

#### GEOCHEMISTRY REPORT

#### HOPEFUL #1 GROUP

Skeena Mining Division Latitude: 55°41' N Longitude: 129°44'W NTS: 103 P/12

By: D.A. Visagie, P. Geo. December 15, 1997

Owner/Operator: International Northair Mines Ltd. 860-625 Howe Street Vancouver, B.C. V6C-2T6

> 4. 総設計報信約です。「1000001気」がならなど計 したいのです。



### TABLE OF CONTENTS

| 1.0  | INTRODUCTION                       | I |
|------|------------------------------------|---|
| 2.0  | LOCATION AND ACCESS                | 1 |
| 3.0  | CLIMATE, TOPOGRAPHY AND VEGETATION | 1 |
| 4.0  | PROPERTY STATUS                    | 1 |
| 5.0  | PROPERTY HISTORY                   | 1 |
| 6.0  | REGIONAL GEOLOGY                   | 4 |
| 7.0  | PROPERTY GEOLOGY                   | 4 |
| 8.0  | 1997 WORK PROGRAM                  | 4 |
| 9.0  | GEOCHEMISTRY                       | 4 |
|      | 9.1 Field Procedure                | 4 |
|      | 9.2 Assay Procedure                | 6 |
| 10.0 | ASSAY RESULTS                      | 6 |
| 11.0 | SUMMARY AND CONCLUSIONS            | 6 |
| 12.0 | RECOMMENDATIONS                    | 6 |
| 13.0 | COST STATEMENT                     | 7 |
| 14.0 | STATEMENT OF QUALIFICATIONS        | 8 |

#### LIST OF FIGURES

| 1. | PROPERTY LOCATION                 | 2                 |
|----|-----------------------------------|-------------------|
| 2. | CLAIM STATUS                      | 3                 |
| 3. | REGIONAL GEOLOGY                  | 4                 |
| 4. | PROPERTY GEOLOGY                  | at back of report |
| 5. | SAMPLE LOCATIONS AND GOLD RESULTS | "                 |

### APPENDICES

| 1. | SAMPLE DESCRIPTION   | 9  |
|----|----------------------|----|
| 2. | ASSAY CERTICIFICATES | 10 |

#### 1.0 INTRODUCTION

International Northair Mines Ltd.'s Hopeful #1 property is located 32 kilometers southwest of Stewart, B.C. The property was staked in 1995 to cover an area of prospective Lower Jurassic Hazelton Group volcanics. Geochemical sampling, completed in 1996, showed the Hope 3 & 4 claims to host anomalous precious and base metal stream sediment values. In 1997, a 2 man crew spent 6 man-days attempting to locate the source of these values. The work, completed between July 4 and August 15, 1997, resulted in the taking of 16 rock chip samples. The program was hampered by inclement weather and steep topographic conditions. The work did not outline any economic zones of precious or base metals. The cost of the program is calculated to be \$3689.

1.

#### 2.0 LOCATION AND ACCESS (Figure 1)

The property is located 32 km southeast of Stewart, B.C. It is centred at 55° 41'N, 129° 43 W, occurring on NTS sheet 103 P/12. Access to the property is by helicopter from Stewart.

#### 3.0 CLIMATE, TOPOGRAPHY AND VEGETATION

Climate in the area is typical of the northern Coast Range with summers being mild and wet while winters are cool and wet. Temperatures vary from a minimum to  $-25^{\circ}$ C in the winter to  $+25^{\circ}$ C in the summer.

Topography on the property is rugged and steep. Elevations on the property range from 800 to 1800 metres. U-shaped glaciated valleys are common throughout.

At higher elevation, >1000 metres, sub-alpine vegetation consisting of alpine heather and stunted spruce and fir is common. Below 1000 metres, the vegetation is thick consisting of slide alder, devil's club blueberry bushes, spruce, fir, hemlock and cedar forests.

#### 4.0 **PROPERTY STATUS (Figure 2)**

The Hopeful #1 Group, upon acceptance of this report, will consists of the following:

| <u>Claim Name</u> | Record No. | Expiry Date  | <u>Units</u> |
|-------------------|------------|--------------|--------------|
| Hope 3            | 341438     | Oct 15, 1998 | 18           |
| Hope 4            | 341439     | Oct 15, 1998 | 18           |

All claims occur within the Skeena Mining Division and are 100% held by International Northair Mines.

#### 5.0 **PROPERTY HISTORY**

The Hopeful Claim Group occurs within an area host to many past and present producers and promising exploration prospects.

Exploration, completed at the turn of the century in the Kitsault River area, 12 kilometers to the east, resulted in the discovery of several sliver-lead-zinc stratabound volcanogenic deposits including the past producing Dolly Varden and Torbit Mines. Production at the Dolly Varden Mine was 33,434 tonnes containing 1,300,000 ounces of silver, 3,200 tonnes of copper and 15,400 tonnes of lead. At the Torbit 1,251,339 tonnes were mined producing 18,600,000 ounces of silver and 5,000 tonnes of lead.

At the Georgie River Property, located 22 kilometers to the northwest visible gold and electrum occur in association with galena within narrow quartz veins. In 1937 limited production was achieved resulting in the recovery of 10,233 grams of gold, 12,752 grams of silver and 3,312 kilograms of silver from 454 tonnes of ore.





ω



Twelve kilometres to the north-northwest is Teuton Resources Corporation/Minvita Enterprises Clone goldcobalt prospect. Mineralization, consisting of shear controlled, hematitic breccia, has been traced for 1.5 km with widths variable to 8 metres.

Royal Oak Mining Corporation's Red Mountain gold deposit is located 30 km to the north. Exploration at the property has outlined a Geological Reserve of approximately 800,000 ounces of gold at an average grade of 0.30 opt.

#### 6.0 **REGIONAL GEOLOGY (Figure 3)**

The Hopeful property occurs along the western edge of a broad, north-northwest trending volcano-plutonic belt composed of Upper Stuhini and Lower Jurassic Hazelton Group rocks. This belt, termed "Stewart Complex" by Grove (1986) forms part of Stikinia terrane. The belt has been traced for 150 km from near Anyox in the south to the Iskut River in the north. It hosts several past and presently producing gold-silver mines including the Snip, Eskay Creek and Premier. To the west, the Complex is bordered by Cretaceous Coast Plutonic Complex rocks while to the east it is overlain by Middle to Upper Jurassic Bowser Lake Group sedimentary rocks.

#### 7.0 **PROPERTY GEOLOGY (Figure 4)**

Reconnaissance mapping was completed in 1996. The mapping showed the property to be primarily underlain by Coast Mountain Plutonic Complex granodiorite to diorite. Minor feldspar porphyry is present. Epidote-chlorite veining is common. In the southwest corner of the Hope #2 claim hornfelsed siltsones and argillites occur in which minor gossan is developed.

At the Hill Showing an up to 3 metre wide, 100 metre long north east trending, steeply north dipping, quartz vein was located. Vein mineralogy consists o a quartz with minor carbonate gangue in which trace to 1%, disseminated pyrite and chalcopyrite occur. Malachite staining randomly occurs. Along strike the vein is overburden covered.

#### 8 1997 WORK PROGRAM

The 1997 work program consisted of the prospecting and sampling of prospective source areas. The work was completed by a two man crew consisting of:

| Dave Visagie | Senior Geologist |
|--------------|------------------|
| Jareb Sims   | Labourer         |

The evaluation was completed on July 21 and 26, 1997.

#### 9.0 **GEOCHEMISTRY** (Figure 5)

All 16 rock chip samples were sent to Chemex Labs, 212 Brooksbank Avenue, North Vancouver for gold and I.C.P analysis. The sample locations and gold values are plotted on Figure 5. Appendix 1 is a listing of the sample descriptions while Appendix 2 lists the assay results.

#### 9.1 Field Procedure

Grab and measured width rock chip samples were collected using a hammer and moil, identified, stored in plastic sample bags then dried. The samples were then freighted to Vancouver for analysis.

#### 9.2 Assay Procedure

The following is the procedure used in the analysis of the samples.

Samples dried (if necessary), crushed or sieved to pulp size and pulverized to approximately -150 mesh.

For the 32 element I.C.P. analysis a 10 gram sample is digested with 3 ml of 3:1:3 nitric acid to hydrochloric acid to water at 90°C for 1.5 hours. The sample is then diluted to 20 mls with demineralized water and analyzed. The leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, Sb, Ti, U and W.

For gold analysis by atomic absorption a 10 gram sample that has been ignited overnight at  $600^{\circ}$ C is digested with hot aqua regia and the clear solution obtained is extracted with Methyl Isobutyl Ketone (MIBK). Gold is determined in the MIBK extract by atomic absorption using a background detection (limit 5 ppb).

#### 10.0 ASSAY RESULTS

Of the 16 samples taken and submitted for assessment only 1 returned a value of >30 ppb Au. The sample, 33017, is a grab sample of locally derived float. The sample contains 15% disseminated pyrite within a granodiorite host. Base metal values are generally low with the best sample, returning 968 ppm Cu over 0.5 metre, being taken from a portion of the Hill Showing Vein.

#### 11.0 SUMMARY AND CONCLUSIONS

Two days of labour were spent evaluating an area of anomalous stream sediment and rock chip geochemistry. The work resulted in the evaluation of two areas. The prospecting and sampling led to the discovery of the Hill Showing. The Hill Showing is a 100 metre long and open, up to 3 metre wide quartz vein in which minor, disseminated, chalcopyrite and pyrite occur. Assay results of chip samples taken from the Hill Showing and of other quartz vein systems located in the area did not outline any significant zones of precious or base metal mineralization. Elsewhere on the property precious and base metal values are non-economic.

#### 12. RECOMMENDATIONS

It is recommended that no further work be completed on the Hopeful #1 Property.

### 13.0 COST STATEMENT

•

| 1. | Labour (July 21, 26)                                                                                                                              |           | \$780         |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
|    | D.Visagie 1.5 days @ \$370/day<br>J. Sims 1.5 days @ \$150/day                                                                                    |           |               |
| 2. | Room & Board<br>1.5 man-days @ \$100/day                                                                                                          |           | <b>\$</b> 150 |
| 3. | Transportation<br>1.5 days truck rental @ \$100/day<br>Helicopter: July 21-1.7 hours<br>July 26 <u>-0.4</u> hours<br>Total 2.1 hours @ \$750/hour |           | \$1725        |
| 4. | Assaying<br>16 Samples @ \$18.70/sample<br>Geochem ring to approx -150 mesh<br>0-3 kg crush and split<br>I.C.P-32<br>Au pph FA + AA               |           | \$299         |
| 5. | Report<br>includes Xeroxing, writing and drafting                                                                                                 |           | \$400         |
|    |                                                                                                                                                   | Sub-total | \$3354        |
| б. | Management Fee<br>@ 10%                                                                                                                           |           | \$ 335        |
|    |                                                                                                                                                   | TOTAL     | \$3689        |

~

#### 14.0 STATEMENT OF QUALIFICATIONS

I, David A. Visagie do hereby certify that:

- I. I graduated in 1976 from the University of British Columbia with a Bachelor of Science Degree Main Geology.
- 2. Since graduating I have continuously been employed in the mining industry
- 3. I am a registered member of the Association of Professional Engineers and Geoscientise of British Columbia.
- 4. For the last eight years I have been employed by The Northair Group as a Senior Geologist.
- 5. I supervised the exploration program completed on the Hopeful #1 Group.

Dave Visagie, P. Geo.

Dated December 17, 1997 at Vancouver, B.C.

Senior Geologist, International Northair Mines





Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

NORTHAIR MINES LIMITED

860 - 625 HOWE ST. VANCOUVER, B.C. V6C 2T6

.

Page Nume 1-B Total Pages :2 Certificate Date: 10-AUG-97 invoice No. : 19735125 P.O. Number : Account :K

Project : STEWART Comments: ATTN: MARK PREFONTAINE CC: DAVID VISAGIE

|                    |            |             | -         |           |         |           |             |           |           |           | CERTIFICATE OF ANALYSIS |         |           |          |          |          | A9735125  |   |      |
|--------------------|------------|-------------|-----------|-----------|---------|-----------|-------------|-----------|-----------|-----------|-------------------------|---------|-----------|----------|----------|----------|-----------|---|------|
| SAMPLE             | PR         | EP<br>DE    | Mn<br>ppm | Mo<br>ppm | Na<br>% | Ni<br>ppm | P<br>ppm    | Pb<br>ppm | Sb<br>ppm | Sc<br>ppm | Sr<br>ppm               | Ti<br>% | T1<br>ppm | Ū<br>D   | V<br>ppm | W<br>mqq | Zn<br>ppm |   | i    |
| M330001            | 205        | 226         | 545       | 1         | 0.06    | 5         | 1180        | 4         | < 2       | 1         | 38                      | 0.08    | < 10      | < 10     | 58       | < 10     | 58        |   |      |
| M330002            | 205        | 226         | 235       | 2         | 0.07    | 2         | 1270        | 4         | < 2       | 1         | 42                      | 0.05    | < 10      | < 10     | 36       | < 10     | 24        |   |      |
| M330003            | 205        | 226         | 450       | < 1       | 0.11    | 6         | 1160        | 2         | < 2       | 1         | 54                      | 0.08    | < 10      | < 10     | 53       | < 10     | 48        |   |      |
| M330004            | 205        | 226         | 170       | 3         | 0.03    | 5         | 1440        | 4         | < 2       | 1         | 52                      | 0.10    | < 10      | < 10     | 35       | < 10     | 24        |   |      |
| M330005            | 205        | 226         | 975       | 9         | 0.13    | 2         | 490         | 10        | < 2       | 8         | 53                      | 0.17    | < 10      | < 10     | 93       | < 10     | 242       |   |      |
| M330006            | 205        | 226         | 890       | < 1       | 0.09    | 5         | 1080        | 18        | < 2       | 3         | 53                      | 0.14    | < 10      | < 10     | 111      | < 10     | 98        |   | ···· |
| M330007            | 205        | 226         | 395       | 1         | 0.10    | 3         | 1060        | 6         | < 2       | 1         | 53                      | 0.08    | < 10      | < 10     | 40       | < 10     | 28        |   |      |
| M330008            | 205        | 226         | 495       | < 1       | < 0.01  | 4         | 770         | 4         | < 2       | 2         | 98                      | 0.17    | < 10      | < 10     | 50       | < 10     | 52        |   |      |
| M330009            | 205        | 220         | 1005      | < 1       | 0.02    | 6         | 1030        | 2         | < 2       | 4         | 52                      | 0.15    | < 10      | < 10     | 92       | < 10     | 74        |   |      |
| M330010            | 405        | 440         | 510       | 4         | 0.05    | 1         | 1280        | 8         | < 2       | 2         | 24                      | 0.10    | < 10      | < 10     | 56       | < 10     | 34        |   |      |
| M330011            | 205        | 226         | 620       | 2         | 0.05    | 4         | 1220        | 8         | < 2       | 1         | 32                      | 0.08    | < 10      | < 10     | 54       | < 10     | 64        |   |      |
| M330012            | 205        | 226         | 410       | 1         | 0.06    | 5         | 1230        | 8         | < 2       | 1         | 36                      | 0.09    | < 10      | < 10     | 47       | < 10     | 36        |   |      |
| M330013            | 205        | 226         | 340       | < 1       | < 0.01  | 2         | 320         | 2         | < 2       | < 1       | 52                      | 0.05    | < 10      | < 10     | 16       | < 10     | 28        |   |      |
| M330014            | 205        | 226         | 1090      | < 1       | < 0.01  | 1         | 690         | < 2       | < 2       | < 1       | 70                      | 0.05    | < 10      | < 10     | 15       | < 10     | 34        |   |      |
| M330015            | 205        | 226         | 1180      | 1         | < 0.01  | 5         | 630         | 6         | < 2       | 1         | 22                      | 0.03    | < 10      | < 10     | 18       | < 10     | 62        |   |      |
| M330016            | 205        | 226         | 865       | 10        | < 0.01  | 7         | 1040        | 90        | < 2       | < 1       | 7                       | 0.03    | < 10      | < 10     | 14       | < 10     | 144       |   |      |
| M330017            | 205        | 226         | 870       | 53        | 0.01    | 2         | <b>90</b> 0 | 10        | < 2       | 2         | 7 -                     | < 0.01  | < 10      | 10       | 55       | < 10     | 54        |   |      |
| M330018            | 205        | 226         | 680       | < 1       | < 0.01  | 1         | 170         | 2         | < 2       | < 1       | 176 -                   | < 0.01  | < 10      | < 10     | 14       | < 10     | 18        |   |      |
| M330019            | 205        | 226         | 340       | 1         | < 0.01  | 7         | 280         | 348       | 48        | 4         | 72 .                    | < 0.01  | < 10      | < 10     | 27       | < 10     | 104       |   |      |
| M330020            | 205        | 440         | 4/5       | 4         | 0.01    | 14        | 600         | 4         | < 2       | 3         | 15                      | 0.09    | < 10      | < 10     | 62       | < 10     | 60        |   |      |
| M330021            | 205        | 226         | 415       | 1         | < 0.01  | 21        | 380         | 2         | < 2       | 1         | 12                      | 0.05    | < 10      | < 10     | 28       | < 10     | 204       | · |      |
| N330022            | 205        | 226         | 805       | 19        | 0.03    | 115       | <b>96</b> 0 | 8         | < 2       | 4         | 23                      | 0.11    | < 10      | < 10     | 149      | < 10     | 264       |   |      |
| M330023            | 205        | 226         | 300       | 4         | 0.02    | 44        | 500         | 2         | < 2       | 3         | 13                      | 0.10    | < 10      | < 10     | 66       | < 10     | 102       |   |      |
| M330036<br>M330037 | 205        | 326         | 310       | 4         | 0.01    | 1         | 230         | 136       | < 2       | 1         | 4 ·                     | < 0.01  | < 10      | < 10     | 7        | < 10     | 14        |   |      |
| M330037            |            |             | NOTREA    | NOTRCO    | NOTHCO  | NOTREA 1  | Notred      | NotRed    | NotRed M  | NotRed N  | iotRcd I                | NotRed  | NotRed 1  | NotRed N | lotRed 1 | NotRed   | NotRed    |   |      |
| M330038            | 205        | 226         | 400       | 18        | 0,01    | 2         | 470         | 10        | < 2       | 2         | 20                      | 0.09    | < 10      | < 10     | 32       | < 10     | 34        |   |      |
| M330039            | 205        | 226         | 1230      | 8         | < 0.01  | 1         | 30          | 294       | < 2       | < 1       | 4 -                     | < 0.01  | < 10      | < 10     | 12       | < 10     | 9050      |   |      |
| M330040            | 205        | 226         | 775       | < 1       | 0.01    | 13        | 620         | 2         | < 2       | 3         | 40                      | 0.08    | < 10      | < 10     | 27       | < 10     | 64        |   |      |
| NJJUU41<br>NJJUU41 | 205        | 146         | 425       | < 1       | < 0.01  | 9         | 110         | 2         | < 2       | < 1       | 29                      | 0.01    | < 10      | < 10     | 7        | < 10     | 54        |   |      |
| M330042            | 203        | 440         | 100       | < 1       | < 0.01  | < 1       | 110         | < 2       | < 2       | < 1       | 183 -                   | 0.01    | < 10      | < 10     | 2        | < 10     | 14        |   |      |
| M330043            | 205        | 226         | 1135      | 1         | < 0.01  | 4         | 380         | 6         | < 2       | < 1       | 64                      | 0.03    | < 10      | < 10     | 9        | < 10     | 42        |   |      |
| M330044            | 205        | 226         | 955       | 1         | < 0.01  | 6         | 650         | 10        | < 2       | < 1       | 75                      | 0.03    | < 10      | < 10     | 9        | < 10     | 50        |   |      |
| M330045            | 205        | 226         | 1720      | 1         | < 0.01  | 5         | 590         | 14        | < 2       | 1         | 43                      | 0.04    | < 10      | < 10     | 19       | < 10     | 72        |   |      |
| M330046            | 205        | 226         | 730       | < 1       | < 0.01  | 5         | 780         | 14        | < 2       | < 1       | 8                       | 0,03    | < 10      | < 10     | 6        | < 10     | 14        |   |      |
| M33004/            | 205        | 226         | 535       | < 1       | 0.01    | 2         | 380         | < 2       | < 2       | 2         | 19                      | 0.08    | < 10      | < 10     | 32       | < 10     | 38        |   |      |
| M330048            | 205        | 226         | 705       | < 1       | 0.01    | 2         | 590         | < 2       | < 2       | 2         | 31                      | 0.11    | < 10      | < 10     | 42       | < 10     | 56        |   |      |
| M330049            | 205        | 226         | 325       | < 1       | < 0.01  | 2         | 110         | < 2       | < 2       | 1         | 6                       | 0.03    | < 10      | < 10     | 17       | < 10     | 20        |   |      |
| MJ30050            | 205        | 226         | 360       | < 1       | 0.01    | 1         | 210         | 2         | < 2       | < 1       | 11                      | 0.05    | < 10      | < 10     | 13       | < 10     | 24        |   |      |
| MJJ0051            | 205        | 226         | 920       | < 1       | < 0.01  | 2         | < 10        | < 2       | < 2       | < 1       | 3 -                     | 0.01    | < 10      | < 10     | 26       | < 10     | 80        |   |      |
| 01330V9 <u>8</u>   | 205        | <b>4</b> 26 | 225       | < 1       | U.U5    | < 1       | 560         | < 2       | < 2       | < 1       | 27                      | 0.04    | < 10      | < 10     | 13       | < 10     | 36        |   |      |
|                    | - <u>•</u> | _           |           |           |         |           |             |           | <u>u</u>  |           | ·                       | •       |           |          |          |          |           |   | j    |

CERTIFICATION:

a-



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 NORTHAIR MINES LIMITED

860 - 625 HOWE ST. VANCOUVER, B.C. V6C 2T6

ı.

Page Num⊾ 2-A Total Pages :2 Certificate Date: 10-AUG-97 Invoice No. :19735125 P.O. Number : Account ;K

Project : STEWART Comments: ATTN: MARK PREFONTAINE CC: DAVID VISAGIE

# CERTIFICATE OF ANALYSIS A9735125

|        | SAMPLE                        | PREP<br>CODE                  | Au ppb<br>FA+AA | Au FA<br>g/t | Ag<br>ppm         | <u>лі</u><br>%       | As<br>ppm       | Ba<br>ppm          | Be<br>ppm               | Bi<br>ppm         | Ca<br>%              | Cđ<br>ppm               | Co<br>ppm   | Cr<br>ppm       | Cu<br>ppm       | Fe<br>%              | Ga<br>ppm            | Hg<br>ppm         | K<br>%               | La<br>ppm            | Mg<br>%              |
|--------|-------------------------------|-------------------------------|-----------------|--------------|-------------------|----------------------|-----------------|--------------------|-------------------------|-------------------|----------------------|-------------------------|-------------|-----------------|-----------------|----------------------|----------------------|-------------------|----------------------|----------------------|----------------------|
| 5. Xro | M330053<br>M330054<br>M330055 | 205 226<br>205 226<br>205 226 | ⊀ 5<br>15<br>5  |              | 0.2<br>0.2<br>0.6 | 0.51<br>0.28<br>0.45 | < 2<br>< 2<br>8 | 210<br>260<br>1920 | < 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2 | 0.07<br>0.03<br>0.22 | < 0.5<br>< 0.5<br>< 0.5 | 1<br>3<br>7 | 105<br>66<br>44 | 53<br>34<br>156 | 1.07<br>0.98<br>0.74 | < 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1 | 0.07<br>0.07<br>0.06 | < 10<br>< 10<br>< 10 | 0.12<br>0.03<br>0.24 |
|        |                               |                               |                 |              |                   |                      |                 |                    |                         |                   |                      |                         |             |                 |                 |                      |                      |                   |                      |                      |                      |
|        |                               |                               |                 |              |                   |                      |                 |                    |                         |                   |                      |                         |             |                 |                 |                      |                      |                   |                      |                      |                      |
|        |                               |                               |                 |              |                   |                      |                 |                    |                         |                   |                      |                         |             |                 |                 |                      |                      |                   |                      |                      |                      |
|        |                               |                               |                 |              |                   |                      |                 |                    |                         |                   |                      |                         |             |                 |                 |                      |                      |                   |                      |                      | :                    |
| ,      |                               |                               |                 |              |                   |                      |                 |                    |                         |                   |                      |                         |             |                 |                 |                      |                      |                   |                      |                      |                      |
|        |                               |                               |                 |              |                   |                      |                 |                    |                         |                   |                      |                         |             |                 |                 |                      |                      |                   |                      |                      |                      |
|        |                               |                               |                 |              |                   |                      |                 |                    |                         |                   |                      |                         |             |                 |                 |                      |                      |                   |                      |                      |                      |
|        |                               |                               |                 |              |                   |                      |                 |                    |                         |                   |                      |                         |             |                 |                 |                      |                      |                   |                      |                      |                      |
|        |                               |                               |                 |              |                   |                      |                 |                    |                         |                   |                      |                         |             |                 |                 |                      |                      |                   |                      |                      |                      |
|        |                               |                               |                 |              |                   |                      |                 |                    |                         |                   |                      |                         |             |                 |                 |                      |                      |                   |                      |                      |                      |

. .



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 NORTHAIR MINES LIMITED

860 - 625 HOWE ST. VANCOUVER, B.C. V6C 2T6

.

Page Num.:2-BTotal Pages:2Certificate Date:10-AUG-97Invoice No.:19735125P.O. Number:Account:K

Project : STEWART Comments: ATTN: MARK PREFONTAINE CC: DAVID VISAGIE

| ······································ |                                 |                  |                     |                      |             |                 |               |                 |                   | CERTIFICATE OF ANALYSIS |         |             |                              |             |                      | <b>\9735125</b>     |  |  |
|----------------------------------------|---------------------------------|------------------|---------------------|----------------------|-------------|-----------------|---------------|-----------------|-------------------|-------------------------|---------|-------------|------------------------------|-------------|----------------------|---------------------|--|--|
| SAMPLE                                 | PREP<br>CODE                    | Mn<br>ppm        | Mo<br>ppm           | Na<br>%              | Ni<br>ppm   | P<br>ppm        | Pb<br>ppm     | Sb<br>ppm       | Sc<br>p <b>pm</b> | Sr<br>ppm               | ri<br>% | T1<br>ppm   | U<br>Mgq                     | V<br>ppm    | W<br>ppm             | Zn<br>ppm           |  |  |
| M330053<br>M330054<br>M330055          | 205<br>205<br>205<br>205<br>226 | 110<br>45<br>315 | < 1<br>< 1<br>< 1 < | 0.03<br>0.03<br>0.01 | 1<br>1<br>2 | 90<br>30<br>460 | 2<br>2<br>142 | < 2<br>< 2<br>2 | <pre></pre>       | 19<br>11 -<br>106       | 0.03    | <pre></pre> | < 10<br>< 10<br>< 10<br>< 10 | 4<br>1<br>5 | < 10<br>< 10<br>< 10 | 999<br>6<br>4<br>16 |  |  |
|                                        |                                 |                  |                     | ·                    |             |                 |               |                 |                   |                         |         |             |                              |             |                      |                     |  |  |

CERTIFICATION:



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

NORTHAIR MINES LIMITED 1

860 - 625 HOWE ST. VANCOUVER, B.C. V6C 2T6

Page Numi . 1-A Total Pages :2 Certificate Date: 10-AUG-97 Invoice No. : 19735125 P.O. Number K Account

Project : STEWART Comments: ATTN: MARK PREFONTAINE CC: DAVID VISAGIE

|                     |                                                             |                                                                | ······                                               |                                                |                                          |                                               |                                  |                                                    |                                                      | CERTIFICATE OF ANALYSIS                |                                                    |                               |                                   |                                    | rsis                                     | 4                                                | 9735                                          |                                              |                                              |                                        |
|---------------------|-------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------------|-----------------------------------------------|----------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------|----------------------------------------------------|-------------------------------|-----------------------------------|------------------------------------|------------------------------------------|--------------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------|
|                     | SAMPLE                                                      | PREP<br>CODE                                                   | Auppb AuFA<br>FA+AA g/t                              | Ag<br>ppm                                      | A1<br>%                                  | As<br>ppm                                     | ßa<br>ppm                        | Be<br>ppm                                          | Bi<br>ppm                                            | Св.<br>%                               | Cđ<br>ppm                                          | Co<br>ppm                     | Cr<br>ppm                         | Cu<br>ppm                          | fe<br>%                                  | Ga<br>ppm                                        | Hg<br>ppm                                     | K<br>%                                       | La<br>ppm                                    | Ng<br>%                                |
| the second          | N330001<br>N330002<br>N330003<br>N330004<br>N330005         | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | 10<br>45<br>10<br>< 5<br>1760 1.75                   | < 0.2<br>< 0.2<br>< 0.2<br>0.2<br>13.2         | 1.63<br>1.06<br>1.63<br>1.03<br>3.59     | 172<br>16<br>< 2<br>< 2<br>< 2                | 40<br>60<br>40<br>30<br>180      | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>16                       | 0.80<br>0.95<br>0.98<br>1.25<br>0.63   | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>4.5            | 16<br>6<br>15<br>25<br>13     | 19<br>24<br>22<br>19<br>56        | 52<br>18<br>46<br>126<br>4520      | 4.06<br>1.08<br>3.12<br>3.58<br>5.79     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>10       | < 1<br>< 1<br>< 1<br>< 1<br>< 1               | 0.06<br>0.07<br>0.07<br>0.09<br>1.36         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.67<br>0.25<br>0.51<br>0.20<br>0.92   |
|                     | M330006<br>M330007<br>M330008<br>M330009<br>M330010         | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre> | 0.6<br>0.2<br>< 0.2<br>< 0.2<br>< 0.2          | 2.88<br>1.57<br>1.91<br>2.72<br>1.47     | 6<br>4<br>< 2<br>< 2<br>< 2                   | 60<br>110<br>10<br>70<br>30      | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.77<br>0.85<br>0.83<br>0.75<br>0.92   | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 12<br>8<br>11<br>13<br>6      | 23<br>23<br>45<br>24<br>26        | 25<br>32<br>1<br>34<br>232         | 4.67<br>3.02<br>2.48<br>4.03<br>4.02     | 10<br>< 10<br>< 10<br>10<br>< 10                 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>1          | 0.11<br>0.11<br>0.05<br>0.06<br>0.05         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.62<br>0.59<br>1.23<br>1.54<br>0.71   |
|                     | M330011<br>M330012<br>M330013<br>M330014<br>M330015         | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre> | 0.6<br>0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 1.62<br>1.45<br>0.79<br>1.03<br>1.16     | 156<br>12<br>2<br>2<br>18                     | 20<br>40<br>< 10<br>< 10<br>60   | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.88<br>1.03<br>0.61<br>1.15<br>1.19   | 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>0.5     | 18<br>13<br>6<br>8<br>17      | 17<br>22<br>104<br>79<br>73       | 268<br>139<br>10<br>5<br>5         | 5.02<br>4.28<br>1.00<br>1.03<br>2.60     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10     | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.05<br>0.06<br>0.01<br>0.01<br>0.12         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.81<br>0.56<br>0.30<br>0.17<br>0.57   |
| - <u></u>           | M330016<br>M330017<br>M330018<br>M330019<br>M330020         | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | 10<br>355<br>< 5<br>20<br>< 5                        | 1.0<br>1.8<br>< 0.2<br>49.0<br>5.4             | 1.38<br>2.06<br>0.79<br>0.80<br>1.78     | 138<br>6<br>< 2<br>18<br>< 2                  | 40<br>10<br>40<br>10<br>60       | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5          | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 0.50<br>0.18<br>1.90<br>1.55<br>0.27   | 3.0<br>< 0.5<br>< 0.5<br>4.5<br>< 0.5              | 25<br>10<br>3<br>8<br>6       | 20<br>27<br>90<br>123<br>45       | 33<br>22<br>1<br>626<br>44         | 5.28<br>9.47<br>1.09<br>1.14<br>2.45     | < 10<br>10<br>< 10<br>< 10<br>< 10               | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.14<br>0.08<br>0.10<br>0.06<br>0.11         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.71<br>1.12<br>0.27<br>0.77<br>1.78   |
| <u>لاً ب</u> ر<br>م | M330021<br>M330022<br>M330023<br>M330036<br>M330037         | 205 226<br>205 226<br>205 226<br>205 226<br>                   | 30<br>25<br>10<br>< 5<br>NotRed                      | 0.6<br>2.2<br>0.8<br>8.2<br>NotRed 1           | 1.23<br>1.63<br>1.35<br>0.35<br>Notred N | 8<br>14<br>6<br>< 2<br>AotRed 1               | 50<br>20<br>30<br>50<br>NotRed 1 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>NotRcd 1       | < 2<br>< 2<br>< 2<br>24<br>WotRcd 1                  | 0.66<br>0.54<br>0.30<br>0.13<br>NotRcd | 1.0<br>3.0<br>0.5<br>< 0.5<br>NotRed               | 7<br>16<br>9<br>4<br>NotRed N | 68<br>123<br>90<br>99<br>JotRed M | 47<br>142<br>87<br>183<br>JotRcd N | 1.87<br>3.62<br>3.08<br>0.89<br>JotRed 1 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>NotRed N | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>otRcd N    | 0.11<br>0.04<br>0.04<br>0.12<br>JotRed N     | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 1.09<br>1.82<br>1.28<br>0.12<br>NotRed |
| ÷ 3                 | M330038<br>M330039<br>M330040<br>M330041<br>M330042         | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | < 5<br>100<br>< 5<br>< 5<br>< 5                      | 0.6<br>24.4<br>< 0.2<br>< 0.2<br>1.0           | 1.11<br>1.17<br>1.24<br>0.32<br>0.18     | 8<br>8<br>< 2<br>< 2<br>20                    | 60<br>30<br>50<br>40<br>1650     | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5          | < 2<br>8<br>< 2<br>< 2<br>< 2<br>< 2                 | 0.34<br>0.03<br>0.34<br>0.25<br>0.61   | < 0.5<br>>100.0<br>< 0.5<br>0.5<br>< 0.5           | 17<br>15<br>10<br>2<br>4      | 45<br>100<br>86<br>144<br>16      | 17<br>6440<br>14<br>29<br>241      | 4.11<br>5.21<br>1.96<br>0.61<br>0.39     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10     | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.65<br>0.02<br>0.04<br>0.01<br>0.01         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.76<br>0.65<br>0.99<br>0.21<br>0.14   |
| spe                 | M330043<br>M330044<br>M330045<br>M330046<br>M330047         | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | 20<br>30<br>20<br>10<br>< 5                          | 2.4<br>3.2<br>2.4<br>1.2<br>< 0.2              | 0.73<br>0.82<br>1.36<br>0.42<br>0.91     | 16<br>24<br>26<br>8<br>< 2                    | 950<br>970<br>1010<br>750<br>400 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>2<br>2<br>< 2<br>< 2<br>< 2                   | 1.84<br>0.80<br>1.81<br>0.32<br>0.23   | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 10<br>18<br>19<br>23<br>5     | 71<br>53<br>54<br>60<br>120       | 221<br>303<br>159<br>342<br>8      | 1.59<br>1.72<br>2.68<br>0.98<br>1.76     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10     | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.07<br>0.09<br>0.10<br>0.14<br>0.04         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.38<br>0.46<br>0.78<br>0.14<br>0.65   |
| <u>7</u><br>Z       | M330048<br>M330049<br>M330050<br>M33005 <u>1</u><br>M330052 | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | < 5<br>< 5<br>< 5<br>< 5<br>785                      | < 0.2<br>< 0.2<br>4.4<br>1.4<br>1.6            | 1.25<br>0.49<br>0.47<br>1.66<br>1.28     | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 120<br>130<br>80<br>80<br>110    | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.33<br>0.07<br>0.49<br>0.01<br>0.47   | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 7<br>3<br>3<br>9<br>3         | 78<br>125<br>108<br>98<br>64      | 15<br>5<br>968<br>322<br>50        | 2.28<br>0.98<br>0.96<br>3.26<br>2.07     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10     | < 1<br>< 1<br>< 1<br>< 1 <<br>< 1 <<br>< 1    | 0.04<br>0.01<br>0.01<br>0.01<br>0.01<br>0.39 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 0.86<br>0.32<br>0.32<br>1.18<br>0.39   |
| SIT                 | — <u></u>                                                   | •                                                              |                                                      |                                                |                                          |                                               |                                  |                                                    |                                                      |                                        |                                                    |                               | C                                 | ERTIFIC                            | ATION:_                                  | 12                                               | ai                                            | 13-                                          | 22                                           | '<br>er                                |

Γ

2



,**s**r

:

13

19- F

1

. .



# LEGEND

LITHOLOGY

### STRATIFIED ROCKS

HAZELTON GROUP

Lower to Middle Jurassic

SEDIMENTS

3 SALMON RIVER FORMATION sitistone, arguilite, pyritic a hornfels atteration; fine grained disseminated pyrrhotite and/or pyrite, chlorite b rusty weathering bedded siltstone and fine grained sandstone; siliceous and pyntic

### PLUTONIC ROCKS\*

COAST PLUTONIC COMPLEX

Eocene?

2 Kshwan Glacier pluton: granodiorite; coarse grained, equigranular, homblende-biotite granodiorite

## Early Jurassic?

Buildog Creek pluton: granodiorite, diorite and feidspar porphyry diorite; commonly epidotized and chloritized a: granodiorite: coarse grained, equigranular, homblende biotite granodiorite b: diorite: fine to medium grained, equigranular, dark to medium greenish grey

c: feldspar porphyry diorite: fine grained, equigranular, dark grey diorite with 1mm-2 cm feldspar phenocrysts

\*Note: Nomenclature based on comparing descriptions in most recent regional mapping north of the property by Greig et al, 1993. No definative age dating of intrusives has been carried out.

### ABBREVIATIONS

|   | AK    | - | ankerite     | GL    | -    | galena       |    |
|---|-------|---|--------------|-------|------|--------------|----|
|   | AS    | - | arsenopyrite | HE    | •    | hematite     |    |
|   | CA    | • | calcite      | MA    | *    | malachita    |    |
|   | СВ    | • | carbonate    | MG    | -    | magnetile    |    |
|   | CL    | • | chlorite     | PY    | •    | pyrite       |    |
|   | СР    | • | chalcopyrite | QZ    | -    | quartz       |    |
|   | CY    | • | clay         | MS    | •    | sericite     |    |
|   | EP    | • | epidote      | SL    | -    | sphalerite   |    |
|   | FX    | - | feldspar     | VG    | •    | visible gold |    |
|   |       |   |              |       |      |              |    |
|   | alt'n | • | alteration   | vn    | •    | vein         |    |
|   | brxx  | • | breccia      | vning |      | veining      |    |
|   | ро    |   | porphyritic  |       |      | •            |    |
|   |       |   |              |       |      |              |    |
|   |       |   | SYMBO        | DLS   |      |              |    |
|   |       |   |              | bædd  | ling |              |    |
|   |       |   | -            | folia | lion |              |    |
|   |       |   |              | vein  | 8    |              |    |
|   |       |   | ~~~          | fault | 6    | <b>.</b> .   |    |
|   |       |   |              |       |      |              |    |
|   |       | , |              | cont  | acti | •            |    |
|   |       |   |              |       |      |              |    |
|   |       |   |              |       |      |              |    |
|   |       |   |              |       |      |              |    |
|   |       |   |              |       |      |              |    |
|   |       |   |              |       |      |              |    |
|   |       |   |              |       |      |              |    |
|   |       |   |              |       |      |              |    |
|   |       |   |              |       |      | ·            |    |
| 0 | 250   | 3 | 500          | 750   |      | 1000 12      | 50 |
|   |       |   |              |       |      | - F          |    |
|   |       |   | METRES       |       |      |              |    |
|   |       |   |              | E 000 |      |              |    |
|   |       |   | SCALE 1:1    | 5,000 |      |              |    |

INT'L NORTHAIR MINES LTD. HOPE PROPERTY GEOLOGY DRAWN BY: AW,KN,TK SCALE: 1:15,000 DATE: JULY 1996 FIGURE NO: 3

 $(\bar{l})$ 



.

)

14

i I

.

·

(2)