

1997 DIAMOND DRILLING ASSESSMENT REPORT ON THE PAY 1 - 4 & LLOYD 2 CLAIMS

CARIBOO MINING DIVISION BRITISH COLUMBIA

NTS: 93 A/12

LATITUDE: 52° 35' NORTH LONGITUDE: 121° 39' WEST

OPERATOR: BIG VALLEY RESOURCES INC. BOX 4210 WILLIAMS LAKE, B.C. V2G 2V2

REPORT BY: S.J. TENNANT, GEOLOGIST

DATE: DECEMBER'22, 1997

TABLE OF CONTENTS

Pa _i	ge
SUMMARY1	
NTRODUCTION	
i. Location, Access and Physiography 2 ii. Claims Ownership 2 iii. Property History 2	
GEOLOGY & MINERALIZATION7	
DIAMOND DRILLING9	
CONCLUSIONS AND RECOMMENDATIONS10	
STATEMENT OF COSTS11	
AUTHOR'S QUALIFICATIONS12	
REFERENCES	

LIST OF FIGURES, TABLES AND APPENDICES

		Page
FIGURES		
Figure 1	Location	4
Figure 2	Claim Map 1:31,680	5
Figure 3	Regional Geology 1:50,000	6
Figure 4	Drill Location Plan	8
APPENDICES		
Appendix I	Drill Logs	
Appendix II	Assay Sheets	

SUMMARY

Big Valley Resources Inc. owns the claims consisting of the Pay 1 – 4 and Lloyd 2 claim. These claims totalling 65 claim units are located 57 kilometres NE of Williams Lake in the Cariboo Mining Division.

Exploration has been ongoing for a number of years consisting of various geophysical surveys and diamond drilling. In 1997, additional drilling was carried out on the Lloyd 2 claim to further evaluate the mineralized zone outlined by earlier exploration programs.

On the Main zone drilling cored felsic volcanic flows and clastics that were intruded by high level dykes and sills. Shearing provided the conduits for the intrusives, as well as related altering and mineralized fluids. The main structural control appears to be north-easterly, as well as steep dipping. Drilling intersected a number of significant mineralized intersections. The main host of the higher grade mineralization is a felsic breccia healed with magnetite.

Drilling in 1997 has extended the mineralization some 500 metres west of the Main Zone. Although copper grades are on the low side, drill holes have interseted significant lengths of copper mineralization, indicating the potential exists for developing a large low grade deposit.

Results of this drilling program indicates the mineralization is still open to the west and north and additional drilling should be carried out to evaluate the size potential of the zone.

INTRODUCTION

i. Location, Access and Physiography

The Lloyd 2, Pay 1 - 4 claims are located 57 kilometres north-east of the city of Williams Lake in central British Columbia (Figure 1). The centre of the claims is at latitude 52° 35' north and longitude 121° 39' west in the Cariboo Mining Division.

The property is readily accessible from Williams Lake via 85 kilometres of paved highway to Morehead Lake, then 9 kilometres on the Morehead Forestry all weather gravel road. A network of old and new logging roads provide good access to most of the claims.

The property lies in the Quesnel Highland physiographic region of the central British Qolumbia interior. This region is characterized by broad valleys and gently rolling hills with elevations on the property ranging from 914 metres (3,000 feet) to 1,189 metres (3,900 feet) above sea level.

The claims occur in a moist vegetative zone dominated by combinations of coniferous (cedar-pine-spruce-fir) and deciduous (birch-popular) forests with undergrowths of alder and devil's club.

ii. Claim Status

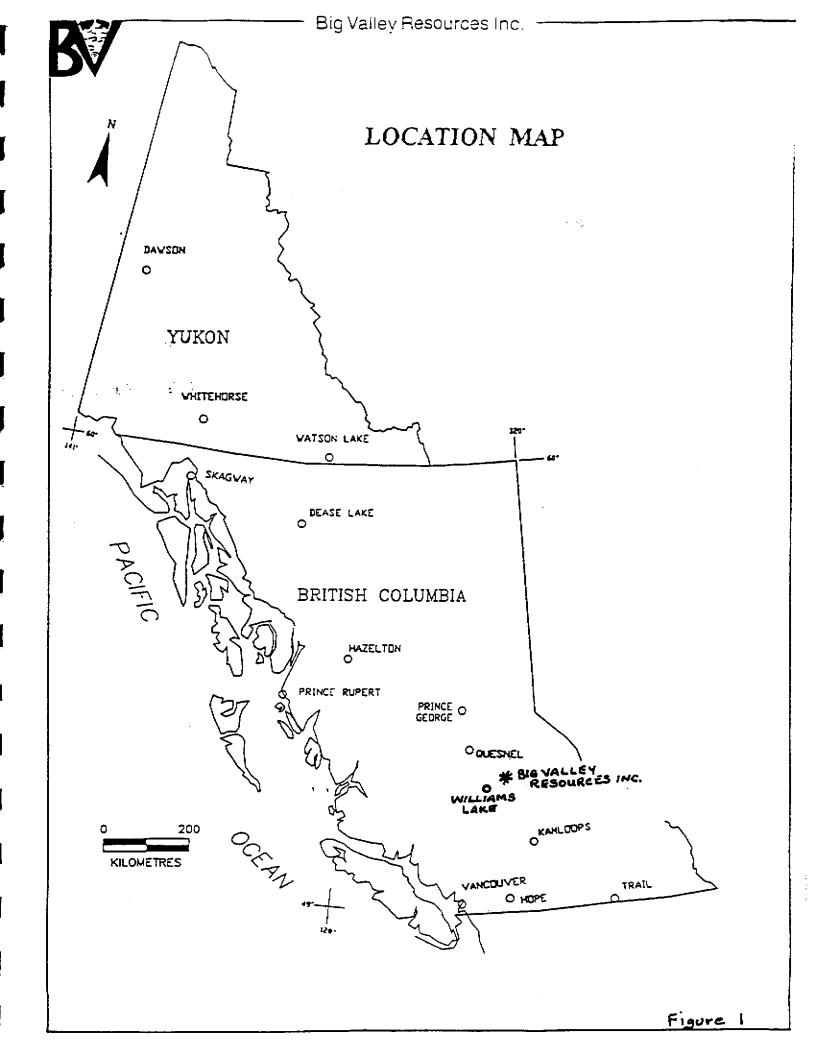
The property consists of 5 mineral claims (65 mineral claim units) located in the Cariboo Mining Division. The mineral claims are shown on Figure 2 and details are as follows:

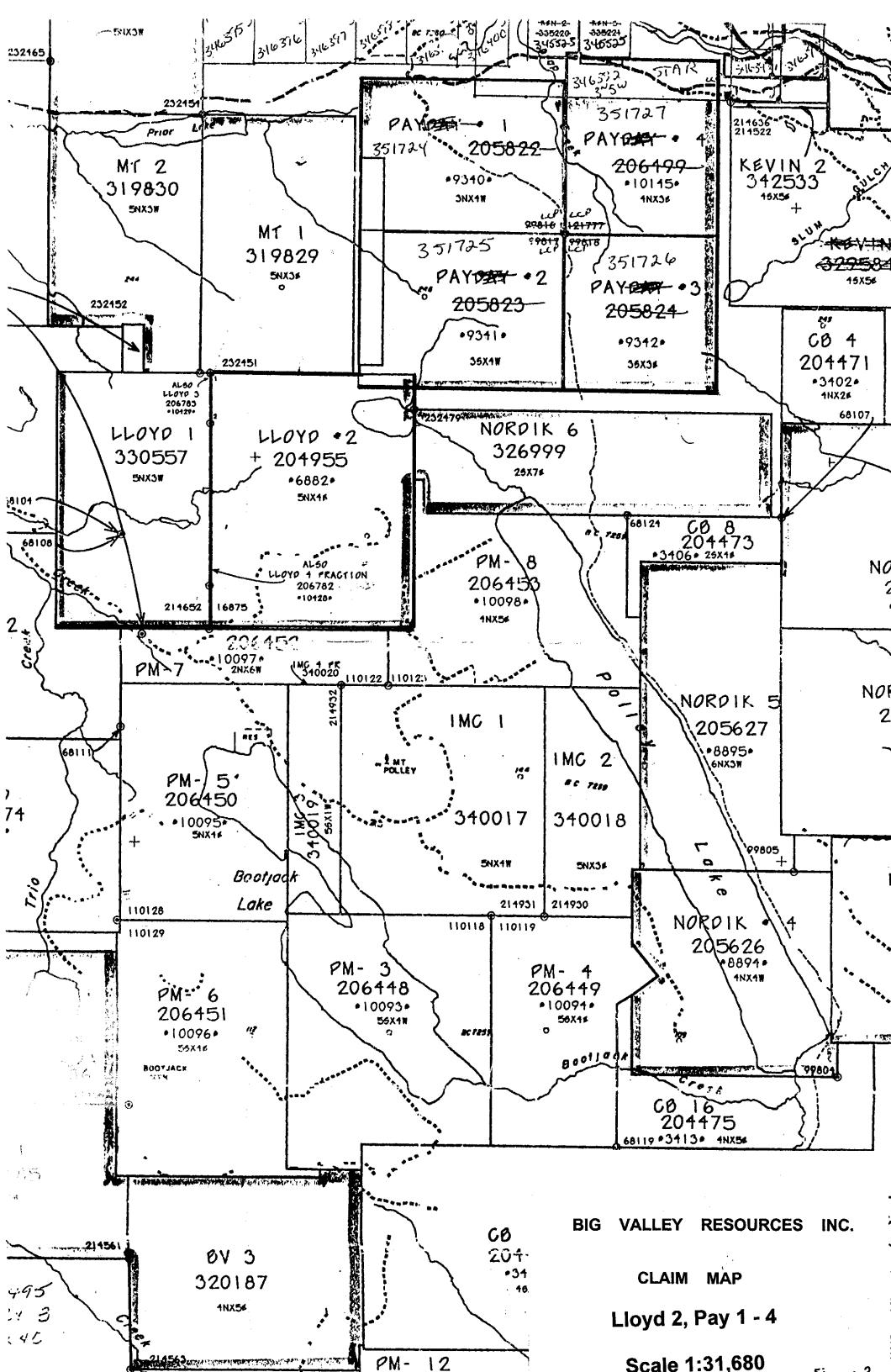
Claim	No. of Units	Record Number	Expiry Date
Pay 1	12	351724	October 10, 1997
Pay 2	12	351725	October 10, 1997
Pay 3	9	351726	September 26, 1997
Pay 4	12	351727	October 11, 1997
Lloyd #2	20	204955	June 25, 1999

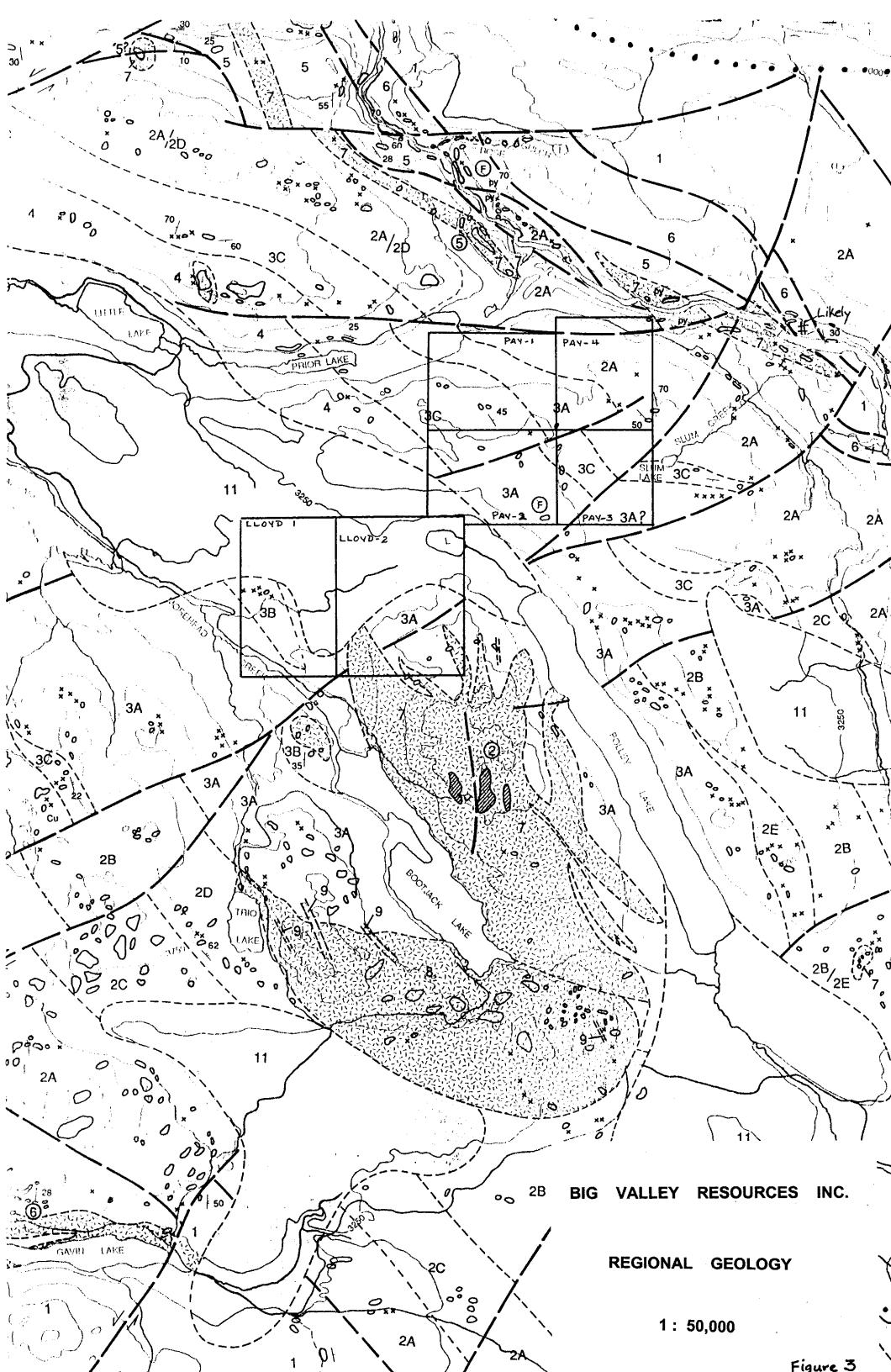
The claims are part of a large block of claims in the area registered to Big Valley Resources Inc.

iii. Property History

Mining activity in the region has a long history starting with placer operations in 1890, which have continued with varying intensity to the present. From 1960 to 1975, the area was explored for porphyry copper deposits.


In 1964, the Cariboo Bell porphyry gold-copper deposit was discovered during exploration of a prominent aeromagnetic anomaly. Today, the Mount Polley deposit is owned by Imperial Metals


Corp. and is scheduled to start production in 1997. It adjoins Big Valley Resources Inc. to the east and south.


In 1975, during the investigation of a similar aeromagnetic anomaly, Dome Mines Ltd. discovered the QR gold deposit. The QR deposit is presently in production and adjoins Big Valley Resources Inc. to the north.

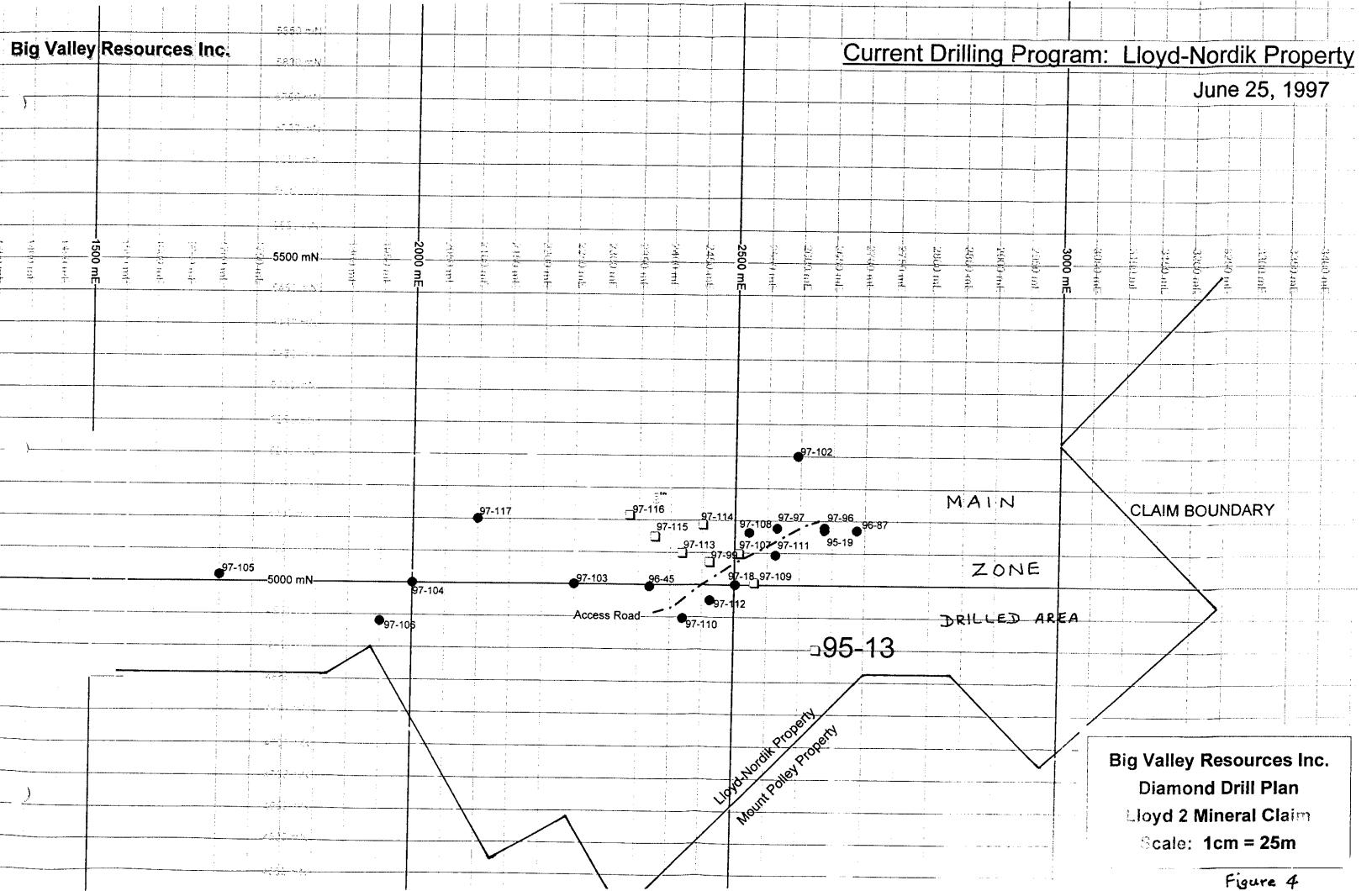
The Pay 1-4 and Lloyd 2 claims represents part of the mineral tenures that were acquired by Big Valley Resources Inc. for their potential of hosting porphyry copper and/or gold deposits similar to the Mount Polley and QR deposits.

For the past number of years, various phases of grassroots exploration has been carried out on the claim group. Results of this work outlined a geochemical anomaly with coincident geophysical magnetic and IP chargeability high anomalies. Since 1994, diamond drilling has been carried out to evaluate the anomalies.

			LEGEND	
	AND		IENTARY ANIC ROCKS	INTRUSIVE ROCKS
IARY	PLEISTOCENE	11	Glacial, fluvioglacial and fluvial gravel and sand	
TERTIARY	MIOCENE	10	Green, grey and maroon plateau basalt (alkali olivine basalt)	
SUC				Grey hornblende granodiorite and quartz monzonite
CRETACEOUS				Fine- to coarse-grained grey nepheline syenite: locally orbicular
	CHIAN	6	Cobble conglomerate: clasts of chert, limestone, sandstone: carbonaceous shale and sandstone	
	PLIENSBACHIAN	5	Well bedded dark grey siltstone and sandstone	Grey and pink, medium fine grained monzonite, monzodiorite, syenodiorite and syenite; pyroxene and/or hornblende-bearing
SSIC		4	Maroon, vesicular alkali olivine basalt, commonly analcite-rich	
JURASSIC	Z	3C	Feldspathic tuffaceous siltstone and sandstone: minor breccia	
	SINEMURIAN	3B	Latitic crystal tuff, tuff breccia and tuffaceous sandstone: minor latite flow breccia	
	SINE	ЗА	Maroon and grey polylithic breccia; clasts of mafic and intermediate compositions in chloritic and feldspathic matrix	
		2Н	Coarse-grained greenish grey and brown sandstone, grey medium - grained sandstone and dark grey siltstone and argillite	Province of British Columbia Ministry of Energy, Mines and Petroleum Resources PRELIMINARY MAP NO. 67
		2G	Massive grey limestone and calcareous sandstone	GEOLOGY OF THE HYDRAULIC MAP AREA NTS 93A/12
		2F	Interbedded dark grey mafic sandstone and siltstone	1:50 000 0 1 2 3 4 5
	-	2E	Analcite-bearing maroon and greenish grey alkali basalt; leidspathic in places	KILOMETRES
U	NORIAN	2D	Hornblende-bearing pyroxene basalt	
TRIASSIC	_	2C	Polylithic, grey and maroon mafic breccia; minor feldspathic clasts Maroon, pyroxene-phyric alkali basalt	Geology by Bailey (1987, 1975); Fox et al. (1986), Bailes (1977) Geology compiled by D.G. Bailey, 1987
1		2B 2A	Green and grey pyroxene-phyric alkali olivine basalt and alkali basalt	REFERENCES: Bailey, D.G. 1976: Geology of the Morehead Lake area, Central British Columbia. Preliminary Map No. 20; B.C. Department Mines and Petroleum Resources.
		1	Dark grey siltstone, brown and grey sandstone; unit becomes volcaniclastic towards top. Minor conglomerate and dark grey limestone	Bailes, R.J., (1977): The Cariboo-Bell Alkaline Stock, British Columbia. M.Sc. Thesis (unpubl.) <i>University of Manitoba</i> . Fox, P.E., R.S. Cameron and S.J. Hoffman, 1986; Geology and Soil Geochemistry of the Quesnel River Gold Deposit, British Columbia. In 'Geoexpo '86' Proceedings, Association of Exploration Geochemists, Vancouver, May 1986.
	CARNIAN			

GEOLOGY AND MINERALIZATION

Big Valley Resources property is located in a structural feature known as the Quesnel Trough, a 30 kilometre wide, north west trending, volcanic-sedimentary belt of regional extent of Early Mesozoic age. It is fault bounded on the west by Paleozoic rocks of the Cache Creek Group and on the east by older Paleozoic and Pre-Cambrian strata.


Locally within the Trough intrusive rocks, in part coeval to the volcanics occur on cross cutting structures. The Mount Polley intrusions, representing one such centre, are of interest for their potential of hosting porphyry copper/gold mineralization. The QR gold deposit is associated with a pyrite-epidote zone in basaltic breccia near an alkalic stock.

Regional geological mapping of the Quesnel Trough in the claims area is taken from work recently completed by Dr. D. Bailey for the British Columbia Department of Mines (Figure 3).

In the project area, a belt of mafic and felsic volcanic rocks, comagmatic alkaline stocks and dyke complexes make up the Quesnel Trough. The belt is somewhat symmetrical around a central axis of felsic volcanics that are in turn flanked on the east and west by mafic volcanics and sediments.

Drilling on the Lloyd 2 Main Zone indicates a north-easterly trending mineralized structure controlled by a steep dipping shear zone. The drilling cored felsic volcanic flows and clastics that have been intruded by high level dykes and sills. The highest mineralization encountered in the drilling occurs as magnetite, chalcopyrite and pyrite breccia.

In 1997, drilling has extended the mineralization some 500 metres west of the Main Zone. Although the copper grade is on the low side, drill holes have intersected significant lengths of copper mineralization, indicating that the potential exists for a large low grade deposit. In the western area of drilling, the main host rock is an intrusion breccia, whereas in the higher grade Main Zone, the host rock is a felsic breccia healed with magnetite.

DIAMOND DRILLING

Diamond drilling on Big Valley Resources claims has been ongoing at various times in different areas throughout 1995 and 1996. In March 1997, diamond drilling was carried out on the Lloyd 2 claim to further evaluate the mineralized zone located earlier by drilling geophysical anomalies.

Diamond drilling utilized a unitized Longyear Super 38 drill to recover NQ sized core. The contractor was Beaupre Drilling of Princeton, B.C. Water for drilling was pumped from streams that exist in the immediate area. Drilling has been ongoing most of the year. The core was transported to camp for logging, sampling and permanent storage. Intervals to be assayed were split using a manual splitter and shipped to Eco-Tech Labs in Kamloops where they were crushed, pulverized and analyzed for Cu and Au along with 31 element I.C.P. Drill logs and assay sheets are attached as Appendix I and II respectively.

Drill hole information is as follows:

Zone	Hole No.	Dip	Northing	Easting	Length (m)	Elev (m)
Lloyd 2	97-107	-90°	5,048	2,507	214	1,050
Lloyd 2	97-108	-90°	5,081	2,522	213.4	1,055

Drill Hole 97-107 and 97-108 are part of the ongoing drilling program on the Lloyd 2 claim (see Figure 4). Drilling cored volcanic flows and intrusion breccia which hosts the low grade copper mineralization.

CONCLUSIONS AND RECOMMENDATIONS

Drilling on the Lloyd 2 mineralized zone has been ongoing since 1944. Early drilling has shown a north-easterly trending mineralized structure coincident with an induced polarization chargeability high and a magnetic high. During 1996-97, drilling has extended the copper mineralization some 500 metres west of the Main Zone. Although results of the drilling indicate low copper grades, significant lengths of copper mineralization were intersected indicating that the potential for a large low grade deposit exists.

To date, the copper mineralization is still open to the north-west and additional drilling should be carried out to determine the overall potential of the zone.

₹.

STATEMENT OF COSTS

Diamond Drilling	
427.4 metres @ \$59/metre - all inclusive	\$25,216.60
Sample Prep and Assay 170 @ \$20.40/Sample (Prep \$5.00, Assay ICP \$6.90, Au \$8.50)	3,468.00
Freight - samples to Kamloops	125.00
Report Preparation	
S. Tennant - 3 days @ \$250/day	750.00
	\$29,559.60

AUTHOR'S QUALIFICATIONS

I, STUART J. TENNANT, do hereby certify that:

- I am a geologist residing at 600 Garrow Drive, Port Moody, British Columbia, V3H 1H5.
- 2. I am a 1959 graduate of the University of British Columbia with a Bachelor of Science degree in geology.
- 3. I have practiced my profession in exploration since 1959, primarily in British Columbia.
- Since May 1996, I have been employed as an exploration geologist with Big Valley

 Resources Inc.
- 5. I personally supervised and participated in the field work and have compiled, reviewed and assessed the data resulting from the work.

Stuat J. TENNANT

DATED at Vancouver, British Columbia, this 22nd day of December, 1996.

REFERENCES

- 1. Bailey, David G. (1976): Geology of the Morehead Lake Area, Central British Columbia, BCMEMPR. Notes to Accompany Preliminary Map No 20.
- 2. Bailey, David G. (1987): Geology of the Central Quesnel Belt, Hydraulic, South-Central British Columbia (93A/12), BCMEMPR, Geological Fieldwork, 1987, Paper 1988-1.
- 3. Fox, Peter E., Cameron, R.S.: Geology of the QR Gold Deposit, Quesnell River area, British Columbia, CIM Special Volume 46.
- 4. Panteleyev, Andre, Hancock, Kirk D. (1988), Quesnel Mineral Belt: Summary of the Geology of the Beaver Creek Horsefly River Map Area, BCMEMPR, Geological Fieldwork, 1988, Paper 1989-1.

Appendix I Drill Logs

ξ.

97-107

GRID: 1 (1) 11 7 ... HOLE No. 1. 013 ROCATION: BEARING: 5048 N PROPERTY: BIG VALLEY RESOURCES THE COLLARED: _____ LENGTH: 214m (702 (+) 2507 E NQ - LOGGED BY: Ect 1050m SCALE OF LOGI _ GRAPHIC! ASSAY RESULTS POCK TYPES AND TEXTURES ALTERATION MINERALIZATION REMARKS SAMPLE No. (Cosing) Overbuiden 1 11-62.3 MONZONITE Numerous chlorite Alteration mainly herintite, calcite Ca, chi and hem. thin seams 6-1-11-0 Fault Zone? Extensive broken core. Core generally fairly mag. 25.6-29.1 Fault Most chips & gours DISS Ry 45.0-51.5 Numerous magnetite seams to 1cm @ 709900. 52.3 -110 Intrusion Breach Strong K alteration 65.6-67.9 Coarse Lath Phyric. Monz/Dior 70.3-71.2 Fault - mainly gouge Porphyry 80.7-85.7 Blenched, silicious 92.7-110 Porphyritic in parti Becomes more dioritic 110-118 Monzonite/Diorite Weat to strong att. fine gr pv fine gr. porphyry ± Chalco. Some sparce Int bx.

97-107

HOLE No. 2 at 3 GRAPHK A S SAY RESULTS PETER TYPES AND TEXTURES ALTERATION MINERALIZATION REMARKS SAMPLE No. 119 155.15 Monzonite/Provide Weak to strong K-spar 12214-12314 Shallered Some pontchy 1270 1771 fairly shattered - abundant old cal Chalco. 141-7-147.3 Intense fracturing (fg chipser gouge From 14713 Kincreases - light brown >20%. Strong K in large clasts ca Mal Sil Biot very fine gr. 165.5-171.8 Porphyritic Monzonite. Brown Orange to orango 164.6-165.7. Deep grange-brown K. lathes. 166-7-168 Silicious, Ca spotted Tolling fine gr Monzonite - weaker KKa/Mag Fine gr diss Py + Chalco Some Sparce Int. Bx. 171.8-189. Monronde-Diorite. Finely porphyritic 180.7-186.8 Stronk Diss Py/chate. From 186.8 K diecreases 189-197,2. Porphyritic Monzonite Moderate alteration Coarse Lathes fine porphliritic in part.

97-107 GRID: HOLE No. 3 013 LOCATION: ____ BEARING: _ LATITUDE: _____ FROPERTY: _____ DE FARTURE: ______ CORE SIZE: ______ LOGGED BY: ___ ELEVATION: ______ SCALE OF LOG: _____ - DATE: _ GRAPHIC LOG ASSAY OMPOSITES RESULTS ROCK TYPES AND TEXTURES ALTERATION MINERALIZATION REMARKS SAMPLE No. 1717 214 Monzonde Mirite 197.2 - 201.8 Kdecreasing to grey color 208.8-207.6 Fault chl-tale seams Finely Bred core. 212-214 Intrusion Bx Fragments. Strong k alteration 214m E.O.H.

GRID: LLOYD -2 97-10 HOLE No. _______ BEARING: __ SHEET No. 1 of 5081 N LATITUDE: _ PROPERTY: BIG VALLEY RESOURCES — LENGTH: <u>213 14</u> (700 F4 2572 E NQ CORE SIZE: __ DATE COMPLETED: ___ LOGGED BY: Ed 1050 m ELEVATION: SCALE OF LOG: __ GRAPHIC ASSAY RESULTS POCK TYPES AND TEXTURES FOOTAGE BLOCKS EST. CORE REC. ALTERATION MINERALIZATION REMARKS SAMPLE No. Casing 3 4.A Overburden. 11.9-89 Pre-intrusion Voltanic cover Section Volcanic Breccia, Minor basatt flows. Nor SAMPLED. 21- 9Fil Monzonite Weak coarse lath phyric 91:7-93.3 Fault-gouge - clay+ sand seam 18.11-112m. Monzonite - Porphyry = 10% coarse Lath Phyric. + sparce Very fine disc Intrusion Breccia 101.7-102 Bleached Pink. Strong Kalteration 117-11715 Basalt (Flow) Dark green-chloritis 25% epi filled amygdule (Pre Intrusion Volcanic 117.5-123.1 Intrusion Breceia - Moderately Very fine stong K alteration Generally rounded fragments Felsic - Kspar replaces

darkchl matery

97-108 HOLE No. ___

	BEARING:		LATIT	VOE: _			BOSE ATV						HOLE	No. <u></u>	01.
DATE COLLARED:	Dib.		DEPA	TURE:_			ORE SIZE:				GGED BY:				
				TION:			CALE OF LOG:			DA					
		ľ	GRAPH LOG		. .					20	A 5 5	AY	RESU	LTS	Ţ_
PEICK TYPES AND TEXTU	RES	1011	ě	0 5 v	=	MINERALIZATION	REMARKS	AGE	18.0	OMPOSITES	SAMPLE]
		[3	Feere	Structure LOINT ANDUTA				50.0	EST. CORE RE	ž.	No.				٠.
1111 119 Basalt	Flow - Massive - Bro	ten Core	<u> </u>		 -				i ŏ	<u>_</u>	-	·			EST.
102 143.3 Intrusion	Breccia _ Moderate	y strong]											
Darkova	nge-brown/grey m	tion.]				ŀ							
1112.2.0.50	1 0 1 (TILE		-	-	· ·		-			ļ				
142.3-1459 Monzo	nite larphyry (3x7m 10% coarse la	m ≈ 10%)	-		1		Weak mag.								
	Strong K, alter]	li										
With a line of O			<u> </u>	1					ŀi						
1115.7 - 146.3 Pyroxe	enite Ipyka								-				 		\vdash
-1c @ x5	TO C4														1
						,							,		
146.3-172.8 Mon:	conite Porphyry (as al	143.3m)	-					-			<u> </u>				_
162.7-163.1 M.	ining bleach	ing	-												
1-2,	strong K, alt	eration !											}		
163.8-168 Fo	ult Zore fine chip a	-	 					J							
	Ponzorite (as at 162									-		-			
1-0-4-2100	Strong K. Alle	7)	-											<u> </u>	
		I .	=												
169-172.8° Fa	ult Zone - intense ch	1/calcite						 			-				-
Ulc -L	chips and	gous e.		}											ĺ
YIC Sh	arp @ 80° to CA.]											}

97-108

GRID: ____ HOLE No. 3 of 3 LOGGED BY: SCALE OF LOG: _ GRAPHIC ASSAY RESULTS ROCK TYPES AND TEXTURES FOOTAGE SLOCKS EST. CORE REC. ALTERATION MINERALIZATION REMARKS SAMPLE No. 1:11.5 IFT Intrusion Bidecia - Strong K. alteration Fine diss 17311 -18149 Fault Zone. Numerous chloritie PY. fault zones -4m to 2.5m wide Contacts generally 20-35° to C.A 185.8-186.0 } Dark Mafic dykes.

Steep contacts 280° 121-21314 Montonite/Intrusion Breccia Dark brown-green Minor Mag. Propylitic in part Moderate K, alteration 187.4-188.1 Fault

Appendix II Assay Sheets

(-

BIG VALLEY RESQUECES AK 97-252

14-Apr-67

			Ац	Ац	Cu	
ET#.	Tag#	<u>m</u> e	(g/t)	(czit)	(%)	
23	278144		<.03	<.001	0.02	
24	278145		0.03	0.001	0.01	
25	278146		<.03	<.001	0.01	
26	278147		0.93	0.001	0.01	
27	278148		<.03	< 001	0.01	•
28	278149		<.03	<.001	0.01	
29	278150		<.03	< 001	0.01	·
30	278151	•	< 03	<.001	0.01	
31	278152		0.04	0.001	0.01	
32	27815 3		<.03	<.001	0.01	
33	278154		<.03	<.001	0.01	
34	27 8155		<.03	<.001	0.01	
35	278156	_	<.03	<.001	0.01	
38	278157		<.03	<.001	0.01	
37	278158		<.03	<.001	0.52	
38	278159		<.03	<.001	0.02	
39	278160		<.03 -	< 001	0.01	
40	278161		<.03	<.001	0.01	
41	278162		0.03	0.001	0.01	
42	278163		<.03	<.001	0.02	
43	278164		<.03	<.001	0.01	•
44	278165		<.03	<.001	0.01	
45	278166		<.03	< 001	0.01	
46	278167		<.03	< 001	0.02	
47	278168		<.03	<.001	0.01	•
48	278169		<.03	< 001	0.01	
49	278170		<.03	<.001	0.01	
50	278171	_	< 03	<.001	0.01	
51	278172	·	0.03	0.001	<.01	
52	278173		<.03	< 001	<.01	
53	278174		<.03	<.001	<.01	
54	278175		<.03	<.001	0.01	·
55	278178		<.03	<.001	0.01	
56	278177	-	<.03	<.001	0.01	•
5 7	278178		0.03	0.001	0.01	[mums_ia 2]
58	278179		<.03	<.001	0.01	(DH97-106)
59	278180		0.03	0.001	0.01	(DN97-107)
60	278181	4-6	<.03	<.001	0,01	(DN97-107)
61	278182	8.5	<.03	<.001	0.01	
62	278183	8-10	<.03	< 001	0.01	
63	278184	10-12	0.03	0.001	<.01	
ବି4	278185	12-14	<.03	<.001	0.01	
65	27818 6	14-16	<.03	<.001	<.01	•

ECO-TECH LABORATORIES LTD.
Prenk J. Pezzotti, A.Sc.T.

B.C. Certified Assayer
EDD-1831 Lieonatories Ltd.
Page 2

BIG VALLEY RESOURCES AK 97-252

				Åш	Au	Сu	DH 97 - 107
	ET#	Tag#	m	(g/t)	(oz/t)	(%)	
•	6 6	278187	16-18	<.03	<.001	0.01	
T	67	276188		<.03	<.001	0.02	
_	68	278189		<.03	<.001	0.01	
	69	278190	22-24	<.03	<.001	0.01	
	70	278191		< 03	<.001	0.02	
	71	278192		<.03	<.001	0.01	
	72	278193		<.03	<.001	0.02	
	73	273194		0.03	0 001	0.01	
	74	278195	32-34	<.03	<.801	0.01	•
	75	278196	34-38 ×	<.03	<.001	0.02	* LONGER INTERVAL - FAULTED CORE
	76	278197	38-40	<.03	<.001	0.03	· ·
	77	278198		<.03	<.001	0.01	
	78	278199		<.03	<.001	0.02	
	79	278200	44-46	<.03	<.001	0.01	
	80	278201		<.03	<.001	0.01	
	81	278202		<.03	<.001	0.61	
	82	276203	•	<.03	< .001	0.01	
	83	278204		0.03	0.001	0.02	
	84	278205	54-56	<.03	<.001	0.01	
	- 85	278206		0.03	0.001	0.01	
	86	278207		<.03	< 001	0.61	
	87	278208		0.03	0.001	0,01	
	88	278209		<.03	<.001	0.02	
	89	278210	64-66	<.03	< 001	0.02	
1	90	278211	•	<.03	<.001	0.01	
V	91	278212	68-70XX	<.03	<,001	<.01	
	92	278956	228-230	<.03	<.001	0.02	0N97-99
7	93	278957		0.03	0.001	0.01	444477
	94	278958		<.03	<.001	0.02	
	95	278959	234-236.2	<.03	<.001	0.01	
		EOH					•

 $\omega_{t-1} = \omega_{t-1} = \omega_{t-1}$

FOO-TECH LABORATORIES LTD.

Per Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

EGD-TEST LABORATORIES LTD. Page 3

10041 E. Trans Canada Hwyl, R.A. ≠2, Kamicops, B.C. ∨2C 574 Phone (250) 573-4700 Fax (250) 573-4557

CERTIFICATE OF ASSAY AK 97-256

BIG VALLEY RESOURCES

15-Apr-97

BOX 4210 WILLIAMS LAKE, B.C.

V2G 2V2

ATTENTION: LLOYD TATTERSALL/STU TENNANT

DDH - 107

No. of samples received: 72

Sample type: CORE

PROJECT #: LLOYD-NORDIK SHIPMENT #: NONE GIVEN

Samples submitted by: BIG VALLEY

			Au	Au	Сц	
ET #.	Tag #	<u> </u>	(g/t)	(oz/t)	(%)	
1	278213	70 - 72.	<.03	<.001	0.01	
2	278214		<.03	<.001	0.01	
3	278215		<.03	<.001	0.01	
4	278216		<.03	<.001	0.01	
5	278217		<.03	<.001	0.01	
6	278218		<.03	<.001	0.01	
7	278219		<.03	<.001	0.01	
8	278220		< .03	<.001	0.02	
9	278221		< .03	<.001	0.01	
10	278222		< .03	<.001	0.01	
11	278223		< 03	<.001	0.01	
12	278224		<.03	<.001	0.01	
13	278225		0.04	0.001	0.08	
14	278226		0.03	0.001	0.05	
15	278227		< 03	<.001	0.06	
16	278228		< 03	<.001	0.13	
17	278229		<.03	<.001	0.11	
18	278230		<.03	< 001	0.19	
19	278231		<.03	<.001	0.10	
20	278232		<.03	<.001	0.30	
21	278233		0.11	0.003	0.72	
22	278234	112-114	0.20	0.006	1.05	

ECO-TECH LABORATORIES LTD

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

			Au	Au	Cu
ET#.	Tag #		(g/t)	(oz/t)	(%)
23	278235	114-116	< .03	<.001	0.13
24	278236		<.03	<.001	0.11
25	278237		<.03	<.001	0,11
26	278238		<.03	<.001	0.39
27	278239		< .03	<.001	0,48
28	278240		<.03	<.001	0.12
29	278241		<.03	<.001	0.12
30	278242	•	0.03	0.001	0.12
31	278243		0.03	0.001	0.34
32	278244		<.03	<.001	0.16
33	278245		<.03	<.001	0.02
34	278246		<.03	<.001	0.01
35	278247		<.03	<.001	0.01
36	278248		<.03	<.001	0.03
37	278249		<.03	<.001	0.22
38	278250		0.05	0.001	0.14
39	278251		0.04	0.001	0.19
40	278252		0.03	0.001	0.02
41	278253		<.03	<.001	0.01
42	278254		<.03	<.001	0.01
43	278255		<.03	<.001	0.05
44	278256		<.03	<.001	0.11
45	278257		<.03	<.001	0.11
46	278258		<.03	<.001	0.11
47	278259		0.03	0.001	0.16
48	278260		<.03	<.001	0.06
49	278261		<.03	<.001	0.01
50	278262		0.03	0.001	0.20
51	278263		<.03	<.001	0.17
52	278264		0.03	0.001	0.01
53	278265		<.03	<.001	0.01
54	278266		<.03	<.001	0.04
55	278267		<.03	<.001	0.02
56	278268		0.03	0.001	0.01
57	278269		<.03	<.001	0.08
58	278270		0.07	0.002	0.19
59	278271		<.03	<.001	0.03
60	278272		0.03	0.001	0.02
61	278273		<.03	<.001	0.08
62	278274		0.03	0.001	0.07
63	278275		<.03	<.001	0.06
64	278276		<.03	<.001	0.05
65	278277	198-200	<.03	<.001	0.01
	_: _ _, ,	1-10 -200	· 		·

P* Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer
EJU- Tana Laboratories Ltd.
Page 2

			Au	Au	Cu	
ET#.	Tag #		(g/t)	(oz/t)	(%)	
66	278278	200-202	<.03	<.001	0.02	
67	278279		<.03	<.001	0.05	
68	278280		<.03	<.001	0.05	
69	278281		<.03	<.001	0.02	
70	278282		<.03	<.001	<.01	
71	278283		<.03	<.001	<.01	
72	278284	212-214	<.03	<.001	0.04	
QC/DAT	<u> </u>	•				
Resplit:						
1	278213		<.03	<.001	<.01	
36	278248		<.03	<.001	0.03	
71	278283		<.03	<.001	0.01	
Repeat:	ı					
1	278213	•	<.03	<.001	<.01	
10	278222		<.03	<.001	-	
19	278231		<.03	<.001	-	
36	278248		<.03	<.001	-	
37	278249		-	•	0.21	
45	278257		<.03	<.001	-	
54	278266		<.03	<.001	-	
71	278283		<.03	<.001	-	
Standar	d:					
STD-M	- -		1.41	0.041	_	
STD-M			1.53	0.045	_	
STD-M			1.50	0.044	_	
Mp-IA				J	1.44	
Mp-IA			_	_	1.44	
עובקואו			-	-	1.777	

per

ECO-TECH LABORATORIES LTD

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/97

16-Apr-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 97-256

BIG VALLEY RESOURCES BOX 4210 WILLIAMS LAKE, B.C. V2G 2V2

ATTENTION: LLOYD TATTERSALL/STU TENNANT

No. of samples received: 72 Sample type: CORE PROJECT #: LLOYD-NORDIK

SHIPMENT #: 5

Samples submitted by: BIG VALLEY

Values in ppm unless otherwise reported

				_		B 1	a	0.4	^-	Cr	c.,	Fe %	la i	Mg %	Mn	Mo l	Na %	Ni	P	Pb	Sb	Śn	Sr	Ti %	u	٧	w	Y	Zn
Et#	Tag#		Al %	As	Ва		Ca %	Cd	Co						2583		0.05		1470	8	20	<20	255	0.01	<10	169	<10	16	64
1	278213	<0.2		20	40	<5	4.10	<1	17	24		4.74	<10		2017	6	0.05	4	1260	4	20	<20	199	0.01	<10	136	<10	18	35
2	278214	<0.2	2.46	<5	95	5	3.38	<1	17	18	59	4.95	<10			5	0.04	5	1390	10	15	<20		<0.01	<10	128	<10	21	36
3	278215	<0.2	2.01	<5	120	<5	3.31	<1	17	16	72	3.82	<10	1.71		5		5	1280	16	20	<20	225	0.01	<10	133	<10	20	33
4	278216	<0.2	2.28	<5	85	<5	3.77	<1	23	18	66	4.69	<10		1818	_	0.04	_		30	10	<20		<0.01	<10	104	<10	19	35
5	278217	0.2	1.94	10	55	10	3.25	-<1	16	25	48	3. 6 8	<10	1.63	1539	6	0.04	4	1310	30	10	~20	209	~U.U1	~10		-10	10	-
														4.07		20	0.00	-	840	92	25	<20	1//0	<0.01	<10	64	<10	18	33
6	278218	<0.2	1.44	5	345	<5	3.06	<1	12	71	33	1.95	<10	1.07		29	0.03	3				<20		<0.01	<10	112	<10	22	204
7	278219	0.2	3.62	25	250	<5	3.74	<1	15	10	122	4.79	<10	3.08	2023	3	0.04	3	2550	244	35	<20	_	<0.01	<10	127	<10	18	179
8	278220	<0.2	4.13	25	255	<5	3.38	<1	27	11	157	6.38	<10	3.94	2462	′	0.04	8	1440	392	25				<10	100	<10	17	186
9	278221	<0.2	2.75	<5	110	<5	3.69	<1	15	16	63	5.28	<10		1799	5	0.04	1	1210	480	15	<20		<0.01	<10		<10	21	56
10	278222	<0.2	2.25	<5	410	10	4.37	<1	10	13	25	4.00	<10	1.96	1887	4	0.04	<1	870	84	20	<20	269	<0.01	<10	95	~10	21	30
																						-00	000	-0.04	-40	07	~40	10	75
11	278223	<0.2	2.20	<5	100	<5	3.96	<1	12	13	28	4.09	<10				0.04		1170	72	15	<20		<0.01	<10	97	<10	19	75 46
12	278224	<0.2	2.24	<5	105	<5	3.73	<1	14	21	88	4.20	<10			5	0.04		1160	76	15	<20		<0.01	<10	100	<10	18	
13	278225	<0.2	2.46	5	145	<5	3.34	<1	27	20	839	5.15	<10	2.05	2265	9	0.04	6	1700	90	20	<20	133	0.01	<10	184	<10	20	29
14	278226	0.4	2.46	10	90	<5	2.71	<1	19	21	478	5.70	<10	1.86	3021	10	0.03	3		274	<5	<20	122	0.01	<10	170	<10	15	44
15	278227	1.0		10	50	<5	2.99	1	21	23	566	5.59	<10	3.29	5849	8	0.03	5	1520	266	35	<20	148	0.02	<10	202	<10	15	56
	2.022.		•••																										
16	278228	0.4	2.69	10	50	<5	2.67	<1	19	23	1232	4.89	<10	2.46	4332	8	0.03	5	1530	214	25	<20	121	0.01	<10	192	<10	13	67
17	278229	1.6		15	45	≺ 5	2.95	1	20	23	1102	5.31	<10	3.78	5893	. 9	0.02	4	1410	286	105	<20	145	0.02	<10	242	≺10	16	148
18	278230	1.0		5	65	<5	3.88	<1	23	19	1828	4.70	<10	3.43	4436	5	0.03	3	1390	182	50	<20	139	0.02	<10	232	≺tO	14	116
19	278231	1.4		15	55	<5	3.87	<1	27	24	962	4.61	<10	3.16	3847	6	0.03	2	1390	128	45	<20	150	0.02	<10	195	<10	15	211
20	278232	2.0		10	45	<5	3.90	<1	26	19	2779	5.20	<10	3.39	4491	6	0.03	4	1530	64	40	<20	144	0.02	<10	200	<10	16	380
20	270232	2.0	3.10		10	•		•																					
21	278233	7.8	2.82	20	40	<5	4.52	1	70	18	6694	4.52	10	2.91	4374	8	0.03	8	1680	48	85	<20	168	0.02	<10	193	<10	17	296
	278233	3.6		- 35	50	 5		2	60	21	9802	3.78	20	2.47	3647	7	0.03	5	1660	84	160	<20	175	0.02	<10	157	<10	18	262
22					60	<5		<1	31	17		4.35	10			6	0.03	4	1720	46	30	<20	200	0.02	<10	213	<10	19	374
23	278235	1.2		10	70	<5		<1	26	17		4.84	10			5		5	1880	54	25	<20	239	0.02	<10	234	<10	21	322
24	278236	1.4		<5 -5			4.32	<1	23	22	1179	5.51	<10			5		5		32	20	<20	176	0.04	<10	270	≺10	17	241
25	278237	8.0	2.80	<5	65	<5	4.32	~ 1	23		1178	5.51	0		Page 1	•	4.47	_											

D.D																													
Et#	Tag #	Ag	Al %	As	Ва	Bi (Ca %	Cd	Co	Cr	Сп	Fe %	La	Mg %	Mn		Na %	Ni	P	Pb	Sb	Sn		Ti %	U	٧	W	Y	Zn
26	278238	0.4	2.65	5	45	<5	4.53	<1	27	15	3492	5.46	<10	2.70	2946	5	0.04	5	2090	32	20	<20	181	0.05	<10	241	<10	16	207
27	278239	0.8	2.84	<5	90	<5	4.20	<1	23	18	4337	4.87	10	2.77	3239	7	0.04	5	2010	32	20	<20	174	0.03	< 10	263	<10	19	155
28	278240	0.4	2.42	<5	280	<5	3.93	<1	22	19	1244	4.81	<10	2.17	2705	6	0.03	3	1680	38	15	<20	180	0.03	<10	207	<10	16	132
29	278241	<0.2	2.27	<5	125	<5	2.92	<1	20	25	1209	4.12	10	2.04	2407	7	0.03	5	1710	38	25	<20	173	0.02	<10	220	<10	19	131
30	278242	1.2	2.14	<5	40	<5	3.79	<1	20	24	1228	4.51	10	1.89	3181	6	0.04	6	1710	38	20	<20	163	0.02	<10	225	<10	20	173
31	278243	3.4	2.05	20	30	<5	4.14	<1	31	24	3293	5.21	40	1.82	2685	11	0.04	4	2770	52	15	<20	189	0.01	<10	195	<10	23	177
32	278244	1.4	2.65	15	50	<5	4.59	<1	20	19	1634	3.95	20	2.01	2276	11	0.04	5	1840	46	25	<20	277	<0.01	<10	170	<10	26	153
33	278245	<0.2	1.63	<5	140	<5	5.39	<1	17	14	158	4.59	<10	1.47	1963	4	0.04	2	1470	10	10	<20	314	<0.01	<10	151	<10	14	87
34	278246	<0.2	1.55	<5	140	<5	5.07	<1	17	10	106	4.66	<10	1.51	1933	3	0.04	3	1600	10	10	<20	348	0.02	<10	157	<10	19	73
35	278247	< 0.2	1.61	<5	85	<5	5.38	1	20	20	144	4.76	<10	1.47	2094	4	0.04	3	1480	8	10	<20	315	0.01	<10	153	<10	14	93
36	278248	0.4	1.53	5	35	<5	4.99	<1	20	9	301	4.60	<10	1.30	2175	3	0.04	2	1530	12	<5	<20		< 0.01	<10	142	<10	21	109
37	278249	2.0	0.55	15	65	<5	6.99	<1	28	44	1957	2.02	10	0.17	2293	6	0.02	2	1100	26	10	<20	240		<10	92	<10	14	109
38	278250	5.4	0.49	60	190	<5	3.14	3	2	15	1159	0.26	10	0.07	628	9	0.02	<1	1220	234	35	<20	259		<10	18	<10	10	198
39	278251	1,2	1.11	5	80	<5	6.20	<1	12	17	1670	3.03	<10	0.83	1894	3	0.03	2		34	<5	<20	374		<10	99	<10	23	67
40	278252	<0.2	1.63	< 5	45	<5	5.21	<1	19	16	186	4.78	<10	1.61	1850	2	0.04	2	1560	8	10	<20	336	0.06	<10	156	<10	16	81
41	278253	<0.2	1.58	<5	50	<5	4.86	<1	19	15	100	4.62	<10	1.56	1687	<1	0.04	1		<2	15	<20	407	0.07	<10	157	<10	16	65
42	278254	<0.2	1.62	<5	80	<5	5.27	<1	18	11	98	4.62	<10	1.60	1806	2	0.04	2	1560	4	10	<20	558	0.03	<10	151	<10	19	68
43	278255	<0.2	1.49	<5	135	<5	5.15	<1	16	19	436	3.90	< 10	1.34	1728	3	0.04	3	1360	4	15	<20	1027	0.03	<10	129	<10	21	72
44	278256	0.8	1.05	<5	80	<5	4.21	<1	13	33	953	2.46	10	0.85	1388	2	0.03	4		12	10	<20	665	0.02	<10	81	<10	22	70
45	278257	1.0	1.00	5	55	<5	4.24	<1	17	29	966	2.85	10	0.77	1250	3	0.03	4	980	12	5	<20	342	0.02	<10	82	<10	18	70
46	278258	8.0	1.22	<5	65	<5	5.08	<1	13	31	1022	2.87	10	0.94	1617	3		3	980	8	10	<20	428		<10	100	<10	21	72
47	278259	0.8	1.37	<5	75	<5	4.92	<1	13	29	1419	2.96	10	1.14		3		3		4	15	<20	250		<10	126	<10	15	89
48	278260	0.4	1,21	<5	55	<5	3.80	5	13	55	600	3.16	<10	1.04	1280	4		3	940	16	10	<20	207		<10	111	<10	16	209
49	278261	<0.2	1.49	<5	50	<5	4.51	<1	16	14	176	4.08	<10				0.04	3	1380	4	10	<20	405		<10	139	<10	23	70
50	278262	1.0	1.16	<5	35	<5	3.81	<1	14	34	1806	3.00	<10	0.96	1272	2	0.03	4	990	8	<5	<20	224	0.04	<10	100	<10	20	62
																		_		_						488	-45	-	
51	278263	1.0	1.20	<5	45	≺ 5	4.15	<1	16	29	1535		<10			2		3		6	10	<20	257		<10	103	<10	20	64
52	278264	<0.2	1.45	<5	60	<5	5.28	<1	16	15	160	4.36	<10			3		2		2	10	<20	375		<10	150	<10	27	63
53	278265	<0.2	1.62	<5	30	<5	5.03	<1	18	12	121	4.88	<10			3		2		6	5	<20	307		<10	162	<10	18	75
54	278266	<0.2	1.56	<5	40	<5	5.04	<1	19	15	393	4.86	<10		1758	3		3		6	10	<20	318		<10	165	<10	16	72
55	278267	<0.2	1.59	<5	40	<5	5.44	<1	19	10	150	4.86	<10	1.58	1723	2	0.04	2	1620	4	15	<20	328	0.05	<10	166	<10	15	65
56	278268	<0.2	1.69	<5	30	<5	5.27	<1	20	11	157	4.79	<10	-			0.03		1590	10	25	<20	285		<10	155	<10	14	71
57	278269	<0.2	1.58	10	35	<5	5.86	<1	21	14	716	4.93	<10				0.04		1550	6	5	<20	298		<10	174	<10	19	75
58	278270	1.0	1.38	<5	65	≺ 5	6.64	<1	20	30	1721	3.87	20				0.04		1390	<2	10	<20	197		<10	158	<10	14	71
59	278271	<0.2	1.54	5	40	<5	5.03	<1	19	13	296		<10			1		2		8	5	<20	242		<10	166	<10	13	69
60	278272	<0.2	1.58	<5	30	<5	5.02	≺1	19	15	200	4.66	≺10	1.48	1648	2	0.04	2	1410	6	5	<20	253	0.05	<10	176	<10	13	67

Page 2

Et#.	Tag#	Ag	Δ1%	Аş	Ba	Ri	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Рb	Sb	Sn	Sr	TI %	U	٧	w	Υ	Zn
	278273		1.37	<5	40	<5	5.19	≺1	16	19	787	3.99	<10	1.20	1893	3	0.03	3	1010	2	15	<20	201	0.03	<10	240	<10	14	99
61	278274		1.49	-5 5	65	<5	5.38	<1	15	29	734	3.99	<10	1.31	1939	2	0.03	3	900	4	10	<20	158	0.05	<10	272	<10	11	109
62	278274		1.43	<5	80	<5	4.85	<1	15	34	606	4.02	<10	1.31	1846	2	0.04	2	930	4	15	<20	147	0.08	<10	206	<10	4	108
63	278276		1.44	<5	35	<5	5.30	1	18	24	524	4.56	<10	1.39	1846	8	0.03	3	1110	6	15	<20	192	0.05	<10	170	<10	10	93
64			1.62	<5	30	<5	4.55	<1	20	13	175	4.98	<10	1.63	1689	4	0.04	1	1610	6	15	<20	234	0.05	<10	170	<10	15	68
65	278277	4 U.2	1.02	~5	30	~0	4.55		20	.~		4.00																	
	070070	-0.0	4.50	15	30	<5	5.20	<1	19	18	255	4.86	<10	1.58	1812	3	0.04	4	1650	10	20	<20	220	0.07	<10	175	<10	12	77
66	278278		1.59	10	50	<5	5.48	<1	17	21	542	4.12	<10	1.43	1939	3	0.04	3	1300	14	10	<20	166	0.06	<10	175	<10	7	101
67	278279	0.4	1.50		45	<5	5.18	<1	17	31	559	4.33	<10	1.42	1986	4	0.05	2	1000	10	15	<20	130	0.07	<10	221	<10	2	99
68	278280	0.4	1.48	5	40	<5	4.75	<1	20	19	308	4,91	<10	1.51	1832	5	0.04	3	1430	12	10	<20	210	0.07	<10	194	<10	11	84
69	278281	<0.2	1.51	10	30	<5	4.57	<1	19	15	115	5.00	<10	1.63	1678	3	0.04	2	1620	<2	10	<20	268	0.04	<10	178	<10	18	61
70	278282	<0.2	1.55	<5	30	~0	4.57	~ 1	10	1.0	, , ,	4.00	.,,			_													
				-5	70	<5	4.72	1	19	14	103	5.07	<10	1.52	1649	4	0.04	3	1680	8	<5	<20	254	0.05	<10	175	<10	19	63
71	278283	<0.2	1.51	<5 <5	30 50	<5	5.72	<1	15	24	459	4.10	<10	1.33	2228	2	0.04		1300	6	10	<20	146	0.08	<10	166	<10	3	100
72	278284	<0.2	1.52	50	อบ	~3	Q.72	~1	1.0	4.7	700	4.10				_													
QC/DA	TA:																												
Repea																_		_				-00	200	0.04	440	107	<10	14	60
i	278213	<0.2	2.85	15	50	<5	4.05	<1	17	23	68	4.72	<10	3.18	2563	5	0.05	3		4	15	<20	260	0.01	<10	167	<10	21	58
10	278222	< 0.2	2.33	<5	415	5	4.46	<1	10	13	29	4.09	<10	2.03	1933	4	0.04	2	880	88	20	<20	283	<0.01	<10	98			215
19	278231	1.4	3.03	10	55	<5	3.90	<1	28	24	982	4.67	<10	3.22	3902	8	0.03	4		132	45	<20	154	0.02	<10	196	<10	16	110
36	278248	0.6	1.48	<5	40	<5	4.95	<1	20	11	304	4.59	<10	1.28		4	0.03	2		14	5	<20	362	<0.01	<10	141	<10	21	70
45	278257	0.8	1.01	<5	50	<5	4.21	<1	17	29	956	2.86	<10	0.77		3	0.03	5	980	12	10	<20	337	0.02	<10	83	<10	18	
54	278266	0.4	1.59	<5	40	<5	5.09	<1	19	15	396	4.96	<10	1.54		3	0.04	2		6	5	<20	317	0.03	<10	169	<10	16	73 64
71	278283	<0.2	1.53	<5	40	<5	4.81	<1	19	14	104	5.15	<10	1.55	1676	3	0.04	1	1700	6	5	<20	269	0.05	<10	178	<10	17	04
Respi	lt:														00.40	-	0.05	•	4.470		20	≺20	270	0.01	<10	169	<10	15	56
1	278213	<0.2	2.92	15	45	<5	4.12	<1	17	22	71	4.80	<10			6	0.05	3		6	30	<20	381	<0.01	<10	144	<10	23	115
36	278248	0.4	1.50	<5	40	<5	5.23	<1	20	12	287	4.73	<10			4	0.03	3		14	5 5	<20	269		<10	179	<10	17	65
71	278283	<0.2	1.56	<5	35	<5	4.98	<1	20	18	109	5.20	<10	1.57	1708	4	0.04	2	1690	6	5	~20	209	0.05	~10	119	~1U	17	45
Stand	ard:																												
GEO'9		1.0	1.75	65	160	5	1.90	<1	18	66	78	3.63	<10	1.00	654	<1	0.02	24		16	10	≺20	58		<10	69	<10	3	68
GEO'9		1.2	1.80	70	165	<5	1.85	<1	19	64	78	3.74	<10	0.99	654	<1	0.02	25	710	20	<5	<20	58	0.10	<10	71	<10	5	66
GEO'9		1.2	1.85	65	165	5	1.92	<1	19	64	80	3.88	<10	1.04	673	≺1	0.02	25	630	24	5	<20	58	0.11	<10	74	<10	4	68
GEO 8	"	1.4	1.00	00		_		•				-																	

df/256 XLS/97Big Valley fax: 243-2335

cc: fax: 257-3650 stu tennont

Prank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY **ENVIRONMENTAL TESTING**

10841 E. Trains Canada Hwy., R.R. #2, Kamioops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

aco-laca man.

CERTIFICATE OF ASSAY AK 97-2807

BIG VALLEY RESOURCES

BOX 4210

WILLIAMS LAKE, B.C.

V2G 2V2

ATTENTION: LLOYD TATTERSALL/STU TENNANT

No. of samples received: 36

Sample type: CORE

PROJECT #: LLOYD-NORDIK SHIPMENT #: NONE GIVEN

Samples submitted by: BIG VALLEY

24-Apr-97

Post-it Fax Note 7671	E Date Apr 24 Sales 2
TO Fellipud	From
Go/Dept.	Ca.
Phone #	Phone #
Fax #	F3x #

DH 97-108

ET#.	Tag#	m	Au (g/t)	Au (oz/t)_	С⊔ (%)	
1	278285	89.8-92	<.03	<.001	0.01	(UPPEA INTENSINE CONTACT
. 2	278286	92-94	<.03	<.001	0.01	(UPPER INTRUSIDE CONTACT
3	278287		<.03	<.001	0.01	(a 84.0)
4	278288		<.03	<.001	0.01	
5	278289		<.03	< 001	0.01	
б	278290	100-102	<.03	<.001	0.01	
7	278291		<.03	<.001	0.01	
8	278292		<.03	<.001	0.01	
9	278293		<.03	<.001	0.01	
10	278294		<.03	<.001	0.01	
11	278295	110-112	<.03	<.001	0.01	
12	278296		<.03	<.001	0.01	
13	278297		<.03	< 001	<.01	
14	278298		<.03	< .001	0.02	
15	278299		<.03	< 001	0.03	•
16	278300	120-122	<.03	<.001	0.03	
17	278301		<.03	<.001	0.01	
18	278302		<.03	<.001	0.01	•
19	278303		<.03	<.001	0.01	
20	278304		<.03	<.001	0.03	
21	278305	130-132	<.03	<.001	0.01	·

TECH LABORATORIES LTD. Reink J. Pezzotti, A.Sc.T. B.C. Certifled Assayer

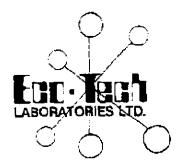
D497-108

BIG VALLEY RESOURCES AK 97-280

15:39

 $0.4\cdot2.4\cdot97$

24-Apr-97


	小		Au	Aυ	Сü	
ET#.	i Tag#	m	(g/t)	(ozit)	(%)	
22	278306	132-134	< 03	<.001	0.02	
23	278307		<.03	<.001	0.02	
24	278308		<.03	<.001	0.02	
25	278309		< 03	<.001	0.03	
28	278310	140-142	< 03	<.001	0.02	
27	278311		< .03	<.081	0.01	
28	278312		< 03	< .001	< 01	
29	278313		< .03	<.001	<.01	
30	278314		<.03	<.001	<.01	
31	278315	150-152	<.03	<.001	<.01	
32	278316		<.03	<.001	<.01	
33	278317		< 03	<.001	<.01	
34	278318		<.03	<.001	<.01	
35	278319		< 03	<.001	<.01	
36	278320	160-162	<.03	<.001	<.01	
	J.					CONTINUES
QC/D/	<u>\TA:</u> ♥					
Respir	it:					
1	278285		<.03	<.001	0.01	
36	278320		< 03	<.001	<.01	
•						
Repea						
1	278285		<.03	< 001	0.01	
10	278294		< 03	<.001	-	
19	278303		<.03	<.001	•	
38	278320		<.03	<.001	-	
Standi	arei.					
STD-N			1.41	0.041	_	
STD-M			1.42	0.041	_	
Mp-IA	'		1.716	9/ 9 4 (1. 44	
MINA			•	-	1,44	

XLS/97 XLS/97Big Variey fax: 243-2335

cc: fax: 257-3650 stu tennant

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

EGO-TEEN LABORATORIES LTD. Page 2

ひね・2つ・ソー

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 874 Phone (250) 573-9700 Fax (250) 573-4657

CERTIFICATE OF ASSAY AK 97-288

BIG VALLEY RESOURCES BOX 4210 WILLIAMS LAKE, B.C. V2G 2V2

ATTENTION: LLOYD TATTERSALLISTU TENNANT

No. of samples received:26

Sample type: CORE

PROJECT #: LLOYD-NORDIK SHIPMENT #: NONE GIVEN Samples submitted by: BIG VALLEY 25-Apr-97

Post-it* Fax Note 76719	E Date Apr 25 pages 2
To Llevel ED	From
Co./Degr. J	Ca.
Phone #	Phone if
Fax.#	Fax #

DH 97-108

	个		Āц	Àц	Cu	
ET #.	tag#	m	(g/t)_	(oz/t)	(%)	
1	278321	162-164	< 03	<.001	<.01	
2	278322		< 03	<.001	0.01	
3	278323		<.03	<.001	<,01	
4	278324		<.03	<.001	<.01	
5	278325	170-172	<.03	<.001	0.01	
6	278326		<.03	<.001	0.01	
7	278327		<.03	<.001	0.01	
8	278328		<.03	<.001	0.06	7_
9	278329		<.03	<.001	0.05	5
10	278330	180-182	<.03	<.001	0.01	
11	278331		<.03	<.001	0.01	
12	278332		<.03	<.001	0.01	
13	278333		<.03	<.001	0.01	
14	278334		<.03	<.001	0.03	
15	278335	190-192	<.03	<.001	0.03	
16	278336		<.03	<.001	0.05	-,
17	278337		<.03	<.001	0.06	
18	278338		<.03	<.001	0.05	
19	278339		<.03	<.001	0.06	•
20	278340	200-202	<.03	<.001	0.06)
21	278341	202-204	<.03	<.C01	0.02	
	1					_

EQO-TECH LABORATORIES LTD. Prank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

BIG VALLEY RESOURCES AK 97-288

	_ "		Au (a/t)	Au (oz/t)	Cu (%)	
ET#.	Tag#	m	(g/t)			كت سيكيب المهمد التينيين
22	278342	204-206	<.03	<.001	0.04	
23	278343		<.03	<.001	0.04	
24	278344		<.03	<.001	0.04	
25	278345	210-212	<.03	<.001	0.02	
26	278346	212-213,4	<.03	<.001	0.01	
		EOH				
						01147 440
QC/D/	ATA:					BH97-108
Respl						
1	278321		<.03	< 001	<.01	
-						
Repea	rt-					
1	278321		<.03	< .001	<.01	
10	278330		<.03	<.001	•	
,,,	2,000					
Stend	and:					
STD-N			1.34	0.039	•	
Mp-IA				~	1.44	
Mh-ru						

EGO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/97 XLS/97Big Valley fax: 243-2335

cc: fax: 257-3650 stu tennant

25-Apr-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 8T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 97-280

201-46 ME

BIG VALLEY RESOURCES BOX 4210 WILLIAMS LAKE, B.C. V2G 2V2

ATTENTION: LLOYD TATTERSALL/STU TENNANT

No. of samples received: 36
Sample type: CORE
PROJECT #: (LOYD-NORDIK
SHIPMENT #: NONE GIVEN
Samples submitted by: BIG VALLEY

Values in ppm unless otherwise reported

• • • • • • • • • • • • • • • • • • • •				•																									
Et #.	Tag#	Ag	Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mrs	Мо	Na %	NI	P	Pb	Sb	\$n	Sr	Ti %	U	٧	W	<u> Y</u>	Zn
1	278285	<0.2	1.02	<5	145	<5	2.72	<1	7	37	130	3.21	<10	0.58	961	4	0.05	4	910	14	15	<20	149	0.01	<10	98	<10	16	86
2	278286	<0.2	1.01	15	55	<5	5.08	<1	10	17	61	3.05	<10		1479	5	0.04	4	780	34	15	<20		<0.01	<10	78	<10	15	66
3	278287	0.4	1.21	15	50	<5	4.61	<1	11	32	64	3.33	<10		1350	5	0.04	4	800	32	15	<20	142	0.01	<10	92	<10	17	85
4	278288	<0.2	1.21	15	65	<5	3.57	<1	12	34	71	3.35	<10		1189	4	0.04	4	880	12	20	<20	123	0.02	<10	102	<10	16	70
5	278289	<0.2	1.21	15	55	<5	3.46	<1	12	34	61	3.41	<10	1.02	1131	4	0.05	3	940	14	15	<20	115	0.01	<10	99	<10	16	93
6	278290	= 0.2	1.05	5	65	<5	3.53	<1	12	38	58	3.08	<10	0.79	1074	3	0.05	4	880	14	25	<20		<0.01	<10	96	<10	14	79
7	278291	<0.2		10	70	<5	3.72	<1	11	31	68	3.08	<10	0.80	1107	4	0.05	4	900	16	20	<20	124	0.01	<10	96	<10	15	59
8	278292	<0.2		15	75	<5	4.86	<1	11	38	57	3.23	<10	0.94	1580	2	0.05	5	870	22	20	<20	143	0.01	<10	105	<10	20	63
9	278293	<0.2	1.28	<5	65	10	3.25	<1	12	33	53	3.54	<10	1.25	1373	4	0.05	4	930	26	20	<20	122	0.02	<10	116	<10	16	79
10	278294	<0.2	1.39	<5	65	<5	2.74	<1	12	35	61	3.42	<10	1.33	1432	4	0.05	4	930	28	20	<20	129	0.01	<10	123	<10	15	84
11	278295	<0.2	1.26	<5	60	<5	3.53	<1	12	30	75	3.30	<10	1.20	1237	5	0.05	5	890	20	30	<20	131	0.01	<10	133	<10	15	55
12	278296	<0.2		<5	155	10	6.71	<1	49	409	67	5.38	<10	9.22	2208	<1	0.07	522	1380	<2	40	<20	605	0.17	<10	145	<10	11	51
13	278297	<0.2		<5	255	20	2.85	<1	55	343	57	5.52	<10	>10	1387	<1	0.12	642	1520	2	55	≺20	1016	0.20	<10	131	<10	8	44
14	278298	<0.2		50	150	<5	7.15	3	38	167	180	5.08	10	6.56	2381	<1	0.08	297	1730	112	50	<20	563	0.16	<10	172	<10	17	369
15	278299	0.8	1.15	15	70	<5	5.10	8	16	23	348	4.32	10	0.99	1654	5	0.04	7	1140	234	25	<20	119	0.09	<10	134	<10	13	764
16	278300	<0.2	1.67	10	60	<5	8.29	<1	18	18	309	4.69	20	1.41	2566	5	0.05	4	1440	28	25	<20	182	0.09	<10	207	<10	17	80
17	278301	<0.2		35	90	<5	5.78	<1	24	69	194	5.08	<10	1.66	1849	<1	0.23	21	1810	32	15	<20	230	0.23	<10	186	<10	11	94
18	278302	<0.2		40	75	5	3.75	<1	31	107	147	6.14	<10	2.89	1258	<1	0.37	40	2110	12	45	<20	227	0.25	<10	209	<10	7	66
19	278303	<0.2		45	105	<5	2.56	<1	29	99	157	5.92	<10	2.67	1535	<1	0.79	36	2100	14	35	<20	318	0.24	<10	202	<10	9	70
20	278304	<0.2		10	80	<5	6.21	<1	17	19	298	4.26	10	1.13	2000	5	0.05	2	1240	36	10	<20	190	0.13	<10	175	<10	13	143
	27000				• • •																								
21	278305	<0.2	0.95	<5	80	<5	4.65	1	12	26	209	2.91	<10			2		2		42	15	<20	158		<10	107	<10 <10	17 17	125 65
22	278306	<0.2	1.06	<5	85	<5		<1	11	18	211	2.90	10			2	0.03	2		24	20	<20	186	0.10	<10	105	<10	14	87
23	278307	<0.2	1.04	10	80	<5	5.26	<1	12	48	238	3.37	10			6	0.04	. 3		16	20	<20	192 186		<10	123 123	<10	12	70
24	278308	0.2	1,14	<5	100	<5		<1	13	22	249	3.55	10			7	0.03	3		18	20	<20 <20	231	0.09	<10 <10	197	<10	12	107
25	278309	0.2	1,54	<5	100	<\$	7.94	3	20	23	340	5.07	10	1.54 F	2587 age 1	8	0.04	3	1540	22	25	~20	231	U. IJ	~10	197	~10	12	107

BIG VALLEY RESOURCES AK 97-280

ICP CERTIFICATE OF ANALYSIS AK 97-280

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Aα	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	278310	<0.2	1.59	5	85	<5	5.97	<1	19	23	280	4.64	10	1.41	2151	5	0.04	4	1410	24	25	<20	227	0.17	<10	171	<10	14	123
27	278311	<0.2	1.42	5	80	<5	5.33	< 1	16	30	190	4.05	10	1,31	1906	7	0.04	3	1320	20	10	<20	187	0.07	<10	151	<10	13	89
28	278312	<0.2	1.06	20	60	<5	3.83	<1	16	52	89	3.63	10	1.21	1113	12	0.05	21	990	34	30	<20	150	0.02	<10	96	<10	10	68
29	278313	< 0.2	1.31	20	75	5	4.06	<1	16	82	49	3.81	<10	1.58	1245	5	0.05	39	1040	30	30	<20	173	0.04	<10	106	<10	11	78
30	278314	0.2	1.09	15	70	10	3.01	<1	11	47	44	3.26	<10	0.96	1085	9	0.04	4	910	24	15	<20	143	<0.01	<10	101	<10	10	89
31	278315	<0.2	0.99	10	85	<5	3.56	<1	11	37	59	3.11	<10	0.79	1118	8	0.04	3	880	24	15	<20		<0.01	<10	100	<10	10	98
32	278316	0.2	1.18	<5	115	<5	3.87	<1	11	42	61	3.36	<10	1.01	1339	9	0.03	4	930	16	15	<20		<0.01	<10	108	<10	11	103
33	278317	0.2	1.16	<5	205	<5	4.24	<1	9	39	47	3.15	<10	0.84	1364	10	0.04	5	870	12	25	<20		<0.01	<10	98	<10	14	85
34	278318	<0.2	0.98	<5	105	<5	3.71	<1	10	45	50	3.08	<10	0.69	1115	10	0.04	4	890	16	10	<20		<0.01	<10	97	<10	12	75
35	278319	< 0.2	0.98	10	60	<5	3.25	<1	11	40	47	3.32	<10	0.60	931	9	0.03	4	950	18	5	<20	158	<0.01	<10	88	<10	8	90
36	278320	<0.2	0.92	15	65	<5	3.44	<1	12	55	42	3.32	<10	0.67	974	9	0.04	5	890	20	15	<20	132	<0.01	<10	101	<10	11	94
OCIDAT Repeat																													
'n	278285	<0.2	1.07	<5	155	<5	2.80	<1	6	33	130	3.29	<10	0.59	986	3	0.05	4	950	10	10	<20	151	0.02	<10	100	<10	16	80
10	278294	<0.2	1.40	<5	65	<5	2.76	<1	12	36	60	3.47	<10	1.33	1443	4	0.05	4	960	30	20	<20	127	0.02	<10	124	<10	15	86
19	278303	<0.2	3.40	40	105	5	2.60	<1	30	101	156	6.01	<10	2.64	1547	<1	0.78	35	2140	16	30	<20 -20	311	0.26	<10 <10	203 101	<10 <10	6 10	73 9 6
36	278320	0.2	0.92	10	70	<5	3.43	<1	11	55	41	3.30	<10	0.66	969	9	0.04	4	880	20	15	<20	134	<0.01	~10	iui	-10	10	50
Respiit								•	_					0.50	4005		0.04	3	nen	14	10	<20	144	0.01	<10	97	<10	15	81
R/S 1	278285	<0.2	0.97	<5	145	<5	2.87	<1	7	32	120	3.34	<10	0.58		3	0.04	_	960 910	14	15	<20	133		<10	100	<10	10	98
R/S 36	278320	<0.2	0.91	10	75	5	3.47	<1	11	50	37	3.32	<10	0.66	975	8	0.04	5	910	18	15	~20	133	~0.01	~10	100	~10	10	30
Standar											0.0	4.04	-40	4.00	707	4 در	0.02	22	700	20	5	<20	69	0.13	<10	82	< 10	8	79
GEO:97		1.2		65	165	<5	1.87	<1	21	65	83	4.31	<10	1.09		<1		22 24	710	20	5 5	<20	68		<10	82	<10	7	80
GE0'97	•	1.2	1.82	70	165	5	1.86	<1	21	65	82	4.27	<10	1.07	696	<1	0.02	44	7 (0	~	a a	~20	Ψ¢	0.13	-10	U.E.	-10	•	

df/280 XLS/97Big Valley /ax: 243-2335

cc: fax: 257-3650 stu tennant

ECO-TECH LABORATORIES LTD.

Perank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer