200 210 210 200 200	2 6 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	25 < 652 < 1030 < 60 < 22 <	0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	4 7 8 5 7	< 10 < 10 < 10 < 10 < 10	10 16 20 18 16	
N706271 N706272 N706273 N706273 N706274 N706275	205 294 205 294 205 294 205 294 205 294 205 294	2 < 1 9 2 1	0.04 0.04 0.03 0.04 0.42	2 1 2 1 1	220 230 200 150 210	2 < 2 2 2 4	< 2 < 2 < 2 < 2 < 2	1 1 1 1	59 < 37 < 59 < 50 < 2760 <	0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	9 10 6 5 8	< 10 < 10 < 10 < 10 < 10 < 10	20 24 22 18 26	
M706276 M706277 M706278 M706279 M706279 M706280	205 294 205 294 205 294 205 294 205 294 205 294	17 8 10 < 1 5	0.04 0.02 0.03 0.04 0.02	2 3 1 2 2	190 190 180 200 220	2 2 < 2 < 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 1 1	112 < 29 < 35 < 22 15 <	0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	5 4 6 8 7	< 10 < 10 < 10 < 10 < 10	12 8 12 16 12	





Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186

Page Number :4-A Total Pages :5 Certificate Date: 27-OCT-97 Invoice No. :19747430 P.O. Number : PFM Account

.

300

CERTIFICATION:_

5

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

										ĊE	RTIFI	CATE	OF A	NAL	rsis	F	9747	430			
SAMPLE	PREP CODE	Ац ррђ FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	
M706281	205 294		< 0.2	0.39	< 2	60	< 0.5	< 2	0.38	< 0.5	2	<b>9</b> 9	3	2.33	< 10 < 10	< 1 < 1	0.25	< 10 < 10	0.07	80 155	
M706282	205 294		< 0.2	0.36 0.48	< 2 < 2	60 80	0.5	< 2 < 2	0.6B 0.50	< 0.5 < 0.5	1 1	94 119	5 4	1.61	< 10	< 1	0.30	< 10	0.12	115	
M706283 M706284	205 294		< 0.2 < 0.2	0.52	2	70	< 0.5	< 2	0.45	< 0.5	ī	107	9	2.23	< 10	< 1	0.32	< 10	0.11	120	
M706285	205 294		< 0.2	0.71	< 2	60	0.5	< 2	1.40	< 0.5	2	98	9	2.53	< 10	< 1	0.38	< 10	0.06	435	
M706286	205 294		< 0.2	1.01	< 2	90	< 0.5	2	0.55	< 0.5	1	130 128	19 17	2.39	< 10 < 10	< 1 < 1	0.58 0.53	< 10 < 10	0.06	125 180	
M706287	205 294		0.2	0.97	< 2 < 2	90 80	0.5	2 < 2	1.25	< 0.5 < 0.5	2	80	17	1.62	< 10	< 1	0.30	< 10	0.12	160	
M706288 M706289	205 294		< 0.2 < 0.2	0.55	2	80	< 0.5	< 2	0.52	< 0.5	. 2	130	12	1.94	< 10	< 1	0.35	< 10	0.12	130	
N706290	205 294		< 0.2	0.54	< 2	60	< 0.5	< 2	0.41	< 0.5	1	102	3	2.36	< 10	< 1	0.33	< 10	0.05	80	
M706291	205 294		< 0.2	0.48	< 2	60	< 0.5	< 2	0.90	< 0,5	1	97	15 6	1.55 1.07	< 10 < 10	< 1 < 1	0.33 0.29	< 10 < 10	0.04	300 275	
M706292	205 294		< 0.2	0.54	< 2	120 110	< 0.5 < 0.5	< 2 < 2	0.41 0.48	< 0.5 < 0.5	1	113 109	4	1.27	< 10	< 1	0.28	< 10	0.26	275	97-3
M706293 M706294	205 294		< 0.2 < 0.2	0.62	< 2	190	< 0.5	< 2	0.89	< 0.5	2	92	6	1.25	< 10	< 1	0.24	< 10	0.22	285	
M706295	205 294		< 0.2	0.52	< 2	90	< 0.5	< 2	0.72	< 0.5	2	91	5	1.24	< 10	< 1	0.24	< 10	0.20	240	
M706296	205 294	< 5	< 0.2	0.51	< 2	120	< 0.5	< 2	0.41	< 0.5	3	77	6	1.53	< 10	< 1	0.27 0.23	< 10 < 10	0.22	220 240	
M706297	205 294			0.48	2 < 2	100 110	< 0.5 < 0.5	< 2 < 2	0.56	< 0.5 < 0.5	3	68 98	4 7	1.24	< 10 < 10	< 1 < 1	0.25	< 10	0.23	245	
M706298 M706299	205 294		< 0.2 < 0.2	0.51 0.59	< 2	100	< 0.5	< 2	0.56	< 0.5	2	90	18	1.20	< 10	< 1	0.26	< 10	0.25	260	
M706300	205 294		< 0.2	0.61	< 2	130	< 0.5	< 2	0.40	< 0.5	2	94	4	1.19	< 10	< 1	0.31	< 10	0.2B	290	
M706301	205 294	4 < 5	< 0.2	0.53	< 2	80	< 0.5	< 2	0.84		2	108	9	1.03	< 10	< 1	0.27	< 10 < 10	0.15 0.14	310 310	
M706302	205 29			0.54	< 2	80	< 0.5	< 2	0.66		1	95 59	6 39	1.05 1.07	< 10 < 10	< 1 < 1	0.27	< 10	0.14	595	
M706303	205 29	-		0.50 0.71	< 2 < 2	50 100	< 0,5 < 0,5	< 2 < 2	1.32		3	119	22	1.27	< 10	< 1	0.31	< 10	0.29	260	
M706304 M706305	205 29			0.64	< 2	120	< 0.5	< 2	0.47	< 0.5	3	118	10	1.23	< 10	< 1	0.30	< 10	0.32	270	]
M706306	205 29	4 < 5	< 0.2	0.61	< 2	110	< 0.5	< 2	0.63	< 0.5	3	81	8	1.35	< 10	< 1	0.26	< 10	0.32	265	
M706307	205 29	4 < 5		0.60	< 2	140	< 0.5	< 2	0.41		3	87	77	1.28 1.41	< 10 < 10	< 1 < 1	0.29	< 10 < 10	0.34 0.32	265	
M706308	205 29			0.60 0.37	< 2 2	130 50	< 0.5 < 0.5	< 2	0.54		2	66 107	3	0.92	< 10	< 1	0.21	< 10	0.12	190	
M706309 M706310	205 29			0.55	< 2	100	< 0.5	< 2	0.41		3	60	9	1.34	< 10	< 1	0.24	< 10	0.31	240	
M706311	205 29	4 < 5	< 0.2	0.77	< 2	80		< 2	0.68		3	87	110	1.63	< 10	< 1	0.30	< 10	0.25	245 285	]
M706312	205 29			0.61	4	140	< 0.5	< 2	0.41		3	96 100	6 30	1.26	< 10 < 10	< 1 < 1	0.31 0.36	< 10 < 10	0.34	250	1
M706313	205 29			0.71	< 2	130 110	< 0.5 < 0.5	< 2 < 2	0.53 0.59		2	92	30 6	1.35	< 10	< 1	0.31	< 10	0.28	220	
M706314 M706315	205 29 205 29			0.81	< 2	120		< 2	0.68		2	125	12	1.30	< 10	< 1	0.34	< 10	0.30	250	
M705316	205 29	4 < 5	< 0.2	0.66	< 2	100	< 0,5	< 2	0.66		3	99	17	1.33	< 10	< 1	0.27	< 10	0.31	280 520	]
M706317	205 29	4 < 5			4	70	0.5	2	1.36		5	54	668	4.31 0.93	< 10 < 10	< 1	0.52 0.33	< 10 < 10	0.36 0.05	1015	
M706318	205 29				< 2	50 50		< 2	1.65		1	112 110	3 28	1.28	< 10 < 10	< 1	0.35	< 10	0.06	1070	
M706319 M706320	205 29				2	90		< 2			2	72	13	1,29	< 10	< 1	0.25	< 10	0.30	355	1
											-										J
	Let.																				



9

#### Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

Page Number :4-8 Total Pages :5 Certificate Date: 27-OCT-97 Invoice No. : [9747430 P.O. Number : Account :PFM

. .

.

<u>• - - - -</u>

											CE	RTIFI	CATE	OF A	NALY	SIS	A9747430	
	SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	TI ppm	U ppm	Y ppm	M Mdđ	Zn ppm		
	M706281 M706282 M706283 M706284 M706285	205 294 205 294 205 294 205 294 205 294 205 294	4 1 5 10 11	0.02 0.03 0.04 0.03 0.01	3 2 2 2 2	180 200 210 210 200	2 4 2 < 2 2	< 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 1 < 1	22 < 52 < 36 < 30 < 58 <	0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	5 5 7 4	< 10 < 10 < 10 < 10 < 10 < 10	12 20 16 12 10		
	N706286 N706287 N706288 N706288 N706289 N706290	205 294 205 294 205 294 205 294 205 294 205 294	17 5 1 10 10	0.03 0.03 0.03 0.04 0.02	3 3 1 3 2	190 190 180 210 190	2 2 2 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2	< 1 1 1 < 1	17 < 41 25 < 30 < 20 <	0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	6 9 8 8 4	< 10 < 10 < 10 < 10 < 10	14 22 16 18 12		
97-3	M706291 M706292 M706293 M706294 M706295	205 294 205 294 205 294 205 294 205 294 205 294	2 < 1 84 < 1 < 1	0.03 0.06 0.05 0.04 0.04	1 3 3 2 2	200 220 250 250 230	2 2 2 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2	< 1 2 1 1	42 47 92 <	0.01 0.03 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	4 15 16 13 11	< 10 < 10 < 10 < 10 < 10	18 34 34 34 30	97-3	
	M706296 M706297 M706298 M706299 M706299 M706300	205 294 205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.04 0.06 0.05 0.06	2 1 1 1 2	250 240 220 260 250	< 2 2 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 1 1 2	42 56 47 53 37	0.02 0.01 0.03 0.01 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	13 12 14 15 18	< 10 < 10 < 10 < 10 < 10 < 10	54 32 36 52 42		
	M706301 M706302 M706303 M706304 M706305	205 294 205 294 205 294 205 294 205 294 205 294	9 < 1 < 1 < 1 < 1	0.04 0.04 0.03 0.07 0.07	2 1 1 2 3	190 220 250 280 280	2 < 2 2 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 < 1 1 1 2	40 <	0.01 0.01 0.02 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	9 9 10 18 20	< 10 < 10 < 10 < 10 < 10 < 10	24 22 26 42 48		
	M706306 M706307 M706308 M706309 M706309 M706310	205 294 205 294 205 294 205 294 205 294 205 294	1 < 1 < 1 < 1 < 1	0.05 0.05 0.04 0.06 0.04	2 2 1 1 2	300 300 300 110 290	< 2 2 4 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 2 1 1 1	46 30 34 16 22	0,04 0.07 0.06 0.02 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	19 22 20 8 21	< 10 < 10 < 10 < 10 < 10 < 10	40 40 44 34 42		
	M706311 M706312 M706313 M706314 M706315	205 294 205 294 205 294 205 294 205 294 205 294	< 1 2	0.06 0.06 0.05 0.07	2 2 4 1 3	310 290 300 290 290	< 2 2 2 4 2 4 2 4 2	< 2 < 2 < 2 < 2 < 2 < 2	1 2 1 1 1	32 30 34 43 64	0.04 0.08 0.05 0.03 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	15 22 20 18 18	< 10 < 10 < 10 < 10 < 10 < 10	56 40 54 38 44		
	M706316 M706317 M706318 M706319 M706320	205 294 205 294 205 294 205 294 205 294 205 294	2 2 3	0.05 0.05 0.01 0.01 0.04	2 4 3 1 1	310 340 190 190 230	< 2 < 2 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2	1 < 1 < 1 < 2		0.02 0.01 0.01 0.01 0.01 0.05	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	19 14 3 4 20	< 10 < 10 < 10 < 10 < 10	70 80 14 14 48		

CERTIFICATION:_

. 97-3



## Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Page Number : 4-A Total Pages :5 Certificate Date: 27-OCT-97 Invoice No. P.O. Number :19747430 : Account :PFM

97-3

97-4

. . ,

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

To: ALMADEN RESOURCES CORP.

											CE	RTIFIC	CATE	OF A	NALY	SIS	<u>م</u>	9747	430		
	SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ррш	Hg ppm	K %	La ppm	Mg %	Mn ppm
	M706281 M706282 M706283 M706284 M706284 M706285	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2	0.39 0.36 0.48 0.52 0.71	< 2 < 2 < 2 < 2 < 2 < 2	60 60 80 70 60	< 0.5 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.38 0.68 0.50 0.45 1.40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 1 1 1 2	99 94 119 107 98	3 6 4 9 9	2.33 1.61 1.64 2.23 2.53	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.25 0.23 0.30 0.32 0.38	< 10 < 10 < 10 < 10 < 10 < 10	0.07 0.08 0.12 0.11 0.06	80 155 115 120 435
	M706286 M706287 M706288 M706288 M706289 M706289	205 294 205 294 205 294 205 294 205 294 205 294	< \$ < 5 < 5	0.2 < 0.2 < 0.2	1.01 0.97 0.53 0.56 0.54	< 2 < 2 < 2 2 2 < 2	90 90 80 80 60	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 < 2 < 2 < 2 < 2	0,55 1.25 0.51 0,52 0.41	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 2 1 2 1	130 128 80 130 102	19 17 2 12 3	2.39 2.09 1.62 1.94 2.36	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.58 0.53 0.30 0.35 0.33	< 10 < 10 < 10 < 10 < 10 < 10	0.06 0.11 0.12 0.12 0.12	125 180 160 130 80
<del></del>	N706291 N706292 N706293 N706294 N706294 N706295	205 294 205 294 205 294 205 294 205 294 205 294	< 5	< 0.2 < 0.2 < 0.2	0.48 0.54 0.60 0.62 0.52	< 2 < 2 < 2 < 2 < 2 < 2	60 120 110 190 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.90 0.41 0.48 0.89 0.72	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 2 2 2	97 113 109 92 91	15 6 4 6 5	1.55 1.07 1.27 1.25 1.24	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.33 0.29 0.28 0.24 0.24	< 10 < 10 < 10 < 10 < 10 < 10	0.04 0.24 0.26 0.22 0.20	30 <u>0</u> 275 275 285 240
	N706296 N706297 N706298 M706299 M706299 M706300	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 </pre>	< 0.2 < 0.2 < 0.2	0.51 0.48 0.51 0.59 0.61	< 2 2 < 2 < 2 < 2 < 2	120 100 110 100 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.41 0.56 0.45 0.56 0.40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 3 2 2 2	77 68 98 90 94	6 4 7 18 4	1.53 1.24 0.98 1.20 1.19	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.27 0.23 0.25 0.26 0.31	< 10 < 10 < 10 < 10 < 10 < 10	0.22 0.23 0.23 0.25 0.28	220 240 245 260 290
	M706301 M706302 M706303 M706304 M706305	205 294 205 294 205 294 205 294 205 294 205 294	L < 5 L < 5 L < 5	< 0.2 < 0.2 < 0.2	0.53 0.54 0.50 0.71 0.64	< 2 < 2 < 2 < 2 < 2 < 2	80 80 50 100 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.84 0.66 1.32 0.57 0.47	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 1 3 3	108 95 59 119 118	9 6 39 22 10	1.03 1.05 1.07 1.27 1.23	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.27 0.27 0.22 0.31 0.30	< 10 < 10 < 10 < 10 < 10	0.15 0.14 0.16 0.29 0.32	310 310 595 260 270
	M706306 M706307 M706308 M706309 M706310	205 294 205 294 205 294 205 294 205 294 205 294		< 0.2 < 0.2 < 0.2	0.61 0.60 0.60 0.37 0.55	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	110 140 130 50 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.63 0.41 0.54 0.26 0.41	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 3 2 1 3	81 87 65 107 60	B 7 7 3 9	1.35 1.28 1.41 0.92 1.34	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.26 0.29 0.26 0.21 0.24	< 10 < 10 < 10 < 10 < 10	0.32 0.34 0.32 0.12 0.31	265 265 265 190 240
	M706311 M706312 M706313 M706314 M706315	205 294 205 294 205 294 205 294 205 294 205 294	4 < 9 4 < 9 4 < 9	<pre>     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2 </pre>	0.77 0.61 0.71 0.66 0.81	< 2 4 2 < 2 < 2 < 2	80 140 130 110 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.68 0.41 0.53 0.59 0.68	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 3 3 2 2 2	87 96 100 92 125	110 6 30 6 12	1.63 1.26 1.59 1.35 1.30	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.30 0.31 0.36 0.31 0.34	< 10 < 10 < 10 < 10 < 10	0.25 0.34 0.31 0.28 0.30	245 285 250 220 250
	M706316 M706317 M706318 M706319 M706320	205 29 205 29 205 29 205 29 205 29 205 29	4 < 9 4 < 9 4 < 9	5 0,6 5 < 0.2 5 < 0.2	0.66 1.24 0.42 0.57 0.55	< 2 4 < 2 2 2	100 70 50 50 90	< 0.5 0.5 < 0.5 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.66 1.36 1.65 1.60 0.47	< 0.5 < 0.5	3 5 1 2	99 54 112 110 72	17 668 3 28 13	1,33 4.31 0.93 1.28 1.29	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.27 0.52 0.33 0.35 0.25	< 10 < 10 < 10 < 10 < 10 < 10	0.31 0.36 0.05 0.06 0.30	280 520 1015 1070 355

г

97-3

CERTIFICATION:_

To: ALMADEN RESOURCES CORP.



## Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN Page Number :4-B Total Pages :5 Certificate Date: 27-OCT-97 Invoice No. :19747430 P.O. Number : Account :PFM

. . . .

2	<u></u>										CE	RTIFI	CATE	OF A	NALY	SIS	A9747430	
	SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W ppm	Zn ppm		
	M706281	205 294	4	0.02	3	180 200	2	< 2 < 2	< 1 < 1		0.01	< 10 < 10	< 10 < 10	5 5	< 10 < 10	12 20		
	M706282 M706283	205 294 205 294	1 5	0.03	2	210	2	< 2	1		0.01	< 10	< 10	8	< 10	16		
	M706284	205 294	10	0.03	2	210	< 2	< 2	1		0.01	< 10	< 10	7	< 10	12		
	M706285	205 294	11	0.01	2	200	2	< 2	< 1	58 <	0.01	< 10	< 10	4	< 10	10	· • • • • • • •	<u>.</u>
	M706286	205 294	17	0.03	3	190	2 2	< 2 < 2	< 1 1	17 < 41	0.01	< 10 < 10	< 10 < 10	6	< 10 < 10	14 22		
	M706287 M706288	205 294 205 294	5 1	0.03	3 1	190 180	2	< 2	1		0.01	< 10	< 10	8	< 10	16		
	M706289	205 294	10	0.04	3	210	2	< 2	· 1	30 -	0.01	< 10	< 10	8	< 10	18		
	M706290	205 294	10	0.02	2	190	2	< 2	< 1	20 -	0.01	< 10	< 10	4	< 10	12		
	M706291	205 294	2	0.03	1	200	2	< 2	< 1		0.01	< 10 < 10	< 10 < 10	4 15	< 10 < 10	18 34 L		
17-3	M706292	205 294	< 1 84	0.06 0.05	3	220 250	2	< 2 < 2	2	42 47	0.01	< 10	< 10	16	< 10	34 97	-3	
	M706293 M706294	205 294	< 1	0.04	2	250	2	< 2	1		0.01	< 10	< 10	13	< 10	34		
	M706295	205 294	< 1	0.04	2	230	2	< 2	1	74 •	: 0.01	< 10	< 10	11	< 10	30		
	M706296	205 294	< 1	0.04	2	250	< 2	< 2	1	42 56	0.02	< 10 < 10	< 10 < 10	13 12	< 10 < 10	54 32		
	M706297	205 294 205 294	< 1 < 1	0.04	1	240 220	2 2	< 2 < 2	1 1	56 47	0.01	< 10	< 10	14	< 10	36		
	M706298 M706299	205 294	< 1	0.05	ĩ	260	2	< 2	ĩ	53	0.01	< 10	< 10	15	< 10	52		
	x706300	205 294	< 1	0.06	2	250	2	< 2	2	37	0.04	< 10	< 10	18	< 10	42		
	M706301	205 294	9	0.04	2	190	2	< 2	1		< 0.01 < 0.01	< 10 < 10	< 10 < 10	9	< 10 < 10	24 22		
	M706302	205 294	< 1 < 1	0.04	1 1	220 250	< 2	< 2 < 2	< 1 1		< 0.01	< 10	< 10	10	< 10	26		
	M706303 M706304	205 294	< 1	0.07	2	280	2	< 2	ī	42	0.02	< 10	< 10	19	< 10	42		
	M706305	205 294	< 1	0.07	3	280	< 2	< 2	2	37	0.04	< 10	< 10	20	< 10	48		
	M706306	205 294	1	0.05	2	300	< 2	< 2	1	46	0.04	< 10	< 10	19 22	< 10 < 10	40 40		
	M706307	205 294	< 1	0.05	2 1	300 300	2	< 2 < 2	2	30 34	0.07	< 10 < 10	< 10 < 10	20	< 10	44		
	M706308 M706309	205 294 205 294	< 1 < 1	0.04	1	110	4	< 2	î	16	0.02	< 10	< 10	Ē	< 10	34		•
	M706310	205 294	< 1	0.04	2	290	< 2	< 2	1	22	0.07	< 10	< 10	21	< 10	42		
	M706311	205 294	3	0.06	2	310	2	< 2	1	32	0.04	< 10	< 10	15 22	< 10 < 10	56 40		
	N706312	205 294	< 1	0.06	2	290 300	< 2 2	< 2 < 2	2 1	30 34	0.08	< 10 < 10	< 10 < 10	20	< 10	54		
	M706313 M706314	205 294 205 294	< 1	0.05	4	290	2	< 2	i	43	0.03	< 10	< 10	18	< 10	38		
	M706314	205 294	< 1	0.07	3	290	< 2	< 2	ī	64	0.01	< 10	< 10	18	< 10	44		
	M706316	205 294	< 1	0.05	2	310	< 2	< 2	1	60	0.02	< 10	< 10	19	< 10 < 10	70		
	M706317	205 294	2	0.05	4	340	< 2 2	< 2 < 2	< 1 < 1	76 57	0.01	< 10 < 10	< 19 < 10	14 3	< 10	14		
-1-	M706318 M706319	205 294 205 294	2	0.01 0.01	3 1	190 190	2	< 2	< 1		< 0.01	< 10	< 10	- 4	< 10	14 +		
97-1		205 294	< 1	0.04	î	230	2	< 2	2	31	0.05	< 10	< 10	20	< 10	48 97	-4	
71-7	, [	1																





Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Page Number: 4-A Total Pages: 5 Certificate Date: 27-OCT-97 Invoice No.: 19747430 P.O. Number: 0514 PFM Account

. . . .

.

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

					۲					CE	RTIFIC	CATE	OF A	NALY	'SIS	<u>م</u>	97474	430			i
SAM	PREP PLE CODE	Ац ррв ГА+АА	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	
M706281 N706282 M706283 M706283 M706284 N706285	205 294 205 294 205 294 205 294 205 294 205 294	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.39 0.36 0.48 0.52 0.71	< 2 < 2 < 2 < 2 < 2 < 2	60 60 80 70 60	< 0.5 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.68 0.50 0.45	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 1 1 1 2	99 94 119 107 98	3 6 4 9 9	2.33 1.61 1.64 2.23 2.53	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.25 0.23 0.30 0.32 0.38	< 10 < 10 < 10 < 10 < 10 < 10	0.07 0.08 0.12 0.11 0.06	80 155 115 120 435	
M706286 M706287 M706288 M706288 M706289 M706289	205 29 205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.01 0.97 0.53 0.56 0.54	< 2 < 2 < 2 < 2 < 2 < 2	90 90 80 80 60	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 < 2 < 2 < 2 < 2	0.55 1.25 0.51 0.52 0.41	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 2 1 2 1	130 128 80 130 102	19 17 2 12 3	2.39 2.09 1.62 1.94 2.36	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.58 0.53 0.30 0.35 0.33	< 10 < 10 < 10 < 10 < 10 < 10	0.06 0.11 0.12 0.12 0.05	125 180 160 130 80	
₩706291 ₩706292 ₩706293 7-3 ₩706293 ₩706294 ₩706295	205 29 205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2	0.48 0.54 0.60 0.62 0.52	< 2 < 2 2 < 2 < 2 < 2 < 2 < 2	60 120 110 190 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 3 &lt; 3 </pre>	0.90 0.41 0.48 0.89 0.72	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 2 2 2	97 113 109 92 91	15 6 4 6 5	1.55 1.07 1.27 1.25 1.24	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.33 0.29 0.28 0.24 0.24	< 10 < 10 < 10 < 10 < 10 < 10	0.04 0.24 0.26 0.22 0.20	300 275 275 285 240	97-:
M706296 M706297 N706298 M706299 M706300	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2	0.51 0.48 0.51 0.59 0.61	< 2 2 < 2 < 2 < 2 < 2	120 100 110 100 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.41 0.56 0.45 0.56 0.40	< 0.5 < 0.5 < 0.5	3 3 2 2 2	77 68 98 90 94	6 4 7 18 4	1.53 1.24 0.98 1.20 1.19	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.27 0.23 0.25 0.26 0.31	< 10 < 10 < 10 < 10 < 10	0.22 0.23 0.23 0.25 0.28	220 240 245 260 290	
M706301 N706302 N706303 N706304 M706305	205 29 205 29 205 29 205 29 205 29 205 29	14 < 5 94 < 5 94 < 5	< 0.2 < 0.2 < 0.2	0.53 0.54 0.50 0.71 0.64	< 2 < 2 < 2 < 2 < 2 < 2 < 2	80 80 50 100 120	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.84 0.66 1.32 0.57 0.47	< 0.5 < 0.5	2 1 3 3	108 95 59 119 118	9 6 39 22 10	1.03 1.05 1.07 1.27 1.23	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.27 0.27 0.22 0.31 0.30	< 10 < 10 < 10 < 10 < 10 < 10	0.15 0.14 0.16 0.29 0.32	310 310 595 260 270	
M706306 K706307 M706308 M706309 K706310	205 25 205 25 205 25 205 25 205 25 205 25	94 < 5 94 < 5 94 < 5	< 0.2 < 0.2	0.61 0.60 0.60 0.37 0.55	< 2 < 2 < 2 2 2 < 2	110 140 130 50 100	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.63 0.41 0.54 0.26 0.41	< 0.5 < 0.5 < 0.5	3 3 2 1 3	81 87 66 107 60	8 7 7 3 9	1.35 1.28 1.41 0.92 1.34	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.26 0.29 0.26 0.21 0.24	< 10 < 10 < 10 < 10 < 10	0.32 0.34 0.32 0.12 0.31	265 265 265 190 240	
M706311 M706312 M706313 M706314 M706314 M706315	205 25 205 25 205 25 205 25 205 25 205 25	94 < 5 94 < 5 94 < 5	i < 0.2 i < 0.2 i < 0.2	0.77 0.61 0.71 0.66 0.81	< 2 4 2 < 2 < 2 < 2	80 140 130 110 120	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.68 0.41 0.53 0.59 0.68	< 0.5 < 0.5 < 0.5	3 3 3 2 2	87 96 100 92 125	110 6 30 6 12	1.63 1.26 1.59 1.35 1.30	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.30 0.31 0.36 0.31 0.34	< 10 < 10 < 10 < 10 < 10	0.25 0.34 0.31 0.28 0.30	245 285 250 220 250	
N706316 N706317 N706318 N706319 97-4 M706320	205 29 205 29 205 20	94 < 5 94 < 5 94 < 5	5 0.6 5 < 0.2 5 < 0.2	0.42 0.57	<pre></pre>	100 70 50 50	0.5 < 0.5 0.5	< 2 2 < 2 < 2 < 2 < 2	0.66 1.36 1.65 1.60 0.47	< 0.5 < 0.5 < 0.5	3 5 1 1 2	99 54 112 110 72	17 668 3 28 13	1.33 4.31 0.93 1.28 1.29	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.27 0.52 0.33 0.35 0.25	< 10 < 10 < 10 < 10 < 10 < 10	0.31 0.36 0.05 0.06 0.30	280 520 1015 1070 355	4

CERTIFICATION:_

.



Analytical Chemisis * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

·<u>··</u>··· ⑦7-<

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN Page Number :4-B Total Pages :5 Certificate Date: 27-OCT-97 Invoice No. :19747430 P.O. Number : Account :PFM

•

. .

						•					CE	RTIFI	CATE	OF A	NALY	SIS	A9747430
	SAMPLE	PREP CODE	Mo ppm	Na %	Nİ PPm	р ррт	Pb ppm	d2 mqq	Sc ppm	Sr ppm	Tİ %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	
	M706281 M706282 M706283 M706284 M706284 M706285	205 294 205 294 205 294 205 294 205 294 205 294	4 1 5 10 11	0.02 0.03 0.04 0.03 0.01	3 2 2 2 2	180 200 210 210 200	2 4 2 < 2 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 1 1 < 1	52 < 36 < 30 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	5 5 7 4	< 10 < 10 < 10 < 10 < 10 < 10	12 20 16 12 10	
	M706286 M706287 M706288 M706289 M706289 M706290	205 294 205 294 205 294 205 294 205 294 205 294	17 5 1 10 10	0.03 0.03 0.03 0.04 0.02	3 3 1 3 2	190 190 180 210 190	2 2 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2	< 1 1 1 < 1	41 25 < 30 <	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	6 9 8 8 4	< 10 < 10 < 10 < 10 < 10 < 10	14 22 16 18 12	
97-3	M706291 M706292 M706293 M706294 M706294 M706295	205 294 205 294 205 294 205 294 205 294 205 294	2 < 1 84 < 1 < 1	0.03 0.06 0.05 0.04 0.04	1 3 2 2	200 220 250 250 230	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2	< 1 2 1 1	42 47 92 <	0.01 0.03 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	4 15 16 13 11	< 10 < 10 < 10 < 10 < 10 < 10	18 34 34 34 30	↓ 9-73
	M706296 M706297 M706298 M706299 M706300	205 294 205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.04 0.06 0.05 0.05	2 1 1 2	250 240 220 260 250	< 2 2 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 1 2	42 56 47 53 37	0.02 0.01 0.03 0.01 0.04	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	13 12 14 15 18	< 10 < 10 < 10 < 10 < 10 < 10	54 32 36 52 42	
	M706301 M706302 M706303 M706304 M706305	205 294 205 294 205 294 205 294 205 294 205 294	9 < 1 < 1 < 1 < 1	0.04 0.04 0.03 0.07 0.07	2 1 1 2 3	190 220 250 280 280	2 < 2 2 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 < 1 1 1 2	40 <	0.01 0.01 0.02 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	9 9 10 1B 20	< 10 < 10 < 10 < 10 < 10 < 10	24 22 26 42 48	
	M706306 M706307 M706308 M706309 M706310	205 294 205 294 205 294 205 294 205 294 205 294	1 < 1 < 1 < 1 < 1 < 1	0.05 0.05 0.04 0.06 0.04	2 2 1 1 2	300 300 300 110 290	< 2 2 4 < 2	< 2 < 2 < 2 < 2 < 2	1 2 1 1 1	46 30 34 15 22	0.04 0.07 0.06 0.02 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	19 22 20 8 21	< 10 < 10 < 10 < 10 < 10	40 40 44 34 42	· · · · · · · · · · · · · · · · · · ·
	M706311 M706312 M706313 M706314 M706315	205 294 205 294 205 294 205 294 205 294 205 294	3 < 1 < 1 2 < 1	0.06 0.06 0.06 0.05 0.05	2 2 4 1 3	310 290 300 290 290	2 < 2 2 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 2 1 1 1	32 30 34 43 64	0.04 0.08 0.05 0.03 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	15 22 20 18 18	< 10 < 10 < 10 < 10 < 10	56 40 54 38 44	-
-T 97-4	M706316 M706317 M706318 M706319 M706320	205 294 205 294 205 294 205 294 205 294 205 294	< 1 2 3 < 1	0.05 0.05 0.01 0.01 0.04	2 4 3 1 1	310 340 190 190 230	< 2 < 2 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2	1 < 1 < 1 < 2		0.02 0.01 0.01 0.01 0.01 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	19 14 3 4 20	< 10 < 10 < 10 < 10 < 10	70 80 14 14 48	\$7~4

Г

*____* 

CERTIFICATION:



.

## Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

97-4

Page Number :5-A Total Pages :5 Certificate Date: 27-OCT-97 Invoice No. :19747430 P.O. Number : Account :PFM

•

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN

97-4		-								CE	RTIFI	CATE	OF A	NAL	/SIS	ŀ	9747	430		
SAMPLE	PREP	Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Мл ррш
M706321 M706322 M706323 M706324 M706325	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.51 0.42 0.50 0.46 0.54	< 2 6 < 2 < 2 < 2 < 2	70 90 50 70 70	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.30 0.78 1.01 0.64 0.79	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 3 1 1 2	112 84 89 67 81	3 2 2 6 6	1.04 1.69 1.30 1.47 1.05	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.33 0.28 0.26 0.26 0.23	< 10 < 10 < 10 < 10 10	0.07 0.06 0.07 0.11 0.16	705 310 325 190 245
M706326 M706327 M706328 M706329 M706329	205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2	0.58 0.57 0.60 0.59 0.63	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	100 100 70 80 80	< 0.5 < 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.77 0.49 0.74 0.76 0.63	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 1 1 1 1	102 85 91 113 83	4 5 10 3 5	1.17 1.34 1.31 1.35 1.52	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.28 0.30 0.29 0.34 0.35	< 10 < 10 < 10 10 10	0.21 0.17 0.13 0.10 0.10	285 200 295 370 425
N706331 N706332 N706333 N706334 N706335	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	1.0	0.46 0.50 0.61 0.34 0.54	< 2 < 2 < 2 < 2 < 2 2 2	60 100 110 50 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 16 < 2		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 1 4 2	88 104 87 157 98	5 4 14 152 4	1.39 1.34 1.37 1.24 1.22	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.24 0.26 0.28 0.29 0.26	< 10 < 10 < 10 < 10 < 10	0.13 0.13 0.20 0.04 0.19	195 225 225 865 235
M706336 M706337 M706338 M706339 M706340	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.51 0.48 0.54 0.41 0.49	< 2 < 2 < 2 < 2 < 2 < 2 < 2	90 90 80 70 100	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.64	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 1 2 2	84 80 98 68 99	4 4 1 1	1.07 1.14 1.04 1.03 1.20	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.25 0.24 0.20 0.21 0.24	< 10 < 10 < 10 < 10 < 10 < 10	0.20 0.19 0.14 0.17 0.16	250 260 295 295 365
-																				
																		_		

CERTIFICATION:_____



Analytical Chemists * Geochemists * Registered Assayors

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186

Project : MUNRO Comments: ATTN:LEO KING/MORGAN POLIQUIN Page Number : 5-8 Total Pages :5 Certificate Date: 27-OCT-97 Invoice No. : 19747430 P.O. Number : Account : PFM

27-4

97-4									CE	RTIFI	CATE	OF A	NALY	SIS	A9747430
SAMPLE	PREP CODE	Мо ррш	Na %	Ni ppm	p ppm	Pb ppm	Sb ppm	Sc ppm	sr Ti ppm %	T1 ppm	U mqq	V mqq	м Шаба	Zn ppm	
M706321 M706322 M706323 M706323 M706324 M706325	205 294 205 294 205 294 205 294 205 294 205 294	1 2 2 < 1 1	0.01 0.02 0.01 0.03 0.03	1 1 1 1 2	190 180 190 210 190	2 2 4 2 2	< 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 1 1	70 < 0.01 $52 < 0.01$ $115 < 0.01$ $53 < 0.01$ $85 < 0.01$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	5 5 7 9	< 10 < 10 < 10 < 10 < 10 < 10	12 12 10 20 26	
x706326 x706327 x706328 x706328 x706329 x706330	205 294 205 294 205 294 205 294 205 294 205 294	< 1 1 < 1 1 1	0.04 0.04 0.03 0.04 0.02	2 3 1 1 2	200 200 210 210 210	2 < 2 2 2 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 1 1 1 1 < 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	12 11 8 8 6	< 10 < 10 < 10 < 10 < 10 < 10	30 24 18 16 16	
M706331 M706332 M706333 M706333 M706334 M706335	205 294 205 294 205 294 205 294 205 294 205 294	2 1 3 3 < 1	0.04 0.04 0.04 < 0.01 0.05	2 3 1 2 2	190 200 210 100 200	4 2 5 4	< 2 < 2 < 2 < 2 < 2 < 2	1 < 1 < 1 < 1 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	9 9 14 1 14	< 10 < 10 < 10 < 10 < 10	26 22 32 28 30	
M706336 M706337 M706338 M706338 M706339 M706340	205 294 205 294 205 294 205 294 205 294 205 294	7 2 1 < 1 6	0.05 0.04 0.03 0.03 0.04	1 1 1 1	190 210 190 180 190	2 2 6 2 2	< 2 < 2 < 2 < 2 < 2 < 2	1 1 1 1	27 0.03 41 0.01 116 < 0.01 38 0.01 39 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	14 14 9 11 10	< 10 < 10 < 10 < 10 < 10	30 30 20 28 24	



.

# Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Page Number :1-A Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. :19748633 P.O. Number : P.O. Number : Account :F PFM

Inler

dante?

Project : MUNRO Comments: ATTN; LEO KING

To: ALMADEN RESOURCES CORP.

97-4		r-n=								CE	RTIFI	CATE	OF A	NAL	YSIS		49748	633		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag PPm	Al %	As ppm	Ba ppm	Be ppm	ві ррш	Ca १	ca ppm	Co PPm	Cr ppm	Cu ppm	Гe %	Ga ppm	Eg ppm	K K	La ppm	Mg	Mn PPm
M706341 M706342 M706343 M706344 M706345	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.64 0.52 0.65 0.61 0.64	<pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	90 80 90 80 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.57 0.54 0.53 0.64 0.71	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 3 3 2 3	95 61 87 105 101	5 7 22 4 5	1,23 1.34 1.28 1.35 1,56	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	< 1 < 1 < 1 < 1 < 1 < 1	0.26 0.20 0.24 0.28 0.31	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.20 0.21 0.24 0.16 0.17	280 230 220 210 205
4706346 4706347 4706348 4706349 4706349	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.51 0.53 0.53 0.49 0.39	<pre></pre>	B0 100 90 70 50	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	<pre></pre>	0.52 0.51 0.54 0.40 0.51	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 2 2 2 2	64 63 78 65 60	4 6 2 6	1.50 1.45 1.42 2.56 1.28	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.23 0.25 0.23 0.24 0.17	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.18 0.16 0.21 0.14 0.15	180 190 240 160 165
1706351 1706352 1706353 1706354 1706355	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 </pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.42 0.34 0.35 0.40 0.35	<pre></pre>	50 40 60 70 60	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	<pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.76 0.68 0.76 0.77 0.90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 3 2 2 2	55 47 53 57 55	6 17 20 4 3	1.08 1.00 1.15 1.25 1.98	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0,15 0,15 0,18 0,19 0,24	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.17 0.11 0.10 0.15 0.04	225 180 200 205 155
1706356 1706357 1706358 1706359 1706360	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.43 0.51 0.44 0.48 0.47	<pre></pre>	70 70 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.55 0.70 0.52 0.62 0.47	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 3 3 2	48 57 48 65 72	3 4 3 5 6	1.62 1.57 1.64 1.56 1.19	< 10 < 10 < 10 < 10 < 10 < 10	<pre></pre>	0.23 0.23 0.21 0.23 0.21	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.14 0.13 0.15 0.14 0.20	150 220 185 180 200
4706361 4706362 4706363 4706364 4706365	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.43 0.30 0.41 0.46 0.51	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	70 40 60 70 80	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	<pre></pre>	0,48 0.54 0.56 0,45 0,39	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	2 1 2 2 1	55 45 48 56 65	14 23 4 5 5	1.27 1.31 1.59 1.39 1.33	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre> &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.20 0.17 0.20 0.19 0.20	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.16 0.07 0.13 0.19 0.20	165 125 215 170 185
1706366 1706367 1706368 1706369 1706370	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.50 0.53 0.53 0.49 0.41	<pre></pre>	80 90 80 70 60	<pre>&lt; 0,5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	<pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0,66 0.61 0.78 0.60 0,45	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	2 2 2 2 2 2	72 66 53 64 49	5 5 4 3 6	1.59 1.61 1.22 1.63 1.59	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0,21 0,23 0,19 0,26 0,20	< 10 < 10 < 10 < 10 < 10 < 10	0.18 0.15 0.20 0.11 0.13	185 170 240 140 135
7706371 (706372 (706373 (706374 (706375	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.47 0.42 0.57 D.41 0.53	<pre></pre>	70 100 50	<pre>&lt; 0,5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	<pre></pre>		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 2 1 2	58 57 68 54 73	4 8 6 8 4	1.46 1.25 1.29 1.45 1.85	< 10 < 10 < 10 < 10 < 10 < 10	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.21 0.18 0.24 0.21 0.26	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.17 0.17 0.22 0.13 0.15	180 345 205 175 145
1706376 1706377 1706378 1706379 1706380	205 294 205 294 205 294 205 294 205 294 205 294	< 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.40 0.42 0.31 0.52 0.43	<pre>     &lt; 2     &lt; 2     &lt;         2</pre>	50 60 40 50 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.39	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 2 2 1	51, 63 53 54 70	5 4 3 5 18	1.32 1.47 1.92 1.85 1.19	< 10 < 10 < 10 < 10 < 10 < 10 < 10	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.17 0.20 0.18 0.24 0.21	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.14 0.13 0.05 0.10 0.07	145 150 135 125 405 235

CERTIFICATION:



`

# Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

974

1 - C. D. - D. Jon

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Page Number :1-B Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. :19748633 P.O. Number Account :PFM

Project : MUNRO Comments: ATTN: LEO KING

97-4	······································									CE	RTIF	CATE	OF A	NALY	/SIS	A9748633
SAMPLE	PREP CODE	Мо пррш	Na S	Ni ppm	P PPm	Pb ppm	Sb ppm	Sc Ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W PPm	Zn Ppm	
M706341 M706342	205 294	1	0.07	2	190	2	< 2	1	42	0.01	< 10	< 10	12	< 10	26	
M706343	205 294 205 294	4	0.05	2	210	2	< 2	1	36	0.01	< 10	< 10	11	< 10	26	
M706344	205 294	< 1 < 1	0.07 0.05	3	200	4	< 2	1	36	0.03	< 10	< 10	13	< 10	32	
H706345	205 294	1	0.05	1 2	210 200	2 2	<pre>&lt; 2 &lt; 2</pre>	1	61 57	0.01	< 10 < 10	< 10 < 10	9 9	< 10 < 10	24 24	
M706346	205 294	1	0.04	2	190	4	< 2	1	37	0.01	< 10					
M706347	205 294	< 1	0.04	1	200	2	< 2	i	37	0.01	< 10	< 10 < 10	9 9	< 10	22	
M706348	205 294	< 1	0.04	2	220	< 2	< 2	ī	37	0.01	< 10	< 10	12	< 10 < 10	24 28	
M706349	205 294	10	0.04	2	190	4	< 2	· 1	27 <		< 10	< 10	8	< 10	20	
M706350	205 294	< 1	0.03	1	200	2	< 2	< 1		0.01	< 10	< 10	7	< 10	22	
M706351	205 294	< 1	0.05	1	210	4	< 2	< 1	53 (	0.01	< 10	< 10		< 10	22	· ••• •••
M706352	205 294	< 1	0.03	1	190	2	< 2	λ.		0.01	< 10	< 10	5	< 10	18	
M706353	205 294	4	0.04	1	190	2	< 2	< 1		0.01	< 10	< 10	Š	< 10	14	
M706354 M706355	205 294	· < 1	0.03	1	190	2	< 2	1	57 K	0.01	< 10	< 10	8	< 10	22	
M100335	205 294	14	0.02	2	170	4	٢ 2	< 1	67 K	0.01	< 10	< 10	3 -	< 10	18	
H706356	205 294	< 1	0.03	1	200	6	(2	< 1	41 <	0.01	< 10	< 10	7	< 10	16	
M706357	205 294	< 1	0.04	2	200	2	< 2	<1		0.01	< 10		÷	< 10	10	
M706358	205 294	1	0.03	1	200	2	< 2	1		0.01	< 10	< 10	B	< 10	20	
M706359 M706360	205 294	5	0.04	1	190	2	< 2	< 1	47 <	0.01	< 10	< 10	7	< 10	18	
M700380	205 294	2	0.04	1	190	6	< 2	1	36	0.01	< 10	< 10	10	< 10	26	
M706361	205 294	1	0.04	2	180	6	< 2	1	39 <	0.01	< 10	< 10	8	< 10	28	
M706362	205 294	< 1	0.03	1	180	< 2	< 2	< 1		0.01	< 10	< 10	4	< 10	16	
M706363 M706364	205 294	< 1	0.03	1	190	4	< 2	< 1		0.01	< 10	< 10	7	< 10	18	
M706365	205 294	< 1	0.03	1	200	2	< 2	1	31	0.02	< 10	< 10	10	< 10	26	
1700303	205 294	1	0.05	1	180	2	< 2	1	27	0.04	< 10	< 10	11	< 10	24	
M706366	205 294	< 1	0.04	1	200	2	< 2	1	52	0.03	< 10	< 10	10	< 10	22	
M706367	205 294	2	0.04	1	190	< 2	< 2	1	49	0.01	< 10	< 10	8	< 10	18	
M706368 M706369	205 294	< 1	0.03	1	190	4	< 2	1	74	0.01	< 10	< 10	10	< 10	28	
M706370	205 294	1	0.03	1	190	4	< 2	< 1	58 K	0.01	< 10	< 10	6	< 10	14	
	205 294	< 1	0.03	l	190	< 2	< 2	< 1	38 K	0,01	< 10	< 10	7	< 10	18	
M706371	205 294	< 1	0.04	1	190	< 2	< 2	1	40	0.01	< 10	< 10	9	< 10	24	
M706372	205 294	< 1	0.03	1	180	2	< 2	1		0.01	< 10	< 10	8	< 10	24	
M706373 M706374	205 294	< 1	0.05	1	190	2	< 2	1		0.03	< 10	< 10	12	< 10	26	
M706375	205 294		0.03	1	190	2	< 2	< 1		0.01	< 10	< 10	6	< 10	18	
	+ $+$ $+$	< 1	0.04	2	210	< 2	< 2	1	46 (	0.01	< 10	< 10	8	< 10	22	
1706376	205 294	< 1	0.03	1	180	2	< 2	< 1	70 <	0.01	< 10	< 10,	7	< 10	18	·
M706377	205 294	< 1	0.04	1	180	2	(2	< ī		0.01	< 10	< 10	7	< 10	16	
M706378	205 294	3	0.01	1	180	8	< 2	< 1	55 K		< 10	< 10	3	< 10	8	
M706379 M706380	205 294	1	0.03	3	180	4	< 2	< ۱	72 <		< 10	< 10	4	< 10	14	
1100380	205 294	< 1	0.01	1	180	2	< 2	< 1	74 (	0.01	< 10	< 10	3	< 10	18	
L																

CERTIFICATION:



•

# Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

97-4

.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Page Number :2-A Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. P.O. Number : 19748633 -Account :PFM

Project : MUNRO Comments: ATTN: LEO KING

		1								CE	RTIFI	CATE	OF A	NAL	YSIS		<b>497</b> 48	633		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu Ppm	Fe %	Ga ppm	Hg PPm	K %	La ppm	Mg	Mn ppm
M706381	205 294	< 5	< 0.2	0.45	< 2	40	< 0.5	< 2	0.62	< 0.5	2	69	81	1.68	< 10	< 1	0.24	< 10	0.08	140
M706382	205 294	< 5	< 0.2	0.42	< 2	50	< 0.5	< 2	0.44	< 0.5	2	49	11	1.35	< 10	< î	0.18	< 10	0.16	160
M706383 M706384	205 294	< 5	(0.2	0.39	< 2	50	< 0,5	< 2	0.48	< 0.5	2	49	16	1.58	< 10	< ī	0.20	< 10	0.13	140
M706385	205 294 205 294	<pre> &lt; 5  &lt; 5</pre>	< 0.2 < 0.2	0.39 0,43	< 2 < 2	50 60	< 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2</pre>	0.45 0.42	< 0.5 < 0.5	2 1	52 62	40 10	1.24 1.54	< 10 < 10	< 1 < 1	0.16	< 10 < 10	0,16 0.14	185 165
M706386	205 294	< 5	< 0.2	0.44	< 2	60	< 0.5	< 2	0.61	< 0.5	2	60				-		<b></b>		
H706387	205 294	< 5	< 0.2	0.52	< 2	70	< 0.5	ζ2	0.41	(0.5	2	71	7 15	1.81 1.42	< 10 < 10	< 1 < 1	0.22	< 10	0.15	195
M706388	205 294	< 5	< 0,2	0.43	< 2	50	< 0.5	< 2	0.54	< 0.5	2	57	4	2.14	< 10		0.22	< 10 < 10	0.18 0.13	185 170
M706389	205 294	< 5	¢ 0.2	0.34	< 2	30	< 0,5	< 2	0,62	< 0.5	2	29	7	1.81	< 10	$\langle 1$	0.15	< 10	0.13	195
M706390	205 294	< 5	< 0.2	0.41	< 2	. 70	< 0.5	< 2	0.63	< 0.5	2	53	10	1,66	< 10	< ī	0.18	< 10	0.16	170
M706391 M706392	205 294	< 5 < 5	< 0.2 < 0.2	0.39	< 2	70	< 0.5	< 2	0.52	< 0.5	2	34	7	1.35	< 10	< 1	0.18	< 10	0.1B	180
M706393	205 294	< 5	< 0.2	0.51	< 2 < 2	90 80	< 0.5 < 0.5	{ 2 { 2	0.50	< 0.5	2	49	6	1,39	< 10	< 1	0.22	< 10	0,22	210
M706394	205 294	< 5 < 5	< 0.2	0.59	< 2 <	80	(0.5	< 2	0.87 0.75	< 0.5 < 0.5	2 2	55	.4	1,28	< 10	< 1	0.22	< 10	0.15	190
M706395	205 294	< 5	< 0.2	0,60	< 2	90	< 0.5	< 2		< 0.5	2	107 71	17	1.31 1.39	< 10 < 10	< 1 < 1	0.26 0.27	< 10 < 10	0.16 0,16	190 185
M706396	205 294	< 5	< 0.2	0.57	< 2	90	< 0.5	< 2	0.57	< 0.5	2	75	4	1.32	< 10	< 1	0.25	< 10	0.17	180
M706397	205 294	< 5	< 0,2	0.58	< 2	90	< 0.5	< 2	0.62	< 0.5	1	79	5	1.22	< 10	<b>₹</b> 1	0.24	< 10	0.17	200
M706398 M706399	205 294	< 5 < 5	(0.2	0.61	< 2	60	0.5	< 2	1.04	< 0.5	2	65	19	1.29	< 10	< ī	0.24	< 10	0.09	185
M706400	205 294	< 5	< 0.2 < 0.2	0.48 0.40	< 2 < 2	70 60	< 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2</pre>	0.64 0.47	< 0.5 < 0.5	2 2	67 62	7 8	1.72 1.92	< 10 < 10	< 1 < 1	0.24	< 10 < 10	0.14 0.09	160 90
M706401	205 294	< 5	< 0.2	0.45	< 2	70	< 0.5	< 2	0.57	< 0.5	3	78		1.69						
M706402	205 294	< 5	< 0.2	0,23	< 2	40	< 0.5	ζ2	0.44	< 0.5	1	36	4 5	1.69	< 10 < 10	< 1 < 1	0.25	< 10	0.07	130
M706403	205 294	< 5	< 0.2	0,50	< 2	90	< 0.5	ć ż	0.46	< 0.5	ź	74	4	1.38	< 10 < 10		0.13 0.24	< 10 < 10	0,06 0,18	$110 \\ 160$
M706404	205 294	< 5	< 0,2	0.47	< 2	50	< 0.5	< 2	0.60	< 0,5	ī	68	13	1.47	< 10	< î	0.20	< 10	0.14	135
M706405	205 294	< 5	< 0.2	0.51	< 2	70	< 0,5	< 2	0.61	< 0.5	2	71	B	1,59	< 10	< 1	0.24	< 10	0.16	225
M706406 M706407	205 294	< 5	< 0.2	0.47	< 2	80	< 0.5	< 2	0.77	< 0.5	2	55	4	1.60	< 10	< 1	0.23	< 10	0.15	295
M706408	205 294 205 294		< 0.2 < 0.2	0.66	< 2	80	< 0.5	< 2	0.80	< 0.5	3	78	7	1.63	< 10	< 1	0,28	< 10	0.16	195
M706409	205 294	<pre> &lt; 3</pre> < 5	< 0.2	0.6B 0.66	< 2 < 2	100 90	< 0.5 < 0.5	< 2	0.76	< 0.5	3	68	14	2.03	< 10	< 1	0.32	< 10	0,22	235
M706410	205 294		< 0.2	0.63	λ2	70	< 0.5	<pre>&lt; 2 &lt; 2 &lt; 2</pre>	0.64 1.09	< 0.5 < 0.5	3 3	77 78	5 35	1.56 1.54	< 10 < 10	< 1 < 1	0.28	< 10 < 10	0.23 0.18	210 245
4706411	205 294	( 5	< 0.2	0,60	< 2	80	< 0.5	< 2	0.50	< 0.5		87	16	1.63	< 10					
4706412	205 294		< 0,2	0.51	< 2	80	< 0.5	< 2	0.65	< 0.5	2	77	10	1.63 1.72	< 10 < 10	< 1 < 1	0.28 0.24	< 10 < 10	0.15	150
4706413	205 294	< 5	< 0,2	0.70	< 2	110	< 0.5	< 2	0.83	¢ 0.5	3	95	8	1.82	< 10	< 1 < 1	0,24	< 10 10	0.14 0.24	155 225
1706414	205 294	< 5	< 0.2	0.58	< 2	90	< 0,5	< 2	0,65	< 0.5	3	92	10	1,73	< 10	<1 I	0.29	< 10	0.24	225
4706415	205 294	(5	< 0.2	0.65	< 2	120	< 0.5	< 2	0.42	< 0.5	2	86	4	1.70	< 10	Ĩ	0.34	< 10	0.25	205
4706416	205 294	< 5	< 0.2	0.54	< 2	90	< 0.5	< 2	0.40	< 0.5	2	78,	. 4	1.39	< 10	< 1	0.24	< 10	0.23	205
1706417	205 294	< 5	< 0.2	0,52	< 2	80	< 0.5	< 2	0.38	< 0.5	2	63	6	1.40	< 10	< 1	0,24	< 10 < 10	0.23	175
4706418	205 294		< 0.2	0.58	< 2	100	< 0.5	< 2	0.40	< 0.5	3	87	4	1.52	< 10	<1	0,28	< 10	0.21	195
4706419 4706420	205 294	<pre> &lt; 5 &lt; 5</pre>	< 0.2 < 0.2	0.56	< 2	70	< 0.5	< 2	0.52	< 0.5	3	69	24	2.01	< 10	< 1	0.27	< 10	0.13	130
	2V3 474	<u> </u>	× υ, 2	0.56	(2	90	< 0.5	< 2	0.45	< 0.5	1	99	6	1.47	< 10	< 1	0.28	< 10	0.18	210

CERTIFICATION:

; >

1 A.

-



.

### Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

97-4

٠

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186

Page Number :2-B Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. :19748633 P.O. Number : Account :PFM

.

Project : MUNRO Comments: ATTN: LEO KING

									CE	RTIFI	CATE	OF A	NALY	'SIS	A9748633
SAMPLE	PREP CODE	Мо ррт	Na %	Ni PPM	P Ppm	Pb ppm	Sb ppm	Sc ppm	Sr Ti ppm %	Tl PPa	ndđ	V mqq	W Ppm	Zn ppm	
M706381 M706382 M706383 M706384 M706385	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.02 0.03 0.03 0.03 0.04	1 1 1 1 1	180 190 190 180 200	<pre></pre>	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	72 < 0.01 57 < 0.01 45 < 0.01 43 < 0.01 41 < 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	4 B 7 7 7	< 10 < 10 < 10 < 10 < 10 < 10	22 20 18 30 38	
4706386 4706387 4706388 4706389 4706390	205 294 205 294 205 294 205 294 205 294 205 294	2 1 1 1 2	0.03 0.04 0.02 0.01 0.03	1 1 1 1	200 200 200 210 200	<pre></pre>	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	<pre>   { 1     1     &lt; 1     &lt;     1     &lt; 1     1     1 </pre>	60 < 0.01 45 0.01 51 < 0.01 55 < 0.01 59 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	8 9 6 5 8	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	22 24 16 18 22	
(706391 (706392 (706393 (706394 (706395	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.02 0.03 0.03 0.05 0.04	1 1 1 2 1	210 210 190 180 200	4 < 2 < 2 2 2	<pre></pre>	1 1 1 1 1	47 0.01 51 0.01 146 < 0.01 105 < 0.01 100 < 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	9 11 8 9 9	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	24 32 20 26 24	
4706396 4706397 4706398 4706399 4706400	205 294 205 294 205 294 205 294 205 294 205 294	< 1 < 1 1 < 1 2	0.04 0.04 0.01 0.04 0.02	2 1 1 1 1	190 180 180 210 210	<pre></pre>	<pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	1 1 < 1 < 1 < 1	85 0.01 91 < 0.01 205 < 0.01 45 < 0.01 39 < 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	< 10 < 10 10 < 10 < 10 < 10	10 9 5 8 5	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	22 24 42 24 14	
4706401 4706402 4706403 4706404 4706405	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 1 &lt; 1 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.03 0.02 0.04 0.03 0.04	2 2 1 1 1	200 140 180 200 210	< 2 8 < 2 4 2	<pre></pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	45 < 0.01 34 < 0.01 44 0.01 68 < 0.01 61 < 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	5 4 9 7 8	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	16 16 22 24 24	
M705405 M705407 M705408 M705409 M705410	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.03 0.04 0.03 0.05 0.03	1 1 1 2	230 210 290 230 200	2 < 2 2 2 < 2 < 2	<pre></pre>	1 · 1 1 1	77 < 0.01 95 < 0.01 85 0.01 74 0.01 112 < 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	8 9 14 13 9	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	20 22 36 28 28	
4706411 4706412 4706413 4706413 4706414 4706415	205 294 205 294 205 294 205 294 205 294 205 294	<pre></pre>	0.04 0.03 0.04 0.04 0.05	1 1 2 1 2	180 200 280 230 270	2 < 2 < 2 < 2 < 2 < 2 < 2	<pre></pre>	1 1 2 1 2	55 < 0.01 64 0.01 81 0.02 51 0.01 36 0.04	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	9 8 14 10 15	< 10 < 10 < 10 < 10 < 10 < 10	166 24 36 32 32	
M706416 M706417 M706418 M706419 M706420	205 294 205 294 205 294 205 294 205 294 205 294	<pre></pre>	0.04 0.03 0.04 0.03 0.04	2 1 2 1 1	230 220 230 220 210	<pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	<pre></pre>	1 1 1 < 1 1	38       0.03         35       0.03         36       0.04         47       0.01         35       0.03	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	13 12 14 8 11	< 10 < 10 < 10 < 10 < 10 < 10	32 30 32 112 96	

CERTIFICATION: Atra him Con



Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

97-4

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186

ADDITIONTE OF ANALVOIO

Page Number :3-B Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. : 19748633 P.O. Number : Account : PFM

 $\mathbf{y} \rightarrow \mathbf{y}$ 

. .

**^** 

10740600

Project : MUNRO Comments: ATTN: LEO KING

97-4		·								CE		CATE	OF A		515	A9748633
SAMPLE	PREP CODE	Мо ррш	Na %	Ni ppm	P PPm	Pb ppm	Sb ppm	Sc ppm	Sr PPm	Ti %	Tl ppm	U PPm	V ppm	W ppm	Zn ppm	
1706421 1706422 1706423 1706424 1706425	205 294 205 294 205 294 205 294 205 294 205 294	1 < 1 < 1 1 4	0.05 0.05 0.06 0.04 0.05	3 3 2 3 3	250 230 200 230 230 220	<pre>&lt; 2 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	1 1 1 1 1	36 0 33 0 37 0	),03 ).03 ).02 ).02 ).02	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	13 12 11 11 11	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	34 34 30 30 30	
1706426 1706427 1706428 1706429 1706430	205 294 205 294 205 294 205 294 205 294 205 294		0.03 0.03 0.05 0.04 0.04	2 3 2 2 3	230 240 250 270 310	2 < 2 2 < 2 2 2 2	<pre></pre>	<pre></pre>	36 ( 46 ( 65 (	).01 ).01 ).03 ).02 ).03	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	7 9 16 14 18	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	20 20 36 32 40	
4706431 4706432 4706433 4706434 4706435	205 294 205 294 205 294 205 294 205 294 205 294		0.05 0.04 0.05 0.05 0.05	3 3 2 2 2	250 250 240 250 260	<pre></pre>	<pre></pre>	1 1 1 1 1	51 ( 67 ( 51 (	0.03 0.01 0.02 0.01 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	13 12 12 10 15	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	32 80 28 24 34	
4705436 4705437 4705438 4706439 4706439	205 294 205 294 205 294 205 294 205 294 205 294	6 4 6	0.03 0.03 0.03 0.03 0.03 0.03	1 1 3 2	180 130 130 210 230	4 < 2 < 2 2 4	<pre></pre>	1 < 1 < 1 1 < 1	21 ( 23 < ( 26 < ( 22 < 34 < (	0.01 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	B 7 8 7	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	16 18 16 66 46	-97-5 ⁻
M706441 M706442 M706443 H706444 H706445	205 294 205 294 205 294 205 294 205 294 205 294	<pre> &lt; 1   &lt; 1   &lt; 1   &lt; 1 </pre>	0.03 0.03 0.02 0.01 0.02	2 2 2 2 3	220 220 210 220 200	<pre></pre>	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	<pre>&lt; 1    1    &lt; 1    &lt; 1    &lt; 1    &lt; 1    &lt; 1 &lt; 1</pre>	51 < 52 < 41 < 24 < 35 <	0.01 0.01 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	7 9 5 4 5	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	26 40 14 8 12	
M706446 M706447 M706448 M706449 M706450	205 294 205 294 205 294 205 294 205 294 205 294		0.04 0.03 0.05 0.02 0.01	2 2 2 3 2	230 220 200 260 210	<pre></pre>	<pre></pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	45 < 30 < 25 < 19 < 13 <	0.01 0.01 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 10 10</pre>	7 6 7 4 3	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	22 18 20 12 12	
M706451 M706452 M706453 M706454 M706455	205 294 205 294 205 294 205 294 205 294	< 1   3   < 1	0,01 0,03 0,02 0,03 0,01	1 1 2 2 2	170 220 150 220 140	<pre></pre>	<pre></pre>	<pre>&lt; 1    1    &lt; 1    &lt; 1    &lt; 1    &lt; 1    &lt; 1 </pre>	21 < 29 < 19 < 26 < 29 <	0,01 0.01 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	10 < 10 10 < 10 10	2 7 4 6 3	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	8 20 30 20 14	
M706456 M706457 M706458 M706459 M706460	205 294 205 294 205 294 205 294 205 294 205 294	1 2 1 1 1 1	0.01 0.02 0.04 0.03 0.04	3 3 2 2 3	270 230 250 220 210	<pre></pre>	<pre></pre>	<pre>&lt; 1 &lt; 1 1 1 &lt; 1 &lt; 1</pre>	50 < 54 < 51 48 < 39 <	0.01 0.01 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	10 < 10 < 10 < 10 < 10	3 4 10 7 6	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	14 16 24 20 16	

97-5

CERTIFICATION:

. .



97-5

.

## Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

97-5

· · · ·

Page Number :3-A Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. : 19748633 P.O. Number : :PFM Account

· · ·

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186

Project : MUNRO Comments: ATTN: LEO KING

										CE	RTIFIC	CATE	OF A	NALY	'SIS	A	9748	633		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca १	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg Ppm	K S	La ppm	Mg %	Mn ppm
4706421 4706422 4706423 4706424 4706424 4706425	205 294 205 294 205 294 205 294 205 294 205 294	<pre> &lt; 5  &lt; 5  &lt; 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.65 0.54 0.52 0.56 0.62	<pre>&lt; 2 &lt; 2 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt;</pre>	90 100 100 90 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0,44 0,40 0.53	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 3 2 2 2	93 86 93 88 119	6 7 5 27 4	1.81 1.49 1.22 1.87 1.70	< 10 < 10 < 10 < 10 < 10 < 10 < 10	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.29 0.26 0.23 0.30 0.32	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.23 0.22 0.20 0.18 0.19	170 185 190 190 160
H705426 M706427 M706428 M706429 M706429	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>	< 0.2 < 0.2 < 0.2	0.62 0.76 0.73 0.75 0.82	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	70 120 180 120 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.35 0.47 0.57	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 3 3 3 3	111 115 115 107 100	3 6 9 5 5 5	1.98 2.69 1.62 1.81 1.83	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.31 0.39 0.36 0.37 0.39	10 10 < 10 10 10	0.12 0.14 0.26 0.24 0.29	155 105 225 220 285
M706431 M706432 M706433 M706434 M706435	205 294 205 294 205 294 205 294 205 294 205 294	<pre> &lt; 5  &lt; 5  &lt; 5 </pre>	< 0.2 < 0.2 < 0.2	0.74 0.67 0.71 0.68 0.66	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	140 120 130 100 120	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	<pre></pre>	0.5B 0.74 0.74	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 3 3 2 3	110 112 110 109 99	6 15 11 3 3	1.66 2.03 1.97 1.71 1.42	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.35 0.35 0.35 0.35 0.35 0.34	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 10 &lt; 10 &lt; 10</pre>	0,22 0,19 0,20 0,16 0,24	210 185 225 245 335
M706436 M706437 M706438 M706439 M706449	205 294 205 294 205 294 205 294 205 294 205 294	<pre></pre>	0,2 < 0,2 < 0,2	0,50 0,51 0,48 0,74 0,62	<pre></pre>	130 190 100 100 60	< 0.5 < 0.5 < 0.5 0.5 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.08 0.07 0.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 < 1 3 2	81 91 90 99 99	6 5 12 36 23	1.25 1.41 1.38 1.45 1.72	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.23 0.26 0.24 0.26 0.24	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 10 10</pre>	0.09 0.08 0.07 0.10 0.11	80 70 55 55 155
M706441 M706442 M706443 M706444 M706444 M706445	205 294 205 294 205 294 205 294 205 294	4 (5 4 (5 4 (5	< 0,2 < 0,2 < 0,2	0.57 0.79 0.55 0.66 0.56	<pre></pre>	70 60 120 90 60	< 0.5	<pre></pre>		<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	3 2 3 2	93 106 102 88 99	11 29 27 19 5	1.66 1.45 1.95 2.65 2.25	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.23 0.32 0.26 0.31 0.25	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0,10 0.14 0.08 0.04 0.08	215 560 495 220 235
M706446 M706447 M706448 M706449 M706449 M706450	205 294 205 294 205 294 205 294 205 294 205 294	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2	0.49	<pre></pre>	210 60 80 60 50	< 0.5 < 0.5 < 0.5	<pre></pre>	0.75 0.53 0.35	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 2 2 3	106 82 117 103 84	10 28 12 4 3	1.87 1.41 1.56 3.08 3.95	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1    1    &lt; 1    &lt; 1    &lt; 1    &lt; 1 </pre>	0.29 0.25 0.30 0.27 0.26	<pre>&lt; 10     10     &lt; 10     &lt; 10     &lt; 10     &lt; 10     &lt; 10</pre>	0.13 0.10 0.10 0.06 0.04	345 405 185 105 70
M706451 M706452 M706453 M706454 M706455	205 294 205 294 205 294 205 294 205 294	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2	0,52 0,60 0,75	<pre></pre>	60 80 100 130 50	< 0.5 < 0.5 0.5	<pre></pre>	0.47 0.37	( 0,5	1 2 1 1 3	92 85 89 110 112	5 7 3 6 28	2.31 1.80 2.42 2.26 4.89	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.23 0.24 0.33 0.40 0.31	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 10 &lt; 10 &lt; 10</pre>	0.03 0.13 0.05 0.09 0.04	185 145 100 135 175
M706456 M706457 M706458 M706459 M706460	205 294 205 294 205 294 205 294 205 294 205 294	4 < 5 4 < 5 4 < 5	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.68 0.69 0.62	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	80 80 150 100 100	< 0,5 < 0,5 < 0,5	<pre></pre>	0.94 0.74 0.70	< 0.5 < 0.5 < 0.5	2 4 2 1 2	101 139 108 89 132	3 26 8 12 10	2.71 2.95 1.83 2.04 1.93	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 1 &lt; 1 &lt; 1 1 &lt; 1 1</pre>	0.34 0.35 0.30 0.27 0.34	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.06 0.07 0.17 0.11 0.10	420 275 240 200 185



Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

725

-

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186

Page Number : 3-A Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. : 19748633 P.O. Number : Account DEM PFM Account

and the second second second second second second second second second second second second second second second

Project : MUNRO Comments: ATTN: LEO KING

										CE	RTIFI	CATE	OF A	NALY	SIS	4	9748	633	<b></b>	
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Ве ррл	Bi ppm	Ca %	Cd ppm	Со рра	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	X X	La ppm	Mg	Mn ppm
N706421 N706422 N706423 N706423 N706424 M706425	205 294 205 294 205 294 205 294 205 294 205 294	<pre>{ 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0,65 0.54 0.52 0.56 0,62	<pre></pre>	90 100 100 90 170	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	<pre></pre>	0.44 0.44 0.40 0.53 0.39	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	3 3 2 2 2	93 86 93 88 119	6 7 5 27 4	1.81 1.49 1.22 1.87 1.70	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.29 0.26 0.23 0.30 0.32	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.23 0.22 0.20 0.18 0.19	170 185 190 190 160
H706426 H706427 H706428 H706428 H706429 H706430	205 294 205 294 205 294 205 294 205 294 205 294	<pre></pre>		0.62 0.76 0.73 0.75 0.82	<pre></pre>	70 120 180 120 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.35	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 3 3 3 3 3	111 115 115 107 100	3 6 9 5 5	1.98 2.69 1.62 1.81 1.83	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.31 0.39 0.36 0.37 0.39	10 10 < 10 10 10	0.12 0.14 0.26 0.24 0.29	155 105 225 220 285
4706431 4706432 4706433 4706433 4706434 4706435	205 294 205 294 205 294 205 294 205 294 205 294	<pre></pre>	< 0.2 < 0.2	0.74 0.67 0.71 0.68 0.66	<pre></pre>	140 120 130 100 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.51 0.58 0.74 0.74 0.63	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	2 3 3 2 3	110 112 110 109 99	6 15 11 3 3	1.66 2.03 1.97 1.71 1.42	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.35 0,35 0.35 0.35 0.35 0.34	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 10 &lt; 10</pre>	0,22 0,19 0,20 0,16 0,24	210 185 225 245 335
H706436 H706437 H706438 H706439 H706440	205 294 205 294 205 294 205 294 205 294 205 294	<pre> &lt; 5  &lt; 5  &lt; 5 </pre>	0.2 ( 0.2	0,50 0,51 0,48 0,74 0,62	<pre></pre>	130 190 100 100 60	< 0.5 < 0.5 < 0.5 0.5 0.5	<pre></pre>	0.07 0.08 0.07 0.13 0.48	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	1 ( 1 3 2	81 91 90 99 98	6 5 12 36 23	1.25 1.41 1.38 1.45 1.72	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.23 0.26 0.24 0.26 0.24	< 10 < 10 < 10 10 10	0.09 0.08 0.07 0.10 0.11	80 70 55 55 155
H706441 H706442 H706443 H706444 H706444	205 294 205 294 205 294 205 294 205 294 205 294		< 0.2 < 0,2 < 0,2	0.57 0.79 0.55 0.66 0.56	<pre></pre>	70 60 120 90 60	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.84 1.03 0.89 0.55 0.65	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	3 3 2 3 2	93 106 102 88 99	11 29 27 19 5	1.66 1.45 1.95 2.65 2.25	<pre>     { 10     &lt; 10     &lt; 10     &lt; 10     &lt; 10     &lt; 10     &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.23 0.32 0.26 0.31 0.25	< 10 < 10 < 10 < 10 < 10 < 10	0.10 0.14 0.08 0.04 0.08	215 560 495 220 235
H706446 H706447 H706448 H706449 H706449	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	<pre> &lt; 0.2  &lt; 0.2  &lt; 0.2  &lt; 0.2</pre>	0.52 0.57 0.49	<pre></pre>	210 60 80 60 50	< 0.5 < 0.5 < 0.5	<pre></pre>	0.86 0.75 0.53 0.35 0.21	< 0.5 < 0.5	1 1 2 2 3	106 82 117 103 84	10 28 12 4 3	1.87 1.41 1.56 3.08 3.95	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1    1    &lt; 1    &lt; 1    &lt; 1    &lt; 1</pre>	0.29 0.25 0.30 0.27 0.26	<pre>&lt; 10     10     &lt; 10     &lt; 10     &lt; 10     &lt; 10     &lt; 10</pre>	0.13 0.10 0.10 0.06 0.04	345 405 185 105 70
N706451 N706452 N706453 N706454 N706455	205 29 205 29 205 29 205 29 205 29 205 29		5 < 0.2 5 < 0.2 5 < 0.2	0.52 0.60 0.75	<pre></pre>	60 80 100 130 50	< 0.5 < 0.5 0.5	<pre></pre>	0.54 0.47 0.37 0.47 0.62	( 0.5 ( 0.5 ( 0.5	1 2 1 1 3	92 85 89 110 112	5 7 3 6 28	2.31 1.80 2.42 2.26 4.89	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	< 1 < 1 < 1 < 1 1	0.23 0.24 0.33 0.40 0.31	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.03 0.13 0.05 0.09 0.04	185 145 100 135 175
4706456 4706457 4706458 4706459 4706459	205 29 205 29 205 29 205 29 205 29 205 29		5 (0.2 5 (0.2 5 (0.2	0.68 0.69 0.62	<pre></pre>	80 80 150 100	< 0.5 < 0.5 < 0.5	<pre></pre>	1.31 0.94 0.74 0.70 0.62	< 0.5 < 0.5 < 0.5	2 4 2 1 2	101 139 108 89 132	3 26 8 12 10	2.71 2.95 1.83 2.04 1.93	< 10 < 10 < 10 < 10 < 10 < 10	<pre>&lt; 1     1     &lt; 1     &lt; 1     1 </pre>	0.34 0.35 0.30 0.27 0.34	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.06 0.07 0.17 0.11 0.10	420 275 240 200 185

CERTIFICATION:

• •



Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

<del>9</del>7-5

.

107/0622

Page Number :3-B Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. :19748633 P.O. Number : Account :PFM

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186

OF STRIGATE OF ANALVER

Project : MUNRO Comments: ATTN: LEO KING

											CE	RTIFI		OF A	NALY	SIS	A9748633	
SAMPLE	PREP CODE		Мо ррш	Na <b>1</b>	Ni ppm	P P P	bbm bp	Sb ppm	Sc ppm	Sr ppm	Tİ %	Tl PPm	U ppm	v ppm	м Бры	Zn ppm		
H706421 H706422 H706423 H706424 H706424 H706425	205 29 205 29 205 29 205 29 205 29	94 94 94	1 < 1 < 1 1 4	0.05 0.05 0.06 0.04 0.05	3 3 2 3 3 3	250 230 200 230 230	<pre></pre>	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	1 1 1 1	38 36 33 37 35	0.03 0.03 0.02 0.02 0.02	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	13 12 11 11 11	< 10 < 10 < 10 < 10 < 10	34 34 30 30 30		
M706426 M706427 M706428 M706429 M706430	205 29 205 29 205 29 205 29 205 29	94 94 94	1 1 { 1 1 4	0.03 0.03 0.05 0.04 0.04	2 3 2 2 3	230 240 250 270 310	2 < 2 2 < 2 2 2 2	<pre></pre>	<pre></pre>	96 ( 36 46 65 80	0.01 0.01 0.03 0.02 0.03	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	7 9 16 14 18	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	20 20 36 32 40		
H706431 H706432 H706433 H706433 H706434 H706435		94 94 94	3 < 1 < 1 1 1	0.05 0.04 0.05 0.05 0.05	3 3 2 2	250 250 240 250 260	<pre></pre>	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	1 1 1 1 1	51 51 67 51 37	0.03 0.01 0.02 0.01 0.03	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	13 12 12 10 15	< 10 < 10 < 10 < 10 < 10 < 10	32 80 28 24 34		
H706436 H706437 H706438 H706439 H706439 H706440		94 94 94	1 6 4 6 1	0.03 0.03 0.03 0.03 0.03 0.03	1 1 3 2	180 130 130 210 230	4 < 2 < 2 2 4	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	1 < 1 < 1 1 < 1	26 22	0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	8 7 7 8 7	< 10 < 10 < 10 < 10 < 10 < 10	16 18 16 66 46		
H706441 H706442 H706443 H706444 H706444	205 2 205 2 205 2 205 2 205 2 205 2	94 194	1 < 1 < 1 < 1 < 1 < 1	0.03 0.03 0.02 0.01 0.02	2 2 2 2 3	220 220 210 220 200	< 2 12 8 2 2	<pre></pre>	<pre> &lt; 1</pre>	52 41 24	<pre>&lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	7 9 5 4 5	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	26 40 14 8 12		
4706446 4706447 4706448 4706449 4706449	205 205 205 205 205 205	294 294 294	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 2</pre>	0.04 0.03 0.05 0.02 0.01	2 2 3 2	230 220 200 260 210	<pre></pre>	<pre></pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	30 25 19	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 10 10</pre>	7 6 7 4 3	< 10 < 10 < 10 < 10 < 10	22 18 20 12 12		
H706451 H706452 H706453 H706454 H706454 H706455		294	< 1 < 1 3 < 1 56	0.01 0.03 0.02 0.03 0.01	1 1 2 2 2	170 220 150 220 140	<pre></pre>	<pre></pre>	<pre>&lt; 1     1     &lt; 1     &lt; 1     &lt; 1     &lt; 1     &lt; 1 </pre>	29 19 26	<pre>&lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	10 < 10 10 < 10 10	2 7 4 6 3	< 10 < 10 < 10 < 10 < 10	8 20 30 20 14		
M706456 M706457 M706458 M706459 M706460	205 205	294 294 294 294 294 294	2 2 1 1 1	0.01 0.02 0.04 0.03 0.04	3 3 2 2 3	270 230 250 220 210	<pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	<pre></pre>	<pre>&lt; 1 &lt; 1 1 1 &lt; 1 &lt; 1</pre>	54 51 4 B	<pre>&lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	10 < 10 < 10 < 10 < 10 < 10	3 4 10 7 6	< 10 < 10 < 10 < 10 < 10 < 10	14 16 24 20 16		

ł.

CERTIFICATION HTT



Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

97-5

-

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

Page Number :4-A Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. :19748633 P.O. Number : : PFM Account

, • .

Project : MUNRO Comments: ATTN: LEO KING

97-5											CEI	RTIFIC	CATE	OF A	NALY	'SIS	4	\ <del>9</del> 748	633		<u></u>
SAMPLE	PRE		Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi Ppm	Ca	Cđ ppm	Со Ррш	Cr ppm	Cu ppm	Ге Ъ	Ga ppm	Нg ppm	X %	La ppm	Mg %	Mn ppm
M706461 M706462 M706463 M706464 M706464	205 205	294 294 294 294 294 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 </pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.56 0.50 0.55 0.44 0.54	<pre></pre>	70 50 80 90 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>		<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	1 1 2 2 2	110 75 99 81 103	20 4 21 3 8	1.47 1.67 2.15 1.93 1.59	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.30 0.30 0.25 0.30 0.27	10 < 10 < 10 < 10 < 10 < 10	0.07 0.06 0.08 0.05 0.11	540 645 220 735 265
M706466 M706467 M706468 M706469 M706469 M706470	205	294 294 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.56 0.46 0.70 0.69 0.47	<pre></pre>	110 80 190 70 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	1.37	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	2 1 2 3 2	92 74 86 109 74	4 3 6 6 3	1.88 2.15 1.90 2.52 3.26	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre> &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.25 0.23 0.25 0.29 0.22	10 < 10 10 10 < 10	0.13 0.08 0.15 0.11 0.06	175 125 260 190 170
M706471 M706472 M706473 M706473 M706474 M706475	205	294 294 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.49 0.71 0.74 0.60 0.75	2 < 2 < 2 2 < 2 < 2 < 2	50 70 290 140 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>		<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	2 2 2 2 2 2	82 96 100 75 101	7 10 8 7 4	4.07 1.54 1.63 1.84 1.49	< 10 < 10 < 10 < 10 < 10 < 10	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.24 0.28 0.26 0.25 0.35	< 10 < 10 10 10 10	0.05 0.15 0.19 0.13 0.10	250 345 225 230 550
4706476 4706477 4706478 4706479 4706479 4706480	205 205 205 205 205 205	294 294 294	<pre></pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.69 0.63 0.72	2 2 (2 2 2 2	70 70 100 80 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.95 0.81 0.57 1.03 0.67	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 2 2	68 74 69 89 68	5 5 3 3 3	1.87 1.49 1.53 1.77 2.07	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	< 1 < 1 < 1 < 1 < 1	0.30 0.26 0.25 0.26 0.25	< 10 10 < 10 < 10 < 10	0,13 0.17 0.16 0.18 0.08	400 235 180 255 290
M706481 M706482 M706483 M706484 M706484 M706485	205 205 205 205 205 205	294 294 294		<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0,85 0,87 0,85	<pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	100 90 170 240 220	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	1.18 0.83 1.06 0.56 0.96	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 2 2 3 2	99 89 95 89 106	4 22 7 5 4	1.81 1.76 2.15 1.83 1.67	< 10 < 10 < 10 < 10 < 10 < 10	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.26 0.37 0.34 0.33 0.29	<pre>&lt; 10 &lt; 10 10 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.15 0.12 0.15 0.22 0.22	285 315 390 215 285
M706486 M706487 M706488 M706488 M706489 M706490	205 205 205 205 205 205	294 294 294	<pre>&lt; 5 &lt; 5 &lt; 5</pre>	< 0.2 < 0.2 < 0.2	0.70 0.61 0.67	<pre></pre>	250 70 80 110 40	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	<pre></pre>	0.70 0.90 0.65 0.44 0.33	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	3 2 3 2 2	84 102 78 98 73	5 4 37 6 4	1.81 2.45 2.26 2.43 5.55	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.32 0.32 0.27 0.31 0.23	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.17 0.12 0.14 0.15 0.04	320 400 180 160 50
M706491 M706492 M706493 M706494 M706495	205		< 5 < 5	0.2 < 0.2 < 0.2	0.63	<pre></pre>	90 100 70 30 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.37 1.16 0.51 0.16 0.82	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 2 1 1 2	88 75 93 95 95	2 6 7 4 5	2.33 1.85 3.26 7.53 1.97	< 10 < 10 < 10 < 10 < 10 < 10	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.27 0,28 0.28 0.25 0,29	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0,12 0,12 0,07 0,01 0,11	110 225 100 30 170
M706496 M706497 M706498 M706499 M706500	205 205	294		< 0,2 < 0,2 < 0,2	2 0.80 2 0.69 2 0.74	<pre></pre>	100 90 90 100 110	< 0.5 < 0.5 < 0.5	<pre></pre>	1,19 0,95 0,84 0,90 1,02	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 3 2 3 2	84, 116 92 111 103	7 4 5 15 5	1.83 3.02 1.62 2.10 1.80	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.31 0.33 0.35 0.38 0.34	10 < 10 10 10 < 10	0.15 0.10 0.13 0.12 0.19	220 170 435 360 280
L															CERTIFI		•			all	22

**CERTIFICATION** 



Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

97-5

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6 Page Number :4-B Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. : 19748633 P.O. Number : Account :PFM

. . . .

Project : MUNRO Comments: ATTN: LEO KING

97-5										CE	RTIF	CATE	OF A	NALY	SIS	A9748633
SAMPLE	PREP CODE		Mo ppm	Na %	Ni ppm	म्बत्तु व	Pb ppm	Sb ppm	Sc ppm	Sr Ti ppm %	Tl ppm	U mqq	v pp⊞	W mqq	Zn ppm	
M706461 M706462 M706463 M706464 M706464 M706465	205 2 205 2 205 2 205 2 205 2 205 2	94 94 94	<pre>&lt; 1 &lt; 1 3 11 1</pre>	0.01 0.01 0.01 0.01 0.01 0.04	2 2 2 2 2	230 220 190 200 210	<pre>&lt; 2     4     &lt; 2     &lt; 2     &lt; 2     &lt; 2     &lt; 2 </pre>	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 2</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	78 < 0.01 67 < 0.01 72 < 0.01 64 < 0.01 52 < 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	4 2 4 3 7	< 10 < 10 < 10 < 10 < 10 < 10	12 10 12 8 18	
4706466 4706467 4706468 4706469 4706469 4706470	205 2	94 94 94	2 5 3 34 10 <	0.03 0.03 0.01 0.02 (0.01	1 1 1 2 1	210 190 210 250 210	<pre></pre>	<pre></pre>	1 < 1 < 1 < 1 < 1 < 1	50 < 0.01 41 < 0.01 117 < 0.01 83 < 0.01 72 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	8 5 6 1	< 10 < 10 < 10 < 10 < 10 < 10	20 14 16 14 10	
4706471 4706472 4706473 4706474 4706474 4706475	205 2 205 2 205 2 205 2 205 2 205 2	94 94 94	19 4 3 4 5 6	( 0.01 0.03 0.04 0.03 0.03	2 2 2 1 1	190 210 210 200 220	<pre></pre>	<pre></pre>	<pre>&lt; 1 1 1 4 1 </pre>	71 < 0.01 126 < 0.01 113 < 0.01 70 < 0.01 83 < 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	2 8 10 8 6	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	12 22 28 18 14	
M706476 M706477 M706478 M706479 M706480		94 94 94	24 5 < 1 < 1 < 1	0.03 0.03 0.03 0.03 0.03 0.02	2 2 1 2 2	240 230 200 220 220	2 2 < 2 2 < 2	<pre></pre>	1 1 1 1 < 1	112 < 0.01 92 < 0.01 71 < 0.01 143 < 0.01 53 < 0.01 53 < 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	7 9 9 5	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	26 24 22 22 14	
M706481 H706482 M706483 M706484 M706484 M706485	205 2 205 2 205 2 205 2 205 2	294 294 294	16 1 11 ( 1 1	0.02 0.03 0.03 0.04 0.04	1 2 3 2	230 230 240 230 210	2 2 < 2 < 2 < 2 < 2	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	1 1 1 1	164 < 0.01 79 < 0.01 111 < 0.01 73 0.01 116 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	7 7 9 12 · 11	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	22 18 22 28 26	
M706486 M706487 M706488 M706488 M706489 M706490	205 2	294 294 294 294 294 294	3 2 1 4 14	0.04 0.03 0.03 0.04 0.01	2 2 2 2 1	220 220 220 230 260	<pre></pre>	<pre></pre>	1 < 1 1 1 < 1	$57   0.01 \\ 65 < 0.01 \\ 67 < 0.01 \\ 45   0.01 \\ 42 < 0.01 \\ 42 < 0.01 \\ 42 < 0.01 \\ 42 < 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.$	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	10 7 8 9 2	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	26 20 20 24 6	
M706491 M706492 M706493 M706493 M706494 M706495	205 205	294 294 294 294 294 294	1 < 1 3 10 2	0.03 0.02 0.01 < 0.01 0.03	3 2 2 2 2	220 230 200 100 200	<pre></pre>	<pre></pre>	1 < 1 < 1 < 1 1	51 < 0.01 $139 < 0.01$ $79 < 0.01$ $20 < 0.01$ $107 < 0.01$	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 10 30 &lt; 10</pre>	7 6 5 1 7	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	14 18 12 36 28	
M706496 M706497 M706498 M706499 M706499 M706500	205 205	294 294	<pre></pre>	0.02 0.01 0.03 0.04 0.04	1 2 1 2 2	250 230 230 230 230 230	2 4 < 2 < 2 2	<pre></pre>	1 < 1 1 1 1 1	181 < 0.01 142 < 0.01 89 < 0.01 87 < 0.01 119 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	8 5 7 7 10	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	26 12 22 20 24	

CERTIFICATION:___

.



Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

27-5

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6 Page Number :5-A Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. :19748633 P.O. Number : Account :PFM

-

Project : MUNRO Comments: ATTN: LEO KING

										CERTIFICATE OF ANALYSIS A9748633										<u>, , , , , , , , , , , , , , , , , </u>
SAMPLE	PREP CODE	Ац ррb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca इ	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
M706501 M706502 M706503 M706504 M706505	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	1.03 0.90 0.95 0.92 0.94	<pre></pre>	130 240 110 130 150	< 0.5 < 0.5 0.5 0.5 < 0.5	<pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.84 0.79 0.62	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 3 2 3	107 120 76 105 78	5 12 20 9 8	1.43 1.77 2.23 1.96 2.31	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.43 0.42 0.46 0.44 0.44	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.19 0.17 0.12 0.14 0.15	350 360 305 210 175
M706506 M706507 M706508 M706509 M706510	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>	<pre></pre>	0.86 0.95 1.05 0.95 1.01	<pre></pre>	110 120 300 150 130	0.5 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.93 0.55 0.47	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	3 3 3 2 3	94 94 124 95 124	12 11 7 5 4	1.90 1.84 1.86 1.69 2.24	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.38 0.40 0.44 0.40 0.45	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.16 0.19 0.22 0.25 0.17	160 190 180 205 210
H706511 H706512 H706513 H706514 H706515	205 294 205 294 205 294 205 294 205 294 205 294		<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	1.03 1.13 0.70 0.60 0.63	<pre></pre>	200 360 90 70 110	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	<pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	1.22 0,76	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 2 2 2	93 100 97 90 76	13 13 6 7 6	1.44 1.49 1.68 1.73 2.14	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	< 1 < 1 < 1 < 1 < 1	0.40 0.37 0.30 0.27 0.29	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0,18 0,20 0,12 0,13 0,13	255 235 275 210 205
M706516 M706517 M706518 M706519 M706520	205 294 205 294 205 294 205 294 205 294 205 294	<pre></pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.67 0.51 0.61 0.68 0.68	<pre></pre>	10D 90 80 90 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.79 0.64 1.07 0.49 0.80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 1 3 2 3	89 67 97 81 116	5 5 7 45 8	1.78 1.77 1.83 1.97 1.61	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.32 0.22 0.31 0.29 0.30	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.16 0.15 0.12 0.18 0.17	285 225 450 150 320
4706521 4706522 4706523 4706524 4706525	205 294 205 294 205 294 205 294 205 294 205 294	<pre></pre>	< 0.2 < 0.2	0.75 0.71 0.67 0.60 0.72	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 4</pre>	110 100 110 100 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.93 0.85 0.53 0.50 0.70	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	1 3 1 2 2	71 84 67 73 64	7 3 15 4 - 10	1.37 2.29 1.36 1.82 1.50	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.29 0.29 0.25 0.24 0.29	<pre>&lt; 10     10     &lt; 10     &lt; 10     &lt; 10     &lt; 10     &lt; 10</pre>	0.17 0.15 0.18 0.18 0.19	335 245 170 180 235
M706526 M706527 M706528 M706529 M706530	205 294 205 294 205 294 205 294 205 294 205 294	< 5   < 5   < 5	< 0.2 < 0.2 < 0.2	0.62 0.71 0.63 0.70 0.67	<pre></pre>	150 110 110 80 60	< 0.5 0.5 0.5 < 0.5 < 0.5	<pre></pre>	0.98 0.92 1.31 1.03 1.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 1 1 1 1	93 64 82 76 80	5 14 32 5 7	1.92 1.34 1.83 1.40 1.20	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0,30 0.34 0.29 0.29 0.25	<pre>&lt; 10     10     &lt; 10     &lt; 10     &lt; 10     &lt; 10     &lt; 10</pre>	0.08 0.13 0.07 0.13 0.13	455 465 620 390 315
M706531 M706532 M706533 M706533 M706534 M706535	205 294 205 294 205 294 205 294 205 294 205 294		< 0.2 < 0.2 < 0.2	0.56 0.57 0.58 0.61 0.72	<pre></pre>	80 110 70 80 90	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0,81 0,77 0,78 0,71 0,82	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	1 1 2 1 2	72 87 74 85 68	20 9 4 5 4	1.37 1.45 1.44 1.47 1.62	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.26 0.23 0.23 0.23 0.23 0.27	< 10 < 10 < 10 < 10 < 10 < 10	0.13 0.18 0.16 0.21 0.19	245 220 190 185 175
H706536 H706537 H706538 H706539 H706539 H706540	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2	0.85 0.70 0.71 0.83 0.61	<pre></pre>	80 90 170 110 90	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	<pre></pre>	0.95 0.72 0.70 0.68 0.54	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 3 1	100 65 98 78 72	4 8 4 5 3	1.36 1.66 1.89 2.09 1.16	< 10 < 10 < 10 < 10 < 10	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.28 0.26 0.28 0.32 0.22	< 10 < 10 < 10 < 10 < 10 < 10	0.21 0.21 0.19 0.26 0.20	185 180 155 215 170



,

# **Chemex Labs Ltd.**

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

97-5

.

A9748633

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186

CERTIFICATE OF ANALYSIS

Page Number :5-B Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. :19748633 P.O. Number . PFM Account

· · ·

-

Project : MUNRO Comments: ATTN: LEO KING

										CE	RTIFI	SAIE	OF A	NALY	515	A9748633
SAMPLE	PREP CODE	Mo PPm	Na %	Ni ppm	P Ppm	РЪ ррш	Sb ppm	Sc ppm	Sr PPm	Ti %	Tl ppm	U ppm	V ppm	W Ppm	Zn ppm	
4706501 4706502 4706503 4706504 4706505	205 294 205 294 205 294 205 294 205 294 205 294	< 1 1 3 2 1	0.07 0.06 0.04 0.05 0.05	2 3 1 2 1	220 250 230 240 240	2 2 6 2 2	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	1 1 1 1	85 95 ( 71 (	0.01 0.01 0.01 0.01 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	11 11 6 9 8	< 10 < 10 < 10 < 10 < 10 < 10	26 24 34 22 24	
4706506 4706507 4706508 4706509 4706510	205 294 205 294 205 294 205 294 205 294 205 294 205 294	1 < 1 6 < 1 1	0.05 0.05 0.06 0.08 0.05	2 2 3 2 3	210 240 250 230 230	6 2 4 2 2 2	<pre></pre>	1 1 1 2 1	101 84 72	0.01 0.01 0.01 0.03 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	9 11 13 14 10	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	30 30 30 34 30	
M706511 M706512 M706513 M706514 M706515	205 294 205 294 205 294 205 294 205 294 205 294	<pre></pre>	0.05 0.06 0.04 0.03 0.03	1 2 1 1 1	210 230 190 210 190	<pre></pre>	<pre></pre>	1 1 1 1 1	141 201 < 141 < 90 < 86 <	0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	11 11 7 8 7	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	28 30 22 22 18	
M706516 M706517 M706518 M706519 M706520	205 294 205 294 205 294 205 294 205 294 205 294	3	0.03 0.04 0.03 0.04 0.05	2 2 1 1 2	220 180 240 220 250	2 2 (2 2 2 (2	<pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	1 1 1 1 1	102 ( 75 (	-	< 10 < 10 < 10 < 10 < 10 < 10	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	9 8 6 9 11	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	26 22 18 26 26	
M706521 M706522 M706523 M706524 M706525	205 294 205 294 205 294 205 294 205 294 205 294		0.04 0.02 0.04 0.03 0.03	1 1 1 2 1	210 280 190 210 220	<pre> &lt; 2 &lt; 2 &lt; 4 2 4 2 4 </pre>	<pre></pre>	1 1 1 1	138 < 153 < 111 < 101 152 <	0.01 0.01 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	8 7 . 9 9 11	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	22 18 28 26 26	
M706526 M706527 M706528 M706529 M706530	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 1 9 1</pre>	0.01 0.03	2 1 2 1 1	230 230 210 210 210	2 4 6 < 2 2	<pre></pre>	< 1 1 < 1 1 1	145 < 130 < 207 < 154 < 194 <	0.01 0.01 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	4 8 3 8 7	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	14 18 12 22 20	
M706531 M706532 M706533 M706534 M706535	205 294 205 294 205 294 205 294 205 294 205 294		0,03 0,04 0,04	2 2 2 1 1	200 210 190 200 210	4 6 2 2 2	<pre></pre>	1 1 1 1	113 < 121 119 < 124 139 <	0,01 0,01 0,01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	8 10 9 11 10	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	18 26 26 26 24	
M706536 M706537 M706538 M706538 M706539 M706540	205 29 205 29 205 29 205 29 205 29 205 29	4 4 4 4 4 4	0.03 0.03 0.04	2 1 2 2 1	190 200 220 260 190	2 4 < 2 < 2 2	<pre></pre>	1 1 1 2 1	198 < 124 118 122 107	0.01 0.01 0.01 0.01 0.01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	10 11 10 14 11	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	26 28 22 32 26	
		<u> </u>										<u></u>		CERTIFI	CATION:	Hart Preiler



Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

27-5

A9748633

. .

.

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186

CERTIFICATE OF ANALYSIS

Page Number :6-A Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. :19748633 P,O. Number : Account :PFM

.

. .

Project : MUNRO Comments: ATTN: LEO KING

										CERTIFICATE OF ANALTSIS A9740000										
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Al %	As ppm	Ва ррш	Be ppm	Bi ppm	Ça ۴	Cd PP™	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg	Mn ppm
M706541 M706542 M706543 M706544 M706545	205 294 205 294 205 294 205 294 205 294 205 294	<pre></pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.81 0.78 0.73 0.72 0.70	<pre></pre>	100 170 100 110 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.72 0.62	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 2 2	99 90 92 107 88	4 7 10 8 9	1.63 1.51 1.50 1.50 1.69	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.32 0.29 0.27 0.27 0.26	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.24 0.21 0.23 0.22 0.23	195 180 190 180 200
M706546 M706547 M706548 M706549 M706550	205 294 205 294 205 294 205 294 205 294 205 294	<pre></pre>	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.69 0.53 0.72 0.68 0.67	<pre></pre>	90 100 80 110 150	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 < 2 < 2 < 2 < 2 < 2 < 2	0.76 1.10 0.94 0.68 0.91	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 1 2 2 1	93 82 73 100 91	119 12 4 7 5	1.64 1.20 1.31 1.57 1.24	< 10 < 10 < 10 < 10 < 10 < 10	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.31 0.26 0.25 0.29 0.27	< 10 < 10 < 10 < 10 < 10 < 10	0.17 0.11 0.18 0.18 0.18	245 465 235 220 345
M706551 M706552 M706553 M706554 M706555	205 294 205 294 205 294 205 294 205 294 205 294	<pre></pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.73 0.74 0.68 0.75 0.76	<pre></pre>	100 80 90 130 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.86 1,18 1,01 0.73 0.84	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 2 1	97 96 81 97 105	9 5 6 7	1.69 2.03 1.98 1.41 1.35	< 10 < 10 < 10 < 10 < 10 < 10	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.29 0.29 0.30 0.27 0.26	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0,14 0,14 0,12 0,22 0,21	245 265 370 260 235
M706556 M706557 M706558 M706559 M706560	205 294 205 294 205 294 205 294 205 294 205 294	<pre> &lt; 5  &lt; 5  &lt; 5 </pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.83 0.76 0.94 0.59 0.62	<pre></pre>	90 100 100 60 80	< 0.5 < 0.5 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 3 </pre>	0.78 0.85 1.21 0.94 1.27	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	2 3 2 1 1	120 98 106 83 87	7 5 9 9 21	1.45 1.60 1.32 1.23 1.25	< 10 < 10 < 10 < 10 < 10 < 10	<pre> &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.31 0.28 0.27 0.25 0.25	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.20 0.18 0.19 0.12 0.12	220 240 315 395 475
M706561 M706562 M706563 M706564 M706565	205 294 205 294 205 294 205 294 205 294 205 294	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>	< 0.2 < 0.2	0.70 0.66 0.63 0.65 0.79	2 < 2 < 2 < 2 < 2 < 2	90 130 100 90 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.87 1.04 0.79 0.81 0.90	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	2 2 1 2	77 88 86 97 81	11 6 4 3 7	1.35 1.59 1.92 2.08 2.08	< 10 < 10 < 10 < 10 < 10	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.21 0.26 0.29 0.29 0.27	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0,19 0.16 0.10 0.09 0.14	260 260 170 195 225
M706566 H706567 H706568 M706569 M706570	205 294 205 294 205 294 205 294 205 294 205 294	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2	0.75 0.54 0.56 0.62 0.61	2 2 2 4 2 2	80 80 70 50 90	<pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre>	<pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	1.00 1.06 0.80 0.99 0.49	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 2 1 3 1	80 84 78 86 94	4 7 11 5 5	1.66 2.32 1.75 2.17 1.69	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.28 0.29 0.26 0.22 0.27	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.13 0.06 0.09 0,14 0.14	195 280 190 210 145
M706571 M706572 M706573 M706574 M706575	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2	0.45 0.64 0.50 0.52 0.58	<pre></pre>	50 60 70 50 90	< 0.5 < 0,5 < 0,5	<pre></pre>	0.59 0.63 0.49 0.91 0.55	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 2 1 2	52 89 79 89 86	7 13 7 7 5	1.50 1.56 1.62 1.81 1.43	< 10 < 10 < 10 < 10 < 10 < 10	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.20 0.27 0.21 0.22 0.24	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.10 0.11 0.17 0.12 0.20	145 110 125 130 190
M706576 M706577 M706578 M706579 M706580	205 29 205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2	0.66 0.64 0.60 0.67 0.63	<pre></pre>	100 80 70 70 90	< 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 3 </pre>	0.60 0.54 0.49 0.76 0.52	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 2 2 3	106 94 79 95 95	31 6 15 4 3	1,48 1.41 1.56 1.56 2.02	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.29 0.26 0.26 0.27 0.30	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.19 0.19 0.14 0.16 0.15	190 170 125 165 140
L																· · .				

CERTIFICATION

----



Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

97-5

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186

CEDTIFICATE OF ANALYSIS

Page Number :6-8 Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. :19748633 P.O. Number : Account :PFM

.

•

A9748633

Project : MUNRO Comments: ATTN: LEO KING

															515	A9748633
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	q mqq	Ърш ррш	Sb PPm	Sc ppm	Sr ppm	Ti %	T1 ppm	D D D	V ppm	W Ppm	Zn ppm	
706541	205 294	14	0.04	1	230	2	< 2	1	99	0.01	< 10	< 10	13 11	< 10 < 10	30 28	
706542	205 294	24	0.04	2	210	2	< 2	1	104	0.01 0.01	< 10 < 10	< 10 < 10	11	< 10	30	
706543	205 294	5	0.04	2	210	2 2	< 2 < 2	1 1	103 92	0.01	< 10	< 10	12	< 10	28	
706544	205 294	< 1	0.05	2	230 230	< 2	< 2	1	97	0.01	< 10	< 10	12	< 10	30	
06545	205 294	3	0.04		230	· 2	<u>`</u>	_								
06546	205 294	3	0.03	1	240 210	2 < 2	< 2 < 2	1		0,01	< 10 < 10	< 10 < 10	10 6	< 10 < 10	24 16	
706547	205 294	4	0.04	1	210 190	2	< 2	1		0.01	< 10	< 10	ğ	< 10	24	
06548	205 294	3	0.03 0.04	2 1	210	2	< 2	i	71	0.01	(10	< 10	10	< 10	30	
06549	205 294	2	0.05	2	190	< 2	< 2 < 2	ĩ		0.01	< 10	< 10	10	< 10	24	
706550	205 294	<u>ء</u>										/ 10	•	< 10	18	
706551	205 294	Э	0.04	2	210	6	< 2	1	110		< 10 < 10	< 10 < 10	8 7	< 10 < 10	20	
706552	205 294	42	0.03	2	200	4	< 2	1		( 0.01 ( 0.01	< 10	< 10	6	< 10	18	
706553	205 294	6	0.03	1	210	4	<pre>&lt; 2 &lt; 2</pre>	1	129	0.01	< 10	< 10	11	< 10	32	
706554	205 294	< 1	0.05	3 1	210 200	4	× 2	1	158	0.01	< 10	< 10	11	< 10	30	
706555	205 294	1	0.04	л 	200											
706556	205 294	1	0,05	2	200	4	< 2	1	135	0,01 ( 0,01	< 10 < 10	< 10 < 10	11 10	< 10 < 1D	30 26	
706557	205 294	2	0.04	2	200	4 6	< 2	1 1		< 0.01	< 10	< 10	11	< 10	28	
1706558	205 294	1	0.04	2 1	230 200	2	< 2	1		< 0.01	< 10	< 10		< 10	18	
1706559	205 294	3 1	0.03 0.03	1	200	< 2	λ, 2	ī		< 0.01	< 10	< 10	7	< 10	18	
1706560	205 294	L	0.05											( ) 0	28	······································
706561	205 294	3	0.03	2	190	4	< 2	1		< 0.01 < 0.01	< 10 < 10	< 10 < 10	. 10	< 10 < 10	30	
1706562	205 294	< 1	0.03	1	200	< 2 2	< 2 < 2	1 1		( 0.01	< 10	< 10	ź	< 10	42	
1706563	205 294	1	0.03	2 1	220 240	4	× 2	< 1		< 0.01	< 10	< 10	6	(10	14	
1706564	205 294	1 12	0.03 0.01	1	220	4	<b>2</b>	1		< 0.01	< 10	< 10	б	< 10	20	
(706565	205 294	12	0.01	±												
706566	205 294	4	0.02	2	220	2	ζ2			< 0.01	< 10	< 10 < 10	6 4	< 10 < 10	22 12	
1706567	205 294	4	0.03	1	210	2	(2)			< 0.01 < 0.01	< 10 < 10	< 10	5	< 10 < 10	14	
(706568	205 294	5	0.03	1	200	2	< 2 < 2			< 0.01	< 10	< 10	5	< 10	20	
1706569	205 294	7	0.03	2	200 180	4	< 2			< 0.01	< 10	< 10	Ś	< 10	30	
1706570	205 294	4	0.04	4	100						<u> </u>					
1706571	205 294	1	0,03	1	210	2	< 2	< 1		< 0.01	< 10 < 10	< 10 < 10	5 7	< 10 < 10	14 20	
4706572	205 294	1	0.04	2	200	2	< 2	< 1		< 0.01 < 0.01	< 10	< 10	ģ	< 10	24	
1706573	205 294	1	0.03	1 2	210 200	2 2	< 2 < 2			< 0.01	< 10 < 10	< 10	6	< 10	18	
1706574	205 294		0.03 0.04	1	200	2	$\hat{\langle}_2$		73	0.01	< 10	(10	12	< 10	32	
4706575	205 294		v.v4		200											
1706576	205 294	1	0.05	1	210	2	< 2	1	74	0.01	< 10 < 10	< 10 < 10	12 12	< 10 < 10	28 24	
M706577	205 294	< 1	0.04	1	210	2	< 2	1	6 B 6 7	0.01	< 10	< 10	B	< 10 < 10	20	
M706578	205 294	1	0.04	2	200	2	<pre> &lt; 2 &lt; 2 </pre>	1		< 0.01	< 10	< 10	9	< 10	22	
M706579	205 294	1		1	210 220	2	< 2	1		< 0.01	< 10	< 10	9	< 10	22	
M706580	205 294	7	0,04	L	220	2	× 4	T	72		. 10	·	-			



Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALMADEN RESOURCES CORP.

97-5

1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 1B6

MUNRO Project : Comments: ATTN: LEO KING

Page Number :7-A Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. : 19748633 P.O. Number : PFM Account

• .

.

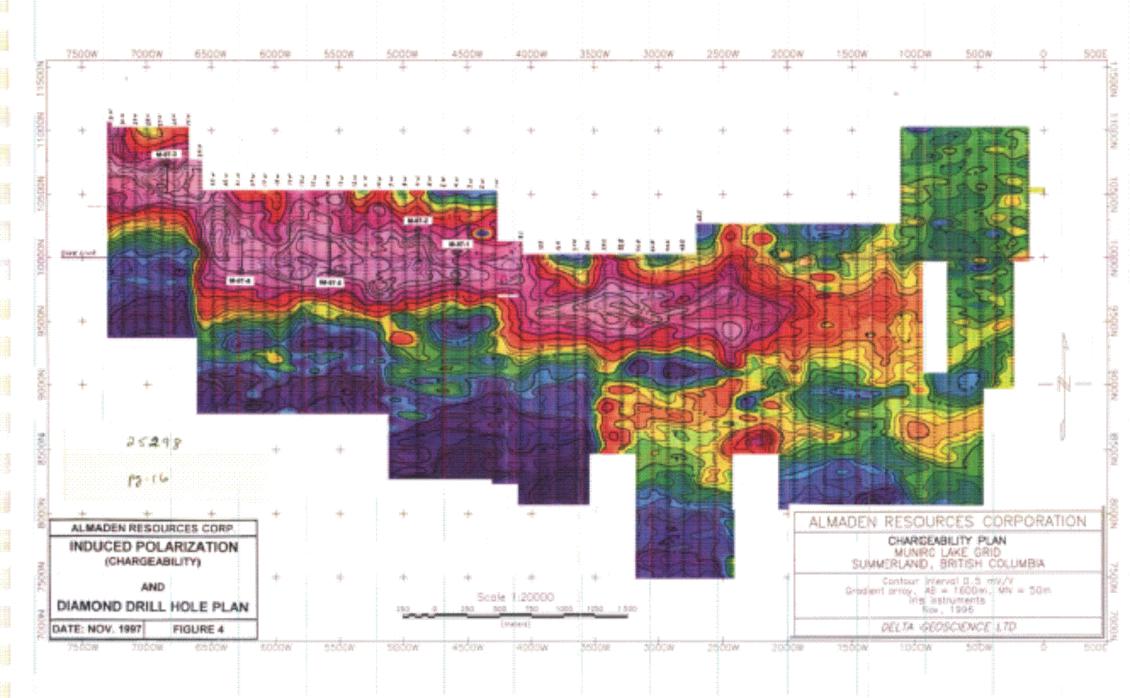
		CERTIFICATE OF AN						NAL	/SIS	/	\9748									
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca ३	Cd ppm	Co ppm	Сг ррт	Cu Ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Мл рра
M706581 M706582 M706583 M706583 M706584 M706585	205 294 205 294 205 294 205 294 205 294 205 294	<pre> &lt; 5  &lt; 5  &lt; 5  &lt; 5</pre>	< 0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.71 0.73 1.11 0.70 0.68	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	90 80 130 50 70	< 0.5 < 0.5 0.5 0.5 < 0.5 < 0.5	<pre></pre>	0.87 1.64 1.77	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 1 1 1 1	99 141 141 68 99	20 16 10 42 7	1.77 1.56 1.88 1.57 2.11	< 10 < 10 < 10 < 10 < 10 < 10	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.37 0.36 0.47 0.32 0.33	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.12 0.08 0.10 0.07 0.06	190 235 330 230 170
H706586 M706587 M706588 M706589 M706589 M706590	205 294 205 294 205 294 205 294 205 294 205 294	<pre> &lt; 5 &lt; 5 &lt; 5</pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.69 0.82 0.62 0.65 0.62	<pre></pre>	50 70 50 80 70	0.5 0.5 < 0.5 < 0.5 < 0.5	<pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 1 1 1	101 113 92 115 95	8 5 12 5 5	1.51 1.46 1.26 1.43 1.66	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.27 0.32 0.24 0.29 0.32	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	0.07 0.08 0.10 0.12 0.07	160 190 250 205 235
M706591 M706592 M706593 M706594 M706595	205 294 205 294 205 294 205 294 205 294 205 294	<pre></pre>	<pre>&lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>	0.65 0.87 0.59 0.84 0.69	<pre></pre>		< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.64 0.93 0.54 0.60 0.93	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 2 2 1 1	115 103 81 140 109	5 6 4 5 10	1.42 1.62 1.51 1.72 1.65	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>	0.31 0.35 0.29 0.40 0.33	< 10 < 10 < 10 < 10 < 10 < 10	0.15 0.13 0.18 0.17 0.13	215 205 185 180 220
M706596	205 294		< 0.2	0,61	< 2		< 0.5	< 2		< 0.5										

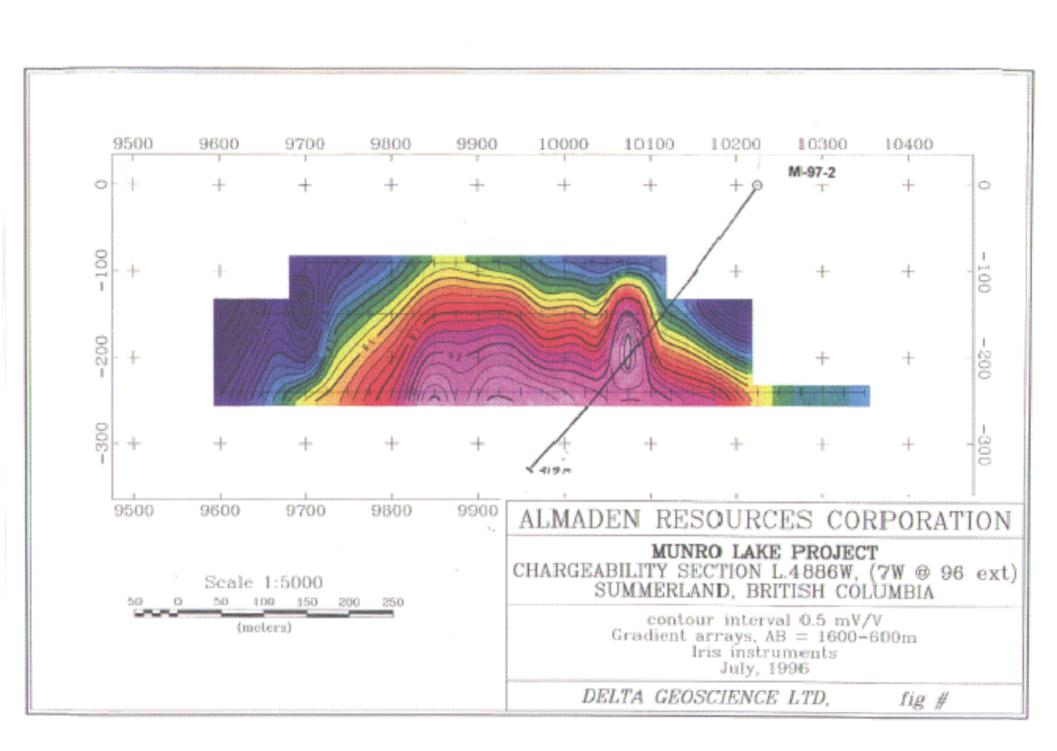


Analytical Chemists * Geochemists * Registered Assayers

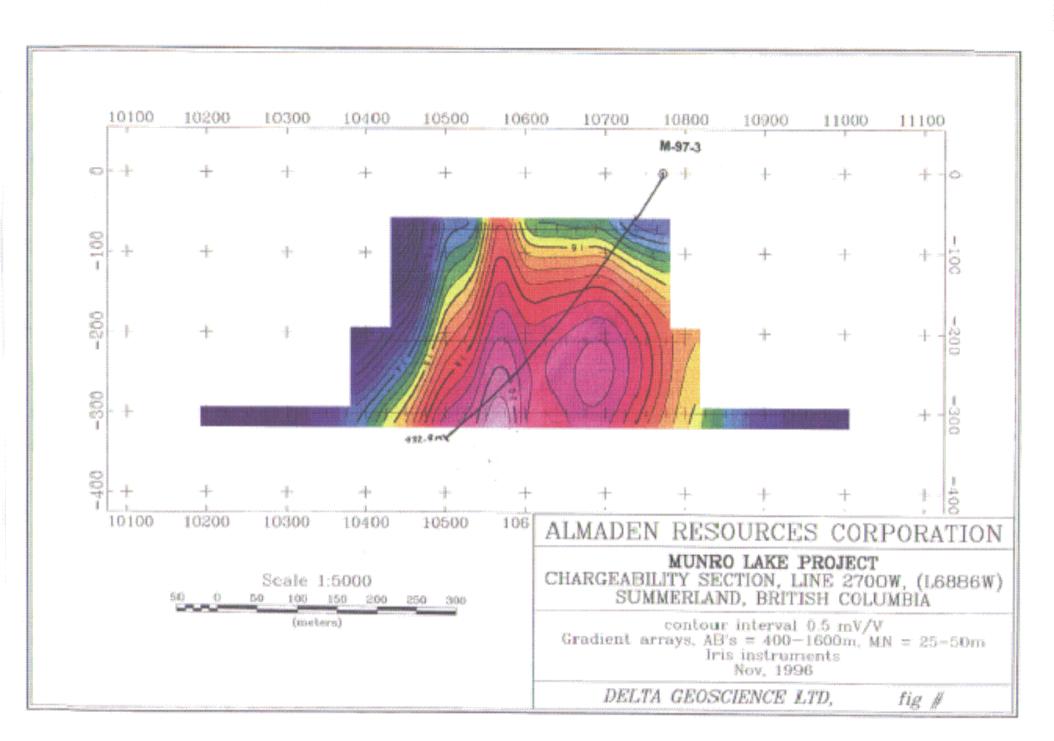
212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALMADEN RESOURCES CORP.

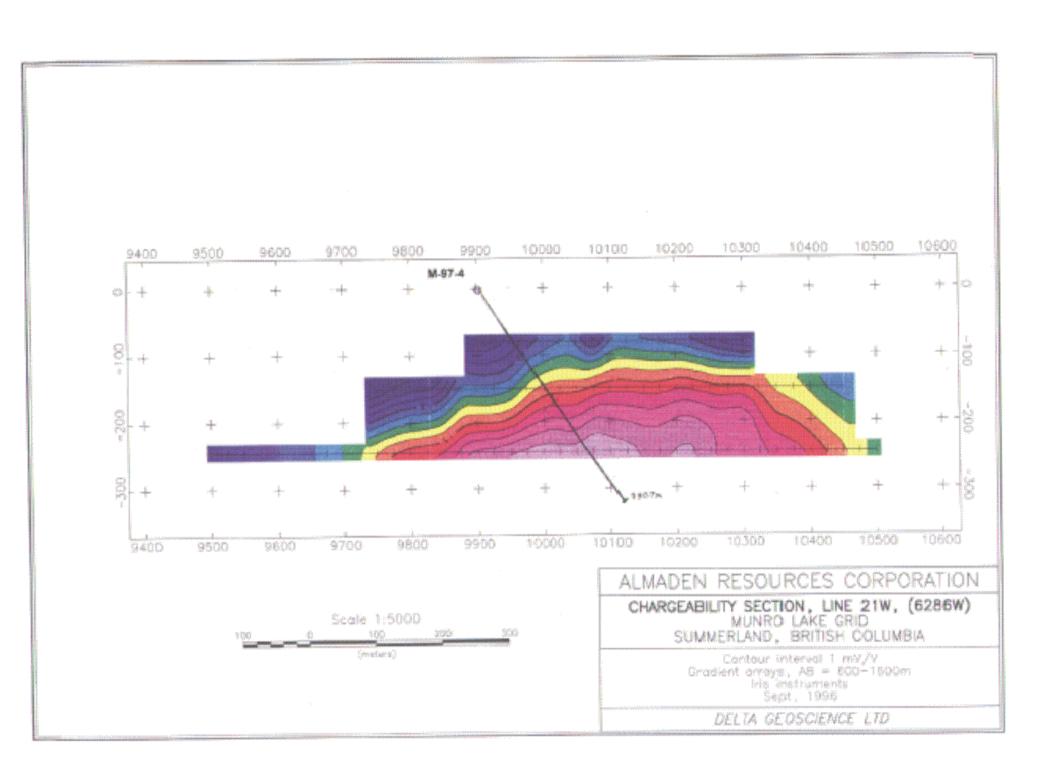
97-5


1420 - 700 W. GEORGIA ST., P.O. BOX 10071 VANCOUVER, BC V7Y 186


Project : MUNRO Comments: ATTN: LEO KING Page Number :7-B Total Pages :7 Certificate Date: 06-NOV-97 Invoice No. : 19748633 P.O. Number : Account :PFM

										CE	RTIFI	CATE	A9748633			
SAMPLE	PREP CODE	Мо ррш	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	
M706581 M706582 M706583 M706584 M706585	205 294 205 294 205 294 205 294 205 294 205 294	< 1 1 3 4 6	0.04 0.04 0.02 0.01 0.02	1 2 1 1	220 200 200 210 180	2 6 6 2	< 2 < 2 < 2 < 2 < 2 < 2	1 < 1 < 1 < 1 < 1	83 < 0 139 < 0 327 < 0 306 < 0 172 < 0	.01 .01 .01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	< 10 10 < 10 < 10 < 10	8 5 3 3	< 10 < 10 < 10 < 10 < 10 < 10	30 36 12 14 22	
M706586 M706587 M706588 M706589 M706599	205 294 205 294 205 294 205 294 205 294 205 294	2 3 7 1 3	0.03 0.04 0.03 0.05 0.04	1 1 1 2 5	190 190 180 190 190	2 4 4 2 2	<pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	<pre>   { 1     1     1     1     &lt; 1     </pre>	202 < 0 191 < 0 177 < 0 98 < 0 110 < 0	).01 ).01 ).01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	5 5 6 8 5	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	14 16 20 24 14	
M706591 M706592 M706593 M706594 M706595	205 294 205 294 205 294 205 294 205 294 205 294	<pre>     { 1         6         &lt; 1         1         1</pre>	0.04 0.03 0.04 0.06 0.04	1 1 1 2 1	210 210 200 220 240	2 6 2 2 2	<pre>   { 2         &lt; 2         &lt; 2         &lt; 2</pre>	1 1 1 1 1	86 < 0 187 < 0 58 0 74 < 0 107 < 0	).01 ).01 ).01	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	<pre>&lt; 10     10     &lt; 10     &lt; 10     &lt; 10     &lt; 10     &lt; 10</pre>	9 7 10 10 8	<pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>	26 24 26 26 26 26	
M706596	205 294	1	0.04	1	160	2	< 2	< 1	96 < (	0.01	< 10	< 10	5	< 10	10	
												, #-				


CERTIFICATION: Ktruit Pouller


## Appendix 5 I.P. Chargeability Cross-sections Showing Diamond Drill Hole Plots





.....





